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Abstract

The objective of this thesis is to enhance visual recognition for objects and scenes
through the development of novel mid-level representations and appendent learning
algorithms. In particular, this work is focusing on category level recognition which
is still a very challenging and mainly unsolved task. One crucial component in visual
recognition systems is the representation of objects and scenes. However, depending on
the representation, suitable learning strategies need to be developed that make it possible
to learn new categories automatically from training data. Therefore, the aim of this thesis
is to extend low-level representations by mid-level representations and to develop suitable
learning mechanisms.

A popular kind of mid-level representations are higher order statistics such as
self-similarity and co-occurrence statistics. While these descriptors are satisfying the
demand for higher-level object representations, they are also exhibiting very large and ever
increasing dimensionality. In this thesis a new object representation, based on curvature
self-similarity, is suggested that goes beyond the currently popular approximation of
objects using straight lines. However, like all descriptors using second order statistics,
it also exhibits a high dimensionality. Although improving discriminability, the high
dimensionality becomes a critical issue due to lack of generalization ability and curse
of dimensionality. Given only a limited amount of training data, even sophisticated
learning algorithms such as the popular kernel methods are not able to suppress noisy or
superfluous dimensions of such high-dimensional data. Consequently, there is a natural
need for feature selection when using present-day informative features and, particularly,
curvature self-similarity. We therefore suggest an embedded feature selection method for
support vector machines that reduces complexity and improves generalization capability
of object models. The proposed curvature self-similarity representation is successfully
integrated together with the embedded feature selection in a widely used state-of-the-art
object detection framework.

The influence of higher order statistics for category level object recognition, is further
investigated by learning co-occurrences between foreground and background, to reduce
the number of false detections. While the suggested curvature self-similarity descriptor
is improving the model for more detailed description of the foreground, higher order
statistics are now shown to be also suitable for explicitly modeling the background.
This is of particular use for the popular chamfer matching technique, since it is prone
to accidental matches in dense clutter. As clutter only interferes with the foreground
model contour, we learn where to place the background contours with respect to the
foreground object boundary. The co-occurrence of background contours is integrated
into a max-margin framework. Thus the suggested approach combines the advantages of
accurately detecting object parts via chamfer matching and the robustness of max-margin
learning.

While chamfer matching is very efficient technique for object detection, parts are only
detected based on a simple distance measure. Contrary to that, mid-level parts and
patches are explicitly trained to distinguish true positives in the foreground from false
positives in the background. Due to the independence of mid-level patches and parts it
is possible to train a large number of instance specific part classifiers. This is contrary



to the current most powerful discriminative approaches that are typically only feasible
for a small number of parts, as they are modeling the spatial dependencies between
them. Due to their number, we cannot directly train a powerful classifier to combine
all parts. Instead, parts are randomly grouped into fewer, overlapping compositions that
are trained using a maximum-margin approach. In contrast to the common rationale of
compositional approaches, we do not aim for semantically meaningful ensembles. Rather
we seek randomized compositions that are discriminative and generalize over all instances
of a category. Compositions are all combined by a non-linear decision function which is
completing the powerful hierarchy of discriminative classifiers.

In summary, this thesis is improving visual recognition of objects and scenes, by
developing novel mid-level representations on top of different kinds of low-level
representations. Furthermore, it investigates in the development of suitable learning
algorithms, to deal with the new challenges that are arising form the novel object
representations presented in this work.



Zusammenfassung

Ziel dieser Arbeit ist es, die visuelle Erkennung von Objekten und Szenen,
durch die Entwicklung neuer Mid-Level Reprisentationen und dazugehoriger
Lernverfahren zu verbessern. Insbesondere beschiftigt sich diese Arbeit mit
Kategorielevelobjekterkennung, die immer noch eine herausfordernde und grofBteils
ungeloste Aufgabe darstellt. Ein wichtiger Bestandteil visueller Erkennungssysteme
ist die Reprisentation von Objekten und Szenen. Jedoch miissen in Abhingigkeit
der jeweiligen Reprisentation geeignete Lernstrategien entwickelt werden, die es
ermdglichen neue Kategorien automatisch anhand der Trainingsdaten zu lernen. Daher,
ist das Ziel dieser Arbeit, Low-Level Reprisentationen durch Mid-Level Reprisentationen
zu erweitern und geeignete Lernverfahren zu entwickeln.

Eine hiufig verwendete Mid-Level Reprisentation sind Statistiken hoherer Ordnung,
wie Self-Similarity und Co-occurrence Statistiken. Diese Deskriptoren erfiillen die
Forderung nach Objektreprisentationen auf einem hoheren Level, weisen jedoch eine
sehr hohe und immer grofer werdende Dimensionalitit auf. In dieser Arbeit wird
eine neue Objektrepriasentation basierend auf Curvature Self-Similarity entwickelt,
die liber die momentan gingige Approximation von Objekten durch gerade Linien
hinausgeht. Allerdings hat dieser Deskriptor, wie alle Deskriptoren die Statistiken
zweiter Ordnung verwenden, eine sehr hohe Dimensionalitit. Obwohl die hohe
Dimensionalitit die Diskriminabilitit verbessert, wird sie zu einem kritischen Problem
durch mangelnde Generalisierung und den sogenannten Fluch der Dimensionalitét.
Unter Verwendung einer begrenzten Menge von Trainingsdaten konnen selbst
hochentwickelte Lernalgorithmen, wie die beliebten Kernelmethoden, die verrauschten
und iiberfliissigen Dimensionen solcher hochdimensionaler Reprisentationen nicht
unterdriicken. Infolgedessen besteht ein natiirliches Bediirfnis der Featureselektion
durch die Verwendung heutiger hoch-informativen Deskriptoren und insbesondere
von Curvature Self-Similarity. In dieser Arbeit wird daher ein eingebetteter
Featureselektions-Algorithmus fiir Support Vektor Maschinen entwickelt um die
Komplexitidt zu reduzieren und die Generalisierung von Objekterkennungsmethoden
zu verbessern. Die vorgeschlagene Curvature Self-Similarity wird zusammen mit der
eingebetteten Featureselektion in ein weitverbreitetes State-of-the-art Objekterkennungs
Framework integriert.

Der Einfluss von Statistiken hoherer Ordnung auf die Kategorielevelobjekterkennung wird
weiter anhand von gelernten Co-Occurrences zwischen Vordergrund und Hintergrund
untersucht, die die Anzahl der falschen Detektionen reduzieren.  Wihrend der
vorgeschlagene Curvature Self-Similarity Deskriptor das Model fiir die detaillierte
Beschreibung des Vordergrunds liefert, wird nun gezeigt, dass Statistiken hoherer
Ordnung sich auch dafiir eignen den Hintergrund explizit zu modellieren. Dies ist von
besonderem Nutzen fiir die Chamfer Matching Methode, da diese anfillig fiir zufillige
ibereinstimmungen in dichtem Hintergrundrauschen ist. Da Hintergrundrauschen sich
ausschlieBlich storend auf die Modelkontur des Vordergrunds auswirkt wird gelernt,
wo die Hintergrundkonturen beziiglich der Vordergrundkontur platziert werden miissen.
Die Co-Occurrence von Hintergrundkonturen wird in ein Max-Margin Framework
integriert. Daher kombiniert der vorgeschlagene Ansatz die Vorteile einer genauen



Detektion von Objektteilen durch Chamfer Matching und die Robustheit von Max-Margin
Lernverfahren.

Obwohl Chamfer Matching eine sehr effiziente Methode fiir die Erkennung von
Objektteilen ist, basiert die Erkennung nur auf einem einfachen Distanzmal}. Im
Gegensatz dazu, werden Mid-Level Parts und Patches explizit dafiir trainiert, zwischen
korrekten Detektionen im Vordergrund von falsch positiven im Hintergrund zu
unterscheiden.  Aufgrund der Unabhingigkeit von Mid-Level Patches und Parts
ist es moglich eine grole Menge von instanzspezifischen Partklassifikatoren zu
trainieren. Diese Vorgehensweise steht im Gegensatz zu den augenblicklich méchtigsten
diskriminativen Ansdtzen, die typischerweise nur fiir eine kleine Anzahl von Parts
anwendbar sind, da diese die rdumlichen Abhingigkeiten zwischen den Parts modellieren.
Aufgrund ihrer Anzahl ist es nicht moglich direkt einen Klassifikator fiir die Kombination
der Parts zu lernen. Aus diesem Grund werden die Parts in eine geringere Anzahl
von iiberlappenden Kompositionen zufillig zusammengruppiert, die dann mit einem
Max-Margin Ansatz trainiert werden. Im Gegensatz zu dem iiblichen Vorgehen von
kompositionellen Ansidtzen, werden keine semantisch sinnvollen Ensembles gesucht.
Vielmehr werden randomisierte Kompositionen gesucht, die diskriminativ sind und iiber
alle Instanzen einer Kategorie generalisieren. Alle Kompositionen werden durch eine
nichtlineare Entscheidungsfunktion kombiniert, die die leistungsfiahige Hierarchie aus
diskriminativen Klassifikatoren vervollstiandigt.

Zusammenfassend beschiftigt sich diese Arbeit mit der Verbesserung visueller
Erkennung von Objekten und Szenen, durch die Entwicklung neuer Mid-Level
Reprisentationen, basierend auf unterschiedlichen Low-Level Représentationen. Dariiber
hinaus, untersucht diese Arbeit die Entwicklung von geeigneten Lernverfahren, die
die neuen Herausforderungen, die sich aus den in dieser Arbeit vorgestellten neuen
Objektreprisentationen ergeben, bewiltigen.
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CHAPTER 1

INTRODUCTION

1.1 Human Visual Perception of the World

The ability to see is the most important of our senses. In our everyday life we are
heavily relying on our visual sense for nearly every interaction with the surrounding
world. However, what we mean when we say seeing is actually much more than that.
When we talk about seeing, we mean the ability to perceive our environment. We are
interpreting what we see, e.g. we are categorizing objects, recognize persons and take
adequate actions according to the overall situation, such as greet familiar persons. All this
is so natural for us that we are not even thinking about this constantly ongoing process
of perception. To get a better understanding of how we are perceiving the world let us
shortly review the human perceptual process.

It begins with the distal stimulus in the environment. Objects are reflecting light, which
is resulting in a light stimulus, that can be received by our eyes. The light enters
the eye through the pupil and produces a projection of the environment on the retina
(proximal stimulus). Receptors in the eye respond to the light and transform light energy
into electrical energy. The electrical signal is then transmitted to the brain and is then
processed by the brain resulting in a perception. The perception step is followed by a
recognition and an action step. Researches have shown that perception and recognition
are separate processes. Nevertheless, these steps do not always follow each other, but can
also happen at the same time or reverse order. Moreover the action can also change the
perception and the recognition [71].

The projection of points from the 3D environment onto the retina is a well-defined
problem as each point in the 3D environment maps exactly onto one point in the 2D retinal
image. However, in order to perceive the world as it is, the real-world 3D information
needs to be recovered using the 2D retinal image. This task, known as the inverse problem,
is an ill posed problem as each point in the 2D retinal image could have resulted from an
infinite number of points in the 3D environment. Despite the fact that the inverse problem



1 Introduction

doesn’t have a unique correct solution, our visual systems manages to recover the correct
3D information surprisingly well. But how is this possible? The common consensus
among most vision theorists is that additional information is used for perception. This
additional knowledge, from experiences we made (probably throughout our whole life),
is affecting our perception and recognition, even though we are usually not aware of it.
This concept of unconscious inference was first suggested by Hermann von Helmholtz
[172]. In 1867 he was already aware of the gap between the retinal image and correct
perceptual interpretation of the 3D world. He claimed that vision requires a process of
inference to transform the retinal 2D information into the correct perceptual interpretation
of the 3D world [72, 129].

From the ideas of Helmholtz until today many different vision theories have been
proposed. A review of all this theories is going beyond the scope of this thesis and
therefore only a short review will be given on one of the most important developments that
changed the entire understanding of vision: the invention of the computer. Since we are
living today in a world in which we are using computers for almost everything, it is hard
to imagine what life was like without them. However, imagining a life without computers
can help to understand what a fundamental change the invention of the computer might
have been. And as it did with many other fields it also dramatically changed the field of
perceptual psychology. On the one hand the idea to simulate perceptual processes on a
computer lead to more explicit theories because the programming of a computer requires
detailed information. Furthermore the application of information processing theories by
Marr [118] in the field of psychology lead to a novel framework for understanding the
concepts of vision. However, the invention of the computer did not only influenced the
field of perceptual psychology but also inspired scientists to simulate all kind of other
processes, e.g. the simulation of intelligence which gave raise to the field of artificial
intelligence.

1.2 The Dream of Artificial Intelligence

For most people the term artificial intelligence is best known from its use in science fiction
books and films or series. Typically, in this context, the term refers to intelligent robots
whose shape is resembled that of the human body and are able to act like humans. The
idea to build machines that are like humans can be considered the dream of artificial
intelligence. From a philosophical point of view one can distinguish between strong
and weak artificial intelligence. Weak artificial intelligence refers to the simulation of
intelligent behavior, i.e. machines that act if they were intelligent. Compared to strong
artificial intelligence which means machines are actually intelligent and not only acting
as they were. From a more technical point of view this difference was never really an
issue, since the goal is to build machines that act in an intelligent way as defined in 1950
by Alan Turing, who suggested a behavioral intelligence test [163] known as the Turing
Test. The idea is that, if a machine passes the test, it can be considered as intelligent. The
test is supposed to be a conversation between a person and a computer. The person writes
down questions which the computer is supposed to answer. If the person cannot tell if he
or she was talking to a computer or a real person the computer passes the test. The so
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called rotal Turing Test provides an additional video signal, and the person can also show
or pass things to the computer. To pass the test a computer needs to handle the following
tasks [145]:

e natural language processing to communicate using a common language e.g.
English

e knowledge representation to store knowledge

e automated reasoning to use the stored information to answer questions and draw
new conclusions

e machine learning to adapt to new circumstances and detect and extrapolate patterns
e computer vision to perceive objects
e robotics to manipulate objects and move about

The research field of artificial intelligence emerged a few years after the suggestion of
the Turing Test. Originally it was defined by a summer workshop organized by John
McCarthy in 1956. The proposal of McCarthy [120] was making the suggestion that weak
Al is possible. The workshop envolved 10 researchers that were working two month on
the topic of artificial intelligence. The goal was to describe learning or other intelligent
tasks in such detail that it could be simulated by a computer.

After some early successes solving simple Al tasks, such as solving smaller mathematical
theorems, researches were very enthusiastic that more complex problems could be solved
just using better hardware. A famous example of this early enthusiasm is the claim of
Simon in 1957 that a computer will be chess world cup champion in ten years from
then. However, things didn’t progress so fast and many Al systems failed to perform
well on more complex tasks. The reason for that might have been that the difficulty
of many tasks was underestimated. Especially the importance of additional knowledge
was not considered. Another problem of early Al was that most of the systems were
based on exhaustive search algorithms that tried out a series of steps until a solution
was found. However, contrary to the former common believe, it is not possible to solve
larger problems by simple search algorithms due to the huge computational complexity.
Nevertheless the forecast of Simon became true in 1997. Not ten years, but forty years
later, IBM’s Deep Blue won against the chess world champion. Until today Al research
made great achievements, which are now also available in our everyday life, such as voice
recognition on smart-phones and hotlines, automatic translation, driver assistance systems
in cars and many more. Probably the most recent and amazing Al achievement was that
IBM’s super computer Watson clearly won the game show Jeopardy! against two former
winners in 2011. This game is particularly challenging, as the tasks are given as, typically
ambiguous, answers to which the candidates need to find the correct question.

1.3 Computer Vision

As mentioned in the previous section Al theorists originally tried to simulate difficult
intellectual tasks as playing chess and proving mathematical theorems. Only later it
was realized that programming computers to perceive the environment visually is a



1 Introduction

challenging and useful goal. This was the start of the field which is today known as
Computer Vision. The great goal of computer vision is to develop algorithms which
extract and interpret all the information about the environment. Originally this was
considered one of the easier Al tasks that needed to be solved in order to build robots with
intelligent behavior. Since perceiving the environment is done effortlessly by humans it
was thought to be a rather easy task. People were more focused on teaching the computer
to perform tasks that were considered to be intellectual challenging. A famous anecdote
tells that in 1966 Marvin Minsk at MIT asked one of his students to “spend the summer
linking a camera to a computer and getting the computer to describe what it saw” [17]. It
turned out that the problem was slightly more difficult as we know today.

But why is vision so difficult? As discussed in Section 1.1 vision is an inverse problem
which doesn’t provide enough information to reliably reconstruct 3D information from
the 2D retinal images. While the projection from the 3D world onto 2D retinal image
can find a single correct solution this is not possible the other way round. Perceptual
researchers are still trying to understand how humans can solve this problem, since the
visual process is rather complex. Taking this knowledge into account, it is not surprising,
that teaching a computer to see is also a demanding task.

Until today the field of computer vision was expanding and diversifying in many
directions. The tasks that are attending most of the attention in the high-level vision
research community are:

e Segmentation

e Recognition

e 3D Reconstruction

e Motion and Tracking

Note, that this is a very coarse structuring and many of these fields can be divided in
several very diverging subfields. Additionally this structuring is only considering the tasks
that are tackled and not the diverse approaches that are explored to solve these problems
which often developed to be own research fields.

1.4 Visual Recognition

The focus of this thesis is the visual recognition of objects and scenes in still images.
Visual recognition can be divided in classification and detection. The classification task
is to categorize an object or scene shown in an image or image region. In the case of
objects, however, it is not only interesting which objects are present in the image but also
where exactly they occur, since images typically contain a whole scene with more than
one object. This task is called detection. This also shows the close connection between
the task of object detection and scene classification, as it is important to categorize each
object in the image, the scene label provides additional information about the context
of the detected objects and therefore provides a higher-level abstraction. Due to the close
connection of the two problems and the focus on object detection of this thesis discussions
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will be on the level of objects if the topic is not specifically about scenes. However,
typically statements about objects are also accounting for scenes.

The classification task can be divided into two broad categories, instance level recognition
and category level recognition. Instance level recognition is dealing with the task of
recognizing a particular object instance (e.g. my car), while category level recognition
is dealing with the much more challenging task to recognize any instance of an object
category (e.g. car in general not just my car). While the problem of instance level
recognition can be solved very well by current state-of-the-art algorithms, the problem
of category level recognition is still a very challenging task to be solved. Compared
to humans, the current state-of-the-art systems have still not reached the categorization
performance of a two year old child [157].

In order solve category level object recognition tasks one has to solve two related
problems:

Representation  Representation is crucial for the success of a recognition system.
Images on a computer are stored as three dimensional matrices where each pixel is
represented by a three dimensional vector representing e.g. the strength of the colors red,
green and blue. However, this is not an appropriate representation for recognition, since a
single image has ten thousands of pixels and is therefore providing a huge amount of data
that cannot be handled efficiently. Instead, the image needs to be represented by a more
compact description, e.g. using low-level features that are simple statistics on the image
or the edges of an image. Starting with brightness values of image pixels and simple edge
histograms, descriptors evolved and more sophisticated features were suggested. The
probably most widely used and best performing image descriptors today are modeling
edge orientation histograms. In the last few years also more complicated image statistics
such as co-occurrence and self-similarity have been utilized. Such higher-level statistics
are leading to more robust image descriptions than first order statistics such as simple
histograms.

In order to recognize objects one needs not only to represent the image, but also the object
category that we want to recognize. Such a representation needs to be compact enough
to be easily stored and applied to new images but also needs to be detailed enough to
make it possible to distinguish between similar object categories, e.g. cow and horse.
A recognizable trend regarding the representation of objects is that image statistics first
have been computed over the whole image/object, while later approaches are splitting
up the image/object into smaller regions either utilizing a rigid grid, special labellings
or by utilizing other automatic extraction methods such as e.g. interest points detectors
that give indications for specifically useful regions of the image. Such image regions, or
parts, can be treated as an unordered collection of features resulting in a bag-of-words
representation, or relations between the parts can be explicitly modeled either by defining
their configuration by hand, or by learning their spatial relationship. Besides the classical
part-based approaches, which are combining parts first by a spatial model and then train
all parts together, learning individual part classifiers first and take care of the spatial
arrangement afterwards has been applied quite successfully. Furthermore parts can be
combined by grouping, to form larger more meaningful compositions. Typically this is
done in a hierarchy were the compositions of the last layer are combined to form new
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compositions until the whole object is represented. Instead of parts that are mainly defined
by their visual appearance, another popular representation concept are attributes which are
defined to be a property of an object which can be named by a person. While parts define
the visual appearances of an object, attributes are describing its properties, e.g. furry or
red.

It is noteworthy that all these approaches are seeking to bridge the gap between simple
image descriptors and the object by dividing it in its constituent parts or characteristics.
Recently, the term mid-level representation was coined, for such object representations
that are providing an intermediate representation of objects and scenes.

Learning In order to find such a general object representation one can either define
suitable object characteristics by hand or learn them automatically. However, the
definition of suitable object characteristics by a human expert, is a very time consuming
and costly task. Therefore, instead our goal is to automatically learn a model capturing
significant characteristics for and arbitrary object or scene category. In order to solve this
task one can make use of machine learning techniques, which are able to learn from a
set of training data, which characteristics, captured by the representation, are important to
distinguish between categories.

In general, one cannot tell, what is the best learning strategy to recognize objects. There
exists a large amount of learning strategies which have been originally designed for
general machine learning problems and have been adapted and successfully used to
solve visual recognition tasks. However, the decision for a certain learning strategy
is not only depending on the task that needs to be solved. The kind of representation
plays an important role for the selection of a proper learning method. In the context of
mid-level representations the development of object descriptors using co-occurrences and
self-similarity leads to very high-dimensional descriptors. Therefore learning strategies
need to be applied, that are able to deal with such preprocessed and high-dimensional
data. On the other hand, when individual part classifiers are trained, the amount and
detail of training annotation is influencing the choice of a learning strategy essentially.
If the location of object parts is given by human annotation, straight forward training of
individual part classifiers can be performed, as they have been developed for the learning
of object classifiers. If such information is not provided, proper parts need to be defined
automatically. But whats a good strategy to find such parts? And when we decided for a
suitable part, how do we find a set of positive training data? Typically these problems are
solved using heuristics and unsupervised learning methods. However, depending on the
part representation, the dataset and the task, that needs to be solved, different strategies
need to be applied. Going one step further brings us to the problem of grouping parts into
compositions. Here it is preferable to have a learning strategy which is able to efficiently
deal with construction of compositional hierarchies.

1.5 Objectives of the Thesis

The aim of this thesis is to develop learning algorithms for visual recognition. While the
main focus of this thesis is on category level object detection, a part of the thesis also
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deals with scene classification and shows that well designed object detection algorithms
are also well applicable to scenes. Since, the problem of object and scene recognition are
closely related it is consequential to use the same representation and learning algorithm
for both tasks. In the remainder of this section, the objectives are explained for the task
of object detection, as this is the main task tackled in this thesis. However, due to the
relatedness of object detection and scene classification the goals typically also account
for scenes.

Specifically this thesis engages in the automatic learning of object models for the
representation of arbitrary object categories from labeled training data. Labeled, in this
case, means localized object class labels using bounding boxes. This is due to the fact
that labeling beyond the bounding box label, is for one thing time consuming and costly,
and on the other hand, because this is not a well-defined problem for a lot of categories,
leads to ambiguous or unsuitable training data. Finding an object in an image e.g. an
aeroplane and drawing a bounding box that encloses the object is a task for which the
result of many different persons will be more or less the same. However, on the level
of parts the problem becomes also much more ambiguous for the annotators. What are
the parts of an aeroplane? The labeling result of different persons will look much more
different than for the task on the object level. Furthermore, the question is, if parts are
labeled because of semantical similarity or due to visual similarity. However, aeroplane is
still an object category for which one can imagine to get reasonable part labels, even if the
variance of labeling between different persons is high. Thinking about a category defined
as potted plant, the task of finding parts can be extremely challenging, if not impossible.
As a result label information beyond the bounding box level might not even be helpful.
Therefore this work is utilizing bounding box labels as they are most reliable.

In this work both subproblems of recognition are tackled: the representation and the
learning problem (see Section 1.4). The goal on the representation side is to design novel
mid-level representations for objects to improve existing low-level object representations.
Low-level object representations are typically utilizing simple statistics to describe the
object. Such representations are easy to compute and simple to deal with during
the learning process. However, such simple features are often not providing enough
characteristic information to learn a reliable object model. Since object models need
to describe the large intra-class variabilities of an object category, there is the need for
a higher-level concept that goes beyond commonly used simple representation. It is of
particular interest that mid-level representations are developed, that are bridging the gap
between low-level representations, that are just compressing the pixel content of an image,
and the complex appearance of an object. This thesis investigates the development of
mid-level representations build upon different visual recognition systems that are utilizing
different low-level object descriptors and are combined with different modeling schemes.
Specifically this thesis is dealing with, appearance and shape based representations, and
holistic and part based object models. Therefore the second central point of this thesis is
the design of appropriate learning algorithms for the suggested mid-level representations.
It is of particular importance, to devise learning algorithms that are able to deal with the
different requirements that arise from the appendent basic framework.

For the improvement of holistic object models a novel curvature self-similarity descriptor
is suggested, which is exploiting curvature as a cue to perform the visual search task, and
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in addition exploits the improved descriptive power of self-similarity descriptors. While
self-similarity representations are providing more detailed and accurate characterization
of the object, they are typically exhibiting larger dimensionality and contain a larger
amount of noise than low-level features. This can cause systems to suffer from curse
of dimensionality and overfitting. Therefore noisy and superfluous dimensions need to
be discarded before or during the learning process. In this work the learning process is
described as an optimization problem and sparsity is enforced by an L1 regularization on
the model parameter.

Furthermore, chamfer matching, a contour based object representations, is improved
by reducing the amount of accidental false positive object detections in dense clutter.
Accidentalness of a match is measured by introducing a set of generic background
contours which are placed relative to the foreground contour. Then the joint
co-occurrences between foreground and background is determined. Such co-occurrences
are very unlikely to appear by accident and are therefore providing a robust mid-level
representation that helps to identify false positive matches in dense clutter. To capture all
pairs, triples, quadruples etc. a non-liner radial basis function kernel that is comprising an
infinite amount of feature combinations is utilized.

Moreover a robust part-based recognition system utilizing a large amount of mid-level
parts is developed. This goes beyond the common scheme of utilizing a small number of
general parts. To deal with the high dimensionality caused by a large amount of specific
parts they are grouped into stronger compositions. A final non-linear discriminative
classifier is trained to blend compositions. In this manner a powerful visual recognition
framework is developed that is combining the concept of mid-level parts and compositions
into a powerful hierarchy of classifiers.

1.6 Challenges

As the aim of this thesis is to devise proper mid-level representations for visual
recognition of objects and scenes it is important to understand what exactly makes
this task challenging. We as humans are able to recognize a large variety of objects
almost effortlessly. Therefore, we are often lacking the sensitivity for the problems that
occur during the development of object detection systems. In this Section a number
of conditions will be discussed which have a large impact on the difficulty of the
classification and detection task.

Categorization vs. Identification The identification of a specific instance of a class
can already be solved well by current computer vision systems. On the other hand the task
of object detection on the category level is still considered an extremely difficult task. For
us, there is almost no difference between the tasks, and if we think about it, identification
of a specific object is even more difficult for us than just categorization. Thus the question
arises “Why is categorization so difficult for recognition systems ?”.

From perceptual research we know that children need to learn to categorize objects.
Similar to computer vision systems, young children confuse similar object categories,
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(b)

Figure 1.1: Due to similar texture and shape different object categories, such as the dog in
(a) and the horse in (b) can look quite similar.

(b)

Figure 1.2: Aeroplanes exhibit a high intra-class variability reaching from (a) vintage
propeller driven airplanes over (b) commercial airliners to (c) modern combat
aircrafts.

such as horse and dog. Of course, there is a certain similarity between this two objects:
both have fur and four legs and can have a quite similar appearance as shown in Figure
1.1. Over time children learn the characteristics of objects and are able to distinguish
similar object categories. Additionally they also learn more and more object classes and
even a hierarchy of categories, e.g. most people would agree that the animal in Figure
1.1a is a dog, nevertheless many of them are aware that it is also a dalmatian. Similar to
children object detection systems also need to learn what is characteristic for a category.
However, contrary to children, who learn the categorization of objects over years and
probably during their whole life, having an endless amount of training data, computer
vision systems need to solve the same task with a comparable very limited amount of
training data and classes. This thesis is in particular dealing with a rather small number
of classes (fewer than 100) and a limited amount of training data.

High intra-class variance Object categories like aeroplane or dog are exhibiting a
very high intra-class variance, i.e. objects within one category are exhibiting very different
visual appearances. Depending on the object category intra-class variance can have very
diverse occurrences. As shown in Figure 1.2 the category aeroplane is reaching from
vintage propeller driven airplanes over commercial airliners to modern combat aircrafts
which exhibit a very different appearance. Moreover, even the same instance of an object
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(b)

Figure 1.3: Non-rigid object classes such as horses exhibit large appearance variations due
to articulation.

Figure 1.4: Objects can have different scales and viewpoints which makes detection of
these objects more challenging.

looks totally different from another viewpoint, e.g. looking at an aeroplane from the
front and from the side (see Figure 1.4). Additionally, non-rigid object categories such
as person, dog, horse etc. are showing additional variation in their appearance due to
articulation. See Figure 1.3 for some examples. Besides appearance based variance there
is also variance in scale. As shown in Figure 1.4 the same image can contain very large
objects close to the camera and also very small objects in the background of the scene. In
this thesis all of this variations need to be considered.

Low inter-class variance Another factor for the complexity of the object detection
task is low inter-class variance. In the case that two classes are very similar to each other
the task of learning an appropriate object model to distinguish the two classes becomes
more difficult, as the important characteristics for a correct classification might be very
subtle. The model needs to be invariant to the intra-class variance and sensitive to the
low inter-class variance. Due to the difficulty of exactly this problem a new subtask of
object recognition called fine grained object recognition has developed. Fine grained
object recognition particularly deals with the task of low inter-class variance. The task
addressed, are distinction into species of animals, car models, architectural styles etc.,
where the differences between categories can be very subtle. It is likely that some of the
standard category level techniques need to be reassessed to develop algorithms for fine
grained recognition.

While fine grained object recognition is beyond the scope of this thesis, high similarity
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(a) (b)

Figure 1.5: (a) Occlusion and (b) truncation of objects make parts of the object invisible
and therefore complicate the detection process.

between categories, such as between motorbike and bicycle need still to be handled.

Occlusion and truncation In the case that more than one object instance is present
in the image, or that the object of interest is not in the focus of the scene, the object
might be occluded by other objects or other parts of the scene considered as background.
In the case of occlusions parts of the object are hidden by other non-related objects or
background. A special case is self-occlusion, where the object is occluding itself. This
typically happens with objects that are highly articulated. A similar but slightly different
situation occurs, when an object is truncated, i.e. the image is only showing a part of
the whole object. See Figure 1.5 for an example of occlusion and truncation. In both
cases, some parts of the object are not visible in the image, which means that there is
no visual information available. Occlusions and truncations make recognition of objects
more difficult as the model needs to be flexible to missing parts without becoming to
unspecific to distinguish the object for arbitrary background.

Image properties Real world images collected from the Internet are often not
showing the object of interest in the focus of the image and are exhibiting certain
difficulties for object detection compared to images taken by a photographer in a
controlled environment.

e Varying illumination When looking at an object that is partly in the shadow we
are aware, that the color of the object is not different in the light and the shadow.
However, in the image the two colors have different values. Therefore, object
representation needs to compensate for such changes of colors due to shadows etc.

e Background clutter Real world images of objects are taken in front of arbitrary
background. This background might contain other objects, or just structures of
plants etc., which make it more difficult for the detection algorithm to distinguish
the object of interest from the background.

e Low image quality Especially images collected from the Internet are often of
relatively low quality. The image resolution is typically rather small since storage

11
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(@) (b)

Figure 1.6: This scene is typically described as (a) a street scene with a car and (b) a

street scene with a pedestrian. However, the image patch recognized as the
pedestrian is the same as the one recognized as car. The only difference is
that the car patch was rotated by 90 degrees to be perceived as a pedestrian
[160]. From this example it becomes clear that in case of low image quality
the context is becoming more important for recognition than the appearance.

size of the images grows with the resolution. Moreover the standard jpg format can
exhibit artifacts that cause distortions during detection. This issues become more
critical for small objects. To reliable recognize such objects the human observer
typically relies on the context of the object rather than its actual shape etc. See
Figure 1.6 for an example how context affects our visual perception. The two blurry
scenes are both containing an object that is not recognizable when looking at it in
isolation. However, in the context of whole scene, here a street scene, the objects
can be easily recognized by test persons as car and pedestrian. In fact the two blurry
objects recognized as car and pedestrian are the same image patch with different
orientation. In computer vision, context-based methods are typically utilizing the
outputs of object detection systems and then update the recognition results based on
the recognized objects in the scene. In that way reliable detections of objects can
give evidence to recognize other objects or to discard false hypotheses. The aim of
this thesis is to create a reliable object detection systems while context approaches
are beyond the scope of this work.

1.7 Contributions

The contributions of this thesis are summarized as follows:
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e Exploration and development of more informative mid-level representations, build

on top of different basic features, for object representation under consideration of
different object modeling schemes.

e Design of appropriate learning algorithms, suitable for novel mid-level
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representations and different object modeling scheme.

e Integration of curvature self-similarity representation into a widely used
state-of-the-art object detection framework. The novel mid-level descriptor utilizes
co-occurrences between discriminatingly curved boundaries that provide a more
detailed and accurate object description.

e Development of a novel embedded feature selection algorithm to reduce the
extremely high dimensionality that is exhibited by object representations that are
using more informative second order statistics, such as curvature self-similarity.
Dimensionality reduction prevents the object detection system to suffer from curse
of dimensionality and overfitting.

e Structured evaluation of the suggested curvature self-similarity representation in
combination with the suggested feature selection algorithm shows the individual
merit of both contributions and significant performance improvement over standard
object descriptors on a standard benchmark dataset.

e Reducing the number of accidental matches in dense background clutter of
state-of-the-art chamfer matching methods by learning the co-occurrences of
generic background contours.

e Integration of the learned co-placement of background contours with foreground
regularized templates in a single max-margin framework, build on top of
state-of-the-art directional chamfer matching.

e State-of-the-art chamfer matching approaches are significantly outperformed by the
suggested max-margin framework on standard benchmark datasets.

e Development of a part-based discriminative compositional hierarchy. Detailed
analysis of different grouping strategies is provided and results show that
randomized grouping outperforms the common rationale of compositional
approaches to seek semantically meaningful compositions.

e Filling the gap between part-based representations and the whole object by utilizing
compositions in a discriminative framework.

e Paradigm shift from small number of generic parts to a large number of instance
specific parts and from strong to weak localization constraints. Separate evaluation
of the suggested part classifiers support the potential of this approach.

e Additionally to the localization of objects in cluttered scenes, the suggested
randomized part-based compositions provide a qualitative 2D reconstruction of the
detected object.

e Application of randomized max-margin compositions on several object detection
benchmark datasets and one scene classification benchmark dataset show
state-of-the-art performance.

1.8 Organization of the Thesis
The remainder of this thesis is organized as follows:
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Chapter 2 categorizes this work according to different object recognition paradigms.
Furthermore, common low-level feature representations as well as several object modeling
schemes are discussed. Finally the concept of mid-level object representation is
introduced.

Chapter 3  focuses on holistic category-level object detection and the design of
curvature self-similarity, a novel mid-level object representation. Due to the risk of
overfitting and curse of dimensionality, the system, trained on a limited set of training
data, has a natural need for feature selection. The development of a new embedded
feature selection method is discussed in this chapter and shows how the reduction
of noise uncovers the full potential of the high-dimensional curvature self-similarity
representations.

Chapter 4  describes how mid-level representations can be used to improve
state-of-the-art chamfer matching methods. In particular it describes how accidentalness
in dense clutter is reduced, by placing generic background contours on the model contour
and learning to distinguish the typical co-occurrence of these contours on cluttered
background compared to actual objects. Additionally, this chapter describes how the
suggested background regularization is integrated with foreground regularization, i.e.
the relative importance of all model points of a template instead of treating them as
independent.

Chapter 6 investigates the merit of randomized compositions for discriminative
part-based object detection framework. Instance specific weakly localized parts are
utilized in a compositional max-margin framework. This chapter provides results
of careful evaluation of different composition techniques and the novel specific part
classifiers. Beyond the localization of objects the suggested category level object
detection framework provides a 2D parsing of the detected object.

Chapter 7  discusses conclusions of the presented thesis.

14



CHAPTER 2

OBJECT MODELS AND
REPRESENTATIONS

The purpose of this chapter is to classify this work within the area of visual recognition,
review common object representations and models, and introduce the concept of mid-level
representations. This work examines mid-level object representations build on different
low-level object representations using several object models. However, three main object
recognition paradigms remain constant throughout all object recognition approaches
presented in this thesis. In particular this work deals with 2D template matching
approaches utilizing sliding windows (Section 2.1.1) and discriminative learning methods
(Section 2.1.2). Additionally the level of supervision is kept fixed for all presented
methods (Section 2.1.3). Furthermore, common low-level object representations (Section
2.2) and popular object models (Section 2.3) from this domain are reviewed. Finally, the
concept of mid-level representations is introduced (Section 2.4).

2.1 Object Recognition Paradigms

2.1.1 3D Geometric Models and 2D Template Matching

An important approach of early object recognition was 3D geometric modeling of objects.
Such 3D models are either based on holistic 3D object models or a collection of volumetric
parts such as polyhedra [142], generalized cylinders [1, 125] and super-quadrics [134].
Such 3D models are providing a rich and view-point invariant description of objects and
have been widely used until the 1990’s. However, finding such shape abstraction for a
whole object category remains a challenge to this day. Nevertheless, due to more powerful
computers and machine learning techniques, 3D modeling is becoming more popular
these days and some of the early ideas of 3D modeling are revisited [75, 81, 83, 174].
Gupta et al. [75] is following the idea of a “blocks world” presented by Roberts [142] who
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suggested an approach for 3D scene reconstruction. In [75] real world outdoor scenes are
reconstructed using objects that have volume and mass. Hoim et al. [83] use context
information to model relationships between the objects in the 3D environment instead of
the 2D image plane. This way perspective based distortions influencing the relationship
between objects are eliminated. Hedau et al. [81] are describing indoor scenes, assuming
that objects are aligned with the dominant direction of the scene. The dominant direction
of the scene can be computed using their earlier work [80] where the spatial 3D layout
of a scene is estimated using a box layout. After finding the box layout of the scene
geometrical constraints are introduced that are considering size, visibility, and location of
the object with respect to the room. Wang et al. [174] are following the idea presented
in [80], but reduce the amount of supervision that is needed to identify clutter such as
furniture, decoration etc. Instead of using labeling information for clutter, during the
training phase of the classifier, they use latent variables which are learned automatically.

In the 1990’s the object recognition philosophy shifted from such model-based approaches
to view-based approaches, which are not utilizing 3D models but a set of 2D views. One
popular technique in this area is template matching [136, 56], where a template is provided
or learned from training data and then compared to image regions of a test image. The
higher the matching score between the template and an image region the more likely it
is that the object is present in that region. In order to localize objects in the image one
can perform an exhaustive search, called sliding window [146, 171], where the image
is partitioned into a set of overlapping windows. Each region is matched against the
template and it is decided if the window contains the target object or not based on the
matching score. Typically, sliding windows search not only over location, but also over
different scales, to be able to recognize objects of different sizes.

To speed up such exhaustive search using sliding window one can reduce the number of
hypotheses in different ways. One approach is to use a cascade of classifiers [171]. Faster,
but typically weaker classifiers, are run first in a sliding window fashion and discard all
hypotheses that are not containing the object. On the remaining hypotheses a stronger
classifier is applied. This way one can utilize stronger classifiers in a reasonable amount
of time. Recently general object proposal methods [3, 164] have gained increasing interest
in the field of object recognition. These methods provide object hypotheses independent
of the object class and greatly reduce the amount of hypotheses that have to be classified
compared to and exhaustive search.

2.1.2 Discriminative and Generative Object Recognition
Models

The overall goal of object recognition systems is to assign a class label to a given
representation of an image or an image region. Instead of defining class specific
characteristics by hand, e.g. a hand drawn template, it is much more common to learn
such characteristics using a classifier. Depending on the type of classifier used one can
divide recognition systems, or rather the classifiers used in the systems, into two broad
categories: generative and discriminative classifiers.

Lets assume, that the object hypothesis that needs to be classified is already given in a
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(a) Image class label (b) Bounding box annotation (c) Pixel wise annotation

Figure 2.1: Different amount of supervision are shown in (a)-(c). While in (a) only
the class label horse is given (b) and (c) provide additional localization
information on bounding box and pixel level respectively.

suitable representation @ € R™ and that the optimal class label y € {1,...,k} needs
to be assigned by computing the posterior probability p(y|x). A generative classifier
learns from given training data the likelihood probability p(x|y) and the prior probability
p(y) for each class y. Equivalently, one can model the joint probability directly since
p(x,y) = p(x|y)p(y). In order to compute the posterior probability Bayes’ theorem

plyle) = p—(ﬂi’f; ) .1
o< p(|y)p(y) (2.2)

is applied and the most likely class is selected, i.e the class label with the highest posterior
probability. Contrary to that, discriminative classifiers are directly learning the posterior
probability p(y|x) from the training data. Note, that there is also discriminative classifiers
that are learning a mapping function f(a) which maps the input x directly onto a class
label y.

The learning of a generative classifier is very demanding, since it involves to find
the joint probability p(x,y). However, both models have their advantages [16, 124]:
Compared with discriminative approaches, generative models typically (i) are able to
handle missing features and unlabeled training data, (ii) do not have the necessity to be
retrained when a new class is added, since parameters of each class conditional density are
estimated independently and (iii) can readily handle compositionality. On the other hand,
discriminative approaches (i) are expected to have better predictive performance, since
they are directly trained to predict the class label, while generative approaches model the
joint distribution instead, (ii) are very fast in predicting class labels for new test data and
(iii) allow for arbitrary preprocessing of the data x with ¢(x), while it is often hard to
define a generative model for such pre-processed data.

2.1.3 Level of Supervision

The level of supervision used to train a recognition system is an important design decision.
Commonly, the level of supervision in training is the same as the level of detail one
can expect that the system gives as an output on unseen test images. If the amount of
supervision in training is increased, while the output of the system is not getting more

17



2 Object Models and Representations
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Figure 2.2: Keypoint annotations for the category aeroplane.

detailed the learning complexity is reduced. On the other hand, if supervision information
in training is lower than the level of detail provided on unseen images the complexity is
increasing.

The most challenging task is to learn the hidden structure of unlabeled data, i.e. without
any supervision. This problem is refereed to as unsupervised learning, in contrast to
supervised learning, where different amounts of supervision are provided. In case, that
the output granularity of a recognition system matches the amount of supervision provided
in training, the amount of supervision is indirectly defining the task that is tackled by the
recognition system. In the following, the three main forms of supervision information:
(i) image label, (ii) bounding box annotation and (iii) pixel wise annotation are discussed.
Figure 2.1 shows an example of all three on the level of objects. The smallest amount
of supervision is to give a class label for an image. This is typically used to solve
classification tasks, where the recognition system is providing a class label for each image.
In case of classification of objects, it is usually also of large interest where the object is
located in the image. In that case bounding box labels are provided for training and
the recognition system is detecting objects, i.e. localizing and classifying objects in the
image. The most detailed supervision information is provided by a pixel-labeling for each
object which makes it possible to learn not only how to detect objects, but also provide a
segmentation.

Part-based models provide a powerful framework for visual recognition and therefore,
additionally to object annotations, part annotations have been introduced. Note, that
there are also part-based approaches that are not utilizing any kind of part-supervision,
but only object annotations (see Section 2.3.1). Approaches that use part supervision,
e.g [6, 23, 32], are aiming to detect the object and predefined parts. Evaluation of
these approaches is often performed on the level of objects, since comparison to other
approaches is difficult because parts are often defined according to the requirements of
the approach. Part supervision is typically beneficial for the object detection results,
since disambiguities that might occur without supervision information are resolved. Part
annotations are typically given in form of part bounding boxes [6, 32], however, other
annotations are also possible, e.g. [23] suggested keypoint annotations (see Figure 2.2).
These keypoints are used for the estimation of the 3D configuration, which allows to
learn parts that have similar appearance and 3D object configuration. Furthermore, Chen
et al. [32] recently provided even more detailed annotation by labeling individual part
segmentations.
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2.2 Basic Features for Object Representation

In order to represent images in a compact, generic representation, the raw pixel
information needs to be transformed into a feature-based representation. The robust
representation of complex objects turned out to be one of the key challenges of computer
vision, and so, over the years, increasingly rich features have been proposed. Starting
with brightness values of the image pixels and simple edge histograms [65] descriptors
evolved and more sophisticated features were suggested. Until this day, the most powerful
features capture the shape of an object, either by representing the contours (Section 2.2.1)
or by edge orientation histograms (Section 2.2.2). Edges of objects are carrying important
semantic information, since they are describing the boundaries of objects and therefore
capturing their shape. Note, that there is also other kinds of descriptors that are not
modeling shape but e.g. texture [176] or color [45].

Edge Extraction To find edges in an image it is preferable to detect edges using
purely local information. Therefore, edges can be defined as locations of sudden intensity
changes in an image. The gradient of an image points in the direction of the most rapid
increase in intensity. Mathematically the gradient of an image is defined as

ol 0l
VI = —, — 2.
(89&’ 8y>’ 2:3)

were the local gradient vector VI points in the direction of the steepest ascent in the
intensity function. The gradient orientation

0 = tan— (5/21) (2.4)

points in the perpendicular direction of the local edge. While the magnitude of the gradient
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is giving the strength of the intensity variation. Image derivatives can be approximated
by applying finite difference filters to the image. However, such filters are strongly
responding to noise, which makes it impossible to locate the edge. Similar to actual
edges image noise is exhibiting high-frequency signal, as the pixel intensities are changing
rapidly. To avoid such high-frequencies caused by noise one can smooth the image with
a low-pass filter before the gradient computation. In most cases a Gaussian filter

1 -752 y2
G(z,y;0) e 3t (2.6)
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is used for smoothing due to its preferable properties: symmetry, separability, and
circularity. The gradient of the smoothed image can be written as the convolution with
the Gaussian derivative since convolution is associative:

VI[Gyx 1] =[VG,]|x1. (2.7)
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Furthermore, due to the separability of the Gaussian, one can convolve the image with the
horizontal and vertical derivatives of the Gaussian kernel function.

The best known edge detector was suggested by Canny [27] who showed that the
optimal smoothing filter can be well approximated by first-order derivatives of Gaussians.
Furthermore, edge detection was enhanced by non-maximum suppression and hysteresis
thresholding. Non-maximum suppression is a method for edge thinning, where lower
edge responses in gradient direction are suppressed by the maximum value. Hysteresis
thresholding is utilized to continue edges in the image. Therefore, a low and a high
threshold are applied. The high threshold identifies strong edges, while the low threshold
allows to continue these edges even if the continuing contour has no strong response, but
is above the low threshold. More recent edge detection approaches also take into account
color and texture cues and make use of learning techniques [119, 114, 42]. In [119]
a supervised learning approach utilizing a large dataset of human labeled boundaries
was suggested. To learn the boundaries a simple logistic regression classifier is used,
which provides the predicted strength of an edge. Boosted Edge Learning (BEL) [42] is a
supervised learning algorithms for edge detection which is utilizing low-level, mid-level
and context information for each decision. Mairal et al. [114] devised a discriminative
framework learned on sparse representations for class specific edge detection.

2.2.1 Contour Based Representations

Contours  Objects can be directly represented by their contour obtained from edge
extraction of training images or by a given template. Such representation is very accurate,
however, direct comparison between template and extracted edges from an image is prone
to errors, since variations will cause maps not to agree precisely. Therefore, comparison
is more robust when measurement is based on proximity rather than exact superposition.
In order to quickly compute the distance to a curve or set of points one can use two pass
raster algorithm to compute the distance transform [143, 20, 39]. The distance transform
of a binary edge image defines the distance of each pixel to the nearest non-zero pixel. For
2D relative translation  the distance transform DTy (x) of a query edge map @ = {q,}
is defined as

DTo(x) = gjf_leig d(x — gq;), (2.8)
where d(x) is some distance metric between pixel offsets. Two commonly used metrics
include the city block distance

d(a:) = d(ﬂfl,l’g) = |I1| + |l‘2| (29)

and the Euclidean distance

d(x) = d(xq, 1) = (/23 + 23 = |z (2.10)

Different matching approaches such as Chamfer [7] and Hausdorff [85] make use
of distance transforms in comparing binary images. Furthermore, the so called
generalized distance transformation [55] is extending standard distance transformation
to non-binary-valued functions.
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2.2 Basic Features for Object Representation

Shape Context The shape context descriptor suggested by Belongie et al. [8, 9, 11]
is describing the coarse arrangement of a shape with respect to a point inside or on the
object boundary. First, similar to the direct contour representation, edges are extracted
from the image. Next, a relatively small number of sample points /N are selected from
these edges. Note, that these points do not correspond to special keypoints fulfilling
special characteristics, such as high curvature or inflection points. For each sampled point,
vectors to all other sampling points are computed. The set of vectors is a rich description
of the given object shape, since the representation of shape becomes exact as /N gets
large. To make the representation more compact a histogram of the relative coordinates
of the remaining points is computed, i.e. the angle of the vectors relative to the positive
x-axis. To emphasize differences between nearby pixels a log-polar coordinate system
is used. The number of log-radius bins and angle bins can vary according to the current
application. For object recognition typically five log-polar bins and twelve angle bins are
used.

Geometric Blur  The geometric blur descriptor was first suggested by Berg and Malik
[14]. This descriptor is a smoothed version of the signal around a feature point, blurred by
a spatially varying kernel. The signal is typically assumed to be an edge image and the blur
is accounting for the geometric distortion of a shape. In [13] a subsampled version of the
original geometric blur descriptor was suggested for object recognition. Edge detectors
are used to produce four channels of oriented edge responses and are smoothed using a
Gaussian kernel. Since the geometric blur of a signal is usually rather smooth far from
a feature point the descriptor can be subsampled at a sparse set of points. The final
descriptor is a concatenation of the subsampled geometric blur descriptor computed at
a certain point in each of the four orientation channels.

2.2.2 Histograms of Oriented Gradients

Scale-invariant feature transform (SIFT) The scale-invariant feature transform
descriptor was suggested by Lowe [110, 111]. First, a Gaussian filter is applied to remove
noise from the image. Then, key locations in scale space are identified that are invariant
with respect to image translation, scaling, and rotation. This can be done by finding
maxima or minima of a difference-of-Gaussian function applied in scale space. For
efficient computation an image pyramid is build with resampling between each level. This
method is particularly stable for characterizing the image, since it locates keypoints at
regions and scales of high variation. At each of this keypoints a feature vector is extracted
that describes the local image region sampled relative to its scale-space coordinate frame.
Particularly, the image gradient magnitudes and orientations are sampled around the
keypoint location at the scale of the keypoint. In order to achieve orientation invariance,
the coordinates of the descriptor and the gradient orientations are rotated relative to
the keypoint orientation. After weighting the gradients with a Gaussian functions they
are accumulated into orientation histograms of 4 x 4 subregions with 8 orientation
bins. To avoid boundary effects, trilinear interpolation is used to propagate the value
of each gradient sample into adjacent histogram bins. Finally, the vector is normalized
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to unit length to make it less invariant to affine illumination changes and large gradient
magnitudes in the feature vector are thresholded and renormalized.

Histograms of Oriented Gradients (HOG) Histograms of Oriented Gradients
(HOG) where first suggested by Dalal and Triggs [37] for human detection and were
extended by [56] for general object detection. For determining the HOG descriptor the
object window is divided into small spatial regions called cells and for each cell a local
histogram of gradient directions is computed. Results presented in [37] showed that the
simple centered 1-D [—1, 0, 1] mask and its transpose without smoothing are the preferable
method for the gradient computation to build HOG features. After computing the gradient
orientation, histograms using 9 orientation bins are computed over a 8 x 8 pixel sized cells.
Each pixel in a cell is contributing to its corresponding histogram with a vote according
to the strength of edge magnitude. To reduce aliasing, votes are interpolated bilinearly
between the neighboring bin centers in both orientation and location, i.e. each pixel is
also contributing to its neighboring bins in orientation and location. To ensure invariance
to illumination changes a contrast normalization is performed using overlapping blocks,
which consist of 2x 2 cells. Each block is normalized separately and the HOG descriptor is
concatenating each cell normalized with each of the blocks it belongs to. Therefore, each
cell contributes several components to the final feature vector. For block normalization an
L2 normalization or an L2 normalization with additional truncation, to limit the maximal
value used in the final HOG descriptor, is applied.

When applying HOG to general object detection it was found in [56] that some object
categories improve using contrast sensitive features, while others benefit from contrast
insensitive features as suggested by [37]. For this reason the HOG descriptor was
extended to compute histograms of gradients using 9 bins, called contrast insensitive,
and histograms of gradients using 18 bins, called contrast sensitive. Normalization is
performed as in [37] using overlapping blocks. However, instead of using each of the
normalized cell values separately in the feature vector the values are summed up and
additionally 4 dimensions capturing the overall gradient energy are added.

2.3 Object Modeling Schemes

For recognition on the category level one can distinguish between holistic and part-based
object models. The next Section will give a brief overview over both types of
object models and introduce the concept of hierarchical object models, as mid-level
representations will be discussed for these different object modeling schemes in Section
2.4 and subsequent chapters of this thesis.

2.3.1 Holistic and Part-Based Object Models
Holistic object models describe the whole object in a single model which can handle all

variabilities or utilize different holistic object models to describe possible poses of an
object. In [131] a general object detector is presented using a support vector machine
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2.3 Object Modeling Schemes

trained on an overcomplete dictionary of Haar wavelets. Viola et al. [170] suggested a
holistic pedestrian detection system using AdaBoost to train a chain of progressively more
complex region rejection rules based on Haar-like wavelets and space-time differences.
Dalal and Triggs [37] suggested a holistic pedestrian detection system with a rather simple
architecture that significantly outperformed early person detectors. Gavrila [68] suggested
a real-time pedestrian detection system using a template tree to efficiently represent and
match the variety of shape exemplars. Besides this advances in pedestrian detection using
holistic object models also more generic object detections systems have been suggested.
Deselaers and Ferrari [40] presented a global self-similarity descriptor for object detection
and classification. Furthermore, shape based template matching was extended to fast
directional chamfer matching in [108] and applied for object detection.

To overcome the limitations of holistic object models when dealing with articulated
objects, part-based models have been suggested. The first part-based model was suggested
by [64] for face recognition. The suggested model is linking humanly defined parts,
i.e. eyes, head, nose, mouth, left, and right edge of the face, based on a flexible spatial
arrangement. Part-based models are ranging from fully connected shape models, where
all parts are connected directly to each other, e.g. constellation model [54, 59], to
non-connected part models, where all parts are mutually independent, e.g. Bag of Features
[36, 165, 166]. Between this two extreme cases a lot of different connectivity structures
have been developed, such as star shape models [35, 60, 63, 103], k-fan models [35] and
tree structures [58, 188]. In a star shaped model all parts are connected to one center
part. K-fan models are a generalization of the star shaped model to %k center parts, i.e.
all parts are connected to the k center parts. Tree structured models are connecting each
part with all other parts by a single path. Due to the different connectivity structures
these different methods vary greatly in their computational complexity. Assuming that
N is the number of feature detections and P is the number of parts, the constellation
model has an exponential complexity O(NT), while the Bag of Features model only has
a complexity of O(N P). Therefore, recent approaches favor star shaped models [56, 63]
and Bag of Features [165, 166], typically in combination with a spatial pyramid [100],
due to their efficiency. One of the most important part-based object models these days is
the Deformable Part Model (DPM) [56]. The DPM is a star shaped model, where object
parts are positioned relative to the center of the whole object. The exact position of the
parts is flexible and determined by latent variables. Its success has drawn attention from
the entire vision community towards this tool, and subsequently, it has become an integral
component of many classification and segmentation tasks. In 2010 it received the lifetime
achievement award at the PASCAL VOC challenge.

2.3.2 Hierarchical Object Models

Hierarchical object models are biologically inspired by the visual cortex of the brain,
which is responsible for processing visual information. Especially, Convolutional Neural
Networks (CNNs), such as the Neocognitron [66], HMAX [150] and LeNet-5 [102] are
emulating the behavior of the biological processes. While the first convolutional network,
the Neocognitron [66], was lacking a supervised learning algorithms, LeCun et al. [101]
extended the model and showed that stochastic gradient descent via backpropagation
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was effective for training convolutional networks. Currently, convolutional networks are
becoming widely used again, due to the availability of extremely large datasets containing
1.2 million labeled images and the usage of highly-optimized GPU implementations
for 2D convolution. The popular CNN suggested by Krizhevsky et al. [97] consists
of five convolutional and three fully-connected layers and uses few adaptations on the
CNN of LeCun et al. [102], such as rectifying non-linearities and dropout regularization.
While convolutional networks coined the term deep learning, also other concepts exploit
hierarchies for recognition.

One of them are compositional hierarchies [61, 88, 96, 127, 139] that establish one or
more successive representational layers by grouping parts, thus obtaining a hierarchy
of successively larger and more meaningful compositions. Compared to convolutional
networks, where the information from a cube-like receptive field over lower-layer feature
responses is conveyed in only one value, compositional architectures are represented as a
graph in which each node has only a small number of incident descendants. Therefore, it
is easier to trace back what has caused the response in a compositional hierarchy than in
a convolutional network. In addition, this makes inference in compositional hierarchies
more controlled and structured. On the other hand, convolutional networks have the ability
to automatically learn hidden representations in the network, while a lot of compositional
hierarchies lack automation and rely on hand-crafted features and compositional rules.
However, this drawback can be overcome by unsupervised bottom up learning strategies.

Moreover, shallow hierarchies are employed to represent spatial dependencies between
model parts. In [56] a two layer hierarchy was introduced which utilized a hidden layer
to represent the best matching location for each part according to the position of the
object hypothesis. An extension of this model was suggested by Zhu et al. [188], which
introduced an incremental concave-convex procedure, which allows to make learning of
two and three layer models efficient.

2.4 Mid-Level Object Representations

Recently, a growing number of approaches are suggesting that using only very low-level
features is insufficient to solve object recognition. Therefore, instead these approaches
suggest the use of mid-level features to capture higher-level concepts. Such mid-level
representations bridge the gap between low-level feature representations (see Section 2.2)
and complex objects or scenes and, therefore, improve recognition. In the following an
overview is given on several kinds of mid-level representations.

2.4.1 Higher-Order Statistics

A popular kind of descriptor utilizing higher-order statistics are co-occurrence
histograms. Co-occurrence histograms have been suggested for different kinds of
features, such as color [29, 86], orientation gradients [177, 140, 86], and texture [149, 86].
Co-occurrence histograms are counting the occurrence of pairs of values instead of the
occurrence of individual values. Capturing pairs of values leads to a larger and more
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detailed description of objects and, therefore, has more expressive power than standard
histograms. Besides the usage of co-occurrence histograms, also other realizations
of co-occurrences have been suggested. One of them is presented in [185], were a
higher-level lexicon, called visual phrase lexicon, is generated by combining meaningful
spatially co-occurent patterns of visual words. Such higher-level lexicon is much less
ambiguous than the lower-level one. In [121], an extension of Viola and Jones popular
face detector [169] is suggested. The face detector of Viola and Jones is using rectangular
filters similar to Haar wavelets trained with an AdaBoost classifier that is selecting the
best filters in every boosting round. The object detection framework of Mita et al. [121]
incorporates the co-occurrence of multiple features at each stage of the boosting process.

Another concept of capturing higher-order statistics in images is self-similarity. It
was introduced by Shechtman and Irani [151] to recognize correspondences despite
the lack of a common underlying visual property, i.e. pixel colors, intensities, edges,
gradients, or other filter responses. In their approach, self-similarities are measured
locally by computing the correlation between an image patch and a larger surrounding
image region. This descriptor has been adopted in the object detection and classification
community[18, 30, 84, 99, 168]. While the original work matches ensembles of these
descriptors, most later works use it as a feature in a bag-of-words framework. In [30, 84]
the local self-similarity descriptor of Shechtman and Irani [151] is applied for image
retrieval. Furthermore, the descriptor was applied for object classification and detection
[18, 168, 99]. While in [18] and [168] the descriptor was applied to learn object classes,
[99] applied it to attribute transfer learning.

In [40], Deselaers and Ferrari explored global self-similarity and its advantages over
local self-similarity. The suggested global self-similarity descriptor captures the spatial
arrangements of self-similarities within the entire image. While in [40] correlations are
measured between an image patch and the entire image, Walk et al. [173] suggested
a self-similarity measure between different subregions of an image. This kind of
self-similarity is capturing similarities across the whole image, however, it restricts
self-similarity to always a small local region.

2.4.2 Attributes

Visual attributes are human-nameable mid-level semantic properties. Attributes are
typically learned in a fully-supervised way, by training a discriminative classifier for
each attribute from images labeled by the attributes [25, 53, 99]. Attributes shift the
goal of recognition from naming to describing. Farhadi et al. [53] suggested semantic
and discriminative attributes to overcome limitations of standard recognition paradigm
of naming. Instead of just naming an object by its category name, using attributes
allows also to report unusual aspects of familiar objects, describe unfamiliar objects,
and learn how to recognize new objects with few or no sample images. The problem
of object classification, when no training examples of the target classes are available,
was explored by Lampert et al. [99]. In [52] objects are described by the spatial
arrangement of their attributes and the interactions between them. The system groups
objects within broad domains, such as “animal” and “vehicle” instead of learning each
category separately. Contrary to this more general detection, Duan et al. [43] propose
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to use attributes for fine-grained object recognition. The system discovers candidate
attributes that are detectable and discriminative. In order to give semantic names to
the attributes human interaction is used. This way the system discovers discriminative
local attributes that are both machine-detectable and human-understandable. Yuan et
al. [186] proposed an efficient data-mining based approach to discover discriminative
co-occurrences of attributes. Jayaraman [87] proposed a multi-task attribute learning
approach that encourages each attribute classifier to use a disjoint set of image features to
make its predictions. Whereas other models train each attribute classifier independently,
and therefore are prone to re-using image features for correlated attributes, this approach
aims to isolate distinct low-level features for distinct properties.

2.4.3 Mid-Level Patches and Parts

The learning of parts is usually integrated into the learning of a complete object or
scene model. In contrast to that mid-level patches and parts are individually trained
discriminative classifiers. The first approach in the direction of mid-level representation
are poselets [23]. A poselet describes a particular part of the object pose under a given
viewpoint. It is defined with a set of examples that are close in 3D configuration space. In
order to find such examples the approach relies on additional keypoint annotations, which
are providing information about the 3D configuration of an object. An example for such
keypoints is given in Section 2.1.3.

Despite the highly supervised poselet approach there exist several approaches on
unsupervised or weakly supervised discovery of mid-level patches. One of them is
the work of Singh et al. [153], which also coined the term mid-level patches by their
suggestion of mid-level visual primitives, which are more adaptable to the appearance
distributions in the real world than the low-level features, but do not require the semantic
grounding of high-level entities. Contrary to the concept of attributes (Section 2.4.2)
and poselets [23, 22] the suggested mid-level patches do not explicitly aim to discover
whole semantic units from labeled training data. Instead, the aim of [153] is to find
mid-level patches, in an unsupervised manner, which are defined by their representative
and discriminative property, i.e. that they can be detected in a large number of images with
high recall and precision. On top of this idea, two other very recent approaches, utilizing
mid-level parts, have been suggested for object recognition [46] and scene classification
[89]. Contrary to [153], these approaches are not fully unsupervised but weakly
supervised using object bounding boxes and image labels respectively. Furthermore, both
approaches are utilizing exemplar support vector machines (ESVM) [117, 79] to initialize
part classifiers, which are then utilized to find more positive instances and retrain the
model, instead of the iterative procedure of [153], which alternates between clustering
and training discriminative classifiers.

2.4.4 Compositions

The fundamental goal of compositional hierarchies is to establish one or more successive
representational layers by grouping parts thus obtaining a hierarchy of successively larger
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Figure 2.3: Triangle configuration made up of different basic elements. Triangle property
is emerging independent of the individual parts [72].

and more meaningful compositions. This concept of compositionality is contrary to
part-based models (see Section 2.3.1) which are directly modeling relations between
individual parts. The fundamental idea of grouping parts into more meaningful
compositions has its origin in the gestalt psychology [178, 179]. One of the most
important concepts of gestalt psychology is that relations between parts are essential for
the meaning of a composition. This lead to the well known statement of Wertheimer: “the
whole is different form the sum of its parts” [129, p. 50]. In order to support this claim,
examples with emergent properties have been created. This means that properties are not
shared between the local parts and the whole gestalt. An example of this concept is given
in Figure 2.3. Although the configurations are formed from different basic elements, i.e.
squares, circles, and triangles, all three are exhibiting the triangle property. The fact,
that the last configuration is made up of triangles doesn’t make it more or less a triangle
than the ones made up of squares and circles. The triangle property emerges independent
of the property of the individual parts. The idea of such emergent properties was also
acknowledged later by Biedermann [15] who proposed the recognition by component
theory to explain object recognition. According to this theory recognition is a multi
stage process in which the object is segmented into basic components which can be
approximated by so called geons, i.e. simple forms such as cylinders and cones.

This general concept of compositionality has been pursued by many object recognition
systems over the years [88, 128, 96, 61, 2]. Early compositional approaches for
object recognition are typically decomposing the whole object into its constituents
in a top-down manner [47, 105, 127]. Contrary to this [162] suggested to parse
images into their constituent visual patterns, by combining top-down and bottom-up
inference. In [96] object categories are decomposed into parts and shape contours
using a top-down approach. In order to learn shape models discriminatively, they
employ a Multiple Instance Learning algorithm in a bottom-up approach. Moreover,
compositional approaches are dividing into appearance based approaches [88, 127, 128]
and shape based approaches [62, 61, 2]. Jin and Geman [88] present a compositional
architecture with manually built structure for license plate reading. Opposed to such hand
build structures, Ommer and Buhmann [127, 128] described a composition system that
automatically learns structured, hierarchical object representations in an unsupervised
manner. Compositions are modeled as bags of parts with locality constraints and
intermediate compositions are learned in a generative framework yielding relevant part
agglomerations. Along this lines of unsupervised structures Fidler et al. [62] suggested
a Learned Hierarchy of Parts (LHOP), for compositional representation of parts. While
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lower layers are learned independently from the category, higher levels are specific to the
category. Following this basic approach, they suggested to speed-up recognition by using
a generative taxonomy of constellation object detectors in [61]. Recently, Aktas et al.
[2] proposed Compositional Hierarchy of Parts (CHOP). In this approach graph theoretic
tools are used to analyze, measure and employ geometric and statistical properties of parts
to infer compositions.
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CHAPTER 3

VISUAL RECOGNITION USING
EMBEDDED FEATURE SELECTION
FOR CURVATURE SELF-SIMILARITY

This chapter explores, how mid-level representations can improve object detection
systems that are relying on holistic object models. Many current detection systems are
based on holistic object representations learned with a discriminative classifier. The
silhouette of an object is one of the most important cues for recognition and therefore
most powerful object representations are capturing the shape of an object. In particular,
the currently most widely used and best performing image descriptors model objects based
on edge orientation histograms (Section 2.2.2). However, as described in Section 2.4
solely using low-level features is not sufficient to solve object recognition. To overcome
the limitations of low-level descriptors, recently more complicated image statistics like
co-occurrence and self-similarity (Section 2.4.1) became more and more popular to build
more robust descriptors. While it was shown that self-similarity and co-occurrence lead
to very robust and highly discriminative object representations, these second order image
statistics are also pushing feature spaces to extremely high dimensions. Since the amount
of training data stays more or less the same, such high dimensionality can cause the system
to suffer from curse of dimensionality and overfitting. Furthermore it is noticeable, that
descriptors based on edge orientation histograms are approximating objects with straight
lines. However, it was shown in different studies within the perception community, that
besides orientation, also curvature is an important cue when performing visual search
tasks.

In [122] the modeling of object boundary contours was extended beyond the widely
used edge orientation histograms by utilizing curvature information, to overcome the
drawbacks of straight line approximations. However, curvature can provide even
more information about the object boundary. By computing co-occurrences between
discriminatively curved boundaries we build a curvature self-similarity descriptor that
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provides a more detailed and accurate object description. To exploit the full capabilities
of high-dimensional representations applied in object detection we developed a new
embedded feature selection method for SVM, which reliable discards superfluous
dimensions and therefore improves object detection performance. Figure 3.1 gives an
overview over the training process of the detection system.

The remaining of the chapter is organized as follows: First, a short overview is given on
regularized risk minimization and SVM (Section 3.1). Next, feature selection methods
(Section 3.2) are reviewed and a novel method to capture the important dimensions from
high-dimensional representations (Section 3.2.2) is described. After that, histograms of
curvature [122] are introduced and a new self-similarity descriptor based on curvature is
suggested to go beyond the straight line approximation of objects (Section 3.3). Moreover,
Section 3.3 discusses previous work on self-similarity. In the Section 3.4, at the end
of the chapter, our novel curvature self-similarity descriptor is evaluated along with the
suggested feature selection method.

3.1 Regularized Risk Minimization

This section reviews the concept of regularized risk minimization [167]. It was shown
that a large number of machine learning problems can be formalized as regularized risk
minimization problems of the form:

min J(w) := AQ(w) + R(w). 3.1)

w

where R(w) is the empirical risk

ROw) i= 5 Sl S (x,). 32)

Moreover, {(X;, ¥;) }1<i<n are the training data with labels y; € {—1,+1} andxy,...,Xy €
R™. [ is a loss function that measures the difference between the label y; and the prediction
arising from the prediction function

f(x) :=wly(x) + b. (3.3)

The function 1) represents a mapping function ¢» : R® — R™ of x into a higher
dimensional space R™ .

The function 2(w) is serving as a regularizer, weighted by the regularization constant
A > 0. One of the most common regularizers is the squared L, norm:

Qw) = |w|z =w'w (3.4)

This regularizer has gained popularity since the introduction of max-margin methods such
as SVM, since ||w||5 is inverse proportional to the margin. Another popular regularizer is
the L; norm

Q(w) = || wl|,. (3.5)
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The L regularization induces sparsity and is therefore preferably used in problems with
high-dimensional input spaces as it automatically eliminates irrelevant dimensions.

Despite different regularizers €2 a multitude of loss functions exists. Here we will shortly
review some well known loss functions that are commonly used in machine learning:

1. Hinge loss [12]
Iy, f(x)) == max(0,1 — y f(x)) (3.6)
2. Logistic loss [33]
U(y, f(x)) :=log(1 + exp(—y f(x))) (3.7)
3. L, or least mean squares loss [181]
Uy, f(x) = (f(x) —y)* (3.8)

The combination of different regularizers and loss functions leads to several standard
machine learning problems. For example, using an L, regularizer (Equation 3.4) and
the hinge loss (Equation 3.6) leads to the well known Support Vector Machine (SVM)
[21, 167]. Changing the loss function to the logistic loss function (Equation 3.7) leads to
the problem known as logistic regression. The Lasso technique (Least Absolute shrinkage
and Selection Operator) [159] can be recovered by utilizing an L, regularizer (Equation
3.5) with an L5 loss function (Equation 3.8) . Exchanging the L, loss by the logistic loss
(Equation 3.7) leads to the so called generalized LASSO [144].

3.1.1 Support Vector Machines

Support vector machines have been first introduced in [21] and is based on statistical
learning theory of Vapnik [167]. Until now, it is one of the most popular supervised
classification methods, which has been used in many object recognition approaches.
An SVM classifier aims to find a hyperplane that best separates two classes, i.e. the
hyperplane with the maximum distance between points in each class. The distance
between the two classes is called margin and the SVM is maximizing it.

Finding the maximum margin between two classes corresponds to solving the
optimization problem

1
min §\|w||§ (3.9)

w,b

st oy(wiy(xg) +b)>1, Vie{l,., N}

As in many cases, this problem is given by means of a constrained optimization problem
and the loss function is not explicitly defined. However, rewriting the problem without
constraints leads to

N
o1
min o[ W3+ €Y max(0,1 = y(Wh(xi) +b)). (3.10)

i=1
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Now one can see, that this problem is an instance of the regularized risk minimization
problem, minimizing the hinge loss with an L, regularizer. This optimization problem is
often converted into its dual form, which gives, in the case of support vector machines,
the same solutions as the primal due to strong duality, i.e.

min max £(w, b, &) = max min £(w, b, ). (3.11)
w,b a>0 a>0 wpb

The Lagrangian £(w, b, &) is given by

N

L(w,b,a) = %wTw — Z o [y (Who(x;) +b) — 1] (3.12)

i=1

In the dual formulation the minimization problem needs to be solved first. The optimal w
and b must satisfy the condition that the partial derivatives of £(w, b, o) with respect to w
and b are zero.

aL(w,b,a) al B
— e TV ; iy (x;) =0 (3.13)
implies that
N
w=> ay(x;)=0. (3.14)
=1

Similarly, the partial derivation with respect to b results in

9L(w,b,a) b a) Zazyz_o (3.15)

Substituting w in 3.12 by 3.14 results in

N N N N

L(w,b, @) Zzaz%yzyﬂb(xz) P(x) = Y D oy (xi) ) (x;)

11]1 =1 j=1

N N
—b Z a5Y; + Z Q;
i=1 i=1

(3.16)

Since Zf\il a;y; = 0 this results in

N L NN
Lla) = Z i—§ZZa iy (x:) T (x;). (3.17)

i=1 =1 j=1

Now, the functional only depends on the Lagrangian multipliers c«. Moreover, one can
observer, that the transformed feature vector 1)(x;) is only appearing in dot products. Such
dot products are commonly interpreted as kernels in the field of kernel machines [148].
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Therefore applying the so called kernel trick [21] and exchanging the dot product by a
kernel function

K (xi,%;) = ¥(x;) h(x;) (3.18)

leads to the final dual optimization formulation

N N N
1
mo%X E CYZ'—§ E E Oél'OéjyiyjK(Xi,Xj). (319)
i=1

i=1 j=1

The training samples x;, for which corresponding Lagrangian multiplier «; is larger than
zero, are the support vectors. Solving Equation 3.19 leads to the SVM classifier

N
F(x) = iy (x;,%) +b. (3.20)
=1

In case of the linear kernel, one can use Equation 3.14 to write the decision function in
Equation 3.20 as

N
f(x) = Z QyXix+b=w'x+b. (3.21)

=1

In 1995 Cortes and Vapnik [34] suggested a modification of the support vector machine
that allows for violations of the margin to make it less sensitive to outliers. The so
called soft margin SVM is alleviating the problem of outliers, that make it impossible
to find a hyperplane that can separate all training samples perfectly, i.e. without margin
violations. The soft margin SVM allows samples to be misclassified, i.e. to lie inside the
margin or even on the wrong side of the margin and finds a hyperplane that leads to the
minimal number of margin violations. To relax the optimization problem in such a way,
slack variables &; are introduced for each training sample x;. The SVM problem given in
Equation 3.9 can be written as

N
) 1
min §||W||§ + C’Z &
i=1

s.troy(wh(x) +b) >1—¢&, Vie{l, .., N}
& >0, Vie{l,.., N}

for a given constant C'. (' is a free parameter that controls the relative importance of
minimizing the norm of w (which is equivalent to maximizing the margin) and satisfying
the margin constraint for each training sample. In the case that C' is small, more violations
of the margin are allowed and the margin is therefore getting larger. In case that C' is very
large less margin violations are allowed and the margin becomes smaller. Similar to the
original SVM formulation, given in Equation 3.9, strong duality (Equation 3.11) also
holds for the soft-margin SVM. Conversion of the primal soft margin formulation into the
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dual formulation is done similarly to hard margin SVM using the Lagrangian. The dual
of the soft margin SVM is

N N N
1
HICZ;LX i:E 1 o — 5 i:E 1 jil Oéla]yzy]K(X“ X]) (322)
st.: 0<; <C Vi

Note, that this is a quite similar formulation has the hard margin SVM given in Equation
3.19, but with one additional constraint on the Lagrange multipliers «;.

3.2 Feature Selection

Guyon et al. [76] categorize feature selection methods into filters, wrappers and
embedded methods. In this section we shortly describe the differences between these
three approaches, review the state-of-the-art of embedded feature selection for SVMs
(Section 3.2.1) and suggest a new approach for iterative dimensionality reduction for
SVMs (Section 3.2.2).

Filters  Filter methods are applied in a preprocessing step and are independent of
the classifier. Many filter methods are so called variable ranking methods [76, 95].
Instead of providing a fixed subset of useful features, they are providing a ranking of
all feature dimensions based on their relevance. A popular variable ranking method are
correlation based criteria, such as the square of Pearsons correlation coefficient [133],
which measures the linear dependency between two variables. This criterion has been
shown to be closely related to the Fisher’s criterion [67] and the T-test [73]. Besides
correlation based criteria, other variable ranking methods exist, e.g. the Relief algorithm
suggested by Kira et al. [94]. The Relief algorithm is utilizing the nearest neighbors to
compute the rank of a variable. For each variable it first finds its nearest hit, i.e. closest
example in the same class, and its nearest miss, i.e. closes example in a different class.
The ranking is given by the difference between the nearest hit and the nearest miss of the
feature. Therefore, the weight of a feature becomes low, if the distance to its nearest miss
is smaller than the distance to its closest hit.

After ranking the individual feature dimensions, the final selection of a subset is done
by choosing a threshold e.g. using cross-validation. The advantage of filters is that they
are simple and efficient to compute, as it only requires to compute n scores and sorting
them. Furthermore, filters are robust against overfitting. However, since feature selection
is performed completely independent of the classifier the selected subset might not be
suitable for the classifier.

Wrappers Contrary to filters, wrappers [76, 95] are not ranking variables according
to their individual predictive power, but use the classifier to score subsets of variables
according to their combined predictive power. Wrapper methods are treating the classifier
as a black box, i.e. the classifier is applied without any knowledge about the classification
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process and only the output is utilized for the feature selection. Therefore, the selection
process is not independent of the classifier anymore, as it is the case for filter methods.
Popular classifiers used to apply wrapper feature selection methods are decision trees,
naive Bayes and support vector machines [76]. The feature selection itself turns out
to be a search problem. If the number of variables is small an exhaustive search can
be used. However, in most of the cases more efficient strategies are needed, such as
best-first, branch-and-bound, simulated annealing, and genetic algorithms [95]. Greedy
search methods are often preferred due to their computational efficiency and turned out to
be robust against overfitting in practice [141]. One can distinguish two main strategies:
forward selection and backward elimination [76]. Forward selection is greedily adding
feature dimensions based on the performance of the classifier, while backward elimination
is rejecting the least useful feature dimensions.

Embedded Methods Contrary to filters and wrappers, embedded feature selection
methods incorporate feature selection as a part of the learning process [76, 98]. In
[98] a unified framework is defined that covers many embedded methods. Furthermore,
embedded methods are discussed based on how they solve the feature selection problem.
A common method is to iteratively add or remove features and greedily approximate
a solution. This idea is similar to those of wrapper methods, however in the case of
embedded methods, the classifier and its parameters are not a black box and information
about the classifier can be used in the selection process. Similar to wrapper methods
there exist embedded methods that are utilizing forward selection [135, 44, Section 8.3.2]
and backward elimination [77, 138]. Another approach is to relax the feature selection
problem from the binary case to the continuous case and solve the feature selection
problem as optimization of scaling factors [180, 112]. Furthermore, in case of linear
models, the feature selection can be enforced directly on the model parameters [24, 159].

3.2.1 State-of-the-Art Embedded Feature Selection for SVMs

Since most state-of-the-art detection systems use SVM as a classifier, the focus of
this work is on embedded feature selection methods for SVMs. To directly integrate
feature selection into the learning process of SVMs, sparsity can be enforced on the
model parameter w. Several researchers, e.g [24], have considered replacing the L2
regularization term ||w||3 with an L1 regularization term ||w]||;. Since L1 norm penalty
for SVM has some serious limitations [189], Wang et al. [175] suggested the doubly
regularized SVM (DrSVM), which is not replacing the L2 regularization, but adding
an additional L1 regularization to automatically select dimensions during the learning
process.

Contrary to linear SVM, enforcing sparsity on the model parameter w does reduce
dimensionality for non-linear kernel functions in the higher dimensional kernel space
rather than in the number of input features. To reduce the dimensionality for non-linear
SVMs in the feature space one can introduce an additional selection vector 6 € [0, 1]",
where larger values of 6; indicate more useful features. The objective is then to find the
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best kernel of the form
Ko(x,2) = K(60 xx,0 xz), (3.23)

where x,z € R" are the feature vectors and x is element-wise multiplication. These
hyper-parameters @ can be obtained via gradient descent on a generalization bound or
a validation error. Another possibility is to consider the scaling factors € as parameters
of the learning algorithm [74], where the problem was solved using a reduced conjugate
gradient technique.

In this work, the scaling factors are integrated into the learning algorithm, but instead of
using L2 norm constraint, like in [74], on the scaling parameter €, an L1 norm sparsity
which is explicitly discarding dimensions of the input feature vector is applied. For the
linear case, the optimization problem becomes similar to DrSVM [175] where a gradient
descent method is applied to find the optimal solution w*. To find a starting point, a
computational costly initialization is applied in [175], while our selection step can start at
the canonical 8 = 1, because w is modeled in a separate variable.

3.2.2 Ilterative Dimensionality Reduction for SVM

We are following the concept of embedded feature selection and therefore include
the feature selection parameter @ directly in the SVM classifier. The corresponding
optimization problem can be expressed in the following way:

N
1
min min §||w||%+O;& (3.24)

subjectto: (W (0 xx,)+b)>1-& A &>0 A |01 <6y

where K (x,z) := 1(x) - ¢(z) is the SVM kernel function. The function 1)(x) represents
the mapping of the feature vector x into a higher dimensional space. As discussed
in Section 3.1.1 a SVM classifier is learning a hyperplane defined by w and 0 which
best separates the training data {(x;,v;) }1<i<n with labels y; € {—1,+1}. We enforce
sparsity of the feature selection parameter 8 by the last constraint of Equation 3.24, which
restricts the L1-norm of @ by a constant #,. Since SVM uses L2 normalization it does
not explicitly enforce single dimensions to be exactly zero. However, this is necessary
to explicitly discard unnecessary dimensions. We rewrite the problem in Equation 3.24
without additional constraints in the following way:

N
o Lo
min min A0]]s + 5 [Iwlf3 + €Y max(0,1 - yi fa(x:)) (3.25)

i=1

where the decision function fp is given by fo(x) = w')(6 *x) + b. Note, that the
last constraint, where the L1-norm is restricted by a constant 6, is rewritten as an
L1-regularization term, multiplied with the sparsity parameter \.

Due to the complexity of problem 3.25 we propose to solve two simpler problems
iteratively. We first split the training data into three sets, training {(x},y.)}i<i<nv,
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Figure 3.1: After extracting high-dimensional feature representation using HOG,
curvature histograms and curvature self-similarity the optimization process
is split in two steps due to its complexity. First, an SVM classifier is
trained on the training data. The resulting classifier can be applied on the
unseen validation data and the selection parameter ¢ is optimized so that the
separation on the validation data is improved.

validation {(x!,y/)}1<i<n» and a hold out testset. Now, we optimize the problem
according to w and b for a fixed selection parameter @ using a standard SVM algorithm on
the training set. Parameter 6 is optimized in a second optimization step on the validation
data using an extended version of the bundle method suggested in [41]. We are performing
the second step of our algorithm on a separate validation set to prevent overfitting. The
optimization process is shown in Figure 3.1.

In the first step of our algorithm, the parameter 0 is fixed and the remaining problem is
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Algorithm 3.1 Iterative Dimensionality Reduction for SVM.
1: converged := FALSE
2. 0:=1
3: while converged==FALSE do

4 [x;,a,b]=trainSVM( X', Y’, 6, C)

5: 6% = applyBundleMethod(X",Y" x,a,b,C)
6:  if % == 0 then

7: converged=TRUE;

8: endif

9: 0=0%*

10: end while

converted into the dual problem

N’ N’
1
max E @i E ooy K (6 % X, 0 % X)) (3.26)
i—1

ij=1

N/
subjectto: 0<a; < C, Z ay; =0
i—1

where the decision function fg is given by fo(x) = > ", ayy K (0 * X, 0 * x]) + b, where
m is the number of support vectors. Equation 3.26 is solved using a standard SVM
algorithm [28, 115]. The optimization of the selection parameter @ starts at the canonical
solution where all dimensions are set to one. This is corresponding to the solution that is
usually taken as a final model in other approaches. In our approach we apply a second
optimization step to explicitly eliminate dimensions which are not necessary to classify
data from the validation set. Fixing the values of the Lagrange multipliers c, the support
vectors X; and the offset b, obtained by solving Equation 3.26, leads to

N
) 1
min A6 + §||W||§ + C’Zmax((), 1=y fo(x))). (3.27)

i=1
which is an instance of the regularized risk minimization problem mein AQ2(0) + R(9) ,

where €2(0) is a regularization term and R(0) is an upper bound on the empirical risk. To
solve such non-differentiable risk minimization problems bundle methods have recently
gained increasing interest in the machine learning community. For the case that the risk
function R is non-negative and convex it is always lower bounded by its cutting plane at
a certain point 6" :

R(0) > < a',0 > +b' forall i (3.28)

where a’ := JgR(0") and b’ := R(0")— < a’,0" >. Bundle methods build an iteratively
increasing piecewise lower bound of the objective function by utilizing its cutting planes.
Starting with an initial solution it solves the problem where R is approximated by one
initial cutting plane using standard solver. A second cutting plane is build at the solution of
the approximated problem. The new approximated lower bound of I? is now the maximum
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over all cutting planes. The more cutting planes are added the more accurate gets the lower
bound of the risk function.

For the general case of non-linear kernel functions the problem in Equation 3.27 is
non-convex and therefore especially hard to optimize. In the special case of a linear
kernel, the problem is convex and the applied bundle method converges towards the global
optimum. Some efforts have been made to adjust bundle methods to handle non-convex
problems [93, 41]. We adapted the method of [41] to apply L1 regularization instead of L2
regularization and employ it to solve the optimization problem in Equation 3.27. Although
the convergence rate of O(1/e) to a solution of accuracy e [41] does no longer apply for
our L1 regularized version, we observed that the algorithm converges withing the order of
10 iterations which is in the same range as for the algorithm in [41]. An overview of the
suggested iterative dimensionality reduction algorithm is given in Algorithm 3.1.

3.3 Representing Curvature Self-Similarity

Although several methods have been suggested for the robust estimation of curvature, it
has been mainly represented indirectly in a contour based manner [10, 184] and to locate
interest points at boundary points with high curvature value. To design a more exact
object representation that represents object curvedness in a natural way we revisit the idea
of [122] and design a novel curvature self-similarity descriptor based on curvature. We
make use of the advantages of global self-similarity and compute all pairwise curvature
similarities across the whole image. This results in a very high dimensional object
representation. As mentioned before such high dimensional representations have a natural
need for dimensionality reduction which we fulfill by applying our embedded feature
selection algorithm outlined in Section 3.2.2. In this section we will first review curvature
for object representation and the concept of self-similarity and then provide details on the
computation of our novel curvature self-similarity descriptor.

3.3.1 Review: Curvature for Object Representation

Figure 3.2 shows that a straight line approximation such as histograms of oriented
gradients is not detailed enough and that histograms of curvature are able to provide
a more detailed description of objects. Monroy et al. [122] extend the widely used
object representation based on gradient orientation histograms by incorporating a robust
description of curvature. It was shown that histograms of curvature are able to capture
the shape information of complex objects and yields orthogonal information to the
state-of-the-art theme of histograms of oriented gradients for visual search tasks.

To estimate the curvature for planar boundaries Monroy et al. [122] used the
chord-to-point distance accumulation of Han et al. [78] due to its efficiency and stability.
Let B be a set of NV consecutive boundary points, B := {po, p1, P2, ..., Pn_1} representing
one line segment. A fixed integer value [ defines a line L; between pairs of points p; to
Di+1, Where ¢ + [ is taken modulo V. The perpendicular distance D;; is computed from L;
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Figure 3.2: The columns from left to right show the original image, histograms of
oriented gradients and histograms of curvature. The examples show, that a
smooth curve cannot be distinguished from one with corners or from a set of
differently oriented lines in arbitrary configuration using solely histograms of
oriented gradients [122].

to the point py, using the euclidean distance. The distance accumulation for point p; and
a chord length [ is the sum

k
(k) =Y Di. (3.29)

i=k—1

In order to compute histograms of curvature the absolute value of the distance
accumulation is computed for the edges provided by probabilistic boundary detector
[119]. To build the final curvature descriptor the image is divided into a grid of multiple
resolutions. The number of grid cells depends on the current resolution level. The first
level contains only one cell and the number of cells is increasing with the level. In
particular, the image has 2° grid cells along each dimension for level s, where s = 0
is the coarsest level. Monroy et al. [122] use 4 levels for both HOG and curvature
histograms. For each grid cell a histogram with 10 bins is computed over the absolute
distance accumulation values contained in the cell. The histograms from each level are
weighted according to 2° and are concatenated to form the final feature vector that encodes
local and global curvature statistics of the image.

3.3.2 Review: Self-Similarity

The idea of self-similarity was first suggested by Shechtman et al. [151] who proposed
a descriptor based on local self-similarity (LSS). Instead of measuring image features
directly it measures the correlation of an image patch with a larger surrounding image
region. The general idea of self-similarity was used in several methods and applications
[40, 90, 173, 183]. In [90] self-similarity is used to improve the Local Binary
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Figure 3.3: Visualization of curvature computation. D;; is on the left-hand side of the
vector (p;4+; — p;) and therefore has a positive sign, while D, is on the
right-hand side of the vector (p} ; — p;) and therefore gets a negative sign.

Pattern (LBP) descriptor for face identification. Deselaers et al. [40] explored global
self-similarity (GSS) and showed its advantages over local self-similarity (LSS) for object
detection. Furthermore, Walk et al. [173] showed that using color histograms directly
is decreasing performance, while using color self-similarity (CSS) as a feature is more
appropriate. Besides object classification and detection, self-similarity was also used for
action recognition [90] and turned out to be very robust to viewpoint variations.

3.3.3 Curvature Self-Similarity Descriptor

To describe complex objects, it is not sufficient to build a self-similarity descriptor
solely based on curvature information, since self-similarity of curvature leaves open many
ambiguities. To resolve these ambiguities we add 360 degree orientation information to
get a more accurate descriptor. We are using 360 degree orientation, since curved lines
cannot be fully described by their 180 degree orientation. This is different to straight lines,
where 180 degree orientation gives us the full information about the line. Consider a half
circle, with an arbitrary tangent line on it. The tangent line has an orientation between 0
and 180 degrees. However, it does not provide information on which side of the tangent
the half circle is actually located, in contrast to a 360 degree orientation. Therefore, using
a 180 degree orientation yields to high similarities between a left curved line segment and
a right curved line segment.

As a first step we extract the curvature information and the corresponding 360 degree
orientation of all edge pixels in the image. To estimate the curvature we follow the
approach presented in [122] and use the distance accumulation method of Han et al. [78],
which accurately approximates the curvedness along given 2D line segments (see Section
3.3.1). While Monroy et al. [122] only used the absolute curvature value we are also
using the sign of the curvature to compute the 360 degree orientation. The distance Dy, is
positive if py, is on the left-hand side of the vector (p;; — p;), and negative otherwise (see
Figure 3.3 and Figure 3.6). To get the 360 degree orientation information we compute
the gradient of the probabilistic boundary edge image [119] and extend the resulting 180
degree gradient orientation to a 360 degree orientation using the sign of the curvature.

Contrary to the original curvature feature proposed in [122], where histograms of
curvature are computed using differently sized image regions, we build our basic curvature
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Figure 3.4: In the left column of the figure on the top the absolute curvature value of
an example image is shown. On the bottom the corresponding 360 degree
orientation of all edge pixels is visualized. After dividing these two input
signals in grids of 8 x 8 pixels, histograms are build for each cell. The
curvature and orientation histograms are concatenated and similarities are
computed, using histogram intersection, to build the final self similarity
representation.

feature using equally sized cells to make it more suitable for computing self-similarities.
We divide the image into non-overlapping 8 x 8 pixel cells and build histograms over
the curvature values in each cell. Next, we do the same for the 360 degree orientation and
concatenate the two histograms. This results in histograms of 28 bins, 10 bins representing
the curvature and 18 bins representing the 360 degree orientation. There are many ways to
define similarities between histograms. We follow the scheme that was applied to compute
self similarities between color histograms [173] and use histogram intersection as a
comparison measure to compute the similarities between different curvature histograms
in the same bounding box. Histogram intersection is given by

dnise (0, v) = > min(u;, v;) (3.30)
j=1

where u, v € R?8. Furthermore, we apply an L2-normalization to the final self-similarity
vector. Figure 3.4 gives an overview of the feature construction process. The computation
of self-similarities between all curvature-orientation histograms results in an extremely
high-dimensional representation. Let D be the number of cells in an image, then
computing all pairwise similarities results in a D? large curvature self-similarity matrix.
Some examples are shown in Figure 3.5. Since, the similarity matrix is symmetric we
use only the upper triangle which results in a (D - (D — 1)/2)-dimensional vector. This
representation gives a very detailed description of the object. The higher dimensional a
descriptor gets, the more likely it contains noisy and correlated dimensions. Furthermore,
it is also intuitive that not all similarities extracted from a bounding box are helpful to
describe the object. To discard such superfluous dimensions we apply our embedded
feature selection method to the proposed curvature self-similarity representation.
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Figure 3.5: Our visualization shows the original images along with their curvature
self-similarity matrices displaying the similarity between all pairs of curvature
histogram cells. While curvature self-similarity descriptor is similar for the
same object category it looks quite different to other object categories

3.4 Experiments

We evaluate our curvature self-similarity descriptor in combination with the suggested
embedded dimensionality reduction algorithm for the object detection task on the
PASCAL dataset [48]. Our experiments show, that curvature self-similarity is providing
complementary information to straight lines, while our feature selection algorithm is
further improving performance by fulfilling its natural need for dimensionality reduction.

The common basic concept shared by many current detection systems are
high-dimensional, holistic representations learned with a discriminative classifier, mostly
an SVM [167]. In particular the combination of HOG [37] and SVM constitutes the
basis of many powerful recognition systems and it has laid the foundation for numerous
extensions like, part based models [56, 123, 147, 188], variations of the SVM classifier
[56, 161] and approaches utilizing context information [82, 155]. These systems rely on
high-dimensional holistic image statistics primarily utilizing straight line approximations.
In this paper we explore a orthogonal direction to these extensions and focus on how one
can improve on the basic system by extending the straight line representation of HOG to a
more discriminative description using curvature self-similarity. At the same time our aim
is to reduce the dimensionality of such high-dimensional representations to decrease the
complexity of the learning procedure and to improve generalization performance.

The experimental section is organized as follows: First an overview is given over the
PASCAL VOC dataset (Section 3.4.1). The next part of the experiments (Section 3.4.2)
adjust the selection parameter A\ of the iterative dimensionality reduction technique
via cross-validation. Furthermore, performance of the feature selection algorithm is
compared to L2 regularized SVM [28, 115] and DrSVM [175]. In the final part (Section
3.4.3) we evaluate the suggested curvature self-similarity feature after applying our novel
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feature selection method to it.

3.4.1 PASCAL Visual Object Classes

The PASCAL Visual Object Classes (VOC) [49] is a challenging benchmark for object
category classification and detection. The PASCAL challenge has been organized from
2005 until 2012. Each year a new dataset was released together with annotations and
standard evaluation procedure. Until 2007 the annotation of the testing data has been
released after the challenge. This is due to the fact that since 2009 the dataset was only
augmented with new images instead of providing a whole set of new images each year.
Instead of releasing the testset annotation an evaluation server was set up for measuring
performance on the testset. This also makes sure that parameters of approaches published
after the challenge can not be adjusted to the testset. The downside is that only a small
number of evaluations are allowed for each suggested detection system. However, to
show the individual strengths of the two contributions suggested in this chapter we need
to perform a number of evaluations. Since this is not supported by the PASCAL VOC
evaluation server we follow the best practice guidelines and use the VOC 2007 dataset.

The PASCAL VOC 2007 dataset contains images collected from flickr. In total 9963
images containing 24640 annotated objects from twenty classes have been collected.
Furthermore, the dataset provides a fixed split into 50% training/validation and 50%
testing data. The twenty classes can be divided into four main topics: vehicles, animals,
household objects and people. The dataset is particularly challenging due to a wide
variation of viewpoints and lighting conditions, high intra-class variability, low inter-class
variability, and a high amount of occlusions and truncations.

For evaluation a ranked list of object bounding boxes together with an associated
confidence score is submitted for each class. For all detected bounding boxes B, in an
image the overlap a( with the annotated groundtruth bounding boxes By, is computed :

_area(ByN By)
~ area(By U By)’

(3.31)

Qo

By, N By is the intersection between the ground truth and the detected bounding box
and B, U By, is their union. A detected bounding box is considered as correct detection
if the overlap ag is larger than 50%. Furthermore, if multiple detections are dedicated
to a ground truth box only the highest ranking box is considered as positive, while the
remaining detections are double detections and are counted as false positives. To avoid
such double detections a non-maximum suppression is typically performed to remove
overlapping boxes.

From the number of true positives (TP), i.e. correctly detected objects, and false positives
(FP), i.e. a non existing object was detected, one can compute precision and recall.
Precision is the amount of samples that have been detected correctly among all detected
objects

#TP

LTP + #FDP’ (3-32)

precision =
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aero bike bird boat bottle bus car cat chair cow

linSVM 66.1 80.0 53.0 53.1 70.7 73.8 753 612 63.8 70.7
DrSVM 59.1 77.6 535 499 644 71.6 758 50.8 56.1 64.5
linSVM +FS  69.7 803 555 562 718 740 759 632 64.8 71.0
FIKSVM 80.1 74.8 57.1 593 633 739 773 773 69.1 664

FIKSVM +FS 804 749 575 62.1 66.7 739 780 80.1 70.6 69.9

table dog horse mbikepers plant sheep sofa train tv | mean
linSVM 714 572 76,5 83.0 729 477 551 61.1 704 73.1| 66.8
DrSVM 59.9 539 709 765 723 477 663 69.0 67.7 79.7| 64.3
linSVM +FS 720 57.8 772 833 73.0 49.7 56.7 624 70.7 73.8| 68.0
FIKSVM 64.1 61.7 746 709 794 475 62.0 59.8 769 69.3| 68.1
FIKSVM +FS 67.6 646 79.7 742 79.6 530 642 646 77.1 69.8| 70.4

Table 3.1: Average precision of our iterative feature reduction algorithm for linear
and non-linear kernel function using our final feature vector consisting of
HOG+Curv+CurvSS. For linear kernel function we compare our feature
selection (linSVM+FS) to L2 normalized linear SVM (1linSVM) and to the
doubly regularized SVM (DrSVM) [175]. For non-linear kernel function we
compare the fast intersection kernel SVM (FIKSVM) [115] with our feature
selection (FIKSVM+FES).

while recall measures the amount of recognized positives among all positive samples
#TP
#P
By varying the threshold on the confidence score a precision-recall curve can be

computed. Performance is then summarized in a single number called average precision.
The average precision is the area under the precision-recall curve.

recall = (3.33)

3.4.2 Evaluation of Feature Selection

All experiments in this section are performed using our final feature vector consisting of
HOG, curvature (Curv) and curvature self-similarity (CurvSS). We apply our iterative
dimensionality reduction algorithm in combination with linear L2 regularized SVM
classifier (1inSVM) [28] and non-linear fast intersection kernel SVM (FIKSVM) by Maji
etal. [115].

Histogram intersection (cf. Equation 3.30) is often used as a comparison measurment
between histograms. However, due its positive definiteness [126] it is also a suitable
kernel for SVMs. In [115] it is shown how the runtime complexity of the intersection
kernel SVM can be reduced from linear to logarithmic in the number of support vectors.
Therefore, the so called FIKSVM is widely used and evaluation is relatively fast compared
to other non-linear kernels. Nevertheless, computational complexity is still an issue on
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the PASCAL dataset as the number of support vectors grows linearly with the amount of
training data [156]. This is why on this database linear kernels are typically used [56, 155].

Because of the high computational complexity of DrSVM and FIKSVM, we compare to
these methods on a smaller train and test subset obtained from the PASCAL training and
validation data in the following way. All training and validation data from the PASCAL
VOC 2007 dataset are used to train an SVM using our final object representation on all
positive samples and randomly chosen negative samples. The resulting model is used to
collect hard negative samples. The set of collected samples is split up into three sets:
training, validation and test. Out of the collected set of samples every tenth sample is
assigned to the hold out test set which is used to compare the performance of our feature
selection method. The remaining samples are randomly split into training and validation
set of equal size which are used to perform the feature selection. The reduction algorithm
is applied on 5 different training/validation splits which results in five different sets of
selected features. For each set we train an L2 norm SVM on all samples from the training
and validation set using only the remaining dimensions of the feature vector. Then we
choose the feature set with the best performance on the hold out test set. To find the best
performing selection parameter A, we repeat this procedure for different values of \.

The performance of our dimensionality reduction algorithm is compared to the
performance of 1inSVM and DrSVM [175] for the case of a linear kernel. Since DrSVM is
solving a similar optimization problem as our suggested feature selection algorithm for a
linear kernel this comparison is of particular interest. We are not comparing performance
to DrSVM in the non-linear case since it is performing feature selection in the higher
dimensional kernel space rather than in the original feature space. Instead we compare
our feature selection method to that of FIKSVM for the non-linear case. Our feature
selection method reduces the dimensionality of the feature by up to 55% for the linear
case and by up to 40% in the non-linear case, while the performance in average precision
is constant or increases beyond the performance of linSVM and FIKSVM. On average our
feature selection increases performance about 1.2% for linSVM and 2.3% for FIKSVM
on the hold-out testset. The DrSVM is actually decreasing the performance of linSVM by
2.5% while discarding a similar amount of features. All in all our approach improves the
DrSVM by 3.7% (see Table 3.1).

Our results confirm that our feature selection method reduces the amount of noisy
dimensions of high-dimensional representations and therefore increases the average
precision compared to a linear and non-linear SVM classifier without applying any feature
selection. For the linear kernel we showed furthermore that the proposed feature selection
algorithm achieves gain over the DrSVM.

3.4.3 Object Detection using Curvature Self-Similarity

In this section we provide a structured evaluation of the parts of our final object detection
system. We use the HOG of Felzenszwalb et al. [56, 57] as baseline system, since it is
the basis for many powerful object detection systems. All detection results are measured
in terms of average precision performing object detection on the PASCAL VOC 2007
dataset. To the best of our knowledge neither curvature nor self-similarity was used
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Figure 3.6: Based on meaningful edge images one can extract accurate curvature
information which is used to build our curvature self-similarity object
representation.

Figure 3.7: A significant number of images from PASCAL VOC feature contour artifacts
i.e, due to their size, low resolution, or compression artifacts. The edge maps
are obtained from the state-of-the-art probabilistic boundary detector [119]. It
is evident that objects like the sheep are not defined by their boundary shape
and are thus beyond the scope of approaches based on contour shape.

to perform object detection on a dataset of similar complexity as the PASCAL dataset
so far. Deselaers et al. [40] evaluated their global self-similarity descriptor (GSS) on
the simpler classification challenge on the PASCAL VOC 2007 dataset, while the object
detection evaluation was performed on the ETHZ shape dataset. However, it was shown
in [122] that including curvature already solves the detection task almost perfectly on the
ETHZ dataset. Furthermore, [122] outperforms the GSS descriptor on three categories
and reached comparable performance on the other two. Thus we evaluate on the more
challenging PASCAL dataset.

Since the proposed approach models the shape of curved object contours and reduces the
dimensionality of the representation, we expect it to be of particular value for objects
that are characterized by their shape and where their contours can be extracted using
state-of-the-art methods (see Figure 3.6). However, a significant number of images form
PASCAL VOC are corrupted due to noise or compression artifacts (see Figure 3.7).
Therefore state-of-the-art edge extraction fails to provide any basis for contour based
approaches on these images and one can therefore only expect a significant gain on
categories where proper edge information can be computed for a majority of the images.

Our training procedure makes use of all objects that are not marked as difficult from
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HOG of [57] | 190 445 29 42 135 377 390 83 114 158
HOG 208 43.0 2.1 50 137 37.8 387 6.7 12.1 163
HOG+Curv 230 426 3.7 67 124 386 399 75 100 169
HOG+Curv4FS | 254 42.9 3.7 68 13.5 388 400 8.1 12.0 17.1
HOG+Curv+ 1906 391 23 68 12.9 403 388 93 11.1 13.9
CurvSS
HOG+Curvt | 509 431 35 70 13.6 40.6 404 9.6 12.5 17.3
CurvSS+FS
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HOG of [57] | 105 20 435 297 240 3.0 11.6 17.7 283 32.4] 20.0
HOG 98 22 424 295 243 38 115 17.6 29.0 33.4| 20.0
HOG+Cury 13.0 3.7 460 305 255 40 87 187 323 33.6] 209
HOG+Curv4FS | 15.6 37 464 30.8 25.7 4.0 113 19.1 323 33.6| 21.5
HOG+Curv+ | 163 65 480 275 272 42 93 205 35.9 34.8| 217
CurvSS
HOG+Curvt | 16 g/ 485 30.6 27.3 4.8 11.6 20.7 36.0 34.8| 22.7
CurvSS+FS

Table 3.2: Detection performance in terms of average precision of the HOG baseline
system, HOG and curvature (Curv) before and after discarding noisy
dimensions using our feature selection method (FS) and our final detection
system consisting of HOG, curvature (Curv), the suggested curvature
self-similarity (CurvSS) with and without feature selection (FS) on the
PASCAL VOC 2007 dataset. Note, that we use all data points to compute
the average precision as it is specified by the default experimental protocol
since VOC 2010 development kit. This yields lower but more accurate average
precision measurements.

the training and validation set. We evaluate the performance of our system on the full
testset consisting of 4952 images containing objects from 20 categories using a linear
SVM classifier [28]. Due to the large amount of data in the PASCAL database the usage
of intersection kernel for object detection becomes comparable intractable. Results of our
final system consisting of HOG, curvature (Curv), curvature self-similarity (CurvSS) and
our embedded feature selection method (FS) are reported in terms of average precision in
Table 3.2. We compare our results to that of HOG [57] without applying the part based
model. Additionally we show results of our own HOG baseline system which is using
standard linear SVM [28] instead of the latent SVM used in [57]. Furthermore, we show
results with and without feature selection to show the individual gain of the curvature
self-similarity descriptor and our embedded feature selection algorithm.
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The results show that the suggested self-similarity representation in combination with
feature selection improves performance on most of the categories. All in all this
results in an increase of 2.7% in average precision compared to the HOG descriptor.
One can observe that curvature information in combination with our feature selection
algorithm is already improving performance over the HOG baseline and that adding
curvature self-similarity additionally increases performance by 1.2%. The gain obtained
by applying our feature selection (FS) depends obviously on the dimensionality of the
feature vector; the higher the dimensionality the more can be gained by removing noisy
dimensions. For HOG+Curv applying our feature selection is improving performance by
0.6% while the gain for the higher dimensional HOG+Curv+CurvSS is 1%. The results
underline that curvature information provides complementary information to straight lines
and that feature selection is needed when dealing with high dimensional features like
self-similarity.

3.5 Discussion

We have observed that high-dimensional representations cannot be sufficiently handled
by linear and non-linear SVM classifiers. An embedded feature selection method
for SVMs has therefore been proposed, which has been demonstrated to successfully
deal with high-dimensional descriptions and therefore increases the performance of
linear and intersection kernel SVM. Moreover, the proposed curvature self-similarity
representation has been shown to add complementary information to widely used
orientation histograms.histograms.
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CHAPTER 4

MAX-MARGIN REGULARIZATION
FOR REDUCING ACCIDENTALNESS
IN CHAMFER MATCHING

In the previous chapter the benefit of mid-level representations has been shown for
holistic object models, by modeling self-similarities between image regions of an object
hypothesis. As the hypothesis are divided into cells this can be reinterpreted as a rigid
part-based model, where similarities have been computed between the individual parts.
This chapter discusses, how mid-level representations are also of great use for more
flexible part-based object detection approaches.

As discussed in Section 2.2.1 chamfer matching is a widely used technique for object
detection. Due to its simplicity and efficiency it has been employed in a variety
of applications to match whole object boundaries, as well as partial object contours.
Despite these advantages chamfer matching has a serious drawback when contours are
matched in cluttered image regions. Contour matches in cluttered regions have a high
accidentalness and can not be distinguished from matches on the actual object. Recent
research made some attempts to improve specificity by including orientation information
[69, 38, 152, 108] in the distance function. Furthermore, this issue was addressed by
learning the relevance of model points and gives higher weight to more important model
points (see Section 4.2.1). While this extensions help to fit the template more accurately
to the object contours, dense clutter as shown in Figure 4.5 is still a serious problem of
this approach.

This work is addressing the problem of dense clutter by developing a novel mid-level
representation. Mid-level representations are providing a more detailed descripton of
the object and are therefore bridging the gap between the low-level feature, in this
case the foreground contour of an object part, and the high-level concept of an object.
Co-occurrences between different low-level features have been shown to lead to very
detailed and robust image descriptors for object detection. Following this idea of
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co-occurrences, the flexible co-placement of generic background contours are learned to
reduce the accidentalness of matches in dense background clutter. The co-occurrence
of generic background contours is integrated together with current improvements on
matching the foreground model, i.e. orientation information [108] and weighted model
points (see Section 4.2.1) into a single max-margin framework.

In the remaining of this chapter, first state-of-the-art chamfer matching approaches
are reviewed (Section 4.1), next the concept of non-accidentalness will be discussed
(Section 4.2), then the learning procedure for the suggested chamfer regularization will be
explained (Section 4.3), and finally an extensive evaluation of the suggested framework is
performed (Section 4.5).

4.1 State-of-the-art Chamfer Matching

Chamfer matching (CM) is a popular shape matching algorithm due to its speed and
robustness [158]. Therefore, it has been used in a large number of applications in
computer vision. It was first introduced by Barrow et al. [7] to match two sets of
contour fragments. Since then chamfer matching has been widely applied and has
been a successful technique for detecting complete objects or their parts. In [19]
hierarchical chamfer matching was suggested where edge points are matched in a
coarse-to-fine-manner. Later, chamfer matching was used to build powerful detectors
as proposed in [70, 104, 107]. Leibe et al. [104] combine local features with global
shape cues obtained from chamfer matching to verify and refine hypotheses. In [70],
Gavrila and Munder have applied chamfer matching for real-time pedestrian detection and
tracking. Lin et al. [107] have proposed a hierarchical part-template matching approach,
for detection and segmentation, which measures shape information in terms of chamfer
matching scores.

Besides the usage of standard chamfer matching, several works engage the question, how
chamfer matching can be enhanced to make it less sensitive to clutter. In the following we
will first review standard chamfer matching, oriented chamfer matching (OCM) [152] and
directional chamfer matching (DCM) [108], two approaches that investigated in including
orientation information, and normalized oriented chamfer matching (NOCM) [113], an
improvement of oriented chamfer matching for dense clutter.

Chamfer Matching Lets assume that each object is represented by a collection of
contours of its different parts. Let P = {p,} and Q = {q;} be the pixels of an object part
and query edge maps respectively. For a given location x of the object part in the query
image, chamfer matching aims to find the best q; € @ for each p; € P. The chamfer
distance is defined as

d( |P| Z mln\ p; +X | 4.1)

Chamfer matching is robust against small rotations, misalignments, occlusions, and
deformations. The matching cost can be efficiently computed in linear time using distance
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transformation given in Equation 2.8

P,
den? (%) =P P| > DTq(p; +x) 4.2)

p,cP

In practice the distance is often thresholded to make it more robust against missing edges
in the query image Q:

deatr(x) = |P| > min(DTo(p; +x).7). 4.3)

p;cP

Furthermore, thresholding with the constant 7 allows normalization to the range [0, 1]:

desg ) (x) = Pl P‘ Z min(DTo(p; + %), 7). (4.4)

Oriented Chamfer Matching Shotton et al. [152] suggested an improved matching
scheme called oriented chamfer matching (OCM) that takes into account the orientation
mismatch between pixels. Exploiting the edge orientation improves the robustness,
since it is unlikely that clutter edges align in orientation and position. Therefore, the
cost function is extended by an explicit cost for the orientation mismatch, given by the
difference in orientation between edges in the template P and the edge map ()

dopi () ‘P‘ Z [¢(p:) — S(ADTo(p; +x))] 4.5)

where ¢(p,) be the edge orientation of the edge point p, and ADT(, be the argument
distance transform. The argument distance transform gives the locations of the closest
point in ()

ADTo(x) = arg min [x — q;] (4.6)

J

The suggested oriented chamfer matching uses a linear combination of the distance and
the orientation term

ooy (x) = (1= A) - drd) (x) + A - dS02 (x). (4.7)

The parameter A is controlling the importance of the orientation term.

Directional Chamfer Matching 1In [108] an alternative approach for incorporating
edge orientation has been proposed which solves the matching problem in an augmented
space. Instead of modeling the orientation mismatch as a separate term as in OCM each
edge pixel is augmented with a direction term. This method is called directional chamfer
matching and its distance function is defined as

dipcar(x) |P|me\pz+x @l + e, +%) - ola) @4s)
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Similar to the OCM formulation A denotes the weighting factor between location and
orientation terms. It was shown that the suggested directional chamfer matching (DCM)
achieves a superior performance compared to oriented chamfer matching. Moreover, the
approach is significantly reducing the matching time from linear to sublinear by using 3D
distance transforms and integral images.

Normalized Oriented Chamfer Matching  Another improvement of chamfer
matching was suggested in [113]. While this work is build upon oriented chamfer
matching, the focus of this work is not on improving the matching of the template, but
on comparing the matching scores of the template to the matching scores of auxiliary
contours, so called normalizers. The idea is that the normalizer contour matches as good
as the foreground template in a cluttered image region. Therefore, a comparison between
the oriented chamfer matching score of the template and a random normalizer is used to
recognize if the template matches to clutter. For a target template P, a set of normalizers
is created N = {ni|k = 1, ... K} and the ratio

P7
d(OCQ]\/)[ (x)

dgent (%)

(4.9)

is computed. To get a suitable set of normalizers, a manually selected set of tuples of
contour fragments is proposed and trained in a boosting framework where all the ratios
are evaluated and used as weak learners

1 RPQM(x) <ty

) (4.10)
0 otherwise

The threshold ¢ is chosen in the boosting framework to minimize the misclassification
error and the final strong classifier is given as a weighted linear combination of the weak
classifiers resulting in the normalized oriented chamfer matching score

K
GPN() = 3w 99 (x) = Al (). @10
k=1

Note, that while oriented chamfer matching is utilizing a distance, normalized oriented
chamfer matching utilizes a similarity instead.

4.2 Modeling Accidentalness

The concept of non-accidentalness [109, 182] suggests that the significance of relations
between parts or features is mainly dependent on the extend to which such a configuration
could have appeared by accident. This concept was first suggested and exploited in
the area of grouping and object recognition. In this work, accidental matches of the
foreground template are detected by learning the interdependence (Section 4.2.1) of model
points and by learning the co-occurrence of generic background contours (Section 4.2.2).
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Figure 4.1: We are percepting this
image as a white triangle
partially occluding three
black circles and another
triangle with a black
boundary. However, there
is not a single edge in the
image defining the white

triangle. The contours are
illusionary [92].

Figure 4.2: The shown cat is abstracted
by selecting the 38 points
of highest curvature and
connecting  them  with
straight edges [5].

4.2.1 Review: Interdependence of Model Points

Standard chamfer matching is utilizing object contours which only measure the mere sum
of location differences of contour pixels. Extensions of chamfer matching such as OCM
[152] and DCM [108] focus on adding orientation information to improve the matching
quality of the foreground template. However, in both approaches, the score for an object
hypothesis is obtained by summing over all the template pixels in the distance transform
of the query image (see Equation 4.7 and 4.8). Therefore, these approaches measure the
presence of individual model points in a query image independently. However, not all
the pixels on an object part are equally important for detecting objects, as shown in the
famous Kanizsa triangle shown in Figure 4.1. Provided only contour fragments around the
corners, the whole triangle can be easily recognized. Similarly, Biederman [15] presents
perceptual experiments with degraded contours that demonstrate the varying importance
of different points on object contours. Another example is Attneave’s cat [5] shown in
Figure 4.2, where for instance, points of high curvature are proposed as the most useful
features for recognition.

This issue is addressed by learning the relevance of model points which gives higher
weight to more important model points. Such interdependence of model points is
increasing the specificity of the model contour by learning the relative importance of
all model points instead of treating them as independent. The weights modeling the
interdependence between individual points of an object part are determined by learning
discriminative weights of their co-occurrence, i.e. of their matching costs.

179 (%) = min|(p, +x) — q| + Ao(p; +x) ~ 6(q;) (4.12)

J
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a) b) c)

Figure 4.3: Relative pixels weights for a) applelogos, b) bottles and c) swans learnt with a
linear max-margin classifier. Red indicates high weight and blue low weight.

(PQ)
the matching score of shape templates as shown in the example here. The
original image, the result obtained from directional chamfer matching, and
the result obtained from foreground reweighting are shown in panels a,b and
c respectively. The groundtruth bounding box is shown in green and the top

scoring object hypotheses are shown in red.

Figure 4.4: Learning discriminative weights for the co-occurrences of ¢ (x) improves

Since adjacent pixels of an object part are statistically dependent, the line representation
is utilized for the templates from [108] and discriminative weights are learned for each
line of the object part. Thus, all the pixels which lie on the same line are assigned the
same weight. Let ¢; denote the matching cost of line [ fitted to the object part.

f=> t"9x) (4.13)

i€l

The discriminative learning algorithm that discovers the weights for the co-occurrences
of lines is described in Section 4.3. Figure 4.3 shows the relative importance of various
pixels of the foreground template learnt using a linear SVM.

Other related work, for instance on saliency [91] and interest point detection [14], is not
suitable for integration into chamfer matching. Moreover, interest points are detected
based on each training image separately, whereas for the integration in a max-margin
framework the importance of points of an object part needs to be based on joint
consideration of all the training images.
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(a) (b)

Figure 4.5: Dense clutter is one of the main drawbacks of chamfer matching since it
can cause numerous spurious matches of the model contour as shown in a).
b) shows how background contours are placed according to the foreground
contour mask to measure accidentalness and reduce such spurious matches.

4.2.2 Background Contours for Modeling Accidentalness

In [158] Thayananthan et al. have compared shape context [11] and chamfer matching of
templates for object detection in cluttered images. They reported that chamfer matching
is more robust to clutter than shape context. Nevertheless, false positives in cluttered
background were still found to be the major downside of chamfer matching (see Figure
4.5 a)).

Increasing the specificity of the model contour matches, by adding orientation information
[108, 152] and learning the importance of foreground contour pixels (Section 4.2.1) can
only partially solve the problems arising from background clutter as shown in Figure 4.8.
Consequently, we need to measure the accidentalness of an object part matching in the
background clutter. However, most previous work focuses on improving the matching
of the foreground model contour such as OCM, DCM and the interdependence of model
points. An exception is the recently suggested NOCM [113] approach which is focusing
on this issue and aims to reduce chamfer matches in clutter. NOCM is normalizing
template matches with manually combined normalizer contours to alleviate the impact
of dense clutter on the matching result. The normalizers are placed at the center of the
template matches. However, to sufficiently model complex background, it is important to
combine simple contours via flexible placement going beyond the manual combinations
of normalizers. We measure the accidentalness of a match to clutter by learning the
co-placement of background contours dependent on the foreground.

The introduced background contours are a set of simple, generic contour segments (see
Figure 4.6 a) that typically match equally well to background clutter and the correct part
contour. Since each single background contour segment has a very low specificity we
learn discriminative co-occurrence patterns which have very low accidentalness. By going
for flexible spatial arrangements of background contours, we avoid manually combining
tuples of normalizers consisting of one or two contours to form hand designed complex
background templates as in [113]. Furthermore, we measure the amount of clutter only in
the neighborhood of model contours, where clutter actually interferes with the matching of
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Figure 4.6: a) shows a set of simple background contours 7;,. These background contours
are used to regularize the chamfer response of a part P. b)-d) show the masks
M(Tes:P) " described in Equation 4.14, obtained from placing the background
contours at the top relative to the object part contour on the left.

the model contour, while in [113] background contours are placed at a fixed single location
(the center of the model contour). The importance of the second point is illustrated by
the following example. Consider a U-shaped object part being matched to a query image.
Clutter from the query image that is situated within the U does not interfere with the object
part. Only clutter that is close to the contour of the U will have an impact. Thus, Latecki
et al. [113] miss out on measuring the susceptibility of the model contour to clutter and
instead measure clutter simply at the center of the object. To make sure that background
contours 13, are placed on the foreground contour P, where accidental matches typically
occur, we create a mask for every combination of a foreground part and a background
contour

MTaP)(x) = 1 — d5et (x) (4.14)

These masks give high weight to regions where the background contour matches well on
the part contour and low weight otherwise. Figure 4.6 shows the resultant masks for three
different foreground bottle parts in combination with different background contours.

To describe the background matching costs for a hypothesis in a robust way we build
weighted histograms over chamfer matching costs (see Figure 4.7). Let X be one specific
placement of the foreground object part P on the query image (). Furthermore we define

B(X) to be the bounding box region of P centered at X. For each foreground hypothesis

we build weighted histograms h(7bs'?) over the directional chamfer matching costs d! DO ]\? )

in the corresponding bounding box region. The weights introduced in Equation 4.14 are
used to weight the histogram votes according to their position relative to the foreground
object part. Each histogram consists of K bins where M, is the range of the kth bin and

k =1,..., K. We define a histogram bin hfbg’@) as
nY = 3T MTeP(x), (4.15)

x€B(X)

(Thg,Q)
dpdhr (X)EM,

for each background contour 7;, on a certain position of the foreground object part P in
the query image ().
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Figure 4.7: Background histograms hLT”"’Q) are constructed from the fast directional
chamfer matching score maps. The sample scoremap on the left shows high
matching scores of the background contour in the query image in red and low
ones in blue. Each point x within the bounding box B(X) casts a vote with
the corresponding weight of the mask M (Tes-"’) (x). The vote is added to the
histogram bin range M, that corresponds to the directional chamfer matching

score dgg’]’\? ) (x).

4.3 Learning Chamfer Regularization

In order to exploit both the advantages of better foreground modeling of the template
and the robustness against dense background clutter the suggested framework is
integrating 1) fast directional chamfer matching, ii) the co-occurrence of points on the
foreground object part, and iii) the accidentalness of a match by means of co-occurrence
patterns of background contours, into a single discriminative approach. Therefore,
directional chamfer matching is regularized by learning the characteristic co-occurrence
of foreground object part pixels and the joint placement of background contours using a
support vector machine (SVM).

4.3.1 Learning Co-occurrences for Foreground and
Background

In order to combine the line-matching costs ¢; (Equation 4.13) and the weighted
background histograms h; (Equation 4.15) into a single max-margin framework, a new
object representation is constructed by concatenating all line-matching costs L and all
background histogram bins K of an object part for each object hypothesis j

fi= [t1 ...t hy ... hg]. (4.16)

The resulting feature vector for hypothesis j is denoted as f;.

K defines a kernel such that /C(f;, f) represents the similarity between feature vectors
fi, F;- To model the joint co-occurrences of foreground and background contours we
need to utilize a non-linear kernel that captures the relationship between foreground and
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background pairs, triples, quadruples and so on. From the polynomial kernel

L+K

K(fi f) =T f;+07 =0 film)f;(m) +c)*. 4.17)

m=1

of degree 2 one can easily determine that the mapping function ) comprises all possible
second order terms. It is straight forward, that a polynomial kernel of degree d comprises
all possible combinations between feature dimensions up to degree d.

While polynomial kernels have finite mapping functions 1/ the mapping function of the
radial basis function (RBF) kernel has infinitely many dimensions. It is defined as

Ifi = £51°

202

K(For f)) = exp ( ) =exp (—llf; = £, (4.18)
Using the Taylor expansion one can determine the mapping function ¢ of the RBF kernel.
Since the Taylor expansion is a infinite set of features corresponding to polynomial terms
it comprises an infinite amount of feature combinations. Applying the kernel trick [21]
it is not necessary to explicitely represent the mapping 1. Therefore, a kernel resulting
in an infinite mapping function can be utilized. As the mapping function v is infinite the
max-margin classification problem needs to be solved in its dual form

N N N

1

max o=y > aagyy;exp (=l fi - £5°) (4.19)
=1

i=1 j=1
st.: 0<; <C Vi

N is the number of training samples, b is the offset, C' is the penalty and «; are the
Lagrangian multipliers. The solution to the classification problem given in Equation 4.19
maximizes the margin between positive and negative hypotheses in the transformed space.
The resulting classifier

N
0(F;) =) ik (f;, f)+b (4.20)

has learned non-linear relationships between the features and models the joint
co-occurrences of foreground and background contours. Since the mapping function v is
infinite the explicit weighting w of the individual feature dimensions cannot be computed
explicitly.

A crucial point in the training of every learning algorithm is the selection of training
data. Since positive training data are typically rare, while negative training data are
abundant, the selection of training data typically means a selection of negative training
data. A common approach is to train the classifier using all positive samples and an initial
random set of negative examples. This initial classifier is then used in a sliding window
mode on all other images. Hypotheses with a high classification score are collected and
added to the current set of negative support vectors. After retraining the classifier this
procedure is repeated until some convergence criteria is met. Another common approach
is to use another classifier or an objective measurement to generate hypotheses. In the
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suggested framework the fast directional chamfer matching approach is used to generate
good training hypotheses. We run the directional chamfer matching code [108] on the
training images and label a hypothesis j positive y; = 1, if it has an overlap greater than
80% with the groundtruth and a hypothesis with an overlap smaller than 40% is labeled
as negative y; = —1.

4.4 Object Detection using Regularized Chamfer
Matching

In the previous section, we have described how the relevance of model points and the
accidentalness, measured using background contours, can be jointly learned. Let us now
utilize the combined model of foreground relevance and background accidentalness from
Equation 4.20 to improve upon the directional chamfer matching cost function given in
Equation 4.8. This improved, regularized chamfer distance dﬁﬁ% 1 (X) again measures the
distortion cost of an object part. Let the j-th object hypothesis f;, which is described by
the feature vector from Equation 4.16, be the placement of object part P at location x
in the query image (). Since a non-linear radial basis kernel is employed, the regularized
chamfer distance is obtained using the dual SVM parameters, obtained by solving the dual
SVM optimization problem from Equation 4.20,

digpons(x) =1 - (ZaiK(fj,Si) +b). (4.21)

Each object part matched to a query image casts a vote with weight dgpcys as computed
in Equation 4.21 for different placements of the part in the query image. The votes from
various parts are collected in a Hough accumulator and non-max suppression is performed
to obtain final candidate hypotheses for objects.

4.5 Experiments

To demonstrate the utility of the proposed discriminative chamfer regularization, we
evaluate our approach on benchmark datasets for chamfer matching. Since we integrated
our regularization into the publicly available code of [108], the results reported in [108]
have been used as the baseline. To demonstrate the advantage of our regularization over
learning the normalization for chamfer distances [113], a comparison is made with the
results documented in [113]. We also compare with a sophisticated learning and inference
approach applied on object contours [187]. Furthermore, an analysis of the running time
overhead caused by discriminative chamfer regularization compared to the running time
of the chamfer matching approach of [108] is presented.

To extract the edge maps from input RGB images, we utilize the probabilistic boundary
detector of [119]. The dual SVM optimization problem given in Equation 4.20 is solved
using the support vector machine implementation of [28]. To measure the performance
of our detection system, we employ the standard PASCAL overlap criterion according to
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which a detection is correct if the ratio of intersection and overlap between groundtruth
bounding box and the detected bounding box is larger than 50% (cf. Section 3.4.1).

The contribution of the proposed background regularization is presented in Section 4.5.3.
As a baseline directional chamfer matching [108] is evaluated. Next the performance of
foreground reweighting of the template pixels as in Equation 4.12 is evaluated and finally
the performance obtained by the combined foreground and background regularization as
in Equation 4.20 is determined. Section 4.5.4 compares the proposed regularization with
other state-of-the-art extensions to chamfer matching such as [113, 187].

4.5.1 Datasets

For our experimental evaluation, we use the TUD Pedestrians, TUD Cows, and the ETHZ
Shape datasets. These are the benchmark datasets for chamfer matching and approaches
such as [108, 113, 152] report their results on one or more of these datasets.

TUD Pedestrians

The TUD Pedestrian dataset is a very challenging due to significant variation in clothing
and articulation. Moreover, the background is rather complex and increases the chance of
accidental matches. The TUD Pedestrian dataset [4] provides two training sets with 210
and 400 side-view pedestrians. Following the protocol of [113], we use the training set
containing 400 images for training and the testset containing 250 images with 311 fully
visible people for testing. Note, that the test images are significantly more challenging
than the 400 training images. Since the dataset doesn’t provide shape templates we
are following the protocol of [113] and use the segmentation data given for the 400
training images to create part matching templates. Specifically we use 5 randomly selected
segmentation masks from the training images and use them as model shape templates.

Cow Dataset

The Cow dataset from the PASCAL Object Recognition Database Collection [103]
consists of 111 images in which cows appear with quite different articulation. The dataset
is not providing a fixed separation of training and test data. Due to comparability we are
following the protocol of Latecki et al. [113] to divide the dataset into training and testing
sets. The first 55 images are used for training, and the remaining 56 images are used as
testset. Next, the second half of the data is used for training and the first 55 images are
used for testing. This way performance can be evaluated on the whole dataset. Similar to
the TUD Pedestrian dataset 5 segmentation masks from the training images are obtained
as the shape templates.

ETHZ Shape Dataset

The ETHZ shape dataset is designed for testing object class detection algorithms. It
contains 255 images and features five diverse shape-based classes (apple logos, bottles,
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giraffes, mugs, and swans). It is highly challenging, as the objects appear in a wide range
of scales, have high intra-class shape variation and appear in cluttered background. We are
following the standard protocol for the dataset and use one half of the images of all classes
for training and the remaining images for testing. Additionally one hand-drawn example
is provided with the dataset along with each category which is used as a shape template.
For the object categories applelogos, bottles and swans,the template is decomposed into
four parts while for the categories giraffes and mugs the full template was utilized.

4.5.2 Running Time

To obtain the initial matches for the templates, we run the publicly available directional
chamfer matching code of [108] using the default parameters for all the datasets. In our
experimental evaluations, we have observed that computing the distance transformation
of a query image for each angular quantization is the most time consuming part in the
code of [108]. The proposed chamfer regularization added only a marginal overhead to
the computation time. For instance, only 2 second overhead is observed per image from
TUD Cow dataset. On the other hand, computations for the baseline performance [108]
took about 15 seconds per image. Thus, our approach turns out to be easily integrable
into a state-of-the-art chamfer matching approach, without adding significant overhead in
terms of running time.

4.5.3 Evaluating Background Regularization

We are evaluating the object detection performance of the suggested regularized chamfer
matching approach using average precision. The average precision is the area under
the curve of the precision/recall curve. The precision/recall curve is computed from a
method’s ranked output. Recall is defined as the proportion of all positive examples
ranked above a given rank. Precision is the proportion of all examples above that rank
which are from the positive class.

Evaluation of regularized chamfer matching on the ETHZ dataset shows that for 4 out
of 5 object categories it is helpful to measure the accidentalness of a match utilizing
the suggested background regularization. In particular, this method is helpful for
a challenging category like Giraffes with articulations and background clutter. We
observe 6% improvement in average precision of foreground reweighting over directional
chamfer matching. Extending foreground regularization to avoid accidental matches
using background regularization is improving the performance by another 9% in average
precision.

Table 4.1 compares the baseline directional chamfer matching, which constitutes the
basis of our approach, with the different components of our discriminative chamfer
regularization. In particular, first the performance of foreground regularization method
in combination if directional chamfer matching is evaluated. Next the performance
of the final detector integrating the suggested background regularization together with
directional chamfer matching and foreground reweighting is evaluated. The experiments
show that foreground regularization alone improves performance in terms of average
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Applelogos Bottles Giraffes Mugs Swans | mean
DCM [108] 60.8 85.5 27.0 10.1  33.1 43.3
FG Regularization 62.0 86.9 36.3 273 338 49.3
Combined Regularization 81.8 90.4 43.0 273 473 | 58.0

Table 4.1: Comparison of average precision for the ETHZ Shape classes. We compare
DCM [108] which constitutes the basis of our approach with the extension
from Section 4.2.1 and our final learning of regularized chamfer matching.
All the detections are evaluated based on PASCAL overlap criterion with the
groundtruth object annotations.

Pedestrians Cows
DCM [108] 3.0 88.1

FG Regularization 6.8 89.2
Combined Regularization 11.2 91.9

Table 4.2: Comparison of average precision for two datasets namely, TUD Pedestrians,
Cows. We compare DCM [108] which constitutes the basis of our approach
with the extension from Section 4.2.1 and our final learning of regularized
chamfer matching. All the detections are evaluated based on PASCAL overlap
criterion with the groundtruth object annotations.

precision on all of these object categories compared to directional chamfer matching.
Applying the background regularization in addition to foreground reweighting suppresses
false positives in cluttered background and, thus, yields a significant further gain.

For the TUD Pedestrian dataset the images in the testing set are provided at a very high
resolution which yields very low average precision for the directional chamfer matching
which is around 3%. The low baseline can be attributed to the high resolution of the
test images, since it is known that chamfer matching is sensitive to all the fine details in
the edge map. While foreground regularization shows significant improvement (3.8%)
over the baseline in average precision, adding the background regularization brought
a further gain of 4.4% in average precision. For the Cow dataset directional chamfer
matching yields very good performance around 88% average precision. Nevertheless, the
combined detector still improves the performance about 4% by exploiting the advantages
of foreground and background regularization. These results show that measuring the
accidentalness of a match using the suggested background regularization is of equal
important as improving the foreground template by reweighting the pixels of the template.
This is due to the fact, that the two approaches are solving different problems of
the chamfer matching approach. While foreground reweighting is further improving
the template, which improves alignment of object detections with the groundtruth (see
Figure 4.4), the background normalization avoids accidental matches in dense clutter.
The example in Figure 4.8 shows that foreground regularization is not always able to
suppress false positives in cluttered background and how background regularization can
handle such cases. All in all, our combined detector using foreground and background
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Figure 4.8: This example shows how combined foreground and background regularization
Equation 4.20 can remove false positive detections which could not be
eliminated by foreground reweighting alone. Panel a) shows the original
image, b) the result obtained by using foreground reweighting and c) the
results from the combined foreground and background regularization.

Cows Pedestrians

OCM [152] 73.9 35.2
NOCM [113] 91.0 70.0
HDT [187] 88.2 -

Regularized Chamfer Matching | 98.3 80.0

Table 4.3: Comparison in terms of detection rate at 10% precision (in %) on the Cow
dataset and the TUD Pedestrian dataset with OCM, NOCM and HDT.

regularization achieves significant gain on all of the seven categories compared to
directional chamfer matching and foreground regularization. Additional detection
results comparing the regularized chamfer matching to directional chamfer matching are
provided in Figure 4.9.

4.5.4 Comparison with State-of-the-Art Extensions to Chamfer
Matching

We compare our combined foreground and background regularization with other
state-of-the-art extensions to chamfer matching such as the normalized oriented chamfer
matching by Ma et al. [113] (NOCM) and the hierarchical deformable template model
(HDT) by Zhu et al. [187].

In [113] Latecki et al. have reported results on two datasets: the TUD Pedestrian dataset
[4] and the Cow dataset [103]. In [187] Zhu et al. have evaluated their method on the Cow
dataset. Both approaches report their results in terms of detection rate at 10% precision.
In the previous section, we have reported the gain obtained by our regularization in terms
of average precision, since it is taking into account the area under the precision recall
curve instead of just one point on the performance curve and therefore is a more robust
measure. Nevertheless, to compare ourselves with [113, 187], we need to report results in
terms of detection rate at 10% precision.
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Figure 4.9: Panel a) and b) show detection results for two examples. The left image
of each panel shows results obtained by directional chamfer matching. The
right image of each panel shows the improved detection result after applying
chamfer regularization. The groundtruth bounding box is shown in green and
the top scoring object hypotheses are shown in red.

Table 4.3 shows the results for the Cow dataset and the TUD Pedestrian dataset. The
results indicate that chamfer regularization significantly improves performance on the
Cow dataset compared to HDT and NOCM. For TUD Pedestrians we gain 10% in
detection rate compared to NOCM. All in all, our results confirm that the regularized
chamfer matching method significantly improves over state-of-the-art extensions to
chamfer matching.

4.6 Discussion

This contribution extends the well established and widely used chamfer matching
technique, particularly by overcoming its susceptibility to clutter. Our results confirm,
that making the template more specific by learning the co-occurrence of model points is
increasing the specificity of the template. However, to avoid matches in dense clutter only
improving the template is not enough. To suppress false positive matches in background
clutter measuring the accidentalness of match is crucial. By placing generic contours on
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the model contour and learning to distinguish the typical co-occurrence of these contours
on cluttered background compared to actual objects, performance improves significantly.
Furthermore, foreground and background regularization are integrated in a max-margin
learning framework which is based on state-of-the art directional chamfer matching.
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CHAPTER 5

RANDOMIZED MAX-MARGIN
COMPOSITIONS FOR VISUAL
RECOGNITION

As already discussed in Section 2.3.1 part-based models currently constitute one of the
most popular and powerful paradigms for the challenging problem of category-level object
detection. In the previous chapter it was shown, how mid-level representations are a useful
scheme to further improve such part-based models. However, while chamfer matching
is a very efficient approach, parts are detected based on a simple distance measure and
therefore have less discriminative power than parts that are learned by a discriminative
classifier. Furthermore, the approach suggested in the previous chapter is organizing parts
in a flat star-model. This chapter is investigating in the usage of discriminatively trained
parts which are arranged in a more powerful hierarchical framework utilizing random
compositions.

Such discriminative parts can be learned in different frameworks. Typically, powerful
discriminative approaches, such as the deformable part model [56], are combining a small
number of parts based on their appearance and location. This framework typically restricts
such discriminative methods as [56, 188] to only few parts, as opposed to weaker spatial
models such as bag-of-features [36], Hough voting [116], or generative methods such as
[51, 97, 139].

In contrast we aim for a large number of specific but weak parts (on the order of 1000
per category) that are trained in the spirit of currently popular paradigm of mid-level
patches and parts (Section 2.4.3). Each part is trained on only a small region of a
single positive sample against negatives. In contrast to other part-based methods, such as
[46, 89, 117, 153], we compensate for the weakness of specialized, local, and frail parts
by grouping them into stronger compositions that exhibit improved generalization ability.
Compositionality [88, 127] is a powerful mid-level representation (Section 5.2.1) that
reduces the representational complexity to render learning of structured models feasible.
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compositional representation hierarchy

g
fx (2= ,
. L
A
Z -z,
h’i
7z

Figure 5.1: The compositional representation hierarchy shows the individual stages of the
classifier hierarchy: part classifiers h;, max-pooled responses 7;, compositions
fx and final non-linear object classifier g.
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Figure 5.2: Shows the detection procedure of our randomized max-margin compositions.
Part classifiers responses are pooled at different locations before aggregating
them in randomized, discriminatively trained compositions. All compositions
then join in a final combined classifier g(-).

We deviate from the common rationale of compositional hierarchies [61, 88, 96, 128, 139]
that establish meticulously arranged, semantically meaningful compositions. Rather we
show that multiple overlapping randomized compositions trained using a max-margin
approach generalize significantly better to new category instances compared to the
original parts and thus yield improved performance. Compositions are then all combined
by a final non-linear decision function in a third layer of this hierarchy of discriminative
classifiers, with part classifiers and the compositional classifiers in the two preceding
stages. Figure 5.1 gives an overview of the classifier hierarchy and Figure 5.2 summarizes
the detection procedure.

We thoroughly evaluate the individual contributions and crucial modeling decisions of
our model. Experiments are conducted on the well-established, competitive benchmark
detection challenges of PASCAL VOC 2007, using the VOC 2010 evaluation server [49],
and on the challenging MITIndoor scene recognition dataset of [137]. Our randomized
max-margin compositions (RM2C) show, to the best of our knowledge the currently best
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Bicycle

Test Image Standard Object Detection RM2C Parsing

Figure 5.3: Object detection and parsing with randomized max-margin compositions
(RM?C). The discriminative approach not only detects objects, but also
activates compositions according to the classification function g(F(Z)).
Compositions in turn activate parts ¢+ (we plot the corresponding positive
training patch z,) by weighting them according to the decision function f;.

performance using only HOG features for single class object detection, i.e. without any
postprocessing exploiting interactions of multiple object classifiers trained for different
classes.

Moreover, the experimental analysis underlines the necessity of large numbers of specific
parts because of their mutual unrelatedness and low generalization ability. We also
observe that randomly sampling compositions significantly outperforms individual parts,
a location based part grouping, and a clustering based on visual similarity. Finally, we
show that our approach not only localizes object bounding boxes, but that, although
being discriminative, it parses their content to thoroughly explain a test object with the
randomized compositional model (cf. Figure 5.3). We then propose a novel evaluation
setup for part-based models on PASCAL VOC 2010 that allows measuring the accuracy
of arbitrary individual parts. This new experimental protocol is crucial to thoroughly
evaluate the intermediate components of hierarchical part-based methods.

The remaining of this chapter is organized as follows: First an overview is given on
state-of-the-art part-based models for object and scene recognition (Section 5.1), then
a novel compositional approach to discriminative part-based recognition is suggested
in Section 5.2 and finally experimental evaluation for object (Section 5.3) and scene
recognition (Section 5.4) is executed.

5.1 Part-Based Models

In this section a short overview is given on state-of-the-art part-based recognition
approaches for objects and scenes and will illustrate the contributions of the suggest
randomized max-margin compositions.

5.1.1 Object Recognition

A popular and powerful approach for discriminative part-based object recognition is the
deformable part model (DPM) suggested by Felzenszwalb et al. [56]. The model trains a
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latent support vector machine to discover the hidden locations of a fixed number of parts.
Zhu et al. [188] extended this idea and suggested a deeper hierarchy of parts which is
trained using a structural SVM. Recently Song ef al. [154] suggested a discriminative
and-or tree model to automatically learn the configuration of parts. Since the spatial
configuration needs to be learned in the training phase, the number of parts is quite
restricted. This results in a small set of very general parts that typically correspond to
a whole aspect. Contrary to this, our framework is able to handle a very large number
of specialized parts. Due to the great number of parts, our approach can not only detect
object bounding boxes but also provides a parsing of its content (see Figure 5.3). Endres et
al. [46] are avoiding a structured model and use a simple method that pools part responses
over proposed object regions with a boosting classifier. Similarly to our approach they
start by using part-based exemplar SVM [117]. However, one of the main challenges
solved in [46] is how to refine these simple but specialized classifiers to get a smaller
more general set of part-classifiers. In addition there has been work on incorporating
strong supervision to train part-based object detection models, such as [6] and [23], and
on different classifiers such as Random Forests [26].

Furthermore, our approach is related to compositional hierarchies [88, 127] which have
been proposed to bridge the large gap between local features or parts and the whole
object. The fundamental goal is to establish one or more successive representational
layers by grouping parts, thus obtaining a hierarchy of successively larger and more
meaningful compositions [61, 88, 96, 139]. In contrast to this delicate assembly
of compositions, which is common to these approaches, we show that randomized
discriminative compositions are ideal for robust aggregation of specialized parts, thus
yielding significant performance improvements.

5.1.2 Scene Recognition

Part-based approaches are recently also becoming more popular for scene classification.
Pandey et al. [130] adapted the deformable part model for scene classification. On
the other hand, there are holistic representations such as object bank [106] that require
a supervised training of object classifiers. Similar to the discriminative training of
intermediate compositions in [128], Singh et al. [153] train mid-level patch classifiers.
Juneja et al. [89] followed this idea but started from individual exemplar SVM classifiers
which are used to mine more positive samples instead of performing an unsupervised
clustering as in [153]. Since in [153] and [89] parts are discovered in an unsupervised
manner they need to solve the problem of finding a good positive training set for parts
using clustering, positive mining etc. which is as difficult as the scene classification
problem itself. Therefore, our aim is not to make parts more general, but rather to train
compositions that generalize better than the specialized part classifiers they aggregate.
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5.2 A Compositional Approach to Discriminative
Part-Based Recognition

Let us assume for now that we have semi-local features and part classifiers that are
specifically trained for individual instances of an object category. We discuss the training
of these parts in Section 5.2.3 and provide the classifiers on the project site !. Due to the
specific nature of such parts, a large number of them is necessary to capture all relevant
characteristics of complex object categories. However, training a powerful discriminative
model, e.g., a non-linear classifier, on a limited training set, is not feasible based on
the high-dimensional combination of a large number of parts. To avoid overfitting we
aggregate parts in fewer, overlapping compositions, each capturing a previously learned,
random set of parts. These compositions, that can be shared across instances of a category,
are all gathering different observations due to the random selection of parts and thus
generalize better to novel samples. Section 5.2.1 presents our compositional model before
discussing part classifiers and their training in the following sections.

5.2.1 Randomized Max-Margin Compositions

Assume we have already trained a large set of part classifiers (typically around P = 1000
per category), which will be described in Section 5.2.3. For some image site v the
classifier of part 7 is evaluated densely within this region and the detection scores are
pooled yielding a response 7;() € R as will be discussed in Section 5.2.2 . At each
image site all parts are evaluated. The common approach is then for all sites v € Z on
a regular grid within an object bounding box Z to concatenate all part responses. Given
the large number of parts this would yield a very high dimensional representation (on
average far beyond 20 000-D). In light of the curse of dimensionality, learning object
models with this high dimensional representation on a limited set of positive training
samples (for PASCAL VOC typically on the order of 100) is inappropriate. One might
speculate that there is significant redundancy when a large number of part classifiers is
applied to an object, so that grouping related parts or subspace methods could significantly
reduce dimensionality. However, since each part classifier represents a single positive
object region (Section 5.2.3), we observe that their responses are highly uncorrelated (cf.
Figure 5.4). Consequently, applying principle component analysis, 90% of the original
dimensionality retains only about 40% of the variance. The ;(-) are essentially trained
to act as specialists, each specifically trained for an individual part instance from training.
Therefore, we propose to group the responses of all parts ¢ at sites v to create /X groups
of part responses K << P. Each comprises a large number of part responses and
thus generalizes better than individual parts to the large number of instances from an
object category. More precisely, let 7 := {m;(v), Vi, v} and P(7) be the powerset of all
responses then we seek K compositions vy, C P(7). When applying a composition to a
candidate object bounding box Z, we obtain a |y, |-dimensional response vy (Z). Following
upon the part classifiers, the groups establish a second level in a classifier hierarchy. To
render the learning problem feasible, this second level is comprised by linear classifiers

"hei.iwr.uni-heidelberg.de/COMPVIS/research/RM2C
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Figure 5.4: Maximal absolute correlation of a part to any other part evaluated over all
categories of VOC 2007. Most parts are highly uncorrelated, i.e. 95% of parts
have a correlation of less than .5 to any other.

fi(+) trained with hinge loss in a max-margin fashion,

1
mvgn§llwl\§ +C Y max(0,1 -y, fi((Z))) (5.1)
TeT

where fi(7,(Z)) = wivk(Z) + by, T denotes the set of training bounding boxes and
y, € {—1,1} is the class label of the bounding box Z € 7. Now the questions remains,
how to obtain the 7. From the experiment in Figure 5.4 we see that the appearance-based
part responses 7;(v) at locations v are uncorrelated. Without any extra annotation as in
[23] we can from this experiment already suspect that an unsupervised grouping of parts
based on their appearance and location will not be desirable. And indeed, combining parts
based on similarity in appearance and location using agglomerative clustering (Wards
method) does not yield a significant improvement of groups compared to their constituent
parts. We experimented with different grouping strategies and measured the performance
of the first level compositional classifiers fi(-) in terms of average precision on a
validation set. Figure 5.5 shows the cumulative frequency of group classifiers fi(-) , i.e.,
the fraction of classifiers that succeed a certain average precision. When grouping parts
based on their location we observe little gain over the baseline of singleton part groups.
An agglomerative clustering based on visual similarity yields a larger improvement over
the individual part performance. To achieve a further significant gain we propose to
randomize the formation of compositions. Therefore mutually overlapping part response
vectors 7y, are drawn randomly from P(x). To simplify their subsequent combination,
we demand all 7, to have a fixed size |yx| = L. Crossvalidation has shown L=3000
(part,Jocation) pairs to yield optimal performance, but the fluctuation within reasonable
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Figure 5.5: Comparing different grouping strategies for assembling compositions on VOC
2007 bicycle. Cumulative frequency of group classifiers fi(-) w.r.t. their
average precision.

range was insignificant. Figure 5.5 shows that randomized compositions generalize
significantly better than clustering parts based on their visual similarity. One might
conclude that randomization avoids overfitting by not using visual information twice, i.e.,
for defining the part classifiers and for clustering them based on visual similarity.

Now we have a manageable number of compositions, each being significantly more
informative than the large number of initial parts. Thus, training a non-linear classifier
g(f1(+),..., fx(+)) that establishes a third level in the already existing hierarchy of
classifiers becomes feasible. Let F'(-) = (f1(+), ..., fx(+)) " be the low dimensional feature
descriptor that concatenates the K decision values (we use K = 50) fi(-) of the second
level group classifiers. The final third level classifier is then trained by optimizing

max Y o, — o Z > o, yy, w(F(T), F(T')) (5.2)

ZeT IeT ’eT
with the radial basis function (RBF) kernel given by

|F(T) - F(I’)II%) . (5.3)

202

w(F(T), F(T')) = exp (—
The decision function is

=Y oy, k(F(T), F(T)). (5.4)

T'eT

5.2.2 Part Responses on Image Sites

Evaluating a part classifier ¢ only once per image site v leads to noisy results, since the
regular spatial grid of sites is too coarse to deal with local deformations. If a part in an
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image would be shifted or scaled, so that it is not aligned with a site ¥ we might miss
it. Therefore, we follow common practice and sample local features x; densely using a
sliding window at all locations/scales ;7 € v within sites. To get the sites we use regular
grids of size 1 x 1, 2 x 2 and 4 x 4. As feature we use HOG and for the 7 we use the
location/scale pyramid of [56]. As a result we obtain classifier scores h;(x;) for each part
(cf. Section 5.2.3). The part response to a site is then defined by max pooling over all
locations/scales within v,

mi(v) = njneaux hi(x;). (5.5)
This aggregation of part responses on a spatial grid has been shown to work well in
different vision problems [100, 106, 153].

5.2.3 Learning Parts without Part Annotation

Learning part models without annotation of parts is a challenging problem. Without extra
annotation, the task of finding corresponding parts in different object bounding boxes
turns out to be as difficult as finding the object itself, since the locality of parts leads to
ambiguities. Thus parts are typically detected conjointly, linked by a spatial model that
enforces spatial consistency. However, when learning a part, we have neither an object
model provided nor any other parts. Thus, finding all instances of a part in all training
images is daunting. And indeed it was shown that clustering based on the distance of
features (e.g. HOG) is not very reliable [79, 153]. The problem is then that incorrect
groups of parts at this initial stage will lead to mistakes that accumulate during later stages.
We therefore train part models with just a single positive sample and a set of negatives
as suggested by [117]. To obtain the positive part samples we randomly select a large
number of patches at different locations and scales within training bounding boxes. All
parts together should exhibit a good coverage of all training images. Therefore, we do
not want to get very similar patches with high overlap in the same bounding box and
therefore restrict the overlap between sampled patches in the bounding box to be less than
20%. Additionally we restrict the number of parts per box and sample a maximum of 20
parts. Note, that significantly less parts maybe sampled if the object bounding box is very
small. Now we have one positive sample x,, per part, and similar to [117] we perform
negative mining on up to 2500 images to obtain a set of negatives N'. The corresponding
classification function h; is

1
min§|\wiH§ +Crmax(0, 1 — hi(x,)) + Co Y max(0, 1+ hi(x)) (5.6)
Y zeN

were h;(z) = w!x + B;. The part features x are HOG descriptors [37] using 25 cells
that are fitted to the part as in ESVM [117]. The number of pixels per cell depends
on the scale on which the part was sampled. The minimum cell size is 4 pixels. In our
framework the trained exemplar SVMs act as specialized parts. One might think that a part
classifier trained on one positive sample is overfitting badly and therefore performance of
the individual parts might be very poor compared to more general parts using a larger set
of positive training samples. To get an idea of the quality we are evaluating the individual
performance of the part classifiers in the next section.
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Figure 5.6: Performance comparison of the 48 DPM parts with our randomly sampled
parts (also a subset of 48) in terms of average precision, see Section 5.2.4

Recognition Phase To perform object detection in a novel test image (see Figure
5.2) we first need to extract HOG descriptors x; and run part classifiers h;(x;). Then
we pool part responses using Equation 5.5 into 7;(v) before running the composition
classifiers fx(-). Responses from the composition classifiers are concatenated to the final
feature vector which is evaluated using g(F(-)) to combine all compositions using the
non-linear classifier.

5.2.4 Part Evaluation

To evaluate the performance of our part classifiers we are using the keypoint annotation
of [22] for the PASCAL 2010 dataset. However, in contrast to poselets this is here merely
for our subsequent evaluation and not for training. Since our parts are trained in an
unsupervised manner using HOG features we are comparing the performance of our parts
to those of the Deformable Part Model (DPM) [56] which are using a similar setup. In
contrast to our parts the DPM parts are much more general since they are trained on all
training images from an aspect of a category.

To evaluate the detection performance of individual parts we first need to generate
ground-truth on which we can test. In contrast to [23] there are no annotations specific to
our parts, but the idea is to measure how much a part shifts between training and testing
relative to the existing keypoint annotation of [23]. For the positive training sample z,,
that defines the part we therefore measure its euclidean distances to all keypoints within
the object bounding box. During detection we again compute the distances to the same
keypoints. Comparing the training and test vector of keypoint distances thus defines a
similarity measure. Now we can rank parts according to their mean average precision, i.e.,
how good they are in detecting a similar object region as they were trained upon, where
similarity is measured with respect to annotated semantic landmarks from [23]. Figure 5.6
compares the 48 DPM parts [56] with the randomly sampled parts from Section 5.2.3 (also
a subset of 48). We observe that in the large pool of weak parts there is still a sufficient
number of parts that have favorable detection performance compared to the DPM parts.
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5.3 Object Recognition Results for PASCAL

In our experiments we are providing object recognition and scene classification results
on three of the most challenging datasets. For object recognition we are evaluating our
approach on PASCAL VOC 2007 and 2010 . The scene classification results are evaluated
on the MITIndoor dataset [137]. Our experimental results show competitive performance
to recent state-of-the-art part based approaches on all datasets. We follow the standard
training and testing protocols for the PASCAL detection challenge only using provided
bounding box annotation on the object category level. Additionally we are showing
qualitative results in terms of a back-rendering of our training parts in the detection box
to visualize how our model is explaining objects (cf. Figure 5.10 and 5.11).

5.3.1 Implementation Details
Training

Since we are training classifiers on a part level and on an object level we need to split
the training data, to avoid over-fitting. Considering our part classifiers are trained in
an exemplar fashion over-fitting is not an issue on the rare positive samples as one part
classifiers is only over-fitting in one image at a certain location and scale. The sampling
of positive patches described in Section 5.2.3 can therefore be performed on the whole
trainval set. Since each part classifier is performing a negative mining, the part classifiers
might over-fit when we are applying them on the same negative images again to get the
response maps. Therefore we are only using 2500 negative images from the PASCAL
training data for the negative mining procedure of the part classifiers. To train the object
classifiers (i.e. fi(-) and g(-)) we use all the positives form the trainval set and all negative
images remaining after training the part classifiers. To get a set of hard negative samples
we apply the deformable part model with a low threshold (-1.1) and use the resulting false
detections. Note, that we use the same models and parameters for hypothesis generation
at detection time. For training the SVM classifiers we use LIBSVM to train non-linear
classifiers and otherwise LIBLINEAR [50].

Part Selection

Since we are sampling an over complete set of parts the number of parts can be extremely
large for classes with a lot of objects like the person category. This raises the question
if all of these parts are actually needed. Therefore we perform an experiment where we
use an increasing number of parts (in steps of 100 parts) for training and evaluate the
performance on the validation set. Note, that since we evaluate on the validation set only
the training data are used to train our framework. We order the parts according to their
strength based on the absolute weights of a linear SVM classifier trained on the maximum
response of each part per training sample. For each of our evaluations we are using the best
N parts for training. Figure 5.7 shows that the mean average precision is saturating around
1000 parts. This confirms that a large number of part classifiers is actually needed. One
could think that the reason this high number of parts are needed is because the individual
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Figure 5.7: Mean average precision of all classes of the PASCAL VOC2010 dataset, on
the validation set, training our model with different number of parts added
randomly (blue) and using false negatives (green).

performance of our exemplar-based parts is very weak. However, as we were discussing
in detail in Section 5.2.4 and is shown in Figure 5.6 a subset of our part classifiers is even
performing better than the DPM parts. Based on these results we are selecting the subset
of parts for each category with the highest performance on the validation set.

Now, although our object detection system performs well using random parts the questions
remains if parts can be sampled in a more sophisticated manner using guidance of the
current system. Therefore we perform cross-validation on the training data to identify
which positive samples are especially hard (false negatives) for our object detection
system. To get a better description of these false negatives we are getting additional
positive patches from them and train new part classifiers. Since this new part classifiers
describe positive samples that have been classified incorrectly the coverage of the positive
samples should improve and therefore the overall object classifier should exhibit better
generalization ability. However, in Figure 5.7 we can see, that adding additional parts
randomly is as good as adding new parts from false negatives. Qualitative coverage results
of our randomly sampled part classifiers are provided in Figure 5.8.

Detecting with all these classifiers may seem very time consuming. However, the filter
operation is just a single dot-product for all the part classifiers. Creating the response maps
for 1000 part classifiers takes around 13 seconds. For comparison the DPM [56] takes 7
seconds to create response maps for 54 object and part classifiers. The reason for the
comparably small overhead of our system is that the time needed to build HOG features
and extract detection windows for an image is significantly higher than the detection time.
Therefore, the more filters are used the more favorable it is to first extract HOG features
for all windows and perform a single matrix multiplication than performing a separate
convolution for each filter as done by the DPM.
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Figure 5.8: The coverage image on the right shows which pixels are covered by part
detections. For each part the best detection in the hypothesis is selected and
all pixels covered by the part detection box are weighted according to the
detection score. For each pixel the weights of all part scores are summed up
and normalized.

5.3.2 Comparison with other Methods

Since we suggest a part-based approach the focus of our evaluation is to compare with
other part-based approaches. There exist several methods such as [31, 155] that focus
on how the responses of several classifiers can be used to improve overall detection
performance. These methods can be applied in a post-processing step for any part
based method. Therefore part-based methods are evaluated without context in common
literature.

PASCAL VOC 2007

Our final approach (RM?C) is also incorporating parts that are root filters. Our results
show that the suggested approach already gives state-of-the art performance without
applying larger parts corresponding to objects (RM?C w/o obj.). Additionally we are
comparing our approach to three other part-based approaches. All approaches are utilizing
HOG features as a low level representation. The detection results are summarized in Table
5.1. Our method outperforms all other approaches on 17 out of 20 categories. Significant
improvements are reached on articulated objects as dogs (8.1%), cats (6.5%) and birds
(2.5%). However, also more rigid objects with high intra class variability benefit from our
specialized part-classifier compositions as aeroplanes (4.5%) and tvmonitors (2.5%). In
mean we are gaining 1.9% over the And-Or Tree (AOT), 2.9% over the Deformable Part
Model (DPM) and 7% over the Latent Hierarchical Structures (LHS).
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DPM rel5 [56] LHS [188] AOT [154] | RM2C w/o obj. RM?C
aeroplane 33.2 29.4 35.3 37.0 37.7
bicycle 60.3 55.8 60.2 58.3 61.4
bird 10.2 9.4 9.4 12.0 12.7
boat 16.1 14.3 16.6 14.7 17.6
bottle 27.3 28.6 29.5 229 299
bus 54.3 44.0 53.0 51.3 55.1
car 58.2 51.3 57.1 51.7 56.3
cat 23.0 21.3 23.0 23.7 29.5
chair 20.0 20.0 22.9 21.7 24.6
cow 24.1 19.3 27.7 25.0 28.2
table 26.7 25.2 28.6 29.0 30.7
dog 12.7 12.5 13.1 20.6 21.2
horse 58.1 50.4 58.9 514 59.5
motorbike 48.2 38.4 49.9 46.1 51.5
person 43.2 36.6 414 36.3 40.3
pottedplant 12.0 15.1 16.0 12.7 14.3
sheep 21.1 19.7 22.4 22.3 239
sofa 36.1 25.1 37.2 35.1 41.6
train 46.0 36.8 48.5 43.9 49.2
tvmonitor 43.5 39.3 42.4 41.8 46.0
mean 33.7 29.6 34.7 329 36.6

Table 5.1: Performance comparison using average precision (AP) for the PASCAL
VOC2007 dataset. For abbreviations see Section 5.3.2

Furthermore one can observe from recall-precision curves given in Figure 5.9 that the
suggested method is increasing precision for most classes in areas with intermediate recall
while the precision for low and high recall areas is similar to that of the DPM.

Since the number of random compositions (K=50) is rather small one could suspect that
the variance of the detection performance is high. However, measuring the variance of
the mean average precision of five different random composition samplings showed a
favorable variance of about 0.1%.

PASCAL VOC 2010

Additionally, we are providing results on the PASCAL VOC2010 dataset were we
outperform other approaches on 12 out of 20 classes (see Table 5.2). Our approach
performs particularly well for classes that can be considered as very difficult due to the
huge intra-class variations as birds, boats and potted plants were the improvement is up to
4.1% in terms of average precision. The comparison with the Boosted Collection of Parts
(BCP) is particularly interesting, since due to their usage of exemplar parts it is the most
similar approach to our compositional part-model. We are showing superior performance
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Figure 5.9: Recall-precision curves for the deformable part model (DPM) and the final
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5.3 Object Recognition Results for PASCAL

DPM rel5 [56] Poselets [23] BCP [46] AOT [154] | RM?C
aeroplane 45.6 33.2 44.3 44.6 49.8
bicycle 49.0 51.0 35.2 48.5 50.6
bird 11.0 8.5 9.7 10.8 15.1
boat 11.6 8.2 10.1 12.9 15.5
bottle 27.2 34.8 26.3 22.9 28.5
bus 50.5 39.0 44.6 47.5 511
car 43.1 48.8 32.0 41.6 42.2
cat 23.6 22.2 353 21.6 30.5
chair 17.2 - 4.4 17.3 17.3
cow 23.2 20.6 17.5 23.6 28.3
table 10.7 - 15.0 11.5 124
dog 20.5 18.5 27.6 22.9 26.0
horse 42.5 48.2 36.2 40.9 45.6
motorbike 44.5 44.1 42.1 45.3 51.8
person 41.3 48.5 30.0 37.9 41.4
pottedplant 8.7 9.1 5.0 9.6 12.6
sheep 29.0 28.0 13.7 30.4 304
sofa 18.7 13.0 18.8 25.3 26.1
train 40.0 22.5 34.4 39.0 44.0
tvmonitor 34.5 33.0 28.6 31.2 37.6
mean 29.6 - 34.7 294 32.8

Table 5.2: Performance comparison using average precision (AP) for the PASCAL
VOC2010 dataset. Note that our approach outperforms Poselets comparing
the mean of the 18 classes, where the detection results are provided, by 5.3%.

on 17 out of 20 classes, improving the average precision by 7.8%. While poselets are
giving the best performance on 5 out of 20 classes they also perform more than 10%
worse than our detection system on 5 other classes. Note, that we are outperforming
the poselets even though this approach uses additional ground truth annotation in the
form of keypoints for training while ours only depends on bounding box annotations at
object level. Comparing the mean over the 18 classes on which results for the poselets are
available we outperform them by 5.3%. All in all we are gaining 3.2% in terms of mean
average precision over the DPM which is the best performing approach we are comparing
to.

5.3.3 Object Parsing Results

Besides the quantitative object detection results we are also providing qualitative results
for object detection and parsing of the suggested randomized max-margin compositions
in Figure 5.10 and Figure 5.11. In the following, first details of the reconstruction process
will be given and then reconstruction results will be discussed.
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Figure 5.10: Object detection and parsing with randomized max-margin compositions.
For a true positive detection in a test image we show (from left to right)
the parsing result provided by our algorithm, for small detections the
corresponding cropped out image region and the detection (green box) in
the full-sized test image.

Reconstruction Process

Figure 5.10 and Figure 5.11 show the result of applying the recognition process. While
results in Figure 5.10 show the reconstruction of different classes Figure 5.11 shows the
ability of our approach to handle intra-class variations and viewpoint changes.

First, we extract HOG descriptors x; and run part classifiers h;(x;) from Equation
5.6. Then, we pool part responses into 7;(») using Equation 5.5 before running the
composition classifiers fi(-) (Equation 5.1). Finally, we evaluate g(F'(-)) (Equation 5.2)
to combine all compositions using the non-linear classifier.

The parsing results at the left then show the responses of compositions and their
constituent parts. The non-linear classifier g(F'(-)) weights the compositional classifiers
fx(-) which in turn activate their constituent part classifiers 7;(v) with weights w;. The
weights indicate the importance for separating positive and negative training samples. For
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each part ¢ and site v, we go to the location of the part x; in the test image that wins the
pooling of Equation 5.5. At this location in the test bounding box Z we then place the
single positive patch z,, from the training data that defines the i-th part classifier. The
transparency of this training patch is the importance that the compositional model assigns
to it, i.e., it is proportional to g(F(Z)) fi(vk(Z)) wy,; mi(v).

Observations

In Figure 5.10 parsing tries to explain test data using training samples. Due to large
intra-class variation in PASCAL VOC, test samples are quite diverse from training data
and we observe generalization artifacts: e.g. the radiator grill of the car is changing the
brand from “Audi” to “Mercedes’; the t-shirt of the little girl (last row, left) is changing its
color from pink to blue; the train in the first row slightly changes in style from a modern
locomotive to a steam train.

Figure 5.11 shows the importance the model assigns to different object regions. For the
two motorbikes (second row) the middle part of the motorbikes, which is often covered
by a sitting person is assigned lower weight. This region is less reliable than the rest of
the bike, as it is covered by bike riders in some samples, thus leading to larger variability.
Similar behavior can be seen for the bicycles and horses. Moreover, we see that if a query
region does not fit to what is expected, there is not arbitrary hallucination, but rather
the region is down weighted. Whereas the right tire of the first bicycle is completely
reconstructed, the middle of the other tire is down weighted. This is due to the large
discrepancy to what the model has learned from training data for this region of a bike.

5.4 Scene Classification Results

5.4.1 MiTIndoor Scene Recognition Dataset

The MITIndoor [137] dataset is consisting of 67 indoor scene categories and was the
first large indoor scene classification benchmark dataset. It was collected because most
outdoor scenes classification approaches perform poorly on indoor scenes. The difference
between outdoor and indoor scene classification is that outdoor scenes can be well
characterized by global spatial models while such models are not appropriate for all indoor
scenes. For the classification of most indoor scenes one needs to capture global and
local information. The 15620 images contained in the dataset were collected from Flickr,
Goolge, Altavista and the LabelMe dataset.

We are using the protocol given in [137]. For each scene class a one versus all classifier
is trained and results are combined into a single prediction by taking the maximum
classification score. Each individual scene classifier is trained on a fixed set of 80 positive
training samples, while positives from the other classes are used as negatives. For testing,
each scene class provides 20 test images resulting in a testset of 1340 images.

We provide results, as in [137], in terms of classification accuracy which is defined by the
number of correct classifications divided by the number of samples obtained by averaging
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Figure 5.11: Object detection and parsing with randomized max-margin compositions
as in Figure 5.11. Each row shows two example detections for the
same category thus illustrating how the model deals with large intra-class
variabilities and viewpoint changes.

the diagonal of the confusion matrix:

1 H#TP;
acc:—z P (5.7)

Furthermore, performance is measured in terms of mean average precision which is used
as an additional measurement in [89].

5.4.2 Comparison with State-of-the-Art

We compare our performance to 7 different classification approaches (see Table 5.3). The
focus of our evaluation is the comparison to other methods that are using semantical
part classifiers based on HOG features for scene classification. Therefore, the most
important comparisons are in the lower half of Table 5.3, since these approaches are
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Method Acc. (%) | Mean AP
Object Bank [106] 37.60 -
RBoW [132] 37.93 -
DPM+GIST-color+SP [130] 43.10 -
Patches+GIST+SP+DPM [130] 49.40 -
IFV+BoP [89] 63.10 63.18
Mid-Level Patches [153] 38.10 -
BoP [89] 46.10 43.55
RM?2C 51.34 46.70

Table 5.3: Average classification performance on the MITIndoor Dataset. Upper half of
the table shows diverse approaches for scene classification while the lower half
focuses on approaches using semantic parts and are therefore most similar to
our approach.

methodologically most similar to the one we are suggesting. Our results show that we
outperform Mid-Level Patches [153] by 13% and the Bag of Parts (BoP) by 5% in terms
of classification accuracy. The improved fisher vectors (IFV) can be combined with all
part based approaches to boost performance as it was done by IFV+BoP [89]. Since
we are outperforming the individual performance of BoP, it should be expected that the
combination with fisher vectors would outperform their combined approach. However,
the aim of this experiment was to compare our method with other related part based
approaches.

5.5 Discussion

We have proposed a compositional approach that can integrate large numbers of weak
parts in a strong discriminative model. Contrary to the main theme of the field, we
randomly sample instance specific parts and randomly aggregated them in compositions
that are trained using a max-margin procedure. The approach has shown favorable
performance on standard benchmark datasets for object detection and scene classification
and the potential of its constituents has been evaluated individually.
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CHAPTER 6

CONCLUSIONS

This thesis dealt with the task of visual object and scene recognition using mid-level
representations. Different mid-level representations were suggested, that were build
on different low-level features, to improve state-of-the-art object detection and scene
classification frameworks. As the representations of object and scenes is closely linked to
the learning algorithms this thesis developed novel mid-level representations and learning
strategies that are suitable for the appendent mid-level representation.

This work showed that high dimensional object descriptors arising from higher order
statistics, such as self-similarity, cannot be handled sufficiently well by support vector
machines without applying additional feature selection for noise reduction. Specifically,
this was shown for the novel curvature self-similarity descriptor suggested in this thesis.
Furthermore, it was found that the novel curvature self-similarity descriptor provides
complementary information to the widely used orientation histograms and to simple
curvature histograms. As support vector machines are not readily able to deal with
such high dimensional descriptors on a limited amount of training data, a new embedded
feature selection method for support vector machines was devised. Experimental results
verified the premise that the performance of high-dimensional object descriptors is
improving, when appropriate learning algorithms are applied that are able to eliminate
superfluous dimensions. Therefore this approach provides an improvement to the widely
used framework utilizing histograms of oriented gradients and support vector machines
for object detection.

Furthermore, this thesis investigated to overcome the susceptibility of chamfer matching
to background clutter which is a serious drawback of this popular method. While other
approaches typically focus on improving the foreground template this work focused on
explicitly modeling the background to avoid accidental matches in clutter. The flexible
co-placement of generic background contours was learned and integrated with current
extensions of chamfer matching that aim to improve the matching of the foreground
model. To model accidentalness, background contours were placed on the foreground
model contour and characteristic co-occurrences between these contours were learned
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using non-linear radial basis function kernel. Experimental results on standard shape
based datasets for object recognition showed significant performance improvement and
qualitative results showed a large reduction of false positives in dense clutter.

Another interesting finding of this work is that it is beneficial to use a large number of
specific part classifiers for object detection and scene classification. This is contrary
to the common approach of utilizing a small set of generic parts learned together in
a discriminative framework. Individual part classifiers were trained using an exemplar
support vector machine framework, i.e. the part classifiers were trained on a single
positive and are therefore very specific but also weak. To improve generalization ability of
these local and specific parts they were grouped into stronger compositions. Compositions
were shown earlier to reduce computational complexity and render learning of structured
models feasible. However, in this thesis it was found, that the common approach
of combining parts into meticulously arranged, semantically meaningful compositions
was outperformed by grouping parts into randomized compositions. A non-linear
discriminative classifier is combining the compositions in the last layer of the hierarchy.
Additionally, a novel framework for part evaluation was suggested for thoroughly
evaluating the intermediate components of the hierarchical part based model. Evaluation
showed that randomly sampling individual part classifiers and learning them in an
exemplar fashion is leading to satisfactory number of parts that have good detection
performance, compared to more general parts learned by the deformable part model.
This result was not only confirmed quantitatively but also qualitatively, as the suggested
framework provides a detailed parsing of the detected test objects.

In conclusion, this thesis devised different kinds of mid-level representations and utilized
them successfully for object and scene recognition. Mid-level representations improved
recognition performance in several object detection frameworks utilizing different
low-level features and outperform current state-of-the-art approaches on challenging
benchmark datasets.
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