Inaugural - Dissertation

zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg

Vorgelegt von Diplom-Geologe/Paläontologe Lena Schäfer aus Leimen

Tag der mündlichen Prüfung: 29.05.2015

Die intra- und interkristalline Verteilung der Spurenelemente Phosphor, Scandium, Cobalt und Zink in Orogenen Ultramafititen

Gutachter: Prof. Dr. Rainer Altherr

Prof. Dr. Mario Trieloff

Inhaltsverzeichnis

Kurzfassung	1
Abstract	
Vorwort	5
1 Einleitung	7
1.1 Das Promotions-Kolleg "Intra- und Interkristalline Verteilung der Spurenelemente P, Sc, Co und Zn in Erdmantelgesteinen"	7
1.2 Zielsetzung der vorliegenden Arbeit und bisheriger Forschungsstand	7
1.2.1 Thermodynamik und Diffusion	7
1.2.2 P, Sc, Co und Zn – Spurenelemente in Peridotiten	9
1.2.3 Bisherige Arbeiten	9
1.2.4 Zielsetzung	11
1.2.5 Vorgehensweise / Analytische Methoden	12
1.3 Regionalgeologischer Rahmen der Probenlokalitäten	13
1.3.1 Die Entstehung der großen phanerozoischen Gebirge	14
1.3.2 Die Skandinavischen Kaledoniden	16
1.3.2.1 Western Gneiss Region	19
1.3.2.2 Probenlokalitäten Kalskaret und Gurskebotn	19
1.3.3 Die Alpen	21
1.3.3.1 Geographische Lage	21
1.3.3.2 Forschungsgeschichte	22
1.3.3.3 Geologie	22
1.3.3.4 Geodynamik	25
1.3.3.5 Probenlokalitäten Alpe Arami und Valle di Gorduno	
1.3.3.6 Probenlokalität Finero	
2 Resultate	33
2.1 Probe AAR-9: Grt-Peridotit	35
2.1.1 Probenlokalität	35
2.1.2 Petrographie	35
2.1.3 Haupt- und Nebenelementchemie	
2.1.3.1 Olivin	
2.1.3.2 Orthopyroxen	
2.1.3.3 Klinopyroxen	
2.1.3.4 Granat	
2.1.3.5 Sekundäre Phasen	
2.1.4 Spurenelementchemie	
2.1.4.1 Phosphor	
2.1.4.2 Scandium	
2.1.4.3 Cobalt	40
2.1.4.4 Zink	40
2.1.5 Mineralgleichgewichte und Geothermobarometrie	41
2.2 Probe VG: Grt-Peridotit	53
2.2.1 Probenlokalität	53
2.2.2 Petrographie	53
2.2.3 Haupt- und Nebenelementchemie	
2.2.3.1 Olivin	
2.2.3.2 Orthopyroxen	45

2.2.3	3.3	Klinopyroxen	54
2.2.3	3.4	Granat	54
2.2.3	3.5	Sekundäre Phasen	55
2.2.4	Spi	Irenelementchemie	55
2.2.4	1.1	Phosphor	55
2.2.4	1.2	Scandium	57
2.2.4	1.3	Cobalt	57
2.2.4.4		Zink	58
2.2.5	Min	eralgleichgewichte und Geothermobarometrie	59
2.3 P	robe	Fi: Spl-Lherzolith	73
2.3.1	Pro	benlokalität	73
2.3.2	Pet	rographie	73
2.3.3	На	upt- und Nebenelementchemie	74
2.3.3	3.1	Olivin	74
2.3.3	3.2	Orthopyroxen	74
2.3.3	3.3	Klinopyroxen	75
2.3.3	3.4	Spinell	75
2.3.3	3.5	Phlogopit	75
2.3.3	3.6	Amphibol	76
2.3.4	Spι	renelementchemie	76
2.3.4	1.1	Phosphor	76
2.3.4	1.2	Scandjum	77
2.3.4	1.3	Cobalt	77
224	1 4	Zink	78
Z.J.4	+.4		
2.3.4	+.4 Min	eralgleichgewichte und Geothermobarometrie	78
2.3.4 2.3.5 2.4 P I	Min robe	eralgleichgewichte und Geothermobarometrie	78 95
2.3.4 2.3.5 2.4 P I	Min robe Pro	eralgleichgewichte und Geothermobarometrie IV19: Spl-Lherzolith	78 95 95
2.3.4 2.3.5 2.4 P I 2.4.1 2.4.2	Min robe Pro Pet	eralgleichgewichte und Geothermobarometrie IV19: Spl-Lherzolith benlokalität	78 95 95 95
2.3.4 2.3.5 2.4 P i 2.4.1 2.4.2 2.4.3	+.4 Min robe Pro Pet	eralgleichgewichte und Geothermobarometrie IV19: Spl-Lherzolith benlokalität rographie	78 95 95 95 95
2.3.4 2.3.5 2.4 P I 2.4.1 2.4.2 2.4.3 2.4.3	Min robe Pro Pet Hau	eralgleichgewichte und Geothermobarometrie	78 95 95 95 96 96
2.3.4 2.3.5 2.4 P I 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3	Min robe Pro Pet Hau 3.1	eralgleichgewichte und Geothermobarometrie	78 95 95 95 96 96
2.3.4 2.3.5 2.4 P i 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3	+.4 Min Pro Pet Hau 3.1 3.2	eralgleichgewichte und Geothermobarometrie	78 95 95 95 96 96 96
2.3.4 2.3.5 2.4 P I 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3	Min robe Pro Pet Hau 3.1 3.2 3.3	eralgleichgewichte und Geothermobarometrie	78 95 95 96 96 96 96
2.3.4 2.3.5 2.4 P i 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3	 +.4 Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 	eralgleichgewichte und Geothermobarometrie	78 95 95 96 96 96 96 96
2.3.4 2.3.5 2.4 P 2.4.1 2.4.2 2.4.3	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.6	eralgleichgewichte und Geothermobarometrie	78 95 95 96 96 96 96 96 97 97
2.3.4 2.3.5 2.4 P i 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.6	eralgleichgewichte und Geothermobarometrie	78 95 95 96 96 96 96 97 97 97
2.3.4 2.3.5 2.4 Pr 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.4 2.4.4 2.4.4	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.6 Spu 4.1	eralgleichgewichte und Geothermobarometrie	78 95 95 96 96 96 96 97 97 97 97
2.3.4 2.3.5 2.4 P i 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.4 2.4.4 2.4.4 2.4.4	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.6 Spu 4.1	eralgleichgewichte und Geothermobarometrie	78 95 95 96 96 96 96 97 97 97 97 98
2.3.4 2.3.5 2.4 Pr 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.4 2.4.4 2.4.4 2.4.4	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 \$.5 \$.6 \$.1 \$.1 \$.2 \$.1 \$.2 \$.1 \$.2 \$.1 \$.2 \$.1 \$.2 \$.1 \$.2 \$.1 \$.2 \$.1 \$.2 \$.1 \$.2 \$.3 \$.2 \$.3 \$.4 \$.1 \$.1 \$.2 \$.3 \$.2 \$.3 \$.4 \$.1 \$.1 \$.2 \$.3 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.1 \$.2 \$.3 \$.2 \$.3 \$.4 \$.1 \$.1 \$.2 \$.1 \$.2 \$.3 \$.3 \$.1 \$.1 \$.2 \$.1 \$.1 \$.2 \$.1 \$.2 \$.3 \$.3 \$.3 \$.3 \$.3 \$.4 \$.1 \$.1 \$.1 \$.1 \$.2 \$.3 \$.3 \$.3 \$.4 \$.1 \$.1 \$.1 \$.1 \$.2 \$.3 \$.3 \$.3 \$.4 \$.1 \$.1 \$.1 \$.1 \$.2 \$.3 \$.3 \$.3 \$.3 \$.3 \$.3 \$.4 \$.1 \$.1 \$.1 \$.1 \$.2 \$.3 \$.3 \$.3 \$.4 \$.1 \$.1 \$.1 \$.1 \$.1 \$.1 \$.1 \$.1	eralgleichgewichte und Geothermobarometrie	78 95 95 96 96 96 96 97 97 97 97 97
2.3.4 2.3.5 2.4 P 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.6 Spu 4.1 4.2	eralgleichgewichte und Geothermobarometrie IV19: SpI-Lherzolith	
2.3.4 2.3.5 2.4 Pr 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.4 \$.5 \$.6 \$.1 \$.2 \$.1 \$.2 \$.1 \$.2 \$.1 \$.2 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.5 \$.1 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.5 \$.1 \$.1 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.1 \$.2 \$.3 \$.3 \$.3 \$.4 \$.1 \$.1 \$.2 \$.3 \$.4 \$.1 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.4 \$.1 \$.2 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.3 \$.4 \$.1 \$.2 \$.3 \$.4 \$.3 \$.4 \$.1 \$.2 \$.4 \$.4 \$.4 \$.4 \$.4 \$.4 \$.4 \$.4	ZIIK eralgleichgewichte und Geothermobarometrie IV19: Spl-Lherzolith benlokalität rographie upt- und Nebenelementchemie Olivin Orthopyroxen Klinopyroxen Spinell Phlogopit Amphibol urenelementchemie Phosphor Scandium Cobalt Zink eralgleichgewichte und Geothermobarometrie	95 95 95 96 96 96 96 97 97 97 97 97 97 97 97 97 97
2.3.4 2.3.5 2.4 Pr 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.6 Spu 4.1 4.2 4.3 4.4 Min	ZIIN eralgleichgewichte und Geothermobarometrie IV19: Spl-Lherzolith benlokalität rographie upt- und Nebenelementchemie Olivin Orthopyroxen Klinopyroxen Klinopyroxen Phlogopit Amphibol urenelementchemie Phosphor Scandium Cobalt Zink eralgleichgewichte und Geothermobarometrie Ka: Grt-Peridotit	
2.3.4 2.3.5 2.4 Pr 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.5 2.5 Pr	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.6 Spu 4.1 4.2 4.3 4.4 Min robe	eralgleichgewichte und Geothermobarometrie	
2.3.4 2.3.5 2.4 Pr 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.5 Pr 2.5.1 2.5.1 2.5.2	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.5 3.6 Spu 4.1 4.2 4.2 Min robe Pro Pro Pro Pet Hau 3.1 3.2 3.3 4.3 5.3 5.3 5.3 5.3 5.3 5.3 5.4 5.4 5.4 5.4 5.5 5.4 5.5 5.5	ZIIN	
2.3.4 2.3.5 2.4 Pr 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.5 2.5 Pr 2.5.1 2.5.2 2.5.2	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.6 Spu 4.1 4.2 4.3 4.3 4.4 Min robe Pro Pet	ZIIN	98 95 95 96 96 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 115 115
2.3.4 2.3.5 2.4 Pr 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.5 2.5.1 2.5.1 2.5.2 2.5.3 2.5.3	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.4 3.5 3.6 Spu 4.1 4.2 4.3 4.1 Min robe Pro Pet Hau 3.1 3.2 3.4 5 5 4.1 4.2 4.3 4.3 4.3 5 4.3 5 5 4.1 1 5 5 5 6 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	eralgleichgewichte und Geothermobarometrie	
2.3.4 2.3.5 2.4 Pi 2.4.1 2.4.2 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.4 2.4.5 Pi 2.5.1 2.5.2 2.5.3 2.5.3 2.5.3	Min robe Pro Pet Hau 3.1 3.2 3.3 3.4 3.5 3.6 Spu 4.1 4.2 4.3 4.1 4.2 4.3 4.4 Min robe Pet Hau 3.1	ZIIN	98 95 95 96 96 96 96 97 97 97 97 97 97 97 97 97 97 197 198 99 115 115 116 116

3.5.3.3 Klinopyroxen	117
3.5.3.4 Granat	117
2.5.3.5 Amphibol	
2.5.4 Spurenelementchemie	118
2.5.4.1 Phosphor	118
2.5.4.2 Scandium	119
2.5.4.3 Cobalt	
2.5.4.4 Zink	
2.5.5 Mineralgleichgewichte und Geothermobarometrie	
2.6 Probe Gu: Grt-Pyroxenit	
2.6.1 Probenlokalität	
2.6.2 Petrographie	
2.6.3 Haupt- und Nebenelementchemie	
2.6.3.1 Orthopyroxen	
2.6.3.2 Klinopyroxen	
2.6.3.3 Granat	
2.6.3.4 Sekundäre Phasen	
2.6.4 Spurenelementchemie	
2.6.4.1 Phosphor	
2.6.4.2 Scandium	
2.6.4.3 Cobalt	
2.6.4.4 Zink	
2.6.5 Mineralglecihgewichte und Geothermobarometrie	
3 Diskussion	
3.1 Die Verteilung von Phosphor	
3.1.1 Beobachtungen	
3.1.2 Abhängigkeit der P-Verteilung von Druck und Temperatur	151
3.2 Die Verteilung von Scandium	
3.2.1 Beobachtungen	
3.2.2 Abhängigkeit der Sc-Verteilung von Druck und Temperatur	156
3.3 Verteilung von Cobalt	
3.3.1 Beobachtungen	
3.3.2 Abhängigkeit der Co-Verteilung von Druck und Temperatur	
3.4 Verteilung von Zink	
3.4.1 Beobachtungen	
3.4.2 Abhängigkeit der Zn-Verteilung von Druck und Temperatur	
4 Fazit	171
l iteraturverzeichnis	175
Anhana	407
I ell II Weitere Mineralprofile	
Teil III Tabellen	

Kurzfassung

Orogene Ultramafitite aus den Schweizer Alpen und Norwegen wurden mithilfe der Sekundärionenmassenspektrometrie (SIMS) auf ihre intra- und interkristalline Verteilung der Spurenelemente Phosphor, Scandium, Cobalt und Zink untersucht. Hierzu wurden hochauflösende Konzentrationsprofile angefertigt, die durch komplette Mineralkornanschnitte verlaufen. Auch die Haupt- und Nebenelementchemie wurde ortsauflösend mit der Elektronenstrahlmikrosonde (EMS) analysiert, um die Proben u.a. auch geothermobarometrisch zu erfassen. Die Studie belegt, dass für die Untersuchung orogener Ultramafitite die intrakristalline Elementverteilung auf keinen Fall außer Acht gelassen werden darf. Die bei den Mineralphasen von orogenen Ultramafititen auftretenden Mineralzonierungen bzw. Inhomogenitäten führen anderenfalls zu signifikant abweichenden Abschätzungen der Drücke und Temperaturen, unter denen diese Gesteine im Laufe ihrer Geschichte vorlagen und damit verbunden zu falschen Rekonstruktionen ihrer Entstehung.

Die Diffusionsgeschwindigkeit des Spurenelements Phosphor ist in den Mineralphasen von orogenen Ultramafititen so gering, dass sich trotz der langsam ablaufenden Prozesse, die ein orogener Ultramafitit im Zuge einer Orogenese erfahren hat, überwiegend keine Phosphor-Äquilibrierung zwischen den Mineralphasen einstellen konnte. Zeigen die Kernbereiche größerer Mineralkörner homogen ausgebildete Phosphor-Verteilungen, lassen sich deren Äquilibrierungsdrücke und -temperaturen anhand der etablierten, auf zwei- und dreiwertigen, schneller diffundierenden Ionen basierten Geothermobarometer meist aber nicht mehr bestimmen. Wegen der extrem geringen Diffusion von Phosphor ist dieses Element für die Geothermobarometrie von orogenen Ultramafititen untauglich. Auch Scandium zeigt eine langsame Diffusion, doch läuft diese gegenüber Phosphor deutlich schneller ab, was dazu führt, dass sich in den Mineralkernen oft ältere Scandium-Äquilibrierungen erhalten haben, wohingegen sich die Scandium-Gehalte der Mineralränder bereits an veränderte Druck- und Temperatur-Bedingungen angepasst haben. Da manche Scandium-Verteilungskoeffizienten außerdem Abhängigkeiten von der Temperatur und nur untergeordnet vom Druck zeigen, liegt es nahe, diese Scandium-Verteilungen als Geothermometer für weiter zurück liegende Ereignisse in der Geschichte eines orogenen Ultramafitits zu verwenden. Für das Spurenelement Cobalt konnte gezeigt werden, dass es in den Mineralphasen von orogenen Ultramafititen noch schneller diffundiert als die ohnehin schnell diffundierenden lonen Mg²⁺ und Fe²⁺. Darüber hinaus scheinen die Cobalt-Verteilungen zwischen sämtlichen primären Mineralphasen von Ultramafititen deutlich durch die Temperatur gesteuert zu sein. Ein Einfluss des Drucks liegt überwiegend nicht vor. Durch diese Eigenschaften ist Cobalt optimal für die Geothermometrie von orogenen Ultramafititen geeignet, da es die jüngsten Temperaturen besser wiedergeben kann, als die meisten bestehenden Geothermometer. Zink verhält sich in vielerlei Hinsicht wie Cobalt. Die Zink-Verteilungen zwischen den Mineralphasen fallen aber nicht ganz so temperaturabhängig aus wie die von Cobalt.

Abstract

Spinel and garnet-bearing orogenic ultramafic rocks from the Alps and Norway were investigated for their intracrystalline distribution and intercrystalline partitioning of the trace elements P, Sc, Co and Zn, using secondary ion mass spectrometry (SIMS). For this purpose, high resolution profiles through entire mineral grains were analyzed. Major and minor element concentrations were determined by electron probe micro analysis (EPMA) inter alia to estimate the documented pressures and temperatures. This study proves that the investigation of orogenic ultramafic rocks must take into account the intracrystalline distribution of the elements as well. Otherwise the zonings or inhomogeneities of the minerals in orogenic ultramafic rocks would lead to significantly deviating pressure and temperature estimates and, consequently, to wrong reconstructions of their evolution.

The diffusion rate of the trace element P in minerals of orogenic ultramafic rocks is so low that despite of the slow moving processes these rocks had undergone during orogenesis. commonly no state of equilibration for P was reached. Even if the cores of bigger mineral grains show homogeneous intracrystalline P-distributions, no established geothermobarometer exists to estimate the pressures and temperatures of this equilibrium. Therefore, P is not suited for the geothermobarometry of orogenic ultramafic rocks. Sc also exhibits a slow diffusion rate, but compared to P it diffuses much faster. This often leads to a conservation of older Sc-equilibrations in the mineral cores, while their rims already responded to the changed pressure and temperature values. Since some Sc partition coefficients show significant dependencies on temperature but only minor dependencies on pressure, this trace element could be used as a geothermometer for older events in the history of an orogenic ultramafic rock. For the trace element Co it could be demonstrated that its diffusion in the minerals of ultramafic rocks runs faster than the already fast diffusing Mg or Fe^{2+} . In addition, Co-partitioning between the primary minerals of orogenic ultramafic rocks seems to be clearly controlled by temperature. An effect by pressure is virtually absent in most cases. On the basis of these properties, Co is ideal for geothermobarometry of orogenic ultramafic rocks because it can reflect the recent temperature changes better than most existing geothermometers. Zn behaves in many ways like Co, but the partitioning of Zn between the minerals is not as dependent on temperature as in the case of Co.

Vorwort

Der Homo Sapiens ist von jeher neugierig auf alles, das ihn umgibt. Während sich die ersten "Geologen" wohl eher mit Fragen der Nutzbarmachung von Gesteinen beispielsweise in Form von Faustkeilen beschäftigten, wurden die Fragestellungen im Laufe der Menschheitsgeschichte immer "tiefgründiger". So führte ihn die Erkenntnis, dass die Erde, auf der er sich bewegt, nicht flach sondern rund wie eine Kugel ist zu der Frage, aus was wohl das tiefe Innere dieser Kugel besteht. Allerdings stellten sich Grabungen für die Beantwortung dieser Frage als nicht tiefgreifend genug heraus. Doch wie gelangt er nun an Probenmaterial aus mehreren 10er bis 100er Kilometern Tiefe? Hier kommt ihm die Geodynamik zu Hilfe. Die Erdoberfläche steht nie still, sie ist ständig in Bewegung. Sie setzt sich aus vielen Lithosphärenplatten unterschiedlicher Größe zusammen, die angetrieben von Konvektionen im Erdmantel auf der Asthenosphäre gleiten. Sie können sich voneinander entfernen, oder sich an anderer Stelle auf dem Globus aufeinander zu bewegen. Im letzten Fall entstehen konvergierende, sogenannte destruktive Plattengrenzen. Bei der nun stattfindenden Subduktion tauchen Lithosphärenplatten mit ozeanischer Kruste unter solche mit kontinentaler Kruste ab. Wenn sich auf der abtauchenden lithosphärischen Platte ebenfalls kontinentale Kruste befindet, so kann es, sobald dieser Bereich die Nahtstelle der beiden Platten erreicht, am Ende einer Subduktion zu einer Kontinentalkollision kommen. Das Endergebnis besteht aus einem aufgeschobenen Faltengebirge. In diesen Orogenen können Teile der subduzierten Kontinentalplatte und auch exhumiertes Mantelmaterial eingearbeitet werden. So ist es möglich, dass in heutigen Gebirgen in über 1000 Meter Höhe ehemals frühere ozeanische Kruste von tief unter dem Meeresspiegel oder gar Teile des lithosphärischen Mantels vorzufinden sind. Während einer Gebirgsbildung ändern sich fortlaufend die Druck- und Temperaturbedingungen, die auf ein Gestein einwirken, so dass es zu Metamorphosen der bestehenden Mineralparagenesen kommt, da diese versuchen, sich an die neuen Bedingungen anzupassen. Daher muss man sehr vorsichtig mit der Behauptung sein, man hätte noch ursprüngliches Mantelmaterial gefunden. Allerdings ist es so, dass Mantelperidotite im Vergleich zu anderen Silikatgesteinen rheologisch sehr träge sind und somit Hinweise auf ihren lithosphärischen Ursprung während der Orogenese nicht so schnell verlieren. An der Erdoberfläche liegen Peridotite wie auch viele andere Gesteine in einem metastabilen Zustand vor, so dass sie sich nicht mehr an die sie umgebenden Druck- und Temperatur-Bedingungen anpassen und dem neugierigen und per Definition klugen und verstehenden Homo Sapiens somit Informationen über eine Tiefe der Erdkugel eröffnen, die er in naher Zukunft selbst nicht erkunden kann. Als Alternative bleibt ihm nur der Griff zur Literatur Jules Vernes.

1 Einleitung

1.1 Das Promotions-Kolleg "Intra- und Interkristalline Verteilung der Spurenelemente P, Sc, Co und Zn in Erdmantelgesteinen"

In der Forschungsgruppe "Petrologie und Geochemie" am Institut für Geowissenschaften an der Ruprecht-Karls-Universität Heidelberg sind zum Thema "Intra- und Interkristalline Verteilung der Spurenelemente P, Sc, Co und Zn in Erdmantelgesteinen" zwei Arbeiten im Rahmen eines Promotions-Kollegs verfasst worden. Die Aufteilung richtet sich nach den jeweiligen Mechanismen, durch welche die Gesteine an die Erdoberfläche gelangten. Die Arbeit von Tobias Schäfer (Schäfer 2015) befasst sich mit Spl- und Grt-Peridotiten, die als Xenolithe durch aufsteigendes Magma sehr schnell den Weg an die Erdoberfläche fanden. Die vorliegende Arbeit hingegen beschäftigt sich mit der Fragestellung wie sehr sich Spl- und Grt-Peridotite wie auch Pyroxenite verändern, wenn sie durch den komplexen Ablauf einer Orogenese und deren tektonische Prozesse über eine viel längere Zeitspanne langsam an die Erdoberfläche befördert werden. Die thematische Aufteilung in zwei Arbeiten sorgt für ein breiter abgedecktes Spektrum an Erdmantelgesteinen und für eine erhöhte Probenanzahl aus verschiedensten Lokalitäten der Erde. Darüber hinaus lassen sich so peridotitische Xenolithe und orogene Ultramafitite miteinander vergleichen. Alle Proben der orogenen Ultramafitite sowie auch der Xenolithe stammen aus der umfangreichen Sammlung des Instituts für Geowissenschaften der Ruprecht-Karls-Universität Heidelberg.

1.2 Zielsetzung der vorliegenden Arbeit und bisheriger Forschungsstand

1.2.1 Thermodynamik und Diffusion

In der Thermodynamik gibt es in Bezug auf den Austausch von Energie und Materie mit der Umgebung zwei Extreme: das isolierte und das offene System. Ersteres wird dadurch definiert, dass weder die Energie des Systems noch die Materie mit der Umgebung des Systems in Wechselwirkung steht. Das offene System ist hingegen in der Lage Energie und Materie mit der Umgebung auszutauschen. Letzterer Fall kann gleichgesetzt werden mit natürlich vorkommenden Gesteinen. Allerdings ist es notwendig, nicht die Gesamtgesteinsparagenese, sondern die jeweiligen Berührungsparagenesen als Systeme zu definieren, d.h. es werden nur Minerale miteinander betrachtet, die auch wirklich im Verbund stehen. Die Mineralchemie und der Modalbestand so eines Systems wird beeinflusst durch die intensiven Zustandsvariablen Druck (P), Temperatur (T) und die chemische Zusammensetzung (X). Kommt es zu einer Änderung einer oder mehrerer dieser Variablen, so wird das System, in diesem Fall die Berührungsparagenese, versuchen sich auf diese neue Situation einzustellen. Wenn dem System genügend Zeit (t) für die dafür notwendigen physikalischchemischen Prozesse zur Verfügung steht, stellt sich im Idealfall ein Gleichgewichtszustand ein. Dies ist in der Praxis allerdings sehr schwierig. Diffusions- und Kristallisationsprozesse sind sehr zeitaufwendig, da z. B. die Diffusionsgeschwindigkeiten verschiedener chemischer Elemente unterschiedlich groß sind. Bei der Diffusionsgeschwindigkeit von chemischen Elementen in Mineralphasen spielen die verschiedensten Variablen eine Rolle, wie z.B. P, T,

X, die Kristallstruktur der Festphase oder Schmelze, der Ionenradius und die Ladung des Ions des jeweiligen Elements.

Werden Mantelperidotite bei einer Kontinentalkollision in ein Orogen eingearbeitet, so können sie, auch nach ihrer langen und komplizierten metamorphen Entwicklung, dennoch ihren ursprünglichen Zustand oder einen an diesen sehr nah heran kommenden konserviert haben. Es gibt verschiedene Gründe für diese Konservierung. Erstens sind Diffusionsgeschwindigkeiten in Silikaten meist gering. Zweitens stellen sich Quarz- und Feldspatreiche Gesteine viel schneller auf retrograde Bedingungen ein als es ultramafische tun (Rubie 1990). Dies bedeutet, dass Mantelperidotite metamorphe Entwicklungen aufzeigen können, die sehr weit in der Vergangenheit liegen. Allerdings müssen theoretische Kenntnisse und Untersuchungsergebnisse natürlicher Gesteine sowie experimentelle Daten vorhanden sein, um bei einer bekannten Zusammensetzung des jeweiligen Systems bzw. Gesteins, auf dessen P-T-Entwicklung schließen zu können. Des Weiteren ist die Gleichgewichtsbetrachtung wichtig, ob sich das betrachtete System in einem Gleichgewichtszustand befindet oder nicht. Da sich die vorliegende Arbeit mit natürlichen Proben beschäftigt und es in der Natur, bei den dort langsam reagierenden thermodynamischen Systemen, nie zu einer hundertprozentigen Gleichgewichtseinstellung kommt, müssen Informationen auch aus mineralchemischen Zonierungen gezogen werden. Spear (1993) unterscheidet zwei Extrema von chemischen Zonierungen. Auf der einen Seite gibt es die Wachstumszonierung. Durch Änderungen äußerer Umstände wie P, T und der Gesamtgesteinschemie werden neue Wachstumskoronen um ein Mineral gebildet. Je nachdem wie sich die äußeren Zustandsvariablen ändern, kann auch die Zusammensetzung der jeweiligen "Hülle" variieren. Allerdings ändert sich bei dieser Betrachtung die Zusammensetzung nach dem Wachstum nicht mehr. Auf der anderen Seite spricht Spear (1993) die Diffusionszonierung an. Hierbei handelt es sich um einen Vorgang, bei dem sich durch Volumendiffusion in einem bestehenden Mineralkorn während und/oder nach dem Wachstum die chemische Zusammensetzung ändert. Bei dieser Betrachtung wird kein Kristall aufgelöst oder neu gebildet. Der Beginn einer Diffusionszonierung hängt im Vergleich zur Wachstumszonierung ebenso von Änderungen äußerer Umstände wie P, T und der reaktiven Gesamtgesteinschemie (Subsysteme) ab. Da der thermische Aspekt bei Diffusionsprozessen sehr wichtig ist und die Diffusion mit steigender Temperatur zunimmt, spielt die Diffusionszonierung in höher temperierten Gesteinen eine wichtigere Rolle als in niedriger temperierten. In der Natur kommen mit großer Wahrscheinlichkeit nur Mineralzonierungen vor, die durch ein Zusammenspiel beider Mechanismen (Wachstum und Diffusion) gebildet wurden. Damit es in einem Mineral zu einem Stofftransport kommen kann, welcher in einer Zonierung oder einer neuen (Teil)-Äquilibrierung resultiert, ist u.a. die intraund interkristalline chemische Diffusion von Nöten. Hierunter wird die Migration von atomaren Einheiten oder einzelnen Atomen verstanden und zwar wandern diese Bestandteile vom höheren zum niedrigeren chemischen Potentialbereich. Das chemische Potential wird definiert durch Konzentrations- und T- sowie P-Gefälle. Ausnahme bildet die Soret-Diffusion, die nur durch T-Unterschiede abläuft. Die Extrema der Diffusionsmechanismen sind Tracer- und Multikomponenten-Diffusion (Spear 1993). Bei ersterer ist das chemische Potential von nur einem Element unterschiedlich. Nach Zhang (2010) ist dieser Typ von Diffusion dadurch begrenzt, dass nur Elemente mit einer Konzentration von

bis zu 1 Gew.% beachtet werden, daher wird dieser Typ auch Trace Element Diffusion genannt. Bei der Multikomponenten-Diffusion haben mehrere Elemente unterschiedliche chemische Potentiale und beeinflussen sich gegenseitig (Spear 1993).

1.2.2 P, Sc, Co und Zn – Spurenelemente in Peridotiten

Die chemischen Elemente einer Mineralphase oder eines Gesteins werden in Haupt-, Neben- und Spurenelemente eingeteilt. Um als Hauptelement zu gelten, muss ein Element mindestens 1.0 Gew.% eines Gesteins ausmachen. Bei Nebenelementen müssen es zwischen 1.0 und 0.1 Gew.% sein und schließlich ist ein Spurenelement mit <0.1 Gew.% im Gestein vertreten. Ein und dasselbe Element kann in einem Gestein ein Haupt- und in einem anderen Gesteinssystem ein Spurenelement sein. In Peridotiten sind P, Sc, Co und Zn als Spurenelemente enthalten. Nach Palme & O'Neill (2003) liegen im noch nicht verarmten primordialen Erdmantel die Konzentrationen von P bei ca. 90 $\mu g/g$, von Sc bei ca. 16 $\mu g/g$, von Co bei ca. 105 μ g/g und von Zn bei ca. 55 μ g/g. Wie sich diese Elemente verhalten, wenn es im peridotitischen Erdmantel zu Schmelzprozessen kommt, lässt sich durch den jeweiligen Verteilungskoeffizienten ausdrücken. Dieser ist hier definiert als das Konzentrationsverhältnis eines Elements zwischen der entstandenen Schmelze und dem Residuum. In diesem Fall also der basaltischen Schmelze auf der einen und den Mineralphasen des heutigen verarmten Erdmantels auf der anderen Seite: K_D = $c^{\text{Residuum}}/c^{\text{Schmelze}}$ mit c = Konzentration des Elements. Die Verteilungskoeffizienten der hier untersuchten Elemente unterscheiden sich stark voneinander. Liegt der Verteilungskoeffizient eines Elements über 1 ($K_D > 1$), verbleibt es überwiegend im Residuum und verhält sich somit zu diesem kompatibel. Dies trifft auf Co zu. Ein Element mit $K_{\rm D}$ < 1 reichert sich in der Schmelze an und wird deshalb (hoch) inkompatibel genannt. So ein inkompatibles Element ist P. Ist der K_D bei ca. 0.5, wie für Sc und Zn, so sind die Elemente nur mäßig inkompatibel. Daher gehen Sc und Zn nicht so stark in die Schmelze wie P. Jedes der Elemente hat darüber hinaus auch einen unterschiedlichen Diffusionskoeffizienten. Gründe dafür sind die verschiedenen Ionenladungen und Ionenradien von P, Sc, Co und Zn. P⁵⁺ wird meist aufgrund seiner hohen Ladung als Tetraederzentralion anstelle von Si⁴⁺ oder Al³⁺ in Silikatminerale eingebaut und hat daher auch eine sehr geringe Diffusivität, trotz seines geringen Ionenradius (0.38 Å). Obwohl die Ionenradien der geringer geladenen Elemente Sc^{3+} (0.75 Å), Co^{2+} (0.65 Å) und Zn^{2+} (0.74 Å) größer sind als von P^{5+} , sind deren Diffusionskoeffizienten deutlich höher.

1.2.3 Bisherige Arbeiten

Die experimentelle Datenlage für Diffusionskoeffizienten von chemischen Elementen ist noch sehr ausbaufähig (Jaoul & Béjina 2005; Chakraborty 2006). Bisher untersuchte man an Olivin (Ol) die Diffusivität von Fe und Mg (Chakraborty 1997), Si und O (Dohmen et al. 2002), Ca (Coogan et al. 2005) und Ni sowie Mn (Petry et al. 2004). In Granat (Grt) fand man die Diffusivität von Fe, Mg, Ca, Mn und den Seltenen Erden heraus (z.B. Ganguly et al. 1998; Van Orman et al. 2002; Tirone et al. 2005; Perchuk et al. 2009). Als weitere silikatische

Phasen und deren Diffusionskoeffizienten wurde die Pyroxengruppe bearbeitet (Sautter et al. 1988; Dimanov & Jaoul 1998; Schwandt et al. 1998; Azough & Freer 2000; Van Orman et al. 2001). Die in der vorliegenden Arbeit zu untersuchenden Elemente P, Sc, Co und Zn sind bisher noch nicht im Blickpunkt der Forschung im Hinblick auf die Diffusionskoeffizienten geraten.

Im Forschungszweig der Verteilungskoeffizienten von Elementen zwischen koexistierenden Mineralen hat sich schon mehr getan. Seitz et al. (1999) untersuchten die Verteilung von Elementen zwischen Orthopyroxen (Opx) und Klinopyroxen (Cpx). Grundlage für dieses Projekt war die Arbeit mit der Analysetechnik der Sekundärionenmassenspektrometrie (SIMS). Somit wurde am Institut für Geowissenschaften in Heidelberg die Verteilung der Elemente Sc, Ti, V, Cr, Mn, Co und Ni zwischen Opx und Cpx in peridotitischen Mantel-Xenolithen untersucht. Das Ergebnis stellt sich folgendermaßen dar. Es sei $D_{M}^{Opx/Cpx}$ der Verteilungskoeffizient eines Elements M zwischen Opx und Cpx ($D_{M}^{Opx/Cpx} = c^{Opx}/c^{Cpx}$ mit c = Konzentration von Element M in Opx und Cpx). Die Verteilungskoeffizienten der untersuchten Elemente sind stark *T*-abhängig, darüber hinaus sind lediglich schwache bis vernachlässigbare *P*-Abhängigkeiten zu erkennen. Seitz et al. (1999) gehen nur auf die Elementverteilungskoeffizienten zwischen Opx und Cpx ein. Es wurde auf keine weiteren Phasen, die sich in Mantelperidotiten befinden, eingegangen, wie z.B. Ol, Grt und Spinell (Spl) und deren Verteilungskoeffizienten.

Die Studie von Witt-Eickschen & O'Neill (2005) betrachtet die Verteilung der Seltenen Erden und der Elemente P, Sc, Co, Ni, Zr, Hf, Th und U zwischen Ol, Opx, Cpx und Spl in peridotitischen Spl-Xenolithen. Die Autoren fanden heraus, dass die Verteilungskoeffizienten nicht nur von T sondern auch von gewissen Hauptelementgehalten in Opx, Cpx und Spl beeinflusst werden können. Der Gehalt an Cr im Spl zeigt hier einen deutlichen Einfluss auf den Verteilungskoeffizienten von Sc zwischen Cpx und Spl. Eine T-Abhängigkeit besteht bei der Verteilung von Sc zwischen Ol und Opx, Ol und Cpx, Opx und Cpx, sowie Cpx und Spl. Ähnliches ist auch bei Co zu erkennen. Der Verteilungskoeffizient von Co zwischen Ol und Opx, OI und Cpx sowie OI und Spl ist *T*-abhängig. Die Verteilung zwischen OI und Spl wird hier ebenfalls durch den Cr-Gehalt des Spl beeinflusst. Für die Verteilung von P konnte nur eine schwache T-Abhängigkeit zwischen Ol und Opx beobachtet werden. Die angewendete Analysemethode der Massenspektrometrie mit einem Laser-Ablationssystem und induktiv gekoppelten Plasma (LA-ICP-MS) birgt aufgrund des Strahldurchmessers von ca. 84 µm ein Problem. So konnte nicht auf Inhomogenitäten der Mineralzusammensetzungen, wie beispielsweise auf mögliche Zonierungen, der Xenolith-Mineralphasen eingegangen werden. Außerdem wurden keine Profile durch ganze Mineralkörner gelegt, weshalb leider nicht die Möglichkeit besteht auf mineralchemische Unterschiede zwischen den Mineralrändern und den Mineralkernen zu achten.

Die Arbeit von De Hoog et al. (2010) behandelt die Spurenelementverteilung in OI aus Erdmantelgesteinen. Die Spurenelemente werden hier in drei Gruppen eingeteilt. Die erste Gruppe besteht aus Elementen, die sich aufgrund ihrer Ähnlichkeit zu Mg kompatibel gegenüber OI verhalten. In den untersuchten Proben ist OI auch gleichzeitig das Hauptmineral für diese Elemente (Li, Mn, Co, Ni, Cu, Zn). Die Elemente der zweiten Gruppe (Na, AI, Ca, Sc, V, Cr) sind in den koexistierenden Mineralphasen in höheren Konzentrationen vertreten, da sie sich weniger gut in die Olivinstruktur einfügen können. Des Weiteren ist aufgefallen, dass die Elementverteilung dieser Gruppe zwischen Ol und seinen benachbarten Phasen *T*-abhängig ist und somit die Möglichkeit besteht Geothermo(baro)meter aufzustellen. Als dritte und letzte Gruppe werden die sowohl für Ol als auch für seine Nachbarphasen in Erdmantelgesteinen inkompatiblen Elemente aufgelistet (P, Ti, Y, Zr, Nb). De Hoog et al. (2010) untersuchten die Spurenelementverteilung auch mit Hilfe einer LA-ICP-MS, allerdings mit einem noch größeren Strahldurchmesser (200 bis 300 µm) als Witt-Eickschen & O'Neill (2005), d.h. mit noch größeren Unsicherheiten bezüglich der mineral-chemischen Inhomogenitäten.

Waldow (2010) hat mit Hilfe der Elektronenstrahl-Mikrosonde (EMS) und der SIMS am Institut für Geowissenschaften in Heidelberg eine Arbeit über die Verteilung des Elements P in Erdmantelgesteinen angefertigt. Bei den untersuchten Proben handelt es sich um Spl-Peridotite aus Saudi-Arabien und um einen Grt-Peridotit aus den Schweizer Alpen. Um auch auf die intrakristalline Verteilung von P eingehen zu können, wurden Profile durch ganze Mineralkörner gemessen. Die P-Verteilung in den primären Mineralphasen des Erdmantels Ol, Opx und Cpx ist auf mögliche T- und/oder P-Abhängigkeiten geprüft worden. Da die Verteilungskoeffizienten von P zwischen Ol und Opx, Ol und Cpx sowie Opx und Cpx hauptsächlich *T*-abhängig sind und unabhängig von der Gesamtmenge an P in den untersuchten Proben, können somit Gleichungen für Geothermometer aufgestellt werden. Zur Überprüfung der Ergebnisse müssten alle Geothermometer die gleiche T ergeben, wenn die Proben äguilibriert wären. Nach Waldow (2010) sind in Hinblick auf die Geothermometergleichungen noch weitere Untersuchungen nötig, speziell für die Verteilung von P zwischen Ol und Cpx. Da sich die Diffusion von P sehr träge verhält, besteht die Möglichkeit, dass das Element in Hinblick auf kurzzeitige Änderungen der P- und T-Bedingungen unbeeindruckt bleibt und ältere *P*- und *T*-Bedingungen konserviert als andere Elemente.

1.2.4 Zielsetzung

Nach den bisher angesprochenen Studien wird klar, dass möglichen Mineralzonierungen bisher viel zu wenig Beachtung geschenkt wurde. Die Ausnahmen bilden u.a. Seitz et al. (1999), die an einigen Mineralkörnern komplette Profile an der SIMS gemessen haben und Waldow (2010), der auf Mineralzonierungen der Haupt- und Nebenelemente sowie auf das Spurenelement P eingegangen ist. Des Weiteren ist es von großem Interesse den Erdmantel in Hinsicht auf seine Geochemie weiter zu untersuchen. Dafür sind Kenntnisse über die Verteilung der Spurenelemente wichtig, z.B. zwischen koexistierenden Phasen in Grt-Peridotiten, um damit geothermobarometrische Gleichungen aufstellen zu können (Bodinier et al. 1987; Canil 1999; Seitz et al. 1999). Es fällt auf, dass Spurenelemente sensibler auf *P-T*-Änderungen reagieren als die Hauptelemente der Mineralphasen und somit genauer geologische Prozesse erklären können (Hickmott & Shimizu 1990). Dazu kommt noch, dass Spurenelementzonierungen in einem Mineralkorn ausgeprägter sein können als die Zonierungen der Hauptelemente (Hickmott et al. 1987).

Um Regelmäßigkeiten in Hinblick auf das intra- und interkristalline Verteilungsverhalten von P, Sc, Co und Zn herauszufinden, wurde in der vorliegenden Arbeit penibel auf mögliche

Zonierungen der Haupt-, Neben- und Spurenelementchemie in den Mineralphasen der untersuchten orogenen Peridotite geachtet. Da es in orogenen Gesteinen kaum möglich ist unzonierte Minerale vorzufinden, ist es von großer Wichtigkeit mögliche Zonierungen richtig einzuschätzen und auszuwerten. Diese genaue Untersuchung wird ermöglicht durch die ortsauflösende Analytik mit der EMS und der SIMS. Der Strahldurchmesser der EMS liegt bei ca. 1 µm und es konnte in der Regel mit einem Abstand von 10 µm zwischen den einzelnen Punkten gemessen werden. Bei dem verwendeten, komplizierteren SIMS-Setup konnten dennoch Punktabstände von 40 bis 60 µm eingehalten werden mit einem Strahl-durchmesser von, je nach lonenquellenlaufzeit, ca. 25 µm.

Die Auswahl der Spurenelemente für die vorliegende Arbeit wird damit begründet, dass mit unterschiedlich schnell diffundierenden Elementen Aussagen über unterschiedliche Zeiträume der geologischen Entwicklung eines Gesteins getroffen werden können. Das sehr langsam diffundierende Element P könnte es ermöglichen Aussagen über geologische Ereignisse, die schon länger zurückliegen, tätigen zu können. Durch schnell diffundierende Spurenelemente wie Co und Zn könnten sich Schlussfolgerungen zu den letzten Änderungen der *P-T*-Bedingungen ziehen lassen, die auf das Gestein wirkten. Das dreiwertig vorliegende Sc liegt mit seiner Diffusionsgeschwindigkeit zwischen den trägen und den schnell diffundierenden Spurenelementen.

Orogene Gesteine bestehen aus metamorph veränderten Mineralen, die im Verlauf der über lange Zeiträume ablaufenden Gebirgsbildung chemisch heterogen geworden sind. Diese Zonierungen geben einem die Möglichkeit Informationen über die Genese des Gesteins herauszufinden sowie über die Mechanismen, die diese Zonierungen verursacht haben. Des Weiteren ermöglichen Informationen über die chemischen Wechselwirkungen der Minerale bzw. Elemente die Rekonstruktion des P-T-t Pfads eines Gesteins während seiner metamorphen Entwicklung.

1.2.5 Vorgehensweise / Analytische Methoden

Die Proben wurden nach folgendem Schema untersucht. Mit Hilfe der Polarisationsmikroskopie und Rasterelektronenmikroskopie (REM; engl. SEM Scanning Electron Microscope) wurden geeignete Proben ausgewählt und petrographisch untersucht. Am REM war die Erstellung von BSE-Bildern (Back Scattered Electrons) primäres Ziel, da sie an der Elektronenstrahl-Mikrosonde (EMS; engl. EPMA Electron Probe Micro Analysis) zur Orientierung auf den Dünnschliffen dienten. Nachdem der Haupt- und Nebenelementchemismus der Minerale an der EMS analysiert wurde, die erstellten Mineralkornprofile in den BSE-Bildern verzeichnet wurden und die Berechnungen der Mineralformeln abgeschlossen waren, begann die Messanalytik der Spurenelemente P, Sc, Co und Zn mit dem Sekundärionenmassenspektrometer (SIMS; engl. SIMS Secondary Ion Mass Spectrometry). Die gesamte Analytik wurde am Institut für Geowissenschaften an der Ruprecht-Karls-Universität in Heidelberg durchgeführt. Auf der Grundlage dieser Daten war es möglich, auf die letzten Äquilibrierungsbedingungen der jeweiligen Probe mit schon bekannten Geothermobarometern schließen zu können. Anschließend galt es, Verteilungskoeffizienten für die Spurenelemente P, Sc, Co und Zn zwischen den primären Mineralphasen OI, Opx, Cpx, Spl bzw. Grt zu bestimmen und diese auf *P*- und *T*- Abhängigkeiten zu überprüfen. Wie schon in Kapitel 1.2.4 beschrieben, ist es sehr wichtig auf mögliche Elementzonierungen in den Mineralen zu achten. So musste bei einem Element mit unterschiedlicher Rand- und Kernkonzentration in einem oder mehreren Mineralen auch der Verteilungskoeffizient dementsprechend angepasst werden. D.h., bei Mineralen, die für ein bestimmtes Element zoniert vorliegen, musste zum einen ein Verteilungskoeffizient für die Ränder und zum anderen für die Kernbereiche aufgestellt werden. Voraussetzung hierbei sind aber flach verlaufende Konzentrationsprofile in den Kernbereichen sowie über die Probe gemittelt konstante Randzusammensetzungen der betreffenden Minerale. Des Weiteren muss in diesem Fall die Untersuchung der *P-T*-Abhängigkeit dieser Rand- bzw. Kern-Verteilungskoeffizienten auf Grundlage der entsprechenden *P-T*-Werte der Mineralränder bzw. -kerne geschehen.

1.3 Regionalgeologischer Rahmen der Probenlokalitäten

Der Erdaufbau beginnt mit der Kruste, die den gesamten Planeten überzieht. Auf diese folgt in einer Tiefe zwischen 5 - 7 km im ozeanischen, 30 - 40 km im kontinentalen Bereich und bis zu 90 km unterhalb von jungen Orogenen (Okrusch & Matthes 2009) der Obere Erdmantel bis zu ca. 410 km Tiefe. Nach einer Übergangszone, die von ca. 410 bis ca. 660 km verläuft, geht es in den Unteren Mantel. Dieser endet bei ca. 2885 km, an der Kern-Mantel-Grenze, die durch die D^{II}-Schicht definiert ist. Danach beginnt der flüssige Erdkern, der bei ca. 5080 km in den festen Erdkern übergeht.

Der Aufbau der oberen 660 km dieses Schalenbaus der Erde muss noch genauer betrachtet werden. Die Erdkruste, die sich aufteilt in ozeanische und kontinentale Kruste, wird zusammen mit dem Obersten Teil des Erdmantels als Lithosphäre bezeichnet. Die Kruste-Mantel-Grenze heißt Moho (Mohorovičić-Diskontinuität). Der Obere Mantel besteht aus Peridotit. Innerhalb des lithosphärischen Erdmantels gibt es nach der Tiefe die Übergänge von Plagioklas-, über Spinell- zu Granat-Peridotit. Hierbei handelt es sich um gleitende Reaktionen. Unterhalb der Lithosphäre schließt sich die Asthenosphäre an. Sie wird auch LVZ ("Low Velocity Zone") genannt. In diesem Bereich, der sich bis zu einer Tiefe von ca. 250 km erstreckt, bewegen sich die seismischen Wellen verlangsamt. Dies geschieht, da es in der Asthenosphäre zu partieller Schmelzbildung kommt. Dieser etwas plastischere Bereich sorgt dafür, dass die Erdplatten in Bewegung bleiben können. Die Tiefenlage des Übergangs von der Litho- zur Asthenosphäre variiert. Wenn der geothermische Gradient erhöht ist, aufgrund z.B. eines ozeanischen Spreizungszentrums, so liegt der Übergang in seichteren Tiefen. Unter alten Kratonen, wo der geothermische Gradient erniedrigt ist, findet man den Übergang in viel tieferer Lage. Alles unterhalb der Asthenosphäre bis zur D^{II}-Schicht wird auch Mesosphäre genannt. Die Übergangszone zeigt den Wechsel vom Oberen zum Unteren Erdmantel an. Dies geschieht, indem sich Olivin in einer Tiefe von ca. 410 km durch eine gleitende Reaktion in Wadsleyit umwandelt. In einer Tiefe von ungefähr 500 km geht, ebenfalls gleitend, Wadsleyit wiederum zu Ringwoodit über. Unterhalb von ca. 660 km ist schließlich Ringwoodit vollständig in Mg-Si-Perowskit und Ferroperiklas umgewandelt.

Wie können nun Mantelgesteine den Weg an die Erdoberfläche finden? Auf der einen Seite in Form von Xenolithen, die durch ein Magma schnell an die Oberfläche befördert werden, wie sie in der Arbeit von Schäfer (2015) behandelt werden. Auf der anderen Seite können Mantel-Peridotite bei der Gebirgsbildung involviert werden. So ist es möglich, dass Erdmantel-Material während einer Kontinentalkollision mit in die Kruste eingearbeitet wird, u.a. nachdem es durch einen Exhumierungskanal ("Exhumationchannel") in seichtere Tiefen transportiert wurde (Brueckner & van Roermund 2004).

1.3.1 Die Entstehung der großen phanerozoischen Gebirge

Während des Phanerozoikums kam es zu drei großräumigen Orogenesen. Diese sind im Paläozoikum die kaledonische und die variszische sowie im Meso- und Känozoikum die präalpidische mit der darauf folgenden alpidischen Gebirgsbildung.

Die verschiedenen Gebirgszüge in Europa werden auch wie folgt genannt:

Bei dem Begriff Eo-Europa handelt es sich um eine Konsolidierung von Kontinentalplatten, die seit dem Präkambrium nicht mehr an Orogenesen beteiligt war. Diese Gebiete sind die Russische Tafel und der Baltische Schild. Paläo-Europa werden die kaledonischen Gebirgszüge in Europa genannt. Meso-Europa bezeichnet die variszischen Gebirge. Und letztlich Neo-Europa, das die alpinen Gebiete in Europa umschreibt (Pfiffner 2010).

Tremadoc (~490 Ma)

Abb. 1.3-1. Die Erdplattenkonsolidierung zur Zeit von vor ca. 490 Ma (aus Stampfli & Borel 2002). Es sind noch alle Ozeane geöffnet, die sich zu den verschiedenen Zeiten schließen. Rheic bezeichnet den Rheischen Ozean. Nähere Erläuterungen siehe Text.

Während des frühen Paläozoikums bewegte sich der Kontinent Gondwana, der aus heutigen Teilen von Afrika, Südamerika und teilweise Asien besteht, auf die noch nicht vereinten Landmassen Baltika, Nordamerika (Laurentia) und Sibiria zu (Abb. 1.3-1). Im Devon vereinigten sich Baltika und Nordamerika. Dadurch entstanden in Nordamerika die Appalachen. Durch das Zusammentreffen von Baltika und dem östlichen Teil von Avalonia hoben sich im nördlichen Europa (Schottland und Skandinavien) die Kaledoniden heraus. Der südlich von Nordamerika liegende lapetus-Ozean, in dem Grüngesteine mit Gabbros und Peridotiten vorkommen, wurde subduziert. Aber es blieb der Rheische Ozean bestehen. Dieser Ozean war ab diesem Moment mit der Prototethys, die sich zwischen dem heutigen China und Sibiria befand, verbunden. An der Grenze vom Devon zum Karbon begann sich der Rheische Ozean zu schließen, Baltika-Nordamerika (Laurussia) kollidierte mit dem Nordrand von Gondwana (Afrika, Südamerika). Hiermit wurde die variszische Gebirgsbildung in Europa eingeleitet, die in unterschiedlichen Stadien voran geschritten ist. Die Hauptphase verlief wie oben schon erwähnt an der Grenze Devon/Karbon (vor ca. 345 Ma), es folgte eine kurze Pause bis es vor ca. 320 bis 300 Ma weiterging. Durch die Kollision von Baltika mit Sibiria entstand das Uralgebirge. Im Gegensatz zu den variszischen Gebirgen in Europa ist das Uralgebirge noch eine komplett verlaufende Gebirgskette. Dort wurden phanerozoische Sedimente in nicht so großen Mengen abgelagert. Auf dem nordamerikanischen Kontinent wurden die (Süd-)Appalachen herausgehoben (Pfiffner 2010). Im Permokarbon ergab die Kollision von dem entstandenen Nordkontinent Laurussia (Baltika, Nordamerika, Sibiria) mit dem Südkontinent Gondwana den Superkontinent Pangäa, der im Westen und größtenteils im Osten vom Panthalassa-Ozean umgeben war und in einem kleinen Abschnitt im Osten an die Paläotethys grenzte. Letztere ist aus der Prototethys entstanden und bildete ein fast geschlossenes Meeresbecken. Der entstandene Kontinent Pangäa, der aufgrund von Subduktionen in jeder Himmelsrichtung sehr stark unter Spannungen stand, wanderte nach Norden mit einer in Gegendenuhrzeigersinn gerichteten Drehung. Das Auseinanderbrechen der Landmasse Pangäa wurde im Jura durch das Rift zwischen Afrika im Süden und dem variszischen Gebirge im Norden mit der daraus resultierende Entstehung der Tethys eingeleitet (Ricou 1994). Das Rift, welches das Vordringen der Tethys ermöglichte, verlief von Nordost nach Südwest und begann um ca. 230 Ma B.P. Gondwana von Laurasia zu trennen. Die Paläotethys wurde subduziert, dadurch wurde die Türkei an Baltika angeschweißt und es entstand südlich davon die (Neo-)Tethys (Stampfli et al. 2002). An der Jura/Kreide-Grenze hat sich der östliche Arm des Rifts nach Norden verlagert und somit die italienisch-griechische Landmasse von Laurasia abgeschnitten, sowie Iberia von Europa getrennt. Die dabei entstandenen schmalen Ozeanbecken hießen Ligurischer und Piemont Ozean. Letzterer war über einen Transformbruch mit dem weiter östlich gelegenen Penninischen Ozean verbunden (Wortmann et al. 2001). Der westliche Teil des Rifts trennte Nordamerika von Südamerika-Afrika bis Mexiko und beschrieb somit den Beginn der Atlantiköffnung. Weitere Riftsysteme entstanden im nördlichen Kontinent um Grönland herum. Diese waren für die Öffnung des Nordatlantiks entscheidend. Schließlich entstanden durch die konvergenten Plattenbewegungen von Europa mit dem Nordrand von Gondwana (Afrika-Arabia) die Alpen. Bei dieser Subduktion wurden alle kleinen Ozeanbecken und Mikrokontinente eingearbeitet und sind heute in den Alpen teilweise aufgeschlossen. Dies passierte in zwei Stadien. Das erste Stadium zeigte in der Kreide eine westgerichtete

Subduktion, die den Piemont-Ligurischen Ozean und den Penninischen Ozean schloss. Während dem zweiten Stadium im Känozoikum wurde der Valais-Trog geschlossen und eine Nord-Süd gerichtete Subduktion schob den Nordrand von Gondwana und den Südrand von Europa zusammen und zwar leicht gegen den Uhrzeigersinn (Pfeiffer 2010).

1.3.2 Die Skandinavischen Kaledoniden

Der kaledonische Gebirgsgürtel verläuft durch Ostgrönland, Spitzbergen, Schottland und der Westküste Skandinaviens. Auf dem nordamerikanischen Kontinent setzt sich dieses Orogen in den Appalachen fort, allerdings wurden diese Teile während der variszischen Orogenese gegen Ende des Paläozoikums überprägt (Frisch & Meschede 2013). Der Begriff Kaledoniden stammt von Suess (1885). Er leitete es vom lateinischen Wort für Schottland (Caledonia) ab. Barrow (1893) erklärt sein Konzept der Indexminerale, die metamorphe Zonen anzeigen, an den Kaledoniden in Schottland. Sueß (1949) hat eine sehr ausführliche Arbeit über den Vergleich der kaledonischen Gebirgsbildung in Skandinavien und Grönland angefertigt, auch im Hinblick auf die Verschiebung der Erdplatten. Aufgrund fossiler Pflanzenreste, die in Grönland und Norwegen gefunden wurden, geht Sueß (1949) davon aus, dass die Nordamerikanische und die Eurasische Platte einmal zusammen gehört haben.

Die skandinavischen Kaledoniden erstrecken sich über 1800 km entlang der norwegischen Küste. Die Ausläufer dieses Gebirgsgürtels ziehen sich bis 300 km ins Land hinein (vgl. Abb. 1.3-2). Das auffälligste Merkmal dieses Gebirges sind seine parallel zueinander laufenden allochthonen Decken von Südwesten nach Nordosten. Die norwegischen Kaledoniden haben einen vollständige "Wilson-Zyklus" erlebt. Li et al. (2008) erläutern die Entstehung und das Auseinanderbrechen des Großkontinents Rodinia, jeweils bei ca. 900 Ma und ca. 750 Ma. Als Grund für das Ende des Großkontinents wird ein Super-Plume angenommen, der die Abspaltungen der verschiedenen Terrane zu unterschiedlichen Zeiten verursacht hat. Als einer der wenigen Beweise für diese Aufspaltung Rodinias werden u.a. in der Seve Decke (skandinavische Kaledoniden) intrudierte Granite gesehen, anhand derer man U-Pb Messungen an Zirkonen durchgeführt hat und ein Alter von 830 bis 880 Ma B.P. herausgefunden hat. Der Vergleich mit Proben aus Schottland und Taimyr unterstützen diese Aussage (Paulsson & Andréasson 2002). Um ca. 600 Ma haben sich einige Teile von Laurentia mit ehemaligen Teilen von Rodinia zu Gondwana vereint (Li et al. 2008). Während dieser Zeitspanne bildeten sich neue ozeanische Spreizungszentren. Es entstand u.a. zwischen Laurentia im Westen und Baltika im Osten der lapetus Ozean (Abb. 1.3-1), der am Anfang seiner Erforschung noch Proto-Atlantik genannt wurde (Harland & Gayer 1972).

Betrachtet man nur die Landmassen Laurentia, Baltika und Gondwana, so löste sich als erstes Avalonia vom Großkontinent Gondwana und es bildete sich der Rheische Ozean (Abb. 1.3-1). Avalonia begann nun sich auf Baltika hinzu zu bewegen und schloss damit den Tournquist Ozean. Sobald Avalonia und Baltika verschweißt waren, bewegten sie sich auf Laurentia zu, da die Subduktion an der Nordwestseite des lapetus Ozeans im späten Kambrium eingesetzt hat. Die Platte, auf der sich Baltika befand, wurde unter die Platte von Laurentia subduziert. Der Peak der Metamorphose wurde vor ca. 400 Ma durch die skandische Orogenese verursacht, die Norwegen und Schweden betraf (Soper et al. 1992; Paquin 2001). Die Subduktion ist im späten Silur bis ins frühe Devon damit zu Ende gegangen, dass die Deckeneinheiten Laurentias nach Osten, durch eine sinistrale Transpression (Soper et al. 1992), auf den baltische Schild geschoben wurden (Hossack 1985) und so den Kontinent Laurussia gebildet haben. Diese Orogenese verursachte eine Lithosphärenverdickung und eine mit ihr einhergehende Regionalmetamorphose (Paquin 2001). Steel et al. (1985) beschreiben, dass die Erosionsprodukte ab dem frühen Devon in intramontanen Molassebecken abgelagert wurden.

Abb. 1.3-2. Geologische Karte der Skandinavischen Kaledoniden modifiziert nach Paquin (2001). WGR= Western Gneiss Region. Parallel entlang der Küste Norwegens verlaufen die auf dem autochthonen Kristallin und Sedimentserien liegenden allochthonen Decken.

Die einzelnen Einheiten bzw. Decken, die später die Kaledoniden bilden, näherten sich einander an, als der lapetus Ozean sich zu schließen begann und wurden ca. 415 bis

390 Ma schließlich zu einem Orogen akkretioniert (u.a. Stampfli & Borel 2002; Brueckner & van Roermund 2004). Westlich der Western Gneiss Region, die sich südlich innerhalb der Kaledoniden befindet, erkennt man oberhalb der Jotun-Decke die Sutur des lapetus Ozean, die aus Ophiolithen und Sedimenten besteht (Pfiffner 2010). Im Zuge der Entstehung des Nordatlantiks hat sich auch das Norwegen-Grönland-Meer gebildet, das allerdings keine ozeanische Kruste hervorgebracht hat. Dieses Meer teilte die Landmasse Grönlands von Norwegen (Ziegler et al. 1995; Stampfli & Borel 2002). Die heutige Morphologie der Landschaft Norwegens wurde durch die vielen Gletscher verursacht, die sich während der letzten Eiszeiten gebildet haben.

Wie oben schon einmal angesprochen, ist der norwegische Teil der Kaledoniden aufgrund der parallel aufgeschobenen Deckeneinheiten so populär.

Die Einteilung der einzelnen Decken erfolgt von Ost nach West als Schnitt durch die Kaledoniden folgendermaßen: Autochthon, Unteres, Mittleres, Oberes und Oberstes Allochthon (u.a. Kulling 1972; Robert & Gee 1985) (Abb.1.3-2), die jeweils durch eine nach Westen einfallende Scherzone getrennt sind (Hossack 1985). Nach Pfiffner (2010) besitzen die Kaledoniden einen bivergenten Deckenbau. Des Weiteren gibt es noch Old-Red Sandstein, wobei dieser nur einen ganz geringen Teil ausmacht. Allgemein kann man sagen, dass die obersten Schichten gegenüber den unteren Schichten am weitesten transportiert wurden und auch den höchsten Metamorphosegrad haben. Das Gebiet der Kaledoniden wird auch eingeteilt in das Hinterland im Osten und das Vorderland im Westen (Paquin 2001). Es wird kurz auf die jeweilige Einheit eingegangen.

Das *Autochthon* setzt sich zusammen aus einem Kristallin und den darüber lagernden Sedimenten. Beim Kristallin handelt es sich um svecofennische 1.8-1.7 Ga alte Granite und Gneise, die dem präkambrischen Baltischen Schild angehört haben. Die Sedimentserie hat spätkambrisches bis ordovizisches Alter (Gee & Zachrisson 1979).

Als nächstes folgt das *Untere Allochthon*, das auch aus einem Kristallin und einer darauf liegenden Sedimentabfolge besteht. Das kristalline Basement ist nur im Westen der Kaledoniden aufgeschlossen und zwar als tektonisches Fenster, ein Beispiel dafür ist die Western Gneiss Region (WGR), auf die an späterer Stelle in diesem Kapitel noch etwas genauer eingegangen wird. Die spätkambrischen bis spätsilurischen Sedimente sind grünschieferfaziell überprägt worden (Bryhni & Andréasson 1985; Barker 1989) und stammen ursprünglich vom Schelfbereich des passiven baltischen Kontinentalrands (Gayer & Greiling 1989).

Das *Mittlere Allochthon* ist charakterisiert durch ein präkambrisches Grundgebirge und spätproterozoische Psammite. Diese Sedimente werden dem Übergangsbereich zwischen Kontinentalrand und Schelf zugerechnet (Greiling & Kumpulainen 1989). Die gesamte Abfolge wurde grünschiefer- bis amphibolitfaziell überprägt. Des Weiteren intrudierten Doleritgänge in die Abfolge (Greiling 1989).

Das Obere Allochthon wird in zwei Einheiten aufgeteilt. Die untere Subeinheit heißt Seve-Decke, die von der Köli-Decke überdeckt wird. Erstere besteht aus Schiefern, Amphiboliten und Gneisen, die eine amphibolitfazielle oder noch höhergradige Metamorphose erfahren haben (Gee & Zachrisson 1979; Barker 1989). Eine Besonderheit sind häufig vorkommende Linsen aus Ultrabasiten und retrograden Eklogiten (van Roermund 1985, 1989, 2009). Es wird angenommen, dass die Edukte der Seve Decke vom Rand des Baltischen Schildes kommen und zwar beim Übergang von kontinentaler zu ozeanischer Kruste. Die *Köli-Decke* (grünschieferfaziell: Gee & Zachrisson 1979; Barker 1989) besteht aus sauren bis basischen Metavulkaniten und aus ordovizischen bis silurischen Metasedimenten. Vorkommende ordovizische vulkanosedimentäre Serien sprechen für die im Ordovizium beginnende Subduktion des lapetus Ozeans (Stephens & Gee 1989). Der untere Teil der Köli Decke war ein ehemaliger Inselbogen in der Nähe von Baltika, wohingegen die mittlere und obere Einheit der Köli Decke zu Inselbögen gehört haben, die näher an Laurentia waren (Stephens & Gee 1989).

Schließlich folgt das *Oberste Allochthon*, das aus Schiefern, Gneisen, Migmatiten und Marmoren besteht. Diese Gesteine wurden während der kaledonischen Orogenese zum größten Teil amphibolitfaziell metamorphisiert (Stephens & Gee 1989). Diese Decke gehörte zum aktiven Kontinentalrand von Laurentia. Im Perm sind Vulkanite in verschiedene Tröge intrudiert.

1.3.2.1 Western Gneiss Region

Die Western Gneiss Region (WGR) in Norwegen gehört zur untersten tektonischen Einheit der allochthonen Einheiten der Kaledoniden. Sie nimmt eine Fläche von mehr als 25000 km² ein (Abb. 1.3-2), zwischen Bergen im Süden und Trondheim im Norden (Austrheim et al. 2003). Da in der WGR hauptsächlich das Kristallin des Unteren Allochthons aufgeschlossen ist, spricht man diesen Teil auch als tektonisches Fenster innerhalb der Kaledoniden an (Bucher-Nurminen 1991). Diese Region wurde im Silur subduziert (Dallmeyer et al. 1992). Obwohl sich die Eduktgesteine der WGR schon während der svecofennischen (1.75 -1.65 Ga) und der sveconorwegischen Orogenese (1.1 - 0.95 Ga) gebildet haben, wurden sie schließlich während der kaledonischen Orogenese eklogitfaziell metamorph überprägt (Griffin & Brueckner 1980; Tucker et al. 1990) und auch tektonisch in ihre rezente Lage und Form gebracht (Paguin 2001). Krabbendam & Dewey (1998) sowie Carswell et al. (2003) postulieren eine sehr schnelle Entwicklung der kaledonischen Orogenese innerhalb der WGR von weniger als 40 Ma. Teilweise beinhaltet die WGR auch Teile aus den Unteren, Mittleren und Oberen Allochthonen und zwar in Form ausgelängter Schichten, die teilweise nur einen Meter dick sind (z.B. Robinson 1995; Brueckner & van Roermund 2004). Hohe SiO₂-Gehalte in den vorkommenden Eklogiten deuten auf hohe *P*-Bedingungen während der Bildung hin (Dobrzhinetskaya et al. 2002). Generell gibt es in der WGR ein sehr hohes Aufkommen an UHP-Gesteinen (z.B. Griffin 1987; Smith & Lappin 1989), sowie eine große Anzahl an Eklogit- und Grt-Peridotitkörpern (Paguin 2001; Brueckner et al. 2010).

1.3.2.2 Probenlokalitäten Kalskaret und Gurskebotn

Kalskaret liegt im Landesinneren auf einem Gebirgspass auf fast 1000 m über NN. Dieser Gebirgspass verläuft zwischen den tiefer gelegenen Ortschaften Herdalen im Süd-Westen und Tafjord im Nord-Osten (Abb. 1.3-3). Es gibt verschiedene Schreibweisen für Kalskaret. Obwohl es sich in der wissenschaftlichen Welt eingebürgert hat den Namen nur mit einem "I" zu schreiben, werden dort in der Landessprache Norwegens zwei gesetzt, so dass es

durchaus zu Irritationen kommen kann, wenn man Informationen in der Originalliteratur finden möchte. Es treten im Umkreis von Kalskaret mehrere verschiedene isolierte Peridotit-Linsen auf. In der Regel haben diese Linsen einen Durchmesser von mehreren Zehner-Metern (Paquin 2001). Die Ausnahme bildet ein Peridotitkörper entlang des Bachlaufes in Richtung der Ortschaft Tafjord. Dort erstreckt sich der Peridotit auf ca. 800 m Länge und ca. 100 m Breite. Frische Grt-Peridotit-Proben kommen nur auf dem 1000 m hohen Pass vor (Carswell 1968; Paquin 2001). Man erkennt anhand sich abwechselnder Lagen von angereichertem Grt oder Cpx die Heterogenität des Peridotits. Es gibt auch Grt-freie Bereiche (Carswell 1968; Paquin 2001).

Abb. 1.3-3. Vorkommen der *UHP*- und *HP*-Gesteine innerhalb der Western Gneiss Region, modifiziert nach Brueckner et al. (2010). E Eklogite.

Der variierende Modalbestand und die unterschiedliche chemische Zusammensetzung der Mineralphasen OI, Cpx, Opx und Grt wechseln sich in Bereichen von Dezimetern ab (Carswell 1968). Die chemische Zusammensetzung deutet daraufhin, dass es sich bei dem Peridotitkörper um ehemaliges Erdmantelmaterial handelt. Dieses wurde in seine heutige Lage und Umgebung tektonisch eingeschuppt (Carswell 1968; O'Hara & Mercy 1963) und erfuhr partielle Schmelzbildung (Carswell 1968). Es wird unterschieden zwischen Grt-freien Bereichen mit geringen CaO-, Al₂O₃- und Alkali-Gehalten auf der einen Seite, die als nach der Schmelzbildung übrig gebliebenes Residuum betrachtet werden und auf der anderen Seite die Grt- und Cpx-reichen Lagen als entstandenes Schmelzbildungsprodukt, das den Peridotit nicht verließ, sondern stattdessen in ihm wieder auskristallisierte (Carswell 1968). Im Vergleich zu den übrigen Grt-Peridotiten der WGR hat der Kalskaret-Peridotit sehr hohe FeO-Gehalte und dadurch sehr niedrige *Mg-Zahlen* der Mineralphasen, wie z.B. OI mit ca. 81 (Medaris 1984; Paquin 2001), d.h. der Kalskaret-Peridotit könnte ein Produkt von Kumulatbildung darstellen, da OI in fertilen Grt-Peridotiten dagegen eine *Mg-Zahl* von um die 90 besitzt.

Gurskebotn befindet sich, wie der Großteil der Peridotitaufschlüsse der WGR, an der Küste Norwegens und zwar in diesem Fall auf der Insel Gurskøy (Abb. 1.3-3). Die Peridotitlinse befindet sich nördlich des Ortes Gurskebotn (Jamtveit 1984). Man vermutet, dass sie eine Längserstreckung von ungefähr 1000 m in Richtung WNW-ESE hat. Aufschlüsse sind am besten an neugebauten Straßen zu finden. Das umgebende Gestein des Peridotitkörpers ist migmatitischer Gneis mit granitischer Zusammensetzung. Die Foliation verläuft parallel zum Peridotit-Wirtsgestein-Kontakt (Jamtveit 1984).

1.3.3 Die Alpen

1.3.3.1 Geographische Lage

Die Alpen sind ein Gebirgszug in Europa, der in einem Bogen von Südwesten nach Osten verläuft. Die geographische Lage erstreckt sich von West nach Ost über folgende Länder: Frankreich, Monaco, Italien, Schweiz, Liechtenstein, Deutschland, Österreich und Slowenien. Die Gebirgsfortsetzungen der Alpen sind der Apennin im Süden, der Dinariden-Helleniden-Gürtel im Südosten sowie die Karpaten im Osten.

Abb. 1.3-4. Großräumige strukturelle Einteilung der gesamten Alpen (modifiziert nach Paquin 2010). A Argentera-Massiv, AAR Aar-Massiv, B Belledonne-Massiv, EF Engadin-Fenster, G Gotthart, M Mont-Blanc-Massiv, P Pelvoux-Massiv, PA Préalpes, PL Periadriatisches Linement, SL Sesia-Lanzo Zone, TF Tauern Fenster.

1.3.3.2 Forschungsgeschichte

Vor ca. 200 Jahren begann die schriftliche Auseinandersetzung mit der Entstehung der Alpen. Für genauere Informationen hat Dal Piaz (2001) eine sehr ausführliche Arbeit angefertigt. Es sei nur soviel gesagt, dass schon Ende des neunzehnten Jahrhunderts ausführliche geologische Karten von den Italienischen und Schweizer Alpen erstellt worden sind. Amstutz (1955) wendete die Subduktionstheorie ("Verschluckung" Ampferer 1906; Ampferer & Hammer 1911) in den Alpen an. Als in den späten 1960ern die Theorie der Plattentektonik endlich Anerkennung fand, hatte man nun die Möglichkeit die Entstehung der Alpen noch besser zu erklären (u.a. Laubscher 1969, 1970). Man kann auch den "Wilson-Zyklus" anwenden, obwohl Wilson selbst 1948 noch eine andere Meinung über den "continental drift" hatte (Trümpy 2001).

1.3.3.3 Geologie

Die Alpen werden in vier Großeinheiten unterteilt (Abb. 1.3-4). Diese nennen sich Helvetikum, Penninikum, Ostalpen bzw. Austroalpin und Südalpen. Diese Unterteilung beruht auf der paläogeographischen Lage und der dazugehörigen Sedimentation der einzelnen Bereiche während dem Mesozoikum (Paquin 2001).

Helvetikum

Die Decken des (Ultra-)Helvetikums liegen aufgeschlossen im Alpenvorland in der Schweiz sowie im westlichen Teil von Österreich vor. Der in Frankreich liegende Teil wird aufgrund seiner Form Dauphinios (Delfin) genannt.

Schmid et al. (2004) sprechen beim Helvetikum und dem nördlichen Vorland von dem ehemaligen im Mesozoikum bestehenden proximalen europäischen Kontinentalrand. Die helvetischen und ultrahelvetischen Decken sind Kalkstein-dominiert, da sie größtenteils im flachen Schelfbereich abgelagert wurden. Des Weiteren gibt es die kristalline Basis und das paläogene Top, das aus Mergel und Flysch besteht (Ramsay 1981; Pfiffner 1993, 2010). Während der Gebirgsbildung wurde das Helvetikum über die Externmassive (Gotthard, Aar, Mont Blanc, Belledonne, Pelvoux und Argentera) geschoben (Pfiffner 1985).

Penninikum

Das Penninikum ist vorherrschend in den Zentralalpen aufgeschlossen. Allerdings ist es auch nördlich der helvetischen Decken in den Préalpes und als Klippen im Austroalpin (Engadin Fenster, Tauern Fenster, Rechnitz Fenster) anzutreffen.

Bei dem Begriff "Penninikum" handelt sich um verschiedene paläogeographische Einheiten. Diese sind der ehemalige europäische Kontinentalrand, der Valais Trog, die Briançonnais Schwelle und der Piemont-Ligurische Ozean (Abb. 1.3-6). Aus diesem Grund unterscheiden Schmid et al. (2004) für das Penninikum die oberen, mittleren, unteren und sub-penninischen Decken.

Die oberen penninischen Decken (größtenteils Alpine Tethys, auch Piemont-Ligurischer Ozean genannt) bestehen aus Ophioliten und exhumierten subkontinentalen Mantel (Manatschal & Bernoulli 1998; Trommsdorff et al. 1993; Froitzheim & Manatschal 1996), Bündnerschiefer (Oberhänsli 1978), nichtmetamorphen Deckschichten mit nur teilweise ozeanischen Ursprungs (Kerkhove 1969) und einer ophiolitischen Mélange (Kurz et al. 1998). Frey et al. (1999) nehmen ein kretazisches Alter der Metamorphose an.

Die *mittleren penninischen Decken* beschreiben die Briançonnais-Einheit. Dieser Mikrokontinent ist verfolgbar von den Westalpen bis in die Schweizer Alpen. In den Ostalpen ist er nicht zu finden, da er zwischen dem Engadin Fenster und dem Tauern Fenster ausstreicht. Die Deckschicht hat mesozoisches Alter, das Basement frühes Ober-Kreide-Alter und es gibt teilweise Beckenfüllungen mit Permokarbon-Alter (Baudin et al. 1993).

Die *unteren penninischen Decken* bezeichnen den Valais Ozean und den direkten distalen Kontinentalrand. Diese waren ab dem Tertiär an der Akkretionierung der Alpen beteiligt. Sie bestehen u.a. aus nord-penninischen Ophioliten und dem Bündnerschiefer. Der Valais Trog hatte keine ozeanische Kruste, die sialische Kruste wurde nur ausgedünnt (Pfiffner 2010). Der Valais Ozean wird im mittleren bis oberen Eozän geschlossen und ergibt einen Hoch-Druck-Gürtel, der von den Westalpen bis zum Tauern Fenster verläuft (Bousquet et al. 2002).

Die *sub-penninischen Decken* zeigen den ehemaligen distalen europäischen Kontinentalrand. Es tritt teilweise der kristalline Unterbau des (Ultra-)Helvetikums hervor. Der Großteil besteht aus nicht-eklogitfaziellen Decken, die eine Barrow-Metamorphose im Tertiär erlebt haben (Frey et al. 1999). Bei den Gesteinen handelt es sich um autochthone Marmore und Bündnerschiefer. Zu dem eklogitfaziellen Teil der sub-penninischen Decken gehören die Adula Decke und die Cima Lunga Decke (Becker 1993), die sich am Top der subpenninischen Decken befinden, also an der Basis der unteren penninischen Decken. Diese eklogitische Metamorphose fand im Tertiär statt (Zimmermann et al. 1994; Kurz et al. 1998).

Austroalpin

Der Verlauf des Austroalpin, oft auch nur als Ostalpen bezeichnet, beginnt im Osten der Schweiz und endet in Österreich.

Das Gebiet der Ostalpen befand sich zur Zeit der Jura/Kreide-Grenze südlich vom penninischen Ozean (Pfiffner 2010). Während dem Devon wurden im Rheischen Ozean und in die Prototethys Kalke und Tonschiefer abgelagert, welche in den Ostalpen aufgeschlossen sind. Die metamorphe Entwicklung des östlichen Austroalpin ist älter als das des westlichen Austroalpin (Frey et al. 1999).

Südalpen

Hierbei handelt es sich um den ehemaligen Nordrand der Adriatischen Platte (Pfiffner 2010). Die Südalpen bestehen größtenteils aus Dolomiten, die in der Trias abgelagert worden sind. Ab dem Jura überwiegen Kalke und Konglomerate (Bosellini et al. 2003). Somit kann man verallgemeinern, dass die Südalpen aus vorwiegend unmetamorphen ozeanischen bzw. tiefer marinen Sedimenten bestehen. Die Südalpen sind südvergent, währenddessen alle drei anderen Großeinheiten der Alpen nordvergent sind. Eine natürliche Grenze der Südalpen zum Rest der Alpen ist die Insubrische Linie. Hierbei handelt es sich um einen Teil einer Störungslinie, das *Periadriatischen Linement* (Abb. 1.3-4), auf das an späterer Stelle noch eingegangen wird.

Folgendermaßen wurden die einzelnen Alpeneinheiten überschoben: Das Helvetikum wurde über die autochthonen, variszischen Externmassive bewegt. Das Austroalpin und die Südalpen wurden in nördlicher und westlicher Richtung über das Penninikum geschoben. Die penninischen Decken wurden während des frühen Tertiärs über die Helvetischen Decken bewegt (Trümpy 1980; Frisch & Meschede 2013). Laut Trümpy (2001) liegt die Krustenverkürzung bei mindestens 500 km, aber sogar 1000 km Einengung wären möglich. In den Westalpen taucht die europäische Lithosphäre unter die adriatische Platte, wohingegen in den Ostalpen die adriatische unter die europäische Lithosphäre subduziert wird (Lippitsch et al. 2003). Die Subalpine (Falten-)Molasse nördlich des eigentlichen Alpengebirgsgürtels wurde schon während der Orogenese geschüttet, da sie – wie der Name sagt – teilweise mit verfaltet wurde.

Man findet entlang des Periadriatischen Linement Intrusionen, die aus dem Känozoikum (Eozän-Oligozän) stammen (Martin et al. 1993; Berger et al. 1996; Stipp et al. 2004; Rosenberg 2004). Zu dieser Zeit war das Gebiet des periadriatischen Bruchsystems eine aktive Zone der Aufschiebung und dextraler Seitenverschiebung zwischen der adriatischen und der europäischen Platte (Schmid et al. 1996). Im Zeitraum von 42 bis 28 Ma B.P. haben sich über eine Distanz von 700 km viele verschiedene Intrusionen relativ synchron ereignet. Diese Plutone sind vom I-Typ und werden zur kalkalkalinen Serie gezählt. Der Grund für diese weiträumige Aufschmelzung wird u.a. in dem Abbrechen des subduzierenden Teils der europäischen Platte gesehen (slab breakoff) (Davies & von Blanckenburg 1995; von Blanckenburg & Davies 1995). Der slab breakoff wird von Handy et al. (2010) bei 30 Ma B.P. angenommen (Abb. 1.3-5). Wenn die subduzierte Platte abbricht, dann dringt die dadurch aufsteigende Asthenosphäre in höhere Lagen und kann an die Lithosphäre der stationären Platte gelangen, wo sie den lithosphärischen Mantel, im Fall der Alpen die Adriatische Platte, erwärmt und Schmelzbildung verursacht. Durch den slab breakoff wird des Weiteren die durch die Subduktion verursachte Subsidenz gestoppt, es beginnt isostatische Aufwölbung, die wiederum zu Erosion führt. Durch die Betrachtung der Gesteine mit dem höchsten Metamorphosegrad aus der ehemaligen subduzierten Platte, kann man die minimale breakoff-Tiefe bestimmen. Es wird hierfür eine Tiefe von mindestens 100 km angenommen und eine schnelle Exhumierung, da in den Westalpen bei der Metamorphose entstandener Coesit auftritt (Monié & Chopin 1991). Die Entwicklung des Lepontin-Doms vor 32 Ma, der sich im Penninikum befindet, wird auch auf den slab breakoff zurückgeführt (von Blanckenburg & Davies 1995).

In Folge einer jurassischen Extensionstektonik befindet sich die Moho im Bereich der Ivrea-Zone in den Westalpen in nur knapp 10 km Tiefe (Zingg et al. 1990; Dal Piaz et al. 2003).

Im West-Ost-Verlauf der Alpen gibt es eine insgesamt 300 km breite *Extension*, die sich während dem frühen und mittleren Miozän entwickelt hat (Ratschbacher et al. 1991; Frisch et al. 1998). Ursache hierfür könnte eine laterale tektonische Extrusion gewesen sein, die zu der Heraushebung der penninischen Fenster in den Zentral- und in den Ostalpen führte (Frisch et al. 2000). Es gibt insgesamt drei penninische Dome, die herausgehoben wurden: Engadin Fenster, Rechnitz Fenster und Tauern Fenster. Letzteres hat die vorher benachbarten Täler (im Westen das Ötztal, im Osten das Gurktal) 160 km voneinander getrennt und ist das einzige Fenster, das den variszischen Zentralgneis zeigt (Kurz et al. 1998). Die Extrusion nach Osten wurde nur ermöglicht durch das sich dort befindende Pannonische Becken, das im Miozän noch ozeanische Kruste enthielt. Dieses wurde später subduziert (Ratschbacher et al. 1989).

Im Pleistozän erleben die Alpen immer wieder *Vergletscherungen*. Allerdings sind diese nie mit den Gletschern Nordeuropas verbunden (Walter 2007; Pfiffner 2010). Die Endmoränen

verursachen weitere Talvertiefungen, die später mit Wasser gefüllt wurden und rezent Seen darstellen, wie z.B. der Lago Maggiore oder auch der Garda See (Pfiffner 2010).

Abb. 1.3-5. Slab breakoff der subduzierten Platte (blau). Dieses Abbrechen kann auch zu einer Stagnierung der Subduktion führen. Die blau eingefärbte Platte, die subduziert wird, beschreibt den Rand der europäischen Platte. Wohingegen es sich bei der braunen Platte um den afrikanischen Kontinentalrand handelt. Eu distaler europäischer Kontinentalrand, Vs Valais Ozean, Br Briançonnais Schwelle, Pm Piemont-Ligurischer Ozean, Se Sesia Zone, Aa Austroalpin, Me Meliata-Hallstatt Ozean (aus Handy et al. 2010).

1.3.3.4 Geodynamik

Im Grunde haben die Alpen einen kompletten "Wilson-Zyklus" durchlaufen. Es begann mit dem Aufbrechen einer Kontinentalmasse, ging weiter über die Bildung eines Ozeans mit passiven Kontinentalrändern und endete mit einer Subduktion, die eine Kontinentalkollision verursachte. Bei der Kontinentalmasse handelte es sich um den Großkontinent Pangäa, der in der Trias durch Riftprozesse auseinanderbrach. Hierbei wurde die Kruste zwischen Afrika und Europa ausgedünnt und es entstanden verschiedene ozeanische Bereiche. In der Literatur wird mehrheitlich die Bildung von drei Ozeanen angeführt, die allerdings nicht alle ozeanische Kruste ausgebildet hatten (Schmid et al. 1996, 2004; Channel & Kozur 1997; Gebauer 1999; Handy et al. 2010). Im Osten befand sich der Meliata-Hallstatt Ozean, im Norden der Valais Trog und südlich von diesem, durch die Briançonnais Schwelle getrennt, der Piemont-Ligurische Ozean (Abb. 1.3-6).

Die Alpen sind das Ergebnis zweier Gebirgsbildungsereignisse (Froitzheim et al. 1996). Zum einen schloss sich die Bucht vom Meliata-Hallstatt Ozean während der Kreide (Konvergenz: nach Coward & Dietrich (1989) ca. 135 Ma B.P.; nach Rosenbaum et al. (2002) im Zeitraum von 120 bis 83 Ma B.P.), zum anderen wurde im Paläogen die Tethys zwischen Afrika bzw. Apulien und Europa subduziert (Kontinentalkollision: nach Coward & Dietrich (1989) um ca. 55 Ma B.P.; nach Rosenbaum et al. (2002) um ca. 65 Ma B.P.). Stampfli et al. (2000) unterscheiden zwischen der Alpinen Tethys und der Neotethys bzw. dessen Ausbuchtung genannt Meliata-Hallstatt Ozean.

Gebauer (1999) beschäftigt sich genauer mit der geodynamischen Entwicklung der Zentralund Westalpen. Geht man von Nordwest vom europäischen Kontinentalrand nach Südost zur adriatischen Mikroplatte passiert man den Valais Trog, die horstartige Briançonnais Schwelle, den Piemont-Ligurischen Ozean, das Sesia-Lanzo Terran sowie die Canavese-Zone. Diese Zone trennte den europäischen vom afrikanischen Teil, der aus dem Austroalpin, dem Meliata-Hallstatt Ozean und dem Südalpin bestand. Der Meliata-Hallstatt Ozean wurde im späten Jura geschlossen (Channel & Kozur 1997). Durch diese Subduktion wurde um ca. 100 Ma B.P. (U-Pb-Datierungen an Zirkonen von Paquette & Gebauer 1991) die kontinentale Kruste des Austroalpins unter die des Südalpins transportiert (Gebauer 1999) (Abb. 1.3-7). Auf europäischer Seite entstand in der frühen Kreide der Valais Trog (Florineth & Froitzheim 1994). Ebenfalls in der Unter-Kreide sorgten sinistrale Lateralverschiebungen zwischen Europa und Afrika für eine Drehung von der Adria gegen den Uhrzeigersinn um einen Betrag von ca. 35° und durch weiträumige Blattverschiebungen in der Ober-Kreide löste sich die adriatische Platte vom afrikanischem Kontinent (Stanley 2001).

Abb 1.3-6. Paläogeographische Rekonstruktion der Späten Kreide im Bereich der vermuteten Valais und Piemont-Ligurischen Ozeane, die sich während der alpiden Orogenese schlossen (modifiziert nach Schmid et al. 2004). G Genf, W Wien.

Die sich ans Austroalpin anschließende Canavese-Zone wurde im Zuge der Subduktion des Sesia-Lanzo-Terranes vor 65 Ma B.P. (Rubatto et al. 1999) zwischen diesem und dem Austroalpin eingeklemmt. Der Piemont-Ligurische Ozean wurde unter die nordwärts driftende adriatische Platte subduziert. Um das Alter der Peakbedingungen der Metamorphose heraus zu finden, führte man U-Pb-Datierungen an Zirkonen von Eklogiten und Metasedimenten der Ultrahochdruck-Lokalität vom Lago di Cignana (Zermatt-Saas-Zone) durch. Das Metamorphosealter beläuft sich auf 44.1 ± 0.7 Ma (Gebauer 1999). Im Folgenden wurde die Briançonnais Schwelle subduziert, vermutlich im Zeitraum von 40 bis 35 Ma B.P. (Hurford et al. 1989; Steinitz & Jäger 1981). Schlussendlich folgte die Subduktion des Valais Trogs zwischen ca. 35 bis 33 Ma B.P. und abschließend die reine Kontinentalkollision, die das Helvetikum bis weit über die Externmassive bewegte (Abb. 1.3-4) und zu einer Krustenmächtigkeit in den Zentralalpen von 50 bis 70 km führte (Walter 2007) (Abb. 1.3-8).

Abb. 1.3-7. Schematische Darstellung der geodynamischen Entwicklung der West- und Zentralalpen eingeteilt nach den subduktionsbezogenen Metamorphosealtern (modifiziert nach Paquin 2001 und Gebauer 1999). Zu beachten ist, dass der Meliata-Hallstatt Ozean nach Westen hinein projiziert wurde.

Abb. 1.3-8. Ein von Norden nach Süden verlaufender schematischer Schnitt durch den komplexen Deckenbau der Zentralalpen nach Paquin (2001) (modifiziert nach Pfiffner & Hitz 1997). Die vermutete Paläooberfläche ist eingetragen.

1.3.3.5 Probenlokalitäten Alpe Arami und Valle di Gorduno

Die Cima-Lunga-Einheit gehört tektonisch zur Adula Decke, obwohl sie räumlich voneinander getrennt liegen. Die beiden Einheiten werden paläogeographisch zum europäischen Kontinentalrand gezählt (Trümpy 1980; Schmid et al. 1996). In der Cima-Lunga-Einheit kommen bei der Cima di Gagnone zahlreiche ultramafische Linsen vor. Aber auch weiter östlich gibt es u.a. die Alpe Arami Linse (Grubenmann 1908; Möckel 1969), in der Nähe des Ortes Gorduno eine weitere Linse wie auch den Monte-Duria-Körper (Fumasoli 1974). Trommsdorff (1990) beschreibt die Cima Lunga als lithosphärische Mélange, da sich als Resultat der Subduktion kontinentale und ozeanische Kruste sowie ungeordnet auch oberes Mantelmaterial vermischt haben und nach der Exhumierung zusammen aufgeschlossen wurden.

Der Alpe Arami Peridotitkörper liegt im südlichen Teil des Lepontin Doms. Die Linse erstreckt sich auf 1000 x 500 m und befindet sich in Biotitgneis (Abb. 1.3-9). Der zentrale Teil des Peridotit-Körpers ist nicht retrograd überprägt, so dass man noch ursprünglichen Grt-Peridotit vorfindet. Allerdings hat die Linse zum Rand hin sekundär gebildeten Chlorit-, Spinell-Amphibol- und Amphibol-Chlorit-Peridotit (Möckel 1969; Pfiffner & Trommsdorff 1998; Trommsdorff et al. 2000). Angrenzend zur Linse und auch mit ihr vermengt kommt disthen-führender Eklogit vor, sowie am nordwestlichen Rand der Linse kleine Aufschlüsse von Hornblendit und Klinopyroxenit. Der Eklogit ist amphibolitfaziell überprägt und zeigt die primäre Paragenese Granat + Omphacit + Rutil ± Disthen. Diese Paragenese wird folgendermaßen verdrängt: Hornblende + Oligoklas + Clinozoisit + Titanit. Die Vergesellschaftung des Eklogits und des Peridotits geschah vermutlich bei 750 - 900°C und bei 1.8 bis 3.5 GPa (Duchene et al. 1997). Südöstlich der Alpe Arami befindet sich die Peridotitlinse von Gorduno im Valle di Gorduno.

Abb. 1.3-9. Der Aufbau der Alpe Arami Peridotitlinse (nach Paquin 2001; modifiziert nach Möckel 1969). Die schwarzen Kreuze bezeichnen den ursprünglichen Grt-Peridotit.

Die Grt-Peridotite sind in den Fokus geraten, da Dobrzhinetskaya et al. (1996) und Green et al. (1997) postulierten, dass diese Gesteine aus dem Übergangsbereich aus mind. 400 km Tiefe stammen ("mantle transition zone"). Heinrich (1983, 1986) kartierte die hochdruck-
metamorphen Bereiche der oberen Adula Decke und der Cima Lunga Einheit. Es stellte sich heraus, dass die Metamorphosebedingungen von Norden nach Süden in der Adula Decke zunehmen, von 500°C und 1 GPa auf 800°C und 2.5 GPa. Anhand thermobarometrischer Berechnungen an Eklogiten, Metapeliten und Metaorphikarbonaten (Heinrich 1983, 1986; Partzsch 1996; Meyre et al. 1997; Pfiffner 1999) ergeben sich *P*-*T*-Abschätzungen, die den Schluss nahe legen, dass es sich um eine südgerichtete Subduktion gehandelt hat (Trommsdorff 1990).

Seit dem Anfang der Neunziger Jahre stimmt man mit der Altersbestimmung der *UHP*-Metamorphose von der Alpe Arami-Linse überein. Becker (1993) untersuchte das Sm-Nd-Alter an Grt-Cpx-Gesamtgestein und Gebauer (1996, 1999) stellte das Alter durch U-Pb-Messungen an Zirkonen fest (43-35 Ma B.P.).

Die metamorphen Bedingungen der Genese sind aber nicht eindeutig. Paquin et al. (1999) hat sich das erste Mal mit Mineralzonierungen der Alpe Arami auseinander gesetzt, da bis zu diesem Zeitpunkt nur Gesamtgesteinsanalysen gemessen wurden. Es entbrannte eine hitzige Diskussion zwischen Paquin & Altherr und Nimis & Trommsdorff (Nimis et al. 1999; Nimis & Trommsdorff 2001a, b; Paquin et al. 1999a, b; Paquin & Altherr 2000a, b, c, d; Paquin & Altherr 2001a, b). Eine ausführliche Diskussion findet man in Paquin (2001).

Trommsdorff et al. (2000) sind der Meinung, dass der Alpe Arami Peridotitkörper keinen ultra-tiefen Ursprung hat, sondern bis 3 GPa subduziert, dort äquilibriert und dann durch ein kurzzeitliches Ereignis aufgeheizt wurde (840°C & 3.2 GPa, Nimis & Trommsdorff 2001a). Paquin & Altherr (2001a) sehen das anders. Sie postulieren eine schnelle Subduktion im Eozän bis 6 GPa und auch eine rasche Exhumierung aus dieser Tiefe (1180°C und 5.9 GPa, Paquin & Altherr 2001a, b, 2002; Olker et al. 2003; Paquin et al. 2004). Es müsste sich um ein sehr großes und sehr heißes Magmenvolumen nahe dem Alpe Arami Peridotit gehandelt haben, wenn die Aufheizung nur ein kurzfristiges Ereignis gewesen sein soll wie Nimis & Trommsdorff (2001a) es beschreiben (Olker et al. 2003). Allerdings stimmen Paquin & Altherr (2001a) mit der Annahme einer Herkunft aus mind. 400 km Tiefe, wie von Dobrzhinetskaya et al. (1996) postuliert, nicht zu.

Ein weiterer Diskussionspunkt ist die Behauptung, dass der Alpe Arami Körper und der Cima di Gagnone Peridotitkörper den gleichen *P-T*-Pfad durchlaufen haben. Zu näheren Erläuterungen und aus Platzgründen sei hier auf Paquin (2001) verwiesen. Die Diskussion um die ermittelten Peak-Temperaturen der Metamorphose liegt auch darin begründet, dass die verwendeten Geothermometer unterschiedlich stark diffundierende Elemente benutzen und daher auch die Äquilibrierung dieser Elemente während der prograden Metamorphose voneinander abweicht (Paquin & Altherr 2001a, 2001b; Nimis & Trommsdorff 2001a, 2001b).

Die Ergebnisse der Sauerstoffisotopie der Minerale OI, Grt, Opx und Cpx sagen aus, dass das Edukt des Alpe Arami Peridotitkörpers normales Erdmantelmaterial war. Dieses wurde vor der Subduktion nicht durch erdoberflächennahe Prozesse beeinflusst, sondern wurde während der Subduktion direkt aus dem Erdmantel in die Kruste aufgenommen (Paquin 2001; Paquin & Altherr 2001a, b). Während dem Aufstieg aus 180 km Tiefe haben Fluide die chemische Zusammensetzung des Alpe Arami Körpers verändert (Paquin et al. 2004).

1.3.3.6 Probenlokalität Finero

In den italienischen Südalpen befindet sich die Ivrea-Zone. Diese ist nördlich durch die Insubrische Linie von den penninischen Einheiten getrennt. Die Lokalität Finero liegt am nördlichsten Ende der Ivrea-Zone, direkt südlich an der Insubrischen Linie. In der unmittelbaren Umgebung steht ein Mafisch-Ultramafischer-Komplex sowie in weiterem Umkreis Paragneise an (Zingg et al. 1990). Der Finero-Peridotit-Körper ist in einer Antiform aufgeschlossen (Abb. 1.3-10). Das Innere besteht aus einem metasomatisch überprägten und dadurch an Phlogopit angereicherter Phlogopit-Peridotit des Erdmantels, der von dem besagten Mafisch-Ultramafischen Komplex umschlossen ist. Teilweise kommen apatitreiche Lagen in den Phlogopit-Peridotiten vor (Morishita et al. 2003). Vom Liegenden zum Hangenden wird der Aufbau des Mafisch-Ultramafischen Komplexes in interne Gabbros, Amphibol-Peridotit sowie externe Gabbros unterteilt. Im Süden schließt sich die Kinzigit-Einheit an. Bei Kinzigiten handelt es sich um metapelitische Gneise mit der Paragenese Granat+Cordierit+Biotit+Plagioklas+Sillimanit+Quarz. Somit weist der Finero-Peridotit-Körper die Besonderheit auf, dass er mit plutonischem Gestein vergesellschaftet vorliegt. Der Kontakt zwischen Phlogopit-Peridotit und dem Mafisch-Ultramafischen Komplex ist laut Siena & Coltori (1989) aber tektonisch, wohingegen der Kontakt des Mafisch-Ultramafischen Komplexes zur umgebenden Kinzigit-Einheit magmatisch zu sein scheint. Für die Entstehung dieses Mafisch-Ultramafischen Komplexes und seiner Umgebung geben Lu et al. (1997a, b) folgende Möglichkeiten an:

Szenario 1a:

Der Mafisch-Ultramafische Komplex wurde als plutonischer Körper vor ca. 533 Ma in die Unterkruste intrudiert. Der Phlogopit-Peridotit stand ursprünglich nicht mit diesem Komplex in Kontakt. Er wurde vor 293 ± 13 Ma durch alkali- und LREE-reiche krustale Fluide metasomatisch überprägt, bevor er schließlich mit dem magmatischen Komplex vergesellschaftet wurde. Das Alter von 533 Ma, das auch dem Zeitpunkt entspricht, als die Protolithe der heutigen Amphibolite innerhalb der Kinzigit-Einheit als ozeanische Basalte gebildet wurden, basiert allerdings nur auf einem einzigen Zirkon-Korn und ist daher nicht sehr verlässlich.

Szenario 1b:

Vor 270 bis 290 Ma intrudierte mafisches Magma zwischen den zuvor metasomatisch überprägten Phlogopit-Peridotit und metapelitische Krustengesteine. Dort differenzierte das Magma in situ. Für die Herkunft des Magmas wird eher verarmter Mantel als der darunter liegende Phlogopit-Peridotit angenommen. So wäre der Kontakt magmatisch, doch ohne einen genetischen Zusammenhang zwischen dem Phlogopit-Peridotit und dem Mafisch-Ultramafischen Komplex. Bei diesem Szenario wäre das Zirkon-Korn mit dem hohen Alter von 533 Ma so zu interpretieren, dass es während der Intrusion aus der älteren Kinzigit-Einheit übernommen wurde.

Szenario 2:

Der gesamte Komplex inklusive des Phlogopit-Peridotites wurde vor 270 bis 290 Ma bei hohen *T*-Werten reäquilibriert. Der magmatische Komplex behielt während dessen seine magmatischen Texturen bei. Danach kühlte das ganzes Gebiet auf unter 600°C ab. Vor ca. 215 ± 10 Ma kam es dann zu einer letzten regionalen Aufheizung auf *T*-Werte von über 600°C. Währenddessen kam es auch zu Intrusionen alkalischer Magmen (u.a. Stähle et al. 1990). Lu et al. (1997b) spekulieren, ob dies mit dem beginnenden Rifting, das zur Öffnung der Tethys führte, in Zusammenhang steht. Schließlich erreichte die Abkühlung vor 180 Ma eine Temperatur unterhalb 300 - 500°C.

Abb. 1.3-10. Dargestellt ist die Ivrea-Verbano Zone (aus Zanetti et al. 1999, modifizert nach Zingg 1983 und Lu et al. 1997a). Einschnitt links oben dient zur groben Orientierung. Der untere Teil zeigt den Finero Körper (Steck & Tièche 1976). Der ausgelängte Phlogopit-Peridotit-Körper ist umgeben von Amphibolit-Peridotit. BD Baldissero; BM Balmuccia; CMBL Cossato-Mergozzo-Brissago Linie; FI Finero; IL Insubrische Linie; PL Pogollo Linie.

2 Resultate

Dieses Kapitel umfasst alle untersuchten Proben, systematisch aufgelistet um als Katalog für die nachfolgenden Kapitel der Arbeit dienen zu können. Es werden zwei Granat-Peridotit-Proben (Kapitel 2.1 & 2.2) sowie zwei Spinell-Peridotit-Proben (Kapitel 2.3 & 2.4) aus den Schweizer Alpen besprochen. Im Anschluss wird sich noch zwei Proben aus den skandinavischen Kaledoniden gewidmet, bei denen es sich um einen Granat-Peridotit (Kapitel 2.5) und um einen Granat-Pyroxenit (Kapitel 2.6) handelt.

Alle Proben werden nach demselben Schema präsentiert. Am Anfang der Probenbeschreibung stehen ein Bild des Handstücks und ein Gefügebild anhand eines Dünnschliffes. Diese Gefügebilder haben bei allen untersuchten Proben zum besseren Vergleich die gleiche Bildbreite (BB) von 20 mm. Die Dicke der Dünnschliffe beträgt 50-60 µm. Nach einer kurzen Information zur Herkunft der Probe sowie einer petrographischen Beschreibung werden die Ergebnisse der an der EMS gemessenen Haupt- und Nebenelementchemie der primären und wenn möglich der sekundären Mineralphasen sowie deren an der SIMS gemessenen Spurenelementchemie besprochen. Für die Konzentrationsreihenfolge der untersuchten Spurenelemente werden nur die peridotischen Hauptmineralphasen OI, Opx, Cpx und Spl bzw. Grt berücksichtigt. Die Mineralchemie der einzelnen Mineralphasen wird dann graphisch in Form von Konzentrationsdiagrammen präsentiert. Der dazugehörige Profilverlauf sowie mögliche Auffälligkeiten werden in BSE- und/oder in Polarisationsmikroskop-Bildern (Pol-Bilder), entweder als Aufnahme im Hellfeld (plane polarized, PP-Bild) oder unter gekreuzten Polarisatoren (cross polarized, XP-Bild), dargestellt. Die Profillängen sind in der Abbildungsbeschreibung verzeichnet und können somit gleichzeitig als Maßstab für die REM- und Pol-Bilder dienen. Zwar wurden fast immer auch die Kontaktminerale mit analysiert, um das interkristalline Verteilungsverhalten besser verstehen zu können - es wurde also über die Korngrenzen hinaus gemessen - doch kommen zur Darstellung nur die jeweiligen Haupt-Mineralphasen der Messprofile. Bei den aufgelisteten Konzentrationsdiagrammen sind alle analysierten Elemente vertreten. Das bedeutet z.B. für das Alkalielement K, welches in den Proben dieser Arbeit nur in Phlogopit eine nennenswerte Konzentration erreicht, dass es dennoch immer gezeigt wird um die Richtigkeit der Messungen in Hinblick auf Verunreinigungen beweisen zu können. Bei den mit der SIMS angefertigten Konzentrationsdiagrammen für die Spurenelemente P, Sc, Co und Zn handelt es sich bei den angegebenen Fehlern von 2σ um die Standardabweichung des Mittelwertes der fünf Messzyklen eines jeden SIMS-Messpunktes (siehe Anhang I).

Zum weiteren Überblick sind an jede Probenbeschreibung drei Tabellen angefügt. Die erste Tabelle enthält die Mittelwerte der Haupt- und Nebenelementchemie der primären und teilweise auch sekundären Mineralphasen sowie die Mittelwerte der Spurenelemente der jeweiligen Probe. Ist ein Mineralkorn zoniert, wird bei den Mittelwerten zwischen Rand- und Kernkonzentration unterschieden. Dabei ist zu beachten, dass die Mittelwerte der Ränder den äußersten gemessenen Punkten der Profile entsprechen, die maximal von den Werten der Kernkonzentration entfernt liegen. Voraussetzung für die Berechnung der Kernmittelwerte ist, dass die Element-Konzentration im Kernbereich über eine längere Distanz homogen vorliegt, das Konzentrationsdiagramm hier also flach verläuft. Es wurde auf saubere Analysen geachtet, u.a. auch darauf, dass die jeweilige Mineralphase häufig genug gemessen wurde um ein immer widerkehrendes Konzentrationsmuster von einer Mischanalyse unterscheiden zu können. Nähere Informationen zur Mineralformelberechnung sind im Anhang (I.3) angegeben. In der zweiten Tabelle sind die Verteilungskoeffizienten der untersuchten Spurenelemente P, Sc, Co und Zn zwischen den primären Phasen Ol, Opx, Cpx und Grt bzw. Spl aufgelistet. Es wurden hier nur im Hinblick auf die Gleichgewichtszustände der Mineralchemie schlüssige Verteilungskoeffizienten angegeben. Die dritte Tabelle gibt zusammenfassend die Ergebnisse der geothermobarometrischen Berechnungen wider. Die gebräuchlichen Geothermo(baro)meter, die bis zu diesem Punkt der Arbeit vorerst verwendet werden, sind folgende:

Geothermometer

2-Px (Brey & Köhler 1990) Ca-in-Opx bei Gegenwart von Cpx (Brey & Köhler 1990) Fe-Mg-Austausch Grt-Cpx (Krogh 1988; Krogh Ravna 2000) Fe-Mg-Austausch Grt-OI (O'Neill & Wood 1979; O'Neill 1980)

Geobarometer

Al-in-Opx bei Gegenwart von Grt (Brey & Köhler 1990) Ca-Austausch-Ol-Cpx (Brey & Köhler 1990)

Zur Bestimmung der *P*- und *T*-Bedingungen wurde aufgrund der nicht vollständigen *P*-Unempfindlichkeit bei den verwendeten Geothermometern und einer gewissen *T*-Abhängigkeit bei den angewendeten Geobarometern ein iteratives Verfahren durchgeführt. Für die *T*-Berechnung der Grt-Peridotite wird hierbei das 2-Px-Geothermometer, für die Bestimmung von *P* das Al-in-Opx-Geobarometer verwendet. Bei den Spl-Peridotiten wird *T* mittels des Ca-in-Opx-Geothermometers und *P* durch das Ca-Austausch-Ol-Cpx-Geobarometer berechnet. Der Grund für die Verwendung des Ca-in-Opx-Geothermometers bei den Spl-Peridotiten wird in den jeweiligen Kapiteln erklärt.

Die angewendeten Nomenklaturen der Minerale sind folgende:

Granat (Grew et al. 2013) Pyroxene (Morimoto 1988) Amphibole (Leake et al. 1997, 2004)

Die Mineralnamen werden in der vorliegenden Arbeit folgendermaßen abgekürzt:

Olivin	OI	Amphibol	Amp
Orthopyroxen	Орх	Phlogopit	Phl
Klinopyroxen	Срх	Pyroxen allg.	Px
Spinell	Spl	Ilmenit	llm
Granat	Grt	Kelyphit	Kely
		Porphyroklast	Por

2.1 Probe AAR-9: Grt-Peridotit

Abb. 2.1-1. *Links:* Angesägtes Handstück der Probe AAR-9, BB 60 mm. *Rechts:* Gesteinsgefüge anhand eines Dünnschliffes, BB 20 mm.

2.1.1 Probenlokalität

Diese Grt-Peridotit-Probe stammt von der Alpe Arami in den Schweizer Alpen, einige Kilometer nordwestlich der Ortschaft Gorduno gelegen. Der Alpe-Arami-Peridotikörper erstreckt sich über ca. 1000 x 500 m und ist von Biotit-Gneis umschlossen. Die Probe wurde im Rahmen der Dissertation von Jens Paquin (2001) von selbigem genommen.

2.1.2 Petrographie

Dieser Grt-Peridotit ist ein mustergültiger orogener Grt-Peridotit. In dem dunkelgrünen Gestein lassen sich dunkelrote bis ganz schwach violette Grt-Kristalle erkennen, wie sie in Abb. 2.1-1 links zu sehen sind. In der feinkörnigen Matrix gibt es überdies intensiv flaschengrüne Cpx-Körner. Eine weitere Identifizierung der Matrixphasen ist mit bloßem Auge aber nicht möglich. Das Gesteinsgefüge präsentiert sich im Handstück absolut isotrop. Die Untersuchungen mit dem Polarisationsmikroskop unterstützen dies (Abb. 2.1-1). Es zeigt sich ein porphyroklastisches aber isotropes Gesteinsgefüge, mit großen xenomorphen Grt-Porphyroklasten, sowie deutlich kleineren und ebenfalls xenomorphen Cpx- und Opx-Porphyroklasten in einer relativ feinkörnigen Matrix aus OI, Opx und Cpx. Auch die Matrixphasen liegen xenomorph vor. Grt ist randlich von einem Kelyphitsaum umgeben. Dieser ist allerdings noch schmal ausgebildet. Darüber hinaus kommen Ol und Opx auch als Einschlüsse in Grt vor. Die Grt-Porphyroklasten selber messen meist um die 5 mm im Durchmesser, sehr selten bis zu 9 mm. Die Cpx-Porphyroklasten erreichen hingegen im Höchstfall ca. 2 mm, die maximale Größe der Opx-Porphyroklasten ist noch etwas kleiner. Ol und Opx in der Matrix liegen bei ungefähr 0.5 mm, Cpx in der Matrix ist noch kleiner. Als sekundäre Phasen treten in der Martrix, sowie im Kelyphitsaum Amp auf, sowie entlang von Rissen Serpentin.

2.1.3 Haupt- und Nebenelementchemie

2.1.3.1 Olivin

Zwischen OI in der Matrix und OI als Einschlussphase in Grt gibt es Unterschiede in Bezug auf Fe²⁺ und Mg, die sich in der *Mg-Zahl* ausdrücken. So fällt diese für die OI-Einschlüsse in Grt mit 91.97 \pm 0.26 höher aus als für den restlichen OI, der bei 90.29 \pm 0.72 liegt. Abgesehen von möglichen Anstiegen der Ca-Konzentration innerhalb des Matrix-OI, auf den letzten 20 bis 30 µm im Kontakt zu Cpx oder Amp, treten in beiden Fällen keine mineralchemischen Zonierungen auf (Abb. 2.1-2).

2.1.3.2 Orthopyroxen

Opx tritt in Form von Porphyroklasten, als Matrixphase, als Einschluss in Grt sowie als Bestandteil des Kelyphitsaumes auf. Es zeigt sich, dass zwischen den Opx-Porphyroklasten, dem Matrix-Opx sowie den Opx-Einschlüssen in Grt mineralchemisch kein messbarer Unterschied vorliegt. Allerdings zeigen die Porphyroklasten sowie der Matrix-Opx randlich äußerst schwache Inhomogenitäten, hauptsächlich für Fe²⁺, Mg und Ca, wie in Abb. 2.1-3 anhand eines Opx-Porphyroklasten aus Profil-01 zu sehen ist. Die Kernbereiche sind allseits breit und flach ausgebildet und die Zonierungen fallen wie schon gesagt nur sehr schwach aus. Zum Rand hin nimmt Fe²⁺ etwas zu, während Mg und Ca leicht abnehmen. Darüber hinaus können auch Al und Cr Inhomogenitäten aufweisen. So kann deren Konzentration zum Rand hin etwas zunehmen, doch teilweise fällt diese Konzentration kurz vor dem Rand wiederum stark ab. Letztere Zonierungen, bzw. Inhomogenitäten, sind allerdings nicht so systematisch ausgeprägt wie die von Fe²⁺ bzw. Mg und sind größeren Schwankungen unterworfen. Die durchschnittliche Mg-Zahl der Kernbereiche beläuft sich auf 91.33 ± 0.59. Zum Rand hin nimmt diese kaum messbar ab. Opx in Kelyphit liegt bei mehr als doppelt so hohen Al-, sowie höheren Fe²⁺ und niedrigeren Mg-Werten und besitzt somit auch eine noch niedrigere Mg-Zahl von 89.32 ± 1.23. Aufgrund der sehr geringen Größe ist es messtechnisch nicht möglich die mineralinterne Elementverteilung des Kely-Opx genauer zu untersuchen.

2.1.3.3 Klinopyroxen

Im Gegensatz zu Opx lassen sich für Cpx durchaus Unterschiede zwischen Porphyroklasten und Matrixphase erkennen wie in Tabelle 2.1-1 dargestellt ist. Der auffälligste Unterschied liegt bei Cr. So liegt dieses in der Matrix prinzipiell deutlich höher als in den Porphyroklasten. Was die mineralchemischen Zonierungen anbelangt, so verlaufen diese bei beiden Cpx-Erscheinungsformen qualitiativ gleich. Diese sind zwar stärker ausgeprägt als die von Opx, doch sind sie immernoch als gering anzusehen. Abb. 2.1-4 zeigt diese Zonierungen exemplarisch anhand eines Cpx-Porphyroklasten von Profil-07. Während die absolut flachen Kernbereiche relativ breit ausgebildet sind, nehmen in Richtung Rand die Gehalte an Al und Na und ganz schwach von Ti ab, die von Mg und Ca zu. Darüber hinaus liegt Cr innerhalb der Porphyroklasten ebenfalls leicht zoniert vor, mit einer Konzentrationszunahme am Rand. Die *Mg-Zahl* der Porphyroklasten nimmt von 92.49 \pm 0.54 im Kern auf 93.15 \pm 0.86 am Rand

zu. Die des Matrix-Cpx steigt von 92.27 \pm 0.63 im Kern zum Rand hin kaum merklich auf 92.69 \pm 1.12 an.

2.1.3.4 Granat

Die markantesten Zonierungen innerhalb dieser Probe beinhaltet Grt. Abb. 2.1-5 zeigt hierzu Profil-01. Wie zu erkennen ist, haben abgesehen von Al sämtliche Elemente systematisch ausgebildete Zonierungen. Bei Al hingegen dominiert zwar eine Konzentrationsabnahme in Richtung Rand, doch kann man streng genommen nicht von einem homogenen Kernbereich sprechen, da über den gesamten Grt-Porphyroklasten Schwankungen im Al-Gehalt auftreten. Als zweite Besonderheit sei auf das W-förmige Verteilungsmuster von Cr hingewiesen. So fällt der Cr-Gehalt in Grt von einem flach ausgebildeten Kernplateau zunächst ab, um dann kurz vor Erreichen des Kristallrandes wieder anzusteigen. Die übrigen Phasen zeigen hingegen eine einphasige Zonierung. Nach Verlassen des unterschiedlich breit ausgebildeten Kernplateaus fallen die Konzentrationen von Mg, Ca und Ti ab, während Fe²⁺ und auch Mn zunehmen. Wie stark diese Zonierungen ausfallen, hängt von der Ausdehnung des Kelyphitsaumes ab. Ist dieser breiter ausgebildet und hat also schon größere Bereiche des Grt betroffen, so sind die am weitesten vom Kerngehalt entfernten Bereiche bereits von Kelyphit verschlungen. Die Mg-Zahl liegt im Kern bei 81.96 ± 0.42 und fällt zum Rand hin deutlich auf 72.92 ± 2.57 ab. Somit handelt es sich bei diesem Grt hauptsächlich um Pyrop mit etwas Almandin sowie untergeordnet einer ganz geringen Uwarowit-Komponente. Randlich ist die Pyrop-Komponente etwas geringer, aber immer noch dominant, während Almandin etwas zunimmt.

Die niedrigen Si-Werte sind messtechnischen Problemen zuzuschreiben, allerdings stellte sich heraus, dass dies keine signifikanten Auswirkungen auf die anschließenden *P-T*-Berechnungen hat.

2.1.3.5 Sekundäre Phasen

Als sekundäre Phase tritt Amphibol auf. Dessen Mineralchemie ist deutlich inhomogener als die der primären Phasen. Entsprechend der Nomenklatur von Leake et al. (1997) handelt es sich hierbei um Pargasite und Edenite.

2.1.4 Spurenelementchemie

2.1.4.1 Phosphor

Die Konzentrationsreihenfolge lautet: Grt > Ol > Cpx > Opx

Profil-01 in Abb. 2.1-5 zeigt die P-Verteilung in einem Grt-Porphyroklasten. Das Verteilungsmuster zeigt einen relativ konstanten Kernbereich, der zum Rand hin abfällt. Wie zu sehen ist, verläuft diese Verteilung in dem gezeigten Grt-Profil nicht symmetrisch. So nimmt P am linken Kristallrand über eine Distanz von ca. 1000 µm ab, während sich der Abfall am rechten Kristallrand auf ca. 200 µm beschränkt. Darüber hinaus zeigt der linke Kristallrand eine Abnahme auf ca. 55 µg/g, während der rechte Rand eine Konzentration von ca. 65 µg/g erreicht. Wie die Konzentrationsdiagramme von Co und Zn desselben Profils zeigen, fallen auch deren Konzentrationen am linken Kristallrand auf den letzten µm deutlich stärker ab als am rechten Rand. Die Antwort hierfür liefert das REM-Bild in Abb. 2.1-5 oben. Hierauf ist zu erkennen, dass der analysierte Grt-Porphyroklast im Gegensatz zur rechten Seite, links über keinen Kelyphitsaum verfügt. Hier liegt ein Opx-Porphyroklast in direktem, und für orogene Grt-Peridotite überaus sauber ausgebildetem Kontakt mit Grt vor. Auf der rechten Seite des Grt dagegen ist dessen äußerer Kristallrand bereits der Kelyphitisierung anheimgefallen. Somit wäre der Unterschied zwischen linker und rechter Randkonzentration von P erklärt, nicht aber, warum der Konzentrationsabfall links so viel früher eintritt. Dies lässt sich nur durch die trägen diffusiven Eigenschaften von P und die dadurch bedingte unzureichende Äquilibrierung erklären. Der P-Mittelwert liegt für den Kernbereich bei 76.69 ± 4.30 µg/g, am Rand bei 54.58 ± 12.34 µg/g. Der deutlich größere Fehler des Rand-Mittelwertes verdeutlicht zum einen die unterschiedlich weit fortgeschrittene Kelyphitisierung der Grt-Ränder sowie die Schwankungen der P-Verteilung.

Ol verfügt für P über keine Zonierung, doch ist die P-Verteilung innerhalb von Ol der Matrix unsystematischen Schwankungen unterworfen. Der Probenmittelwert für P in Ol liegt bei 17.81 \pm 4.62 µg/g. Für die Ol-Einschlüsse in Grt liegt der Mittelwert etwas niedriger, bei 16.94 \pm 1.50 µg/g. Wie anhand der Fehler der Mittelwerte zu sehen ist, fallen die Schwankungen von P innerhalb von Ol in der Matrix größer aus als innerhalb der Ol-Einschluss in Grt.

In Cpx zeigt P wiederum eine systematische Zonierung, wie in Abb. 2.1-4 anhand eines Cpx-Porphyroklasten von Profil-07 dargestellt ist. So nimmt der P-Gehalt zum Rand hin ab. Abgesehen von den bekannten ausgeprägteren Schwankungen von P gegenüber den übrigen hier analysierten Spurenelementen, liegt P im Kern über eine gewisse Breite relativ homogen verteilt vor. Der entsprechende Probenmittelwert beläuft sich auf 7.50 ± 1.41 µg/g. Die durchschnittliche Randkonzentration liegt bei 5.34 ± 1.07 µg/g.

Abb. 2.1-3 zeigt einen Opx-Porphyroklasten aus Profil-01 exemplarisch für Opx. Wie zu sehen ist, fällt der P-Gehalt in Opx sehr gering aus. Darüber hinaus kann der Abbildung entnommen werden, dass Opx ebenfalls eine randliche Abnahme an P vorweisen kann, doch nicht zwangsläufig. So kann teilweise auch keine erkennbare Zonierung vorliegen. Der Mittelwert liegt bei niedrigen $1.19 \pm 0.40 \ \mu$ g/g P. Liegt Opx zoniert vor, so nimmt P auf durchschnittlich $0.47 \pm 0.10 \ \mu$ g/g ab. Als Einschlussphase in Grt liegt die P-Konzentration in Opx bei höheren Werten. So zeigt Profil-13 (Anhang) einen Mittelwert von $1.99 \pm 0.75 \ \mu$ g/g. Der sekundär gebildete Opx des Kelyphitsaumes ist von zu geringer Größe, um mit dem verwendeten Setup der SIMS analysiert werden zu können.

Auch Amp innerhalb von Kelyphit lässt sich mit der SIMS nur schwer analysieren. Die größer ausgebildeten Edenite enthalten 41.58 \pm 2.42 µg/g, während die Pargasite 25.62 \pm 8.03 µg/g P aufweisen.

2.1.4.2 Scandium

Die Konzentrationsreihenfolge lautet: Grt > Cpx > Ol

Die Sc-Verteilung in Grt ähnelt qualitativ ein wenig der von Cr, allerdings mit umgedrehtem Verlauf. In Abb. 2.1-5 zeigt Profil-01 einen breit ausgebildeten Kern, der allerdings nicht

absolut flach ist. Vielmehr zeigt der Kern selbst eine angedeutete "Muldenstruktur", wobei die Ränder dieser Mulde aber nur um 5 % vom Zentrum abweichen. Der Mittelwert dieses Grt-Kernbereiches liegt bei 117.2 \pm 3.2 µg/g. Verlässt man die Kernzusammensetzung, so knickt der Verlauf ab und die Sc-Konzentration sinkt in Richtung der Kornränder ab. Die Randkonzentration von Sc liegt bei durchschnittlich 106.2 \pm 4.5 µg/g. Allerdings kann diese an Grt-Rändern, die bisher nicht von Kelyphit angegriffen sind, auch noch weiter abfallen. Der Probenmittelwert dieser seltenen Ränder liegt bei 91.26 \pm 1.22 µg/g.

Cpx als Porphyroklast unterscheidet sich bezüglich des Sc-Gehalts etwas von Cpx in der Matrix. So liegt Sc in Cpx der Matrix bei homogen verteilten $30.30 \pm 1.75 \ \mu$ g/g. Die Sc-Konzentration der Cpx-Porphyroklasten liegt etwas höher, bei $35.69 \pm 0.75 \ \mu$ g/g (Abb. 2.1-4). Randlich kann diese aber um ca. 3 μ g/g ansteigen.

Der Sc-Gehalt von Opx liegt zoniert vor (Abb. 2.1-3). Der Kerngehalt beläuft sich auf $1.61 \pm 0.32 \mu g/g$. Dieser Gehalt steigt randlich auf $2.34 \pm 0.31 \mu g/g$ an. Hierbei lässt sich zwischen Opx-Porphyroklasten und Matrix-Opx kein Unterschied ausmachen. Opx als abgeschirmte Einschlussphase in Grt liegt dagegen unzoniert vor und entspricht dem Kerngehalt der übrigen Opx. Für den Kelyphit-Opx gilt wieder, dass er für eine SIMS-Analyse zu klein ist.

Ol zeigt in diesem Grt-Peridotit für Sc, aber auch für Co und Zn ein interessantes Verhalten. So sieht man, dass OI in Nachbarschaft zu Grt viel höhere Sc-Gehalte aufweist als OI in größerer Distanz zu Grt. Die Analyse mehrerer OI in unterschiedlichen Entfernungen zu Grt ergibt, dass sich der Sc-Gehalt in Ol mit zunehmender Entfernung zu Grt auf einen konstanten Wert einpendelt. An dieser Stelle sei auf Probe VG (Kapitel 2.2) verwiesen. Diese weist für Sc, Co und Zn qualitativ das gleiche Verhalten auf wie AAR-9, doch kann dies dort sehr anschaulich anhand von Profil-25 nachvollzogen werden. Somit zeigt OI zwar eine Zonierung, aber ausschließlich im Kontakt zu Grt. Diese lässt sich ebenfalls in Profil-02 in Abb. 2.1-2 beobachten. Dieser Ol ist zu beiden Seiten von Grt begrenzt, da sich Ol hier in einer Einbuchtung eines Grt-Porphyroklasten befindet. Das Sc-Verteilungsmuster zeigt nun einen Abfall mit zunehmender Entfernung zu den mit Grt in Kontakt stehenden Rändern. Da der Ol-Kern aber nicht weit genug von Grt entfernt liegt, erreicht der Sc-Gehalt hier nicht ganz den Mittelwert von 0.49 ± 0.16 µg/g, der für Ol in größerer Entfernung zu Grt den relativ konstanten Wert darstellt. Allerdings liegen die OI-Einschlüsse in Grt mit einem Mittelwert von $0.54 \pm 0.15 \,\mu$ g/g Sc in Bezug auf ihre Sc-Konzentration eher bei den Sc-Gehalten der weiter entfernten Ol-Körner. Dies lässt sich nur so erklären, dass diese Einschlüsse von Ol in Grt, durch letzteren seit ihrer Umschließung abgeschirmt werden. Die Ereignisse, die zur Erhöhung der Sc-Konzentration des Matrix-OI in der Nähe von Grt führten, hatten auf diese Ol-Einschlüsse in Grt noch keine Auswirkung. Da sich das beschriebene, von Grt als Nachbarphase gesteuerte Verhalten ausschließlich in Ol zeigt, spricht dies des Weiteren dafür, dass das auslösende Ereignis nur kurze Zeit auf den Peridotit einwirkte, da die übrigen Phasen hiervon noch absolut unbeeinflusst sind.

Edenit zeigt einen Mittelwert von $32.40 \pm 11.99 \,\mu$ g/g, Pargasit von $73.51 \pm 19.97 \,\mu$ g/g. Im Kelyphitsaum liegt Amp bei höheren Sc-Werten, doch gilt hierfür dieselbe analytische Schwierigkeit aufgrund der sehr geringen Korngröße.

2.1.4.3 Cobalt

Die Konzentrationsreihenfolge lautet: OI > Grt > Opx > Cpx

Wie bereits bei Sc beschrieben, zeigt OI eine Zonierung für Co in Abhängigkeit von der Distanz zu Grt, doch fällt diese für Co deutlich geringer aus und in umgekehrter Weise. In der Matrix, mit größerer Entfernung zu Grt liegt der Probenmittelwert für Co in OI bei 99.01 \pm 2.19 µg/g. Mit schwindendem Abstand zu Grt fällt dieser ab. Im Kontakt zu Grt ergibt sich dann ein Probenmittelwert von 90.20 \pm 6.29 µg/g. Profil-02 in Abb. 2.1-2 zeigt ein zoniertes OI-Profil mit Grt zu beiden Seiten. Auch für Co liegt der OI-Einschluss in Grt mit 96.33 \pm 1.40 µg/g näher bei den Werten des Matrix-OI, was die Theorie über die relativ abgeschirmten OI-Einschlüsse in Grt unterstützt.

Grt zeigt für Co auf den ersten Blick ein vollständig flach ausgebildetes Profil, das lediglich auf den letzten µm etwas abfallen kann, vorausgesetzt die Kelyphitisierung ist nicht zu weit fortgeschritten (Abb. 2.1-5 Profil-01). Bei höherer Auflösung des Profils lässt sich aber eine ganz schwach angedeutete "Muldenstruktur" erkennen. Diese Schwankung liegt allerdings innerhalb der Fehlergrenzen und wird daher für die Probenmittelwerte vernachlässigt. So ergibt sich für den Grt-Kern ein Mittelwert von $40.45 \pm 1.17 \mu g/g$. Die gemittelte Rand-konzentration liegt bei kaum niedrigeren Werten von durchschnittlich 39.12 \pm 3.25 µg/g.

Auch Opx liegt zoniert vor (Abb. 2.1-3). Der Kernmittelwert für Opx innerhalb dieser Probe liegt bei $33.31 \pm 1.11 \mu g/g$, der Mittelwert für den Rand bei $30.59 \pm 0.52 \mu g/g$. Zwischen Porphyroklasten und Matrixphase lässt sich wie bei Sc kein Unterschied nachweisen. Eingeschlossen in Grt liegt Opx bei intermediären Co-Gehalten, zwischen dem Kern- und dem Randmittelwert.

Für Cpx lässt sich keine Co-Zonierung feststellen. Zwar zeigt Profil-07 in Abb. 2.1-4 am linken Rand etwas weniger Co, dafür am rechten Rand etwas mehr. Die übrigen Cpx-Profile zeigen aber ausschließlich absolut homogene Co-Verteilungen. So sind die Randpunkte von Profil-07 nur als unsystematische Schwankungen zu interpretieren und fließen daher nicht in den Probenmittelwert von 13.90 \pm 0.86 µg/g ein. Zwischen Cpx-Porphyroklasten und Matrix-Cpx bestehen keine Unterschiede.

Für Co fallen die Unterschiede zwischen den beiden Amp sehr gering aus. Edenit-Körner enthalten $26.88 \pm 4.48 \ \mu g/g$, Pargasit-Körner $26.21 \pm 6.32 \ \mu g/g$ Co.

2.1.4.4 Zink

Die Konzentrationsreihenfolge lautet: OI > Opx > Grt > Cpx

Wie Sc und Co zeigt auch Zn in OI die erwähnte Zonierung in Abhängigkeit von der Nähe zu Grt. Wie Co, nimmt auch Zn ab, je näher sich OI an Grt befindet (Abb. 2.1-2). Im direkten Kontakt liegt der Probenmittelwert bei $6.61 \pm 1.54 \mu g/g$. Weiter entfernt stellt sich dann ein Wert von $21.20 \pm 5.38 \mu g/g$ ein. Als Einschlussphase in Grt vefügt OI über $16.37 \pm 4.43 \mu g/g$ Zn, was ebenfalls wieder deutlich näher an dem Wert liegt, der erst innerhalb der Matrix in einer gewissen Entfernung zu Grt erreicht wird. Dies spricht nocheinmal für die Abgeschirmtheit der OI-Einschlüsse in Grt.

Opx zeigt für Zn wie schon für Co eine Abnahme, von $15.67 \pm 2.39 \ \mu$ g/g im Kern auf $12.03 \pm 1.48 \ \mu$ g/g an den Rändern (Abb. 2.1-3). Ein Unterschied zwischen Opx-Porphyroklasten und Matrix-Opx ist nicht auszumachen. Opx von Grt umschlossen liegt ebenfalls wieder unzoniert vor und hat die gleichen Werte wie die Opx-Kerne.

Für Zn in Grt gilt ähnliches wie für Co in Grt. So liegt Zn in Profil-01 in Abb. 2.1-5 mit Ausnahme eines etwas niedrigeren Randmesspunktes homogen verteilt vor. Aufgrund der größeren messtechnischen Unsicherheiten für Zn lässt sich die bei Co beobachtete "Muldenform" hier nicht erkennen. Der Probenmittelwert des Kerns beläuft sich auf $10.74 \pm 1.75 \mu g/g$, der des Rands auf $5.91 \pm 2.33 \mu g/g$.

Cpx zeigt für Porphyroklasten einen leichten randlichen Abfall des Zn-Gehalts (Abb. 2.1-4). Cpx als Matrixphase lässt dagegen keine Zonierung erkennen und entspricht dem Kerngehalt der Porphyroklasten. So ergibt sich für Cpx ein Probenmittelwert von $5.21 \pm 1.20 \mu g/g$. Die Ränder der Porphyroklasten liegen bei $3.75 \pm 0.08 \mu g/g$.

Edenit verfügt über $3.72 \pm 2.54 \mu g/g$ Zn, Pargasit über $5.72 \pm 3.69 \mu g/g$. Der sehr große Fehler verdeutlicht deren Inhomogenität.

2.1.5 Mineralgleichgewichte und Geothermobarometrie

Tabelle 2.1-3 zeigt die Ergebnisse der geothermobarometrischen Berechnungen dieses Grt-Peridotits. Wie zu sehen ist, dokumentiert diese Probe eine Dekompression mit gleichzeitiger T-Abnahme. Die P-T-Maxima, die hier somit den älteren Äquilibrierungsbedingungen entsprechen, basieren auf den homogenen Kernbereichen der Grt-, Opx- und Cpx-Porphyroklasten sowie des in Grt eingeschlossenen OI. Die P-T-Minima, d.h. die jüngeren Bedingungen basieren auf den Mineralrändern der Porphyroklasten und dem Matrix-OI. Interessanterweise weichen die Geothermometer von Krogh (1988) und Krogh Ravna (2000) von denen von Brey & Köhler (1990) ab. Dies könnte durch eine unzureichende Ca-Äquilibrierung der Pyroxene zu erklären sein, wie sie auch schon u.a. von Paguin (2001) diskutiert wurde. Ungeachtet dessen basieren die T_{Fe-Mg-Grt-Cpx}-Geothermometer auf dem Austausch der divalenten und schnell diffundierenden Elemente Fe²⁺ und Mg, sowie ausschließlich in Grt auch Ca und Mn, während das T_{2Px}-Geothermometer darüber hinaus auch die Ca- und Na-Verteilung zwischen den Px mit einbezieht und das T_{Ca-in-Opx}-Geothermometer ausschließlich auf Ca basiert. Ca diffundiert allerdings aufgrund seines deutlich größeren Iononenradius langsamer als Fe²⁺ und Mg. Somit stellt sich das Gleichgewicht, auf dem letztgenannte Geothermometer beruhen, langsamer ein, als das, auf dem die T_{Fe-Mg-Grt-Cpx}-Geothermometer basieren. Somit könnten die nach oben streuenden Daten der T_{Fe-Mg-Grt-Cpx}-Geothermometer für das P-T-Maximum und die nach unten streuenden Daten dieser Geothermometer für das P-T-Minimum wie folgt zu interpretieren sein: Die P-T-Bedingungen zur Zeit des Metamorphosepeaks wirkten auf das Gestein zu kurz ein um eine vollständige Reäquilibrierung der Geothermometer von Brey & Köhler (1990) zu erreichen, wohingegen die Äquilibrierung der T_{Fe-Ma-Grt-Cox}-Geothermometer weiter fortschreiten konnte. Auch ein kurzfristiges Aufheizungsereignis zu diesem Zeitpunkt, worauf lediglich die letztgenannten Geothermometer reagieren konnten, wäre denkbar. Ebenso konnten sich die T_{Fe-Ma-Grt-Cox}-Geothermometer auf die erniedrigten P-T-Bedingungen der anschließenden Überprägung schneller einstellen.

Abb. 2.1-2. Ol-Analyse, exemplarisch anhand von Profil-02 aus Probe AAR-9, Profillänge 1125 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Ol-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.1-3. Opx-Analyse, exemplarisch anhand von Profil-01 aus Probe AAR-9, Profillänge 600 μm. *Oben:* BSE-Bild des analysierten Opx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Mitte:* PP-Bild mit verschiedenen Mineralphasen, BB 4 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.1-4. Cpx-Analyse, exemplarisch anhand von Profil-07 aus Probe AAR-9, Profillänge 1200 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Cpx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.1-5. Grt-Analyse, exemplarisch anhand von Profil-01 aus Probe AAR-9, Profillänge 4655 μm. *Oben:* BSE-Bild des analysierten Grt- Porphyroklasten mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Mitte:* PP-Bild desselben Grt-Porphyroklasten, BB 4.9 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Spuren- elemente [µg/g] Sc Co Zn	Mg# Cr#	K ∑ Kationen	Na	Мg	Z	Mn	Fe ²⁺	Fe ³	Şī	2 =	<u>s</u>	Kationen- besetzung [c.p.f.u.]	Μ	K₂O	Na ₂ O	CaO	MgO	NiO	FeO	Fe ₂ O ₃	Cr ₂ O ₃		TiO2	SiO2	[Gew%]	Analyse	
17.81 ± 4.62 0.49 ± 0.16 99.01 ± 2.19 21.20 ± 5.38	90.29 ± 0.72	0.000 3.006	0.001	1.806 0.000	0.008	0.003	0.194	n.b.	0.000	0.000	0.994		100.825	0.011	0.013	0.013	49.817	0.136	9.550	n.b.	0.016	0.008	0.016	40.871	homogen	0	
2.14 ± 0.76 90.20 ± 6.29 6.61 ± 1.54																									zu Grt	Rand	
16.94 ± 1.50 0.54 ± 0.15 96.33 ± 1.40 16.37 ± 4.43	91.97 ± 0.26	0.000 3.002	0.001	1.834 0.000	0.008	0.002	0.160	0.000 n.b.	0.000	0.000	0.998		100.498	0.009	0.011	0.012	50.823	0.086	7.910	n.b.	0.012	0.007	0.019	41.223	homogen	(in-Grt)	
1.19±0.40 1.61±0.32 33.31±1.11 15.67±2.39	91.33 ± 0.59 12.73 ± 3.87	0.000 4.009	0.001	1.812 0.008	0.002	0.003	0.172	n.b.	0.032	0.002	1.972		100.439	0.008	0.019	0.213	35.447	0.120	5.999	n.b.	0.175	0.794	0.066	57.520	Kern	Орх	
0.47 ± 0.10 2.34 ± 0.31 30.59 ± 0.52 12.03 ± 1.48	90.27 ± 1.01 9.53 ± 4.22	0.000 4.006	0.001	1.786 0.006	0.002	0.005	0.193	n.b.	0.037	0.001	1.973		100.524	0.008	0.017	0.151	34.881	0.165	6.702	n.b.	0.140	0.907	0.037	57.466	Rand		
	89.32 ± 1.23 6.61 ± 3.47	0.001 4.006	0.001	1.747 0.007	0.001	0.006	0.209	n.b.	0.076	0.001	1.953		100.763	0.013	0.008	0.191	34.097	0.216	7.266	n.b.	0.205	1.875	0.028	56.827	()	Opx (Kelvnhit)	· (• · ·).
7.50 ± 1.41 35.69 ± 0.75 13.90 ± 0.86 5.21 ± 1.20	92.49 ± 0.54 15.54 ± 1.11	0.000 4.004	0.105	0.860 0.847	0.001	0.002	0.070	n.b.	0.118	0.005	1.974		100.453	0.008	1.507	21.942	16.023	0.060	2.320	n.b.	0.764	2.789	0.189	54.815	Kern	(Pornhyroklast)	1
5.34 ± 1.07 38.88 ± 1.03 3.75 ± 0.08	93.15 ± 0.86 22.07 ± 1.79	0.000 4.004	0.082	0.885 0.875	0.002	0.002	0.065	0.020 n.b.	0.088	0.004	1.977		100.635	0.010	1.172	22.684	16.501	0.058	2.163	n.b.	0.870	2.063	0.140	54.920	Rand		
dito Cpx-Por. 30.30 ± 1.75 dito Cpx-Por. dito Cpx-Por.	92.27 ± 0.63 25.02 ± 1.39	0.001 4.013	0.120	0.863 0.830	0.001	0.002	0.072	n.b.	0.114	0.005	1.966		99.785	0.018	1.701	21.335	15.938	0.068	2.379	n.b.	1.328	2.672	0.196	54.118	Kern	(Matrix)	1
dito Cpx-Por.	92.69 ± 1.12 28.94 ± 3.14	0.000 4.011	0.080	0.910 0.849	0.001	0.003	0.072	0.000 n.b.	050 U	0.004	1.958		99.914	0.004	1.139	21.821	16.816	0.083	2.365	n.b.	1.345	2.221	0.155	53.929	Rand		

NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 7.783 K 0.001 0.002 0.614 2.008 K 0.001 0.001 0.003 0.614 K 0.001 0.001 0.003 0.614 Kationen 8.055 8.018 1.5678 0.089 Mg# 81.96 ± 0.42 729 ± 1.95 7.27 ± 0.94 5.016 Spuren- alemente 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 7.27 ± 0.94	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 7.783 K 0.001 0.002 0.614 2.008 K 0.001 0.001 0.003 0.614 K 0.001 0.001 0.003 0.614 Kationen 8.055 8.018 1.5678 0.008 Mg# 81.96 ± 0.42 729 ± 1.95 7.27 ± 0.94 5.014 Spuren- alemente 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.008 OH 8.055 8.018 1.783 0.614 Mg# 8.055 8.018 0.001 0.089 Mg# 8.196±0.42 7292±2.57 90.10±1.00 7.27±0.94 Spuren- elemente 6.47±0.20 4.99±1.195 7.27±0.94 7.27±0.94 P 76.69±4.30 54.58±12.34 41.58±2.42	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.008 OH 8.055 8.018 0.614 2.000 Mg# 81.96 ± 0.42 7.292 ± 2.57 90.10 ± 1.00 Mg# 81.96 ± 0.42 7.292 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.992 ± 1.95 7.27 ± 0.94 Spuren- elemente 1.95 7.27 ± 0.34 7.58 ± 2.42 P 76.69 ± 4.30 54.58 ± 12.34 41.58 ± 2.42
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 0.614 K 0.001 0.002 0.614 2.000 Mg# 8.055 8.018 1.5678 0.089 Mg# 8.196±0.42 7292±2.57 90.10±1.00 7.27±0.94 Spuren- elemente 6.47±0.20 4.999±1.95 7.27±0.94 7.27±0.94 P 76.69±4.30 54.58±12.34 41.58±2.42	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 0.614 K 0.001 0.002 0.614 0.614 Mg 8.055 8.018 0.614 2.000 Mg# 8.196±0.42 7292±2.57 90.10±1.00 7.27±0.94 Mg# 81.96±0.42 72.92±2.57 90.10±1.00 7.27±0.94 Spuren- elemente 1.95 7.27±0.24 4.158±2.42 P 76.69±4.30 54.58±12.34 41.58±2.42
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 0.614 K 0.001 0.002 0.614 2.000 Mg# 8.055 8.018 1.5678 0.089 Mg# 8.196±0.42 7292±2.57 90.10±1.00 7.27±0.94 Spuren- elemente 6.47±0.20 4.999±1.95 7.27±0.94 7.27±0.94 P 76.69±4.30 54.58±12.34 41.58±2.42	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 0.614 K 0.001 0.002 0.614 0.614 Mg 8.055 8.018 0.614 2.000 Mg# 8.196±0.42 7292±2.57 90.10±1.00 7.27±0.94 Mg# 81.96±0.42 72.92±2.57 90.10±1.00 7.27±0.94 Spuren- elemente 1.95 7.27±0.24 4.158±2.42 P 76.69±4.30 54.58±12.34 41.58±2.42
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.000 OH 8.055 8.018 1.5678 0.089 Mg# 81.96 ± 0.42 7292 ± 2.57 90.10 ± 1.00 2.000 Mg# 81.96 ± 0.42 7292 ± 2.57 90.10 ± 1.00 7.27 ± 0.94 Spuren- 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 7.27 ± 0.94 P 76.69 ± 4.30 54.58 ± 12.34 41.58 ± 2.42	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 0.089 OH 8.055 8.018 1.783 0.089 Mg# 81.96 ± 0.42 7292 ± 2.57 90.10 ± 1.00 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Spuren- elemente 1.95 7.27 ± 0.34 7.58 ± 2.42 P 76.69 ± 4.30 54.58 ± 12.34 41.58 ± 2.42
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 7.783 K 0.001 0.002 0.614 2.008 Mg 8.055 8.018 0.001 0.089 OH 8.055 8.018 1.5678 0.089 Mg# 81.96 ± 0.42 7.292 ± 2.57 90.10 ± 1.00 0.010 Mg# 81.96 ± 0.42 7.292 ± 1.95 7.27 ± 0.94 0.5678 Spuren- 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 7.27 ± 0.94 P 76.69 ± 4.30 54.58 ± 1.234 41.58 ± 2.42 7.27 ± 0.94	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 7.783 K 0.001 0.002 0.614 2.008 Mg 8.055 8.018 0.001 2.000 Mg# 81.96 ± 0.42 7.292 ± 2.57 90.10 ± 1.00 Mg# 81.96 ± 0.42 7.292 ± 1.95 7.27 ± 0.94 Spuren- elemente fug/g] 7.658 ± 1.35 7.27 ± 0.94 P 76.69 ± 4.30 54.58 ± 1.234 41.58 ± 2.42
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 7.783 K 0.001 0.002 0.614 2.008 K 0.001 0.001 0.001 0.089 OH 8.055 8.018 1.5678 0.089 Mg# 81.96 ± 0.42 7292 ± 2.57 90.10 ± 1.00 2.000 Mg# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 2.074 0.916 ± 1.00 Spuren- elemente [µg/g] 7.56 ± 4.30 54.58 ± 1.234 41.58 ± 2.42	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.001 0.003 0.614 Mg# 81.96 ± 0.42 7.292 ± 2.57 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Spuren- elemente 1.95 7.27 ± 0.34 1.5678 D 7.664 ± 30 54.58 ± 1.734 41.58 ± 2.42
NI 0.001 0.001 0.001 0.001 Ng 2.175 1.907 3.953 Na 0.004 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 Mg 8.055 8.018 1.783 Mg# 8.196 ± 0.42 7292 ± 2.57 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.999 ± 1.95 7.27 ± 0.94 Spuren- elemente Ludition 7.27 ± 0.94	NI 0.001 0.001 0.001 0.001 Ng 2.175 1.907 3.953 Na 0.004 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 Mg 8.055 8.018 1.783 Mg# 8.196 ± 0.42 7.292 ± 2.57 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.999 ± 1.95 7.27 ± 0.94 Spuren- elemente Ludition 7.27 ± 0.94
NI 0.001 0.001 0.001 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.019 2.000 Mg# 8.055 8.018 1.5678 0.089 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.999 ± 1.95 7.27 ± 0.94 Spuren- elemente fug/g] 7.27 ± 0.94	NI 0.001 0.001 0.001 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.001 0.061 K 0.001 0.002 0.614 K 0.001 0.001 0.061 OH 8.055 8.018 1.783 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Spuren- elemente fug/g] 1.95 7.27 ± 0.94
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.008 OH 8.055 8.018 0.089 0.089 OH 8.055 8.018 1.5678 0.089 Mg# 81.96 ± 0.42 729 ± 1.95 7.27 ± 0.94 2.000 Spuren- elemente G.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 30.10 ± 1.00	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.008 OH 8.055 8.018 1.783 2.000 Mg# 81.96 ± 0.42 729 ± 2.57 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Spuren- elemente Iug/gl 1.95 7.27 ± 0.94
NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.003 0.614 K 0.001 0.001 0.003 0.614 Mg 8.055 8.018 1.76 2.000 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Spuren- elemente functrial 7.27 ± 0.94	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.003 OH 0.001 0.001 0.003 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Spuren- elemente 0105 7.27 ± 0.94
NI 0.001 0.001 0.001 0.011 Ng 2.175 1.907 3.953 Na 0.004 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 Mg 8.055 8.018 1.783 Mg# 8.196 ± 0.42 7292 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.999 ± 1.95 7.27 ± 0.94 Spuren- elemente 7.27 ± 0.94 7.07 ± 0.94	NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 Mg 8.055 8.018 1.5678 Mg# 8.196 ± 0.42 7292 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.999 ± 1.95 7.27 ± 0.94 Spuren- elemente 7.27 ± 0.94 7.27 ± 0.94
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.783 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.008 OH 8.055 8.018 7.27±0.94 2.000 Mg# 81.96±0.42 72.92±2.57 90.10±1.00 0.72±0.94 Spuren- elemente 6.47±0.20 4.99±1.95 7.27±0.94 0.014	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.783 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.001 0.003 0.614 K 0.001 0.001 0.001 2.000 Mg# 8.055 8.018 15.678 0.089 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 0.10 ± 1.00 Spuren- 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 0.64
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.004 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.000 K 0.001 0.001 0.003 0.614 K 0.001 0.001 0.003 0.614 K 0.001 0.001 0.003 0.614 Mg# 8.055 8.018 15.678 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Spuren- elemente Spuren- 7.27 ± 0.94	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.004 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.008 OH 8.055 8.018 1.5678 0.089 Mg# 81.96 ± 0.42 7292 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Spuren- elemente Spuren- 7.27 ± 0.94
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.001 0.003 0.614 Mg 8.055 8.018 0.018 15.678 Mg# 81.96 ± 0.42 7292 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.001 0.003 0.614 Mg 8.055 8.018 0.018 15.678 Mg# 81.96 ± 0.42 7292 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Spuren- Spuren- 7.27 ± 0.94
NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.001 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 MH 8.055 8.018 1.5678 Mg# 81.96 ± 0.42 7292 ± 2.57 90.10 ± 1.00 Ort# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Spuren- Spuren- 7.27 ± 0.94	NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.002 0.614 MH 8.055 8.018 1.5678 Mg# 81.96 ± 0.42 7292 ± 2.57 90.10 ± 1.00 Ort# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Spuren- Spuren- 7.27 ± 0.94 7.27 ± 0.94
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.783 3.953 Na 0.004 0.002 0.614 2.1783 K 0.001 0.002 0.614 2.003 K 0.001 0.001 0.013 2.000 Mg# 8.055 8.018 15.678 90.10±1.00 Mg# 8.196±0.42 7292±2.57 90.10±1.00 7.27±0.94 Spuren- Spuren- 5.439±1.95 7.27±0.94	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.783 3.953 Na 0.004 0.002 0.614 2.1783 K 0.001 0.002 0.614 2.008 K 0.001 0.001 0.011 2.000 Mg# 8.055 8.018 15.678 0.089 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 7.27 ± 0.94 Spuren- Spuren- 7.27 ± 0.94 7.27 ± 0.94
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.000 K 0.001 0.001 0.003 0.614 K 0.001 0.001 0.003 0.614 K 0.001 0.001 0.003 0.614 Mg# 8.055 8.018 15.678 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Sourcen- Sourcen- 7.27 ± 0.94	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 7.783 K 0.001 0.002 0.614 2.008 OH 8.055 8.018 1.5678 2.000 Mg# 81.96 ± 0.42 729 ± 2.57 90.10 ± 1.00 Content 1.00 Sourcen- 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94 Sourcen-
NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.003 Mg 0.001 0.001 0.003 Mg# 8.055 8.018 1.5678 Mg# 81.96 ± 0.42 7292 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94	NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.003 Mg 0.001 0.001 0.003 Mg# 8.055 8.018 1.5678 Mg# 81.96 ± 0.42 7292 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94
NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.003 K 0.001 0.001 0.003 Mg# 81.96 ± 0.42 7.292 ± 2.57 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94	NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.003 K 0.001 0.001 0.003 Mg# 81.96 ± 0.42 7.29 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94
NI 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.089 OH 8.055 8.018 1.783 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 Cr# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94	NI 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.907 3.953 Na 0.004 0.022 0.614 0.614 K 0.001 0.002 0.614 2.000 K 0.001 0.001 0.001 2.000 K 0.001 0.001 0.012 0.614 K 0.001 0.001 0.012 0.614 Mg# 8.055 8.018 8.018 15.678 Mg# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.000 Mg# 8.055 8.018 1.5678 90.10 \pm 1.00 Mg# 6.47 \pm 0.20 4.99 \pm 1.95 7.27 \pm 0.94	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.008 Mg# 8.055 8.018 1.5678 9.008 Mg# 81.96 \pm 0.42 7292 \pm 2.57 90.10 \pm 1.00 Cr# 6.47 \pm 0.20 4.99 \pm 1.95 7.27 \pm 0.94
NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.003 OH 0.001 0.001 0.003 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94	NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.003 OH 0.001 0.001 0.003 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 Mg# 6.47 ± 0.20 4.99 ± 1.95 7.27 ± 0.94
NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.783 3.953 Na 0.004 0.002 0.614 2.1783 K 0.001 0.002 0.614 2.000 K 0.001 0.001 0.001 2.000 K 0.001 0.001 0.001 2.000 MH 8.055 8.018 15.678 0.10 \pm 1.00 Mg# 81.96 \pm 0.42 72.92 \pm 2.57 90.10 \pm 1.00 0.70 \pm 0.94 Cr# 6.47 \pm 0.20 4.99 \pm 1.95 7.27 \pm 0.94 7.27 \pm 0.94	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.783 3.953 Na 0.004 0.002 0.614 2.089 K 0.001 0.002 0.614 2.000 K 0.001 0.001 0.019 2.000 MH 8.055 8.018 15.678 0.010 15.678 Mg# 81.96 \pm 0.42 72.92 \pm 2.57 90.10 \pm 1.00 5.74 \pm 0.94
NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 2.000 Mg 8.055 8.018 1.5678 90.10 ± 1.00 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 77.000	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.002 0.614 0.089 OH 8.055 8.018 1.5678 90.10 ± 1.00 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00 77.020
NI 0.001 0.001 0.011 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.089 OH 0.001 0.001 0.089 Mg# 8.055 8.018 15.678 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00	NI 0.001 0.001 0.011 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.002 0.614 K 0.001 0.001 0.089 OH 0.001 0.001 0.089 Mg# 8.055 8.018 15.678 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00
NI 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.001 0.089 OH 8.055 8.018 15.678 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00	NI 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.783 3.953 Na 0.004 0.002 0.614 0.018 K 0.001 0.001 0.089 0.089 OH 8.055 8.018 15.678 0.089 Mg# 81.96 ± 0.42 72.92 ± 2.57 90.10 ± 1.00
NI 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.001 0.089 K 0.001 0.001 2.000 K 0.001 0.001 2.000 Muth 8.055 8.018 15.678	NI 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.783 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.001 0.001 2.000 K 0.001 0.001 0.013 2.000 K 0.001 0.001 0.013 2.000 Mn# 0.055 8.018 15.678
Ni 0.001 0.001 0.001 0.011 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.001 0.003 0.614 K 0.001 0.001 0.003 0.664 K N 0.001 0.001 0.089 OH 8.055 8.018 15.678 15.678	Ni 0.001 0.001 0.001 0.001 Mg 2.175 1.907 3.953 3.953 Ca 0.408 0.367 1.507 3.953 Na 0.004 0.002 0.614 0.614 K 0.001 0.001 0.003 0.614 K 0.001 0.001 0.003 0.663 OH 8.055 8.018 15.678
NI 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.001 0.002 0.614 K 0.001 0.001 0.089 OH 0.001 0.012 0.089 K 0.001 0.012 0.089 OH 0.001 0.012 0.089 X 0.001 0.012 0.089 X 0.001 0.012 0.089 X 0.001 0.012 0.089 X 0.013 0.013 0.089	NI 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.001 0.089 OH 0.001 0.001 0.089 K 0.001 0.012 0.089 OH 0.001 0.012 0.089 X 0.001 0.012 0.089 X 0.013 0.013 0.089 X 0.001 0.011 0.089 X 0.013 0.013 0.089
NI 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.001 0.002 0.614 K 0.001 0.001 0.089 OH 8.055 8.018 15.678	NI 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.001 0.002 0.614 K 0.001 0.001 0.089 OH 8.055 8.018 15.678
NI 0.001 0.001 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.001 0.089 OH 8.055 8.018 1.5678	NI 0.001 0.001 0.001 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.001 0.089 OH 8.055 8.018 1.5678
Mg 2.175 1.907 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.014 0.022 0.614 0.002 0.614 0.008 0.089 0.080 0.080 0.080 0.080 0.089 0.080 0.080 0.089 0.080 0.080 0.089 0.089 0.080 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.080 0.089 0.080 0.080 0.089 0.080 0.089 0.080 0.089 0.080 0.089 0.080 0.089 0.080 0.089 0.080 0.089 0.089 0.080 0.089 0.089 0.080 0.080 0.080 0.080 0.080 0.089 0.080 0.080 0.080 0.089 0.080 0.089 0.080 0.0	Mg 2.175 1.907 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 OH 0.001 0.001 2.000
M 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.64 0.002 0.614 V 0.001 0.001 0.001 0.003 0.699 0.001 0.001 0.001 2.000 0.003 0.001 0.0	M 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.64 0.002 0.614 V 0.001 0.001 0.001 0.003 0.699 0.001 0.001 0.001 2.000 0.003
MI 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.614 0.002 0.614 0.002 0.089 0.089 0.001 0.001 0.089 0.089 0.000 0.000 0.089 0.000 0.0	MG 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.002 0.614 0.002 0.614 0.002 0.614 0.003 0.614 0.003 0.0
Mg 2.175 1.907 0.001 0.001 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614 K 0.001 0.001 0.089	Mg 2.175 1.907 0.001 0.001 0.011 0.011 0.011 0.01 0.0
NI 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.002 0.614 0.002 0.614 V.A. 0.002 0.069 0.614	MI 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.002 0.614 0.002 0.614 VA 0.001 0.002 0.614 0.002 0.614
Mg 2.175 1.907 0.011 0.011 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614	MG 0.001 0.001 0.001 0.011 0.0
Mg 2.175 0.001 0.001 0.001 Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.004 0.002 0.614	Mg 2.175 0.001 0.001 0.001 0.001 0.011 0.011 0.01 0
NI 0.001 0.001 0.001 NG 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.061	NI 0.001 0.001 0.001 NG 2.175 1.907 3.953 Ca 0.408 0.367 1.783 Na 0.007 0.614
Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783	Mg 2.175 1.907 3.953 Ca 0.408 0.367 1.783
MI 0.001 0.001 0.001 MG 2.175 1.907 3.953 Ca 0.408 0.367 1.783	MI 0.001 0.001 0.001 0.001 0.011 0.011 0.011 0.011 0.010 0.011 0.010 0.010 0.010 0.010 0.011 0.0
MG 2.175 1.907 3.953 C 2.175 1.907 3.953 C 2.007	MG 2.175 1.907 3.953 C 2.175 1.907 3.953 C 2.000
Mg 2.175 1.907 3.953	Mg 2.175 1.907 3.953
MG 2.175 1.907 3.953	MG 2.175 1.907 3.953
U.011 0.001 0.011	N 0.011 0.001
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Fe 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{xx} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{xx} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ² n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ² n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{2x} n.b. n.b. n.b. Fe ^{2x} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{2x} n.b. n.b. n.b. Fe ^{2x} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{3*} 0.102 0.103 0.101 Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{3*} 0.102 0.103 0.101 Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
U_1 U_2 U_1 U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2 <t< td=""><td>U_1 U_1 U_2 U_1 U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2 <t< td=""></t<></td></t<>	U_1 U_2 U_1 U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2 <t< td=""></t<>
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ³⁺ n.b. n.b. n.b. Fe ²⁺ 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ³⁺ n.b. n.b. n.b. Fe ²⁺ 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ³⁺ n.b. n.b. n.b. Fe ²⁺ 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Cr 0.132 0.100 0.161 Fe^{3*} $n.b.$ $n.b.$ $n.b.$ Fe^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Cr 0.132 0.100 0.161 Fe^{3*} $n.b.$ $n.b.$ $n.b.$ Fe^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
U_1 U_1132 U_1100 U_1101 Fe^{3*} $n.b.$ $n.b.$ $n.b.$ 0.101 Fe^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	U_1 U_2 U_1 U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2 U_1 U_2 <t< td=""></t<>
\mathbf{v}_{1} $\mathbf{v}_{1,02}$ $\mathbf{v}_{1,00}$ $\mathbf{v}_{1,01}$ \mathbf{Fe}^{2*} $\mathbf{n}_{}\mathbf{b}$ $\mathbf{n}_{}\mathbf{b}$ $\mathbf{n}_{}\mathbf{b}$ \mathbf{Fe}^{2*} 0.479 0.708 0.435 \mathbf{Mn} 0.021 0.050 0.011	\mathbf{v}_{1} $\mathbf{v}_{1,02}$ $\mathbf{v}_{1,00}$ $\mathbf{v}_{1,01}$ \mathbf{Fe}^{2*} $\mathbf{n}_{}\mathbf{b}$ $\mathbf{n}_{}\mathbf{b}$ $\mathbf{n}_{}\mathbf{b}$ \mathbf{Fe}^{2*} 0.479 0.708 0.435 \mathbf{Mn} 0.021 0.050 0.011
Fe ³ 0.102 0.103 0.101 Fe ³ n.b. n.b. 0.101 Fa ³ 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{3*} 0.102 0.103 0.101 Fe ^{3*} n.b. n.b. 0.101 Fa ^{3*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{3*} 0.102 0.103 0.101 Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{3*} 0.102 0.103 0.101 Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ³⁺ n.b. n.b. n.b. Fe ²⁺ 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ³⁺ n.b. n.b. n.b. Fe ²⁺ 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{3*} n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ³⁺ n.b. n.b. n.b. Fe ²⁺ 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ³⁺ n.b. n.b. n.b. Fe ²⁺ 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ³ n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ³ n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ² n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ² n.b. n.b. n.b. Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ²⁺ 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ²⁺ 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{2*} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ^{2x} 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ^{2x} 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ² 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ² 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Fe ⁻ 0.479 0.708 0.435 Mn 0.021 0.050 0.011	Fe ⁻ 0.479 0.708 0.435 Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
Mn 0.021 0.050 0.011	Mn 0.021 0.050 0.011
WI 0.021 0.050 0.011	WI 0.021 0.050 0.011
110.0 0.000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	110.0 0.000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
- 0.00 - 0.000	- 0.00 - 0.000

51

Amp (Pargasit) homogen 45.253 0.409 1.123 1.123 0.409 1.123 1.123 0.051 0.051 18.252 12.504 2.803 0.095 2.129 100.041

25.62 ± 8.03 73.51 ± 19.97 26.21 ± 6.32 5.72 ± 3.69

 90.33 ± 1.24 5.16 ± 2.72

D _{Min/Min}	Р	Sc	Со	Zn
OI/Opx _{Rand}	38.23 ± 6.262	0.208 ± 0.034	3.237 ± 0.040	1.763 ± 0.232
OI/Cpx _{Rand}	3.337 ± 0.472			
OI/Cpx _{Por-R}		0.013 ± 0.002		5.659 ± 0.623
Opx _{Kern} /Cpx			2.396 ± 0.044	
Орх _{Kern} /Срх _{Kern}	0.159 ± 0.016			3.007 ± 0.218
Opx_{Rand}/Cpx_{Rand}	0.087 ± 0.019			
Орх _{Kern} /Срх _{Рог-К}		0.045 ± 0.002		
Opx _{Rand} /Cpx _{Por-R}		0.060 ± 0.005		3.211 ± 0.160
Grt _{Kern} /Cpx			2.909 ± 0.045	
Grt _{Kern} /Opx _{Kern}	64.37 ± 4.467	72.85 ± 3.341	1.214 ± 0.015	0.685 ± 0.039
Grt _{Rand} /Opx _{Rand}	117.2 ± 20.25	45.36 ± 3.184	1.279 ± 0.032	0.491 ± 0.067
Grt _{Kern} /Cpx _{Por-K}		3.285 ± 0.034		
Grt _{Rand} /Cpx _{Por-R}		2.732 ± 0.104		1.578 ± 0.183
Grt _{Kern} /Cpx _{Kern}	10.23 ± 0.521			2.061 ± 0.139
Grt _{Rand} /OI	3.064 ± 0.282	218.3 ± 25.39	0.395 ± 0.011	0.279 ± 0.055
Grt _{Rand} /Cpx _{Rand}	10.23 ± 1.540			
Ol _{in-Grt} /Cpx			6.929 ± 0.112	

Tabelle 2.1-2. Probe AAR-9: Anhand der Mittelwerte von Tabelle 2.1-1 für die primären Mineralphasen berechnete Verteilungskoeffizienten der Spurenelemente. Angegebener Fehler: absoluter Fehler des Verteilungskoeffizienten (2σ). Die Farben entsprechen den zugehörigen *P*-*T*-Bedingungen aus Tabelle 2.1-3.

Tabelle 2.1-3. Probe AAR-9: Berechnete geothermobarometrische Daten anhand der Mittelwerte in Tabelle 2.1-1.

AAR-9

Coathormohoromotor [khar: °C]	P-T-	P-T-
Geothermobarometer [kbar, C]	Maximum	Minimum
P _{Ca-Ol-Cpx} (Brey & Köhler 1990)	33.1	22.7
P _{Al-in-Opx} (Brey & Köhler 1990)	31.0	23.1
T_{2Px} (Brey & Köhler 1990)	809	754
T_{Ca-in-Opx} (Brey & Köhler 1990)	809	727
T _{Fe-Mg-Grt-Cpx} (Krogh 1988)	970	668
T_{Fe-Mg-Grt-Cpx} (Krogh Ravna 2000)	938	633
T _{Fe-Mg-Grt-OI} (O'Neill & Wood 1979; O'Neill 1980)	857	588

2.2 Probe VG: Grt-Peridotit

Abb. 2.2-1. *Links:* angesägtes Handstück der Probe VG, BB 60 mm. *Rechts:* Gesteinsgefüge anhand eines Dünnschliffes, BB 20 mm.

2.2.1 Probenlokalität

Die vorliegende Probe kommt ebenfalls aus den Schweizer Alpen. Sie entstammt dem Valle di Gorduno, einem Tal etwas südlich des Alpe-Arami-Peridotitkörpers, der in dieser Arbeit durch die Probe AAR-9 vertreten ist.

2.2.2 Petrographie

Auf den ersten Blick ähnelt dieser Grt-Peridotit sehr stark der zuvor besprochenen Probe AAR-9 (Kapitel 2.1). So ist das typische Peridotit-Grün des Gesteins nur von den intensiv dunkelroten bis schwach violetten Grt-Kristallen unterbrochen. Diese Grt-Kristalle, die hier ebenfalls als große xenomorphe Porphyroklasten vorliegen, fallen aber deutlich größer aus als in Probe AAR-9. In dieser Probe messen sie bis zu 20 mm im Durchmesser und liegen zumeist bei 10 mm. Aber auch die Korngrößen der Matrixphasen fallen hier gegenüber Probe AAR-9 größer aus. Für Ol und Opx liegt diese bei ca. 1 mm und für Cpx bei etwas weniger. Außerdem verfügen die Minerale der Matrix meist über gerade und gewinkelte Kornkontakte, sodass die Kornformen als nahezu hypidiomorph zu bezeichnen sind (Abb. 2.2-2). Die Grt-Porphyroklasten sind stets von einem deutlichen Kelyphitsaum umgeben, dessen Stärke etwas variiert, der aber prinzipiell stärker ausfällt als in Probe AAR-9. Als Einschlussphasen in Grt tritt hauptsächlich OI auf, doch vereinzelt ist auch Amp in Grt enthalten. Opx oder Cpx treten nur in der Matrix, und nicht als Einschlüsse auf. Selten zeigen Opx-Kristalle Entmischungslamellen von Cpx und umgekehrt. Meistens sind die Pyroxene aber frei von Entmischungen. Das Gesteinsgefüge ist als isotrop anzusprechen. Es liegen keinerlei tektonische oder mikrotektonische Gefüge vor. Dies ist in Abb. 2.2-1 rechts anhand eines Dünnschliffes, der hauptsächlich Matrix enthält, dargestellt. Als sekundäre Phase tritt hauptsächlich Amp auf (olivgrün in Abb. 2.2-1 rechts). Der Kelyphitsaum enthält Amp und Opx sowie untergeordnet auch Spl, allerdings liegt dieser im Bereich von nur einigen µm. Entlang von Rissen tritt Serpentin auf.

2.2.3 Haupt- und Nebenelementchemie

2.2.3.1 Olivin

Dieser Grt-Peridotit enthält zwei verschiedene Ol-Generationen. Dies sind zum einen Ol-Einschlüsse in Grt und zum anderen Ol-Kristalle der Matrix. Unterscheiden tun sich diese zwei Generationen anhand der *Mg-Zahl*. So beträgt diese für die Ol-Einschlüsse in Grt 92.24 \pm 0.21, für den Matrix-Ol 89.59 \pm 0.90. Liegt Ol in der Matrix in Berührung mit Cpx vor, so kann allerdings Ca auf den letzten paar µm ansteigen, wie beispielsweise in Profil-14 (Anhang). Ansonsten sind beide Generationen aber absolut homogen ausgebildet wie in Abb. 2.2-2 anhand von Profil-25 zu sehen ist.

2.2.3.2 Orthopyroxen

Opx kommt nicht als Einschlussphase in Grt vor und tritt daher ausschließlich in der Matrix auf. Er liegt ganz leicht zoniert vor. Fe²⁺ nimmt randlich etwas zu und Mg und Ca ab. Allerdings zeigt Abb. 2.2-3, dass diese Zonierungen erst auf den letzten µm der Opx-Körner stattfinden. Der ganz überwiegende Teil der Körner liegt dagegen homogen mit flach verlaufenden Konzentrationsdiagrammen vor. Auch Al und Cr nehmen zum Rand hin ab, doch sind diese Zonierungen nicht ganz so regelmäßig wie die bereits erwähnten. Teilweise weist Opx ganz dünne Entmischungslamellen von Cpx auf, die sich in den Profilen anhand von konfusen Zunahmen der Ca-Konzentration manifestieren. Für die EMS-Analytik sind diese Lamellen allerdings zu klein (Profil-07 Anhang). Die *Mg-Zahl* des Opx liegt bei 90.91 ± 0.53 und nimmt randlich ganz leicht auf 90.02 ± 0.94 ab.

2.2.3.3 Klinopyroxen

Auch Cpx tritt einzig in der Matrix auf und zeigt, wie schon Opx, nur eine ganz schwache und nur sehr schmal ausgebildete randliche Zonierung (Abb. 2.2-4). Die Kern-Plateaus erstrecken sich beinahe über die gesamten Kornquerschnitte. Erst ganz nahe am Rand nehmen dann Al, Cr, Na und kaum merkbar Fe^{2+} ab. Mg und Ca steigen ganz leicht an. So nimmt auch die *Mg-Zahl* auf 92.66 ± 0.78 am Rand gegenüber den homogenen und breit ausgebildeten Kernen mit 92.33 ± 0.66 kaum spürbar zu. Auch Cpx kann selten Entmischungslamellen von Opx enthalten, doch fallen auch diese zu schmal aus um analysiert werden zu können.

2.2.3.4 Granat

Die Grt-Porphyroklasten dieses Peridotits sind im Vergleich zu den übrigen Phasen extrem groß ausgebildet (Abb. 2.2-5). Im Kern dieser Grt-Porphyroklasten ist die Elementverteilung der Haupt- und Nebenenelemente nahezu plateauförmig verteilt. Dieser relativ homogene Kern ist sehr breit ausgebildet. Die markanteste Zonierung zeigen Mg und Fe²⁺. Ersteres Element fällt in seiner Konzentration am Rand ab, letzteres nimmt zu. Schwächer ist die

Zonierung für AI, das zum Rand etwas abnimmt sowie für Cr und Mn, die hier zunehmen. All diese Zonierungen sind aber nicht einphasig entstanden. So erreichen die Konzentrationen nahe des Randes einen Bereich, der wieder relativ flach ausgebildet ist, sozusagen ein "Randplateau". Dieses "Randplateau" ist unterschiedlich stark ausgebildet, da die Kelyphitisierung an verschiedenen Stellen eines Grt-Kristalls unterschiedlich stark ausgeprägt ist. So kann dieser Bereich breit ausgebildet, oder bereits vom Kely verschlungen worden sein. Die analysierten Einschlüsse von Ol liegen in diesem Bereich des Grt. Am äußersten Grt-Rand kann man darüber hinaus eine weitere Zonierungsphase erkennen (rechter Kornrand in EMS-Diagrammen von Abb. 2.2-5). Hier nehmen dann die Elemente, die gegenüber dem Kern bereits ab- oder zugenommen haben, noch weiter ab bzw. zu. Die Steigung dieser Zonierung ist aber größer als die der ersten. Diese zweite Zonierung ist allerdings nur zu sehen, wenn die Kelyphitisierung nicht zu weit vorangeschritten ist, ansonsten ist diese jüngste Zonierung verschwunden. Aufgrund des immensen Größenunterschiedes muss man allerdings davon ausgehen, dass der Kernbereich des Grt schon lange nicht mehr mit den silikatischen Phasen der Matrix im Gleichgewicht steht und daher im Folgenden als "Ur-Kern" bezeichnet wird. Vielmehr scheint das "Randplateau" mit den Kernen von Opx und Cpx im Gleichgewicht zu stehen. Die Ränder von Opx und Cpx stehen mit dem äußersten Grt-Rand im Gleichgewicht. Die Mg-Zahl nimmt entsprechend der Zonierungen von 81.38 ± 0.58 im Bereich des "Ur-Kerns", über 77.81 ± 1.73 im Bereich des "Randplateaus" auf 73.99 ± 4.78 am äußeren Rand ab.

2.2.3.5 Sekundäre Phasen

Der durch Alteration gebildete Kelyphitsaum enthält Amp, Opx und Spl. Bei diesem Kely-Amp handelt es sich um Pargasit. Die *Mg-Zahl* liegt bei 88.59 ± 3.89. Profil-05 in Abb. 2.2-6 stellt einen Amp-Einschluss innerhalb eines großen Grt-Porphyroklasten dar und liegt sogar zoniert vor, insbesondere für K. In der Matrix tritt ein weiteres Amp auf. Auch dieses ist als Pargasit anzusprechen, doch reicht es aufgrund eines etwas höheren Si-Gehalts von 6.499 c.p.f.u. fast an das Edenit-Feld (ab 6.5 c.p.f.u.) heran. Von dem mit Grt assoziierten erst genannten Pargasit unterscheidet sich der Matrix-Pargasit neben Si hauptsächlich anhand von niedrigeren Al- und höheren Mg-, Fe²⁺- und Ti-Gehalten, sowie einer niedrigeren *Mg-Zahl* von 89.90 ± 1.33.

Der sehr klein ausgebildete Kely-Opx unterscheidet sich vom übrigen Opx durch etwas erhöhte Al-Gehalte von durchschnittlich 0.051 c.p.f.u., gegenüber 0.038 c.p.f.u. (Opx-Kern) respektive 0.031 c.p.f.u. (Opx-Rand) und einer niedrigeren *Mg-Zahl* von 88.85 \pm 0.89. Auch diese sekundäre Phase liegt wie Amp relativ inhomogen vor.

Der extrem kleine Spl, konnte nur ein einziges Mal analysiert werden. Seine gemittelte Strukturformel lautet wie folgt: $Fe^{2+}_{0.36} Mg_{0.64} Cr_{0.81} Al_{1.19} O_4$.

2.2.4 Spurenelementchemie

2.2.4.1 Phosphor

Die Konzentrationsreihenfolge lautet: Grt > Ol > Cpx > Opx

Grt verfügt über den größten Anteil an P. Wie die Analyse der Haupt- und Nebenelemente bereits gezeigt hat, weisen die großen Grt-Porphyroklasten einen breiten und flach ausgebildeten Kernbereich auf. Dieser lässt sich auch für P erkennen und ist hierfür noch breiter ausgebildet als für irgendein anderes Element. Allerdings zeigt das P-Konzentrationsprofil durchaus Schwankungen, die allerdings kein System erkennen lassen, sondern wohl eher der unzureichenden P-Äquilibrierung aufgrund dessen träger Diffusion geschuldet sind (Profil-02 in Abb. 2.2-5). Dieser "Ur-Kern" liegt im Mittel bei 105.3 ± 11.6 µg/g P. Zum Rand hin fällt der P-Gehalt ab und kann wie die übrigen zonierten Elemente dort ebenfalls ein Randplateau bilden, das je nach Alteration des Grt-Porphyroklasten von unterschiedlicher Breite sein kann. Über die gesamte Probe gemittelt liegt dieser Bereich bei 87.89 ± 12.93 µg/g P. Auf den letzten µm des Grt, wo manch andere Elemente eine weitere Zonierung zeigen, lässt sich dies für P nicht feststellen, was wohl ebenfalls an der sehr langsamen Diffusion von P liegt.

Für Ol-Kristalle in der Matrix liegt P im Mittel bei 29.54 \pm 8.68 µg/g. Wie dem linken Rand in Abb. 2.2-2, sowie u.a. Profil-19 (Anhang) zu entnehmen ist, zeigen die P-Profile aber auch starke Anomalien, für die sich keinerlei System erkennen lässt. In Profil-19 zeigt die P-Konzentration in der ersten Profilhälfte eine Spitze mit einem Maximum von über 45 µg/g. Die geringen Fehler dieser Messpunkte sprechen aber gegen die Interpretation es könnte sich um Mischanalysen handeln. Wären hier beispielsweise extrem kleine Apatit-Körner mit analysiert worden, so wären sowohl die P-Werte als auch die Fehler deutlich größer. Die P-Gehalte der in Grt enthaltenen Einschlüsse von Ol weichen etwas von diesem Ol in der Matrix ab, da sie bei geringfügig höherem P-Gehalten liegen. Die einzelnen Ol-Einschlüsse fallen aber etwas unterschiedlich zueinander aus. Die Variation lässt sich anhand der unterschiedlichen Zeitpunkte der Integration des OI in Grt erklären. Dass die Unterschiede der P-Mittelwerte der einzelnen Ol-Kristalle, ob als Einschlüsse in Grt, in der Nähe eines Grt-Porphyroklasten (hierauf wird bei Sc, Co und Zn in Ol weiter eingegangen) oder Ol in der Matrix, alle innerhalb der Fehler des Probenmittelwertes für die Ol-Kristalle der Matrix liegen, untermalt die träge P-Diffusion. So scheint die Entwicklung, welche das Gestein durchlaufen hat, bei sämtlichen Elementen der Hauptphasen seine Spuren hinterlassen zu haben, nur nicht bei P. Dieses Spurenelement lag innerhalb dieser Probe eventuell noch nie absolut äguilibriert vor, da man davon ausgehen kann, dass die OI-Einschlüsse in Grt schon seit langer Zeit nicht mehr im Austausch mit den Phasen der Matrix standen, und doch sind die Unterschiede der P-Gehalte sehr gering.

Profil-01 in Abb. 2.2-4 zeigt die P-Verteilung innerhalb eines Cpx-Korns. Wie zu sehen ist, nimmt die P-Konzentration zum Rand hin etwas ab. Diese Zonierung ist allerdings nicht stark genug ausgeprägt um quantifiziert werden zu können, da sie innerhalb der Proben internen P-Schwankungen für Cpx liegt. Der P-Mittelwert in Cpx beträgt 9.25 ± 2.85 µg/g.

Am geringsten fällt die P-Konzentration in Opx aus. Auch wenn Profil-18 in Abb. 2.2-3 eine sehr schwache P-Zonierung vortäuscht, lässt sich diese auf die gesamte Probe gesehen nicht bestätigen. Allerdings zeigt auch der große Fehler des Mittelwertes von $2.08 \pm 1.16 \mu g/g$, die große Streuung der P-Werte für Opx.

Die Amp-Phasen zeigen relativ hohe, aber auch stark streuende P-Gehalte. So zeigen die mit Grt assoziierten Amp 96.47 \pm 24.97 μ g/g. In der Matrix liegt Amp immerhin noch bei

 $62.84 \pm 5.14 \mu$ g/g und kann am Rand auf $52.76 \pm 17.10 \mu$ g/g abnehmen. Die sehr großen Fehler verdeutlichen die absolute Inhomogenität der P-Verteilung in Amp.

2.2.4.2 Scandium

Die Konzentrationsreihenfolge lautet: Grt > Cpx > Ol

Auch für Sc führt Grt die Reihenfolge an. Der komplexe Zonarbau der Grt-Porphyroklasten bildet sich in der Sc-Verteilung voll ab. Wie in Profil-02 in Abb. 2.2-5 zu erkennen ist, lässt sich für Sc in Grt auch ein breites Kernplateau feststellen, dessen Mittelwert bei $102.5 \pm 2.9 \,\mu$ g/g liegt. Die Konzentration dieses "Ur-Kerns" fällt dann in Richtung Rand ab und erreicht dort ebenfalls ein mehr oder weniger breit ausgebildetes "Rand-Plateau" mit einem Probenmittelwert von $84.00 \pm 7.98 \,\mu$ g/g. An den wenigen Stellen des Grt, wo die Kelyphitisierung nicht zu weit voran gekommen ist, fällt die Sc-Konzentration dann noch einmal ab und erreicht dort einen Probenmittelwert von $75.46 \pm 0.35 \,\mu$ g/g.

Profil-01 in Abb. 2.2-4 zeigt für Cpx eine Sc-Zonierung mit einer gegenüber dem Kern erhöhten Randkonzentration. Der Kern liegt bei größeren Cpx-Körnern homogen vor und bildet einen Probenmittelwert von $28.48 \pm 2.02 \ \mu g/g$ Sc. Der Mittelwert der maximalen Randkonzentration beläuft sich auf $30.48 \pm 1.49 \ \mu g/g$ Sc.

Auch Opx zeigt eine ganz schwache Sc-Zonierung am Rand. Im Probenmittel liegen die Opx-Kerne bei 1.44 \pm 0.22 µg/g und die Ränder bei leicht erhöhten 1.78 \pm 0.16 µg/g Sc.

Am wenigsten Sc enthält OI, bei welchem zudem keine Zonierung innerhalb der einzelnen Körner zu erkennen ist. Doch fällt anhand der Sc-Werte von OI ein interessanter Sachverhalt auf. Die OI-Körner der Matrix zeigen einen Mittelwert von $0.28 \pm 0.10 \mu g/g$ Sc. Ganz anders die OI-Einschlüsse in Grt (Profil-14 im Anhang) sowie die in direkter Nachbarschaft zu Grt auftretenden OI-Körner. Diese zeigen allesamt höhere Sc-Konzentrationen. Kombiniert man die Ergebnisse aller analysierten OI-Körner so ergibt sich folgendes Bild, das auch sehr gut anhand von Profil-25 in Abb. 2.2-2 nachvollzogen werden kann. Im direkten Kontakt zu Grt liegt der Sc-Gehalt in OI bei bis zu 2.21 $\pm 0.15 \mu g/g$. Dieser Wert stellt das Sc-Maximum für OI neben Grt innerhalb dieser Probe dar. Je weiter OI von Grt entfernt ist, umso mehr nimmt die Sc-Konzentration ab, und pendelt sich dann bei 0.28 $\pm 0.10 \mu g/g$ ein. Dieser Sachverhalt ist auf OI beschränkt, da sich dieser deutlich schneller auf veränderte Bedingungen einstellt als Opx und Cpx.

Deutlich mehr Sc enthalten die sekundär gebildeten Amp. Innerhalb von Grt und Kely verfügt Amp über $43.92 \pm 11.50 \mu g/g$, in der Grundmasse zeigt Amp $22.56 \pm 3.65 \mu g/g$ und am Rand $34.76 \pm 3.66 \mu g/g$. Der Opx des Kely ist zu klein um mit der SIMS sauber analysiert zu werden, doch ließ sich erkennen, dass Sc hier höher ausfällt als für den primären Opx.

2.2.4.3 Cobalt

Die Konzentrationsreihenfolge lautet: OI > Grt > Opx > Cpx

Der Hauptwirt für Co ist OI. Auch hier zeigt sich der bereits für Sc beschriebene Sachverhalt, dass sich der Co-Gehalt in OI mit zunehmender Entfernung von Grt auf einen ab dann konstanten Mittelwert einspielt. Dieser Mittelwert liegt bei $99.79 \pm 7.86 \,\mu$ g/g Co. Im

Unterschied zu Sc nimmt der Co-Gehalt allerdings mit zunehmender Distanz zu Grt nicht ab, sondern zu. So liegt das Minimum in direkter Nachbarschaft zu Grt nur bei 89.36 \pm 1.30 µg/g (Einzelmesspunkt). Wie bei Sc ist dieses Verhalten nur bei OI anzutreffen.

Die Co-Verteilung in Grt liegt interessanterweise homogen vor. So zeigt das Co-Profil des größten Grt-Porphyroklasten (Abb. 2.2-5) keinerlei Zonierung. Somit zeigt sich, dass trotz großer Ähnlichkeiten zwischen Mg und Co, die Diffusion von Co deutlich schneller abläuft, als die von Mg, da letzteres die eindeutige Zonierung mit "Ur-Kern", "Randplateau" und Rand zeigt. Der Co-Probenmittelwert für den Bereich des "Ur-Kerns" in Grt liegt bei 40.10 \pm 1.27 µg/g, der des "Randplateaus" bei 41.09 \pm 1.93 µg/g, was die Homogenität verdeutlicht. An Grt-Rändern, die nicht zu stark kelyphitisiert sind, kann dann allerdings doch eine ganz schwache Zonierung auftreten. Hier nimmt die Co-Konzentration auf einen Probenmittelwert von 36.11 \pm 2.66 µg/g ab.

Wie sich bei Profil-18 in Abb. 2.2-3 erkennen lässt, liegt Co in Opx über weite Bereiche der Kornprofile homogen verteilt vor. Zum Rand hin kann die Konzentration dann leicht abnehmen. So ergeben sich im Probenmittel für Co in Opx ein Kerngehalt von $33.10 \pm 1.35 \mu g/g$ und ein Randgehalt von $29.43 \pm 1.47 \mu g/g$.

Cpx enthält im Probenmittel 13.90 \pm 1.13 µg/g Co. Auch wenn das rechte Ende von Profil-01 in Abb. 2.2-4 eine ganz schwache Zonierung mit einer randlichen Zunahme erahnen lässt, so ist diese für Co in Cpx nicht quantifizierbar. Vielmehr liegt der letzte Messpunkt in Profil-01, dessen größeren Fehler im Vergleich zu den übrigen Messpunkten auch für eine leichte Verunreinigung sprechen könnte, trotzdem innerhalb der Fehler des Mittelwertes.

Bei Amp ist Co das Spurenelement, das in den verschiedenen Amp-Phasen am homogensten verteilt ist. So liegen die mit Grt vergesellschafteten Amp ungeachtet intrakristalliner Inhomogenitäten (Abb. 2.2-6) bei 25.24 \pm 2.81 µg/g, die Amp der Matrix bei 28.16 \pm 3.96 µg/g im Kernbereich und 25.16 \pm 1.35 µg/g am Rand. Auch für Co weicht der sekundäre Kely-Opx vom primären ab und zeigt leicht niedrigere Gehalte.

2.2.4.4 Zink

Die Konzentrationsreihenfolge lautet: OI > Opx > Grt > Cpx

Auch Zn führt noch einmal die Spurenelement-Zonierung in OI, in Abhängigkeit von der Nähe zu Grt vor. Der durchschnittliche Zn-Gehalt von OI in der Matrix liegt bei 28.83 \pm 7.24 µg/g. Wie es schon bei Co beschrieben wurde, nimmt dieser Gehalt ab, je näher sich der OI an Grt befindet. So erreicht dieser in Profil-14 (Anhang) 3.87 \pm 0.66 µg/g, was einer Reduktion auf unter 15 % entspricht. Als Einschluss in Grt liegt Zn bei Werten zwischen diesen Extremen.

Opx liegt in seinen breiten Kernbereichen bei durchschnttlich 17.40 \pm 1.83 µg/g Zn und zeigt eine randliche Konzentrationsabnahme. Zwar fällt diese in Abb. 2.2-3 nicht auf, doch zeigt der überwiegende Teil der Opx-Ränder eine Reduktion des Zn-Gehalts (z.B. Profil-09 im Anhang), sodass sich ein Mittelwert von 10.84 \pm 2.82 µg/g ergibt.

Ähnlich wie für Co verfügt Grt auch für Zn über nahezu flache Konzentrationsprofile, wie für keine anderen Elemente. Der Mittelwert des Kernbereichs, der abgesehen von diesen zwei Spurenelementen für alle Elemente vorliegendene Zonierungen zeigt, beläuft sich für Zn auf

9.41 ± 2.77 μ g/g. Das Randplateau zeigt einen sehr ähnlichen Zn-Mittelwert von 10.70 ± 2.43 μ g/g. Je Nach Ausmaß der Kelyphitisierung kann Zn direkt am Rand allerdings doch noch abfallen, was einem Grt-Rand-Mittelwert von 6.96 ± 2.47 μ g/g ergibt (Abb. 2.2-5).

Für Zn zeigt Cpx keine Zonierungen. Doch fallen die Schwankungen gegenüber Co für Zn auch etwas größer aus, sodass eine ähnlich geringe Zonierung wie für Co, bei den Zn-Messergebnissen nicht auffallen würde. Der Probenmittelwert liegt bei $5.37 \pm 1.42 \ \mu g/g \ Zn$.

Amp besitzt sehr wenig Zn, dessen Gehalte zudem stark schwanken. So zeigt Amp in Grt bzw. im Kely um 4 μ g/g. In der Matrix liegt Amp im Kern bei doppelt so hohen Werten, wohingegen der Zn-Randgehalt in etwa den mit Grt assoziierten Amp entspricht.

Der Versuch den sekundären Opx des Kely zu analysieren erbrachte, wie schon erwähnt, keine sinnvollen Ergebnisse. Allerdings bestätigen die hierbei teilweise auftretenden sehr hohen Zn-Gehalte von 200-440 μ g/g, dass hier Spl im submikroskopischen Bereich auftritt. Dieser ist auf den BSE-Bildern auch als winzig kleine helle Punkte im Kelyphitsaum zu sehen (Abb. 2.2-2).

2.2.5 Mineralgleichgewichte und Geothermobarometrie

Bezüglich der verschiedenen Entwicklungsstadien, die im vorliegenden Grt-Peridotit dokumentiert vorliegen, ergibt sich folgendes Bild. Der sehr groß ausgebildete Grt-"Ur-Kern" ist als Relikt anzusehen und es kann davon ausgegangen werden, dass dieser mit keiner der anderen primären Phasen mehr im Gleichgewicht steht. Die laterale Distanz zwischen Ur-Kern und Grt-Rand beträgt stets mindestens 4000 µm, während die Korndurchmesser der übrigen Phasen selten 1000 µm erreichen. Vielmehr scheint der als "Randplateau" bezeichnete Bereich mit den Kernen der umgebenden primären Phasen dem Zustand einer Gleichgewichtseinstellung zu entsprechen, die allerdings in Grt nicht bis zum Kern vordrang, abgesehen von Co und Zn. Dieser Gleichgewichtszustand wurde dann auch verlassen, was für die Rand-Zonierungen von Opx und Cpx sowie zur Ausbildung des "Rand"-Bereichs des Grt verantwortlich war. Die seltsamen Zonierungen von Sc, Co und Zn in OI je nach Distanz zu Grt können als jüngstes Ereignis angesehen werden, da diese Zonierungen ausschließlich in OI festzustellen sind. Die übrigen, langsamer rekristallisierenden Phasen haben hierauf noch gar nicht sichtbar reagiert.

Tabelle 2.2-3 zeigt die Ergebnisse der geothermobarometrischen Berechnungen dieser Probe. Die als "*P-T*-Maximum" bezeichneten Werte entsprechen dem Grt-"Randplateau" zusammen mit den Kernen von Opx und Cpx. Wie zu sehen ist, stimmen die Werte der verschiedenen Geothermometer sehr gut miteinander überein. Bezieht man für diese Berechnungen den Grt-"Ur-Kern" mit ein, so ergeben die Geothermometer von Krogh (1988) und Krogh Ravna (2000) deutlich höhere *T*-Werte von 933°C respektive 912°C. Die übrigen Geothermometer weichen dagegen nicht signifikant von den Ergebnissen mit dem Grt-"Randplateau" ab. Dies untersützt die oben aufgestellte These zu den Gleichgewichtszuständen dieser Probe, dass also der Grt-"Ur-Kern" nicht mehr mit den Mineralkernen der Matrixphasen im Gleichgewicht steht. Die als "*P-T*-Minimum" bezeichneten Ergebnisse entsprechen den Rändern sämtlicher Mineralphasen.

Abb. 2.2-2. OI-Analyse, exemplarisch anhand von Profil-25 aus Probe VG, Profillänge 1900 μm. *Oben und Mitte:* BSE- und XP-Bild des analysierten OI-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. Des Weiteren sind Cpx-Entmischungslamellen in Opx zu sehen. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Profilstrecke [µm]

Profilstrecke [µm]

Abb. 2.2-3. Opx-Analyse, exemplarisch anhand von Profil-18 aus Probe VG, Profillänge 865 µm. Oben und Mitte: BSE- und PP-Bild des analysierten Opx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. Unten: SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (20). Gegenüberliegende Seite: EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

P [µg/g]

Co [µg/g]

30

25

20

800

800

600

Abb. 2.2-4. Cpx-Analyse, exemplarisch anhand von Profil-01 aus Probe VG, Profillänge 555 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Cpx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.2-5. Grt-Analyse, exemplarisch anhand von Profil-02 aus Probe VG, Profillänge 18300 µm. *Oben:* PP-Bild des analysierten Grt-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Mitte:* PP-Bild mit verschiedenen Mineralphasen, u.a. ein Cpx-Korn mit Opx-Lamellen, BB 4 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (20). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.2-6. Amp-Analyse, exemplarisch anhand von Profil-05 aus Probe VG, Profillänge 340 μm. *Oben:* BSE-Bild des analysierten Amp-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Mitte:* PP-Bild mit verschiedenen Mineralphasen, BB 2.5 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Spuren- elemente [µg/g] P Sc Co Zn	Mg# Cr#	Na K ∑ Kationen	z C ag	Ni	Fe ²⁺	ႜၐႄၞႁ	A	= !	Kationen- besetzung [c.p.f.u.] Si	Μ	K₂0	Na ₂ O	CaO	MnD	MnO	FeO	Fe ₂ O ₃				C:0	Analyse		
35.32 ± 5.44	92.24 ± 0.21	0.000 3.010	1.854	0.001 0.008	0.156	0.000	0.000	0.000	0000	101.139	0.009	0.010	600 U	0.414 51 714	0.060	7.751	n.b.	0.016	0.010	41.153	nonio	(in Grt)	Q	
33.55 ± 1.67 38 0.46 ± 0.03 94.54 ± 0.99 24.64 ± 0.83																					Nelli	(in Grt1)	Q	
.89 ± 2.09																					Rand			
36.32 ± 5.81 1.20 ± 0.03 76.58 ± 0.75 6.51 ± 0.90																					nonogen	(in Grt2)	₽	
29.96 ± 1.84 2.21 ± 0.15 89.36 ± 1.30 3.87 ± 0.66																					nafionion	(zu Grt)	Q	
29.54 ± 8.68 0.28 ± 0.10 99.79 ± 7.86 28.83 ± 7.24	89.59 ± 0.90	0.000 0.000 3.010	0.000	0.003 0.008	0.209	0.000	0.000	0.000	0 9 9 0 0	100.887	0.009	0.011	0 012	0.396 40.401	0.141	10.255	n.b.	0.013	0.014	40.309		(Matrix)	Q	
2.08 ± 1.16 1.44 ± 0.22 33.10 ± 1.35 17.40 ± 1.83	90.91 ± 0.53 14.95 ± 2.99	0.000 4.009	1.800 0.009	0.003 0.002	0.180	0.007 P h	0.038	0.002	1 967	100.864	0.009	0.020	0 237	0.080 280.0	0.119	6.292	n.b.	0.246	0.070	0.075		Kom	Орх	
1.78 ± 0.16 29.43 ± 1.47 10.84 ± 2.82	90.02 ± 0.94 12.18 ± 4.84	0.000 4.009	1.787 0.007	0.005 0.002	0.198	0.004	0.031	0.001	1 973	100.841	0.011	0.011	0 200	0.074 34 066	0.161	6.911	n.b.	0.156	0.049	0.000	EZ EEO			
	88.85 ± 0.89 5.91 ± 9.81	0.000 0.0000 4.012	1.762 0.006	0.007 0.001	0.221	0.003	0.051	0.001	1 960	100.820	0.011	0.010	0 157	0.054 34 340	0.230	7.683	n.b.	0.108	1 252	0 095	E0 004	(Kelyphit)	Орх	
9.25 ± 2.85 28.48 ± 2.02 13.90 ± 1.13 5.37 ± 1.42	92.33 ± 0.66 26.11 ± 2.71	0.000 4.008	0.882 0.853	0.002 0.001	0.073	0.032	0.092	0.004	1 974	99.883	0.009	1.356	21 931	16 201	0.061	2.412	n.b.	1.129	0 - O	0 151		Kom	Срх	
30.48 ± 1.49	92.66 ± 0.78 25.71 ± 3.71	0.000 4.007	0.898	0.002 0.002	0.071	0.029 n h	0.083	0.004	1 972	100.009	0.003	1.113	22 363	16 605	0.063	2.346	n.b.	1.006	1 0 4 0	04.390				

Tabelle 2.2-1. Probe VG: Mittelwerte der Haupt-, Neben- und Spurenelemente der Mineralphasen. Mg# = 100*(Mg/(Fe²⁺+Mg)); für Amp und Spl Mg# = 100*(Mg/Fe_{tα}+Mg)); Cr# = 100*(Cr/(Al+Cr)); n.a. = nicht analysiert, n.b. = nicht berechnet. Angegebener Fehler der Spurenelemente: Standardabweichung des Mittelwertes (2σ).

	Grt			Amp		Amp		Amp		Spl
Alidiyse [Gew -%]	- IO Kern	Plateau	Rand	Kern	Rand	Kern	Rand	(mery print)	Alidiyse [Gew -%]	homonen
SiO,	41.978	41.714	41.361	43.703	44.639	45.815	2	43.231	TiO,	0.022
Ţ Ĵ	0.183	0.157	0.150	0.394	0.404	0.602		0.360	Al ₂ O ₃	34.392
	22.962	22.726	22.442	16.498	16.033	11.862		16.033	Cr ₂ O ₃	35.280
Cr ₂ O ₃	1.329	1.436	1.492	1.816	1.454	1.615		0.953	Fe ₂ O ₃	0.127
Fe ₂ O ₃	d.n	n.b.	n.b.	n.b.	n.b.	0.351		2.430	FeO	14.846
FeO	8.459	9.986	11.574	2.895	2.690	3.633		2.082	MnO	0.055
MnO	0.338	0.440	0.584	0.049	0.044	0.076		0.068	ZnO	n.a.
NiO	n.a.	0.021	0.011	0.031	0.032	0.101		0.073	MgO	14.627
MgO	20.734	19.648	18.484	18.006	17.991	19.059		18.014	cao	0.025
CaO	4.827	4.778	4.729	11.072	11.782	11.613		12.206	\sim	99.372
Na_2O	0.033	0.028	0.026	2.539	2.473	2.420		2.088	I	
K₂O	0.008	0.010	0.009	0.389	0.070	0.162		0.036		
H₂O				2.128	2.140	2.114		2.124		
Σ	100.847	100.922	100.855	99.511	99.743	99.284		99.585		
Kationen-									Kationen-	
besetzung [c.p.f.u.]									besetzung [c.p.f.u.]	
Si	2.965	2.967	2.968	6.159	6.255	6.499		6.095	.⊨	0.000
Ħ	0.010	0.008	0.008	0.042	0.043	0.064		0.038	AI	1.183
A	1.912	1.905	1.898	2.740	2.648	1.983		2.674	ŗ	0.814
ບັ	0.074	0.081	0.085	0.202	0.161	0.181		0.107	Fe ³⁺	0.003
Fe ³⁺	n.b.	n.b.	n.b.	n.b.	n.b.	0.037		0.259	Fe ²⁺	0.362
Fe ²⁺	0.500	0.594	0.695	0.341	0.315	0.431		0.245	Mn	0.001
Mn	0.020	0.027	0.036	0.006	0.005	0.009		0.008	Zn	n.a.
İŻ	п.а.	0.001	0.001	0.004	0.004	0.011		0.008	Mg	0.636
Mg	2.183	2.083	1.977	3.783	3.758	4.030		3.791	Ca	0.001
Ca	0.365	0.364	0.364	1.672	1.769	1.765		1.844	∑ Kationen	3.000
Na	0.005	0.004	0.004	0.694	0.672	0.666		0.571		
¥	0.001	0.001	0.001	0.070	0.013	0.029		0.007	#6M	63.54 ± 1.19
Ю				2.000	2.000	2.000		2.000	Cr#	40.76 ± 1.00
∑ Kationen	8.034	8.034	8.035	15.710	15.640	15.691		15.635		
#6M	81.38 ± 0.58	77.81 ± 1.73	73.99 ± 4.78	91.73 ± 0.41	92.26 ± 0.64	89.90 ± 1.33		88.59 ± 3.89		
Cr#	3.74 ± 0.28	4.07 ± 0.57	4.27 ± 0.36	6.88 ± 0.47	5.74 ± 1.07	8.38 ± 1.12		3.74 ± 1.58		
Spuren- elemente fuotol										
р Р С	105.3 ± 11.6	87.89 ± 12.93		96.47 ± 24.97		62.84 ± 5.14 5	2.76 ± 17.10			
S S S S S S S S S S S S S S S S S S S	102.5±2.9 40.10±1.27	84.00 ± 7.98 41.00 ± 1.03	75.46 ± 0.35 36 11 ± 2 66	43.92 ± 11.50 25 24 ± 281		22.56 ± 3.65 3	4.76 ± 3.66 5 16 ± 1 35			
Zn	9.41 ± 2.77	10.70 ± 2.43	6.96 ± 2.47	3.19 ± 1.46		8.79±4.80	4.28 ± 1.19			

Tabelle 2.2-1. Fortsetzung; Bei Amp handelt es sich um Pargasit.

Fehler: absoluter F zugehörigen <i>P-T</i> -Be	ehler des Verteilu dingungen aus Tat	ngskoeffizienten (pelle 2.2-3.	2σ). Die Farben	entsprechen den
D _{Min/Min}	Р	Sc	Co	Zn
Ol/Opx	14.20 ± 1.783			
OI/Opx _{Rand}		0.156 ± 0.013	3.391 ± 0.097	2.659 ± 0.328
Ol/Cpx	3.193 ± 0.301			
OI/Cpx _{Rand}		0.009 ± 0.001		
Opx/Cpx	0.225 ± 0.026			

Tabelle 2.2-2. Probe VG: Anhand der Mittelwerte von Tabelle 2.2-1 für die primären Mineralphasen berechnete Verteilungskoeffizienten der Spurenelemente. Angegebener Fehler: absoluter Fehler des Verteilungskoeffizienten (2σ). Die Farben entsprechen den zugehörigen *P*-*T*-Bedingungen aus Tabelle 2.2-3.

Opx _{Kern} /Cpx _{Kern}		0.051 ± 0.002		
Opx _{Rand} /Cpx _{Rand}		0.058 ± 0.002		
Орх _{Кегп} /Срх			2.381 ± 0.043	3.243 ± 0.175
Grt _{Randpl} /OI	2.976 ± 0.228			
Grt _{Randpl} /Opx	42.25 ± 4.225			
Grt _{Randpl} /Cpx	9.500 ± 0.653		2.956 ± 0.055	1.994 ± 0.145
Grt _{Randpl} /Opx _{Kern}		58.26 ± 2.315	1.241 ± 0.018	0.615 ± 0.033
Grt _{Randpl} /Cpx _{Kern}		2.949 ± 0.081		
Grt _{Rand} /OI		272.3 ± 17.06	0.362 ± 0.017	0.241 ± 0.048
Grt _{Rand} /Opx _{Rand}		42.47 ± 1.224	1.227 ± 0.060	0.642 ± 0.155
Grt _{Rand} /Cpx _{Rand}		2.476 ± 0.046		

Tabelle 2.2-3. Probe VG: Berechnete geothermobarometrische Daten anhand der Mittelwerte in Tabelle 2.2-1.

VG

Geothermobarometer [kbar; °C]	<i>P-T-</i> Maximum	<i>P-T-</i> Minimum
P _{Ca-OI-Cpx} (Brey & Köhler 1990)	-	36.2
P _{Al-in-Opx} (Brey & Köhler 1990)	30.5	31.6
T_{2Px} (Brey & Köhler 1990)	821	819
T_{Ca-in-Opx} (Brey & Köhler 1990)	824	801
T_{Fe-Mg-Grt-Cpx} (Krogh 1988)	830	735
T_{Fe-Mg-Grt-Cpx} (Krogh Ravna 2000)	807	719
T_{Fe-Mg-Grt-OI} (O'Neill & Wood 1979; O'Neill 1980)	-	700

2.3 Probe Fi: Spl-Lherzolith

Abb. 2.3-1. *Links:* Handstück der Probe Fi, mit Schnittlage der Dünnschliffe, BB 100 mm. *Rechts:* Gesteinsgefüge anhand eines Dünnschliffes, BB 20 mm. Schwarzes Rechteck zeigt Spl eines anderen Dünnschliffs der Probe in identischem Maßstab.

2.3.1 Probenlokalität

Diese Probe stammt aus dem Finero-Peridotit-Körper, am nördlichsten Ende der Ivrea-Zone. Diese Zone befindet sich in den italienischen Südalpen.

2.3.2 Petrographie

Im Vergleich zu den bisher vorgestellten Grt-Peridotit-Proben AAR-9 und VG, fällt bei dieser Probe zuerst das Fehlen von Grt auf. Das Handstück (Abb. 2.3-1 links) zeigt lediglich unterschiedlich grüne Körner, die von metallisch-braun glänzenden, blättrigem Phl unterbrochen werden. Diese Phl-Blättchen verdeutlichen bereits im unangesägten Handstück eine leichte Foliation des Gesteins. Angesägt wird diese noch deutlicher. So zeigt das rechte Bild aus Abb. 2.3-1 einen Dünnschliff, der eine klare Vorzugsorientierung der länglichen Phl-Blättchen aufweist. Bei genauerer Betrachung fallen dann blassgrün gefärbte Cpx-Körner auf, die sich von den im Vergleich hierzu noch deutlich blasseren OI und Opx absetzen. Unter dem Polarisationsmikroskop lassen sich dann auch Amp und Spl erkennen. Ersterer ist intensiv grün gefärbt. Letzterer ist deutlich kleiner ausgebildet als die übrigen Phasen. Rechts in Abb. 2.3-1 ist das größte Spl-Korn (im schwarzen Rechteck), das innerhalb dieses Probenstücks gefunden wurde, zu sehen und verdeutlicht damit den Größenunterschied von Spl zu den übrigen Mineralphasen. Mit Korndurchmessern von um die 3 mm ist Ol am größten. Opx und Cpx messen meist etwas unter 2 mm, Amp ist noch etwas kleiner. Die einzelnen Phl-Blättchen erreichen in ihrer Längsschnitten bis über 3 mm. Ol, Opx und Cpx zeigen keine Auslängungen, sondern sind überwiegend von äquidimensionaler Form. Die Betrachtung der einzelnen Mineralphasen zeigt einen weiteren Unterschied zu den bisherigen Grt-führenden Proben. So zeigen sämtliche Phasen in Probe Fi deutliche Mikrodeformationsgefüge, wie Undulösität und sogenannte kink-bands (kb), auch Knickbänder genannt (Abb. 2.3-2 bis Abb. 2.3-4). Somit bezeugen das foliierte Gesteinsgefüge sowie die Mikrodeformationsgefüge der einzelnen Mineralphasen die tektonische Beanspruchung des Gesteins während dessen jüngerer Vergangenheit, bevor es exhumiert wurde.

2.3.3 Haupt- und Nebenelementchemie

2.3.3.1 Olivin

Ol liegt prinzipiell absolut homogen ohne mineralchemische Zonierungen vor (Abb. 2.3-2). Nur wenn Cpx oder Spl im Kontakt vorliegen, zeigt sich auf den letzen μ m eine Zonierung. So nimmt zu Cpx Ca auf 0.002 c.p.f.u. und zu Spl Cr auf 0.004 c.p.f.u. zu. Da das Ol-Korn in Abb. 2.3-2 mit keiner dieser Phasen im Kontakt steht, sondern an Opx und Phl grenzt, zeigen sich diese Zonierungen nicht. Die *Mg-Zahl* liegt im Probenmittel bei 91.14 ± 0.27.

2.3.3.2 Orthopyroxen

Wie Abb. 2.3-3 zu entnehmen ist, zeigt Opx einen regelmäßigen Zonarbau. Doch spielt dies nur an den Rändern der Opx-Körner eine Rolle. Die sehr breiten Kernbereiche liegen dagegen absolut homogen vor und bilden plateauförmige Konzentrationsdiagramme. Am Rand fallen dann Al, Cr und Ca stark ab, Mg und Fe²⁺ können ganz schwach zunehmen. Wie Abb. 2.3-3 zeigt, tritt diese Konzentrationsänderung sehr abrupt ein. So handelt es sich beim ersten EMS-Messpunkt tatsächlich um eine "saubere" und nicht um eine Mischanalyse. Besagter Punkt liegt bei deutlich niedrigeren Al-, Cr- und Ca-Werten, wobei die Ca-Zonierung kontinuierlicher ausfällt als die von Cr und Al. Auf der rechten Seite wurde zwar kein vergleichbarer Punkt analysiert, doch bedeutet dies nur, dass der letzte Messpunkt doch etwas zu weit vom Rand des Korns entfernt liegt. Die übrigen in dieser Probe analysierten Opx-Profile zeigen wie schon gesagt in ihren Kernen absolut flache Verteilungsmuster und an den Rändern Zusammensetzungen, die denen des ersten Punktes von Profil-12 entsprechen (z.B. Profil-13 im Anhang). Die ganz schwachen M-Formen der Al- und Cr-Konzentrationsdiagramme, sowie die seltsame Erniedrigung des Ca-Profilverlaufs bei ca. 750 bis 1250 µm sind einem anderen Grund zuzuschreiben. So zeigt dieser Opx ein innerhalb dieser Arbeit nur einmal beobachtetes Phänomen. Dieses ist in Abb. 2.3-3 dargestellt. Das abgebildete Profil-12 zeigt in seinem Verlauf einen Bereich, der sich durch niedrigere Ca- und etwas erniedrigte Al- und Cr-Gehalte ausdrückt. Der Abfall von Ca erfolgt abrupt, der von Al und Cr dagegen kontinuierlich und bildet so eine angedeutete M-Form. Die Deformationsgefüge dieser Probe wurden ja bereits angesprochen. Das XP-Bild in Abb. 2.3-3 zeigt das analysierte Opx-Korn. Der beschriebene Bereich fällt exakt mit einem kink-band zusammen. Dieses Mikrodeformationsgefüge manifestiert sich allerdings nur bei den besagten drei Elementen der EMS-Analytik. Dies könnte durch die langsameren Diffusionsgeschwindigkeiten von Al, Cr und Ca, gegenüber den divalenten Elementen wie beispielsweise Mg und Fe²⁺ zu erklären sein. Nachdem das Kristallgitter von Opx mit der Ausbildung eines kink-bands auf tektonische Spannungen reagierte, könnten sich die letztgenannten Elemente danach bereits wieder homogenisiert haben, während die trivalenten Elemente und Ca, welches einen größeren Ionenradius hat, aufgrund deren langsameren intrakristallinen Diffusionsraten diesen Zustand der Homogenisierung noch nicht erreichten. Die *Mg-Zahl* liegt im Kernbereich bei 91.50 ± 0.29. Da sich der Zonarbau kaum auf Mg und Fe²⁺ auswirkt, sowie die Mikrodeformation nicht anhand dieser zwei schnell diffundierenden Elemente dokumentiert ist, liegt auch die *Mg-Zahl* am Rand nahezu unverändert bei 91.31 ± 0.56.

2.3.3.3 Klinopyroxen

Die Zonierung von Cpx ist entsprechend der von Opx für Al und Cr am ausgeprägtesten (Abb. 2.3-4). So bilden beide Elemente einen breiten und flach verlaufenden Kernbereich, der dann erst Nahe des Randes stark abfällt. Liegt Spl im Kontakt mit Cpx vor, so nimmt Cr am Rand nicht so deutlich ab wie bei andern Nachbarphasen, sondern kommt bei intermediären Gehalten zu liegen. Etwas schwächer fällt die Zonierung für Na und Ca aus. Ersteres nimmt randlich ab, letzteres zu. Beide Zonierungen verlaufen aber nicht so steil wie für Al und Cr. Am schwächsten sind auch hier die Zonierungen für Mg, welches randlich minimal zu- und Fe²⁺, das minimal abnimmt. So liegt hier die *Mg-Zahl* am Rand mit 95.13 \pm 0.45 etwas höher als im Kern, wo sie 94.29 \pm 0.39 beträgt.

2.3.3.4 Spinell

In dieser Probe liegt Spl äußerst Cr-reich vor (Abb. 2.3-5), daher fällt die *Cr-Zahl* im Kern mit einem Wert von 65.60 \pm 0.41 sehr hoch aus. Die gemittelte Summenformel dieses Spl lautet folgendermaßen: Mg_{0.45} Fe²⁺_{0.55} Fe³⁺_{0.15} Al_{0.64} Cr_{1.21} O₄. Spl zeigt Zonierungen, die von der jeweiligen Nachbarphase abhängen (Tabelle 2.3-1). Liegt im Kontakt OI oder PhI vor, so nimmt Al und Fe³⁺ zu und Cr ab. Dadurch sinkt die *Cr-Zahl* am Randbereich auf 63.17 \pm 1.50 ab. Liegen Px als Nachbarn vor, so verhält es sich umgekehrt und es nimmt hauptsächlich Al ab und Cr zu (Profil-09b im Anhang). Somit steigt die *Cr-Zahl* an solchen Rändern in dieser Probe auf 71.77 \pm 2.04 an. In Abb. 2.3-5 liegen PhI und OI als direkte Nachbarphasen zu Spl vor. Erst hierauf folgen Cpx und Opx.

2.3.3.5 Phlogopit

Wie sich anhand von Abb. 2.3-6 nachvollziehen lässt, zeigt PhI eine relativ konstante Mineralchemie. So lässt sich keine signifikante Zonierung erkennen. Die minimalen Zonierungen, die für Cr und Mg erkennbar sind, treten nur quer zur Längserstreckung der PhI-Blättchenstapel auf. Parallel der Längserstreckung zeigt sich dagegen keine Zonierung. Allerdings springt Ca unter den Konzentrationsdiagrammen hervor. Wie das BSE- und das PP-Bild in Abb. 2.3-6 zeigen, enthält das Profil zwei quergeschnittene PhI-Körner. Nun liegen diese aber mit unterschiedlicher Orientierung vor, wie anhand der unterschiedlichen Braunfärbung des pleochroitischen PhI im PP-Bild zu erkennen ist. Die kristallographische Orientierung kann bei Phyllosilikaten durchaus Auswirkungen auf die Analytik der Mineralchemie haben. So zeigt der Kopfschnitt, das zweite PhI-Korn des Profils, ein zoniertes Ca-Profil, während im Längsschnitt, dem ersten PhI-Korn, kein Ca analysiert wurde. Die *Mg-Zahl* liegt im Kernbereich bei 94.04 \pm 0.50. Der Rand zeigt keinen signifikanten Unterschied hierzu.

2.3.3.6 Amphibol

Auch Amp zeigt leichte mineralchemische Zonierungen, wie Profil-01 in Abb. 2.3-7 zu entnehmen ist. Die Haupt- und Nebenelementchemie des Edenits ist zwar größeren Schwankungen als bei den Px unterworfen. Dennoch lässt sich zum Rand hin eine systematische Zonierung erkennen. Die *Mg-Zahl* beträgt im Kernbereich 91.14 ± 0.81 und am Rand 92.34 ± 2.04.

2.3.4 Spurenelementchemie

2.3.4.1 Phosphor

Die Konzentrationsreihenfolge lautet: $OI > Opx \approx Cpx$

Ol verfügt mit durchschnittlich 67.52 ± 20.27 µg/g über die größte P-Menge innerhalb der analysierten Phasen. Wie der sehr große Fehler des Mittelwertes zeigt, liegt P aber nicht homogen verteilt vor. Es kommen zwar flache Verteilungsmuster vor, doch auch völlig heterogene. So zeigt Abb. 2.3-2 eine M-förmige P-Verteilung in Ol. Der Blick auf das XP-Bild zeigt, dass das analysierte Ol-Korn mikrotektonisch stark deformiert vorliegt. So ist das Korn durchzogen von mehreren kink-bands. Verfolgt man den Verlauf des P-Profils, so erkennt man, dass die Mitte des M erstaunlicherweise mit dem markantesten kink-band, dessen Verlauf im XP-Bild mit kb gekennzeichnet ist, zusammenfallen. Auch Profil-16 (Anhang), zeigt diesen Zusammenhang von Mikrodeformation und P-Heterogenitäten. Für Opx wurde ja bereits ein Zusammenfallen von kink-band mit Ca-, Al- und Cr-Heterogenitäten beschrieben. Gezielte Analytik von kink-bands und der jeweiligen Spurenelement-Verteilung bestätigte diesen Zusammenhang. Auffallend ist außerdem, dass dieser Zusammenhang von Mikrodeformationsgefügen und Heteregenitäten der Mineralchemie bei Ol nur für P zu gelten scheint. Die übrigen Haupt-, Neben- und Spurenelemente zeigen diesen nicht. An den Rändern von OI neigt P dazu bei erniedrigten Konzentrationen von 38.99 ± 12.37 µg/g zu liegen.

Opx und Cpx verfügen mit $4.78 \pm 1.16 \mu g/g$ und $4.69 \pm 1.62 \mu g/g$ praktisch über gleich viel P. Beide Phasen zeigen an den Kornrändern stark reduzierte Gehalte von $1.28 \pm 0.68 \mu g/g$ bei Opx und $2.25 \pm 0.36 \mu g/g$ bei Cpx. Ein besonderes Augenmerk sei auf Profil-12 in Abb. 2.3-3 gelenkt. Wie bereits angesprochen, ist auch Opx von starken Mikrodeformationsgefügen geprägt. Das P-Verteilungsmuster zeigt nun einen Abfall, vergleichbar dem von Ca. Wie bereits bei Ca angesprochen wurde, fällt diese Stelle mit einem kink-band zusammen. Die Interpretation dieses Sachverhalts wird in Kapitel 3 beschrieben. Auch wenn das P-Profil für Cpx in Abb. 2.3-4 von deutlichen Schwankungen geprägt ist, lässt sich der randliche Abfall klar erkennen.

In Spl liegt P in vernachlässigbarer Menge vor.

Die P-Verteilungen der Phasen Phl und Amp sind von starken Heterogenitäten dominiert. Auch wenn es in Abb. 2.3-6 für Phl auf dem ersten Blick so wirkt, lassen sich äquilibrierte Bereiche oder systematische Zonierungen nicht nachweisen. Für Amp sieht es etwas besser aus. Die Probenmittelwerte liegen bei $3.18 \pm 1.53 \,\mu$ g/g für Phl und $70.15 \pm 21.58 \,\mu$ g/g in Amp, der somit einen vergleichbaren P-Gehalt innerhalb der Probe hat wie Ol.

2.3.4.2 Scandium

Die Konzentrationsreihenfolge lautet: Cpx > Opx > Spl > Ol

Auch wenn das Profil-06 (Anhang) für Sc in Cpx keine erkennbare Zonierung zeigt, kann in manchen Cpx-Profilen ein Anstieg vom Kern zum Rand auftreten. So ist er auch in Abb. 2.3-4 zu sehen. Der Probenmittelwert liegt bei 48.55 \pm 1.71 µg/g Sc im Kern und leicht erhöhten 50.66 \pm 0.51 µg/g an den Rändern.

Opx zeigt dagegen für Sc eine deutlichere Zonierung, mit einem Kerngehalt von $8.23 \pm 0.72 \,\mu$ g/g und einem Randgehalt von $6.07 \pm 1.01 \,\mu$ g/g. Zwar liegt in Profil-12 (Abb. 2.3-3) auch das Sc-Verteilungsmuster des Kernbereichs nicht absolut plateauartig vor, doch müssen hierbei die deutlich stärkeren Heterogenitäten von Ca und P bedacht werden. Da auch Al und Cr leichte Auswirkungen zeigen, verwundert es kaum, dass auch Sc nicht ganz unbetroffen ist. Die übrigen Opx-Profile bestätigen allerdings eine Sc-Äquilibrierung in den Kernbereichen, wie z.B. Profil-13 (Anhang).

Spl verfügt über durchschnittlich 2.14 \pm 0.20 µg/g Sc. Es ist keine Zonierung erkennbar.

Der sehr geringe Sc-Gehalt von $1.06 \pm 0.16 \,\mu$ g/g liegt in OI über beinahe die komplette Kornbreite homogen vor. Doch zeigt Profil-02 in Abb. 2.3-2 an den äußeren Enden des Profils minimal erniedrigte Konzentrationen. Der Probenmittelwert dieser Randbereiche beläuft sich auf 0.84 ± 0.19 μ g/g. Mit Spl als Nachbar verringert sich die Konzentration auf unter 0.7 μ g/g.

Obwohl Abb. 2.3-7 eine systematische Sc-Zonierung in Amp vermuten lässt, konnte diese durch weitere Amp-Profilmessungen nicht bestätigt werden. Der Sc-Probenmittelwert verdeutlicht mit 89.68 ± 36.43 µg/g anhand seines Fehlers bereits die unäquilibrierte Sc-Verteilung. In PhI dagegen ist Sc systematisch zoniert, wenn auch nur sehr schwach. Die breiten Kernbereiche enthalten durchschnittlich 6.79 ± 0.66 µg/g Sc. Am Rand steigt der Sc-Gehalt dann gering an auf gemittelte 7.49 ± 0.87 µg/g.

2.3.4.3 Cobalt

Die Konzentrationsreihenfolge lautet: Spl > Ol > Opx > Cpx

Verglichen mit den anderen Phasen verfügt Spl über einen großen Co-Gehalt von $379.4 \pm 3.5 \,\mu$ g/g im Probendurchschnitt. Entprechend der Zonierungen von Al, Cr und Fe³⁺ ist auch die von Co abhängig von der Nachbarphase. Handelt es sich hierbei um Phl, so nimmt Co etwas ab (Abb. 2.3-5), liegt ein Px im Kontakt vor so steigt Co etwas an (Profil-09b). Für OI als Nachbarn wurde keine Zonierung beobachtet, wie Abb. 2.3-5 zu entnehmen ist.

Ol zeigt in seinen Co-Profilen flach ausgebildete Konzentrationsplateaus (Abb. 2.3-2). Zwar kann teilweise eine randlich Abnahme erahnt werden, doch kann diese nicht genauer quantifiziert werden, da sie innerhalb der Fehler des Mittelwertes von $95.51 \pm 2.77 \mu g/g$ liegt. Liegt Spl im Kontakt zu Ol vor, so nimmt Co am Rand deutlich auf unter 70 $\mu g/g$ ab.

Opx hat für Co eine randliche Abnahme zu verzeichnen (Abb. 2.3-3). Diese findet aber erst ganz nahe des Randes statt. So nimmt dort der Co-Gehalt von durchschnittlich $33.70 \pm 1.24 \ \mu$ g/g im Kern, auf $30.38 \pm 1.20 \ \mu$ g/g am Rand ab.

Auch Cpx zeigt analog zu Opx eine randliche Co-Abnahme auf 12.31 \pm 0.97 µg/g gegenüber einem Kerngehalt von 14.16 \pm 1.33 µg/g (Abb. 2.3-4).

Amp zeigt in Abb. 2.3-7 für Co eine relativ homogene Verteilung. Der Probenmittelwert von 27.19 \pm 10.13 µg/g zeigt allerdings, dass zwischen den verschiedenen Amp-Körner erheblich Schwankungen vorliegen. PhI hingegen zeigt eine schwache, aber systematische Zonierung, die sich überdies anhand mehrerer PhI-Körner bestätigen lässt. So nimmt der Co-Gehalt randlich von 45.10 \pm 2.16 auf 42.20 \pm 1.96 µg/g ab.

2.3.4.4 Zink

Die Konzentrationsreihenfolge lautet: Spl > Ol > Opx > Cpx

Für Zn fällt der Kontrast zwischen Spl und den Silikaten noch größer aus als für Co. Ersterer verfügt über 589.4 \pm 18.4 µg/g Zn. Im Kontakt zu Px steigt dieser Gehalt noch einmal leicht an. Abb. 2.3-5 zeigt, dass die Zn-Konzentration in Spl zu Phl hin abfällt, während Ol keinen Einfluss auf die Zn-Verteilung in Spl auszuüben scheint.

Auch in OI liegt Zn nahezu über die gesamte Kornbreite homogen verteilt vor. Doch lässt sich hier, noch deutlicher als für Co eine minimale randliche Abnahme erkennen. Trotz der höheren messtechnischen Ungenauigkeiten gegenüber Co, kann diese hier von der Kernkonzentration von $29.02 \pm 3.96 \ \mu g/g$ seperiert werden. So liegt der Rand von OI bei $25.55 \pm 4.34 \ \mu g/g$ Zn. Es fällt aber auch hier auf, dass im Kontakt zu Spl Zn noch deutlich stärker absinkt.

Weder Opx noch Cpx lassen für Zn eine systematische Zonierung erkennen. Die Probenmittelwerte liegen für Opx bei $15.30 \pm 2.75 \ \mu$ g/g und für Cpx bei $3.62 \pm 1.07 \ \mu$ g/g.

Amp liegt mit $9.02 \pm 2.47 \mu g/g$ Zn relativ homogen vor. Es kommen allerdings auch Amp-Körner mit bis zu dreifachem Zn-Gehalt vor. PhI liegt mit $11.80 \pm 2.46 \mu g/g$ Zn homogen vor, ohne Unterschiede zwischen verschiedenen Körnern aufzuweisen.

2.3.5 *Mineralgleichgewichte und Geothermobarometrie*

Tabelle 2.3-3 zeigt die Ergebnisse der geothermobarometrischen Berechnungen dieses Spl-Lherzoliths. Für Spl-Peridotite gestaltet sich die Geothermobarometrie als etwas problematischer als für Grt-Peridotite, da hierfür weniger Geothermobarometergleichungen vorliegen. Dies wäre ein weiterer Grund, warum es von Vorteil wäre weitere Geothermobarometergleichungen z.B. für Spurenelemente zu erarbeiten. Wie Tabelle 2.3-3 zeigt, liegen die Werte für die zwei verwendeten Geothermometer weit auseinander. Die Analytik der Elementverteilungsmuster zeichnet folgendes Bild. Sämtliche primären Phasen liegen mit breiten Kernbereichen vor. Darüber hinaus zeigen die meisten Phasen randliche Zonierungen. So liegt es nahe jeweils für den Kern und für den Rand *P* und *T* zu bestimmen. Da das $T_{Ca-in-Opx}$ -Geothermometer lediglich auf der Ca-Verteilung in Opx beruht, während das

 T_{2Px} -Geothermometer auf dem Austausch von Mg, Fe²⁺ sowie Ca und Na beruht, könnte die große T-Differenz zwischen den zwei Geothermometern dafür sprechen, dass die rezent äquilibrierten Bereiche der Px für Ca einem anderen P-T-Zustand entsprechen als die von Mg und Fe²⁺. So liegt es aufgrund der langsameren Diffusion von Ca in Cpx bzw. noch deutlicher in Opx gegenüber Mg und Fe²⁺ nahe, dass die Ca-Verteilung einem *P-T-*Zustand der Probe entspricht, der etwas weiter zurückliegt, als der durch das T_{2Px} -Geothermometer berechnete. Vorweggreifend lässt sich hierzu schonmal sagen, dass sich in dieser Probe die berechneten Verteilungskoeffizienten der Spurenelemente Co und Zn, in Kombination mit den P-T-Ergebnisse des T_{Ca-in-Opx}-Geothermometers deutlich besser in das Gesamtbild der Verteilungskoeffizienten einfügen als mit den Ergebnissen des T_{2Px} -Geothermometers. Dieses Problem wird in Kapitel 3 weiter erörtert. Abgesehen von der großen Differenz zwischen den beiden Geothermometern dokumentiert dieser Spl-Lherzolith eine Dekompression in Verbindung mit einer Abnahme von T. Der sich für die Mineralränder ergebende Druck mag aufgrund seines sehr geringen Wertes von 3.8 kbar als nicht glaubwürdig interpretiert werden, doch ergeben die beiden Geothermometer für eine Druckannahme entsprechend der Mineralkerne von 20 kbar nur leicht erhöhte T-Werte von 626 bzw. 793 °C. Die Abnahme von T wird also trotzdem bestätigt.

Abb. 2.3-2. Ol-Analyse, exemplarisch anhand von Profil-02 aus Probe Fi, Profillänge 2920 µm. *Oben und Mitte:* BSE- und XP-Bild des analysierten Ol-Korns mit Kontaktmineralen, kink-bands (kb) sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (20). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Neben- elemente. Nähere Erläuterungen im Text.

Abb. 2.3-3. Opx-Analyse, exemplarisch anhand von Profil-12 aus Probe Fi, Profillänge 2540 μm. *Oben und Mitte:* BSE- und XP-Bild des analysierten Opx-Korns mit Kontaktmineralen, kink-band (kb) sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.3-4. Cpx-Analyse, exemplarisch anhand von Profil-08 aus Probe Fi, Profillänge 780 μm. *Oben und Mitte:* BSE- und XP-Bild des analysierten Cpx-Korns mit Kontaktmineralen, kink-bands (kb), sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.3-5. Spl-Analyse, exemplarisch anhand von Profil-10a aus Probe Fi, Profillänge 500 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Spl-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.3-6. PhI-Analyse, exemplarisch anhand von Profil-14 aus Probe Fi, Profillänge 1640 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten PhI-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.3-7. Amp-Analyse, exemplarisch anhand von Profil-01 aus Probe Fi, Profillänge 620 μm. *Oben:* BSE-Bild des analysierten Amp-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Mitte:* PP-Bild mit verschiedenen Mineralphasen, BB 4 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Spuren- elemente [µg/g] P Sc Co Zn	Mg# Cr#	Σ Kationen	우ㅈ &	r Ca	Mg	N.	Mn	Fe ²⁺	Fe ³⁺	ç	A	∃	Si	[c.p.f.u.]	Kationen- besetzung	Μ	H ₂ O	K ₂0	Na ₂ O	CaO	MgO	NiO	MnO	FeO	Fe ₂ O ₃	Cr ₂ O ₃		TiO ₂	SiO2	[Gew%]	Analyse		C_{r} = 100*(C)
67.52 ± 20.27 1.06 ± 0.16 95.51 ± 2.77 29.02 ± 3.96	91.14 ± 0.27	3.006	0.0001	0.000	1.824	0.008	0.003	0.177	n.b.	0.000	0.000	0.000	0.994			100.867		0.009	0.011	0.012	50.507	0.414	0.126	8.751	n.b.	0.014	0.007	0.011	41.032	Kern	ç	2	-/(Al+Cr)). u a
38.99 ± 12.37 0.84 ± 0.19 25.55 ± 4.34				0.002																0.069										zu Cpx	Rand		= nicht anal
43.47 ± 1.20 0.612 ± 0.09 65.03 ± 0.72 11.59 ± 2.26										0.004																0.208				zu Spl	Rand		vsiert n b = nic
4.78 ± 1.16 8.23 ± 0.72 33.70 ± 1.24 15.30 ± 2.75	91.50 ± 0.29 18.06 ± 2.27	4.005	0.001	0.018	1.792	0.002	0.004	0.166	n.b.	0.009	0.043	0.001	1.968			100.362		0.009	0.013	0.490	35.024	0.083	0.141	5.799	n.b.	0.347	1.055	0.050	57.359	Kern	opx	Onv	ht berechnet An
1.28 ± 0.68 6.07 ± 1.01 30.38 ± 1.20	91.31 ± 0.56 14.20 ± 8.39	4.003	0.001	0.009	1.806	0.002	0.004	0.172	n.b.	0.003	0.019	0.001	1.986			100.425		0.012	0.010	0.254	35.357	0.061	0.154	6.001	n.b.	0.120	0.479	0.022	57.963	Rand			nenehener Feh
4.69 ± 1.62 48.55 ± 1.71 5 14.16 ± 1.33 1 3.62 ± 1.07	94.29 ± 0.39 9 28.61 ± 3.10 2	4.005	0.021	0.940	0.941	0.001	0.002	0.057	n.b.	0.020	0.051	0.002	1.969			99.988		0.009	0.298	24.159	17.381	0.044	0.069	1.876	n.b.	0.710	1.187	0.067	54.194	Kern	срх	Chv	er der Snurenelem
2.25 ± 0.36 0.66 ± 0.51 2.31 ± 0.97	5.13 ± 0.45 6.94 ± 4.27	4.005	0.0011	0.961	0.962	0.002	0.002	0.049	n.b.	0.009	0.023	0.001	1.984			100.252		0.007	0.163	24.774	17.827	0.080	0.074	1.627	n.b.	0.301	0.548	0.029	54.837	Rand			ente. Standarc
Spuren- elemente [µg/g] P Sc Co Zn			Mg# Cr#	∑ Kationen	Ca	ВW	Zn	Mn	Fe ²⁺	Fe	ດ	A	Ħ	[c.p.f.u.]	Kationen- besetzung					Μ	CaO	MgO	ZnO	MnO	FeO	Fe ₂ O ₃	Cr ₂ O ₃	Al ₂ O ₃	TiO ₂	[Gew%]	Analyse	C	lahweichung des M
zu gering 2.14 ± 0.20 379.4 ± 3.5 589.4 ± 18.4			39.56 ± 0.69 65.60 ± 0.41	3.000	0.000	0.453	n.a.	0.005	0.546	0.146	1.210	0.635	0.004							100.548	0.009	9.454	n.a.	0.190	20.305	6.048	47.617	16.749	0.180	homogen	qe	Sh	Mittelwertes (2
0 ()			39.62 ± 1.83 ÷ 63.17 ± 1.50 7	3.000	0.001	0.458	n.a.	0.005	0.539	0.160	1.158	0.675	0.003							100.253	0.021	9.595	n.a.	0.195	20.106	6.635	45.689	17.871	0.144	zu Phl+Ol	Rand		n)
389.6 ± 7.9 310.2 ± 10.7			37.40 ± 0.91 71.77 ± 2.04	3.000	0.008	0.425	n.a.	0.006	0.568	0.143	1.328	0.522	0.003							100.228	0.217	8.678	n.a.	0.227	20.681	5.798	51.119	13.482	0.137	zu Px	Rand		(ot

Fortsetzung
2.3-1.
Tabelle

	РЫ			Amp	
Analyse				(Edenit)	
[Gew%]	Kern	Rand	Ca-Schicht	Kern	Rand
SiO ₂	40.259	40.106	40.069	45.832	46.939
TIO ₂	0.721	0.706	0.719	0.467	0.474
AI ₂ O ₃	15.473	15.310	15.465	10.614	10.021
Cr ₂ O ₃	1.292	1.260	1.407	2.163	1.786
Fe ₂ O ₃	n.b.	n.b.	n.b.	0.452	1.139
FeO	2.766	2.782	2.813	2.880	1.927
MnO	0.019	0.014	0.025	0.034	0.053
NiO	0.216	0.178	0.222	0.107	0.121
MgO	24.508	24.498	24.011	19.065	20.019
CaO	0.005	0.039	0.111	12.447	12.363
Na ₂ O	0.762	0.644	0.764	2.108	2.130
K20	8.887	8.833	8.778	0.809	0.390
H ₂ O	4.250	4.228	4.225	2.098	2.123
M	99.144	98.593	98.598	900.66	99.483
Kationen-					
besetzung					
[c.p.f.u.]					
Si	2.840	2.844	2.843	6.549	6.629
F	0.038	0.038	0.038	0:050	0.050
AI	1.286	1.279	1.293	1.788	1.668
ບ້	0.072	0.071	0.079	0.244	0.199
Fe ³⁺	n.b.	n.b.	n.b.	0.049	0.121
Fe ²⁺	0.163	0.165	0.167	0.344	0.228
Mn	0.001	0.001	0.001	0.004	0.006
Ņ	0.012	0.010	0.013	0.012	0.014
Mg	2.577	2.590	2.540	4.061	4.214
Ca	0.000	0.003	0.008	1.906	1.871
Na	0.104	0.088	0.105	0.584	0.583
¥	0.800	0.799	0.795	0.147	0.070
НО	2.000	2.000	2.000	2.000	2.000
∑ Kationen	7.894	7.887	7.882	15.730	15.654
#BM	94.04 ± 0.50	94.01 ± 0.06	93.83 ± 0.37	91.34 ± 0.81	92.34 ± 2.04
Cr#	5.30 ± 1.48	5.22 ± 2.01	5.75 ± 0.20	12.03 ± 0.78	10.68 ± 0.27
Spuren-					
elemente [µg/g]					
٩.	3.18 ± 1.53			70.15 ± 21.58	
ы С	6.79 ± 0.66	7.49 ± 0.87		89.68 ± 36.43	
5 5	45.10 ± 2.16 11.80 ± 2.46	42.20 ± 1.96		27.19 ± 10.13 9.02 ± 2.47	

Tabelle 2.3-2.	Probe	Fi:	Anhand	der	Mittelwerte	von	Tabelle	e 2.3-1	für	die	prima	ären
Mineralphasen	berech	nnete	Verteilu	ungsł	koeffizienten	der	Spure	neleme	nte.	Ang	egeb	ener
Fehler: absolut	ter Feh	ler d	es Verte	ilung	skoeffiziente	n (2ơ	r). Die	Farben	n ent	spre	chen	den
zugehörigen P-	-T-Bedir	ngung	gen aus -	Tabel	le 2.3-3.							

D _{Min/Min}	Р	Sc	Со	Zn
Ol _{Kern} /Opx _{Kern}	14.13 ± 0.892	0.128 ± 0.003	2.834 ± 0.020	
Ol _{Kern} /Opx				1.897 ± 0.060
OI _{Rand} /Opx _{Rand}	30.37 ± 7.769	0.139 ± 0.015		
Ol _{Kern} /Cpx _{Kern}	14.39 ± 1.197	0.022 ± 0.000	6.744 ± 0.116	
ОІ _{Кегп} /Срх				8.029 ± 0.422
OI _{Rand} /Cpx _{Rand}	17.36 ± 2.506	0.017 ± 0.001		
Opx/Cpx				4.232 ± 0.242
Орх _{Кеrn} /Срх _{Кern}	1.019 ± 0.088	0.170 ± 0.003	2.380 ± 0.044	
Opx_{Rand}/Cpx_{Rand}	0.572 ± 0.128	0.120 ± 0.007	2.467 ± 0.085	
Spl/Ol _{Rand}		3.496 ± 0.594	5.833 ± 0.084	50.88 ± 10.48
Spl/Opx _{Rand}		0.352 ± 0.028		
Spl _{Rand} /Opx				39.88 ± 1.124
Spl _{Rand} /Opx _{Rand}			12.82 ± 0.310	
Spl/Cpx _{Rand}		0.042 ± 0.001		
Spl _{Rand} /Cpx				168.8 ± 8.294
Spl _{Rand} /Cpx _{Rand}			31.64 ± 1.064	

Tabelle 2.3-3. Probe Fi: Berechnete geothermobarometrische Daten anhand der Mittelwerte in Tabelle 2.3-1.

•	••
Г	

Geothermobarometer [kbar; °C]	<i>P-T-</i> Maximum	<i>P-T-</i> Minimum
P _{Ca-in-Ol} (Brey & Köhler 1990)	20.0	3.8
P _{Al-in-Opx} (Brey & Köhler 1990)	-	-
T_{2Px} (Brey & Köhler 1990)	712	607
T_{Ca-in-Opx} (Brey & Köhler 1990)	914	728
Т_{Fe-Mg-Grt-Cpx} (Krogh 1988)	-	-
T_{Fe-Mg-Grt-Cpx} (Krogh Ravna 2000)	-	-
T_{Fe-Mg-Grt-Ol} (O'Neill & Wood 1979; O'Neill 1980)	-	-

2.4 Probe IV19: Spl-Lherzolith

Abb. 2.4-1. Links: Handstück der Probe IV19 mit Schnittlage der Dünnschliffe, BB 100 mm. Rechts: Gesteinsgefüge anhand eines Dünnschliffes, BB 20 mm.

2.4.1 Probenlokalität

Auch diese Probe stammt von der Lokalität Finero, in der Ivrea-Zone in den italienischen Südalpen.

2.4.2 Petrographie

Das Handstück dieses Spl-Peridotites ähnelt stark dem von Probe Fi. Doch lassen sich bereits makroskopisch Unterschiede erkennen. So scheint Probe IV19 über weniger Phl zu verfügen, was sich auch darin manifestiert, dass sich keine Foliation des Gesteins erkennen lässt (Abb. 2.4-1). Phl zeigt sich auch hier von metallisch-braunem Glanz, die einzelnen Phl-Blättchen sind aber kleiner ausgebildet als in Probe Fi. Außerdem ist Probe IV19 generell etwas feinkörniger als Probe Fi. Neben Phl stechen auch hier intensiv grün gefärbte Körner ins Auge, die aber eben deutlich kleiner sind als in Probe Fi. Angesägt offenbart sich, dass die Phl-Blättchen zwar tatsächlich überwiegend eine Vorzugsorientierung aufweisen, abgesehen hiervon ist das Gesteinsgefüge aber isotrop. Unter dem Polarisationsmikroskop zeigt sich, dass die Korngröße von Ol über Opx, Phl und Amp zu Cpx und schließlich Spl abnimmt. Letzterer ist von vergleichbarer Größe wie in Probe Fi, die übrigen Mineralphasen sind wie schon gesagt allesamt kleiner. Unter gekreuzten Polarisatoren zeigt sich, dass die Mikrodeformationsgefüge hier etwas schwächer ausgeprägt sind als in Probe Fi. Abgesehen vom blättrigen Phl sowie der Längsschnitte von Amp sind die Kornformen äquidimensional ausgebildet. Eine weitere Besonderheit liegt darin, dass Amp in dieser Probe häufiger und von größerer Kornform ist als Cpx (Abb. 2.4-4). Die Cpx-Armut verschiebt diese Probe gegenüber Probe Fi taxonomisch in Richtung Harzburgit, doch erreicht sie diesen nicht ganz und muss ebenfalls als Lherzolith bezeichnet werden. Darüber hinaus ist Spl in dieser Probe häufiger als in Probe Fi. Trotz der sehr geringen Korngröße von Spl, zeigt dieser viele Einschlüsse anderer Phasen. Hierbei fällt auf, dass diese Einschlüsse aus Ol und Phl bestehen, Opx oder Cpx sind nicht dabei (Abb. 2.4-5). Ol zeigt sich in dieser Probe teilweise von winzigen Fluidtröpfchen durchzogen.

2.4.3 Haupt- und Nebenelementchemie

2.4.3.1 Olivin

Die EMS-Analytik zeigt, dass OI homogen und somit sehr gut äquilibriert vorliegt. So präsentiert beispielsweise das OI-Profil in Abb. 2.4-2 für sämtliche Haupt- und Nebenelemente komplett flach verlaufende Konzentrationsdiagramme. Es gibt zwei Ausnahmen, die allerdings erst auf den letzten µm stattfinden. So nimmt Ca im Kontakt zu Cpx und Amp auf bis zu 0.002 c.p.f.u. zu. Liegt Spl in Nachbarschaft vor, so steigt Cr auf bis zu 0.007 c.p.f.u. an (Profil-14 Anhang). Damit einhergehend steigt auch Mg an, während Fe²⁺ abfällt (Tabelle 2.4-1). Die *Mg-Zahl* liegt im Probenmittel bei 91.21 ± 0.36. Zu Spl steigt sie auf 93.96 ± 0.70 an.

2.4.3.2 Orthopyroxen

Wie in Profil-11 anhand von Abb. 2.4-3 zu sehen ist, fallen abgesehen von Al, Cr und Ca die Elementverteilungsmuster von Opx ebenfalls sehr flach aus. Unter diesen drei Elementen zeigt Cr den deutlichsten randlichen Abfall auf 50 % des Kerngehalts. Für Al fällt diese Abnahme deutlich geringer aus. Ca zeigt zwar auch eine Konzentrationsabnahme am Rand, allerdings liegt die Verteilung generell etwas heterogener vor (z.B. Profil-04 im Anhang). Mit Spl als Nachbarphase verhält sich Cr umgekehrt und nimmt zu diesem um 70 % zu, während sich die übrigen Elemente qualitativ gleich verhalten, doch etwas stärker abnehmen. Die *Mg-Zahl* liegt im Kern bei 91.56 \pm 0.23 und am Rand bei 91.28 \pm 0.82.

2.4.3.3 Klinopyroxen

Auch Cpx liegt sehr gut äquilibriert vor, wie in Abb. 2.4-4 anhand von Profil-19 zu sehen ist. So fällt nur Al als randlich zoniert auf. Dieses nimmt am Rand leicht ab. Das Kernplateau ist aber sehr breit ausgebildet. Zusätzlich nimmt auch Cr randlich etwas ab. Die übrigen Elemente liegen dagegen ohne Zonierung sehr gut äquilibriert vor. Mit Spl als Nachbarphase nimmt Cr am Rand zu statt ab, während die Abnahme von Al schwächer ausfällt. So lassen sich die letzten Messpunkte auf der rechten Seite von Profil-19 in Abb. 2.4-4 durch den zwischen Cpx und Amp sitzenden Spl erklären, welcher für den starken Anstieg von Cr in Cpx verantwortlich ist. Die *Mg-Zahl* beläuft sich im Probenmittel auf 94.29 \pm 0.37 im Kern und 94.55 \pm 0.41 am Rand.

2.4.3.4 Spinell

So wie sich die primären Silikatphasen präsentieren, verhält sich auch Spl. Es liegen keine systematischen Zonierungen vor. Wie anhand von Profil-10b in Abb. 2.4-5 ersichtlich ist, sind sämtliche Konzentrationsdiagramme flach ausgebildet. So wie Spl aus Probe Fi ist auch Spl dieser Probe extrem reich an Cr. Mit einer *Cr-Zahl* von 61.92 ± 0.82 liegt er nur ganz leicht

unter dem der Probe Fi. Die *Mg-Zahl* liegt bei 37.36 ± 1.13. Die gemittelte Summenformel lautet $Mg_{0.43} Fe^{2+}_{0.56} Fe^{3+}_{0.16} Al_{0.70} Cr_{1.13} O_4$.

2.4.3.5 Phlogopit

Auch Phl liegt äußerst homogen vor wie in Abb. 2.4-6 anhand von Profil-08 zu erkennen ist. Liegt Cpx oder Amp als Kontaktphase vor, so nimmt Ca am Rand zu. Dies stellt allerdings die einzige Ausnahme dar. Die *Mg-Zahl* beläuft sich auf 94.29 \pm 0.39.

2.4.3.6 Amphibol

Bei dem innerhalb dieser Probe auftretenden Amp handelt es sich wie bei Probe Fi um Edenit. Es liegen leichte Zonierungen vor, wie in Profil-02 in Abb. 2.4-7 zu sehen ist. Allerdings liegen die Schwankungen der einzelnen Konzentrationsdiagramme generell über denen der übrigen Phasen. Am eindeutigsten fällt die Zonierung für Al, Cr und K aus. Diese nehmen randlich ab. Wie zu sehen ist, kann die Al-Verteilung aber auch M-förmig verlaufen. Im Kontakt zu Spl hingegen steigt Cr an. Die *Mg-Zahl* beträgt im Kern 91.09 ± 0.41 und am Rand 91.36 ± 0.59.

2.4.4 Spurenelementchemie

2.4.4.1 Phosphor

Die Konzentrationsreihenfolge lautet: $OI > Opx \approx Cpx$

Ol verfügt über eine heterogene P-Verteilung. So zeigt beispielsweise Profil-01 in Abb. 2.4-2 im ersten Drittel höhere P-Konzentrationen als im restlichen Korn. Der Kern liegt des weiteren etwas unter der Konzentration des letzten Drittels. Ein System lässt sich hierbei nicht erkennen. Der Probenmittelwert von P in Ol liegt bei 41.20 \pm 13.37 µg/g P.

P liegt in Opx zoniert vor, wie in Profil-11 in Abb. 2.4-3 zu sehen ist. Allerdings lässt sich dort anhand des Kernbereichs erkennen, dass P auch generell starken Schwankungen unterworfen ist. Breite Opx-Körner zeigen einen Kerngehalt von durchschnittlich 4.19 \pm 1.30 µg/g. Der Randgehalt fällt prinzipiell niedriger aus, doch zeigt der große Fehler des Probenmittelwertes von 1.81 \pm 1.16 µg/g wie deutlich der Randgehalt an P variiert.

Cpx enthält mit einem Probenmittelwert von $3.85 \pm 1.14 \ \mu$ g/g unter den silikatischen Phasen am wenigsten P. Dieser Gehalt nimmt zum Rand auf $2.14 \pm 0.74 \ \mu$ g/g ab, wie in Abb. 2.4-4 zu sehen ist.

Amp enthält mit $68.36 \pm 8.99 \ \mu$ g/g am meisten P in dieser Probe und liegt somit noch deutlich vor OI. Abgesehen von Schwankungen zeigt sich hierfür keine Zonierung, so fallen die Fehler viel geringer aus als in Probe Fi. Auch PhI lässt keine systematische Zonierung erkennen, doch liegt P hier mit $3.62 \pm 1.24 \ \mu$ g/g deutlich niedriger.

Spl weist keinen signifikanten P-Gehalt auf.

2.4.4.2 Scandium

Die Konzentrationsreihenfolge lautet: Cpx > Opx > Spl > Ol

Cpx zeigt für Sc eine Zonierung mit einer Abnahme am Rand wie in Abb 2.4-4 anhand von Profil-19 dargestellt ist. Der gemittelte Sc-Gehalt der breiten Kernbereiche liegt bei $52.62 \pm 1.37 \mu g/g$. Am Rand nimmt Sc dann auf $49.00 \pm 4.49 \mu g/g$ ab.

Auch in Opx nimmt Sc vom Kern zum Rand ab. Große Opx-Körner zeigen flache Kernplateaus. Darüber hinaus kann auch die Randkonzentration über einen gewissen Bereich relativ flach vorliegen (Profil-11 in Abb. 2.4-3). Der Kerngehalt beträgt 10.05 \pm 0.76 µg/g, der Rand 8.51 \pm 1.27 µg/g Sc.

Spl enthält lediglich $2.56 \pm 1.06 \mu g/g$ Sc, das innerhalb der kleinen Spl-Körner zudem heterogen verteilt vorliegt.

Ol enthält zwar am wenigsten Sc, doch fällt bei genauerer Betrachtung von Profil-01 in Abb. 2.4-2 auf, dass auch dessen Verteilung minimal zoniert ist. Der Probenmittelwert der Ol-Kerne beträgt $1.09 \pm 0.17 \mu g/g$ Sc. An den Rändern fällt dieser im Probendurchschnitt auf $0.89 \pm 0.15 \mu g/g$ ab.

Auch für Sc stellt Amp die Phase mit dem größten Gehalt dar. Es können Zonierungen auftreten, wie in Abb. 2.4-7 an Profil-02 demonstriert wird. Hier steigt Sc vom Kern in Richtung Rand kontinuierlich an. Warum der eine Rand dieses Profils gegenüber dem anderen deutlich angereichert ist, lässt sich nicht erklären. Es kommen auch homogene Sc-Verteilungsmuster in Amp vor. Der Probenmittelwert liegt bei 105.3 \pm 11.3 µg/g Sc. Phl zeigt dagegen keine Zonierungen für Sc und liegt im Probendurchschnitt bei 7.93 \pm 0.99 µg/g.

2.4.4.3 Cobalt

Die Konzentrationsreihenfolge lautet: Spl > Ol > Opx > Cpx

Mit einem Probenmittelwert von $422.7 \pm 26.8 \,\mu$ g/g ist Spl die Hauptphase für Co. Eine systematische Zonierung liegt nicht vor.

Für Co zeigt OI eine leichte Zonierung. So liegt die Co-Konzentration im Kern bei 91.84 \pm 5.92 µg/g. Zum Rand nimmt dieser Gehalt auf 86.55 \pm 6.41 µg/g ab. Die Fehler der Mittelwerte spiegeln wider, dass OI in dieser Probe teilweise von Fluidtröpfchen durchzogen wird. Co zeigt sich hierfür sensibel, was sich in einer größeren Schwankung niederschlägt (Abb. 2.4-2). Mit Spl als Nachbar nimmt Co in OI sogar auf 72.45 \pm 5.50 µg/g ab (Tabelle 2.4-1; Profil-14 im Anhang).

Auch Opx zeigt eine Zonierung für Co. Wie Abb. 2.4-3 anhand von Profil-11 veranschaulicht, nimmt der Co-Gehalt zum Rand hin ab. Zwar zeigt auch der Kernbereich des Profils Schwankungen, doch liegen auch flache Kerne vor (z.B. Profil-04 im Anhang). Da es sich bei Profil-11 um den größten analysierten Opx dieser Probe handelt, wird dieser dargestellt. Der über die gesamte Probe gemittelte Kerngehalt liegt bei 32.69 \pm 1.56 µg/g, der mittlere Randgehalt bei leicht niedrigeren 30.23 \pm 2.66 µg/g. Liegt Spl als Nachbarphase vor, so fällt Co nicht ab, sondern bleibt im Bereich des Kerngehalts.

In Cpx liegt Co ebenfalls ganz leicht zoniert vor. Anhand Profil-19 in Abb. 2.4-4 wird ersichtlich, dass die Co-Konzentration am linken Kornrand etwas abfällt. Am rechten Kornrand dagegen zeigt Co nach anfänglicher Abnahme wieder eine Zunahme. Diese wird durch die Nachbarphase bedingt, bei der es sich hier um ganz kleine Spl-Körner handelt. Kommt Spl als Nachbar vor, so liegt Co, wie auch bei Opx zu beobachten war, am Rand bei Gehalten die dem Kernwert bei Cpx von durchschnittlich 13.44 \pm 0.89 µg/g entsprechen. Mit anderen Nachbarphasen als Spl fällt Co auf 12.13 \pm 1.20 µg/g ab.

Co liegt sowohl in Amp als auch in PhI nicht systematisch zoniert vor. Ersterer enthält durchschnittlich 26.93 \pm 2.50 µg/g, letzterer 41.64 \pm 2.24 µg/g Co.

2.4.4.4 Zink

Die Konzentrationsreihenfolge lautet: Spl > Ol > Opx > Cpx

Spl verfügt durchschnittlich über 626.9 \pm 68.8 µg/g Zn. Wie anhand des großen Fehlers des Mittelwertes, sowie in Abb. 2.4-5 anhand von Profil-10b zu ersehen ist, fallen die Schwankungen des Zn-Gehalts relativ groß aus. Eine Systematik, wie z. B. eine Zonierung lässt sich nicht erkennen.

Die größeren Messungenauigkeiten von Zn sorgen dafür, dass etwaige schwache Zonierungen von Ol, Opx oder Cpx nicht feststellbar sind. So liegt Ol im Probenmittel bei 23.34 ± 4.23 µg/g, Opx bei 13.03 ± 2.18 µg/g und Cpx bei 2.83 ± 1.49 µg/g Zn. Liegt Spl als Nachbarphase vor, so nimmt Zn in Ol am Rand allerdings deutlich ab (Profil-14 im Anhang). Hierfür ergibt sich ein Mittelwert von 9.56 ± 3.54 µg/g Zn.

Amp und PhI zeigen abgesehen von der größeren Messungenauigkeit von Zn keine Zonierungen und verfügen über $8.68 \pm 2.91 \ \mu g/g$ respektive $9.32 \pm 3.44 \ \mu g/g$.

2.4.5 Mineralgleichgewichte und Geothermobarometrie

Die Zonierungsmuster der Pyroxene sprechen eindeutig dafür, sowohl für deren Kern- als auch für deren Randbereiche jeweils die *P-T*-Bedingungen zu berechnen. Die somit bestimmten Werte für das *P-T*-Maximum und -Minimum sind in Tabelle 2.4-3 dargestellt. Es ist zu sehen, dass diese Probe jedoch das gleiche Problem wie Probe Fi zeigt. So klafft eine große Lücke zwischen den zwei anwendbaren Geothermometern und das trotz der sehr homogen ausgebildeten Kernbereiche der verschiedenen Mineralphasen. Hierauf wird in Kapitel 3 näher eingegangen. Ungeachtet dieser Problematik dokumentieren die beiden angewendeten Geothermometer eine Dekompression mit einhergehender Abkühlung.

Abb. 2.4-2. Ol-Analyse, exemplarisch anhand von Profil-01 aus Probe IV19, Profillänge 2715 μm. *Oben und Mitte:* BSE- und XP-Bild des analysierten Ol-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.4-3. Opx-Analyse, exemplarisch anhand von Profil-11 aus Probe IV19, Profillänge 1585 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Opx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.4-4. Cpx-Analyse, exemplarisch anhand von Profil-19 aus Probe IV19, Profillänge 600 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Cpx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.4-5. Spl-Analyse, exemplarisch anhand von Profil-10b aus Probe IV19, Profillänge 420 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Spl-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.4-6. PhI-Analyse, exemplarisch anhand von Profil-08 aus Probe IV19, Profillänge 440 μm. *Oben und Mitte:* BSE- und XP-Bild des analysierten PhI-Korns mit Kontaktmineralen und kink-bands (kb), sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

P [µg/g]

Co [µg/g]

40

35

30

0

ļ

 $\overline{}$

100

þ

 \bigcirc

200

Profilstrecke [µm]

ļ

Ī

300

Ō

400

Zn [µg/g]

10

5

0

0

Ī

ļ

100

•

200

Profilstrecke [µm]

300

∮

400

Abb. 2.4-7. Amp-Analyse, exemplarisch anhand von Profil-02 aus Probe IV19, Profillänge 1010 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Amp-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Spuren- elemente [µg/g] P Sc Co Zn	Mg# Cr#	Σ Kationen	운 ㅈ	Na	Ca	Mg	Z	S of the second se	пе ²⁺	្ទឹ	? A	2 1	i 🛛	Kationen- besetzung [c.p.f.u.]	л₂о Д	K₂0	Na ₂ O	CaO	MgO	NiO	MnO	FeO			TiO ₂	SiO ₂	[Gew%]	Analyse		Tabelle 2.4- 1 Cr# = 100*(C
41.20 ± 13.37 1.09 ± 0.17 91.84 ± 5.92 23.34 ± 4.23	91.21 ± 0.36	3.007	0.000	0.001	0.000	1.826	0 008	0.170	n.b.	0.000	0.000	0.000	0.993		101.232	0.009	0.012	0.013	50.768	0.404	0.126	8.721	0.013	0.008	0.011	41.176	Kern		0	 Probe IV19: r/(Al+Cr)); n.a
0.89 ± 0.15 0 86.55 ± 6.41 72	Q				0.002													0.065									zu Cpx	Rand		Mittelwerte d . = nicht analy
.72 ± 17.16 .82 ± 0.24 .45 ± 5.50	3.96 ± 0.70	3.011	0.000	0.001	0.000	1.885	600 U	0.121	0 1 2 1	0.007	0.000	0.000	0.986		101.494	0.009	0.013	0.003	53.085	0.471	0.086	6.088	0.356 n h	0.009	0.005	41.393	zu Spl	Rand		er Haupt-, Ne siert, n.b. = nid
4.19±1.30 10.05±0.76 32.69±1.56 13.03±2.18	91.56 ± 0.23 17.62 ± 1.46	4.005	0.000	0.001	0.017	1.792	0 002	0.103	0.16E	0.010	0.046	0.001	1.966		101.377	0.009	0.014	0.459	35.394	0.086	0.150	5.819	0.3/0	1.161	0.041	57.883	Kern		Орх	ben- und Spur cht berechnet.
1.81 ± 1.16 8.51 ± 1.27 30.23 ± 2.66	91.28 ± 0.82 14.44 ± 4.09	4.008	0.000	0.001	0.012	1.806	0.007	0.172	n.b.	0.005	0.032	0.001	1.973		101.284	0.008	0.011	0.327	35.630	0.075	0.143	6.065	0.202	0.790	0.027	58.012	Rand			enelemente de Angegebener
		4.008	0.000	0.000	0.008	1.814	0.001	0.109	n.b.	0.017	0.022	0.001	1.971		101.351	0.007	0.000	0.220	35.783	0.033	0.141	5.954	0.649 n h	0.559	0.035	57.970	zu Spl	Rand		er Mineralphas Fehler der Spu
3.85 ± 1.14 52.62 ± 1.37 13.44 ± 0.89 2.83 ± 1.49	94.29 ± 0.37 23.69 ± 1.79	4.008	0.000	0.018	0.942	0.955	0.002	0.000	n.b.	0.014	0.047	0.001	1.969		100.184	0.009	0.257	24.260	17.665	0.046	0.066	1.906	0.505	1.092	0.053	54.329	Kern		Срх	sen. Mg# = 10(urenelemente:
2.14 ± 0.74 49.00 ± 4.49 12.13 ± 1.20	94.55 ± 0.41 22.72 ± 3.62	4.007	0.001	0.016	0.945	0.965	0.002	0.000	0.056	0.010	0.033	0.001	1.978		100.544	0.024	0.235	24.437	17.931	0.039	0.061	1.842	0.346 n.h	0.783	0.042	54.823	Rand			0*(Mg/(Fe ²⁺ +N Standardabwe
		4.010	0.001	0.018	0.948	0.952	0.000	0 003	n.b.	0.024	0.039	0.001	1.966		100.238	0.030	0.260	24.379	17.597	0.016	0.087	1.910	0.853 n h	0.904	0.045	54.178	zu Spl	Rand		lg)); für Amp u eichung des Mi
z s التو but but but but but but but but but but			o s	1	∑ Kat	0;	2	7		ב ז	۰ ۲			Katic beset [c.p.					C	Ŋ	Zr	Mr		<u>ן</u> ב	<u>N</u>	Ľ	[Gev	Ana		ınd Spl Mg# = ittelwertes (2σ).
ıren- 1ente ≱/g] ₽ ₽ °c			₽ 9	:	lionen	ີ ພໍ່ ຜ		J E	5 0	, e	Ψ	2	: =	onen- tzung .f.u.]				M	aO	gO	6		۵ ^۲	o [°] C	õ	₽	v%]	lyse		100*(Μ <u></u>
zu gering 2.56 ± 1.06 422.7 ± 26.8 626.9 ± 68.7			37.36 ± 1.13 61.92 ± 0.82		3.000	0.000	0 434	0.000	0.564	0.163	1.132	0.697	0.004					99.605	0.014	9.007	n.a.	0.216	0.719	44.333	18.294	0.158	homogen		Spl	g/Fe _{tot} +Mg));

Tabelle 2.4-1.	Fortsetzung			
	PhI		Amp	
Analyse		Rand	(Edenit)	
SiO.	40 377		46 366	47 031
TIO2	0.649		0.396	0.401
Al ₂ O ₃	15.798		10.589	10.241
Cr ₂ O ₃	1.398		1.983	1.521
Fe ₂ O ₃	n.b.		0.384	0.555
FeO	2.673		3.168	2.849
MnO	0.020		0.041	0.042
NiO	0.205		0.099	0.103
MgO	24.754		19.311	19.595
CaO	0.005	0.057	12.388	12.596
Na ₂ O	0.839		2.171	2.116
K20	8.721		0.851	0.671
H ₂ O	4.280		2.113	2.123
Z	99.707		99.698	99.791
Kationen-				
hesetzund				
[c.p.f.u.]				
Si	2.829		6.578	6.643
F	0.034		0.042	0.043
AI	1.304		1.771	1.705
ç	0.077		0.222	0.170
Fe ³⁺	n.b.		0.041	0.059
но ²⁴	0.157		0.376	0.336
Mn	0000		0.005	0.000
	0.00		500.0	
Z	0.012		0.011	0.012
Mg	2.585		4.084	4.126
Ca	0.000	0.004	1.883	1.906
Na	0.114		0.597	0.579
¥	0.779		0.154	0.121
Н	2.000		2.000	2.000
∑ Kationen	7.893		15.747	15.700
#bM	94.29 ± 0.39		91.09 ± 0.41	91.36 ± 0.59
ŧ.	E ED + D AE		11 16 + 0 71	0.05 + 2.25
ŧ	0.4.0 H 00.0		1.10 ± 01.11	0.2.2 I CO.6
Spuren-				
elemente				
[b/6r]				
ר ל	3.62 ± 1.24		68.36 ± 8.99	
500	7.93 ± 0.99		105.3 ± 11.3	
2 5	41.64 ± 2.24		26.93 ± 2.50	
7	9.32 ± 3.44		8.68 ± 2.91	

D _{Min/Min}	Р	Sc	Co	Zn
Ol _{Kern} /Opx _{Kern}		0.108 ± 0.004	2.809 ± 0.043	
OI/Opx _{Kern}	9.838 ± 0.893			
Ol/Opx				1.791 ± 0.074
OI _{Rand} /Opx _{Rand}		0.105 ± 0.007	2.863 ± 0.122	
Ol _{Kern} /Cpx _{Kern}		0.021 ± 0.001	6.835 ± 0.156	
OI/Cpx _{Kern}	10.71 ± 1.160			
Ol/Cpx				8.257 ± 0.948
OI _{Rand} /Cpx _{Rand}		0.018 ± 0.001	7.133 ± 0.365	
Орх/Срх				4.609 ± 0.531
Орх _{Kern} /Срх _{Kern}	1.088 ± 0.137	0.191 ± 0.003	2.433 ± 0.053	
Opx _{Rand} /Cpx _{Rand}	0.846 ± 0.228	0.174 ± 0.012	2.492 ± 0.127	
Spl/Ol _{Rand}		3.135 ± 0.690	5.834 ± 0.277	65.58 ± 12.39
Spl/Opx _{Rand}		0.301 ± 0.037		
Spl/Opx			12.93 ± 0.268	48.11 ± 2.123
Spl/Cpx _{Rand}		0.052 ± 0.006		
Spl/Cpx			31.46 ± 0.890	221.8 ± 26.12

Tabelle 2.4-2. Probe IV19: Anhand der Mittelwerte von Tabelle 2.4-1 für die primären Mineralphasen berechnete Verteilungskoeffizienten der Spurenelemente. Angegebener Fehler: absoluter Fehler des Verteilungskoeffizienten (2σ). Die Farben entsprechen den zugehörigen *P-T*-Bedingungen aus Tabelle 2.4-3.

Tabelle 2.4-3. Probe IV19: Berechnete geothermobarometrische Daten anhand der Mittelwerte in Tabelle 2.4-1.

IV19

Geothermobarometer [kbar; °C]	P-T-Maximum	<i>P-T</i> -Minimum
P_{Ca-in-Ol} (Brey & Köhler, 1990)	19.6	17.7
P _{Al-in-Opx} (Brey & Köhler, 1990)	-	-
T_{2Px} (Brey & Köhler, 1990)	717	705
$\mathcal{T}_{Ca-in-Opx}$ (Brey & Köhler, 1990)	897	826
T_{Fe-Mg-Grt-Cpx} (Krogh, 1988)	-	-
T_{Fe-Mg-Grt-Cpx} (Krogh Ravna, 2000)	-	-
T _{Fe-Mg-Grt-OI} (O'Neill & Wood, 1979; O'Neill 1980)	-	-

2.5 Probe Ka: Grt-Peridotit

Abb. 2.5-1. Links: Angesägtes Handstück der Probe Ka, BB 140 mm. Rechts: Gesteinsgefüge anhand eines Dünnschliffes, BB 20 mm.

2.5.1 Probenlokalität

Dieser orogene Grt-Peridotit stammt von Kalskaret, einem Aufschluss in der Western Gneiss Region Norwegens, der sich auf einem Gebirgspass auf 1000 m ü. NN, zwischen den tiefer gelegenen Ortschaften Herdalen im Süd-Westen und Tafjord im Nord-Osten befindet. Im Gegensatz zu dieser mehr im Inland gelegenen Probenlokalität, liegen alle anderen norwegischen Grt-Peridotit-Vorkommen an der Küste und auf den angrenzenden Inseln, wie beispielsweise die noch an späterer Stelle behandelte Probe Gu. Genommen wurde diese Probe durch Jens Paquin (2001) im Zuge seiner Dissertation.

2.5.2 Petrographie

Von diesem Gestein liegt ein recht großes Probenstück mit Kantenlängen von 15 bis 20 cm vor. Bei dessen Betrachtung fällt der Blick als erstes auf die dunkelroten Grt-Kristalle, deren Durchmesser nicht selten 10 mm erreichen. Des Weiteren lässt sich ein Lagenbau erkennen (Abb. 2.5-1 links). Somit ist das Gesteinsgefüge dieser Probe im Gegensatz zu den Proben VG und AAR-9 nicht isotrop sondern anisotrop ausgebildet. Es wechseln sich porphyroklastische Lagen (Mitte), in denen die besagten Grt-Kristalle von einer dunkelgrünen und feinkörnigen Matrix umgeben sind, mit Matrix-armen Lagen, in denen die Grt-Kristalle mit ähnlich großen, flaschengrünen Cpx-Kristallen vergesellschaftet sind, ab. Letzterer Bereich, der im linken Bild von Abb. 2.5-1 am oberen und unteren Bildrand zu sehen ist, zeigt sich vermehrt von Rissen durchzogen, welche durch Serpentinisierung gekennzeichnet sind. Aufgrund des hohen Cpx-Anteils sind diese Lagen als Grt-Websterit anzusprechen. Da es nicht primäres Ziel dieser Arbeit ist, die Genese der Western Gneiss Region zu untersuchen, wird sich hier lediglich auf den peridotitischen Bereich mit höherem Ol-Modalbestand und porphyroklastischem Gefüge konzentriert, der in der Mitte des Bildes zu sehen ist. Bei genauerer Betrachtung des porphyroklastischen Bereichs fallen dann auch flaschengrüne Cpx-Kristalle auf, die zwar kleiner ausfallen als Grt, doch immer noch deutlich aus der Matrix hervorstechen. Vereinzelt lässt sich feststellen, dass Grt Einschlüsse u.a. von Cpx enthält. Das Übersichtsbild in Abb. 2.5-1 rechts zeigt das Größenverhältnis von Grt zu Cpx und Matrix. Außerdem lässt sich erkennen, dass das porphyroklastische Gesteinsgefüge auch intern leicht foliiert ist. So sind auch die Grt-Kristalle mitunter ausgelängt.

Unter dem Polarisationsmikroskop ergibt sich dann folgendes Bild der porphyrokastischen Lagen. In einer feinkörnigen Matrix aus OI, Opx und Cpx befinden sich sehr große Grt-Porphyroklasten sowie große Cpx-Porphyroklasten. Während die Grt-Porphyroklasten von einem Kelyphitsaum umgeben sind, der u.a. Amp enthält, zeigen die Cpx-Porphyroklasten teilweise Entmischungslamellen von IIm (Abb. 2.5-1 rechts, Abb. 2.5-4 mitte). Die Kelyphitsäume verdeutlichen die Foliation anhand unterschiedlich stark ausgeprägter Druckschatten (Abb. 2.5-5). Die Grt-Porphyroklasten beherbergen Einschlüsse sämtlicher anderer Hauptphasen OI, Opx und Cpx, während sich in den Cpx-Porphyroklasten des vorliegenden Probenstückes nur OI- und vereinzelt Opx-Einschlüsse ausmachen lassen. Somit lässt sich vermuten, dass die Einschlussphasen einer älteren Generation angehören, welche im Zuge der Gesteinsgenese vom bereits vorhandenen Grt bzw. Cpx umschlossen und damit von den anderen Phasen isoliert wurden. Anschließend rekristallisierten die rezenten Matrixphasen OI, Opx und Cpx.

2.5.3 Haupt- und Nebenelementchemie

2.5.3.1 Olivin

Im Fall des OI unterscheiden sich die verschiedenen Generationen mineralchemisch nicht voneinander. Das bedeutet, dass es keine signifikanten Unterschiede zwischen OI-Einschlüssen in Grt- oder Cpx-Porphyroklasten oder Matrix-OI gibt. Prinzipiell ist OI absolut homogen ausgebildet (Abb. 2.5-2). Lediglich wenn OI in direktem Kontakt zu Cpx vorliegt, lässt sich ein randlicher Anstieg der Ca-Konzentration auf 0.002 c.p.f.u. verzeichnen. Davon abgesehen liegen alle Haupt- und Nebenelemente innerhalb von OI homogen verteilt vor. Die gemittelte *Mg-Zahl* liegt aber bei sehr niedrigen 83.34 \pm 0.46, was die These von Carswell (1968) bestätigt. Hiernach handelt es sich bei dem Ka-Grt-Peridotit um das Produkt einer im Erdmantel partiell gebildete Schmelze, die dem Mantelperidotit aber nicht entzogen wurde, sondern in ihm wieder auskristallisierte (Kapitel 1.3.2.2).

2.5.3.2 Orthopyroxen

Opx kommt sowohl als Einschlussphase in Grt- und Cpx-Porphyroklasten als auch in der Matrix vor. Zwischen diesen verschiedenen Opx-Generationen bestehen allerdings leichte Unterschiede (Tabelle 2.5-1). Diese beschränken sich hauptsächlich auf Al. In Abb. 2.5-3 ist Opx exemplarisch anhand eines Einschlusses in Grt dargestellt, da diese innerhalb der analysierten Dünnschliffe dieser Probe die größten Opx-Kristalle darstellen. Wie zu sehen ist, liegen auch hier, abgesehen von Al und Si, sämtliche Haupt- und Nebenelemente absolut homogen verteilt vor. Al steigt zum Rand hin auf 0.056 c.p.f.u. an, bildet im Zentrum aller-

dings ebenfalls ein Plateau von 0.021 c.p.f.u. aus. Hiermit einhergehend fällt Si zum Rand hin leicht ab. Die *Mg-Zahl* liegt im Kern bei 85.48 \pm 0.26, am Rand bei 84.96 \pm 0.63.

Die Opx-Einschlüsse in Cpx fallen hingegen homogen aus und unterscheiden sich hauptsächlich durch ihren konstanten Al-Gehalt von 0.029 c.p.f.u. Hier beträgt die *Mg-Zahl* 85.17 ± 0.44.

Die Matrix-Opx-Generation zeigt ebenfalls eine Al-Zonierung mit Gehalten von 0.037 c.p.f.u. im Kern und 0.053 c.p.f.u. am Rand. Außerdem liegt Mg hier etwas niedriger und Fe²⁺ etwas höher als bei den Opx-Einschlüssen in Grt bzw. Cpx. Daraus resultiert eine leicht erniedrigte *Mg-Zahl* von 84.65 \pm 0.24 im Kern sowie 84.20 \pm 0.19 am Rand.

2.5.3.3 Klinopyroxen

Cpx liegt in Form von großen Porphyroklasten, als Einschlussphase in Grt-Porphyroklasten, sowie in der Matrix vor (Tabelle 2.5-1). Die großen Porphyroklasten (Profil-16 in Abb. 2.5-4) zeigen einen breiten homogenen Kernbereich. Am Rand steigen dann Mg und Ca etwas an. Al und Na nehmen hier ab. Die restlichen Elemente zeigen keine Zonierungen. Die *Mg-Zahl* beträgt 88.79 ± 0.40 im Kern und 88.70 ± 0.53 am Rand. Die im PP-Bild von Abb. 2.5-4 erkennbaren Entmischungslamellen innerhalb von Cpx bestehen aus Ilm. In der EMS-Analyse machen sich diese Ilm-Lamellen durch starke Ausreißer der Ti-Gehalte bemerkbar, doch ist aufgrund der geringen Ausdehnung eine saubere, von Cpx getrennte Analyse des Ilm nicht möglich. Auf den lichtmikroskopischen Bildern wirken diese Lamellen zwar relativ breit, doch ist dies optischen Effekten geschuldet, wie anhand des BSE-Bildes in Abb. 2.5-4 deutlich wird. Hier sind die Ilm-Lamellen als sehr schmale, parallel verlaufende Streifen zu erkennen.

Die Mineralchemie der Cpx-Einschlüsse in Grt unterscheidet sich etwas von jener der Cpx-Porphyroklasten. Während Al und und Na bei geringeren Werten liegen, zeigen Mg und Ca höhere Gehalte. Somit ähneln sie mineralchemisch sehr stark den Rändern der Cpx-Porphyroklasten. Für sich genommen sind diese Cpx-Einschlüsse in Grt aber auf gesamter Kristallbreite absolut homogen. Die *Mg-Zahl* liegt bei 88.53 ± 0.52.

Die Matrix-Generation von Cpx unterscheiden sich wie schon bei Opx hauptsächlich anhand des Al-Gehalts. Während der Kerngehalt von Al dem Rand der Cpx-Porphyroklasten sowie der Cpx-Einschlüsse in Grt entspricht, fällt Al im Randbereich der Matrix-Cpx-Kristalle mit 0.154 c.p.f.u. am höchsten aus. Auch die *Mg-Zahl* ist mit 87.83 \pm 0.09 im Kern und 88.21 \pm 0.81 am Rand niedriger als bei den Cpx-Porphyroklasten und Cpx-Einschlüssen in Grt-Porphyroklasten.

2.5.3.4 Granat

Die großen Grt-Porphyroklasten führen Einschlüsse von OI, Opx und Cpx. Wie anhand von Profil-09 in Abb. 2.5-5 ersichtlich ist, liegen die Haupt- und Nebenelemente von Grt über nahezu den gesamten Kristall absolut homogen mit flachen Konzentrationsdiagrammen vor. Allerdings zeigt sich, dass auf den letzten ca. 100 μ m die divalenten Kationen Fe²⁺ und Mg eine sehr starke Zonierung aufweisen. Diese Zonierungen fallen deutlich stärker aus als die der Cpx-Porphyroklasten. So steigt Fe²⁺ rapide an, während Mg genau so deutlich abfällt.

Abgesehen von Mn, welches im selben Bereich nur leicht ansteigt, zeigen sich die übrigen Elemente davon unbeeindruckt und liegen auch im äußeren Randbereich homogen vor. Im Zuge dieser starken Zonierung fällt die *Mg-Zahl* von ohnehin sehr niedrigen 65.45 \pm 0.75 auf 60.69 \pm 1.66 ab.

2.5.3.5 Amphibol

Bei dem als Bestandteil des Kelyphitsaums auftretenden Amp handelt es sich um Pargasite bis Magnesiohastingsite. Augrund dessen äußerst geringer Korngröße ist eine Profilmessung nicht möglich. Die Einzelmesspunkte zeigen aber, dass die Mineralchemie sehr heterogen ausgebildet ist.

2.5.4 Spurenelementchemie

2.5.4.1 Phosphor

Die Konzentrationsreihenfolge lautet: Grt > Ol > Cpx > Opx

In Grt liegt P relativ flach bis plateauartig verteilt vor. Das Probenmittel liegt bei $59.65 \pm 2.55 \mu g/g$. Auf den letzen μm kann der Gehalt stark abfallen, allerdings nicht zwangsläufig. So zeigt in Profil-09 in Abb. 2.5-5 nur der rechte Rand diese Abnahme. Die Grt-Ränder, die diese Abnahme zeigen, liegen im Mittel bei 47.93 \pm 5.05 $\mu g/g$.

Wie in Abb. 2.5-2 zu sehen ist, liegt P in Ol-Einschlüssen in Grt-Porphyroklasten homogen verteilt vor. In der Matrix zeigt Ol vergleichbare P-Konzentrationen. Der Probendurchschnitt liegt bei 21.55 \pm 2.30 µg/g. Es gibt aber Ausnahmen. Befindet sich Ol mit Opx in direktem Kontakt innerhalb eines Einschlusses in Grt, so kann P in Ol zu diesem Kontakt hin auf bis über 30 µg/g ansteigen (Profil-03 im Anhang). Ol als Einschluss in Cpx liegt generell bei höheren P-Gehalten, die darüber hinaus vom Kern zum Rand abfallen.

Abb. 2.5-4 zeigt anhand von Profil-16 einen großen Cpx-Porphyroklasten. Wie man sieht, liegt P auch hier über einen relativ breiten Kernbereich absolut flach verteilt vor, bevor die Konzentration zum Rand hin abfällt. Der Probenmittelwert des Kernbereichs liegt bei 11.86 \pm 0.96 µg/g, für die Ränder bei 7.04 \pm 1.03 µg/g. Als Einschluss in Grt liegen die P-Gehalte mit 8.69 \pm 2.82 µg/g dazwischen. In der Matrix zeigt Cpx mit 6.05 \pm 1.19 µg/g ähnliche P-Gehalte wie am Rand der Porphyroklasten.

Unter den Opx-Generationen sind es die Einschlüsse in Grt, die mit $1.13 \pm 0.24 \mu g/g$ über das meiste an P verfügen. Als Einschluss in Cpx liegt P niedriger, bei $0.73 \pm 0.08 \mu g/g$. Sowohl als Einschluss in Grt als auch in Cpx liegt P homogen verteilt vor. Opx in der Matrix verfügt über $0.81 \pm 0.35 \mu g/g$, aufgrund der geringen Kristalldurchmesser sind hier niemals mehr als zwei SIMS-Messpunkte möglich, weswegen keine Zonierung festgestellt werden konnte. Der relativ große Fehler wird so interpretiert, dass die P-Konzentration im Matrix-Opx über eine gewisse Streubreite verfügt.

2.5.4.2 Scandium

Die Konzentrationsreihenfolge lautet: Grt > Cpx > Ol

Grt verfügt über eine absolut homogene Sc-Verteilung wie Abb. 2.5-5 verdeutlicht. Im Probenmittel liegt Sc in Grt bei 67.83 \pm 1.56 µg/g. Eventuell vorhandene Sc-Zonierungen der äußersten Grt-Ränder wurden von der Kelyphitisierung verschlungen und sind daher nicht feststellbar.

Cpx zeigt zwischen seinen verschiedenen Erscheinungsformen, ob als Porphyroklast, in der Matrix oder als Einschluss in Grt, keine signifikanten Unterschiede des Sc-Gehalts. Die Cpx-Porphyroklasten lassen auf den letzten µm einen leichten Anstieg der Sc-Konzentration erkennen. Hier steigt der Sc-Gehalt auf durchschnittlich 29.14 ± 0.65 µg/g gegenüber dem Kernplateau von 28.13 ± 0.79 µg/g an. Dies zeigt wie schwach die besagte Zonierung ausfällt. In der Matrix und als Einschluss in Grt liegen die Sc-Werte im Bereich der Porphyroklastenränder. Ersterer beträgt 29.51 ± 0.64 µg/g, letzterer 29.73 ± 0.83 µg/g.

Bei Opx unterscheiden sich die drei möglichen Erscheinungsformen deutlich in ihren Sc-Gehalten (Tabelle 2.5-1). Liegt Opx als Einschluss in Grt vor, so zeigt Sc darüber hinaus eine Zonierung mit erhöhten Randkonzentrationen von $1.22 \pm 0.13 \,\mu$ g/g gegenüber einem sehr breit ausgebildeten Kernbereich mit einem Gehalt von $0.98 \pm 0.07 \,\mu$ g/g. Als Einschluss in Cpx liegt Sc niedriger, bei $0.83 \pm 0.07 \,\mu$ g/g. Am meisten Sc zeigt Opx in der Matrix. Hier beträgt Sc $1.54 \pm 0.44 \,\mu$ g/g. Auch hier ist aufgrund der geringen Korngröße keine genauere SIMS-Analytik möglich.

Den geringsten Anteil an Sc hat OI. Als Einschluss in Grt enthält OI $0.24 \pm 0.06 \mu g/g$. Diese liegen homogen verteilt vor. In der Matrix liegt der Sc-Gehalt mit $0.18 \pm 0.05 \mu g/g$ niedriger. Als Einschluss in Cpx fällt die Konzentration noch etwas geringer aus.

2.5.4.3 Cobalt

Die Konzentrationsreihenfolge lautet: OI > Grt > Opx > Cpx

Ol verfügt mit $177.1 \pm 7.0 \mu g/g$ über das meiste Co. Die Verteilungsmuster sind immer absolut flach ohne Zonierungen, unabhängig davon, ob der analysierte Ol als Einschluss in Grt- oder Cpx-Porphyroklasten oder aber in der Matrix vorliegt.

Grt dagegen zeigt für Co eine ganz leichte Zonierung in Richtung Rand. Wie in Abb. 2.5-5 zu sehen ist, ist Co über fast die gesamte Kornbreite homogen verteilt und nimmt dann erst kurz vor Erreichen des Kornrandes ab. Im Durchschnitt liegt der Kerngehalt an Co bei 57.58 \pm 1.15 µg/g, der Rand bei 52.21 \pm 2.68 µg/g. Im Bereich von Ol-Einschlüssen in Grt zeigt Co ebenfalls eine Abnahme in Richtung des Kontaktes, so beispielsweise in den Profilen -05 und ganz leicht in -03 (beide im Anhang). Von Opx- und Cpx-Einschlüssen zeigt sich die Co-Verteilung des Grt dagegen unbeeindruckt (Profil-01 & -02 im Anhang).

Auch für Co unterscheiden sich die Opx-Varianten voneinander. Den höchsten Gehalt von 52.55 \pm 1.64 µg/g hat Opx als Einschluss in Grt vorzuweisen. Als Einschluss in Cpx liegt Co in Opx bei 47.61 \pm 1.66 µg/g, in der Matrix bei ähnlichen 47.41 \pm 2.69 µg/g. Eine Zonierung hat keine der drei Varianten aufzuweisen (Abb. 2.5-3).

Die Co-Verteilung in Cpx ist relativ homogen, egal ob als Matrixphase oder als Einschluss in Grt. Auch die großen Cpx-Porphyroklasten zeigen keine Zonierungen. Darüber hinaus unterscheiden sich diese Cpx-Phasen nicht signifikant voneinander. Bei den Porphyroklasten liegt der Mittelwert bei 18.09 \pm 0.72 µg/g Co. In der Matrix liegt dieser bei 18.75 \pm 1.46 µg/g und als Einschluss in Grt bei 18.95 \pm 1.32 µg/g.

Obwohl Amp für sämtliche Haupt- Neben- und Spurenelemente sehr heterogen vorliegt, sodass eine Quantifizierung nicht sinnvoll erscheint, zeigt sich Co hier relativ homogen.

2.5.4.4 Zink

Die Konzentrationsreihenfolge lautet: OI > Opx > Grt > Cpx

OI enthält im Probendurchschnitt $134.6 \pm 10.8 \mu g/g$ Zn. Abgesehen von einer etwas größeren Streubreite, wie der Fehler zeigt, liegt Zn in OI homogen verteilt vor (Abb. 2.5-2). Allerdings ließ sich eine Zn-Anomalie in OI beobachten. So verfügt der OI-Kristall in Profil-03 (Anhang), bei dem es sich um einen zusammen mit Opx von Grt eingeschlossenen OI handelt, über deutlich mehr Zn. Hier liegt der Durchschnitt des OI-Kristalls bei 182.6 ± 8.6 μ g/g. Der einzige feststellbare Unterschied liegt eben in der Vergesellschaftung mit Opx innerhalb eines Einschlusses. Der entsprechende Opx zeigt allerdings keine Auffälligkeiten. Außerdem können kleine OI-Kristalle der Matrix mitunter niedrigere Zn-Gehalte um 120 μ g/g aufweisen. Diese Erniedrigung des Zn-Gehalts lässt sich eventuell durch in Nachbarschaft auftretenden IIm erklären.

Auch bei den Zn-Gehalten unterscheiden sich, wie auch bei Co, die drei Opx-Varianten dieser Probe voneinander. Am meisten Zn befindet sich in Opx als Einschluss in Grt (Abb. 2.5-3). Hier liegt der Gehalt bei 73.44 \pm 4.88 µg/g. Als Einschluss in Cpx enthält Opx noch 64.69 \pm 2.99 µg/g Zn. In der Matrix sind es schließlich nur 51.66 \pm 2.20 µg/g. Die intrakristalline Verteilung ist aber in jedem dieser Fälle homogen.

Auch Grt zeigt ein Verteilungsmuster für Zn, das dem für Co gleicht (Abb. 2.5-5). So ist der Kernbereich sehr breit und absolut homogen ausgebildet und erst ganz spät in Richtung Kristallrand fällt der Zn-Gehalt ab. Der Kerngehalt liegt im Mittel bei $35.31 \pm 2.70 \mu g/g$, der Rand bei $20.47 \pm 3.53 \mu g/g$. Auch bei Zn verursachen Ol-Einschlüsse in Grt eine Abnahme der Zn-Konzentration des Grt nahe des Kontaktes (Profile -05, und ganz leicht -03 im Anhang). Allerdings verursacht bei Zn auch Opx als Einschlussphase eine leichte Abnahme der Zn-Konzentration in Grt, so in Profil-02 (Anhang). Cpx-Einschlüsse zeigen aber auch hier keine Auswirkung auf die Zn-Verteilung in Grt. Dies wird anhand von Profil-01 (Anhang) deutlich. Hier hat die Anwesenheit eines Cpx-Einschlusses am Rand eines Grt keine Auswirkung auf dessen Zn-Zonierungsverlauf.

Ähnlich wie für Co in Cpx, liegt auch Zn in Cpx homogen verteilt vor. Es gibt zwar minimale Unterschiede in der Konzentration zwischen Cpx-Porphyroklasten, Einschlüssen in Grt und der Matrix, doch sind diese nicht signifikant. Innerhalb der Porphyroklasten zeigt sich außerdem keine Zonierung. Letzere enthalten $12.23 \pm 1.94 \mu g/g$. Etwas höher liegen Cpx in Grt mit $13.79 \pm 1.58 \mu g/g$ und der Matrix-Cpx, der über $13.94 \pm 2.27 \mu g/g$ Zn verfügt.

2.5.5 Mineralgleichgewichte und Geothermobarometrie

Die äußerst breit ausgebildeten Kernplateaus der Grt- und Cpx-Porphyroklasten zusammen mit den Kernen der Opx-Einschlüsse in Grt liefern die bemerkenswert konsistenten Ergebnisse des P-T-Peaks von 31.1 kbar und 761°C in Tabelle 2.5-3, was für eine sehr gute Äquilibrierung unter diesen P-T-Bedingungen spricht. Das P-T-Minimum von 15.1 kbar bei 703°C ergibt sich aus den Rändern der großen Grt- und Cpx-Porphyroklasten zusammen mit den Rändern der Matrixphasen. Verwendet man anstelle der Cpx-Porphyroklasten-Rändern die Ränder des Matrix-Cpx, so ergeben sich keine signifikanten Unterschiede, was für die Verlässlichkeit der Ergebnisse, sowie die Reäguilibrierung der Mineralränder unter den retrograden Bedingungen spricht. Da OI, egal ob als Einschluss in Grt, Cpx oder als Matrix, keine mineralchemischen Unterschiede zeigt, kann man davon ausgehen, dass dieser aufgrund seiner hohen Diffusivität nicht mehr mit den Kernen der Grt- bzw. Cpx-Porphyroklasten, sondern eher mit deren Rändern und der Matrix im Gleichgewicht steht. Daher liefert das P_{Ca-in-Ol}-Geobarometer (Brey & Köhler 1990) für den Kern lediglich einen intermediären *P*-Wert von 24.1 kbar. Wie zu sehen ist, liefert das besagte Barometer am Rand hingegen absolut vergleichbare Werte zum bevorzugten P_{Al-in-Opx}-Geobarometer (Brey & Köhler 1990), was die Annahme bestätigt, dass OI bereits vollständig überprägt wurde.

Die *P*-*T*-Ergebnisse der einzelnen Einschlussphasen mit ihren Wirt-Phasen liefern fortwährend Ergebnisse, die zwischen dem *P*-*T*-Maximum und -Minimum liegen, daher wird zwecks Übersichtlichkeit auf eine genaue Darstellung der einzelnen Einschlussphasen-*P*-*T*-Ergebnisse verzichtet. Somit können die in Tabelle 2.5-3 aufgeführten Ergebnisse für das *P*-*T*-Maximum und *P*-*T*-Minimum als verlässliche *P*-*T*-Annahmen dieses Grt-Peridotits angesehen werden. Die verschiedenen Generationen der Mineralphasen liefern eine große Anzahl an Verteilungskoeffizienten. In Tabelle 2.5-2 sind diese aufgelistet. Hierbei wurde darauf geachtet nur solche Verteilungskoeffizienten aufzustellen, die sich entweder dem entsprechenden Maximum oder dem Minimum der berechneten *P*-*T*-Bedingungen zuordnen lassen. **Abb. 2.5-2.** Ol-Analyse, exemplarisch anhand von Profil-06 aus Probe Ka, Profillänge 850 μm. *Oben:* BSE-Bild des analysierten Ol-Einschlusses in Grt, sowie eingezeichnetem Profilverlauf. *Mitte:* BSE-Bild der Matrixmineralphasen, BB 610 μm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Hauptund Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.5-3. Opx-Analyse, exemplarisch anhand von Profil-02 aus Probe Ka, Profillänge 1005 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Opx-Einschlusses in Grt, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.5-4. Cpx-Analyse, exemplarisch anhand von Profil-16 aus Probe Ka, Profillänge 2650 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Cpx-Porphyroklasten mit Kontaktmineralen, Matrix und IIm-Entmischungslamellen (IIm), sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.5-5. Grt-Analyse, exemplarisch anhand von Profil-09 aus Probe Ka, Profillänge 5300 μm. *Oben:* PP-Bild des analysierten Grt-Porphyroklasten mit Druckschatten und Matrix, sowie eingezeichnetem Profilverlauf. *Mitte:* XP-Bild eines Grt-Druckschattens mit Matrixmineralphasen, BB 5.1 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Spuren- elemente [µg/g] Sc Sc Co Zn	Mg# Cr#	K K ∑ Kationen	Z C a g	Ni	Mn	Fe ²⁺	រ ្ទុ	A	⊒ 9	Kationen- besetzung [c.p.f.u.] Si	Μ	K₂0	Na-0	CaO Migo	NIC	MnO	FeO	Fe ₂ O ₃	Cr ₂ O ₃	Al ₂ O ₃	TiO ₂	SiO ₂	[Gew%]	Analyse	
21.55 ± 2.30 0.24 ± 0.06 177.1 ± 7.0 134.6 ± 10.8	83.34 ± 0.46	0.000 3.011	0.000	0.008	0.002	n.b.	0.000	0.000	0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100.541	0.010	0.012	44.734 0.012	0.405	0.099	15.938	n.b.	0.013	0.006	0.012	39.329	homogen	<u>c</u>	
			0.002										0.000	58U U									zu Cpx	Rand	
0.18 ± 0.05																							Matrix	<u>c</u>	0
0.73 ± 0.08 0.83 ± 0.07 47.61 ± 1.66 64.69 ± 2.99	85.17 ± 0.44 5.69 ± 2.01	4.014	0.009	0.002	0.004	n.b.	0.002	0.029	0.001	4 070	100.022	0.010	0.019	006.75	0.077	0.118	10.091	n.b.	0.063	0.699	0.056	56.166	homogen	(in Cpx)	
1.13 ± 0.24 0.98 ± 0.07 52.55 ± 1.64 73.44 ± 4.88	85.48 ± 0.26 6.73 ± 3.32	0.000 4.011	0.008	0.002	0.003	n.b.	0.001	0.021	0.001	1 078	100.346	0.014	0.200	1 200 0 200	0.088	0.102	9.917	n.b.	0.054	0.499	0.048	56.650	Kern	(in Grt)	
1.22 ± 0.13	84.96 ± 0.63 4.21 ± 0.29	0.001 4.015	0.009	0.003	0.004	n.b. 0 298	0.002	0.056	0.002	- о лл	100.744	0.017	0.272	0.2422	0.091	0.121	10.231	n.b.	0.089	1.363	0.060	56.090	Rand		
0.81 ± 0.35 1.54 ± 0.44 47.41 ± 2.69 51.66 ± 2.20	84.65 ± 0.24 4.70 ± 2.20	0.000 4.011	0.009	0.002	0.004	n.b.	0.002	0.037	0.001		100.471	0.008	0.031	32.205 0 228	0.072	0.133	10.426	n.b.	0.066	0.890	0.053	56.317	Kern	(Matrix)	Onv
	84.20 ± 0.19 4.55 ± 0.18	0.001 4.014	0.009	0.002	0.004	n.b.	0.003	0.053	0.001	1 050	100.941	0.012	0.032	32.1UZ	0.058	0.130	10.742	n.b.	0.092	1.299	0.043	56.197	Rand		

ľabelle 2.5-1. F(ortsetzung						
	Cpx		Cpx	Cpx		Grt	
Analyse	(Porphyroklast)		(in Grt)	(Matrix)			
[Gew%]	Kern	Rand	homogen	Kern	Rand	Kern	
SiO ₂	54.672	54.368	54.630	54.926	54.071	40.744	
TIO2	0.157	0.151	0.133	0.125	0.240	0.074	
AI ₂ O ₃	3.164	2.861	2.742	2.797	3.596	22.955	
Cr ₂ O ₃	0.531	0.540	0.483	0.493	0.511	0.790	
Fe ₂ O ₃	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	
E PO	3 306	3 468	3 564	3 783	3 572	15 373	
Oc M				0.10	1000	0.00 1 1 1 0	
	160.0	0.04		0.00 0	0.047	0.444	
NIC	0.044	0.045	0.042	0.032	0.045	0.019	
MgO	15.082	15.277	15.437	15.318	14.992	16.285	
CaO	20.630	21.038	20.981	20.977	20.999	4.474	
Na ₂ O	2.231	2.009	2.023	2.027	2.059	0.025	
K,O	0.008	0.00	0.008	0.002	0.004	0.008	
Z	99.957	99.816	100.077	100.515	100.126	101.125	
Kationen-							
besetzung							
[c.p.f.u.]							
Si	1.982	1.978	1.982	1.984	1.962	2.956	
F	0.004	0.004	0.004	0.003	0.007	0.004	
A	0.135	0.123	0.117	0.119	0.154	1.963	
ບັ	0.015	0.016	0.014	0.014	0.015	0.045	
Fe ³⁺	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	
Fe ²⁺	0.103	0.106	0.108	0.114	0.108	0.930	
M	000	0 002	0000	0 002	0 001	0.027	
ĨN	2000	200.0	1 0 0	100.0		100.0	
N.	100.0	00000	11.4.	100.0	00.00		
BM	0.815	0.829	0.835	0.829	0.811	1./61	
Са	0.801	0.820	0.816	0.812	0.816	0.348	
Na	0.157	0.142	0.142	0.142	0.145	0.003	
¥	0.000	0.000	0.000	0.000	0.000	0.001	
∑ Kationen	4.017	4.020	4.020	4.017	4.020	8.038	
#6M	88.79 ± 0.40	88.70 ± 0.53	88.53 ± 0.52	87.83 ± 0.09	88.21 ± 0.81	65.45 ± 0.75	
#LO	10.13 ± 0.76	11.22 ± 1.62	10.54 ± 2.67	10.56 ± 0.76	8.76 ± 3.18	2.26 ± 0.28	
Spuren- elemente [יומ/מ]							
La'u	11.86 + 0.96	7.04 + 1.03	8.69 + 2.82	6.05 + 1.19		59.65 + 2.55	
Sc	28.13 ± 0.79	29.14 ± 0.65	29.73 ± 0.83	29.51 ± 0.64		67.83 ± 1.56	
ပိ	18.09 ± 0.72		18.95 ± 1.32	18.75 ± 1.46		57.58 ± 1.15	
Zn	12.23 ± 1.94		13.79 ± 1.58	13.94 ± 2.27		35.31 ± 2.70	ดั

D _{Min/Min}	Р	Sc	Co	Zn
Ol _{Matrix} /Opx _{Matrix}	26.54 ± 6.128	0.114 ± 0.025	3.736 ± 0.112	2.606 ± 0.078
Ol _{Matrix} /Cpx _{Matrix}	3.560 ± 0.468	0.006 ± 0.001	9.448 ± 0.470	9.655 ± 1.016
Opx _{Matrix} /Cpx _{Matrix}	0.134 ± 0.044	0.052 ± 0.007	2.529 ± 0.178	3.705 ± 0.420
Grt _{Por-Kern} /Cpx- _{Por-Kern}	5.027 ± 0.116			
Grt _{Por-Rand} /Cpx _{Por-Rand}	6.804 ± 0.616			
Grt _{Por} /Opx _{in-Grt-Kern}		69.43 ± 1.218		
Grt _{Por} /Opx _{in-Cpx}		81.32 ± 3.323		
Grt _{Por} /Cpx _{Por-Kern}		2.412 ± 0.015		
Grt _{Por-Kern} /Opx _{in-Grt}	52.96 ± 2.338			0.481 ± 0.011
Grt _{Por-Kern} /Opx _{in-Cpx}	81.93 ± 4.874		1.209 ± 0.022	0.546 ± 0.017
Grt _{Por-Kern} /Cpx _{Por}			3.182 ± 0.024	2.889 ± 0.086
Grt _{Por-Rand} /OI _{Matrix}	2.224 ± 0.156		0.295 ± 0.006	0.152 ± 0.012
Grt _{Por-Rand} /Opx _{Matrix}	59.01 ± 15.70			0.396 ± 0.033
Grt _{Por-Rand} /Cpx _{Matrix}	7.917 ± 1.319		2.785 ± 0.173	1.468 ± 0.234
OI _{Matrix} /Cpx _{Por-Rand}	3.060 ± 0.169	0.006 ± 0.001		
Opx _{in-Grt} /Cpx _{Por-Kern}	0.095 ± 0.005			
Opx _{in-Grt-Kern} /Cpx _{Por-Kern}		0.035 ± 0.001		
Opx _{in-Cpx} /Cpx _{Por-Kern}	0.061 ± 0.004	0.030 ± 0.001		
Opx _{in-Grt} /Cpx _{Por}			2.904 ± 0.031	6.008 ± 0.193
Opx _{Matrix} /Cpx _{Por-Rand}	0.115 ± 0.029	0.053 ± 0.007		

Tabelle 2.5-2. Probe Ka: Anhand der Mittelwerte von Tabelle 2.5-1 für die primären Mineralphasen berechnete Verteilungskoeffizienten der Spurenelemente. Angegebener Fehler: absoluter Fehler des Verteilungskoeffizienten (2σ). Die Farben entsprechen den zugehörigen *P*-*T*-Bedingungen aus Tabelle 2.5-3.

Tabelle 2.5-3. ProbeKa:BerechnetegeothermobarometrischeDatenanhandderMittelwerte in Tabelle 2.5-1.

Ka

Geothermobarometer [kbar; °C]	<i>P-T</i> -Maximum	<i>P-T</i> -Minimum
P_{Ca-in-Ol} (Brey & Köhler 1990)	-	15.6
P _{Al-in-Opx} (Brey & Köhler 1990)	31.1	15.1
T_{2Px} (Brey & Köhler 1990)	761	703
$\mathcal{T}_{Ca-in-Opx}$ (Brey & Köhler 1990)	809	765
T _{Fe-Mg-Grt-Cpx} (Krogh 1988)	745	625
T_{Fe-Mg-Grt-Cpx} (Krogh Ravna 2000)	744	592
Т_{Fe-Mg-Grt-OI} (О'Neill & Wood 1979; О'Neill)	-	543

2.6 Probe Gu: Grt-Pyroxenit

Abb. 2.6-1. Links: Angesägtes Handstück der Probe Gu, BB 120 mm. Rechts: Gesteinsgefüge anhand eines Dünnschliffes, BB 20 mm.

2.6.1 Probenlokalität

Auch diese Probe entstammt der Western Gneiss Region in den Kaledoniden Norwegens. Allerdings kommt dieser Grt-Pyroxenit nicht vom Festland, sondern von der Lokalität Gurskebotn auf der kleinen, dem Festland Norwegens vorgelagerten Insel Gurskøy.

2.6.2 Petrographie

Die vorliegende ultrabasitische Probe besteht aus Grt, Opx und Cpx, ist aber frei von Ol. Somit handelt es sich bei dieser Probe nicht um einen Peridotit, sondern um einen Pyroxenit, genauer gesagt um einen Grt-Pyroxenit. Auch das Gesteinsgefüge dieser skandinavischen Probe ist anisotrop ausgebildet. So fällt bei genauer Betrachtung des Handstücks in Abb. 2.6-1 auf, dass eine leichte Einregelung der Kristalle vorliegt. Es kann zwar noch nicht von einer Foliation gesprochen werden, doch lässt sich eine klare Vorzugsorientierung erkennen. In Abb. 2.6-1 links verläuft diese in etwa horizontal, in Abb. 2.6-1 rechts von NW nach SE. Parallel zu dieser Vorzugsorientierung wechseln sich außerdem Cpx-reichere (grün in Abb. 2.6-1 links) und Cpx-ärmere Lagen (beige in Abb. 2.6-1 links) ab. Die Kristallgrößen sind homogen verteilt, daher ist das Gestein als gleichkörnig zu bezeichnen. Die durchschnittlichen Kristalldurchmesser entlang der Vorzugsorientierung, also die maximale Kristallerstreckung beträgt in etwa 5 mm. Außerdem fällt auf, dass die Risse, welche die Kristalle durchziehen, hauptsächlich senkrecht zur Vorzugsorientierung verlaufen (Abb. 2.6-1 rechts). Dies ist besonders bei Grt der Fall, da Kopfschnitte der Px naturgemäß sowieso zwei Spaltrichtungen aufweisen können. Grt weist innerhalb der Cpx-reicheren und Cpx-ärmeren Lagen keinerlei optische Unterschiede auf. Generell ist Grt von einem Kelyphit unterschiedlichen Ausmaßes umgeben. Auch für Opx und Cpx fallen abgesehen von deren relativer Häufigkeit keine Unterschiede zwischen den Cpx-reicheren und Cpx-ärmeren Lagen des Gesteins auf. Das Bild in Abb. 2.6-1 rechts entstammt einer Cpx-reicheren Lage. Cpx weist teilweise Entmischungen von opaken Phasen auf (Abb. 2.6-3). Als weitere sekundäre Phase tritt Amp auf.

2.6.3 Haupt- und Nebenelementchemie

2.6.3.1 Orthopyroxen

Opx liegt weitestgehend homogen vor, mit sowohl konstanter Haupt- als auch Nebenelementzusammensetzung, unabhängig davon ob er sich innerhalb einer Cpx-reicheren oder Cpx-ärmeren Lage befindet. Allerdings gibt es in Bezug auf die Homogenität zwei Ausnahmen. So zeigt Opx im Al am Kristallrand, im Kontakt zu Grt einen Anstieg von 0.031 im Kern auf 0.061 c.p.f.u. Außerdem zeigt auch Ca wie beispielsweise in Profil-04 (Abb. 2.6-2) eine Zonierung, allerdings ausschließlich im Kontakt zu Cpx, in Form eines Anstiegs von 0.005 auf 0.008 c.p.f.u. Fe²⁺ zeigt eine ganz schwache Zonierung, mit am Rand leicht höheren Werten gegenüber dem Kern. Diese Zonierung ist aber zu schwach um sie genauer zu quantifizieren. Abgesehen hiervon liegt Opx homogen vor. Die *Mg-Zahl* liegt bei 89.93 \pm 0.58.

2.6.3.2 Klinopyroxen

Im Fall des Cpx zeigen sich ebenfalls keinerlei mineralchemischen Unterschiede der Hauptund Nebenelemente zwischen Cpx-Körnern aus Cpx-reichen und Cpx-armen Lagen. Auch für Cpx fällt die Zonierung sehr schwach aus. So ist diese nicht in jedem Korn fassbar. Liegt ein Zonarbau vor, so weist der Kern von Cpx gegenüber dem Rand höhere Gehalte an Al und Na auf. Allerdings zeigt Profil-05 in Abb. 2.6-3, dass dieser Konzentrationsabfall erst nahe des Kristallrandes eintritt. Der Bereich vom Kern bis hier fällt allerdings nicht absolut flach aus, sondern ist ebenfalls leichten Schwankungen unterworfen. Demgegenüber liegen dann am Rand die Konzentrationen von Mg und Ca und minimal von Fe²⁺ höher. Auch hier gilt, dass der Anstieg erst spät beginnt und zuvor ebenfalls Schwankungen auftreten. Die *Mg-Zahl* fällt am Rand mit 92.43 ± 1.41 gegenüber dem Kern mit 92.53 ± 1.10 kaum merkbar erniedrigt aus. Die großen Fehler verdeutlichen die erwähnten Schwankungen, die zwar über die gesamte Kornbreite auftreten können, doch nur von äußerst geringem Ausmaß sind.

2.6.3.3 Granat

Wie Abb. 2.6-4 zu entnehmen ist, zeigt Grt die am stärksten ausgeprägten Zonierungen innerhalb dieser Probe. So nehmen nahe des Kornrandes vor allem Fe^{2+} und untergeordnet auch Ca zu. Mg dagegen nimmt hier stark ab. Diese Zonierungen weisen jedoch im Kern einen sehr breiten Plateaubereich auf. Nahe des Kristallrandes steigen die Gradienten dann aber stark an, was dazu führt, dass Fe^{2+} am Rand auf 0.837 gegenüber 0.662 c.p.f.u. im Kern ansteigt. Auch Ca steigt von 0.305 auf 0.317 c.p.f.u. an. Mg dagegen fällt von 2.069 auf 1.848 c.p.f.u. ab. Desweiteren nehmen Cr zum Rand hin ganz leicht ab und Mn zu. Entsprechend der Ausprägung der Zonierung nimmt die *Mg-Zahl* vom Kern bei 75.77 ± 0.83, deutlich auf 68.83 ± 1.56 am Rand ab. Je nachdem wie weit sich die Kelyphitisierung bereits ausgebreitet hat, fallen die Differenzen zwischen Kern- und Rand-Konzentrationen der

zonierten Elemente unterschiedlich groß aus. Bei der Ermittlung der Durchschnittswerte wurde demnach darauf geachtet intermediäre Werte nicht zu verwenden, sondern nur die Rand-Werte einfließen zu lassen, die gegenüber dem Kern die größte Differenz aufweisen. Auch Grt zeigt keinerlei Unterschiede zwischen den zwei angesprochenen Lagen dieses Gesteins.

2.6.3.4 Sekundäre Phasen

Neben den erwähnten opaken Entmischungen in Cpx, welche sich aber einer genaueren Untersuchung aufgrund ihrer geringen Größe entziehen, tritt als sekundäre Mineralphase Amp auf. Dieses kann sowohl einigermaßen homogen ausgebildet sein wie Profil-02 in Abb. 2.6-5 zeigt, als auch stark heterogen. In letzterem Fall, der hauptsächlich im Bereich des Kely eintritt, kann Si auf unter 6 c.p.f.u. abfallen und im Zuge dessen Al auf über 3 c.p.f.u. zunehmen. Anhand des Cr-Gehalts lassen sich zwei Typen von Amp innerhalb dieser Probe unterscheiden (siehe Tabelle 2.6-1). Taxonomisch entsprechen beide Typen Edenit bis Magnesiohornblende, da die A-Position mal mit über 0.5 c.p.f.u., mal mit unter 0.5 c.p.f.u. besetzt ist. Aussagen darüber, wann bzw. wo Typ1 oder Typ2 auftreten, lassen sich aber nicht treffen. Amp innerhalb des Kely ist zu inhomogen um näher quantifiziert zu werden. Die *Mg-Zahlen* von Typ1 und Typ2 unterscheiden sich nicht. Für ersteres beträgt sie 90.66 \pm 0.96, für letzteres 90.70 \pm 0.88.

2.6.4. Spurenelementchemie

2.6.4.1 Phosphor

Die Konzentrationsreihenfolge lautet: Grt >> Cpx > Opx

Innerhalb dieser Probe zeigt sich P äußerst unäquilibriert, was sich anhand der großen Fehler der Mittelwerte widerspiegelt. Grt führt die Konzentrationsreihenfolge mit 153.1 ± 25.9 µg/g an. Doch wäre es absolut unangebracht auch nur von einer nahezu äquilibrierten Verteilung innerhalb Grt zu sprechen. So zeigt beispielsweise Abb. 2.6-4 anhand Profil-08 einen erhöhten Bereich an P im linken Kristallfünftel. Dieser lässt sich aber nicht erklären. Und auch alle weiteren Grt-Profile zeigen keinerlei System, wohl aber deutliche Schwankungen der P-Gehalte (Profil-01 im Anhang). Die geringen Fehler der einzelnen Messpunkte innerhalb der Profile verdeutlichen allerdings, dass es sich hierbei nicht um Mischanalysen handelt, sondern vielmehr um inhomogen verteilte P-Gehalte innerhalb von Grt.

Auch Cpx zeigt keinerlei P-Äquilibrierung. Der Probenmittelwert für P in Cpx liegt bei 8.55 ± 7.00 µg/g. Auch dieser sehr große Fehler des Mittelwertes, sowie der Verlauf von Profil-05 in Abb. 2.6-3 spiegeln einmal mehr die unzureichende Äquilibrierung sowie die Schwankungen der P-Gehalte innerhalb gleicher Phasen, ja sogar innerhalb eines Kristalles wider. Auch für Cpx lässt sich keinerlei System innerhalb der P-Verteilung erkennen.

Für P in Opx sieht es nicht anders aus, als für Grt und Cpx (Abb. 2.6-2). Auch hier zeigt der sehr große Fehler des Mittelwertes eine absolut unzureichende Äquilibrierung an, die keinerlei System erkennen lässt. So liegt der Mittelwert bei $0.58 \pm 0.30 \mu g/g$.

Der sehr große Fehler des Probenmittelwertes für P in Amp von $39.12 \pm 16.77 \mu g/g$ verdeutlicht auch dessen Inhomogenität für P (Abb. 2.6-5). Es lässt sich für P kein Unterschied zwischen Typ1 und Typ2 der Amp-Phasen feststellen.

2.6.4.2 Scandium

Die Konzentrationsreihenfolge lautet: Grt > Cpx >> Opx

Sc ist innerhalb dieser Probe das einzige systematisch zonierte Spurenelement. So zeigt das Hauptmineral für Sc, nämlich Grt einen Kerngehalt von $81.89 \pm 1.21 \mu g/g$, der am Rand auf 57.76 $\pm 1.69 \mu g/g$ abfällt (Profil-08 in Abb. 2.6-4).

Auch Cpx liegt für Sc systematisch zoniert vor (Abb. 2.6-3). So nimmt Sc hier zum Rand hin zu. Im Probenmittel liegt der Kerngehalt bei 24.45 \pm 2.58 µg/g. Am Rand hingegen liegt der Sc-Gehalt bei 33.06 \pm 4.91 µg/g.

Der geringste Sc-Wirt Opx zeigt hierfür ebenfalls eine Zonierung, allerdings nur im Kontakt zu Grt. Während das Probenmittel für Sc in Opx bei geringen $0.70 \pm 0.30 \mu g/g$ liegt, beträgt die Sc-Konzentration am Kontakt zu Grt $1.23 \pm 0.17 \mu g/g$. Der relativ große Fehler des Kernkonzentrations-Mittelwertes zeigt, dass die Schwankungen hier relativ groß sind, doch fällt die Zonierung zu Grt deutlich genug aus um als solche erkannt zu werden.

Im Amp liegt Sc sehr inhomogen vor. Typ1 und Typ2 lassen sich auch nicht anhand von Sc unterscheiden. So kommt der Mittelwert auf 19.96 \pm 10.47 µg/g.

2.6.4.3 Cobalt

Die Konzentrationsreihenfolge lautet: Grt > Opx > Cpx

Grt enthält die größte Co-Konzentration, die nur ganz leicht zoniert vorliegt, wie Profil-08 in Abb. 2.6-4 zeigt. So beträgt der über weite Bereiche der Grt-Körner konstante Kerngehalt im Probenmittel $63.11 \pm 2.34 \mu g/g$. Am Rand nimmt dieser leicht auf durchschnittlich $67.28 \pm 3.15 \mu g/g$ zu.

Abgesehen von intrakristallinen Schwankungen lassen sich für Co innerhalb von Opx und Cpx keine quantifizierbaren Zonarbauten erkennen. In Opx liegt der Probenmittelwert für Co bei 52.75 \pm 3.39 µg/g, in Cpx bei 17.80 \pm 1.65 µg/g.

Auffallend ist, dass Amp, das für die Spurenelemente P und Sc inhomogen vorliegt, mit einem Probendurchschnittsgehalt von 48.79 \pm 3.73 µg/g Co verhältnismäßig sehr homogen auftritt.

2.6.4.4 Zink

Die Konzentrationsreihenfolge lautet: Opx > Grt > Cpx

Aufgrund der größeren messtechnischen Ungenauigkeiten gegenüber Co lässt sich für Zn in sämtlichen primären Phasen keinerlei systematische Zonierung feststellen. So betragen die
Zn-Mittelwerte in absteigender Reihenfolge $41.71 \pm 4.36 \ \mu$ g/g in Opx, $21.58 \pm 3.03 \ \mu$ g/g in Grt und $8.32 \pm 1.62 \ \mu$ g/g in Cpx.

Auch für Zn zeigt sich Amp deutlich homogener als für P bzw. Sc. Der Probenmittelwert liegt bei 24.80 \pm 2.94 µg/g.

2.6.5 Mineralgleichgewichte und Geothermobarometrie

Dieser Grt-Pyroxenit verfügt nicht über mehrere Generationen der einzelnen Phasen, wie die Grt-Peridotite dieser Studie. Zudem enthält diese Probe nur drei primäre Phasen und keinen Ol. Somit gestaltet sich die P-T-Geschichte im Gegensatz zu denen der anderen Grt-Peridotiten dieser Arbeit deutlich weniger komplex. Tabelle 2.6-3 zeigt die Ergebnisse der Geothermobarometrie. Während die Mineralkerne das P-T-Maximum gut übereinstimmend mit 22.6 kbar und 685°C wiedergeben, ergeben die Mineralränder niedrigere P- und etwas niedrigere *T*-Werte, von 13.7 kbar und 673°C. Diese Randwerte weisen allerdings etwas größere Unterschiede zwischen den einzelnen Geothermometern auf. Hierbei weichen die Ergebnisse der T_{Fe-Mg-Grt-Cpx}-Geothermometer (Krogh 1988; Krogh Ravna 2000) nach unten ab. Dies lässt sich wahrscheinlich anhand der schneller ablaufenden Diffusionen von Fe und Mg erklären, auf welchen diese Geothermometer beruhen. Die Geothermometer von Brey & Köhler (1990) hingegen basieren darüber hinaus auch auf dem Austausch des langsamer diffundierenden Ca zwischen den Pyroxenen, was dazu führt, dass sie sich etwas träger an die neuen P-T-Bedingungen, im vorliegenden Fall eine Dekompression mit einhergehender Abkühlung, anpassen. Trotz der schlechten Äquilibrierung von P wurden hierfür ebenfalls Verteilungskoeffizienten berechnet. Diese sind zusammen mit den Verteilungskoeffizienten der übrigen Spurenelemente in Tabelle 2.6-2 angegeben. Aufgrund der extrem langsamen Diffusionseigenschaften von P sind die entsprechenden Verteilungskoeffizienten, sowie die von Sc für die Kernbereiche der Mineralphasen, den P-T-Bedingungen der Mineralkerne zuzuordnen. Die Sc-Verteilungskoeffizienten der Mineralränder sowie die der divalenten und somit schneller diffundierenden Spurenelemente Co und Zn sollten dagegen mit den P-T-Bedingungen der Mineralränder korrelieren.

Abb. 2.6-2. Opx-Analyse, exemplarisch anhand von Profil-04 aus Probe Gu, Profillänge 1715 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Opx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.6-3. Cpx-Analyse, exemplarisch anhand von Profil-05 aus Probe Gu, Profillänge 1305 µm. *Oben:* BSE-Bild des analysierten Cpx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Mitte:* PP-Bild einer Cpx-reichen Lage, BB 4 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (20). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. 2.6-4. Grt-Analyse, exemplarisch anhand von Profil-08 aus Probe Gu, Profillänge 2060 μm. *Oben:* BSE-Bild des analysierten Grt-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Mitte:* PP-Bild eines Grt mit Kely, BB 8 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Näher<u>e Erläuterungen im Text.</u>

Abb. 2.6-5. Amp-Analyse, exemplarisch anhand von Profil-02 aus Probe Gu, Profillänge 715 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Amp-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Spur Elema Sc Zr	Cr Mg	∑ Kati	⊋∽	Z	C	M	z	≤	Fe	Ē	<u></u> ,	▶ =	1 0	Katio beset [c.p.f	м	H ₂	K ₂	Na	Ca	ВW	Ni	Mn	Fe	Fe ₂		Al ₂	JIC	Sic	[Gew	Anal	
en- infe infe infe infe infe infe infe infe	##	onen	-	<u>w</u>				د	2+	÷		_		nen- zung .u.]		0	0	Õ	0	0	0	0	0	õ	õ	õ	0_2	22	%]	yse	
0.58 ± 0.30 0.70 ± 0.30 52.75 ± 3.39 41.71 ± 4.36	89.93 ± 0.58 6.43 ± 3.83	3.997	0.000	0.001	0.005	1.766	0.004	0.002	0.198	0.002	0.002	0.001	1.986		100.289		0.009	0.017	0.149	34.436	0.147	0.066	6.872	n.b.	0.079	0.765	0.023	57.733	Kern	Chy	Onv
1.23 ± 0.17											0.001	0 0 6 1														1.511			zu Grt	Rand	
					0.008														0.224										zu Cpx	Rand	
8 8	92 11																														
.55 ± 7.00 .45 ± 2.58 .80 ± 1.65 .32 ± 1.62	.53 ± 1.10 .01 ± 4.29	4.006	0.000	0.171	0.799	0.795	0.002	0.001	0.064	n h	0.021	0.003	1.983		100.164		0.009	2.446	20.746	14.825	0.062	0.035	2.136	n.b.	0.731	3.932	0.100	55.152	Kern	Chy	Cny
33.06 ± 4.91	92.43 ± 1.41 12.57 ± 5.73	4.008	0.000	0.151	0.818	0.814	0.002	0.001	0.067	о.922	0.022	0.002	1.979		100.126		0.008	2.162	21.186	15.156	0.057	0.029	2.214	n.b.	0.763	3.561	0.078	54.919	Rand		
153.1 ± 25.9 81.89 ± 1.21 63.11 ± 2.34 21.58 ± 3.03	75.77 ± 0.83 3.06 ± 0.27	8.031	0.001	0.003	0.305	2.069	0.001	0.016	0.662	4 n	0.061	1 0/1	2.962		100.820		0.014	0.023	4.002	19.479	0.025	0.267	11.106	n.b.	1.089	23.185	0.078	41.575	Kern	C	1-0
57.76 ± 1.69 67.28 ± 3.15	68.83 ± 1.56 2.60 ± 1.08	8.023	0.001	0.003	0.317	1.848	0.002	0.030	0.837	0.002	0.052	1 06/	2.969		100.523		0.013	0.018	4.085	17.120	0.031	0.485	13.823	n.b.	0.917	23.011	0.034	40.999	Rand		
39.12 ± 16.77 19.96 ± 10.47 48.79 ± 3.73 24.80 ± 2.94	90.66 ± 0.96 5.89 ± 1.44	2.000 15.517	0.031	0.788	1.667	3.903	0.024	0.004	0.055	0.375	0.116	0.068	6.643		99.377	2.138	0.174	2.897	11.094	18.670	0.215	0.033	0.472	3.557	1.047	11.324	0.643	47.365	Typ1		Δmn
	90.70 ± 0.88 4.02 ± 0.95	2.000 15.462	0.049	0.782	1.606	3.948	0.026	0.004	0.005	0.07 1	0.071	U.U65	6.795		99.867	2.156	0.277	2.900	10.778	19.044	0.233	0.037	0.045	3.864	0.648	10.440	0.621	48.869	Typ2		

Tabelle 2.6-2. Probe Gu: Anhand der Mittelwerte von Tabelle 2.6-1 für die primären Mineralphasen berechnete Verteilungskoeffizienten der Spurenelemente. Angegebener Fehler: absoluter Fehler des Verteilungskoeffizienten (2σ). Die Farben entsprechen den zugehörigen *P-T*-Bedingungen aus Tabelle 2.6-3.

D _{Min/Min}	Р	Sc	Со	Zn
Орх/Срх	0.068 ± 0.012		2.963 ± 0.057	5.012 ± 0.189
Opx _{Kern} /Cpx _{Kern}		0.029 ± 0.002		
Grt/Opx	264.4 ± 25.39			0.517 ± 0.016
Grt _{Kern} /Opx _{Kern}		116.5 ± 8.124		
$\mathbf{Grt}_{Rand} / \mathbf{Opx}_{Rand}$		46.98 ± 3.055		
Grt _{Rand} /Opx			1.276 ± 0.025	
Grt/Cpx	17.92 ± 2.071			2.593 ± 0.102
Grt _{Kern} /Cpx _{Kern}		3.349 ± 0.090		
$\mathbf{Grt}_{Rand}/Cpx_{Rand}$		1.747 ± 0.073		
Grt _{Rand} /Cpx			3.779 ± 0.079	

Tabelle 2.6-3. Probe Gu: Berechnete geothermobarometrische Daten anhand der Mittelwerte in Tabelle 2.6-1.

Gu

Geothermobarometer [kbar; °C]	<i>P-T</i> -Maximum	<i>P-T</i> -Minimum
P_{Ca-in-Ol} (Brey & Köhler 1990)	-	-
P _{Al-in-Opx} (Brey & Köhler 1990)	22.6	13.7
T_{2Px} (Brey & Köhler 1990)	685	673
T_{Ca-in-Opx} (Brey & Köhler 1990)	723	690
T _{Fe-Mg-Grt-Cpx} (Krogh 1988)	708	582
T_{Fe-Mg-Grt-Cpx} (Krogh Ravna 2000)	673	532
T _{Fe-Mg-Grt-OI} (O'Neill & Wood 1979; O'Neill 1980)	-	-

3 Diskussion

Nach der ausführlichen Untersuchung der Proben und deren Dokumentation in Kapitel 2 werden die Ergebnisse nun diskutiert. Hierzu werden die Spurenelemente in der Reihenfolge P, Sc, Co und Zn besprochen. Besonderheiten, die während der Untersuchung auftraten, werden angesprochen und interpretiert. Des Weiteren wird der Frage nachgegangen, ob sich die untersuchten Spurenelemente für die Geothermobarometrie von Erdmantelgesteinen eignen. Zu diesem Zweck werden die in Kapitel 2 aufgestellten Verteilungskoeffizienten der Spurenelemente zwischen den primären Mineralphasen der Gesteine (Tabellen 2.X-2) mit den ermittelten *P-T*-Bedingungen (Tabellen 2.X-3) in Kontext gebracht und daraufhin untersucht, ob die Verteilungsgleichgewichte dieser Spurenelemente von *P* und/oder *T* beeinflusst werden. Bei dieser Überprüfung liegt der Schwerpunkt für die *T*-Daten generell auf dem 2-Px-Geothermometer (Brey & Köhler 1990) und für die *P*-Daten auf dem Al-in-Opx-Geobarometer (Brey & Köhler 1990). Bei den Spl-Peridotit-Proben Fi und IV19 muss aufgrund der Abwesenheit von Grt das Ca-Austausch-Ol-Cpx-Geobarometer (Brey & Köhler 1990) verwendet werden. Für die langsam diffundierenden Spurenelemente P und Sc sowie für die zwei Spl-Peridotit-Proben kommen u.a. abweichende Geothermometer zum Einsatz.

Wie in Kapitel 2 gezeigt werden konnte, ist es äußerst schwierig wenn nicht unmöglich, vollständig äquilibrierte orogene Ultramafitite zu finden. Es wurde bei der Probenauswahl zwar versucht möglichst gut äquilibrierte Proben auszuwählen, doch zeigen sämtliche Proben chemische Zonierungen ihrer Mineralphasen in unterschiedlichem Ausmaß. Insbesondere Grt weist in den Proben dieser Arbeit prinzipiell zonierte Mineralkörner auf. Dies reicht von positiven oder negativen Plateaus, also flach ausgebildeten Kernbereichen mit zum Rand hin abfallender bzw. zunehmender Konzentration bis hin zur mehrphasigen Zonierung in Probe VG, wo die Konzentrationsdiagramme einiger Elemente zwischen Kern und Rand zusätzlich noch ein "Randplateau" zeigen. Allerdings haben alle hier beschriebenen Proben im Kernbereich der Pyroxene sowie in Grt zumindest flach ausgebildete Kernplateaus, die einen ehemaligen Gleichgewichtszustand anzeigen, den die Probe dann aufgrund sich ändernder P-T-Bedingungen verlassen hat. So ließen sich durch die sorgfältige Untersuchung der intrakristallinen Elementverteilungen die P-T-Bedingungen dieses älteren Zustands anhand der Kernbereiche bestimmen. Zusätzlich wurden auch die Elementkonzentrationen der Mineralränder untersucht und für diese ebenfalls die P-T-Bedingungen ermittelt. Schon anhand der Probendokumentation in Kapitel 2 ist ersichtlich, dass die mineralchemischen Inhomogenitäten bzw. Zonierungen für unterschiedliche Elemente sehr verschieden ausfallen können. Während das eine Element nahezu flach verteilt vorliegt und nur ganz nahe des Kornrands einen Gradienten in seiner Konzentration aufweist, ist ein anderes Element sehr stark zoniert und zeigt lediglich ein sehr schmales Kernplateau. Außerdem fällt auf, dass OI die einzige Mineralphase ist, die fast ausschließlich mit homogener Hauptelementzusammensetzung auftritt, während Grt prinzipiell zoniert vorliegt, zumindest für einige Elemente. Opx und Cpx liegen dazwischen. Somit scheinen für sämtliche hier untersuchten Elemente die Diffusionsgeschwindigkeiten in der Reihenfolge OI, Opx & Cpx, Grt abzunehmen.

3.1 Die Verteilung von Phosphor

3.1.1 Beobachtungen

Für die untersuchten Proben lässt sich die folgende Konzentrationsreihenfolge feststellen:

Dabei ist auffällig, dass bei den Spl-Peridotit-Proben Fi und IV19 die P-Konzentrationen von Opx und Cpx sehr nahe beieinander liegen, wohingegen sie bei den Grt-Peridotiten sowie der Grt-Pyroxenit-Probe Gu weit auseinander liegen. Bei diesen Proben verfügt Cpx stets über ein Vielfaches des P-Gehalts von Opx. Die Untersuchung der Proben verdeutlicht, dass P mit Abstand die langsamste Diffusionsgeschwindigkeit und somit auch den geringsten Grad an Äquilibrierung besitzt. So zeigt der Zonarbau des großen Grt-Porphyroklasten in Probe VG für P das breiteste Kernplateau (Abb. 2.2-5). Darüber hinaus verläuft dieses aber nicht so flach wie das der übrigen zonierten Elemente. Generell zeigt P von allen analysierten Elementen die größten Schwankungen und Unregelmäßigkeiten. Ein gutes Beispiel hierfür ist Profil-19 in Probe VG (Anhang). Hier bildet das Ol-Konzentrationsdiagramm für P in der ersten Hälfte einen spitzen Berg. Die geringen Fehler der Messpunkte sprechen aber gegen die Verwerfung dieser Messpunkte als "Mischanalysen", sondern eher dafür, dass P hier einfach sehr heterogen verteilt vorliegt, und die gemessenen Werte den tatsächlichen P-Konzentrationen der gemessenen Kornbereiche entsprechen (siehe Kapitel 2.2.4.1). Eine Ursache dieser Heterogenität ist nicht ersichtlich. Darüber hinaus kann P manchmal systematisch verlaufende Verteilungsmuster zeigen, die sich aber nicht erklären lassen, so Profil-03 der Probe Ka (Anhang). Die Proben aus der WGR der norwegischen Kaledoniden stellen bezüglich ihrer metamorphen Entwicklung die ältesten Proben dieser Arbeit dar (Kapitel 1.3.2). Es fällt auf, dass Probe Ka für P eine, gemessen an dessen sonstigem Auftreten innerhalb dieser Arbeit, ausgesprochen gute Äquilibrierung zeigt, zumindest in den Kernbereichen der primären Mineralphasen (Kapitel 2.5). Nun zeigt aber Profil-03, welches einen Ol-Einschluss im Kontakt zu einem Opx-Einschluss innerhalb eines Grt-Porphyroklasten darstellt, in seinem Verlauf einen markanten Abfall der Konzentration. Wenn man den Profilverlauf näher betrachtet, so fällt auf, dass der P-Gehalt in OI, im Kontakt zu Opx innerhalb des Einschlusses bei über 30 µg/g liegt und dann in Richtung des beide umschließenden Grt kontinuierlich auf die durchschnittliche P-Konzentration in Olivin innerhalb der gesamten Probe abfällt. Eine Erklärung hierfür ist äußerst schwierig zu finden, da dieses Phänomen so ausgeprägt nur einmal beobachtet werden konnte. Es könnte sich bei der höheren P-Konzentration in Ol um einen älteren Zustand handeln, der sich innerhalb dieses OI-Einschlusses im Kontakt zu ebenfalls eingeschlossenem Opx erhalten hat. In dieser Probe haben Opx-Einschlüsse innerhalb von Grt gegenüber den Opx-Einschlüssen in Cpx und dem Matrix-Opx prinzipiell einen etwas erhöhten P-Gehalt (Tabelle 2.5.1). Die übrigen OI-Einschlüsse wurden dagegen mittlerweile überprägt. Somit scheint eine Äquilibrierung von P, sollte ein Ultramafitit diesen Zustand erreicht haben, deutlich länger erhalten zu bleiben als bei den anderen untersuchten Elementen dieser Arbeit. Allerdings kann davon ausgegangen werden, dass die zur Gleichgewichtseinstellung benötigte Zeit wohl sehr groß ausfällt. Probe Gu, die auch aus der WGR stammt und somit ein

vergleichbares Metamorphosealter besitzt, zeigt dagegen eine sehr unäquilibrierte P-Verteilung.

Probe Fi zeigt eine weitere Besonderheit für P. Bereits Zanetti et al. (1999) beschreiben für die Ol- und manchmal auch Opx-Körner des Finero-Peridotits mikrotektonische Deformationsgefüge. In Probe Fi schlägt sich bei OI die Mikrodeformation in der intrakristallinen P-Verteilung nieder. Als Beispiel wäre das Profil-02 in Abb. 2.3-2 sowie Profil-16 (Anhang) derselben Probe zu nennen. Hier fallen Heterogenitäten der P-Verteilung in OI auf, die mit mikrotektonisch hervorgerufenen kink-bands zusammen fallen. Etwas Ähnliches zeigt, ebenfalls in Probe Fi, Profil-12 in Abb. 2.3-3. Auch hier ist ein Mineralkorn "gekinkt", doch hierbei handelt es sich um Opx. Bei diesem zeigt sich die Mikrodeformation auch in den Ca-, Al-, und Cr-Konzentrationsdiagrammen. Für das Ol-Korn von Profil-02 gilt aber, dass sich die Mikrodeformation ausschließlich in der P-Verteilung ausdrückt. Wie Eingangs zu diesem Kapitel angesprochen wurde, ist OI die Mineralphase, die unter den hier bearbeiteten am schnellsten reäguilibriert. Wenn man nun anhand von Probe Fi davon ausgeht, dass sich Mikrodeformationen auch in der Mineralzusammensetzung niederschlagen, so scheint sich Ol diesbezüglich bereits wieder "ausgeheilt" zu haben, abgesehen von dem nur sehr langsam diffundierenden P. Da die intrakristalline Diffusion in Opx langsamer abläuft als in OI, haben sich hier auch die Auswirkungen der Mikrodeformation auf die Mineralzusammensetzung (insbesondere Ca, Al, Cr) noch erhalten. Zu dieser Thematik sei auf die Arbeit an Erdmantel-Xenolithen von Schäfer (2015) verwiesen. Da diese Kombination aus P-Heterogenität und Mikrodeformation in der vorliegenden Arbeit nur in Probe Fi gefunden wurde und daher keine probenübergreifenden Zusammenhänge bestehen, wird auf dieses Thema nicht näher eingegangen.

Weiterhin zeigt die Dokumentation der Proben, dass lediglich in größeren Körnern, wie beispielsweise Porphyroklasten oder Einschlussphasen, eine P-Äquilibrierung wahrscheinlich ist. Matrixphasen, die kleiner und i.d.R. jünger und im Zuge einer dynamischen Rekristallisation entstanden sind, zeigen dagegen deutlich größere Streubreiten der P-Gehalte.

3.1.2 Abhängigkeit der P-Verteilung von Druck und Temperatur

Die nun ausgiebig dokumentierte Trägheit des Spurenelements P wirft für die Untersuchung der *P-T*-Abhängigkeit der Verteilung zwischen den Mineralphasen ein Problem auf. Lägen mehrere Proben mit absolut homogener Mineralchemie, sowohl der Haupt- als auch der Neben- und Spurenelemente vor, so ließe sich eine Überprüfung der *P-T*-Abhängigkeit der P-Verteilungskoeffizienten durchführen. Mit bereits bestehenden Geothermobarometern könnten die *P-T*-Bedingungen der in den Proben dokumentierten Gleichgewichtszustände bestimmt und die P-Verteilungskoeffizienten mit diesen Daten abgeglichen werden. Bei Vorhandensein einer *P*- und/oder *T*-Abhängigkeit könnten auf Grundlage der bestimmten *P-T*-Daten P-Geothermobarometer kalibriert werden. Aber welches etablierte Geothermobarometer st dazu geeignet bei zonierten Proben, wie es für orogene Ultramafitite prinzipiell der Fall zu sein scheint, die *P-T*-Bedingungen zum Zeitpunkt der P-(Teil)-Äquilibrierung abzuschätzen? Die für die Probenbeschreibungen in Kapitel 2 angewandten Geothermobarometer basieren allesamt auf deutlich schneller diffundierenden Elementen als P.

Auch das ausschließlich auf dem relativ großen Ca²⁺ basierende Ca-in-Opx-Geothermometer, das sich zwar erwartungsgemäß langsamer auf sich ändernde *P-T*-Bedingungen einstellt als die übrigen in Kapitel 2 verwendeten Geothermometer, scheint für P trotzdem deutlich zu schnell zu reäquilibrieren und ist daher ebenfalls eher ungeeignet. So wäre es bei der von P an den Tag gelegten sehr langsamen Diffusion möglich, dass ein flacher Kernbereich für P in einer stark zonierten Probe einem *P-T-*Zustand entspricht, der sich durch keines dieser Geothermobarometer mehr darstellen lässt. Hier hilft uns eventuell eine von Seitz et al. (1999) durchgeführte Studie. Diese Arbeit enthält ein Geothermometer, das auf dem Austausch von Cr zwischen koexistierenden Opx und Cpx beruht. Dieses Element diffundiert deutlich träger, als die Elemente der in der vorliegenden Arbeit bisher verwendeten etablierten Geothermometer.

Abb. 3.1-1 dient der Abschätzung möglicher *P-T*-Abhängigkeiten der P-Verteilung zwischen den primären Mineralphasen. Es zeigt die natürlichen Logarithmen der P-Verteilungskoeffizienten aufgetragen gegen die ermittelten *T*-Daten, dargestellt als 10000/*T*. Dies gilt sowohl für *T*-Daten, die anhand der 2-Px-Geothermometrie bestimmt wurden (A), als auch für *T*-Daten, die mittels des T_{Cr} -Geothermometers von Seitz et al. (1999) berechnet wurden (B). Für das Verteilungsverhältnis Ol/Opx scheinen zwar die T_{Cr} -Werte schlechter zu passen, doch zeigt sich Opx/Cpx hierfür deutlich besser korreliert mit 10000/*T*. Die *T*-Ergebnisse des kompletten Datensatzes (inkl. Schäfer 2015) für die von Waldow (2010) aufgestellten P-Geothermometer (T_P) sind ebenfalls eingetragen (kleine dunkelgraue Punkte auf dunkelgrauer Linie). Wie sich zeigt, bestätigen die Ergebnisse dieser Arbeit, kombiniert mit denen von Schäfer (2015), dargestellt als schwarze Kreise, dass die P-Verteilung zwischen Opx und Cpx abhängig von *T*, wobei keine Korrelation mit P zu beobachten ist (Abb. 3.1-1 C).

Für Ol/Opx und Ol/Cpx weichen die Ergebnisse dieser Arbeit allerdings deutlich von denen von Waldow (2010) ab. Während für Ol/Opx bei Verwendung der T_{Cr} -Daten (Abb. 3.1-1 B) noch eine einigermaßen akzeptable Übereinstimmung zwischen den Xenolith-Proben (Schäfer 2015) mit dem Geothermometer von Waldow (2010) zu erkennen ist, weichen die orogenen Ultramafitit-Proben deutlich von letzterem ab. Diese liegen allesamt bei höheren T-Werten. Somit wäre die P-Verteilung Ol/Opx nur als Geothermometer zu bestätigen, wenn Indizien für eine ältere P-Äquilibrierung der hier abweichenden orogenen Ultramafitite bei niedrigerer T sprechen würden als anhand des T_{Cr} -Geothermometers ermittelt wurde, was die Verschiebung im Diagramm nach links erklären könnte, doch ist dies hier nicht gegeben. Für die *T*_{2Px}-Daten ergeben die Ol/Opx-Verteilungskoeffizienten der vorliegenden Arbeit (inkl. Schäfer 2015) zwar eine relativ gute Korrelation (Abb. 3.1-1 A), doch verläuft diese bei deutlich höheren T-Werten als die anhand des P-Geothermometers von Waldow (2010) berechneten Daten. Noch auffälliger ist die Abweichung für die Verteilung Ol/Cpx. Hier weichen die orogenen Ultramafitite leicht, die Spl-Peridotite (die drei am weitesten entfernten Punkte in Abb. 3.3-1 A Ol/Cpx und Abb. 3.1-1 B Ol/Cpx) extrem von den übrigen ab. Zwar zeigen die drei Verteilungskoeffizienten der Spl-Peridotite für sich genommen ebenfalls eine positive Steigung (Abb. 3.1-1 B), doch ist unter Berücksichtigung der sehr geringen Steigung des Geothermometers von Waldow (2010) die Abweichung viel zu groß.

Für die P-Verteilungen Ol/Opx, Ol/Cpx und Opx/Cpx scheint aber keine Korrelation von In*D* und *P* vorzuliegen (Abb. 3.1-1 C). Für Grt/Ol und Grt/Opx könnte sich aber eine vermuten

lassen. Bei genauer Betrachtung des Diagramms für Grt/OI fällt aber auf, dass hier der Trend der Xenolith-Proben (Schäfer 2015) einen entgegengesetzten Trend zu den hier analysierten orogenen Ultramafititen bzw. dem Gesamttrend aufweist.

Alles in allem ist davon auszugehen, dass die T_{Cr} -Werte aufgrund der langsameren Diffusion von Cr in den Mineralphasen von Ultramafititen theoretisch passender zur Kalibrierung eines möglichen P-Geothermometers sein müssten, wie die P-Verteilungskoeffizienten zwischen Opx und Cpx verdeutlichen (Abb. 3.1-1 B). Die Ergebnisse der übrigen P-Verteilungsgleichgewichte lassen allerdings nicht erkennen, welche *T*-Daten die Äquilibrierungsbedingungen besser widerspiegeln. So scheint Ol/Opx besser mit den T_{2Px} -Daten zu korrelieren (Abb. 3.1-1 A), doch weicht dieser Trend deutlich von den mit dem P-Geothermometer von Waldow (2010) berechneten Daten ab.

So bleibt auf Basis der vorliegenden Ergebnisse festzustellen, dass P für die Geothermobarometrie von orogenen Ultramafititen ungeeignet scheint, da P zu langsam diffundiert und daher meist ungenügend äquilibriert. Die Proben Ka (Kapitel 2.5) und Gu (Kapitel 2.6) verdeutlichen dies. Kann man bei ersterer aufgrund der homogenen intrakristallinen P-Verteilung davon ausgehen, dass P hier gut äquilibriert vorliegt, zeigt sich letztere völlig unäquilibriert und das, obwohl beide aus der WGR stammen.

Liegt P tatsächlich einmal mit "relativ homogen" ausgebildeter, intrakristalliner Verteilung in den Mineralphasen vor, so scheitert das Vorhaben ein Geothermobarometer zu kalibrieren an der Frage, mit welchen *T*-Daten dies geschehen sollte. Die diffusive Trägheit des Spurenelements P in den primären Mineralphasen von orogenen Ultramafititen verhindert daher die Verwendung von P für die Geothermobarometrie. Tabelle 3.1-1 führt dies noch einmal anhand einer Gegenüberstellung der verschiedenen Geothermometer-Daten mit den Ergebnissen für die P-Geothermometer von Waldow (2010) vor Augen. So belegt ein orogener Ultramafitit mit relativ homogener bzw. systematisch zonierter Mineralzusammensetzung der Haupt- und Nebenelemente, aber mit stark zonierter bzw. inhomogener intrakristalliner P-Verteilung, nur eine "bewegte Vergangenheit" der Probe, bevor diese unter relativ konstanten Bedingungen reäquilibrierte bzw. teiläquilibrierte.

3.2 Die Verteilung von Scandium

3.2.1 Beobachtungen

Die Konzentration von Sc präsentiert sich innerhalb der analysierten Proben mit qualitativ konstanter Reihenfolge:

Grt > Cpx > Opx > Spl > Ol

Die Konzentrationsdiagramme lassen für Sc in den Hauptmineralphasen von orogenen Ultramafititen starke Ähnlichkeiten zu den trivalenten Elemente Al und Cr erkennen (Kapitel 2). Liegt ein Mineral für Al und/oder Cr zoniert vor, so ist dies auch für Sc zu beobachten. Die Diffusionsgeschwindigkeiten dieser drei Elemente innerhalb der Mineralphasen dieser Arbeit scheinen demnach vergleichbar zu sein. Diese sind zwar schneller als für das sehr träge P, doch deutlich langsamer als die von Co und Zn.

Abb. 3.1-1. Diagramme der Verteilungskoeffizienten des Spurenelements P. Aufgetragen ist der In*D* gegen die reziproke *T* (10000/*T*) in Kelvin. A: Temperaturen basieren auf T_{2Px} (Brey & Köhler 1990). B: Temperaturen bei diesen Diagrammen basieren auf T_{Cr} (Seitz et al. 1999). C: In*D* gegen *P* in kbar. Blaue Rauten: Orogene Ultramafitite der vorliegenden Arbeit; schwarze Kreise: Xenolithe (Schäfer 2015); kleine dunklegraue Punkte mit dunkelgrauer Linie: Ergebnisse nach T_{P} (Waldow 2010). Fehlerindikatoren: absolute Fehler der Verteilungskoeffizienten (2 σ), teilweise kleiner als Symbole.

Tabelle 3.1-1. Zusammenfassung der berechneten Temperaturen in °C für die bearbeiteten Proben. Diesen sind die Ergebnisse für die P-Geothermometer von Waldow (2010) gegenübergestellt. Für jede Probe sind die Maxima (Max) und Minima (Min) aufgelistet. Nähere Details sowie die ermittelten Drücke sind Kapitel 2 zu entnehmen.

Probe	Gu		Ka		AAR-9		VG		Fi		IV-19	Э	
	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	
T_{2Px} (Brey & Köhler 1990)	685	673	761	703	809	754	821	819	712	607	713	705	
Τ _{Ca-in-Opx} (Brey & Köhler 1990)	723	690	809	765	809	727	824	801	914	728	897	826	
Т _{Fe-Mg-Grt-Cpx} (Krogh 1988)	708	582	745	625	970	668	830	735					
Т_{Fe-Mg-Grt-Cpx} (Krogh Ravna 2000)	673	532	744	592	938	633	807	719					
T _{cr} (Seitz et al. 1999)	532	497	543	616	756	625	734	639	1034	859	1299	1129	
Τ _{P Ol/Opx} (Waldow 2010)				488		437	593		594	468	670		
Т _{Р ОІ/Срх} (Waldow 2010)			24	47; 307		271	289		-7	-24	23		
Τ _{P Cpx/Opx} (Waldow 2010)	552	5	37; 609 64	45; 675	712	594	796		1429	1114	1474	1313	

3.2.2 Abhängigkeit der Sc-Verteilung von Druck und Temperatur

Nach diesen Erkenntnissen bezüglich der Ähnlichkeit von Sc zu Al und Cr stellt sich natürlich wieder die Frage, mit welchem Geothermobarometern nun die Äquilibrierungsbedingungen für Sc idealerweise zu bestimmen sind. Die 2-Px-, sowie Ca-in-Opx- und Grt-Cpx-Geothermometer scheinen, da sie auf divalenten Elementen basieren, hierzu eher unpassend. Die Verwendung des bereits in Kapitel 3.1.2 für P genutzten T_{Cr} -Geothermometers von Seitz et al. (1999) scheint daher für Sc besonders gut geeignet. Die Beobachtungen bezüglich der Diffusionsgeschwindigkeiten von Al, Cr und Sc sprechen eindeutig für dessen Verwendung. In Abb. 3.2-1 und Abb. 3.2-2 sind die Verteilungskoeffizienten für Sc, dargestellt als In*D*, gegen 10000/*T* aufgetragen. In Abb. 3.2-1 beruhen die *T*-Daten auf Geothermometern, die auf dem Austausch divalenter Elemente basieren und in Abb. 3.2-2 auf dem T_{Cr} -Geothermometer.

Wie sich in Abb. 3.2-1 zeigt, ergeben die Daten für Ol/Opx eine Art Punktwolke. Zwar lässt sich ein Trend mit negativer Steigung erkennen, doch ist diese Interpretation nur unter Verwendung der Ergebnisse dieser Arbeit in Kombination mit den Xenolith-Daten von Schäfer (2015) möglich, da die jeweiligen Datensätze für sich alleine keine Trends zeigen. Somit ist hierbei der Zusammenhang von InD mit 10000/T als nicht ausreichend zu bewerten. Der Blick auf Abb. 3.2-2 offenbart dagegen einen genau gegenläufigen Trend mit positiver Steigung. Unter Vernachlässigung der orogenen Grt-Peridotite AAR-9, VG und Ka (die drei Werte mit den größten Fehlerindikatoren, die in Abb. 3.2-2 Ol/Opx weiter rechts liegen) würde sich sogar ein recht schöner Trend ergeben, bei dem die orogenen Spl-Peridotite den Xenolith-Datensatz von Schäfer (2015) ergänzen. Die orogenen Grt-Peridotite weichen allerdings von diesem Trend ab, hin zu niedrigeren T-Werten. Nun könnte dies so zu interpretieren sein, dass die Sc-Verteilung noch etwas träger auf sich ändernde P-T-Bedingungen reagiert, als die von Cr und die Sc-Verteilungskoeffizienten der Proben AAR-9, VG und Ka somit älteren, höheren *T*-Werten entsprechen würden, was wiederum die Peak-Bedingungen dieser Gesteine erhöhen würde. Doch zeigt der Blick auf die Verteilungen von Sc zwischen Ol und Cpx sowie Opx und Cpx (Abb. 3.2-2), dass eine generelle Verschiebung der erwähnten Sc-Verteilungskoeffizienten der orogenen Grt-Peridotit-Proben AAR-9, VG und Ka zu höheren *T*-Werten, also im Diagramm nach links, für eine schwächer ausfallende Korrelation zwischen $\ln D_{Sc}^{OI/Cpx}$ bzw. $\ln D_{Sc}^{Opx/Cpx}$ mit 10000/*T* sorgen würde. Die deutlich besseren Korrelationen der Sc-Verteilungen zwischen Ol/Cpx und Opx/Cpx mit den reziproken T-Daten der vorliegenden Arbeit sprechen allerdings gegen diesen Ansatz. Somit kann davon ausgegangen werden, dass die Verteilung von Sc zwischen Ol und Opx nicht für die Geothermometrie geeignet ist. Anders scheint es demnach für die Sc-Verteilungen zwischen Ol und Cpx sowie Opx und Cpx zu sein. Diese zeigen für beide verwendeten Geothermometer (Abb. 3.2-1 und Abb. 3.2-2) negative Korrelationen mit 10000/T. Allerdings scheinen für $\ln D_{Sc}^{Opx/Cpx}$ die T_{Cc} -Daten, wie aufgrund der beschriebenen Ähnlichkeit zwischen Cr und Sc zu erwarten, die bessere Korrelation aufzuweisen. Es fällt aber auf, dass die Regressionsgerade der vorliegenden Studie eine geringere Steigung aufweist, als die des Sc-Geothermometers von Seitz et al. (1999). Die Ergebnisse für letzteres Geothermometer sind als kleine dunkelgraue Punkte auf dunkelgrauer Linie in den Diagrammen für Opx/Cpx dargestellt. In der vorliegenden Arbeit wurde penibel darauf geachtet, die Zonierungen der

Mineralphasen zu verstehen und demzufolge für Kern- und für Randbereiche Verteilungskoeffizienten zu berechnen und mit den für diese Bereiche ermittelten *P-T*-Daten abzugleichen. Hierin wird der Grund für die abweichende Steigung liegen.

Bei den übrigen Verteilungskoeffizienten lässt sich eine eindeutige Korrelation mit 1000/*T* nicht feststellen. Besonders die Verteilungsgleichgewichte zwischen Spl und den Silikaten sprechen für eine Unabhängigkeit von In*D* von der reziproken Temperatur, 10000/*T*. Für die Sc-Verteilung zwischen Grt und OI lässt sich auf Basis der Daten dieser Arbeit keine Aussage treffen. Das für beide Geothermometerdaten (Abb. 3.2-1 und Abb. 3.2-2) horizontal verlaufende Diagramm für die Grt/Opx-Verteilung zeigt, dass diesbezüglich eine *T*-Abhängigkeit widerlegt ist. Die Verteilung zwischen Grt und Cpx hingegen lässt eine Korrelation mit negativer Steigung vermuten. Für eine Aussage hierzu sind aber noch mehr Daten notwendig.

Bezüglich der *P*-Abhängigkeit der Sc-Verteilungskoeffizienten ist die zuletzt genannte Grt/Cpx-Verteilung die einzige mit einer relativ deutlichen Korrelation (Abb. 3.2-3). Hier zeigt $InD_{sc}^{Grt/Cpx}$ eine positive Korrelation mit *P*. Dies spricht für eine Steuerung der Sc-Verteilung zwischen Grt und Cpx durch *P* und *T*. Für die Frage der *P*-Abhängigkeit der Sc-Verteilungen zwischen Grt und OI sowie Grt und Opx gilt, dass im ersten Fall die Datenlage für eine definitive Aussage zu gering ist und im letzten Fall aufgrund des horizontalen Diagrammverlaufs eine *P*-Abhängigkeit ausgeschlossen werden kann. Für die Sc-Verteilungen zwischen Spl und den Silikaten lässt sich wie für *T*, auch für *P* keine Abhängigkeit erkennen. Für Ol/Opx und Opx/Cpx zeigt sich lediglich eine wage Tendenz, während Ol/Cpx gegen eine *P*-Abhängigkeit spricht. Somit scheint sich die Sc-Verteilung zwischen OI und Cpx als "*P*-insensitives" Geothermometer zu eignen. Auch Opx/Cpx kann an dieser Stelle als Geothermometer bestätigt werden. Der Einfluss von *P* auf dieses Geothermometer ist so gering bzw. undefinierbar, dass man ihn vernachlässigen kann.

Eine lineare Regressionsanalyse der Sc-Verteilungsdaten aus der vorliegenden Arbeit, ergänzt durch die Xenolith-Daten von Schäfer (2015), führt zu den folgenden zwei Geothermometergleichungen:

 $T_{\rm Sc}^{\rm Opx/Cpx} = -3801 / (\ln D - 1.233)$ $T_{\rm Sc}^{\rm Ol/Cpx} = -2470 / (\ln D + 1.575)$

T entspricht hier der absoluten T in K.

Es kann also festgehalten werden, dass sich die Sc-Verteilungen zwischen OI und Cpx, Opx und Cpx sowie potenziell auch Grt und Cpx für die Geothermobarometrie eignen. Der Nutzen einer möglichst genauen Kalibrierung der erwähnten Geothermometer wäre von großer Bedeutung für die Rekonstruktion von *P-T*-Pfaden orogener Ultramafitite. Da sich entgegen der Motivation dieser Arbeit herausstellte, dass das Spurenelement P aufgrund seiner meist unzulänglichen Äquilibrierung nicht für die Geothermobarometrie weit zurückliegender Ereignisse geeignet ist, bleibt festzustellen, dass Sc diesbezüglich sehr gut geeignet ist.

Abb. 3.2-1. Dargestellt sind die Verteilungskoeffizienten von Sc, aufgetragen als In*D* gegen die reziproke T_{2Px} (Brey & Köhler 1990) in Kelvin. Rauten in Orange: Orogene Ultramafitite dieser Arbeit; schwarze Kreise: Xenolithe (Schäfer 2015). Des Weiteren sind Regressionsgeraden, in Orange, für die Gesamtstudie (inkl. Schäfer 2015) angegeben, sowie die *T*-Ergebnisse für $T_{Sc}^{Opx/Cpx}$ (Seitz et al. 1999) als kleine dunkelgraue Punkte mit dunkelgrauer Linie. Fehlerindikatoren: absolute Fehler der Verteilungskoeffizienten (2 σ), teilweise kleiner als Symbole.

Abb. 3.2-2. Dargestellt sind die Verteilungskoeffizienten von Sc, aufgetragen als In*D* gegen die reziproke T_{Cr} (Seitz et al. 1999) in Kelvin. Rauten in Orange: Orogene Ultramafitite dieser Arbeit; schwarze Kreise: Xenolithe (Schäfer 2015). Des Weiteren sind Regressionsgeraden, in Orange, für die Gesamtstudie (inkl. Schäfer 2015) angegeben, sowie die *T*-Ergebnisse für $T_{Sc}^{Opx/Cpx}$ (Seitz et al. 1999) als kleine dunkelgraue Punkte mit dunkelgrauer Linie. Fehlerindikatoren: absolute Fehler der Verteilungskoeffizienten (2 σ), teilweise kleiner als Symbole.

Abb. 3.2-3. Dargestellt sind die Verteilungskoeffizienten von Sc, aufgetragen als In*D* gegen *P*. Angewendete Geobarometer sind für die Grt-Peridotite $P_{Al-in-Opx}$ (Brey & Köhler 1990) und für die Spl-Peridotite $P_{Ca-Ol-Cpx}$ (Brey & Köhler 1990). Rauten in Orange: Orogene Ultramafitite dieser Arbeit; schwarze Kreise: Xenolithe (Schäfer 2015). Fehlerindikatoren: absolute Fehler der Verteilungskoeffizienten (2 σ), teilweise kleiner als Symbole.

3.3 Verteilung von Cobalt

3.3.1 Beobachtungen

Die Konzentration von Co präsentiert sich innerhalb der analysierten Proben mit qualitativ konstanter Reihenfolge:

Spl > Ol > Grt > Opx > Cpx

Die Ähnlichkeiten von Co und Mg (beide bilden divalente Ionen mit sehr ähnlichen Ionenradien (z.B. Shannon 1976; De Hoog et al. 2010)) lässt schon im Vorfeld vermuten, dass sich diese beiden Elemente in den primären Mineralphasen von Ultramafititen ähnlich verhalten. So substituiert Co für Mg und Fe²⁺ (Witt-Eickschen & O'Neill 2005). Die Konzentrationsdiagramme der meisten Mineralphasen bestätigen dies. Allerdings zeigt Grt darüber hinaus, dass Co sogar noch schneller zu diffundieren scheint als Mg. Dies kann am Beispiel der Grt-Profile in den Proben AAR-9 und VG (Abb. 2.1-5 und Abb. 2.2-5) veranschaulicht werden. Diese zeigen für Mg und Fe²⁺ sehr markant ausgebildete Zonierungen. Auch Ca, Al und Cr sind zoniert, wenn auch nicht so stark. Betrachtet man nun die Verläufe der jeweiligen Co-Konzentrationsdiagramme, so fällt auf, dass diese nahezu flach ausgebildet sind. Zwar lassen sich sehr geringe Konzentrationszunahmen von den Kernbereichen zu den Kornrändern feststellen, doch liegen diese innerhalb der Fehler. Dies ist so zu interpretieren, dass die Reäquilibrierung, die bei Mg und Fe²⁺ noch nicht bis zum Kernbereich durchgedrungen ist, im Fall des Co bereits nahezu vollständig abgelaufen ist. Auch die Amp-Phasen in den Grt-Peridotiten AAR-9 und VG, sowie dem Grt-Pyroxenit Gu belegen die schnelle Äquilibrierung von Co. Diese Amp-Phasen zeigen nämlich Mineralzusammensetzungen, die für die Spurenelemente P, Sc und Zn ganz überwiegend inhomogener, teilweise sogar sehr heterogen ausgebildet sind, wohingegen Co die beste Äquilibrierung zeigt, wie anhand der Standardabweichungen der Mittelwerte der Spurenelemente in den Tabellen 2.1-1, 2.2-1 und 2.6-1 zu sehen ist.

Aufgrund dieser äußerst schnellen Diffusion von Co werden für die Überprüfung möglicher *P*und/oder *T*-Einflüsse auf die Verteilung des Spurenelements Co die 2-Px-Geothermometrie-Daten zugrunde gelegt.

3.3.2 Abhängigkeit der Co-Verteilung von Druck und Temperatur

In Abb. 3.3-1 sind die Verteilungskoeffizienten sämtlicher primärer Mineralphasen, dargestellt als In*D*, gegen 10000/*T* aufgetragen. Bereits der erste Blick auf diese Abbildung lässt das große Potenzial von Co für die Geothermobarometrie erahnen. Allerdings muss vorerst noch etwas zu den SpI-Peridotit-Proben Fi und IV19 gesagt werden. Wie in Kapitel 2.3 und 2.4 besprochen wurde, zeigen die besagten beiden Proben starke Abweichungen der beiden anwendbaren Geothermometer (Tabelle 2.3-3 und 2.4-3). Unter Verwendung der 2-Px-Daten weichen die Verteilungskoeffizienten dieser beiden Proben in den Diagrammen der Abb. 3.3–1 nach rechts ab. Verwendet man dagegen die Ca-in-Opx-Daten, so fallen die Verteilungskoeffizienten exakt auf die Regressionsgerade der übrigen Verteilungskoeffizienten. Bei den Grt-Peridotiten fielen die Abweichungen zwischen den beiden Geothermometern mit 0 °C (AAR-9), 3 °C (VG), 48 °C (Ka) und 38 °C (Gu) deutlich geringer

aus (siehe Kapitel 2.1, 2.2, 2.5 und 2.6). Worin liegt nun die Ursache für diese, 121 °C bis 202 °C betragende Differenz zwischen den T_{2Px} und T_{Ca-in-Opx}-Werten der Spl-Peridotit-Proben Fi und IV19? Diese Differenz ist deshalb so außerordentlich, weil die Mineralzonierungen der Pyroxene in diesen beiden Proben nur gering sind. Wie bereits gezeigt werden konnte, scheint die Diffusionsrate von Co in den Mineralphasen von orogenen Ultramafititen noch höher zu liegen als die von Mg und Fe²⁺. Ca hingegen diffundiert aufgrund seines größeren Ionenradius etwas langsamer in beiden Px-Arten als die eben erwähnten Elemente Mg und Fe²⁺. Wieso korrelieren nun also sämtliche Co-Verteilungskoeffizienten der Proben Fi und IV19 besser mit den T_{Ca-in-Opx}-Werten als mit denen für das 2-Px-Geothermometer? Es ist nicht so, dass nur der eine oder andere Co-Verteilungskoeffizient dieser beiden Spl-Peridotit-Proben besser mit den $T_{Ca-in-Opx^-}$ als mit den T_{2Px} -Daten korreliert, im Gegenteil, dies gilt für alle Co-Verteilungskoeffizienten zwischen den primären Mineralphasen dieser beiden Proben. Zur Beantwortung dieser Frage muss man sich noch einmal die Entstehung des Finero-Peridotit-Körpers vor Augen führen (Kapitel 1.3.3.6). Das Szenario 2 von Lu et al. (1997a, 1997b) geht davon aus, dass der gesamte Komplex vor 270 bis 290 Ma bei hohen Temperaturen reäquilibrierte und anschließend auf unter 600°C abkühlte. Diese Abkühlung ist anhand der $T_{Ca-in-Opx}$ -Werte für die Px-Ränder von Probe Fi mit 607°C anschaulich dokumentiert, wobei Probe IV19 wohl räumlich etwas tiefer gelegen haben muss, da diese nicht ganz so weit abkühlte. Aber auch letztere dokumentiert eine Abkühlung. Auf dieses Ereignis folgte eine letzte Aufheizung der Region, während der es auch zu alkalischen Intrusionen kam. Für die Proben Fi und IV19 wäre demnach die Interpretation die folgende: Die Reäquilibrierung vor 270 bis 290 Ma war von ausreichend langer Dauer um auch die Ca-Verteilung der Px bei ca. 900°C zu reäquilibrieren. Die darauffolgende Abkühlung ist zwar bei beiden Geothermometern dokumentiert, doch erreichte die Mg-Fe²⁺-Verteilung diesen Zustand schneller, wohingegen die Ca-Verteilung verzögert reagierte. Nun kam es zur finalen Aufheizung, die nach dieser Interpretation von vergleichbarer T wie die Reäquilibrierung vor 270 bis 290 Ma war. Hierbei konnte sich allerdings keines der beiden Geothermometer vollständig einstellen, da diese Aufheizung wahrscheinlich von zu kurzer Dauer war. Die Co-Verteilung allerdings, die sich noch schneller an sich ändernde Zustandsvariablen anpassen kann als die Verteilungen von Mg und Fe²⁺, reäquilibrierte vollständiger als die anderen Elemente. Somit ließe sich erklären, warum sich die Co-Verteilungskoeffizienten zusammen mit den höheren T-Werten von ca. 900°C so gut in die Gesamttrends in Abb. 3.3-1 einfügen, wohingegen sie mit den T_{2Px} -Daten etwas vom Gesamttrend abweichen.

Es lässt sich in Abb. 3.3-1 feststellen, dass mit Ausnahme der Co-Verteilung zwischen Grt und Opx die Korrelationen aller übrigen Co-Verteilungsgleichgewichte mit T mindestens als gut zu bezeichnen sind. Bei der Co-Verteilung zwischen Grt und Opx liegen aber auch die Fehler der orogenen Ultramafitit-Verteilungskoeffizienten deutlich höher als sonst. Trotzdem ist auch diese Co-Verteilung durch T gesteuert. Allerdings fällt auf Basis der vorliegenden Arbeit das geothermobarometrische Potenzial der verbleibenden Co-Verteilungsgleichgewichte deutlich besser aus. Allen voran die Co-Verteilung zwischen OI und Cpx. Dessen Regressionsgerade zeigt gegenüber den ebenfalls sehr gut korrelierenden Co-Verteilungen Ol/Opx und Opx/Cpx die größte Steigung. Außerdem sind in Abb. 3.3-1 die Ergebnisse der hier analysierten Proben unter Verwendung des T_{Co} -Geothermometers von Seitz et al. (1999) eingetragen (kleine dunkelgraue Punkte auf dunkelgrauer Linie). Wie zu sehen ist, weist die Geothermometergleichung von Seitz et al. (1999) eine größere Steigung auf. Während dies für die bei höheren T-Werten äquilibrierten Xenolith-Proben (Schäfer 2015) nur eine leichte Abweichung darstellt, die außerdem mit steigender T abnimmt, weichen die hier analysierten, bei niedrigeren T-Werten äquilibrierten orogenen Ultramafitite doch erheblich ab. Auch hierbei muss wieder die extrem schnelle Diffusion von Co beachtet werden. Bei der vorliegenden Arbeit wurden sowohl für die Kern- als auch für die Randbereiche der Mineralkörner die Verteilungskoeffizienten der Spurenelemente berechnet. Für die Ränder aber nur dann, wenn eine genügende Anzahl der analysierten Mineralkörner die entsprechende Konzentration aufwies, die Zonierung also eindeutig als systematisch und die Randkonzentration als relativ konstant zu identifizieren war. Nun dokumentieren aber die Kornränder der orogenen Ultramafitite dieser Studie überwiegend eine Dekompression mit einhergehender Abkühlung. Liegt Co in einem ansonsten zonierten Mineralkorn homogen verteilt vor, so muss aufgrund der schnellen Diffusion von Co der P-T-Wert des jüngeren Ereignisses, also der anhand der Mineralränder berechnete P-T-Wert, verwendet werden. Es ist nämlich davon auszugehen, dass sich Co in diesem Fall bereits vollständig reäquilibriert hat, wohingegen die zonierten Elemente noch nicht so weit reäguilibriert sind. Die Möglichkeit, dass beispielsweise Mg und Fe²⁺ zoniert vorliegen, also schon auf die Dekompression und Abkühlung deutlich reagiert haben, aber Co sich gegenüber den veränderten P-T-Bedingungen bisher resistent zeigte und somit den älteren P-T-Werten zuzuordnen wäre, ist aufgrund der Ergebnisse über die Diffusionsgeschwindigkeit von Co äußerst unwahrscheinlich. Hätte man die chemischen Mineralzonierungen nicht erkannt, wie es ohne Profilmessungen der Fall gewesen wäre und würde somit lediglich die P-T-Daten der Mineralkerne verwenden, so würden sich sämtliche Verteilungskoeffizienten in den Diagrammen leicht nach links, also zu höheren Temperaturen verschieben. Somit bestätigt sich noch einmal die Bedeutung von Profilmessungen, insbesondere für Gesteine mit "komplizierter" Vergangenheit.

Da die Co-Verteilungsgleichgewichte Ol/Opx, Ol/Cpx und Opx/Cpx allesamt keine Korrelation mit *P* zeigen (Abb. 3.3-2), aber eine sehr gute mit *T* (Abb. 3.3-1), sowie große Steigungen der Regressionsgeraden in den $\ln D_{Co}$ -10000/*T*-Plots aufweisen, stellen sie alle sehr gut geeignete Geothermometer dar.

Auch die Co-Verteilungen der Phasen OI, Opx und Cpx mit Spl sind für die Geothermometrie vielversprechend. So zeigen bereits die Co-Verteilungskoeffizienten der Xenolith-Proben (Schäfer 2015) sehr schöne Korrelationen mit der reziproken, absoluten *T* (Abb. 3.3-1). Zwar wurden nur zwei orogene Spl-Peridotit-Proben im Laufe der vorliegenden Arbeit bearbeitet, doch stimmen diese mit dem Verlauf der Regressionsgeraden sehr gut überein (Abb. 3.3-1). Darüber hinaus lassen auch die besagten Co-Verteilungen zwischen Spl und den Silikaten keine *P*-Abhängigkeit erkennen, was auch diese Co-Verteilungsgleichgewichte als geeignete Geothermometer qualifiziert (Abb. 3.3-2).

Abb. 3.3-1. Dargestellt sind die Verteilungskoeffizienten von Co, aufgetragen als In*D* gegen die reziproke T_{2Px} bzw. $T_{Ca-in-Opx}$ (Brey & Köhler 1990) in Kelvin. Gelbe Rauten: Orogene Ultramafitite dieser Arbeit; schwarze Kreise: Xenolithe (Schäfer 2015). Des Weiteren sind Regressionsgeraden, in Gelb, für die Gesamtstudie (inkl. Schäfer 2015) angegeben, sowie die *T*-Ergebnisse für $T_{Co}^{Opx/Cpx}$ (Seitz et al. 1999) als kleine dunkelgraue Punkte mit dunkelgrauer Linie. Fehlerindikatoren: absolute Fehler der Verteilungskoeffizienten (2 σ), teilweise kleiner als Symbole.

Abb. 3.3-2. Dargestellt sind die Verteilungskoeffizienten von Co, aufgetragen als In*D* gegen *P*. Angewendete Geobarometer sind für die Grt-Peridotite $P_{Al-in-Opx}$ (Brey & Köhler 1990) und für die Spl-Peridotite $P_{Ca-Ol-Cpx}$ (Brey & Köhler 1990). Gelbe Rauten: Orogene Ultramafitite dieser Arbeit; schwarze Kreise: Xenolithe (Schäfer 2015). Fehlerindikatoren: absolute Fehler der Verteilungskoeffizienten (2 σ), teilweise kleiner als Symbole.

Bei den Co-Verteilungen zwischen OI, Opx, Cpx und Grt zeigt sich ebenfalls ein eindeutiger Einfluss von T (Abb. 3.3-1). Doch zeigt Abb. 3.3-2, dass darüber hinaus auch P einen Einfluss auf den Verteilungskoeffizient zu haben scheint.

Es lassen sich auf der Basis des vorliegenden Datensatzes, inklusive des Datensatzes der Xenolith-Proben von Schäfer (2015) somit neue Geothermometergleichungen aufstellen:

 $T_{Co}^{OVOpx} = 1308 / (lnD + 0.0658)$ $T_{Co}^{OVCpx} = 2138 / (lnD - 0.0441)$ $T_{Co}^{Opx/Cpx} = 1052 / (lnD + 0.0617)$ $T_{Co}^{SpI/OI} = 4404 / (lnD + 2.4936)$ $T_{Co}^{SpI/Opx} = 4262 / (lnD + 1.529)$ $T_{Co}^{SpI/Cpx} = 5187 / (lnD + 1.4943)$

Unter Vernachlässigung des Einflusses von *P* ergeben sich außerdem die folgenden Geothermometer mit Grt:

 $T_{Co}^{Grt/OI} = -1268 / (lnD - 0.1793)$ $T_{Co}^{Grt/Opx} = 196 / (lnD - 0.0291)$ $T_{Co}^{Grt/Cpx} = 1004 / (lnD - 0.1499)$

T entspricht hier der absoluten *T* in K.

Folglich präsentiert sich Co als hervorragend geeignet für die Geothermobarometrie von Ultramafititen. Insbesondere zur Detektion kurzzeitiger Ereignisse, für deren Dokumentation die etablierten Geothermometer aufgrund der zugrunde liegenden träger ablaufenden Äquilibrierungen zu langsam reagieren. Außerdem ist natürlich von Vorteil, dass es für sämtliche Verteilungen zwischen den Phasen OI, Opx, Cpx und Grt bzw. Spl ein passendes Geothermometer gibt und somit bei Abwesenheit einer dieser Phasen, wie beispielsweise OI in einem Pyroxenit, oder Cpx in einem Harzburgit, trotzdem mehrere Geothermometer-gleichungen zur Verfügung stünden. Darüber hinaus könnten die verschiedenen Geothermometer-meter zur gegenseitigen Überprüfung genutzt werden.

3.4 Verteilung von Zink

3.4.1 Beobachtungen

Die Ergebnisse in Kapitel 2 legen nahe, dass sich das Spurenelement Zn, in Bezug auf seine diffusiven Eigenschaften, sehr ähnlich wie Co verhält. Allerdings liegt bei der Konzentrationsreihenfolge, die innerhalb dieser Arbeit qualitativ konstant ist, im Gegensatz zu der von Co, Opx noch vor Grt:

Spl > Ol > Opx > Grt > Cpx

Um die Ergebnisse der vorliegenden Arbeit zum Spurenelement Zn bewerten zu können, müssen die größeren Ungenauigkeiten bei der SIMS-Analytik für die Zn- im Vergleich zur Co-Messung bedacht werden. Doch zeigt sich generell eine enge Verwandtschaft von Zn und Co. Auch Zn scheint schneller zu diffundieren als Mg und Fe²⁺, wie die flach ausgebildeten Zn-Konzentrationsdiagramme der großen Grt-Porphyroklasten in den Grt-Peridotiten zeigen (Abb. 2.1-5 und Abb. 2.2-5). Allerdings zeigen die Amp-Phasen für Zn deutlichere Heterogenitäten als für Co, wie die Standardabweichungen der Zn-Mittelwerte in den Tabellen 2.1-1, 2.2-1 und 2.6-1 erkennen lassen. Mit Ausnahme der norwegischen Grt-Peridotit-Probe Ka (Kapitel 2.5), die generell sehr reich an Zn ist und deren Opx sogar mehr Zn als Co enthält, liegt die Zn-Konzentration der einzelnen silikatischen Mineralphasen prinzipiell deutlich unter der von Co. Allerdings liegt der Gehalt an Zn in Spl in den beiden analysierten Spl-Peridotiten Fi und IV19 (Kapitel 2.3 und Kapitel 2.4) über dem von Co, was den Kontrast zwischen Spl und den Silikaten für Zn gegenüber Co noch erhöht. Teilweise verzeichnete, nach oben ausreißende Messpunkte, z.B. bei dem sehr klein ausgebildeten Opx des Kelyphits in Probe VG (Kapitel 2.2), lassen sich durch winzige, opake Phasen wie sekundären Spl erklären. In Probe Ka (Kapitel 2.5) wurde ein Ol-Einschluss in einem Grt-Porphyroklast gemessen, der bei einer deutlich höheren Zn-Konzentration liegt (Profil-03 Anhang). Die einzige feststellbare Besonderheit dieses OI liegt in seiner Vergesellschaftung mit Opx innerhalb eines Einschlusses. Da auch Opx als Einschluss in Grt dieser Probe bei höheren Zn-Gehalten liegt, lässt es sich wahrscheinlich so erklären, dass hier beide Einschlüsse durch den sie umschließenden Grt-Porphyroklast abgeschirmt wurden und die Zn-Gehalte beider Einschlussphasen somit einem älteren Gleichgewichtszustand entsprechen. Allerdings zeigt Grt im Kontakt zu diesen Einschlüssen auch eine leichte Abnahme in seiner Zn-Konzentration, was dafür spricht, dass dieses ältere Gleichgewicht heute gestört vorliegt (Profil-02, 05 im Anhang).

3.4.2 Abhängigkeit der Zn-Verteilung von Druck und Temperatur

Aufgrund der erwähnten Ähnlichkeit von Zn und Co werden zur Überprüfung der *P*-*T*-Abhängigkeit der Zn-Verteilungskoeffizienten dieselben *P*-*T*-Daten verwendet wie für Co. In Abb. 3.4-1 sind die Verteilungskoeffizienten, dargestellt als In*D* gegen die reziproke, absolute T (10000/T) aufgetragen. Obwohl sich einige Korrelationen erkennen lassen, fällt doch sofort auf, dass diese nicht so ausgeprägt und definitiv sind wie für Co. Die größeren Unsicherheiten der SIMS-Analytik für das Spurenelement Zn schlagen sich, wie im Vergleich zu Co zu sehen ist, direkt in den absoluten Fehlern der Verteilungskoeffizienten nieder. Abgesehen davon scheinen aber manche Mineralgleichgewichte prinzipiell geeignet für die Geothermo-

Abb. 3.4-1. Dargestellt sind die Verteilungskoeffizienten von Zn, aufgetragen als In*D* gegen die reziproke T_{2Px} bzw. $T_{Ca-in-Opx}$ (Brey & Köhler 1990) in Kelvin. Graue Rauten: Orogene Ultramafitite dieser Arbeit; schwarze Kreise: Xenolithe (Schäfer 2015). Des Weiteren sind Regressionsgeraden, in Schwarz, für die Gesamtstudie (inkl. Schäfer 2015) angegeben. Fehlerindikatoren: absolute Fehler der Verteilungskoeffizienten (2 σ), teilweise kleiner als Symbole.

Abb. 3.4-2. Dargestellt sind die Verteilungskoeffizienten von Zn, aufgetragen als In*D* gegen *P*. Angewendete Geobarometer sind für die Grt-Peridotite $P_{Al-in-Opx}$ (Brey & Köhler 1990) und für die Spl-Peridotite $P_{Ca-Ol-Cpx}$ (Brey & Köhler 1990). Graue Rauten: Orogene Ultramafitite dieser Arbeit; schwarze Kreise: Xenolithe (Schäfer 2015). Fehlerindikatoren: absolute Fehler der Verteilungskoeffizienten (2 σ), teilweise kleiner als Symbole.

barometrie zu sein. Für diese sind in Abb. 3.4-1 die Regressionsgeraden eingezeichnet. Der Reihe nach wären dies Ol/Cpx, Opx/Cpx, Spl/Ol, Grt/Ol und Grt/Opx. Wie Abb. 3.4-2 verdeutlicht, liegen auch hier wieder, wie schon für die Co-Verteilungen festgestellt wurde, lediglich für die Zn-Verteilungen zwischen Grt und Ol bzw. Px Korrelationen mit *P* vor.

So lassen sich unter Ergänzung des Datensatzes dieser Arbeit mit den von Schäfer (2015) an Xenolithen erhobenen Daten die folgenden Geothermometergleichungen aufstellen:

 $T_{Zn}^{OVCpx} = 1564 / (InD - 0.5603)$ $T_{Zn}^{Opx/Cpx} = 2150 / (InD + 0.6872)$ $T_{Zn}^{SpI/OI} = 6097 / (InD + 1.9152)$

Vernachlässigt man den Einfluss von *P*, dann ergeben sich zusätzlich für die Verteilungsgleichgewichte mit Grt:

> $T_{Zn}^{Grt/Ol} = -2405 / (lnD - 0.8054)$ $T_{Zn}^{Grt/Opx} = -2268 / (lnD - 1.578)$

T entspricht hier der absoluten *T* in K.

Demzufolge ist es auch möglich das Spurenelement Zn für die Geothermobarometrie von Ultramafititen zu verwenden. Hierzu wäre aber eine Verfeinerung der hier aufgestellten Geothermometergleichungen anhand einer speziellen Zn-Analytik nötig. Da aber Co innerhalb dieser Arbeit die deutlich besseren Korrelationen und außerdem für sämtliche Mineralgleichgewichte jeweils eine Geothermometergleichung parat hält, scheint es eher sinnvoll die Co-Geothermometer zu präzisieren als die für Zn.

4 Fazit

Allem voran belegt diese Studie die Notwendigkeit, bei der Untersuchung eines orogenen Ultramafitits nicht nur der inter- sondern eben auch der intrakristallinen Elementverteilung Beachtung zu schenken. Es ist klar, dass mit zunehmender Probenanzahl weniger Zeit für die Analytik jeder einzelnen Probe zur Verfügung steht. Somit ist es bei den meisten Fragestellungen nicht möglich, so hochauflösend zu messen wie in der vorliegenden Arbeit, doch ist es unabdingbar, zumindest "grobe" Profilmessungen durchzuführen. Anderenfalls ist die Gefahr zu groß, scheinbare Gleichgewichte für tatsächliche zu halten. Besonders bei orogenen Ultramafititen, die aus großen Tiefen stammen und über einen sehr lange andauernden, meist mehrphasigen und somit äußerst komplexen tektonischen Prozess an die Erdoberfläche gelangt sind, ist es Voraussetzung die chemischen Zonierungen der Mineralphasen bzw. -körner genau zu kennen. Ein hervorragendes Beispiel hierzu wären die großen Grt-Porphyroklasten der Grt-Peridotite AAR-9 und VG aus den Schweizer Alpen (Abb. 2.1-5 und Abb. 2.2-5). So ist für VG ein zweiphasig entstandener Zonarbau für Grt zu erkennen, nicht aber für die übrigen Mineralphasen, die deutlich kleinere Körner bilden. Für Probe AAR-9 ließ sich dies allerdings nicht erkennen, doch wäre ein vergleichbarer, zweiphasiger Zonarbau von Grt auch hier denkbar, wie die P-T-Daten der beiden Proben zeigen. So ergeben die angewandten Geothermobarometer für Probe VG, mit dem zweiphasigen Zonarbau in Grt, sehr gut übereinstimmende Ergebnisse (Tabelle 2.2-3) für das Gleichgewicht aus Grt-"Randplateau" und den Px-Kernen, während für AAR-9 Abweichungen innerhalb der verwendeten Geothermometer vorliegen (Tabelle 2.1.3). Letztere Abweichungen könnten dadurch erklärbar sein, dass die Kerne der Px-Körner hier ebenfalls nicht mehr mit den Grt-Kernen im Gleichgewicht standen. Ein dem Grt-Zonarbau in Probe VG entsprechendes "Randplateau" konnte aber in Probe AAR-9 nicht beobachtet werden. Eventuell ist dieses mittlerweile nur noch sehr schmal ausgebildet und entzog sich daher der Identifikation. Dafür würde auch sprechen, dass die für AAR-9 zu höheren T-Werten abweichenden Geothermometer im Fall der Probe VG für die Grt-"Ur-Kerne" in Kombination mit den Px-Kernen vergleichbare T-Werte ergeben wie für die Kernbereiche in Probe AAR-9 (Vergleich anhand von Tabellen 2.1-3 und 2.2-3). Es scheint aber unmöglich, dass in Probe VG dieser "Ur-Kern" des Grt noch mit den Px im Gleichgewicht stünde. Durch dieses Beispiel ist es also nachvollziehbar, dass reine Punktmessungen der Kernbereiche und der Ränder der einzelnen Mineralphasen zu falschen Ergebnissen führen können; immerhin liegt die Abweichung zwischen den Geothermometern für AAR-9 bei ca. 150°C. Würde man die höheren T-Werte für die Geobarometrie heranziehen, so würde sich ein anderthalbfacher *P*-Wert von ca. 45 kbar sowie eine *T* von deutlich über 1000°C ergeben, was die Tiefe des Metamorphosepeaks ca. 50 km nach unten verlagern und so zu einer signifikant abweichenden Rekonstruktion der Genese dieses orogenen Peridotites führen würde.

Die Hoffnung, dass sich Phosphor dazu eignen würde, sehr weit zurück liegende Ereignisse rekonstruieren zu können, hat sich leider als unhaltbar erwiesen. So verläuft die Diffusion von P innerhalb der primären Mineralphasen eines orogenen Ultramafitits so langsam, dass sich nur in Ausnahmen eine Äquilibrierung einstellen kann. Der Versuch, P für die Geothermobarometrie zu nutzen, hat ergeben, dass dies zumindest für orogene Ultramafitite

nicht sinnvoll erscheint. Selbst wenn in den Kernbereichen großer Porphyroklasten die P-Konzentrationen homogen verteilt vorliegen und somit die Kalibrierung eines P-Geothermobarometers möglich erscheint, scheitert das Vorhaben daran, dass derzeit kein Geothermobarometer existiert, was auf ähnlich langsam diffundierenden Elementen wie P basiert und für die Kalibrierung verwendet werden könnte. Lediglich das T_{Cr} -Geothermometer von Seitz et al. (1999) tendiert zumindest in diese Richtung. Die teilweise auftretenden unerklärlichen P-Heterogenitäten mindern das Potenzial von P für die Geothermobarometrie zusätzlich. Während sich Inhomogenitäten der anderen Elemente prinzipiell erklären lassen, geht dies bei P oft nicht. Wäre es möglich ein P-Geothermobarometer zu kalibrieren, was aufgrund der vorliegenden Daten zumindest für orogene Ultramafitite eher unmöglich scheint, so würde spätestens bei dessen Anwendung das Problem mit den Heterogenitäten dazu führen, dass ebenfalls wieder sehr ausführliche Profilmessungen nötig wären um sicher zu sein, ein P-Geothermobarometer überhaupt anwenden zu können. Erinnern wir uns noch einmal an die teilweise in mehreren Generationen auftretenden Mineralphasen in den orogenen Grt-Peridotiten, als Einschlussphasen in großen Porphyroklasten bis hin zu rekristallisierten Matrixphasen, dann führen diese vor, dass diese orogenen Gesteine kompliziert ablaufende Genesen beschreiben. Da bereits die Hauptelemente und Nebenelemente, die alle deutlich schneller diffundieren als P, keine vollständigen Gleichgewichte, sondern meist nur partielle Gleichgewichte in den Kernbereichen zeigen, dann ist klar, dass eine Gleichgewichtseinstellung für P sehr unwahrscheinlich ist.

Da also P entgegen der Hoffnungen nicht geeignet für die Rekonstruktion sehr weit in der Vergangenheit liegender *P*-*T*-Ereignisse ist, die ein orogener Ultramafitit erfahren hat, verlagert sich die Hoffnung auf, gegenüber P schneller, aber immer noch langsam diffundierende Elemente wie Cr oder Sc. Letztgenanntes Spurenelement zeigt in orogenen Ultramafititen ganz überwiegend flach ausgebildete Kernbereiche, die als Relikte älterer Gleichgewichtszustände angesehen werden können. Randlich zeigen die meisten Sc-Konzentrationsprofile dann meist Anstiege oder Abfälle, die auf eine beginnende Anpassung an veränderte, jüngere *P*-*T*-Zustände schließen lassen. Da Sc zumindest für die Verteilungen zwischen Ol und Cpx sowie Opx und Cpx potenziell gute *T*-Abhängigkeiten aufweist, die zudem (nahezu) unabhängig von *P* sind, eignet sich dieses Element ausgezeichnet für die Rekonstruktion älterer Ereignisse. Es empfiehlt sich daher die Geothermobarometer für Sc und auch für Cr weiter zu verbessern.

Kommen wir zu den schnell diffundieren Spurenelementen Co und Zn. Es konnte im Zuge dieser Arbeit dargelegt werden, dass diese beiden Spurenelemente in den primären Mineralphasen von orogenen Ultramafititen noch schneller diffundieren, als die schnellsten Hauptelemente, z.B. Mg und Fe²⁺. Insbesondere die Zonarbauten der großen Grt-Porphyroklasten, die anhand ihrer Zonierungen die mehrphasigen Entwicklungen der Probengesteine belegen, zeigen für Co und Zn eine äußerst schnelle Reäquilibrierung. Co zeigt außerdem ein hervorragendes Potenzial für die Geothermobarometrie. Alle denkbaren Co-Verteilungen zwischen den primären Mineralphasen von orogenen Ultramafititen sind stark von *T* gesteuert. Darüber hinaus sind, abgesehen von den Verteilungsgleichgewichten zwischen Grt und OI, Opx bzw. Cpx, alle anderen Co-Verteilungsgleichgewichte unabhängig
von *P*. Somit ergeben sich für die Co-Verteilungen Ol/Opx, Ol/Cpx, Opx/Cpx, Spl/Ol, Spl/Opx und Spl/Cpx neue Geothermometergleichungen.

Besonders die Co-Verteilung zwischen OI und Cpx bildet aufgrund der großen Steigung der Regressionsgerade ein ausgezeichnetes Geothermometer, doch stehen die andern oben genannten Co-Geothermometer diesem kaum nach.

Die Bestimmung der *T*-Daten von Spl-Peridotiten, für die im Gegensatz zu den Grt-Peridotiten bisher nur eine begrenzte Anzahl an Geothermobarometern bereit stand, profitiert sehr von diesen neuen, nahezu vom *P* unabhängigen Geothermometern. Es wäre also zu empfehlen, die Lücken, die in Abb. 3.3-1 für Spl/OI, Spl/Opx und Spl/Cpx noch zwischen den Spl-Peridotit-Daten dieser Arbeit und dem Xenolith-Datensatz von Schäfer (2015) klaffen, mit weiteren Daten zu schließen, um die Aussagekraft dieser Co-Geothermometer noch zu erhöhen.

Für die Co-Verteilungsgleichgewichte mit Grt spielt auch der Druck eine Rolle. Bei einer weiteren Verfeinerung des Datensatzes in Bezug auf die *P*-Abhängigkeit und die Einbringung des *P*-Einflusses in die Geothermobarometergleichungen würden auch diese sehr gute Instrumente darstellen, um die jüngsten *P-T-Z*ustände zu bestimmen, die ein Grt-Peridotit erfahren hat.

Zn ist grundsätzlich ebenfalls für die Geothermobarometrie geeignet, aber es zeigt hierbei keine Vorzüge gegenüber Co. Auch die Steuerung der Zn-Verteilungskoeffizienten durch *T* und/oder *P* fällt bescheidener aus. Daher sollte der Schwerpunkt für weitere Untersuchungen eher auf Co liegen, da aufgrund der vorliegenden Daten dessen Nutzen für die Rekonstruktion des Werdeganges eines orogenen Ultramafitits größer scheint.

Literaturverzeichnis

- Ampferer O (1906) Uber das Bewegungsbild von Faltengebirge. Geol Bundesanstalt Wien 5 (6): 539-622.
- Ampferer O, Hammer W (1911) Geologischer Querschnitt durch die Ostalpen vom Allga'u zum Gardasee. Jahrb Geol Reichsanstalt 61: 3-4.
- Amstutz A (1955) Subductions successives dans l'Ossola. CR Acad Sci, Paris 241: 967-969.
- Austrheim HA, Corfu F, Bryhni I, Andersen TB (2003) The Proterozoic Hustad igneous complex: a low strain enclave with a key to the history of the Western Gneiss Region of Norway. Precambrian Research 120: 149-175.
- Azough F, Freer R (2000) Iron Diffusion in Single-Crystal Diopside. Phys Chem Minerals 27: 732-740.
- Barker AJ (1989) Metamorphic evolution of the Caledonian nappes of north central Scandinavia. In: Gayer RA (ed) The Caledonide Geology of Scandinavia. Graham and Trotman London: 193-204.
- Barrow G (1893) On an intrusion of muscovite-biotite gneiss in the south-eastern Highlands of Scotland, and its accompanying metamorphism. Quart J Geol Soc 49 (1-4): 330-358.
- Baudin T, Marquer D, Persoz F (1993) Basement-cover relationships in the Tambo nappe (Central Alps, Switzerland): geometry, structure and kinematics. J Struct Geol 15 (3-5): 543-553.
- Becker H (1993) Garnet peridotite and eclogite Sm-Nd mineral ages from the Lepontine dome (Swiss Alps): New evidence for Eocene high-pressure metamorphism in the central Alps. Geology 21: 599-602.
- Berger A, Rosenberg C, Schmid SM (1996) Ascent, emplacement and exhumation of the Bergell pluton within the Southern Steep Belt of the Central Alps. Schweiz Mineral Petrogr Mitt 76 (3): 357-382.
- Bodinier JL, Dupuy C, Dostal J, Merlet C (1987) Distribution of trace transition elements in olivine and pyroxenes from ultramafic xenoliths; application of microprobe analysis. Am Min 72 (9-10): 902-913.

Bosellini A, Gianolla P, Stefani M (2003) Geology of the Dolomites. Episodes 26 (3):181-185.

- Bousquet R, Goffé B, Vidal O, Oberhänsli R, Patriat M (2002) The tectono-metamorphic history of the Valaisan domain from the Western to the Central Alps: New constraints on the evolution of the Alps. Geol Soc Am Bull 114: 207-225.
- Brey GP, Köhler T (1990) Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. J Petrol 31 (6): 1353-1378.
- Brey GP, Köhler T, Nickel KG (1990) Geothermobarometry in Four-phase Lherzolites I. Experimental Results from 10 to 60 kbar. J Petrol 31 (6): 1313-1352.

- Brueckner HK, van Roermund HLM (2004) Dunk tectonics: A multiple subduction/eduction model for the evolution of the Scandinavian Caledonides. Tectonics 23 (TC2004): doi 10.1 029/2003TC001502.
- Brueckner HK, Carswell DA, Griffin WL, Medaris Jr LG, Van Roermund HLM, Cuthbert SJ (2010) The mantle and crustal evolution of two garnet peridotite suites from the Western Gneiss Region, Norwegian Caledonides: An isotopic investigation. Lithos 117: 1-19.
- Bryhni I, Andréasson PG (1985) Metamorphism in the Scandinavian Caledonides. In: Gee DG, Stuart BA (eds) The Caledonide Orogen-Scandinavia and Related Areas. Wiley & Sons Ltd Chichester: 763-782.
- Bucher-Nurminen K (1991) Mantle fragments in the Scandinavian Caledonides. Tectonophysics 190: 173-192.
- Carswell DA (1968) Picritic Magma Residual Dunite Relationships in Garnet Peridotite at Karlskaret near Tafjord, South Norway. Contr Mineral Petrol 19: 97-124.
- Carswell DA, Brueckner HK, Cuthbert SJ, Mehta K, O'Brien PJ (2003) The timing of stabilisation and the exhumation rate for ultra-high pressure rocks in the Western Gneiss Region of Norway. J metam Geol 21: 601-612.
- Canil D (1999) The Ni-in-garnet geothermometer: calibration at natural abundances. Contrib Mineral Petrol 136: 240-246.
- Chakraborty S (1997) Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980– 1300°C. J Geophys Res 102: 12317-12331.
- Chakraborty S (2006) Diffusion modeling as a tool for constraining timescales of evolution of metamorphic rocks. Mineral and Petrol 88: 7-27.
- Channell JET, Kozur HW (1997) How many oceans? Meliata, Vardar and Pindos oceans in Mesozoic Alpine paleogeography. Geology 25: 183-186.
- Coogan LA, Hain A, Stahl S, Chakraborty S (2005) Experimental determination of the diffusion coefficient for calcium in olivine between 900°C and 1500°C. Geochim Cosmochim Acta 69 (14): 3683-3694.
- Coward M, Dietrich D (1989) Alpine tectonics an overview. In: Coward MP, Dietrich D, Park RG (eds) Alpine Tectonics. Geol Soc Spec Publ 45: 1-29.
- Dal Piaz GV (2001) History of tectonic interpretation of the Alps. J Geodyn 32: 99-114.
- Dal Piaz GV, Bistacchi A, Massironi M (2003) Geological outline of the Alps. Episodes 26 (3): 175-180.
- Dallmeyer RD, Johansson L, Moller C (1992) Chronology of Caledonian HP-granulit-facies metamorphism, uplift and deformation within northern parts of the Western Gneiss Region. Geol Soc Am Bull 104: 444-455.
- Davies JH, von Blanckenburg (1995) Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129: 85-102.

- De Hoog JCM, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270: 196-215.
- Dimanov A, Jaoul O (1998) Calcium self-diffusion in diopside at high temperature: implications for transport properties. Phys Chem Minerals 26: 116-127.
- Dobrzhinetskaya L, Green II HW, Wang S (1996) Alpe Arami: A Peridotite Massif from Depths of More Than 300 Kilometers. Science 271: 1841-1844.
- Dobrzhinetskaya LF, Schweinehage R, Massonne HJ, Green HW (2002) Silica precipitates in omphacite from eclogite at Alpe Arami, Switzerland: evidence of deep subduction. J metam Geol 20: 481-492.
- Dohmen R, Becker H-W, Meissner E, Etzel T, Chakraborty S (2002) Production of silicate thin films using pulsed laser deposition (PLD) and applications to studies in mineral kinetics. Eur J Mineral 14 (6): 1155-1168.
- Duchene S, Lardeaux JM, Albarède F (1997) Exhumation of eclogites: insights from depthtime path analysis. Tectonophysics 280: 125-140.
- Florineth D, Froitzheim N (1994) Transition from continental to oceanic basement in the Tasna Nappe (Engadine Window, Graubunden, Switzerland) evidence for early cretaceous opening of the Valais Ocean. Schweiz Mineral Petrograph Mitt 74 (3): 437-448.
- Frey M, Ferreiro Mählmann R (1999) Alpine metamorphism of the Central Alps. Schweiz Mineral Petrogr Mitt 79 (1): 135-154.
- Frisch W, Kuhlemann J, Dunkl I, Brügel A (1998) Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion. Tectonophysics 297: 1-15.
- Frisch W, Dunkl I, Kuhlemann J (2000) Post-collisional orogen-parallel large scale extension in the Eastern Alps. Tectonophysics 327: 239-265.
- Frisch W, Meschede M (2013) Plattentektonik: Kontinentverschiebung und Gebirgsbildung. 5. Auflage. Wissenschaftliche Buchgesellschaft Darmstadt.
- Froitzheim N, Manatschal G (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Geol Soc Am Bull 108 (9): 1120-1133.
- Froitzheim N, Schmid SM, Frey M (1996) Mesozoic paleogeography and the timing of eclogite-facies metamorphism in the Alps: a working hypothesis. Eclogae Geologicae Helvetiae 89 (1): 81.
- Fumasoli MW (1974) Geologie des Gebietes nördlich und südlich der Iorio-Tonale-Linie im Westen von Gravedona (Como, Italia). Unpublished PhD Thesis, ETH Zürich.
- Ganguly J, Cheng WJ, Chakraborty S (1998) Cation diffusion in aluminosilicate garnets: experimental determination in pyrope-almandine diffusion couples. Contrib Mineral Petrol 131: 171-180.
- Gayer RA, Greiling RO (1989) Caledonian nappe geometry in north-central Sweden and basin evolution on the Baltoscandian margin. Geol Magazine 126 (05): 499-513.

- Gebauer D (1996) A P-T-t-Path for an (Ultra?-) High-Pressure Ultramafic/Mafic Rock-Association and its Felsic Country-Rocks Based on SHRIMP-Dating of Magmatic and Metamorphic Zircon Domains. Example: Alpe Arami (Central Swiss Alps). In: Basu A, Hart S (ed) Earth Processes: Reading the Isotopic Code. Geophysical Monograph Series 95: 307-329.
- Gebauer D (1999) Alpine geochronology of the Central and Western Alps: new constraints for a complex geodynamic evolution. Schweiz Mineral Petrogr Mitt 79: 191-208.
- Gee DG, Zachrisson E (1979). The Caledonides in Sweden. Sver Geol Unders C769: 48.
- Green II HW, Dobrzhinetskaya L, Riggs EM, Jin ZM (1997) Alpe Arami: a peridotite massif from the Mantle Transition Zone? Tectonophysics 279: 1-21.
- Greiling RO (1989) The Middle Allochthon in Västerbotten, northern Sweden: tectonostratigraphy and tectonic evolution. In: Gayer RA (ed) The Caledonide Geology of Scandinavia. Graham & Trotman London: 69-77.
- Greiling RO, Kumpulainen R (1989) The Middle Allochthon of the Scandinavian Caledonides at Kvikkjokk, northern Sweden: sedimentology and tectonics. In: Gayer RA (ed) The Caledonide Geology of Scandinavia. Graham & Trotman London: 79-89.
- Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Hålenius U (2013) IMA Report Nomenclature of the garnet supergroup. Am Min 98: 785-811.
- Griffin WL (1987) "On the eclogites of Norway" 65 years later. Min Mag 51: 333-343.
- Griffin WL, Brueckner HK (1980) Caledonian Sm-Nd ages and a crustal origin for Norwegian eclogites. Nature 285: 319-321.
- Grubenmann U 1904-1907. Die Krystallinen Schiefer: Eine Darstellung der Erscheinungen der Gesteinsmetamorphose und ihrer Produkte. Gebrüder Borntraeger Berlin. I: 105 Seiten; II: 175 Seiten.
- Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D (2010) Reconciling platetectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth Sci Review 102: 121-158.
- Harland WB, Gayer RA (1972). The Arctic Caledonides and earlier Oceans. Geol Magazine 109 (4): 289-314.
- Heinrich CA (1983) Die regionale Hochdruckmetamorphose der Aduladecke, Zentralalpen, Schweiz. PhD Thesis Nr 7282, ETH Zürich.
- Heinrich CA (1986) Eclogite Facies Regional Metamorphism of Hydrous Mafic Rocks in the Central Alpine Adula Nappe. J Petrol 27 (1): 123-154.
- Hickmott DD, Shimizu N, Spear FS, Selverstone J (1987) Trace-element zoning in a metamorphic garnet. Geology 15: 573-576.
- Hickmott DD, Shimizu N (1990) Trace element zoning in garnet from the Kwoiek Area, British Columbia: disequilibrium partitioning during garnet growth? Contrib Mineral Petrol 104: 619-630.

- Hitz L, Pfiffner OA (1997) Geologic interpretation of the seismic profiles of the Eastern traverse (lines E1–E3, E7–E9): eastern swiss Alps. In: Pfiffner OA, Lehner P, Heitzmann P, Mueller ST, Steck A (eds) Deep structure of the swiss Alps – Results of NRP 20. Birkhäuser Basel: 73-100.
- Hossack JR (1985) The Role of Thrusting in the Scandinavian Caledonides. In: Gayer RA (ed) The Tectonic Evolution of the Caledonide-Appalachian Orogen. Vieweg Braunschweig: 97-116.
- Hurford AJ, Flisch M, Jäger E (1989) Unravelling the thermo-tectonic evolution of the Alps: a contribution from fission track analysis and mica dating. Geol Soc London Spec Publ 45 (1): 369-398.
- Jamtveit B (1984) High-P metamorphism and deformation of the Gurskebotn garnet peridotite, Sunnmøre, western Norway. Norsk Geologisk Tidsskrift 64: 97-110.
- Jaoul O, Béjina F (2005) Empirical determination of diffusion coefficients and geospeedometry. Geochim Cosmochim Acta 69 (4): 1027-1040.
- Kerckhove C (1969) La "zone du zone" dans les nappes de l'Embrunais-Ubaye (Alpes occidentales). Géologie Alpine 45: 5-204.
- Köhler TP, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54: 2375-2388.
- Krabbendam M, Dewey JF (1998). Exhumation of UHP rocks by transtension in the Western Gneiss Region, Scandinavian Caledonides. In: Holdsworth RE, Strachan RA, Dewey JF (eds) Continental Transpressional and Transtensional Tectonics. Geol Soc Spec Pub 135: 159-181.
- Krogh EJ (1988) The garnet-clinopyroxene Fe-Mg geothermometer a reinterpretation of existing experimental data. Contrib Mineral Petrol 99: 44-48.
- Krogh Ravna E (2000) The garnet-clinopyroxene Fe²⁺-Mg geothermometer: an updated calibration. J metamorphic Geol 18: 211-219.
- Kulling O (1972) The Swedish caledonides. In: Strand T, Kulling O (eds), Scandinavian Caledonides. Wiley Interscience London: 147–302.
- Kurz W, Neubauer F, Genser J, Dachs E (1998) Alpine geodynamic evolution of passive and active continental margin sequences in the Tauern Window (eastern Alps, Austria, Italy): a review. Geol Rundsch 87: 225-242.

Laubscher H (1969) Mountain Building. Tectonophysics 7 (5-6): 551-563.

- Laubscher HP (1970) Bewegung und Wärme in der alpinen Orogenese. Schweiz Mineral Petrogr Mitt 50 (3): 565-596.
- Leake BE (Chairman) et al. (1997) Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Eur J Mineral 9: 623-651.
- Leake BE (Chairman) et al. (2004) Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association's amphibole nomenclature. Am Min 89: 883-887.

- Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and breakup history of Rodinia: A synthesis. Precambrian Research 160 (1): 179-210.
- Lippitsch R, Kissling E, Ansorge J (2003) Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J Geophys Research 108: doi 10.1029/2002JB002016.
- Lu M, Hofmann AW, Mazzucchelli M, Rivalenti G (1997a) The mafic-ultramafic complex near Finero (Ivrea-Verbano Zone), I. Chemistry of MORB-like magmas. Chem Geol 140: 207-222.
- Lu M, Hofmann AW, Mazzucchelli M, Rivalenti G (1997b) The mafic-ultramafic complex near Finero (Ivrea-Verbano Zone), II. Geochronology and isotope geochemistry. Chem Geol 140: 223-235.
- Manatschal G, Bernoulli D (1998) Rifting and early evolution of ancient ocean basins: the record of the Mesozoic Tethys and of the Galicia-Newfoundland margins. Marine Geophys Researches 20: 371-381.
- Martin S, Prosser G, Morten L (1993) Tectono-magmatic evolution of sheeted plutonic bodies along the north Giudicarie line (northern Italy). Geol Rundsch 82: 51-66.
- Medaris Jr LG (1984) A geothermobarometric investigation of garnet peridotites in the Western Gneiss Region of Norway. Contrib Mineral Petrol 87: 72-86.
- Meyre C, De Capitani C, Partzsch JH (1997) A ternary solid solution model for omphacite and its application to geothermobarometry of eclogites from the Middle Adula nappe (Central Alps, Switzerland). J metamorphic Geol 15: 687-700.
- Möckel JR (1969) Structural petrology of the garnet-peridotite of Alpe Arami (Ticino, Switzerland). Leidse Geologische Mededelingen 42: 61-130.
- Monié P, Chopin C (1991) ⁴⁰Ar/³⁹Ar dating in coesit-bearing and associated units of the Dora Maira massif, Western Alps. Eur J Min 1991 (3): 239-262.
- Morimoto N (1988) Nomenclature of Pyroxenes. Min Petr 39: 55-76.
- Morishita T, Arai S, Tamura A (2003) Petrology of an apatite-rich layer in the Finero phlogopite-peridotite, Italian Western Alps; implications for evolution of a metasomatising agent. Lithos 69: 37-49.
- Nimis P, Trommsdorff V, Russo U (1999) Revised thermobarometry of garnet peridotites from Cima Lunga-Adula nappe complex, central Alps. Ofioliti 24: 143-144.
- Nimis P, Trommsdorff V (2001a) Revised Thermobarometry of Alpe Arami and other Garnet Peridotites from the Central Alps. J Petrol 42 (1): 103-115.
- Nimis P, Trommsdorff V (2001b) Comment on "New Constraints on the *P-T* Evolution of the Alpe Arami Garnet Peridotite Body (Central Alps, Switzerland)" by Paquin & Altherr (2001). J Petrol 42 (9): 1773-1779.
- Oberhänsli R (1978) Chemische Untersuchungen an Glaukophan-führenden basischen Gesteinen aus den Bündnerschiefern Graubündens. Schweiz Mineral Petrogr Mitt 58: 139-156.

- O'Hara MJ, Mercy ELP, Stewart FH (1963) Petrology and Petrogenesis of some Garnetiferous Peridotites. Trans R Soc Edinburgh 65: 251-314.
- Okrusch M, Matthes S (2014) Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde. 9. Auflage. Springer Spektrum, Springer Verlag Berlin Heidelberg.
- Olker B, Altherr R, Paquin J (2003) Fast exhumation of the ultrahigh-pressure Alpe Arami garnet peridotite (Central Alps, Switzerland): constraints from geospeedometry and thermal modelling. J metamorphic Geol 21: 395-402.
- O'Neill HStC, Wood BJ (1979) An Experimental Study of Fe-Mg Partitioning Between Garnet and Olivine and Its Calibration as a Geothermometer. Contrib Mineral Petrol 70: 59-70.
- O'Neill HStC (1980) An Experimental Study of Fe-Mg Partitioning Between Garnet and Olivine and Its Calibration as a Geothermometer: Corrections. Contrib Mineral Petrol 72: 337.
- Palme H, O'Neill HStC (2003) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) The Mantle and Core, Treatise on Geochemistry 2 (Holland HD, Turekian KK, executive eds), Elsevier Amsterdam: 1-38.
- Paquette JL, Gebauer D (1991) U-Pb zircon and Sm-Nd isotopic study on eclogitized metabasic and meta-acidic rocks of the Koralpe, Eastern Alps, Austria. Terra abstracts 3 (1).
- Paquin J (2001) Spurenelementverteilungen in orogenen Granat-Peridotiten und Granat-Olivin-Websteriten als Indikator ihrer geochemischen und metamorphen Entwicklung. PhD Thesis, Ruprecht-Karls-Universität Heidelberg.
- Paquin J, Altherr R, Ludwig T (1999a) Trace element partitioning between minerals of the garnet peridotite from Alpe Arami, Switzerland. Eur J Mineral 11 Beih 1: 173.
- Paquin J, Altherr R, Ludwig T (1999b) Trace element partitioning between minerals of the garnet peridotite from Alpe Arami, Switzerland. Ofioliti 24: 148-149.
- Paquin J, Altherr R (2000a) Metasomatic overprint during exhumation of the UHP garnet peridotite from Alpe Arami, Central Alps. Terra Nostra 2000/1: 84.
- Paquin J, Altherr R (2000b) Li as indicator of a metasomatic overprint during exhumation of the UHP garnet peridotite from Alpe Arami, Central Swiss Alps. Eur J Mineral 12 Beih 1: 144.
- Paquin J, Altherr R (2000c) Li Metasomatism During Exhumation of the Ultra High-Pressure Garnet Peridotite from Alpe Arami, Central Alps (Switzerland). J Conf Abstr 5 (2): 771.
- Paquin J, Altherr R (2000d) Modelling the Exhumation Path of the UHP-Garnet Peridotite from Alpe Arami. EOS Trans AGU 81: F1104.
- Paquin J, Altherr R (2001a) New Constraints on the *P-T* Evolution of the Alpe Arami Garnet Peridotite Body (Central Alps, Switzerland). J Petrol 42 (6): 1119-1140.

- Paquin J, Altherr R (2001b) "New Constraints on the *P-T* Evolution of the Alpe Arami Garnet Peridotite Body (Central Alps, Switzerland)": Reply to Comment by Nimis & Trommsdorff (2001). J Petrol 42 (9): 1781-1787.
- Paquin J, Altherr R (2002) Subduction-related lithium metasomatism during exhumation of the Alpe Arami ultrahigh-pressure garnet peridotite (Central Alps, Switzerland). Contrib Mineral Petrol 143: 623-640.
- Paquin J, Altherr R, Ludwig T (2004) Li-Be-B systematics in the ultrahigh-pressure garnet peridotite from Alpe Arami (Central Swiss Alps): implications for slab-to-mantle wedge transfer. Earth Planet Sci Lett 218: 507-519.
- Partzsch JH (1996) The tectono-metamorphic evolution of the middle Adula nappe, Central Alps, Switzerland. PhD Thesis, University of Basel.
- Paulsson O, Andréasson PG (2002) Attempted break-up of Rodinia at 850 Ma: geochronological evidence from the Seve-Kalak Superterrane, Scandinavian Caledonides. J Geol Soc London 159: 751-761.
- Perchuk AL, Burchard M, Schertl HP, Maresch WV, Gerya, Bernhardt HJ, Vidal O (2009) Diffusion of divalent cations in garnet: multi-couple experiments. Contrib Mineral Petrol 157: 573-592.
- Petry C, Chakraborty S, Palme H (2004) Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim Cosmochim Acta 68 (20): 4179-4188.
- Pfiffner OA (1985) Displacements along thrust faults. Eclogae geol Helv 78 (2): 313-333.
- Pfiffner OA (1993) The structure of the Helvetic nappes and its relation to the mechanical stratigraphy. J Struc Geol 15: 511-521.
- Pfiffner M (1999) Genese der Hochdruckmetamorphen ozeanischen Abfolge der Cima-Lunga Einheit (Zentralalpen). PhD Thesis Nr 13011, ETH Zürich.
- Pfiffner OA (2010) Geologie der Alpen. 2. Auflage. UTB Haupt Berne.
- Pfiffner OA, Hitz L (1997) Geological interpretation of the seismic profiles of the Eastern Traverse (lines E1-E3, E7-E9): eastern Swiss Alps. In: Pfiffner AO et al (eds) Deep Structure of the Swiss Alps: Results from NRP 20. Birkhäuser Verlag Basel: 73-100.
- Pfiffner M, Trommsdorff V (1998) The high-pressure ultramafic-mafic-carbonate suite of Cima Lunga-Adula, Central Alps: excursions to Cima di Gagnone and Alpe Arami. Schweiz Mineral Petrogr Mitt 78 (2): 337-354.
- Ramsay JG (1981) Tectonics of the Helvetic Nappes. Geol Soc London Spec Pub 9: 293-309.
- Ratschbacher L, Frisch W, Neubauer F, Schmid SM, Neugebauer J (1989) Extension in compressional orogentic belts: The eastern Alps. Geology 17: 404-407.
- Ratschbacher L, Merle O, Davy P, Cobbold P (1991) Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for gravity. Tectonics 10: 245-256.

- Ricou LE (1994) Tethys reconstructed: plates, continental fragments and their Boundaries since 260 Ma from Central America to South-eastern Asia. Geodin Acta (Paris) 7 (4): 169-218.
- Roberts D (2003) The Scandinavian Caledonides: event chronology, palaeogeographic settings and likely modern analogues. Tectonophysics 365: 283-299.
- Roberts D, Gee DG (1985) An introduction to the structure of the Scandinavian Caledonides. The Caledonide orogen–Scandinavia and related areas 1: 55-68.
- Robinson P (1995) Extension of Trollheimen tectono-stratigraphic sequence in deep synclines near Molde and Brattvåg, Western Gneiss Region, southern Norway. Norsk Geologisk Tidsskrift 75: 181-198.
- Rosenbaum G, Lister GS, Duboz C (2002) Relativ motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359: 117-129.
- Rosenberg CL (2004) Shear zones and magma ascent: A model based on a review oft he Tertiary magmatism in the Alps. Tectonics 23, TC3002: doi 10.1029/2003TC001526.
- Rubatto D, Gebauer D, Compagnoni R (1999) Dating of eclogite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth Planet Sci Lett 167: 141-158.
- Rubie DC (1990) Role of kinematics in the formation and preservation of eclogites. In: Carswell DA (ed) Eclogite Facies Rocks. Blackie Glasgow London: 111-140.
- Sautter V, Jaoul O, Abel F (1988) Aluminum diffusion in diopside using the ²⁷Al(p, γ)²⁸Si nuclear reaction: preliminary results. Earth Planet Sci Lett 89: 109-114.
- Schäfer T (2015) Die intra- und interkristalline Verteilung der Spurenelemente Phosphor, Scandium, Cobalt und Zink in Erdmantel-Xenolithen. PhD Thesis, Ruprecht-Karls-Universität Heidelberg.
- Schmid SM, Pfiffner OA, Froitzheim N, Schönborn G, Kissling E (1996) Geophysicalgeological transect and tectonic evolution of the Swiss-Italien Alps. Tectonics 15 (5): 1036-1064.
- Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae geol Helv 97: 93-117.
- Schwandt CS, Cygan RT, Westrich HR (1998) Magnesium self-diffusion in orthoenstatite. Contrib Mineral Petrol 130: 390-396.
- Seitz HM, Altherr R, Ludwig T (1999) Partitioning of transition elements between orthopyroxene and clinopyroxene in peridotitic and websteritic xenoliths: New empirical geothermometers. Geochim Cosmochim Acta 63 (23/24): 3967-3982.
- Shannon RD (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomatic Distances in Halides and Chalcogenides. Acta Cryst 32: 751-767.
- Siena F, Coltorti M (1989) The petrogenesis of a hydrated mafic ultramafic complex and the role of amphibole fractionation at Finero (Italian Western Alps). Neues Jahrbuch Mineralogie-Monatshefte 6: 255-274.

- Smith DC, Lappin MA (1989) Coesite in the Straumen kyanite-eclogite pod, Norway. Terra Nova 1 (1): 47-56.
- Soper NJ, Strachan RA, Holdsworth RE, Gayer RA, Greiling RO (1992) Sinistral transpression and the Silurian closure of lapetus. J Geol Soc London 149: 871-880.
- Spear FS (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time-Paths. Min Soc Amer Washington, DC.
- Stähle V, Frenzel G, Kober B, Michard A, Puchelt H, Schneider W (1990) Zircon syenite pegamtites in the Finero peridotite (Ivrea zone): evidence for a syenite from a mantle source. Earth Planet Sci Lett 101: 196-205.
- Stampfli G (2000) Tethyan oceans. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and Magmatism in Turkey and the Surrounding Area. Geol Soc London Spec Publ 173: 1-23.
- Stampfli GM, Borel GD (2002) A plate tectonic model fort he Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196: 17-33.
- Stampfli GM, Borel GD, Marchant R, Mosar J (2002) Western Alps geological constraints on western Tethyan reconstructions. In: Rosenbaum G, Lister GS (ed) Reconstruction of the evolution of the Alpine-Himalayan Orogen. Journal of the Virtual Explorer 7: 75-104.
- Stanley SM (2001) Historische Geologie. 2. Deutsche Auflage. Spektrum Heidelberg Berlin.
- Steck A, Tièche JC (1976) Carte géologique de l'antiforme péridotitique de Finero avec des observations sur les phases de déformation et de recristallisation. Schweiz Mineral Petrogr Mitt 56: 501-512.
- Steel R, Siedlecka A, Roberts D (1985) The Old Red Sandstone basins of Norway and their deformation: a review. In: Gee DG, Stuart BA (eds) The Caledonide Orogen-Scandinavia and Related Areas. John Wiley and Sons Chichester: 293-315.
- Steinitz G, Jäger E (1981) Rb-Sr and K-Ar studies on rocks from the Suretta nappe; Eastern Switzerland. Schweiz Mineral Petrogr Mitt 61: 121-131.
- Stephens MB, Gee DG (1989) Terranes and polyphase accretionary history in the Scandinavian Caledonides. Geol Soc Am Special Paper 230: 17-30
- Stipp M, Fügenschuh B, Gromet LP, Stünitz H, Schmid SM (2004) Contemporaneous plutonism and strike-slip faulting: A case study from the Tonale fault zone north of the Adamello pluton (Italien Alps). Tectonics 23, TC3004: doi 10.1029/2003TC001515.
- Suess E (1885) Das Antlitz der Erde. 3 Bde. Prag-Leipzig: Tempsky, Freytag, 1909.
- Sueß E (1949) Bausteine zu einem System der Tektogenese. III. Der Bau der Kaledoniden und die Schollendrift im Nordatlantik. Mitt Geol Gesell Wien 36-38: 29-230.
- Tirone M, Ganguly J, Dohmen R, Langenhorst F, Hervig R, Becker HW (2005) Rare earth diffusion kinetics in garnet: Experimental studies and applications. Geochim Cosmochim Acta 69 (9): 2385-2398.

- Trommsdorff V (1990) Metamorphism and tectonics in the Central Alps: The Alpine lithospheric mélange of Cima Lunga and Adula. Mem Soc Geol Italiana 45: 39-49.
- Trommsdorff V, Piccardo GB, Montrasio A (1993) From magmatism through metamorphism to sea floor emplacement of subcontinental Adria lithosphere during pre-Alpine rifting (Malenco, Italy). Schweiz Mineral Petrogr Mitt 73 (2): 191-203.
- Trommsdorff V, Hermann J, Müntener O, Pfiffner M, Risold AC (2000) Geodynamics cycles of subcontinental lithosphere in the Central Alps and the Arami enigma. J Geodyn 30: 77-92.
- Trümpy R (1980) Geology of Switzerland: An outline of the geology of Switzerland. Interbook.
- Trümpy R (2001) Why plate tectonics was not invented in the Alps. Int J Earth Sci 90: 477-483.
- Tucker RD, Krogh TE, Råheim A (1990) Proterozoic evolution and age-province boundaries in the central part of the Western Gneiss Region, Norway: Results of U-Pb dating of accessory minerals from Trondheimsfjord to Geiranger. In: Gower CF, Rivers T, Ryan B (eds) Mid-Proterozoic Laurentia-Baltica. Geol Ass Can Spec Pap 38: 149-173.
- Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Mineral Petrol 141: 687-703.
- Van Orman JA, Grove TL, Shimizu N, Layne GD (2002) Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contrib Mineral Petrol 142: 416-424.
- van Roermund HLM (1985) Eclogites of the Seve Nappe, central Scandinavioan Caledonides. In: Gee DG, Stuart BA (eds) The Caledonide Orogen-Scandinavia and Related Areas. John Wiley and Sons Chichester: 873-886.
- van Roermund HLM (1989) High-pressure ultramafic rocks from the allochthonous nappes of the Swedish Caledonides. In: Gayer RA (ed) The Caledonide Geology of Scandinavia. Graham & Trotman London: 205-219.
- van Roermund H (2009) Mantle-wedge garnet peridotites from the northernmost ultra-high pressure domain of the Western Gneiss Region, SW Norway. Eur J Min 21: 1085-1096.
- von Blanckenburg F, Davies JH (1995) Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics 14 (1): 120-131.
- Waldow A (2010) Verteilung von Phosphor zwischen Mineralen von Erdmantelgesteinen (Dipl. Arbeit), Ruprecht-Karls-Universität Heidelberg.
- Walter R (2007) Geologie von Mitteleuropa. 7. Auflage. Schweizerbart'sche, Stuttgart.
- Witt-Eickschen G & O'Neill HStC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221: 65-101.
- Wortmann UG, Weissert H, Funk H, Hauck J (2001) Alpine plate kinematics revisited: The Adria Problem. Tectonics 20 (1): 134-147.

- Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R (1999) The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism. Contrib Mineral Petrol 134: 107-122.
- Ziegler PA, Cloetingh S, van Wees JD (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252: 7-59.
- Zimmermann R, Hammerschmidt K, Franz G (1994) Eocene high pressure metamorphism in the Penninic units of the Tauern Window (Eastern Alps): evidence from 40Ar-39Ar dating and petrological investigations. Contrib Mineral Petrol 117: 175-186.
- Zingg A (1983) The Ivrea and Strona-Ceneri zones (Southern Alps, Ticino and N-Italy)—a review. Schweiz Mineral Petrograph Mitt 63 (2-3): 361-392.
- Zingg A, Handy MR, Hunziker JC, Schmid SM (1990) Tectonometamorphic history of the lvrea Zone and its relationship to the crustal evolution of the Southern Alps. Tectonophysics 182: 169-192.
- Zhang Y (2010) Diffusion in Minerals and Melts: Theoretical Background. In: Zhang Y & Cherniak DJ (ed) Reviews in Min & Geochem 72 (1): 5-58.

Anhang

Der nun folgende und diese Arbeit abschließende Anhang besteht aus drei Abschnitten. Im ersten werden die in der vorliegenden Arbeit verwendeten analytischen Methoden erläutert (Anhang I). Wie schon bereits in Kapitel 1.2.5 erwähnt, befinden sich alle Geräte am Institut für Geowissenschaften der Ruprecht-Karls-Universität in Heidelberg.

Auf diesen Teil folgt der zweite Abschnitt (Anhang II), der sich mit weiteren, für die bearbeiteten Proben wichtigen, Mineralmessprofilen beschäftigt. Diese wurden aus Platzgründen und zur Übersichtlichkeit nicht direkt im Kapitel 2 gezeigt. Diese Profile werden im Text allerdings erwähnt und sind daher in Teil II angehängt. Die näheren Erklärungen zu den Messprofilen finden sich im Text.

Der dritte Abschnitt des Anhangs (Anhang III) beinhaltet die EMS- und SIMS-Daten der verwendeten Messprofile, sowohl für die in Kapitel 2 aufgeführten, als auch für die im Anhang II gezeigten Messprofile.

I Analytische Methoden

I.1 Das Polarisationsmikroskop (Pol)

Es wurden von den Proben Dünnschliffe angefertigt und diese mit einem Leica LEITZ LABORLUX 12POL S optisch untersucht. Zur Dokumentierung der petrographischen Eigenschaften wurden Bilder im Hellfeld und unter gekreuzten Polarisatoren angefertigt. Diese wurden aufgenommen mit einer Kamera der Marke LEICA Typ DFC425, an einem Mikroskop ORTHOLUX II POL-BK von Leitz. Verarbeitet wurden die polarisations-mikroskopischen Bilder mit der Software LAS V3.8.0.

I.2 Das Rasterelektronenmikroskop (REM)

Von den anhand der Pol-Mikroskopie als geeignet angenommenen Proben wurden polierte Dünnschliffe angefertigt. Diese wurden mit einer dünnen Kohlenstoffschicht bedampft um sie am REM Typ LEO 440 untersuchen zu können. Auf der einen Seite wurde so die weitere Analytik der Proben vorbereitet, auf der anderen Seite wurden BSE-Bilder zur Orientierung an der EMS und SIMS und als Möglichkeit der Lokalisierung der Mineralprofile aufgenommen.

I.3 Die Elektronenstrahlmikrosonde (EMS)

Für die Analytik an der EMS, mit der die Messung der Haupt- und Nebenelemente durchgeführt wurde, behält man die Kohlenstoffbedampfung der Schliffe bei. Bei der EMS handelt es sich um eine cameca SX51. Es wurden zur Analytik zwei Messlabel verwendet, genani für silikatische Mineralphasen und genaspini für Spl. Gemessen wurde mit einem Strahlstrom von 20 nA und einer Beschleunigungsspannung von 15 kV. In Tabelle I-1 sind die für die Kalibrierung der EMS auf das Messlabel genani verwendeten Referenzmaterialien aufgelistet. Des Weiteren sind die Analysatorkristalle und die Zählzeiten der analysierten Elemente des Messlabels zu sehen. Das Gleiche ist in Tabelle I-2 für das Messlabel genaspini angegeben. Zur Mineralformelberechnung wurde die ursprüngliche "Formelcalc"-Datei von Dr. Hans-Peter Meyer an die Fragestellung der vorliegenden Arbeit angepasst. Die Mineralphasen wurden folgendermaßen berechnet:

Silikatische Phasen

OI	Fe _{tot} = Fe ²⁺ ; 4 Sauerstoffe
Орх / Срх	Fe _{tot} = Fe ²⁺ ; 6 Sauerstoffe
Grt	Fe _{tot} = Fe ²⁺ ; 12 Sauerstoffe

Weitere Phasen

Spl	3 Kationen; 4 Sauerstoffe
Amp	13 Kationen exkl. Ca, Na, K; 23 Sauerstoffe; 2 OH stöch.
PhI	Fe _{tot} = Fe ²⁺ ; 11 Sauerstoffe; 2 OH stöch.

Element	Analysatorkristall	Referenz	Zählzeit [s]
Na	ТАР	Albit	10
Mg	TAP	MgO	20
Al	TAP	Anorthit	30
Si	TAP	Wollastonit	20
К	PET	Orthoklas	10
Са	PET	Wollastonit	30
Ti	PET	TiO ₂	20
Cr	PET	Cr ₂ O ₃	20
Mn	LIF	Rhodonit	20
Fe	LIF	Fe ₂ O ₃	20
Ni	LIF	NiO	30

Tabelle I-1. Informationen für das Messlabel genani.

Tabelle I-2. Informationen für das Messlabel genaspini.

Element	Analysatorkristall	Referenz	Zählzeit [s]
Na	TAP	Albit	10
Mg	TAP	MgO	20
AI	TAP	Gahnit	30
Si	TAP	Wollastonit	20
К	PET	Orthoklas	10
Са	PET	Wollastonit	30
Ti	PET	TiO ₂	20
Cr	LIF	Cr ₂ O ₃	20
Mn	LIF	Rhodonit	20
Fe	LIF	Fe ₂ O ₃	20
Ni	LIF	NiO	20

I.4 Das Sekundärionenmassenspektrometer (SIMS)

Um die Dünnschliffe mit der SIMS analysieren zu können, muss die Kohlenstoffschicht von der Dünnschliffoberfläche entfernt werden, damit sie mit einer ca. 60 - 70 nm dicken Goldschicht bedampft werden kann. Danach konnte mit der Spurenelementanalytik begonnen werden. Bei der SIMS handelt es sich um eine cameca ims3f. Der offset betrug 50.0 eV, der Primärstrom 50 nA und die Massenauflösung ca. 3800. Mit Hilfe dieser Einstellung konnte gewährleistet werden, dass die gewollt gemessenen Isotope von den unerwünschten interferierenden Molekülen unterschieden werden konnten. Tabelle I-3 zeigt die gemessenen Isotope, ihre jeweilige Messzeit, mögliche Interferenzen und die Referenzmaterialien zur Kalibrierung der SIMS. Für die silikatischen Mineralphasen der Proben wurde ³⁰Si als Referenzisotop genommen, für SpI das Isotop ⁵⁶Fe. Nach einem Presputtering von 170 Sekunden und einem Hystereseprogramm für den Magneten, startete die Messung, während dieser bei jedem einzelnen Punkt alle Spurenelement- und Referenz-

isotope in fünf Messzyklen analysiert wurden. Der Mittelwert dieser Messzyklen ergibt die angegebene Spurenelementkonzentration des Messpunktes. Als Fehler wird die Standardabweichung (2σ) des Mittelwertes aus diesen fünf Messzyklen angegeben. Jeder Messpunkt wurde manuell angefahren mit dem Vorteil, dass man sofort auf Risse und Störungen reagieren konnte und somit die Anzahl von Fehlmessungen deutlich geringer ausfiel. In den Tabellen 2.X-1 handelt es sich bei der Fehlerangabe um die Standardabweichung des Mittelwertes (2σ). Für die aus den SIMS-Daten ermittelten Verteilungskoeffizienten wird der absolute Fehler (2σ) dargestellt.

Tabelle I-3. Die analysierten Isotope der Spurenelemente dieser Arbeit mit den jeweils benötigten Messzeiten an der SIMS. Des Weiteren sind auftretende Interferenzen und für die Kalibrierung verwendete Referenzmaterialien angegeben.

Isotop	Messzeit (s)	Interferenzen	Referenzen
³¹ P	20/10(Spl)	³⁰ Si ¹ H	BCR-2G
⁴⁵ Sc	6	²⁹ Si ¹⁶ O	GSE-1G; BCR-2G; BIR-1G; BHVO-2G; SRM610
⁵⁹ Co	15		GSE-1G; BCR-2G; BIR-1G; BHVO-2G
⁶⁶ Zn	25	⁵⁰ Ti ¹⁶ O, ⁵⁰ Cr ¹⁶ O, ²⁴ Mg ²⁶ Mg ¹⁶ O	GSE-1G; BCR-2G; BIR-1G; BHVO-2G

I.5 Geothermobarometer

Die geothermobarometrischen Berechnungen geschahen mit dafür erstellten EXCEL-Dateien, auf Basis der Mittelwerte, die in den Tabellen 2.X-1 angegeben sind. Die angewendeten Geothermo- und Geobarometer sind eingangs in Kapitel 2 erwähnt. Zusätzlich kommen in Kapitel 3 Geothermometer von Seitz et al. (1999) und Waldow (2010) zur Anwendung. Für die jeweiligen Geothermobarometergleichungen sei auf die dazugehörige Literatur verwiesen, die im Literaturverzeichnis angegeben ist.

II Weitere Mineralprofile

Probe	Profil	Mineral	Abbildungsnummer
AAR-9	13	Орх	II.1-1
VG	14	OI	II.2-1
	19	OI	II.2-2
	07	Opx	II.2-3
	09	Opx	II.2-4
Fi	16	OI	.3.1
	13	Opx	.3-2
	06	Cpx	.3-3
	09b	Spl	.3-4
IV19	14	OI	II.4-1
	04	Opx	II.4-2
Ка	03	OI	II.5-1
	05	Grt	II.5-2
	02	Grt	II.5-3
	01	Grt	II.5-4
Gu	01	Grt	II.6-1

Abb. II.1-1. Opx-Analyse anhand von Profil-13 aus Probe AAR-9, Profillänge 280 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Opx-Einschlusses in Grt, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Profilstrecke [µm]

Profilstrecke [µm]

Abb. II.2-1. OI-Analyse anhand von Profil-14 aus Probe VG, Profillänge 240 μm. *Oben und Mitte:* BSE- und XP-Bild des analysierten OI-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.2-2. OI-Analyse anhand von Profil-19 aus Probe VG, Profillänge 670 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten OI-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.2-3. Opx-Analyse anhand von Profil-07 aus Probe VG, Profillänge 730 µm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Opx-Korns mit Entmischungslamellen von Cpx und Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (20). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

3.0

Abb. II.2-4. Opx-Analyse anhand von Profil-09 aus Probe VG, Profillänge 230 µm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Opx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2 σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.3-1. Ol-Analyse anhand von Profil-16 aus Probe Fi, Profillänge 2735 µm. *Oben und Mitte:* BSE- und XP-Bild des analysierten Ol-Korns mit einem kink-band (kb) und Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (20). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.3-2. Opx-Analyse anhand von Profil-13 aus Probe Fi, Profillänge 1180 μm. *Oben:* BSE-Bild des analysierten Opx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Mitte:* Opx-Korn mit Nachbarmineralen, BB 2.7 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.3-3. Cpx-Analyse anhand von Profil-06 aus Probe Fi, Profillänge 2080 µm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Cpx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2 σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.3-4. Spl-Analyse anhand von Profil-09b aus Probe Fi, Profillänge 150 μm. *Oben:* BSE-Bild des analysierten Spl-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Mitte:* Spl mit Nachbarmineralen, BB 2.8 mm *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.4-1. Ol-Analyse anhand von Profil-14 aus Probe IV19, Profillänge 380 μm. *Oben:* BSE-Bild des analysierten Ol-Korns im Kontakt zu Spl, sowie eingezeichnetem Profilverlauf. *Mitte:* Dünnschliffbild mit markiertem Spl-Korn aus Profil-14, BB 10 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

<u>6660</u>60

Abb. II.4-2. Opx-Analyse anhand von Profil-04 aus Probe IV19, Profillänge 1380 µm. *Oben:* BSE-Bild des analysierten Opx-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Mitte*: BSE-Bild eines Opx-Korns mit Nachbarmineralen, BB 2.7 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2 σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.5-1. OI-Analyse anhand von Profil-03 aus Probe Ka, Profillänge 630 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten OI-Einschlusses mit Opx vergesellschaftet in einem Grt, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.5-2. Grt-Analyse anhand von Profil-05 aus Probe Ka, Gesamtprofillänge 910 μm. *Oben:* BSE-Bild des analysierten Grt-Korn im Kontakt mit Ol-Einschluss, sowie eingezeichnetem Profilverlauf. *Mitte:* Dünnschliffbild des Ol-Einschlusses in Grt, BB 0.5 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehler-indikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.5-3. Grt-Analyse anhand von Profil-02 aus Probe Ka, Gesamtprofillänge 1590 μm. *Oben und Mitte:* BSEund XP-Bild des analysierten Grt-Korn im Kontakt mit Opx-Einschlüssen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.5-4. Grt-Analyse anhand von Profil-01 aus Probe Ka, Gesamtprofillänge 320 μm. *Oben:* BSE-Bild des analysierten Grt-Korn im Kontakt mit Cpx-Einschluss, sowie eingezeichnetem Profilverlauf. *Mitte*: PP-Bild eines Cpx, BB 1.8 mm. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Abb. II.6-1. Grt-Analyse anhand von Profil-01 aus Probe Gu, Profillänge 1715 μm. *Oben und Mitte:* BSE- und PP-Bild des analysierten Grt-Korns mit Kontaktmineralen, sowie eingezeichnetem Profilverlauf. *Unten:* SIMS-Konzentrationsdiagramme der Spurenelemente, Fehlerindikatoren entsprechen der Standardabweichung (2σ). *Gegenüberliegende Seite:* EMS-Konzentrationsdiagramme der Haupt- und Nebenelemente. Nähere Erläuterungen im Text.

Profilstrecke [µm]

Profilstrecke [µm]

III Tabellen

Es folgen nun die SIMS- und EMS-Tabellen aller Mineralmessprofile, die in dieser Arbeit angeführt werden. Wenn ein Mineral eine homogene Haupt- und Nebenelementchemie (EMS-Daten) hat, werden nur 40 Messpunkte als repräsentative Daten gezeigt. Ist ein Mineral zoniert, so werden die kompletten Daten der EMS-Messung des Profils präsentiert. Die SIMS-Messungen werden dagegen sowohl für zonierte als auch für homogene Mineralphasen komplett angegeben. Wie bei der Berechnung der Mineralformeln vorgegangen wurde, ist Anhang I.3 zu entnehmen.

Alpen			Kaledoniden		
<u>Probe</u> AAR-9	Profil -01 -02 -07 -13	<u>Mineral</u> Opx Grt Ol Cpx Opx	<u>Probe</u> Ka	Profil -01 -02 -02 -03 -05 -06 -09 -16	Mineral Grt Opx Grt Ol Grt Ol Grt Cpx
VG	-01 -02 -05 -07 -09 -14 -18 -19 -25	Cpx Grt Amp Opx Opx Ol Opx Ol Ol	Gu	-01 -02 -04 -05 -08	Grt Amp Opx Cpx Grt
Fi	-01 -02 -06 -08 -09b -10a -12 -13 -14 -16	Amp OI Cpx Cpx Spl Spl Opx Opx Opx PhI OI			
IV19	-01 -02 -04 -08 -10b -11 -14 -19	Ol Amp Opx Phl Spl Opx Ol Cpx			

Probe:	AAR-9
Profil:	01
Mineral:	Grt
Kapitel:	2.1

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
20	55.864	103.048	37.575	6.088	1.861	0.711	0.876	1.284
79	58.016	104.342	40.509	10.217	1.679	1.423	0.700	0.468
140	63.094	103.537	41.469	11.311	2.347	1.064	1.155	0.454
199	63.910	106.172	40.950	10.030	2.829	1.098	0.972	0.804
299	65.919	107.688	41.685	11.910	2.591	0.657	1.006	1.718
399	68.491	112.508	41.161	11.585	2.318	0.758	1.170	1.012
499	66.149	114.331	41.160	9.941	2.334	1.207	1.093	1.271
599	67.350	117.610	40.541	9.479	1.907	1.197	0.715	1.206
749	67.568	120.484	41.257	9.867	3.576	0.990	0.861	0.856
849	69.626	120.084	39.637	10.262	2.533	0.862	1.535	2.267
949	70.437	119.018	40.223	9.447	1.802	0.916	0.616	2.297
1049	72.154	118.838	40.126	9.801	1.632	1.184	0.230	0.723
1149	75.756	118.547	40.164	8.847	3.358	1.605	1.375	1.687
1249	75.042	118.042	39.940	10.617	1.243	0.855	0.772	1.102
1526	76.965	118.203	40.204	10.266	2.387	0.955	1.321	2.309
1769	77.152	116.751	39.672	10.998	1.668	2.293	0.666	0.521
1868	76.847	116.591	39.597	10.804	2.238	0.963	1.381	0.675
1969	74.483	116.020	40.836	12.312	1.759	1.100	0.659	0.751
2069	75.352	116.666	39.447	10.366	1.634	1.972	0.711	1.285
2169	78.090	113.682	39.811	11.303	1.249	1.230	0.721	0.603
2270	75.661	113.918	40.070	11.224	2.541	0.930	0.410	1.385
2374	76.063	114.594	39.782	9.687	2.528	1.465	1.170	1.755
2570	76.581	115.937	39.477	10.922	2.697	0.988	1.095	0.839
2669	76.707	116.018	40.296	11.159	0.479	1.102	0.789	1.829
2769	74.568	115.752	39.699	11.113	4.156	1.278	1.046	1.867
2869	77.425	116.038	40.333	10.231	1.832	0.921	0.836	1.555
3038	72.915	116.161	40.845	10.530	3.258	0.880	0.562	1.447
3209	72.145	115.590	40.482	10.283	2.514	3.442	1.426	1.062
3309	72.757	117.614	39.852	10.099	1.192	1.489	1.104	1.065
3409	76.271	117.281	40.857	12.381	2.108	0.969	1.596	1.226
3509	76.369	117.593	40.555	11.067	1.104	0.969	0.320	1.947
3609	77.267	119.375	40.794	12.200	1.451	1.464	1.034	1.365
3709	77.783	118.303	40.352	12.533	2.145	1.069	1.048	1.777
3809	80.923	117.933	41.092	10.080	1.523	1.359	0.787	1.470
3909	77.499	117.844	40.571	11.140	3.047	1.515	0.644	1.765
4009	75.848	117.475	40.971	10.228	2.473	0.954	0.721	0.705
4109	79.408	118.024	41.345	11.273	1.942	0.800	0.680	2.550
4209	77.230	118.793	40.389	10.259	1.267	1.083	1.523	2.053
4309	77.476	116.436	40.190	9.927	0.879	0.815	0.820	1.213
4414	81.239	112.669	41.066	12.211	1.399	0.523	0.433	1.804
4478	79.669	112.493	40.813	10.748	1.914	1.271	1.229	1.187
4551	71.773	111.094	40.094	11.233	1.351	0.744	0.355	1.782
4635	64.685	103.293	41.960	10.413	2.299	1.471	0.879	1.597

Probe: AAR-9 Profilname	Profil-01	Profil_01	Profil_01	Profil-01	Profil_01	Profil-01	Profil-01	Profil-01	Profil_01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil_01	Profil-01	Profil-01
Profilpunkt	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO CaO K2O K2O	40.65 .08 22.13 2.09 11.52 .01 18.14 4.86 .00 .00 100.24	40.69 .09 21.98 2.26 11.21 .59 .05 18.57 5.01 .02 .01 100.46	41.10 .14 22.16 2.22 10.32 .52 .03 18.79 4.98 .00 .00 100.27	41.03 .12 22.03 2.30 10.22 .50 .03 19.06 5.01 .00 .00 100.30	41.20 .14 22.23 2.23 10.26 .52 .02 19.31 5.02 .03 .00 100.94	41.18 .10 22.21 2.22 10.20 .55 .00 19.31 5.07 .04 .00 100.86	41.13 .11 22.02 2.25 9.80 .55 .03 19.37 4.99 .02 .01 100.28	41.14 .12 22.20 9.98 .54 .00 19.49 5.03 .02 .00 100.80	41.13 .13 22.20 2.23 9.90 .44 .00 19.48 5.08 .02 .02 100.63	41.12 .13 22.14 2.21 10.12 .55 .00 19.38 5.04 .00 .00 100.69	41.20 .11 2.24 10.00 .52 .02 19.52 4.98 .03 .00 100.84	41.09 .14 2.24 10.01 .48 .01 19.52 5.01 .00 .00 100.64	41.22 .17 22.21 2.17 9.73 .48 .01 19.55 5.08 .05 .00 100.67	41.18 .17 21.98 2.15 9.69 .00 19.40 5.08 .03 .01 100.18	41.35 .14 22.23 2.17 9.66 .54 .00 19.50 5.06 .01 .00 100.66	41.43 .15 22.11 2.18 10.02 .47 .00 19.58 4.99 .01 .00 100.93	41.13 .15 22.12 2.21 9.79 .45 .00 19.57 5.07 .01 .01 100.52	41.10 .09 22.39 2.13 9.77 .46 .00 19.61 4.99 .01 .00 100.55	41.28 .12 22.24 2.21 9.57 .51 .00 19.55 4.98 .00 .02 100.47	41.26 .14 22.26 9.67 .50 .00 19.63 4.94 .02 .02 100.59
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Kationen Σ Kationen	2.947 .005 1.891 .120 .698 .046 .001 1.960 .377 .000 .000 8.044	2.941 .005 1.872 .129 .678 .036 .003 2.000 .388 .002 .001 8.055	2.959 .008 1.880 .126 .622 .032 2.017 .384 .000 .000 8.030	2.954 .006 1.869 .131 .615 .030 .001 2.046 .387 .000 .000 8.039	2.947 .007 1.874 .126 .614 .032 .001 2.059 .384 .004 .000 8.048	2.947 .005 1.873 .126 .611 .033 .000 2.061 .388 .006 .000 8.051	2.956 .006 1.865 .128 .589 .034 .002 2.076 .384 .003 .001 8.043	2.944 .006 1.872 .129 .597 .033 .000 2.079 .386 .003 .000 8.051	2.947 .007 1.874 .126 .593 .027 .000 2.081 .390 .003 .002 8.049	2.947 .007 1.870 .125 .607 .033 .000 2.071 .387 .000 .000 8.048	2.947 .006 1.872 .127 .598 .032 .001 2.081 .382 .005 .000 8.050	2.945 .007 1.870 .127 .600 .029 .000 2.086 .385 .000 .000 8.049	2.949 .009 1.873 .122 .582 .029 .001 2.086 .390 .007 .000 8.048	2.960 .009 1.862 .583 .030 .000 2.079 .391 .004 .001 8.041	2.957 .008 1.873 .123 .578 .032 .000 2.079 .388 .001 .000 8.038	2.958 .008 1.861 .123 .598 .009 .000 2.084 .381 .002 .000 8.043	2.948 .008 1.869 .125 .587 .028 .000 2.092 .389 .002 .001 8.048	2.943 .005 1.890 .121 .585 .028 .000 2.093 .382 .002 .000 8.048	2.955 .007 1.877 .125 .573 .031 .000 2.087 .382 .000 .001 8.038	2.952 .008 1.877 .122 .579 .030 .000 2.093 .378 .002 .001 8.043
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	73.74 5.96 5	74.69 6.45 15	76.44 6.29 25	76.89 6.55 35	77.04 6.30 45	77.14 6.28 55	77.89 6.41 65	77.69 6.44 75	77.82 6.31 85	77.35 6.27 95	77.68 6.35 105	77.66 6.34 115	78.17 6.14 125	78.11 6.16 135	78.25 6.15 145	77.70 6.20 155	78.08 6.28 165	78.15 6.00 175	78.46 6.24 185	78.34 6.12 195

Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01 I	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	87	88	89	90	91	93	94	95	96	97	98	99	100	101	102	103	105	106	107	108
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SIO2 TIO2 AlzO3 FEO MnO NiO NGO GO AlgO KO KO KO	41.09 .15 22.30 9.86 .48 .00 19.60 5.04 .02 .01 100.73	41.18 .12 22.37 2.18 9.64 .42 .02 19.58 4.99 .03 .00 100.54	41.08 .13 22.22 2.17 9.68 .49 .03 19.54 5.01 .01 .00 100.36	41.16 .14 22.25 2.17 9.59 .47 .00 19.63 4.99 .04 .00 100.44	41.27 .13 22.29 2.14 9.49 .43 .00 19.72 4.92 .01 .00 100.41	40.69 .15 22.27 2.09 9.39 .51 .00 19.66 5.08 .03 .00 99.87	41.21 .13 22.33 2.15 9.60 .52 .00 19.72 5.04 .02 .01 100.72	40.96 .15 22.48 2.19 9.43 .47 .02 19.68 5.03 .02 .00 100.43	41.09 .14 22.44 2.10 9.48 .49 .02 19.78 5.04 .03 .01 100.62	41.20 .17 22.46 2.10 9.48 .44 .00 19.72 5.10 .05 .01 100.72	41.09 .16 22.44 2.09 9.63 .42 .00 19.86 5.07 .02 .00 100.79	41.18 .15 22.38 2.12 9.39 .45 .01 19.77 5.09 .03 .00 100.55	41.47 .16 22.42 2.19 9.40 .44 .03 19.74 5.11 .01 .00 100.95	41.19 .14 22.32 2.14 9.40 .02 19.82 5.08 .03 .00 100.58	41.21 .14 22.30 2.11 9.22 .47 .00 19.78 5.01 .04 .00 100.27	41.36 .16 22.42 2.07 9.22 .40 .00 19.87 5.03 .02 .01 100.54	41.21 .14 22.40 2.07 9.04 .40 .05 19.85 4.99 .01 .00 100.15	41.17 .16 22.37 2.09 9.31 .38 .00 19.91 5.14 .00 .01 100.53	41.11 .16 22.37 2.16 9.38 .41 .02 19.97 5.15 .05 .00 100.77	41.31 .16 22.52 2.05 9.12 .38 .03 19.77 5.00 .04 .02 100.40
Kationen- besetzung Si Ti Al Cr Fe ²⁺ . Mn Mg Ca Na K K Σ Kationen Sauerstoffe	2.940 .008 1.880 .123 .590 .029 .000 2.091 .386 .003 .001 8.052 12.000	2.947 .007 1.887 .025 .001 2.089 .383 .004 .000 8.044	2.947 .007 1.879 .123 .581 .022 2.090 .385 .001 .000 8.045	2.949 .007 1.879 .123 .574 .000 2.096 .383 .005 .000 8.046	2.954 .007 1.880 .121 .568 .000 2.104 .378 .002 .000 8.040 12.000	2.932 .008 1.892 .119 .566 .031 .000 2.112 .392 .004 .000 8.057 12.000	2.945 .007 1.880 .122 .574 .000 2.101 .386 .002 .001 8.049 12.000	2.934 .008 1.898 .124 .565 .029 .001 2.101 .386 .002 .000 8.048 12.000	2.938 .007 1.891 .119 .567 .030 .001 2.108 .386 .004 .001 8.052 12.000	2.942 .009 1.890 .119 .566 .000 2.099 .390 .007 .001 8.049 12.000	2.934 .009 1.889 .118 .575 .026 .000 2.114 .388 .002 .000 8.055 12.000	2.944 .008 1.886 .120 .561 .027 .001 2.107 .390 .004 .000 8.047	2.952 .009 1.881 .123 .560 .026 .001 2.095 .389 .002 .000 8.038 12.000	2.945 .007 1.880 .121 .562 .027 .001 2.113 .389 .004 .000 8.049	2.951 .007 1.882 .029 .000 2.112 .384 .005 .000 8.043 12.000	2.952 .009 1.886 .117 .550 .024 .000 2.114 .002 .001 8.039 12.000	2.951 .008 1.891 .117 .541 .003 2.119 .383 .001 .000 8.038 12.000	2.942 .009 1.884 .118 .556 .023 .000 2.121 .393 .000 .001 8.049 12.000	2.934 .008 1.882 .122 .560 .025 .001 2.126 .394 .007 .000 8.059	2.952 .009 1.896 .016 .545 .023 .002 2.106 .383 .006 .002 8.037 12.000
Mg # Cr # Profilstrecke [µm]	77.99 6.13 205	78.36 6.13 215	78.26 6.14 225	78.49 6.15 235	78.74 6.04 245	78.87 5.93 265	78.55 6.08 275	78.81 6.14 285	78.81 5.91 295	78.76 5.91 305	78.62 5.88 315	78.97 5.97 325	78.91 6.14 335	78.99 6.03 345	79.27 5.96 355	79.35 5.84 365	79.65 5.84 385	79.22 5.89 395	79.15 6.08 405	79.44 5.75 415

Probe: AAR-9 Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TO2 Al2O3 Cr2O3 FeO MnO NiO NiO NgO CaO CaO K2O K2O K2O	41.13 16 22.47 2.16 8.99 .43 .00 19.96 5.04 .06 .01 100.41	41.16 .13 22.47 2.07 9.10 .40 20.03 5.07 .03 .00 100.48	41.21 .15 22.47 2.09 8.99 .40 .02 20.04 5.06 .05 .00 100.48	41.32 .14 22.52 2.08 9.22 4.46 .02 20.13 5.20 .01 .01 .00 101.10	41.22 .18 22.38 2.09 9.05 .39 .01 20.00 5.08 .00 .01 100.41	40.94 .14 22.52 2.05 8.84 .37 .00 20.05 5.07 .02 .00 99.99	41.21 .13 22.46 2.10 8.82 .43 .01 20.10 5.16 .04 .00 100.45	41.15 .14 22.60 2.09 8.93 .39 .02 20.08 5.12 .01 .00 100.53	41.18 .15 22.48 2.05 8.96 .42 .00 20.15 5.09 .00 .00 100.47	41.01 .14 22.48 2.16 9.04 .36 .01 20.21 5.09 .03 .00 100.53	41.14 .14 22.45 2.13 8.79 .38 .00 20.25 5.02 .00 .00 100.29	41.06 .14 22.53 2.12 8.85 .42 20.31 5.11 .04 .00 100.58	40.84 .16 22.47 2.13 8.87 .35 .03 20.17 5.03 .02 .01 100.06	41.19 .15 22.63 2.13 9.27 .38 .03 20.25 5.03 .00 .01 101.06	40.86 .15 22.54 2.03 8.72 .41 .00 20.24 5.08 .05 .00 100.09	41.16 .17 22.60 2.14 8.68 .40 .00 20.16 5.00 .04 .01 100.35	41.04 .18 22.56 2.08 8.57 .39 .04 20.09 5.06 .01 .01 100.03	41.12 .17 22.54 8.88 .38 .00 20.25 5.07 .04 .00 100.61	41.19 .14 22.55 2.17 8.81 .41 .01 20.28 5.06 .03 .01 100.66	40.78 .15 22.64 2.19 8.68 .38 .02 20.28 5.11 .03 .01 100.26
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Na Na X K ξ Kationen	2.940 .008 1.893 .122 .537 .026 .000 2.127 .386 .008 .001 8.048	2.940 .007 1.892 .117 .544 .000 2.133 .388 .005 .000 8.051	2.942 .008 1.891 .118 .537 .024 .001 2.133 .387 .007 .000 8.049	2.937 .007 1.887 .117 .548 .028 .001 2.133 .396 .001 .000 8.055	2.946 .009 1.885 .118 .541 .024 .001 2.130 .389 .001 .001 8.044	2.936 .007 1.903 .116 .530 .022 .000 2.143 .390 .003 .000 8.049	2.942 .007 1.890 .118 .527 .026 .001 2.140 .394 .005 .000 8.050	2.936 .008 1.900 .118 .533 .024 .001 2.135 .391 .002 .000 8.048	2.940 .008 1.891 .116 .535 .026 .000 2.145 .389 .000 .000 8.049	2.929 .008 1.892 .122 .540 .022 .001 2.152 .389 .004 .000 8.058	2.940 .008 1.890 .525 .023 .000 2.157 .384 .000 .000 8.047	2.929 .007 1.894 .119 .528 .005 .001 2.160 .391 .005 .000 8.060	2.928 .008 1.899 .120 .532 .021 .001 2.155 .387 .002 .001 8.055	2.928 .008 1.896 .120 .551 .023 .002 2.146 .383 .000 .000 8.057	2.927 .008 1.903 .115 .522 .025 .000 2.161 .390 .007 .000 8.059	2.938 .009 1.901 .121 .518 .024 .000 2.145 .382 .006 .001 8.045	2.938 .010 1.903 .118 .513 .024 .002 2.145 .388 .002 .001 8.043	2.931 .009 1.894 .122 .529 .023 .000 2.152 .387 .006 .000 8.054	2.934 .008 1.893 .122 .525 .005 .000 2.154 .387 .004 .000 8.053	2.917 .008 1.908 .124 .023 .001 2.163 .392 .004 .001 8.061
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	79.83 6.05 425	79.69 5.82 435	79.89 5.88 445	79.56 5.83 455	79.75 5.89 465	80.17 5.74 475	80.25 5.89 485	80.03 5.85 495	80.04 5.76 506	79.94 6.05 516	80.41 5.99 526	80.36 5.93 536	80.20 5.97 546	79.57 5.94 556	80.54 5.71 566	80.54 5.98 576	80.70 5.83 586	80.27 6.04 596	80.40 6.07 606	80.64 6.08 616

Probe: AAR-9																				
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TiO2 TiO2 Gr2O3 FeO MnO NiO MgO CaO CaO K2Ô CaO K2Ô S	41.10 .17 22.54 8.79 .35 003 20.26 5.09 .01 .01 100.48	40.98 .16 22.50 2.13 8.63 .42 .00 20.22 5.10 .02 .00 100.16	40.89 .13 22.43 2.13 8.56 .37 .02 20.16 5.11 .04 .02 99.86	40.97 .14 22.65 2.15 8.79 .41 .00 20.30 5.06 .03 .03 .00 100.49	41.12 .15 22.49 2.14 8.81 .33 .03 20.31 5.10 .00 .00 100.46	41.11 .15 22.56 2.12 8.80 .00 20.12 5.09 .02 .00 100.31	40.94 .16 22.43 2.13 8.70 .44 .01 20.30 5.14 .03 .00 100.27	41.10 .15 22.47 2.17 8.62 .36 .00 20.38 5.09 .02 .01 100.37	41.09 .15 22.45 2.19 8.55 .35 .01 20.34 5.14 .01 .00 100.26	41.04 .15 22.46 2.16 8.55 .06 20.37 5.05 .03 .00 100.22	41.00 .15 22.51 2.15 8.66 .37 .01 20.36 5.07 .03 .00 100.32	40.94 .17 22.58 2.19 8.38 .43 .04 20.31 5.03 .05 .00 100.10	41.09 .14 22.54 2.16 8.33 .02 20.38 5.05 .05 .00 100.11	40.99 .15 22.48 2.12 8.75 .40 .00 20.32 5.07 .03 .00 100.30	41.14 .17 22.51 2.20 8.38 .39 .00 20.22 5.11 .06 .00 100.19	41.07 .19 22.43 2.15 8.41 .39 .00 20.28 5.09 .03 .00 100.04	41.05 .18 22.37 2.14 8.64 .29 .01 20.39 5.18 .04 .01 100.30	41.25 .15 22.47 2.19 8.24 .42 .00 20.33 5.15 .01 .00 100.19	41.16 .17 22.30 2.20 8.51 .37 .00 20.37 5.10 .04 .00 100.22	41.18 .16 22.41 2.18 8.59 .37 .00 20.31 5.11 .03 .00 100.33
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Na Na K ζ Kationen	2.933 .009 1.896 .119 .525 .021 .002 2.155 .389 .002 .001 8.052	2.932 .008 1.898 .120 .517 .025 .000 2.157 .391 .002 .000 8.052	2.934 .007 1.897 .121 .514 .001 2.157 .393 .006 .001 8.054	2.924 .007 1.906 .121 .525 .005 .000 2.159 .387 .005 .000 8.058	2.934 .008 1.892 .121 .526 .000 .001 2.160 .390 .000 8.052	2.937 .008 1.900 .120 .526 .021 .000 2.143 .389 .002 .000 8.046	2.928 .009 1.891 .121 .520 .000 2.165 .394 .004 .000 8.059	2.934 .008 1.890 .122 .515 .022 .000 2.169 .389 .002 .001 8.053	2.936 .008 1.890 .123 .511 .001 2.166 .394 .001 .000 8.050	2.934 .008 1.892 .122 .511 .004 2.170 .387 .004 .000 8.054	2.929 .008 1.896 .122 .518 .023 .000 2.169 .388 .004 .000 8.056	2.929 .009 1.903 .124 .501 .002 2.166 .386 .007 .000 8.053	2.937 .008 1.898 .122 .498 .020 .001 2.171 .387 .007 .000 8.049	2.930 .008 1.894 .120 .523 .024 .000 2.165 .388 .004 .000 8.056	2.939 .009 1.895 .124 .501 .024 .000 2.154 .391 .009 .000 8.046	2.939 .010 1.892 .503 .000 2.163 .390 .005 .000 8.047	2.934 .010 1.884 .121 .516 .008 .000 2.172 .396 .006 .001 8.057	2.945 .008 1.890 .123 .492 .025 .000 2.163 .394 .001 .000 8.041	2.942 .009 1.878 .124 .509 .022 .000 2.170 .390 .005 .000 8.050	2.940 .008 1.885 .123 .513 .022 .000 2.162 .391 .004 .000 8.049
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr #	80.42 5.92	80.67 5.96	80.76 6.00	80.45 5.98	80.43 5.99	80.30 5.94	80.62 5.99	80.82 6.09	80.92 6.13	80.94 6.05	80.73 6.02	81.20 6.10	81.34 6.04	80.54 5.96	81.13 6.16	81.12 6.04	80.80 6.04	81.48 6.13	81.01 6.22	80.83 6.14
Profilstrecke [µm]	636	646	656	666	676	686	696	706	/16	726	/36	/46	/56	/66	//6	786	796	806	816	826

Probe: AAR-9	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01
Profilpunkt	150	151	152	153	154	155	156	158	159	160	161	162	163	164	165	166	167	168	169	170
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
$\begin{array}{l} \textbf{Analyse} \\ \textbf{[Gew%]} \\ SiO_2 \\ TiO_3 \\ Ai,O_1 \\ Gr_2O_3 \\ FeO \\ MnO \\ NiO \\ MiO \\ MgO \\ CaO \\ Na_2O \\ Na_2O \\ X_2O \\ \Sigma \end{array}$	41.10 22.29 2.25 8.72 .33 .00 20.39 5.11 .02 .00 100.42	41.12 .19 22.31 8.55 .32 20.37 5.17 .02 .01 100.32	41.19 .17 22.53 2.23 8.51 .35 .00 20.36 5.23 .03 .01 100.60	41.41 .17 22.43 8.37 .40 .00 20.43 5.18 .06 .00 100.64	41.31 .17 22.38 2.21 8.41 .35 .00 20.44 5.10 .03 .01 100.39	41.35 18 22.39 8.55 .39 0.03 20.45 5.11 .05 .00 100.69	41.33 .17 22.32 2.26 8.42 .01 20.40 5.09 .06 .00 100.44	41.22 .15 22.30 8.19 .36 .00 20.39 5.12 .02 .01 99.99	41.35 .17 22.51 8.34 .30 .00 20.40 5.16 .04 .01 100.54	41.34 .17 22.48 8.54 .43 .00 20.46 5.20 .02 .00 100.87	41.28 .15 22.37 8.56 .37 .00 20.41 5.21 .02 .00 100.56	41.17 .16 22.52 2.24 8.30 .37 .00 20.39 5.06 .03 .01 100.24	41.18 .17 22.24 8.55 .31 .01 20.45 5.14 .03 .00 100.51	41.44 .18 22.43 8.37 .37 .00 20.33 5.19 .03 .01 100.59	41.02 .15 22.64 2.22 8.58 .45 .05 20.49 5.13 .04 .00 100.76	41.32 .17 22.41 2.22 8.29 .39 .01 20.43 5.20 .01 .00 100.44	41.16 .20 22.56 2.23 8.34 .27 .00 20.43 5.19 .04 .00 100.41	41.26 .16 22.43 8.37 .38 .00 20.38 5.20 .02 .00 100.44	41.00 22.45 2.24 8.37 .36 .06 20.43 5.20 .02 .00 100.33	41.19 .17 22.60 8.43 .00 20.26 5.08 .01 .01 100.42
Kationen- besetzung Si Ti Al Cr Fe ⁺ Mn Ni Mg Ca Ca Kationen Σ Kationen	2.935 .011 1.876 .127 .521 .020 .000 2.171 .391 .003 8.055	2.937 .010 1.878 .127 .511 2.169 .395 .003 .001 8.052	2.933 .009 1.891 .125 .507 .021 .000 2.161 .399 .004 .001 8.052	2.945 .009 1.880 .123 .498 .020 2.166 .395 .008 .000 8.048	2.945 .009 1.880 .124 .501 .000 2.172 .389 .004 .001 8.046	2.942 .009 1.878 .123 .508 .024 .001 2.169 .390 .006 .000 8.052	2.946 .009 1.875 .127 .502 .024 .001 2.167 .388 .008 .000 8.048	2.948 .008 1.880 .126 .490 .020 2.173 .392 .003 .001 8.043	2.942 .009 1.888 .127 .496 .010 2.164 .393 .005 .001 8.044	2.936 .009 1.882 .126 .507 .026 .000 2.167 .396 .002 .000 8.051	2.941 .008 1.878 .123 .510 .022 .000 2.168 .398 .003 .000 8.051	2.938 .009 1.894 .126 .496 .020 0.000 2.169 .387 .004 .001 8.046	2.935 .009 1.885 .125 .510 .019 .000 2.173 .393 .004 .000 8.053	2.948 .009 1.880 .126 .498 .000 2.156 .395 .004 .001 8.041	2.920 .008 1.899 .125 .511 .003 2.174 .391 .005 .000 8.063	2.943 .009 1.882 .125 .494 .001 2.169 .397 .001 .000 8.045	2.933 .011 1.894 .126 .497 .016 .000 2.171 .396 .006 .000 8.049	2.941 .008 1.884 .127 .499 .023 .000 2.165 .397 .003 .000 8.047	2.928 .010 .1280 .004 2.175 .398 .003 .000 8.055	2.936 .009 1.899 .130 .503 .023 .000 2.153 .388 .001 .001 8.042
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	80.66 6.33 836	80.94 6.34 846	81.01 6.22 856	81.31 6.13 866	81.25 6.20 876	81.01 6.17 886	81.20 6.36 896	81.61 6.29 916	81.35 6.31 926	81.02 6.26 936	80.95 6.17 946	81.41 6.26 956	81.00 6.23 966	81.24 6.28 976	80.97 6.17 986	81.46 6.24 996	81.37 6.22 1006	81.27 6.30 1016	81.32 6.27 1026	81.07 6.39 1036

Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse																				
[Gew%] SiO ₂	41.17	40.69	41.13	41.22	41.24	41.07	41.10	41.19	41.23	41.04	40.64	40.88	40.64	40.37	40.47	40.97	40.46	40.38	41.04	41.00
TiO ₂ Al ₂ O ₂	.18	.19	.18	.19	.15	.17	.18	.18	.16	.19	.20	.18	.17	.16	.17	.18	.17	.18	.17	.17
Cr ₂ O ₃	2.22	2.18	2.25	2.27	2.25	2.33	2.20	2.26	2.24	2.29	2.25	2.34	2.30	2.33	2.30	2.22	2.23	2.30	2.37	2.29
FeO MnO	8.41 .39	8.42 .36	8.17 .37	8.28 .35	8.03 .39	8.31 .39	8.42 .29	8.25 .31	8.29 .37	8.31 .43	8.43 .37	8.16 .34	8.08 .39	8.22 .39	8.08 .35	7.97	8.37 .41	8.12 .41	8.24 .40	8.17 .36
NIO	.03	.01	.03	.05	.00	.01	.00	.04	.02	.01	.08	.01	.01	.00	.03	.00	.00	.02	.00	.00
CaO	20.37 5.20	20.22	20.33	20.42	20.37	20.47 5.10	20.39	20.36	20.35	20.43 5.28	20.44 5.24	20.34	20.37	20.42	20.31	20.42	20.38	20.36	20.38	20.43
Na ₂ O	.01	.05	.03	.05	.05	.02	.02	.03	.02	.05	.07	.03	.03	.03	.05	.02	.03	.01	.04	.03
Σ	100.45	99.91	100.20	100.71	100.24	100.46	100.42	100.34	100.36	100.64	100.24	99.94	99.64	99.82	99.48	100.05	99.89	99.61	100.51	100.26
Kationen- besetzung Si Ti Al Cr Fe ^ε ** Mn Mg Ca Mg Ca Na K Σ Kationen Sauerstoffe	2.936 .010 1.887 .501 .022 2.165 .398 .002 .000 8.049 12.000	2.919 .010 1.906 .123 .505 .022 .001 2.162 .006 .000 8.059 12.000	2.937 .010 1.892 .127 .488 .022 2.164 .000 .004 .001 8.047 12.000	2.930 .010 1.899 .127 .021 .003 2.164 .006 .002 8.051 12.000	2.941 .008 1.894 .127 .024 .000 2.166 .398 .007 .001 8.044 12.000	2.927 .009 1.898 .131 .495 .024 .000 2.174 .389 .002 .000 8.051 12.000	2.930 .010 1.899 .124 .502 .017 .000 2.167 .000 .002 .000 8.050 12.000	2.937 .010 1.896 .127 .492 .019 .002 2.164 .903 .004 .000 8.044 12.000	2.940 .008 1.889 .126 .023 .001 2.163 .093 .000 8.046 12.000	2.922 .010 1.898 .129 .026 .001 2.168 .007 .000 8.058 12.000	2.909 .011 1.900 .127 .505 .023 .004 2.181 .402 .010 .000 8.071 12.000	2.927 .010 1.898 .132 .489 .020 .001 2.171 .004 .000 8.050 12.000	2.920 .009 1.902 .130 .024 .001 2.182 .399 .004 .000 8.057 12.000	2.899 .009 1.917 .132 .494 .023 .000 2.186 .405 .004 .000 8.069 12.000	2.913 .009 1.907 .131 .001 2.180 .001 8.062 12.000	2.927 .010 1.905 .126 .477 .024 .000 2.176 .001 8.049 12.000	2.905 .009 1.909 .126 .503 .025 .000 2.182 .004 .003 8.071 12.000	2.905 .010 1.913 .131 .489 .025 .001 2.184 .002 .001 8.065 12.000	2.925 .009 1.898 .133 .491 .024 .000 2.165 .402 .006 .001 8.054 12.000	2.928 .009 1.894 .129 .488 .022 .000 2.174 .405 .004 .001 8.054 12.000
Mg #	81.20	81.06	81.60	81.47	81.88	81.44	81.20	81.47	81.40	81.43	81.20	81.62	81.80	81.57	81.76	82.03	81.28	81.71	81.51	81.67
Cr #	6.23	6.08	6.29	6.28	6.27	6.47	6.14	6.30	6.26	6.36	6.28	6.52	6.42	6.46	6.42	6.19	6.21	6.40	6.56	6.39
Profilstrecke [µm]	1046	1056	1066	1076	1086	1096	1106	1116	1126	1136	1146	1156	1166	1176	1186	1196	1206	1216	1226	1236

Probe: AAR-9	Profil 01	Profil 01	Profil 01 I	Profil 01	Profil 01	Profil 01	Profil 01 I	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01						
Profilpunkt	191	192	193	194	195	196	197	198	199	200	201	202	204	206	211	212	213	214	215	216
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 SiO2 Al2O3 CF2O3 FEO MnO NiO SiO2 CaO CaO Na2O K2Ó X S	41.32 .17 22.60 2.27 8.22 .37 .00 20.35 5.24 .04 .01 100.59	41.02 .19 22.45 2.28 8.08 .33 .00 20.39 5.34 .03 .02 100.11	40.57 .17 22.62 2.26 8.19 .38 .05 20.53 5.10 .05 .05 .00 99.93	40.62 .16 22.55 2.33 8.11 .36 .03 20.35 5.19 .00 .00 99.70	41.13 .18 22.51 8.30 .33 .00 20.33 5.25 .02 .00 100.33	40.75 .16 22.54 2.36 8.20 .36 .01 20.35 5.21 .05 .00 100.01	40.68 .17 22.45 2.34 8.20 .31 .04 20.27 5.15 .02 .00 99.62	40.38 .19 22.64 2.30 8.15 .41 .00 20.39 5.27 .02 .00 99.75	40.96 .18 22.64 2.26 8.16 .42 20.53 5.23 .04 .02 100.46	40.49 .15 22.61 8.17 .38 .00 20.46 5.27 .06 .00 99.85	41.01 .16 22.52 2.26 8.19 .36 .00 20.38 5.20 .05 .00 100.13	40.42 .16 22.67 2.35 8.29 .36 .01 20.43 5.20 .04 .00 99.91	40.97 .15 22.60 2.32 8.32 .38 .03 20.74 5.22 .04 .02 100.79	40.65 .17 22.63 2.31 7.96 .36 .00 20.33 5.20 .05 .05 .00 99.65	40.72 .17 22.38 8.05 .37 .03 20.58 5.20 .04 .00 99.85	40.75 .17 22.55 2.28 8.31 .34 .00 20.76 5.26 .03 .00 100.46	40.55 .17 22.32 2.26 8.17 .37 .05 20.60 5.20 .01 .02 99.72	40.54 .17 22.52 2.31 8.37 .34 .00 20.45 5.29 .02 .00 100.00	40.47 .17 22.58 2.34 8.07 .31 .01 20.31 5.30 .03 .00 99.57	40.43 .16 22.66 2.35 7.96 .36 .00 20.27 5.35 .03 .01 99.58
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na K Σ Kationen	2.939 .009 1.894 .128 .489 .022 .000 2.158 .399 .005 .001 8.044	2.932 .010 1.891 .129 .483 .020 .000 2.172 .409 .004 .002 8.051	2.908 .009 1.911 .128 .491 .003 2.194 .392 .007 .000 8.066	2.917 .009 1.908 .133 .487 .022 .002 2.178 .400 .000 .000 8.054	2.934 .010 1.893 .128 .495 .020 .000 2.162 .401 .003 .000 8.048	2.919 .009 1.903 .134 .491 .001 2.173 .400 .007 .000 8.058	2.923 .009 1.901 .133 .493 .002 2.172 .396 .003 .000 8.052	2.901 .010 1.917 .131 .489 .025 .000 2.184 .406 .003 .000 8.066	2.920 .010 1.902 .127 .486 .025 .001 2.182 .400 .006 .002 8.060	2.906 .008 1.912 .128 .491 .023 .000 2.189 .405 .008 .000 8.070	2.931 .008 1.897 .128 .490 .022 .000 2.171 .398 .007 .000 8.052	2.900 .008 1.917 .133 .497 .022 .001 2.186 .400 .005 .000 8.069	2.914 .008 1.894 .131 .495 .023 .002 2.198 .398 .005 .002 8.069	2.918 .009 1.914 .131 .478 .000 2.175 .400 .007 .000 8.053	2.920 .009 1.891 .131 .483 .002 2.200 .400 .006 .006 8.063	2.908 .009 1.897 .129 .496 .021 .000 2.208 .402 .004 .000 8.073	2.914 .009 1.890 .128 .491 .022 .003 2.207 .401 .002 .001 8.069	2.907 .009 1.903 .131 .502 .021 .000 2.186 .406 .003 .000 8.068	2.910 .009 1.914 .133 .485 .019 .000 2.177 .408 .004 .000 8.060	2.907 .009 1.920 .134 .478 .022 .000 2.172 .412 .004 .001 8.059
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	81.53 6.32 1246	81.81 6.38 1256	81.71 6.27 1266	81.73 6.49 1276	81.36 6.32 1286	81.57 6.56 1296	81.52 6.53 1306	81.69 6.39 1316	81.77 6.27 1326	81.69 6.26 1336	81.60 6.31 1346	81.46 6.50 1356	81.63 6.45 1376	81.99 6.41 1396	82.00 6.50 1446	81.66 6.36 1456	81.81 6.36 1466	81.32 6.44 1476	81.77 6.49 1486	81.95 6.50 1496

Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	217	218	219	220	221	222	229	230	231	233	234	235	236	237	238	239	240	241	242	243
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SIO2 TiO2 Al2O3 FeO MnO NiO NGO CaO Na,O K,O X,O X,O	40.53 .18 22.51 2.37 8.13 .29 .01 20.44 5.27 .04 5.27 .04 99.78	40.49 22.53 2.33 8.07 .34 .02 20.42 5.28 .06 .00 99.72	40.44 .19 22.51 2.30 8.12 .35 .00 20.40 5.26 .05 .00 99.62	40.49 .18 22.50 2.35 .28 .03 20.41 5.38 .04 .00 99.90	40.50 .18 22.66 2.40 8.18 .32 .04 20.39 5.28 .03 .02 99.98	40.61 .18 22.67 2.34 7.99 .34 .02 20.32 5.25 .03 .02 99.78	40.83 .18 22.47 2.35 8.18 .41 .00 20.49 5.25 .04 .00 100.19	41.16 .17 22.65 2.35 8.12 .37 .01 20.59 5.31 .05 .00 100.78	41.01 .20 22.50 2.31 8.00 .41 .03 20.55 5.33 .02 .00 100.36	40.82 .19 22.49 2.35 7.88 .35 .00 20.66 5.39 .02 .00 100.16	40.75 .18 22.46 2.32 7.37 .00 20.36 5.33 .06 .00 99.83	40.98 .19 22.51 2.35 7.90 .42 .04 20.43 5.43 .04 .00 100.29	41.07 .20 22.52 2.37 8.00 .30 .02 20.39 5.28 .04 .01 100.21	40.64 .16 22.49 2.34 8.05 .36 .00 20.44 5.37 .03 .00 99.89	40.79 .20 22.52 2.30 8.04 .30 .03 20.40 5.32 .02 .00 99.93	40.68 .17 22.53 2.33 7.97 .33 .03 20.49 5.31 .02 .02 99.87	40.88 .18 22.58 2.33 8.12 .38 .03 20.52 5.43 .02 .00 100.47	40.51 .19 22.56 2.28 8.08 .39 .05 20.44 5.28 .04 .00 99.81	40.45 .19 22.42 2.28 8.12 .37 .02 20.48 5.33 .04 .00 99.70	40.74 .19 22.58 8.01 .34 .02 20.49 5.30 .02 .00 99.89
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na Kationen Σ Kationen	2.910 .010 1.905 .134 .488 .018 .001 2.187 .406 .000 8.064 12.000	2.908 .011 1.907 .132 .485 .021 .001 2.186 .406 .008 .000 8.065 12.000	2.908 .010 1.908 .131 .000 2.187 .405 .007 .000 8.066 12.000	2.906 .010 1.903 .133 .495 .017 .002 2.184 .413 .005 .000 8.069 12.000	2.903 .010 1.914 .136 .020 .002 2.179 .405 .004 .002 8.065	2.913 .010 1.917 .133 .479 .021 .001 2.173 .404 .005 .002 8.057 12.000	2.920 010 1.893 .133 .489 .025 .000 2.184 .402 .005 .000 8.060 12.000	2.923 .009 1.896 .132 .022 .000 2.180 .404 .006 .000 8.057 12.000	2.925 .011 1.891 .130 .025 .002 2.185 .407 .003 .000 8.055 12.000	2.916 010 1.894 .133 .471 .021 .000 2.200 .413 .003 .000 8.061 12.000	2.922 010 1.898 .131 .478 .024 .000 2.177 .410 .008 .000 8.058 12.000	2.925 .010 1.894 .132 .025 .002 2.174 .415 .006 .000 8.055 12.000	2.931 .011 1.894 .134 .018 .001 2.170 .404 .006 .001 8.047 12.000	2.914 .009 1.901 .133 .022 .000 2.185 .413 .004 .000 8.062 12.000	2.921 .011 1.901 .130 .018 .002 2.178 .408 .003 .000 8.054 12.000	2.916 .009 1.903 .132 .478 .020 .002 2.189 .408 .002 .002 8.060 12.000	2.915 .010 1.898 .131 .415 .023 .001 2.181 .415 .003 .000 8.062 12.000	2.908 .010 1.908 .129 .405 .024 .003 2.188 .406 .005 .000 8.066 12.000	2.908 .010 1.899 .130 .488 .022 .001 2.195 .410 .006 .000 8.071 12.000	2.919 .010 1.900 .021 .001 2.188 .407 .003 .000 8.058 12.000
Mg # Cr # Profilstrecke [µm]	81.75 6.59 1507	81.85 6.50 1517	81.75 6.42 1527	81.52 6.54 1537	81.63 6.63 1547	81.93 6.47 1557	81.71 6.57 1627	81.89 6.51 1637	82.08 6.44 1647	82.37 6.56 1667	81.99 6.47 1677	82.17 6.54 1687	81.96 6.59 1697	81.91 6.53 1707	81.89 6.42 1717	82.09 6.48 1727	81.82 6.47 1737	81.86 6.35 1747	81.80 6.38 1757	82.01 6.36 1767

Probe: AAR-9	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01 I	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01
Profilpunkt	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 SiO2 Al2O3 CF2O3 FEO MnO NiO NiO CaO CaO K2O K2O K2O K2O	40.63 .17 22.60 2.29 8.20 .38 .00 20.50 5.29 .02 .02 .01 100.09	40.54 .17 22.53 2.37 7.92 3.37 .02 20.39 5.34 .02 .00 99.66	40.57 .17 22.47 2.31 8.09 .37 .02 20.34 5.40 .02 .01 99.76	40.63 .18 22.55 2.26 8.13 .33 .00 20.37 5.31 .03 .00 99.79	40.50 .18 22.48 2.33 8.02 .37 .00 20.27 5.34 .04 .01 99.54	40.46 20 22.59 2.36 7.94 .38 .00 20.43 5.31 .05 .00 99.70	40.36 .19 22.62 2.33 7.99 .32 .02 20.38 5.33 .01 .00 99.55	40.44 .18 22.63 8.02 .33 .00 20.29 5.41 .01 .01 99.65	40.34 .19 22.58 2.33 7.84 .38 .00 20.29 5.29 .04 .01 99.28	40.45 19 22.50 2.30 7.87 .35 .04 20.38 5.32 .03 .00 99.42	40.42 .16 22.57 .33 7.97 .35 .00 20.39 5.25 .02 .00 99.48	40.44 .19 22.60 2.31 8.05 .32 .00 20.43 5.33 5.33 .04 .00 99.72	40.56 .18 22.60 2.33 8.02 .39 .02 20.40 5.31 .05 .00 99.86	40.53 .16 22.68 2.32 8.22 .36 .04 20.36 5.32 .05 .00 100.03	40.19 .18 22.50 7.88 .28 .00 20.29 5.30 .02 .00 98.93	40.12 .20 22.65 2.38 8.08 .37 .00 20.33 5.33 5.33 .04 .00 99.50	40.35 .18 22.57 2.38 7.90 .32 .02 20.22 5.33 .05 .00 99.31	40.39 20 22.59 2.30 8.04 .31 .00 20.32 5.26 .04 .00 99.44	41.01 .18 22.58 2.33 7.85 .32 .00 20.36 5.33 .02 .02 100.00	40.32 .16 22.61 2.35 8.15 .38 .02 20.48 5.27 .02 .00 99.76
Kationen- besetzung Si Ti Al Cr Fe ⁺ Mn Ni Mg Ca Xa Kationen	2.908 .009 1.907 .129 .491 .023 .000 2.188 .406 .003 .001 8.066	2.912 .009 1.907 .134 .476 .022 .001 2.184 .411 .000 8.059	2.914 .009 1.902 .131 .486 .023 .001 2.178 .415 .003 .001 8.062	2.915 .010 1.907 .128 .488 .020 .000 2.179 .004 .000 8.060	2.914 .010 1.906 .133 .483 .000 2.174 .412 .000 8.060	2.906 .011 1.912 .134 .477 .023 .000 2.187 .409 .000 8.064	2.903 .010 1.918 .133 .481 .001 2.185 .411 .000 8.063	2.906 .010 1.917 .133 .482 .020 .000 2.174 .416 .000 8.060	2.908 .010 1.918 .133 .472 .023 .000 2.180 .001 8.060	2.912 .010 1.909 .131 .474 .002 2.188 .410 .000 8.061	2.909 .009 1.914 .133 .480 .000 2.187 .405 .000 8.061	2.904 .010 1.913 .131 .484 .020 .000 2.188 .410 .006 .000 8.066	2.909 .010 1.910 .132 .481 .001 2.181 .408 .000 8.063	2.905 .008 1.915 .132 .493 .002 2.175 .409 .007 8.067	2.907 .010 1.918 .131 .477 .017 .000 2.187 .411 .003 .000 8.061	2.891 .011 1.924 .136 .487 .000 2.183 .411 .000 8.072	2.909 .010 1.917 .136 .476 .020 .001 2.172 .411 .000 8.059	2.907 .011 1.917 .131 .484 .000 2.181 .405 .000 8.061	2.931 .009 1.902 .132 .469 .000 2.169 .408 .002 8.044	2.898 .009 1.915 .133 .490 .023 .001 2.194 .400 .003 .000 8.071
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	81.68 6.36 1777	82.11 6.59 1787	81.76 6.45 1797	81.71 6.29 1807	81.84 6.50 1817	82.11 6.55 1827	81.96 6.47 1837	81.84 6.47 1847	82.19 6.47 1857	82.20 6.41 1867	82.01 6.48 1877	81.89 6.42 1887	81.94 6.48 1897	81.53 6.43 1907	82.11 6.38 1917	81.76 6.59 1927	82.02 6.60 1937	81.85 6.38 1947	82.21 6.48 1957	81.75 6.51 1967

Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse																				
[Gew%] SiO ₂	40.21	40.30	41.05	40.10	40.21	40.19	40.19	40.49	40.24	40.11	40.20	40.54	40.37	40.18	40.74	41.22	40.44	40.13	40.25	40.12
TiO ₂	.19	.20	.18	.18	.15	.18	.17	.16	.20	.17	.15	.18	.18	.19	.18	.19	.21	.18	.18	.19
Cr ₂ O ₃	22.01	22.01	22.67	22.63	22.65	22.59	22.50	22.63	22.61	22.03	22.55	22.63	22.70	22.63	22.63	22.50	22.70	22.65	22.63	22.05
FeO	7.98	8.09	7.93	8.20	7.97	8.22	7.79	8.00	7.80	8.12	7.94	8.02	8.04	7.90	7.79	7.90	7.95	7.99	7.97	7.89
NiO	.00	.41	.37	.30	.02	.33	.32	.28	.30	.00	.30	.33	.30	.00	.38	.30	.32	.35	.34	.32
MgO	20.28	20.26	20.48	20.33	20.37	20.33	20.28	20.33	20.38	20.27	20.22	20.42	20.46	20.30	20.33	20.35	20.35	20.37	20.26	20.29
Na ₂ O	5.23	5.25 .04	.03	.03	.04	5.34 .05	5.42 .04	5.28	5.34	5.30	5.38	.03	.04	5.42	.03	.04	5.34 .03	5.30 .03	5.44	5.36 .01
K₂O	.00	.02	.01	.00	.00	.02	.00	.02	.01	.00	.00	.00	.01	.00	.01	.00	.03	.01	.00	.00
٤	99.20	99.52	100.41	99.47	99.40	99.02	99.12	99.67	99.35	99.20	99.16	99.93	99.91	99.33	99.64	100.36	99.73	99.40	99.40	99.1Z
Kationen-																				
besetzung																				
SI Ti	2.900	2.902	2.924	2.891	2.897	2.894	2.903	2.908	2.899	2.895	2.903	2.906	2.896	2.897	2.918	2.937	2.903	2.893	2.899	2.897
AI	1.922	1.919	1.903	1.923	1.923	1.917	1.920	1.916	1.920	1.926	1.920	1.912	1.919	1.923	1.911	1.894	1.920	1.924	1.921	1.928
Cr Fe ²⁺	.138	.133	.130	.132	.132	.134	.134	.134 481	.135	.134	.132	.134	.136	.133	.135	.131 471	.134	.132	.135	.131
Mn	.020	.025	.022	.022	.019	.020	.019	.017	.022	.020	.022	.020	.018	.022	.023	.022	.020	.021	.021	.020
Ni Ma	.000	.001	.001	.001	.001	.002	.000	.002	.000	.000	.002	.001	.001	.000	.000	.001	.000	.001	.000	.000
Ca	.404	.405	.410	.411	.419	.412	.419	.406	.412	.410	.417	.415	.415	.419	.414	.411	.411	.414	.420	.415
Na	.005	.005	.004	.004	.005	.006	.006	.012	.006	.003	.004	.004	.005	.002	.004	.005	.005	.004	.003	.002
∑ Kationen	8.062	8.065	8.052	8.073	8.070	8.074	8.064	8.064	8.066	8.067	8.065	8.064	8.070	8.065	8.052	8.043	8.062	8.071	8.064	8.064
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg #	81.92	81.70	82.16	81.55	82.00	81.51	82.27	81.92	82.32	81.66	81.96	81.96	81.93	82.09	82.30	82.11	82.02	81.97	81.93	82.09
Cr#	6.71	6.49	6.42	6.42	6.41	6.53	6.54	6.54	6.57	6.49	6.43	6.54	6.61	6.47	6.59	6.46	6.53	6.44	6.57	6.34
Profilstrecke [um]	1977	1987	1997	2007	2017	2027	2037	2047	2057	2067	2077	2087	2097	2107	2117	2127	2137	2147	2157	2167
r romstrecke [µm]					• · · ·			• · ·												

Probe: AAR-9	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01 I	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01
Profilpunkt	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 SiO2 Al2O3 CF2O3 FEO MnO NiO NiO NaO CaO K2O K2O	40.72 .19 22.62 2.32 8.06 .30 .02 20.36 5.27 .04 .01 99.89	40.21 .17 22.71 2.32 7.98 .33 .02 20.24 5.32 .04 .01 99.35	40.19 20 22.59 2.35 7.97 .35 .00 20.33 5.30 .04 .00 99.31	40.05 .19 22.63 2.34 8.19 .38 .01 20.34 5.42 .03 .00 99.57	40.47 .17 22.61 2.36 7.92 .35 .01 20.33 5.44 .02 .00 99.67	40.16 .16 22.63 2.40 7.81 .38 .00 20.34 5.29 .03 .01 99.21	40.20 22.62 2.37 7.79 .02 20.40 5.29 .01 .00 99.18	40.18 22 22.68 2.30 7.93 .39 .02 20.30 5.37 .02 .00 99.40	40.32 .18 22.64 2.34 7.95 .33 .00 20.27 5.31 .02 .02 99.36	40.38 .19 22.66 2.35 7.95 .39 .00 20.39 5.38 .05 .00 99.74	40.32 .19 22.60 2.32 7.91 .34 .00 20.35 5.38 .05 .00 99.47	40.22 .19 22.55 2.32 7.87 .32 .01 20.32 5.34 .02 .00 99.16	40.34 .20 22.62 2.24 8.07 .36 .00 20.44 5.34 .04 .02 99.67	40.54 .18 22.57 2.32 7.93 .33 .00 20.43 5.35 .04 .00 99.68	41.06 .21 22.54 2.37 7.74 .30 .01 20.39 5.37 .03 .01 100.02	40.41 .18 22.57 2.34 7.83 .37 .01 20.38 5.31 .04 .01 99.46	40.62 20 22.59 2.34 7.86 .37 .00 20.37 5.33 .05 .02 99.75	41.08 .18 22.57 2.35 8.03 .32 .00 20.49 5.41 .02 .00 100.45	40.52 20 22.53 2.33 7.91 .36 .02 20.28 5.34 .04 .04 .01 99.51	41.16 .19 22.31 7.81 .00 20.32 5.36 .04 .01 99.98
Kationen- besetzung Si Ti Al Cr Fe ^{**} Mn Ni Mg Ca Ca Xa K Xationen	2.918 .010 .131 .483 .001 2.174 .404 .005 .001 8.055	2.899 .009 1.929 .132 .481 .020 .001 2.175 .411 .005 .001 8.064	2.898 .011 1.920 .134 .481 .000 2.186 .409 .000 8.067	2.887 .010 1.922 .133 .493 .001 2.186 .418 .000 8.077	2.907 .009 1.915 .134 .476 .021 .000 2.177 .419 .003 .000 8.061	2.898 .009 1.925 .137 .472 .023 .000 2.188 .409 .001 8.065	2.899 .011 1.923 .135 .470 .001 2.194 .409 .002 .000 8.062	2.896 .012 1.926 .131 .478 .001 2.181 .414 .003 .000 8.065	2.905 .010 1.923 .133 .479 .020 2.177 .410 .002 8.060	2.900 .010 1.918 .133 .478 .024 .000 2.183 .414 .000 8.067	2.903 .010 1.918 .132 .476 .021 .000 2.184 .415 .008 .000 8.066	2.904 .010 1.918 .132 .475 .020 .001 2.186 .413 .003 .000 8.062	2.900 .011 1.917 .127 .485 .022 .000 2.191 .411 .006 .001 8.071	2.910 .010 1.910 .132 .476 .020 2.187 .411 .005 8.062	2.932 .011 1.897 .134 .462 .011 2.172 .411 .005 .001 8.044	2.908 .010 1.914 .133 .471 .022 .001 2.187 .410 .006 .001 8.062	2.914 .011 1.910 .133 .471 .023 .000 2.179 .410 .007 8.058	2.926 .010 1.894 .132 .478 .019 .000 2.176 .413 .003 .000 8.052	2.914 .011 1.910 .132 .475 .022 .001 2.174 .411 .005 8.056	2.941 .010 1.892 .131 .467 .019 .000 2.164 .411 .006 .001 8.041
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	81.83 6.44 2177	81.88 6.41 2187	81.97 6.52 2197	81.58 6.48 2207	82.06 6.55 2217	82.27 6.65 2227	82.36 6.57 2237	82.02 6.38 2247	81.96 6.48 2257	82.05 6.50 2267	82.10 6.44 2277	82.15 6.44 2287	81.87 6.23 2297	82.13 6.45 2307	82.45 6.58 2317	82.28 6.51 2327	82.21 6.49 2337	81.98 6.53 2347	82.06 6.47 2357	82.25 6.45 2367

Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01 I	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	304	305	306	307	308	309	312	313	314	315	316	317	318	319	320	321	322	323	324	325
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse																				
[Gew%] SiO ₂	40.60	41.12	40.72	40.47	40.48	41.03	40.89	40.98	41.13	41.06	40.93	40.84	41.02	41.07	41.25	40.73	40.97	40.93	40.99	40.87
TiO ₂	.20	.17	.21	.21	.19	.21	.21	.18	.18	.19	.19	.17	.18	.19	.17	.20	.19	.20	.19	.16
Cr ₂ O ₃	22.49	2.34	22.03	2.35	2.36	22.02	2.33	22.07	2.33	2.29	22.05	2.38	22.39	2.36	2.39	22.56	2.37	22.55	2.29	22.00
FeO MnO	8.24	7.96	7.98	7.79	8.05	7.84	8.17	7.98	8.02	7.98	7.99	7.91	8.25	7.87	7.99	8.08	8.09	7.96	8.11	8.02
NiO	.40	.00	.00	.00	.02	.40	.00	.00	.00	.04	.01	.00	.00	.00	.01	.00	.00	.00	.02	.00
MgO CaO	20.33 5.31	20.37	20.32	20.29	20.30	20.27	20.66	20.34	20.42	20.36	20.52	20.42	20.34	20.33 5.43	20.50	20.35 5.37	20.44	20.43 5.41	20.33 5.41	20.38
Na ₂ O	.03	.05	.03	.03	.02	.03	.01	.01	.02	.02	.02	.01	.03	.05	.03	.00	.03	.04	.06	.04
κ ₂ Ο Σ	.02 99 96	.00 100 21	.00. 99.87	.01	.00 99.58	.01	.00 100.39	.00 100.26	.00 100.42	.00 100.04	.00	.01	.00 100 49	.01	.00 100.68	.01	.00	.00	.00	00. 99 99
Kationen-																				
Si	2.912	2.934	2.917	2.913	2.910	2.930	2.918	2.924	2.930	2.935	2.917	2.925	2.924	2.933	2.931	2.916	2.919	2.924	2.924	2.924
Ti Al	.011	.009	.011	.011	.010	.011	.011	.010	.009	.010	.010	.009	.010	.010	.009	.011	.010	.010	.010	.009
Cr	.134	.131	.131	.134	.134	.134	.132	.133	.131	.129	.133	.134	.133	.133	.134	.134	.134	.130	.129	.133
Fe ^{2*} Mn	.494	.475	.478	.469	.484	.468	.488	.476	.478	.477	.476	.474	.492	.470	.475	.484	.482	.476	.484	.480
Ni	.000	.000	.000	.000	.001	.003	.000	.000	.000	.002	.001	.000	.000	.000	.001	.000	.000	.000	.001	.000
Ca	2.174	2.167	2.171	2.177	2.175	2.158	2.197	2.164	2.169	2.170	2.180	2.180	2.162	2.164	2.171	2.171	2.171	2.176	2.161	2.173
Na	.005	.006	.004	.004	.003	.004	.002	.002	.003	.003	.002	.002	.004	.007	.004	.000	.004	.006	.008	.006
Kationen	8.063	8.047	8.052	8.054	8.057	8.043	8.063	8.047	8.048	8.047	8.056	8.049	8.053	8.048	8.048	8.055	8.056	8.054	8.055	8.051
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Ma #	81.48	82.02	81.96	82.27	81.80	82.17	81.84	81.96	81.94	81.99	82.08	82.14	81.47	82.15	82.06	81.78	81.83	82.06	81.71	81.91
Cr #	6.57	6.46	6.44	6.52	6.53	6.56	6.52	6.54	6.47	6.40	6.55	6.61	6.56	6.57	6.61	6.58	6.57	6.39	6.37	6.54
Profilstrecke [um]	2377	2387	2397	2407	2417	2427	2457	2467	2477	2487	2497	2508	2518	2528	2538	2548	2558	2568	2578	2588

Probe: AAR-9	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01
Profilpunkt	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 TiO2 Al2O3 CF2O3 FEO MinO NiO CaO NGO CaO KgÓ CaO KgÓ ∑	40.82 19 22.50 2.28 7.85 .39 00 20.31 5.33 .03 .02 99.72	40.99 .18 22.59 2.31 7.99 .36 .00 20.40 5.32 .03 .01 100.17	40.69 .17 22.65 2.33 7.97 .34 .00 20.40 5.37 .01 .01 99.94	40.83 .18 22.55 7.89 .36 .03 20.31 5.38 .08 .00 99.94	40.93 .19 22.59 2.33 7.97 .38 .03 20.25 5.30 .02 .00 100.01	40.98 .18 22.66 8.17 .28 .00 20.49 5.34 .02 .00 100.48	41.17 21 22.59 2.37 7.93 .00 20.24 5.34 .02 .00 100.24	40.96 21 22.48 2.40 7.91 .32 0.02 0.32 5.30 .01 .00 99.92	40.93 .19 22.51 2.37 7.88 .31 .01 20.29 5.32 .05 .00 99.85	40.97 20 22.55 2.33 7.87 .29 .00 20.38 5.23 .02 .00 99.85	40.84 .20 22.60 2.36 8.03 .24 .00 20.36 5.34 .02 .00 99.97	40.90 22.56 2.33 8.06 .35 .04 20.36 5.36 .04 .00 100.19	41.03 .17 22.48 2.39 7.99 .32 .00 20.41 5.29 .04 .00 100.10	40.66 .17 22.58 2.34 8.01 .35 .02 20.29 5.34 .03 .01 99.79	40.78 .20 22.41 2.36 7.86 .38 .01 20.44 5.36 .05 .01 99.86	41.09 .18 22.66 2.36 7.98 .33 .00 20.29 5.34 .04 .02 100.29	41.02 .18 22.62 2.31 8.07 .33 .00 20.25 5.35 5.35 .03 .00 100.15	40.95 .20 22.60 2.38 7.96 .33 .06 20.36 5.28 .02 .00 100.12	40.89 .21 22.60 2.30 7.85 .37 .00 20.25 5.36 .02 .00 99.84	40.95 .19 22.62 2.38 7.92 .38 .00 20.40 5.34 .02 .00 100.20
Kationen- besetzung Si Ti Al Cr Fe ^{2*} Mn Ni Mg Ca Ca Kationen Σ Kationen	2.927 .010 1.902 .129 .470 .024 .000 2.171 .410 .004 .002 8.049	2.927 .009 1.901 .130 .477 .022 .000 2.171 .407 .004 .001 8.050	2.914 .009 1.912 .132 .477 .020 .000 2.178 .412 .001 8.056	2.923 .010 1.901 .133 .473 .001 2.167 .413 .012 .000 8.056	2.928 .010 1.905 .132 .477 .023 .002 2.159 .406 .003 .000 8.045	2.920 .010 1.902 .133 .487 .017 .000 2.177 .408 .002 .000 8.055	2.936 .011 1.899 .134 .473 .022 .000 2.152 .408 .002 .000 8.037	2.931 .011 1.896 .136 .473 .020 .000 2.168 .407 .001 .000 8.042	2.931 .010 1.900 .134 .472 .019 .001 2.166 .408 .007 .000 8.046	2.932 .011 1.902 .132 .471 .000 2.174 .401 .002 .000 8.042	2.922 .010 1.906 .133 .480 .015 .000 2.172 .409 .002 .000 8.050	2.923 .011 1.900 .131 .021 .002 2.169 .411 .005 .000 8.054	2.931 .009 1.893 .135 .477 .019 .000 2.174 .405 .006 .000 8.049	2.917 .009 1.909 .133 .480 .021 2.170 .410 .004 .004 .001 8.056	2.922 .011 1.893 .134 .471 .023 .001 2.183 .412 .006 .001 8.057	2.930 .010 1.905 .133 .476 .020 .000 2.157 .408 .005 .001 8.045	2.930 .010 1.904 .130 .482 .020 .000 2.156 .410 .004 .004 8.045	2.925 .010 1.903 .134 .475 .020 .003 2.169 .404 .003 .000 8.047	2.928 .012 1.907 .130 .000 2.161 .411 .003 .000 8.044	2.923 .010 1.903 .134 .473 .023 .000 2.172 .409 .003 .000 8.050
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	82.19 6.36 2598	81.98 6.41 2608	82.02 6.47 2618	82.10 6.53 2628	81.91 6.46 2638	81.72 6.52 2648	81.99 6.58 2658	82.09 6.69 2668	82.11 6.59 2678	82.19 6.48 2688	81.89 6.54 2698	81.84 6.47 2708	82.00 6.65 2718	81.88 6.51 2728	82.26 6.60 2738	81.92 6.54 2748	81.72 6.41 2758	82.02 6.60 2768	82.14 6.39 2778	82.11 6.60 2788

Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	362	363	364	365	366
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse																				
[Gew%] SiO ₂	41.05	40.98	40.90	40.96	40.72	40.60	40.60	40.81	41.20	41.10	40.91	40.92	40.90	40.99	41.08	41.01	40.81	40.92	41.26	40.73
TiO ₂	.18	.17	.18	.16	.18	.19	.18	.19	.19	.19	.18	.19	.18	.20	.18	.18	.18	.17	.20	.19
Cr ₂ O ₃	22.37	22.38	22.02	22.05	22.38	22.00	22.55	22.30	22.32	22.02	2.32	2.35	22.37	2.38	22.00	2.29	22.09	22.58	22.37	22.00
FeO MnO	8.00	7.97	7.87	7.89	7.83	7.80	8.24	7.94	8.11	7.89	7.96	8.06	8.06	8.05	7.88	7.93	7.86	7.87	7.83	7.99
NiO	.00	.00	.03	.04	.03	.00	.04	.01	.40	.05	.03	.00	.00	.03	.05	.01	.29	.00	.00	.40
MgO	20.30	20.37	20.34	20.39	20.35	20.20	20.32	20.25	20.28	20.28	20.24	20.50	20.29	20.45	20.29	20.33	20.35	20.39	20.34	20.31
Na ₂ O	.03	.02	.05	.05	.01	.06	.03	.01	.05	.03	.03	.07	.05	.03	.04	.03	.04	.02	.02	.04
K ₂ O	.00	.01	.00	.03	.01	.02	.00	.00	.02	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.00
2	100.11	100.14	100.05	100.13	99.74	99.07	99.94	99.74	100.41	100.10	99.91	100.36	100.03	100.30	100.12	99.94	99.03	99.09	100.16	99.97
Kationen-																				
besetzung																				
Ti	2.932	2.927	2.924	2.926	2.920	2.916	2.912	2.927	2.936	2.935	2.928	2.917	2.926	2.924	2.933	2.933	2.921	2.928	2.941	2.916
AI	1.900	1.901	1.905	1.906	1.908	1.918	1.906	1.902	1.892	1.903	1.907	1.905	1.903	1.901	1.901	1.902	1.915	1.904	1.896	1.914
Cr Fe ²⁺	.130	.133	.136	.131	.131	.133	.134	.133	.132	.128	.131	.132	.132	.134	.132	.129	.133	.130	.132	.133
Mn	.019	.023	.021	.020	.021	.021	.021	.021	.024	.022	.019	.021	.023	.021	.018	.019	.018	.019	.021	.024
Ni Ma	.000 2 162	.000	.001	.002	.002	.000	.002	.001	.001	.003	.002	.000	.000	.002	.003	.000	.000	.000	.000	.000
Ca	.410	.406	.408	.405	.412	.412	.405	.409	.403	.407	.409	.404	.404	.400	.411	.404	.403	.410	.403	.407
Na K	.004	.003	.007	.007	.001	.009	.005	.002	.007	.004	.004	.009	.006	.004	.005	.004	.005	.003	.003	.005
∑ Kationen	8.045	8.049	8.049	8.052	8.051	8.053	8.061	8.047	8.046	8.042	8.045	8.058	8.050	8.050	8.043	8.044	8.047	8.048	8.035	8.053
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg #	81.90	82.01	82.16	82.16	82.26	82.20	81.46	81.97	81.68	82.08	81.92	81.92	81.78	81.91	82.11	82.05	82.18	82.20	82.24	81.93
Cr#	6.39	6.53	6.66	6.44	6.45	6.48	6.55	6.54	6.51	6.29	6.43	6.49	6.50	6.58	6.51	6.36	6.51	6.38	6.50	6.48
Profilstrecke [um]	2798	2808	2818	2828	2838	2848	2858	2868	2878	2888	2898	2908	2918	2928	2938	2958	2968	2978	2988	2998
r romstrecke [µm]	2.50			0			0	0			0			0	0					

Probe: AAR-9	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01 I	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01
Profilpunkt	367	368	369	370	371	372	373	374	376	377	378	379	380	381	382	383	384	385	386	387
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 SiO2 Al2O3 CF2O3 FEO MnO NiO MgO CaO Na2O K2O X2O	41.06 .18 22.50 .231 7.85 .32 .01 20.22 5.33 .07 .02 99.87	41.20 .17 22.61 2.33 8.31 .34 .03 20.38 5.24 .02 .00 100.62	40.98 .17 22.53 2.31 8.13 .42 .01 20.41 5.37 .03 .00 100.35	40.86 .16 22.70 2.38 7.89 .02 20.31 5.30 .02 .00 100.02	40.97 21 22.57 2.35 7.84 .31 .00 20.42 5.30 .00 .01 99.98	40.65 .21 22.62 2.31 7.95 .33 .00 20.32 5.36 .03 .00 99.77	40.50 21 22.59 2.28 7.93 .34 .00 20.29 5.28 .04 .00 99.45	40.91 .18 22.66 2.31 7.97 .38 .02 20.43 5.36 .07 .02 100.31	40.47 .19 22.63 2.37 7.94 .33 .00 20.31 5.33 .04 .02 99.63	40.73 .16 22.62 2.27 8.06 .39 .00 20.30 5.21 .03 .00 99.77	41.16 .19 22.57 2.27 7.99 .34 .00 20.24 5.31 .03 .00 100.10	40.61 .18 22.67 2.33 8.01 .36 .00 20.30 5.26 .04 .02 99.77	41.10 .15 22.71 2.32 7.91 .36 .00 20.32 5.30 .04 .00 100.20	41.50 .15 22.54 2.25 8.04 .39 .01 20.40 5.23 .05 .01 100.57	40.60 .19 22.68 2.27 7.97 .34 .01 20.32 5.29 .03 .01 99.71	40.88 .18 22.59 8.08 .34 .00 20.34 5.27 .06 .00 99.97	40.39 .19 22.71 2.33 7.89 .34 .00 20.33 5.26 .02 .00 99.46	40.29 .18 22.64 2.34 7.73 .30 .00 20.39 5.26 .04 .04 .00 99.16	40.38 .18 22.62 2.37 8.06 .30 .00 20.38 5.32 .02 .01 99.63	40.74 .19 22.51 2.36 8.11 .30 .01 20.35 5.17 .06 .01 99.80
Kationen- besetzung Si Ti Al Cr Fe ^{**} Mn Ni Mg Ca Ca Kationen	2.938 .010 1.897 .470 .019 .001 2.157 .409 .010 .002 8.044	2.931 .009 1.896 .131 .494 .021 2.162 .400 .002 .000 8.047	2.925 .009 1.895 .130 .485 .025 .001 2.172 .411 .004 .000 8.056	2.922 .009 1.913 .134 .472 .024 .001 2.165 .406 .003 .000 8.048	2.928 .011 1.901 .133 .469 .000 2.176 .406 .000 .001 8.044	2.915 .011 1.912 .131 .477 .020 2.173 .412 .000 8.054	2.913 .011 1.915 .130 .477 .020 2.176 .407 .005 .000 8.055	2.919 .010 1.906 .130 .475 .023 .001 2.174 .409 .010 .002 8.059	2.908 .010 1.917 .135 .477 .020 2.175 .410 .000 8.060	2.921 .009 1.912 .129 .483 .024 .000 2.170 .401 .004 .000 8.052	2.939 .010 1.899 .128 .477 .021 .000 2.154 .406 .000 8.039	2.914 .010 1.916 .132 .481 .000 2.170 .404 .005 .001 8.056	2.931 .008 1.909 .131 .472 .000 2.161 .405 .006 .000 8.044	2.949 .008 1.888 .127 .478 .023 .000 2.161 .398 .007 .001 8.040	2.913 .010 1.918 .129 .478 .021 2.173 .407 .004 .000 8.055	2.925 .010 1.905 .128 .483 .020 .000 2.169 .404 .008 .000 8.053	2.905 .010 1.925 .133 .475 .021 .000 2.180 .405 .003 .000 8.057	2.905 .010 1.924 .133 .466 .019 .000 2.191 .406 .005 .000 8.059	2.903 .010 1.917 .135 .484 .000 2.184 .410 .003 .001 8.064	2.922 .010 1.902 .134 .487 .018 .000 2.175 .997 .008 .001 8.054
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	82.13 6.45 3008	81.38 6.45 3018	81.74 6.42 3028	82.11 6.56 3038	82.28 6.54 3048	82.01 6.41 3058	82.01 6.35 3068	82.05 6.40 3078	82.01 6.57 3098	81.79 6.32 3108	81.86 6.32 3118	81.87 6.45 3128	82.07 6.40 3138	81.88 6.29 3148	81.97 6.30 3158	81.78 6.28 3168	82.11 6.45 3178	82.47 6.48 3188	81.85 6.58 3198	81.72 6.58 3208

Profilname Profilpunkt	Profil-01 388	Profil-01 389	Profil-01 390	Profil-01 391	Profil-01 392	Profil-01 I 393	Profil-01	Profil-01 395	Profil-01 396	Profil-01 I 397	Profil-01 398	Profil-01 399	Profil-01	Profil-01 401	Profil-01 402	Profil-01 403	Profil-01 404	Profil-01 405	Profil-01 406	Profil-01 407
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO NiO MgO CaO Na ₂ O K ₂ O Σ	40.91 .15 22.59 2.29 8.17 .38 .00 20.38 5.21 .07 .00 100.14	40.78 .18 22.69 2.32 7.99 .00 20.40 5.23 .05 .00 100.03	41.29 .18 22.63 2.29 7.76 .35 .00 20.27 5.31 .03 .00 100.10	41.11 .17 22.60 2.30 7.98 .34 0.1 20.34 5.16 .03 .01 100.04	40.70 .16 22.69 2.29 8.15 .33 .00 20.26 5.28 .02 .00 99.87	40.82 .18 22.49 2.24 7.91 .37 .00 20.31 5.06 .01 99.40	40.77 .16 22.64 2.30 .03 20.42 5.13 .02 .02 99.70	40.88 .18 22.74 2.31 8.11 .36 .00 20.31 5.19 .01 .00 100.07	40.92 20 22.55 2.26 7.96 .28 .00 20.25 5.24 .04 .04 .01 99.71	41.08 .18 22.65 2.33 8.26 .39 0.00 20.34 5.18 .01 .01 100.42	40.68 .17 22.64 2.30 7.90 .34 .00 20.29 5.12 .02 .00 99.45	40.90 .16 22.69 2.28 8.09 .31 .00 20.30 5.29 .05 .00 100.06	41.05 .18 22.61 2.27 8.08 .29 .00 20.27 5.13 .01 .00 99.89	40.68 .18 22.71 2.33 8.07 .36 .00 20.33 5.27 .04 .01 99.99	40.79 .19 22.69 2.25 7.92 .45 .01 20.45 5.33 .01 .02 100.10	40.81 .17 22.68 2.27 7.83 .38 .02 20.20 5.21 .04 .00 99.59	41.01 .19 22.68 2.24 7.94 .37 .00 20.30 5.15 .01 .99.89	41.03 .15 22.67 2.22 7.88 .33 .00 20.20 5.17 .04 .00 99.67	40.87 .18 22.64 2.24 8.05 .36 .05 20.22 5.20 .02 .01 99.83	41.15 .18 22.24 7.99 .35 .00 20.30 5.29 .03 .03 .00 100.32
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Na K X Xationen Sauerstoffe	2.924 .008 1.903 .129 .488 .023 .000 2.172 .399 .010 .000 8.057 12.000	2.917 .009 1.913 .131 .024 .000 2.175 .401 .007 .000 8.055 12.000	2.944 .010 1.902 .129 .463 .021 .000 2.155 .406 .004 .000 8.033 12.000	2.936 .009 1.902 .130 .020 .001 2.165 .004 .001 8.040 12.000	2.917 .008 1.916 .130 .020 .000 2.165 .003 .000 8.053 12.000	2.934 .010 1.905 .127 .476 .022 .000 2.176 .390 .001 .001 8.041 12.000	2.923 .009 1.913 .130 .474 .018 .002 2.182 .394 .003 .001 8.049 12.000	2.922 .010 1.915 .130 .484 .022 .000 2.164 .398 .002 .000 8.047 12.000	2.933 .011 1.905 .128 .477 .000 2.163 .000 2.006 .001 8.043 12.000	2.928 .010 1.903 .131 .024 .000 2.161 .001 .001 8.046 12.000	2.923 .009 1.917 .131 .021 .000 2.173 .394 .002 .000 8.045 12.000	2.924 .008 1.912 .129 .484 .019 .000 2.163 .405 .007 .000 8.050 12.000	2.936 .010 1.906 .129 .483 .000 2.162 .933 .001 .000 8.038 12.000	2.913 .010 1.916 .132 .000 2.169 .006 .001 8.057 12.000	2.916 .010 1.912 .127 .001 2.179 .002 .002 8.056 12.000	2.928 .009 1.917 .129 .470 .023 .001 2.160 .005 .000 8.042 12.000	2.933 .010 1.911 .127 .022 .000 2.165 .092 .000 8.039 12.000	2.939 .008 1.913 .125 .020 .000 2.156 .397 .005 .000 8.036 12.000	2.928 .010 1.912 .022 .003 2.160 .399 .003 .001 8.045 12.000	2.932 .009 1.913 .126 .476 .021 .000 2.156 .404 .005 .000 8.042 12.000
Mg # Cr # Profilstrecke [µm]	81.64 6.36 3218	81.98 6.42 3228	82.32 6.36 3238	81.96 6.39 3248	81.60 6.34 3258	82.06 6.27 3268	82.16 6.38 3278	81.71 6.38 3288	81.93 6.30 3298	81.45 6.44 3308	82.08 6.38 3318	81.73 6.31 3328	81.72 6.32 3338	81.78 6.45 3348	82.15 6.23 3358	82.13 6.29 3368	82.02 6.22 3378	82.04 6.15 3388	81.75 6.22 3398	81.92 6.19 3408

Probe: AAR-9	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01 I	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01	Drofil 01
Profilpunkt	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO CaO K2O K2O	41.11 .16 22.68 2.24 7.96 .41 .02 20.26 5.23 .04 .01 100.10	40.94 .19 22.72 2.22 7.97 .38 .00 20.36 5.18 .02 .00 99.97	40.95 .20 22.73 2.17 8.15 .35 .01 20.38 5.24 .06 .00 100.22	40.83 .21 22.65 2.20 7.95 .32 0.05 5.18 .04 .02 99.65	40.48 .16 22.77 2.23 8.03 .38 .03 20.31 5.27 .07 .01 99.73	40.39 .18 22.72 2.22 8.04 .38 .01 20.28 5.18 .04 .01 99.45	40.42 .17 22.65 2.19 8.08 .34 .01 20.28 5.20 .00 .00 99.33	40.34 .19 22.74 2.25 8.14 .44 .02 20.43 5.18 .00 .00 99.74	40.69 20 22.69 2.29 8.18 .36 .02 20.27 5.17 .06 .01 99.92	40.55 .16 22.59 2.21 8.04 .39 .00 20.24 5.18 .02 .01 99.39	40.54 20 22.64 2.26 7.95 .42 02 20.22 5.16 .00 .00 99.40	40.74 .17 22.77 .217 7.97 .32 .00 20.22 5.19 .06 .00 99.59	40.48 .16 22.74 2.25 8.05 .33 .03 20.18 5.09 .03 .00 99.34	40.82 .17 22.68 2.23 8.05 .32 .03 20.22 5.15 .05 .01 99.72	40.59 .18 22.65 2.20 8.06 .38 .02 20.20 5.20 .02 .00 99.51	40.65 .15 22.66 2.17 8.02 .39 .05 20.20 5.15 .02 .00 99.44	40.79 .18 22.73 2.13 7.80 .36 5.20 .04 .02 99.63	40.08 .17 22.72 2.21 8.17 .31 .00 20.12 5.14 .02 .02 98.96	40.27 .15 22.68 2.15 7.99 .32 20.16 5.14 .02 .00 98.88	40.14 .15 22.71 2.20 8.18 .35 .01 20.32 5.18 .03 .01 99.25
Kationen- besetzung Si Ti Al Cr Fe ^{**} Mn Ni Mg Ca Ca Kationen Σ Kationen	2.935 .008 1.909 .126 .475 .025 .001 2.156 .400 .005 .001 8.042	2.927 .010 1.914 .126 .476 .023 .000 2.169 .397 .003 .000 8.045	2.923 .010 1.913 .122 .486 .021 .001 2.168 .401 .008 .000 8.053	2.928 .012 1.914 .125 .477 .019 .000 2.165 .398 .005 .001 8.044	2.906 .009 1.926 .127 .482 .001 2.174 .405 .009 .001 8.063	2.907 .010 1.927 .126 .484 .023 .000 2.176 .400 .005 .001 8.059	2.911 .009 1.923 .125 .486 .021 2.178 .401 .000 8.056	2.898 .010 1.926 .128 .489 .027 .001 2.188 .398 .000 .000 8.065	2.915 .011 1.916 .130 .022 .001 2.166 .397 .008 .001 8.056	2.919 .009 1.916 .126 .484 .000 2.172 .400 .003 .000 8.053	2.917 .011 1.920 .129 .478 .025 .001 2.169 .397 .000 .000 8.048	2.923 .009 1.925 .123 .478 .019 .000 2.162 .399 .008 .000 8.047	2.914 .009 1.930 .128 .485 .020 .001 2.166 .392 .004 .000 8.050	2.926 .009 1.916 .126 .483 .020 2.161 .396 .007 .001 8.047	2.919 .010 1.919 .125 .484 .001 2.165 .401 .003 .000 8.051	2.923 .008 1.920 .123 .482 .024 .003 2.165 .396 .002 .000 8.048	2.924 .009 1.921 .121 .468 .022 .002 2.176 .399 .005 .005 .002 8.049	2.901 .009 1.938 .126 .494 .000 2.170 .398 .003 .002 8.061	2.912 .008 1.933 .123 .483 .020 .001 2.173 .398 .003 .000 8.053	2.897 .008 1.932 .125 .494 .021 .000 2.187 .400 .004 8.069
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	81.94 6.20 3418	82.00 6.16 3428	81.68 6.01 3438	81.95 6.12 3448	81.85 6.17 3458	81.81 6.15 3468	81.74 6.09 3478	81.72 6.22 3488	81.55 6.33 3498	81.78 6.16 3509	81.94 6.29 3519	81.90 6.02 3529	81.72 6.22 3539	81.75 6.18 3549	81.72 6.13 3559	81.78 6.03 3569	82.31 5.93 3579	81.45 6.13 3589	81.82 5.97 3599	81.58 6.09 3609

Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse																				
[Gew%] SiO ₂	40.26	40.18	40.28	40.74	40.82	40.45	40.93	40.67	40.58	40.75	40.31	40.44	40.90	40.51	40.29	41.10	40.43	40.57	40.94	40.30
TiO ₂ Al ₂ O ₂	.18	.20	.17	.18	.19	.19	.18	.15	.15	.16	.20	.18	.17	.16	.16	.17	.16	.15	.19	.18
Cr ₂ O ₃	2.19	2.19	2.18	2.19	2.15	2.21	2.21	2.18	2.18	2.13	2.18	2.18	2.11	2.06	2.15	2.13	2.09	2.13	2.12	2.14
FeO MnO	8.17	7.98	8.11	8.04	8.12	8.05	7.94	8.01	7.91	8.17	7.81	8.14	8.10	8.01	7.94	8.00	8.04	7.80	8.16	7.96
NiO	.02	.04	.00	.01	.00	.00	.00	.00	.04	.02	.01	.03	.00	.00	.01	.00	.00	.00	.00	.00
CaO	20.31	20.32	20.24	20.33	20.39	20.23	20.27	20.31	20.27	20.31	20.39	20.38	20.26	20.21	20.33	20.33	20.27	20.23	20.22	20.26
Na₂O K O	.03	.00	.07	.00	.03	.02	.06	.05	.02	.02	.04	.05	.05	.00	.03	.04	.03	.04	.04	.02
Σ	99.32	99.30	99.38	99.76	100.02	99.42	99.88	99.67	99.47	99.76	99.29	99.61	99.83	99.29	99.19	100.14	99.37	99.16	99.80	99.20
Kationen- besetzung Si Al Cr Fe ^{4*} Mn Ni Mg Ca Ka K Σ Kationen Sauerstoffe	2.903 .010 1.929 .125 .493 .019 .001 2.182 .398 .004 .004 .000 8.063	2.897 .011 1.933 .125 .481 .022 .002 2.184 .409 .001 .000 8.064 12.000	2.901 .009 1.936 .124 .488 .019 .000 2.174 .009 .001 8.064 12.000	2.920 .010 1.920 .124 .023 .001 2.172 .396 .000 .000 8.048 12.000	2.920 .010 1.916 .121 .486 .025 .000 2.174 .397 .005 .000 8.054 12.000	2.911 .010 1.929 .126 .484 .022 .000 2.169 .099 .002 .000 8.053 12.000	2.928 .010 1.917 .125 .022 .000 2.162 .398 .002 8.046 12.000	2.918 .008 1.925 .123 .481 .021 .000 2.172 .907 .007 .002 8.054 12.000	2.916 .008 1.931 .124 .476 .020 .002 2.171 .400 .003 .000 8.050 12.000	2.921 .008 1.923 .121 .001 2.170 .001 .002 .000 8.049 12.000	2.901 .011 1.941 .124 .470 0.022 .000 2.188 93 .005 .002 8.059 12.000	2.905 .010 1.931 .124 .002 2.183 .389 .007 .000 8.061 12.000	2.928 .009 1.918 .119 .485 .022 .000 2.162 .396 .006 .000 8.047 12.000	2.916 .009 1.935 .117 .482 .022 .000 2.169 .97 .000 .002 8.050 12.000	2.905 .009 1.936 .122 .001 2.185 .396 .004 .002 8.060 12.000	2.933 .009 1.913 .120 .000 2.162 .000 2.002 8.045 12.000	2.910 .009 1.938 .119 .484 .023 .000 2.174 .394 .004 .001 8.056	2.921 .008 1.936 .121 .470 0.019 .000 2.171 .395 .005 .000 8.045 12.000	2.932 .010 1.916 .120 .021 .000 2.159 .005 .001 8.043 12.000	2.905 .010 1.938 .122 .480 .023 .000 2.177 .999 .003 .000 8.056 12.000
Mg # Cr #	81.58 6.07	81.94 6.05	81.66 6.04	81.84 6.07	81.74 5.96	81.75 6.12	81.99 6.11	81.88 6.02	82.03 6.01	81.59 5.92	82.31 6.00	81.70 6.01	81.67 5.86	81.81 5.70	82.02 5.94	81.92 5.92	81.80 5.79	82.21 5.90	81.54 5.91	81.94 5.93
Profilstrecke [µm]	3619	3629	3639	3649	3659	3669	3679	3689	3699	3709	3719	3729	3739	3749	3759	3769	3779	3789	3799	3809

Probe: AAR-9	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01 I	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01
Profilpunkt	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 SiO2 Al2O3 CF2O3 FEO MnO NiO NiO CaO CaO K2O K2O K2O K2O	40.38 .15 22.74 2.06 8.12 .36 .00 20.19 5.07 .04 .01 99.11	40.81 .18 22.82 2.15 8.22 .38 .01 20.29 5.17 .04 .00 100.06	40.81 .18 22.78 2.15 8.11 .33 .02 20.25 5.15 .03 99.85	40.45 .18 22.82 2.10 8.06 .31 .03 20.21 5.09 .04 .01 99.28	40.47 .15 22.75 2.15 7.95 .38 .00 20.27 5.14 .03 .00 99.28	40.67 .17 22.73 2.09 7.95 .36 .00 20.12 5.08 .02 .00 99.19	40.29 .14 22.80 2.11 8.20 .36 .06 20.27 5.15 .03 .01 99.43	40.77 .18 2.09 8.31 .36 .00 20.29 5.15 .02 .00 99.94	41.24 .16 22.79 2.06 8.04 .35 .04 20.30 5.02 .02 .00 100.00	40.86 .17 22.75 2.08 8.06 .31 .00 20.19 5.06 .04 .01 99.52	40.81 .22 22.69 2.09 8.10 .29 .03 20.20 5.05 .00 .00 99.48	40.82 .19 22.84 2.11 8.28 .36 .00 20.28 5.15 .02 .01 100.05	40.89 .19 22.80 2.05 8.08 .35 .00 20.22 5.20 .03 .01 99.82	40.96 .17 22.79 2.16 8.27 .38 .03 20.15 5.03 .04 .00 99.98	40.64 .18 22.77 2.14 8.21 .38 .00 20.27 5.16 .03 .01 99.79	41.02 .17 22.72 2.10 8.47 .35 .03 20.16 5.17 .01 .03 100.23	40.99 .17 22.77 2.08 8.33 .40 .03 20.12 5.04 .05 .00 99.96	40.89 .15 22.69 2.07 8.34 .29 .00 20.24 5.10 .02 .00 99.80	40.48 .18 22.85 2.10 8.21 .32 .02 20.28 5.09 .03 .01 99.57	40.95 .19 22.73 2.11 8.26 .33 .00 20.12 5.05 .05 .00 99.78
Kationen- besetzung Si Ti Al Cr Fe ^{**} Mn Ni Mg Ca Ca Xa Kationen	2.914 .008 1.934 .118 .490 .022 .000 2.171 .392 .006 .001 8.056	2.918 .010 1.923 .122 .491 .003 .001 2.163 .396 .000 8.052	2.923 .009 1.923 .122 .486 .020 .001 2.162 .395 .004 .003 8.049	2.913 .010 1.936 .120 .485 .019 .002 2.169 .393 .005 .001 8.052	2.914 .008 1.931 .122 .479 .023 .000 2.176 .396 .000 8.053	2.928 .009 1.929 .119 .479 .000 2.160 .392 .003 .000 8.040	2.902 .008 1.936 .120 .494 .022 .004 2.177 .397 .004 8.065	2.919 .010 1.923 .118 .498 .022 .000 2.166 .395 .002 .000 8.052	2.943 .009 1.917 .116 .480 .002 2.159 .384 .002 .000 8.033	2.932 .009 1.924 .118 .484 .000 2.160 .389 .005 8.041	2.931 .012 1.920 .119 .486 .001 2.162 .389 .000 8.039	2.919 .010 1.925 .119 .495 .022 .000 2.162 .395 .002 .001 8.050	2.927 .010 1.924 .116 .484 .021 .000 2.158 .399 .004 .000 8.045	2.930 .009 1.922 .122 .495 .002 2.148 .385 .000 8.042	2.915 .010 1.925 .121 .493 .023 .000 2.167 .396 .004 .001 8.055	2.930 .009 1.913 .119 .506 .021 .002 2.147 .396 .002 .002 8.047	2.933 .009 1.920 .118 .498 .024 .002 2.146 .386 .007 .000 8.043	2.930 .008 1.916 .117 .500 0.118 .000 2.162 .392 .003 .000 8.047	2.909 .009 1.935 .119 .494 .020 .001 2.173 .392 .004 .000 8.057	2.934 .010 1.919 .120 .020 .000 2.149 .388 .007 .000 8.040
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	81.60 5.73 3819	81.49 5.96 3829	81.65 5.95 3839	81.72 5.81 3849	81.96 5.96 3859	81.86 5.80 3869	81.50 5.84 3879	81.32 5.79 3889	81.82 5.71 3899	81.70 5.77 3909	81.64 5.82 3919	81.36 5.84 3929	81.68 5.69 3939	81.28 5.97 3949	81.48 5.92 3959	80.92 5.84 3969	81.16 5.77 3979	81.22 5.76 3989	81.49 5.80 3999	81.28 5.87 4009

Probe: AAR-9																				
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TiO2 Cr2O3 FeO MnO NiO NiO MgO CaO K2Ó XaO K2Ó	40.91 .17 22.86 2.09 8.16 .34 00 20.38 5.17 .02 .00 100.10	41.33 .15 22.75 2.14 8.13 .31 .00 20.31 5.19 .03 .00 100.33	40.90 .18 22.85 2.07 8.23 .37 .00 20.29 5.14 .02 .00 100.03	40.88 .18 22.77 2.04 8.51 .00 20.26 5.13 .04 .00 100.16	40.92 .17 22.79 2.05 8.29 .28 .00 20.06 5.09 .02 .01 99.67	41.00 .18 22.75 2.05 8.19 .36 .00 20.14 5.09 .04 .00 99.79	40.47 .12 22.80 2.00 8.39 .36 .00 20.10 5.11 .00 .01 99.35	40.48 .16 22.84 2.09 8.57 .34 .00 20.21 4.99 .06 .00 99.73	40.77 .18 22.77 2.01 8.24 .33 .01 20.11 5.10 .03 .00 99.56	41.06 .15 22.77 2.06 8.39 .37 .00 20.14 5.16 .03 .02 100.14	40.71 .20 22.74 2.02 8.16 .31 .00 20.06 5.09 .01 .01 99.31	41.47 .16 22.72 2.10 8.19 .36 .01 20.10 5.15 .04 .01 100.30	41.05 .19 22.84 2.09 8.33 .34 .03 20.18 5.11 .05 .01 100.22	40.60 .15 22.78 2.07 8.41 .04 20.12 5.11 .03 .00 99.71	40.49 .15 22.87 2.05 8.37 .38 .01 20.20 5.04 .05 .00 99.61	40.92 .16 22.79 2.04 8.45 .37 .00 20.15 5.03 .05 .01 99.98	40.94 .15 22.84 2.05 8.54 .01 20.16 5.07 .03 .00 100.13	40.80 .19 22.71 2.04 8.45 .39 .06 20.04 5.09 .02 .01 99.78	40.91 .17 22.83 2.08 8.58 .36 .02 20.18 5.09 .03 .00 100.25	41.12 .18 22.82 2.01 8.54 .41 .01 20.08 5.18 .02 .00 100.36
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mi Mig Ca Na K Kationen	2.922 .009 1.924 .118 .487 .020 .000 2.170 .396 .003 .000 8.050	2.942 .008 1.908 .121 .484 .019 .000 2.156 .396 .004 .000 8.037	2.923 .010 1.925 .117 .492 .023 .000 2.162 .394 .002 .000 8.047	2.923 .010 1.918 .115 .509 .021 .000 2.159 .393 .006 .000 8.054	2.934 .009 1.926 .116 .497 .017 .000 2.145 .391 .003 .001 8.037	2.936 .010 1.920 .022 .000 2.150 .390 .005 .000 8.039	2.915 .007 1.936 .022 .000 2.159 .394 .000 .001 8.054	2.908 .009 1.934 .118 .515 .021 .000 2.164 .384 .008 .000 8.061	2.928 .010 1.927 .114 .495 .020 .001 2.153 .393 .004 .000 8.044	2.934 .008 1.917 .116 .501 .023 .000 2.145 .395 .004 .001 8.044	2.929 .011 1.929 .115 .491 .019 .000 2.151 .392 .001 .001 8.039	2.953 .008 1.907 .118 .487 .022 .001 2.134 .393 .006 .001 8.029	2.930 .010 1.921 .118 .497 .020 .002 2.147 .391 .007 .001 8.044	2.916 .008 1.928 .117 .505 .025 .022 2.155 .393 .004 .000 8.055	2.910 .008 1.937 .116 .503 .023 .000 2.165 .388 .007 .000 8.058	2.929 .009 1.922 .115 .506 .023 .000 2.150 .386 .007 .001 8.048	2.926 .008 1.925 .116 .510 .021 .001 2.149 .388 .004 .000 8.047	2.928 .010 1.920 .024 .004 2.144 .391 .003 .001 8.046	2.923 .009 1.922 .117 .513 .022 .001 2.150 .390 .004 .000 8.050	2.933 .010 1.918 .113 .510 .025 .001 2.135 .396 .002 .000 8.042
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr #	81.66 5.77	81.67 5.94	81.46 5.72	80.93 5.68	81.18 5.68	81.42 5.70	81.02 5.54	80.78 5.77	81.31 5.60	81.05 5.71	81.42 5.63	81.40 5.84	81.20 5.78	81.00 5.74	81.14 5.67	80.96 5.66	80.81 5.67	80.88 5.69	80.74 5.75	80.73 5.58
Profilstrecke [µm]	4019	4029	4039	4049	4059	4069	4079	4089	4099	4109	4119	4129	4139	4149	4159	4169	4179	4189	4199	4209

Probe: AAR-9	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01 I	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01	Profil 01
Profilpunkt	488	489	490	491	492	493	494	495	496	497	498	499	500	502	503	504	505	506	507	508
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
$\begin{array}{l} \textbf{Analyse} \\ \textbf{[Gew%]} \\ SiO_{2} \\ TiO_{2} \\ TiO_{2} \\ Cr_{2}O_{3} \\ FeO \\ MnO \\ NiO \\ MgO \\ CaO \\ Na_{2}O \\ Na_{2}O \\ X_{2}O \\ \Sigma \end{array}$	40.84 17 22.77 2.05 8.47 .37 .00 20.26 5.13 .06 .00 100.11	40.91 .18 22.82 2.06 8.49 .41 .01 20.03 5.06 .04 .01 100.02	40.98 .15 22.82 2.01 3.66 .00 20.06 5.15 .03 .00 100.18	40.78 .17 22.78 2.07 8.53 .37 .03 20.11 5.09 .02 .01 99.96	40.77 .18 22.75 2.07 8.59 .35 .00 19.89 5.08 .04 .00 99.73	40.75 16 22.75 2.04 8.60 .37 .00 19.98 5.04 .01 .01 99.71	40.65 .14 22.80 2.03 8.46 .38 .00 19.98 5.03 .00 .01 99.48	40.85 .18 22.71 2.00 8.55 .44 .01 20.08 5.07 .02 .00 99.91	41.02 .14 22.75 2.10 9.05 .36 .00 20.18 5.02 .04 .01 100.66	40.95 .14 22.83 2.05 8.99 .39 .03 20.07 5.08 .04 .04 .01 100.58	40.95 .17 22.68 2.05 8.91 .34 .00 20.14 4.95 .03 .00 100.22	41.39 .17 22.81 2.05 8.73 .41 .00 20.03 5.02 .03 .00 100.64	41.20 .16 22.73 2.01 8.78 .41 .00 19.99 5.01 .03 .03 100.34	41.57 .19 22.73 2.02 8.60 .39 .00 20.06 5.04 .03 .02 100.64	41.08 .17 22.71 2.05 8.75 .40 .03 20.00 5.13 .04 .00 100.36	41.34 .17 22.83 2.06 9.01 .41 .02 20.03 5.02 .03 .01 100.91	41.20 .17 22.70 1.99 8.76 .38 .01 20.20 5.00 .03 .00 100.44	41.16 .17 22.66 2.05 8.90 .39 .00 19.88 5.06 .00 .01 100.27	41.18 .12 22.78 2.05 9.33 .36 .00 19.91 5.11 .03 .00 100.87	41.38 .16 22.62 2.02 8.85 .39 .00 19.91 5.00 .03 .00 100.34
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na K Σ Kationen	2.921 .009 1.920 .116 .506 .022 .000 2.161 .393 .009 .000 8.057	2.928 .010 1.925 .117 .508 .001 2.137 .388 .006 .001 8.045	2.929 .008 1.923 .114 .515 .021 .000 2.137 .394 .005 .000 8.047	2.922 .009 1.924 .117 .511 .002 2.148 .391 .003 .001 8.050	2.927 .010 1.926 .118 .516 .021 .000 2.130 .391 .005 .000 8.044	2.927 .009 1.926 .116 .517 .022 .000 2.139 .388 .002 .001 8.045	2.925 .007 1.933 .116 .509 .023 .000 2.143 .387 .000 .001 8.044	2.928 .010 1.919 .113 .512 .027 .000 2.146 .390 .003 .000 8.048	2.924 .008 1.911 .118 .539 .022 .000 2.145 .383 .005 .001 8.057	2.922 .008 1.920 .116 .536 .023 .002 2.135 .389 .006 .001 8.056	2.929 .009 1.912 .116 .533 .021 .000 2.148 .380 .004 .000 8.050	2.944 .009 1.912 .115 .519 .000 2.124 .382 .004 .000 8.035	2.941 .009 1.912 .113 .524 .000 2.127 .383 .004 .003 8.041	2.954 .010 1.904 .114 .511 .024 .000 2.125 .384 .004 .001 8.030	2.934 .009 1.912 .116 .523 .024 .002 2.129 .393 .006 .000 8.047	2.937 .009 1.912 .116 .536 .024 .001 2.121 .382 .004 .000 8.042	2.938 .009 1.907 .112 .522 .023 .000 2.148 .382 .004 .000 8.046	2.942 .009 1.909 .116 .532 .024 .000 2.118 .388 .000 .001 8.037	2.932 .007 1.912 .115 .556 .022 .000 2.113 .390 .004 .000 8.050	2.953 .008 1.902 .114 .528 .024 .000 2.118 .382 .004 .000 8.033
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	81.01 5.69 4219	80.79 5.72 4229	80.58 5.58 4239	80.77 5.74 4249	80.50 5.76 4259	80.55 5.68 4269	80.80 5.65 4279	80.72 5.57 4289	79.90 5.84 4299	79.92 5.69 4309	80.13 5.70 4319	80.35 5.69 4329	80.23 5.60 4339	80.61 5.63 4359	80.29 5.71 4369	79.85 5.70 4379	80.43 5.54 4389	79.94 5.71 4399	79.17 5.69 4409	80.05 5.66 4419

Probe: AAR-9																				
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	509	510	511	512	513	514	515	516	517	518	519	520	521	522	525	526	527	528	529	530
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TiO2 TiO2 Gr2O3 FeO MnO NiO MgO CaO CaO K2Ô CaO K2Ô S	41.15 .17 22.71 1.98 8.98 .38 .02 19.94 4.98 .04 .01 100.36	41.21 .16 22.70 2.06 9.04 .41 .01 19.82 5.16 .01 .01 100.58	41.15 .17 22.72 9.16 .48 .00 19.90 5.08 .02 .00 100.70	40.80 .15 22.67 9.15 .40 .01 19.78 5.03 .04 .00 100.08	40.99 .16 22.67 2.06 9.06 .44 .00 19.73 4.93 .03 .00 100.07	41.06 .16 22.66 2.01 9.13 .42 .06 19.83 5.09 .02 .00 100.43	40.83 .14 22.68 2.03 9.05 .47 .00 19.80 5.08 .03 .00 100.09	41.14 .16 22.67 1.98 9.26 .50 .00 19.70 5.03 .03 .00 100.47	40.93 .13 22.74 2.08 9.44 .39 .02 19.78 4.93 .01 .00 100.46	40.93 .13 22.67 9.32 .47 .04 19.68 5.05 .02 .00 100.34	41.43 .13 22.72 2.10 9.42 .42 .00 19.67 5.01 .01 .02 100.92	40.57 .16 22.64 2.09 9.45 .47 .00 19.64 5.02 .06 .01 100.10	41.30 .16 22.44 2.07 9.53 .49 .00 19.64 4.97 .03 .01 100.63	40.87 .13 22.59 2.18 9.37 .44 .02 19.61 5.04 .00 .00 100.25	40.82 .16 22.38 9.38 .54 .00 19.55 4.98 .02 .00 100.00	40.78 .13 22.50 2.12 9.74 .46 .03 19.59 5.02 .01 .00 100.39	41.16 .10 22.45 2.19 9.62 .52 .00 19.51 4.99 .03 .02 100.59	40.78 .09 22.47 2.30 10.19 .44 .00 19.13 4.84 .02 .02 100.27	41.83 .11 22.41 2.25 9.80 .44 .00 19.36 5.01 .03 .00 101.23	41.55 .09 22.35 2.26 10.44 .51 18.95 4.85 .01 .00 101.01
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ca Na K K	2.939 .009 1.912 .526 .023 .001 2.123 .381 .005 .001 8.043	2.940 .008 1.909 .116 .539 .025 .001 2.108 .394 .001 .001 8.041	2.934 .009 1.909 .114 .546 .029 .000 2.115 .388 .003 .000 8.047	2.927 .008 1.917 .117 .549 .024 .004 .386 .005 .000 8.051	2.938 .009 1.915 .117 .543 .027 .000 2.108 .378 .004 .000 8.040	2.935 .008 1.909 .113 .546 .026 .003 2.113 .390 .002 .000 8.046	2.928 .007 1.918 .115 .543 .028 .000 2.117 .390 .004 .000 8.050	2.941 .008 1.910 .112 .553 .030 .000 2.099 .385 .004 .000 8.042	2.928 .007 1.917 .118 .564 .024 .002 .378 .002 .000 8.048	2.932 .007 1.914 .116 .558 .028 .002 2.101 .387 .003 .000 8.048	2.948 .007 1.906 .118 .560 .025 .000 2.086 .382 .002 .002 8.035	2.917 .008 1.919 .191 .568 .029 .000 2.105 .387 .008 .001 8.060	2.951 .008 1.889 .117 .569 .009 .000 2.091 .380 .004 .001 8.040	2.931 .007 1.909 .124 .562 .027 .001 2.097 .387 .000 .000 8.045	2.937 .008 1.897 .124 .564 .033 .000 2.096 .383 .003 .000 8.046	2.927 .007 1.903 .120 .584 .002 2.096 .386 .002 .000 8.055	2.945 .006 1.893 .124 .576 .031 .001 2.081 .382 .005 .001 8.044	2.935 .005 1.905 .131 .613 .027 .000 2.052 .373 .002 .001 8.044	2.971 .006 1.876 .127 .582 .026 .000 2.050 .381 .005 .000 8.024	2.967 .005 1.881 .127 .624 .031 .001 2.017 .371 .001 .000 8.024
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr #	79.84 5.53 4429	79.63 5.73 4439	79.48 5.63 4449	79.39 5.76 4459	79.51 5.74 4469	79.48 5.61 4479	79.59 5.65 4489	79.14 5.54 4499	78.89 5.78 4510	79.01 5.71 4520	78.83 5.83 4530	78.75 5.84 4540	78.61 5.84 4550	78.87 6.08 4560	78.79 6.14 4590	78.20 5.95 4600	78.33 6.15 4610	76.99 6.43 4620	77.89 6.32 4630	76.38 6.34 4640
Profilstrecke [µm]	7723	4400	3	4408	4400	4410	4403	4400	4010	4020	4000	4040	-000	-000	4000	4000	4010	4020	4000	-0-40

Probe:	AAR-9
Profil:	01
Mineral:	Орх
Kapitel:	2.1

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
30	0.473	2.438	30.448	13.472	0.133	0.116	0.773	1.672
90	1.261	1.893	33.005	15.169	0.368	0.103	0.577	1.626
150	1.291	1.770	33.455	16.372	0.344	0.147	0.994	1.463
271	1.421	1.531	34.206	20.616	0.432	0.124	0.729	1.199
330	1.126	1.645	33.778	16.178	0.198	0.107	1.104	0.978
390	0.948	1.605	34.316	16.526	0.248	0.116	1.022	2.248
450	1.533	1.609	33.186	17.666	0.256	0.074	0.883	1.146
509	0.880	1.782	33.522	15.447	0.101	0.066	0.568	1.181
569	1.383	1.928	31.711	12.282	0.292	0.198	1.622	1.143

Probe: AAR-9 Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01 l	Profil-01 l	Profil-01 l	Profil-01	Profil-01	Profil-01 l	Profil-01	Profil-01	Profil-01	Profil-01 l	Profil-01	Profil-01	Profil-01 l	Profil-01	Profil-01	Profil-01
Profilpunkt	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	28
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 TiO2 Al2O3 C7,O3 FeO MnO NiO NiO MgO CaO K2O K2Ó Z	56.94 .04 .73 .15 6.48 .12 .10 35.14 .13 .02 .00 99.85	56.93 .05 .74 .15 6.34 .13 .10 35.15 .13 .00 .00 99.71	56.94 .04 .72 .15 6.28 .14 .09 35.07 .14 .00 .00 99.57	57.18 .04 .79 .17 6.26 .14 .05 34.99 .14 .01 .00 99.78	57.02 .05 .86 .18 6.30 .12 .11 35.20 .16 .00 .02 100.02	56.93 .07 .89 .22 6.06 .18 .13 35.15 .19 .01 .01 99.82	56.81 .09 .94 .22 6.28 .12 .07 35.08 .20 .04 .00 99.86	56.95 .04 .89 .25 6.08 .15 .08 35.13 .23 .01 .00 99.81	56.81 .08 .88 .26 6.49 .14 .11 35.14 .22 .00 .00 100.12	56.23 .08 .91 .22 6.29 .09 .03 34.99 .21 .00 .01 99.07	56.41 .08 .91 .24 6.26 .13 .09 35.15 .21 .00 .02 99.49	56.87 .04 .88 .24 .15 .10 35.21 .10 35.21 .01 .01 .00 99.88	56.77 .06 .90 .23 6.20 .11 .10 35.06 .22 .00 .00 .99.64	57.18 .06 .90 .26 6.20 .11 .08 35.15 .21 .03 .00 100.18	56.82 .07 .89 .23 6.18 .12 .07 35.27 .20 .03 .01 99.87	56.26 .08 .93 .24 6.06 .10 .07 35.14 .23 .03 .00 99.14	56.76 .06 .91 .22 6.45 .10 .07 35.26 .20 .03 .00 100.06	56.58 .07 .88 .25 6.31 .18 .09 35.12 .20 .00 .00 .01 99.68	56.72 .07 .89 .20 6.15 .14 .09 35.44 .01 .01 .00 99.87	57.02 .07 .88 .22 6.20 .12 .12 35.29 .20 .00 .02 100.14
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{besetzung}\\ Si\\ Ti\\ Al\\ Cr\\ Fr^{e^{a^*}}\\ Mn\\ Ni\\ Mg\\ Ca\\ Na\\ Na\\ K\\ \Sigma \mbox{ Kationen} \end{array}$	1.969 .001 .030 .004 .003 1.811 .005 .002 .000 4.014	1.969 .001 .004 .183 .004 .003 1.813 .005 .000 .000 4.012	1.972 .001 .004 .182 .004 .003 1.810 .005 .000 .000 4.010	1.975 .001 .005 .181 .004 .001 1.801 .005 .001 .000 4.006	1.966 .001 .005 .182 .004 .003 1.810 .006 .000 .001 4.013	1.966 .002 .006 .175 .005 .004 1.810 .007 .000 .000 4.011	1.963 .002 .038 .006 .182 .004 .002 1.807 .007 .002 .000 4.014	1.967 .001 .007 .176 .005 .002 1.809 .009 .001 .000 4.011	1.961 .002 .007 .187 .004 .003 1.808 .008 .000 .000 4.016	1.959 .002 .037 .006 .183 .003 .001 1.818 .008 .000 .000 4.017	1.958 .002 .037 .006 .182 .004 .002 1.818 .008 .000 .001 4.019	1.964 .001 .007 .180 .005 .003 1.813 .006 .000 .000 4.014	1.965 .002 .03 .006 .179 .003 .003 1.809 .008 .000 .000 4.012	1.968 .002 .006 .007 .178 .003 .002 1.803 .002 .000 4.010	1.962 .002 .006 .006 .178 .004 .002 1.816 .007 .002 .001 4.016	1.958 .002 .038 .006 .176 .003 .002 1.823 .009 .002 .000 4.019	1.959 .002 .037 .006 .186 .003 .002 1.814 .007 .002 .000 4.019	1.960 .002 .007 .183 .005 .002 1.814 .007 .000 .001 4.017	1.959 .002 .006 .006 .178 .004 .002 1.825 .006 .000 .000 4.018	1.964 .002 .006 .006 .179 .003 1.812 .007 .000 .001 4.014
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	90.63 12.34 15	90.81 12.08 25	90.87 12.38 35	90.88 12.46 45	90.87 12.29 55	91.19 14.17 65	90.87 13.71 75	91.15 15.75 85	90.61 16.54 95	90.84 14.02 105	90.91 14.72 115	90.99 15.49 125	90.98 14.87 135	90.99 16.25 145	91.05 14.75 155	91.17 14.52 165	90.69 13.70 175	90.84 15.95 185	91.12 13.22 195	91.03 14.45 215

Probe: AAR-9																				
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	29	30	31	33	34	35	36	38	39	40	41	42	43	44	45	46	47	48	49	50
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 TiO2 Al2O3 C7,O3 FeO MnO NiO NiO MgO CaO K2O K2Ó Z	56.83 .07 .88 .24 6.15 .09 .11 35.39 .20 .00 .01 99.97	56.85 .06 .88 .23 5.82 .09 .09 35.34 .22 .03 .00 99.61	56.11 .08 .89 .22 6.20 .14 .10 35.32 .23 .01 .00 99.29	56.16 .07 .88 .25 6.21 .14 .09 35.29 .18 .01 .00 99.28	56.07 .07 .88 .23 6.00 .12 .01 35.30 .20 .02 .02 98.92	56.60 .09 .85 .23 6.04 .09 .11 35.13 .22 .00 .00 .99.35	56.36 .08 .86 .22 6.03 .11 .10 35.13 .24 .00 .01 99.15	56.32 .04 .88 .25 6.03 .13 .09 35.29 .25 .04 .00 99.31	56.89 .07 .86 .25 6.06 .10 .05 35.30 .23 .00 .00 99.82	56.79 .08 .87 .23 6.00 .15 .09 35.37 .21 .02 .00 99.83	56.10 .06 .89 .22 5.93 .16 .07 35.27 .23 .04 .04 .01 98.99	56.14 .07 .86 .23 5.97 .11 .10 35.34 .22 .02 .00 99.04	56.34 .08 .87 .24 6.011 .11 .10 35.16 .23 .00 .00 99.13	56.86 .07 .88 .21 6.04 .09 .08 35.15 .19 .02 .00 99.60	56.59 .02 .86 .21 5.86 .10 .11 35.30 .16 .02 .01 99.24	56.38 .07 .86 .24 5.97 .13 .09 35.32 .20 .01 .01 .00 99.26	55.94 .07 .25 6.08 .14 .10 35.31 .01 .00 98.92	56.22 .07 .86 .25 5.91 .12 .09 35.22 .01 .01 98.97	56.97 .10 .87 .22 5.86 .13 .13 35.18 .23 .01 .00 99.72	56.50 .08 .25 5.99 .08 .11 35.00 .24 .01 .00 99.50
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na K X Kationen	1.961 .002 .036 .006 .177 .003 .003 1.820 .007 .000 .001 4.017	1.965 .002 .036 .006 .168 .003 .002 1.821 .008 .002 .000 4.013	1.952 .002 .036 .006 .180 .004 .003 1.832 .008 .000 .000 4.025	1.954 .002 .036 .007 .181 .004 .003 1.830 .007 .001 .000 4.024	1.955 .002 .036 .175 .004 .000 1.835 .008 .002 .001 4.023	1.964 .002 .006 .175 .002 .003 1.817 .008 .000 .000 4.013	1.961 .002 .035 .006 .175 .003 .003 1.822 .009 .000 .000 4.017	1.957 .001 .007 .175 .004 .002 1.828 .009 .003 .000 4.022	1.964 .002 .035 .007 .175 .003 .001 1.817 .009 .000 .000 4.013	1.961 .002 .006 .173 .004 .002 1.821 .008 .002 .000 4.016	1.955 .001 .006 .173 .005 .002 1.833 .009 .002 .000 4.023	1.955 .002 .035 .006 .174 .003 .003 1.835 .008 .001 .000 4.023	1.960 .002 .035 .007 .175 .003 .003 1.823 .008 .000 .000 4.017	1.967 .002 .006 .175 .003 .002 1.813 .007 .002 .000 4.011	1.964 .000 .035 .006 .170 .003 1.826 .006 .001 .000 4.016	1.959 .002 .035 .007 .173 .004 .003 1.829 .008 .000 .000 4.019	1.952 .002 .036 .007 .177 .004 .003 1.837 .006 .000 .000 4.025	1.959 .002 .035 .007 .172 .004 .002 1.829 .008 .001 .000 4.019	1.968 .003 .006 .169 .004 .004 1.811 .009 .001 .000 4.009	1.958 .002 .035 .007 .174 .003 1.829 .009 .000 .000 4.019
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	91.12	91.54	91.04	91.01	91.30	91.20	91.22	91.26	91.21	91.31	91.38	91.35	91.25	91.20	91.48	91.34	91.20	91.40	91.45	91.33
Cr #	15.43	14.85	14.28	16.25	14.75	15.34	14.66	15.87	16.54	15.13	14.28	14.93	15.75	13.73	14.02	15.83	16.26	16.18	14.69	16.23
Profilstrecke [µm]	225	235	245	265	275	285	295	315	325	335	345	355	365	375	385	395	405	415	425	435

Probe: AAR-9 Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] [Gew%] SiO ₂ TiO ₃ Ai ₂ O ₃ Cr ₁ O ₃ Cr ₂ O ₃ Cr ₂ O ₃ Cr ₂ O ₃ MinO NiO NiO CaO CaO CaO CaO CaO CaO CaO X ₂ O Σ	56.60 .07 .86 .27 5.98 .11 .06 35.27 .27 .00 .00 99.50	56.21 .06 .86 .23 5.91 .12 .10 35.19 .22 .00 .00 .00 98.90	56.96 .09 .87 .21 5.87 .13 .08 35.20 .23 .00 .01 99.63	56.75 .07 .85 .18 5.89 .13 .07 35.01 .23 .02 .00 99.20	56.06 .08 .87 .22 6.09 .11 .08 35.21 .01 .01 98.93	56.34 .08 .88 .21 5.99 .13 .10 35.20 .20 .02 .01 99.14	55.99 .05 .87 .19 6.12 .12 .09 35.21 .19 .02 .02 98.87	56.31 .07 .89 .20 5.90 .11 .09 35.27 .18 .04 .00 99.06	56.47 .08 .88 .22 6.04 .16 .10 34.99 .22 .04 .00 99.21	56.36 .07 .91 .19 6.14 .11 .07 35.10 .23 .02 .00 99.21	56.34 .09 .90 .21 6.12 .09 .08 35.11 .23 .01 .01 99.20	56.51 .07 .93 .23 6.31 .11 .10 34.71 .24 .00 .01 99.22	56.02 .06 .91 .23 6.32 .14 .05 34.99 .21 .01 .01 98.94	55.77 .07 .94 .21 6.34 .09 .10 34.91 .20 .01 .00 98.65	56.74 .07 .93 .24 6.34 .14 .08 34.87 .23 .01 .00 99.65
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na K Kationen	1.961 .002 .035 .007 .173 .003 .002 1.822 .010 .000 .000 4.016	1.960 .002 .035 .006 .172 .004 .003 1.829 .008 .000 .000 4.018	1.968 .002 .035 .006 .170 .004 .004 .004 .003 .008 .000 .000 4.009	1.970 .002 .035 .005 .171 .004 .004 .001 .009 .001 .000 4.009	1.956 .002 .036 .006 .178 .003 .003 1.831 .008 .001 .000 4.022	1.960 .002 .036 .006 .174 .003 1.825 .007 .001 .000 4.018	1.955 .001 .036 .005 .179 .004 .003 1.833 .007 .001 .001 4.024	1.959 .002 .037 .006 .172 .003 .003 1.829 .007 .002 .000 4.019	1.963 .002 .036 .006 .176 .005 .003 1.813 .008 .002 .000 4.015	1.960 .002 .037 .005 .178 .003 .003 .003 .003 .009 .001 .000 4.018	1.959 .002 .037 .006 .178 .003 .003 .003 .003 .009 .001 .001 4.018	1.966 .002 .038 .006 .184 .003 .003 1.800 .009 .000 .000 4.011	1.956 .002 .037 .006 .184 .004 .004 .004 .004 .008 .001 .000 4.021	1.954 .002 .039 .006 .186 .003 .003 .003 .003 .003 .008 .001 .000 4.023	1.965 .002 .038 .007 .184 .004 1.800 .009 .000 .000 4.011
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.31 17.36 445	91.39 15.13 455	91.45 13.72 465	91.38 12.68 475	91.16 14.35 485	91.29 14.01 495	91.11 12.68 506	91.42 13.24 516	91.17 14.63 526	91.07 12.41 536	91.09 13.66 546	90.74 14.34 556	90.81 14.51 566	90.76 13.05 576	90.74 14.80 586

Probe:	AAR-9
Profil:	02
Mineral:	OI
Kapitel:	2.1

Profil- strecke [µm]	P [µg/g]	Sc [g/g4]	Co [٤/٩٩]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
30	16.427	1.680	93.637	9.507	0.904	0.172	1.494	0.975
83	17.896	1.746	94.207	9.617	1.189	0.158	2.655	0.786
143	17.088	1.291	95.197	13.453	0.912	0.123	1.986	2.535
209	17.472	1.043	96.490	11.656	0.760	0.134	0.666	1.635
283	16.690	0.988	95.823	11.212	1.065	0.125	1.803	1.087
343	18.061	1.045	96.665	12.243	1.519	0.098	1.286	0.764
403	17.929	0.827	96.743	11.459	1.033	0.073	2.444	1.719
463	18.785	0.719	96.822	12.218	1.109	0.110	0.765	1.704
523	17.397	0.915	97.032	11.587	1.569	0.094	1.626	1.183
583	17.478	0.762	97.094	10.829	1.122	0.057	0.903	1.802
637	16.983	0.915	97.791	9.427	1.136	0.084	2.063	0.455
716	16.322	0.919	95.790	12.587	0.635	0.126	2.565	1.344
785	15.713	1.132	95.419	10.127	1.151	0.084	0.891	1.208
833	15.994	1.163	96.421	9.492	0.389	0.179	1.867	0.981
893	16.319	1.508	95.450	10.569	0.921	0.070	0.809	1.473
943	15.456	2.006	94.064	7.634	0.633	0.160	2.290	1.059
1046	15.551	2.878	92.812	8.136	0.296	0.200	1.485	1.083
1095	15.276	2.593	90.035	6.002	0.398	0.265	2.283	0.932

Probe: AAR-9	repräsent	tative Ana	ilysen auf	grund vo	n Homoge	enität														
Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02 I	Profil-02 I	Profil-02	Profil-02	Profil-02 I	Profil-02	Profil-02	Profil-02	Profil-02 I	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02 I	Profil-02
Profilpunkt	24	25	26	27	28	29	30	31	32	33	35	36	37	38	39	41	42	43	44	46
Mineral	OI	01	01	01	01	OI	01	01	OI	01	01	01	01	01	01	OI	01	01	OI	OI
Analyse [Gew%] IO2 Al2O3 Cr3O4 FeO3 FeO MnO NIO NIO MgO CaO Na2O K2O K2O X2O	40.86 .01 .03 .00 9.60 .15 .45 49.80 .03 .01 .00 100.94	40.57 .02 .00 9.52 .13 .48 50.00 .01 .02 .00 100.78	40.88 .00 .00 9.43 .07 .40 49.90 .01 .01 100.71	41.00 .01 .02 .01 .16 .36 49.83 .01 .00 .01	40.93 .03 .00 .00 9.55 .14 .40 50.01 .00 .00 101.06	40.80 .03 .01 .01 9.46 .08 .41 50.06 .00 .01 .01 100.87	41.06 .02 .00 .00 9.52 .16 .42 49.84 .02 .01 .00 101.02	40.72 .03 .00 .01 .00 9.38 .15 .44 49.96 .03 .00 .00 100.73	40.81 .00 .00 9.51 .11 .41 50.14 .00 .01 101.00	41.10 .01 .01 .00 9.24 .10 .40 49.92 .01 .00 .00 100.79	40.92 .01 .00 .02 .00 9.40 .13 .44 50.12 .00 .01 .00 101.05	40.78 .01 .00 .00 9.31 .12 .42 49.88 .00 .00 .01 100.54	40.56 .02 .00 9.40 .11 .42 50.14 .00 .00 100.67	40.62 .02 .00 9.54 .14 .49 84 .00 .01 .00 100.68	40.67 .00 .01 .00 9.33 .09 .40 49.92 .00 .00 .01 100.42	40.78 .00 .00 9.50 .12 .39 49.92 .02 .00 .01 100.74	40.82 .00 .01 .00 9.44 .12 .41 50.05 .00 .00 .00 100.85	41.27 .01 .00 .00 9.73 .10 .42 49.91 .02 .00 .00 101.46	41.01 .00 .00 9.55 .12 .47 50.00 .00 .00 101.15	41.01 .02 .01 .00 9.50 .12 .48 49.97 .00 .00 .00 101.11
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Fe ²⁺ Mn Mg Ca Na K Σ Kationen Sauerstoffe	.993 .000 .001 .000 .003 .003 .009 1.804 .001 .001 .000 3.007 4.000	.988 .000 .000 .000 .000 .194 .003 .009 1.816 .000 .001 .000 3.012 4.000	.994 .000 .000 .000 .000 .002 .002 .002 .00	.995 .000 .000 .000 .193 .003 .003 .000 .000 3.004 4.000	.993 .001 .000 .000 .194 .003 .000 .000 .000 3.007 4.000	.991 .001 .000 .000 .192 .002 .002 .002 .003 1.813 .000 .000 3.008 4.000	.996 .000 .000 .000 .193 .003 .003 1.802 .000 .000 3.004 4.000	.991 .001 .000 .000 .191 .003 .003 .001 .000 3.008 4.000	.991 .000 .000 .000 .193 .002 .008 1.815 .000 .000 3.010 4.000	.998 .000 .000 .000 .188 .002 .008 1.806 .000 .000 3.002 4.000	.992 .000 .000 .000 .191 .003 .000 .000 .000 3.007 4.000	.994 .000 .000 .000 .190 .002 .002 1.812 .000 .000 3.006 4.000	.988 .000 .000 .000 .191 .002 .008 1.821 1.821 .000 .000 3.011 4.000	.990 .000 .000 .000 .195 .003 .010 1.811 1.000 .001 .000 3.010	.992 .000 .000 .000 .002 .002 .008 1.815 1.815 .000 .000 3.008 4.000	.992 .000 .000 .000 .002 .008 1.811 .001 .000 3.008 4.000	.992 .000 .000 .000 .002 .002 .003 1.813 1.813 .000 .000 3.008 4.000	.997 .000 .000 .000 .197 .002 .008 1.798 .000 .000 3.003 4.000	.994 .000 .000 .000 .193 .002 .009 1.807 .000 .000 3.006 4.000	.994 .000 .000 .000 .193 .002 .009 1.806 .000 .000 3.005 4.000
Mg # Profilstrecke [µm]	90.24 15	90.35 25	90.41 35	90.31 45	90.33 55	90.41 66	90.32 76	90.47 86	90.39 96	90.59 106	90.48 126	90.52 136	90.49 146	90.30 156	90.51 166	90.35 187	90.43 197	90.15 207	90.33 217	90.36 237

Probe: AAR-9 Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil_02	Profil-02	Profil-02	Profil-02	Profil_02	Profil-02	Profil-02	Profil-02	Profil_02	Profil-02	Profil_02	Profil_02	Profil_02	Profil_02	Profil-02	Profil-02
Profilpunkt	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67
Mineral	OI	OI	OI	OI	OI	OI	OI	ОІ	OI	OI	OI	ОІ	ОІ	ОІ	OI	OI	OI	OI	OI	OI
Analyse [Gew%] SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe MiO NiO MgO CaO Na ₂ O ∑	40.94 .00 .00 9.17 .12 .41 49.64 .00 .01 .01	40.82 .00 .01 .00 9.43 .10 .41 49.87 .01 .00 .01	41.08 .00 .03 .00 9.83 .12 .43 50.07 .00 .00 .00 .00 101.56	41.01 .02 .01 .00 9.56 .12 .42 49.95 .00 .00 .01 101.10	40.97 .01 .00 9.61 .12 .37 49.90 .02 .00 .00 101.01	41.06 .00 .01 .00 9.54 .12 .34 49.95 .00 .00 .00 101.02	40.81 .02 .00 .00 9.77 .14 .48 49.98 .00 .01 .00 101.22	40.98 0.1 0.3 9.55 .14 49.87 .01 .00 .00 101.03	41.05 .00 .00 .00 9.52 .09 .39 49.64 .01 .01 100.73	40.64 .03 .01 .01 .00 9.69 .13 .41 49.91 .00 .02 .00 100.84	41.16 .04 .00 .00 9.46 .13 .42 49.78 .01 .02 .00 101.03	40.68 .02 .01 .00 9.62 .12 .39 49.88 .02 .00 .01 100.75	41.03 .02 .01 .03 .00 9.68 .10 .40 49.83 .00 .00 .02 101.11	40.88 .01 .00 .02 .00 9.86 .11 .43 49.74 .01 .00 .01 101.05	40.90 .01 .00 .00 9.55 .09 .39 49.77 .02 .01 .02 100.75	40.82 .01 .00 .00 9.44 .13 .36 49.93 .00 .01 .00 100.70	40.69 .03 .00 .02 .00 9.69 .11 .41 .49.92 .01 .00 .01 100.89	40.96 .02 .01 .00 9.46 .17 .40 49.86 .01 .01 .01 100.90	41.19 .01 .00 .00 9.60 .09 .44 49.75 .00 .00 .00 101.07	41.01 .01 .01 9.55 .17 .40 49.70 .02 .00 .00 100.88
Kationen- besetzung Si Ti Ai Cr Fe ³⁺ Fe ³⁺ Mn Mg Ca Na K Σ Kationen Sauerstoffe	.999 .000 .000 .000 .002 .008 1.805 .000 .001 .000 3.002 4.000	.994 .000 .000 .000 .192 .008 1.810 .000 .000 3.006 4.000	.993 .000 .001 .000 .099 .002 .008 1.804 .000 .000 3.007 4.000	.994 .000 .000 .000 .194 .008 1.806 .000 .000 3.005 4.000	.994 .000 .000 .000 .195 .003 .007 1.805 .000 .000 .000 3.005	.996 .000 .000 .000 .194 .007 1.806 .000 .000 .000 3.004	.990 .000 .000 .000 .003 .009 1.808 .000 .001 .000 3.010 4.000	.995 .000 .000 .000 .000 .194 .003 .009 1.804 .000 .000 .000 3.005	.998 .000 .000 .000 .194 .002 .008 1.800 .000 .000 .000 3.002 4.000	.989 .001 .000 .000 .197 .003 .008 1.811 .000 3.010 4.000	.998 .001 .000 .000 .003 .003 .008 1.799 .000 .001 .000 3.002 4.000	.991 .000 .000 .000 .003 .008 1.811 .000 .000 .000 3.009 4.000	.995 .000 .000 .000 .002 .008 1.802 .000 .000 .001 3.004 4.000	.993 .000 .000 .000 .000 .000 .000 1.801 .000 .000	.995 .000 .000 .000 .194 .002 .008 1.805 .000 .001 3.005 4.000	.993 .000 .000 .000 .192 .003 .007 1.811 .000 .000 3.007 4.000	.990 .001 .000 .000 .197 .002 .008 1.811 .000 .000 3.010 4.000	.995 .000 .000 .000 .003 .003 .008 1.805 .000 .000 .000 3.005	.998 .000 .000 .000 .195 .002 .008 1.798 .000 .000 .000 3.001 4.000	.996 .000 .000 .000 .000 .194 .003 .008 1.800 .000 .000 .000 3.003 4.000
Mg # Profilstrecke [µm]	90.61 257	90.41 267	90.08 277	90.31 288	90.25 298	90.32 308	90.12 318	90.30 328	90.28 338	90.18 348	90.37 358	90.24 368	90.18 378	89.99 388	90.28 399	90.41 409	90.18 419	90.38 429	90.24 439	90.27 449
Probe:	AAR-9																			
----------	-------																			
Profil:	07																			
Mineral:	Срх																			
Kapitel:	2.1																			

Profil-	_		-	_	_		-	_
strecke	P	Sc	Co	Zn	P	Sc	Co	Zn
[µm]	[hð\d]	[hð\ð]	[hð\ð]	[hð\ð]	2σ	2σ	2σ	2σ
30	4.613	38.883	12.334	3.783	0.921	1.031	0.521	0.709
88	5.795	37.860	13.139	4.170	0.644	0.559	0.564	0.971
146	6.000	37.009	13.162	5.312	0.741	0.471	0.715	1.382
206	7.124	36.835	13.278	4.729	1.091	0.382	0.790	1.321
264	6.988	35.510	13.853	3.774	0.133	0.502	0.469	1.382
383	6.653	36.055	13.328	4.391	0.968	0.752	0.464	0.733
441	6.985	35.108	13.739	4.688	0.277	0.812	0.579	1.586
500	7.977	35.160	14.394	5.558	0.986	0.563	0.724	0.286
560	7.298	34.958	14.122	5.495	0.735	0.387	0.456	1.138
619	6.563	35.970	13.409	5.018	1.069	0.486	0.481	1.682
678	7.762	35.854	14.170	4.729	0.881	0.789	0.193	0.766
737	6.972	35.696	13.949	4.950	1.386	0.762	0.706	1.586
800	6.576	35.969	13.568	5.794	0.695	0.699	0.676	0.889
855	7.244	35.580	13.723	5.260	0.514	0.506	0.617	1.522
916	6.902	36.325	13.781	5.544	0.743	0.892	0.406	0.854
975	5.945	36.037	13.740	5.737	0.619	0.565	0.544	1.540
1035	5.997	35.527	13.057	4.755	0.400	0.384	0.621	1.057
1095	6.073	35.755	13.611	4.314	0.473	0.261	0.525	0.844
1174	5.727	35.791	14.461	3.708	0.489	0.520	0.465	0.396

Probe: AAR-9 Profilname	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07
Profilpunkt	97	98	99	100	102	103	104	105	106	107	108	109	110	111	112	113	115	116	118	119
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO2 TiO2 Al2O3 CF2O3 FEO MinO NiO NiO Na2O CaO K2Ó X	55.04 .09 1.97 .89 2.00 .07 .06 16.58 23.06 1.00 .00 100.76	54.84 .16 2.24 .87 2.23 .06 .05 16.48 22.49 1.25 .00 100.66	54.88 .14 2.02 .81 1.96 .03 .08 16.66 23.02 1.09 .00 100.69	54.86 .16 2.01 .81 2.05 .05 16.45 22.96 1.14 .00 100.51	54.77 .10 1.93 83 1.95 .04 .03 16.63 23.24 1.08 .00 100.59	54.83 .16 2.20 .79 2.15 .05 .03 16.49 22.74 .1.17 .00 100.60	54.72 .12 2.10 .79 2.02 .08 .04 16.55 22.70 1.03 .00 100.14	54.79 .17 2.23 .77 2.17 .07 .04 16.37 22.35 1.28 .00 100.23	54.89 .14 2.12 .80 1.95 .08 .07 16.53 22.51 1.09 .00 100.19	54.89 .16 2.26 .79 2.27 .13 .06 16.43 22.39 1.22 .00 100.58	54.78 .19 2.27 .76 2.15 .08 .03 16.25 22.39 1.16 .00 100.04	54.91 .17 2.32 .73 2.19 .11 .04 16.38 22.44 1.33 .00 100.63	55.02 .19 2.28 .73 2.23 .07 .01 16.45 22.32 1.27 .00 100.56	54.73 .17 2.34 .81 2.24 .07 .06 16.38 22.41 1.24 .00 100.43	54.86 .17 2.42 .77 2.28 .08 .04 16.31 22.27 1.34 .02 100.54	54.97 .18 2.49 .78 2.32 .05 .04 16.26 22.04 1.35 .01 100.48	54.79 .17 2.49 .74 2.20 .03 .07 16.28 22.03 1.31 .00 100.11	54.75 .20 2.56 .82 2.25 .04 .06 16.22 22.11 1.42 .02 100.44	54.58 .19 2.73 .75 2.40 .05 .04 16.16 22.05 1.48 .00 100.43	54.80 .16 2.73 2.20 .03 .06 16.04 22.17 1.54 .00 100.44
Kationen- besetzung Si Ti Al Cr Fe ²⁴ - Mn Ni Mg Ca Na K Xationen	1.978 .003 .025 .060 .002 .889 .888 .070 .000 4.000	1.973 .004 .025 .025 .007 .002 .001 .884 .867 .087 .000 4.006	1.974 .004 .023 .059 .001 .002 .893 .887 .076 .000 4.006	1.977 .004 .023 .001 .884 .886 .080 .000 4.004	1.974 .003 .024 .059 .001 .001 .893 .897 .075 .000 4.008	1.974 .004 .023 .065 .001 .001 .885 .877 .081 .000 4.004	1.977 .003 .022 .061 .003 .001 .879 .072 .000 3.999	1.978 .004 .092 .066 .002 .001 .885 .090 .000 4.004	1.981 .004 .023 .059 .002 .002 .889 .870 .076 .000 3.997	1.976 .004 .023 .068 .004 .002 .864 .085 .000 4.003	1.980 .005 .097 .022 .065 .002 .001 .876 .867 .081 .000 3.996	1.976 .005 .021 .066 .003 .001 .879 .865 .093 .000 4.007	1.979 .005 .097 .021 .067 .002 .860 .886 .088 .000 4.001	1.973 .005 .100 .023 .067 .002 .880 .886 .087 .000 4.004	1.975 .004 .103 .022 .069 .002 .001 .875 .859 .094 .001 4.005	1.978 .005 .106 .022 .070 .002 .001 .873 .850 .094 .001 4.000	1.978 .004 .021 .066 .001 .002 .876 .852 .092 .000 4.000	1.973 .005 .109 .023 .068 .001 .002 .871 .853 .099 .001 4.006	1.968 .005 .116 .021 .072 .002 .001 .868 .852 .103 .000 4.009	1.974 .004 .115 .021 .066 .001 .861 .856 .108 .000 4.007
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	93.67 23.34 5	92.95 20.74 15	93.80 21.26 25	93.53 21.20 35	93.83 22.44 55	93.19 19.50 65	93.59 20.05 75	93.07 18.86 85	93.78 20.19 95	92.81 18.99 105	93.10 18.39 115	93.01 17.37 125	92.93 17.71 136	92.88 18.73 146	92.74 17.60 156	92.60 17.38 166	92.97 16.67 186	92.78 17.68 196	92.30 15.66 216	92.87 15.25 226

Probe: AAR-9																				
Profilname	Profil-07																			
Profilpunkt	120	122	123	124	126	128	129	130	132	133	134	135	136	137	139	140	143	144	145	146
Mineral	Срх																			
Analyse																				
SiO ₂	54.63	54.86	54.74	54.67	54.84	54.77	54.79	54.88	54.28	54.58	54.98	54.85	54.99	54.97	54.78	54.89	54.78	54.71	54.91	54.87
TiO ₂	.18	.18	.20	.17	.20	.15	.21	.17	.17	.21	.17	.13	.18	.18	.18	.18	.20	.19	.20	.18
Al ₂ O ₃ Cr ₂ O ₃	2.82	2.85	2.71	2.62	2.75	2.79	2.85	2.64	2.52	2.68	2.69	2.62	2.69	2.80	2.79	2.74	2.75	2.82	2.83	2.84
FeO	2.41	2.22	2.30	2.53	2.30	2.20	2.27	2.31	2.42	2.43	2.40	2.27	2.35	2.34	2.35	2.24	2.25	2.37	2.33	2.38
NiO	.07	.05	.07	.02	.10	.05	.09	.06	.10	.07	.05	.07	.05	.07	.07	.04	.09	.08	.06	.10
MgO	16.13	16.04	16.15	16.20	15.97	15.89	15.94	16.07	15.98	16.22	16.03	16.23	16.47	16.08	16.05	15.88	16.01	15.89	15.92	16.08
CaO Na₂O	21.82	21.77	21.90	21.74	22.30	22.20	21.95	21.99	22.31	21.80	21.98	22.21	21.97	21.67	21.85	22.18	21.77	21.89	22.15	22.10
K₂Ô	.01	.00	.01	.00	.00	.00	.00	.00	.00	.01	.00	.00	.02	.01	.01	.00	.00	.00	.00	.00
Σ	100.38	100.36	100.23	100.08	100.73	100.29	100.38	100.46	100.03	100.30	100.66	100.56	100.86	100.50	100.42	100.39	100.16	100.13	100.64	100.83
Kationen-																				
besetzung																				
Si Ti	1.969	1.975	1.975	1.976	1.971	1.975	1.974	1.976	1.969	1.970	1.976	1.974	1.972	1.977	1.973	1.977	1.977	1.976	1.974	1.970
AI	.120	.121	.115	.111	.117	.119	.121	.112	.108	.114	.114	.111	.113	.119	.119	.116	.117	.120	.120	.120
Cr Fe ²⁺	.023	.022	.020	.021	.022	.022	.022	.023	.022	.023	.023	.021	.022	.023	.022	.021	.022	.022	.021	.022
Mn	.002	.002	.003	.001	.003	.000	.003	.002	.003	.002	.002	.002	.002	.002	.002	.001	.003	.002	.002	.003
Ni	.000	.002	.001	.001	.001	.001	.001	.003	.001	.001	.003	.000	.001	.002	.002	.000	.002	.001	.001	.002
Ca	.843	.840	.846	.842	.859	.858	.847	.849	.867	.843	.846	.856	.844	.835	.843	.856	.842	.847	.853	.850
Na	.107	.108	.099	.096	.104	.101	.102	.101	.102	.103	.102	.099	.094	.105	.105	.104	.104	.099	.103	.101
∑ Kationen	4.008	4.003	4.002	4.002	4.006	4.001	4.000	4.002	4.013	4.008	4.002	4.006	4.001	4.001	4.004	4.001	4.000	3.998	4.002	4.004
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Ma #	92.26	92.80	92.59	91.96	92.54	92.79	92.61	92.54	92.17	92.25	92.26	92.72	92.58	92.46	92.42	92.68	92.70	92.27	92.43	92.33
Cr#	15.88	15.49	14.87	15.74	15.80	15.69	15.52	16.89	16.66	16.52	16.63	15.94	15.98	16.08	15.86	15.45	15.62	15.49	14.98	15.66
Profilstrecke [µm]	236	256	266	276	296	316	326	336	356	366	376	387	397	407	427	437	467	477	487	497

Probe: AAR-9 Profilname	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07 F	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07
Profilpunkt	147	148	149	152	153	154	155	156	157	158	159	160	161	162	163	164	165	167	168	169
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO2	54.92 .19 2.83 .82 2.24 .04 00 16.00 21.99 1.45 .01 100.48	54.76 .19 2.76 .78 2.31 .06 .04 16.04 22.27 .1.47 .01 100.68	54.81 .18 2.86 .74 2.31 .05 .00 16.03 21.84 1.49 .00 100.30	54.74 .20 2.86 .76 2.43 .09 .03 15.97 22.01 1.54 .01 100.62	54.85 .19 2.83 .75 2.34 .03 .04 15.99 21.92 1.45 .00 100.39	54.81 .21 2.85 .79 2.18 .05 .05 15.94 21.73 1.49 .00 100.09	54.73 .22 2.85 .75 2.26 .03 .01 15.87 21.79 1.67 .01 100.19	54.78 .22 2.80 .78 2.13 .03 .06 16.15 21.82 1.44 .01 100.20	55.00 .19 2.77 .75 2.16 .06 .01 16.13 21.89 1.55 .01 100.52	54.91 .21 2.80 .74 2.31 .09 .02 16.23 22.13 1.50 .01 100.93	55.09 21 2.88 .73 2.34 .11 .04 15.96 21.69 1.61 .00 100.66	54.77 .19 2.75 2.29 .04 16.06 22.13 1.47 .01 100.49	54.69 .23 2.71 .74 2.58 .04 .05 16.30 21.97 .1.39 .00 100.71	54.94 22 2.95 .81 2.33 .07 .06 15.83 21.96 1.62 .00 100.77	54.77 .21 2.96 .77 2.28 05 .05 15.95 21.76 1.60 .00 100.38	54.91 .20 2.91 .76 2.42 .05 .11 15.98 21.79 1.65 .00 100.77	54.81 .20 2.84 .74 2.46 .06 .02 15.91 21.95 1.56 .00 100.55	54.86 .18 2.70 .74 2.24 .03 .04 15.97 22.27 1.45 .01 100.49	54.76 .19 2.90 .75 2.31 1.05 .04 15.96 21.86 1.60 .00 100.42	54.65 .19 2.94 .79 2.39 .06 .05 15.87 21.73 1.62 .00 100.28
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na K Xationen	1.975 .005 .120 .023 .067 .001 .000 .858 .847 .101 .000 3.999	1.970 .005 .117 .022 .069 .002 .001 .869 .103 .000 4.007	1.975 .005 .121 .021 .070 .001 .843 .104 .000 4.001	1.970 .005 .121 .022 .073 .003 .001 .857 .848 .107 .000 4.007	1.975 .005 .120 .021 .070 .001 .001 .859 .846 .101 .000 3.999	1.977 .006 .121 .023 .066 .001 .001 .840 .104 .000 3.997	1.975 .006 .121 .021 .008 .001 .000 .854 .843 .117 .000 4.006	1.975 .006 .119 .022 .064 .001 .002 .868 .843 .101 .001 4.000	1.977 .005 .117 .021 .065 .002 .000 .864 .843 .108 .001 4.003	1.969 .006 .118 .021 .069 .003 .000 .850 .104 .000 4.008	1.978 .006 .122 .021 .070 .003 .001 .854 .834 .112 .000 4.001	1.972 .005 .117 .021 .069 .001 .001 .864 .103 .000 4.005	1.967 .006 .115 .021 .078 .001 .002 .874 .847 .097 .000 4.007	1.972 .006 .125 .023 .070 .002 .845 .113 .000 4.005	1.972 .006 .125 .022 .069 .002 .001 .856 .839 .111 .000 4.004	1.972 .005 .123 .021 .073 .002 .003 .855 .838 .115 .000 4.008	1.973 .005 .120 .021 .074 .002 .001 .854 .847 .109 .000 4.006	1.975 .005 .021 .068 .001 .001 .859 .101 .000 4.003	1.972 .005 .123 .021 .070 .001 .001 .854 .112 .000 4.006	1.972 .005 .125 .023 .072 .001 .853 .840 .113 .000 4.006
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	92.72 16.35 507	92.53 15.94 517	92.51 14.74 527	92.14 15.13 557	92.43 15.08 567	92.88 15.68 577	92.60 15.07 587	93.12 15.71 597	93.02 15.38 607	92.60 15.00 617	92.40 14.55 627	92.59 15.54 638	91.84 15.51 648	92.38 15.49 658	92.57 14.83 668	92.18 14.88 678	92.01 14.84 688	92.70 15.52 708	92.49 14.80 718	92.22 15.31 728

Probe: AAR-9																				
Profilname	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07 I	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07
Profilpunkt	171	174	175	176	178	179	182	183	184	186	187	188	190	191	192	193	195	196	197	198
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] [Gow%] SiO ₂ TiO ₂ TiO ₃ Al ₂ O ₃ FeO MinO MinO NiO CaO Na ₂ O CaO K ₂ Ó ∑	54.78 .21 2.87 .77 2.25 .09 .05 15.90 21.79 1.56 .02 100.28	54.79 .20 2.84 .78 2.18 09 .03 15.88 21.95 1.51 .00 100.25	55.00 .18 2.86 .74 2.25 .08 .02 16.03 21.92 1.45 .00 100.54	54.67 .18 2.84 .76 2.39 .06 .08 15.97 21.82 1.47 .00 100.23	54.86 .22 2.79 .73 2.33 .05 .03 16.00 21.85 1.58 .00 100.45	54.98 .20 2.84 .04 .04 15.99 21.75 1.60 .00 100.55	55.01 .16 2.73 .81 2.20 .03 .07 16.02 22.06 1.56 .01 100.66	54.78 .18 2.76 .73 2.40 .06 .00 15.94 21.81 1.62 .00 100.27	54.99 .19 2.76 .81 2.41 .08 .00 15.89 21.88 1.69 .01 100.71	54.84 .19 2.64 .75 2.25 .08 .01 16.08 21.85 1.53 .01 100.21	55.05 .20 2.76 .72 2.35 .08 .04 16.09 21.93 1.60 .00 100.81	54.83 .17 2.65 .77 2.25 .00 .05 16.06 22.09 1.53 .01 100.40	54.85 .15 2.67 .76 2.41 .07 .05 16.24 22.11 1.47 .01 100.78	55.00 .19 2.57 .78 2.37 .08 .03 16.10 22.05 1.52 .01 100.69	54.95 .17 2.58 .79 2.35 .06 .02 16.12 22.03 1.41 .00 100.47	55.20 .14 2.42 .78 2.37 .04 .01 16.21 22.03 1.44 .00 100.66	55.24 .18 2.46 .80 2.25 .07 .04 16.52 21.96 1.31 .01 100.85	54.94 .18 2.36 .78 2.37 .06 .04 16.28 21.91 1.38 .00 100.30	55.01 .16 2.38 .81 2.19 .07 16.24 22.36 1.40 .00 100.75	55.01 .18 2.43 .83 2.32 .08 .05 16.26 22.09 1.43 .03 100.70
Kationen- besetzung Si Ti Al Ce ⁴⁺ Mn Ni Mg Ca Ca Xa K Xationen	1.975 .006 .122 .022 .068 .003 .001 .854 .842 .109 .001 4.002	1.975 .006 .121 .022 .066 .003 .001 .854 .005 .000 4.000	1.976 .005 .121 .021 .001 .859 .844 .101 .000 3.998	1.973 .005 .121 .022 .002 .002 .859 .844 .103 .000 4.002	1.975 .006 .119 .021 .001 .001 .859 .843 .111 .000 4.005	1.976 .005 .120 .001 .001 .857 .838 .112 .000 4.003	1.976 .004 .116 .023 .006 .001 .002 .858 .849 .109 .000 4.004	1.976 .005 .117 .021 .002 .000 .857 .843 .113 .000 4.007	1.976 .005 .117 .023 .002 .000 .851 .842 .118 .000 4.008	1.978 .005 .112 .021 .000 .865 .844 .107 .000 4.003	1.975 .005 .117 .021 .002 .001 .861 .843 .111 .000 4.006	1.976 .005 .112 .022 .068 .000 .001 .863 .853 .107 .000 4.006	1.971 .004 .113 .022 .002 .001 .870 .851 .102 .001 4.009	1.977 .005 .109 .022 .001 .002 .001 .863 .849 .106 .001 4.006	1.978 .005 .109 .022 .071 .002 .000 .865 .850 .098 .000 4.000	1.983 .004 .103 .022 .071 .001 .000 .868 .848 .100 4.001	1.979 .005 .104 .023 .008 .002 .001 .883 .843 .091 3.998	1.981 .005 .100 .022 .001 .875 .846 .096 .000 4.001	1.977 .004 .101 .023 .006 .004 .002 .870 .881 .098 .000 4.006	1.977 .005 .003 .024 .070 .001 .851 .100 .001 4.005
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	92.64	92.85	92.69	92.26	92.43	92.42	92.85	92.21	92.15	92.71	92.43	92.71	92.32	92.37	92.44	92.44	92.89	92.46	92.96	92.58
Cr #	15.25	15.48	14.78	15.27	14.94	15.40	16.49	15.15	16.49	16.03	14.95	16.37	15.97	16.88	17.02	17.79	17.90	18.16	18.59	18.59
Profilstrecke [µm]	748	778	788	798	818	828	858	868	878	899	909	919	939	949	959	969	989	999	1009	1019

Probe: AAR-9														
Profilname	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07
Profilpunkt	199	200	201	203	204	206	207	209	210	211	212	213	214	215
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] [Gow%] SiO ₂ TiO ₃ Al ₂ O ₃ FeO MnO NiO NiO MgO CaO Na ₂ O K ₂ O X X	54.77 .18 2.34 .06 .06 16.25 22.32 1.36 .01 100.36	55.27 .15 2.32 .03 .03 16.37 22.17 1.43 .00 100.84	55.04 .15 2.21 .79 2.34 .08 0.5 16.52 22.22 1.34 .01 100.74	55.24 .17 2.29 .81 2.18 .04 .02 16.44 22.27 1.37 .00 100.83	55.11 .14 2.20 8.00 2.16 .09 .08 16.30 22.60 1.36 .02 100.86	55.10 .16 2.16 .2228 .08 .03 16.38 22.63 1.31 .02 100.94	55.00 .17 2.17 .83 2.24 .08 .00 16.29 22.43 1.32 .00 100.53	55.08 .16 2.18 .77 2.31 .06 16.42 22.21 1.41 .00 100.66	55.04 .18 2.18 .86 02 16.26 22.34 1.26 .02 100.51	55.17 .18 2.22 .85 2.30 .05 .06 16.37 22.54 1.31 .02 101.06	54.85 .17 2.16 .92 2.30 .07 .08 16.33 22.25 1.39 .00 100.53	55.02 .14 2.23 .96 2.28 .12 .05 16.31 22.43 1.30 .01 100.85	55.03 .14 1.95 .88 2.31 .04 .08 16.49 22.62 1.22 .01 100.75	54.84 .13 1.92 .81 2.19 .05 16.71 22.65 .98 .01 100.32
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Na Na K K K Kationen	1.976 .005 .100 .023 .067 .002 .874 .863 .095 .000 4.005	1.982 .004 .098 .021 .001 .001 .001 .875 .852 .100 .000 4.004	1.978 .004 .093 .022 .070 .001 .885 .856 .093 .000 4.006	1.981 .005 .097 .023 .065 .001 .001 .879 .855 .095 .000 4.002	1.979 .004 .093 .023 .065 .003 .002 .873 .870 .095 .001 4.007	1.978 .004 .091 .023 .068 .002 .001 .877 .870 .091 .001 4.006	1.981 .005 .092 .024 .067 .003 .000 .875 .866 .092 .000 4.003	1.981 .004 .093 .022 .070 .002 .880 .856 .098 .000 4.007	1.982 .005 .093 .024 .009 .001 .873 .862 .088 .001 3.999	1.978 .094 .024 .029 .002 .002 .875 .866 .091 .001 4.004	1.977 .005 .092 .026 .069 .002 .002 .877 .859 .097 .000 4.008	1.977 .004 .095 .027 .069 .003 .001 .874 .863 .091 .000 4.004	1.980 .004 .083 .025 .070 .001 .001 .001 .884 .872 .085 .000 4.005	1.979 .003 .082 .023 .066 .001 .001 .899 .876 .068 .001 4.000
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	92.90 18.79 1029	92.64 17.91 1039	92.63 19.28 1049	93.07 19.15 1069	93.08 19.62 1079	92.76 20.23 1099	92.85 20.43 1109	92.68 19.13 1129	92.72 20.89 1140	92.69 20.43 1150	92.67 22.23 1160	92.73 22.38 1170	92.71 23.28 1180	93.15 22.12 1190

Probe:	AAR-9	
Profil:	13	
Mineral:	Орх	
Kapitel:	Anhang II	

Profil- strecke [µm]	P [µg/g]	Sc [yg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
30	1.393	1.777	31.260	18.202	0.241	0.168	0.745	1.271
98	2.103	1.690	31.934	16.437	0.359	0.081	0.699	1.962
150	2.015	1.832	31.884	16.078	0.462	0.090	0.358	0.907
234	2.432	1.798	31.411	15.109	0.534	0.099	0.494	2.125

Probe: AAR-9 Profilname	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13 l	Profil-13 I	Profil-13	Profil-13	Profil-13 I	Profil-13	Profil-13	Profil-13	Profil-13 l	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13
Profilpunkt	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr2O3 FeO MinO NiO CaO CaO CaO K2O K2O K2O X2O	57.23 .07 .20 5.75 .13 .05 35.70 .21 .02 .00 100.23	57.10 .10 .86 .17 5.77 .13 .08 35.45 .25 .03 .00 99.93	57.59 .07 .87 .17 5.88 .15 .07 35.47 .26 .03 .00 100.55	57.56 .08 .20 5.58 .09 35.53 .24 .04 .00 100.25	57.80 .07 .86 .15 5.82 .14 .09 35.53 .24 .02 .00 100.70	57.76 .08 .88 .18 5.66 .16 .08 35.51 .25 .00 .00 100.56	57.71 .08 .85 .19 5.64 .16 .11 35.55 .26 .02 .01 100.58	57.63 .08 .87 .20 5.67 .12 .07 35.37 .04 .00 100.32	57.56 .05 .85 .20 5.80 .07 .07 35.46 .29 .03 .00 100.36	57.32 .08 .86 .21 5.83 .09 .03 35.36 .28 .07 .00 100.12	57.31 .07 .84 .19 5.74 .09 .09 35.57 .25 .03 .00 100.17	57.57 .08 .86 .21 5.77 .08 .09 35.46 .27 .02 .01 100.43	57.75 .09 .85 .20 5.60 .11 .06 35.36 .26 .03 .00 100.30	57.30 .07 .88 .22 5.60 .14 .05 35.17 .26 .03 .00 99.71	57.17 .86 .22 5.74 .13 .06 35.27 .29 .03 .00 99.83	57.67 .07 .85 .25 5.80 .10 .07 35.26 .03 .00 100.35	57.47 .09 .86 .19 5.85 .14 35.41 .25 .05 .01 100.47	57.07 .07 .22 5.95 .16 .06 35.54 .26 .00 100.26	57.21 .06 .88 .21 5.69 .15 .09 35.56 .26 .03 .00 100.14	57.74 .84 .20 5.84 .08 .11 35.83 .28 .03 .01 100.62
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na Kationen	1.965 .002 .035 .165 .004 .001 1.827 .008 .001 .000 4.014	1.967 .002 .005 .166 .004 .002 1.820 .009 .002 .000 4.012	1.971 .002 .005 .168 .004 .002 1.810 .010 .010 .002 .000 4.008	1.973 .002 .035 .005 .160 .002 .002 1.815 .009 .002 .000 4.006	1.974 .002 .035 .004 .166 .004 .003 1.809 .009 .001 .000 4.006	1.974 .002 .005 .162 .005 .002 1.809 .009 .000 .000 4.004	1.973 .002 .034 .005 .161 .005 .003 1.812 .010 .001 .000 4.006	1.975 .002 .035 .162 .003 .002 1.807 .010 .003 .000 4.004	1.973 .001 .034 .005 .166 .002 .002 1.811 .010 .002 .000 4.007	1.970 .002 .035 .006 .167 .003 .001 1.812 .010 .004 .000 4.010	1.968 .002 .034 .005 .165 .003 1.821 .009 .002 .000 4.011	1.972 .002 .005 .006 .165 .002 .003 1.811 .010 .001 .000 4.007	1.978 .002 .034 .005 .160 .003 .002 1.805 .009 .002 .000 4.001	1.975 .002 .006 .006 .161 .004 .001 1.807 .010 .002 .000 4.004	1.970 .002 .035 .006 .165 .004 .002 1.812 .011 .002 .000 4.008	1.976 .002 .034 .007 .166 .003 .002 1.801 .010 .002 .000 4.002	1.970 .002 .005 .168 .004 .004 1.809 .009 .003 .000 4.010	1.962 .002 .005 .006 .171 .005 .002 1.821 .010 .003 .000 4.017	1.966 .002 .006 .164 .004 .002 1.822 .010 .002 .000 4.013	1.974 .002 .034 .005 .167 .002 .003 1.806 .010 .002 .000 4.005
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.72 13.46 5	91.64 11.59 15	91.50 11.82 25	91.90 13.27 35	91.59 10.25 45	91.79 12.19 56	91.83 13.01 66	91.75 13.60 76	91.60 13.48 86	91.54 13.96 96	91.69 13.28 106	91.63 14.21 116	91.84 13.43 126	91.80 14.15 136	91.64 14.36 147	91.55 16.34 157	91.52 13.11 167	91.41 14.40 177	91.76 13.98 187	91.53 13.93 197

Probe: AAR-9						
Profilname	Profil-13	Profil-13	Profil-13 I	Profil-13	Profil-13	Profil-13
Profilpunkt	34	35	38	39	40	41
Mineral	Орх	Орх	Орх	Орх	Орх	Орх
Analyse Gew%] SiO ₂ SiO ₂ TiO ₂ TiO ₂ TiO ₂ C ₁ O ₃ K ₂ O S CaO Na ₂ O X ₂ O X ₂ O	57.23 .07 .88 .22 5.87 .10 .08 35.42 .26 .03 .00 100.15	57.13 .10 .88 .21 5.93 .13 .12 35.45 .26 .02 .00 100.21	57.09 .09 .93 .18 5.83 .10 .07 35.41 .26 .02 .00 99.97	57.25 .08 .89 .19 5.76 .09 .07 35.28 .24 .01 .00 99.85	57.18 .08 .87 .18 5.86 .09 .08 35.42 .24 .02 .01 100.03	57.93 .07 .90 .18 5.74 .10 35.63 .24 .01 .00 100.94
Kationen- besetzung Si Ti Al Ce ^{2*} Mn Ni Mg Ca Na Kationen	1.967 .002 .036 .006 .169 .003 .002 1.815 .010 .002 .000 4.011	1.964 .003 .036 .006 .100 .004 .003 1.817 .009 .001 .000 4.013	1.966 .002 .038 .005 .168 .003 .002 1.817 .010 .001 4.011	1.972 .002 .036 .005 .166 .003 .002 1.811 .009 .001 .000 4.006	1.968 .002 .035 .005 .003 .002 1.817 .009 .001 .000 4.011	1.973 .002 .036 .005 .164 .004 .003 1.809 .009 .001 .000 4.005
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.49 14.49 207	91.42 13.61 217	91.55 11.59 248	91.61 12.40 258	91.51 12.02 268	91.71 11.92 278

Probe:	VG
Profil:	01
Mineral:	Срх
Kapitel:	2.2

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	оО [b/b/]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
25	7.762	31.505	13.230	4.018	0.825	0.313	0.680	0.635
75	8.304	30.640	13.533	4.784	0.217	0.420	0.431	1.230
125	8.301	29.856	13.937	4.673	1.146	0.542	0.447	0.817
175	8.682	29.663	13.902	4.636	0.411	0.741	0.391	0.899
225	9.694	30.250	14.204	6.118	0.574	0.166	0.460	0.543
275	8.846	29.513	13.828	5.006	1.104	0.346	0.663	0.534
325	8.287	29.322	14.244	6.110	0.635	0.283	0.443	1.126
375	8.803	29.767	13.704	4.443	1.094	0.345	0.709	0.338
424	7.842	30.133	14.026	5.385	0.628	0.694	0.122	0.592
475	7.984	30.065	13.584	5.672	0.587	0.194	0.430	0.591
525	6.790	31.443	14.909	5.029	0.651	0.460	0.969	0.751

Probe: VG Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01 l	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse Gew%] SiO2 TiO2 Al2O3 Cr.O3 FeO MinO NiO MgO CaO CaO K2O K2O K2O X2O	54.82 .12 2.04 1.10 2.54 .08 .00 16.86 22.08 .94 .00 100.58	54.93 .14 2.03 1.09 2.30 .11 .00 16.90 22.21 1.01 .01 100.74	54.69 .09 2.04 1.02 2.20 .08 .00 16.49 22.54 1.14 .00 100.27	55.02 .11 2.07 1.04 2.20 .08 .00 16.30 22.39 1.07 .00 100.28	54.87 .15 2.12 1.11 2.35 .06 .00 16.41 22.19 1.16 .00 100.42	54.93 .14 2.13 1.11 2.24 .08 .00 16.45 22.30 1.16 .01 100.53	54.89 .14 2.12 1.10 2.29 .04 .00 16.39 22.25 1.14 .02 100.37	55.00 .16 2.15 1.14 2.31 .06 .00 16.57 22.20 .01 100.68	54.80 .16 2.18 1.11 2.37 .11 .00 16.42 21.97 1.15 .00 100.27	54.88 .16 2.09 1.10 2.35 .08 .00 16.39 22.12 1.06 .00 100.24	54.85 .17 2.17 1.13 2.35 .04 .00 16.25 22.36 1.14 .01 100.47	55.05 .15 2.14 1.14 2.33 .08 .00 16.45 22.10 1.18 .02 100.63	54.82 .16 2.13 1.05 2.20 .08 .00 16.31 21.97 1.14 .00 99.87	54.68 .14 2.19 1.09 2.25 .11 .00 16.21 22.39 1.18 .00 100.24	54.68 .18 2.18 1.09 2.35 .08 .00 16.11 22.16 1.19 .00 100.00	54.87 .14 2.16 1.10 2.46 .07 .00 16.24 22.25 1.29 .01 100.58	54.62 .16 2.12 1.08 2.26 .03 .00 16.41 22.29 1.24 .00 100.22	54.96 .17 2.17 1.13 2.32 .08 .00 16.30 22.13 1.23 .01 100.51	55.07 .19 2.11 1.08 2.27 .04 .00 16.40 22.21 1.26 .00 100.63	55.12 .12 2.11 1.14 2.29 .04 .00 16.30 22.36 1.21 .00 100.70
Kationen- besetzung Si Ti Al Cr Fre ⁴⁺ Mn Ni Mg Ca Na K Xionen	1.974 .003 .087 .031 .076 .002 .000 .905 .852 .065 .000 3.997	1.974 .004 .031 .069 .003 .000 .906 .855 .070 .001 3.999	1.976 .002 .067 .029 .066 .002 .000 .888 .873 .080 .000 4.004	1.985 .003 .088 .030 .066 .002 .000 .875 .000 3.991	1.978 .004 .032 .071 .002 .000 .8857 .081 .000 3.997	1.978 .004 .032 .067 .002 .000 .883 .860 .081 .000 3.998	1.980 .004 .031 .069 .001 .000 .881 .860 .079 .001 3.996	1.977 .004 .091 .032 .070 .002 .000 .885 .076 .000 3.995	1.978 .004 .033 .032 .071 .003 .000 .884 .850 .080 .000 3.996	1.981 .004 .031 .071 .002 .000 .885 .074 .000 3.991	1.977 .005 .092 .032 .071 .001 .000 .874 .864 .080 .000 3.996	1.980 .004 .091 .033 .070 .002 .000 .852 .082 .082 .001 3.996	1.984 .004 .030 .067 .002 .000 .880 .080 .000 3.991	1.976 .004 .033 .031 .068 .003 .000 .873 .867 .083 .000 3.999	1.980 .005 .093 .031 .071 .002 .000 .870 .860 .084 .000 3.995	1.977 .004 .031 .074 .002 .000 .873 .859 .090 .000 4.002	1.975 .004 .031 .068 .001 .000 .884 .863 .087 .000 4.004	1.980 .005 .092 .032 .070 .003 .000 .875 .854 .086 .001 3.997	1.981 .005 .039 .031 .068 .001 .000 .879 .856 .088 .000 3.998	1.982 .003 .089 .032 .069 .001 .000 .874 .861 .084 .000 3.996
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	92.21 26.56 5	92.91 26.53 16	93.04 25.14 26	92.95 25.27 37	92.57 25.89 47	92.91 25.95 58	92.74 25.84 79	92.74 26.19 100	92.52 25.40 121	92.56 26.10 143	92.50 25.88 164	92.65 26.41 185	92.96 24.79 206	92.78 25.01 227	92.43 25.16 249	92.17 25.41 270	92.83 25.54 291	92.61 25.93 312	92.80 25.53 333	92.71 26.60 355

Probe: VG										
Profilname	Profil-01 I	Profil-01 I	Profil-01 I	Profil-01 I	Profil-01 H	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	32	33	34	35	36	38	39	40	41	42
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] [Gew%] SiO ₂ TiO ₃ TiO ₃ Ai ₂ O ₃ Cr ₂ O ₃ Cr ₂ O ₃ Cr ₂ O ₃ NiO NiO NiO CaO CaO CaO K ₂ O Z	54.02 .17 2.16 1.04 2.37 .09 .00 16.48 21.88 21.88 1.14 .00 99.35	54.11 .15 2.11 1.07 2.31 .04 .00 16.20 22.08 1.13 .00 99.21	54.43 1.3 1.94 1.02 2.17 .08 .00 16.33 22.63 1.17 .00 99.91	54.10 .15 2.01 1.10 2.31 .03 .00 16.34 22.34 1.19 .00 99.57	54.51 .14 2.02 1.12 2.21 .07 .00 16.41 22.32 1.12 .00 99.92	54.54 .11 2.06 1.03 2.41 .10 00 16.33 22.16 1.18 .00 99.94	54.52 .15 2.00 1.15 2.23 .02 .00 16.42 22.47 1.26 .00 100.21	54.45 .13 1.96 1.09 2.25 .07 .00 16.56 22.36 1.19 .01 100.07	54.51 .14 1.91 2.11 .06 .00 16.45 22.52 1.27 .02 100.06	54.70 .11 1.67 .99 2.17 .03 .00 16.54 23.08 1.19 .00 100.48
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Na K Kationen	1.970 .005 .093 .030 .072 .003 .000 .896 .855 .081 .000 4.004	1.976 .004 .091 .031 .001 .000 .882 .864 .080 .000 3.999	1.976 .004 .083 .029 .066 .002 .000 .883 .880 .082 .000 4.006	1.971 .004 .086 .032 .071 .001 .001 .887 .872 .084 .000 4.008	1.976 .004 .086 .032 .067 .002 .000 .887 .867 .079 .000 4.000	1.978 .003 .088 .030 .073 .003 .883 .861 .083 .000 4.002	1.973 .004 .085 .033 .068 .001 .000 .886 .871 .088 .000 4.008	1.973 .003 .084 .031 .068 .002 .000 .894 .868 .084 .000 4.008	1.975 .004 .082 .030 .064 .002 .000 .889 .874 .089 .001 4.010	1.976 .003 .071 .028 .066 .001 .000 .891 .894 .083 .000 4.013
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	92.53 24.35 397	92.58 25.45 418	93.05 26.16 439	92.64 26.76 461	92.98 27.09 482	92.35 25.14 503	92.92 27.87 514	92.91 27.07 525	93.28 27.20 536	93.13 28.33 547

Probe:	VG
Profil:	02
Mineral:	Grt
Kapitel:	2.2

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [þg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
30	89.459	85.963	40.922	14,163	2.285	0.478	0.603	1.423
90	91 032	88 913	41 220	10 403	2 833	1 197	0 413	1 189
170	85 965	86 4 16	42 054	10 768	2 245	0 432	0.938	1 602
320	92 828	82 366	42 533	11 572	2 527	0.483	0.976	1 824
420	90 916	83 538	40 891	11 830	0.875	0.633	0.993	1 150
532	89 823	83,388	42 243	11 688	2 172	0.277	0.841	0.826
640	93 080	77 973	42 140	12 580	1 446	0.282	0.839	1 360
790	75 067	80 305	42 102	11 816	1 980	1 132	0 463	0.611
985	77.364	80.933	41.257	9.683	2.525	0.529	0.809	0.951
1149	80.606	86.063	41.358	8.360	1.598	0.911	0.792	1.379
1374	80.059	82.369	41,181	8.097	2.584	0.768	0.960	1.168
1650	78.511	87.489	42.210	8.327	1.576	0.940	1.543	1.055
1900	78.156	76.612	39.770	9.948	1.549	0.702	0.690	1.051
2280	81.247	84,909	41.313	11,178	0.855	1.296	0.711	1.632
2550	85.734	76.536	41.517	10.823	2.202	0.288	1.333	1.520
2730	85.828	80.008	41.708	10.631	2.752	0.646	0.621	1.525
2930	80.519	86.918	42.085	8.450	3.139	0.897	0.808	0.811
3130	98.062	79.910	41.791	11.074	2.032	1.023	0.212	1.203
3330	100.560	85.097	41.941	11.915	1.030	0.848	0.934	1.382
3530	100.498	85.103	41,190	10.295	2.738	1.108	0.910	1.453
3781	105.138	88.617	41,111	11.543	1.914	0.707	0.874	1.144
4030	96.069	91.274	39.991	10.769	2.969	0.842	0.582	0.947
4400	108.723	97.569	40.918	9.734	2.883	0.449	0.524	1.299
4900	107.461	100.755	40.762	10.046	1.969	1.134	0.683	0.734
5149	111.815	102.129	40.879	9.857	2.084	1.001	0.993	1.423
5531	107.807	102.219	41.247	10.842	1.630	0.713	0.789	1.868
5730	108.210	102.207	40.857	10.877	1.798	1.092	0.765	1.410
5980	105.543	100.177	41.320	9.784	2.932	0.315	0.544	1.964
6230	99.247	101.051	40.553	9.692	1.955	0.885	0.679	1.260
6430	101.758	98.926	39.697	11.174	2.088	1.244	0.412	0.448
7730	94.733	102.632	39.661	8.152	0.678	1.254	0.624	0.652
7980	99.388	101.817	39.869	8.441	0.992	0.419	0.780	0.793
8480	103.028	103.678	39.363	7.271	3.425	0.444	0.848	0.836
8780	102.788	100.626	38.641	7.134	2.261	0.990	0.750	1.121
9030	93.951	100.675	39.495	9.834	1.894	0.991	0.964	1.305
9531	107.448	103.716	39.217	8.607	1.678	0.809	0.729	0.897
9780	102.625	103.139	39.795	9.840	0.864	0.840	0.513	0.960
10130	107.013	103.628	39.620	9.994	2.654	1.219	0.607	1.366
10780	100.948	105.242	40.430	8.024	2.495	0.930	0.691	0.972
11030	101.865	103.680	40.090	7.460	1.440	0.854	0.845	0.861
11530	98.920	104.071	39.652	7.523	2.497	1.255	0.910	0.715
11781	104.276	102.162	39.736	8.128	1.604	0.897	0.401	0.849
12030	102.119	102.667	40.145	7.459	2.051	0.425	0.647	0.792
12280	105.435	101.653	40.008	8.533	1.754	0.758	0.948	1.181
12530	108.617	102.517	39.988	10.062	1.899	0.793	0.592	1.221
12780	107.303	103.238	40.157	10.407	1.365	1.014	0.482	0.605
13030	110.603	102.744	39.719	11.254	2.362	1.510	1.055	0.780
13280	111.531	103.669	40.631	10.800	4.372	1.225	0.935	0.704
13531	105.463	102.204	40.056	10.414	2.672	0.754	1.049	1.039
14024	108.751	100.965	41.201	9.625	1.388	0.561	1.056	1.448
14295	107.925	103.228	40.121	12.348	4.194	1.133	0.920	0.825

Probe:	VG
Profil:	02
Mineral:	Grt
Kapitel:	2.2

Profil- strecke	Р	Sc	Co	Zn	Р	Sc	Co	Zn
[µm]	[µg/g]	[µg/g]	[µg/g]	[µg/g]	2σ	2σ	2σ	2σ
14525	109.880	100.278	40.274	10.143	3.015	0.740	0.844	0.955
14930	114.984	98.016	38.558	9.960	2.164	0.955	0.601	1.359
15381	109.758	98.823	39.756	10.542	0.907	1.061	0.933	1.771
15642	94.007	99.410	39.411	11.369	2.754	1.177	0.617	1.425
15880	92.050	99.533	39.707	10.473	3.043	0.297	0.611	0.833
16130	109.955	93.513	40.372	9.995	1.619	0.778	0.180	0.872
16380	115.554	94.857	40.518	9.274	3.732	0.711	0.819	1.497
16630	97.864	99.795	40.490	10.918	2.979	0.802	1.299	0.729
16880	105.817	95.882	40.542	12.416	2.313	0.491	0.707	1.411
17131	103.181	90.946	41.366	9.821	2.765	1.031	0.467	1.139
17230	106.595	87.497	39.942	10.593	4.157	0.815	0.503	1.105
17328	108.583	88.248	40.181	11.458	0.545	0.657	0.776	1.344
17414	102.415	86.459	40.607	11.072	1.893	0.948	0.774	1.378
17520	107.507	86.556	40.385	10.963	3.862	0.850	0.683	0.453
17700	104.063	82.518	40.276	10.289	3.130	1.314	0.496	0.822
17850	105.322	81.614	41.205	11.007	1.904	0.588	0.663	1.655
17922	91.440	84.895	40.231	11.536	3.994	0.718	0.897	1.976
18000	92.028	83.572	41.129	10.252	1.450	0.491	1.509	1.061
18130	107.107	82.041	39.928	11.323	4.719	0.916	0.834	0.915
18180	95.640	75.912	42.219	11.939	2.628	0.793	1.077	0.940
18230	87.664	75.635	35.945	6.156	2.663	0.616	0.395	0.970

Probe: VG																				
Profilname	Profil-02	Profil-02	Profil-02	Profil-02 I	Profil-02	Profil-02 I	Profil-02 I	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	10	11	12	13	14	15	16	17	18	19	20	21	22	29	30	33	35	37	38	39
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt						
Analyse [Gew%] [SiO ₂ TiO ₂ TiO ₃ Al ₂ O ₃ Al ₂ O ₃ Gr ₂ O ₃ MinO MinO NiO CaO CaO CaO K ₂ Ô ∑	41.79 .16 22.69 1.38 10.40 .47 .00 19.42 4.60 .05 .00 100.95	41.83 .13 22.67 1.38 10.34 .45 .00 19.84 4.77 .04 .01 101.47	41.68 .15 22.75 10.26 .39 .00 19.61 4.71 .01 .02 100.94	41.75 .09 22.74 1.38 10.30 .50 .00 19.71 4.66 .01 .00 101.13	41.52 .15 22.76 1.31 10.05 .50 .00 19.72 4.65 .03 .01 100.71	41.86 .17 22.77 10.32 .48 .00 19.69 4.73 .03 .00 101.32	41.80 .10 22.82 1.31 10.29 .43 .00 19.59 4.70 .05 .00 101.07	41.70 .12 22.77 1.33 10.42 .44 .00 19.68 4.73 .00 .00 101.20	41.75 .12 22.80 1.27 10.44 .47 .00 19.57 4.71 .01 .01 .00 101.15	41.81 .12 22.79 1.31 10.40 .38 .00 19.56 4.65 .04 .00 101.05	41.95 .10 22.72 1.46 10.24 .47 .00 19.47 4.61 .04 .00 101.06	41.82 .12 22.70 1.36 10.71 .45 .00 19.53 4.73 .00 .02 101.44	42.02 .12 22.68 1.32 10.55 .53 .00 19.53 4.60 .01 .01 101.34	41.73 .16 22.72 1.42 10.70 .48 .00 19.41 4.65 .01 .00 101.28	41.91 .11 22.67 1.43 10.73 .40 .00 19.65 4.68 .00 .01 101.60	41.80 .14 22.48 1.45 10.59 .00 19.41 4.72 .02 .00 101.11	41.77 .08 22.66 1.42 10.36 .52 .00 19.33 4.70 .00 .00 100.84	41.80 .12 22.59 1.44 10.35 .54 .00 19.58 4.77 .02 .00 101.22	41.89 .09 22.73 1.38 10.19 .49 .00 19.59 4.67 .03 .01 101.07	41.68 .13 22.75 1.38 10.32 .49 .00 19.55 4.77 .00 .00 101.06
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Na K Xationen	2.975 .008 1.903 .078 .619 .029 .000 2.061 .351 .007 .000 8.030	2.964 .007 1.893 .077 .613 .027 .000 2.096 .362 .006 .001 8.047	2.966 .008 1.908 .077 .610 .024 .000 2.080 .359 .002 .002 8.035	2.967 .005 1.904 .077 .612 .030 .000 2.088 .355 .001 .000 8.038	2.961 .008 1.912 .074 .599 .030 .000 2.096 .355 .004 .001 8.041	2.969 .009 1.903 .071 .612 .029 .000 2.082 .359 .004 .000 8.038	2.970 .005 1.911 .074 .611 .026 .000 2.075 .358 .006 .000 8.036	2.963 .007 1.906 .075 .619 .027 .000 2.084 .360 .000 8.040	2.967 .006 1.910 .072 .621 .028 .000 2.073 .359 .002 .000 8.037	2.972 .006 1.909 .073 .618 .023 .000 2.072 .354 .006 .000 8.033	2.980 .005 1.903 .082 .608 .028 .000 2.062 .351 .006 .000 8.025	2.968 .006 1.899 .076 .636 .027 .000 2.066 .360 .000 .001 8.039	2.980 .006 1.896 .074 .626 .032 .000 2.065 .350 .001 .000 8.029	2.966 .009 1.903 .080 .636 .029 .000 2.056 .354 .002 .000 8.035	2.969 .006 1.893 .080 .636 .024 .000 2.075 .355 .000 .001 8.039	2.976 .007 1.886 .082 .630 .030 .000 2.060 .360 .003 .000 8.034	2.977 .004 1.903 .080 .618 .032 .000 2.054 .359 .000 .000 8.027	2.971 .007 1.892 .081 .615 .032 .000 2.075 .363 .003 .000 8.038	2.976 .005 1.903 .077 .606 .030 .000 2.075 .355 .004 .001 8.032	2.965 .007 1.907 .078 .614 .030 .000 2.073 .364 .000 .000 8.036
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	76.90 3.92 5	77.39 3.93 65	77.31 3.87 125	77.33 3.91 185	77.76 3.72 245	77.27 3.60 305	77.25 3.71 366	77.10 3.78 426	76.96 3.61 486	77.03 3.70 546	77.22 4.12 606	76.47 3.85 666	76.75 3.75 726	76.37 4.02 1147	76.55 4.07 1207	76.57 4.15 1387	76.88 4.02 1507	77.13 4.09 1627	77.41 3.91 1688	77.15 3.92 1748

Probe: VG Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	40	42	43	44	45	46	48	49	50	52	53	54	55	56	58	59	60	61	62	63
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 TiO2 Al2O3 Cr.Q3 FeO MnO NiO MgO CaO Na2O K2O X2O	41.71 .09 22.80 1.46 10.17 .51 .00 19.75 4.70 .03 .01 101.22	41.54 .12 22.75 1.45 10.22 .43 .00 19.62 4.66 .03 .00 100.82	41.65 .11 22.66 1.52 10.28 .51 .00 19.61 4.65 .02 .00 101.01	41.65 .12 22.64 1.52 10.25 .53 .00 19.54 4.66 .00 .00 100.91	41.71 .08 22.76 1.43 10.26 .47 .00 19.61 4.78 .01 .00 101.10	41.62 .11 22.69 1.60 10.38 .48 .00 19.55 4.66 .00 .00 101.08	41.75 .13 22.74 1.47 10.34 .00 19.38 4.64 .02 .01 100.97	41.58 .09 22.73 1.56 10.38 .45 .00 19.44 4.68 .02 .00 100.93	41.73 .15 22.70 1.48 10.24 .49 .00 19.49 4.70 .01 .00 100.98	41.63 .11 22.74 1.45 10.26 .52 .00 19.49 4.73 .03 .01 100.98	41.76 .12 22.78 1.42 10.26 .50 19.62 4.66 .01 .01 101.14	41.52 .12 22.72 1.44 10.31 .56 .00 19.47 4.70 .01 .00 100.84	41.73 .14 22.86 1.44 .51 .00 19.66 4.64 .03 .00 101.44	41.72 .13 22.79 1.52 10.38 .55 .00 19.53 4.73 .02 .00 101.35	41.69 .17 22.70 1.39 10.59 .53 .00 19.26 4.74 .02 .00 101.08	41.58 .13 22.77 1.43 10.36 .45 .00 19.72 4.69 .03 .01 101.16	41.68 .11 22.83 1.41 10.25 .52 .00 19.78 4.72 .01 .00 101.31	41.72 .13 22.72 1.48 10.41 .52 .00 19.57 4.72 .04 .00 101.31	41.62 .12 22.68 1.47 10.32 .45 .00 19.60 4.59 .01 .00 100.85	41.82 .16 22.74 10.35 .48 .00 19.65 4.82 .03 .00 101.54
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{besetzung}\\ \mbox{Si}\\ \mbox{Ti}\\ \mbox{Al}\\ \mbox{Al}\\ \mbox{Cr}\\ \mbox{Cr}\\ \mbox{Fe}^{zz}\\ \mbox{Ma}\\ \mbox{Mg}\\ \mbox{Ca}\\ \mbox{Na}\\ \mbox{Na}\\ \mbox{K}\\ \mbox{K}\\ \mbox{Kationen}\\ \mbox{Sauerstoffe} \end{array}$	2.961 .005 1.908 .604 .031 .000 2.090 .357 .004 .001 8.042 12.000	2.961 .006 1.911 .082 .609 .000 2.085 .356 .004 .000 8.039 12.000	2.965 .006 1.901 .085 .612 .000 2.081 .354 .000 8.038 12.000	2.967 .006 1.901 .085 .611 .000 2.075 .356 .000 8.033 12.000	2.965 .004 1.907 .080 .000 2.078 .364 .000 8.038 12.000	2.962 .006 1.903 .090 .617 .029 .000 2.074 .355 .000 8.036 12.000	2.972 .007 1.908 .083 .616 .029 .000 2.057 .354 .001 8.028 12.000	2.963 .005 1.909 .088 .619 .000 2.065 .358 .003 .000 8.035	2.969 .008 1.904 .083 .609 .000 2.067 .358 .001 .000 8.030 12.000	2.964 .006 1.908 .081 .000 2.069 .361 .004 .001 8.038 12.000	2.967 .006 1.907 .080 .000 2.078 .355 .002 .001 8.035 12.000	2.961 .009 .081 .615 .034 .000 2.071 .359 .002 .000 8.038	2.959 .008 1.910 .080 .619 .000 2.078 .353 .004 .000 8.041 12.000	2.961 .007 1.906 .085 .616 .000 2.066 .360 .002 .000 8.037 12.000	2.969 .009 1.905 .078 .630 .020 2.045 .361 .000 8.032 12.000	2.956 .007 1.908 .080 .616 .000 2.090 .357 .004 .001 8.046 12.000	2.957 .006 1.909 .079 .608 .031 .000 2.093 .359 .002 .000 8.044 12.000	2.963 .007 1.901 .083 .618 .000 2.072 .359 .005 .000 8.040 12.000	2.966 .007 1.904 .083 .615 .027 .000 2.082 .350 .001 .000 8.035	2.963 .008 1.899 .083 .613 .029 .000 2.075 .365 .005 .000 8.041 12.000
Mg # Cr # Profilstrecke [µm]	77.59 4.13 1808	77.39 4.10 1928	77.28 4.30 1988	77.26 4.30 2048	77.32 4.04 2108	77.06 4.50 2168	76.96 4.16 2288	76.95 4.39 2349	77.23 4.20 2409	77.21 4.09 2529	77.32 4.02 2589	77.09 4.09 2649	77.05 4.04 2709	77.03 4.27 2769	76.43 3.94 2889	77.24 4.03 2949	77.47 3.98 3010	77.02 4.18 3070	77.19 4.16 3130	77.19 4.20 3190

Probe: VG																				
Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02 I	Profil-02 I	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	64	65	66	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] [Gew%] SiO, TiO, Gr,O, Gr,O, FeO MnO NiO NiO CaO CaO K ₂ Ó X S	41.51 .16 22.79 1.41 10.09 .52 .00 19.62 4.85 .04 .00 100.98	41.63 .16 22.67 1.40 10.21 .42 .00 19.63 4.78 .02 .01 100.93	41.72 .16 22.81 1.38 10.36 .46 .00 19.64 4.80 .01 .00 101.33	41.57 .14 22.72 1.44 10.04 .43 .00 19.71 4.79 .02 .00 100.86	41.58 .16 22.67 1.40 9.94 .38 .00 19.69 4.72 .04 .00 100.58	41.75 .15 22.69 1.46 9.82 .37 .00 19.79 4.77 .04 .02 100.85	41.72 .18 22.71 1.42 9.76 .45 .00 19.90 4.78 .05 .00 100.97	41.59 .14 22.65 1.48 9.73 .38 .00 19.93 4.78 .02 .01 100.71	41.56 .18 22.67 1.52 9.64 .46 .00 19.87 4.86 .04 .04 .00 100.80	41.92 .17 22.76 1.48 9.65 .48 .00 19.90 4.85 .06 .00 101.25	41.34 .17 22.50 1.50 9.62 .44 .00 19.93 4.79 .05 .02 100.36	41.83 .16 22.77 1.48 9.63 .39 .00 20.08 4.83 .03 .02 101.22	41.28 .13 22.62 1.54 9.57 .33 .00 20.08 4.75 .03 .00 100.34	41.28 .15 22.50 1.41 9.44 .35 .00 20.02 4.75 .05 .00 99.96	41.55 .13 22.62 1.49 9.40 .00 20.21 4.79 .01 .01 100.62	41.51 .16 22.77 1.50 9.47 .45 .00 20.32 4.73 .04 .02 100.96	41.62 .17 22.61 1.54 9.22 .37 .00 20.19 4.89 .07 .00 100.68	41.51 .17 22.68 1.50 9.26 .37 .00 20.38 4.77 .03 .00 100.66	41.80 .18 22.59 1.47 9.06 .38 .00 20.19 4.76 .00 .00 100.43	41.80 .17 22.65 1.48 9.20 .35 .00 20.23 4.79 .03 .01 100.71
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Ni Mg Ca Na K K Kationen	2.955 .008 1.912 .079 .601 .031 .000 2.082 .370 .006 .000 8.044	2.964 .008 1.902 .608 .025 .000 2.084 .365 .003 .001 8.039	2.960 .008 1.908 .077 .615 .027 .007 2.077 .365 .001 .000 8.040	2.960 .008 1.907 .081 .598 .026 .000 2.092 .366 .002 .000 8.040	2.966 .009 1.906 .079 .593 .023 .000 2.094 .361 .006 .000 8.036	2.969 .008 1.902 .584 .023 .000 2.098 .363 .005 .002 8.035	2.964 .010 1.901 .580 .027 .000 2.108 .364 .006 .000 8.039	2.962 .008 1.901 .083 .579 .023 .000 2.116 .365 .002 .001 8.040	2.958 .010 1.902 .085 .574 .028 .000 2.108 .371 .006 .000 8.041	2.968 .009 .083 .571 .028 .000 2.101 .368 .008 .000 8.036	2.956 .009 1.896 .575 .027 .000 2.125 .367 .007 .001 8.049	2.963 .009 1.900 .083 .570 .023 .000 2.120 .366 .005 .001 8.040	2.950 .007 1.905 .087 .572 .020 .000 2.139 .364 .004 .000 8.049	2.959 .008 1.901 .080 .566 .021 .000 2.139 .365 .007 .000 8.046	2.958 .007 1.898 .084 .560 .024 .000 2.145 .366 .002 .001 8.045	2.947 .008 1.905 .084 .562 .027 .000 2.150 .360 .006 .002 8.053	2.960 .009 1.895 .086 .548 .022 .000 2.141 .373 .010 .000 8.045	2.952 .009 1.901 .084 .551 .022 .000 2.161 .364 .004 .000 8.048	2.975 .009 1.895 .083 .539 .023 .000 2.141 .363 .000 .000 8.027	2.969 .009 1.896 .083 .547 .021 .000 2.142 .364 .004 .001 8.036
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	77.61 3.98 3250	77.41 3.98 3310	77.17 3.90 3370	77.77 4.06 3490	77.94 3.98 3550	78.24 4.13 3610	78.42 4.02 3670	78.50 4.20 3731	78.61 4.29 3791	78.63 4.17 3851	78.70 4.28 3911	78.80 4.18 3971	78.90 4.37 4031	79.08 4.04 4091	79.31 4.23 4151	79.27 4.24 4211	79.61 4.36 4271	79.70 4.25 4331	79.89 4.18 4392	79.67 4.21 4452

Probe: VG Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	85	86	87	88	89	90	91	92	93	94	95	96	97	98	100	101	102	103	104	105
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 A2O3 Cr.Q3 FeO MnO NiO MgO CaO Na2O K2O X2O X2O	41.58 .16 22.61 1.54 8.88 .36 .00 20.38 4.83 .04 .00 100.37	41.73 .20 22.68 1.51 9.12 .42 .00 20.35 4.84 .03 .00 100.87	41.76 .16 22.71 1.58 8.97 .44 .00 20.35 4.76 .04 .00 100.77	41.50 .13 22.58 1.51 8.98 .42 .00 20.34 4.87 .03 .00 100.35	41.79 .16 22.64 1.47 9.00 .42 20.36 4.84 .00 0.01 100.68	41.85 .14 22.77 1.49 8.98 .40 .00 20.33 4.73 .04 .00 100.72	41.71 .15 22.71 1.46 8.99 .35 .00 20.16 4.83 .03 .03 .00 100.38	41.85 .18 22.72 1.58 8.90 .35 .00 20.37 4.88 .05 .01 100.87	42.11 .17 22.72 1.52 8.95 .33 .00 20.44 4.82 .04 .00 101.10	41.74 .18 22.73 1.57 8.80 .36 .00 20.24 4.91 .02 .00 100.56	41.90 .19 22.81 1.52 9.09 .32 .00 20.43 4.79 .03 .00 101.08	41.92 .20 22.68 1.54 8.83 .38 .00 20.28 4.80 .02 .01 100.63	41.99 .18 22.66 1.50 8.93 .35 .00 20.33 4.87 .04 .01 100.84	41.90 .19 22.85 1.55 8.95 .37 .00 20.45 4.88 .00 .00 101.15	41.39 .16 22.91 1.53 8.86 .33 .00 20.34 4.86 .03 .00 100.41	41.60 .17 22.75 1.49 8.83 .35 .00 20.42 4.81 .01 .01 100.44	41.70 .17 23.01 1.58 8.78 .36 .00 20.44 4.78 .07 .01 100.90	41.99 .19 23.05 1.49 8.93 .41 .00 20.44 4.89 .03 .01 101.41	41.76 .14 22.96 1.55 9.02 .34 .00 20.35 4.81 .04 .00 100.98	41.91 .19 22.84 1.47 9.01 .34 .00 20.30 4.83 .03 .03 100.92
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{besetzung}\\ \mbox{Si}\\ \mbox{Ti}\\ \mbox{Al}\\ \mbox{Al}\\ \mbox{Cr}\\ \mbox{Cr}\\ \mbox{Fe}^{2\kappa}\\ \mbox{Mn}\\ \mbox{Mi}\\ \mbox{Mg}\\ \mbox{Ca}\\ \mbox{Na}\\ \mbox{K}\\ \mbox{Saturent}\\ \mb$	2.961 .008 1.897 .529 .022 .000 2.164 .369 .005 .000 8.042 12.000	2.960 .011 1.896 .085 .541 .025 .000 2.152 .368 .004 .000 8.041	2.963 .009 1.899 .026 .000 2.152 .006 .000 8.038 12.000	2.959 .007 1.897 .085 .535 .000 2.161 .372 .004 .000 8.045	2.967 .009 1.895 .082 .534 .020 2.155 .368 .000 .001 8.036 12.000	2.969 .008 1.903 .083 .532 .024 .000 2.149 .005 .000 8.033 12.000	2.969 .008 1.905 .082 .535 .021 .000 2.139 .368 .005 .000 8.032 12.000	2.965 .009 1.897 .088 .527 .021 .000 2.151 .370 .006 .001 8.037 12.000	2.975 .009 1.891 .085 .529 .000 2.152 .005 .000 8.031 12.000	2.965 .010 1.903 .088 .523 .000 2.144 .373 .000 8.031 12.000	2.963 .010 1.901 .085 .538 .019 .000 2.153 .363 .004 .000 8.037 12.000	2.974 .011 1.896 .086 .524 .000 2.145 .365 .002 .001 8.026 12.000	2.974 .009 1.892 .084 .529 .021 .000 2.147 .370 .005 .000 8.032 12.000	2.961 .010 1.903 .086 .529 .000 2.154 .370 .000 8.035 12.000	2.946 .009 1.922 .086 .527 .020 .000 2.158 .370 .004 8.043 12.000	2.959 .009 1.907 .084 .525 .021 .000 2.165 .366 .002 .000 8.038 12.000	2.952 .009 1.920 .089 .520 .021 .000 2.157 .362 .010 .001 8.040	2.958 .010 1.914 .083 .526 .024 .000 2.146 .369 .004 .001 8.036	2.956 .008 1.915 .087 .534 .021 .000 2.147 .365 .005 .000 8.038 12.000	2.967 .010 1.906 .082 .534 .021 .000 2.142 .366 .004 8.031 12.000
Mg # Cr # Profilstrecke [µm]	80.35 4.37 4512	79.91 4.27 4572	80.18 4.45 4632	80.15 4.29 4692	80.14 4.17 4752	80.15 4.20 4812	80.00 4.14 4872	80.32 4.45 4932	80.27 4.29 4992	80.39 4.43 5053	80.02 4.27 5113	80.38 4.34 5173	80.22 4.25 5233	80.28 4.34 5293	80.36 4.29 5413	80.48 4.21 5473	80.58 4.41 5533	80.31 4.16 5593	80.08 4.34 5653	80.05 4.15 5714

Probe: VG	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02 I	Profil 02												
Profilpunkt	106	107	108	109	110	111	112	114	126	128	129	130	131	133	139	141	142	143	144	150
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
$\begin{array}{l} \textbf{Analyse} \\ \textbf{[Gew%]} \\ SiO_{2} \\ TiO_{2} \\ Al_{2}O_{3} \\ FeO \\ MnO \\ NiO \\ MiO \\ MgO \\ CaO \\ Na_{2}O \\ Na_{2}O \\ \Sigma \\ \end{array}$	42.25 .20 22.90 1.42 8.68 .34 .00 20.45 4.88 .01 .02 101.16	41.78 .17 22.87 1.51 8.91 .36 .00 20.36 4.80 .02 .00 100.78	41.40 .17 22.99 1.44 8.89 .40 .00 20.47 4.88 .03 .01 100.66	41.84 .12 22.93 8.71 .39 0.00 20.59 4.74 .02 .01 100.73	41.60 .17 23.06 1.39 9.03 .36 .00 20.46 4.81 .03 .00 100.91	41.76 .15 23.03 1.40 9.05 .38 .00 20.50 4.86 .04 .00 101.16	41.98 .19 22.95 1.41 8.79 .32 .00 20.33 4.78 .02 .01 100.78	41.96 .15 22.97 1.42 8.90 .41 .00 20.44 4.83 .02 .00 101.11	41.67 .15 23.06 1.37 8.95 .36 .00 20.55 4.75 .00 .00 100.87	41.82 .14 22.95 1.38 8.92 .35 .00 20.56 4.77 .04 .00 100.93	41.92 .13 22.80 1.42 9.01 .36 .00 20.35 4.75 .02 .00 100.74	42.16 .14 22.87 1.36 8.85 .37 .00 20.38 4.76 .04 .01 100.92	41.92 .16 22.81 1.38 8.81 .31 .00 20.34 4.84 .02 .00 100.57	42.01 .15 22.89 1.38 8.71 .37 .00 20.50 4.80 .02 .00 100.83	42.15 .18 22.88 1.46 8.91 .36 .00 20.43 4.82 .03 .01 101.23	41.85 .16 22.96 1.38 8.82 .41 .00 20.52 4.78 .00 .00 100.87	41.51 .17 22.72 1.39 8.88 .40 .00 20.47 4.74 .04 .00 100.31	41.87 .18 22.87 1.35 8.99 .38 .00 20.35 4.83 .05 .00 100.86	41.75 .19 22.83 1.34 8.84 .35 .00 20.33 4.74 .04 .00 100.39	41.87 .19 22.94 1.35 8.90 .27 .00 20.53 4.84 .02 .00 100.92
$\begin{array}{c} \textbf{Kationen-}\\ \textbf{besetzung}\\ Si\\Ti\\Al\\Cr\\Fe^{z_{k}}\\Mn\\Ni\\Mg\\Ca\\Na\\Na\\K\\K\\\Sigma\\Kationen\\\end{array}$	2.978 .011 1.902 .079 .512 .020 .000 2.148 .369 .002 .001 8.022	2.961 .009 1.910 .084 .528 .002 .000 2.152 .365 .002 .000 8.033	2.941 .009 1.925 .081 .528 .024 .000 2.168 .371 .004 .000 8.050	2.963 .006 1.914 .078 .516 .023 .000 2.174 .360 .003 .001 8.037	2.946 .009 1.925 .078 .535 .021 .001 .365 .004 .000 8.045	2.951 .008 1.918 .535 .023 .000 2.160 .368 .005 .000 8.045	2.971 .010 1.914 .079 .520 .019 .000 2.145 .363 .002 .001 8.024	2.963 .008 1.912 .079 .526 .025 .000 2.152 .365 .003 .000 8.034	2.951 .008 1.925 .076 .530 .022 .000 2.169 .361 .000 .000 8.041	2.959 .008 1.914 .077 .528 .021 .002 2.169 .362 .005 .000 8.041	2.971 .007 1.905 .079 .534 .021 .000 2.150 .361 .003 .000 8.031	2.979 .007 1.905 .076 .523 .002 .000 2.147 .360 .005 .000 8.026	2.973 .009 1.907 .077 .522 .019 .000 2.150 .368 .002 .000 8.027	2.971 .008 1.908 .077 .515 .022 .000 2.161 .364 .002 .000 8.029	2.973 .010 1.902 .081 .525 .021 .000 2.147 .364 .004 .001 8.028	2.961 .008 1.915 .077 .522 .025 .000 2.165 .362 .000 .000 8.035	2.957 .009 1.907 .078 .529 .024 .000 2.174 .362 .005 .000 8.044	2.965 .009 1.909 .075 .532 .023 .000 2.149 .366 .007 .000 8.037	2.967 .010 1.912 .075 .525 .021 .000 2.154 .361 .006 .000 8.032	2.962 .010 1.912 .076 .527 .016 .000 2.164 .367 .003 .000 8.036
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	80.76 4.00 5774	80.28 4.23 5834	80.42 4.02 5894	80.83 3.90 5954	80.16 3.89 6014	80.16 3.91 6074	80.48 3.96 6134	80.37 3.99 6254	80.36 3.82 6975	80.43 3.86 7096	80.11 4.00 7156	80.41 3.84 7216	80.46 3.90 7276	80.75 3.90 7396	80.34 4.10 7757	80.57 3.87 7877	80.43 3.93 7937	80.15 3.80 7997	80.39 3.78 8057	80.43 3.81 8418

Probe: VG																-				
Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	168	160	170	172	173	Profil-02	176	177	Profil-02	192	193	Profil-02	195	186	197
Prompulikt	151	103	104	105	100	100	109	170	172	173	174	170	177	101	102	103	104	100	100	107
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 Al2O3 C7,O3 FeO MnO NiO NiO CaO XaQO K2O K2O K2O	42.09 .19 22.87 1.38 8.64 .36 00 20.52 4.71 .02 .00 100.77	42.09 .13 22.86 1.34 8.83 .38 .00 20.40 4.87 .03 .01 100.94	42.21 .18 22.92 1.32 8.66 .36 .00 20.59 4.87 .02 .01 101.13	41.59 .18 22.99 1.31 8.54 .30 .00 20.80 4.83 .04 .00 100.58	42.04 222.96 1.38 8.63 .37 .00 20.75 4.92 .03 .00 101.28	41.82 .19 23.05 1.30 8.76 .34 .00 20.76 4.80 .06 .00 101.07	41.92 .19 23.07 1.25 8.31 .31 .00 20.78 4.79 .05 .00 100.67	41.92 .19 23.06 8.55 .33 .00 20.61 4.91 .01 .00 100.86	41.87 .21 23.10 1.34 8.41 .35 .00 20.73 4.86 .01 .00 100.88	42.01 .19 23.09 1.31 8.36 .33 .00 20.76 4.84 .03 .00 100.92	41.71 .16 23.13 1.37 8.22 .30 .00 20.71 4.88 .04 .01 100.52	42.18 .24 22.99 1.33 8.60 .27 .00 20.71 4.73 .04 .00 101.08	41.90 .14 22.95 1.30 8.76 .37 .00 20.58 4.80 .02 .01 100.83	41.90 .19 22.96 1.32 8.77 .37 .00 20.70 4.81 .05 .01 101.08	42.02 .17 23.01 1.30 8.59 .34 .00 20.64 4.84 4.84 .02 .01 100.94	41.94 .19 22.96 1.27 8.65 .33 .00 20.80 4.91 .04 .00 101.09	41.88 .17 23.08 1.35 8.58 .34 .00 20.75 4.76 .00 .00 100.92	41.90 .21 23.10 1.27 8.34 .37 .00 20.78 4.92 .04 .00 100.92	41.95 20 22.95 1.28 8.62 .33 .00 20.46 4.90 .02 .00 100.71	41.82 .15 23.03 1.26 8.47 .26 .00 20.68 4.70 .03 .01 100.41
$\begin{array}{c} \textbf{Kationen-}\\ \textbf{besetzung}\\ Si\\ Ti\\ Al\\ Cr\\ Fe^{2\kappa}\\ Mn\\ Ni\\ Mg\\ Ca\\ Nk\\ K\\ \Sigma \text{ Kationen}\\ Sauerstoffe \end{array}$	2.976 .010 1.906 .077 .511 .021 .000 2.163 .357 .003 .000 8.024 12.000	2.975 .077 1.905 .075 .522 .023 .000 2.150 .368 .004 .000 8.030	2.975 .009 1.904 .073 .510 .000 2.163 .000 8.028 12.000	2.949 .009 1.921 .073 .506 .010 2.198 .367 .005 .000 8.047 12.000	2.961 .012 1.905 .077 .508 .000 2.179 .371 .004 .000 8.038	2.953 .010 1.918 .072 .517 .020 .000 2.185 .363 .008 8.047 12.000	2.963 .010 1.922 .070 .491 .000 2.190 .363 .007 .000 8.035	2.962 .010 1.920 .071 .505 .020 .000 2.171 .372 .002 .000 8.033 12.000	2.956 .011 1.923 .075 .497 .021 .000 2.183 .367 .001 .000 8.034 12.000	2.964 .010 1.920 .073 .493 .020 2.183 .366 .004 .000 8.032	2.954 .009 1.930 .076 .487 .000 2.187 .371 .005 .001 8.037 12.000	2.972 .013 1.909 .074 .506 .000 2.175 .357 .005 .000 8.027 12.000	2.964 .007 1.914 .073 .518 .000 2.171 .363 .003 .001 8.037 12.000	2.958 .010 1.911 .074 .518 .022 .000 2.179 .364 .007 .000 8.043 12.000	2.967 .009 1.915 .073 .507 .020 .000 2.172 .366 .003 .001 8.032 12.000	2.959 .010 1.909 .071 .510 .020 2.187 .371 .006 8.044 12.000	2.958 .009 1.921 .075 .507 .020 .000 2.184 .360 .000 8.035 12.000	2.957 .011 1.921 .071 .492 .000 2.186 .372 .005 .000 8.038 12.000	2.969 .011 1.914 .071 .510 .000 2.159 .002 .000 8.028 12.000	2.965 .008 1.924 .070 .502 .016 .000 2.185 .357 .004 .001 8.033 12.000
Mg # Cr # Profilstrecke [µm]	80.90 3.89 8478	80.46 3.79 9199	80.92 3.71 9259	81.28 3.68 9319	81.09 3.86 9379	80.86 3.64 9499	81.68 3.49 9559	81.11 3.55 9619	81.46 3.75 9740	81.57 3.65 9800	81.78 3.81 9860	81.11 3.73 9980	80.72 3.66 10040	80.80 3.71 10280	81.07 3.65 10340	81.08 3.57 10401	81.17 3.78 10461	81.63 3.55 10521	80.88 3.60 10581	81.32 3.53 10641

Probe: VG																				
Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02 I	Profil-02 I	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	188	189	190	191	192	193	200	201	202	203	204	206	207	208	209	210	211	212	213	214
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO, Gr,0,3 Gr,0,3 FeO MnO NiO NiO MgO CaO CaO KaO KaO	41.98 200 23.09 1.32 8.43 .36 .00 20.79 4.81 .05 .00 101.04	42.34 .18 22.96 1.31 8.41 .36 .00 20.70 4.83 .02 .01 101.12	42.07 .21 23.00 1.29 8.59 .33 .00 20.86 4.83 .02 .02 101.20	42.04 .19 22.98 1.25 8.53 .34 .00 20.88 4.76 .01 .01 100.98	42.01 .20 23.05 1.24 8.53 .34 .00 20.68 4.83 .03 .01 100.91	42.03 .18 23.04 1.25 8.50 .34 .00 20.66 4.73 .03 .00 100.74	42.06 .19 23.00 1.32 8.50 .00 20.73 4.77 .04 .00 100.91	41.62 .19 22.95 1.28 8.38 .40 .00 20.76 4.83 .02 .00 100.42	42.24 .17 22.96 1.23 8.46 .00 20.66 4.74 .02 .00 100.86	42.08 .17 22.96 1.33 8.32 .37 .00 20.68 4.85 .04 .00 100.79	42.02 .21 22.92 1.38 8.30 20.68 4.84 .01 .00 100.70	41.84 .19 23.09 1.34 8.34 .34 .00 20.83 4.74 .01 100.73	41.84 .18 22.91 1.27 8.43 .34 .00 20.87 4.82 .06 .01 100.73	42.09 .19 22.94 1.32 8.43 .36 .00 20.67 4.91 .05 .00 100.95	41.77 .16 22.93 1.33 8.50 .00 20.70 4.75 .00 .01 100.48	42.05 .19 23.08 1.27 8.71 .37 .00 20.61 4.83 .00 .00 101.11	42.31 .16 22.82 1.35 8.35 .32 .00 20.69 4.83 .03 .00 100.87	42.10 .18 22.85 1.29 8.37 .34 .00 20.86 4.90 .04 .00 100.92	42.02 .17 22.91 1.37 8.26 .00 20.93 4.85 .01 .00 100.86	41.87 .19 23.03 1.30 8.31 .34 .00 20.70 4.87 .02 .00 100.63
Kationen- besetzung Si Ti Al Cr, Fr ²⁺⁺ Mn Ni Mg Ca Na K Xationen	2.960 .010 1.919 .073 .497 .021 .000 2.185 .363 .007 .000 8.037	2.980 .009 1.905 .073 .495 .021 .000 2.172 .364 .003 .001 8.024	2.963 .011 1.909 .072 .506 .020 .000 2.190 .364 .003 .002 8.038	2.965 .010 1.910 .503 .020 .000 2.196 .360 .001 .000 8.036	2.965 .011 1.917 .069 .503 .020 .000 2.177 .365 .004 .001 8.033	2.970 .010 1.919 .070 .502 .020 .000 2.176 .358 .004 .000 8.029	2.968 .010 1.913 .501 .019 .000 2.181 .360 .005 .000 8.031	2.953 .010 1.919 .072 .497 .024 .000 2.197 .367 .002 .000 8.042	2.980 .009 1.909 .069 .499 .022 .000 2.173 .358 .003 .000 8.023	2.972 .009 1.911 .074 .491 .022 .000 2.177 .367 .005 .000 8.029	2.970 .011 1.910 .077 .491 .020 .000 2.179 .367 .002 .000 8.027	2.957 .010 1.923 .075 .493 .020 .000 2.195 .359 .002 .001 8.035	2.959 .010 1.910 .020 .000 2.201 .365 .009 .001 8.045	2.970 .010 1.908 .073 .497 .021 .000 2.175 .371 .007 .000 8.033	2.962 .009 1.916 .075 .504 .020 .000 2.188 .361 .000 .001 8.034	2.965 .010 1.918 .071 .513 .022 .000 2.166 .365 .001 .000 8.031	2.985 .008 1.897 .075 .493 .019 .000 2.176 .365 .004 .000 8.023	2.971 .009 1.900 .072 .494 .020 .000 2.194 .370 .006 .000 8.037	2.966 .009 1.906 .077 .487 .021 .000 2.202 .367 .001 .000 8.035	2.962 .010 1.920 .020 .000 2.183 .369 .003 .000 8.033
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	81.46 3.69 10701	81.45 3.69 10761	81.24 3.61 10821	81.36 3.51 10881	81.22 3.48 10941	81.25 3.50 11001	81.31 3.70 11422	81.54 3.61 11482	81.32 3.47 11542	81.59 3.75 11602	81.63 3.88 11662	81.66 3.74 11783	81.52 3.58 11843	81.38 3.70 11903	81.28 3.75 11963	80.84 3.56 12023	81.53 3.82 12083	81.63 3.64 12143	81.87 3.86 12203	81.61 3.65 12263

Probe: VG																-				
Profilname	Profil-02	216	217	218	210	220	221	Profil-02	223	Profil-02	225	226	Profil-02	228	230	231	Profil-02	Profil-02	Profil-02	235
Frompunkt	215	210	217	210	213	220	221	222	225	224	225	220	221	220	230	201	232	200	2.04	200
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 TiO2 Al2O3 C7.Q3 FeO MnO NiO MgO CaO CaO K2O K2O	41.87 22.92 1.31 8.55 .31 .00 20.79 4.82 .06 .01 100.86	42.03 .19 22.82 1.35 8.51 .37 .00 20.87 4.91 .03 .01 101.08	42.29 .18 22.93 1.33 8.27 .37 .00 20.76 4.81 .05 .00 100.98	42.27 .15 22.91 1.37 8.42 .34 .00 20.76 4.75 .03 .00 101.00	41.89 .17 22.93 1.37 8.42 .34 .00 20.80 4.75 .02 .00 100.68	42.04 .16 22.90 1.35 8.28 .31 .00 20.72 4.85 .06 .01 100.68	41.91 .19 22.85 1.40 8.58 .31 .00 20.86 4.88 .02 .02 101.02	41.94 .18 22.91 1.41 8.37 .31 .00 20.58 4.89 .04 .00 100.63	42.23 .18 22.86 1.33 8.56 .33 .00 20.70 4.79 .04 .00 101.02	42.02 .18 22.79 1.37 8.27 .34 .00 20.78 4.91 .04 .00 100.70	42.02 21 22.87 1.35 8.31 .00 20.85 4.79 .07 .02 100.78	42.17 .17 22.89 1.36 8.37 .32 .00 20.74 4.85 .05 .01 100.92	41.84 .21 23.04 1.34 8.35 .33 .00 20.79 4.88 .04 .01 100.81	41.97 .19 22.97 1.39 8.33 .37 .00 20.83 4.77 .04 .01 100.88	41.78 .15 23.02 1.36 8.42 .31 .00 20.74 4.84 4.84 .04 .00 100.64	42.08 .19 22.91 1.36 8.34 .33 .00 20.81 4.83 .03 .00 100.87	41.98 .17 22.90 1.45 8.56 .35 .00 20.87 4.82 .04 .01 101.14	41.92 .18 23.01 1.35 8.26 .35 .00 20.84 4.86 .01 .00 100.78	41.80 22.90 1.47 8.38 .32 .00 20.76 4.83 .03 .01 100.71	41.89 .21 22.72 1.37 8.44 .29 .00 20.70 4.80 .04 .04 .00 100.47
Kationen- besetzung Si Ti Al Cr Fe ²⁴ Mn Mg Ca Ca K K K Sauerstoffe	2.959 .012 1.909 .073 .505 .018 .000 2.191 .365 .008 .001 8.042 12.000	2.965 .010 1.897 .075 .502 .000 2.195 .371 .004 .001 8.042 12.000	2.979 .009 1.904 .074 .487 .000 2.181 .363 .006 .000 8.026 12.000	2.979 .008 1.903 .076 .496 .020 .000 2.181 .359 .005 .000 8.026 12.000	2.963 .009 1.912 .077 .498 .020 .000 2.193 .360 .003 .000 8.035	2.972 .008 1.908 .075 .490 .019 .000 2.184 .368 .001 8.033 12.000	2.959 .010 1.901 .078 .507 .018 .000 2.196 .369 .003 .002 8.044 12.000	2.968 .009 1.911 .079 .496 .019 .000 2.171 .371 .005 .000 8.030	2.978 .010 1.900 .074 .505 .019 .000 2.176 .362 .006 8.029 12.000	2.971 .010 1.899 .077 .489 .000 2.191 .372 .006 .000 8.034 12.000	2.968 .011 1.904 .075 .491 .000 2.195 .362 .009 .002 8.037 12.000	2.975 .009 1.903 .076 .494 .019 .000 2.181 .367 .006 .001 8.030 12.000	2.956 .011 1.918 .075 .493 .020 .000 2.190 .369 .001 8.039 12.000	2.963 .010 1.911 .078 .492 .000 2.192 .361 .005 .001 8.035	2.957 .008 1.920 .076 .498 .019 .000 2.189 .367 .005 .000 8.039 12.000	2.970 .010 1.905 .076 .492 .020 .000 2.189 .365 .004 .000 8.031	2.960 .009 1.903 .081 .505 .021 .000 2.193 .364 .001 8.043 12.000	2.961 .010 1.916 .075 .488 .021 .000 2.195 .368 .001 .000 8.035	2.958 .011 1.910 .082 .496 .019 .000 2.191 .367 .004 .001 8.038 12.000	2.970 .011 1.899 .077 .501 .000 2.188 .365 .006 .000 8.034 12.000
Mg # Cr # Profilstrecke [µm]	81.26 3.70 12323	81.39 3.81 12384	81.74 3.74 12444	81.47 3.86 12504	81.50 3.86 12564	81.69 3.80 12624	81.26 3.94 12684	81.41 3.95 12744	81.17 3.75 12804	81.75 3.88 12864	81.73 3.81 12924	81.54 3.84 12984	81.62 3.76 13045	81.69 3.90 13105	81.45 3.80 13225	81.64 3.84 13285	81.29 4.06 13345	81.81 3.77 13405	81.54 4.14 13465	81.38 3.89 13525

Probe: VG																				
Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	236	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] [Gew%] SiO, TiO, Gr,O, Gr,O, FeO MnO NiO NiO CaO CaO K ₂ Ó X S	41.80 .18 22.92 1.39 8.45 .33 .00 20.74 4.82 .04 .04 .01 100.68	41.99 .16 22.99 1.39 8.30 .41 .00 20.65 4.79 .02 .00 100.70	42.04 .20 22.88 1.32 8.44 .36 .00 20.63 4.76 .04 .04 .00 100.66	41.80 .16 23.10 1.38 8.51 .32 .00 20.76 4.82 .04 .00 100.88	41.77 .20 22.84 1.39 8.36 .00 20.79 4.82 .03 .00 100.54	41.86 .20 22.92 1.44 8.58 .38 .00 20.60 4.87 .02 .00 100.87	41.89 .19 22.81 1.48 8.52 .37 .00 20.72 4.78 .05 .00 100.81	42.09 .22 22.83 1.48 8.35 .00 20.57 4.80 .00 .00 100.66	42.40 .20 22.79 1.44 8.45 .33 .00 20.77 4.92 .01 .01 101.31	41.78 .13 22.94 1.43 8.54 .00 20.57 4.82 .05 .00 100.59	41.96 .19 22.66 1.52 8.42 .39 .00 20.62 4.86 .03 .02 100.67	41.95 .19 22.75 1.42 8.41 .38 .00 20.66 4.84 .07 .00 100.65	41.58 .19 22.75 1.48 8.71 .38 .00 20.72 4.92 .00 .01 100.74	41.69 .19 22.73 1.39 8.53 .00 20.61 4.82 .03 .00 100.33	41.96 .17 22.65 1.50 8.44 .39 .00 20.73 4.82 .04 .01 100.69	41.59 .20 22.80 1.49 8.32 .38 .00 20.63 4.82 .04 .01 100.28	41.88 .19 22.78 1.44 8.50 .33 .00 20.48 4.84 .07 .00 100.50	42.06 .20 22.80 1.52 8.51 .37 .00 20.55 4.88 .03 .00 100.91	42.07 .19 22.82 1.47 8.49 .39 .00 20.65 4.89 .02 .02 100.99	42.22 .17 22.77 1.50 8.70 .00 20.67 4.84 .05 .01 101.29
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Na K Kationen	2.959 .009 1.912 .078 .500 .020 .000 2.189 .366 .005 .001 8.040	2.969 .008 1.916 .078 .491 .025 .000 2.176 .363 .002 .000 8.027	2.974 .010 1.907 .074 .499 .021 .000 2.175 .361 .006 .000 8.028	2.953 .008 1.923 .077 .503 .019 .000 2.187 .365 .005 .000 8.041	2.960 .011 1.907 .078 .495 .021 .000 2.196 .366 .004 .000 8.039	2.960 .011 1.910 .508 .023 .000 2.172 .369 .002 .000 8.035	2.963 .010 1.902 .083 .504 .022 .000 2.185 .362 .006 .000 8.038	2.976 .012 1.903 .083 .492 .021 .000 2.168 .364 .000 .000 8.019	2.981 .011 1.888 .080 .020 .000 2.177 .370 .001 .000 8.025	2.961 .007 1.916 .506 .020 .000 2.174 .366 .007 .000 8.037	2.972 .010 1.891 .085 .499 .024 .000 2.178 .369 .004 .002 8.033	2.971 .010 1.898 .023 .000 2.180 .367 .010 .000 8.036	2.949 .010 1.902 .083 .516 .023 .000 2.191 .374 .000 .001 8.049	2.963 .010 1.904 .078 .507 .021 .000 2.184 .367 .004 .000 8.038	2.971 .009 1.800 .084 .500 .023 .000 2.188 .365 .005 .001 8.036	2.957 .011 1.910 .084 .495 .023 .000 2.187 .367 .005 .001 8.039	2.971 .010 1.904 .081 .504 .020 .000 2.166 .368 .009 .000 8.032	2.972 .010 1.898 .085 .503 .022 .000 2.165 .369 .004 .000 8.029	2.970 .010 1.899 .082 .501 .023 .000 2.173 .370 .002 .001 8.032	2.974 .009 1.893 .512 .022 .000 2.170 .365 .007 .001 8.034
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	81.40 3.92 13585	81.60 3.89 13706	81.34 3.73 13766	81.31 3.85 13826	81.60 3.91 13886	81.06 4.04 13946	81.27 4.18 14006	81.50 4.18 14066	81.43 4.07 14126	81.11 4.01 14186	81.36 4.30 14246	81.42 4.01 14306	80.93 4.19 14367	81.16 3.95 14427	81.41 4.26 14487	81.55 4.19 14547	81.12 4.07 14607	81.14 4.27 14667	81.25 4.13 14727	80.90 4.22 14787

Probe: VG Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	257	258	259	260	261	263	264	265	267	268	269	270	271	272	273	274	275	276	277	278
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TiO2 TiO2 TiO2 TiO2 TiO2 MO NiO NiO MgO Na2,O K2O K2O X2O	42.20 .17 22.81 1.45 8.54 .41 .00 20.69 4.79 .04 .00 101.12	41.75 .18 22.82 1.42 8.62 .35 .00 20.64 4.95 .04 .00 100.75	42.18 .12 22.85 1.45 8.78 .38 .00 20.71 4.82 .02 .02 101.33	42.10 .17 22.72 1.44 .34 .34 .00 20.45 4.92 .02 .00 100.62	41.95 .23 22.70 1.45 8.84 .39 .00 20.57 4.77 .04 .01 100.94	42.16 .19 22.81 1.47 8.57 .36 .00 20.49 4.86 .02 .02 100.94	41.82 .20 22.55 1.43 8.58 .36 .00 20.51 4.94 .05 .00 100.45	42.19 .19 22.65 1.44 8.71 .40 20.60 4.79 .03 .01 100.99	42.10 .22 22.82 1.41 8.65 .38 .00 20.52 4.78 .04 .02 100.93	41.87 .13 22.82 1.51 8.94 .41 .00 20.49 4.73 .02 .00 100.91	42.11 .19 22.57 1.47 8.71 .35 .00 20.42 4.82 .04 .00 100.68	41.84 .15 22.72 1.44 8.87 .36 .00 20.60 4.77 .02 .01 100.77	41.89 .15 22.69 1.48 8.71 .28 .00 20.54 4.78 .02 .00 100.53	42.11 .12 22.77 1.47 8.62 .33 .00 20.61 4.75 .00 .00 100.78	42.01 .12 22.59 1.48 8.74 .40 .00 20.63 4.77 .04 .00 100.77	42.21 .19 22.62 1.45 8.78 .32 .00 20.48 4.81 .02 .00 100.87	42.00 .16 22.68 1.50 8.97 .35 .00 20.42 4.82 .04 .00 100.95	41.97 .16 22.76 1.50 8.87 .38 .00 20.44 4.90 .03 .00 101.01	42.13 .17 22.65 1.48 8.65 .32 .00 20.53 4.90 .03 .01 100.86	41.90 .19 22.55 1.45 8.56 .36 .00 20.44 4.77 .03 .00 100.26
Kationen- besetzung Si Ti Al Cr Fr ^{24*} Mn Mg Ca Na K X Xationen Sauerstoffe	2.975 .009 1.895 .081 .504 .025 .000 2.175 .362 .005 .000 8.031 12.000	2.958 .009 1.905 .079 .511 .000 2.179 .375 .005 .000 8.043 12.000	2.971 .006 1.897 .081 .517 .002 .000 2.175 .363 .003 .002 8.036 12.000	2.981 .009 1.896 .081 .500 .021 .000 2.159 .374 .003 .000 8.023 12.000	2.968 .012 1.893 .081 .523 .000 2.169 .362 .006 .001 8.037 12.000	2.977 .010 1.899 .082 .506 .021 .000 2.157 .368 .003 .002 8.024 12.000	2.971 .011 1.888 .080 .510 .022 .000 2.173 .376 .007 .000 8.038 12.000	2.980 .010 1.885 .080 .514 .024 .000 2.169 .362 .004 .001 8.030 12.000	2.974 .011 1.900 .079 .511 .023 .000 2.161 .362 .005 .002 8.028 12.000	2.964 .007 1.904 .085 .529 .024 .000 2.162 .359 .003 .000 8.037 12.000	2.983 .010 1.885 .082 .516 .021 .000 2.157 .365 .006 .000 8.026 12.000	2.965 .008 1.897 .081 .526 .021 .000 2.176 .362 .003 .001 8.040 12.000	2.972 .008 1.897 .083 .517 .017 .000 2.172 .363 .002 .000 8.031 12.000	2.978 .006 1.898 .082 .510 .000 2.172 .360 .000 .000 8.026 12.000	2.975 .006 1.886 .083 .518 .024 .000 2.178 .362 .005 .000 8.037 12.000	2.984 .010 1.885 .081 .519 .000 2.158 .364 .003 .000 8.024 12.000	2.972 .009 1.892 .084 .531 .021 .000 2.154 .365 .006 .000 8.034 12.000	2.968 .009 1.897 .084 .525 .023 .000 2.155 .371 .004 .000 8.035 12.000	2.979 .009 1.888 .082 .511 .019 .000 2.164 .371 .004 .000 8.029 12.000	2.979 .010 1.890 .022 .000 2.167 .363 .004 .000 8.027
Mg #	81.20	81.02	80.78	81.20	80.58	81.00	80.99	80.83	80.87	80.34	80.69	80.55	80.77	80.99	80.80	80.61	80.22	80.41	80.89	80.98
Cr #	4.09	4.00	4.08	4.09	4.10	4.15	4.07	4.09	3.99	4.26	4.18	4.07	4.20	4.15	4.21	4.11	4.25	4.24	4.19	4.13
Profilstrecke [µm]	14847	14907	14967	15028	15088	15208	15268	15328	15448	15508	15568	15628	15688	15749	15809	15869	15929	15989	16049	16109

Probe: VG																				
Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02 I	Profil-02 I	Profil-02 I	Profil-02	Profil-02	Profil-02 I	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] [SiO, TiO, ALO, Gr,O, FeO SiO, FeO MnO MnO NiO MgO CaO CaO KaO KaO XaQ KaO	42.20 .20 22.68 1.43 9.05 .40 .00 20.52 4.72 .01 .00 101.21	42.11 .14 22.55 1.46 8.88 .31 .00 20.57 4.82 .02 .00 100.87	41.91 .20 22.73 1.45 9.03 .34 .00 20.43 4.79 .02 .01 100.91	42.02 .21 22.63 1.49 8.86 .00 20.39 4.76 .04 .04 .01 100.75	42.05 .19 22.68 1.47 8.91 .39 .00 20.35 4.94 .04 .01 101.03	42.26 .16 22.60 1.38 8.92 .33 .00 20.32 4.86 .05 .00 100.87	42.28 .19 22.64 1.48 9.04 .40 .00 20.47 4.71 .04 .00 101.25	42.03 .16 22.69 1.46 9.11 .36 .00 20.35 4.80 .00 .00 100.96	42.27 .19 22.56 1.44 8.81 .35 .00 20.18 4.83 .05 .00 100.68	42.02 .18 22.63 1.44 9.00 .41 .00 20.31 4.89 .05 .00 100.91	41.98 .17 22.76 1.45 9.01 .36 .00 20.44 4.75 .03 .01 100.96	41.83 .16 22.69 1.43 9.29 .42 .00 20.06 4.80 .03 .00 100.70	41.64 .16 22.68 1.51 9.09 .38 .00 20.17 4.78 .01 .00 100.41	42.03 .15 22.80 1.50 9.36 .32 .00 20.17 4.73 .03 .00 101.10	42.17 .15 22.70 1.44 9.42 .43 00 19.98 4.75 .00 .00 101.05	42.09 .18 22.69 1.44 9.38 .00 20.12 4.77 .04 .00 101.10	41.88 .15 22.52 1.36 9.81 .43 .00 19.91 4.78 .02 .00 100.85	41.79 .18 22.65 1.43 9.79 .45 .00 19.79 4.74 .01 .00 100.82	41.88 .18 22.66 1.53 9.67 .45 .00 19.89 4.73 .02 .01 101.02	41.87 .18 22.78 1.43 9.68 .42 .00 20.09 4.81 .02 .00 101.28
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ca Na K K Kationen	2.978 .010 1.886 .080 .534 .024 .000 2.159 .357 .002 .000 8.030	2.980 .008 1.881 .082 .525 .019 .000 2.170 .366 .003 .000 8.033	2.967 .011 1.897 .081 .535 .021 .002 2.157 .364 .003 .000 8.035	2.977 .011 1.890 .083 .525 .022 .000 2.153 .361 .005 .000 8.028	2.974 .010 .082 .527 .023 .000 2.145 .374 .006 .001 8.033	2.990 .008 1.884 .077 .528 .020 .000 2.143 .368 .006 .000 8.025	2.983 .010 1.882 .533 .024 .000 2.153 .356 .005 .000 8.028	2.975 .008 1.892 .539 .022 .000 2.147 .364 .000 .000 8.030	2.995 .010 1.884 .081 .522 .021 .000 2.132 .367 .006 .000 8.017	2.976 .010 1.889 .533 .025 .000 2.144 .371 .006 .000 8.033	2.970 .009 1.898 .081 .533 .022 .000 2.156 .360 .004 .000 8.034	2.972 .008 1.900 .080 .552 .005 .005 .125 .365 .004 .000 8.031	2.965 .008 1.903 .085 .541 .023 .000 2.141 .365 .002 .000 8.033	2.973 .008 1.901 .084 .554 .019 .000 2.127 .359 .004 .000 8.028	2.985 .008 1.894 .081 .557 .026 .000 2.108 .360 .000 .000 8.020	2.978 .009 1.892 .081 .556 .023 .000 2.123 .361 .005 .000 8.029	2.978 .008 1.887 .076 .583 .026 .000 2.110 .364 .002 .000 8.034	2.972 .009 1.899 .080 .582 .027 .000 2.098 .361 .002 .000 8.030	2.972 .009 1.895 .086 .574 .027 .000 2.104 .360 .003 .001 8.030	2.963 .009 1.900 .080 .573 .025 .000 2.120 .365 .003 .000 8.039
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	80.18 4.06 16169	80.51 4.16 16229	80.13 4.10 16289	80.40 4.23 16349	80.28 4.16 16410	80.24 3.92 16470	80.15 4.20 16530	79.93 4.13 16590	80.34 4.11 16650	80.10 4.09 16710	80.17 4.10 16770	79.38 4.05 16830	79.83 4.29 16890	79.34 4.24 16950	79.09 4.09 17010	79.25 4.09 17071	78.35 3.89 17131	78.28 4.05 17191	78.58 4.33 17251	78.73 4.04 17311

Probe: VG	Dfl 00	D61 00 1	D61 00 1	Deefl 00	D£1.00	D61 00	D61 00	D£1.00	Deef! 00	D£1.00.1	Deefl 00	D£1.00	D61 00	D61 00	Deefl 00
Profilpunkt	299	300	301	302	303	305	307	309	310	311	312	313	314	315	316
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 Al2O3 C7,03 FeO MnO NiO NiO CaO Na2O K2O K2O X2O	41.84 .16 22.49 1.44 9.65 .45 .00 19.99 4.73 .03 .00 100.76	42.12 .15 22.40 1.40 9.86 .46 .00 19.71 4.72 .03 .00 100.84	41.97 .18 22.41 1.49 9.84 .43 .00 19.77 4.78 .03 .00 100.90	41.92 .18 22.50 1.47 9.98 .48 .00 19.69 4.77 .02 .00 101.01	41.78 .19 22.59 1.46 9.99 .00 19.67 4.82 .03 .00 101.01	41.84 .15 22.38 1.43 10.09 .45 .00 19.73 4.70 .03 .00 100.82	41.68 .20 22.36 1.57 10.20 .48 .00 19.54 4.83 .03 .01 100.90	41.90 .16 22.33 1.51 10.15 .47 .00 19.58 4.76 .02 .00 100.88	41.90 .16 22.38 1.46 10.18 .48 .00 19.50 4.83 .03 .01 100.92	41.81 .17 22.95 1.45 9.86 .49 .00 19.51 4.74 .02 .00 101.00	42.08 .17 22.92 1.49 10.11 .48 .00 19.38 4.83 .02 .02 101.50	42.17 .19 22.96 1.53 10.29 .49 .00 19.35 .4.87 .05 .00 101.90	41.93 .16 22.81 1.45 10.41 .48 .00 19.20 4.81 .02 .00 101.27	41.81 .16 22.77 1.53 11.07 .41 .00 19.04 4.75 .02 .02 101.56	41.48 .16 22.56 1.52 12.21 .50 .00 18.13 4.66 .03 .00 101.25
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na Kationen	2.976 .008 1.885 .081 .574 .027 .000 2.119 .361 .004 .000 8.035	2.994 .008 1.876 .586 .028 .000 2.089 .359 .004 .000 8.023	2.983 .009 1.877 .084 .585 .026 .000 2.095 .364 .004 .004 .000 8.028	2.979 .009 1.884 .593 .029 .000 2.086 .363 .003 .003 8.030	2.970 .010 1.893 .594 .029 .000 2.084 .367 .005 .000 8.035	2.980 .008 1.879 .080 .601 .027 .000 2.095 .359 .005 .000 8.034	2.972 .011 1.879 .088 .608 .029 .000 2.076 .369 .005 .001 8.037	2.984 .008 1.874 .085 .604 .028 .000 2.079 .363 .003 .003 8.030	2.983 .009 1.878 .082 .606 .029 .000 2.070 .369 .004 .001 8.030	2.969 .009 1.921 .586 .029 .000 2.065 .360 .002 .000 8.023	2.976 .009 1.911 .083 .598 .029 .000 2.044 .366 .003 .002 8.020	2.974 .010 1.908 .085 .607 .029 .000 2.034 .368 .007 .000 8.023	2.977 .009 1.908 .081 .618 .029 .000 2.031 .365 .003 .000 8.021	2.968 .008 1.905 .086 .657 .025 .000 2.015 .361 .003 .002 8.030	2.970 .008 1.904 .080 .731 .030 .000 1.936 .357 .005 .000 8.029
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	78.69 4.11 17371	78.08 4.01 17431	78.18 4.28 17491	77.86 4.19 17551	77.82 4.15 17611	77.72 4.10 17732	77.34 4.49 17852	77.48 4.35 17972	77.34 4.19 18032	77.91 4.05 18043	77.37 4.18 18053	77.03 4.28 18064	76.68 4.08 18074	75.41 4.31 18085	72.58 4.32 18095

Probe:	VG
Profil:	05
Mineral:	Amp
Kapitel:	2.2

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
20	87.485	46.423	25.953	3.453	1.655	0.185	0.330	0.837
70	115.109	41.914	26.199	4.177	3.529	0.703	0.496	1.127
120	104.480	36.081	26.761	3.672	2.016	0.593	0.318	0.503
170	104.973	38.419	25.663	3.738	1.709	0.645	0.270	0.376
220	96.855	41.341	25.722	2.995	1.792	0.649	0.569	0.672
270	73.881	50.322	23.918	2.211	2.519	1.212	0.543	0.989
320	92.472	52.965	22.433	2.110	1.996	0.395	0.382	0.534

Probe: VG Profilname	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05
Profilpunkt	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse Gew%] SiO2 SiO2 TiO2 Al203 Cr203 Fe203 Fe203 Fe0 MiO NiO MgO CaO Na20 K20 H20 Z	44.23 .38 16.44 1.43 .00 2.925 .04 18.18 11.61 2.62 .05 2.14 100.10	43.96 .43 16.63 1.51 .00 2.98 .04 .02 18.08 11.17 2.63 .08 2.14 99.66	44.09 .41 16.65 1.48 .00 2.97 .03 .02 18.13 11.09 2.67 .09 2.14 99.75	44.16 .39 16.55 1.42 .00 3.21 .03 .00 18.44 10.76 2.71 .13 2.14 99.93	44.26 .32 16.38 1.44 .00 3.09 .03 .01 18.49 10.73 2.66 .10 2.14 99.64	44.05 .36 16.37 1.44 .00 3.03 .08 .00 18.38 10.76 2.73 .11 2.13 99.46	44.33 .34 16.36 1.72 .00 3.09 .04 18.22 10.81 2.63 .14 2.14 99.85	43.89 .36 16.26 1.87 .00 3.17 .08 .03 18.35 10.80 2.65 .14 2.13 99.72	44.00 .36 16.33 1.85 .00 2.84 .01 18.15 10.91 2.70 .19 2.13 99.50	44.12 .37 16.40 1.84 .00 3.05 .03 0.3 18.15 10.95 2.79 .17 2.14 100.05	43.99 .38 16.39 1.86 .00 2.84 .07 .01 18.19 10.87 2.70 .16 2.13 99.58	43.71 .37 16.62 1.71 .00 2.86 .05 .01 18.06 11.03 2.56 .25 2.13 99.37	43.91 .40 16.60 1.76 .00 2.87 .02 .03 18.09 10.92 2.56 .25 2.13 99.54	43.73 .37 16.53 1.72 .00 3.00 18.12 10.89 2.58 .31 2.13 99.41	43.68 .37 16.61 1.74 .00 2.90 .03 18.17 10.98 .31 2.13 99.57	43.82 .39 16.56 1.76 .00 2.83 .03 .03 18.11 11.09 2.54 .28 2.13 99.55	43.69 .39 16.49 1.82 .00 2.81 .04 .07 18.10 11.09 2.57 .32 2.13 99.51	43.71 .40 16.57 1.68 .00 2.81 .01 .03 17.99 11.18 2.62 .30 2.13 99.42	43.79 .40 16.48 1.73 .00 2.77 .06 .01 17.91 11.32 2.60 .35 2.13 99.53	43.77 .41 16.58 1.73 .00 2.85 .03 .07 17.94 11.16 2.57 .30 2.13 99.53
Kationen- besetzung Si Ti Al Ce ^{**} Fe ^{**} Mn Ni Mg Ca Na K OH ∑ Kationen	6.187 0.040 2.711 0.158 0.000 0.342 0.004 3.791 1.739 0.712 0.009 2.000 15.699	6.172 0.045 2.752 0.168 0.000 0.350 0.002 3.784 1.681 0.717 0.014 2.000 15.689	6.181 0.043 2.751 0.164 0.000 0.348 0.002 3.789 1.667 0.724 0.017 2.000 15.689	6.183 0.041 2.731 0.157 0.000 0.375 0.004 0.000 3.848 1.614 0.735 0.023 2.000 15.711	6.208 0.034 2.708 0.159 0.000 0.363 0.001 3.867 1.612 0.723 0.017 2.000 15.695	6.195 0.038 2.713 0.160 0.000 0.356 0.010 0.000 3.854 1.622 0.744 0.020 2.000 15.713	6.211 0.036 2.701 0.190 0.005 0.004 3.805 1.623 0.715 0.025 2.000 15.678	6.170 0.038 2.694 0.208 0.000 0.372 0.010 0.003 3.846 1.627 0.723 0.025 2.000 15.715	6.190 0.038 2.708 0.206 0.000 0.334 0.001 3.806 1.644 0.735 0.034 2.000 15.700	6.181 0.039 2.708 0.204 0.000 0.357 0.004 0.004 3.791 1.644 0.757 0.029 2.000 15.717	6.182 0.040 2.715 0.207 0.000 0.334 0.001 3.811 1.637 0.735 0.029 2.000 15.699	6.159 0.040 2.760 0.191 0.000 0.0337 0.006 0.001 3.794 1.666 0.700 0.045 2.000 15.698	6.173 0.043 2.750 0.195 0.000 0.337 0.003 0.003 3.791 1.645 0.045 2.000 15.683	6.163 0.039 2.746 0.192 0.000 0.353 0.004 0.000 1.644 0.056 2.000 15.710	6.148 0.040 2.755 0.193 0.000 0.341 0.004 3.812 1.656 0.703 0.056 2.000 15.718	6.164 0.041 2.745 0.196 0.000 0.333 0.003 0.003 3.797 1.671 0.692 0.050 2.000 15.695	6.155 0.041 2.738 0.203 0.005 0.007 3.800 1.674 0.702 0.057 2.000 15.714	6.160 0.042 2.751 0.000 0.331 0.004 3.780 1.689 0.716 0.054 2.000 15.714	6.168 0.042 2.735 0.193 0.000 0.326 0.007 0.001 3.760 1.708 0.708 0.062 2.000 15.711	6.163 0.043 2.751 0.192 0.000 0.336 0.004 0.007 3.765 1.684 0.702 0.053 2.000 15.700
Mg# Cr# Profilstrecke [µm	91.72 5.51	91.54 5.74 10	91.59 5.61 15	91.11 5.43 20	91.42 5.56 25	91.54 5.56 30	91.32 6.57 35	91.18 7.16 40	91.93 7.06 45	91.39 7.00 50	91.95 7.08 56	91.84 6.47 61	91.83 6.63 66	91.50 6.54 71	91.79 6.55 76	91.94 6.66 81	91.98 6.90 86	91.94 6.37 91	92.02 6.59 96	91.81 6.53 101

Probe: VG																				
Profilname	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05
Profilpunkt	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	66	67	68
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse [Gew%]																				
SiO2 TiO2	43.79 .39	43.61 .37	43.65 .39	43.70 .40	43.62 .41	43.82 .41	43.67 .40	43.83 .40	43.47 .39	43.80 .41	43.54 .38	43.82 .40	43.75 .39	43.74 .42	43.56 .41	43.48 .39	43.73 .38	43.71 .40	43.68 .37	43.83 .41
Al2O3 Cr2O3	16.48 1.81	16.61 1.87	16.48 1.82	16.53 1.97	16.51 1.81	16.55 1.81	16.52 1.82	16.51 1.90	16.47 1.89	16.51 1.87	16.43 1.93	16.40 1.82	16.40 1.82	16.46 1.82	16.57 1.76	16.61 1.77	16.49 1.74	16.56 1.74	16.55 1.82	16.48 1.71
Fe2O3 FeO	.00 2.99	.00 2.94	.00. 2.88	.00 2.95	.00. 2.88	.00 3.03	.00 2.90	.00 2.75	.00. 2.88	.00 2.79	.00 2.84	.00. 2.80	.00 2.78	.00 2.79	.00 2.90	.00 2.95	.00. 2.91	.00. 2.91	.00. 3.01	.00 2.88
MnO NiO	.06 .03	.04 .04	.06 .00	.05 .01	.06 .00	.02 .05	.05 .00	.06 .04	.04 .04	.03 .00	.03 .03	.04 .06	.07 .02	.05 .04	.07 .00	.06 .01	.06 .00	.03 .05	.08 .00	.01 .00
MgO CaO	17.92 11.26	18.12	18.05 10.97	18.03 10.95	18.00 11.02	18.07 11.00	18.08 10.98	18.07 11.06	18.05 11.19	17.93 11.19	17.85 11.20	17.96	17.80	17.99 11.20	18.05 11.12	17.94 11.06	17.97 11.04	18.05 11.05	18.07 10.93	18.06
Na2O K2O	2.58	2.56	2.66	2.51	2.60	2.62	2.56	2.60	2.48	2.55	2.49	2.45	2.46	2.52	2.54	2.51	2.50	2.60	2.52	2.47
Σ	99.74	99.78	99.51	99.59	99.42	99.86	99.47	99.69	99.37	99.58	99.23	99.69	99.29	99.60	99.52	99.33	99.37	99.61	99.57	99.29
Kationen-																				
besetzung																				
SI	6.160	6.134	6.154	6.153	6.152	6.156	6.154	6.161	6.138	6.165	6.156	6.166	6.178	6.160	6.141	6.142	6.169	6.154	6.153	6.179
Al	2,733	2,753	2,738	2.743	2.745	2.740	2.744	2.736	2.741	2,740	2.738	2,719	2,729	2,732	2,752	2.765	2.741	2.747	2.747	2,738
Cr	0.201	0.207	0.203	0.219	0.202	0.200	0.203	0.211	0.211	0.208	0.215	0.202	0.203	0.202	0.196	0.198	0.195	0.193	0.202	0.190
Fe ³⁺	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe ²⁺	0.352	0.346	0.340	0.347	0.340	0.356	0.342	0.323	0.340	0.328	0.336	0.329	0.328	0.329	0.342	0.348	0.343	0.342	0.354	0.339
IVIN NG	0.007	0.005	0.007	0.006	0.008	0.003	0.006	0.007	0.005	0.003	0.004	0.005	0.008	0.006	0.008	0.007	0.007	0.004	0.010	0.001
Ma	3 759	3 799	3 792	3 784	3 786	3 783	3 798	3 787	3 800	3 762	3 762	3 768	3 746	3 777	3 793	3 777	3 779	3 787	3 795	3 796
Ca	1.697	1.677	1.657	1.653	1.666	1.655	1.658	1.666	1.693	1.688	1.696	1.721	1.705	1.690	1.680	1.674	1.669	1.667	1.650	1.656
Na	0.703	0.698	0.727	0.686	0.711	0.713	0.700	0.710	0.679	0.696	0.683	0.669	0.672	0.689	0.694	0.687	0.683	0.710	0.689	0.675
K	0.057	0.064	0.075	0.066	0.068	0.065	0.068	0.064	0.062	0.067	0.071	0.073	0.074	0.079	0.077	0.077	0.076	0.069	0.074	0.064
OH	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
∠ rationen	15.712	15.728	15.736	15.700	15.720	15.720	15.714	15.710	15.715	15.699	15.704	15.701	15.088	15.713	15.726	15.718	15.702	15.723	15.714	15.683
Mg#	91.44	91.66	91.77	91.59	91.75	91.40	91.74	92.13	91.79	91.98	91.80	91.97	91.95	91.99	91.74	91.55	91.67	91.71	91.46	91.80
Cr#	6.85	7.01	6.91	7.39	6.85	6.82	6.88	7.15	7.14	7.06	7.29	6.91	6.93	6.90	6.65	6.67	6.63	6.58	6.86	6.50
Profilstrecke [µm]	106	111	116	121	126	131	136	141	146	151	157	162	167	172	177	182	187	197	202	207

Probe: VG Profilname	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05
Profilpunkt	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse Gew%] Gew%] SiO2 TiO2 Al2O3 Cr2O3 Fe2O3	43.79 .38 16.42 1.75 .00 2.97 .05 10.96 2.57 .37 2.13 99.46	43.97 .38 16.41 1.73 .00 3.06 .07 .03 17.98 10.81 2.55 .40 2.13 99.51	43.87 .39 16.40 .00 2.88 .04 18.18 11.01 2.65 .28 2.13 99.69	43.62 .39 16.355 1.75 .00 2.90 .03 .02 17.83 11.16 2.52 .31 2.12 99.00	43.94 .38 16.53 1.68 .00 2.82 .10 .03 17.97 11.16 2.64 .27 2.13 99.64	43.77 .40 16.48 1.76 .00 2.94 .05 18.02 11.10 2.61 .25 2.13 99.57	43.76 .40 16.48 1.69 .00 2.89 .04 .03 18.02 11.10 2.56 .25 2.13 99.35	43.80 .41 16.54 1.71 .00 3.05 .08 .03 17.98 11.00 2.60 .27 2.13 99.59	43.85 .40 16.55 1.84 .00 3.00 .01 18.01 11.02 2.57 .23 2.13 99.67	43.69 .40 16.45 1.81 .00 2.95 .04 .06 18.01 11.21 2.71 .22 2.13 99.67	43.76 .40 16.48 1.74 .00 3.01 .05 .07 17.92 11.25 2.58 .17 2.13 99.54	43.88 .41 16.39 1.77 .00 2.77 .06 .00 17.99 11.31 2.56 .18 2.13 99.46	44.28 .42 16.24 1.70 .00 2.84 .03 .00 18.28 11.54 2.58 .13 2.14 100.16	44.31 .44 16.18 1.62 .00 2.74 .04 .00 17.85 11.60 2.52 .14 2.13 99.57	44.46 .39 16.33 1.50 .00 2.68 .05 .02 18.07 11.73 2.46 .09 2.14 99.91	44.79 .37 15.74 1.61 .00 2.54 .02 .04 18.07 11.84 2.40 .05 2.14 99.60	44.75 .38 15.63 .00 2.62 .03 .00 18.10 11.96 2.37 .07 2.14 99.69	44.39 .39 16.38 1.48 .00 2.75 .06 .02 17.86 11.75 2.50 .09 2.14 99.81	44.63 .45 16.20 1.39 .00 2.79 .03 .04 17.94 11.71 2.48 .09 2.14 99.89	44.74 .45 15.93 1.52 .00 2.84 .00 17.84 11.83 2.45 .08 2.14 99.87
Kationen- besetzung Si Ti Al Cr ³⁺ Fe ⁷⁺ Mn Ni Mg Ca Na K OH Σ Kationen	6.172 0.040 2.728 0.195 0.000 0.350 0.004 3.793 1.655 0.702 0.066 2.000 15.711	6.192 0.040 2.724 0.000 0.360 0.008 0.004 3.774 1.631 0.693	6.168 0.041 2.717 0.200 0.338 0.010 0.004 3.811 1.658 0.721 0.050 2.000 15.718	6.176 0.042 2.727 0.196 0.000 0.343 0.004 0.003 3.764 1.693 0.690 0.056 2.000 15.694	6.178 0.040 2.738 0.187 0.000 0.331 0.011 0.004 3.766 1.681 0.719 0.049 2.000 15.704	6.163 0.042 2.735 0.196 0.000 0.346 0.006 3.782 1.675 0.713 0.046 2.000 15.709	6.170 0.042 2.739 0.188 0.000 0.340 0.003 3.787 1.677 0.700 0.046 2.000 15.697	6.165 0.043 2.745 0.191 0.000 0.359 0.004 3.772 1.658 0.710 0.048 2.000 15.703	6.165 0.042 2.743 0.205 0.000 0.353 0.008 0.001 3.774 1.660 0.699 0.041 2.000 15.690	6.151 0.042 2.729 0.201 0.000 0.347 0.006 3.779 1.692 0.739 0.040 2.000 15.732	6.163 0.043 2.735 0.194 0.000 0.354 0.007 3.762 1.698 0.705 0.030 2.000 15.697	6.177 0.043 2.720 0.000 0.326 0.000 3.776 1.707 0.699 0.032 2.000 15.686	6.192 0.044 2.676 0.187 0.000 0.332 0.000 3.810 1.728 0.693 2.000 15.693	6.225 0.046 2.679 0.180 0.000 0.322 0.005 0.000 3.740 1.746 0.625 2.000 15.655	6.221 0.041 2.692 0.166 0.000 0.314 0.002 3.768 1.758 0.616 2.000 15.651	6.281 0.038 2.601 0.178 0.000 0.298 0.002 0.004 3.777 1.779 0.652 0.009 2.000 15.621	6.276 0.040 2.586 0.180 0.000 0.307 0.003 0.000 3.783 1.797 0.645 0.013 2.000 15.630	6.220 0.041 2.706 0.164 0.000 0.322 0.003 3.730 1.765 0.680 0.016 2.000 15.652	6.246 0.047 2.671 0.153 0.000 0.327 0.005 3.741 1.756 0.674 0.016 2.000 15.639	6.266 0.047 2.630 0.169 0.000 0.333 0.007 0.000 3.724 1.774 0.664 0.014 2.000 15.627
Mg# Cr# Profilstrecke [µm]	91.54 6.69 212	91.28 6.59 217	91.85 6.84 222	91.65 6.71 227	91.92 6.39 232	91.62 6.68 237	91.75 6.44 242	91.32 6.49 247	91.45 6.95 252	91.58 6.86 258	91.40 6.62 263	92.05 6.76 268	91.98 6.54 273	92.06 6.29 278	92.31 5.79 283	92.68 6.41 288	92.50 6.52 293	92.06 5.72 298	91.97 5.43 303	91.80 6.03 308

Probe: VG	Profil 05	Profil 05	Profil 05	Profil 05	Profil 05
Profilpunkt	89	90	91	92	93
Mineral	Amp	Amp	Amp	Amp	Amp
Analyse Gew%] SiO2 SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 Fe2O MnO NiO NiO MgO CaO Al2O3 CaO Al2O3 CaO NiO NiO NiO NiO MgO CaO Al2O3 Fe2O HAO NiO NiO NiO NiO HAO HAO HAO NiO	45.37 .38 15.23 .00 2.61 .05 .00 18.14 11.85 2.32 .07 2.14 99.69	44.91 .40 15.73 1.45 .00 2.61 .07 .04 17.99 11.84 2.41 .07 2.14 99.67	44.30 .41 16.42 1.43 .00 2.72 .06 .02 17.87 11.70 2.53 .06 2.14 99.66	44.31 .46 16.36 .00 2.62 .00 .05 17.95 11.79 2.47 .08 2.14 99.59	44.59 .40 16.28 1.18 .00 2.57 .06 .01 17.97 11.72 2.64 .07 2.14 99.62
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Fe ²⁺ Mn Ni Mg Ca Na K OH Σ Kationen	6.352 0.040 2.512 0.169 0.000 0.306 0.000 3.786 1.777 0.629 0.012 2.000 15.588	6.294 0.042 2.598 0.161 0.000 0.005 3.759 1.777 0.656 0.013 2.000 15.619	6.215 0.043 2.714 0.158 0.000 0.319 0.002 3.738 1.759 0.688 0.011 2.000 15.655	6.217 0.048 2.706 0.151 0.000 0.006 3.754 1.773 0.672 0.014 2.000 15.649	6.249 0.042 2.689 0.130 0.000 0.301 0.001 3.754 1.760 0.718 0.012 2.000 15.664
Mg# Cr# Profilstrecke [um]	92.53 6.29 313	92.47 5.84 318	92.13 5.51 323	92.43 5.29 328	92.58 4.62 333

Probe:	VG
Profil:	07
Mineral:	Орх
Kapitel:	Anhang II

P [µg/g]	Sc [þg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
2.905	1.594	33.251	16.275	0.229	0.116	0.560	1.600
2.873	1.596	34.247	18.320	0.528	0.154	0.975	2.293
2.943	1.548	36.833	20.784	0.130	0.142	0.771	1.366
2.997	1.580	34.157	17.124	0.309	0.081	1.160	1.927
3.046	1.546	36.664	17.009	0.514	0.083	0.898	0.404
3.304	1.595	35.119	19.671	0.287	0.063	0.737	1.534
3.001	1.420	33.569	16.914	0.327	0.120	0.749	0.930
3.077	1.567	33.319	17.275	0.634	0.139	0.515	1.153
2.824	1.609	33.691	16.521	0.484	0.115	0.588	1.964
3.040	1.440	33.993	17.235	0.506	0.148	0.481	1.236
2.649	1.551	33.302	17.455	0.314	0.064	0.758	0.761
3.114	1.407	33.940	17.415	0.664	0.065	0.751	1.599
2.101	1.253	32.920	16.779	0.338	0.069	0.520	1.780
2.176	1.314	32.513	14.250	0.052	0.093	0.734	1.259
2.346	1.697	30.418	12.560	0.281	0.051	0.673	1.142
	P [µg/g] 2.905 2.873 2.943 2.997 3.046 3.304 3.001 3.077 2.824 3.040 2.649 3.114 2.101 2.176 2.346	РSc[µg/g][µg/g]2.9051.5942.8731.5962.9431.5482.9971.5803.0461.5463.3041.5953.0011.4203.0771.5672.8241.6093.0401.4402.6491.5513.1141.4072.1011.2532.1761.3142.3461.697	PScCo[μg/g][μg/g][μg/g]2.9051.59433.2512.8731.59634.2472.9431.54836.8332.9971.58034.1573.0461.54636.6643.3041.59535.1193.0011.42033.5693.0771.56733.3192.8241.60933.6913.0401.44033.9932.6491.55133.3023.1141.40733.9402.1011.25332.9202.1761.31432.5132.3461.69730.418	PScCoZn[μg/g][μg/g][μg/g][μg/g]2.9051.59433.25116.2752.8731.59634.24718.3202.9431.54836.83320.7842.9971.58034.15717.1243.0461.54636.66417.0093.3041.59535.11919.6713.0011.42033.56916.9143.0771.56733.31917.2752.8241.60933.69116.5213.0401.44033.99317.2352.6491.55133.30217.4553.1141.40733.94017.4152.1011.25332.92016.7792.1761.31432.51314.2502.3461.69730.41812.560	PScCoZnP[μg/g][μg/g][μg/g][μg/g]2σ2.9051.59433.25116.2750.2292.8731.59634.24718.3200.5282.9431.54836.83320.7840.1302.9971.58034.15717.1240.3093.0461.54636.66417.0090.5143.3041.59535.11919.6710.2873.0011.42033.56916.9140.3273.0771.56733.31917.2750.6342.8241.60933.69116.5210.4843.0401.44033.99317.2350.5062.6491.55133.30217.4550.3143.1141.40733.94017.4150.6642.1011.25332.92016.7790.3382.1761.31432.51314.2500.0522.3461.69730.41812.5600.281	PScCoZnPSc[μg/g]1.59433.25116.2750.2290.1162.8731.59634.24718.3200.5280.1542.9431.54836.83320.7840.1300.1422.9971.58034.15717.1240.3090.0813.0461.54636.66417.0090.5140.0833.0011.42033.56916.9140.3270.1203.0771.56733.31917.2750.6340.1392.8241.60933.69116.5210.4840.1153.0401.44033.99317.2350.5060.1482.6491.55133.30217.4550.3140.0643.1141.40733.94017.4150.6640.0652.1011.25332.92016.7790.3380.0692.1761.31432.51314.2500.0520.0932.3461.69730.41812.5600.2810.051	PScCoZnPScCo[μg/g]1.59433.25116.2750.2290.1160.5602.8731.59634.24718.3200.5280.1540.9752.9431.54836.83320.7840.1300.1420.7712.9971.58034.15717.1240.3090.0811.1603.0461.54636.66417.0090.5140.0830.8983.3041.59535.11919.6710.2870.0630.7373.0011.42033.56916.9140.3270.1200.7493.0771.56733.31917.2750.6340.1390.5152.8241.60933.69116.5210.4840.1150.5883.0401.44033.99317.2350.5060.1480.4812.6491.55133.30217.4550.3140.0640.7583.1141.40733.94017.4150.6640.0650.7512.1011.25332.92016.7790.3380.0690.5202.1761.31432.51314.2500.0520.0930.7342.3461.69730.41812.5600.2810.0510.673

Probe: VG																				
Profilname	Profil-07	Profil-07	Profil-07	Profil-07 I	Profil-07	Profil-07 I	Profil-07 I	Profil-07	Profil-07	Profil-07 I	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07
Profilpunkt	36	37	38	41	42	43	44	45	46	47	48	50	51	52	54	55	56	57	58	59
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] [Gow%] SiO ₂ TiO ₂ Gr ₂ O ₃ FeO MnO NiO NiO MgO CaO KaO KaO KaO KaO	57.59 .03 .98 .09 7.36 .17 .06 35.08 .13 .01 .00 101.50	57.46 .05 1.00 .26 6.89 .16 .12 35.06 .19 .01 .01 101.19	57.33 .06 1.03 .27 6.67 .11 .10 35.22 .23 .01 .00 101.02	57.62 .04 1.02 .28 6.50 .15 .06 35.45 .23 .00 .00 101.35	57.60 .06 1.04 .21 6.53 .14 .11 35.42 .21 .01 .01 .01 101.33	57.49 .07 1.04 .21 6.39 .15 .06 35.23 .22 .02 .00 100.86	57.49 .11 1.01 .21 6.56 .10 .05 35.26 .03 .00 101.08	57.46 .06 1.01 .24 6.37 .12 .09 35.62 .25 .03 .00 101.25	57.59 .08 1.02 .24 6.16 .13 .06 .35.50 .24 .01 .01 .00 101.04	57.60 .07 1.02 .26 6.29 .13 .11 35.56 .27 .00 .00 101.30	57.63 .08 .96 .25 6.19 .14 .09 .35.58 .21 .01 .01 .00 101.17	57.48 .04 1.00 .28 6.46 .15 .09 35.43 .22 .00 .00 101.15	57.50 .06 .99 .22 6.43 .11 .12 35.38 .21 .01 .01 .01 101.03	57.85 .04 .97 .23 6.14 .12 .05 35.48 .22 .00 .00 101.10	57.74 .08 .94 .27 6.23 .14 .07 35.42 .21 .05 .01 101.14	57.67 .08 1.00 .26 6.22 .11 .09 35.37 .24 .03 .00 101.05	57.59 .10 1.02 .20 6.01 .12 .11 35.28 .26 .00 .00 100.69	57.49 .07 .98 .25 6.24 .15 .09 35.21 .24 .03 .01 100.76	57.44 .09 .99 .25 6.21 .16 .09 35.46 .24 .00 .01 100.92	57.61 .07 1.01 .24 6.34 .09 35.51 .22 .02 .00 101.18
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{bestzung}\\ Si\\ Ti\\ Al\\ Cr\\ Fr^{2r^*}\\ Mn\\ Ni\\ Mg\\ Ca\\ Na\\ Na\\ K\\ \Sigma \mbox{Kationen} \end{array}$	1.965 .001 .040 .002 .210 .005 .002 1.784 .005 .000 .000 4.014	1.964 .001 .007 .197 .004 .003 1.786 .007 .001 .000 4.012	1.961 .002 .041 .007 .191 .003 .003 1.796 .008 .001 .000 4.013	1.963 .001 .040 .008 .185 .004 .000 .008 .000 .000 4.012	1.963 .001 .006 .186 .004 .003 1.800 .008 .000 .000 4.013	1.966 .002 .006 .183 .004 .002 1.796 .008 .001 .000 4.009	1.964 .003 .041 .006 .187 .003 .001 1.796 .010 .002 .000 4.011	1.959 .001 .006 .182 .003 .003 1.810 .009 .002 .000 4.017	1.964 .002 .041 .006 .176 .004 .002 1.805 .009 .001 .000 4.010	1.962 .002 .041 .007 .179 .004 .000 .000 .000 4.013	1.964 .002 .007 .177 .004 .003 1.808 .008 .001 .000 4.011	1.962 .001 .008 .184 .004 .002 1.803 .008 .000 .000 4.013	1.964 .001 .006 .184 .003 .003 1.802 .008 .000 .000 4.012	1.970 .001 .006 .175 .003 .001 1.801 .008 .000 .000 4.006	1.968 .002 .038 .007 .178 .004 .002 1.800 .008 .003 .000 4.009	1.967 .002 .040 .007 .177 .003 .002 1.799 .009 .002 .000 4.008	1.969 .003 .041 .005 .172 .004 .003 1.799 .009 .000 .000 4.005	1.968 .002 .007 .178 .004 .002 1.796 .009 .002 .000 4.009	1.963 .002 .007 .177 .005 .002 1.806 .009 .000 .000 4.011	1.964 .002 .040 .006 .181 .002 1.805 .008 .001 .000 4.012
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	89.47 5.90 5	90.07 14.84 10	90.40 15.10 15	90.68 15.68 30	90.63 11.98 35	90.77 11.78 40	90.55 12.31 45	90.88 13.79 50	91.13 13.66 55	90.97 14.52 60	91.10 14.87 65	90.72 15.79 76	90.75 12.72 81	91.15 13.68 86	91.02 16.08 96	91.02 14.69 101	91.27 11.83 106	90.96 14.56 111	91.06 14.34 116	90.90 13.69 121

Probe: VG Profilname	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07
Profilpunkt	60	61	62	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse Gew%] SiO2 TiO2 Al2O3 Cr.Q3 FeO MnO NiO MgO CaO CaO K2O K2O X2 X2	57.24 .06 .98 .26 6.28 .13 .11 35.42 .23 .00 .00 100.70	57.28 .06 .95 .24 6.23 .14 .09 35.06 .25 .00 .00 100.29	57.85 .04 .98 .24 6.36 .09 .11 35.30 .26 .00 .03 101.26	57.63 .08 1.01 .25 6.31 .07 .08 35.29 .22 .01 .01 100.95	57.43 .08 1.01 .26 6.41 .14 .07 35.44 .01 .01 .01	57.42 .09 1.02 .26 6.51 .08 .06 35.40 .27 .03 .00 101.12	57.66 .09 1.00 .25 6.44 .10 35.41 .25 .01 .00 101.31	57.66 .11 1.02 .24 6.30 .14 .06 35.37 .22 .03 .02 101.17	57.66 .06 1.03 .25 6.43 .16 .09 35.42 .25 .00 .00 101.34	57.74 .08 1.01 .29 6.32 .14 .09 35.31 .25 .00 .01 101.23	57.36 .07 1.07 .29 6.23 .09 .08 35.29 .24 .02 .01 100.75	57.52 .09 1.02 .25 6.31 .11 .09 35.44 .22 .00 .00 101.05	57.53 .07 1.01 .30 6.32 .15 .08 35.29 .26 .03 .00 101.03	57.76 .07 1.00 .24 6.31 .13 .07 35.37 .22 .01 .01 101.18	57.72 .07 1.04 .26 6.35 .11 .04 35.47 .25 .03 .00 101.33	57.43 .09 1.00 .22 6.40 .15 .07 35.41 .25 .03 .00 101.05	57.65 .09 1.02 .27 6.25 .09 .08 35.47 .26 .01 .01 .01	57.66 .08 1.03 .23 6.42 .12 .05 35.39 .26 .03 .00 101.27	57.65 .08 1.00 .25 6.41 .18 .11 35.34 .23 .00 .00 101.26	57.58 .07 .99 .25 6.66 .15 .13 35.40 .24 .01 .01 101.48
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na K Xationen	1.961 .002 .040 .007 .180 .004 .003 1.809 .008 .000 .000 4.014	1.969 .002 .038 .007 .179 .004 .003 1.797 .009 .000 4.007	1.970 .001 .039 .007 .181 .003 .003 1.792 .009 .000 .001 4.006	1.968 .002 .041 .007 .180 .002 .002 1.796 .008 .000 .001 4.007	1.961 .002 .041 .007 .183 .004 .002 1.804 .009 .001 .000 4.014	1.961 .002 .041 .007 .186 .002 .002 .002 .002 .000 4.014	1.964 .002 .040 .003 .003 1.798 .009 .001 .000 4.010	1.966 .003 .041 .006 .180 .004 .002 1.797 .008 .002 .001 4.009	1.964 .001 .041 .005 .002 1.798 .009 .000 4.011	1.967 .002 .041 .008 .180 .004 .002 1.794 .009 .000 .000 4.007	1.963 .002 .043 .008 .178 .003 .002 1.800 .009 .001 .000 4.010	1.963 .002 .041 .007 .180 .003 .002 1.803 .008 .000 4.011	1.965 .002 .041 .008 .180 .004 .002 1.797 .009 .000 4.010	1.968 .002 .040 .006 .180 .004 .002 1.797 .008 .000 4.007	1.965 .002 .042 .007 .181 1.800 .009 .002 .000 4.011	1.962 .040 .006 .183 .004 .002 1.803 .009 .000 4.014	1.964 .002 .041 .007 .178 .003 .002 1.802 .009 .001 .001 4.010	1.964 .002 .041 .006 .183 .003 .001 1.798 .010 .002 .000 4.011	1.965 .002 .040 .007 .183 .005 .003 1.796 .009 .000 4.009	1.961 .002 .040 .007 .190 .004 .003 1.798 .009 .001 4.015
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	90.96	90.94	90.83	90.88	90.79	90.65	90.74	90.91	90.75	90.87	90.99	90.92	90.88	90.90	90.88	90.80	91.00	90.76	90.76	90.45
Cr #	14.86	14.57	14.27	14.13	14.67	14.48	14.24	13.49	13.86	15.90	15.53	14.02	16.51	13.88	14.28	12.96	15.07	13.10	14.41	14.71
Profilstrecke [µm]	126	131	136	146	151	156	161	166	171	176	181	186	191	197	202	207	212	217	222	227

Probe: VG																				
Profilname	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07 I	Profil-07 I	Profil-07 I	Profil-07	Profil-07	Profil-07 I	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07 I	Profil-07 I	Profil-07
Profilpunkt	82	83	84	85	87	88	89	90	92	93	94	95	97	98	99	100	101	102	103	104
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] [Gow%] SiO ₂ TiO ₂ Gr ₂ O ₃ FeO MnO NiO NiO CaO CaO K ₂ Ô CaO X ₂ Ô X ₂ Ô	57.65 .10 .99 .25 6.45 .13 .09 35.28 .22 .02 .00 101.19	57.59 .07 1.01 .24 6.33 .13 .12 35.40 .21 .00 .00 101.08	57.83 .07 .99 .26 6.38 .11 .07 35.34 .26 .00 .00 101.30	57.46 .06 1.00 .24 6.55 .10 .10 35.44 .24 .02 .00 101.20	57.44 .08 1.00 .21 6.54 .07 .10 35.30 .26 .00 .00 100.98	57.62 .08 1.02 .24 6.25 .11 .07 35.35 .28 .02 .00 101.03	57.66 .09 1.02 .26 6.13 .12 .05 35.37 .24 .01 .00 100.94	57.57 .08 1.01 .25 6.31 .12 .09 35.38 .24 .02 .00 101.05	57.78 .11 .98 .27 6.24 .13 .09 35.40 .24 .00 .01 101.25	57.46 .07 1.00 .29 6.18 .14 .09 35.31 .25 .00 .00 100.78	57.71 .09 1.00 .26 6.21 .05 .07 35.39 .27 .00 .00 101.04	57.64 .07 .98 .30 6.27 .14 .08 35.33 .24 .00 .00 101.04	57.53 .08 .97 .24 6.40 .14 .09 35.36 .23 .00 .00 101.03	57.67 .09 1.00 .23 6.47 .12 .06 35.30 .24 .01 .00 101.20	57.58 .08 .99 .22 6.26 .6.26 .11 .07 35.43 .00 .00 100.98	57.50 .08 .98 .24 6.23 .09 .08 35.26 .24 .00 .00 .00 100.69	57.76 .07 1.00 .25 6.45 .12 .11 35.29 .27 .02 .00 101.34	57.60 .06 1.00 .26 6.17 .09 .08 35.32 .24 .01 .01 100.84	57.86 .08 .99 .25 6.32 .12 .09 35.28 .24 .00 .01 101.24	57.69 .08 1.00 .24 6.17 .12 .08 35.29 .23 .04 .00 100.95
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ca Na K K toinen	1.966 .003 .040 .007 .184 .004 .002 1.794 .008 .001 .000 4.009	1.965 .002 .006 .181 .004 .003 1.801 .008 .000 .000 4.010	1.969 .002 .007 .182 .003 .002 1.793 .009 .000 .000 4.006	1.961 .002 .006 .187 .003 .003 1.803 .009 .001 .000 4.014	1.964 .002 .006 .187 .002 .003 1.799 .010 .000 .000 4.012	1.966 .002 .041 .006 .178 .003 .002 1.798 .010 .001 .000 4.009	1.968 .002 .041 .007 .175 .004 .001 1.799 .009 .000 .000 4.006	1.965 .002 .041 .007 .180 .003 .003 1.800 .009 .001 .000 4.010	1.967 .003 .007 .178 .004 .002 1.797 .009 .000 .000 4.007	1.966 .002 .008 .177 .004 .003 1.800 .009 .000 .000 4.008	1.968 .002 .007 .177 .002 1.799 .010 .000 .000 4.006	1.967 .002 .008 .179 .004 .002 1.798 .009 .000 .000 4.008	1.965 .002 .039 .006 .183 .004 .003 1.800 .008 .000 .000 4.010	1.966 .002 .006 .184 .003 .002 1.794 .009 .001 .000 4.009	1.966 .002 .006 .179 .003 .002 1.803 .008 .000 .000 4.009	1.968 .002 .007 .178 .003 .002 1.799 .009 .000 .000 4.007	1.967 .002 .007 .184 .003 1.791 .010 .001 .000 4.008	1.968 .002 .040 .007 .176 .003 .002 1.799 .009 .001 .001 4.007	1.970 .002 .007 .180 .003 .003 1.791 .009 .000 .000 4.005	1.969 .002 .040 .007 .176 .002 1.795 .008 .003 .000 4.006
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	90.69 14.63 237	90.89 13.56 242	90.81 14.78 247	90.61 13.76 252	90.59 12.18 262	90.98 13.57 267	91.14 14.46 272	90.91 14.28 277	91.00 15.59 287	91.06 16.50 292	91.04 14.71 297	90.95 16.87 302	90.78 14.22 312	90.68 13.42 317	90.99 13.16 323	90.98 14.15 328	90.69 14.33 333	91.08 14.85 338	90.86 14.39 343	91.06 13.88 348

Profilname	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07
Profilpunkt	105	106	107	108	109	110	111	114	115	116	117	118	119	121	122	124	125	126	127	128
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse																				
[Gew%] SiO ₂	57.41	57.55	57.60	58.00	57.48	57.60	57.65	57.76	57.55	57.71	57.77	57.67	57.77	57.72	57.71	57.61	57.87	57.76	57.53	57.56
TiO ₂	.04	.06	.06	.08	.10	.05	.07	.11	.08	.08	.10	.07	.04	.08	.07	.09	.10	.06	.08	.09
	1.01	1.01	.99 27	.99 26	1.00	1.00	1.01	1.00	1.00	1.01	1.00	.99 23	1.00	1.00	.97	1.00	.97	.99 24	1.00	1.02
FeO	6.61	6.36	6.30	6.17	6.31	6.25	6.25	6.16	6.36	6.31	6.09	6.39	6.34	6.28	6.29	6.22	6.31	6.26	6.26	6.24
MnO	.12	.09	.11	.15	.12	.14	.13	.10	.10	.08	.06	.10	.12	.13	.11	.12	.13	.11	.11	.14
MgO	35.51	35.45	35.31	35.31	35.32	35.25	35.26	35.27	35.45	35.38	35.46	35.49	35.38	35.35	35.36	35.21	35.27	35.36	.04 35.40	35.25
CaO	.24	.23	.23	.24	.20	.25	.21	.24	.26	.23	.24	.22	.24	.22	.25	.24	.23	.23	.23	.27
Na ₂ O K ₂ O	.01	.03	.02	.01	.00	.02	.02	.00	.00	.00	.00	.02	.01	.04	.00	.02	.01	.02	.01	.03
Σ	101.28	101.12	100.97	101.35	100.89	100.92	100.95	100.99	101.13	101.18	101.07	101.26	101.26	101.14	101.07	100.87	101.21	101.12	100.90	100.94
Kationen- besetzung Si Ti Al Cr Fe ^{2*} Mn Ni Mg Ca Na K Σ Kationen	1.959 .001 .040 .007 .189 .003 .002 1.806 .009 .001 .000 4.017	1.963 .002 .041 .007 .181 .002 1.803 .008 .002 .000 4.012	1.967 .002 .040 .007 .180 .002 1.797 .008 .002 .000 4.009	1.972 .002 .040 .007 .004 .004 1.790 .009 .001 .000 4.003	1.965 .002 .040 .007 .180 .003 1.800 .007 .000 .000 4.009	1.968 .001 .040 .007 .178 .004 .003 1.795 .009 .001 .000 4.008	1.968 .002 .041 .007 .178 .004 .002 1.795 .008 .001 .000 4.006	1.970 .003 .040 .007 .176 .002 1.793 .009 .000 .001 4.004	1.963 .002 .040 .007 .181 .002 1.803 .009 .000 .000 4.011	1.967 .002 .040 .008 .180 .003 1.797 .008 .000 .000 4.007	1.968 .002 .040 .007 .174 .002 1.801 .009 .000 4.006	1.965 .002 .040 .006 .182 .002 1.802 .008 .001 .000 4.011	1.968 .001 .040 .007 .181 .003 1.796 .009 .001 .000 4.008	1.968 .002 .040 .007 .004 .002 1.796 .008 .002 .000 4.008	1.968 .002 .039 .006 .179 .002 1.798 .009 .000 .000 4.007	1.969 .002 .040 .007 .178 .003 1.794 .009 .002 .000 4.006	1.971 .003 .039 .006 .004 .002 1.791 .009 .000 .001 4.004	1.969 .002 .040 .006 .178 .002 1.797 .008 .001 .000 4.007	1.966 .002 .040 .006 .179 .003 .001 1.803 .008 .001 .000 4.010	1.966 .002 .041 .006 .178 .003 1.795 .010 .002 .000 4.008
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	90.55	90.86	90.90	91.07	90.89	90.96	90.95	91.08	90.86	90.91	91.21	90.82	90.86	90.93	90.92	90.99	90.88	90.97	90.98	90.97
Cr #	14.01	14.88	15.54	14.73	14.33	14.79	15.29	14.51	15.57	16.41	15.46	13.54	14.19	14.35	13.58	14.41	13.61	13.86	13.72	13.34
Profilstrecke [µm]	353	358	363	368	373	378	383	398	403	408	413	418	423	433	438	449	454	459	464	469

Probe: VG Profilname	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07 I	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07
Profilpunkt	129	130	131	132	133	136	137	138	139	140	141	142	146	147	148	149	150	151	152	153
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO3 TiO3 Gr,O3 FeO MnO NiO MgO CaO CaO K2Ó K2Ó	57.49 .07 .99 .24 6.26 .13 .07 35.25 .24 .02 .00 100.76	57.64 .09 1.03 .26 6.18 .11 .11 35.27 .24 .00 100.96	57.41 .07 1.03 .27 6.23 .16 .13 35.58 .26 .00 .02 101.17	57.48 .09 1.01 .28 6.43 .10 .12 35.47 .28 .03 .00 101.26	57.57 .06 1.02 .23 6.28 .12 .10 35.47 .24 .04 .04 .00 101.12	57.31 .07 1.01 .26 6.18 .11 .10 35.38 .27 .05 .00 100.73	57.70 .07 .98 .24 6.31 .14 .10 35.54 .21 .00 .00 101.29	57.64 .09 1.01 .30 6.08 .12 .10 35.37 .24 .01 .00 100.96	57.74 .06 1.00 .24 6.40 .11 .04 35.42 .22 .00 .00 101.21	57.67 .06 .98 .24 6.26 .11 .11 .35.29 .24 .01 .00 100.96	57.75 .08 .99 .25 6.26 .14 .07 35.48 .20 .02 .00 101.24	57.78 .09 1.00 .24 6.30 .13 .11 35.46 .25 .00 .00 101.33	57.63 .07 .99 .22 6.18 .05 .13 35.13 .24 .02 .00 100.65	57.76 .09 .96 .19 .10 .12 35.33 .25 .00 .00 100.99	57.74 .09 .95 .22 6.35 .16 .12 35.41 .29 .02 .01 101.36	57.50 .05 .93 .23 6.26 .15 .11 35.34 .24 .01 .00 100.81	57.56 .08 .98 .21 6.26 .11 .06 .35.11 .26 .05 .00 100.68	57.58 .08 .94 .21 6.44 .13 .13 35.45 .19 .01 .00 101.15	57.75 .07 .93 .23 6.24 .10 .05 35.41 .00 .01 100.99	57.74 .07 .93 .21 6.24 .15 .08 35.31 .25 .00 .00 100.97
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ca Na K K Kationen	1.967 .002 .040 .007 .179 .004 .002 1.798 .009 .002 .000 4.008	1.968 .002 .041 .007 .176 .003 1.795 .009 .001 .000 4.006	1.959 .002 .041 .007 .178 .005 .004 1.810 .009 .000 .001 4.016	1.960 .002 .008 .183 .003 .003 1.803 .010 .002 .000 4.015	1.964 .002 .041 .006 .179 .003 .003 1.804 .009 .002 .000 4.012	1.962 .002 .041 .007 .177 .003 .003 1.806 .010 .003 .000 4.014	1.965 .002 .006 .180 .004 .003 1.804 .003 1.804 .000 .000 4.011	1.967 .002 .041 .008 .173 .003 1.799 .009 .001 .000 4.007	1.967 .001 .006 .182 .003 .001 1.799 .008 .000 .000 4.008	1.969 .002 .006 .179 .003 .003 1.796 .009 .001 .009 .001 .000 4.007	1.967 .002 .007 .178 .004 .002 1.801 .007 .001 .000 4.009	1.966 .002 .006 .179 .004 .003 1.799 .009 .000 .000 4.008	1.972 .002 .006 .177 .002 .004 1.792 .009 .001 .000 4.004	1.970 .002 .005 .177 .003 .003 1.797 .009 .000 .000 4.005	1.966 .002 .038 .006 .181 .004 .003 1.797 .010 .001 4.011	1.967 .001 .006 .179 .004 .003 1.802 .009 .001 .000 4.010	1.970 .002 .006 .179 .003 .002 1.792 .010 .004 .000 4.007	1.965 .002 .038 .006 .184 .004 .003 1.803 .007 .001 .000 4.012	1.970 .002 .037 .006 .178 .003 .001 1.801 .008 .000 .000 4.006	1.971 .002 .037 .006 .178 .004 .002 1.797 .009 .000 .000 4.006
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	90.94 14.06 474	91.05 14.62 479	91.06 15.05 484	90.77 15.79 489	90.96 13.01 494	91.07 14.59 509	90.94 14.02 514	91.21 16.66 519	90.79 13.87 524	90.96 13.97 529	90.99 14.36 534	90.94 13.74 539	91.02 13.05 559	91.05 11.72 564	90.85 13.36 569	90.96 14.47 575	90.90 12.55 580	90.76 13.02 585	91.00 14.20 590	90.98 13.31 595

Probe: VG Profilname	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07	Profil-07
Profilpunkt	154	156	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse Gew%] SiO2 TiO2 Al2O3 Cr.Q3 FeO MnO NiO MgO CaO CaO K2O K2O X2 X2	57.85 .12 .92 .17 6.25 .11 .12 35.49 .23 .02 .00 101.28	57.64 .08 .90 .21 6.28 .13 .08 35.44 .27 .02 .00 101.04	57.88 .06 .89 .21 6.11 .08 .06 35.20 .25 .02 .00 100.77	57.76 .07 .20 6.27 .13 .11 35.15 .24 .02 .00 100.81	57.70 .08 .88 .16 6.18 .13 35.45 .24 .02 .00 100.97	57.78 .08 .87 .19 6.39 .12 .08 35.34 .26 .01 .00 101.10	57.88 .09 .86 .18 6.26 .16 .07 35.29 .24 .01 .01 .01	57.81 .11 .86 .17 6.34 .10 .09 35.34 .23 .01 .01 101.08	57.44 .08 .86 .17 6.31 .09 .06 35.25 .27 .03 .00 100.57	57.71 .05 .85 .16 6.39 .12 .09 35.45 .24 .01 .00 101.08	57.55 .09 .84 .17 6.39 .13 .09 35.48 .25 .02 .03 101.05	57.55 .06 .83 .19 6.33 .15 .12 35.25 .25 .01 .00 100.73	57.65 .06 .84 .17 6.29 .12 .09 35.33 .27 .01 .00 100.82	57.55 .11 .83 .17 6.27 .13 .09 35.51 .25 .02 .00 100.93	57.62 .09 .84 .18 6.36 .09 .09 35.40 .21 .00 .01 100.88	57.82 .09 .82 .18 6.28 .14 .07 35.09 .23 .02 .00 100.72	57.53 .07 .82 .18 6.47 .15 .10 35.30 .25 .02 .01 100.89	57.63 .09 .84 .18 6.49 .15 .06 35.25 .24 .00 .00 .100.94	57.55 .09 .82 .18 6.75 .11 .10 35.15 .22 .00 .00 .00	57.80 .05 .81 .21 6.62 .13 .08 35.21 .24 .00 .00 101.16
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Na K Ca Xa K tationen	1.969 .003 .037 .005 .178 .003 .003 1.801 .008 .001 .000 4.008	1.967 .002 .036 .006 .179 .004 .002 1.803 .010 .002 .000 4.011	1.977 .002 .036 .006 .175 .002 1.792 .009 .001 .000 4.001	1.975 .002 .035 .005 .179 .004 .003 1.791 .009 .001 .000 4.004	1.970 .002 .035 .004 .177 .004 .003 1.804 .009 .001 .000 4.009	1.971 .002 .035 .005 .182 .003 .002 1.797 .009 .000 .000 4.007	1.974 .002 .035 .005 .005 .002 1.794 .009 .001 4.005	1.972 .003 .035 .005 .181 .003 .002 1.797 .008 .001 4.006	1.969 .002 .035 .005 .181 .003 .002 1.802 .010 .002 .000 4.010	1.969 .001 .034 .003 .002 1.803 .009 .001 .000 4.010	1.966 .002 .034 .005 .183 .004 .002 1.807 .009 .001 .001 4.014	1.971 .002 .033 .005 .181 .004 .003 1.799 .009 .001 .000 4.009	1.971 .001 .034 .003 .003 1.801 .010 .000 4.008	1.967 .003 .033 .005 .179 .004 .002 1.809 .009 .002 .000 4.012	1.970 .002 .034 .003 .182 .003 .002 1.804 .008 .000 .001 4.009	1.978 .002 .033 .005 .180 .004 .002 1.789 .008 .001 .000 4.002	1.968 .002 .033 .005 .185 .004 .003 1.800 .009 .001 .000 4.011	1.970 .002 .034 .005 .186 .004 .002 1.796 .009 .000 4.008	1.969 .002 .033 .005 .193 .003 1.793 .008 .000 4.010	1.972 .001 .033 .006 .189 .004 .002 1.791 .000 .000 4.007
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	91.02	90.95	91.13	90.91	91.09	90.80	90.95	90.85	90.88	90.82	90.82	90.85	90.92	90.99	90.85	90.87	90.68	90.63	90.27	90.46
Cr #	11.09	13.35	13.69	13.15	11.09	12.59	12.11	11.93	11.93	11.13	11.94	13.58	11.80	12.26	12.70	12.74	12.66	12.74	12.74	14.71
Profilstrecke [µm]	600	610	620	625	630	635	640	645	650	655	660	665	670	675	680	685	690	695	701	706

Probe: VG				
Profilname	Profil-07	Profil-07	Profil-07	Profil-07
Profilpunkt	176	177	178	179
Mineral	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO ₂ TiO ₃ Gr ₂ O ₃ FeO MnO NiO NiO NiO NiO K ₂ O Z SiO ₂	57.60 .06 .85 .18 6.77 .11 .08 35.17 .25 .02 .00 101.08	57.27 .09 .81 .15 6.81 .17 .06 35.13 .23 .00 .00 100.72	57.50 .07 .82 .19 7.10 .19 .08 35.01 .20 .00 .00 101.16	57.01 .05 .72 .12 7.52 .19 .08 34.70 .01 .00 .01 100.57
Kationen- besetzung Si Ti Al Cr Fe ^{**} Mn Ni Mg Ca K K Σ Kationen Sauerstoffe	1.969 .002 .034 .005 .193 .003 .002 1.792 .009 .001 .000 4.011 6.000	1.966 .002 .033 .004 .196 .005 .002 1.798 .008 .000 4.013 6.000	1.968 .002 .033 .005 .002 1.786 .007 .000 4.012 6.000	1.967 .001 .003 .217 .006 .002 1.784 .005 .000 .001 4.016
Mg # Cr # Profilstrecke [µm]	90.26 12.75 711	90.19 11.22 716	89.78 13.23 721	89.16 10.31 726

Probe:	VG
Profil:	09
Mineral:	Орх
Kapitel:	Anhang II

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
20	1.901	1.641	29.281	12.266	0.539	0.195	0.579	1.218
70	1.955	1.774	30.588	15.495	0.511	0.083	1.124	2.111
120	1.526	1.636	31.373	16.094	0.434	0.113	0.397	1.507
170	2.131	1.669	30.818	13.526	0.513	0.191	0.517	1.507
220	1.981	1.572	29.145	11.751	0.380	0.106	0.709	1.465

Probe: VG Profilname	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09
Profilpunkt	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO3 TiO3 Cr203 FeO MnO NiO MgO CaO CaO K2O K2O K2O X2O	57.69 .04 .71 .16 7.15 .16 .08 34.90 .21 .01 .03 101.15	57.93 .05 .73 .17 7.09 .13 .11 34.96 .20 .00 .00 101.37	57.67 .07 .80 .18 7.05 .14 .02 35.01 .22 .04 .01 101.19	57.67 .05 .81 .18 6.77 .12 .04 34.97 .24 .02 .00 100.86	57.69 .06 .85 .19 6.66 .14 .06 .14 .06 .34.87 .25 .03 .00 100.81	57.65 .07 .86 .17 6.51 .11 .09 34.83 .21 .04 .00 100.55	57.78 .07 .90 .24 6.70 .16 .10 34.82 .23 .02 .01 101.01	57.70 .09 .87 .18 6.74 .15 .07 35.11 .22 .02 .00 101.14	57.56 .08 .88 .20 6.78 .13 .03 35.00 .27 .00 .00 100.93	57.70 .09 .87 .20 6.62 .11 .03 35.08 .21 .04 .00 100.93	57.79 .08 .85 .18 6.57 .13 .06 35.02 .24 .02 .00 100.94	57.78 .07 .86 .17 6.70 .08 35.10 .23 .05 .01 101.14	57.82 .06 .85 .15 6.34 .13 .07 35.22 .26 .04 .04 .00 100.93	57.95 .07 .87 .18 6.55 .09 .12 35.07 .25 .00 .00 101.15	57.84 .08 .88 .15 6.52 .11 .11 35.09 .22 .02 .01 101.02	57.85 .09 .87 .15 6.35 .12 .10 35.12 .24 .03 .01 100.90	57.68 .10 .89 .14 6.54 .16 .09 35.13 .24 .03 .00 100.98	57.78 .07 .95 .16 6.50 .10 .08 35.22 .26 .01 .01 .00 101.12	57.67 .07 .88 .13 6.48 .07 .09 35.00 .26 .00 .00 100.66	57.99 .08 .87 .16 6.55 .13 .09 35.16 .26 .06 .03 101.39
Kationen- besetzung Si Ti Al Cr Fre ⁴⁺ Mn Ni Mg Ca Na K Xionen	1.974 .001 .029 .004 .205 .005 .002 1.780 .008 .001 .001 4.009	1.976 .001 .005 .202 .004 .003 1.778 .007 .000 .000 4.006	1.971 .002 .005 .201 .004 .001 1.784 .008 .002 .000 4.010	1.974 .001 .003 .005 .194 .003 .001 1.785 .009 .001 .000 4.006	1.976 .002 .034 .005 .191 .004 .002 1.780 .002 .000 4.004	1.977 .002 .035 .005 .187 .003 .08 .002 1.781 .008 .002 .000 4.002	1.975 .002 .006 .005 .003 1.774 .008 .001 .000 4.002	1.970 .002 .005 .192 .004 .002 1.788 .008 .001 .000 4.008	1.970 .002 .036 .005 .194 .004 .001 1.786 .010 .000 .000 4.007	1.973 .002 .005 .005 .189 .003 .001 1.788 .008 .003 .000 4.006	1.975 .002 .034 .005 .188 .004 .002 1.784 .009 .001 .000 4.004	1.972 .002 .005 .005 .191 .003 .002 1.787 .008 .003 .000 4.008	1.975 .001 .004 .004 .181 .002 1.793 .010 .003 .000 4.006	1.976 .002 .005 .005 .187 .003 .003 1.783 .009 .000 4.002	1.975 .002 .035 .004 .186 .003 .033 1.786 .003 .003 .000 4.004	1.976 .002 .035 .004 .181 .003 .003 1.788 .009 .002 .000 4.003	1.971 .002 .004 .004 .187 .005 .002 1.790 .002 .009 .002 .000 4.008	1.971 .002 .038 .004 .185 .003 .002 1.791 .009 .001 .000 4.006	1.975 .002 .035 .004 .186 .002 .002 1.787 .010 .000 .000 4.003	1.974 .002 .035 .004 .186 .004 .003 1.784 .009 .004 .001 4.007
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	89.69 12.99 5	89.79 13.70 10	89.85 13.19 15	90.21 13.05 20	90.32 13.29 25	90.51 11.49 30	90.25 15.12 35	90.28 11.85 40	90.20 13.01 45	90.43 13.12 51	90.48 12.23 56	90.33 11.61 61	90.83 10.69 66	90.51 11.85 71	90.56 10.12 76	90.79 10.13 81	90.54 9.52 86	90.62 9.89 91	90.59 9.28 96	90.54 10.89 101

Probe: VG	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00	Drofil 00 l	Drofil 00
Profilpunkt	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse Gew%] SiO2 A2O3 Cr.O3 FeO MnO NiO NiO CaO CaO CaO K2O K2O X2O X2O	57.70 .07 .89 .17 6.50 .11 .12 .34.99 .23 .03 .01 100.82	58.03 .07 .13 6.37 .07 35.42 .23 .00 .02 101.26	57.98 .07 .20 6.49 .12 .11 34.98 .27 .03 .01 101.11	57.66 .09 .89 .19 6.47 .10 .08 35.15 .22 .02 .02 .00 100.86	57.69 .06 .88 .18 6.54 .12 .07 34.99 .24 .01 .01 100.77	57.70 .08 .88 .21 6.35 .10 35.05 .26 .01 .03 100.81	57.56 .09 .89 .19 6.39 .15 .06 35.15 .25 .04 .00 100.77	57.53 .07 .90 .20 6.49 .11 35.16 .25 .02 .00 100.87	57.65 .07 .88 .20 6.39 .10 .07 34.96 .25 .03 .02 100.61	57.45 .07 .89 .20 6.72 .12 .09 35.20 .26 .03 .00 101.03	57.77 .09 .88 .19 6.67 .14 .12 35.09 .26 .03 .00 101.25	57.61 .09 .88 .16 6.59 .13 .08 35.14 .27 .02 .01 100.97	57.61 .07 .91 .20 6.71 .08 35.07 .24 .02 .00 101.01	57.72 .05 .92 .20 6.56 .14 .07 35.05 .23 .00 .00 .00	57.78 .07 .90 .22 6.59 .17 .08 35.09 .23 .00 .00 101.13	57.64 .07 .93 .19 6.69 .05 35.02 .26 .03 .00 100.96	57.53 .08 .91 .17 6.57 .11 .10 34.94 .24 .01 .01 100.67	57.47 .06 .89 .21 6.72 .05 34.92 .25 .01 .01 100.68	57.58 .04 .86 .21 6.83 .15 5.08 35.03 .24 .00 101.05	57.57 .05 .88 .25 6.68 .12 .09 34.91 .22 .00 .03 100.78
Kationen- besetzung Si Ti Cr F F^{2^*} Mn Ni Mg Ca Na K Σ Kationen Sauerstoffe	1.974 .002 .036 .005 .186 .003 1.785 .008 .002 .000 4.005 6.000	1.974 .002 .035 .003 .181 .002 1.796 .008 .000 .001 4.005	1.978 .002 .035 .185 .003 .003 1.779 .010 .002 .000 4.002 6.000	1.972 .036 .005 .185 .003 .002 1.792 .008 .001 .000 4.006	1.975 .001 .005 .187 .004 .002 1.785 .009 .000 .000 4.004	1.974 .002 .006 .182 .004 .003 1.788 .010 .001 .001 4.004 6.000	1.970 .002 .036 .005 .183 .004 .002 1.794 .009 .003 .000 4.008	1.969 .002 .036 .005 .186 .004 .004 .009 .001 .000 4.009 6.000	1.975 .002 .005 .183 .003 .002 1.786 .009 .002 .001 4.004 6.000	1.965 .002 .036 .005 .192 .004 .002 1.795 .009 .002 .000 4.013 6.000	1.971 .002 .036 .005 .190 .004 .003 1.785 .010 .002 .000 4.008 6.000	1.970 .002 .004 .188 .004 .791 .010 .001 .001 .000 4.009	1.970 .002 .037 .005 .192 .003 .002 1.787 .009 .001 .000 4.008	1.973 .001 .005 .187 .004 .002 1.786 .008 .000 .000 4.005	1.972 .036 .006 .188 .005 .002 1.785 .008 .000 .000 4.005	1.971 .002 .037 .005 .191 .003 .001 1.785 .009 .002 .000 4.007	1.972 .002 .035 .188 .003 .003 1.786 .009 .000 .000 4.006	1.971 .002 .006 .193 .003 .001 1.785 .009 .001 .000 4.007	1.970 .001 .006 .195 .004 .002 1.786 .009 .002 .000 4.010 6.000	1.973 .001 .005 .007 .191 .004 .002 1.783 .008 .000 .001 4.006
Mg # Cr #	90.56 11.24	90.84 9.14	90.57 13.25	90.64 12.33	90.52 12.02	90.78 13.49	90.75 12.42	90.62 13.02	90.71 13.27	90.33 13.30	90.36 12.37	90.48 11.07	90.31 12.78	90.50 12.51	90.47 14.18	90.33 11.87	90.45 11.18	90.25 13.72	90.14 14.02	90.31 15.98
Profilstrecke [µm]	111	110	121	126	132	137	142	147	152	15/	102	107	172	177	162	167	192	197	202	207

Probe: VG			
Profilname	Profil-09	Profil-09	Profil-09
Profilpunkt	49	50	51
Mineral	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO CaO K2O K2O	57.70 .04 .84 .23 6.86 .15 .04 34.92 .24 .00 .01 101.01	57.57 .06 .79 .21 6.75 .16 .08 34.94 .24 .01 .00 100.80	57.81 .06 .73 .17 6.58 .18 .06 34.80 .02 .00 100.67
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{besetzung}\\ Si\\Ti\\Al\\Cr\\Fe^{r+}\\Mn\\Ni\\Mg\\Ca\\Na\\K\\\Sigma Kationen\\ Sauerstoffe \end{array}$	1.974 .001 .034 .006 .196 .004 .001 1.781 .009 .000 4.006 6.000	1.973 .002 .032 .006 .194 .004 .002 1.785 .009 .001 .000 4.007 6.000	1.981 .002 .029 .005 .005 .005 .005 .010 .011 .778 .010 .001 4.001
Mg # Cr # Profilstrecke [µm]	90.08 15.39 212	90.22 14.89 218	90.40 13.58 223

Probe:	VG
Profil:	14
Mineral:	OI
Kapitel:	Anhang II

Profil- strecke [µm]	P [µg/g]	Sc [yg/g]	Co [bd]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
25	29.959	2.207	89.358	3.870	1.839	0.147	1.297	0.661
74	30.439	1.736	92.138	5.453	0.958	0.038	2.418	1.172
125	36.870	1.988	93.912	8.069	1.641	0.130	2.220	0.821
174	35.029	1.785	95.001	6.253	2.022	0.176	1.081	1.035
224	28.088	1.660	93.693	5.477	1.723	0.213	1.760	1.036

Probe: VG Profilname	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14 I	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14
Profilpunkt	30	31	32	33	34	35	36	37	38	39	40	41	42	43	45	46	47	48	49	50
Mineral	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	ОІ
Analyse [Gew%] SiO ₂ A ₂ O ₃ Cr,O ₃ FeO MnO NiO MgO CaO Na ₂ O K ₂ O ∑ ∑	40.54 .01 .05 10.30 .17 .35 49.40 .03 .01 .02 100.88	40.49 .01 .00 .00 10.67 .16 .40 49.33 .00 .00 101.08	40.57 0.1 0.1 10.59 .16 38 49.34 0.01 0.01 101.09	40.67 .02 .01 .17 .38 49.45 .00 .00 .00 101.32	40.35 .00 .03 10.73 .18 .39 49.42 .00 .02 .01 101.14	40.64 .01 .00 10.68 .18 .36 49.24 .02 .00 .00 101.12	40.58 .00 .00 10.70 .15 .40 49.35 .00 .01 .00 101.20	40.48 .00 .01 .02 10.69 .20 .43 49.29 .00 .00 .01 101.13	40.45 .00 .00 10.73 .13 .44 49.55 .00 .00 .00 101.31	40.43 01 00 02 10.71 .13 .38 49.33 01 .00 0.1 101.03	40.68 .02 .01 .00 10.59 .17 .42 49.27 .00 .00 .02 101.16	40.56 01 .00 10.65 .18 .44 49.35 .01 .00 .00 101.19	40.57 00 01 0.94 .19 .42 49.40 0.1 02 .00 101.55	40.36 .00 .00 10.75 .18 .38 49.49 .00 .00 .00 101.18	40.17 .01 .00 10.45 .17 .44 49.31 .00 .02 .00 100.58	40.36 01 01 10.70 .22 .36 49.35 .00 .00 .00 101.00	40.19 .02 .01 .03 10.73 .19 .38 49.53 .00 .01 .00 101.09	40.32 .01 .00 .00 10.41 .17 .44 49.30 .01 .00 .01 100.65	40.38 .04 .00 .03 10.64 .16 .45 .49.21 .00 .00 .01 100.93	40.51 .01 .00 .11 10.70 .16 .42 49.37 .01 .00 .02 101.20
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Xa K ∑ Kationen Sauerstoffe	.989 .000 .001 .210 .004 .007 1.797 .001 .001 3.010 4.000	.988 .000 .000 .003 .003 .008 1.794 .001 .000 .000 3.012 4.000	.989 .000 .000 .216 .003 .008 1.794 .000 .000 .000 3.011 4.000	.989 .000 .000 .000 .003 .007 1.793 .000 .000 .000 3.010 4.000	.985 .000 .001 .011 .004 .008 1.798 .000 .001 .000 3.016 4.000	.991 .000 .000 .218 .004 .007 1.789 .001 .000 .000 3.009 4.000	.989 .000 .000 .018 .003 .008 1.793 .000 .001 .000 3.011 4.000	.988 .000 .000 .000 .004 .004 .009 1.793 .000 .000 .000 3.012 4.000	.985 .000 .000 .003 .009 1.799 .000 .000 .000 3.015 4.000	.987 .000 .000 .019 .003 .008 1.795 .000 .000 .000 3.013 4.000	.991 .000 .000 .003 .003 .008 1.789 .000 .000 .000 3.009 4.000	.989 .000 .000 .217 .004 .009 1.793 .000 .000 .000 3.011 4.000	.987 .000 .000 .223 .004 .008 1.791 .000 .001 .001 .000 3.014	.985 .000 .000 .000 .004 .008 1.800 .000 .000 .000 3.015 4.000	.985 .000 .000 .214 .003 .009 1.802 .000 .001 .001 3.015	.986 .000 .000 .005 .007 1.797 .000 .000 .000 3.014 4.000	.982 .000 .001 .011 .004 .008 1.804 .000 .000 .000 3.018 4.000	.987 .000 .000 .213 .003 1.800 .000 .000 .000 3.013 4.000	.987 .001 .000 .000 .218 .003 .009 1.794 .000 .000 .000 3.012 4.000	.988 .000 .000 .218 .003 .008 1.794 .000 .000 3.013 4.000
Mg # Profilstrecke [µm]	89.53 10	89.18 15	89.25 20	89.26 25	89.14 30	89.15 35	89.16 40	89.15 45	89.16 51	89.15 56	89.24 61	89.20 66	88.95 71	89.14 76	89.37 86	89.16 91	89.17 96	89.41 101	89.18 106	89.16 111

Probe: VG																				
Profilname	Profil-14 I	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14 I	Profil-14													
Profilpunkt	51	52	53	54	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73
Mineral	OI	01	01	01	01	01	01	OI	OI	01	01	OI	01	01	OI	OI	01	01	OI	01
Analyse																				
[Gew%] SiO ₂	40.15	40.19	40.55	40.55	40.31	40.47	40.24	40.21	40.50	40.46	40.39	40.29	40.60	40.32	40.20	40.62	40.63	40.50	40.46	40.31
TiO ₂	.02	.00	.01	.01	.00	.00	.03	.01	.00	.00	.03	.03	.03	.00	.03	.02	.01	.02	.02	.00
Cr ₂ O ₃	.00	.01	.00	.01	.00	.00	.02	.01	.00	.01	.01	.01	.01	.01	.00	.00	.01	.01	.01	.00
FeO MpO	10.80	10.89	10.46	10.61	10.84	10.73	10.44	10.75	10.82	10.60	10.77	10.77	10.58	10.62	10.51	10.56	10.65	10.41	10.45	10.42
NiO	.37	.41	.47	.40	.46	.33	.40	.41	.39	.44	.38	.38	.49	.41	.38	.45	.43	.41	.44	.43
MgO CaO	49.43	49.42	49.20	49.35	49.31	49.38	48.53	49.46	49.43	49.38	49.31	49.31	49.34	49.39	49.28	49.28	49.38	49.22	49.51	49.53
Na ₂ O	.00	.00	.00	.00	.00	.00	.03	.00	.00	.00	.00	.00	.00	.01	.00	.00	.02	.00	.04	.00
K ₂ O 5	.00	.01	.00	.01	.01	.00	00. 88 99	.00	.00	.01	.00	.00	.00	.00	.00	.00	.02	.00	.02	.00
Kationen- besetzung Si Ti Al Cr Fe ²⁴ Mn Ni Mg Ca Na K X X	.982 .000 .000 .221 .003 .007 1.803 .000 .001 .001	.982 .000 .000 .223 .003 .008 1.801 .000 .000 .000	.991 .000 .000 .214 .003 .009 1.792 .000 .000 .000	.989 .000 .000 .216 .003 .008 1.794 .000 .000 .000	.985 .000 .000 .222 .003 .009 1.796 .000 .000 .000	.987 .000 .000 .219 .003 .006 1.796 .000 .000 .000	.993 .000 .001 .215 .003 .008 1.785 .000 .001 .001	.983 .000 .000 .220 .003 .008 1.802 .000 .000 .000	.986 .000 .000 .220 .005 .008 1.794 .000 .001 .001	.987 .000 .000 .216 .003 .009 1.796 .000 .000 .000	.986 .001 .000 .220 .003 .008 1.795 .000 .000 .000	.985 .000 .000 .220 .004 .007 1.797 .000 .000 .000	.989 .001 .000 .215 .003 .010 1.792 .000 .000 .000	.985 .000 .000 .217 .003 .008 1.800 .000 .000 .000	.986 .001 .000 .215 .003 .007 1.801 .000 .000 .000	.990 .000 .000 .215 .004 .009 1.791 .000 .000 .000	.989 .000 .000 .217 .004 .008 1.792 .000 .000 .000	.990 .000 .000 .213 .002 .008 1.795 .000 .000 .000	.986 .000 .000 .213 .003 .009 1.799 .001 .000 .000	.985 .000 .000 .213 .003 .008 1.804 .001 .000 .000
ZRationen	3.016	3.010	3.009	3.011	3.015	3.013	3.007	3.017	3.014	3.013	3.013	3.015	3.010	3.015	3.014	3.010	3.011	3.009	3.013	3.015
Sauerstoffe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Mg #	89.08	89.00	89.35	89.24	89.02	89.13	89.23	89.13	89.06	89.25	89.09	89.08	89.27	89.24	89.32	89.27	89.21	89.40	89.42	89.44
Profilstrecke [um]	116	121	126	132	152	157	162	167	172	177	182	187	192	197	202	207	212	218	223	228

Probe:	VG
Profil:	18
Mineral:	Орх
Kapitel:	2.2

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
30	1.598	1.325	30.382	16.776	0.317	0.160	0.824	1.728
81	1.968	1.373	31.724	17.295	0.378	0.097	0.334	1.889
130	2.024	1.291	32.982	17.801	0.298	0.077	0.419	1.187
180	2.287	1.238	32.313	17.620	0.614	0.093	0.500	1.962
230	2.924	1.255	32.583	17.819	0.447	0.138	0.575	1.385
280	2.245	1.373	32.439	16.619	0.509	0.144	0.751	1.605
330	2.530	1.451	32.404	16.547	0.415	0.171	0.553	0.906
380	2.375	1.341	32.598	16.634	0.211	0.121	0.920	0.598
429	2.893	1.311	32.403	16.556	0.548	0.103	0.468	1.918
530	2.641	1.414	32.081	17.654	0.510	0.112	0.638	1.733
580	2.366	1.340	33.073	18.046	0.782	0.113	0.806	2.394
630	2.350	1.436	32.142	16.535	0.396	0.119	0.523	1.380
680	1.428	1.525	32.134	16.186	0.337	0.018	0.805	1.478
730	1.733	1.426	32.009	14.828	0.240	0.103	0.773	1.091
780	1.942	1.564	31.007	18.115	0.224	0.157	0.879	0.580
830	1.834	1.724	31.358	17.318	0.546	0.072	0.468	2.251

Probe: VG Profilname	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18 I	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18
Profilpunkt	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO3 TiO3 Gr203 FeO MnO NiO MgO CaO CaO K2Ó K2Ó	57.50 .08 .78 .18 6.49 .13 .06 35.22 .22 .01 .00 100.66	57.07 .04 .79 .18 6.15 .12 .09 35.30 .21 .00 .01 99.97	57.70 .06 .80 .19 6.35 .12 .01 35.37 .20 .01 .01 .00 100.81	57.24 .07 .20 6.15 .13 .10 35.47 .20 0.00 .00 100.34	57.84 .10 .76 .17 6.16 .10 .13 35.61 .20 .01 .01 .02 101.10	57.61 .09 .77 .18 5.99 .11 .06 35.69 .20 .03 .03 .00 100.73	57.75 .07 .76 .20 6.02 .13 .12 35.42 .21 .00 .00 100.68	57.61 .08 .77 .22 6.27 .15 .09 35.51 .22 .01 .01 .01 100.92	57.39 .06 .77 .19 6.06 .09 .11 35.37 .22 .01 .00 100.28	57.22 .07 .78 .23 6.05 .13 .04 35.35 .24 .01 .00 100.12	56.97 .08 .83 .24 6.07 .15 .07 35.47 .21 .02 .00 100.09	57.50 .09 .79 .27 6.16 .11 .11 .35.47 .24 .03 .01 100.77	57.09 .10 .79 .27 5.98 .13 .05 35.28 .25 .02 .00 99.94	57.65 .07 .80 .28 5.95 .07 .10 35.40 .25 .02 .00 100.59	57.43 .07 .86 .25 6.16 .14 .07 35.55 .20 .05 .01 100.79	57.06 .05 .82 .26 5.98 .10 .11 35.42 .25 .01 .00 100.05	57.47 .08 .83 .23 6.22 .14 .07 35.46 .22 .02 .02 100.75	57.51 .08 .82 .25 6.16 .15 .08 35.36 .22 .03 .00 100.66	56.85 .06 .85 .24 6.23 .11 .07 35.30 .20 .02 .01 99.94	57.32 .09 .86 .27 5.93 .09 35.46 .22 .01 .00 100.32
Kationen- besetzung Si Ti Al Cr, Fe ²⁺ Mn Ni Mg Ca Na K Xationen	1.971 .002 .031 .005 .186 .004 .002 1.800 .008 .000 .000 4.009	1.968 .001 .005 .177 .004 .003 1.815 .008 .000 .000 4.013	1.973 .002 .005 .182 .004 .000 1.803 .007 .000 .000 4.007	1.967 .002 .031 .005 .177 .004 .003 1.817 .007 .000 .000 4.013	1.971 .003 .005 .176 .003 .004 1.809 .007 .001 .001 4.009	1.969 .002 .031 .005 .171 .003 .002 1.818 .007 .002 .000 4.011	1.975 .002 .005 .172 .004 .003 1.806 .008 .000 .000 4.005	1.969 .002 .031 .006 .179 .004 .002 1.809 .008 .000 .000 4.011	1.971 .001 .005 .174 .003 .003 1.811 .008 .001 .000 4.009	1.969 .002 .006 .174 .004 .001 1.813 .009 .001 .000 4.011	1.962 .002 .034 .006 .175 .004 .002 1.822 .008 .001 .000 4.016	1.967 .002 .007 .176 .003 .003 1.810 .009 .002 .000 4.012	1.968 .003 .007 .172 .004 .001 1.813 .009 .001 .000 4.011	1.973 .002 .008 .170 .002 .003 1.806 .009 .001 .000 4.006	1.965 .002 .035 .007 .176 .004 .002 1.813 .007 .003 .000 4.015	1.965 .001 .033 .007 .172 .003 .003 1.819 .009 .001 .000 4.014	1.967 .002 .033 .006 .178 .004 .002 1.809 .008 .001 .001 4.012	1.969 .002 .033 .007 .177 .004 .002 1.805 .008 .002 .000 4.009	1.963 .001 .034 .007 .180 .003 .002 1.817 .008 .002 .001 4.017	1.967 .002 .035 .007 .170 .003 1.815 .008 .000 .000 4.010
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	90.63 13.13 5	91.10 13.20 15	90.84 14.00 25	91.13 14.60 35	91.15 13.21 45	91.39 13.80 55	91.29 14.82 65	90.99 16.09 75	91.23 14.15 85	91.24 16.42 95	91.25 16.20 105	91.13 18.63 115	91.32 18.56 125	91.38 19.25 135	91.14 16.10 145	91.35 17.71 155	91.05 15.92 165	91.09 17.15 176	90.99 16.00 186	91.43 17.10 196

Probe: VG Profilname	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18 I	Profil-18	Profil-18
Profilpunkt	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 Al2O3 CF,O3 FeO MnO NiO MgO CaO CaO K2O K2O	57.10 .06 .84 .27 5.99 .10 .06 35.49 .24 .00 .00 100.14	57.04 .08 .85 .25 6.15 .12 .10 35.52 .26 .03 .00 100.39	57.12 .05 .86 .24 6.15 .10 .14 35.34 .24 .00 .00 100.23	57.22 .09 .86 .24 6.03 .11 35.33 .22 .02 .01 100.28	57.18 .05 .82 .24 6.17 .08 .07 35.43 .24 .05 .01 100.32	57.47 .08 .87 .27 6.00 .17 .07 35.31 .21 .02 .00 100.48	57.57 .08 .86 .29 6.07 .11 .06 35.31 .21 .01 .00 100.55	57.41 .08 .86 .26 6.15 .14 .09 35.28 .24 .02 .01 100.52	57.54 .10 .86 .25 6.03 .11 .10 35.52 .24 .02 .00 100.76	57.53 .07 .85 .26 6.04 .16 .05 35.51 .25 .02 .01 100.76	57.60 .09 .85 .27 6.16 .11 .12 35.48 .25 .03 .00 100.95	57.69 .84 .27 6.02 .14 .13 35.42 .24 .02 .00 100.84	57.58 .07 .85 .29 6.25 .09 .08 35.51 .23 .02 .01 100.99	57.41 .09 .84 .30 6.15 .15 .09 35.45 .22 .01 .00 100.69	57.66 .08 .83 .26 6.19 .09 .11 35.42 .23 .02 .00 100.88	57.74 .07 .86 .28 6.21 .13 .08 35.55 .23 .02 .01 101.17	57.59 .10 .84 .25 6.16 .13 .07 35.50 .23 .02 .00 100.90	57.59 .09 .80 .25 6.06 .10 .09 35.33 .21 .00 .00 100.52	57.22 .07 .83 .22 5.85 .11 .10 35.26 .23 .01 .00 99.90	57.71 .08 .84 .26 6.10 .16 .11 35.48 .24 .01 .00 100.96
Kationen- besetzung Si Ti Al Cr Fre ²⁺ Mn Mg Ca Na K K Kationen Sauerstoffe	1.964 .002 .034 .007 .172 .003 .002 1.820 .000 .000 4.013 6.000	1.961 .002 .034 .007 .177 .003 .003 .003 .009 .002 .000 4.018 6.000	1.965 .001 .035 .006 .177 .003 .004 1.813 .009 .000 4.013 6.000	1.967 .002 .035 .006 .173 .005 .003 1.810 .008 .002 .001 4.012 6.000	1.965 .001 .033 .007 .177 .002 .002 1.815 .009 .003 .000 4.015	1.970 .002 .035 .007 .172 .005 .002 1.804 .008 .001 .000 4.007	1.972 .002 .008 .174 .003 .002 1.803 .008 .001 .000 4.005	1.969 .002 .035 .007 .176 .004 .003 1.804 .009 .001 .000 4.009	1.967 .002 .035 .007 .172 .003 .003 1.810 .009 .001 .000 4.010	1.967 .002 .034 .007 .173 .005 .001 1.810 .009 .001 4.011 4.011	1.967 .002 .034 .007 .176 .003 .003 .003 .009 .002 .000 4.011 6.000	1.971 .002 .034 .007 .172 .004 1.804 .004 1.804 .009 .001 .000 4.007	1.966 .002 .034 .008 .178 .003 .002 1.808 .009 .001 4.012 6.000	1.966 .002 .034 .008 .176 .004 .002 1.809 .008 .000 4.011 6.000	1.970 .002 .033 .007 .177 .002 .003 1.804 .008 .001 .000 4.008	1.968 .002 .034 .008 .177 .004 .002 1.806 .008 .001 .000 4.010	1.968 .002 .034 .007 .176 .004 .002 1.808 .009 .001 .000 4.010	1.973 .002 .007 .174 .003 .003 1.805 .008 .000 4.005 6.000	1.971 .002 .034 .006 .169 .003 .003 .003 1.811 .009 .001 .000 4.008	1.970 .002 .034 .007 .174 .003 .003 1.805 .009 .001 .000 4.008
Mg # Cr # Profilstrecke [µm]	91.36 17.90 206	91.14 16.56 216	91.10 15.69 226	91.27 15.52 236	91.10 16.47 246	91.30 17.29 256	91.20 18.26 266	91.10 16.73 276	91.30 16.29 286	91.29 16.96 296	91.12 17.58 306	91.29 17.63 316	91.01 18.52 326	91.13 19.15 336	91.08 17.57 346	91.07 18.05 356	91.13 16.68 366	91.22 17.65 376	91.48 14.99 386	91.21 17.02 396

Probe: VG Profilname	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18	Profil-18
Profilpunkt	50	51	52	53	54	57	58	59	60	61	62	63	64	66	67	68	69	70	71	72
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO3 TiO3 Gr203 FeO MnO NiO MgO CaO CaO K2Ó K2Ó	57.66 .04 .85 .24 6.28 .11 .01 35.49 .23 .04 .01 100.96	57.50 .05 .85 .27 6.25 .10 .06 35.24 .23 .03 .01 100.55	57.62 .08 .83 .22 6.15 .11 .06 35.44 .01 .01 .00 100.75	57.60 .06 .26 6.04 .15 .08 35.43 .24 .02 .01 100.75	57.62 .06 .85 .21 .10 .35.57 .22 .00 .00 101.04	57.59 .08 .88 .25 6.05 .14 .10 35.41 .20 .00 .02 100.72	57.72 .05 .84 .21 6.10 .12 .08 35.44 .02 .00 100.80	57.59 .05 .87 .24 6.04 .12 .09 35.45 .24 .00 .00 100.67	57.90 .07 .85 .24 6.21 .12 .09 35.44 .22 .00 .00 101.13	58.03 .08 .87 .25 6.04 .16 .08 35.48 .26 .01 .00 101.26	57.84 .06 .82 .19 6.17 .14 .13 35.54 .20 .00 .00 101.08	57.32 07 .90 .26 6.07 .14 .08 35.50 .24 .00 .00 100.59	58.22 .08 .86 .20 6.15 .09 .07 35.62 .24 .03 .00 101.55	58.04 .06 .88 .24 6.17 .12 .08 35.63 .25 .02 .00 101.48	56.98 .07 .86 .19 6.03 .08 35.42 .24 .01 .01 99.95	56.90 .09 .86 .21 6.10 .14 .12 35.11 .27 .02 .01 99.81	58.13 .08 .85 .22 6.16 .16 .12 35.93 .24 .01 .01 101.90	57.77 .07 .85 .20 6.32 .10 .14 35.55 .24 .02 .00 101.26	57.53 .08 .84 .18 6.09 .12 .07 35.60 .22 .01 .01 100.74	58.38 .07 .85 .19 6.08 .15 .12 35.85 .25 .02 .01 101.98
Kationen- besetzung Si Ti Al Cr. Fe ⁴⁺ Mn Ni Mg Ca Na K Xationen	1.969 .001 .034 .006 .179 .003 .000 1.807 .008 .003 .000 4.011	1.971 .001 .007 .179 .003 .002 1.801 .008 .002 .000 4.008	1.970 .002 .033 .006 .176 .003 .002 1.806 .008 .001 .000 4.008	1.969 .002 .035 .007 .173 .004 .002 1.806 .009 .001 .000 4.009	1.967 .002 .034 .006 .180 .003 .003 1.810 .003 .000 .000 4.012	1.970 .002 .035 .007 .173 .004 .003 1.806 .007 .000 .001 4.008	1.972 .001 .034 .006 .174 .003 .002 1.805 .009 .001 .000 4.007	1.970 .001 .006 .173 .003 .002 1.808 .009 .000 .000 4.008	1.972 .002 .034 .006 .177 .003 .003 1.800 .008 .000 .000 4.006	1.973 .002 .035 .007 .172 .005 .002 1.799 .010 .001 .000 4.004	1.972 .001 .035 .176 .004 .003 1.806 .007 .000 .000 4.008	1.964 .002 .007 .174 .004 .002 1.814 .009 .000 .000 4.012	1.974 .002 .034 .005 .174 .003 .002 1.800 .009 .002 .000 4.005	1.971 .001 .006 .175 .003 .002 1.803 .009 .001 .000 4.008	1.964 .002 .005 .174 .002 1.820 .009 .000 .000 4.014	1.966 .002 .035 .006 .176 .004 .003 1.808 .010 .001 4.012	1.966 .002 .034 .006 .174 .005 .003 1.812 .009 .001 .000 4.012	1.968 .002 .034 .005 .180 .003 .004 1.805 .009 .002 .000 4.011	1.967 .002 .034 .005 .174 .003 .002 1.815 .008 .001 .001 4.012	1.972 .002 .034 .005 .172 .004 .003 1.805 .009 .001 .000 4.008
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	90.97 16.00 406	90.95 17.49 416	91.13 15.20 426	91.27 16.92 436	90.97 14.13 446	91.25 16.11 476	91.20 14.52 486	91.27 15.39 496	91.05 16.06 507	91.29 16.05 517	91.13 13.36 527	91.25 16.06 537	91.17 13.22 547	91.14 15.51 567	91.29 12.87 577	91.12 14.05 587	91.22 14.65 597	90.93 13.51 607	91.25 12.80 617	91.32 13.05 627

Probe: VG	Drofil 19	Drofil 19	Drofil 19	Drofil 19	Drofil 19	Drofil 19 I	Drofil 19	Drofil 19	Drofil 19	Drofil 19	Drofil 19	Drofil 19	Drofil 19	Drofil 19	Drofil 19	Drofil 19	Drofil 19	Drofil 19	Drofil 19 I	Drofil 19
Profilpunkt	73	74	75	76	77	78	79	80	82	83	84	85	86	88	89	90	91	92	93	94
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse Gew%] SiO2 A2O3 Cr.O3 FeO MnO NiO MgO CaO CaO K2O K2O X2O	57.69 .08 .81 .19 6.13 .15 .07 35.61 .23 .00 .00 100.97	57.42 .07 .85 .17 6.12 .11 .08 35.36 .24 .02 .00 100.44	58.22 .08 .86 .18 6.27 .14 .07 35.65 .24 .01 .00 101.73	57.17 .09 .84 .17 6.33 .11 35.47 .27 .06 .00 100.64	58.07 .10 .83 .18 6.31 .14 .09 35.83 .28 .03 .01 101.85	58.18 .06 .86 .17 6.22 .14 .10 35.71 .26 .02 .02 101.73	56.69 .08 .19 6.08 .06 35.04 .25 .01 .00 99.30	57.16 .10 .86 .16 .09 .13 .08 35.24 .27 .01 .00 100.10	57.30 .09 .89 .18 6.13 .12 35.49 .25 .02 .00 100.58	57.51 .10 .87 .16 6.16 .11 .09 35.45 .26 .02 .02 100.74	57.19 .08 .90 .18 6.21 .14 .09 35.19 .25 .00 .00 100.21	57.07 .07 .86 .19 6.20 .10 .09 35.10 .26 .03 .00 99.98	58.00 .09 .91 .16 6.42 .12 .08 35.78 .02 .00 101.82	57.04 .09 .92 .17 6.19 .10 .08 35.13 .25 .02 .01 100.00	57.43 .07 .93 .22 6.35 .12 .09 35.23 .27 .02 .01 100.71	57.99 .08 .93 .19 6.34 .12 .13 35.64 .25 .02 .00 101.67	57.79 .08 .95 .18 6.29 .10 .06 35.39 .26 .02 .01 101.12	57.90 .08 .94 .20 6.45 .13 .09 35.75 .25 .01 .00 101.79	57.75 .09 .96 .19 6.56 .12 .10 35.37 .24 .01 .00 101.40	56.93 .07 .91 6.42 .12 .07 34.83 .22 .00 .00 99.75
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Kationen	1.969 .002 .033 .005 .175 .004 .002 1.812 .008 .000 .000 4.010	1.969 .002 .035 .004 .176 .002 1.808 .009 .002 .000 4.010	1.972 .003 .034 .005 .178 .004 .002 1.800 .009 .001 .000 4.007	1.961 .002 .034 .005 .182 .004 .003 1.814 .010 .004 .000 4.019	1.967 .003 .005 .179 .004 .002 1.809 .010 .002 4.013	1.971 .034 .004 .176 .003 1.803 .010 .001 4.009	1.967 .002 .035 .005 .176 .002 .002 1.812 .009 .000 .000 4.011	1.968 .002 .035 .004 .175 .004 .002 1.809 .010 .001 4.010	1.964 .002 .036 .005 .176 .003 1.813 .009 .000 4.014	1.968 .002 .035 .004 .176 .002 1.808 .010 .001 4.011	1.968 .002 .037 .005 .179 .004 .002 1.805 .009 .000 4.010	1.968 .002 .035 .005 .179 .003 .002 1.805 .010 .002 .000 4.011	1.965 .002 .036 .004 .182 .003 .002 1.807 .009 .001 .000 4.013	1.967 .002 .037 .005 .179 .003 .002 1.805 .009 .002 .001 4.011	1.967 .002 .037 .006 .182 .004 .002 1.799 .010 .001 .000 4.010	1.967 .005 .180 .003 1.802 .009 .001 .000 4.010	1.970 .002 .038 .005 .179 .002 1.798 .010 .001 .000 4.008	1.963 .002 .037 .005 .183 .004 .002 1.807 .009 .000 4.014	1.966 .002 .039 .005 .187 .004 .003 1.795 .009 .000 4.010	1.969 .002 .037 .186 .003 .002 1.796 .008 .000 4.008
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	91.20	91.15	91.02	90.90	91.02	91.10	91.13	91.16	91.16	91.12	91.00	90.99	90.86	91.00	90.82	90.93	90.93	90.80	90.57	90.63
Cr #	13.51	11.47	12.22	11.97	12.73	11.49	12.87	10.95	12.12	11.07	11.68	12.94	10.27	10.96	13.83	12.02	11.22	12.38	11.84	12.24
Profilstrecke [µm]	637	647	657	667	677	687	697	707	727	737	747	757	767	787	797	807	817	827	837	848

Probe: VG Profilname Profilpunkt Mineral	Profil-18 95 Opx
Analyse Gew%] [Gew%] SiO ₂ TiO ₂ TiO ₃ FeO MinO MinO NiO NiO CaO KgO CaO Ka ₂ O K ₂ O X X	57.51 .02 .84 .21 6.66 .17 .08 34.85 .21 .00 .00 100.55
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Xa Kationen	1.975 .001 .034 .006 .191 .005 .002 1.784 .008 .000 .000 4.005
Sauerstoffe	6.000
Mg # Cr # Profilstrecke [µm]	90.32 14.23 858

Probe:	VG
Profil:	19
Mineral:	OI
Kapitel:	Anhang II

Profil- strecke [µm]	P [b[b]]	Sc [µg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ		
10	32.209	0.342	104.663	31.013	0.806	0.058	2.556	2.895		
60	34.528	0.328	102.320	30.558	0.604	0.028	3.334	2.461		
111	42.067	0.359	102.375	32.887	1.606	0.026	2.367	3.105		
160	45.402	0.315	103.618	30.875	1.637	0.060	3.830	1.585		
241	31.171	0.333	102.301	30.651	1.232	0.042	2.351	2.642		
290	34.680	0.333	102.506	30.323	1.036	0.069	3.602	2.200		
340	30.946	0.350	102.971	29.981	0.987	0.047	1.279	2.140		
420	24.204	0.250	102.155	33.625	1.803	0.037	1.882	2.915		
470	25.515	0.240	101.522	29.832	1.741	0.026	2.441	1.662		
520	28.321	0.219	101.829	30.063	1.160	0.029	1.597	1.488		
570	28.147	0.287	101.871	30.583	1.018	0.006	1.280	0.689		
620	28.066	0.312	103.147	30.465	1.101	0.059	1.836	1.918		
660	27.059	0.282	101.636	29.642	1.375	0.044	2.092	2.166		

Probe: VG	repräsentative Analysen aufgrund von Homogenität																			
Profilname	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19 I	Profil-19 I	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19
Profilpunkt	10	11	12	13	14	15	16	19	20	21	22	23	24	25	26	27	28	29	31	32
Mineral	OI	OI	OI	OI	01	OI	OI	01	OI	OI	01	OI	OI	OI	OI	OI	OI	01	OI	OI
Analyse [Gew%] SiO ₂ TO ₃ TO ₃ Cr ₂ O ₃ FeO MnO NiO MgO CaO CaO K ₂ O Z	40.80 .00 .01 9.75 .09 .40 50.17 .01 .00 .00 101.24	40.87 .01 .00 9.83 .13 .41 50.23 .00 .00 .01 101.49	40.31 .03 .00 9.91 .10 .42 50.09 .01 .02 .00 100.88	40.34 .03 .00 .03 9.56 .10 .38 49.60 .01 .00 .00 100.06	40.43 .02 .00 .01 9.93 .11 .41 50.04 .00 .00 .00 100.94	40.66 .00 .00 9.89 .11 .45 49.73 .01 .01 .00 100.85	40.54 .01 .00 9.75 .10 .43 49.80 .01 .01 100.66	40.51 .02 .00 .02 9.71 .14 .41 .49.92 .00 .01 .00 100.73	40.83 .03 .01 .00 9.90 .11 .48 50.14 .02 .00 101.52	40.39 .00 .00 9.74 .14 49.66 .01 100.38	41.04 .01 .02 9.87 .11 .42 50.26 .00 .00 .01 101.74	40.75 .00 .01 .00 9.76 .12 .43 50.34 .01 .00 .00 101.42	40.63 .00 .00 9.82 .13 .38 49.81 .00 .01 .00 100.78	40.85 .01 .02 9.80 .11 .43 50.00 .00 .00 .01 101.25	40.97 .04 .00 9.44 .13 .41 50.08 .01 .02 .00 101.10	40.58 .01 .00 9.84 .10 .45 49.88 .02 .00 .00 100.88	40.97 .03 .00 .02 9.68 .11 .35 50.28 .00 .00 .00 .00 101.42	40.74 .00 .01 .00 9.97 .14 .39 50.09 .01 .02 .00 101.36	40.95 .00 .01 .00 9.74 .11 .39 50.15 .01 .00 .00 101.36	40.39 .00 .00 9.71 .10 .35 49.48 .00 .00 .01 100.03
Kationen- besetzung Si Ti Al Cr Fe ⁺ Mn Ni Mg Ca Xa Xa Xa Xationen Sauerstoffe	.989 .000 .000 .002 .008 1.814 .000 .000 3.011 4.000	.989 .000 .000 .003 .008 1.812 .000 .000 .000 3.011 4.000	.983 .000 .000 .002 .002 .008 1.820 .000 .001 .000 3.017 4.000	.989 .001 .000 .002 .007 1.813 .000 .000 .000 3.010	.985 .000 .000 .002 .002 .008 1.817 .000 .000 .000 3.015	.991 .000 .000 .201 .002 .009 1.806 .000 .000 .000 3.010	.989 .000 .000 .002 .008 1.811 .000 .000 3.011 4.000	.988 .000 .000 .003 .003 .008 1.815 .000 .001 .000 3.012 4.000	.988 .001 .000 .000 .002 .009 1.809 .000 .001 .000 3.011 4.000	.988 .000 .000 .003 .008 1.812 .000 .001 .000 3.012 4.000	.990 .000 .000 .002 .008 1.808 .000 .000 .000 3.009 4.000	.987 .000 .000 .003 .008 1.817 .000 .000 3.013 4.000	.990 .000 .000 .003 .007 1.809 .000 .000 3.010 4.000	.991 .000 .000 .002 .008 1.808 .000 .000 .000 3.009 4.000	.993 .001 .000 .003 .008 1.810 .000 .001 .000 3.007 4.000	.988 .000 .000 .000 .002 .009 1.811 .000 .000 3.011 4.000	.991 .001 .000 .000 .002 .007 1.812 .000 .000 .000 3.009 4.000	.988 .000 .000 .003 .008 1.811 .000 .001 .000 3.013	.991 .000 .000 .002 .008 1.810 .000 .000 3.009 4.000	.991 .000 .000 .199 .002 .007 1.810 .000 .000 3.009 4.000
Mg # Profilstrecke [µm]	90.17 5	90.10 15	90.01 25	90.24 35	89.98 45	89.96 55	90.11 65	90.16 95	90.03 105	90.09 115	90.08 125	90.19 135	90.04 145	90.10 155	90.43 165	90.04 175	90.25 185	89.96 195	90.17 215	90.08 225

Probe: VG	Profil-19	Profil-19 Profil																		
Profilpunkt	34	35	36	37	38	39	40	41	43	44	45	46	47	48	49	50	52	53	54	55
Mineral	ОІ	OI	OI	OI	ОІ	OI	OI	ОІ	OI	ОІ	ОІ	ОІ	OI	OI	ОІ	OI	ОІ	ОІ	OI	ОІ
Analyse Gew%] SiO2 TiO2 A2O3 Cr2O3 FeO MnO NiO NiO CaO CaO K2O K2O ∑ ∑	41.04 .00 .01 9.86 .12 .38 50.14 .00 .00 .00 101.55	40.81 .00 .00 10.02 .11 .35 50.10 .01 .01 .00 101.44	40.61 .01 .00 9.73 .09 .39 49.84 .01 .00 100.70	40.67 .00 .01 .02 9.74 .15 .39 50.05 .02 .00 .00 .00 101.05	40.54 .00 9.77 .13 .44 49.87 .01 .00 .00 100.76	40.45 .02 .00 .02 9.67 .12 .40 49.71 .00 .02 .00 100.41	40.92 .02 .00 .01 9.92 .11 .37 50.48 .01 .00 .00 101.85	40.57 01 01 .12 .46 49.99 02 .00 0.01 101.08	40.70 .02 .00 .04 9.82 .15 50.15 .02 .02 .00 101.26	40.03 .02 .00 .02 9.63 .12 .35 49.55 .00 .01 .01 .02 99.74	41.05 .00 .02 .09 .34 50.48 .01 .01 .00 101.96	40.41 .01 .00 9.67 .08 .43 49.98 .01 .01 .00 100.62	40.96 .01 .00 9.90 .08 .37 50.33 .00 .01 .04 101.70	41.03 .00 .01 .15 .38 50.34 .00 .00 .00 .00	40.75 .04 .00 .02 9.93 .08 .34 50.18 .01 .01 .00 101.37	40.66 .00 .01 .00 9.79 .11 .34 50.06 .00 .00 .01	40.23 .01 .00 9.63 .09 .37 49.47 .00 .03 .00 99.82	40.69 .01 .00 9.88 .13 .37 50.23 .02 .00 .00 .00 101.33	40.97 .03 .00 .01 9.70 .33 50.47 .01 .00 .00 101.58	40.15 .00 .01 .00 9.66 .09 .38 49.59 .00 .00 .00 .00 .99.88
Kationen- besetzung Si Ti Cr Fe ^{z+} Mn Ni Mg Ca Ca Na K ∑ Kationen Sauerstoffe	.992 .000 .000 .002 .007 1.807 .000 .000 3.008 4.000	.989 .000 .000 .002 .007 1.810 .000 .001 .000 3.012 4.000	.990 .000 .000 .908 .002 .008 1.811 .000 .000 3.010 4.000	.988 .000 .000 .003 .008 1.813 .000 .000 .000 3.011 4.000	.988 .000 .000 .003 .009 1.812 .000 .000 .000 3.012 4.000	.989 .000 .000 .003 .008 1.812 .000 .001 .001 3.011 4.000	.987 .000 .000 .200 .002 .007 1.815 .000 .000 .000 3.013 4.000	.987 .000 .000 .201 .002 .009 1.813 .001 .000 .000 3.013	.987 .000 .001 .199 .003 .007 1.814 .001 .001 .000 3.012 4.000	.986 .000 .000 .198 .003 .007 1.819 .000 .001 3.014 4.000	.989 .000 .000 .201 .002 .007 1.812 .000 .000 3.011 4.000	.986 .000 .000 .002 .008 1.819 .000 .002 .000 3.014 4.000	.989 .000 .000 .002 .007 1.812 .000 .001 .001 3.011 4.000	.989 .000 .001 .003 .007 1.809 .000 .000 .000 3.011 4.000	.987 .001 .000 .000 .007 1.813 .000 .001 .000 3.012 4.000	.989 .000 .000 .002 .007 1.814 .000 .000 3.012 4.000	.989 .000 .000 .002 .007 1.814 .000 .001 .000 3.011 4.000	.987 .000 .000 .003 .007 1.816 .000 .000 .000 3.013	.989 .000 .000 .001 .006 1.816 .000 .000 .000 3.010 4.000	.987 .000 .000 .199 .002 .007 1.817 .000 .000 3.013 4.000
Mg # Profilstrecke (µm)	90.07 245	89.91 255	90.13 265	90.16 275	90.10 285	90.16 295	90.07 305	90.00 315	90.10 335	90.17 345	90.03 355	90.21 365	90.07 375	89.97 385	90.01 395	90.12 405	90.16 425	90.07 435	90.27 445	90.15 455

Probe:	VG
Profil:	25
Mineral:	OI
Kapitel:	2.2

Profil- stracka P		Sc	Co	Zn	Р	Sc	Co	Zn												
fum]	[µg/g]	[µg/g]	[µg/g]	[µg/g]	2σ	2σ	2σ	2σ												
11																				
30	31.431	0.376	97.343	13.330	1.472	0.052	1.367	1.657												
81	28.059	0.328	95.778	15.297	1.502	0.054	1.121	1.178												
131	26.218	0.352	95.310	13.108	0.899	0.056	1.168	0.804												
180	24.726	0.338	96.139	14.751	1.289	0.053	0.754	0.920												
230	22.981	0.386	96.522	15.388	0.677	0.052	1.479	1.333												
281	24.884	0.407	96.046	12.845	1.188	0.041	1.176	1.057												
341	25.528	0.386	96.401	14.166	1.073	0.057	0.528	0.587												
401	24.990	0.360	94.160	14.782	1.033	0.029	1.130	1.101												
461	26.336	0.395	94.971	14.912	1.348	0.066	1.406	2.782												
510	27.286	0.342	93.910	13.779	0.974	0.066	1.645	0.701												
564	27.217	0.307	95.559	14.304	0.536	0.024	1.212	1.775												
650	25.992	0.326	96.115	15.218	0.428	0.034	0.784	1.196												
700	26.405	0.294	94.575	13.591	1.336	0.029	0.462	2.378												
750	25.098	0.296	95.433	13.823	0.621	0.051	1.204	0.836												
801	26.397	0.317	94.271	13.558	0.866	0.021	1.173	1.823												
851	25.150	0.335	94.143	14.592	1.251	0.051	1.866	1.389												
941	24.393	0.364	95.493	14.041	0.879	0.072	2.068	1.477												
991	25.570	0.358	93.798	12.594	1.339	0.062	1.287	0.819												
1040	24.924	0.381	92.991	12.462	1.673	0.040	1.512	0.694												
1110	25.853	0.309	93.793	12.503	1.250	0.038	1.238	0.705												
1160	25.579	0.405	92.314	13.458	1.045	0.044	0.692	1.671												
1210	26.262	0.298	91.514	12.107	2.118	0.029	0.328	0.783												
1261	26.967	0.421	92.991	13.764	1.953	0.046	1.293	1.308												
1307	26.813	0.409	91.893	12.616	1.651	0.110	1.746	1.788												
1360	26.389	0.468	92.765	13.502	0.353	0.023	1.340	1.786												
1410	25.612	0.386	91.021	11.271	1.487	0.047	0.654	1.784												
1461	22.739	0.429	95.803	11.731	0.525	0.058	1.374	1.417												
1511	25.035	0.473	93.711	11.363	1.214	0.045	1.012	0.968												
1560	26.453	0.554	89.134	11.342	0.368	0.067	1.565	0.665												
1610	25.288	0.571	90.494	11.037	1.602	0.040	0.963	1.022												
1661	25.080	0.629	90.515	11.889	0.993	0.060	0.784	2.217												
1724	23.756	0.637	89.262	9.069	1.153	0.075	1.535	0.748												
1773	23.303	0.753	88.456	10.168	1.751	0.107	0.472	0.837												
1824	24.708	0.820	83.736	11.146	1.267	0.087	1.142	2.110												
1874	27.453	1.001	87.960	8.364	1.282	0.135	0.964	1.352												
Probe: VG	repräsent	tative Ana	ilysen auf	grund vo	n Homoge	enität														
--	---	---	---	--	---	---	---	---	--	---	--	---	--	---	---	---	---	--	---	---
Profilname	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25 I	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25
Profilpunkt	10	12	13	14	15	16	17	18	20	21	22	23	24	26	27	28	29	30	31	32
Mineral	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI
Analyse [Gew%] SiO2 TiO3 TiO3 Cr2O3 FeO MinO NiO MgO CaO CaO K2O K2O K2O X2O	40.56 .00 .01 10.01 .19 .48 49.45 .01 .00 .00 100.72	40.63 .01 .00 .01 10.42 .17 .44 49.61 .01 .01 .01	40.82 .00 .01 .02 10.08 .13 .46 49.43 .00 .00 .01 100.98	40.90 .00 .02 10.31 .13 .40 49.86 .00 .00 .02 101.63	40.75 .01 .00 .01 10.41 .12 .34 49.63 .01 .00 .00 101.27	40.61 .00 .01 .02 10.26 .13 .44 49.50 .00 .00 .01 100.98	40.91 .02 .01 .02 10.25 .13 .40 49.53 .00 .02 .00 101.28	40.67 .02 .01 .00 10.12 .19 .43 49.57 .01 .00 .00 101.01	40.71 .01 .00 10.49 .12 .41 49.67 .02 .01 .02 101.47	40.82 .01 .00 10.35 .15 .40 49.56 .00 .00 .01 101.29	40.67 .02 .00 10.32 .12 .38 49.57 .01 .00 .00 101.09	40.63 .00 .00 10.18 .13 .37 49.45 .00 .00 .00 .02 100.78	40.79 .01 .00 10.13 .12 .39 49.53 .00 .00 .01 100.99	40.67 .01 .00 .03 10.26 .11 .40 49.52 .01 .00 .01 101.00	40.52 .00 .00 10.34 .19 .40 49.36 .00 .02 .01 100.84	40.44 .03 .00 .02 .14 .41 .49.45 .01 .01 .00 100.71	40.40 .02 .00 10.32 .12 .39 49.52 .01 .00 .00 100.78	40.70 .00 .01 10.32 .13 .39 49.45 .00 .00 .01 101.03	40.42 .03 .02 .00 10.19 .14 .40 49.69 .01 .00 .00 100.89	40.72 .02 .00 10.20 .12 .38 49.44 .00 .00 .00 100.91
Kationen- besetzung Si Ti Al Cr Fe ⁺ Mn Ni Mg Ca Xa K Xationen Sauerstoffe	.991 .000 .000 .204 .004 .009 1.800 .000 .000 3.009 4.000	.988 .000 .000 .000 .004 .009 1.799 .000 .000 .000 3.012 4.000	.994 .000 .000 .003 .003 .009 1.794 .000 .000 3.006 4.000	.990 .000 .000 .003 .008 1.800 .000 .001 3.010 4.000	.990 .000 .000 .002 .002 .007 1.798 .000 .000 .000 3.010	.990 .000 .000 .003 .009 1.799 .000 .000 .000 3.010	.993 .000 .000 .003 .008 1.793 .000 .001 .000 3.007 4.000	.990 .000 .000 .004 .008 1.800 .000 .000 .000 3.009 4.000	.988 .000 .000 .010 .002 .008 1.798 .001 3.012 4.000	.992 .000 .000 .003 .008 1.795 .000 .000 .000 3.008 4.000	.990 .000 .000 .002 .007 1.799 .000 .000 3.010 4.000	.991 .000 .000 .003 .003 .007 1.799 .000 .001 3.009 4.000	.993 .000 .000 .002 .008 1.797 .000 .000 3.007 4.000	.991 .000 .001 .209 .002 .008 1.798 .000 .000 .000 3.009 4.000	.990 .000 .000 .011 .004 .008 1.797 .000 .001 .000 3.011 4.000	.988 .001 .000 .003 .008 1.802 .000 .000 .000 3.011 4.000	.987 .000 .000 .010 .002 .008 1.804 .000 .000 .000 3.012 4.000	.992 .000 .000 .003 .008 1.796 .000 .000 3.009 4.000	.986 .000 .000 .003 .008 1.807 .000 .000 .000 3.013	.992 .000 .001 .208 .002 .007 1.796 .000 .000 3.007 4.000
Mg # Profilstrecke [µm]	89.80 15	89.46 35	89.73 45	89.60 55	89.47 65	89.58 75	89.60 85	89.73 95	89.40 115	89.52 125	89.55 135	89.64 145	89.71 155	89.59 175	89.49 185	89.61 195	89.53 205	89.52 215	89.68 225	89.63 235

Probe: VG Profilname	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25 I	Profil-25 I	Profil-25 I	Profil-25 I	Profil-25	Profil-25 I	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25	Profil-25 I	Profil-25
Profilpunkt	33	34	35	36	37	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
Mineral	OI	01	OI	OI	OI	OI	OI	OI	OI	01	01	OI	OI	OI	01	OI	OI	01	OI	OI
Analyse [Gew%] [Gow%] SiO ₂ TiO ₃ Al ₂ O ₁ Al ₂ O ₁ Cr ₂ O ₃ FeO MinO NiO MgO CaO CaO K ₂ O Z	40.50 .02 .00 .02 10.19 .13 .40 49.45 .01 .00 .00 100.71	40.44 .01 .00 10.33 .13 .35 49.50 .01 .00 .00 100.75	40.67 .00 .01 10.33 .17 .43 49.58 .00 .00 .00 101.20	40.64 .01 .02 10.40 .15 .39 49.43 .01 .00 .01 101.07	40.73 .00 .00 10.07 .18 .39 49.51 .00 .00 .00 100.89	40.47 .03 .00 9.95 .09 .44 49.64 .01 .00 .00 100.64	40.54 .01 .00 .01 9.92 .17 .38 49.50 .01 100.56	40.45 .02 .01 10.22 .09 .38 49.41 .01 .02 .01 100.63	40.55 .03 .01 10.28 .17 .42 49.72 .01 .00 .00 101.20	40.58 .01 .00 9.94 .20 .45 49.47 .00 .00 .01 100.65	40.35 .01 .00 9.83 .12 .41 49.39 .01 .00 .00 100.11	40.57 .01 .00 10.07 .16 .39 49.41 .00 .01 .00	40.41 .01 .00 10.10 .13 .41 49.53 .02 .00 .00 100.60	40.79 .00 .00 10.00 .12 .41 49.58 .00 .01 .01 .00	40.72 .00 .00 10.27 .20 .40 49.48 .01 .00 .02 101.10	40.48 .00 .01 10.18 .17 .45 49.44 .00 .00 .00 100.74	40.68 .01 .00 10.22 .13 .42 49.61 .00 .00 .00 101.07	40.33 .01 .00 10.35 .16 .38 49.61 .00 .02 .00 100.86	40.37 .00 .01 .00 10.17 .21 .42 49.46 .01 .02 .00 100.66	40.53 .02 .00 10.11 .09 .42 49.54 .00 .02 .00 100.75
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ni Ka Ka Xationen Sauerstoffe	.989 .000 .000 .000 .003 .008 1.801 .000 .000 3.010	.988 .000 .000 .211 .003 .007 1.803 .000 .000 .000 3.012	.989 .000 .000 .210 .004 .008 1.798 .000 .000 .000 3.010	.990 .000 .000 .212 .003 1.795 .000 .000 3.010	.993 .000 .000 .205 .004 .008 1.798 .000 .000 3.008	.989 .000 .000 .203 .009 1.808 .000 .000 3.011	.991 .000 .000 .203 .004 .007 1.803 .000 .001 .000 3.010	.989 .000 .000 .209 .002 .007 1.801 .000 3.011	.987 .001 .000 .209 .004 .008 1.804 .000 .000 .000 3.013	.991 .000 .000 .203 .004 .009 1.801 .000 .000 3.009	.990 .000 .000 .202 .002 .008 1.807 .000 .000 3.010	.991 .000 .000 .206 .003 .008 1.800 .000 .001 .000 3.009	.988 .000 .000 .207 .003 .008 1.806 .000 .000 .000 3.012	.993 .000 .000 .204 .003 .008 1.799 .000 .001 .000 3.007	.991 .000 .000 .209 .004 .008 1.796 .000 .001 3.009	.989 .000 .000 .208 .004 .009 1.801 .000 .000 .000 3.011	.990 .000 .000 .208 .003 .008 1.800 .000 .000 3.009	.985 .000 .000 .211 .003 .008 1.807 .000 .001 .000 3.015	.987 .000 .000 .208 .004 .008 1.803 .000 .001 .000 3.013	.989 .000 .000 .206 .002 .008 1.803 .000 .001 .000 3.011
Sauerstoffe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Mg # Profilstrecke [µm]	89.64 245	89.52 255	89.53 265	89.44 275	89.75 285	89.90 305	89.89 315	89.60 325	89.61 335	89.87 345	89.96 355	89.74 365	89.73 375	89.84 385	89.57 395	89.64 405	89.64 415	89.52 425	89.66 435	89.72 445

Probe:	Fi
Profil:	01
Mineral:	Amp
Kapitel:	2.3

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
30	77.191	92.402	28.041	10.635	2.164	0.647	0.784	2.050
89	83.011	89.857	28.081	10.012	3.216	1.605	1.186	2.119
149	80.823	86.604	28.005	9.070	2.581	1.507	1.132	1.671
209	79.983	83.830	28.623	7.500	2.543	0.424	0.872	0.731
349	77.505	83.301	29.047	9.195	3.978	0.423	0.708	1.010
409	75.192	81.235	29.144	9.402	1.749	1.303	0.494	1.441
520	77.280	84.085	28.857	10.088	3.827	0.890	1.203	1.240
582	80.838	89.912	28.244	10.187	4.784	1.789	1.399	0.998

Probe: Fi																				
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	17	18	19	20	22	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse Gew%j [Gew%j] SiO2 TiO2 Al203 Cr203 Fe203 Fe0 MnO NiO Mg0 Ca0 Na20 K20 H20 K20 H20 Σ S	46.15 .48 10.28 2.01 .56 2.82 .02 .02 .02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03	46.34 .48 10.49 2.05 .48 2.90 .04 19.28 12.41 2.05 .73 2.11 99.42	46.41 .46 10.43 2.15 .48 2.71 .00 .12 19.28 12.54 1.96 .80 2.11 99.44	46.35 500 2.10 .46 2.65 .00 19.34 12.50 1.95 .82 2.10 99.06	45.78 .46 10.71 2.09 .02 .05 19.08 12.37 2.04 .85 2.09 98.73	46.06 .47 10.65 2.16 .16 2.94 .07 19.15 12.35 2.01 .82 2.10 98.98	45.86 .47 10.69 2.12 .01 .299 .02 .14 19.10 12.39 2.10 .84 2.10 98.82	45.95 .47 10.80 2.13 .31 2.89 .04 .10 19.09 12.37 2.02 .81 2.10 99.07	46.06 .48 10.63 2.10 .00 2.96 .02 .13 19.10 12.43 2.03 .86 2.10 98.91	45.98 47 10.57 2.11 .44 19.15 12.34 1.94 .85 2.10 98.87	45.82 .46 10.52 2.18 .22 2.90 .02 .13 19.07 12.29 2.04 .78 2.09 98.52	46.02 .48 10.48 2.16 .55 2.67 .01 .12 19.21 19.21 19.21 19.21 2.02 .81 2.10 99.07	45.86 .49 10.61 2.13 .76 .240 .06 .12 19.18 12.44 .19.8 .81 2.10 98.92	45.88 .45 10.69 2.17 .40 2.71 .03 .08 19.16 12.46 2.02 .89 2.10 99.04	45.96 46 10.45 2.17 .22 2.79 .01 10.05 19.17 12.36 1.96 .84 2.09 98.54	45.77 .49 10.66 2.15 .16 2.77 .03 .13 19.11 12.42 2.06 .87 2.09 98.72	46.06 .47 10.38 2.21 .05 .07 19.16 12.61 12.61 2.06 .85 2.10 99.17	45.82 .44 10.66 2.21 .67 2.56 .01 19.14 12.53 2.00 .91 2.10 99.13	45.68 .45 10.69 2.21 .55 2.51 .02 .09 19.08 12.51 2.02 .87 2.10 98.76	45.76 .47 10.43 2.12 .63 .04 .10 19.15 12.44 2.05 .84 2.09 98.62
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{bestzung}\\ Si\\ Ti\\ Al\\ Cr\\ Fe^{2*}\\ Fe^{2*}\\ Mn\\ Mg\\ Ca\\ Ca\\ Ca\\ Na\\ Na\\ OH\\ OH\\ CA\\ OH\\ CK\\ OH\\ \Sigma\\ Kationen\\ \end{array}$	6.582 0.052 1.728 0.227 0.060 0.336 0.010 4.085 1.918 0.588 0.130 2.000 15.717	6.582 0.051 1.756 0.051 0.344 0.004 4.083 1.889 0.564 0.132 2.000 15.696	6.590 0.049 1.745 0.051 0.321 0.000 0.013 4.081 1.907 0.540 0.144 2.000 15.684	6.604 0.053 1.713 0.236 0.049 0.316 0.000 0.011 4.108 1.909 0.538 0.149 2.000 15.687	6.553 0.049 1.807 0.033 0.345 0.003 0.006 4.071 1.896 0.565 0.154 2.000 15.719	6.572 0.050 1.791 0.243 0.017 0.351 0.008 4.073 1.888 0.555 0.150 2.000 15.705	6.560 0.051 1.803 0.240 0.001 0.358 0.002 0.016 4.072 1.898 0.582 0.153 2.000 15.735	6.553 0.050 1.815 0.240 0.034 4.058 1.889 0.558 0.148 2.000 15.706	6.578 0.052 1.789 0.237 0.000 0.353 0.015 4.067 1.902 0.563 0.157 2.000 15.717	6.570 0.051 1.780 0.048 0.325 0.016 4.078 1.889 0.155 2.000 15.693	6.571 0.049 1.778 0.223 0.348 0.003 0.015 4.076 1.889 0.567 0.143 2.000 15.710	6.564 0.051 1.762 0.243 0.059 0.319 0.001 4.086 1.902 0.558 0.146 2.000 15.705	6.548 0.052 1.785 0.241 0.087 0.007 0.014 4.083 1.902 0.547 0.147 2.000 15.693	6.549 0.048 1.798 0.244 0.043 0.323 0.004 4.077 1.905 0.560 0.163 2.000 15.722	6.584 0.049 1.765 0.246 0.024 0.334 0.001 0.005 4.094 1.897 0.544 0.154 2.000 15.698	6.553 0.053 1.799 0.243 0.017 0.331 0.004 0.015 4.079 1.906 0.571 0.158 2.000 15.729	6.569 0.051 1.745 0.249 0.042 0.329 0.006 0.007 4.074 1.927 0.570 0.154 2.000 15.725	6.537 0.047 1.792 0.249 0.072 0.305 0.002 0.010 4.070 1.915 0.553 0.166 2.000 15.719	6.537 0.048 1.804 0.059 0.301 0.011 4.071 1.918 0.559 0.158 2.000 15.717	6.560 0.051 1.762 0.241 0.054 0.015 0.005 0.011 4.092 1.910 0.570 0.153 2.000 15.723
Mg# Cr# Profilstrecke [µm]	91.17 11.61 5	91.17 11.60 15	91.64 12.17 25	91.84 12.13 35	91.49 11.59 55	91.71 11.96 75	91.91 11.73 85	91.48 11.70 95	92.02 11.71 105	91.62 11.81 115	91.66 12.21 125	91.54 12.13 135	91.73 11.88 145	91.77 11.96 155	91.97 12.23 165	92.13 11.92 175	91.66 12.49 185	91.53 12.22 195	91.87 12.15 205	91.74 12.02 215

Probe: Fi																				
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	39	40	41	42	43	44	45	47	48	49	50	51	52	53	54	55	56	57	58	59
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse Gew%j [Gew%j] SiO2 TiO2 Al203 Cr203 Fe203 Fe0 MnO NiO Mg0 CaO Na200 K20 H20 K20 H20 Σ S	45.93 .45 10.29 2.17 .23 2.83 .05 .11 19.19 12.47 2.09 .89 2.09 98.79	45.80 .44 10.38 2.16 .65 2.59 .01 .12 19.09 12.40 1.97 .81 2.09 98.52	45.81 .46 10.53 2.18 .17 2.91 .06 .13 19.09 12.40 2.12 .82 2.09 98.78	45.88 .48 10.61 2.17 .64 2.69 0.08 .15 19.22 12.39 2.10 .85 2.11 99.37	45.83 .46 10.58 2.12 .23 2.91 .04 .10 19.13 12.38 2.09 .86 2.10 98.84	45.88 .44 10.46 2.16 .33 2.78 .02 .13 19.24 12.32 2.08 .86 2.10 98.80	45.68 .45 10.50 2.18 .74 2.55 .06 .06 19.24 12.37 2.08 .85 2.10 98.85	45.85 .42 10.47 2.20 .43 2.72 .05 .12 19.08 12.44 2.03 .85 2.09 98.76	45.61 .45 10.47 2.17 .02 .06 19.26 19.26 19.28 2.05 .89 2.09 98.77	45.49 .47 10.50 2.16 .67 2.60 .06 .14 19.13 12.34 2.12 .86 2.09 98.62	45.95 .48 10.52 2.21 .34 2.90 .02 .11 19.23 12.30 2.05 .86 2.10 99.06	45.57 .44 10.61 2.19 .75 2.43 .00 17 19.13 12.46 2.07 .86 2.09 98.76	45.77 .45 10.53 2.22 .53 2.75 .04 .15 19.06 12.50 2.09 .86 2.10 99.04	45.82 .47 10.66 2.21 .34 19.14 19.14 12.35 2.06 .85 2.10 99.00	45.81 .43 10.54 2.22 .25 .296 .05 .12 19.10 12.41 2.13 .87 2.10 98.99	45.61 .45 10.60 2.16 .78 2.43 .08 .10 19.16 12.50 2.10 8.88 2.10 98.94	45.66 .45 10.50 2.20 .74 2.40 .06 .13 19.13 19.13 19.13 19.25 1.98 .82 2.09 98.51	46.11 .47 10.32 2.21 .00 3.05 .02 .09 19.14 12.42 2.05 .85 2.10 98.82	46.24 .45 10.38 2.18 .00 3.17 .00 .08 19.02 12.38 2.02 .85 2.10 98.87	46.09 .47 10.42 2.22 .55 2.62 .01 .10 19.27 12.48 2.02 .81 2.10 99.16
Kationen- besetzung Si Ti Al Cr Fe ^{**} Fe ^{**} Mn Ni Mg Ca Na K O H Σ Kationen	6.577 0.048 1.737 0.246 0.025 0.339 0.006 0.013 4.097 1.913 0.580 0.162 2.000 15.742	6.569 0.047 1.755 0.070 0.310 0.002 1.906 0.549 0.149 2.000 15.697	6.560 0.049 1.776 0.019 0.349 0.007 0.015 1.903 0.589 0.151 2.000 15.740	6.534 0.052 1.781 0.244 0.069 0.320 0.010 0.014 4.082 1.891 0.580 0.154 2.000	6.557 0.049 1.784 0.240 0.025 0.015 0.015 4.081 1.897 0.580 0.157 2.000	6.564 0.047 1.765 0.244 0.036 0.033 0.015 1.889 0.576 0.157 2.000 15.732	6.537 0.048 1.770 0.247 0.079 0.305 0.008 0.006 4.103 1.896 0.577 0.156 2.000 15.733	6.565 0.045 1.767 0.249 0.047 0.326 0.006 0.013 4.073 1.909 0.562 0.155 2.000 15.717	6.532 0.049 1.768 0.246 0.094 0.002 0.007 4.111 1.899 0.669 0.163 2.000 15.732	6.529 0.051 1.777 0.245 0.072 0.312 0.008 0.016 4.094 1.898 0.591 0.157 2.000 15.747	6.559 0.052 1.770 0.036 0.0347 0.003 0.012 4.092 1.881 0.567 0.156 2.000 15.724	6.527 0.047 1.791 0.248 0.081 1.0291 0.000 0.019 4.084 1.912 0.576 0.158 2.000 15.733	6.543 0.048 1.775 0.251 0.057 0.015 4.062 1.914 0.156 2.000 15.734	6.546 0.050 1.795 0.037 0.033 0.007 0.016 4.076 1.890 0.572 0.154 2.000 15.726	6.551 0.046 1.776 0.251 0.027 0.354 4.073 1.901 0.592 0.159 2.000 15.750	6.523 0.048 1.787 0.244 0.084 0.009 0.011 4.086 1.916 0.581 0.160 2.000 15.741	6.549 0.048 1.775 0.250 0.288 0.015 4.091 1.897 0.552 0.149 2.000 15.701	6.596 0.050 1.739 0.250 0.000 0.364 0.012 1.903 0.568 0.155 2.000 15.721	6.609 0.048 1.749 0.246 0.000 0.379 0.000 4.053 1.896 0.560 0.155 2.000 15.703	6.567 0.050 0.250 0.313 0.001 0.012 4.093 1.905 0.558 0.148 2.000 15.706
Mg# Cr#	91.84 12.39	91.48 12.26	91.73 12.20	91.30 12.07	91.60 11.86	91.76 12.16	91.42 12.25	91.63 12.37	91.39 12.20	91.42 12.11	91.45 12.36	91.65 12.16	91.34 12.41	91.68 12.20	91.44 12.36	91.60 12.03	91.74 12.33	91.81 12.55	91.46 12.34	91.68 12.49
Profilstrecke [µm]	225	235	245	255	264	274	284	304	314	324	334	344	354	364	374	384	394	404	414	424

Probe: Fi																
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	60	61	62	63	64	65	66	67	68	69	70	71	72	73	76	77
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse Gew-%] [Gew-%] SiO2 TiO2 Al2O3 Fe2O3 FeO MnO NiO NiO MgO CaO Na2O K2O H2O K2O H2O	46.07 .43 10.43 2.17 .28 2.96 .04 .11 19.09 12.53 2.10 .79 2.10 99.10	46.11 .44 10.41 2.17 .18 3.09 .06 .14 19.13 12.48 2.12 .85 2.10 99.27	46.35 .44 10.44 2.22 .00 3.14 .05 .13 19.20 12.25 2.07 .84 2.11 99.23	46.34 .46 10.48 2.18 .00 .14 19.30 12.30 2.10 .79 2.11 99.37	46.31 .45 10.49 2.18 .11 3.07 .03 .12 19.32 19.32 2.08 .83 2.01 99.42	45.95 .43 10.29 2.22 .00 3.12 .03 .10 19.06 12.20 2.11 .81 2.09 98.40	46.06 .45 10.49 2.20 .03 .14 19.17 12.48 2.13 .86 2.10 99.34	46.00 .47 10.64 2.22 .17 .02 .07 19.13 12.35 2.12 .210 99.27	46.06 .45 10.50 2.16 .00 .3.25 .02 .13 19.04 12.24 2.12 .85 2.10 98.93	45.47 .46 10.69 2.17 .65 2.85 .04 .07 19.10 12.19 2.12 .83 2.09 98.73	45.73 .48 10.84 2.19 .08 3.23 .05 .11 19.03 12.30 2.16 .86 2.10 99.14	45.90 .46 10.81 2.18 .00 3.26 .03 .08 19.04 12.31 2.22 .82 2.10 99.21	45.79 .48 10.76 2.19 .31 .11 19.19 12.28 2.08 .86 2.10 99.04	45.74 .45 10.81 2.26 .09 3.17 .04 .10 19.05 12.34 2.15 .90 2.10 99.21	45.83 .48 10.58 .45 2.81 .04 .13 19.09 12.57 .2.24 .69 2.10 98.98	46.45 .45 10.45 1.84 .80 2.57 .04 .10 19.42 12.59 2.22 .53 2.12 99.55
Kationen- besetzung SI AI AI Fe ²⁺ Mn Mg Ca Ca Na Ka OH OH S Kationen	6.576 0.047 1.755 0.245 0.030 0.353 0.005 0.013 4.062 1.915 0.582 0.144 2.000 15.726	6.575 0.047 1.749 0.245 0.020 0.368 0.007 0.015 4.067 1.906 0.587 0.154 2.000 15.741	6.601 0.047 1.752 0.250 0.000 0.374 4.075 1.870 0.572 0.152 2.000 15.713	6.590 0.049 1.756 0.000 0.378 0.000 0.016 4.092 1.873 0.579 0.143 2.000 15.722	6.584 0.048 1.757 0.012 0.365 0.004 1.878 0.574 0.150 2.000 15.723	6.601 0.046 1.742 0.253 0.000 0.374 0.003 1.878 0.587 0.149 2.000 15.723	6.562 0.048 1.762 0.248 0.025 0.357 0.004 4.073 1.905 0.587 0.157 2.000 15.744	6.556 0.051 1.787 0.250 0.018 0.003 0.008 4.064 1.886 0.585 0.147 2.000 15.732	6.586 0.049 1.770 0.244 0.000 0.388 0.002 0.015 4.057 1.875 0.589 0.155 2.000 15.730	6.519 0.049 1.807 0.246 0.070 0.342 0.005 0.008 4.082 1.873 0.590 0.152 2.000 15.742	6.532 0.051 1.824 0.0247 0.009 0.386 0.006 0.013 4.051 1.882 0.157 2.000 15.754	6.547 0.049 1.817 0.246 0.000 0.389 0.003 0.010 4.049 1.882 0.613 0.150 2.000 15.754	6.538 0.051 1.810 0.0247 0.0343 0.001 0.013 4.084 1.878 0.156 0.156 2.000 15.731	6.530 0.049 1.819 0.255 0.010 0.0379 0.005 1.887 0.164 2.000 15.759	6.549 0.052 1.781 0.223 0.049 0.336 0.005 0.014 4.067 1.924 0.126 2.000 15.746	6.583 0.047 1.745 0.085 0.005 0.011 4.102 1.911 0.069 0.095 2.000 15.704
Mg# Cr# Profilstrecke [µm]	91.39 12.24 434	91.30 12.29 444	91.60 12.48 454	91.55 12.24 464	91.58 12.24 474	91.60 12.67 484	91.43 12.33 494	91.12 12.28 504	91.27 12.13 514	90.84 11.96 524	91.12 11.93 534	91.24 11.91 544	91.56 12.03 554	91.26 12.30 564	91.35 11.14 594	91.32 10.55 604

Fi
02
OI
2.3

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [٤/٩٩]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
20	32.024	1.000	96.206	27.814	1.002	0.108	1.884	3.110
80	70.942	0.853	94.864	29.540	2.115	0.039	1.782	1.878
139	71.533	1.019	95.878	29.929	2.054	0.040	2.453	2.225
200	74.944	1.224	94.756	27.009	1.953	0.089	1.304	3.564
260	74.944	1.123	95.604	30.956	1.785	0.142	1.740	2.136
360	73.442	1.071	97.044	30.239	3.950	0.082	1.636	3.420
459	80.730	1.079	96.226	29.459	3.820	0.073	0.704	2.077
560	77.355	1.023	97.024	30.822	3.189	0.151	1.129	2.205
664	74.675	1.179	95.171	25.935	1.051	0.102	1.934	3.884
843	62.766	1.065	96.674	28.557	2.727	0.050	1.773	2.890
941	62.943	1.212	95.331	28.761	1.971	0.159	0.805	2.264
1059	59.204	1.081	95.505	29.973	1.610	0.105	1.037	0.964
1164	62.136	1.010	94.639	31.887	2.558	0.126	1.183	3.310
1260	61.471	1.180	95.687	30.150	2.830	0.104	2.170	2.593
1339	51.529	0.987	96.327	29.610	1.177	0.041	1.485	2.716
1450	42.961	1.067	95.372	29.040	2.340	0.068	2.138	2.837
1560	47.442	1.060	98.433		2.103	0.140	1.242	
1745	57.477	1.072	96.883	28.813	1.193	0.105	1.099	2.241
1860	59.384	1.134	96.440	26.269	3.221	0.083	1.628	2.313
1960	55.546	1.137		29.159	2.040	0.102		2.314
2056	57.428	1.017	95.101	28.879	2.759	0.085	0.900	2.789
2160	58.338	1.064	94.859	26.628	1.703	0.130	2.066	2.039
2260	59.625	1.042	96.999	31.048	1.579	0.158	2.442	0.897
2359	68.890	1.015	96.332	31.159	2.127	0.083	1.135	2.860
2460	63.797	0.960	94.557	27.674	1.649	0.144	2.782	3.719
2560	66.116	0.971	95.242	28.107	2.063	0.154	3.328	0.834
2680	64.073	1.134	95.235	29.232	2.614	0.068	0.937	1.317
2754	66.357	1.000	98.378	28.237	1.408	0.093	1.580	1.393
2820	63.551	1.054	96.644	27.062	1.176	0.106	1.660	2.285
2890	63.784	0.894	97.073	23.447	3.572	0.062	0.947	0.986

Probe: Fi	repräsen	ative Ana	ilysen auf	grund voi	n Homoge	enität														
Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02 I	Profil-02 I	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Mineral	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI
Analyse [Gew%] SiO2 TiO2 TiO2 Al2O3 C7,O3 Fe3O3 MiO NiO NiO MgO CaO K2O K2O X2O	41.00 .00 .00 .15 .41 50.38 .01 .02 .00	41.10 .00 .01 .03 .41 50.32 .01 .01 .00 100.66	41.20 .01 .00 .00 .14 .43 50.49 .00 .04 .00 101.05	40.73 .00 .03 .00 .15 .42 50.61 .03 .03 .00 100.60	41.10 .01 .00 .00 .11 .45 50.54 .01 .01 .00 100.92	41.09 .00 .00 .05 .39 50.55 .00 .00 .01 100.76	40.98 .00 .02 .00 .13 .46 50.52 .00 .00 .00 100.78	40.82 .01 .00 .00 .13 .43 50.44 .01 .00 .00 100.61	40.81 .00 .02 .00 .19 .40 50.43 .01 100.64	40.78 .00 .00 .00 .11 .37 50.32 .01 .00 .00 100.24	40.86 .00 .00 .13 .42 50.67 .01 .00 .01 100.96	40.83 .00 .00 .00 .12 .40 50.37 .01 .01 .01 .00 100.46	40.83 .01 .00 .00 .10 .38 50.55 .01 .00 .03 100.73	40.96 .00 .03 .03 .46 50.44 .01 .00 .01 100.71	40.73 .00 .00 .00 .11 .36 50.44 .00 .00 .00 100.33	40.98 .00 .01 .00 .14 .37 50.43 .00 .01 .04 100.68	40.97 .02 .00 .00 .12 .43 50.52 .01 .03 .00 100.56	41.10 .00 .01 .00 .15 .34 50.45 .01 .00 .00 100.77	40.74 .01 .00 .02 .00 .12 .44 50.48 .00 .00 .00 100.64	41.12 .01 .00 .13 .44 50.36 .00 .00 .02 100.99
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Xa Xa Xa Xationen Sauerstoffe	.996 .000 .000 .170 .003 .008 1.825 .000 .001 .001 .000 3.004	.997 .000 .000 .003 .008 1.819 .000 .001 .001 .000 3.003	.996 .000 .000 .003 .003 .008 1.819 .000 .002 .000 3.005	.989 .000 .000 .003 .003 .008 1.833 .000 .001 .000 3.011 4.000	.995 .000 .000 .000 .002 .009 1.823 .000 .000 .000 3.005	.995 .000 .000 .001 .001 .008 1.825 .000 .000 .000 3.005 4.000	.993 .000 .000 .003 .003 .009 1.825 .000 .000 .000 3.006 4.000	.992 .000 .000 .003 .003 .008 1.827 .000 .000 .000 3.008 4.000	.991 .000 .000 .004 .004 .008 1.826 .000 .001 .000 3.009 4.000	.993 .000 .000 .002 .007 1.827 .000 .000 .000 3.007 4.000	.990 .000 .000 .003 .008 1.830 .000 .000 .000 3.010	.993 .000 .000 .002 .008 1.826 .000 .001 .000 3.007 4.000	.991 .000 .000 .000 .002 .007 1.829 .000 .001 3.009 4.000	.994 .000 .001 .176 .003 .009 1.824 .000 .000 .000 3.006 4.000	.992 .000 .000 .007 .002 .007 1.831 .000 .000 3.008 4.000	.994 .000 .000 .003 .007 1.824 .000 .001 3.006 4.000	.994 .000 .000 .002 .002 .008 1.828 .000 .001 .000 3.006 4.000	.996 .000 .000 .003 .007 1.822 .000 .000 .000 3.004 4.000	.990 .000 .000 .000 .002 .009 1.829 .000 .000 .000 3.010	.995 .000 .000 .180 .003 .009 1.817 .000 .001 3.005 4.000
Mg # Profilstrecke [µm]	91.48 5	91.19 15	91.14 25	91.27 35	91.20 45	91.23 55	91.22 65	91.10 75	91.13 85	91.20 95	91.07 105	91.15 115	91.09 125	91.20 135	91.18 145	91.17 155	91.41 165	91.17 175	91.06 185	90.99 195

Probe: Fi						-	-	B (1) A-		B (1) A -	B (1) A-	B (1) A ⁻		B (1) A ⁻	-	B (1) A ⁻				
Profilname	Profil-02 I	Profil-02	Profil-02	Profil-02 I	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02							
Profilpunkt	46	47	48	49	50	51	52	53	54	55	50	57	58	60	61	62	63	64	65	66
Mineral	OI	01	01	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI
Analyse																				
[Gew%] SiO ₂	40.80	41.01	40.98	40.81	41.11	40.88	40.99	41.02	40.98	40.73	40.87	41.04	41.03	41.20	41.16	40.98	40.94	41.01	41.08	40.85
TiO ₂	.02	.02	.00	.01	.00	.00	.01	.00	.01	.00	.01	.01	.01	.00	.04	.00	.00	.00	.01	.03
Al ₂ O ₃ Cr ₂ O ₂	.00	.00	.01	.00	.01	.01	.00	.00	.00	.01	.00	.00	.01	.00	.00	.00	.00	.01	.00	.01
Fe ₂ O ₃	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
MnO NiO	.14	.13	.11	.13	.14	.15	.15	.14	.10	.11	.09	.14	.10	.11	.11	.15	.13	.12	.10	.13
MgO	50.46	50.34	50.49	50.46	50.62	50.57	50.43	50.50	50.30	50.62	50.47	50.62	50.55	50.25	50.51	50.58	50.70	50.59	50.52	50.44
CaO Na O	.03	.00	.02	.01	.01	.00	.00	.00	.02	.00	.00	.01	.00	.00	.02	.00	.01	.01	.01	.01
K ₂ O	.00	.00	.00	.01	.00	.03	.00	.00	.00	.00	.01	.00	.00	.00	.00	.00	.01	.00	.00	.00
Σ	100.70	100.80	100.86	100.73	101.02	100.81	100.51	100.72	100.30	100.52	100.58	101.00	100.92	100.59	100.91	100.75	100.97	100.89	100.97	100.53
Kationen-																				
Si	.991	.994	.993	.991	.994	.991	.995	.994	.996	.990	.993	.993	.993	.999	.996	.993	.991	.993	.994	.993
Ti	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000
Cr	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Fe ²⁺	.179	.181	.177	.180	.176	.177	.173	.175	.173	.176	.177	.177	.179	.175	.175	.174	.176	.177	.178	.176
Ni	.003	.003	.002	.003	.003	.003	.003	.003	.002	.002	.002	.003	.002	.002	.002	.003	.003	.002	.002	.003
Mg	1.827	1.820	1.824	1.826	1.825	1.828	1.825	1.825	1.823	1.834	1.827	1.826	1.824	1.817	1.821	1.828	1.829	1.826	1.822	1.827
Ca	.001	.000	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
K	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
∑ Kationen	3.009	3.005	3.007	3.009	3.006	3.009	3.005	3.006	3.004	3.010	3.008	3.007	3.007	3.001	3.004	3.007	3.009	3.007	3.006	3.007
Sauerstoffe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Mg #	91.09	90.97	91.15	91.04	91.21	91.19	91.35	91.23	91.34	91.24	91.19	91.18	91.08	91.23	91.22	91.29	91.22	91.17	91.09	91.21
~																				

Probe:	Fi
Profil:	06
Mineral:	Срх
Kapitel:	Anhang II

Profil- strecke [µm]	P [b/d]	Sc [µg/g]	Co [b/bi]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
20	2.934	49.278	13.527	3.297	0.369	0.839	0.811	1.099
70	5.126	49.949	14.725	4.145	1.032	0.774	0.785	1.844
120	4.555	49.410	14.868	3.049	0.438	0.581	0.736	0.733
171	4.678	48.202	14.282	4.425	0.291	1.025	0.338	0.887
220	5.030	48.654	13.204	3.567	1.032	0.821	0.240	1.020
298	5.145	49.030	14.186	2.876	0.523	0.307	0.370	1.094
351	5.820	49.151	14.957	3.155	1.216	0.344	0.362	1.334
410	5.607	48.234	14.051	2.747	0.460	1.033	0.699	0.489
673	4.467	48.480	14.678	4.628	0.788	0.548	0.278	0.971
720	4.328	47.076	13.417	3.637	0.725	0.710	0.277	1.508
780	5.381	49.052	14.176	3.143	0.561	1.000	0.637	0.526
840	4.530	47.757	14.182	3.804	0.974	0.391	0.677	0.418
900	4.183	49.631	13.941	3.860	0.677	0.869	0.691	0.847
960	3.910	48.714	13.593	3.475	0.454	0.694	0.446	1.036
1020	5.004	49.505	13.935	3.650	0.864	0.637	0.254	0.774
1080	3.924	49.080	13.305	3.813	0.521	0.860	0.588	0.605
1140	3.635	49.059	13.025	3.360	0.384	0.441	0.498	0.475
1200	4.389	49.121	13.163	4.229	0.474	1.076	0.769	1.426
1260	3.849	48.784	13.912	3.681	0.610	0.341	0.830	0.945
1320	3.560	47.947	13.519	3.258	0.614	1.390	0.753	1.205
1380	2.550	48.830	14.022	3.335	0.547	0.864	0.269	0.383
1577	3.561	51.037	13.924	2.848	0.266	0.826	1.001	1.004
1640	5.087	50.087	13.462	4.409	0.755	0.878	0.577	0.511
1700	3.593	48.333	13.191	3.323	0.876	1.067	0.363	0.230
1761	5.362	51.567	14.284	4.098	0.775	0.637	0.336	1.363
1820	2.585	46.503	13.797	3.475	0.345	0.904	0.592	0.514
1880	4.396	49.637	13.129	3.996	1.060	0.538	0.447	1.852
1930	2.805	47.364	12.379	4.005	0.731	0.726	0.523	0.710
1980	2.670	47.384	12.269	2.599	0.232	0.778	0.806	0.902
2030	3.285	49.428	12.280	3.329	0.521	0.947	1.050	1.017
2060	1.938	47.933	12.037	3.219	0.250	2.079	1.183	0.591

Probe: Fi																				
Profilname	Profil-06	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06 F	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06	Profil-06 I	Profil-06 I	Profil-06 I	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06 F	Profil-06
Profilpunkt	31	32	33	35	36	37	38	39	40	42	43	44	45	46	47	48	49	50	51	53
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO ₂ T Al ₂ O ₃ C Cr ₂ O ₃ FeO MnO NiO NiO MgO CaO K ₂ O K ₂ O X ₂ O X ₂ O X ₂ O	54.23 .04 .76 .43 1.75 .04 .02 18.36 23.91 .22 .00 99.77	54.09 .07 1.03 .57 1.77 .04 .01 17.50 24.38 .23 .01 99.69	54.32 .06 1.09 .58 1.81 .06 .04 17.56 24.34 .25 .00 100.11	54.19 .05 1.11 .66 1.89 .05 .04 17.59 24.15 .28 .00 100.01	54.12 .05 1.09 .67 1.83 .08 .04 17.42 24.23 .31 .01 99.85	54.18 .06 1.09 .67 1.87 .03 .05 17.37 24.09 .28 .00 99.69	53.99 .07 1.14 .68 1.96 .02 .06 17.41 24.03 .31 .00 99.67	54.17 .03 1.18 .69 1.87 .08 .05 17.60 24.00 .33 .00 100.00	54.10 .08 1.15 .68 1.96 .08 .05 17.47 24.26 .28 .00 100.12	54.09 .05 1.15 .70 1.96 .03 .08 17.52 24.19 .30 .00 100.07	54.27 .06 1.19 .72 1.92 .06 .03 17.37 24.20 .00 322 .00 100.13	54.32 .06 1.14 .72 1.78 .06 .03 17.37 24.33 .29 .00 100.09	54.11 .06 1.22 .67 1.91 .11 .06 17.13 24.10 .30 .00 99.66	54.45 .06 1.18 .72 1.90 .06 .10 17.36 23.92 .35 .02 100.11	54.23 .06 1.20 .73 1.86 .08 .02 17.15 24.19 .32 .00 99.84	53.98 .06 1.17 .70 1.91 .07 23.93 .29 .00 99.48	54.37 .08 1.14 .75 1.86 .05 .03 17.29 24.06 .29 .00 99.92	54.06 .07 1.17 .71 1.91 .07 .09 17.13 24.29 .32 .01 99.82	54.31 .06 1.20 .73 1.88 .04 .00 17.18 24.21 .29 .03 99.94	54.12 .05 1.21 .78 1.91 .09 .05 17.13 24.12 .32 .00 99.76
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na K Xionen	1.971 .001 .032 .012 .053 .001 .000 .995 .931 .016 .000 4.013	1.970 .002 .044 .016 .054 .001 .951 .016 .000 4.006	1.970 .002 .047 .055 .002 .001 .956 .018 .000 4.006	1.968 .001 .047 .019 .057 .001 .001 .939 .020 .000 4.008	1.969 .001 .047 .019 .056 .003 .001 .945 .022 .000 4.008	1.973 .002 .047 .019 .057 .001 .002 .943 .940 .020 .000 4.003	1.968 .002 .049 .060 .001 .002 .946 .938 .022 .000 4.007	1.967 .001 .020 .027 .002 .001 .953 .934 .023 .000 4.009	1.965 .002 .049 .060 .003 .001 .944 .020 .000 4.009	1.965 .001 .049 .020 .060 .001 .002 .949 .941 .021 .000 4.010	1.969 .002 .051 .021 .058 .002 .001 .939 .941 .022 .000 4.005	1.971 .002 .021 .054 .002 .001 .939 .946 .020 .000 4.003	1.972 .002 .019 .058 .003 .002 .931 .941 .021 .000 4.001	1.974 .002 .021 .057 .002 .003 .938 .929 .025 .001 4.002	1.972 .002 .021 .021 .057 .002 .001 .930 .943 .022 .000 4.001	1.971 .002 .020 .028 .002 .041 .934 .021 .000 4.003	1.975 .002 .049 .022 .057 .002 .001 .936 .021 .000 3.999	1.969 .002 .020 .020 .058 .002 .003 .930 .948 .023 .000 4.005	1.973 .002 .051 .021 .057 .001 .000 .930 .942 .020 .001 4.000	1.971 .001 .052 .022 .058 .003 .002 .930 .941 .022 .000 4.002
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	94.92 27.80 5	94.63 27.15 15	94.53 26.21 25	94.31 28.64 45	94.43 29.22 55	94.30 29.26 65	94.05 28.48 75	94.37 28.08 85	94.07 28.29 95	94.09 29.10 115	94.17 28.81 125	94.56 29.87 135	94.12 27.06 145	94.23 29.07 155	94.26 28.88 165	94.15 28.68 175	94.30 30.68 185	94.13 28.80 195	94.21 29.09 205	94.13 30.04 225

Probe: Fi Profilname	Profil-06	Profil-06	Profil-06	ProfiL06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06 I	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06
Profilpunkt	54	56	57	58	59	60	61	62	63	64	65	66	67	69	70	71	72	74	75	76
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse Gew%] SiO2 TiO2 A3_O3 Cr.O3 FeO MnO NiO MgO CaO K2O K2O X2O	54.19 .06 1.23 .73 1.89 .09 .03 17.09 24.09 .31 .00 99.70	54.76 .07 1.12 .69 1.80 .09 .05 17.47 24.48 .25 .01 100.79	54.09 .07 1.24 .72 1.85 .06 .00 17.25 24.24 .33 .00 99.84	54.26 .07 1.22 .72 1.87 .05 17.22 24.11 .30 .01 99.86	54.13 .08 1.17 .71 1.87 .10 0.3 17.26 24.17 .34 .01 99.86	54.01 .08 1.23 .77 1.92 .05 5.02 17.31 23.94 .30 .00 99.64	53.83 .07 1.17 .77 1.87 .06 6.05 17.36 24.01 .32 .00 99.50	54.29 .06 1.18 .72 1.84 .03 17.59 23.91 .30 .01 99.95	54.24 .06 1.17 .76 1.83 .06 .07 17.18 24.10 .31 .00 99.78	54.06 .08 1.18 .68 1.96 .10 .08 17.38 23.88 .30 .00 99.70	53.99 .08 1.21 .72 1.83 .10 .05 17.29 24.13 .30 .00 99.69	54.01 .06 1.24 .71 1.83 .01 17.33 24.15 .29 .00 99.66	53.91 .08 1.23 .73 1.85 .06 .01 17.36 24.28 .27 .01 99.78	54.36 .07 1.16 .75 1.88 .09 .04 17.35 24.03 .37 .00 100.09	54.22 .07 1.15 .09 1.85 .06 .03 17.32 24.31 .32 .00 100.01	54.07 .07 1.19 .71 1.83 .11 .00 17.22 24.15 .31 .00 99.65	54.05 .07 1.22 .70 1.85 .05 .03 17.34 24.16 .33 .01 99.79	54.34 .06 1.22 .68 1.96 .06 .05 17.26 24.29 .27 .00 100.18	54.49 .07 1.22 .66 1.87 .08 .09 17.25 24.08 .32 .00 100.14	54.33 .06 1.18 .70 1.80 .04 17.29 24.13 .30 .00 99.93
Kationen- besetzung Si Ti Al Cr Fe ^{z+} Mn Ni Mg Ca Na K ∑ Kationen Sauerstoffe	1.973 .002 .053 .021 .058 .003 .001 .928 .940 .022 .000 4.000	1.973 .002 .047 .020 .054 .003 .001 .938 .945 .017 .000 4.001 6.000	1.968 .002 .053 .021 .056 .002 .000 .936 .945 .023 .000 4.005	1.972 .002 .021 .057 .001 .933 .939 .021 .000 4.000 6.000	1.970 .002 .050 .021 .057 .003 .001 .936 .942 .024 .000 4.005	1.968 .002 .053 .022 .009 .002 .000 .941 .935 .021 .000 4.002 6.000	1.966 .002 .050 .022 .057 .002 .001 .945 .939 .023 .000 4.007	1.970 .002 .051 .021 .056 .001 .951 .930 .021 .000 4.003 6.000	1.974 .002 .056 .002 .932 .940 .022 .940 .022 .940 .022 .000 4.000	1.969 .002 .051 .020 .060 .003 .002 .944 .932 .021 .000 4.004 6.000	1.967 .002 .021 .056 .003 .001 .939 .942 .021 .000 4.005 6.000	1.968 .002 .053 .020 .056 .001 .001 .941 .942 .021 .000 4.004 6.000	1.963 .002 .053 .021 .056 .002 .000 .943 .948 .019 .000 4.007 6.000	1.972 .002 .050 .021 .057 .003 .001 .938 .934 .026 .000 4.004	1.969 .002 .049 .020 .056 .002 .001 .938 .946 .022 .000 4.005	1.970 .002 .051 .020 .056 .003 .000 .935 .943 .022 .000 4.003 6.000	1.967 .002 .020 .056 .002 .001 .941 .942 .023 .000 4.007	1.970 .002 .019 .060 .002 .001 .933 .944 .019 .000 4.002 6.000	1.975 .002 .052 .019 .057 .003 .935 .023 .000 3.999 6.000	1.973 .002 .051 .020 .005 .002 .001 .939 .021 .000 4.000
Mg # Cr #	94.16 28.33	94.54 29.43	94.32 27.95	94.27 28.15	94.28 28.97	94.14 29.62	94.31 30.49	94.46 28.88	94.37 30.51	94.05 27.99	94.39 28.40	94.41 27.62	94.35 28.30	94.28 30.04	94.36 28.72	94.36 28.52	94.35 27.88	94.00 27.11	94.28 26.67	94.48 28.57
Profilstrecke [µm]	235	255	265	275	285	295	305	315	325	335	345	355	365	385	395	405	415	435	445	455

Probe: Fi																				
Profilname	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06	Profil-06 I	Profil-06 I	Profil-06 I	Profil-06	Profil-06	Profil-06 I	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06 I	Profil-06
Profilpunkt	77	78	79	82	83	84	88	89	90	91	93	95	96	98	99	100	101	102	103	104
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] [Gow%] SiO ₂ TiO ₂ Gr ₂ O ₃ FeO MnO NiO NiO NgO CaO K ₂ Ô CaO X ₂ Ô X ₂ Ô	54.32 .05 1.19 .68 1.86 .09 .02 17.15 24.42 .29 .01 100.08	54.75 .04 1.22 .69 1.93 .06 .02 17.30 24.11 .28 .01 100.43	54.26 .07 1.14 .67 1.89 .06 .01 17.61 24.07 .31 .00 100.08	54.21 .09 1.19 .68 1.98 .03 17.26 24.01 .26 .00 99.78	54.49 .07 1.20 .68 1.98 .08 .01 17.47 23.97 .32 .00 100.27	54.43 .08 1.20 .69 1.92 .06 .05 17.32 24.18 .29 .00 100.20	54.16 .05 1.16 .71 1.00 .03 17.20 24.18 .25 .01 99.74	54.39 .08 1.23 .71 1.89 .09 .04 17.23 23.97 .29 .00 99.92	54.53 .09 1.19 .69 1.84 .11 .04 17.23 24.45 .31 .00 100.46	54.11 .08 1.18 .64 1.94 .04 .05 17.37 24.30 .30 .00 99.99	54.45 .06 1.13 .68 1.91 .07 .08 17.39 24.07 .33 .03 100.18	54.34 .06 1.19 .63 1.96 .07 .05 17.43 23.75 .29 .00 99.78	54.27 .06 1.16 .65 1.98 .05 .02 17.39 23.97 .29 .01 99.84	54.34 .06 1.15 .64 1.90 .04 .05 17.36 24.22 .30 .00 100.05	54.27 .07 1.16 .65 1.92 .06 .02 17.34 24.23 .25 .00 99.97	54.23 .06 1.15 .67 1.78 .07 .04 17.31 24.32 .31 .02 99.96	54.48 .06 1.22 .64 1.94 .08 .07 17.37 24.16 .25 .00 100.27	54.28 .07 1.17 .64 1.90 .09 .04 17.28 24.15 .26 .00 99.86	54.07 .05 1.18 .59 1.89 .10 .04 17.44 24.26 .28 .00 99.90	54.04 .06 1.16 .62 1.83 .08 .05 17.32 24.13 .30 .00 99.59
Kationen- besetzung Si Ti Al Cr Fre ⁴⁺ Mn Ni Mg Ca Ca Na K Kationen	1.972 .001 .051 .057 .003 .001 .928 .950 .021 .000 4.002	1.977 .001 .020 .058 .002 .001 .933 .019 .001 3.996	1.968 .002 .049 .057 .002 .000 .935 .022 .000 4.007	1.972 .002 .051 .019 .060 .002 .001 .936 .019 .000 3.999	1.972 .002 .051 .019 .060 .002 .000 .930 .022 .000 4.002	1.972 .002 .051 .020 .058 .002 .001 .939 .020 .000 4.001	1.972 .001 .020 .058 .003 .001 .934 .018 .000 4.000	1.975 .002 .053 .020 .058 .003 .001 .932 .020 .000 3.997	1.972 .002 .051 .020 .056 .003 .001 .929 .947 .022 .000 4.002	1.967 .002 .050 .018 .059 .001 .001 .946 .021 .000 4.007	1.973 .001 .048 .019 .058 .002 .002 .940 .935 .023 .001 4.004	1.975 .002 .051 .018 .060 .002 .001 .944 .925 .021 .000 3.999	1.973 .002 .050 .019 .060 .002 .000 .933 .020 .000 4.002	1.972 .002 .049 .018 .058 .001 .001 .939 .942 .021 .000 4.003	1.971 .002 .019 .058 .002 .001 .939 .943 .018 .000 4.002	1.970 .002 .049 .054 .002 .001 .934 .947 .022 .001 4.005	1.972 .002 .018 .059 .002 .002 .938 .937 .017 .000 4.000	1.973 .002 .058 .003 .001 .937 .940 .018 .000 4.000	1.967 .001 .017 .058 .003 .001 .945 .020 .000 4.008	1.970 .002 .050 .018 .056 .003 .001 .942 .942 .021 .000 4.005
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	94.26 27.62 465	94.10 27.58 475	94.34 28.38 485	93.96 27.59 514	94.02 27.54 524	94.15 27.69 534	94.17 28.96 574	94.19 27.76 584	94.36 27.92 594	94.09 26.73 604	94.20 28.68 624	94.06 26.18 644	93.99 27.16 654	94.22 27.33 674	94.15 27.17 684	94.56 27.93 694	94.12 26.00 704	94.21 27.00 714	94.27 25.20 724	94.40 26.42 734

Probe: Fi	Drofil 06 I	Drofil 06	Drofil 06	Drofil 06 I	Drofil 06 I	Drofil 06														
Profilpunkt	105	106	107	108	109	110	111	112	113	115	116	117	118	119	121	122	123	124	125	126
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх						
Analyse																				
[Gew%] SiO ₂	54.12	54.01	54.24	54.47	54.32	54.33	54.58	54.30	54.44	54.61	54.12	54.22	53.92	54.23	54.06	54.36	54.70	53.90	54.46	54.71
TiO ₂	.07	.05	.08	.08	.08	.05	.07	.07	.07	.07	.07	.09	.06	.05	.10	.08	.06	.07	.07	.08
	1.15	1.16	1.18	1.22	1.15	1.08	1.17	1.13	1.14	1.14	1.15	1.16	1.07	1.15	1.18	1.21	1.15	1.17	1.14	1.09
FeO	1.76	1.68	1.94	2.02	1.84	1.87	1.88	1.80	1.80	1.84	1.78	1.81	1.79	1.92	1.89	2.02	1.81	1.87	1.84	1.76
MnO NiO	.09	.06	.02	.05	.08	.01	.04	.05	.12	.06	.06	.05	.04	.04	.07	.07	.07	.09	.08	.04
MgO	17.43	17.20	17.40	17.61	17.37	17.39	17.53	17.35	17.32	17.38	17.29	17.38	17.32	17.45	17.36	17.28	17.48	17.38	17.45	17.38
CaO Na O	24.18	24.29	24.03	23.90	24.46	24.13	24.31	23.95	24.31	24.29	24.26	24.20	24.33	23.93	24.15	24.10	24.19	24.18	24.39	24.39
K ₂ Ô	.02	.20	.20	.20	.29	.20	.27	.20	.30	.01	.20	.29	.29	.25	.00	.00	.20	.20	.20	.20
Σ	99.80	99.42	99.84	100.35	100.27	99.82	100.50	99.49	100.19	100.41	99.61	99.84	99.46	99.65	99.75	100.07	100.37	99.59	100.34	100.40
Kationen-																				
besetzung																				
Si	1.969	1.972	1.972	1.970	1.969	1.975	1.971	1.978	1.973	1.974	1.972	1.971	1.969	1.974	1.968	1.973	1.976	1.967	1.971	1.977
AI	.002	.001	.002	.002	.002	.001	.002	.002	.002	.002	.002	.002	.002	.001	.003	.002	.002	.002	.002	.002
Cr	.018	.018	.018	.018	.018	.018	.018	.017	.017	.018	.016	.017	.018	.017	.017	.017	.018	.018	.018	.018
⊢e [_] Mn	.054	.051	.059	.061	.056	.057	.057	.055	.055	.056	.054	.055	.055	.058	.058	.061	.055	.057	.056	.053
Ni	.001	.002	.001	.002	.002	.002	.001	.000	.003	.002	.001	.001	.000	.001	.001	.002	.001	.001	.000	.002
Mg	.946	.936	.943	.950	.939	.942	.944	.942	.936	.937	.939	.942	.943	.947	.942	.935	.942	.945	.942	.936
Na	.023	.020	.019	.920	.020	.020	.940	.935	.021	.021	.947	.021	.020	.933	.022	.020	.930	.945	.945	.018
K	.000	.000	.001	.001	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.000	.000
∑ Kationen	4.007	4.003	4.002	4.002	4.006	4.002	4.003	3.996	4.003	4.001	4.003	4.003	4.007	4.000	4.006	4.001	3.998	4.007	4.004	3.998
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Ma #	94.64	94.81	94.11	93.95	94.40	94.31	94.33	94.49	94.49	94.40	94.54	94.49	94.52	94.19	94.24	93.84	94.50	94.32	94.41	94.64
	26.60	26.61	26.26	26.23	26.80	27.53	26.35	26.36	25.66	26.68	24.74	25.86	28.29	25.26	25.61	24.47	26.48	26.43	26.62	27.35
Profilstrecke [um]	744	754	764	774	784	794	804	814	824	844	854	864	874	884	904	914	924	934	944	954

Probe: Fi																				
Profilname	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06 I	Profil-06 I	Profil-06 I	Profil-06 I	Profil-06	Profil-06	Profil-06	Profil-06 I	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06 I	Profil-06
Profilpunkt	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO,- Gr.20,3 Gr.20,3 FeO MnO NiO NiO MgO CaO K ₂ Ô Xa,O K ₂ Ô	54.24 .06 1.13 .62 1.82 .05 17.67 24.09 .32 .00 100.04	54.23 .06 1.12 .59 1.83 .05 .03 17.32 24.30 .28 .00 99.80	54.48 .05 1.13 .59 1.93 .04 17.30 24.15 .26 .00 100.00	54.20 .06 1.12 .61 1.84 .08 .02 17.46 24.16 .30 .01 99.84	54.39 .08 1.18 .62 1.82 .07 .08 17.51 24.45 .30 .00 100.50	54.12 .07 1.16 .61 1.87 .05 .07 17.37 24.26 .29 .00 99.88	54.41 .08 1.15 .61 1.85 .09 .02 17.54 24.13 .27 .00 100.14	54.20 .07 1.15 .62 1.87 .05 .03 17.47 24.28 .00 100.02	54.47 .07 1.14 .60 1.81 .05 .02 17.36 24.01 .27 .00 99.80	54.48 .06 1.13 .64 1.88 .09 .05 17.41 24.24 .27 .00 100.24	54.23 .03 1.09 .65 1.92 .05 17.44 23.94 .27 .00 99.66	54.13 .08 1.15 .66 1.76 .10 .07 17.41 24.07 .30 .00 99.71	54.41 .05 1.15 .65 1.84 .07 17.35 24.25 .26 .00 100.08	54.25 .05 1.12 .63 1.89 .04 .06 17.37 24.39 .30 .00 100.09	54.36 .08 1.12 .63 1.78 .09 .01 17.35 24.27 .24 .01 99.95	54.23 .04 1.06 .64 1.76 .07 .07 17.27 24.39 .33 .00 99.85	54.60 .04 1.10 .63 1.77 .04 .04 17.35 24.33 .28 .00 100.15	54.32 .04 1.09 .63 1.72 .06 .03 17.34 24.27 .27 .01 99.78	54.66 .07 .99 .60 1.67 .11 .05 17.39 24.38 .30 .00 100.22	54.11 .08 1.02 .62 1.64 .06 17.35 24.47 .31 .01 99.71
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Na K Kationen	1.968 .002 .048 .018 .055 .002 .001 .937 .022 .000 4.009	1.973 .002 .048 .017 .056 .001 .001 .939 .947 .020 .000 4.003	1.977 .001 .048 .017 .058 .003 .001 .939 .018 .000 3.998	1.971 .002 .048 .017 .056 .002 .001 .946 .941 .021 .000 4.006	1.966 .002 .050 .018 .055 .002 .944 .947 .021 .000 4.008	1.968 .002 .018 .057 .002 .042 .945 .020 .000 4.006	1.971 .002 .049 .018 .056 .003 .001 .947 .937 .019 .000 4.003	1.968 .002 .049 .018 .057 .002 .001 .945 .020 .000 4.006	1.978 .002 .017 .055 .002 .000 .934 .019 .000 3.997	1.973 .002 .048 .018 .057 .003 .001 .941 .019 .000 4.001	1.975 .001 .047 .019 .058 .002 .001 .947 .934 .019 .000 4.002	1.971 .002 .049 .054 .003 .002 .939 .021 .000 4.004	1.973 .001 .049 .056 .001 .002 .938 .942 .018 .000 4.000	1.970 .001 .048 .057 .001 .002 .949 .021 .000 4.007	1.974 .002 .048 .054 .003 .000 .939 .944 .017 .000 4.000	1.973 .001 .045 .018 .053 .002 .002 .931 .023 .000 4.006	1.977 .001 .047 .018 .054 .001 .001 .934 .020 .000 3.999	1.975 .001 .047 .018 .052 .002 .001 .945 .019 .001 4.001	1.979 .002 .042 .017 .051 .003 .002 .938 .946 .021 .000 4.001	1.971 .002 .044 .018 .050 .002 .942 .955 .022 .000 4.007
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	94.54 26.94 964	94.40 26.00 974	94.12 26.07 984	94.42 26.56 994	94.50 25.95 1004	94.29 25.98 1014	94.42 26.46 1024	94.32 26.77 1034	94.46 25.92 1044	94.29 27.48 1054	94.19 28.74 1064	94.63 28.01 1074	94.38 27.50 1084	94.25 27.58 1094	94.55 27.42 1104	94.61 28.89 1114	94.58 27.73 1124	94.73 28.16 1134	94.88 28.73 1144	94.98 29.17 1154

Probe: Fi																-				
Profilname	Profil-06	148	149	150	151	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167
Minorel		140	0	0.0	0	100	0.	100	0.00	0	0	0.	0.	0	0.	100	0.	0.0	000	107
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO2 TiO2 Al2O3 FeO MnO NiO NiO MgO CaO K2O K2O X2O	54.31 .08 1.03 5.05 1.65 .11 17.39 24.37 .28 .00 99.82	54.55 .06 1.07 .61 1.77 .05 .03 17.46 24.30 .30 .02 100.21	54.32 .04 1.08 .64 1.83 .03 17.42 24.22 .32 .01 99.97	54.40 .06 1.09 .61 1.73 .08 .04 17.30 24.27 .34 .00 99.92	54.32 .04 1.01 .59 1.71 .07 .03 17.27 24.45 .27 .00 99.76	54.25 .05 1.07 .65 1.78 .08 .05 17.40 24.09 .26 .00 99.68	54.45 .06 1.05 .61 1.91 .07 .07 17.46 24.55 .24 .00 100.47	54.17 .05 1.09 .63 1.81 .05 .01 17.37 24.38 .24 .00 99.81	54.30 .06 1.10 .64 1.82 .09 .04 17.43 24.29 .28 .00 100.03	54.48 .07 1.06 .65 1.86 .04 .04 17.47 24.38 .28 .02 100.34	54.10 .05 1.04 .63 1.90 .06 .07 17.38 24.44 .28 .00 99.96	54.32 .05 1.07 .60 1.82 .07 17.51 24.03 .26 .00 99.81	54.25 .07 .99 .62 1.77 .10 .01 17.36 24.33 .24 .00 99.74	54.09 .07 1.05 .59 1.85 .08 .00 17.25 24.32 .23 .00 99.54	54.24 .04 1.00 .63 1.78 .01 17.48 24.24 .25 .01 99.75	54.64 .06 1.03 .60 1.85 .05 .07 17.38 24.23 .27 .02 100.20	54.61 .07 1.05 .59 1.85 .08 .03 17.36 24.41 .29 .00 100.33	54.61 .06 1.02 .58 1.81 .12 .05 17.37 24.45 .28 .01 100.33	54.27 .03 1.05 .63 1.73 .07 .04 17.33 24.42 .30 .01 99.89	54.39 .07 1.05 .66 1.75 .06 .05 17.30 24.37 .28 .00 99.97
Kationen- besetzung Si Ti Al Cr Fe ^{2*} Mn Mg Ca Na K K S Kationen	1.974 .002 .044 .017 .050 .003 .000 .942 .949 .020 .000 4.003	1.975 .001 .046 .017 .054 .001 .942 .943 .021 .001 4.003	1.973 .001 .046 .055 .003 .001 .943 .943 .022 .000 4.005	1.976 .002 .047 .017 .053 .001 .936 .944 .024 4.002	1.977 .001 .043 .017 .052 .001 .937 .953 .019 .000 4.002	1.975 .001 .046 .019 .054 .002 .001 .944 .940 .018 .000 4.001	1.970 .002 .045 .017 .058 .002 .002 .952 .017 .000 4.006	1.971 .001 .047 .015 .002 .000 .950 .017 .000 4.004	1.971 .002 .047 .015 .003 .001 .943 .945 .020 .000 4.005	1.972 .002 .045 .001 .001 .001 .943 .945 .020 .001 4.005	1.968 .001 .045 .058 .002 .002 .943 .953 .020 .000 4.009	1.975 .001 .046 .015 .002 .002 .949 .936 .018 .000 4.002	1.975 .002 .043 .054 .003 .000 .949 .017 .000 4.002	1.973 .002 .045 .015 .002 .000 .951 .016 .000 4.002	1.974 .001 .043 .054 .002 .000 .948 .945 .018 .001 4.004	1.979 .002 .044 .017 .056 .002 .002 .940 .019 .001 3.999	1.976 .002 .045 .017 .056 .001 .936 .021 .000 4.002	1.976 .002 .043 .055 .004 .001 .948 .020 .000 4.002	1.973 .001 .045 .018 .053 .002 .001 .021 .021 .001 4.005	1.975 .002 .045 .019 .053 .002 .001 .937 .948 .019 .000 4.001
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	94.94	94.62	94.44	94.69	94.75	94.59	94.23	94.46	94.46	94.36	94.21	94.49	94.60	94.34	94.61	94.37	94.37	94.47	94.69	94.63
Cr #	27.58	27.55	28.56	27.16	28.13	28.90	27.96	27.99	28.12	29.11	28.77	27.34	29.53	27.40	29.55	28.31	27.23	27.61	28.81	29.62
Profilstrecke [µm]	1164	1174	1184	1194	1204	1224	1234	1244	1254	1264	1274	1284	1294	1304	1314	1324	1334	1344	1354	1364

Probe: Fi																				
Profilname	Profil-06	Profil-06 I	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06 F	Profil-06 I	Profil-06 I	Profil-06	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06	Profil-06
Profilpunkt	168	169	170	171	172	173	174	178	180	181	182	183	184	185	187	188	189	190	192	193
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse Gew%] [Gew%] SiO, TIO, Gr,O, Gr,O, FeO MnO NiO NiO CaO CaO K ₂ Ó X S	54.31 .05 .61 1.78 .02 .04 17.46 24.46 .28 .00 100.04	54.45 .08 1.07 .60 1.82 .09 .04 17.45 24.23 .25 .00 100.09	54.38 .07 1.04 .60 1.800 .08 .06 17.50 24.11 .24 .02 99.89	54.31 .04 1.12 .63 1.91 .08 .08 17.52 24.32 .27 .00 100.28	54.46 .05 1.12 .57 1.82 .08 .03 17.58 24.25 .29 .00 100.25	54.24 .06 1.07 .63 1.77 .09 .05 17.41 24.14 .32 .01 99.78	54.63 .07 .99 .60 1.80 .10 .02 17.50 24.17 .27 .00 100.13	54.06 .07 1.01 .64 1.83 .05 .03 17.42 24.46 .28 .00 99.84	54.33 .06 .97 .64 1.80 .05 .07 17.41 24.22 .26 .00 99.81	54.28 .06 1.05 .65 1.81 .08 .06 17.30 24.47 .27 .00 100.02	54.69 .04 1.07 .66 1.97 .08 .05 17.43 24.33 .25 .00 100.57	54.73 .07 1.11 .62 1.87 .08 .03 17.42 24.27 .25 .00 100.43	54.59 .06 1.02 .67 1.80 .07 .03 17.38 24.26 .26 .00 100.14	54.25 .05 .98 .59 1.85 .07 .06 17.41 24.33 .26 .00 99.86	54.14 .08 1.09 .68 1.76 .09 .04 17.35 24.37 .26 .00 99.84	54.17 .08 1.05 .67 1.90 .05 .07 17.49 23.95 .22 .00 99.65	54.78 .07 1.02 .61 1.93 .04 .09 17.29 24.25 .23 .00 100.29	54.13 .01 .96 .62 1.81 .07 .09 17.44 24.31 .23 .01 99.66	54.30 .06 1.06 .65 1.80 .09 .04 17.31 24.35 .22 .00 99.88	54.61 .05 1.01 .60 1.73 .07 .06 17.39 24.47 .27 .02 100.27
Kationen- besetzung Si Ti Al Cr Fr ⁴⁺ Mn Ni Mg Ca Na K Xationen	1.971 .001 .045 .017 .054 .001 .001 .951 .019 .000 4.006	1.974 .002 .046 .017 .055 .003 .001 .941 .018 .000 4.001	1.975 .002 .044 .017 .055 .002 .002 .948 .938 .017 .001 4.001	1.968 .001 .048 .058 .003 .002 .947 .944 .019 .000 4.007	1.972 .001 .048 .016 .055 .002 .001 .949 .941 .020 .000 4.005	1.973 .002 .046 .018 .054 .003 .001 .944 .941 .023 .000 4.005	1.979 .002 .042 .017 .054 .003 .001 .945 .938 .019 .000 3.999	1.968 .002 .043 .056 .001 .001 .956 .954 .020 .000 4.009	1.976 .002 .041 .018 .055 .002 .944 .944 .018 .000 4.001	1.972 .002 .019 .055 .002 .002 .937 .952 .019 .000 4.004	1.975 .001 .049 .060 .002 .001 .934 .941 .017 .000 4.001	1.977 .002 .047 .018 .057 .002 .001 .939 .017 .000 3.998	1.978 .002 .044 .019 .055 .002 .001 .939 .942 .018 .000 3.998	1.973 .001 .042 .017 .056 .002 .044 .948 .018 .000 4.005	1.970 .002 .047 .019 .053 .003 .001 .950 .018 .000 4.004	1.973 .002 .045 .019 .058 .002 .950 .015 .000 4.000	1.981 .002 .043 .017 .058 .001 .002 .940 .016 .000 3.995	1.973 .000 .041 .018 .055 .002 .003 .949 .016 .000 4.005	1.974 .002 .019 .055 .003 .001 .939 .015 .000 4.000	1.977 .001 .043 .017 .052 .002 .938 .949 .019 .001 4.002
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	94.59 28.11 1374	94.48 27.35 1384	94.54 28.03 1394	94.24 27.45 1404	94.50 25.48 1414	94.59 28.46 1424	94.56 28.77 1434	94.44 30.00 1474	94.52 30.89 1494	94.46 29.29 1504	94.03 29.22 1513	94.31 27.27 1523	94.50 30.67 1533	94.37 28.79 1543	94.63 29.49 1563	94.27 29.77 1573	94.12 28.63 1583	94.50 30.21 1593	94.48 29.29 1613	94.71 28.57 1623

Probe: Fi Profilnamo	Profil 06	Drofil 06 I	Drofil OF	Profil 06																
Profilpunkt	194	195	196	197	199	200	203	207	208	209	210	212	213	214	215	216	217	218	219	220
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх									
Analyse																				
[Gew%] SiO ₂	54.31	54.09	54.39	54.14	54.24	54.22	54.45	54.09	54.41	54.08	54.06	54.44	54.22	54.31	54.20	54.17	54.23	54.11	54.04	54.39
TiO ₂	.05	.07	.06	.06	.05	.06	.06	.08	.05	.05	.05	.03	.05	.04	.07	.06	.06	.06	.03	.07
Cr ₂ O ₃	.65	.65	.66	.63	.66	.61	.61	.56	.60	.69	.93	.62	.62	.64	.95	.66	.64	.62	.62	.90
FeO MpO	1.74	1.82	1.90	1.73	1.75	1.77	1.73	1.83	1.70	1.73	1.70	1.67	1.74	1.84	1.72	1.76	1.82	1.59	1.87	1.77
NiO	.07	.00	.04	.07	.05	.05	.03	.05	.03	.02	.08	.03	.00	.00	.03	.00	.03	.03	.02	.10
MgO CaO	17.33	17.36	17.40	17.36	17.38	17.33	17.52	17.44	17.39	17.33	17.45	17.50	17.52	17.51	17.22	17.35	17.41	17.35	17.62	17.29
Na ₂ O	.26	.29	.28	.23	.24.52	.24	.24	.19	.24.02	.24.73	.24.72	.24.09	.24.50	.24	.24.72	.24.04	.24	.24.07	.19	.18
K₂0	.00	.00	.01	.02	.00	.00	.01	.02	.00	.01	.01	.00	.01	.00	.01	.00	.00	.00	.00	.01
2	00.00	00.11	100.20	00.70	100.00	00.00	100.20	100.01	100.01	00.10	00.00	100.11	100.00	100.10	00.10	00.01	100.21	00.11	00.00	100.10
Kationen-																				
Si	1.973	1.970	1.972	1.972	1.971	1.974	1.972	1.963	1.976	1.971	1.967	1.975	1.969	1.970	1.974	1.971	1.967	1.973	1.970	1.973
Ti	.001	.002	.002	.002	.001	.002	.002	.002	.001	.001	.001	.001	.001	.001	.002	.002	.002	.002	.001	.002
AI Cr	.044	.045	.044	.041	.043	.040	.042	.042	.035	.036	.040	.035	.042	.043	.041	.042	.042	.035	.041	.041
Fe ²⁺	.053	.055	.057	.053	.053	.054	.052	.056	.052	.053	.052	.051	.053	.056	.052	.053	.055	.048	.057	.054
Mn Ni	.002	.002	.001	.004	.003	.002	.003	.002	.001	.001	.002	.002	.002	.002	.001	.002	.002	.003	.002	.002
Mg	.938	.943	.940	.942	.941	.940	.946	.943	.941	.942	.946	.946	.949	.947	.935	.941	.941	.943	.957	.935
Ca Na	.953	.952	.949	.955	.955	.957	.953	.973	.966	.966	.963	.960	.956	.952	.965	.957	.963	.971	.946	.961
K	.000	.000	.000	.001	.000	.000	.001	.001	.000	.001	.000	.000	.001	.000	.001	.000	.000	.000	.000	.000
∑ Kationen	4.003	4.007	4.005	4.006	4.005	4.004	4.005	4.013	4.005	4.008	4.010	4.004	4.008	4.007	4.004	4.004	4.009	4.008	4.007	4.002
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	94.66	94.44	94.24	94.70	94.64	94.57	94.76	94.43	94.79	94.70	94.82	94.93	94.72	94.45	94.70	94.63	94.46	95.11	94.38	94.56
Cr #	29.66	29.62	30.30	30.43	30.58	30.57	29.23	27.84	33.21	35.20	32.74	35.50	29.67	29.91	29.39	31.05	30.26	31.79	30.35	29.83
Profilstrecke [um]	1633	1643	1653	1663	1683	1693	1723	1763	1773	1783	1793	1813	1823	1833	1843	1853	1863	1873	1883	1893

Probe: Fi Profilname	Profil-06 I	Profil-06	Profil-06 F	Profil-06 I	Profil-06 I	Profil-06	Profil-06	Profil-06 I	Profil-06	Profil-06 I	Profil-06 I	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06
Profilpunkt	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	237
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO2 SiO2 TiO2 Al2O3 Cr2O3 FEO MnO NiO NiO MgO CaO Na2O K2O ∑	54.30 .07 .92 .54 1.72 .07 .01 17.59 24.66 .21 .00 100.09	53.98 .06 .91 .55 1.78 .04 .03 17.37 24.63 .22 .00 99.56	54.45 .07 .92 .63 1.71 .06 08 17.41 24.75 .24 .01 100.32	54.14 .06 .98 .58 1.77 .06 .00 17.35 24.75 .21 .00 99.90	54.23 .04 .96 .58 1.60 .07 .05 17.48 24.77 .15 .00 99.95	54.50 .04 .93 .59 1.71 .06 .04 17.42 24.61 .25 .02 100.17	54.43 .04 .90 .57 1.69 .03 .03 17.34 24.86 .23 .00 100.12	54.69 .04 .97 .53 1.64 .03 .02 17.34 24.62 .25 .01 100.14	54.14 .06 .93 .55 1.68 .07 .01 17.43 24.78 .19 .00 99.83	54.30 .04 .92 .56 1.68 .09 .07 17.36 24.88 .23 .00 100.13	54.23 .06 .88 .500 .09 .01 17.44 24.99 .16 .00 100.07	54.33 .05 .90 .47 1.62 .05 .02 17.53 24.52 .19 .00 99.69	54.36 .04 .91 .44 1.63 .04 .13 17.54 24.99 .21 .00 100.29	54.75 .06 .78 .39 1.55 .05 .00 17.62 24.65 .18 .01 100.06	54.43 .04 .64 .32 1.61 .08 .06 17.72 24.88 .15 .01 99.93	55.16 .01 .44 .21 1.55 .11 07 17.84 24.75 .16 .00 100.30
Kationen- besetzung Si Ti Cr Frést Mn Ni Mg Ca Na K Kationen	1.971 .002 .039 .016 .052 .000 .952 .959 .015 .000 4.007	1.971 .002 .039 .016 .054 .001 .001 .946 .963 .015 .000 4.008	1.973 .002 .039 .018 .052 .002 .902 .940 .961 .017 .001 4.006	1.970 .002 .042 .017 .054 .002 .000 .941 .965 .015 .000 4.007	1.971 .001 .041 .017 .049 .002 .002 .947 .965 .011 .000 4.005	1.976 .001 .040 .017 .002 .002 .001 .942 .956 .017 .001 4.004	1.975 .001 .039 .016 .051 .001 .938 .966 .016 .000 4.005	1.981 .001 .041 .050 .001 .001 .936 .955 .017 .000 3.999	1.971 .002 .040 .016 .051 .002 .000 .946 .966 .013 .000 4.006	1.972 .001 .039 .016 .051 .003 .002 .940 .968 .016 .000 4.008	1.970 .002 .038 .014 .052 .003 .000 .945 .973 .011 .000 4.008	1.977 .001 .039 .014 .002 .001 .951 .956 .014 .000 4.002	1.970 .001 .039 .013 .001 .004 .948 .970 .015 .000 4.010	1.983 .002 .033 .011 .047 .002 .900 .952 .957 .012 .001 3.999	1.978 .001 .028 .009 .049 .002 .002 .960 .969 .010 .001 4.008	1.993 .000 .019 .006 .047 .003 .002 .961 .958 .011 .000 4.000
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	94.81 28.24 1903	94.58 29.02 1913	94.78 31.46 1923	94.59 28.63 1933	95.11 28.66 1943	94.80 29.79 1953	94.82 29.79 1963	94.98 26.81 1973	94.87 28.38 1983	94.84 28.93 1993	94.82 27.76 2003	95.06 26.09 2013	95.03 24.41 2023	95.29 24.88 2033	95.15 25.18 2043	95.37 24.16 2063

Fi
08
Срх
2.3

Profil- strecke [µm]	P [µg/g]	Sc [b/b/]	oC [b/bh]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
30	2.220	49.509	12.605	3.113	0.331	0.770	0.588	0.668
84	3.456	49.383	12.777	3.574	0.316	2.119	0.744	1.027
125	4.173	49.610	13.485	2.966	0.338	0.411	0.241	1.117
170	3.560	49.374	13.130	3.913	0.358	0.739	0.340	0.586
230	3.757	49.056	13.663	3.203	0.601	1.475	0.936	0.480
316	4.706	48.819	14.752	4.353	0.570	0.288	0.630	0.948
375	4.063	48.677	13.487	3.092	0.726	0.408	0.648	0.889
425	4.094	48.453	13.938	3.002	0.911	0.366	0.832	0.818
477	4.333	47.535	13.812	3.595	0.255	0.786	0.787	0.813
538	3.979	47.535	14.367	2.871	0.741	0.616	0.524	1.230
584	4.975	48.108	13.982	3.253	0.866	0.901	0.513	0.688
635	4.337	48.434	14.450	4.105	1.074	0.992	1.013	1.203
684	3.948	49.670	13.016	3.425	0.866	0.721	0.394	1.169
732	3.621	49.499	13.016	3.277	0.588	0.446	0.862	0.285

Probe: Fi Profilname	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08 F	Profil-08
Profilpunkt	16	21	22	24	25	26	27	28	29	30	31	32	33	34	35	37	38	39	40	41
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr2O3 FeO MinO NiO MigO CaO CaO K2O K2O	54.44 .03 .60 .32 1.76 .09 .10 18.10 24.42 .19 .00 100.06	54.38 .02 .83 .45 1.81 .07 .04 17.82 24.51 .21 .01 100.13	54.37 .05 .90 .50 1.69 .09 .08 17.70 24.40 .25 .00 100.02	54.34 .04 .97 .55 1.67 .11 .07 17.44 24.48 .22 .00 99.88	54.17 .02 1.03 .67 1.69 .05 .01 17.48 24.44 .24 .01 99.79	54.13 .09 1.05 .69 1.81 .08 .05 17.45 24.47 .23 .01 100.05	53.99 .05 1.11 .68 1.74 .02 .02 17.47 24.49 .31 .00 99.87	53.96 .06 1.13 .72 1.76 .08 .05 17.36 24.22 .30 .00 99.64	54.15 .06 1.16 .72 1.85 .07 .03 17.50 24.22 .29 .02 100.06	54.08 .06 1.16 .75 1.81 .04 .00 17.42 24.20 .28 .00 99.80	54.03 .05 1.13 .71 1.82 .02 .05 17.39 24.41 .30 .00 99.91	54.10 .06 1.12 .72 1.86 .04 .02 17.42 24.16 .26 .00 99.76	54.16 .03 1.12 .73 1.82 .08 .03 17.45 24.40 .25 .00 100.07	53.95 .08 1.13 .75 1.77 .05 .02 17.40 24.35 .26 .00 99.75	54.04 .07 1.11 .79 1.83 .06 6.03 17.51 24.38 .29 .00 100.10	54.06 .05 1.14 .74 1.81 .08 .05 17.48 24.21 .35 .00 99.96	54.41 .09 1.15 .77 1.78 .07 .02 17.37 24.10 .27 .00 100.01	53.94 .08 1.16 .78 1.90 .08 .04 17.35 24.21 .31 .00 99.84	54.00 .05 1.18 .77 1.81 .12 .03 17.58 24.27 .28 .00 100.09	54.18 .04 1.17 .75 1.81 .09 .03 17.37 24.12 .29 .01 99.84
Kationen- besetzung Si Ti Al Cr Fre ⁴⁺ Mn Ni Mg Ca Ca Na K Kationen	1.976 .001 .026 .009 .053 .003 .003 .979 .949 .014 .000 4.013	1.973 .000 .036 .013 .055 .002 .001 .952 .014 .000 4.010	1.973 .001 .038 .014 .051 .003 .002 .958 .949 .017 .000 4.008	1.975 .001 .041 .051 .003 .002 .953 .015 .000 4.003	1.971 .001 .044 .019 .051 .002 .000 .945 .017 .001 4.006	1.967 .002 .045 .020 .055 .002 .001 .952 .016 .000 4.007	1.965 .001 .047 .020 .053 .001 .001 .948 .955 .022 .000 4.011	1.967 .002 .021 .054 .002 .001 .946 .021 .000 4.007	1.966 .002 .021 .056 .002 .001 .942 .020 .001 4.008	1.968 .002 .021 .055 .001 .000 .943 .020 .000 4.005	1.966 .001 .020 .055 .001 .001 .943 .952 .021 .000 4.009	1.969 .002 .048 .021 .057 .001 .001 .942 .018 .000 4.004	1.967 .001 .048 .021 .055 .003 .001 .949 .018 .000 4.007	1.965 .002 .048 .022 .054 .000 .950 .019 .000 4.007	1.963 .002 .048 .023 .055 .002 .001 .949 .020 .000 4.010	1.965 .001 .049 .021 .055 .003 .001 .943 .024 .000 4.010	1.974 .002 .022 .054 .002 .001 .939 .937 .019 .000 3.998	1.964 .002 .022 .058 .002 .001 .945 .022 .000 4.008	1.961 .001 .022 .055 .004 .001 .945 .020 .000 4.011	1.970 .001 .050 .021 .055 .003 .001 .941 .940 .020 .001 4.003
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	94.83 26.50 5	94.62 26.60 55	94.91 27.05 65	94.91 27.66 85	94.87 30.36 95	94.50 30.36 105	94.70 29.30 114	94.62 30.00 124	94.41 29.30 134	94.48 30.11 144	94.45 29.64 154	94.35 29.98 164	94.48 30.20 174	94.59 30.88 184	94.47 32.15 194	94.51 30.41 214	94.57 31.06 224	94.22 30.87 234	94.53 30.48 244	94.46 29.97 254

Probe: Fi	Drofil 09	Drofil 09	Drofil 09	Drofil 09	Drofil 09 I	Drofil 09 I	Drofil 09 I	Drofil 09	Drofil 09	Drofil 09	Drofil 09	Drofil 09	Drofil 09	Drofil 09	Drofil 09	Drofil 09	Drofil 09	Drofil 09	Drofil 09	Drofil 09
Profilpunkt	42	43	44	45	46	47	48	49	51	52	53	54	55	56	57	58	59	60	61	63
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse Gew%] SiO2 A2O3 Cr203 FeO MnO NiO MgO CaO CaO K2O K2O X2O	54.48 .07 1.21 .73 .04 17.79 24.06 .30 .00 100.54	54.10 .06 1.17 .76 1.86 .05 5.00 17.50 23.99 .25 .00 99.74	54.25 .04 1.16 .75 1.78 .09 .02 17.49 24.09 .26 .01 99.94	54.17 .05 1.20 .79 .08 .03 17.51 24.13 .30 .00 100.05	53.81 .07 1.18 .74 1.81 .07 .08 17.40 24.07 .31 .01 99.56	54.00 .08 1.19 .76 1.78 .06 17.39 24.27 .30 .00 99.88	54.26 .07 1.24 .79 1.91 .07 .05 17.40 24.27 .27 .00 100.32	54.12 .06 1.17 .74 1.81 .06 .02 17.44 24.18 .33 .01 99.92	53.91 .09 1.21 .77 1.90 .07 .03 17.47 24.19 .30 .00 99.92	54.27 .07 1.20 .80 1.88 .08 .06 17.36 24.12 .30 .01 100.14	53.99 .08 1.24 .73 1.86 .04 .06 17.48 24.07 .28 .00 99.84	54.37 .09 1.20 .76 1.78 .06 .03 17.44 24.09 .27 .00 100.11	53.93 .07 1.23 .71 2.01 .06 .00 17.33 24.02 .32 .01 99.69	53.97 .07 1.24 .75 1.86 .03 .01 17.39 24.21 .34 .00 99.88	53.89 .08 1.21 .73 1.92 .05 .05 17.49 24.23 .28 .00 99.94	54.14 .06 1.22 .77 1.92 .10 .05 17.44 23.92 .30 .00 99.91	53.94 .07 1.22 .74 1.88 .05 .03 17.53 24.08 .28 .01 99.82	53.88 .07 1.21 .75 .11 .01 17.48 24.34 .29 .01 100.08	54.33 .09 1.30 .78 1.89 .07 .04 17.42 23.93 .33 .00 100.18	54.11 .05 1.19 .69 2.02 .05 .07 17.59 23.99 .30 .00 100.06
Kationen- besetzung Si Ti Cr Fre ²⁺ Mn Ni Mg Ca Ca Xa Xa Xa Xationen Sauerstoffe	1.966 .002 .051 .021 .001 .001 .957 .930 .021 .000 4.006	1.969 .002 .056 .001 .000 .949 .935 .018 .000 4.003	1.970 .001 .054 .003 .001 .947 .937 .018 .000 4.003	1.966 .001 .023 .054 .003 .001 .947 .938 .021 .000 4.006	1.964 .002 .051 .021 .055 .002 .002 .947 .942 .022 .001 4.009	1.964 .002 .051 .022 .054 .002 .943 .946 .021 .000 4.008 6.000	1.965 .002 .053 .023 .058 .002 .940 .942 .019 .000 4.005	1.967 .002 .021 .055 .002 .001 .945 .942 .023 .000 4.007	1.961 .002 .022 .028 .002 .001 .947 .943 .021 .000 4.010	1.968 .002 .051 .023 .057 .003 .002 .939 .937 .021 .000 4.003 6.000	1.964 .002 .053 .021 .057 .001 .002 .948 .938 .020 .000 4.007	1.970 .003 .051 .022 .054 .002 .935 .019 .000 4.000	1.966 .002 .053 .020 .061 .002 .000 .942 .938 .023 .000 4.007	1.964 .002 .053 .022 .057 .001 .000 .943 .944 .024 .000 4.009	1.961 .002 .021 .058 .002 .001 .949 .944 .020 .000 4.011 6.000	1.968 .002 .022 .058 .003 .001 .945 .932 .021 .000 4.004	1.963 .002 .021 .057 .001 .951 .939 .020 .000 4.008	1.959 .002 .022 .059 .003 .000 .947 .948 .021 .000 4.013	1.968 .003 .022 .057 .002 .001 .941 .929 .023 .000 4.002	1.965 .001 .020 .061 .001 .002 .953 .934 .021 .000 4.009
Mg #	94.51	94.39	94.59	94.57	94.48	94.58	94.21	94.51	94.26	94.27	94.36	94.59	93.89	94.33	94.21	94.20	94.32	94.11	94.26	93.95
Cr # Profilstrecke [µm]	∠6.83 264	274	284	294	29.62 304	29.68 313	29.65 323	29.65 333	29.94 353	30.93	26.32 373	29.72 383	27.85 393	29.01 403	20.02 413	423	∠o.o3 433	29.30 443	26.67 453	28.00 473

| Profil-08 | Profil-08 | Profil-08 | Profil-08 | Profil-08 | Profil-08 I | Profil-08 I

 | Profil-08 I

 | Profil-08 | Profil-08 I | Profil-08 | Profil-08
 | Profil-08 I
 | Profil-08 I
 | Profil-08
 | Profil-08 | Profil-08 I
 | Profil-08 | Profil-08
 | Profil-08 |
|--|--|--|--|--|---
--
--
--
--|---|---

--
--
--

--
---	---
---	---
64	65

 | 73

 | 75 | 76 | 77 | 78
 | 79
 | 80
 | 81
 | 82 | 83
 | 84 | 85
 | 86 |
| Срх | Срх | Срх | Срх | Срх | Срх | Срх

 | Срх

 | Срх | Срх | Срх | Срх
 | Срх
 | Срх
 | Срх
 | Срх | Срх
 | Срх | Срх
 | Срх |
| 54.44
.10
1.27
.78
1.81
.03
.04
17.46
24.06
.31
.03
100.32 | 53.72
.05
1.16
.75
1.89
.09
17.46
24.00
.27
.00
99.47 | 53.99
.05
1.22
.80
1.89
.03
.06
17.46
24.17
.27
.00
99.94 | 54.26
.04
1.15
.73
1.87
.08
.07
17.31
24.32
.27
.00
100.10 | 54.16
.07
1.21
.71
1.88
.11
.03
17.33
24.14
.30
.03
99.95 | 54.18
.07
1.23
.79
2.00
.08
.05
17.41
23.97
.26
.00
100.02 | 54.11
.07
1.22
.77
1.90
.14
.03
17.52
24.04
.29
.00
100.09

 | 54.06
.04
1.19
.75
1.78
.05
.07
17.41
24.26
.28
.00
99.90

 | 54.07
.05
1.21
.73
1.87
.04
.06
17.39
23.90
.27
.01
99.58 | 54.30
.08
1.21
.75
1.90
.11
.08
17.48
24.29
.31
.02
100.53 | 54.45
.06
1.19
.68
1.90
.08
.01
17.32
24.00
.30
.00
99.98 | 54.11
.06
1.16
.70
1.85
.06
.04
17.42
24.29
.32
.00
100.01
 | 54.52
.06
1.21
.70
1.83
.08
17.41
23.93
.26
.00
100.06
 | 54.13
.06
1.17
.67
1.89
.11
.07
17.42
24.18
.29
.01
99.99
 | 54.04
.05
1.19
.69
1.89
.03
.01
17.55
24.04
.30
.00
99.80
 | 54.26
.07
1.15
.68
1.74
.05
.05
17.42
24.10
.27
.00
99.79 | 54.07
.06
1.18
.68
1.91
.08
.03
17.58
24.21
.27
.00
100.06
 | 53.90
.05
1.16
.68
1.71
.09
.00
17.55
24.37
.32
.01
99.82 | 54.28
.05
1.15
.61
1.83
.09
.05
17.61
24.15
.29
.01
100.13
 | 54.26
.05
1.08
.63
1.76
.07
.03
17.48
24.39
.29
.00
100.03 |
| 1.969
.003
.054
.022
.055
.001
.001
.941
.932
.022
.001
4.002 | 1.963
.001
.022
.058
.003
.003
.951
.940
.019
.000
4.009 | 1.963
.001
.022
.023
.058
.001
.002
.946
.942
.019
.000
4.007 | 1.970
.001
.021
.057
.002
.002
.937
.946
.019
.000
4.004 | 1.968
.002
.020
.057
.003
.001
.939
.940
.021
.001
4.005 | 1.967
.002
.053
.023
.061
.003
.001
.942
.932
.018
.000
4.002 | 1.964
.002
.052
.058
.004
.001
.948
.935
.020
.000
4.007

 | 1.966
.001
.022
.054
.002
.944
.945
.020
.000
4.006

 | 1.970
.001
.022
.021
.057
.001
.002
.945
.945
.945
.019
.000
4.002 | 1.964
.002
.051
.021
.057
.003
.002
.943
.941
.022
.001
4.009 | 1.975
.002
.051
.020
.058
.002
.000
.933
.021
.000
3.999 | 1.966
.002
.050
.020
.056
.002
.001
.944
.944
.023
.000
4.009
 | 1.975
.002
.052
.020
.056
.002
.002
.940
.929
.018
.000
3.996
 | 1.967
.002
.019
.057
.004
.002
.944
.941
.021
.000
4.007
 | 1.966
.001
.020
.058
.001
.000
.937
.021
.000
4.007
 | 1.972
.002
.049
.020
.053
.002
.044
.944
.019
.000
4.001 | 1.964
.002
.019
.058
.002
.001
.952
.942
.019
.000
4.009
 | 1.962
.001
.020
.052
.003
.000
.953
.950
.022
.000
4.013 | 1.968
.001
.049
.015
.003
.001
.938
.020
.001
4.008
 | 1.970
.001
.046
.018
.053
.002
.001
.946
.946
.020
.000
4.007 |
| 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000

 | 6.000

 | 6.000 | 6.000 | 6.000 | 6.000
 | 6.000
 | 6.000
 | 6.000
 | 6.000 | 6.000
 | 6.000 | 6.000
 | 6.000 |
| 94.50
29.11
483 | 94.28
30.27
493 | 94.27
30.46
503 | 94.30
29.67
512 | 94.28
28.33
522 | 93.95
30.01
532 | 94.27
29.80
542

 | 94.56
29.77
572

 | 94.33
28.92
592 | 94.25
29.37
602 | 94.21
27.64
612 | 94.38
28.95
622
 | 94.42
28.07
632
 | 94.28
27.67
642
 | 94.30
28.09
652
 | 94.71
28.36
662 | 94.25
27.81
672
 | 94.83
28.17
682 | 94.50
26.21
692
 | 94.67
28.25
702 |
| | Profil-08
64
Cpx
544.44
.10
1.27
.78
1.81
0.3
100.32
1.969
.003
.054
.022
.001
.055
.001
.054
.002
.001
.001
.021
4.002
6.000
94.50
29.11
483 | Profil-08 Profil-08 64 65 Cpx Cpx 54.44 53.72 .10 .05 .127 1.16 .78 .75 .81 1.89 .03 .09 .04 .09 .17.46 24.06 .27 .03 .03 .001 .003 .001 .004 .050 .022 .022 .055 .058 .001 .003 .004 .099 .001 .003 .001 .003 .001 .003 .001 .000 .002 .019 .001 .000 .002 .019 .001 .000 .002 .029 .001 .000 .002 .019 .001 .002 .002 .0409 .001 | Profil-08 Profil-08 Profil-08 64 65 66 Cpx Cpx Cpx 54.44 53.72 53.99 .10 .05 .05 .27 1.16 1.22 .78 .75 .80 .181 1.89 1.89 .03 .09 .03 .04 .09 .06 .17.46 17.46 17.46 .03 .00 .00 .04 .09 .06 .03 .00 .03 .04 .09 .06 .04 .09 .06 .03 .00 .01 .04 .09 .06 .04 .09 .06 .05 .058 .058 .003 .001 .001 .003 .002 .022 .022 .022 .023 .055 .058 .058 .01 | Profil-08 Profil-08 Profil-08 Profil-08 Profil-08 64 65 66 67 Gpx Cpx Cpx Cpx Cpx Cpx Cpx 54.44 53.72 53.99 54.26 .00 .01 .02 .04 1.27 1.16 1.22 1.15 .76 .80 .73 1.81 1.89 1.89 1.89 1.87 .03 .08 0.4 .09 .06 .07 .74 .74 1.74 .73 1.81 1.89 1.87 .03 .08 .04 .09 .06 .07 1.74 1.74 1.74 1.74 1.74 1.71 .01 .01 .04 .09 .06 .07 .03 .08 .001 .001 .03 .00 .04 .09 .06 .07 .03 .08 .04 .09 .06 .07 .001 .001 | Profil-08 Profil-08 Profil-08 Profil-08 Profil-08 Profil-08 64 65 66 67 68 Cpx Cpx Cpx Cpx Cpx Cpx 54.44 53.72 53.99 54.26 54.16 .10 .05 .05 .04 .07 1.27 1.16 1.22 1.15 1.21 .78 .76 .80 .73 .71 .81 1.89 1.89 1.87 1.88 .03 .09 .06 .07 .03 .17.46 17.46 17.46 17.41 17.33 .24.06 24.00 24.17 24.32 24.14 .31 .27 .27 .30 .03 .003 .003 .001 .001 .001 .001 .002 .054 .050 .052 .049 .052 .022 .022 .023 .021 .020 | Profil-08 Profil-07 Profil-08 <t< td=""><td>Profil-08 Profil-08 Profil-07 Profil-08 Profil-08 Profil-08 Profil-07 <t< td=""><td>Section Profil-08 Profil-08</td><td>Profil-08 Profil-08 Profil-08</td><td>Profil-08 Profil-08 Profil-08</td><td>Profil-08 Profil-08 <t< td=""><td>Fordii-08 Profii-08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 <t< td=""><td>Frofil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 P</td><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<> | Profil-08 Profil-07 Profil-08 Profil-08 Profil-08 Profil-07 Profil-07 <t< td=""><td>Section Profil-08 Profil-08</td><td>Profil-08 Profil-08 Profil-08</td><td>Profil-08 Profil-08 Profil-08</td><td>Profil-08 Profil-08 <t< td=""><td>Fordii-08 Profii-08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 <t< td=""><td>Frofil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 P</td><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<> | Section Profil-08 Profil-08 | Profil-08 Profil-08 | Profil-08 Profil-08 | Profil-08 Profil-08 <t< td=""><td>Fordii-08 Profii-08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 <t< td=""><td>Frofil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 P</td><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<> | Fordii-08 Profii-08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 Profii<08 <t< td=""><td>Frofil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 P</td><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<> | Frofil-08 Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 P</td><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<> | Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 P</td><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<> | Profil-08 P | Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""></t<></td></t<></td></t<></td></t<> | Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""></t<></td></t<></td></t<> | Profil-08 Profil-08 <t< td=""><td>Profil-08 Profil-08 <t< td=""></t<></td></t<> | Profil-08 Profil-08 <t< td=""></t<> |

Probe: Fi							
Profilname	Profil-08	Profil-08	Profil-08 I	Profil-08 I	Profil-08 H	Profil-08 I	Profil-08
Profilpunkt	87	88	89	90	91	92	93
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] [Gow%] SiO, TiO, Ai,O, Cr,O, Cr,O, ViO NiO NiO NiO CaO CaO KgO KgO CaO K ₂ O X X	54.38 .07 1.09 .61 1.73 .10 .08 17.49 24.41 .22 .01 100.17	54.61 .07 1.06 .58 1.74 .09 .04 17.60 24.07 .29 .01 100.14	54.49 .06 1.07 .59 1.71 .07 .03 17.56 24.41 .26 .03 100.28	54.22 .06 1.04 .55 1.75 1.75 1.75 24.41 .23 .00 99.85	54.17 .05 1.02 .56 1.68 .10 .06 17.33 24.32 .21 .00 99.49	54.37 .03 .98 .52 1.68 .02 17.39 24.40 .22 .01 99.71	54.44 .04 .65 .33 1.62 .02 .08 17.60 24.81 .19 .01 99.79
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Xa Xa X Xationen Sauerstoffe	1.971 .002 .046 .017 .052 .945 .948 .016 .001 4.003 6.000	1.977 .002 .045 .017 .053 .003 .001 .953 .020 .000 4.001 6.000	1.972 .002 .046 .017 .052 .001 .948 .947 .018 .001 4.004	1.971 .002 .044 .016 .053 .001 .001 .016 .000 4.005 6.000	1.976 .001 .044 .056 .051 .003 .002 .950 .015 .000 4.000 6.000	1.978 .001 .042 .015 .051 .002 .001 .943 .951 .015 .001 4.000 6.000	1.981 .001 .028 .009 .049 .001 .002 .967 .013 .000 4.006
Mg # Cr # Profilstrecke [µm]	94.75 27.22 711	94.76 26.99 721	94.81 26.85 731	94.69 26.35 741	94.85 26.70 751	94.87 26.28 761	95.09 25.12 771

Probe:	Fi
Profil:	09b
Mineral:	Spl
Kapitel:	Anhang II

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
25		1.978	384.245	603.245		0.275	4.511	19.412
76		2.150	378.407	599.621		0.160	3.421	11.381
129		2.179	378.084	585.383		0.086	3.168	10.912

Probe: Fi														
Profilnamo	Profil-													
Tronnanc	09b													
Profilpunkt	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Mineral	Spl													
Analyse [Gew%]	45	10	10	10	15	10	10	47	45	10	10	10	17	10
HO ₂ Al ₂ O ₃ Cr ₂ O ₃ Fe ₂ O ₃	.15 13.80 49.74 6.79	14.85 49.52 6.26	15.79 48.64 6.30	16.54 47.86 5.96	16.65 47.97 5.91	.18 16.64 47.40 6.13	16.87 47.22 6.18	16.78 47.65 6.12	16.88 47.47 5.84	16.79 47.55 5.90	16.73 47.54 6.04	16.77 47.62 6.02	16.81 47.62 6.03	16.80 47.01 6.20
FeO MnO MaO	20.46 .24 8 74	20.95 .23 8.80	20.55 .25 9.15	20.27 .25 9.38	20.38 .17 9.41	20.20 .23 9.41	20.04 .26 9.53	20.44 .18 9.40	20.21 .12 9.47	20.32 .22 9.40	20.31 .15 9.45	20.21 .21 9.50	20.36 .17 9.44	20.19 .13 9.46
CaO Σ	.22 100.12	.08 100.84	.04 100.84	.03 100.46	.01 100.66	.01 100.18	.04 100.33	.02 100.75	.02 100.16	.01 100.39	.00 100.42	.00 100.50	.00 100.60	.00 99.98
Kationen- besetzung														
Ti Al Cr Fe ³⁺	.004 .534 1.291 .168	.004 .568 1.271 .153	.003 .600 1.241 .153	.004 .628 1.219 .144	.004 .631 1.219 .143	.004 .633 1.210 .149	.005 .640 1.201 .150	.004 .635 1.209 .148	.004 .641 1.210 .142	.005 .637 1.210 .143	.005 .635 1.210 .146	.004 .635 1.210 .146	.004 .636 1.210 .146	.005 .640 1.200 .151
Mn Mg	.562 .007 .428	.569 .006 .426	.555 .007 .440	.546 .007 .451	.548 .005 .451	.545 .006 .453	.539 .007 .457	.549 .005 .450	.545 .003 .455	.547 .006 .451	.547 .004 .454	.543 .006 .455	.547 .005 .452	.545 .003 .456
Ca ∑ Kationen	.008 3.000	.003 3.000	.001 3.000	.001 3.000	.000 3.000	.000 3.000	.001 3.000	.001 3.000	.001 3.000	.000 3.000	.000 3.000	.000 3.000	.000 3.000	.000 3.000
Sauerstoffe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Mg#	36.95	37.11	38.36	39.49	39.49	39.47	39.88	39.23	39.86	39.52	39.56	39.80	39.50	39.56
Profilstrecke [µm]	15	25	35	45	56	66	76	86	96	106	116	126	136	146

Probe:	Fi
Profil:	10a
Mineral:	Spl
Kapitel:	2.3

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
30		2.342	359.757	539.456		0.150	4.403	18.352
90		2.281	371.231	574.996		0.179	2.250	20.447
145		2.125	371.839	590.134		0.227	3.094	24.432
208		2.216	375.907	590.575		0.189	2.278	12.367
270		2.185	377.438	595.770		0.177	3.412	12.749
331		1.962	378.217	593.288		0.217	2.542	19.650
390		2.089	379.098	593.690		0.079	3.048	11.090
440		2.186	380.372	568.612		0.183	3.598	14.238
472		2.012	380.068	594.487		0.264	3.109	18.037

Probe: Fi	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-
Profilname	10a	10a	10a	10a	10a	10a	10a	10a	10a	10a	10a	10a	10a	10a	10a	10a	10a	10a	10a	10a
Profilpunkt	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Mineral	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl
Analyse Gew%] TiO2 AlpO3 AlpO3 Fe/O3 FeO MnO MgO CaO Σ	.11	.13	.18	.15	.18	.12	.15	.16	.15	.15	.14	.19	.18	.15	.16	.16	.18	.16	.21	.20
	17.44	16.29	15.99	15.93	16.02	16.14	16.22	16.24	16.35	16.43	16.57	16.68	16.65	16.58	16.72	16.74	16.77	16.66	16.66	16.72
	46.05	47.53	47.80	48.31	48.20	47.90	47.45	47.86	48.08	48.26	47.56	47.57	48.15	47.73	47.79	47.81	47.30	47.38	47.52	47.46
	7.07	6.86	6.61	6.64	6.36	6.56	6.57	6.20	6.15	5.88	6.32	6.28	6.14	5.73	6.31	6.29	6.21	6.16	6.25	5.99
	20.33	20.52	20.86	20.86	20.70	20.40	20.45	20.28	20.40	20.57	20.32	20.10	20.48	20.31	20.24	20.27	20.15	20.31	20.32	20.27
	.23	.29	.17	.19	.21	.13	.23	.19	.19	.16	.17	.23	.21	.18	.23	.23	.23	.17	.17	.21
	9.45	9.22	9.05	9.13	9.16	9.34	9.20	9.36	9.36	9.29	9.39	9.57	9.48	9.31	9.55	9.53	9.48	9.38	9.47	9.42
	.02	.02	.00	.00	.00	.01	.00	.00	.01	.01	.02	.01	.00	.01	.00	.02	.01	.01	.02	.00
	100.70	100.86	100.66	101.20	100.82	100.59	100.26	100.28	100.67	100.76	100.49	100.63	101.29	100.00	100.99	101.04	100.33	100.22	100.60	100.27
Kationen- besetzung Ti Al Cr Fe ²⁺ Fe ²⁺ Mn Mg Ca Σ Kationen Sauerstoffe	.003 .658 1.166 .170 .544 .006 .451 .001 3.000 4.000	.003 .618 1.210 .166 .552 .008 .442 .001 3.000 4.000	.004 .609 1.221 .161 .564 .005 .436 .000 3.000 4.000	.004 .604 1.228 .161 .561 .005 .438 .000 3.000 4.000	.004 .609 1.229 .154 .558 .006 .440 .000 3.000	.003 .614 1.221 .159 .550 .004 .449 .000 3.000 4.000	.004 .619 1.214 .160 .553 .006 .444 .000 3.000 4.000	.004 .619 1.223 .151 .548 .005 .451 .000 3.000 4.000	.004 .620 1.224 .149 .549 .005 .449 .000 3.000	.004 .623 1.227 .142 .553 .004 .445 .000 3.000 4.000	.003 .629 1.211 .153 .547 .005 .451 3.000 4.000	.005 .631 1.208 .152 .540 .006 .458 .000 3.000 4.000	.004 .627 1.216 .148 .547 .006 .451 .000 3.000 4.000	.004 .632 1.221 .140 .550 .005 .449 .000 3.000 4.000	.004 .631 1.209 .152 .542 .006 .456 .000 3.000 4.000	.004 .631 1.210 .152 .006 .455 .001 3.000	.004 .636 1.204 .150 .543 .006 .455 .000 3.000 4.000	.004 .634 1.209 .150 .548 .005 .451 .000 3.000 4.000	.005 .631 1.208 .151 .546 .005 .454 .001 3.000 4.000	.005 .635 1.210 .145 .006 .453 .000 3.000
Mg#	38.70	38.10	37.56	37.75	38.20	38.75	38.36	39.21	39.14	39.03	39.14	39.85	39.38	39.46	39.65	39.58	39.63	39.27	39.42	39.55
Cr #	63.92	66.18	66.73	67.04	66.87	66.56	66.25	66.40	66.36	66.33	65.82	65.68	65.98	65.88	65.72	65.71	65.43	65.61	65.68	65.57
Profilstrecke [µm]	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200

Probe: Fi																				
Profilname	Profil- 10a																			
Profilpunkt	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Mineral	Spl																			
Analyse [Gew%] TiO2 Al2O3 Cr2O3 Fe2O3 FeO MmO MgO CaO Σ	.20 16.67 47.20 6.03 20.29 .16 9.35 .01 99.91	.17 16.88 47.56 6.26 20.38 .22 9.48 .00 100.96	.19 16.66 47.22 6.38 20.22 .18 9.47 .00 100.33	.21 16.83 47.33 6.31 20.24 .23 9.51 .01 100.67	.22 16.82 47.24 5.97 20.23 .18 9.45 .00 100.10	.18 16.77 47.48 6.05 20.30 .18 9.43 .00 100.39	.18 16.96 47.51 6.13 20.34 .17 9.52 .00 100.82	.19 16.81 47.79 5.84 20.39 .17 9.45 .01 100.66	.20 16.59 47.68 6.00 20.47 .20 9.32 .01 100.46	.18 16.77 47.73 6.14 20.41 .12 9.50 .00 100.83	.22 16.51 47.65 6.53 20.51 .19 9.42 .00 101.04	.17 16.65 47.90 5.96 20.48 .23 9.34 .00 100.72	.18 16.64 47.52 5.97 20.22 .18 9.42 .00 100.14	.18 16.53 47.86 6.05 20.32 .24 9.40 .00 100.58	.21 16.70 47.59 5.98 20.35 .18 9.41 .01 100.42	.18 16.70 47.78 6.22 20.52 .18 9.41 .00 100.99	.19 16.72 47.83 6.00 20.28 .24 9.48 .00 100.74	.18 16.57 47.60 6.28 20.38 .19 9.39 .01 100.58	.18 16.67 47.90 5.64 20.50 .17 9.30 .00 100.35	.17 16.56 47.99 6.16 20.29 .19 9.50 .00 100.85
Kationen- besetzung Ti Al Cr Fe ⁵⁺ Fe ⁵⁺ Mn Mg Ca Σ Kationen	.005 .636 1.208 .147 .549 .004 .451 .000 3.000	.004 .637 1.204 .151 .546 .006 .452 .000 3.000	.005 .633 1.203 .155 .545 .005 .455 .000 3.000	.005 .637 1.201 .152 .543 .006 .455 .000 3.000	.005 .640 1.205 .145 .546 .005 .455 .000 3.000	.004 .636 1.209 .147 .547 .005 .453 .000 3.000	.004 .640 1.203 .148 .545 .005 .455 .000 3.000	.005 .636 1.213 .141 .548 .005 .452 .000 3.000	.005 .630 1.215 .145 .552 .006 .447 .000 3.000	.004 .633 1.210 .148 .547 .003 .454 .000 3.000	.005 .624 1.208 .157 .550 .005 .450 .000 3.000	.004 .631 1.217 .144 .550 .006 .447 .000 3.000	.004 .633 1.213 .145 .546 .005 .453 .000 3.000	.004 .627 1.218 .147 .547 .007 .451 .000 3.000	.005 .634 1.211 .145 .548 .005 .452 .000 3.000	.004 .631 1.211 .150 .550 .005 .449 .000 3.000	.005 .632 1.214 .145 .544 .007 .454 .000 3.000	.004 .628 1.211 .152 .548 .005 .450 .000 3.000	.004 .633 1.221 .137 .553 .005 .447 .000 3.000	.004 .626 1.217 .149 .545 .005 .454 .000 3.000
Sauerstoffe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Mg# Cr # Profilstrecke [µm]	39.33 65.51 210	39.38 65.40 220	39.41 65.53 230	39.55 65.36 240	39.70 65.32 251	39.50 65.51 261	39.62 65.27 271	39.64 65.60 281	39.10 65.85 291	39.50 65.63 301	38.89 65.94 311	39.18 65.87 321	39.61 65.70 331	39.39 66.02 341	39.46 65.66 351	39.09 65.74 361	39.68 65.75 371	39.14 65.85 381	39.31 65.85 391	39.60 66.03 401

Probe: Fi									
Profilname	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-
Profilpunkt	42	43	44	45	46	47	48	49	50
Mineral	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl
Analyse [Gew%] TiO2 A2O3 Cr2O3 Fe2O3 FeO MnO MgO CaO Σ	.22 16.49 47.91 5.82 20.51 .14 9.33 .00 100.41	.16 16.51 47.82 6.11 20.40 .21 9.34 .00 100.54	.19 16.64 47.80 5.83 20.39 .11 9.41 .00 100.36	.19 16.40 47.76 6.18 20.42 .15 9.36 .00 100.45	.22 16.46 47.26 6.34 20.33 .28 9.29 .01 100.20	.17 16.74 47.53 6.20 20.46 .22 9.35 .01 100.67	.15 17.12 47.23 6.33 20.42 .19 9.48 .00 100.91	.14 17.43 46.66 6.14 20.14 .22 9.53 .01 100.26	.18 18.31 45.32 6.20 19.88 .16 9.74 .02 99.80
Kationen- besetzung Ti Al Cr Fe ³⁺ Fe ⁴⁺ Mn Mg Ca Σ Kationen Sauerstoffe	.005 .627 1.221 .141 .553 .004 .448 .000 3.000 4.000	.004 .627 1.218 .148 .549 .006 .449 .000 3.000 4.000	.004 .632 1.218 .141 .549 .003 .452 .000 3.000 4.000	.005 .623 1.218 .150 .551 .004 .450 .000 3.000 4.000	.005 .627 1.208 .154 .550 .008 .448 .000 3.000 4.000	.004 .634 1.208 .1500 .550 .006 .448 .000 3.000 4.000	.004 .645 1.195 .152 .546 .005 .452 .000 3.000 4.000	.003 .660 1.185 .148 .541 .006 .456 .000 3.000 4.000	.004 .692 1.150 .534 .004 .466 .001 3.000
Mg# Cr # Profilstrecke [µm]	39.24 66.09 411	39.14 66.03 421	39.56 65.84 431	39.10 66.15 441	38.89 65.83 451	39.02 65.58 461	39.28 64.92 471	39.83 64.23 481	40.53 62.42 491

Probe:	Fi
Profil:	12
Mineral:	Орх
Kapitel:	2.3

Profil- strecke [µm]	P [µg/g]	Sc [yg/g]	оО [b/b/]	Zn [¥9/9]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
20	1.506	6.316	32.239	14.250	0.456	0.321	1.748	3.085
83	1.379	7.376	32.495	16.059	0.482	0.289	1.106	1.885
214	2.578	8.255	33.401	16.582	0.394	0.274	0.664	3.156
354	3.905	7.866	34.503	16.882	0.517	0.532	1.382	2.830
454	4.247	7.983	33.605	15.114	0.513	0.284	0.769	1.630
510	5.152	8.352	34.269	12.423	0.976	0.605	1.345	0.817
590	4.449	8.132	33.138	14.946	0.950	0.555	1.458	1.745
651	3.541	8.006	32.695	16.135	1.095	0.287	1.382	4.715
714	5.345	8.079	33.758	16.007	0.392	0.713	1.025	2.933
775	4.342	7.365	34.108	17.570	1.114	0.107	1.500	1.697
837	1.583	7.823	34.862	14.951	0.519	0.272	0.844	2.270
921	1.986	8.195	32.991	14.920	0.585	0.475	1.508	1.295
1079	1.369	7.686	33.463	14.674	0.400	0.456	0.612	2.375
1181	3.882	7.931	34.107	14.608	0.598	0.697	2.105	1.463
1252	3.502	7.370	33.589	14.459	0.529	0.116	0.623	2.676
1342	4.801	7.956	33.783	14.721	0.664	0.251	1.023	1.604
1401	4.702	8.171	33.183	13.493	0.622	0.226	0.822	2.213
1461	5.230	7.885	31.947	11.377	0.729	0.337	1.316	0.997
1522	5.332	8.654	32.284	14.218	0.576	0.422	0.997	1.615
1601	4.512	8.898	33.138	12.346	0.358	0.248	1.048	2.542
1711	4.333	9.149	33.235	12.628	0.865	0.265	1.021	2.471
1791	4.283	7.938	33.183	13.843	0.607	0.231	0.607	2.712
1871	5.039	8.148	33.172	14.626	0.689	0.249	0.726	1.206
1951	4.930	8.695	34.435	15.452	0.751	0.284	1.485	2.135
2032	4.040	7.533	33.809	15.790	0.543	0.078	0.701	3.063
2101	3.752	7.253	32.918	14.939	0.733	0.314	1.298	2.617
2212	2.911	7.861	32.603	15.388	0.340	0.233	1.010	2.750
2291	3.335	7.443	33.790	15.050	0.422	0.237	1.637	2.684
2371	3.034	7.441	32.151	12.449	0.414	0.347	0.739	1.612
2451	2.190	6.553	32.325	13.376	0.255	0.208	0.603	0.315
2521	0.587	7.064	30.085	14.044	0.255	0.468	0.595	1.689

Probe: Fi																				
Profilname	Profil-12	Profil-12	Profil-12	Profil-12 I	Profil-12	Profil-12 F	Profil-12 I	Profil-12 I	Profil-12	Profil-12 I	Profil-12	Profil-12	Profil-12	Profil-12 I	Profil-12	Profil-12	Profil-12 I	Profil-12	Profil-12 F	Profil-12
Profilpunkt	23	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO ₂ T Al ₂ O ₃ C ₇ O ₃ FeO MnO NiO MgO CaO CaO K ₂ O CaO K ₂ O X ₂ O	57.70 .02 .55 .16 5.83 .20 .03 35.17 .26 .00 .01 99.93	57.48 .04 .96 .33 5.78 .18 .10 34.81 .33 .00 .00 100.01	57.32 .04 .98 .32 5.81 .22 .06 34.82 .41 .03 .00 100.00	57.46 .03 .89 .30 5.65 .14 .08 34.84 .01 .01 99.76	57.28 .05 .97 .31 5.86 .10 .09 34.84 .37 .00 .00 99.85	57.29 .04 .90 .308 .20 .09 34.80 .03 .02 100.05	57.37 .03 .29 5.84 .15 .06 34.76 .40 .01 .00 99.83	57.13 .02 .93 .26 5.72 .16 .07 34.77 .45 .00 .00 99.52	57.30 .04 .95 .28 5.74 .11 .09 34.69 .44 .00 .02 99.65	57.20 .02 .97 .34 5.81 .14 .08 34.83 .38 .01 .00 99.78	57.41 .04 .95 .29 5.81 .14 .06 34.86 .47 .00 .00 100.03	57.22 .05 .93 .33 5.64 .17 .10 34.88 .41 .02 .00 99.76	57.13 .05 1.02 .28 5.74 .11 .09 34.81 .47 .00 .00 99.69	57.10 .03 1.03 .31 5.97 .17 .06 34.98 .43 .00 .02 100.11	57.20 .05 .93 .33 5.82 .18 .09 34.62 .462 .00 .01 99.67	57.04 .03 1.02 .31 5.65 .10 34.74 .45 .01 .01 99.48	57.13 .02 .98 .36 5.72 .19 .00 34.81 .43 .00 .00 99.65	57.40 .03 .97 .32 5.80 .10 .06 34.96 .45 .00 .00 100.09	57.38 .04 1.00 .28 5.80 .15 .06 34.82 .46 .02 .01 100.01	56.85 .04 .99 .34 5.86 .16 .08 34.85 .48 .00 .02 99.67
Kationen- besetzung Si Ti Al Cr Fres ²⁺ Mn Ni Mg Ca Na K X Kationen	1.985 .001 .022 .004 .168 .006 .001 1.804 .009 .000 .000 4.001	1.977 .001 .009 .166 .005 .003 1.785 .012 .000 .000 3.998	1.973 .001 .009 .167 .006 .002 1.787 .015 .002 .000 4.002	1.980 .001 .008 .163 .004 .002 1.789 .013 .001 .000 3.998	1.974 .001 .008 .169 .003 .002 1.790 .013 .000 .000 4.001	1.974 .001 .008 .172 .006 .002 1.787 .015 .002 .001 4.004	1.977 .001 .008 .008 .168 .004 .002 1.786 .015 .001 .000 3.999	1.975 .001 .038 .007 .165 .005 .002 1.792 .017 .000 .000 4.002	1.978 .001 .008 .166 .003 .002 1.785 .016 .000 .001 3.999	1.973 .001 .009 .168 .004 .002 1.791 .014 .001 .000 4.002	1.975 .001 .038 .008 .167 .004 .002 1.788 .017 .000 .000 4.001	1.974 .001 .009 .163 .005 .003 1.794 .015 .002 .000 4.002	1.972 .001 .008 .166 .003 .003 1.791 .017 .000 .000 4.002	1.966 .001 .009 .172 .005 .002 1.796 .016 .000 .001 4.008	1.976 .001 .009 .168 .005 .002 1.783 .017 .000 .001 4.000	1.973 .001 .008 .163 .005 .003 1.791 .017 .000 .000 4.002	1.973 .001 .010 .165 .006 .000 1.792 .016 .000 .000 4.002	1.973 .001 .009 .167 .003 .002 1.792 .017 .000 .000 4.002	1.974 .001 .008 .167 .004 .002 1.786 .017 .001 .001 4.001	1.966 .001 .040 .009 .009 .002 1.797 .018 .000 .001 4.008
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.49 15.99 5	91.47 18.80 65	91.44 17.98 75	91.66 18.36 85	91.38 17.67 95	91.21 18.26 105	91.39 17.56 115	91.56 15.88 125	91.51 16.38 135	91.45 18.89 145	91.44 16.80 155	91.68 19.26 165	91.53 15.57 175	91.26 16.91 185	91.38 19.02 195	91.68 16.89 205	91.56 19.69 215	91.49 17.94 225	91.45 15.75 235	91.38 18.88 245

Probe: Fi	Draft 42	D61 40	D==61 40	D61 40	Deef! 40	D61 40 1	Deefl 40 l	D===£1 40	Deefl 40	Deefl 40	D£I 40 I	Deefl 40	Deefl 40	Deefl 40		Deef! 40	D61 40	D 61 40	Deefl 40	Deef! 40
Profilpunkt	48	49	50	51	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse Gew%] SiO2 A2O3 Cr.O3 FeO MnO NiO MgO CaO CaO K2O K2O X2O	57.29 .06 .97 .27 5.77 .15 .08 34.79 .00 .00 99.89	56.83 .04 .95 .34 5.86 .14 .05 34.77 .51 .00 .01 99.50	57.22 .04 .97 .33 5.89 .10 .06 34.87 .47 .03 .00 99.96	57.03 .03 .92 .33 5.97 .14 .05 34.73 .53 .00 .00 99.71	57.21 .03 .97 .34 5.94 .13 .03 34.85 .51 .03 .01 100.04	57.03 .04 1.00 .32 5.64 .15 5.08 34.59 .00 .00 99.34	56.97 .04 .99 .31 5.82 .08 .13 34.82 .49 .01 .00 99.64	57.24 .04 1.00 .32 5.77 .19 .09 34.74 .47 .02 .01 99.89	57.41 .05 1.01 .34 5.76 .16 .07 34.67 .48 .02 .00 99.97	57.07 .06 1.01 .35 5.76 .14 .11 34.56 .47 .03 .01 99.57	57.31 .03 .99 .32 5.80 .16 .04 34.80 .52 .00 .01 99.98	57.01 .04 1.00 .33 5.75 .14 .05 34.82 .50 .00 .00 99.66	56.93 .05 1.00 .31 5.78 .11 .06 34.83 .47 .02 .00 99.55	56.85 .04 .97 .31 5.77 .13 .14 34.66 .50 .00 .02 99.40	56.88 .05 .99 .32 5.64 .11 .07 34.62 .54 .00 .00 99.23	57.03 .06 .98 .31 5.95 .13 .07 34.78 .48 .03 .01 99.83	57.13 .03 1.00 .34 5.82 .14 .07 34.54 .45 .01 .00 99.51	57.44 .02 1.03 .31 5.75 .15 .07 34.92 .50 .00 .01 100.19	56.94 .05 1.04 .32 5.79 .13 .05 34.83 .53 .00 .01 99.68	57.28 .05 1.03 .31 5.87 .15 .11 34.89 .00 .00 100.22
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Kationen Xa Kationen	1.974 .002 .040 .007 .166 .004 .002 1.787 .018 .000 .000 .000	1.968 .001 .039 .170 .004 .001 1.795 .019 .000 .001 4.007	1.971 .003 .009 .170 .003 .002 1.791 .017 .002 .000 4.004	1.971 .007 .009 .173 .004 .001 1.789 .020 .000 4.005	1.970 .001 .039 .009 .171 .004 .001 1.789 .019 .002 .001 4.006	1.975 .001 .041 .009 .163 .004 .002 1.786 .018 .000 3.999	1.969 .001 .040 .008 .168 .002 .004 1.794 .018 .000 .000 4.006	1.973 .001 .041 .009 .166 .002 1.785 .017 .001 .000 4.002	1.976 .001 .041 .009 .166 .005 .002 1.779 .018 .001 .000 3.998	1.973 .002 .041 .009 .167 .004 .003 1.782 .017 .002 .000 4.001	1.973 .001 .040 .009 .167 .005 .001 1.786 .019 .000 4.002	1.970 .001 .041 .009 .166 .004 .001 1.793 .019 .000 .000 4.005	1.969 .001 .041 .008 .167 .003 .002 1.796 .017 .001 .000 4.006	1.970 .001 .040 .009 .167 .004 1.791 .019 .001 4.005	1.972 .001 .041 .009 .163 .003 .002 1.790 .020 .020 .000 4.002	1.969 .040 .088 .172 .004 .002 1.790 .018 .002 .000 4.007	1.976 .001 .041 .009 .168 .004 .002 1.781 .017 .000 3.999	1.973 .001 .042 .008 .165 .004 .002 1.788 .018 .000 4.002	1.967 .001 .042 .009 .167 .004 .001 1.794 .019 .000 .000 4.006	1.969 .001 .042 .008 .169 .004 .003 1.788 .020 .000 4.005
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.49 15.84 256	91.37 19.27 266	91.35 18.52 276	91.21 19.43 286	91.28 18.84 306	91.63 17.58 316	91.43 17.30 326	91.48 17.57 336	91.48 18.47 346	91.45 18.60 356	91.45 17.82 366	91.52 18.07 376	91.49 16.99 386	91.46 17.69 396	91.63 17.61 406	91.24 17.29 416	91.37 18.35 426	91.54 16.57 436	91.47 16.96 446	91.38 16.90 456

Probe: Fi																				
Profilname	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12 I	Profil-12 I	Profil-12 I	Profil-12 I	Profil-12	Profil-12	Profil-12 I	Profil-12	Profil-12 I	Profil-12						
Profilpunkt	69	70	71	72	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO, T Al₂O, Gr,O, Gr,O, FeO MnO NiO NiO XgO CaO K₂O K₂Ó ∑	57.21 .05 1.03 .34 5.82 .14 .11 35.06 .42 .00 .00 100.18	57.29 .04 .99 .35 5.81 .13 .08 34.80 .46 .04 .01 100.00	57.04 .03 1.04 .31 5.57 .13 .11 34.88 .54 .02 .00 99.67	57.24 .04 1.02 .35 5.69 .11 .09 34.84 .02 .00 99.86	57.23 .04 1.02 .34 5.86 .17 .08 34.92 .48 .01 .02 100.15	57.00 .05 1.08 .33 5.85 .13 .10 34.96 .44 .00 .01 99.93	57.27 .06 1.07 .34 5.78 .15 .12 34.94 .50 .02 .00 100.24	57.23 .03 1.03 .34 5.94 .12 .07 34.89 .47 .00 .00 100.12	57.27 .04 1.07 .368 .11 .04 34.82 .47 .00 .00 99.86	56.96 .04 1.05 .33 5.88 .20 .03 34.71 .50 .02 .00 99.70	57.35 .05 1.07 .35 5.81 .13 .12 34.79 .48 .01 .01 100.16	57.22 .05 1.03 .36 5.83 .15 .07 34.72 .46 .00 .00 99.88	57.00 .05 1.06 .36 5.79 .14 .03 34.87 .59 .01 .00 99.90	57.07 .04 1.06 .35 5.76 .18 .05 34.88 .55 .00 .00 99.94	56.93 .05 1.05 .32 5.64 .20 .11 34.73 .51 .02 .00 99.56	57.02 .04 1.06 .31 5.67 .13 .06 34.79 .54 .00 .01 99.62	57.11 .05 1.05 .34 5.76 .07 .11 34.80 .00 .01 .00 99.79	57.27 .04 1.08 .31 5.84 .14 .06 34.89 .50 .01 .00 100.12	57.28 .06 1.06 .33 5.66 .16 .07 34.75 .49 .00 .01 99.86	57.22 .04 1.05 .29 5.65 .09 .10 34.69 .59 .01 .00 99.72
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ca Na K Kationen	1.967 .001 .042 .009 .167 .004 .003 1.797 .015 .000 .000 4.006	1.973 .001 .009 .167 .004 .002 1.786 .017 .003 .000 4.003	1.969 .001 .042 .008 .161 .004 .003 1.795 .020 .001 .000 4.005	1.972 .001 .040 .164 .003 .003 1.789 .016 .001 .000 4.002	1.969 .001 .049 .005 .005 .002 1.791 .018 .001 .001 4.006	1.965 .001 .049 .009 .169 .004 .003 1.797 .016 .000 .000 4.007	1.968 .002 .043 .009 .166 .004 .003 1.790 .018 .001 .000 4.005	1.969 .001 .042 .009 .171 .003 .002 1.790 .017 .000 .000 4.004	1.973 .001 .043 .010 .164 .003 .001 1.788 .017 .000 .000 4.000	1.968 .001 .043 .009 .170 .006 .001 1.788 .018 .001 .000 4.005	1.971 .001 .010 .167 .004 .003 1.783 .018 .001 .001 4.001	1.972 .001 .010 .168 .004 .002 1.784 .017 .000 .000 4.001	1.966 .001 .040 .004 .004 .001 1.793 .022 .000 .000 4.007	1.967 .001 .009 .166 .005 .001 1.792 .020 .000 .000 4.006	1.969 .001 .009 .163 .006 .003 1.791 .019 .001 .000 4.005	1.970 .001 .009 .164 .004 1.792 .020 .000 .001 4.004	1.970 .001 .009 .166 .002 .003 1.789 .018 .001 .000 4.003	1.970 .001 .044 .008 .168 .004 .002 1.789 .018 .000 .000 4.004	1.973 .002 .043 .009 .163 .005 .002 1.784 .018 .000 .000 3.999	1.974 .001 .042 .008 .163 .003 1.784 .022 .001 .000 4.000
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.48 17.90 466	91.43 18.89 476	91.78 16.75 486	91.60 18.74 496	91.40 18.26 516	91.42 17.18 526	91.51 17.45 536	91.29 18.14 546	91.61 18.51 556	91.33 17.25 566	91.43 18.06 576	91.40 18.93 586	91.48 18.53 596	91.52 18.08 606	91.65 16.79 616	91.62 16.60 626	91.51 17.64 636	91.42 16.25 646	91.63 17.25 656	91.63 15.74 666

Probe: Fi	Deefl 42	Deefl 40	Deef! 40	D61 40	Deefl 40	D£I 40 I	D£1 40	D==6 40	Deefl 40	Deefl 40 l	D£1 40	Deef! 10	Deef! 40			Deef! 40	Deef! 40	Deefl 40	Deefl 40	D£1 40
Profilpunkt	90	91	92	93	94	95	96	97	98	99	1011-12	102	103	104	105	106	107	108	109	110
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO.; TiO.; TiO.; TiO.; FeO Mo NiO MiO MiO MgO Na;O K;O X;QO X;QO	57.18 .04 1.05 .37 5.92 .12 .13 34.68 .47 .00 .00 99.95	57.29 .06 1.04 .35 5.75 .15 .07 34.55 .49 .00 .01 99.75	57.37 .04 1.05 .35 5.96 .13 .11 34.83 .47 .00 .02 100.35	57.43 .07 1.05 .30 5.87 .17 .09 34.85 .48 .03 .00 100.32	57.33 .04 1.07 .39 5.85 .14 .05 34.70 .51 .01 .00 100.09	57.10 .08 1.06 .34 5.91 .13 .07 34.65 .49 .01 .00 99.83	56.91 .04 1.08 .35 5.92 .13 .07 34.86 .43 .00 .00 99.79	57.38 .03 1.08 .33 5.80 .12 .09 34.86 .45 .03 .00 100.17	57.12 .05 1.12 .33 5.72 .15 .04 34.62 .00 .00 99.62	57.50 .03 .35 5.65 .16 .08 35.10 .22 .00 .00 100.02	56.92 .03 1.02 .36 5.67 .12 .08 34.99 .29 .00 .00 99.48	57.32 .03 1.11 .38 5.81 .13 .08 34.99 .29 .00 .02 100.18	57.58 .05 1.03 .33 5.64 .11 .09 35.00 .27 .00 .00 100.10	57.28 .05 1.08 .33 5.64 .16 .09 34.87 .32 .01 .00 99.81	57.01 .06 1.04 .34 5.61 .12 .07 34.83 .32 .02 .00 99.42	57.10 .04 1.08 .33 5.76 .15 .09 34.75 .33 .00 .00 99.63	57.39 .06 1.09 .37 5.82 .15 .13 34.90 .36 .00 .00 100.26	57.15 .06 1.08 .34 5.74 .17 .06 34.87 .37 .01 .01 99.86	57.19 .06 1.04 .33 5.83 .07 .10 34.88 .35 .01 .00 99.86	57.67 .06 1.06 .37 5.92 .13 .12 34.81 .33 .01 .02 100.49
Kationen- besetzung Si Ti Cr Fe ²² Mn Ni Mg Ca Na Kationen Sauerstoffe	1.971 .001 .043 .010 .171 .004 .003 1.782 .017 .000 .000 4.002 6.000	1.976 .001 .042 .009 .166 .004 .002 1.777 .018 .000 .000 3.997 6.000	1.970 .001 .043 .010 .171 .004 .003 1.783 .017 .000 .001 4.003 6.000	1.971 .002 .043 .008 .005 .002 1.783 .018 .002 .000 4.002	1.972 .001 .043 .011 .168 .004 .001 1.780 .011 .000 4.000 6.000	1.970 .002 .043 .009 .170 .004 .002 1.782 .018 .001 .000 4.002 6.000	1.965 .001 .044 .009 .171 .004 .016 .000 .000 4.007 6.000	1.972 .001 .044 .009 .167 .003 .002 1.786 .017 .002 .000 4.002	1.972 .001 .046 .009 .165 .004 .001 1.782 .018 .000 .000 3.999 6.000	1.976 .001 .038 .010 .005 .002 1.798 .008 .000 4.000 6.000	1.969 .001 .041 .004 .004 .002 1.804 .011 .000 .000 4.005 6.000	1.969 .001 .045 .010 .167 .004 .002 1.792 .011 .000 .001 4.003 6.000	1.977 .001 .042 .009 .162 .003 .002 1.791 .010 .000 .000 3.997 6.000	1.973 .001 .044 .009 .162 .005 .002 1.791 .012 .001 .000 4.000	1.972 .002 .042 .009 .162 .003 .002 1.796 .012 .001 .000 4.001	1.972 .001 .044 .009 .166 .004 .003 1.789 .012 .000 .000 4.001 6.000	1.971 .002 .044 .010 .004 1.786 .013 .000 .000 4.001 6.000	1.970 .002 .044 .009 .165 .005 .002 1.791 .014 .001 .000 4.003	1.971 .001 .042 .009 .168 .002 .003 1.792 .013 .001 .000 4.002 6.000	1.976 .001 .010 .170 .004 .003 1.777 .012 .000 .001 3.997 6.000
Mg # Cr # Profilstrecke [µm]	91.27 19.29 676	91.46 18.29 686	91.24 18.29 696	91.37 15.81 706	91.36 19.83 716	91.27 17.59 726	91.30 17.70 736	91.47 17.11 746	91.52 16.60 757	91.71 20.38 767	91.67 19.13 787	91.47 18.60 797	91.71 17.69 807	91.68 17.08 817	91.72 18.16 827	91.50 17.11 837	91.44 18.64 847	91.55 17.53 857	91.42 17.49 867	91.29 18.97 877

Probe: Fi																				
Profilname	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12 I	Profil-12 I	Profil-12 I	Profil-12	Profil-12	Profil-12 I	Profil-12	Profil-12	Profil-12	Profil-12 I	Profil-12	Profil-12	Profil-12 I	Profil-12	Profil-12	Profil-12
Profilpunkt	111	112	113	114	115	116	117	118	119	120	125	126	127	128	129	130	134	137	138	139
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO, Trip Al₂O, Gr₂O, FeO MnO NiO MgO CaO K₂O K₂Ó Σ	57.72 .06 1.07 .37 5.73 .10 .13 34.86 .34 .02 .00 100.38	57.25 .03 1.11 .31 5.77 .14 .11 34.98 .34 .02 .00 100.04	57.37 .05 1.06 .34 5.93 .11 .05 34.91 .34 .00 .02 100.18	57.01 .04 1.06 .35 5.88 .14 .07 35.00 .33 .02 .01 99.91	57.16 .06 1.05 .35 5.79 .16 .01 34.81 .36 .00 .01 99.76	57.34 .04 1.04 .34 5.69 .18 .11 34.89 .33 .00 .00 99.95	57.57 .03 1.07 .34 5.83 .14 .11 35.16 .33 .01 .00 100.59	57.55 .05 1.07 .37 5.68 .14 .09 35.02 .33 .03 .00 100.32	57.28 .04 1.08 .35 5.82 .15 .13 35.09 .33 .05 .02 100.33	57.05 .04 1.07 .32 5.63 .12 .09 35.09 .36 .02 .01 99.80	57.28 .06 1.08 .36 5.68 .12 .09 35.15 .34 .01 .00 100.14	57.31 .06 1.08 .38 5.81 .17 .08 35.04 .33 .01 .00 100.25	57.49 .06 1.07 .38 5.78 .06 34.89 .37 .00 .01 100.29	57.74 .03 1.10 .38 5.68 .14 .08 35.10 .33 .02 .00 100.60	57.03 .07 1.07 .34 5.53 .13 .08 34.82 .31 .00 .00 99.36	57.36 .04 1.06 .33 5.82 .16 .08 35.16 .32 .00 .00 100.32	57.58 .05 1.06 .32 5.87 .13 .03 34.76 .35 .02 .00 100.16	57.35 .05 1.03 .35 5.75 .14 .07 34.69 .43 .00 .01 99.86	57.51 .02 1.03 .35 5.57 .13 .08 34.83 .34 .00 .00 99.86	57.11 .03 1.09 .34 5.70 .14 .01 .00 .00 99.73
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ca Na K Kationen	1.977 .001 .043 .010 .164 .003 .003 1.780 .013 .001 .000 3.996	1.969 .001 .008 .166 .004 .003 1.794 .012 .001 .000 4.004	1.971 .001 .009 .170 .003 .001 1.789 .012 .000 .001 4.002	1.966 .001 .009 .170 .004 .002 1.799 .012 .001 .000 4.008	1.972 .002 .043 .009 .167 .005 .000 1.790 .013 .000 .001 4.001	1.973 .001 .042 .009 .164 .005 .003 1.790 .012 .000 .000 4.000	1.970 .001 .009 .167 .004 .003 1.794 .012 .000 .000 4.003	1.973 .001 .040 .163 .004 .002 1.790 .012 .002 .000 4.001	1.967 .001 .040 .000 1.796 .012 .003 .001 4.008	1.967 .001 .009 .162 .004 .002 1.803 .013 .001 .000 4.007	1.968 .001 .040 .163 .003 .002 1.800 .012 .000 .000 4.004	1.968 .002 .044 .010 .167 .005 .002 1.794 .012 .000 .000 4.004	1.973 .002 .043 .010 .166 .005 .002 1.784 .014 .000 .001 3.999	1.973 .001 .040 .162 .004 .002 1.788 .012 .002 .000 3.999	1.972 .002 .044 .009 .160 .004 1.795 .012 .000 .000 3.999	1.968 .001 .009 .167 .005 .002 1.798 .012 .000 .000 4.005	1.977 .001 .009 .169 .004 .001 1.779 .013 .001 .000 3.996	1.976 .001 .042 .010 .166 .004 .002 1.781 .016 .000 .000 3.997	1.978 .001 .009 .160 .004 .002 1.786 .012 .000 .000 3.995	1.970 .001 .044 .009 .165 .004 .002 1.797 .011 .000 .000 4.003
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.56 18.61 887	91.53 15.55 897	91.30 17.61 907	91.38 17.98 917	91.46 18.20 927	91.63 17.94 937	91.50 17.49 947	91.66 18.76 957	91.48 17.98 967	91.74 16.87 977	91.69 18.40 1027	91.49 19.05 1037	91.50 19.03 1047	91.68 18.65 1057	91.83 17.39 1067	91.50 17.16 1077	91.34 16.85 1117	91.50 18.49 1147	91.76 18.42 1157	91.61 17.17 1167

Probe: Fi	Drofil 12	Drofil 12	Drofil 12	Drofil 12	Drofil 12	Drofil 12	Drofil 12	Drofil 12	Drofil 12	Drofil 12	Drofil 12	Drofil 10								
Profilpunkt	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх								
Analyse																				
[Gew%] SiO ₂	57.41	57.47	57.35	57.22	57.16	57.30	57.53	57.10	56.68	57.41	57.36	57.30	57.48	57.57	57.32	57.64	57.09	57.42	57.10	57.31
TiO ₂ Al ₂ O ₂	.05 1.03	.07 1.03	.08 1.02	.05 1.00	.04	.05 1.03	.06 1.02	.05 1.02	.06 1.07	.07	.06	.04	.05 1.01	.05 98	.06 1.01	.04 1.01	.04 1.02	.05 1.01	.08	.06
Cr ₂ O ₃	.34	.35	.32	.32	.32	.29	.34	.34	.33	.30	.30	.32	.30	.32	.33	.32	.32	.32	.34	.30
eO MnO	5.76 .10	5.73	5.95 .13	5.93 .15	5.90 .12	5.83 .09	5.71 .14	5.87 .14	5.70	5.73	5.83	5.63	5.97 .18	5.91 .14	5.78	5.84 .09	5.77	6.04 .15	5.66 .11	5.69
NiO	.09	.08	.07	.11	.09	.10	.08	.12	.10	.06	.07	.07	.10	.12	.07	.10	.02	.07	.03	.11
CaO	.40	.32	.32	.33	.35	.35	.36	.42	.39	.45	.48	.49	.49	.50	.45	.46	.45	34.85 .48	34.66 .47	.55
Na₂O K₋O	.00	.00	.01	.02	.02	.03	.00	.00	.02	.00	.00	.00	.02	.01	.00	.03	.00	.01	.00	.02
Σ	100.24	100.18	100.34	99.97	100.22	100.23	100.08	99.96	99.36	100.29	100.23	100.00	100.61	100.46	100.23	100.55	99.78	100.39	99.71	99.95
Kationen-																				
besetzung	4 074	4.070	1.000	4.070	1.005	1.000	4.070	4.000	4.004	4 070	4 074	4 074	1.000	4 074	1.000	4.070	1.000	4 074	4 070	4 070
Ti	.001	.002	.002	.001	.001	.001	.002	.001	.002	.002	.001	.001	.001	.001	.001	.001	.001	.001	.002	.001
Al Cr	.042	.042	.041	.041	.041	.042	.041	.041	.044	.041	.040	.040	.041	.040	.041	.041	.042	.041	.042	.040
Fe ²⁺	.165	.165	.171	.171	.170	.167	.164	.169	.165	.164	.167	.162	.171	.169	.166	.167	.166	.173	.163	.164
Mn Ni	.003	.005	.004	.004	.004	.003	.004	.004	.005	.005	.005	.005	.005	.004	.005	.003	.003	.004	.003	.004
Mg	1.794	1.790	1.795	1.789	1.805	1.800	1.784	1.794	1.801	1.794	1.792	1.796	1.788	1.782	1.795	1.788	1.797	1.783	1.794	1.786
Na	.015	.012	.012	.012	.013	.013	.013	.015	.014	.016	.018	.018	.018	.018	.016	.017	.017	.018	.018	.020
K Kationon	.000	.000	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
> Kallonen	4.003	3.999	4.005	4.003	4.010	4.007	3.997	4.006	4.008	4.004	4.004	4.004	4.006	4.001	4.005	4.002	4.005	4.003	4.002	4.002
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Ma #	91.56	91.58	91.31	91.28	91.40	91.49	91.58	91.38	91.60	91.61	91.46	91.72	91.27	91.32	91.53	91.45	91.52	91.14	91.65	91.59
Cr#	17.98	18.29	17.49	17.54	17.61	15.96	18.33	18.44	16.96	16.90	16.66	17.79	16.82	17.91	18.19	17.42	17.46	17.60	17.70	16.70
Profilstracka [um]	1197	1207	1217	1227	1237	1247	1258	1268	1278	1288	1298	1308	1318	1328	1338	1348	1358	1368	1378	1388

Probe: Fi																				
Profilname	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12 I	Profil-12	Profil-12	Profil-12	Profil-12 I	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12
Profilpunkt	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO, Trip Al₂O, Gr,O, FeO MnO NiO MgO CaO K₂O K₂O Xa₂O K₂Ó ∑	57.51 .09 .99 .30 5.73 .17 .03 34.79 .50 .01 .00 100.11	57.42 .05 1.02 .31 5.91 .16 .11 34.90 .44 .00 .02 100.33	57.33 .08 1.01 .28 5.55 .14 .10 34.87 .02 .01 99.86	57.31 .06 .98 .30 5.80 .14 .12 34.94 .47 .00 .02 100.13	57.30 .05 .98 5.90 .14 .07 34.80 .52 .00 .01 100.04	57.64 .04 1.01 .30 5.70 .19 .11 34.85 .46 .01 .01 .00 100.31	57.32 .06 1.02 .29 5.83 .14 .07 34.73 .50 .02 .00 99.99	57.66 .06 1.00 .32 5.80 .11 .12 34.77 .45 .00 .00 100.28	57.77 .03 1.01 .33 5.82 .12 .10 34.67 .51 .00 .02 100.37	57.58 .05 .99 .32 5.75 .16 .09 34.68 .44 .01 .00 100.07	57.05 .04 1.05 .34 5.79 .14 .08 34.71 .46 .00 .01 99.67	57.42 .04 1.09 .31 5.75 .17 .09 34.94 .46 .00 .01 100.29	57.32 .07 1.06 .33 5.73 .14 .07 34.90 .47 .02 .01 100.11	57.30 .06 1.04 .31 5.81 .15 .08 34.68 .45 .03 .00 99.91	57.58 .06 1.06 .35 5.76 .08 34.84 .50 .01 .01 100.39	57.36 .06 1.08 .36 5.77 .11 .09 34.69 .50 .00 .00 100.02	57.55 .05 1.05 5.85 .14 .09 34.84 .46 .00 .00 100.35	57.42 .04 1.06 .36 5.84 .07 .09 34.92 .45 .00 .00 100.26	57.62 .05 1.06 .35 5.99 .17 .08 34.79 .45 .00 .01 100.55	57.93 .06 1.05 .32 5.93 .13 .06 34.80 .43 .02 .00 100.72
Kationen- besetzung Si Ti Al Cr. Fe ⁴⁺ Mn Ni Mg Ca Na K Xionen	1.976 .002 .040 .008 .165 .005 .001 1.782 .018 .001 .000 3.998	1.971 .001 .008 .170 .005 .003 1.786 .016 .000 .001 4.003	1.974 .002 .041 .008 .160 .004 .003 1.790 .018 .001 .000 4.000	1.971 .002 .008 .167 .004 .003 1.791 .017 .000 .001 4.004	1.973 .001 .007 .170 .004 .002 1.786 .019 .000 .000 4.003	1.977 .001 .008 .164 .005 .003 1.782 .017 .001 .000 3.998	1.974 .002 .008 .168 .004 .002 1.783 .018 .002 .000 4.001	1.978 .002 .009 .166 .003 .003 1.778 .016 .000 .000 3.996	1.980 .001 .009 .167 .003 .003 1.771 .019 .000 .001 3.995	1.979 .001 .009 .165 .005 .002 1.777 .016 .001 .000 3.996	1.971 .001 .009 .167 .004 .002 1.787 .017 .000 .000 4.002	1.971 .001 .009 .165 .005 .003 1.788 .017 .000 .000 4.002	1.971 .002 .043 .009 .165 .004 .002 1.789 .017 .001 .000 4.003	1.974 .002 .008 .168 .004 .002 1.781 .016 .002 .000 4.000	1.974 .001 .009 .165 .004 .002 1.780 .018 .001 .001 3.999	1.974 .002 .044 .010 .166 .003 .003 1.779 .018 .000 .000 3.998	1.974 .001 .009 .167 .004 .002 1.781 .017 .000 .000 3.999	1.971 .001 .013 .010 .168 .002 .002 1.787 .017 .000 .000 4.001	1.974 .001 .009 .172 .005 .002 1.777 .017 .000 .000 3.999	1.979 .002 .042 .009 .004 .009 .004 1.772 .016 .001 .000 3.995
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.55 16.74 1398	91.33 16.71 1408	91.80 15.55 1418	91.48 17.25 1428	91.31 15.88 1438	91.59 16.84 1448	91.39 15.92 1458	91.44 17.82 1468	91.39 18.19 1478	91.49 17.67 1488	91.44 17.88 1498	91.54 16.25 1508	91.57 17.17 1518	91.40 16.70 1528	91.51 17.96 1538	91.47 18.11 1548	91.43 18.16 1558	91.42 18.54 1568	91.20 18.02 1578	91.28 17.05 1588

Probe: Fi Profilname	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12
Profilpunkt	182	184	185	186	187	188	189	190	191	192	193	194	197	198	199	201	202	203	204	205
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse																				
[Gew%] SiO	57 48	57 22	57 01	57 29	57 25	57 45	57 67	57 38	57 49	57 63	57 01	57 54	57 51	57 44	57 32	57 49	57 73	57 41	57 52	57 33
TiO ₂	.04	.06	.05	.05	.07	.04	.04	.06	.06	.06	.05	.05	.05	.06	.04	.07	.04	.06	.06	.06
Al ₂ O ₃ Cr.O.	1.09	1.09	1.06	1.06	1.05	1.08	1.06	1.09	1.07	1.05	1.12	1.07	1.08	1.08	1.07	1.06	1.08	1.07	1.12	1.03
FeO	5.62	5.96	5.76	5.91	5.88	5.80	5.87	5.64	5.87	6.03	5.80	5.81	5.92	5.73	5.85	5.89	5.87	5.70	5.92	5.97
MnO	.18	.17	.11	.15	.12	.11	.19	.14	.19	.11	.14	.17	.10	.14	.15	.13	.17	.16	.14	.11
MgO	34.82	34.89	34.77	.09 34.80	34.78	34.76	34.82	34.73	34.83	34.83	34.82	.08 34.76	.05 34.92	.09 34.87	.04 34.88	.05 34.74	34.81	.07 34.92	35.00	34.93
CaO	.40	.42	.43	.45	.51	.48	.42	.41	.42	.43	.43	.44	.44	.46	.45	.43	.48	.45	.37	.43
Na₂O K₂Ô	.00	.00	.01	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.02	.00	.00	.01	.00
Σ	100.09	100.27	99.62	100.12	100.08	100.18	100.46	99.89	100.35	100.58	99.80	100.31	100.43	100.20	100.16	100.22	100.65	100.22	100.56	100.35
Kationen- besetzung Si Ti Cr Fe ²⁺ Mn Ni Mg Ca Ca Ca Ca Xa Σ Kationen	1.975 .001 .044 .010 .005 .002 1.784 .015 .000 .000 3.997	1.967 .002 .044 .010 .171 .005 .002 1.788 .015 .000 .000 4.005	1.970 .001 .043 .009 .166 .003 .003 1.791 .016 .001 .000 4.003	1.971 .001 .043 .009 .170 .004 .002 1.785 .016 .000 .000 4.002	1.970 .002 .043 .010 .169 .003 .002 1.784 .019 .000 .000 4.002	1.974 .001 .044 .009 .167 .003 .003 1.780 .018 .000 .000 3.999	1.976 .001 .043 .009 .168 .005 .002 1.778 .015 .000 .000 .000 3.998	1.975 .002 .044 .010 .162 .004 .002 1.782 .015 .000 .000 3.996	1.973 .001 .043 .009 .168 .006 .003 1.781 .015 .000 .000 4.000	1.974 .001 .012 .010 .173 .003 .002 1.778 .016 .000 .000 .000 3.999	1.967 .001 .045 .009 .167 .004 .003 1.791 .016 .000 .000 4.004	1.975 .001 .043 .010 .167 .005 .002 1.778 .016 .000 .001 3.998	1.971 .001 .044 .009 .170 .003 .001 1.785 .016 .000 .001 4.001	1.972 .001 .044 .009 .165 .004 .002 1.785 .017 .000 .000 4.000	1.970 .001 .043 .010 .168 .004 .001 1.787 .016 .001 .000 4.002	1.974 .002 .043 .010 .169 .004 .001 1.779 .016 .001 .000 3.998	1.975 .001 .043 .010 .168 .005 .003 1.775 .017 .000 .000 3.997	1.971 .001 .043 .010 .164 .005 .002 1.787 .016 .000 .001 4.001	1.970 .001 .045 .010 .169 .004 .002 1.786 .014 .001 .000 4.002	1.969 .001 .042 .009 .172 .003 .003 1.788 .016 .000 .001 4.005
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	91.69	91.26	91.50	91.30	91.34	91.44	91.37	91.66	91.37	91.15	91.45	91.42	91.32	91.56	91.40	91.32	91.36	91.60	91.34	91.25
Cr #	18.60	18.15	17.69	17.85	18.26	17.73	17.72	18.11	17.63	18.35	17.08	18.40	17.41	16.96	18.44	18.49	19.21	18.93	17.72	18.49
Profilstrecke [um]	1598	1618	1628	1638	1648	1658	1668	1678	1688	1698	1708	1718	1748	1759	1769	1789	1799	1809	1819	1829

Probe: Fi																				
Profilname	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12 I	Profil-12 I	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12 I	Profil-12	Profil-12 I	Profil-12
Profilpunkt	206	208	209	211	212	213	214	217	218	219	220	221	222	223	224	225	226	227	229	230
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse Gew%] [Gew%] SiO, TIO, Gr,O, Gr,O, FeO MnO NiO NiO CaO CaO K ₂ Ó X S	57.25 .06 1.08 .36 5.87 .16 .06 34.84 .51 .00 .00 100.20	57.45 .06 1.05 .35 5.79 .18 .05 34.87 .52 .02 .02 .00 100.33	57.47 .03 1.08 .36 5.74 .15 .10 34.84 .00 .01 100.22	57.47 .06 1.05 .37 5.66 .13 .10 34.89 .43 .01 .01 100.18	57.53 .02 1.06 .34 5.77 .16 .09 35.16 .42 .02 .01 100.57	57.67 .05 1.10 .32 5.89 .18 .08 35.21 .44 .01 .00 100.94	57.62 .03 1.07 .33 5.94 .13 .11 34.98 .42 .02 .00 100.63	57.46 .04 1.08 .36 5.57 .12 .09 34.91 .38 .03 .01 100.05	57.34 .04 1.06 .36 5.75 .10 .11 34.84 .45 .03 .01 100.09	57.94 .05 1.06 .34 5.67 .13 .08 34.96 .38 .00 .01 100.61	57.44 .05 1.08 .32 5.67 .16 .09 35.01 .01 .01 .02 100.25	57.71 .04 1.07 .33 5.63 .14 .06 35.03 .45 .03 .00 100.49	57.75 .04 1.05 .38 5.99 .18 .07 34.93 .41 .00 .01 100.80	57.35 .03 1.04 .33 5.73 .16 .08 34.93 .44 .00 .00 100.10	57.49 .04 1.07 .39 5.65 .17 .12 34.88 .43 .00 .01 100.23	57.41 .06 1.08 .32 5.75 .13 .07 34.90 .41 .02 .01 100.14	57.42 .06 1.04 .34 5.71 .13 .10 35.06 .42 .00 .00 100.27	57.31 .07 1.02 .32 5.79 .15 .10 34.81 .00 .02 100.00	57.47 .06 1.04 .29 5.79 .15 .12 34.98 .40 .00 .00 100.29	57.59 .06 1.02 .36 5.83 .16 .10 35.08 .40 .01 .00 100.60
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Ni Mg Ca Na K K Kationen	1.968 .001 .044 .010 .169 .005 .002 1.786 .019 .000 .000 4.004	1.971 .001 .009 .166 .005 .001 1.784 .019 .002 .000 4.002	1.973 .001 .040 .165 .004 .003 1.783 .016 .000 .001 3.999	1.973 .002 .010 .163 .004 .003 1.786 .016 .001 .001 3.999	1.969 .001 .009 .165 .005 .002 1.794 .016 .002 .000 4.005	1.968 .001 .049 .168 .005 .002 1.791 .016 .000 .000 4.005	1.972 .001 .009 .170 .004 .003 1.785 .015 .001 .000 4.002	1.974 .001 .010 .160 .004 .002 1.788 .014 .002 .000 3.999	1.972 .001 .040 .165 .003 1.786 .017 .002 .000 4.002	1.979 .001 .009 .162 .004 .002 1.780 .014 .000 .014 .000 3.994	1.971 .001 .009 .163 .005 .002 1.791 .015 .000 .001 4.002	1.975 .001 .009 .161 .004 .002 1.787 .016 .002 .000 3.999	1.973 .001 .010 .171 .005 .002 1.779 .015 .000 .000 4.000	1.972 .001 .009 .165 .005 .002 1.790 .016 .000 .000 4.002	1.973 .001 .013 .011 .162 .005 .003 1.785 .016 .000 .000 3.999	1.972 .001 .009 .165 .004 .002 1.788 .015 .001 .000 4.001	1.970 .002 .009 .164 .004 .003 1.793 .015 .000 .000 4.002	1.973 .002 .041 .009 .167 .004 .003 1.786 .015 .000 .001 4.001	1.972 .002 .008 .166 .004 .003 1.789 .015 .000 .000 4.001	1.971 .001 .010 .167 .005 .003 1.790 .015 .000 .000 4.002
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.36 18.40 1839	91.48 18.15 1859	91.53 18.33 1869	91.66 19.30 1889	91.57 17.52 1899	91.42 16.44 1909	91.30 17.00 1919	91.78 18.40 1949	91.53 18.50 1959	91.66 17.89 1969	91.68 16.62 1979	91.73 17.13 1989	91.23 19.67 1999	91.57 17.52 2009	91.67 19.64 2019	91.54 16.45 2029	91.63 18.04 2039	91.47 17.54 2049	91.51 15.87 2069	91.47 19.35 2079

Probe: Fi	Deefl (C)	D£1 40	D£I 40 1	D61 40	Deef! 40	D£1 40	D61 40	Deef! 40	Deef! 40	D 61 40 1	D61 40 1	Deefl 40	D 61 40	D61 40	D£1 40	Deefl 40	D61 40	D61 40	D£I 40 1	
Profilname Profilpunkt	231 Profil-12	232 232	234 Profil-12	235 235	237	238 238	240 Profil-12	241	242	243 243	244 244	245	246	247	248 248	249 249	250 Profil-12	251	252 Profil-12	253 Profil-12
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse																				
[Gew%] SiO.	57 30	57 50	57 32	57 35	57 62	57.03	57 74	57 56	57 52	57 59	57 47	57 67	57 57	57.64	57.61	57 33	57.83	57.61	57 70	57 15
TiO ₂	.05	.07	.07	.04	.05	.06	.06	.03	.06	.08	.05	.04	.06	.04	.03	.05	.03	.05	.04	.05
Al ₂ O ₃	1.00	.98	1.02	1.05	1.03	1.01	1.04	.99	1.02	1.02	1.01	.98	1.00	.99	.99	1.01	.98	1.03	.97	.98
FeO	5.61	5.78	5.96	5.68	5.74	5.79	5.65	5.70	5.80	5.73	5.86	5.95	5.79	5.79	5.71	5.76	5.75	5.75	5.98	5.73
MnO	.15	.14	.18	.14	.14	.14	.16	.16	.17	.16	.16	.10	.12	.12	.13	.11	.16	.16	.18	.11
MaO	.10 35.05	.10	.08	.07	.05	.08	.08	.06	.06	.07	.05	.10	.08	.09	.09	.00	.09	.07	.07	.06
CaO	.50	.42	.37	.46	.50	.45	.47	.51	.45	.47	.46	.48	.47	.53	.49	.48	.49	.50	.49	.45
Na₂O K O	.01	.00	.02	.01	.01	.02	.00	.00	.00	.00	.03	.00	.00	.02	.00	.00	.02	.03	.00	.01
Σ	100.22	100.37	100.35	100.22	100.63	100.88	100.49	100.29	100.45	100.47	100.36	100.76	100.56	100.54	100.33	99.89	100.54	100.34	100.83	99.83
besetzung Si Ti Al Cr Fe ^{2+*} Mn Ni Mg Ca Na K	1.970 .001 .041 .009 .161 .004 .003 1.794 .019 .001 .000	1.972 .002 .040 .010 .166 .004 .003 1.790 .015 .000 .000	1.968 .002 .041 .008 .171 .005 1.793 .014 .001 .000	1.969 .001 .042 .009 .163 .004 1.796 .017 .001 .001	1.971 .001 .041 .009 .164 .004 1.793 .018 .001 .000	1.976 .002 .041 .009 .165 .004 1.782 .016 .001 .000	1.976 .002 .042 .009 .162 .005 1.782 .017 .000 .000	1.975 .001 .040 .009 .164 .005 .002 1.788 .019 .000 .001	1.971 .001 .041 .009 .166 .005 .002 1.791 .016 .000 .000	1.972 .002 .041 .009 .164 .002 1.789 .017 .000 .000	1.972 .001 .041 .008 .168 .005 .001 1.789 .017 .002 .000	1.971 .001 .039 .009 .170 .003 1.790 .018 .000 .000	1.971 .002 .040 .008 .166 .003 .002 1.794 .017 .000 .000	1.974 .001 .040 .008 .166 .003 1.786 .019 .002 .001	1.975 .001 .040 .008 .164 .002 1.787 .018 .000 .000	1.974 .001 .041 .008 .166 .003 .000 1.789 .018 .000 .000	1.979 .001 .040 .009 .165 .002 1.779 .018 .001 .000	1.976 .001 .041 .008 .165 .005 .002 1.781 .018 .002 .000	1.974 .001 .039 .008 .171 .005 .002 1.783 .018 .000 .000	1.970 .001 .040 .165 .003 .002 1.797 .017 .001
∑ Kationen	4.004	4.002	4.006	4.004	4.003	3.999	3.997	4.001	4.003	4.001	4.004	4.004	4.004	4.003	4.000	4.000	3.997	3.999	4.001	4.005
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	91.76	91.53	91.29	91.68	91.61	91.52	91.69	91.62	91.51	91.60	91.41	91.33	91.55	91.50	91.61	91.51	91.53	91.52	91.25	91.58
Cr #	18.75	19.93	15.95	17.32	17.61	18.45	18.42	17.61	17.33	17.29	17.00	18.14	17.08	17.10	17.16	16.02	17.86	16.40	17.67	17.63
Profilstrecke [µm]	2089	2099	2119	2129	2149	2159	2179	2189	2199	2209	2219	2229	2239	2249	2260	2270	2280	2290	2300	2310

Probe: Fi																				
Profilname	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12 I	Profil-12 I	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12	Profil-12
Profilpunkt	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO ₂ TO ₂ TO ₂ Gr ₂ O ₃ FeO MnO NiO MgO CaO CaO K ₂ Ô CaO ∑ SiO	57.30 .04 .29 5.88 .13 .04 34.97 .48 .01 .00 100.10	57.81 .05 .96 .30 5.62 .13 .08 34.93 .44 .01 .00 100.32	57.50 .03 .95 .30 5.86 .15 .07 34.92 .43 .00 .02 100.23	57.51 .07 .96 .32 5.78 .12 .06 34.96 .41 .01 .00 100.19	57.59 .06 .95 .29 5.85 .15 .09 34.97 .47 .00 .01 100.42	57.66 .02 .98 .29 .16 .03 34.89 .45 .00 .01 100.17	57.46 .03 .96 .30 5.86 .10 .07 35.09 .43 .00 .01 100.30	57.50 .06 .96 .27 5.78 .17 .08 35.08 .44 .00 .00 100.34	57.64 .05 .95 .28 6.03 .11 .07 35.17 .42 .00 .00 100.73	57.55 .04 .93 .31 .13 .08 35.07 .43 .01 .01 100.36	57.63 .02 .93 .27 5.93 .16 .06 35.06 .43 .00 .00 100.49	57.59 .06 .93 .28 5.71 .15 .10 35.22 .39 .01 .00 100.42	57.66 .02 .88 .28 5.80 .15 .09 35.13 .41 .00 .00 100.42	57.37 .04 .87 .28 5.94 .16 .07 35.12 .38 .02 .00 100.24	57.80 .03 .79 .25 5.68 .12 .05 35.04 .37 .00 .00 100.12	57.50 .02 .88 .27 5.75 .12 .08 35.04 .35.04 .00 .00 100.03	57.91 .03 .84 .24 5.83 .12 .07 35.10 .39 .01 .00 100.54	57.72 .01 .90 .22 5.79 .14 .05 34.92 .34 .02 .00 100.11	57.65 .04 .85 .23 5.92 .17 .06 35.09 .33 .00 .00 100.34	57.69 .03 .84 .22 5.95 .12 .07 35.04 .24 .00 .01 100.21
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na Kationen	1.971 .001 .039 .008 .169 .004 .001 1.793 .018 .001 .000 4.005	1.980 .001 .039 .008 .161 .004 .012 .001 .001 .000 3.996	1.975 .001 .008 .168 .004 .002 1.788 .016 .000 .001 4.002	1.975 .002 .009 .166 .003 .002 1.790 .015 .001 .000 4.000	1.974 .001 .008 .168 .004 .003 1.787 .017 .000 .000 4.001	1.979 .001 .039 .008 .163 .005 .001 1.785 .016 .000 .001 3.997	1.972 .001 .039 .008 .168 .003 .002 1.795 .016 .000 .000 4.004	1.972 .001 .007 .166 .005 .002 1.794 .016 .000 .000 4.003	1.971 .001 .008 .003 .172 .003 .002 1.793 .015 .000 .000 4.005	1.974 .001 .008 .008 .167 .004 .002 1.793 .016 .000 .000 4.003	1.974 .001 .007 .170 .005 .002 1.791 .016 .000 .000 4.003	1.973 .001 .008 .163 .004 .003 1.798 .014 .001 .000 4.003	1.976 .000 .008 .166 .004 .002 1.795 .015 .000 .000 4.002	1.972 .001 .005 .008 .171 .005 .002 1.799 .014 .001 .000 4.007	1.983 .001 .007 .163 .003 .001 1.792 .014 .000 .000 3.997	1.977 .000 .036 .007 .165 .004 .002 1.796 .013 .000 .000 4.001	1.981 .001 .003 .003 .002 1.790 .014 .001 .000 3.999	1.982 .000 .006 .166 .004 .001 1.787 .013 .001 .000 3.998	1.977 .001 .005 .006 .170 .002 1.794 .012 .000 .000 4.001	1.980 .001 .034 .006 .171 .003 .002 1.793 .000 .000 3.999
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.38 16.87 2320	91.72 17.15 2330	91.40 17.21 2340	91.51 18.43 2350	91.42 17.04 2360	91.62 16.54 2370	91.44 17.36 2380	91.53 16.05 2390	91.23 16.41 2400	91.49 18.37 2410	91.34 16.05 2420	91.67 16.76 2430	91.53 17.66 2440	91.34 17.98 2450	91.67 17.32 2460	91.57 17.04 2470	91.47 16.27 2480	91.49 14.16 2490	91.35 15.41 2500	91.30 14.96 2510

Probe: Fi	
Profilname	Profil-12
Profilpunkt	275
Mineral	Орх
Analyse Gew%] SiO ₂ A ₂ O ₃ Cr.O ₃ FeO MnO NiO NgO CaO CaO K ₂ O X ₂ O X ₂ O X ₂ O X ₂ O	57.34 .04 .90 .28 5.40 .09 .06 35.24 .22 .00 .00 99.56
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{besetzung}\\ \mbox{Si}\\ \mbox{Ti}\\ \mbox{Al}\\ \mbox{Al}\\ \mbox{Cr}\\ \mbox{Fe}^{2*}\\ \mbox{Mn}\\ \mbox{Ni}\\ \mbox{Mg}\\ \mbox{Ca}\\ \mbox{Ca}\\ \mbox{Kationen}\\ \mbox{Sauerstoffe}\\ \end{array}$	1.977 .001 .036 .003 .002 1.811 .008 .000 4.000 6.000
Mg # Cr # Profilstrecke [um]	92.08 17.07 2530

Probe:	Fi
Profil:	13
Mineral:	Орх
Kapitel:	Anhang II

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
30	1.355	5.130	30.408	15.484	0.257	0.286	0.603	2.018
90	1.804	6.751	32.128	15.803	0.450	0.790	1.528	1.254
190	3.722	7.878	33.155	17.500	0.693	0.101	0.484	1.379
250	4.571	8.234	33.645	17.368	0.589	0.543	0.894	1.898
350	4.864	8.376	33.366	15.593	0.915	0.270	0.774	1.921
450	5.176	8.016	33.941	15.791	0.607	0.147	0.641	0.605
570	5.019	8.417	34.512	17.923	0.625	0.314	0.870	1.870
710	4.524	8.294	33.904	17.350	0.468	0.281	1.145	2.202
813	3.612	7.760	34.058	17.936	0.439	0.284	1.245	2.212
890	4.108	8.072	33.709	15.589	1.184	0.242	1.025	2.415
990	3.879	8.035	33.924	16.423	0.176	0.271	0.780	2.651
1050	2.381	7.498	34.342	17.442	0.516	0.320	0.777	3.503
1103	2.550	7.272	33.775	18.118	0.635	0.365	0.700	2.624
1150	2.833	7.008	31.120	16.875	0.235	0.373	0.426	1.740

Probe: Fi																				
Profilname	Profil-13	Profil-13	Profil-13	Profil-13 I	Profil-13	Profil-13 I	Profil-13 I	Profil-13	Profil-13	Profil-13 I	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13 I	Profil-13	Profil-13
Profilpunkt	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO, T Al₂O, Gr,O, Gr,O, FeO MnO NiO NiO MgO CaO K₂O K₂Ó ∑	58.41 .04 .43 .06 6.09 .13 .08 35.15 .26 .01 .00 100.65	58.35 .02 .43 .05 6.06 .13 .07 35.18 .29 .01 .00 100.58	58.29 .01 .42 .05 5.89 .10 .04 35.27 .00 .01 100.33	58.49 .04 .41 .04 5.78 .10 35.41 .01 .00 100.71	58.26 .03 .39 .07 5.82 .11 .08 35.36 .32 .02 .02 .00 100.45	58.54 .03 .48 .07 5.87 .15 .09 35.24 .28 .00 .01 100.76	58.14 .04 .52 .07 5.75 .12 .05 35.24 .09 .02 .00 100.23	58.16 .02 .57 .14 5.96 .15 .06 35.44 .02 .00 100.81	57.70 .02 .73 .20 5.96 .13 .10 35.20 .33 .02 .00 100.39	57.68 .03 .87 .22 5.96 .18 .07 35.15 .39 .01 .00 100.55	57.67 .07 .24 5.82 .12 .09 35.12 .38 .00 .02 100.37	57.80 .02 .88 .21 6.00 .17 .07 34.91 .41 .00 .00 100.45	57.62 .06 .91 .22 5.86 .10 .10 .35.02 .38 .01 .02 100.28	57.64 .04 .92 .24 6.07 .13 .08 34.93 .41 .00 .00 100.45	57.66 .03 .92 .27 5.96 .11 .07 34.83 .04 .04 .01 100.32	57.77 .03 .95 .24 6.15 .13 .08 35.00 .44 .01 .01 100.82	57.63 .03 .91 .26 5.94 .19 .06 34.91 .01 .00 100.38	57.55 .06 .95 .24 5.93 .12 .04 34.99 .43 .00 .02 100.32	57.46 .04 .95 .22 5.79 .16 .06 34.75 .43 .01 .02 99.88	57.68 .03 .95 .27 5.95 .13 .11 34.86 .43 .00 .00 100.40
Kationen- besetzung Si Ti Al Cr Fre ⁴⁺ Mn Ni Mg Ca Ca Na K Kationen	1.995 .001 .017 .002 .174 .004 .002 1.790 .009 .000 .000 3.995	1.995 .000 .017 .001 .173 .004 .002 1.792 .011 .001 .000 3.996	1.995 .000 .017 .001 .169 .003 .001 1.800 .010 .000 .000 3.996	1.995 .001 .001 .165 .004 .003 1.800 .010 .001 .000 3.996	1.993 .001 .002 .166 .003 .002 1.803 .012 .001 .000 3.998	1.996 .001 .002 .167 .004 .003 1.791 .010 .000 .000 3.993	1.992 .001 .022 .165 .003 .001 1.800 .011 .001 .000 3.997	1.985 .000 .023 .004 .170 .004 .002 1.802 .011 .001 .000 4.002	1.978 .001 .006 .171 .004 .003 1.799 .012 .001 .000 4.004	1.975 .001 .006 .171 .005 .002 1.794 .014 .001 .000 4.004	1.977 .002 .035 .007 .167 .003 .002 1.794 .014 .000 .001 4.001	1.980 .000 .035 .006 .172 .005 .002 1.783 .015 .000 .000 3.999	1.977 .001 .006 .168 .003 .003 1.791 .014 .001 4.001	1.976 .001 .007 .174 .004 .002 1.785 .015 .000 .000 4.001	1.978 .001 .037 .007 .171 .003 .002 1.782 .016 .003 .000 4.000	1.975 .001 .008 .006 .176 .004 .002 1.783 .016 .001 .000 4.003	1.977 .001 .037 .007 .170 .005 .002 1.785 .016 .001 .000 4.001	1.974 .001 .007 .170 .003 .001 1.790 .016 .000 .001 4.002	1.979 .001 .006 .167 .005 .002 1.784 .016 .000 .001 3.998	1.978 .001 .038 .007 .171 .004 1.782 .016 .000 3.999
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.15 8.18 5	91.19 7.82 15	91.43 6.77 25	91.61 6.05 35	91.55 11.13 45	91.46 8.98 55	91.62 8.64 65	91.38 13.86 75	91.32 15.67 85	91.31 14.74 95	91.49 15.91 105	91.21 13.95 115	91.42 14.08 125	91.12 15.05 135	91.25 16.54 145	91.02 14.53 155	91.29 16.13 165	91.32 14.49 175	91.46 13.29 185	91.26 15.83 195

Probe: Fi Profilname	Profil-13																			
Profilpunkt	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
Mineral	Орх																			
Analyse																				
[Gew%] SiO.	57.06	57 73	57 73	57.04	57 70	57 74	57 75	57 72	57 41	57 42	57 17	57.65	57 45	57 56	57 10	57 50	57 77	57 55	57 50	57 59
TiO ₂	.04	.06	.07	.03	.05	.02	.04	.03	.07	.03	.04	.05	.06	.06	.05	.04	.03	.04	.06	.05
Al ₂ O ₃	.94	.96	.96	1.01	1.01	1.00	.98	.99	.96	.98	.97	1.01	1.01	1.02	.99	1.00	1.00	1.00	1.02	.98
Cr ₂ O ₃ FeO	.23	.25	.25	.28	.26	.26	.28	.29	.26	.31	.30	.29	.30	.33	.29	.30	.31	.30	.32	.29
MnO	.19	.18	.18	.15	.12	.12	.16	.10	.15	.16	.10	.13	.12	.20	.17	.18	.12	.16	.11	.17
NiO	.14	.09	.07	.11	.05	.09	.08	.11	.08	.08	.07	.07	.09	.08	.08	.09	.08	.09	.12	.07
MgO CaO	34.87	34.96	34.86	34.89	34.87	34.94	34.87	34.88	34.99	34.91	35.09	34.96	34.93	35.07	34.86	34.72	34.86	34.89	34.86	34.93
Na ₂ O	.03	.02	.43	.03	.40	.43	.40	.00	.40	.00	.01	.40	.00	.02	.40	.43	.40	.02	.40	.43
K₂Ô	.00	.00	.01	.01	.01	.00	.00	.00	.01	.00	.02	.00	.00	.00	.01	.00	.00	.00	.01	.00
Σ	100.72	100.67	100.58	100.71	100.35	100.60	100.53	100.46	100.29	99.98	100.08	100.54	100.45	100.92	100.07	100.10	100.59	100.25	100.33	100.14
Kationen-																				
besetzung																				
Si	1.981	1.975	1.976	1.979	1.978	1.976	1.977	1.977	1.972	1.975	1.968	1.974	1.971	1.967	1.970	1.979	1.977	1.975	1.973	1.977
	.001	.002	.002	.001	.001	.001	.001	.001	.002	.001	.001	.001	.002	.002	.001	.001	.001	.001	.001	.001
Cr	.038	.039	.039	.040	.041	.040	.040	.040	.039	.040	.039	.0041	.0041	.041	.040	.040	.040	.040	.041	.040
Fe ²⁺	.168	.171	.170	.166	.167	.171	.169	.168	.169	.163	.169	.170	.173	.175	.171	.163	.170	.165	.168	.162
Mn	.005	.005	.005	.004	.003	.004	.004	.003	.004	.005	.003	.004	.003	.006	.005	.005	.003	.005	.003	.005
Ma	.004	.002	.002	.003	.001	.002	.002	.003	.002	.002	1 800	.002	.003	.002	.002	.003	.002	.003	.003	.002
Ca	.016	.016	.018	.017	.017	.016	.017	.017	.017	.016	.017	.017	.017	.017	.017	.018	.018	.017	.018	.016
Na	.002	.001	.001	.002	.000	.000	.000	.000	.000	.000	.001	.001	.000	.001	.001	.001	.000	.001	.002	.000
K Kationan	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.001	.000	.000	.000	.001	.000	.000	.000	.000	.000
Z ruduomen	3.997	4.001	4.000	3.997	3.998	4.000	3.998	3.998	4.004	4.000	4.008	4.001	4.003	4.007	4.006	3.990	3.998	4.000	4.002	3.998
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	91.35	91.26	91.26	91.44	91.42	91.24	91.32	91.37	91.36	91.67	91.43	91.32	91.18	91.09	91.26	91.59	91.26	91.56	91.41	91.70
Cr #	13.98	15.00	15.13	15.65	14.76	14.85	16.02	16.26	15.23	17.66	17.30	16.12	16.62	17.92	16.44	16.58	16.97	16.52	17.41	16.55
Profilstrecke [µm]	205	215	225	235	245	255	265	275	285	295	305	315	325	335	345	355	365	375	385	395

Probe: Fi																				
Profilname	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13 I	Profil-13 I	Profil-13 I	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13 I	Profil-13 I	Profil-13 I	Profil-13
Profilpunkt	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO,: T Al₂O, Gr₂O, FeO MnO NiO MgO CaO K₂O K₂O Xa₂O K₂Ó ∑	57.74 .01 .99 .30 5.84 .17 .08 34.74 .42 .02 .00 100.30	57.49 .04 .98 .28 5.85 .12 .11 35.06 .45 .02 .00 100.40	57.74 .03 .99 .30 5.89 .17 .08 35.00 .39 .00 .01 100.59	57.57 .06 .99 .31 5.89 .14 .07 34.94 .44 .00 .01 100.40	57.56 .07 .98 .32 5.89 .12 .11 34.82 .46 .00 .00 100.32	57.62 .06 1.01 .32 5.79 .17 .13 34.88 .51 .00 .00 100.49	57.70 .06 .97 .33 5.74 .17 .07 34.79 .48 .02 .00 100.33	57.78 .04 1.01 .32 5.83 .19 .13 35.00 .49 .02 .00 100.80	57.44 .04 1.01 .32 5.81 .14 .07 34.84 .51 .00 .00 100.18	57.27 .06 1.03 .31 5.89 .13 .13 34.93 .50 .02 .01 100.28	57.32 .05 1.00 .33 5.82 .10 .08 34.91 .48 .01 .03 100.12	57.62 .05 1.00 .33 5.82 .11 .05 34.75 .50 .00 .00 100.24	57.54 .05 1.02 .29 5.76 .14 .08 34.92 .50 .00 .00 .01 100.30	57.69 .06 1.04 .31 5.86 .13 .05 34.88 .51 .03 .01 100.54	57.27 .07 .98 .31 5.88 .10 .03 34.84 .50 .01 .01 100.00	57.57 .05 1.02 .31 5.82 .20 .07 34.93 .46 .00 .01 100.43	57.61 .03 1.02 .31 6.02 .14 .09 35.09 .55 .03 .03 .00 100.89	57.33 .05 1.01 .35 5.82 .16 .12 34.95 .50 .00 .01 100.28	57.84 .04 1.03 .29 5.68 .16 .07 34.83 .48 .00 .00 100.41	57.43 .07 1.05 .26 5.87 .13 .09 34.80 .52 .01 .00 100.22
Kationen- besetzung Si Ti Al Cr Fr ²⁺ Mn Ni Mg Ca Na K Kationen	1.980 .000 .040 .008 .167 .005 .002 1.776 .015 .001 .000 3.996	1.972 .001 .008 .168 .004 .003 1.793 .016 .001 .000 4.004	1.975 .001 .008 .168 .005 .002 1.785 .014 .000 .000 4.000	1.974 .001 .008 .169 .004 .002 1.786 .016 .000 .000 4.000	1.975 .002 .009 .169 .003 .003 1.781 .017 .000 .000 3.999	1.974 .001 .009 .166 .005 .004 1.781 .019 .000 .000 4.000	1.978 .002 .009 .165 .005 .005 1.778 .018 .002 .000 3.997	1.974 .001 .009 .167 .005 .004 1.782 .018 .001 .000 4.001	1.974 .001 .009 .167 .004 .002 1.785 .019 .000 .000 4.001	1.968 .002 .008 .169 .004 .003 1.790 .018 .001 .000 4.006	1.971 .001 .009 .167 .003 .002 1.790 .018 .001 .001 4.004	1.978 .001 .009 .167 .003 .001 1.778 .018 .000 .000 3.996	1.974 .001 .008 .165 .004 .002 1.786 .018 .000 .001 4.000	1.975 .001 .008 .168 .004 .001 1.780 .019 .002 .000 4.000	1.972 .002 .008 .169 .003 .001 1.788 .018 .001 .000 4.003	1.973 .001 .009 .167 .006 .002 1.785 .017 .000 .000 4.001	1.969 .001 .008 .172 .004 .003 1.787 .020 .002 .000 4.007	1.969 .001 .041 .010 .167 .005 .003 1.790 .018 .000 .000 4.004	1.980 .001 .042 .008 .162 .005 .002 1.778 .018 .000 .000 3.994	1.973 .002 .042 .007 .169 .004 1.782 .019 .001 .000 4.001
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.39 16.86 405	91.44 15.97 415	91.38 16.70 425	91.36 17.53 435	91.34 18.18 445	91.48 17.35 455	91.52 18.53 465	91.46 17.33 475	91.45 17.53 485	91.36 16.61 495	91.45 17.99 505	91.41 18.29 515	91.53 15.99 525	91.39 16.40 535	91.35 17.45 545	91.46 17.16 555	91.22 17.16 565	91.46 19.08 575	91.63 15.82 585	91.36 14.40 595

Probe: Fi	Draft 42	Deef! 42	Deef! 42	D 61 42 1	Deefl 42	Deefl 42	Deefl 42	D==61 42	Deefl 42	Deefl 421	D£I 42	Deefl 42	Deef! 42	Deefl 42		D==61 42	Deefl 42	Deefl 42	Deefl 42	Deefl 42
Profilpunkt	87	88	89	90	92	93	94	95	96	97	98	100	101	102	103	104	105	106	107	108
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr.O3 FeO MnO NiO NiO MgO CaO Na ₂ O K ₂ O ∑ ∑	57.41 .05 1.00 .29 5.89 .13 .04 34.98 .51 .04 .01 100.33	57.66 .07 .04 5.81 .05 34.74 .48 .03 .00 100.24	57.38 .04 .99 .31 5.79 .18 .04 34.92 .50 .00 .00 .00	57.42 .99 .29 5.97 .11 .07 34.77 .48 .01 .01 100.16	57.22 .06 1.02 .32 5.73 .13 .06 34.81 .40 .00 .00 99.74	57.56 .03 1.01 .591 .11 .06 34.73 .42 .00 .00 100.13	57.54 .04 1.02 .32 5.85 .12 .12 .12 35.08 .46 .02 .00 100.55	57.66 .03 .99 .30 5.81 .12 .08 34.92 .43 .00 .00 100.33	57.66 .03 1.00 .30 5.73 .13 .12 34.89 .42 .00 .00 100.27	57.66 .03 1.00 .32 5.85 .20 .10 35.02 .35 .00 .00 100.55	57.47 .05 1.00 .32 5.74 .14 .12 34.90 .42 .00 .00 100.14	57.81 .05 .97 .28 5.70 .17 .07 34.87 .00 .03 100.43	57.80 .03 .97 .30 5.86 .11 .08 34.93 .44 .00 .00 100.52	57.53 .05 .97 .31 5.77 .18 .07 34.72 .44 .01 .01 100.05	57.10 .07 1.02 .29 5.73 .19 .02 34.96 .43 .01 .00 99.82	57.39 .07 .98 .30 5.81 .15 .08 35.05 .47 .00 .00 100.31	57.59 .04 1.01 .31 5.72 .16 .09 34.87 .47 .00 .01 100.27	57.54 .06 .98 .30 5.66 .10 .07 34.92 .49 .01 .00 100.12	57.44 .06 1.03 .29 5.91 .13 .10 34.99 .50 .01 .01 100.47	57.84 .08 1.00 .30 5.96 .15 .11 34.85 .44 .00 .00 100.72
Kationen- besetzung Si Ti Cr F $F^{z^{z^{z}}}$ Mn Ni Mg Ca Na K ∑ Kationen Sauerstoffe	1.971 .001 .040 .008 .169 .004 .001 1.790 .019 .002 .000 4.005 6.000	1.978 .002 .041 .009 .167 .002 .001 1.777 .018 .002 .000 3.996	1.972 .001 .009 .166 .005 .001 1.789 .018 .000 .000 4.002	1.974 .002 .040 .008 .172 .003 .002 1.782 .018 .000 .000 4.000	1.973 .002 .041 .009 .165 .004 .004 .015 .000 .015 .000 4.000	1.978 .001 .009 .170 .003 .002 1.779 .015 .000 .000 3.997 6.000	1.970 .001 .009 .168 .003 .003 1.791 .017 .001 .000 4.004 6.000	1.977 .001 .008 .167 .004 .002 1.785 .016 .000 .000 3.999 6.000	1.978 .001 .008 .164 .004 .015 .000 .000 3.997 6.000	1.974 .001 .009 .167 .006 .003 1.787 .013 .000 .000 4.001 6.000	1.974 .001 .009 .165 .004 .003 1.787 .015 .000 4.000 6.000	1.979 .001 .039 .008 .163 .005 .002 1.780 .017 .000 .011 3.996 6.000	1.978 .001 .008 .168 .003 .002 1.782 .016 .000 .000 3.997 6.000	1.978 .001 .008 .166 .005 .002 1.780 .016 .000 .000 3.997 6.000	1.969 .002 .008 .165 .005 .001 1.797 .016 .001 .000 4.005	1.970 .002 .008 .167 .004 .004 .017 .000 .000 4.004 6.000	1.976 .001 .008 .164 .005 .003 1.784 .017 .000 .000 3.999 6.000	1.976 .001 .008 .162 .003 .002 1.788 .018 .001 .000 3.999 6.000	1.970 .001 .008 .170 .004 .004 .018 .018 .001 .000 4.005	1.977 .002 .040 .008 .170 .004 .016 .016 .000 3.997 6.000
Mg # Cr #	91.37 16.43 615	91.42 18.35 625	91.49 17.57 635	91.21 16.13 645	91.55 17.29 665	91.29 17.25 675	91.44 17.20 685	91.46 16.83 695	91.57 16.52 705	91.44 17.81 715	91.55 17.87 725	91.60 16.08 745	91.40 17.17 755	91.48 17.52 765	91.57 15.76 775	91.49 17.13 785	91.57 16.94 795	91.67 16.74 805	91.34 16.10 815	91.25 16.51 825

Probe: Fi Profilname	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13
Profilpunkt	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 TiO2 Al2O3 C7,O3 FeO MnO NiO NiO MgO CaO KaO K2Ó S	57.80 .01 1.02 2.9 5.81 .10 35.01 .47 .02 .03 100.64	57.74 .04 1.01 .29 5.77 .16 .10 34.85 .43 .02 .01 100.41	57.68 .06 .97 .30 5.86 .13 .10 34.73 .46 .00 .01 100.30	57.58 .05 .98 .26 5.94 .12 .06 34.94 .01 .00 100.38	57.75 .04 .99 .30 5.77 .14 .08 34.83 .00 .01 100.32	57.71 .06 .96 .27 5.88 .15 .11 34.85 .41 .00 .00 100.40	57.57 .06 .99 .26 5.72 .16 .08 35.00 .40 .00 .00 100.24	57.34 .04 .32 5.62 .15 .05 34.81 .44 .00 .00 99.73	57.90 .04 1.00 .28 5.71 .17 .11 34.69 .45 .02 .00 100.37	57.70 .06 .96 .27 5.78 .18 .09 35.02 .47 .01 .01 .00 100.54	57.51 .04 .96 .26 5.80 .13 .10 34.78 .48 .00 .00 100.04	57.68 .03 .97 .23 5.86 .15 .09 34.93 .48 .00 .00 100.41	57.50 .01 .98 .30 5.78 .11 .06 34.99 .46 .00 .00 100.18	57.85 .05 .99 .27 5.99 .10 .10 .35.00 .45 .02 .01 100.83	57.76 .06 .26 5.77 .14 .07 34.85 .52 .01 .00 100.38	57.65 .03 .97 .28 5.84 .13 .00 34.84 .00 .01 100.22	57.74 .07 .95 .28 5.88 .14 .09 35.08 .44 .00 .00 100.67	57.66 .05 .92 .30 5.94 .15 .04 34.97 .41 .01 .01 .00 100.45	57.38 .05 .92 .29 5.66 .15 .07 35.19 .48 .03 .00 100.22	57.71 .07 .24 5.88 .14 .07 35.13 .45 .00 .00 100.62
Kationen- besetzung Si Ti Al Cr, Fe ²⁺ Mn Ni Mg Ca Na K Xationen	1.976 .000 .041 .008 .166 .003 .003 1.784 .017 .001 .001 4.000	1.978 .001 .008 .165 .005 .003 1.780 .016 .001 .001 3.997	1.979 .002 .008 .168 .004 .003 1.776 .017 .000 .000 3.996	1.974 .001 .007 .170 .003 .002 1.786 .016 .001 .000 4.001	1.980 .001 .008 .165 .004 .002 1.780 .016 .000 .000 3.996	1.978 .002 .007 .169 .004 .003 1.781 .015 .000 .000 3.997	1.975 .001 .007 .164 .005 .002 1.790 .015 .000 .000 4.000	1.977 .001 .009 .162 .004 .001 1.789 .016 .000 .000 3.998	1.983 .001 .008 .164 .005 .003 1.771 .017 .001 .000 3.992	1.975 .001 .039 .007 .165 .005 .005 1.787 .017 .001 .000 4.001	1.978 .001 .007 .167 .004 .003 1.783 .018 .000 .000 3.999	1.977 .001 .006 .168 .004 .002 1.785 .018 .000 .000 4.000	1.975 .000 .039 .008 .166 .003 .002 1.791 .017 .000 .000 4.001	1.976 .001 .007 .171 .003 .003 1.782 .016 .001 .000 4.000	1.979 .001 .007 .165 .004 .002 1.780 .019 .001 .000 3.997	1.978 .001 .008 .168 .004 .000 1.782 .018 .000 .000 3.998	1.974 .002 .038 .008 .168 .004 .002 1.788 .016 .000 .000 4.001	1.976 .001 .008 .170 .004 .001 1.787 .015 .001 .000 4.000	1.970 .001 .008 .163 .004 .002 1.801 .018 .002 .000 4.007	1.974 .002 .037 .006 .168 .004 .002 1.791 .017 .000 .000 4.002
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.49 15.82 835	91.51 16.12 845	91.35 17.10 855	91.29 15.15 865	91.50 17.09 875	91.35 15.84 885	91.60 14.81 895	91.69 17.86 905	91.55 15.89 915	91.52 15.92 925	91.45 15.20 935	91.40 13.81 945	91.52 16.87 955	91.23 15.66 965	91.51 15.53 975	91.40 16.17 985	91.40 16.35 995	91.31 17.92 1005	91.72 17.34 1015	91.41 14.68 1025

Probe: Fi													
Profilname	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13	Profil-13 I	Profil-13	Profil-13	Profil-13	Profil-13
Profilpunkt	129	130	131	132	134	135	136	137	138	139	140	141	142
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr.O3 FEO MnO NiO MgO CaO Na2O KO KO	57.78 .04 .95 .29 5.77 .14 .10 35.17 .43 .01 .01 100.69	57.76 .04 .93 .25 5.83 .16 .04 34.86 .04 34.86 .03 .01 100.38	57.81 .03 .92 .29 6.04 .13 .08 35.16 .45 .00 .00 100.92	57.76 .05 .92 .25 5.96 .11 .03 34.89 .42 .00 .01 100.39	57.64 .05 .92 .27 5.88 .16 .09 34.91 .45 .00 .01 100.39	57.76 .04 .90 .24 5.83 .12 .07 35.05 .42 .00 .00 100.43	57.70 .05 .87 .29 5.85 .18 .09 35.10 .45 .00 100.58	57.65 .00 .89 .22 5.81 .10 .02 35.02 .45 .01 .00 100.16	57.76 .05 .87 .23 5.74 .13 .04 35.15 .40 .01 100.38	57.23 .02 .84 .23 5.97 .16 .06 34.93 .41 .00 .01 99.85	57.77 .04 .78 .27 6.07 .16 .05 35.00 .38 .01 .00 100.52	57.79 .04 .82 .21 5.97 .13 .07 34.93 .36 .00 .00 .00 100.33	58.24 .03 .52 .10 5.99 .14 .07 35.36 .26 .02 .00 100.72
Kationen- besetzung Si Ti Cr Fe ²⁺ Mi Mi Mi Mi Ca Ca Xa Xationen Σ Kationen	1.974 .001 .038 .008 .004 .003 1.792 .016 .001 .001 .000 4.002	1.980 .001 .037 .005 .001 1.781 .017 .002 .001 3.999	1.973 .001 .037 .008 .172 .004 .002 1.789 .016 .000 .000 4.003	1.979 .001 .037 .003 .011 1.782 .015 .000 .000 3.997	1.977 .001 .037 .005 .005 .002 1.785 .017 .000 .001 4.000	1.978 .001 .036 .003 .167 .003 .002 1.790 .015 .000 .000 3.999	1.975 .001 .035 .005 .005 1.791 .016 .000 .000 4.002	1.979 .000 .036 .006 .167 .003 .001 1.792 .016 .000 .000 4.000	1.978 .001 .035 .006 .164 .004 .001 1.795 .015 .000 .000 4.000	1.974 .001 .034 .006 .172 .002 1.796 .015 .000 .000 4.005	1.979 .001 .007 .174 .004 .011 1.788 .014 .001 .000	1.982 .001 .033 .006 .171 .004 1.786 .013 .000 .000 3.998	1.988 .001 .003 .171 .004 .009 .009 .001 .000 4.000
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.57 17.09 1035	91.43 15.31 1045	91.21 17.44 1055	91.26 15.31 1065	91.37 16.37 1085	91.47 15.45 1095	91.45 18.24 1105	91.48 13.95 1115	91.61 15.08 1125	91.25 15.25 1135	91.13 18.56 1145	91.25 14.42 1155	91.32 11.67 1165

Probe:	Fi
Profil:	14
Mineral:	Phl
Kapitel:	2.3

Profil- strecke [µm]	P [µg/g]	Sc [g/g4]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
20	2.572	7.165	43.512	10.968	0.479	0.386	1.433	2.151
69	2.616	7.296	44.543	9.824	0.516	0.405	0.859	0.950
129	3.293	7.325	45.610	11.682	0.803	0.284	1.408	1.670
189	3.895	6.910	45.664	11.491	0.519	0.476	0.575	1.544
249	3.779	6.820	44.888	12.113	0.532	0.277	0.709	1.787
309	3.093	6.550	46.070	11.894	0.456	0.275	1.133	1.055
370	2.586	7.040	45.902	10.188	0.233	0.189	1.664	1.252
429	3.033	6.651	45.095	11.599	0.495	0.154	1.365	0.916
489	2.340	6.439	45.450	10.604	0.271	0.423	0.704	1.642
549	3.522	6.462	46.301	9.754	0.466	0.253	0.845	1.010
610	2.728	6.325	44.689	11.656	0.627	0.191	1.847	1.189
729	2.934	7.372	47.620	13.003	0.391	0.703	0.779	1.591
789	2.773	7.016	46.202	12.348	0.584	0.227	0.968	1.639
849	4.005	6.968	45.347	11.551	0.348	0.305	1.724	1.597
932	3.081	7.038	46.381	14.272	0.789	0.557	0.687	1.812
996	2.857	6.861	44.116	14.137	0.534	0.193	0.993	1.408
1052	4.096	6.906	44.838	12.663	0.741	0.248	0.936	1.722
1109	3.067	7.235	45.066	13.516	0.460	0.493	0.938	2.577
1169	2.132	6.968	45.232	11.233	0.412	0.195	0.731	1.468
1229	4.120	7.057	44.282	13.251	0.537	0.185	0.579	1.171
1289	4.341	6.993	44.568	10.197	0.657	0.360	1.158	1.466
1349	4.905	7.051	43.874	12.798	0.884	0.090	1.037	1.374
1409	3.894	7.176	43.926	10.409	0.640	0.245	0.969	0.628
1469	2.561	6.745	43.512	11.911	0.549	0.173	1.207	2.244
1530	3.341	6.829	43.257	11.380	0.725	0.380	1.170	1.556
1589	3.368	7.041	43.174	11.706	0.702	0.256	1.401	1.482
1618	4.928	7.366	41.116	13.060	0.875	0.391	0.552	0.879

Probe: Fi Profilname	Profil-14	Profil-14 I	Profil-14 I	Profil-14 I	Profil-14 F	Profil-14 I	Profil-14 F	Profil-14 F	Profil-14 F	Profil-14 I	Profil-14 F	Profil-14 I	Profil-14 I	Profil-14 I	Profil-14	Profil-14 I	Profil-14 F	Profil-14 F	Profil-14 F	Profil-14
Profilpunkt	12	14	16	17	18	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Mineral	Phl	Phl	Phl	Phi	Phi	Phl	Phi	Phl	Phi	Phi	Phl	Phi	Phi	Phl	Phi	Phl	Phi	Phl	Phl	Phi
Analyse [Gew%] [Giou%] TiO2 TiO2 Al2C03 Cr2O3 FeO MnO NiO MgO CaO Na2O K2O H2O Σ	40.20 .70 15.17 1.06 2.81 .00 .22 24.56 .02 .60 9.05 4.23 98.61	40.45 67 15.20 1.04 2.67 .01 .23 24.71 .00 .72 9.04 4.24 98.98	39.87 .77 15.44 1.18 2.89 .00 .25 24.53 .00 .65 9.13 4.23 98.93	39.84 71 15.45 2.76 .00 .22 24.21 .00 .76 9.13 4.21 98.45	40.25 72 15.46 1.18 2.83 .01 .24 24.32 .00 .74 8.98 4.24 98.97	39.88 71 15.39 1.13 2.78 .01 .25 24.50 .00 .67 9.03 4.22 98.56	40.34 .70 15.34 1.21 2.97 .00 .18 24.42 .00 .78 9.00 4.25 99.18	40.15 .72 15.35 1.15 2.84 .00 .23 24.43 .00 .75 9.02 4.23 98.87	40.20 70 15.46 2.85 .00 .23 24.32 .00 .79 8.87 4.24 98.83	39.94 72 15.46 1.18 2.73 .03 .23 24.28 .00 .74 8.97 4.22 98.49	40.14 .69 15.50 2.86 .00 .21 24.49 .00 .78 8.83 4.24 98.94	40.07 73 15.46 1.33 2.87 .02 .22 24.29 .00 .71 9.01 4.24 98.94	40.06 68 15.50 1.28 2.69 .04 .22 24.32 .00 .72 8.90 4.23 98.63	39.97 72 15.56 1.36 2.86 .01 .23 24.30 .00 .70 8.87 4.23 98.80	39.96 72 15.40 1.44 2.81 .00 .21 24.23 .00 .76 8.99 4.23 98.75	40.09 68 15.47 1.34 2.73 .01 .19 24.23 .00 .77 8.87 4.23 98.60	40.30 .72 15.55 1.23 2.65 .06 .20 24.30 .00 .76 8.91 4.24 98.91	39.99 75 15.50 1.36 2.89 .00 .17 24.16 .00 .82 9.11 4.23 98.97	39.93 .72 15.44 1.34 2.98 .01 .21 24.12 .00 .80 8.97 4.22 98.75	40.17 .72 15.59 1.35 2.87 .01 .19 24.21 .00 .75 9.04 4.24 99.14
Kationen- besetzung Si Ti Al Cr Fe ^{z*} Mn Ni Mg Ca Ca Kationen K OH X Kationen	2.852 0.037 1.268 0.060 0.167 0.000 0.013 2.598 0.002 0.082 0.819 2.000 7.897	2.857 0.036 1.266 0.058 0.058 0.013 2.602 0.000 0.013 2.602 0.000 0.985 2.000 7.902	2.825 0.041 1.289 0.066 0.171 0.000 0.014 2.592 0.000 0.826 2.000 7.914	2.835 0.038 1.296 0.064 0.064 0.000 0.013 2.568 0.000 0.105 0.829 2.000 7.913	2.846 0.038 1.289 0.066 0.167 0.001 4 2.563 0.000 0.101 0.810 2.000 7.894	2.833 0.038 1.289 0.064 0.065 0.000 0.014 2.594 0.000 0.992 0.818 2.000 7.908	2.848 0.037 1.276 0.068 0.175 0.000 0.010 2.570 0.000 0.100 0.810 0.810 2.000 7.901	2.843 0.038 1.281 0.064 0.000 0.013 2.579 0.000 0.104 0.815 2.000 7.905	2.845 0.037 1.289 0.066 0.169 0.001 2.566 0.000 0.109 0.800 2.000 7.895	2.838 0.039 1.295 0.066 0.162 0.003 2.572 0.000 0.101 0.813 2.000 7.901	2.838 0.037 1.291 0.067 0.009 0.012 2.581 0.000 0.102 2.581 0.000 0.796 2.000 7.898	2.836 0.039 1.290 0.074 0.001 2.563 0.000 0.913 2.000 7.898	2.840 0.036 1.295 0.072 0.100 0.002 0.013 2.570 0.000 0.099 0.805 2.000 7.892	2.832 0.038 1.299 0.076 0.170 0.000 0.013 2.566 0.000 0.096 0.801 2.000 7.891	2.835 0.039 1.288 0.081 0.167 0.000 0.112 2.562 0.000 0.104 0.814 2.000 7.901	2.843 0.036 1.293 0.075 0.162 0.000 0.011 2.562 0.000 0.105 0.802 2.000 7.890	2.847 0.038 1.295 0.069 0.003 0.011 2.559 0.000 0.104 0.803 2.000 7.886	2.833 0.040 1.294 0.076 0.171 0.000 0.113 0.823 2.000 7.910	2.835 0.038 1.292 0.075 0.177 0.000 0.012 2.552 0.000 0.110 0.812 2.000 7.904	2.838 0.038 1.298 0.076 0.170 0.000 0.011 2.549 0.000 0.103 0.814 2.000 7.896
Mg# Cr# Profilstrecke [µm]	93.97 4.49 5	94.28 4.37 36	93.81 4.87 67	93.98 4.74 83	93.87 4.86 98	94.01 4.71 129	93.62 5.04 145	93.87 4.77 160	93.83 4.89 176	94.06 4.86 191	93.86 4.93 207	93.78 5.46 222	94.15 5.25 238	93.80 5.52 253	93.89 5.91 269	94.05 5.49 284	94.24 5.05 300	93.71 5.54 315	93.53 5.51 331	93.76 5.50 346

Probe: Fi																				
Profilname	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14 I	Profil-14	Profil-14	Profil-14	Profil-14 I	Profil-14 I	Profil-14	Profil-14 I	Profil-14 I	Profil-14	Profil-14 I	Profil-14				
Profilpunkt	35	36	37	38	39	40	41	42	43	44	46	47	48	50	52	54	55	58	59	60
Mineral	Phi	Phi	Phl	Phl	Phi	Phl	Phi													
Analyse [Gew%]																				
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO Na2O K2O	39.77 .72 15.45 1.26 2.86 .00 .28 24.33 .00 .76 8.98	40.26 .68 15.48 1.15 2.82 .03 .19 24.30 .00 .71 8.98	40.33 .74 15.58 1.06 2.64 .00 .25 24.28 .00 .75 8 92	40.01 .74 15.60 1.23 2.88 .00 .24 24.23 .00 .80 8.99	39.92 .72 15.62 1.38 2.92 .00 .22 24.19 .00 .79 9.01	40.29 .76 15.43 1.34 2.91 .03 .23 24.37 .00 .74	40.03 .75 15.61 1.26 2.80 .00 .24 24.29 .00 .74	40.06 .75 15.57 1.35 2.90 .00 .17 24.33 .00 .79 8.92	40.00 .74 15.61 1.21 2.77 .01 24.42 .00 .77 8.74	40.04 .72 15.60 1.22 2.70 .00 .18 24.06 .00 .74	40.24 .71 15.52 1.04 2.87 .00 .18 24.43 .00 .75 9.03	40.36 .73 15.49 1.10 2.72 .00 .19 24.27 .00 .75 8 86	39.99 .77 15.52 1.20 2.76 .01 .24 24.46 .00 .77 8.97	39.69 .73 15.28 1.17 2.86 .01 .26 24.36 .00 .74	39.87 .74 15.49 1.15 2.88 .00 .20 24.39 .00 .78 9.14	40.08 .70 15.58 1.34 2.77 .04 .20 24.36 .00 .77 8.91	39.54 .72 15.50 1.46 2.77 .02 .15 24.37 .04 .65 8.49	39.68 .72 15.55 1.28 2.94 .02 .23 24.15 .02 .61	40.21 .73 15.51 1.30 2.81 .02 .25 24.21 .05 .64	39.98 .74 15.59 1.32 2.89 .01 .24 24.08 .07 .72 8.72
H2O Σ	4.22 98.64	4.24 98.83	4.24 98.78	4.24 98.94	4.24 99.01	4.25 99.19	4.24 98.91	4.24 99.09	4.23 98.69	4.22 98.30	4.24 99.00	4.24 98.69	4.24 98.92	4.21 98.33	4.23 98.86	4.24 99.00	4.20 97.90	4.21 98.29	4.24 98.85	4.23 98.59
Kationen-																				
Si Ti Al Cr Fe ^{ε+} Mn Ni Mg Ca Na Ca Na K OH Σ Kationen	2.826 0.038 1.294 0.071 0.170 0.000 0.016 2.578 0.000 0.104 0.814 2.000 7.912	2.849 0.036 1.291 0.064 0.167 0.002 0.011 2.563 0.000 0.098 0.811 2.000 7.891	2.851 0.039 1.298 0.156 0.000 0.014 2.560 0.000 0.103 0.805 2.000 7.885	2.832 0.039 1.301 0.069 0.171 0.000 0.014 2.557 0.000 0.110 0.811 2.000 7.904	2.826 0.038 1.304 0.077 0.173 0.000 0.013 2.553 0.000 0.108 0.813 2.000 7.906	2.842 0.040 1.283 0.075 0.172 0.002 0.013 2.563 0.000 0.101 0.797 2.000 7.888	2.833 0.040 1.302 0.070 0.166 0.000 0.013 2.562 0.000 0.101 0.810 2.000 7.897	2.831 0.040 1.297 0.075 0.171 0.000 0.010 2.563 0.000 0.108 0.804 2.000 7.899	2.833 0.039 1.303 0.068 0.164 0.000 0.011 2.578 0.000 0.105 0.789 2.000 7.890	2.845 0.039 1.306 0.069 0.160 0.000 0.010 2.549 0.000 0.101 0.801 2.000 7.880	2.844 0.038 1.292 0.058 0.170 0.000 0.010 2.573 0.000 0.102 0.815 2.000 7.902	2.855 0.039 1.291 0.061 0.000 0.011 2.559 0.000 0.103 0.799 2.000 7.880	2.830 0.041 1.294 0.067 0.163 0.001 0.013 2.581 0.000 0.105 0.810 2.000 7.906	2.830 0.039 1.284 0.066 0.171 0.000 0.015 2.589 0.000 0.103 0.821 2.000 7.917	2.828 0.039 1.294 0.064 0.171 0.000 0.011 2.579 0.000 0.107 0.827 2.000 7.921	2.833 0.037 1.298 0.075 0.164 0.002 0.011 2.567 0.000 0.106 0.804 2.000 7.898	2.821 0.038 1.304 0.083 0.165 0.001 0.008 2.592 0.003 0.090 0.773 2.000 7.879	2.827 0.039 1.306 0.072 0.175 0.001 0.013 2.565 0.001 0.085 0.808 2.000 7.892	2.845 0.039 1.293 0.072 0.166 0.001 0.014 2.553 0.003 0.088 0.804 2.000 7.879	2.836 0.040 1.303 0.074 0.172 0.000 0.014 2.547 0.005 0.099 0.789 2.000 7.879
Mg# Cr#	93.82 5.20	93.90 4.75	94.26 4.38	93.75 5.01	93.65 5.57	93.72 5.51	93.93 5.14	93.73 5.50	94.02 4.93	94.09 4.99	93.81 4.30	94.09 4.54	94.05 4.94	93.81 4.90	93.78 4.75	94.00 5.45	94.00 5.96	93.61 5.23	93.88 5.30	93.69 5.39
Profilstrecke [µm]	362	377	393	408	424	439	455	470	486	501	532	548	563	594	625	656	672	718	734	749

Probe: Fi Profilname	Profil-14 I	Profil-14 I	Profil-14 I	Profil-14 I	Profil-14 F	Profil-14 F	Profil-14 F	Profil-14 F	Profil-14 F	Profil-14 I	Profil-14 F	Profil-14 I	Profil-14 I	Profil-14 I	Profil-14	Profil-14 I	Profil-14 I	Profil-14 F	Profil-14 F	Profil-14
Profilpunkt	61	62	63	64	65	66	67	68	70	71	72	73	74	75	76	77	78	79	80	82
Mineral	Phl	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi
Analyse [Gew%] SiO2 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO NiO MgO GaO NiO NiO	40.38 .73 15.58 1.29 2.84 .01 .24 24.24 24.24 .05 .81 8.81 4.25 99.23	39.95 .71 15.59 1.38 2.86 .00 .27 24.07 .04 .82 8.71 4.23 98.64	39.85 .76 15.56 1.44 2.71 .00 .25 23.96 .03 .81 8.79 4.22 98.36	40.00 .70 15.66 1.40 2.83 .00 .23 24.14 .05 .76 8.76 4.23 98.75	39.77 .75 15.63 1.41 2.73 .01 20 24.33 .09 .76 8.77 4.23 98.68	40.20 .75 15.54 1.39 2.92 .00 .20 24.21 .04 .77 8.80 4.25 99.06	40.12 .73 15.55 1.42 2.76 .01 .21 24.07 .08 .77 8.71 4.23 98.65	40.30 .72 15.46 1.39 2.77 .01 .19 24.00 .10 .78 8.77 4.24 98.74	40.05 .72 1.542 1.35 2.90 .00 .26 24.15 .08 8.82 4.23 98.79	39.97 .72 15.46 1.41 2.72 .00 24.11 .08 .81 8.87 4.22 98.55	40.35 .73 15.44 1.41 2.83 .00 .23 24.02 .12 .79 8.82 4.24 98.97	40.08 .71 15.52 1.41 2.92 .00 .27 23.99 .14 .80 8.82 4.23 98.89	39.91 .72 15.47 1.43 2.77 .00 .21 24.07 .14 .77 8.80 4.22 98.49	39.75 .73 15.28 1.38 2.86 .05 .21 23.84 .08 .72 8.61 4.19 97.69	40.22 .69 15.48 1.43 2.78 .01 .23 23.90 .10 .77 8.71 4.23 98.57	39.92 .72 1.552 1.355 2.85 .00 .22 24.06 .09 .78 8.72 4.22 98.44	40.26 .71 15.50 1.41 2.91 .03 .22 24.03 .13 .79 8.88 4.24 99.11	40.06 .74 15.51 2.76 .00 .24 24.00 .12 .75 8.86 4.23 98.72	40.17 .75 15.38 1.43 2.73 .00 .18 24.07 .09 .74 8.77 4.23 98.54	39.94 .68 15.43 1.38 2.62 .24 24.01 .12 .74 8.82 4.21 98.22
Kationen- besetzung Si Ti Al Cr Fe ^{z*} Mn Ni Mg Ca Ca Katonen X Kationen	2.845 0.039 1.294 0.072 0.167 0.000 0.014 2.546 0.003 0.110 0.792 2.000 7.884	2.834 0.038 1.304 0.077 0.170 0.000 0.015 2.545 0.003 0.112 0.789 2.000 7.888	2.834 0.040 1.304 0.081 0.000 0.014 2.540 0.002 0.102 0.797 2.000 7.887	2.833 0.037 1.307 0.078 0.008 0.000 0.013 2.549 0.003 0.104 0.792 2.000 7.884	2.820 0.040 1.306 0.079 0.061 0.012 2.572 0.007 0.105 0.793 2.000 7.897	2.839 0.040 1.294 0.078 0.078 0.000 0.011 2.549 0.003 0.105 0.793 2.000 7.885	2.842 0.039 1.298 0.080 0.061 0.012 2.543 0.006 0.105 0.787 2.000 7.876	2.853 0.038 1.290 0.078 0.064 0.011 2.533 0.007 0.106 0.792 2.000 7.874	2.839 0.038 1.288 0.076 0.172 0.000 0.015 2.552 0.006 0.113 0.798 2.000 7.896	2.838 0.038 1.294 0.079 0.161 0.000 0.011 2.553 0.006 0.111 0.803 2.000 7.894	2.852 0.039 1.286 0.079 0.167 0.000 0.013 2.531 0.009 0.108 2.000 7.878	2.839 0.038 1.296 0.079 0.173 0.000 0.016 2.533 0.010 0.110 0.197 2.000 7.890	2.836 0.039 1.295 0.080 0.064 0.000 0.012 2.550 0.010 0.106 0.798 2.000 7.890	2.845 0.039 1.290 0.078 0.078 0.012 2.544 0.006 0.099 0.786 2.000 7.874	2.852 0.037 1.294 0.080 0.165 0.000 0.013 2.527 0.008 0.108 0.788 2.000 7.871	2.837 0.038 1.300 0.076 0.009 0.013 2.548 0.007 0.107 0.791 2.000 7.886	2.844 0.038 1.291 0.079 0.072 0.012 2.531 0.010 0.109 0.800 2.000 7.888	2.840 0.040 1.296 0.081 0.064 0.004 2.537 0.009 0.103 0.801 2.000 7.884	2.850 0.040 1.286 0.080 0.162 0.000 2.545 0.007 0.101 2.545 0.007 0.101 0.794 2.000 7.875	2.844 0.036 1.295 0.078 0.002 0.014 2.548 0.009 0.103 0.801 2.000 7.885
Mg# Cr# Profilstrecke [µm]	93.84 5.27 765	93.75 5.60 780	94.04 5.85 796	93.83 5.66 811	94.09 5.72 827	93.67 5.68 842	93.96 5.78 858	93.91 5.70 873	93.69 5.54 904	94.05 5.76 920	93.79 5.75 935	93.60 5.74 951	93.95 5.84 966	93.69 5.70 982	93.87 5.83 997	93.76 5.53 1013	93.64 5.76 1028	93.94 5.89 1044	94.02 5.86 1059	94.24 5.65 1090

Probe: Fi																				
Profilname	Profil-14	Profil-14 I	Profil-14	Profil-14	Profil-14 I	Profil-14 I	Profil-14 I	Profil-14 I	Profil-14 F	Profil-14 I	Profil-14	Profil-14	Profil-14 I	Profil-14 I	Profil-14 I	Profil-14 I	Profil-14	Profil-14 I	Profil-14 F	Profil-14
Profilpunkt	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102
Mineral	Phi	Phi	Phl	Phl	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi
Analyse [Gew%]																				
SiO2 TiO2 Al2O3 Cr2O3 FeO NiO NiO CaO Na2O K2O H2O	40.11 .73 15.58 1.41 .03 .19 24.13 .10 .76 8.76 4.24	39.94 .74 15.46 1.42 2.79 .00 .20 23.97 .09 .74 8.89 4.22	39.99 .73 15.52 1.38 2.65 .00 .24 24.11 .11 .78 8.76 4.22	40.33 .72 15.38 1.38 2.77 .01 .19 24.22 .08 .79 8.74 4.24	40.10 .69 15.39 1.39 2.89 .00 .21 24.09 .08 .76 8.78 4.23	39.96 .71 15.51 1.34 2.79 .00 .19 24.04 .07 .76 8.84 4.22	40.23 .72 15.35 1.31 2.75 .00 .22 24.12 .09 .76 8.83 4.23	39.97 .77 15.50 1.46 2.83 .03 .23 24.11 .10 .77 8.85 4.23	39.99 .72 15.51 1.40 2.85 .00 .22 24.02 .06 .76 8.66 4.22	40.26 .72 15.45 1.45 2.76 .00 .15 24.00 .09 .75 8.78 4.23	40.18 .71 15.46 1.42 2.75 .00 .24 24.18 .06 .74 8.84 4.24	40.14 .70 15.33 1.45 2.63 .03 .20 24.10 .05 .76 8.96 4.22	40.11 .71 15.47 1.43 2.74 .00 .21 24.10 .06 .75 8.64 4.23	40.15 .67 15.42 1.41 2.72 .02 .14 24.32 .06 .79 8.87 4.23	40.10 .66 15.48 1.35 2.74 .04 .22 24.25 .04 .78 8.70 4.23	40.10 .71 15.53 1.38 2.87 .01 .23 24.25 .06 .76 8.71 4.24	40.27 .70 15.46 1.41 2.74 .01 .26 24.24 .06 .76 8.88 4.24	40.18 .74 15.57 1.38 2.67 .01 .26 24.21 .01 .71 8.83 4.24	40.27 .70 15.40 1.39 2.88 .00 .27 24.35 .05 .76 8.62 4.24	40.32 .71 15.49 1.38 2.74 .00 .21 24.42 .03 .83 8.80 4.25
∑ Kationen- besetzung	98.94	98.45	98.48	98.83	98.60	98.44	98.60	98.85	98.39	98.64	98.82	98.56	98.45	98.79	98.59	98.83	99.05	98.81	98.94	99.18
Si Ti Al Cr. Fe ²⁺ Mn Ni Ca Na Ca Na K OH ∑ Kationen	2.836 0.039 1.299 0.079 0.172 0.002 0.011 2.544 0.007 0.104 0.790 2.000 7.883	2.840 0.040 1.295 0.080 0.166 0.000 0.011 2.541 0.007 0.102 0.806 2.000 7.887	2.839 0.039 1.299 0.077 0.157 0.000 0.014 2.551 0.008 0.107 0.793 2.000 7.885	2.852 0.038 1.281 0.077 0.164 0.000 0.011 2.553 0.006 0.109 0.789 2.000 7.879	2.845 0.037 1.287 0.078 0.172 0.000 0.012 2.548 0.006 0.104 0.795 2.000 7.885	2.840 0.038 1.299 0.075 0.166 0.000 0.011 2.547 0.005 0.105 0.802 2.000 7.888	2.853 0.038 1.283 0.073 0.163 0.000 0.013 2.550 0.007 0.105 0.799 2.000 7.883	2.832 0.041 1.294 0.082 0.167 0.002 0.013 2.547 0.008 0.106 0.800 2.000 7.891	2.841 0.038 1.299 0.078 0.169 0.000 0.012 2.544 0.005 0.105 0.785 2.000 7.877	2.852 0.038 1.290 0.081 0.164 0.000 2.535 0.007 0.102 0.794 2.000 7.872	2.844 0.038 1.290 0.080 0.163 0.000 0.014 2.552 0.005 0.102 0.798 2.000 7.884	2.849 0.037 1.282 0.081 0.156 0.002 0.011 2.550 0.004 0.105 0.812 2.000 7.890	2.846 0.038 1.294 0.080 0.162 0.000 0.012 2.549 0.005 0.104 0.782 2.000 7.872	2.842 0.036 1.286 0.079 0.161 0.001 0.008 2.567 0.004 0.108 0.801 2.000 7.894	2.843 0.035 1.293 0.076 0.163 0.002 0.013 2.562 0.003 0.107 0.787 2.000 7.884	2.837 0.038 1.295 0.077 0.170 0.000 0.013 2.559 0.004 0.104 0.787 2.000 7.884	2.845 0.037 1.287 0.079 0.162 0.000 0.015 2.553 0.005 0.104 0.801 2.000 7.887	2.842 0.039 1.298 0.077 0.158 0.001 0.015 2.553 0.001 0.097 0.797 2.000 7.878	2.845 0.037 1.283 0.077 0.170 0.000 0.016 2.565 0.004 0.104 0.777 2.000 7.878	2.842 0.038 1.287 0.077 0.162 0.000 0.012 2.566 0.002 0.113 0.791 2.000 7.890
Mg# Cr# Profilstrecke [um]	93.65 5.71 1106	93.88 5.79 1121	94.20 5.61 1137	93.98 5.66 1152	93.69 5.70 1168	93.88 5.46 1183	94.00 5.40 1199	93.83 5.93 1214	93.76 5.70 1230	93.93 5.92 1245	94.00 5.81 1261	94.23 5.95 1276	94.01 5.85 1292	94.09 5.79 1307	94.03 5.53 1323	93.79 5.64 1338	94.04 5.77 1354	94.17 5.60 1369	93.78 5.70 1385	94.07 5.63 1400
i ionisi coke [µm]	1100	1121	1157	1152	1100	1105	1133	1214	1200	1245	1201	12/0	1232	1007	1020	1000	1004	1000	1000	1-400

Probe: Fi Profilname	Profil-14	Profil-14	Profil-14	Profil-14	Profil-14 P	Profil-14	Profil-14 P	Profil-14 F	Profil-14	Profil-14 I	Profil-14 F	Profil-14	Profil-14	Profil-14
Profilpunkt	103	104	105	106	107	108	109	110	111	112	113	114	115	117
Mineral	Phi	Phl	Phl	Phl	Phi	Phi	Phi							
Analyse Gew.%] SiO2 SIO2 TIO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO Al2O0 K2O H2O K2O H2O S	40.09 .72 15.47 1.40 2.70 .04 .22 24.20 .01 .75 8.85 4.23 98.70	40.12 .74 15.49 1.37 2.75 .00 .23 24.17 .01 .77 8.83 98.70	40.20 .70 15.47 2.71 .00 .19 24.30 .03 .75 8.77 4.24 98.73	40.22 .69 15.51 1.36 2.80 .00 24.26 .03 .77 8.87 4.24 98.95	39.89 .71 15.54 1.33 2.63 .01 .24 24.44 .00 .76 8.72 4.23 98.48	39.95 69 15.56 1.45 2.73 .00 25 24.23 .00 .83 8.69 98.60	40.37 .71 15.57 1.41 2.62 .01 .21 .21 .23 .01 .79 8.82 4.26 99.15	40.19 .71 15.50 1.43 2.61 .03 .19 24.34 .00 .83 8.91 4.24 98.98	40.28 .71 15.49 1.43 2.77 .02 .20 24.20 .01 .78 8.84 4.24 98.97	40.21 .70 15.51 1.39 2.76 .00 .12 24.29 .01 .82 8.70 4.24 98.74	40.29 .71 15.46 1.33 2.80 .02 .16 24.39 .00 .82 8.70 4.25 98.93	40.39 .69 15.40 1.35 2.82 .00 .19 24.35 .01 .82 8.82 4.25 99.09	39.92 .76 15.64 1.32 2.76 .01 .20 24.25 .02 .82 8.81 4.23 98.74	40.08 .70 15.20 1.31 2.71 .02 .20 24.37 .02 .76 8.77 4.22 98.34
Kationen- besetzung Si Ti Al Ce ²⁺ Mn Ni Mg Ca Na K OH X Kationen	2.841 0.038 1.292 0.079 0.160 0.002 2.557 0.001 0.103 0.800 2.000 7.887	2.843 0.039 1.293 0.077 0.163 0.000 0.013 2.553 0.001 0.106 0.798 2.000 7.886	2.845 0.037 1.291 0.076 0.100 0.001 2.564 0.002 0.103 0.792 2.000 7.882	2.843 0.037 1.292 0.076 0.000 0.011 2.557 0.002 0.106 0.800 2.000 7.889	2.830 0.038 1.300 0.075 0.000 0.014 2.585 0.000 0.104 0.789 2.000 7.892	2.833 0.037 1.300 0.081 0.000 0.014 2.561 0.000 0.114 0.786 2.000 7.890	2.844 0.037 1.293 0.078 0.001 0.012 2.562 0.000 0.108 2.000 7.883	2.840 0.038 1.291 0.080 0.054 0.001 2.564 0.000 0.113 0.803 2.000 7.895	2.846 0.038 1.290 0.080 0.001 0.001 0.001 0.000 0.106 0.797 2.000 7.883	2.844 0.037 1.293 0.078 0.000 0.007 2.562 0.001 0.112 0.785 2.000 7.882	2.846 0.037 1.287 0.074 0.005 0.009 2.568 0.000 0.112 0.784 2.000 7.884	2.850 0.037 1.280 0.075 0.166 0.000 0.011 2.561 0.001 0.113 0.794 2.000 7.889	2.828 0.041 1.306 0.074 0.001 0.011 2.561 0.002 0.113 0.797 2.000 7.896	2.849 0.038 1.274 0.073 0.061 0.001 2.582 0.001 0.795 2.000 7.890
Mg# Cr# Profilstrecke [µm]	94.11 5.74 1416	94.00 5.59 1431	94.12 5.59 1447	93.92 5.56 1462	94.30 5.43 1478	94.05 5.87 1493	94.32 5.71 1509	94.33 5.82 1524	93.97 5.85 1540	94.01 5.68 1555	93.94 5.47 1571	93.90 5.56 1586	93.99 5.35 1602	94.12 5.45 1633

Probe:	Fi
Profil:	16
Mineral:	OI
Kapitel:	Anhang II

Profil- strecke	P	Sc	Co	Zn	P	Sc	Co	Zn												
լրայ	[hð,ð]	[hð/ð]	[hð\ð]	[hð,ð]	20	20	20	20												
30	41.191	0.892	94.497	27.636	2.532	0.090	2.164	1.941												
90	53.366	0.938	94.178	30.599	1.311	0.092	3.040	2.750												
150	64.769	0.995	94.712	28.937	1.985	0.193	1.534	2.123												
212	63.373	1.112	95.749	31.186	2.441	0.063	2.009	2.898												
271	62.199	0.931	97.202	32.814	2.091	0.060	0.888	2.400												
330	61.836	0.915	94.586	31.121	2.141	0.153	1.447	1.346												
393	59.451	1.047	95.212	32.430	3.120	0.104	3.277	0.661												
549	58.225	1.130	97.095	28.418	1.485	0.201	1.697	1.575												
610	66.455	0.954	95.045	28.464	2.180	0.131	1.542	2.273												
668	79.890	1.083	97.473	29.759	3.224	0.149	1.144	2.293												
730	84.683	1.097	97.861	31.290	2.988	0.107	1.593	1.974												
1040	82.678	1.088	96.050	31.523	2.280	0.125	1.216	1.875												
1096	73.525	1.091	95.337	32.398	2.322	0.139	1.548	1.908												
1185	71.456	1.022	96.240	29.817	1.368	0.080	1.492	1.617												
1270	67.801	1.040	96.741	32.789	1.176	0.166	1.573	3.046												
1440	56.868	1.035	98.122	31.724	2.399	0.096	0.820	4.005												
1560	60.501	1.130	96.312	26.846	2.438	0.083	1.138	2.678												
1660	65.466	1.153	100.652	31.024	1.664	0.122	2.047	3.059												
1760	66.575	1.185	95.268	27.550	3.730	0.149	1.898	2.199												
1861	69.698	1.113	95.426	32.910	2.155	0.141	2.220	2.668												
1960	69.983	1.032	96.055	28.275	2.483	0.147	2.292	1.535												
2062	79.414	1.256	98.340	31.275	1.626	0.102	1.147	0.986												
2183	59.718	1.006	95.742	29.367	1.817	0.135	2.302	2.586												
2281	76.683	1.004	97.984	33.655	5.250	0.115	2.530	3.156												
2380	76.183	1.156	95.068	27.525	3.038	0.047	1.401	2.811												
2460	62.010	0.941	96.927	29.590	2.046	0.116	2.330	1.608												
2559	57.309	0.927	96.140	29.234	2.241	0.080	2.290	1.921												
2620	56.740	0.995	94.813	25.842	2.983	0.127	1.593	1.797												
2679	57.262	0.937	96.355	27.702	1.525	0.089	2.235	1.133												
Probe: Fi	repräsent	tative Ana	alysen aut	grund voi	n Homoge	enität														
--	--	--	---	---	---	--	---	---	---	--	--	--	---	---	---	---	--	---	---	---
Profilname	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16 I	Profil-16 I	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16
Profilpunkt	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
Mineral	OI	OI	OI	OI	OI	01	OI	01	OI	01	OI	OI	OI	OI	OI	OI	01	01	OI	OI
Analyse [Gew%] SiO ₂ TO ₂ TO ₂ Gr ₂ O ₃ FeO MnO NiO MgO CaO CaO K ₂ O CaO K ₂ O X	41.08 .00 .01 .00 8.76 .11 .44 50.54 .00 .00 .01 100.95	41.32 .02 .00 .00 8.67 .12 .43 50.25 .02 .00 .00 100.84	41.30 .02 .00 .00 8.67 .13 .44 50.52 .00 .00 .00 .00 101.08	41.17 .00 .00 8.54 .14 .45 50.74 .00 .03 .00 101.07	41.30 .00 .01 .04 8.68 .11 .44 50.70 .01 .00 .00 101.30	41.19 .00 .01 .03 8.75 .16 .47 50.54 .00 .00 .00 101.15	41.33 .02 .00 .01 8.71 .13 .43 50.73 .00 .00 .00 .00 101.36	41.15 .00 .00 8.75 .14 .40 50.70 .02 .00 .01 101.17	41.27 .01 .00 8.75 .12 .45 50.83 .00 .00 .00 101.44	41.36 .00 .01 .01 8.75 .10 .43 50.45 .02 .00 .00 101.12	41.14 .02 .00 .01 8.76 .12 .44 50.60 .03 .00 .00 101.12	41.13 .00 .00 8.922 .15 .45 50.39 .02 .02 .00 101.08	41.13 .02 .01 .00 8.79 .15 .46 50.62 .00 .01 .00 101.19	41.25 .00 .01 8.74 .09 .43 50.55 .02 .02 .01 101.12	41.16 .00 .02 8.70 .12 .38 50.54 .00 .00 .01 100.92	41.22 .00 .00 .00 8.89 .15 .39 50.71 .01 .01 .01 .00 101.38	41.07 .00 .02 8.52 .11 .46 50.50 .01 100.70	41.06 .01 .00 .00 8.83 .12 .42 50.73 .01 .01 .01 .01	41.22 .00 .00 8.74 .10 .44 50.75 .02 .00 .01 101.27	41.06 .02 .00 8.85 .10 .45 50.57 .00 .00 .00 101.04
Kationen- besetzung Si Ti Al Cr Fe ⁺ Mn Ni Mg Ca Xa K Xationen Sauerstoffe	.994 .000 .000 .000 .002 .009 1.823 .000 .000 3.006 4.000	1.000 .000 .000 .175 .003 .008 1.813 .000 .000 3.000 4.000	.997 .000 .000 .003 .003 .009 1.818 .000 .000 3.002 4.000	.994 .000 .000 .003 .003 .009 1.827 .000 .001 .000 3.006 4.000	.995 .000 .001 .175 .002 .009 1.822 .000 .000 .000 3.004 4.000	.995 .000 .001 .003 .009 1.820 .000 .000 .000 3.005 4.000	.995 .000 .000 .003 .008 1.822 .000 .000 .000 3.004 4.000	.994 .000 .000 .003 .003 .008 1.825 .000 .000 .000 3.007 4.000	.994 .000 .000 .002 .009 1.825 .000 .000 .000 3.006 4.000	.998 .000 .000 .002 .008 1.815 .000 .000 .000 3.001 4.000	.994 .000 .000 .002 .009 1.823 .001 .000 3.006 4.000	.995 .000 .000 .003 .009 1.817 .000 .001 .000 3.006	.993 .000 .000 .003 .003 .009 1.822 .000 .000 .000 3.006 4.000	.996 .000 .000 .002 .008 1.820 .001 .001 .000 3.005	.996 .000 .000 .003 .007 1.822 .000 .000 .000 3.004 4.000	.994 .000 .000 .003 .008 1.822 .000 .000 .000 3.006 4.000	.995 .000 .000 .002 .009 1.824 .000 .000 .000 3.005	.992 .000 .000 .002 .008 1.827 .000 .000 .000 3.008 4.000	.994 .000 .000 .002 .008 1.824 .000 .000 .000 3.006 4.000	.993 .000 .000 .179 .002 .009 1.823 .000 .000 3.007 4.000
Mg # Profilstrecke [µm]	91.14 5	91.18 15	91.22 25	91.37 35	91.23 45	91.15 55	91.21 65	91.17 75	91.19 85	91.13 95	91.15 105	90.97 115	91.12 125	91.16 135	91.19 145	91.05 155	91.35 165	91.10 175	91.19 185	91.06 195

Probe: Fi																				
Profilname	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16
Profilpunkt	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62
Mineral	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI
Analyse [Gew%] SiO2 TiO2 Cr2O3 FeO MnO NiO NiO CaO CaO CAO K2O K2O X2 X2	40.99 .02 .00 .02 8.76 .18 50.54 .02 .04 .00 100.93	41.10 .01 .00 .13 .43 50.83 .02 .02 .01 101.43	41.29 .00 .00 8.62 .09 .44 50.29 .01 .01 .01 .01 .00	41.24 .01 .00 .02 8.85 .08 .43 50.66 .01 .01 .01 .00 101.31	41.21 .00 .02 8.94 .12 .41 50.51 .01 .00 .02 101.24	40.97 .01 .00 .00 8.82 .09 .44 50.59 .01 .04 .01 100.98	40.99 .01 .00 .02 8.96 .12 .41 50.70 .01 .00 .00 101.23	41.27 .00 .00 9.03 .14 .43 50.67 .02 .00 .02 101.57	41.29 .00 .01 8.75 .15 .42 50.63 .02 .01 .02 101.29	41.11 .00 .01 .02 8.58 .08 .45 50.49 .02 .00 .01 100.75	41.20 .01 .00 8.75 .14 .38 50.72 .02 .02 .01 101.25	41.21 .00 .01 .00 8.39 .14 .44 50.61 .01 .02 .00 100.83	41.18 .00 .01 .00 8.68 .10 .40 50.68 .00 .00 .00 .00	41.16 .02 .00 .00 8.64 .13 .39 50.69 .01 .01 .00 101.06	41.34 .02 .00 .00 8.41 .11 .45 50.55 .02 .00 .01 100.90	40.88 .03 .00 .00 8.78 .11 .35 50.53 .01 .01 .01 100.69	41.08 .01 .00 8.78 .15 .43 50.51 .02 .01 .01	41.27 .00 .00 8.93 .14 .38 50.38 .01 .00 .01 101.12	40.89 .00 .00 8.95 .10 .43 50.46 .02 .00 .00 100.84	41.24 .00 .00 8.85 .13 .44 50.64 .01 .01 .00 101.32
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ni Ka Xationen Sauerstoffe	.992 .000 .000 .000 .177 .004 .007 .824 .000 .002 .000 3.008	.991 .000 .000 .179 .003 .008 1.827 .000 .001 .000 3.009	1.000 .000 .000 .175 .009 1.815 .000 .000 3.000	.995 .000 .000 .179 .002 .008 1.821 .000 .001 .000 3.005	.995 .000 .000 .181 .003 .008 1.818 .000 .000 .000 3.005	.992 .000 .000 .179 .009 1.826 .000 .002 .000 3.009	.990 .000 .000 .181 .002 .008 1.826 .000 .000 .000 3.009	.994 .000 .000 .182 .003 .008 1.819 .001 .000 .001 3.007	.996 .000 .000 .000 .176 .003 .008 1.820 .000 .000 .001 3.005	.996 .000 .000 .000 .174 .002 .009 1.823 .000 .000 .000 3.004	.994 .000 .000 .176 .003 .007 1.824 .001 .001 .000 3.007	.997 .000 .000 .000 .003 .009 1.825 .000 .001 .000 3.004	.995 .000 .000 .175 .002 .008 1.825 .000 .000 3.005	.994 .000 .000 .000 .175 .003 .008 1.825 .000 .000 .000 3.005	.999 .000 .000 .170 .002 .009 1.821 .000 .000 .000 3.001	.992 .001 .000 .000 .178 .000 .007 1.828 .000 .000 3.008	.994 .000 .000 .178 .003 1.822 .000 .001 .000 3.006	.997 .000 .000 .180 .003 .007 1.815 .000 .000 .000 3.003	.992 .000 .000 .182 .002 .008 1.824 .000 .000 .000 3.008	.995 .000 .000 .179 .003 .009 1.821 .000 .001 .000 3.006
Gauciatolle	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Mg #	91.14	91.07	91.23	91.07	90.97	91.09	90.99	90.92	91.17	91.30	91.18	91.49	91.24	91.27	91.46	91.12	91.11	90.96	90.95	91.07
Profilstrecke [µm]	205	215	225	235	245	255	264	274	284	294	304	314	324	334	344	354	364	374	384	394

Probe:	IV19
Profil:	01
Mineral:	OI
Kapitel:	2.4

Profil- strecke [µm]	P [µg/g]	Sc [þg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
30	35.614	0.987	82.294	26.126	5.267	0.175	6.707	3.913
219	40.552	1.090	89.953	24.941	2.405	0.221	3.791	2.297
342	39.500	0.958	89.120	22.309	3.256	0.191	0.471	2.959
441	40.935	1.200	89.174	25.560	2.671	0.142	2.213	3.168
509	40.777	0.951	91.890	24.764	2.360	0.158	3.310	4.625
581	39.535	1.081	85.780	24.757	1.775	0.105	5.018	2.094
649	47.875	0.916	90.574	22.594	2.044	0.091	0.793	1.351
712	45.433	1.088	87.277	24.581	2.681	0.170	2.411	1.848
825	45.996	1.042	89.387	21.163	2.513	0.127	3.407	4.504
919	39.484	1.064	90.234	25.575	1.751	0.104	3.283	2.450
1000	38.258	1.013	91.609	25.862	2.873	0.226	1.807	3.191
1077	34.176	1.022	88.126	24.026	0.824	0.110	3.019	1.708
1145	33.209	1.066	86.719	24.474	2.770	0.113	2.197	1.054
1220	34.065	1.032	89.464	26.166	1.890	0.137	2.968	1.512
1319	32.986	1.071	90.469	27.794	2.479	0.049	1.914	2.903
1389	35.956	1.029	93.107	25.162	1.624	0.139	1.639	1.651
1459	33.378	1.015	89.406	23.568	1.626	0.221	0.737	3.948
1529	32.889	1.170	93.213	26.316	2.667	0.226	2.647	2.516
1599	35.284	1.099	88.442	22.712	1.939	0.176	1.811	2.307
1671	32.999	1.022	89.190	23.861	1.138	0.101	1.475	3.296
1988	35.605	1.097	80.544	24.390	1.750	0.096	1.969	2.705
2060	36.318	1.059	85.343	22.654	2.087	0.182	1.946	3.663
2149	35.337	1.039	84.039	22.564	1.775	0.044	2.432	3.923
2219	37.038	1.071	92.082	26.052	2.083	0.122	2.571	3.497
2289	37.575	1.072	88.199	22.090	2.458	0.095	1.466	1.955
2359	37.657	1.142	82.896	24.256	1.930	0.078	2.003	3.198
2499	36.677	0.954	87.598	20.328	2.350	0.210	2.896	3.098
2639	33.884	0.949	78.384	20.377	1.807	0.107	5.630	2.306

Probe: IV19	repräsent	ative Ana	ilysen aut	grund vo	n Homoge	enität														
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01 I	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Mineral	OI	01	OI	OI	01	OI	OI	OI	OI	01	01	01	OI	OI	OI	OI	01	01	OI	01
Analyse Gew%] SiO2 TiO2 Al2O3 Cr.O3 FeO MnO NiO MgO CaO CaO K2O K2O K2O X2O	41.44 .00 .01 8.55 .08 .40 50.94 .00 .00 .00 .00	41.40 .03 .00 .00 8.69 .13 .39 50.88 .00 .00 .00 .00 101.52	41.31 .01 .00 8.53 .12 .44 50.87 .00 .01 .01 101.32	41.11 .00 .01 .12 .46 50.75 .00 .00 .02 100.98	41.29 .00 .03 8.74 .12 .40 50.90 .01 .02 .00 101.49	41.31 .00 .01 .00 8.72 .07 .44 50.79 .01 .00 .00 101.34	41.23 .00 .01 8.61 .12 .39 50.77 .00 .02 .00 101.16	41.32 .01 .00 .03 8.84 .13 .38 50.98 .02 .01 .02 101.74	41.35 .00 .01 .00 8.31 .13 .38 51.00 .02 .00 .02 101.21	41.06 .01 .00 .01 8.78 .08 .42 50.72 .02 .00 .00 101.09	41.48 .00 .01 .00 8.64 .09 .33 50.81 .01 .01 .00 .00 101.37	41.24 .03 .00 8.47 .11 .38 50.46 .00 .01 .00 100.71	41.16 .00 .02 8.74 .14 .42 50.76 .00 .00 .01 101.24	41.31 .00 .01 .00 8.89 .09 .41 50.79 .01 .00 .00 101.51	41.30 .01 .00 .01 8.52 .16 .44 50.53 .02 .00 .00 100.99	41.31 .00 .00 8.48 .10 .50.67 .01 .00 .01 100.98	41.33 .01 .00 8.66 .14 .41 50.71 .00 .01 .02 101.29	40.95 .02 .00 .00 8.88 .15 .41 50.31 .00 .01 .00 100.73	41.15 .00 .00 8.51 .13 .43 50.64 .03 .02 .02 100.91	41.10 .02 .00 8.55 .14 .39 50.54 .00 .02 .00 100.77
Kationen- besetzung Si Ti Al Cr ⁺⁺ Mn Ni Mg Ca Xa K Xationen Sauerstoffe	.996 .000 .000 .000 .172 .002 .008 1.826 .000 .000 3.004 4.000	.995 .000 .000 .175 .003 .008 1.823 .000 .000 .000 3.004 4.000	.995 .000 .000 .000 .172 .003 .009 1.826 .000 .001 .000 3.005 4.000	.994 .000 .000 .000 .003 .009 1.829 .000 .001 3.007 4.000	.993 .000 .001 .176 .002 .008 1.826 .000 .001 .000 3.007 4.000	.995 .000 .000 .000 .001 .008 1.824 .000 .000 .000 3.005 4.000	.995 .000 .000 .002 .008 1.826 .000 .001 .000 3.006 4.000	.992 .000 .001 .178 .003 .007 1.826 .000 .001 .001 3.008 4.000	.995 .000 .000 .003 .007 1.831 .000 .001 3.005 4.000	.992 .000 .000 .002 .008 1.827 .000 .000 .000 3.007 4.000	.998 .000 .000 .002 .006 1.822 .000 .000 .000 3.002 4.000	.998 .001 .000 .002 .002 .007 1.821 .000 .000 3.001 4.000	.993 .000 .000 .003 .008 1.826 .000 .000 .000 3.007 4.000	.994 .000 .000 .002 .008 1.822 .000 .000 .000 3.006 4.000	.998 .000 .000 .000 .172 .003 .009 1.820 .001 .000 3.002 4.000	.997 .000 .000 .001 .002 .008 1.824 .000 .000 3.003 4.000	.996 .000 .000 .003 .003 .008 1.822 .000 .001 3.004 4.000	.994 .000 .000 .003 .008 1.820 .000 .000 .000 3.006 4.000	.995 .000 .000 .003 .003 .004 .001 .001 3.005 4.000	.995 .000 .000 .173 .003 1.824 .000 .001 .000 3.005 4.000
Mg # Profilstrecke [µm]	91.39 5	91.26 15	91.41 25	91.40 35	91.21 45	91.21 55	91.31 65	91.14 75	91.63 85	91.15 95	91.29 105	91.39 115	91.19 125	91.06 135	91.36 145	91.41 155	91.25 165	90.99 175	91.39 185	91.33 195

Probe: IV19																				
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01 I	Profil-01	Profil-01
Profilpunkt	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
Mineral	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI
Analyse [Gew%] SiO2 TiO2 Cr2O3 FeO MnO NiO NiO CaO CaO CAO K2O K2O K2O X2	41.08 .01 .00 8.54 .09 .42 50.86 .01 .00 .01 101.02	41.25 .00 .01 .01 8.26 .13 .39 50.59 .00 .01 .01 .01	41.29 .02 .00 .00 8.56 .10 .40 50.49 .01 .01 .01 100.87	41.27 .00 .01 .00 8.46 50.81 .01 .03 .00 101.15	40.98 .00 .00 8.67 .12 .42 50.62 .01 .01 .00 100.84	40.84 .00 .01 8.26 .10 .42 50.73 .00 .00 .00 .00	41.25 .00 .02 .00 8.45 .12 .37 50.80 .00 .00 .00 .00	41.13 .00 .01 8.43 .14 .34 50.72 .02 .00 .01 100.79	41.04 .00 .00 .16 .42 50.47 .01 .01 .01 .01	41.03 .01 .00 .03 8.35 .17 .40 50.17 .01 .01 .01 .01 100.17	41.00 .00 .01 8.56 .11 .39 50.84 .02 .00 .00 .00	41.26 .00 .00 8.28 .12 .45 50.87 .01 .02 .00 101.01	41.11 .01 .02 .03 8.51 .14 .34 50.53 .01 .03 .01 100.74	40.73 .00 .01 .00 8.35 .12 .38 50.50 .01 .00 .00 100.09	40.77 .00 .00 8.33 .09 .42 50.52 .02 .00 .00 .00	40.81 .01 .00 8.35 .16 .40 50.38 .01 .00 .00 100.13	40.98 .03 .00 .01 8.19 .16 .41 50.71 .00 .00 .00 .00	40.91 .00 .01 .00 8.38 .06 .45 50.58 .03 .00 .00 100.43	40.51 .00 .01 .01 8.17 .14 .38 50.62 .00 .02 .00 99.84	41.01 .00 .00 8.53 .09 .37 50.63 .01 .00 .00 100.64
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Xa Kationen	.992 .000 .000 .000 .173 .002 .008 1.832 .000 .000 .000 .000 .3007	.998 .000 .000 .167 .003 .008 1.825 .000 .000 3.002	.998 .000 .000 .173 .002 .008 1.820 .000 .000 3.002	.995 .000 .000 .171 .002 .009 1.827 .000 .001 .000 3.005	.993 .000 .000 .176 .002 .008 1.828 .000 .000 3.008	.992 .000 .000 .000 .008 1.837 .000 .000 .000 3.008	.995 .000 .001 .000 .171 .003 .007 1.828 .000 .000 3.004	.995 .000 .000 .171 .003 .007 1.829 .000 .000 3.005	.993 .000 .000 .180 .003 .008 1.821 .000 .000 .000 3.007	.999 .000 .000 .001 .170 .003 .008 1.820 .000 .000 3.001	.992 .000 .000 .173 .002 .008 1.833 .000 .000 3.008	.996 .000 .000 .167 .002 .009 1.830 .000 .001 .000 3.005	.996 .000 .000 .001 .172 .003 .007 1.824 .000 .001 .000 3.005	.992 .000 .000 .000 .007 1.834 .000 .000 3.007	.993 .000 .000 .170 .002 .008 1.834 .001 .000 3.007	.994 .000 .000 .170 .003 .008 1.830 .000 .000 3.006	.994 .001 .000 .166 .003 .008 1.834 .000 .000 3.005	.993 .000 .000 .000 .170 .009 1.831 .001 .000 3.006	.989 .000 .000 .167 .003 .008 1.843 .000 .001 .000 3.011	.994 .000 .000 .173 .002 .007 1.830 .000 .000 3.006
Sauerstoffe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Mg #	91.39	91.61	91.32	91.46	91.23	91.64	91.46	91.47	91.00	91.46	91.37	91.63	91.37	91.52	91.54	91.49	91.70	91.50	91.70	91.36
Profilstrecke [µm]	205	215	225	235	245	255	265	275	285	295	305	315	325	335	345	355	365	375	385	395

Probe:	IV19
Profil:	02
Mineral:	Amp
Kapitel:	2.4

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
30	65.458	103.164	25.591	10.688	1.642	1.616	1.707	2.283
100	69.348	100.496	23.838	7.737	2.598	2.784	2.208	1.236
170	68.191	96.838	28.292	9.341	2.925	1.265	1.124	1.934
310	70.819	97.016	26.489	7.988	1.802	2.134	2.922	0.558
380	72.071	97.014	25.370	8.237	3.475	0.813	0.857	0.370
511	75.283	104.099	24.437	7.268	3.708	2.496	0.562	2.224
580	73.959	100.913	25.892	8.732	2.688	0.472	0.430	2.054
650	72.635	103.022	23.897	7.432	3.850	1.788	1.196	0.814
730	66.377	107.119	27.658	10.143	3.284	2.239	0.608	1.024
817	71.046	107.502	26.412	8.909	2.587	1.613	0.512	2.094
883	72.826	113.216	26.493	8.192	2.756	1.834	0.656	1.870
981	55.098	123.741	26.188	9.647	3.079	2.522	1.141	1.512

	Profil-																			
Profilname	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02
Profilpunkt	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
Mineral	Amp																			
Analyse																				
[Gew%]	47.40	40.00	40.50	10.10	40.07	40.40		40.00	40.00	40.40	40.55	40.40	40 74	40.04	40.55	40.00	40.00	40.00	40 50	40 75
5102	47.10	46.62	46.53	46.49	46.37	46.49	46.41	46.39	46.36	46.18	46.55	46.40	46.71	46.64	46.55	46.33	46.62	46.63	46.50	46.75
AI2O3	10 15	10 23	10.49	10 59	10 50	10.63	10 58	10.65	10 53	10.43	10 58	10.46	10.46	10.41	10.42	10.45	10.43	10 35	10.36	10 34
Cr2O3	1.55	1.93	1.98	1.97	1.94	2.05	1.97	1.96	1.99	2.01	2.04	2.04	1.99	1.95	2.00	1.92	1.98	1.95	2.00	1.95
Fe2O3	.19	.00	.00	.00	.00	.00	.00	.07	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.00
FeO	3.10	3.31	3.36	3.41	3.35	3.39	3.37	3.33	3.33	3.28	3.39	3.41	3.27	3.39	3.35	3.41	3.25	3.32	3.27	3.24
MnO	.05	.00	.03	.06	.03	.00	.02	.04	.01	.05	.01	.04	.07	.01	.01	.09	.06	.02	.02	.07
NiO	.11	.11	.10	.11	.06	.16	.11	.13	.08	.15	.11	.12	.10	.06	.10	.06	.08	.11	.09	.11
MgO	19.64	19.36	19.15	19.23	19.23	19.32	19.22	19.31	19.25	19.21	19.44	19.28	19.30	19.38	19.35	19.37	19.36	19.31	19.33	19.36
VaO Na2O	2.01	2.37	2 17	12.37	2 12	12.37	12.43	12.29	12.41	12.33	12.20	2 10	12.40	12.40	2 11	12.35	2 17	12.38	2 20	12.20
K20	2.21	2.09	2.17	2.10	2.12	2.29	2.24	2.10	2.22	2.23	2.10	2.10	2.10	2.21	2.11	2.22	2.17	2.13	2.20	2.21
H2O	2.12	2.11	2.11	2.11	2.11	2.12	2.11	2.11	2.11	2.10	2.12	2.11	2.12	2.12	2.11	2.11	2.11	2.11	2.11	2.11
Σ	99.93	99.46	99.72	99.75	99.25	100.12	99.80	99.68	99.59	99.27	100.00	99.78	99.92	99.96	99.58	99.64	99.64	99.65	99.50	99.68
Kationan																				
hacotzung																				
Si	6 650	6 6 2 7	6 604	6 502	6 604	6 576	6 594	6 592	6 5 9 7	6 5 9 7	6 5 9 7	6 596	6 6 1 1	6 602	6 600	6 594	6 6 1 2	6 6 1 9	6 609	6 6 2 0
Ti	0.030	0.027	0.004	0.093	0.004	0.042	0.043	0.002	0.045	0.040	0.043	0.000	0.043	0.002	0.009	0.004	0.013	0.010	0.008	0.029
Al	1.689	1.713	1.754	1.769	1.763	1.772	1.769	1.781	1.764	1.754	1.765	1.750	1.745	1.737	1.744	1.750	1.744	1.732	1.736	1.728
Cr	0.172	0.217	0.222	0.221	0.219	0.229	0.221	0.220	0.223	0.226	0.229	0.229	0.223	0.218	0.224	0.216	0.222	0.219	0.225	0.218
Fe ^{3*}	0.021	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Fe ²⁺	0.366	0.393	0.399	0.404	0.399	0.401	0.400	0.396	0.395	0.391	0.401	0.404	0.386	0.402	0.398	0.405	0.385	0.394	0.389	0.384
Mn	0.006	0.000	0.004	0.007	0.004	0.000	0.002	0.005	0.002	0.006	0.001	0.004	0.008	0.001	0.001	0.010	0.007	0.002	0.003	0.008
NI Ma	0.012	0.012	0.012	0.012	0.007	0.018	4.065	0.014	0.009	0.017	0.012	0.014	4 072	0.006	4.005	0.007	4 003	0.012	0.010	4 002
ivig Ca	4.134	4.102	4.051	4.005	4.003	4.074	4.005	4.004	4.070	4.000	4.101	4.000	4.072	4.090	4.095	4.103	4.093	4.000	4.095	4.092
Na	0.605	0.577	0.597	0.599	0.585	0.627	0.617	0.579	0.610	0.616	0.599	0.601	0.592	0.606	0.581	0.611	0.597	0.586	0.605	0.608
K	0.128	0.166	0.173	0.153	0.167	0.168	0.171	0.164	0.162	0.170	0.176	0.175	0.171	0.166	0.164	0.169	0.169	0.168	0.162	0.165
OH	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
∑ Kationen	15.733	15.735	15.748	15.744	15.739	15.780	15.772	15.743	15.761	15.776	15.762	15.767	15.743	15.762	15.738	15.780	15.743	15.742	15.752	15.746
Mg#	91.44	91.25	91.03	90.96	91.11	91.04	91.05	91.01	91.16	91.26	91.10	90.99	91.33	91.06	91.14	90.99	91.40	91.19	91.32	91.41
Cr#	9.27	11.22	11.26	11.08	11.05	11.44	11.08	10.99	11.24	11.43	11.47	11.57	11.31	11.14	11.38	10.98	11.31	11.24	11.48	11.22
Profilstrecke [µm]	5	15	25	35	45	55	65	75	85	95	105	115	125	135	145	155	165	175	185	195

Probe: IV19 Profilname Profilpunkt	Profil- 02 36	Profil- 02 37	Profil- 02 38	Profil- 02 39	Profil- 02 40	Profil- 02 41	Profil- 02 42	Profil- 02 43	Profil- 02 44	Profil- 02 45	Profil- 02 46	Profil- 02 47	Profil- 02 48	Profil- 02 49	Profil- 02 50	Profil- 02 51	Profil- 02 52	Profil- 02 53	Profil- 02 54	Profil- 02 55
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse Gew%] SiO2 IGov%] SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 FeO MnO NiO NIO MgO CaO Na2O K2O H2O X2O X2 X2	46.61 .40 10.42 1.95 .00 3.48 .00 .10 19.41 12.32 2.21 .86 2.12 99.93	46.66 .40 10.35 1.96 .00 3.27 .09 19.39 12.27 2.19 .86 2.11 99.58	46.52 .35 10.31 2.03 .00 3.32 .06 .10 19.49 12.36 2.20 .95 2.11 99.79	46.48 .39 10.31 1.98 .00 3.39 .01 12.22 2.18 .95 2.11 99.43	46.52 .40 10.39 2.00 .00 3.30 .07 19.37 12.30 2.12 .92 2.11 99.51	46.83 .38 10.25 1.98 .00 3.43 .09 19.43 12.28 2.20 .89 2.12 99.92	46.72 .35 10.37 1.98 .00 3.21 .04 .13 19.46 12.30 2.19 .89 2.12 99.75	46.69 .39 10.31 .2.04 .00 3.41 .14 19.43 12.22 2.21 .90 2.12 99.87	46.53 .40 10.25 .1.92 .00 3.36 .04 .08 19.43 12.37 2.22 .93 2.11 99.64	46.57 .40 10.25 1.94 .00 3.26 .01 19.39 12.42 2.21 .88 2.11 99.59	46.60 .37 2.01 .00 3.31 .10 19.44 12.30 2.16 .86 2.11 99.67	46.80 .38 10.43 2.05 .00 3.26 .06 19.26 12.36 2.07 .94 2.12 99.75	46.66 .40 10.42 1.98 .00 3.33 .07 .11 19.43 12.39 2.12 .91 2.12 99.93	46.54 .37 10.37 .08 .00 3.35 .08 .13 19.27 12.41 2.25 .87 2.11 99.73	46.44 .39 10.24 2.01 .41 3.01 .00 19.44 12.47 2.19 .83 2.11 99.69	46.67 .37 10.34 .30 3.12 .04 .12 19.39 12.44 2.07 .84 2.12 99.78	46.78 .40 10.39 1.98 .00 3.34 .09 19.40 12.34 2.10 .86 2.12 99.81	46.65 .37 10.34 .00 3.29 .00 .14 19.37 12.46 2.19 .79 2.11 99.64	46.44 .41 10.33 1.92 .22 3.07 .04 .05 19.37 12.51 2.13 .85 2.11 99.44	46.49 .39 10.42 1.96 .00 3.26 .03 .10 19.25 12.52 2.22 .85 2.11 99.60
Kationen- besetzung Si Ti Al Cr Fe ^{3*} Fe ^{4*} Mn Ni Mg Ca Xi Kationen Σ Kationen	6.601 0.042 1.739 0.218 0.000 0.412 0.007 0.012 4.097 1.869 0.608 0.156 2.000 15.760	6.621 0.042 1.731 0.220 0.000 0.388 0.004 0.010 4.101 1.865 0.601 0.156 2.000 15.740	6.599 0.037 1.724 0.228 0.000 0.394 0.007 0.011 4.122 1.878 0.604 0.171 2.000 15.776	6.614 0.042 1.729 0.223 0.000 0.404 0.014 4.093 1.863 0.601 0.172 2.000 15.756	6.609 0.043 1.740 0.225 0.000 0.392 0.001 0.008 4.102 1.873 0.584 0.166 2.000 15.742	6.628 0.040 1.710 0.221 0.000 0.406 0.010 4.100 1.863 0.604 0.160 2.000 15.748	6.619 0.038 1.732 0.222 0.000 0.380 0.005 0.014 4.109 1.867 0.602 0.161 2.000 15.748	6.614 0.041 1.722 0.229 0.000 0.404 0.001 0.103 1.855 0.606 0.163 2.000 15.755	6.609 0.042 1.716 0.216 0.000 0.399 0.005 0.010 4.114 1.883 0.611 0.168 2.000 15.772	6.615 0.042 1.716 0.218 0.000 0.387 0.007 0.013 4.105 1.889 0.608 0.159 2.000 15.759	6.610 0.040 1.733 0.225 0.000 0.393 0.003 0.012 4.111 1.870 0.594 0.156 2.000 15.746	6.628 0.041 1.741 0.229 0.000 0.386 0.003 0.007 4.067 1.876 0.568 0.169 2.000 15.715	6.605 0.042 1.739 0.221 0.000 0.394 0.008 0.012 4.100 1.879 0.582 0.165 2.000 15.747	6.606 0.039 1.735 0.222 0.000 0.398 0.009 0.015 4.078 1.887 0.620 0.158 2.000 15.765	6.592 0.042 1.713 0.226 0.044 0.357 0.008 0.011 4.113 1.896 0.602 0.150 2.000 15.751	6.612 0.039 1.726 0.221 0.031 0.369 0.005 0.014 4.095 1.888 0.568 0.152 2.000 15.720	6.622 0.043 1.733 0.221 0.000 0.395 0.003 0.010 4.095 1.872 0.576 0.155 2.000 15.724	6.618 0.039 1.729 0.217 0.000 0.390 0.000 0.016 4.095 1.894 0.603 0.144 2.000 15.744	6.601 0.044 1.731 0.216 0.023 0.365 0.005 0.006 4.104 1.906 0.586 0.155 2.000 15.741	6.602 0.041 1.744 0.200 0.000 0.387 0.003 0.012 4.077 1.906 0.610 0.154 2.000 15.756
Mg# Cr# Profilstrecke [µm]	90.87 11.14 205	91.35 11.28 215	91.28 11.68 225	91.02 11.41 235	91.28 11.44 245	91.00 11.45 255	91.54 11.35 264	91.03 11.73 274	91.15 11.16 284	91.38 11.27 294	91.28 11.50 304	91.34 11.63 314	91.24 11.29 324	91.12 11.33 334	91.12 11.63 344	91.09 11.36 354	91.19 11.32 364	91.30 11.15 374	91.37 11.08 384	91.32 11.22 394

Probe: IV19	Profil-																			
Profilname	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02	02
Profilpunkt	56	57	58	59	60	61	63	64	65	66	67	68	71	72	73	74	75	76	77	78
Mineral	Amp																			
Analyse																				
[Gew%]	46.65	46.64	46.00	47.00	46.00	46 EE	46 60	46 57	46.76	46.06	46 71	46.02	46.66	46.00	46.60	46.67	46 57	46.46	46.25	46.00
5102 TiO2	40.00	40.04	40.88	47.08	46.90	40.55	40.00	40.57	40.70	40.90	40.71	40.93	40.00	40.88	40.02	40.07	40.57	40.40	40.35	40.88
AI2O3	10.35	10.21	10.31	10.50	10.37	10.46	10.36	10.35	10.38	10.35	10.38	10.32	10.45	10.37	10.36	10.31	10.38	10.38	10.25	10.44
Cr2O3	1.96	1.99	1.99	1.98	1.99	1.96	1.95	1.98	1.97	1.93	1.95	1.93	2.00	1.95	1.96	1.99	1.92	1.93	1.98	1.93
Fe2O3	.00	.35	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.05	.16	.00
FeO	3.27	3.09	3.25	3.44	3.26	3.32	3.24	3.39	3.24	3.42	3.50	3.26	3.35	3.40	3.33	3.39	3.28	3.41	3.23	3.39
MnO	.03	.09	.06	.04	.06	.02	.05	.10	.07	.00	.03	.05	.03	.03	.04	.06	.07	.07	.07	.02
NIO	.12	.10	.10	.10	.10	.12	.08	.09	.10	.10	.05	10.27	10.22	.07	.13	.13	.10	.13	.05	.13
CaO	19.30	19.30	19.24	19.41	19.20	19.20	19.20	12 35	12.30	19.29	19.30	19.37	12.50	19.43	12.42	19.52	19.30	19.04	19.41	12 37
Na2O	2.19	2.12	2.21	2.19	2.17	2.17	2.09	2.22	2.21	2.13	2.18	2.09	2.19	2.15	2.15	2.16	2.10	2.20	2.25	2.18
K20	.89	.88	.88	.80	.87	.86	.91	.88	.84	.84	.79	.84	.88	.87	.91	.86	.88	.85	.86	.83
H2O	2.11	2.12	2.12	2.13	2.12	2.11	2.11	2.11	2.12	2.12	2.12	2.12	2.12	2.12	2.11	2.12	2.11	2.11	2.11	2.12
Σ	99.66	99.95	99.79	100.47	100.01	99.68	99.44	99.70	99.83	99.97	99.75	99.79	99.91	100.11	99.76	99.89	99.54	99.68	99.55	100.04
Kationen-																				
besetzung																				
Si	6.619	6.605	6.638	6.622	6.628	6.605	6.622	6.610	6.621	6.637	6.619	6.641	6.606	6.621	6.610	6.612	6.613	6.598	6.591	6.622
Ti	0.039	0.043	0.040	0.039	0.041	0.041	0.042	0.037	0.042	0.045	0.040	0.039	0.037	0.039	0.040	0.041	0.046	0.043	0.043	0.043
Al	1.731	1.704	1.721	1.741	1.728	1.749	1.736	1.732	1.732	1.724	1.733	1.721	1.744	1.726	1.732	1.721	1.738	1.737	1.718	1.738
Cr	0.220	0.223	0.223	0.220	0.223	0.220	0.219	0.222	0.221	0.215	0.219	0.216	0.224	0.217	0.220	0.222	0.215	0.216	0.223	0.215
Fe	0.000	0.037	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.006	0.017	0.000
Fe ⁻	0.388	0.365	0.385	0.404	0.385	0.394	0.385	0.403	0.384	0.404	0.415	0.385	0.397	0.402	0.395	0.402	0.390	0.405	0.384	0.400
Ni	0.003	0.011	0.000	0.005	0.007	0.003	0.005	0.012	0.000	0.000	0.004	0.006	0.003	0.004	0.004	0.000	0.000	0.000	0.000	0.003
Ma	4.083	4.090	4.062	4.071	4.062	4.078	4.080	4.086	4.073	4.065	4.088	4.085	4.078	4.090	4.105	4.080	4.087	4.093	4.115	4.077
Ca	1.889	1.911	1.879	1.875	1.894	1.890	1.890	1.878	1.890	1.880	1.870	1.891	1.896	1.889	1.877	1.898	1.887	1.879	1.896	1.872
Na	0.602	0.581	0.607	0.597	0.595	0.597	0.576	0.611	0.606	0.583	0.599	0.573	0.600	0.589	0.590	0.593	0.578	0.605	0.619	0.597
К	0.161	0.159	0.158	0.143	0.156	0.156	0.164	0.160	0.151	0.151	0.143	0.152	0.159	0.156	0.164	0.155	0.159	0.155	0.155	0.149
OH	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
∑ Kationen	15.748	15.740	15.732	15.728	15.731	15.746	15.729	15.761	15.740	15./16	15.736	15./14	15.752	15.741	15.751	15.748	15.733	15.759	15.775	15.731
Mg#	91.33	91.04	91.35	90.97	91.34	91.18	91.38	91.03	91.38	90.96	90.78	91.38	91.14	91.06	91.22	91.01	91.29	90.88	91.12	91.06
Cr#	11.26	11.57	11.47	11.22	11.42	11.19	11.21	11.34	11.30	11.10	11.21	11.14	11.37	11.18	11.26	11.44	11.03	11.06	11.47	11.03
Profilstrecke [µm]	404	414	424	434	444	454	474	484	494	504	514	524	554	564	574	584	594	604	614	624

Probe: IV19 Profilname Profilpunkt	Profil- 02 79	Profil- 02 80	Profil- 02 81	Profil- 02 82	Profil- 02 83	Profil- 02 84	Profil- 02 85	Profil- 02 86	Profil- 02 87	Profil- 02 88	Profil- 02 89	Profil- 02 90	Profil- 02 91	Profil- 02 93	Profil- 02 94	Profil- 02 95	Profil- 02 96	Profil- 02 98	Profil- 02 99	Profil- 02 100
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse Gew%] SiO2 IGew%] SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 Fe2O MnO NiO NIO MgO CaO Na2O K2O H2O X2O X2O K2O	46.53 .44 10.40 1.99 .00 .07 19.42 12.47 2.22 .88 2.12 99.82	46.44 .38 10.45 .09 19.47 12.43 2.20 .84 2.12 99.81	46.67 .39 10.30 1.97 .11 3.28 .04 .08 19.38 12.54 2.16 .84 2.12 99.88	46.62 .40 10.43 2.02 .13 3.38 .02 .07 19.32 12.48 2.11 .88 2.12 99.97	46.57 .40 10.44 .192 .09 3.27 .04 .10 19.42 12.37 2.11 .90 2.12 99.85	46.40 .40 10.37 1.98 .00 3.34 .12 19.36 12.41 2.24 .86 2.11 99.61	46.20 .40 10.56 .04 .07 19.37 12.32 2.19 .92 2.11 99.43	46.73 .42 10.57 2.00 .00 3.33 .16 19.32 12.38 2.17 .88 2.12 100.09	46.45 .41 10.54 1.96 .38 3.08 .07 .11 19.37 12.56 2.18 .90 2.12 100.12	46.71 .42 10.56 .1.97 .00 3.44 .10 19.45 12.24 2.22 .88 2.12 100.15	46.37 .43 10.47 .32 3.12 .09 .14 19.31 12.49 2.18 .86 2.11 99.79	46.62 .45 10.51 1.94 .00 3.34 .07 19.32 12.36 2.29 .81 2.12 99.84	46.52 .39 10.54 .15 3.20 .00 19.37 12.46 2.12 .90 2.12 99.85	46.32 .39 10.54 2.00 .27 3.12 .09 19.25 12.54 2.15 .88 2.11 99.71	46.18 .41 10.65 .1.89 .21 3.06 .03 .13 19.17 12.53 2.15 .84 2.11 99.34	46.43 .41 10.60 1.87 .26 3.02 .05 .06 19.50 12.36 2.16 .83 2.12 99.66	46.46 .38 10.65 1.88 .33 3.13 .07 .11 19.35 12.41 2.18 .77 2.12 99.82	46.45 .40 10.54 1.98 .00 3.19 .08 .12 19.44 12.26 2.24 .77 2.11 99.56	46.69 .38 10.64 2.02 .09 19.20 12.49 2.21 .79 2.12 99.91	46.48 .43 10.55 2.05 .22 3.13 .00 .10 19.29 12.54 2.13 .79 2.12 99.83
Kationen- besetzung Si Ti Al Ce ³⁺ Fe ³⁺ Mn Ni Mg Ca Ni Kationen Σ Kationen	6.593 0.047 1.737 0.223 0.000 0.000 0.000 4.103 1.893 0.609 0.159 2.000 15.764	6.580 0.040 1.746 0.215 0.042 0.360 0.006 0.010 4.112 1.888 0.604 0.151 2.000 15.755	6.610 0.041 1.719 0.221 0.388 0.005 0.010 4.092 1.903 0.594 0.152 2.000 15.746	6.599 0.042 1.740 0.226 0.014 0.002 0.008 4.077 1.892 0.580 0.159 2.000 15.739	6.597 0.043 1.743 0.215 0.020 0.388 0.004 0.012 4.100 1.878 0.579 0.163 2.000 15.742	6.593 0.043 1.736 0.223 0.000 0.397 0.003 0.014 4.101 1.889 0.617 0.156 2.000 15.771	6.574 0.043 1.770 0.215 0.008 0.388 0.005 0.008 4.109 1.879 0.605 0.167 2.000 15.772	6.602 0.045 1.759 0.223 0.000 0.393 0.004 0.018 4.069 1.873 0.593 0.158 2.000 15.738	6.569 0.043 1.757 0.219 0.040 0.365 0.008 0.012 4.084 1.903 0.598 0.163 2.000 15.760	6.597 0.045 1.757 0.220 0.000 0.406 0.011 4.096 1.851 0.608 0.158 2.000 15.753	6.577 0.045 1.750 0.215 0.034 0.370 0.010 0.016 4.084 1.898 0.600 0.156 2.000 15.756	6.600 0.048 1.754 0.217 0.000 0.396 0.002 0.008 4.077 1.875 0.629 0.147 2.000 15.754	6.589 0.041 1.759 0.016 0.379 0.007 0.008 4.090 1.891 0.582 0.163 2.000 15.745	6.575 0.042 1.763 0.224 0.029 0.370 0.007 0.011 4.073 1.907 0.591 0.160 2.000 15.751	6.573 0.044 1.787 0.212 0.022 0.364 0.004 0.015 4.068 1.911 0.592 0.152 2.000 15.744	6.581 0.044 1.771 0.209 0.028 0.358 0.006 0.007 4.121 1.876 0.593 0.151 2.000 15.744	6.580 0.040 1.777 0.210 0.036 0.371 0.008 0.012 4.085 1.882 0.600 0.139 2.000 15.738	6.591 0.042 1.762 0.222 0.000 0.378 0.009 0.013 4.113 1.864 0.616 0.139 2.000 15.752	6.604 0.040 1.774 0.226 0.000 0.385 0.003 0.011 4.047 1.893 0.607 0.143 2.000 15.731	6.583 0.046 1.760 0.229 0.024 0.370 0.000 0.012 4.074 1.903 0.585 0.143 2.000 15.729
Mg# Cr# Profilstrecke [µm]	91.32 11.35 634	91.08 10.96 644	91.10 11.37 654	90.79 11.48 664	90.95 10.97 674	91.17 11.37 684	91.21 10.84 694	91.19 11.26 704	90.98 11.08 714	90.99 11.14 724	90.99 10.93 734	91.15 11.01 744	91.19 11.06 754	91.07 11.27 773	91.33 10.63 783	91.44 10.56 793	90.95 10.57 803	91.58 11.19 823	91.32 11.30 833	91.18 11.51 843

Probe: IV19													
Profilname	Profil- 02	Profil- 02	Profil- 02	Profil- 02	Profil- 02	Profil- 02	Profil- 02	Profil- 02	Profil- 02	Profil- 02	Profil- 02	Profil- 02	Profil- 02
Profilpunkt	101	102	104	105	106	108	110	111	112	113	114	115	116
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse [Gew%] SiO2	46.23	46.03	46.20	46.19	46.42	46.57	46.87	46.83	46.97	46.84	46.85	47.08	47.59
TiO2 Al2O3 Cr2O3	.41. 10.72 2.02	.38 10.66 2.00	.41 10.77 2.00	.39 10.62 2.00	.40. 10.68 1.96	.44 10.25 1.89	.44 10.29 1.84	.46 10.37 1.85	.42. 10.31 1.78	.44 10.29 1.69	.43. 10.46 1.68	.46 10.32 1.54	.43 9.81 1.21
Fe2O3 FeO MnO	.00 3.32 .02	.29 3.14 .04	.14 3.13 .05	.28. 3.21 .07	.00 3.44 .00	.24 3.09 .04	.00 3.22 .01	.00 3.19 .03	.00 3.19 .05	.00. 3.18 .08	.00 3.14 .05	.16 3.18 .02	.22 3.07 .03
NiO MgO CaO	.10 19.23 12.54	.12. 19.18 12.64	.10 19.26 12.60	.09 19.22 12.47	.06 19.28 12.51	.08 19.38 12.69	.07 19.41 12.71	.09 19.42 12.71	.07 19.42 12.64	.10 19.66 12.47	.08. 19.52 12.57	.11. 19.66 12.67	.10 19.83 12.74
K2O H2O S	2.40 .80 2.11 99.88	2.39 .77 2.11 99 74	2.31 .80 2.12 99.89	2.20 .79 2.11 99.70	2.20 .80 2.12 99.95	2.20 .73 2.12 99.77	2.22 .69 2.12 99.88	.67 2.12	2.20 .71 2.12 99.93	2.30 .67 2.12 99.89	.68 2.12 99.84	2.33 .65 2.13 100.28	2.19 .63 2.13 99 98
∠ Kationen-	33.00	33.14	33.03	33.70	33.35	55.11	33.00	33.33	33.35	33.03	33.04	100.20	33.30
besetzung													
Si Ti Al	6.555 0.044 1.791	6.540 0.041 1.784	6.548 0.044 1.798	6.560 0.042 1.778	6.573 0.043 1.781	6.601 0.046 1.713	6.627 0.046 1.715	6.615 0.048 1.726	6.636 0.045 1.717	6.620 0.047 1.715	6.621 0.045 1.743	6.627 0.048 1.712	6.705 0.046 1.628
Cr Fe ^{3*} Fe ^{2*}	0.226 0.000 0.393	0.225 0.031 0.373	0.224 0.015 0.371	0.224 0.030 0.381	0.220 0.000 0.408	0.212 0.025 0.366	0.206 0.000 0.380	0.206 0.000 0.377	0.198 0.000 0.377	0.189 0.000 0.376	0.187 0.000 0.371	0.171 0.017 0.374	0.134 0.024 0.362
Ni Mg Ca	0.003 0.011 4.065 1.905	0.005 0.013 4.063 1.924	0.008	0.009 0.011 4.068	0.000 0.007 4.069	0.005 0.009 4.095 1.927	0.001 0.008 4.091 1.925	0.004 0.010 4.089 1.924	0.008 0.008 4.090 1.913	0.010	0.000	0.003	0.003
Na K OH	0.660 0.144 2.000	0.657 0.140 2.000	0.636 0.144 2.000	0.621 0.143 2.000	0.627 0.144 2.000	0.621 0.133 2.000	0.608 0.125 2.000	0.622 0.120 2.000	0.619 0.129 2.000	0.646 0.120 2.000	0.622 0.122 2.000	0.635 0.116 2.000	0.599 0.113 2.000
∑ Kationen	15.795	15.797	15.780	15.764	15.769	15.754	15.733	15.741	15.736	15.764	15.742	15.751	15.712
Mg# Cr#	91.18 11.21	90.95 11.19	91.33 11.06	90.84 11.19	90.89 10.99	91.27 11.03	91.50 10.73	91.57 10.67	91.55 10.36	91.68 9.93	91.73 9.71	91.35 9.08	91.53 7.62
Profilstrecke [µm]	853	863	883	893	903	923	943	953	963	973	983	993	1003

Probe:	IV19
Profil:	04
Mineral:	Орх
Kapitel:	Anhang II

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
60	3.357	10.233	32.369	11.193	0.546	0.503	0.576	1.033
119	3.353	10.806	32.793	15.072	0.830	0.392	0.921	0.521
179	4.277	11.039	33.850	15.957	0.577	0.686	0.999	2.333
239	4.290	10.763	33.851	12.962	0.591	0.166	0.804	2.273
299	3.651	10.351	32.971	13.124	0.692	0.346	0.630	3.779
359	3.782	10.610	33.333	13.282	0.781	0.609	0.804	1.657
419	4.176	10.551	33.560	13.255	1.233	0.393	0.477	0.861
479	3.467	10.351	32.198	11.039	0.507	0.588	0.999	1.520
539	3.643	9.702	33.456	14.044	0.509	0.574	1.388	2.116
659	3.587	10.385	33.618	13.510	0.608	0.584	1.564	1.663
719	3.558	10.162	33.239	12.135	0.866	0.319	0.897	1.889
779	4.457	10.340	33.183	11.422	0.564	0.511	1.032	1.715
839	3.407	9.936	32.669	13.672	0.877	0.288	0.680	1.952
899	4.804	9.719	32.695	14.449	1.078	0.253	0.913	1.491
959	3.039	9.565	33.007	12.592	0.474	0.450	0.833	0.955
1019	3.348	9.398	32.229	15.219	0.540	0.573	1.032	1.606
1079	4.037	10.439	32.109	14.350	0.781	0.333	0.452	2.725
1139	4.465	10.119	32.060	12.616	0.774	0.279	1.486	2.007
1199	4.257	9.660	31.004	12.654	0.978	0.595	0.765	1.317
1251	2.300	9.227	31.156	13.251	0.799	0.306	1.082	2.558

Probe: IV19 Profilname	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04
Profilpunkt	9	10	11	13	14	15	16	17	18	19	20	21	22	23	24	25	27	28	29	30
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 Cr,O3 FeO MnO NiO NiO MgO CaO K2O K2O X2O	57.93 .03 1.02 .35 6.26 .18 .10 35.09 .02 .01 101.38	57.95 .04 1.15 .31 6.14 .18 .07 35.38 .43 .01 .01 101.66	57.54 .05 1.12 .38 5.92 .12 .04 35.44 .01 .00 101.08	57.78 .04 1.17 .32 6.01 .10 .04 35.57 .46 .01 .01 101.51	57.74 .00 1.13 .35 5.94 .12 35.60 .50 .00 .02 101.59	57.81 .03 1.14 .35 5.64 .19 .08 35.33 .47 .02 .00 101.05	57.90 .03 1.17 .37 5.98 .17 .11 35.47 .00 .01 101.66	57.82 .05 1.19 .37 5.73 .15 .09 35.42 .51 .04 .00 101.37	57.81 .03 1.21 .37 5.92 .23 .12 35.56 .49 .02 .01 101.76	57.90 .03 1.19 .36 5.88 .15 .09 35.63 .00 .01 101.67	57.99 .04 1.14 .35 5.85 .14 .06 35.44 .03 .00 101.47	58.16 .02 1.18 .38 5.85 .15 .06 35.57 .44 .01 .02 101.83	57.75 .04 1.17 .36 5.87 .16 .12 35.42 .41 .00 .02 101.33	57.94 .04 1.16 .38 5.82 .12 .07 35.48 .44 .01 .01 101.47	57.71 .03 1.21 .38 5.86 .13 35.52 .43 .00 .00 101.42	57.74 .06 1.18 .34 5.68 .08 .03 35.22 .50 .02 .00 100.96	57.43 .04 1.18 .38 5.74 .21 .07 35.43 .52 .00 .03 101.02	57.85 .05 1.19 .38 5.86 .16 .03 35.35 .49 .02 .00 101.38	57.91 .03 1.16 .37 5.86 .17 .09 35.46 .49 .01 .01 101.56	57.95 .05 1.14 .37 5.67 .14 .07 35.67 .14 .07 .00 .01 101.31
Kationen- besetzung Si Ti Al Cr Fr ²⁺ Mn Ni Mg Ca Na K Kationen	1.971 .001 .041 .009 .178 .005 .003 1.780 .015 .001 .000 4.004	1.965 .001 .008 .174 .005 .002 1.789 .016 .001 .000 4.007	1.962 .001 .045 .010 .004 .004 .001 1.801 .016 .001 .000 4.010	1.961 .001 .009 .171 .003 .001 1.800 .017 .000 .001 4.010	1.960 .000 .045 .009 .005 .003 1.802 .018 .000 .001 4.013	1.968 .001 .009 .161 .005 .002 1.793 .017 .002 .000 4.004	1.963 .001 .040 .005 .003 1.793 .017 .000 .000 4.008	1.964 .001 .048 .010 .163 .004 .002 1.793 .019 .003 .000 4.007	1.959 .001 .048 .010 .168 .006 .003 1.797 .018 .001 .001 4.012	1.962 .001 .040 .166 .004 .003 1.800 .016 .000 .001 4.009	1.967 .001 .005 .009 .166 .004 .002 1.792 .016 .002 .000 4.005	1.966 .001 .040 .165 .004 .002 1.793 .016 .001 .001 4.005	1.964 .001 .040 .167 .004 .003 1.795 .015 .000 .001 4.008	1.966 .001 .010 .165 .004 .002 1.795 .016 .001 .000 4.005	1.961 .001 .018 .010 .167 .004 1.799 .016 .000 .000 4.009	1.968 .001 .009 .162 .002 .004 1.790 .018 .001 .000 4.003	1.959 .001 .040 .164 .006 .002 1.802 .019 .000 .001 4.012	1.965 .001 .048 .010 .166 .005 .001 1.790 .018 .001 .000 4.005	1.964 .001 .046 .010 .166 .005 .003 1.793 .018 .001 .000 4.007	1.968 .001 .046 .010 .161 .002 1.794 .018 .000 .000 4.003
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	90.90 18.74 5	91.12 15.49 15	91.43 18.39 25	91.34 15.63 45	91.44 17.19 55	91.78 16.97 65	91.36 17.71 75	91.68 17.35 85	91.46 17.09 95	91.53 16.78 105	91.53 17.28 115	91.56 17.67 125	91.49 17.11 135	91.58 17.84 145	91.53 17.46 155	91.70 16.29 165	91.68 17.92 184	91.50 17.58 194	91.52 17.48 204	91.76 17.84 214

Profilname	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04
Profilpunkt	31	33	34	35	36	37	38	39	41	42	43	45	46	47	48	49	52	53	54	55
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 Al2/03 FEO MnO NiO NGO CaO Na ₂ O K ₂ O Σ	57.89 .03 1.17 .37 5.77 .14 .09 35.43 .50 .01 .00 101.40	57.75 .06 1.20 .42 5.84 .17 .09 35.27 .47 .00 .00 101.27	57.65 .04 1.22 .36 5.92 .17 .05 35.31 .47 .01 .01 101.21	58.22 .07 1.20 .38 5.69 .11 35.35 .51 .00 .00 101.65	57.72 .04 1.17 .41 5.96 .13 .10 35.55 .50 .02 .00 101.61	57.62 .03 1.21 .36 5.79 .16 .02 35.44 .48 .00 .00 101.10	57.73 .02 1.22 .41 6.02 .18 .04 35.41 .54 .01 .01 101.57	57.96 .06 1.21 .38 5.84 .15 .07 35.32 .56 .00 .00 101.54	57.81 .05 1.16 .39 5.85 .16 .06 35.47 .52 .03 .01 101.51	57.78 .03 1.19 .41 5.71 .11 .09 35.53 .51 .03 .00 101.41	58.10 .05 1.18 .35 5.79 .12 .09 35.31 .52 .00 .00 101.51	57.86 .05 1.18 .35 5.83 .16 .16 35.45 .40 .00 .00 101.44	57.92 .05 1.17 .37 5.62 .12 .09 35.54 .46 .00 .01 101.34	57.82 .04 1.16 .35 5.92 .16 .09 35.65 .43 .00 .00 101.63	57.84 .03 1.18 .36 6.00 .18 .06 35.52 .43 .01 .00 101.60	57.60 .05 1.22 .35 5.91 .14 .15 35.48 .41 .00 .00 101.29	58.20 .03 1.15 .38 5.85 .14 .12 35.42 .37 .02 .01 101.68	58.01 .03 1.18 .40 5.80 .12 .08 35.51 .39 .01 .00 101.53	58.06 .04 1.17 .43 5.92 .15 .10 35.60 .41 .00 .00 101.87	58.10 .03 1.18 .37 5.89 .15 .08 35.57 .41 .01 .00 101.79
Kationen- besetzung Si Ti Al Cr Fe Mi Mg Ca Ca Na Ka Σ Kationen	1.966 .001 .047 .010 .164 .003 1.793 .018 .000 .000 4.005	1.964 .002 .048 .011 .166 .005 .002 1.788 .017 .000 .000 4.005	1.963 .001 .049 .010 .005 .001 1.792 .017 .000 .000 4.007	1.970 .002 .048 .010 .161 .004 .003 1.783 .018 .000 .000 3.999	1.959 .001 .047 .011 .169 .004 .003 1.798 .018 .002 .000 4.012	1.962 .001 .048 .010 .165 .005 .000 1.799 .018 .000 .000 4.008	1.960 .000 .049 .011 .171 .005 .001 1.792 .020 .001 .000 4.010	1.966 .001 .048 .010 .166 .004 .020 1.786 .020 .000 .000 4.004	1.962 .001 .040 .010 .166 .004 .002 1.795 .019 .002 .000 4.009	1.962 .001 .048 .011 .162 .003 1.798 .019 .002 .000 4.009	1.970 .001 .009 .164 .004 .003 1.785 .019 .000 .000 4.001	1.964 .001 .009 .166 .005 .004 1.794 .015 .000 .000 4.006	1.966 .001 .040 .010 .159 .004 .003 1.798 .017 .000 .001 4.005	1.961 .001 .009 .168 .005 .002 1.802 .016 .000 .000 4.010	1.962 .001 .040 .170 .005 .002 1.796 .016 .000 .000 4.009	1.960 .001 .009 .168 .004 .004 1.800 .015 .000 .000 4.010	1.970 .001 .010 .166 .004 .003 1.787 .014 .001 .000 4.002	1.966 .001 .017 .011 .164 .003 .002 1.794 .014 .001 .000 4.004	1.963 .001 .047 .011 .167 .004 .003 1.795 .015 .000 .000 4.007	1.965 .001 .047 .010 .167 .004 .002 1.794 .015 .000 .000 4.006
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr #	91.64 17.53	91.49 18.92	91.40 16.56	91.72 17.53	91.40 19.24	91.61 16.70	91.29 18.25	91.52 17.41	91.53 18.43	91.73 18.87	91.58 16.61	91.55 16.60	91.86 17.71	91.48 16.94	91.35 17.06	91.46 16.19	91.52 18.01	91.61 18.50	91.47 19.55	91.50 17.34
Profilstrecke [µm]	224	244	254	264	2/4	284	294	304	324	334	344	364	3/4	384	394	404	434	444	454	464

Probe: IV19 Profilname	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04 I	Profil-04 l	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04
Profilpunkt	57	58	59	60	61	62	64	65	66	67	68	69	71	72	73	74	76	77	78	81
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO3 TiO3 Gr203 FeO MnO NiO MgO CaO CaO K2Ó K2Ó	58.17 .06 1.19 .36 5.87 .13 .07 35.54 .40 .02 .00 101.81	57.90 .05 1.15 .34 5.66 .11 .09 35.50 .39 .00 .02 101.21	58.29 .03 1.16 .37 5.82 .10 35.61 .37 .00 .00 101.91	58.06 .05 1.16 .36 5.74 .10 35.52 .01 .01 101.61	57.86 .05 1.11 .35 5.70 .09 35.30 .42 .03 .01 101.06	58.24 .04 1.12 .37 5.90 .15 .10 35.59 .44 .00 .00 101.95	57.82 .05 1.14 .39 5.62 .16 .12 35.59 .43 .01 .02 101.34	57.86 .02 1.19 .36 5.75 .09 35.64 .42 .01 .01 101.50	58.03 .05 1.09 .34 5.82 .16 .07 35.60 .44 .02 .01 101.63	58.09 .03 1.14 .39 5.91 .20 .10 35.48 .50 .00 .00 101.85	57.87 .04 1.13 .38 5.93 .11 .06 35.60 .43 .00 .01 101.57	57.98 .04 1.15 .37 5.93 .17 .07 35.66 .35 .02 .02 .02 101.77	58.15 .05 1.21 .37 5.73 .16 .09 35.51 .39 .04 .01 101.70	57.92 .03 1.17 .36 5.75 .16 .09 35.37 .40 .00 .00 101.24	58.11 .03 1.17 .39 5.90 .14 .09 35.41 .38 .02 .01 101.65	58.02 .02 1.19 .38 5.89 .12 .04 35.70 .45 .02 .00 101.84	58.05 .05 1.17 .37 5.81 .16 .09 35.51 .52 .01 .03 101.76	58.12 .03 1.17 .37 5.92 .17 .10 35.58 .41 .01 .01 101.88	57.77 .04 1.14 .40 5.96 .14 .09 35.49 .40 .01 .01 101.43	58.17 .04 1.13 .34 5.78 .09 .10 35.46 .46 .00 .00 101.58
Kationen- besetzung Si Ti Al Cr. Fe ⁴⁺ Mn Ni Mg Ca Na K Xationen	1.967 .002 .048 .010 .166 .004 .002 1.791 .014 .001 .000 4.004	1.968 .001 .009 .161 .003 .003 1.798 .014 .000 .001 4.004	1.968 .001 .040 .164 .005 .003 1.793 .013 .000 .000 4.003	1.967 .001 .010 .163 .006 .003 1.794 .015 .000 .000 4.004	1.970 .001 .009 .162 .004 .003 1.792 .015 .002 .001 4.003	1.967 .001 .040 .167 .004 .003 1.792 .016 .000 .000 4.005	1.964 .001 .010 .160 .005 .003 1.802 .016 .001 .001 4.007	1.963 .001 .048 .010 .164 .004 .002 1.802 .015 .001 .000 4.009	1.966 .001 .043 .005 .005 .002 1.798 .016 .002 .001 4.007	1.965 .001 .010 .167 .006 .003 1.789 .018 .000 .000 4.006	1.963 .001 .045 .010 .168 .003 .002 1.800 .016 .000 .000 4.008	1.963 .001 .010 .168 .005 .002 1.800 .013 .002 .001 4.010	1.967 .001 .048 .010 .162 .005 .002 1.791 .014 .003 .000 4.004	1.968 .001 .010 .163 .004 .003 1.792 .014 .000 .000 4.003	1.968 .001 .040 .167 .004 .002 1.788 .014 .001 .000 4.003	1.962 .001 .048 .010 .166 .003 .001 1.800 .016 .001 .000 4.009	1.965 .001 .040 .164 .004 .003 1.792 .019 .000 .001 4.006	1.965 .001 .010 .167 .005 .003 1.794 .015 .001 .001 4.007	1.963 .001 .045 .011 .169 .004 .002 1.798 .014 .001 .000 4.009	1.970 .001 .009 .164 .003 .003 1.790 .017 .000 .000 4.002
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.53 16.90 484	91.79 16.73 494	91.60 17.45 504	91.68 17.01 513	91.70 17.34 523	91.50 18.33 533	91.87 18.68 553	91.67 16.75 563	91.61 17.44 573	91.45 18.70 583	91.46 18.42 593	91.46 17.78 603	91.70 16.87 623	91.64 16.98 633	91.45 18.26 643	91.53 17.77 653	91.60 17.50 673	91.47 17.67 683	91.39 18.95 693	91.62 16.69 723

Probe: IV19	Deefl 04	Deefi 04	Deef! 04	Deefl 04	Deefl 04	Deefi 04		Deefl 04		Deefl 04		Deefl 04	Deefl 04		Deefl 04	Deefloa	Deefl 04	Deefl 04	Deefl 04	Dfl 04
Profilpunkt	82	84	85	86	87	88	89	90	91	92	93	95	96	97	98	99	100	102	106	107
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [[Gew%]] SiO2 TiO2 Al2O3 Cr2O3 FeO FeO MnO NiO NiO SiO2 SiO2 <t< th=""><th>58.15 .03 1.13 .36 5.95 .13 .09 35.78 .37 .00 .00 101.99</th><th>57.65 .05 1.17 .38 5.78 .14 .08 35.54 .01 .00 101.11</th><th>58.18 .02 1.15 .35 5.62 .11 35.56 .36 .36 .00 .00 101.51</th><th>58.19 .04 1.18 .37 5.87 .16 .07 35.67 .35.67 .02 .00 101.91</th><th>58.09 .05 1.16 .39 5.86 .12 .09 35.56 .37 .02 .01 101.70</th><th>58.08 .06 1.20 .37 5.78 .12 .08 35.37 .42 .00 .00 .00 101.49</th><th>57.99 .04 1.14 .37 5.88 .10 .11 35.57 .43 .02 .01 101.67</th><th>58.19 .04 1.14 .37 5.89 .16 .03 35.74 .42 .00 .01 101.98</th><th>58.37 .05 1.16 .33 5.89 .13 .09 35.41 .01 .01 .00 101.92</th><th>58.24 .02 1.15 5.78 5.78 .19 .09 35.71 .36 .00 .01 101.90</th><th>58.10 .04 1.18 .34 5.78 .16 .07 35.62 .40 .00 .01 101.69</th><th>57.84 .03 1.15 .37 5.76 .21 .05 35.64 .38 .02 .01 101.45</th><th>58.31 .06 1.17 .40 5.74 .12 .06 35.49 .47 .00 .00 101.80</th><th>57.92 .05 1.19 .38 5.91 .10 .11 35.59 .41 .00 .00 101.67</th><th>58.38 .04 1.14 .05 5.81 .13 .13 35.74 .02 .00 102.19</th><th>58.26 .04 1.15 .38 5.80 .15 .09 35.57 .43 .00 .00 101.87</th><th>57.95 0.5 1.17 .35 5.94 .14 0.5 35.45 .44 .00 .00 .00 101.53</th><th>58.23 .03 1.12 .35 5.87 .16 .07 35.77 .01 .00 101.98</th><th>57.93 .05 1.12 .36 5.76 .13 .11 35.68 .46 .00 .00 101.60</th><th>58.26 .04 1.16 .34 5.76 .12 .04 35.44 .00 .00 .01 101.56</th></t<>	58.15 .03 1.13 .36 5.95 .13 .09 35.78 .37 .00 .00 101.99	57.65 .05 1.17 .38 5.78 .14 .08 35.54 .01 .00 101.11	58.18 .02 1.15 .35 5.62 .11 35.56 .36 .36 .00 .00 101.51	58.19 .04 1.18 .37 5.87 .16 .07 35.67 .35.67 .02 .00 101.91	58.09 .05 1.16 .39 5.86 .12 .09 35.56 .37 .02 .01 101.70	58.08 .06 1.20 .37 5.78 .12 .08 35.37 .42 .00 .00 .00 101.49	57.99 .04 1.14 .37 5.88 .10 .11 35.57 .43 .02 .01 101.67	58.19 .04 1.14 .37 5.89 .16 .03 35.74 .42 .00 .01 101.98	58.37 .05 1.16 .33 5.89 .13 .09 35.41 .01 .01 .00 101.92	58.24 .02 1.15 5.78 5.78 .19 .09 35.71 .36 .00 .01 101.90	58.10 .04 1.18 .34 5.78 .16 .07 35.62 .40 .00 .01 101.69	57.84 .03 1.15 .37 5.76 .21 .05 35.64 .38 .02 .01 101.45	58.31 .06 1.17 .40 5.74 .12 .06 35.49 .47 .00 .00 101.80	57.92 .05 1.19 .38 5.91 .10 .11 35.59 .41 .00 .00 101.67	58.38 .04 1.14 .05 5.81 .13 .13 35.74 .02 .00 102.19	58.26 .04 1.15 .38 5.80 .15 .09 35.57 .43 .00 .00 101.87	57.95 0.5 1.17 .35 5.94 .14 0.5 35.45 .44 .00 .00 .00 101.53	58.23 .03 1.12 .35 5.87 .16 .07 35.77 .01 .00 101.98	57.93 .05 1.12 .36 5.76 .13 .11 35.68 .46 .00 .00 101.60	58.26 .04 1.16 .34 5.76 .12 .04 35.44 .00 .00 .01 101.56
Kationen- besetzung Si Ti Al Cr Fr ^{24*} Mn Mg Ca Na K X Xationen Sauerstoffe	1.964 .001 .045 .010 .168 .003 1.802 .013 .000 .000 4.008 6.000	1.963 .001 .047 .010 .165 .004 .002 1.804 .012 .001 .000 4.008	1.970 .001 .046 .009 .159 .004 .003 1.795 .013 .000 .000 4.001	1.966 .001 .047 .010 .166 .004 .002 1.796 .013 .001 .000 4.006	1.966 .001 .046 .003 .003 1.794 .013 .001 .000 4.005	1.969 .002 .048 .010 .164 .002 1.788 .015 .000 4.001 6.000	1.965 .001 .046 .010 .167 .003 .003 .016 .016 .001 4.008 6.000	1.965 .001 .045 .010 .166 .004 .001 1.799 .015 .000 4.007 6.000	1.971 .001 .046 .009 .166 .004 .002 1.783 .017 .001 .000 4.000	1.967 .001 .046 .009 .163 .005 .002 1.798 .013 .000 .001 4.005	1.966 .001 .047 .009 .164 .005 .002 1.797 .014 .000 4.005 6.000	1.963 .001 .046 .010 .164 .001 1.803 .014 .001 .000 4.009 6.000	1.970 .001 .046 .011 .162 .003 .002 1.788 .017 .000 .000 4.000	1.962 .001 .047 .010 .168 .003 .003 .003 1.798 .015 .000 4.007	1.967 .001 .045 .011 .164 .003 1.795 .015 .001 .000 4.005	1.968 .001 .046 .010 .164 .002 1.791 .016 .000 4.003 6.000	1.966 .001 .047 .009 .168 .004 .001 1.792 .016 .000 4.005 6.000	1.966 .001 .044 .009 .166 .005 .002 .002 1.800 .013 .001 .000 4.007	1.963 .001 .045 .010 .163 .004 .003 1.803 .017 .000 .000 4.008 6.000	1.972 .001 .046 .009 .163 .001 1.789 .015 .000 .000 3.999
Mg # Cr # Profilstrecke [um]	91.47 17.58 733	91.64 17.85 753	91.85 16.89 763	91.55 17.50 773	91.54 18.34 783	91.60 16.99 793	91.51 17.87 803	91.54 17.89 813	91.47 16.15 823	91.68 17.18 833	91.65 16.27 842	91.69 17.74 862	91.68 18.52 872	91.47 17.79 882	91.65 18.82 892	91.62 18.05 902	91.41 16.54 912	91.57 17.45 932	91.69 17.66 972	91.65 16.29 982

Probe: IV19 Profilname	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04
Profilpunkt	108	109	111	112	113	114	115	116	117	119	120	121	122	123	124	125	126	127	128	129
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 TiO2 Al2O3 C7,O3 FeO MnO NiO NiO MgO CaO K2O K2Ó X2O	58.19 .07 1.17 .36 5.60 .19 .09 35.56 .41 .00 .00 101.63	58.17 .04 1.12 .35 5.63 .15 .09 35.55 .41 .01 .01 .00 101.51	58.18 .03 1.11 .36 5.66 .09 .05 35.64 .43 .00 .03 101.60	57.90 .02 1.13 .34 5.68 .10 35.51 .01 .00 101.32	58.23 .06 1.13 .34 5.57 .10 35.53 .44 .00 .00 101.57	57.91 .05 1.12 .36 5.65 .11 .11 35.47 .02 .01 101.28	57.76 .02 1.10 .33 5.82 .15 .06 35.56 .47 .01 .00 101.27	57.95 .03 1.13 .36 5.80 .15 .07 35.47 .48 .04 .00 101.48	57.92 .04 1.16 .32 5.87 .14 .12 35.67 .51 .01 .01 .00 101.76	57.86 .05 1.15 .34 5.72 .11 .17 35.56 .51 .04 .01 101.51	57.92 .05 1.15 .29 5.81 .12 .10 35.61 .52 .00 .01 101.57	58.26 .06 1.10 .31 5.79 .15 .09 35.54 .53 .00 .00 101.83	58.16 .04 1.12 .31 5.88 .15 .09 35.53 .44 .00 .00 101.71	58.27 .03 1.10 .31 5.81 .11 35.51 .50 .00 .00 101.83	57.91 .02 1.07 .34 5.64 .12 .11 35.53 .51 .01 .03 101.27	57.96 .04 1.04 .30 5.67 .13 .05 35.44 .01 .00 101.07	58.12 .06 1.06 .31 5.65 .14 .10 35.53 .49 .00 .01 101.47	58.16 .02 1.05 .29 5.89 .11 .07 35.62 .02 .00 101.68	58.15 .03 1.06 .31 5.73 .10 .12 35.65 .47 .01 .00 101.63	58.34 .03 .28 5.70 .09 .15 35.70 .44 .00 .00 101.75
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ca Na K K Kationen	1.969 .002 .046 .010 .159 .005 .002 1.793 .015 .000 .000 4.001	1.970 .001 .009 .159 .004 .002 1.795 .015 .015 .001 .000 4.002	1.969 .001 .040 .160 .003 .001 1.798 .016 .000 .001 4.004	1.966 .001 .009 .161 .004 .003 1.798 .018 .000 .000 4.006	1.971 .001 .009 .158 .005 .003 1.793 .016 .000 .000 4.001	1.967 .001 .010 .160 .003 .003 1.796 .017 .001 .000 4.005	1.964 .001 .009 .165 .004 .002 1.803 .017 .001 .000 4.009	1.966 .001 .010 .165 .004 .002 1.794 .018 .003 .000 4.007	1.961 .001 .009 .166 .004 .003 1.801 .019 .000 .000 4.010	1.963 .001 .009 .162 .003 .005 1.798 .019 .003 .001 4.010	1.964 .001 .008 .165 .004 .003 1.800 .019 .000 .000 4.009	1.969 .002 .044 .008 .164 .004 .003 1.791 .019 .000 .000 4.003	1.968 .001 .045 .008 .167 .004 .002 1.793 .016 .000 .000 4.004	1.970 .001 .008 .164 .005 .003 1.790 .018 .000 .000 4.003	1.968 .000 .043 .009 .160 .003 .003 1.800 .018 .001 .001 4.007	1.972 .001 .008 .161 .004 .001 1.797 .016 .001 .000 4.003	1.970 .002 .008 .160 .004 .003 1.796 .018 .000 .000 4.003	1.969 .000 .042 .008 .167 .003 .002 1.798 .016 .001 .000 4.006	1.969 .001 .042 .008 .162 .003 .003 1.799 .017 .000 .000 4.005	1.972 .001 .041 .008 .161 .002 .004 1.799 .016 .000 .000 4.003
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.88 17.24 992	91.85 17.45 1002	91.82 17.99 1022	91.77 16.58 1032	91.91 16.70 1042	91.80 17.69 1052	91.60 16.74 1062	91.59 17.41 1072	91.55 15.65 1082	91.73 16.63 1102	91.62 14.39 1112	91.63 15.81 1122	91.50 15.57 1132	91.60 15.78 1142	91.83 17.45 1152	91.77 16.25 1162	91.81 16.43 1171	91.51 15.74 1181	91.73 16.51 1191	91.79 15.49 1201

Probe: IV19 Profilname	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04
Profilpunkt	130	131	132	134	137	138	139	140	141	142	143	144	145	146
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] [Gow%] SiO ₂ TiO ₃ Ai ₂ O ₃ FeO MnO NiO NiO MgO GaO Na ₂ O K ₂ O ∑ ∑	58.25 .04 1.09 .31 .15 .09 35.54 .40 .00 .01 101.69	58.10 .03 1.12 .31 5.80 .16 .07 35.60 .40 .01 .00 101.59	58.44 .04 1.08 .29 5.89 .13 .07 35.75 .38 .00 .00 102.05	58.55 .03 1.04 .27 5.80 .17 .09 35.70 .34 .02 .01 102.01	58.30 .02 1.11 .29 5.90 .15 .12 35.82 .31 .00 .00 102.02	58.38 .05 1.08 .31 6.09 .13 .08 35.67 .34 .02 .00 102.13	58.02 .01 1.01 2.88 5.92 .14 .09 35.65 .33 .00 .02 101.47	58.42 .05 1.04 .24 5.84 .12 .08 35.76 .32 .00 .00 101.87	57.96 .03 .99 .25 5.95 .12 .07 35.57 .35 .02 .01 101.32	58.14 .03 1.02 .31 5.82 .16 .09 35.66 .33 .00 .00 101.55	58.22 .03 1.01 .28 5.72 .14 .03 35.72 .35 .01 .01 101.51	58.16 .04 1.05 .29 5.69 .13 .06 35.63 .31 .03 .01 101.41	58.04 .02 1.07 .26 5.83 .11 .08 35.65 .32 .02 .01 101.38	58.29 .02 1.03 .30 5.87 .15 .10 35.73 .39 .00 .00 101.88
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Xa Kationen Sauerstoffe	1.971 .001 .043 .008 .164 .004 .003 .015 .000 .001 4.003 6.000	1.968 .001 .045 .008 .164 .005 .002 1.798 .015 .001 .000 4.005	1.970 .001 .043 .008 .004 .002 1.797 .014 .000 .000 4.004 6.000	1.974 .001 .041 .007 .163 .005 1.794 .012 .001 .000 4.002	1.967 .000 .044 .008 .167 .004 .003 1.802 .011 .000 .000 4.006	1.969 .001 .043 .008 .172 .004 .002 1.793 .012 .001 .000 4.005	1.969 .000 .041 .007 .168 .004 .003 1.803 .012 .000 .001 4.007 6.000	1.972 .001 .041 .006 .165 .003 .002 1.800 .012 .000 4.003 6.000	1.969 .001 .040 .007 .169 .003 .002 1.802 .013 .001 4.007 6.000	1.970 .001 .041 .008 .005 .002 1.801 .002 1.801 .000 .000 4.005	1.972 .001 .040 .008 .162 .004 .001 1.803 .013 .001 .000 4.004	1.972 .001 .042 .008 .161 .004 .002 1.801 .011 4.004 6.000	1.969 .000 .043 .007 .165 .003 .002 1.803 .012 .001 .000 4.006	1.969 .000 .041 .008 .004 .003 1.800 .014 .000 4.006 6.000
Mg # Cr # Profilstrecke [µm]	91.61 15.85 1211	91.63 15.89 1221	91.54 15.45 1231	91.65 14.75 1251	91.54 14.66 1281	91.27 15.94 1291	91.48 15.59 1301	91.60 13.61 1311	91.42 14.63 1321	91.61 17.01 1331	91.75 15.69 1341	91.78 15.44 1351	91.60 14.17 1361	91.56 16.16 1371

Probe:	IV19
Profil:	08
Mineral:	Phl
Kapitel:	2.4

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
30	4.088	8.116	41.937	12.027	0.981	0.615	1.198	2.512
89	4.678	8.171	41.812	9.067	0.941	0.529	0.528	1.843
150	3.861	7.836	43.078	9.616	0.325	0.215	1.300	2.290
210	2.829	8.099	43.094	10.759	0.661	0.246	0.564	1.480
270	2.833	7.811	41.087	8.716	0.819	0.312	1.390	3.123
330	3.065	7.487	40.918	5.513	0.561	0.391	1.535	0.525
390	3.039	7.183	39.028	7.503	0.900	0.325	0.794	1.429

Probe: IV19 Profilname	Profil-08	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08 F	Profil-08 I	Profil-08 F	Profil-08 I	Profil-08	Profil-08 I	Profil-08 I	Profil-08	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08 F	Profil-08
Profilpunkt	27	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
Mineral	Phi	Phl	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phl	Phl	Phi	Phl	Phi	Phi	Phl	Phi	Phi	Phl	Phi
Analyse Gew%] SiO2 TiO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO Al2O0 K2O H2O Z L<	40.24 .64 15.79 1.30 2.67 .24 25.19 .00 .82 8.31 4.28 99.53	40.45 .60 15.75 1.38 2.76 .02 24.82 .00 .82 8.65 4.28 99.75	40.16 .64 15.88 1.37 2.73 .01 .22 24.94 .00 .80 8.57 4.28 99.59	40.12 .65 15.74 1.39 2.60 .02 24.87 .00 .85 8.64 4.26 99.33	40.45 .64 15.82 1.39 2.70 .00 24.89 .00 .86 8.55 4.29 99.79	40.42 .63 15.41 1.32 2.83 .00 .24 24.94 .00 .84 8.41 4.27 99.30	40.34 65 15.76 1.43 2.83 .05 .19 24.72 .00 .86 8.55 4.28 99.65	40.05 .66 15.86 2.63 .00 .21 24.72 .00 .95 8.75 4.26 99.45	40.22 67 15.82 1.43 2.65 .00 24.66 .00 .91 8.56 4.27 99.39	40.40 .64 15.91 1.38 2.64 .04 .19 24.75 .00 .87 8.46 4.28 99.55	40.49 .66 15.91 1.39 2.77 .00 .24 24.80 .00 .88 8.46 4.29 99.90	40.31 .67 15.75 1.40 2.59 .03 .20 24.83 .00 .87 8.82 4.28 99.74	40.58 60 15.62 1.51 2.65 .00 .23 24.78 .00 .92 8.50 99.67	40.28 .64 15.63 1.41 2.72 .00 .17 24.71 .00 .92 8.59 4.26 99.33	40.38 .64 15.84 1.45 2.69 .03 .19 24.82 .00 .88 8.68 8.68 8.429 99.87	40.93 .64 15.83 1.43 2.74 .01 .21 24.85 .00 .92 8.66 4.32 100.54	40.15 .67 15.72 1.41 2.59 .01 .17 24.69 .00 .88 8.57 4.26 99.12	40.63 63 15.52 1.42 2.52 .01 .24 24.99 .00 .82 8.71 4.29 99.74	40.68 65 15.51 1.42 2.58 .00 .21 25.13 .00 .90 8.49 99.87	40.29 .66 15.68 1.44 2.77 .01 .21 24.65 .00 .93 8.60 4.27 99.49
Kationen- besetzung Si Ti Al Ce ²⁺ Mn Ni Mg Ca Ag Kationen X Kationen	2.819 0.034 1.303 0.072 0.156 0.003 2.631 0.000 0.111 0.743 2.000 7.887	2.832 0.032 1.300 0.076 0.001 0.013 2.591 0.000 0.111 0.773 2.000 7.890	2.816 0.034 1.313 0.076 0.001 0.012 2.607 0.000 0.109 0.766 2.000 7.894	2.821 0.034 1.304 0.077 0.153 0.001 0.011 2.607 0.000 0.116 0.775 2.000 7.900	2.829 0.034 1.304 0.077 0.158 0.000 0.011 2.595 0.000 0.116 0.763 2.000 7.887	2.841 0.033 1.276 0.074 0.000 0.014 2.613 0.000 0.114 2.613 0.000 0.114 0.754 2.000 7.885	2.828 0.034 1.302 0.079 0.106 0.003 0.011 2.584 0.000 0.117 0.765 2.000 7.888	2.815 0.035 1.314 0.075 0.154 0.000 0.012 2.591 0.000 0.129 0.784 2.000 7.912	2.825 0.035 1.310 0.079 0.156 0.000 0.011 2.583 0.000 0.123 0.767 2.000 7.890	2.830 0.034 1.313 0.076 0.154 0.002 0.011 2.584 0.000 0.119 0.756 2.000 7.879	2.828 0.035 1.310 0.077 0.162 0.000 0.013 2.582 0.000 0.120 0.754 2.000 7.880	2.825 0.035 1.301 0.077 0.152 0.002 0.011 2.594 0.000 0.118 0.789 2.000 7.904	2.841 0.032 1.289 0.084 0.050 0.013 2.586 0.000 0.125 0.759 2.000 7.883	2.832 0.034 1.295 0.078 0.000 0.010 2.590 0.000 0.125 0.770 2.000 7.895	2.825 0.034 1.306 0.080 0.157 0.002 0.011 2.588 0.000 0.120 0.775 2.000 7.896	2.842 0.034 1.296 0.078 0.000 0.012 2.572 0.000 0.124 0.767 2.000 7.883	2.827 0.036 1.305 0.079 0.153 0.001 2.592 0.000 0.120 0.770 2.000 7.891	2.843 0.033 1.280 0.078 0.007 0.000 0.013 2.606 0.000 0.111 0.777 2.000 7.889	2.841 0.034 1.277 0.078 0.000 0.012 2.616 0.000 0.122 0.756 2.000 7.887	2.830 0.035 1.298 0.080 0.163 0.001 2.581 0.000 0.126 0.771 2.000 7.895
Mg# Cr# Profilstrecke [µm]	94.39 5.25 5	94.12 5.56 25	94.22 5.45 35	94.47 5.58 45	94.26 5.55 55	94.01 5.45 65	93.96 5.72 75	94.38 5.43 85	94.31 5.70 95	94.36 5.49 105	94.10 5.53 115	94.48 5.61 125	94.34 6.11 135	94.18 5.71 145	94.28 5.77 155	94.17 5.70 165	94.44 5.69 176	94.65 5.76 186	94.56 5.78 196	94.07 5.79 206

Probe: IV19																		
Profilname	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08	Profil-08 I	Profil-08 I	Profil-08	Profil-08 I	Profil-08
Profilpunkt	48	49	52	53	54	55	56	57	58	59	60	61	62	63	64	67	68	70
Mineral	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phl	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phi	Phl
Analyse [Gew%]																		
SiO2 SiO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO Na2O K2O H2O Σ	40.48 .66 15.62 1.58 2.67 .00 .16 24.79 .00 .91 8.45 4.28 99.59	40.21 .68 15.79 1.45 2.60 .03 .17 24.68 .00 .86 8.63 4.27 99.35	40.35 .68 15.74 1.49 2.57 .00 .25 24.88 .00 .87 8.62 4.28 99.73	40.27 .66 15.83 1.46 2.80 .00 .22 24.84 .00 .87 8.57 4.28 99.82	40.13 .67 15.86 1.48 2.84 .00 .22 24.79 .00 .88 8.55 4.28 99.70	40.47 .65 15.71 1.41 2.51 .00 24.65 .00 .86 8.61 4.27 99.35	40.24 .68 15.78 1.45 2.67 .00 .19 24.75 .00 .85 8.49 4.27 99.37	40.53 .63 15.82 1.44 2.68 .01 .19 24.79 .00 .81 8.75 4.29 99.93	40.43 .65 15.59 1.46 2.70 .00 .24 24.86 .00 .90 8.66 4.28 99.77	40.61 .68 15.50 1.44 2.52 .00 .21 24.92 .00 .91 8.70 4.28 99.77	40.25 .66 15.91 1.47 2.70 .01 .15 24.88 .00 .89 8.51 4.28 99.71	40.55 .63 15.54 1.46 2.48 .00 .25 25.03 .00 .90 8.56 4.28 99.69	40.29 .66 15.69 1.46 2.57 .00 .20 24.72 .00 .91 8.64 4.27 99.40	40.52 .64 15.75 1.46 2.72 .00 .24 24.89 .00 .86 8.64 4.29 100.00	40.53 .66 15.76 1.49 2.58 .01 25.05 .00 .87 8.52 4.30 99.96	40.47 .64 15.78 1.49 2.67 .00 .24 24.80 .00 .90 8.50 4.29 99.78	40.39 .68 15.53 1.58 2.38 .00 .15 24.95 .02 .80 8.59 4.27 99.33	40.39 .67 15.65 1.43 2.59 .01 .19 24.85 .03 .84 8.64 4.28 99.56
Kationen-																		
Si Ti Al Cr Fe ^{s*} Mn Ni Ca Ca Na Ca Na Ca Ca XK OH Σ Kationen	2.836 0.035 1.290 0.087 0.156 0.000 2.588 0.000 0.123 0.755 2.000 7.880	2.826 0.036 1.308 0.080 0.153 0.002 2.585 0.000 0.117 0.774 2.000 7.889	2.825 0.036 1.299 0.082 0.150 0.000 0.014 2.597 0.000 0.118 0.770 2.000 7.892	2.819 0.035 1.306 0.081 0.164 0.000 0.012 2.592 0.000 0.118 0.765 2.000 7.894	2.814 0.035 1.311 0.082 0.167 0.000 0.012 2.591 0.000 0.120 0.765 2.000 7.897	2.841 0.034 1.300 0.078 0.048 0.000 0.011 2.580 0.000 0.117 0.771 2.000 7.880	2.826 0.036 1.306 0.080 0.157 0.000 0.011 2.591 0.000 0.116 0.760 2.000 7.883	2.832 0.033 1.303 0.080 0.157 0.001 2.583 0.000 0.110 0.780 2.000 7.889	2.832 0.034 1.287 0.081 0.158 0.000 0.014 2.596 0.000 0.123 0.774 2.000 7.898	2.841 0.036 1.278 0.080 0.147 0.000 0.012 2.600 0.000 0.123 0.777 2.000 7.894	2.818 0.035 1.312 0.081 0.001 0.009 2.597 0.000 0.121 0.760 2.000 7.891	2.838 0.033 1.282 0.081 0.145 0.000 0.014 2.612 0.000 0.122 0.764 2.000 7.891	2.830 0.035 1.299 0.081 0.151 0.000 0.011 2.589 0.000 0.124 0.774 2.000 7.894	2.830 0.034 1.296 0.080 0.159 0.000 0.014 2.591 0.000 0.116 0.770 2.000 7.890	2.828 0.034 1.296 0.082 0.150 0.001 2.606 0.000 0.117 0.759 2.000 7.886	2.831 0.034 1.301 0.083 0.156 0.000 0.013 2.586 0.000 0.122 0.759 2.000 7.884	2.835 0.036 1.284 0.088 0.140 0.000 2.611 0.001 0.769 2.000 7.882	2.832 0.035 1.293 0.079 0.152 0.000 0.011 2.598 0.002 0.114 0.773 2.000 7.890
Mg# Cr#	94.31 6.34	94.42 5.79	94.53 5.96	94.05 5.84	93.96 5.88	94.59 5.68	94.29 5.80	94.29 5.76	94.27 5.93	94.64 5.88	94.26 5.83	94.73 5.94	94.49 5.89	94.22 5.84	94.54 5.94	94.30 5.96	94.93 6.40	94.47 5.77
Profilstrecke [µm]	216	226	256	266	276	286	296	306	316	326	336	346	356	366	376	406	416	436

Probe:	IV19
Profil:	10b
Mineral:	Spl
Kapitel:	2.4

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
30		3.165	417.377	622.977		0.111	5.334	18.291
98		3.059	420.047	620.229		0.240	1.848	18.148
133		3.169	420.163	638.880		0.133	3.899	6.517
200		2.956	406.875	646.393		0.235	6.811	17.711
260		3.018	417.447	648.237		0.208	2.605	13.626
327		2.960	414.875	646.307		0.309	2.456	19.027
380		2.810	416.993	669.550		0.244	2.869	18.279

Probe: IV19	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-
Profilname	10b	10b	10b	10b	10b	10b	10b	10b	10b	10b	10b	10b	10b	10b	10b	10b	10b	10b	10b	10b
Profilpunkt	2	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Mineral	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl	Spl
Analyse Gew%] TiO2 Ai2O3 Fe2O3 Fe2O3 FeO MnO MgO CaO Σ	.14	.15	.17	.14	.14	.18	20	.12	.16	.14	.17	.16	.12	.13	17	.09	.14	.16	.22	.12
	18.14	17.58	17.86	17.95	18.01	18.06	17.71	18.22	18.37	18.25	18.05	18.22	18.15	17.92	18.38	18.40	18.25	18.46	18.32	18.31
	44.73	44.36	44.91	44.56	44.53	44.05	44.01	44.12	44.78	44.82	44.50	44.48	44.63	44.77	44.09	44.14	44.32	44.40	44.69	43.77
	6.35	7.23	6.90	7.23	6.63	6.80	6.90	6.45	6.09	6.77	6.94	6.80	6.44	7.04	6.49	6.84	6.96	6.88	6.91	7.05
	21.47	20.95	21.03	21.24	21.09	20.40	20.61	20.70	20.86	21.20	20.58	20.60	21.08	20.95	20.75	20.69	20.89	20.91	21.14	20.54
	.28	.19	.21	.23	.13	.29	19	19	.21	.27	.31	.25	.20	.19	17	.22	.18	.24	.26	.24
	8.56	8.83	8.96	8.82	8.83	9.11	8.95	8.93	9.01	8.90	9.13	9.18	8.81	9.00	9.01	9.06	9.04	9.08	9.04	9.08
	.01	.00	.00	.03	.02	.00	01	.00	.00	.00	.00	.00	.02	.00	02	.00	.00	.03	.01	.00
	99.68	99.28	100.04	100.19	99.36	98.89	98.57	98.72	99.48	100.36	99.68	99.68	99.44	100.00	99.07	99.44	99.79	100.17	100.59	99.09
Kationen- besetzung Ti Gr Fe ²⁺ Fe ²⁺ Fe ²⁺ Mn Mg Σ Kationen Sauerstoffe	.003 .693 1.146 .155 .582 .008 .413 .000 3.000 4.000	.004 .674 1.141 .177 .570 .005 .428 .000 3.000 4.000	.004 .679 1.145 .168 .567 .006 .431 .000 3.000	.003 .682 1.136 .175 .573 .006 .424 .001 3.000	.003 .689 1.142 .162 .572 .004 .427 .001 3.000 4.000	.004 .692 1.133 .166 .555 .008 .441 .000 3.000 4.000	.005 .682 1.138 .170 .563 .005 .436 .000 3.000 4.000	.003 .700 1.137 .158 .564 .005 .434 .000 3.000	.004 .700 1.144 .148 .564 .006 .434 .000 3.000	.003 .691 1.138 .164 .570 .007 .426 .000 3.000 4.000	.004 .687 1.136 .169 .556 .009 .440 .000 3.000	.004 .693 1.134 .165 .556 .007 .441 .000 3.000 4.000	.003 .693 1.144 .157 .571 .005 .426 .001 3.000 4.000	.003 .681 1.142 .171 .565 .005 .433 .000 3.000 4.000	.004 .703 1.131 .158 .563 .005 .436 .001 3.000 4.000	.002 .701 1.128 .167 .559 .006 .437 .000 3.000 4.000	.003 .694 1.130 .169 .564 .005 .435 .000 3.000 4.000	.004 .698 1.127 .166 .562 .007 .435 .001 3.000 4.000	.005 .692 1.131 .167 .566 .007 .432 .000 3.000 4.000	.003 .700 1.123 .172 .557 .006 .439 .000 3.000 4.000
Mg #	35.94	36.43	36.97	36.16	36.78	37.97	37.29	37.52	37.87	36.77	37.75	37.97	36.87	37.03	37.64	37.57	37.25	37.40	37.07	37.58
Cr #	62.33	62.87	62.78	62.49	62.39	62.06	62.51	61.90	62.05	62.22	62.32	62.08	62.26	62.63	61.68	61.67	61.96	61.74	62.07	61.60
Profilstrecke [µm]	15	35	45	55	65	75	85	95	105	115	125	135	145	155	165	175	185	195	205	215

Probe: IV19	Drofil																			
Profilname	10b																			
Profilpunkt	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
Mineral	Spl																			
$\begin{array}{c} \textbf{Analyse} \\ \textbf{[Gew\%]} \\ TiO_2 \\ Al_2O_3 \\ Cr_2O_3 \\ Fe_2O_3 \\ Fe_2O_3 \\ FeO \\ MnO \\ MgO \\ CaO \\ \Sigma \end{array}$.17 18.55 44.31 6.58 21.07 .21 8.97 .00 99.87	.15 18.41 44.88 6.94 20.92 .21 9.23 .01 100.73	.15 18.40 44.46 6.92 21.06 .21 9.02 .01 100.22	.17 18.43 43.93 6.88 20.65 .26 9.11 .00 99.42	.14 18.53 44.73 6.20 20.81 .23 9.09 .00 99.71	.19 18.42 43.69 6.75 20.57 .19 9.10 .02 98.93	21 18.50 44.15 6.28 20.39 21 9.25 .00 98.99	17 18.45 44.02 6.72 20.73 08 9.16 00 99.33	.13 18.37 44.49 6.27 20.77 .25 8.97 .00 99.24	.17 18.40 44.05 6.43 20.74 .23 8.97 .01 98.99	.15 18.31 44.46 6.55 20.76 .23 9.07 .00 99.53	.14 18.41 44.18 7.10 20.90 .20 9.09 .00 100.02	.17 18.72 44.00 6.61 21.03 .24 8.97 .00 99.74	16 18.57 44.32 6.70 20.77 19 9.17 02 99.90	.19 18.57 44.42 6.67 20.98 .22 9.09 .02 100.16	.21 18.78 43.76 6.71 20.86 .18 9.13 .00 99.63	15 18.49 44.00 6.71 21.35 23 8.69 04 99.66	.16 18.49 44.57 6.92 21.05 .27 9.08 .00 100.54	.15 18.36 44.66 6.53 21.08 .24 8.94 .00 99.95	21 18.01 43.64 6.55 20.67 16 8.87 .00 98.11
Kationen- besetzung Al Cr Fe [÷] Fe [÷] Mn Mg Ca Ca ∑ Kationen	.004 .704 1.128 .159 .567 .006 .431 .000 3.000	.004 .693 1.133 .167 .559 .006 .439 .000 3.000	.004 .696 1.129 .167 .566 .006 .432 .000 3.000	.004 .702 1.123 .167 .558 .007 .439 .000 3.000	.003 .704 1.139 .150 .561 .006 .436 .000 3.000	.005 .705 1.121 .165 .558 .005 .440 .001 3.000	.005 .706 1.131 .153 .552 .006 .447 .000 3.000	.004 .703 1.125 .164 .561 .002 .441 .000 3.000	.003 .701 1.140 .153 .563 .007 .433 .000 3.000	.004 .704 1.131 .157 .563 .006 .434 .000 3.000	.004 .697 1.136 .159 .561 .006 .437 .000 3.000	.003 .698 1.123 .172 .562 .006 .436 .000 3.000	.004 .711 1.121 .160 .567 .007 .431 .000 3.000	.004 .704 1.126 .162 .559 .005 .440 .001 3.000	.005 .703 1.127 .161 .563 .006 .435 .001 3.000	.005 .713 1.114 .163 .562 .005 .438 .000 3.000	.004 .705 1.125 .163 .577 .006 .419 .001 3.000	.004 .698 1.128 .167 .563 .007 .433 .000 3.000	.004 .697 1.138 .158 .568 .006 .429 .000 3.000	.005 .696 1.132 .162 .567 .004 .434 .000 3.000
Sauerstoffe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Mg # Cr # Profilstrecke [µm]	37.21 61.57 225	37.72 62.06 235	37.08 61.85 245	37.69 61.53 255	38.03 61.82 265	37.84 61.40 275	38.79 61.56 285	37.87 61.54 295	37.72 61.91 305	37.61 61.63 315	37.74 61.96 325	37.25 61.69 335	37.19 61.19 345	37.89 61.55 355	37.51 61.60 365	37.69 60.99 375	36.12 61.49 385	37.23 61.78 395	37.14 62.01 405	37.31 61.91 415

Probe:	IV19
Profil:	11
Mineral:	Орх
Kapitel:	2.4

Profil- strecke [µm]	P [9/gµ]	Sc [µg/g]	Со [µg/g]	Zn [49/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
25	2.608	9.242	30.346	12.269	0.476	0.239	1.467	1.837
77	2.148	9.243	31.046	13.929	0.575	0.317	0.620	1.668
136	2.593	9.348	30.692	13.053	0.745	0.326	1.159	1.559
257	2.612	8.887	32.192	14.956	0.367	0.237	1.018	3.278
317	3.596	9.259	31.269	14.226	0.647	0.198	0.331	1.429
377	4.817	9.578	31.725	11.753	0.442	0.224	0.938	1.840
444	4.393	10.050	32.350	13.062	0.933	0.328	0.998	0.860
507	5.136	9.750	31.531	11.534	0.436	0.293	1.267	2.175
577	5.009	10.325	32.118	13.065	0.590	0.097	0.946	1.789
637	4.943	10.445	33.004	14.324	0.711	0.445	1.283	1.961
697	5.246	10.177	33.835	13.393	1.326	0.173	0.820	0.858
757	5.278	9.976	32.578	12.963	1.275	0.455	0.649	1.026
885	4.072	9.844	33.263	12.135	0.557	0.406	1.710	1.460
937	4.401	9.610	34.360	14.091	0.818	0.571	1.466	1.099
997	3.138	10.264	33.510	14.900	0.391	0.389	0.893	2.738
1057	3.606	9.966	33.551	10.621	0.641	0.418	1.127	0.927
1117	3.568	9.864	32.422	13.434	0.654	0.283	0.648	1.884
1178	4.086	10.367	31.871	14.871	1.087	0.161	0.729	1.836
1237	4.269	9.814	32.759	11.094	0.795	0.381	1.762	1.593
1297	4.431	10.287	32.529	12.605	1.046	0.355	0.658	3.005
1357	5.544	9.626	33.880	12.877	0.634	0.324	1.078	2.183
1417	3.541	9.581	33.221	13.302	0.749	0.468	0.847	1.908
1517	3.050	9.375	32.498	11.074	0.773	0.269	0.541	1.084
1564	1.823	9.308	30.982	12.457	0.440	0.168	0.921	2.192

Probe: IV19 Profilname	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11
Profilpunkt	20	22	23	24	25	26	27	29	30	31	32	33	34	35	36	37	38	40	41	42
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO ₂ TO ₂ TO ₂ Gr ₂ O ₃ FeO MnO NiO MigO CaO K ₂ O K ₂ O X	57.54 .05 .98 .27 .13 .07 35.22 .02 .02 .02 100.69	57.11 .05 1.03 .25 5.95 .12 .10 35.35 .41 .04 .00 100.41	57.57 .05 .99 .29 6.01 .11 .05 35.52 .03 .02 101.05	57.26 .04 1.01 .26 6.11 .19 .06 35.62 .40 .00 .00 100.95	57.24 .02 1.03 .26 5.93 .11 .07 35.61 .44 .02 .00 100.72	57.53 .03 .99 .28 6.13 .16 .08 35.69 .43 .02 .00 101.35	57.66 .05 1.02 .29 5.88 .18 .02 35.49 .40 .00 .01 101.00	57.72 .03 1.03 .31 5.99 .13 .07 35.41 .02 .01 101.16	57.39 .03 1.06 .26 5.96 .14 .06 35.37 .02 .00 100.76	57.70 .02 1.03 .28 6.07 .14 .09 35.44 .42 .02 .01 101.22	57.55 .03 1.06 .29 6.02 .15 .09 35.34 .47 .02 .00 101.02	57.58 .02 1.00 .28 5.95 .15 .08 35.46 .47 .00 .01 100.99	57.53 .02 1.01 .29 5.92 .15 .07 35.32 .51 .00 .02 100.85	57.56 .05 1.01 .27 5.88 .14 .08 35.39 .49 .00 .01 100.88	57.71 .02 1.06 .31 5.95 .17 .10 35.32 .49 .00 .03 101.15	57.68 .03 1.07 .28 5.76 .16 .05 35.54 .47 .00 .02 101.04	57.99 .04 1.02 .27 5.95 .18 .09 35.25 .47 .02 .00 101.28	57.20 .03 1.02 .29 5.83 .17 .09 35.28 .46 .02 .00 100.38	57.67 .06 1.06 .29 5.98 .15 .10 35.43 .47 .00 .02 101.23	57.39 .05 1.06 .32 5.81 .12 .05 35.35 .48 .03 .00 100.65
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Na K Kationen	1.969 .001 .040 .007 .171 .004 .002 1.796 .015 .001 .001 4.007	1.961 .001 .042 .003 .171 .003 .003 1.810 .015	1.964 .001 .008 .171 .003 .001 1.805 .002 .001 4.012	1.957 .001 .041 .005 .005 .002 1.815 .015 .000 .000 4.018	1.959 .000 .042 .007 .170 .003 .002 1.817 .016 .001 .000 4.017	1.959 .001 .008 .175 .005 .002 1.811 .016 .001 .000 4.017	1.966 .001 .041 .008 .168 .005 .001 1.804 .015 .000 .001 4.009	1.966 .001 .041 .004 .171 .004 .002 1.798 .016 .001 .001 4.009	1.963 .001 .043 .007 .170 .004 .002 1.804 .017 .001 .000 4.012	1.965 .001 .041 .004 .173 .004 .002 1.799 .015 .001 .001 4.011	1.964 .001 .003 .004 .172 .004 .002 1.798 .017 .001 .000 4.010	1.965 .001 .007 .170 .004 .002 1.804 .017 .000 .000 4.011	1.966 .001 .041 .008 .169 .004 .002 1.799 .019 .000 .001 4.010	1.966 .001 .041 .007 .168 .004 .002 1.802 .018 .000 .000 4.009	1.966 .001 .003 .005 .003 1.794 .018 .000 .001 4.008	1.965 .001 .043 .007 .164 .004 .001 1.805 .017 .000 .001 4.009	1.972 .001 .041 .005 .003 1.787 .017 .001 .000 4.003	1.964 .001 .041 .005 .002 1.806 .017 .002 .000 4.012	1.964 .002 .043 .008 .170 .004 .003 1.798 .017 .000 .001 4.010	1.964 .001 .043 .009 .166 .004 .001 1.803 .018 .002 .000 4.010
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.31 15.68 5	91.37 13.83 25	91.33 16.61 35	91.23 14.54 45	91.46 14.58 55	91.21 15.94 65	91.50 16.08 75	91.33 16.60 95	91.36 13.90 105	91.23 15.61 115	91.28 15.64 125	91.39 15.54 135	91.41 16.06 145	91.47 15.05 155	91.36 16.27 165	91.66 14.72 175	91.35 15.07 185	91.52 15.79 205	91.35 15.60 215	91.56 16.69 225

Profilname	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11
Profilpunkt	44	45	46	47	48	49	52	53	54	55	56	57	58	59	60	61	63	64	65	66
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO NiO NiO NiO NiO Na ₂ O K ₂ Ō Σ	57.59 .03 1.07 .32 5.95 .10 .14 35.65 .49 .03 .00 101.36	57.99 .04 1.07 .29 6.07 .10 .10 35.28 .46 .02 .00 101.43	57.59 .06 1.08 .29 5.84 .15 .08 35.45 .45 .00 .01 100.99	57.93 .04 1.12 .34 6.05 .16 .08 35.40 .48 .00 .01 101.62	57.75 .02 1.11 .36 5.74 .19 .09 35.46 .48 .00 .01 101.22	57.79 .07 1.09 .32 5.69 .16 .06 35.37 .50 .02 .01 101.08	57.56 .05 1.09 .29 5.87 .11 .10 35.38 .50 .00 .00 100.96	57.69 .03 1.11 .32 5.81 .15 .06 35.38 .50 .01 .00 101.06	57.97 .03 1.09 .32 5.72 .13 .09 35.34 .47 .02 .00 101.18	57.94 .05 1.14 .31 5.79 .12 .05 35.25 .53 .02 .01 101.19	57.53 .03 1.11 .36 5.81 .15 .08 35.36 .43 .01 .02 100.89	57.54 .03 1.12 .34 5.80 .16 .10 35.39 .49 .00 .00 100.97	57.68 .02 1.12 .32 5.93 .11 .11 35.57 .46 .03 .01 101.36	58.03 .05 1.13 .32 5.70 .15 .09 35.50 .48 .02 .00 101.47	57.67 .03 1.10 .33 5.73 .11 .10 35.33 .46 .03 .00 100.90	56.67 .06 1.15 .34 5.63 .08 .07 35.24 .01 .02 99.70	57.84 .05 1.13 .32 5.90 .15 .04 35.42 .47 .01 .02 101.35	57.73 .04 1.10 .36 5.72 .16 .09 35.39 .45 .00 .00 101.05	57.81 .03 1.18 .30 5.91 .14 .08 35.21 .52 .00 .01 101.19	57.89 .02 1.13 .34 5.87 .15 .06 35.21 .47 .01 .00 101.14
Kationen- besetzung Si Ti Al Cr Fe ^{4*} Mn Mg Ca Ca Na K K Kationen	1.959 .001 .043 .009 .003 .004 1.808 .018 .018 .002 .000 4.015	1.970 .001 .043 .008 .172 .003 .003 1.786 .017 .001 .000 4.004	1.964 .001 .044 .008 .166 .004 .002 .016 .000 .000 4.009	1.965 .001 .045 .009 .171 .005 .002 1.790 .017 .000 .000 4.007	1.965 .001 .045 .010 .163 .005 .002 1.799 .018 .000 .000 4.008	1.968 .002 .044 .009 .162 .005 .005 .018 .001 .001 4.005	1.964 .001 .044 .008 .167 .003 .003 .003 .003 .018 .000 .000 4.009	1.966 .001 .044 .009 .166 .004 .002 1.797 .018 .001 .000 4.007	1.971 .001 .044 .009 .163 .004 .002 1.791 .017 .001 .000 4.003	1.970 .001 .046 .008 .165 .003 .001 1.787 .019 .001 .000 4.002	1.964 .001 .045 .010 .166 .004 .002 1.800 .016 .000 .001 4.008	1.963 .001 .045 .009 .165 .003 1.800 .018 .000 .000 4.009	1.961 .000 .045 .009 .169 .003 .003 .003 .003 .017 .002 .001 4.013	1.968 .001 .045 .009 .162 .004 .002 1.795 .017 .001 .000 4.005	1.967 .001 .044 .009 .163 .003 .003 1.797 .017 .017 .002 .000 4.006	1.957 .001 .047 .009 .163 .002 .002 .002 1.815 .016 .001 4.014	1.966 .001 .045 .009 .168 .004 .001 1.795 .017 .000 .001 4.007	1.967 .001 .044 .010 .163 .005 .003 1.797 .016 .000 .000 4.006	1.968 .001 .047 .008 .168 .004 .002 1.786 .019 .000 .000 4.004	1.970 .001 .045 .009 .167 .004 .002 1.787 .017 .001 .000 4.002
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr #	91.44 16.59	91.19 15.53 256	91.54 15.27 266	91.26 16.91 276	91.68 17.73 286	91.72 16.39 296	91.49 15.23 326	91.56 16.35 336	91.67 16.57 346	91.57 15.50 356	91.57 17.70 366	91.58 16.94 376	91.44 16.12 386	91.73 16.01 396	91.67 16.81 406	91.78 16.38 416	91.45 16.14 436	91.68 18.10 446	91.39 14.46 456	91.45 16.80 466

Probe: IV19 Profilname	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11
Profilpunkt	67	68	69	70	71	75	76	77	78	79	80	81	82	83	85	86	87	88	89	92
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 Cr203 FeO MnO NiO NiO MgO CaO CaO K2O K2O	57.65 .01 1.14 .29 5.88 .17 .09 35.50 .51 .00 .01 101.24	57.77 .05 1.13 .33 5.84 .16 .11 35.17 .49 .00 .00 101.04	57.65 .04 1.14 .34 5.79 .14 .07 35.47 .52 .01 .00 101.16	57.95 .04 1.14 .32 5.92 .14 .08 35.38 .51 .00 .01 101.49	57.89 .04 1.12 .32 5.89 .14 .10 35.44 .00 .00 101.42	57.54 .06 1.15 .35 5.72 .18 .09 35.16 .49 .00 .00 100.74	57.85 .04 1.14 .34 5.76 .14 .03 35.17 .52 .01 .00 100.99	57.96 .05 1.20 .36 5.85 .18 .08 35.39 .47 .03 .00 101.56	57.49 .04 1.11 .37 5.86 .10 .12 35.24 .50 .00 .00 100.82	57.71 .05 1.16 .35 5.81 .24 .14 35.21 .52 .01 .01 101.20	57.74 .04 1.16 .33 5.90 .17 .14 35.20 .56 .01 .00 101.24	57.69 .05 1.13 .33 5.84 .16 .09 35.30 .49 .00 .01 101.10	57.90 .02 1.15 .34 5.79 .16 .10 35.25 .52 .04 .00 101.25	57.73 .02 1.15 .33 5.76 .17 .11 35.25 .52 .02 .01 101.06	57.54 .04 1.15 .33 5.75 .20 .09 35.48 .45 .01 .00 101.04	57.54 .04 1.18 .38 5.89 .16 .08 35.28 .44 .00 .00 100.99	57.71 .06 1.15 .36 5.84 .16 .05 35.12 .51 .00 .00 100.97	58.01 .05 1.15 .37 5.82 .15 .08 35.20 .46 .00 .01 101.30	57.43 .04 1.20 .37 5.72 .14 .10 35.27 .02 .01 100.74	58.01 .05 1.18 .37 5.76 .19 .11 35.28 .46 .02 .01 101.46
Kationen- besetzung Si Ti Al Cr Fr ²⁺ · Mn Ni Mg Ca Ca Na K Kationen	1.962 .000 .046 .008 .167 .005 .002 1.801 .019 .000 .000 4.011	1.969 .001 .045 .009 .166 .005 .003 1.787 .018 .000 .000 4.003	1.963 .001 .009 .165 .004 .002 1.801 .019 .001 .000 4.009	1.967 .001 .009 .168 .004 .002 1.790 .019 .000 .000 4.005	1.966 .001 .005 .009 .167 .004 .003 1.794 .017 .000 .000 4.007	1.967 .001 .046 .010 .164 .005 .002 1.791 .018 .000 .000 4.004	1.971 .001 .009 .164 .004 .001 1.786 .019 .001 .000 4.001	1.966 .001 .048 .010 .166 .005 .002 1.789 .017 .002 .000 4.005	1.964 .001 .015 .010 .167 .003 1.795 .018 .000 .000 4.007	1.965 .001 .009 .165 .007 .004 1.788 .019 .000 .000 4.006	1.966 .001 .009 .168 .005 .004 1.786 .020 .001 .000 4.006	1.966 .001 .005 .005 .003 1.793 .018 .000 .000 4.006	1.969 .001 .046 .009 .165 .004 .003 1.787 .019 .002 .000 4.004	1.967 .001 .009 .164 .005 .003 1.791 .019 .001 .000 4.006	1.962 .001 .006 .009 .164 .002 1.803 .016 .001 .000 4.010	1.963 .001 .047 .010 .168 .005 .002 1.794 .016 .000 .000 4.007	1.968 .002 .046 .010 .167 .005 .001 1.785 .019 .000 .000 4.002	1.971 .001 .010 .165 .004 .002 1.783 .017 .000 .000 4.000	1.963 .001 .048 .010 .164 .004 .003 1.797 .017 .001 .000 4.008	1.969 .001 .047 .010 .163 .003 1.785 .017 .002 .000 4.003
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.50 14.55 476	91.48 16.51 486	91.61 16.63 496	91.42 15.83 506	91.47 16.04 516	91.63 17.18 556	91.59 16.60 566	91.52 16.91 576	91.47 18.15 586	91.53 16.90 596	91.41 16.15 606	91.51 16.51 616	91.57 16.57 626	91.61 15.97 636	91.67 16.18 656	91.43 17.74 666	91.47 17.53 676	91.52 17.75 686	91.66 17.11 696	91.61 17.48 726

Profilnunkt	03	94	95	96	97	98		101	100	110	111	112	113	114	115	116	117	118	110	120
Prompunkt	-	54	-	50	-	50	-	-	103	-	-	-	-	-	-	-	•	-	-	120
Mineral	Орх																			
Analyse																				
[Gew%] SiO ₂	57.74	57.69	58.00	57.94	57.82	57.56	57.52	57.66	57.76	58.02	58.11	57.73	57.70	57.79	58.04	57.95	57.89	57.62	57.63	57.86
TiO ₂	.02	.04	.05	.05	.03	.05	.05	.05	.04	.03	.03	.04	.03	.04	.05	.02	.05	.05	.04	.06
	1.15	1.16	1.16	1.16	1.18	1.12	1.16	1.13	1.15	1.19	1.18	1.18	1.17	1.14	1.16	1.13	1.11	1.15	1.18	1.13
FeO	5.89	5.94	5.98	5.87	5.94	5.66	5.84	5.87	5.86	5.73	5.69	5.84	5.82	5.93	5.82	5.81	5.76	5.86	5.82	5.94
MnO NiO	.12	.13	.15	.19	.16	.16	.14	.14	.12	.16	.16	.15	.14	.18	.13	.16	.15	.13	.15	.18
MgO	35.16	35.29	35.45	35.39	35.39	35.20	35.37	35.51	35.24	35.36	35.17	35.16	35.11	35.24	35.13	35.29	35.25	35.27	35.16	35.43
CaO Na O	.57	.45	.43	.42	.56	.51	.48	.49	.48	.50	.50	.49	.44	.47	.47	.47	.48	.46	.46	.47
K ₂ O	.00	.00	.00	.01	.02	.02	.00	.02	.00	.00	.00	.00	.00	.00	.01	.04	.02	.00	.00	.00
Σ	101.15	101.14	101.71	101.48	101.57	100.78	101.07	101.35	101.17	101.41	101.27	101.03	100.83	101.18	101.29	101.32	101.15	100.96	100.87	101.52
Kationen-																				
besetzung																				
Si	1.967	1.965	1.965	1.966	1.963	1.967	1.961	1.961	1.966	1.969	1.974	1.967	1.970	1.967	1.972	1.969	1.970	1.965	1.967	1.964
Al	.000	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.002
Cr	.010	.009	.010	.010	.011	.010	.011	.010	.011	.010	.009	.010	.010	.010	.010	.009	.010	.010	.010	.010
⊢e [_] Mn	.168	.169	.169	.167	.169	.162	.166	.167	.167	.163	.162	.166	.166	.169	.165	.165	.164	.167	.166	.169
Ni	.003	.003	.003	.002	.002	.003	.003	.003	.003	.001	.002	.002	.002	.001	.003	.003	.002	.001	.002	.002
Mg	1.786	1.792	1.791	1.791	1.790	1.793	1.798	1.800	1.788	1.788	1.780	1.786	1.786	1.788	1.779	1.788	1.788	1.793	1.789	1.793
Na	.000	.000	.000	.001	.0020	.001	.000	.001	.001	.001	.000	.000	.000	.000	.001	.003	.001	.000	.000	.000
K	.001	.000	.001	.000	.000	.001	.000	.000	.000	.000	.001	.000	.000	.000	.001	.000	.000	.000	.000	.000
∑ rvationen	4.005	4.006	4.006	4.005	4.009	4.006	4.009	4.011	4.004	4.002	3.998	4.003	4.001	4.004	3.999	4.004	4.002	4.005	4.003	4.007
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Ma #	91.41	91.37	91.35	91.49	91.40	91.72	91.52	91.51	91.47	91.67	91.68	91.48	91.49	91.38	91.49	91.54	91.60	91.47	91.50	91.41
Cr#	18.13	16.37	18.00	18.06	18.26	18.02	19.27	17.72	18.94	17.03	16.10	16.78	17.13	17.96	17.04	17.16	18.19	17.78	17.67	18.30
Profilstrecke [um]	736	746	757	767	777	787	797	817	897	907	917	927	937	947	957	967	977	987	997	1007

Probe: IV19 Profilname	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11
Profilpunkt	121	122	123	124	125	126	127	128	130	131	132	133	134	135	136	137	138	139	140	141
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 TiO2 Cr2O3 FeO MnO NiO MigO CaO CaO K2O K2O K2O X2O	57.45 .03 1.13 .35 5.87 .13 .02 35.18 .42 .00 .01 100.58	58.01 .04 1.09 .38 5.83 .21 .09 35.26 .42 .02 .01 101.34	57.80 .02 1.19 .36 5.73 .14 .10 35.32 .40 .02 .01 101.11	58.17 .04 1.12 .37 5.75 .13 .07 35.16 .43 .02 .01 101.26	58.04 .06 1.13 .36 5.74 .16 .06 35.17 .46 .00 .02 101.18	57.79 .06 1.13 .36 5.84 .16 .11 35.25 .48 .01 .02 101.21	58.10 .06 1.15 .36 5.81 .18 .08 35.38 .50 .00 .00 101.63	57.69 .05 1.14 .36 5.82 .19 .10 35.27 .52 .00 .00 101.14	57.43 .04 1.18 .39 5.75 .16 .12 35.29 .50 .01 .01 .00 100.87	57.82 .05 1.18 .36 5.78 .10 35.35 .57 .02 .01 101.41	57.84 .04 1.16 .38 5.66 .15 .05 35.18 .52 .00 .01 101.00	58.16 .02 1.15 .36 5.80 .17 .10 35.16 .54 .00 .00 101.46	57.61 .02 1.15 .36 5.83 .14 .05 35.23 .55 .00 .00 100.95	57.61 .03 1.22 .40 5.87 .11 .12 35.26 .53 .02 .01 101.18	57.72 .05 1.16 .38 5.84 .17 .05 35.29 .48 .03 .01 101.16	57.85 .02 1.15 .34 5.78 .20 .04 35.45 .50 .00 .00 101.33	57.72 .05 1.17 .38 5.70 .16 .11 35.25 .48 .01 .00 101.03	57.45 .05 1.14 .37 5.75 .17 .16 35.25 .54 .04 .00 100.92	57.72 .06 1.12 .34 5.74 .11 .11 35.19 .50 .00 .00 100.88	57.63 .06 1.17 .38 5.87 .12 .13 35.20 .50 .00 .00 101.05
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Na K Kationen	1.966 .001 .046 .009 .168 .004 .000 1.795 .015 .000 .000 4.005	1.971 .001 .043 .010 .166 .002 1.786 .012 .001 .000 4.002	1.967 .000 .048 .010 .163 .004 .003 1.792 .015 .001 .001 4.004	1.975 .001 .045 .010 .163 .004 .002 1.780 .011 .000 3.997	1.973 .001 .045 .010 .163 .005 .002 1.782 .017 .000 .001 3.998	1.967 .001 .045 .010 .166 .005 .003 1.788 .018 .001 .001 4.005	1.968 .002 .046 .010 .165 .005 .002 1.787 .018 .000 .000 4.002	1.965 .001 .046 .010 .166 .005 .003 1.791 .019 .000 .000 4.006	1.962 .001 .047 .011 .164 .005 .003 1.797 .018 .001 .000 4.009	1.964 .001 .047 .010 .164 .005 .003 1.790 .021 .001 .000 4.007	1.970 .001 .047 .010 .161 .004 .001 1.766 .019 .000 .001 4.001	1.973 .001 .046 .010 .165 .005 .003 1.778 .020 .000 .000 3.999	1.966 .000 .046 .010 .166 .004 .001 1.792 .020 .000 .000 4.006	1.962 .001 .049 .011 .167 .003 .003 1.790 .019 .002 .000 4.008	1.965 .001 .046 .010 .166 .005 .001 1.791 .017 .002 .000 4.006	1.966 .001 .009 .164 .006 .001 1.796 .018 .000 .000 4.006	1.967 .001 .047 .010 .162 .004 .003 1.790 .018 .001 .000 4.004	1.962 .001 .040 .164 .005 .004 1.795 .020 .003 .000 4.010	1.969 .001 .045 .009 .164 .003 .003 1.790 .018 .000 .000 4.002	1.965 .001 .047 .010 .167 .003 .004 1.789 .018 .000 .000 4.005
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.44 16.99 1017	91.52 19.05 1027	91.65 17.05 1037	91.59 17.94 1047	91.62 17.62 1057	91.49 17.44 1067	91.57 17.50 1077	91.53 17.63 1087	91.62 18.15 1107	91.59 16.78 1117	91.72 18.11 1127	91.53 17.22 1137	91.50 17.45 1147	91.46 18.16 1157	91.51 18.03 1167	91.61 16.65 1177	91.68 17.89 1187	91.62 18.04 1197	91.62 16.94 1207	91.45 17.89 1217

Probe: IV19																				
Profilname	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11
Profilpunkt	142	143	144	145	146	147	148	149	150	151	153	154	156	158	159	160	161	162	163	164
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO ₂ TO ₃ Gr ₂ O ₃ Gr ₂ O ₃ FeO MnO NiO MgO CaO K ₂ Ô CaO K ₂ Ô	57.67 06 1.12 .37 5.87 .11 08 35.24 .49 .00 .00 100.99	57.98 .05 1.15 .37 5.74 .17 .12 35.21 .56 .00 .02 101.37	57.77 .04 1.12 .38 5.72 .16 .07 35.18 .53 .01 .00 100.98	57.64 .05 1.14 .37 5.70 .20 .13 35.20 .52 .00 .00 100.94	57.80 .03 1.14 .37 5.75 .17 .12 35.31 .55 .01 .01 101.26	58.06 .04 1.12 .33 5.70 .17 .09 35.14 .61 .02 .01 101.29	57.81 .05 1.14 .34 5.89 .13 .10 35.24 .51 .03 .01 101.24	57.55 .04 1.10 .34 5.79 .16 .12 35.31 .52 .02 .01 100.96	57.71 .02 1.17 .34 5.89 .15 .08 35.28 .61 .02 .00 101.26	57.88 .03 1.11 .36 5.75 .10 .14 35.24 .59 .01 .00 101.21	57.49 .03 1.13 .35 5.85 .16 .14 35.02 .61 .02 .00 100.80	57.87 .03 1.09 .34 5.71 .20 .08 35.20 .51 .00 .01 101.04	57.76 .03 1.09 .33 6.01 .16 .07 35.29 .48 .00 .00 101.22	57.81 .05 1.10 .30 5.89 .10 .09 35.34 .56 .00 .00 101.23	58.10 .05 1.08 .32 5.86 .18 .07 35.33 .50 .02 .00 101.51	57.98 .04 1.07 .30 5.92 .18 .05 35.21 .49 .00 .00 101.24	57.69 .03 1.11 .30 5.86 .13 .06 35.40 .50 .01 .01 101.10	58.07 .01 1.02 .28 5.90 .14 .14 35.31 .54 .00 .00 101.41	57.78 .06 1.05 .31 5.71 .18 .09 35.29 .51 .04 .02 101.03	58.07 .03 1.08 .29 5.82 .17 .09 35.28 .51 .01 .00 101.33
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Na K Kationen	1.967 .001 .045 .010 .167 .003 .002 1.791 .018 .000 .000 4.005	1.969 .001 .010 .163 .005 .003 1.783 .021 .000 .001 4.002	1.969 .001 .045 .010 .163 .005 .002 1.788 .019 .001 .000 4.003	1.966 .001 .010 .163 .006 .004 1.790 .000 .000 4.004	1.966 .001 .040 .164 .005 .003 1.791 .020 .000 .001 4.006	1.973 .001 .009 .162 .005 .002 1.780 .022 .002 .000 4.001	1.967 .001 .009 .168 .004 .003 1.788 .019 .002 .000 4.006	1.964 .001 .009 .165 .005 .003 1.797 .019 .002 .000 4.009	1.964 .001 .009 .168 .004 .002 1.790 .022 .001 .000 4.008	1.969 .001 .044 .010 .164 .003 .004 1.787 .022 .000 .000 4.003	1.966 .001 .046 .009 .167 .005 .004 1.785 .022 .002 .000 4.007	1.971 .044 .009 .163 .006 .002 1.787 .019 .000 .000 4.002	1.967 .001 .044 .009 .171 .005 .002 1.791 .018 .000 .000 4.006	1.967 .001 .048 .008 .168 .003 .020 1.793 .020 .000 .000 4.006	1.971 .043 .009 .166 .005 .002 1.787 .018 .001 .000 4.003	1.972 .001 .008 .168 .005 .001 1.785 .018 .000 .000 4.002	1.965 .001 .044 .008 .167 .004 .002 1.798 .018 .001 .000 4.008	1.972 .000 .041 .008 .168 .004 1.788 .020 .000 .000 4.003	1.969 .001 .042 .008 .163 .005 .002 1.793 .019 .003 .001 4.006	1.972 .001 .043 .008 .165 .002 1.786 .018 .001 .000 4.002
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr #	91.46 18.13	91.62 17.70	91.65 18.55	91.68 17.72	91.63 17.77	91.66 16.64	91.43 16.63	91.58 17.24	91.43 16.32	91.61 17.99	91.44 17.19	91.65 17.29	91.28 16.70	91.45 15.36	91.49 16.77	91.38 15.99	91.50 15.45	91.43 15.62	91.68 16.30	91.52 15.10
Profilstrecke [µm]	1227	1237	1247	1258	1268	1278	1288	1298	1308	1318	1338	1348	1368	1388	1398	1408	1418	1428	1438	1448

Probe: IV19													
Profilname	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11	Profil-11
Profilpunkt	165	166	167	168	169	170	171	172	173	174	175	176	177
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] [Gow%] SiO ₂ TiO ₃ A ₃ O ₃ Cr ₂ O ₃ FeO MiO NiO NiO NiO MgO CaO Ma ₂ O K ₂ O ∑ X	57.77 .03 1.06 .27 5.97 .17 .01 35.12 .51 .02 .00 100.94	57.92 .02 1.03 .32 5.91 .12 .06 35.28 .45 .02 .00 101.14	58.11 .03 1.11 .29 6.02 .18 .12 35.24 .52 .00 .00 101.61	57.73 .03 1.02 .28 5.82 .13 .09 35.09 .49 .02 .01 100.71	57.98 .03 1.04 .28 5.85 .18 .08 35.10 .48 .02 .00 101.04	57.86 .01 1.02 .30 5.81 .19 .03 35.23 .45 .00 .00 100.90	58.12 .02 1.02 .27 5.91 .18 .08 35.28 .48 .00 .01 101.36	57.82 .04 1.06 .29 5.94 .14 .08 35.22 .47 .02 .00 101.05	58.03 .03 1.04 .29 6.04 .15 .05 35.31 .49 .00 .01 101.45	57.87 .02 1.01 .28 5.97 .17 .02 35.05 .47 .00 .00 100.86	57.87 .04 .97 .26 6.02 .18 .10 35.10 .46 .00 .00 100.99	58.29 .01 1.05 .27 6.14 .14 .08 34.90 .46 .00 .00 101.33	57.96 .04 1.00 .23 6.34 .18 .06 34.93 .48 .00 .00 101.22
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{besetzung}\\ Si\\ Ti\\ Al\\ Cr\\ Fe^{r}\\ Mn\\ Ni\\ Mg\\ Ca\\ Na\\ K\\ \Sigma \mbox{Kationen}\\ Sauerstoffe \end{array}$	1.971 .001 .043 .007 .170 .005 .000 1.786 .019 .001 .000 4.004	1.972 .000 .041 .009 .168 .003 .002 1.790 .016 .001 .000 4.004	1.971 .001 .044 .008 .171 .005 .003 1.782 .019 .000 .000 4.003 6.000	1.973 .001 .041 .007 .166 .004 .003 1.788 .018 .001 4.003 6.000	1.975 .001 .042 .008 .167 .005 .002 1.782 .018 .002 .000 4.000	1.973 .000 .041 .008 .006 .001 1.791 .016 .000 4.002 6.000	1.974 .001 .041 .007 .168 .005 .002 1.786 .017 .000 4.002 6.000	1.970 .001 .042 .008 .169 .004 .002 1.789 .017 .001 .000 4.004 6.000	1.971 .001 .042 .008 .172 .004 .001 1.788 .018 .000 .000 4.004 6.000	1.975 .000 .041 .008 .170 .005 .001 1.783 .017 .000 4.000 6.000	1.974 .001 .039 .007 .1725 .003 1.785 .017 .000 4.002 6.000	1.980 .000 .042 .007 .175 .004 .002 1.768 .017 .000 3.995 6.000	1.975 .001 .040 .006 .181 .005 .002 1.774 .000 .000 4.001 6.000
Mg # Cr # Profilstrecke [µm]	91.29 14.57 1458	91.40 17.01 1468	91.25 15.01 1478	91.49 15.34 1488	91.45 15.31 1498	91.54 16.38 1508	91.41 15.15 1518	91.36 15.38 1528	91.24 15.49 1538	91.28 15.83 1548	91.22 15.23 1558	91.01 14.61 1568	90.76 13.56 1578

Probe:	IV19	
Profil:	14	
Mineral:	OI	
Kapitel:	Anhang II	

Profil- strecke [µm]	P [µg/g]	Sc [g/g4]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
50	35.650	0.918	73.440	14.106	0.848	0.152	6.899	1.300
110	34.433	0.775	70.244	8.163	1.691	0.175	0.509	1.404
250	19.201	0.667	68.804	9.652	1.245	0.074	9.722	2.521
310	32.761	0.595	75.045	11.043	1.909	0.085	1.307	2.511

Probe: IV19	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-
Profilname	14a	14a	14a	14a	14a	14a	14a	14a	14a	14a	14a	14a	14a
Profilpunkt	1	2	3	4	5	6	7	8	9	10	11	12	13
Mineral	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI
Analyse Gew%j [Gow%j SiO ₂ TO ₃ A ₃ O ₃ Gr ₂ O ₃ Gr ₂ O ₃ FeO MnO NiO MgO CaO CaO K ₂ O Z	41.56 .00 .01 8.23 51.01 .01 .00 .00 101.32	41.05 .00 .01 8.30 .11 .40 51.00 .01 .00 .01 100.90	40.60 .00 .01 8.32 .19 .46 50.69 .02 .00 .00 100.31	41.34 .00 .01 .04 8.47 .13 .42 50.95 .00 .00 .00 .00 101.35	40.92 .00 .01 .02 8.30 .12 .45 50.96 .01 .01 .01 100.80	41.20 .00 .01 .02 8.15 .06 .46 51.23 .00 .02 .00 101.16	41.17 .01 .00 .03 8.12 .16 .46 51.06 .02 .02 .02 .01 101.05	41.22 .01 .00 .02 8.23 .16 .43 50.86 .01 .00 .00 100.93	41.04 .03 .01 .05 7.86 .12 .40 51.38 .00 .00 .00 .00	41.22 .02 .00 .08 7.57 .07 .41 51.40 .00 .00 .02 100.79	41.12 .00 .09 7.61 .13 .40 51.67 .00 .01 .00 101.02	41.41 .02 .00 .16 7.34 .11 .43 51.82 .00 .00 .00 .00 101.28	41.56 .00 .01 .29 6.65 .10 .44 52.47 .00 .01 .00 101.53
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{besetzung}\\ \mbox{Si}\\ \mbox{Ti}\\ \mbox{Al}\\ \mbox{Al}\\ \mbox{Cr}\\ \mbox{Fe}^{**}\\ \mbox{Mn}\\ \mbox{Ni}\\ \mbox{Ni}\\ \mbox{Mg}\\ \mbox{Ca}\\ \mbox{Na}\\ \mbox{K}\\ \mbox{Stationen}\\ \mbox{Sauerstoffe} \end{array}$.998 .000 .000 .165 .002 .008 1.827 .000 .000 3.001 4.000	.992 .000 .000 .168 .002 .008 1.837 .000 .000 3.008 4.000	.988 .000 .000 .169 .009 1.840 .001 .000 3.011 4.000	.995 .000 .001 .170 .008 1.828 .000 .000 3.005 4.000	.990 .000 .000 .168 .009 1.839 .000 .000 3.010 4.000	.992 .000 .000 .164 .009 1.839 .000 .001 .000 3.008	.993 .000 .000 .164 .009 1.836 .000 .001 .000 3.007 4.000	.995 .000 .000 .166 .003 1.831 .000 .000 3.004 4.000	.990 .001 .000 .001 .159 .003 1.848 .000 .000 3.009 4.000	.994 .000 .001 .153 .002 .008 1.847 .000 .000 .001 3.006 4.000	.990 .000 .002 .153 .008 1.854 .000 .000 3.010 4.000	.993 .000 .003 .147 .002 .008 1.852 .000 .000 3.005 4.000	.991 .000 .005 .133 .009 1.866 .000 .000 3.006 4.000
Mg #	91.70	91.63	91.56	91.47	91.63	91.80	91.81	91.68	92.09	92.37	92.37	92.64	93.36
Profilstrecke [µm]	5	15	25	35	45	55	65	74	84	94	104	114	124

Probe: IV19															
Profilname	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-	Profil-
Profilpunkt	140	2	3	4	5	14C 6	7	8	9	140	140	140	140	140	140
Minanal	~	~	~	~	~	~	~	~	~	~		~	~	~	~
wineral	01	01	01	01	01	0i	01	01	01	01	01	01	01	01	01
Analyse Gew-%] [Gew-%] SiO ₂ TO2, Al ₂ O, Al ₂ O, Fero NiO NiO NiO Sa GaO K ₂ O Z Z	41.34 .00 .00 .34 6.25 .09 .46 52.95 .00 .01 .01 101.46	41.14 .02 .00 .17 6.69 .07 .43 52.35 .02 .00 .01 100.90	41.12 .00 .13 7.17 .08 .47 52.07 .00 .00 .00 .00 .00	41.26 .00 .05 7.23 .14 .44 51.82 .03 .00 .02 101.00	41.28 .00 .05 7.77 .11 .43 51.60 .00 .03 .00 101.27	41.22 .00 .05 7.92 .10 .41 51.55 .00 .00 .01 101.26	40.84 .00 .00 7.60 .12 .41 51.21 .00 .00 .00 100.19	41.02 .00 .02 8.01 .10 .42 51.36 .01 .00 .01 100.95	40.91 .02 .00 .00 8.26 .17 .39 50.96 .00 .00 .00 .00 100.71	41.06 .00 .01 .02 8.10 .13 .41 51.04 .01 .00 .01 100.78	41.19 .00 .00 8.13 .45 50.99 .00 .00 .00 100.89	41.25 .00 .01 .02 8.28 .12 .41 51.19 .02 .00 .00 .00 .00 101.28	41.26 .00 .00 8.25 .09 .43 50.93 .02 .00 .02 101.01	41.35 .00 .02 8.07 .13 .45 51.04 .01 .00 .01 101.08	41.06 .00 .02 8.12 .11 .40 50.85 .00 .01 100.58
Kationen- besetzung Si Ti Al Ca Mi Ni Mg Ca Na K ∑ Kationen Sauerstoffe	.986 .000 .000 .125 .002 .009 1.883 .000 .001 .000 3.011 4.000	.988 .000 .003 .134 .001 .008 1.874 .000 .000 .000 3.010 4.000	.988 .000 .002 .144 .002 .009 1.865 .000 .000 .000 3.011 4.000	.992 .000 .001 .145 .003 .009 1.857 .001 .001 3.008 4.000	.992 .000 .001 .156 .002 .008 1.848 .000 .001 .000 3.009 4.000	.991 .000 .001 .159 .002 .008 1.847 .000 .000 3.009 4.000	.991 .000 .000 .154 .003 .008 1.853 .000 .000 .000 3.009 4.000	.990 .000 .000 .162 .002 .008 1.848 .000 .000 .000 3.010 4.000	.991 .000 .000 .167 .003 .008 1.840 .000 .000 .000 3.009 4.000	.993 .000 .000 .164 .003 .008 1.839 .000 .000 3.007 4.000	.994 .000 .000 .164 .003 .009 1.835 .000 .000 .000 3.005	.993 .000 .000 .167 .002 .008 1.836 .001 .000 .000 3.007 4.000	.995 .000 .000 .166 .002 .008 1.832 .000 .000 .000 3.005 4.000	.996 .000 .000 .163 .003 .009 1.833 .000 .000 .000 3.004 4.000	.994 .000 .000 .164 .002 .008 1.836 .000 .000 .000 3.006 4.000
Mg # Profilstrecke [µm]	93.79 234	93.31 244	92.83 254	92.74 264	92.21 274	92.06 284	92.31 294	91.96 304	91.67 313	91.83 323	91.79 333	91.68 343	91.67 353	91.85 363	91.78 373

IV19
19
Срх
2.4

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
30	2.930	51.691	12.540	3.446	1.068	0.277	0.579	1.024
92	3.308	53.119	12.965	2.634	0.801	0.608	0.920	0.747
152	4.182	53.847	13.699	2.700	0.613	0.895	0.423	1.189
197	4.322	53.172	13.832	2.789	0.475	0.733	0.229	0.971
267	4.186	53.372	13.896	3.152	0.750	0.631	0.790	0.555
327	4.686	52.393	14.420	2.504	1.133	0.959	0.594	0.778
387	4.100	52.518	13.366	4.614	0.566	0.630	0.438	0.955
447	4.579	52.470	13.567	2.598	0.999	1.265	0.576	1.062
507	4.148	52.672	12.821	3.024	0.346	1.134	0.571	0.971
567	1.830	49.512	13.964	1.773	0.332	0.565	0.557	1.069

Probe: IV19 Profilname	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19 l	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19 l	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19
Profilpunkt	33	34	35	36	38	40	41	42	43	44	45	46	48	50	51	52	53	54	55	56
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr2O3 FeO MinO NiO MgO CaO CaO K2O K2O	54.49 .07 .87 .45 1.81 .03 .05 17.65 24.43 .26 .00 100.08	54.77 .05 .93 .49 1.85 .04 .07 17.63 24.32 .26 .01 100.43	54.36 .04 .99 .49 1.88 .06 .03 17.67 24.33 .23 .01 100.10	54.40 .08 1.05 .47 1.89 .07 .09 17.73 24.46 .25 .02 100.50	54.48 .06 1.06 .55 1.91 .04 .05 17.72 24.14 .29 .00 100.29	54.28 .08 1.10 .53 1.94 .05 .02 17.76 24.44 .25 .00 100.46	54.53 .07 1.09 .50 1.91 .03 .05 17.70 24.13 .24 .00 100.25	54.30 .03 1.14 .52 1.91 .06 17.72 24.14 .27 .01 100.17	54.32 .04 1.08 .53 2.00 .06 .02 17.62 24.17 .24 .00 100.08	54.23 .04 1.05 .43 1.95 .06 17.72 23.92 .27 .01 99.72	54.31 .03 1.11 .50 1.98 .09 .05 17.70 24.36 .28 .00 100.42	54.77 .04 1.11 .50 1.95 .07 .04 17.66 24.41 .29 .00 100.85	54.20 .04 1.16 .50 1.92 .03 .02 17.49 24.30 .26 .00 99.91	54.33 .04 1.11 .50 1.91 1.07 .09 17.62 24.23 .25 .00 100.14	54.01 .05 1.17 .48 1.92 .01 .03 17.58 24.35 .29 .00 99.88	54.28 .08 1.15 .48 1.90 .03 .03 17.65 24.27 .27 .00 100.14	54.55 .06 1.10 .53 1.89 .10 .06 17.66 24.21 .26 .02 100.44	54.42 .06 1.12 .51 1.85 .04 .05 17.62 24.28 .22 .01 100.17	54.23 .10 1.15 .53 1.79 .09 .06 17.56 24.47 .29 .01 100.26	54.27 .05 1.14 .49 1.90 .10 .02 17.67 24.57 .25 .01 100.46
Kationen- besetzung Si Ti Al Cr Fre ⁴⁺ Mn Ni Mg Ca Na K Xionen	1.976 .002 .037 .013 .055 .001 .001 .954 .949 .018 .000 4.006	1.979 .001 .014 .056 .001 .002 .949 .941 .018 .001 4.003	1.972 .001 .042 .014 .057 .002 .001 .946 .016 .001 4.007	1.967 .002 .045 .013 .057 .002 .003 .956 .948 .018 .001 4.011	1.972 .002 .045 .016 .058 .001 .001 .936 .020 .000 4.006	1.964 .002 .047 .015 .059 .002 .001 .958 .947 .017 .000 4.012	1.973 .002 .046 .014 .058 .001 .002 .936 .017 .000 4.003	1.968 .001 .049 .015 .058 .002 .002 .957 .937 .019 .000 4.009	1.971 .001 .015 .061 .002 .001 .940 .017 .000 4.006	1.973 .001 .042 .059 .002 .002 .062 .002 .019 .000 4.007	1.966 .001 .047 .014 .060 .003 .001 .945 .020 .000 4.012	1.972 .001 .047 .014 .059 .002 .001 .942 .021 .000 4.006	1.970 .001 .014 .058 .001 .001 .946 .018 .000 4.006	1.970 .001 .047 .014 .058 .002 .058 .002 .941 .018 .000 4.007	1.965 .001 .014 .059 .000 .001 .949 .020 .000 4.012	1.968 .002 .049 .014 .057 .001 .901 .943 .019 .000 4.008	1.972 .002 .047 .015 .057 .003 .002 .951 .937 .018 .001 4.005	1.971 .002 .048 .015 .056 .001 .001 .942 .016 .000 4.004	1.965 .003 .049 .015 .054 .003 .002 .949 .950 .020 .000 4.010	1.964 .001 .048 .014 .057 .003 .001 .953 .017 .000 4.012
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	94.56 25.66 5	94.44 26.11 15	94.38 24.97 25	94.35 22.87 35	94.29 25.57 55	94.22 24.43 75	94.31 23.76 85	94.29 23.34 95	94.02 24.68 105	94.17 21.72 115	94.09 23.26 125	94.17 23.30 135	94.20 22.29 155	94.28 23.18 175	94.22 21.50 185	94.32 21.79 195	94.33 24.34 205	94.45 23.52 215	94.60 23.56 225	94.31 22.48 235

Profilname	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19
Profilpunkt	57	58	59	60	61	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse																				
[Gew%] SiO ₂	54.16	54.16	54.44	54.36	54.36	54.48	54.44	54.18	54.27	54.15	54.27	54.39	54.20	54.40	54.37	54.20	54.47	54.40	54.21	54.21
TiO ₂ Al ₂ O ₂	.06 1 10	.05 1 14	.05 1 14	.04	.05 1 12	.04 1 12	.06 1 11	.04	.05 1 12	.05 1 12	.07 1 12	.07	.06 1.08	.08 1.08	.05 1.09	.06 1 11	.06 1 12	.04	.07	.05 1 09
Cr ₂ O ₃	.51	.51	.53	.51	.47	.50	.51	.51	.48	.51	.54	.52	.53	.51	.54	.49	.50	.51	.50	.50
FeO MnO	1.91	1.94	2.07	1.92	1.98	1.99	2.00	1.97	1.96	1.82	1.97	1.87	1.88	1.90	1.95	1.86	2.00	1.92	1.90	1.81
NiO	.04	.05	.09	.04	.00	.04	.05	.08	.07	.05	.03	.06	.01	.05	.02	.08	.03	.05	.04	.05
CaO	24.28	24.35	24.19	24.10	23.99	24.21	24.02	24.15	24.13	24.11	24.23	24.20	24.43	24.18	24.28	24.22	24.05	24.24	24.13	24.36
Na ₂ O	.27	.26	.29	.27	.24	.28	.24	.29	.26	.28	.28	.21	.27	.27	.27	.27	.24	.27	.25	.27
κ ₂ Ο Σ	.00 100.00	.01 100.09	.01 100.51	.02 100.08	.00	.00	.00	.00	.00	.00	.00 100.24	.00	.00	.00	.00	.01	.00	.01	.00	100.08
Kationen-																				
Si	1 968	1 966	1 968	1 971	1 974	1 970	1 971	1 968	1 968	1 969	1 967	1 970	1 966	1 974	1 968	1 968	1 969	1 972	1 970	1 968
Ti	.002	.001	.001	.001	.001	.001	.002	.001	.001	.001	.002	.002	.002	.002	.001	.002	.002	.001	.002	.001
Al Cr	.047	.049	.049	.047	.048	.048	.047	.048	.048	.048	.048	.049	.046	.046	.047	.047	.048	.045	.047	.046
Fe ²⁺	.058	.059	.062	.058	.060	.060	.060	.060	.060	.055	.060	.056	.057	.058	.059	.057	.060	.058	.058	.055
Mn Ni	.004	.002	.002	.002	.001	.001	.002	.002	.002	.003	.002	.003	.002	.001	.003	.002	.003	.002	.002	.004
Mg	.951	.951	.951	.955	.954	.955	.959	.952	.958	.956	.955	.954	.955	.948	.956	.956	.960	.953	.955	.952
Ca Na	.945	.947	.937	.936	.933	.938	.931	.940	.938	.939	.941	.939	.949	.940	.941	.942	.932	.941	.940	.947
ĸ	.000	.000	.001	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.000	.000	.001
∑ Kationen	4.009	4.010	4.009	4.007	4.003	4.008	4.005	4.009	4.009	4.009	4.010	4.004	4.011	4.003	4.009	4.010	4.007	4.007	4.006	4.010
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	94.26	94.18	93.84	94.26	94.07	94.09	94.07	94.08	94.15	94.52	94.11	94.41	94.38	94.27	94.18	94.42	94.08	94.25	94.30	94.55
Cr #	23.86	23.03	23.65	23.96	22.01	23.16	23.37	23.41	22.20	23.23	24.32	23.19	24.61	24.18	25.05	22.76	23.20	24.52	23.47	23.71
Deeflates also from	245	255	265	275	285	305	315	325	335	345	355	365	375	385	395	405	415	425	435	445

Probe: IV19 Profilname	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19	Profil-19
Profilpunkt	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] [Gow%] SiO ₂ TiO ₃ Cr ₂ O ₃ FeO MnO NiO NiO MgO CaO Na ₂ O K ₂ O X X	54.19 08 1.07 .52 1.86 05 17.66 24.18 .28 00 99.93	54.42 .06 1.09 .53 1.91 .02 .06 17.64 24.30 .28 .02 100.32	54.37 .04 1.05 .50 1.94 .08 .02 17.64 24.20 .28 .00 100.12	54.30 .05 1.09 49 1.81 .06 17.65 24.15 .26 .02 99.96	54.29 .04 1.06 .51 1.91 .03 17.67 24.24 .29 .01 100.09	54.40 .04 1.10 .51 1.94 .06 .04 17.85 24.05 .30 .00 100.28	54.51 .04 1.03 .52 1.75 .06 17.59 24.27 .27 .00 100.08	54.60 .05 .98 .50 1.79 .10 .07 17.65 24.33 .30 .00 100.36	54.41 .07 1.02 .50 1.84 .03 .01 17.66 24.28 .27 .01 100.10	54.09 .05 .92 49 1.74 .03 17.69 24.39 .21 .00 99.66	54.71 .04 .88 .54 1.84 .05 17.69 24.27 .32 .00 100.48	54.38 .03 .96 .70 1.77 .06 .02 17.52 24.43 .28 .00 100.14	54.29 .03 .91 .73 1.67 .08 .00 17.56 24.38 .27 .00 99.92	54.41 .05 .97 .82 1.71 17.50 24.28 .27 .02 100.14	54.38 .02 .95 .70 1.82 .00 17.67 24.33 .28 .04 100.28
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{bestzung}\\ Si\\ Ti\\ Al\\ Cr\\ Fe^{z_4}\\ Mn\\ Mg\\ Ca\\ Na\\ Na\\ K\\ \Sigma \mbox{ Kationen} \end{array}$	1.969 .002 .046 .015 .056 .001 .001 .941 .020 .000 4.009	1.970 .011 .047 .015 .058 .001 .052 .952 .942 .020 .001 4.008	1.972 .001 .045 .014 .059 .002 .000 .954 .940 .020 .000 4.008	1.971 .011 .047 .014 .055 .002 .955 .940 .018 .001 4.007	1.970 .001 .045 .058 .001 .955 .942 .021 .000 4.010	1.969 .001 .047 .015 .059 .002 .001 .963 .933 .021 .000 4.010	1.975 .001 .044 .015 .053 .001 .902 .951 .942 .019 .000 4.003	1.975 .001 .042 .014 .054 .003 .002 .951 .943 .021 .000 4.006	1.973 .002 .043 .014 .056 .001 .955 .943 .019 .000 4.006	1.971 .001 .040 .014 .053 .001 .961 .952 .015 .000 4.009	1.977 .001 .038 .016 .056 .004 .953 .940 .022 .000 4.007	1.972 .001 .041 .020 .054 .002 .000 .949 .019 .000 4.006	1.973 .001 .039 .021 .051 .002 .000 .951 .949 .019 .000 4.006	1.973 .001 .042 .024 .052 .003 .000 .946 .943 .019 .001 4.003	1.970 .001 .020 .055 .003 .000 .954 .020 .020 4.010
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	94.43 24.64 455	94.29 24.67 465	94.19 24.12 475	94.56 23.28 485	94.28 24.30 495	94.26 23.69 505	94.72 25.41 515	94.62 25.48 525	94.48 24.76 535	94.77 26.16 545	94.48 29.27 555	94.65 32.77 565	94.94 34.85 575	94.80 36.23 585	94.54 33.02 595

Probe:	Ka
Profil:	01
Mineral:	Grt
Kapitel:	Anhang II

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
10	59.461	66.913	55.221	24.486	1.364	0.418	0.609	1.370
60	60.875	67.876	54.427	27.504	2.556	0.432	1.148	1.173
265	61.049	68.031	57.252	32.978	0.739	0.808	0.488	1.111
315	62.748	69.358	55.610	34.639	2.613	0.516	0.326	1.282

Probe: Ka					
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	1	2	3	4	5
Mineral	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O Σ	40.62 .07 22.87 .74 15.55 .42 16.21 4.44 .03 .01 100.97	40.70 .09 22.73 .77 15.32 .45 16.21 4.46 .00 .00 100.74	40.84 .07 22.92 .73 15.42 .42 16.29 4.50 .00 .01 101.21	40.94 .08 22.79 .73 15.28 .44 16.25 4.56 .00 .00 101.07	41.09 .04 23.07 .67 15.31 .48 16.37 4.46 .04 .01 101.54
Kationen- besetzung Si Ti Al C ² Fe ²⁺ Mn Mg Ca Na K Σ Kationen Sauerstoffe	2.955 .004 1.961 .043 .946 .026 1.758 .346 .005 .001 8.043 12.000	2.964 .005 1.951 .045 .933 .028 1.760 .348 .000 .000 8.034 12.000	2.960 .004 1.958 .042 .935 .026 1.760 .350 .000 .001 8.036 12.000	2.970 .004 1.948 .042 .927 1.757 .354 .000 .000 8.031 12.000	2.966 .002 1.962 .038 .924 .029 1.761 .345 .005 .001 8.034 12.000
Mg # Cr # Profilstrecke [µm]	65.02 2.12 15	65.36 2.23 25	65.32 2.09 35	65.46 2.12 45	65.58 1.92 55

Probe: Ka							
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	32	33	34	35	36	37	38
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr.O3 FeO MnO MgO CaO Na2O K2O X2 X2O	40.64 .07 22.87 .80 14.64 .44 16.39 4.50 .02 .00 100.37	40.92 .04 23.01 .76 14.83 .43 16.46 4.44 .04 .00 100.92	40.64 .05 22.99 .76 .42 16.56 4.46 .03 .00 100.86	40.36 .02 23.04 .75 14.82 .37 16.45 4.55 .04 .00 100.40	40.37 .06 23.05 .75 14.50 .39 16.43 4.49 .01 .01 100.05	40.46 .04 22.93 .72 14.90 .37 16.38 4.49 .03 .01 100.32	40.39 .06 23.03 .69 14.74 .49 16.42 4.45 .00 .02 100.29
Kationen-							
Si Ti Al Fe ²⁺ Mn Mg Ca Na K Kationen	2.962 .004 1.965 .046 .892 .027 1.781 .351 .003 .000 8.031	2.966 .002 1.965 .044 .899 .026 1.778 .345 .006 .000 8.031	2.951 .003 1.967 .043 .909 .026 1.792 .347 .004 .000 8.043	2.944 .001 1.980 .043 .904 .023 1.789 .356 .005 .000 8.045	2.950 .003 1.985 .043 .886 .024 1.790 .352 .001 8.034	2.953 .002 1.972 .041 .909 .023 1.783 .351 .004 8.040	2.948 .003 1.981 .040 .900 .030 1.786 .348 .000 .002 8.039
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000
	66.62	66.42	66.20	66.40	66.90	66.00	66 54
Mg #	66.63	66.43	00.36	00.42	00.89	66.22	00.51
Cr #	2.30	2.17	2.16	2.15	2.13	2.06	1.98
Profilstrecke [µm]	255	266	276	286	296	306	316

Probe:	Ka	
Profil:	02	
Mineral:	Grt	
Kapitel:	Anhang II	

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
20	60.716	67.286	58.335	32.598	1.932	0.892	0.858	2.559
70	62.330	67.134	56.708	28.589	0.566	0.401	0.889	2.058
270	49.799	66.395	57.464	27.110	1.259	0.902	0.461	1.248
320	59.353	66.696	56.885	30.537	0.668	0.352	0.507	1.695

Probe: Ka Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	1	2	3	4	5	6	7
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] [Gow%] SiO ₂ TiO ₃ Ai ₂ O ₃ Ai ₂ O ₃ Cr ₂ O ₃ Cr ₂ O ₃ Cr ₂ O ₃ NiO NiO NiO CaO CaO CaO K ₂ O Σ	40.88 .10 22.85 .82 15.17 .46 .00 16.27 4.51 .03 .00 101.09	40.47 .08 22.86 15.22 .47 .02 16.24 4.57 .04 .00 100.83	40.66 .08 22.88 .81 15.52 .50 .02 16.20 4.53 .00 .00 101.19	40.52 .08 22.91 .81 15.51 .49 .07 16.16 4.60 .01 .01 101.15	40.36 .07 22.82 .90 15.65 .44 .01 15.90 4.54 .02 .01 100.72	40.48 .07 22.77 .84 15.92 .43 .00 15.78 4.49 .00 .00 100.79	40.40 .07 22.85 .74 16.18 .54 .00 15.53 4.46 .03 .00 100.79
Kationen- besetzung Si Ti Al Ce ^{rt} Mn Ni Mg Ca Ca Kationen	2.965 .006 1.953 .047 .920 .028 .000 1.758 .350 .004 .000 8.031	2.947 .004 1.962 .049 .029 .001 1.763 .357 .006 8.046	2.952 .004 1.958 .047 .942 .031 1.754 .000 8.041	2.946 .004 1.962 .047 .943 .030 .004 1.751 .358 .001 8.047	2.948 .004 1.964 .052 .956 .027 .001 1.731 .355 .003 .001 8.043	2.956 .004 1.960 .048 .972 .000 1.718 .351 .000 8.036	2.954 .004 1.969 .042 .989 .033 .000 1.693 .349 .005 .000 8.039
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	65.66 2.36 5	65.53 2.46 15	65.05 2.33 25	65.00 2.32 35	64.42 2.58 45	63.85 2.41 55	63.11 2.11 65

Probe: Ka							
Profilname	Profil-02						
Profilpunkt	152	153	154	155	156	157	158
Mineral	Grt						
$\begin{array}{l} \mbox{Analyse} \\ \mbox{[Gew%]} \\ \mbox{SiO}_{2} \\ \mbox{TiO}_{3} \\ \mbox{A}_{3}\mbox{O}_{1} \\ \mbox{Cr}_{1}\mbox{O}_{3} \\ \mbox{FeO} \\ \mbox{MiO} \\ \mbo$	40.60 .07 23.12 .67 15.85 .47 .01 15.71 4.65 .04 .01 101.18	40.73 .06 23.12 .70 15.69 .47 .01 15.86 4.51 .01 .00 101.16	40.73 .06 23.07 .70 15.58 .52 .01 16.20 4.39 .01 .00 101.26	40.62 .05 23.16 .73 15.12 .44 .03 16.27 4.37 .03 .00 100.82	40.85 .05 23.13 15.28 .49 .02 16.39 4.46 .02 .00 101.40	40.80 .07 23.07 .67 15.19 .41 .03 16.49 4.43 .02 .00 101.17	40.59 .06 23.15 .75 14.87 .51 .00 16.39 4.34 .01 .01 100.69
Kationen-							
besetzung Si Ti Al Fe ^{z+} Mn Ni Mg Ca Na K Kationen	2.951 .004 1.981 .038 .963 .029 .000 1.702 .362 .006 .001 8.038	2.958 .003 1.978 .040 .953 .029 .000 1.717 .351 .001 .000 8.031	2.953 .003 1.971 .040 .945 .032 .001 1.751 .341 .001 .000 8.038	2.952 .003 1.984 .042 .919 .027 .002 1.762 .340 .004 .000 8.035	2.954 .003 1.971 .042 .924 .030 .001 1.767 .345 .003 .000 8.039	2.955 .004 1.969 .038 .920 .025 .002 1.780 .343 .002 .000 8.039	2.951 .003 1.984 .043 .904 .032 .000 1.776 .338 .002 .001 8.034
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr #	63.86 1.90	64.31 1.98	64.95 2.01	65.72 2.06	65.66 2.06	65.93 1.91	66.28 2.14
Profilstrecke [µm]	205	200	211	207	298	308	319

Probe:	Ka
Profil:	02
Mineral:	Орх
Kapitel:	2.5

Profil- strecke [µm]	il- ke P Sc n] [μg/g] [μg/g]		Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
10	0.957	1.234	51.885	67.526	0.289	0.085	0.931	2.590
60	1.070	1.053	53.511	73.382	0.239	0.146	0.638	2.314
110	1.092	1.083	52.835	71.417	0.313	0.081	0.953	2.817
161	0.963	1.022	52.957	73.045	0.167	0.050	0.915	2.384
210	1.177	0.968	52.379	73.461	0.356	0.056	0.355	1.756
260	1.105	0.996	53.127	72.309	0.224	0.107	0.842	3.864
311	1.064	0.958	52.600	69.221	0.133	0.110	0.737	2.424
360	1.219	0.950	52.462	69.573	0.212	0.078	0.468	3.248
410	1.068	1.015	52.142	71.632	0.130	0.084	1.125	3.504
460	1.156	0.920	52.185	73.223	0.206	0.069	1.472	1.737
510	1.307	0.943	52.929	74.570	0.170	0.082	0.745	3.581
561	1.164	0.983	52.737	71.406	0.304	0.083	0.835	3.116
610	1.333	1.025	52.887	75.626	0.287	0.047	0.698	3.439
660	1.266	0.965	52.877	70.749	0.220	0.087	0.703	3.751
710	1.129	0.990	53.028	73.120	0.263	0.127	0.732	2.704
761	1.217	0.974	53.858	72.275	0.220	0.037	1.065	2.262
810	1.161	0.992	53.524	70.520	0.188	0.052	1.267	2.602
860	1.316	0.986	52.984	70.970	0.129	0.117	0.545	1.628
911	1.237	0.961	53.505	74.137	0.216	0.042	0.981	1.680
997	1.378	1.231	52.424	75.520	0.170	0.047	1.059	3.066

Probe: Ka	D (1.00.)		D (1.00.)	D (1.00)	D	D (1.00.)	D		D	D 61.00.1	D (1. 00.)	D 61.00	D	D	D (1.00	D	D			D
Profilname Profilpunkt	Profil-02	51	52	53	Profil-02	55	56	Profil-02 1 57	58 58	Profil-02 I 59	60	Profil-02 61	Profil-02 I 62	63	Profil-02 64	Profil-02 65	Profil-02 I 66	9rofil-02 1 67	Profil-02 I 68	Profil-02 69
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse Gaw%] SiO2 TiO2 Al2O3 CFr.O3 FeO MinO NiO MgO CaO CaO K2O K2O	56.49 .08 .85 .08 10.24 .10 .32.59 .24 .03 .01 100.81	56.50 .04 .71 .03 10.11 .11 .07 32.58 .21 .03 .02 100.41	56.49 .05 .71 .10 10.03 .11 32.64 .22 .04 .01 100.51	56.58 .07 .04 10.20 .07 .06 32.69 .21 .03 .00 100.62	56.60 .03 .66 .06 9.99 .13 .12 32.64 .22 .04 .00 100.49	56.55 .04 .65 .04 9.98 .14 .13 32.62 .23 .05 .00 100.42	56.69 .03 .63 .06 9.85 .12 .06 32.75 .23 .04 .00 100.46	56.64 .06 .05 10.13 .15 .10 32.64 .06 .00 100.69	56.75 .07 .59 .03 10.12 .15 .08 32.71 .21 .00 .00 100.69	56.74 .04 .58 .06 9.96 .13 .08 32.91 .22 .03 .00 100.76	56.74 .04 .58 .09 10.03 .09 .13 32.79 .22 .04 .00 100.76	56.68 .07 .57 .05 10.01 .10 .09 32.82 .20 .05 .01 100.66	56.70 .06 .56 9.81 .12 .08 32.59 .20 .03 .00 100.20	56.56 .04 .57 .05 9.67 .13 .09 32.58 .21 .03 .00 99.93	56.29 .07 .56 .03 9.89 .11 .09 32.61 .19 .05 .01 99.90	56.52 .07 .54 .07 9.54 .11 .10 32.62 .07 .05 .01 99.78	56.75 .02 .54 .05 9.78 .10 .22 .02 .00 100.28	56.52 .05 .04 10.18 .09 .06 32.81 .21 .03 .00 100.55	56.06 .04 .53 9.78 .13 .07 32.51 .20 .02 .00 99.40	56.58 .04 .52 .05 10.12 .10 32.77 .20 .04 .02 100.57
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{besetzung}\\ Si\\ Ti\\ Al\\ Cr\\ Fe^{z_{k}}\\ Mn\\ Ni\\ Mg\\ Ca\\ Na\\ Na\\ K\\ K\\ \xi \ Kationen \end{array}$	1.967 .002 .035 .002 .298 .003 .003 1.692 .009 .002 .000 4.013	1.973 .001 .295 .003 .002 1.697 .008 .002 .001 4.012	1.971 .001 .029 .003 .293 .004 .003 .008 .008 .003 .000 4.013	1.972 .028 .001 .297 .002 .002 1.699 .008 .002 .000 4.013	1.975 .001 .022 .292 .004 .003 1.698 .008 .003 .000 4.012	1.975 .001 .027 .001 .291 .004 .004 1.698 .008 .003 .000 4.012	1.976 .001 .026 .002 .287 .004 .002 1.702 1.702 .009 .003 .000 4.010	1.974 .002 .025 .001 .295 .004 .003 1.695 .009 .004 .000 4.013	1.976 .002 .024 .001 .295 .004 .002 1.698 .008 .000 .000 4.010	1.974 .001 .024 .002 .290 .004 .002 1.707 .008 .002 .000 4.013	1.975 .001 .024 .002 .292 .003 .004 1.701 .008 .003 .000 4.013	1.974 .023 .001 .292 .003 .003 1.704 .008 .003 .000 4.014	1.981 .001 .023 .001 .287 .003 .002 1.698 .008 .002 .000 4.006	1.981 .024 .001 .283 .004 .002 1.701 .008 .002 .000 4.007	1.975 .002 .023 .001 .290 .003 .002 1.706 .007 .004 .000 4.013	1.981 .002 .022 .280 .003 .003 1.704 .006 .003 .000 4.007	1.981 .001 .222 .001 .285 .003 .003 1.701 .008 .001 .000 4.007	1.972 .001 .223 .001 .297 .003 .002 1.707 .008 .002 .000 4.016	1.976 .001 .022 .001 .288 .004 .004 .004 .007 .002 .000 4.012	1.974 .001 .022 .001 .295 .004 .003 1.704 .008 .003 .001 4.015
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	85.01 5.70 5	85.18 2.58 15	85.30 8.29 25	85.11 3.65 35	85.34 5.85 45	85.35 3.70 55	85.57 5.98 65	85.17 5.26 75	85.21 2.78 85	85.49 6.27 96	85.36 8.99 106	85.39 5.99 116	85.56 5.36 126	85.72 5.55 136	85.46 3.95 146	85.90 7.66 156	85.64 5.96 166	85.18 4.56 176	85.56 5.59 186	85.24 5.69 196

Probe: Ka	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02	Profil 02
Profilpunkt	70	71	72	73	74	75	76	78	79	80	81	82	83	84	85	86	87	88	89	90
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse Gew%] SiO2 A2O3 Cr.O3 FeO MnO NiO MgO CaO CaO Na2O K2O ∑	56.74 .05 .53 .05 10.19 .10 .10 .32.76 .19 .05 .01 100.75	56.64 .03 .52 .04 10.12 .12 .10 32.66 .21 .06 .00 100.51	56.82 .04 .53 .03 10.04 .10 .11 32.77 .23 .04 .01 100.70	56.79 .05 .54 .05 9.72 .11 .08 32.79 .24 .06 .01 100.42	56.74 .04 .53 .03 .12 .12 32.60 .21 .00 100.42	56.73 .06 .51 .04 9.92 .13 .09 32.74 .22 .04 .01 100.48	56.77 .07 .49 .06 9.88 .07 .14 32.53 .24 .03 .03 100.28	56.83 .05 .51 .07 .09 32.66 .22 .04 .00 100.63	56.83 .04 .51 .06 9.70 .11 .14 32.68 .22 .01 .00 100.29	56.64 .05 .50 .05 9.97 .11 .06 32.65 .19 .01 100.25	56.79 .05 .51 .08 9.89 .10 .07 32.69 .22 .03 .00 100.42	56.57 .02 .50 .05 9.93 .12 .09 32.70 .19 .00 100.23	56.46 .07 .50 .08 9.93 .14 .09 32.74 .20 .05 .00 100.25	56.45 .50 .05 9.97 .13 .09 32.75 .21 .01 .00 100.21	56.59 .05 .50 .05 9.86 .09 .07 32.74 .22 .06 .01 100.23	56.55 .05 .49 .07 9.96 .11 .07 32.76 .24 .03 .01 100.33	56.26 03 .50 08 9.98 .13 .10 32.71 .23 .04 .00 100.07	56.57 .04 .49 .04 9.80 .11 .12 32.70 .22 .03 .02 100.13	56.62 .03 .50 .04 10.04 .12 32.81 .18 .06 .00 100.52	56.69 .04 .50 .06 9.89 .11 .10 32.75 .21 .03 .00 100.37
Kationen- besetzung Si Ti Cr Fe ²⁴ Mn Ni Mg Ca Ca Xationen Sauerstoffe	1.976 .001 .022 .003 .003 .003 1.700 .007 .003 .000 4.013	1.977 .001 .022 .004 .003 1.699 .008 .004 .000 4.013	1.978 .001 .022 .003 .003 1.700 .003 .000 4.011 6.000	1.979 .001 .022 .001 .283 .003 .002 1.704 .009 .004 .000 4.010	1.980 .001 .022 .001 .293 .004 .003 1.696 .008 .001 .000 4.008	1.978 .001 .021 .004 .002 1.702 .008 .003 .000 4.011 6.000	1.983 .002 .020 .002 .288 .002 .004 1.694 .009 .002 .001 4.006	1.980 .001 .001 .295 .002 1.696 .008 .003 .000 4.009	1.983 .001 .021 .002 .283 .004 1.700 .004 .001 .000 4.005	1.979 .001 .001 .001 .291 .003 .002 1.701 .007 .002 .001 4.010	1.980 .001 .002 .289 .003 .002 1.699 .008 .002 .000 4.008	1.978 .001 .001 .290 .004 .003 1.704 .007 .003 .000 4.012	1.975 .002 .021 .002 .004 .003 1.707 .004 .004 .000 4.014	1.975 .001 .001 .292 .004 .002 1.708 .008 .001 .000 4.013	1.978 .001 .020 .001 .288 .003 .002 1.706 .008 .004 .000 4.012	1.976 .001 .002 .291 .003 .002 1.706 .009 .002 .000 4.013	1.972 .001 .021 .002 .293 .004 .003 1.710 .003 .000 4.017 6.000	1.979 .001 .001 .287 .003 1.705 .008 .002 .001 4.011 6.000	1.975 .001 .001 .293 .004 .003 1.706 .007 .004 .000 4.015	1.979 .001 .021 .029 .003 1.704 .008 .002 .000 4.010
Mg # Cr #	85.14	85.19 4.76	85.34 3.43	85.75 5.31	85.28	85.48 5.24	85.45 7.08	85.20 5.78	85.73 7.37	85.38 6.42	85.49 9.81	85.45 6.65	85.46 9.09	85.42	85.55	85.43	85.38 9.86	85.61	85.34 5.61	85.51
Profilstrecke [µm]	206	216	226	236	246	257	267	287	297	307	317	327	337	347	357	367	377	387	397	407

Probe: Ka		-				-					-									
Profilname	Profil-02	92	93	94 Profil-02	Profil-02	96	97 97	Profil-02 98	Profil-02 I 99	2rofil-02 I	101	Profil-02	103	104	105	Profil-02	107	108	2rofil-02 I	Profil-02 110
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
$\begin{array}{l} \textbf{Analyse}\\ \textbf{[Gew\%]}\\ \textbf{SiO}_2\\ \textbf{TiO}_2\\ \textbf{A}_2\textbf{O}_3\\ \textbf{C}_7\textbf{O}_3\\ \textbf{FeO}\\ \textbf{MnO}\\ \textbf{NiO}\\ \textbf{MgO}\\ \textbf{CaO}\\ \textbf{Na}_2\textbf{O}\\ \textbf{Na}_2\textbf{O}\\ \textbf{X}_2\textbf{O}\\ \textbf{\Sigma} \end{array}$	56.76 .04 .49 .08 .08 .09 32.67 .23 .04 .00 100.29	56.63 .06 .49 .05 10.07 .07 .04 32.68 .20 .04 .02 100.34	56.62 .04 .50 .05 9.85 .10 .09 32.70 .02 .05 .02 100.21	56.52 .06 .05 9.92 .07 .10 32.88 .20 .05 .00 100.37	56.39 .06 .49 .09 .07 .09 .07 .20 .02 .20 .02 .00 100.06	56.70 .06 .50 .07 10.24 .11 .08 32.79 .04 .00 100.79	56.72 .03 .49 .05 .9.74 .12 .08 32.68 .18 .04 .00 100.12	56.78 .07 .49 .05 9.89 .11 .11 .32.83 .21 .05 .00 100.57	56.58 .04 .50 .04 9.85 .10 .08 32.70 .22 .04 .00 100.15	56.81 .06 .50 .09 .05 32.64 .24 .04 .00 100.35	56.84 .05 .05 9.76 .11 .08 32.74 .22 .05 .02 100.42	56.69 .05 .49 .06 9.75 .12 .07 32.81 .22 .02 .00 100.26	56.66 .04 .50 .05 10.08 .11 .09 32.97 .22 .04 .00 100.75	56.57 .05 .51 .05 .12 .07 32.73 .20 .03 .00 100.19	56.62 .05 .50 .06 9.97 .10 .08 32.84 .21 .04 .00 100.47	56.53 .06 .51 .09 9.94 .11 .09 32.78 .19 .03 .00 100.31	57.02 .04 .49 .05 9.94 .11 .08 32.93 .20 .06 .02 100.93	56.72 .06 .51 .03 10.01 .12 .12 .32.89 .20 .04 .01 100.70	56.79 .06 .48 .04 9.85 .11 .10 32.77 .21 .06 .02 100.48	56.47 .03 .51 .05 10.09 .11 .10 32.80 .19 .05 .00 100.39
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Kationen	1.982 .001 .020 .001 .288 .002 .002 1.700 .009 .003 .000 4.008	1.978 .002 .020 .001 .294 .001 1.702 .007 .007 .001 4.011	1.979 .001 .020 .001 .288 .003 .002 1.704 .008 .003 .001 4.011	1.974 .002 .021 .001 .290 .003 1.712 .008 .003 .000 4.015	1.975 .002 .020 .001 .292 .002 1.709 .007 .007 .000 4.013	1.974 .002 .020 .002 .998 .003 .002 1.702 .007 .003 .000 4.014	1.982 .001 .020 .001 2.85 .003 .002 1.703 .007 .003 .000 4.007	1.978 .002 .020 .001 .288 .003 1.705 .008 .003 .000 4.011	1.979 .001 .021 .001 288 .003 .002 1.705 .008 .003 .000 4.011	1.982 .002 .020 .003 .286 .003 .001 1.698 .009 .003 .000 4.006	1.982 .001 .020 .001 285 .003 .002 1.701 .008 .003 .001 4.009	1.979 .001 .020 .002 .285 .002 1.708 .002 1.708 .008 .001 .000 4.009	1.973 .001 .020 .001 .293 .002 1.711 .008 .002 .000 4.017	1.978 .001 .021 .001 .288 .004 .002 1.706 .007 .002 .000 4.011	1.975 .001 .021 .002 .291 .002 1.708 .008 .008 .000 4.014	1.975 .001 .021 .002 .290 .003 1.707 .007 .000 4.013	1.979 .001 .020 .001 .289 .002 1.704 .008 .004 .001 4.012	1.975 .001 .021 .001 .003 1.708 .007 .003 .000 4.014	1.980 .001 .020 .001 2.87 .003 1.703 .003 1.703 .008 .004 .001 4.011	1.973 .001 .001 .295 .003 1.709 .003 .000 4.016
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	85.53 5.48 417	85.26 6.20 428	85.55 6.82 438	85.52 6.60 448	85.41 6.73 458	85.09 8.97 468	85.67 6.08 478	85.55 6.46 488	85.55 4.93 498	85.57 11.09 508	85.67 6.51 518	85.71 7.16 528	85.36 5.73 538	85.54 5.84 548	85.45 7.21 558	85.46 10.13 568	85.51 6.21 578	85.42 4.31 588	85.57 5.13 599	85.28 5.94 609

Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse																				
[Gew%] SiO	56.31	56 67	56 82	56 77	56 54	56 66	56 42	56 86	56 72	56 82	56 57	56 79	56 84	56 77	56 84	56 75	56 64	56 57	56 66	56 77
TiO ₂	.05	.04	.04	.05	.07	.04	.03	.05	.05	.04	.05	.06	.03	.05	.05	.04	.05	.07	.05	.04
Al ₂ O ₃ Cr ₂ O ₂	.49	.50	.51	.50	.52	.51	.49	.49	.50	.51	.53	.52	.52	.50	.51	.51	.52	.53	.54	.54
FeO	10.00	9.94	9.83	9.94	9.80	9.91	9.79	10.00	9.83	9.97	9.98	9.88	9.93	10.07	9.75	10.15	9.78	10.10	10.11	10.11
MnO	.09	.15	.07	.08	.11	.09	.06	.11	.09	.08	.15	.11	.09	.09	.11	.14	.18	.12	.08	.09
MgO	32.76	32.67	32.80	32.69	32.65	32.60	32.59	32.81	32.72	32.71	32.86	32.77	32.80	32.73	32.69	32.77	32.87	32.80	32.91	32.88
CaO	.20	.19	.22	.22	.20	.21	.22	.19	.22	.21	.22	.21	.19	.20	.19	.23	.23	.20	.23	.22
K ₂ O	.03	.04	.03	.03	.04	.05	.03	.04	.06	.01	.03	.04	.07	.03	.03	.04	.04	.03	.05	.02
Σ	100.10	100.35	100.54	100.41	100.06	100.19	99.77	100.66	100.29	100.53	100.52	100.54	100.62	100.55	100.32	100.75	100.47	100.55	100.81	100.82
Kationen- besetzung Si Ti Cr Fe st - Mn Mg Ca Na K ∑ Kationen Sauerstoffe	1.973 .001 .020 .002 .293 .003 1.711 .007 .002 .001 4.016 6.000	1.979 .001 .001 .290 .004 .003 1.701 .007 .003 .000 4.010	1.979 .001 .002 .286 .002 .004 1.703 .008 .002 .000 4.009	1.980 .001 .020 .002 .002 .002 1.700 .002 .002 .000 4.008	1.979 .002 .001 .287 .003 .002 1.704 .008 .002 .001 4.009	1.981 .001 .021 .003 .003 .002 1.699 .003 .003 .000 4.009	1.980 .001 .001 .287 .002 .003 1.705 .008 .002 .000 4.009	1.979 .001 .001 .291 .003 .003 1.703 .007 .002 .000 4.010	1.980 .001 .020 .001 .287 .003 .001 1.703 .008 .004 .001 4.010	1.980 .001 .002 .290 .002 .003 1.699 .008 .000 .000 4.008	1.974 .001 .022 .001 .004 .003 1.709 .008 .002 .000 4.015	1.979 .002 .021 .002 .288 .003 .003 1.702 .008 .003 .000 4.010	1.979 .001 .021 .003 .003 1.703 .005 .000 4.011 6.000	1.979 .001 .001 .293 .003 .002 1.701 .008 .002 .000 4.010	1.983 .001 .001 .284 .003 1.700 .007 .002 .001 4.006 6.000	1.976 .001 .001 .296 .004 .002 1.701 .009 .003 .000 4.013	1.975 .001 .002 .285 .005 .003 1.709 .009 .003 .000 4.013	1.973 .002 .001 .295 .003 .002 1.706 .008 .002 .000 4.014	1.972 .001 .022 .001 .294 .002 .003 1.708 .004 .004 .000 4.017	1.975 .001 .022 .002 .294 .003 .002 1.705 .008 .001 .000 4.013
Mg #	85.38	85.42	85.60	85.43	85.59	85.43	85.58	85.40	85.58	85.40	85.44	85.53	85.49	85.28	85.67	85.20	85.70	85.27	85.30	85.29
Cr #	7.11	5.54	8.68	7.61	0.48	4.88	5.28	2.91	4.76	7.93	4.98	8.23	6.45	5.18	6.24	5.90	7.17	6.25	5.52	8.36
Profilstrecke [µm]	619	629	639	649	659	669	679	689	699	709	719	729	739	749	760	770	780	790	800	810

Probe: Ka Profilname	Profil_02	Profil_02	Profil_02	Profil-02	Profil-02	Profil_02	Profil_02	Profil_02	Profil_02	Profil-02	Profil_02	Profil_02	Profil_02	Profil-02	Profil-02
Profilpunkt	131	132	133	134	135	136	138	139	140	141	142	143	147	148	149
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
$\begin{array}{c} \textbf{Analyse} \\ \textbf{[Gew%]} \\ \text{SiO}_{2} \\ \text{TiO}_{2} \\ \text{Al_{2}O_{3}} \\ \text{Cr}_{2}O_{3} \\ \text{FeO} \\ \text{MnO} \\ \text{NiO} \\ \text{NiO} \\ \text{MiO} \\ \text{CaO} \\ \text{Na_{2}O} \\ \text{K}_{2}O \\ \Sigma \end{array}$	56.63 .03 .54 .08 9.87 .08 .10 32.87 .22 .01 .01 100.42	56.81 .06 .55 .03 10.12 .14 .14 .287 .22 .03 .00 100.92	57.11 .08 .55 .07 10.12 .17 .12 32.73 .20 .04 .00 101.18	56.40 .05 .57 .08 10.02 .14 .12 32.93 .22 .03 .02 100.58	56.51 .09 .57 .04 9.65 .10 .10 32.68 .19 .05 .00 99.97	56.99 .04 .58 .06 9.82 .11 .11 32.75 .20 .04 .00 100.71	56.81 .58 .05 9.84 .09 .08 32.69 .21 .01 .00 100.41	56.72 .06 .59 .07 10.01 .12 .05 32.64 .20 .02 .00 100.48	56.93 .04 .60 .04 9.84 .12 .09 32.68 .21 .04 .00 100.58	56.14 .05 .63 .05 9.84 .15 .12 32.87 .20 .01 .00 100.07	56.31 .02 .64 .03 9.83 .08 .11 32.67 .22 .04 .00 99.95	56.59 .05 .65 .04 9.85 .13 .10 32.87 .21 .02 .00 100.52	56.47 .07 .82 .09 9.48 .12 .11 32.68 .21 .05 .01 100.10	55.68 .05 .94 .09 9.32 .14 .01 .24 .01 .01 99.29	55.87 .04 1.00 .08 9.74 .07 .07 32.68 .27 .04 .00 99.85
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Na K K K Xtionen	1.975 .001 .022 .288 .002 .003 1.709 .008 .000 .000 4.012	1.975 .001 .022 .001 .294 .003 1.703 .008 .002 .000 4.013	1.979 .002 .022 .003 .005 .003 1.691 .007 .003 .000 4.008	1.968 .001 .023 .002 .292 .004 .003 1.713 .008 .002 .001 4.019	1.978 .002 .024 .001 .282 .003 .003 1.706 .007 .003 .000 4.009	1.981 .001 .024 .002 .286 .003 .003 1.697 .007 .003 .000 4.007	1.980 .001 .024 .001 .287 .003 .002 1.699 .008 .001 .000 4.006	1.978 .002 .024 .002 .292 .004 .001 1.697 .008 .001 .000 4.008	1.981 .001 .025 .001 .286 .003 .003 1.695 .008 .002 .000 4.006	1.967 .001 .026 .001 .288 .004 .003 1.717 .008 .001 .000 4.018	1.974 .001 .288 .002 .003 1.707 .008 .003 .000 4.013	1.973 .001 .027 .001 .287 .004 .003 1.708 .008 .001 .000 4.013	1.973 .002 .034 .002 .277 .004 .003 1.702 .008 .004 .000 4.009	1.962 .001 .039 .003 .275 .004 .002 1.721 .009 .001 .000 4.016	1.961 .001 .041 .286 .002 .002 1.710 .010 .000 4.018
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	85.59 8.63 820	85.28 2.98 830	85.22 7.48 840	85.42 8.15 850	85.80 4.25 860	85.60 6.18 870	85.55 4.95 890	85.32 7.42 900	85.55 4.49 910	85.62 4.80 920	85.55 3.44 931	85.60 4.32 941	86.01 6.54 981	86.23 6.31 991	85.67 5.26 1001

Probe:	Ka
Profil:	03
Mineral:	OI
Kapitel:	Anhang II

Profil- strecke [µm]	P [b[b]]	Sc [µg/g]	оО [b/bh]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
20	31.248	0.257	177.756	178.895	1.316	0.042	2.378	3.431
70	31.666	0.267	178.711	188.255	1.814	0.028	3.085	5.200
120	30.917	0.261	180.128	191.692	1.647	0.050	3.080	7.388
170	29.968	0.272	177.765	182.844	1.390	0.048	2.208	4.673
220	31.508	0.266	179.103	184.307	1.176	0.018	3.303	7.505
270	30.426	0.235	178.293	181.352	0.551	0.039	3.413	2.485
319	29.303	0.247	178.254	182.489	1.788	0.042	2.895	2.646
370	28.657	0.304	179.377	184.832	0.541	0.041	2.267	6.621
420	27.440	0.253	178.480	183.700	0.764	0.061	2.966	6.709
470	26.785	0.321	178.836	181.163	0.695	0.036	2.915	3.515
519	25.057	0.302	177.971	180.727	0.949	0.037	1.997	7.627
570	23.300	0.348	179.602	181.261	0.403	0.022	2.730	5.064
609	21.384	0.265	180.121	172.893	1.328	0.048	7.010	5.329

Probe: Ka	repräsent	ative Ana	ilysen auf	grund voi	n Homoge	enität														
Profilname	Profil-03	Profil-03	Profil-03	Profil-03	Profil-03 I	Profil-03 I	Profil-03	Profil-03	Profil-03	Profil-03	Profil-03	Profil-03	Profil-03 I	Profil-03 I	Profil-03	Profil-03	Profil-03 I	Profil-03 I	Profil-03 F	Profil-03
Profilpunkt	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Mineral	OI	OI	OI	OI	OI	OI	01	01	OI	OI	01	01	OI	01	01	OI	01	OI	OI	ОІ
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr2O3 FeO MinO NiO CaO Na2O CaO K2Ó Z	39.38 .00 .01 .03 15.54 .07 .40 44.92 .01 .00 .00 100.35	39.34 .01 .00 15.85 .05 .41 45.14 .00 .02 .00 100.83	39.56 .00 .00 15.46 .08 .44 44.87 .01 .01 .01 .00	39.39 .02 .00 .00 15.73 .10 .40 44.91 .00 .00 .01 100.56	39.18 .02 .00 .00 15.53 .06 .44 44.84 .00 .02 .02 100.10	39.40 .00 .00 15.88 .06 .40 44.85 .01 .01 .01 .00 100.62	39.40 .01 .00 15.65 .10 .43 44.96 .00 .01 100.56	39.38 .01 .00 .15.76 .10 .41 44.87 .00 .00 .00 100.54	39.43 .03 .01 .00 15.83 .12 .41 45.05 .00 .01 .00 100.88	39.15 .00 .00 15.81 .09 .40 44.93 .00 .00 .00 100.37	39.26 .01 .00 15.75 .07 .40 44.87 .00 .00 .02 100.39	39.40 .00 .00 15.78 .10 .43 44.92 .01 .00 .01 100.65	39.24 .00 .01 .00 15.72 .10 .39 44.69 .00 .00 .00 100.15	38.81 .00 .00 15.60 .08 .42 44.73 .01 .00 .00 99.66	39.31 .00 .01 15.29 .08 .35 44.60 .02 .00 .00 99.67	39.36 .01 .00 15.70 .09 .38 44.76 .01 .00 .00 100.31	39.19 .00 .00 15.71 .04 .38 44.83 .00 .00 .00 100.17	38.94 .00 .01 .594 .13 .42 44.83 .00 .00 .01 100.27	38.76 .00 .00 15.35 .09 .38 44.83 .00 .02 .00 99.44	38.93 .00 .01 15.55 .07 .37 44.82 .01 .00 .00 99.76
Kationen- besetzung Si Ti Al Cr Fe ⁺ Mn Ni Mg Ca Xa Xa Xationen Sauerstoffe	.990 .000 .001 .327 .001 .008 1.683 .000 .000 3.010 4.000	.986 .000 .000 .001 .008 1.686 .000 .001 .000 3.014 4.000	.993 .000 .000 .025 .002 .009 1.679 .000 .000 .000 3.007 4.000	.989 .000 .000 .002 .008 1.681 .000 .000 .000 3.011 4.000	.988 .000 .000 .000 .001 .009 1.685 .000 .001 .001 3.013 4.000	.989 .000 .000 .000 .001 .008 1.679 .000 .001 .000 3.011 4.000	.989 .000 .000 .002 .009 1.682 .000 .000 .000 3.011 4.000	.989 .000 .000 .002 .008 1.680 .000 .000 .000 3.011 4.000	.987 .001 .000 .033 .008 1.681 .000 .000 .000 3.012 4.000	.986 .000 .000 .002 .008 1.686 .000 .000 .000 3.014 4.000	.988 .000 .000 .001 .001 .008 1.683 .000 .001 3.012 4.000	.989 .000 .000 .000 .002 .009 1.680 .000 .000 .000 3.011 4.000	.989 .000 .000 .000 .002 .008 1.680 .000 .000 .000 3.011 4.000	.984 .000 .000 .000 .002 .009 1.690 .000 .000 .000 3.016 4.000	.993 .000 .000 .323 .002 .007 1.680 .001 .000 3.007 4.000	.990 .000 .000 .002 .008 1.679 .000 .000 .000 3.010	.988 .000 .000 .001 .001 .008 1.685 .000 .000 .000 3.012 4.000	.983 .000 .000 .003 .009 1.687 .000 .000 .000 3.018 4.000	.984 .000 .000 .326 .002 .008 1.696 .000 .001 .000 3.017 4.000	.985 .000 .000 .329 .008 1.691 .000 .000 3.015 4.000
Mg # Profilstrecke [µm]	83.75 5	83.55 15	83.80 25	83.58 35	83.73 46	83.43 56	83.66 66	83.54 76	83.53 86	83.52 96	83.55 106	83.53 116	83.52 127	83.63 137	83.87 147	83.55 157	83.57 167	83.37 177	83.89 187	83.71 197

Probe: Ka	Drofil 02 I	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02	Drofil 02
Profilpunkt	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49
Mineral	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	ОІ	OI	OI	ОІ	OI	OI
Analyse Gew%] SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO NiO NiO MgO Na ₂ O K ₂ O X X	39.07 .02 .00 15.58 .08 .46 44.67 .00 .01 .01 99.90	38.85 .01 .00 15.71 .09 .39 44.76 .01 .01 .00 99.83	38.96 .00 .01 .00 15.75 .08 .42 44.76 .01 .00 .00 99.98	38.81 .01 .00 .01 16.01 .10 .42 44.79 .03 .00 .00 .00	39.43 .01 .00 15.76 .08 .39 44.88 .00 .00 .00 .00	39.06 .01 .00 15.81 .09 .39 44.88 .00 .01 .01 .00	39.12 .00 .01 15.63 .08 .43 45.07 .02 .01 .00 100.37	39.24 .01 .00 .01 15.69 .08 .38 44.97 .00 .00 .00 .00	38.92 .00 .02 15.67 .10 .40 44.93 .00 .01 .00	39.35 .01 .00 15.61 .11 .42 44.86 .01 .00 .01	38.93 .01 .00 .01 16.05 .11 .39 44.96 .02 .00 .01 100.49	38.95 .00 .01 15.98 .11 .38 45.05 .00 .01 .01 .00	39.32 .02 .00 .02 15.93 .13 .43 .43 .44.83 .00 .01 .01 .01	39.10 .01 .02 15.73 .10 .38 44.74 .01 .00 .03 100.11	39.39 .01 .00 .00 16.02 .12 .42 44.88 .00 .00 .00 .00	39.34 .00 .01 15.91 .08 .38 44.84 .01 .00 .01	39.29 .04 .01 15.71 .09 .38 44.62 .00 .00 .00 100.16	39.31 .01 .00 .00 15.43 .09 .41 44.77 .00 .02 .01 100.03	39.37 .00 .00 15.70 .45 44.74 .01 .01 .01	39.40 .00 .02 15.91 .07 .36 44.79 .02 .00 .03 100.59
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Mg Ca K Kationen Sauerstoffe	.988 .000 .000 .329 .002 .009 1.683 .000 .000 .000 .000 3.012	.984 .000 .000 .000 .003 .002 .008 1.689 .000 .000 .000 3.016	.985 .000 .000 .333 .002 .008 1.687 .000 .000 .000 3.015	.981 .000 .000 .000 .002 .008 1.688 .001 .000 .000 3.019	.990 .000 .000 .000 .002 .008 1.679 .000 .000 .000 3.010	.985 .000 .000 .333 .002 .008 1.687 .000 .000 .000 3.015	.984 .000 .000 .029 .002 .009 1.691 .001 .000 3.016	.987 .000 .000 .000 .002 .008 1.686 .000 .000 .000 3.013	.983 .000 .000 .000 .002 .008 1.692 .000 .001 .001 .000 3.017	.989 .000 .000 .020 .009 1.681 .000 .000 .000 3.011	.981 .000 .000 .0338 .002 .008 1.688 .001 .000 .000 3.019	.981 .000 .000 .000 .002 .008 1.691 .000 .001 .000 3.019	.987 .000 .000 .0334 .003 .009 1.678 .000 .001 .001 .001 .001	.987 .000 .000 .002 .002 .008 1.683 .000 .000 .001 3.013	.988 .000 .000 .003 .003 .008 1.678 .000 .000 .000 3.012	.988 .000 .000 .0334 .002 .008 1.679 .000 .000 .000 3.012	.990 .001 .000 .331 .002 .008 1.676 .000 .000 .000 3.009	.991 .000 .000 .025 .002 .008 1.682 .000 .001 .001 .000 3.010	.990 .000 .000 .002 .009 1.678 .000 .000 .000 3.010	.989 .000 .000 .334 .002 .007 1.677 .000 .000 .001 3.011
Sauerstoffe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Mg #	83.64	83.55	83.52	83.29	83.54	83.50	83.71	83.63	83.64	83.67	83.32	83.40	83.38	83.53	83.32	83.40	83.51	83.80	83.55	83.39
Profilstrecke [um]	208	218	228	238	248	258	268	279	289	299	309	319	329	339	349	360	370	380	390	400

Probe:	Ka
Profil:	05
Mineral:	Grt
Kapitel:	Anhang II

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ	
10	58.734	69.099	55.360	29.624	0.994	0.452	0.487	0.957	
60	63.238	70.681	51.654	24.645	1.037	0.854	0.836	2.865	
260	58.869	68.520	51.514	24.023	2.255	0.332	0.606	1.276	
310	61.368	67.383	55.297	30.860	1.716	0.677	0.727	1.592	
360	60.459	67.606	56.557	31.671	2.047	0.462	0.856	1.911	
Probe: Ka Profilname	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05
---	--	--	--	--	--	--	--	---	---
Profilpunkt	1	2	3	4	5	6	7	8	9
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO ₂ . TO ₂ Al ₂ O ₃ Gr ₂ O ₃ FeO MnO NiO NiO NiQO CaO K ₂ Ô CaO X ₂ Ô X ₂ Ô	41.03 .10 22.89 .76 15.33 .44 .00 16.51 4.54 .03 .01 101.65	40.92 .08 22.95 .79 15.23 .42 .00 16.37 4.53 .02 .01 101.32	41.13 .06 22.84 .82 15.13 .46 .00 16.17 4.42 .02 .00 101.06	41.04 .06 22.87 .77 15.63 .43 .02 16.36 4.45 .04 .00 101.66	40.81 .05 22.89 .82 15.44 .46 .05 16.14 4.48 .02 .01 101.15	40.69 .08 22.71 .76 15.75 .47 .00 16.04 4.60 .02 .01 101.12	40.99 .08 22.79 .77 16.10 .48 .00 15.67 4.48 .03 .00 101.38	40.63 .05 22.80 .74 16.88 .49 .01 15.39 4.44 .01 .02 101.46	40.60 .04 22.80 .63 17.14 .64 .00 14.87 4.45 .02 .00 101.19
Kationen- besetzung Si Ti Al Cr Fe ^{c+} Mn Ni Mg Ca Na K ∑ Kationen Sauerstoffe	2.961 .006 1.947 .043 .925 .027 .000 1.776 .351 .005 .001 8.042 12.000	2.961 .004 1.957 .045 .025 .000 1.766 .351 .003 .001 8.036 12.000	2.980 .003 1.950 .047 .028 .000 1.746 .343 .003 .000 8.019 12.000	2.964 .003 1.947 .044 .026 .001 1.761 .344 .006 .000 8.040 12.000	2.962 .003 1.958 .047 .028 .003 1.747 .348 .002 .001 8.035 12.000	2.959 .004 1.947 .044 .029 .000 1.739 .003 .001 8.043 12.000	2.975 .004 1.949 .044 .977 .029 .000 1.695 .349 .005 .000 8.027 12.000	2.959 .003 1.957 .043 1.028 .030 .000 1.671 .346 .002 .002 8.040 12.000	2.968 .002 1.964 .036 1.048 .039 .000 1.621 .349 .003 .000 8.030 12.000
Mg # Cr # Profilstrecke [µm]	65.76 2.17 5	65.70 2.25 15	65.58 2.35 25	65.10 2.21 36	65.09 2.34 46	64.48 2.19 56	63.43 2.21 66	61.90 2.14 76	60.74 1.82 86

Probe: Ka								
Profilname	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05
Profilpunkt	83	84	85	86	87	88	89	90
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TO2 TO2 TO2 MacDa FeO MnO NiO NiO CaO CaO K2O K2O K2O	40.50 .07 22.80 .73 16.85 .62 .00 14.98 4.61 .01 .01 101.18	40.44 .08 22.77 .76 16.83 .51 .00 15.23 4.44 .03 .00 101.09	40.58 .10 22.93 .78 16.53 .05 15.66 4.53 .04 .00 101.51	40.75 .07 22.97 .74 15.68 .49 .00 15.97 4.44 .01 .03 101.14	40.69 .06 22.93 .72 15.66 .51 .02 16.21 4.46 .02 .00 101.27	40.89 .08 22.93 .75 15.40 .00 16.17 4.42 .02 .00 101.15	40.87 .05 22.94 .77 15.52 .47 .00 16.47 4.40 .02 .00 101.51	40.71 .05 22.98 .77 15.28 .44 .00 16.43 4.43 .01 .00 101.10
Kationen- besetzung Si Ti Cr Fré ²⁴ - Mi Mg Ca Xa Na K K K Kationen Sauerstoffe	2.960 .004 1.964 .042 1.030 .038 .000 1.633 .361 .001 8.034 12.000	2.956 .004 1.962 .044 1.029 .030 1.660 .348 .004 .000 8.039 12.000	2.949 .006 1.964 .045 .991 .033 1.697 .353 .005 .000 8.044 12.000	2.960 .004 1.967 .042 .952 .000 1.729 .345 .002 .003 8.034 12.000	2.953 .003 1.962 .041 .950 .031 1.753 .347 .003 .000 8.044 12.000	2.965 .004 1.960 .043 .934 .000 1.747 .343 .000 8.031 12.000	2.956 .003 1.955 .044 .939 .000 1.775 .341 .003 .000 8.043 12.000	2.953 .003 1.964 .044 .927 .000 1.776 .345 .002 .000 8.041 12.000
Mg # Cr # Profilstrecke [µm]	61.32 2.10 286	61.74 2.18 297	63.13 2.24 307	64.48 2.11 317	64.85 2.05 327	65.17 2.14 337	65.42 2.19 347	65.72 2.21 358

Probe:	Ka
Profil:	06
Mineral:	OI
Kapitel:	2.5

Profil- strecke [µm]	P [b6/b4]	Sc [µg/g]	Со [b/bh]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
25	21.755	0.244	180.443	125.405	1.800	0.083	5.247	3.215
75	22.265	0.226	179.894	128.642	1.728	0.049	2.781	3.723
125	21.472	0.256	183.842		1.420	0.036	3.964	
175	21.897	0.237	183.789	133.052	1.270	0.031	2.595	3.334
225	22.844	0.213	181.689	130.263	1.207	0.050	3.063	1.983
276	21.860	0.272	182.739	132.543	0.951	0.034	2.284	7.189
325	21.336	0.216	181.646	130.791	0.501	0.039	3.084	4.243
375	22.529	0.231	180.569	129.328	0.802	0.025	4.655	4.441
425	21.846	0.199	181.310	125.365	1.070	0.058	2.651	3.438
475	21.820	0.278	181.360	127.319	1.189	0.045	2.601	1.984
525	21.996	0.243	180.990	131.110	0.925	0.054	2.161	3.566
575	21.926	0.209	181.192	130.386	1.544	0.027	3.859	3.333
625	21.423	0.214	180.960	129.852	1.091	0.019	2.921	4.695
675	21.860	0.262	180.959	128.015	1.331	0.032	2.483	1.892
725	23.050	0.215	179.927	127.731	0.405	0.058	2.720	5.357
775	22.100	0.334	180.947	128.396	1.473	0.082	3.865	4.774
825	22.373	0.277	179.660	126.997	0.877	0.030	2.318	1.516

Probe: Ka	repräsent	ative Ana	lysen auf	grund vor	n Homoge	enität														
Profilname	Profil-06 I	Profil-06 I	Profil-06	Profil-06	Profil-06 F	Profil-06 I	Profil-06 I	Profil-06	Profil-06	Profil-06 I	Profil-06 I	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06
Profilpunkt	11	12	13	14	15	16	17	18	25	26	27	28	29	30	31	32	33	34	35	36
Mineral	OI	OI	01	01	OI	OI	OI	01	OI	01	OI	01	OI	01	01	OI	01	01	01	01
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr2O3 FeO MinO NiO CaO CaO CaO K2O K2O K2O S	39.21 .01 .03 15.79 .10 .42 44.59 .01 .00 .00 100.16	38.91 .00 .00 15.83 .34 44.77 .03 .00 .01 99.97	39.05 .01 .02 15.63 .07 .44 44.64 .00 .00 .01 99.87	38.97 .01 .00 15.88 .08 .38 44.70 .02 .00 .01 100.05	39.40 .00 .00 15.91 .11 .45 44.86 .00 .00 .00 100.73	39.00 .02 .00 15.78 .07 .37 44.65 .00 .01 .01 99.91	39.16 .00 .00 16.01 .10 .41 44.85 .01 .00 .00 100.53	39.32 .00 .00 16.04 .07 .41 44.64 .01 .00 .02 100.52	39.45 .00 .01 .613 .11 .41 .44.79 .01 .02 .01 100.93	39.27 .00 .01 16.18 .13 .38 44.71 .00 .01 .00 100.69	38.82 .02 .00 .02 15.73 .09 .41 44.48 .00 .01 .00 99.57	38.96 .00 .01 15.85 .09 .42 44.52 .00 .03 .00 99.86	38.86 .00 .00 .15.98 .13 .44 44.72 .00 .00 .00 100.13	38.89 .03 .00 .00 16.12 .09 .40 44.75 .00 .00 .00 100.28	38.96 .00 .00 16.14 .09 .40 44.66 .01 .02 .00 100.28	39.14 .00 .01 .00 15.90 .05 .43 44.55 .00 .01 .00	39.16 .00 .00 15.91 .14 44.60 .00 .00 .01 100.20	39.03 .00 .01 16.12 .12 .33 44.73 .01 .00 .01 100.35	39.07 .02 .01 .00 16.07 .10 .45 44.76 .00 .02 .00 100.50	39.16 .01 .00 16.20 .11 .41 44.73 .01 .00 .00 100.62
Kationen- besetzung Si Ti Al Cr Fe ⁺ Mn Ni Mg Ca Xa K Xationen Sauerstoffe	.989 .000 .001 .333 .002 .009 1.677 .000 .000 3.010 4.000	.984 .000 .000 .002 .007 1.688 .001 .000 .000 3.016 4.000	.987 .000 .000 .000 .002 .009 1.683 .000 .000 .000 3.012 4.000	.985 .000 .000 .002 .008 1.684 .000 .000 .000 3.015	.988 .000 .000 .000 .002 .009 1.678 .000 .000 .000 3.012 4.000	.986 .000 .000 .000 .334 .008 1.683 .000 .000 .000 3.014 4.000	.985 .000 .000 .002 .008 1.682 .000 .000 .000 3.015 4.000	.989 .000 .000 .001 .001 .008 1.674 .000 .001 3.011 4.000	.989 .000 .000 .0338 .002 .008 1.673 .000 .001 .000 3.012 4.000	.987 .000 .000 .000 .003 .008 1.675 .000 .000 .000 3.013 4.000	.985 .000 .000 .002 .008 1.683 .000 .000 .000 3.014 4.000	.986 .000 .000 .002 .008 1.680 .000 .001 .000 3.014 4.000	.982 .000 .000 .003 .003 .009 1.685 .000 .000 .000 3.018 4.000	.982 .001 .000 .000 .002 .008 1.684 .000 .000 .000 3.018 4.000	.984 .000 .000 .041 .002 .008 1.681 .000 .001 .000 3.017 4.000	.988 .000 .000 .001 .009 1.677 .000 .000 .000 3.012 4.000	.988 .000 .000 .003 .007 1.677 .000 .000 3.012 4.000	.984 .000 .000 .003 .007 1.681 .000 .000 3.016 4.000	.984 .000 .000 .002 .009 1.681 .000 .001 .000 3.016 4.000	.985 .000 .000 .341 .002 .008 1.678 .000 .000 3.015 4.000
Mg # Profilstrecke [µm]	83.43 5	83.45 15	83.58 25	83.38 35	83.41 45	83.46 56	83.32 66	83.23 76	83.19 147	83.12 157	83.44 167	83.36 177	83.30 187	83.19 197	83.14 207	83.32 217	83.32 227	83.19 238	83.23 248	83.11 258

Probe: Ka Profilname	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06	Profil-06
Profilpunkt	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56
Mineral	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI	OI
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO Na2O K2O Z	39.08 .00 .01 16.14 .09 .36 44.56 .00 .02 .01 100.26	39.05 .00 .01 15.75 .07 .45 44.77 .01 .01 .00 100.11	39.00 .00 .01 .00 15.88 .12 .44 44.68 .00 .02 .02 100.16	39.25 .00 .02 .04 .04 .42 44.87 .01 .00 .00 100.58	39.29 .00 .01 .00 15.88 .11 .43 44.61 .02 .00 .00 .00	39.12 .00 .00 16.08 .08 .40 45.04 .00 .00 .00 100.71	38.88 .00 .00 16.06 .13 .37 44.67 .02 .01 .01	39.07 .01 .00 .00 16.22 .08 .42 44.71 .01 .01 .00 100.53	39.21 .00 .00 16.23 .07 .39 44.75 .00 .03 .01 100.70	39.38 .01 .02 16.26 .05 .45 44.78 .01 .00 .01	39.15 .00 .00 16.23 .12 .45 44.67 .00 .00 .01 100.64	39.13 .01 .00 .00 16.14 .08 .45 44.49 .00 .00 .01 100.31	39.16 .00 .00 16.37 .11 .44 44.86 .00 .01 .01	38.95 .02 .00 .01 15.89 .11 .43 44.86 .01 .02 .00 100.30	38.80 .00 .00 15.76 .10 .36 44.64 .01 .00 .01 99.68	39.06 .00 .00 .05 .43 44.68 .00 .02 .00 .02 .00	38.56 .01 .00 .01 16.06 .10 44.65 .00 .01 .01 99.81	39.06 .00 .00 15.64 .08 .41 44.62 .00 .01 .00 99.82	39.13 .02 .01 .02 15.89 .08 .45 44.60 .00 .01 .02 100.21	38.85 .00 .01 15.99 .10 .44 44.63 .00 .00 .00 100.05
Kationen- besetzung Si Al Cr Fe ²⁺ Mn Ni Mg Ca Na K ∑ Kationen Sauerstoffe	.986 .000 .000 .341 .002 .007 1.677 .000 .001 .000 3.014	.986 .000 .000 .332 .001 .009 1.685 .000 .000 3.014 4.000	.985 .000 .000 .335 .003 .009 1.682 .000 .001 3.016 4.000	.986 .000 .001 .008 1.681 .000 .000 3.013 4.000	.989 .000 .000 .334 .002 .009 1.675 .001 .000 3.010 4.000	.983 .000 .000 .338 .002 .008 1.687 .000 .000 3.017 4.000	.983 .000 .000 .339 .003 .008 1.683 .000 .001 .000 3.018 4.000	.984 .000 .000 .342 .002 .009 1.679 .000 .000 3.016 4.000	.986 .000 .000 .341 .002 .008 1.677 .000 .001 .000 3.015	.987 .000 .000 .341 .009 1.673 .000 .000 3.013 4.000	.985 .000 .000 .342 .003 .009 1.676 .000 .000 3.015 4.000	.987 .000 .000 .341 .002 .009 1.673 .000 .000 3.013 4.000	.983 .000 .000 .344 .002 .009 1.679 .000 .000 3.017 4.000	.983 .000 .000 .335 .002 .009 1.687 .000 .001 .000 3.018 4.000	.984 .000 .000 .334 .002 .007 1.688 .000 .000 3.016 4.000	.985 .000 .000 .342 .001 .009 1.679 .000 .001 .000 3.016	.979 .000 .000 .341 .002 .008 1.690 .000 .000 3.021 4.000	.988 .000 .000 .331 .002 .008 1.683 .000 .001 .000 3.012 4.000	.987 .000 .000 .335 .002 .009 1.678 .000 .001 3.013 4.000	.983 .000 .000 .338 .002 .009 1.683 .000 .000 3.017 4.000
Mg #	83.11 268	83.52 278	83.38 288	83.35 298	83.36 308	83.32 318	83.22 329	83.09 339	83.09 349	83.08 359	83.07 369	83.09 379	83.01 389	83.42 399	83.46 409	83.10 420	83.21 430	83.57 440	83.34 450	83.26 460

Probe:	Ka
Profil:	09
Mineral:	Grt
Kapitel:	2.5

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
25	58.787	69.018	53.204	22.611	2.043	0.692	1.539	2.397
74	60.679	68.455	55.590	29.616	1.542	0.601	1.060	2.597
127	60.073	68.179	56.687	32.845	1.211	0.877	0.817	1.309
174	62.237	68.871	56.309	35.323	0.762	0.825	1.039	0.800
225	60.306	67.695	56.274	34.194	1.469	0.627	0.801	2.109
275	57.956	67.339	56.727	34.908	1.170	0.572	0.376	1.606
325	60.725	68.507	57.950	36.419	1.547	0.390	0.526	2.396
375	61.341	67.446	56.502	35.609	0.891	0.592	0.681	1.904
424	61.715	67.282	57.670	36.620	2.839	0.612	0.955	1.936
475	60.987	67.230	56.818	36.130	2.109	0.692	0.590	3.013
524	59.777	67.493	57.078	36.571	1.043	0.799	0.257	1.483
625	61.244	68.401	58.192	37.688	0.841	0.932	0.880	1.008
725	60.675	66.628	57.328	34.248	2.166	1.091	0.623	2.727
825	59.292	68.331	57.526	36.638	1.576	0.571	1.160	1.669
925	60.797	68.479	57.749	35.490	2.674	0.722	0.803	1.754
1024	59.211	68.776	56.886	33.694	1.530	0.509	1.201	1.494
1124	61.350	68.205	57.558	35.668	1.207	0.637	0.846	2.149
1225	59.314	69.634	57.220	35.100	2.005	0.553	0.621	1.917
1325	59.638	67.900	57.190	33.923	2.250	0.710	0.570	2.835
1425	59.851	69.215	57.895	34.164	1.824	0.717	0.702	1.047
1525	60.009	68.264	56.745	37.177	1.438	0.244	0.464	1.847
1624	60.496	68.398	57.605	36.126	0.955	0.408	0.569	1.481
1724	60.731	68.562	57.646	35.376	2.226	0.941	0.982	2.226
1825	59.804	66.684	57.789	34.364	0.899	0.656	0.852	2.900
1885	59.836	68.574	57.020	35.345	1.529	0.427	0.434	1.039
1954	60.408	68.492	58.194	35.177	1.807	0.993	0.574	3.214
2025	60.305	66.975	57.182	35.837	2.400	1.185	0.563	2.255
2125	58.519	68.548	57.906	37.284	0.716	0.196	0.484	2.025
2225	57.781	68.164	57.865	35.428	1.045	1.014	1.037	2.496
2324	62.059	68.525	57.805	37.575	1.590	0.399	1.028	1.952
2424	58.673	67.830	56.894	34.767	1.824	0.149	0.446	2.064
2525	59.933	68.762	57.807	35.850	0.748	0.931	0.850	0.421
2625	58.051	68.307	57.139	35.131	2.104	0.851	0.088	3.324
2822	58.685	68.699	58.056	36.561	1.414	0.398	0.879	2.082
2922	59.898	67.384	57.655	36.800	0.898	1.141	1.268	2.454
3023	57.577	67.699	58.228	36.565	1.268	1.024	0.822	1.303
3123	60.655	68.793	58.225	38.365	2.500	0.400	0.721	1.907
3223	59.425	68.759	58.123	36.860	0.787	0.428	0.794	1.218
3323	58.146	68.736	57.619	35.658	0.952	0.935	1.034	1.801
3422	59.905	67.517	58.002	36.105	1.339	0.394	0.638	2.836
3522	62.192	66.950	57.796	36.871	2.735	0.832	0.349	4.417
3623	64.909	67.633	58.905	36.241	0.904	0.555	0.365	2.040
3723	64.072	66.873	58.180	39.079	1.103	0.401	0.576	2.113
3823	58.508	68.713	57.612	39.072	2.248	0.978	0.825	1.187
3923	57.764	68.315	57.021	35.279	0.373	0.657	0.582	2.429
4022	58.150	66.711	58.568	34.652	1.948	0.668	0.442	2.759
4122	58.924	67.544	57.491	35.744	2.265	1.313	0.762	0.975
4223	59.607	68.033	57.685	35.135	1.165	0.452	0.721	1.682
4323	60.733	68.003	57.346	35.525	1.165	1.451	0.999	2.472
4423	59.907	68.116	57.758	37.154	1.904	0.553	0.654	2.227
4523	60.673	68.306	57.757	36.618	1.597	0.531	0.602	2.294

Probe:	Ka
Profil:	09
Mineral:	Grt
Kapitel:	2.5

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
4622	60.273	68.141	58.500	34.678	1.762	0.621	0.333	2.210
4673	60.343	68.165	58.415	35.441	1.853	0.555	1.442	1.955
4722	59.711	68.496	58.012	34.872	1.365	0.753	0.734	2.392
4773	60.811	67.327	57.824	35.906	1.087	0.557	0.775	2.062
4823	60.674	67.002	57.272	34.784	0.604	0.772	0.740	2.536
4873	61.069	67.171	56.679	35.169	2.986	0.394	0.364	1.362
4923	59.421	68.151	56.664	33.578	1.332	0.957	0.218	2.757
4972	60.296	67.716	57.243	35.628	1.642	0.501	0.618	0.861
5023	57.755	68.293	56.598	36.094	1.495	0.348	0.964	1.950
5072	60.012	67.398	56.343	35.568	0.570	0.572	1.306	1.445
5123	58.765	67.693	56.226	32.704	0.696	0.864	1.032	1.803
5173	56.977	66.882	55.191	31.669	1.788	0.630	0.417	1.314
5222	57.940	67.010	54.757	26.206	0.684	1.049	0.490	1.673
5273	52.054		49.636		2.169		0.508	

Probe: Ka																				
Profilname	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09 I	Profil-09 I	Profil-09 I	Profil-09	Profil-09	Profil-09										
Profilpunkt	47	48	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 SiO3 SiO3 Gr203 Gr203 Gr203 FeO MnO NiO MgO CaO CaO KgÓ Z	40.56 .07 22.61 .78 17.08 .64 .01 14.66 4.41 .03 .00 100.85	40.69 .09 22.81 .81 16.45 .52 .03 15.24 4.34 .04 .01 101.02	40.77 .09 22.91 .78 15.73 .50 .00 16.00 4.57 .04 .00 101.38	40.93 .06 22.92 .81 15.46 .01 15.88 4.54 .04 .04 .00 101.10	40.82 .10 22.93 .76 15.66 .39 .00 16.02 4.54 .01 .00 101.23	40.98 .09 22.96 .77 15.45 .47 .00 16.11 4.50 .03 .00 101.38	41.07 .07 22.99 .78 15.25 .49 .00 16.17 4.54 .02 .00 101.37	40.89 .06 22.97 .76 15.36 .47 .00 16.13 4.49 .02 .01 101.17	40.92 .11 22.90 .78 15.49 .46 .00 16.26 4.48 .03 .00 101.44	40.86 .10 22.97 .76 15.61 .49 .00 16.24 4.59 .05 .00 101.65	40.96 .08 23.06 .79 15.11 .44 .00 16.17 4.58 .02 .00 101.20	40.83 .10 22.96 .74 15.34 .02 15.61 4.58 .02 .01 100.63	40.91 .09 22.96 .80 15.44 .50 .00 16.27 4.61 .04 .00 101.63	40.73 .07 22.86 .79 15.64 .41 .00 16.30 4.46 .04 .01 101.30	41.11 .09 22.93 .79 15.68 .43 .00 16.30 4.49 .00 .02 101.84	41.03 .07 22.95 .80 15.25 .48 .04 16.20 4.55 .02 .00 101.38	40.98 .05 22.99 .77 15.52 .40 .02 16.24 4.53 .00 .00 101.50	40.99 .08 23.00 .77 15.39 .46 .00 16.28 4.44 .04 .00 101.43	41.03 .06 23.23 .72 15.42 .43 .03 16.34 4.46 .03 .00 101.73	40.58 .07 23.15 .75 15.34 .45 .00 16.42 4.34 .01 .00 101.11
Kationen- besetzung Si Ti Al Cr Fe ²⁴ Mn Mg Ca Ca Na K Kationen	2.976 .004 1.955 .045 .040 .001 1.604 .347 .004 .000 8.023	2.970 .005 1.962 .046 1.004 .032 .002 1.658 .340 .005 .001 8.024	2.957 .005 1.958 .044 .954 .031 .005 .355 .005 .000 8.040	2.971 .003 1.961 .046 .938 .028 .001 1.718 .353 .005 .000 8.025	2.961 .006 1.961 .044 .950 .024 .004 1.732 .353 .001 .000 8.031	2.966 .005 1.958 .044 .935 .029 .000 1.739 .349 .004 .000 8.030	2.970 .004 1.959 .045 .922 .030 .000 1.743 .351 .002 .000 8.026	2.965 .003 1.963 .044 .931 .029 .000 1.744 .349 .003 .001 8.031	2.961 .006 1.953 .045 .937 .028 .000 1.754 .347 .004 .000 8.036	2.954 .005 1.957 .043 .943 .030 .000 1.750 .355 .007 .000 8.045	2.965 .004 1.967 .045 .915 .027 .000 1.745 .355 .003 .000 8.026	2.975 .005 1.971 .043 .935 .026 .001 1.696 .358 .003 .001 8.014	2.956 .005 1.955 .046 .933 .031 .000 1.753 .356 .005 .000 8.041	2.954 .004 1.954 .045 .949 .025 .000 1.763 .346 .006 .001 8.046	2.964 .005 1.948 .045 .946 .026 .000 1.752 .347 .000 .002 8.035	2.967 .004 1.956 .046 .923 .029 .002 1.747 .353 .003 .000 8.030	2.963 .003 1.959 .044 .938 .025 .001 1.750 .351 .000 .000 8.034	2.963 .004 1.960 .044 .930 .028 .000 1.755 .344 .005 .000 8.033	2.957 .003 .041 .929 .026 .002 1.756 .344 .004 .000 8.035	2.944 .004 1.979 .043 .931 .028 .000 1.776 .337 .001 .000 8.042
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	60.49 2.25 15	62.28 2.31 26	64.45 2.22 56	64.67 2.32 67	64.58 2.17 77	65.02 2.21 87	65.40 2.23 98	65.19 2.17 108	65.18 2.24 118	64.97 2.17 128	65.61 2.24 139	64.46 2.12 149	65.26 2.30 159	65.01 2.27 170	64.94 2.25 180	65.44 2.28 190	65.11 2.19 201	65.35 2.19 211	65.39 2.04 221	65.62 2.13 231

Probe: Ka Profilname	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09
Profilpunkt	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 TiO2 Al2O3 C7.Q3 FeO MnO NiO MgO CaO CaO K2O K2O	40.81 .10 23.04 .78 15.22 .44 .02 16.31 4.50 .00 .02 101.23	40.75 .09 22.89 .84 15.04 .43 .00 16.16 4.44 .02 .01 100.65	40.79 .06 23.09 .77 14.91 .43 .02 16.36 4.45 .01 .00 100.88	40.72 .08 23.15 .74 15.36 .43 .01 16.36 4.49 .01 .02 101.36	40.88 .06 23.01 .77 15.27 .34 .02 16.22 4.43 .02 .01 101.03	40.72 .07 23.04 .75 15.20 .47 .03 16.27 4.46 .03 .00 101.06	40.32 .06 22.98 .77 15.40 .39 .00 16.30 4.48 .03 .00 100.73	40.58 .07 22.96 .78 15.76 .43 .00 16.35 4.54 .01 .00 101.48	40.63 .06 23.03 .77 15.13 .44 .00 16.32 4.48 .00 .02 100.89	40.61 .09 22.91 .81 15.11 .42 .01 16.26 4.55 .01 .01 100.79	40.72 .10 23.02 .79 15.52 .46 .01 16.24 4.44 .01 .03 101.33	40.64 .08 23.09 .78 15.18 .47 .00 16.37 4.51 .01 .01 101.12	41.01 .07 22.97 .81 15.29 .43 .01 16.21 4.56 .00 .00 101.37	40.78 .10 22.93 .81 15.52 .41 .00 16.31 4.49 .03 .01 101.38	40.88 .10 23.03 .82 15.38 .39 .00 16.19 4.48 .02 .00 101.29	40.74 .09 22.89 .80 15.33 .48 .01 16.23 4.50 .02 .00 101.08	40.66 .09 22.95 .84 15.42 .47 .03 16.30 4.39 .01 .00 101.17	40.87 .08 22.93 .82 15.30 .46 .00 16.25 4.49 .04 .00 101.24	40.74 .07 23.05 .80 15.45 .48 .02 16.17 4.48 .03 .01 101.31	40.83 .10 23.01 15.36 .44 .02 16.28 4.58 .02 .01 101.43
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Xa Kationen Sauerstoffe	2.956 .006 1.967 .045 .922 .027 .001 1.761 3.49 .000 .002 8.034 12.000	2.966 .005 1.963 .049 .915 .026 .000 1.753 .346 .003 .001 8.025 12.000	2.959 .003 1.974 .044 .027 .001 1.769 .346 .002 .000 8.029 12.000	2.947 .004 1.975 .042 .930 .026 .000 1.766 .042 .002 8.042 12.000	2.965 .003 1.967 .044 .021 1.754 .049 .001 1.754 .003 .001 8.029 12.000	2.955 .004 1.970 .043 .029 .002 1.760 .347 .004 .000 8.037 12.000	2.940 .003 1.974 .045 .024 .000 1.771 .350 .004 .000 8.050 12.000	2.941 .004 1.962 .045 .026 .000 1.766 .352 .002 .000 8.053 12.000	2.952 .003 1.972 .044 .920 .027 .000 1.768 .349 .000 .002 8.037 12.000	2.954 .005 1.965 .046 .920 .026 .001 1.763 .355 .002 .001 8.037 12.000	2.951 .005 1.966 .045 .941 .028 .001 1.754 .002 .002 8.040 12.000	2.947 .004 1.973 .045 .920 .029 .000 1.770 .350 .002 .000 8.041 12.000	2.966 .004 1.958 .047 .026 .001 1.748 .353 .000 .000 8.028 12.000	2.954 .005 1.957 .046 .940 .025 .000 1.761 .349 .004 .001 8.041 12.000	2.960 .006 1.965 .047 .024 .000 1.747 .003 .000 8.030 12.000	2.958 .005 1.958 .046 .930 .029 .000 1.756 .350 .003 .000 8.036 12.000	2.951 .005 1.963 .048 .936 .029 .002 1.764 .341 .002 .000 8.040 12.000	2.961 .004 1.958 .047 .028 .000 1.755 .000 8.035 12.000	2.953 .004 1.968 .046 .029 .001 1.747 .348 .005 .001 8.039 12.000	2.954 .005 1.962 .046 .930 .027 .001 1.756 .355 .003 .001 8.038 12.000
Mg # Cr # Profilstrecke [µm]	65.63 2.23 242	65.70 2.41 252	66.17 2.19 272	65.51 2.09 292	65.44 2.19 312	65.61 2.15 332	65.36 2.21 352	64.90 2.23 372	65.78 2.20 392	65.72 2.30 412	65.09 2.25 432	65.79 2.22 452	65.39 2.32 472	65.19 2.30 492	65.23 2.33 512	65.37 2.29 533	65.33 2.39 553	65.43 2.35 573	65.11 2.28 593	65.39 2.29 613

Probe: Ka																				
Profilname	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09 I	Profil-09 I	Profil-09 I	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09						
Profilpunkt	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] [Gow%] SiO, TiO, Gr,O, Gr,O, FeO MinO MinO NiO CaO Na,O CaO K ₂ Ô ∑	40.84 .09 22.94 .84 15.57 .47 .02 16.33 4.49 .03 .01 101.63	41.14 .08 22.99 .81 15.54 .00 16.31 4.50 .02 .00 101.90	41.07 .08 22.94 .82 15.47 .50 .00 16.31 4.45 .03 .00 101.67	40.94 .08 22.85 .85 15.17 .41 .00 16.11 4.50 .03 .03 100.96	40.88 .08 22.98 .79 15.40 .44 .03 16.23 4.60 .00 .01 101.46	40.87 .09 22.81 15.46 .43 .00 16.26 4.49 .01 .00 101.23	40.98 .07 22.88 .78 15.28 .43 .01 16.28 4.49 .04 .01 101.22	41.00 .08 22.94 .82 15.33 .47 .02 16.24 4.49 .02 .01 101.42	40.94 .09 22.89 .80 15.35 .42 .00 16.25 4.53 .02 .00 101.28	41.12 .10 22.95 .82 15.52 .45 .00 16.26 4.47 .00 .01 101.70	40.87 .09 22.85 .80 15.40 .44 .01 16.31 4.56 .03 .00 101.35	40.98 .09 22.99 .82 15.43 .41 .00 16.29 4.53 .04 .00 101.58	40.98 .09 22.88 .80 15.21 .44 .00 16.17 4.49 .02 .01 101.09	40.94 .08 23.03 .83 15.26 .44 .00 16.30 4.49 .03 .01 101.39	40.87 .07 22.97 15.21 .48 .00 16.27 4.41 .01 .02 101.10	40.86 .09 22.97 .77 15.24 .44 .00 16.30 4.49 .01 .01 101.17	40.98 .08 22.97 .76 15.22 .40 .00 16.31 4.57 .02 .00 101.30	40.92 .08 22.99 .75 15.34 .48 .01 16.19 4.50 .02 .00 101.28	40.92 .07 23.02 .81 15.17 .45 .01 16.20 4.54 .05 .01 101.25	41.07 .08 22.96 .78 15.07 .43 .00 16.37 4.50 .04 .01 101.30
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ca Na K K Kationen	2.953 .005 1.954 .048 .941 .029 .001 1.760 .348 .004 .001 8.044	2.964 .004 1.952 .046 .936 .031 .000 1.752 .347 .003 .000 8.035	2.964 .004 1.951 .047 .934 .030 .000 1.755 .344 .004 .000 8.035	2.972 .004 1.955 .049 .921 .025 .000 1.743 .350 .004 .002 8.025	2.958 .004 1.960 .045 .932 .027 .002 1.751 .356 .000 .001 8.036	2.963 .005 1.949 .047 .937 .026 .000 1.758 .349 .001 .000 8.035	2.968 .004 1.953 .026 .001 1.757 .348 .005 .001 8.033	2.965 .004 1.956 .047 .927 .029 .001 1.751 .348 .003 .001 8.031	2.965 .005 1.953 .046 .930 .026 .000 1.754 .351 .003 .000 8.032	2.966 .006 1.952 .047 .936 .028 .000 1.749 .345 .000 .001 8.030	2.959 .005 1.951 .046 .932 .027 .000 1.761 .354 .005 .000 8.040	2.960 .005 1.957 .047 .932 .025 .000 1.755 .350 .005 .000 8.036	2.971 .005 1.954 .046 .922 .027 .000 1.748 .348 .003 .001 8.026	2.960 .004 1.962 .047 .922 .027 .000 1.757 .348 .004 .000 8.033	2.963 .004 1.963 .922 .029 .000 1.758 .342 .002 .002 8.031	2.961 .005 1.962 .044 .923 .027 .000 1.760 .349 .001 .001 8.033	2.965 .004 1.958 .043 .921 .024 .000 1.759 .354 .003 .000 8.032	2.963 .004 1.962 .043 .929 .030 .001 1.748 .349 .003 .000 8.032	2.962 .004 1.964 .047 .919 .027 .001 1.749 .352 .007 .001 8.032	2.969 .004 1.956 .044 .911 .026 .000 1.764 .348 .006 .001 8.030
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	65.16 2.40 633	65.18 2.31 653	65.27 2.34 673	65.43 2.44 693	65.26 2.26 713	65.22 2.34 733	65.51 2.23 753	65.38 2.33 773	65.36 2.28 793	65.13 2.33 813	65.38 2.30 833	65.31 2.35 853	65.46 2.30 873	65.57 2.36 893	65.60 2.26 913	65.60 2.21 933	65.64 2.17 953	65.31 2.13 973	65.56 2.31 993	65.95 2.22 1013

Probe: Ka				-					-								-			
Profilmame	2109	110 Profil-09	111 Profil-09	112	113	114	115	116	117	118	110	120	121	122	123	124	125	126	127	128
n rompunkt	105		• •						•			120			120	124	12.0	120	121	120
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TiO2 Al2O3 C7,O3 FeO MnO NiO MgO CaO CaO K2O K2O	41.01 .08 23.06 .80 15.32 .37 .00 16.22 4.38 .04 .01 101.27	40.82 .07 22.99 .77 15.49 .42 .01 16.33 4.42 .02 .00 101.32	40.89 .07 23.00 .77 .54 .00 16.42 4.37 .00 .00 101.63	40.94 .07 23.06 .77 15.25 .44 .02 16.25 4.44 .04 .01 101.28	40.99 .07 22.95 .75 15.39 .44 .02 16.30 4.50 .03 .01 101.45	40.91 .08 23.03 .81 15.21 .44 .01 16.26 4.43 .04 .01 101.22	41.01 .06 23.02 .79 15.64 .43 .03 16.31 4.50 .04 .00 101.82	40.73 .09 23.00 .80 15.30 .44 .00 16.33 4.39 .06 .01 101.14	40.86 .09 22.92 .77 15.18 .39 .03 16.29 4.46 .03 .02 101.03	40.66 .07 23.01 .80 15.13 .43 .03 16.23 4.51 .00 .00 100.86	40.80 .04 22.97 .74 15.43 .44 .05 16.41 4.41 .02 .00 101.30	41.08 .09 23.03 .77 15.29 .47 .00 16.35 4.47 .03 .00 101.57	40.98 .06 23.04 .73 15.29 .46 .01 16.23 4.47 .01 .00 101.26	40.99 .04 23.09 .79 15.22 .48 .01 16.33 4.51 .02 .01 101.49	40.90 .04 23.19 .74 15.43 .50 .00 16.32 4.53 .00 .03 101.69	40.86 .08 23.00 .74 15.22 .49 .02 16.21 4.50 .02 .00 101.13	40.94 .08 23.00 .76 15.22 .51 .00 16.35 4.38 .02 .00 101.24	40.81 .06 22.95 .81 14.97 .02 16.18 4.53 .02 .00 100.82	40.76 .08 23.03 .79 15.23 .43 .00 16.32 4.43 .02 .00 101.09	40.77 .08 23.02 .74 15.30 .46 .02 16.35 4.47 .01 .01 101.22
Kationen- besetzung Si Ti Al Cr Fe ^{2*} Mn Ni Mg Ca Na K Xa Xa S Kationen	2.967 .004 1.966 .045 .927 .023 .000 1.749 .339 .005 .001 8.026	2.956 .004 1.962 .044 .938 .026 .001 1.763 .343 .003 .000 8.039	2.954 .004 1.958 .044 .941 .033 .000 1.769 .338 .000 8.041	2.963 .004 1.967 .044 .923 .027 .001 1.753 .344 .005 .001 8.031	2.964 .004 1.955 .043 .931 .001 1.757 .349 .005 .001 8.036	2.962 .004 1.965 .046 .921 .000 1.755 .344 .006 .001 8.031	2.958 .003 1.957 .045 .943 .026 .002 1.754 .348 .005 .000 8.040	2.954 .005 1.966 .046 .928 .027 .000 1.765 .341 .008 .001 8.040	2.964 .005 1.960 .044 .021 .024 .001 1.761 .347 .004 .001 8.032	2.955 .004 1.971 .046 .919 .027 .002 1.759 .351 .001 .000 8.033	2.956 .002 1.961 .042 .934 .027 .003 1.772 .342 .003 .000 8.042	2.964 .005 1.959 .044 .923 .029 .000 1.759 .345 .005 .000 8.032	2.966 .003 1.965 .042 .925 .028 .000 1.751 .346 .002 .000 8.028	2.961 .002 1.965 .045 .919 .030 .001 1.758 .349 .003 .001 8.034	2.952 .002 1.973 .042 .931 .030 .000 1.756 .350 .000 .002 8.040	2.962 .004 1.965 .042 .922 .030 .001 1.751 .350 .003 .000 8.031	2.963 .004 1.962 .043 .921 .031 .000 1.764 .339 .002 .000 8.031	2.965 .003 1.965 .047 .909 .029 .001 1.752 .353 .003 .000 8.027	2.956 .004 1.968 .045 .923 .027 .000 1.764 .344 .003 .000 8.035	2.954 .004 1.966 .042 .927 .028 .001 1.766 .347 .002 .000 8.038
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg #	65.37	65.26	65.28	65.51	65.37	65.58	65.03	65.55	65.67	65.67	65.47	65.59	65.43	65.66	65.34	65.50	65.69	65.84	65.64	65.58
Cr #	2.26	2.19	2.19	2.18	2.15	2.29	2.24	2.27	2.21	2.27	2.10	2.18	2.09	2.26	2.10	2.11	2.16	2.32	2.24	2.11
Profilstrecke [µm]	1034	1054	1074	1094	1114	1134	1154	1174	1194	1214	1234	1254	1274	1294	1314	1334	1354	1374	1394	1414

Probe: Ka																				
Profilname	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09 I	Profil-09 I	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09
Profilpunkt	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO ₂ TiO ₃ Gr ₂ O ₃ Gr ₂ O ₃ FeO MnO NiO MgO CaO CaO K ₂ Ô CaO X ₂ Ô X ₂ Ô	40.67 .05 23.01 .71 15.38 .48 .00 16.23 4.54 .01 .00 101.07	40.76 .07 23.02 .76 15.18 .46 .04 16.32 4.44 .02 .00 101.06	40.83 .06 23.07 .79 15.34 .44 .05 16.35 4.44 .00 .00 101.38	40.74 .05 22.99 .73 15.24 .45 .03 16.24 4.40 .01 .01 .00 100.86	40.87 .07 23.00 .75 15.35 .49 .01 16.20 4.47 .00 .02 101.22	40.92 .09 22.99 .84 15.56 .44 .00 16.44 4.42 .03 .00 101.73	41.02 .07 22.94 .80 15.05 .46 .05 16.42 4.45 .02 .00 101.26	40.95 .07 23.03 .75 15.74 .40 .00 16.24 4.42 .04 .01 101.64	40.88 .08 23.03 .78 15.29 .43 .04 16.29 4.44 .01 .00 101.27	40.91 .06 22.94 .78 15.09 .46 .03 16.16 4.45 .04 .00 100.91	40.73 .07 23.09 .81 15.66 .45 .04 16.33 4.48 .04 .00 101.69	40.84 .07 .22.97 .82 15.26 .47 .00 16.27 4.56 .03 .01 101.30	40.57 .10 23.08 .82 15.47 .48 .05 16.35 4.42 .05 .00 101.37	40.69 .06 22.96 .76 15.51 .40 .00 16.35 4.46 .03 .00 101.21	40.89 .04 23.08 .81 15.26 .41 .00 16.29 4.42 .02 .00 101.23	40.59 .07 23.03 .74 15.32 .42 .00 16.32 4.48 .03 .01 101.01	40.75 .08 22.96 .80 15.58 .36 .01 16.34 4.47 .04 .00 101.39	40.69 .06 22.89 .82 15.22 .42 .00 16.30 4.45 .04 .02 100.91	40.95 .11 22.93 .81 15.43 .46 .00 16.21 4.47 .05 .00 101.41	40.67 .06 22.99 .84 15.25 .44 .00 16.27 4.50 .04 .00 101.06
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ca Na K K toinen	2.953 .003 1.969 .041 .934 .029 .000 1.757 .353 .001 .000 8.040	2.956 .004 1.968 .044 .921 .028 .002 1.765 .345 .002 .000 8.035	2.954 .003 1.968 .045 .928 .027 .003 1.764 .345 .000 .000 8.036	2.960 .003 1.969 .042 .926 .027 .002 1.760 .342 .002 .000 8.032	2.962 .004 1.964 .043 .930 .030 .001 1.750 .347 .000 .001 8.032	2.953 .005 1.956 .048 .939 .027 .000 1.769 .342 .004 .000 8.042	2.967 .004 1.956 .045 .911 .028 .003 1.770 .345 .002 .000 8.030	2.959 .004 1.961 .043 .951 .025 .000 1.749 .342 .005 .001 8.039	2.960 .004 1.965 .044 .926 .026 .022 1.758 .345 .002 .000 8.032	2.970 .003 1.965 .916 .028 .002 1.748 .346 .005 .000 8.026	2.944 .004 1.966 .946 .027 .002 1.760 .347 .006 .000 8.049	2.957 .004 1.961 .047 .924 .029 .000 1.756 .354 .004 .001 8.038	2.940 .006 1.971 .047 .937 .029 .003 1.766 .343 .007 .000 8.049	2.952 .003 .044 .941 .024 .000 1.768 .346 .005 .000 8.045	2.960 .002 1.969 .046 .924 .025 .000 1.758 .343 .003 .000 8.031	2.948 .004 1.972 .931 .026 .000 1.767 .349 .004 .001 8.043	2.951 .005 1.960 .046 .944 .022 .001 1.764 .346 .006 .000 8.044	2.958 .003 1.961 .047 .925 .026 .000 1.766 .346 .005 .002 8.039	2.963 .006 1.955 .047 .934 .028 .000 1.748 .346 .007 .000 8.034	2.952 .003 1.967 .048 .926 .027 .000 1.761 .350 .006 .000 8.040
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	65.28 2.02 1434	65.72 2.18 1454	65.52 2.23 1474	65.52 2.07 1494	65.29 2.13 1514	65.32 2.38 1535	66.04 2.27 1555	64.78 2.14 1575	65.51 2.21 1595	65.62 2.24 1615	65.03 2.29 1635	65.52 2.35 1655	65.33 2.33 1675	65.27 2.17 1695	65.55 2.30 1715	65.50 2.10 1735	65.14 2.28 1755	65.62 2.34 1775	65.19 2.33 1795	65.55 2.40 1815

Probe: Ka																				
Profilname	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09
Profilpunkt	149	150	151	152	153	154	155	100	157	100	159	160	101	102	103	104	105	100	107	100
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO ₂ TiO ₂ Al ₂ O ₃ Cr.O ₃ FeO MnO NiO MgO CaO Na ₂ O K ^O X	40.93 .06 23.00 .79 15.33 .46 .02 16.35 4.48 .04 .02 101.48	40.65 .08 22.84 .85 15.31 .51 .00 16.35 4.41 .03 .03 101.06	40.65 .11 22.83 .81 15.47 .46 .00 16.34 4.51 .03 .00 101.22	40.97 .08 22.92 .79 15.53 .45 .00 16.17 4.53 .02 .00 101.45	40.88 .10 22.94 .85 15.19 .42 .00 16.22 4.47 .00 .00 101.06	41.00 .08 22.98 .81 15.53 .53 .00 16.33 4.46 .01 .00 101.73	40.95 .09 22.95 .83 15.35 .40 .00 16.29 4.52 .04 .01 101.42	40.88 09 22.93 .81 15.30 .46 .03 16.24 4.54 .03 .00 101.30	40.68 .09 22.90 .81 15.41 .47 .00 16.27 4.42 .02 .00 101.08	40.94 .11 22.92 .83 15.34 .43 .00 16.29 4.52 .05 .00 101.41	40.62 .06 22.99 .85 15.56 .37 .00 16.38 4.59 .02 .01 101.44	40.73 .09 22.92 .85 15.31 .41 .03 16.23 4.46 .01 .00 101.06	40.62 .08 22.89 .79 15.27 .47 .00 16.33 4.49 .00 .01 100.96	40.51 .05 23.07 .75 15.48 .43 .00 16.25 4.41 .03 .00 100.99	40.46 .05 22.92 .76 15.47 .41 .03 16.44 4.43 .02 .00 100.99	40.60 .07 23.09 .76 15.37 .43 .00 16.31 4.39 .02 .01 101.03	40.75 .07 22.91 15.26 .50 .01 16.27 4.49 .03 .00 101.10	40.54 .10 23.00 .84 15.33 .01 16.21 4.46 .01 .00 100.92	41.01 .07 22.94 .78 15.28 .42 .00 16.27 4.44 .01 .00 101.23	40.80 .10 23.05 .77 15.18 .48 .00 16.32 4.39 .01 .01 101.09
$\begin{array}{c} \textbf{Kationen-}\\ \textbf{besetzung}\\ Si\\ Ti\\ Al\\ Cr\\ Fe^{st}\\ Mn\\ Mn\\ Mg\\ Ca\\ Na\\ Na\\ K\\ \xi\\ Kationen\\ Sauerstoffe \end{array}$	2.959 .003 1.959 .045 .927 .028 .001 1.762 .347 .006 .002 8.039	2.953 .005 1.956 .049 .930 .020 1.771 .343 .004 8.044 12.000	2.950 .006 1.953 .046 .939 .028 .000 1.768 .351 .000 8.046 12.000	2.964 .004 1.954 .045 .939 .027 .000 1.745 .351 .000 8.033 12.000	2.964 .005 1.961 .048 .921 .000 1.753 .347 .000 8.026 12.000	2.959 .004 1.955 .046 .937 .030 1.757 .345 .000 8.037 12.000	2.961 .005 1.956 .048 .928 .000 1.756 .350 .000 8.036 12.000	2.960 .005 1.957 .046 .926 .002 1.753 .352 .000 8.035 12.000	2.954 .005 1.960 .046 .936 .000 1.761 .344 .000 8.039 12.000	2.961 .006 1.954 .047 .928 .000 1.757 .350 .000 8.036 12.000	2.942 .003 1.963 .048 .943 .000 1.768 .356 .003 .001 8.050 12.000	2.957 .005 1.961 .049 .929 .025 1.757 .347 .002 .000 8.034	2.952 .004 1.961 .046 .928 .000 1.769 .350 .000 .001 8.040 12.000	2.945 .003 1.977 .043 .941 .000 1.761 .343 .005 .000 8.044	2.943 .003 1.965 .044 .941 .002 1.782 .345 .002 .000 8.051	2.948 .004 1.976 .043 .933 .000 1.765 .342 .000 8.040 12.000	2.957 .004 1.960 .047 .926 .001 1.760 .349 .004 8.038 12.000	2.948 .005 1.971 .048 .932 .026 .000 1.758 .347 .001 8.037 12.000	2.969 .004 1.957 .045 .026 .000 1.756 .344 .000 8.027 12.000	2.957 .005 1.969 .044 .920 .000 1.764 .341 .000 8.032 12.000
Mg # Cr # Profilstrecke [µm]	65.53 2.24 1835	65.56 2.42 1855	65.31 2.32 1875	65.00 2.27 1895	65.56 2.41 1915	65.22 2.31 1935	65.43 2.37 1955	65.43 2.32 1975	65.30 2.31 1995	65.43 2.36 2015	65.23 2.41 2036	65.40 2.44 2056	65.59 2.27 2076	65.17 2.14 2096	65.45 2.17 2116	65.42 2.15 2136	65.52 2.34 2156	65.34 2.38 2176	65.50 2.24 2196	65.71 2.20 2216

Probe: Ka																				
Profilname	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09 I	Profil-09 I	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09						
Profilpunkt	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO ₂ TO ₂ Gr ₂ O ₃ Gr ₂ O ₃ FeO MnO NiO MgO CaO CaO K ₂ Ô CaO ∑ SiO	40.90 .06 23.04 .74 15.26 .47 .01 16.42 4.48 .00 .00 101.39	40.78 .07 23.04 .73 15.45 .48 .00 16.30 4.41 .00 .01 101.26	40.72 .03 23.06 .75 15.63 .42 .00 16.41 4.54 .00 .00 101.56	40.79 .08 23.06 .76 15.23 .46 .03 16.19 4.36 .04 .04 .00 100.99	40.74 .07 23.06 .78 15.21 .49 .00 16.42 4.49 .02 .00 101.27	40.66 08 23.00 .75 15.39 .37 .03 16.29 4.48 .01 .01 101.08	40.70 .04 23.01 .77 15.30 .49 .03 16.41 .03 .02 101.11	40.39 .05 23.12 .73 15.43 .44 .01 16.45 4.40 .02 .00 101.03	40.79 .06 23.02 .74 15.22 .48 .00 16.41 4.44 .00 .01 101.15	40.68 .06 23.04 .73 15.16 .46 .00 16.37 4.48 .01 .00 101.00	40.65 .06 23.10 .79 15.39 .48 .00 16.45 4.40 .03 .00 101.35	40.61 .06 23.04 .70 15.40 .42 .00 16.20 4.44 .04 .00 100.90	40.46 .06 22.95 .76 15.01 .45 .03 16.35 4.40 .01 .01 .00 100.48	40.68 .07 23.12 .74 15.28 .44 .03 16.20 4.46 .05 .00 101.07	40.57 .05 22.99 .76 15.33 .47 .01 16.21 4.46 .02 .00 100.87	40.67 .08 22.99 .83 15.50 .44 .00 16.38 4.43 .02 .01 101.36	40.94 .06 23.00 .75 15.36 .48 .00 16.20 4.57 .01 .01 101.35	40.70 .10 22.95 .80 15.64 .47 .00 16.27 4.51 .00 .00 101.46	40.63 .08 22.92 .80 15.54 .47 .00 16.35 4.58 .02 .00 101.39	40.67 .08 22.91 .82 15.22 .44 .02 16.15 4.51 .02 .00 100.85
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ca Na K Kationen	2.957 .003 1.964 .042 .923 .029 .001 1.770 .347 .000 .000 8.036	2.955 .004 1.967 .042 .936 .030 .000 1.761 .343 .000 .000 8.037	2.946 .002 1.966 .043 .945 .026 .000 1.769 .352 .000 .000 8.048	2.960 .004 1.972 .043 .924 .028 .002 1.752 .339 .006 .000 8.031	2.950 .004 1.968 .045 .921 .030 .000 1.772 .348 .003 .000 8.041	2.952 .004 1.968 .043 .934 .023 .002 1.763 .348 .001 .001 8.040	2.953 .002 1.967 .044 .928 .030 .002 1.775 .335 .004 .002 8.042	2.935 .003 1.980 .042 .938 .027 .001 1.782 .343 .002 .000 8.052	2.956 .003 1.966 .042 .922 .029 .000 1.773 .345 .001 .000 8.037	2.953 .003 1.971 .042 .920 .029 .000 1.771 .349 .002 .000 8.039	2.944 .003 1.971 .045 .932 .030 .000 1.776 .341 .004 .000 8.047	2.953 .003 1.974 .040 .937 .026 .000 1.756 .346 .005 .000 8.040	2.951 .003 .044 .915 .028 .002 1.777 .344 .001 .000 8.038	2.952 .004 1.977 .043 .927 .027 1.752 .347 .007 .000 8.038	2.951 .003 1.971 .044 .933 .029 .001 1.758 .348 .003 .000 8.040	2.947 .005 1.963 .047 .939 .027 .000 1.769 .344 .003 .001 8.046	2.963 .003 1.962 .043 .929 .009 1.748 .354 .001 .001 8.033	2.948 .005 1.959 .046 .948 .029 .000 1.757 .350 .000 .000 8.044	2.946 .004 1.958 .046 .942 .029 .000 1.767 .356 .003 .000 8.049	2.958 .004 1.964 .047 .926 .027 .001 1.751 .351 .003 .000 8.033
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	65.73 2.10 2236	65.28 2.08 2256	65.17 2.14 2276	65.46 2.15 2296	65.81 2.23 2316	65.36 2.15 2336	65.66 2.19 2356	65.52 2.08 2376	65.78 2.10 2396	65.81 2.08 2416	65.58 2.24 2436	65.21 2.00 2456	66.01 2.18 2476	65.39 2.10 2496	65.34 2.17 2516	65.31 2.35 2537	65.28 2.14 2557	64.97 2.30 2577	65.22 2.29 2597	65.42 2.36 2617

Probe: Ka	D., (1.00	D., (1.00	D., (1.00	D 61.00	D	D (1.00)	D (1.00	D	D 61.00	D	D (1 00	D	D	D 61.00	D (1.00	D., CI 00	D., (1.00	D (1.00	D 61.00	D (1.00
Profilpunkt	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] [Gow%] SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO NiO MiO NiO NiO NiO KgO CaO KgO K2O K2O	40.31 .06 22.87 .82 15.36 .40 .00 16.35 4.41 .03 .00 100.63	40.85 .10 22.85 .80 15.32 .39 .00 16.16 4.53 .02 .00 101.02	40.77 .08 22.97 .80 15.68 .42 .00 16.21 4.50 .03 .00 101.45	40.67 .07 22.89 .83 15.47 .45 .03 16.34 4.44 .03 .01 101.22	40.81 .08 22.82 .78 15.29 .48 .00 16.26 4.58 .01 .01 101.11	40.65 .09 22.96 .79 15.11 .42 .04 16.22 4.42 .03 .00 100.73	40.78 .04 23.04 .74 15.20 .41 .00 16.22 4.55 .02 .00 101.00	40.97 .06 22.96 .78 15.42 .47 .00 16.29 4.54 .03 .00 101.51	40.62 .08 22.96 .83 15.31 .45 .00 16.26 4.49 .01 .01 101.02	40.80 .07 22.91 .74 15.40 .01 16.20 4.42 .00 .00 100.95	40.89 04 23.00 .76 15.01 .40 .01 16.31 4.54 .00 .00 100.98	40.66 07 22.95 .77 15.08 .48 .02 16.12 4.49 .02 .00 100.65	40.71 .07 22.92 .78 15.25 .46 .01 16.20 4.49 .04 .01 100.91	40.74 .08 22.91 .82 15.39 .44 .00 16.16 4.49 .01 .00 101.04	40.68 .09 22.87 .79 15.56 .43 .01 16.24 4.51 .03 .00 101.20	40.91 .07 22.89 .77 15.38 .48 .00 16.14 .01 .01 .01 101.09	40.36 .07 22.90 .83 15.37 .41 .00 16.20 4.43 .01 .00 100.58	40.73 .08 22.99 .79 15.68 .41 .00 16.29 4.57 .01 .00 101.56	40.90 .08 22.93 .81 15.32 .44 .00 16.21 4.48 .01 .00 101.18	40.64 .07 22.88 .81 15.31 .47 .03 16.32 4.42 .01 .00 100.96
Kationen- besetzung Si Ti Cr F F^{2^x} Mn Ni Mg Ca Na K Σ Kationen Sauerstoffe	2.942 .003 1.967 .047 .938 .025 .000 1.778 .345 .005 .000 8.050 12.000	2.965 .005 1.955 .046 .930 .024 .000 1.749 .352 .003 .000 8.030 12.000	2.953 .004 1.961 .046 .949 .026 .000 1.751 .349 .004 .000 8.042 12.000	2.951 .004 1.957 .047 .028 .002 1.767 .345 .005 .001 8.045 12.000	2.962 .005 1.952 .045 .030 .000 1.759 .356 .001 .000 8.036 12.000	2.958 .005 1.969 .046 .920 .026 .002 1.759 .345 .004 .000 8.033 12.000	2.959 .002 1.970 .043 .025 .000 1.754 .354 .003 .000 8.034 12.000	2.961 .003 1.956 .044 .029 .000 1.756 .352 .004 .000 8.038 12.000	2.951 .005 1.966 .048 .930 .028 .000 1.761 .349 .001 .000 8.039 12.000	2.964 .004 1.961 .042 .024 .001 1.755 .344 .001 .000 8.031 12.000	2.965 .002 1.966 .044 .910 .025 .001 1.763 .353 .001 .000 8.028 12.000	2.960 .004 1.970 .044 .030 .001 1.750 .003 .000 8.030 12.000	2.959 .004 1.963 .045 .927 .028 .000 1.756 .350 .005 .001 8.036 12.000	2.959 .004 1.961 .047 .027 .000 1.749 .349 .002 .000 8.033 12.000	2.953 .005 1.957 .045 .026 .001 1.757 .351 .004 .000 8.043 12.000	2.968 .004 1.957 .044 .933 .029 .000 1.746 .345 .001 .001 8.028 12.000	2.946 .004 1.970 .048 .026 .000 1.762 .347 .001 .000 8.042 12.000	2.948 .004 1.961 .045 .025 .000 1.757 .355 .002 .000 8.046 12.000	2.964 .004 1.958 .047 .000 1.752 .348 .001 .000 8.029 12.000	2.954 .004 1.960 .047 .930 .002 1.769 .344 .001 .000 8.039
Mg # Cr # Profilstrecke [µm]	65.48 2.34 2637	65.28 2.29 2657	64.84 2.29 2677	65.31 2.36 2697	65.47 2.24 2717	65.67 2.27 2737	65.54 2.11 2757	65.32 2.22 2777	65.44 2.38 2797	65.22 2.12 2817	65.95 2.17 2837	65.59 2.20 2857	65.45 2.24 2877	65.18 2.34 2897	65.03 2.27 2917	65.16 2.20 2937	65.26 2.37 2957	64.94 2.25 2977	65.36 2.32 2997	65.53 2.33 3017

Probe: Ka																				
Profilname	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09 I	Profil-09 I	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09							
Profilpunkt	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 SiO3 SiO3 Gr203 Gr203 Gr203 FeO MnO NiO MgO CaO CaO KgÓ Z	40.41 06 22.88 .84 15.48 .44 .00 16.29 4.50 .01 .01 100.92	40.66 .09 22.94 .78 15.05 .48 .02 16.10 4.42 .04 .00 100.57	40.61 .08 22.97 .74 15.24 .47 .00 16.28 4.37 .03 .00 100.79	40.63 .06 23.02 .79 15.08 .45 .00 16.17 4.43 .02 .00 100.64	40.70 .07 23.07 .82 15.29 .40 .00 16.36 4.45 .02 .01 101.18	40.65 .06 22.98 .75 15.19 .37 .00 16.28 4.51 .00 .01 100.81	40.33 .07 22.99 .77 15.31 .48 .01 16.28 4.45 .02 .00 100.69	40.52 .09 23.00 .76 15.22 .47 .00 16.14 4.44 .04 .00 100.67	40.73 .06 23.02 .73 15.26 .45 .03 16.36 4.48 .02 .00 101.14	40.66 06 23.08 7.3 15.39 .41 04 16.24 4.43 .00 .00 101.03	40.61 .07 22.96 .80 15.47 .42 .02 16.35 4.42 .01 .01 101.12	40.67 .06 23.11 .76 15.22 .48 .00 16.42 4.38 .04 .00 101.12	40.65 .05 22.98 .78 15.33 .41 .00 16.36 4.40 .00 .00 100.96	40.59 .07 22.90 .71 15.30 .42 .00 16.21 4.35 .02 .02 100.58	40.70 .06 23.13 .73 14.94 .44 .00 16.35 4.47 .04 .01 100.87	40.42 .04 22.97 .73 15.19 .45 .01 16.26 4.54 .00 .01 100.62	41.04 .09 22.83 .82 15.40 .46 .01 16.18 4.49 .03 .00 101.34	40.40 .11 22.91 .85 15.21 .42 .02 16.28 4.45 .01 .01 100.65	40.48 .07 22.87 .79 15.40 .41 .02 16.30 4.54 .03 .01 100.92	40.73 .09 22.91 .89 15.28 .41 .02 16.19 4.45 .00 .00 100.97
Kationen- besetzung Si Ti Al Cr Fe st Mn Mg Ca Ca Na K Kationen	2.942 .003 1.964 .048 .943 .027 .000 1.768 .351 .002 .001 8.050	2.962 .005 1.970 .045 .917 .029 .001 1.748 .345 .005 .000 8.028	2.955 .004 1.970 .042 .927 .029 .000 1.766 .341 .004 .000 8.037	2.958 .003 1.975 .046 .918 .028 .000 1.754 .346 .003 .000 8.030	2.950 .004 1.970 .047 .927 .025 .000 1.768 .345 .003 .001 8.039	2.956 .003 1.969 .043 .923 .023 .000 1.765 .351 .001 8.035	2.940 .004 1.976 .044 .933 .029 .000 1.770 .347 .003 .000 8.047	2.952 .055 1.975 .044 .927 .029 .000 1.753 .347 .005 .000 8.037	2.953 .003 1.968 .042 .926 .028 .002 1.769 .348 .003 .000 8.040	2.952 .003 1.975 .042 .935 .025 .002 1.757 .345 .000 .000 8.036	2.949 .004 1.965 .046 .939 .026 .001 1.769 .344 .001 .000 8.043	2.949 .003 1.975 .043 .923 .030 .000 1.775 .340 .005 .000 8.042	2.953 .003 1.967 .045 .931 .025 .000 1.772 .342 .001 .000 8.039	2.959 .004 1.967 .041 .932 .026 .000 1.762 .340 .003 .001 8.035	2.954 .003 1.978 .042 .907 .027 .000 1.770 1.770 .006 .001 8.035	2.947 .002 1.974 .042 .926 .027 .001 1.768 .355 .000 .001 8.043	2.971 .005 1.947 .047 .932 .028 .001 1.746 .348 .004 .000 8.029	2.945 .006 1.968 .049 .927 .026 .001 1.769 .348 .002 .001 8.041	2.946 .004 1.962 .045 .937 .025 .001 1.769 .354 .005 .001 8.049	2.959 .005 1.962 .051 .928 .025 .001 1.753 .347 .001 .000 8.031
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	65.23 2.41 3038	65.59 2.24 3058	65.57 2.10 3078	65.65 2.26 3098	65.61 2.32 3118	65.65 2.14 3138	65.47 2.19 3158	65.41 2.17 3178	65.65 2.07 3198	65.28 2.08 3218	65.32 2.27 3238	65.79 2.15 3258	65.55 2.23 3278	65.39 2.05 3298	66.11 2.08 3318	65.61 2.09 3338	65.19 2.34 3358	65.62 2.42 3378	65.36 2.25 3398	65.38 2.54 3418

Probe: Ka	D., (1.00	D., (1.00	D., (1.00	D., (1.00	D	D (1.00)	D (1.00	D	D	D	D (1.00	D	D	D (1.00	D (1.00	D	D (1.00.)	D (1.00	D 61.00	D (1.00
Profilname	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248 248
Mineral	Grt	6#	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO ₂ TiO ₂ Ai ₂ O ₃ Cr ₁ O ₃ Cr ₂ O ₃ Cr ₂ O ₃ FeO MnO NiO NiO NiO Xa ₂ O C ₂ Ó ∑	40.79 .07 23.02 .80 15.28 .41 .00 16.33 4.51 .04 .00 101.25	40.78 .07 22.91 .76 15.41 .52 .00 16.41 4.51 .02 .00 101.39	40.89 .09 22.85 .80 15.72 .43 .00 16.36 4.53 .04 .01 101.73	40.54 .06 22.84 .83 15.44 .40 .05 16.35 4.50 .04 .00 101.05	40.47 .07 22.95 .83 15.59 .50 .04 16.41 4.57 .01 .00 101.44	40.45 .08 22.84 .89 15.78 .43 .00 16.38 4.52 .00 .00 101.37	41.00 .10 22.84 .87 15.26 .44 .01 16.30 4.48 .04 .00 101.34	40.80 .08 22.93 .83 15.49 .41 .03 16.43 4.52 .03 .00 101.56	40.63 .07 22.87 .80 15.32 .43 .02 16.29 4.55 .00 .00 100.99	40.79 .06 22.85 .77 15.38 .41 .00 16.29 4.45 .02 .00 101.00	40.99 .06 22.88 .85 15.55 .43 .00 16.38 4.50 .03 .00 101.66	40.50 .08 22.89 .83 15.48 .42 .00 16.40 4.44 .01 101.06	40.88 .07 22.97 .79 15.40 .43 .00 16.28 4.53 .02 .00 101.39	40.85 .06 22.95 .81 15.42 .48 .00 16.21 4.48 .05 .01 101.32	40.69 .06 22.88 .81 15.09 .47 .00 16.24 4.55 .04 .01 100.85	40.82 .09 22.89 .82 15.63 .46 .00 16.22 4.42 .03 .00 101.38	41.02 .03 23.10 .71 14.92 .42 .00 16.10 4.53 .02 .02 100.86	40.69 .08 23.06 .74 15.20 .46 .00 16.34 4.42 .02 .01 101.02	40.71 .06 23.08 .75 15.30 .47 .01 16.26 4.62 .01 .00 101.28	40.53 .05 22.95 .80 15.17 .48 .00 16.32 4.49 .03 .01 100.81
Kationen- besetzung Si Ti Al Cr F $F^{z^{z}}$ Mn Ni Mg Ca Na K Σ Kationen Sauerstoffe	2.955 .004 1.965 .026 .025 .000 1.764 .350 .000 8.039 12.000	2.953 .004 1.955 .044 .933 .032 .000 1.771 .350 .003 .000 8.045 12.000	2.955 .005 1.946 .950 .026 .000 1.762 .350 .006 .001 8.048 12.000	2.947 .003 1.957 .048 .039 .025 .003 1.772 .351 .005 .000 8.050 12.000	2.935 .004 1.962 .048 .945 .031 .002 1.774 .355 .002 .000 8.058 12.000	2.937 .005 1.955 .051 .958 .027 .000 1.773 .352 .000 .000 8.056 12.000	2.967 .006 1.948 .050 .923 .027 .000 1.759 .347 .006 .000 8.032 12.000	2.951 .005 1.954 .047 .025 .002 1.771 .351 .004 .000 8.046 12.000	2.953 .004 1.959 .046 .931 1.765 .355 .000 .000 8.041 12.000	2.962 .003 1.955 .044 .934 .025 .000 1.764 .346 .003 .000 8.036 12.000	2.960 .003 1.947 .049 .026 .000 1.764 .348 .004 .000 8.041 12.000	2.944 .004 1.961 .048 .941 .026 .000 1.777 .346 .001 .001 8.049 12.000	2.959 .004 1.959 .045 .027 .000 1.757 .351 .003 .000 8.036 12.000	2.960 .003 1.959 .046 .934 .030 .000 1.751 .347 .006 .001 8.038 12.000	2.959 .003 1.961 .047 .918 .029 .000 1.761 .355 .005 .001 8.038 12.000	2.958 .005 1.955 .047 .028 .000 1.752 .343 .004 .000 8.039 12.000	2.975 .002 1.974 .041 .026 .000 1.741 .352 .002 .001 8.018 12.000	2.952 .005 1.972 .043 .028 .000 1.768 .344 .003 .001 8.038 12.000	2.950 .003 1.971 .043 .927 .029 .001 1.756 .359 .002 .000 8.041 12.000	2.949 .003 1.968 .046 .923 .000 1.770 .350 .004 .001 8.044 12.000
Mg # Cr # Profilstrecke [µm]	65.59 2.28 3438	65.50 2.18 3458	64.98 2.31 3478	65.36 2.39 3498	65.24 2.37 3518	64.92 2.54 3539	65.58 2.48 3559	65.40 2.37 3579	65.46 2.29 3599	65.38 2.22 3619	65.26 2.44 3639	65.38 2.38 3659	65.34 2.27 3679	65.21 2.31 3699	65.73 2.32 3719	64.91 2.36 3739	65.79 2.02 3759	65.71 2.11 3779	65.46 2.14 3799	65.73 2.28 3819

Probe: Ka																				
Profilname	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09 I	Profil-09 I	Profil-09 I	Profil-09	Profil-09	Profil-09										
Profilpunkt	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268
Mineral	Grt	Grt	Grt																	
Analyse [Gew%] SiO2 TiO3 TiO3 Gr203 FeO MinO NiO NiO CaO CaO KgO KgO KaO KgO	40.75 .05 23.08 .76 15.32 .40 .00 16.26 4.45 .02 .00 101.09	40.71 .09 22.99 .78 15.27 .37 .00 16.38 4.49 .03 .00 101.09	40.47 .05 23.05 .73 15.29 .46 .01 16.32 4.40 .02 .00 100.79	40.47 .05 23.10 .75 15.30 .42 .00 16.43 4.39 .00 .00 100.92	40.49 .04 23.17 .73 15.34 .44 .02 16.41 4.41 .02 .01 101.07	40.67 .07 22.96 .80 15.33 .44 .01 16.22 4.45 .02 .01 100.97	40.59 .09 22.97 .83 15.56 .37 .01 16.20 4.44 .02 .00 101.09	40.78 .08 22.87 .82 15.55 .46 .00 16.38 4.55 .02 .00 101.51	40.51 .08 22.93 .79 15.16 .41 16.30 4.54 .02 .00 100.73	40.81 .08 22.86 .85 15.20 .46 .00 16.32 4.54 .05 .00 101.17	40.24 .08 22.87 .84 15.11 .42 .00 16.31 4.55 .03 .00 100.45	40.71 .09 23.00 .83 15.35 .44 .00 16.34 4.54 .03 .00 101.31	40.47 .10 22.89 .85 15.48 .42 .00 16.35 4.50 .01 .00 101.07	40.51 .08 22.92 .87 15.33 .47 .03 16.39 4.51 .01 .00 101.10	40.33 .09 22.81 .80 15.45 .46 .04 16.28 4.55 .03 .00 100.85	40.64 .07 22.97 .81 15.36 .49 .02 16.32 4.52 .02 .00 101.23	40.90 .05 22.92 .78 15.17 .41 .00 16.29 4.47 .02 .00 101.03	40.42 .06 22.96 .79 15.18 .42 .00 16.33 4.55 .02 .00 100.73	40.75 .08 23.06 .78 15.32 .50 .03 16.47 4.44 .04 .00 101.46	40.63 .07 23.02 .74 15.26 .02 16.21 4.42 .03 .01 100.85
Kationen- besetzung Si Ti Al Cr Fe st Mn Mg Ca Ca Na K Kationen	2.955 .003 1.973 .044 .929 .025 .000 1.758 .346 .003 .000 8.035	2.953 .005 1.965 .045 .926 .023 .000 1.771 .349 .004 .000 8.040	2.946 .003 1.977 .042 .931 .028 .000 1.771 .343 .003 .000 8.043	2.942 .003 1.979 .043 .930 .026 .000 1.780 .342 .000 .000 8.044	2.939 .002 1.983 .042 .931 .027 .001 1.776 .343 .003 .001 8.048	2.955 .004 1.966 .046 .931 .027 .000 1.757 .347 .003 .001 8.037	2.949 .005 1.966 .048 .946 .023 .000 1.755 .346 .003 .000 8.041	2.952 .004 1.951 .047 .941 .028 .000 1.767 .353 .002 .000 8.046	2.949 .004 1.968 .046 .923 .025 .000 1.769 .354 .003 .000 8.041	2.959 .004 1.953 .049 .922 .028 .000 1.764 .352 .006 .000 8.039	2.940 .005 1.970 .048 .923 .026 .000 1.776 .356 .004 .000 8.049	2.949 .005 1.963 .047 .930 .027 .000 1.765 .352 .004 .000 8.043	2.942 .005 1.961 .049 .941 .026 .000 1.772 .351 .002 .000 8.049	2.943 .004 1.962 .050 .931 .029 .002 1.775 .351 .001 .000 8.048	2.940 .005 1.960 .046 .942 .028 .003 1.769 .355 .005 .000 8.054	2.948 .004 1.963 .047 .932 .030 .001 1.765 .351 .003 .000 8.045	2.966 .003 1.959 .044 .920 .025 .000 1.762 .347 .003 .000 8.031	2.944 .003 1.971 .045 .925 .026 .000 1.773 .355 .003 .000 8.046	2.947 .004 1.966 .045 .927 .031 1.776 .344 .005 .000 8.046	2.955 .004 1.973 .042 .928 .028 .001 1.757 .345 .004 .001 8.037
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	65.42 2.16 3839	65.65 2.22 3859	65.54 2.07 3879	65.68 2.12 3899	65.60 2.07 3919	65.36 2.27 3939	64.98 2.37 3959	65.25 2.36 3979	65.71 2.26 3999	65.68 2.44 4019	65.80 2.39 4040	65.49 2.35 4060	65.32 2.44 4080	65.59 2.48 4100	65.26 2.30 4120	65.45 2.32 4140	65.69 2.22 4160	65.72 2.25 4180	65.70 2.22 4200	65.43 2.10 4220

Probe: Ka		-		-									-				-			
Profilname	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09 I	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09	Profil-09
Pronipunkt	209	270	2/1	212	213	274	2/5	270	211	278	279	280	201	282	263	264	260	280	267	200
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO ₂ TiO ₂ A ¹ ₂ O ₃ Cr ₂ O ₃ FeO MnO NiO MgO CaO CaO K ₂ Ó Z	40.72 .08 22.98 .79 15.60 .43 .01 16.40 4.42 .00 .00 101.40	40.52 .07 22.94 .78 15.45 .37 .00 16.27 4.41 .01 .01 .00	40.73 .07 22.88 .75 15.49 .44 .02 16.32 4.52 .04 .01 101.27	40.60 .09 22.97 .78 15.37 .49 .00 16.31 4.42 .03 .01 101.06	40.63 .05 22.93 .76 15.25 .45 .00 16.24 4.49 .02 .01 100.83	40.77 .04 22.91 .79 45.09 .45 .01 16.24 4.44 .06 .00 100.79	40.64 .06 22.88 .77 15.42 .42 .01 16.31 4.44 .04 .01 101.00	40.79 .07 22.92 .78 15.57 .42 .01 16.40 4.51 .03 .01 101.50	40.55 .07 22.97 15.54 .44 .00 16.26 4.43 .02 .00 101.07	40.91 .07 22.99 .83 15.14 .50 .01 16.25 4.49 .02 .00 101.20	40.62 0.6 23.04 83 15.45 .42 .00 16.29 4.48 .04 .00 101.22	40.77 .06 23.00 .82 15.39 .47 .00 16.30 4.49 .02 .01 101.34	40.55 .09 22.84 .51 .51 .00 16.37 4.40 .03 .00 101.15	40.70 .09 22.84 .80 15.26 .38 .00 16.23 4.45 .02 .00 100.78	41.00 .06 22.97 15.35 .48 .02 16.29 4.54 .03 .02 101.54	40.57 .04 22.93 .81 15.29 .45 .00 16.37 4.49 .01 .01 100.97	40.63 .07 22.87 .84 15.41 .40 .00 16.23 4.42 .04 .00 100.90	40.73 .06 23.04 .83 15.29 .41 .03 16.29 4.42 .02 .00 101.12	40.67 .06 22.99 .78 15.62 .50 .01 16.31 4.57 .01 .00 101.53	40.73 .09 22.97 .82 15.06 .46 .00 16.25 4.52 .04 .00 100.94
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Xa Xa X Xationen Sauerstoffe	2.949 .004 1.961 .045 .026 .000 1.770 .343 .000 8.044 12.000	2.949 .004 1.968 .045 .941 .023 .000 1.766 .344 .002 .000 8.041 12.000	2.954 .004 1.956 .043 .940 .027 .001 1.764 .351 .006 .001 8.047 12.000	2.949 .005 1.966 .045 .934 .030 .000 1.766 .344 .004 .001 8.043 12.000	2.956 .003 1.966 .044 .928 .000 1.761 .350 .002 .001 8.038 12.000	2.964 .002 1.963 .046 .917 .028 .001 1.760 .346 .008 .000 8.034 12.000	2.954 .003 1.960 .044 .937 .026 .001 1.767 .346 .005 .001 8.044 12.000	2.952 .004 1.955 .045 .046 .000 1.769 .349 .004 .001 8.047 12.000	2.947 .004 1.968 .045 .944 .027 .000 1.762 .345 .002 .000 8.044 12.000	2.963 .004 1.962 .048 .917 .031 .000 1.754 .048 .003 .000 8.030 12.000	2.947 .003 1.969 .048 .937 .026 .000 1.762 .348 .005 .000 8.045 12.000	2.953 .003 1.963 .047 .029 .000 1.760 .348 .003 .001 8.040 12.000	2.947 .005 1.956 .045 .947 .031 .000 1.773 .343 .004 .000 8.050 12.000	2.961 .005 1.958 .046 .929 .023 .000 1.761 .347 .003 .000 8.033 12.000	2.963 .003 1.956 .045 .927 .029 .001 1.755 .351 .004 .001 8.037 12.000	2.949 .002 1.964 .046 .929 .028 .000 1.774 .350 .001 .001 8.044 12.000	2.955 .004 1.960 .048 .937 .025 .000 1.760 .344 .005 .000 8.039 12.000	2.954 .003 1.970 .048 .925 .002 1.761 .344 .003 .000 8.036 12.000	2.945 .003 1.962 .045 .946 .031 .001 1.761 .354 .002 .000 8.049 12.000	2.958 .005 1.966 .047 .914 .029 .000 1.759 .351 .006 .000 8.034 12.000
Mg # Cr # Profilstrecke [µm]	65.20 2.24 4240	65.24 2.22 4260	65.25 2.15 4280	65.41 2.23 4300	65.49 2.18 4320	65.74 2.27 4340	65.34 2.22 4360	65.24 2.23 4380	65.10 2.26 4400	65.67 2.37 4420	65.28 2.36 4440	65.37 2.34 4460	65.19 2.23 4480	65.47 2.31 4500	65.43 2.25 4520	65.62 2.31 4541	65.24 2.41 4561	65.51 2.37 4581	65.05 2.23 4601	65.79 2.33 4621

Probe: Ka		-																		-
Profilname Profilpunkt	289	290	291 291	292	293	294 294	295	296	297	298	299	Profil-09 300	301	302	303	204 Profil-09	305	306	307	208 308
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
$\begin{array}{l} \textbf{Analyse} \\ \textbf{[Gew%]} \\ \text{SiO}_2 \\ \text{Ti}_2O_3 \\ \text{FeO} \\ \text{MnO} \\ \text{NiO} \\ \text{NiO} \\ \text{MgO} \\ \text{CaO} \\ \text{Na,O} \\ \text{K}_2O \\ \boldsymbol{\Sigma} \end{array}$	40.69 .07 22.95 .85 15.18 .43 .00 16.23 4.39 .02 .00 100.80	40.96 .08 22.95 .81 15.00 .43 .01 16.29 4.56 .04 .00 101.13	40.68 .07 22.96 .79 15.05 .39 .00 16.25 4.56 .02 .00 100.76	40.72 .10 23.01 .82 15.47 .45 .00 16.28 4.61 .02 .00 101.46	40.43 .09 22.91 .77 15.13 .39 .00 16.28 4.49 .01 .00 100.50	40.73 .05 22.97 .80 15.35 .44 .00 16.24 .442 .02 .01 101.04	40.80 08 22.99 82 15.33 .46 0.1 16.23 4.48 .04 0.1 101.26	40.51 .06 22.93 .81 15.37 .45 0.01 16.15 4.50 .01 .00 100.82	40.62 .07 22.95 .77 15.66 .43 .00 16.22 4.49 .03 .00 101.22	41.06 .08 22.92 .81 15.18 .43 .00 16.13 4.54 .02 .00 101.16	40.75 .10 22.98 .83 15.02 .47 .05 16.31 4.59 .04 .02 101.15	40.54 .09 22.85 .79 15.12 .42 .00 16.28 4.40 .03 .00 100.52	40.40 .06 22.79 .79 15.37 .46 .00 16.24 4.58 .02 .00 100.71	40.80 .09 23.07 .77 15.42 .43 .02 16.34 4.53 .04 .00 101.50	40.95 .08 22.99 .76 15.21 .49 .00 16.29 4.43 .00 .00 101.19	40.67 .07 22.95 .82 15.38 .47 .02 16.36 4.45 .00 .02 101.20	40.76 .08 22.88 .82 15.11 .46 .00 16.29 4.53 .02 .01 100.97	40.95 .07 22.96 .85 15.36 .47 .00 16.20 .02 .00 101.37	40.71 .08 22.96 .80 15.09 .43 .02 16.38 4.44 .01 .01 100.94	40.75 .08 22.99 .78 15.19 .48 .00 16.31 4.39 .02 .03 101.02
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Kationen Σ Kationen	2.959 .004 1.967 .049 .923 .026 .000 1.759 .342 .003 .000 8.032	2.966 .005 1.959 .046 .909 .027 .000 1.759 .354 .005 .000 8.029	2.958 .004 1.967 .045 .915 .024 .000 1.761 .355 .003 .000 8.034	2.947 .005 1.963 .047 .937 .000 1.757 .357 .003 .000 8.044	2.949 .005 1.970 .044 .923 .024 .000 1.771 .351 .002 .000 8.039	2.957 .003 1.966 .046 .932 .027 .000 1.757 .344 .003 .001 8.036	2.956 .005 1.964 .047 .929 .028 .001 1.754 .348 .005 .000 8.037	2.950 .003 1.968 .047 .936 .001 1.754 .351 .002 .000 8.040	2.949 .004 1.964 .044 .951 .026 .000 1.755 .350 .005 .000 8.046	2.974 .004 1.957 .046 .919 .026 .000 1.741 .352 .003 .000 8.022	2.954 .005 1.964 .048 .911 .029 .003 1.763 .356 .005 .001 8.038	2.956 .005 1.964 .046 .922 .026 .000 1.769 .344 .004 .000 8.036	2.947 .003 1.959 .046 .938 .000 1.766 .358 .003 .000 8.048	2.950 .005 1.966 .044 .933 .026 .001 1.761 .351 .005 .000 8.042	2.965 .004 1.962 .043 .921 .030 .000 1.758 .343 .000 .000 8.028	2.950 .004 1.962 .047 .933 .009 .001 1.769 .346 .001 .001 8.042	2.960 .004 1.958 .047 .918 .000 1.764 .352 .003 .001 8.036	2.963 .004 1.958 .049 .929 .000 1.748 .349 .003 .000 8.032	2.956 .004 1.965 .046 .916 .001 1.773 .345 .001 .001 8.036	2.957 .004 1.967 .044 .922 .029 .000 1.765 .341 .003 .003 8.036
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	65.59 2.41 4641	65.93 2.31 4661	65.80 2.25 4681	65.23 2.33 4701	65.74 2.21 4721	65.34 2.28 4741	65.38 2.33 4761	65.20 2.33 4781	64.87 2.19 4801	65.44 2.30 4821	65.94 2.37 4841	65.75 2.28 4861	65.32 2.28 4881	65.38 2.19 4901	65.62 2.17 4921	65.47 2.33 4941	65.77 2.36 4961	65.28 2.42 4981	65.92 2.29 5001	65.69 2.21 5021

Probe: Ka		-		-									-							
Profilmame	209 309	310	211 Profil-09	312	213	214 Profil-09	215	216	217	218	210	320	321	322	323	224 Profil-09	325	326	327	328
n rompunkt												020		022	020	024	020	020	021	020
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TO2 Al2O3 C7,O3 FeO MnO NiO MgO CaO CaO K2O K2O	40.39 .07 22.91 .78 15.06 .49 .00 16.37 4.41 .00 .00 100.47	40.71 .09 22.94 .79 15.39 .42 .00 16.27 4.44 .05 .00 101.10	40.57 .07 22.82 .80 15.10 .50 16.30 4.48 .04 .00 100.67	40.91 .08 22.92 .81 15.38 .48 .00 16.44 4.47 .02 .01 101.52	40.64 .05 22.93 .80 15.10 .46 .03 16.36 4.42 .02 .00 100.83	40.70 .08 22.97 .78 15.08 .45 .06 16.42 4.42 .00 .00 100.95	41.13 .08 22.92 .82 15.29 .46 .02 16.30 4.43 .02 .00 101.46	40.86 .08 22.98 .83 15.45 .48 .00 16.35 .06 .00 101.54	40.93 .06 22.95 .75 15.16 .45 .03 16.42 4.43 .01 .01 101.20	40.99 .05 22.91 .82 15.21 .638 4.50 .00 .01 101.34	40.59 .09 23.00 .78 15.22 .51 .00 16.33 4.44 .03 .01 100.99	41.00 .08 23.05 .76 15.25 .46 .02 16.38 4.44 .01 .00 101.43	40.84 .04 22.98 .76 15.45 .42 .05 16.31 4.41 .00 .00 101.25	40.81 .07 22.90 .77 15.19 .44 .00 16.25 4.38 .03 .01 100.84	40.65 .06 23.10 .73 15.51 .44 .00 16.27 4.53 .00 .01 101.30	40.82 .05 23.10 .74 15.38 .49 .00 16.22 4.45 .02 .00 101.26	40.66 .04 22.99 .71 15.67 .03 16.12 4.41 .01 .00 101.09	40.76 .05 23.00 .71 15.89 .41 .05 15.95 4.44 .01 .00 101.27	40.70 .05 22.91 .54 .00 15.58 4.45 .03 .01 101.17	40.39 .06 22.85 .72 16.79 .61 .01 15.28 4.45 .01 .01 101.18
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Xa Xa X Xationen Sauerstoffe	2.947 .004 1.971 .045 .919 .030 .000 1.781 .345 .000 8.041 12.000	2.955 .005 1.962 .045 .026 .000 1.761 .346 .006 .000 8.040 12.000	2.956 .004 1.959 .046 .920 .031 .000 1.771 .350 .006 .000 8.041 12.000	2.957 .004 1.953 .046 .930 .000 1.771 .346 .003 .001 8.041 12.000	2.955 .003 1.965 .046 .918 .028 .002 1.773 .344 .003 .000 8.038 12.000	2.955 .004 1.965 .045 .028 .003 1.777 .344 .000 .000 8.036 12.000	2.971 .004 1.952 .047 .924 .001 1.755 .343 .003 .000 8.027 12.000	2.954 .004 1.958 .047 .934 .030 1.762 .345 .008 .000 8.043 12.000	2.963 .003 1.959 .043 .028 .002 1.772 .343 .002 .001 8.034 12.000	2.965 .003 1.953 .047 .920 .028 .001 1.766 .349 .000 .001 8.033 12.000	2.949 .005 1.969 .045 .925 .031 .000 1.768 .346 .004 .004 8.042 12.000	2.963 .004 1.962 .043 .922 .028 .001 1.764 .001 .000 8.031 12.000	2.959 .002 1.962 .044 .026 .003 1.762 .000 .000 8.036 12.000	2.965 .004 1.961 .044 .923 .027 .000 1.760 .341 .004 .000 8.030 12.000	2.947 .003 1.973 .042 .940 .027 .000 1.758 .352 .000 .000 8.043 12.000	2.957 .003 1.972 .042 .030 .000 1.751 .345 .002 .000 8.034 12.000	2.955 .002 1.969 .041 .952 .028 .002 1.746 .343 .002 .000 8.039 12.000	2.959 .003 1.967 .041 .965 .025 .003 1.726 .345 .002 .000 8.035 12.000	2.962 .003 1.965 .046 .981 .033 .000 1.690 .347 .004 .001 8.032 12.000	2.951 .003 1.967 .042 1.026 .038 .001 1.664 .348 .001 .001 8.042 12.000
Mg # Cr # Profilstrecke [µm]	65.96 2.22 5042	65.33 2.24 5062	65.81 2.29 5082	65.58 2.32 5102	65.88 2.29 5122	65.99 2.24 5132	65.52 2.34 5143	65.36 2.36 5154	65.88 2.15 5164	65.76 2.36 5175	65.66 2.23 5185	65.68 2.16 5196	65.30 2.17 5207	65.60 2.21 5217	65.16 2.06 5228	65.27 2.10 5239	64.72 2.03 5249	64.14 2.02 5260	63.28 2.29 5271	61.87 2.08 5281

Probe: Ka	
Profilname	Profil-09
Profilpunkt	329
Mineral	Grt
Analyse Gew%] SiO2 TiO2 Al2O3 Gr2O3 FeO MnO NiO MgO CaO CaO K2O K2O	40.02 .07 22.80 .74 17.70 .55 .00 14.77 4.39 .02 .01 101.07
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{bestzung}\\ Si\\ Ti\\ Al\\ Cr\\ Fe^{2*}\\ Mn\\ Ni\\ Mg\\ Ca\\ Na\\ Na\\ K\\ \Sigma \mbox{Kationen} \end{array}$	2.940 .004 1.974 .043 1.087 .034 .000 1.617 .346 .003 .001 8.049
Sauerstoffe	12.000
Mg # Cr # Profilstrecke [µm]	59.79 2.12 5292

Probe:	Ka
Profil:	16
Mineral:	Срх
Kapitel:	2.5

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Cο 2σ	Zn 2σ
80	7.211	29.861	17.932	13.708	0.879	0.184	0.973	0.771
130	8.471	28.023	18.068	12.230	1.086	1.152	0.782	3.093
191	7.808	28.070	17.645	12.863	0.622	0.665	0.695	1.011
250	8.925	28.354	17.816	11.751	0.508	0.501	0.413	2.080
310	9.696	28.070	17.710	10.992	0.669	1.292	0.571	0.791
419	10.642	28.207	18.962	10.748	1.718	0.639	0.620	1.211
480	10.719	27.644	18.292	12.114	0.462	0.740	0.905	2.480
541	11.524	27.627	17.388	10.280	0.894	0.201	0.507	1.795
600	11.655	28.041	17.651	10.748	0.588	0.564	1.013	1.827
660	12.194	27.894	18.194	10.809	1.692	0.736	0.575	1.845
720	12.337	27.941	17.768	12.922	1.067	0.721	0.357	1.833
780	12.464	27.534	18.296	12.126	0.950	0.314	0.627	0.806
840	12.392	27.725	17.969	10.578	1.166	0.437	0.897	1.624
1059	11.164	27.945	18.640	11.009	0.607	0.455	0.555	2.207
1119	11.964	28.732	17.954	13.346	0.715	0.743	0.535	0.810
1180	12.610	27.528	18.376	11.219	1.232	0.431	0.159	1.439
1370	12.004	28.459	17.877	12.174	0.671	0.405	0.647	0.820
1429	12.244	28.070	18.105	10.975	1.145	0.572	0.402	0.354
1550	11.504	27.484	18.149	12.164	1.062	0.797	0.609	1.215
1610	11.164	28.006	17.989	11.052	1.354	1.050	0.582	1.974
1670	12.069	27.942	18.291	14.599	1.178	0.965	0.589	0.757
1730	11.300	27.991	18.616	12.480	1.015	0.603	0.930	1.675
1791	11.658	27.883	18.198	12.752	0.807	0.389	0.492	1.614
1882	11.368	28.718	17.700	13.232	1.431	0.616	0.733	0.813
1951	12.181	28.389	18.568	11.343	0.803	0.600	0.571	1.869
2010	11.155	28.068	18.329	13.115	0.837	0.377	0.176	2.120
2062	12.436	28.290	17.805	12.747	0.550	0.403	0.359	1.117
2114	11.420	27.407	17.604	12.478	0.763	0.412	0.493	1.646
2267	10.057	28.213	18.209	12.393	1.033	0.464	0.391	1.559
2322	10.023	27.464	17.753	12.880	1.397	0.331	0.829	2.977
2386	9.382	27.734	18.553	11.741	0.765	0.361	0.449	1.781
2437	8.504	28.503	17.745	11.186	0.681	0.230	0.385	1.014
2510	6.934	28.769	17.915	13.634	0.546	0.575	0.651	1.806
2557	7.819	29.563	18.377	12.392	1.186	0.785	0.829	2.345

Probe: Ka	D (140.)	D (1.40.)	D (1.40.)	D 61 40 1	D 61 40 4		D	D 61 40 1	D 61 40 1	D 61 40 1	D (1.40)	D 61.40	D (1.40)	D 61 40 1	D (1.40)	D 61 40 1	D	D	D (1.40)	D (1.40
Profilname Profilpunkt	Profil-16	Profil-16	Profil-16	Profil-16 I 14	Profil-16 F	2rofil-16 F	2rofil-16 I 17	18	2rofil-16 I 19	20	21 21	Profil-16 22	23	24	25	26	Profil-16 I 27	28 28	29	Profil-16 30
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr2O3 FeO MnO NiO MiO MgO CaO Na2O K2O X X	54.46 .15 2.87 .54 .04 .06 15.34 20.97 2.11 .01 100.09	54.28 .16 2.87 .55 3.44 .06 15.27 20.91 2.09 .00 99.66	54.60 .15 2.82 5.53 3.48 .09 0.1 15.12 21.11 1.92 .00 99.82	54.50 .12 2.76 .53 3.39 .04 15.45 21.22 1.93 .01 99.99	54.64 .13 2.76 .52 3.39 .06 05 15.40 21.13 2.03 .00 100.09	54.64 .13 2.81 5.1 3.37 .05 15.35 21.04 2.04 .01 99.97	54.63 .15 2.82 .57 3.43 .05 .00 15.24 21.08 2.02 .00 99.98	54.72 .15 2.87 .51 3.36 .08 .00 15.38 21.14 2.11 .01 100.33	54.73 .13 2.90 5.55 3.33 .03 .06 15.21 21.06 2.09 .00 100.06	54.67 .18 2.97 .54 3.32 .09 .01 15.37 20.84 2.05 .00 100.02	54.55 .15 2.98 .54 3.39 .03 .06 15.22 20.87 2.09 .00 99.87	54.64 .15 3.00 .52 3.46 .06 .00 15.122 21.22 2.08 .00 100.23	54.73 .18 3.00 .54 3.44 .07 .02 15.35 21.07 2.22 .00 100.61	54.70 .14 3.02 .50 3.37 .07 .04 15.25 20.86 2.14 .01 100.09	54.61 .15 2.99 .50 .02 .07 15.22 20.80 2.13 .01 99.87	54.63 .14 3.03 5.53 3.44 .03 15.14 20.78 2.08 .00 99.82	54.63 .17 3.02 .57 3.37 .08 .05 15.15 20.96 2.19 .00 100.18	54.61 .14 3.03 .57 3.30 .06 .02 15.11 20.84 2.12 .00 99.77	54.59 .16 .53 .333 .05 .07 15.19 20.81 2.13 .02 99.93	54.62 .15 3.07 .54 3.41 .10 15.17 20.70 2.25 .00 100.01
Kationen- besetzung Si Ti Al Cr Fe ²⁴ Mn Mg Ca Ca Na K Kationen	1.977 .004 .123 .016 .108 .001 .002 .830 .815 .149 .001 4.024	1.978 .004 .123 .016 .105 .001 .002 .829 .816 .148 .000 4.022	1.985 .004 .121 .015 .106 .003 .000 .822 .135 .000 4.011	1.979 .003 .118 .015 .103 .001 .836 .825 .136 .000 4.019	1.982 .004 .118 .015 .103 .002 .001 .833 .821 .143 .000 4.020	1.983 .003 .120 .015 .102 .001 .830 .818 .143 .000 4.018	1.983 .004 .120 .016 .104 .002 .000 .824 .820 .142 .000 4.016	1.979 .004 .122 .015 .102 .002 .000 .830 .819 .148 .000 4.022	1.984 .003 .124 .016 .101 .001 .822 .818 .147 .000 4.016	1.981 .005 .127 .015 .101 .003 .000 .830 .809 .144 .000 4.015	1.981 .004 .127 .016 .103 .001 .002 .824 .812 .147 .000 4.017	1.979 .004 .128 .015 .105 .002 .000 .816 .824 .146 .000 4.018	1.976 .005 .128 .015 .104 .002 .001 .826 .815 .155 .000 4.026	1.982 .004 .129 .014 .102 .001 .824 .810 .151 .001 4.018	1.983 .004 .128 .014 .103 .001 .001 .824 .809 .150 .000 4.017	1.984 .004 .129 .015 .104 .001 .819 .808 .147 .000 4.013	1.979 .004 .129 .016 .102 .003 .003 .818 .814 .154 .000 4.021	1.984 .004 .130 .016 .100 .002 .000 .818 .811 .149 .000 4.014	1.981 .004 .131 .015 .101 .001 .001 .822 .809 .150 .001 4.017	1.981 .004 .131 .015 .000 .003 .820 .804 .158 .000 4.021
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	88.53 11.29 15	88.79 11.47 25	88.57 11.12 35	89.04 11.43 65	89.02 11.18 75	89.04 10.78 85	88.80 11.89 95	89.08 10.74 106	89.06 11.26 116	89.19 10.77 126	88.89 10.87 136	88.63 10.38 146	88.83 10.70 156	88.96 9.92 166	88.89 10.11 176	88.70 10.55 186	88.92 11.23 196	89.10 11.14 206	89.04 10.31 216	88.79 10.47 226

Probe: Ka	Drofil 16	Drofil 16 I	Drofil 16																	
Profilpunkt	31	32	33	34	35	36	37	38	39	40	41	42	45	47	48	49	50	51	52	53
Mineral	Срх																			
Analyse																				
[Gew%] SiO ₂	54.72	54.61	54.70	54.72	54.54	54.55	54.48	54.71	54.64	54.74	54.55	54.50	54.60	54.45	54.58	54.71	54.63	54.51	54.63	54.78
TiO ₂	.17	.15	.14	.15	.16	.15	.16	.13	.16	.19	.15	.16	.15	.14	.16	.15	.18	.18	.17	.16
Al ₂ O ₃ Cr ₂ O ₂	3.05	3.10	3.10	3.09	3.07	3.12	3.12	3.07	3.08	3.10	3.11	3.10	3.07	3.07	3.12	3.10	3.10	3.07	3.12	3.04
FeO	3.32	3.49	3.38	3.36	3.38	3.33	3.36	3.44	3.48	3.33	3.42	3.25	3.43	3.45	3.38	3.42	3.37	3.30	3.57	3.40
MnO NiO	.06	.03	.01	.06	.04	.08	.06	.04	.06	.05	.11	.08	.08	.04	.07	.07	.06	.03	.05	.05
MgO	15.13	15.03	15.16	15.11	15.12	15.13	15.10	15.06	15.08	15.16	15.20	15.11	15.11	15.18	15.23	15.12	15.12	15.11	15.18	15.15
CaO Na ₂ O	20.75	20.70	20.78	20.74	20.73	20.84	20.66	20.66	20.70	20.77	20.62	20.84	20.74	20.71	20.73	20.71	20.85	20.65	20.92	20.79
K ₂ Õ	.01	.00	.00	.00	.01	.01	.01	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.01
Σ	99.89	99.92	100.06	100.06	99.80	99.99	99.73	99.89	99.91	100.13	99.89	99.74	99.89	99.85	100.05	99.92	99.89	99.54	100.38	100.08
Kationen-																				
besetzung																				
Si Ti	1.985	1.982	1.982	1.983	1.982	1.979	1.981	1.985	1.983	1.982	1.980	1.981	1.982	1.979	1.978	1.984	1.982	1.984	1.976	1.984
AI	.130	.133	.132	.132	.131	.134	.134	.131	.132	.132	.133	.133	.131	.132	.133	.133	.132	.131	.133	.130
Cr Ee ²⁺	.015	.017	.016	.015	.015	.015	.015	.016	.015	.015	.016	.015	.015	.015	.016	.015	.013	.016	.015	.015
Mn	.002	.001	.000	.002	.001	.002	.002	.001	.002	.002	.003	.002	.002	.001	.002	.002	.002	.001	.001	.002
Ni	.000	.002	.001	.002	.001	.002	.001	.001	.002	.002	.001	.001	.000	.002	.001	.000	.001	.000	.001	.001
Са	.818 .806	.813	.819	.816	.819	.818	.818	.815	.816	.818	.822	.818	.818	.822	.823	.817	.818	.820	.819	.818
Na	.150	.153	.154	.156	.153	.155	.158	.156	.149	.155	.151	.152	.154	.155	.153	.149	.145	.151	.155	.151
K ∑ Kationen	.000 4.013	.000 4.015	.000 4.018	.000 4.018	.000 4.017	.000 4.020	.000 4.020	.000 4.016	.000 4.014	.000 4.017	.000 4.016	.000 4.017	.000 4.017	.000 4.022	.000 4.019	.000 4.012	.000 4.012	.000 4.013	.000 4.023	.000 4.015
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Ma #	89.03	88.49	88.89	88.92	88.85	89.02	88.90	88.64	88.55	89.04	88.80	89.22	88.70	88.70	88.92	88.75	88.88	89.08	88.34	88.82
Cr #	10.59	11.20	10.79	10.44	10.40	10.20	10.05	10.77	10.44	10.27	10.94	10.02	10.20	10.30	10.83	10.16	9.22	10.71	10.07	10.33
Profilstrecke [um]	236	246	256	266	276	286	296	307	317	327	337	347	377	397	407	417	427	437	447	457

Probe: Ka																				
Profilname	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16 I	Profil-16 I	Profil-16 I	Profil-16	Profil-16 I	Profil-16 I	Profil-16	Profil-16	Profil-16 I	Profil-16	Profil-16	Profil-16 I	Profil-16	Profil-16 I	Profil-16
Profilpunkt	54	55	56	57	62	63	64	65	66	67	68	69	70	71	72	73	74	76	77	78
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] [Gow%] SiO ₂ TiO ₂ Gr ₂ O ₃ FeO MnO NiO NiO MgO CaO K ₂ Ô CaO X ₂ Ô X ₂ Ô	54.61 18 3.02 52 3.38 .03 00 15.21 20.82 2.10 .00 99.87	54.66 .17 3.03 .54 3.44 .06 .00 15.21 20.77 2.17 .00 100.05	54.77 .18 3.05 .55 3.38 .06 .04 15.22 20.88 2.15 .00 100.28	54.53 .19 3.06 .59 3.29 .05 .03 15.13 20.83 2.16 .00 99.86	54.64 .18 3.05 .55 3.42 .02 .01 15.16 20.67 .2.16 .00 99.87	54.61 .19 3.05 .51 3.53 .05 15.20 20.85 2.19 .01 100.23	54.83 .19 3.07 .52 3.56 .09 .08 15.02 20.59 2.21 .00 100.14	54.70 .17 3.05 .51 3.41 .08 .04 15.12 20.81 2.15 .00 100.03	54.56 .17 3.11 .53 3.37 .05 .00 15.13 20.66 2.18 .00 99.75	54.74 .14 3.14 .57 3.40 .07 .04 15.18 20.71 2.33 .00 100.31	54.70 .16 3.10 .51 3.38 .02 .05 15.09 20.55 2.18 .00 99.75	54.62 .16 3.12 .49 3.30 .03 15.19 20.51 2.20 .02 99.67	54.54 .14 3.15 .53 3.50 .00 .04 15.14 20.76 2.17 .00 99.96	54.74 .18 3.14 .55 3.48 .08 .09 15.19 20.54 2.24 .00 100.23	54.65 .15 3.14 .49 3.44 .06 .08 15.18 20.50 2.22 .00 99.91	54.87 .16 3.16 .51 3.45 .08 .10 15.07 20.68 2.17 .00 100.25	54.45 .15 3.14 .50 3.38 .04 .02 15.10 20.71 2.23 .00 99.73	54.87 .16 .54 3.49 .07 .10 15.14 20.56 2.24 .00 100.31	54.64 .17 3.14 .58 3.43 .10 .04 15.16 20.41 2.06 .01 99.74	54.58 .12 3.12 .56 3.33 .02 .06 15.12 20.67 2.23 .00 99.80
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Na K Xionen	1.982 .005 .129 .015 .103 .001 .000 .823 .810 .148 .000 4.015	1.981 .005 .129 .015 .104 .002 .000 .822 .807 .153 .000 4.018	1.981 .005 .130 .016 .102 .002 .001 .809 .150 .000 4.017	1.980 .005 .131 .017 .100 .001 .001 .810 .152 .000 4.017	1.983 .005 .131 .016 .104 .001 .804 .152 .000 4.015	1.978 .005 .130 .015 .107 .002 .001 .809 .154 .000 4.022	1.986 .005 .131 .015 .108 .003 .002 .811 .799 .155 .000 4.014	1.983 .004 .130 .015 .103 .002 .001 .817 .808 .151 .000 4.016	1.982 .005 .133 .015 .102 .002 .000 .819 .804 .153 .000 4.016	1.979 .004 .134 .016 .103 .002 .001 .818 .803 .163 .000 4.023	1.986 .004 .133 .015 .103 .001 .001 .817 .799 .154 .000 4.013	1.984 .004 .134 .014 .100 .001 .001 .823 .798 .155 .001 4.016	1.979 .004 .135 .015 .106 .000 .001 .819 .807 .153 .000 4.019	1.981 .005 .134 .016 .105 .002 .003 .819 .796 .157 .000 4.018	1.983 .004 .134 .014 .002 .002 .821 .797 .156 .000 4.017	1.984 .004 .135 .014 .002 .003 .810 .152 .000 4.013	1.980 .004 .135 .014 .103 .001 .001 .807 .157 .000 4.020	1.983 .004 .134 .015 .105 .002 .003 .816 .796 .157 .000 4.016	1.984 .005 .134 .017 .104 .003 .001 .821 .794 .145 .000 4.008	1.982 .003 .134 .016 .101 .002 .818 .804 .157 .000 4.018
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	88.92 10.39 467	88.73 10.66 477	88.91 10.83 487	89.13 11.43 497	88.76 10.85 548	88.48 10.16 558	88.28 10.17 568	88.78 10.06 578	88.90 10.24 588	88.85 10.78 598	88.84 9.94 608	89.13 9.54 618	88.53 10.17 628	88.60 10.47 638	88.73 9.53 648	88.62 9.71 658	88.84 9.72 668	88.56 10.26 688	88.73 10.95 698	88.99 10.65 709

Profilname	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16							
Profilpunkt	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх							
Analyse																				
[Gew%] SiO	54 68	54 69	54 57	54 70	54 63	54 65	54 70	54 62	54 64	54 64	54 66	54 59	54 67	54 52	54 78	54 87	54 58	54 60	54 73	54 60
TiO ₂	.13	.15	.15	.19	.18	.15	.17	.16	.16	.14	.13	.15	.17	.15	.13	.15	.16	.15	.16	.16
Al ₂ O ₃	3.15	3.11	3.16	3.16	3.20	3.15	3.16	3.18	3.17	3.16	3.14	3.11	3.15	3.13	3.11	3.11	3.18	3.11	3.14	3.12
FeO	3.48	3.33	3.37	3.33	3.46	3.35	3.44	3.34	3.28	3.49	3.35	3.33	3.37	3.46	3.41	3.40	3.38	3.38	3.34	3.30
MnO	.04	.11	.04	.04	.07	.05	.05	.07	.04	.06	.02	.04	.09	.05	.01	.04	.03	.04	.05	.05
MaQ	.06	.01	.03	.05	.05	.05	.06	.04	.00	.00	.05	.03	.05	.05	.02	.02	.04	.00	.04	.03
CaO	20.60	20.67	20.82	20.71	20.63	20.59	20.59	20.60	20.69	20.55	20.72	20.52	20.73	20.59	20.71	20.64	20.79	20.69	20.67	20.71
Na ₂ O	2.24	2.17	2.22	2.14	2.23	2.31	2.25	2.26	2.22	2.26	2.21	2.30	2.23	2.15	2.24	2.27	2.24	2.18	2.20	2.24
κ ₂ Ο Σ	100.03	.00	.01	.01	.00	.00	.01	00. 80.00	.02	.01	.00	.00	100.00	.00	100.00	.00	.00	00.	.00	.00
Kationen-																				
besetzung																				
Si	1.982	1.986	1.978	1.983	1.980	1.982	1.982	1.980	1.982	1.982	1.982	1.984	1.981	1.982	1.985	1.986	1.977	1.981	1.984	1.984
	.003	.004	.004	.005	.005	.004	.005	.004	.004	.004	.003	.004	.005	.004	.004	.004	.004	.004	.004	.004
Cr	.016	.015	.015	.016	.015	.015	.015	.016	.015	.016	.015	.015	.016	.015	.015	.016	.016	.016	.014	.015
Fe ²⁺	.105	.101	.102	.101	.105	.102	.104	.101	.100	.106	.102	.101	.102	.105	.103	.103	.102	.102	.101	.100
Mn	.001	.003	.001	.001	.002	.002	.002	.002	.001	.002	.001	.001	.003	.002	.000	.001	.001	.001	.002	.001
Mg	.817	.813	.820	.814	.816	.816	.817	.819	.817	.815	.820	.817	.815	.818	.814	.812	.820	.822	.818	.813
Ca	.800	.804	.809	.804	.801	.800	.799	.800	.804	.799	.805	.799	.805	.802	.804	.800	.807	.804	.803	.806
Na	.157	.153	.156	.150	.156	.162	.158	.159	.156	.159	.155	.162	.157	.152	.157	.159	.158	.153	.154	.158
∑ Kationen	4.018	4.012	4.021	4.012	4.018	4.020	4.018	4.019	4.016	4.018	4.018	4.018	4.018	4.015	4.016	4.015	4.022	4.017	4.015	4.016
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	88.58	88.95	88.93	88.98	88.62	88.93	88.70	88.98	89.14	88.49	88.98	88.97	88.86	88.59	88.75	88.75	88.90	88.92	88.99	89.02
Cr #	10.38	10.24	9.84	10.71	10.05	9.95	9.88	10.40	9.76	10.49	10.15	10.24	10.36	10.28	10.28	10.71	10.41	10.55	9.70	9.95
Profilstrecke [µm]	719	729	739	749	759	769	779	789	799	809	819	829	839	849	859	869	879	889	899	910

Profilname Profil-16 Profi	rofil-16 Profil-16 118 119 Cpx Cpx
Profilpunkt 99 100 101 102 103 104 105 106 107 108 110 111 112 113 114 115 116 117	118 119 Срх Срх
	Срх Срх
Mineral Cpx	
Analyse [Gew.%] Silo.	54.76 54.70 .16 .21 3.19 3.17 51 .54 .00 .04 .03 .03 15.05 15.11 15.05 15.11 20.57 20.55 2.13 2.24 .01 .02
Kationen- besetzung Si 1.984 1.980 1.981 1.979 1.982 1.982 1.983 1.985 1.984 1.987 1.982 1.987 1.983 1.985 1.984 1.980 1.981 1.978 1.978 Ti 0.03 0.04 0.05 0.04 0.05 0.04 0.05	1.987 1.982 .004 .006 .136 .135 .015 .015 .000 .001 .001 .001 .001 .001 .014 .816 .799 .798 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
Sauerstoffe 6.000	6.000 6.000
Mg # 88.49 88.66 88.84 88.56 88.76 88.92 88.85 88.98 88.47 88.81 88.71 88.95 89.01 88.69 88.97 88.56 88.88 Cr # 10.18 10.23 10.11 10.22 10.52 10.90 9.72 10.69 9.68 9.60 9.84 9.81 9.92 9.61 10.24 10.06 10.38 10.01 Profilstrecke [µm] 920 930 940 950 960 970 980 990 1000 1010 1030 1040 1050 1060 1070 1080 1090 1100	88.83 88.85 9.64 10.17 1111 1121

Probe: Ka																				
Profilname	Profil-16	Profil-16 I	Profil-16	Profil-16																
Profilpunkt	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141
Mineral	Срх	Срх																		
Analyse																				
[Gew%] SiO ₂	54.64	54.69	54.65	54.73	54.70	54.82	54.65	54.64	54.63	54.76	54.77	54.87	54.88	54.52	54.64	54.72	54.76	54.53	54.70	54.75
TiO ₂	.17	.13	.18	.15	.13	.16	.16	.17	.14	.18	.18	.14	.17	.17	.17	.17	.17	.15	.17	.18
Cr ₂ O ₃	.51	.53	.53	.49	.53	.54	.54	.49	.56	.54	.53	.49	.52	.57	.54	.55	.55	.50	.55	.53
reO MnO	3.52	3.45	3.60	3.38	3.51	3.31	3.44	3.30	3.44	3.34	3.37	3.37	3.43	3.37	3.51	3.29	3.37	3.37	3.43	3.54
NiO	.02	.00	.05	.06	.10	.00	.06	.03	.06	.04	.02	.04	.04	.08	.03	.04	.00	.02	.02	.01
MgO CaO	15.02 20.53	15.14 20.60	15.05 20.57	15.09 20.52	15.10 20.56	15.03 20.64	15.11 20.53	15.04 20.64	15.08 20.58	15.08 20.88	15.01 20.45	15.13 20.76	14.99 20.58	15.12 20.55	15.14 20.55	15.06 20.74	15.01 20.51	15.06 20.70	15.03 20.60	15.07
Na ₂ O	2.18	2.22	2.32	2.20	2.30	2.25	2.15	2.19	2.18	2.30	2.18	2.22	2.21	2.24	2.20	2.24	2.27	2.18	2.28	2.18
₂ 0 Σ	.00	.00	.00	.01 99.90	.01 100.22	.00	.00	.00	.01	.01 100.29	.00	.00	.01	.01 99.87	.00	.02	.00	.02 99.74	.00	.00
-																				
Kationen-																				
Si	1 984	1 982	1 980	1 984	1 981	1 986	1 983	1 984	1 983	1 981	1 989	1 984	1 987	1 979	1 981	1 983	1 986	1 982	1 984	1 981
Ti	.005	.003	.005	.004	.003	.004	.004	.005	.004	.005	.005	.004	.005	.005	.005	.005	.005	.004	.005	.005
Al Cr	.135	.136	.134	.137	.136	.136	.136	.136	.135	.133	.134	.134	.135	.136	.135	.134	.135	.135	.135	.135
Fe ²⁺	.107	.105	.109	.102	.106	.100	.104	.100	.104	.101	.102	.102	.104	.102	.106	.100	.102	.103	.104	.107
Mn Ni	.001	.001	.002	.002	.003	.001	.001	.002	.002	.001	.001	.002	.002	.002	.001	.001	.002	.002	.001	.003
Mg	.813	.818	.813	.815	.815	.812	.817	.814	.816	.813	.813	.816	.809	.818	.818	.814	.811	.816	.813	.813
Ca Na	.799	.800	.799	.797	.798	.801	.798	.803	.800	.809	.796	.804	.798	.800	.798	.805	.797	.806	.800	.803
ĸ	.000	.000	.000	.001	.001	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.001	.000	.001	.000	.000
∑ Kationen	4.013	4.016	4.021	4.014	4.022	4.013	4.013	4.013	4.015	4.021	4.009	4.016	4.011	4.019	4.016	4.017	4.014	4.016	4.017	4.016
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Ma #	88.38	88.67	88.18	88.83	88.47	89.01	88.67	89.05	88.66	88.93	88.81	88.90	88.62	88.88	88.49	89.08	88.81	88.84	88.64	88.35
	9.80	10.07	10.18	9.25	10.08	10.23	10.27	9.36	10.62	10.43	10.10	9.48	9.90	10.65	10.23	10.55	10.36	9.69	10.40	10.07
Profilstrecke [um]	1151	1161	1171	1181	1191	1201	1211	1221	1231	1241	1251	1261	1271	1281	1291	1301	1312	1322	1332	1342
r romstrecke [µm]																				

Probe: Ka		-	-	-				-	-				-			-			-	-
Profilname Profilpunkt	Profil-16	Profil-16	145	2146	Profil-16 F 147	2rofil-16 F	150	Profil-16	Profil-16 I 152	2rofil-16 I 153	154	2rofil-16 155	156 Profil-16	157	Profil-16 158	Profil-16 I	Profil-16 I 160	161	Profil-16	Profil-16 163
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
$\begin{array}{l} \textbf{Analyse} \\ \textbf{[Gew%]} \\ \text{SiO}, \\ \text{TiO}, \\ \text{TiO}, \\ \text{TiO}, \\ \text{Cr}, \text{O}_3 \\ \text{FeO} \\ \text{MnO} \\ \text{NiO} \\ \text{MiO} \\ \text{MiO} \\ \text{CaO} \\ \text{Na}, \text{O} \\ \text{Na}, \text{O} \\ \text{K}_2 \text{O} \\ \boldsymbol{\Sigma} \end{array}$	54.67 .18 3.15 .53 3.30 .07 .06 14.94 2.20 .01 99.83	54.72 .17 3.17 .52 3.45 .04 15.05 20.77 2.21 .01 100.15	54.57 .19 3.18 .54 3.44 .06 .04 15.01 20.58 2.20 .00 99.82	54.71 .19 3.15 .53 3.34 .02 .05 15.01 20.67 2.22 .00 99.89	54.62 .13 3.17 .60 3.28 .01 .06 15.04 20.67 2.16 .00 99.74	54.54 .16 3.17 .55 3.32 .07 .00 15.12 20.60 2.22 .02 99.75	54.57 .15 3.17 .52 3.51 .05 .02 15.05 20.69 2.21 .01 99.94	54.81 .16 3.15 .53 3.40 .06 .03 15.08 20.60 2.19 .01 100.00	54.74 .15 3.19 .54 3.35 .03 15.08 20.59 2.30 .01 100.00	54.63 .15 3.14 .53 3.40 .05 .07 15.21 20.57 2.28 .00 100.04	54.65 .17 3.16 .50 3.35 .04 15.05 20.61 2.29 .01 99.92	54.69 .17 3.18 .50 3.40 .10 .03 15.07 20.51 2.22 .01 99.86	54.56 .15 3.19 .49 3.58 .07 .00 15.15 20.69 2.34 .00 100.21	54.51 .14 3.16 .00 14.90 20.70 2.22 .00 99.50	54.73 .14 3.22 .51 3.42 .05 .06 15.12 20.90 2.28 .01 100.43	54.62 .15 3.14 .51 3.38 .00 .06 14.97 20.61 2.26 .00 99.70	54.94 .13 3.18 .53 3.35 .01 1.06 15.04 20.51 2.09 .00 99.84	54.63 .15 3.17 .52 3.45 .04 .06 15.07 20.60 2.17 .00 99.86	54.60 .16 3.17 .55 3.31 .07 15.06 20.70 2.25 .02 99.91	54.85 .16 3.18 .55 3.30 .05 15.06 20.64 2.23 .00 100.05
Kationen- besetzung Si Ti Al Cr Fe ²⁴ Mn Mg Ca Ca Na K Kationen	1.984 .005 .135 .015 .100 .002 .809 .807 .155 .001 4.013	1.981 .005 .135 .015 .105 .001 .001 .812 .806 .155 .000 4.017	1.982 .005 .136 .016 .105 .002 .001 .813 .801 .155 .000 4.015	1.984 .005 .135 .015 .101 .001 .812 .803 .156 .000 4.014	1.984 .004 .136 .017 .100 .000 .002 .814 .804 .152 .000 4.012	1.981 .004 .136 .016 .101 .002 .000 .819 .802 .156 .001 4.017	1.980 .004 .136 .015 .106 .002 .000 .814 .805 .155 .001 4.018	1.985 .004 .135 .015 .103 .002 .001 .814 .800 .154 .001 4.013	1.983 .004 .136 .015 .101 .001 .814 .799 .162 .001 4.018	1.980 .004 .134 .015 .103 .001 .002 .822 .799 .160 .000 4.021	1.983 .005 .135 .014 .102 .001 .001 .814 .801 .161 .000 4.019	1.984 .005 .1366 .014 .103 .003 .001 .815 .797 .156 .000 4.015	1.976 .004 .136 .014 .109 .002 .000 .818 .803 .164 .000 4.026	1.985 .004 .136 .014 .101 .002 .000 .809 .808 .157 .000 4.015	1.978 .004 .137 .014 .103 .002 .002 .814 .809 .159 .000 4.023	1.985 .004 .134 .015 .103 .000 .002 .811 .803 .159 .000 4.016	1.990 .003 .136 .015 .101 .000 .002 .812 .796 .147 .000 4.004	1.983 .004 .136 .015 .105 .001 .002 .815 .801 .152 .000 4.014	1.981 .004 .136 .016 .100 .002 .000 .815 .804 .159 .001 4.019	1.985 .004 .136 .000 .002 .001 .813 .800 .157 .000 4.013
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	88.99 10.05 1362	88.59 9.97 1372	88.61 10.29 1382	88.92 10.12 1392	89.10 11.24 1402	89.05 10.40 1412	88.44 9.92 1432	88.77 10.07 1442	88.93 10.19 1452	88.85 10.19 1462	88.89 9.61 1472	88.77 9.57 1482	88.29 9.36 1492	88.91 9.34 1502	88.73 9.54 1513	88.75 9.89 1523	88.90 10.08 1533	88.61 9.85 1543	89.03 10.39 1553	89.05 10.42 1563

Probe: Ka			-		-		-	-			-	-	-		-		-			
Profilname Profilpunkt	Profil-16 I	165	Profil-16	Profil-16 167	Profil-16	Profil-16	170 Profil-16	270fil-16	2rofil-16 172	2rofil-16	Profil-16	175 Profil-16	Profil-16	Profil-16 177	Profil-16 178	Profil-16 179	Profil-16 180	Profil-16 182	2rofil-16	Profil-16 184
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse																				
SiO ₂	54.58	54.58	54.70	54.60	54.44	54.80	54.84	54.73	54.62	54.64	54.70	54.46	54.62	54.64	54.71	54.65	54.60	54.60	54.63	54.69
Al ₂ O ₃	.18 3.18	.16 3.15	.16 3.16	.17 3.17	.15 3.20	.15 3.18	.16 3.19	.15 3.17	.16 3.15	.18 3.18	.18 3.19	.19 3.16	.17 3.16	.23 3.23	.17 3.19	.20 3.15	.22 3.14	.17 3.17	.15 3.16	.14 3.22
Cr ₂ O ₃	.56	.54	.56	.55	.54	.50	.53	.51	.54	.54	.56	.52	.56	.54	.57	.54	.52	.55	.56	.53
MnO	.04	.06	.06	.07	.08	.04	.08	.06	.11	.04	.01	.07	.00	.06	.07	.08	.06	.05	.06	.05
NiO MgQ	.07 15 14	.04 15.13	.04 15.03	.00 15 16	.01 15.09	.02 15.07	.05 15.06	.00 15.18	.01 15.08	.02 15.06	.08 15 10	.07 15 13	.04 15.16	.02 15.06	.00 15 12	.04 15 16	.02 15.01	.06 15.02	.06 15.03	.04 14 97
CaO	20.63	20.67	20.79	20.57	20.75	20.60	20.71	20.57	20.52	20.48	20.65	20.74	20.82	20.78	20.75	20.67	20.71	20.77	20.75	20.54
Na ₂ O K ₂ O	2.34	2.24	2.19	2.27	2.23	2.25	2.28	2.29	2.28	2.31	2.37	2.28	2.24	2.24	2.21	2.14	2.22	2.37	2.19	2.29
Σ	100.09	99.99	100.14	99.84	99.96	100.01	100.32	100.10	99.75	99.90	100.27	99.96	100.09	100.11	100.19	100.11	99.79	100.11	99.98	99.93
Kationen-																				
besetzung																				
Ti	1.978	1.980	1.981	1.981	1.976	1.985	1.982	1.982	1.984	1.982	1.979	1.977	1.979	1.979	1.980	1.980	1.983	1.979	1.981	1.984
AI	.136	.135	.135	.136	.137	.136	.136	.135	.135	.136	.136	.135	.135	.138	.136	.134	.134	.135	.135	.138
Fe ²⁺	.103	.103	.105	.100	.106	.103	.104	.104	.100	.105	.104	.102	.101	.100	.103	.106	.100	.1016	.103	.104
Mn	.001	.002	.002	.002	.002	.001	.002	.002	.003	.001	.000	.002	.000	.002	.002	.002	.002	.002	.002	.002
Mg	.818	.818	.812	.820	.816	.813	.811	.819	.817	.814	.814	.819	.819	.813	.816	.818	.813	.811	.813	.809
Ca Na	.801	.803	.807	.800	.807	.799	.802	.798	.798	.796	.800	.807	.808	.806	.805	.802	.806	.806	.806	.798
ĸ	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.001
∑ Kationen	4.023	4.020	4.016	4.018	4.022	4.015	4.018	4.020	4.017	4.018	4.023	4.023	4.020	4.017	4.017	4.015	4.015	4.024	4.016	4.017
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Ma #	88.86	88.78	88.59	89.13	88.54	88.77	88.67	88.74	89.10	88.60	88.71	88.95	89.03	89.04	88.76	88.54	89.01	88.91	88.79	88.59
	10.57	10.24	10.62	10.38	10.08	9.55	10.05	9.67	10.27	10.24	10.59	9.94	10.59	10.05	10.73	10.34	10.05	10.46	10.64	9.93
Profilstrecke [um]	1573	1583	1593	1603	1613	1623	1633	1643	1653	1663	1673	1683	1693	1703	1714	1724	1734	1754	1764	1774

Probe: Ka																				
Profilname	Profil-16 I	Profil-16	Profil-16	Profil-16	Profil-16 I	Profil-16 F	Profil-16	Profil-16	Profil-16 I	Profil-16	Profil-16	Profil-16	Profil-16 I	Profil-16 I	Profil-16	Profil-16	Profil-16 I	Profil-16	Profil-16	Profil-16
Profilpunkt	185	186	187	188	189	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO, SiO, SiO, FeO ALO, Gr.O. Gr.O. FeO MnO MnO NiO MiO NiO KgO CaO KaO KaO KaO	54.78 .18 3.14 .49 3.40 .06 .03 15.01 20.70 2.28 .00 100.07	54.82 .16 3.14 .53 3.33 .05 .03 15.10 20.61 2.25 .01 100.01	54.70 .17 3.15 .54 3.37 .08 .01 15.09 20.90 2.18 .00 100.18	54.57 .17 3.16 .50 3.46 .05 .09 15.06 20.73 2.31 .01 100.09	54.83 .13 3.16 .55 3.47 .03 .04 15.29 20.60 2.19 .00 100.30	54.63 .16 3.11 .55 3.34 .10 .02 15.15 20.52 2.17 .01 99.75	54.61 .18 3.10 .49 3.47 .02 .07 15.07 20.75 2.21 .00 99.97	54.43 .22 .55 .3.44 .05 .02 15.21 20.95 2.26 .01 100.26	54.60 .18 3.07 .53 3.37 .04 .06 15.11 20.68 2.16 .02 99.80	54.60 .18 3.10 .50 3.32 .04 .06 15.19 20.66 2.25 .00 99.90	54.73 .20 3.09 .58 3.48 .02 15.21 20.77 2.25 .00 100.39	54.54 .16 .3.06 .53 3.28 .12 .04 15.16 20.72 2.24 .01 99.86	54.68 .17 3.10 .55 3.56 .03 .05 15.08 20.56 2.20 .01 100.00	54.45 .19 3.06 .55 3.50 .06 05 15.12 20.56 2.16 .00 99.70	54.55 .18 3.10 .55 3.34 .04 .02 14.98 20.67 2.19 .01 99.62	54.57 .15 3.05 .54 3.35 .06 .02 15.10 20.70 2.30 .00 99.83	54.57 .15 3.12 .55 3.31 .08 .03 15.13 20.67 2.21 .00 99.81	54.71 .15 3.06 .56 3.23 .07 .02 15.10 20.68 2.10 .02 99.68	54.65 .12 3.09 .51 3.47 .05 .04 15.19 20.86 2.21 .00 100.18	54.74 .18 3.01 .54 3.44 .02 .07 15.25 20.83 2.25 .00 100.33
Kationen- besetzung Si Ti Al Cr Fr ⁴⁺ Mn Ni Mg Ca Na K Xationen	1.984 .005 .134 .014 .002 .001 .811 .803 .160 .000 4.017	1.985 .004 .134 .015 .101 .001 .800 .158 .000 4.015	1.980 .005 .134 .015 .102 .002 .000 .814 .811 .153 .000 4.017	1.979 .005 .135 .014 .105 .002 .003 .814 .805 .162 .000 4.023	1.981 .004 .105 .016 .105 .001 .001 .824 .798 .153 .000 4.017	1.984 .004 .133 .016 .101 .003 .001 .820 .798 .153 .001 4.014	1.981 .005 .133 .014 .105 .001 .002 .815 .807 .155 .000 4.018	1.972 .006 .133 .016 .104 .002 .001 .813 .159 .001 4.027	1.983 .005 .131 .015 .102 .001 .002 .818 .805 .152 .001 4.015	1.981 .005 .133 .014 .101 .001 .002 .803 .158 .000 4.020	1.978 .005 .131 .017 .105 .002 .001 .804 .158 .000 4.021	1.981 .004 .131 .015 .100 .004 .001 .806 .158 .000 4.021	1.983 .005 .133 .016 .108 .001 .001 .815 .799 .155 .000 4.016	1.981 .005 .131 .016 .107 .002 .001 .801 .152 .000 4.017	1.984 .005 .133 .016 .101 .001 .000 .805 .154 .000 4.014	1.982 .004 .131 .015 .102 .002 .001 .818 .806 .162 .000 4.022	1.982 .004 .133 .016 .101 .003 .001 .804 .155 .000 4.018	1.987 .004 .131 .016 .098 .002 .000 .818 .805 .148 .001 4.010	1.979 .003 .135 .105 .001 .001 .809 .155 .000 4.021	1.980 .005 .128 .015 .104 .001 .002 .822 .807 .158 .000 4.023
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	88.71 9.43 1784	88.99 10.10 1794	88.87 10.33 1804	88.59 9.51 1814	88.71 10.45 1824	88.99 10.58 1844	88.57 9.58 1854	88.73 10.53 1864	88.88 10.29 1874	89.09 9.75 1884	88.63 11.18 1894	89.18 10.46 1904	88.29 10.69 1915	88.50 10.83 1925	88.89 10.66 1935	88.93 10.52 1945	89.06 10.54 1955	89.29 10.90 1965	88.63 10.01 1975	88.76 10.75 1985

Probe: Ka																				
Profilname	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16 F	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16
Profilpunkt	206	209	210	211	212	213	214	215	216	217	218	219	221	222	223	224	225	226	227	228
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse																				
[Gew%] SiO ₂	54.75	54.80	54.77	54.58	54.73	54.64	54.70	54.69	54.56	54.75	54.59	54.62	54.76	54.67	54.85	54.76	54.75	54.67	54.65	54.44
TiO ₂ Al ₂ O ₂	.20	.20	.19	.19	.16	.15	.17	.17	.15	.14	.17	.16	.12	.14	.15	.15	.14	.14	.17	.11
Cr ₂ O ₃	.57	.59	.53	.53	.57	.56	.54	.55	.50	.53	.54	.57	.51	.54	.56	.52	.54	.53	.50	.51
FeO MnO	3.49 .04	3.34 .07	3.38 .05	3.30 .03	3.43 .05	3.49 .03	3.35 .05	3.44 .07	3.55 .00	3.41 .09	3.36 .04	3.37 .08	3.27	3.35 .04	3.30 .03	3.53 .06	3.62 .07	3.31 .06	3.31 .03	3.25
NiO	.06	.01	.10	.02	.01	.07	.04	.08	.04	.05	.07	.06	.05	.04	.03	.09	.04	.04	.05	.05
CaO	20.73	20.78	20.63	20.64	20.78	20.70	20.47	20.74	20.71	20.87	20.66	20.53	20.76	20.76	20.64	20.55	20.64	20.60	20.56	20.54
Na₂O K₋O	2.16	2.14	2.20	2.16	2.17	2.25	2.26	2.12	2.21	2.25	2.26	2.23	2.17	2.21	2.17	2.19	2.22	2.19	2.19	2.08
Σ	100.20	100.04	99.95	99.62	99.99	100.10	99.77	100.04	99.93	100.30	99.85	99.88	99.89	99.96	99.99	100.09	100.17	99.76	99.65	99.16
Kationen-																				
Si	1.981	1.985	1.986	1.985	1.985	1.981	1.986	1.982	1.981	1.981	1.982	1.982	1.986	1.983	1.986	1.984	1.983	1.985	1.986	1.988
Ti	.005	.005	.005	.005	.004	.004	.005	.004	.004	.004	.005	.004	.003	.004	.004	.004	.004	.004	.005	.003
Cr	.016	.017	.015	.015	.016	.016	.015	.016	.014	.015	.016	.016	.015	.015	.016	.015	.015	.015	.014	.015
Fe ²⁺ Mn	.106	.101	.102	.100	.104	.106	.102	.104	.108	.103	.102	.102	.099	.102	.100	.107	.110	.100	.101	.099
Ni	.002	.000	.003	.001	.000	.002	.001	.002	.001	.001	.002	.002	.001	.001	.001	.003	.001	.001	.001	.002
Ca	.814 .804	.812	.813	.823	.814	.817 .804	.815	.819	.819	.816	.816	.821	.815	.818	.818	.819	.815	.820	.816	.818
Na	.151	.150	.155	.152	.153	.158	.159	.149	.155	.158	.159	.157	.153	.155	.153	.154	.156	.154	.154	.147
∑ Kationen	4.014	4.011	4.014	4.014	4.014	4.020	4.016	4.014	4.020	4.021	4.019	4.018	4.014	4.018	4.012	4.016	4.018	4.015	4.013	4.010
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	88.52	88.91	88.81	89.13	88.68	88.55	88.91	88.71	88.36	88.78	88.89	88.94	89.15	88.94	89.13	88.43	88.16	89.09	89.03	89.19
- Cr#	10.85	11.34	10.49	10.47	11.20	10.80	10.43	10.80	9.84	10.27	10.55	11.02	10.00	10.50	10.81	10.12	10.55	10.36	9.77	10.05
Deefileteeelee (1995	2025	2035	2045	2055	2065	2075	2085	2095	2105	2116	2126	2146	2156	2166	2176	2186	2196	2206	2216

Probe: Ka																				
Profilname	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16 I	Profil-16 I	Profil-16 I	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16	Profil-16 I	Profil-16 I	Profil-16 I	Profil-16
Profilpunkt	229	230	231	232	233	234	235	230	237	236	239	240	241	242	243	244	245	240	247	246
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO, TiO, ALO, Gew%] MiO MiO NiO MiO NiO NiO KgO CaO KgO KgO KaO KgO	54.73 .18 3.09 .50 3.41 .04 .03 15.22 20.72 2.15 .00 100.05	54.67 .15 3.11 .53 3.45 .04 .05 15.16 20.56 2.13 .01 99.87	54.60 .16 3.11 .57 3.42 .07 0.3 15.10 20.59 2.19 .00 99.84	54.62 .17 3.12 .55 3.41 15.10 20.70 2.15 .00 99.90	54.75 .17 3.07 .50 3.33 .03 .06 15.10 20.75 2.19 .00 99.94	54.52 .19 3.13 .50 .06 .00 15.16 20.49 2.22 .01 99.56	54.61 .17 3.10 .56 3.31 .05 .03 15.10 20.72 2.17 .00 99.82	54.61 .16 3.10 .55 3.40 .07 .02 15.15 20.60 2.27 .00 99.93	54.71 .15 3.10 .53 3.40 .02 .10 15.19 20.73 2.10 .00 100.03	54.73 .14 3.07 .55 3.40 .09 .07 15.17 20.68 2.12 .00 100.01	54.72 .16 3.09 .52 3.39 .05 .11 15.01 20.85 2.16 .01 100.07	54.75 .14 3.08 .51 3.40 .03 .02 15.09 20.80 2.23 .00 100.06	54.68 .15 3.09 .56 3.39 .05 .02 15.20 20.57 2.16 .00 99.85	54.85 .17 3.09 .55 3.42 .05 15.13 20.73 2.19 .00 100.23	54.88 .15 3.07 .55 3.39 .05 .06 15.15 20.81 2.18 .01 100.29	54.60 .17 3.06 .53 3.57 .03 .00 15.13 20.61 2.21 .00 99.90	54.72 .16 3.04 .53 3.36 .04 .02 15.20 20.63 2.18 .00 99.87	54.70 .15 3.04 .51 3.41 .02 .07 15.04 20.61 2.22 .01 99.78	54.44 .16 3.05 .54 3.39 .03 .04 15.16 20.60 2.22 .02 99.63	54.72 .16 3.07 .54 3.36 .05 .07 15.19 20.68 2.09 .01 99.94
Kationen- besetzung Si Ti Al Cr, Fe ²⁴ Mn Ni Mg Ca Na K Xationen	1.982 .005 .132 .014 .103 .001 .001 .822 .804 .151 .000 4.015	1.984 .004 .105 .105 .001 .002 .820 .799 .150 .000 4.013	1.982 .004 .136 .104 .002 .001 .801 .154 .000 4.016	1.982 .005 .133 .016 .103 .002 .000 .815 .151 .000 4.014	1.985 .005 .131 .014 .101 .001 .816 .806 .154 .000 4.015	1.983 .005 .134 .014 .100 .002 .000 .822 .799 .157 .001 4.016	1.983 .005 .133 .016 .100 .002 .001 .806 .153 .000 4.015	1.981 .004 .103 .016 .103 .002 .001 .801 .160 .000 4.020	1.983 .004 .132 .015 .103 .001 .003 .805 .147 .000 4.013	1.984 .004 .101 .016 .103 .003 .002 .803 .149 .000 4.014	1.983 .004 .132 .015 .103 .002 .003 .811 .810 .152 .000 4.015	1.984 .004 .132 .014 .103 .001 .805 .808 .157 .000 4.018	1.984 .004 .103 .016 .103 .001 .820 .800 .152 .000 4.014	1.984 .005 .131 .016 .103 .002 .001 .810 .803 .154 .000 4.015	1.984 .004 .101 .016 .102 .001 .002 .816 .806 .153 .000 4.015	1.982 .005 .131 .015 .108 .001 .000 .819 .802 .155 .000 4.018	1.985 .004 .130 .015 .102 .001 .001 .802 .802 .153 .000 4.015	1.987 .004 .130 .015 .104 .001 .002 .814 .802 .156 .000 4.015	1.981 .004 .131 .015 .103 .001 .001 .803 .157 .001 4.020	1.984 .004 .131 .016 .102 .002 .821 .803 .147 .001 4.012
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	88.83 9.87 2226	88.67 10.21 2236	88.72 11.02 2246	88.75 10.54 2256	89.00 9.90 2266	89.14 9.73 2276	89.06 10.72 2286	88.83 10.63 2296	88.83 10.32 2306	88.83 10.73 2317	88.75 10.08 2327	88.79 9.92 2337	88.89 10.76 2347	88.76 10.70 2357	88.85 10.79 2367	88.32 10.47 2377	88.98 10.45 2387	88.71 10.19 2397	88.86 10.55 2407	88.95 10.60 2417

Probe: Ka																				
Profilname	Profil-16	Profil-16 I	Profil-16 I	Profil-16	Profil-16															
Profilpunkt	249	250	251	252	253	254	257	258	259	260	261	262	263	264	265	266	267	268	269	270
Mineral	Срх	Срх																		
Analyse																				
[Gew%] SiO ₂	54.70	54.86	54.85	54.57	54.74	54.81	54.60	54.79	54.67	54.49	54.66	54.72	54.56	54.57	54.56	54.65	54.72	54.73	54.51	54.58
ſiO₂ Al-O-	.14	.17	.15	.13	.14	.14	.13	.12	.13	.13	.15	.12	.17	.13	.15	.15	.14	.18	.19	.15
Cr ₂ O ₃	.51	.52	.51	.55	.51	.56	.55	.51	.52	.53	.50	.49	.54	.53	.54	.58	.50	.60	.60	2.09
FeO MnO	3.42	3.33	3.35	3.35	3.42	3.44	3.38	3.37	3.43	3.43	3.47	3.39	3.41	3.40	3.37	3.36	3.25	3.60	3.36	3.46
NiO	.07	.00	.05	.08	.09	.07	.03	.07	.11	.03	.00	.07	.00	.09	.05	.03	.03	.03	.04	.06
VigO CaO	15.16 20.81	15.08 20.62	15.10 20.72	15.18 20.86	15.19 20.81	15.23 20.71	15.35 20.67	15.24 20.75	15.14 20.98	15.34 20.93	15.28 20.89	15.25 20.81	15.19 20.95	15.27 20.81	15.26 20.99	15.26 20.98	15.24 20.87	15.25 20.88	15.35 21.09	15.28
Na ₂ O	2.27	2.10	2.17	2.14	2.10	2.11	2.10	2.20	2.14	2.11	2.04	2.13	2.05	1.97	2.03	2.06	1.99	1.93	1.94	1.92
ν20	100.22	.00	100.01	.01	100.03	100.12	.00 99.81	.00	.00	.00	.01 99.91	.00.99.89	.01 99.80	.00 99.67	.00	100.02	.00 99.64	100.11	.00	.01 99.91
Kationen-																				
Si	1.980	1.990	1.987	1.981	1.984	1.984	1.983	1.985	1.982	1.979	1.984	1.986	1.983	1.985	1.982	1.982	1.989	1.984	1.979	1.982
ñ Al	.004	.005	.004	.004	.004	.004	.003	.003	.004	.003	.004	.003	.005	.004	.004	.004	.004	.005	.005	.004
Dr	.015	.015	.015	.016	.015	.016	.016	.015	.015	.015	.014	.014	.016	.015	.015	.017	.014	.017	.017	.015
=e²* Vin	.104	.101	.101	.102	.104	.104	.103	.102	.104	.104	.105	.103	.104	.103	.102	.102	.099	.109	.102	.105
Ni	.002	.000	.001	.002	.003	.002	.001	.002	.003	.001	.000	.002	.000	.003	.001	.001	.001	.001	.001	.002
мg Са	.818 .807	.816	.816	.822	.821	.822	.831	.823	.818 .815	.831 .814	.827	.825	.823	.828	.827	.825	.826	.824	.831 .821	.827
Na	.160	.148	.152	.150	.148	.148	.148	.155	.150	.149	.144	.150	.144	.139	.143	.145	.140	.136	.136	.135
∑ Kationen	4.023	4.007	4.013	4.019	4.015	4.014	4.017	4.018	4.020	4.023	4.015	4.017	4.015	4.012	4.016	4.017	4.010	4.010	4.015	4.012
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Ma #	88.76	88.97	88.93	88.98	88.79	88.76	89.00	88.96	88.74	88.85	88.71	88.91	88.80	88.90	88.98	89.00	89.33	88.31	89.06	88.73
Cr#	10.02	10.24	10.13	10.90	10.14	11.20	11.11	10.35	10.56	10.97	10.37	10.34	11.16	11.04	11.17	11.94	10.66	12.26	12.52	10.52
Profilstrecke [um]	2427	2437	2447	2457	2467	2477	2507	2518	2528	2538	2548	2558	2568	2578	2588	2598	2608	2618	2628	2638
i ioniaueoke [µiii]																				

Probe:	Gu
Profil:	01
Mineral:	Grt
Kapitel:	Anhang II

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
77	141.067	59.075	68.260	21.183	4.300	0.718	2.119	1.936
137	145.525	59.239	68.750	20.534	5.708	0.797	0.780	1.265
197	137.793	61.913	68.348	23.027	3.180	0.919	1.136	0.946
257	138.357	61.689	66.821	23.933	1.782	1.176	1.767	2.207
317	134.545	60.642	67.310	24.375	5.210	0.644	1.444	3.444
377	138.565	62.353	67.777	23.615	2.785	1.016	1.000	2.490
597	137.717	61.796	66.577	23.116	3.190	0.819	1.402	1.818
657	138.733	60.273	64.822	22.636	4.919	0.763	0.532	1.520
857	158.157	59.891	65.325	22.079	5.751	1.046	0.950	1.642
1036	160.896	61.461	63.694	23.746	9.834	0.810	1.041	2.231
1096	162.586	59.270	65.756	20.886	4.009	1.115	1.445	3.527
1156	152.891	59.072	64.975	21.971	3.189	0.976	0.338	1.738
1216	161.364	58.085	63.930	22.835	1.120	0.764	1.220	1.339
1296	174.445	56.952	65.292	21.023	3.262	0.560	1.656	1.390
1416	174.903	57.115	67.081	22.985	5.093	0.925	0.690	4.062
1547	167.716	57.649	67.832	22.178	4.310	0.556	1.000	1.517

Probe: Gu																				
Profilname	Profil-01	Profil-01	Profil-01	Profil-01 I	Profil-01 I	Profil-01 I	Profil-01 F	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01 I	Profil-01	Profil-01	Profil-01
Profilpunkt	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	126
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt								
Analyse [Gew%] [Gow%] SiO, TiO, Gr,O, Gr,O, FeO MinO MinO NiO CaO Na,O CaO K ₂ Ô ∑	40.43 .03 22.81 .87 14.48 .47 .09 16.58 4.06 .00 .00 99.79	40.57 .03 22.98 .81 14.04 .42 .00 17.20 4.03 .05 .01 100.13	40.67 .04 22.80 .88 13.82 .37 .03 17.20 4.12 .04 .00 99.98	40.55 .05 22.82 .89 13.65 .36 .00 17.51 3.99 .01 .00 99.82	40.54 .05 22.81 .89 13.59 .42 .00 17.68 3.95 .02 .00 99.96	40.68 .04 22.91 .93 13.79 .38 .00 17.77 4.01 .02 .01 100.54	40.71 .05 22.79 .97 13.09 .36 .02 17.70 4.01 .01 .00 99.70	40.76 .06 22.87 .99 13.25 .32 .01 17.73 3.96 .00 .00 99.93	40.73 .07 22.86 1.00 13.10 .41 .00 17.88 4.01 .03 .01 100.09	40.84 .07 22.79 .95 13.13 .34 .00 17.95 4.03 .03 .02 100.16	40.98 .06 22.98 1.01 12.78 .42 .00 18.08 4.03 .00 .00 100.32	40.93 .09 22.86 1.00 12.92 .33 .01 18.19 3.88 .00 .00 100.19	40.86 .07 22.88 .95 12.73 .35 .00 18.15 3.98 .02 .00 99.98	41.02 .09 22.96 1.06 12.71 .37 .00 18.21 3.88 .00 .00 100.30	41.03 .05 22.83 1.05 12.53 .27 .01 18.34 3.93 .00 .00 100.05	40.99 .05 22.89 .96 12.34 .31 .00 18.41 3.96 .02 .01 99.93	41.09 .05 22.94 1.00 12.34 .25 .00 18.32 3.96 .02 .00 99.96	40.96 .08 22.95 1.04 12.12 .30 .00 18.34 3.90 .02 .02 99.74	40.77 .05 22.86 12.07 .27 .00 18.34 3.96 .00 .00 99.38	41.26 .08 22.93 1.12 12.18 .26 .01 18.45 3.94 .02 .00 100.25
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Na K X Kationen	2.960 .001 1.968 .050 .886 .029 .005 1.810 .319 .000 .000 8.029	2.953 .002 1.971 .047 .854 .026 .000 1.866 .314 .006 .001 8.040	2.963 .002 1.957 .051 .842 .023 .002 1.868 .321 .005 .000 8.034	2.955 .003 1.960 .051 .832 .022 .000 1.902 .312 .001 .000 8.037	2.951 .003 1.957 .051 .827 .026 .000 1.918 .308 .003 .000 8.044	2.946 .002 1.956 .053 .835 .023 .000 1.918 .311 .003 .001 8.049	2.963 .003 1.955 .056 .797 .022 .001 1.920 .312 .001 .000 8.030	2.960 .003 1.958 .057 .805 .019 .000 1.920 .308 .000 .000 8.030	2.954 .004 1.954 .057 .795 .025 .000 1.934 .312 .004 .001 8.039	2.960 .004 1.946 .055 .796 .021 .009 .313 .004 .002 8.039	2.960 .003 1.956 .058 .772 .025 .000 1.946 .312 .000 .000 8.031	2.960 .005 1.948 .057 .781 .020 .001 1.961 .300 .000 8.033	2.959 .004 1.953 .054 .771 .021 .960 .309 .002 .000 8.034	2.961 .005 1.953 .061 .767 .022 .000 1.959 .300 .000 8.028	2.966 .003 1.945 .060 .757 .017 .000 1.976 .304 .001 .000 8.029	2.964 .003 1.955 .746 .019 .000 1.984 .307 .002 .000 8.032	2.969 .003 1.953 .057 .745 .015 .000 1.973 .307 .003 .000 8.025	2.964 .004 1.958 .060 .734 .018 .000 1.979 .302 .003 .002 8.025	2.961 .003 1.957 .061 .733 .017 .000 1.986 .308 .000 .000 8.027	2.971 .004 1.946 .064 .734 .016 .000 1.980 .304 .003 .000 8.021
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	67.12 2.49 5	68.59 2.31 15	68.94 2.52 25	69.58 2.55 35	69.86 2.56 45	69.67 2.64 55	70.68 2.78 65	70.46 2.81 75	70.88 2.85 85	70.90 2.73 95	71.61 2.86 105	71.50 2.84 115	71.77 2.70 125	71.87 3.01 135	72.30 3.00 145	72.67 2.74 155	72.58 2.83 165	72.94 2.96 176	73.04 3.02 186	72.97 3.17 216

Probe: Gu	Duritor	Durflad	D. Clot	D	D (1.04.)	D	D	D	D	D	D	D. Clot	Duritat	D. Clot	Ducion	D. Cl Od	D. Clad	D (1.04	D. Class	D
Profilpunkt	Profil-01 127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] [Gow%] SiO ₂ TiO ₂ Al ₂ O ₃ FeO MgO NiO NiO NiO NiO NiO K2O CaO K2O K2O X2O	40.94 .07 22.93 1.00 12.18 .33 .01 18.53 3.96 .02 .00 99.97	41.22 .07 22.88 1.08 12.07 .31 .02 18.47 3.94 .01 .00 100.06	41.30 .04 22.98 1.06 12.02 .35 .00 18.56 4.01 .02 .00 100.34	41.13 .07 22.95 1.05 11.05 11.05 .30 .00 18.63 3.93 .01 .00 99.83	41.44 .08 23.04 1.82 .01 18.47 3.95 .03 .00 100.20	41.26 .07 22.98 1.11 11.60 .27 .00 18.48 4.04 .02 .01 99.82	41.49 .07 23.06 1.07 11.81 .28 .00 18.49 4.05 .01 .01 100.34	41.34 .07 22.93 1.11 11.67 .26 .04 18.59 4.06 .00 .00 100.07	41.39 .09 23.00 1.09 11.72 .27 .01 18.51 4.08 .03 .00 100.19	41.48 .07 22.99 1.09 11.37 .22 .01 18.51 4.10 .01 99.86	41.57 .07 23.05 1.11 11.46 .24 .00 18.56 4.04 .02 .00 100.11	41.61 .07 23.00 1.12 11.44 .28 .01 18.58 4.04 .00 .00 100.15	41.41 .05 22.91 1.08 11.43 .28 .01 18.55 4.11 .01 .00 99.84	41.69 .06 23.01 1.05 11.56 .30 .03 18.62 4.04 .00 .00 100.36	41.54 .04 23.04 1.12 11.53 .27 .08 18.74 4.02 .04 .00 100.41	41.71 .10 22.95 1.13 11.17 .24 .01 18.73 3.97 .02 .00 100.02	41.40 .08 22.99 1.13 11.17 .26 .00 18.58 4.02 .02 .00 99.66	41.59 .07 22.98 1.04 11.43 .30 .00 18.74 4.02 .00 .00 100.17	41.50 .09 22.89 1.13 11.26 .28 .01 18.79 4.07 .01 .02 100.04	41.68 .08 23.04 1.12 11.43 .32 .01 18.66 4.05 .01 .01 100.39
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mi Mg Ca Na K K Kationen Sauerstoffe	2.958 .004 1.953 .057 .7366 .020 .000 1.996 .307 .003 .000 8.034 12.000	2.972 .004 1.944 .061 .728 .001 1.985 .304 .001 .000 8.021 12.000	2.970 .002 1.948 .060 .723 .000 1.990 .309 .002 .000 8.025 12.000	2.968 .004 1.952 .060 .710 .000 2.005 .304 .000 8.023 12.000	2.979 .004 1.952 .058 .712 .019 .000 1.980 .304 .004 .000 8.013	2.976 .004 1.953 .063 .699 .017 .000 1.987 .312 .001 8.014 12.000	2.979 .004 1.951 .061 .709 .010 1.979 .311 .001 .001 8.013 12.000	2.976 .004 1.945 .063 .703 .010 1.995 .313 .000 8.016 12.000	2.976 .005 1.949 .062 .705 .016 .001 1.984 .315 .004 .000 8.016	2.986 .004 1.950 .062 .685 .013 .000 1.986 .316 .002 .001 8.005 12.000	2.985 .004 1.951 .063 .688 .014 .000 1.987 .311 .003 .000 8.006	2.987 .004 1.946 .064 .687 .001 1.988 .311 .000 8.004 12.000	2.984 .003 1.945 .061 .688 .017 .001 1.993 .317 .001 .000 8.010	2.988 .003 1.944 .060 .693 .018 .002 1.990 .310 .000 8.008	2.978 .002 1.946 .064 .005 2.003 .309 .005 .000 8.018	2.993 .006 1.941 .064 .670 2.004 .306 .000 8.000 12.000	2.984 .004 1.953 .064 .673 .000 1.996 .310 .000 8.005 12.000	2.985 .004 1.944 .059 .686 .000 2.006 .309 .000 8.010 12.000	2.982 .005 1.938 .064 .677 .000 2.013 .314 .002 .001 8.013 12.000	2.986 .004 1.945 .063 .684 .001 1.992 .311 .001 8.007 12.000
Mg # Cr # Profilstrecke [µm]	73.06 2.85 226	73.17 3.06 236	73.35 2.99 246	73.84 2.97 256	73.56 2.89 266	73.96 3.13 276	73.62 3.02 286	73.95 3.13 296	73.78 3.09 306	74.37 3.08 316	74.29 3.13 326	74.33 3.17 336	74.33 3.06 346	74.17 2.98 356	74.34 3.17 366	74.94 3.18 376	74.78 3.18 386	74.51 2.94 396	74.84 3.20 406	74.43 3.16 416

Probe: Gu																				
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01 I	Profil-01 I	Profil-01 I	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	147	148	149	150	151	152	153	155	156	157	158	159	160	161	162	163	164	165	166	167
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] [Gow%] SiO, TiO, Gr,O, Gr,O, FeO MinO MinO NiO Sago Na,O CaO K ₂ Ô ∑	41.71 .07 22.92 1.11 11.25 .27 .07 18.62 4.07 .01 .01 100.09	41.67 .06 22.99 1.11 11.02 .31 .04 18.71 4.08 .00 .00 99.97	41.36 .07 23.06 1.10 11.06 .23 .00 18.77 4.01 .04 .00 99.70	41.65 .08 22.95 1.12 10.91 .24 .01 18.63 4.03 .01 .01 99.61	41.65 .13 22.99 1.11 11.08 .28 .00 18.84 4.02 .01 .00 100.11	41.44 .05 22.92 1.13 11.09 .27 .02 18.71 4.05 .03 .03 99.74	41.67 .09 23.08 1.10 11.25 .27 .00 18.72 4.09 .02 .01 100.29	41.77 .08 22.98 1.10 11.10 .33 .00 18.82 4.06 .04 .04 .00 100.27	41.76 .08 22.95 1.11 10.95 .20 .03 18.69 4.07 .02 .00 99.86	41.65 .09 22.99 1.10 10.88 .23 .06 18.81 3.99 .01 .01 99.81	41.78 .08 23.06 1.11 10.82 .25 .00 18.65 4.01 .02 .00 99.78	41.82 .07 23.05 1.15 11.28 .27 .04 18.66 4.05 .03 .00 100.42	41.70 .07 22.97 1.13 10.85 .23 .03 18.77 4.11 .04 .04 .01 99.90	41.75 .08 22.87 1.07 11.05 .25 .00 18.87 4.02 .02 .00 99.97	41.90 .08 23.08 1.14 10.95 .24 .01 18.84 4.07 .01 .00 100.32	41.68 .07 22.93 1.05 10.91 .34 .01 18.80 4.08 .02 .00 99.89	41.86 .08 22.95 1.11 11.02 .26 .04 18.78 4.06 .00 .00 100.16	41.88 .07 22.94 1.16 10.82 .25 .00 18.69 4.12 .01 .03 99.96	41.84 .06 23.00 1.07 10.92 .28 .00 18.84 4.08 .00 .03 100.10	41.65 .08 22.95 1.08 11.06 .32 .00 18.83 4.08 .01 .00 100.06
Kationen- besetzung Si Ti Al Cr Fe ²⁴ Mn Mg Ca Ca Na K Kationen	2.994 .004 1.939 .675 .016 .004 1.993 .313 .002 .001 8.002	2.991 .003 1.945 .063 .661 .019 .002 2.003 .314 .000 .000 8.002	2.978 .004 1.957 .062 .666 .014 .000 2.015 .309 .005 .000 8.011	2.998 .004 1.946 .063 .657 .015 .001 1.998 .310 .001 7.994	2.986 .007 1.943 .665 .017 .000 2.013 .309 .002 .000 8.005	2.985 .003 1.946 .065 .668 .016 .001 2.008 .312 .004 .002 8.011	2.985 .005 1.948 .062 .674 .017 .000 1.999 .314 .003 .000 8.007	2.991 .004 1.939 .062 .664 .020 .000 2.009 .312 .005 .000 8.007	2.999 .004 1.942 .063 .658 .012 2.001 .313 .003 .000 7.997	2.992 .005 1.946 .062 .654 .014 .003 2.014 .307 .001 .000 8.000	3.000 .004 1.952 .063 .650 .015 .000 1.996 .308 .003 .000 7.990	2.992 .004 1.944 .065 .675 .016 .002 1.990 .310 .004 .000 8.002	2.993 .004 1.944 .064 .651 .014 .002 2.009 .316 .006 .000 8.002	2.996 .004 1.934 .061 .663 .015 .000 2.018 .309 .002 .000 8.003	2.995 .004 1.944 .064 .655 .014 .001 2.008 .311 .001 .000 7.997	2.993 .004 1.941 .060 .655 .021 .000 2.013 .314 .002 .000 8.004	2.998 .004 1.938 .063 .660 .016 .002 2.005 .311 .000 .000 7.998	3.003 .004 1.938 .066 .649 .015 .000 1.998 .317 .001 .002 7.993	2.997 .003 1.942 .061 .654 .017 .000 2.011 .313 .000 .002 8.000	2.989 .004 1.941 .664 .019 .000 2.014 .313 .002 .000 8.007
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	74.70 3.14 426	75.18 3.13 436	75.16 3.09 446	75.27 3.16 456	75.18 3.15 466	75.04 3.21 476	74.79 3.08 486	75.15 3.11 507	75.26 3.13 517	75.50 3.10 527	75.44 3.13 537	74.68 3.23 547	75.52 3.19 557	75.27 3.04 567	75.41 3.20 577	75.44 2.97 587	75.24 3.14 597	75.48 3.28 607	75.46 3.04 617	75.21 3.07 627

Probe: Gu Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	168	170	171	172	173	174	175	176	177	178	179	180	182	183	184	185	186	187	188	189
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse Gew%] SiO2 TiO2 Al2O3 CF2O3 FeO MnO NiO MgO CaO CaO K2O K2O	41.91 .06 23.05 1.06 10.80 .19 .00 18.76 4.00 .01 99.83	41.64 .07 23.09 1.08 10.67 .31 .02 18.89 3.99 .02 .01 99.78	41.77 .06 22.96 1.08 10.60 .30 18.85 4.08 .00 99.69	41.71 .09 22.95 1.11 11.02 .30 .01 18.93 4.07 .01 .00 100.20	41.73 .05 22.98 1.10 10.82 .28 .03 18.93 4.07 .01 .00 100.02	41.61 .09 22.97 1.14 10.94 .26 .04 19.01 4.02 .04 .00 100.11	41.76 .07 22.91 1.06 10.89 .22 .00 18.95 4.01 .03 .01 99.92	41.59 .07 22.95 1.15 10.90 .26 .00 18.97 4.14 .01 .00	41.78 .06 23.04 1.08 10.55 .28 .00 18.80 4.04 .00 .01 99.63	41.81 .08 22.87 1.10 10.60 .28 .00 18.97 3.97 .00 99.68	41.72 .07 23.06 1.08 10.62 .28 .01 18.92 4.12 .01 .03 99.92	41.61 .07 23.01 1.07 10.60 .26 .00 18.87 3.99 .01 .01 99.49	41.84 .08 22.95 1.09 10.56 .28 .02 18.70 4.09 .00 99.61	41.99 .07 22.93 1.09 10.80 .24 .00 18.87 4.14 .02 .01 100.15	41.68 .06 23.02 1.10 10.78 .28 .01 18.99 3.96 .03 .00 99.90	41.73 .08 23.04 1.09 11.03 .27 .01 19.01 4.07 .00 .00 100.32	41.84 .07 23.06 1.03 10.54 .27 .03 19.01 4.06 .00 .00 99.91	41.86 .05 23.03 10.63 .27 .00 19.02 4.01 .03 .02 99.95	41.69 .07 23.14 1.02 10.56 .26 .01 19.11 4.00 .02 .00 99.87	41.83 .07 23.01 10.11 10.70 .28 .00 19.14 3.95 .03 .00 100.01
Kationen- besetzung Si T A Cr F F^{z^*} Mn Ni Mg Ca Na K X Xationen Sauerstoffe	3.005 .003 1.948 .060 .647 .012 .000 2.005 .307 .001 .001 7.989 12.000	2.989 .004 1.954 .061 .641 2.021 .307 .003 .001 8.001 12.000	3.000 .003 1.943 .061 .637 .018 .008 2.018 .314 .000 0.000 7.994 12.000	2.988 .005 1.938 .660 .018 .000 2.022 .312 .001 .000 8.007	2.992 .003 1.942 .062 .649 .017 .002 2.024 .313 .002 .000 8.005	2.983 .005 1.941 .656 .016 .002 2.031 .309 .006 .000 8.013 12.000	2.996 .004 1.937 .060 .653 .013 .000 2.027 .308 .005 .000 8.004 12.000	2.984 .004 1.940 .065 .654 .016 .009 .318 .001 .000 8.011 12.000	3.001 .003 1.950 .062 .633 .017 .000 2.013 .311 .000 .001 7.991 12.000	3.002 .004 1.936 .636 .017 .000 2.031 .305 .000 .000 7.994 12.000	2.991 .004 1.949 .061 .637 .017 .001 2.022 .317 .002 8.002 8.002	2.994 .004 1.951 .661 .638 .016 .000 2.024 .308 .001 7.997 12.000	3.007 .004 1.943 .635 .017 .001 2.003 .315 .000 .000 7.987 12.000	3.004 .003 1.934 .062 .646 .015 .000 2.012 .317 .002 .001 7.996 12.000	2.990 .003 1.946 .062 .647 .017 2.030 .304 .004 8.004 12.000	2.985 .004 1.942 .660 .016 .000 2.027 .312 .000 .000 8.009 12.000	2.997 .004 1.947 .058 .631 .016 .002 2.030 .311 .000 7.996 12.000	2.998 .003 1.944 .058 .637 .016 .000 2.031 .308 .004 .002 8.001 12.000	2.988 .004 1.955 .058 .633 .016 .001 2.042 .307 .003 .000 8.004 12.000	2.994 .004 1.942 .057 .640 2.043 .303 .004 8.004 12.000
Ma #	75.59	75.93	76.01	75.37	75.72	75.59	75.62	75.62	76.06	76.14	76.05	76.03	75.94	75.70	75.85	75.43	76.28	76.14	76.34	76.13
NIG #	2.99	3.04	3.06	3.15	3.10	3.21	3.00	3.24	3.06	3.13	3.05	3.02	3.08	3.10	3.10	3.07	2.90	2.91	2.88	2.86
Profilstrecke [µm]	637	657	667	677	687	697	707	717	727	737	747	757	777	787	797	807	817	827	837	848

Probe: Gu																				
Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01 I	Profil-01 I	Profil-01 I	Profil-01	Profil-01	Profil-01 I	Profil-01	Profil-01 I	Profil-01							
Profilpunkt	191	192	193	194	195	196	199	200	201	203	204	205	206	207	208	209	210	211	212	213
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO, Trip Al₂O, Gr₂O, FeO MnO NiO MgO CaO CaO KgÓ CaO Xa,O KgÓ	41.81 .05 23.00 1.05 10.52 .23 .03 19.00 3.99 .00 .01 99.69	41.92 .09 23.09 1.05 10.77 .21 .02 19.07 4.06 .01 .03 100.31	41.60 .07 23.01 1.05 10.55 .28 .00 19.05 4.06 .03 .02 99.71	41.71 .07 23.09 1.08 10.51 .24 .01 18.95 4.04 .01 .00 99.71	41.89 .08 23.02 1.06 10.76 .27 .04 18.95 4.00 .00 .01 100.08	41.71 .09 23.07 1.09 10.83 .24 .04 4.02 .04 4.02 .04 .00 100.08	41.63 .08 23.02 1.05 10.40 .27 .00 18.90 4.11 .03 .00 99.48	41.62 .08 23.12 1.13 10.51 .25 .00 18.99 4.02 .03 .00 99.77	41.71 .08 23.07 1.08 10.88 .28 .00 19.01 4.03 .02 .01 100.18	41.72 .09 23.00 1.07 10.76 .27 .01 18.97 4.05 .00 .02 99.95	41.76 .08 23.01 1.12 10.53 .27 .02 18.96 3.99 .03 .01 99.78	41.78 .10 23.15 1.06 10.82 .26 .00 19.00 3.94 .01 .00 100.12	41.90 .10 23.07 1.06 10.66 .29 .01 18.88 4.02 .04 .01 100.02	41.59 .09 23.09 1.08 10.42 .25 .00 18.97 4.06 .02 .00 99.58	41.81 .09 23.02 1.08 10.40 .27 .00 18.91 3.98 .00 .01 99.56	41.70 .09 23.13 10.73 .25 .03 18.99 4.09 .02 .00 100.03	41.56 .08 23.01 1.07 10.84 .27 .03 18.83 4.08 .01 .01 99.81	41.18 .07 23.06 1.03 10.75 .25 .00 19.01 3.99 .01 .00 99.35	41.44 .07 23.05 10.75 .29 .00 19.05 4.02 .00 .00 99.71	41.62 .07 23.13 1.09 10.72 .31 .02 18.84 4.02 .02 .01 99.84
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{besetzung}\\ Si\\ Ti\\ Al\\ Cr\\ Fe^{z_{k}}\\ Mn\\ Ni\\ Mg\\ Ca\\ Na\\ Na\\ K\\ K\\ \xi \ Kationen \end{array}$	3.001 .002 1.945 .060 .631 .014 .002 2.032 .307 .000 .001 7.995	2.994 .005 1.943 .059 .643 .001 2.030 .310 .002 .003 8.003	2.988 .004 1.948 .060 .634 .017 .000 2.040 .313 .004 .001 8.007	2.993 .004 1.953 .061 .631 .014 .002 2.028 .310 .002 .000 7.997	2.998 .004 1.942 .060 .644 .017 .002 2.022 .306 .000 .001 7.997	2.988 .005 1.948 .062 .649 .015 .002 2.023 .308 .005 .000 8.005	2.994 .004 1.951 .060 .625 .017 .000 2.026 .317 .004 .000 7.998	2.987 .004 1.955 .064 .631 .015 .000 2.031 .309 .004 .000 8.002	2.986 .004 1.947 .061 .651 .017 .000 2.028 .309 .003 .001 8.008	2.991 .005 1.943 .061 .645 .017 .000 2.028 .311 .000 .001 8.003	2.996 .004 1.945 .064 .632 .017 .001 2.028 .307 .004 .001 7.998	2.989 .005 1.952 .060 .648 .016 .000 2.026 .302 .001 .000 8.000	2.999 .005 1.946 .060 .638 .017 .001 2.015 .308 .005 .001 7.995	2.988 .005 1.955 .061 .626 .015 .000 2.032 .313 .003 .000 8.000	3.002 .005 1.948 .061 .625 .016 .000 2.025 .306 .000 .001 7.989	2.987 .005 1.953 .057 .643 .015 2.028 .314 .002 .000 8.005	2.987 .004 1.949 .061 .652 .016 .002 2.017 .314 .002 .001 8.006	2.972 .004 1.962 .059 .649 .015 .000 2.045 .308 .001 .000 8.014	2.979 .004 1.953 .060 .646 .017 .000 2.042 .309 .000 .000 8.011	2.987 .004 1.957 .062 .643 .019 .001 2.016 .309 .003 .001 8.002
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	76.30 2.97 868	75.94 2.95 878	76.29 2.98 888	76.27 3.05 898	75.84 3.00 908	75.71 3.08 918	76.41 2.97 948	76.30 3.18 958	75.69 3.04 968	75.85 3.03 988	76.25 3.17 998	75.78 2.98 1008	75.95 2.98 1018	76.44 3.04 1028	76.42 3.05 1038	75.93 2.83 1048	75.59 3.03 1058	75.91 2.91 1068	75.96 2.96 1078	75.80 3.06 1088

Probe: Gu Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 TiO2 Al2O3 Cr.Q3 FeO MnO NiO MgO CaO Na2O K2O ∑	41.26 .07 23.06 1.05 10.85 .27 .03 19.04 4.01 .03 .00 99.66	41.58 .08 22.89 1.04 10.80 .26 .00 18.90 3.99 .03 .03 99.60	41.58 .10 23.12 1.03 11.03 .29 .02 19.12 4.03 .01 100.32	41.69 .10 23.09 1.05 11.05 .29 .04 19.01 4.02 .01 .00 100.35	41.56 .08 23.06 .97 10.58 .28 .03 18.94 4.01 .01 .00 99.50	41.47 .07 23.13 .93 11.02 .31 .02 18.99 3.98 .00 .00 99.91	41.83 .05 23.17 .26 .04 18.88 3.98 .03 .00 99.93	41.63 .09 23.12 .95 10.55 .28 .03 18.93 4.02 .01 .00 99.60	41.69 .06 23.13 .90 10.63 .27 .06 18.91 3.95 .01 .01 99.60	41.63 .09 23.19 .26 .00 18.98 3.98 .00 .01 99.86	41.68 .06 23.21 .83 10.76 .27 .01 18.92 3.93 .06 .00 99.74	41.59 .09 23.18 .91 11.06 .28 .00 19.03 3.93 .02 .03 100.11	41.15 .07 23.17 .88 10.98 .27 .00 19.03 3.94 .03 .01 99.53	41.66 .06 23.22 .86 10.91 .27 .02 18.88 3.93 .01 .01 99.82	41.64 .04 23.18 .85 10.79 .33 .00 18.89 3.92 .01 1.03 99.67	41.46 .06 23.26 .80 10.94 .27 .02 18.86 3.95 .01 .00 99.63	41.70 .08 23.16 .88 10.83 .22 .02 18.83 3.99 .02 .01 99.74	41.65 .13 23.12 .81 10.88 .28 .05 18.85 3.92 .00 .00 99.69	41.56 .07 23.04 .85 10.94 .30 .04 18.92 3.89 .02 .01 99.64	41.49 .09 23.16 .85 11.23 .20 .05 18.84 3.92 .01 .00 99.83
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ca Xa K tonen Sauerstoffe	2.971 .004 1.957 .060 .653 .016 .002 2.044 .309 .004 .000 8.020 12.000	2.992 .004 1.942 .059 .650 .016 .000 2.028 .007 .004 .003 8.006	2.975 .006 1.950 .058 .660 .011 2.039 .002 .000 8.017 12.000	2.982 .006 1.947 .059 .661 .002 2.027 .002 .000 8.011 12.000	2.990 .004 1.955 .055 .636 .017 .002 2.032 .000 8.001 12.000	2.978 .004 1.958 .053 .662 .011 2.033 .306 .000 .000 8.013 12.000	2.997 .003 1.956 .056 .643 .016 .002 2.016 .004 .000 7.997 12.000	2.991 .005 1.958 .054 .634 .01 2.027 .310 .001 .001 .000 7.998 12.000	2.995 .003 1.958 .051 .639 .016 .003 2.026 .304 .001 .000 7.997 12.000	2.986 .005 1.960 .053 .647 .010 2.029 .306 .000 .001 8.003 12.000	2.992 .003 1.963 .047 .646 .000 2.025 .302 .009 .000 8.004 12.000	2.980 .005 1.957 .051 .663 .000 2.033 .002 .002 .003 8.013 12.000	2.966 .004 1.969 .050 .662 .007 2.045 .004 .000 8.023 12.000	2.989 .003 1.964 .049 .655 .016 .001 2.019 .001 .001 8.001 12.000	2.992 .002 1.963 .048 .648 .020 .000 2.024 .002 .003 8.003 12.000	2.982 .003 1.972 .045 .658 .017 2.022 .304 .001 .000 8.006 12.000	2.994 .004 1.960 .050 .650 .011 2.016 .003 .001 7.999 12.000	2.993 .007 1.958 .046 .654 .019 .003 2.019 .001 .000 7.998 12.000	2.990 .004 1.953 .048 .658 .002 2.029 .300 .003 .000 8.007 12.000	2.982 .005 1.962 .048 .675 .012 .003 2.019 .301 .001 .000 8.009 12.000
Mg # Cr # Profilstrecke [µm]	75.78 2.95 1098	75.73 2.96 1108	75.55 2.90 1118	75.42 2.95 1128	76.15 2.73 1138	75.43 2.63 1148	75.83 2.77 1158	76.18 2.68 1168	76.03 2.54 1179	75.82 2.63 1189	75.81 2.35 1199	75.41 2.56 1209	75.55 2.48 1219	75.52 2.42 1229	75.74 2.39 1239	75.45 2.25 1249	75.61 2.49 1259	75.54 2.30 1269	75.50 2.42 1279	74.94 2.41 1289

Probe: Gu Profilname	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01 l	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01
Profilpunkt	234	235	236	237	238	240	241	242	243	244	245	246	247	248	249	251	252	253	254	255
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt						
Analyse [Gew%] SiO2 TiO2 TiO2 Gr.Q3 FeO MnO NIO MgO CaO CaO K2Ó K2Ó	41.43 .08 23.28 .091 .29 .00 18.82 3.94 .00 .00 99.61	41.35 .10 23.12 .86 11.25 .27 .02 18.74 3.96 .03 .02 99.70	41.49 .09 23.21 .84 11.08 .32 .01 18.79 3.92 .00 .01 99.76	41.34 .07 23.18 .88 11.42 .28 .00 18.79 3.89 .02 .00 99.87	41.44 .11 23.10 .87 11.19 .29 .00 18.63 3.99 .01 .01 99.63	41.43 .08 23.12 .83 11.32 .29 .00 18.73 3.89 .01 .00 99.69	41.38 .07 23.13 .83 11.45 .30 .03 18.55 .02 .02 99.72	41.51 .09 23.14 .75 11.34 .29 .00 18.62 3.93 .01 .00 99.68	41.47 .07 23.14 .78 11.30 .29 .00 18.58 3.95 .01 .01 99.60	41.47 .09 23.20 .76 11.34 .32 .00 18.64 4.03 .04 .01 99.89	41.43 .09 23.15 .78 11.48 .32 .00 18.56 3.88 .00 .02 99.71	41.40 .08 23.18 .77 11.31 .26 .02 18.67 3.92 .03 .01 99.64	41.55 .07 23.21 .74 11.51 .31 .00 18.59 3.90 .03 .01 99.91	41.11 .07 23.23 .70 11.49 .25 .01 18.46 3.90 .00 .00 99.22	41.37 .10 23.23 .65 11.50 .24 .00 18.44 3.88 .00 .02 99.42	41.56 .09 23.23 .71 11.66 .32 .02 18.49 3.89 .02 .01 100.00	41.52 .07 23.32 .72 11.91 .30 .00 18.34 3.94 .02 .00 100.14	41.73 .07 23.25 .72 11.63 .25 .00 18.39 3.93 .03 .00 99.99	41.32 .08 23.27 .68 11.67 .32 .00 18.30 .02 .00 99.56	41.52 .06 23.19 .68 11.90 .35 .00 18.27 3.99 .00 .00 99.95
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Ka Kationen	2.981 .004 1.974 .049 .657 .018 .000 2.018 .304 .000 .000 8.004	2.979 .005 1.962 .049 .678 .016 .001 2.012 .306 .004 .002 8.014	2.983 .005 1.967 .048 .666 .019 .000 2.014 .302 .000 .001 8.006	2.974 .004 1.966 .050 .687 .017 .000 2.015 .300 .003 .000 8.016	2.985 .006 1.961 .050 .674 .018 .000 2.001 .308 .001 .001 8.005	2.984 .004 1.962 .047 .682 .018 .000 2.011 .300 .001 .000 8.008	2.982 .004 1.965 .047 .690 .018 .002 1.993 .305 .003 .001 8.011	2.989 .005 1.964 .043 .683 .000 1.999 .303 .002 .000 8.004	2.989 .004 1.965 .044 .681 .017 .000 1.996 .305 .001 .001 8.004	2.982 .005 1.966 .043 .682 .019 .000 1.998 .310 .005 .001 8.012	2.985 .005 1.966 .044 .692 .019 .000 1.993 .300 .000 .002 8.006	2.982 .004 1.968 .044 .681 .001 2.005 .302 .004 .001 8.010	2.987 .004 1.966 .042 .692 .019 .000 1.992 .300 .004 .000 8.007	2.976 .004 1.982 .040 .695 .016 .001 1.993 .303 .000 .000 8.009	2.987 .005 1.977 .037 .694 .000 1.985 .300 .000 .001 8.001	2.987 .005 1.968 .040 .701 .020 .001 1.982 .300 .003 .001 8.006	2.983 .004 1.975 .041 .716 .018 .000 1.964 .303 .002 .000 8.007	2.997 .004 1.968 .041 .699 .015 .000 1.968 .302 .004 .000 7.997	2.983 .004 1.980 .039 .704 .000 1.969 .302 .003 .000 8.005	2.989 .003 1.968 .039 .716 .021 .000 1.961 .308 .000 8.005
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	75.45 2.40 1299	74.80 2.43 1309	75.14 2.38 1319	74.57 2.48 1329	74.79 2.47 1339	74.68 2.34 1359	74.28 2.34 1369	74.55 2.14 1379	74.56 2.21 1389	74.55 2.14 1399	74.23 2.20 1409	74.64 2.17 1419	74.21 2.09 1429	74.13 1.97 1439	74.09 1.85 1449	73.87 2.00 1469	73.29 2.03 1479	73.80 2.02 1489	73.65 1.93 1499	73.24 1.92 1510

Probe: Gu Profilname	Profil-01	Profil-01 I	Profil-01	Profil-01	Profil-01 I	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01	Profil-01							
Profilpunkt	256	257	258	259	260	261	262	263	265	266	267	268	269	270	271	272	273	274	275
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt												
Analyse Gew%] [Gew%] SiO ₂ TiO ₂ Ai ₂ O ₃ Ai ₂ O ₄ Cr ₂ O ₃ FeO MiO MiO MiO MiO CaO MgO CaO K ₂ O Z	41.26 .04 23.33 .700 11.80 .29 .03 18.33 3.96 .02 .00 99.76	41.26 .08 23.22 .74 11.78 .32 .00 18.35 3.96 .03 .00 99.74	41.42 .06 23.30 .67 11.82 .30 .00 18.18 3.97 .02 .00 99.75	41.50 .09 23.10 .69 12.04 .31 .00 18.26 .3.85 .01 .01 99.85	41.23 .04 23.18 .68 11.83 .30 .01 18.13 3.97 .02 .00 99.38	41.25 .07 23.14 .70 12.16 .32 .01 18.08 3.91 .01 .00 99.65	41.34 .05 23.25 .61 12.29 .33 .00 18.09 3.94 .01 .01 99.92	41.44 .06 23.12 .67 11.97 .30 .00 18.11 3.90 .02 .00 99.59	41.20 .05 23.23 .72 12.44 .33 .00 17.97 4.10 .01 .02 100.07	41.35 .08 23.23 .72 12.32 .30 .01 17.95 4.03 .02 .00 100.01	41.27 .06 23.12 .67 12.06 .33 .00 17.69 3.98 .03 .00 99.21	41.43 .07 23.07 .68 12.49 .33 .00 17.79 3.96 .01 .00 99.83	41.34 .08 23.07 .68 12.23 .35 .00 17.61 4.07 .02 .00 99.45	41.29 .07 23.18 .70 12.47 .39 .03 17.50 4.07 .02 .01 99.73	41.24 .05 23.14 .67 12.57 .36 .02 17.41 4.05 .02 .00 99.52	41.31 .04 23.12 .66 12.89 .40 .01 17.54 4.00 .02 .00 99.97	41.24 .05 23.06 .63 12.62 .29 .01 17.15 4.07 .00 .02 99.12	41.13 .02 22.99 .65 12.93 .37 .04 16.90 .00 .00 99.31	41.07 .02 22.92 .64 13.33 .52 .04 16.36 4.40 .03 .01 99.33
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Na K Kationen	2.976 .002 1.983 .040 .712 .018 .002 1.971 .306 .003 .000 8.012	2.977 .004 1.975 .042 .711 .020 .000 1.974 .306 .004 .000 8.013	2.986 .003 1.980 .038 .713 .018 .000 1.954 .307 .003 .000 8.003	2.992 .005 1.963 .039 .726 .019 .000 1.962 .298 .001 .000 8.004	2.985 .002 1.978 .039 .716 .019 .001 1.957 .308 .002 .000 8.006	2.983 .004 1.972 .040 .735 .019 .000 1.949 .303 .001 .000 8.008	2.983 .003 1.976 .035 .741 .020 .000 1.945 .305 .001 .001 8.010	2.994 .003 1.968 .038 .723 .019 .000 1.950 .302 .003 .000 8.001	2.973 .003 1.975 .041 .751 .020 .000 1.933 .317 .002 .002 8.017	2.982 .004 1.974 .041 .743 .018 .001 1.930 .312 .003 .000 8.008	2.996 .003 1.978 .039 .732 .020 .000 1.914 .310 .004 .000 7.995	2.994 .004 1.965 .039 .755 .020 .000 1.916 .307 .002 .000 8.001	2.997 .004 1.971 .039 .742 .021 .000 1.903 .316 .002 .000 7.995	2.989 .004 1.978 .040 .755 .024 .809 .315 .003 .001 8.000	2.992 .033 1.979 .038 .763 .022 .001 1.883 .315 .002 .000 7.998	2.988 .002 1.971 .038 .780 .024 .000 1.891 .310 .003 .000 8.007	3.003 .033 1.979 .036 .769 .018 .000 1.862 .317 .000 .002 7.988	2.998 .001 1.975 .037 .788 .023 .002 1.836 .335 .000 .000 7.995	3.001 .001 1.974 .037 .815 .032 1.782 .344 .004 .001 7.994
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	73.47 1.98 1520	73.52 2.08 1530	73.27 1.89 1540	72.99 1.96 1550	73.21 1.93 1560	72.61 1.98 1570	72.41 1.73 1580	72.94 1.90 1590	72.03 2.04 1610	72.20 2.03 1620	72.33 1.91 1630	71.75 1.92 1640	71.96 1.93 1650	71.45 1.98 1660	71.17 1.90 1670	70.81 1.87 1680	70.77 1.79 1690	69.97 1.86 1700	68.62 1.84 1710

Probe:	Gu
Profil:	02
Mineral:	Amp
Kapitel:	2.6

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
10	28.501	16.216	46.298	25.183	2.973	0.439	1.470	1.368
90	29.319	15.621	46.821	23.319	2.553	0.537	1.440	2.921
192	30.167	14.791	47.274	22.914	1.730	0.390	1.885	2.449
250	32.124	15.162	48.321	25.019	1.189	0.390	1.399	3.154
330	36.056	14.893	49.271	23.701	1.299	0.603	1.046	2.936
410	42.207	15.837	49.271	21.399	1.227	0.946	1.747	2.805
491	34.819	13.873	51.414	28.190	0.672	0.409	0.842	2.149
613	41.483	16.644	51.649	26.571	1.012	0.279	0.738	1.247
710	39.128	20.458	50.918	24.199	2.101	0.449	1.285	2.715

Probe: Gu																				
Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02 I	Profil-02 I	Profil-02 H	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse [Gew%] SiO2 SiO2	49.28 .55 10.15 .61 .3.82 .00 .04 .23 19.11 10.76 2.82 .32 .216 99.83	49.37 .54 10.11 .66 3.83 .00 .04 .26 19.16 10.79 2.91 .34 2.16 100.15	49.38 .51 9.98 .62 3.79 .00 .04 .23 19.20 10.61 3.03 .35 2.16 99.91	49.43 .54 10.03 .56 3.74 .00 03 .25 19.22 10.57 2.85 .33 2.16 99.70	49.61 .52 9.92 .60 3.65 .23 19.27 10.58 2.88 .31 2.16 99.78	49.55 .53 9.91 .62 3.74 .00 .04 .23 19.21 10.55 2.93 .34 2.16 99.78	49.61 .47 9.85 .62 3.68 .00 .05 .23 19.17 10.59 2.93 .35 2.16 99.70	49.59 .49 9.77 .56 3.74 .00 .05 .16 19.18 10.60 3.01 .36 2.16 99.66	49.67 .46 9.84 .62 3.95 .00 .04 .21 19.24 10.67 2.88 .35 2.16 100.09	49.67 .48 9.91 .62 3.87 .00 .01 19.15 10.57 2.88 .31 2.16 99.82	49.69 .52 9.97 3.62 .00 .01 2.8 19.08 10.54 2.95 .35 2.16 99.74	49.63 50 10.03 61 3.72 .00 03 23 19.25 10.47 2.92 .32 2.16 99.88	49.49 .50 10.02 .67 3.66 .00 .01 19.25 10.59 2.86 .31 2.16 99.80	49.54 .51 9.97 .64 3.79 .00 .07 .26 19.25 10.62 2.89 .34 2.16 100.03	49.25 .47 9.98 .60 3.83 .00 0.3 28 19.20 10.61 2.82 .34 2.15 99.55	49.74 .48 9.98 .61 3.78 .00 .27 19.35 10.64 2.90 .35 2.17 100.25	49.58 .49 9.97 .67 3.65 .00 .04 .25 19.25 10.59 2.96 .31 2.16 99.91	49.50 .50 9.96 .59 3.78 .00 .05 .31 19.19 10.60 2.85 .36 2.16 99.84	49.70 .52 9.94 .62 3.77 .00 .06 .27 19.28 10.56 2.96 .32 2.17 100.15	49.62 .53 9.84 .65 3.74 .00 .03 .28 19.25 10.60 2.89 .33 2.16 99.94
Kationen- besetzung Si Ti Al Cr Fe ³⁺ Fe ²⁺ Mn Ni Mg Ca Mg Ca Kationen Σ Kationen	6.847 0.057 1.662 0.067 0.020 0.025 3.959 1.601 0.760 0.056 2.000 15.439	6.844 0.056 1.652 0.072 0.399 0.000 0.004 0.028 3.959 1.603 0.781 0.060 2.000 15.458	6.860 0.053 1.635 0.396 0.000 0.005 0.026 3.977 1.579 0.816 0.061 2.000 15.476	6.871 0.056 1.643 0.062 0.391 0.004 0.028 3.983 1.575 0.768 0.059 2.000 15.438	6.888 0.054 1.623 0.066 0.382 0.000 0.006 3.989 1.574 0.776 0.054 2.000 15.438	6.884 0.055 1.623 0.068 0.391 0.000 0.004 0.004 0.004 0.004 0.789 0.789 0.060 2.000 15.445	6.897 0.049 1.614 0.068 0.385 0.005 0.026 3.972 1.577 0.790 0.061 2.000 15.446	6.898 0.051 1.602 0.061 0.391 0.006 0.018 3.978 1.580 0.811 0.064 2.000 15.461	6.884 0.048 1.607 0.068 0.000 0.005 0.024 3.974 1.584 0.774 0.061 2.000 15.442	6.894 0.051 1.622 0.068 0.404 0.001 0.021 3.962 1.572 0.775 2.000 15.424	6.901 0.055 1.632 0.063 0.378 0.000 0.001 3.951 1.568 0.794 0.063 2.000 15.436	6.883 0.053 1.640 0.067 0.389 0.000 0.004 0.025 3.980 1.556 0.785 0.056 2.000 15.437	6.873 0.052 1.640 0.073 0.383 0.000 0.001 0.033 3.985 1.576 0.771 0.054 2.000 15.440	6.869 0.054 1.629 0.070 0.395 0.000 0.008 0.029 3.979 1.577 0.777 0.059 2.000 15.448	6.862 0.049 1.639 0.060 0.003 0.003 0.003 1.583 0.761 0.060 2.000 15.445	6.878 0.050 1.626 0.393 0.000 0.000 0.030 3.990 1.577 0.777 0.061 2.000 15.448	6.879 0.051 1.630 0.073 0.381 0.005 0.028 3.982 1.575 0.795 0.055 2.000 15.453	6.876 0.053 1.630 0.064 0.005 0.035 3.975 1.578 0.767 0.064 2.000 15.442	6.881 0.054 1.621 0.393 0.000 0.007 0.030 3.979 1.566 0.794 0.057 2.000 15.449	6.885 0.055 1.610 0.072 0.391 0.000 0.004 0.032 3.983 1.575 0.779 0.059 2.000 15.443
Mg# Cr# Profilstrecke [µm]	90.84 3.88 5	90.83 4.17 15	90.93 3.98 25	91.06 3.62 35	91.26 3.93 45	91.05 4.00 55	91.16 4.05 65	91.04 3.67 75	90.60 4.06 85	90.75 4.01 95	91.27 3.71 105	91.10 3.90 115	91.23 4.29 125	90.96 4.12 135	90.85 3.88 145	91.03 3.91 155	91.27 4.29 165	90.95 3.80 176	91.01 3.99 186	91.07 4.25 196

Probe: Gu																				
Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	73
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse Gew%] [Gew%] SiO2 TiO2 Al2O3 Gr2O3 Fe2O3 FeO MnO NiO MgO CaO Na2O K2O H2O H2O Σ	49.66 .52 9.87 .60 3.88 19.20 10.50 2.76 .31 2.16 99.79	49.67 .50 9.81 .63 3.92 .00 .02 .25 19.25 10.63 2.82 .32 2.16 99.97	49.60 .47 9.80 .63 3.70 .00 .01 123 19.27 10.65 2.78 .32 2.16 99.61	49.54 .48 9.84 .59 3.73 .00 .02 .19 19.22 10.75 2.88 .30 2.16 99.70	49.64 .48 9.76 .62 3.79 .00 .06 .27 19.16 10.69 2.79 .30 2.16 99.71	49.62 .50 9.79 .63 3.73 .00 .02 .23 19.20 10.63 2.91 .30 2.16 99.73	49.63 .56 9.81 3.78 .00 .05 .23 19.16 10.69 2.91 .25 2.16 99.82	49.50 .54 9.79 .63 3.78 .00 .07 .20 19.40 10.89 2.78 .27 2.16 100.00	50.33 .50 9.10 .59 3.54 .00 .05 .26 19.50 10.74 2.65 .24 2.16 99.65	50.40 .48 9.00 .58 3.77 .00 .08 .24 19.70 10.70 2.69 .26 2.17 100.07	49.92 .50 9.40 .68 3.79 .00 .03 .25 19.55 10.76 2.71 .28 2.16 100.02	50.06 .50 9.38 .60 3.82 .00 .06 .23 19.46 10.77 2.83 .24 2.17 100.12	49.54 .53 9.60 3.72 .00 .07 .28 19.26 10.85 2.77 .26 2.16 99.71	49.54 .49 9.82 .64 3.70 .00 .02 .21 19.35 10.83 2.93 .30 2.16 99.98	49.21 .60 10.04 .63 3.78 .00 .03 .26 19.29 10.86 2.86 2.86 2.88 2.16 99.99	48.97 .56 10.28 .66 3.76 .00 .02 .22 18.94 10.95 2.81 .27 2.15 99.58	48.09 .60 11.04 .72 3.75 .00 .05 .25 18.76 10.97 2.83 .25 2.14 99.45	48.38 .63 10.84 .64 3.84 .00 .27 18.64 10.93 2.85 .27 2.15 99.45	48.67 .60 10.52 .66 3.81 .00 .05 .19 18.90 10.85 2.71 .29 2.15 99.40	49.01 .64 10.00 .67 3.95 .00 .02 .23 19.30 10.97 2.84 .27 2.16 100.06
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Mg Ca Na K OH Σ Kationen	6.895 0.054 1.615 0.066 0.406 0.005 0.031 1.562 0.744 0.056 2.000 15.407	6.888 0.052 1.603 0.069 0.000 0.022 0.028 3.980 1.580 0.759 0.057 2.000 15.427	6.898 0.050 1.606 0.069 0.387 0.000 0.022 0.026 3.996 1.587 0.749 0.056 2.000 15.424	6.887 0.050 1.613 0.065 0.390 0.002 0.021 3.983 1.601 0.776 0.053 2.000 15.443	6.901 0.050 1.599 0.068 0.397 0.000 0.037 0.030 3.972 1.592 0.751 0.052 2.000 15.419	6.896 0.052 1.604 0.390 0.000 0.002 0.026 3.978 1.583 0.784 0.054 2.000 15.439	6.891 0.058 1.606 0.057 0.395 0.000 0.025 3.966 1.590 0.782 0.044 2.000 15.430	6.866 0.056 1.601 0.395 0.000 0.028 4.012 1.619 0.747 0.047 2.000 15.442	6.985 0.052 1.488 0.370 0.000 0.006 0.029 4.035 1.596 0.714 0.042 2.000 15.380	6.973 0.050 1.467 0.063 0.392 0.000 0.026 4.063 1.586 0.722 0.047 2.000 15.400	6.917 0.052 1.535 0.074 0.395 0.000 0.004 0.028 4.038 1.597 0.729 0.050 2.000 15.418	6.929 0.052 1.531 0.066 0.397 0.000 4.016 1.597 0.760 0.042 2.000 15.423	6.889 0.056 1.588 0.066 0.389 0.000 0.038 1.617 0.746 0.046 2.000 15.429	6.873 0.051 1.606 0.070 0.386 0.002 0.024 4.003 1.609 0.788 0.053 2.000 15.466	6.833 0.062 1.643 0.069 0.395 0.000 0.004 0.029 3.992 1.616 0.769 0.050 2.000 15.461	6.825 0.058 1.689 0.072 0.020 0.025 3.935 1.636 0.760 0.047 2.000 15.443	6.722 0.063 1.818 0.079 0.394 0.000 0.028 3.909 1.643 0.044 2.000 15.475	6.760 0.066 1.784 0.073 0.004 0.030 0.030 3.882 1.635 0.771 0.048 2.000 15.454	6.795 0.063 1.731 0.400 0.000 0.006 0.022 3.934 1.623 0.732 0.051 2.000 15.432	6.807 0.066 1.638 0.074 0.413 0.002 0.026 3.997 1.633 0.766 0.044 2.000 15.471
Mg# Cr#	90.74 3.94	90.69 4.11	91.17 4.11	91.08 3.88	90.92 4.09	91.07 4.16	90.94 4.01	91.04 4.13	91.61 4.14	91.20 4.14	91.09 4.60	90.99 4.11	91.12 3.96	91.20 4.18	91.01 4.04	90.89 4.10	90.84 4.16	90.51 3.81	90.77 4.05	90.64 4.31
Profilstrecke [µm]	206	216	226	236	246	256	266	276	286	296	306	316	326	336	346	356	366	376	386	416

Probe: Gu																				
Profilname	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02	Profil-02
Profilpunkt	76	77	79	80	81	82	83	84	85	86	87	88	90	91	92	93	94	95	96	98
Mineral	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp	Amp
Analyse Gew%] SiO2 SiO2 TiO2 Al203 Cr203 Fe2O MnO NiO MgO CaO Na2O K2O K2O H2O ∑ L	48.70 .72 10.38 .69 3.91 .00 .06 .22 19.00 10.76 2.84 .28 2.15 99.69	48.87 .77 10.29 .64 3.86 .00 .02 .21 18.98 10.77 2.86 .31 2.15 99.73	48.67 .81 10.38 .70 3.95 .21 18.87 10.92 2.90 .28 2.15 99.90	48.61 	48.52 .83 10.19 .65 4.04 .00 .02 .17 19.07 10.72 2.82 2.82 .26 2.15 99.43	48.70 .93 10.14 .69 3.98 .00 .00 .14 18.91 10.80 2.85 .30 2.15 99.59	48.99 .87 10.09 .70 4.06 .01 .22 19.04 10.73 3.00 .30 2.16 100.16	49.03 .96 10.03 .65 3.90 .00 .07 .23 18.97 10.75 2.89 .30 2.16 99.93	48.99 .82 10.00 .65 4.00 .06 .24 18.99 10.69 2.91 .30 2.15 99.80	49.19 .80 9.82 .70 4.11 .00 .04 .17 19.13 10.79 2.97 .27 2.16 100.16	48.86 .88 9.90 .68 3.99 .00 .06 .23 19.03 10.69 2.91 .31 2.15 99.69	49.06 .80 9.97 .65 4.16 .00 .02 .25 19.08 10.72 2.88 .31 2.16 100.06	48.83 .86 10.10 .69 4.12 .00 .03 .26 18.99 10.68 2.83 .32 2.15 99.86	48.60 .77 10.50 .72 4.27 .00 .01 .24 18.95 10.62 2.92 2.88 2.16 100.04	48.43 .72 10.45 .71 3.91 .00 .04 .19 18.87 10.76 2.87 .29 2.14 99.39	48.91 .73 10.35 .72 4.23 .00 .04 .22 19.09 10.65 2.90 .31 2.16 100.29	48.52 .75 10.39 .72 4.26 .00 .01 .16 18.99 10.73 3.00 .29 2.15 99.97	48.29 .73 10.69 .76 4.18 .00 .05 .26 18.96 10.66 3.04 .27 2.15 100.03	48.82 .75 10.47 .73 4.12 .00 0.7 20 18.87 10.64 2.95 .25 2.16 100.01	48.06 .87 10.90 .69 4.21 .00 .04 .22 18.65 10.97 2.90 .25 2.15 99.90
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{bestzung}\\ Si\\ Ti\\ Al\\ Cr\\ Fe^{3*}\\ Fe^{2^*}\\ Mn\\ Ni\\ Mg\\ Ca\\ Mg\\ Na\\ K\\ OH\\ CH\\ \sum Kationen \end{array}$	6.786 0.075 1.705 0.410 0.000 0.025 3.948 1.606 0.766 0.049 2.000 15.451	6.804 0.081 1.688 0.070 0.405 0.000 0.003 0.024 3.939 1.607 0.772 0.054 2.000 15.447	6.775 0.084 1.702 0.077 0.413 0.003 0.005 0.024 3.915 1.628 0.049 2.000 15.460	6.770 0.085 1.739 0.076 0.400 0.003 0.029 3.900 1.625 0.773 0.049 2.000 15.449	6.780 0.088 1.677 0.071 0.425 0.000 0.002 0.019 3.973 1.605 0.764 0.045 2.000 15.450	6.794 0.097 1.667 0.418 0.000 0.000 0.005 3.933 1.615 0.770 0.053 2.000 15.439	6.800 0.091 1.650 0.077 0.424 0.000 0.001 0.024 3.940 1.595 0.807 0.054 2.000 15.464	6.817 0.100 1.643 0.072 0.408 0.009 0.025 3.931 1.601 0.780 0.054 2.000 15.439	6.822 0.085 1.641 0.072 0.000 0.007 0.027 3.941 1.594 0.784 0.784 0.0784 0.0784	6.827 0.084 1.606 0.077 0.429 0.000 0.005 0.019 3.957 1.605 0.799 0.048 2.000 15.456	6.814 0.092 1.628 0.075 0.419 0.007 0.025 3.956 1.597 0.788 0.056 2.000 15.455	6.816 0.084 1.633 0.071 0.435 0.000 0.002 0.028 3.952 1.595 0.776 0.055 2.000 15.447	6.798 0.090 1.658 0.431 0.000 0.003 0.029 3.942 1.593 0.764 0.056 2.000 15.440	6.757 0.081 1.720 0.079 0.447 0.000 0.001 0.021 3.928 1.582 0.788 0.050 2.000 15.459	6.772 0.076 1.722 0.079 0.411 0.000 0.004 0.021 3.933 1.612 0.779 0.052 2.000 15.461	6.780 0.076 1.690 0.079 0.442 0.000 0.005 0.024 3.944 1.581 0.779 0.054 2.000 15.455	6.754 0.079 1.705 0.079 0.447 0.000 0.001 0.018 3.940 1.600 0.809 0.052 2.000 15.483	6.721 0.076 1.754 0.083 0.000 0.006 0.029 3.934 1.590 0.820 0.048 2.000 15.499	6.783 0.078 1.714 0.800 0.430 0.008 0.022 3.908 1.584 0.794 0.044 2.000 15.446	6.700 0.091 1.790 0.076 0.441 0.005 0.024 3.876 1.638 0.783 0.044 2.000 15.469
Mg# Cr# Profilstrecke [µm]	90.59 4.24 446	90.69 4.01 456	90.38 4.32 476	90.70 4.19 486	90.34 4.07 496	90.39 4.38 507	90.28 4.45 517	90.59 4.18 527	90.38 4.19 537	90.21 4.58 547	90.42 4.39 557	90.09 4.16 567	90.13 4.36 587	89.79 4.37 597	90.53 4.38 607	89.93 4.45 617	89.82 4.41 627	89.99 4.53 637	90.08 4.47 647	89.78 4.09 667

Probe: Gu		
Profilname	Profil-02	Profil-02
Profilpunkt	99	102
Mineral	Amp	Amp
Analyse Gew%] [Gew%] SiO2 SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 Fe2O MiO NiO MiO CaO Na2O Na2O N2O H2O L2O J	48.43 .82 10.66 .76 4.10 .00 .05 .24 18.78 11.07 2.77 2.16 100.10	47.72 .91 11.12 .74 4.25 .00 .01 .24 18.62 11.08 2.90 .27 2.15 100.01
Kationen- besetzung Si Ti Al Cr Fe ^{**} Fe ^{**} Mn Ms Ca Ca Na K K OH OH X Kationen	6.734 0.086 1.747 0.084 0.429 0.000 0.006 0.027 3.893 1.649 0.748 0.047 2.000 15.448	6.653 0.096 1.827 0.822 0.446 0.000 1.0027 3.870 1.655 0.783 0.047 2.000 15.489
Mg# Cr#	90.07 4.57	89.66 4.30
Profilstrecke [µm]	677	707

Probe:	Gu
Profil:	04
Mineral:	Орх
Kapitel:	2.6

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
25	0.447	0.627	55.063	45.500	0.180	0.048	0.982	3.392
95	0.564	0.531	55.543	45.877	0.224	0.074	1.244	4.341
195	0.570	0.458	55.665	43.861	0.207	0.097	0.578	2.311
255	0.635	0.493	54.555	43.108	0.138	0.080	0.926	2.755
315	0.530	0.480	54.256	39.888	0.085	0.056	0.977	2.586
375	0.577	0.593	54.573	42.368	0.207	0.047	1.257	3.943
435	0.671	0.604	54.176	43.039	0.354	0.061	1.038	3.386
735	1.210	0.631	54.206	42.959	0.434	0.086	1.515	4.244
1035	0.994	0.504	55.335	42.308	0.350	0.109	0.319	2.280
1235	0.728	0.595	54.563	43.675	0.205	0.029	1.283	2.859
1345	0.532	0.420	55.340	42.052	0.154	0.066	1.208	3.782
1434	0.543	0.522	52.912	44.879	0.217	0.115	1.052	3.207
1581	0.460	0.420	56.127	44.499	0.153	0.039	0.907	4.474
1675	0.561	0.473	55.511	46.713	0.130	0.133	0.836	1.339

Probe: Gu	Deefl 04	D61 04	Deefi 04	D£1.04.1	Deefload	D61 04 1	Deefil 0.4.1		Deefload	Deefl 04	Deefl 04	Deef! 04	Deef! 04	Deefl 04	D61 04 1	Deefl 04		Dee 61 0 4 1	Deefil 0.4	Deef! 04
Profilpunkt	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO ₂ TiO ₃ Gr ₂ O ₃ Gr ₂ O ₃ FeO MnO NiO MgO CaO CaO K ₂ Ô CaO X ₂ Ô X ₂ Ô	58.13 .02 .57 .07 6.85 .10 .13 34.15 .25 .00 .00 100.25	58.24 .01 .59 .06 6.94 .07 .06 33.98 .23 .00 .01 100.18	58.16 .06 .71 .08 6.92 .08 .13 33.94 .20 .00 .01 100.28	57.97 .02 .78 .09 .09 .14 33.77 .19 .02 .00 100.04	57.65 .02 .81 .08 7.04 .10 .09 33.49 .22 .01 .00 99.50	58.08 .02 .71 .09 7.18 .08 .13 33.76 .20 .04 .00 100.28	58.12 .03 .65 .11 7.00 .07 .16 33.91 .01 .01 100.27	58.13 .02 .65 .04 6.81 .03 .13 33.84 .01 .02 99.84	58.14 .00 .66 .06 .09 .16 33.91 .15 .02 .00 100.06	58.27 .00 .52 .06 6.98 .16 33.88 .16 .02 .00 100.11	58.08 .01 .61 .07 6.95 .08 .14 33.91 .14 33.91 .02 .01 100.05	58.41 .02 .67 .06 6.83 .09 .14 33.85 .13 .03 .00 100.22	58.22 .02 .61 .06 6.89 .11 .12 34.22 .00 .02 100.39	58.40 .00 .51 .06 6.99 .10 34.16 .02 .01 100.45	58.26 .02 .54 .05 6.88 .10 .11 33.98 .14 .02 .00 100.09	58.21 .02 .70 .55 6.76 .07 .13 33.82 .15 .03 .02 99.95	58.02 .00 .64 .07 6.84 .09 .11 34.03 .15 .00 .00 99.95	58.16 .02 .64 .03 6.85 .06 .12 34.02 .7 .04 .00 100.10	58.17 .04 .61 .07 6.88 .08 .14 33.93 .18 .02 .02 100.14	58.19 .02 .67 .06 6.93 .04 .13 33.57 .19 .03 .03 99.86
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Na K ∑ Kationen	1.999 .000 .023 .002 .197 .003 .003 1.751 .009 .000 .000 3.988	2.004 .000 .024 .002 .002 .002 1.742 .008 .000 .000 3.984	1.999 .001 .029 .002 .004 1.740 .007 .000 .000 3.984	1.999 .000 .032 .201 .004 1.735 .007 .001 .000 3.985	1.999 .000 .033 .002 .204 .003 1.731 .008 .000 .000 3.983	1.999 .001 .029 .002 .207 .003 1.733 .007 .003 .000 3.986	2.000 .001 .026 .003 .201 .004 1.739 .008 .001 .001 3.986	2.005 .001 .026 .001 .196 .001 .004 1.740 .006 .001 .001 3.982	2.003 .000 .027 .002 .198 .003 .004 1.741 .006 .002 .000 3.984	2.006 .000 .021 .002 .201 .004 1.739 .006 .001 .000 3.983	2.002 .000 .025 .002 .200 .004 1.742 .007 .001 .000 3.985	2.007 .001 .027 .002 .196 .003 .004 1.734 .005 .002 .000 3.979	1.999 .001 .025 .002 .198 .003 .003 1.752 .005 .000 .001 3.988	2.004 .000 .022 .200 .003 .003 1.747 .006 .001 .000 3.986	2.006 .001 .022 .001 .198 .003 .003 .003 .005 .001 .000 3.983	2.005 .000 .028 .001 .195 .002 .003 1.737 .005 .001 3.981	2.000 .000 .026 .002 .197 .003 .003 .003 1.749 .006 .000 .000 3.986	2.002 .000 .026 .001 .197 .002 .003 1.746 .006 .002 .000 3.986	2.003 .001 .025 .002 .198 .002 .004 1.741 .007 .002 .001 3.985	2.008 .001 .027 .002 .200 .001 .004 1.727 .007 .007 .001 3.979
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	89.89 7.60 5	89.72 5.98 15	89.74 6.93 25	89.60 7.05 35	89.45 6.11 45	89.34 7.97 55	89.62 9.83 65	89.85 3.89 75	89.79 5.49 85	89.64 6.87 95	89.68 7.03 105	89.83 5.30 115	89.86 6.22 125	89.73 6.91 136	89.80 5.66 146	89.91 4.87 156	89.87 6.43 166	89.85 3.17 176	89.79 6.92 186	89.63 5.41 196

Probe: Gu	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04	Drofil 04 I	Drofil 04
Profilpunkt	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse Gew%] SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO NiO MgO CaO Na ₂ O K ₂ O ∑	58.48 .01 .62 .06 7.17 .08 .13 34.08 .16 .01 .00 100.80	58.22 .02 .65 .07 7.04 .08 .12 33.83 .18 .00 100.22	58.18 .03 .65 .04 6.89 .09 .14 34.21 .17 .03 .00 100.42	58.29 .02 .68 .07 .16 .34.04 .16 .02 .01 100.47	58.27 .03 .66 .05 .08 .12 34.18 .17 .01 .01 100.22	58.32 .03 .68 .06 6.69 .08 .11 34.01 .16 .01 .00 100.13	58.40 .03 .71 .04 7.03 .06 .11 33.80 .16 .02 .01 100.37	58.32 .02 .68 .06 7.00 .08 .12 34.05 .16 .00 .01 100.51	58.24 .03 .73 .07 7.00 .05 .17 34.01 .14 .02 100.46	58.27 .03 .70 .06 6.67 .10 .15 33.99 .14 .00 100.11	58.54 .03 .74 .05 6.88 .05 .13 34.16 .15 .00 .00 100.71	58.31 .02 .76 .05 6.70 .02 .13 34.03 .14 .00 100.17	58.31 .04 .69 .04 6.81 .09 .08 34.03 .18 .02 .00 100.30	58.20 .00 .76 .05 6.76 .07 .10 33.86 .16 .03 .01 99.98	58.16 .02 .74 .05 6.47 .12 33.78 .16 .00 .01 99.58	58.34 .01 .79 .07 6.60 .04 .13 33.99 .14 .02 .01 100.14	58.36 .02 .82 .06 6.80 .07 .13 33.90 .14 .00 100.32	58.08 .03 .83 .06 6.65 .02 .12 33.93 .15 .01 .99.87	58.16 .00 .86 .09 6.63 .08 .15 33.99 .14 .00 100.12	58.20 .02 .86 .05 6.83 .07 .10 33.89 .04 .04 .01 100.23
Kationen- besetzung Si Ti Al Cr Fe ²⁴ Mn Ni Mg Ca Xaionen Sauerstoffe	2.001 .000 .025 .002 .205 .002 .003 1.739 .006 .001 .000 3.985	2.003 .001 .026 .002 .203 .002 .003 1.735 .007 .001 .000 3.983 6.000	1.998 .001 .026 .001 .198 .003 .004 1.751 .006 .002 .000 3.989 6.000	2.000 .001 .027 .002 .200 .002 .004 1.742 .006 .001 .000 3.985	2.002 .001 .027 .001 .002 .003 1.750 .006 .000 .001 3.984 6.000	2.004 .001 .027 .002 .003 1.742 .006 .001 .000 3.981	2.005 .001 .029 .001 .202 .002 .003 1.730 .006 .001 .000 3.980 6.000	2.001 .001 .002 .201 .002 .003 1.741 .006 .000 .000 3.985 6.000	1.999 .001 .029 .002 .201 .005 1.740 .005 .001 .001 3.985 6.000	2.004 .001 .028 .002 .192 .003 .004 1.743 .005 .001 .000 3.981 6.000	2.002 .001 .001 .001 .003 1.741 .005 .000 .000 3.982 6.000	2.003 .001 .001 .001 .001 .004 1.742 .005 .001 .000 3.981 6.000	2.002 .001 .028 .001 .195 .003 .002 1.742 .007 .001 .000 3.983 6.000	2.004 .000 .031 .195 .002 .003 1.738 .006 .002 .000 3.981 6.000	2.008 .000 .001 .187 .002 .003 1.738 .006 .000 .000 3.976 6.000	2.004 .000 .032 .001 .001 .004 1.741 .005 .001 .001 3.980 6.000	2.003 .000 .033 .002 .195 .002 .004 1.735 .005 .001 .000 3.980 6.000	2.001 .001 .034 .002 .192 .000 .003 1.743 .005 .001 .000 3.981 6.000	2.000 .000 .035 .002 .190 .002 .004 1.742 .005 .002 .000 3.983 6.000	2.000 .000 .035 .001 .196 .002 .003 1.736 .006 .003 .000 3.983 6.000
Ma#	89,45	89.55	89,86	89.70	90.16	90.06	89.55	89.66	89.65	90.09	89,85	90.06	89,91	89.93	90.30	90.18	89,89	90.09	90.14	89.84
wy #	6.44	6.67	3.68	6.42	4.63	5.35	3.38	5.41	5.75	5.30	4.45	4.23	4.09	4.09	4.57	5.87	4,90	4.34	6.64	3.77
Profilstrecke [µm]	206	216	226	236	246	256	266	276	286	296	306	316	326	336	346	356	366	376	387	397

Probe: Gu																				
Profilname	Profil-04	Profil-04	83	Profil-04 I 84	94 Profil-04	Profil-04 I 95	96 Profil-04	97 Profil-04	Profil-04 I 98	9rotil-04 I	100 100	101	102 Profil-04	2011-04 1	104	105	106 Profil-04	107	2rofil-04 F	Profil-04 109
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
$\begin{array}{l} \textbf{Analyse} \\ \textbf{[Gew%]} \\ SiO_{2} \\ TiO_{2} \\ Al_{2}O_{3} \\ Cr_{2}O_{3} \\ FeO \\ MnO \\ NiO \\ MiO \\ MiO \\ CaO \\ Na_{2}O \\ K_{2}O \\ \Sigma \end{array}$	58.17 .03 .81 .05 6.72 .08 .17 33.97 .16 .01 .00 100.17	58.31 .02 .82 .03 6.51 .04 .14 34.24 .16 .03 .00 100.29	58.45 .01 .85 .03 .05 .15 .33.94 .15 .02 .00 100.21	58.21 .00 .93 .06 6.62 .06 .12 33.95 .18 .02 .00 100.14	58.05 .04 .89 .05 .13 33.73 .19 .02 .00 99.64	58.11 .00 .91 .05 .15 33.86 .16 .02 .00 99.79	58.06 .01 .72 .04 6.30 .05 .11 33.92 .15 .02 .00 99.37	58.15 .02 .65 .06 6.53 .09 .13 34.11 .17 .00 .02 99.91	58.24 .02 .05 6.35 .08 .13 34.06 .14 .00 .00 99.68	58.19 .00 .58 03 6.41 .06 .13 33.88 .13 .03 .01 99.46	58.22 .01 .54 .05 6.57 .06 .11 34.06 .14 .02 .00 99.78	58.19 .04 .59 .04 6.64 .12 .10 34.15 .13 .02 .00 100.02	57.79 .03 .88 .07 6.41 .07 .12 33.99 .14 .02 .01 99.52	57.99 .04 .78 .03 6.64 .11 .12 33.93 .17 .03 .01 99.84	57.88 .05 .77 .04 6.45 .06 .11 33.88 .15 .03 .00 99.43	57.94 .02 .78 .08 6.60 .05 .13 33.83 .13 .33.83 .00 .00 99.57	58.21 .01 .78 .05 6.74 .08 .16 .33.88 .16 .00 .00 100.07	58.21 .02 .78 .06 6.58 .09 .10 33.69 .15 .03 .01 99.72	58.24 .04 .68 .02 .07 .15 33.90 .16 .04 .04 .00 99.78	58.29 .03 .60 .08 6.54 .07 .15 33.85 .15 .00 .00 99.76
Kationen- besetzung Si Ti Al Cr ⁴⁺ Mn Ni Mg Ca Ca Kationen	2.000 .001 .033 .001 .005 1.741 .006 .001 .000 3.983	2.000 .001 .033 .001 .187 .004 1.750 .006 .002 .000 3.984	2.005 .000 .035 .001 .189 .002 .004 1.736 .006 .001 .000 3.977	2.000 .000 .038 .002 .002 .003 1.739 .007 .001 .000 3.981	2.003 .001 .036 .001 .187 .001 1.735 .004 1.735 .007 .001 .000 3.978	2.002 .000 .037 .001 .186 .001 1.739 .006 .001 .000 3.979	2.007 .000 .029 .001 .182 .001 .003 1.748 .006 .001 .000 3.979	2.003 .000 .027 .002 .188 .003 1.751 .006 .000 .001 3.983	2.008 .000 .025 .001 .183 .002 .004 1.750 .000 .000 3.979	2.011 .000 .024 .001 .185 .002 .004 1.745 .005 .000 3.978	2.007 .000 .022 .001 .189 .002 .003 1.750 .005 .000 3.982	2.003 .001 .024 .001 .004 .003 1.752 .005 .001 .000 3.984	1.997 .001 .036 .002 .185 .002 .003 1.751 .005 .001 .000 3.984	2.000 .001 .032 .001 .191 .003 1.744 .006 .002 .001 3.984	2.002 .001 .031 .001 .187 .003 1.747 .005 .000 3.982	2.002 .001 .032 .002 .191 .001 1.743 .005 .000 3.980	2.003 .000 .031 .001 .194 .002 .005 1.738 .006 .000 3.981	2.008 .000 .031 .002 .190 .003 1.732 .006 .002 .001 3.977	2.007 .001 .028 .000 .187 .002 .004 1.741 .006 .003 .000 3.979	2.010 .001 .022 .002 .004 1.739 .006 .000 .000 3.977
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	90.01 3.74 407	90.36 2.71 417	90.20 1.93 427	90.14 3.95 437	90.26 3.48 537	90.33 3.84 547	90.57 3.40 557	90.31 5.62 567	90.53 5.16 577	90.40 3.76 587	90.23 5.87 597	90.16 4.45 607	90.43 5.28 617	90.11 2.68 627	90.35 3.44 638	90.13 6.03 648	89.96 3.99 658	90.13 5.25 668	90.30 1.74 678	90.22 7.82 688

Probe: Gu	Deef! 04	Deefi 04	Deefi 04	Deefi 04	Deefl 04	Deefl 04 I		Deefl 04	Deefl 04 l	DEL 0.4 1	Deefl 04	Deefl 04	Deefl 04			Deefloa	Deefl 04	Deefl 04	Deefi 04 I	Deef! 04
Profilpunkt	110	111	113	114	115	116	120	121	122	123	124	125	127	128	129	130	131	132	133	134
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO2 TiO2 TiO2 TiO2 FeO MnO NiO MiO MiO MgO Na2,O K2O K2O X2O	58.21 .04 .71 .06 6.48 .04 .12 33.97 .15 .03 .00 99.80	57.99 .04 .64 .05 6.56 .07 .15 33.74 .17 .01 .99.43	58.27 .02 .66 .03 6.44 .08 .19 33.77 .15 .00 .00 99.61	58.39 .03 .69 .06 6.52 .00 .16 33.83 .15 .02 .00 99.85	58.20 .01 .69 .08 6.54 .04 .16 33.87 .14 .01 .00 99.74	58.15 .02 .73 .03 6.47 .05 .11 33.78 .13 .03 .00 99.50	58.23 .03 .72 .08 6.59 .06 .14 33.82 .17 .00 .02 99.85	58.04 .04 .74 .07 6.71 .06 .15 34.00 .16 .00 .00 99.96	58.13 .05 .77 .06 6.63 .06 .16 33.99 .15 .01 .01 100.02	58.16 .03 .71 .06 6.62 .06 .10 33.86 .03 .01 99.77	58.13 .04 .69 .06 6.65 .07 .14 33.94 .15 .02 .00 99.90	58.31 .04 .72 .05 6.86 .06 .13 34.07 .16 .02 .00 100.42	58.16 .06 .05 6.35 .06 .15 33.94 .15 .02 .00 99.64	58.20 .03 .65 .02 6.68 .06 .14 33.84 .17 .03 .01 99.82	58.12 .02 .69 .05 6.23 .08 .12 33.72 .18 .02 .00 99.22	58.14 .01 .71 .06 6.52 .10 .13 33.89 .15 .02 .00 99.72	58.31 .02 .70 .07 6.81 .06 .15 33.89 .14 .03 .00 100.17	58.10 .02 .70 .07 6.37 .07 .11 33.82 .16 .03 .00 99.43	58.19 .00 .66 .01 6.43 .05 .12 33.85 .14 .01 .02 99.49	58.19 .03 .05 6.47 .11 .12 34.13 .17 .04 .01 99.92
Kationen- besetzung Si Ti Al Cr Fe ^{2*} Mn Ni Mg Ca Ca Kationen Supertoffa	2.005 .001 .029 .002 .187 .001 .003 1.745 .006 .002 .000 3.980	2.007 .001 .026 .001 .190 .002 .004 1.741 .006 .001 3.979	2.011 .027 .001 .186 .005 1.737 .006 .000 .000 3.975	2.010 .001 .028 .002 .188 .004 1.736 .004 1.736 .001 .001 3.975	2.007 .000 .028 .002 .89 .001 1.741 .004 1.741 .005 .001 3.978	2.008 .000 .030 .001 .187 .002 .003 1.739 .005 .002 .000 3.977	2.006 .001 .029 .002 .190 .004 1.737 .006 .000 .001 3.978	1.999 .001 .002 .193 .002 .004 1.746 .006 .000 .000 3.984	2.001 .001 .031 .002 .191 .002 .004 1.744 .006 .001 .000 3.982	2.005 .001 .029 .002 .191 .002 .003 1.740 .005 .002 .001 3.980	2.003 .001 .028 .002 .004 1.744 .006 .002 .000 3.982	2.000 .001 .029 .001 .197 .002 .003 1.743 .006 .001 .000 3.984	2.006 .001 .028 .001 .183 .002 .004 1.745 .006 .002 .000 3.979	2.006 .001 .027 .001 .193 .002 .004 1.739 .006 .002 .000 3.980	2.011 .000 .028 .001 .180 .002 .003 1.739 .006 .001 .000 3.974	2.005 .000 .029 .002 .188 .003 .004 1.743 .005 .001 .000 3.980	2.005 .001 .028 .002 .004 1.737 .005 .002 .000 3.981	2.008 .000 .029 .002 .184 .003 1.742 .006 .002 .000 3.978	2.010 .000 .027 .000 .186 .003 1.743 .005 .001 3.977	2.003 .001 .025 .001 .186 .003 .003 1.752 .006 .002 .000 3.984
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	90.33	90.17	90.33	90.25	90.22	90.30	90.15	90.04	90.14	90.11	90.10	89.85	90.50	90.03	90.61	90.25	89.87	90.44	90.38	90.39
Cr #	5.11	5.02	2.76	5.35	6.80	3.03	6.60	5.62	4.99	5.20	5.34	4.28	5.02	2.21	5.00	5.39	5.97	6.03	1.31	4.80
Profilstrecke [µm]	698	708	728	738	748	758	798	808	818	828	838	848	868	878	889	899	909	919	929	939

Probe: Gu																				
Profilname	Profil-04 I	Profil-04	Profil-04	Profil-04	Profil-04 I	Profil-04 I	Profil-04 I	Profil-04	Profil-04 I	Profil-04 I	Profil-04	Profil-04	Profil-04	Profil-04 I	Profil-04	Profil-04	Profil-04 I	Profil-04 I	Profil-04 I	Profil-04
Profilpunkt	135	136	137	138	139	140	141	142	143	144	145	147	148	150	151	152	153	154	155	156
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] [SiO, TiO, ALO, Gr,O, FeO SiO, MiO MiO MiO NiO NiO Na,O CaO K ₂ Ô ∑	58.24 .01 .67 .05 6.41 .06 .14 33.91 .16 .00 .00 99.65	58.03 .03 .62 .05 6.35 .08 .09 33.88 .16 .00 .00 99.28	58.33 .02 .69 .06 6.66 .05 .12 34.04 .17 .02 .00 100.16	58.29 .02 .68 .03 .55 33.83 .19 .04 .01 99.85	58.18 .03 .70 .07 6.31 .08 .14 33.79 .01 .00 99.46	58.29 .01 .74 .04 6.57 .04 .18 33.81 .17 .02 .00 99.87	58.13 .01 .70 .08 6.54 .08 .12 33.82 .18 .03 .01 99.71	58.07 .03 .76 .04 6.58 .07 .15 33.89 .15 .03 .00 99.75	58.17 .04 .72 .06 6.66 0.07 .12 33.90 .15 .02 .00 99.91	57.98 .07 .71 .05 6.78 .07 .15 34.01 .03 .01 100.03	58.02 .78 .04 6.56 .10 .12 33.74 .16 .02 .01 99.56	58.17 .06 .86 .04 6.41 .11 .14 33.87 .15 .05 .00 99.84	58.10 .01 .78 .07 6.40 .06 .14 33.96 .14 .01 .01 99.67	58.18 .01 .74 .05 6.72 .12 .19 34.11 .15 .01 .01 100.30	57.92 .02 .74 .05 6.63 .06 .16 33.96 .13 .04 .02 99.73	58.03 .02 .78 .05 6.59 .04 .14 33.89 .02 .02 99.78	58.08 .02 .81 .07 6.47 .07 .15 33.93 .14 .01 .00 99.75	58.09 .03 .81 .10 6.74 .05 .06 34.02 .16 .02 .02 100.09	58.08 .02 .81 .06 .14 33.82 .16 .00 .00 99.62	58.13 .04 .74 .05 6.55 .16 33.93 .17 .00 .00 99.83
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ca Na K Kationen	2.008 .000 .027 .001 .185 .002 .004 1.743 .006 .000 .000 3.977	2.008 .001 .025 .001 .184 .002 1.748 .006 .000 .000 3.978	2.004 .001 .002 .191 .001 .003 1.744 .006 .001 .000 3.981	2.008 .000 .028 .001 .188 .002 .004 1.738 .007 .002 .000 3.979	2.009 .001 .028 .002 .182 .002 .004 1.740 .006 .001 .000 3.975	2.007 .000 .001 .189 .001 1.736 .006 .001 .000 3.977	2.006 .000 .029 .002 .189 .002 .003 1.739 .007 .002 .001 3.980	2.003 .001 .001 .190 .002 .004 1.743 .006 .002 .000 3.981	2.004 .001 .029 .002 .192 .002 .003 1.741 .006 .001 .000 3.981	1.998 .002 .001 .195 .002 .004 1.747 .006 .002 .001 3.987	2.005 .001 .190 .003 1.738 .006 .001 .000 3.979	2.003 .002 .001 .185 .003 .004 1.739 .005 .003 .000 3.979	2.004 .000 .032 .185 .002 .004 1.746 .005 .001 .001 3.980	1.999 .000 .001 .193 .003 .005 1.747 .006 .001 .000 3.986	2.000 .000 .001 .191 .002 .004 1.748 .005 .002 .001 3.986	2.002 .001 .001 .190 .001 1.743 .007 .002 .001 3.982	2.002 .001 .033 .002 .186 .002 .004 1.744 .005 .001 .000 3.980	1.998 .001 .033 .194 .002 .002 1.745 .006 .001 .001 3.984	2.005 .000 .033 .000 .189 .002 .004 1.740 .006 .000 .000 3.978	2.003 .001 .030 .001 .001 .004 1.743 .006 .000 .000 3.980
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	90.41 4.50 949	90.49 4.63 959	90.11 5.24 969	90.22 2.50 979	90.51 6.23 989	90.17 3.61 999	90.21 6.86 1009	90.17 2.99 1019	90.07 5.02 1029	89.94 4.86 1039	90.17 2.91 1049	90.40 3.33 1069	90.44 5.42 1079	90.04 4.42 1099	90.13 4.08 1109	90.17 4.43 1119	90.34 5.19 1129	90.00 7.82 1140	90.21 0.74 1150	90.23 4.70 1160

Probe: Gu		-								-		-							-	
Profilname Profilpunkt	Profil-04 157	Profil-04 158	Profil-04 159	Profil-04 160	Profil-04 161	Profil-04 162	Profil-04 163	Profil-04 164	Profil-04 I 165	Profil-04 I 166	Profil-04	Profil-04 168	Profil-04	Profil-04 170	Profil-04 171	Profil-04 172	Profil-04 173	Profil-04 174	Profil-04 I 175	Profil-04 176
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] SiO ₂	58.18	58.21	58.18	58.27	58.26	58.40	58.24	58.41	58.29	58.20	58.13	58.25	58.31	58.48	58.42	58.30	58.24	58.26	58.37	58.09
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO NiO MgO	.01 .72 .04 6.36 .08 .16 33.78	.03 .66 .04 6.41 .06 .13 34.03	.02 .73 .03 6.59 .04 .19 33.87	.02 .68 .08 6.52 .05 .16 34.03	.04 .78 .06 6.79 .04 .20 33.99	.04 .76 .06 6.69 .06 .14 34.05	.05 .84 .05 6.69 .03 .14 33.85	.02 .75 .06 6.73 .05 .11 33.98	.00 .80 .02 6.79 .06 .14 34.04	.01 .79 .07 6.52 .05 .13 34.10	.03 .81 .05 6.50 .07 .16 33.90	.02 .77 .06 6.55 .10 .12 33.89	.03 .79 .06 6.78 .05 .15 33.89	.01 .67 .06 6.58 .03 .09 33.98	.01 .65 .05 6.76 .11 .12 34.00	.01 .69 .05 6.58 .06 .10 33.90	.03 .72 .04 6.74 .06 .18 34.04	.04 .82 .06 6.58 .06 .14 33.85	.01 .80 .05 6.41 .07 .18 33.99	.02 .97 .05 6.52 .10 .15 33.86
CãO Na₂O K₂Ô Σ	.12 .00 .00 99.46	.14 .03 .01 99.75	.15 .03 .00 99.83	.15 .00 .00 99.94	.14 .01 .02 100.32	.12 .02 .01 100.34	.15 .02 .00 100.06	.17 .00 .01 100.28	.15 .02 .00 100.31	.15 .01 .00 100.04	.14 .02 .00 99.81	.13 .02 .00 99.91	.11 .01 .01 100.17	.11 .02 .01 100.05	.10 .00 .01 100.23	.13 .00 .00 99.81	.10 .03 .00 100.17	.14 .03 .02 100.00	.14 .03 .00 100.03	.15 .00 .01 99.91
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Mg Ca Sa K S Kationan	2.010 .000 .029 .001 .184 .002 .005 1.739 .004 .000 .000	2.006 .001 .027 .001 .185 .002 .004 1.748 .005 .002 .001	2.005 .001 .030 .001 .005 1.740 .005 .002 .000	2.005 .001 .027 .002 .188 .001 .004 1.746 .005 .000 .000	2.000 .001 .032 .002 .195 .001 .005 .001 .001	2.003 .001 .031 .002 .002 .004 1.741 .004 .001 .001	2.003 .001 .034 .001 .192 .001 1.736 .006 .001 .000	2.004 .000 .030 .002 .003 1.739 .006 .000 .000	2.001 .000 .032 .001 .195 .002 .004 1.742 .006 .001 .000	2.001 .000 .032 .002 .187 .002 .004 1.748 .006 .001 .000	2.003 .001 .033 .001 .187 .002 .004 1.742 .005 .002 .000	2.005 .001 .031 .002 .189 .003 1.739 .005 .001 .000	2.004 .001 .032 .002 .195 .001 1.736 .004 .001 .000	2.009 .000 .027 .002 .189 .001 .003 1.740 .004 .001 .001	2.006 .000 .026 .001 .194 .003 .003 1.741 .004 .000 .000	2.008 .000 .028 .001 .190 .003 1.741 .005 .000 .000	2.002 .001 .029 .001 .194 .002 .005 1.744 .004 .002 .000	2.004 .001 .033 .002 .189 .002 .004 1.736 .005 .002 .001	2.005 .000 .032 .001 .184 .002 .005 1.741 .005 .002 .000 .000	2.000 .001 .039 .001 .188 .003 .004 1.738 .005 .000 .000
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Ma #	90.44	90.44	90.16	90.30	89.92	90.08	90.03	90.00	89.94	90.31	90.29	90.22	89.91	90.20	89.97	90.18	90.00	90.17	90.44	90.26
Cr#	3.94	3.71	3.04	7.01	4.58	5.03	4.15	4.96	1.81	5.52	3.99	4.96	4.63	5.66	4.41	4.65	3.51	4.99	3.65	3.55
Profilstrecke [µm]	1170	1180	1190	1200	1210	1220	1230	1240	1250	1260	1270	1280	1290	1300	1310	1320	1330	1340	1350	1360

Probe: Gu																				
Profilname	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04 I	Profil-04 F	Profil-04 I	Profil-04 I	Profil-04 I	Profil-04 F	Profil-04	Profil-04	Profil-04 I	Profil-04 I	Profil-04	Profil-04	Profil-04	Profil-04	Profil-04 I	Profil-04
Profilpunkt	177	178	179	180	181	182	183	184	185	187	189	190	191	192	193	194	195	196	197	198
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] [SiO ₂ TiO ₃ Al ₂ O ₃ Gr ₂ O ₃ MnO MiO NiO MiO NiO NiO KgO CaO CaO K ₂ Ô ∑ X	58.27 .00 .73 .07 6.56 .05 .12 33.88 .13 .02 .02 99.84	58.25 .01 .74 .09 6.54 .08 .13 33.89 .14 .01 .02 99.90	58.34 .03 .74 .08 6.68 .08 .11 34.05 .13 .04 .00 100.28	58.32 .03 .80 .03 6.59 .08 .17 33.94 .14 .03 .00 100.11	58.34 .04 .69 .05 6.76 .08 .15 34.01 .15 .00 .02 100.29	58.25 .00 .73 .06 6.43 .05 .12 33.95 .14 .02 .00 99.75	58.31 .03 .69 .03 6.69 .08 .13 33.84 .15 .01 .00 99.96	58.30 .01 .69 .06 .54 .06 .16 33.88 .02 .00 99.93	58.04 .04 .74 .07 6.64 .07 .15 33.81 .02 .00 99.74	57.70 .00 .82 .07 6.74 .06 .10 33.92 .18 .02 .00 99.62	57.81 .00 .75 .05 6.44 .08 .09 33.84 .19 .04 .01 99.29	58.04 .05 .73 .10 6.58 .10 .14 34.07 .20 .05 .00 100.06	57.89 .01 .85 .09 .10 .14 33.85 .20 .00 .00 99.70	57.99 .02 .69 .06 6.71 .06 .13 33.90 .20 .00 .00 .99.74	57.92 .03 .70 .11 6.58 .05 .17 33.84 .17 .01 .01 99.58	57.95 .02 .67 .07 6.61 .09 .13 33.97 .17 .00 .01 99.68	58.11 .01 .71 .08 6.75 .06 .14 34.07 .17 .00 .00 100.10	57.93 .02 .74 .10 6.72 .07 .15 33.96 .17 .02 .00 99.87	58.07 .02 .74 .09 6.71 .05 .13 34.29 .17 .01 .00 100.26	57.96 .03 .69 .06 6.67 .08 .18 34.06 .17 .02 .00 99.91
Kationen- besetzung Si Ti Al Cr, Fr ²⁺⁺ Mn Ni Mg Ca Na K Xationen	2.007 .000 .029 .002 .189 .001 .003 1.740 .005 .001 .001 3.978	2.006 .000 .002 .188 .002 .004 1.739 .005 .001 .001 3.979	2.003 .001 .002 .192 .002 .003 1.742 .005 .002 .000 3.982	2.004 .001 .001 .189 .002 .005 1.739 .005 .002 .000 3.980	2.003 .001 .028 .001 .194 .002 .004 1.741 .005 .000 .001 3.982	2.007 .000 .002 .185 .001 .003 1.744 .005 .001 .000 3.978	2.007 .001 .028 .001 .193 .002 .004 1.737 .005 .001 .000 3.978	2.007 .000 .028 .002 .188 .002 .005 1.739 .007 .001 .000 3.978	2.003 .001 .002 .192 .002 .004 1.739 .007 .001 .000 3.981	1.995 .000 .034 .002 .195 .002 .003 1.749 .007 .001 .000 3.987	2.002 .000 .031 .187 .002 .003 1.748 .007 .002 .000 3.983	1.998 .001 .003 .190 .003 .004 1.748 .007 .003 .000 3.987	1.999 .000 .034 .002 .190 .003 .004 1.742 .008 .000 .000 3.983	2.002 .000 .028 .194 .002 .003 1.745 .007 .000 .000 3.983	2.002 .001 .003 .190 .001 .005 1.744 .006 .001 .000 3.982	2.001 .000 .022 .191 .003 .004 1.749 .006 .000 .000 3.984	2.000 .000 .022 .194 .002 .004 1.748 .006 .000 .000 3.985	1.998 .001 .003 .194 .002 .004 1.746 .006 .001 .000 3.985	1.995 .001 .003 .193 .001 1.756 .006 .000 .000 3.988	1.999 .001 .022 .002 .005 1.751 .006 .001 .000 3.987
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	90.20 5.75 1370	90.23 7.18 1380	90.08 6.45 1391	90.18 2.79 1401	89.97 4.44 1411	90.40 5.56 1421	90.01 3.00 1431	90.23 7.63 1441	90.08 6.01 1451	89.97 5.54 1471	90.35 3.88 1491	90.22 8.08 1501	90.15 6.38 1511	90.00 5.18 1521	90.17 9.11 1531	90.16 6.31 1541	90.00 6.73 1551	90.01 8.21 1561	90.11 7.84 1571	90.10 5.63 1581

Probe: Gu Profilname	Profil-04 I	Profil-04 F	Profil-04 F	Profil-04 I	Profil-04 I	Profil-04 F	Profil-04 I	Profil-04 I	Profil-04	Profil-04 F	Profil-04	Profil-04 I	Profil-04
Profilpunkt	199	200	201	202	203	204	205	206	207	208	209	210	211
Mineral	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх	Орх
Analyse [Gew%] [SiO ₂ TiO ₃ Al ₂ O ₃ Cr ₂ O ₃ FeO MinO NiO MiO GQO Na ₂ O K ₂ Ó ∑	58.13 .01 .09 6.61 .09 .10 33.79 .17 .01 .00 99.69	58.02 .02 .77 .08 6.71 .09 .12 33.86 .00 .00 99.80	58.08 .00 .74 .07 6.70 .09 .14 33.62 .02 .00 99.61	58.21 .01 .79 .05 .12 33.77 .14 .02 .00 99.84	58.01 .02 .75 .07 .04 33.86 .15 .00 .01 99.91	58.20 .01 .71 .07 .07 .10 33.87 .16 .02 .02 99.92	58.00 .02 .89 .08 6.76 .07 .12 33.76 .02 .00 99.90	58.15 .01 .62 .06 6.78 .08 .09 33.92 .19 .00 .00 99.91	57.94 .01 .08 6.93 .05 .12 33.97 .17 .02 .00 99.91	57.87 .00 .59 .08 6.87 .06 .19 34.07 .17 .01 .01 99.92	58.10 .03 .59 .10 6.87 .08 .12 33.81 .19 .00 .00 99.88	57.92 .02 .60 .08 7.11 .13 .15 33.84 .02 .01 100.05	57.55 .01 .78 0.08 7.15 .07 .11 33.47 .21 .02 .00 99.44
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Ni Mg Ca Kationen Σ Kationen	2.006 .000 .028 .002 .191 .003 .003 1.738 .006 .000 .000 3.978	2.002 .000 .031 .002 .193 .003 1.741 .005 .000 .000 3.981	2.007 .000 .030 .002 .194 .003 .004 1.732 .006 .001 .000 3.978	2.006 .000 .032 .002 .192 .003 1.735 .005 .001 .000 3.978	2.000 .001 .030 .002 .200 .001 1.741 .006 .000 .000 3.983	2.005 .000 .029 .003 .192 .002 .003 1.739 .006 .002 .001 3.980	1.999 .001 .036 .002 .195 .002 .003 1.735 .007 .002 .000 3.982	2.004 .000 .025 .002 .195 .002 .003 1.743 .007 .000 .000 3.982	2.000 .000 .025 .002 .200 .001 .003 1.748 .006 .001 .000 3.987	1.998 .000 .024 .002 .198 .002 .005 1.753 .006 .001 .000 3.990	2.005 .001 .024 .003 .198 .002 .003 1.739 .007 .000 .000 3.982	1.999 .000 .024 .002 .205 .004 1.741 .007 .001 3.989	1.998 .000 .032 .207 .002 .003 1.732 .008 .001 .000 3.986
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	90.11 7.79 1591	90.00 6.23 1601	89.94 5.86 1611	90.03 5.40 1621	89.71 6.13 1631	90.05 8.29 1642	89.90 5.60 1652	89.92 5.77 1662	89.73 8.15 1672	89.84 8.34 1682	89.77 9.90 1692	89.46 8.13 1702	89.31 6.46 1712

Probe:	Gu
Profil:	05
Mineral:	Срх
Kapitel:	2.6

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Co [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
25	6.863	23.752	17.658	8.404	0.732	0.317	0.558	0.963
101	6.571	23.465	17.695	7.304	0.443	0.665	0.680	1.209
287	8.505	22.511	19.383	10.021	3.407	0.290	0.939	1.712
361	4.934	21.537	20.439	11.915	0.881	0.535	0.990	3.174
504	7.983	22.914	18.984	8.623	1.074	0.703	0.682	0.923
581	13.161	23.057	19.048	7.835	2.699	0.425	1.025	1.450
695	9.915	23.593	19.183	8.764	1.909	0.903	0.666	1.284
813	6.286	23.463	18.836	9.462	0.591	0.571	0.946	1.816
1004	7.920	22.526	19.795	10.657	2.346	0.343	0.559	2.632
1081	11.894	23.306	18.607	9.681	2.145	0.617	1.065	1.259
1166		23.682	18.486	9.030		0.620	1.009	2.015
1288	4.743	26.890	17.817	7.279	0.585	0.558	0.925	2.035

Probe: Gu																				
Profilname	Profil-05 I	Profil-05	Profil-05	Profil-05 I	Profil-05	Profil-05 I	Profil-05 I	Profil-05	Profil-05 I	Profil-05 I	Profil-05 I	Profil-05	Profil-05 I	Profil-05	Profil-05	Profil-05	Profil-05 I	Profil-05 I	Profil-05 I	Profil-05
Profilpunkt	58	59	60	61	62	63	64	65	60	67	68	69	70	71	72	73	74	/5	/6	11
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO2 TO2 Al2O3 Gr2O3 FeO MnO NiO NiO NgO CaO KaO KaO KaO KaO	54.94 06 3.50 .65 2.28 .02 05 15.14 20.85 2.32 .02 99.83	54.73 .07 3.71 .60 2.33 .10 .05 15.04 20.72 2.35 .01 99.70	54.66 .07 3.80 .62 2.10 .06 .04 14.81 20.71 2.39 .00 99.24	54.36 .09 3.79 .61 2.36 .03 .08 14.90 20.59 2.37 .01 99.19	54.64 .05 3.78 5.88 2.26 .00 .06 14.84 20.87 2.27 .00 99.35	55.09 .08 3.76 .58 2.21 .06 .06 15.00 20.87 2.28 .01 100.01	54.87 .09 3.75 .60 2.22 .03 .04 14.96 20.95 2.36 .02 99.89	54.91 .10 3.74 .61 2.34 .05 .00 14.91 20.76 2.38 .02 99.81	55.00 .09 3.74 .59 2.10 .00 .06 15.00 20.80 2.28 .01 99.67	54.95 .09 3.70 .57 2.19 .03 .11 14.93 20.77 2.34 .02 99.69	54.44 .07 3.70 .57 2.27 .04 .10 14.91 20.89 2.31 .01 99.30	54.73 .08 3.72 .56 2.21 .00 .06 14.99 20.86 2.31 .03 99.55	55.03 .09 3.72 .59 2.18 .03 .06 14.97 20.57 2.32 .00 99.54	54.88 .08 3.68 .60 2.29 .03 .07 15.04 20.83 2.32 .03 99.84	54.64 .08 3.72 .60 2.19 .05 .06 15.13 20.67 2.39 .00 99.51	54.70 .09 3.75 2.19 02 .01 14.92 20.77 2.35 .00 99.34	54.84 .08 3.70 .61 2.26 .05 .04 14.94 20.66 2.23 .01 99.41	54.99 .08 3.72 .59 2.14 .07 .03 14.99 20.80 2.31 .01 99.73	54.99 .10 3.71 .57 2.25 .04 .05 14.97 20.90 2.32 .00 99.89	54.68 .08 3.66 .61 2.37 .01 .08 15.06 20.77 2.28 .01 99.62
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Na K X Kationen	1.985 .002 .149 .018 .069 .001 .002 .815 .807 .163 .001 4.011	1.981 .002 .158 .017 .070 .003 .001 .811 .803 .165 .001 4.013	1.984 .002 .163 .018 .064 .002 .001 .801 .805 .168 .000 4.008	1.978 .003 .162 .018 .072 .001 .002 .808 .803 .167 .000 4.013	1.983 .001 .162 .017 .068 .000 .002 .803 .811 .160 .000 4.007	1.985 .002 .160 .017 .002 .002 .806 .806 .806 .159 .001 4.005	1.981 .002 .159 .017 .001 .001 .005 .811 .165 .001 4.011	1.984 .003 .159 .017 .071 .001 .000 .803 .804 .166 .001 4.009	1.987 .002 .159 .017 .063 .000 .002 .808 .805 .160 .000 4.003	1.987 .002 .158 .016 .066 .001 .003 .805 .804 .164 .001 4.006	1.979 .002 .158 .016 .069 .001 .003 .808 .813 .163 .000 4.013	1.982 .002 .159 .016 .067 .000 .002 .809 .810 .162 .001 4.010	1.990 .002 .159 .017 .066 .001 .002 .807 .797 .163 .000 4.002	1.982 .002 .107 .017 .069 .001 .002 .810 .806 .163 .001 4.010	1.980 .002 .159 .017 .066 .002 .002 .817 .803 .168 .000 4.014	1.984 .003 .016 .066 .001 .000 .807 .165 .000 4.008	1.987 .002 .158 .017 .068 .002 .001 .802 .157 .001 4.002	1.986 .002 .158 .017 .065 .002 .001 .805 .162 .001 4.005	1.984 .003 .158 .016 .068 .001 .001 .808 .163 .000 4.007	1.981 .002 .156 .017 .072 .000 .002 .813 .806 .160 .001 4.011
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	92.20 11.02 5	92.01 9.73 15	92.64 9.82 25	91.85 9.81 35	92.14 9.38 45	92.37 9.41 55	92.33 9.76 65	91.92 9.83 75	92.72 9.60 85	92.40 9.33 95	92.13 9.44 105	92.36 9.17 115	92.45 9.54 125	92.13 9.80 136	92.50 9.71 146	92.39 8.97 156	92.18 9.95 166	92.59 9.55 176	92.23 9.34 186	91.88 9.99 196

Probe: Gu Profilname	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05
Profilpunkt	78	79	80	81	83	85	86	87	88	89	91	92	93	94	95	96	97	98	100	101
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse Gew%] SiO2 TiO2 Al2O3 Cr2O3 FeO MnO NiO MgO CaO Na2O K2O X2O	54.61 .11 3.67 .58 2.36 .01 .08 15.04 20.88 2.40 .00 99.74	54.64 .08 3.69 .60 2.27 .03 .05 15.01 20.90 2.41 .00 99.69	55.03 .08 3.63 .58 2.32 .07 .03 14.97 20.84 2.35 .00 99.89	55.02 .10 3.71 .06 .02 14.93 20.79 2.33 .00 99.88	54.43 .09 3.66 .63 2.20 .03 .07 14.99 20.57 2.29 .00 98.96	55.10 .08 3.62 .59 2.28 .06 .08 15.06 .20.81 2.36 .01 100.07	54.61 .10 3.65 .60 2.36 .02 .07 15.07 20.72 2.32 .02 99.54	54.19 .09 3.68 .62 2.41 .06 14.94 20.58 2.25 .01 98.82	54.30 .10 3.67 .58 2.26 .06 15.02 20.91 2.33 .01 99.30	54.48 .09 3.60 .57 2.32 .00 .07 15.06 20.80 2.25 .01 99.23	54.87 .12 3.65 .61 2.34 .00 .02 14.98 20.86 2.27 .00 99.73	54.90 .11 3.59 .59 2.39 .05 .04 15.09 20.84 2.23 .01 99.84	55.28 .12 3.60 .63 2.36 15.05 21.00 2.27 .00 100.37	55.20 .08 3.58 .56 2.35 .05 .05 15.10 20.98 2.21 .01 .01	55.19 .08 3.64 .57 2.49 .04 15.01 21.02 2.17 .00 100.27	54.64 .06 3.67 5.7 2.38 0.08 15.00 20.94 2.92 .03 99.64	54.44 .11 3.68 .60 2.36 .01 14.94 20.86 2.34 .00 99.39	55.21 .07 3.65 .58 2.25 .05 .10 15.03 20.91 2.29 .02 100.16	54.89 .08 3.65 .62 2.40 .01 1.13 14.98 20.99 2.32 .00 100.07	55.38 .07 3.65 .61 2.52 .03 .08 14.98 21.02 2.22 .02 100.57
Kationen- besetzung Si Ti Al Cr Fe ²⁺ Mn Mg Ca Ni Ka K Z S Kationen	1.977 .003 .157 .017 .000 .002 .812 .810 .168 .000 4.017	1.978 .002 .157 .017 .069 .001 .810 .811 .169 .000 4.017	1.986 .002 .154 .016 .070 .001 .806 .806 .165 .000 4.008	1.985 .003 .158 .069 .002 .001 .803 .804 .163 .000 4.006	1.983 .002 .157 .018 .067 .001 .002 .814 .803 .162 .000 4.008	1.986 .002 .154 .017 .069 .002 .809 .804 .165 .000 4.010	1.980 .003 .156 .017 .001 .002 .815 .805 .163 .001 4.013	1.979 .002 .158 .074 .000 .002 .813 .805 .159 .000 4.011	1.975 .003 .157 .069 .002 .002 .814 .815 .164 .000 4.018	1.981 .002 .154 .001 .000 .002 .816 .810 .158 .000 4.011	1.984 .003 .156 .018 .071 .000 .001 .808 .159 .000 4.006	1.983 .003 .153 .017 .072 .002 .001 .813 .807 .156 .000 4.007	1.986 .003 .152 .018 .071 .000 .002 .806 .808 .158 .000 4.005	1.987 .002 .152 .016 .071 .001 .002 .810 .809 .154 .001 4.005	1.985 .002 .154 .015 .001 .002 .805 .810 .151 .000 4.003	1.980 .002 .157 .016 .072 .002 .810 .813 .156 .001 4.011	1.978 .003 .157 .0172 .000 .002 .809 .812 .165 .000 4.014	1.987 .002 .155 .016 .068 .001 .003 .806 .806 .160 .001 4.006	1.981 .002 .155 .018 .072 .000 .004 .801 .162 .000 4.012	1.987 .002 .154 .075 .001 .002 .801 .808 .155 .001 4.003
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	91.92	92.18	92.00	92.14	92.38	92.18	91.94	91.70	92.22	92.03	91.95	91.84	91.92	91.97	91.49	91.82	91.87	92.25	91.76	91.39
Cr #	9.54	9.81	9.62	10.27	10.41	9.88	9.95	10.12	9.63	9.54	10.13	9.95	10.47	9.45	9.53	9.49	9.89	9.63	10.25	10.07
Profilstrecke [µm]	206	216	226	236	256	276	286	296	306	316	336	346	356	366	376	387	397	407	427	437

Probe: Gu																				
Profilname	Profil-05 I	Profil-05 I	Profil-05	Profil-05	Profil-05	Profil-05 I	Profil-05 I	Profil-05	Profil-05 I	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05
Profilpunkt	102	103	104	105	106	108	109	110	111	112	113	118	119	120	121	122	123	124	125	126
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] [Gow%] SiO, TiO, Gr,O, Gr,O, FeO MinO MinO NiO CaO Na,O CaO K ₂ Ô ∑	55.22 .07 3.66 .59 2.37 .03 .04 15.10 20.99 2.37 .01 100.44	54.89 .09 3.65 .61 2.30 .03 .06 14.99 20.86 2.30 .00 99.77	54.82 .08 3.60 .59 2.50 .03 .06 15.07 20.91 2.31 .00 99.99	55.06 .08 3.66 .63 2.28 .03 .03 14.97 21.02 2.31 .00 100.06	55.17 .11 3.68 .60 2.37 .00 0.5 15.05 20.94 2.37 .01 100.33	55.22 .09 3.64 .63 2.39 .02 .07 15.03 21.11 2.30 .00 100.50	55.03 .09 3.64 .62 2.44 .05 .06 15.05 20.99 2.27 .00 100.23	55.27 .09 3.60 .59 2.47 .05 .10 15.00 21.00 2.40 .01 100.57	55.35 .10 3.62 .60 2.41 .01 0.06 15.01 20.96 2.36 .00 100.49	55.28 .08 3.63 .59 2.46 .02 .07 15.07 20.97 2.30 .00 100.48	55.60 .06 3.63 .60 2.46 .09 .09 14.99 21.13 2.36 .00 101.01	55.55 .08 3.64 .62 2.51 .02 .08 15.04 20.95 2.38 .00 100.86	55.21 .09 3.63 .57 2.29 .00 .06 15.02 21.01 2.32 .00 100.19	55.22 .09 3.69 .63 2.34 .02 .08 14.91 21.00 2.38 .03 100.38	55.21 .07 3.63 .62 2.39 .05 .03 14.90 21.04 2.27 .00 100.21	55.27 .09 3.67 .62 2.45 .06 .09 15.05 20.97 2.34 .00 100.61	55.38 .10 3.68 .56 2.34 .00 .07 14.92 21.12 2.37 .00 100.54	55.17 .10 3.68 .61 2.37 .05 .04 14.94 20.93 2.28 .01 100.17	55.56 .08 3.66 .00 2.46 .00 .06 15.01 20.99 2.35 .00 100.76	55.29 .10 3.64 .60 2.40 .04 15.03 20.91 2.41 .00 100.44
Kationen- besetzung Si Ti Al Cr Fe ²⁴ Mn Mg Ca Ca Na K Kationen	1.983 .002 .155 .017 .071 .001 .001 .808 .808 .165 .000 4.012	1.984 .003 .155 .017 .069 .001 .002 .808 .808 .161 .000 4.008	1.980 .002 .153 .017 .076 .001 .002 .812 .809 .162 .000 4.014	1.984 .002 .155 .018 .069 .001 .001 .804 .812 .162 .000 4.008	1.983 .003 .156 .017 .071 .000 .001 .807 .165 .000 4.010	1.983 .002 .154 .018 .072 .001 .002 .805 .812 .160 .000 4.009	1.982 .002 .154 .018 .073 .002 .002 .808 .810 .158 .000 4.009	1.984 .002 .017 .074 .002 .003 .803 .808 .167 .000 4.012	1.987 .003 .153 .017 .072 .000 .002 .803 .806 .164 .000 4.008	1.985 .002 .154 .017 .074 .001 .002 .806 .807 .160 .000 4.008	1.987 .002 .153 .017 .073 .003 .003 .799 .809 .164 .000 4.008	1.987 .002 .154 .018 .075 .001 .002 .803 .165 .000 4.008	1.987 .002 .154 .016 .069 .000 .002 .806 .810 .162 .000 4.007	1.985 .003 .156 .018 .070 .001 .002 .799 .809 .166 .002 4.009	1.987 .002 .154 .018 .072 .001 .001 .800 .811 .158 .000 4.004	1.983 .003 .155 .018 .073 .002 .003 .805 .806 .163 .000 4.010	1.987 .003 .016 .070 .000 .002 .798 .812 .165 .000 4.007	1.986 .003 .156 .017 .071 .002 .001 .802 .807 .159 .000 4.004	1.988 .002 .154 .017 .074 .000 .002 .801 .805 .163 .000 4.006	1.986 .003 .154 .017 .072 .001 .804 .805 .168 .000 4.010
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.89 9.68 447	92.09 10.12 457	91.48 9.94 467	92.13 10.33 477	91.89 9.88 487	91.80 10.36 507	91.67 10.19 517	91.53 9.95 527	91.74 9.94 537	91.62 9.88 547	91.58 9.91 557	91.45 10.31 607	92.11 9.48 617	91.92 10.29 627	91.74 10.24 638	91.64 10.18 648	91.91 9.31 658	91.84 10.03 668	91.58 9.86 678	91.78 9.94 688

Probe: Gu																				
Profilname	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05
Profilpunkt	128	129	130	131	133	134	135	136	137	139	140	141	142	143	145	146	147	148	149	150
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] SiO ₂ T Al ₂ O ₃ Gr ₂ O ₃ FeO MnO NiO MgO CaO CaO K ₂ Ô CaO K ₂ Ô Σ	55.26 .09 3.64 .59 2.45 .01 15.01 20.94 2.38 .00 100.47	55.21 .10 3.70 .63 2.35 .00 .08 14.88 21.01 2.30 .01 100.26	55.49 .09 3.63 .59 2.45 .04 .07 15.03 21.07 2.44 .00 100.88	55.08 .07 3.63 2.40 .00 .08 15.04 20.90 2.30 .00 100.12	55.31 .08 3.71 .55 2.46 .02 .07 15.03 20.91 2.38 .01 100.53	55.03 .07 .63 2.46 .04 .09 15.01 21.11 2.46 .01 100.57	55.05 .09 3.67 .64 2.39 .07 .07 14.84 20.91 2.41 .00 100.14	55.34 .11 3.66 .69 2.48 .05 .04 14.99 21.01 2.34 .00 100.71	55.57 .06 3.73 .61 2.25 .02 14.96 21.17 2.28 .00 100.71	55.16 .10 3.69 .62 2.38 .07 .06 14.97 20.81 2.36 .00 100.22	55.32 .08 3.67 .59 2.48 .02 .07 14.84 20.91 2.31 .00 100.29	55.20 .10 3.68 5.66 2.54 .02 .07 14.98 21.06 2.39 .00 100.60	55.17 .09 3.69 2.51 .00 .07 15.07 21.00 2.36 .00 100.55	55.23 .09 3.73 63 2.28 .02 .07 14.93 20.88 2.43 .02 100.31	55.50 .12 3.74 .60 2.32 .01 .07 14.93 20.88 2.34 .00 100.51	55.18 .09 3.70 .59 2.34 .01 .06 14.90 20.94 2.33 .00 100.14	55.25 .08 3.68 .60 2.43 .05 14.87 21.01 2.34 .00 100.36	55.23 .11 3.73 .61 2.36 .05 .06 14.88 20.97 2.39 .00 100.39	54.96 .08 3.74 .61 2.40 .01 1.09 14.96 20.88 2.40 .01 100.14	55.26 .07 3.66 .62 2.38 .05 .04 14.99 21.11 2.31 .00 100.50
Kationen- besetzung Si Ti Al Cr Fe st Mn Mg Ca Ca Na K Kationen	1.985 .002 .154 .017 .074 .000 .003 .804 .806 .166 .000 4.010	1.986 .003 .157 .018 .071 .000 .002 .798 .810 .160 .000 4.004	1.985 .002 .153 .017 .073 .001 .002 .802 .808 .169 .000 4.012	1.985 .002 .154 .018 .072 .000 .002 .808 .807 .160 .000 4.008	1.985 .002 .157 .016 .074 .001 .002 .804 .804 .804 .166 .000 4.010	1.978 .002 .156 .018 .074 .001 .002 .804 .813 .171 .000 4.019	1.984 .002 .156 .018 .072 .002 .798 .807 .169 .000 4.011	1.983 .003 .154 .019 .074 .002 .001 .801 .807 .163 .000 4.008	1.988 .002 .157 .017 .068 .002 .001 .798 .811 .158 .000 4.002	1.985 .003 .156 .018 .072 .002 .002 .803 .802 .164 .000 4.007	1.989 .002 .156 .017 .075 .001 .795 .806 .161 .000 4.003	1.982 .003 .156 .016 .076 .001 .002 .802 .810 .166 .000 4.013	1.981 .002 .156 .017 .075 .000 .002 .807 .808 .164 .000 4.012	1.985 .002 .158 .018 .069 .001 .002 .800 .804 .170 .001 4.009	1.989 .003 .158 .017 .069 .000 .002 .798 .802 .162 .000 4.001	1.987 .002 .157 .017 .071 .000 .002 .800 .808 .162 .000 4.005	1.986 .002 .156 .017 .073 .002 .001 .797 .809 .163 .000 4.007	1.984 .003 .158 .017 .071 .002 .797 .807 .167 .000 4.008	1.981 .002 .159 .017 .072 .000 .003 .804 .806 .168 .000 4.013	1.984 .002 .155 .017 .071 .002 .001 .802 .812 .161 .000 4.008
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg #	91.61	91.85	91.63	91.79	91.58	91.57	91.70	91.51	92.16	91.81	91.43	91.33	91.47	92.10	91.99	91.89	91.59	91.84	91.76	91.84
Cr #	9.85	10.19	9.75	10.45	9.08	10.26	10.44	11.17	9.91	10.20	9.70	9.19	9.74	10.20	9.72	9.66	9.82	9.84	9.88	10.12
Profilstrecke [µm]	708	718	728	738	758	768	778	788	798	818	828	838	848	858	878	889	899	909	919	929
Probe: Gu																				
--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--
Profilname	Profil-05 I	Profil-05	Profil-05	Profil-05	Profil-05 I	Profil-05 I	Profil-05 I	Profil-05 I	Profil-05 I	Profil-05 I	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05 I	Profil-05	Profil-05 I	Profil-05
Profilpunkt	151	152	153	154	156	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] [SiO, TiO, ALO, Gr,O, FeO SiO, MiO MiO MiO NiO NiO Na,O CaO K ₂ Ô ∑	55.30 .10 3.77 .62 2.41 .03 .06 15.02 20.96 2.05 .01 100.63	55.23 .09 3.78 .60 2.44 .01 .04 14.83 20.99 2.41 .00 100.41	55.27 .10 3.77 .62 2.39 .02 .05 14.95 20.97 2.34 .02 100.52	55.55 .11 3.72 .61 2.39 .03 .01 14.93 20.82 2.44 .01 100.63	54.89 .09 3.75 .61 2.34 .03 .09 14.91 20.88 2.35 .00 99.93	55.03 .09 3.77 .66 2.31 .06 .07 14.95 21.00 2.32 .01 100.25	55.18 .08 3.72 .68 2.31 .00 .06 14.93 20.89 2.38 .02 100.24	55.26 .08 3.81 .61 2.32 .04 .10 14.85 20.84 2.51 .00 100.41	55.18 .08 3.80 .61 2.23 .04 .09 14.88 20.69 2.39 .00 99.98	55.34 .09 3.79 .65 2.31 .01 .07 14.94 20.86 2.46 .00 100.52	55.08 .09 3.76 .63 2.32 .02 .07 14.96 21.15 2.37 .00 100.43	55.35 .09 3.80 .66 2.24 .03 .07 14.86 20.99 2.39 .01 100.48	55.34 .09 3.80 .64 2.27 .03 .07 14.82 20.92 2.46 .00 100.43	55.35 .09 3.81 .63 2.18 .01 .09 15.02 20.93 2.43 .00 100.55	55.21 .07 3.80 .64 2.39 .00 .09 14.87 21.01 2.41 .00 100.50	55.37 .10 3.83 .60 2.27 .03 20.80 2.37 .01 100.30	55.31 .09 3.88 .64 2.35 .00 .07 14.77 20.71 2.47 .00 100.29	55.59 .09 3.87 .60 2.21 .02 .10 14.86 20.75 2.51 .00 100.60	55.45 .08 3.93 .63 2.23 .00 .07 14.92 20.83 2.49 .00 100.63	55.51 .09 3.86 .64 2.30 .08 .13 14.84 20.79 2.40 .01 100.64
Kationen- besetzung Si Ti Al Cr Fe st Mn Mg Ca Ca Na K Kationen	1.982 .003 .159 .017 .072 .001 .002 .803 .805 .163 .001 4.008	1.984 .002 .160 .017 .073 .000 .001 .794 .808 .168 .000 4.009	1.983 .003 .159 .018 .072 .001 .001 .800 .806 .163 .001 4.007	1.989 .003 .017 .017 .001 .001 .797 .799 .170 .001 4.006	1.982 .003 .160 .017 .070 .001 .002 .803 .808 .164 .000 4.010	1.980 .002 .160 .019 .069 .002 .802 .810 .162 .000 4.009	1.985 .002 .158 .019 .069 .000 .002 .800 .805 .166 .001 4.008	1.985 .002 .161 .017 .070 .001 .003 .795 .802 .174 .000 4.011	1.988 .002 .161 .017 .001 .003 .799 .167 .000 4.004	1.985 .002 .160 .018 .069 .000 .002 .799 .802 .171 .000 4.009	1.980 .002 .159 .018 .070 .001 .001 .801 .814 .165 .000 4.012	1.986 .002 .161 .019 .067 .001 .795 .807 .166 .001 4.006	1.986 .002 .161 .018 .068 .001 .793 .804 .171 .000 4.007	1.984 .003 .161 .018 .065 .000 .003 .802 .804 .169 .000 4.009	1.982 .002 .161 .018 .072 .000 .003 .796 .808 .168 .000 4.010	1.988 .003 .162 .017 .068 .001 .002 .794 .800 .165 .001 4.002	1.987 .002 .164 .018 .071 .000 .002 .791 .797 .172 .000 4.005	1.990 .002 .163 .017 .066 .001 .003 .793 .796 .174 .000 4.005	1.985 .002 .166 .018 .067 .000 .002 .796 .799 .173 .000 4.008	1.988 .002 .163 .018 .002 .002 .004 .792 .798 .167 .000 4.003
Sauerstoffe	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
Mg # Cr # Profilstrecke [µm]	91.73 9.86 939	91.54 9.60 949	91.77 9.98 959	91.77 9.90 969	91.93 9.80 989	92.04 10.44 1009	92.02 10.88 1019	91.95 9.67 1029	92.25 9.64 1039	92.02 10.25 1049	91.99 10.07 1059	92.19 10.39 1069	92.10 10.19 1079	92.47 10.05 1089	91.74 10.18 1099	92.10 9.56 1109	91.80 9.92 1119	92.29 9.45 1129	92.25 9.76 1140	92.00 10.02 1150

Probe: Gu													
Profilname	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05	Profil-05
Profilpunkt	173	174	175	177	178	180	181	182	183	184	185	186	187
Mineral	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх	Срх
Analyse [Gew%] [Gow%] SiO ₂ TiO ₃ Al ₂ O, Cr ₂ O ₃ FeO MnO NiO MiO CaO Na ₂ O K ₂ O X X	54.90 .07 3.89 .63 2.27 .00 .09 14.81 20.75 2.55 .01 99.96	55.32 .07 3.95 .58 2.25 .05 .08 14.92 20.94 2.47 .00 100.63	55.35 .10 3.93 .62 2.33 .06 14.78 20.88 2.46 .03 100.60	55.48 .09 3.89 .62 2.32 2.32 .03 15.05 20.74 2.48 .01 100.79	55.40 .10 4.04 .61 2.21 .00 .09 14.84 20.82 2.49 .00 100.59	55.47 .08 4.01 .62 2.28 .03 .05 14.85 20.67 2.44 .00 100.49	55.24 .07 .63 2.31 .01 .08 14.73 20.74 2.54 .00 100.43	55.02 .09 4.04 .69 2.27 .01 .03 14.82 20.80 2.50 .01 100.26	55.36 .09 4.08 .63 2.28 .04 .06 14.77 20.93 2.43 .00 100.67	55.31 .09 3.96 .57 2.33 .00 .05 14.85 21.10 2.31 .03 100.61	55.14 .09 3.92 .61 2.34 .09 14.99 20.95 2.25 .01 100.41	55.42 .09 3.62 .57 2.32 .02 14.98 21.38 2.21 .01 100.67	55.08 .09 3.78 59 2.40 .03 .08 15.05 21.07 2.28 .00 100.43
Kationen- besetzung Si Ti Al Cr. Fe ²⁺ Mi Ni Xi Ca Xi Kationen Sauerstoffe	1.981 .002 .165 .018 .000 .002 .797 .802 .179 .001 4.015 6.000	1.982 .002 .167 .017 .002 .002 .797 .804 .171 .000 4.010	1.984 .003 .166 .017 .070 .002 .790 .802 .171 .001 4.007	1.984 .002 .164 .069 .001 .002 .802 .795 .172 .001 4.010	1.984 .003 .170 .066 .000 .003 .799 .173 .000 4.006	1.987 .002 .169 .017 .068 .001 .001 .793 .170 .000 4.002	1.983 .002 .172 .018 .069 .000 .002 .788 .798 .177 .000 4.009	1.978 .002 .171 .020 .068 .000 .001 .794 .801 .174 .001 4.011	1.982 .003 .172 .018 .068 .001 .002 .788 .803 .169 .000 4.005	1.982 .003 .167 .016 .070 .000 .001 .793 .810 .161 .001 4.005	1.980 .003 .166 .017 .070 .001 .003 .802 .806 .157 .001 4.005	1.986 .003 .153 .016 .009 .001 .001 .800 .821 .153 .001 4.004 6.000	1.979 .002 .160 .017 .072 .001 .002 .806 .811 .159 .000 4.010
Mg # Cr # Profilstrecke [µm]	92.10 9.78 1160	92.22 9.01 1170	91.87 9.49 1180	92.05 9.71 1200	92.29 9.22 1210	92.06 9.33 1230	91.92 9.44 1240	92.09 10.25 1250	92.02 9.44 1260	91.91 8.86 1270	91.95 9.42 1280	92.02 9.55 1290	91.79 9.47 1300

Gu
08
Grt
2.6

Profil- strecke [µm]	P [µg/g]	Sc [µg/g]	Со [µg/g]	Zn [µg/g]	Ρ 2σ	Sc 2σ	Co 2σ	Zn 2σ
35	163.845	64.282	65.770	22.841	4.293	0.680	1.688	2.297
123	163.076	65.999	65.397	21.103	2.759	0.546	1.290	1.723
183	168.324	66.176	63.641	20.386	4.191	0.982	2.056	3.286
244	151.454	67.737	62.551		5.313	0.928	1.364	
303	162.658	68.098	63.804	22.097	3.435	0.610	1.235	2.128
363	140.198	71.995	62.989	23.821	2.807	0.665	0.874	2.924
423	134.478	71.490	63.425	20.497	4.494	0.625	2.148	1.974
491	130.036	74.809	62.136	20.475	4.367	1.670	0.902	1.786
694	128.851	80.207	63.964	21.800	3.520	0.818	0.943	1.063
748	142.767	78.894	63.352	19.937	2.641	0.600	1.622	2.741
818	138.671	81.849	63.256	19.957	3.800	0.945	1.379	2.160
897	135.848	82.547	62.607	21.716	3.182	0.882	1.573	2.410
967	145.421	82.060	63.395	20.649	2.551	1.336	1.188	3.208
1045	148.357	80.767	62.792	19.626	3.667	0.514	0.651	1.843
1125	143.479	82.228	62.697	20.268	3.311	0.618	1.822	1.859
1187	143.677	79.459	62.703	20.860	2.770	1.228	0.685	2.688
1383	133.965	80.553	64.737	21.055	5.586	0.607	1.576	1.158
1443	141.203	79.678	64.299	20.650	2.753	0.840	1.424	1.479
1504	141.149	77.113	63.241	22.473	3.323	0.663	0.976	2.274
1563	135.382	76.799	63.485	20.728	5.212	0.899	0.620	3.082
1730	147.157	73.586	65.150	20.484	5.256	0.353	0.562	2.161
1804	139.587	72.702	66.095	21.441	3.808	0.880	0.970	2.187
1853	146.243	70.958	65.492	22.175	3.156	0.593	1.216	3.683
1963	127.207	70.943	66.678	22.742	3.206	0.644	0.971	1.254
2015	147.937	68.568	66.159	22.487	3.340	0.612	0.798	1.053

Probe: Gu																				
Profilname	Profil-08	Profil-08	Profil-08	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08
Profilpunkt	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO, Trip Al₂O, Cr,O, FeO MnO NiO MgO CaO CaO KgÓ Z	40.87 .02 23.03 1.07 13.91 .40 4.04 4.04 4.03 .00 100.77	41.39 .03 22.88 1.10 13.41 .44 .05 17.86 4.00 .01 .00 101.17	41.15 .06 22.98 1.08 12.96 .01 17.89 4.06 .03 .01 100.58	41.26 .04 22.85 1.11 12.75 .29 .01 18.22 4.04 .00 .00 100.57	41.24 .04 23.24 .91 12.70 .31 .00 18.49 3.98 .01 .00 100.91	41.03 .03 23.13 1.04 12.37 .34 .04 18.50 3.98 .03 .00 100.49	41.38 .02 23.18 .97 12.18 .28 .00 18.69 3.92 .01 .02 100.64	41.86 .05 22.99 1.06 12.47 .32 .02 18.55 3.91 .00 .00 101.25	41.31 .05 23.05 1.03 11.95 .30 .02 18.79 3.95 .00 .01 100.45	41.34 .10 23.16 1.01 11.95 .27 .00 18.70 4.05 .00 .00 100.57	41.38 .05 23.16 1.09 11.71 .28 .00 18.90 3.98 .01 .00 100.56	41.43 .04 23.22 1.05 11.86 .23 .05 18.96 3.95 .01 .00 100.78	41.24 .05 23.30 1.03 11.80 .29 .02 19.06 3.93 .02 .00 100.73	41.17 .05 23.09 1.05 11.58 .31 .01 19.06 3.91 .01 .01 .00 100.23	41.26 .07 23.33 11.03 11.62 .29 .02 19.20 3.98 .02 .00 100.80	41.26 .05 23.22 1.05 11.79 .32 .00 19.19 3.95 .03 .00 100.85	41.68 .07 23.03 1.09 11.63 .23 .02 19.19 3.92 .01 .00 100.85	41.47 .07 23.13 1.14 11.71 .28 .00 19.11 3.92 .03 .00 100.84	41.53 .06 23.11 1.06 11.45 .25 .00 19.30 3.94 .03 .00 100.72	41.65 .04 23.15 1.08 11.53 .32 .00 19.20 3.84 .01 .00 100.82
Kationen- besetzung Si Ti Al Cr Fe ⁵⁴ Mn Mg Ca Ca Na K Kationen	2.954 .001 1.962 .061 .841 .025 .000 1.875 .312 .004 .000 8.035	2.972 .002 1.936 .062 .805 .026 .003 1.912 .308 .002 .000 8.028	2.966 .003 1.952 .061 .781 .022 .001 1.923 .313 .004 .001 8.026	2.970 .002 1.938 .063 .767 .018 .001 1.956 .312 .000 .000 8.027	2.956 .002 1.964 .051 .761 .019 .000 1.976 .305 .001 .000 8.035	2.952 .001 1.962 .059 .744 .021 1.985 .307 .004 .000 8.038	2.966 .001 1.958 .055 .730 .017 .000 1.997 .301 .002 .002 8.029	2.985 .003 1.932 .060 .744 .020 .001 1.972 .299 .000 .000 8.016	2.966 .003 1.950 .058 .717 .018 .001 2.011 .304 .000 .001 8.028	2.963 .005 1.957 .716 .016 .006 1.998 .311 .000 .000 8.024	2.963 .003 1.955 .062 .701 .017 .007 2.017 .306 .001 .000 8.026	2.962 .002 1.956 .059 .709 .014 .003 2.021 .302 .001 .000 8.029	2.950 .002 1.965 .058 .706 .018 .001 2.032 .301 .002 .000 8.037	2.958 .003 1.955 .060 .696 .019 .001 2.041 .301 .001 .000 8.033	2.948 .004 1.965 .058 .694 .017 .001 2.045 .305 .003 .000 8.039	2.949 .003 1.956 .060 .705 .019 .000 2.044 .302 .004 .000 8.043	2.974 .003 1.937 .061 .694 .014 2.041 2.041 2.041 .299 .001 .000 8.025	2.962 .004 1.947 .064 .699 .017 .000 2.034 .300 .004 .000 8.031	2.965 .003 1.945 .060 .683 .015 .000 2.054 .301 .004 .000 8.031	2.971 .002 1.946 .061 .019 .000 2.041 .294 .001 .000 8.024
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	69.04 3.02 5	70.37 3.11 15	71.11 3.05 25	71.82 3.16 34	72.18 2.55 44	72.73 2.94 54	73.23 2.74 64	72.62 3.01 74	73.70 2.90 83	73.61 2.84 93	74.20 3.07 103	74.03 2.94 113	74.21 2.87 122	74.57 2.96 132	74.65 2.87 142	74.37 2.96 152	74.63 3.07 162	74.42 3.19 171	75.04 2.97 181	74.79 3.02 191

Probe: Gu	Draft 00	Dfl 00	Deef! 00	D61 00	D61 00	D61 00 1	Deefl 00 l	D61 00	D61 00	D61 00	Deefl 00	D61 00	Deef! 00		D-afi 00	D61 00	D61 00		D61 00	D£1 00
Profilpunkt	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO ₂ A ₂ O ₃ Cr ₂ O ₃ FeO MnO NiO NiO CaO Na ₂ O K ₂ O ∑ SiO2	41.39 .06 23.27 1.04 11.49 .33 .01 19.32 3.94 .01 .00 100.86	41.51 .05 23.28 1.07 11.63 .03 19.30 3.90 .01 .00 101.07	41.48 .05 23.19 1.03 11.48 .31 18.96 3.93 .01 .01 100.46	41.74 .06 23.11 1.08 11.38 .29 .02 19.15 3.95 .04 .00 100.83	41.69 .05 23.27 1.07 11.64 .30 .01 19.21 3.90 .02 .01 101.16	41.64 .06 23.13 1.14 11.25 .33 .02 19.08 3.97 .04 .01 100.68	41.81 .04 23.19 1.11 11.37 .27 .00 19.29 3.95 .02 .00 101.04	41.70 .07 23.18 1.10 11.42 .31 .00 19.19 3.92 .02 .01 100.92	41.85 .05 23.18 1.08 11.46 .30 .01 19.22 3.94 .02 .03 101.14	41.87 .04 23.34 1.06 11.55 .33 .03 19.47 3.95 .01 .00 101.65	41.56 .06 23.25 1.06 11.47 .27 .00 19.33 3.92 .00 .01 100.93	41.68 .06 23.13 1.12 11.33 .31 .01 19.45 3.89 .00 .01 100.99	41.75 .07 23.19 1.11 11.21 .03 19.33 3.98 .03 .00 101.02	41.54 .06 23.14 1.10 11.41 .29 .00 19.20 4.01 .02 .00 100.77	41.62 .06 23.18 1.05 11.42 .33 .04 19.33 3.94 .01 .01 100.99	41.49 .06 23.16 1.00 11.00 .27 .00 19.23 3.97 .00 .00 100.23	41.74 .08 23.26 1.08 11.42 .28 .00 19.29 3.83 .00 .02 100.99	41.74 .07 23.18 1.12 10.96 .26 .00 19.19 4.02 .01 .00 100.55	41.67 .08 23.15 1.08 11.23 .28 .04 19.37 3.91 .00 .00 100.80	41.75 .08 23.08 1.07 11.18 .22 .01 19.24 3.96 .03 .00 100.62
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{besetzung}\\ \mbox{Si}\\ \mbox{Ti}\\ \mbox{Al}\\ \mbox{Al}\\ \mbox{Cr}\\ \mbox{Cr}\\ \mbox{Fe}^{2\kappa}\\ \mbox{Mn}\\ \mbox{Mi}\\ \mbox{Mg}\\ \mbox{Ca}\\ \mbox{Na}\\ \mbox{K}\\ \mbox{Saturent}\\ \mb$	2.953 .003 1.957 .059 .685 .020 .001 2.055 .302 .001 .000 8.036 12.000	2.957 .003 1.954 .060 .693 .018 .002 2.049 .297 .001 .000 8.034 12.000	2.969 .003 1.957 .058 .687 .001 2.024 .001 .001 8.022 12.000	2.976 .003 1.942 .061 .679 .018 .001 2.035 .006 .000 8.023 12.000	2.966 .002 1.951 .060 .692 .011 2.037 .298 .002 .001 8.028 12.000	2.973 .003 1.947 .065 .671 .020 .001 2.031 .005 .001 8.021 12.000	2.973 .002 1.944 .062 .676 .010 2.045 .301 .002 .000 8.022 12.000	2.971 .003 1.946 .062 .681 .000 2.038 .299 .002 .001 8.023 12.000	2.975 .003 1.942 .061 .011 2.037 .000 .002 8.023 12.000	2.963 .002 1.947 .059 .683 .020 2.055 .299 .002 .000 8.032 12.000	2.962 .003 1.953 .060 .684 .000 2.053 .299 .000 .001 8.029 12.000	2.967 .003 1.940 .063 .674 .000 2.064 .297 .000 .001 8.029 12.000	2.970 .004 1.944 .063 .002 2.050 .002 2.050 .004 8.025 12.000	2.965 .003 1.947 .062 .681 .000 2.043 .306 .002 .000 8.028 12.000	2.964 .003 1.946 .059 .680 .020 2.053 .300 .002 .001 8.031 12.000	2.971 .003 1.954 .060 .658 .016 .000 2.052 .304 .000 .000 8.019 12.000	2.970 .004 1.951 .061 .680 .017 .000 2.046 .292 .000 .002 8.021 12.000	2.978 .004 1.949 .063 .654 .000 2.041 .002 .000 8.013 12.000	2.969 .004 1.945 .061 .669 .017 2.058 .298 .000 .000 8.024 12.000	2.979 .004 1.941 .060 .667 .013 .001 2.046 .303 .004 .000 8.018 12.000
Mg # Cr # Profilstrecke [µm]	74.99 2.91 201	74.73 2.99 211	74.64 2.89 220	74.99 3.05 230	74.64 3.00 240	75.15 3.21 250	75.15 3.11 260	74.96 3.09 269	74.94 3.04 279	75.04 2.96 289	75.02 2.98 299	75.37 3.15 308	75.45 3.12 318	74.99 3.09 328	75.10 2.95 338	75.71 2.97 348	75.06 3.01 357	75.73 3.13 367	75.46 3.04 377	75.42 3.02 387

Probe: Gu																				
Profilname	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08
Profilpunkt	86	87	123	124	125	126	127	128	129	130	131	132	133	134	135	137	138	139	141	142
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt												
Analyse [Gew%] SiO, Trip Al₂O, Cr₂O, FeO MnO NiO MgO CaO CaO KgÓ CaO Xa,O KgÓ	41.83 .06 23.19 1.07 11.25 .30 .04 19.26 3.99 .00 .00 101.00	41.74 .08 23.15 1.10 11.29 .32 .07 19.29 3.93 .01 .00 100.98	41.59 .08 23.21 1.04 11.29 .27 .01 19.27 4.05 .01 .00 100.81	41.78 .10 23.20 11.46 .28 .00 19.34 4.10 .01 .01 101.30	41.71 .06 23.26 1.06 11.42 .31 .00 19.31 4.14 .02 .00 101.29	41.52 .08 23.23 1.05 11.25 .26 .00 19.39 .00 .00 100.77	41.60 .10 23.25 1.04 11.06 .27 .01 19.38 4.02 .02 .00 100.75	41.81 .10 23.22 1.06 11.15 .27 .01 19.26 3.99 .03 .00 100.89	41.63 .10 23.28 1.02 11.24 .30 .02 19.42 4.10 .02 .02 101.13	41.72 .07 23.34 1.09 11.43 .23 .03 19.53 4.01 .04 .00 101.48	41.74 .09 23.29 1.05 11.13 .27 .00 19.33 4.02 .02 .00 100.94	41.61 .08 23.31 1.05 11.35 .26 .01 19.51 3.93 .00 .00 101.12	41.67 .07 23.25 1.03 11.12 .26 .01 19.45 4.04 .02 .00 100.92	41.62 .08 23.30 1.06 11.25 .32 .01 19.32 4.02 .01 .01 101.00	41.88 .08 23.26 1.02 11.35 .29 .01 19.41 4.01 .04 .00 101.35	41.81 .06 23.23 1.04 11.55 .21 .02 19.43 4.03 .01 .01 101.40	41.48 .07 23.27 1.06 11.38 .24 .00 19.38 4.05 .00 .00 100.92	41.90 .06 23.29 1.10 11.39 .29 .00 19.41 4.00 .01 .01 101.44	41.77 .06 23.24 1.40 .28 .03 19.39 4.02 .00 .00 101.22	41.66 .08 23.25 1.04 11.14 .02 19.33 4.03 .01 .00 100.81
Kationen- besetzung Si Ti Al Cr Fe st Mn Mg Ca Ca Na K Kationen	2.975 .003 1.944 .060 .669 .018 .002 2.043 .304 .001 .000 8.020	2.971 .004 1.942 .062 .672 .019 .004 2.047 .300 .001 .000 8.023	2.965 .004 1.950 .059 .673 .016 .000 2.048 .309 .002 .000 8.027	2.967 .005 1.942 .057 .680 .017 .000 2.047 .312 .002 .001 8.030	2.963 .003 1.947 .060 .678 .019 .000 2.044 .315 .003 .000 8.032	2.961 .004 1.952 .059 .671 .016 .000 2.061 .305 .000 .000 8.030	2.964 .005 1.953 .059 .659 .016 .000 2.059 .307 .002 .000 8.026	2.975 .005 1.947 .060 .663 .016 .001 2.043 .304 .004 .000 8.018	2.960 .005 1.950 .057 .668 .018 .001 2.058 .312 .003 .002 8.034	2.957 .004 1.949 .061 .677 .014 .002 2.063 .305 .005 .000 8.037	2.969 .005 1.952 .059 .662 .016 .000 2.050 .306 .002 .000 8.022	2.958 .004 1.953 .059 .675 .016 .000 2.068 .299 .000 .000 8.032	2.965 .004 1.950 .058 .662 .015 .001 2.064 .308 .003 .000 8.029	2.962 .004 1.954 .059 .669 .020 .001 2.050 .307 .001 8.028	2.970 .004 1.944 .057 .673 .017 .000 2.052 .304 .006 .000 8.028	2.966 .003 1.942 .059 .685 .012 .001 2.055 .306 .001 .001 8.032	2.956 .004 1.954 .059 .678 .015 2.058 .309 .000 .000 8.034	2.969 .003 1.945 .062 .675 .017 .000 2.050 .303 .001 .000 8.025	2.966 .003 1.946 .059 .677 .017 2.053 .306 .000 .000 8.028	2.968 .004 1.952 .059 .664 .014 2.053 .308 .002 .000 8.024
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	75.31 2.99 397	75.29 3.10 406	75.26 2.92 759	75.06 2.86 769	75.08 2.97 778	75.45 2.95 788	75.75 2.92 798	75.49 2.97 808	75.49 2.85 818	75.28 3.05 827	75.59 2.92 837	75.40 2.94 847	75.72 2.89 857	75.38 2.95 867	75.29 2.87 876	74.99 2.93 896	75.21 2.95 906	75.22 3.07 915	75.19 2.93 935	75.57 2.91 945

Probe: Gu	Deef! 00	Dfl 00	Dfl 00	D61 00	Deefl 00	Deefl 00	Deefi 00	D61 00	Deefl 00	D61 00	Deefl 00	Deefl 00	Deef! 00		Deefi 00	D61 00	D61 00		D61 00	D£1 00
Profilpunkt	143	144	145	146	147	148	149	150	152	153	154	155	156	157	158	160	161	162	163	164
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt								
Analyse [Gew%] SiO2 TiO2 TiO2 Al2O3 Cr2O3 FeO MiO NiO NiO GaO Na2O K2O K2O X2O	41.70 .07 23.37 1.08 11.67 .23 .02 19.56 4.04 .02 .00 101.76	41.69 .08 23.31 1.08 11.46 .29 .00 19.49 4.12 .00 .00 101.52	41.66 .06 23.28 1.06 11.44 .26 .00 19.50 4.02 .02 .01 101.32	41.66 .09 23.35 11.05 11.33 .28 .02 19.50 4.05 .02 .01 101.34	41.69 .07 23.27 1.03 11.25 .26 .00 19.46 4.06 .02 .00 101.11	41.71 .08 23.28 1.06 11.43 .27 .00 19.43 4.02 .01 .00 101.28	41.67 .09 23.25 1.04 11.08 .23 .00 19.39 4.02 .01 .01 100.81	41.59 .10 23.31 1.00 11.23 .26 .00 19.45 .02 .00 101.01	41.57 .09 23.24 1.07 11.43 .28 19.53 3.99 .02 .01 101.25	41.56 .09 23.27 1.03 11.14 .26 .01 19.43 3.98 .00 .01 100.79	41.55 .11 23.28 1.05 11.31 .33 .01 19.43 4.05 .03 .01 101.15	41.61 .11 23.24 1.06 11.13 .28 .03 19.44 4.00 .03 .00 100.95	41.56 .11 23.16 1.03 11.21 .00 19.48 3.93 .01 .00 100.73	41.61 .10 23.13 1.09 11.38 .28 .01 19.54 4.01 .00 .02 101.17	41.25 .10 23.23 1.04 11.13 .22 .05 19.65 4.05 .02 .01 100.75	41.69 .10 23.20 1.10 11.25 .27 .00 19.47 3.95 .03 .00 101.06	41.62 .07 23.30 1.04 11.24 .30 .00 19.39 4.00 .01 .01 100.96	41.60 .05 23.28 1.08 11.40 .23 .01 19.52 3.93 .02 .00 101.11	41.31 .08 23.24 1.09 11.36 .26 19.45 4.07 .00 .00 100.91	41.38 .09 23.30 1.10 11.41 .26 .00 19.49 4.04 .00 .00 101.07
Kationen- besetzung Si Ti Al Cr Fre ²⁺ Mn Mg Ca Na K X Kationen Sauerstoffe	2.951 .004 1.949 .061 .690 .014 .001 2.063 .307 .003 .000 8.042 12.000	2.955 .004 1.948 .060 .679 .018 .000 2.060 .313 .000 .000 8.037 12.000	2.958 .003 1.948 .059 .679 .016 .000 2.064 .306 .003 .001 8.037 12.000	2.956 .005 1.953 .059 .672 .017 .001 2.062 .308 .003 .001 8.036 12.000	2.963 .004 1.949 .058 .669 .016 .000 2.062 .309 .003 .000 8.031 12.000	2.961 .004 1.948 .059 .679 .016 .000 2.057 .306 .001 .000 8.031 12.000	2.967 .005 1.951 .059 .660 .014 .000 2.058 .307 .002 .001 8.024 12.000	2.959 .005 1.954 .056 .668 .016 .000 2.062 .308 .003 .000 8.032 12.000	2.954 .005 1.946 .060 .679 .017 .001 2.070 .304 .003 .001 8.040 12.000	2.961 .005 1.955 .058 .664 .001 2.064 .304 .000 .001 8.028 12.000	2.955 .006 1.951 .059 .672 .020 .000 2.060 .309 .004 .001 8.037 12.000	2.962 .006 1.949 .060 .662 .017 .002 2.063 .305 .004 .000 8.030 12.000	2.963 .006 1.947 .058 .669 .014 .000 2.071 .300 .001 .000 8.028 12.000	2.959 .006 1.939 .061 .677 .017 .000 2.071 .305 .000 .002 8.037 12.000	2.944 .005 1.954 .059 .665 .013 .003 2.090 .310 .003 .001 8.046 12.000	2.964 .005 1.944 .062 .669 .016 .000 2.064 .301 .004 .000 8.029 12.000	2.962 .004 1.954 .058 .669 .018 .000 2.057 .305 .002 .001 8.029 12.000	2.958 .003 1.951 .061 .678 .014 .001 2.069 .299 .002 .000 8.035 12.000	2.947 .004 1.954 .062 .678 .016 .003 2.069 .311 .000 .000 8.042 12.000	2.946 .005 1.955 .062 .679 .016 .000 2.068 .309 .001 .000 8.041 12.000
Mg # Cr # Profilstrecke [µm]	74.93 3.01 955	75.20 3.00 964	75.24 2.96 974	75.42 2.92 984	75.51 2.87 994	75.19 2.96 1004	75.73 2.92 1013	75.53 2.79 1023	75.29 2.98 1043	75.66 2.89 1053	75.39 2.93 1062	75.70 2.98 1072	75.59 2.90 1082	75.37 3.05 1092	75.88 2.92 1101	75.52 3.09 1121	75.46 2.91 1131	75.32 3.02 1141	75.32 3.06 1150	75.28 3.06 1160

Probe: Gu																				
Profilname	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08 I	Profil-08 I	Profil-08 I	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08
Profilpunkt	165	166	167	168	169	170	171	175	176	177	178	179	180	181	182	183	184	185	186	187
Mineral	Grt Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt							
Analyse [Gew%] [SiO ₂ TiO ₂ TiO ₃ Al ₂ O ₃ Al ₂ O ₃ Gr ₂ O ₃ MinO MinO NiO CaO CaO CaO K ₂ Ô ∑	41.29 .08 23.28 1.07 11.11 .28 .00 19.57 4.03 .01 .00 100.71	41.45 .10 23.26 1.04 11.16 .25 .00 19.38 4.05 .01 .02 100.71	41.01 .11 23.24 1.08 11.14 .24 .00 19.50 3.97 .00 .01 100.28	41.50 .08 23.28 1.06 11.19 .26 .00 19.63 3.98 .01 .01 101.00	41.27 .08 23.29 1.10 11.20 .03 19.52 3.94 .01 .02 100.77	41.60 .08 23.24 1.05 11.28 .29 .04 19.48 4.05 .03 .00 101.14	41.59 .10 23.23 1.10 11.09 .23 .00 19.38 4.02 .03 .01 100.77	41.70 .07 23.24 1.06 11.39 .23 .01 19.55 4.08 .00 .02 101.36	41.50 .11 23.28 1.06 11.17 .26 .05 19.52 4.03 .00 .00 100.98	41.50 .06 23.32 1.03 11.21 .26 .00 19.51 3.96 .00 .00 100.84	41.07 .10 23.32 1.07 11.44 .22 .00 19.54 4.00 .01 .00 100.75	41.18 .09 23.26 1.09 10.95 .26 .01 19.42 4.08 .00 .00 100.34	41.50 .08 23.26 1.08 11.19 .25 .00 19.59 3.94 .03 .01 100.93	41.50 .10 23.31 1.51 .25 .02 19.56 4.09 .00 .01 101.44	41.42 .09 23.33 1.07 11.37 .20 .00 19.49 4.04 .01 .00 101.02	41.43 .08 23.29 1.10 11.38 .29 .00 19.42 4.02 .01 .00 101.01	41.71 .09 23.29 11.23 .26 .00 19.53 4.08 .00 .00 101.30	41.39 .09 23.29 1.06 11.35 .23 .02 19.44 4.03 .03 .00 100.94	41.58 .08 23.23 1.04 11.31 .28 .00 19.40 4.08 .01 .02 101.01	41.43 .08 23.35 1.03 11.17 .23 .00 19.57 4.11 .01 100.97
Kationen- besetzung Si Ti Al Cr Fe ²⁴ Mn Mg Ca Ca Na K K Kationen	2.947 .004 1.958 .060 .663 .017 .000 2.082 .308 .001 .000 8.041	2.957 .005 1.956 .059 .666 .015 .000 2.061 .309 .001 .002 8.031	2.940 .006 1.963 .061 .668 .014 .000 2.084 .305 .000 .001 8.042	2.953 .004 1.952 .060 .666 .016 .000 2.082 .303 .002 .001 8.039	2.946 .004 1.959 .062 .668 .018 .002 2.077 .301 .002 .002 8.041	2.958 .004 1.948 .059 .671 .018 .002 2.065 .309 .004 .000 8.037	2.964 .005 1.951 .062 .661 .014 .009 .059 .307 .004 .001 8.027	2.959 .004 1.944 .060 .676 .014 .001 2.068 .310 .000 .002 8.037	2.954 .006 1.953 .060 .665 .016 .003 2.071 .307 .001 .000 8.034	2.957 .003 1.958 .668 .016 .000 2.072 .302 .000 .000 8.033	2.935 .005 1.964 .060 .684 .013 .000 2.081 .306 .002 .000 8.049	2.948 .005 1.963 .065 .016 .001 2.073 .313 .000 .000 8.035	2.955 .004 1.952 .061 .666 .015 .000 2.079 .301 .004 .001 8.037	2.946 .005 1.950 .061 .683 .015 .001 2.069 .311 .000 .001 8.044	2.949 .005 1.958 .060 .677 .012 .000 2.068 .308 .001 .000 8.038	2.951 .004 1.955 .062 .678 .018 .000 2.062 .307 .001 .000 8.037	2.959 .005 1.947 .063 .666 .016 .000 2.066 .310 .000 .000 8.031	2.950 .005 1.956 .060 .676 .014 2.066 .307 .005 .000 8.040	2.960 .004 1.949 .058 .673 .017 .000 2.059 .311 .002 .002 8.034	2.949 .004 1.958 .665 .014 .000 2.077 .313 .002 .000 8.040
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	75.85 2.99 1170	75.58 2.92 1180	75.74 3.03 1190	75.76 2.96 1199	75.65 3.08 1209	75.48 2.93 1219	75.70 3.07 1229	75.36 2.98 1268	75.71 2.96 1278	75.62 2.88 1287	75.27 2.97 1297	75.98 3.06 1307	75.73 3.03 1317	75.17 3.05 1327	75.35 2.99 1336	75.27 3.08 1346	75.62 3.12 1356	75.34 2.96 1366	75.36 2.91 1376	75.75 2.87 1385

Probe: Gu	D (1.00	D., (1.00	D., (1.00	D	D (1.00.)	D	D (1 00	D	D	D	D (1 00	D	D	D., (1.00	D (1.00	D., CI 00	D	D (1 00	D 61.00	D
Profilname Profilpunkt	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	205	206	207	210	211 211
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] [SiO ₂ Aj ₂ O ₃ TiO ₂ Aj ₂ O ₃ FeO MnO NiO MgO CaO Aj ₂ O K ₂ O ∑	41.48 .11 23.11 1.12 11.27 .32 .00 19.49 4.09 .04 .04 .00 101.03	41.47 .08 23.22 11.29 .27 .00 19.42 4.06 .01 .00 100.93	41.49 .08 23.29 11.02 11.10 .25 .00 19.40 3.94 .02 .00 100.59	41.55 .07 23.28 1.07 11.43 .30 .00 19.38 4.01 .00 .00 101.08	41.52 .08 23.25 1.07 11.05 .23 .00 19.31 4.02 .02 .00 100.56	41.32 .07 23.33 1.24 .27 .00 19.54 4.05 .01 .01 100.91	41.44 .11 23.35 1.02 11.31 .28 .04 19.48 4.08 .01 .00 101.11	41.35 .06 23.24 1.10 11.36 .25 .01 19.43 4.03 .03 .00 100.85	41.29 .12 23.25 1.08 11.43 .22 .00 19.43 4.07 .00 .00 100.89	41.30 .09 23.29 1.11 11.29 .24 .01 19.35 4.04 .03 .00 100.75	41.52 .11 23.29 1.09 11.07 .29 .03 19.48 4.03 .00 .00 100.91	41.57 .09 23.23 1.10 11.59 .29 .01 19.53 4.00 .00 .00 101.42	41.27 .09 23.24 1.10 11.28 .29 .01 19.58 4.07 .02 .01 100.97	41.46 .08 23.23 1.08 11.36 .30 .00 19.43 4.04 .01 .01 100.98	41.67 .06 23.24 11.62 .31 .00 19.46 4.03 .01 .01 101.47	41.33 .10 23.26 1.34 11.35 .26 .00 19.42 4.04 .00 .00 100.89	41.25 .10 23.22 1.11 11.33 .30 .00 19.42 4.02 .02 .00 100.77	41.49 .11 23.08 10.9 11.27 .23 .02 19.41 4.03 .02 .00 100.73	41.62 .07 23.25 1.08 11.41 .25 .00 19.31 4.05 .03 .02 101.07	41.53 .07 23.19 1.13 11.40 .24 .00 19.27 3.98 .01 .00 100.80
Kationen- besetzung Si Ti Al Cr ²⁺ Mn Ni Mg Ca Kationen Sauerstoffe	2.954 .006 1.940 .063 .671 .019 .000 2.070 .312 .005 .000 8.041 12.000	2.955 .004 1.950 .063 .016 .000 2.063 .310 .001 .000 8.035	2.961 .004 1.959 .058 .603 .015 .000 2.064 .301 .002 .000 8.027 12.000	2.957 .004 1.952 .060 .018 .000 2.056 .305 .000 .000 8.033 12.000	2.964 .004 1.956 .060 .014 .000 2.055 .308 .003 .000 8.025 12.000	2.945 .004 1.959 .061 .000 2.076 .309 .001 8.042 12.000	2.948 .006 1.958 .057 .673 .017 .002 2.066 .311 .002 .000 8.039 12.000	2.950 .003 1.954 .062 .678 .001 2.067 .308 .004 .000 8.041 12.000	2.945 .007 1.955 .061 .682 .013 .000 2.066 .311 .000 .000 8.040 12.000	2.949 .005 1.959 .063 .674 .014 .001 2.060 .309 .004 .000 8.038 12.000	2.956 .006 1.954 .061 .659 .018 .002 2.068 .307 .000 .000 8.030 12.000	2.952 .005 1.944 .062 .688 .017 .001 2.067 .304 .000 .000 8.041 12.000	2.942 .005 1.953 .062 .673 .018 .001 2.081 .311 .003 .001 8.048 12.000	2.954 .004 1.951 .061 .018 .000 2.064 .308 .001 .001 8.037 12.000	2.957 .003 1.944 .059 .000 2.059 .306 .001 .001 8.039 12.000	2.947 .005 1.955 .064 .677 .016 .000 2.065 .309 .001 .000 8.038	2.946 .005 1.954 .063 .677 .018 .000 2.067 .307 .003 .000 8.042 12.000	2.961 .006 1.941 .061 .014 .001 2.065 .308 .003 .000 8.033 12.000	2.962 .003 1.950 .061 .679 .015 .000 2.048 .308 .004 .002 8.032 12.000	2.962 .004 1.949 .064 .680 .014 .000 2.049 .304 .001 .000 8.028 12.000
Mg # Cr # Profilstrecke [µm]	75.51 3.14 1395	75.40 3.12 1405	75.70 2.85 1415	75.14 2.99 1425	75.70 3.00 1434	75.61 3.02 1444	75.43 2.84 1454	75.31 3.08 1464	75.18 3.01 1474	75.34 3.09 1483	75.84 3.04 1493	75.03 3.08 1503	75.57 3.08 1513	75.31 3.02 1522	74.90 2.96 1532	75.31 3.17 1562	75.33 3.11 1571	75.42 3.06 1581	75.11 3.01 1611	75.09 3.17 1620

Probe: Gu																				
Profilname	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08 I	Profil-08 I	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08	Profil-08
Profilpunkt	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO, Trip Al₂O, Gr₂O, FeO MnO NiO MgO CaO CaO KgÓ CaO Xa,O KgÓ	41.46 .07 23.16 1.09 11.42 .27 .01 19.42 4.07 .02 .00 101.00	41.58 .05 23.31 1.06 11.52 .25 .00 19.42 3.95 .02 .00 101.17	41.57 .09 23.14 1.11 11.43 .25 .00 19.39 4.05 .01 .01 101.04	41.36 .08 23.23 1.10 11.43 .32 .03 19.44 4.09 .02 .01 101.09	41.53 .08 23.18 1.08 11.48 .29 .00 19.44 4.02 .04 .01 101.13	41.31 .09 23.26 1.11 11.52 .23 .03 19.27 4.01 .01 .01 100.84	41.51 .07 23.24 1.06 11.56 .29 .05 19.35 4.05 .01 .01 101.20	41.31 .08 23.20 1.11 11.33 .28 .00 19.32 4.03 .02 .01 100.67	41.38 .09 23.18 11.56 .27 .00 19.33 4.03 .02 .00 100.96	41.47 .09 23.27 1.11 11.47 .26 .00 19.32 4.08 .03 .01 101.11	41.57 .07 23.26 1.10 11.63 .35 .02 19.43 4.00 .02 .01 101.47	41.55 .10 23.14 1.06 11.56 .24 .00 19.32 4.00 .01 .01 100.98	41.43 .08 23.21 1.08 11.51 .25 .00 19.22 3.99 .03 .00 100.79	41.19 .06 23.15 1.10 11.92 .29 .04 19.31 4.16 .04 .02 101.28	41.57 .08 23.18 1.09 11.61 .30 .05 19.14 4.03 .02 .00 101.07	41.42 .07 23.11 1.06 11.78 .30 .00 19.30 4.04 .00 .00 101.08	41.44 .07 23.12 1.04 11.65 .29 .00 19.16 4.02 .02 .00 100.81	41.45 .06 23.09 1.11 11.88 .27 .04 19.34 3.94 .01 .01 101.20	41.37 .09 23.24 1.13 11.79 .23 .00 19.29 3.99 .00 .01 101.14	41.50 .10 23.13 11.33 11.76 .32 .00 19.07 4.02 .01 .00 101.04
Kationen- besetzung Si Ti Al Cr Fe ²⁴ Mn Mg Ca Ca Na K Kationen	2.955 .004 1.945 .061 .016 .001 2.063 .310 .003 .000 8.040	2.957 .003 1.954 .059 .685 .015 .000 2.059 .301 .002 .000 8.035	2.960 .005 1.942 .062 .681 .015 .000 2.058 .309 .001 .001 8.034	2.947 .004 1.950 .062 .681 .019 .002 2.065 .312 .002 .001 8.045	2.956 .004 1.944 .061 .683 .018 .008 2.063 .306 .005 .001 8.041	2.950 .005 1.957 .062 .688 .014 .001 2.051 .307 .001 8.037	2.954 .004 1.949 .060 .688 .017 .003 2.053 .308 .001 .000 8.039	2.952 .004 1.954 .062 .677 .017 .000 2.058 .308 .003 .001 8.037	2.952 .005 1.949 .061 .690 .016 .006 2.056 .308 .003 .000 8.040	2.952 .005 1.952 .063 .683 .016 .000 2.051 .311 .004 .001 8.038	2.952 .004 1.947 .062 .690 .021 2.057 .305 .002 .001 8.042	2.961 .006 1.943 .060 .689 .015 .000 2.053 .305 .001 .001 8.033	2.958 .004 1.953 .061 .687 .015 .005 .004 .305 .004 .000 8.033	2.938 .003 1.946 .062 .711 .018 .002 2.053 .318 .006 .002 8.059	2.962 .004 1.947 .062 .692 .018 .003 2.033 .308 .003 .000 8.031	2.954 .004 1.942 .060 .703 .018 .000 2.051 .309 .000 .000 8.041	2.961 .004 1.946 .059 .696 .018 .000 2.041 .307 .003 .000 8.035	2.954 .003 1.939 .063 .708 .016 .002 2.054 .301 .001 8.043	2.948 .005 1.952 .064 .703 .014 .004 2.049 .305 .000 .001 8.040	2.961 .005 1.944 .064 .702 .019 .000 2.028 .307 .001 .000 8.031
Sauerstoffe	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000
Mg # Cr # Profilstrecke [µm]	75.19 3.05 1630	75.03 2.95 1640	75.15 3.12 1650	75.19 3.07 1660	75.11 3.02 1669	74.89 3.09 1679	74.90 2.97 1689	75.24 3.10 1699	74.88 3.04 1708	75.02 3.11 1718	74.86 3.08 1728	74.88 2.98 1738	74.85 3.02 1748	74.27 3.09 1757	74.62 3.06 1767	74.49 2.99 1777	74.58 2.93 1787	74.37 3.13 1797	74.47 3.17 1806	74.30 3.18 1816

Probe: Gu				-									-							
Profilname	Profil-08	Profil-08	Profil-08	235	236	237	238	230	Profil-08	241	Profil-08	Profil-08	Profil-08	245	246	Profil-08	248	240	250	Profil-08
Frompunkt	252	200	234	200	200	201	200	200	240	241	242	245	244	245	240	247	240	243	200	201
Mineral	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 Al2O3 C7,O3 FeO MnO NiO MgO CaO CaO K2O K2O X2O	41.44 .10 23.23 1.10 12.09 .25 .01 19.22 3.96 .05 .00 101.46	41.44 .06 23.21 1.15 11.79 .28 .01 19.06 4.03 .02 .01 101.05	41.46 .06 23.22 1.12 12.03 .27 .00 18.97 3.99 .01 .01 101.13	41.35 .07 23.14 1.08 11.60 .37 .00 18.96 4.04 .03 .01 100.66	41.35 .06 23.14 1.08 11.92 .26 .03 18.99 4.12 .00 .00 100.94	41.37 .05 23.16 1.14 11.95 .31 .00 19.00 4.06 .00 .00 101.05	41.35 .08 23.10 12.10 .28 .00 18.99 3.99 .00 .00 100.99	41.34 .09 23.16 1.08 11.96 .23 .01 18.96 4.01 .01 100.85	41.31 .07 23.16 1.12 12.22 .31 18.92 4.07 .02 .00 101.19	41.51 .07 23.19 1.10 12.14 .30 .08 18.83 4.03 .01 .00 101.26	41.41 .05 23.01 1.19 12.15 .34 .01 18.84 4.10 .00 .02 101.12	41.19 .07 23.15 1.18 11.97 .34 .02 18.90 4.13 .01 .00 100.95	41.21 .05 23.23 1.15 11.95 .29 .02 18.98 4.19 .02 .00 101.08	41.23 .05 23.16 12.48 .32 .00 18.90 4.11 .03 .01 101.45	41.31 .08 23.18 1.11 12.20 .25 .03 18.76 4.19 .03 .02 101.16	41.26 .05 23.09 1.20 12.18 .25 .00 18.82 4.23 .02 .01 101.10	41.38 .10 23.06 1.18 12.36 .36 .00 18.69 4.16 .00 .00 101.30	41.32 .05 23.02 1.20 12.33 .33 .00 18.70 4.27 .01 .00 101.23	41.03 .06 23.22 1.17 12.34 .33 .00 18.59 4.15 .01 .01 100.90	41.13 .04 23.08 1.19 12.24 .00 18.60 4.30 .00 .01 100.88
$\begin{array}{c} \mbox{Kationen-}\\ \mbox{besetzung}\\ \mbox{Si}\\ \mbox{Ti}\\ \mbox{Al}\\ \mbox{Al}\\ \mbox{Cr}\\ \mbox{Cr}\\ \mbox{Cr}\\ \mbox{Mn}\\ \mbox{Mn}\\ \mbox{Mi}\\ \$	2.948 .005 1.948 .062 .719 0.015 .001 2.038 .302 .006 .000 8.045 12.000	2.956 .003 1.951 .065 .703 .000 2.027 .308 .003 .001 8.035	2.957 .003 1.952 .063 .717 .000 2.017 .305 .001 8.033 12.000	2.960 .004 1.952 .061 .694 .000 2.023 .310 .004 .001 8.032 12.000	2.955 .003 1.949 .061 .713 .016 .002 2.023 .315 .000 8.037 12.000	2.954 .003 1.949 .065 .714 .000 2.022 .311 .000 8.036 12.000	2.955 .004 1.946 .062 .723 .017 .000 2.023 .306 .000 8.036 12.000	2.956 .005 1.952 .061 .715 .014 .000 2.021 .307 .002 .000 8.033	2.950 .004 1.949 .063 .729 .001 2.014 .311 .003 .000 8.042	2.960 .004 1.949 .062 .724 .005 2.001 .308 .001 .000 8.031 12.000	2.959 .003 1.938 .067 .726 .021 2.007 .314 .000 .002 8.037 12.000	2.947 .004 1.952 .067 .716 .001 2.016 .317 .002 .000 8.041 12.000	2.944 .002 1.956 .065 .714 .001 2.021 .321 .003 .000 8.045	2.942 .003 1.948 .066 .745 .019 .000 2.011 .314 .004 .000 8.051	2.951 .004 1.952 .063 .729 .015 .002 1.998 .321 .004 .002 8.040 12.000	2.950 .003 1.946 .068 .728 .000 2.006 .324 .000 8.042 12.000	2.955 .005 1.940 .067 .738 .021 .000 1.990 .318 .001 .000 8.036 12.000	2.953 .003 1.939 .068 .737 .020 .000 1.993 .327 .001 .000 8.041 12.000	2.942 .003 1.963 .066 .740 .000 1.987 .319 .001 8.042 12.000	2.949 .002 1.950 .067 .734 .000 1.988 .330 .000 .001 8.040 12.000
Mg # Cr # Profilstrecke [µm]	73.91 3.08 1826	74.25 3.22 1836	73.77 3.14 1846	74.45 3.04 1855	73.95 3.03 1865	73.91 3.21 1875	73.66 3.10 1885	73.86 3.04 1894	73.41 3.14 1904	73.44 3.08 1914	73.43 3.34 1924	73.79 3.30 1934	73.90 3.21 1943	72.97 3.26 1953	73.28 3.12 1963	73.36 3.36 1973	72.95 3.33 1983	73.01 3.37 1992	72.87 3.27 2002	73.03 3.34 2012

Probe: Gu				
Profilname	Profil-08 Profil-08 Profil-08 Profil-08			
Profilpunkt	252	253	254	255
Mineral	Grt	Grt	Grt	Grt
Analyse [Gew%] SiO2 SiO2 TiO2 Cr2O3 FeO MnO NiO MgO CaO CaO K2O K2O K2O K2O	41.34 .03 23.20 1.09 12.60 .25 .00 18.61 4.20 .00 .00 101.31	41.10 .03 23.13 1.06 12.55 .31 .00 18.46 4.18 .01 .00 100.82	40.91 .00 23.16 1.06 12.78 .27 .02 18.23 4.26 .02 .02 100.74	41.16 .00 23.22 .64 13.68 .49 .01 17.71 3.77 .01 .01 100.71
Kationen- besetzung Si Ti AI Cr Fe ²⁴ - Mn Mg Ca Na K Xationen Sauerstoffe	2.952 .002 1.953 .062 .752 .015 .000 1.982 .321 .000 .000 8.039 12.000	2.951 .002 1.957 .060 .753 .019 .000 1.976 .321 .001 .000 8.040 12.000	2.944 .000 1.965 .060 .769 .017 .001 1.956 .328 .003 .002 8.046 12.000	2.967 .000 1.973 .037 .825 .030 .001 1.903 .292 .001 .001 8.029 12.000
Mg # Cr # Profilstrecke [µm]	72.48 3.06 2022	72.40 2.98 2032	71.77 2.97 2041	69.76 1.82 2051

Danksagung

Mein Dank gilt vor allem meinem Doktorvater Prof. Dr. Rainer Altherr, der mir diese Dissertation ermöglichte. Nachdem er mir den Anstoß zu diesem Thema gab, bekam ich von ihm den Freiraum meine eigenen Vorstellungen umzusetzen. Außerdem danke ich Thomas Ludwig. Er stand mir nicht nur bei der SIMS-Analytik bei, sondern half mir bei allen Fragen, mit denen ich zu ihm kam. Des Weiteren danke ich Dr. Hans-Peter Meyer und Johannes Grimm für die Betreuung bei der EMS-Analytik. Nicht zu vergessen sind Ilona Fin und Oliver Wienand aus dem Schleiflabor, deren für mich angefertigten Dünnschliffe dieser Arbeit zu Grunde liegen. Zusätzlich müssen noch Philipp Rammensee und Tobias Fatscher genannt werden, die mir halfen, wenn sich mir große Steine in den Weg legten. Abschließend gilt mein Dank meiner ganzen Familie, die mir während meines gesamten Studiums immer Mut zusprach, wenn dieser mich mal verließ; und natürlich Justus, Peter und Bob, die mir bei diesem spezial gelagerten Sonderfall viel Gesellschaft leisteten.

Eidesstattliche Versicherung gemäß § 8 der Promotionsordnung der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Universität Heidelberg

1. Bei der eingereichten Dissertation zu dem Thema

Die intra- und interkristalline Verteilung der Spurenelemente Phosphor, Scandium, Cobalt und Zink in Orogenen Ultramafititen

handelt es sich um meine eigenständig erbrachte Leistung.

2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner unzulässigen Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß aus anderen Werken übernommene Inhalte als solche kenntlich gemacht.

3. Die Arbeit oder Teile davon habe ich bislang nicht an einer Hochschule des In- oder Auslands als Bestandteil einer Prüfungs- oder Qualifikationsleistung vorgelegt.

4. Die Richtigkeit der vorstehenden Erklärung bestätige ich.

5. Die Bedeutung der eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unrichtigen oder unvollständigen eidesstattlichen Versicherung sind mir bekannt.

Ich versichere an Eides statt, dass ich nach bestem Wissen die reine Wahrheit erklärt und nichts verschwiegen habe.

Ort und Datum

Unterschrift