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Abstract

In this thesis we develop a multi-component multi-phase reactive transport simulator to facil-
itate the investigation of a large variety of phenomena in porous media including component
transport, diffusion, microbiological growth and decay, cell attachment and detachment and
phase exchange. The coupled problem is solved using operator splitting approach. This ap-
proach enables us to use higher-order schemes and reduce numerical diffusion, which can result
in an overestimation of phase exchange and reaction processes. Furthermore, this approach
allows a flexible adaptation of the solution strategy to the concrete problem. We conduct an
in-depth comparison of the fully-coupled and splitting approaches in order to derive criteria
for the most efficient scheme depending on the relative importance of advection, diffusion and
reaction.

We discuss theoretical, numerical and implementation-related aspects and examine applications
of our model to simulate laboratory experiments in an unsaturated porous medium. To ob-
tain transport parameters and reaction rates from the experiments, we incorporate parameter
estimation into our model framework. The comparison of simulation results and experimen-
tal data on flow and transport processes, chemical reactions and microbial activity is used to
detect deficiencies of the model and to receive suggestions for its improvement. Although the
model parameters are estimated using data from batch experiments with aqueous solutions,
the numerical model is able to describe and predict the laboratory experiments with porous
media reasonably well without additional calibration.

Zusammenfassung

In dieser Dissertation entwickeln wir einen reaktiven Mehrkomponenten-Mehrphasenströmungs-
Simulator, der die makroskopische Simulation von verschiedenen Prozessen in porösen Medien
erleichtert. Unter anderem erlaubt er die Beschreibung von Komponententransport, Diffu-
sion, mikrobiellem Wachstum und Zerfall, Adhäsion der Zellen und Phasenwechsel. Wir lösen
das globale Problem mit einem Operator-Splitting-Ansatz. Dieser Ansatz erlaubt es uns nu-
merische Schemata höherer Ordnung zu implementieren und so die numerische Diffusion zu
verringern, welche zur Überschätzung von Phasenwechseln und Reaktionen führen kann. Des
Weiteren ermöglicht uns dieser Ansatz eine flexible Anpassung der Lösungstrategien an das
konkrete Problem. Wir vergleichen die verschiedenen Operator-Splitting-Ansätze eingehend
mit dem global impliziten Ansatz um Kriterien zur Auswahl des effizientesten Verfahrens in
Abhängigkeit der Bedeutung von Advektion, Diffusion und Reaktion zu finden.

Wir diskutieren theoretische und numerische Aspekte und untersuchen Anwendungen unseres
Modells, um Laborexperimente in einem ungesättigten porösen Medium zu simulieren. Um
Transportparameter und Reaktionsraten aus den Experimenten zu schätzen, verwenden wir
Methoden der Parameterschätzung. Der Vergleich von gemessenen und simulierten Daten
des Phasenflusses, des Komponententransports, der chemischen Reaktionen und mikrobieller
Aktivität gibt Aufschluss über Defizite des Modells und liefert Hinweise für Verbesserungen.
Obwohl die Modellparameter mit Hilfe von Daten aus Batchexperimenten in wässrigen Lösun-
gen geschätzt wurden, beschreibt und prognostiziert das numerische Modell Laborexperimente
mit porösen Medien - ohne zusätzliche Kalibrierung - verhältnismäßig gut.
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Chapter 1

Introduction

In the past decades, understanding and prediction of multi-phase multi-component reactive
flow and transport in the subsurface has received increasing attention by the scientific commu-
nity due to the widespread increase of awareness of alarming contemporary problems such as
water contamination by organic solvents, contaminants and waste disposal (Xu et al., 1999a).
Additionally, the steady increase in available computing power allows for the development of
more complex, reliable, and accurate mathematical models capable of simulating such compli-
cated problems.

1.1 Motivation

The simultaneous flow of multi-component immiscible fluids in porous media occurs in a wide
variety of applications. Over the past decades, the most concentrated research in the field of
multi-phase flows has focused on flows in underground petroleum reservoirs (Aziz et al., 1979;
Chavent and Jaffré, 1986; Peaceman, 1977), capturing and storing of carbon dioxide (Bielinsky,
2006; Lauser, 2014) and on saturated and unsaturated groundwater flows in general (Bastian
et al., 2005). Most recently, multi-phase multi-component flows have generated serious interest
among engineers concerned with deep geological repository for radioactive waste (Bourgeat
et al., 2009).

Reactive transport modeling is also an essential tool for the understanding of microbial growth
and transport in the subsurface (Steefel et al., 2005). The transport of bio-chemically reacting
contaminants in unsaturated and saturated porous media is a very active field of research,
including the research in this thesis. Microbial activity is of significant interest in various
environmental applications such as in situ bioremediation (Lee et al., 2009), biodegradation of
pollutants (Bauer et al., 2008), dispersal of pathogenic microorganisms (Unc and Goss, 2004),
protection of drinking water supplies, and for subsurface geochemistry in general.

The design of bioremediation schemes requires an understanding of the processes governing the
growth, fate, attachment to solid surfaces and transport of the microbes under the particular
physical, biological, and geochemical conditions involved (Ginn et al., 2002). The ongoing
processes can be influenced e.g. by the properties of the porous medium and the microbial
species as well as the composition of pore water and gas (Amy and Halderman, 1997; Or et al.,
2007).

Bacterial growth in soil usually depends on bio-available water content (Chang and Halverson,
2003; Skopp et al., 1990), temperature (Bell et al., 2008; Trevors, 1991) and other physical or
environmental parameters like pressure, pH (Fernández-Calviño et al., 2011) or bio-geochemical
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redox processes (Borch et al., 2010). In addition to water saturation, the most important
factors controlling bacterial growth are the availability of substrate or nutrients (Reischke
et al., 2013) and the availability of electron acceptors, like oxygen for aerobic or facultative
anaerobic bacteria (Sierra and Renault, 1995).

While there are many factors influencing the behavior of microbial growth and transport in
porous media, an in-depth description of all processes is an exacting task. To investigate and
quantify the most relevant processes, researchers often conduct various laboratory experiments
(Fig. 1.1), e.g. in flow-through chambers filled with sand (Jost et al., 2010, 2011, 2014b). The
goal of said laboratory experiments is to gain insight into the simplified system, to better
understand the pertinent processes and to try to find suitable mathematical models for the full
problem.

Mathematical modeling is a crucial tool for the study of nutrient fluxes in soils, the assessment
of bioremediation and intrinsic biodegradation in the subsurface and the planning of related
experiments. The parameters for microbial growth and transport are typically determined by
means of independent laboratory experiments fitting the model parameters to experimental
data. After model calibration, the obtained parameters are often used to predict the retention
and transport of microorganisms under natural conditions using appropriate numerical models
(Clement and Peyton, 1997; Schäfer et al., 1998b,c). The lack of agreement between theoretical
mathematical models and experimental measurements often leads to important advances as
better theories are developed. An example of a comparison between microbial concentration
measured in the laboratory experiment and numerical simulation is shown in Fig. 1.2.

The importance of mathematical modeling lies in the fact that a model may help to explain a
system and to study the effects of different system components, and to make predictions about
behavior. It is often difficult to measure all quantities in the whole laboratory setup during
execution of the experiment and modeling helps to get this type of information.

Fig. 1.1: Flow-through chamber filled with sand with saturated and unsaturated
regions (left) and bacteria in this cell producing green fluorescent protein (right),
pictures by D. Jost.
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Fig. 1.2: Comparison of numerical simulation and data from laboratory experi-
ments. Growth and transport of microorganisms in saturated and unsaturated
porous medium.

1.2 Research Results

The primary purpose of this dissertation thesis is to develop a numerical simulator for multi-
phase multi-component reactive flow using modern mathematical methods with application to
the processes in highly dynamic regions of saturated and unsaturated porous medium.

When modeling the controlling processes in reactive transport, it is common practice to com-
bine a non-reactive transport model with a suitable reaction model to obtain a reactive trans-
port capability. Current numerical simulators are very well developed either in the flow part
or in the reaction part of the solution algorithm. However, the compatibility of the concep-
tual models developed for conservative transport on the one hand, with models developed for
bio-chemical reactions on the other, has only been partially understood for the most part.

The solution approach of the presented multi-phase multi-component reactive flow model is
based on an operator splitting technique and leads to the two types of problems described
above: phase and component transport and bio-chemical reactions. Moreover, the derivation
of the mathematical model reveals the sources of the operator splitting error. We answer the
question under which circumstances we can use this type of coupling/decoupling and investigate
the applicability of operator splitting schemes to prototypical problem classes. Furthermore,
the accuracy of numerical methods in the context of reactive transport has been explored little
in the literature. For this reason, we discuss the accuracy of various numerical methods applied
to reactive transport problems.

Reactive interactions of compounds are limited by mutual mixing of the compounds. Numerical
diffusion introduced by the scheme for advective transport may lead to an overestimation of
the related reaction rates. Therefore, we use higher-order schemes to reduce the numerical
diffusion. We determine the error which occurs in the numerical discretization and compare
it to the error arising in the operator splitting. One of the most important findings is the
fact that the operator splitting error for almost all kinds of kinetically controlled reactions in
advection-dominated regime is much lower than the discretization error.
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After validating the implementation of the described numerical methods, we apply our model
to both the forward and the inverse reactive transport modeling of setups given by laboratory
experiments and measured data. Inverse models involve fitting various dynamic quantities
(e.g. reaction rates) to data like solute or nanoparticle concentrations distributed in space
and/or in time. We develop sub-models which are able to sufficiently describe the measured
data, e.g. the breakthrough curves in flow-through experiments or the microbial growth in batch
cultures. This data is used to calibrate and validate the sub-models in advance of predictive
modeling. We also determine and analyze the most important processes in modeling microbial
growth and transport in the saturated and the unsaturated zone of porous media and apply
the numerical simulator to forecast future events. We simulate laboratory experiments in a
flow-through cell, including several models of the phase and component transport, microbial
growth, adhesion and phase exchange.

In summary, the major contributions of this work are:

• development of a new model for multi-phase multi-component reactive flow in porous
media;

• implementation of this model using various numerical methods in the DUNE framework;

• quantification of errors arising in the operator splitting approach and errors in the nu-
merical discretization;

• provide a guideline in which situations to use a concrete solution strategy in reactive
transport problems;

• application of the developed numerical simulator to model laboratory experiments;

• parameter estimation for microbial growth, adhesion and transport of nanoparticles;

• forecasting of microbial growth and transport of microorganisms in highly dynamic zones
in porous media, particularly in the capillary fringe.

1.3 Outline

The structure of this thesis is as follows. In Chapter 2 we describe the multi-phase multi-
component reactive model in porous media and the basic terminology. In principle, this model
is composed of a set of partial differential equations that describe the flow of the participating
components in all phases and of a set of algebraic equations. There are many approaches for
solving this underlying problem, which we discuss in Chapter 3. We introduce the operator
splitting technique at various levels to solve the global model problem.

The numerical solution described in Chapter 4 of the transport sub-problems employs a space
discretization on a structured grid using a cell-centered finite volume method and a fully im-
plicit time discretization for the two-phase problem to achieve unconditional stability. To solve
the solute transport in advection dominated cases, we use a second order Godunov reconstruc-
tion of upwind fluxes together with explicit schemes. The system equations describing chemical
reactions are solved element wise.
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Operator splitting significantly simplifies the numerical solution process. Unfortunately, the
separate treatment of the various sub-processes creates a splitting error. The magnitude of
this error must be controlled to prevent an unstable solution process, e.g. by creating negative
concentrations. In Chapter 5 we examine this error for the first- and second-order non-iterative
splitting method applied to advection-diffusion-reaction problems. The splitting error is stud-
ied with respect to characteristic time scales represented by dimensionless Damköhler and
Péclet numbers.

In Chapter 6 we investigate the performance of the various discretization schemes described in
Chapter 4, which we apply to problems like the ones introduced in Chapter 5 and quantify the
size of both the discretization error and the operator splitting error. We also extract guidelines
for optimal discretization choices depending on various transport and reaction conditions.

The first application of the developed numerical simulator to laboratory experiments is de-
scribed in Chapter 7. We investigate the transport of nanoparticles in unsaturated porous
media and oxygen transport in a flow-through cell. Furthermore, we study the influence of
numerical diffusion in a two-dimensional transport example with non-trivial velocity field.

In the final chapter, we develop a model for aerobic and anaerobic growth of microorganisms
based on experiments without porous media in batch cultures. We use inverse modeling to
estimate a unique set of parameters which is able to approximately describe all batch exper-
iments under various conditions. This growth model is combined with a transport model, a
phase exchange model and an adhesion model, and applied to simulate laboratory experiments
in a flow-through cell under steady-state and transient conditions.
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Chapter 2

Model Development

In this chapter we provide an introduction to the mathematical modeling of multi-phase multi-
component reactive flow in a porous medium. We introduce the fundamental mathematical
relationships that are used to describe the relevant processes in saturated and unsaturated
porous media together with the essential terminology.

We present a general conceptual model based on a representative elementary volume (REV)
approach (Bear, 1972; Lichtner et al., 1996) which serves as a basis for the formulation of
reactive transport models. Within this approach, the actual discrete physical system, consisting
of porous media with aggregates of mineral grains, fractures, and interstitial pore space filled
with fluids, is replaced by a continuous system in which physical variables describing the
system vary continuously in space. We provide governing equations for multi-phase multi-
component reactive flow on the REV scale based on mass balance and discuss limitations and
simplifications of the mathematical model.

2.1 Continuum Approach

In the modeling of reactive flow in saturated and unsaturated porous media, it is important to
consider different length scales ranging from the macroscale through to the microscale and to
the molecular nanoscale.

Since many of the physical, chemical, and biological processes actually take place at the pore
scale, developing averaging approaches for these coupled processes at larger scales is essen-
tial (Steefel et al., 2005). In the continuum representation of a porous medium, the physical
variables describing the system, which are discontinuous at the microscale or pore scale, are re-
placed by functions which are continuous at the macroscale. This is not to say that microscale
properties are not important. In fact, the macroscale properties are defined by the microscale
properties averaged over a REV. The REV is assigned to each point of the macroscale contin-
uum (Bear, 1972). The REV volume is sufficiently large to statistically estimate all relevant
parameters of the void space configuration and small enough to be considered a negligible
portion of the total volume from the macroscopic scale. The dimensions of a REV are usually
large compared to the grain size, but small compared to the characteristic length scale over
which the quantities of interest change. If such a REV cannot be found, then the represented
macroscopic theory of flow in porous media cannot be applied.

This description is not valid at the pore scale where the Navier-Stokes equations derived from
fluid mechanics are required and where it is necessary to capture microscopic scale gradients
in concentration resulting from transport and a non-uniform distribution of reactive material.
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Basic assumptions invoked in the REV formulation are:

• liquid, gaseous, and solid phases all occupy the same physical space of control volume at
the same time;

• the coexistence of any number of species within each phase is permitted;

• reactions involving two separate phases which interact across a common interface are
treated as homogeneous reactions uniformly distributed throughout the REV;

• the fluid and solid phases are well-mixed and therefore without concentration gradients,
thus resulting in uniform reaction rates within the control volume.

Another approach for the passage from the microscopic level to the macroscopic one is known
as mathematical homogenization (Bear and Cheng, 2010). This technique is based on the
mathematical theory of asymptotic functional expansions (Hornung, 1997) and is generally
acknowledged to be more appropriate for handling multiple scale heterogeneity. The REV
approach uses smoothing and spatial averaging formulas, whereas the homogenization does
the upscaling by letting the microscale tend to zero. We use the REV approach, because it is
generally convenient for the description of large-scale problems where some effects stemming
from the micro-structure of the material like fracturing or granular flow are not important.

2.2 Multi-Phase Multi-Component Flow

In this section we study the basics of multi-phase multi-component flow in a porous medium,
but the respective qualities can be generalized for a multi-phase flow formulation as well. We
provide here the fundamental definitions and explanations presented in Bear (1972) and Bear
and Cheng (2010). The model is based on the assumptions discussed below.

The porous medium consists of three phases P = {s, l, g}: a rigid solid phase s, an incompress-
ible liquid phase l and a compressible gas phase g (as in Allen (1985)). We denote the fluid
phases by Pf = {l, g}.

2.2.1 Porosity and Phase Content

The total volume of REV centered at x, VR, can be divided into a volume of pore space in
REV, Vps, and a volume of the fluid phase α, Vα.

Porosity φ is a macroscopic quantity that describes the ratio of void space within a volume of
a porous material to the total volume

φ(x, t) =
Vps(x, t)

VR(x, t)

In the unsaturated zone, the void space is partly filled by air and partly by water. To describe
the relative quantity of water at a certain time in the vicinity of a point in a porous medium
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domain, (i.e., in an REV for which this point is a centroid) we define the saturation of the
fluid phase α as

sα(x, t) =
Vα(x, t)

Vps(x, t)
, α ∈ Pf ,

and the volumetric fraction of phase α as

θα(x, t) = sα(x, t)φ(x, t), α ∈ Pf ,
θs(x, t) = 1− φ.

From their definitions, the volume fractions and saturations clearly must fulfill the constraints

θl + θg + θs = 1, sl + sg = 1.

Residual and Effective Saturation

It is well known that a pre-existing fluid phase cannot be displaced entirely from a porous
medium creating what is called a residual saturation sr,l, which denotes the minimal water
saturation that remains in the void space after a drainage process in the form of pendular rings
around the grain contact points and relatively immobile thin films. Additionally, a residual
saturation sr,g can also be defined for the gas phase when the air is present in the form of
isolated bubbles. If the phase saturation falls below the residual saturation sr,α, the phase α
is immobile. The effective saturation se,α describes only the volumetric portions of the fluid
phase that can be displaced mechanically and is given by

se,α =
sα − sr,α

1− sr,l − sr,g
.

2.2.2 Extended Darcy Law

The liquids in porous medium flow in negative direction of the pressure gradient and the
macroscopic phase velocities in an isotropic porous medium are related to the phase pressures
pα via the extended Darcy law

vα = − 1

µα
Kα (∇pα − ραg) , (2.1)

where Kα is the effective permeability, µα is the dynamic viscosity of the fluid, ρα is the mass
phase density and g is the gravitational acceleration vector. The effective permeability can be
expressed as

Kα = krαK,

where krα is the non-linear relative permeability function depending on the phase saturation
(see Section 2.2.4) and K is the scalar absolute permeability at full water saturation (sl = 1).
The absolute permeability is a property of the porous medium alone and not of the fluid. In
the case of an anisotropic porous medium, the absolute permeability depends on the direction
of flow and is represented as tensor (Bear, 1972; Helmig, 1997).
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The Darcy law is valid only for slow flows of Newtonian fluids through porous medium, when
the flow is laminar. In this thesis we assume that (2.1) holds in all considered cases.

2.2.3 Macroscopic Capillary Pressure

In order to describe the macroscopic effect of the microscale capillary forces and to close the
equation set for multi-phase flow models, we introduce the macroscopic capillary pressure pc
as the difference between the macroscale liquid phase pressure pl and the gas phase pressure
pg by

pc = pg − pl. (2.2)

The dependence of the capillary pressure on the saturation sl is obtained by measuring the
phase pressures difference during slow drainage or imbibition laboratory experiments.

We use the following two static capillary pressure-saturation models. Brooks and Corey (1964)
proposed a mathematical model for the pc/sl relation in the form

se,l(pc) =

(
pc
pe

)λbc
for pc ≥ pe, (2.3)

where the parameter λbc describes the pore distribution of the grains in a porous material and
pe is the entry pressure, which is the minimum value of pc on a drainage capillary pressure
curve at which a continuous air phase exists in the void space.

Another model, proposed by Genuchten (1980), treats the capillary pressure-saturation rela-
tionship as

se,l(pc) =
[
1 + (αpc)

n̂
]m

for pc ≥ 0. (2.4)

The parameter m is often chosen as m = n̂−1
n̂ and therefore only two free parameters n̂ and α

remain to be fitted. These parameters characterize the pore structure of the porous medium.

These models are used in the modeling of multi-phase flow independently of the flow conditions
as long as the hysteretic effects can be neglected. The capillary pressure-saturation relationship
holds only under static conditions, i.e., in the state of thermodynamic equilibrium of the system.
When the system is not in equilibrium, the dynamic effects on capillary pressure-saturation
relationship should be taken into account, see (Fučík et al., 2010; Hassanizadeh et al., 2002).
However, the relevant experimental data describing the dynamic effects is not easy to measure.
In our applications, the dynamic effects are neglected, but the model can be extended easily.

2.2.4 Relative Permeability

The relative permeability is a convenient and commonly used concept for multi-phase flows in
porous medium. It describes the fact that the flow paths of a fluid are hindered by the presence
of other phases. A number of models have been developed to predict the relationship between
saturation and relative permeability based upon the capillary pressure-saturation information,
see Bear and Cheng (2010). We state the two most common approaches defining the relative
permeability krα.
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The Burdine mathematical model for the relative permeability krα of the phase α has the form

krl (sl) = se,l
2+3λbc
λbc , (2.5a)

krg (sl) = (1− se,l)2

(
1− se,l

2+λbc
λbc

)
, (2.5b)

where the parameter λbc is the same as in (2.3). It is common to refer to (2.5) in conjunction
with (2.3) as the Brooks and Corey model.

The Mualem mathematical model for relative permeability functions is given by

krl(sl) = se,l
1
2

(
1−

(
1− se,l

1
m

)m)2
, (2.6a)

krg(sl) = (1− se,l)
1
3

(
1− se,l

1
m

)2m
. (2.6b)

Together with (2.4), it is usually referred to as the van Genuchten model.

2.2.5 Phase Composition

Each fluid or solid phase that occupies (a part of) the porous medium is composed of multiple
species of interest. It is therefore necessary to consider the composition of each individual
phase. We use the term component to denote a chemical species that belongs to the minimum
number of independent chemical species necessary to completely describe the composition of
a given phase (Bear and Cheng, 2010). Note that the set of components is not unique. When
chemical equilibrium is not assumed, all species are defined to be components. Each phase α
can be a set of several components κ ∈ Kα, where a component κ can be present in one or
both of the mobile phases, in the solid phase or in the solid and in the liquid phase.

The chemical species is referred to as a solvent if it is the predominant species in a phase, or as
a solute if it constitutes only a small portion of a phase. A solvent can be e.g. the solid matrix
minerals in the solid phase or water in the liquid phase, because the liquid phase is comprised
primarily of water.

The concentration of a component indicates its quantity in a unit volume of a fluid or a solid
phase. It can be measured in different ways, depending on the selected units for quantity and
volume.

Phase composition is expressed in terms of a mass concentration or a molar concentration.
The molar concentration Cmα,κ of component κ expresses the number of moles of κ, Nα,κ, per
unit volume of the phase α, Vα, as

Cmα,κ =
Nα,κ

Vα

and the mass concentration expresses the mass of κ-species, mα,κ, per unit volume of phase α
as

Cα,κ =
mα,κ

Vα
.
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The phase mole density (total molar concentration) is given by

να =
Nα

Vα
=
∑
κ∈Kα

Cmα,κ

and the phase mass density is defined by

ρα =
mα

Vα
=
∑
κ∈Kα

Cα,κ,

where Nα is the total number of mole in phase α and mα is the mass of phase α.

The phase mass and mole densities are related by

ρα =
∑
κ∈Kα

MκC
m
α,κ = να

∑
κ∈Kα

Mκ
Nα,κ

Nα
= ναMα, (2.7)

where Mκ is the molar mass of compound κ and Mα is the average molar mass of mixtures

Mκ =
mα,κ

Nα,κ
, Mα =

∑
κ∈Kα

Mκ
Nα,κ

Nα
. (2.8)

The relationship between mass and molar concentration is

Cmα,κ =
Cα,κ
Mκ

.

2.2.6 Thermodynamic Relationships and Restrictions

In contrast to e.g. Class and Helmig (2002); Class et al. (2002) and Xu et al. (2006), we
consider only isothermal conditions. In our applications, the temperature is given and the
pressure of the gas phase is close to the standard atmospheric pressure. Thus, the real gas can
be approximated by an ideal gas.

The ideal gas obeys the ideal gas law
νg =

pg
RT

, (2.9)

where R = 8.314 Jmol−1 K−1 is the universal gas constant and T is the thermodynamic tem-
perature.

Total pressure in the gas phase is related to the sum of the partial pressures (Dalton’s law)∑
κ∈Kg

pg,κ = pg (2.10)

and the partial pressures relate to molar concentrations as (Molins and Mayer, 2007)

pg,κ = RTCmg,κ. (2.11)
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Henry’s Law

Mass transfer between liquid and gas phase occurs at the phase interface. For gases with a low
solubility, like oxygen in water, the solubility of a gas in a liquid phase is directly proportional
to the partial pressure of the gas above the liquid

pg,κkH = C∗,ml,κ , (2.12)

where pg,κ is the partial pressure of the solute in the gas phase, kH is the Henry’s law constant
and C∗,ml,κ is the equilibrium molar concentration in liquid phase. Introducing a dimensionless
constant kccH = kH ·RT , Henry’s law (2.12) is given by (Sander, 1999)

C∗,ml,κ = kccHC
m
g,κ. (2.13)

2.2.7 Macroscopic Diffusive Flux

There are two basic processes controlling the macroscopic diffusive flux of solutes in porous
media: mechanical dispersion and molecular diffusion.

The mechanical dispersion refers to the spreading and mixing caused by the variations in ve-
locities with which the fluid phases moves at different scales. The dispersion normally depends
on the water velocity and the direction of flow. In flow direction the dispersivity is typically
larger than the dispersivity in the directions perpendicular to the flow direction, for details see
(Bear, 1972).

Molecular diffusion is a mass transfer process caused by the random Brownian motion of solute
particles in fluids. The mass transfer model assumes that the flux is proportional to the negative
concentration gradient. The macroscopic diffusive flux of the component κ is described by the
averaged Fick’s first law

jα,κ = −Dα,κ∇Cα,κ, (2.14)

where the diffusion coefficient depends on the type of solute, the saturation and phase compo-
sition

Dα,κ = Dα,κ(x, t, sα, Cα,κ, . . .).

In this work (unless stated otherwise), we use the Fick’s law to describe the diffusive fluxes jα,κ
with the second model of Millington and Quirk for the dependence of the effective diffusion
coefficient on phase saturation (Jin and Jury, 1996) and one obtains

jα,κ = −s2
αφ

4
3Dα,κ∇Cα,κ. (2.15)

Constraints on Diffusive Flux

We assume as in Allen et al. (1992); Miller et al. (1998) and Class et al. (2002) that the sum
of the diffusive fluxes for all components in each phase is zero∑

κ∈Kα

jα,κ = 0, (2.16)
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which ensures that the sum of all components of a phase moves with the phase velocity vα.
The constraint (2.16) holds when all components are at dilute concentration, except for the
solvent component.

The molecular diffusion coefficients of gas components are assumed to be equal to their re-
spective binary diffusion coefficients in air. This is done only for simplification; the calculation
of multi-component diffusion coefficients is complicated and it is not clear at all that such
calculations will improve the accuracy of the simulations (Adenekan et al., 1993). The theory
of diffusion in multi-component gases is discussed by Cussler (1997) and diffusion in liquid
mixtures in Rehfeldt and Stichlmair (2007).

2.2.8 Mass Balance Equations

A rigorous mathematical description of compositional multi-phase flow in the subsurface is
based upon mass balance equations for each component present in the system.

The macroscopic differential mass balance equations for components may be obtained by av-
eraging the microscopic balance equations (Bear and Cheng, 2010) for the mass of chemical
species in fluid phases that fully or partly occupy the void space and of chemical species in the
solid phase.

For each phase α ∈ P and for each component κ ∈ Kα, the general macroscopic mass con-
servation equations describing the transport and reaction of fluid and solid phase species are
written as (Abriola and Pinder, 1985; Aziz et al., 1979; Miller et al., 1998)

∂(θαCα,κ)

∂t
+∇ · {Cα,κvα + jα,κ} = qα,κ +Rα,κ in Ω× [0, T ], (2.17)

where Ω is the spatial domain and [0, T ] is the time interval under consideration.

The system of equations (2.17) includes general species reaction terms Rα,κ, each expressing the
rate at which the mass of that species is added to the phase and/or changed within the phase by
a particular process. Amongst others, these processes may include chemical reactions among
various species, adsorption, ion exchange, mineral precipitation, dissolution, interphase mass
transfer, microbiological growth and decay, and bio-transformation. The term qα,κ accounts
for component mass change in the phase α and denotes the gain or loss of mass due to external
sources and sinks (mass added from outside the system), e.g. injection. In the case of solid
components, the advection and diffusion parts in (2.17) vanish.

The reactions here are in a rate formulation, but equilibrium reactions are also possible. Steefel
and Lasaga (1994) describe the mechanism of how to obtain a rate expression for equilibrium
reactions. In our applications, the equilibrium reactions will be introduced through the oper-
ator splitting technique described in Chapter 3.
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2.3 Discussion

Richards’ Assumption

Very often, only the flow of the water is considered and the air flow is neglected. The assumption
of a passive gas phase underlying many models is that the resistance to flow in the gas phase
is negligible everywhere. Because air density is very small, the gas phase is assumed to be
everywhere at atmospheric pressure (Richards’ assumption).

It is certainly not justified when air flow is produced by air injection and/or extraction as part of
contaminant cleanup operations, e.g. gas production and consumption by microorganisms (Bear
and Cheng, 2010). Advective gas transport by itself is not likely to affect the flow solution, since
gas pressures are small, but it may influence the reactive transport solution significantly. The
correct solution of the fully transient problem is only possible using a compositional approach,
which considers advective and diffusive transport processes in both the aqueous and gaseous
phases simultaneously with geochemical reactions. In our applications, a full two-phase flow
model is required as gas can be entrapped or gas density can depend on the phase composition.
Thus, we have to solve a mass balance equation for the air.

Restrictions and Limitations

The incompressible liquid phase with constant density is considered to be always present,
whereas the gaseous phase may vanish. The dissolved components in liquid phase are consid-
ered as tracers, i.e. their concentrations are small and the density of the liquid phase is that
of water. The reactive processes at the microscale may change macroscale parameters such as
porosity, permeability, fluid viscosity, and reactive surface area of the porous media. Although
these dependencies are not considered in the model, it can be straightforwardly extended. In
our applications, aqueous species are subject to local chemical interactions with the solid and
gaseous phase or are assumed to be at local equilibrium. Direct interactions between solid and
gas phase or within the solid phase are not considered in the model.
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Chapter 3

Solution Approaches of Model Equations

In this chapter we consider a general compositional formulation of multi-phase reactive flow
with multi-component solute transport. The term compositional formulation denotes that the
solution includes both the composition and the volumetric fraction of each phase as a function
of space and time and not merely the volumetric fraction distribution of each phase in space
in time (Miller et al., 1998).

We briefly discuss several mathematical formulations for multi-phase multi-component trans-
port and introduce model formulation based on operator splitting. Additionally, we compare
different approaches for coupling between solute transport and chemical reactions together
with a discussion about existing codes for modeling of reactive transport.

In general, the solution approaches in multi-phase multi-component reactive flow can be clas-
sified with respect to:

1. the solution strategy for solving the original coupled problem;

2. the primary variables used;

3. the discretization schemes employed for the system or subsystems.

3.1 Mathematical Formulations

The governing equations (2.17) may be written in a number of forms. While the formula-
tions are mathematically equivalent, the numerical models based on each formulation differ in
flexibility and efficiency. We review here two different formulations; each formulation offers
inherent advantages and disadvantages w.r.t. numerical approximation and in model flexibility.

3.1.1 Fully Coupled Formulation

In a fully coupled formulation (also called a simultaneous formulation), the governing equa-
tions (2.17), the relationships between the phase pressures and the fluid saturations, and the
component concentrations within each phase are described through a single set of equations.

This formulation is the most straightforward and leads to a numerical approximation which
does not need any iterative procedures. However, this approach is computationally expensive,
since all unknown variables are approximated in a single step and the system of equations
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resulting from the numerical discretization of this model formulation is large and highly non-
linear.

The numerical schemes of the solution of models based on this formulation are not expected
to be very efficient for systems with multiple phases and many components. Examples of the
simultaneous solution method may be found in e.g. Adenekan et al. (1993); Class et al. (2002);
Lenhard et al. (1995); Mayer and Miller (1996); Sleep (1995); Sleep and Sykes (1993); White
et al. (1995).

To solve the system of equations (2.17), different sets of variables can be chosen as primary
variables to solve the system unambiguously. However, the choice is not unique and can even
change during the simulation, for details we refer the reader to literature listed below. The
problem in the simultaneous formulation arises when a phase appears or disappears. In this
case, there are these main strategies to resolve this issue: extending the saturation to negative
values (Abadpour and Panfilov, 2009), using suitable sets of primary variables (Neumann, 2015;
Neumann et al., 2013), complementarity constraints (Jaffré and Sboui, 2010; Lauser, 2014),
local switching of primary variables depending on present phases (Adenekan et al., 1993; Class
et al., 2002; Forsyth and Simpson, 1991; Lauser, 2014) and flash calculations (Fuller et al.,
2006; Polívka and Mikyška, 2014).

The simultaneous formulation is often used to model multi-phase multi-component flow in
porous media with a special regard to CO2 sequestration (Bielinsky, 2006; Lauser, 2014; Neu-
mann et al., 2013). In this case, the mobile phases are comprised only from a low number of
components and the phase properties are highly dependent on the phase composition.

The numerical discretization of models based on the simultaneous formulation is often based
on a fully implicit time discretization and a full upwinding technique (Adenekan et al., 1993;
Bielinsky, 2006), which may introduce numerical diffusion in the system (Huber and Helmig,
1999).

3.1.2 Decoupled Formulation

An alternative formulation may be developed if the equations describing the movement of
the phases are separated from those describing the transport of components within the fluid
phases. This formulation produces two sets of non-linear equations, which are weakly coupled
by compositionally dependent fluid properties and by mass exchange terms.

In general, a computationally decoupled formulation offers advantages in terms of model flex-
ibility, as any number of components may be studied without changing the solution of the
phase balance equations or the solution approach for the component balance equations.

For equivalent problems, a computationally decoupled formulation is expected to be more effi-
cient from the numerical point of view than the simultaneous formulation due to the solution
of smaller problems. Unfortunately, the operator splitting scheme proposed for a computa-
tionally decoupled model introduces additional errors into the solution of the equations. The
errors can be reduced e.g. by iterating between the phase balance equations and the component
balance equations (Reeves and Abriola, 1994) or controlled by limiting the time step size in
order to constrain the mass transfer and saturation changes during a single time step (Mayer
and Miller, 1996).
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3.2 Model Formulation Based on Operator Splitting

The operator splitting model formulation presented in this thesis is a computationally decou-
pled formulation. In a first step, the set of equations (2.17) describing the reactions in the
solid phase are separated from those describing the transport of components within the fluid
phases. Then the system (2.17) is split into a transport part for fluid phases

∂(θαCα,κ)

∂t
+∇ · {Cα,κvα + jα,κ} = qα,κ, κ ∈ Kα, α ∈ Pf , (3.1a)

and into a reaction part (for all phases)

∂(θαCα,κ)

∂t
= Rα,κ, κ ∈ Kα, α ∈ P. (3.1b)

Further, the transport part (3.1a) is split again in a phase transport and in a phase composition
part.

3.2.1 Phase Transport

Summation of the transport part (3.1a) over all components of each fluid phase and using
assumption (2.16) yields a balance equation for each mobile phase

∂ (θαρα)

∂t
+∇ · {ραvα} =

∑
κ

qα,κ = qα, α ∈ Pf , (3.2)

where qα denotes the total source/sink term in phase α (now without reactions). The liquid
mass phase density remains constant, while the gas phase density ρg may depend on the phase
composition. By solving (3.2), we obtain the fluid velocities and saturation distributions.

In the case of unsaturated groundwater flow it is often assumed that the gas phase is mobile
enough to always be at atmospheric pressure, i.e. pg = const. The liquid phase pressure
can subsequently be computed via the capillary pressure function, and gas and liquid phase
transport are decoupled. Assuming incompressibility of the liquid phase we obtain from (3.2)
a single equation for liquid phase which is called Richard’s equation (Richards, 1931).

3.2.2 Component Transport

To formulate component transport equations, we select a reference non-reactive component
κα,0 ∈ Kα in each phase, e.g. water in the liquid phase, air in the gas phase and porous material
in the solid phase. The balance transport equations for the remaining Nα components in the
fluid phases have the form

∂(θαCα,κ)

∂t
+∇ · {Cα,κvα + jα,κ} = qα,κ, κ ∈ Kα \ {κα,0}, α ∈ Pf . (3.3)

We use the resulting Nl + Ng = |Kl| + |Kg| − 2 concentrations in the fluid phases, that are a
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result of component transport (3.3), together with Ns = |Ks| − 1 concentrations in the solid
phase to compute the chemical reaction problem.

3.2.3 Reaction

All reactive species are subject to local chemical interactions with the aqueous, gaseous, and
solid phase by

∂Cα,κ
∂t

=
1

θα
Rα,κ = rα,κ + eα,κ + aα,κ , κ ∈ Kα \ {κα,0}, α ∈ P. (3.4)

The right-hand side of (3.4) includes all reactions; it can be divided into a chemical and/or
biological reaction part rα,κ, a phase exchange between fluids eα,κ and an interaction between
the liquid and solid phases aα,κ .

3.2.4 Coupling of Component Transport and Reaction

Because the component transport and reactions are coupled, equations (3.3) and (3.4) can be
merged to get the advection-diffusion-reaction system

∂(θαCα,κ)

∂t
+∇ · {Cα,κvα + jα,κ} = qα,κ +Rα,κ, κ ∈ Kα \ κα,0, α ∈ P. (3.5)

Also note that the two-phase equations (3.2) and reactive transport equations (3.5) are coupled,
because the density of the gas phase can be concentration composition dependent.

3.2.5 Chemical Equilibrium

Internal reactions which are slow in comparison with the transport process are described by
ordinary differential equations (3.4). In the mathematical description of reversible reactions,
which are relatively fast with respect to transport, the assumption of local equilibrium can be
introduced.

For each pair of components involved in the equilibrium process we obtain one algebraic equi-
librium equation, see Herzer and Kinzelbach (1989). The set of |Ke| equilibrium equations is
given by

Fj(Cl,κ1 , . . . , Cl,κNl , Cg,κ1 , . . . , Cg,κNg , Cs,κ1 , . . . , Cs,κNs ) = 0, j ∈ Ke, (3.6)

where the function Fj is in general a non-linear function of the involved concentrations.

If the system contains both the slow reactions, characterized by kinetic rate laws, and the fast
reactions, which are assumed to be at the local equilibrium, the reactive transport model is
described by the system of partial differential and algebraic equations (3.5-3.6).
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3.2.6 Primary Variables

The model (2.17) split into (3.1-3.6) is a mixture of two sets of non-linear partial differential
equations (PDE), one set of ordinary differential equations (ODE) and set of algebraic equa-
tions (AE). Different choices of primary variables are possible for the solution of the PDEs
and ODEs. The remaining unknowns can be computed from the algebraic equations.

In this thesis we use the fluid pressures pl, pg or the liquid phase and capillary pressures
pl, pc as the primary variables for the two-phase balance equations (3.2) and the component
concentrations Cα,κ of all but one component Kα\{κα,0} for each phase as primary variables. A
discussion about alternative formulations of two-phase flow models can be found in Section 3.3.

Given these primary variables, the remaining quantities can be computed as follows: the water
saturation is determined via the inverse function p−1

c of (2.2). As the liquid density is assumed
to be constant, the concentration C l,0 can be calculated from ρl and the |Kl| − 1 known
concentrations.

For the gas phase we use the ideal gas law (2.9) to calculate the molar density of the gas phase
νg, which is assumed to be constant. Using νg, the known concentrations and molar masses
Mκ, we can calculate the concentration Cg,0 from

Cg,0 =
1

Mg,0
·

νg − ∑
κ∈Kg\{κg,0}

Cg,κ
Mκ


and finally the gas phase density from

ρg =
∑
κ∈Kg

Cg,κ.

Both the PDEs and ODEs are subject to appropriate initial conditions. Additionally, the
formulation of PDEs has to be supplement by the boundary conditions, see Chapter 4 for
details.

3.3 Remarks on Two-Phase Flow

Multi-phase models for the simulation of processes in the subsurface are widely used in different
fields of technical applications. Since the late 1950s, researchers in the oil industry have
developed numerical models in order to help optimize oil recovery, see the classical texts by
Aziz et al. (1979); Peaceman (1977) and Chavent and Jaffré (1986).

In this thesis, we use a formulation based on fluid pressures or capillary/liquid pressures. This
choice of primary variables is motivated by our applications: we apply the model to simulate
two-phase flow (with water and air) in laboratory flow-through experiments, where the diameter
of the computational domain is less than 1 meter. In that case, no sharp saturation fronts
occur, because the transition zone between full saturated and completely dry sand occupies
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several centimeters, see Chapters 7 and 8. Furthermore, the gas phase is compressible and can
disappear, while the liquid phase is incompressible and is always present.

Nevertheless, the model concept introduced in this work can be adapted to a concrete situation
without major changes. In general, the two-phase flow equations are of elliptic/hyperbolic,
elliptic/parabolic or parabolic/parabolic type, depending on whether or not the phases are
compressible and whether or not capillary pressure is considered.

The global implicit approach (also called fully coupled/fully implicit approach), where the two
equations (3.2) are solved simultaneously is very robust and is the standard choice in indus-
trial simulators, often based on a pressure-saturation formulation. It is used in combination
with finite volume (Dawson et al., 1997) and finite element (Forsyth, 1991; Helmig, 1997)
discretization schemes.

However, this approach has some drawbacks. The large-scale non-linear systems of algebraic
equations may be difficult to solve. Good progress has been reported on this point with Newton-
Krylov methods (Bergamaschi et al., 2012; Dawson et al., 1997; Knoll and Rider, 1999) and
multigrid methods (Bastian and Helmig, 1999; Molenaar, 1995). A second and more severe
drawback is that only first-order full upwinding is typically restricted to the mobilities. In the
elliptic/hyperbolic regime, this leads to a very poor accuracy of sharp saturation fronts due to
numerical dispersion (Huber and Helmig, 1999).

In this regime the sequential approach, called IMPES (implicit pressure explicit saturation)
performs better. It is a very powerful method for the numerical treatment of incompressible
two-phase flow. The general phase balance equations are combined to eliminate the saturation
unknowns and the equation for pressure is separated from that for saturation, see Chen (2007)
for details. The coupling between the fluid saturations and pressure is lagged by one solution
step. This method has one drawback: a small time step for the saturation equation is required
in order to keep the explicit method stable. However, it is typically possible to execute multiple
transport steps per pressure update, which reduces the computing time significantly. An
adaptive implicit procedure to take the advantage of the efficiency of the IMPES formulation
while retaining the stability of the simultaneous formulation was proposed by Forsyth and
Sammon (1986).

A formulation based on the so-called „global” pressure by Chavent and Jaffré (1986) allows
an effective decoupling of the elliptic pressure equation and the (nearly) hyperbolic saturation
equation, making it possible to apply appropriate discretization schemes for each equation. One
choice that has been used very successfully by several groups is the mixed finite element method
for the elliptic equation in combination with cell-centered finite volume methods (higher order
Godunov scheme) for the hyperbolic equation (Chavent and Jaffré, 1986; Durlofsky, 1993;
Huber and Helmig, 1999). Other approaches in this regime are non-linear characteristic and
front tracking methods (Karlsen and Risebro, 1998; Mulder and Meyling, 1993; Risebro and
Tveito, 1991).

3.4 Approaches for Coupling Reaction and Solute Transport

It is beyond the scope of this thesis to provide a thorough review of the development of
reactive transport modeling. We refer the reader to e.g. Kirkner and Reeves (1988); Reeves
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and Kirkner (1988); Rubin (1983); Steefel and Lasaga (1994) and Lichtner et al. (1996) for an
in-depth discussion of the general philosophy of multi-component reactive transport modeling.
In addition, authors of a review article Steefel et al. (2005) discuss the historical development
and the current status of reactive transport modeling and its application to real problems.

In general, the multi-component transport and reaction models in porous media lead to a large
set of coupled PDEs for mobile species, ODEs for immobile species and AEs for equilibrium
reactions (Saaltink et al., 1998, 2001; Schäfer et al., 1998b). We can use an operator notation
to describe the solute transport and reaction for a set of components with concentrations C by

∂C(t)

∂t
= L (C(t)) +R (C(t)) , (3.7)

where L is the spatial operator representing the transport (advection and diffusion) and the
operator R includes all chemical reactions.

In our case, the reactive transport model (3.7) is described by the system of transport-reaction
equations (3.5) and by the equilibrium equations (3.6). The equations (3.5) can be split into
the transport part (3.3) and into the reactive part (3.4).

We can solve the arising coupled system with two different approaches that are well known for
reactive transport modeling:

1. the global approach, in which both transport and chemical operators are solved simulta-
neously (Fahs et al., 2008; Hammond et al., 2002; Steefel and MacQuarrie, 1996; Steefel
and Lasaga, 1994; Valocchi et al., 1981);

2. the operator splitting approach, in which transport and chemical reactions are solved
separately (Carrayrou et al., 2010, 2004; Lagneau and van der Lee, 2010; van der Lee
and Windt, 2001; Parkhurst and Appelo, 2013).

In view of the fact that the solution strategies have an influence on the accuracy and the
efficiency of the numerical solution, we discuss their implementation and the associated impli-
cations in detail.

3.4.1 Global Approach

One way to solve the coupled system (3.7) is the global implicit approach (GIA), sometimes
called one-step global approach. All governing equations are discretized implicitly in time and
the resulting large set of non-linear algebraic equations is solved iteratively, e.g. by Newton’s
method. Global methods are often based on a direct substitution approach (DSA), which
reduces the number of unknowns in the system by eliminating components in equilibrium (Yeh
and Tripathi, 1989, 1991). Additional reduction approaches can be found in (Friedly and
Rubin, 1992; Kräutle and Knabner, 2005, 2007; Saaltink et al., 1998).

3.4.2 Operator Splitting Approach

The mathematical properties of each operator in reactive transport are very different: parabolic
and hyperbolic PDEs for advection-diffusion equations, non-linear AEs for instantaneous equi-
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librium chemistry and stiff ODEs for kinetic chemistry. It is therefore interesting to separate
each operator using operator splitting (OS) methods (Carrayrou, 2009; Carrayrou et al., 2004;
Ropp and Shadid, 2005; Schäfer et al., 1998b), which can lead to a very efficient method, since
one can treat each part of the original operator independently with an appropriate numerical
method.

In the OS approach, a single time step consists of a transport step followed by a reaction step
using the transported concentrations. The simplest variant of OS is the sequential non-iterative
approach (SNIA) where each sub-model is solved exactly once per global splitting time step τ .

First-Order Splitting

To solve (3.7) using first-order splitting (also called Lie-Trotter splitting) we first solve the
transport problem from time t̃ to time t̃+ τ

∂Ct(t)

∂t
= L (Ct(t)) , Ct(̃t) = C (̃t), (3.8a)

followed by the solution of the reaction operator

∂Cr(t)

∂t
= R (Cr(t)) , Cr (̃t) = Ct(̃t+ τ), (3.8b)

where the initial concentration for (3.8b) is given by the solution of (3.8a). The concentration
C (̃t+ τ) is than the solution Cr of (3.8b) at time t̃+ τ . The Lie-Trotter splitting (3.8) is not
symmetric with respect to the operators L and R.

Strang Splitting

It is possible to reduce some of the splitting errors associated with the SNIA approach by using
a symmetrical Strang splitting (Strang, 1968). By a small modification of (3.8) it is possible to
make the splitting algorithm second-order accurate. This is done by surrounding the reaction
step by two transport steps. The Strang splitting algorithm to solve the original problem (3.7)
from time t̃ to time t̃+ τ is as follows: the transport is solved with a time step τ/2

∂Ct(t)

∂t
= L (Ct(t)) , Ct(̃t) = C (̃t), (3.9a)

followed by a reaction step

∂Cr(t)

∂t
= R (Cr(t)) , Cr (̃t) = Ct(̃t+ τ/2), (3.9b)

which is in turn followed by another τ/2 transport step

∂C(t)

∂t
= L (C(t)) , C (̃t+ τ/2) = Cr (̃t+ τ). (3.9c)

The Strang splitting (3.9) has second-order accuracy, but the convergence order of Strang
splitting for general ADRE can be reduced due to the effect of stiff reaction terms or bound-
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ary conditions (Faou et al., 2014; Hundsdorfer and Verwer, 1995, 2003). We compare the
performance of both splitting techniques mentioned above in Chapter 5.

Sequential Iteration Approach

The error introduced by the decoupling of the component transport and the chemical reactions
can be decreased by the sequential iteration approach (SIA) where all sub-models are iterated
until convergence in each global splitting time step. The two sets of equations are coupled by
sink/source terms which are updated during the iterative cycle (Steefel and MacQuarrie, 1996;
Šimůnek and Suarez, 1994; Walter et al., 1994).

Although the SIA methods appear attractive because they can be modularized as SNIA, they
have several disadvantages. The iterative procedure is not unconditionally stable, due to the
explicit nature of the approach; difficulties in the convergence can arise and small splitting
times are required (de Dieuleveult et al., 2009; Fahs et al., 2008; Herzer and Kinzelbach, 1989).
To overcome this difficulty, many improvements of SIA methods were proposed in the literature,
see e.g. Carrayrou et al. (2004); Tebes-Stevens et al. (1998). Another possible disadvantage to
the SIA approach is dependence on an implicit solution of the transport equations in order to
get a fully implicit solution of the overall reaction-transport problem (Steefel and MacQuarrie,
1996). Carrayrou et al. (2004) conclude that standard SIA schemes should not be used; they
may exhibit convergence or stability problems and the OS errors are still present even if the
iterative algorithm converges.

3.4.3 Discussion

Both the one-step methods and the OS methods have several advantages and disadvantages in
solving of ADREs. The choice of the most appropriate methods depends on multiple factors
including among others

• complexity and character of chemical reactions;

• dominance of considered processes (physical transport or chemical reactions) based on
their time scales;

• dimension of the given problem and time steps required;

• memory requirements, CPU time and code parallelism.

GIA is often used with full upwinding of the convective terms (in convective-dominated cases)
to avoid unphysical oscillations of the concentrations. This results in a large amount of numer-
ical diffusion for the component transport. Since reactions only take place when components
mix, and components might mix mainly due to numerical diffusion, the simulation may over-
estimate the reaction (Cirpka et al., 1999).

Another potential limitation of GIA is the need to compute, store and invert the Jacobian
matrix. This becomes problematic for large systems with many components in two- and three-
dimensional field scale simulations, because the increased size of the Jacobian matrix results
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in greater memory usage and more CPU time is needed to solve the resulting system of linear
equations within the Newton iterations. Because of its high memory requirements, the global
approach was initially rejected (Yeh and Tripathi, 1989), but the memory capacity of modern
computers has greatly improved so that a high memory requirement is no longer the major
drawback. The GIA method was originally used only for small reaction systems in one dimen-
sion, but since the beginning of the 21th century, GIA has been used for complex bio-chemical
reaction models coupled to 3D groundwater flow, e.g. (Wagner et al., 2002).

On the other hand, GIA has some important advantages. The global convergence properties
of the fully coupled method may be better than those of multi-step iteration methods. Using
Newton’s method to solve the full set of equations, we expect to achieve quadratic convergence
in the vicinity of the solution, while we can expect linear convergence at best from the iterative
OS methods. Moreover, it is possible to take larger time steps with GIA, because the time
step size is limited only by the convergence of Newton’s method and the accuracy of the
discretization methods. This is particularly true for stiff transient problems converging to a
steady state (Verwer et al., 2004). Nevertheless, the GIA approach is considered to be more
robust for chemically complex systems and it is the preferred scheme in practice (Cirpka and
Helmig, 1997; de Dieuleveult and Erhel, 2009; de Dieuleveult et al., 2009; Kanney et al., 2003;
Podgorney et al., 2012; Saaltink et al., 2001; Steefel and Lasaga, 1994).

The OS approach is used in order to avoid the large computational cost of GIA. It takes
advantage of the fact that only the physical transport equations are spatially coupled while
the chemical equations are strictly coupled at each point in the system. This leads to a smaller
system than the GIA methods; the transport problem can be solved independently for each
component. The coupling between transport and chemistry is done on a per-element (or per-
node) basis, which is beneficial in parallel computing. One can also use different numerical
discretization schemes for multi-component transport and for chemical reaction that are opti-
mized for a given situation. Within the OS approach high resolution schemes for hyperbolic
transport equations can be utilized (Cockburn and Shu, 1998; Dawson, 1991; LeVeque, 2002)
which introduce less numerical diffusion compared to the GIA methods. The decoupled meth-
ods, therefore, offer greater flexibility and even allow for the integration of existing codes for
non-reactive transport and chemical reactions.

However, although OS methods show many advantages, the splitting procedure generates op-
erator splitting errors. The OS errors for kinetically-controlled reactions will be investigated
and discussed in Chapter 5.

Comparison

The numerical efficiency of SNIA, SIA and GIA approaches has been compared by Lichtner
et al. (1996); Xu et al. (1999b) and Saaltink et al. (2001). They concluded that GIA performs
better than OS methods for chemically complex, small dimensional reactive transport problems
but is outperformed by OS approaches for chemically simple, large-dimensional problems.
Although GIA is both more difficult to implement than the OS approach and very demanding in
terms of computing time and memory requirements, it does not introduce any operator splitting
error. The results in Fahs et al. (2008) show that in combination with an efficient sparse direct
solver, GIA performs better than SIA and SNIA even for chemically simple problems. Cirpka
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and Helmig (1997) compared the computational times for a system containing slow and fast
chemical reactions. The SIA scheme was less efficient than GIA, because SIA required a very
high number of time steps. The most efficient method based on OS was multiple times faster
than GIA. However, the OS solution for fast reactions showed significant fronting, see also
Section 5.4.1.

3.4.4 Reactive Transport Codes

There is a variety of computer codes for simulating flow and solute transport in porous media in
combination with bio-chemical reactions. In the following, we briefly describe several numerical
codes used in the simulation of reactive transport codes based on the REV formulation. The
review article Steefel et al. (2014) presents a general description of the mathematical and
numerical formulations used in reactive transport. Furthermore, the authors compared the
features of several reactive transport modeling codes w.r.t.

• their general features of the flow and transport:

– domain dimension

– isothermal/non-isothermal flow

– saturated/unsaturated flow

– one/multi-phase flow

– Richards’ assumption

– the type of advection and diffusion processes

• the type of geochemical and microbial process which can be treated in each code

• the numerical and computational features:

– solution approaches (GIA, SNIA, SIA)

– spatial and temporal discretization

– inverse modeling and parameter estimation

– code parallelization

We will not discuss the reactive transport codes listed in Steefel et al. (2014) in detail and refer
to this article, which compares the following codes: PHREEQC (Parkhurst and Appelo, 2013;
Zhu et al., 2001), HPx (Šimůnek et al., 2013), PHT3D (Appelo and Rolle, 2010; Prommer
et al., 2003), OpenGeoSys (Kolditz et al., 2012), HYTEC (van der Lee et al., 2003), ORCHES-
TRA (Meeussen, 2003), TOUGHREACT(Xu et al., 2006, 2008, 2011), eSTOMP (White and
Oostrom, 1996), HYDROGEOCHEM (Yeh and Tripathi, 1990), CrunchFlow (Steefel, 2008),
MIN3P (Mayer et al., 2002), and PFLOTRAN (Lichtner et al., 2013a,b).

Other reviews on reactive transport codes can be found e.g. in van der Lee and Windt (2001);
Mao et al. (2006) and (Wissmeier and Barry, 2008). There are also other codes used in reactive
transport modeling, some of the relevant codes regarding to this work are discussed below.
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SPECY

SPECY is a reactive transport code based on SNIA, where even advection and dispersion
are split. The key feature of this code is the use of specific numerical methods to solve each
part of the reactive transport equation. The code employs an explicit discontinuous Galerkin
finite element method to obtain a good description of sharp reactive fronts associated with
certain chemical phenomena. The diffusion operator is solved with an implicit mixed finite
element method. The combination of these two methods has been adapted to reactive transport
in the case of SIA. The equilibrium chemistry is solved using a combined algorithm based
on Newton’s method that reduces computing time and improves convergence, see Carrayrou
(2009). SPECY was tested against the 1D reference solution of the reactive MoMaS problem
(Carrayrou et al., 2010) including instantaneous equilibrium chemistry, kinetic rate laws and
precipitation-dissolution reactions. Another code tested in the MoMaS benchmark is GDAE1D
(de Dieuleveult and Erhel, 2009), based on the finite volume method with full upwinding and
GIA without DSA. This code uses efficient and robust differential algebraic equations solvers,
but the arising linear system is solved by a dense direct solver and the performance of the code
was tested only for 1D domains.

TBC

Schäfer et al. (1998b,c) developed the very flexible parallel code TBC including chemical (ki-
netic and equilibrium) reactions, bio-chemical reactions and transport for saturated ground-
water flow in three dimensions. It is based on a standard finite element method with explicit
and fully implicit time integration. The coupled problem is solved using the SIA method.
The authors assume that all microorganisms reside in an immobile bio-phase (bio-film model).
Bio-chemical reactions only take place in the bio-phase, i.e. all relevant substrates first have to
change phases from the liquid to the bio-phase before they can take part in the bio-chemical
reactions. The growth of microbial populations is described by Monod-type kinetics with one
or more respiratory pathways (e.g. aerobic and anaerobic).

CORE

The computer code CORE (Samper et al., 2009), which is an extended and improved version
of an earlier code called TRANQUI (Xu et al., 1999b) solves two-dimensional groundwater
flow, solute, and heat transport equations with a finite element method. Flow in variably
saturated media is solved in terms of pressure heads. The authors solve the Richard’s equation
to get the velocity distribution. Samper and Zhang (2006) extended the original code and
coupled the water flow and microbial reactive transport in BIO-CORE. Coupled transport and
chemical equations are solved using SNIA and many variants of SIA, e.g. sequential partly
iterative approach, which improves the accuracy of the traditional SNIA approach and in
several situations is more efficient than the general SIA, see Samper et al. (2009).
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RT3D

Another code that is capable of simulating multi-species reactive transport of different types
of contaminants is the three-dimensional model RT3D (Clement et al., 1998), using external
computed liquid velocities. The authors analyzed different types of subsurface contaminant
reactions, microbial metabolisms, and microbial transport kinetics. The non-iterative OS strat-
egy is separated into four steps: advection, diffusion, source/sink terms and chemical reactions.
The advection part is solved by the method of characteristics or by an upstream finite differ-
ence method and the diffusion is discretized with an explicit finite difference approximation.
After the transport time step, all reaction equations are solved implicitly employing multiple
reaction time steps.

FEREACT

A reactive transport finite element method code FEREACT examines the coupled effects of
two-dimensional steady-state groundwater flow, equilibrium aqueous speciation reactions, and
kinetically-controlled interphase reactions. Transport and chemical reactions are coupled by
the SIA-1 method which improves the convergence behavior of the traditional SIA approach
(Tebes-Stevens et al., 1998).

RETRASO

The code RETRASO simulates reactive transport of dissolved and gaseous species in non-
isothermal saturated and unsaturated problems. For the solution of the reactive transport
equations it uses GIA with DSA (Saaltink et al., 2004). One, two and three-dimensional finite
element methods can be used for the spatial discretization.

3.5 Summary

In this chapter, we presented basic solution approaches for multi-phase multi-component re-
active flow in porous media based on continuum representation. This field of study is under
intensive scientific investigation; for more detailed insight into this very complex topic we refer
the reader to the literature cited in the whole chapter. The general application of one solution
approach is not possible; the choice of the most appropriate solution approach depends on many
factors, particularly on the model applications. The simultaneous compositional formulation
is used for modeling CO2 sequestration, because the phase properties are strongly dependent
on the phase composition and the coupling plays an important role. Most of the models de-
scribing multi-phase reactive transport in porous media use decoupled formulations. Not only
the phase flow and component transport can be decoupled, but also component transport and
chemical reactions can be computed separately.

The resulting system of equations arising in the simultaneous formulation for and in GIA for
reactive transport might be very large and the (non)-linear system may be difficult to solve.
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This could become problematic for large systems with many components in two- and three-
dimensional field scale simulations. The increased size of the Jacobian matrix results in a
greater memory usage and more CPU time is needed to solve the resulting system of linear
equations within the Newton iterations. On the other hand, these approaches are very robust
and no operator splitting error occurs.

In this thesis, we present a model based on the decoupled formulation, where the phase trans-
port, component transport and reactions are separated. The operator splitting approach en-
ables the use of different numerical methods to solve each sub-problem; the spatial and temporal
discretization schemes can be designed in such a way that the error arising in the numerical
discretization is reduced significantly, see Chapter 4. On the other hand, the OS approach
introduces an operator splitting error to the solution procedure. In our applications, we use
almost only kinetically controlled chemical reactions. The OS error can be reduced by control-
ling the splitting time step depending on transport velocity and rates of chemical reactions, see
Chapter 5 for details. As an alternative to the SNIA scheme for advection-diffusion-reaction
systems, we can also use GIA in situations without sharp fronts in concentrations. Particu-
larly in quasi steady-state problems, where the transient error associated with the concentration
front propagation is absent, GIA performs reasonably well, because it allows larger time steps
and the simulation time can be reduced significantly without loss of accuracy in the solution.
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Chapter 4

Numerical Discretization

In this chapter we describe the numerical discretization of problems defined in Chapter 3. The
application problems to be treated in this thesis involve only simple geometries. Therefore
we decided to use a cell-centered finite volume scheme (CCFV) for both, the two-phase flow
problem and for the component transport. This method is locally mass-conservative, which is
a general requirement for a physically meaningful solution and a necessity for the solution of
reactive transport.

We focus on the so-calledmethod of lines in which the evolution problem is first semi-discretized
in space yielding a system of coupled ordinary differential equations (ODEs), which is af-
terwards discretized in time. For the time discretization, we consider explicit and implicit
Runge-Kutta methods (RK). For reactive transport, implicit-explicit Runge-Kutta methods
(RK-IMEX) provide an alternative to the classical RK schemes.

The splitting concept introduced in Chapter 3 is, however, independent of the discretization
of the sub-problems. Therefore, other spatial and temporal discretization methods can be
implemented during future model development without a major reorganization of the code.

4.1 Preliminary Definitions

In this section we present the main ingredients needed for the spatial discretization on struc-
tured grids with conforming interfaces. The considered domain Ω ⊂ Rd, d ∈ {2, 3} with
boundary ∂Ω is a rectangle in two space dimensions or a rectangular cuboid in case of d = 3.

Let Th be a structured and regular tessellation of Ω into Nh mesh elements (cells) fulfilling

Th = {E0, . . . , ENh−1},

Ω =

Nh−1⋃
j=0

Ej , Ei 6= Ej ∀i 6= j,

with cell volume |E| and mesh size h computed as

|E| =
∫
E

1 dx, h = max{diam(E) |E ∈ Th}.
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Fig. 4.1: Definition of the cell, face and boundary face geometry in two space
dimensions.

The (d 1)-dimensional cell intersections form the set of interior and boundary faces

F ih = {γe,f = ∂Ee ∩ ∂Ef ; Ee, Ef ∈ Th, e 6= f and | γe,f | > 0},
F∂Ω
h = {γe = ∂Ee ∩ ∂Ω ; Ee ∈ Th and |γe| > 0},

where |γ| denotes the volume of face γ. For an interior face, which is a common face of cells E
and E′, we arbitrarily fix a unit normal direction nγ and we denote by E+

γ the cell where the
normal points to and by E−γ the cell in the opposite direction, see Fig. 4.1. For boundary faces,
nγ is chosen to be the unit outer normal to ∂Ω. For a cell E ∈ Th and for a face γ ∈ F ih∪F∂Ω

h ,
we denote by xE and xγ the cell center and the face center, respectively. The cells are such
that points on an interior face γ have equal distance to the centers of both cells E+

γ and E−γ
and the vector xE+

γ
− xE−γ is perpendicular to the face γ. The Euclidean distance dE,γ of cell

centers of two adjacent elements E+
γ and E−γ to the face γ is given by

dE,γ = |xE+
γ
− xE−γ | ∀γ ∈ F

i
h, dE,γ = |xE+

γ
− xγ | ∀γ ∈ F∂Ω

h .

The space of piecewise constant functions on Th is defined by

P0(Th) = {u ∈ L2(Ω) : u|E = constant ∀E ∈ Th}.

Functions in P0(Th) may be discontinuous on the interior faces F ih: for the value on each side
of the intersection γ we set

u+
γ (x) = lim

ε→0+
u(x+ εnγ), u−γ (x) = lim

ε→0−
u(x+ εnγ). (4.1)

The jump and the average of the function u ∈ P0(Th) for x ∈ γ ∈ F ih are then given by

[u](x) = u+
γ (x)− u−γ (x), 〈u〉(x) =

1

2

(
u+
γ (x) + u−γ (x)

)
.
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These definitions are extended to the domain boundary ∂Ω by

[v](x) = 〈v〉(x) = v(x) ∀x ∈ γ, γ ∈ F∂Ω
h .

4.2 Two-Phase Flow Problem

Now we discretize the two-phase flow problem (3.2) based on a pressure-pressure formulation.
In particular we describe how to combine upwinding and averaging of mobilities such that
media discontinuities can be treated properly. For an introduction to different formulations of
the multi-phase flow equations see also (Aziz et al., 1979; Chavent and Jaffré, 1986; Helmig,
1997; Peaceman, 1977) and (Bastian, 1999).

The phase balance equations (3.2) for α ∈ Pf together with Darcy’s law (2.1) are given by

∂(θαρα)

∂t
+∇ · {ραvα} = qα in Ω× [0, T ], (4.2a)

vα = −krα
µα

K (∇pα − ραg) , (4.2b)

supplemented by boundary and initial conditions

pα = pDα on ΓDα , ραvα · n = ηα on ΓNα , pα(x, 0) = pα,0(x) in Ω. (4.2c)

The boundary of the domain ∂Ω, where the boundary conditions are stated, is divided into
disjoint parts with Neumann boundary ΓNα and Dirichlet boundary ΓDα .

Definition 4.1 (Semi-discrete finite volume method)
The semi-discrete finite volume approximation of (4.2) utilizing continuous in time solution
representation, t ∈ [0, T ], and piecewise constant solution representation in space, pαh(t) ∈
P0(Th), α ∈ Pf , such that

pαh(t)|E =
1

|E|

∫
E
pα(x, t) dx

with initial data
pαh(0)|E =

1

|E|

∫
E
pα,0(x) dx

is given by the following system of ordinary differential equations:

d

dt

∑
E∈Th

∫
E
θαραu dx+

∑
γ∈Fih

∫
γ
ραvα · nγ [u] ds+

∑
γ∈F∂Ω

h ∩ΓDα

∫
γ
ραvα · nγu ds

+
∑

γ∈F∂Ω
h ∩ΓNα

∫
γ
ηαu ds =

∑
E∈Th

∫
E
qαu dx ∀u ∈ P0(Th) α ∈ Pf .

which can be abbreviated as

d

dt
mh(pαh, u) + ah(pαh, u) = fh(u) ∀u ∈ P0(Th) α ∈ Pf . (4.3)
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To derive the semi-discrete form (4.3), we multiplied the original problem (4.2) by a test
function u ∈ P0(Th), integrated over Ω and applied integration by parts on each cell. For
simplicity, we suppress the subscript h.

All integrals in (4.3) are now evaluated numerically by applying the midpoint rule. The crucial
term to evaluate is the interior flux term

vα|γ · nγ =
krα(sα)

µα(pα)
K︸ ︷︷ ︸

ξα,γ

(−∇pα + ραg) · nγ︸ ︷︷ ︸
wα,γ

, (4.4)

which we divide into two parts: mobility ξα,γ and flow direction wα,γ . Due to the simple
element geometry, the normal derivative of the pressure can be evaluated by finite differences
which then yields the flow direction:

wα,γ ≈ −
pα(xE+

γ
)− pα(xE−γ )

dE,γ
+
ρα(xE+

γ
) + ρα(xE−γ )

2
g · nγ = − [pα]

dE,γ
+ 〈ρα〉g · nγ .

Using this direction we can upwind the capillary pressure

pc,γ =

{
pg(xE−γ )− pl(xE−γ ) wα,γ ≥ 0,

pg(xE+
γ

)− pl(xE+
γ

) wα,γ < 0,

and from that we can compute the saturations on adjacent elements:

s−l,γ =
(
p−c
)−1

(pc,γ) s−g,γ = 1− s−l,γ ,

s+
l,γ =

(
p+
c

)−1
(pc,γ) s+

g,γ = 1− s+
l,γ .

Finally, we perform a harmonic averaging of the mobility

ξ−α,γ =
krα
−(s−α,γ)K(xE−γ )

µα(pα(xE−γ ))
, ξ+

α,γ =
k+
rα(s+

α,γ)K(xE+
γ

)

µα(pα(xE+
γ

))
, ξα,γ =

2ξ−α,γξ
+
α,γ

ξ−α,γ + ξ+
α,γ

.

This upwinding scheme in capillary pressure can handle material discontinuities that result
in discontinuities in capillary pressure-saturation curves and relative permeability functions in
neighboring elements (Ippisch, 2014).

4.2.1 Velocity Field

To ensure the local mass conservation for the component transport, we require that the velocity
field belongs to the functional space H(div,Ω), which is the space of functions with square-
integrable weak divergences,

H(div,Ω) = {v ∈ [L2(Ω)]d; ∇ · v ∈ L2(Ω)},

which imposes the continuity of the normal trace across all faces.
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The CCFV scheme on axis-parallel grids yields the normal velocities vα|γ ·nγ on the midpoints
of all faces, which can be directly used to construct the lowest-order Raviart-Thomas element
space RT 0(E). The RT 0(E) space has the form

vi = ai + bixi, ai, bi ∈ R, i = 1, . . . , d,

where subscript i denotes the i-th component of the vectors v and x, respectively. The velocity
vα ∈ RT 0(E) can be easily evaluated component-wise by a linear interpolation between the
normal velocities on opposing face midpoints, which are computed by (4.4). Note, that the
polynomial space for RT 0(E) defined by

RT 0(Th,Ω) = {v ∈ [L2(Ω)]d; v|E ∈ RT 0(E) ∀E ∈ Th}

is a subspace of H(div,Ω).

Furthermore, the interpolation of phase velocities into the RT 0 space has two practical advan-
tages:

1. the calculation of the solute transport can be performed on a grid not identical to the
grid used in the two-phase calculations;

2. repetitive evaluation of (4.4) to solve the component transport problem is rather expen-
sive; the interpolation saves many function evaluations in (4.4) and improves the code
performance.

4.3 Component Transport Problem

The sets of equations (3.1a) and (3.3) are both advection-diffusion-reaction equations (ADREs)
in the form

∂(RC)

∂t
+∇ · j = q in Ω× [0, T ], (4.5a)

j = vC −D∇C, (4.5b)

which are subject to the boundary conditions

C = CD on ΓD, j · n = η on ΓN , j · n = (vC −D∇C) · n on ΓO, (4.5c)

and initial conditions

C(x, 0) = C0(x) in Ω. (4.5d)

Model (4.5) describes the transport of a component, or a system of components with concen-
tration(s) C via the flux j including advection with velocity v and diffusion with coefficient D,
whereas reactions are modeled using the source-sink term q. The term R denotes fluid content,
but it can also express the retardation caused by processes like adhesion.

The special case of the Neumann boundary conditions for η = 0 is known as the no-flux
condition. For pure advection, the specification of the values on the inflow boundary, where
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v · n < 0, is sufficient. However, for the advection-diffusion problem with small diffusion
coefficient, where the Péclet number (see Section 4.4.6) is large, the Dirichlet condition at the
outflow boundary, where v ·n > 0, will give rise to a boundary layer problem, see Hundsdorfer
and Verwer (2003). In this case the outflow boundary condition with D = 0 is applied, which
is essentially a do-nothing boundary condition and allows the solute to leave the domain freely.

4.3.1 Space Semi-Discretization

The semi-discrete CCFV scheme for solving the transport equation (4.5) in either its hyperbolic
or parabolic form is given as follows: Find a piecewise constant solution representation in space
and continuous in time Ch(t) ∈ P0(Th) that for all u ∈ P0(Th) function Ch solves the equation

∂

∂t

∑
E∈Th

∫
E
RChu dx+

∑
γ∈Fih

∫
γ
Chv · nγ [u] ds−

∑
γ∈Fih

∫
γ
D∇Ch · nγ [u] ds

+
∑

γ∈F∂Ω
h ∩(ΓD∪ΓO)

∫
γ

(Chv −D∇Ch) · nγu ds+
∑

γ∈F∂Ω
h ∩ΓN

∫
γ
ηu ds =

∑
E∈Th

∫
E
qu dx.

(4.6)

All integrals in (4.6) are again evaluated numerically by applying the midpoint rule. To evaluate
the flux SE,γ through the face γ, the normal derivative of the concentration is evaluated by
central finite differences and the diffusion coefficient is computed as an harmonic average:

−
∫
γ
D∇Ch · nγ ds ≈ SE,γ = −

2D(xE+
γ

)D(xE−γ )

D(xE+
γ

) +D(xE−γ )

|γ|
dE,γ

(
Ch(xE+

γ
)− Ch(xE−γ )

)
. (4.7)

4.3.2 Upwinding

In order to preserve stability of the numerical scheme, we use the standard first-order upwind
method. The concentration Ch for xγ ∈ γ in the advection term Chv · nγ is given by

Ch(xγ) =

{
Ch
−(xγ) if v(xγ) · nγ ≥ 0

Ch
+(xγ) else, (4.8)

where the face concentrations Ch− and Ch+ are given by (4.1). Full upwinding is a monotonic-
ity preserving linear method but is only first-order accurate. It achieves its greater stability
compared to the central differences by adding numerical diffusion (Steefel and Lasaga, 1994).
In diffusion dominated cases, we can approximate the concentration as Ch =

(
Ch
− + Ch

+
)
/2,

which corresponds to central differences in the finite difference method.

4.3.3 Slope Limiters for Linear Reconstruction

Even for linear advection problems, first-order accurate schemes are generally considered too
inaccurate for most quantitative calculations, unless the mesh resolution is made excessively
fine, thus rendering the schemes inefficient. The problem of numerical diffusion is most severe
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in multi-dimensional problems where flow can be diagonal to rather than along the face orien-
tations and in problems where transient, sharp concentration fronts occur (Steefel and Lasaga,
1994).

According to Godunov’s theorem (LeVeque, 2002) there are no monotone linear schemes of
order greater than one. This limitation of monotone linear schemes has motivated the devel-
opment of non-linear higher-order accurate schemes which are still monotone and reduce the
numerical diffusion significantly. The main idea of higher-order schemes is to reconstruct a
piecewise polynomial function from cell averages. Considering element E ∈ Th with barycenter
xE , the function representing the linear reconstruction can be written as

C∗h(x) = Ch(xE) +
d∑
i=1

σi (x− xE)i ,

where the slopes σi do not influence the average and thus the method is conservative:

1

|E|

∫
E
C∗h(x) dx = Ch(xE).

The function C∗h is then used in the evaluation of the upwind values in (4.8) instead of Ch. The
slopes σi have to be chosen in such a way that the total variation diminishing (TVD) property
is maintained, for details we refer to Pietro and Ern (2012).

The slope limiter in the d-dimensional case for simple grid geometries can be seen as a sequence
of d one-dimensional limiters. We define the upwind and downwind slopes as

σup
i =

Ch(xE)− Ch(xu)

|xE − xu|
, σdw

i =
Ch(xd)− Ch(xE)

|xE − xd|
,

where xu and xd denote the barycenter of neighbor elements of E in the ith upwind and down-
wind direction, respectively. We compute the limited slopes σi on element E by the following
limiters:

1. van-Leer’s one-parameter family of minmod limiters (Kurganov and Tadmor, 2000; van
Leer, 1979):

σi = minmod
(
θσupi , θσ

dw
i ,

σupi + σdwi
2

)
, (4.9)

where parameter θ ∈ [1, 2] determines the resulting slope;

2. superbee limiter by Roe (1986):

σi = maxmod
(
σ1
i , σ

2
i

)
, (4.10)

where

σ1
i = minmod

(
σupi , 2σ

dw
i

)
, σ2

i = minmod
(

2σupi , σ
dw
i

)
.
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The generalized minmod function for real numbers z1, . . . , zk is defined as

minmod(z1, . . . , zk) =

{
amin(|z1|, . . . , |zk|) if a = sgn(z1) = · · · = sgn(zk),
0 otherwise.

while the maxmod function for real numbers a and b is given by

maxmod(a, b) =

{
a if |a| ≥ |b|
b otherwise.

In this work we use only the two limiters described above that guarantee second-order accuracy
for smooth solutions while still satisfying the TVD property. With θ = 1 the limiter (4.9)
corresponds to the ubiquitous minmod limiter (LeVeque, 1990; Roe, 1986). For parameter
θ > 1, the slopes are steeper and the limiter is less dissipative.

4.3.4 Finite Volume Reconstruction

Because the discrete solution Ch is cell-wise constant, the regularity of the solution is low.
In order to be able to compare the CCFV solution to an analytical solution or with other
discretization methods, we require a higher regularity of the CCFV solution. Inspired by
results of Eymard et al. (2001); Vohralík (2007) and Vohralík (2008), we locally postprocess
the approximate solution Ch to get a postprocessed approximation solution C̃h, which preserves
exactly the given discrete diffusive fluxes and whose mean value in each cell is identical to the
original constant approximation Ch.

In the postprocessing, we use some additional knowledge that we have from the CCFV scheme:
the fluxes SE,γ defined in (4.7). For element-wise constant diffusion coefficients, we define C̃h
as the weak solution of the following local problems:

−D∇C̃h|E · n =
SE,γ
|γ|

∀γ ∈ ∂E, ∀E ∈ Th, (4.11a)

1

|E|

∫
E
C̃h dx = Ch ∀E ∈ Th. (4.11b)

For regular tetrahedral meshes, C̃h given by (4.11) is a piecewise second-order polynomial of
the form

C̃h(x) =
d∑
j=1

(
aE,jx

2
j + bE,jxj

)
+ cE ∀x ∈ E, (4.12)

where the coefficients aE,j , bE,j , cE in the postprocessing are computed locally on element E.

Vohralík (2008) originally presented this postprocessing to obtain a potential suitable for energy
error measuring (the piecewise gradient of the original cell-wise constant approximation is zero).
Furthermore, it can be used for a posteriori error estimate of residual type, which are fully
computable, so that it can serve both as an indicator for adaptive refinement and for the actual
control of the error (Vohralík, 2008). In this work, we use the postprocessing only for ADREs
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in numerical experiments, where the solution computed by the CCFV method is compared to
an analytical solution or with other discretization methods.

4.4 Time Discretization

So far we have only discussed the spatial discretization of two-phase and component transport
problems, leading to semi-discrete systems of ODEs for the solution vector U = U(t)

U ′(t) = L(U(t)), 0 < t < T, U(0) = U0, (4.13)

with U(t) = (Uj(t))
m
j=1 ∈ Rm, m being proportional to the number of degrees of freedom

(DOF) in the semi-discrete system. For the two-phase problem (4.2) together with CCFV we
have m = 2Nh and for the semi-discretization of the transport problem (4.5) containing Nc

components, there are NcNh DOFs. The initial solution U0 is given by the initial conditions
of the original PDEs.

The time interval [0, T ] is subdivided into a finite number of time steps tk, 0 = t0 < t1 < · · · <
tM = T , with time steps ∆tn = tn+1 − tn. A superscript n indicates the value of a function at
the discrete time tn, so that, e.g. fn = f(tn).

4.4.1 Implicit Runge-Kutta Methods

To discretize the ODEs arising from the semi-discretization of the two-phase flow or reac-
tive transport, we employ general diagonally implicit Runge-Kutta (DIRK) one step schemes,
because they are A-stable and useful for stiff problems. They also exhibit a significant compu-
tational advantage, because the coefficient matrix is lower triangular with all diagonal elements
equal and the stages can be computed independently.

In addition to the standard implicit Euler and Crank-Nicolson scheme, we also evaluated
a strongly S-stable DIRK of order 2 in 2 stages and of order 3 in 3 stages (for details see
Alexander, 1977); they are denoted as Alexander2 and Alexander3 in this work.

4.4.2 Explicit Runge-Kutta Methods

As an alternative to the DIRK methods when solving ADREs, explicit time integration can
be used. The explicit methods avoid the solution of the (non-)linear system of equations, but
the maximal time step size is restricted to ensure numerical stability.

Applying the explicit Euler time integration to (4.13) yields the fully-discrete form

Un+1 = Un + ∆tnL(Un). (4.14)

The forward Euler time discretization is stable with respect to the L∞-norm, i.e.

‖Un+1‖∞ ≤ ‖Un+1‖∞ ∀n ≥ 0, (4.15)
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for a sufficiently small time step ∆tn dictated by the CFL condition

∆tn ≤ ∆tcfl. (4.16)

Here, ∆tcfl is the largest allowable step size that will guarantee that the stability property
above will hold for forward Euler with the given PDE and spatial discretization. The time
step restriction for explicit methods is discussed in details in Section 4.4.5.

The transport problem was subsequently extended to second-order accuracy in space using
slope limiter techniques. In order to fully exploit this improvement in spatial accuracy, we also
need to improve the accuracy in time by switching to higher-order accurate time integration
methods. A class of higher-order accurate time integration methods that preserve stability
properties of the fully-discrete scheme with explicit Euler time integration (4.14) is referred
to as Strong Stability Preserving (SSP) methods (Gottlieb and Gottlieb, 2003; Gottlieb et al.,
2001). These methods were originally developed by Shu (1988) and called TVD Runge-Kutta
methods.

A general m stage RK-SSP method can be algorithmically represented as

Ũ0 = Un, (4.17a)

Ũ i =
i−1∑
k=0

(
αikŨ

k + ∆tnβikL(Ũk)
)
, i = 1, . . . ,m, (4.17b)

Un+1 = Ũm, (4.17c)

where αik ≥ 0 and αik = 0 only if βik = 0. This representation of RK methods can be
converted to a standard Butcher form, but the conversion is not unique and for consistency we
require

∑i−1
k=0 αik = 1 (Pareschi and Russo, 2005). If the explicit scheme can be written in the

form (4.17) with non-negative coefficients βik then it is a convex combination of explicit Euler
steps with step sizes βik∆tn

αik
. SSP-RK methods are called optimal if the time step restriction

corresponds to the time step restriction for explicit Euler method, which is formalized in the
following theorem (Shu, 1988):

Theorem 1 (SSP optimal methods)
If the explicit Euler method (4.14) is L∞-stable subject to the CFL condition (4.16), then every
optimal SSP-RK method is L∞-stable under the same time step restriction.

Furthermore, SSP methods up to (and including) third-order for ODEs with non-linear op-
erators L do not require any additional stages or function evaluations compared to general
explicit RK methods (Gottlieb et al., 2001). We use the second- and third-order non-linear
SSP-RK methods given in Shu (1988), denoted by Heun and Shu3, respectively, for details see
Appendix A.1.1. Both of these methods are optimal in the sense given above.

4.4.3 IMEX Runge-Kutta Methods

As a general rule, it is best to solve non-stiff problems using explicit methods. This should be
expected to achieve acceptable accuracy with minimal costs. However, as problems become
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increasingly stiff, stability rather than accuracy becomes the dominant consideration, and
implicit methods become the more appropriate choice.

The most simple decoupling of the main processes in ADRE from one another is to use the OS
technique. However, using OS techniques can give rise to large splitting errors (Verwer et al.,
2004). For many reactive transport processes, the natural splitting is into two parts: a) one of
which is non-stiff, or mildly stiff, and suited for explicit treatment and b) a stiff term, which
is suited for implicit time integration. The RK-IMEX methods consist of suitable mixtures of
implicit and explicit methods and are used without formal splitting.

Suppose that the semi-discrete system is given by

U ′(t) = L1(t, U(t)) + L2(t, U(t)), (4.18)

where L1 is a non-stiff term suitable for explicit discretization (e.g. discretized advection), and
L2 is a stiff term requiring an implicit treatment (e.g. diffusion or stiff reactions).

A simple example of RK-IMEX methods is the θ RK-IMEX method Koto (2008b) defined by

Un+1 − Un

∆tn
= L1(tn, Un) + (1− θ)L2(tn, Un) + θL2(tn+1, Un+1), (4.19)

with parameter θ ≥ 1
2 . Here, the explicit Euler method is combined with the A-stable implicit

θ method and is of first-order in accuracy. Other RK-IMEX methods used in this work are
summarized in appendix A.1.2. Trapez-IM, Alexander2-IM and Pareschi2 belong to second-
order schemes, whereas Ascher3 is third-order accurate in time.

Boscarino et al. (2013) used RK-IMEX methods to solve advection-diffusion equation, where
the linear diffusion was solved fully implicitly and non-linear advection was solved using explicit
time integration. Numerical results showed that this approach is able to capture the correct
behavior of the system at lower computational costs than explicit schemes, because the CFL
restriction for the parabolic part (diffusion) can be removed. Furthermore, their scheme avoids
implicit solves of non-linear algebraic equations.

The RK-IMEX method remains stable for time steps much longer than those that would be
possible for a purely explicit methods. However, the analysis of the stability of RK-IMEX
methods is still under investigation; the stability of several methods is examined in Calvo et al.
(2001); Koto (2008a,b); Pareschi and Russo (2000) among others. Note, that the stability of
explicit method for explicit part and stability of implicit methods for stiff part do not imply
the stability of the RK-IMEX scheme.

4.4.4 Reaction Problem

In case of full operator splitting, when the reaction term is not handled in (3.2), we solve
the system of ODEs (3.1b) element-wise using an embedded Runge-Kutta-Fehlberg (RKF45)
method (Hairer et al., 1993). This method allows for an automatically determined adaptive
step size to reduce error in the solution. For highly stiff ODEs or for a system of differential-
algebraic equations, implicit time integration together with Newton’s method can be used
instead of RKF45.
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4.4.5 CFL-like Condition

If the component transport equation (4.5) is discretized with an explicit method in time, then
the time step needs to be restricted to preserve stability. The principle behind the time step
restriction is the physical transport on a given grid. If a tracer is moving across a discrete
spatial grid, the time step duration must be less than the time for the tracer to travel to
adjacent elements. Specifically, if the tracer is able to flow through one grid element in one
time step.

The time step restriction is typically associated with an upper boundary for the Courant-
Friedrichs-Lewy (CFL) number ν. The CFL condition relates the length of the time step to a
function of the interval lengths of the spatial discretization and of the maximum speed with
which information can travel in the physical space.

Based on the CCFV spatial discretization for ADRE (4.5), we define the outflow flux function
on an element E ∈ Th by

O(E) =
∑
γ∈∂E

(
Lg max(0, v · nγ) +

D

dE,γ

)
|γ|, (4.20)

where Lg > 0 denotes the Lipschitz constant of the hyperbolic numerical flux; for limiters
discussed in Section 4.3.3 a reasonable value for Lg is 2 (Verwer et al., 2004), whereas for upwind
schemes without flux reconstruction Lg = 1. The function (4.20) measures the numerical
outflow flux from the grid cell E. The specific time Ts needed by the tracer to leave the grid
cell E is given by

Ts(E) =
R|E|
O(E)

. (4.21)

To ensure that the tracer concentration does not turn negative in any mesh cell in one time
step and to fulfill the condition on maximal travel distance, we define a CFL-like number νl by

νl =
∆t

minE∈Th Ts(E)
. (4.22)

The maximal CFL-like number value of 1 indicates that the tracer is able to flow through one
grid element during one time step.

The time step restriction (4.22) can also be computed for one-dimensional problems. Since the
measure of γ is not defined, we set |γ| = 1. For regular grids with mesh size h together with
an upwind scheme the CFL-like condition (4.22) leads to the well know CFL condition. For
pure advection (D = 0), one obtains

ν =
v∆t

h
(4.23)

and for pure diffusion (v = 0) the CFL condition is given by

ν =
2D∆t

h2
. (4.24)

Thus, ∆t is of the order h2 for large D and of the order h for D ≤ h. In cases where the
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diffusion coefficient is larger than the mesh size, it is therefore advisable to use an implicit
scheme which completely eliminates the stability breakdown problem due to time step size.

4.4.6 Péclet Number

The ratio of the rate of physical advection by the flow to the rate of diffusion regarding to the
element size h is defined by a dimensionless grid Péclet number

Peg =
hv

D
. (4.25)

The grid Péclet number can be used to decide whether the transport process in ADRE (4.5)
is locally (in the grid cell) advection or diffusion dominated. It also imposes a restriction
on the mesh size independent of the time step for central differences instead of upwinding
in the advection term, see Section 4.3.2. For Peg < 2 the central difference formulation is
unconditionally stable. On the other hand, for grid Péclet numbers greater than 2, the central
differences are not stable and spurious oscillations can occur.

A combination between central differences and upstream weighting (upwind) formulation is a
power law scheme proposed by Patankar (1980), where the solution approach switches between
a fully centered form at Peg < 2 to an upwind formulation at Peg > 10.

4.5 Implementation

All numerical methods, algorithms and discretization schemes described in this chapter have
been implemented and the numerical simulations were performed in the C++ framework DUNE
(Bastian et al., 2008a,b), particularly in the discretization module dune-pdelab (Bastian et al.,
2010).

Grid

Our problems are limited to simple (rectangular, axis-parallel) geometries, so we were able
to use the structured rectangular grid YaspGrid for all simulations. The overlapping domain
decomposition methods with the Schwarz overlap allows us to simulate problems involving large
grids on parallel computers. The overlap of one cell was chosen for all parallel computations.

Non-Linear Solver

The arising non-linear equations are linearized with an inexact Newton’s method, the Jacobi
matrix is derived through one-sided numerical differentiation. To increase the convergence
region of Newton’s method, we employ a line search strategy (Hackbusch and Reusken, 1989).

In order to improve control over the non-negativity constraint of the concentrations to solve
the ADR systems (4.5) in the GIA approach, the original Newton’s method is slightly modified.
The resulting vector after each iteration of Newton’s method is controlled and negative values
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are set to zero. This modification improves the convergence behavior for ADR systems and
bigger time steps are allowed without controlling the solution after each time step. Another
solution for this issue would be to use logarithmic value of the concentration as in Samper
et al. (2009) and Amir and Kern (2010). However, evaluating the logarithmic functions can be
very demanding.

Linear Solvers

The resulting linear system is solved with a BiCGStab iterative solver with a SSORk precon-
ditioner or an algebraic multigrid preconditioner (Blatt, 2010). Smaller matrix problems were
solved using the direct solver SuperLU.

4.6 Solution Procedure

We use a sequentially coupled non-iterative methodology to solve the multi-phase flow, multi-
component transport and chemical reactions similar to Xu and Pruess (2001) implemented in
code TOUGHREACT and to Lichtner (1996) implemented in code MULTIFLO. The solution
algorithm for two-phase flow and reactive transport is represented in Fig. 4.2. At each new
time step, we first solve simultaneously the flow equations (3.2) in order to obtain the pressure,
saturation and velocity flow field as functions of position. Second, we solve the transport model
(3.3) including advection and diffusion on a component basis. In the third step, the resulting
cell concentrations obtained from the transport are substituted into the chemical reaction
model (3.4). The alternative to the second and third steps is GIA to solve system (3.5) fully
implicitly. This three-step approach (two-step in the case of GIA) can be justified based on
the different time scales of the processes involved.

4.6.1 Adaptive Time Stepping

We provide an adaptive time stepping scheme which ensures a reliable, robust and effective
solution of the non-linear equations describing two-phase flow and reactive transport based on
the present difficulty of the concrete problem. Without the adaptation strategy the simulation
of complicated problems would not be possible. In the overall scheme the time step ∆tf for
the two-phase system may be larger than the time step ∆tc for the reaction-transport part and
several steps for the reactive transport are applied per two-phase time step.

Two-Phase Flow

In the first step, the two-phase problem with time step ∆tf is solved. We control the time step
size for the two-phase flow problem using a simple but efficient scheme: the size of the time
increment ∆tf is determined based on the absolute change in saturation and the convergence
of Newton’s method during the last time step. To reduce the operator splitting error between
phase transport and component transport, the maximal absolute change per-cell saturation
in one time step ∆tf is limited to 0.1. This choice is suitable for our applications, because
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Solve reactive
transport (3.5)

Timestep ∆tc

GIA SNIA

Fig. 4.2: Flow chart summarizing solution algorithm.

the system contains water and air and sharp saturation fronts are not expected. For other
application (e.g. DNAPL infiltration in field-scale studies) this criterion should be modified
and further investigated.

We detect non-convergence of the time step based on the number of Newton’s iterations, line
search iterations and linear solver breakdown; in this case, we retry the time step with a
reduced time increment cr∆tf . This algorithm ensures that the only possibility for complete
convergence failure is if the solution does not converge for the specified minimum time step.
On the other hand, if Newton’s method converges in less than 6 iterations and the time step
was not reduced in the previous time step, next time step will increase to ci∆tf . The constants
cr < 1 and ci > 1 can be specified by the user, the choice cr = 0.6 and ci = 2 is used for all
two-phase simulations.
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Reactive Transport

The time step ∆tc for the reactive and transport part is chosen based on the transport velocity
and the rate of chemical reactions to reduce the splitting error between component transport
and reactions in the SNIA variant. For details about the choice of ∆tc see Chapter 5.

For GIA-based methods ∆tc is restricted by the convergence of Newton’s method and a similar
strategy to the solution of the two-phase problem can be applied. However, because we use
GIA together with full upwinding and implicit time integration, it is prone to add numerical
diffusion in advection-dominated cases for large time steps and the maximum time step needs
to be capped at ∆tc,max. In order to reduce numerical diffusion, ∆tc,max should not exceed
time step corresponding to the CFL number ν = 10 for pure advection problem computed by
(4.23). We prefer GIA during periods of quasi steady-state, when the concentration changes
in the system are slow and greater time steps can be expected to reduce computational effort
time.

If the flow in the liquid phase is advection-dominated and exhibits sharp concentration fronts,
we prefer SNIA and explicit time discretization together with higher-order space discretization.
Transport equations for each liquid component are solved with time step ∆tt, which is defined
as the maximal time step satisfying the CFL-like condition (4.22) for all liquid components.
In the gas phase, transport is often diffusion dominated and can be solved using implicit
methods. The transport time step ∆tt is smaller than ∆tc and it holds ∆tc =

∑
∆tt. The

reaction time step ∆tr in the third part of the solution approach is automatically chosen with
the predictor-corrector method RKF45.

Solution Control

In order to verify the consistency of the reaction and transport step, we control the resulting
values of concentrations and retry with a smaller time step value in case of failure. While
negative concentration values only occur very rarely if ∆tc,∆tt and ∆tr were chosen correctly,
this control step is crucial to guarantee the correctness of the solution.

The gas density depends on the gas composition and is updated based on the new component
concentrations in the gas phase after each transport step followed by the gas velocity update.
If the gaseous composition is not taken into account, we compute the phase velocities only one
time per two-phase time step ∆tf .

If there is high phase exchange in the system and gas molecules are added to or removed from
the gas phase, the time step ∆tf needs to be reduced. The element-wise loss or win of gas
molecules during the phase exchange needs to incorporated into the solution of the two-phase
problem as an inner source term. We will investigate this part of splitting algorithm in the
future model development; in this work we assume a constant mole density νg in the gas phase.

4.6.2 Transport of Gaseous Components

The non-standard difficulty for transport in the gaseous phase is that the gas saturation may
be zero in some parts of the domain. We require that the following assumption holds: If the
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gas saturation in some cell E ∈ Th is non-zero at time t then it is also non-zero at t+∆tf after
the two-phase flow step. In practice, non-zero is replaced by sg > ε. This can be ensured by
setting the relative permeability to zero for non-zero but small saturation, which is equivalent
to a small residual saturation of the gas phase sr,g.

All cells with sg ≤ ε at t + ∆tf are treated as “dry cells” and omitted in the transport step
(for advection as well as for diffusion). For implicit time discretizations, trivial equations are
assembled. For the “wet cells” with sg > ε at t+ ∆tf the usual component transport equations
(3.3) for gaseous species are solved.

4.7 Parameter Estimation

In this work, we investigate several different kinetically controlled bio-chemical reactions. How-
ever, the kinetically controlled reactions have one drawback: if the kinetic rates are not known
from the literature (which is often the case), they need to be determined based on laboratory
experiments and observed data. Parameter estimation techniques allow us to determine the
rates of chemical reactions and compare the level of correspondence between measured data
and solution of given problem with estimated parameters.

Model Problem

The temporal development of a dynamic system with the components z1, . . . , zn is given by a
system of ordinary differential equations (in vector notation)

dzzz
dt

= f (zzz;θθθ; t) , zzz(0) = zzz0

with dependent variables zzz = (z1, . . . , zn)T and parameters θθθ = (θ1, . . . , θp)
T . Let yi,j de-

note measurements (or functions of the measurements) taken at time points tj , j = 1, . . . ,m.
We assume the measurement errors to be normally distributed with mean 0 and standard
deviation wij .

The problem to be solved is the minimization of the objective function (residuum)

R(θθθ) =
n∑
i=1

Ri(θθθ) =
n∑
i=1

m∑
j=1

(
zij(θθθ, tj)− yij

wij

)2

(4.26)

over the set of admissible parameter values with appropriate weighting factors wij . The index
j in zij denotes the value of component zi at time point j. Eq. (4.26) can also be interpreted
as a log-likelihood estimator for the parameters, see Seber and Wild (2003).

The coefficient of determination R2, a number that indicates how well data fits a model, is
computed as

R2(θθθ) = 1−
∑n

i=1

∑m
j=1 (zij(θθθ, tj)− yij)2∑n
i=1

∑m
j=1 (yij)

2 . (4.27)
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To minimize the residuum R and to solve the optimization problem, we use the Levenberg-
Marquardt-Algorithm (LMA) (Moré, 1978) with the sensitivities derived by numerical differ-
entiation. The code for parameter estimation was originally implemented by Olaf Ippisch in
a computer code fitphi and applied in Ippisch et al. (2006). The parameter estimation is
independent of the forward problem which can be a system of ODEs or PDEs.

4.8 Final Remarks

In this chapter we have described the used numerical schemes in detail. We solve the two-
phase problem using CCFV space discretization together with unconditionally stable implicit
methods. The component transport problem is solved using first- and second-order CCFV
methods. For the simulation of advection-diffusion problems in diffusion dominated cases we
use CCFV with implicit time integrators, which enables large time steps.

In advection-dominated cases we use explicit one-step methods for the time discretization. The
time step is always restricted by a CFL condition, see Section 4.4.5. Furthermore, upwinding
is needed for stability reasons which is only first-order accurate. For this reason we use CCFV
with a second-order Godunov reconstruction of upwind fluxes and slope limiters. These limiters
guarantee second-order accuracy for smooth solutions while still satisfying the TVD property.
Most TVD schemes also satisfy the strict maximum principle, even in multi-dimensions. TVD
schemes can be designed for any formal order of accuracy for solutions in smooth, monotone
regions. Unfortunately, TVD schemes locally degenerate to piecewise constant approximations
at smooth extrema which locally degrades the accuracy (Osher et al., 1985).

To overcome this difficulty, other schemes were developed in the literature: essentially non-
oscillatory (ENO) reconstruction schemes (Harten et al., 1987) and weighted ENO schemes
(WENO) (Liu et al., 1994). These schemes do not insist on strict TVD properties, therefore
they do not satisfy the maximum principle. On the other hand, they can be designed to
be arbitrarily higher-order accurate for smooth solutions. The advantage of WENO schemes
is that they do not create oscillations for solutions with strong shocks even for complicated
meshes. Therefore, WENO schemes are often used as limiters not only for CCFV, but also for
discontinuous Galerkin method (DG) (Zhu et al., 2008). We do not use the WENO schemes
in this work, but they can be tested in a future model development.

Although we apply the numerical simulator in problems involving only simple geometries (see
Chapters 6, 7 and 8), the operator splitting concept is independent of the chosen numerical
scheme. On complicated geometries unstructured grids with discretization schemes like DG can
be used for both the two-phase problem (Bastian, 2014) and the component transport problem
(Bastian, 2003). The choice of numerical methods for the simulation of a specific problem has
a significant impact on the obtained accuracy. We discuss this impact in Chapter 6 in more
detail. We compare the performance of CCFV and DG with linear basis functions to solve
the ADRE problem (Eq. 4.5) in advection-dominated cases. The implementation of DG is
described in detail in Bastian (2003). The unphysical oscillations in higher-order DG schemes
are suppressed by slope limiters. The slope limiters in DG are applied after each stage in the
Runge-Kutta time stepping scheme. That is the difference compared to the CCFV scheme,
where the flux reconstruction is used before each stage in the Runge-Kutta method.
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Chapter 5

Operator Splitting

In the operator splitting approach for reactive transport, the physical transport and reactive
processes are generally decoupled. In this chapter we will take a look at the operator splitting
(OS) of the ADR problem (4.5) and answer the question in which situations and under which
circumstances the operator splitting method works well. From the theoretical point of view,
the viability of any OS method is primarily determined by the splitting error introduced by
solving the sub-problems one after another in a decoupled manner.

The first part of this chapter deals with theory about operator splitting. We conclude this
theoretical part with a theorem describing the conditions under which no operator splitting
error arises in ADR problems. In the second part we describe some possibilities of operator
splitting techniques for ADRE, define the measures for errors in the OS and characterize the
time scales for each process based on a dimensionless numbers. We also describe the solution
strategy eliminating the discretization error in the solution of each operator in ADRE which is
subsequently used in the last part of this chapter where we analyze the OS error for simple one-
dimensional problems which are relevant for reactive transport modeling of real applications.

5.1 Operator Splitting Theory

This section is based on work by D. Lanser (Lanser, 2002) about operator splitting and appli-
cations in air pollution modeling. The results are also well applicable to problems in reactive
transport in porous media. We present an introduction to the analysis of operator splitting
and provide insight into the splitting error for ADR problems in greater detail. These general
ideas are independent of the particular spatial and temporal discretization used.

5.1.1 Linear ODE Problem

Let us first illustrate the notion of splitting by considering a linear, homogeneous ODE problem

dC(t)

dt
= AC(t), t ∈ [0, T ], C(0) = C0, (5.1)

and assume a two-term splitting for A, A = A1 + A2. The system (5.1) may be seen as e.g. a
semi-discretization of a linear transport problem (4.6) with homogeneous boundary conditions.
The solution of (5.1) at time tn+1 = tn + τ is given by

C(tn+1) = eτAC(tn). (5.2)
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If we apply A1 and A2 separately using first-order splitting (3.8), instead of the full A, then
(5.2) can be approximated by

Cn+1 = eτA2eτA1Cn (5.3)

with Cn approximating C(tn).

The exponential of the matrix is defined by the power series and we have

eτA = I + τ(A1 +A2) +
τ2

2
(A1 +A2)2 + . . . ,

eτA2eτA1 = I + τ(A1 +A2) +
τ2

2
(A2

1 + 2A2A1 +A2
2) + . . . .

Replacing (5.2) by (5.3) normally introduces an operator splitting error. Inserting the exact
solution C of the original problem (5.1) into (5.3) gives

C(tn+1) = eτA2eτA1C(tn) + τρn, (5.4)

with local truncation error ρn. The error thus satisfies

ρn =
1

τ

(
eτA − eτA2eτA1

)
C(tn) =

τ

2
[A1, A2]C(tn) +O(τ2), (5.5)

where
[A1, A2] = A1A2 −A2A1

is the commutator of A1 and A2. We can see that the splitting (5.3) is a first-order process
unless A1 and A2 commute. When both matrices commute, we have

eτA2eτA1 = eτA2+τA1 = eτA, (5.6)

the splitting (5.3) is exact and it leaves no splitting error. It can be seen by using the power
series expansion for the exponential function, see Hundsdorfer and Verwer (2003).

5.1.2 Abstract Initial Value Problem

We discussed the first-order time splitting for linear ODE problems (5.1). However, this dis-
cussion can also be extended to PDE. Considering directly the PDE problem will make it
more clear in which cases the time splitting will be exact. We study the initial value problem
for abstract autonomous systems

dC(x, t)

dt
= f(x,C(x, t)), t ∈ [0, T ], x ∈ Rd, C(x, 0) = C0(x). (5.7)

With this abstract problem we may associate any ODE or PDE initial value problem in au-
tonomous form without boundary conditions. In the case of a linear ODE problem, Eq. (5.7)
simplifies to (5.1).

In the PDE case, the function f is to be seen as a spatial partial differential operator, e.g. for
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the advection-diffusion-reaction system (4.5):

f(C) = −∇ · (vC) +∇ · (D∇C) + q(C), (5.8)

where C = C(x, t).

For simplicity we do not explicitly write the dependency of C and f on x. We assume C is
from the function space U which is a real, sufficiently often differentiable space.

If the solution of (5.7) at time tn is known, we define the solution operator Sτ acting on U
such that the solution of (5.7) at time tn+1 = tn + τ is given by

C(tn+1) = Sτ (C(tn)). (5.9)

This operator generalizes the exponential operator eτA of the linear ODE problem (5.1).

For simplicity, we assume a two-term splitting for f , f = f1 + f2, but the presented techniques
can be generalized to multi-component splittings (Hundsdorfer and Verwer, 2003). We associate
with f1 and f2 the solution operators Sτ ,1 and Sτ ,2. In the case of first-order splitting (3.8),
the abstract initial value problem (5.7) then becomes

Cn+1 = Sτ ,2
(
Sτ ,1(Cn)

)
, (5.10)

with Cn approximating C(tn). As above, by inserting the exact solution C of (5.7) into (5.10)
and using Taylor expansion of C(tn+1) around t = tn, we obtain a relation similar to (5.4) for
linear ODE problems

C(tn+1) = Sτ ,2
(
Sτ ,1(Cn)

)
+ τρn, (5.11)

where the local truncation error is given by

ρn =
τ

2

[
∂f1

∂C
f2 −

∂f2

∂C
f1

]
(C(tn)) +O(τ2). (5.12)

In analogy to the linear ODE case, we call this bracketed term the commutator of the operators
f1 and f2

[f1, f2] (C) =

[
∂f1

∂C
f2 −

∂f2

∂C
f1

]
(C). (5.13)

An important observation is that the local error in the splitting (5.10) is a first-order process
unless operators f1 and f2 commute, similarly as for the linear ODE case. One can also
prove by means of a Lie operator formalism the fact that the splitting process (5.10) leaves
no splitting error if the commutator (5.13) is zero. We refer the reader to Lanser and Verwer
(1999) and Hundsdorfer and Verwer (2003) for technical details.

5.1.3 Splitting for ADR in Initial Value Problems

We discuss in which situations an OS error occurs, when the influence of boundary conditions is
not considered. Throughout the following analysis, we assume that (5.8) is linear with respect
to advection and diffusion, but non-linear in the chemical reaction term q.
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The commutativity of the advection, diffusion and reaction operators was studied in (Lanser,
2002; Lanser and Verwer, 1999) and can be summarized in the following theorem:

Theorem 2 (Splitting for ADRE)

1. Advection commutes with diffusion if both v and D are independent of x.

2. Advection commutes with reaction if
a) q is independent of x and the velocity field is divergence-free (∇ · v = 0), or
b) q is independent of x and linear in C.

3. Diffusion commutes with reaction if q is linear in C and independent of x.

This commutativity is of great importance: when the corresponding processes commute, we do
not have any splitting error. As a consequence of Theorem 2, no splitting error of ADRE exists
if all terms (v, D and q) are independent of x and q is linear in C. Note that the requirement
q independent of x does not mean that q is independent of C = C(x, t).

Advection and Diffusion

In real-world applications, v and D will not be independent of x and thus the splitting error
does not vanish. For this reason, the second-order symmetrical Strang splitting is preferred.

Transport and Reaction

If we split transport (advection and diffusion) and reaction, and solve transport followed by
reaction, the local truncation error has the form (Hundsdorfer and Verwer, 2003)

ρn =
τ

2

[
−∇ · (vq(C)) +∇ · (D∇q(C)) + q′(C)(∇ · (vC))− q′(C)(∇ · (D∇C))

]
(tn) +O(τ2).

(5.14)
A similar truncation error can be found for the second-order symmetrical Strang splitting
scheme (Lanser, 2002). In practical applications, the reaction term q typically depends on C
in a non-linear fashion q(C) = LC + q̃(C): a linear part L plus a non-linearity q̃. If the linear
operator L is independent of x, then the linear part drops out of the commutator, and the
truncation error for the first-order splitting becomes

ρn =
τ

2

[
−∇ · (vq̃(C)) +∇ · (D∇q̃(C)) + q̃′(C)(∇ · (vC))− q̃′(C)(∇ · (D∇C))

]
(tn) +O(τ2).

(5.15)

In addition, if the velocity field is divergence-free and the reaction term q is independent of x
(non-linearity of q is still allowed), the expression for the splitting error simplifies to

ρn =
τ

2

[
∇ · (D∇q̃(C))− q̃′(C)(∇ · (D∇C))

]
(tn) +O(τ2). (5.16)
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5.1.4 Boundary Value Problem

Until now we have assumed homogeneous boundary conditions. However, the major difficulties
with operator splitting methods occur in problems where the boundary conditions are impor-
tant. We note that the inhomogeneous boundary conditions will give an inhomogeneous term
in the system disturbing the commutativity of the operators even if the assumptions required
by Theorem 2 are fulfilled. Thus, traditional OS schemes are known to incur an error when a
non-zero mass flux across the domain boundary is present (Kaluarachchi and Morshed, 1995;
Simpson et al., 2005; Valocchi and Malmstead, 1992).

The boundary conditions may also affect the accuracy of splitting methods and even the order
of Strang splitting may be reduced (Hundsdorfer and Verwer, 2003). This loss of convergence
order caused by boundary conditions is often the main reason for the disappointing convergence
behavior with splitting methods.

5.1.5 Summary

In this section we have shown that the error in the operator splitting depends on the size of
the involved commutators. In situations satisfying the assumption of Theorem 2 no operator
splitting errors arise. Otherwise we are able to describe the arising OS error in one splitting
time step τ : e.g., equations (5.14-5.16) express the error for the first-order splitting if we
split transport and reaction. However, we are not able to predict the accumulation and the
propagation of the OS error during the whole simulation. Moreover, if we consider a PDE
problem with inhomogeneous boundary conditions, the boundary conditions for the splitting
sub-steps are missing. In the following, we study the arising OS errors in concrete problems.

5.2 Splitting Errors and Quantification

In order to get a better insight into the applicability of the OS methods, we investigate OS
error in some simplified examples depending on the splitting time step τ , the type and the
character of chemical reactions and the solute transport velocity. Table 5.1 contains a summary
of the considered splitting strategies under investigation. The most popular schemes are A-
D-R, where all three operators are solved separately (Clement et al., 1998), and the two-step
scheme (AD-R), where the reaction follows the transport (Valocchi and Malmstead, 1992).

In the literature, one can also find other splitting schemes that differ in the sequence of the
solution of each operator (e.g. Simpson et al., 2005). However, the difference is remarkable only
in one splitting time step. Thus, the solution order of the involved operators has a negligible
impact on the solution of given problem when more splitting time steps are used.

5.2.1 Mass Balance Errors

Firstly, we study the limitations of OS techniques based on total mass balance. The mass
balance error in ADREs is a specific measure for the splitting error which was investigated

51



OS Approach Solution Algorithm Splitting
Time Step

AD-R 1. advection-diffusion τ
2. reaction τ

AD-RS
1. advection-diffusion τ/2
2. reaction τ
3. advection-diffusion τ/2

A-D-R
1. advection τ
2. diffusion τ
3. reaction τ

A-DR 1. advection τ
2. diffusion-reaction τ

A-DRS
1. advection τ/2
2. diffusion-reaction τ
3. advection τ/2

A-DS-RS

1. advection τ/2
2. diffusion τ/2
3. reaction τ
4. diffusion τ/2
5. advection τ/2

Table 5.1: Investigated splitting methods for ADRE.

by many authors, e.g., Valocchi and Malmstead (1992). The one-dimensional ADRE with
first-order reaction in a semi-infinite domain Ω = [0,∞) can be written as

∂C

∂t
+∇ · (vC −D∇C) = q = −λC, (5.17)

where C is the concentration of the solute, v is a constant velocity and D is the diffusion
coefficient. The reaction term q models a first-order linear decay with reaction rate λ. The
initial concentration is 0 in the whole domain, and at the inflow boundary a solute with
concentration C0 is added. The boundary condition can be of the Dirichlet type, where the
inflow concentration is fixed

C(0, t) = C0, (5.18)

or of the Robin type (mixed boundary condition), which has the form(
vC −D∂C

∂x

)
(0, t) = vC0. (5.19)

Eq. (5.17) with either type of boundary condition on a semi-infinite one-dimensional domain
has an analytical solution (Genuchten, 1981). We can also prescribe a Neumann boundary
condition at the inflow (flux), but the concentration flux is hard to measure in experiments.
For this reason we only consider ADR problem with boundary condition (5.18) or (5.19).

The choice of the boundary condition also influences the choice of OS technique. For the
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Dirichlet boundary condition (5.18), the A-D-R and AD-R schemes applied to the advection-
diffusion equation generally result in a different solution. This difference is caused by the
splitting error in the A-D-R scheme, which occurs at the boundary. For advection dominated
cases, the diffusion directly at the domain inflow is often negligible. In practical situations
(laboratory experiments with solute inflow) we are not able to distinguish between the advec-
tion and the diffusion part of the transport and we prefer the Robin boundary condition (5.19),
which includes the inflow solute concentration. Similarly, if we do not take into account the
diffusion at the domain boundary in the A-D-R splitting scheme, A-D-R and AD-R schemes
with Robin boundary condition result in the same solution.

Valocchi and Malmstead (1992) only considered Robin boundary condition and analytically de-
rived the mass balance errors after the first splitting time step τ for AD-R and AD-RS schemes.
Integrating the governing equation (5.17) together with (5.19) over the one-dimensional domain
Ω, and using the fact that C(x→∞)→ 0, they obtain the ODE problem

dM(t)

dt
= vC0 − λM(t), M(0) = 0, (5.20)

where M(t) is the total mass in Ω computed as

M(t) =

∫
Ω
Cdx =

∫ ∞
0

Cdx. (5.21)

The ODE for the total mass (5.20) has the analytical solution M(t) = vC0
λ (1 − e−λt). To

compare the error in the OS approach to the exact solution, we define the relative mass error
as

Merr =
M −Mos

M
, (5.22)

whereMos is the total mass of the solution obtained using the operator splitting approach. The
relative mass error after one splitting time step τ can be computed analytically, see Valocchi
and Malmstead (1992) for details, and is expressed as

Merr(τ) = 1− λτe−λτ

1− e−λτ
for AD-R, Merr(τ) = 1− λτ

2

1 + e−λτ

1− e−λτ
for AD-RS. (5.23)

Figure 5.1a shows a plot of the magnitude of the relative mass error over one time step τ versus
the factor λτ for AD-R and AD-RS schemes. AD-RS has much smaller mass balance errors
than AD-R for values of λτ less than 1. The AD-R method overestimates the reaction rate
which results in positive values of Merr, whereas the relative error in AD-RS remains negative,
see also Table 5.2.

The analysis of the analytically computed mass error can be continued recursively. Kalu-
arachchi and Morshed (1995) have calculated the mass for (5.17) with (5.19) after n splitting
time steps τ . The value of the mass for AD-R is then given by

Mos(nτ) =
vC0τ

λ
e−λτ

(
1− e−nλτ

)
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Fig. 5.1: (a) Absolute value of relative mass error Merr(%) after one time step τ
versus λτ . (b) Relative mass error at time t = 0.6 over number of splitting time
steps (#τ) for problem (5.17), with v = 1 and λ = 2.

A-DR A-DRS

#τ Merr(%) rate Merr(%) rate

1 4.83× 101 - −1.17× 101 -
2 2.70× 101 0.84 −2.98 1.97
4 1.43× 101 0.92 −7.49× 10−1 1.99
8 7.31 0.96 −1.87× 10−1 2.00

16 3.70 0.98 −4.69× 10−2 2.00
32 1.86 0.99 −1.17× 10−2 2.00
64 9.35× 10−1 1.00 −2.93× 10−3 2.00

Table 5.2: Relative mass errors for linear decay with Robin boundary condition
and convergence of OS methods for different splitting time steps τ at time t = 0.6
with parameters v = 1, D = 10−3 and λ = 2.0.

and for AD-RS it becomes

Mos(nτ) =
vC0τ

(
1 + e−λτ

)
2λ

(
1− e−nλτ

)
.

Fig. 5.1b shows the absolute value of the relative mass error Merr versus the number of time
steps (#τ) for A-DR and AD-RS at time t = 0.6 with v = 1 and λ = 2. The AD-RS scheme
is of second-order accuracy with regard to the splitting time τ while A-DR only obtains first-
order accuracy. To reduce the mass error under 1% of the total mass, AD-R requires 64 time
steps τ , whereas AD-RS needs only 4 steps.

5.2.2 Error Measurements

In many studies, the error induced by OS techniques was investigated only with respect to the
total mass balance (Carrayrou et al., 2004). The A-DR and AD-RS OS schemes applied to a
simple problem (5.17) with linear decay work reasonably well if we compare the total mass.
However, the mass error does not say anything about the spatial distribution of the error. It
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also does not fulfill the definition of a norm: even for zero mass error the OS solution does not
necessarily correspond to the exact solution of a given problem.

For a more rigorous investigation we compare the exact solution ue and the OS splitting solution
uτ . The error Err is given by

Err = ue − uτ .

Furthermore, we define a relative error by

Lr1 =
‖Err‖1
M

, (5.24)

where ‖ · ‖1 is the L1-norm and M is the total mass of the exact solution ue. The relative mass
error norm Lr1, corresponding to the L1-error normalized by the total mass, is a better measure
for the quality of the OS solution. If the OS method overestimate or underestimate consistently
the exact solution in the whole domain (as e.g. for the problem (5.17) solved using the A-D-R
scheme), the error computed by (5.24) corresponds to the mass error given by (5.22).

5.2.3 Characteristic Time Scales

In Section 5.2.1 we showed that the relative mass error of the OS for a simple problem (5.17)
depends only on factor λτ , independent of the velocity and diffusion. However, in general the
OS error depends on the nature of each operator. One of the major difficulties in coupling
transport and chemical reactions is the wide range of spatial and temporal scales characterizing
the various transport and reaction processes.

To be able to describe the relative velocities of each process in the system of ADREs, we define
the characteristic times for advection ta, for diffusion td and for reactions tr as

ta =
l

v
, td =

l2

2D
, tr =

1

λr
, (5.25)

where l is a characteristic length and λr corresponds to the effective rate of chemical reactions.
The characteristic length l can be related e.g., to the diameter of the spatial domain or to
the spatial discretization of numerical schemes. In our applications the characteristic length l
corresponds to the tracer transport distance in one splitting time step τ and is given by

l = vτ +
√

2Dτ. (5.26)

The characteristic length l in pure advection or pure diffusion corresponds to the length com-
puted from (5.25) with characteristic time τ .

To specify the relationship between advection and diffusion in one step τ , we define a Péclet
number Pe as

Pe = 2
td
ta

=
vl

D
=
v
(
vτ +

√
2Dτ

)
D

. (5.27)

If the characteristic length is equal to the mesh size h, Pe given by (5.27) corresponds to the
grid Péclet number Peg computed by (4.25).
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The relationship between reaction and transport time scales has a significant impact on the
applicability of OS methods to reactive transport problems. It can be estimated from advec-
tive and diffusive Damköhler numbers (Bahr and Rubin, 1987). The advection and diffusion
Damköhler numbers Daa and Dad are defined as the ratio of the advection time scale (or
diffusion time scale respectively) to the reaction time scale:

Daa =
ta
tr

=
lλr
v
, Dad =

td
tr

=
l2λr
2D

.

If we take the advection and diffusion for a transport process with the transport time scale tt
given by

tt =
l2

vl + 2D
,

the Damköhler number for the transport is defined as

Da =
tt
tr

=
λrl

2

v l + 2D
. (5.28)

The Damköhler numbers can be used to estimate whether the time scale of macroscopic physical
transport or the time scale of chemical reactions dominate a particular problem. However, it
is usually problematic to determine the reaction rate λr, because it is often not constant in
time and space and typically depends on the concentrations of the reactive solutes. We define
the reaction rate as the maximum over all individual rates in the considered problem.

5.2.4 Exact Solution

In the following we examine the performance of OS methods for different simplified problems
with various relative velocities of advection, diffusion and reaction. We classify the time scales
based on Daa, Dad, Da and Pe and discuss the sources and the magnitude of OS errors.

We only investigate one-dimensional problems with constant velocity and diffusion coefficients.
Thus, according to Theorem 2 there is no splitting error between advection and diffusion in
inside of the computational domain and the two-step scheme AD-R behaves like the A-D-R
OS scheme.

To be able to study the OS errors in ADREs, we need to solve the involved operators exactly.
However, the exact solution of each operator in advection-diffusion-reaction problems is often
not known and we substitute a highly accurate numerical solution of each operator computed
as follows. We discretize the computational domain using the CCFV discretization with a fine
mesh containing 6400 elements. To solve all operators, the temporal time step ∆t corresponds
to the advection CFL number ν = 1 given by (4.23). We solve the advective transport using
the method of characteristics, which solves the transport operator exactly (LeVeque, 2002).
We treat the diffusion implicitly with Alexander3 and the reaction element-wise with RKF45.
As an alternative when we solve the diffusion and reaction coupled, we use CCFV together
with Alexander3. Thus, each operator is solved very accurately and the total error of the
OS solution is thus largely dominated by the splitting. Note, that in all considered cases the
splitting time step τ is much greater than the discretization time step ∆t.
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In some examples described below we do not know the analytical solution of the given problem.
In these cases, we compute the exact solution using the second-order symmetrical Strang
splitting (A-DRS): in the first step we solve characteristics of the advective transport with time
step ∆t, followed by the solution of diffusion-reaction operator with CCFV and Alexander3
with time step 2∆t and followed by one step of advection. The spatial discretization and
the time step ∆t are the same as in the numerical solution of each operator described above.
However, in this case 2∆t = τ and thus both the discretization and the operator splitting
errors are reduced significantly.

5.3 One-Component Reactions

The goal of this chapter is to analyze the OS errors for different types of chemical reactions.
Before we can go ahead with reactions which are relevant for practical applications, we start by
investigating the OS errors in an irreversible one-component ADRE. In irreversible reactions
the reactants are completely converted into products and do not form reactants again. However,
this type of reactions represents a good starting position for the study of OS errors. The more
complicated reaction problems are mostly composed of several reactions which have similar
structure to the reactions considered below.

The Theorem 2 describes situations in which OS errors occur but does not say anything about
the size of the OS error. In order to estimate the size of the OS error for different variants of
Eq. (5.17) we consider various reactive source terms q including linear and non-linear reactions,
and also position-dependent reactions:

1. linear decay
q = −λC, (5.29)

2. non-linear Monod kinetic
q = −λ C

Kc + C
, (5.30)

3. position-dependent Monod kinetic

q = −λ C

Kc + C
(1− x). (5.31)

The half-saturation constant Kc in the Monod kinetic (5.30) and (5.31) is set to 0.5 for all
regarded problems. The reaction rates λr are in all cases less than or equal to the parameter λ
and we set λr = λ. The liquid flows with a constant unit velocity, while the diffusion coefficient
and the reaction rate may vary depending on the concrete problem.
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5.3.1 Reactive Gaussian Hill Problem

To test the theoretical observations given by Theorem 2, we consider the one-dimensional ADR
equation (5.17) with the initial concentration given by a Gaussian function

C0(x) = exp

{
−
(
x− x0

d

)2
}
. (5.32)

The numerical computations are performed on the truncated domain Ω = [0, 2] with homo-
geneous boundary conditions. We choose the the appropriate constants as in Simpson et al.
(2005): d = 0.04, x0 = 0.25, v = 1 and the final time t = 1. In this case the tracer will not
access the domain boundary. The decay rate λ remains constant with a value of 0.2 in all types
of reaction for Gaussian hill problem.

Linear Decay

For linear decay (5.29), the analytical solution on −∞ < x <∞ is known and has the form

C(x, t) =
exp(−λt)
σ(t)

exp

{
−
(
x− x0 − vt

dσ(t)

)2
}
, σ(t) =

1

d

√
d2 + 4Dt. (5.33)

Furthermore, all assumptions of Theorem 2 are met and thus no splitting error in OS occurs.
In this example, any discrepancy between the numerical and analytical solutions is only due
to the numerical error alone. To test the implementation of temporal discretization schemes,
we have chosen the time step for the numerical discretization ∆t equal to the step τ .

Table 5.3 shows the convergence behavior in the L1-norm of the numerical solution to the exact
solution. The convergence rates are as expected: implicit methods Alexander2 and Alexander3
are second- and third-order accurate respectively and RKF45 is the fifth-order accurate in time.
These results also confirm no operator splitting error between transport and reaction.

advection-reaction (D = 0) advection-diffusion-reaction (D = 0.01)

Alexander3 RKF45 Alexander2 Alexander3

#τ L1-error rate L1-error rate L1-error rate L1-error rate

1 1.57× 10−7 - 6.30× 10−11 - 1.55× 10−2 - 9.78× 10−3 -
2 2.02× 10−8 2.96 1.89× 10−12 5.06 2.93× 10−3 2.40 1.22× 10−3 3.00
4 2.56× 10−9 2.98 5.80× 10−14 5.03 3.14× 10−4 3.22 1.02× 10−4 3.58
8 3.22× 10−10 2.99 1.80× 10−15 5.01 7.13× 10−5 2.14 1.46× 10−5 2.80

16 4.04× 10−11 2.99 5.63× 10−17 5.00 1.75× 10−5 2.03 2.03× 10−6 2.85
32 5.06× 10−12 3.00 - - 4.34× 10−6 2.01 2.73× 10−7 2.90
64 6.33× 10−13 3.00 - - 1.08× 10−6 2.00 3.86× 10−8 2.82

Table 5.3: Convergence of different time discretization schemes for Gaussian hill
problem with linear decay (5.33), A-DR OS scheme.
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Gaussian Hill with Monod Kinetic

In the following two problems we investigate ADRE (5.17) with a fixed diffusion coefficient
(D = 10−3). When the reaction term is of simple non-linear Monod kinetic type (5.30), we
expect an OS error between the diffusion and the reaction parts.

We compare the errors and the convergence behavior of different OS schemes with different
number of time steps in Table 5.4. The convergence orders of A-D-R and A-DS-RS are as
expected. To reduce the relative L1-error under 1%, the first-order splitting scheme requires
4 steps, which corresponds to the diffusion Damköhler number Dad = 7.42. The second-order
splitting scheme reduces the OS error enough even after one splitting time step and the error
Lr1 is less than 0.003.

Fig. 5.2 shows the spatial distribution of the error Err. For the A-D-R scheme OS errors
mostly occur at the boundaries of the Gaussian curve, because the diffusion is underestimated
in regions with high concentration gradients. On the other hand, AD-RS overestimates the
reaction at extrema of the solution, which is the maximum concentration in this example. Both
schemes overestimate the reaction which results in positive mass errors Merr.

A-D-R A-DS-RS

#τ Dad Lr1(%) rate Lr1(%) rate

1 1.09× 102 2.36 - 2.79× 10−1 -
2 2.83× 101 1.33 0.83 8.06× 10−2 1.79
4 7.42 7.06× 10−1 0.91 2.13× 10−2 1.92
8 1.98 3.65× 10−1 0.95 5.42× 10−3 1.98

16 5.43× 10−1 1.85× 10−1 0.98 1.36× 10−3 1.99
32 1.53× 10−1 9.34× 10−2 0.99 3.42× 10−4 1.99

Table 5.4: Convergence of different OS schemes to the exact solution for Monod
kinetic (5.30) with different splitting time steps τ .
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Fig. 5.2: Spatial distribution of error Err for Monod kinetic (5.30), splitting be-
tween diffusion and reaction.
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Gaussian Hill with Position-Dependent Monod Kinetic

For position-dependent Monod kinetic (5.31) the OS error arises between transport and reac-
tion. Second-order symmetric Strang splittings (A-DS-RS and A-DRS) again perform much
better than first-order splittings, see Table 5.5. A Damköhler number Da of less than 10−2 is
sufficient for a significant reduction in the OS error (Lr1 < 1%) for all considered OS schemes.

The first-order A-D-R scheme underestimates the reaction part which turns in negative error
Err in the whole domain (Fig. 5.3a), whereas the second-order Strang splitting (A-DS-RS)
overestimates the reaction and Err remains positive (Fig. 5.3b).

A-D-R A-DS-RS A-DR A-DRS

#τ Da Lr1(%) rate Lr1(%) rate Lr1(%) rate Lr1(%) rate

1 2.09× 10−1 1.14× 101 - 5.28× 10−1 - 1.07× 101 - 4.62× 10−1 -
2 1.06× 10−1 5.30 1.10 1.48× 10−1 1.83 5.39 0.99 1.20× 10−1 1.95
4 5.41× 10−2 2.55 1.05 3.87× 10−2 1.94 2.70 1.00 3.02× 10−2 1.98
8 2.78× 10−2 1.25 1.03 9.79× 10−3 1.98 1.35 1.00 7.58× 10−3 1.99

16 1.43× 10−2 6.20× 10−1 1.01 2.46× 10−3 2.00 6.77× 10−1 1.00 1.90× 10−3 2.00

Table 5.5: Convergence of different OS schemes to the exact solution for position-
dependent Monod kinetic (5.31) with different splitting time steps τ .
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Fig. 5.3: Spatial distribution of error Err for position-dependent Monod ki-
netic (5.31), splitting between transport and reaction.

Summary

In both examples with homogeneous boundary conditions where the reaction term is described
by the non-linear Monod kinetic, we can suppress the arising OS error easily. To reduce
the relative error Lr1 under 1%, we need at most 16 splitting steps τ for the first-order OS
schemes or only one step for second-order schemes. The convergence rates of OS methods in
the L1-norm are as expected. The splitting error between diffusion and reaction is smaller
than the OS error between advection and reaction for the same values of Damköhler numbers,
see Tables 5.4 and 5.5.
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5.3.2 Linear Decay with Boundary Flux

OS methods are known to incur an innate error when a non-zero boundary flux across the
domain boundary is present, see Section 5.1.4. Accordingly, we study the influence of boundary
conditions on the accuracy of the OS schemes. First of all, we take a look at the linear decay
problem (5.17) together with the Robin boundary condition (5.19) as we already investigated
in Section 5.2.1. Looking back at the analytic mass balance error, we note that the mass error
in OS depends only on the flow velocity and the reaction rate.

We will answer the question under which circumstances we reach the expected convergence
rates of the OS schemes in the L1-norm. We study not only the convergence order of OS
schemes with respect to the reaction rates, but also the influence of the diffusion coefficient on
the OS error and on the convergence rates of OS methods. Simulation parameters have been
chosen such that the tracer does not enter the right boundary, avoiding any outflow boundary
effects: domain Ω = [0, 1], velocity v = 1 and the simulation time t = 0.6.

Table 5.6 shows the relative errors Lr1 for this problem with diffusion coefficient D = 10−3.
The first-order OS splitting reaches the expected convergence rate almost immediately for low
number of splitting time steps τ . However, the second-order OS scheme obtains second-order
accuracy after 4 refinements of the splitting time step. The reduction of the accuracy of the
A-DRS scheme depends on the diffusion coefficient D, see Fig. 5.4. If the local diffusion is high
compared to the tracer travel distance in one splitting time step τ , which corresponds to the
Péclet number Pe < 100, the OS solution is sufficiently regular and the A-DRS scheme obtains
second-order accuracy in the L1-norm (Fig. 5.4b). However, for small diffusion coefficient the
convergence order of A-DRS does not exceed one, see Fig. 5.4a. Moreover, the figure shows that
Strang splitting consistently outperforms first-order approaches independent of the diffusion
coefficient.

The highest OS error for the A-D-R scheme arises at the inflow boundary, see Fig. 5.5a. The
reaction for A-D-R is overestimated in the whole domain which results in positive values for
the mass error. On the other hand, the Err error for A-DRS is in some part of the domain
positive and in some parts negative (Fig. 5.5b). That means that the Lr1 error for A-DRS does
not correspond to the relative mass error Merr. The highest magnitude of the OS error for
A-DRS occurs at the distance from the inflow boundary which corresponds to the transport
time τ/2.

A-DR A-DRS

#τ Da Lr1(%) rate Lr1(%) rate

1 1.27 4.83× 101 - 3.11× 101 -
2 6.45× 10−1 2.70× 101 0.84 1.39× 101 1.16
4 3.31× 10−1 1.43× 101 0.92 5.38 1.37
8 1.71× 10−1 7.31 0.96 1.44 1.91

16 8.85× 10−2 3.70 0.98 3.03× 10−1 2.25
32 4.60× 10−2 1.86 0.99 6.69× 10−2 2.18
64 2.39× 10−2 9.35× 10−1 1.00 1.69× 10−2 1.98

Table 5.6: Convergence of different OS schemes to the exact solution for linear
decay with Robin boundary condition.
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Fig. 5.4: (a) Splitting error versus Damköhler number Da. (b) Splitting errors for
Strang splitting with different diffusion coefficients versus Péclet number Pe.
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Fig. 5.5: Spatial distribution of error Err for linear decay with Robin bound-
ary condition at time t = 0.6 computed using different number of splitting time
steps (#τ).

A-DR A-DRS

λ Da Lr1(%) rate Lr1(%) rate

3.20× 101 1.42 4.83× 101 - 2.56× 101 -
1.60× 101 7.08× 10−1 2.70× 101 0.84 8.82 1.54
8.00 3.54× 10−1 1.43× 101 0.92 2.75 1.68
4.00 1.77× 10−1 7.31 0.97 8.54× 10−1 1.69
2.00 8.85× 10−2 3.70 0.98 3.03× 10−1 1.49
1.00 4.42× 10−2 1.86 0.99 1.25× 10−1 1.28
5.00× 10−1 2.21× 10−2 9.35× 10−1 0.99 5.86× 10−2 1.09

Table 5.7: Convergence of different OS schemes to the exact solution for linear
decay with Robin boundary condition with different reaction rates λ and fixed
number of splitting time steps.
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We have also investigated the OS errors for this example with a fixed number of splitting time
steps (#τ = 16) for different reaction rates λ = 0.5-32 with constant diffusion D = 10−3 (see
Table 5.7). The results show that for Damköhler numbers Da smaller than 10−2 the OS error
in the normalized L1-norm for both OS schemes is less than 1%.

5.3.3 Summary

We repeated the simulations with inhomogeneous boundary conditions also with the Monod
kinetic. However, the difference was negligible and we can state that the majority of the OS
error occurs at the boundary and is not created by the non-linearity in the reaction model.
We showed that the expected second-order accuracy of the Strang splitting can be achieved
in the L1-norm only for low Péclet numbers. However, the Strang splitting outperforms the
first-order splitting and we should prefer the second-order splitting scheme.

5.4 Multi-Species Reactions

Up to now we have only studied reactive transport with one solute component. Our results
show that the OS methods work well in all discussed situations with one solute component.

In this section, we expand on this work by applying OS methods to several reversible and
irreversible reactions with two components. We will show that there is an ambiguity in how
the OS methods are implemented which can play an important role in the accuracy of the OS
solution. We consider three benchmark problems for this purpose:

1. transport of one component with interaction to the solid phase;

2. first-order decay chain of linearly sorbing contaminants with distinct retardation factors;

3. kinetically controlled Monod kinetics model describing the uptake of a substrate and
growth of microorganisms together with retardation factors.

In order to be able to compare the OS errors and discuss the differences between one- and multi-
component systems, we choose the same parameters as above. The computational domain is
[0, 1] and the velocity of flowing components is one. We compare the exact solution to the OS
solution at time t = 0.6.

5.4.1 Linear Retardation

Fast chemical reactions are often described by equilibrium models. However, the equilibrium
models are in fact a simplification of fast kinetic processes. We demonstrate this link in the
following example which is often use to model adsorption of microorganisms on the solid soil
phase. For a special case of the linear adsorption isotherm, the transport of microorganisms is
retarded.
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The transport of a single fluid component C1 which can interact with a solid phase is described
by

∂C1

∂t
+
∂C2

∂t
+∇ · (vC1 −D∇C1) = 0, (5.34)

where C2 corresponds to the concentration of C1 in the solid phase. We assume that the
adhesion kinetic is linear with retardation factor R and reaction rate λ. The usual interphase
mass transfer model is given by

∂C2

∂t
= λ ((R− 1)C1 − C2) . (5.35)

Letting λ → ∞ reduces Eq. (5.35) to the linear retardation model (Herzer and Kinzelbach,
1989)

C2 = (R− 1)C1. (5.36)

Substituting (5.36) into the original problem (5.34) leads to a well-known advection-diffusion
equation with retardation factor R:

∂ (RC1)

∂t
+∇ · (vC1 −D∇C1) = 0.

Thus, the transport of one fluid component including linear adhesion to the solid phase can be
described with a system of equations

∂C1

∂t
+∇ · (vC1 −D∇C1) = −λ ((R− 1)C1 − C2) , (5.37a)

∂C2

∂t
= λ ((R− 1)C1 − C2) , (5.37b)

and solved using an OS approach by separating transport and reactions. The reaction rate λr
corresponds to the adhesion rate λ.

The initial concentration of the solute in the liquid phase as well as in the solid phase is
zero. We impose the Robin boundary condition on (5.37a) with unit inflow concentration. We
solve problem (5.37) with distinct reaction rates λ = 102-105 and various diffusion coefficients
D = 10−6-10−3 to investigate the influence of the velocity of reactions and the magnitude of
diffusion on the OS error and on the convergence rates of OS schemes. We set the value of
the retardation factor R to 2. It corresponds in the limit case for very fast reaction to the
deceleration of the transport to the half of the original transport velocity, see Fig. 5.6.

Table 5.8 contains a comparison of the convergence behavior of different OS schemes for a
number of reaction rates with constant diffusion coefficient (D = 10−3). The convergence
for small numbers of splitting time steps τ is less than one. For fast reactions, which almost
corresponds to the local equilibrium, the difference between first-order splitting (A-DR) and
second-order splitting (A-DRS) is negligible. In addition, the convergence order of A-DRS for
quasi-equilibrium reactions reduces to one. To reduce the OS error Lr1 to less than 1% for fast
reaction, at least 512 splitting time steps τ are needed.

In Table 5.9 we summarize the splitting errors of first- and second-order OS schemes for very
fast adhesion (λ = 105) for two different diffusion coefficients (10−4 and 10−6). The observed
convergence rates are less than one and the convergence of all OS schemes is very slow. The
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Fig. 5.6: The OS solution of the linear retardation problem (5.37) using A-DR
with high reaction rate (λ = 105) and different diffusion parameters.

difference between A-D-R and A-DRS is negligible. As a result, this type of problem is better
suited to first-order splitting because it requires less computational effort than the second-order
scheme. The OS schemes applied to fast chemical reactions in a local equilibrium add an error
in the OS solution, which looks like numerical diffusion for an advection-diffusion problem, see
Fig. 5.6, and the sharp front is smeared. To obtain a sufficiently accurate solution using OS
schemes (Lr1 less than 1%), it is required to use more than 1024 splitting time steps (Table 5.9).

Fig. 5.7 shows the OS error for the linear retardation problem with various diffusion coefficients
and reaction rates versus the Damköhler number Da. The OS solution for fast reactions can
be accurate enough even for high Damköhler numbers (greater than 50). However, achieving
a sufficient accuracy requires a very large number of splitting time steps in this case.

A-DRS (λ = 102) A-DRS (λ = 103) A-DRS (λ = 105) A-DR (λ = 105)

#τ Lr1(%) rate Lr1(%) rate Lr1(%) rate Lr1(%) rate

1 4.88× 101 - 4.99× 101 - 5.00× 101 - 9.34× 101 -
2 4.00× 101 0.29 4.48× 101 0.15 4.55× 101 0.14 4.62× 101 1.02
4 2.67× 101 0.58 3.17× 101 0.50 3.23× 101 0.49 3.31× 101 0.48
8 1.62× 101 0.72 2.11× 101 0.58 2.18× 101 0.57 2.24× 101 0.56
16 8.58 0.91 1.35× 101 0.65 1.42× 101 0.62 1.44× 101 0.64
32 3.57 1.26 8.18 0.72 8.84 0.68 8.91 0.69
64 1.12 1.67 4.60 0.83 5.26 0.75 5.28 0.76
128 3.01× 10−1 1.90 2.30 1.00 2.97 0.83 2.97 0.83
256 8.13× 10−2 1.89 9.45× 10−1 1.28 1.58 0.91 1.58 0.91
512 2.75× 10−2 1.56 3.04× 10−1 1.64 7.93× 10−1 1.00 7.89× 10−1 1.00

Table 5.8: Convergence of different OS schemes to the exact solution for the linear
adhesion model (5.37) with different splitting time steps τ and various reaction
rates, D = 10−3.
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A-DR (D = 10−4) A-DRS (D = 10−4) A-DR (D = 10−6) A-DRS (D = 10−6)

#τ Lr1(%) rate Lr1(%) rate Lr1(%) rate Lr1(%) rate

1 9.76× 101 - 5.00× 101 - 9.88× 101 - 5.00× 101 -
2 4.85× 101 1.01 4.83× 101 0.05 4.92× 101 1.01 4.90× 101 0.03
4 3.58× 101 0.44 3.56× 101 0.44 3.65× 101 0.43 3.64× 101 0.43
8 2.55× 101 0.49 2.53× 101 0.49 2.62× 101 0.48 2.62× 101 0.48
16 1.76× 101 0.53 1.75× 101 0.53 1.85× 101 0.51 1.85× 101 0.51
32 1.19× 101 0.57 1.18× 101 0.57 1.28× 101 0.53 1.28× 101 0.53
64 7.81 0.61 7.78 0.60 8.74 0.55 8.73 0.55
128 4.97 0.65 4.96 0.65 5.84 0.58 5.83 0.58
256 3.01 0.72 3.02 0.71 3.78 0.63 3.78 0.62
512 1.71 0.81 1.72 0.81 2.33 0.70 2.34 0.69
1024 8.76× 10−1 0.97 8.80× 10−1 0.97 1.32 0.82 1.32 0.82

Table 5.9: Convergence of different OS schemes to the exact solution for the linear
adhesion model (5.37) with different splitting time steps τ .
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Fig. 5.7: OS errors for A-DR scheme with various diffusion coefficients and reaction
rates versus Damköhler number Da.

Summary

We can conclude, that for rapid reactions which are described by high reaction rates or which
are in a local equilibrium, the applicability of OS techniques is significantly limited. We showed
that in the non-asymptotic regime the convergence rates are less than one for both the first-
order and the second-order OS methods.

The OS approach in this example shows significant fronting. This is the result of reactive
processes retarding the front velocities. This retardation is not addressed directly if transport
and chemistry are calculated completely independently of each other. Fronts are moving too
fast in the transport step, the related concentration changes decrease in the following chemistry
step - but apparently not to a sufficient extend.

We can reduce the numerical diffusion introduced by OS choosing smaller splitting time steps.
However, the large number of time steps leads to an excessive increase in computational com-
plexity.
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5.4.2 Coupled Transport with Distinct Retardation Factors

When the solute transport is retarded by fast linear adsorption, the OS methods need many
time steps to achieve a sufficient accuracy. The arising question is if the different flow velocities
can influence the applicability of OS methods. For this reason we study the OS errors in two
different kinetically controlled two-component reactions with various flow velocities.

To demonstrate the relative performance of different OS schemes, we solve a problem with
two fluid components and a positive mass flux through the inlet boundary. The governing
transport equations for a coupled two-species problem are given by

∂ (R1C1)

∂t
+∇ · (vC1 −D∇C1) = q1, (5.38a)

∂ (R2C2)

∂t
+∇ · (vC2 −D∇C2) = q2, (5.38b)

with retardation factors Ri and source terms qi, i = 1, 2.

In the first example, we solve a chain of linear reactions with two components and compare
the results to the analytical solution (see Quezada et al. (2004)). In the second example, we
investigate a more complex reaction with Monod-type kinetics with one substrate and one
bacterium consuming the substrate. In this case the analytical solution is not known and we
again substitute a highly accurate numerical solution for the exact solution, see Section 5.2.4.

Linear Decay

The reaction terms describing the degradation of two reactive contaminants mediated by se-
quential linear reactions are given by

q1 = R1 (−λ1C1) , (5.39a)
q2 = R2 (λ1C1 − λ2C2) , (5.39b)

where the coefficients λ1 and λ2 describe decay rates. The first-order decay for one component
has already been investigated in Section 5.3.2 and the results are also applicable here to the
reactive transport of C1. Therefore, we concentrate on a comparison of concentration C2

with the exact solution for different OS schemes, Damköhler and Péclet numbers, diffusion
coefficients and retardation factors. We set the reaction rates λ1 and λ2 to 2 and 1 respectively.
The total reaction rate λr for the second component can be computed as

λr = λ1 + λ2. (5.40)

The initial concentrations of both species are assumed to be zero. The concentration of the
first component at the inlet boundary is fixed at 1, whereas C2 has zero inflow concentration.

Fig. 5.8 illustrates the spatial distribution of the OS error for a fixed number of splitting time
steps in the whole computational domain. The A-DR scheme introduces an OS error in the
part of the domain where the second tracer is present (Fig. 5.8a). In the first part of the domain
(up to x = 0.3), the reaction for the first component is underestimated which results in an
underestimation of C2. In the region between 0.3 and 0.6 the uptake of the second component
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Fig. 5.8: Spatial distribution of the OS error for C2 with a fixed number of splitting
time steps, #τ = 32: (a) A-DR OS scheme, first component is retarded (R1 =
2, R2 = 1). (b) A-DR and A-DRS OS schemes after 16 splitting time steps with
constant diffusion (D = 10−3) and different retardation factors.

is also underestimated which results in a positive error. For low diffusion coefficients the
error between the exact and the OS solution is highly oscillating, see Fig. 5.8a. However,
with increasing diffusion coefficients, the oscillations are smoothened out by the diffusion and
disappear for Pe < 100.

Fig. 5.8b shows the spatial distribution of OS error for A-DR and A-DRS schemes with various
retardation factors. A-DR distributes the OS error in the whole computational domain. One
can observe the symmetrical nature of the A-DRS scheme: the error arises only at the inflow
boundary with both positive and negative values. In contrast to A-DR, A-DRS scheme reduces
the error almost completely in the remaining part of the domain with x > 0.2.

Tables 5.10 and 5.11 list the OS errors for C2 with diffusion coefficient D = 10−3. If the
second component is slower than the first (R2 = 4), there is almost no difference to the A-DR
OS error for the case with identical flow velocities (R1 = R2 = 1) with more than 8 steps.
OS errors in the case when the second component is faster are slightly greater. For smaller
splitting time steps the A-DR scheme converges with first-order and 128 steps are enough to
obtain an accuracy of less than 1%. Both OS schemes achieve the expected convergence orders
already after a few refinements of the time step τ .

The convergence results of the A-DR scheme for different retardation factors and a smaller
diffusion coefficient (D = 10−5) are compared in Fig. 5.9a. One can see that the OS error
for higher Damköhler numbers (which corresponds to lower number of time steps τ) depends
strongly on the retardation factors R1 and R2. Nevertheless, for Da < 10−2 the splitting
error for A-DR with different retardation factors is similar. The difference between different
scenarios with various retardation factors is greater for the A-DRS OS scheme, see Fig. 5.9b.
The higher convergence rates are observed only for small Da. The Damköhler number less
than 4.0× 10−2 is sufficient to reduce the normalized L1-error to less than 1%.
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R1 = R2 = 1 R1 = 1, R2 = 4 R1 = 4, R2 = 1

#τ Da Lr1(%) rate Lr1(%) rate Lr1(%) rate

1 1.90 4.60× 101 - 6.88× 101 - 1.68× 102 -
2 9.68× 10−1 2.96× 101 0.64 3.19× 101 1.11 1.16× 102 0.54
4 4.96× 10−1 1.65× 101 0.84 1.65× 101 0.95 4.33× 101 1.42
8 2.56× 10−1 8.69 0.93 8.69 0.93 1.43× 101 1.60

16 1.33× 10−1 4.45 0.96 4.45 0.96 6.90 1.05
32 6.91× 10−2 2.25 0.98 2.25 0.98 3.44 1.00
64 3.59× 10−2 1.13 0.99 1.13 0.99 1.72 1.00

128 1.85× 10−2 5.68× 10−1 1.00 5.69× 10−1 1.00 8.62× 10−1 1.00

Table 5.10: Convergence of A-DR method to the exact solution for C2, linear
decay (5.39b) with Robin boundary condition with various retardation parameters,
D = 10−3.

R1 = R2 = 1 R1 = 1, R2 = 4 R1 = 4, R2 = 1

#τ Da Lr1(%) rate Lr1(%) rate Lr1(%) rate

1 1.90 3.92× 101 - 3.66× 101 - 1.33× 102 -
2 9.68× 10−1 1.78× 101 1.14 1.50× 101 1.28 1.03× 102 0.37
4 4.96× 10−1 7.21 1.30 5.31 1.50 4.24× 101 1.28
8 2.56× 10−1 2.16 1.74 9.50× 10−1 2.48 1.05× 101 2.01

16 1.33× 10−1 4.94× 10−1 2.13 2.23× 10−1 2.09 2.07 2.34
32 6.91× 10−2 1.10× 10−1 2.17 6.25× 10−2 1.83 4.73× 10−1 2.13

Table 5.11: Convergence of A-DRS method to the exact solution for C2, linear
decay (5.39b) with Robin boundary condition with various retardation parameters,
D = 10−3.

R1 = 1, R2 = 1
R1 = 1, R2 = 2
R1 = 2, R2 = 1
R1 = 4, R2 = 1

6.2e-02

2.5e-01

1.0e+00

4.0e+00

1.6e+01

6.4e+01

2.6e+02

9.8e-04 3.9e-03 1.6e-02 6.2e-02 2.5e-01 1.0e+00 4.0e+00

L
r 1
(%

)

Da

(a) A-DR OS

R1 = 1, R2 = 1
R1 = 1, R2 = 2
R1 = 2, R2 = 1
R1 = 4, R2 = 1

3.9e-03

1.6e-02

6.2e-02

2.5e-01

1.0e+00

4.0e+00

1.6e+01

6.4e+01

2.6e+02

3.9e-03 1.6e-02 6.2e-02 2.5e-01 1.0e+00 4.0e+00

L
r 1
(%

)

Da

(b) A-DRS OS

Fig. 5.9: Splitting error for C2 versus Damköhler number Da for various retarda-
tion factors, D = 10−5.
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Monod Kinetics

In this section the discussion is extended to address the applicability of the OS technique
to solve systems of two ADREs with Monod kinetics. The results of the analysis show that
the behavior of the error causing the OS error is similar to those observed with first-order
kinetics. Reaction terms describing uptake of a substrate with concentration C1 and growth
of microorganisms with concentration C2 are given by

q1 = R1

(
−λ1

C1

Kc + C1
C2

)
, (5.41a)

q2 = R2

(
λ1Y 12

C1

Kc + C1
C2 − λ2C2

)
, (5.41b)

where the coefficients λi, i = 1, 2 denote the first-order decay rate, Y 12 is the yield coefficient
and Kc is the half-saturation constant. We fix both the yield coefficient and the half-saturation
constant at 0.5.

The source term (5.41a) describes the consumption of substrate; the consumption rate is also
dependent on the microbial concentration C2. When no microorganisms are present, the
substrate cannot be consumed. We set the maximum growth rate λ1 is to 16 and the linear
decay for the second component to 0.25. The initial as well as the inflow concentration C2 of
bacteria is 0.1. We assume that the initial concentration of C1 is 0 and the inflow concentration
is fixed at 1. The reaction rate λr is again given by (5.40), while the consumption rate of the
component with concentration C1 does not exceed one in all considered situations.

Fig. 5.10 shows the exact solution of the two-component transport problem (5.38) at time
t = 0.6 with reaction terms (5.41), diffusion coefficient D = 10−3 and various retardation
factors. If both species are moving with the same flow velocity (R1 = R2 = 1), the sharp front in
the substrate concentration disappears because of the substrate uptake. However, a sharpened
front in the microbial concentration C2 arises. In the case when the bacterial transport is
retarded w.r.t. the nutrient transport, the sharp front in the substrate concentration remains,
but no steep gradients in C2 are created.
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Fig. 5.10: Exact solution for two-component transport problem (5.38) with Monod
kinetics (5.41) and different retardation factors at time t = 0.6.
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In accordance with Theorem 2, an OS error arises even between diffusion and reaction. How-
ever, in this case the differences between A-D-R and A-DR, and A-DS-RS and A-DRS schemes
are negligible and we thus only show results for A-DR and A-DRS respectively.

The A-DR scheme manages to achieve first-order accuracy for both components, see Table 5.12.
If C2 is retarded (R2 = 2) and moves slower, it causes higher consumption of C1 at the inflow
boundary. Thus, it results in greater OS error in C1. The A-DRS scheme captures this effect
much better, see Table 5.13. The OS error for A-DRS is less than 1% for both components
in less than 16 steps for higher diffusion (D = 10−3). The second-order accuracy of A-DRS
is also achieved for lower diffusion coefficient, see Fig. 5.11 and the OS error is negligible for
small Damköhler numbers (Da < 0.25). The convergence of A-DR is only first-order, but the
OS error is sufficiently small in all situations for Damköhler number smaller than 0.05.

Fig. 5.12 shows the spatial distribution of error between the exact and the OS solution of both
components for A-DR and A-DRS after 64 time steps. The magnitude of the error for each
component is similar in the case of A-DR. When the transport of microorganisms is retarded,
the magnitude of the error is greater. The maximum of the error is reached at x = 0.15 which
corresponds to the front of the second component.

R1 = R2 = 1 R1 = 1, R2 = 2

C1 C2 C1 C2

#τ Da Lr1(%) rate Lr1(%) rate Lr1(%) rate Lr1(%) rate

1 1.03× 101 9.79× 101 - 4.31× 101 - 9.75× 101 - 5.85× 101 -
2 5.24 5.55× 101 0.82 2.54× 101 0.76 6.41× 101 0.60 2.95× 101 0.99
4 2.69 2.89× 101 0.94 1.34× 101 0.92 3.57× 101 0.85 1.44× 101 1.03
8 1.39 1.45× 101 0.99 6.74 0.99 1.87× 101 0.93 6.90 1.06

16 7.19× 10−1 7.21 1.01 3.35 1.01 9.52 0.97 3.50 0.98
32 3.74× 10−1 3.59 1.01 1.67 1.01 4.81 0.98 1.77 0.98
64 1.94× 10−1 1.79 1.00 8.33× 10−1 1.00 2.42 0.99 8.93× 10−1 0.99

128 1.00× 10−1 8.94× 10−1 1.00 4.17× 10−1 1.00 1.22 0.99 4.49× 10−1 0.99
256 5.08× 10−2 4.47× 10−1 1.00 2.09× 10−1 1.00 6.14× 10−1 0.99 2.26× 10−1 0.99

Table 5.12: Convergence of A-DR to the exact solution for two-component trans-
port with Monod kinetics, D = 10−3.

R1 = R2 = 1 R1 = 1, R2 = 2

C1 C2 C1 C2

#τ Da Lr1(%) rate Lr1(%) rate Lr1(%) rate Lr1(%) rate

1 1.03× 101 4.27× 101 - 1.93× 101 - 7.23× 101 - 2.80× 101 -
2 5.24 2.54× 101 0.75 1.20× 101 0.69 2.56× 101 1.50 1.51× 101 0.89
4 2.69 9.17 1.47 4.36 1.46 6.98 1.88 4.84 1.64
8 1.39 1.99 2.21 9.63× 10−1 2.18 1.89 1.88 9.62× 10−1 2.33

16 7.19× 10−1 3.13× 10−1 2.67 1.52× 10−1 2.66 4.87× 10−1 1.95 2.31× 10−1 2.06

Table 5.13: Convergence of A-DRS to the exact solution for two-component trans-
port with Monod kinetics, D = 10−3.
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Fig. 5.11: Splitting error versus Damköhler number Da for Monod kinetic with two
components and different retardation factors, diffusion coefficient is D = 10−4.
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Fig. 5.12: Spatial distribution of OS error for A-DR and A-DRS OS schemes after
64 time steps with various retardation factors, D = 10−4.

The error of the A-DRS scheme for C1 is significant only at the inflow boundary. When the
flow velocities of both components are the same, the splitting error for C2 is concentrated at
the inflow boundary. However, if C2 is retarded, the greatest OS error for A-DRS and the
second component is at the concentration front.

Summary

We have shown that the difference in flow velocities of different components may effect the
accuracy of OS schemes. However, if the retardation is modeled by a retardation parameter
and not by rapid reactions like in Section 5.4.1, the convergence rates of all considered OS
schemes reached the expected asymptotic convergence rates after a few time steps. Thus, we
are able to reduce the OS error sufficiently, particularly using second-order OS schemes.

The retarded velocities for linear and non-linear reactions with slow kinetic may affect the
splitting error but not the convergence rates. Compared to the problems with one component,
the OS error occurs not only at the domain boundary but also at the solute fronts.
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5.5 Discussion on Errors in Operator Splitting Methods

In summary, the question of whether chemical reaction terms can effectively be decoupled from
the transport equations depends on many factors including the nature of the chemical reactions
involved, the effect of boundary conditions and the desired and acceptable accuracy. In this
chapter we have studied the operator splitting errors in ADREs for non-iterative versions of
the operator splitting (SNIA). We have studied problems with one and two components with
homogeneous and inhomogeneous boundary conditions. We also have considered the influence
of non-linearities in reaction terms and differences in the flow velocities to the accuracy of OS
schemes.

The discussed OS errors in this chapter are independent of the discretization error and is due
to the splitting of simultaneous processes. We will discuss the importance of OS errors and
compare the contribution of the space and time discretization errors in Chapter 6.

The present analysis provides information useful in determining the magnitude of the OS errors
depending on the velocity of the kinetically controlled reactions and the velocity of transport
and diffusion processes. We can quantify this relationships between different time scales using
dimensionless Péclet and Damköhler numbers defined in Section 5.2.3. We measure the OS
error in the L1-norm which is a generalization of the mass error often used in the literature.

Moreover, the OS errors in the L1-norm are also consistent with previous studies for SNIA
schemes w.r.t. the total mass. Valocchi and Malmstead (1992) have studied the splitting
error per τ by using an analytical solution for transport with first-order decay and a Robin
boundary condition. They have shown that a standard SNIA scheme introduces an O(τ)
error and the Strang splitting leads to an O(τ2) error. Kaluarachchi and Morshed (1995)
and Morshed and Kaluarachchi (1995) have analyzed the error for a first-order Monod kinetic
reaction, and for the transport of two species coupled with a Monod rate low. They concluded
that an error in operator splitting in these situations is similar to Valocchi and Malmstead
(1992): an O(τ) error occurs for the standard SNIA and an O(τ2) error for the Strang splitting
scheme. Carrayrou et al. (2004) compared the intrinsic OS errors for both the non-iterative
and iterative OS schemes and performed a mass balance analysis for first-order kinetically
controlled irreversible and reversible reactions with one and two species. They concluded the
standard iterative schemes should not be used, because they can have convergence or stability
problems and the OS error is still present. Thus, we shall prefer the SNIA with the Strang
splitting or the symmetric iterative scheme (for detail see Carrayrou et al. (2004)) because it
produces the most precise results.

On the other hand, the extended use of Strang splitting in computational reactive transport
modeling leads to the conjecture that in this field splitting errors are kept within reasonable
bounds if the splitting time steps τ are small enough. However, this statement should be taken
very carefully. The formally second-order Strang splitting does not achieve the asymptotic
convergence behavior in all situations. The non-asymptotic regime is often attained in practice
when the splitting time step τ is much larger than some of the time scales associated with
either the reaction terms, the diffusion or advection operator when large gradients are present
(Descombes et al., 2014). We observed this reduction of convergence orders in the L1-norm for
high Péclet numbers (Pe > 500) and higher Damköhler numbers (Da > 0.1).
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The order reduction for the Strang splitting to order one was also observed for time-dependent
Dirichlet boundary conditions for advection-reaction problem in Hundsdorfer and Verwer (1995)
and Hundsdorfer and Verwer (2003). Thus, the Strang splitting scheme is in these situations
not more accurate than the first-order splitting scheme (Hundsdorfer and Verwer, 1995).

The equilibrium models can be derived as a limiting case of a non-equilibrium model described
by reaction kinetic, see Section 5.4.1. In this case, the observed convergence rates of Strang
splitting were less than 1. Similar results were also published by Barry et al. (1996a,b). They
analyzed the splitting errors for linear sorption, linear decay and interphase mass transfer
chemistry and concluded that the Strang splitting scheme does not lead to an O(τ2) error in
all cases.
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Chapter 6

Numerical Experiments

In this chapter we present several simulations in one- and two-dimensional domains to illustrate
the capabilities and performance of the numerical schemes described in Chapter 4 to solve
advection-diffusion-reaction equations when the transport is dominated by advection.

We study the performance of various spatial discretization schemes: first- and second-order
CCFV schemes and the DG method with linear basis function which is also second-order
accurate. In Section 6.1 we also use a standard finite element method as spatial discretization.
As time discretization schemes we use first-, second- and third-order explicit, implicit and
implicit-explicit schemes.

The main objective of this chapter is to verify the implementation of the numerical schemes
and to answer the following questions:

• Which numerical methods are suitable for a concrete problem?

• Are the chosen methods sufficiently accurate?

• How demanding are the used methods w.r.t. the computational requirements?

• Which kind of error is predominant: the error arising from the operator splitting tech-
nique or the error from the numerical discretization?

In Chapter 5 we investigated the operator splitting error with respect to characteristic time
scales represent by Damköhler and Péclet numbers, see Section 5.2.3. In order to connect these
two numbers to the spatial discretization, we take as the characteristic length l the mesh size
h. Thus, the grid Péclet number is given by

Peg =
hv

D
(6.1)

and the transport Damköhler number Da is computed as

Da =
λrh

2

v h+ 2D
. (6.2)

The goal of this chapter is to compare both types of errors: the operator splitting errors and
the errors caused by the spatial and temporal discretization. The arising errors depend on the
type of the problem, the used solution strategy, numerical discretization and the spatial and
temporal resolution.
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As expected, there is no solution strategy and numerical scheme which are the best choice in
all situations to solve the underlying reactive transport problem. However, the discussion in
the conclusion of this chapter can guide the reader how to choose the solution approach and
numerical methods regarding to the nature of problem, computational effort and the desired
accuracy.

6.1 IMEX Methods

In order to test the accuracy and performance of RK-IMEX schemes as described in Sec-
tion 4.4.3 and in Appendix A.1.2, we apply them to the diffusion-reaction or advection-
diffusion-reaction equations. We show two examples in which the RK-IMEX schemes may
have an advantage in comparison to the classical implicit or explicit methods. We solve the
problems on one-dimensional computational domain Ω with length L = 1. All measurements
of the duration of the numerical simulation were done on a single core of AMD OpteronTM

6172, 2.10 GHz.

Diffusion-Reaction Problem with Time-Dependent Boundary Conditions

With the purpose of testing the accuracy and the theoretical convergence rates of RK-IMEX
schemes, we study a model problem with time-dependent Dirichlet boundary conditions of the
form

∂C

∂t
− ∂2C

∂x2
= f in Ω, (6.3a)

C(0, t) = et sin t, C(1, t) = et−1 sin(t+ 1), (6.3b)
C(x, 0) = e−x sinx, (6.3c)

where
f = C − C2 + 3et−x cos(t+ x) + e2(t−x) sin2(t+ x).

The exact solution of (6.3) at time t is given by

C(x, t) = et−x sin(t+ x).

This non-linear diffusion-reaction problem was also studied in Koto (2008a). We treat the
diffusion part of (6.3) implicitly, whereas the right hand side f describing the reactive term is
solve explicitly. The application of RK-IMEX schemes to this problem has one advantage: ex-
plicit treatment of the non-linear reaction term does not need any linearization using Newton’s
method.

We apply the method of lines, where the standard finite element method with quadratic polyno-
mial basis functions is used for the spatial discretization. The domain Ω is uniformly divided
into 1024 elements to suppress the error in the spatial discretization. The initial time step
∆t = 0.2 is refined to observe the time convergence of RK-IMEX methods to the analytical
solution. Table 6.1 summarizes the errors and convergence rates in the L2-norm at time 1.
As expected, we observe convergence order 1 and order 2 for Euler-IM and Trapez-IM scheme
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respectively. The convergence orders of Alexander2-IM and Pareschi2 schemes are also asymp-
totically approaching 2. The Ascher3 method converges only with order 2.25 as was already
observed in Koto (2008a). The best second-order method regarding to the computational effort
and the obtained accuracy is Alexander2-IM, which has only two stages.

To compare the performance of RK-IMEX methods with classical fully implicit methods
(implicit Euler, Alexander2 and Alexander3), we solve (6.3) using CCFV spatial discretiza-
tion with 2048 elements and various time integrators with different sizes of time steps. While
the RK-IMEX methods require the solution of the linear system only one time per stage, the
fully implicit methods need at least two iterations (and also solutions of linear system) in
the Newton’s method in each stage. Fig. 6.1 shows the computational effort of different time
discretization schemes with various time steps lengths. All RK-IMEX schemes are faster than
Alexander3. Alexander2-IM shows a good performance: the computational times to solve the
problem (6.3) are similar to implicit Euler method. However, Alexander2-IM is second-order
accurate compared to implicit Euler.

Euler-IM Trapez-IM Alexander2-IM

#∆t L2-error rate L2-error rate L2-error rate

160 9.91× 10−4 - 2.14× 10−5 - 3.61× 10−6 -
320 4.97× 10−4 1.00 5.36× 10−6 2.00 9.26× 10−7 1.96
640 2.49× 10−4 1.00 1.34× 10−6 2.00 2.35× 10−7 1.98

1280 1.24× 10−4 1.00 3.37× 10−7 1.99 5.95× 10−8 1.98

Pareschi2 Ascher3

#∆t L2-error rate L2-error rate

160 6.00× 10−5 - 5.78× 10−7 -
320 1.62× 10−5 1.89 1.21× 10−7 2.25
640 4.25× 10−6 1.93 2.56× 10−8 2.25

1280 1.10× 10−6 1.95 5.38× 10−9 2.25

Table 6.1: Convergence of different RK-IMEX schemes for the model problem
(6.3), finite element method with quadratic elements, 2049 DOFs.
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Fig. 6.1: Computational times for different time discretization schemes versus the
number of time steps needed to compute the solution the problem (6.3) at time 1,
CCFV discretization with 2048 elements.
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Advection-Diffusion Problem with Linear Decay

To show the advantage of RK-IMEX schemes compared to fully explicit time discretization,
we also solve the one-dimensional ADRE problem with first-order linear decay

∂C

∂t
+∇ · (vC −D∇C) = −λC (6.4)

together with zero initial condition and Robin boundary condition (5.19) with unit inflow
concentration. We have already studied this problem w.r.t. the OS error in Section 5.3.2. The
numerical computations are performed to time t = 0.6. The value of both the velocity v and
the parameter λ is 1, and the diffusion coefficient D is 5× 10−4.

We solve this problem using CCFV method with minmod flux reconstruction. As time dis-
cretization, we use second-order accurate methods: Alexander2-IM and Heun’s method. For
the fully explicit methods, we solve the ADR equation without operator splitting; in the
RK-IMEX scheme we solve the advection explicitly, whereas the diffusion-reaction part is
treated implicitly.

Starting from an initial mesh with 32 elements, we study the h-convergence to the analytical so-
lution. The time step ∆t corresponds to the CFL-like number νl = 0.8 computed by Eq. (4.22)
to achieve the stability in the numerical schemes. However, using the Alexander2-IM method
the diffusion is treated implicitly and νl corresponds to the pure advective CFL number ν, for
details see Section 4.4.5. For this reason RK-IMEX schemes enable larger time steps in the
solution of advection-diffusion equations compared to the explicit time discretization schemes.
This is significant particularly for small grid Péclet numbers (Table 6.2). For Peg < 2 the
diffusion becomes locally dominant and the number of time steps needed for explicit treatment
grows quadratically. On the other hand, the number of time steps for RK-IMEX method still
rises linearly. For coarser grids (with high Péclet numbers) the computational time for the
explicit Heun method is approx. 4 times lower than for Alexander2-IM because the purely
explicit method does not need to solve a non-trivial linear system compared to the RK-IMEX
schemes. However, this difference vanishes for low Peg and Alexander2-IM is faster for meshes
with more than 4096 elements.

Heun Alexander2-IM

L/h Peg #∆t Comp. time [s] #∆t Comp. time [s]

32 6.25× 101 50 2.02× 10−2 48 7.56× 10−2

64 3.12× 101 101 7.79× 10−2 96 2.83× 10−1

128 1.56× 101 211 3.15× 10−1 192 1.10
256 7.81 458 1.35 384 4.44
512 3.91 1063 6.29 768 1.75× 101

1024 1.95 2716 3.23× 101 1536 6.94× 101

2048 9.77× 10−1 7791 1.84× 102 3072 2.81× 102

4096 4.88× 10−1 25 019 1.19× 103 6144 1.13× 103

8192 2.44× 10−1 87 786 8.29× 103 12 288 4.50× 103

Table 6.2: Number of time steps and computational times to solve ADR with
linear decay (5.17) using CCFV with either the method of Heun or the RK-IMEX
method Alexander2-IM.
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Summary

We have shown in two numerical experiments that RK-IMEX methods can be successfully used
in reactive transport modeling. The advantage of these methods is the elimination of the error
in operator splitting. RK-IMEX methods can also have an advantage in the computational
complexity.

If the non-linear reactive part is not stiff, using an explicit treatment of the reaction term
avoids the solution of a non-linear system. In the case of multi-component reactive flow, the
explicit solution of the advection part and implicit solution of the diffusion-reaction term can
remove the error in operator splitting. RK-IMEX schemes also enable the use of higher-order
non-linear space discretization schemes (like CCFV with flux reconstruction) for advection part
which reduces numerical diffusion and does not add any non-linearity to the arising system.

However, the disadvantage is the necessity to solve a non-trivial linear systems in each time
step. Moreover, further research is also required to study the stability of RK-IMEX methods
with applications to reactive transport modeling.

6.2 One-Dimensional Problems

In the examples below, we solve problems on a one-dimensional domain with length L which
are similar to those investigated in Chapter 5 w.r.t. the error in operator splitting. We solve
advection, diffusion and reaction operators in one time step without operator splitting (unless
explicitly stated otherwise) and all discrepancies between the numerical and the exact solutions
are only due to the numerical error.

6.2.1 Gaussian Hill Problem

To get a better insight into the error arising from the numerical discretization, we solve the
reactive Gaussian hill problem with linear decay (see Section 5.3.1) using different space and
time discretization schemes. We firstly divide the computational domain with length L = 2
into 64 elements. To observe the spatial convergence, we uniformly refine the initial mesh.
The considered problem is advection dominated with v = 1, D = 10−5 and small reaction rate
λ = 0.1. The size of the time step ∆t is given by the CFL-like condition (4.22) and fulfills
νl = 0.8 for all mesh refinements.

The CCFV with full upwinding and explicit Euler time discretization is formally first-order
accurate. However, the results show that this asymptotic rate is achieved only for very fine
meshes requiring huge computational effort (Table 6.3). This method is highly diffusive: using
a mesh with 512 elements, the maximum of the numerical solution lies above 0.6, but the
maximum value of the exact solution is 0.9, see Fig. 6.2a. The poor convergence rates and very
high errors on coarse grids give rise to a high error even on very fine grids. On a grid with
8192 elements the normalized error in the L1-norm is more than 3%. Using explicit Heun or
implicit schemes instead of explicit Euler introduces even higher numerical diffusion.

The convergence rates of the second-order space discretization schemes together with explicit
Euler are not well predictable, see Table 6.3. The initial error for a coarse grid with 64 elements

79



is much smaller than the error for the first-order CCFV. However, the numerical solution
diverges from the exact solution. The higher-order schemes with explicit Euler converge again
for meshes with more than 1024 elements, but the convergence rate is limited by the first-order
explicit Euler. Although the maximum is for CCFV with flux reconstruction reached for lower
number of mesh elements (Fig. 6.2b), the numerical solution has higher gradients compared to
the exact solution. This combination of numerical methods sharpens the fronts in the solution
too much. We observe this behavior also for second-order DG with explicit Euler.

The theoretical asymptotic convergence rates for higher-order space discretizations together
with higher-order time integrators are fully confirmed in Table 6.4; the rates are asymptotically
approaching 2 for all methods. The smallest errors are achieved using CCFV with minmod
flux limiter with θ = 2 and both Heun and Shu3 time discretizations. To reduce the error in
the normalized L1-norm under 1%, we require a mesh with at least 2048 elements.

While the accuracy of Shu3 is slightly better than of Heun’s method, Shu3 has three stages
and requires a higher computational effort compared to Heun. Thus, we further in this work
prefer the method of Heun. We have also computed all the numerical tests stated below with
Shu3, but we have not discovered any obvious advantages of Shu3 compared to Heun.

We can conclude that even for a simple advection-diffusion-reaction example with a smooth
initial condition, we need a very fine mesh with more than 2048 elements to reduce the error
sufficiently (Lr1 < 1%). Moreover, we showed that the combination of a first-order method in
time and the second-order discretization in space should be avoided in the solution of ADREs.
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Fig. 6.2: Comparison of different numerical schemes with various temporal and
space discretizations to the analytical solution of Gaussian hill problem with linear
decay (5.33): (a) first-order CCFV and (b)-(c) second-order CCFV.
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DG CCFV

minmod (θ = 1) first-order minmod (θ = 1)

L/h Lr1(%) rate Lr1(%) rate Lr1(%) rate

64 6.50× 101 - 9.23× 101 - 7.31× 101 -
128 2.74× 101 1.25 7.19× 101 0.36 2.91× 101 1.33
256 2.20× 101 0.32 5.09× 101 0.50 2.05× 101 0.51
512 3.21× 101 −0.55 3.26× 101 0.64 2.93× 101 −0.52

1024 3.59× 101 −0.16 1.94× 101 0.75 3.20× 101 −0.13
2048 2.47× 101 0.54 1.11× 101 0.81 2.40× 101 0.41
4096 1.18× 101 1.07 6.25 0.83 1.17× 101 1.04
8192 5.79 1.03 3.62 0.79 5.85 1.00

Table 6.3: Space and time convergence of different discretization schemes for Gaus-
sian hill problem with linear decay (5.33), explicit Euler time discretizations.

time discretization: Heun

DG second-order CCFV

minmod (θ = 1) minmod (θ = 1) minmod (θ = 2) superbee

L/h Lr1(%) rate Lr1(%) rate Lr1(%) rate Lr1(%) rate

64 1.12× 102 - 1.11× 102 - 8.83× 101 - 7.71× 101 -
128 7.96× 101 0.49 7.92× 101 0.49 4.83× 101 0.87 2.74× 101 1.49
256 4.56× 101 0.80 4.53× 101 0.81 2.01× 101 1.26 1.88× 101 0.54
512 1.89× 101 1.27 1.87× 101 1.28 8.59 1.23 7.39 1.35

1024 6.01 1.65 5.93 1.66 2.63 1.71 4.17 0.83
2048 2.01 1.58 1.98 1.59 7.33× 10−1 1.84 1.49 1.48
4096 5.50× 10−1 1.87 5.29× 10−1 1.90 1.78× 10−1 2.04 4.57× 10−1 1.71
8192 1.40× 10−1 1.97 1.30× 10−1 2.03 4.17× 10−2 2.10 1.21× 10−1 1.91

time discretization: Shu3

DG second-order CCFV

minmod (θ = 1) minmod (θ = 1) minmod (θ = 2) superbee

L/h Lr1(%) rate Lr1(%) rate Lr1(%) rate Lr1(%) rate

64 1.11× 102 - 1.11× 102 - 8.70× 101 - 7.47× 101 -
128 7.91× 101 0.49 7.87× 101 0.49 4.61× 101 0.91 2.53× 101 1.56
256 4.52× 101 0.81 4.49× 101 0.81 1.78× 101 1.37 1.29× 101 0.98
512 1.88× 101 1.26 1.86× 101 1.27 6.91 1.37 6.50 0.98

1024 5.92 1.67 5.83 1.67 2.05 1.75 3.78 0.78
2048 1.98 1.58 1.95 1.58 5.65× 10−1 1.86 1.52 1.32
4096 5.47× 10−1 1.86 5.26× 10−1 1.89 1.36× 10−1 2.05 4.58× 10−1 1.73
8192 1.40× 10−1 1.97 1.29× 10−1 2.03 3.22× 10−2 2.08 1.21× 10−1 1.92

Table 6.4: Space and time convergence of different discretization schemes for Gaus-
sian hill problem with linear decay (5.33), higher-order time discretization.
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6.2.2 Linear Decay with Robin Boundary Condition

In order to compare the discretization errors to the OS errors for an advection-diffusion equation
with linear decay, we solve the problem (6.4) with zero initial condition and Robin boundary
condition with unit inflow concentration. We choose the parameters similar to Section 5.3.2:
v = 1, D = 10−4, λ = 1, domain length L = 1 and final time 0.6.

Due to the sharp front in the tracer concentration C, we expect difficulties in the numerical
solution, specifically an occurrence of numerical diffusion. We start with a 32-element mesh
and refine it to investigate the convergence of the numerical solution to the analytical solution.

The time step for explicit methods corresponds to the CFL-like number νl = 0.8, while the
time step for implicit methods is kept constant at a value corresponding to ν = 1 computed
for pure advection with Eq. (4.23). The advection dominates even for fine meshes (Peg > 1),
see Fig. 6.3a.

Fig. 6.3 shows the error in the normalized L1-norm between the exact and the numerical
solution computed using different numerical schemes versus the number of grid elements. Using
first-order CCFV with full upwinding and explicit Euler requires at least 1024 elements to
keep the discretization error small (Lr1 < 1%). The implicit methods introduce even more
numerical diffusion and an even finer mesh is required to reduce the error sufficiently, see
Fig. 6.3a. Fig. 6.3b shows the performance of higher-order schemes in space for different time
discretizations.

Similar to the Gaussian curve example, higher-order schemes together with explicit Euler show
non-monotony convergence to the exact solution for both CCFV with flux reconstruction and
DG with minmod limiter. These methods start to converge with a first order again for finer
meshes when the Péclet number is less than 8. The best convergence results are obtained using
CCFV with flux reconstruction with minmod limiter (θ = 2) together with Heun’s method.
To reduce the normalized L1-error under 1%, we require a mesh with only 256 elements; the
Damköhler number Da for this mesh is approx. 2.0× 10−3.
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Fig. 6.3: Spatial convergence of different numerical schemes to the exact solution of
advection-diffusion problem with linear decay (6.4) together with Robin boundary
condition.
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Fig. 6.4: Comparison of numerical solutions computed using various temporal
and space discretization schemes to the exact solution of the advection-diffusion
problem with linear decay (6.4) together with Robin boundary condition at time
t = 0.6.

In Fig. 6.4 we compare the exact and the numerical solution obtained using different discretiza-
tion methods on a mesh with 128 elements. The accuracy of second-order in space schemes
together with Heun is much better than the accuracy of first-order schemes with full upwind-
ing. The numerical solution computed with higher-order methods captures the sharp front of
the solution well even on this coarse grid, see Fig. 6.4a.

The accuracy of the numerical solution computed by CCFV with full upwinding and implicit
Euler depends on the size of the time step (Fig. 6.4b). By increasing the CFL number ν and
also increasing the time step ∆t, the implicit Euler scheme introduces much more numerical
diffusion to the solution. On the other hand, Alexander2 performs well for time steps corre-
sponding to ν = 1 and ν = 5 and does not introduce additional numerical diffusion for larger
time steps.

6.2.3 Monod Kinetics with Two Components

In the last one-dimensional problem we compare the numerical solution of two-species reactive
transport together with Monod kinetics as described in Section 5.4.2. The system of two
equations describing the transport of a substrate with concentration C1 and the growth and
transport of microorganisms with concentration C2 is given by (5.38) together with reaction
terms (5.41). All parameters are equal to the example in Chapter 5 investigating the operator
splitting error (v = 1, λ1 = 16, λ2 = 0.25, Kc = Y 12 = 0.5), except for the diffusion coefficient
D, which we set to 10−4. Table 6.5 summarizes the Damköhler and Péclet numbers for different
mesh resolutions.

We compare the accuracy of two solution approaches: an operator splitting (OS) approach
together with higher-order numerical schemes and the numerical solution computed using the
global implicit approach (GIA) with first-order numerical discretization in space.
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L/h Da Peg L/h Da Peg

64 2.47× 10−1 1.56× 102 512 2.83× 10−2 1.95× 101

128 1.22× 10−1 7.81× 101 1024 1.30× 10−2 9.77
256 5.95× 10−2 3.91× 101 2048 5.54× 10−3 4.88

Table 6.5: Péclet and Damköhler numbers for different mesh resolutions.
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Fig. 6.5: Comparison of different solution strategies computed on mesh with 256
elements to the exact solution for two-component transport with Monod kinetics.

In the GIA approach, we solve the system (5.41) with CCFV with full upwinding using implicit
Alexander2. The time step ∆t is chosen to fulfill the advection CFL condition (4.23) with
ν = 1. The previous examples shows that Alexander2 is more accurate than implicit Euler.
The GIA approach does not achieve first-order convergence rates even on very fine meshes,
see Table 6.6, where we compare the normalized L1-errors for both components and different
retardation factors. When both components move with the same velocity (R1 = R2 = 1),
the GIA method with above described numerical methods suppresses the normalized L1-errors
under 1% on a mesh with 4096 elements. However, when the second component is retarded
(R2 = 2), a relatively sharp front in C1 occurs and the GIA approach has great difficulty
to accurately describe this phenomena, see Fig. 6.5b. Moreover, the error arising from the
numerical discretization does not vanish even on a very fine mesh (Table 6.6).

In the OS approach, we use the symmetrical Strang splitting scheme: in each time step ∆t
we solve the advection-diffusion problem for each component using CCFV with second-order
flux reconstruction (minmod limiter with θ = 2), followed by a solution of reactive model
using RKF45 with time step 2∆t, followed by one step of advection-diffusion with ∆t. The
size of the time step in the OS scheme corresponds to the CFL-like number νl = 0.8. The
second-order Strang splitting reduces the operator splitting error significantly for Damköhler
numbers less than 1, see e.g. Table 5.13 in Section 5.4.2, and the error in the numerical
discretization predominates the discrepancy between the exact solution and the numerical
solution. The normalized L1-error is less than 1% for both components and both variations of
retardation factors on a mesh with 512 elements, see Table 6.7. The OS method with higher-
order numerical schemes reducing the numerical diffusion is able to capture the correct solution
with high accuracy even on a coarse grid with 256 elements (Fig. 6.5).
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R1 = R2 = 1 R1 = 1, R2 = 2

C1 C2 C1 C2

L/h Lr1(%) rate Lr1(%) rate Lr1(%) rate Lr1(%) rate

32 1.21× 101 - 2.13× 101 - 2.66× 101 - 2.03× 101 -
64 6.71 0.85 1.44× 101 0.57 1.87× 101 0.51 1.35× 101 0.59

128 3.63 0.88 9.44 0.60 1.27× 101 0.55 8.63 0.64
256 1.95 0.90 6.10 0.63 8.43 0.59 5.33 0.69
512 1.05 0.90 3.86 0.66 5.47 0.62 3.19 0.74

1024 5.63× 10−1 0.90 2.37 0.70 3.44 0.67 1.84 0.79
2048 3.01× 10−1 0.90 1.41 0.75 2.07 0.73 1.03 0.83
4096 1.59× 10−1 0.92 8.02× 10−1 0.81 1.19 0.80 5.63× 10−1 0.88

Table 6.6: Convergence of GIA using first-order CCFV with Alexander2 discretiza-
tion to the exact solution for two-component transport with Monod kinetics.

R1 = R2 = 1 R1 = 1, R2 = 2

C1 C2 C1 C2

L/h Lr1(%) rate Lr1(%) rate Lr1(%) rate Lr1(%) rate

32 2.25 - 7.04 - 1.17× 101 - 8.91 -
64 6.83× 10−1 1.72 3.33 1.08 5.66 1.05 3.50 1.35

128 2.19× 10−1 1.64 1.50 1.16 2.55 1.15 1.26 1.47
256 6.84× 10−2 1.68 6.23× 10−1 1.26 1.05 1.28 4.15× 10−1 1.61
512 2.95× 10−2 1.21 2.55× 10−1 1.29 3.99× 10−1 1.40 1.22× 10−1 1.76

Table 6.7: Convergence of OS together with second-order CCFV with Heun dis-
cretization to the exact solution for two-component transport with Monod kinetics.

Summary

We have tested the performance of different numerical discretization schemes on three simple
one-dimensional problems, where the advection was a dominating process. In order to com-
pare the errors in the numerical discretization to the operator splitting errors investigated in
Chapter 5, we measured the error in the L1-norm divided by the total component mass (see
Section 5.2.1).

The example in this section also demonstrates the difficulties in accurately obtaining asymp-
totic convergence rates due to the very large problem sizes required to enter the asymptotic
regime. Particularly, the first-order CCFV method with full upwinding requires very fine
meshes with several thousands elements to achieve the asymptotic first-order accuracy. Thus,
the effort to achieve first-order accuracy in multi-dimensional examples will be computationally
very demanding, see also the example in Section 6.3.

The second-order schemes perform much better. Although the second-order accuracy is reached
only on fine meshes, the convergence rates are in all examples greater than one even on coarse
grids. Furthermore, the initial error on the initial mesh is much smaller for the second-order
methods than for the first-order schemes.
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In many studies, the authors combined second-order CCFV or DG in space with a first-
order schemes in time, e.g. Geiser (2007); Mikyška and Firoozabadi (2010). However, the
combination of second-order schemes in space and first-order integration in time should be
avoided in reactive transport modeling because this combination of methods can create sharp
fronts on smooth solutions. Furthermore, the asymptotic convergence rate of the simulation is
restricted by the numerical method with the lowest convergence order.

6.3 Rotating Gaussian Hill

In this example we consider an advection-diffusion-reaction problem with a linear reaction on
a two-dimensional domain with a rotating flow field. We solve problem (6.4) on the domain
Ω = [−0.5, 0.5]2 together with zero Dirichlet boundary condition. The velocity field is rotating
in the center of the domain with v = (−4y, 4x)T . The initial condition is specified as a two-
dimensional Gaussian hill

C(x, y) = exp

(
−(x− xc)2 + (y − yc)2

2σ2

)
.

The exact solution of this problem reads

C(x, y, t) =
2σ2

2σ2 + 4Dt
exp

(
λt− (x∗ − xc)2 + (y∗ − yc)2

2σ2 + 4Dt

)
,

where (x∗, y∗) is the backtrack of the characteristic given by

x∗ = x cos 4t+ y sin 4t, y∗ = −x sin 4t+ y cos 4t.

A similar problem was solved in Liu and Ewing (2005) or without the reaction term in Wang
et al. (1999) and in Bastian (2003). For numerical experiments, we choose the final time t = π

4 ,
which is the time for a half rotation. We use the same parameters as in Wang et al. (1999):
D = 10−4, xc = −0.25, yc = 0 and 2σ2 = 0.01. The reaction rate λ is 0.1 as in Liu and Ewing
(2005).

To observe the convergence of the numerical solution to the exact solution, we refine the initial
uniform mesh with 32 elements in each direction. The initial time step is ∆t = π

512 to fulfill the
stability condition for explicit methods. We refine the spatial mesh and the time steps such
that h/∆t remains constant.

The convergence results in Table 6.8 show that the theoretical convergence rates are achieved
only for second-order CCFV schemes; other numerical methods would require finer meshes
to obtain the theoretical convergence rates. However, the computation on very fine meshes in
multiple dimensions requires huge computational effort and is not always guaranteed to achieve
the theoretical asymptotic convergence rate.

The solutions computed by higher-order schemes are more accurate than those computed by
first-order methods (Table 6.8). The best considered numerical discretization for this example
(regarding the error in L2 and L∞ norm) is, as in the previous examples, CCFV with flux
reconstruction and minmod limiter with θ = 2 together with the method of Heun.
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We compare the exact and the numerical solutions computed on a mesh with 128×128 elements
in Fig. 6.6. The value spacing between isolines in the contour is 0.1. The first-order CCFV
scheme with full upwinding is very diffusive; the L∞-error on this mesh is 0.51, whereas the
L∞-error for the second-order schemes is less than 0.23.

We can conclude that the second-order schemes perform well even in situations with a compli-
cated flow field. A more thorough discussion of the precision of second-order numerical schemes
in two-dimensional problems can be found in the second part of Chapter 7, particularly in Sec-
tion 7.3.

first-order CCFV, explicit Euler second-order CCFV, minmod (θ = 1), Heun

mesh L2-error rate L∞-error rate L2-error rate L∞-error rate

32× 32 5.69× 10−2 - 6.53× 10−1 - 4.35× 10−2 - 5.31× 10−1 -
64× 64 4.77× 10−2 0.26 6.27× 10−1 0.06 2.45× 10−2 0.83 3.90× 10−1 0.44

128× 128 3.62× 10−2 0.40 5.15× 10−1 0.28 9.44× 10−3 1.37 2.04× 10−1 0.93
256× 256 2.46× 10−2 0.56 3.71× 10−1 0.47 2.91× 10−3 1.70 8.74× 10−2 1.23
512× 512 1.50× 10−2 0.71 2.38× 10−1 0.64 8.05× 10−4 1.85 3.20× 10−2 1.45

1024× 1024 8.48× 10−3 0.83 1.38× 10−1 0.78 2.03× 10−4 1.99 9.87× 10−3 1.70

second-order CCFV, minmod (θ = 2), Heun DG, minmod (θ = 1), Heun

mesh L2-error rate L∞-error rate L2-error rate L∞-error rate

32× 32 3.08× 10−2 - 3.97× 10−1 - 4.10× 10−2 - 6.26× 10−1 -
64× 64 1.20× 10−2 1.36 2.06× 10−1 0.94 2.47× 10−2 0.73 4.26× 10−1 0.56

128× 128 3.54× 10−3 1.76 6.79× 10−2 1.60 1.02× 10−2 1.27 2.27× 10−1 0.91
256× 256 9.06× 10−4 1.97 1.64× 10−2 2.05 3.46× 10−3 1.57 1.04× 10−1 1.12
512× 512 2.33× 10−4 1.96 3.34× 10−3 2.30 1.13× 10−3 1.62 4.49× 10−2 1.21

1024× 1024 5.97× 10−5 1.96 8.45× 10−4 1.98 3.72× 10−4 1.60 1.86× 10−2 1.27

Table 6.8: Convergence of different discretization schemes for 2D Gaussian hill
problem with linear decay.

6.4 Discussion

The two approaches to solve reactive transport problems discussed in this thesis, the global
implicit approach and the operator splitting approach, offer different sets of advantages and
disadvantages and are applicable to different types of problems. GIA introduces an error only in
the numerical discretization of the underlying problem. On the other hand, in the OS method
there are two sources of errors: the intrinsic error involved with OS and the discretization
errors associated with the operator approximations.

In this chapter and in Chapter 5 we denote the solution to be accurate enough or the errors to
be reduces sufficiently if the error in the normalized L1-norm is less than 1% for all considered
components. Note that in both chapters we solved similar problems to be able to compare the
OS and the discretization errors.
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(a) first-order, explicit Euler (b) second-order, Heun (c) exact solution

Fig. 6.6: Contours of the numerical and exact solution of rotating Gaussian hill
problem after half rotation on grid with 128× 128 elements: (a) first-order CCFV
with explicit Euler, and (b) second-order CCFV with minmod limiter and method
of Heun.

OS approach vs. GIA

For many transport, diffusion and reactive problems of interest, it is likely that the difference
in the relevant time scales is sufficiently large and the additional numerical error introduced
by operator splitting is small, see the discussion in Chapter 5. This is particularly the case if
the reactive processes are slow compared to the transport. We quantify this relationship using
dimensionless Damköhler number. ForDa < 0.1 the Strang splitting is mostly in an asymptotic
convergence region and generates O(τ2) splitting error. Thus, the additional truncation error
introduced by decoupling the transport and reaction terms is negligible when the splitting time
step is sufficiently small, mostly corresponding to Da < 0.01.

In our implementation of OS, we solve the transport explicitly with a second-order CCFV
scheme in space and Heun’s method in time. The flux reconstruction with minmod slope
limiter and parameter θ = 2 together with Heun consistently outperformed all tested slope
limiters and time discretization schemes in all considered test examples. GIA uses first-order
CCFV together with unconditionally stable implicit methods in time. As expected, OS works
well particularly in the advection-dominated regime, while GIA in this case fails to accurately
capture sharp fronts in the solution.

In one-component transport with linear decay, GIA requires a mesh with at least 1024 elements,
whereas the OS method achieves a sufficient error reduction with only 256 elements. We observe
similar behavior also in two-component transport with Monod kinetics. GIA needs very fine
mesh with at least 4096 elements to reduce the error in all situations for all components
sufficiently. On the other hand, OS with higher-order methods requires only a mesh with 512
elements to obtain the same accuracy. The problem of GIA is particularly the accuracy of
the underlying numerical methods. Although we use first-order CCFV, to reach the region of
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first-order accuracy in h-convergence one needs to use very fine grids. This is a severe problem
particularly in two- and three-dimensional simulations to perform a transient computation in
which evolution details are important.

For high values of Da, the reaction approaches equilibrium almost immediately and the error
associated with the splitting method increases. In this case, an equilibrium model may be
more appropriate. This is consistent with the observation of several researchers that the use of
the local equilibrium assumption in modeling reactive systems may be appropriate when the
governing Damköhler number is greater than 100 (Miller and Rabideau, 1993).

For systems characterized by rapid reactions, however, a more careful assessment of the poten-
tial error introduced by operator splitting is required. As shown by the example with linear
retardation in Section 5.4.1, neither of the tested operator splittings is more than first-order
accurate. The convergence order is for small number of splitting time steps less than one and
we need more than 1000 time steps to reduce the OS error sufficiently. This magnitude of
error is comparable to the discretization error introduced by GIA for linear transport with
linear decay discussed in Section 6.2.2. Furthermore, in systems with many components where
the reactions are described by local equilibrium, the OS errors can accumulate and the model
behavior may become quantitatively wrong.

(Carrayrou et al., 2010) tested a code based on OS approach to solve a reactive problem
including instantaneous equilibrium chemistry, kinetic rate laws and precipitation-dissolution
reactions. They showed that intensive mesh refinement and small splitting time steps are
needed to reach the reference solution with the desired accuracy. The time discretization as
well as the splitting time step correspond to transport CFL numbers between 10−3 and 10−2.
However, using small time steps requires a huge computational effort and even the accuracy
of numerical methods for advective transport with small time steps can be reduced. The
applicability of the OS approach to solve reactive transport systems with several fast chemical
reactions needs more investigation. We note that in this thesis we concentrate on chemical
reactions which we are able to describe with kinetically controlled rate laws.

The GIA appears to be particularly well suited for long term problems because it allows very
large time steps in comparison to the time scale of the transport processes. Large time steps
together with first-order methods in space affect the accuracy of the solution significantly for
non-reactive components or components which are not described by equilibrium. However,
they do not affect the distributions of component concentrations controlled by fast reactions.
In Mayer et al. (2002), the author mentioned that fast reactions can have a self-sharpening
effect on concentration fronts, which can even cancel the effects of transport-induced numer-
ical diffusion. This may also explain the comparably small errors introduced when using OS
techniques for the solution of reactive-transport problems largely controlled by equilibrium re-
actions (Walter et al., 1994). The GIA approach is particularly suitable in situations where the
concentration gradients are controlled by geochemical reaction processes and not by transport
processes.

Solution Strategy

The choice of solution strategy depends on the nature and the velocity of the reactive and
transport processes involved in the system. Furthermore, the main purpose of the instationary
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simulation plays an important role. The solution strategy is different in situations when we
are interested in a steady-state solution or where the evolutions details are important.

In the solution procedure described in Section 4.6 (see also simulation flow chart in Fig. 4.2),
we firstly solve the two-phase problem and obtain a velocity field. From this velocity field we
can compute compute Péclet and Damköhler numbers by Eqs. (6.1) and (6.2). Then we choose
the solution strategy as follows:

• Da < 0.01:
We prefer the OS approach with symmetrical Strang splitting and higher-order methods
to solve component transport. Furthermore, if Peg < 500, the Strang splitting is mostly
in an asymptotic convergence region. When Peg < 2, the problem is locally diffusion
dominant and the advection term can be approximated by central differences. In this
case, we can also split advection and diffusion or use RK-IMEX schemes. For very low
Damköhler numbers (Da � 0.01) we can use several time steps ∆t to solve the sub-
problems in one splitting time step τ . We use GIA for long-term experiments where we
are not interested in sharp fronts and details of concentrations, only in a steady-state
solution. However, the time step should be bounded to reduce an excessive numerical
diffusion.

• 0.01 < Da < 100:
No solution strategy is optimal: we use an OS approach with symmetrical Strang splitting
and higher order discretization methods. However, the splitting error can be comparable
to the discretization error.

• Da > 100:
In principle, GIA is the preferred approach in this regime because the magnitude of the
OS error is unpredictable. On the other hand, the high computational effort involved
in GIA often mandates the use of the first-order OS approach instead. In this case, the
splitting time step τ should not exceed the time step given by the CFL condition for the
explicit time discretization.

Finally we note that to ensure a quantitatively correct solution, it is necessary to compare the
two approaches in a model simulation with reduced size and investigate the h-convergence to
verify that the numerical solution is not influenced by errors arising in operator splitting and
numerical discretization.
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Chapter 7

Applications to Processes in Unsaturated
Porous Media

We apply the numerical simulator developed and tested in previous chapters to simulate,
describe and analyze two laboratory experiments. In the first part, we investigate the transport
of nanoparticles in unsaturated porous media and find a suitable model which is able to describe
measured breakthrough curves. We then use parameter estimation to obtain the kinetically
controlled parameters. All data and modeling results for the nanoparticles were published in
Kumahor et al. (2015b).

In the second part of this chapter, we study oxygen transport in saturated and unsaturated
porous media. We compare the oxygen profiles measured by C. Haberer in a flow-through
cell filled with glass beads to numerical simulations. Furthermore, we study the influence
of different numerical discretization schemes on the accuracy of the numerical simulations in
setups, which are similar to the laboratory experiment.

7.1 Transport of Citrate-Coated Silver Nanoparticles

7.1.1 Introduction

The transport of nanoparticles (NP) in the subsurface is a topic of significant scientific in-
terest, because soils and aquifers act as the primary filter systems to protect water resources
(Liang et al., 2013a). NPs can be highly mobile and may potentially contaminate groundwater.
Furthermore, NPs based on silver (Ag) and its compounds are known to have anti-microbial
properties and can act as effective microbial growth inhibitors instead of antibiotics (Kim et al.,
2007). The transport and retention of NPs in porous media is controlled by the coupling of
chemical factors, physical constraints of the particles, the solution chemistry and the hydro-
dynamic properties of the system. Moreover, in unsaturated porous media, particle mobility
is determined by the existence of an air-water interface in addition to a solid-water interface.
Thus, the development of mathematical models capturing all effects is very challenging.

We developed the model described below based on data from laboratory experiments executed
by S. Kumahor. He performed several flow-through experiments in unsaturated porous medium
and measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles.
We refer the reader to Kumahor et al. (2015a) and Kumahor et al. (2015b), where the labo-
ratory setup and measured techniques are described in more detail. We briefly describe the
experiment with a focus on the experimental aspects which are important for the model de-
velopment.
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7.1.2 Experimental Setup

The experimental column was a polyvinyl chloride cylinder with an inner diameter of 16.2 cm
and a height of 10 cm. The column was filled with quartz sand with a mean grain diameter of
0.2mm and a bulk density of 1.52 g cm−3.

The water retention curves and the unsaturated hydraulic conductivity functions of this sand
were measured using the multistep-outflow (MSO) experiments. The results were used to
design the transport experiments with nanoparticles, for details see Kumahor et al. (2015a).

The flow-through experiments were conducted with two pH values (5 and 9) and three different
flow rates (2.5, 9.7 and 17.0 cmh−1). The different flow rates correspond to different volumetric
water contents θl (i.e., 0.17, 0.29 and 0.35 respectively) and pore-water velocities (i.e., 14.7,
33.4 and 48.6 cmh−1 respectively). The constant inlet flux was established via a peristaltic
pump such that a uniform θl was realized during the water flow.

The NP transport experiments were conducted along the following steps. Prior to the appli-
cation of Ag NP dispersion, the column was flushed with 5 pore volumes of the background
electrolyte solution (containing 1mmol KNO3) to establish a stationary flow field. Then, 8
pore volumes of the Ag NP dispersion were delivered through 19 evenly distributed hypodermic
needles at the surface. This was followed by another 8 pore volumes of Ag NP-free solution to
quantify the mass of NPs irreversible retained. After the flow-through experiment, the column
was then dissected into layers of 1 cm, the concentration of attached NPs was measured and
the retention profiles were established (see e.g. Fig. 7.1b).

This procedure was repeated for both the inert tracer (KBr solution) and for the NPs with
different flow rates and pH values. The outflow concentrations were measured during the
experiment and breakthrough curves (BTC) were established (Figs. 7.1a, 7.2a and 7.3a). Note
that the BTCs measured under quasi-steady state unsaturated flow showed retardation of the
NPs compared to the inert solute.

7.1.3 Model Formulation

We propose a model formulation which is motivated by the qualitative interpretation of the
BTCs. The colloid filtration theory (CFT) has commonly been employed to predict the depo-
sition of NPs on collector surfaces (Liang et al., 2013a; Tufenkji, 2007). However, in contrast
to the classical CFT, the BTCs are asymmetric and retarded. There is a steep initial break-
through followed by a long tailing as typical for non-equilibrium sorption. At the same time
the initial breakthrough is shifted in time with respect to the tracer as typical for a simple
retardation at equilibrium. Hence, the BTCs suggest two parallel processes controlling the
transport of NPs:

1. retardation of the NPs relative to the tracer which can be represented by a retardation
factor R in analogy to the equilibrium sorption;

2. a non-equilibrium process depicted as unbalanced attachment and detachment rates.
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Based on these observations, we use a two-site sorption model, where the sorption sites can
be divided into two parts: kinetically controlled adsorption and an adsorption, which is in
equilibrium with aqueous concentration as in Chen et al. (2003).

Thus, we model the transport of the citrate-coated Ag NPs in unsaturated porous medium
using a one-dimensional form of the ADR equation

∂ (θlRCnp)

∂t
+∇ · {jwCnp − θlD∇Cnp} = −ρb

∂Snp
∂t

, (7.1)

where Cnp is the concentration of NPs in the aqueous phase, jw the flow rate, θl the volumetric
water content, D the dispersion coefficient, ρb the bulk density of the packed column and Snp
is the amount of attached NPs. The pore velocity v is related to the flow rate as vθl = jw.
The one-dimensional computational domain represents a vertical cut in z-direction. We can
use this approximation because of the symmetry of the experimental domain and because the
flow velocity is constant in the whole domain.

For the special case of linear adsorption, the retardation coefficient R relates to an equilibrium
sorption coefficient (Keq) given by

R = 1 +
ρbKeq

θl
,

where Keq = Senp/Cnp and Senp is the amount of NPs sorbed under equilibrium conditions. The
mass balance equation for the NPs in the solid phase is given by

ρb
∂Snp
∂t

= θlψkattCnp − ρbkdetSnp, (7.2)

where katt and kdet are the attachment and detachment coefficients, respectively. The relation
(7.2) incorporates a dimensionless time and depth dependent straining function ψ as in Kasel
et al. (2013) given by

ψ =

(
1− Snp

Smnp

)(
pd + z

pd

)−β
, (7.3)

where pd is the mean grain size of the porous medium, β is the shape factor for retention along
the flow path, z is the distance from the column inlet and Smnp is the maximal attainable amount
of NPs attached to the sand grains. Hence, the first and second terms on the right hand side
of (7.3) represent temporal dynamics and depth dependent interaction of NPs, respectively
(Torkzaban et al., 2008).

The model (7.2-7.3) describes a kinetic attachment and detachment mechanism together with
equilibrium adsorption. However, it should be noted that equilibrium adsorption does not
result in removal of NPs from the aqueous phase. Rather, this process gives rise to a retarded
breakthrough of NPs in comparison to that of a conservative (inert) tracer. That means it is
a completely reversible process (Tufenkji, 2007).

7.1.4 Parameter Estimation

The chosen mathematical model (7.1-7.3) contains several unknown parameters. We obtained
these parameters including θl, jw, D, katt, kdet, R, Smnp and β either directly from the laboratory
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experiments or estimated them using inverse modeling.

The flow rates jw and water content θl were directly obtained from the tracer and the NPs
transport experiments, while D was obtained by fitting a one-dimensional exact solution of the
advection-diffusion equation to the breakthrough curves of the tracer (Kumahor et al., 2015a).
We determined the parameter D also using parameter estimation to test the correctness of our
implemented Levenberg-Marquardt-Algorithm (LMA). The maximal attainable concentration
Smnp was determined from the NP retention profiles and is first fixed to the maximal measured
value for given experiment. In the second part of the discussion, we also estimated the value
of Smnp independently of the measured values. The remaining parameters katt, kdet, R and β
were obtained via parameter estimation using LMA, for details see Section 4.7. The error in
measured normalized concentrations is fixed to 0.04.

In the forward problem, we solve the transport equation for the NPs in the aqueous phase
(7.1) together with the reversible attachment models (7.2) and (7.3) with given inflow concen-
trations. The initial concentration of NPs in both phases is zero, whereas the inflow aqueous
concentration denoted by Cinp differs depending on the concrete experiment. In order to min-
imize numerical errors when solving the forward problem, the 10 cm one-dimensional domain
was discretized into 512 elements for the CCFV discretization. We use the second-order Strang
splitting to solve the ADR system, where we split physical transport and chemical reactions.
We solve the transport part with Heun time integration together with second-order flux recon-
struction and use the RKF45 method for the reaction. The concentration in the last element
was taken as the outflow concentration in each time step.

7.1.5 Results and Discussion

Table 7.1 shows the estimated parameters, the residua for parameter estimation and the coeffi-
cients of determination. All BTCs could be modeled reasonably well and the simulated BTCs
are able to capture the main features of the NP transport. The goodness of fit is given by the
coefficient of determination R2, which is for all experiments greater than 0.964.

The resulting differences in katt and kdet (Table 7.1) suggest intermediate to fast attachment
to the solid-water interface but slow detachment. The values of katt are several order of
magnitude smaller than kdet and the kinetic desorption of NPs can be neglected (e.g., Liang
et al. (2013b)). The retardation term required to describe the BTCs is an added feature and
has not been typically observed for saturated transport. We suggest that the equilibrium
sorption may be linked to the air-water interface and its surface area.

For higher jw and θl, a broader spectrum of pores is activated, leading to much faster NP
breakthrough compared to lower jw and θl. Kumahor et al. (2015a) observed that dispersivity
increased non-linearly with decreasing θl. They interpreted it as a change in the geometry of
the flow field when θl is reduced.

Figs. 7.1 to 7.3 show the BTCs of NPs and the corresponding retention profiles. The exper-
imental results and model outputs are indicated as points and lines respectively. The BTCs
depict a non-linear increase in mobility with increasing jw and θl, and lower NP mobility at
pH = 5 compared to pH = 9.
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jw [cmh−1] pH Smnp [−] katt [s−1] kdet [s−1] β [−] R [−] R R2(%)

2.4 9 2.29× 10−6 8.73× 101 3.99× 10−6 1.88 3.44 0.23 98.9
9.7 5 4.50× 10−6 8.79× 10−1 1.12× 10−6 1.47 2.46 23.34 99.7
9.7 9 1.26× 10−6 3.01× 10−1 4.15× 10−6 1.22 2.65 6.80 99.9

17.0 5 1.79× 10−6 2.73× 10−1 1.50× 10−8 1.03 1.48 227.28 96.4
17.0 9 2.06× 10−7 2.84× 10−2 1.06× 10−5 0.84 1.58 51.56 99.4

Table 7.1: Model parameters obtained from the one-dimensional transport and
retention model (7.1-7.3) for Ag NPs using inverse modeling. The maximal attain-
able concentration Smnp was determined from the NP retention profiles.

jw [cmh−1] pH Smnp [−] katt [s−1] kdet [s−1] β [−] R [−] R R2(%)

9.7 5 1.87× 10−5 5.53 3.63× 10−6 2.08 2.43 12.73 99.7
9.7 9 3.05× 10−6 1.41 4.72× 10−6 1.64 2.66 6.00 99.9

17.0 5 5.80× 10−5 5.01× 10−1 1.47× 10−8 1.45 1.67 66.15 99.0
17.0 9 4.12× 10−7 5.95× 10−2 2.18× 10−5 1.06 1.59 44.55 99.7

Table 7.2: Model parameters obtained from the one-dimensional transport and
retention model (7.1-7.3) for Ag NPs. Parameters Smnp, katt, kdet, β and R were
determined using inverse modeling.

The maximal retention of NPs was observed close to the column surface (Figs. 7.1 to 7.3). Our
model parametrization could mimic the influence of jw and θl for a given pH level. Hence,
the model concept is sensitive to the investigated flow dynamics and the delineated chemical
boundaries. The magnitude of NPs retained at the column surface is highly sensitive to jw and
pH. This ranges from almost no retention for the highest jw at pH = 9, to almost complete
retention for the lowest jw at pH = 9 (Figs. 7.1 to 7.3). This suggests that flow dynamics
and chemical forces are coupled to determine the shape of the retention profiles. It is however
noted that the filtration theory is not always valid for deposition under unfavorable conditions
(Tufenkji, 2007) and probably unable to mimic coupled physical and chemical processes. Fur-
ther discussion about the measured data for the NPs and their properties goes beyond the
scope of this thesis. We refer the reader to Kumahor et al. (2015b), where the experimental
results are explained in more detail.

Although the model with a fixed parameter Smnp describes the effluent concentration curves
and the final spatial distribution of NPs well, we also tried to estimate all the parameters
including Smnp. Table 7.2 shows the estimated parameters together with the computed residua.
As expected, the performance of the model tends to increase with an increasing number of fitted
parameters (R2 > 0.99 for all experiments). Comparison of the residua in Tables 7.1 and 7.2
shows that the model with more fitting parameters performs better, particularly in experiments
with lower pH and higher flow velocities, see also Fig. 7.4. Moreover, the difference between
the values of katt in Tables 7.1 and 7.2 shows the model sensitivity to the model assumption:
fixing the parameter Smnp to the maximum of measured NP concentration in the solid phase.
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Fig. 7.1: Experimental breakthrough curves (a) and retention profiles (b) for NPs.
The symbols and lines represent experiment outcomes and model results respec-
tively for jw = 2.4 cmh−1 and D = 14.15 cm2 h−1. The inset Fig. zooms in on the
shape of the breakthrough curve.
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Fig. 7.2: Experimental breakthrough curves (a) and retention profiles (b) for NPs.
The symbols and lines represent experiment outcomes and model results respec-
tively for jw = 9.7 cmh−1 and D = 6.95 cm2 h−1.
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Fig. 7.3: Experimental breakthrough curves (a) and retention profiles (b) for NPs.
The symbols and lines represent experiment outcomes and model results respec-
tively for jw = 17.0 cmh−1 and D = 0.13 cm2 h−1.
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Fig. 7.4: Experimental breakthrough curves (a) and retention profiles (b) for NPs.
The symbols and lines represent experiment outcomes and model results respec-
tively for jw = 17.0 cmh−1 and D = 0.13 cm2 h−1. Parameter Smnp was also esti-
mated (Table 7.2).
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7.2 Oxygen Transport Experiment

7.2.1 Introduction

To assess the performance of the transport model, we investigated the transport of oxygen
across the capillary fringe. We define the capillary fringe (CF) in a wide sense as the region of
the subsurface which is above the groundwater table but still dominated by capillary rise.

This section is based on laboratory experiments conducted by C. Haberer published in Haberer
et al. (2011). The author focused on the mass transport of oxygen across the interface between
the unsaturated and the saturated zones and within the groundwater. These investigations
help to deepen our quantitative understanding of flow and transport processes in the CF. The
active flow and transport processes within the CF make this zone interesting because steep
gradients in oxygen concentrations exist and a high microbial activity is expected (Maier and
Grathwohl, 2005). Thus, oxygen transport across the CF is relevant for many bio-geochemical
processes, see also Chapter 8.

7.2.2 Experimental Setup

Fig. 7.5 shows a photograph of a flow-through cell (FTC) system which was used in the
laboratory experiment. The FTC with inner dimensions of 80 × 40 × 1 cm was filled with a
homogeneous packing of glass beads with grain size diameters of 1.0-1.5mm. During the filling
procedure, the water table was slowly raised and constantly maintained above the top of the
porous medium in order to avoid entrapment of air bubbles. After the flow-through chamber
has been completely packed, the water table was lowered to its final stage such that the top
of the capillary fringe was kept below the surface of the porous medium and an unsaturated
zone was created in the upper region of the packing.

Fig. 7.5: Experimental setup for oxygen transport experiment in the flow-through
cell filled with glass beads, picture by C. Haberer.
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The water table was kept constant at a height of 27 cm and the CF extended to a height of
29 cm with a rapid transition to low saturations. The average porosity φ of the porous medium
determined by tracer experiments was 0.413 and the permeability K was 1.31× 10−9 m2. The
capillary pressure-saturation relationship is described by a Brooks-Corey model, see Eqs. (2.3)
and (2.5), with an air-entry pressure pe = 186.39Pa and pore size distribution index λbc = 2.

On each side of the chamber there are 23 inlet (outlet) ports, with a vertical separation of
12.5mm, connected to a peristaltic pump. A constant pumping rate of 7.5mlmin−1 created a
quasi-stationary horizontal water flow with a pore velocity of 18md−1. Initially, the water in
the FTC was nearly oxygen free, with a background oxygen concentration Cbg = 0.026molm−3.
In order to study the transport of oxygen in the saturated zone, oxygen with concentration
Ci = 0.26molm−3 was added to the water entering at the 11th inlet port (13.13 cm from the
bottom), while the water at the other inlet ports kept the small background concentration Cbg.
The total duration of the transport experiment was 4 hours.

The oxygen concentrations were measured using two vertical stripes of oxygen-sensitive polymer
optode foil placed at distances of 45 cm and 60 cm from the inlet. At each stripe, a profile of
the oxygen concentration was measured with a high vertical resolution. Each stripe has more
than 100 measurement locations spaced by 2.5mm, see Haberer et al. (2011) for more details.

Over time, the oxygen was transported to the right and the vertical extension of the oxygen
rich plume became wider due to diffusion, see Fig. 7.5 and the numerical simulation in Fig. 7.6.
At the interface between the unsaturated and the saturated zone, the oxygen transfer between
the two phases occurred by diffusion, and a steady-state profile of the oxygen concentration
was developed.

7.2.3 Simulation

The mass transfer between the liquid and the gas phase at the air water interface is fast enough
to assume local equilibrium and can be computed by Henry’s law (2.13). Only molecular
diffusion with a diffusion coefficient of Dl,O2 = 1.25× 10−8 m2 s−1 was considered for oxygen.

We simulated the laboratory experiment with our operator splitting approach solving first
for the steady-state flow field of the water transport described by Eq. (3.2). Afterwards, the
transport of oxygen in the water (Eq. (3.3)) was simulated with the second-order CCFV scheme

Fig. 7.6: Distribution of oxygen plume in the FTC, second-order CCFV with flux
reconstruction and Heun time discretization, mesh 2048× 1024 elements.
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Fig. 7.7: Comparison of profiles of the normalized oxygen concentration after four
hours at 45 and at 60 cm from the inlet.

together with the method of Heun. Two different grid resolutions (256×128 and 768×384
elements) were used to test for grid convergence. The concentration profile was compared
after four hours of simulated time. As the water was not completely oxygen free, we used a
normalized oxygen concentration defined by

Cn =
Cl,O2 − Cbg
Ci − Cbg

, (7.4)

where Cl,O2 is the measured oxygen concentration in water, Cbg is the measured background
concentration of oxygen and Ci refers to the oxygen concentration at the air-water interface
and at the inlet. Fig. 7.7 shows an excellent agreement between measured and simulated data,
both for the position of the peak and its width. The fine and coarse grid results are nearly
identical, indicating a negligible discretization error already on the coarse grid.

Fig. 7.8a shows a comparison of profiles of the normalized oxygen concentration after 3000 s
at 45 cm from the inlet computed using two different numerical schemes: second-order CCFV
with flux reconstruction and first-order CCFV with full upwinding. Both simulations are
performed on a grid with resolution 256×128 elements and the chosen time step corresponds
to the advection CFL number (Eq. 4.23) less than 1. While the flow is quasi horizontal and
the flow field is perpendicular to the grid interfaces, one is able to get a good description of
the vertical profile of the oxygen plume even using first-order CCFV with the implicit Euler
method. In this case, almost no numerical diffusion is added to the vertical profile of the
numerical solution.

Up to now we have investigated only one-dimensional numerical examples or experiments where
the flow velocity was perpendicular to the grid orientation. However, the difficulty of numerical
diffusion is more severe in problems where the flow is diagonal to the face orientations (Steefel
and Lasaga, 1994) and we expect more numerical diffusion introduced by the first-order CCFV
scheme in transport problems with complicated flow fields.
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Fig. 7.8: Comparison of vertical profiles after 3000 s at 45 cm from the inlet com-
puted (a) for horizontal flow as described in Section 7.2.3 and (b) for non-horizontal
flow described in Section 7.2.4, CCFV discretization with 256× 128 elements.

7.2.4 Non-Horizontal Water Flow

It is not easy to reach a quasi steady-state horizontal flow field in the laboratory experiments
which study the flow and transport in the saturated and the unsaturated zone. This is partic-
ularly the case in situations without a rapid transition to a low saturation.

We simulated a slightly modified experiment (compared to the experiment described above),
where the five uppermost ports are switched off. This creates a water flow which is not
horizontal and thus a flow direction which is not perpendicular to the grid interfaces.

In order to study the reduction of numerical diffusion, we solved the oxygen transport using
different numerical methods. As a reference solution, we denote the numerical solution which
was computed on a fine grid (2048 × 1536 elements) using second-order CCFV with flux
reconstruction and Heun’s method. Fig. 7.9 shows the distribution of the oxygen concentration
after 3000 s obtained from simulations with a 256× 128 element grid using two different time
and space discretizations: second-order CCFV with explicit Heun method and CCFV with
first-order upwinding together with an implicit Euler. For both methods, the time step was
chosen to guarantee that the advection CFL number is less than 1. As there are no stability
restrictions for the implicit time discretization, the time step could be larger. However, the
implicit scheme would then produce an even higher numerical diffusion. The numerical diffusion
introduced by the first-order upwind scheme together with implicit time discretization give rise
to an inaccuracy in both the sharp front of the plume in flow direction as well as in the vertical
concentration distribution, see Fig. 7.8b.
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(a) (b)

Fig. 7.9: Distribution of the normalized oxygen concentration after 3000 s simulated
with (a) an explicit time discretization (method of Heun) and the second-order
CCFV scheme with flux reconstruction and (b) an implicit Euler scheme with full
upwinding.

7.3 Reactive Mixing

7.3.1 Introduction

Laboratory experiments and reactive transport modeling of various abiotic and biotic processes
in saturated and unsaturated porous media show that the biodegradation of organic pollutants
is, in many cases, controlled by mixing (Bauer et al., 2008, 2009). Therefore, the bio-chemical
reaction occurs locally at the plume’s fringes, where electron donors (e.g., carbon compounds
such as lactate or pyruvate among many others) and electron-acceptors (e.g., oxygen) mix.
Many authors have investigated mixing and reactive transport in porous media. We refer the
reader to e.g., Anna et al. (2014); Chu et al. (2005); Cirpka et al. (1999); Cirpka and Valocchi
(2007); Dentz et al. (2011) for more details about this topic.

As a simplification, we model the kinetics of an irreversible fast bimolecular reaction of two
solutes C1 and C2 that goes to completion

C1 + C2 → C3, (7.5)

where the product C3 is discernible within the chamber (representing e.g., the concentration
of aerobic microorganisms). The reaction described by (7.5) takes place at the front between
the reactants immediately. The main goal of the following numerical experiment is to show
the performance of different numerical discretization schemes and their abilities to describe the
reactant fronts good enough to prevent an overestimation of component mixing.

7.3.2 Setup

We investigate a simulation of a virtual experiment in the two-dimensional FTC filled with
a porous medium, where the oxygen plume (concentration C1) will spread in the oxygen-free
region containing enough nutrients (C2). The two-dimensional FTC system is the same as in
Section 7.2.2 dealing with the oxygen transport experiment, specifically the size of the FTC
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and the used porous medium. At the beginning of the experiment the initial amount of water
does not contain any of the considered solutes.

On each side of the chamber we inject water with a pumping rate of 7.5mlmin−1. This new
water solution is flowing from inlets positioned between 5 and 13 cm and it contains oxygen
with concentration C1 = 1; the boundary value of the other solutes is zero. The water injected
from the other inlets is also free of all considered solutes.

In addition to the side pumps, we added a source and a sink with a pumping rate of 3mlmin−1

at the height of 10 cm and at distances of 19 cm and 61 cm from the inlet respectively. The
water pumped into the domain from this inner source contains only one component with
concentration C2 = 1. The solute with concentration C1 is transported with the water and
mixes with the solute C2 to produce C3, see Fig. 7.10.

We assume that the diffusion coefficient of C1 is that of oxygen (Dl,O2 = 1.25× 10−8 m2 s−1)
and the diffusion of the other solutes is negligible (D = 0).

Fig. 7.10: Distribution of pore velocity and concentrations of all components after
2000 s simulated with an explicit time discretization (method of Heun) and the
second-order CCFV scheme with flux reconstruction, mesh 2048× 1536 elements.

7.3.3 Numerical Simulation and Discussion

As a reference solution to the problem described above, we denote the numerical solution
computed with the same discretization methods as in Section 7.2.4 on a fine grid with 2048×
1536 elements using second-order CCFV with flux reconstruction and explicit Heun method.

Fig. 7.10 shows the magnitude of the velocity field and the distribution of solute concentrations
at time 2000 s. The oxygen plume moves with the flow field and diffuses into the part of the
domain which contains the plume of the solute with concentration C2. As a result, C3 is
nonzero at the interface between both plumes, where the mixing occurs.
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Fig. 7.11: Comparison of vertical profiles after 2000 s at 40 cm from the inlet
computed using various numerical discretization scheme on mesh with 256 × 128
elements: (a) concentration C2 and (b) concentration of mixing product C3.
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Fig. 7.12: Comparison of horizontal profiles after 2000 s at the height of 15 cm
computed using various numerical discretization scheme on mesh with 256 × 128
elements: (a) concentration C1 and (b) concentration of mixing product C3.
Time step for implicit Euler corresponds to the advective CFL number ν given
by Eq. (4.23) equal to 5.
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We compare the numerical solution at time 2000 s, which is computed using different numerical
discretization methods. Fig. 7.11 shows vertical profiles of the concentrations at 40 cm from
the inlet of the FTC. The discrepancy between the profiles gained by the second-order CCFV
with method of Heun on a mesh with 256 × 128 elements and the exact solution is almost
negligible for both C1 and C3. However, the numerical diffusion in the solution computed by
the first-order CCFV method with implicit integration causes inaccuracy in comparison to the
reference solution. The numerical diffusion extends the region where the components C1 and
C2 mix. Thus, the resulting concentration of C3 is over-predicted, see Fig. 7.11b.

The difference between the solute concentrations measured in horizontal direction at a height
of 15 cm after 2000 s is even more significant. As already shown in Chapter 6, the numerical
diffusion caused by the first-order CCFV scheme is severe in the flow direction if the solution
contains some sharp fronts as, e.g., oxygen with concentration C1, see Fig. 7.12a. At the
height of 15 cm should be no solute with concentration C2. Fig. 7.12b shows that the solution
computed by second-order CCFV scheme is non-zero and we require finer grid to get the correct
solution. Note that both methods converge to the exact solution when we refine the mesh.

7.4 Summary

In this chapter we applied the developed numerical simulator to processes in saturated and
unsaturated porous media and compared the performance of several numerical discretization
schemes in two-dimensional transport examples.

The model describing the transport of nanoparticles together with kinetically controlled adsorp-
tion can fit the breakthrough curves and predict the retention curves reasonably well. However,
the estimated parameters vary depending on many factors like pH and water content, among
others. Moreover, it is difficult to do any prognosis about the transport of nanoparticles in
more complicated systems like highly dynamic zones of porous media.

In the second example, we simulated an oxygen transport experiment in the two-dimensional
flow-through cell. The measured and computed oxygen profiles are in excellent agreement.
Thus, we can conclude that we are able to simulate and predict the distribution of the tracer
given the system parameters and the characteristics of the porous medium.

In the last experiment, we simulated local mixing in a virtual two-dimensional system similar
to that for oxygen transport. The quantification of local mixing is key to the understanding
and the prediction of regions of high bio-chemical activity. We showed that the CCFV method
with second-order flux reconstruction, together with the explicit method of Heun, reduces
the numerical diffusion significantly. In comparison to first-order CCFV method with full
upwinding, the use of second-order methods leads to a much more accurate simulation at the
same grid resolution for reactive flow in porous media with non-trivial flow fields.

105



Chapter 8

Modeling Microbiological Growth and
Transport in the Capillary Fringe

There is a considerable ongoing effort aimed at understanding the microbial growth and trans-
port in porous media (Chen and Walker, 2012; Clement and Peyton, 1997; Tufenkji, 2007;
Yarwood et al., 2006). The soil microbial population can be affected by the availability of elec-
tron acceptors (Sierra and Renault, 1995), nutrients (Reischke et al., 2013) and bio-available
water (Chang and Halverson, 2003; Skopp et al., 1990). The capillary fringe (CF) is a region
where all of these factors are abundantly available and it offers attractive growth conditions
for aerobic and anaerobic soil microorganisms (Affek et al., 1998; Jost et al., 2010, 2011). It is
thus a region where high microbial activity is to be expected.

While the behavior of microorganisms in porous media under saturated flow conditions has
been studied intensively (Bradford et al., 2006; Kouznetsov et al., 2004; Walker et al., 2004),
the more complicated transport in unsaturated porous media is still not very well understood
(Dechesne et al., 2008; Powelson and Mills, 2001; Rockhold et al., 2007; Schäfer et al., 1998a). In
this chapter we analyze the results of laboratory experiments with Escherichia coli conducted
by D. Jost (see Jost et al. (2014b)) under transient, unsaturated conditions using the developed
numerical model.

E. coli is well suited for an investigation of bacterial growth and transport in partially satu-
rated porous media, as E. coli cells can grow under aerobic and anaerobic conditions (Clark,
1989; Madigan et al., 2010). Additionally, there are fluorescent strains of E. coli which are
especially easy to detect and quantify (Jost et al., 2014b). The net negative surface charge
and low inactivation rates of E. coli ensure that it may travel long distances in the subsurface
(Foppen and Schijven, 2005). These characteristics make E. coli an important indicator for
contamination of drinking water supplies and for faecal pollution of the environment (Chen
and Walker, 2012). It has therefore been an object of research in a number of studies (Duffy
et al., 1999; Jiang et al., 2007; Lacoursiere et al., 1986; Powelson and Mills, 2001).

To investigate growth and transport of E. coli under steady-state and transient conditions,
experiments have been conducted in a flow-through chamber (FTC) filled with quartz sand,
see Section 8.4 or Jost et al. (2014b) for details. The main purpose of this chapter is to answer
the question if it is possible to predict the growth of microorganisms under transient flow
conditions in such a flow trough cell without any calibration by experimental data from the
flow-through cell. Therefore, first models for microbial growth and cell adhesion are to be
developed, integrate into the numerical simulator, and then applied to simulate experiments
in the FTC. We published the major part of this chapter in Hron et al. (2015) and further
reference this paper without citation.
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8.1 Modeling of Microbial Growth

E. coli is a facultative anaerobic bacterium which gains ATP by aerobic respiration if oxygen is
present, but is capable of switching to fermentation or anaerobic respiration if oxygen is absent.
As aerobic growth is much more energy efficient, we expect some switch between anaerobic
and aerobic growth if enough oxygen becomes available. Thus, we suppose the growth depends
on the concentration of oxygen and bio-available dissolved organic carbon (DOC).

8.1.1 Batch Experiments

To understand the growth of E. coli and to describe the population dynamics (such as cell
densities and their dependence on substrate concentrations), a number of different batch-
culture experiments were performed under varying conditions. We do not describe the batch
experiments in detail and refer the reader to Hron et al. (2014).

For the aerobic and anaerobic batch experiments, shake flasks filled with different liquid so-
lutions of lysogeny broth (LB) medium were used to observe growth of initially added E. coli
cells. Duplicate culture assays were shaken and the optical density (OD) at 578nm was mea-
sured after inoculation and after every 1 h during the initial phase (log-phase) of bacterial
growth and at several points in time afterwards with a photometer to get the growth curves.
Calibration experiments showed that OD values were linear dependent on the cell density.

The LB medium, which is a source of DOC, was used pure and diluted with 0.9% NaCl solution
to 1/2 (1:1), 1/5 (1:4) and 1/10 (1:9) of the original concentration. The oxygen concentration in
the air phase was kept constant at 20% for aerobic experiments. A nitrogen atmosphere was
used in anaerobic experiments instead of air. In addition the biomass (dry weight, denoted by
dw) of E. coli cells after the growth phase was measured gravimetrically for each replicate. At
the end of the batch experiments, the DOC concentration in the liquid solution was measured
with a carbon analyzer and the amount of consumed DOC was determined.

To determine the dependence of the growth rate on oxygen availability, experiments with dif-
ferent oxygen concentrations were conducted in closed glass vessels filled with undiluted LB
medium only. Each vessel was flushed with a mixture of different ratios of sterile artificial air
and pure nitrogen to achieve different oxygen concentrations. Similar experiments with differ-
ent LB dilutions were also conducted to measure oxygen consumption and biomass production.
The oxygen concentration in the liquid phase was measured with a non-invasive optode tech-
nique. After 24 hours, a sample of gas was taken from each bottle and the oxygen concentration
in the gas phase was measured with a gas chromatograph and the total biomass production
was determined gravimetrically.

The following conclusions about the main factors controlling growth of E. coli have been
obtained from the batch experiments:

• Cell growth is faster in presence of oxygen. This is a consequence of the higher energy
efficiency of aerobic respiration compared to anaerobic fermentation.

• Anaerobic growth takes place only if the amount of available oxygen is very low. If
enough oxygen is available only aerobic respiration is active.
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• Oxygen is still consumed after the growth phase (log-phase), when all convertible DOC
is already depleted. The necessary nutrients are most probably taken from intracellular
resources.

• At high cell and DOC concentrations the dissolution of oxygen in water is slower than
oxygen consumption.

• In all batch experiments only up to 30% of the total DOC was consumed or converted
for both the aerobic and the anaerobic growth.

In the following we test different growth models depending on oxygen and DOC availability,
which are based on common approaches in the literature. We answer the question if it is
possible to describe all batch experiments with one single set of parameters. This is crucial for
the applicability of the growth model in predicting growth and transport of E. coli in porous
media.

8.1.2 Single-Substrate Kinetics

Various mathematical models have been proposed to quantitatively describe microbial growth
kinetics, see Contois (1959); Monod (1949); Moser (1958); Powell et al. (1967).

The biomass concentration under anaerobic conditions is described by a first order differential
equation relating the change of the biomass concentration over time to the current biomass
concentration Cl,X multiplied with a specific growth rate µ∗an

dCl,X
dt

= µ∗anCl,X .

µ∗an is the product of a maximal specific growth rate µmax,an and a relative specific growth rate.
µmax,an is a characteristic of all organisms and it is related to their ability to reproduce and it is
simply defined as the increase of biomass per unit of time under optimal conditions (no limiting
nutrients). Common growth kinetics expressing the relative speed of growth depending on the
concentration si of a single substrate are given by:

Monod
si

Ksi + si
, (8.1)

Moser
(

1 +Ksisi
−λi
)−1

, (8.2)

Tessier 1− exp

(
− si
Ksi

)
, (8.3)

Contois
si

BsiCl,X + si
. (8.4)

The substrate affinity constant (half-saturation constant) Ksi can be interpreted as a reflection
of the affinity of the bacterial cell towards the substrate si. It represents the substrate con-
centration at which growth with half the maximal speed occurs. Moser’s constant λi and the
constant Bsi in the Contois model do not have direct biological meaning. In our case si = Cl,S ,
which denotes the concentration of bioconvertible nutrients and is only a part of the total DOC
in the medium.
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Together with a Monod kinetic (8.1) we obtain for example

µ∗an = µmax,an
Cl,S

KS,an + Cl,S
. (8.5)

8.1.3 Multiple-Substrate Kinetics

While under anaerobic conditions, the growth of E. coli or other facultative anaerobic mi-
croorganisms depends only on the bio-available organic carbon concentration, under aerobic
conditions the oxygen concentration Cl,O2 in the liquid phase has to be taken into account as
well. Kornaros and Lyberatos (1997) used a double Monod model to describe this double nu-
trient limitation for the growth of Pseudomonas denitrificans. It combines two Monod kinetics
in a multiplicative form. The (aerobic) specific growth rate with a double Monod model is
given by

µa = µmax,a
Cl,S

KS,a + Cl,S

Cl,O2

KO2 + Cl,O2

. (8.6)

In both growth models (8.5) and (8.6), the Monod kinetics can be substituted with each of the
other models of the relative specific growth rate (8.2)-(8.4).

8.1.4 Combination of Aerobic and Anaerobic Growth

While aerobic growth of E. coli cells is already occurring at low oxygen concentrations, anaer-
obic growth might still be important. As aerobic respiration is much more efficient, we assume
that only aerobic growth occurs if µa is higher than the growth rate for purely anaerobic growth
under the same substrate limitation (µa ≥ µ∗an). Under these assumptions, the specific growth
rate function for anaerobic growth in presence of oxygen µan can be defined as

µan = max(µ∗an − µa, 0), (8.7)

The total growth rate µ = µa + µan is then a non-decreasing function of Cl,O2 for constant
Cl,S , where only the ratio between aerobic and anaerobic growth is changing.

8.1.5 Mass Balance Equations

We consider a constant volume Vl of liquid phase (culture medium) and gas phase Vg. As there
is no injection or removal of cells during the batch experiment, the balance equation for the
cell density Cl,X is given by

dCl,X
dt

= (µa + µan − rd)Cl,X , (8.8a)

where rd is the decay rate. The generic balance equation for the consumable substrate Cl,S
has the form

dCl,S
dt

= −
(
µa
YS,a

+
µan
YS,an

)
Cl,X , (8.8b)
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where YS,a and YS,an are the yield coefficients. They represent the link between growth rate
and substrate utilization, a measure for the efficiency of the conversion of a substrate into
biomass.

Oxygen transfer between liquid and gas phase occurs at the interface between both phases.
The local equilibrium concentration of oxygen in water C∗l,O2

can be described by Henry’s law
(2.13). As the batch experiments have shown, the assumption of equilibrium between gas
phase and liquid phase is not valid for oxygen exchange during rapid growth phases. Thus,
we introduce a kinetic mass transfer model depending on the difference of the actual and
equilibrium concentration of oxygen in the liquid phase, a gas-liquid mass transfer capacity
coefficient kLα depending on gas/liquid interfacial area (which was constant for the batch
experiments) and the ratio of the phase volumes. The mass balance equations for oxygen in
the liquid and gas phase are then given by

dCl,O2

dt
= −

(
µa
YO2

+moCl,O2

)
Cl,X + kLα

(
C∗l,O2

− Cl,O2

)
, (8.8c)

dCg,O2

dt
= −kLα

(
C∗l,O2

− Cl,O2

) Vl
Vg
, (8.8d)

where YO2 is the yield coefficient for oxygen and mo is the oxygen consumption factor for
maintenance.

The system of ordinary differential equations (8.8), together with appropriate initial conditions,
specifies a modified growth rate model for E. coli including simultaneous aerobic and anaerobic
growth, cell decay and a kinetic description for oxygen transfer. It can be customized with
different models of the relative specific growth rate.

With the growth model (8.8) derived from the batch experiments, we obtain the following
reaction terms rα,κ as denoted in the model development (see Chapter 3, Eq. (3.4)) for cell
density Cl,X , substrate Cl,S and oxygen concentration Cl,O2 in the liquid phase:

rl,X = (µa + µan − rd)Cl,X , (8.9a)

rl,S = −
(
µa
YS,a

+
µan
YS,an

)
Cl,X , (8.9b)

rl,O2 = −
(
µa
YO2

+moCl,O2

)
Cl,X . (8.9c)

8.2 Parameter Estimation for Growth Kinetics

The growth model (8.8) contains a number of different parameters like maximal growth rates,
half saturation constants, yield coefficients, maintenance and mass transfer coefficient etc,
which need to be determined using the data obtained from the batch experiments.

Scientists have developed many different ways to determine the model’s kinetic parameters.
However, some of them are predisposed to inaccuracy and can be applied only under limited
conditions. In the last two decades, software based on non-linear regression is used to determine
growth parameters, e.g. in Kovárová et al. (1996); Kovárová-Kovar and Egli (1998); Senn et al.

110



(1994). In this approach a separate set of parameters is obtained for every single experiment
or even for different stages of an experiment. Usually the parameters are averaged later.

In this work, we want to use a parameter estimation approach to obtain model parameters,
which describe the measured quantities (like optical densities, biomass densities, DOC con-
centrations and oxygen concentrations in air and in water) for all experiments simultaneously.
Our approach uses an inverse model together with the initial value approach (Marsili-Libelli,
1992; Richter and Söndgerath, 1990), for details see Section 4.7. The forward model in the
LMA algorithm solves the system of equations (8.8) using a RKF45 method for systems of
ordinary differential equations. The initial conditions are derived from the batch experiments.

8.2.1 Parameter Estimation for the Batch Experiments

To combine the deviations between measured and simulated data for different measured quan-
tities into a single objective function (4.26), a suitable weighting factor wij has to be chosen. In
theory, this should be the measurement error. We assume that the error for each measurement
is 10% of the maximal value of the measured quantity in the specific experiment.

To assess the predictive power of the growth model with the different models of the relative
specific growth rate (Monod, Moser, Tessier and Contois model, (8.1)-(8.4)) a separate set of
parameters was estimated for each of the combinations and the residua were compared.

Anaerobic Growth

In the absence of oxygen the growth of E. coli is purely anaerobic (µ = µan). This reduces the
unknowns to the maximum growth rate µmax,an, the anaerobic substrate yield factor YS,an, the
decay rate rd and parameters for the growth kinetics like half saturation constant or Contois
saturation constant.

The decay rate was determined from four, six-day long anaerobic batch experiments, each using
a different dilution of the LB medium. The remaining growth parameters were estimated from
8 experiments using 4 different dilutions of the LB medium at an incubation temperature of
21◦C with a total of 125 single measurements.

Aerobic Growth

The two types of aerobic experiments emphasize different aspects of microbial growth. In the
open system experiments, the concentration of oxygen in air was kept constant with a fast
air circulation and thus the mass balance equation for oxygen in the gas phase (8.8d) can be
omitted, while the closed system experiments allow a quantification of the oxygen consumption.

A total of 334 individual measurements from 35 aerobic experiments were used to estimate the
remaining 7 or 8 parameters (depending on the model used for the relative growth rate) which
are only relevant in the presence of oxygen.
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8.2.2 Performance of the Different Growth Kinetics

Table 8.1 summarizes the residua obtained with the different models of the relative specific
growth rate. There was generally a good agreement between measured and simulated cell
biomasses (residuumRX) and the final substrate concentrations (residuumRS) as dry biomass
and substrate concentration were measured at the start of batch experiment and after the log-
phase only.

anaerobic growth aerobic growth

RS ROD RX R RS ROD Rg,O2 Rl,O2 RX R

Contois 1.8 5.2 6.7 13.8 8.6 14.1 8.6 9.2 15.6 56.2
Monod 1.2 12.3 7.2 20.8 7.8 39.4 13.8 25.1 15.8 101.9
Moser 1.8 9.0 6.9 17.7 8.4 34.3 11.8 43.5 18.0 116.1
Tessier 1.4 12.9 7.2 21.5 8.4 47.4 14.9 28.0 15.2 113.8

Table 8.1: Residua gained by an inverse modeling for different kinetic growth
models (8.1-8.4) of the relative specific growth rate. RS denotes the residuum in
the substrate concentration, ROD the residuum in the growth curves w.r.t. the
optical density, RX the residuum in cell density, Rg,O2 and Rl,O2 are residua in
oxygen concentration and R is the total residuum.

The best overall agreement between simulated and measured values was obtained with the
Contois model of relative specific growth. This is mostly due to a much better reproduction
of the measurements of optical density (and also growth curves) and oxygen concentration
in the liquid phase. The models based on a Monod, Moser or Tessier kinetic perform sig-
nificantly worse. The obtained growth curves show a sharp switch between log-phase and
stationary/death phase, which was not observed in the batch experiments and does not occur
with the Contois kinetics. The difference is even more striking, as the Contois based model has
the same amount of parameters as the models using the Monod and Tessier kinetic and one
parameter less than the model with the Moser kinetic. Thus, only the model with the Contois
kinetic (8.4) is used in the rest of this chapter.

8.2.3 Estimated Parameters and Discussion

The estimated growth parameters for the model with the Contois kinetic are given in Table 8.2.
For all parameters, the standard deviations are relatively small indicating that the model is
both appropriate and not over-parametrized. Higher standard deviations for the Contois sat-
uration constants confirm the difficulty described already in Kovárová-Kovar and Egli (1998).
The authors mentioned that the saturation constant Ksi in the Monod model could vary even
during a single growth cycle.

However, the agreement between simulations and experiment was very good for all types of
measurements in all setups. As a typical example, the simulated and measured biomass con-
centration for aerobic and anaerobic growth in closed serum bottles is shown in Fig. 8.1 and
8.2 for different substrate dilutions. Fig. 8.3 shows the corresponding decrease of the oxygen
concentration in the gas phase.
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Fig. 8.1: Comparison of measured optical densities (points) for anaerobic growth
and growth curves as a solution of model (8.8) (lines) with estimated parameters
summarized in Table 8.2.
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Fig. 8.2: Comparison of measured optical densities (points) aerobic growth and
growth curves as a solution of model (8.8) (lines) with estimated parameters sum-
marized in Table 8.2.
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Fig. 8.3: Comparison of measured data (points) and oxygen concentrations in
gas as a solution of model (8.8) (lines) with estimated parameters summarized in
Table 8.2.

Parameter Aerobic Anaerobic

Maximum growth rate µmax,· [h−1] 0.324± 3.7% 0.255± 6.9%
Decay rate rd [h−1] 3.54× 10−3 ± 4.2%
Contois saturation c. BS,· [-] 1.81± 15.3% 3.07± 26.3%
Yield for substrate YS,· [g dw g−1 consumableDOC] 0.95± 4.3% 0.163± 2.1%
Contois saturation c. BO2 [-] 0.019± 27.6% -
Yield for oxygen YO2 [g dw g−1 O2] 0.49± 8.2% -
Maintenance for oxygen mo [l h−1 g−1 dw] 0.003± 19.9% -
Oxygen mass transfer c. kLα [h−1] 33.2± 9.3%

Table 8.2: Growth parameters for Contois model derived by inverse modeling.

The yield coefficients of 0.95 g dwg−1 consumed DOC and 0.49 g dwg−1 O2 estimated for the
E. coli cells are in accordance with the yield coefficients reported by Reiling et al. (1985), where
also µmax,a values of 0.39-1.39 h−1 at a high cultivation temperature of 37 ◦C were determined.
In Kovárová-Kovar and Egli (1998) values for µmax,an between 0.19 and 0.65 in Chemostat and
batch cultures with glucose at 17-20 ◦C are listed.

Under anaerobic conditions, bacteria use a mixed acid fermentation (instead of respiration) to
gain energy for growth (Paege and Gibbs, 1961; Stokes, 1949), thus the growth is slower and the
yield coefficient decreases. According to our results, a yield of 0.163 g dwg−1 consumedDOC
was determined, which is close to the anaerobic yield coefficient of 0.18 g dwg−1 glucose which
Ataai and Shuler (1985) found for some other strains of E. coli .

Comparing these values with the results of our batch experiments for aerobic growth of E. coli ,
it is obvious that the chosen growth conditions (21◦C) and LB medium were not optimal. Under
natural conditions the soil flora has to grow with a mixture of carbon sources, mostly digestion
products or amino acids draining from the surface layer.

The LB medium reflects naturally available carbon sources relatively well. While the DOC
concentration in the LB medium is very high compared to naturally oligotrophic conditions in
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groundwater, an optimal nutrient supply was necessary in this study to produce measurable
quantities of biomass.

These results clearly show that it is possible to describe the growth of E. coli under a wide
range of substrate and oxygen concentrations including both aerobic and anaerobic growth
with a single set of realistic parameters.

8.3 Phase Exchange with High Oxygen Consumption

Even in growth experiments with batch-cultures, continuous shaking and instantaneous oxygen
supply, the measured oxygen concentrations in water were significantly below the concentration
calculated for an equilibrium with the gas phase. The consumption of oxygen was thus faster
than oxygen dissolution and therefore local equilibrium can not be assumed.

To specify macroscopic closure relationships for the mass exchange of oxygen between the gas
and the liquid phase in a porous medium, we follow the model proposed by Holocher et al.
(2003) and Geistlinger et al. (2005) based on a stagnant film model for spherical gas bubbles.

The mass flux between the two phases is assumed to be proportional to the concentration
deficit in the water phase (Mayer and Miller, 1996) and the effective area of the gas-water
interface agw and can be described by

− eg,O2 = el,O2 = βeagw

(
C∗l,O2

− Cl,O2

)
, (8.10)

where βe is a mass exchange coefficient and C∗l,O2
is the equilibrium oxygen concentration given

by the Henry’s law.

According to Clift et al. (1978) the mass exchange coefficient βe can be calculated for a spherical
structure with a harmonic mean particle diameter pd as

βe = Dl,O2

(
2

pd
+

1

δ

)
, (8.11)

where Dl,O2 is the oxygen diffusion coefficient in water and δ is the thickness of the stagnant
film layer. The boundary layer thickness depends on the flow velocity at the interface

δ =

√
πpdDl,O2

‖vl‖
.

The velocity at the interface is approximated by the pore water velocity of the liquid phase vl,
see Niessner (2011).

The gas-liquid interface plays a crucial role for the phase exchange in unsaturated porous
media. As a consequence, there is a large number of models to estimate the effective gas-liquid
specific interfacial area agw, see e.g. Ahrenholz et al. (2011) for an overview.

One model to estimate agw was formulated by Gvirtzman and Roberts (1991) based on geo-
metrical considerations for the surface area of a packing of spheres. In this model the total
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effective interfacial area is given by

agw = κsg
6φ

pd
, (8.12)

where κ is the fraction of the air bubble surface area exposed to mobile water, which is assumed
to be equal to the porosity (Geistlinger et al., 2005).

In this model agw is proportional to the gas content. However, this relationship was proven with
pore network models (Joekar-Niasar et al., 2007; Reeves and Celia, 1996) and experiments with
glass beads (Culligan et al., 2004; Porter et al., 2010) only for sl > 0.3. The model (8.12) thus
may overestimate the gas-liquid interfacial area and thus also the phase exchange in regions
with low water saturation.

The mass transfer model (8.10) together with a mass exchange coefficient βe calculated accord-
ing to (8.11) and the effective interfacial area from (8.12) describes a first-order kinetic, where
the exchange rate depends on water content with only one free parameter pd. We discuss the
sensitivity of the model regarding to pd in Section 8.4.3.

8.4 Microbial Growth Experiments in a Flow-Through Cham-
ber

Up to now we have developed a growth model for E. coli under aerobic or anaerobic conditions
and their combination. In this section, we will solve the combined model containing the
growth model, the component transport and the model for kinetically controlled oxygen phase
exchange and compare the simulation results with experimental data.

8.4.1 Experimental Setup

To investigate growth and transport of E. coli under steady-state and transient conditions, a
flow-through chamber (FTC) with inner dimensions of 50× 40× 0.6 cm was used. It was filled
with quartz sand (grain size: 0.2-0.6mm, porosity 0.39) up to a height of 30 cm. The hydraulic
properties of the sand were parametrized with a van Genuchten model (Genuchten, 1980) and
the parameters determined by a multi-step outflow (MSO) experiment, see Table 8.3.

van Genuchten parameters

Pore size distribution parameter n̂ 5.48
Shape parameter α 1.21× 10−3 Pa−1

Porosity (φ) = saturated volumetric water content 0.39

Residual volumetric water content (θr) 0.0

Hydraulic conductivity K 2.6× 10−11 m2

Table 8.3: Hydraulic parameters for the quartz sand used for the transport exper-
iments with microbial growth in the FTC.

At the start of the experiment, the porous medium was completely dry (previously heat ster-
ilized). A suspension of E. coli cells and LB medium was initially injected to the chamber
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through six ports in the bottom (at 5, 11.5, 21.5, 28, 39 and 44.5 cm from the left) with a flow-
rate of 190ml h−1. After one hour, the water injection was stopped and a CF formed at a
height of up to 25 cm, while a hydraulic potential of zero was reached at a height of 6 cm.
Fig. 8.4 shows the simulation of the inflow phase and the development of the CF.

Water flow through the FTC was suspended for five days, during which E. coli cells grew while
consuming the bioconvertible DOC. After five days, sterile, oxygen-saturated LB medium was
injected from the left side of the FTC and the same amount of liquid was extracted on the right
side of the chamber by peristaltic pumps for another five days. The four inflow and outflow
ports were located at a height of 0.5, 2.0, 3.5 and 5.0 cm. The depth integrated flow-rate in the
horizontal direction was 15ml h−1. The whole system was kept under a constant temperature
of 21◦C. Detailed descriptions of the laboratory experiment can be found in Jost et al. (2014b).

Growth was monitored by the detection of a green fluorescent protein, which is produced by
the E. coli strain HB101 K12 pGLO used in the experiment. The FTC was irradiated with UV
light (365 nm) and the mean fluorescence intensity, which was detected by a camera system,
was converted to cell concentrations in cellsml−1 CF volume, see Jost et al. (2014b). The CF
volume denotes the total volume occupied by the porous medium including the pore space.
The average dry weight m of one cell of E. coli was determined from independent experiments
to be approx. 5.0× 10−13 g.

8.4.2 Numerical Simulation

To simulate the laboratory experiment, we solve the two-phase problem (3.2) and the com-
ponent transport equations (3.3). In the liquid phase, we are interested in the concentration
of microorganisms and the consumable substrate. The oxygen concentration is important in
the water as well as in the air. The reactions describing the microbial growth and the phase
exchange are solved locally or are coupled to the reactive transport and we solve the system
of Eq. (3.5) with right hand sides (8.9c) and (8.10) respectively.

As the FTC is very thin in one dimension compared to the others, it can be considered as an
essentially two-dimensional system. The 50×30 cm large domain was discretized using 392×256
rectangular grid cells, resulting in a grid resolution of 1.3×1.2mm. This resolution corresponds
to twice the diameter of the maximal grain size. The grid resolution is fine enough to keep the
spatial discretization error small, while the runtime of one simulation is still acceptable. We
discuss the solution strategy, the chosen methods, the performance of the implementation and
the code scalability in Section 8.6.

The initial conditions for pc and pl where chosen to correspond to a volumetric water content of
0.1% and atmospheric pressure for the gas phase. All domain boundaries, excluding inlet/outlet
ports, are treated as impermeable for the liquid phase (zero Neumann boundary condition).
The flux at the ports is set to the value used in the experiments. For the gas phase all but the
top side is impermeable. The air pressure at the top of the domain is fixed to the atmospheric
pressure.

The initial amount of water is free of DOC and E. coli cells. The relative initial and boundary
oxygen concentration in air is 20.95%. The ideal gas law yields absolute oxygen concentration
of 8.68mmol l−1 gas. At 21 ◦C, the Henry constant kccH is 3.28× 10−2 (Dean and Lange, 1999)
and the equilibrium oxygen concentration C∗l,O2

is 9.1mg l−1 water.
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Fig. 8.4: Initial injection of water suspension containing E. coli cells and LB
medium after 0.1 h, 1 h and 3 h.

The injected suspension contains LB medium with 0.8 g l−1 of consumable DOC. At the start of
the experiment (inflow phase), it additionally contains a negligible amount of dissolved oxygen
(0.1mg l−1) and 2× 107 cellsml−1 of E. coli which is equivalent to a biomass concentration of
1.0× 10−2 mgml−1. In the second part of the experiment the injected water does not contain
E. coli cells and the dissolved oxygen concentration corresponds to the equilibrium oxygen
concentration C∗l,O2

.

For the numerical simulations we assumed, that E. coli cells are not able to move without
water flow (no active movement, no molecular diffusion, Dl,X = 0m2 s−1). The other diffusion
coefficients were taken from literature: Dl,S = 1.9× 10−10 m2 s−1 given by Hendry et al. (2003),
Dl,O2 = 2.2× 10−9 m2 s−1 and Dg,O2 = 1.8× 10−5 m2 s−1 as listed in Aachib et al. (2004).

8.4.3 Simulation Results

Inflow and Stagnancy (Day 0-6)

While the infiltration of water from the bottom was stopped after 1 h, the establishing of a
stationary moisture distribution took significantly longer. After approx. 6 h, no visible changes
of the water content were observed, in both the model as well as the experiment. Fig. 8.4 shows
the water saturation and the development of the CF during the injection and shortly after the
initial infiltration.

A vertical profile of the measured cell concentrations at x = 25 cm after 5 d is given in Fig. 8.5 at
the left. The lower part of the domain, up to a height of 11 cm, is fully water saturated. In this
region the E. coli cells are growing anaerobically, as all oxygen is quickly consumed and there
is no additional supply. The measured E. coli concentration is 0.7× 108 cellsml−1 CF volume.

Starting at a height of 11 cm, the cells are growing under anaerobic as well as aerobic conditions,
as oxygen diffuses from the air phase on top into the liquid phase. The highest growth rates and
biomass production were observed in a zone between 12 and 16 cm, where the water saturation
is 0.6-0.8. In this region, there is enough bioconvertible DOC available, which was contained in
the infiltrating water, but there is also sufficient dissolved oxygen available. In the uppermost
part of the domain, the cell concentrations decrease with the water saturation.

To assess the impact of the value used for the mean particle diameter in the oxygen exchange
model, simulations with three different values of pd were conducted. A higher value of pd
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Fig. 8.5: Vertical profile of cell concentration at x = 25 cm after 5 d of growth
without new nutrient supply and without flow (left) and after another 5 d with
new nutrient supply and flow (right). Comparison between cell concentrations
computed by numerical simulation with pd = 0.9mm and experimental data.

results in a lower effective interfacial area. Thus, a lower phase exchange rate and finally a
slower microbial growth. Comparison of the results (Fig. 8.6) shows a significant impact on
the shape of the cell concentration profile in regions with a water saturation between 0.4 and
0.95. With pd equal to the diameter of the biggest grains in the quartz sand used, the model
over-predicts the oxygen exchange rate and the maximum of the cell concentration is too deep.
For larger values of pd the maximum moves upwards. However, the parameter κ in the model
of the exchange rate (the fraction of the air bubble surface exposed to mobile water) and pd
are indirect proportional. Thus, the deviation could be caused by an overestimation of κ. In
all following numerical simulations a value of 0.9mm is used for the parameter pd.

The simulated maximal cell concentration (Fig. 8.5, left) with pd = 0.9 is approx. 30% lower
than the maximal cell concentration in the laboratory experiment (5.3× 108 compared to
3.6× 108 cellsml−1 CF volume). However, the experimental cell concentrations calculated from
fluorescence intensities (FI) have a rather high uncertainty, especially at high intensities. There
is also other evidence for an overestimation of the maximal cell concentration obtained from
the FI. If the cell concentration in the water phase is calculated from the cell concentration and
the saturation, the maximal cell concentration in water (at 14 cm) is almost 11 times higher
than in the saturated region below. However, this value is much higher than the factor of 6 as
expected from the different yield coefficients for aerobic and anaerobic growth.

In the uppermost part of the domain, the simulated cell concentrations are proportional to
the water saturation. The systematically higher cell concentration compared to the experi-
mental data may be a result of an overestimation of the phase exchange of oxygen or by a
slightly different shape of the capillary-pressure saturation curve than determined in the MSO
experiments (with a different sample of the same sand).

Considering that there was nearly no calibration of the simulation model on the FTC experi-
ment (except for pd), instead all parameters were determined from independent measurements
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Fig. 8.6: Vertical profile of cell concentration at x = 25 cm after 5 d of growth
without new nutrient supply and without flow calculated with different values of
pd and experimental data.

in batch or MSO experiments, the agreement is astonishingly good. This is not only qualita-
tively but also quantitatively.

Horizontal Flow (Day 6-10)

After 5 d without water flow, 15ml h−1 of oxygen saturated LB medium was injected to the
domain from the left. In the numerical simulations, a tiny change of the water content was
observed due to the potential gradient required to sustain the flow. On the inflow side of the
domain, the water content profile was shifted upwards by 4mm and it was shifted downwards
by the same value on the outflow side of the FTC. This change in the water content profile is
too small to be detected in a laboratory experiment. After two hours, the flow field and water
content distribution became essentially stationary.

The velocity field after the steady-state is shown in Fig. 8.7. In the middle of the domain,
water flow is practically horizontal with a pore water velocity of 1.3md−1 up to a height
of about 11 cm. In the unsaturated zone, the pore water velocity decreases drastically with
decreasing water content. Close to the inlet/outlet ports the pore water velocity reaches a
maximum of 6.5md−1. Flow is not just horizontal but follows curved streamlines and new
nutrients are transported to the upper part of the domain. Thus, also cells in the unsaturated
zone will get fresh DOC supply. After 3 d of flow, the transport and growth of E. coli becomes
quasi-stationary and does no longer change considerably. The spatial distribution after 10 d
(after 5 d with horizontal flow) is shown in Fig. 8.8 together with a picture of the fluorescence
intensity. A vertical profile of the cell concentration is shown in Fig. 8.5.

It is obvious from the plots that there is a fundamental mismatch between simulation results
and experimental data. The microorganisms are too strongly washed out in the simulation, as
retention of the bacteria e.g. by adhesion to the solid phase or filtration is not considered in
the model. This results in a shift of the cell concentration distribution to more unsaturated
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Fig. 8.7: Magnitude of pore velocity flow field [md−1] (scaled to the maximal pore
velocity 4md−1) and streamlines of water flow.

Fig. 8.8: Fluorescence intensity in the experiment (left) from Jost et al. (2014a)
and cell concentration (right) after 10 days of simulation (after 5 days of flow with
new DOC supply).

conditions, where the pore water velocity is low. In the lower part of the domain, virtually no
bacteria are present. Thus, all DOC is available to the bacteria at the top, resulting in very
high cell concentrations in this region.

8.5 Investigation of Bacteria Attachment at the Solid Phase

In the following we want to examine if the adhesion of the E. coli bacteria to the solid phase
could be the reason for the discrepancies.

8.5.1 Attachment Model

In many laboratory and field studies, models based on a colloid filtration theory (CFT) have
been used extensively to evaluate microbial transport and adhesion in saturated and unsatu-

121



rated porous media (e.g. Ginn et al., 2002; Tufenkji, 2007).

Assuming that the attachment of E. coli cells to sand grains is reversible, the general formula-
tion of the adhesion term al,X describing cell adhesion from liquid phase is written as (Bradford
et al., 2006)

al,X = −θlkattψCl,X + θskdetCs,X , (8.13)

where Cl,X is the E. coli concentration in the liquid phase, Cs,X is the E. coli concentration at
the solid surface, katt is the first-order deposition coefficient, kdet is the first-order detachment
coefficient and ψ is a dimensionless deposition function. The mass balance equation for E. coli
attached to the solid phase is then given by

∂ (θsCs,X)

∂t
= −al,X . (8.14)

To account for time dependent deposition behavior and a decrease in the solid surface area
available for bacterial adhesion, a general form for ψ is utilized as in Schäfer et al. (1998a):

ψ =

(
1−

Cs,X
slC

max
s,X

)
, (8.15)

where Cmaxs,X is the maximum attainable bacterial concentration on the solid surface. The solid-
liquid interfacial area available for cell attachment decreases with water content. As Cs,X rises,
the bacteria render the solid surface less attractive for further attachment and the deposition
function (8.15) will decrease. The maximum concentration of the attached cells is given by
slC

max
s,X .

Because the cells attached to the surface of the sand grains are still in direct contact with the
liquid phase, we can define a total liquid E. coli concentration as CX = Cl,X +Cs,Xθs/θl. We
assume, that attached and detached cells can be described by the same growth model.

8.5.2 Experimental Determination of the Adhesion Parameters

In the work by Lutterodt (2012), many flow through experiments were conducted to investigate
adhesion kinetics of different E. coli strains. The adhesion rates for different strains may differ
by many orders of magnitude (10−2-10−7 s−1) and the adhesive kinetic needs to be established
for every strain separately. For this reason we designed similar experiments to estimate the
model parameters (8.13) for strain HB101 K12 pGLO. The flow-through experiments were
conducted in stainless steel capillaries (diameter 0.4 cm, length 10 cm, filled with quartz sand)
and saturated with a 0.9% NaCl solution. Bacteria suspended in 0.9% NaCl solution were
then pumped through the cell with a constant bacterial concentration in the inflow ranging
from 0.7× 108 up to 1.0× 109 cellsml−1. The experiment was conducted with pore velocities
between 1.3 and 4.0md−1. The amount of bacteria in the outflow was recorded over time.

The resulting data was then used for parameter estimation. The forward model solves the
transport equation for E. coli concentration in water (3.3) together with the adhesion kinetic
model (8.13-8.14) with the inflow concentration as boundary condition. To exclude an influence
of numerical discretization and splitting errors in the solution of the forward problem on the

122



Attachment rate katt [s−1] 3.0× 10−4 ± 10%

Detachment rate kdet [s−1] 6.2× 10−6 ± 42%

Maximum attached conc. Cmax
s,X [cellsml−1porous medium] 0.5× 108 ± 4%

Table 8.4: Adhesion parameters for E. coli estimated by inverse modeling from the
breakthrough curves.
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Fig. 8.9: Breakthrough curves for E. coli HB101 K12 pGLO measured in experi-
ments under water-saturated conditions (points) and solution of transport/adhe-
sion problem with estimated parameters (lines).

results of the parameter estimation, a one-dimensional domain was divided into 512 elements for
the simulation. We used the same solution strategy for the forward problem as in Section 7.1.
In each time step, the concentration in the last element was taken as outflow concentration.
The data of all experiments was fitted simultaneously. Two example curves and the adjusted
model are shown in Fig. 8.9 and the estimated parameters are summarized in Table 8.4.

The attachment coefficients reported by Bradford et al. (2006) have values between 7.7× 10−3

and 1.3× 10−4 s−1, which is in a good agreement with our estimated attachment coefficient.
The detachment coefficient also comparable with the values of 1.7× 10−8-3.3× 10−6 s−1 re-
ported in Bradford et al. (2006) with a pore velocity of approx. 4md−1. Schäfer et al. (1998a)
measured the maximum attached concentration of approx. 0.5× 108 cellsml−1 porous medium
for Pseudomonas putida. In principle, the attachment rates can be dependent on flow veloci-
ties. However, we have not observed any dependency on flow conditions. The influence of the
bacterial growth stage on cell adhesion of E. coli has been studied by Walker et al. (2004).
Cells in the stationary growth phase were notably more adhesive than those in the exponential
phase. In our batch experiments, the age of E. coli cells did not have any influence on cell
adhesion kinetics.
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Fig. 8.10: Vertical profile of total cell concentration and cell concentration in the
liquid phase at x = 25 cm after 5 d of growth without new nutrient supply and
without flow (left) and after another 5 d with new nutrient supply and flow (right).
Comparison between cell concentrations computed by numerical simulation with
pd = 0.9mm and experimental data.

8.5.3 Simulation Results with Attachment

In order to capture attachment behavior, the simulation of the FTC experiment as described
in Section 8.4.1 was repeated with the adhesion model (8.13-8.15). In addition to the system
of equations described in Section 8.4.2, we added the reaction term al,X given by (8.13) to
the reactive transport problem (3.5) and also solved Eq. (8.14) modeling the concentration of
attached microorganisms.

All other parameters were the same as in the simulations without attachment (see Section 8.4.2).
A vertical profile of the total cell concentration and the cell concentration in the liquid phase
at x = 25 cm (in the middle of the FTC) is given in Fig. 8.10. The distribution of attached and
total cell concentration is shown in Fig. 8.12. While the simulation results (and the agreement
with the experimental data) are nearly identical for the first five days of the experiment (the
stationary phase), there are drastic differences in the transient phase.

In the lower part of the FTC, where the growth of E. coli was anaerobic in the first five days,
the cell concentration after 10 days is higher than after 5 days. This has two reasons: firstly
the nutrients and oxygen are continuously provided with the current, secondly the attachment
prevents the bacteria from being washed out. This is reflected by the fact that in this region
nearly half of the microorganisms are attached to the solid phase (Fig. 8.10). The maximum cell
concentration is at a height of about 15 cm, which is well in accordance with the measurements.
As in the experiment, the maximal cell concentration is lower than at the end of the stagnant
phase. In the upper part of the domain with very low saturation (sl < 0.2) E. coli cells do
not get any new nutrients from the flowing water and are starving. Overall, the agreement
between measured and simulated total cell concentration is even better than after the stagnant
phase.

124



Fig. 8.11: Spatial distribution of oxygen (left) and consumable DOC (right) after
10 days of simulation with new DOC supply.

Fig. 8.12: Spatial distribution of cell concentrations [cellsml−1 CF volume] after
10 days of simulation with new DOC supply; total E. coli concentration (left) and
attached cell concentration (right).
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Close to the inlet ports, the microorganisms are washed out and even the number of attached
cells is reduced (Fig. 8.12). The area with the highest cell concentration is shifted upwards on
the inflow by 2-3 cm. Both effects can be observed in principle but are less pronounced in the
fluorescence intensities (Fig. 8.8, left).

The carbon and oxygen sources in the added water are depleted during the transport through
the chamber, see Fig. 8.11. Oxygen is exhausted almost immediately if the microorganism con-
centration is high in the saturated and unsaturated zones. DOC is transported with the current
and is consumed continuously. Numerical simulation confirmed that almost all bioconvertible
DOC was consumed within the chamber.

The numerical simulation predicts an accumulation of E. coli cells at the right side of the
domain above the outflow ports, as the flow velocities are low there and the cells are washed
out slowly in this region. This effect was also observed in tracer experiments with fluorescein,
but not in the experiment with E. coli cells. The production of a green fluorescent protein
depends on the oxygen concentration (Jost et al., 2014b) and also on the activity of the cell.
This is not considered in the simulation. Thus, the cell concentration at the right side of the
domain might be considerably higher but the cells are inactive. This has to be investigated in
future experiments.

Production of Carbon Dioxide

When the E. coli cells respire, they release carbon in the form of CO2. A very high CO2

concentration in the air changes the density of the gas phase, which in turn influences its Darcy’s
velocity. Assuming that for each mole of consumed O2 one mole of CO2 will immediately be
released into the gas phase, we repeated the previous simulations with initial and boundary
concentration corresponding to 0.05% of CO2 in the gas phase. In regions with high DOC
supply and high oxygen consumption the density of the gas phase increased up to 1.3 kgm−3.
However, the magnitude of the gas phase velocity caused by differences in density was of the
order of 10−8 ms−1 which is still small compared to the diffusive fluxes considering a diffusion
coefficient of 1.6× 10−5 m2 s−1 for CO2 (Lide, 2008) and the dimension of the domain. Thus,
the effect is negligible.

8.6 Solution Strategy and Implementation Efficiency

The laboratory experiment is characterized by a highly transient initial behavior with rapid
changes caused by initial transport, followed by a stagnancy phase without groundwater flow.
The third part of the experiment simulates a quasi-steady state transient flow.

We will discuss the solution approaches for the following four phases of the simulation:

1. inflow (t = 0-1 h),

2. stagnancy (t = 1 h-5 d),

3. horizontal flow, short term with duration 5 h (t = 5 d-5 d and 5 h),

4. horizontal flow, long term with duration 2 d (t = 5 d-7 d).
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Dominant Processes and Solution Approaches

The 50×30 cm large domain was discretized using 392×256 rectangular grid cells, i.e. the grid
size h is approx. 1.3× 10−3 m. There are two dominant reactive processes in the inflow phase
of the experiment: microbial growth and adhesion of microorganisms. We can estimate the
maximum velocity of the microbial growth by the aerobic maximum growth rate µmax,a =
0.324 h−1 = 9.0× 10−5 s−1 and the adhesion kinetic by the attachment coefficient katt =
3.0× 10−4 s−1. The maximum flow velocity determining the time step for explicit methods
at the inlet ports is approx. 6.5md−1 = 7.5× 10−5 ms−1. Thus, the transport Damköhler
number for microbial growth and cell attachment is 0.0015 and 0.005 respectively. We can
state that the error in the operator splitting approach using the second-order Strang splitting
between transport and reaction is negligible and we can thus use the OS approach.

In the second part of the experiment, the transport is dominated by diffusion and it is conve-
nient to use GIA. The bacterial concentration becomes higher and the bacteria consume the
oxygen in the transition zone very quickly. However, the oxygen dissolution described by model
(8.10) is limited by the mass exchange coefficient βe and the effective interfacial area agw. In
the region with gas saturation 0.1 (i.e. the region of high microbial activity), the kinetic rate
λr = βeagw is approx. 5.7× 10−4 s−1 for pd = 0.9mm.

The maximum flow velocity in the third part of the experiment with horizontal flow is about
6md−1. Thus, the transport Damköhler number for oxygen phase exchange is approx. 0.01.
The Damköhler numbers for microbial growth and adhesion are similar to those computed
above and the OS approach can be applied successfully.

Code Performance

We performed all simulations described in this chapter on AMD OpteronTM 6172, 2.10 GHz.
We tested the performance of the implementation of the two-phase problem and the reactive
transport using both approaches. To perform a strong scaling, we fixed the problem size (mesh
with 392 × 256 elements) and investigated how the solution time varies with the number of
processors.

Table 8.5 summarizes the computational times for the two-phase simulation in the inflow part of
the experiment. The two-phase code scales well, with an efficiency above 70% for 16 processors.

P CT speedup efficiency

1 52.7 1.00 1.00
2 28.0 1.88 0.94
4 17.1 3.07 0.77
8 8.2 6.43 0.80
16 4.5 11.79 0.74

Table 8.5: Strong scaling for two-phase problem in the inflow phase of the ex-
periment. The computational times (CT) in minutes for different numbers of
processors P on a mesh 392× 256 elements, 65 time steps.
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In each time step of the two-phase problem, we solve the system of ADREs using both solution
approaches (GIA and OS). In the GIA approach we use a first-order CCFV scheme with full
upwinding of the convection terms together with implicit Euler in time. GIA uses adaptive time
stepping as described in Section 4.6.1 with a maximum time step corresponding to the CFL
number 10. On the other hand, the OS approach solves the advection-diffusion problem for each
component using second-order CCFV with flux reconstruction and Heun time discretization for
all solute components in the liquid phase. The transport in the gas phase is solved with either
the same methods as the transport in the advection-dominated case (Peg > 2) or with CCFV
using central differences for the advection term and implicit Euler if Peg < 2. The splitting
time step τ in the OS splitting corresponds to the CFL-like number νl = 0.8. The system of
reactions describing the microbial growth, phase exchange and adhesion of microorganisms is
solved element-wise with RKF45.

Table 8.6 shows the computational performance of both the operator splitting and the global
implicit approach in the first part of the experiment (inflow). The time needed to compute the
reactions in the OS approach does not exceed 5% of the time needed to compute the transport
of all components. The computational time needed by one processor with GIA is less than
half of the computational time needed using the OS approach. This difference is caused by the
different number of time steps required for the simulation. The maximum time step for the OS
approach is much smaller than for the GIA approach and OS requires almost 15 times more
time steps than GIA. However, the computational effort per time step is 6-8 smaller for the
OS approach, which is due to the required linear system solve in GIA. We solve the ADRE
system with three components in the liquid phase (bacteria, consumable substrate, oxygen),
one component in the gas phase and bacteria in the solid phase. Thus, the two-dimensional
problem with 5 components solved on a mesh with 392 × 256 elements using CCFV requires
the solution of a non-linear system with more than 5× 105 DOFs.

With respect to the scalability of both approaches, OS is much more efficient than GIA. One
can observe a super-linear speedup when using at least 16 processes in the transport part of
the OS approach. This super-linear speedup is caused by cache effects: the used machine has
512 kB of L2 cache. When we solve the transport problems component-wise, all of the working
sets fits into L2 cache, and the memory access time reduces dramatically.

The element-wise computed reactions in the OS approach do not scale very well. The velocity
and the stiffness of the reaction terms in this example strongly depend on the position in
the computational domain, i.e. the solution time is governed by the processor which needs to
compute most of the stiff reaction. The domain decomposition used in this work is well suited
for transport problems (particularly with explicit treatment), but if the time for reactions were
dominant, a more sophisticated load balancing would be required. The computational times of
OS and GIA simulating the first 5 h of the horizontal flow using 16 processors are comparable
for both approaches (Table 8.7). This time (5 h) corresponds to propagation through a half of
the pore volume. However, GIA is more efficient for long-term simulations which correspond
to several pore volumes, see Table 8.7, because we can use longer time steps.

The results of the numerical simulations shown in this chapter were computed with both
approaches. Although the GIA approach may introduce a small amount of the numerical
diffusion at the concentration fronts, we have not seen any difference between the concentrations
computed by either approach. We have also performed the simulation on a finer mesh without
any visible changes of resulting concentrations.
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OS approach GIA

transport reactions sum reactive transport

P CT eff. CT eff. CT eff. CT eff.

1 450.4 1.00 9.9 1.00 460.4 1.00 187.4 1.00
2 227.6 0.99 4.9 1.00 232.5 0.99 115.5 0.81
4 121.2 0.93 3.2 0.78 124.4 0.93 72.4 0.65
8 60.4 0.93 1.6 0.78 62.0 0.93 36.4 0.64

16 22.8 1.23 0.9 0.66 23.7 1.21 22.6 0.52

Table 8.6: Strong scaling for reactive transport in the inflow phase of the experi-
ment (up to 1 h). Comparison between computational times (CT) in minutes for
OS approach (988 time steps) and GIA (69 time steps).

OS approach GIA

transport reactions sum reactive transport

P CT eff. CT eff. CT eff. CT pts CT eff. CT pts

1 1557.6 1.00 20.6 1.00 1578.2 1.00 24.9 846.0 1.00 110.6
2 783.6 0.99 10.6 0.97 794.3 0.99 12.6 448.2 0.94 58.6
4 432.6 0.90 5.9 0.88 438.5 0.90 6.9 271.1 0.78 35.4
8 221.3 0.88 3.2 0.81 224.5 0.88 3.5 148.6 0.71 19.4
16 86.0 1.13 2.0 0.64 88.0 1.12 1.4 67.4 0.78 8.8

Table 8.7: Strong scaling for reactive transport in the phase of the experiment
with horizontal flow. 5 h of experiment correspond to approx. 0.5 pore volume.
Comparison between computational times (CT) in minutes for OS approach (3746
time steps) and GIA (459 time steps) and corresponding computational times for
one time step (CT pts) in seconds.

OS approach GIA

transport reactions sum reactive transport

P CT eff. CT eff. CT eff. CT pts CT eff. CT pts

1 11 797.8 1.00 178.4 1.00 11 976.3 1.00 25.3 2951.1 1.00 117.3
2 5979.7 0.99 94.7 0.94 6074.4 0.99 12.8 1712.9 0.86 68.1
4 3314.3 0.89 48.8 0.91 3363.1 0.89 7.1 956.2 0.77 38.0
8 1686.6 0.87 25.5 0.87 1712.1 0.87 3.6 555.2 0.66 22.1
16 653.6 1.13 16.9 0.66 670.4 1.12 1.4 273.3 0.67 10.9

Table 8.8: Strong scaling for reactive transport in the phase of the experiment
with horizontal flow. 48 h of experiment correspond to approx. 5 pore volumes.
Comparison between computational times (CT) in minutes for OS approach (28393
time steps) and GIA (1510 time steps) and corresponding computational times for
one time step (CT pts) in seconds.
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8.7 Summary and Discussion

The primary objective of this chapter was to test if we can understand the behavior of mi-
croorganisms well enough to predict their growth in a porous medium using only independently
measured data, or if we can just reproduce their behavior afterwards by fitting a model to the
data. The well known bacterium E. coli was used as a typical representative. The growth
model, which was developed and parametrized with data from batch experiments, was applied
to data from experiments with a flow through cell.

We also showed that the parallel implementation of the numerical schemes exhibits good
scalability, which allows us to keep the spatial discretization error negligible, while the run-
time of the complete simulation is still acceptable (several hours with 32 cores on AMD
OpteronTM 6172, 2.10 GHz).

8.7.1 Microbiological Growth

In order to predict microbial processes in the field, a good understanding of the dominant
processes is essential. The applied growth model was developed and parametrized with data
from batch experiments, where the bacteria grow in a liquid suspension without a porous
medium was investigated. Together with an appropriate transport model, it was (nearly)
sufficient to get a very good prediction for the cell concentration of E. coli during the infiltration
and stagnant phase of the experiment. The only free parameter was the ratio κ

pd
in the model

for the dependency of the effective gas/liquid interfacial area on gas phase saturation. The not
negligible sensitivity on this parameter demonstrates that the kinetic of the phase exchange
between gas and water phase is of crucial importance at higher water saturations and that a
local equilibrium assumption is not valid. Thus, additional research into the dynamics of this
phase exchange and its parametrization is highly desirable. The good prediction of the cell
concentrations for both the zone of aerobic and anaerobic growth demonstrates that the new
parameterless approach for a switch between aerobic and anaerobic growth works well.

For the second phase of the experiment with horizontal ground water flow, an inclusion of the
attachment of the E. coli bacteria to the solid phase was essential to obtain a good agreement
between simulated and measured data. A suitable adhesion model could be successfully trans-
ferred from the literature and calibrated with additional independent measurements. With the
adhesion model, it was possible to reproduce the cell concentration distribution in the flow
through cell within an accuracy of 30%. As the flow velocity is relatively high in our applica-
tion and a significant part of microorganisms remains in the liquid phase, we did not need to
introduce a maximal microbial capacity in the growth model as in Schäfer et al. (1998c).

After about three days, the distribution of the cell concentrations becomes nearly static. The
still high concentration of non adsorbed bacteria is a clear indicator that the system is in a
dynamic equilibrium between permanent bacterial growth (sustained by the constant supply
of nutrients) and elution of microorganisms by the groundwater flow.
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8.7.2 Model Limitations

There are some processes, which were neglected or simplified in our macroscopic modeling
approach, as they were not relevant in the experiment.

For adhesion kinetic we use a model based on colloid filtration theory, which is not always
valid under repulsive conditions (Tufenkji, 2007). Although we assumed the same consump-
tion kinetic in both phases, attached bacteria may consume less nutrients than cells in liquid
phase. In addition, the attachment mechanism can be different in fully water saturated and
unsaturated regions.

More understanding is also required on how soluble organic substances interact with the surface
of bacteria and affect their retention to soil surfaces (Unc and Goss, 2004). In Schäfer et al.
(1998a) and Jiang et al. (2007) the accumulation of bacteria at the air-water interface was also
considered and it was modeled as an irreversible adsorption. We did not deem this necessary
here, as no attachment at the air-water interface was observed in the laboratory experiments.

Furthermore, we neglected the capability of microorganisms to move actively, as the E. coli
strain used is not capable of moving in response to a chemical gradient. Both random motility
and chemotaxis can have an influence on transport for subsurface organisms (Ginn et al., 2002).
Motility and chemotaxis can play a role e.g. in movement of microbes into contaminated areas
of low permeability, where advective transport is minimal compared with adjacent preferred
flow paths (Amy and Halderman, 1997).

Moreover, the growth and transport of microorganisms can have an influence on the hydraulic
properties of porous media (Yarwood et al., 2006). High accumulation of microbial cells can
change the hydraulic properties of porous media (Taylor and Jaffé, 1990), create preferential
flow paths and change flow and transport direction. This is not yet included in the model. The
microbially generated gases and entrapment or microbially induced changes in the chemical
properties of the liquid or solid phases of the media may also play a role in permeability
reduction (Rockhold et al., 2002). As the nutrient supply in this experiment was not sufficient
to result in very high cell concentrations, this was not relevant. However, this is not unrealistic,
as nutrient supply in natural uncontaminated groundwater is usually rather scarce.

Models describing the formation of microcolonies and/or biofilms require microscale data that
are difficult to measure accurately (Clement et al., 1998). Microbial colonization may cause
apparent drying within the colonized zone, with localized decreases in saturation, giving rise to
partial diversion of flow around the colonized zone (Yarwood et al., 2006). In the experiments
described here, no biofilm formation was detected.

8.7.3 Conclusion

Given a suitable growth model and sufficient data for the independent determination of the
parameters, it is possible to predict microbial growth in a porous medium, even if the pa-
rameters were obtained from measurements with aqueous solutions only. This is even true
for experimental conditions with a horizontal groundwater flow. However, the inclusion of a
model for the attachment of the E. coli bacteria to the solid surface was crucial for a successful
prediction. In the unsaturated zone a suitable description of the kinetic of the air/water gas
exchange is crucial and a local equilibrium assumption is wholly insufficient.
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Chapter 9

Summary and Conclusions

The main objective of this thesis was to develop a multi-phase multi-component reactive trans-
port model for the investigation of transport and reaction processes in unsaturated and satu-
rated groundwater systems. We have shown our new numerical model based on an operator
splitting approach is a valuable tool for the investigation of various transport and reactive
processes in a porous medium. The model includes transient two-phase flow, multi-component
solute transport, phase exchange, as well as a chemical model that considers chemical reactions,
microbial growth and attachment.

9.1 Model Development

We designed the model to be applicable to a wide variety of reactive transport problems and to
be computationally robust. These goals were achieved by using an operator splitting approach.
We separated either phase flow and reactive component transport or phase flow, component
transport and reaction. Furthermore, the operator splitting concept enables the flexible use of
discretization schemes that are adapted in an optimal way to the individual situation dependent
on the flow conditions.

Monotonicity of the solution and the suppression of artificial oscillations are the fundamen-
tal requirements for the accurate simulation of reactive transport problems. In contrast to
non-reactive transport simulations, where small oscillations are unproblematic, in the reac-
tive transport oscillations result in negative concentrations, which leads to instabilities in the
calculation of reactive processes. The problem with the monotonic behavior of the solution
typically occurs when linear high-order methods are applied to advection-dominated prob-
lems. Conversely, linear low-order methods may introduce significant artificial diffusion. Since
reaction only takes place when components mix, numerical diffusion can lead to an over-
prediction of mixing, and thus an over-prediction of chemical reactions (Gramling et al., 2002).
Therefore, traditional linear first-order transport schemes are not good choices for simulating
advection-dominated transport of interacting compounds. The operator splitting allows the
use of higher-order discretization schemes for the component transport, which as a consequence
of Godunov’s theorem (LeVeque, 2002) are non-linear and non-differentiable and thus cannot
be included into implicit time stepping schemes. Using higher-order explicit one-step methods
for the time discretization, we are able to greatly reduce the numerical diffusion.

We incorporated and tested several numerical discretization schemes to ensure an efficient
and robust solution. The numerical methods have been implemented in the DUNE software
framework and have been tailored towards applications in reactive transport modeling. The
solution of the transport parts requires a numerical scheme which preserves the underlying
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mass-conservation laws, avoids the generation of over- and undershoots and reduces numerical
diffusion, whereas the solution of the chemistry part requires a numerical method adapted
to efficiently solve stiff problems. As the geometry of the laboratory experimental setup is
just a rectangular box, simple structured grids were sufficient. The selected cell-centered
finite volume scheme for the discretization in space is robust, flexible, accurate, locally mass
conservative and efficient on such grids. However, the operator splitting approach is not limited
to structured grids. On complicated geometries unstructured grids with discretization schemes
like the discontinuous Galerkin method can be used.

As was shown in the last chapter, reactive transport problems are often characterized by a
highly transient initial behavior with rapid changes caused by transport or reaction processes,
followed by a quasi-steady state condition or a series of quasi-steady state conditions, where
the concentrations of dissolved species do not change significantly. Thus, an efficient solution
of the whole problem requires a suitable strategy. The present model includes adaptive time
stepping. Moreover, the numerical methods used to compute reactive transport can be adapted
to the concrete simulation conditions to significantly reduce the numerical discretization error
and the computational time.

9.2 Operator Splitting vs. Global Implicit Approach

One of the objectives of this work was to determine the convergence properties of the operator
splitting method for reactive transport as a function of the used splitting algorithm and the
values of the dimensionless variables describing the system under consideration.

In the case of the OS approach, when the transport part is solved explicitly with higher-order
schemes in space and time, no linear or non-linear systems need to be solved. Explicit methods
are easy to parallelize and require a modest amount of computer memory. However, the time
step may not exceed a certain threshold that depends on the CFL-like number. Otherwise,
the transport scheme may become unstable. The lack of stability for longer time steps is the
price to be paid for the simplicity of the explicit schemes. To compute a single time step in
transport is cheap but an inordinately large number of time steps may be required to perform
simulations over a given interval of time. However, the solution of component transport in
the OS approach is not limited to explicit time schemes; unconditionally stable implicit or
implicit-explicit time step schemes can be used as well.

The reaction terms in the OS approach are solved element-wise. We showed that the sym-
metrical second-order Strang splitting reduces the OS error between transport and reactions
sufficiently for slow kinetically controlled reactions (Da < 0.01). In all examples in this the-
sis, the time needed to solve the chemical reactions did not exceed 5% of the time to solve
the transport problems. However, in problems including instantaneous equilibrium chemistry,
the computation time to solve the chemical problem can be many times longer than the time
needed to compute the component transport. In this situation, a non-adaptive parallelization
based on domain decomposition without additional load-balancing can be very inefficient.

GIA with implicit methods produces non-diagonal matrices. The design of an efficient implicit
algorithm is particularly difficult if the underlying PDE and/or the discretization procedure are
non-linear. The cost per time step is larger compared to that of an OS approach with explicit
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treatment of the transport problem. The used implicit schemes are unconditionally stable, and
the use of large time steps makes it possible to reach the final time faster than with an explicit
scheme subject to a restrictive stability limit (see Section 8.6). However, the accuracy of the
space and time discretization and the convergence behavior of linear and non-linear iterative
solvers also depends on the time step size and on the underlying problem.

The reactive processes involved in the system also affect the choice of the solution strategy. If all
the reactive processes are slow compared to the transport, we can use an OS approach without
any loss of accuracy. However, if there are any reactions which are in local equilibrium, we
should prefer the GIA approach. We should also distinguish between truly transient problems
and those in which the solution varies slowly and/or converges to a steady state. Tables 9.1
and 9.2 summarize the restriction and possible applications of both approaches.

If it is not known in advance whether the transport process to be simulated is steady or
unsteady, it is possible to start with an OS approach and switch to GIA if the changes in
solution in one time step become small. However, the deterministic criteria for this switch
need to be further investigated. The most severe problem with the OS approach with explicit
schemes for component transport is the time step restriction given by the CFL condition.
Particularly in multi-dimensional examples the difference in magnitude of the velocity can be
very high (as e.g. in the two-dimensional examples in Chapters 7 and 8) and the time step is
determined by the element with maximal velocity. On the other hand, in the remaining part of
the domain the time step could be larger. To overcome this difficulty, one can use local time-
stepping (different time steps for different elements) and/or an unconditionally stable implicit
scheme together with shock detectors. However, these improvements need to be investigated
in future extensions of our model.

Method Time Space CFL Pe Da
Solution of global

discretization discretization (non-)linear system

GIA implicit first-order - - - yes
OS explicit higher-order < 1 > 2 < 0.01 no

Table 9.1: Restrictions of solution approaches w.r.t. Péclet, Damköhler and CFL
numbers, and the necessity to solve global (non-)linear system of equations.

Method Applications

GIA slowly moving fronts, reaction dominated problems, equilibrium reactions,
diffusion dominated problems, long-term flow behavior or steady-state
solution

OS transient problems, transport dominated problems, kinetically controlled
reactions, sharp fronts in solution, importance of evolution details

Table 9.2: Applications of the global implicit and operator splitting approaches to
reactive transport processes.
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9.3 Modeling of Laboratory Experiments

The quality of a scientific field and its progress depends on how well the mathematical models
developed on the theoretical side agree with the results of repeatable laboratory experiments.
The final focus of this thesis was to apply the developed simulator to reproduce three different
laboratory experiments. We investigated transport and adhesion of nanoparticles in an unsat-
urated porous medium, oxygen transport and diffusion in a flow-through cell filled with glass
beads, and growth and transport of microorganisms in the capillary fringe.

The lack of agreement between our initial mathematical models and the experimental measure-
ments led to important advances as better mathematical models were developed. We took into
account the discrepancy between measured data and numerical simulations, the description of
feasible processes already mentioned in the literature and also the experimental observations.
A very flexible, robust and fast numerical simulator which can be easily adapted to solve var-
ious transport and reactive processes and simultaneously solve the underlying problem with a
sufficient accuracy is an essential tool to achieve this goal. Furthermore, parameter estimation
takes a key role in the determination of kinetically controlled chemical rates.

With the help of experimentally determined information about the investigated system (prop-
erties of the porous medium, initial and boundary conditions, flow rates etc.) together with
suitable models and sufficient data from the independent determination of model parameters,
it was possible to predict microbial growth and transport in a porous medium. Results of
modeling of cell distribution showed a very good prediction of the cell density profile of cells
within the capillary fringe, even if the kinetically controlled rates were obtained from measure-
ments with aqueous solutions only. However, the inclusion of a model for the cell attachment
to the solid surface was crucial for a successful prediction. In the unsaturated zone, a suitable
description of the kinetic of the air/water gas exchange was also essential. We performed all
the numerical simulations without any additionally calibration of the parameters estimated
from the batch experiments. The very good predictive quality of the model developed from
batch experiments for the quite different conditions in a porous medium makes it a promising
basis for further experiments.

9.4 Final Remarks and Future Work

In order to compare our numerical simulator to other codes described in Steefel et al. (2014),
we summarize the capabilities and the used methods in the model:

• flow and transport features:

– saturated and unsaturated flow in 1D, 2D, 3D;

– multi-phase and multi-component flow

– advection and diffusion transport in the liquid as well as in the gas phase

• geochemical and microbial features:

– microbial growth
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– liquid-gas exchange

– kinetically controlled adhesion and adsorption

• computational capabilities:

– operator splitting and global implicit approach for reactive transport

– transport with high Péclet numbers

– code parallelization

– inverse modeling and parameter estimation

The newly developed model provides a solid basis for modeling reactive flow in porous media
and is not limited to the simulation of processes discussed in this work. However, there are
many other desirable capabilities, which are not yet included in the model like variable density
and/or non-isothermal flow. In the future, new geochemistry model like surface complexation,
ion exchange, mineral precipitation and dissolution can be integrated to the model.

Moreover, additional research on the suitability of different varieties of splitting between phase
transport and reactive component transport is necessary. This splitting does not play a key
role in systems with water and air. However, it may be very important for other applications
like CO2 modeling, DNAPL transport or for the modeling of reactions causing a fast phase
consumption.

This numerical simulator can be applied to reproduce and verify additional laboratory exper-
iments, which requires a close collaboration with scientists executing laboratory experiments.
However, the outcome of the numerical simulation cannot be better than the quality of the
underlying mathematical model. Thus, the development of better and more accurate models
is a great scientific challenge.
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Appendix A

A.1 Time Discretization Methods

A.1.1 Explicit SSP-RK Methods

A general m stage RK-SSP method can be algorithmically represented as

Ũ0 = Un, (A.1a)

Ũ i =
i−1∑
k=0

(
αikŨ

k + ∆tnβikL(Ũk)
)
, i = 1, . . . ,m, (A.1b)

Un+1 = Ũm, (A.1c)

where αik ≥ 0 and αik = 0 only if βik = 0. We use the second- and third-order non-linear
SSP-RK methods described in Shu (1988).

Heun

The second order, two-stage non-linear SSP-RK method is given by

Ũ0 = Un,

Ũ1 = Ũ0 + ∆tnL(Ũ0),

Un+1 =
1

2
Ũ0 +

1

2
Ũ1 +

1

2
∆tnL(Ũ1).

This method corresponds to the well known method of Heun.

Shu3

Similarly, the third order, three-stage non-linear SSP-RK method is given by

Ũ0 = Un,

Ũ1 = Ũ0 + ∆tnL(Ũ0),

Ũ2 =
3

4
Ũ0 +

1

4
Ũ1 +

1

4
∆tnL(Ũ1),

Un+1 =
1

3
Ũ0 +

2

3
Ũ2 +

2

3
∆tnL(Ũ2).
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A.1.2 IMEX Methods

We summarize the Butcher tableaus for the second- and third order IMEX schemes tested in
this thesis. The tableau on the left corresponds to explicit scheme, whereas the tableau on the
right describes the implicit scheme.

In all of these schemes the implicit tableau corresponds to an L-stable scheme, whereas the
explicit tableau is SSP scheme. We use the notation SSP(s, e, o), where s is the number of
schemes of the implicit scheme, e the number of stages of the explicit scheme and o denotes
the order of the RK-IMEX scheme.

Alexander2-IM

IMEX-SSP(2,2,2) from Ascher et al. (1997), stability discussed in Koto (2008b):

0 0
γ γ 0
1 δ 1− δ 0

δ 1− δ 0

0 0
γ 0 γ
1 0 1− γ γ

0 1− γ γ

, γ =
2−
√

2

2
, δ =

1−
√

2

2−
√

2

Pareschi2

IMEX-SSP(3,3,2) from Koto (2008b):

0 0
1 1 0
1
2

1
2 0

1 0 0 1 0

0 0 1 0

0 0
1 0 1
1
2 0 −1

2 1
1 0 −1 1 1

0 −1 1 1

Ascher3

IMEX-SSP(4,4,3) from (Ascher et al., 1997; Pareschi and Russo, 2005):

0 0
1
2

1
2 0

2
3

11
18

1
18 0

1
2

5
6 −5

6
1
2 0

1 1
4

7
4

3
4 −7

4 0
1
4

7
4

3
4 −7

4 0

0 0
1
2 0 1

2
2
3 0 1

6
1
2

1
2 0 −1

2
1
2

1
2

1 0 3
2 −3

2
1
2

1
2

0 3
2 −3

2
1
2

1
2
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