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Abstract

In this thesis we develop a multi-component multi-phase reactive transport simulator to facil-
itate the investigation of a large variety of phenomena in porous media including component
transport, diffusion, microbiological growth and decay, cell attachment and detachment and
phase exchange. The coupled problem is solved using operator splitting approach. This ap-
proach enables us to use higher-order schemes and reduce numerical diffusion, which can result
in an overestimation of phase exchange and reaction processes. Furthermore, this approach
allows a flexible adaptation of the solution strategy to the concrete problem. We conduct an
in-depth comparison of the fully-coupled and splitting approaches in order to derive criteria
for the most efficient scheme depending on the relative importance of advection, diffusion and
reaction.

We discuss theoretical, numerical and implementation-related aspects and examine applications
of our model to simulate laboratory experiments in an unsaturated porous medium. To ob-
tain transport parameters and reaction rates from the experiments, we incorporate parameter
estimation into our model framework. The comparison of simulation results and experimen-
tal data on flow and transport processes, chemical reactions and microbial activity is used to
detect deficiencies of the model and to receive suggestions for its improvement. Although the
model parameters are estimated using data from batch experiments with aqueous solutions,
the numerical model is able to describe and predict the laboratory experiments with porous
media reasonably well without additional calibration.

Zusammenfassung

In dieser Dissertation entwickeln wir einen reaktiven Mehrkomponenten-Mehrphasenstromungs-
Simulator, der die makroskopische Simulation von verschiedenen Prozessen in porésen Medien
erleichtert. Unter anderem erlaubt er die Beschreibung von Komponententransport, Diffu-
sion, mikrobiellem Wachstum und Zerfall, Adhésion der Zellen und Phasenwechsel. Wir 16sen
das globale Problem mit einem Operator-Splitting-Ansatz. Dieser Ansatz erlaubt es uns nu-
merische Schemata héherer Ordnung zu implementieren und so die numerische Diffusion zu
verringern, welche zur Uberschitzung von Phasenwechseln und Reaktionen fiihren kann. Des
Weiteren ermoglicht uns dieser Ansatz eine flexible Anpassung der Losungstrategien an das
konkrete Problem. Wir vergleichen die verschiedenen Operator-Splitting-Ansétze eingehend
mit dem global impliziten Ansatz um Kriterien zur Auswahl des effizientesten Verfahrens in
Abhéngigkeit der Bedeutung von Advektion, Diffusion und Reaktion zu finden.

Wir diskutieren theoretische und numerische Aspekte und untersuchen Anwendungen unseres
Modells, um Laborexperimente in einem ungeséattigten porésen Medium zu simulieren. Um
Transportparameter und Reaktionsraten aus den Experimenten zu schitzen, verwenden wir
Methoden der Parameterschitzung. Der Vergleich von gemessenen und simulierten Daten
des Phasenflusses, des Komponententransports, der chemischen Reaktionen und mikrobieller
Aktivitat gibt Aufschluss iiber Defizite des Modells und liefert Hinweise fiir Verbesserungen.
Obwohl die Modellparameter mit Hilfe von Daten aus Batchexperimenten in wéssrigen Lésun-
gen geschitzt wurden, beschreibt und prognostiziert das numerische Modell Laborexperimente
mit pordsen Medien - ohne zusétzliche Kalibrierung - verhéltnisméfig gut.
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CHAPTER 1

Introduction

In the past decades, understanding and prediction of multi-phase multi-component reactive
flow and transport in the subsurface has received increasing attention by the scientific commu-
nity due to the widespread increase of awareness of alarming contemporary problems such as
water contamination by organic solvents, contaminants and waste disposal ( , ).
Additionally, the steady increase in available computing power allows for the development of
more complex, reliable, and accurate mathematical models capable of simulating such compli-
cated problems.

1.1 Motivation

The simultaneous flow of multi-component immiscible fluids in porous media occurs in a wide
variety of applications. Over the past decades, the most concentrated research in the field of
multi-phase flows has focused on flows in underground petroleum reservoirs ( , ;
, ; , ), capturing and storing of carbon dioxide ( ,
; ) ) and on saturated and unsaturated groundwater flows in general (
, ). Most recently, multi-phase multi-component flows have generated serious interest
among engineers concerned with deep geological repository for radioactive waste (

, 2009).

Reactive transport modeling is also an essential tool for the understanding of microbial growth
and transport in the subsurface ( , ). The transport of bio-chemically reacting
contaminants in unsaturated and saturated porous media is a very active field of research,
including the research in this thesis. Microbial activity is of significant interest in various
environmental applications such as in situ bioremediation ( , ), biodegradation of
pollutants ( , ), dispersal of pathogenic microorganisms ( , ),
protection of drinking water supplies, and for subsurface geochemistry in general.

The design of bioremediation schemes requires an understanding of the processes governing the
growth, fate, attachment to solid surfaces and transport of the microbes under the particular
physical, biological, and geochemical conditions involved ( , ). The ongoing
processes can be influenced e.g. by the properties of the porous medium and the microbial
species as well as the composition of pore water and gas ( , ; ,

).

Bacterial growth in soil usually depends on bio-available water content ( ,
: , ), temperature ( ) : , ) and other physical or
environmental parameters like pressure, pH ( , ) or bio-geochemical



redox processes (Borch et al., 2010). In addition to water saturation, the most important
factors controlling bacterial growth are the availability of substrate or nutrients (Reischke
et al, 2013) and the availability of electron acceptors, like oxygen for aerobic or facultative
anaerobic bacteria (Sicrra and Renault, 1995).

While there are many factors influencing the behavior of microbial growth and transport in
porous media, an in-depth description of all processes is an exacting task. To investigate and
quantify the most relevant processes, researchers often conduct various laboratory experiments
(Fig. 1.1), e.g. in flow-through chambers filled with sand (Jost et al., 2010, 2011, 2014b). The
goal of said laboratory experiments is to gain insight into the simplified system, to better
understand the pertinent processes and to try to find suitable mathematical models for the full
problem.

Mathematical modeling is a crucial tool for the study of nutrient fluxes in soils, the assessment
of bioremediation and intrinsic biodegradation in the subsurface and the planning of related
experiments. The parameters for microbial growth and transport are typically determined by
means of independent laboratory experiments fitting the model parameters to experimental
data. After model calibration, the obtained parameters are often used to predict the retention
and transport of microorganisms under natural conditions using appropriate numerical models
(Clement and Peyton, 1997; Schifer et al., 1998b,c). The lack of agreement between theoretical
mathematical models and experimental measurements often leads to important advances as
better theories are developed. An example of a comparison between microbial concentration
measured in the laboratory experiment and numerical simulation is shown in Fig. 1.2.

The importance of mathematical modeling lies in the fact that a model may help to explain a
system and to study the effects of different system components, and to make predictions about
behavior. It is often difficult to measure all quantities in the whole laboratory setup during
execution of the experiment and modeling helps to get this type of information.

Watertable

Fig. 1.1: Flow-through chamber filled with sand with saturated and unsaturated
regions (left) and bacteria in this cell producing green fluorescent protein (right),
pictures by D. Jost.
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Fig. 1.2: Comparison of numerical simulation and data from laboratory experi-
ments. Growth and transport of microorganisms in saturated and unsaturated
porous medium.

1.2 Research Results

The primary purpose of this dissertation thesis is to develop a numerical simulator for multi-
phase multi-component reactive flow using modern mathematical methods with application to
the processes in highly dynamic regions of saturated and unsaturated porous medium.

When modeling the controlling processes in reactive transport, it is common practice to com-
bine a non-reactive transport model with a suitable reaction model to obtain a reactive trans-
port capability. Current numerical simulators are very well developed either in the flow part
or in the reaction part of the solution algorithm. However, the compatibility of the concep-
tual models developed for conservative transport on the one hand, with models developed for
bio-chemical reactions on the other, has only been partially understood for the most part.

The solution approach of the presented multi-phase multi-component reactive flow model is
based on an operator splitting technique and leads to the two types of problems described
above: phase and component transport and bio-chemical reactions. Moreover, the derivation
of the mathematical model reveals the sources of the operator splitting error. We answer the
question under which circumstances we can use this type of coupling/decoupling and investigate
the applicability of operator splitting schemes to prototypical problem classes. Furthermore,
the accuracy of numerical methods in the context of reactive transport has been explored little
in the literature. For this reason, we discuss the accuracy of various numerical methods applied
to reactive transport problems.

Reactive interactions of compounds are limited by mutual mixing of the compounds. Numerical
diffusion introduced by the scheme for advective transport may lead to an overestimation of
the related reaction rates. Therefore, we use higher-order schemes to reduce the numerical
diffusion. We determine the error which occurs in the numerical discretization and compare
it to the error arising in the operator splitting. One of the most important findings is the
fact that the operator splitting error for almost all kinds of kinetically controlled reactions in
advection-dominated regime is much lower than the discretization error.



After validating the implementation of the described numerical methods, we apply our model
to both the forward and the inverse reactive transport modeling of setups given by laboratory
experiments and measured data. Inverse models involve fitting various dynamic quantities
(e.g. reaction rates) to data like solute or nanoparticle concentrations distributed in space
and/or in time. We develop sub-models which are able to sufficiently describe the measured
data, e.g. the breakthrough curves in flow-through experiments or the microbial growth in batch
cultures. This data is used to calibrate and validate the sub-models in advance of predictive
modeling. We also determine and analyze the most important processes in modeling microbial
growth and transport in the saturated and the unsaturated zone of porous media and apply
the numerical simulator to forecast future events. We simulate laboratory experiments in a
flow-through cell, including several models of the phase and component transport, microbial
growth, adhesion and phase exchange.

In summary, the major contributions of this work are:

e development of a new model for multi-phase multi-component reactive flow in porous
media;

e implementation of this model using various numerical methods in the DUNE framework;

e quantification of errors arising in the operator splitting approach and errors in the nu-
merical discretization;

e provide a guideline in which situations to use a concrete solution strategy in reactive
transport problems;

e application of the developed numerical simulator to model laboratory experiments;
e parameter estimation for microbial growth, adhesion and transport of nanoparticles;

e forecasting of microbial growth and transport of microorganisms in highly dynamic zones
in porous media, particularly in the capillary fringe.

1.3 Outline

The structure of this thesis is as follows. In Chapter 2 we describe the multi-phase multi-
component reactive model in porous media and the basic terminology. In principle, this model
is composed of a set of partial differential equations that describe the flow of the participating
components in all phases and of a set of algebraic equations. There are many approaches for
solving this underlying problem, which we discuss in Chapter 3. We introduce the operator
splitting technique at various levels to solve the global model problem.

The numerical solution described in Chapter 4 of the transport sub-problems employs a space
discretization on a structured grid using a cell-centered finite volume method and a fully im-
plicit time discretization for the two-phase problem to achieve unconditional stability. To solve
the solute transport in advection dominated cases, we use a second order Godunov reconstruc-
tion of upwind fluxes together with explicit schemes. The system equations describing chemical
reactions are solved element wise.



Operator splitting significantly simplifies the numerical solution process. Unfortunately, the
separate treatment of the various sub-processes creates a splitting error. The magnitude of
this error must be controlled to prevent an unstable solution process, e.g. by creating negative
concentrations. In Chapter 5 we examine this error for the first- and second-order non-iterative
splitting method applied to advection-diffusion-reaction problems. The splitting error is stud-
ied with respect to characteristic time scales represented by dimensionless Damkohler and
Péclet numbers.

In Chapter 6 we investigate the performance of the various discretization schemes described in
Chapter 4, which we apply to problems like the ones introduced in Chapter 5 and quantify the
size of both the discretization error and the operator splitting error. We also extract guidelines
for optimal discretization choices depending on various transport and reaction conditions.

The first application of the developed numerical simulator to laboratory experiments is de-
scribed in Chapter 7. We investigate the transport of nanoparticles in unsaturated porous
media and oxygen transport in a flow-through cell. Furthermore, we study the influence of
numerical diffusion in a two-dimensional transport example with non-trivial velocity field.

In the final chapter, we develop a model for aerobic and anaerobic growth of microorganisms
based on experiments without porous media in batch cultures. We use inverse modeling to
estimate a unique set of parameters which is able to approximately describe all batch exper-
iments under various conditions. This growth model is combined with a transport model, a
phase exchange model and an adhesion model, and applied to simulate laboratory experiments
in a flow-through cell under steady-state and transient conditions.



CHAPTER 2

Model Development

In this chapter we provide an introduction to the mathematical modeling of multi-phase multi-
component reactive flow in a porous medium. We introduce the fundamental mathematical
relationships that are used to describe the relevant processes in saturated and unsaturated
porous media together with the essential terminology.

We present a general conceptual model based on a representative elementary volume (REV)
approach ( , ; , ) which serves as a basis for the formulation of
reactive transport models. Within this approach, the actual discrete physical system, consisting
of porous media with aggregates of mineral grains, fractures, and interstitial pore space filled
with fluids, is replaced by a continuous system in which physical variables describing the
system vary continuously in space. We provide governing equations for multi-phase multi-
component reactive flow on the REV scale based on mass balance and discuss limitations and
simplifications of the mathematical model.

2.1 Continuum Approach

In the modeling of reactive flow in saturated and unsaturated porous media, it is important to
consider different length scales ranging from the macroscale through to the microscale and to
the molecular nanoscale.

Since many of the physical, chemical, and biological processes actually take place at the pore
scale, developing averaging approaches for these coupled processes at larger scales is essen-
tial ( , ). In the continuum representation of a porous medium, the physical
variables describing the system, which are discontinuous at the microscale or pore scale, are re-
placed by functions which are continuous at the macroscale. This is not to say that microscale
properties are not important. In fact, the macroscale properties are defined by the microscale
properties averaged over a REV. The REV is assigned to each point of the macroscale contin-
uum ( , ). The REV volume is sufficiently large to statistically estimate all relevant
parameters of the void space configuration and small enough to be considered a negligible
portion of the total volume from the macroscopic scale. The dimensions of a REV are usually
large compared to the grain size, but small compared to the characteristic length scale over
which the quantities of interest change. If such a REV cannot be found, then the represented
macroscopic theory of flow in porous media cannot be applied.

This description is not valid at the pore scale where the Navier-Stokes equations derived from
fluid mechanics are required and where it is necessary to capture microscopic scale gradients
in concentration resulting from transport and a non-uniform distribution of reactive material.



Basic assumptions invoked in the REV formulation are:

e liquid, gaseous, and solid phases all occupy the same physical space of control volume at
the same time;

e the coexistence of any number of species within each phase is permitted;

e reactions involving two separate phases which interact across a common interface are
treated as homogeneous reactions uniformly distributed throughout the REV;

e the fluid and solid phases are well-mixed and therefore without concentration gradients,
thus resulting in uniform reaction rates within the control volume.

Another approach for the passage from the microscopic level to the macroscopic one is known
as mathematical homogenization ( , ). This technique is based on the
mathematical theory of asymptotic functional expansions ( , ) and is generally
acknowledged to be more appropriate for handling multiple scale heterogeneity. The REV
approach uses smoothing and spatial averaging formulas, whereas the homogenization does
the upscaling by letting the microscale tend to zero. We use the REV approach, because it is
generally convenient for the description of large-scale problems where some effects stemming
from the micro-structure of the material like fracturing or granular flow are not important.

2.2 Multi-Phase Multi-Component Flow

In this section we study the basics of multi-phase multi-component flow in a porous medium,
but the respective qualities can be generalized for a multi-phase flow formulation as well. We
provide here the fundamental definitions and explanations presented in ( ) and

( ). The model is based on the assumptions discussed below.

The porous medium consists of three phases P = {s,[, g}: a rigid solid phase s, an incompress-
ible liquid phase [ and a compressible gas phase g (as in ( )). We denote the fluid
phases by Py = {l, g}

2.2.1 Porosity and Phase Content
The total volume of REV centered at x, Vg, can be divided into a volume of pore space in
REV, Vs, and a volume of the fluid phase a, V.

Porosity ¢ is a macroscopic quantity that describes the ratio of void space within a volume of
a porous material to the total volume

o) = 7S

In the unsaturated zone, the void space is partly filled by air and partly by water. To describe
the relative quantity of water at a certain time in the vicinity of a point in a porous medium



domain, (i.e., in an REV for which this point is a centroid) we define the saturation of the
fluid phase «a as

Sa(x,t) = a € Py,

and the volumetric fraction of phase « as

Oa(z,t) = salz, t)P(x,t), o€ Py,
Os(x,t) =1— ¢.

From their definitions, the volume fractions and saturations clearly must fulfill the constraints

O+ 04+ 05 =1, sp+ 54 =1.

Residual and Effective Saturation

It is well known that a pre-existing fluid phase cannot be displaced entirely from a porous
medium creating what is called a residual saturation s,;, which denotes the minimal water
saturation that remains in the void space after a drainage process in the form of pendular rings
around the grain contact points and relatively immobile thin films. Additionally, a residual
saturation s, can also be defined for the gas phase when the air is present in the form of
isolated bubbles. If the phase saturation falls below the residual saturation s, ., the phase o
is immobile. The effective saturation s. . describes only the volumetric portions of the fluid
phase that can be displaced mechanically and is given by

Sa — Sr,a

Seq = ————>—.
’ 1 =801 —58rg

2.2.2 Extended Darcy Law

The liquids in porous medium flow in negative direction of the pressure gradient and the
macroscopic phase velocities in an isotropic porous medium are related to the phase pressures
Po Via the extended Darcy law

1
Vo = ——Kq (vPa - pag) > (2~1>

o
where K, is the effective permeability, p is the dynamic viscosity of the fluid, p, is the mass
phase density and g is the gravitational acceleration vector. The effective permeability can be

expressed as
K, = kraK7

where k., is the non-linear relative permeability function depending on the phase saturation
(see Section 2.2.4) and K is the scalar absolute permeability at full water saturation (s; = 1).
The absolute permeability is a property of the porous medium alone and not of the fluid. In
the case of an anisotropic porous medium, the absolute permeability depends on the direction
of flow and is represented as tensor ( ) ; ) ).



The Darcy law is valid only for slow flows of Newtonian fluids through porous medium, when
the flow is laminar. In this thesis we assume that (2.1) holds in all considered cases.

2.2.3 Macroscopic Capillary Pressure

In order to describe the macroscopic effect of the microscale capillary forces and to close the
equation set for multi-phase flow models, we introduce the macroscopic capillary pressure pe
as the difference between the macroscale liquid phase pressure p; and the gas phase pressure
pg by

Pe = Pg — P1. (2.2)

The dependence of the capillary pressure on the saturation s; is obtained by measuring the
phase pressures difference during slow drainage or imbibition laboratory experiments.

We use the following two static capillary pressure-saturation models. ( )
proposed a mathematical model for the p./s; relation in the form

)\bc
Sei(pe) = <§C> for pe > pe, (2.3)
e

where the parameter \p. describes the pore distribution of the grains in a porous material and
Pe is the entry pressure, which is the minimum value of p. on a drainage capillary pressure
curve at which a continuous air phase exists in the void space.

Another model, proposed by ( ), treats the capillary pressure-saturation rela-
tionship as
~Tm
Se1(pe) = {1 + (apc)"] for p. > 0. (2.4)
The parameter m is often chosen as m = 2=% and therefore only two free parameters 7 and o

n
remain to be fitted. These parameters characterize the pore structure of the porous medium.

These models are used in the modeling of multi-phase flow independently of the flow conditions
as long as the hysteretic effects can be neglected. The capillary pressure-saturation relationship
holds only under static conditions, i.e., in the state of thermodynamic equilibrium of the system.
When the system is not in equilibrium, the dynamic effects on capillary pressure-saturation
relationship should be taken into account, see ( , ; , ).
However, the relevant experimental data describing the dynamic effects is not easy to measure.
In our applications, the dynamic effects are neglected, but the model can be extended easily.

2.2.4 Relative Permeability

The relative permeability is a convenient and commonly used concept for multi-phase flows in
porous medium. It describes the fact that the flow paths of a fluid are hindered by the presence
of other phases. A number of models have been developed to predict the relationship between
saturation and relative permeability based upon the capillary pressure-saturation information,
see ( ). We state the two most common approaches defining the relative
permeability k.



The Burdine mathematical model for the relative permeability k., of the phase « has the form

243\pe

ki (s1) = ey e (2.5a)

2+/\bc
g (51) = (1= 502)° (1 . ) | (2.5)

where the parameter \y. is the same as in (2.3). It is common to refer to (2.5) in conjunction
with (2.3) as the Brooks and Corey model.

The Mualem mathematical model for relative permeability functions is given by

kri(s)) = se,l% (1 - (1 - se,l%>m>2 , (2.6a)
brglst) = (1= 5005 (1= sem ) (2.6b)

Together with (2.4), it is usually referred to as the van Genuchten model.

2.2.5 Phase Composition

Each fluid or solid phase that occupies (a part of) the porous medium is composed of multiple
species of interest. It is therefore necessary to consider the composition of each individual
phase. We use the term component to denote a chemical species that belongs to the minimum
number of independent chemical species necessary to completely describe the composition of
a given phase ( , ). Note that the set of components is not unique. When
chemical equilibrium is not assumed, all species are defined to be components. Each phase «
can be a set of several components k € K, where a component s can be present in one or
both of the mobile phases, in the solid phase or in the solid and in the liquid phase.

The chemical species is referred to as a solvent if it is the predominant species in a phase, or as
a solute if it constitutes only a small portion of a phase. A solvent can be e.g. the solid matrix
minerals in the solid phase or water in the liquid phase, because the liquid phase is comprised
primarily of water.

The concentration of a component indicates its quantity in a unit volume of a fluid or a solid
phase. It can be measured in different ways, depending on the selected units for quantity and
volume.

Phase composition is expressed in terms of a mass concentration or a molar concentration.
The molar concentration C7',, of component  expresses the number of moles of k, N, per
unit volume of the phase a, V,, as
Na,n

Va
and the mass concentration expresses the mass of K-species, mq x, per unit volume of phase «
as

m __
Coz,/i -

Mak

Vo

Ooz,,% =

10



The phase mole density (total molar concentration) is given by

and the phase mass density is defined by
Pa = 7& = Z Ca,m
KEK
where N, is the total number of mole in phase o and m,, is the mass of phase «.
The phase mass and mole densities are related by

N,
o= X M= Y e
IQGK:QL K/GKQ

= Ve My, (2.7)

where M, is the molar mass of compound x and M, is the average molar mass of mixtures

mO( K NOC K
M, = ’ M, = M = 2.8
K Na . b (63 Z K Na ( )
’ KEK
The relationship between mass and molar concentration is
m Ca,n
o,k = Mn :
2.2.6 Thermodynamic Relationships and Restrictions
In contrast to e.g. ( ); ( ) and ( ), we

consider only isothermal conditions. In our applications, the temperature is given and the
pressure of the gas phase is close to the standard atmospheric pressure. Thus, the real gas can
be approximated by an ideal gas.
The ideal gas obeys the ideal gas law
Dy

Vg = —=, 2.9
where R = 8.314 Jmol ' K~ is the universal gas constant and 7" is the thermodynamic tem-
perature.

Total pressure in the gas phase is related to the sum of the partial pressures (Dalton’s law)

Z P,k = Dg (2.10)

KEK
and the partial pressures relate to molar concentrations as ( , )

Pgr = RTCY,. (2.11)
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Henry’s Law

Mass transfer between liquid and gas phase occurs at the phase interface. For gases with a low
solubility, like oxygen in water, the solubility of a gas in a liquid phase is directly proportional
to the partial pressure of the gas above the liquid

Pk = C " (2.12)

L,k

where pg . is the partial pressure of the solute in the gas phase, kf is the Henry’s law constant
and C’l* ;m is the equilibrium molar concentration in liquid phase. Introducing a dimensionless

constant k$ = ky - RT, Henry’s law (2.12) is given by ( , )
Crn' = kO (2.13)

2.2.7 Macroscopic Diffusive Flux

There are two basic processes controlling the macroscopic diffusive flux of solutes in porous
media: mechanical dispersion and molecular diffusion.

The mechanical dispersion refers to the spreading and mixing caused by the variations in ve-
locities with which the fluid phases moves at different scales. The dispersion normally depends
on the water velocity and the direction of flow. In flow direction the dispersivity is typically
larger than the dispersivity in the directions perpendicular to the flow direction, for details see

(Bear, 1972).

Molecular diffusion is a mass transfer process caused by the random Brownian motion of solute
particles in fluids. The mass transfer model assumes that the flux is proportional to the negative
concentration gradient. The macroscopic diffusive flux of the component « is described by the
averaged Fick’s first law

ja,/-c = *Da,nvca,m (214)

where the diffusion coefficient depends on the type of solute, the saturation and phase compo-
sition
Do = Dar(z,t, S0 Cop, - - ).

In this work (unless stated otherwise), we use the Fick’s law to describe the diffusive fluxes jq
with the second model of Millington and Quirk for the dependence of the effective diffusion
coefficient on phase saturation ( ) ) and one obtains

ja,fﬁ = _ng(zs%DOl,HVCOt,fi- (215)

Constraints on Diffusive Flux

We assume as in ( ); ( ) and ( ) that the sum
of the diffusive fluxes for all components in each phase is zero

> Jaw =0, (2.16)

HE’C&

12



which ensures that the sum of all components of a phase moves with the phase velocity v,.
The constraint (2.16) holds when all components are at dilute concentration, except for the
solvent component.

The molecular diffusion coefficients of gas components are assumed to be equal to their re-
spective binary diffusion coefficients in air. This is done only for simplification; the calculation
of multi-component diffusion coefficients is complicated and it is not clear at all that such

calculations will improve the accuracy of the simulations ( , ). The theory
of diffusion in multi-component gases is discussed by ( ) and diffusion in liquid
mixtures in ( ).

2.2.8 Mass Balance Equations

A rigorous mathematical description of compositional multi-phase flow in the subsurface is
based upon mass balance equations for each component present in the system.

The macroscopic differential mass balance equations for components may be obtained by av-
eraging the microscopic balance equations ( , ) for the mass of chemical
species in fluid phases that fully or partly occupy the void space and of chemical species in the
solid phase.

For each phase o € P and for each component x € K, the general macroscopic mass con-
servation equations describing the transport and reaction of fluid and solid phase species are
written as ( , : , : , )

0(00Ca )

5+ V {Cawta + jar} = dax + Rax i Q2 (0,7, (2.17)

where  is the spatial domain and [0, 7] is the time interval under consideration.

The system of equations (2.17) includes general species reaction terms Ry, ,, each expressing the
rate at which the mass of that species is added to the phase and /or changed within the phase by
a particular process. Amongst others, these processes may include chemical reactions among
various species, adsorption, ion exchange, mineral precipitation, dissolution, interphase mass
transfer, microbiological growth and decay, and bio-transformation. The term ¢, . accounts
for component mass change in the phase o and denotes the gain or loss of mass due to external
sources and sinks (mass added from outside the system), e.g. injection. In the case of solid
components, the advection and diffusion parts in (2.17) vanish.

The reactions here are in a rate formulation, but equilibrium reactions are also possible.

( ) describe the mechanism of how to obtain a rate expression for equilibrium
reactions. In our applications, the equilibrium reactions will be introduced through the oper-
ator splitting technique described in Chapter 3.

13



2.3 Discussion

Richards’ Assumption

Very often, only the flow of the water is considered and the air flow is neglected. The assumption
of a passive gas phase underlying many models is that the resistance to flow in the gas phase
is negligible everywhere. Because air density is very small, the gas phase is assumed to be
everywhere at atmospheric pressure (Richards’ assumption).

It is certainly not justified when air flow is produced by air injection and /or extraction as part of
contaminant cleanup operations, e.g. gas production and consumption by microorganisms (

) ). Advective gas transport by itself is not likely to affect the flow solution, since
gas pressures are small, but it may influence the reactive transport solution significantly. The
correct solution of the fully transient problem is only possible using a compositional approach,
which considers advective and diffusive transport processes in both the aqueous and gaseous
phases simultaneously with geochemical reactions. In our applications, a full two-phase flow
model is required as gas can be entrapped or gas density can depend on the phase composition.
Thus, we have to solve a mass balance equation for the air.

Restrictions and Limitations

The incompressible liquid phase with constant density is considered to be always present,
whereas the gaseous phase may vanish. The dissolved components in liquid phase are consid-
ered as tracers, i.e. their concentrations are small and the density of the liquid phase is that
of water. The reactive processes at the microscale may change macroscale parameters such as
porosity, permeability, fluid viscosity, and reactive surface area of the porous media. Although
these dependencies are not considered in the model, it can be straightforwardly extended. In
our applications, aqueous species are subject to local chemical interactions with the solid and
gaseous phase or are assumed to be at local equilibrium. Direct interactions between solid and
gas phase or within the solid phase are not considered in the model.

14



CHAPTER 3

Solution Approaches of Model Equations

In this chapter we consider a general compositional formulation of multi-phase reactive flow
with multi-component solute transport. The term compositional formulation denotes that the
solution includes both the composition and the volumetric fraction of each phase as a function
of space and time and not merely the volumetric fraction distribution of each phase in space
in time ( , ).

We briefly discuss several mathematical formulations for multi-phase multi-component trans-
port and introduce model formulation based on operator splitting. Additionally, we compare
different approaches for coupling between solute transport and chemical reactions together
with a discussion about existing codes for modeling of reactive transport.

In general, the solution approaches in multi-phase multi-component reactive flow can be clas-

sified with respect to:

1. the solution strategy for solving the original coupled problem;
2. the primary variables used;

3. the discretization schemes employed for the system or subsystems.

3.1 Mathematical Formulations

The governing equations (2.17) may be written in a number of forms. While the formula-
tions are mathematically equivalent, the numerical models based on each formulation differ in
flexibility and efficiency. We review here two different formulations; each formulation offers
inherent advantages and disadvantages w.r.t. numerical approximation and in model flexibility.

3.1.1 Fully Coupled Formulation

In a fully coupled formulation (also called a simultaneous formulation), the governing equa-
tions (2.17), the relationships between the phase pressures and the fluid saturations, and the
component concentrations within each phase are described through a single set of equations.

This formulation is the most straightforward and leads to a numerical approximation which
does not need any iterative procedures. However, this approach is computationally expensive,
since all unknown variables are approximated in a single step and the system of equations
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resulting from the numerical discretization of this model formulation is large and highly non-
linear.

The numerical schemes of the solution of models based on this formulation are not expected
to be very efficient for systems with multiple phases and many components. Examples of the
simultaneous solution method may be found in e.g. ( ); ( );

(1995); (1996); (1995); (1993);
(1995).

To solve the system of equations (2.17), different sets of variables can be chosen as primary
variables to solve the system unambiguously. However, the choice is not unique and can even
change during the simulation, for details we refer the reader to literature listed below. The
problem in the simultaneous formulation arises when a phase appears or disappears. In this
case, there are these main strategies to resolve this issue: extending the saturation to negative
values ( , ), using suitable sets of primary variables ( , :
, ), complementarity constraints ( , ; , ),

local switching of primary variables depending on present phases ( , ;
, : , : , ) and flash calculations ( ,

; ; ).
The simultaneous formulation is often used to model multi-phase multi-component flow in
porous media with a special regard to COs sequestration ( , ; , ;

, ). In this case, the mobile phases are comprised only from a low number of
components and the phase properties are highly dependent on the phase composition.

The numerical discretization of models based on the simultaneous formulation is often based
on a fully implicit time discretization and a full upwinding technique ( , ;
, ), which may introduce numerical diffusion in the system ( ,

).

3.1.2 Decoupled Formulation

An alternative formulation may be developed if the equations describing the movement of
the phases are separated from those describing the transport of components within the fluid
phases. This formulation produces two sets of non-linear equations, which are weakly coupled
by compositionally dependent fluid properties and by mass exchange terms.

In general, a computationally decoupled formulation offers advantages in terms of model flex-
ibility, as any number of components may be studied without changing the solution of the
phase balance equations or the solution approach for the component balance equations.

For equivalent problems, a computationally decoupled formulation is expected to be more effi-
cient from the numerical point of view than the simultaneous formulation due to the solution
of smaller problems. Unfortunately, the operator splitting scheme proposed for a computa-
tionally decoupled model introduces additional errors into the solution of the equations. The
errors can be reduced e.g. by iterating between the phase balance equations and the component
balance equations ( , ) or controlled by limiting the time step size in
order to constrain the mass transfer and saturation changes during a single time step (

, 1996).
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3.2 Model Formulation Based on Operator Splitting

The operator splitting model formulation presented in this thesis is a computationally decou-
pled formulation. In a first step, the set of equations (2.17) describing the reactions in the
solid phase are separated from those describing the transport of components within the fluid
phases. Then the system (2.17) is split into a transport part for fluid phases

0(0aCa.x)

5 +V  A{CakVa + Jar} = dar, K€ Ka, a € Py, (3.1a)

and into a reaction part (for all phases)

0(0aCa.x)

5 =Rop, KEKy acP. (3.1b)

Further, the transport part (3.1a) is split again in a phase transport and in a phase composition
part.

3.2.1 Phase Transport

Summation of the transport part (3.1a) over all components of each fluid phase and using
assumption (2.16) yields a balance equation for each mobile phase

9 (0apa)
T + V- {pava} = ;qaﬂ =(qn, «E Pf, (32)

where ¢, denotes the total source/sink term in phase a (now without reactions). The liquid
mass phase density remains constant, while the gas phase density p, may depend on the phase
composition. By solving (3.2), we obtain the fluid velocities and saturation distributions.

In the case of unsaturated groundwater flow it is often assumed that the gas phase is mobile
enough to always be at atmospheric pressure, i.e. p, = const. The liquid phase pressure
can subsequently be computed via the capillary pressure function, and gas and liquid phase
transport are decoupled. Assuming incompressibility of the liquid phase we obtain from (3.2)
a single equation for liquid phase which is called Richard’s equation ( , ).

3.2.2 Component Transport

To formulate component transport equations, we select a reference non-reactive component
ka0 € Kq in each phase, e.g. water in the liquid phase, air in the gas phase and porous material
in the solid phase. The balance transport equations for the remaining N, components in the
fluid phases have the form

0(00Ca )

Y +V - {CokVa + Jar} = dar, &€Kao\{kao}, a € Ps. (3.3)

We use the resulting N; + Ny = |K;| + |K4| — 2 concentrations in the fluid phases, that are a
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result of component transport (3.3), together with Ny = |KCs| — 1 concentrations in the solid
phase to compute the chemical reaction problem.

3.2.3 Reaction

All reactive species are subject to local chemical interactions with the aqueous, gaseous, and
solid phase by
0Cq 1

= —Row=Tar+€r 0k, kEKy\{kao}, a€P. (3.4)
ot 0.,

The right-hand side of (3.4) includes all reactions; it can be divided into a chemical and/or
biological reaction part 7, ., a phase exchange between fluids e, and an interaction between
the liquid and solid phases aqx -

3.2.4 Coupling of Component Transport and Reaction

Because the component transport and reactions are coupled, equations (3.3) and (3.4) can be
merged to get the advection-diffusion-reaction system

0(00Ca.x)

T +V - {CaxVa+ Jar} =dar + Rar, k€Kq\EKapg, a€P. (3.5)

Also note that the two-phase equations (3.2) and reactive transport equations (3.5) are coupled,
because the density of the gas phase can be concentration composition dependent.

3.2.5 Chemical Equilibrium

Internal reactions which are slow in comparison with the transport process are described by
ordinary differential equations (3.4). In the mathematical description of reversible reactions,
which are relatively fast with respect to transport, the assumption of local equilibrium can be
introduced.

For each pair of components involved in the equilibrium process we obtain one algebraic equi-
librium equation, see ( ). The set of |K.| equilibrium equations is
given by

F?j(cl,nl7"')CZ,HNZ)CQ,H17"‘)Cg,K/Ng7CS,:‘€17"'7CS,I€NS) = 07 ] € K:€7 (36)

where the function F} is in general a non-linear function of the involved concentrations.

If the system contains both the slow reactions, characterized by kinetic rate laws, and the fast
reactions, which are assumed to be at the local equilibrium, the reactive transport model is
described by the system of partial differential and algebraic equations (3.5-3.6).
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3.2.6 Primary Variables

The model (2.17) split into (3.1-3.6) is a mixture of two sets of non-linear partial differential
equations (PDE), one set of ordinary differential equations (ODE) and set of algebraic equa-
tions (AE). Different choices of primary variables are possible for the solution of the PDEs
and ODEs. The remaining unknowns can be computed from the algebraic equations.

In this thesis we use the fluid pressures p;,py or the liquid phase and capillary pressures
pi, Pe as the primary variables for the two-phase balance equations (3.2) and the component
concentrations Cy 4 of all but one component K, \{kq,0} for each phase as primary variables. A
discussion about alternative formulations of two-phase flow models can be found in Section 3.3.

Given these primary variables, the remaining quantities can be computed as follows: the water
saturation is determined via the inverse function p_ ! of (2.2). As the liquid density is assumed
to be constant, the concentration Cjo can be calculated from p; and the |K;| — 1 known
concentrations.

For the gas phase we use the ideal gas law (2.9) to calculate the molar density of the gas phase
Vg, which is assumed to be constant. Using v,, the known concentrations and molar masses
M,;, we can calculate the concentration Cy ¢ from

1 C
s Tl D DI v
9,0 K
"iGK;g\{"fg,O}

and finally the gas phase density from

Pg = Z Cyr-

rekly

Both the PDEs and ODEs are subject to appropriate initial conditions. Additionally, the
formulation of PDEs has to be supplement by the boundary conditions, see Chapter 4 for
details.

3.3 Remarks on Two-Phase Flow

Multi-phase models for the simulation of processes in the subsurface are widely used in different
fields of technical applications. Since the late 1950s, researchers in the oil industry have
developed numerical models in order to help optimize oil recovery, see the classical texts by

(1979); (1977) and (1956).

In this thesis, we use a formulation based on fluid pressures or capillary /liquid pressures. This
choice of primary variables is motivated by our applications: we apply the model to simulate
two-phase flow (with water and air) in laboratory flow-through experiments, where the diameter
of the computational domain is less than 1 meter. In that case, no sharp saturation fronts
occur, because the transition zone between full saturated and completely dry sand occupies
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several centimeters, see Chapters 7 and 8. Furthermore, the gas phase is compressible and can
disappear, while the liquid phase is incompressible and is always present.

Nevertheless, the model concept introduced in this work can be adapted to a concrete situation
without major changes. In general, the two-phase flow equations are of elliptic/hyperbolic,
elliptic/parabolic or parabolic/parabolic type, depending on whether or not the phases are
compressible and whether or not capillary pressure is considered.

The global implicit approach (also called fully coupled/fully implicit approach), where the two
equations (3.2) are solved simultaneously is very robust and is the standard choice in indus-
trial simulators, often based on a pressure-saturation formulation. It is used in combination
with finite volume ( , ) and finite element ( , ; , )
discretization schemes.

However, this approach has some drawbacks. The large-scale non-linear systems of algebraic
equations may be difficult to solve. Good progress has been reported on this point with Newton-
Krylov methods ( , : , : , ) and
multigrid methods ( , ; , ). A second and more severe
drawback is that only first-order full upwinding is typically restricted to the mobilities. In the
elliptic/hyperbolic regime, this leads to a very poor accuracy of sharp saturation fronts due to
numerical dispersion ( , ).

In this regime the sequential approach, called IMPES (implicit pressure explicit saturation)
performs better. It is a very powerful method for the numerical treatment of incompressible
two-phase flow. The general phase balance equations are combined to eliminate the saturation
unknowns and the equation for pressure is separated from that for saturation, see ( )
for details. The coupling between the fluid saturations and pressure is lagged by one solution
step. This method has one drawback: a small time step for the saturation equation is required
in order to keep the explicit method stable. However, it is typically possible to execute multiple
transport steps per pressure update, which reduces the computing time significantly. An
adaptive implicit procedure to take the advantage of the efficiency of the IMPES formulation
while retaining the stability of the simultaneous formulation was proposed by

(1986).

A formulation based on the so-called ,global” pressure by ( ) allows
an effective decoupling of the elliptic pressure equation and the (nearly) hyperbolic saturation
equation, making it possible to apply appropriate discretization schemes for each equation. One
choice that has been used very successfully by several groups is the mixed finite element method
for the elliptic equation in combination with cell-centered finite volume methods (higher order
Godunov scheme) for the hyperbolic equation ( , ; , :

, ). Other approaches in this regime are non-linear characteristic and
front tracking methods ( , : , :

, 1991).

3.4 Approaches for Coupling Reaction and Solute Transport

It is beyond the scope of this thesis to provide a thorough review of the development of
reactive transport modeling. We refer the reader to e.g. ( )
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(1988); (1983); (1994) and (1996) for an
in-depth discussion of the general philosophy of multi-component reactive transport modeling.

In addition, authors of a review article ( ) discuss the historical development
and the current status of reactive transport modeling and its application to real problems.

In general, the multi-component transport and reaction models in porous media lead to a large
set of coupled PDEs for mobile species, ODEs for immobile species and AEs for equilibrium
reactions ( , , ; ) ). We can use an operator notation
to describe the solute transport and reaction for a set of components with concentrations C' by

aC(t)

5= = LCH) +R(CW), (3.7)

where L is the spatial operator representing the transport (advection and diffusion) and the
operator R includes all chemical reactions.

In our case, the reactive transport model (3.7) is described by the system of transport-reaction
equations (3.5) and by the equilibrium equations (3.6). The equations (3.5) can be split into
the transport part (3.3) and into the reactive part (3.4).

We can solve the arising coupled system with two different approaches that are well known for
reactive transport modeling:

1. the global approach, in which both transport and chemical operators are solved simulta-
neously ( : ; ; ; ) ;

Y ) Y )7

2. the operator splitting approach, in which transport and chemical reactions are solved
separately ( , ’ : 7 :

9 9 ) )

In view of the fact that the solution strategies have an influence on the accuracy and the
efficiency of the numerical solution, we discuss their implementation and the associated impli-
cations in detail.

3.4.1 Global Approach

One way to solve the coupled system (3.7) is the global implicit approach (GIA), sometimes
called one-step global approach. All governing equations are discretized implicitly in time and
the resulting large set of non-linear algebraic equations is solved iteratively, e.g. by Newton’s
method. Global methods are often based on a direct substitution approach (DSA), which
reduces the number of unknowns in the system by eliminating components in equilibrium (

, , ). Additional reduction approaches can be found in (

) ) ) ) ) ) )'

3.4.2 Operator Splitting Approach

The mathematical properties of each operator in reactive transport are very different: parabolic
and hyperbolic PDEs for advection-diffusion equations, non-linear AEs for instantaneous equi-
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librium chemistry and stiff ODEs for kinetic chemistry. It is therefore interesting to separate
each operator using operator splitting (OS) methods ( , ; ) ;

, ; , ), which can lead to a very efficient method, since
one can treat each part of the original operator independently with an appropriate numerical
method.

In the OS approach, a single time step consists of a transport step followed by a reaction step
using the transported concentrations. The simplest variant of OS is the sequential non-iterative
approach (SNIA) where each sub-model is solved exactly once per global splitting time step 7.

First-Order Splitting

To solve (3.7) using first-order splitting (also called Lie-Trotter splitting) we first solve the
transport problem from time # to time  + 7

W ey, e =co, (352

followed by the solution of the reaction operator

aC, (1)
ot

—R(C,(1), Coll) = CilE +7), (3.8b)

where the initial concentration for (3.8b) is given by the solution of (3.8a). The concentration
C(t + 7) is than the solution C, of (3.8b) at time # + 7. The Lie-Trotter splitting (3.8) is not
symmetric with respect to the operators £ and R.

Strang Splitting

It is possible to reduce some of the splitting errors associated with the SNTA approach by using
a symmetrical Strang splitting ( , ). By a small modification of (3.8) it is possible to
make the splitting algorithm second-order accurate. This is done by surrounding the reaction
step by two transport steps. The Strang splitting algorithm to solve the original problem (3.7)
from time ¢ to time ¢ + 7 is as follows: the transport is solved with a time step 7/2

0C(t) s

= L), b =) (3.99)
followed by a reaction step
Wl Rty €)= Cili+r/2), (3.9b)

which is in turn followed by another 7/2 transport step

agit):ﬁ(C(t)), Ct+71/2)=C.(t+71). (3.9¢)

The Strang splitting (3.9) has second-order accuracy, but the convergence order of Strang
splitting for general ADRE can be reduced due to the effect of stiff reaction terms or bound-
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ary conditions ( , : , , ). We compare the
performance of both splitting techniques mentioned above in Chapter 5.

Sequential Iteration Approach

The error introduced by the decoupling of the component transport and the chemical reactions
can be decreased by the sequential iteration approach (SIA) where all sub-models are iterated
until convergence in each global splitting time step. The two sets of equations are coupled by
sink /source terms which are updated during the iterative cycle ( , ;

) ) ) )

Although the STA methods appear attractive because they can be modularized as SNIA, they
have several disadvantages. The iterative procedure is not unconditionally stable, due to the
explicit nature of the approach; difficulties in the convergence can arise and small splitting

times are required ( , : , : , ).
To overcome this difficulty, many improvements of STA methods were proposed in the literature,
see e.g. ( ) ( ). Another possible disadvantage to

the STA approach is dependence on an implicit solution of the transport equations in order to
get a fully implicit solution of the overall reaction-transport problem ( ,

) ( ) conclude that standard SIA schemes should not be used; they
may exhibit convergence or stability problems and the OS errors are still present even if the
iterative algorithm converges.

3.4.3 Discussion

Both the one-step methods and the OS methods have several advantages and disadvantages in
solving of ADREs. The choice of the most appropriate methods depends on multiple factors
including among others

complexity and character of chemical reactions;

dominance of considered processes (physical transport or chemical reactions) based on
their time scales;

e dimension of the given problem and time steps required;

e memory requirements, CPU time and code parallelism.

GIA is often used with full upwinding of the convective terms (in convective-dominated cases)
to avoid unphysical oscillations of the concentrations. This results in a large amount of numer-
ical diffusion for the component transport. Since reactions only take place when components
mix, and components might mix mainly due to numerical diffusion, the simulation may over-
estimate the reaction ( , ).

Another potential limitation of GIA is the need to compute, store and invert the Jacobian
matrix. This becomes problematic for large systems with many components in two- and three-
dimensional field scale simulations, because the increased size of the Jacobian matrix results
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in greater memory usage and more CPU time is needed to solve the resulting system of linear
equations within the Newton iterations. Because of its high memory requirements, the global
approach was initially rejected ( , ), but the memory capacity of modern
computers has greatly improved so that a high memory requirement is no longer the major
drawback. The GIA method was originally used only for small reaction systems in one dimen-
sion, but since the beginning of the 21*" century, GIA has been used for complex bio-chemical
reaction models coupled to 3D groundwater flow, e.g. ( , ).

On the other hand, GIA has some important advantages. The global convergence properties
of the fully coupled method may be better than those of multi-step iteration methods. Using
Newton’s method to solve the full set of equations, we expect to achieve quadratic convergence
in the vicinity of the solution, while we can expect linear convergence at best from the iterative
OS methods. Moreover, it is possible to take larger time steps with GIA, because the time
step size is limited only by the convergence of Newton’s method and the accuracy of the
discretization methods. This is particularly true for stiff transient problems converging to a
steady state ( , ). Nevertheless, the GIA approach is considered to be more
robust for chemically complex systems and it is the preferred scheme in practice (
) ; ) ; ) )

The OS approach is used in order to avoid the large computational cost of GIA. It takes
advantage of the fact that only the physical transport equations are spatially coupled while
the chemical equations are strictly coupled at each point in the system. This leads to a smaller
system than the GIA methods; the transport problem can be solved independently for each
component. The coupling between transport and chemistry is done on a per-element (or per-
node) basis, which is beneficial in parallel computing. One can also use different numerical
discretization schemes for multi-component transport and for chemical reaction that are opti-
mized for a given situation. Within the OS approach high resolution schemes for hyperbolic
transport equations can be utilized ( , : , : , )
which introduce less numerical diffusion compared to the GIA methods. The decoupled meth-
ods, therefore, offer greater flexibility and even allow for the integration of existing codes for
non-reactive transport and chemical reactions.

However, although OS methods show many advantages, the splitting procedure generates op-
erator splitting errors. The OS errors for kinetically-controlled reactions will be investigated
and discussed in Chapter 5.

Comparison

The numerical efficiency of SNIA, SIA and GIA approaches has been compared by

( ); ( ) and ( ). They concluded that GIA performs
better than OS methods for chemically complex, small dimensional reactive transport problems
but is outperformed by OS approaches for chemically simple, large-dimensional problems.
Although GIA is both more difficult to implement than the OS approach and very demanding in
terms of computing time and memory requirements, it does not introduce any operator splitting
error. The results in ( ) show that in combination with an efficient sparse direct
solver, GIA performs better than STA and SNTA even for chemically simple problems.
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( ) compared the computational times for a system containing slow and fast
chemical reactions. The STA scheme was less efficient than GIA, because SIA required a very
high number of time steps. The most efficient method based on OS was multiple times faster
than GIA. However, the OS solution for fast reactions showed significant fronting, see also
Section 5.4.1.

3.4.4 Reactive Transport Codes

There is a variety of computer codes for simulating flow and solute transport in porous media in
combination with bio-chemical reactions. In the following, we briefly describe several numerical
codes used in the simulation of reactive transport codes based on the REV formulation. The
review article ( ) presents a general description of the mathematical and
numerical formulations used in reactive transport. Furthermore, the authors compared the
features of several reactive transport modeling codes w.r.t.

e their general features of the flow and transport:

— domain dimension

isothermal /non-isothermal flow

saturated /unsaturated flow

— one/multi-phase flow

Richards’ assumption

— the type of advection and diffusion processes
e the type of geochemical and microbial process which can be treated in each code
e the numerical and computational features:

— solution approaches (GIA, SNIA, SIA)

— spatial and temporal discretization

inverse modeling and parameter estimation

code parallelization

We will not discuss the reactive transport codes listed in ( ) in detail and refer
to this article, which compares the following codes: PHREEQC ( , ;
, ), HPx ( , ), PHT3D ( , ;

, ), OpenGeoSys ( , ), HYTEC ( , ), ORCHES-
TRA ( ) ), TOUGHREACT( ) ; , ), eSTOMP (
, ), HYDROGEOCHEM ( , ), CrunchFlow ( ) ),
MIN3P ( ) ), and PFLOTRAN ( ; ,b).
Other reviews on reactive transport codes can be found e.g. in ( );
( ) and ( ) ). There are also other codes used in reactive

transport modeling, some of the relevant codes regarding to this work are discussed below.
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SPECY

SPECY is a reactive transport code based on SNIA, where even advection and dispersion
are split. The key feature of this code is the use of specific numerical methods to solve each
part of the reactive transport equation. The code employs an explicit discontinuous Galerkin
finite element method to obtain a good description of sharp reactive fronts associated with
certain chemical phenomena. The diffusion operator is solved with an implicit mixed finite
element method. The combination of these two methods has been adapted to reactive transport
in the case of STA. The equilibrium chemistry is solved using a combined algorithm based
on Newton’s method that reduces computing time and improves convergence, see

( ). SPECY was tested against the 1D reference solution of the reactive MoMaS problem

( , ) including instantaneous equilibrium chemistry, kinetic rate laws and
precipitation-dissolution reactions. Another code tested in the MoMaS benchmark is GDAE1D
( , ), based on the finite volume method with full upwinding and

GIA without DSA. This code uses efficient and robust differential algebraic equations solvers,
but the arising linear system is solved by a dense direct solver and the performance of the code
was tested only for 1D domains.

TBC

( ,¢) developed the very flexible parallel code TBC including chemical (ki-
netic and equilibrium) reactions, bio-chemical reactions and transport for saturated ground-
water flow in three dimensions. It is based on a standard finite element method with explicit
and fully implicit time integration. The coupled problem is solved using the STA method.
The authors assume that all microorganisms reside in an immobile bio-phase (bio-film model).
Bio-chemical reactions only take place in the bio-phase, i.e. all relevant substrates first have to
change phases from the liquid to the bio-phase before they can take part in the bio-chemical
reactions. The growth of microbial populations is described by Monod-type kinetics with one
or more respiratory pathways (e.g. aerobic and anaerobic).

CORE
The computer code CORE ( , ), which is an extended and improved version
of an earlier code called TRANQUI ( , ) solves two-dimensional groundwater

flow, solute, and heat transport equations with a finite element method. Flow in variably
saturated media is solved in terms of pressure heads. The authors solve the Richard’s equation
to get the velocity distribution. ( ) extended the original code and
coupled the water flow and microbial reactive transport in BIO-CORE. Coupled transport and
chemical equations are solved using SNTA and many variants of SIA, e.g. sequential partly
iterative approach, which improves the accuracy of the traditional SNIA approach and in
several situations is more efficient than the general SIA, see ( ).

26



RT3D

Another code that is capable of simulating multi-species reactive transport of different types
of contaminants is the three-dimensional model RT3D ( , ), using external
computed liquid velocities. The authors analyzed different types of subsurface contaminant
reactions, microbial metabolisms, and microbial transport kinetics. The non-iterative OS strat-
egy is separated into four steps: advection, diffusion, source/sink terms and chemical reactions.
The advection part is solved by the method of characteristics or by an upstream finite differ-
ence method and the diffusion is discretized with an explicit finite difference approximation.
After the transport time step, all reaction equations are solved implicitly employing multiple
reaction time steps.

FEREACT

A reactive transport finite element method code FEREACT examines the coupled effects of
two-dimensional steady-state groundwater flow, equilibrium aqueous speciation reactions, and
kinetically-controlled interphase reactions. Transport and chemical reactions are coupled by
the STA-1 method which improves the convergence behavior of the traditional SIA approach

( , 1995).

RETRASO

The code RETRASO simulates reactive transport of dissolved and gaseous species in non-
isothermal saturated and unsaturated problems. For the solution of the reactive transport
equations it uses GIA with DSA ( , ). One, two and three-dimensional finite
element methods can be used for the spatial discretization.

3.5 Summary

In this chapter, we presented basic solution approaches for multi-phase multi-component re-
active flow in porous media based on continuum representation. This field of study is under
intensive scientific investigation; for more detailed insight into this very complex topic we refer
the reader to the literature cited in the whole chapter. The general application of one solution
approach is not possible; the choice of the most appropriate solution approach depends on many
factors, particularly on the model applications. The simultaneous compositional formulation
is used for modeling CO, sequestration, because the phase properties are strongly dependent
on the phase composition and the coupling plays an important role. Most of the models de-
scribing multi-phase reactive transport in porous media use decoupled formulations. Not only
the phase flow and component transport can be decoupled, but also component transport and
chemical reactions can be computed separately.

The resulting system of equations arising in the simultaneous formulation for and in GIA for
reactive transport might be very large and the (non)-linear system may be difficult to solve.
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This could become problematic for large systems with many components in two- and three-
dimensional field scale simulations. The increased size of the Jacobian matrix results in a
greater memory usage and more CPU time is needed to solve the resulting system of linear
equations within the Newton iterations. On the other hand, these approaches are very robust
and no operator splitting error occurs.

In this thesis, we present a model based on the decoupled formulation, where the phase trans-
port, component transport and reactions are separated. The operator splitting approach en-
ables the use of different numerical methods to solve each sub-problem; the spatial and temporal
discretization schemes can be designed in such a way that the error arising in the numerical
discretization is reduced significantly, see Chapter 4. On the other hand, the OS approach
introduces an operator splitting error to the solution procedure. In our applications, we use
almost only kinetically controlled chemical reactions. The OS error can be reduced by control-
ling the splitting time step depending on transport velocity and rates of chemical reactions, see
Chapter 5 for details. As an alternative to the SNIA scheme for advection-diffusion-reaction
systems, we can also use GIA in situations without sharp fronts in concentrations. Particu-
larly in quasi steady-state problems, where the transient error associated with the concentration
front propagation is absent, GIA performs reasonably well, because it allows larger time steps
and the simulation time can be reduced significantly without loss of accuracy in the solution.
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CHAPTER 4

Numerical Discretization

In this chapter we describe the numerical discretization of problems defined in Chapter 3. The
application problems to be treated in this thesis involve only simple geometries. Therefore
we decided to use a cell-centered finite volume scheme (CCFV) for both, the two-phase flow
problem and for the component transport. This method is locally mass-conservative, which is
a general requirement for a physically meaningful solution and a necessity for the solution of
reactive transport.

We focus on the so-called method of lines in which the evolution problem is first semi-discretized
in space yielding a system of coupled ordinary differential equations (ODEs), which is af-
terwards discretized in time. For the time discretization, we consider explicit and implicit
Runge-Kutta methods (RK). For reactive transport, implicit-explicit Runge-Kutta methods
(RK-IMEX) provide an alternative to the classical RK schemes.

The splitting concept introduced in Chapter 3 is, however, independent of the discretization
of the sub-problems. Therefore, other spatial and temporal discretization methods can be
implemented during future model development without a major reorganization of the code.

4.1 Preliminary Definitions

In this section we present the main ingredients needed for the spatial discretization on struc-
tured grids with conforming interfaces. The considered domain £ C R% 4 e {2,3} with
boundary 02 is a rectangle in two space dimensions or a rectangular cuboid in case of d = 3.

Let Tp, be a structured and regular tessellation of €2 into Nj, mesh elements (cells) fulfilling

77L - {E07 .. -7ENh—1}7

Q= Ej, Ei#E; Yi#}j,
with cell volume |E| and mesh size h computed as

B = / lde, h=max{diam(E)|E € Ty},
E
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Fig. 4.1: Definition of the cell, face and boundary face geometry in two space
dimensions.

The (d-1)-dimensional cell intersections form the set of interior and boundary faces

b= Ve = 0B NOEy; Ec, By € Tp,e # f and |5es| > 0},
F® = {7 = 0B.N0Q; B, € Ty and || > 0},
where || denotes the volume of face . For an interior face, which is a common face of cells £
and E’, we arbitrarily fix a unit normal direction n, and we denote by E;r the cell where the
normal points to and by E the cell in the opposite direction, see Fig. 4.1. For boundary faces,
n is chosen to be the unit outer normal to 9. For a cell E € T}, and for a face v € ]:,i U]:}?Q,
we denote by g and x, the cell center and the face center, respectively. The cells are such

that points on an interior face v have equal distance to the centers of both cells Ejf' and E
and the vector x B~ Tpgs is perpendicular to the face 7. The Euclidean distance dg  of cell

centers of two adjacent elements Ej and E_ to the face 7 is given by

dpy = |tgy —2p-| VY EF, dpy=lrg —a,] VyeFN

The space of piecewise constant functions on 7 is defined by
Py(Tn) = {u € L2(Q) : u|g = constant VE € Tp,}.

Functions in Py(7;) may be discontinuous on the interior faces .7-","1: for the value on each side
of the intersection v we set

ufy'(x) = lim u(z +eny), uy(r)= lim u(x+en,). (4.1)

e—0t e—0~

The jump and the average of the function u € Py(7y,) for « € v € F}. are then given by

(@) =t (@) i (2), (o) = 5 (uF (&) 5 ().
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These definitions are extended to the domain boundary 02 by

[p)(z) = (v)(2) =v(z) Veery, ~veF

4.2 Two-Phase Flow Problem

Now we discretize the two-phase flow problem (3.2) based on a pressure-pressure formulation.
In particular we describe how to combine upwinding and averaging of mobilities such that
media discontinuities can be treated properly. For an introduction to different formulations of
the multi-phase flow equations see also ( , ; , ; ,

: , ) and ( , ).

The phase balance equations (3.2) for a € Py together with Darcy’s law (2.1) are given by

8(05,0,1) +V - {pava}t = qo in Q x [0,T7, (4.2a)
ky
Vo = =~ =K (Vo = pag) (4.2b)

supplemented by boundary and initial conditions

Pa = pg on ng PaVa - T = T)o O F(]y\f’ pa(x70) = pa,O(x) in Q. (4'2C>

The boundary of the domain 02, where the boundary conditions are stated, is divided into
disjoint parts with Neumann boundary I'’Y and Dirichlet boundary I'2.

Definition 4.1 (Semi-discrete finite volume method)
The semi-discrete finite volume approzimation of (4.2) wutilizing continuous in time solution
representation, t € [0,T], and piecewise constant solution representation in space, pop(t) €

Py(Th), a € Py, such that
t t
pah |E‘ / pa x,

with initial data

1s given by the following system of ordinary dzﬁerentml equations:

pn Z/ Oapou dr + Z/ Pava - Nylu] ds + Z /pava-nvuds

EET), VeF e FIATD
+ Z / Nauds = Z / qoudr Yu € Py(Tp) o€ Py.
yeFPONTY E€Th
which can be abbreviated as
%mh(pah, u) + ap(pan,u) = fn(u) Yu € Py(Tp,) o€ Py. (4.3)
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To derive the semi-discrete form (4.3), we multiplied the original problem (4.2) by a test
function u € Py(Tr), integrated over € and applied integration by parts on each cell. For
simplicity, we suppress the subscript h.

All integrals in (4.3) are now evaluated numerically by applying the midpoint rule. The crucial
term to evaluate is the interior flux term

k
Valy - ny = MK (=Vpa + pag) - 1y, (4.4)
Ma(pa)
T Wer,~y
Y

which we divide into two parts: mobility £, and flow direction w, . Due to the simple
element geometry, the normal derivative of the pressure can be evaluated by finite differences
which then yields the flow direction:

pa(xEj>_poc($E;) +poc($Ej{r)+pa<xE;) . B [pa]
g- N~y =
dE,,y 2

Wayy & — + <poc>g * My

dEﬁ
Using this direction we can upwind the capillary pressure

Do = pg(wa—) *pl(CL“E;) Wey,y >0,
7 pg(in) _pl(in) Way <0,

and from that we can compute the saturations on adjacent elements:

_ \—1 . -
8177 = (pc ) (pc,'y) ng’y =1 817,‘/,

1
Slty = (p;r) (Pey) s;,y =1- sl‘fv.

Finally, we perform a harmonic averaging of the mobility

Kra™ (SE,W)K(xE; )
ta(Pa (xE; )

5_1_ _ kw—"i_a(sgz_,w)K(:EEﬂy') 5 _
o,y Ma(pa(xE;Y*-)) 9 o,y

_ 280 rSany
a?’Y -

fary + &y

This upwinding scheme in capillary pressure can handle material discontinuities that result
in discontinuities in capillary pressure-saturation curves and relative permeability functions in
neighboring elements ( , ).

4.2.1 Velocity Field

To ensure the local mass conservation for the component transport, we require that the velocity
field belongs to the functional space H(div,€2), which is the space of functions with square-
integrable weak divergences,

H(div, Q) = {v € [L2(Q)]% V- v e L2(Q)},

which imposes the continuity of the normal trace across all faces.
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The CCFV scheme on axis-parallel grids yields the normal velocities v |, - 1, on the midpoints
of all faces, which can be directly used to construct the lowest-order Raviart-Thomas element
space RTo(E). The RTo(E) space has the form

v; =a; + by, a;,b R, 1=1,...,d,

where subscript ¢ denotes the i-th component of the vectors v and z, respectively. The velocity
Vo € RTo(F) can be easily evaluated component-wise by a linear interpolation between the
normal velocities on opposing face midpoints, which are computed by (4.4). Note, that the
polynomial space for RT o(E) defined by

RTo(Tr, Q) = {v € [L2Q)% v|p € RTo(E) VE €Ty}

is a subspace of H(div, ).
Furthermore, the interpolation of phase velocities into the R7T space has two practical advan-

tages:

1. the calculation of the solute transport can be performed on a grid not identical to the
grid used in the two-phase calculations;

2. repetitive evaluation of (4.4) to solve the component transport problem is rather expen-
sive; the interpolation saves many function evaluations in (4.4) and improves the code
performance.

4.3 Component Transport Problem

The sets of equations (3.1a) and (3.3) are both advection-diffusion-reaction equations (ADREs)
in the form
I(RC)
ot

+V-j=qinQx[0,7], (4.5a)
j=vC—DVC, (4.5b)

which are subject to the boundary conditions

C=cPonr?, j-n=mnonTV, j-n=(wC—DVC)-nonl?, (4.5¢)

and initial conditions
C(z,0) = Cp(z) in Q. (4.5d)

Model (4.5) describes the transport of a component, or a system of components with concen-
tration(s) C via the flux j including advection with velocity v and diffusion with coefficient D,
whereas reactions are modeled using the source-sink term ¢. The term R denotes fluid content,
but it can also express the retardation caused by processes like adhesion.

The special case of the Neumann boundary conditions for n = 0 is known as the no-flux
condition. For pure advection, the specification of the values on the inflow boundary, where
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v-n < 0, is sufficient. However, for the advection-diffusion problem with small diffusion
coefficient, where the Péclet number (see Section 4.4.6) is large, the Dirichlet condition at the
outflow boundary, where v -n > 0, will give rise to a boundary layer problem, see

( ). In this case the outflow boundary condition with D = 0 is applied, which
is essentially a do-nothing boundary condition and allows the solute to leave the domain freely.

4.3.1 Space Semi-Discretization

The semi-discrete CCEFV scheme for solving the transport equation (4.5) in either its hyperbolic
or parabolic form is given as follows: Find a piecewise constant solution representation in space
and continuous in time Cj(t) € Py(Ty) that for all uw € Py(7) function Cj, solves the equation

5 Z/Rchud$+2/0hv nyul ds — Z/DVC’h nyu] ds

E€Ty, e]—'l e]:z
(4.6)
+ Z / (Chv — DVCh) - nyuds + Z /nu ds = Z / qudz.
,Ye]:dQn(FDUpO) ]:BﬂmrN EeTy,

All integrals in (4.6) are again evaluated numerically by applying the midpoint rule. To evaluate
the flux Sg, through the face v, the normal derivative of the concentration is evaluated by
central finite differences and the diffusion coefficient is computed as an harmonic average:

2D(@p)D(@ps) |y
D(:UE;F) + D($E;) dp~

- / DVC), - nyds ~ Sp, = — (ch(xm) - Ch(xE;)) . @A
vy

4.3.2 Upwinding

In order to preserve stability of the numerical scheme, we use the standard first-order upwind
method. The concentration C}, for x, € v in the advection term Cjv - n is given by

e = { Gy i "

where the face concentrations Cj,~ and Cj, T are given by (4.1). Full upwinding is a monotonic-
ity preserving linear method but is only first-order accurate. It achieves its greater stability
compared to the central differences by adding numerical diffusion ( , ).
In diffusion dominated cases, we can approximate the concentration as Cj, = (C;f + Cth) /2,
which corresponds to central differences in the finite difference method.

4.3.3 Slope Limiters for Linear Reconstruction
Even for linear advection problems, first-order accurate schemes are generally considered too

inaccurate for most quantitative calculations, unless the mesh resolution is made excessively
fine, thus rendering the schemes inefficient. The problem of numerical diffusion is most severe
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in multi-dimensional problems where flow can be diagonal to rather than along the face orien-
tations and in problems where transient, sharp concentration fronts occur ( ,

).

According to Godunov’s theorem ( , ) there are no monotone linear schemes of
order greater than one. This limitation of monotone linear schemes has motivated the devel-
opment of non-linear higher-order accurate schemes which are still monotone and reduce the
numerical diffusion significantly. The main idea of higher-order schemes is to reconstruct a
piecewise polynomial function from cell averages. Considering element E € 7;, with barycenter
g, the function representing the linear reconstruction can be written as

d
Cj() = Cu(zp) + Y _ 0i(z — xp);,

i=1

where the slopes o; do not influence the average and thus the method is conservative:
1
— | Ci(x)dx = Ch(zE).
£l JEe

The function Cj is then used in the evaluation of the upwind values in (4.8) instead of Cj. The
slopes o; have to be chosen in such a way that the total variation diminishing (TVD) property
is maintained, for details we refer to ( ).

The slope limiter in the d-dimensional case for simple grid geometries can be seen as a sequence
of d one-dimensional limiters. We define the upwind and downwind slopes as

w _ On(ep) = Cp(tu) 4w _ Cn(wa) — Cp(ep)

a . = (o
' lep —2o| " lzE — 24]

)

where x,, and x4 denote the barycenter of neighbor elements of F in the i*" upwind and down-
wind direction, respectively. We compute the limited slopes o; on element E by the following
limiters:

1. van-Leer’s one-parameter family of minmod limiters ( , ;

, 1979):

0; = minmod (Haiup, 00?“’, W) , (4.9)
where parameter 6 € [1,2] determines the resulting slope;
2. superbee limiter by ( ):
0; = maxmod (ail, 02-2) , (4.10)

where

o} = minmod (U;‘p, 20?“’) : o? = minmod <20§‘p, aldw> :
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The generalized minmod function for real numbers 21, ..., z; is defined as

amin(|z1],...,|zx|) if @ =sgn(z1) =--- = sgn(zk),
0 otherwise.

minmod(zy,...,2E) = {

while the maxmod function for real numbers a and b is given by

_fa ifla >
maxmod(a, b) _{ b otherwise.
In this work we use only the two limiters described above that guarantee second-order accuracy
for smooth solutions while still satisfying the TVD property. With § = 1 the limiter (4.9)
corresponds to the ubiquitous minmod limiter ( , ; , ). For parameter
0 > 1, the slopes are steeper and the limiter is less dissipative.

4.3.4 Finite Volume Reconstruction

Because the discrete solution CY, is cell-wise constant, the regularity of the solution is low.
In order to be able to compare the CCFV solution to an analytical solution or with other
discretization methods, we require a higher regularity of the CCFV solution. Inspired by
results of ( ); ( ) and ( ), we locally postprocess
the approximate solution C}, to get a postprocessed approximation solution Cj, which preserves
exactly the given discrete diffusive fluxes and whose mean value in each cell is identical to the
original constant approximation C},.

In the postprocessing, we use some additional knowledge that we have from the CCFV scheme:
the fluxes Sg - defined in (4.7). For element-wise constant diffusion coefficients, we define Cj,
as the weak solution of the following local problems:

- S
—DVCylg-n= "j'” Yy € 0E, VEE€T, (4.11a)
1 -
E

For regular tetrahedral meshes, Cj, given by (4.11) is a piecewise second-order polynomial of

the form
d

Ch(l“) == Z (CLEJ.T]Z + bE’jl‘j) +cg VrekFl, (4.12)
j=1
where the coefficients ag j, b j, cp in the postprocessing are computed locally on element E.

( ) originally presented this postprocessing to obtain a potential suitable for energy
error measuring (the piecewise gradient of the original cell-wise constant approximation is zero).
Furthermore, it can be used for a posteriori error estimate of residual type, which are fully
computable, so that it can serve both as an indicator for adaptive refinement and for the actual
control of the error ( , ). In this work, we use the postprocessing only for ADREs
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in numerical experiments, where the solution computed by the CCFV method is compared to
an analytical solution or with other discretization methods.

4.4 Time Discretization

So far we have only discussed the spatial discretization of two-phase and component transport
problems, leading to semi-discrete systems of ODEs for the solution vector U = U(t)

U'(t) = LU®), 0<t<T, U(0)=U, (4.13)

with U(t) = (Uj(t));.”:l € R™, m being proportional to the number of degrees of freedom
(DOF) in the semi-discrete system. For the two-phase problem (4.2) together with CCFV we
have m = 2N}, and for the semi-discretization of the transport problem (4.5) containing N,
components, there are N.N, DOFs. The initial solution Uy is given by the initial conditions

of the original PDEs.

The time interval [0, 7] is subdivided into a finite number of time steps tho=t"<tl<...<
tM = T, with time steps At"™ = t"t1 — ¢ A superscript n indicates the value of a function at
the discrete time ¢", so that, e.g. f™ = f(t").

4.4.1 Implicit Runge-Kutta Methods

To discretize the ODEs arising from the semi-discretization of the two-phase flow or reac-
tive transport, we employ general diagonally implicit Runge-Kutta (DIRK) one step schemes,
because they are A-stable and useful for stiff problems. They also exhibit a significant compu-
tational advantage, because the coefficient matrix is lower triangular with all diagonal elements
equal and the stages can be computed independently.

In addition to the standard implicit Euler and Crank-Nicolson scheme, we also evaluated
a strongly S-stable DIRK of order 2 in 2 stages and of order 3 in 3 stages (for details see
, ); they are denoted as Alexander2 and Alexander3 in this work.

4.4.2 Explicit Runge-Kutta Methods

As an alternative to the DIRK methods when solving ADRESs, explicit time integration can
be used. The explicit methods avoid the solution of the (non-)linear system of equations, but
the maximal time step size is restricted to ensure numerical stability.

Applying the explicit Euler time integration to (4.13) yields the fully-discrete form
Uttt = U™ + ACL(U™). (4.14)
The forward Euler time discretization is stable with respect to the L°°-norm, i.e.

U™ oo < 1" oo ¥n >0, (4.15)
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for a sufficiently small time step At"™ dictated by the CFL condition

A" < At (4.16)

Here, Aty is the largest allowable step size that will guarantee that the stability property
above will hold for forward Euler with the given PDE and spatial discretization. The time
step restriction for explicit methods is discussed in details in Section 4.4.5.

The transport problem was subsequently extended to second-order accuracy in space using
slope limiter techniques. In order to fully exploit this improvement in spatial accuracy, we also
need to improve the accuracy in time by switching to higher-order accurate time integration
methods. A class of higher-order accurate time integration methods that preserve stability
properties of the fully-discrete scheme with explicit Euler time integration (4.14) is referred
to as Strong Stability Preserving (SSP) methods ( , ; ,

). These methods were originally developed by ( ) and called TVD Runge-Kutta
methods.

A general m stage RK-SSP method can be algorithmically represented as

Ul =un, (4.17a)
i—1

oi=3" (aik(}k n At”,@’ikL(ﬁk)) L i=1,...,m, (4.17D)
k=0

Un+1 Um (4-17C)

where «;; > 0 and oz = 0 only if B = 0. This representation of RK methods can be
converted to a standard Butcher form, but the conversion is not unique and for consistency we
require S0 H aip = 1 ( , ). If the explicit scheme can be written in the
form (4.17) with non-negative coefficients (;; then it is a convex combination of explicit Euler
steps with step sizes B, ‘(’;,At SSP-RK methods are called optimal if the time step restriction
corresponds to the time step restriction for explicit Euler method, which is formalized in the
following theorem (Shu, ):

Theorem 1 (SSP optimal methods)
If the explicit Euler method (4.14) is L>-stable subject to the CFL condition (4.16), then every
optimal SSP-RK method is L>-stable under the same time step restriction.

Furthermore, SSP methods up to (and including) third-order for ODEs with non-linear op-
erators L do not require any additional stages or function evaluations compared to general
explicit RK methods ( , ). We use the second- and third-order non-linear
SSP-RK methods given in ( ), denoted by Heun and Shu3, respectively, for details see
Appendix A.1.1. Both of these methods are optimal in the sense given above.

4.4.3 IMEX Runge-Kutta Methods

As a general rule, it is best to solve non-stiff problems using explicit methods. This should be
expected to achieve acceptable accuracy with minimal costs. However, as problems become
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increasingly stiff, stability rather than accuracy becomes the dominant consideration, and
implicit methods become the more appropriate choice.

The most simple decoupling of the main processes in ADRE from one another is to use the OS
technique. However, using OS techniques can give rise to large splitting errors ( ,

). For many reactive transport processes, the natural splitting is into two parts: a) one of
which is non-stiff, or mildly stiff, and suited for explicit treatment and b) a stiff term, which
is suited for implicit time integration. The RK-IMEX methods consist of suitable mixtures of
implicit and explicit methods and are used without formal splitting.

Suppose that the semi-discrete system is given by
U'(t) = Li(t, U (t) + La(t, U (1)), (4.18)

where L; is a non-stiff term suitable for explicit discretization (e.g. discretized advection), and
Ly is a stiff term requiring an implicit treatment (e.g. diffusion or stiff reactions).

A simple example of RK-IMEX methods is the -RK-IMEX method ( ) defined by
Un+1 —_yn
Ttn =1L (tna Un) + (1 - 9)L2(tna Un) + GLQ(tn+17 Un+1), (419>

with parameter 6 > % Here, the explicit Euler method is combined with the A-stable implicit
f-method and is of first-order in accuracy. Other RK-IMEX methods used in this work are
summarized in appendix A.1.2. Trapez-IM, Alexander2-IM and Pareschi2 belong to second-
order schemes, whereas Ascher3 is third-order accurate in time.

( ) used RK-IMEX methods to solve advection-diffusion equation, where
the linear diffusion was solved fully implicitly and non-linear advection was solved using explicit
time integration. Numerical results showed that this approach is able to capture the correct
behavior of the system at lower computational costs than explicit schemes, because the CFL
restriction for the parabolic part (diffusion) can be removed. Furthermore, their scheme avoids
implicit solves of non-linear algebraic equations.

The RK-IMEX method remains stable for time steps much longer than those that would be
possible for a purely explicit methods. However, the analysis of the stability of RK-IMEX
methods is still under investigation; the stability of several methods is examined in

( ); ( b); ( ) among others. Note, that the stability of
explicit method for explicit part and stability of implicit methods for stiff part do not imply
the stability of the RK-IMEX scheme.

4.4.4 Reaction Problem

In case of full operator splitting, when the reaction term is not handled in (3.2), we solve
the system of ODEs (3.1b) element-wise using an embedded Runge-Kutta-Fehlberg (RKF45)
method ( , ). This method allows for an automatically determined adaptive
step size to reduce error in the solution. For highly stiff ODEs or for a system of differential-
algebraic equations, implicit time integration together with Newton’s method can be used
instead of RKF45.
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4.4.5 CFL-like Condition

If the component transport equation (4.5) is discretized with an explicit method in time, then
the time step needs to be restricted to preserve stability. The principle behind the time step
restriction is the physical transport on a given grid. If a tracer is moving across a discrete
spatial grid, the time step duration must be less than the time for the tracer to travel to
adjacent elements. Specifically, if the tracer is able to flow through one grid element in one
time step.

The time step restriction is typically associated with an upper boundary for the Courant-
Friedrichs-Lewy (CFL) number v. The CFL condition relates the length of the time step to a
function of the interval lengths of the spatial discretization and of the maximum speed with
which information can travel in the physical space.

Based on the CCFV spatial discretization for ADRE (4.5), we define the outflow flux function
on an element E € Tp by

O(FE) = Z <Lg max(0,v - ny) + D> 171, (4.20)

d
yEOE En

where L, > 0 denotes the Lipschitz constant of the hyperbolic numerical flux; for limiters
discussed in Section 4.3.3 a reasonable value for L is 2 ( , ), whereas for upwind
schemes without flux reconstruction L, = 1. The function (4.20) measures the numerical
outflow flux from the grid cell E. The specific time T needed by the tracer to leave the grid
cell F is given by
R|E|
=——". 4.21
{(B)= 50 (421)
To ensure that the tracer concentration does not turn negative in any mesh cell in one time
step and to fulfill the condition on maximal travel distance, we define a CFL-like number v by

At
y=——. (4.22)
minge7, Ts(E)
The maximal CFL-like number value of 1 indicates that the tracer is able to flow through one
grid element during one time step.

The time step restriction (4.22) can also be computed for one-dimensional problems. Since the
measure of 7 is not defined, we set |y| = 1. For regular grids with mesh size h together with
an upwind scheme the CFL-like condition (4.22) leads to the well know CFL condition. For
pure advection (D = 0), one obtains

vAt
= — 4.23
=" (123)
and for pure diffusion (v = 0) the CFL condition is given by
2DAt

Thus, At is of the order h? for large D and of the order h for D < h. In cases where the
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diffusion coefficient is larger than the mesh size, it is therefore advisable to use an implicit
scheme which completely eliminates the stability breakdown problem due to time step size.

4.4.6 Péclet Number

The ratio of the rate of physical advection by the flow to the rate of diffusion regarding to the
element size h is defined by a dimensionless grid Péclet number

Pe; = ok (4.25)
The grid Péclet number can be used to decide whether the transport process in ADRE (4.5)
is locally (in the grid cell) advection or diffusion dominated. It also imposes a restriction
on the mesh size independent of the time step for central differences instead of upwinding
in the advection term, see Section 4.3.2. For Pey, < 2 the central difference formulation is
unconditionally stable. On the other hand, for grid Péclet numbers greater than 2, the central
differences are not stable and spurious oscillations can occur.

A combination between central differences and upstream weighting (upwind) formulation is a
power law scheme proposed by ( ), where the solution approach switches between
a fully centered form at Pes < 2 to an upwind formulation at Peg > 10.

4.5 Implementation

All numerical methods, algorithms and discretization schemes described in this chapter have
been implemented and the numerical simulations were performed in the C++ framework DUNE
( , ,b), particularly in the discretization module dune-pdelab ( ,

).

Grid

Our problems are limited to simple (rectangular, axis-parallel) geometries, so we were able
to use the structured rectangular grid YaspGrid for all simulations. The overlapping domain
decomposition methods with the Schwarz overlap allows us to simulate problems involving large
grids on parallel computers. The overlap of one cell was chosen for all parallel computations.

Non-Linear Solver

The arising non-linear equations are linearized with an inexact Newton’s method, the Jacobi
matrix is derived through one-sided numerical differentiation. To increase the convergence
region of Newton’s method, we employ a line search strategy ( , ).

In order to improve control over the non-negativity constraint of the concentrations to solve
the ADR systems (4.5) in the GIA approach, the original Newton’s method is slightly modified.
The resulting vector after each iteration of Newton’s method is controlled and negative values
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are set to zero. This modification improves the convergence behavior for ADR systems and
bigger time steps are allowed without controlling the solution after each time step. Another
solution for this issue would be to use logarithmic value of the concentration as in

( ) and ( ). However, evaluating the logarithmic functions can be
very demanding.

Linear Solvers

The resulting linear system is solved with a BiCGStab iterative solver with a SSORk precon-
ditioner or an algebraic multigrid preconditioner ( ) ). Smaller matrix problems were
solved using the direct solver SuperLU.

4.6 Solution Procedure

We use a sequentially coupled non-iterative methodology to solve the multi-phase flow, multi-
component transport and chemical reactions similar to ( ) implemented in
code TOUGHREACT and to ( ) implemented in code MULTIFLO. The solution
algorithm for two-phase flow and reactive transport is represented in Fig. 4.2. At each new
time step, we first solve simultaneously the flow equations (3.2) in order to obtain the pressure,
saturation and velocity flow field as functions of position. Second, we solve the transport model
(3.3) including advection and diffusion on a component basis. In the third step, the resulting
cell concentrations obtained from the transport are substituted into the chemical reaction
model (3.4). The alternative to the second and third steps is GIA to solve system (3.5) fully
implicitly. This three-step approach (two-step in the case of GIA) can be justified based on
the different time scales of the processes involved.

4.6.1 Adaptive Time Stepping

We provide an adaptive time stepping scheme which ensures a reliable, robust and effective
solution of the non-linear equations describing two-phase flow and reactive transport based on
the present difficulty of the concrete problem. Without the adaptation strategy the simulation
of complicated problems would not be possible. In the overall scheme the time step At for
the two-phase system may be larger than the time step At. for the reaction-transport part and
several steps for the reactive transport are applied per two-phase time step.

Two-Phase Flow

In the first step, the two-phase problem with time step Aty is solved. We control the time step
size for the two-phase flow problem using a simple but efficient scheme: the size of the time
increment At is determined based on the absolute change in saturation and the convergence
of Newton’s method during the last time step. To reduce the operator splitting error between
phase transport and component transport, the maximal absolute change per-cell saturation
in one time step Aty is limited to 0.1. This choice is suitable for our applications, because
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Fig. 4.2: Flow chart summarizing solution algorithm.

the system contains water and air and sharp saturation fronts are not expected. For other
application (e.g. DNAPL infiltration in field-scale studies) this criterion should be modified

and further investigated.

We detect non-convergence of the time step based on the number of Newton’s iterations, line
search iterations and linear solver breakdown; in this case, we retry the time step with a
reduced time increment c,At;. This algorithm ensures that the only possibility for complete
convergence failure is if the solution does not converge for the specified minimum time step.
On the other hand, if Newton’s method converges in less than 6 iterations and the time step
was not reduced in the previous time step, next time step will increase to ¢;Aty. The constants
¢ < 1 and ¢; > 1 can be specified by the user, the choice ¢, = 0.6 and ¢; = 2 is used for all

two-phase simulations.
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Reactive Transport

The time step At,. for the reactive and transport part is chosen based on the transport velocity
and the rate of chemical reactions to reduce the splitting error between component transport
and reactions in the SNTA variant. For details about the choice of At. see Chapter 5.

For GIA-based methods At, is restricted by the convergence of Newton’s method and a similar
strategy to the solution of the two-phase problem can be applied. However, because we use
GIA together with full upwinding and implicit time integration, it is prone to add numerical
diffusion in advection-dominated cases for large time steps and the maximum time step needs
to be capped at Atc q,- In order to reduce numerical diffusion, Atc 4, should not exceed
time step corresponding to the CFL number v = 10 for pure advection problem computed by
(4.23). We prefer GIA during periods of quasi steady-state, when the concentration changes
in the system are slow and greater time steps can be expected to reduce computational effort
time.

If the flow in the liquid phase is advection-dominated and exhibits sharp concentration fronts,
we prefer SNIA and explicit time discretization together with higher-order space discretization.
Transport equations for each liquid component are solved with time step At;, which is defined
as the maximal time step satisfying the CFL-like condition (4.22) for all liquid components.
In the gas phase, transport is often diffusion dominated and can be solved using implicit
methods. The transport time step At; is smaller than At. and it holds At. = >  At;. The
reaction time step At, in the third part of the solution approach is automatically chosen with
the predictor-corrector method RKF45.

Solution Control

In order to verify the consistency of the reaction and transport step, we control the resulting
values of concentrations and retry with a smaller time step value in case of failure. While
negative concentration values only occur very rarely if At., At; and At, were chosen correctly,
this control step is crucial to guarantee the correctness of the solution.

The gas density depends on the gas composition and is updated based on the new component
concentrations in the gas phase after each transport step followed by the gas velocity update.
If the gaseous composition is not taken into account, we compute the phase velocities only one
time per two-phase time step Aty.

If there is high phase exchange in the system and gas molecules are added to or removed from
the gas phase, the time step Aty needs to be reduced. The element-wise loss or win of gas
molecules during the phase exchange needs to incorporated into the solution of the two-phase
problem as an inner source term. We will investigate this part of splitting algorithm in the
future model development; in this work we assume a constant mole density v, in the gas phase.

4.6.2 Transport of Gaseous Components

The non-standard difficulty for transport in the gaseous phase is that the gas saturation may
be zero in some parts of the domain. We require that the following assumption holds: If the
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gas saturation in some cell E € Ty, is non-zero at time t then it is also non-zero at t+ Aty after
the two-phase flow step. In practice, non-zero is replaced by s, > €. This can be ensured by
setting the relative permeability to zero for non-zero but small saturation, which is equivalent
to a small residual saturation of the gas phase s, 4.

All cells with s, < € at t + At are treated as “dry cells” and omitted in the transport step
(for advection as well as for diffusion). For implicit time discretizations, trivial equations are
assembled. For the “wet cells” with s, > € at £+ Aty the usual component transport equations
(3.3) for gaseous species are solved.

4.7 Parameter Estimation

In this work, we investigate several different kinetically controlled bio-chemical reactions. How-
ever, the kinetically controlled reactions have one drawback: if the kinetic rates are not known
from the literature (which is often the case), they need to be determined based on laboratory
experiments and observed data. Parameter estimation techniques allow us to determine the
rates of chemical reactions and compare the level of correspondence between measured data
and solution of given problem with estimated parameters.

Model Problem

The temporal development of a dynamic system with the components z1, ..., 2z, is given by a
system of ordinary differential equations (in vector notation)

dz

— = f(z;0;t), =z(0)==z

= i), 2(0) =2
with dependent variables z = (z1,.. .,zn)T and parameters 8 = (6y,... ,HP)T. Let y; ; de-
note measurements (or functions of the measurements) taken at time points t;,5 = 1,...,m.

We assume the measurement errors to be normally distributed with mean 0 and standard
deviation w;;.

The problem to be solved is the minimization of the objective function (residuum)

R(6) = f:m(o) _ zn: i (W)Q (4.26)
i=1 K

i=1 j=1

over the set of admissible parameter values with appropriate weighting factors w;;. The index
J in z;; denotes the value of component z; at time point j. Eq. (4.26) can also be interpreted
as a log-likelihood estimator for the parameters, see ( ).

The coefficient of determination R?, a number that indicates how well data fits a model, is
computed as

S Y (2650, 1) — yiy)?
S S (i) '

R20) =1— (4.27)
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To minimize the residuum R and to solve the optimization problem, we use the Levenberg-

Marquardt-Algorithm (LMA) ( , ) with the sensitivities derived by numerical differ-
entiation. The code for parameter estimation was originally implemented by Olaf Ippisch in
a computer code fitphi and applied in ( ). The parameter estimation is

independent of the forward problem which can be a system of ODEs or PDEs.

4.8 Final Remarks

In this chapter we have described the used numerical schemes in detail. We solve the two-
phase problem using CCFV space discretization together with unconditionally stable implicit
methods. The component transport problem is solved using first- and second-order CCFV
methods. For the simulation of advection-diffusion problems in diffusion dominated cases we
use CCFV with implicit time integrators, which enables large time steps.

In advection-dominated cases we use explicit one-step methods for the time discretization. The
time step is always restricted by a CFL condition, see Section 4.4.5. Furthermore, upwinding
is needed for stability reasons which is only first-order accurate. For this reason we use CCFV
with a second-order Godunov reconstruction of upwind fluxes and slope limiters. These limiters
guarantee second-order accuracy for smooth solutions while still satisfying the TVD property.
Most TVD schemes also satisfy the strict maximum principle, even in multi-dimensions. TVD
schemes can be designed for any formal order of accuracy for solutions in smooth, monotone
regions. Unfortunately, TVD schemes locally degenerate to piecewise constant approximations
at smooth extrema which locally degrades the accuracy ( , ).

To overcome this difficulty, other schemes were developed in the literature: essentially non-
oscillatory (ENO) reconstruction schemes ( , ) and weighted ENO schemes
(WENO) ( , ). These schemes do not insist on strict TVD properties, therefore
they do not satisfy the maximum principle. On the other hand, they can be designed to
be arbitrarily higher-order accurate for smooth solutions. The advantage of WENO schemes
is that they do not create oscillations for solutions with strong shocks even for complicated
meshes. Therefore, WENO schemes are often used as limiters not only for CCFV, but also for
discontinuous Galerkin method (DG) ( , ). We do not use the WENO schemes

in this work, but they can be tested in a future model development.

Although we apply the numerical simulator in problems involving only simple geometries (see
Chapters 6, 7 and 8), the operator splitting concept is independent of the chosen numerical
scheme. On complicated geometries unstructured grids with discretization schemes like DG can
be used for both the two-phase problem ( , ) and the component transport problem
( , ). The choice of numerical methods for the simulation of a specific problem has
a significant impact on the obtained accuracy. We discuss this impact in Chapter 6 in more
detail. We compare the performance of CCFV and DG with linear basis functions to solve
the ADRE problem (Eq. 4.5) in advection-dominated cases. The implementation of DG is
described in detail in ( ). The unphysical oscillations in higher-order DG schemes
are suppressed by slope limiters. The slope limiters in DG are applied after each stage in the
Runge-Kutta time stepping scheme. That is the difference compared to the CCFV scheme,
where the flux reconstruction is used before each stage in the Runge-Kutta method.
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CHAPTER 5

Operator Splitting

In the operator splitting approach for reactive transport, the physical transport and reactive
processes are generally decoupled. In this chapter we will take a look at the operator splitting
(OS) of the ADR problem (4.5) and answer the question in which situations and under which
circumstances the operator splitting method works well. From the theoretical point of view,
the viability of any OS method is primarily determined by the splitting error introduced by
solving the sub-problems one after another in a decoupled manner.

The first part of this chapter deals with theory about operator splitting. We conclude this
theoretical part with a theorem describing the conditions under which no operator splitting
error arises in ADR problems. In the second part we describe some possibilities of operator
splitting techniques for ADRE, define the measures for errors in the OS and characterize the
time scales for each process based on a dimensionless numbers. We also describe the solution
strategy eliminating the discretization error in the solution of each operator in ADRE which is
subsequently used in the last part of this chapter where we analyze the OS error for simple one-
dimensional problems which are relevant for reactive transport modeling of real applications.

5.1 Operator Splitting Theory

This section is based on work by D. Lanser ( , ) about operator splitting and appli-
cations in air pollution modeling. The results are also well applicable to problems in reactive
transport in porous media. We present an introduction to the analysis of operator splitting
and provide insight into the splitting error for ADR problems in greater detail. These general
ideas are independent of the particular spatial and temporal discretization used.

5.1.1 Linear ODE Problem

Let us first illustrate the notion of splitting by considering a linear, homogeneous ODE problem

dc(t)

—g = ACW), te[0.1], C(0) =0y, (5.1)

and assume a two-term splitting for A, A = A; + Ay. The system (5.1) may be seen as e.g. a
semi-discretization of a linear transport problem (4.6) with homogeneous boundary conditions.

The solution of (5.1) at time ¢t"*! = " + 7 is given by

C{"Y) = e (t). (5.2)
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If we apply A; and As separately using first-order splitting (3.8), instead of the full A, then
(5.2) can be approximated by
Cn+1 _ eTAQe’TAl cn (5'3>

with C" approximating C(¢").

The exponential of the matrix is defined by the power series and we have
2

2

72

€A =T+ 7(A1+ Ay + — (A1 + A)% + ..,

eT2e™M = [ 4 7(A] 4+ Ap) + — (A2 + 2404 + AL + ...

2

Replacing (5.2) by (5.3) normally introduces an operator splitting error. Inserting the exact
solution C' of the original problem (5.1) into (5.3) gives

C("™) = ™2 MO (") + 7pn, (5.4)

with local truncation error p,. The error thus satisfies
1
Pn = — (eTA o erAze‘rAl) C(tn) — g [A1,A2] C(tn) + O(T2>7 (5.5)
T

where

[A1, Ag] = A1 Ay — As Ay

is the commutator of A; and As. We can see that the splitting (5.3) is a first-order process
unless A1 and A commute. When both matrices commute, we have

eTAQeTAl — eTAQ-‘r’TAl _ e’T‘A’ (56)

the splitting (5.3) is exact and it leaves no splitting error. It can be seen by using the power
series expansion for the exponential function, see ( ).

5.1.2 Abstract Initial Value Problem

We discussed the first-order time splitting for linear ODE problems (5.1). However, this dis-
cussion can also be extended to PDE. Considering directly the PDE problem will make it
more clear in which cases the time splitting will be exact. We study the initial value problem
for abstract autonomous systems

dC(z,t

8D jwc@n), tep), rekl C@0)=C). 67
With this abstract problem we may associate any ODE or PDE initial value problem in au-
tonomous form without boundary conditions. In the case of a linear ODE problem, Eq. (5.7)
simplifies to (5.1).

In the PDE case, the function f is to be seen as a spatial partial differential operator, e.g. for
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the advection-diffusion-reaction system (4.5):
f(C) ==V -(wC)+ V- (DVC) +q(C), (5.8)

where C' = C(z,1).

For simplicity we do not explicitly write the dependency of C' and f on x. We assume C' is
from the function space U which is a real, sufficiently often differentiable space.

If the solution of (5.7) at time ¢" is known, we define the solution operator S; acting on U
such that the solution of (5.7) at time t"*! = " + 7 is given by

C(t"H) = S.(C(t™)). (5.9)

This operator generalizes the exponential operator e™ of the linear ODE problem (5.1).

For simplicity, we assume a two-term splitting for f, f = fi + fo, but the presented techniques
can be generalized to multi-component splittings ( , ). We associate
with fi and f> the solution operators S; ; and S; 5. In the case of first-order splitting (3.8),
the abstract initial value problem (5.7) then becomes

CnJrl = ST,Q (ST,l(Cn)) ’ (51())

with C™ approximating C'(t"). As above, by inserting the exact solution C of (5.7) into (5.10)
and using Taylor expansion of C(¢"*1) around t = ", we obtain a relation similar to (5.4) for
linear ODE problems

O™ =8, 5 (8-1(C™) + Tpn, (5.11)
where the local truncation error is given by
_T|%h, of n 2
Pn = [80 p) 90 1} (C(t") + O(79). (5.12)

In analogy to the linear ODE case, we call this bracketed term the commutator of the operators

f1 and fo

[f1, f2] (C) = [g?,fz - g‘gfl] (C). (5.13)

An important observation is that the local error in the splitting (5.10) is a first-order process
unless operators f; and f» commute, similarly as for the linear ODE case. Omne can also
prove by means of a Lie operator formalism the fact that the splitting process (5.10) leaves
no splitting error if the commutator (5.13) is zero. We refer the reader to

( ) and ( ) for technical details.

5.1.3 Splitting for ADR in Initial Value Problems

We discuss in which situations an OS error occurs, when the influence of boundary conditions is
not considered. Throughout the following analysis, we assume that (5.8) is linear with respect
to advection and diffusion, but non-linear in the chemical reaction term gq.
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The commutativity of the advection, diffusion and reaction operators was studied in ( ,
; , ) and can be summarized in the following theorem:

Theorem 2 (Splitting for ADRE)

1. Advection commutes with diffusion if both v and D are independent of x.

2. Advection commutes with reaction if
a) q is independent of x and the velocity field is divergence-free (V -v =0), or
b) q is independent of x and linear in C.

3. Diffusion commutes with reaction if q is linear in C and independent of x.

This commutativity is of great importance: when the corresponding processes commute, we do
not have any splitting error. As a consequence of Theorem 2, no splitting error of ADRE exists
if all terms (v, D and ¢) are independent of z and g is linear in C. Note that the requirement
q independent of & does not mean that ¢ is independent of C' = C(x, t).

Advection and Diffusion

In real-world applications, v and D will not be independent of z and thus the splitting error
does not vanish. For this reason, the second-order symmetrical Strang splitting is preferred.

Transport and Reaction

If we split transport (advection and diffusion) and reaction, and solve transport followed by
reaction, the local truncation error has the form ( ) )

T

pn =5 [=V - (v9(C)) + V- (DV4(C)) + ¢ (C)(V - (vC)) = ¢ (C)(V - (DVO))] (") + o(r?).

(5.14)
A similar truncation error can be found for the second-order symmetrical Strang splitting
scheme ( , ). In practical applications, the reaction term ¢ typically depends on C
in a non-linear fashion ¢(C') = LC + ¢(C): a linear part L plus a non-linearity ¢. If the linear
operator L is independent of x, then the linear part drops out of the commutator, and the
truncation error for the first-order splitting becomes

pn =2 [~V (03(C)) + V- (DVG(C)) + T (C)(V - (vC)) — § (C)(V - (DVC)] (") + O(72).

2
(5.15)

In addition, if the velocity field is divergence-free and the reaction term ¢ is independent of x
(non-linearity of ¢ is still allowed), the expression for the splitting error simplifies to

pn =5 [V-(DVE(C)) = (C)(V - (DVO))] (") + O(r?). (5.16)

NS
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5.1.4 Boundary Value Problem

Until now we have assumed homogeneous boundary conditions. However, the major difficulties
with operator splitting methods occur in problems where the boundary conditions are impor-
tant. We note that the inhomogeneous boundary conditions will give an inhomogeneous term
in the system disturbing the commutativity of the operators even if the assumptions required
by Theorem 2 are fulfilled. Thus, traditional OS schemes are known to incur an error when a
non-zero mass flux across the domain boundary is present ( , ;

) ) ) )'

The boundary conditions may also affect the accuracy of splitting methods and even the order
of Strang splitting may be reduced ( , ). This loss of convergence
order caused by boundary conditions is often the main reason for the disappointing convergence
behavior with splitting methods.

5.1.5 Summary

In this section we have shown that the error in the operator splitting depends on the size of
the involved commutators. In situations satisfying the assumption of Theorem 2 no operator
splitting errors arise. Otherwise we are able to describe the arising OS error in one splitting
time step 7: e.g., equations (5.14-5.16) express the error for the first-order splitting if we
split transport and reaction. However, we are not able to predict the accumulation and the
propagation of the OS error during the whole simulation. Moreover, if we consider a PDE
problem with inhomogeneous boundary conditions, the boundary conditions for the splitting
sub-steps are missing. In the following, we study the arising OS errors in concrete problems.

5.2 Splitting Errors and Quantification

In order to get a better insight into the applicability of the OS methods, we investigate OS
error in some simplified examples depending on the splitting time step 7, the type and the
character of chemical reactions and the solute transport velocity. Table 5.1 contains a summary
of the considered splitting strategies under investigation. The most popular schemes are A-
D-R, where all three operators are solved separately ( , ), and the two-step
scheme (AD-R), where the reaction follows the transport ( , ).

In the literature, one can also find other splitting schemes that differ in the sequence of the
solution of each operator (e.g. , ). However, the difference is remarkable only
in one splitting time step. Thus, the solution order of the involved operators has a negligible
impact on the solution of given problem when more splitting time steps are used.

5.2.1 Mass Balance Errors

Firstly, we study the limitations of OS techniques based on total mass balance. The mass
balance error in ADRESs is a specific measure for the splitting error which was investigated
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OS Approach  Solution Algorithm Splitting

Time Step
AD-R 1. adve@ion—diffusion T
2. reaction T
1. advection-diffusion T/2
AD-RS 2. reaction T
3. advection-diffusion T/2
1. advection T
A-D-R 2. diffusion T
3. reaction T
1. advection T
A-DR 2. diffusion-reaction T
1. advection T/2
A-DRS 2. diffusion-reaction T
3. advection T/2
1. advection T/2
2. diffusion T/2
A-DS-RS 3. reaction T
4. diffusion T/2
5. advection T/2

Table 5.1: Investigated splitting methods for ADRE.

by many authors, e.g., ( ). The one-dimensional ADRE with
first-order reaction in a semi-infinite domain Q = [0, 00) can be written as

aaf—i-v-(vC—DVC)—q——)\C, (5.17)
where C' is the concentration of the solute, v is a constant velocity and D is the diffusion
coefficient. The reaction term ¢ models a first-order linear decay with reaction rate A\. The
initial concentration is 0 in the whole domain, and at the inflow boundary a solute with
concentration Cy is added. The boundary condition can be of the Dirichlet type, where the
inflow concentration is fixed

C(0,t) = Cy, (5.18)
or of the Robin type (mixed boundary condition), which has the form

<vC’ - DZ?) (0,2) = vCy. (5.19)

Eq. (5.17) with either type of boundary condition on a semi-infinite one-dimensional domain
has an analytical solution ( , ). We can also prescribe a Neumann boundary
condition at the inflow (flux), but the concentration flux is hard to measure in experiments.
For this reason we only consider ADR problem with boundary condition (5.18) or (5.19).

The choice of the boundary condition also influences the choice of OS technique. For the
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Dirichlet boundary condition (5.18), the A-D-R and AD-R schemes applied to the advection-
diffusion equation generally result in a different solution. This difference is caused by the
splitting error in the A-D-R scheme, which occurs at the boundary. For advection dominated
cases, the diffusion directly at the domain inflow is often negligible. In practical situations
(laboratory experiments with solute inflow) we are not able to distinguish between the advec-
tion and the diffusion part of the transport and we prefer the Robin boundary condition (5.19),
which includes the inflow solute concentration. Similarly, if we do not take into account the
diffusion at the domain boundary in the A-D-R splitting scheme, A-D-R and AD-R schemes
with Robin boundary condition result in the same solution.

( ) only considered Robin boundary condition and analytically de-
rived the mass balance errors after the first splitting time step 7 for AD-R and AD-RS schemes.
Integrating the governing equation (5.17) together with (5.19) over the one-dimensional domain
Q, and using the fact that C(x — o0) — 0, they obtain the ODE problem

AM (%)
at

= vCy — AM(t), M(0) =0, (5.20)

where M (t) is the total mass in © computed as

M(t) = /Q Cdz = /O ~ Cda (5.21)

The ODE for the total mass (5.20) has the analytical solution M (t) = %(1 — e M), To
compare the error in the OS approach to the exact solution, we define the relative mass error
as

M — Mos

My = ——7, (5.22)

where M, is the total mass of the solution obtained using the operator splitting approach. The
relative mass error after one splitting time step 7 can be computed analytically, see

( ) for details, and is expressed as
Mo () =1 — 2T fr ADR, Muw(r) = 1- 71T ¢ ADRS.  (5.23)
err - 1 _ eiAT I err - 2 1 _ 67)\7- . .

Figure 5.1a shows a plot of the magnitude of the relative mass error over one time step 7 versus
the factor A7 for AD-R and AD-RS schemes. AD-RS has much smaller mass balance errors
than AD-R for values of A7 less than 1. The AD-R method overestimates the reaction rate
which results in positive values of M., whereas the relative error in AD-RS remains negative,
see also Table 5.2.

The analysis of the analytically computed mass error can be continued recursively.
( ) have calculated the mass for (5.17) with (5.19) after n splitting
time steps 7. The value of the mass for AD-R is then given by

Mo(nr) = "0 e (1= o)
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Fig. 5.1: (a) Absolute value of relative mass error Me,.(%) after one time step 7
versus AT. (b) Relative mass error at time ¢ = 0.6 over number of splitting time
steps (#7) for problem (5.17), with v =1 and A = 2.

A-DR A-DRS
H#7 Merr (%) rate  Merr (%) rate
1 4.83 x 10¢ - —1.17 x 10t -
2 2.70 x 10* 0.84 —2.98 1.97
4 1.43 x 10! 092 —-7.49x107' 1.99
8 7.31 0.96 —1.87x10"!Y 2.00
16 3.70 0.98 —4.69x1072 2.00
32 1.86 099 —1.17x1072 2.00

64 9.35x107! 1.00 —293x10"% 2.00

Table 5.2: Relative mass errors for linear decay with Robin boundary condition
and convergence of OS methods for different splitting time steps 7 at time ¢ = 0.6
with parameters v =1, D = 1072 and A = 2.0.

and for AD-RS it becomes

—AT
Ms(nT) = vCor (12;_ ) <1 — e_")‘T) .

Fig. 5.1b shows the absolute value of the relative mass error Me,, versus the number of time
steps (#7) for A-DR and AD-RS at time ¢ = 0.6 with v = 1 and A = 2. The AD-RS scheme
is of second-order accuracy with regard to the splitting time 7 while A-DR only obtains first-
order accuracy. To reduce the mass error under 1% of the total mass, AD-R requires 64 time
steps T, whereas AD-RS needs only 4 steps.

5.2.2 Error Measurements

In many studies, the error induced by OS techniques was investigated only with respect to the
total mass balance ( , ). The A-DR and AD-RS OS schemes applied to a
simple problem (5.17) with linear decay work reasonably well if we compare the total mass.
However, the mass error does not say anything about the spatial distribution of the error. It
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also does not fulfill the definition of a norm: even for zero mass error the OS solution does not
necessarily correspond to the exact solution of a given problem.

For a more rigorous investigation we compare the exact solution ue and the OS splitting solution
ur. The error E,, is given by
E.. = u,— ur.

Furthermore, we define a relative error by

_ HEWHI

"
1 M )

(5.24)
where || - ||1 is the Li-norm and M is the total mass of the exact solution u.. The relative mass
error norm L7, corresponding to the Li-error normalized by the total mass, is a better measure
for the quality of the OS solution. If the OS method overestimate or underestimate consistently
the exact solution in the whole domain (as e.g. for the problem (5.17) solved using the A-D-R
scheme), the error computed by (5.24) corresponds to the mass error given by (5.22).

5.2.3 Characteristic Time Scales

In Section 5.2.1 we showed that the relative mass error of the OS for a simple problem (5.17)
depends only on factor At, independent of the velocity and diffusion. However, in general the
OS error depends on the nature of each operator. One of the major difficulties in coupling
transport and chemical reactions is the wide range of spatial and temporal scales characterizing
the various transport and reaction processes.

To be able to describe the relative velocities of each process in the system of ADREs, we define
the characteristic times for advection ¢, for diffusion ¢4 and for reactions ¢, as

ty = ty = —, (5.25)

l
v
where [ is a characteristic length and A, corresponds to the effective rate of chemical reactions.
The characteristic length [ can be related e.g., to the diameter of the spatial domain or to
the spatial discretization of numerical schemes. In our applications the characteristic length [
corresponds to the tracer transport distance in one splitting time step 7 and is given by

l=v7+V2DrT. (5.26)

The characteristic length [ in pure advection or pure diffusion corresponds to the length com-
puted from (5.25) with characteristic time 7.

To specify the relationship between advection and diffusion in one step 7, we define a Péclet

number Pe as
ty ol Y (UT + vV 2DT>
Pe=2—=—= . (5.27)
te D D
If the characteristic length is equal to the mesh size h, Pe given by (5.27) corresponds to the
grid Péclet number Pe, computed by (4.25).
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The relationship between reaction and transport time scales has a significant impact on the
applicability of OS methods to reactive transport problems. It can be estimated from advec-
tive and diffusive Damkohler numbers ( , ). The advection and diffusion
Damkohler numbers Da, and Dag are defined as the ratio of the advection time scale (or
diffusion time scale respectively) to the reaction time scale:

ty I\ tg P,
a t, v’ d t, 2D

If we take the advection and diffusion for a transport process with the transport time scale t;

given by
l2

vl+ 2D’

the Damkohler number for the transport is defined as

ty =

te PR
Dg=—~-= """ 5.28
“ t, vl+2D ( )

The Damkohler numbers can be used to estimate whether the time scale of macroscopic physical
transport or the time scale of chemical reactions dominate a particular problem. However, it
is usually problematic to determine the reaction rate A, because it is often not constant in
time and space and typically depends on the concentrations of the reactive solutes. We define
the reaction rate as the maximum over all individual rates in the considered problem.

5.2.4 Exact Solution

In the following we examine the performance of OS methods for different simplified problems
with various relative velocities of advection, diffusion and reaction. We classify the time scales
based on Dag, Dag, Da and Pe and discuss the sources and the magnitude of OS errors.

We only investigate one-dimensional problems with constant velocity and diffusion coefficients.
Thus, according to Theorem 2 there is no splitting error between advection and diffusion in
inside of the computational domain and the two-step scheme AD-R behaves like the A-D-R
OS scheme.

To be able to study the OS errors in ADREs, we need to solve the involved operators exactly.
However, the exact solution of each operator in advection-diffusion-reaction problems is often
not known and we substitute a highly accurate numerical solution of each operator computed
as follows. We discretize the computational domain using the CCFV discretization with a fine
mesh containing 6400 elements. To solve all operators, the temporal time step At corresponds
to the advection CFL number v = 1 given by (4.23). We solve the advective transport using
the method of characteristics, which solves the transport operator exactly ( , ).
We treat the diffusion implicitly with Alexander3 and the reaction element-wise with RKF45.
As an alternative when we solve the diffusion and reaction coupled, we use CCFV together
with Alexander3d. Thus, each operator is solved very accurately and the total error of the
OS solution is thus largely dominated by the splitting. Note, that in all considered cases the
splitting time step 7 is much greater than the discretization time step At.
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In some examples described below we do not know the analytical solution of the given problem.
In these cases, we compute the exact solution using the second-order symmetrical Strang
splitting (A-DRS): in the first step we solve characteristics of the advective transport with time
step At, followed by the solution of diffusion-reaction operator with CCFV and Alexander3
with time step 2At and followed by one step of advection. The spatial discretization and
the time step At are the same as in the numerical solution of each operator described above.
However, in this case 2At = 7 and thus both the discretization and the operator splitting
errors are reduced significantly.

5.3 One-Component Reactions

The goal of this chapter is to analyze the OS errors for different types of chemical reactions.
Before we can go ahead with reactions which are relevant for practical applications, we start by
investigating the OS errors in an irreversible one-component ADRE. In irreversible reactions
the reactants are completely converted into products and do not form reactants again. However,
this type of reactions represents a good starting position for the study of OS errors. The more
complicated reaction problems are mostly composed of several reactions which have similar
structure to the reactions considered below.

The Theorem 2 describes situations in which OS errors occur but does not say anything about
the size of the OS error. In order to estimate the size of the OS error for different variants of
Eq. (5.17) we consider various reactive source terms ¢ including linear and non-linear reactions,
and also position-dependent reactions:

1. linear decay

qg=—-XC, (5.29)

2. non-linear Monod kinetic o
= A— 5.30
1 K.+ C’ (5:30)

3. position-dependent Monod kinetic
C

= A——(1—2x). 5.31
1= A gagl-a) (5:31)

The half-saturation constant K. in the Monod kinetic (5.30) and (5.31) is set to 0.5 for all
regarded problems. The reaction rates A, are in all cases less than or equal to the parameter A
and we set A, = A. The liquid flows with a constant unit velocity, while the diffusion coefficient
and the reaction rate may vary depending on the concrete problem.
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5.3.1 Reactive Gaussian Hill Problem

To test the theoretical observations given by Theorem 2, we consider the one-dimensional ADR
equation (5.17) with the initial concentration given by a Gaussian function

Co(z) —exp{— (m—(ix())?}. (5.32)

The numerical computations are performed on the truncated domain 2 = [0, 2] with homo-
geneous boundary conditions. We choose the the appropriate constants as in

( ): d =0.04, xg = 0.25, v = 1 and the final time ¢ = 1. In this case the tracer will not
access the domain boundary. The decay rate A\ remains constant with a value of 0.2 in all types
of reaction for Gaussian hill problem.

Linear Decay

For linear decay (5.29), the analytical solution on —oo < x < oo is known and has the form

Clat) = SPEN {— (“H”f)_”)z} . ot) = 2\/d2 +4Dt. (5.33)

o(t) do(t)

Furthermore, all assumptions of Theorem 2 are met and thus no splitting error in OS occurs.
In this example, any discrepancy between the numerical and analytical solutions is only due
to the numerical error alone. To test the implementation of temporal discretization schemes,
we have chosen the time step for the numerical discretization At equal to the step 7.

Table 5.3 shows the convergence behavior in the Li-norm of the numerical solution to the exact
solution. The convergence rates are as expected: implicit methods Alexander2 and Alexander3
are second- and third-order accurate respectively and RKF45 is the fifth-order accurate in time.
These results also confirm no operator splitting error between transport and reaction.

advection-reaction (D = 0) advection-diffusion-reaction (D = 0.01)
Alexander3 RKF45 Alexander2 Alexander3

#7  Li-error rate  Li-error rate  Lji-error rate  Lji-error rate
157 x 1077 6.30 x 107" 1.55 x 1072 9.78 x 107°

1 - - - -

2 202x107% 296 1.89x107'? 5.06 293x107% 240 1.22x10"% 3.00

4 256x107° 298 580x107* 5.03 3.14x107* 322 1.02x107* 3.58

8 3.22x1071% 299 180x107 5.0l 7.13x107° 214 1.46x107° 2.80
16 4.04x 107 299 563x107Y7 500 1.75x107° 2.03 2.03x107% 285
32 5.06x107*% 3.00 - - 434x107% 201 2.73x1077 2.90
64 6.33x1071% 3.00 - - 1.08 x 1075 2.00 3.86x107% 282

Table 5.3: Convergence of different time discretization schemes for Gaussian hill
problem with linear decay (5.33), A-DR OS scheme.
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Gaussian Hill with Monod Kinetic

In the following two problems we investigate ADRE (5.17) with a fixed diffusion coefficient
(D = 1073). When the reaction term is of simple non-linear Monod kinetic type (5.30), we
expect an OS error between the diffusion and the reaction parts.

We compare the errors and the convergence behavior of different OS schemes with different

number of time steps in Table 5.4. The convergence orders of A-D-R and A-DS-RS are as

expected. To reduce the relative Li-error under 1%, the first-order splitting scheme requires

4 steps, which corresponds to the diffusion Damkéhler number Dag = 7.42. The second-order

splitting scheme reduces the OS error enough even after one splitting time step and the error
1 is less than 0.003.

Fig. 5.2 shows the spatial distribution of the error FE,.. For the A-D-R scheme OS errors
mostly occur at the boundaries of the Gaussian curve, because the diffusion is underestimated
in regions with high concentration gradients. On the other hand, AD-RS overestimates the
reaction at extrema of the solution, which is the maximum concentration in this example. Both
schemes overestimate the reaction which results in positive mass errors M.

A-D-R A-DS-RS

#1  Dag LT (%) rate L7 (%) rate

1 1.09 x 102 2.36 - 279 x 107 -
2 2.83x 10! 1.33 0.83 8.06x1072 1.79
4 742 7.06x 1071 091 2.13x1072 1.92
8 1.98 3.65x 107! 0.95 5.42x107% 1.98
16 543x107% 1.85x107* 0.98 1.36x107% 1.99
32 1.53x 107! 9.34x107%2 0.99 3.42x107* 1.99

Table 5.4: Convergence of different OS schemes to the exact solution for Monod
kinetic (5.30) with different splitting time steps 7.

8.0e-03 - - - - 1.4e-03

H H ) H #7:1 H H H H #T:l
[ Y A W ﬁ:ji 1.20-03 - o R e = B\ ﬁ:zi _—
03 b I S . - =8 — : f : : =8 —
6.0¢-03 3 3 ; ; 6 — L1003 oo #7 =16

3k
hi§
Il

e 8.0e-04 3 5
N . T s O ‘ ‘ | ‘ : | |
50003 : 6.00-0d |t

90003 |- - 4.0e-04

1.0e-03 20004 f it A

0.0e+00

0.0e+00 : . . : ‘ ; ; —
0 110 115 120 125 130 135 140 145 1.50
xr T

(a) A-D-R OS (b) A-DS-RS OS

Fig. 5.2: Spatial distribution of error E,, for Monod kinetic (5.30), splitting be-
tween diffusion and reaction.
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Gaussian Hill with Position-Dependent Monod Kinetic

For position-dependent Monod kinetic (5.31) the OS error arises between transport and reac-
tion. Second-order symmetric Strang splittings (A-DS-RS and A-DRS) again perform much
better than first-order splittings, see Table 5.5. A Damkohler number Da of less than 1072 is
sufficient for a significant reduction in the OS error (L] < 1%) for all considered OS schemes.

The first-order A-D-R scheme underestimates the reaction part which turns in negative error
E,, in the whole domain (Fig. 5.3a), whereas the second-order Strang splitting (A-DS-RS)
overestimates the reaction and E,, remains positive (Fig. 5.3b).

A-D-R A-DS-RS A-DR A-DRS
#7  Da L7 (%) rate L7 (%) rate  L7(%) rate  L7(%) rate
1 209x1071 1.14 x 10t - 528 x 1071 - 1.07 x 10t - 4.62x1071 -
2 1.06x 101 5.30 1.10 1.48x 10! 1.83 5.39 099 1.20x10~! 1.95
4 541x1072 2.55 1.05 3.87x1072 194 270 1.00 3.02x1072 1.98
8 2.78x1072 1.25 1.03 9.79x 1073 1.98 1.35 1.00 7.58 x 1073  1.99
16 143 x10~2 6.20x10~! 1.01 246x10~3 200 6.77x10~! 1.00 1.90x 1073 2.00

Table 5.5: Convergence of different OS schemes to the exact solution for position-
dependent Monod kinetic (5.31) with different splitting time steps 7.
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Fig. 5.3: Spatial distribution of error F,, for position-dependent Monod ki-
netic (5.31), splitting between transport and reaction.

Summary

In both examples with homogeneous boundary conditions where the reaction term is described
by the non-linear Monod kinetic, we can suppress the arising OS error easily. To reduce
the relative error L] under 1%, we need at most 16 splitting steps 7 for the first-order OS
schemes or only one step for second-order schemes. The convergence rates of OS methods in
the Li-norm are as expected. The splitting error between diffusion and reaction is smaller
than the OS error between advection and reaction for the same values of Damkohler numbers,
see Tables 5.4 and 5.5.
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5.3.2 Linear Decay with Boundary Flux

OS methods are known to incur an innate error when a non-zero boundary flux across the
domain boundary is present, see Section 5.1.4. Accordingly, we study the influence of boundary
conditions on the accuracy of the OS schemes. First of all, we take a look at the linear decay
problem (5.17) together with the Robin boundary condition (5.19) as we already investigated
in Section 5.2.1. Looking back at the analytic mass balance error, we note that the mass error
in OS depends only on the flow velocity and the reaction rate.

We will answer the question under which circumstances we reach the expected convergence
rates of the OS schemes in the Li-norm. We study not only the convergence order of OS
schemes with respect to the reaction rates, but also the influence of the diffusion coefficient on
the OS error and on the convergence rates of OS methods. Simulation parameters have been
chosen such that the tracer does not enter the right boundary, avoiding any outflow boundary
effects: domain © = [0, 1], velocity v = 1 and the simulation time ¢ = 0.6.

Table 5.6 shows the relative errors L7 for this problem with diffusion coefficient D = 1073.
The first-order OS splitting reaches the expected convergence rate almost immediately for low
number of splitting time steps 7. However, the second-order OS scheme obtains second-order
accuracy after 4 refinements of the splitting time step. The reduction of the accuracy of the
A-DRS scheme depends on the diffusion coefficient D, see Fig. 5.4. If the local diffusion is high
compared to the tracer travel distance in one splitting time step 7, which corresponds to the
Péclet number Pe < 100, the OS solution is sufficiently regular and the A-DRS scheme obtains
second-order accuracy in the Li-norm (Fig. 5.4b). However, for small diffusion coefficient the
convergence order of A-DRS does not exceed one, see Fig. 5.4a. Moreover, the figure shows that
Strang splitting consistently outperforms first-order approaches independent of the diffusion
coefficient.

The highest OS error for the A-D-R scheme arises at the inflow boundary, see Fig. 5.5a. The
reaction for A-D-R is overestimated in the whole domain which results in positive values for
the mass error. On the other hand, the E,.. error for A-DRS is in some part of the domain
positive and in some parts negative (Fig. 5.5b). That means that the L] error for A-DRS does
not correspond to the relative mass error M,,.-. The highest magnitude of the OS error for
A-DRS occurs at the distance from the inflow boundary which corresponds to the transport
time 7/2.

A-DR A-DRS
#17  Da L7 (%) rate L7 (%) rate
1 1.27 4.83 x 10! - 3.11 x 10t -
2 6.45x107Y 2.70 x 10* 0.84 1.39 x 10! 1.16
4 331x107' 1.43x10* 0.92 5.38 1.37
8 1.71x107' 731 0.96 1.44 1.91
16 8.85x1072 3.70 098 3.03x107t 225
32 4.60x 1072 1.86 0.99 6.69x 1072 2.8

64 239%x1072 935x107! 1.00 1.69x 1072 1.98

Table 5.6: Convergence of different OS schemes to the exact solution for linear
decay with Robin boundary condition.

61



6.4e+01 T T T T T 6.4e+01

J/)
16001 foveereodoonse , P 1 8000
400400 fe b b P b 1 _10ew00
x : : / : S
10000 f-oeoemeeeoes b g g e s : 1.3e-01
: : / DR. D = $ —o0—
2501 oo by o DRS. D = 10-% —0— - 1.6e-02
: : : DRS, D = —b— ; ;
6.20-02 o-0;
9.8e-04  3.9e-03 1.6e-02 6.2e-02 2.5e-01  1.0e+00  4.0e+00 1.0e+00 8.0e+00 6.4e+01 5.1e+02 4.1e+03 3.3e+04 2.6e+05 2.1e+06
Da Pe
(a) (b)
Fig. 5.4: (a) Splitting error versus Damkohler number Da. (b) Splitting errors for
Strang splitting with different diffusion coefficients versus Péclet number Pe.
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Fig. 5.5: Spatial distribution of error F,, for linear decay with Robin bound-
ary condition at time ¢t = 0.6 computed using different number of splitting time

steps (#7).

A-DR A-DRS

A Da L7 (%) rate L7 (%) rate
3.20 x 10! 1.42 4.83 x 10! - 2.56 x 10! -

1.60 x 10! 7.08 x 107! 2.70 x 10* 0.84 8.82 1.54
8.00 354 x 107! 1.43 x 10t 0.92 2.75 1.68
4.00 1.77x 107t 7.31 0.97 854x107t 1.69
2.00 8.85 x 1072 3.70 098 3.03x10"! 1.49
1.00 442 x 1072 1.86 099 1.25x107' 1.28

500x107Y 221x1072 935x107' 099 5.86x1072 1.09

Table 5.7: Convergence of different OS schemes to the exact solution for linear
decay with Robin boundary condition with different reaction rates A\ and fixed
number of splitting time steps.
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We have also investigated the OS errors for this example with a fixed number of splitting time
steps (#7 = 16) for different reaction rates A = 0.5-32 with constant diffusion D = 1073 (see
Table 5.7). The results show that for Damkéhler numbers Da smaller than 10~2 the OS error
in the normalized Li-norm for both OS schemes is less than 1%.

5.3.3 Summary

We repeated the simulations with inhomogeneous boundary conditions also with the Monod
kinetic. However, the difference was negligible and we can state that the majority of the OS
error occurs at the boundary and is not created by the non-linearity in the reaction model.
We showed that the expected second-order accuracy of the Strang splitting can be achieved
in the Li-norm only for low Péclet numbers. However, the Strang splitting outperforms the
first-order splitting and we should prefer the second-order splitting scheme.

5.4 Multi-Species Reactions

Up to now we have only studied reactive transport with one solute component. Our results
show that the OS methods work well in all discussed situations with one solute component.

In this section, we expand on this work by applying OS methods to several reversible and
irreversible reactions with two components. We will show that there is an ambiguity in how
the OS methods are implemented which can play an important role in the accuracy of the OS
solution. We consider three benchmark problems for this purpose:

1. tran