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Abstract 
 

Microfluidic devices allow precise control to manipulate fluids within micrometer sized channel 

networks. In single phase microfluidic systems where miscible fluids are infused, laminar flow 

can be generated. This means liquid streams can flow parallel to each other without convective 

mixing. In two phase microfluidic systems where two immiscible fluids are infused, droplets are 

generated. Using this system, uniformly sized aqueous micro compartments can be generated in 

oil. This dissertation describes the development of novel microfluidic devices based on single 

phase and two phase systems to monitor responsiveness of cells and organisms to different 

chemical cues. Firstly, the possibility to apply a specifically designed single-phase microfluidic 

chip to study zooplankton ecology has been demonstrated. Zooplankton perceive their 

surrounding using chemical cues and rely on these cues for development and survival. However, 

with the current rapid global climatic changes affecting the ocean chemistry, it is unclear on how 

plankton, which form the base of the marine food chain, are coping. So far, measurements on 

zooplankton ecology have been hampered by technical impracticalities of exposing actively 

swimming plankton species to different chemical conditions simultaneously while monitoring 

their behavior on an individual level. Using the microfluidic device, first measurements on 

behavioral preferendum of zooplankton species to changes in pH and salinity could be made 

with a precision that additionally allowed estimating the “responsiveness”, which is the 

minimum change in concentration required for the plankton to elicit a response, to an 

environmental stimulus. Platynereis dumerilii, cosmopolitan model plankton were more 

sensitive to changes in pH than salinity. In addition, comparing different species lead to the 

observation that Euterpina acutifrons, a copepod species showed a narrower pH preferendum 

than P.dumerilii. These measurements allow making predications on sensitive and resilient 

species. Furthermore, the ability to study the interaction of zooplankton with their prey and 

predators and perform functional studies on identifying cell types responsible for a sensory 

response has been demonstrated.  

 

For cell-based screening assays however, the high-throughput offered by droplet-based systems 

outcompetes single-phase systems. But, generating chemical diversity in droplets that can allow 

screening entire chemical libraries while being able to track the sample identity remains to be 

demonstrated. Here a novel approach has been devised that allows generating sample barcoded 

combinatorial mixtures. In addition the approach has been optimized to suit for screening rare 
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and sensitive cells like mouse embryonic stem (mES) cells. The ability to maintain viable mES 

cells in droplets for a period of 48 h has been demonstrated and in addition the possibility to 

differentiate them by encapsulating them together with 10-8 M retinoic acid (RA) has been 

shown.   

 

Lastly, a new microfluidic approach combining the advantages of single phase and two phase 

microfluidics has been described. This approach allows high-content cell-based screening with 

freely accessible cells allowing regular tissue culture handling and potentially, immunostaining 

experiments which are not possible when cells are encapsulated. To maximize the throughput 

per chip, chemicals were encapsulated in droplets and were allowed to locally diffuse through 

the chip material to the cells. The usability of this approach has been demonstrated by localized 

induction of GFP in tetracycline inducible HeLa-TRexTM cells.  

 

In conclusion, different microfluidic approaches have been described in this thesis and used for 

applications ranging from analyzing cells to organisms. The good spatial resolution, precise 

control over liquids, possibility of assays on the individual level and low cell number/reagent 

quantity requirement, enabled by microfluidics makes the devices an advantageous tool for 

biological applications. 
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Zusammenfassung 
 

Mikrofluidik-Chips erlauben eine präzise Manipulation von Flüssigkeiten in Mikrometer großen 

Kanalnetzwerken. In einphasigen Mikrofluidik-Systemen werden zwei mischbare Flüssigkeiten in 

einem Mikrochip injiziert und dadurch eine laminare Strömung erzeugt. Dies bedeutet, die 

Flüssigkeiten fließen in parallelen Strömen ohne sich konvektiv zu vermischen. In zweiphasigen 

Mikrofluidik-Systemen  werden durch Injektion zweier nicht mischbaren Flüssigkeiten Tröpfchen 

gebildet, in denen biologische Assays ausgeführt werden können.  In dieser Dissertation wird die 

Entwicklung von neuen Mikrofluidik-Chips basierend auf ein- und zweiphasigen Mikrofluidik-

Systemen beschrieben, die eine Analyse der Sensitivität von Zellen und Organismen in Bezug auf 

chemische Stoffe ermöglichen.  

 

Der erste hier beschriebene Mikrofluidik-Chip verwendet ein einphasiges Mikrofluidik- System  

und wurde speziell dafür entwickelt, umdie Ökologie von Zooplankton zu analysieren. Wichtig 

für die Entwicklung und den Fortbestand von Zooplankton ist die chemische Komposition der 

Umgebung. Wie Plankton, welches die Basis der marinen Nahrungsnetzwerke bildet, mit dem 

momentanen schnellen Klimawandel zurechtkommt, ist noch unerforscht. Studien der Ökologie 

von Plankton wurden bisher oft durch die Problematik behindert, dasses technisch nicht möglich 

war, frei schwimmende Plankton gleichzeitig verschiedenen chemischen Umgebungen 

auszusetzen und das individuelleVerhalten einzelner Organismen zu beobachten. Mit dem hier 

beschriebenen Mikrofluidik-Chip konnte zum ersten Mal die Verhaltensvorlieben von 

Zooplankton in Bezug auf Veränderungen von pH und Salzgehalt gemessen werden, wobei die 

Genauigkeit der Messwerte erlaubt,die Sensitivität der Arten auf Umwelteinflüsse abzuschätzen. 

Platynereis dumerilli, eine weltweit vorkommende Modell Plankton Art, reagierte empfindlicher 

auf Veränderungen des pH-Werts als auf Variation der Salzkonzentration. Der Vergleich 

verschiedener Arten zeigte zusätzlich, dass der Ruderfusskrebs Euterpina acutifrons einen 

kleineren pH-Toleranzbereich als P. dumerilli hat. Die erhaltenen Messergebnisse erlauben 

daher Abschätzungen über empfindliche und belastbare Spezies. Zusätzlich erlaubt dieser 

Mikrofluidik-Chip, Jäger-Beute Interaktionen von Zooplankton zu beobachten, und funktionale 

Studien durchzuführen, um Zelltypen zu identifizieren, die an der Sinneswahrnehmung beteiligt 

sind. 
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Für Studien an einzelnen Zellen hingegen eigenen sich die auf Tröpfche- basierenden 

Mikrofluidik-Systeme mit hohem Durchsatz besser als einphasige Methoden. Allerdings fehlte 

bisher die Möglichkeit, diverse chemische Bibliotheken in Tröpfchen einzukapseln, und  die 

chemische Komposition einzelner Tröpfchen nachzuverfolgen. Hier wird nun ein neuer Ansatz 

dargestellt, mit dem einzigartige kombinatorische Barcodes der Proben hergestellt werden., 

Zudem wurde ein neuer Mikrofluidik-Chip für die Analyse von empfindlichen Zellen, wie z.B. ES 

Zellenentwickelt. Dieser ermöglicht es, die. mES Zellen für 48 h in Tröpfchen am Leben zu 

erhalten und die Differenzierung mit 10-8 M Retinsäure einzuleiten. . 

 

Zuletzt wird eine neueMikrofluidik-Methode beschrieben, welche die Vorteile von einzel- und 

zweiphasigen Mikrofluidik-Chips vereint. Diese Methode erlaubt frei-zugängliche Zellen unter 

Verwendung von Standard Zellkulturtechniken zu analysieren, und potentiell 

Antikörperfärbungen durchzuführen, was mit  eingekapselten Zellen nicht machbar ist. Um den 

Durchsatz dieser Chips zu maximieren, werden hier Chemikalien in Tröpfchen eingekapselt, 

welche lokal durch das Material des Chips zu den Zellen diffundieren. Eine Machbarkeitsstudie 

hierzu wurde  mit lokaler Tetrazyclin-induzierter GFP HeLaTRexTM Zellen erläutert. 

 

Zusammenfassend beschreibt diese Dissertation verschiedene Methoden der Mikrofluidik und 

zeigt wie diese für Anwendungen an Zellen und Organismen genutzt werden können. Die hohe 

räumliche Auflösung, die Präzision der Flüssigkeitsmanipulation, die Möglichkeit der 

Hochdurchsatz-Analyse von Individuen und einzelnen Zellen, sowie die geringe Menge an 

notwendigen Reagenzien machen diese Mikrofluidik-Cchips zu einem hervorragenden Werkzeug 

für biologische Anwendungen. 
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1.1 Microfluidics 
 

Microfluidic systems are devices with sub-millimeter sized structures through which fluids of 

pico- to micro-liter volume are infused and processed (Whitesides, 2006). Integrated microfluidic 

devices together with pumps, valves and detectors are also called micro total analysis systems 

(μTAS) or lab-on-a-chip systems (Auroux et al., 2002; Reyes et al., 2002). These systems allow 

precise control of fluids, require low amounts of reagents and allow good spatial (μm scale) and 

temporal (ms scale) resolution. Further they enable automation, parallelization and high-

throughput while being economical to produce. All these benefits have propelled research in this 

field over the last two decades. In the field of biology, these systems are an attractive tool 

because of several reasons including the possibility to use fewer cells for high-throughput which 

means that it is possible to work with rare samples and patient materials (Sia and Whitesides, 

2003). Moreover polydimethylsiloxane (PDMS)-based microfluidic devices are also 

biocompatible and transparent for imaging (McDonald and Whitesides, 2002). These advantages 

have allowed several miniaturized bioassays to be performed in microfluidics which are further 

discussed in section 1.3.    

1.2 Physics of microfluidics 
 

Fluids behave differently in microfluidic devices because of the small dimensions. These 

properties are discussed below. Depending on the miscibility of the fluid, microfluidics is 

classified as single- and multi-phase microfluidics. 

1.2.1 Single-phase systems 
 

Miscible fluids, i.e. fluids of a single phase infused through a microfluidic channel do not undergo 

convective mixing because of the dominant viscous forces (Squires and Quake, 2005). Reynold’s 

number (Re) gives the ratio between inertial and viscous forces. (Equation 1). For Re  < 10 the 

flow is laminar and for Re = 2000 the flow is fully turbulent. In microfluidic device the Re is close 

to 1.   

 

𝑅𝑅 =  𝜌𝜌𝜌/ɳ             Equation 1 
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Where 𝜌 is the density, 𝑣 is the velocity, L is the length and ɳ the shear viscosity.  

 

Although the flow in a microfluidic device is laminar, diffusion by Brownian motion causes mixing 

of fluids over time. The longer the streams travel parallel to each other the greater the diffusion 

(Figure 1.1A). The diffusion is also dependent on the diffusion coefficient of the molecules in the 

streams (Equation 2). 

  

𝑑2 = 2𝐷𝐷                   Equation 2 

 

Where d is the diffusion, t is the time and D is the diffusion coefficient. In a microfluidic device 

the time linearly correlates with the length of the channel. 

 

It is known that in a static system a solute ion diffuses faster than a large protein during the 

same time (Beebe et al., 2002; Squires and Quake, 2005). In microfluidics, this has been 

favorably used for filtering without membranes by simply increasing the length of the channel 

depending on the diffusion coefficient of the molecule to be extracted (Brody et al., 1996) 

(Figure 1.1B). 

 

In a microfluidic device where there is a flow, the length of the channel required to achieve 

complete mixing can be determined by also taking into account the velocity of the fluid in the 

channel. Using the Péclet number (Pe), which is the ratio between convective and diffusive flow, 

it is possible to determine when the flow is diffusive (Equation 3). For Pe < 1 the flow is diffusive, 

and for Pe > 1 the flow is convective.  

 

𝑃𝑃 = 𝑣𝑣/𝐷                Equation 3 

 

Using the above principles, it is possible to generate on-chip gradients. This has been 

demonstrated previously to generate both linear and non-linear gradients (Irimia et al., 2006; 

Jeon et al., 2000; Toh et al., 2014).  

 

Another parameter facilitating mixing in micro channels is dispersion. In pressure-driven 

microfluidic devices, where the liquids are infused using positive displacement pumps, the flow 

profile in the channel is parabolic (Figure 1.1C). This is because the flow velocity experienced by 
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the molecule in the center is higher than the flow velocity close to the walls.  At a certain time 

point, this parabolic flow profile disperses the molecules resulting in a Gaussian distribution of 

their concentration (Figure 1.1C). This phenomenon is called Taylor dispersion (Taylor, 1953, 

1954).  

 

 
 

Figure 1.1 Flow profile in microfluidic channel. (A) Laminar flow of two streams. The dotted line indicates the 

interface between the two streams. Diffusion increases along the length (l) of the channel until a homogenous 

distribution of solutes is achieved. (B) A membraneless H-filter that separates molecules based on their diffusion 

coefficients. Larger molecules (red dots) diffuse slower than smaller molecules (blue) and to separate them a defined 

length (l) of the channel is required. Modified from (Brody et al., 1996). (C) Velocity profile of a pressure-driven flow 

inside a microfluidic channel (left). Adapted from (Schilling, 2001). The flow profile is parabolic which results in taylor 

dispersion of solutes with time (Tatistcheff et al.). The time required for dispersion depends in the diffusivity (D) of the 

solute and the width (w) of the channel. 
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1.2.2 Multi-phase systems 
 

Interaction between two or more immiscible fluids/phases causes the formation of droplets and 

emulsions. This is because when immiscible fluids interact, surface tension γ affects the 

dynamics. Lowering the surface tension using microfluidics can allow producing smaller droplets. 

Uniformity in droplet size is necessary, especially if droplets are used as individual reaction 

vessels or assay compartments, where volume has to be the same. There are different ways 

reported to generate monodispersed droplets (Anna et al., 2003; Lee et al., 2009; Thorsen et al., 

2001; Umbanhowar et al., 2000), however, the most commonly used methods are using either a 

T-junction (Thorsen et al., 2001) or a flow-focusing geometry (Anna et al., 2003) as illustrated in 

Figure 1.2B.  

 

The T-junction geometry, described by Thorsten et al., allows the generation of droplets by 

injecting water into a stream of oil (Thorsen et al., 2001). In this case, there is no interfacial 

tension between the two phases; however competing stresses drive the interface: surface 

tension reduces the interfacial area and viscous stresses extend and drag the interface 

downstream. These stresses destabilize the interface causing droplet formation (Figure 1.2A).   

 

Flow focusing geometry allows producing significantly smaller droplets with the same channel 

dimensions. Here, an aqueous stream is focused between two opposing oil streams causing 

breakage of the aqueous stream into droplets due to Rayleigh-Plateau instability (Rayleigh, 

1879)(Figure 1.2B). The size of the droplets can be adjusted by changing the nozzle dimension 

and the flow rates. Four different droplet breakup regimes have been reported using flow 

focusing geometry: squeezing, dripping, jetting and thread formation (Figure 1.2C) (Lee et al., 

2009). To increase the flexibility of flow focusing devices, additional active elements like 

electrodes have been coupled. By changing voltage of the electrodes, the interfacial tension 

between the oil and aqueous phase could be altered, switching droplet breakup regimes (Gu et 

al., 2008).   

 

Capillary number (Ca) comes into play whenever interfacial stresses compete with viscous 

stresses as in the formation of droplets. It is the ratio between the viscous forces and surface 

tension acting between immiscible fluids (Equation 4).   
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𝐶𝐶 = ɳ𝜈
ᵞ

      Equation 4 

 

Where ɳ is the dynamic viscosity, 𝜈 is the characteristic velocity of the fluid and 𝜈 is the surface 

or interfacial tension between two fluids. 

 

This dimensionless number influences the droplet formation. De Menech et al. reported 

theoretical evidence on the influence of Ca  in droplet breakup regime (De Menech et al., 2008). 

 

 
 

Figure 1.2 Different drop-makers. (A) A T-junction geometry where the aqueous phase (aqu) is injected into an oil 

career phase. (B) Flow focussing geometry requires two opposing oil streams in between which the aqueous phase 

(aqu) is injected to form droplets. (C) Different droplet breakup regimes (i) squeezing (ii) thread forming (iii) dripping. 

Reprinted from (Lee et al., 2009) with permission from American Institute of Physics. Scale bars are as indicated. 
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1.3 Applications of microfluidics in biology 
 

Most cell-based assays are performed in conventional tissue culture plastic dishes and microtiter 

plates. There are established protocols refined since 1912 (Carrel, 1912), for assaying cells 

including primary and stem cells in these conventional methods. There is also abundant 

literature for 3D culturing of mammalian cells (like stem cells) which is physiological and mimics 

the in vivo complexity (Lee et al., 2008). With advances in tissue engineering, the possibilities of 

generating tissue scaffolds in vitro have also been demonstrated (Chung and Burdick, 2008; Lee 

and Mooney, 2001). However, there are limitations to these well-established methods. One of 

which is that it is not possible to mimic dynamic mechanical forces such as shear force in blood 

vessels, peristalsis in the gut, tension in skin, breathing in lungs etc., that naturally exist in vivo 

(Ingber, 2006). These factors are important for both developmental studies and to recreate 

organs that can serve for therapy or as disease models. In this context, microfluidic technology 

can circumvent the limitations of conventional methods. Some recent advances in the 

technology have extended the use far beyond cell culturing ((Chiu et al., 2000) and ibidi® flow 

chambers) to recreate organs (Organ-on-a-chip) (Huh et al., 2010). Together with the 

aforementioned physical properties of microfluidics, mechanical functionalities like valves, 

pumps and actuators can be used to imitate the dynamic environment that exists in vascular and 

musculoskeletal systems. For instance, Huh et al. used programmed pumps and vacuum to 

produce cyclic stretching of the tissue-tissue interface thereby mimicking breathing (Figure 

1.3A). By this they were able to reconstitute key structural, functional and mechanical properties 

of the human alveolar-capillary interface which is the functional unit of a living lung (Huh et al., 

2010). They even demonstrated the usability of the Lung-on-a-chip as a pulmonary disease 

model (Huh et al., 2012).  

 

Microfluidic systems further allow mimicking complex biochemistry and geometries of the extra-

cellular matrix (ECM) that exists in the in vivo niche micro-environment which is not possible in 

conventional plastic plates (Gobaa et al., 2011; Marx, 2013). Sustaining the niche environment is 

a critical parameter for sensitive cells like stem cells. This is because they rely on the cues 

received from the ECM for their cell fate decisions (Hattori et al., 2011). The biocompatible 

materials used for fabricating microfluidic devices are modifiable with regard to stiffness, 

elasticity and topography to suit different ECMs. Engler and co-workers found that varying the 

stiffness and elasticity of the substrate can define cell fate of mesenchymal stem cells (MSC): 
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soft matrices mimic the brain and lead to neuronal differentiation, stiffer matrices mimic 

muscles and form myogenic cells and more rigid matrices mimic collagenous bones and give rise 

to osteogenic fate (Engler et al., 2006). In another study microvalves were used to regulate 

oxygen concentrations in MSC cultures to mimic hypoxic conditions (Csete, 2005).   

 

 
 

Figure 1.3 Applications of single-phase microfluidics. (A) Lung-on-a-chip as described by Huh and co-workers (Huh et 

al., 2012). The central channel is divided by a porous PDMS membrane over which epithelial cells are spread on one 

side and endothelial cells are on the other. A vacuum is created in the two side channels periodically that stretch the 

membrane, mimicking the breathing motion of the lung. Reprinted from (Huh et al., 2012) with permission from 

American Association for the Advancement of Science (B) Sub-cellular partitioning using laminar flow as shown by 

Takayama et al. Reprinted from (Takayama et al., 2003) with permission from Elsevier. The red stream contains trypsin 

to which the cell responds within 3.5 minutes. (C) A chemotaxis experiment using a gradient generator PDMS device. 

Jeon et al. exposed neutrophils to a linear gradient of IL-8 to study the chemotactic response. Reprinted from (Jeon et 

al., 2002) with permission from Nature Publishing Group.   

 

Other important biological assays that greatly benefit from the physics of microfluidics are 

localized perturbation and chemotaxis assays. With the spatial resolution that is possible to 

achieve using microfluidics, a single cell can be partitioned by laminar flow and locally exposed 

to a different chemical (Figure 1.3B) (Takayama et al., 2001; Takayama et al., 2003). Developing 

embryos of Drosophila melanogaster (Lucchetta et al., 2005), Arabidopsis thaliana (Meier et al., 

2010) etc. could also be spatially and temporally divided and exposed to different factors. These 
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methods were used to study developmental changes and cell-cell communication by local 

perturbations in intact embryos. The ability to generate laminar flows and using them to 

generate gradients are attractive assets for chemotaxis studies on cells (Jeon et al., 2002) and 

organisms (Albrecht and Bargmann, 2011). For example, Jeon et al. cultured neutrophils in a 

microfluidic chamber and exposed them to different chemokine interleukin-8 (IL-8) gradients to 

show the attraction of neutrophils to the chemokine (Figure 1.3C) (Jeon et al., 2002).   

 

So far applications of single-phase microfluidic systems were discussed. Droplet-based systems 

offer different advantages for biology. These systems are generally used when 

compartmentalization is necessary, for example in library or secretome screens which are 

generally done in microtiter plates. Although single-phase microfluidic systems have been 

proposed for screening, they are limited by the number of chambers or unique spots that can be 

fitted in a 2D array (Hung et al., 2005; Upadhyaya and Selvaganapathy, 2010). Droplets have the 

benefit of high-throughput: monodispersed droplets can be produced at kilohertz frequencies 

(Park et al., 2011). Every droplet is comparable to a well in a microtiterplate in terms of the 

uniqueness of the samples it can contain. Furthermore, droplet-based microfluidics enable up to 

108 droplets to be screened in one day (Guo et al., 2012) and require fewer cells (down to 1 cell 

per droplet) than microtiter plates (~10,000 cells per well). Owing to these advantages, not only 

has droplet microfluidics provided convenient automated solutions of producing uniform 

hydrogel 3D cultures such as embryoid bodies (EBs) with pluripotent stem cells (Serra et al., 

2011; Wilson and McDevitt, 2013), but also a promising replacement to conventional microtiter 

plate assays using robots.     

 

To imitate pipetting steps, there are several approaches developed with microfluidics such as: 

droplet adding (Abate et al., 2010) and splitting (Christopher et al., 2009). These droplet 

manipulations (Figure 1.4) are achieved by using unique geometries, physical properties and 

external elements like valves and electrodes (Ahn et al., 2006; Song et al., 2003). Additionally 

downstream processing such as sorting of desired assay droplets can also be automated within 

the microfluidic device (Baret et al., 2009). This is possible because of the dielectric properties 

(DEP) of the aqueous phase. Sorting of desired droplets can be achieved by coupling an 

electrode to the detector unit which allows the detector to send a trigger feedback to the 

electrode upon detection of a desired droplet. Subsequently the electric field is switched on thus 
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pulling the selected droplet into the collection channel, while all other droplets end up in the 

waste channel. 

 

 

 
 

Figure 1.4 Different droplet manipulations. (A) Rapid mixing inside droplet. This mixing happens by chaotic advection 

that is enhanced by the serpentine channel geometry. Reprinted from (Song et al., 2003) with permission from John 

Wiley and Sons. (B) Fusing two droplets using an electric field generated by programmable electrodes. (C) Adding 

reagents to droplets using a picoinjector. Reprinted from (Abate et al., 2010) with permission from Proceedings of the 

National Academy of Sciences. (D) Splitting of a droplet into two, using withdrawal pressures as indicated. Reprinted 

from (Song et al., 2003) with permission from John Wiley and Sons. (E) Sorting droplets at a Y shaped junction using 

DEP. Reprinted from (Baret et al., 2009) with permission from Royal Society of Chemistry.  

 

All these capabilities with droplets have allowed assaying biological samples (Agresti et al., 

2010). However, for screening chemical compounds, there is an additional requirement for 

droplet barcoding in order to know which chemical is encapsulated in which droplet. Unlike 

microtiter wells that are spatially positioned, droplets (of picoliter volume) are prone to 

shuffling. The use of fluorescent barcodes (Han et al., 2001) can circumvent the issue but is 

restricted to the detectable differences in spectral windows. Nonetheless, the possibility to form 

“plugs”, which are larger droplets that fill the entire cross section of the channel, can overcome 
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the above problems by serving as a spatial barcoding method (Figure 1.5). Reports of screens 

using this strategy have already been proposed (Cao et al., 2012; Clausell-Tormos et al., 2010; 

Zeng et al., 2009; Zheng and Ismagilov, 2005).  

 

 
 

Figure 1.5 Droplets and plugs. Droplets are surfactant stabilized aqueous microcompartments that are smaller than 

the channel and hence can shuffle (as indicated by the red arrows), whereas plugs are unstabilized 

microcompartments that fill the entire cross-section of the channel and cannot be shuffled inside a channel.  

1.4 Large scale integration in Lab-on-a-chip platforms 
 

Large scale integration and parallelization of several procedures using multiple reagents can be 

made possible using micromechanical valves in microfluidic devices (Thorsen et al., 2002). A 

valve in microfluidic channels is used to control and direct flow through channel networks. 

Different micromechanical valves have been proposed as reviewed by Au and co-workers (Au et 

al., 2011). One of the most commonly used microvalve method was described by Stephen 

Quake’s lab (Unger et al., 2000). This pneumatic valve requires a bilayer chip where the upper 

layer is comprised of a channel network filled with air and the lower layer has the liquid channels 

that need to be controlled. The liquid channel can be selectively closed off by increasing air 

pressure in the channels above. Thereby flow can be regulated in the microfluidic channels.  

  

The use of valves make it possible to have highly complex, integrated designs, with several 

functionalities stitched together, just like how digital electronics made it possible to have more 

complex microprocessor designs. These valves can be computer controlled and have been used 

in applications like protein crystallography (Hansen et al., 2006), genetic analysis (Liu et al., 
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2003), amino acid analysis (Skelley et al., 2005), chemical synthesis (Lee et al., 2005; Wang et al., 

2006) and single cell analysis (Marcus et al., 2006). Figure 1.6 shows one such integrated 

microfluidic device for cDNA synthesis, where 50 reactions can be performed simultaneously. 

These large scale integrated devices are promising tools to automate complete protocols from 

adding reagents to analyzing, while supporting the advantages of small volume reactions.   

 

 
Figure 1.6 A 50-plex cDNA synthesis device. All flow channels are filled with a yellow dye, multiplexer control 

channels are filled with a red dye, and waste and control collection channels are filled with a blue dye. The device has 

seven functionalities integrated in a single device. (a) Cell lysis module. Cells are portioned in the flow channels filled 

with blue dye. The pump valves are in green. (b) Buffer inlets. (c) Bead and lysis inlets. Beads enter through one inlet 

and lysis buffer pushes residual beads into the sieve valves through the other inlet. (d) Capturing module. (e) 

Multiplexer control channels and sieve valve channel. (f) Six stacked bead columns. (g) Outlet and collection module 

with outlet and waste valves, as well as a portion of the collection port (Marcus, 2006). 

  



 

 

 

 

Aim & Outline 
 

This main aim of this thesis is to develop novel microfluidic approaches based on single- and 

multi-phase systems for monitoring responsiveness of cells (including rare cells like stem cells) 

and organisms to different chemical cues. The chapters are divided based on the type of 

microfluidics used (single or multi-phase). Every chapter contains an individual introduction to 

the corresponding subject, motivation to the work and a discussion of the results with some 

possible future experiments. Briefly, in Chapter 2: “Ocean on a chip: Quantifying preferences 

and responsiveness of marine zooplankton to changing environmental conditions” a specially 

designed single-phase microfluidic device is used to monitor the ecological preferences of 

marine zooplankton. For the first time, the possibility to quantitatively determine the ecological 

preferendum of these marine organisms is reported. This is especially relevant in the current 

situation of rapid global environmental changes because the system allows identifying species 

sensitive and resilient to environmental changes. In Chapter 3: “Generating combinatorial 

mixtures in droplets to assay stem cell niche” a novel multi-phase microfluidic approach for 

screening entire libraries of molecules both individually and in combination is discussed. 

Furthermore, this novel approach is optimized to screen for optimal directed differentiation 

conditions for stem cells. Thus, this chapter is not only about the development of a novel 

combinatorial screening platform but also shows, for the first time, the usability of microfluidics 

for high-throughput screening (HTS) with mouse embryonic stem cells. Finally, Chapter 4: “Soft-

compartmentalization: Combining droplet-based microfluidics with freely accessible cells” is a 

brief report on a new method combining single-phase with multi-phase systems for high content 

screening of adherent mammalian cells. A General Conclusion then connects the individual 

chapter discussions and gives an outlook on future perspectives.  
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Chapter 2 

Ocean on a chip: Quantifying preferences 
and responsiveness of marine 
zooplankton to changing environmental 
conditions  
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2 Introduction 
Laminar flows in microfluidics have been favorably used for several chemotaxis experiments of 

both single cells (Takayama et al., 2003) and the organism Caenorhabditis elegans (Albrecht and 

Bargmann, 2011). In light of fast worldwide climate changes, this ground work is extended by 

presenting the first study that uses microfluidics to analyze the response of zooplankton, both 

from established lab cultures and fresh marine field isolates, to environmental conditions. First, 

quantitative measurements on the ecological preferences of zooplankton in terms of pH, salinity 

and food are reported here. In addition, the possibility to use microfluidics for functional studies 

is demonstrated. 

2.1 Plankton and their significance 

Plankton are microscopic, freely drifting, aquatic organisms that constitute 75 % of the ocean 

biomass. They are composed of phyto- and zooplankton aside bacteria and viruses. 

Phytoplankton are the “plants of the sea” and hence are the photosynthesizing primary 

producers. Zooplankton (animal plankton) can be either secondary or tertiary producers and can 

be holozooplankton (remain as plankton throughout their life cycle), or meroplankton 

(transform into benthos or nekton) (Rawlinson et al., 2004). Zooplankton graze on phototrophic 

phytoplankton and in turn provide them with the nitrogen required for their growth, thus 

maintaining a symbiotic relationship. On the whole, being the energy producers of the ocean, 

plankton form the base of the food web and all higher organisms (from small fishes to whales), 

in essence, rely on plankton for their survival.  

 

Interestingly, unlike the terrestrial ecosystem, where the largest animals such as ungulates are 

herbivores (feeding solely on plants), the largest animals in the marine ecosystem are carnivores 

and especially baleen whales are known to feed mainly on zooplankton (Kann and Wishner, 

1995). In fact there is no similarly large herbivore in the ocean, presumably because of the size 

of the primary producers (phytoplankton) being too small for efficient grazing. Furthermore, 

zooplankton also support the microbial community of the ocean (Ruhl and Smith, 2004): marine 

microbes colonize faecal pellets and carcasses of zooplankton which are rich sources of organic 

carbon. These zooplankton products also rain down on the seabed sustaining diverse benthic 

communities of sponges, echinoderms, anemones, crabs and fishes.  
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In addition to zooplankton playing a crucial role in the food web, they are also known to sink 

atmospheric carbon dioxide which is necessary to maintain a balance in the planet’s atmosphere 

(Siegenthaler and Sarmiento, 1993). Phytoplankton sequesters the CO2, uses it for 

photosynthesizing; and releases oxygen just as land plants. When phytoplankton are consumed 

by zooplankton the carbon is transferred and deposited on the seabed through their excreta. In 

addition dying plankton sink the carbon in the oceans. Figure 2.1 is an illustration of the carbon 

cycle in the ocean. Globally, plankton transfers more than a hundred million tonnes of carbon in 

the form of CO2 from the atmosphere to the deep ocean each day (Behrenfeld et al., 2006). Even 

small changes in the growth of phytoplankton may reflect on atmospheric carbon dioxide 

concentrations, which in turn would affect global surface temperatures. Thus, plankton 

contribute to maintaining the ocean ecosystem and balancing the earth’s climate which 

ultimately profits the human society by providing food through fishery, and by providing a 

habitable planet. 

 

 
 

Figure 2.1 Ocean carbon cycle. Atmospheric carbon dioxide is fixed by phytoplankton during photosynthesis. When 

zooplankton graze on phytoplankton, this carbon is transferred and finally accumulates in the deep oceans through 

the excreta of zooplankton or the decomposition of their carcasses. Reprinted from (Lindsey and Scott, 2010), NASA 

Earth Observatory. 
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2.2 Impact of global climate changes on the oceans and 
plankton 

 

Since the industrial revolution in the 18th century, 3.67 trillion tonnes of anthropogenic CO2 have 

been released into the atmosphere (Allen et al., 2009) mainly from the burning of fossil fuels 

(Marland et al., 1999) and due to deforestation, urbanization and other land-use practices 

(Houghton et al., 2001).  This has caused many changes in the environment including an overall 2 

⁰C raise in surface temperatures because of the CO2 mediated greenhouse effect, and acid 

precipitation because of the excessive CO2 in the atmosphere. It is evident from the bleaching of 

coral reefs that all these environmental changes are affecting the marine ecosystem (Figure 2.2) 

(Anthony et al., 2008; Hoegh-Guldberg et al., 2007). Furthermore, oceans have absorbed a third 

of the CO2 released from human activity since 1800 and it is predicted that, by the year 2100, the 

oceans’ capacity to sink atmospheric CO2 will reduce by 14 % compared to if there was no 

climate change (Matebr and Hirst, 1999). It is also predicted that with the current amounts of 

CO2 emission, the pH of the ocean will drop (acidification) from pH 8.2 (pre-industrialization 

period) to   ̴pH 7.9 which is an almost 30 % increase in H+ ion concentrations (Caldeira and 

Wickett, 2003, 2005; Fabry et al., 2008). This ocean acidification, coupled with the reducing 

ability of oceans to sink CO2 resulting in increasing surface temperatures, does have both direct 

and indirect implication on the marine ecosystem (Doney et al., 2012; Hoegh-Guldberg and 

Bruno, 2010).  

 

This chapter focusses on the effect of environmental changes on plankton because of their 

pivotal role in the food web (Figure 2.2, section 2.1). In addition, plankton are considered 

sensitive beacons of climate changes because the non-linear response of plankton communities 

can amplify even subtle environmental changes (Taylor et al., 2002). On the one hand this 

highlights the benefit of using plankton to assess the impact of global environmental changes to 

the ecosystem, on the other hand it also underscores the urgent need to understand and, in the 

best case, predict the drastic response that might occur with the present rapid pace of climate 

changes. Despite the critical necessity, our current knowledge on how these changes are 

affecting the microscopic plankton community is still rudimentary. It is known that the 

acidification is already affecting zooplankton with calcareous skeletons (Beare et al., 2013) but 

knowing how the plankton community is coping with these adversities is necessary to take 

precautions.   
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Figure 2.2 Impact of ocean acidification on the marine ecosystem. Plankton form the base of the food web and are 

the energy producers of the ocean. They, along with other organisms in green circles are already being affected by 

acidification. 
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2.3 Existing methods 

Most investigations of the effect of global environmental changes on planktonic organisms are 

based on case studies. These studies provide information on the current status and the trend 

over a certain past period. Much of our understandings arise from such documents and the 

majority of these studies use the Continuous Plankton Recorder (CPR) data sets (Warner and 

Hays, 1994). These CPR data sets are generated by periodic sampling at different locations using 

plankton tows and are valuable resources for researchers to evaluate the long-term impact of 

climate changes (Beare et al., 2013). For example, Edwards and Richardson used the CPR data 

set to infer that there was substantial phenological (timing of repeated seasonal activities like 

migration and reproduction) changes observed over a 45 year period (1958 - 2002) in the central 

North Sea (Edwards and Richardson, 2004). These case studies give insights on the abundance of 

plankton and the variations that has occurred in the past, however they do not allow making 

reliable predictions on future implications, especially considering the fact that the response of 

plankton to environmental changes is non-linear (Taylor et al., 2002).    

 

In other experimental studies, layered water in “mesocosm” was used to study the effect of drop 

in pH on plankton (Riebesell et al., 2013). Mesocosms are experimental water enclosures in the 

ocean. Similar methods to stratify water in  40 m3 boxes (Poulet and Ouellet, 1982) or 50 m3 

bags (Zhang et al., 2012) with layers containing different concentration of H+ ions have been 

described. These methods allow estimating the abundance of plankton in a certain pH while 

retaining the ecosystem dynamics (species-species interaction); however, the method does not 

allow making species-specific predictions on the pH preference. Also, these layered water 

approaches do not maintain stable gradients with a good spatial resolution, so it is impossible to 

accurately quantify preferendum. Yet some other small-scale lab approaches in multi-well plates 

allow assessing individual plankton species at different pH conditions, but these experiments 

only give information on the lethal doses and tolerance of plankton in a certain condition 

(Yamada and Ikeda, 1999). The Y-maze approach has been previously described allowing 

exposing plankton trapped within a porous membrane chamber to two different conditions in a 

‘Y’ shaped tube with two inlets. This approach facilitates binary preference measurements, 

however, in the ocean there exists a certain degree of pH variations and what is required to 

know is the “preferendum” or a preferred window of concentrations of a certain parameter. And 
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this cannot be achieved using a Y-maze because of the inability to expose plankton to more than 

two conditions in this approach.  

 

Furthermore, for plankton species that are able to actively choose their environment, a more 

precise measure of their preference would be a quantification based on their behavior and not 

simply based on the count. None of the existing methods allow this possibility. Hence, an assay 

system that allows exposing plankton species to several different conditions simultaneously, 

while allowing the possibility to monitor their behavioral preferences is urgently needed. Also, 

this system should have a spatial resolution that can dissect a small area into different 

conditions to allow these microscopic organisms to detect the existence of neighboring 

conditions. 

2.4 Need for microfluidics 

The possibility to generate laminar flows in microfluidics allows liquid streams to flow parallel to 

each other without convective mixing. This ability has been used to not only expose adherent 

cells to different conditions, but also has allowed chemotaxis and behavior studies on actively 

moving C. elegans (Albrecht and Bargmann, 2011; Larsch et al., 2013). Figure 2.3 shows an 

experiment where C. elegans actively choose their preference when exposed to different 

chemokines.     

 

 
Figure 2.3 C. elegans exposed to different chemokine using laminar flow principle in microfluidics. (A) Microfluidic 

device with three inlets for three different chemokines (blue, green and red). (B) End of an experiment where C. 

elegans accumulated in its preferred streams. Reprinted from (Albrecht and Bargmann, 2011) with permission from 

Nature Publishing Group.  
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The spatial resolution and small dimensions of microfluidic could be a suitable platform to assess 

the behavioral preference of actively swimming plankton species. Roman Stocker´s lab at the 

Massachusetts Institute of Technology has used microfluidics to perform extensive ecological 

studies on marine bacteria and phytoplankton (Mayola et al., 2014; Seymour et al., 2010; Tout et 

al., 2015). However, the methods have not been applied for zooplankton.  

2.5 Why focus on zooplankton? 

Plankton play a central role in the marine food web. However zooplankton are more adversely 

affected than phytoplankton to changes in environmental conditions because of a couple of 

reasons. Firstly, most zooplankton are poikilothermic (organisms whose internal temperature 

varies considerably) and hence their physiological processes such as ingestion, respiration, 

reproduction are highly sensitive to ambient temperatures (Blaxter et al., 1998). Secondly, most 

zooplankton species are not only short-lived (< 1 year) but also their life-cycle is tightly coupled 

with the seasonal changes (Hays et al., 2005). Hence, any small climatic changes can greatly 

influence zooplankton population dynamics. Moreover, meroplankton, that only live a part of 

their life as plankton, were found to be more affected by subtle climate changes than their 

holozooplanktonic neighbors (Edwards and Richardson, 2004). In this work, a meroplankton, 

Platynereis dumerilii was used as a model species to test the preference to changing 

environmental conditions. The life cycle of P. dumerilii as illustrated in Figure 2.4 has planktonic 

(from 24 hours post fertilization (hpf) to 5 days post fertilization (dpf)) and benthic stages (from 

about 6 dpf). 
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Figure 2.4 Life cycle of P. dumerilii, a meroplankton. The larvae from 24 hpf to around 6 dpf, are planktonic or freely 

swimming on the surface of the oceans, and during the later stages they transform into benthic habitat where they 

are crawling in the sea bed.  The morphological changes that happen during different metamorphosing stages, help 

them in adapting to their respective habitats. Adapted from (Fischer and Dorresteijn, 2004) with permission from John 

Wiley and Sons.   
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2 Results 

2.6 Tracking behavioral response of zooplankton in 
microfluidic devices 

 

Two microfluidic devices were specifically designed for assaying zooplankton. The first device is 

for generating laminar flows. This device contains ten inlets for infusing chemically distinct 

conditions. Figure 2.5A-C shows the generation of ten laminar flow streams in a 4 x 4 mm 

chamber of the device with the larvae of P. dumerilii. A blue dye was used in every alternate 

stream for visualization. Every stream is 400 μm wide and the larvae are approx. 150 to 300 μm 

in length depending on the metamorphosing stage. A couple of larvae were able to crowd and 

stack themselves in one stream as visible in Figure 2.5C. The second device is for generating on-

chip linear gradients. A “Christmas tree” gradient generator design proposed elsewhere (Jeon et 

al., 2000) is adapted for this purpose. Figure 2.5D-E shows the generation of a linear gradient in 

a 9 x 4 mm chamber. The volume that can be contained in each chamber is roughly 4 mm3 and 

typically fifteen to twenty larvae were able to freely swim in one chamber all together.  

For experiments, 5 dpf planktonic larvae and 9 dpf benthic larvae of P. dumerilii were used. The 

larvae were manually loaded into the chamber and were able to freely move within the chamber 

dimensions. Figure 2.5F shows the default distribution of the larvae when all streams contain 

natural sea water. Using automated tracking software, several individual and population specific 

behaviors were identified such as: the overall speed, (ν), stream transition speed (νtrans), turning 

angle per second (θ), the average time of movement (τmov), number of individuals present in a 

stream over time (d(x,t)), the overall distribution over time and the resulting stable distribution 

that is reached after an adaptation time (Figure 2.5A). These newly described, actively swimming 

zooplankton specific, behavioural parameters were used to evaluate the preferendum of these 

marine organisms. 
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Figure 2.5 Microfluidic device geometry, flow profile and normal behaviour of P.dumerilii in the device. (A) Laminar 

flow device with ten inlets. A(i) The device has two 4 x 4 mm chambers that are 240 μm high and connected by 

shallow channels that are 30 μm in height as shown in A (ii). The two layer geometry is to prevent plankton from being 

flushed out of the device while allowing liquid flow. (B) Laminar flow profile as seen in one of the chambers of the 

device. A blue dye is used in every alternate stream for visualization. (C) P. dumerilii larvae (5 dpf) being exposed to 

streams containing natural sea water (NSW) with and without orange G (an acidic dye).  (D) Gradient generator device 

with a Christmas tree gradient generator and two 9 x 4 chambers of 180 μm height. (E) Quantification of a linear 

fluorescein gradient produced using the device. (F) Default distribution of P.dumerilii in a microfluidic device while 

being exposed to identical, NSW conditions in all ten streams. Figures from (Ramanathan et al., submitted 

manuscript). 
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2.7 Response to pH changes 

The preference of P. dumerilii to different pH to understand how sensitive or resilient this 

species is to ocean acidification was tested. When the larvae were exposed to different pH (pH 3 

to 11) in the laminar flow device, different behavioral patterns could be observed depending on 

the location of the larvae in the chamber. In adverse pH, a 2.5 times higher stream transition 

speed was observed while in the preferred pH the transition speed and overall speed was lower 

because of the pausing behavior in these conditions. Furthermore, from experiments it was 

observed that animals tumble more in their preferred stream presumably because of their desire 

to stay in that limited region. Due to this, the turning angles were higher in these locations. 

However, in every experiment the stable distribution was achieved after 10 (+/- 7) seconds after 

the laminar flow was established Figure 2.6.  

 

 
 

Figure 2.6 Time lapse image from an experiment exposing P. dumerilii larvae to different pH conditions (top to 

bottom: pH 3 to pH 11). pH 3 and pH 11 streams on top and bottom contain orange G as a dye to demarcate the 

initiation of laminar flow. Scale bars represent 400 μm. 

 

With the cumulative distribution from ten experiments, a “comfort zone” or preferendum could 

be defined, which is the range of conditions for a given parameter for which the presence of 

specimens does not significantly deviate from the maximum recorded. This preferendum could 
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be further refined by taking into account the behaviour of the organism in this zone. For P. 

dumerilii, the preferendum of 5 dpf larvae was found to be between pH 6 and pH 8, and of 9 dpf 

larvae was between pH 5 and pH 9 (Figure 2.7). This was an unexpected, broad preferendum. 

Further experiments shifting the stream positions were done to confirm these results and to 

exclude any positional bias in the system. One of the reasons for the observed preference of 

Platynereis to acidic conditions could be because the lab cultures were originally collected in the 

vicinity of acid springs where P. dumerilii were reported to be found in very low pH (Cigliano et 

al., 2010). 

 

 
 

Figure 2.7 Behavioral response of P.dumerilii to pH changes. (A) Tracking of P.dumerilii inside the chamber. Stream 

transition speed (νtrans), overall speed (ν) and turning angle (θ) are behavioural parameters that were assessed. From 

the distribution and the behaviour, the comfort zone can be evaluated. The black lines on the bar plots show the 

behaviour of P. dumerilii  in a control experiment where they were exposed to only natural sea water. (B) Cumulative 

distribution of early (planktonic) and late (benthic) stage larvae. Black dotted line is the average of the distribution. 

Red dotted and orange dotted lines show two different populations. * represents streams with dye used to demarcate 

the initiation of laminar flow. Data from (Ramanathan et al., submitted manuscript). 
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In addition to the preferendum measurements, the analysis revealed that the distribution for the 

9 dpf larvae fit as a bimodal distribution (Figure 2.7B) (best fitted by a mixture model of two 

Gaussians with a room-mean-square error (RMSE) of 49, compared to RMSE of 92 when fitting a 

single distribution). This means that the broadening of the preferendum was because of the 

existence of a sub-population that preferred more acidic conditions. These differences in 

preference could be because at 9 dpf the larvae transform into their benthic habitat and in the 

sea bed there are potentially more variations in pH than on the sea surface. So this shift in 

preferendum could indicate an adaptation benefit of the later stage larvae. Indeed the 

possibility of some genetic differences in these larvae could not be ruled out and hence further 

investigations are required to confirm the reasoning behind the preference for acidic conditions.  

2.8 Response to salinity changes  

Ocean salinity is another parameter that is being reduced because of global warming (Duplessy 

et al., 1992). The melting glaciers are diluting the oceans aside raising the sea levels. To estimate 

how this is affecting zooplankton, the gradient generator device was used to generate linear 

gradients of sodium chloride (NaCl). To be precise in the estimate, 5 dpf and 9 dpf P. dumerilii 

larvae were exposed to several gradient ranges: 30 to 50 g/l, 36 to 44 g/l and 38 to 42 g/l to get 

a good spatial resolution. By doing so, it was found that the larvae, regardless of the 

developmental stage, preferred more saline conditions between 34 and 42 g/l given that the 

surface salinity of the oceans around the world, excluding estuaries, range from 31 to 38 g/l 

(Reul et al., 2014). Also, P. dumerilii showed similar behavioral patterns to pH experiments: 

greater tumbling in the comfort zone and higher transition speed outside the comfort zone 

(Figure 2.8). However, for salinity there was no indication of any sub-populations.  
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Figure 2.8 Behavioral response to salinity changes. (A) Response of P. dumerilii larvae exposed to an NaCl gradient 

(30 g/l to 50 g/l). Higher stream transition speed (νtrans) is observed at the edge of the comfort zone while the turning 

angles are higher in the comfort zone. (B)  Narrowing the NaCl concentration gradient to resolve the preferendum 

better. This was done by consecutively narrowing the range based on the region where the highest slope in the 

distribution was observed. Data from (Ramanathan et al., submitted manuscript). 

2.9 “Responsiveness” 
 

The intensity of a behavioral response to a certain parameter (like pH or salinity) could reflect on 

the ecological importance of that parameter (Hay, 2009). This behavioral response can be 

quantified using the distributions from the above experiments. Mathematically, the highest 

slope in the distribution (inflection point) corresponds to the strongest change in behavioral 

response. The responsiveness is defined as the minimum change in concentration that is 

required to elicit a behavioral response. In order to determine this minimum molar 

concentration change, it is required to repeatedly zoom in into narrower concentration ranges 

to observe the changes in distribution until there is no significant change in the slope (Figure 
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2.9). For salinity changes, this was already observed in a concentration range between 36 - 44 

g/l. This means that P. dumerilii can respond to changes in salinity as low as   ̴14 mM. For pH 

however, the changes in proton concentrations are much lower and P. dumerilii already 

responded to 1 μM change. This implies that P. dumerilii is much more sensitive to changes in pH 

than salinity.  

 

 
 

Figure 2.9 Estimating responsiveness. Boxplots show the highest slope of the distribution in different salt 

concentration ranges. Based on the p-values * > 0.05 and ** < 0.05 (Wilcoxon rank-sum test), the responsiveness for 

salinity changes is 36-44 g/l or  ̴14 mM change in concentration. Data from (Ramanathan et al., submitted 

manuscript). 

 

2.10 Interspecies comparison 

The microfluidic device described here is indeed also suitable to assess other marine plankton. 

To demonstrate the usability of the device for other marine plankton, the pH preference of an 

abundant holozooplankton: Euterpina acutifrons (a copepod species) was assessed. When E. 

acutifrons were exposed to different pH conditions (between pH 6 and pH 9) in the laminar flow 

device, they showed a much narrower preferendum than P. dumerilii (Figure 2.10). This could be 

because as a holozooplankton, E.acutifrons are not exposed to variations in pH in their natural 

environment unlike a meroplankton P. dumerilii. Moreover, P. dumerilii are known to adapt to 

chronic and elevated pH levels (Calosi et al., 2013). Interestingly, a similar behavioral pattern 

was observed for E. acutifrons in the microfluidic device (higher stream transition speed at the 
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edge of the comfort zone and higher turning angle within the comfort zone) as with P. dumerilii 

(Figure 2.10B). Experiments with several zooplankton species could give further insights on 

sensitive and resilient species to changing environmental condition.  

 

 
 

Figure 2.10 Comparing the pH preferenda of E. acutifrons and P. dumerilii. Two adjacent streams have the same pH 

to allow the larger E. acutifrons to fit in their preferred stream. (A) Distribution of the plankton in the device. (B) 

Variation of turning angle and stream transition speed of E. acutifrons in different pH. * represents streams with dye 

used to demarcate the initiation of laminar flow. Data from (Ramanathan et al., submitted manuscript). 
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2.11 Response to predator and prey (algal) smell    

In addition to assessing responses to changes in environmental conditions, the response of 

zooplankton to predator and prey smell was also assessed. P. dumerilii is known to prey on 

different algae; however it is unclear which algae they prefer. Using the laminar flow device, 5 

dpf larvae P. dumerilii was exposed to Isochrysis and Dunaliella microalgal extracts. The larvae 

showed a clear preference for Dunaliella. Similar experiments exposing P. dumerilii to water 

from a Dicentrarchus labrax (sea bass) tank was performed. D. labrax is one of the many 

predators of P. dumerilii. Within 2.5 minutes a stable distribution was achieved with all the 

larvae of P. dumerilii outside the stream containing the predator smell. However, the response 

time in this experiment was longer than in the pH experiment presumably because of the wider 

streams in these experiments compared to the pH experiment with ten streams which probably 

made the larvae unaware of the existence of a neighboring stream. Indeed, there could be other 

reasons to the observed delay in response such as the larvae were simply not as fast in 

responding to predator smell as to pH.   

 

It is noteworthy that the experiments exposing P. dumerilii to predator smell was done using 

freshly collected field isolates from marine stations at Roscoff and Banyuls-sur-Mer. This 

experiment was performed to demonstrate the ability to perform microfluidic preferendum 

experiments in remote locations.    

2.12 Identifying cell types involved in a certain sensory 
response 

 

In a microfluidic device it is possible to track responses on an individual level and quantify them. 

This possibility can be favorably used to locate cell types responsible for sensing a certain 

parameter. To demonstrate this possibility, a specific cell type in the mouth region was located 

based on noelin expression (which is suggestive of olfactory function). When these ciliated cells 

in the foregut (indicated in Figure 2.11A) were ablated, a delay in the response was observed of 

ablated P.dumerilii to algal smell, in comparison to the non-ablated control individuals (Figure 

2.11E). Indeed, their overall speed of movement remained the same, confirming that the delay 

in response was not due to physical impairments but because of the decreased ability to sense 

the smell. These experiments show the involvement of the ablated cells in sensing algal smell. 
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Figure 2.11 Identifying cells involved in sensing algal smell. (A) The ciliated cells in the foregut of P. dumerilii as 

visualized by confocal and transmission electron microscopy. (B) Ablation of these cells using a cold laser causes the 

targeted cells to disappear locally. Left image show 5 dpf larvae before ablation (circled region) and right is the same 

larvae after ablation (C) Expression of noelin in the ciliated cells suggesting a putative olfactory function of these cells. 

(D) Ability of the ciliated cells to trap particles shown by alcian blue staining. (E) Behaviour of control and ablated 

animals while being exposed to algal extracts of Dunaliella (preferred) and Isochrysis.  P-values: * = 0.02 and ** > 0.1 

(Wilcoxon rank-sum test).  Scale bars represent 30 μm. Figures and data from (Ramanathan et al., submitted 

manuscript). 
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2 Discussion and future prospects 
Using the specially devised microfluidic platform, the possibility of quantitatively estimating 

zooplankton preferenda to changing environmental and ecological conditions is demonstrated.  

Although most experiments in this work were done using P. dumerilii larvae, the platform and 

the basic behavioral characteristics may be applicable for other plankton species. For example, 

Oxyrrhis marina, a marine dinoflagellate showed a similar tumbling behavior when exposed to a 

chemoattractant (Seymour et al., 2010), suggesting the possibility that the behavioral 

parameters defined here could be universal for plankton. In addition, in the experiments with E. 

acutifrons, a tumbling behavior in the comfort zone and increased stream transition speed at the 

edge of the comfort zone was observed, which were similar behavioral patterns to P. dumerilii 

(Figure 2.10B). Although E. acutifrons uses appendages for locomotion and P. dumerilii uses cilia, 

this did not seem to change their behavioral pattern. These results indicate that regardless of 

the plankton species or their mode of locomotion, the behavioral parameters described here are 

applicable. 

 

When exposed to different pH conditions, P. dumerilii and E. acutifrons were able to actively 

choose their preferendum. In experiments, E. acutifrons showed a narrower preferendum than 

P. dumerilii. Such experiments can help identify sensitive and resilient species to different 

changes. Thus far, these preferendum experiments on the species level in marine zooplankton 

were not demonstrated. Furthermore the ability to identify individual behavior in the device was 

useful to discover the existence of sub-populations that were previously unknown. With the use 

of valves in the microfluidic device, it might even be possible to isolate these sub-populations to 

further analyze them. Phenotypic sorting can allow identification of potential genetic variations 

that distinguish these individuals from the rest. This is also relevant in the evolutionary context 

to identify why a certain species has an advantage over the others. Several phenotypic sorting 

approaches using microfluidics have already been described in literature (Chung et al., 2008; 

Crane et al., 2009) and the integration of such functionalities into the present device might allow 

previously unprecedented analyses and discoveries.  

 

Certainly, the ability to cope well with one parameter is not sufficient for the survival of species 

in a complex environment. Raise in CO2 levels in the atmosphere is also influencing the surface 

temperature which in turn causes the addition of fresh waters from the melting glaciers into the 
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ocean. As a consequence, the salinity of the oceans are decreasing, and from the experiments P. 

dumerilii showed a clear preference to high salinity conditions, which suggests that, despite the 

high tolerance to pH drop, salinity changes might adversely affect the survival of P. dumerilii. 

Given that the salinity and pH of water bodies around the world are different, these effects 

might only affect the species locally, however, it is unclear how species interactions might be 

affected if local compositions change. 

 

Zooplankton use chemical cues such as pheromones and kairomones to recognize mate (Snell 

and Morris, 1993), kin (Lazzaretto and Salvato, 1992), predator (Gutierrez et al., 2011), and prey 

(Heuschele and Selander, 2014). These ecological interactions mediated by chemical cues are 

necessary to understand and perceive how extinction of individual species can affect the overall 

ecosystem dynamics. For this purpose it is not just sufficient to measure the individuals’ 

preferendum to changing environments but to also analyze the biotic interactions they have in 

their surroundings. The possibility to study interactions between zooplankton and other species, 

such as algae and predators, in the microfluidic device was demonstrated. These measurements 

mimic the “mesocosm” studies (section 2.3) in a more controlled manner to give a broader 

understanding of species interaction networks.        

 

Lastly, the possibility to do functional assays in the microfluidic device was shown. Since 

microfluidics allows tracking individuals at a high resolution, this allowed identifying differences 

in sensory response between experimentally-modified (ablated) and control plankton groups. 

This possibility allowed identifying cell types involved in sensing a certain stimulus. Such 

characterization on the cellular level further broadens the usability of the device. 

 

In conclusion, taking advantage of the high spatial resolution offered by microfluidics, the 

possibility to make behavioral measurements of preferendum to different environmental and 

ecological conditions was demonstrated. In addition, the findings had a precision that allowed 

quantifying the minimum concentrations required for the microscopic plankton to elicit a 

response (responsiveness). These experiments can extend the “classical” ecological network 

reconstruction based on species abundance by providing information on actual responses 

(Aderhold et al., 2012).        
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3 Introduction 
Droplet-based microfluidic technology enables producing uniformly sized droplets at kilohertz 

frequencies (Park et al., 2011). This capability is especially attractive for HTS. Every droplet is 

comparable to a well in a microtiter plate in terms of isolation and uniqueness of samples it can 

contain. A single droplet can be of picoliter to nanoliter volume. This not only makes the reagent 

consumption lower but also reduces the number of cells or biological material required to attain 

a comparable density, making the platform suitable for assaying primary and rare samples. Thus 

far, the technology has been used mainly for screening biological entities like cells (Agresti et al., 

2010), antibodies (El Debs et al., 2012), etc. where every droplet contained one biological entity. 

In this chapter, a novel droplet-based platform for HTS of compound combinations is described. 

In particular, here the platform is used to screen for compound cocktails triggering 

differentiation of mouse embryonic stem cells (mESC) to neuronal progenitors.  

3.1 Stem cells 
 

The innate ability of stem cells to self-renew and differentiate into different cell types is well 

recognized. Depending on their ability to differentiate into one or more cell lineages, stem cells 

are classified as totipotent, pluripotent or multipotent. Table 3.1 summarizes these differences 

and includes examples. Briefly, totipotent stem cells can give rise to a whole organism. A 

fertilized egg cell is an example of a totipotent cell. Pluripotent stem cells are immediate 

descendants from totipotent cells and have the ability to differentiate into all somatic cell types 

except placental tissues. Multipotent stem cells can only differentiate into cell types of one 

family. In principle, stem cells can proliferate indefinitely while retaining this potency (Gardner, 

2002; Hima Bindu, 2011). This thesis focuses only on pluripotent stem cells.  
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Table 3.1 Comparison of different stem cell potencies 

Potency Explanation  Examples 

Totipotency A single cell that can give 

rise to an entire organism 

 Cell(s) in 1 to 3 day embryos 

Pluripotency Cells that can differentiate 

into all three germ layers 

and hence all cell types 

except placental tissues 

 Embryonic stem cells (ESC) forming the 

inner cell mass of the blastocyst stage or 

preimplantation embryos, Epiblast stem 

cells (EpiSC) from postimplantation 

embryos and artificially induced 

pluripotent stem cells (iPSC)  derived from 

adult fibroblast 

Multipotency Cells that can differentiate 

into two or more cell types 

of their resident tissue 

kind 

 Mesenchymal stem cells (MSC) including: 

Hematopoietic stem cells (HSC), Neural 

stem cells (NSC) and other adult stem 

cells. 

 

3.2 Pluripotent stem cells: past and present  
 

Pluripotent stem cells are a unique resource that can, in theory, provide unlimited quantities of 

any somatic cell type in vitro (Evans and Kaufman, 1981; Martello and Smith, 2014; Yamanaka, 

2012). In the 1950s pluripotency was discovered in subclones of cells isolated from testicular 

teratocarcinomas, a tumor containing multiple cell types including terminally differentiated 

structures like teeth and hair (Stevens Jr and Little, 1954). These pluripotent subclones of cells 

are called embryonal carcinoma (EC) cells (Kleinsmith and Pierce, 1964). Although EC cells are 

pluripotent they were found to be genetically abnormal (Papaioannou and Rossant, 1983). The 

challenge then was to get pluripotent cells without such abnormalities. Following this, around 

the 1980s, Martin and Evans found that these EC cells when cultured formed embryoid bodies 

(EB), a multicellular aggregate, and exhibited markers similar to embryonal identity (Martin, 

1980, 1981; Martin and Evans, 1975). Consequently, in 1981 pluripotent ESCs directly from the 

inner cell mass (ICM) of blastocyst stage embryos were isolated (Figure 3.1) (Evans and Kaufman, 

1981).  

 

In the field of biology and medicine the assets of pluripotent stem cells are being used in 

developmental studies, disease modelling, pharmacological screening and cell therapy/organ 
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regeneration. Nonetheless there are ethical issues surrounding the use of human embryos and 

ESCs which hinder much of the progress in the field. The discovery of induced pluripotent stem 

(iPS) cells, where pluripotency is reprogrammed in adult fibroblast cells by genetically expressing 

four transcription factors (Oct4, Sox2, Klf4 and cMyc) revolutionized the field of stem cells 

(Figure 3.1) (Takahashi et al., 2007; Takahashi and Yamanaka, 2006; Yu et al., 2007). The creation 

of iPSCs not only negates all ethical issues but also alleviates the risk of immune rejection; since 

fibroblasts from the same patient can be used to reprogram pluripotency. However, there are 

still major impediments to their application in regenerative medicine, these include: difficulties 

in maintaining homogeneously undifferentiated stem cell cultures, directing differentiation into 

specific lineages at a high efficiency, and, eliminating potentially oncogenic transgenes when 

generating pluripotent stem cells (Yamanaka, 2012; Zhao et al., 2011). These difficulties can be 

overcome by the use of small molecules.  

 

 
 

Figure 3.1 Generation of pluripotent stem cells. ESCs are derived from the inner cell mass (blue cells) of blastocyst 

stage embryos. iPSCs are reprogrammed cells that are made pluripotent by expressing four transcription factors (Oct4, 

Sox2, Klf4 and cMyc). Both pluripotent cells are capable of differentiating into different cell types.   

 

Chemical screens have resulted in the identification of small molecule combinations that can 

maintain self-renewal (Ying et al., 2008), direct differentiation to a neuronal lineage (Ding et al., 

2003), and chemically induce pluripotency (Hou et al., 2013). Yet, established protocols for 

efficient directed differentiation of every cell type continues to be refined. One reason for this is 

the lack of knowledge of underlying mechanisms involved in cell fate decisions. Most likely, 
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there is a complex interplay between pathways, and the desired effect can only be accomplished 

by using combinations of small molecules that act on different targets. This can be addressed by 

a chemical genetics approach. 

3.3 Chemical genetics  
 

Knowing the specific targets of a drug that induces a particular phenotype can be exploited to 

obtain insights into the underlying pathways. This concept is termed “chemical genetics” and 

although the effects are temporary, they are similar to conditional mutations on the genetic 

level (Mitchison, 1994; Schreiber, 1998). For instance, using known drugs with well characterized 

targets it is possible to uncover mechanisms involved in cell fate decisions by monitoring for the 

desired phenotype.  

 

Indeed, this concept is used extensively to study antibiotic resistance mechanisms in bacteria 

(Walsh and Chang, 2006). Figure 3.2 illustrates the concept of chemical genetics. An additive 

effect means that there is no interaction between the pathways targeted by drugs X and Y 

(Figure 3.2A). For instance, if drug X can kill 10 % of the bacteria and if drug Y kills another 10 % 

then the effect observed while adding them together would be 20 % viability loss. On the other 

hand, an antagonistic or synergistic effect is observed when the pathways that the drugs act on 

interact, and either suppress (e.g. 5 % viability loss) or enhance (e.g. 90 % viability loss) the 

effect of each other respectively. With this information, it is possible to cluster different drugs 

into groups based on pure antagonistic or pure synergistic interactions when comparing any two 

groups as shown in Figure 3.2B. This classification further generates a system-level perspective 

of a drug network. 
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Figure 3.2 A chemical genetics approach. (A) Schematic showing the effects of drug X and Y individually and in 

combination. Additive effect means that the drugs target independent pathways. Antagonistic (red line) or synergistic 

(green line) effects result in either an increase or decrease to the additive effect observed. (B) Clustering of drugs into 

groups based on their effects. Classification of drugs (black circles) is done based on similar interactions with other 

classes of drugs. For instance, a group of drug acts purely synergistically (green line) or purely antagonistically (red 

line) with drugs in another group. Modified from (Yeh et al., 2006). 

 

Furthermore, chemical perturbations, unlike genetic methods, allow a high degree of temporal 

control over protein functions. The effects of small molecules can be fine-tuned or reversed by 
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varying the concentrations. In addition, a single small molecule can modulate multiple targets in 

different pathways or within the same pathway (Xu et al., 2008). These factors are particularly 

interesting in stem cell biology. For example, it is well known that retinoic acid (RA) causes the 

differentiation of stem cells into neuronal lineage. The differentiation efficiency is shown to vary 

with different RA concentrations (Okada et al., 2004). However, it is reported that 

pharmacological interference of ERK and Wnt pathways blocked the differentiation even in the 

presence of retinoic acid (del Corral and Storey, 2004; Hirabayashi et al., 2004; Lu et al., 2009). 

One of the reasons could be that there is an active crosstalk between retinoic acid signaling, ERK 

and Wnt pathways. Thus identification of compounds that selectively interfere with cellular 

pathways gives insights about cell fate decision. Combinatorial perturbations with drugs can 

hence help in understanding the pathway interactome by revealing synergistic, antagonistic or 

additive effects between pathways (Yeh et al., 2006). Statistical models to identify these 

interactions have been previously described (Bliss, 1939; Loewe, 1928). Thus, chemical genetics 

allow dissecting complex cell-signaling pathways. Here a microfluidic technology was used to 

test for different combinations of small molecules, growth factors and proteins in a HTS 

approach while monitoring cell fate decision and thereby uncover the underlying mechanisms. 

3.4 Why microfluidics for stem cell assays? 
 

One of the challenges of culturing stem cells in vitro is the controlled expansion of the cells while 

maintaining homogeneity (Miyanari and Torres-Padilla, 2012). Previous studies have reported 

chromosomal abnormalities or DNA copy number variations in long-term cultivation of ESCs, 

iPSCs and MSCs (Laurent et al., 2011; Maitra et al., 2005; Närvä et al., 2010; Wang et al., 2013).  

For this reason, long-term passaging is not recommended for stem cells making it difficult to get 

the required billions of cells (~10,000 cells per well in a standard 384 well plate) for 

conventional, microtiter plate screening approaches (Ertl et al., 2014). One advantage of using 

microfluidics is the low cell number (down to 1 cell per droplet requirement because of working 

on a pico to nanoliter scale. This makes assays in microfluidics particularly more reliable for stem 

cells, because the results obtained from a single passage of cells have less variability. 

Additionally microfluidic systems consume lesser reagents, are inexpensive to work with, and 

can be fully automated as elaborated in the General Introduction section of this thesis.  
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3.5 Droplet-based small molecule combination screens 
 

Microfluidics has been used for screening biological sample libraries such as cell libraries 

(Beneyton et al., 2014; Cao et al., 2012; El Debs et al., 2012). However, there is a lack of devices 

that allow screening using chemical libraries. Dose-response studies in droplets exist (Cao et al., 

2012; Miller et al., 2012) where different concentrations of a chemical can be tested for their 

effects on cells, but these devices do not allow screening different chemicals and combinations 

of chemicals.  

 

To our knowledge, the only existing small molecule combination HTS approach that can allow 

screening combinations of two or more compounds using droplet microfluidics was reported 

from Dr. Tza-Huei Wang’s lab (Rane et al., 2014; Zec et al., 2012). In the latest report they 

elegantly demonstrated a 650 enzyme-substrate combination screen (Rane et al., 2014). 

However, screening of chemicals for their effect on mammalian cells adds additional difficulty 

because of the wetting caused by media proteins which can cause fusion or cross-contamination 

of chemicals between droplets (Figure 3.3). Although there are means of overcoming this 

problem to some extent (Subramanian et al., 2011), so far there is no HTS approach that allows 

co-encapsulating mammalian cells with small-molecule combinations. In this chapter, a novel 

approach that allows screening of small molecule combinations of entire libraries and a new 

barcoding strategy is shown. The system is further optimized to be used for screening small 

molecules inducing differentiation of mESCs to neuronal progenitors.   

 

 
 

Figure 3.3 Cross-contamination due to wetting of plugs containing proteins. (A) Cross-contamination between two 

plugs inside tubing (B) Wetting in the drop-maker channel. 
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3 Results 

3.6 A novel approach to generate binary barcoded 
droplets containing unique compositions using a 
braille display       

 

A Braille display is a tactile writing aid used by the blind. In this project, a 64 pins braille display, 

as shown in Figure 3.4, is used and each pin can be individually actuated to move up or down. 

Here, this ability is made use of to open and close microfluidic channels thereby precisely 

controlling the flow of reagents. The concept of using a braille display to control liquid flow in 

microfluidics was previously demonstrated to generate different laminar flows (Gu et al., 2004). 

Here, the braille display was used to generate combinatorial mixtures in droplets.  

 
Figure 3.4 Braille display unit with 64 pins (white dots). Each of the pins can be individually actuated and used as a 

mechanical valve. 

3.6.1 Working principle 

A microfluidic chip for generating combinatorial mixtures was produced with the difference that 

the channels are closed off by bonding the chip to a thin polydimethylsiloxane (PDMS) 

membrane that is flexible, instead of a rigid glass as it is usually done. Thus when the chip is 

positioned on the braille display, the pins can deform the membrane to open and close the 

channels above as illustrated in Figure 3.5. 
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Figure 3.5 Open and closed valve configuration. The channel is aligned on the braille pin such that when the pin 

moves up, the membrane above it deforms and blocks the flow through the channel. 

 

The 64 pins of the braille display are used to control 32 unique reagent inlets on a specifically 

designed microfluidic chip (Figure 3.6A) shows a 16 inlet half size version of the chip). Since the 

reagents are infused constantly using syringe pumps (Figure 3.6B), two pins are required to 

direct the flow to either the T-junction (where the droplets are produced) or to the waste outlet 

(marked with “W” in Figure 3.6A), to avoid pressure built-up in the system. At the T-junction the 

droplets are produced when the reagents (aqueous) come in contact with fluorinated oil (FC-40 

+ 0.5 % PFO). Perfluorooctanol (PFO) is used in the fluorinated oil as an anti-wetting agent. The 

flow rates are adjusted such that for each sample only a set number of droplets fuse to form a 

plug. To avoid further fusion between plugs, mineral oil was used as a spacer as it was previously 

reported to be effective in keeping plugs separate (Baraban et al., 2011). The result is the 

generation of a long array of plugs interspersed by mineral oil as illustrated in Figure 3.6A and 

Figure 3.6B.  
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.  

Figure 3.6 Experimental set-up. (A) Design of a 16 inlet microfluidic chip matching half of the braille unit (red box). 

Dotted circles show the position of the braille pins. Inlets 15 and 16 (blue box) are infused with two different 

concentrations of a fluorescent dye for barcoding. Inlet 02 is used for cells and has a different geometry to other inlets 

to prevent clumping of cells. All other inlets (green box) are used for infusing different compounds of interest. Circles 

marked with “W’ are the waste outlets. Every two inlets share one waste outlet. Droplets are produced at the T-

junction as shown. At the outlet where the droplets exit the chip into the tubing, several droplets fuse to form a plug 

and are interspersed by mineral oil droplets as shown in the schematic within the yellow box.  (B) Entire experimental 

set-up along with the syringe pumps. Individual parts are zoomed in for a better view.    
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The braille system has the ability to generate uniform plugs of different compositions, which are 

represented by dyes in Figure 3.7A. Noticeably, there is cross-contamination in the plug between 

two colors (purple plug in Figure 3.7A), but this can be addressed by including replicates and 

excluding the cross contaminated first plug from the analysis.  

 

Unique binary barcode plugs (blue plugs in Figure 3.7B) are produced before every new 

composition to make the compositions in every plug identifiable. These barcodes are nothing 

but plugs containing fluorescent dyes.  Two different concentrations of the dyes are used to 

represent 0s and 1s in binary digits. A sequence of barcode plugs can thus be detected along 

with the fluorescent assay read-out and the compositions can be easily deciphered (Figure 3.7C).        

 

 
Figure 3.7 Plugs in tubing. (A) Plugs with different dyes to demonstrate the possibility of generating diversity in plugs 

on-demand. The purple plug in between blue and pink plugs is cross contaminated and can be excluded from analysis. 

(B) A reel of tubing containing a long train of different composition plugs identifiable by the blue barcode plugs. (C) An 

illustration of the binary barcode strategy. Samples (different shades of green plugs) are identified using barcodes 

(light and dark blue plugs). Barcodes are simply plugs with two different concentration of fluorescent dyes (indicated 

here as dark and light blue) to represent 0s and 1s in binary digits. (D) A magnified view showing cells (within black 

boxes) in plugs incubated in transparent and gas-permeable polytetrafluoroethylene (PTFE) tubing.    
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3.6.2 Generation, detection and analysis of small molecule mixtures 

In a screen, two of the inlets are dedicated for the barcode dyes and one inlet is used for cells or 

other biological samples to be tested, leaving 29 inlets for chemicals or proteins. The number of 

combinations (nCr) that can be generated using these 29 compounds can be calculated using 

Equation 5. 

 

𝑛𝑛𝑛 = 𝑛!
𝑟!(𝑛−𝑟)! 

= 𝑛(𝑛−1)(𝑛−2)….(𝑛−𝑟+1)
𝑟!

                Equation 5 

 

Where n is the total number of compounds and r is the maximum number of compounds mixed 

together in a plug. Therefore, with 29 compounds (n = 29) and pairs of compounds being mixed 

(r  = 2), the total number of combinations that can be produced (29C2) is 406. Integration of the 

braille display with an autosampler, that is capable of sampling reagents from 96 well plates, can 

increase this sample number significantly. To enable this, one of the 29 inlets is connected to the 

output from the autosampler leaving 28 inlets on the braille display for other compounds. The 

resulting sample number is 406 + (96 x 28) = 3094 combinations. Besides, the autosampler is not 

limited to one 96 well plate. Therefore entire compound libraries can be fed into the 

autosampler and combined with compounds on the braille display, making the set-up scalable 

for higher sample numbers. 

 

The train of plugs is automatically generated by sequentially executing the commands given by a 

software specifically designed in LabVIEW by Ramesh Utharala, EMBL to control the status of the 

64 pins (Figure 3.8). Briefly, when the braille display is connected and initialized, the pins are 

maintained in an “all waste” configuration; meaning all the channels connecting to the drop 

maker/T-junction are closed off by the pins. Following this, the program uses preset commands 

to automatically generate combinations by opening and closing the assigned pins for a set 

duration. The graphical user interface shown in Figure 3.8 helps to preset the parameters like 

valve opening times, duration of oil flush in between two compositions, number of replicates per 

composition, etc.  
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Figure 3.8 Graphical user interface of the program used to control pins on the braille display.  

 

The plugs are then collected in the same order as they are produced, in a 

polytetrafluoroethylene (PTFE) tubing with an inner diameter of 600 μm. It is important to note 

that the length of the tubing has a significant effect on the plug production. Although long tubing 

can store more plugs, it also generates an equivalent back pressure.  The back pressure was 

calculated using the Hagen-Poiseuille equation (Equation 6) which is generally only used for 

continuous flow but may serve as a rough estimate for the plugs.  

 

𝛥𝛥 = 8𝜇𝜇𝜇
𝜋𝑟4

                      Equation 6 

 

Where 𝛥𝛥 is the pressure loss, 𝜇 the dynamic viscosity of the water in oil plugs, 𝐿 the length of 

the tubing, 𝑄 the volumetric flow rate of plug production and r is the radius of the tubing (600/2 

= 300 μm in this case). Inferring from this equation, the optimal length of the tubing (𝐿) was 

estimated to be 6 meters with a negligible back pressure of 2.151 kPa (= 0.0215 bar) knowing 

that the flow rate (𝑄) is 1000 μl/h and viscosity (𝜇) of FC-40 oil is 4.1 mPa-s. Furthermore the 6 
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m of tubing were pre-filled with buffer plugs to avoid any further pressure differences while 

producing the experimental combinations. Indeed the tubing can be exchanged with new 6 m of 

tubing to allow storing more plugs. 

 

The entire reel of tubing was then incubated for the assay duration in a 37 ⁰C and 5 % CO2 

incubation chamber with humidified atmosphere. PTFE is gas permeable making it suitable for 

cells (Figure 3.7D). Following this, the plugs were run through the readout spot, on which a laser 

beam was focused. The fluorescence intensities of the plugs were measured directly inside the 

transparent PTFE tubing. Photo multiplier tubes (PMT) amplify the emitted signal and these 

measurements were monitored using another LabView program developed by Ramesh Utharala, 

EMBL as shown in Figure 3.9. Every peak corresponds to a plug. The width of the peak indicates 

the plug length, and the amplitude of the signal corresponds to the fluorescence intensity of the 

plug. Since the microfluidics workstation enables the detection of three different fluorescent 

colors (red, green, blue) simultaneously, the barcode fluorescence can be recorded in parallel. 

 

 
Figure 3.9 Data acquisition program. The program acquires fluorescence intensity values as the plug passes through 

the laser spot. Every peak corresponds to a plug. The amplitude of the peak correlates with the fluorescence intensity 

and the peak-width corresponds to the plug-width. Simultaneous recording of two different fluorescence channels 

(blue and green) is shown. 

 

Finally, the recorded values are analyzed using a custom R package (BraDiPlus) with scripts 

specifically suited to analyze the data from plug-based screen. These scripts were written by 
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Federica Eduati, EMBL-EBI. The scripts are capable of reading the barcodes and selecting 

replicate sets of the same composition. It is then possible to compare the read-out signals 

between compositions to identify hits.            

3.7 Application of the novel approach for stem cell 
differentiation screens 

 

The usability of the newly developed approach to screen optimal protocols for directed 

differentiation of mESCs is described in this section.  

3.7.1 Evaluating viability of mESCs in aqueous plugs 

Although there are previous reports on stem cell survival in microcapsules made of hydrogels, all 

these assessments were done while soaking these microcapsules in fresh medium (Agarwal et 

al., 2013; Tumarkin et al., 2011). While this allows medium exchange, it is not suitable for 

screens with different medium compositions. Since the aim here was to generate chemical 

diversity in plugs to identify the optimal medium for differentiating stem cells, it is neither 

possible to soak these plugs in the same medium nor disturb the ordering of the barcoded plugs. 

As there is no report on survival of pluripotent stem cells in aqueous medium droplets, this was 

addressed first.  

 

The survival kinetics of mammalian cell lines such as Jurkat and HEK 293 in droplets are 

documented elsewhere (Clausell-Tormos et al., 2008) (Figure 3.10A-B). It is evident from 

reported data (Figure 3.10A and B) that the Jurkat cells, which proliferate faster (doubling time 

20.7 ± 2.2 hours (Schoene and Kamara, 1999)) than HEK 293 (doubling time 24 hours (Cervera et 

al., 2011)), also have a reduced survival time in 660 nanoliter plugs. For pluripotent mESCs the 

doubling time is 10-14 hours (Pauklin et al., 2011). When the same protocol was adapted for 

encapsulating 46c (Sox1-GFP) mESCs the percentage of surviving cells decreased to   ̴20 % after 

24 hours incubation in plugs of the same cell density (Figure 3.10C). The survival rate was 

assessed by performing a flow cytometry and image based counting of cells recovered from 

plugs after staining with Calcein AM (live stain) and propidium iodide (PI, dead cell stain). 

Although this loss in survival percentage was expected from the rapid doubling time of mESCs, 

which perhaps depleted the limited medium nutrients and accumulated toxic metabolites, this 

rate did not increase by reducing the number of cells per plug. However the survival rate of 
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Jurkat cells linearly correlated with the cell density in the previous work (Clausell-Tormos et al., 

2008)(Figure 3.10D). Trying different cell densities for mESCs resulted in a viability difference as 

shown in Figure 3.10E. The optimal cell density for encapsulating mESCs was found to be 3.5 

million cells per ml. At this density the cells could be efficiently re-cultivated after recovering 

them from plug (Figure 3.10F). Too few or too many cells compromise survival of mESC in 

droplets. This finding is consistent with a recent report where Pettinato et al. tried to form EBs in 

microwells at different cell densities (Pettinato et al., 2014). 

 

 
Figure 3.10 Survival kinetics of cells in plugs. (A) and (B) are survival rates of Jurkat cells and HEK 293T cells as 

reported elsewhere (Clausell-Tormos et al., 2008). (C)  The survival rate of mESCs. (D) Correlation between cell density 

and cell viability as reported elsewhere (Clausell-Tormos et al., 2008). (E) Variation of survival at different cell densities 
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for mESCs. (F) The viability of cells recovered from plugs by re-cultivation. Data in A, B and D was reproduced from 

(Clausell-Tormos et al., 2008) with permission from Elsevier. 

  

While monitoring the viability of 46c mESCs over time, a rapid decline in survival was observed 

after 24 hours. One of the major reasons for this loss of survival could be the acidification of the 

medium and depletion of glucose. For this reason it is advised to replenish the medium every 24 

hours for mESCs (Smith, 1991). Moreover, it is known that ES cells predominantly rely on 

glycolysis for energy supply (Varum et al., 2011). Since the plugs are inaccessible to complete 

change of medium, an alternative solution of buffering the medium and adding more glucose 

was considered.  The addition of 10 mM HEPES and 40 mM of glucose to the medium increased 

the survival to over 60 % after 48 hours (Figure 3.11A). However, after 72 hours the survival 

decreased to    ̴10 %.  

 

To clarify that there is no difference in viability of the mESC in plugs based on their origin or 

genetic differences (Hughes et al., 2007), similar survival assessments were done for Sox1-βgeo 

mESCs generated from a different parental mouse line (C57BL/6) (Nishiguchi et al., 1998) than 

46c mESCs (E14tg2a.IV) (Ying et al., 2003). No significant difference was observed in the survival 

of the two strains. Consequently, the maximum assay duration, using the above described 

optimization, for mESCs in isolated aqueous plugs is 48 hours. 

 

Having quantified the survival, the effect of encapsulation on potency of pluripotent stem cells 

was assessed. For this, a mESC reporter line, with Rex1-GFP knock-in, generated by Wray J. and 

co-workers, was used (Wray et al., 2011). Rex1 is a self-renewal marker and the expression of 

Rex1-GFP in plug-recovered EBs after one and two days is shown in Figure 3.11B. This 

demonstrates that the mESCs in plugs are fully viable and retain their potency for up to 48 hours 

in plugs. 

 



Generating combinatorial mixtures in droplets to assay stem cell niche 

56 

 

 
Figure 3.11 Long-term survival of mESCs. (A) Duration of survival of 46c mESC. (B) Rex1-GFP expression in embryoid 

bodies recovered from plugs after 1 day and 2 days. Scale bar represent 10 μm.  

 

The viability could only be determined by recovering the EBs from plugs since the intracellular 

GFP signal can hardly be detected inside plugs. This is because the EBs can freely move in the 

plugs and do not necessarily pass the detection point at the exact same position. This causes 

artificial variations in the detected signal. To avoid this, Sox1-βgeo mESCs were used for the 

screens. This line produces β-galactosidase enzyme as a reporter upon Sox1 induction. 

Substrates like X-gal or Fluorescein di-D-galactopyranoside (FDG) can be converted by this 

enzyme to produce a chromogenic or fluorogenic signal respectively. More specifically, in plugs 

FDG is used as a substrate and in the presence of β-galactosidase enzyme, FDG is hydrolyzed to 

fluorescein which then leaks from the cells into the plugs making the whole plug fluorescent. 

This reporter system, as illustrated in Figure 3.12, is better for detection within plugs.      
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Figure 3.12 Fluorescence detection in plugs. (A) Intracellular GFP fluorescence (left) shows varying intensities based 

on the location of the cells within the plug. Assays generating an extracellular fluorescent product (Tatistcheff et al., 

1993) are much more quantitative and reliable, because the fluorescence is uniform throughout the entire plug. (B) 

FDG hydrolysis. The β-galactosidase enzyme produced by the cell, converts the FDG to fluorescein which makes the 

whole plug fluorescent.  

 

3.7.2 Differentiation of mESCs in aqueous plugs 

The most commonly used protocol for mESCs differentiation into neuronal progenitors is using 

N2B27 serum-free medium developed by Ying and co-workers (Ying et al., 2003). Using this 

protocol, the differentiation of 46c mESCs to neuronal progenitors takes 4 days at an efficiency 

of around 80 % in monolayer cultures (Figure 3.13B) (Ying et al., 2003). This was monitored by 

the expression of Sox1-GFP where Sox1 is an early marker for neuronal lineage (Pevny et al., 

1998). Figure 3.13 shows the kinetics of differentiation in monolayers based on the GFP reporter 

expression.  While the efficiency of differentiation in the N2B27 protocol was unmatched, a 

couple of years later Abranches E. et al. published a new protocol for faster and more efficient 
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(60 % after 3 days) medium composition (RHB-A medium) for differentiating 46c mESC to Sox1 

positive neural progenitors (Abranches et al., 2009). The newly described approach can be used 

to screen for optimal differentiation protocols that can induce detectable differentiation already 

after 48 hours. Firstly, a small molecule that can potentially influence neuronal differentiation 

was identified from literature (Lu et al., 2009). 

 

 
Figure 3.13 Kinetics of differentiation of 46c mESC to Sox1 positive neuronal progenitors. (A) Detectable 

differentiation was observed after 4 days of incubation in N2B27 medium. After 4 days the Sox1 expression reduces as 

the cells proceed to neural fate. (B) Data from Ying et al. showing the same kinetics. Reproduced with permission from 

Nature Publishing Group. 

 

All-trans retinoic acid (RA), is a morphogen with pleiotropic actions and is known to promote 

differentiation into neuronal lineage (Lu et al., 2009; Maden, 2007) as measured by Sox1 

expression. While the differentiation efficiency is a function of RA amount (Okada et al., 2004), 

here, with Sox1-βgeo cells, β-galactosidase reached detectable levels, evaluated by X-gal 

conversion and microscopy, 48 hours after RA addition (10-8 M in N2B27 medium) (Figure 3.14A-

C), thereby showing differentiation of the cells within the time window during which they are 

viable in plugs. Subsequently, a two condition screen was performed to show feasibility of mESC 

differentiation in plugs. Plugs were generated with (+) and without (-) RA, and measurements of 

fluorescein intensity were performed in 16x 20 replicate plugs for each condition after 64 hours 

and 85 hours. While there was no significant difference between the sample groups at 64 hours 

Figure 3.14D(i), the prolonged conversion of FDG into fluorescein at 85 hours Figure 3.14D(ii) 

resulted in a well pronounced and significant (P=0.0013) difference between samples with and 

without RA. 
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Figure 3.14 Differentiation of Sox1-βgeo mESC to neuronal progenitors. (A) and (B) X-gal stained cells cultivated for 

two days in N2B27 medium with 10-8M RA. (A) 46c mESCs taken as a negative control. (B) Sox1-βgeo mESCs stained 

for the expression of β-galactosidase. (C) Sox1-βgeo mESCs in the self-renewing medium and hence shows no staining 

with X-gal. (D) The outcome from a two condition screen in plugs with Sox1-βgeo mESCs. +RA is N2B27 medium with 

10-8M RA and -RA is N2B27 medium without any RA. The fluorescence intensity is shown on the y-axis D(i) 

Measurement after 64 hours and D(ii) after 85 hours.  The difference between the two conditions is clearly significant 

after 85 hours. p-values are as indicated. 

 

The combination of the mESC being viable and fully potent in plugs for a time window that 

allows the pronounced detection of neuronal lineage markers, ultimately shows the suitability of 

microfluidics for stem cell differentiation screens. The further use of the binary barcodes to trace 

sample identity, renders this approach suitable for high-throughput combination studies with 

large chemical compound libraries. 

 

3 Discussion and future prospects 
A novel approach for HTS of optimal neuronal differentiation protocols for pluripotent mESCs 

has been established. The possibility of generating combinatorial diversity in droplets with 

binary barcodes and the ability to screen for molecules inducing differentiation of mouse 
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embryonic stem cells has been demonstrated. While the approach may be suitable for use with 

other stem cells, the niche environment of every stem cell type is unique (Scadden, 2006) and 

the system has to be optimized accordingly. For example, EB formation that occurs naturally in 

droplets is typical for assessing ESC and iPSCs differentiation; however, this is not the case for 

MSCs. Most MSCs fate choices depend on the ECM or substrate properties (Engler et al., 2006). 

Although gelation of entire droplets is possible (Agarwal et al., 2013; Tumarkin et al., 2011), and 

can closely mimic the ECM, this is technically challenging in the approach described here. One of 

the reasons being the increase in the overall back-pressure while collecting the plugs in a 6 m 

long tubing, due to the high viscosity of hydrogels. Another reason is wetting caused by 

hydrogels that could potentially cross-contaminate samples. An alternative that can overcome 

the problems with gelation while supporting MSC differentiation is to co-encapsulate beads 

coated with ECM materials along with MSCs in droplets. Although the entire plug remains 

aqueous the MSCs can adhere to these beads which support their differentiation. This method 

for MSCs can help to assess what factors apart from the ECM play a role in fate decision.  

 

Aside differentiation, other stem cell assays, like organ development, could potentially also be 

monitored using the novel microfluidic approach described here. Studies have reported the 

formation of 3D structures called organoids when MSCs like intestinal crypt stem cells are 

cultured without a niche or substrate (Sato et al., 2009). Intestinal organoids can self-assemble 

and form entire crypts with villus and lumen. Organoids of stomach (Barker et al., 2010), colon 

(Sato et al., 2011), pancreas (Huch et al., 2013a) and liver (Huch et al., 2013b) have also been 

reported. Such 3D organoids are being used to understand the formation of entire organs and 

serve as disease models (Shamir and Ewald, 2014). These organoids are able to originate from 

individual stem cells, and hence can simply be formed by encapsulating single cells in plugs. 

However, for all these assays, the major limitation in using droplet-based approaches is the 

duration of survival of stem cells in droplets. For instance, intestinal organoids take two weeks to 

develop (Sato et al., 2009).  

 

Since the maximum assay duration in plugs with the optimized protocol described here for 

mESCs is 48 hours, the number of possible assays that can be performed in this time window is 

restricted. Indeed stem cells, depending on their origin, also differ in their energy metabolism 

which is an important parameter for their survival (Rafalski et al., 2012). This parameter can be 

adjusted further to extend their survival in droplets, however, these alterations have to be 
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within physiological limits. Heavily changing the stem cell energy metabolism by altering the 

surrounding glucose or oxygen levels also interferes with fate decisions (Teslaa and Teitell, 2015; 

Xu et al., 2013).  

 

A 48 hour window can still allow assaying stem cells for optimal differentiation protocols. As 

described in this chapter, the differentiation of mESC to neuro-ectodermal progenitors normally 

takes four days to attain over 75 % differentiation with the standard N2B27 protocol (Ying et al., 

2003), however, by adding 10-8 M RA to the medium, detectable differentiation could already be 

observed after two days (Figure 3.14). In this particular case, RA is known to target multiple 

pathways (Lu et al., 2009) and hence this sole molecule can efficiently direct differentiation to 

Sox1+ neuro-ectoderm. Similarly, for endoderm (Li et al., 2011) and mesoderm (Torres et al., 

2012) lineages, combinations of small molecules, protein and growth factors are already being 

explored to increase differentiation efficiency. For instance, from the study performed by Li et al. 

it is proven that chemical activation of canonical Wnt signaling pathway by lithium chloride (LiCl) 

could synergize with Activin A-mediated Nodal signaling pathway to promote induction of 

definitive endoderm (DE) cells, and inhibition of Bmp4 signaling by Noggin along with Activin 

A/LiCl further improved the efficiency of DE cell differentiation. It is clear that combination 

screens are necessary for investigating stem cell differentiation and so far the progress is 

impeded by the lack of robust and high-throughput tools. Although, the droplet-based 

microfluidic platform only allows limited survival, many stepwise differentiation protocols are 

described in literature (Kanke et al.; Li et al., 2003). Hence, the assay duration might not 

necessarily be a limiting factor as long as suitable early lineage markers can be identified.       

 

Furthermore, pluripotent epiblast stem cells (EpiSC) are gaining attention because of the 

molecular and phenotypic similarity between mouse EpiSC and human ESC (Jang et al., 2014; 

Najm et al., 2011; Tesar et al., 2007). Screening with these mouse cells might make the results 

directly adaptable to human stem cells.  These mouse EpiSCs derived from post implantation 

epiblast embryos are in a ‘primed’ state for differentiating, hence, unlike ‘naïve’ state mESCs 

they are capable of differentiating faster into the germ layers. This means that screening with 

EpiSCs might allow assessing more lineage marker expression within the 48 hour time window. 

 

In conclusion, the droplet-based combinatorial screening platform described in this chapter has 

been optimized for assaying stem cell niches to find optimal differentiation protocols that can 
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potentially be useful for regenerative medicine. Additionally, the screen results can also be used 

to understand underlying mechanisms of fate decisions which are useful to refine protocols. For 

example, RA is known to target multiple pathways. One way to know which among the various 

targets is essential for neurogenesis is by combining RA with specific inhibitors of the target 

receptors. For this, a selection of compounds from the Food and Drug Administration approved 

Prestwick library can be used, that are known kinase inhibitors of signaling pathways involved in 

neurogenesis. Indeed the screen results obtained from the novel platform have to be validated 

in regular tissue culture, however the platform can tremendously decrease the time, cost and 

sample requirement for a preliminary screen.  
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4 Introduction 
The previous chapters describe development and application of single-phase and two-

phase microfluidic platforms. Despite the many advantages of the individual formats, there 

are some limitations to using them for cell-based assays which are discussed in this chapter, 

where a novel approach combining the advantages of single-phase and two-phase 

microfluidic platforms is presented. 

4.1 Need for an approach combining single- and 
two-phase microfluidics 

 

For cell-based screening assays, droplet microfluidics offers high-throughput and 

compartmentalization possibilities. However, survival of cells inside droplets is limited to a 

few days depending on the cell type, because of the inability to renew medium in droplets 

and remove the toxic metabolites secreted by the cells in droplets (Clausell-Tormos et al., 

2008). In addition to this, droplets do not allow any assays that require washing steps, such 

as immunofluorescence assays. Furthermore, high-resolution imaging in droplets is not 

easily possible because cells in droplets randomly float into and out of the focal plane. 

Although these limitations do not exist in single-phase perfusion microfluidic systems 

where cells are fully accessible, single-phase microfluidics cannot match the throughput 

offered by droplets systems. To overcome the individual limitations of the two systems, an 

approach was devised as described here, for combining the individual advantages.   

4.2 Working Principle  
 

The novel approach takes advantage of the permeability of PDMS (the material of which 

microfluidic devices are produced) to chemicals. Studies describing the absorption and 

diffusion of chemicals (Toepke and Beebe, 2006) and biologically active compounds (Regehr 

et al., 2009) into PDMS have already been described elsewhere (Figure 4.1). Wang et al. 

found that the absorption of a molecule into PDMS depends on the partition coefficient 

(log P) (Wang et al., 2012), as measure of lipophilicity of that molecule. As shown in the 

equation below, log P is the ratio of concentrations of solute in octanol (a non-polar 

solvent) to distilled water (Equation 7). 
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log  𝑃 =  log ([𝑠𝑠𝑠𝑠𝑠𝑠]𝑜𝑜𝑜𝑜𝑜𝑜𝑜
[𝑠𝑠𝑠𝑠𝑠𝑠]𝑑𝑑2𝑂

)              Equation 7 

 

Wang et al. estimated that molecules with log P values lower than 2.47 show less than 10 

% absorption into PDMS, while at log P values higher than 2.62, more than 90 % absorption 

occurs (Wang et al., 2012). Indeed for many cell based assays this absorption is 

unacceptable. Much literature exists to prevent this absorption by various surface 

treatments (Lei et al., 2011; Roman and Culbertson, 2006; Roman et al., 2005); however, 

the novel approach described here takes advantage of this phenomenon. 

 

 
Figure 4.1 Rhodamine B diffusion into PDMS. (a-c) diffusion into untreated PDMS. (d-f) Sol-gel treatment of 

PDMS (PDMS-SiO2) prevented this diffusion. Reproduced from (Mukhopadhyay, 2007) with permission from 

ACS.  

 

The absorption by PDMS is used here to locally expose cells to different concentration of 

drugs. In more detail, chemically distinct drugs in isolation and in combination can be 

compartmentalized as plugs using the braille display as described in chapter 3. Instead of 

co-encapsulating the cells, the cells are seeded in close vicinity to the plugs, making the 

cells accessible to perfusion. This can be done by either seeding the cells in a separate 

neighboring channel, or by growing them over the plug channel separated by a membrane 

(detailed in section 4.3). Since in this new approach, the compounds in the plug 

compartments are allowed to diffuse out of the plug, through the PDMS, to reach the cells, 

it was termed: “semi-compartmentalization”.  The ability of compounds to diffuse into 

plugs has already been demonstrated by Shim and co-workers (Shim et al., 2011), and a 

similar principle is employed here. 
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4 Results 

4.3 Microfluidic chip design 

The semi-compartmentalization approach can be implemented in two ways:  

 

1. The parallel channel method allows culturing cells as a continuous stretch inside a 

channel, that runs parallel to the channel containing the array of plugs with 

different compounds (Figure 4.2A). The two channels are separated by a PDMS 

channel wall of 100 μm thickness through which the compounds diffuse and locally 

form a gradient over the cells. In this method, although the cells are accessible to 

washing and perfusion, there can be no flow in the cell channel during compound 

exposure. This is because flow will cause cross-contamination and disrupt the local 

gradients of compounds. No perfusion implies that there can be no medium 

renewal during compound exposure. To still allow supply of nutrients, a third 

channel was designed close to the cell channel through which fresh medium was 

infused constantly, thus allowing the media components to diffuse to the cells 

(Figure 4.2C).  

 

2. The membrane method allows simply culturing cells on top of a PDMS membrane 

that is used to seal the channel containing the array of compound plugs (Figure 

4.2B). The microfluidic chip design (Figure 4.2D) in this method, merely has one 

single serpentine channel and instead of sealing off the channel with glass, as done 

in the traditional chip fabricating procedure, a thin (100 – 150 μm) PDMS 

membrane is used. The membrane allows diffusion of the plugs and spotting of 

drug gradients which locally influence the cells above. Since in this method the cells 

are exposed to the exterior, the culturing can be performed similar to conventional 

tissue culture (Figure 4.2B).  
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Figure 4.2 Semi-compartmentalization experimental design. (A) The parallel channel method, where one 

channel hosts the plugs containing drugs and the other channel hosts the cells. The drugs diffuse through the 

channel walls and reach the cells. (B) The membrane method, where the cells are seeded on a membrane above 

the channel containing the plugs. The cells on top of the membrane are exposed to the exterior and can be 

cultured similar to conventional tissue culture procedures. (C) Design of the parallel channel chip with channel 

functions as indicated in the zoom in. (D) Design of the chip for the membrane approach with just a long 

serpentine plug channel. Data published in (Eicher et al., 2015).  
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4.4 Assessing diffusion of drugs 

As described above, diffusion of compounds through PDMS depends on the partition 

coefficient (Wang et al., 2012). PDMS being hydrophobic (Bodas and Khan-Malek, 2006) 

absorbs compounds with high partition coefficients. The higher the log P value the greater 

the absorption. The average log P value of drugs was determined as 1.80 by Lipinski and co-

workers (Lipinski et al., 2012). However, other studies reported log P values of drugs close 

to 2.5 for synthetic oral drugs (Proudfoot, 2005) and 3.1 to 3.4 for industrial collections 

(Macarron et al., 2011). In order to make our approach compatible with drugs having 

different properties, two fluorescent dyes, Nile red (log P = 5) and fluorescein (log P = -

0.67) with partition coefficients covering the entire spectrum of drugs, were chosen for 

experimenting as representatives.  

 

Fluorescein, being strongly hydrophilic, showed no absorption into PDMS while Nile red 

quickly (within seconds) got absorbed into PDMS. This indicated that treating the PDMS to 

make it more hydrophilic and less hydrophobic was required to promote the absorption of 

fluorescein while dampening the absorption of Nile red. Typically, oxygen-plasma 

treatment, which is also used for bonding PDMS to glass to produce a chip, renders the 

channels hydrophilic (Bodas and Khan-Malek, 2006). However, the duration of the 

treatment was short (1 minute) which only made the channel walls hydrophilic. Increasing 

the duration of treatment to 3 hours at full power, made the whole chip hydrophilic and to 

maintain this hydrophilicity and dampen excess diffusion, the chip was kept soaked 

overnight at 65 ⁰C in phosphate buffer saline (PBS) prior to experiments.  

 

To test the absorption and diffusion of the fluorescent dyes after plasma treatment, a 

simple set-up was designed. This set-up had a source well on a PDMS slab where the dye 

was added and three sink wells around it containing distilled water (dH2O) (Figure 4.3A). 

The diffusion of the fluorescent dye was measured by comparing the intensity of 

fluorescence in the source and sink wells at the start and end of the experiment. As shown 

in Figure 4.3 (B and C), the plasma treatment promoted the diffusion of hydrophilic 

fluorescein (10 μM) while dampening the diffusion of hydrophobic Nile red (150 μM). 
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Figure 4.3 Diffusion of fluorescent dyes altered by plasma treatment. (A) The test set-up with a source well 

containing the dye and three sink wells at equal distance (1 mm) around it containing dH2O. (B-C) Plate reader 

measurement of the fluorescence remaining in the source well (B) and diffused into the sink well (C). (D) Surface 

plot micrographs (generated using ImageJ) of source well walls facing the sink wells after incubation. Data 

published in (Eicher et al., 2015). 
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To demonstrate the diffusion of drugs, two drug molecules were chosen: tetracycline (log P 

= 0.62) and minocycline (log P = 2.12) with different partition coefficients. Minocycline is a 

derivative of tetracycline and hence structurally closely related. To test the diffusion of 

these two drugs a simple set-up with PDMS wells sealed by a membrane was used. The set-

up was plasma treated and soaked as stated above, however, unlike for fluorescent dyes 

where a sink well can be used to assess the diffusion, here drug inducible cellular GFP 

expression was used to determine if and how much diffusion occurred. The HeLa TRexTM 

cells used for these experiments express GFP upon induction by tetracycline (Castello et al., 

2012). Since minocycline is a derivative of tetracycline, both the drugs can induce GFP 

expression in HeLa cells. The set-up is designed such that the cells were seeded on the 

reverse side of the membrane to where the drug was spotted to measure diffusion through 

the membrane. Figure 4.4 (A and B) shows a schematic of the set-up and the expression of 

GFP in cells upon exposure to different concentration of tetracycline and minocycline.   

 

When a similar diffusion experiment was mimicked in a parallel channel chip with the plug 

channel simply replaced by a loop that can be filled, diffusion of the drugs could be 

observed. In addition, this experiment showed a gradient of GFP expression along the 

length of the channel (Figure 4.4C). This demonstrated that the semi-compartmentalization 

approach is useful to not only study the effect of drugs but potentially also allows 

monitoring the drug affect at different concentrations. 



Semi-compartmentalization 

 

72 

 

 
 

Figure 4.4 Diffusion of drugs through PDMS shown by induction of GFP in HeLa TRexTM cells. (A) Schematic of 

the experimental set-up. (i) The drug was dispensed into the smaller of the two wells separated by a membrane 

and incubated overnight at 37 ⁰C. (ii) In the following day cells were seeded into the larger well and incubated. 

(iii) After 48 hours the cells were imaged using a fluorescence microscope. (B) Difference in GFP expression 

between cells incubated with the two drugs: tetracycline and minocycline at different concentrations. (C) A 

similar induction experiment with tetracycline performed in a representative parallel channel chip with the plug 

channel replaced by a loop for easier handling. Data published in (Eicher et al., 2015). 
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4.5 Troubleshooting culturing cells on PDMS 

Microfluidic devices fabricated with PDMS are gas permeable and biocompatible. Several 

perfusion microfluidics have been demonstrated for culturing cells (Huang et al., 2013; 

Hung et al., 2005) and are also commercially available (ibidi® flow chambers).  However, in 

our parallel channel approach, since the gradients are passive and can be washed away by 

flow, the cells have to be cultured in static medium conditions without the possibility of 

medium renewal. Nonetheless, the integration of a third channel (as explained in section 

4.3 and Figure 4.2C) with a constant medium flow, and immersing the entire chip in 

medium (Figure 4.5), sustained the cells with the diffused medium nutrients but the cells 

showed a tendency to migrate towards the medium flow inlet (data not shown). This 

migration of cells is not desirable for our assay because of the different compound 

gradients at different position of the chip. From the direction of migration, it was reasoned 

that this could be because of depletion of gas or nutrients along the serpentine delay line. 

To avoid this, several medium inlets were integrated in the design. 

 

 
 

Figure 4.5 A fully set-up semicompartmentalization chip immersed in media. The short tubing inserted in some 

of the inlets was to prevent medium entry into the plug channel.   

 

Assays for up to 48 hours could still be demonstrated, however, for long-term assays, the 

membrane method was more reliable. Furthermore, immunostaining experiments involving 

several washing steps might generate shear forces causing detachment and loss of cells 

when cultured inside channels. Hence all further experiments were performed by the 

membrane method.  
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4.6 Localized perturbation of cell population with 
tetracycline 

 

To demonstrate the possibility of using the membrane method for locally perturbing cells 

with different drugs, the same HeLa TRexTM cells as above were used. However, the cells 

were cultured on the PDMS membrane instead of inside a channel (see section 4.3).  Using 

the braille display, plugs of tetracycline (1 mg/ml) were produced and loaded into the 

serpentine channel shown in Figure 4.6A. A blue dye was added to the plugs to clearly 

visualize them. Once the entire channel was filled with nicely spaced tetracycline plugs, the 

channels were sealed with liquid PDMS that solidified in the inlet crevice. This sealing 

prevented evaporation and movement of plugs. This whole set-up was incubated in 37 ⁰C 

overnight to facilitate absorption and diffusion.  

 

Following this, the plugs were all flushed out with oil. Then the chip was flipped and placed 

on a tissue culture dish. A dense suspension of HeLa TRex cells were seeded on the chip and 

the cells were incubated at 37 ⁰C in a humidified atmosphere with 5 % CO2.  After 48 hours, 

the chip was flipped again with the cell side placed on a glass coverslip for imaging. An 

image of the whole chip is displayed in Figure 4.6B. It is evident from the image that there 

is local induction of GFP within the cell population (Figure 4.6C). Comparing the position of 

the plugs with the GFP expression it was confirmed that the GFP expressing cells co-

localized with the position of the plugs (Figure 4.6D). Furthermore, based on the spacing of 

the plugs, the areas of GFP expression were clearly separated, proving that no significant 

level of cross-contamination occurred.  Figure 4.6D shows an overlay of the plugs with the 

cells.  

  



Semi-compartmentalization 

 

75 

 

 
 

Figure 4.6 Localized induction of GFP expression using the membrane method. (A) Position of the plugs in the 

serpentine channel after sealing them. (B) Fluorescence image of the entire chip with cells expressing GFP (C) 

Zoomed in view of an area on the chip where there is local induction of GFP expression. (D) Overlay to compare 

the regions of GFP expression with the location of plugs.  
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4 Discussion and future prospects 
A novel approach for cell-based drug screening is demonstrated. The approach uses fewer 

cells than a conventional microtiter plate screen. The approach should also allow high 

content screening, given the high magnification that can be achieved as suggested in Figure 

4.6C. Furthermore since the cells are freely accessible, immunostaining experiments with 

several washing procedures are potentially possible thereby circumventing the individual 

limitations of droplet-based and perfusion systems. However, the novel approach exploits 

absorption of PDMS as a means of locally delivering drugs to sub populations of cells. Since 

diffusion through a material like PDMS depends on the partition coefficient of the molecule 

(Wang et al., 2012), not all molecules diffuse at the same rate. For this reason, Upadhyaya 

S. and Sevaganpathy R. used a microfluidic device sealed with a nanoporous membrane 

through which drugs can diffuse and locally induce cells above the membrane (Upadhyaya 

and Selvaganapathy, 2010). However, the throughput (in terms of the number of unique 

drugs that can be screened at a time) offered by this system is limited to the number of 

channels that can be embedded under the nanoporous membrane (four channels were 

reported). In order to increase this throughput, droplet microfluidics was integrated. Since 

droplets are aqueous phase (containing the drugs) in oil carrier phase, a hydrophobic 

surface (such as PDMS) is necessary to produce and maintain the droplets without cross-

contamination. Nonetheless, plasma treatment allowed the PDMS to be made hydrophilic, 

while the channel walls containing the plugs could be maintained as hydrophobic by silane 

(SiO2) treatment. This enhanced the diffusion of hydrophilic drugs and dampened the 

diffusion of hydrophobic drugs.  

 

Thus, the experiments reported in this chapter reveal that although absorption and 

diffusion of compounds vary based on the physical properties, it is possible to alter the 

diffusion by various chemical treatments of the chip. For a large-scale screening it would 

also be possible to separate drugs based on their partition coefficients (available in 

chemical databases) and treat the PDMS chip accordingly.    
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In this thesis, novel devices based on single and two-phase microfluidics are described for 

biological applications. For preferendum and chemotaxis experiments, single phase 

microfluidics have tremendous advantages over other approaches for both cell-based and 

organism-based assays. These advantages include the possibility to: (1) produce both 

spatial and temporal gradients with sub-cellular precision and (2) expose cells and 

organisms to different conditions simultaneously. Together, these can be used to mimic 

natural dynamic environments in unprecedented ways and allow, in combination with 

time-lapse imaging, the examination of individual as well as group behavior in response to 

multiple chemical conditions. These features are used here to analyze for the first time, the 

ecological preferendum of zooplankton - a vital player in the marine food web. For actively 

swimming zooplankton, that are capable of choosing their preference, a method that 

allows exposing them to different conditions through which they can freely move and 

choose is required. So far, the possibility to produce layered water with several different 

conditions through which zooplankton can swim and choose had not been demonstrated.  

Here, microfluidics was used to not only perform preferendum measurements to 

environmental parameters but also to study biotic interactions.  

 

In addition, the portability of microfluidic devices allowed performing experiments in 

remote marine stations at Roscoff and Banyuls-sur-Mer. This possibility is especially useful 

because not all plankton species can be transported as fully viable to laboratories. Further, 

until very recently (22nd May 2015), only about 11,000 of the approx. 150,000 plankton 

species were documented (de Vargas et al., 2015) and many are yet to be discovered. 

Hence, there are no established culturing conditions for most of the plankton species. For 

these reasons, the ability to perform preference measurements directly in remote locations 

makes microfluidics an attractive tool for marine ecology studies.   

 

Furthermore, the possibility of phenotypic sorting, by only integrating minor modifications 

in the design of the presented device, can potentially allow isolating specimen of interest 

for further sequencing analysis. One way of achieving this is to separate the two 4 x 4 mm 

chambers in the existing design (Figure 2.5A) into several sub-chambers that can allow 

hosting one plankton per sub-chamber. Since the laminar flow is established perpendicular 

to the chamber divisions, the plankton in every chamber can still move laterally within the 

flow gradient to choose their preference. It is also possible to individually load and recover 

plankton using a micropipette from the chamber, as documented in this thesis. However, 
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the throughput of this method is limited by the number of parallel sub-chambers that can 

be designed in one device, since diffusion occurs when laminar streams travel together 

over long distances (see section 1.2). Another way of achieving the isolation of specimen 

without compromising throughput is by the integration of valves. For instance, the 4 x 4 

mm chamber of the existing design can be modified to have ten outlets matching the ten 

inlets. A valve (like the braille valve described in Chapter 3) can be integrated at each outlet 

which, in the “closed” position, only allows the flow of liquid while the plankton is 

prevented from being washed away. The valves can then be controllably opened after a 

stable distribution of plankton is achieved in the chamber, and plankton of interest can be 

isolated, fixed and taken to laboratories for further genetic analysis.  

 

Droplet (Plug) microfluidics, in contrast, has the potential of generating individual micro 

compartments at a kilohertz frequency (Park et al., 2011). These systems are useful for HTS 

approaches and a fully integrated microfluidic system that allows the generation of 

barcoded combinatorial mixtures in water-in-oil plugs is described here. Additionally, the 

possibility to screen for specific phenotypic effects of these combinatorial mixtures on stem 

cells (such as: neuronal differentiation) is shown. A preliminary two condition screen, with 

and without RA, demonstrates the usability of the system for screens with stem cells. 

Nonetheless, by using all the 29 inlets in the braille display, 406 pairs of combinatorial 

mixtures can be generated as explained previously in section 3.1.2. It is important to note 

that this can be achieved with just the braille display without any additional equipment. 

Together with an autosampler the throughput can be further increased by feeding in 

compounds from 96 well plates into one of the inlets on the braille chip. In a proof of 

principle experiment, Federica Eduati, EMBL-EBI and Ramesh Utharala, EMBL have used the 

coupled system and generated 206 different sample combinations for a screen with 

mammalian cancer cells (unpublished data). The number of combinations that can be 

generated using this approach can be further increased, by feeding entire chemical 

libraries, from several 96 well plates, using the autosampler. In the field of stem cells, the 

possibility for such HTS approaches is attractive for applications in regenerative medicine. 

Chemical perturbation approaches for differentiation and generation of iPSCs are often 

favored over transgene approaches (Hou et al., 2013). One reason for this is the potential 

oncogenicity of transgene methods (Zhao et al., 2011) that hinders application in 

regenerative medicine. The current method used for such HTS, involves microtiter plates. 

Given that a maximum of 100 cells are required per plug generated using a microfluidic 
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device, in the traditional method, the cell requirement is at least 10 folds higher even when 

using 1536-well plates (Griner et al., 2014). In fact due to technical difficulties such as 

sample evaporation and cross-contamination because of bridging between wells (Dove, 

1999), 1536-well plates are not as widely used as 384 or 96 well plates for screening, and 

the latter require even larger cell numbers and reagent volumes. To achieve the population 

sizes necessary for HTS in microtiter plates, excessive cell proliferation beforehand which 

might contribute to the accumulation of mutations, particularly in rare stem cell samples. 

Thus, two of the main limitations of current HTS approaches on cell cultures are overcome 

with the microfluidic approach presented here.  

 

Aside the stem cell screening applications to our microfluidic system, the ability to use 

primary tumor cells from patient biopsies allows screening for personalized medicine. In 

addition to this, small-molecule combinatorial screens are vastly performed for identifying 

efficient antibiotic combinations to prevent multiple drug resistance (Aaron et al., 2000; 

Tateda et al., 2006). Such screens can be performed in microfluidics with the infectious 

strains from the patient. These are just a couple of examples to suggest the broader 

applicability of our system. However, one limitation of the droplet microfluidic system is 

the impracticality of the droplet to medium renewal which can limit survival of the 

biological sample. Although drop manipulations as described in section 1.3 are possible, 

staining experiments involving several washing steps to mark a certain phenotype remain 

to be demonstrated.   

 

With the semi-compartmentalization approach discussed in Chapter 4, a part of the 

drawbacks of droplets are circumvented. Since the approach allows assaying with freely 

accessible cells, there is no survival issue but the approach can only be used with adherent 

cells. Furthermore, since the cells are cultivated as a monolayer on a PDMS membrane and 

then locally (a subpopulation of cells) exposed to drugs; there can be interactions between 

neighboring populations of cells. While this might be undesirable for some applications, 

these interactions between neighboring populations can be employed to study cell-cell 

communications like paracrine signaling.  

 

In conclusion, novel microfluidic devices have been devised for different applications in 

biology. Firstly, making use of the behavior of miscible liquids in microfluidic device, it was 

possible to generate laminar co-flows of different sea water conditions, such as different 
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pH and salinity. This possibility enabled exposing marine zooplankton to different 

conditions through which they can freely move and choose. By this marine zooplankton 

were exposed to different conditions through which they can freely move and choose their 

preferred environment. Based on their choices, a preferendum was estimated which can 

increase our understanding on how environmental changes can affect the zooplankton 

communities. Secondly, the possibility to generate combinatorial mixtures in droplets at a 

high-throughput was demonstrated for cell-based chemical screening assays. In addition, 

the ability to use the novel approach for screening with rare cells like stem cells has been 

demonstrated. Although such chemical screens are already performed in microtiter plates, 

microfluidics allow using significantly low cell numbers and reagent volumes. Lastly, an 

approach that allows cell-based screening while enabling high content screening with freely 

accessible cells has been reported. On the whole, in this thesis, microfluidics has been used 

for a variety of biological applications which suggests the broad applicability of the device. 

However, in the present state, microfluidics still requires validations of results using 

conventional methodologies such as microtiter plate for cell-based screening.   
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6 Materials and Methods 

6.1 Microfluidic device fabrication 

Standard soft-lithography technique (Brittain et al., 1998; Qin et al., 1998) using 

polydimethylsiloxane (PDMS; Sylgard 184 silicone elastomer kit, Dow Corning Corp.) was 

used to fabricate all microfluidic devices in this thesis.  

6.1.1 Designing using AutoCAD and photomask printing 

All microfluidics devices used in this thesis were designed using computer aided design 

software called AutoCAD (Autodesk Inc.). The designs were either drawn based on pre-

existing devices in the lab or literature or newly conceived to suit the purpose. These 

designs were then sent to an external company (Selba S.A., Versoix Switzerland) for printing 

a photomask. The photomasks have a high resolution of 25400 dpi and are printed on 

transperancy sheets. Depending on the requirement they are printed either as positive 

(clear background, dark design) or negative (dark background, clear design) mask.   

6.1.2 Mold manufacturing 

Molds for microfluidic devices were prepared from the photomask using photolithography. 

For producing molds with square channel geometry, a negative photomask and SU-8 

photoresist (MicroChem Corp., Newton MA) was used and for round geometry a positive 

photomask and AZ®40XT photoresist (MicroChemicals GmbH, Ulm) was used. In this thesis, 

only the Braille chip required round channels to allow proper closing of channels using the 

round braille pins, for all other applications, a negative photomask and SU-8 photoresist 

was used. For SU-8 photoresist, depending on the desired height of the channel, different 

viscosity of the photoresist was used. For example, SU-8 2075 is used to attain a channel 

depth ranging from 75 to 150 μm). Once the choice of photoresist is made, about 5 ml of 

the resist is poured on a heat dried silicon wafer (3 or 4 inches; Siltronix, France or Silicon 

Materials, Germany). The resist is then uniformly spread on the silicon wafer using a spin 

coater. For positive photoresists mainly, an additional adhesion promotor (Ti prime; Micro 

Chemicals GmbH) was spin coated prior to coating with resist. After spin coating of the 

resist a series of soft-baking procedures at different temperatures are followed. The 

duration of the baking is dependent on the height of the channels aimed for. The 
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information on temperatures and duration were followed from the manufacturer’s manual. 

Following the soft baking, the photomask is placed on the resist and exposed to ultra violet 

(Wang et al.) light using a mask aligner (Karl Suss MA45) for about 90 to 120 seconds. 

Photo-crosslinking occurs at regions exposed to the UV (for negative photoresist) thereby 

transferring the pattern on the photomask to the resist. The photomask was then removed 

and can be reused to make more molds of the same pattern. The cross-linking of the resist 

was completed by another series of post-baking procedures in the suggested temperatures 

and times from the manual. Finally, the wafers were developed using mr-Dev 600 (micro 

resist technology GmbH, Berlin) for negative photoresist and AZ 726 MIF developer (AZ 

electronic materials GmbH, Germany) for positive photoresist. This step removes all non-

cross-linked   photoresist leaving the structure of the channel behind. Lastly, a hard baking 

procedure was performed at around 150 ⁰C. This step solidifies the structure on the mold 

and in the case of positive photo resist, this final heating step allows the photoresist to 

reflow and soften their edges making the structures rounded.  

 

Silanization of the mold using trichloromethylsilane (TCMS) (abcr GmbH & Co. KG, 

Germany) prevented the structures on the mold from being destroyed while producing 

PDMS chips. This was done by simply placing a drop of the chemical next to the mold in a 

closed glass Petri dish for an hour. The height of the attained structures was either 

measured using a Surface Profiler Profilometer (Faulhaber) (for structures < 110 μm) or a 

regular wide field microscope (for structures > 110 μm).   

6.1.3 Casting PDMS on molds 

Finished molds were placed on plastic Petri dishes and filled with freshly prepared and 

degassed PDMS mixture. For chips a 10:1 ratio of elastomer PDMS:curing agent was used. 

All air bubbles were degassed using a vacuum desiccator and the dishes with the mold and 

the PDMS mixtures were baked in a 65 ⁰C oven overnight (or for a minimum 4 hours). 

6.1.4 Producing PDMS membranes 

Membranes of PDMS were made using a 20:1 mixture of degassed PDMS mixture. A 

transparency sheet (1/8th of a standard A4 size) was used to spin coat the PDMS mixture 

into a uniform sheet. A speed of 700 rpm for 30 s was used on the spin coater as a standard 

procedure for making membranes of the same thickness. 
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6.1.5 Assembling a microfluidic chip 

To assemble a chip for experiments, the cast PDMS was cut using a scalpel and peeled off 

the mold. Thus the PDMS retains the channel structures on one side. Access holes are 

punched using biopsy punches (Harris Unicore) all the way through the structures to the 

other side making it possible to access the channels after they are sealed. Different sizes of 

biopsy punches exists depending on the size of the tubing used for experiments (see 

section x). Pressurized air from an air gun and sticky tape was used to remove any 

unwanted particles from the PDMS. The chip was then completed by covalent bonding of 

PDMS (on the structured side) to a glass (Menzel Gläser, Thermo Fisher Scientific Inc., 

Germany) or a PDMS membrane. The bonding was achieved by exposing the surfaces that 

needed to be bonded to oxygen plasma generated using a plasma oven (Femto, Diener 

electronic GmbH & Co. KG, Germany), and then bringing them in contact with each other.  

The plasma treatment for producing chip was usually done for 1 minute at 2.5 V in the 

presence of oxygen. To facilitate boding without any delamination, the chip was placed in 

the 65 ⁰C oven or hotplate for at least 1 minute.   

6.1.6 Treating channel surfaces 

For experiments with two phase microfluidics, a hydrophobic channel surface is required. 

Two methods were followed to treat surfaces. The first method involved purging the 

channel with a 1 % solution of 1H,1H,2H,2H,-perfluorooctyltrichlorosilane (abcr GmbH & 

Co. KG, Germany) in NovecTM 7500 oil (3M Company, St. Paul MN), and rinsing it  with pure  

NovecTM 7500 oil.  Alternatively, Aquapel (Autoserv, Germany) was used in some 

experiments instead of the 1 % silane solution.  

6.2 Allied equipment 

6.2.1 PTFE Tubing 

 Polytetrafluotoethylene (PTFE) tubing (Adtech Polymer Engineering Ltd, UK and APT 

Advanced Polymer Tubing GmbH, Germany) were used in all experiments. Tubing were 

used to connect the syringes via needles (Becton, Dickinson and Company) to the chip 

inlets, for the outlets and for connecting any two points in a chip setup.  Different tubing 

diameters and thicknesses were used based on the purpose.  For example, TW24 tubing 
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with the big inner diameter (ID) of 0.59 mm was used for infusing cells into chip for 

encapsulation. The range of tubing used in this work can be found in the table below. 

Adtech name APT name/AWG size Specifications (ID; OD; wall 

thickness in mm) 

UT3 P1000,30x0,101 0.3;  0.4; 0.10 

UT6 P1000,60x0,101 0.6;  0.8; 0.10 

HW30 AWG30S 0.32; 0.76; 0.23 

TW24 AWG24T 0.59; 1.06; 0.25 

    

6.2.2 Syringe pumps 

For all experiments in this work, fluids are infused into the microfluidic device at specific 

flow rates using positive displacement syringe pumps (Harvard apparatus, Holliston MA or 

World Precision Instruments, Sarasota FL).   

6.2.3 Braille display 

The braille display used in Chapter 3 and 4 is made by KGS Corporation, Japan. To adapt the 

braille for our experiments, our in-house mechanical workshop built a metal case and a chip 

holder made of transparent Plexiglas® (to allow aligning braille pins to the chip) to grip the 

chip in position above the pins as shown in Figure 6.1.    

 

 
 

Figure 6.1 Braille display with a microfluidic chip 

6.2.4 Autosampler 

For initial semi-compartmentalization experiments, plugs were generated using an 

autosampler (Dionex UltiMate® 3000 Analytical Autosampler WPS-3000 SL, Thermo Fisher 

Scientific Inc.) instead of a braille display, as described by Clausell-Tormos and co-workers. 
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(Clausell-Tormos et al., 2010). For future experiments using the braille display to generate 

combinations in plus, the throughput can be increased by integrating the autosampler. 

6.2.5 Microscopy and Spectroscopy 

6.2.5.1 Microscope and Camera  

Standard inverted light microscope (Eclipse Ti-S, Nikon GmbH, Germany) was used for 

imaging inside microfluidic devices. A halogen fiber illuminator (Nikon Intensilight C-HGFI, 

Nikon GmbH, Germany) was used as a fluorescence light source in fluorescence 

microscopy.   Images were recorded using a CCD camera (Hamamatsu ORCA-05G, 

Hamamatsu Photonics Deutschland GmbH, Germany) for long exposure times. For high 

speed, color recordings with short exposure times of drop generation etc. a Motion BLITZ® 

EoSens® mini1 camera from Mikrotron GmbH., Germany was used. A custom setup of 

μManager program (http://www.micromanager.org (Edelstein et al., 2010))  was used to 

control microscope components, such as stage controller (Prior ProScan III, Prior Scientific 

GmbH, Germany), fluorescence and bright field shutters and CCD camera.  

 

A  USB microscope (dnt DigiMicro scale) was used in some experiments as a handy 

microscope For example, for zooplankton chemotaxis experiments; these portable 

microscopes allowed making experiments in remote locations at marine stations where 

there are no regular microscopes available.  

6.2.5.2 Optical setup for plug measurements 

For spectroscopic plug measurements, a customized optical setup was built as depicted in 

Figure 6.2. The setup comprises of a vibration-reduced/free breadboard fitted next to the 

standard inverted microscope. Several dichroic mirrors and photomultiplier tubes (PMTs) 

are aligned on the breadboard which focusses and detects the laser signals respectively 

from three different lasers. The wavelengths of the lasers are 375 nm, 488 nm and 561 nm. 

Simultaneous excitation and detection with all three lasers and PMTs is possible allowing 

three different assay read-outs. 

 

http://www.micromanager.org/
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Figure 6.2 Optical setup for fluorescence readout from plugs. Reproduced from Eicher D., 2014 PhD thesis. 

6.3 Software 

6.3.1 Software for data acquisition and analysis of zooplankton 

chemotaxis experiments 

  A screenshot freeware: Auto screen capture 2.0.5 

(http://www.softpedia.com/get/Multimedia/Graphic/Graphic-Capture/Auto-Screen-

Capture.shtml) was used to capture images every second. These Images (around 300 

frames) were cropped and pre-rotated using ImageMagick software 

(http://www.imagemagick.org/). The tracking of moving objects was done using the motion 

tracker add-on (http://www.anc.ed.ac.uk/demos/tracker/) for MATLAB 2010, using the 

following mixture model parameters: alpha 0.1, rho 0.01, background_thresh 0.95. Because 

the software tends to lose track of animals that remain at a given position for longer 

periods of time, a custom script was written that iteratively merges trajectories if the 

animal position at the ends of two trajectories was within 135µm distance. For a recording 

of the 300 frames (5 minutes), the average track length was 2.5 min, with at least half of 

the tracks going through at least 50% of the total recording time. In cases where the 

tracking software lost an animal (e.g., due to animals clustering together), it started a new 

track and the centroid positions could be determined again. This increases the number of 

tracks recorded per device, but usually this does not exceed 1.5 times the animal count. 

Using regular seawater in all ten streams, we have acquired the ‘normal’ behavioral 
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repertoire of our animals (Figure 2.5F). Doing so, a cumulative ‘random’ distribution of 

animals in the device was obtained and used this distribution as the null-hypothesis for the 

statistical tests of deviation.  

6.3.2 Software for controlling braille display, plug data acquisition 

and analysis 

To control braille display and record data from the plug measurements, a custom software 

using Lab View was designed by Ramesh Utharala, EMBL.  The recordings using this Multi-

channel data acquisition program were made with a frequency of hundreds of Hz. Further 

analysis of the data was done using R with the custom scripts (BraDiPlus package) from 

Federica Eduati, EMBL-EBI. The package allowed semi-automated data analysis of the raw 

fluorescence intensity measurements. Based on the visual representation of the 

fluorescence measured, thresholds have to be set to define the plug sizes and distance 

between plugs (since these parameters vary between experiments). This further allowed 

the program to automatically identify and label plugs/peaks and allows further evaluations 

by isolating different samples and their replicates.     

6.3.3 Image analysis for semi-compartmentalization experiments 

All image analysis in Chapter 4 were done using FIJI (Fiji is just ImageJ). For a view of the 

whole chip, several images recorded in a predefined grid with 20 % overlap between 

frames, were stitched together by using the “Grid/collection stitching” plugin as published 

elsewhere (Preibisch et al., 2009).   

6.4 Protocols for Chapter 2 

6.4.1 Plankton breeding 

P. dumerilii breeding and preparation was accomplished according to the standard 

culturing protocol described elsewhere (Fischer and Dorresteijn, 2004). Lab cultures of P. 

dumerilii from the Arendt lab at EMBL, Heidelberg were used for these experiments. For 

initiating a batch, a male and a female swarming epitokes (mature adult worms) were 

collected and spawned in a dish to release the eggs which were subsequently fertilized by 

the sperms. The dish was then maintained at 18 ˚C and exposed to 16 hours of light and 8 

hours of darkness to initiate embryogenesis and development. Tetraselmis marina, a sessile 
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green flagellate that can be grown under bright, daylight-type artificial illumination was 

provided as food source during breeding.  

6.4.2 Preparation of pH, saline and algal extracts 

The different pH solutions were made by adjusting the pH of sea water using hydrochloric 

acid (HCl) as an acid and sodium hydroxide (NaOH) as alkali base. The pH values were 

measured using a regular benchtop pH meter (Sartorius PB11 with glass electrode). For 

preparing different salt concentrations, sea water was diluted in a ratio of 1:2 with distilled 

water and then added NaCl to obtain different concentrations (0.75x to 1.25x or 30 g/l to 

50 g/l NaCl). Since the sea water is already rich in its salt content, diluting it and then 

adding NaCl allowed us to control the molar changes of NaCl. Finally, microalgae extracts 

were prepared by filtering the algae cultures using a 0.22 μm filter and then UV treating the 

extract for 10 minutes to avoid algal filament formation and proliferation in long term 

experiments. 

6.4.3 Laser ablations 

Ablations were done using a Zeiss FluoView 1000 cold laser. During this step, fifteen to 

twenty larvae were kept in 7.5% magnesium chloride (MgCl2) solution to impede muscle 

movements. A 40x objective was used and the target cells in the mouth were ablated using 

multiple one second laser pulses (to avoid cavitation) until the morphology (cell outlines) 

changed and the tissue ‘caved in’. Animals were used for microfluidic experiments on the 

same day.  

6.4.4 Chemotaxis experiments 

Prior to all chemotaxis experiments, the microfluidic chip was made air-free by immersing 

the entire chip in sea water and degassing it in a vacuum desiccator for at least 15 minutes. 

Experiments using the laminar flow were performed using a flow rate of 400 μl/h per 

stream or 4000 μl/h overall, and experiments to generate linear gradients using the 

gradient generator device were performed at an overall flowrate of 200 μl/h.  5 ml syringes 

filled air-free with different solutions (example different pH) were connected to the inlets 

on the device using 22G needles and TW24 tubing. Plankton larvae were manually loaded 

into the chip through the assigned inlets using a 200 μl micropipette.  After fifteen to 

twenty larvae were loaded, the inlets were tightly sealed using board pins.  Larvae were 
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exchanged between experiments by simply using the micropipette to suck out the existing 

larvae and adding fresh ones.  

 

6.5 Protocols for Chapter 3 

6.5.1 Mouse embryonic stem cell culturing and differentiation 

The 46c mESCs were obtained from the authors and cultured and differentiated as 

described by Ying and co-workers (Ying et al., 2003). Similarly, Sox1-βgeo cells were 

obtained from Episkopou’s lab currently in Imperial College, London and cultured based on 

their published protocol (Nishiguchi et al., 1998). All mESCs were cultured in 0.1 % gelatin 

coated dishes with Glasgow minimum essential medium (GMEM; GIBCO Life Technologies) 

containing 10 % fetal bovine serum (FBS; Sigma-Aldrich) and 100U/ml leukemia inhibitory 

factor (LIF; produced in-house in the protein expression and purification (PEP) core facility, 

EMBL) after thawing for at least two passages. Eventually, to culture mESCs for microfluidic 

experiments, the stem cells grown in 2i+LIF conditions on 0.1 % gelatin coated dishes. The 

2i+LIF medium contains: Dulbecco’s modified Eagle medium F12 (DMEM/F12; GIBCO Life 

Technologies), 2.5 ml N2 supplement (Life Technologies), 5 ml B27 supplement (-Vitamin A) 

(Life Technologies), 5 ml L-Glutamine (Sigma-Aldrich), 3 μl of β-mercaptoethanol (Sigma-

Aldrich), 3 μM MEK pathway inhibitor (PD0325901; Reagents Direct), 1 μM GSK 3β inhibitor 

(CHIR99021; Reagents Direct) and 100U/ml LIF.  

 

The cells were passaged using Stem Pro® Accutase® (Life Technologies) every two days and 

the medium was renewed daily to propagate the cells in culture. The regular culturing 

conditions are 37 ⁰C, 5 % CO2 and water saturated atmosphere. To monitor their 

pluripotency, a flow cytometer (BD LSRFortessaTM) analysis with Oct4 antibody (Santa Cruz) 

was performed every three months.  

 

For differentiation to neuro ectodermal progenitors, the 2i and LIF components were 

removed from the above medium and the cells were cultured in the DMEM/F12 medium 

supplemented with N2 and B27 (+Vitamin A) supplements (referred to as: N2B27 medium). 

The Vitamin A in the B27 supplement is an inducer of differentiation into neuroectodermal 

progenitors. After 6 days, to continue differentiating the cells into neurons, the cells have 

to be transferred into laminin coated dishes as described by (Ying et al., 2003).  
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6.5.2 Stem cell encapsulation into plugs 

For encapsulation, mESCs were harvested using Accutase®, neutralized with serum medium 

and washed with PBS. The cells were then pelleted and re-suspended in fresh N2B27 

medium without Vitamin A (basal medium) containing 10 mM HEPES, 40 mM glucose and 

0.1 % xanthan gum (Sigma-Aldrich). The xanthan gum is used to keep the cells in 

suspension in the syringe while encapsulating. This purpose of xanthan gum was previously 

described for flow cytometry experiments (Freyer et al., 1989) and adapted here. The cell 

suspension was then passed through a 41 μm Steriflip® nylon net filter (Merck Millipore) to 

remove any cell clumps. Finally, after counting the cells, 3 million cells/ml were loaded in a 

5 ml syringe and a 22G needle with TW24 tubing was used to inject the cells into the braille 

chip for encapsulation.   

6.5.3 Estimating viability of cells recovered from droplets 

To evaluate the number of viable cells after a certain period of incubation in plugs, the 

plugs were first collected in a 15 ml falcon tube. Since the plugs are not stabilized, they fuse 

when in contact with each other. To the collected emulsion, 10 ml of fresh medium was 

added and kept upright for 3 minutes. This period allows phase separation of oil from the 

media. Since the oil is has a higher density than the media, the oil sinks down faster leaving 

the cells and the media in the supernatant. From this supernatant, 8 ml was carefully 

pipetted out into a fresh falcon tube without touching the oil phase below. This 8 ml of 

media with the cells were then spun down at 1200 rpm for 5 minutes causing the cells to 

pellet. The cells were then washed and trysinized in a 37 ⁰C water bath to allow 

individualizing the cells from embryoid bodies that form in plugs.   These cells were then 

stained with Calcein AM (live stain; Invitrogen) and propidium iodide PI (dead stain; Sigma-

Aldrich) and counted using a flow cytometer to estimate the percentage of viable cells. In 

parallel, the stained cells were also manually counted under a microscope to obtain a more 

accurate measure.  

6.5.4 Combinatorial plug production and incubation 

Freshly filled 5 ml syringes with the reagents to be screened (such as retinoic acid and other 

chemicals), are placed on syringe pumps and “primed”: i.e. the pumps are switched to 

pumping mode until liquid reaches the edge of the tubing connected to the syringe. For 

these syringes HW30 and 27G needles were used. After priming, the tubing were 
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connected in the chip inlets and the chip is positioned on the Braille display. The reagent 

pumps and the pump hosting the cell suspension were all switched to pumping mode at a 

flow rate of 1000 μl/h. The Lab View program controls the Braille pins which then regulate 

the flow of liquid either to the T-junction or to the waste outlet. At the T-junction there is a 

constant flow (200 μl/h) of Fluorinert® FC-40 (Sigma-Aldrich) with 0.5 % 1H,1H-

perfluorooctanol (PFO; abcr GmbH & Co. KG, Germany). Further at the exit of the T-junction 

there is a constant infusion (75 μl/h) of mineral oil (Sigma-Aldrich), this causes the 

generated plugs at the T-junction to be interspersed by mineral oil. Finally, 6 m long UT6 

tubing wound around a 1 l Schott glass bottle or a 50 ml falcon tube was used to collect the 

generated plugs and store them in the same order as they are produced. The reek of tubing 

with the plugs were sealed with sticky tape and incubated in a 37 ⁰C, 5 % CO2 containing 

humidified incubation chamber for the assay period.    

6.5.5 Plug read-out 

For measuring the plugs, one end of the tubing (about 10-15 cm of the end) was fixed on 

the microscope stage with the end itself placed in a waste collection tube. The other end 

was connected to a syringe containing pure FC-40 oil. The plugs were slowly moved over 

the microscope point of focus by infusing the oil at a flow rate of 750 μl/h. The 

measurements were recorded using the Lab View program described before.   

 

6.6 Protocols for Chapter 4 

6.6.1 HeLa TRexTM cell culture 

The engineered HeLa cells were obtained from the Hentze group at EMBL, Heidelberg 

(Castello et al., 2012). These cells were cultured in DMEM medium (GIBCO; Life 

Technologies) with 4.5 g/l glucose, 10 % FBS and 1 % sodium pyruvate (Sigma-Aldrich). The 

selection antibiotics: 100 μg/ml hygromycin (Sigma-Aldrich) and 10 μg/ml blasticidin 

(Sigma-Aldrich) were for at least two passages before using them for microfluidic 

experiments. The cells were split using Trypin-EDTA (Sigma-Aldrich), neutralized with 

medium and washed with PBS. Pelleting of cells were done at 1000 rpm for 5 mins and 

cultured in tissue culture flasks (NuncTM Thermo Scientific).  The cells were split every three 

days upon attaining 80 % confluency and cultured at 37 ⁰C, 5 % CO2 and humidified 
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atmosphere.  To induce GFP expression in culture 1 μg/ml of tetracycline hydrochloride 

(Sigma-Aldrich) was used.   

 

6.6.2 Plug production and loading for semi-compartmentalization 

Plugs containing different drugs were generated in a similar manner as described in section 

6.5.3 but no mineral oil is used in this experiment. The serpentine plug hosting channel was 

silanized as explained in section 6.1.6. To allow loading of plugs directly into the serpentine 

channel from the braille chip, UT3 tubing was connected from the braille chip outlet to the 

semi-compartmentalization chip. Instead of connecting the tubing through access hole 

from the top (as usually done), here the connection to the serpentine channel is made 

through the side. To allow this, instead of punching an access hole while assembling the 

chip, the chip was cut at the channel edge allowing the tubing to be inserted through the 

side (in between the membrane and the chip). This is necessary to prevent plug breakup 

while being loaded into the chip.  

 

For some initially experiments however, the autosampler was used to produce the plugs 

(see section 6.2.4). The autosampler produced plugs into UT3 tubing which could be 

connected to the serpentine channel as stated above. FC-40 containing 1.5 % PEG-PFPE 

amine block copolymer (Raindance; custom synthesized from Sigma-Aldrich) was used as a 

carrier phase for these experiments.   

6.6.3 Seeding cells on chip 

The chip was sterilized by exposing the assembled chip to UV for about an hour prior to all 

experiments. Before seeding the cells inside channels, the channels were washed several 

times with PBS to remove any leeched un-polymerized PDMS. For some experiments the 

channels were coated with fibronectin (Sigma-Aldrich) by infusing a 0.1 % solution of 

fibronectin overnight at a flow rate of 75μl/h in 4 ⁰C cold room. For the membrane method 

this coating was easier and done by simply pouring a 0.1 % solution on the membrane and 

keeping it in a 4 ⁰C fridge. Seeding of cells was done using a syringe containing a very dense 

suspension ( 5̴ x 106 cells/ml)  of cells into the channel. For the membrane method the cells 

were simply pipetted onto the membrane and incubated.   In entire setup was incubated in 

a 37 ⁰C incubator containing 5 % CO2 and humidified atmosphere for the assay duration.  
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6.7 Microtiter plate reader measurements 

All microtiter plate reader measurements in this thesis were carried out in a Tecan Safire 

(Tecan Group Ltd., Switzerland) plate reader.  

6.8 Flow cytometry 

Quantification experiments for counting the number of GFP positive, Calcein and PI stained 

or antibody stained cells, were done using a BD LSRFortessaTM flow cytometer. The machine 

is equipped with 5 lasers: 355 nm, 405 nm, 488 nm, 561 nm and 640 nm, for simultaneous 

measurements of different readout signals.   
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List of Abbreviations 
 

CPR   Continuous Plankton Recorder 

DE   Definitive endoderm 

DEP   Dielectric properties 

dpf   Day post fertilization 

EB   Embryoid body 

EC   Embryonal carcinoma 

ECM   Extra cellular matrix 

ESC   Embryonic stem cell 

EpiSC   Epiblast stem cell 

FDG   Fluorescein di-β-D-galactopyranoside 

FFF   Field flow fractionation 

GFP   Green fluorescent protein 

HEK 293  Human Embryonic kidney cell 

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

hpf   Hours post fertilization 

HSC   Hematopoietic stem cell 

HTS   High-throughput screening 

ICM   Inner cell mass 

iPSC   Induced pluripotent stem cell 

LOC   Lab-on-a-chip 

mEF   Mouse embryonic fibroblast 

mESC   Mouse embryonic stem cell 

MSC   Mesenchymal stem cell 

NSC   Neural stem cell 

NSW   Natural sea water  

PDMS   Polydimethylsiloxane 

PFO   Perfluorooctotanol 

PI   Propidium iodide 

PMT   Photo multiplier tube 

 PTFE   Polytetrafluoroethylene 

RA   Retinoic acid 
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