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Abstract.

In this dissertation we investigate several aspects of non-perturbative quantum field the-
ory. Two main parts of the thesis are concerned with non-perturbative renormalization
of quantum gravity within the asymptotic safety scenario. This framework is based on a
non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity.
We employ functional renormalization group (FRG) techniques that allow for the study of
quantum fields even in strongly coupled regimes. We construct a setup for the computation
of graviton correlation functions and analyze the ultraviolet completion of quantum gravity
in terms of the properties of the two- and three point function of the graviton. Moreover, the
coupling of gravity to Yang–Mills theories is discussed. In particular, we study the effects
of graviton induced interactions on asymptotic freedom on the one hand, and the role of
gluonic fluctuations in the gravity sector on the other hand.
The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general
non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge
theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang–Mills theory as a
function of temperature and estimate its behavior in full quantum chromodynamics (QCD).

Kurzfassung.

In dieser Dissertation untersuchen wir mehrere Aspekte nicht-störungstheoretischer Quan-
tenfeldtheorie. Zwei Hauptteile dieser Arbeit beschäftigen sich mit der nicht-perturbativen
Renormierung der Quantengravitation im Rahmen des Asymptotic Safety Szenarios, welches
auf einem nicht-Gausschen Ultraviolettfixpunkt beruht und eine wohldefinierte Quantisie-
rung der Gravitationstheorie liefert. Wir bedienen uns funktionaler Renormierungsgrup-
penmethoden, die eine Untersuchung von Quantenfeldtheorien auch in stark gekoppelten
Systemen erlauben. Wir konstruieren einen theoretischen Rahmen für die Berechnung
von Gravitonkorrelationsfunktionen und untersuchen die Ultraviolettvervollständigung der
Quantengravitation basierend auf den Eigenschaften der Zwei- und Dreipunktsfunktion.
Darüber hinaus diskutieren wir die Kopplung von Yang–Mills Theorien und Gravitation. Im
Speziellen untersuchen wir die Auswirkungen von gravitoninduzierten Wechselwirkungen
auf Asymptotic Freedom auf der einen Seite, und die Rolle von gluonischen Fluktuationen
auf den Gravitationssektor auf der Anderen.
Das Thema des dritten und letzten Teils dieser Arbeit ist die Physik des Quark-Gluon Plasmas.
Wir konstruieren eine störungstheoretische Strategie für die Berechnung von Transportkoef-
fizienten in nicht-abelschen Eichtheorien. Wir bestimmen das Verhältnis von Viskosität zu
Entropie η/s in SU(3) Yang–Mills Theorie als Funktion der Temperatur und präsentieren
abschliessend eine Abschätzung für η/s in voller Quantenchromodynamik.
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CHAPTER 1

General Introduction and Structure of the Thesis

In this chapter we give a brief outline of this thesis and state the main results. This thesis
consists of three main parts.

1. Part One: Quantum Gravity
The first part is concerned with the quantization of gravity, Part I. It is well-known that
perturbative quantization fails in the case of quantum gravity. We tackle the problem
with non-perturbative renormalization group methods within the asymptotic safety
scenario. The main goal in this approach is to construct a theory of quantum gravity
based on a non-Gaussian ultraviolet fixed point.

First, we give a brief introduction to quantum gravity and address the issues in
standard perturbative quantization, chapter 2. A non-perturbative continuum method,
namely the functional renormalization group, that forms the technical basis for our
approach to quantum gravity is introduced in chapter 3. In chapter 4 we define the
notion of asymptotically safe theories and put this in the context of non-perturbative
quantum gravity. We review the status in the asymptotic safety scenario and discuss
the standard setup for functional renormalization group equations in quantum gravity.
In particular, we elaborate on the necessity of a background field and the related
problems in the standard background field flows.

In chapter 5, the more general setup of vertex expansions that allow for the calcu-
lation of fluctuation field correlation functions is constructed and applied in various
approximations. The fundamental concepts and principles of this construction are
formulated and developed in section 5.1. Within this framework, we present the novel
notion of local RG flows of correlation functions, section 5.2. We present the general
flow of the graviton propagator in this framework, section 5.3, and proof locality for
the latter, subsection 5.5.1. We also generalize and formalize different expansions
and projections in momentum space that are frequently used in the literature sec-
tion 5.4. In section 5.5 an Einstein–Hilbert type of approximation is applied for the
graviton propagator. We calculate the phase diagram and find an attractive ultraviolet
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fixed point in the physical regime, thus providing further evidence for the asymptotic
safety scenario. Additionally, we find a novel, attractive infrared fixed point, which
is smoothly connected to the ultraviolet fixed point. For the first time, this is an
approximation in quantum gravity that is ultraviolet safe, and also infrafred complete.
This approximation is significantly enhanced in the truncation studied in section 5.6.
There, we go beyond Einstein–Hilbert truncations and include further couplings. In
particular, we calculate the full momentum-dependence of the graviton and the ghost
propagators by means of wave–function renormalizations that are arbitrary functions
of the Laplacian. Moreover, this is the first setup in RG-gravity calculations that
discriminate the different coupling parameters in the two-point function and higher
order vertex functions. The momentum independent-parts of the vertex functions are
constrained by a self-consistency analysis based on the hierarchy of flow equations.
The resulting scaling relations turn out to be of major importance for a well-defined
infrared limit. Also in this truncation we find the ultraviolet fixed point underlying
asymptotic safety. In addition to that, we confirm the existence of the infrared fixed
point found in the previous truncation. Moreover, an important aspect is that in this
enhanced truncation the infrared fixed point has classical properties, which appear
as classical scaling exponents for the dimensionless Newton constant and the dimen-
sionless cosmological constant. As a consequence, the corresponding dimensionful
quantities are really constant, meaning that we recover classical general relativity in
the infrared limit. The stability of the approximation is tested for a class of regulators.

In section 5.7 we discuss the general structure of the flow of the graviton three point
function, whose locality is then proven in subsection 5.8.1. This represents the first
study of the three– graviton vertex with Wilsonian flow equations. The three–point
function is then dynamically coupled to the propagator and the corresponding flows
are derived in section 5.8 and solved in various approximations. We find further
evidence for the non-Gaussian ultraviolet fixed point, with the interesting feature that
in the most advanced approximation one coupling becomes irrelevant.

2. Part Two: Yang–Mills Gravity
The second part section IV deals with the coupled system of Yang–Mills theory and
quantum gravity. The main concern is the influence of gravitons on the fixed point
in the theory of gluons and vice versa. We resolve the full momentum dependence
of the gravity contributions to the running of the strong gauge coupling and find
that graviton fluctuations do not destroy the property of asymptotic freedom in the
ultraviolet limit. In the gravity sector, we first observe that the generic contributions
of an SU(N) gauge theory are local in momentum space. However, we find in a first
assessment that the gravitational fixed point does not survive a large N limit.

3. Part Three: Transport Coefficients in the Quark-Gluon Plasma
The topic of the third and last part, Part III, is not directly related to the ones above,
since it is not concerned with the asymptotic safety scenario and Planckian and trans-
Planckian ultraviolet physics. In this part we consider the quark–gluon plasma and
calculate its shear viscosity over a wide range of temperatures T , from below the
critical temperature Tc up to the regime where perturbation theory can be applied. The
motivation for such a study, namely the creation of the quark–gluon plasma at particle
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1. General Introduction and Structure of the Thesis

colliders and the related physical questions are discussed in section 9.1. Besides the
phenomenological aspects, we provide some fundamentals in linear response theory.
The strategy for calculating η/s, i.e. the ratio of shear viscosity over entropy, in a
pure gluon plasma is then presented in chapter 10. The results are then given in
section 10.2. We find that the viscosity over entropy ratio displays a minimum at
approximately Tc. For lower temperatures, the behavior is consistent with a gluon
resonance gas, while it matches the perturbative calculations for large T . Finally,
we use the result in pure Yang–Mills theory for an estimate of η/s in full quantum
chromodynamics.

The compilation of this thesis was carried out solely by the author. The results and
presentations are largely based on work with my collaborators. Parts of this thesis are
published or submitted and available as preprints: [1–4]
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Part I.

Quantum Gravity, Functional
Renormalization and
Asymptotic Safety
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CHAPTER 2

Introduction to Quantum Gravity

On the one hand, the fundamental description of modern theoretical physics is based on
quantum field theory, which describes the microscopic interactions of elementary particles
in the framework of the standard model, [5–9]. The standard model of particle physics has
been tested with impressive precision up to energy scales E ≈ 8TeV and can be considered as
one of the most successful theories in the history of physics. On the other hand, gravitational
physics is governed by Einsteins theory of general relativity, [10]. Due to the absence of
shielding effects, the force of gravity rules physics of large length scales and general relativity
describes all gravitational effects that have been observed so far. The theory has proven to
be able to capture phenomena like black holes and subtle effects like gravitational lensing.
On smaller length scales, where electromagnetic effects become important, gravity becomes
more and more difficult to detect since it is roughly forty orders of magnitude smaller
then the electromagnetic force. The smallest length scale on which gravity has been tested
is approximately 10−4m, [11]. Nonetheless, as we will see below, dimensional analysis
suggests that quantum gravity is governed by a typical energy scale, the Planck mass

MPl ≈ 1019 GeV , (2.1)

and quantum gravitational effects are expected to become important at energies E ≈ MPl.
The categorization of this immensely huge scale in the world of physics is visualized in
Figure 2.1. Furthermore, general relativity predicts spacetime singularities and it is believed
that quantum effects screen these classical singularities, leading to a well-behaved theory.
Such a description requires a unified framework of gravitation and quantum mechanics,
which is one of the outstanding questions in theoretical physics. One problem in the
unification of these theories is the lack of direct access to physics of quantum gravity, as
the Planck energy is much greater than all energies that can be reached with state of the
art particle accelerators. As a consequence, structural and mathematical consistency are
the only guiding principles in the search for a unified theory of quantum gravity. The big
conceptual difference between these two theories is that the standard model arises due to
quantization of classical field theories, since physical processes on very small length, or very
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Figure 2.1.: The length scales of physic: From the largest length scales, the size of the universe
itself, down to the scales of daily life, which is ≈ 1m, via the the resolution of the LHC,
≈ 10−19m, to the known territory at the Planck length LPl ≈ 10−35m, which is the length
scale that corresponds to the Planck mass.

high energy scales obey the laws of quantum mechanics. General relativity, however, is a
classical field theory. No quantum effects are incorporated.
The basic principles of general relativity require a diffeomorphism invariant theory where
the metric tensor carries the degrees of freedom. Note that non-metric formulations based
on e.g. a vielbein field are equivalent on the classical level but may differ in the process of
quantization. The classical action underlying general relativity is the famous Einstein-Hilbert
action, which is constructed with the two lowest order curvature invariants. In d Euclidean
spacetime dimensions it takes the form

S[g] =
1

16πGN

∫

dd x
p

detg (−R(g) + 2Λ) , (2.2)

where GN is Newtons constant that describes the strength of gravitational interactions, g is
the metric tensor, R(g) is the Ricci scalar and Λ denotes the cosmological constant. Since
the Ricci scalar contains two derivatives of the metric i.e. R ∼ (∂ g)2, which in turn is a
dimensionless field, a simple dimensional analysis yields the mass-dimensions

[GN] = 2− d , [Λ] = 2 . (2.3)

Therefore, in d = 4, which is the case that will be considered throughout this thesis, we
infer [GN ] =−2. The mass dimension of Newton’s constant implies that quantum gravity is
governed by a typical energy scale, which is the Planck mass MPl ≈ 1019 GeV. The relation
between Newtons constant and the Planck mass is encoded in the proportionality GN ∼ M−2

Pl ,
where the proportionality factor is one in natural units.
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2. Introduction to Quantum Gravity

The standard, and by far most developed, quantization procedure of field theories is based on
perturbation theory, where n-point Greens function, which define a quantum field theory, are
expanded in powers of the coupling constant. A key part in the machinery of a quantum field
theory is the renormalization of ultraviolet divergences that appear at very large momenta
and are mathematically rooted in ill-defined distributional products. In a renormalizable
theory one can absorb these divergences by a redefinition of the fundamental fields and
couplings. However, it is well-known that a coupling constant with negative mass dimension
spoils renormalizibility in the framework of perturbation theory.
In perturbation theory one expands N–point correlation functions CN as a formal power
series in the dimensionless coupling constant, which is in the case of gravity

g := GN E2 , (2.4)

where E is some typical energy scale characteristic to the process under consideration. Such
an expansion can be written in a schematic way according to

CN =
∞
∑

n=0

cN ,n gn =
∞
∑

n=0

cN ,n

�

E2

M2
Pl

�n

. (2.5)

In typical quantum field theories the coefficients cN ,n are divergent. However, in renor-
malizable field theories, one can get rid of these infinities in a meaningful way. First, one
regularizes the theory with an ultraviolet-cutoff such that all quantities are finite. In a
second step, the action is modified by introducing counter-terms that resemble the structure
of the divergent diagrams. These counter-terms are then chosen such that they cancel the
divergent parts and one is left with finite contributions only. The subtraction procedure is
largely arbitrary and characterizes different renormalization schemes. The decisive point
is that in perturbatively renormalizable theories, there may be infinitely many divergent
coefficients1 cN ,n, but it is sufficient to introduce finitely many counter-terms to cure all
divergences order by order in perturbation theory.

However, in quantum gravity the situation is quite different. Calculating the series
(2.5) with the bare Einstein-Hilbert action, one gets the expected divergences from the
loop diagrams which lead to infinite contributions in the coefficients cn. However, these
divergences cannot be absorbed by finitely many counter-terms. This can immediately be
seen by power counting arguments as follows. The quantities entering the loop diagrams
are the graviton propagator and the multi-graviton vertices. Expanding the Einstein–Hilbert
action in powers of the graviton field, we see that all graviton vertices are proportional to p2

due to the structure of the Einstein–Hilbert action. The vertex functions will be discussed in
more detail in subsection 5.1.1. Additionally, the n-th functional derivative of the Einstein–
Hilbert action with respect to the metric is non-zero. Consequently, there are already
infinitely many tree-level vertices in gravity. This is a distinct feature of diffeomorphism
invariant theories and distinguishes quantum gravity from field theories in fixed background
spacetime such as ordinary quantum electrodynamics. After a suitable rescaling of the
graviton field, a perturbative n-graviton vertex is then proportional to G

n
2
−1p2, see Figure 2.2.

We will illustrate the structure of divergences in quantum gravity with the example of a
class of diagrams containing propagators and three- and four-graviton vertices. By simple

1In super-renormalizable field theories, there are only finitely many divergent diagrams and for some order n0

in perturbation theory all cN ,n>n0
are finite.
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graviton propagator : ∼
1

p2

three − graviton vertex : ∼
p

Gp2

four − graviton vertex : ∼ Gp2

......

Figure 2.2.: Perturbative graviton propagator and vertices. Note that all vertices are proportional to
p2 and that there are already on tree-level infinitely many graviton vertices.

power counting with the graviton propagator and vertices, one can see that such a diagram
diverges with the ultraviolet cutoff as Λγ in the limit where the ultraviolet cutoff Λ goes to
infinity. The exponent γ is called the degree of divergence and is given by

γ= 2− 2N +#(three− graviton vertices) f3+#(four− graviton vertices) f4 , (2.6)

where N is the number of external lines, i.e. this indicates to which correlator CN this
diagram contributes, and

fi = P − d + i . (2.7)

In the above equation P is the maximum number of derivatives in the vertex, and d the
number of spacetime dimensions. As we have already argued above, P = 2 for all graviton
vertices. From the above relations for the degree of divergence γ, one can see that at higher
loop order for a correlator of constant order N , the degree of divergence gets worse and
worse since the number of graviton vertices increases. A higher degree of divergence means
that the counter-term that is necessary in order to absorb this divergence needs to be of
higher order in momentum. However, such terms are not present in the original action
and therefore each higher order introduces genuinely new divergences. Consequently, one
needs infinitely many counter-terms, which in turn come along with infinitely many free
parameters that need to be measured by experiments 2. This momentum structure and
the power-counting just reflects the negative mass dimension of Newtons coupling, which
can therefore be regarded as the root of the perturbative non-renormalizibilty of quantum
gravity. It is clear that a theory with infinitely many free parameters lacks predictive power
and cannot be considered as fundamental.
The one-loop divergences have been calculated for the first time by t’Hooft and Veltman [12],
and the non-renormalizibility at the two-loop level has been shown explicitly by Goroff and
Sagnotti, [13]. These results constitute the famous ultraviolet problem of quantum gravity

2More precisely, one needs to introduce infinitely many renormalization conditions that need to be fixed with
experimental input
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2. Introduction to Quantum Gravity

that hampers the quantization of general relativity and represents one of the great problems
in theoretical physics.

A theory of quantum gravity based on a classical action containing all fourth-order
derivative terms can be renormalized to all orders in perturbation theory, as was shown
by K.Stelle [14]. Nonetheless, the resulting quantum theory faces serious violations of
the perturbative notion of unitarity and does therefore also not qualify as a fundamental
UV-completion of quantum gravity. Interestingly, it was shown that once infinitely many
higher derivative operators are included, unitarity can be restored, [15]. However, the bare
action is in this case an infinite series of operators, which leads one back to the problem of
predictivity.

Nevertheless, perturbative quantum gravity is perfectly acceptable as an effective field
theory at energies well below the Planck scale. This can be seen from the perturbative
expansion (2.5) of correlation functions. For energies E << MPl, higher order terms are
negligible, and one can simply ignore the problems arising due to the infinitely many free
parameters since their contributions to transition amplitudes are completely irrelevant.
Perturbative quantum gravity in the framework of effective field theory was put forward
by J.Donoghue, for reviews see [16, 17]. An important result produced in this approach
are the leading order quantum corrections to the Newtonian potential [18], analogous to
the Uehling potential in quantum electrodynamics that encodes the quantum corrections to
Coulombs law. Still, this theory lacks a satisfying ultraviolet completion.

These problems initiated a vast amount of new developments, even entirely new theories
such as string theory or loop quantum gravity. These theories are based on concepts and
assumptions that go far beyond everything that has been verified experimentally. Therefore
one might ask for a more conservative approach to quantum gravity. An approach with less
assumptions and without any need to introduce new, unknown physics at some very high
energy scale.

This is the main intention behind the asymptotic safety scenario. It addresses the obvious
weak point in the standard quantum field theoretical approach to gravity, namely the
perturbative nature. The basic idea is that the ultraviolet limit in quantum gravity is
governed by a non-trivial fixed point that cannot be accessed by standard perturbation
theory. A fixed point appears as a point in theory space where the renormalization group
flow becomes independent of the momentum scale, which is signaled by zeroes of the
beta function. In this case all couplings tend to finite values in the ultraviolet limit. This
construction requires knowledge of the non-perturbative scale dependence of the couplings.
The method of choice in a continuum approach in order to tackle this problem is the
functional renormalization group, which will be introduced in the next section.
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CHAPTER 3

The Functional Renormalization Group

3.1. Notation

Before introducing the functional renormalization group, we fix our notation and conven-
tions. The fundamental object in quantum field theory is the field operator ϕ. This operator
carries continuous indices, like the space-time position x or, after Fourier transform, the
momentum p. Additionally, in general the field transforms non-trivially under the Poincare
group or arbitrary gauge groups. This manifests in discrete index sets that describe the
corresponding tensorial character. We subsume all that in a super index labeled by latin
characters written as φa. Usual Lorentz indices are represented by greek characters. As a
very important notational simplification for formal manipulations, a contraction over the
super index implies not only summation over the discrete indices, but also integration over
the continuous one, i.e. an integration over space-time in position space or over momentum
in the Fourier representation. We will frequently use this notation for the graviton field,
whose coefficient function are then written as hµν(x) =: ha and

haha :=

∫

R4

d4 x hµν(x)h
µν(x) :=

∫

R4

d4 x
∑

µ,ν

hµν(x)h
µν(x) , (3.1)

where the second definition just means that we apply Einsteins sum-convention for the
contractions. Additionally, a general theory has a field content with more than one field.
Hence, we define a yet more general index class that describes a vector in super-field space
1, i.e. in a theory with n different fields ϕi it is a n-dimensional vector that comprises all
fields. Super-indices describing components in this vector space are labeled with latin, bold
characters. Therefore we write

ϕa =
�

ϕa1 , ...,ϕan
�a . (3.2)

The super-field space is endowed with a metric that reflects the Grassmann nature of fermion
fields, see Appendix A. Note that contraction over the most general index class also implies

1Note that the adjective “super” does not refer to supersymmetry.
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3. The Functional Renormalization Group

cotraction over all sub-indices. For instance, in quantum electrodynamics, the super-field
contains the fermion, the anti-fermion and the gauge field, ϕa =

�

Ψ, Ψ̄, A
�

a. As the super-
metric is the tensor product of the fermionic part, which is the epsilon tensor, and the
bosonic part, which is just the identity, a contraction is in this case given by

ϕaϕ
a :=

∫

R4

d4 xΨa(x)Ψ̄
a(x)−

∫

R4

d4 x Ψ̄a(x)Ψ
a(x) +

∫

R4

d4 x Aµ(x)v
µ
3 (x) , (3.3)

where in this case the latin indices are the spinor indices. Note that in some cases we aim at
contraction of indices without integration. In this case we label both classes of super-indices
with capital latin letters or capital bold latin letters respectively, e.g.

hAhA := hµν(x)h
µν(x) . (3.4)

3.2. Flow Equations

Parts of the following are pretty standard repertoire in asymptotic safety and functional
renormalization, and the presentation of these parts is partially parallel to [19].

A quantum field theory is then entirely defined by the infinite set of n-point correlation
functions 〈ϕa1

ϕa2
...ϕan

〉. All physical observables such as cross-sections can finally be
expressed in terms of these correlation functions. The calculation and determination of
properties of these correlation functions is the ultimate goal in quantum field theory. The
functional renormalization group is a particular implementation of the Wilsonian idea of
renormalization, i.e. integrating out degrees of freedom in infinitesimal steps. In contrast
to other RG-schemes, this method has the particular advantage that it does not necessarily
require an interaction term that is assumed to be weak. This means that it is not based on a
power series in the coupling constant and thus inherently of non-perturbative nature. In
general, an exact solution to the FRG-master equation, the Wetterich equation, corresponds
to a full solution of the path-integral. For reviews on functional renormalization in quantum
gravity see [20–26], for general reviews and other applications see e.g. [27–41] . In order
to formulate the coarse-graining procedure mathematically, one modifies the path integral
with a regulator action 4Sk[ϕ] that introduces a momentum scale k, according to which
the functional integration is organized. This regulator categorizes field modes with large
momenta p2 > k2 on the one hand, and p2 < k2 on the other.

The regulated path integral then takes the form

eWk[J] =

∫

Dϕ e−S[ϕ]+4Sk[ϕ]+Jaϕ
a
, (3.5)

where J is an external source term and Wk[J] denotes the Schwinger functional, i.e. the
generating functional of connected correlation functions. The path integral measure Dϕ is a
formal, infinite product of Lebesgue-measures and is assumed to be appropriately regularized
with an ultraviolet cutoff Λ. In this thesis we use a renormalization group equation for the
scale dependent effective action Γk, which is the regularized version of the full quantum
effecitve action Γ. The quantum effective action is the generating functional of one-particle
irreducible (1PI) correlation functions, also frequently called vertex functions. These vertex
functions correspond to the fully dressed version of bare vertices in the classical action, i.e.
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3.2. Flow Equations

they arise if all quantum fluctuations are added to the tree-level vertex. S-matrix elements
can then be obtained by forming trees with vertex functions.

In the end, we are interested in a flow equation that governs the scale evolution of Γk
and describes how quantum fluctuations are included by integrating-out momentum shells
∆q. For this equation to have a particular one-loop form, the regulator action needs to be
quadratic in the fields,

4 Sk[ϕ] =
1

2
Rab

k ϕaϕb . (3.6)

with a regulator operator Rab
k . The scalar part of the regulator in momentum space is of the

form
Rk = rk(q

2)δ(q− q′) , (3.7)

where rk(q2) is a shape function that needs to have certain defining properties. First, we
want to ensure infrared regularization of the theory organized by the scale parameter k.
Since the regulator is quadratic in the fields, it acts like an additional mass term in the
propagator that regulates infrared modes and cuts off momenta with p < k. Additionally,
we want to recover the full quantum theory in the limit k −→ 0, while one wants to find
the microscopic action in the limit k −→∞. In the case of a perturbatively renormalizable
field theory, the latter case corresponds to the classical or bare action. In order to meet
these requirements, the momentum space representation of the regulator needs to have the
properties

lim
p2/k2→0

Rk(p)> 0

lim
k2/p2→0

Rk(p) = 0

lim
k2→Λ2→∞

Rk(p) =∞ . (3.8)

A modified Legendre transform then leads from the regularized Schwinger functional Wk[J]
to the scale-dependent effective action Γk[φ], which is a functional of the averaged field
φ = 〈ϕ〉. The derivation of the flow equation can be found in numerous publications,
e.g. all the reviews cited above, and in particular in the super-index notation used in this
thesis in [19, 32] and will not be repeated here. The master equation of the functional
renormalization group, the so called flow equation or Wetterich equation, is a functional,
partial differential equation and is given in compact form by

Γ̇k[φ] =
1

2
GabṘab[φ] , (3.9)

where we have defined the regularized version of the fully dressed propagator

Gk,ab[φ] := γc
a

�

δ2

δφ2Γk + Rk

�−1

cb

[φ] , (3.10)

and introduced the notation
ḟ := k∂k f =: ∂t f , (3.11)

for the dimensionless scale-derivative of any k-dependent function f . In the following, we
comment on some properties of the flow equation. The characteristics of the flow equations
are presented in similar fashion in [19].
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3. The Functional Renormalization Group

Diagramatics. The Wetterich equation (3.9) contains a contraction over the multi-index,
and therefore it implies an integration over the propagator momentum. The propagator
is contracted with Ṙk. In the language of Feynman diagrams this is a loop with a
regulator insertion, and hence the flow equation can be represented as in Figure 3.1
below. It is very important to mention that there is a big difference between this

∂tΓ =
1

2

Figure 3.1.: Diagrammatic representation of the flow equation. A fully dressed propagator with
regulator insertion.

representation and the Feynman diagrams one knows from perturbation theory: The
quantities that appear are fully dressed, i.e. effective propagators and effective vertices
that include quantum corrections.

Exactness and non-perturbative nature. As we have already mentioned, the quantum
effective action Γ generates via functional derivatives the vertex functions, i.e. the 1-PI
correlation functions, of arbitrary order. Consequently, it also contains all information
about S-matrix elements and knowledge of the full effective action is equivalent to
a full solution of the theory. Since the regulator vanishes in the limit k −→ 0, the
scale-dependent effective action Γk converges towards the full effecitve action in this
limit,

Γk=Λ
k→Λ←−− Γk

k→0−−→ Γk=0 = Γ . (3.12)

Therefore, the solution of the Wetterich equation (3.9) corresponds to a full solution
of the respective quantum field theory. Indeed, this equation is derived from the path
integral without any approximations and can be viewed as an equivalent formulation.
In particular, it is inherently non-perturbative. One can also avoid the path integral
representation from the very beginning and define a quantum field theory via the
scale-dependent effective action and its flow equation.

Finiteness. The fundamental ingredients for the flow equation are the fully dressed two-
point function and the regulator. A typical regulator shape function rk(q2) that satisfies
the conditions (3.8) and its scale derivative ṙk(q2) are shown in Figure 3.2.
The additional regulator term in the propagator Gk ensures infrared finiteness as the
shape function typically scales like k2 in the limit of vanishing momentum. Therefore,
massless modes cannot lead to divergences in any finite RG-step,

1

q2+ rk(q2)
q→0
−−→

1

k2 . (3.13)

Furthermore, the scale derivative of the regulator Ṙab is peaked around q2 ≈ k2 and
tends to zero for q2→∞. Consequently, each RG-step is also ultraviolet finite.
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3.2. Flow Equations

  

Figure 3.2.: A typical regulator shape function rk(p2) and its scale derivative ∂t rk(p2). For small
momenta the regulator is proportional to k2 and thus suppresses fluctuations with
p2 < k2. Moreover, one can see that the scale derivative of the regulator is peaked
around p2 ≈ k2, and since the flow equation is proportional to ∂t rk(p2), this property
carries over to the flow itself. This also implies that the flow equation is sensitive to
momenta p2 ≈ k2. The peak property is in the flow equation even more pronounced than
in ∂t rk(p2) itself, since the integral measure ∼ |p|3 further suppresses small momentum
fluctuations. The figure is taken from [42].

Initial conditions. The derivation of the flow equation starts with a regularized path in-
tegral. This can be achieved with any UV regularization. Being a functional, partial
differential equation, the solution of the flow equation requires a choice of boundary
conditions at a scale k = Λ. For perturbatively renormalizable theories the initial
condition is basically the classical action, Γk=Λ ≈ S. More details on boundary and
initial conditions will be discussed in the next section.

Renormalization and link with standard RG equations. As stated above, the functional
renormalization group can be used to define a quantum field theory and due to the
structure each RG-step is finite. The initial condition can then be understood as
a renormalization condition known from standard renormalization theory. In this
sense, the functional renormalization group represents a specific regularization and
renormalization scheme.
A comparison to the well-known standard RG-schemes is very instructive. In such
constructions one regularizes integrals in loop expansions and subtracts divergent
contributions at an arbitrary new mass scale, usually called µ, at which one imposes
renormalization conditions.
In the FRG, the construction of couplings from divergent, bare quantities is circum-
vented. One can rediscover such quantities in the FRG from the integrated flow. We
rewrite

Γ̇k =
1

2
GabṘab =−

1

2
∂t
�

logG
�a

a −
1

2
Γ̇(2) ab

k Gab , (3.14)
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3. The Functional Renormalization Group

and integrate the above equation in order to arrive at

Γk = ΓΛ−
1

2

�

logG
�a

a

�

�

k′=k
k′=Λ−

1

2

∫ k

Λ
dt Γ̇(2)ab

k Gab . (3.15)

At htis point the renormlaization becomes evident. As one can see, the boundary
condition ΓΛ explicitly enters the integrated flow. This boundary effective action is a
finite quantity. The renormalization conditions for the fully integrated theory, which
are imposed at a specific scale µ correspond to conditions for Γk=0. But since the flow
relates ΓΛ and Γk=0 unambiguously, the renormalization conditions translate into a
constraint for the boundary condition. It is important to notice that the subtractions at
the scale Λ on the right hand side are essential for regularization, since the there is no
scale derivative Ṙ of the regulator that would ensure UV finiteness of the momentum
integrals. In fact, at this point one can relate the FRG scheme to standard perturbative
RG schemes by using the integrated n-loop flow and constructing appropriate counter-
terms by fixing the Λ independent parts of ΓΛ. This has explicitly been done, e.g
in [43]. A discussion of the µ scaling of the regulated effective action in general can
be found in [32,44,45].
The crucial point for the application to quantum gravity is of course the UV problem
in the sense that we integrate out arbitrarily large momenta, i.e. we are interested in
the limit Λ→∞. It is not a priori clear that ΓΛ remains finite in this limit, since it
originates from a regularized path integral and all of the above considerations have
been done with a fixed Λ. This means, we ask for global existence of the flow. But
with the insight of renormalization conditions we gained above, it is clear that this
existence depends on the boundary conditions of the integral equation (3.15). Thus,
from a formal point of view, the construction of a suitable boundary functional is the
crucial aspect if we study the limit Λ→∞. How one can attack this problem within
truncated flow equations in practice is the topic of the following chapters.

Link with perturbation theory As we stated in the first point, our flow equation contains
in principle all non-perturbative information about the theory under consideration. In
particular, it should be possible to gain back the results from perturbation theory. This
is indeed the case, and it is easy to see how this works. First we write the effective
action as a loop expansion

Γ = S+
∞
∑

n=1

4Γn , (3.16)

where S is the classical action and4Γn represents all contributions that originate from
one-loop diagrams. The associated flow equation at one loop order should involve
only one loop expressions on both sides of the equation. Since (3.9) already contains
a loop, it is the classical action that enters in the propagator on the right hand side
and we get

∂t 4Γ1,k =
1

2

�

S(2)+ Rk

�−1

ab
∂tR

ab
k =

1

2
∂t

�

log
�

S(2)+ Rk

��a

a
, (3.17)

which one can trivially integrate to obtain

4Γ1,k =4Γ1,Λ+
1

2

�

log
�

S(2)+ Rk′
��a

a

�

�

�

k′=k

k′=Λ
. (3.18)
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3.2. Flow Equations

In the limit k→ 0 we get via S +4Γ1,k=0 the well known one loop expression for the
effective action. The renormalization issue in the above equation follows immediately
from the general discussion above: The initial condition and subtraction at Λ in the
log ensures UV finiteness.

k microscope and effective descriptions. In principle, the physical limit of the theory
is approached for k −→ 0, when the regulator is removed and the standard, full
quantum effective action is approached. In the full, untruncated flow, the momentum
dependence of the couplings is encoded the momentum dependence of the full vertex
functions. In practice, it is very difficult to calculate full momentum dependent
flows. The first calculation of momentum-dependent, and even fully momentum
dependent quantities in an FRG-gravity setup is actually presented in this thesis.
Therefore, usually one just allows for k dependent dressed coupling parameters in
order to incorporate quantum fluctuations and the dependence on external momenta
is ignored. The running of couplings then always refers to the evolution with the scale
k, which, being a cutoff, is a priori unphysical. Nonetheless, the locality of the flow
often allows for a physical interpretation of the cutoff scale k.
The renormalization group flow defines a family of effective actions {Γk}k, and by
construction, Γk is particularly sensible to physics at k ≈ q, since this is the scale
where the fluctuations are integrated out. This means we can compare the flowing
action with a microscope of variable resolution. For large k we gain insight about the
behavior at small distances, and by successive lowering of k we average over high
energy fluctuations and see the structures at larger length scales. It is now possible
to identify the, a priori unphysical, RG scale k with some external parameter with
dimension of mass. Imagine we have a physical situation that is governed by one scale,
for instance in a two-to-two scattering process the center-of-mass energy

p
s, and one

is interested in the behavior of physics under variation of this scale. Then one can use
Γk for tree level calculations within an effective framework by identifying k with

p
s

via
k = f

�p
s
�

. (3.19)

The exact form of the function f depends on the specific process under consideration.
However, a wise choice of f might lead to a good effective description.
This method is used in phenomenological applications of RG gravity to particle physics
[46,47], in cosmological applications, where one needs to link k to some cosmological
parameter [48–51], or in black hole physics [52–56] .

The Hierarchy of Flow Equations. The fundamental objects that describe interactions in
quantum field theories are the vertex functions. These objects determine e.g. the
properties of n−m particle scattering and enter the S-matrix elements. As the effective
action Γ is the generating functional for these vertex functions, the latter are simply
obtained by functional differentiation according to

δ

δφa1
...

δ

δφan
Γ[φ] =: Γa1...an[φ] . (3.20)

In order to simplify the notation, we will frequently drop the indices and denote the
n-th order vertex function just as Γ(n), or as Γ(n1φ1...nmφm) if we consider a theory with
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3. The Functional Renormalization Group

m different fields, and if it is important that we refer to the correlator where each field
φi appears ni times. The flow equations for the vertex functions are then obtained by
functional derivatives of the Wetterich equation (3.9) with respect to the fields, i.e.
by differentiation of the equation for the effective action itself. This procedure then
generates the hierarchy of flow equations for the vertex functions. This infinite set of
functional equations has the structure

Γ̇k[φ] = Flow[Γ(2)]

Γ̇(2)k [φ] = Flow(2)[Γ(2),Γ(3),Γ(4)]

Γ̇(3)k [φ] = Flow(3)[Γ(2),Γ(3),Γ(4),Γ(5)]

......... . (3.21)

One should note the important fact that the flow of the n-point vertex function depends
on the vertex functions up to order n+ 2,

Flow(n)[Γ(2), ...,Γ(n+2)] . (3.22)

Note that in loose language fashion we will frequently call Γ̇(2)k [φ] the flow equation
of the propagator, although it is the equation for the inverse propagator.

Truncations and Optimization. We have seen that the implementation of coarse graining
in the functional renormalization group is implemented via a regulator functional
in the path integral. However, the choice of the regulator is not unique. The only
requirements are the conditions (3.8). The full, exact quantum effective action
limk→0 Γk is independent of the regulator as the regulator vanishes for −→ 0. However,
it is of crucial importance that this does not hold for the effective action at k 6= 0,
and also not for effective actions that arise from approximate solutions of the flow
equation. The latter is of particular importance as exact solutions to the flow equations
are usually not possible and one has to resort to truncations. Truncations are, possibly
non-perturbative, approximation schemes for the flow equation. Finding truncations
that are good approximations to the full solution is usually a very difficult task. As the
next part of this thesis is intensively concerned with this issue, we do not comment
further on different truncation schemes at this point. However, we want to note that
the non-uniqueness of the regulator can be used in order to minimize the error in
approximate solutions. The business of finding regulators with such properties is
called optimization and is discussed in great detail in e.g. [32,57].
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CHAPTER 4

The Asymptotic Safety Scenario

4.1. Renormalization Group Flows, Fixed Points and
Asymptotic Safety

Now we want to put the Asymptotic Safety Scenario in the general context of renormalization
group flows and give a precise definition of an asymptotically safe theory. First, the concept
of the theory space is introduced. Let us assume that our fields are functions φ : Rn→ R
(for notational simplicity we consider scalar fields here, but the generalization to arbitrary
representations such as tensorial representations is quite obvious), and that they lie in an
appropriate infinite dimensional vector space, such as the Schwartz Space S (Rn). This
Schwartz Space has the nice properties that the Fourier transformation is an automorphism
and that all derivatives of our fields are square-integrable. We then define the theory space
F as all functionals Γ : S (Rn)→ R that respect the given symmetry, which leads to the
definition

F := {Γ[·]| Γ : S (Rn)→ R, GΓ[φ] = Γ[φ]} (4.1)

with G being an element of the symmetry group. Let us further assume that we have a basis
in the space F . As we have already mentioned above, the flow equation defines a family
of scale-dependent effective actions {Γk}k with Γk ∈ F . Under this requirement we can
expand each Γk in a basis {Fn} of F and write formally

Γk[φ] =
∑

n
ĝn(k)Fn[φ] , (4.2)

such that such that the scale-dependence of each operator can be written as a multiplicative
pre-factor. The k-dependent pre-factors ĝi(k) are nothing but the dimensionless versions of
the generalized running couplings gi(k) that parameterize the effective action,

ĝn :=
gn

kdn
, (4.3)

27



4. The Asymptotic Safety Scenario

  

Figure 4.1.: The flow in theory space. Figure taken from [42].

where dn is the mass dimension of the coupling gn. The evolution according to the flow
equation (3.9) then generates a flow in theory space, which is graphically shown in Fig-
ure 4.1.

In general, a fixed point of the renormalization group flow is defined as a point in theory
space where the dimensionless, scale-dependent effective action Γ̂k[φ̂] is invariant under
RG-transformations, i.e. invariant under a change of the RG-scale k. Note that the hat
indicates the dimensionless quantities. This means that the fixed point functional Γ̂∗k[φ̂] is
defined by the property

∂t Γ̂
∗
k[φ̂] = 0 . (4.4)

In order to make the meaning of this equation more transparent, let us investigate what this
means in terms of an expansion of the scale-dependent effective action in basis functionals
as given in equation (4.2). Given such a parameterization, one can then obtain from the
general flow equations a system of differential equations for these running couplings by
appropriate projection procedures. From now on we will deal with dimensionless couplings
only, and will drop the hat we have just introduced, and all couplings are dimensionless if
not stated otherwise. The scale derivative of these couplings is of the form

ġi(k) = βi(g(k)) , (4.5)

where the vector g(k) comprises all the generalized couplings gn(k). The right-hand side of
these equations is nothing but the non-perturbative generalization of the β- functions that
are well-known in standard quantum field theory. The fixed point condition then translates
into zeros of these β-functions that are taken for the fixed point values g∗n,

βn(g
∗) = 0 ∀n . (4.6)

We further note that the structure of the beta functions for the dimensionless couplings is
always of the form

βn =−dn gn+ quantum contributions , (4.7)
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4.1. Renormalization Group Flows, Fixed Points and Asymptotic Safety

i.e. the beta functions consist of a sum of the canonical running due to the mass dimension of
the coupling, and contributions that are rooted purely in quantum fluctuations. Consequently,
the fixed point condition means that the canonical running is exactly counterbalanced by
the quantum fluctuations. The properties of the fixed point are determined by the stability
matrix, which is obtained by linearizing the flow in the vicinity of the fixed point g∗. Let us
write

gn = g∗,n+δgn , (4.8)

which leads to a power series in δg for the beta functions,

βn(g) = βn
�

g∗
�

+
∑

m
Bmn

�

g∗
�

δgm+O
�

δg2
m

�

=
∑

m
Bmn

�

g∗
�

δgm+O
�

δg2
m

�

, (4.9)

where the first term vanishes since g∗ is a fixed point, and the term linear in δg is determined
by the stability matrix

Bmn =
∂ βn

∂ gm
= k

∂ 2 gn

∂ k∂ gm
, (4.10)

which is a type of a hessian matrix and describes the linearized flow around the fixed point.
The properties of the fixed point are discriminated by the positivity or negativity of the
stability matrix, as it is well known from analysis. Therefore we diagonalize the stability
matrix, since for the quadratic form B holds B ≷ 0 if all eigenvalues are ≷ 0. The defining
equation for the eigenvalue problem is

Ben = bnen , (4.11)

with eigenvectors en and corresponding eigenvalues bn. We now expand the vectors g and
δg in eigenvectors en,

g =
∑

n
g̃nen , δg =

∑

n
δ g̃nen ,

where one can of course obtain the coefficients by projections onto the eigenvectors, e.g.

g̃n = 〈g, en〉 . (4.12)

By inserting this into the linearized equation (4.9) we arrive at the differential equation

k
d

dk
g̃n = δ g̃n bn (4.13)

which can be solved by elementary separation of variables and using δ̃gα = g̃α− g̃∗,α to give

g̃n(k) = g̃∗,n+ g̃n(k0)
�

k

k0

�bn

(4.14)

with some reference scale k0. From this solution one can beautifully see how the sign of
the eigenvalues bn determine the stability properties of the fixed point. A UV fixed point

requires g̃n(k)
k→∞−−−→ g̃∗,n ∀ n, while for a IR fixed point this must be true in the limit k→ 0.

Note that in general the eigenvalues bn are complex, and the above relation then translates
into a requirement for the real parts of the eigenvalues. We can therefore classify the UV
stability via the positivity of B according to the following scheme:
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• The fixed point is UV attractive if
�

Re bα
�

< 0 ∀ α.

• The fixed point is UV repulsive if
�

Re bα
�

> 0 ∀ α.

• The fixed point is a saddle point if none of the above is true.

This behavior can best be visualized in a one-dimensional coupling space, see figure (4.2). All

UV-stable

β(g)

g
g*

IR-stable

β(g)

g
g*

.

Figure 4.2.: In this schematic plot we restrict ourselves to a one dimensional coupling space. We show
the beta function β(g) = kd/(dk)g as a function of this single coupling. In this case we
have only one eigenvalue which corresponds to the gradient of the curve, which in turn
determines the stability properties. In the left picture the arrows point in direction of
increasing k, while the opposite is true for the arrows in the right picture. The UV/IR
stability can also intuitively be inferred by considering the sign of β(g) at a given value
of g. The gradient gives rise to a larger/smaller value of the coupling and drives the
latter in the corresponding direction.

couplings with negative eigenvalue are called relevant, while those with positive eigenvalue
are irrelevant as they die out in the direction of course graining.
The UV critical surface SUV is defined as the hyper-surface in theory space that is built
from the set of all trajectories that hit the fixed point in the limit k→∞. Consequently, its
dimension dim

�

SUV
�

is given by the number of couplings with negative eigenvalues of the
stability matrix.
The solutions (4.14) represent a complete class of trajectories and corresponding theories:
one for each initial value g̃α(k0). This of course is exactly the specification of initial values
that we discussed in the previous chapter.

Definition of Asymptotic Safety

In order to decide which theory is realized in nature, we have to measure a number of
parameters that equals dim

�

SUV
�

, since for attractive directions there are infinitely many
initial conditions for which the couplings evolve towards the finite fixed point value. In a
repulsive direction, there is exactly one initial condition, namely g̃n(k0) = 0 for which the
coupling stays finite in the ultraviolet limit. The condition that the theory is tuned to the
critical surface then implies that the values of these irrelevant couplings are predictions of
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4.1. Renormalization Group Flows, Fixed Points and Asymptotic Safety

asymptotic safety. Obviously, a theory with dim
�

SUV
�

=∞ is not predictive, analogously to
the case of perturbative renormalization that we have discussed in earlier.
With the background we gained in the above discussion, we can finally present a precise
definition of the asymptotic safety scenario, which is now almost trivial to guess:

1. The theory contains an ultraviolet fixed point.

2. The UV critical surface of this fixed point is finite dimensional1.

Such a theory is called non-perturbatively renormalizable, since the UV fixed point makes
the theory well-defined for arbitrarily high momenta and the latter requirement ensures
predictivity.
Some remarks concerning the notion of a asymptotically safe theory are appropriate.
First it is important to realize that this is a generalization of the perturbative renormalizability.
It is clear that the relation

perturbatively renormalizable =⇒ non-perturbatively renormalizable

holds, while the “⇐=“ relation is of course not true.
An asymtptotically safe theory is then a theory that has an ultraviolet fixed point with

finite dimensional critical surface. This structure ensures two essential properties that one
demands of a fundamental theory. First, due to the vanishing of the β functions at the fixed
point, one can safely take the ultraviolet limit, since all couplings tend to finite fixed point
values,

lim
k→∞

gi(k) = g∗i ∀ i . (4.15)

Consequently, the theory is free of divergences. In addition to that, a finite dimensional
critical surface implies that the theory contains only a finite number of free parameters that
need to be determined by experiment, namely the values of the relevant couplings at some
momentum scale k0. The irrelevant couplings are fixed by the condition that the theory is
tuned to the critical surface. Thus we are left with a finite theory that has predictive power
and qualifies as a truly fundamental quantum field theory. Proving asymptotic safety in
non-perturbative situations is of course highly non-trivial, and in many cases with nowadays
technology not possible. Rigorous proofs are possible for perturbative situations where the
UV fixed point is Gaussian i.e. g∗ = 0, or nearly Gaussian. In case of a Gaussian ultraviolet
fixed point asymptotic safety reduces to the well-known special case of asymptotic freedom,
where the coupling tends to zero in the ultraviolet and one is left with a free theory. Most
prominently, this scenario is realized for Quantum Chromodynamics and is indicated by the
negative sign of the β-function for the strong gauge coupling αs.

For the investigation of non-perturbative regimes, one usually has to resort to truncations
of the full theory. This means, that the a priori infinite dimensional theory- or coupling space
is reduced to a finite number of dimensions. The specific truncation scheme representing
the framework for our work will be constructed in detail in later sections. Our scheme is
based on a so called vertex expansion where the effective action is expanded in a functional

1Right from the beginning of our analysis we ignored a subtlety, because the theory is really parameterized
only by the essential couplings, i.e. those that are independent and cannot be absorbed by redefinitions of the
fields. Hence, the analysis we presented is only completely correct if one substitutes the word “coupling” by
“essential coupling”. For further details see [21]
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Taylor-series in the field. One can then solve the hierarchy of flow equations by truncating
the expansion at some finite order n and use an ansatz for the vertex functions of order n+1
and n+ 2.

4.2. The Status of Asymptotic Safety in Quantum
Gravity

The asymptotic safety scenario for quantum gravity was originally proposed by Steven
Weinberg in 1997, [58]. However, until the formulation of the functional renormalization
group for the one particle irreducible effective action by C. Wetterich in 1993, [59], there
were no appropriate technical tools available in order to tackle the problem of asymptotic
safety in quantum gravity. The setup of functional renormalization in quantum gravity and
the first calculation were presented by M.Reuter in 1997, [60]. The most basic truncation in
quantum gravity is the so-called Einstein-Hilbert truncation. This truncation is given by the
classical Einstein-Hilbert action together with rescalings of the form

GN −→ GN ,k , Λ −→ Λk , (4.16)

which amounts to the introduction of two running couplings, while keeping just the op-
erators present in the classical action. Moreover, all calculations are usually carried out
in spacetimes with Euclidean signature, as FRG calculations in Lorentzian spacetime are
notoriously difficult, see [61] for a first attempt in the Lorentzian approach to asymptotic
safety. Therefore, the scale-dependent effective action in Euclidean spacetime is assumed to
have the form

Γk[ ḡ, h, c̄, c] =
1

16πGN ,k

∫

d4 x
p

detg (−R(g)+2Λk)+Γgauge−fixing[ ḡ, h]+Γghost[ ḡ, h, c̄, c] ,

(4.17)
on all scales. The diffeomorphism invariance requires a gauge fixing and is accompanied
by the corresponding ghost action, which depends on the ghost field c and the anti-ghost
c̄. The gauge fixing procedure also necessitates the introduction of an unphysical auxiliary
background field ḡ and a fluctuating graviton field h. However, the reason for introducing
this background field is actually twofold, since not only gauge fixing, but also the structure
of the flow equation in quantum gravity usually entails a non-dynamical background. More
precisely, in order to keep the one-loop structure of the flow equation, the regulator must
be quadratic in the fields. However, any term invariant under diffeomorphisms of the full
metric g is automatically of infinite order in g due to the canonical volume form, and
also any contraction is induced by a metric. Therefore, the regulator is a function of the
background field only, R= R( ḡ). This construction leads to the crucial observation that the
scale-dependent effective action is a function of the background and the fluctuation field
separately. The standard calculations in FRG-gravity then employ the so called background
field method. The full metric is then decomposed linearly into the background h and the
fluctuation ḡ according to g = ḡ + h and one introduces gauge transformations for both
fields separately. At the end of the day one identifies g = ḡ, i.e. h= 0 and one then usually
argues that gauge invariance is reestablished. However, we note that there are several flaws
in this reasoning that will be discussed in the next section. The running of the couplings
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4.2. The Status of Asymptotic Safety in Quantum Gravity

is then extracted directly from the flow equations for the effective action by evaluating the
latter at g = ḡ e.g. on Einstein spaces, which allow for a disentanglement of curvature
terms proportional to R and terms proportional Λ. In such a truncation one detects an
ultraviolet fixed point with the necessary physical requirements, namely a real fixed point
with gk > 0,λk > 0, where have introduced the dimensionless running couplings

gk := GN ,k k2 , λk :=
Λk

k2 . (4.18)

The beta functions
�

βg(g,λ),βλ(g,λ)
�

define a vector-field on the two dimensional coupling
space of the Einstein-Hilbert truncation. Most of the relevant properties can be visualized in
the phase-diagram, which is shown in Figure 4.3.

  

Figure 4.3.: The phase diagram of quantum gravity in the Einstein-Hilbert truncation. The arrows
point from the UV to the IR direction and the fixed points are highlighted by red points
and are connected by the separatrix (green). The details of this plot are discussed in the
text below. The plot is taken from [62].

This plot shows the integral curves of the beta functions, i.e. the trajectories in the g −λ
plane are parameterized as

�

g(k),λ(k)
�

and depend parametrically on the momentum scale
k. The different trajectories then correspond to different initial conditions g(k0) = ginitial,
λ(k0) = λinitial that are imposed at some reference scale k0. The physical region of the
phase diagram is dominated by two fixed points, namely the non-trivial ultraviolet fixed
point (gUV

∗ 6= 0,λUV
∗ 6= 0), and the built-in Gaussian fixed point with (g∗ = 0,λ∗ = 0). The

existence of the ultraviolet fixed point is the basis for the asymptotic safety construction.
The fixed point values are of course regulator and gauge-dependent. In accordance, we
stress that the fixed point values of the couplings are not physical quantities. As explained
in the last chapter, the properties of a fixed point are characterized by the stability matrix,
i.e. the linearized flow. All background field flows in the Einstein-Hilbert truncation have
in common that the critical exponents are complex. This manifests itself as a spiraling of
the trajectories in the vicinity of the fixed point. The real part of the critical exponents
is negative, meaning that the fixed point is ultraviolet-attractive in both directions. Since
the Gaussian fixed point has one negative and one positive eigenvalue, there exists exactly
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one trajectory that connects the Gaussian and the non-Gaussian fixed point, the so called
separatrix, which is shown in green in Figure 4.3. Since gravity is an attractive force, the
region with g < 0 is unphysical and will not be considered further. For positive couplings,
the phase phase diagram exhibits some important properties. First of all, there is a built-in
infrared attractive anti-de Sitter fixed point at

�

g IR
∗ = 0,λIR

∗ =∞
�

. More importantly, let us
consider the physical region

�

g > 0,λ > 0
�

. The trajectories that emanate the non-Gaussian
ultraviolet fixed point evolve according to the flow equation towards smaller scales. In
the vicinity of the Gaussian fixed point trajectories show classical scaling behavior, namely
gk ∼ k2 and λk ∼ 1/k2, meaning that the dimensionful counterparts Gk and Λk are constant.
This region of the phase diagram is then usually identified with the domain of classical
general relativity. However, there is an important aspect of this phase diagram concerning
the deep infrared. The trajectories emanating the ultraviolet fixed point that do not cross the
λ= 0 line cannot be continued to k = 0, but hit a singular line at a finite momentum scale.
This singular line is highlighted in red in the plot of the phase diagram Figure 4.3. Therefore
the theory does not have a well-defined infrared limit in the background Einstein-Hilbert
truncation. Consequently, this truncations does not allow for globally defined trajectories
and is not infrared complete. This unsatisfactory situation turns out to be a truncation
artefact and is one of the issues addressed in this thesis.

Besides this obvious failure of the truncation in the limit of large distances, the ultraviolet
stability needs to be tested with enlarged and improved truncations. Additionally, the finite
dimensionality of the critical surface needs to be tested, since infinite dimensionality of the
latter would lead again to a theory without predictive power. This is because in an attractive
direction infinitely many initial conditions lead to trajectories that flow into the fixed point
and therefore an experimental input is necessary in order to pin down the physical trajectory,
e.g. the measurement of the coupling at some energy scale. Consequently, an infinitely
dimensional critical surface implies that the theory contains infinitely many free parameters
that need to be fixed by experiment. Determining the dimensionality of the critical surface
is very difficult, and for the time being even impossible. However, by including higher
dimensional operators systematically, one can test the the dimensionality of the critical
surface in a higher and higher dimensional theory space and use bootstrap arguments in
order to support or disfavor asymptotic safety, [63–65].

There is a vast amount of work that improves the Einstein-Hilbert truncation in several
directions. First of all one can extent the ansatz for the scale dependent effective action to a
f (R)-type of theory [63–66]. On can then analyze the fixed point equation for the function
f e.g. in a high order polynomial expansion polynomial expansion in the Ricci scalar. This
has been done in [64] up to order R34. The result is very encouraging since one finds an
ultraviolet fixed point and all operators Rn with n≥ 3 turn out to be irrelevant. The crucial
UV fixed point is confirmed in various approximations, including the coupling to gauge and
matter fields [67–72], dilaton gravity [73,74], higher derivative calculations [63,64,75–77],
vertex expansions [1,2,78], geometrical flow equations [79], higher spacetime dimensions
[80], unimodular gravity [81,82] and bi-metric truncations [83–85]. There is also a rich
field of phenomenological applications based on asymptotically safe quantum gravity. This
includes e.g. implications for the standard model and its extensions [86, 87], black hole
physics [53,54,88,89], collider experiments [46,47] and cosmology [48,90].
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4.2.1. Gauge Fixing, the Background Field and all that

A basic problem that all approaches to quantum gravity have to face is the implementation
of gauge invariance, or more precisely, of diffeomorphism invariance.
Diffeomorphisms that act on the coordinates induce a transformation on the metric field,
and the corresponding mappings are generated by the Lie-derivative. It is trivial to construct
actions that are invariant under such mappings. For instance, the standard Einstein–Hilbert
action, but also all generalizations to higher order curvature invariants are trivially dif-
feomorphism invariant. However, the implementation of gauge invariance in the context
of quantum theories is highly non-trivial, and is even more delicate in quantum gravity
where the space-time itself is a dynamical field. The first, inevitable problem in quantum
field theories is that the gauge symmetry leads to equivalent field configurations along
the gauge orbits. This implies an infinite over-counting of physical states in the process
of quantization, and it is not even possible to define a propagator in the gauge symmetric
theory as the inverse of the kinetic operator does not exist. As a consequence, one needs to
introduce a gauge fixing term that breaks the symmetry explicitly. In turn, this results in
an effective action that is not a gauge invariant functional of its arguments. Moreover, the
notion of coarse graining in regularized theories is not a covariant formulation. The solution
to these problems appears in terms of the introduction of a non-dynamical background field,
which allows for the definition of a gauge invariant effective action, [91]. Moreover, we
have already stated, that the introduction of a background field in the FRG-formulation
of quantum gravity is necessary if one wants to retain the standard structure of the flow
equation, as the regulator would be of infinite order in the full metric g if there were no
background metric. The construction of the background field effective action can be outlined
as follows.

In order to arrive at a diffeomorphism invariant flow equation, we introduce a background
field, and use the so called background gauge.
Although this method can be applied to theories with arbitrary symmetries, we will already
specialize to the case of diffeomorphism transformations, but the construction for SU(N)
theories is largely parallel. For the Yang-Mills analogue and further details concerning the
background field formalism in general, we refer to [27,32,92–96] .
We have already introduced the background split which is written as

g = ḡ + h. (4.19)

The background field ḡ is just an auxiliary field, while the field h determines physics and
represents the graviton in the particle picture. Therefore, we call h the dynamical field. It is
also worth mentioning that now all functional integrals are performed with respect to h, i.e.
the measure changes from dµ[g] to dµ[h].
We emphasize, that the decomposition (4.19) is, despite the equal form, quite different in
spirit from a perturbative reasoning as h is in no sense a small quantity.
In the case of diffeomorphism symmetry we have a mapping under genuine transformations
which acts on the dynamical fields only according to

G : h−→ h+L g

G : ḡ −→ ḡ , (4.20)
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where L is the Lie derivative along an arbitrary vector field. This physical transformations
cannot act on the background field since the functional measure after the background split
is dµ(h), and h carries the degrees of freedom that need to be gauge fixed. All the general
statements one knows from gauge theories also hold in the case of gravity: we need to get
rid of the redundancies that arise from fields h which belong to the same gauge orbit. That
means, we have to restrict our functional integration to exactly one representative for each
equivalence class, i.e. to the manifold M(h)/Di f f (M), where M(h) is the configuration of
dynamical metric fields. Therefore, we introduce a gauge fixing term in our action and apply
the Faddeev–Popov quantization. In this procedure we have to deal with the Faddeev–Popov
determinant, which leads via exponentiation to the Grassman-valued ghost fields

�

C̄ , C
�

,
which in turn contribute a term to the action functional.
This physical symmetry (4.20) is then of course explicitly broken by this gauge fixing
procedure.
The strategy is now as follows. We introduce a auxiliary symmetry which transforms also
the background field,

Ḡ : ḡ −→L ḡ

Ḡ : h−→ h−L ḡ . (4.21)

Note that the ghost fields which arise from Faddeev-Popov quantization are not affected by
background transformations.
Then we choose a gauge fixing condition F[ ḡ, h] = 0 which fixes the physical symmetry but
is invariant under the combined transformations (4.20) and (4.21). This can be done if we
choose a linear background gauge according to

Fµ( ḡ, h) =
p

2Fαβµ ( ḡ)hαβ , (4.22)

where it is crucial thatF =F ( ḡ) is a function of the background field. A type of generalized
harmonic gauge is realized by the gauge fixing functions

Fαβµ = δ
β
µ ḡαγD̄γ+

α2

2
ḡαβ D̄µ (4.23)

with D̄ being the covariant derivative with respect to the background connection, i.e. it is
constructed from background metrics alone. Note that we have introduced a second gauge
fixing parameter α2. This gives rise to a one parameter family of gauge fixing functions and
the choice of α2 defines the orthogonal projection. In particular, the standard choice which
corresponds to the usual harmonic gauge is α2 =−1.
The gauge fixing condition F[ ḡ, h] = 0 is then implemented in the corresponding term in
the action

Sgf[ ḡ, h] =
1

2α1

∫

p

−det ḡ ḡµν Fµ( ḡ, h)Fν( ḡ, h) (4.24)

with gauge fixing parameter α1, which is the analog of the usual gauge fixing parameter in
U(N) and SU(N) gauge theories. The choice α1 = 0 corresponds to Landau gauge and is used
throughout this thesis. Note that the canonical volume form in the above integral contains
the background metric. Accordingly, with (4.22) the gauge fixing term Sgf is quadratic in the
fluctuating field.
It is not difficult to show that the above construction from the background field ensures
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the crucial property that the gauge fixing action (4.24) is invariant under the combined
transformations (4.20) and (4.21).
The gauge fixing leads via standard methods to a ghost term in the action that reads in the
case of diffeomorphism symmetry

Sgh[ ḡ, h] =
p

2

∫

p

−det ḡ Cµ ḡµν
∂ Fν
∂ hαβ

LC

�

ḡαβ + hαβ
�

=−
p

2

∫

ω̄ CµMµ
ν Cν , (4.25)

where Mµ
ν is the Faddeev-Popov operator and LC is the Lie derivative that is discussed in

Appendix B. The Faddeev-Popov operator is explicitly given by

Mµ
ν = ḡµα ḡβγD̄γ

�

gανDβ + gβνDα
�

−
1

2
(1−α2) ḡ

αβ ḡµγD̄γgβνDα . (4.26)

One can then also show that the ghost action is invariant if we combine background and
physical transformations.
Let us shortly recapitulate the background gauge construction and the resulting facts. We
introduced an additional symmetry for the background field, which was tuned in such a
way, that the gauge fixing and the ghost term are invariant under combined transformations
�

G + Ḡ
�

. The classical action itself is trivially (or better, by construction) invariant under
symmetry transformations of both types. Hence the resulting, full gauge fixed classical action
with ghost term is also invariant under combined background and physical transformations.
At the quantum level all of this carries over to the corresponding properties of the effective
action Γ[ ḡ, h].
We emphasize that the background transformations provide only an auxiliary symmetry and
has no physical significance. It is also important to mention that the action is now explicitly
a functional of two fields, namely ḡ and h.
The crucial point is now that at the end of the calculation we let Γ[ ḡ, h] inherit the physical
symmetry by identifying the full field with the background, or equivalently by setting the
fluctuating field to zero. With this procedure we arrive at the transformation property

0=
�

G + Ḡ
�

Γ[ ḡ, h]
�

�

ḡ=g = GΓ[g, g] . (4.27)

So far we did not use the framework of the FRG in the construction, but rather of quantum
field theory in general. The further crucial input for the flow equation is now the regulator
4Sk in the action. In order to ensure gauge invariance of the flow, we have to demand

�

G + Ḡ
�

4 Sk = 0 . (4.28)

As usual, one works with a cutoff that is quadratic in the dynamical field which leads to
mass-like modification of the propagator and prevents the appearance of vertices Γ(n) with
n> 2 and higher loops in the flow equation. This can be done by constructing the regulator
and the volume form from the background field alone. The invariance under the combined
transformations (4.20) and (4.21) then requires that R[ ḡ] transforms as a tensor under
background transformations. This holds for the standard parameterization

4 Sk[ ḡ, h] =
1

2
κ2

∫

p

−det ḡ hµνRµναβk,hh [∆ ḡ]hαβ +
p

2

∫

p

−det ḡ C̄µRµν
k,C̄C
[∆ ḡ]Cν (4.29)
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with k-dependent cutoffs operators Rk,hh[∆ ḡ] for the metric field, and Rk,C̄C[∆ ḡ] for the
ghost fields, where ∆ ḡ is the background covariant Laplacian.
With these ingredients we can write down the regularized Schwinger functional of our
theory,

eWk[Ja] =

∫

dµ[h, C̄ , C]e−Sgrav[ ḡ+h]−Sgf[ ḡ,h]−Sgh[ ḡ,h,c̄,c]−4S[ ḡ,h,c̄,c]+Jaφa (4.30)

with super fields φ = (h, C̄ , C), which leads to one source Ji for each field in the source term.
Sgrav is the Einstein Hilbert action, or more generally, a diffeomorphism invariant action that
describes the gravitational interactions on the microscopic level. Furthermore we have the
gauge fixing term Sg f , a ghost action Sgh and a cutoff 4S. We emphasize the importance of
the functional dependencies of the different terms, and we stress that the dependence on
the background metric ḡ is only parametric.
Let us now write down the flow equation for the super-field φ = (h, C , C̄) within the
background gauge framework. The general derivation form of the flow equation (3.9) allows
us to write down the flow for the scale dependent effective action in quantum gravity with
the given super-field space without any further effort,

Γ̇k[ ḡ, g] =
1

2
Gab[ ḡ, g]Ṙab[ ḡ]

=
1

2
Tr
�

Γ(hh)
k + Rh

�−1
Ṙh− Tr

�

Γ(C̄C)
k + RC̄C

�−1
ṘC̄C , (4.31)

where the functional arguments are again the expectation values of the quantum fields,
but we dropped the < . > in a slight abuse of notation. We also recall the minus sign for
fermionic loops that is written explicitly in the slightly less condensed notation in the second
line. The additional factor of two for the ghost part arises from the fact that we have a GC̄C
ṘC̄C and a GCC̄ ṘCC̄ term in the flow.

The flaw in the background field flow equation

Despite the nice properties of the background field construction, there are several flaws and
drawbacks in the standard formulation as presented above. First of all, as dictated by the
principle of general covariance, the theory should be background independent. The explicit
introduction of the background field ḡ seems to spoil this property right away. A notion of
background independence can be gained in the sense that one introduces a non-dynamical
background metric ḡ as an intermediate step, but the result should be independent of the
specific choice of the background metric. In all truncated flows this is evidently not true,
and this is surely an open problem in FRG-gravity.
Another aspect is that the gauge invariance of the standard background effective action does
not imply independence of the gauge fixing condition. This drawback can be resolved by
means of the geometrical fibre bundle construction of the Vilkovisky-de-Witt effective action,
which is briefly discussed in subsection 5.6.2.
Moreover, there are further issues with the background field method in the context of flow
equations. We have already stated, that in the standard background field formalism, the flow
equation (4.31) is evaluated at vanishing fluctuation, i.e. at h= 0. However, the right hand
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side of the flow equation (4.31) depends on the the two-point correlators of the fluctuation
field h. It is important to note that the fluctuation correlation functions do not agree with
the background correlations, as the effective action depends on the dynamical field and the
background separately, i.e. Γ is not a functional of g = ḡ + h. As a consequence, we infer
that

δ2Γk[ ḡ,φ]
δh2

�

�

�

�

�

φ=0

6=
δ2Γk[ ḡ, 0]
δ ḡ2 , (4.32)

and the difference is controlled by the so called modified split-identities, [32,70,83,85,93–
95,97–99]. In other words, one cannot simply extract dynamical couplings from the flow
of the background field effective action at vanishing fluctuation fields, φ = 0. This directly
relates to the fact that the flow equation (4.31) for the effective action at φ = 0 is not closed
within the standard background field approach. In contrast to functional derivatives with
respect to the fluctuation, the functional derivatives with respect to the background field hit
the regulator, as R is a function of ḡ only. Again, this dependence can be quantified by a
consistency relation

Tr

�

G
δ3Γk

δ ḡδgδg
G ∂tR

�

= Tr

�

G

�

∂t
δ2Γk

δgδg

�

G
δR

δ ḡ

�

, (4.33)

similar to the split identities. The above relation follows without further assumptions from
the flow equation with a background field. For a derivation see e.g. [19, 97]. However,
in the standard flow (4.31) evaluated at h = 0, the above identities are not taken into
account and the flow receives unphysical regulator contributions. More importantly, these
unphysical contributions can spoil major physical properties such as confinement in Yang–
Mills theories, [96]. This shows that the above discussion is not only a technical issue, but
might have important consequences for observables.
We have already argued above that the background two–point function does not agree with
the two–point function of the fluctuation field. This trivially generalizes for higher order
correlators. As the result of the standard background field calculations is an effective action
Γ[ ḡ, h= 0], one cannot obtain any information about e.g. the graviton three–point function,
as the effective action is already evaluated at h= 0. This also implies that one does not have
access to the momentum-dependence of the graviton correlation functions.

We conclude that the background field approximation has several drawbacks that need to
be circumvented by more general constructions. This is the topic of the next chapters.
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CHAPTER 5

Dynamical Flows and Vertex Expansions in Quantum Gravity

5.1. Vertex expansion

We have seen in the previous section that despite some nice features, the standard back-
ground field method is not able to treat the difference between fluctuation and background
fields in a satisfactorily way. In order to tackle this problem, we assume that we can expand
the scale-dependent effective action in a functional power-series around a background field
configuration ḡ. Then, the effective action takes the form

Γk[ ḡ,φ] =
∑

n

1

n!
Γa1...an[ ḡ, 0]φa1

...φan
= Γk[ ḡ, 0] +Γ(h) ak [ ḡ, 0]ha +

1

2
Γ(2h) a1a2

k [ ḡ, 0]ha1
ha2

+
1

3!
Γ(3h) a1a2a3

k [ ḡ, 0]ha1
ha2

ha3
+

1

4!
Γ(4h) a1a2a3a4

k [ ḡ, 0]ha1
ha2

ha3
ha4

+
1

5!
Γ(5h) a1a2a3a4a5

k [ ḡ, 0]ha1
ha2

ha3
ha4

ha5
+ . . .+Γ(cc) a1a2

k [ ḡ, 0]ca1
ca2
+ . . . .

(5.1)

The first and second term are of order h0 and h1 and do not enter the RHS of the flow
equations for any Γ(n)k . A priori, the choice of the background field is completely arbitrary,
although the results in a truncated theory will surely depend on the specific choice. For
technical reasons we expand around a flat Euclidean background and choose ḡµν = 1µν as
the expansion point. This choice of the expansion point also restricts the number of higher
derivative operators which can contribute to the vertex functions of n-th order. For instance,
the most general form of the two-point function derives from an action which includes at
most O (R2) operators. All higher order terms vanish after two functional differentiations
and evaluation on a flat background. Terms of order R3 and higher contribute only to vertex
functions of order n> 2.

In the present work we use the systematic vertex expansion scheme as suggested in
(5.1). The hierarchy of flow equations that has been introduced in the last section has to be
truncated at finite order. This means that one can calculate the flow of a vertex function of
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given order n and use an ansatz for Γ(n+1)
k and Γ(n+2)

k . We will compute the full two-point
correlation functions of the fluctuation fields φ in section 5.3, and the three–point function
in section 5.7. The corresponding flows rely on the two- but also on the three-, four- and
five–point functions of the fluctuation fields. Hence, we also introduce approximations for
Γ(4)k and Γ(5)k that are consistent with the symmetries of the theory and have the correct
RG-scaling.

5.1.1. Structure of the vertex functions

First of all, we have to specify the tensor structures of the vertices. In the present work,
we use the classical tensor structures which arise from functional differentiation of the
Einstein-Hilbert action. The gauge-fixed Einstein-Hilbert action, including the ghost part, is
given by

S =
1

16πGN

∫

d4 x
p

detg (−R+ 2Λ)+

∫

d4 x
p

det ḡ c̄µMµν cν +

∫

d4 x
p

det ḡ
1

2α1
ḡµν FµFν .

In (2.2), GN is the Newton constant and Λ is the cosmological constant. The Faddeev-Popov
operator is given by

Mµν = ∇̄α(gµν∇α+ gαν∇µ)− ∇̄µ∇ν , (5.2)

and the linear gauge fixing conditions reads

Fµ = ∇̄νhµν −
1
2
∇̄µhνν . (5.3)

Moreover, in this work we restrict ourselves to Landau gauge, that is α1 → 0. Extended
ghost interactions are studied e.g. in [100,101].

The standard Einstein-Hilbert truncation amounts to replacing the gravitational coupling
and the cosmological constant in (2.2) by running couplings GN ,k and Λk. The vertex
functions are then given by functional derivatives of this effective action. However, this
approximation turns out to be inconsistent in the physical IR limit, which will be discussed
in detail later. We have also already mentioned that the basic Einstein-Hilbert truncation
does not disentangle the difference between a wave-function renormalization and a running
coupling, since the running of the latter is simply identified with the running of the former.
Note that in Yang-Mills theory such an approximation gives a deconfining potential of the
order parameter even in the confining regime, see [96,102,103]. In this case, it is also the
non-trivial momentum-dependence of the correlation functions that plays a crucial rôle for
capturing the correct non-perturbative physics. Additionally, in the UV limit, k→∞, the
full momentum-dependence of correlation functions is potentially relevant. In particular,
a derivative expansion implies p2/scale2 � 1 which relates to low energy physics. So far,
these momentum-dependencies have not been taken into account.

Consequently, we construct more general vertex functions that take into account the
above properties while keeping the classical tensor structures. The construction of such
vertex expansions of the scale-dependent effective action was introduced in [104] and
applied in the context of Yang-Mills theories. A similar truncation based on these ideas was
recently applied in quantum gravity to [78]. One guiding principle in this construction is RG
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invariance, i.e. invariance of the full effective action under a change of the renormalization
scale µ:

µ
d

dµ
Γ = 0 , (5.4)

where µ should not be confused with the running IR cutoff scale k, for a detailed discussion
see [32]. In addition to that, we parameterize the vertex functions, i.e. the coefficients in
the expansion (5.1) schematically as

Γ(n) = Z
n
2 Γ̌(n) (5.5)

with a µ-independent part Γ̄(n) and a µ-dependent wave-function renormalization Z(p2) of
the attached fields. The above construction implies the correct scaling behavior for the fields
according to

µ
d

dµ
φ = ηφ . (5.6)

In the present work we use a uniform wave function renormalization, Zh = Zhi
, for all

components of the graviton. Non-uniform Z-factors will be subject to a forthcoming publi-
cation [4]. The transverse-traceless (TT) part of the full propagator is now parameterized
as

Γ(2h)
TT (p

2) = Zh(p
2)(p2−M2)ΠTT(p) , (5.7)

with the transverse-traceless projector ΠTT(p), and an effective mass gap term M repre-
senting the momentum-independent part of the two-point function. We stress that this is
not a physical mass term for the graviton like it is present in theories of massive gravity.
As it is the background propagator that enters S-matrix elements, a massive graviton has
a constant term in the background field propagator that is not related appropriately to
the cosmological constant. The parameterization (5.7) above is for the fluctuation field
two-point function, and this object is in general nonzero for p 6= 0 in the same way as the
gluon acquires a non-perturbative mass gap in the infrared. Note that the Z-factors are
functions of the covariant Laplacian ∆, and therefore include infinitely many terms in a
covariant expansion of the effective action in powers of the Laplace operator. This is the
first RG study of quantum gravity taking into account this general momentum dependence
of the graviton and the ghost propagator. The fully momentum-dependent Z-factors lead
to a vertex construction with the required RG scaling properties. They also embody a
corresponding implicit, non-canonical momentum-dependence of the vertex functions, in
line with the co-linear singularity structure of vertex functions.

Apart from these momentum-dependent wave-function renormalization dressing factors,
the vertex functions acquire further scale-dependencies via quantum fluctuations. In a
most general setup, modulo overall prefactors, a graviton vertex is then written in a tensor
decomposition with dressing parameters as

Γa1...an
k (p1, ..., pn)∼

m
∑

i=1

gi,k(p1, .., pn)T
a1...an

i (p1, ..., pn) , (5.8)

where the m tensors T (n)i form a basis for the corresponding tensor space. Using a different
basis or complete set of tensors that span the tensor space leads to a redefinition of the
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5.1. Vertex expansion

generalized couplings gi,k(p1, .., pn). Note that these generalized couplings depend on the
RG-scale k as well as on the n-momenta pi. The exact, physical vertex function is then
obtained in the limit k −→ 0 and the physics of scales is then encoded in the dependence
of the couplings on the external momenta. However, a truncation in this generality is
beyond present technology. In fact, the investigations presented in this thesis are the first
approximations that take into account momentum dependencies in the FRG approach to
quantum gravity. All other truncations that can be found in the literature apply a reduction
to pure k-dependence of the couplings. For the propagator the full momentum dependence
is manageable and the calculation is presented in section 5.6. The first calculation of the
flow of the three-point vertex is presented in section 5.7 and its momentum dependence is
partially resolved.

In this thesis, the vertex functions are constructed as follows. We use the general RG-
consistent scaling (5.5) with fully momentum-dependent wave-function renormalizations.
Additionally, we allow for running parameters Λ(n)k which govern the scale-dependence of
the momentum-independent part of the vertex functions. This takes into account scaling
properties of the vertex functions that are crucial for the global flows structure, and has not
been considered before. The construction of the vertex functions also includes overall, k-
dependent prefactors G(n)k that are suitable generalizations of Newtons coupling. Henceforth
we will call these quantities gravitational couplings. These couplings are then introduced
with appropriate powers, such that in a perturbative limit, where all these couplings are
equal, one regains the Einstein–Hilbert action. The tensor structures are assumed to be the
classical ones. In summary, the vertex functions take the form

Γ(a1...an)
k (p1, ..., pn) =

n
∏

i=1

p

Zφi ,k(pi)
�

G(n)k

�
n
2
−1
T a1...an

k (p1, . . . , pn;Λ(n)k ) , (5.9)

with tensor structures

T a1...an
k (p1, . . . , pn) = S(a1...an)(p1, . . . , pn; GN = k2,Λ→ Λ(n)k ) , (5.10)

that arise from functional differentiation of the classical Einstein-Hilbert action S given in
(2.2). We left out the functional dependence on the fields. If we leave out the functional
argument, it is implicitly understood that the functional is evaluated at vanishing fluctuation
fields and on a flat background. The tensor structures T a1...an

k carry not only the canonical
explicit momentum-dependence of the vertex functions, but also the running parameters
Λ(n)k . They are defined by

T a1...an
k (pi = 0;Λ(n)k ) =:−2Λ(n)k T̃

a1...an(δµν) , (5.11)

where T̃ a1...an(δµν) is the tensor structure arising from functional differentiation of the
integral of the volume form with respect to the metric tensor. The factor of −2 in the
definition is introduced such that we recover the classical cosmological constant in the
Einstein-Hilbert action. We emphasize again that the consistent RG-scaling of the parameters
Λ(n)k is of major importance for the transition from the UV regime to the IR regime, as well as

for the stability of the IR regime. In this regime the Λ(n)k are determined via a self-consistency
analysis of the scaling behavior. Details will be presented in the corresponding results
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sections. Moreover, for most parts of this thesis we use only one gravitational coupling and if
not stated otherwise we identify G(n)k ≡ GN ,k. Hence, we are left with one, scale dependent
gravitational coupling GN ,k which we simply call Newtons coupling.

Such a vertex construction can also be obtained from a classical Einstein–Hilbert action
as follows. We write the full metric as g = 1+ ȟ, i.e. an expansion of the metric around a
flat background and a fluctuation field ȟ. The classical action (2.2) can then be expanded in
powers of this fluctuation in order to obtain classical vertices. Then one can use a redefinition
of fields according to

ȟ −→ h=
p

GN Zhȟ . (5.12)

Note that such redefinitions of the fields are always allowed. Dressing GN with a k-
dependence, Zh with scale and momentum dependence, and replacing Λ with Λ(n)k at
each order n in the expansion leads to vertices of the form (5.9).

An example for the above vertex construction is the scalar coefficient of the TT-two point
function of the graviton,

Zh(p
2)(p2− 2Λ(2)k ) , (5.13)

see also (5.7). The tensor structures for the general two-point function, from which the
above results via TT-projection, are given by (5.10) and arise from functional differentiation
of the Einstein-Hilbert action. Equation (5.13) and (5.7) entail that Λ(2)k is the effective
graviton mass gap,

M2
k =−2Λ(2)k . (5.14)

Once again, note that this mass term is neither the cosmological constant, nor a physical
graviton mass.

Finally we introduce dimensionless, scale-dependent couplings, to wit

g := GN k2 , µ := M2 k−2, (5.15)

λ := Λk−2 , λ(n) := Λ(n)k−2 , (5.16)

with n≥ 3 and Λ = Λ(1).

5.2. Locality

The functional renormalization group (with a momentum cutoff) is based on the idea of a
successive integration of momentum shells, or, more generally, spectral shells of spectral
values of the kinetic operator of the theory. In other words, it relies on the distinction of
small and large momentum or spectral modes. A functional RG step implements the physics
of momentum/spectral modes at a given RG scale k. Hence, all Wilsonian renormaliza-
tion group equations rely on the existence of local RG steps, inherently related to local
interactions.

Locality in momentum space implies in particular that the flow of a correlation function
or vertices at a given momentum scale k decays relative to the cutoff scale if all momenta
are taken to infinity, pi/k→∞. This means that the change of the correlation function at
some scale k compared to the norm of the correlator itself at this scale, must go to zero in
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the limit of infinite external momenta. For vertices this reads schematically

lim
p1,...,pn→∞

|∂tΓ
(n)
k (pi)|

|Γ(n)k (pi)|
= 0 , (5.17)

where a projection on the scalar coefficients functions of a single tensor structure is implied.
If the above condition is satisfied, the flow at some scale k for a n-point correlation function
does not change the behavior of the correlation function at momenta p� k, and local coarse
graining is well-defined. From a mathematical point of view, such local interactions are
necessary in lattice systems for the existence of the continuum limit and similar criteria are
necessary in mathematical formulations of the renormalization group [105,106]. However,
locality is not just a technical or mathematical issue, but is a very physical property of
the theory. Let us illustrate the physical meaning of the locality property (5.17) with
a very instructive example. Let us assume we calculate the running of a momentum-
dependent coupling, say the strong coupling constant αs,k(p2) from e.g. the three gluon-
vertex Γ(A,c̄,c)(p2). In an FRG-setting, we can then set boundary conditions at an arbitrary
initial scale k0. In the case of quantum chromodynamics, one usually sets the boundary
conditions in the perturbative regime, say at the mass of the Z-boson k0 = mZ . We can then
integrate the flow to smaller scales and eventually arrive at the mass scale mτ of the tau
lepton with a coupling αs,k=mτ(p

2). Let us assume we make a further infinitesimal RG step
in order to calculate αs,k=mτ−δk(p2). With a well-defined coarse graining procedure one
can then argue that we expect αs,k=mτ−δk(p2) ≈ αs,k=mτ(p

2) for momenta p2 � k2 = m2
τ.

However, if the locality condition for the corresponding vertex Γ(Ac̄,c)(p2) were not satisfied,
then this integration step at the tau-mass scale could influence significantly the coupling at
external momenta at the Z-mass scale, e.g

αs,k=mτ−δk(p
2 = m2

Z) = αs,k=mτ(p
2 = m2

Z) +∆ , (5.18)

with a possibly large correction term ∆, which is in sharp contrast to the physical picture of
Wilsonian renormalization. One can make this picture completely absurd if one formulates
the above argument for scales k and momenta p that are infinitely separated in momentum
space, i.e. |k− p|=∞

In summary, the relation (5.17) is a necessary requirement for local quantum field theories.
Giving it up would pose fundamental formal problems.

It is easily proven that (5.17) applies to the standard renormalizable quantum field theories
in four dimensions including non-Abelian gauge theories that involve momentum-dependent
couplings.

Locality in φ4 theory.

Let us consider first the illustrative example of standardφ4 theory. The flow of the propagator
in this theory involves just a tadpole diagram, see figure Figure 5.2. The propagator in the
the loop does not carry any external momentum and the vertex is momentum independent.

As a consequence, the flow is constant a C with respect to the external momentum p. The
two-point function itself, however is proportional to p2, and the locality property (5.17) is
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∂t
δ2Γ[φ]
δφ2 :

Figure 5.1.: The tadpole diagram that contributes to the flow of the propagator in φ4 theory. We
do not care about the pre-factors and the regulator here, since in this section we are
interested in power counting of momenta only.

∂t
δ4Γ[φ]
δφ4 :

Figure 5.2.: The diagram that contributes to the flow of the four-point function in φ4 theory. We
do not care about the pre-factors and the regulator here, since in this section we are
interested in power counting of momenta only.

trivially satisfied,

lim
p→∞

|∂tΓ
(2)
k,φ4(p)|

|Γ(2)
k,φ4(p)|

∼ lim
p→∞

C

p2 = 0 . (5.19)

It is also easily checked that the flow of the four point vertex is local. The scattering
diagram contributing to the flow of the four-point function is given in Figure 5.2.

In this case it is now important that all momenta p1, ..., p4 are taken to infinity. Then,
in this diagram, one propagator in the loop carries external momenta p2

1 and p2
2. The

two vertices in the diagram are again momentum-independent in this simple theory. The
four-point function Γ(4)

k,φ4 itself at a scale k is a constant Cλ and the ratio considered for
locality decays as

lim
p1,,...,p4→∞

|∂tΓ
(4)
k,φ4(pi)|

|Γ(4)
k,φ4(pi)|

∼ lim
p→∞

1
p2

Cλ
= 0 . (5.20)

At his point we mention a subtlety that will become relevant later on. If we consider a
configuration where two external momenta are zero, then there is one diagram in the flow
where e.g. the two legs “on the right of the diagram” carry zero-momentum. In this case,
momentum conservation enforces that both propagators in the loop are independent of
any external momentum. As a consequence, the flow and the correlation function itself are
entirely independent of the momentum. Therefore, the ratio ∂tΓ(4)/Γ(4) is a constant and
the locality property is spoiled. The reason is obviously rooted in the fact that there is a
diagram that as a finite external–momentum transfer in the loop.

Locality in Yang–Mills theory.

A less trivial example for a theory that has the locality property (5.17) is Yang–Mills theory.
In Figure 5.3 we show one diagram that contributes to the flow of the propagator, and
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∂t
δ2Γ[φ]
δA2 : , ...

Figure 5.3.: One of the diagrams that contribute to the flow of the propagator in Yang–Mills theory.
We do not care about the pre-factors and the regulator here, since in this section we are
interested in power counting of momenta only.

∂t
δ3Γ[φ]
δA3 : , ...

Figure 5.4.: One of the diagrams that contribute to the flow of the three–gluon vertex in Yang–Mills
theory. We do not care about the pre-factors and the regulator here, since in this section
we are interested in power counting of momenta only.

in Figure 5.4 one diagram that contributes to the flow of the three-gluon vertex. For the
other diagrams that contain a four–gluon vertex, the momentum counting gives the same
result, as can easily be verified by the reader. In Yang–Mills theory the three-gluon vertex is
proportional to p, and the two-point function is as usual quadratic in momentum.

Simple momentum counting then gives rise to the structure

lim
p→∞

|∂tΓ
(2)
k,Y M (p)|

|Γ(2)k,Y M (p)|
∼ lim

p→∞

pp
p2

p2 = 0 . (5.21)

for the flow of the two–point function and

lim
p1,,...,p3→∞

|∂tΓ
(3)
k,Y M (pi)|

|Γ(3)k,Y M (pi)|
∼ lim

p→∞

ppp
p2p2

p
= 0 . (5.22)

for the flow of the three–point function. It is then easy to see that the same holds also for
the flow of the four–gluon vertex. In summary, we conclude that in these two examples, the
locality property is a simple consequence of power–counting.

In turn, in a similar fashion it is easy to see that a φ4-theory with a momentum-dependent
coupling such as

∫

x
φ2∂ 2φ2 does not satisfy (5.17).

Loaclity for perturbatively renormalizable field theories.

It is now quite clear how one can formulate such power–counting arguments for general
field theories. Based on the insights gained from the examples for standard φ4 theory and
Yang–Mills theory, it is intuitively clear that this reasoning applies to all power–counting,
perturbatively renormalizable quantum field theories, i.e. for theories where the couplings
have only positive mass dimension,

[gi]≥ 0 . (5.23)
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∂t
δ2Γ[ ḡ,φ]
δh2

�

�

�

�

�

φ=0

(p2) =−
1

2
+

−2 =: Flow(2h)(p2)

∂t
δ2Γ[ ḡ,φ]
δcδc̄

�

�

�

�

�

φ=0

(p2) = +

=: Flow(cc)(p2)

Figure 5.5.: Diagrammatic representation of the flow of the second order vertex functions. The
dressed graviton propagator is represented by a double line, the dressed ghost propagator
by a dashed line, while a dressed vertex is denoted by a dot and the regulator insertion
by a crossed circle.

We have indeed proven that this statement is correct. The detailed analysis will be given
elsewhere.

5.3. Flow of the Graviton and the Ghost Propagators

In this section we investigate the general structure of the propagator in more detail. The
corresponding general flow equation is obtained by functional differentiation of (3.9), and
its diagrammatic representation is shown in Figure 5.5, where we have also introduced
the notation Flow(n) for the right-hand side of the flow equation of the n-point correlation
function.

The form of the flow equation for the two-point in terms of propagators and vertices for
a general super-field φ is derived in Appendix B and given by (I). Due to the generality,
this formula can be applied for a quantum field theory with arbitrary field content. In our
case we set φ = (h, c̄, c) and arrive at Figure 5.5. Note that we have omitted the tadpole
contribution with a vertex of two gravitons, an anti-ghost and a ghost, since this vertex
vanishes for linear gauge-fixing conditions. The building blocks of the equation are the

graviton propagator Gh =
�

Γ2h+ Rh

�−1
, which is a rank-four tensor, the ghost propagator

Gc =
�

Γ(c̄c)+ Rh

�−1
, which is a rank-two tensor and the vertex functions Γ(hc̄c)), Γ(3h) and

Γ(4h), which are rank-four, rank-six and rank-eight tensors respectively. Consequently, also
the flow equation for the graviton propagator is an equation for a rank-four tensor. The
propagators are obtained from an inversion of the two-point vertex function Γ(2). For the
ghost propagators the corresponding tensor space is spanned by the longitudinal and the
transverse vector-projectors PT and PL , and the inversion is almost trivial. For the graviton,
however, the tensor space is much more complicated. For the inversion and a simple
representation it is necessary to use an orthogonal basis of projection operators Πi with a
corresponding projector algebra. These projectors span the space of symmetric rank-four
tensors that depend on one external vector, in this case the momentum p. The six projectors
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Π(i)ab(p), i = 1, ..., 6, and the technical details about the vertices and the propagators as well
as their explicit representation can be found in [14,19]. With this projector basis we can
expand the two-point function as

Γ(2h)
ab (p) =

6
∑

i=1

ci(p)Π
(i)
ab(p) , (5.24)

with some coefficients ci that are real valued functions of the momentum. In this thesis all
regulators are proportional to the respective two-point function evaluated at zero mass,

Rab(p) = r
� p

k

�

Γ(2)ab

�

�

�

m=0
(p) , (5.25)

where r is a shape function that ensures the regulator properties (3.8) and depends on the
dimensionless, absolute value of the momentum. In terms of contractions of the propagators
and vertices the flow of the graviton two-point function can be written as

Flow(2h)
αβµν

=−
1

2

∫

R4

d4q

(2π)4
Γ(4h)
αβγτικµν

(p, q,−q,−p) (GṘG)ικγτhh (q)

+

∫

R4

d4q

(2π)4
Γ(3h)
αβγτικ

(p, q,−p− q) (GṘG)εδγτhh (q) Γ(3h)
µνεδρσ

(−p,−q, p+ q) Gικρσhh (p+ q)

− 2

∫

R4

d4q

(2π)4
Γhc̄c
αβγτ(p, q,−p− q)(GṘG)γδc̄c (q)Γ

hc̄c
µνρσ(−p,−q, p+ q)Gτρc̄c (p+ q) ,

where the first term corresponds to the tadpole diagram, the second term to the self-energy
with the pure graviton loop and the third one is the ghost contribution. The contractions
require extensive use of algebra. In fact, even deriving the four-graviton vertex is nothing
one should do by hand. For the higher order functional derivatives of the action and the
contraction of the vertices and propagators in the diagrams we use computer algebra based
on FORM [107] and XTENSOR [108]. In order to obtain beta-functions for the running
RG-parameters of the propagator, we have to project onto a tensor structure such that we
obtain a scalar expression. As already mentioned in the previous section, in the most general
case each tensor structure is equipped with its own scale-dependent RG-parameter and can
be obtained by contracting the flow with the corresponding projector. However, note that the
different tensor structures generically contain pure gauge degrees of freedom and therefore
a careful analysis of modified Slavnov-Taylor identities is a necessary accompanist of such
an approximation. In this thesis we work with a uniform wave-function renormalization Zh
for the graviton. We note that the transverse-traceless part of the graviton propagator is
independent of the gauge fixing parameter. Moreover, as e.g. classical gravitational waves
are purely transverse-traceless, this part is expected to carry the essential physical properties.
Additionally, throughout this thesis we use Landau-de Witt gauge. This means that the
overall gauge fixing parameter is taken to zero, α1 −→ 0. In principle, in a FRG-setting,
also the gauge-fixing parameters acquire a scale-dependence. However, it can be shown
that ∂tα1 ∼ α1. As a consequence, Landau gauge, i.e. α1 = 0 is a fixed point of the
renormalization group flow and we do not have to consider a flow equation for the gauge
fixing parameter.

49



5. Dynamical Flows and Vertex Expansions in Quantum Gravity

The scalar transverse-traceless flow is then obtain by projection from the tensor flow
according to

∂tΓ
(2h)
TT (p) =

Πab
TT(p)∂tΓ

(2h)
ab (p)

Πab
TT(p)ΠTT , ab(p)

. (5.26)

From now on, all expressions for the two-point functions relate to the TT-part and we
drop the corresponding subscript. A study with all independent tensor structures will be
presented elsewhere [4]. However, we stress that the transverse projection is with respect to
the external momentum p only. Hence, internal propagators in the loop carry the full tensor
decomposition. With the vertex parameterization presented in subsection 5.1.1, we can
construct the flow equation for the propagator explicitly. After contraction of the diagrams
and applying the TT-projection, the flow of the propagator takes the form

∂tΓ
(2h)(p2) = (p2+M2)∂t Zh(p

2) + Zh(p
2)∂t M

2 = Flow(2h)(p2) , (5.27)

with

Flow(2h)(p2) = GN Zh(p
2)

∫

d4q
∑

φ

�

∂t rφ(q
2) +

∂t Zφ(q2)

Zφ(q2)
rφ(q

2)

�

Iφ(p
2, q2, M2,Λ(n)) ,

(5.28)

where we have already dropped the subscript k, and if not stated otherwise, all generalized
couplings are scale-dependent. The index φ = (h, c) labels the contributions from the
gravitons and the ghosts respectively.

In the above equation, Iφ(p2, q2,Λ(n)) are scalar functions that arise from the contraction
of the diagrams and a subsequent projection onto the TT-structure. The explicit expressions
for these functions are given in Appendix C. The index n takes the values n = 2,3,4,
since the diagrams on the right-hand side contain propagators, three-point and four-point
vertices, and therefore there appear the corresponding coupling factors Λ(3),Λ(4) and the
gap-parameter M2. We also note, that according to the RG-consistent vertex construction
Equation 5.9, the left-hand side is independent of the gravitational coupling, while the
right-hand side is proportional to G. Moreover, since the regulator is proportional to Z ,
one can easily convince oneself that the left-hand side is proportional to Zh(p2) and that
wave-function renormalizations with loop momentum q in the argument appear only as a
ratio Ż(q2)/Z(q2). On the left hand-side there is one term proportional to Zh(p2), which
then drops out, and another one proportional to Żh(p2) that again combines into a ratio
Żh(p2)/Zh(p2). Consequently, the wave-function renormalization Z(p2) does never enter a
flow equation alone, but always in the combination Ż/Z and the entire dependence on the
wave-function renormalizations and their derivatives in equation (5.27) is encoded in the
anomalous dimension ηh(p2) of the graviton and the anomalous dimension ηc(p2) of the
ghost field,

ηh(p
2) :=−

∂t Zh(p2)
Zh(p2)

, (5.29)

ηc(p
2) :=−

∂t Zc(p2)
Zc(p2)

. (5.30)
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This structure has important technical consequences, as will be discussed below. For the
ghost sector, we apply the same strategy and arrive at the much simpler equation

p2∂t Zc(p
2) = Flow(cc)(p2) . (5.31)

Explicit expressions can be found in Appendix C.
At this point we emphasize again, that this is the first calculation in quantum gravity that

takes into account the full momentum dependence of the graviton propagator and thus goes
far beyond any Einstein-Hilbert truncation. The full momentum dependence is stored in the
momentum dependent dressing Z(p2).

In summary, with Figure 5.5 and (5.9) the flows of the two-point functions Γ(2), i.e. the
right-hand sides of the flow equations, depend on

�

ηh(p
2),ηc(p

2), M2, GN ,Λ(3),Λ(4)
�

, (5.32)

while the left-hand sides contain just
�

ηh(p2),ηc(p2), M2
�

. It is therefore obvious that the
equations for the propagators are not closed. This is exactly a reflection of the fact that
the flow of the n-point function depends on the m-point functions up to order n+ 2. There
are several ways for closing the equation, one of them being the identification of different
RG-parameters in a specific manner. Another one is to push the order of the vertex expansion
to higher order. Such possibilities will be discussed in the next subsection below.

5.3.1. Different Closures and Truncations

We have seen that due to the structure of the coupled hierarchy, i.e. the infinite tower of
flow equations, the coupling constants of the three- and four-point function appear in the
flow of the propagator, but not on the left-hand side of the equation. Thus, one cannot
obtain beta-functions, i.e. equations for the scale-evolution of these couplings, from the flow
equation for Γ(2) alone.

We start with a basic truncation that will be generalized subsequently. This enables us to
trace back the effects of different improvements of the approximation.

In section section 5.5 we present a closure that resembles an Einstein-Hilbert truncation,
but is based on the flow of the propagator. Still, it is based on an identification of the
couplings such that one retains only the two Einstein-Hilbert couplings G and Λ and equation
(5.5) gets closed.

In section 5.6 we improve this approximation in several directions. First, we allow
for a general momentum dependence of the propagator by including the momentum-
dependent wave-function renormalization as presented in the general setup presented above,
subsection 5.1.1, section 5.3. Second, we resolve the momentum independent parts Λ(n) of
the vertices in an approximation to be explained below, and use an additional equation for
the gravitational coupling G from geometrical flow equations in order to close the hierarchy.

Finally, we calculate the next level of the hierarchy by means of the flow equation for the
graviton three-point function. This is presented in section 5.7 and section 5.8.

Having specified such a closing procedure, it is left to project the flow of the functional(s)
onto the running of the scale-dependent couplings. We refer to this procedure as specification
[109]. Analyzing and defining such procedures is subject to the next section.
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5.4. Specification

The aim of a specification is to relate the truncated flow of vertex-functions to running
couplings. In general, this ambiguous due to truncations, as we will argue below. The
problems with different projection procedures is of course known to the community for a
long time. We used the freedom of specification in [1] in the context of quantum gravity and
an extensive study in ultracold-atoms is worked out in [110]. A specification is usually done
with a projection in momentum space, e.g. a derivative expansion up to some finite order
around some expansion point p?. Since the flow itself is in general a complicated function of
momentum, the resulting flow equations depend on the truncation order and the expansion
point. Consequently, the specification procedure is not unique. It is not only the expansion
point p? that is ambiguous, but one can even project different orders at different momenta.
Another possibility is a finite difference at two subtraction points, which are completely
in our hands. However, by including the full momentum dependence one can find unique
solutions. This will be discussed in subsection 5.6.1. For all truncations in momentum
space, a projection should be chosen such that the full momentum dependence is well
approximated. Independent of the theory, the task of finding an appropriate specification
is present in all truncated FRG-calculations, as the full momentum dependence is a priori
not known. Moreover, it usually appears problem-specific in different incarnations. We now
demonstrate the issue at the example of a generic propagator in a derivative expansion. For
this purpose, it is convenient to work entirely in momentum space. Moreover, for notational
simplicity we work with a single scalar field, however, generalization to arbitrary field
content is straightforward. Quite in general, the objects entering the flow of the two-point
function can then be paramterized as

Γ(2)k (p) = Zk(p
2)
�

p2+M2
k

�

Γ(3)k (p1, p2) = f3
�

p1, p2, g3,i,k(p1, p2)
�

Γ(4)k (p1, p2, p3) = f4
�

p1, p2, p3, g4,i,k(p1, p2, p3)
�

, (5.33)

where we have already used momentum conservation in order to reduce the number of
momenta the vertex functions depend on. The paramterization of the two-point function is
exactly as described in the vertex expansion in subsection 5.1.1, i.e. the function Zk(p2) is a
generalized wave-function renormalization that serves as a fully momentum dependent dress-
ing function and the constant part of the propagator is characterized by a scale-dependent
mass term M2

k . The three and four-point function are arbitrary functions of the momenta
(p1, p2) and (p1, p2, p3) respectively. Additionally, they may depend on scale-dependent
couplings gi,k that are again functions of momentum. In simple truncations, the ansatz for
the three and four point vertex may look much simpler, e.g. being momentum-independent
and retaining only one scale-dependent coupling g4,i,k(p1, p2, p3) ≡ g4,k as for the most
archaic ansatz for a standard φ4 model. However, in theories with derivative couplings,
these vertex functions do depend on momentum even on tree-level, with quantum gravity
and and Yang–Mills theory being prominent examples. Inserting these vertex functions into
the flow of the propagator, which is given in full generality in equation (B) and for pure
quantum gravity in Figure 5.5, yields an equation where both sides of the equation depend
in a general fashion on the momentum p. Since this equation is then an integro-differential
equation for Zk(p), quite frequently one approximates the momentum dependence. The first
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study with full-momentum dependence in quantum gravity will be presented in this thesis
in section 5.6 and can be found in the corresponding publication [2]. Studies of the full
momentum dependence in the FRG-setting in Yang–Mills theory and QCD are presented e.g.
in [111–116].
The most common approximation scheme is the derivative expansion [117]. In this approach
the fully momentum-dependent wave function renormalization is expanded in powers of the
momentum according to

Zk(p
2) =

∑

n
Z2n,kp2n = Z0,k + Z2,kp2+ Z4,kp4+ ... . (5.34)

The above series is then usually truncated at some finite order n0 and the propagator in
momentum space is then a polynomial of degree 2n0 + 2 in p. Note that setting Z0,k ≡ Z0 ≡
const. and Z2n,k = 0 for n≥ 1 and setting all momenta in the higher order vertex functions
to zero then corresponds to the local potential approximation (LPA).
Truncating the above series at any finite order n0 and inserting them into the flow equation
for the propagator, one is left with a polynomial in p of order 2n0 + 2 on the left-hand
side and an arbitrary function of momentum on the right-hand side. Even if the vertex
functions are also polynomials in p, the right hand-side is a general rational function of
p. Consequently, the truncated flow equation is not closed with respect to the momentum
structure. Strictly speaking, it is not even an equation any more. It follows immediately,
that the coefficients in the derivative expansion are not uniquely determined. Therefore,
any procedure that isolates the running of the scale-dependent can be used as a definition
for extracting the beta-functions and they will give in general different answers. In an LPA’
approximation, i.e. with a scale dependent Z0,k and all higher orders set to zero, the left hand
side is quadratic in momentum and one can project onto the running of the scale-dependent
quantities from Γ(2) via the definition

∂t Z0,k :=
∂ 2

∂ p2 Flow(2)(p)
�

�

�

p=p?
(5.35)

and
∂t

�

Z0,kM2
k

�

:= Flow(2)(p)
�

�

�

p=p?
− p2

?∂t Z0,k . (5.36)

The simplest projection on the scale-dependent quantities on the left-hand-side is achieved
by expanding the latter around p? = 0. This choice has the big advantage, that is allows
for an analytical treatment if it is combined with an optimized regulator. However, the
above two quantities ∂t Z0,k and ∂t

�

Z0,kM2
k

�

can just as well be obtained with p? = k, i.e.
by redefining (5.35) and (5.36) via evaluation at p = k instead of p = 0. Here it appears
another subtlety, since at p? 6= 0, it actually matters if one uses two derivatives with respect
to p or one derivative with respect to p2 since

∂ 2 f (p)
∂ p2 =

1

2

∂ f (p)
∂ (p2)

+ 4p2 ∂
2 f (p)
∂ (p2)2

. (5.37)

Hence, the two different derivatives agree at p = 0 up to a proportionality factor that cancels
since it appears on both sides of the flow equation. However, at p 6= 0 they differ. As already
mentioned above, one can also define the two quantities at different p?,1 and p?,2. Such
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a construction will be used in section 5.5. A generalization of the above concept of using
derivatives is the finite difference projection for the part quadratic in momentum. The
corresponding definition is

∂t Z0,k :=
Flow(2)(p2)

�

�

�

p=p?
− Flow(2)(p2)

�

�

�

p=p•

p2
? − p2

•
. (5.38)

The derivative definition is then regained in the limit p• −→ p?.

5.5. Truncation I: Einstein-Hilbert type Propagator

In this section, we present the flow of the graviton propagator in a Einstein–Hilbert type of
setting. This means that the scale-dependence of the effective action is entirely determined
by two running couplings, namely Newtons constant and the cosmological constant. The
scale-dependent gravitational coupling Gk is constructed from the graviton wave-function
renormalization Zh,k, and the momentum-independent parts of the vertex functions are

all identified with the cosmological constant, Λ(n)k ≡ Λk. This procedure closes the equa-
tions (5.27) and (5.31). Additionally, in this approximation one works with a momentum-
independent graviton wave-function renormalization Zh,k and ignores the scale dependence
of the ghosts. This reduction based on identifying Λ(n) and relating the gravitational cou-
pling Gk to Zh,k is used in almost all truncations in RG-gravity calculations so far. The first
publications that disentangle this structure are [2,79]. The first presentation of this idea
in exactly the setup presented above in the context of gravity can be found in [118], and
was used subsequently in [72,78]. In reduced truncations, i.e. in Einstein-Hilbert type of
truncations, the graviton wave function renormalization and the running Newton coupling
are related via

Gk :=
GN

Zh,k
. (5.39)

Again, we emphasize that the wave-function renormalization depends only on the RG-scale
k and not on the physical momentum p.

Reducing the general vertex expansion in this manner amounts to an Einstein–Hilbert
truncation since in this setting all vertex functions are simply obtained by functional differ-
entiation of the classical, gauge fixed Einstein-Hilbert action (2.2) with the replacements

GN −→ Gk , Λ −→ Λk . (5.40)

For the sake of completeness, we display again the basis of the Einstein–Hilbert truncation
in full glory,

Γk[ ḡ; h, C̄ , C] =
ZN ,k

16πGN

∫

p

|g| (−R(g) + 2Λk) +
Zh,k

2αk

∫

p

| ḡ| ḡµν Fµ( ḡ, h)Fν( ḡ, h)

−
p

2

∫

p

| ḡ| C̄µMµ
ν( ḡ, h)Cν . (5.41)

Note that in the above truncation the ghost term is not dressed with a scale-dependent
wave-function renormalization. As a consequence, the ghost anomalous dimension vanishes
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5.5. Truncation I: Einstein-Hilbert type Propagator

in this approximation. In the next section we will also include not only a scale-, but also
momentum-dependent ghost wave-function renormalization. Although we use such an
Einstein–Hilbert effective action in this section, we emphasize that this calculation is still
quite different from the standard background field Einstein–Hilbert setup, as we aim to
calculate the two-point function of the fluctuation field. This is in sharp contrast to the
background field approximation which is usually used in the literature and described in
subsection 4.2.1. It is clear that the fluctuation field propagator cannot be obtained from the
background effective action.

With the definition (5.39) of the coupling one immediately infers that

∂t G

G
=−

∂t Zh

Zh
= ηh . (5.42)

As usual, we suppress the argument k that indicates the scale-dependence in order to simplify
the notation and G, or its dimensionless version g are scale-dependent. In terms of the
dimensionsless Newton coupling the above equation can be related to the beta-function of
Newtons coupling as

∂t g = (2+ηh)g . (5.43)

Again, we see that with this closure the scale evolution of Newtons coupling is obtained from
the propagator and strictly speaking it loses its precise notion as a coupling. In a similar
fashion we write for the cosmological constant

∂tλ=−2λ+ηλ , (5.44)

where we introduced the ‘anomalous dimension’ of the cosmological constant ηλ ≡ (∂tΛk)/k2.
From (5.43) and (5.44) one can see that the fixed point condition (∂t g,∂tλ) = (0,0) is
satisfied if the canonical running due to the mass dimension of GN and Λk is exactly counter-
balanced by the running induced by quantum fluctuations. In case of an UV fixed point,
this scaling is approached in the limit k→∞, thus leading to divergence-free couplings at
arbitrarily small distances. For the explicit computations we choose an optimized regulator
of the form [20,32,119]

Rk

�

q2
�

= Γ(2)k

�

�

λ=0 r
�

q2/k2
�

r(z) = (1
z
− 1)θ(1− z) ,

(5.45)

which allows for a largely analytical access. It is now left to apply some specification
procedure, see section 5.4, to the flow of the propagator (5.27) in order to project onto the
flow of the couplings. In the spirit of the general discussion of specification prescriptions,
we will use the freedom of projecting onto the running coupling in order to optimize the
approximation. This means that we try to capture the most important effects of the mo-
mentum dependence of the flow. The parameter Λ(2) =−M2/2, which is in this truncation
identical to the cosmological constant Λ, is defined as the momentum independent part of
the propagator. Hence it is natural to apply the specification

∂t
�

ZhΛk
�

=−
1

2
Flow(2h)(p)

�

�

�

p=0
. (5.46)

For the projection on the running of Newtons coupling, the situation is less clear. In order to
estimate the best approximation to the full momentum dependence, we first investigate the
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Figure 5.6.: Dependence of the flow on the external momentum p. In this plot for the parameter
values λ= 0 and η(q) = 0 in the loop integral.

right-hand side of the flow equation as a function of the external momentum p2. This is not
only necessary for choosing an appropriate specification, but it is also the object of interest
in the discussion of the locality with its defining property (5.17).

5.5.1. Momentum Dependence and Locality of the Propagator

In this section we prove the locality property (5.17) for the graviton propagator. This can be
done completely analytically. In order to do so, we have to investigate Flow(2h)(p2) in the
limit p2 −→∞. The is then compared to the behavior of the two point function Γ(2h)(p2)
itself at the same scale k. Let us first apply the power–counting arguments as presented
in section 5.2 to the flow of the graviton two–point function. In a vertex construction as
defined in subsection 5.1.1, the two–point function itself behaves for large momenta simply
as p2. The flow Flow(2h)(p2) contains three diagrams, see Figure 5.5. The three and the
four graviton vertices in these diagrams both have terms that are proportional to p2. In the
tadpole diagram there is one four–graviton vertex and only one internal propagator, which
carries no external momentum. In the self energy there are two three–graviton vertices and
one internal propagator that carries an external momentum. As a consequence, by power
counting arguments one would expect that limp→∞ Flow(2h)(p2)∼ p2 and therefore that the
ratio Flow(2h)(p2)/Γ(2h)(p2) goes to a constant for large momenta. This result would imply
a violation of locality, (5.17). We now investigate the limit (5.17) by explicit calculation.
For the sake of definiteness, we use the optimized regulator (5.45), but we stress that the
results of this section are independent this choice! The investigation of locality boils down
to the properties of the flow for large momenta. First we evaluate the flow numerically and
display the result at the parameter value λ = 0 and without anomalous dimension under the
loop integral in Figure 5.6.

The behavior of the flow shows a highly non-trivial momentum-dependence. First, in
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5.5. Truncation I: Einstein-Hilbert type Propagator

the cutoff-regime p ® k, it is very different from the p2 dependence of the bare two-point
function. It displays a minimum at p ≈ k and any derivative expansion must be taken with
great care. This observation will influence the choice of specification in the next section.
Moreover, we see that the the flow tends to a finite value for large momenta, in contrast to
the power counting analysis above, which suggests a divergence proportional to p2. As a
consequence, the flow of the propagator satisfies locality in very non-trivial way. From the
technical point of view, the root of locality in this case is a cancellation of leading terms in
the large p limit of the diagrams on the right-hand side of the flow equation. As we will see,
this cancellation takes place after angular integration.

In what follows, we will display the asymptotic analysis as a showcase for later calculations
in some detail.

In the limit of large momenta, we can solve the flow analytically by means of asymptotic
expansions. In order to do so, we consider equation (5.28), which shows the structure of
the flow. The relevant part for this analysis is then the function Iφ(p2, q2, M2,Λ(n)), which
arises due to the contractions of the propagators and vertices in the diagrams. By splitting
into the individual contributions, we can write this function as

Iφ(p
2, q2, M2,Λ(n)) = (tadpole)T T + (self-energy)T T (5.47)

with

(tadpole)T T =
a(p, q, y)

�

q2(1+ rk(q)− 2Λk
�2 (5.48)

and

(self-energy)T T =
b(p, q, y)

�

p2+ q2+ 2pq y
��

q2(1+ rk(q))− 2Λk
�2 �(p2+ q2+ 2pq y)(1+ rk(p+ q))− 2Λk

�

,

(5.49)

where a and b are polynomials in all their arguments. These polynomials can be read off
Iφ(p2, q2, M2,Λ(n)). There are several important aspects to note in the above equations.
First, such loop-integrals are most conveniently evaluated in four–dimensional spherical
coordinates, and we can identify the angle θ between p and q with the second inclination
angle θ2 and we set y = cos(θ2). The integral measure is then given by

d4 x = drdφdθ1dθ2r3sin(θ1)sin
2(θ2) . (5.50)

Second, since the loop integral is proportional to θ (k2−q2), the integral over the absolute
value q is bounded by k. As a consequence we can set the distributions θ(k2 − q2) in the
denominator to zero. Moreover, since we are interested in the limit p2 −→ ∞ we will
consider an asymptotic expansion for large momenta in the usual sense that one applies
a transformation p −→ 1/p and then an expansion in ε := 1/p around ε = 0. In such an
expansion, the θ functions θ (k2− (q+ p)2) can be set to zero as p >> k and the argument
of these θ -functions is then always negative. As a result, we are left with a rational function
in p,

lim
p→∞

Flow(2h)(p2) = lim
p→∞

∫ 1

0

∫ 1

−1

dqdy
p

1− y2
P1(p, q, y,λ)
P2(p, q, y,λ)

(5.51)
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where P1,2 are polynomials in p with degree

deg[P1]− deg[P2] = 2 , (5.52)

which is obvious from the explicit form of Iφ(p2, q2, M2,Λ(n)) given in appendix Appendix C,
or much simpler by the power counting arguments presented above. We write the above
equation in such generality, since for any locality analysis and the corresponding asymptotic
expansion the flow takes the form (5.51). In the limit of large momenta, we take into
account only the leading terms in p in the denominator on the right hand-side of (5.51) and
arrive at

Flow(2h)(p2)
p→∞
∼

1

(1− 2λ)

∫ 1

0

∫ 1

−1

dqdy
p

1− y2�(5q3(−1+ 4y2)p2+ 15q4(−1+ 4y2)p

+q5C(λ, y)
�

,
(5.53)

with some irrelevant momentum-independent constant C(λ, y) and we have not displayed
the part proportional to ηh. The term of order p is antisymmetric in y , but is integrated over
the symmetric domain y ∈ [−1, 1] and therefore drops out. This is merely a manifestation
that the flow can be written as a function of p2, i.e. after integration the odd powers of
p drop out. The angular integral of the term proportional to p2 can easily be carried out
analytically by using an elementary trigonometric substitution y = sin(u) to yield

∫ 1

−1

dy
p

1− y2(−1+ 4y2) = −
1

4
sin(2u)−

1

32
sin(4u)

�

�

�

�

sin−1(1)=π
2

sin−1(−1)=−π
2

= 0 . (5.54)

As a result, the only term left in (5.53) is the term order p0, i.e the constant term. Hence,
the flow is a constant with respct to p in the limit of infinite momenta, and after elementary
integration the exact asymptotic is given by

lim
p→∞

Flow(2h)(p2) =
−20+ 42λ− 48λ2+ (1+λ)ηh

192π2(1− 2λ)2
. (5.55)

Since Γ(2h)(p2)
p→∞
= p2, locality is a trivial consequence,

lim
p→∞

Flow(2h)(p2)

Γ(2h)(p2)
= 0 . (5.56)

5.5.2. Beta functions

Based on the results for the momentum-dependence of the flow, depicted in Figure 5.6, we
have already stated, that the right-hand side of the flow equation is very different from a
function f (p2) ∼ p2 + const, which is the form of the propagator in the Einstein–Hilbert
truncation. Therefore, a derivative expansion around p? = 0 and around p? = k will lead
to very different results. In fact, as one can see from the shape of the function, that even
the sign will be different for these two expansion points. In order to find an optimized
value for p?, we recall that the loop-integral on the right-hand side of the flow equation is
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peaked for momenta q ≈ k, meaning that the the flow is sensitive to physics and momentum
fluctuations of the order of the cutoff. Accordingly, the propagator should resolve this
domain in momentum space sufficiently precise. This improves not only the consistency of
the flow, but it is also of great importance for assigning a physical meaning to the cutoff scale
in the spirit of the k-microscope, see chapter 3. Due to these arguments and the structure of
the propagator, we choose p? = k for the projection on the wave-function renormalization,

∂t Zh = ∂
2
p Flow(2h)(p)

�

�

�

p=k
. (5.57)

Together with (5.46), this constitutes a bi-local projection in momentum space. The virtue
of our set-up is that the running of couplings is sensitive to the global (momentum) behavior
of the theory as encoded in its two-point function. In addition, the flow of the cosmological
constant can be obtained completely analytically. Within this Einstein–Hilbert type truncation,
the projection defined above and equation (5.27) we arrive at the explicit expressions

∂t Zh = GZh

∫

R4

d4q

(2π)4
∑

φ

�

∂t rφ(q
2) +

∂t Zφ
Zφ

rφ(q
2)

�

∂ 2

∂ p2 Iφ(p
2, q2,Λ(n) ≡ Λ)

�

�

�

p=k
(5.58)

and

∂t
�

ZhΛk
�

=−
1

2
GZh

∫

R4

d4q

(2π)4
∑

φ

�

∂t rφ(q
2) +

∂t Zφ
Zφ

rφ(q
2)

�

Iφ(p
2 = 0, q2,Λ(n) ≡ Λ) ,

(5.59)
where we have used M2 =−2Λ in Einstein–Hilbert truncations and φ = (h, c) indicates the
pure graviton and the ghost contributions. In this approximation with the identification of
couplings, it is of course redundant to use both, Zh and G, as they are related by (5.39).
One can also use a formulation based on G only. For convenience and in order to make
contact with the standard notation used in the literature, which uses (5.43), we formulate
everything in terms of the graviton anomalous dimension by rewriting the above as

ηh =−G

∫

R4

d4q

(2π)4
∑

φ

�

∂t rφ(q
2)−ηφ rφ(q

2)
�

∂ 2
p Iφ(p

2, q2,Λ(n) ≡ Λ)
�

�

�

p=k
(5.60)

and

∂tΛ = Ληh−
G

2

∫

d4q
∑

φ

�

∂t rφ(q
2)−ηφ r(q2)

�

Iφ(p
2 = 0, q2,Λ(n) ≡ Λ) . (5.61)

In the above equations there are further simplifications possible. First, we use the same
regulator for the graviton and for the ghost, rh = rc . Moreover, as we use a constant, scale-
independent wave-function renormalization for the ghost, its scale derivative vanishes and so
does the anomalous dimension ηc . The graviton wave-function, in turn, is scale-dependent
but is independent of the momentum. As a consequence, ηh can be pulled outside the
integral on the right-hand side and appears as a pre-factor of the latter. We end up with an
algebraic equation for the graviton anomalous dimension. Due to the optimized cutoff, the
integrations in (5.61) can be carried out analytically, whereas the projection with p? = k for
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Figure 5.7.: The functions A1(λ) (solid red line) and A2(λ) (dashed blue line) in the flow of ηh
(5.62). In the limit λ→ 1/2 both functions behave as (1− 2λ)−3. The function A2 has a
minimal value of −13.6 at λ≈ 0.46.

the anomalous dimensions makes the structure of the integrand difficult to handle. Typically,
only derivative expansions with p? = 0 allow for purely non-numerical treatment 1. Hence,
the final beta-functions are semi-analytical. Solving these integrals and solving algebraically
for ηh, and formulating everything in terms of the dimensionless quantities (5.16), the beta
functions (5.43) and (5.44) take the final, integrated form

ηλ = ηhλ+ g
4(1+ 2λ)2− 9

12π(1− 2λ)3
−ηh

12− 45λ− 40λ2

180π(1− 2λ)3
+

1

π
,

ηh =
A1(λ)g

1− A2(λ)g
− g

237
p

3− 160π

240π2 .

(5.62)

The last terms originate from the ghosts, and the functions A1(λ) and A2(λ) are known
numerically and plotted in the relevant regime in Figure 5.7. With equation (5.43), the
beta-function for Newtons coupling finally reads

∂t g = 2g + g2

�

A1(λ)
1− A2(λ)g

−
237
p

3− 160π

240π2

�

. (5.63)

It is important to note that due to the dependence of the regulator on Zh, the anomalous
dimension appears on the right-hand-, as well as on the left-hand side of the flow equation
and therefore we are left with the algebraic equation for ηh. As a consequence, we get a term
proportional to 1/(1− g) in the anomalous dimension, which in turn enters the beta-function
for g linearly. This term can then be expanded in a geometric series. As a result, βg can
be written as a power series in g, and we see that the functional renormalization group
equations even in an Einstein–Hilbert truncation induce a resummation to infinite order
in the coupling. We can organize the above result for Newtons coupling in a perturbative

1In principle one can give also closed expressions for p? = k,however, the result is immensely complicated an
completely useless
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Figure 5.8.: Fixed points and phase diagram in the (g,λ)-plane. Arrows point from the UV to the IR,
red lines and points mark separatrices and fçixed points, black lines signal a divergence
of the flow. The inset magnifies the vicinity of C .

fashion by writing
A1(λ)

1− A2(λ)g
=
∞
∑

n=0

A1(λ)
�

A2(λ)g
�n , (5.64)

as a geometric series.

5.5.3. Fixed points and phase diagram.

In this subsection we describe the strucutre of the phase diagram that is generated by the RG
flows (5.43) and (5.44) with (5.62). As we have already explained, the phase diagram is the
collection of trajectories in the (g,λ) plane. Each initial condition (g(k0) = ginitial,λ(k0) =
λinitial) fixed at some RG-scale k0 is then in one-to-one correspondence to a trajectory. We
focus on the physical regime g > 0. The global structure of this phase diagram displays four
connected fixed points A, B, C and D in the physical regime, see Figure 9.1. The fixed point
A at (gUV

N ∗,λ
UV
∗ ) 6= (0,0) denotes the asymptotically safe UV fixed point whose coordinates

and scaling exponents are given in Tab. 5.1.

gUV
N ∗ λUV

∗ λUV
∗ × gUV

N ∗ θ1 θ2

no ghosts 1.95 0.11 0.21 3.09+ 2.00 i 3.09− 2.00 i
with ghosts 2.03 0.22 0.45 8.38 2.60

Table 5.1.: Fixed point values (gUV
N ∗,λ

UV
∗ ), their product, and the critical exponents θ1,2 of the UV fixed

point without and with the ghost contributions.

It is characterised by two UV relevant real eigenvalues, which turn into a complex
conjugate pair in the absence of ghost field fluctuations. A complex conjugate pair of
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5. Dynamical Flows and Vertex Expansions in Quantum Gravity

eigenvalues, as found in many previous studies, can be lifted via additional interactions
e.g. the inclusion of higher derivative interactions. For our setup, we conclude that the
degeneracy in the UV scaling of the Ricci scalar and the vacuum energy is already lifted by
the ghost sector. This fully attractive UV-fixed point fulfills all requirements in order to form
the basis for the UV-completion of quantum gravity in this approximation. A comparison of
the fixed point values in different approaches can be found in Figure 5.9. One can see that
in this approach they take values that are larger compared to other calculations. However,
the fixed point values have no physical meaning, and the results obtained in the standard
background flow and also in the f (R) calculations are not related to dynamical quantities.

g∗ λ∗ λ∗× g∗ θ1 θ2

background flow 0.89 0.16 0.14 2.00 -2.70 i 2.00 + 2.70 i
bimetric flow 0.70 0.21 0.15 3.6 -4.3 i 3.6 + 4.3 i

geometrical flow 1.49 0.05 0.08 2.55 + 1.46 i 2.55 - 1.46 i
f (R) 0.97 0.12 0.12 2.50 -2.34 i 2.50 +2.34 i

this approx. 2.03 0.22 0.45 8.38 2.60

Figure 5.9.: Fixed point properties of the different flows in comparison. The result for the background
flow is the one with the optimized regulator, see [24]. The results for bi-metric trunca-
tions can be found in [85]. The geometrical approach is presented in [79]. The fixed
point values stated for f (R) gravity are the results obtained in a polynomial expansion
up to order R34 in [66]. The standard background flow in Einstein–Hilbert and the f (R)
calculations stated above are not related to dynamical quantities.

The fixed point B at (g IR
N ∗,λ

IR
∗ ) = (0, 0) is the well-known repulsive Gauss ian IR fixed point.

It corresponds to classical gravity in the IR with a vanishing dimensionless cosmological
constant. The fixed point D at (g IR

N ∗, 1/λ
IR
∗ ) = (0,0−) is IR attractive in both couplings and

governs infrared gravity with a negative vacuum energy. In addition we find a non-trivial IR
fixed point C at

(g IR
N ∗,λ

IR
∗ ) = (0,1/2) , (5.65)

that is connected to the UV fixed point via smooth RG trajectories. It is a distinctive property
of the present approach that it admits an infrared completion of quantum gravity for positive
cosmological constant. Naively, one would expect classical RG-scaling in the IR fixed point
regime [120], for signatures thereof see [20,121]. Here, we find an asymptotic IR behaviour
with non-classical scaling exponents ∆g ≈ 5.5 and ∆(1−2λ) ≈ 1.8. It implies an asymptotic
weakening of gravity, see also [79]. A more detailed analysis of the infrared scaling will
be presented in a more general context in the next chapter. In this setup, the non-classical
scaling of the propagator is a consequence of strong IR effects. Non-classical scaling in
the deep infrared might have important consequences for cosmsology and astrophysics.
However, we will see in the next chapter that this non-classical scaling is likely to be a
truncation artefact and disappears in more sophisticated approximations.

It is important to stress that physical short-distance initial conditions in the vicinity of the
UV fixed point A leads to trajectories in the regions Ia and Ib. In region Ia all trajectories end
into the new IR fixed point C with large anomalous dimensions for the graviton propagator;
in region Ib the trajectories end in the IR fixed point D with classical scaling for the graviton
propagator. These two regions are separated by the IR instable separatrix leading to the
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5.6. Truncation II: Fully momentum-dependent Propagator and the geometrical Coupling

Gaußian FP at B. In turn, all other trajectories terminate in singularities and have no classical
regime. Hence, the strong-gravity region is shielded by the separatrices AD (gN≤33.5) and
AC (gN≤5.4) from regions which admit an extended semi-classical regime. The fact that
a strong-gravity regime is shielded dynamically by the RG flow is also present in previous
global UV-IR studies [79,122], and thus appears to be a generic feature of asymptotically
safe gravity.

5.6. Truncation II: Fully momentum-dependent
Propagator and the geometrical Coupling

In the last section we have presented the flow of the propagator in an Einstein–Hilbert
type of truncation, which can be obtained by a specific identification of couplings in the
general vertex expansion introduced in subsection 5.1.1. In this section we will improve
this approximation in several ways. First, we will compute the full momentum-dependence
of the propagator by taking into account the wave functions renormalizations Z(p2), i.e.
they are arbitrary functions of the Laplacian. Second, we avoid the identification of the
coupling and the wave-function renormalization. The latter is obtained from the propagator,
while for the former we use a running coupling obtained with geometrical flow equations,
see subsection 5.6.2 and [79], which serves as the coupling related to the three- and four-
point function. Additionally, we resolve the constant parts Λ(n) of the vertex functions.
Their running in the limit µ −→ −1 is highly non-trivial and is constrained within a self-
consistency analysis, subsection 5.6.3. As we have already mentioned in the presentation of
the vertex construction, the fluctuation field propagator has a non-vanishing mass-gap, which
is described by the parameter −2Λ(2) = M2. Once more, we stress that this is not a physical
mass term for propagating gravitons that can be detected e.g. via coherent oscillations as
gravitational waves. Therefore, a non-vanishing mass term of this type does not spoil the
property of a force with infinite range. In summary, we solve coupled equations for the
system

�

ηh(p
2),ηc(p

2), M2, GN ,Λ(3),Λ(4)
�

, (5.66)

where the constant parts Λ(3),Λ(4) are assumed to differ from −1
2

M2 only in the vicinity
of the pole of the propagator. The justification for this approximation and its validity is
discussed. In the region where they acquire a non-trivial behavior, the scaling is derived
from a self-consistency analysis of the hierarchy of flow equations. In the following, we
derive the flow equations for the set of couplings (5.66).

5.6.1. Integral equations for the anomalous dimensions and flow of the
gap parameter.

The full-momentum dependence of the propagator that appears in our parameterization as
wave-function renormalizations Zφ(p2) that are arbitrary functions of the momentum. As a
consequence, the projection of the functional flow as well as the solution of the resulting
equations requires new techniques that are quite different from the derivative expansions
and the specifications presented in section 5.4. Once again, the starting point is the general
equation (5.27). As we have already discussed in section 5.3, due to the structure of the
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5. Dynamical Flows and Vertex Expansions in Quantum Gravity

regulator, which is proportional to the wave-function renormalization, all the Z-factors in
the equation for the propagator combine into anomalous dimensions ηh(p2). We can then
write the flow as

ηh(p
2) =

∂t M
2− Flow(2h)(p2)

Zh(p2)

p2+M2 . (5.67)

In Appendix D, we argue that under the assumption of a finite anomalous dimension, the
flow of the gap paramter should be projected from an on-shell condition p2 =−M2, i.e. at
the pole of the propagator, or equivalently at the zero of the two-point function. This leads
to

0= ∂t

�

Γ(2h)(−M2)
�

= ∂t Γ
(2h)(p2)

�

�

�

p2=−M2
− ∂p2Γ(2h)(p2)

�

�

�

p2=−M2
∂t M

2

= ∂tΓ
(2h)(−M2)− Zh(−M2)∂t M

2 . (5.68)

Solving for the running of the mass parameter, we get

∂t M
2 =

∂tΓ(2h)(−M2)
Zh(−M2)

. (5.69)

One of the goals of this work is to evaluate the phase diagram of quantum gravity and
its fixed point structure. For this reason, it is convenient to derive β- functions for the
dimensionless parameters. Then, the above equation translates into

∂tµ=−2µ+
∂tΓ(2h)(−M2)
k2Zh(−M2)

=: βµ[ηh,ηc](g,µ,λ(3),λ(4)) . (5.70)

We remind the reader the µ is just dimensionless version of M2. The explicit form of the
β -function is given in Appendix C. It is clear from (5.28) that the β -function for the running
mass shows a functional dependence on the anomalous dimensions, as the latter appears as
ηφ(q2) in the integral over the loop momentum q. From a mathematical perspective, the
functional is therefore a linear integral operator and the equation is a differential-Fredholm
integral equation of the first kind.

Substituting this equation (5.69) for the running of the gap parameter in equation Equa-
tion 5.67, we obtain

ηh(p
2) =−

∂tΓ(2h)(p2)
Zh(p2)

−
∂tΓ(2h)(−M2)

Zh(−M2)
p2+M2 [ηh,ηc] . (5.71)

Note that all isolated Z- factors drop out, see (5.27). The same procedure can be applied for
the ghost sector. Since there is no ghost mass, we trivially arrive from (5.31) at

ηc(p
2) =−

∂tΓ(cc)

p2Zc(p2)
[ηh,ηc] . (5.72)
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The explicit form of eqs. (5.71) and (5.72) is given in Appendix C. These equations for the
anomalous dimensions constitute a coupled set of linear integral equations. More precisely,
they are a coupled set of inhomogeneous Fredholm integral equations of the second type.
This structure is reflected in the functional dependence on ηφ as for the running gap
parameter, i.e. the functional on the right-hand side of eqs. (5.71) and (5.72) is a Fredholm
integral operator. In summary, we have reduced the general flow of the propagator to set
of two coupled integral equations,eqs. (5.71) and (5.72), that in turn are coupled to a
differential equation, (5.69). In order to solve this system, we rewrite the integral equation
for the graviton anomalous dimension in order to bring it into standard form. With pretty
elementary manipulations of (5.27) we arrive at

ηh(p
2) = f (p2) + g

∫

R4

d4q

(2π)4
K
�

p, q,µ,λ(n)
�

ηh(q
2) , (5.73)

where the integral kernel is given by

K
�

p2, q2,µ,λ(n)
�

=
1

p2+µ
rh(q

2)
�

Ih(p, q,µ,λ(n))− Ih(−µ, q2,µ,λ(n))
�

(5.74)

and the inhomogeneity reads

f (p2) =
g

p2+µ

∫

R4

d4q

(2π)4
�
∑

φ

(∂t rφ(q
2))
�

−Iφ(p, q,µ,λ(n)) + Iφ(−µ, q,µ,λ(n))
�

−ηc(q
2)
�

Ic(p
2, q2,µ,λ(n))− Ic(−µ, q2,µ,λ(n))

�

�

, (5.75)

where we have now formulated everything in terms of dimensionless quantities without
introducing new symbols for these objects. For instance, in a slight abuse of notation, in the
above equation p denotes the dimensionless momentum instead of the dimensionful one as
used in the previous equations.

Solutions of inhomogeneous Fredholm integral equation of the second kind

Fredholm integral equations of the second kind are a well-known topic in pure, as well
as in applied mathematics and there are several methods in order to solve such equations.
Mathematical literature that analyzes these equations in great detail can be found e.g. in
the beautiful textbooks [123, 124]. A straightforward numerical solution is the so called
Nystroem method that is based on discretization of the integral operator with quadratures
on N points. By doing so, one obtains Riemann sums that reduce to a system of N linear
equations. Moreover, if there exist a solution to equation (5.73), it can be shown by the
general theory of such equations that it is unique and the discretized version converges
towards this solution in the limit N −→ ∞. Another method that comes along with less
numerical effort are iterative solutions based on the resolvent formalism and the Liouville-
Neumann series. The basic idea of this approach is as follows. In order to get a feeling for
such integral equations, we observe that for g = 0, the unique solution to (5.73) is trivially
given by the inhomogeneity f (p2). Hence, if g is small in some sense, it seems reasonable
that f (p2) is at least a good zeroth order approximation to the full solution ηh(p2), i.e.
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ηh(p2)≈ ηh,0(p2)≡ f (p2). In a first iteration step, we substitute ηh,0(q2) for ηh(q2) under
the integral on the right hand-side of the integral equation (5.73),

ηh,1(p
2) = f (p2) + g

∫

R4

d4q

(2π)4
K
�

p, q,µ,λ(n)
�

ηh,0(q
2) . (5.76)

In this spirit we can construct iteratively a sequence
�

ηi(p2)
�

i∈N with

ηh,i+1(p
2) = f (p2) + g

∫

R4

d4q

(2π)4
K
�

p, q,µ,λ(n)
�

ηh,i(q
2) . (5.77)

The convergence properties depend on the kernel K and the coupling constant g. We
observe that due to the regulator structure, the kernel K is proportional to rh(q2), see (5.74).
Therefore, the kernel is integrable with respect to the loop-momentum q. For the sake of
simplicity, we will assume in the following an optimized regulator r(q2)∼ θ (1− q2), where
as already stated q is the dimensionless momentum. The discussion can be generalized
straightforwardly to arbitrary regulators. With an optimized regulator we write K(p, q) =:
θ(1− q2)Ǩ(p, q) As a consequence the integral in the Fredholm equation is defined on the
domain [0,1] and in all equations K is substituted by Ǩ . Moreover, we define the angular
averaged kernel

〈Ǩ〉Ω(p, q,µ,λ(n)) :=

∫

S3

dΩ
(2π)4

Ǩ(p, q, x ,µ,λ(n)) , (5.78)

where dΩ is the canonical measure on the three-sphere. The kernel 〈Ǩ〉Ω can be normed, in
particular it exists its 2-norm with respect to the first two arguments

�

�

�

�〈Ǩ〉Ω
�

�

�

�

2 :=

 

∫ 1

0

∫ 1

0

dq dp
�

�

�〈Ǩ〉Ω(p, q,µ,λ(n))
�

�

�

2
!1/2

(5.79)

It can then be shown that the sequence
�

ηi(p2)
�

i∈N converges towards the full solution, i.e.

lim
i→∞

ηh,i(p
2) = ηh(p

2) , (5.80)

if the kernel is bounded as
�

�g
�

�

�

�

�

�〈Ǩ〉Ω
�

�

�

�

2 < 1 . (5.81)

The solution can then be written as a Liouville-Neumann series according to

ηh(p
2) = f (p2) + g

∫

R4

d4q

(2π)4
R
�

p, q,µ,λ(n), g
�

f (q2) , (5.82)

with the resolvent kernel

R
�

p, q,µ,λ(n), g
�

=
∞
∑

i=1

g i−1Ki

�

p, q,µ,λ(n)
�

, (5.83)
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where Ki are the iterated kernels given by

Ki

�

p, q,µ,λ(n)
�

=

∫

R4

∫

R4

...

∫

R4

d4q1

(2π)4
d4q2

(2π)4
...

d4qi−1

(2π)4
K
�

p, q1,µ,λ(n)
�

K
�

q1, q2,µ,λ(n)
�

×... × K
�

qi−1, q,µ,λ(n)
�

. (5.84)

By truncating the resolvent series at some finite order i0, one obtaines an approximate
solution to the integral equation. If the bound (5.81) is satisfied, the Liouville-Neumann
series converges for any smooth initial choice ηh,0. One can also choose zeroth iterations
that are different from the inhomogeneity f (p2). It is clear that convergence properties
depend on the initial choice. For instance, if one has to correct guess for the full solution,
and uses this as a starting point for the iteration, then one finds ηh,0 = ηh,1 and one can
conclude that the exact solution has been found. Additionally, there are improved iteration
schemes, that increase the radius of convergence significantly. In [125], it has been proven
that it exists a parameter c ∈ R, such that the iteration prescription

ηh,i+1(p
2) = (1− c) f (p2)+ cηh,i(p

2)+ (1− c) g

∫

R4

d4q

(2π)4
K
�

p, q,µ,λ(n)
�

ηh,i(q
2) (5.85)

has a radius of convergence that is larger than the one of the standard Lioville-Neumann
series, which is obtained from the improved iterations with c = 0.

5.6.2. The running gravitational coupling g

As we have already mentioned, we use geometrical flow equations for GN in order to close
the system of differential equations. This approach allows an inherently diffeomorphism-
invariant construction of flows in quantum gravity, see [126,127], and is based on the fiber
bundle construction introduced by Vilkovisky and de–Witt, [128–132]. It has been applied
to the phase structure of quantum gravity in [79], where evolution equations βg for the
dynamical coupling g, and β ḡ for the background coupling ḡ are derived. In the present
work we utilize the fact that the geometrical approach is directly related to the present
approach in a flat background. In particular, both approaches disentangle the background
from the fluctuations.

The geometrical approach to Wilsonian flows is based on the observation that the back-
ground effective action, which is constructed with a linear split ḡ+h of the field, depends on
the gauge fixing condition. Vilkovisky has shown that even in a scalar field theory without
gauge-symmetry, the background effective action is not invariant under field reparameter-
izations. Field reparameterizations should be seen as diffeomorphisms on configuration
spaceM , i.e. on the manifold of fields. It can then be shown that the gauge dependence
of the background effective action in the presence of gauge symmetries is a reminiscent of
this reparameterization variance. The root of the problem manifests itself in the functional
integro-differential equation

eΓ[φ] =

∫

Dϕe−S[ϕ]+ δΓ
δφa (φa−ϕa) , (5.86)

for the effective action. The difference (φa − ϕa) is a difference of vectors at different
points on the manifold and is geometrically not a well-defined object. As a result, the
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effective action is not a well-defined scalar field on configuration space. The problem is
solved if the problematic difference is replaced by a functional σ[φ,ϕ] that transforms
as a vector with respect to φ and as a scalar with respect to ϕ. The field σ[φ,ϕ] can
then be interpreted as a tangent vector in the tangent space TφM . The construction of
this field requires a connection on M , the so-called Vilkovisky-DeWitt connection. For
details, we refer the reader to the literature given above. Here we just want to state that
in the resulting definition of the effective action, all non-diffeomorphism invariant parts
drop out. Moreover, the relation between the full metric g and the background metric
ḡ is no longer linear, but is a series in the diffeomorphism invariant part of σ[φ,ϕ] and
involves the Vilkovisky-de-Witt connection in the contributions beyond leading order. In the
linear approximation the difference g − ḡ then reduces to the graviton field in the standard
background field formulation.

The derivation of the beta functions for the coupling in [79] can be modified in order
to incorporate the fully momentum-dependent anomalous dimensions computed in the
present work. As a result, we are able to take into account directly effects of arbitrarily
high powers of derivatives in the equations for βg ,β ḡ . The anomalous dimensions enter
the geometric flow equations in very much the same way as in (5.27). However, the wave-
function renormalizations in [79] are momentum-independent and can be pulled outside
the integrals. This is not the case in this improved set-up. Entering the equations with the
momentum-dependent ηφ(p2) calculated via (5.71) leads to a modification on the level of
the threshold functions Φ. These modified threshold functions are given in Appendix C.

With these ingredients, the general structure of the β-function for the dynamical gravita-
tional coupling is given by

βg[ηh,ηc]
�

g,µ
�

= 2g + Fg[ηh,ηc]
�

g,µ
�

, (5.87)

and the one for the background coupling takes the same form with g being replaced by ḡ
and an individual loop contribution F ḡ[ηh,ηc]

�

ḡ,µ
�

. The functionals Fg and F ḡ are given
in Appendix C. Note that the flow equation of the background coupling depends on the
dynamical coupling via the anomalous dimensions, while the converse does not hold.

5.6.3. The couplings Λ(n)

In subsection 5.1.1 we have introduced an approximation which takes into account scale-
dependent couplings Λ(n) for the momentum-independent part of each vertex function. For
the second order, we have identified Λ(2) as the graviton mass M2, see (5.14). In the present
section we discuss the vertices with n≥ 3.

The Einstein-Hilbert truncation, which identifies all Λ(n) with the cosmological constant Λ,
is ill-defined in the limit µ→−1. As we will see in subsection 5.6.6, this limit is approached
by physical RG trajectories in the deep IR. This regime is crucial to understand the global
phase structure of Euclidean quantum gravity: the couplings Λ(n) play a distinguished
role, as the related singularities arise from the momentum-independent parts of the vertex
functions. In order to cure the inconsistencies of the Einstein-Hilbert truncation, we deduce
the singularity structure of the couplings Λ(n) with n ≥ 3. The full details are given in
Appendix E. Essentially, the idea is to expand the right-hand sides of the flow equations for
the n-point functions in powers of 1+µ and taking into account the singularities of highest
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order. Thus, for µ→−1+ we use the ansatz

lim
µ→−1+

λ(n) ∼ (1+µ)αn , (5.88)

for n ≥ 3. We proceed by inserting this ansatz in the flow equations for Γ(nh) and analyze
the generic loop integrals to leading order in the singularities that arise in the limits under
consideration. Consistent scaling of both sides of the flow equations for arbitrary n leads to
the relations

αn = αn−2+α4− 1 , (5.89)

for n≥ 5 and
α4 ≤ 2α3− 1 . (5.90)

The parameter α4 obeys the bound
α4 < 0 . (5.91)

The value of the parameters α3 and α4 cannot be obtained from the divergence analysis
alone. They are dynamically determined by the flow of the three- and four-point function.
This highlights again that the standard Einstein-Hilbert approximation with λ(n) =−µ/2 is
inconsistent in the IR, and the non-existence of the IR fixed point cannot be inferred from
such an approximation. It is also important to stress that the qualitative features of the
phase diagram do not depend on the specific choice of α3 and α4, see subsection 5.6.7 and
Appendix F. In turn, the quantitative behaviour does only mildly depend on variations of
these two parameters. Their flows will be studied in a forthcoming publication [4].

Still, we can estimate α3 based on the saturation of the inequality (5.90). Moreover,
the constant parts of the vertex functions are parametrically suppressed far away from the
singular regime. This entails that there it is viable to identify Λ(n) = Λ(2) as done in all other
approximations used in the literature. From these conditions one obtains α3 ≈−1/9. More
details are given in Appendix F. In Appendix G it is shown that

λ(n) =−
µ

2
(1+δλ(n)) (5.92)

is consistent with all constraints, where δλ(n) parametrizes the deviation from the Einstein-
Hilbert approximation. The latter is modeled by

δλ(n) = sgn(µ)χ

�

�

�

�

µ

1+µ

�

�

�

�

−αn

, (5.93)

with χ a parameter to be tuned to match the aforementioned conditions.

5.6.4. The cosmological constant

It is left to discuss the role of the cosmological constant Λ in the present construction.
Written on the right hand side of the field equations, it can be interpreted as an additional
source for gravity. In the classical limit, the quantum equations

δΓ
δφ
= Jext , (5.94)
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with an external source Jext, reduce to the classical equations of motion. Hence, it is natural
to define the cosmological constant from the one-point function, i.e. we identify Λ(1) = Λ
as the vacuum energy. More precisely, with the vertex construction (5.9), the one-point
function takes the form

δ

δh
Γ

�

�

�

�

g=δ
∼
Λ
p

GN

p

Zh . (5.95)

Note that the one-point function does not enter the flow of higher order vertex functions.
Consequently, the cosmological constant decouples from the β-functions for Newtons con-
stant, the effective mass and the set of integral equations for the anomalous dimensions.
On the other hand, these quantities obviously determine the running of the cosmological
constant, i. e. the β- function for the dimensionless cosmological constant λ := Λ/k2 is of
the form

λ̇= βλ[ηh,ηc](g,λ,µ)

=−2λ+ g
�

A[ηh,ηc](µ) +λB[ηh,ηc](µ)
�

.
(5.96)

The explicit form of this flow equation is given in Appendix C.

5.6.5. Regulators and stability

In order to test the quality of our truncation, we will use several regulators and vary the
parameters χ and αn introduced before. As regulators, on the one hand we use the class of
exponential regulators given by

ra(x) =
1

x(2exa − 1)
, (5.97)

where x = p2/k2 is the dimensionless squared momentum. In our analysis, we scanned the
parameter range a = {2,3, 4,5, 6}. On the other hand, the Litim regulator, [133], is used,

ropt(x) =
�

1

x
− 1
�

θ(1− x) , (5.98)

where θ(x) is the Heaviside step function. Note that this regulator is optimized within
the leading order derivative expansion but not beyond, see [32,133]. Also, with the semi-
optimized regulator the divergence analysis for the Λ(n) is slightly different from the one
performed in Appendix E, but leads to similar results.

We also have scanned different values for the parameters χ and α3 in (5.93), and we have
restricted our investigation to the case of equality in (5.90). It turns out that the results do
not depend on the specific choice of α3. Note that the parameter χ is bounded from above
as otherwise the parametric suppression of the δλ-contribution away from the singularity is
lifted and the UV regime is changed. In Table E.1 in Appendix F, a table is given where the
change of the UV fixed point values under a change of α3 and χ can be ascertained.

5.6.6. Results

In this section we present our results. First, the global phase diagram is discussed. Subse-
quently, its UV and IR properties will be examined in more detail. In doing so, we will also
make contact with older results. If not stated otherwise, all results and pictures are obtained
with the specific choice of the exponential regulator r4.
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5.6.7. The phase diagram

The phase diagram for the dynamical couplings (g,µ) is depicted in Figure 5.10. We find
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Figure 5.10.: Fixed points and global phase diagram in the (g,µ)-plane. Arrows point from the IR
to the UV, red solid lines mark separatrices while dots indicate fixed points. The black
dashed line is a specific trajectory that connects the UV fixed point with the non-trivial
IR fixed point, which is analyzed further in the text. In analogy to [1], region Ia
corresponds to trajectories leading to the massless IR fixed point, whereas region Ib
leads to the massive IR fixed point. Region II is not connected to the UV fixed point,
and thus physically irrelevant.
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Figure 5.11.: The momentum-dependence of the anomalous dimensions of the graviton (left) and
the ghost field (right) for different regulators at the respective UV fixed points. Only a
weak dependence on the parameter is observed. The difference between optimized and
exponential regulators is due to the fact that the modes are not integrated out at the
same scale. From the fact that the quadratic external momentum terms cancel in the
flow of the graviton [1], ηh goes to zero in the limit of large external momenta. The
same is not true for the ghosts, where the anomalous dimension goes to a constant.
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an attractive UV fixed point with coordinates

(gUV
∗ ,µUV

∗ ) = (0.614,−0.645) , (5.99)

and complex critical exponents θ1,2 = (−1.268± 3.009i). This provides further non-trivial
evidence for the asymptotically safe UV structure of quantum gravity. We also find the
built-in repulsive Gaussian fixed point at (gGauss

∗ ,µGauss
∗ ) = (0,0), and an infrared fixed

point at (g IR
∗ ,µIR

∗ ) = (0,∞). The most striking feature of the present phase diagram is the
confirmation of the attractive IR fixed point

(g IR
∗ ,µIR

∗ ) = (0,−1) , (5.100)

which has already been found in [1], where it corresponds to a de-Sitter fixed point with
λ = 1/2. This fixed point implies the global existence of trajectories connecting the UV fixed
point with a finite IR fixed point. The present result is a clear confirmation that this IR fixed
point is not a truncation artifact, but rather a physical property of the theory.

Importantly, it turns out to be an IR fixed point describing classical gravity. Physical initial
conditions lead to globally defined trajectories that connect the non-trivial UV fixed point
with the physical IR fixed point (g IR

∗ ,µIR
∗ ) = (0,−1).

Note also that all UV-complete trajectories are also IR-complete, and end in either the
massive or massless IR fixed point. In addition to this structure, there is a repulsive fixed
point at (grep

∗ ,µrep
∗ ) = (0.250,−0.905). This fixed point was also found in [79]. All essential

features do not depend on the choice of the regulator r(x), and there are only minor
quantitative changes induced by variations of the latter. The variation of the UV fixed point
values under a variation of the vertex model parameters χ,α3, (5.93) is given in Table E.1
in Appendix E.

5.6.8. UV regime

a 2 3 4 5 6 opt

µ∗ -0.637 -0.641 -0.645 -0.649 -0.651 -0.489
g∗ 0.621 0.622 0.614 0.606 0.600 0.831
g∗ 0.574 0.573 0.567 0.559 0.553 0.763
λ∗ 0.319 0.316 0.316 0.318 0.319 0.248
EVs -1.284 -1.284 -1.268 -1.255 -1.244 -1.876

±3.247i ±3.076i ±3.009i ±2.986i ±2.974i ±2.971i
-2 -2 -2 -2 -2 -2

-1.358 -1.360 -1.360 -1.358 -1.356 -1.370

Table 5.2.: UV fixed point values and eigenvalues for different regulator parameters a, and the
optimized regulator, with parameter values α3 =−0.1 and χ = 0.1.

Let us further investigate the properties of the UV fixed point. First of all, the existence
of the fixed point does not depend on the specific choice of the regulator. Moreover,
it is attractive in all four directions investigated here. Furthermore, even though the
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critical exponents of the dynamical quantities (g,µ) are complex, the ones of the physical
background couplings (g,λ) are real. This was also found in [1] and [78]. Notice that
the eigenvalue corresponding to g is exactly -2, which can be immediately inferred from
the specific structure of the background coupling flow equation. Also, the eigenvalue
corresponding to λ is inherently real, as its flow equation is a polynomial of order one in the
cosmological constant. All these points are summarized in Table 5.2.

The connection to earlier results is drawn in Table 5.3. The present results support the
qualitative reliability of the Einstein-Hilbert type approximations in the UV regime.

here [20] [1] [79] [84] [78] Table 5.7
g∗ 0.763 1.178 2.03 0.966 1.055 1.617 1.684
λ∗ 0.248 0.250 0.22 0.132 0.222 -0.062 -0.035

g∗λ∗ 0.189 0.295 0.45 0.128 0.234 -0.100 -0.059

Table 5.3.: Comparison of the UV fixed point coordinates with earlier results for the optimized cutoff.
Parameter values are α3 = −0.1 and χ = 0.1. Methods of the references (in order):
background approximation [20], bi-local projection [1], geometric approach [79], bi-
metric approach [84]. The mixed approach is applied in [78] and is also discussed in the
last paragraph of this subsection, Table 5.7.

The couplings as functions of the RG scale k along one selected trajectory (marked as a
dashed black line in the phase diagram) are shown in Figure 5.13. One can see how the
couplings tend to their finite fixed point values in the UV. The IR regime will be discussed
below.

A further quantity of interest is the anomalous dimension. The momentum-dependence of
both graviton and ghost anomalous dimension is given in Figure 5.11 for all used regulators
at their respective UV fixed point. As one can see, only quantitative differences occur.
The graviton anomalous dimension is of the order of 0.5, whereas the ghost anomalous
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Figure 5.12.: The momentum dependence of the graviton and the ghost anomalous dimension with
the exponential regulator with a = 4 on the one hand, and the optimized regulator
with the cutoff-rescaling (5.101) on the other.

dimension is of the order of −1.5. The difference between exponential and optimized
regulators is due to the fact that the regulators integrate out modes at different scales.
Consequently, the effective cut-off scale is regulator-dependent. A formal discussion of
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scale-optimization can be found in [32], and is applied in the context of finite temperature
Yang-Mills theory in [115]. For instance, for the exponential cutoff ra(x) with a = 4, we
find that if one rescales

kopt→ 1.15 kopt , (5.101)

the momentum-dependence of the anomalous dimension with a optimized regulator matches
the one obtained with an exponential regulator, see Figure 5.12. In general, we observed that
the (TT-part of the) graviton anomalous dimension is positive, however there are indications
that this does not remain so when the other degrees of freedom of the graviton receive an
individual anomalous dimension [4]. On the other hand, the ghost anomalous dimension is
strictly negative, as was already found in [134] and [135]. We also note that the anomalous
dimensions are not the leading contribution to the flow. This means that by setting η(q2) = 0
on the RHS of the flow (5.28), one captures all qualitative properties dicussed here. Hence,
the anomalous dimensions only constitute correction effects while the leading term on the
RHS of the flow equations is the one proportional to ṙ. In the ghost sector this pattern is
even more pronounced, and dynamical ghost effects on the phase diagram and the running
couplings are very small.

Derivative expansion: We close this section with a discussion of the stability of the
(covariant) derivative expansion which is the standard approximation scheme used so far.
The first calculation of the graviton anomalous dimension has been presented in [1] within
the FRG. There, the flow is projected at p = k. In the work [78] a derivative expansion
around p = 0 is performed. The full results in the present study show a strong momentum
dependence of the correlation functions as well as their flows in the cut-off regime with
p2/k2 ® 1. Such a strong momentum dependence of the flows either requires higher orders
in the derivatives or a non-local expansion that works-in the information of momenta close
to zero and those close to p2/k2 = 1, see [1,110,115].

Note that there is a strong cut-off dependence of the graviton anomalous dimension at
the UV fixed point for small momenta p2/k2 ® 0.05, see Figure 5.11. The occurance of this
regime is presumably related to the mass-scale set by the fixed point value of µ. Here we
investigate its impact on the value of ηh in the leading order of the derivative expansion.
We also consider a variation of the expansion point. We also use the present results with full
momentum-dependence in order to investigate the reliability of the derivative expansion.
There, the computation of the anomalous dimension requires

∂p2 Γ̇(2h)
k

Z
=−η+

Ż ′

Z
(x +µ) +

Z ′

Z
(2µ+ µ̇) , (5.102)

e.g. at vanishing momentum, x = p2/k2 = 0. On the other hand, the momentum derivative
of η gives the relation

Ż ′

Z
=−η′−

Z ′

Z
η . (5.103)

Inserting (5.103) in (5.102) leads to

∂p2 Γ̇(2h)
k

Z
=−η−η′(x +µ) +

Z ′

Z

h

(2−η)µ−η x + µ̇
i

. (5.104)
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a 2 3 4 5 6 opt

ηder 0.46 0.48 0.51 0.54 0.56 0.51

Table 5.4.: Anomalous dimension ηder in the lowest order derivative expansion derived from the full
flow.

a 2 3 4 5 6 opt

ηder 0.44 0.50 0.58 0.66 0.74 0.61

Table 5.5.: Full anomalous dimension ηder in the lowest order derivative expansion derived from the
full flow.

In the lowest order derivative expansion, that is Γ(2h)
k = Zk(p2 + m2), the anomalous

dimension ηder is given by (minus) (5.104) evaluated at x = 0. Moreover, the lowest order
implies Z ′ = 0 and we simply arrive at

ηder = η(0). (5.105)

For the regulators used in the present work this leads to anomalous dimensions listed in
Table 5.4. However, the full lowest order derivative expansion takes into account the
Z ′-terms on the right hand side. At vanishing momentum there is the relation

Z ′

Z

�

�

�

�

x=0
=

1

2
η′
�

�

�

�

x=0
. (5.106)

This is easily derived from

Zk(p
2) = Zk0

(p2)exp

(

−
∫ k

k0

dk̄

k̄
η

k̄
(p2)

)

, (5.107)

where both k and k0 are in the scaling regime. The latter condition implies that Z ′/Z =
Z ′

k̄
/Zk̄(0) and η′ = η′

k̄
(0) are independent of k̄ ∈ [k0 , k]. Then we conclude that at x = 0

we have
Z ′k
Zk
=

Z ′

Z

k2

k2
0

+
1

2
η′
�

1−
k2

k2
0

�

, (5.108)

for all k, k0 in the scaling regime and we are led to (5.106). Hence, in the scaling regime
(with µ̇= 0) the full anomalous dimension in the derivative expansion at x = 0 is given by

ηder = η
�

1+
1

2
η′µ

�

, (5.109)

leading to Table 5.5. These results seem to be much more stable then the approximation
(5.105).

To complete the present reliability analysis of Taylor expansions in momenta p2, we also
investigate expansions about a general expansion point p = αk. We present results for the
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α 0 0.25 0.5 0.75 1 1.15

ηder 0.57 0.50 0.39 0.25 0.074 -0.016

Table 5.6.: Anomalous dimension ηder in the standard derivative expansion with optimized regulator
in an expansion around p = αk with (µ= 0, g = 1).

optimized regulator and evaluate the anomalous dimension for g = 1,µ = 0,ηc = 0. The
conclusions of this study do not depend on the choice of these parameters. As one can see,
the anomalous dimension of the graviton in a derivative expansion strongly depends on the
specification parameter α. This relates to the fact that such an expansion only works well if
the full flow of the propagator shows a mild momentum dependence. This is not the case
for the flow of the graviton two-point function, see [1]. In general, even the sign of the
anomalous dimension depends on the specification parameter. We conclude that a derivative
expansion in quantum gravity with α= 0 has to be used with great caution.

Effect of identifications of couplings in the UV: As already mentioned, the present
approximation is the first work that employs individual running couplings for the momentum-
independent part of each vertex function. In particular, the graviton mass term should not be
identified with the cosmological constant. Still, we have shown, that the full expansion with
momentum-dependent wave function renormalizations and a mass term for the fluctuating
graviton h provides UV fixed point results in qualitative agreement with that of the standard
background field approach, if we identify the mass a posteriori with (minus 1/2 of) the
cosmological constant. Within such an identification we have a deSitter fixed point.

For completeness, we also have investigated a mixed approach: We use a flat anomalous
dimension ηh in a derivative expansion about vanishing momentum, or a momentum-
dependent one, ηh(p2), for the fluctuating graviton. In turn, the flows of the graviton mass
and the Newton coupling g are extracted from the flow of the cosmological constant and
the Newton coupling in the background field approximation. This can be interpreted as an
intermediate step towards the full approximation studied here. Interestingly this leads to a
very small and negative fixed point value for the cosmological constant, see also [78] for
such a mixed expansion with a flat anomalous dimension. Our fixed point results for the case
with a flat anomalous dimension are given in Table 5.7. They are in qualitative agreement
with the results of [78]. Notably, the results in the mixed approach deviate from both, the
background field results and that of the full approximation introduced in the present work.
We have also checked that this originates in the identification of the mass term with the
cosmological constant, the given alternative choices for the flow of the Newton constant do
not alter this result.

5.6.9. IR regime

The non-trivial IR fixed point is located at (g,µ) = (0,−1). The most important feature
is that it is a classical one, i.e. the essential couplings scale classically and all quantum
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a 2 3 4 5 6 opt

g∗ 1.68 1.72 1.75 1.77 1.80 1.68
λ∗ -0.064 -0.076 -0.088 -0.100 -0.110 -0.035
ηder

h 0.81 0.93 1.03 1.14 1.24 0.86
ηder

c -1.08 -1.05 -1.04 -1.03 -1.01 -0.75

Table 5.7.: Fixed point values g∗ and λ∗ and anomalous dimension ηder at this fixed point in the
mixed approach.

contributions vanish: The gravitational couplings and the cosmological constant scale as

g, g ∼k2 , λ∼k−2 , (5.110)

and the anomalous dimensions vanish,

ηh→0 , ηc →0 , (5.111)

see Appendix H. This leads to flow trajectories that connect the asymptotically safe UV
regime for k → ∞ and short distances, with a classical IR regime for k → 0 and large
distances. Since µ approaches a finite value in the limit k → 0, the dimensionful mass
M2 = µ k2 vanishes in the deep IR. Moreover, the scaling of Newton’s coupling (5.110)
allows us to identify a scale in the following way. As g (or g) scales classically, the coefficient
of proportionality, say C , is nothing else than the Newton constant, because

GN = gk−2 = Ck2k−2 = C . (5.112)

Thus, scales are measured in units of the Planck mass, M2
Pl = 1/C . The physical trajectory is

then fixed by measuring the relevant couplings, that is the (background) Newton constant
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Figure 5.13.: The running couplings as functions of the renormalization scale k in units of the Planck
mass. In the UV the couplings tend to their finite fixed point values. As one follows the
trajectories down to the IR, one can see the scaling behaviour in the vicinity of the IR
fixed point.
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and cosmological constant, at a given scale. In Figure 5.13 one can see both, the classical
scaling in the IR as well as the vanishing of the β-functions in the vicinity of the UV fixed
point for large k. The classical scaling regime extends roughly up to one order of magnitude
below the Planck scale. This implies the absence of quantum gravity effects for energies
E � MPl, as it is expected in a theory without a large volume compactification of extra-
dimensions. Note also that the difference between the two couplings g and ḡ is hardly visible,
which justifies to some extent the background approximation for the Newton constant.

5.7. Flow of the Three-Point Function

In the next sections we will improve our setting by including the flow equation of the
graviton three-point function. This enables us to set up a consistent, coupled hierarchy for
the two- and the three point function and the related couplings in quantum gravity. This
calculation is the first study of the three graviton vertex in the asymptotic safety scenario. In
the setting of the vertex expansions this is the third order of the coupled hierarchy of flow
equations, and the first order that allows for a genuine calculation of a coupling constant.

The general structure of the flow equation in super field space is derived in Appendix I.
Since in this section we are interested in pure quantum gravity, the field content is once more
given by the graviton, the ghost and the anti-ghost. Therefore, again we set φ = (h, c̄, c)
and specify this field-vector in the general equation in Appendix I. The resulting equation is
given in diagramatical language in figure Figure 5.14.

∂t
δ3Γ
δh3

�

�

�

�

�

φ=0

(p) =−
1

2
+ 3 − 3

+ 6 ≡ Z3/2
h Flow(3) (5.113)

Figure 5.14.: Diagrammatic depiction of the flow of the three-graviton vertex. Double lines represent
graviton propagators, dashed lines ghost propagators, filled circles denote dressed
vertices whereas crossed circles are regulator insertions.

5.7.1. Kinematical Configurations

The first step in the setup of the three point function is the discussion of the kinematical
configuration. Obviously, for the propagator this issue is not present since momentum
conservation fixes kinematics uniquely. The three point-function, however, depends on the
external momenta (p1, p2, p3), where p3 can be eliminated using momentum conservation.
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The dependence on the external momenta can then be parameterized by the absolute
values of the remaining two momenta |p1|, |p2| and the angle θ12 between them. In the
following we will always consider momentum configurations where we set |p1|= |p2|=: p.
In particular, we consider two momentum configurations that will be used in order to define
a gravitational coupling from the three-point function.

1. The asymmetric configuration In this case we set the angle θ12 = π, which corre-
sponds to the limit p3 −→ 0 and p1 =−p2. Physically, it is tempting to interpret this
momentum configuration as a limit of soft-graviton radiation. Note that due to the
limiting process that is involved in this configuration, there remain some ambiguities,
namely the angle between p3 and p1 can be chosen arbitrarily, and the specific value
then corresponds to an initial configuration from which the limit p3 −→ 0 is taken.
This issue will have some consequences in the projection procedure, since the notion
of transversality is not well-defined without further input about the limiting procedure
in this case. Moreover, due to the asymmetry, the flow equation in Figure 5.14 needs
to be symmetrized with respect to the external momenta. This symmetrization is
always implicitly understood when we talk about the asymmetric configuration. The
simplicity of this asymmetric configuration has two important technical advantages.
First, the contractions of the diagrams are much simpler, since one can set one external
momentum to zero from the onset. Second, in order to carry out the loop integrations,
we have to define a coordinate system in four- dimensional Euclidean space, most
conveniently four-dimensional spherical coordinates. Since in this configuration there
are only two non-zero momenta which are aligned in one direction in four-dimensional
space, there is only one free angle in the kernels of the loop integrals, which is the
angle between the loop momentum q and the external momentum p1 = −p2. This
angle can then be identified with one of the angles in the measure of the spherical
coordinates and there is only one non-trivial angular integration, i.e. this is analogous
to the case for the loop integrals for the propagator.

2. The symmetric configuration In this setup we choose a maximally symmetric con-
figuration, which means that all momenta have equal norm, |p1| = |p2| = |p2| = p
and with the same angle between all three momenta. This implies θ12 =

2π
3

. In this
configuration, the position in of the three external momenta in four dimensional Eu-
clidean space-time requires two angles, and the same is true for the relation between
an arbitrary vector and an external momentum. Hence, the there are two non-trivial
angular integrations in the loop integral. However, since this is the balanced con-
figuration, it is intuitively clear that this might be the best setting for defining a
momentum-independent coupling gk from the flow.

5.8. Truncation III: The coupled Hierarchy

In this section we analyze the fully coupled system of the two- and the three–point function
of the graviton. This means that the flow of the three point function feeds back into the
veritces that enter the two–point function. Still, as the flow of the three–point function
depends on the four and five graviton vertex, the hierarchy of flow equations needs to
be truncated and we close the equations via the identifications Λ(3) ≡ Λ(4) ≡ Λ(5) and
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G(3) ≡ G(4) ≡ G(4) ≡ GN . We are then confronted with a coupled system of equations for the
scale–dependent generalized couplings

�

ηh,ηc , M2, GN ,Λ(3)
�

. (5.114)

In order to determine the running of these couplings from the flow Γ̇(3h), one has to specify
the projection on the tensor structure. For the two-point function, the tensor projection is
based on an orthogonal tensor decomposition, see (5.26). We would like to find an analog
construction for the three-point function. The three point function in gravity is a rank six
tensor depending on two external momenta (after using momentum conservation) and has a
very rich tensor structure. In principle, one could use a complete set of orthogonal projectors
and calculate all corresponding contributions. This however, is a very extensive task and
not all of these tensor structures are physical. Therefore, a detailed study of Slavnov-Taylor
identities is a necessary accompanist of such a calculation. Moreover, to our knowledge
there is yet no such basis explicitly given in the literature, although the construction strategy
is in principle clear. Nevertheless, giving such an orthogonal basis explicitly is very laborious
due to the overflowing tensor algebra. In this work, we construct a canonical projector
that is expected to capture the leading physical effects and is most compatible with the
tensor structures chosen in our approximation. The tensor structures T A1...An(p1, . . . , pn;Λn)
defined in (5.10) are given by variations of the classical, gauge fixed Einstein-Hilbert action.
Therefore, all T A1...An are at most quadratic in the field momenta (p1, . . . , pn). Furthermore,
they decompose into the sum of a momentum-independent part and a part which is quadratic
in the momenta. Thus, for the three point function the tensor structure can be written as

T A1A2A3(p1, p2, p3;Λn) = ΛnT A1A2A3(0, 0,0; 1) +T A1A2A3(p1, p2, p3; 0) . (5.115)

By factoring out Λn in the first term, both tensor parts on the RHS of (5.115) are independent
of any coupling parameter or k-dependent quantity, in particular they are independent of
Λn. In the case n= 3 which is relevant here, we will use the momentum dependent tensor
part T A1A2A3(p1, p2, p3; 0) to construct an operator ΠG to project the flow of Γ(3) onto the
flow of G3. Similarly, an operator ΠΛ is obtained from the momentum-independent tensor
part T A1A2A3(0,0,0;1). In direct analogy, ΠΛ will be employed for the projection onto the
flow of Λ3. Moreover, in analogy to the construction for the two-point function, we associate
all external legs with transverse-traceless gravitons. The coefficient functions of projectors
with these properties are then given by

ΠABC
G (p1, p2, p3) := ΠAA′

T T (p1)Π
BB′
T T (p2)Π

CC ′
T T (p3)T A′B′C ′(p1, p2, p3; 0) , (5.116)

and
ΠABC
Λ (p1, p2, p3) := ΠAA′

T T (p1)Π
BB′
T T (p2)Π

CC ′
T T (p3)T A′B′C ′(0,0, 0;1) , (5.117)

where ΠT T is the transverse-traceless projector for symmetric rank-four tensors. Note that
the multi-indices with capital letters used above do not include the continuous index part and
are in this case just an abbreviation for two ususal Lorentz indices, A= {µ1µ2}. Hence, there
is also no integration implied. Both operators ΠG/Λ act on rank 6-tensors via full contractions
and return scalar expressions. Applying this to the flow equation for the graviton three-
point function, the transverse traceless projectors in (5.116) and (5.117) ensure transverse
traceless external graviton legs of the vertex. This running T T -vertex is then contracted
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with the tensor structure of the momentum-dependent part of Γ(3h) for projection on the
running coupling G, and with the momentum-independent part for projection on Λ. In
summary, we obtain two scalar flow equations by fully contracting the tensor equations with
the coefficient functions of the projectors defined above, and taking the limit of external
momenta to zero for the Λ(3) flow,

Γ̇(3)G (p1, p2, p3) :=
�

ΠABC
G Γ̇(3h)

ABC

�

(p1, p2, p3) =
�

ΠABC
G Flow(3h)

ABC

�

(p1, p2, p3)

=: Flow(3h)
G (p1, p2, p3) (5.118)

and

Γ̇(3)Λ := lim
(p1,p2,p3)→0

�

ΠABC
Λ Γ̇(3h)

ABC

�

= lim
(p1,p2,p3)→0

�

ΠABC
Λ Flow(3h)

ABC

�

=: Flow(3h)
Λ (5.119)

The scalar flows of the three point function then take the form

Flow(3)G/Λ(p1, p2, p3) = Z
1
2 (p1)Z

1
2 (p2)Z

1
2 (p3)G

3
2

∫

R4

d4q

(2π)4
∑

φ

�

ṙφ(q
2)−ηφ(q2)rφ(q

2)
�

× FG/Λ,φ(p1, p2, p3, q, Gn,Λn),
(5.120)

where n ∈ {3, 4, 5} and a sum over species of fields i ∈ {h, c}. As it is the case for the flow of
the propagator, the right-hand side of the flow is just a function of the anomalous dimension

ηφ(p
2) :=−Żiφ(p

2)/Zφ(p
2) , (5.121)

since all wavefunction renormalisations organize in such ratios. We also note that the
contributions encoded in FG/Λ,φ originate from the diagrams displayed in Figure 5.14, which
are symmetrized with respect to the interchange of external momenta. Unfortunately, these
integral kernels are way too lengthy to display for general kinematical configurations, as
already the corresponding kernel Iφ for the two–point function are quite complicated. Now,

we need to relate Flow(3)G and Flow(3)Λ to the flow of the couplings G3 and Λ3, respectively.
For the two kinematical configurations described in subsection 5.7.1, namely the asymmetric
and the symmetric configuration. Let us consider the flow of the gravitational coupling G
first. We observe that in both configurations, there is only one non-zero absolute value of
momentum, the external momentum p. The projector ΠG is proportional to p2 and Γ̇(3h) has
a term that is also proportional to p2 and a constant term proportional to Λ3). Moreover, the
projectors are independent of t, and therefore

[∂t ,ΠG/Λ] = 0 . (5.122)

As a result, in any of the two configurations Γ(3)G (p1, p2, p3) is necessarily of the form

Γ(3)G (p1, p2, p3) = ∂t

�

Z
1
2 (p2

1)Z
1
2 (p2

2)Z
1
2 (p3

3)G
1
2

�

Ap4+ BΛ(3) p2
�

�

, (5.123)

with some combinatorical coefficients A and B that arise from the contraction of the tensors
and depend on the kinematical configuration that is chosen. Due to the projector, the
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right-hand side of the flow is proportional to p2 and this factor can be divided out. The
concept of specification, as it is presented in section 5.4 in detail for the propagator, is of
the same importance for the three-point function and will be further investigated below.
It is clear from equation (5.123), that we can obtain a flow equation for G with a finite
difference projection at subtraction points p? and p•, i.e. we evaluate both sides of the flow
equation at p? and at p• and subtract the resulting equations, see also (5.38). Combining
(5.123) and (5.120) with such a projection we arrive at flow equations which read for the
dimensionless gravitational coupling

∂t g =2g + g

∑3
i=1

�

η(p2
i,?)p

2
? −η(p

2
i,•)p

2
•

�

p2
? − p2

•
+ g

BΛ(3)

A

∑3
i=1

�

η(p2
i,?)−η(p

2
i,•)
�

p2
? − p2

•

+ g2 2

A

1

p2
? − p2

•







∫

R4

d4q

(2π)4
∑

φ

�

ṙφ(q
2)−ηφ(q2)rφ(q

2)
�

FG/Λ,φ(pi , q, Gn,Λn)







�

�

�

�

�

�

p?

p•

.

(5.124)

In the above equation pi,? = p? ∀i and pi,• = p• ∀i in the symmetric configuration since all
external momenta have the same norm p. In the antisymmetric configuration there is one
zero-external momentum, say p3 = 0, and therefore p3,? = 0 and p3,• = 0, while pi,? = p?
and pi,• = p• for i = {1, 2}. This finite difference projection is quite general, as all derivative
definitions of the coupling can be obtained since in the limit p• −→ p? the finite differences

approach the derivative ∂
∂ p2

�

�

�

p=p?
.

In analogous fashion we derive the equation for the constant part λ(3) of the three–point
function. In this case, however, it is quite natural to project at p = 0, as we are interested
in the momentum–independent part. Following these lines, we evaluate equation (5.119)
at vanishing external momentum. For the dimensionless coupling the resulting equation is
then given by

∂tλ(3) =−2λ(3)+
3

2
ηh(0)λ

(3)−
1

2
(
∂ g

g
− 2)λ(3)+

96π

5
πFlow(3h)

Λ . (5.125)

5.8.1. Locality of the Three-Point Function

In subsection 5.5.1 we have shown that the flow of the graviton propagator satisfies the
locality condition (5.17), and have also presented the general structure of such asymptotic
expansion of flow equations. In this section we apply these techniques in order to investigate
the behavior of the three point function for large momenta. The first step in the analysis is the
projection on the scalar coefficient of the tensor structure, which is described in the previous
section. As this study is concerned with the momentum dependence of the flow, we consider
the projection with the operator ΠG that projects on the momentum-dependent part of the
flow. Hence, the object under investigation is the ratio ∂tΓ

(3)
G (p1, p2, p3)/Γ

(3)
G (p1, p2, p3) for

large momenta. From the general construction of the vertex functions, one immediately
infers that all graviton vertices have p2

i as the leading large momentum behavior. Together
with the diagrams contributing to the flow of the three-point function, depicted in Figure 5.14,
naive power–counting as presented in section 5.2, yields Flow(3h)

G (p1, p2, p3) ∼ p4
i in the
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limit of infinite momenta. Note that the fourth power in p is rooted in the fact that the
projector ΠG itself is quadratic in momenta, and the tensorial flow is also proportional to
p2

i . As one can infer from equation (5.123), the three point function Γ(3)G projected with ΠG
resembles this behavior and also behaves as p4

i . Therefore, as expected for perturbatively
non-renormalizable, locality can only be established by non-trivial cancellations in the flow.

We have also seen in the discussion of locality in φ4 theory, that the condition that all
momenta go to infinity might be of major importance in these questions. For the flow of
the propagator this is of course trivial since momentum conservation implies that there
is only one external momentum in the propagator. For the three-point function, we have
defined in subsection 5.7.1 two different kinematical configurations, namely the asymmetric
configurations and the symmetric configuration. While the latter allows for a limit with all
external momenta going to infinity, the first has one external momentum that is set to zero
from the onset. We perform the analysis exactly along the lines presented in subsection 5.5.1,
and indeed, we find that there is no cancellation in the asymmetric configuration and

lim
p→∞

∂tΓ
(3)
G,asymmetric(p)

Γ(3)G,asymmetric(p)
= const. , (5.126)

which is a non-local flow.
For the symmetric configuration the situation is different. In this case, the individual

diagrams have the asymptotic expansion

−
1

2
p→∞
= −

752g2π2

19
p4

∫ 1

0

dqq3 2+ηh(q2)(−1+ q2)
(1+µ)2

+ p2 const.

(5.127)

3
p→∞
=

1232g2π2

19
p4

∫ 1

0

dqq3 2+ηh(q2)(−1+ q2)
(1+µ)2

+ p2 const. (5.128)

−3
p→∞
= −

480g2π2

19
p4

∫ 1

0

dqq3 2+ηh(q2)(−1+ q2)
(1+µ)2

+ p2 const.

(5.129)

Figure 5.15.: Asymptotic contributions of the diagrams in the flow of the three-graviton vertex.

As one can see, there is a fantastic cancellation of the leading order terms! Note that this
cancellation takes place after angular integration and integration over the absolute value of
the momentum is not necessary. The leading order terms in the asymptotics are independent
of λ(3), since the highest power terms are created when terms ∼ p2 from each vertex are
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Figure 5.16.: Typical flow of Γ(3)G , after dividing out the trivial 1/p2 factor stemming from the
projector, as a function of p2 (blue curve). The red curve shows the locality of the flow
in momentum space where it decays rapidly with p2.

contracted, and these parts do obviously not contain the momentum independent part λ(3),
which contribute only the the sub-leading terms. This cancellation of the leading order p
terms in the flow of the three point function obviously has the consequence

lim
p→∞

∂tΓ
(3)
G,symmetric(p)

Γ(3)G,symmetric(p)
= 0 , (5.130)

leading to a local renormalization group flow of the graviton three-point function. The
momentum dependence for arbitrary values of the momentum p can of course not calculated
analytically, but numerically. The result is shown in Figure 5.16, and one can beautifully see
the locality of the flow.

As a generalization, we have also proven locality for a more general kinematic setup. More
precisely, the property (5.17) does indeed hold independently of the angle θ12 between the
vectors p1 and p2. The exact asymptotics are are somehow lengthy and the exact form does
not matter, hence we only state that

lim
|p1|=|p2|=p→∞

∂tΓ
(3)
G (p,θ12)

Γ(3)G ((p,θ12))
= 0 ∀ θ12, (5.131)

and for θ12 = π the results reduce to Figure 5.15.
For a sensible choice of a specification procedure, that appears as the freedom of choosing

p? and p• in (5.124), it is very important to investigate the momentum dependence more
closely. For this reason, we solve the loop integrals of the flow over a grid in the external
momentum p, the mass-gap parameter µ and the constant parts λ(3) of the vertex functions.
A selection for different parameter values is shown in Figure 5.17.

First, we note that locality manifests itself as limp→∞ Γ
(3)
G = const and, as we have already

argued, it is a property of the flow for any value of of λ(3). Only the specific value of the
constant depends of the value of the latter.
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Figure 5.17.: Momentum dependence of the flow of the graviton three–point function in the symmet-
ric kinematical configuration and for µ = −0.3 and different values of λ(3). One can
see that locality of the flow holds for any value of λ3), as explained in the text.

5.8.2. Beta Functions: The Asymmetric Case

We have seen in the last section that in the asymmetric configuration the flow of the
three–point function lacks locality in momentum space. It is also important to note that the
momentum dependence as depicted in Figure 5.17 shows a highly non-trivial behavior similar
to the graviton two–point function, see Figure 5.6, which makes a derivative expansion
around p = 0 highly questionable. Hence, a beta–function for Newtons coupling that
originates in a flow in the asymmetric configuration and a derivative at p = 0 seems to be
untrustworthy. However, there are reasons for exactly such a setup. First of all, derivative
expansions around p = 0 are simply the only projections that yield an analytical flow
equation. In addition to that, if one aims at a fully analytical system of flow equations, also
the wave-function renormalization of the two–point function must momentum–independent
and be projected with a derivative at p = 0, as opposed to the “optimized” derivative
procedure used in (5.57). Then, if the two–point function is projected in such a way,
the vertices that enter the flow of the two–point function, shown in Figure 5.5, have one
leg with zero momentum, which is exactly the situation in the asymmetric configuration.
Consequently, one might argue that in a setup where all beta functions are extracted from
flows of the n–point functions at p = 0, then the asymmetric configuration is somehow
self-consistent. In summary, we then obtain a system of differential equations for the
scale–dependent quantities (5.114), where the constant parts M2 and Λ(3) are obtained by
evaluating the corresponding n–point function at p = 0 and the momentum–dependent parts
η and GN are obtained via a specification with derivative projections at p = 0. Concerning
this specification in combination with an optimized regulator of the form (5.45), there is
a technical remark in order. The p derivatives hit the θ functions in the propagators that
carry an external momentum and produce δ–functions. After evaluation at p = 0, one is
left with distributional products of the form θ (x)δ(x), which need to be handled with great
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care. A precise analysis of how to treat such expressions can be found in [19]. In summary,
we solve equations (5.124) with p• −→ p? −→ 0, (5.125), (D.8) and (D.9). After loop
integrations, we arrive at the corresponding analytic flow equations that are displayed in
Appendix J. As we have already discussed in subsection 5.5.2, a first access to such equations
can be obtained by discarding the anomalous dimensions entirely. As a consequence, the
resummation terms in the beta-functions for g and λ(3) vanish, and βg is a polynomial of
degree two in the coupling g, i.e. this is a beta–function that is essentially of perturbative
form. Moreover, as we already discussed in subsection 5.5.2, an anomalous dimension with
a p = 0 specification is questionable.

The fixed point analysis is performed in the standard way by looking for zeros g∗,µ∗,λ
(3)
∗

for the beta functions βg ,βµ,βλ(3) . Such a fixed point analysis shows that in this approxima-
tion the system does not exhibit a non-Gaussian UV-fixed point in the physical regime! And
this fixed point structure remains unchanged upon inclusion of anomalous dimensions.

As a result, we state that this approximation does not exhibit a sensible UV-completion.
However, this is expected since the momentum–dependence is poorly reflected in p = 0
projections. Due to the argument presented above, projections at finite momenta seem to be
much more accurate, but are self-consistent with the symmetric kinematical configuration.
Consequently, we discard this approximation due to the lack of locality and an insufficient
resolution of the momentum–dependence.

5.8.3. Beta Functions: The Symmetric Case

In the last subsection we have seen that the asymmetric configuration seems inappropriate
for several reasons. On the contrary, the symmetric configuration can potentially capture
much more of the momentum–dependence and, as an important factor, the flow exhibits
locality. The system of flow equations for the generalized couplings

�

ηh,ηc , M2, GN ,Λ(3),
�

can then be derived, as usual, for different specifications and approximations, with a first
approximation consisting of vanishing anomalous dimensions and the full system with
fully-momentum–dependent anomalous dimensions and corresponding integral equations
in the two–point sector.

Derivative Expansion at vanishing Momentum

As a first approximation we resort again to the simplest case, namely the derivative expansion
at vanishing momentum. This results in the equations (5.124) with p• −→ p? −→ 0, (5.125),
(D.8) and (D.9), i.e. formally the same equations as in the previous subsection 5.8.2, but
this time with βg originating in from ∂tΓ3h) in the symmetric kinematical configuration. As
in the asymmetric case, the loop integrals can be carried out analytically. The equations
derived from the two–point function remain the same so do the equations for the constant
part λ(3) of the vertex, since the latter is not affected by the configuration of the external
momentum. The analytic beta-function for the gravitational coupling is given in Appendix J.
The first step is again to neglect the anomalous dimensions. The fixed point analysis yields a
non-Gaussian UV-fixed point with coordinates

�

gUV
∗ ,λ(3)UV

∗ ,µUV
∗

�

= (0.57,−0.16,−0.16) . (5.132)
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However, it is important to note that this fixed point has only two UV-attractive directions,
since the eigenvalues of the stability matrix read

�

θ1,θ2,θ3
�

= (−1.5+ 1.8 i,−1.5− 1.8 i, 1.6) . (5.133)

The fact that this fixed point is not fully attractive, is a priori not a problem from the
conceptual point of view, since the very definition of the asymptotic safety scenario requires
a finite dimensional hypercritical surface, which means that there are only a finite number of
UV-attractive directions allowed, as explained in the general discussion of asymptotic safety
in chapter 4. Nevertheless, it is somehow surprising based on the results in section 5.6. Inter-
estingly, this fixed point will turn out to be the physical one, as it survives all improvements
of the approximation that will be presented below. The canonical improvement of the setup
above is the inclusion of scale-dependent wave–function renormalizations, i.e. non-vanishing
anomalous dimensions. Concerning the momentum dependence of the propagator, the
lesson from section 5.5 and section 5.6 is quite clear: An anomalous dimensions projected
via a specification with a derivative at p = 0, i.e. with p• −→ p? −→ 0 in equation (5.38) is
untrustworthy for the graviton propagator. Consequently, we apply the finite difference pre-
sented in section 5.6. Before enhancing this setup, we analyze how anomalous dimensions
enter the loop integrals, and how the full momentum–dependence can be approximated.

Approximation to fully momentum-dependent anomalous dimensions

As presented in section 5.6, the solution with a fully momentum dependent anomalous
dimension requires the solution of an integral equation coupled to the system of differential
equations. The anomalous dimension η(p2) is then used at each scale k in the solution
of the differential equation as η(q2) in the loop integrals for the couplings, e.g. (5.120).
This structure of the anomalous dimension in FRG-based beta-functions is generic if the
regulator is proportional to a momentum-dependent wave-function renormalization. The
dependence on the anomalous dimensions is then always stored in integrals of the form
∫

dqq3η(q2) f (q, ...), with some functions f that depend on further couplings and external
momenta. Due to the general properties of the regulator, we know that the integrands
are peaked at q ≈ k. This structure is very pronounced as the low momentum modes are
highly suppressed due to the factor q3 in the integral measure. Moreover, any anomalous
dimension should be a moderate correction and not the dominant factor in the integral,
since its implementation depends on the regulator. As a consequence, the integrals are
well-approximated by an upper bound

∫

dqq3η(q2) f (q, ...)¯ η(p2 = k2)

∫

dqq3 f (q, ...) . (5.134)

Using the above estimate in the equation for the anomalous dimension itself, the afore-
mentioned integral equation (5.73) whose solution is discussed in subsection 5.6.1, this
describes an approximation to η1(p2) beyond the zeroth order approximation.

Derivative Expansion+ at vanishing Momentum

Now we use the same system of equations as in the case for the derivative expansions at
vanishing momentum (without “+”), but this time with anomalous dimensions approximated
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as discussed above, signaled by the “+” label at the derivative expansion. This improvement
generates only quantitative corrections to the fixed point structure, namely the non-Gaussian
fixed point with two UV-attractive and one UV-repulsive direction survives and changes its
fixed point coordinates to

�

gUV
∗ ,λ(3)UV

∗ ,µUV
∗

�

= (0.61, 0.012,−0.43, ) (5.135)

with critical exponents

�

θ1,θ2,θ3
�

= (−1.3+ 4.6 i,−1.3− 4.6 i, 5.9) . (5.136)

The anomalous dimensions at the fixed point take the values

�

ηh∗ = 1.0,ηc ∗ =−0.8
�

, (5.137)

which is in qualitative agreement with the fully momentum–dependent anomalous dimen-
sions calculated in section 5.6.

Finite Differences

The highly non-trivial momentum dependence of the flow of the three–point function is
depicted in Figure 5.17. Due to this highly non-trivial momentum dependence of the flow, a
fully momentum-dependent coupling g(p2)would be the deluxe-solution for the specification
problem for the gravitational coupling. However, this turns the beta-function βg for the
coupling into an integro-differential equation, which in turn is then coupled to the integral
equation for ηh and to the differential equations for µ and λ(3). In the spirit of optimization
of some specification procedure, we utilize the generalization of derivative projections,
namely finite differences. The general finite difference projection for the running of the
gravitational coupling is already presented in equation (5.124). Based on the locality of flow
equations in momentum space, or more precisely the peak structure in the loop integrals,
the finite difference with p? = k and p• = 0 in (5.124) is expected to approximate the full
momentum-dependence reasonably. This choice has a big advantage over the derivative at
p = k, since it is sensitive to global properties of the flow and is hence not affected by local
inaccuracies. As usual, we first study the system with anomalous dimensions set to zero.
This means we solve the coupled equations (5.124) with p? = k and p• = 0, (5.125), and
(D.8).

In the approximation described above, we obtain a very interesting phase diagram that
is worth some discussion. A visualization of the phase diagram in the three–dimensional
(g,λ(3),µ) space, i.e. a collection of trajectories (g(k),λ(3)(k),µ(k)) for different initial
conditions, is shown in Figure 5.18. In the ultraviolet we find a fully attractive non-Gaussian
fixed point with the coordinates

�

gUV,1
∗ ,λ(3)UV,1

∗ ,µUV,1
∗

�

= (0.98, 0.29,−0.33) , (5.138)

and critical exponents

�

θ1,θ2,θ3
�

= (−4.0 + 0.9 i,−4.0− 0.9 i,−3.3) , (5.139)
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Figure 5.18.: Phase diagram with a finite difference specification for the gravitational coupling.

i.e. the three negative real parts of the eigenvalue indicate that the fixed point has three
UV-attractive directions. This phase diagram has some striking similarities with the one
obtained in section 5.6. First of all, the product g∗µ∗ ≈ 0.39, to which one can attribute at
least some physical meaning since explicit scale dependencies cancel, is quite close to the
one obtained the in section 5.6, where we found g∗µ∗ ≈ 0.32.

In addition to the fully attractive ultraviolet fixed point, we rediscover the fixed point
found in the approximations with projections at p = 0, namely the fixed point with two UV-
attractive and one UV-unstable direction. In this approximation the fixed point coordinates
read

�

gUV,2
∗ ,λ(3)UV,2

∗ ,µUV,2
∗

�

= (0.96,−0.024,−0.35) , (5.140)

and critical exponents

�

θ1,θ2,θ3
�

= (−2.1 + 2.4 i, −2.1− 2.4 i , 5.8) . (5.141)

Interestingly, the eigenvector belonging to the positive eigenvalue, i.e. UV-repulsive direction,
points mostly in the λ(3) direction. The importance of this fixed point will become clear
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later, as it is the only fixed point that is found in all approximations with the running of the
coupling defined from the three-point function.

Also the flows towards the infrared have interesting properties. The trajectories emanating
the ultraviolet have two basins of infrared attraction. One class of trajectories flows towards
the infrared fixed point

�

g IR
∗ ,λ(3) IR∗ ,µIR

∗

�

= (0,∞,−∞) , (5.142)

which is the anti-de Sitter fixed point that is built-in in the fundamental structure of the
equations, similar to the Gaussian fixed point. This can easily be seen, as the loop integrals
on right hand sides of the flow equations are all proportional to 1/(1+µ)#, with # being
the number of internal propagators. As a consequence, all the loop terms vanish in the limit
µ−→∞ and we are left with

∂t g = 2g , ∂tµ=−2µ , (5.143)

with the solutions

g(k)∼ k2 , µ∼
1

k2 . (5.144)

The other class of trajectories are all attracted by the non-trivial infrared fixed point
�

g IR
∗ ,λ(3) IR∗ ,µIR

∗

�

= (0, 1,∞) , (5.145)

which has already been found for the first time in an Einstein–Hilbert type of truncation in
section 5.5, and more generally in section 5.6. In the reduced approximation section 5.5,
this infrared fixed point has non-classical scaling properties, while in section 5.6, the infrared
analysis shows that this fixed point is induced by self-consistency conditions and that
disentangling the cosmological constant λ and the constant parts of the vertices λ(n) opens
the possibility for an infrared fixed point that is classical in the cosmological constant and
the gravitational coupling. In approximations where the three–point function is not resolved,
the trajctories hit a singularity at latest when they approach the attractor line µ = −1 at
finite g. In section 5.5 the self-consistency analysis creates the attractive infrared fixed
point such that the singularity is avoided and the flows are driven towards g = 0. As we
have already pointed out, the necessity for the infrared analysis arises due to the truncation
of the hierarchy of flow equations, in particular the infrared-scaling of the constant parts
λ(n) needs to be resolved properly. In the present approximation the the flow of λ(3) is
captured dynamically. As a consequence, the the attractor line µ=−1 shrinks to the point
(g,µ) = (0,−1), which is the pole of the propagator. Once the trajectories approach this
point, all the scaling arguments presented in section 5.6 hold and the existence of the

infrared fixed point at
�

g IR
∗ ,λ(3) IR∗ ,µIR

∗

�

= (0,∞,−1) is guaranteed. An important fact is
that also in this system, the non-trivial infrared fixed point exhibits classical scaling, namely

g(k)∼ k2 , λ∼
1

k2 . (5.146)

with the cosmological constant defined as in subsection 5.6.4. The cosmological constant has
been ignored so far in this analysis as it decouples from the flow and has no influence on the
phase diagram shown above. As a reminder, we note that this decoupling is rooted in the fact
that the cosmological constant is defined from the one–point function, which does not enter
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Figure 5.19.: The couplings as a function of k/MPl.

the flow of the higher order vertex functions. As in subsection 5.6.9, the classical scaling of
the gravitational coupling allows us to define a physical scale, namely the Planck mass. In
Figure 5.19 we show typical trajectories (g(k),λ(3)(k),µ(k)) of the generalized couplings.
One can see that the couplings tend to their ultraviolet fixed point values for k� MPl and
behave as dictated by the physical infrared fixed point in the limit k� MPl. We also stress
the impressive fact, that the flow of λ(3) calculated from the three–point function diverges

as predicted by the infrared analysis, where we estimated a behavior λ(3)
µ→−1+∼ (1+µ)−

1
9 ,

see subsection 5.6.3, Appendix E and Appendix F.
In summary, this approximation seems to fulfill all necessary conditions: The ultraviolet

is dominated by a non-Gaussian fixed point. Thus, this framework provides a sensible UV
completion of quantum gravity. Moreover, there are globally defined trajectories that hit an
infrared fixed point with classical properties, which means that we recover general relativity
in the limit k −→ 0. However, we have already mentioned that the fully attractive ultraviolet
fixed point will disappear after enhancement of the approximation and the UV-fixed point
with one repulsive direction will be the physical one.

Finite Differences +

As in the paragraph above, the “+” indicates that we are now including anomalous dimen-
sions with an approximated momentum-dependence described by (5.134). We now observe,

that the fully attractive non-Gaussian ultraviolet fixed point
�

gUV,1
∗ ,λ(3)UV,1

∗ ,µUV,1
∗

�

is lost,

and only the fixed point
�

gUV,2
∗ ,λ(3)UV,2

∗ ,µUV,2
∗

�

with two ultraviolet attractive directions
survives this enhancement of the approximation. We continue to label this fixed point with
an upper index 2. The coordinates of this fixed point are now given by

�

gUV,2
∗ ,λ(3)UV,2

∗ ,µUV,2
∗

�

= (0.60,0.10,−0.57, ) , (5.147)
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and critical exponents

�

θ1,θ2,θ3
�

= (−0.52 + 4.1 i, −0.52− 4.1 i , 12) . (5.148)

It is striking that the pair of complex conjugate exponents have now a very small real part,
while the positive eigenvalue is huge. Usually such large critical exponents are a hint that
some higher order corrections influence the lower order terms in a way that is not captured
properly, and the eigenvalues decrease once the truncation is improved in the correct way.
As hint in this direction we find that the fixed point values are very stable against variations
of the form λ(4) = λ(3) + ε with a small parameter ε, but the third, positive eigenvalue
changes a lot. An analogous behavior was found in [66] for the eigenvalue of the R2 term,
whose eigenvalue is significantly lowered once R3 terms are included. However, the sign of
the eigenvalue is not expected to change.

5.8.4. Finite Differences ++, or fully momentum-dependent
Anomalous Dimensions and the State of the Art.

In the light of the results of the previous paragraphs, we provide a further improvement
of the truncation. This time, we use fully momentum dependent anomalous dimensions,
indicated by the “++”. This is the most advanced approximation in this chapter, and in
terms of resolution of vertex functions and momentum-dependencies by far the most refined
one in the subject of asymptotic safety. For the sake of completeness, we summarize once
again all equations that are used for this computation. The equation for the gravitational
coupling g is given by (5.124), and is now used with a finite difference with p? = 1 and
p• = 0, or in the limit p• −→ p? as a derivative at p = k. This equation is coupled to the one
for the constant part of the vertex functions λ(3), (5.125) and the gap-parameter µ of the
graviton (5.70). Moreover, the anomalous dimensions of the graviton and the ghost enter all
these equations with their full momentum dependencies, which are determined by solving
the coupled integral equations (5.71) and (5.72).

With this setup, we can confirm the existence of the non-Gaussian ultraviolet fixed point
�

gUV,2
∗ ,λ(3)UV,2

∗ ,µUV,2
∗

�

, with two ultraviolet attractive, and one repulsive direction. A fixed
point analysis yields for the finite difference in the g equation the values

�

gUV,2
∗ ,λ(3)UV,2

∗ ,µUV,2
∗

�

= (0.66,0.11,−0.59, ) , (5.149)

and critical exponents

�

θ1,θ2,θ3
�

= (−1.4 + 4.1 i, −1.4− 4.1 i , 13) . (5.150)

This is in impressive agreement with the results in the previous paragraph, where we used
the estimate (5.134) for the anomalous dimensions. This quantitative agreement is expected,
as we have already argued that the approximation (5.134) is usually well-justified due to
the structure of the integral kernels.
For the derivative specification at p = k we obtain

�

gUV,2
∗ ,λ(3)UV,2

∗ ,µUV,2
∗

�

= (0.56,−0.01,−0.37, ) , (5.151)
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and critical exponents with the values
�

θ1,θ2,θ3
�

= (−1.2 + 2.2 i, −1.2− 2.2 i , 4.8) . (5.152)

The fixed point values for g and µ are only weakly affected by this change of the projection
point. The fixed point value for λ(3) is still small, but now with opposite sign. Suspiciously,
this is exactly the coupling that points mostly in the unstable direction. The corresponding
critical exponent is now smaller by a factor of roughly 2.7, and therefore one is tempted to
favor the derivative over the finite difference.

Summary and interpretation of the results.

Due to the surprising and interesting results of this section, we summarize and interpret
our findings. We have solved the coupled hierarchy of the graviton two- and three–point
function in various approximations. The main result is, that there is one non-Gaussian
ultraviolet fixed point that is present in all approximations. Most importantly, it is present
in the most refined approximation “finite differences ++”. Hence, we will attribute to this
fixed point physical relevance. The fixed point values and critical exponents in different
approximations are summarized in Table 5.8. This ultraviolet fixed point is equipped with
two negative and one positive critical exponent. As a consequence, there are two attractive
and one repulsive direction, where the latter is mostly in the direction of λ(3). This repulsive
direction implies that the corresponding parameter is ultraviolet irrelevant! This is a very
encouraging result for asymptotic safety, as there are only finitely many relevant parameters
allowed in the full theory. See the general discussion in chapter 4. Therefore, if one found
more and more relevant parameters upon inclusion of further generalized couplings and
improved truncations, this would put asymptotic safety in bad shape. In contrast, our findings
support the asymptotic safety conjecture. The appearance of this irrelevant eigenvalue is
in great accordance with the complementary high-level background field studies in f (R)
gravity, [63,64,66], where only the operators R0, R, R2 generate relevant eigenvalues.

method p? = 0, η≡ 0 p? = 0, ηk p? = k, η≡ 0 p? = k, ηk p? = k, ηk(p2)

g∗ 0.57 0.61 0.96 0.6 0.66

λ
(3)
∗ -0.16 0.02 -0.2 0.10 0.11
µ∗ -0.16 -0.43 -0.35 -0.57 -0.59
θ -1.5, 1.6 -1.3 ,5.9 -2.1,5.8 -0.5,12 -1.4,13

Table 5.8.: The fixed point values and critical exponents of the physical non-Gaussian ultraviolet
fixed point obtained in different approximation schemes. The label p = p? indicates
a projection of the three–point function with a derivative at zero if p? = 0, or a finite
difference at p = 0 and p? = k. Moreover, we used approximations without anomalous
dimensions, scale–dependent anomalous dimensions and fully momentum–dependent
anomalous dimensions. For the eigenvalues we display only the real part of the complex
conjugate pair. As one can see, including an anomalous dimensions properly changes the
sign of λ(3)∗ .

The infrared properties of trajectories that hit this ultraviolet fixed point are under current
investigation and will be presented in a forthcoming publication.
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5.8.5. General remarks on locality.

We close this part with a discussion of the locality property introduced in section 5.2.
We have argued, that the notion of locality as defined in (5.17) is a crucial property of
renormalization group flows, and all perturbatively renormalizable are local by simple power
counting arguments. For perturbatively non-renormalizable theories, locality is based on
on-trivial cancellations. We found such cancellations for the two- and three–point function
of the graviton. We also state that this holds for the Yang–Mills contributions to these
correlators, which will be shown in subsection 8.1.2. Moreover, we have found that the
same is true for matter contributions, [136]. These intriguing results raise the question
of the fundamental reason for the cancellations that lead to local flows in perturbatively
non-renormalizable field theories. We have already observed that locality is spoiled in e.g.
∫

x
φ2∂ 2φ2 theories, as there is no way that the leading order terms cancel against each

other. In gravity, this is possible due to the contractions of tensor structures. Hence, it is
tempting to attribute the locality property to diffeomorphsim invariance. In this spirit, it
would be very interesting to see if the “lifted” version of the above counterexample is local,
namely a

∫

x

p

detgφ2∆φ2 theory with a Laplace-Beltrami operator, as such a theory is
clearly diffeomorphism invariant. In general, it would then be the question if diffeomorphism
invariance is a necessary or a sufficient condition for local flows. Both cases have interesting
consequences, as for the former, one could use locality as a construction principle and forbid
all terms that generate non-local flows, justified by the fundamental principle of locality. On
the other hand, if diffeomorphism invariance is sufficient, one could conclude that a general
theory of quantum gravity is local.
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Yang–Mills Gravity
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CHAPTER 6

Basics

6.1. Introduction and Motivation

Yang–Mills theories are gauge theories based on the Lie group SU(N). Describing the weak
and the strong interactions, they form the basis of the standard model of particle physics. A
striking feature of Yang–Mills theories is asymptotic freedom, meaning that the theory is
governed by a Gaussian fixed point in the ultraviolet. This implies that gluon interactions
weaken for high energies and that perturbation theory is applicable. In fact, the great
success of the standard model, which is able to describe high-precision data from collider
experiments, is possible only due to the rapid decrease of the relevance of higher order
terms in the perturbative series for energies E � ΛQCD. The weakening of interactions is
encoded in the energy dependence of the Yang–Mills coupling α, which in turn is signaled
by a strictly negative sign of the beta function. However, it is well known that fermions
contribute with a positive sign to the running of the gauge coupling,

βα =−2(
11

3
Nc −

2

3
N f )

α2

4π
, (6.1)

where we have displayed only the one-loop contributions and Nc are number the of colors,
while N f is the number of fermion flavors. One can see that there is a critical number of
fermion flavors above which the positive contributions to the beta function dominate. This
implies that asymptotic freedom is lost.

Due to the non-perturbative nature of ultraviolet quantum gravity, not that much is
known about the coupling of gravitons to gluons at very high energies. In the context of
the asymptotic safety scenario, a question of major importance is if the graviton–gluon
interactions preserve the property of asymptotic freedom, since in the end one is interested
in an ultraviolet completion of the entire standard model. On the other hand, one has to
make sure that the gravitational fixed point survives in the fully coupled system of Yang–Mills
gravity.

A first access to this system has been gained in first order perturbation theory [137–142]
by treating gravity as an effective field theory [18]. The main message of these calculations is
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that the sign of the Yang–Mills beta function is not altered by graviton fluctuations. However,
in such an effective field theory approach, all statements are reliable only for energies
E� MPl. A first non-perturbative study using functional renormalization techniques within
pure background flows confirmed this result [68]. A subsequent FRG-study with a vertex
expansion up to second order draws similar conclusions [70], but asymptotic freedom is
present only if the fixed point values in the gravitational sector obey the bound λ∗ <

1
8
.

However, the aforementioned work does not resolve the momentum dependence of the
propagator sufficiently. In this part of the thesis we test the stability of the Yang–Mills gravity
system including the general momentum dependence of the gluon propagator.

6.2. The Setup

Gravity couples to any source of energy. In any diffeomorphism invariant theory the integral
measure is proportional to detg, which generates automatically interactions with gravitons.
Moreover, any contraction is generated by the metric tensor that acts on vectors and therefore
also leads to vertices of gravitons with the respective field. As a result, the coupling of Yang
Mills theory to gravity is automatically implied in the classical Yang-Mills action

SYM =
1

4
Fa1a2

Fa1a2

=
1

4

∫

M
dd x
p

−detg gαα′ gββ ′Tr
�

Fα
′β ′Fαβ

�

, (6.2)

with the standard non-Abelian field strength tensor, or curvature form Fa1a2
and the trace

in color-space. We use the functional renormalization group in order analyze the coupled
system of quantum gravity and quantum Yang-Mills theory, in particular the ultraviolet
behavior. We use the setup of vertex expansions as presented in section 5.1. The scale
dependent effective action that contains the graviton–gluon interactions is then expanded
analogously to (5.1) in powers of the fluctuation fields,

Γk[ ḡ,φ] =
∑

n

1

n!
Γa1...an[ ḡ, 0]φa1

...φan
,

where now the field content is enlarged to φ =
�

h, c̄, c, A, c̄YM, cYM
�

with with the gluon
field A, Yang–Mills ghosts

�

c̄YM, cYM
�

and background fields ḡ, Ā. However, the gauge-fixing
and ghost terms do not contribute to the graviton–gluon interactions, as the graviton ghost
and gauge fixing term is independent of A by construction, and the Yang–Mills ghost sector
depends on the background metric only. Since we take functional derivatives with respect to
the fluctuation fields in order to generate graviton–gluon interactions, we can neglect the
ghost-sector. The auxiliary background field is arbitrary and is chosen as φ̄ =

�

Ā= 0, ḡ = I
�

.
We then split the effective action into a pure gravity part, the ghost and gauge fixing parts,
and the terms that contains gluon self-interactions and the gluon–graviton interactions,

Γk = Γk,grav+Γk,YM−grav+Γk,ghost+Γk,gauge , (6.3)

where we have already noted that the last two terms are of no relevance here. The pure
gravity part of the effective action Γk,grav is constructed exactly as presented in chapter 5.
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For the parts involving gluons, we are guided by asymptotic freedom, namely that for
high energies, also the full quantum effective action for Yang–Mills theory is given by the
classical Yang–Mills action modified with a scale–dependent wave–function renormalization.
Consequently, our truncation for Γk,YM−grav is based solely on Equation 6.2. We employ the
same vertex construction that we have already used in the pure gravity sector. Moreover, the
diagrams that describe the graviton–gluon interactions of course also contain the graviton
propagator. With these three ingredients the relevant part of the scale–dependent action
takes the form

Γk,YM−grav[ ḡ, h, A] +Γk,grav−prop[ ḡ, h] = Γ(AA)a1a2Aa1
Aa1
+Γ(hh)a1a2ha1

ha2

+Γ(AAh)a1a2a3Aa1
Aa2

ha3
+Γ(AAhh)a1a2a3a4Aa1

Aa2
ha3

ha4

+O
�

h3A2
�

, (6.4)

The terms that we have not written down are of higher order in h and A and, as we will see
below, do not enter the flow equations of the gluon and graviton propagators nor of the
graviton three–point function, which will be the objects of interest. With the approximation
described above, the vertices in momentum space and with standard index notation are then
given by

Γ(AA)
µν (p1, p2) = Z

1
2

A (p1)Z
1
2

A (p2)
δ2SYM

δAµ(p1)δAν(p2)

�

�

�

�

�

A=0,h=0

, (6.5)

which is the gluon two–point function,

Γ(AAh)
µνα1α2

(p1, p2, p3) = Z
1
2

A (p1)Z
1
2

A (p2)Z
1
2

h (p
2
3)G

1
2

δ3SYM

δAµ(p1)δAν(p2)δhα1α2(p3)

�

�

�

�

�

A=0,h=0

, (6.6)

which describes interactions of two–gluons and one graviton, and finally the two gluon–two
graviton vertex

Γ(AAhh)
µνα1α2β1β2

(p1, p2, p3, p4) =Z
1
2

A (p1)Z
1
2

A (p2)Z
1
2

h (p
2
3)Z

1
2

h (p
2
4)G

×
δ4SYM

δAµ(p1)δAν(p2)δhα1α2(p3)δhβ1β2(p4)

�

�

�

�

�

A=0,h=0

, (6.7)

with scale- and momentum-dependent wave–function renormalizations ZA for the gluon and
Zh for the graviton and a scale-dependent gravitational coupling G. The graviton two–point
function Γ(hh)a1a2 is the usual one from the previous sections. There are several important
things to note concerning the vertices.

• First, due to the F2 approximation, the vertex expansion is maximally of fourth-order
in A, while the detg factor generates infinite orders in h. However, only the terms
that we have written down explicitly in (6.4) will contribute to the graviton–gluon
interactions in the flow equations, and these terms are maximally quadratic in A.
Consequently, the non-Abelian parts in the F2 term are irrelevant since they are of
order three and higher. This means, that modulo trivial color factors δab, the vertices
defined above are identical for SU(N) and U(1) gauge theories! This enables us to
make also some statements about quantum electrodynamics.
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• The following is a more technical issue. In principle, the derivatives in the curvature
form Fµν are covariant derivatives with respect to the Levi-Civita connection. However,
since Fµν is antisymmetric, and the Christoffel-symbols symmetric in the paired index,
the latter cancel against each other and the covariant derivatives can be replaced by
partial derivatives.

In the end, we are interested in the gravitational corrections to the Yang–Mills beta–
function βα for the running of the strong coupling constant, and the Yang–Mills contributions
to the scale-dependence in the gravity sector. The beta-functions of the latter have been
discussed in great detail in chapter 5. In the Yang–Mills sector, we can make use of the fact
that in the background field formalism and in the perturbative domain, the renormalization
of the gluon wave–function renormalization and of the coupling constant are related as [91]

Zg = Z
− 1

2
a . (6.8)

The running of the coupling is then determined by

∂t gYM = βgYM
=

1

2
ηAgYM (6.9)

with the standard definition of the anomalous dimension

ηA :=−
∂t ZA

ZA
. (6.10)
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CHAPTER 7

Quantum Gravity Contributions To Yang-Mills Theories

In this section we are interested in the gravitational corrections to the running of the
gauge coupling. The key question is if the graviton–gluon interaction spoil, or preserve
the property of asymptotic freedom in the gauge sector. If asymptotic freedom was lost,
this would be a serious problem for the asymptotic safety scenario, as we ultimately seek
for a UV–completion of all forces. We have seen in the last chapter, that the running of
the gauge coupling can be calculated from the gluon wave–function renormalization. As
a consequence, the object under investigation is the flow of the gluon two–point function,
or more precisely, the graviton contributions to the flow of the gluon two–point function.
This equation is obtained from the general equation (I) by specifying the field content above.
The full flow can be written as

∂tΓ
(AA) =4AFlow(AA)+4hFlow(AA) , (7.1)

where the first term contains glue fluctuations only, while the second term is induced
by gravity mediated interactions. The diagrammatic form of the second term is given in
Figure 7.1.

4hFlow(AA) =−
1

2
+ +

(7.2)

Figure 7.1.: Diagrammatic depiction of gravitational contributions to the flow of the Yang–Mills
propagator. The wiggly lines are gluon propagators, and the double line represent
graviton propagators.
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This split is reflected in a corresponding split of the anomalous dimension

ηA =4AηA+4hηA . (7.3)

Asymptotic freedom is then signaled by a negative sign of the gluon anomalous dimension
as the beta-function for the coupling is proportional to ηA. We know that the pure glue
contributions 4AηA are negative. Hence, the question whether asymptotic freedom is
preserved in the Yang–Mills gravity system boils down to the sign of the gravity contributions
4hηA. For a negative sign it is clear that

4h ηA < 0 ⇐⇒ asymptotic freedom preserved . (7.4)

If the sign is positive instead, it is clear that asymptotic freedom may be spoiled. Since
4hFlow(AA) ∼ G, this is the case if the gravitational coupling grows larger than some critical
value.

7.1. Gravitational corrections to the Yang–Mills
beta-function and Asymptotic Freedom

As we have already discussed in great detail in the gravity sector, the projection and
approximation of the momentum–dependence is of great importance if the right-hand side
of the flow equations shows a non-trivial behavior. With the construction of the effective
action (6.4), and an optimized regulator (5.45) for both, gluons and gravitons, we obtain
after transverse projection

4hFlow(AA) = ZA(p
2)G

∫

q

�

(−ηA(q
2)r(q2) + ṙ(q2)) fA(q, p,µ)

+(−ηh(q
2)r(q2) + ṙ(q2)) fh(q

2, p2)
�

, (7.5)

where the first term originates in the diagram with a regulator in the gluon propagator and
the second one in the two diagrams with a regulator insertion in the graviton propagator.
The left-hand side is simply given by

∂tΓ
(AA) = p2∂t ZA(p

2) . (7.6)

7.1.1. Bounds for Asymptotic Freedom

We investigate the the sign of the gravitational contributions to the running of the Yang–
Mills propagator. In the fully coupled system, these contributions are of course functions
of the running parameters of the gravity sector, which in turn depend on the truncation.
It is therefore interesting to evaluate ηA,h with a parametric dependence on the gravity
parameters, in order to obtain general conditions under which asymptotic freedom is
guaranteed.

In a first approach, we drop the momentum-dependence of the gluon wave-function
renormalization and use finite difference or derivative projections according to (5.38). In a
derivative expansion one assumes a momentum independent wave-function renormalization
Zk, and one can pull the anomalous dimensions on the RHS outside the integral.
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Derivative at p = 0

The simplest choice is the derivative at p = 0, i.e. p? = 0 in (5.35).In this case we can solve
the loop-integrals analytically, in the same fashion as in the pure gravity case. We obtain the
analytic result

4h Flow(AA) =−
g

8π

�

−
ηA

1+µ
+

4(1+ 2µ)
(1+µ)2

+
ηh

(1+µ)2

�

. (7.7)

It is important to note that on the right-hand side, the full gluon anomalous dimension
appears. For the analysis of asymptotic freedom, we are interested in the high-energy limit,
where we know that the pure glue-part of ηA, namely 4AηA vanishes. Therefore, assuming
a fixed point in the gravitational sector, we are left with the ultraviolet limit

lim
k−→∞

4hηA =
g∗

1− g∗
8π(1+µ∗)

�

4+ 8µ∗+ηh∗

8π(1+µ∗)2

�

. (7.8)

The above function has a zero where it changes sign at the critical value

µ∗,crit =
1

8
(−4−ηh) . (7.9)

Moreover, there is a pole at µ∗ =−1+ g∗
8π

with another sign change for the regimes to the
left and to the right of the pole. However, this sign change at the pole can be neglected,
as all fixed point values g∗ that have been calculated so far have values g∗ ≈ 1. For fixed
point values of this order the pole is located at µ∗ ≈ −1+ 1

8π
≈ −0.96, which in turn is

a fixed point value that is very unusual. Therefore, we assume the overall pre-factor in
(7.8) to be positive. Then, limk−→∞4hηA ≷ 0 for µ∗ ≶

1
8
(−4−ηh). A check of this result is

obtained by comparing with [70], where these contributions have been calculated in such a
derivative expansion, but with an Einstein–Hilbert truncation in the gravity sector, which
means that the graviton wave-function renormalization is related to the coupling according
to (5.39), which enforces ηh∗ =−2. Moreover, µ =−2λ in this approximation. Using these
identifications, we obtain exactly the result in [70] with the bound λ∗,crit <

1
8

for asymptotic
freedom to be maintained. In our more general case, the anomalous dimension of the
graviton is not fixed by the fixed point condition for Newtons coupling. The fixed point value
for the gap-parameter where the gravitational contributions change sign is plotted against
the graviton anomalous dimension, i.e. (7.9), in figure Figure 7.2. There are some bounds
on anomalous dimensions for well-defined theories. From a mathematical point of view
η < 4 is required such that the correlation functions are tempered distributions. Moreover,
η < 2 is necessary that the regulator in flow equations maintains its properties. Hence, the
range of η ∈ (−2, 2) seems reasonable. From the results obtained in chapter 5, we learn that
typical values for the graviton anomalous dimension are roughly given by ηh ≈ 1. For such
anomalous dimensions we obtain critical values of µ∗,crit ≈−0.6, which is the region where
one expects the ultraviolet fixed point to be located.

We conclude that in this simplest approximation the stability of asymptotic freedom is not
guaranteed, but depends strongly on subtle effects in the gravity sector. In the following, we
investigate how this picture changes in more elaborate approximations and specifications.
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Figure 7.2.: The critical fixed point value µ∗,crit where the anomalous dimension ηA of the gluon
changes sign due to the gravitational contributions. The critical value µ∗,crit is the bound-
ary line between the colored and the white region. In the colored region sgn(ηA,h) =−1,
while the white region indicates sgn(ηA,h) = +1. In the first case asymptotic freedom is
maintained, while it is lost in the latter one.

General Derivatives

We now generalize the definition of the anomalous dimension ηA to derivatives at arbitrary
points p = p? in (5.35) and redo the analysis as described above. For such specifications the
results are numerical. We evaluate the flow equation for values p? ∈ [0,1] and find very
encouraging results, as for “optimized” specifications where the momentum dependence
of the flow in the vicinity of the cutoff scale k is resolved, the graviton interactions do not
change the sign of the Yang–Mills beta function, but rather support the the weakening of
the gauge coupling in the flow towards the ultraviolet. More precisely, the region of the
parameter space where sgn(ηA,h) = +1 and asymptotic freedom is lost, gets smaller and
smaller for values of p? ¦ 0.5, and finally the boundary line of the critical value µ∗,crit(ηh)
disappears from the “physical” regime. Already for p? ≈ 0.75 we find sgn(ηA,h) =−1 for all
values of µ and ηh, and therefore asymptotically free gluons also in the presence of quantum
gravity. These results, are shown in Figure 7.4.

General Finite Differences

We have seen above that for a suitable definition of the gluon wave-function renormalization
via derivatives, namely if the derivative is taken at momenta at the order of the cutoff,
asymptotic freedom is guaranteed. In order to test the stability of these results, we gener-
alize the derivative-definition to finite differences as described by (5.38). We choose one
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(b) Derivative specification with p? = 0.5
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(c) Derivative specification with p? = 0.75
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(d) Derivative specification with p? = 1

Figure 7.3.: As in Figure 7.2 for the p = 0 derivative, in these plots we show sgn(ηA,h) = −1 as
the colored region and sgn(ηA,h) = +1 in white in the (µ,ηh)-parameter space. The
boundary line is the critical value µ∗,crit.

subtraction point at vanishing momentum, i.e. p• = 0 and vary p? in the range from zero to
one. The corresponding results are represented in Figure 7.4. The findings are very similar
to the ones with the derivative definition and substantiate the stability of the specification.
In the next paragraph, we investigate the full momentum dependence in order to check
whether the validity of the optimization conjecture that the full result is best approximated
by projections that are sensitive to fluctuations at the cutoff scale.

Full Momentum Dependence

By including the full momentum dependence we solve the full integral equation obtained by
(7.5) and (7.6). For this task, we employ the iterative method that leads to the Liouville-
Neumann series that was presented in the context of the graviton propagator in subsec-
tion 5.6.1. As a result, we obtain ηA(k, p2), which depends on k via the gravitational
coupling, the anomalous dimension ηh of the graviton and the gap-parameter µ. With this

104



7.1. Gravitational corrections to the Yang–Mills beta-function and Asymptotic Freedom

-2 -1 0 1 2
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

ηh

μ
*

(a) Derivative specification with p? = 0.5

-2 -1 0 1 2
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

ηh

μ
*

(b) Derivative specification with p? = 0.75

-2 -1 0 1 2
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

ηh

μ
*

(c) Derivative specification with p? = 1

Figure 7.4.: We use the same color-coding as in Figure 7.2 and . The plots show the results for
p? = 0.5, p? = 0.75 and p? = 1.

anomalous dimension one can then define a one parameter coupling that depends only on
the RG-scale k via the generalization of equation (6.9) with the prescription

∂t gYM = βgYM
=

1

2
ηA(k, p2 = k2)gYM . (7.10)

In Figure 7.5, we plot ηA(k, p2) for some specific parameter values. All these plots are
obtained for g = 0.5, however, we stress that the sign does not depend on this choice as the
result is a power series in g. We investigate the iterations, where we have always assumed a
constant function η0 = const. as a first approximation. We then plot the first, second and
third order and find rapid convergence in all cases, which is expected as we have checked
that the kernel in (7.5) generates a very large radius of convergence. The third iteration is
for this choice of η0 not even visible any more, since the corresponding curve lies exactly
on top of the second iteration. The convergence and the dependence on the zeroth order
iteration are analyzed in more detail in Figure 7.7. There, we depict the iterative solutions
for different initial functions η0. We observe that in all cases we find convergence in the
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(c) Momentum dependence for µ=−0.5.
The zeroth iteration is a constant function.
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(d) Momentum dependence for µ =−0.7. The
zeroth iteration is a constant function.

Figure 7.5.: The full momentum dependence of the gravity contributions to the anomalous dimension
ηA for different paramter values of the gap parameter µ and for g = 0.5 and ηh = 0.5.
We show the zeroth iteration (orange curve), which is of course an arbitrary function
and then the first (blue curve) and second (red curve) iteration.

second order of the iteration. In the first three examples, (a), (b) and (c), we have chosen
well-behaved functions that have average values of the order of the final solution. As a
result, the third order iteration is indistinguishable from the second order. In example (d),
the average value of the function is much larger. In this case the first iteration is not a good
approximation and has a different sign for small momenta. There is a minimal difference
between the second and the third iteration, which is hardly visible, and convergence is
perfectly ensured. Even with a zeroth order iteration that has a different pole-structure, the
result turns out to be convergent. It is clear that an initial function with a singularity that is
not too strong can lead to a smooth limit of the iteration as the singularity is screened by the
integral measure. However, in this case the first iteration still resembles the pole structure
and is a good approximation for large momenta only.

In spirit of the plots in the last paragraph, we depict sgn(ηA,h) in Figure 7.7 as a function
of the external momentum p and the parameters of the graviton propagator ηh and µ. For a
negative sign, indicated by the colored region, asymptotic freedom is preserved and we find
that this is indeed the case for the definition Equation 7.10.
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(d) The zeroth iteration is the exponential
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.
This function is rescaled by a factor of 0.1.
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(e)The zeroth iteration is given by η0 =
1
p2 .

Figure 7.6.: The full momentum dependence of the gravity contributions to the anomalous dimension
ηA for different for typical fixed point parameter values parameter µ = −0.5, g = 0.5
and ηh = 0.5, bur for different initial functions η0 for the iteration process. We show
this zeroth iteration as an orange curve, then the first (blue curve), second (red curve)
and third (green curve) iteration.
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Figure 7.7.: Signum of the gravity contributions to the gluon anomalous dimension, i.e. signηA,h as
a function of ηh and µ and the external momentum p. The colored region indicates
signηA,h < 0

The main results of this chapter can be summarized as follows. For the beta-function
as defined in equation (7.10), the graviton contributions to the running of the Yang–Mills
coupling are strictly negative, hence supporting asymptotic freedom. Moreover, we find that
with derivative or finite difference projections of the wave–function renormalization the full
momentum dependence is indeed nicely approximated if the projection resolves fluctuations
p ≈ k.
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CHAPTER 8

Yang-Mills Contributions To Quantum Gravity

In the last chapter we have investigated the quantum gravitational corrections to the running
of the Yang–Mills coupling. This chapter is concerned with the converse situation, namely
the impact of gluonic fluctuations on the gravity sector.
For the results in this chapter, we want to add that these are very recent calculations that
are not checked sufficiently. Hence, everything in the following is preliminary.

8.1. Beta Functions

We have seen in the last part of this thesis, Part I, that there are several ways to define a
running gravitational coupling, with the definition via the the three–point function being
the most advanced and refined one, and in the sense of vertex expansions the only one that
is directly related to multi-graviton interactions. In this chapter we want to investigate the
gluonic vertex corrections. Moreover, there are of course gluon corrections to the running of
the graviton propagator. These Yang–Mills corrections to the graviton two and three–point
function split in an analog way as the gravity corrections to Yang–Mills theory in the last
chapter, since for any n-point function the structure is

Flow(nh) =4hFlow(nh)+4AFlow(nh) , (8.1)

with pure graviton contributions 4hFlow(nh) and the gluon induced term 4AFlow(nh). In
diagrammatic language the Yang–Mills contributions are given in Figure 8.1 and Figure 8.2.

A generic beta-function for the gravitational coupling including Yang-Mills corrections is
then of the form

∂t g = 2g + g2
�

Ah(λ
(n)) +ηhBh(λ

(n)) + CA+ηADA

�

, (8.4)

where Ah and Bh originate in pure graviton contributions while CA and DA are generated
by diagrams with internal gluon propagators. These gluon–induced corrections are the
direct Yang–Mills contributions i.e. the Yang–Mills contributions to the running of the three-
point function. We also assume momentum-independent anomalous dimensions throughout
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4AFlow(2h) =−
1

2
+ (8.2)

Figure 8.1.: Diagrammatic depiction of the gluon contributions to the flow of the graviton propa-
gator. The wiggly lines are gluon propagators, and the double line represent graviton
propagators.

4AFlow(3h) =−
1

2
+ 3 − 3

(8.3)

Figure 8.2.: Diagrammatic depiction of the gluon contributions to the flow of the graviton three–point
function. The wiggly lines are gluon propagators, and the double line represent graviton
propagators.

this chapter. Moreover, the Yang–Mills contributions to the graviton propagator enter the
above beta-function (8.4) via the graviton anomalous dimension ηh and the flow of the
gap-parameter µ=−2λ(2). These equations have the general form

ηh = g(Eh(λ
(n)) +ηhFh(λ

(n)) + GA+ηAHA) (8.5)

and
∂tµ=−2µ+ηhµ+ g(Ih(λ

(n)) + Jh(λ
(n))ηh+ KA+ηALA) , (8.6)

where again all pure gravity contributions are labeled with an index h and the one generated
by gluons with an index A. Note that all the Yang–Mills contributions do not depend on
µ, as the corresponding diagrams do not involve graviton propagators, see Figure 8.1 and
Figure 8.2. In particular, this implies that these terms have no 1/(1+µ) singularity in the
limit µ −→ −1. Furthermore, in contrast to the gravity corrections to the running of the
gauge coupling, all these diagrams contain a closed gluon loop and hence all the factors in
the above equations with an index A are proportional to N2

c − 1.

8.1.1. Contributions to the Propagator

The gluon contribution to the graviton propagator has already been studied in a derivative
expansion around p = 0 in [143]. However, the author has already found that this pro-
jection is insufficient due to the non-trivial momentum-dependence of the flow, which is
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Figure 8.3.: The momentum dependence of 4AFlow(2h) for ηA = 0 on the right-hand side of the flow.

characterized by a dip at p ≈ k. We have shown in [1], see also subsection 5.5.1, that this
structure is resembled by the full flow, i.e. by the graviton contributions and that projections
at momentum scales close to the cutoff are necessary. We have re-derived the momentum
dependence of 4AFlow(2h)(p2) and the result is depicted in Figure 8.3.

As in the setup in the last section, we use an optimized cutoff. For the the projection at
p = 0, we re-derive the result in [143] and obtain for the momentum independent part

4A Flow(2h)(p2 = 0) = (N2
c − 1)

1

60π
ηA . (8.7)

Surprisingly, this contribution is proportional to ηA. This, however, is only the case for an
optimized regulator. The momentum dependent part in a general finite difference projection
is of the form

4AFlow(2h)
�

�

�

p=p?
− 4AFlow(2h)(p2)

�

�

�

p=p•

p2
? − p2

•
= gZh(N

2
c − 1)(αp?,p• + βp?,p•ηA) , (8.8)

where αp?,p• and βp?,p• depend on the specification, but once the latter is fixed are pure
numbers. This is rooted in the fact that there are only internal gluon propagators and
graviton-gluon vertices and both do not depend on λ(n). For p• = 0 and p? −→ p•, i.e. a
derivative at p = 0, we obtain

α= β =−
1

12π
≈−0.027 . (8.9)

Due to the momentum strucutre of thre flow, the sign of αp?,p• and βp?,p• changes for
optimized specifications with p? ≈ k. More precisely, we obtain for the derivative at p = k

α≈ 0.54 . (8.10)

and
β ≈−0.3 . (8.11)
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Figure 8.4.: The momentum dependence of 4AFlow(3h) for ηA = 0 on the right-hand side of the flow.

8.1.2. Contributions to the Three–Point Function

The contributions to the three–point function enter the general equation (5.124) for
the beta–function of the gravitational coupling g as additional terms in the function
FG/Λ,φ(pi , q, Gn,Λn), since this encodes the right-hand side of the flow equation. Now
the sum over the fields includes the gluon field A. As usual, in order to get reliable results,
an analysis of the momentum dependence is necessary. For this task we resolve the full
momentum dependence of the contributions 4AFlow(3h)(p2). The only approximation is
that we drop the momentum-dependence of the gluon wave–function renormalization under
the loop integrals. The result is shown in Figure 8.4.

Interestingly, the contributions to the three point function are in the cutoff regime p ¯ k
very well approximated by a function c1 + c2p2 with constants c1 and c2. We also note
that this behavior is independent of ηA. Therefore, results are quite independent from the
specification procedure, since any derivative or finite difference with arbitrary p? and p•
in (5.124) just returns the coefficient c2 and the quadratic approximation to the flow is
sufficient in this case. As a result, we obtain

4AFlow(3h)
�

�

�

p=p?
− 4AFlow(3h)(p2)

�

�

�

p=p•

p2
? − p2

•
= g

3
2 Z

3
2

h (N
2
c − 1)(γ+δηA) , (8.12)

where γ and δ are almost independent of p? and p• and

γ≈ 0.3 , (8.13)

and

δ ≈−0.1 . (8.14)
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Remark on Locality

At this point we add the important remark, that 4AFlow(2h) as well as 4AFlow(3h) tend to
constants in the limit p −→∞, see Figure 8.3 and Figure 8.4. As a consequence, these terms
do not spoil locality of the flow of the graviton two- and three–point function, which was
proven in subsection 5.5.1 and subsection 5.8.1. In summary, we assert

lim
p→∞

∂tΓ
(2h,3h)
G,Gravity+YM(p)

Γ(2h,3h)
G,Gravity+YM(p)

= 0 , (8.15)

i.e. the full flows of the graviton two- and three–point functions including Yang–Mills
corrections are local in the sense defined in section 5.2.

8.1.3. Large N limit

As the above calculations are only preliminary results, we do not aim at a complete analysis
of the impact of the Yang–Mills contributions on the fixed point structure. However, we
note the positive sign of the leading term γ in (8.12). In turn, this term contributes with
a positive sign to the running of the gravitational coupling via CA in (8.4). In a large
N -limit, gluonic fluctuations dominate the loop contributions. This is intuitively clear and is
quantified by 4AFlow(3h) ∼ N2

c . As a consequence, we obtain in a large N limit a positive
loop contributions to the beta function, see (8.4), and a first guess is

ġ = 2g + g2 �loop contributions
� Nc→∞≈ 2g + g2CA , (8.16)

with CA > 0. This implies that the the fixed point condition cannot be satisfied for positive
Newton constant.
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CHAPTER 9

Basics

9.1. Heavy Ion Collisions, The Quark–Gluon Plasma and
Transport Phenomena

Quantum Chromodynamics has proven to be a very powerful theoretical framework for the
description of strong interactions. It is the accepted theory of quarks and gluons and is
part of the standard model of particle physics. The theory shows striking properties such as
confinement, chiral symmetry breaking and asymptotic freedom. These mechanisms lead to
a very rich phenomenology and a very interesting phase diagram, whose global structure
is still unknown, [144,145]. In equilibrium, the partition function of QCD depends on the
external parameters temperature T and quark-chemical potential µ. Therefore, the phase
diagram can be visualized in a two-dimensional plane, see Fig. 9.1.

One of the most interesting and most investigated aspect is the confinement-deconfinement
phase transition at the critical temperature Tc. More precisely, it is a first order phase
transition in pure Yang–Mills theory, while it is crossover in full quantum chromodynamics.
Since this is the relevant feature for this thesis, I will focus in the following exclusively
on this property. At temperatures below Tc, quarks and gluons are confined into hadronic
bound states, which are the effective degrees of freedom of low energy QCD. This regime is
inherently non-perturbative and therefore requires suitable methods such as lattice QCD,
functional methods or effective models. For temperatures above the critical temperature,
quarks and gluons exist as unbound color-charged particles in the the quark-gluon plasma
(QGP). Additionally, for very high temperatures when all relevant momenta are sufficiently
large, the coupling gets small and perturbation theory becomes applicable since all quantities
can be expanded in a power series in the coupling.

Experimental access to the phase diagram can be gained with heavy ion collisions in
particle accelerators. The heavy ion programs at RHIC [147, 148] and at the LHC [149]
explore the physics of the quark-gluon plasma. In order to understand the relevance of
transport coefficients, in particular of the shear viscosity, I briefly discuss the phenomenology
of heavy ion collisions. A heavy ion collision is a time-dependent process that can be divided
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Figure 9.1.: Possible sketch of the phase diagram of QCD. Figure taken from [146].

into several stages. Schematically, the time-evolution is depicted in Fig. 9.2.

Figure 9.2.: Time evolution of a heavy ion collision. Figure taken from [150].

The heavy ions collide at very high energy as Lorentz-contracted pancakes. In this collision
the partons interact in a complicated way and form a quark-gluon plasma heavily out of
equilibrium. Experimental data indicates that this state of matter equilibrates on time
scales of teq ≈ 1fm/c. As the matter expands further, it cools down, reaches the critical
temperature and hadronizes. Interestingly, the phase transition temperature coincides with
the chemical freezout, [151]. Finally, these hadrons escape the collision vertex further and
reach the detector. However, we can gain information about the quark gluon plasma, i.e. the
intermediate stage of the evolution, by studying the elliptic flow coefficients, which arise due
to breaking of spherical symmetry of the collision. Fig. 9.3 shows the geometry of a heavy
ion collision. Usually the nuclei do not collide head-on, but with a finite impact parameter b.
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Therefore, only matter in an almond-shaped, or almost elliptical, area gets compressed and
heated up, see Fig. 9.4.

Figure 9.3.: The x-z reaction plane in a heavy ion collision. The plane is spanned by the beam
direction z and the vector of the impact parameter b. The figure is taken from [152].

Figure 9.4.: The almond-shaped collision region in a non-central heavy ion collision. Figure taken
from www.cerncourier.com.

Because of the gradients in this spatial anisotropy of the initial state, the final state shows
a corresponding momentum anisotropy. This momentum anisotropy can be quantified with
the anisotropic flow coefficients vn. These coefficients are defined by a Fourier expansion of
the momentum distribution in terms of the angle between the direction in the reaction plane
and the the out-of plane direction. The first coefficient v1 in this expansion is known as the
directed flow, while the second coefficient v2 is called the elliptic flow. The elliptic flow is
one of the most important observables in heavy-ion collisions and is directly related with
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transport coefficients. Having in mind the picture of the hot and dense matter as a plasma,
one might be tempted to describe the collective behavior of the system with hydrodynamics.
And indeed, experimental results indicate that the expansion of the many-body system
created in heavy-ion collisions is well-described by hydrodynamics. However, at high pT
ideal hydrodynamics fails and viscous effects need to be taken into account. The dynamics
of the expansion of a plasma depends on the transport coefficients as a measure for the
deviation from ideal hydrodynamics. Consequently, the asymmetry in momentum space can
be related to the transport coefficients of the plasma. And indeed, it turns out that viscous
hydrodynamics fits the observed data quite well, [153–155]. Therefore, the determination
of transport coefficients in the QGP is of great interest. In particular, the shear viscosity is
the quantity that is directly related to the data of v2 extracted from experiment, [156–159].
More precisely, it is the viscosity over entropy ratio η/s that is directly proportional to the
efficiency of the conversion of the initial spatial anisotropy into a momentum anisotropy of
the final state.

Moreover, experimental data show that the quark gluon plasma close to the critical
temperature is governed by a very small value for η/s, meaning that it is very close to a
perfect fluid. Since the viscosity is proportional to the mean free path, which in turn is
inversely proportional to the cross section, these results indicate that the quark gluon plasma
is strongly coupled close to the phase transition.

The viscosity over entropy ratio η/s is not only of great phenomenological interest, but it
is also a fascinating playground for purely theoretical considerations. As we have already
mentioned above, the high temperature regime T � Tc is governed by a small coupling
and can be described by perturbative techniques such as hard thermal loop resummations.
However, since the QGP behaves non-perturbatively in the vicinity of the critical temperature,
where the minimum for η/s is expected [160,161], other methods are necessary in order
to describe the quark gluon plasma over a range of temperatures from below Tc up to the
weakly coupled regime. A universal lower bound for η/s of 1/4π was conjectured in [162]
using the AdS/CFT correspondence. Indeed, measurements of the elliptic flow v2 indicate a
value for η/s which is of the order of this lower bound [153]. The bound has been tested
theoretically with several methods for the QGP [163–169], but also for other potentially
perfect liquids, such as ultracold atoms [170–172].

However, the calculation of transport coefficients is a hard problem. The fluctuation-
dissipation theorem relates the transport coefficients via Kubo relations to spectral functions
of the energy–momentum tensor, which is inherently a real-time quantity and cannot be
obtained directly from Euclidean correlation functions. However, the direct calculation of
real-time correlation functions represents a notoriously difficult problem in non-perturbative
approaches to quantum field theory such as lattice techniques and functional methods. Even
though first computations in this direction have been performed e.g. in [173,174], we shall
utilize Euclidean correlation functions and a numerical analytic continuation.

9.1.1. The strategy

In this part of the thesis we study the shear viscosity over entropy ratio η/s in pure SU(3)
Landau gauge Yang-Mills (YM) theory within the approach set-up in [163]. We considerably
generalize the approach, also aiming at quantitative precision. We use a Kubo relation in
order to express the viscosity of the non-Abelian plasma in terms of a two–point correlation
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function of the energy-momentum tensor (EMT) and apply an exact functional relation
that allows a representation of this correlation function in terms of full propagators and
vertices of the gluon field. We use a real-time representation of this EMT-correlator, and
consequently it involves real-time gluon propagators that can be expressed in terms of their
spectral functions. These gluon spectral functions are obtained from Euclidean propagators
via analytic continuation with maximum entropy methods, [175]. We are then left with
loop–integrals at finite temperature over the spectral functions, internal gluon vertices and
an external vertex that couples the EMT to the gluons. As a result, we obtain the shear
viscosity η as a function of temperature. Combining this with lattice data for the entropy, we
calculate the famous η/s ratio. Finally, we use these results in pure Yang–Mills theory in
order to estimate the viscosity over entropy ration in full QCD.

The analysis covers the entire temperature range from the glueball regime below the
critical temperature Tc, up to the ultraviolet where perturbation theory is applicable. In
particular, this resolves the non-perturbative domain at temperatures T ® 2Tc . We provide
a global, analytic fit formula for η/s which extends the well-known perturbative high-
temperature behavior to the non-perturbative temperature regime.

9.2. Hydrodynamics

In this section we give a brief summary of the most important concepts and equations
necessary for understanding hydrodynamics in the context of heavy-ion collisions and the
quark-gluon plasma. Since we need a relativistic formulation in order to describe heavy-ion
collisions, we focus on relativistic hydrodynamics.

9.2.1. Ideal Hydrodynamics

A (quantum) many-body system can be described as a continuum if the fluid approximation
is valid. This means that, small volume elements are characterized by constant physical
quantities. In particular, the ensemble is in local thermal equilibrium.

In order to match these conditions, one must be able to establish the following hierarchy
of scales in the system. Let lMFP be the mean-free path of the particles, L the overall
macroscopic scale and l the scale of the fluid elements. Then, for hydrodynamics to be
applicable the hierarchy

lMFP � l � L , (9.1)

must hold. This translates to the statement that after small external perturbations the
relaxation time is much smaller than any other typical time scale of the system. The
underlying microphysics can be understood in terms of (quantum) kinetic theory, where
the above conditions mean that the underlying phase-space distributions are given by, or
immediately relax to the equilibrium distributions.

The hydrodynamic equations are then consequences of conservation laws. The conserved
quantities are given by the energy-momentum tensor T and the conserved charges J . For
an energy-momentum tensor Tµν and conserved currents Jµ the conservation laws take the
form

∂µTµν = 0 , ∂µJµ = 0 . (9.2)
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The energy-momentum tensor can now be expanded in derivatives. Ideal hydrodynamics,
i.e. the local equilibrium assumption, implies that T and J do not contain any derivatives,
which means that ideal hydrodynamics corresponds to a zeroth order derivative expansion.
Moreover, in a relativistic formulation, Lorentz invariance dictates the general form of these
objects, once the hydrodynamic variables are specified. In the relativistic case a convenient
choice for the hydrodynamic variables is the energy density ε, pressure p, the fluid four-
velocity uµ =

�

γ,γv
�

µ with uµuµ = 1, and the local charge density n that describes the
conserved currents. Therefore, the only covariant tensors at hand are uµ and the metric gµν .
Additionally, in the local rest frame, the component T00 should be the energy density and
the momentum density vanishes, while the spacelike components are simply the pressure.
With these requirements the energy-momentum tensor for an ideal relativistic fluid reads

Tµν0 = (ε+ p)uµuν − p gµν = εuµuµ− pP µν , (9.3)

with the transeverse projector
P µν = gµν − uµuν . (9.4)

The conserved currents can be written as

Jµ = nuµ . (9.5)

Using the above expressions in the conservation laws, one can write down the fluid equations

uµ∂µε=−(ε+ p)∂µuµ (9.6)

and
uµ∂µn=−n∂µuµ . (9.7)

In the non-relativistic limit the above equations reduce to the well-known continuity equation
and the Euler equation. Due to the normalization condition for the fluid four-velocity, the
above equations actually constitute only five independent relations for six unknowns. The
system of equations is then closed with the equation of state (EoS) p(ε, n), that relates
pressure, energy density and number density. Moreover, we note that entropy is a conserved
quantity in ideal hydrodynamics. More precisely, the covariant entropy current sµ = suµ is
conserved. This can be seen as follows. Using s = (ε+ p)/T , the divergence of the entropy
current can be written as

∂µsµ = uµ
1

T
∂µ(ε+ p) + uµ(ε+ p)∂µ

1

T
+
ε+ p

T
∂µuµ . (9.8)

Now we compare this with the spatial derivative of the energy momentum tensor in the
direction of the fluid velocity

uν∂µTµν =uνuνuµ∂µ(ε+ p) + (ε+ p)uν∂µ(u
µuν)− uµ∂µp

=uµ∂µ(ε+ p) + (ε+ p)∂µuµ+ uµ(ε+ p)T∂µ
1

T
, (9.9)

where we have used the normalization of the fluid four-velocity and that uν∂µuν = 0, which
follows from ∂µ(uνuν) = 0. Additionally, we have utilized the Gibbs Duhem relation in order
to rewrite the derivative of p in terms of a derivative of 1/T

dp =−(ε+ p)T d
�

1

T

�

. (9.10)
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Putting the pieces together we arrive at

∂µsµ =
1

T
uν∂µTµν = 0 , (9.11)

because of the conservation law for the energy momentum tensor. This saturates the bound
given by the second law of thermodynamcis which states

∂µsµ ≥ 0 . (9.12)

Including dissipative effects, i.e. in viscous hydrodynamics, the entropy is no longer con-
served and strictly larger than zero. In order to include these dissipative effects, one needs
to take into account derivative terms in the energy momentum tensor.

9.2.2. Viscous Hydrodynamics

Dissipative effects correspond to small perturbations from local equilibrium. On the mi-
croscopic level this means that the phase space distribution functions deviate from its
equilibrium form. On the level of the effective description in terms of hydrodynamics,
they appear as additional terms proportional to derivatives of the fluid velocity in the
energy-momentum tensor. Neglecting the heat conductivity, the leading order modifica-
tions define the transport coefficients shear-viscosity η and bulk-viscosity ζ that enter the
energy-momentum tensor as

Tµν1 =−ηθµαθ νβ
�

∂αuβ + ∂βuα−
2

3
ηαβ∂ γuγ

�

− ζθµν∂γuγ , (9.13)

with
θµν = ηµν + uµuν . (9.14)

The total energy momentum tensor up to first order is then given by

Tµν = Tµν0 + Tµν1 . (9.15)

Intuitively, the shear viscosity describes the friction force between neighbouring fluid
layers that move with relative speed to each other. Thus it is plausible that

η∼ density× velocity× lMFP . (9.16)

From a microscopic point of view, the mean free path is inversely proportional to the cross
section, which in turn is directly proportional to the coupling strength. Therefore, we
conclude that η∼ 1/ f (g), where f is some monotonically increasing function.

9.2.3. Linear Response Theory, the Fluctuation Disspiation Theorem
and Kubo relations

The main goal of this part of the thesis is the calculation of the viscosity over entropy ratio
η/s in the quark-gluon plasma. For this task it is necessary to find a way to determine η/s in
a non-Abelian plasma from the microscopic, underlying quantum field theory. As we have
already mentioned, in this work we want to make use of the Kubo formulas, which are based
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on the fluctuation-dissipation theorem and linear response theory and relate correlation
functions to transport coefficients.

Linear response theory is applicable if a medium is subject to a small perturbation that
drives the system slightly out of equilibrium, i.e. if the answer to the small disturbance is a
also only a small effect.

Assume we perturb the system with a real, external source field ξ̃(x0, x) = εξ(x0, x). We
further assume, as we are interested in linear response, that the change of any expectation
value of an essentially self-adjoint operator A is linear in ξ, or to put it differently, we assume
ε � 1 and ignore higher order terms in the external perturbation and work in a linear
approximation. Hence, we can infer the perturbation to take the form

δ〈A(x0, x)〉 := 〈A(x0, x)〉
�

�

ξ
− 〈A(x0, x)〉

�

�

ξ=0 =

∫

d3 x ′dx ′0R(x0, x , x ′0, x ′) ξ̃(x ′0, x ′) ,

(9.17)
where we have defined the kernel R(x0, x , x ′0, x ′). This kernel is called the response
function. Additionally, we want the system to be translation invariant. In this case the
response function can only depend on the differences x0 − x ′0 and x − x ′. In this case,
(9.17) is the convolution R ∗ ξ̃ and the Fourier transform FT [·] of the same is just the
pointwise product. Consequently, we get

FT
�

δ〈A(x0, x)〉
�

= δ〈A(p0, p)〉=R(p0, p) ξ̃(p0, p) . (9.18)

This implies that the response is ultra-local in momentum space: if we perturb the system
with frequency p0, then the deviation is also characterized by the very same frequency.
Non-local effects can only be described within non-linear response theory. Since the external
source field ξ and the expectation of A are mappings to the real numbers, the response
function R(x0− x ′0, x − x ′) must also be real-valued. However, the Fourier transform will
be complex,

R(p0, p) = ReR(p0, p) + i ImR(p0, p) . (9.19)

Let us now investigate the physical interpretation of the response function. Obviously, the
imaginary part can be written as

ImR(p0, p) =−
i

2

�

R(p0, p)−R∗(p0, p)
�

=−
i

2

∫

dx0eip0 x0 �

R(x0, p)−R(−x0, p)
�

. (9.20)

Thus we can infer that the imaginary part of the response function arises due to effects that
are not invariant under the transformation t −→−t, i.e. not invariant under time reversal.
Microscopic laws of physics, such as fundamental scattering processes, are typically invariant
under time reversal. However, it is well-known that dissipative effects are not invariant
under this transformation. Therefore, the imaginary part of the response function is also
called its dissipative part. The relation to n-point functions in quantum field theory will
become clear below.

Let us now shortly comment on causality and its implications for the response function.
Causality means that any action cannot affect the past. In our case, this means that the
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system reacts only to perturbations that are in the past relative to the time of observation.
Mathematically, this causality condition translates into

R(x0, x) = 0 ∀ x0 < 0 . (9.21)

This implies some important properties for the Fourier transform. We Fourier transform the
zero-component according to

R(x0, · ) =FT {R(p0, · )}=
∫

R

dp0

2π
e−ip0 x0

R(p0, · ) . (9.22)

Furthermore, we assume a sufficiently fast decaying response functions in momentum space.
More precisely, we require any response function to have the property

R(p0, · )
p0→∞
≤

1

p0 . (9.23)

Then we can analytically continue the integral and for t < 0 close the the contour in the
upper-half of the complex plane. Due to the causality condition (9.21), this integral must
be zero. By the residue theorem we can then conclude that the response function has no
poles in the upper-half of the complex plane, i.e. R(p0, · ) is an analytic function of its first
argument onH +. Therefore, the causality condition implies analyticity and vice versa.

This analyticity property ensures relations between the real and imaginary parts of
the response function, namely the Kramers-Kronig relations, which are well-known as an
expression of causality. By standard calculus in complex analysis, we obtain the Kramer-
Kronig relations as

ReR(p0, · ) =P
∫

R

dp′0

π

ImR(p′0, · )
p′0− p0 , (9.24)

and

ImR(p0, · ) =−P
∫

R

dp′0

π

ReR(p′0, · )
p′0− p0 , (9.25)

where P
∫

denotes the principal value. Using the Sokhotskj-Plemelj theorem, we can obtain
the important equation

R(p0, · ) = lim
ε→0

∫

R

dp′0

π

ImR(p′0, · )
p′0− p0− iε

, (9.26)

which tells us that the entire response function can be reconstructed from its dissipative part.
Now we proceed with the derivation of the fluctuation dissipation relation from the basic

assumptions of linear response theory. We write the perturbation to the Hamiltonian as

Hpert = εξA , (9.27)

with ε� 1 being the control parameter of perturbation theory. Furthermore we assume
that the perturbation is switched off in the limits x0 −→±∞, i.e. Hpert is an operator with
compact domain in x0, e.g. Hpert(x0) = 0 if x0 < x i or x0 > x f . Expectations in presence of
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the source are labeled with the field ξ. The time evolution operator that evolves interaction
picture states from x0

0 to x0 is then constructed as

U(x0, x0
0) = Te

−i
∫ x0

x0
0

dx ′0Hpert(x ′0) . (9.28)

We now take the limit x0
0 −→−∞, such that the system is unperturbed at x0

0 according to
our assumptions, and we further consider times x0 > x i The density matrix evolves as

ρ(x0) = U(x0,−∞)ρ(x0
0)U

†(x0,−∞) . (9.29)

Then we can use the cyclicity of the trace and the time evolution in order to express the
expectation of an operator A at x0 in terms of the unperturbed expectation and a deviation
in first order perturbation theory according to

〈A(x0, · )〉
�

�

ξ
= Trρ(x0)A(x0)

= Trρ(x0
0)U(x

0,−∞)A(x0)U†(x0,−∞)

= 〈A(x0, · )〉
�

�

ξ=0+ i

∫ x0

−∞
dx ′0 〈[Hpert(x

′0), A(x0)]〉
�

�

ξ=0+O (ε
2) (9.30)

Therefore the change in the operator defined in (9.17) is given by

δ〈A(x0, x)〉= iε

∫ ∞

−∞
θ(x0− x ′0) 〈[A(x ′0), A(x0)]〉

�

�

ξ=0 ξ(x
′0) , (9.31)

where the theta function is introduced in order to extend the range of integration to +∞.
Comparing this with the definition of the response function in (9.17), we obtain

R(x0, x , x ′0, x ′) =−iθ(x0− x ′0) 〈[A(x0, · ), A(x ′0, · )]〉
�

�

ξ=0 . (9.32)

We see that the response function is nothing but the retarded Greens function without
presence of an external source. The above equation (9.32) is a version of the fluctuation
dissipation theorem, as it relates the response function, i.e. the central quantity of linear
response theory, to correlation functions, which describe fluctuations. From the fluctuation
dissipation theorem it is still a quite lengthy, and a bit tedious, calculation leading to explicit
Kubo-relations for transport coefficients, [176–178]. In this work we need the Kubo relation
for the shear viscosity, which will be presented below.
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CHAPTER 10

Shear Viscosity in Yang–Mills Theory and QCD

As we have already mentioned, the main goal in this part of the thesis is the computation
of the viscosity over entropy ratio η/s in SU(3) Yang–Mills theory and full QCD. We will
compute the former explicitly and gain access to the latter by an appropriate transformation
procedure.

10.1. The Strategy in more detail

In this section we want to present our strategy and the technical setup for calculating the
the viscosity over entropy ratio in Yang–Mills theory in some detail.

The Kubo Relation
From the fluctuation dissipiation theorem, one can derive the Kubo relation for the shear
viscosity, which is given by

η= lim
ω→0

1

20

ρππ(ω,~0 )
ω

, (10.1)

where

ρππ(ω,~p ) =

∫

d4 x
(2π)4 e−iωx0+i~p~x〈[πi j(x),πi j(0)]〉 , (10.2)

is the spectral function of πi j, which in turn is the spatial, traceless part of the energy-
momentum tensor and reads

πi j(x) = Ti j −
1

3
δi j T

m
m . (10.3)

We emphasize that the above Kubo formula contains an expectation in real-time that cannot
simply be calculated in Euclidean field theory.

Given this relation, one needs to compute the spectral function of the energy-momentum
tensor. In SU(3) gauge theory the spatial, traceless EMT in momentum space is explicitly
given by

πi j(p) = tr[Fµi ∗ Fµj ](p)−
1

3
δi jtr[Fµm ∗ Fµm](p) , (10.4)
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where ∗ denotes the convolution, as in the last section.
It is immediately clear that the energy-momentum tensor is a composite operator of the
fundamental gluon field A. As a consequence, we need to compute correlation functions of
composite operators.

The Magic Formula
A correlation function of a general composite operator Φc[ϕa] can be represented in terms
of the fundamental field [32],

〈Φc[ϕa]〉= Φc[Gab
δ

δφb
+φa] , (10.5)

where we remind the reader that φ = 〈ϕ〉 is the expectation of the operator ϕ. The above
equation can be interpreted as a generalized Dyson–Schwinger equation for composite
operators. In order to get a feeling for this condensed representation, we apply it in an
almost trivial case where the composite operator is just the two–point function of a scalar
field,

Φab[ϕ] = ϕaϕb . (10.6)

In this case

〈Φab[ϕ]〉=
�

Gac
δ

δφc
+φb

��

Gad
δ

δφd
+φb

�

1= Gab +φaφb (10.7)

which is of course a well-known expression. We have written out explicitly a 1 in the
expression above, such that the derivative operators at the rightmost return zero. Usually
this identity operator is dropped in the notation, but is always implicitly understood. In our
study, we apply the magic formula (10.5) to the composite operator

Φi j[Â] = πi j[Â]πi j[Â] , (10.8)

whose expectation is then given by

〈πi j[Â]πi j[Â]〉= πi j[GAφk
· δ
δφk
+ A]πi j[GAφk

· δ
δφk
+ A] , (10.9)

where φ = (A, c, c̄) denotes the expectation value of the fluctuation (super-)field φ̂, e.g.
A= 〈Â〉, and Gφiφ j

= 〈φ̂i φ̂ j〉− 〈φ̂i〉 〈φ̂ j〉 denotes the propagator of the respective fields. The
energy–momentum tensor can then be expanded in powers of the gluon field, which is just a
finite sum

πi j =
4
∑

n=2

1

n!

δnπi j

δAa1
...δAan

Aa1
...Aan

, (10.10)

where the derivatives of π with respect to the field are interpreted as vertices coupling the
EMT to n gluon fields. Inserting this in (10.9) then yields a diagrammatic representation in
terms of a finite number of diagrams involving full propagators and vertices, see Fig. 10.1
for the types of diagrams appearing in the full expansion up to two-loop order. As there are
at most A4 terms in the EMT π, the structure of (10.9) implies that the maximal loop order
of the diagrams is six.

We emphasise that (10.9) is an exact relation whose finite diagrammatics should not
be confused with a perturbative expansion in an infinite series of Feynman diagrams.
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A B C

D E F

Figure 10.1.: Types of diagrams contributing to the correlation function of the energy momentum ten-
sor up to two-loop order; squares denote vertices derived from the EMT; all propagators
and vertices are fully dressed.

The propagators and internal vertices, which arise from functional derivatives of the full
propagator in (10.9), are fully dressed. However, the RG-invariance of the left hand side of
(10.9) only carries over to right hand side if also the external vertices derived from the EMT
are dressed with appropriate wave-function renormalisation factors and running couplings.
This argument is supported by the flow equation for the EMT itself, which can be derived
from the flow equation for composite operators [32], where full vertices are generated
during the flow. More heuristically, this can also be seen in a skeleton expansion. Therefore,
on a diagrammatic level only up to 3-loop diagrams with dressed external vertices appear.

The Schwinger–Keldysh Formalism, Correlation- and Spectral Functions
As we are interested in the spectral function of the energy–momentum tensor, which is
inherently a real–time object, the natural framework for such a calculation is the real-time
formalism based on the Schwinger-Keldysh closed time path. Within such a setup one never
has to resort to Euclidean field theory. The Schwinger–Keldysh formalism is capable of
describing even non-equilibrium situations, [179–182]. The necessity of the closed time
path arises due to the fact that in general situations, one cannot simply relate the Hilbert
spaces at t = −∞ and t = +∞ in the sense that the vacuum states differ just by a phase
factor, which is needed in order to construct the well-known path integral representation
for S-matrix elements in zero-temperature quantum field theory. By implementing the
Kubo-Martin-Schwinger (KMS) condition, the theory then describes a quantum field theory
in equilibrium at finite temperature, [183–187]. We have seen in subsection 9.2.2 and
subsection 9.2.3, that the transport coefficients can be calculated within linear response
theory. In particular, this means that we have to consider only close-to-equilibrium situations
and the correlation functions that enter the fluctuation dissipation relations can be calculated
in thermal equilibrium. Hence, we deal with finite temperature field theory in the following.
Note that one could also use the Euclidean Matsubara formalism for finite temperature field
theories and apply an analytical continuation afterwords in order to gain a Minkowski-space
correlation function. We will not do so and use the more elegant formulation in real-time.

In finite temperature field theory correlation functions of any operator A are quantum
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statistical averages with the equilibrium density matrix ρeq defined as

〈A〉 :=
Tr
¦

ρeq A
©

Z
, (10.11)

with
ρeq = e−βH (10.12)

and with the inverse temperature β := 1/T and the partition function Z := Trρeq.
In the real-time path integral formulation, the generating functional takes form

Z[JC] =

∫

dφC ei
∫

C
dx{L (x)+JC (x)◦φC (x)} , (10.13)

where the fields live on the Keldysh contour C , whose non-trivial part, namely the time
direction, is depicted in Figure 10.2.

  

Figure 10.2.: The closed time path at finite temperature. Figure taken from [188].

The time path has the properties that it runs from t = −∞ to t = +∞, and is then
reflected and runs backwards. It can be shown that the vertical segment factorizes and thus
can be ignored, see [183,188]. Nevertheless, the fact that we work at finite temperature is
manifested in the KMS condition for correlation functions

〈A(t)B(t ′)〉= 〈B(t ′)A(t + iβ)〉 , (10.14)

see [183, 189]. The price to pay for the real-time formulation is the doubling of the
Hilbert space and a corresponding doubling of field degrees of freedom. This doubling is
also inherent to the formulation of real-time finite temperature correlation functions in
thermofield dynamics, which is based on the definition of a thermal vacuum state and an
operator algebra that reflects the thermal properties, [190–192]. In the closed time path
formulation, one distinguishes two branches of the time contour, conventionally denoted
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by +/−, along with separate fields and sources. Correlation functions thus become matrix
valued, as there are correlations between fields defined on the different parts on the time
contour, labeled by a corresponding branch index. For the two-point function

G =

�

G++ G+−
G−+ G−−

�

, (10.15)

these components are defined by

G−+(x , y) :=− i 〈ϕ−(x)ϕ+(y)〉=: G>(x , y)

G+−(x , y) :=− i 〈ϕ−(y)ϕ+(x)〉=: G<(x , y)

G++(x , y) :=− i 〈Tϕ+(y)ϕ+(x)〉=: GF (x , y)

G−−(x , y) :=− i 〈T̃ϕ−(y)ϕ−(x)〉=: GF̃ (x , y) , (10.16)

where T denotes the time ordering operator and T̃ the anti-time ordering operator. Using
the definition of the retarded propagator, one obtains

GR(x , y) = G++(x , y)− G+−(x , y) . (10.17)

The spectral function is now defined as

ρ := G−+− G+− . (10.18)

The entire theory of spectral representations in the real-time formalism is developed in
Appendix K. This appendix is based on my internal notes, [193], which were already
presented in similar fashion in [175]. As important results we state the relations

G±±(ω,~p) = F(ω,~p)± i
�

n(ω) + 1
2

�

ρ(ω,~p) ,

G+−(ω,~p) = −i n(ω)ρ(ω,~p) ,

G−+(ω,~p) = −i (n(ω) + 1)ρ(ω,~p) , (10.19)

where n(ω) = 1/(exp(ω/T )+1) denotes the Bose distribution function and F(ω,~p) is given
as a principal value integral,

F(ω,~p) = PV

∞
∫

−∞

dω̄
ρ(ω̄,~p)
ω− ω̄

. (10.20)

It is important to note, that all elements of the propagator matrix can be expressed by
the spectral function alone. Moreover, in thermal equilibrium the KMS relation relates the
off-diagonal parts of the propagator via

G+−(ω,~p) = e−βωG−+(ω,~p) , (10.21)

which is also proven in Appendix K. Hence we find for the spectral function of the energy
momentum tensor

ρππ(ω,~p) = (1− e−βω)G−+ππ (ω,~p) . (10.22)
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Inserting the above identity into (10.1), this implies

η=−
β

20
G−+ππ (0, 0) . (10.23)

The Loop Diagrams
In the paragraph above we have shown that the computation of the viscosity can be reduced
to a computation of one, off-diagonal, component of the EMT two–point function. For this
correlator we then apply the magic formula (10.9). Thus, we have to specify these external
branch indices in the diagrammatic expression for the EMT two–point function which is
shown in Figure 10.1. It is clear, that the gluon propagator is now also a 2× 2 matrix with
respect to the branch indices and that the multi-indices in (10.9) include these indices and a
corresponding summation. In this work we present the full two-loop diagrammatics shown
in Fig. 10.1. There are five types of two-loop diagrams arising from the expansion (10.9):
Sunset (B), Maki-Thompson (C), Eight (D), Squint (E), one-loop with vertex correction (F).
The branch indices of the external vertices are fixed by (10.23) as −+, whereas we sum
over internal branch indices. Thus, unlike in the one-loop case, at two-loop level principal
value parts of propagators with equal branch indices can occur, which leads to divergent
contributions. However, at two-loop level, these divergent contributions can explicitly be
shown to cancel due to a left-right symmetry after combining appropriate diagrams. This is
no longer true beyond two-loop, where diagrams with divergent sub-diagrams arise.
The non trivial input in these diagrams are then the gluon spectral functions and the
temperature and momentum dependent running gauge coupling αs(q, T). The former are
obtained from Euclidean correlation functions via maximum entropy methods, which will
very briefly be discussed below. The latter is extracted from the ghost-gluon vertex via
the dressing functions zc̄Ac , Zc , ZT of the ghost-gluon-vertex, the ghost propagator and the
transverse gluon propagator, respectively as

αs(q, T ) =
z2

c̄Ac(q, T )

4πZT (q, T )Zc(q, T )2
, (10.24)

with data taken from [115]. Following the discussion above, all couplings that appear in
the vertices are fully dressed running couplings. For each two-loop diagram we study the
integrand of the viscosity integral as a function of one of the loop four-momenta (q0,~q),
integrating out the other one. It turns out that all integrands are peaked in the vicinity
of some diagram-dependent value (q0,max,~qmax). The running couplings αs(q, T) are then

evaluated at a momentum qmax(T) =
Æ

q2
0,max+~q

2
max ≈ 7 T to minimise the impact of the

neglected momentum dependence of the vertices. This implicitly defines a temperature-
dependent vertex coupling αs,vert(T ) = αs(7 T, T ).

Gluon Spectral functions and Maximum Entropy Method
The non-perturbative gluon propagator can be calculated from methods that do not rely on
an expansion in a small coupling parameter. However, we have already stated that such
methods like lattice gauge theory or functional methods are usually set up in Euclidean
spacetime and Minkowski formulations are not straightforward. Here, we use spectral
functions from Euclidean FRG data obtained in [115]. We want to add the comment that all
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the results can also be obtained with lattice data and one finds only minor differences [163].
As the maximum entropy method is not part of this thesis, we will just briefly comment on
this issue. For details about the maximum entropy method and the properties of the gluon
spectral functions we refer the reader to [163,175,194,195].

The starting point is that we assume given data for the Euclidean propagator G(i t), which
is related to the spectral function ρ(p0) via the integral equation

G(τ= i t) =

∫

dp0

2π
K(τ, p0)ρ(p0) , (10.25)

with a known kernel K(τ, p0). The goal is then the inversion of the integral equation, which
is not unique. Moreover, the Euclidean propagator is known only numerically, e.g. as a set of
discrete points with uncertainties obtained from lattice simulations or numerical evaluation
of flow equations, as in our case. However, one has some additional analytical constraints,
namely the spectral function in the perturbative limit, i.e. the asymptotic behavior of ρ(p0)
for large p0. The task is then to find an approximation to ρ(p0) with the perturbative input
on the one hand, and the discrete set of data on the other hand. The naive approach of using
simple interpolation functions for the data fails miserably. The maximum entropy method
then optimizes the result by, loosely speaking, ensuring an optimal implementation of the
ultraviolet condition.

10.2. Results: The viscosity over entropy ratio

Applying the above strategy, we can calculate the loop integrals in order to obtain the
desired result, i.e. the viscosity over entropy ratio as a function of temperature even in the
non-perturbative regime.

η/s in SU(3) Yang–Mills theory.

Fig. 10.3 shows the full two-loop result for η/s employing the lattice entropy density
from [196] including all diagrams from Fig. 10.1.

The data shows, as expected on general grounds, a clear minimum at Tmin ≈ 1.26 Tc . The
minimal value η/s(Tmin) = 0.14 is well above the AdS/CFT bound, where the error bars
represent the combined systematic errors from MEM and the FRG calculation. The lattice
data [166, 167] is in good agreement with our results, supporting the reliability of both
methods. The inset in Fig. 10.4 shows the comparison to the one-loop calculation [163],
illustrating the very good agreement around Tc. This confirms the argument concerning
the optimisation of the RG scheme around Tc , which was put forward in [163]. Consistent
with this reasoning, only at larger temperatures the deviation between the two calculations
becomes significant and the relative size of the two-loop contribution grows with temperature.
For large temperatures the dominant two-loop contributions arise from the Maki-Thompson
and the Eight, see Fig. 10.4, that resum classes of ladder diagrams. This is consistent
with the conventional picture in perturbative expansions where ladder resummations are
required to obtain the correct result for the viscosity [197,198]. Note that diagrams with
overlapping loops are potentially suppressed as the spectral functions are peaked in a narrow
region in momentum space. Due to the additional phase space suppression, we expect that
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Figure 10.3.: Full Yang-Mills result (red) for η/s in comparison to lattice results [166,167] (blue)
and the AdS/CFT bound (orange). In addition, the plot shows the analytic fit given
in (10.28) and its two components. The ratio η/s shows a minimum at Tmin ≈ 1.26 Tc
with a value of 0.14.

diagrams with more than two loops are negligible. We have checked this suppression in a
first assessment of three-loop diagrams.

For understanding the physical picture underlying the temperature behavior, we provide
a global fit function for η/s (T). Additionally, such an analytic fit function is well-suited
for phenomenological applications. This parametrization has to cover temperature ranges
corresponding to vastly different physical situations. At large temperatures T � Tc the
degrees of freedom are gluons which can eventually be treated perturbatively. By contrast,
at small temperatures T ® Tc YM theory can effectively be described as a glueball resonance
gas (GRG). Finally, there is a transition region between these two asymptotic regimes whose
description requires non-perturbative techniques.

In the high temperature regime, perturbation theory is applicable and η/s is given as
a function of the strong coupling αs only. It turns out that the hard-thermal loop (HTL)
resummed data [199] is well-described by the functional form

η

s
(αs) =

a

α
γ
s

, (10.26)

with an overall coefficient a and a scaling exponent γ ≈ 1.6. We aim at extracting a
non-perturbative extension of the above parametrization based on our data. In the region
Tc − 3 Tc strong correlations become important and perturbation theory breaks down. This
raises the question of a suitable running coupling as there is no unique definition of αs
beyond two-loop. A quasi-particle picture suggests that an appropriate choice of αs can be
deduced from a heavy quark potential [200,201].

An analytic expression for a coupling that generates a linearly rising static quark potential
at large distances is given by [202–204]

αs,HQ(z) =
1

β0

z2− 1

z2 log z2 , (10.27)
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Figure 10.4.: Relative contributions from different diagram types to the two-loop viscosity as a
function of temperature. The squint contribution is orders of magnitude smaller and
not shown. The inset shows the comparison to the one-loop result [163].

where z denotes a dimensionless momentum variable. At large momenta it approaches the
one-loop running coupling, where β0 = 33/(12π) denotes the coefficient in the one-loop
beta-function of pure SU(3) Yang-Mills theory. The scale identification is implemented by
regarding αs,HQ as a function of z = c T/Tc with a scale identification factor c. By construction,
the divergence of (10.27) at zero momentum leads to a vanishing contribution of (10.26) to
η/s at zero temperature. As an estimate for a lower bound for a reasonable high-temperature
fit, we consider the trace anomaly as a hint from QCD thermodynamics, which starts to
develop a T4 behaviour for T ¦ 2 Tc [205]. Using T > 3 Tc as a conservative estimate, our
data is well-described by the scaling form (10.26) with the running coupling (10.27) and
parameters a = 0.15 and c = 0.66. One should note that whereas the heavy quark potential
coupling takes a rather large value αs,HQ(cT/Tc)|T=Tc

≈ 1.77 at Tc, the vertex coupling

αs,vert(Tc) ≈ 0.76 corresponding to a value of αMS
s,vert
(Tc) ≈ 0.35, after conversion to the MS

scheme [206], is comparably small. This supports the validity of resummation arguments
at moderately large temperatures but also underlines the non-uniqueness of the definition
of a running coupling in the nonperturbative regime around Tc. It turns out that the fit
(10.26) can be extended to even lower temperatures T ¦ 1.8Tc, where it is still in very
good agreement with our data, see Fig. 10.3. Note, that the fitting with the vertex coupling
αs,vert fails for temperatures below 3 Tc . These findings hint at the validity of a quasi-particle
picture even at considerably low temperatures.

Below the critical temperature the effective degrees of freedom change from gluons to
glueballs. The glueball spectrum can be calculated using the formalism put forward in
this work [207]. Hence, the present YM calculation is also capable of describing glueball
resonances. Therefore one expects an algebraic decay of η/s with temperature similar
to a hadron resonance gas [160, 161]. Due to the small number of data points and the
comparably large error bars below Tc, no precise determination of the exponent δ in the
power law is possible. We construct a global fit function by superposing a power law
behaviour at small temperatures with the extrapolated high temperature behaviour (10.26),

133



10. Shear Viscosity in Yang–Mills Theory and QCD

i.e. a global parametrisation of the form

η

s
(T ) =

a

α
γ
s,HQ(c T/Tc)

+
b

(T/Tc)δ
. (10.28)

With a = 0.15, b = 0.14, c = 0.66, δ = 5.1 and γ = 1.6 as given above, this fit describes
our data very well, see Fig. 10.3. The best-fit value δ = 5.1 lies in the expected range for a
hadron resonance gas [161], where for example a pion gas leads to an exponent of 4.

QCD result
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Figure 10.5.: Estimate for η/s in QCD which shows a minimum at Tmin ≈ 1.3 Tc at a value of 0.17.
The inset shows the comparison to the YM results for temperatures normalised by the
respective critical temperatures.

Estimate for η/s in full QCD.

The analytic fit function (10.28) for η/s in YM theory enables us to provide a first estimate
of η/s in full QCD, again based on the idea of superposing a low and a high temperature
behaviour term. The procedure consists of three separate steps. Firstly, one has to take
into account the difference in scales and the running couplings in YM and QCD. This
involves replacing the coefficient β0 in (10.27) by its QCD value, β0,QCD = (33− 2N f )/(12π).
Additionally, one has to set a scale by fixing the ratio of the running couplings in YM and
QCD at a certain point. In our setup the characteristic scale is the critical temperature Tc.
For the phase transition to the confinement phase to take place, the strong coupling usually
needs to exceed a certain critical value αs(T ) = αcrit. On general grounds one can argue that
the critical values in YM theory and QCD are of comparable size. This argument is supported
by the fact that the values of αcrit for the vertex couplings tend to coincide. Consequently,
we impose the condition

α
N f =0
s,HQ (cT/Tc)

�

�

�

T=Tc

= α
N f =3
s,HQ (cQCDT/Tc)

�

�

�

T=Tc

. (10.29)

This matching condition fixes the scale factor to the value cQCD = 0.79. Secondly, one has to
take into account genuine quark contributions that are not encoded in the change of the
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running couplings. Denoting the quark contributions to viscosity and entropy as ∆η and ∆s
respectively, we write

η

s

�

�

�

QCD
=
ηYM+∆η
sYM+∆s

=
η

s

�

�

�

YM,αYM
s →α

QCD
s

·







1+ ∆η
ηYM

1+ ∆s
sYM






, (10.30)

and estimate the ratios ∆η/ηYM and ∆s/sYM using leading order perturbative results. For
N f = 3 we find ∆η/ηYM ≈ 2.9 [208,209] and ∆s/sYM ≈

21
32

N f ≈ 2.0 [210,211], leading to
an overall correction factor of approximately 4/3. Finally, in the low temperature regime
one has to replace the pure glueball resonance gas by a hadron resonance gas, which also
decays algebraically with temperature. In this work we use the data given in [212].

In summary, the final fit for QCD takes the form (10.28), but with the following QCD
parameters replacing the corresponding YM values: aQCD ≈ 4/3 a for the high-temperature

part and bQCD = 0.16, δQCD = 5. Additionally the full QCD α
N f =3
s,HQ (cQCDT/Tc) with cQCD = 0.79

replaces the pure-glue beta-function, whereas the perturbative exponent γ= 1.6 remains
unchanged. Note that a continuation of the fit to very high energies requires taking into
account the quark flavor thresholds appropriately.

This procedure yields the final result shown in Fig. 10.5. Plotted in terms of temperatures
normalised by the respective critical temperatures, the QCD curve is shifted slightly upwards
compared to the YM result, see the inset of Fig. 10.5. The general shape resembles the one
of the YM result and shows a minimum at Tmin ≈ 1.3 Tc with a value 0.17.

Summary and Conclusions - We have computed the shear viscosity over entropy density
ratio in pure YM theory over a large temperature range. The setup is based on an exact
functional relation for the spectral function of the energy-momentum tensor involving full
gluon propagators and vertices. The only input are the gluon spectral function and the
running coupling αs. As a highly non-trivial result, the global temperature behaviour of
η/s can be described as a direct sum of a glueball resonance gas contribution with an
algebraic decay at small temperatures, and a high temperature contribution consistent with
HTL-resummed perturbation theory. Finally we provide a first estimate for η/s in QCD.
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Quantum Gravity

We have presented a novel setup for renormalization group investigations within the asymp-
totic safety scenario for quantum gravity, chapter 5. This construction allows for the investi-
gation of the properties of graviton correlation functions and the related scale-dependent
couplings. We have introduced the notion of locality for renormalization group flows as a
fundamental property in the spirit of the Wilsonian idea of coarse graining, section 5.2. Sub-
sequently, this property is proved for the two- and three–point function in quantum gravity,
section 5.3 and subsection 5.8.1. We define scale-dependent generalized couplings related
to the aforementioned correlators, in particular for Newtons constant and the cosmological
constant, but also for quantities that do not appear in the classical Einstein–Hilbert action
but emerge purely out of quantum fluctuations, such as the graviton wave–function renor-
malization and the constant parts of the n–point graviton vertices. The non-perturbative
beta functions for all these couplings are derived in various approximations. We confirm the
existence of a non-Gaussian ultraviolet fixed point, section 5.5, section 5.6, section 5.8. Thus,
we find further evidence for asymptotic safety in quantum gravity. In our most advanced
approximation the fixed point is described by two relevant and one irrelevant direction,
section 5.8, in contrast to our earlier findings where all directions are attractive. Interest-
ingly, this fixed point with one UV-repulsive direction is found in all our approximations that
include the graviton three–point function. This repulsive direction is very encouraging for
the general perspective of asymptotic safety in quantum gravity, as an acceptable fixed point
in the full theory needs to be described by only finitely many attractive directions. These
results are even more emboldening as one finds in f (R) truncations that all operators with
n≥ 3 are irrelevant.
In addition to asymptotically safe ultraviolet physics, our approximations show a novel,
attractive infrared fixed point that smoothly connects to the non-Gaussian fixed point of
asymptotic safety, subsection 5.6.9. In contrast, the physical trajectories in the standard
background field approximations hit a singular line at finite flow time, and are therefore
not infrared complete. This singularity appears as a truncation artefact and is resolved if
one properly accounts for the difference between the fluctuation and the background field.
Moreover, if the scaling of the couplings in the vicinity of this fixed point is self-consistent,
subsection 5.6.3, the infrared fixed point has classical properties, in the sense that Newtons
constant and the cosmological constant do not depend on the energy scale.
In the coupling of qravity to Yang–Mills theories is discussed. In particular, we have investi-
gated the interplay of gravitons and gluons in the far ultraviolet, where pure SU(N) gauge
theories exhibit asymptotic freedom. It is found that the graviton induced interactions do
not destroy this property as they contribute a strictly negative term to the beta function,
chapter 7. Moreover, we find that the gluon fluctuations that contribute to graviton correla-
tors are all local in the sense of section 5.2, subsection 8.1.2. However, preliminary results
indicate that gluons in a large n limit might alter the fixed point structure in the gravity
sector.
There are several interesting projects that are built upon the results described above or
generalize our framework. First of all, it would be interesting to go beyond third order in the
vertex expansion. In doing so, one could test if this enlarged system shows a fixed point with
more than one irrelevant direction. Moreover, this would close the flow equation for the
propagator entirely. Another idea is to push the resolution of the momentum dependence
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further by including a momentum dependent coupling g(k, p), such that one can directly
investigate the behavior of graviton interactions as a function of a physical, external mo-
mentum. Also the enhancement of the truncation with further curvature invariants is of
interest. A particular example is for instance the propagator with all fourth order derivative
invariants. Another aspect is the dependence on the expansion point in the vertex expansion,
which can be investigated by expansion around non-flat backgrounds. A different direction
is the application of our results to the phenomenology of quantum gravity, such as black
hole physics, cosmology or imprints of gravitons in cross-sections at collider experiments. In
particular, the dependence on external momenta can be of major importance in such studies.
At the end of the day one is interested in describing all forces in one unified framework.
In this spirit one of the most interesting questions is the coupling of gravity to the entire
standard model. In this context one can address several issues. First of all, one needs
to test the stability of the non-Gaussian fixed point in the gravity sector against inclusion
of all gauge bosons and matter particles, and possibly the effects of beyond the standard
model physics. Furthermore, the asymptotic safety condition can in principle reduce the free
parameters of the standard model.

Transport Coefficients in the Quark–Gluon Plasma

The main result of the third and last part of this thesis, Part III, is the computation of the
shear viscosity over entropy ratio in SU(3) gauge theory and an estimate for this quantity
in full quantum chromodynamics. We present a strategy that allows for the determination
of transport coefficients in non-Abelian plasmas in the perturbative, as well as in the
non-perturbative regime. This strategy is based on analytical continuation of Euclidean
correlation functions for the gluon field. We then use a Kubo relation, where the real–time
correlation functions of the energy-momentum tensor are expanded with the help of an
exact functional relation in terms of the fundamental fields. The resulting expression is
used within the Schwinger-Keldysh formalism for Minkowski space correlators. With this
at hand, we obtain the viscosity over entropy ratio η/s as a function of temperature. We
find that this function has a minimum roughly at the critical temperature Tc . Below Tc the
behavior resembles that of a gluon resonance gas, and at high temperatures the data is in
good agreement with perturbation theory. The entire data for η/s(T) can be fitted to a
function that is a sum of the low and the high temperature part. Finally, we can use this
expression for a qualitative estimate of η/s(T ) in QCD.
The setup presented in Part III can easily be applied to other transport coefficients such as
the bulk viscosity. Furthermore, for a quantitative picture in full QCD, one has to include
the quark sector right from the beginning, which requires the quark spectral function as
an input. As η/s is directly related to experimental data, our results can then be used in
hydrodynamical descriptions of the phenomenology of heavy–ion collisions.
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APPENDIX A

The metric in super-field space

In this appendix we closely follow [32]. In Chapter 1 we have introduced the condensed
notation and the related super-field

φa = (φ1,a1
...φN ,aN

)a (A.1)

which consists of N arbitrary fields that can carry several group indices, related to particular
field species. The metric γab is then defined on the super-field space {φi,ai

}, as direct sum
of the sub-space metrics. In case of bosonic fields the metric is trivial, i.e. just the identity,
and therefore we restrict the discussion to fermionic fields, where the metric is given by the
epsilon-tensor.
For φa = {ψ, ψ̄}a, with Grassmann fields ψ and ψ̄, the fermionic metric reads

γ=

�

0 1
−1 0

�

. (A.2)

Raising and lowering of indices is defined via

φa = γabφb

φa = φ
bγba . (A.3)

Furthermore there are the crucial relations

γ a
b = γ

acγbc = δ
a
b (A.4)

and
γa

b = γ
acγcb = (−1)abδa

b , (A.5)

where

(−1)ab =

(

−1 if number of fermions odd in a and b

1 otherwise.
(A.6)

In the above example φa = {ψ, ψ̄)a we have one fermionic field corresponing to one index
and acooringly get a minus sign.
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APPENDIX B

General Flow of the Propagator with Super-fields

In this appendix we derive the structure of the flow equation of the two-point function for a
general theory, i.e. with an arbitrary super-field φ. In order to do so, we take two functional
derivatives of the flow equation for the effective action (3.9). In this derivation we need the
functional derivative of the propagator, which is the inverse of Γ(2)+ R. As a mathematical
object it is a matrix in super-field space and therefore carries two bold face-type of indices.
For a general matrix A, we know that AA−1 = 1. Therefore the derivative of the inverse
operator is given by δA−1

δφ
=−A−1 δA

δφ
A−1. Applying this formula with A= G we arrive at

δ

δφa
Gij =−(−1)aiGirΓ

(3) rafGkjγ
k

f. (B.1)

Note that there is no sum for the (−1)ai terms. The desired flow equation is then calculated
as follows,

Γ̇(2) ab =
1

2

δ

δφa

δ

δφb

�

Gij Ṙij
�

=−(−1)bi 1

2

δ

δφa

�

GirΓ
(3) rbfGkj

�

γk
fṘ

ij

=+(−1)bi(−1)aiγn
mγ

k
f

1

2
GilΓ

(3) lamGnrΓ
(3) rbfGkjṘ

ij

− (−1)bi(−1)aiγk
f

1

2
GirΓ

(4) rabfGkjṘ
ij

+ (−1)ai(−1)bi(−1)ab(−1)af(−1)akγq
pγ

k
f

1

2
GirΓ

(3) rbfGkoΓ
(3) oapGqjṘ

ij (B.2)

where we omit terms of the form (1)ab× (1)ab = 1.
We close this appendix with some comments on the equation derived above. If there is
only one field species running in the loop, one can immediately see by rearranging dummy
indices that the two terms containing Γ(3) are identical in this case. As the equation (I) is
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B. General Flow of the Propagator with Super-fields

written in the general super-field formalism, it holds for generic theories. Specifying the
indices then returns the equation for the theory under consideration. Furthermore, we note
that also the flow of the propagator is one-loop exact. This is obviously also true for the flow
of vertex functions of arbitray order n.
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APPENDIX C

Flow Equations

The modified threshold functions introduced in subsection 5.6.2 are given by:

Φp
n[η](ω) =

1

Γ(n)

∞
∫

0

dx xn ṙ(x)−η(x)r(x)
(x(1+ r(x)) +ω)p

. (C.1)

With these threshold functions, the geometric flow equations in [79], improved by momentum-
dependent anomalous dimensions, are given by

ġ = 2g −
g2

2π

�

2

3
Φ1

1[ηh](µ) +
10

3
Φ2

2[ηh](µ) +
5

12
Φ1

1[ηc](0) +
5

4
Φ2

2[ηc](0)
�

, (C.2)

for the background coupling and

ġ = 2g −
g2

2π

�

1

3
Φ1

1[ηh](µ) +
20

9
Φ2

2[ηh](µ) +
5

24
Φ1

1[ηc](0) +
5

6
Φ2

2[ηc](0)

+µ̇
�

1

6
Φ2

1[0](µ) +
10

9
Φ3

2[0](µ)
��

, (C.3)

for the coupling related to the dynamical field. The flows of the two-point functions are
given by the coefficient functions Iφ(p2, q2, M2,Λ(n)) with the contributions from the pure
graviton diagrams

Ih(p
2, q2, M2,Λ(n)) =−

6q2(3p2+ 6q2− 8λ(4))
(q2(1+ r1) +µ)2

+
fh(p, q, x ,λ(3))

(q2(1+ r1) +µ)2((p2+ 2pqx + q2)(1+ r2) +µ)
, (C.4)
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with

fh(p, q, x ,λ(3)) =
4q2

5(p2+ 2pqx + q2)
×

�

15p6(1+ 2x2) + 10p5qx(7+ 8x2)

+ p4q2(21+ 208x2+ 56x4) + 140p3q3 x(1+ 2x2)

+ 4p2q4(7+ 76x2+ 22x4)

+ 8pq5 x(17+ 11x2+ 2x4)

+ 4q6(7+ 6x2+ 2x4)− 4λ(3)
�

15p4(1+ 4x2)

+ 30p3qx(3+ 4x2) + p2q2(−9+ 248x2+ 16x4)

+ 20pq3 x(5+ 4x2) + 20q4(1+ 2x2)
�

+ 8(λ(3))2
�

15p2(1+ x2) + 20pqx(2+ x2)

+ 2q2(9+ 2x2+ 4x4)
�

�

. (C.5)

and the ghost parts

Ic(p
2, q2, M2,Λ(n)) =−

16
�

p2(2+ x2) + 6pqx + 3q2
�

p2+ 2pqx + q2

1

(1+ r1)2(1+ r2)
(C.6)

Here, we have introduced the short cuts r1 = r(q2) and r2 = r(p2 + 2pqx + q2) and x is
defined by pµqµ = 2pqx .
The flow equation for the ghost two–point function is given by

∂tΓ(cc)(p2)
p2Zc(p2)

= g

∞
∫

0

dq

1
∫

−1

dx
p

1− x2
4q3

3π2

×
p2(3+ 6x2) + pqx(−2+ 20x2) + q2(5− 12x2+ 16x4)

p2+ 2pqx + q2 (C.7)

×
�

ṙ1−ηc(q2)r1

(1+ r1)2((p2+ 2pqx + q2)(1+ r2) +µ)

+
q2(ṙ1−ηh(q2)r1)

(q2(1+ r1) +µ)2(1+ r2)

�

. (C.8)

Finally, the flow equation for λ from the one-point function is given by

λ̇=− 2λ+ g

�

∞
∫

0

dq
3q7(1+ 2λ)

4π

ṙ(q2)−ηh(q2)r(q2)
(q2(1+ r(q2)) +µ)2

+

∞
∫

0

dq
q3(3−λ)

3π

ṙ(q2)−ηc(q2)r(q2)
(1+ r(q2))2

�

. (C.9)

144



APPENDIX D

Projection procedure

Here, we want to argue why the projection procedure to obtain the flow equation for
the mass and the integral equation for the graviton anomalous dimension is the physical
one. First the anomalous dimension must be finite everywhere, in particular at the pole.
Otherwise, the wave-function renormalization could be written as

Zh(p
2) = (p2+µ)ω Z̃h(p

2) (D.1)

with a nonzero parameter ω and Zh(−µ) finite and nonzero. However, the wave-function
renormalization should only determine the residue at the propagator pole. Thus, we assume
that the anomalous dimension is finite.

Next, we consider the flow equation of the two-point function,

−ηh(p
2)(p2+µ) + µ̇+ 2µ=

∂tΓ(2h)(p2)
Zh(p2)

. (D.2)

We can evaluate this equation at an arbitrarily chosen fixed momentum, say `, to obtain the
β-function of the mass:

µ̇=−2µ+
∂tΓ(2h)(`2)

Zh(`2)
+ηh(`

2)(`2+µ) . (D.3)

Substracting this from the original equation leaves an integral equation for the anomalous
dimension,

ηh(p
2) =−

∂tΓ(2h)(p2)
Zh(p2) −

∂tΓ(2h)(`2)
Zh(`2)

p2+µ
+ηh(`

2)
`2+µ
p2+µ

. (D.4)

One easily sees that the right hand side of this equation diverges at p2 =−µ, if η(`2) is not
chosen appropriately. As we already know that the anomalous dimension must be finite
everywhere, we conclude that

ηh(`
2) =

∂tΓ(2h)(−µ)
Zh(−µ)

− ∂tΓ(2h)(`2)
Zh(`2)

`2+µ
. (D.5)
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This can be reinserted into (D.4), leading to

ηh(p
2) =−

∂tΓ(2h)(p2)
Zh(p2) −

∂tΓ(2h)(−µ)
Zh(−µ)

p2+µ
, (D.6)

which is the equation originally proposed in the main text. We can use the expression for
ηh(`2) also for the flow equation of the mass, resulting in

µ̇=−2µ+
∂tΓ(2h)(−µ)

Zh(−µ)
, (D.7)

again reproducing the result from the main text. Thereby, we have shown, under the
reasonable condition of a finite anomalous dimension, that our flow equations are unique.

Note that for a momentum independent wave–function renormalization there is no need
for e.g. the mass term to be projected at the pole. In this case one can simply generalize
equations (5.46) or (5.61) for the case with Λ(3) 6= Λ(2) to yield for the running of the
dimensionless mass gap parameter

∂tµ=−2µ+ηhµ+
32π

Zh
Flow(2h)(p = 0) (D.8)

Accordingly for the anomalous dimensions at arbitray subtraction points

ηφ =−
32π

Zφ

�

Flow(2φ)(p = p?)− Flow(2φ)(p = p•)
p2
? − p2

•

�

(D.9)
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APPENDIX E

Infrared scaling analysis

Here, we discuss the IR divergence analysis in more detail. Before we can proof a recursion
relation for the parameters αn, we discuss some general properties of such a setting.

Prerequisites: The flow of a general n-point vertex function includes generic loop inte-
grals with dimensionless external momenta pi and loop momentum q of the form

∫

d4q

(2π)4
fn(q, pi)

(q2(1+ r(q2)) +µ)2
×

n−2
∏

i=1

((pi + q)2(1+ r((q+ pi)
2)) +µ)−1 ,

(E.1)

with a function fn(q, pi) resulting from contractions of the tensor structure T̃ defined in
(5.11). Obviously, the divergences are strongest at vanishing external momenta pi = 0. In
this case, all internal propagators carry the loop momentum q and we are left with

∫

d4q

(2π)4
fn(q, pi = 0)

(q2(1+ r(q2)) +µ)n
. (E.2)

Moreover, in the limit µ→ −1, these divergences emerge from small momentum modes
near q = 0. Consistent regulators need to fulfill

lim
x→0

x(1+ r(x)) = 1+ ζx +O (x2) (E.3)

with ζ > 0, because otherwise, the denominator in (E.2) exhibits a zero for µ > −1. The
highest pole order is contained in the momentum-independent part f 0

n := fn(q = 0, pi = 0).
Neglecting the angular integration, and by the above reasoning, the most divergent part of
the integral takes the form

∫ δ>0

0

dq
q3 f 0

n

(q2+ ε)n
, (E.4)
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E. Infrared scaling analysis

where we introduced ε= 1+µ for convenience. These expressions can be integrated which
leads to a divergence structure of the form

∫ δ>0

0

dq
q3

(q2+ ε)n
∼







finite if n< 2

logε if n= 2

ε2−n if n> 2

. (E.5)

In a simple Einstein Hilbert truncation one identifies the constant, momentum-independent
parts of the n-point vertex functions λ(n) with the mass term (or with the cosmological
constant), i. e. λ(n) = −µ/2 for all n. However, this approximation incorporates a scaling
inconsistency, as we will see by the divergence analysis below.

The following analysis is based on a matching of terms in the limit ε→ 0 on the RHS
and the LHS of the flow equations for n-point vertex functions. As a generalization of the
Einstein-Hilbert construction we allow for a power law behaviour in ε in the limit under
consideration. In such an expansion, logarithmic contributions are sub-leading, do not
change the power law and are therefore discarded. Moreover, we keep only the leading
order terms, i.e. we assume a power law

λ(n)
ε→0∼ εαn , n≥ 3 , (E.6)

and suppress terms of the form εα̃n with α̃n > αn, since we are interested in the limit ε→ 0.
Moreover, we observe that the ε-dependence of the function f 0

n is completely stored in the
parameters λ(n). Accordingly, these are the only terms that we have to take into account in
an ε-scaling analysis. The generic form of a β-function for λ(n) is of the form

λ̇(n) =−2λ(n)+ g (loop− terms) , (E.7)

i.e. a canonical term and loop contributions which are always proportional to the gravita-
tional coupling g. First, we show that the canonical term does not dominate the β -functions
for λ(n) with n = 2,3,4 in the limit ε→ 0. In order to do so, we assume that the canon-
ical term in the beta functions for λ(3) dominates in the limit ε→ 0, i.e. λ̇(3)

ε→0∼ −2λ(3),
which implies λ(3)

ε→0∼ 1/k2. On the other hand, dominance of the canonical term means

λ̇(3)
ε→0∼ εα3 . From Figure E.1 and (E.5) we can can see that there is a diagram producing

a term
ε→0∼ ε3α3−2. Dominance of the canonical term then implies α3 > 1. In this case

λ(3)
ε→0→ 0. This contradicts λ(3)

ε→0∼ 1/k2 as long as there is no UV fixed point at ε = 0.

The same argument goes through for λ(4) by using the term
ε→0∼ ε2α4−1 on the RHS of the

respective flow equation. Thus, we know that the canonical term is sub-leading or of equal
order as the loop terms. With a case-by-case analysis of

�

λ3 ≶ 1,λ4 ≶ 1
�

, one can show that
α4 < 1. Then, using (E.13) below it can be deduced that the canonical term in the flow

equation for λ4 is indeed subleading and λ̇4 ε→0∼ g. Together with (E.15) this in turn implies

that ε̇
ε→0∼ g and therefore, the canonical term in ε̇ is irrelevant as well. Accordingly either

α4 < 0 or α3 < 1/2 , (E.8)

and additionally, the canonical term in λ̇n for all n is sub-leading too, as both sides of the
respective flow equation must be proportional to g.
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Lemma 1: Assuming the results in Prerequisites, in particular a power law

λ(n)
ε→0∼ εαn , (E.9)

with n≥ 3, the hierarchy of flow equations implies

α4 ≤ 2α3− 1 . (E.10)

Proof : The flow of the two point function (evaluated at vanishing external momentum)
leads to the relation

µ̇= ε̇ ε→0∼ g max

¨

�

�

�λ(4)
�

�

� ,
(λ(3))2

ε

«

∼g max
¦

εα4 ,ε2α3−1
©

,

(E.11)

where the terms in the curly brackets {·, ·, ...} indicate the leading contributions arising from
the distinct diagrams. The diagrams generating the running of the three point function (see
Figure E.1) lead to

λ̇(3)
ε→0∼ g max

¦

εα5 ,εα3+α4−1,ε3α3−2
©

. (E.12)

The next order in the hierarchy, the flow equation for Γ(4h), has the diagrammatic represen-

X

X

X

Figure E.1.: Diagrams contributing to the divergence analysis of the three-point function of the
graviton.

tation Figure E.2. This means that the diagrams scale in the limit ε→ 0 as

λ̇(4)
ε→0∼ g max

�

ε4α3−3,ε2α3+α4−2,

ε2α4−1,εα3+α5−1,εα6
	

.
(E.13)

On the other hand, we can calculate λ̇(3) and λ̇(4) from (E.9), i.e. the LHS of the flow
equation. Using (E.11), this yields

λ̇(3)
ε→0∼ εα3−1ε̇

ε→0∼ g max
¦

εα3+α4−1,ε3α3−2
©

, (E.14)

and
λ̇(4)

ε→0∼ εα4−1ε̇
ε→0∼ g max

¦

ε2α4−1,εα4+2α3−2
©

. (E.15)
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E. Infrared scaling analysis

X

X

X

XX

Figure E.2.: Diagrams contributing to the divergence analysis of the four-point function of the
graviton.

Consistency requires matching of the leading terms on both sides of the flow equations.
If the leading term on the LHS is known, the matching condition induces inequalities on

the RHS and we can obtain relations for αn.
On the left hand sides of the flow equations for the three- and the four-point functions we

have in each case two terms, (E.14) and (E.15). Let us now study the different cases for the
leading terms. Considering the three-point function, the different cases can be written as

α3+α4− 1Ó 3α3− 2 . (E.16)

Analogously, from the LHS of the four-point function we obtain one of the “dual” relations

2α4− 1Ó α4+ 2α3− 2 . (E.17)

Obviously, the above relations (E.16) and (E.17) are equivalent, i.e. if one of the relations
>,=,< is true, the corresponding relation holds for the other expression. Consequently, if
we know the leading term on the LHS of the flow equation for Γ(3h), we know the leading
term in the corresponding equation for Γ(4h) and vice versa. We proceed with a case-by-case
analysis.

(i) Assume
α3+α4− 1≥ 3α3− 2 . (E.18)

From the “dual” relation for the four point function we know that α4 + 2α3 − 2 is the
dominant term on the LHS of λ̇(4) and therefore also on the RHS, i.e. in (E.13). Hence, the
inequality

α4+ 2α3− 2≤ 4α3− 3 (E.19)
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necessarily holds. This inequality in turn implies α4 ≤ 2α3− 1, while (E.18) is equivalent to
α4 ≥ 2α3− 1. We conclude that

α4 = 2α3− 1 , (E.20)

which is equivalent to the assumption 3α3− 2= α3+α4− 1 while 3α3− 2< α3+α4− 1
produces a contradiction.

With (E.20) we have checked two of the three cases, i.e. under the ≥ assumption only the
= sign is a consistent solution. The term involving α5 is subject to the condition

α5 ≥ α3+α4− 1 . (E.21)

Let us study the other case:
(ii) Assume

α3+α4− 1< 3α3− 2 . (E.22)

Comparing with (E.12), we find that the equation for Γ̇(3h) is trivially consistent with this
assumption. Moreover, the assumption that 2α4− 1 is the leading term (which is equivalent
to assumption (E.22)) is consistent with the first three diagrams in (E.13). Again, the
terms involving α5 and α6 are appropriately constrained, see remark 2 below, and we can
constitute that (E.22) is indeed a consistent assumption. Including both cases, this leads to
the relation

α4 ≤ 2α3− 1 , (E.23)

and proves the lemma. �

Remark 1: This means that from Γ̇(3h) and Γ̇(4h) we obtain an inequality that constrains
the relation between α3 and α4, which are at this stage free parameters.

Remark 2: Lemma 1 with (E.8) implies

α4 < 0 (E.24)

always, thus α3 cannot be constrained solely by the analysis above.

Remark 3: Moreover, we cannot fix αn for n> 4 with the equations for the three- and the
four-point function. However, since equations (E.14) and (E.15) are independent of α4 and
α5, these terms cannot be the leading contributions in the limit under consideration, i.e.
they cannot generate the power law. This implies

α5 ≥ α4+α3− 1 . (E.25)

Applying the same logic to the four-point function, we arrive at

α6 ≥ 2α4− 1 . (E.26)

In order to further constrain the parameters αn with n> 4, we proceed by analyzing the
running of Γ(nh).

Lemma 2: Under the same conditions as in Lemma 1, we obtain the recursion relation for
n≥ 5:

αn = αn−2+α4− 1 . (E.27)
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E. Infrared scaling analysis

1/χ α3 =−0.1 α3 =−0.2 α3 =−0.3 α3 =−0.4 α3 =−0.5

20 µ∗ =−0.698 µ∗ =−0.704 µ∗ =−0.713 µ∗ = X µ∗ = X
g∗ = 0.799 g∗ = 0.787 g∗ = 0.769 g∗ = X g∗ = X

50 µ∗ =−0.681 µ∗ =−0.682 µ∗ =−0.684 µ∗ =−0.686 µ∗ =−0.689
g∗ = 0.837 g∗ = 0.834 g∗ = 0.830 g∗ = 0.824 g∗ = 0.817

100 µ∗ =−0.675 µ∗ =−0.676 µ∗ =−0.677 µ∗ =−0.678 µ∗ =−0.679
g∗ = 0.848 g∗ = 0.846 g∗ = 0.845 g∗ = 0.843 g∗ = 0.840

2000 µ∗ =−0.671 µ∗ =−0.671 µ∗ =−0.671 µ∗ =−0.671 µ∗ =−0.671
g∗ = 0.857 g∗ = 0.857 g∗ = 0.857 g∗ = 0.857 g∗ = 0.857

Table E.1.: UV fixed point values for different parameters χ and α3 with exponential regulator and
a = 4. X indicates that no fixed point is found for these parameter values.

Proof : In general, assumption (E.9) together with (E.11) leads to

λ̇(n)
ε→0∼ g εαn−1ε̇

ε→0∼ g max
¦

εαn+α4−1,εαn+2α3−2
©

.
(E.28)

The canonical term can be dropped since α4 < 0. Lemma 1 ensures that the leading term
is always given by εαn+α4−1. Accordingly, all terms generated by the diagrams on the RHS
of the flow equation must be smaller or equal to this term. For every n, the flow equation
for Γ(nh) contains a diagram with 2 four-point vertices, one (n− 2)-vertex and 4 internal
propagators. Hence, we can conclude

αn+α4− 1≤ 2α4+αn−2− 2 . (E.29)

Moreover, we can generalize the results (E.25) and (E.26), by considering the diagram with
only one vertex, more precisely, an (n+ 2)-vertex. Again, consistency requires

αn+2 ≥ αn+α4− 1 (E.30)

or equivalently αn ≥ αn−2+α4− 1. Combining this result with (E.29) proves lemma 2. �

Remark 4: Lemma 2 yields a recursion relation connecting all αn with α4 and α3. We are
therefore left with two free parameters, with the constraint (E.24). Moreover, we can give
explicit, non-recursive, expressions for αn, depending on whether n is odd or even. The
difference ∆α between αn and αn−2 is obviously

∆α= α4− 1 , (E.31)

and therefore independent of n. For n even we can express any αn as

αn =α4+
�

n− 4

2

�

∆α

=
�n

2
− 1
�

α4−
�n

2
− 2
�

, n even , n≥ 6 , (E.32)
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which can be rewritten as

α2n = (n− 1)α4− (n− 2) , n≥ 3 . (E.33)

For n odd we can do the same thing, starting with α3 and adding multiples of ∆α in order
to arrive at

α2n+1 = α3+ (n− 1)α4− (n− 1) , n≥ 2 . (E.34)
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APPENDIX F

Estimating α3

Following the argument in subsection 5.6.3, there is a transition regime between Einstein-
Hilbert-type of solutions with λ(2) = λ(3) and an IR regime where they differ as the trajecto-
ries approach ε= 0. The simplest form of such a transition is a sharp switch between the
two solutions at a scale k0 when the trajectories bend over to the separatrix and are attracted
towards the IR fixed point. Such a sharp cross-over between these two regions is certainly
different from the true behaviour, and it also differs from our ansatz (5.92). However, this
type of transition shares the essential features with the true solution and can thus provide a
reasonable estimate. At the transition scale k0 we have the connection conditions

λ(3)(k0) = λ
(2)(k0) =−

1

2
µ(k0) (F.1)

and

λ̇(3)(k0) = λ̇
(2)(k0) =−

1

2
ε̇(k0) . (F.2)

Using the power law (E.6) we have the simple relation for the logarithmic derivative
�

λ(3)
�′

λ(3)
=
α3

ε
, (F.3)

where ′ denotes the derivative with respect to ε. The scale derivative can be expressed as

λ̇(3) =
�

λ(3)
�′
ε̇ . (F.4)

Evaluating the above equation at k = k0 and combining it with (F.2) yields

�

λ(3)
�′
�

�

�

k=k0

=−
1

2
. (F.5)

This in turn can be used together with (F.2) when evaluating (F.3) at k = k0. Keeping in
mind that ε= 1+µ, this results in

α3 =
1+µ(k0)
µ(k0)

. (F.6)
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Together with α4 = 2α3 − 1 this fixes all αn. From the phase diagram, one infers that the
onset of this transition is near µ≈−0.9 independent of the chosen parameters. This gives

α3 ≈−1/9 . (F.7)

Not sticking to the equality does not alter the results qualitatively.
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APPENDIX G

Functional form of λ(n)

Here we construct explicit expressions for the functions λ(n). In addition to the singularity
structure, there are further constraints to be fulfilled by such an ansatz. In the following we
show that

λ(n) =−
µ

2

�

1+ sgn(µ)χ

�

�

�

�

µ

1+µ

�

�

�

�

−αn
�

=−
µ

2
(1+δλ(n))

(G.1)

is consistent with all constraints. In the above formula χ is an arbitrary parameter. From
perturbation theory we know that in the Gaussian limit µ → 0, we need to recover an
Einstein-Hilbert solution. Indeed, (G.1) entails λ(n) =−µ/2 for all n in the vicinity of µ = 0
as long as αn < 0. In addition to that, it is clear that the correction cannot contain further
powers of g, since this would interfere with the singularity structure. Furthermore, the
correction should be inherently dimensionless. With these conditions, a quantity proportional
to powers of the ratio µ/(1+ µ) is everything we have at hand. In the end, we are left
with two (constrained) free parameters, namely α3 ≤ 0 and χ ∈ R\0. The proportionality
factor χ is in general different for all λ(n) and can in principle be calculated from higher
order vertex functions. In our truncation we choose a uniform constant for simplicity. The
IR structure is unaffected by the value of χ, but a large χ might alter the UV regime. Note
that the scaling analysis is true in the IR limit only. Consequently, we expect a small χ which
does not interfere with the UV regime.
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APPENDIX H

Anomalous dimensions in the IR

Both anomalous dimensions need to vanish at the IR fixed point for it to be classical. For
the ghost anomalous dimension, this is the case as long as g/ε→ 0, which is equivalent to
saying that α3 < 0, in accordance with our estimate above. On the other hand, the vanishing
of the graviton anomalous dimension is seen as follows: First, as shown in [1], the terms
quadratic in the external momentum in the flow cancel. Thus, the flow goes to a constant
as the external momentum goes to infinity, and no divergences can appear there. Next, the
flow equation for the mass can be rewritten as

µ̇=−2µ+
∂tΓ(2h)(0)

Zh(0)
+ηh(0)µ . (H.1)

We know that in the IR for µ→−1, g → 0, µ̇ vanishes. This can be achieved in 3 different
ways: either the flow vanishes and the anomalous dimension at zero cancels the canonical
scaling, or both the flow and the anomalous dimension cancel the canonical scaling, or only
the flow remains finite. First assume that the flow vanishes in the limit µ→−1, g → 0. We
know that the leading order contribution comes from a term ∼ gλ(4), all other terms have
smaller divergences and thus vanish in the limit g → 0. If this term vanishes, however, then
the flow is 0 everywhere, thus also the anomalous dimension would vanish everywhere,
and we would end up with no fixed point. On the other hand, assume that gλ(4) remains
finite in our limit, then still all other terms in the flow vanish, and thus the flow is a nonzero
constant. This in turn implies that the graviton anomalous dimension must vanish as it is a
finite difference of the flow. We conclude that ηh(p2) = 0 at the IR fixed point.
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APPENDIX I

Flow of the Three-Point Fuction with Super-Fields

In this appendix we derive the flow equations of the three-point function with super-fields,
i.e. a representation of Flow(3) in terms of propagators and vertices for a theory with arbitrary
field content. For the propagator we have presented the derivation in Appendix B. In order
to arrive at an analog expression for the three-point function we take a further derivative of
with respect to the fields and arrive at

Γ̇(3)abc =−
1

2
(−1)i,abc

nh

GidΓ
(3)daeGfgΓ

(3)gbhGklΓ
(3)lcmGnjγ

f
eγ

k
hγ

n
m

+ Permutation
�

(−1)(a,bef)(a↔ b)
�

+ Permutation
�

(−1)(a,bcefhk)(a→ c→ b→ a)
�

+ Permutation
�

(−1)(b,chk)�(b↔ c) + (−1)(a,cef)(a→ c→ b→ a)

+ (−1)(a,bcefhk)(a↔ c)
���

−
�

GidΓ
(4)dabeGfgΓ

(3)gchGkjγ
f
eγ

k
h

+ Permutation
�

(−1)(a,bef)(ab→ b,c→ ac) + (ab→ a,c→ bc)

+ (−1)(a,bcef)(ab→ bc,c→ a) + (−1)(b,c,ef)(ab→ ac,c→ b)

+ (−1)(b,cef)(−1)(a,cef)(ab→ c,c→ ab)
�

i

+ GidΓ
(5)dabceGfiγ

f
e

o

Ṙij .

In the above equation we have introduced several short hand notations, namely

(−1)(a,bc) := (−1)(a,b(−1)(a,c) , (I.1)

and analogous for more indices. Additionally, the permutations relate to the previous term
that is written explicitly but with the given index replacements, where replacements of the
form (ab→ c) mean that the order of the corresponding vertex is reduced by one and vive
versa.
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APPENDIX J

Analytic flow equations

In a specification precudure, where we use projections at p = 0 only, the system of flow
equations is completely analytic, for symmetric, as well as for the asymmetric configuration.
The corresponding equations with identifications G(3) ≡ G(4) ≡ G(5) ≡ GN and Λ(3) ≡ Λ(4) ≡
Λ(5) which close the system of equations are then given by

ġ =(2+ 3ηh)g +
g2

π

�

−
5(6−ηh)

42(µh+ 1)2

+
2λ(4)(62(6−ηh)− 195(4−ηh)λ(3)) + 62(6−ηh)λ(3)− 15(8−ηh)

63(µh+ 1)3

+
39(8−ηh)− 232(6−ηh)λ(3)

252(µh+ 1)3
+

17+ 272λ(4)− 4λ(3)(161λ(4)+ 8)
42(µh+ 1)4

+
2772(4−ηh)λ(3)3+ 1000(6−ηh)λ(3)2− 705(8−ηh)λ(3)+ 90(10−ηh)

210(µh+ 1)4

−
523− 2λ(3)(4λ(3)(374λ(3)− 615) + 1415)

105(µh+ 1)5
+

3(190+ 13ηc)
140

�

,

(J.1)

for Newtons coupling from the asymetric three–point function, wihle the momentum–
independent part reads

λ̇(3) =− 2λ(3)+
3

2
ηhλ

(3)−
1

2
(

ġ

g
− 2)λ(3)+

g

2π

�

12−ηc

5
+

8−ηh− 4(6−ηh)λ5

4(1+µh)2

+
3(8−ηh)λ(4)− 16(6−ηh)λ(3)λ(4)

3(1+µh)3

−
11(12−ηh)− 72(10−ηh)λ(3)+ 120(8−ηh)λ(3)2− 80(6−ηh)λ(3)3

120(1+µh)4

�

.

(J.2)
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J. Analytic flow equations

From the two–point functions we obtain for the evalutation at p = 0

µ̇h =(ηh− 2)µh+
g

π

�

8(6−ηh)λ(4)− 3(8−ηh)
12(1+µh)2

+
21(10−ηh)− 120(8−ηh)λ(3)+ 320(6−ηh)λ(3)2

180(1+µh)3
−

10−ηc

5

�

,

(J.3)

and from the derivatve at p = 0

ηh =
g

4π

�

6−ηh

(1+µh)2
−

6(8−ηh) + 8(6−ηh)λ(3)− 36(4−ηh)λ(3)2

9(1+µh)3

+
17+ 8λ(3)(9λ(3)− 8)

3(1+µh)4
−ηc

� (J.4)

ηc =−
g

9π

�

8−ηh

(1+µh)2
+

8−ηc

1+µh

�

. (J.5)

For the symmetric configuration the gravitational coupling takes the form

ġ =(2+ 3ηh)g +
g2

19π

�

−
47(6−ηh)
6(1+µh)2

+
16(1− 3λ(3))λ(4)

(1+µh)4

+
45(8−ηh) + 472(6−ηh)λ(4)− 120λ(3)(2(6−ηh) + 3(4−ηh)λ(4))

18(1+µh)3

+
147(10−ηh)− 1860(8−ηh)λ(3)+ 3380(6−ηh)λ(3)2+ 25920(4−ηh)λ(3)3

90(1+µh)4

+ 2
−299+ 1780λ(3)− 3640λ(3)2+ 2336λ(3)3

15(1+µh)5
−

50− 53ηc

10

�

(J.6)
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APPENDIX K

Spectral Representation and Correlation Functions in the Real-Time
Formalism

This appendix is based on my internal notes, [193], which were already presented in [175].
In this section we provide the basic definitions and theorems underlying our real-time study.
Definitions:
Correlation functions at finite temperature are defined as thermal ensemble averages accord-
ing to

〈A1...An〉 :=
Tr
�

e−βH A1...An

�

Tr e−βH
, (K.1)

for appropriately defined operators A1...An.
In the real-time formalism, n-point correlation functions are tensors with respect to the

contour indices {+,−} and are therefore objects with 2n components. For the two-point
function

G =

�

G++ G+−
G−+ G−−

�

, (K.2)

these components are defined by

G−+(x , y) :=− i 〈ϕ(x)ϕ(y)〉=: G>(x , y)

G+−(x , y) :=− i 〈ϕ(y)ϕ(x)〉=: G<(x , y)

G++(x , y) :=− i 〈Tϕ(y)ϕ(x)〉=: GF (x , y)

G−−(x , y) :=− i 〈T̃ϕ(y)ϕ(x)〉=: GF̃ (x , y) , (K.3)

where T denotes the time ordering operator and T̃ the anti-time ordering operator. Using
the definition of the retarded propagator the one above one obtains

GR(x , y) = G++(x , y)− G+−(x , y) . (K.4)
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Symmetry relations for the propgator:
The components Gi, j of the propagator obey some very convenient relations. In particular,

G∗−+(x , y) =−G+−(x , y) . (K.5)

First we note that for a real, classical scalar field, the corresponding quantum field is a
self-adjoint operator (at least symmetric), i.e. ϕ† = ϕ, and so is the Hamiltonian. Then we
can deduce

G∗−+(x , y) =

 

−i
Tr
�

e−βH ϕ(x)ϕ(y)
�

Tr e−βH

!∗

= i
∑

n

〈 fn , e−βHϕ(x)ϕ(y) fn〉∗

Tr e−βH

=i
∑

n

〈e−βHϕ(x)ϕ(y) fn , fn〉
Tr e−βH

= i
∑

n

〈 fn ,ϕ(y)†ϕ(x)†
�

e−βH
�†

fn〉

Tr e−βH

=i
∑

n

〈 fn , e−βHϕ(y)ϕ(x) fn〉
Tr e−βH

=−G+−(x , y) , (K.6)

which proves the claim. In the above proof fn is a complete set of asymptotic states and
we have used that the operators are symmetric and that the exponential of a symmetric
operator is again symmetric. Moreover, we have used the cyclicity of the trace.

The above identity can also be proven using the machinery of thermo-field dynamics,
where one constructs a finite temperature vacuum state f0,β . With such a state one can simply
generalize the definition of correlation functions at zero temperature to finite temperature
ones by

〈A1...An〉 := 〈 f0,β , A1...An f0,β〉 . (K.7)

With this formalism at hand we can prove the above relation via

G∗−+(x , y) =
�

−i 〈 f0,β , ϕ(x)ϕ(y) f0,β〉
�∗
= i 〈ϕ(x)ϕ(y) f0,β , f0,β〉

=i 〈 f0,β , ϕ(y)†ϕ(x)† f0,β〉= i 〈 f0,β , ϕ(y)ϕ(x) f0,β〉=−G+−(x , y) . (K.8)

By Fourier transform we can write in momentum space

G∗−+(p, q) =FT
�

G−+(x , y)
	∗ =

 

∫

x

∫

y

eipx eip y G−+(x , y)

!∗

=

∫

x

∫

y

e−ipx e−ip y G∗−+(x , y) =−
∫

x

∫

y

e−ipx e−ip y G+−(x , y) =−G+−(−p,−q) .

(K.9)

Note that we drop the tilde that indicates the Fourier transform since we write out the argu-
ments explicitly. Under the assumption that the system is space-time translation invariant,
the position space propagator is not an arbitrary function of (x , y), but depends only on the
difference, i.e.

G(x , y) = G(x − y) . (K.10)

Therefore we can Fourier-transform with respect to z := x − z according to

FT
�

G(x − y)
	

=

∫

z

eipzG(z) = G(p) . (K.11)
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With this at hand, and using the obvious relation G−+(x , y) = G+−(y, x), which now
translates into G−+(z) = G+−(−z) we immediately arrive at

G−+(p) =

∫

z

eipzG−+(z) =

∫

z

eipzG+−(−z) =

∫

z

e−ipzG+−(z)

=G+−(−p) (K.12)

and therefore

G∗−+(p) =

�
∫

z

eipzG−+(z)

�∗

=

∫

z

e−ipzG∗−+(z) =−
∫

z

e−ipzG+−(z) =−
∫

z

e−ipzG−+(−z)

=−
∫

z

eipzG−+(z) =−G−+(p) . (K.13)

Spectral Representation:
We first derive the spectral representation for two-point functions. With a complete set fi of
generalized eigenfunctions of H with eigenvalues Ei , this is derived as follows,

G−+(x , y) =
−i

Zβ
Tr
�

e−βH ϕ(x)ϕ(y)
�

=
−i

Zβ

∑

n
〈 fn , e−βHϕ(x)ϕ(y) fn〉

=
−i

Zβ

∑

n

∑

m
e−βEn〈 fn , ϕ(x) fm〉〈 fm , ϕ(y) fn〉

=
−i

Zβ

∑

n

∑

m
e−βEn〈 fn , e−iP xϕ(0)eiP x fm〉〈 fm , e−iP yϕ(0)eiP y fn〉

=
−i

Zβ

∑

n

∑

m
e−βEn〈eiP x fn , ϕ(0)eiH x fm〉〈eiP y fm , ϕ(0)eiP y fn〉

=
−i

Zβ

∑

n

∑

m
e−βEn eipn x e−ipm x eipm y e−ipn y〈 fn , ϕ(0) fm〉〈 fm , ϕ(0) fn〉

=
−i

Zβ

∑

n

∑

m
e−βEn eipn(x−y)e−ipm(x−y)

�

�〈 fn , ϕ(0) fm〉
�

�

2
,

with the partition function
Zβ = Tr e−βH . (K.14)

In the above equation we have used that the Energy-Momentum operator P has eigenvalues
p and generates space-time translations and acts as

ϕ(0) = eiP xϕ(x)e−iP x (K.15)

on the fields. Moreover, we exploited that P is symmetric and used the anti-linearity of the
complex inner product. We now define the spectral density of the −+ two-point function in
momentum space as

ρ̃−+(p) :=
1

Zβ

∑

n

∑

m
e−βEn(2π)4δ(pn− pm+ p)

�

�〈 fn , ϕ(0) fm〉
�

�

2
, (K.16)
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which is obviously a real (in momentum space!), and positive(-semi) definite quantity. The
two point function G−+ in momentum space is now obviously proportional to the spectral
density:

G−+(p) =
−i

Zβ

∫

(x−y)
eip(x−y)

∑

n

∑

m
e−βEn eipn(x−y)e−ipm(x−y)

�

�〈 fn , ϕ(0) fm〉
�

�

2

=− iρ̃−+(p) . (K.17)

Clearly, the above derivation can be repeated for G+− just with x and y interchanged and
one arrives at

ρ̃+−(p) :=
1

Zβ

∑

n

∑

m
e−βEn(2π)4δ(−pn+ pm+ p)

�

�〈 fn , ϕ(0) fm〉
�

�

2
(K.18)

and
G+−(p) =−iρ̃+−(p) . (K.19)

By using the symmetry of the delta function in (K.16), we can establish the obvious relation

ρ̃+−(p) = ρ̃−+(−p) . (K.20)

Moreover, we can relabel the dummy indices m and n in (K.16), making use of the zero
component of the delta function, which is nothing but energy conservation Em− En+ p0 = 0,
and using the invariance of the matrix element under interchange of m and n in order to
arrive at

ρ̃−+(p) =
1

Zβ

∑

m

∑

n
e−βEm(2π)4δ(4)(pm− pn+ p)

�

�〈 fm , ϕ(0) fn〉
�

�

2

=eβp0
ρ̃+−(p) . (K.21)

The above equation is obviously nothing else than the well-known KMS-condition, which is
usually formulated for the two-point functions itself,

G−+(p) = eβp0
G+−(p) , (K.22)

and can also be obtained from the periodicity condition in time-direction. Note that this holds
only in equilibrium, since the periodicity as well as our representation for the correlation
functions with the density matrix e−βH do not hold in non-equilibrium. A more convenient
quantity than the spectral densities defined above is the standard spectral function ρ(p)
known from QFT textbooks, since all components of the propagator matrix G, as well as the
retarded and advanced ones can be expressed in terms of this spectral function. We thus
define in position space

ρ(x , y) :=〈[ϕ(x),ϕ(y)]〉
=〈ϕ(x)ϕ(y)〉 − 〈ϕ(y)ϕ(x)〉
=i
�

G−+(x , y)− G+−(x , y)
�

=ρ̃−+(x , y)− ρ̃+−(x , y) . (K.23)
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In terms of this spectral function the off-diagonal elements of the propagator are given by

G−+(p) =−iρ̃−+(p) =− i
ρ(p)

1− e−βp0 =−i
ρ(p) eβp0

eβp0 − 1
=−i

ρ(p)
�

eβp0
− 1+ 1

�

eβp0 − 1

=− i
�

ρ(p) +
ρ(p)

eβp0 − 1

�

=−iρ(p)
�

1+ nβ(p
0)
�

, (K.24)

and similarly

G+−(p) =−iρ̃+−(p) =−iρ(p)nβ(p
0) , (K.25)

with the Bose-Einstein distribution

nβ(p
0) =

1

eβp0 − 1
. (K.26)

Now we proceed to the diagonal elements. Considering the time-ordered, i.e. Feynman
propagator and making the time-ordering explicit we have to deal with

G++(x , y) =−i
�

θ(x0− y0)〈φ(x)φ(y)〉+ θ(y0− x0)〈φ(y)φ(x)〉
�

, (K.27)

with the Heaviside-theta function θ . The correlation functions appearing in (K.27) were
already calculated above. However, the Fourier-transform is now a little more complicated
due to the θ functions with pure time-arguments and we have to perform Fourier trans-
formations for space arguments z := x− y and time arguments z0 := x0 − y0 separately.
Together with the identity for the θ -function the spectral representation for G++ is given by

G++(p) =
−i

Zβ

∫

z

∫

z0

e−ipzeip0z0
θ(z0)

∑

n

∑

m
e−βEn eipnze−ipmz

�

�〈 fn , ϕ(0) fm〉
�

�

2

−i

Zβ

∫

z

∫

z0

e−ipzeip0z0
θ(−z0)

∑

n

∑

m
e−βEn e−ipnze+ipmz

�

�〈 fn , ϕ(0) fm〉
�

�

2
.

We can make use of the integral representation of the θ function

θ(x) = lim
ε→0

i

2π

∫

τ

e−i xτ

τ+ iε
, (K.28)

and

θ(−x) = lim
ε→0

−i

2π

∫

τ

e−i xτ

τ− iε
, (K.29)

which tells us how to deal with the above Fourier transforms with an appropriate iε-
prescription. We first manipulate the first term in the above expression for G++(p), i.e. the
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term proportional to θ(z0), as

−i

Zβ

i

2π

∑

m

∑

n
e−βEn

�

�〈 fn , ϕ(0) fm〉
�

�

2
∫

z

∫

z0

eiz0(p0+p0
n−p0

m)e−iz(p+pn−pm)
∫

p0′

e−iz0p0′

p0′+ iε

=
−i

Zβ

i

2π

∑

m

∑

n
e−βEn

�

�〈 fn , ϕ(0) fm〉
�

�

2
(2π)3δ(3)

�

p+ pn− pm
�

×
∫

p0′

1

p0′+ iε

∫

z0

eiz0
�

p0−p0′+p0
n−p0

m

�

=
−i

Zβ

i

2π

∑

m

∑

n
e−βEn

�

�〈 fn , ϕ(0) fm〉
�

�

2
(2π)3δ(3)

�

p+ pn− pm
�

×
∫

p0′

1

p0′+ iε
(2π)δ(p0− p0′+ p0

n − p0
m)

=
−i

Zβ

i

2π

∑

m

∑

n
e−βEn

�

�〈 fn , ϕ(0) fm〉
�

�

2
(2π)3δ(3)

�

p+ pn− pm
�

(2π)
1

p0− p0
n − p0

m+ iε
,

(K.30)

where the limit ε−→ 0 is implicitly understood. In the end, we want to express the above in
terms of the spectral function ρ, which contains a four dimensional θ -function. Therefore
we rewrite the representation according to

−i

Zβ

i

2π

∑

m

∑

n
e−βEn

�

�〈 fn , ϕ(0) fm〉
�

�

2
(2π)3δ(3)

�

p+ pn− pm
�

× (2π)
∫

p0′

1

p0− p0′+ iε
δ(p0′+ p0

n − p0
m)

=
1

2π

∫

p0′

ρ̃−+(p0′,p)

p0− p0′+ iε
. (K.31)

We can perform analog steps for the term proportional to θ(−z0), which produces an
additional overall minus sign and a minus sign in the iε prescription due to the different
integral representation of the θ -function. Furthermore, it interchanges the labels m and n in
the delta functions. Obviously, this can then be expressed in terms of ρ̃+−(p0′, p0), leading
to

G++(p) =
1

2π

∫

p0′

 

ρ̃−+(p0′,p)

p0− p0′+ iε
−
ρ̃+−(p0′,p)

p0− p0′− iε

!

.

Now we want two additional representations of the above, namely in terms of the usual
spectral function ρ, and such that we regain the usual Feynman propagator in the limit
T −→ 0. In order to do so, we use the Sokhotski-Plemelj theorem

lim
ε→0

∫

x

f (x)
x − x0± iε

=∓iπ f (x0) +P
∫

x

f (x)
x − x0

. (K.32)
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Applying this to the above identity leads to

G++(p) =
1

2π
P
∫

p0′

 

ρ̃−+(p0′,p)− ρ̃+−(p0′,p)

p0− p0′

!

−
1

2π
iπ
�

ρ̃−+(p
0,p) + ρ̃+−(p

0,p)
�

.

Using the KMS condition for the spectral densities and the definition ρ = ρ̃−+ − ρ̃+−, we
get the relation

1

2π
iπ
�

ρ̃−+(p
0,p) + ρ̃+−(p

0,p)
�

=
1

2π
iπ
�

ρ(p0,p) + 2ρ̃+−(p
0,p)

�

=
1

2π
iπ
�

ρ(p0,p) + 2nβ(p
0)ρ(p0,p)

�

= iρ(p0,p)
�

1

2
+ nβ(p

0)
�

, (K.33)

and therefore

G++(p) =
1

2π
P
∫

p0′

 

ρ(p0′,p)

p0− p0′

!

− iρ(p0,p)
�

1

2
+ nβ(p

0)
�

. (K.34)

In addition to this, we can rewrite the representation such that the zero-temperature Feyn-
man propagator appears, and that we get back the zero-temperature spectral representation
of the time-ordered propagator. In order to achieve this, we, make use of the Sokhotski-
Plemelj formula and rewrite the principal value again with an iε- prescription. We only
consider the part with the principal value:

1

2π
P
∫ ∞

−∞
dp0′

 

ρ(p0′,p)

p0− p0′

!

=
1

2π

∫ ∞

−∞
dp0′

 

ρ(p0′,p)

p0− p0′+ iε

!

+
1

2π
iπρ(p0,p) .

Together with (K.50) we first state the intermediate result

G++(p) =
1

2π

∫ ∞

−∞
dp0′

 

ρ(p0′,p)

p0− p0′+ iε

!

− inβ(p
0)ρ(p0,p) , (K.35)

which is also quite frequently used in the literature, and maybe the most convenient one.
However, we proceed with bringing the above into the analog of the well-known zero-
temperature form of the spectral representation of the time-ordered propagator as follows.
Now we consider only the iε part.

G++(p) =
1

2π

∫ ∞

−∞
dp0′

 

ρ(p0′,p)

p0− p0′+ iε

!

− inβ(p
0)ρ(p0,p)

=
1

2π

∫ ∞

−∞
dp0′

 

p0+ p0′− iε
�

p0−
�

p0′− iε
���

p0+
�

p0′− iε
��

!

ρ(p0′,p)− inβ(p
0)ρ(p0,p)

=
1

2π

∫ ∞

−∞
dp0′







p0+ p0′− iε
�

p0�2−
�

p0′− iε
�2






ρ(p0′,p)− inβ(p

0)ρ(p0,p)

=
1

2π

∫ ∞

−∞
dp0′







p0+ p0′− iε
�

p0�2−
�

p0′
�2
+ 2p0′iε− i2ε2






ρ(p0′,p)− inβ(p

0)ρ(p0,p)

(K.36)
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Now we use that the limit ε−→ 0 is implicitly understood and that the iε in the numerator
does not change the value of the integral, since it is not connected to any pole description, i.e.
there is no principle value description necessary. Hence we can drop it. Moreover, the term
of order ε2 in the denominator is sub-leading and can be dropped as well. Additionally, we

want to rewrite the integral as an integral over
�

p0′
�2

instead of p0′. This transformation,
however, is diffeomorphic only on the negative and the positive branch separately. Therefore
we proceed with rewriting the above as

1

2π

∫ ∞

−∞
dp0′







p0+ p0′

�

p0�2−
�

p0′
�2
+ 2p0′iε






ρ(p0′,p)− inβ(p

0)ρ(p0,p)

=
1

2π

∫ 0

−∞
dp0′







p0+ p0′

�

p0�2−
�

p0′
�2
+ 2p0′iε






ρ(p0′,p)

+
1

2π

∫ ∞

0

dp0′







p0+ p0′

�

p0�2−
�

p0′
�2
+ 2p0′iε






ρ(p0′,p)− inβ(p

0)ρ(p0,p) . (K.37)

We now substitute the integration variable p0′ in the integrals that range from −∞ to 0 with
−p0′ and use ρ(−p0) =−ρ(p0), leading to

=−
1

2π

∫ 0

∞
dp0′







p0

�

p0�2−
�

p0′
�2
− 2p0′iε






ρ(−p0′,p)

+
1

2π

∫ ∞

0

dp0′







p0

�

p0�2−
�

p0′
�2
+ 2p0′iε






ρ(p0′,p)

+
1

2π

∫ 0

∞
dp0′







p0′

�

p0�2−
�

p0′
�2
− 2p0′iε






ρ(−p0′,p)

+
1

2π

∫ ∞

0

dp0′







p0′

�

p0�2−
�

p0′
�2
+ 2p0′iε






ρ(p0′,p)− inβ(p

0)ρ(p0,p)

and further manipulations yield

168



=−
1

2π

∫ ∞

0

dp0′







p0

�

p0�2−
�

p0′
�2
− 2p0′iε






ρ(p0′,p)

+
1

2π

∫ ∞

0

dp0′







p0

�

p0�2−
�

p0′
�2
+ 2p0′iε






ρ(p0′,p)

+
1

2π

∫ ∞

0

dp0′







p0′

�

p0�2−
�

p0′
�2
− 2p0′iε






ρ(p0′,p)

+
1

2π

∫ ∞

0

dp0′







p0′

�

p0�2−
�

p0′
�2
+ 2p0′iε






ρ(p0′,p)− inβ(p

0)ρ(p0,p)

=−
1

2π

∫ ∞

0

dp0′







p0

�

p0�2−
�

p0′
�2
− iε






ρ(p0′,p) (K.38)

+
1

2π

∫ ∞

0

dp0′







p0

�

p0�2−
�

p0′
�2
+ iε






ρ(p0′,p)

+
1

2π

∫ ∞

0

dp0′







p0′

�

p0�2−
�

p0′
�2
− iε






ρ(p0′,p)

+
1

2π

∫ ∞

0

dp0′







p0′

�

p0�2−
�

p0′
�2
+ iε






ρ(p0′,p)− inβ(p

0)ρ(p0,p) , (K.39)

where we dropped the 2p0′ in the iε parts in the last step since now all integrals are
performed over an interval with p0′ > 0 and the sign of the iε terms is therefore fixed.
Since the limit ε−→ 0 is implicitly understood, using ±iε is just as good as ±i2p0′ε. In the
expressions above, we can apply the integral transformation

u : p0′ −→ u
�

p0′
�

=
�

p0′
�2

, (K.40)

which is now a diffeomorphism. The measure obviously transforms as

dp0′ =
du

2p0′
, (K.41)

and we arrive at

G++(p) =−
1

2π

1

2

∫ ∞

0

du

 

p0

p
u

ρ(
p

u,p)
�

p0�2− u− iε

!

+
1

2π

1

2

∫ ∞

0

du

 

p0

p
u

ρ(
p

u,p)
�

p0�2− u+ iε

!

(K.42)

+
1

2π

1

2

∫ ∞

0

du

 

ρ(
p

u,p)
�

p0
�2− u− iε

!

+
1

2π

1

2

∫ ∞
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In addition to the integration over
�

p0′
�2

and the squares in the denominator, which are
already present in the equation above, we ultimately want a representation that is entirely
based on the Feynman +iε description. Using the Sokhtsky Plemely theorem we can rewrite
the above in the desired way. Note that the principal value parts in the terms proportional to
p0 cancel each other, and therefore these terms contribute only terms with delta functions.
This is expected, since if we had dropped the iεp0′ terms in the denominator in (K.36), i.e. if
we had a standard principal value, this principal value would be zero in the first place since
there are integrations over a symmetric interval while the spectral function is antisymmetric
and all other terms symmetric. In the other terms the p0′ in the nominator makes the entire
thing symmetric and non-vanishing. Hence, this cancellation of the principal values is just a
manifestation of this fact and we are left with “pole-contributions” of these terms only. In
total, we manipulate the equation according to

G++(p) =−
1

2π

1

2
iπ

∫ ∞

0

duρ(
p

u,p)
p0

p
u
δ
�

u−
�

p0
�2
�

−
1

2π

1

2
iπ

∫ ∞

0

duρ(
p

u,p)
p0

p
u
δ
�

u−
�

p0
�2
�

+
1

2π

1

2
P V

∫ ∞

0

du
ρ(
p

u,p)
�

p0�2− u
+

1

2π

1

2
iπ

∫ ∞

0

duρ(
p

u,p)δ
�

u−
�

p0
�2
�

+
1

2π

1

2

∫ ∞

0

du
ρ(
p

u,p)
�

p0�2− u+ iε
− inβ(p

0)ρ(p0,p)

=−
1

2π

1

2
iπ

∫ ∞

0

duρ(
p

u,p)
p0

p
u
δ
�

u−
�

p0
�2
�

−
1

2π

1

2
iπ

∫ ∞

0

duρ(
p

u,p)
p0

p
u
δ
�

u−
�

p0
�2
�

+
1

2π

1

2

∫ ∞

0

du
ρ(
p

u,p)
�

p0�2− u+ iε

+
1

2π

1

2
iπ

∫ ∞

0

duρ(
p

u,p)δ
�

u−
�

p0
�2
�

+
1

2π

1

2
iπ

∫ ∞

0

duρ(
p

u,p)δ
�

u−
�

p0
�2
�

+
1

2π

1

2

∫ ∞

0

du
ρ(
p

u,p)
�

p0�2− u+ iε
− inβ(p

0)ρ(p0,p)

=−
i

2

∫ ∞

0

duρ(
p

u,p)
p0

p
u
δ
�

u−
�

p0
�2
�

+
i

2

∫ ∞

0

duρ(
p

u,p)δ
�

u−
�

p0
�2
�

+
1

2π

∫ ∞

0

du
ρ(
p

u,p)
�

p0�2− u+ iε
− inβ(p

0)ρ(p0,p) . (K.43)

We have not carried out the delta-functions yet, since they contain a little subtlety. For the

following analysis, it is little more convenient to use u =
�

p0′
�2

. Before we have introduced

the integral transformation, the p0′ integrals were along the positive real line, =⇒ p0′ > 0.

The delta functions contain the squares, δ
�

�

p0′
�2
−
�

p0
�2
�

, but the argument of ρ is
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without the square, i.e. ρ(p0′,p). Since p0′ > 0, the delta functions enforce

p0 = p0′ > 0 or p0 =−p0′ < 0 . (K.44)

First, we consider p0 > 0,⇐⇒ p0 = p0′:
In this case, obviously

p0

p
u
=

p0

p0′
= 1 , (K.45)

and the two terms in the first line after the last equality sign in (K.43) cancel, and we are
left with the last line.
Now we consider p0 < 0,⇐⇒ p0 =−p0′:
In this case the above fraction is −1 and the two terms do not cancel, but are equal.
Considering these two terms together with the last term, we see that for the p0 =−p0′ case
in the delta function
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where the last equality is true since p0 < 0. Therefore, we write the final result as
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(K.47)
In the limit T −→ 0 the distribution function nβ(p0) becomes zero and we are left with the
integral only, which is just the usual spectral representation in zero-temperature QFT. We
can also evaluate the above for the case of a free massive scalar field, where the spectral
function is just given by

ρfree(p
2) = 2π sgn(p0)δ

�

p2−m2
�

= 2π sgn(p0)δ
�

�

p0
�2
− p2−m2

�

, (K.48)

and we get

G++,free(p) =
1

p2−m2+ iε
− 2πiδ

�

p2−m2
�

nβ
��

�p0
�

�

�

, (K.49)

which is exactly the result given e.g. in [188]. In the limit T −→ 0 we get the standard
Feynman propagator in T = 0 perturbative QFT. Note that usually the Feynman propagator
is defined just as the correlation function 〈Tϕ(x)ϕ(y)〉, and the free propagator is then i
times the above result, while we calculated −i 〈Tϕ(x)ϕ(y)〉. So if we multiply the usual
result with the i in the numerator with −i, we get our above result, which is a consistency
check that all signs and factors if i are correct. The convention we have used is the same as
the one in [188].

The spectral representation for G−−(p) can be obtained exactly in the same way as the
one for G++(p), just with the role of the θ functions interchanged due to anti-time ordering
instead of time-ordering. Looking at the derivation, it is easy to see that the thermal part
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remains unchanged, but the principle value part gets an additional minus sign compared
to (K.50), and, if written with an iε prescription, we now have a −iε, in contrast to (K.35).
Therefore
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0)ρ(p0,p) . (K.50)

Now we turn the representations for the retarded an advanced propagators. These are
defined as

GR(x , y) = G++(x , y)− G+−(x , y) , (K.51)

and
GA(x , y) = G++(x , y)− G−+(x , y) . (K.52)

We can use the results obtained above in order to get the spectral representations
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(K.53)

and
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(K.54)

Note that there are no thermal distributions functions in the retarded or advanced propaga-
tor, and therefore the free causal propagators GR,free and GA,free are temperature independent,
since the free spectral functions has this property. The full retarded and advanced propaga-
tors get of course a temperature dependence from the full spectral function.

From the spectral representation (K.53) of the retarded propagator it is obvious that

ρ(p0,p) =−2 ImGR . (K.55)
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