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Abstract

The aim of this thesis is the development of new concepts for environmental 3D recon-
struction in automotive surround-view systems where information of the surroundings of

a vehicle is displayed to a driver for assistance in parking and low-speed manouvering.

The proposed driving assistance system represents a multi-disciplinary challenge combin-
ing techniques from both computer vision and computer graphics. This work comprises
all necessary steps, namely sensor setup and image acquisition up to 3D rendering in

order to provide a comprehensive visualization for the driver.

Visual information is acquired by means of standard surround-view cameras with fish
eye optics covering large fields of view around the ego vehicle. Stereo vision techniques
are applied to these cameras in order to recover 3D information that is finally used as
input for the image-based rendering. New camera setups are proposed that improve the
3D reconstruction around the whole vehicle, attending to different criteria. Prototypic
realization was carried out that shows a qualitative measure of the results achieved and

prove the feasibility of the proposed concept.






Zusammenfassung

Zielsetzung der vorliegenden Arbeit ist die Darstellung neuer Konzepte zur dreidimen-
sionalen Rekonstruktion der Umwelt fiir Surround-View Systeme die im Automotive
Bereich eingesetzt werden. Dazu wird dem Fahrer Umgebungsinformation angezeigt die
ihn bei Park- und anderen Fahrmandvern um niedrigen Geschwindigkeitsbereich unter-

stiitzt.

Das vorgeschlagene Fahrassistenzsystem stellt eine interdisziplindre Herausforderung dar
und kombiniert Techniken aus den Bereichen Computer Vision und Computer Graphics.
Diese Arbeit umfasst alle notwendigen Schritte, namlich Sensor-Setup und Bildaufnahme

bis zu 3D- Rendering, um eine umfassende Visualisierung fiir den Fahrer zu bieten.

Visuelle Information wird mit Hilfe von Standard Surround-View-Kameras mit Fischau-
genoptik erzeugt, welche das Sichtfeld rund um das Fahrzeug abdeckt. Fiir diese Kam-
eras werden Stereo-Vision-Techniken angewendet, um 3D-Informationen zu erhalten, die
schliefslich als Input fiir das bildbasierte Rendering verwendet werden. Neue Kamera-
Setups werden unter Beriicksichtigung verschiedener Kriterien vorgeschlagen, welche die
3D-Rekonstruktion rund um das ganze Fahrzeug verbessern. Im Rahmen dieser Arbeit
wurden prototypische Umsetzungen realisiert, die eine erste quantitative Abschétzung
der Leistungsfahigkeit der beschriebenen Verfahren erlauben und die Machbarkeit des

vorgeschlagenen Konzepts beweisen.
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El que no llora, no mama'

Brought to me by my father

Chapter 1 Keep it simple

Raphael Cano

Introduction

Driver assistance functions aim to support the driver of a vehicle during maneuvering.
Among others, the support can be designed by means of displaying a comprehensive
model of the near range environment to the driver, in order to avoid collision with

obstacles not visible in the current path of view of the driver.

The aim of these systems is to improve the perception and understanding that the driver
has about the surrounding of the vehicle. In order to achieve this, depth estimation is
one of the big challenges that the automotive industry currently tries to solve. This is
commonly achieved by means of a combination of sensors capable of delivering, directly

or indirectly, distance measurements within a given field of view.

Typical sensors that are used in driving assistance include, among others, ultrasonic,
radar or video sensors. In particular, the use of cameras with fisheye optics has gained
extra interest in recent years, due to their very large fields of view together with shrinking
costs and sizes, which make them an optimal choice for being mounted on vehicles while

being in concordance with the exterior design of these.

1.1 Motivation

In recent years, the automotive industry has focused, in the context of driving assistance,
in the need to reduce the number of avoidable accidents, which cause large amounts of

damage every year.

The reason for many of these accidents is the driver’s lack of information about the

surroundings of the vehicle. Especially for big-sized vehicles, where large blind areas for

L No pain, no gain. The author acknowledges that the meaning is not completely equivalent, but not
being a native English speaker makes it extremely difficult to express so much, so simply.

1



Introduction 2

the driver exist, systems that can support the manouvering have proven to be of huge

importance.

One of the many ways in which a system can be designed to aid a driver while man-
euvering is to offer a visualization of the vehicle’s surrounding that contains real visual

information about areas which are not within the visual field of view of the driver.

Shrinking sizes and costs of sensors have made it possible for automotive-qualified cam-
eras to reach large resolutions. This opens the door for more advance image processing

and computer vision techniques to be applied on real products.

In this context, the opportunity to design a system that can exploit existing sensor setups
to enhance safety and user experience was the motivation for this thesis. In particular,
the possibility to perform stereo measurements with automotive fisheye surround view
cameras to gain 3D spatial information has been analyzed. Furthermore, alternative
configurations to current systems have been proposed that can benefit from an extension
of the number of cameras, and depth-based enhancements on the graphical visualization

have been discussed.

1.2 Contributions

The author considers the following to be the main contributions of this thesis:

e Introduction of the idea to perform stereo measurements based on standard sur-
round view camera configuration. An analysis of the main challenges in the process

was conducted, with results published in [Esparza et al., 2014b].

e Proposal of new camera setups, where design criteria was with focus on 3D re-
construction. Two new camera mounting configurations have been proposed to

overcome some of the problems initially spotted.

e Evaluation of the proposed camera configurations attending to field of view around
the ego vehicle and accuracy of depth measurements. These experiments led to the

publication of one conference paper: [Esparza et al., 2014a].

e Concept for a ground truth scheme based on a lidar sensor. A registration method
was designed in order to be able to represent 3D measurements from the stereo ap-
proach and from the lidar on a common reference frame. In cooperation with other
colleagues, a conference paper was published with evaluation on the robustness of

the approach: [Esparza et al., 2014c].
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e Visualization enhancements were proposed in the context of automotive surround

view systems, based on depth measurements.

1.3 Outline

This thesis is organized in 8 chapters including the introduction. Chapter 2 presents
an introduction into automotive park and maneuvering systems with special focus on
surround view systems. Existing systems are described and some of their limitations are

pointed out with a review of possible solutions.

Chapter 3 provides an introduction to the foundations of computer vision and computer
graphics used throughout this thesis. Additionally, a special section is dedicated to

conventions on coordinates systems.

The main contributions of this thesis are contained in Chapters 4, 5 and 6. In particular,
Chapter 4 introduces the reference sensor considered for ground truth generation. A novel
method is presented for the registration of the reference sensor with respect to multi-
camera systems and an error analysis is conducted on the robustness of the registration

process.

Chapter 5 describes the methodology developed to perform 3D measurements with sur-
round view systems. Different camera mounting configurations are analyzed with respect

to different criteria. Evaluation and results are also presented.

Chapter 6 describes both the complete algorithmical processing required to give an inter-
pretation of the 3D data acquired by means of stereo vision, and the approaches utilized
for enhanced visualization. These enhancements rely on the depth information obtained
by means of the methods presented in Chapter 5, but are compatible with occupancy

information provided by means of other automotive sensors.

In Chapter 7 results are discussed and conclusions are elaborated. Open points and pos-
sible lines of research for future work are also described. Finally, Chapter 8 summarizes

the work presented and ends this thesis.






Chapter 2

Automotive Park and Maneuvering

Systems

Automotive Driver Assistance (DA) functions aim to support the driver of a vehicle

during maneuvering. The support can be designed in the following ways:

e Displaying the near range environment to the driver in order to avoid collision with

obstacles not visible in the current path of view of the driver.

e Taking over of some of the driver’s activities in order to increase the comfort during

maneuvering.
e Supervision of the driver’s activities and intervention in dangerous situations.

e Automated driving without requiring to have a driver onboard the vehicle.

Park and maneuvering (PM) systems represent, within the DA family, those driving
functionalities which are targeted at low speed maneuvering and aim to provide environ-
ment information to the driver in a way that is intuitively understandable. In particular,
speeds on the order of 10-20 ¥, are a good reference of the maneuvering velocities for
which these systems are usually designed. For parking space survey, these may reach up

to 40%4,, approximately.

Given the low speeds under consideration, mainly the very near vicinity of a vehicle is
of high relevance for the PM systems. Distance ranges up to 10 meters from the vehicle
are usually sufficient to fulfill most of the requirements of these systems. The field of
view coverage is, however, a more critical aspect of the system design. A complete 360°
horizontal field of view is desirable since every direction in the vicinity is relevant in

these scenarios. In this sense, PM systems differ largely from other DA functionalities

5
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targeting higher speeds, which normally focus on much narrower FoVs. Furthermore,
during low speed maneuvering narrow drive paths or parking spaces are quite common,

which pose very specific challenges.

Despite the low maneuvering speeds, a very fast reaction time is required in maneuv-
ering situations. This requires the system to operate with as low a latency as possible,
especially on visualization tasks. On top of functional requirements, severe restrictions
regarding the number and size of sensors exist in the automotive industry since these

determine costs for the end customer.

2.1 Surround View Systems

Surround view systems represent a subgroup within PM systems aimed at displaying a
visualization of the surrounding of a vehicle through the vehicle’s internal HMI, based
on real camera images. The aim of these systems is to support the driver by displaying

areas in the vicinity of the vehicle that are out of reach of his path of view.

Surround view functionalities were initially adopted by the automotive industry in the
form of single rear-view cameras. These early functionalities allowed the displaying of a
video stream from a camera which was mounted on the rear end of a vehicle, at a height
lower than the field of view of the driver. In this manner, blind spots behind the vehicle

could be imaged and displayed to the driver.

The video streams acquired by means of these cameras could be simply visualized on
the internal display of the vehicle, in order to support the driver in more or less complex
maneuvering tasks, like reverse parking. As additional support, extra information is
usually added in the form of overlays, eg. reference steering lines. Despite the simplicity

of the system, it has proved to give a large degree of support for the driver.

In recent years, surround view systems have been extended with additional cameras that
allow to cover a larger field of view around the vehicle. The following sections offer an
overview of the standard camera configurations employed in surround view systems and
introduce the Bird-View visualization, with a review on its strengths and weaknesses

[Liu et al., 2008].

2.1.1 Standard Camera Configuration for Surround View Systems

A common layout is to have a camera mounted on each side of the vehicle, usually in

the side mirrors, one on the front of the vehicle hidden in the grill and one in the tail


http://dx.doi.org/10.1007/978-3-540-78157-8_16
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gate or close to it. The mounting position of these cameras is optimized in order to
cover close to 360° of the near range vehicle surrounding and to be concord with the
vehicle exterior design. Given the large fields of view provided by cameras with fisheye
optics [Hughes et al., 2009], this can be achieved with a setup of just four cameras in the
described configuration. A common camera setup is depicted in Figure 2.1, where the

field of view of each camera is highlighted.

mcright
b : : ——

N

Cfront I

o/ [Cea

Ucleft

FIGURE 2.1: Standard camera configuration. Four fisheye cameras are mounted on the
vehicle in a configuration which commonly allows for 360° visualization of the vehicle’s
surroundings. The field of view of each camera is assumed equal to 180° horizontally
and is represented by a uniform color in this figure. There also exist overlaps on the
fields of view of the cameras, that can be used for 3D stereo reconstruction.

2.1.2 2D Bird-View Systems

In order to improve system ergonomy, one characteristic that is desirable for surround
view systems is that the visualization includes the vehicle itself, or a model of it, such that

an outsider perspective can be achieved. A common example is a Bird-View visualization.

This visualization projects images from the four surround-view cameras on the ground
plane, and creates a composite view as seen from a virtual camera positioned at a certain
height above the scene, combined with a top-view model of a vehicle. This creates the

impression of a camera which is flying on top of the vehicle, on a fixed position about it.

The generation of a bird-view visualization is based on the assumption of a “flat world”.
Under this assumption, the world is supposed to be flat, thus providing that all objects
which are imaged by a camera lie on the same plane. Assuming calibrated cameras, the
original images can be projected onto this plane, allowing for a change of perspective by
means of a virtual camera. The virtual camera is usually positioned fixed on top of the

vehicle, although there is no real restriction in this sense.


http://dx.doi.org/10.1049/iet-its:20080017
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An description of the generation of a bird-view is depicted in Figure 2.2.

FIGURE 2.2: Bird-view generation. The original images are projected onto the ground
plane by considering the intrinsic camera model and the extrinsic calibration. A virtual
camera can be positioned within the scene to achieve the desired bird-view.

Figures 2.3, 2.4 and 2.5 show how the virtual view is composed from the real images for

different example scenarios.

Front Composite 2D Bird-View

F1GURE 2.3: Bird-view composition from original fisheye images - Scene 1. Left:
Original fisheye images as acquired by the cameras. Right: Composite view after
projecting the images onto the ground plane.
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Front Composite 2D Bird-View

FIGURE 2.4: Bird-view composition from original fisheye images - Scene 2. Left:
Original fisheye images as acquired by the cameras. Right: Composite view after
projecting the images onto the ground plane.

Front Composite 2D Bird-View

\

FIGURE 2.5: Bird-view composition from original fisheye images - Scene 3. Left:
Original fisheye images as acquired by the cameras. Right: Composite view after
projecting the images onto the ground plane.

Although for certain parking situations a bird-view may provide with good support for

a driver, there are certain limitations to the system. Most of these limitations are well
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understood and continuous research on the field aims at tackling them in the best way
possible. In the following, some known weaknesses of the system are presented together

with solutions that have been previously proposed in order to overcome them.

2.1.2.1 Narrow Field of View

Given the relatively low mounting position of the surround-view cameras, there are some
restrictions regarding the change of perspective that is achievable between real and virtual
bird-view cameras even when the flat world assumption is approximately valid, eg. when
no other vehicles or obstacles are present in the vicinity of the ego vehicle. In particular,
due to the finite resolution of the cameras, only a reduced fraction of the imaged field of
view can be projected on the floor. In this way, large changes of pixel size between real

and virtual images can be avoided, which is usually a common requirement.

In Figure 2.6 a situation is depicted where the spatial resolutions of the real and virtual

cameras can be compared.

hVC

Real Fisheye Camera

Apx1 A5

Ay A5
FIGURE 2.6: Comparison of spatial resolution for real and virtual cameras. While the
virtual perspective camera has a uniform spatial resolution over the ground plane (as-
suming it parallel to its image plane), the resolution of the real vehicle fisheye cameras
decreases with the distance. Ideally, the field of view of the bird view should be restric-
ted to the areas around the vehicle where both resolutions are comparable, in order

to avoid large changes of pixel size. Blue and red rays represent a constant amount of
pixels for the virtual and real cameras, respectively.

In the depicted situation, the virtual image plane and ground plane are parallel, thus
the spatial resolution of the virtual camera is uniform over the whole field of view. For
the real vehicle cameras, however, the spatial resolution decreases with the distance (in

the far range, every pixel covers a very large floor area).
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Figure 2.7 evaluates a one-dimensional model of the spatial resolution function (in
[pel/m]) for both real and virtual cameras. This shows, for different virtual camera
heights, what the area around the vehicle is that ensures a minimum real resolution on

the floor plane equal to the resolution of the virtual camera.

4501
— hvc :2m
400 — hvc =4m
— hv(; :6m
3501 hvc =8m
— hvc =]0m
300+ — fisheye

2501

2001

Floor Resolution [pxl/m]

150

100f \

\
50 —

O 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Distance to front camera [m]

FIGURE 2.7: Spatial resolution on the ground plane with respect to the virtual camera

height. Calculated for a perspective virtual camera covering a field of view of 90° and

an image width of 1024 pixels, and a vehicle fisheye camera mounted 1 meter above the

floor with a FoV of 180° and image width 1280 pixels. The constant resolution is due to

parallel image and ground planes. In blue: spatial resolution of the real fisheye camera

over the ground plane. Decreasing spatial resolution with respect to the distance can
be observed.

From the graph in Figure 2.7 it can be observed that even for very high virtual cameras
(~ 10 meters) the maximum coverage around the vehicle is reduced to under 3 meters to
avoid large changes in pixel size. Considering larger FoVs would incur in fisheye pixels
being stretched over very large surfaces. As an addition to the reduced field of view, new
problems arise for elevated objects (where the flat world assumption is not met). These

effects are described in detail in the next section.

2.1.2.2 No Elevated Objects

As a result of the flat world assumption used in the bird-view generation, all objects are
visualized as projections on the floor. The shape of the projection corresponds to the

shadow that would be casted by a light source situated exactly on the actual camera



Automotive Park and Maneuvering Systems

12

position. Additionally, in a perfectly flat world the horizon is located infinitely far away

from the ego vehicle and, therefore, any object with an elevation higher than the camera

itself cannot be projected on the floor, thus cannot be present in a virtual perspective

view.

As a consequence of both previous characteristics, no accurate height information can be

inferred from the bird-view directly. This effect is described in more detail in Figure 2.8.

Virtual Camera

Perspective-correct

3D location Highest location visible

in perspective projection

G

= -

hve

Alias 3D location

FIGURE 2.8: Restrictions on elevated objects. In situations where the flat-world as-

sumption is not fulfilled, elevated objects find themselves projected on the floor. As

a result, texture information is retrieved from alias locations, which are always lower

than the real perspective-correct 3D location. As a limit, there is the height of the real

camera, which corresponds to the infinitely-far horizon. Any object higher than this
limit cannot be visualized on the perspective virtual view.

A solution that has been adopted in some systems in order to include height informa-

tion in the visualization is to change the flat world assumption for an alternative semi-

spherical one, which has a 3D model of the ego vehicle inside it [Shimizu et al., 2010].

A

representation of this world is depicted in Figure 2.9. Different models can be considered,

based on different basic shapes, eg. circular, elliptical, etc.
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FIGURE 2.9: New projection surface. The images obtained via external cameras are

projected onto the semi-spherical projection surface that allows for elevated objects to

be seen. The surface is normally divided in as many sectors are cameras are mounted

in the car. Each sectors is textured with the corresponding camera image. Each color

in this figure corresponds to one of the four cameras (blue: front, red: left, green: rear,
yellow: right).

This new assumption allows for virtual displaying of elevated objects, which brings huge
benefit with regard to spotting, for example, pedestrians, traffic signs or buildings in the

vicinity of the vehicle.

Another benefit of this world assumption is that it opens the door for virtual camera
positions different to the above-described birds-view. In particular, elevated objects can
be imaged by means of oblique views. The range of possible views that can be selected is
unlimited, providing a big degree of flexibility for supporting the driver on meneuvering.
Despite the mentioned benefits, there are still problems which this approach cannot
avoid. In the following, a review of the most significant limitations of this solution is
described:

e Scale magnification factor. This effect occurs when the assumed fixed depth does

not fit the real one. Depending on the magnitude of the error, this effect can cause

very large scale distortions, as shown in Figure 2.10.

F1GURE 2.10: Given the depth ambiguity resulting from the 2D imaging process, and

without any external information, an assumption has to be made about the distance

between objects and the camera. Based on the validity of this assumption, a large
scaling difference may occur when a real-size model of the vehicle is considered.

e Same object seen multiple times. This effect happens when the real distance to

an object is larger than the assumed one and the object is visible in more than
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one camera image simultaneously. The areas of the texture corresponding to the
same object on different images are used multiple times for rendering, thus multiple

instances of the objects are generated. This effect is depicted in Figure 2.11.

FIGURE 2.11: An object being visible multiple times. When the assumed depth is
smaller than the real one, on the areas where the fields of view of more than one
camera overlap, more than one instance of the same object may become visible.

e One object is not seen at all. This effect happens when the real distance to an
object is shorter than the assumed one. Since the projection surface is divided
in areas that correspond to each of the different cameras, there may exist areas

of the images that are not used for texturing any geometry. This is depicted in

Figure 2.12.
) Stitching band e \‘._ / \ b 'Y
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FIGURE 2.12: Disapearing objects. For elevated objects, there is a certain volume in
the vicinity of the vehicle that is not projected onto the surface. This effect may happen
when the distance to objects is less than the assumed one. Nevertheless, the footprint
of the object may still be visible, since at the floor level it can be guaranteed that every
location is appropriately textured with images from at least one of the cameras.

These problems are a result of the fact that the shape of the world that is being used as
support for generating the virtual view remains an assumption - either flat or spherical,
but still an assumption. In order to avoid the kind of problems that have their origin
in the incorrectness of these assumptions, real depth measurements would be required.
In the next section, a review is made of different approaches that can be considered in

order to estimate 3D information in the vicinity of the vehicle.
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2.1.3 Depth Information for 3D Surround View Systems

Since depth cannot be directly recovered from a single image, certain approaches are
proposed in the following, in order to obtain this information in the context of automotive
surround view systems. In particular, it is proposed to gain depth information either by
means of external sensors, or by applying computer vision techniques to the surround
view images. The next sections explain these approaches in detail. A schematic overview

of the processing pipeline required for such a system is depicted in Figure 2.13.

_ Processing Pipeline
i'Di Depth
[{D 1Sp lay Geometry A Data ! r
Analysis Fusion Sensors
Computer
Vision
Y
3D Image Based //4 Image
Rendering Dt

FIGURE 2.13: Depth-based surround view visualization. Depth is obtained by means

of Computer Vision and other sensors on a vehicle. Occupancy information is processed

and image-based rendering techniques are conducted and shown to the driver by means

of a display. Different kinds of sensors in different configurations can be considered.

For the visualization tasks in this work, a data fusion layer is assumed that makes the
depth analysis independent from the type of sensor.

2.1.3.1 Fusion with External Sensors

The first option proposed to gain 3D depth information is by means of external sensors
that already exist on vehicles. In the automotive industry there exist different families

of sensors that are capable of measuring distances through different principles.

Two sensors that are commonly installed in vehicles are Ultrasound and Radar sensors.
Both sensors work as a combination of actuators and receptors that can detect a reflected
signal, ie. sound in the case of USS and electromagnetic waves in the case of radar,
and estimate distance based on the time since of flight and the propagation speed on
the corresponding medium. These sensors can already be found in most medium and
high end vehicles and are, therefore, realistic candidates to support the enhancement of

surround view systems.
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Another sensor which is lately gaining interest within the automotive community is the
3D laser range finder (LRF). An LRF is capable of gathering 3D information by means of
light-based time of flight measurements to reflecting surfaces with a high accuracy. Some
models are already available on the market which allow for a full 360° horizontal field of
view around the ego vehicle, although multiple alternatives exist that have a narrower
FoV.

All these sensors were originally designed with the goal of measuring distances, which
makes them a good candidate to be combined with surround-view systems. A sensor data
fusion approach is usually required in order to integrate measurements from different
sensors. One solution that is commonly used in the field of robotics is the occupancy
grid |Elfes, 1989]. An occupancy grid is a discrete spatial representation of the world
that contains information about the probability for each spatial element to be occupied
by an object. In Section 6.2, a detailed description is given of how an occupancy grid

can be utilized to describe geometries on which IBR can be conducted.

In the context of this thesis, focus has been shifted towards depth estimation based on
computer vision techniques. The next section introduces the topic and presents a review

on previous existing work.

2.1.3.2 Application of Computer Vision Techniques

A second alternative for gaining depth information is to apply computer vision techniques
to the different cameras available in the system. The methods mentioned in the following

take two different approaches in order to perform depth measurements.

e A first method would be to apply structure from motion (SfM) techniques to
the cameras on the system. SfM makes use of a sequence of images acquired from
a single camera while following a trajectory at different instants in time to build
a 3D reconstruction of the scenery, under the assumption that every object was
static, except for the camera itself. For every new frame, motion estimation has to
be conducted prior to the structure reconstruction phase. This method has some
drawbacks, like the need of ego motion before 3D measurements are possible, and
reconstruction being possible only up to a scale factor. In surround view systems
these translate into uncertainties at system startup (since there is no previous

motion) and large latencies due to low maneuvering speeds.

e A different method that can be used in order to gain depth information from the
camera images is stereo vision. Stereo vision makes use of different images taken

simultaneously from different positions with an overlapping field of view. Stereo


http://dx.doi.org/10.1109/2.30720
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vision presents certain benefits with respect to structure from motion, namely no
ego motion is required and the 3D reconstruction is scale-correct, among others.
Given the independence with respect to ego motions, system latency depends ex-

clusively on the processing steps and no uncertainties are given at system startup.

The core contribution of this thesis is the study of stereo vision applied to surround-view
systems. Previous work exists in the field, where authors have also opted for different
camera configurations as well as a variety of algorithmical approaches. A review of the

related work known to the author is presented in the following.

Several systems have been proposed in literature that make use of different omnidirec-
tional cameras for the purpose of stereo vision. However, cameras with fisheye optics are
generally considered a better alternative than catadioptric cameras, due to their large

fields of view and compact shape [Hughes et al., 2009].

The work of [Gehrig, 2005] proposed a stereo vision system with fisheye optics which
relies on a pin-hole model rectification prior to the feature detection-matching, thus being
limited to camera setups that are placed to the left and right of the rear view mirror. In
|Gandhi and Trivedi, 2005] the authors used two catadioptric cameras mounted on the
mirrors of a vehicle and tried to perform motion-stereo measurements, although results
were poor due to low image resolution. A monocular view from each omni camera was
obtained on the respecive sides of the car, and stereo matching was applied to consecutive
frames from the same camera. The authors did not match features across the camera

pair.

In the work of [Suhr et al., 2007], the authors performed detection of free parking spaces
by making use of a structure from motion approach, based on fisheye images. They used
the camera height to the floor plane as scale reference. The authors further extended
their work in [Suhr et al., 2010] by performing a perspective rectification prior to the
optical flow computation. A vacant parking slot detection and tracking system that
fuses camera and ultrasonic sensor information was presented in [Suhr and Jung, 2014].
The authors detected the parking slots by looking for road markings on a composite bird’s
eye view and classified them as occupied or vacant, based on ultrasonic measurements.
The work of [Unger et al., 2014] introduced a parking assistance system which relies on
dense motion-stereo to compute depth maps of the observed environment. By detecting
the ground plane, the authors built up silhouettes which limit free space and accumulate
them over time. The authors of [Kaempchen et al., 2002| considered a dedicated front
stereo camera pair for detection of parking spots and applied a 3D model of a vehicle to

the reconstructed data.


http://dx.doi.org/10.1049/iet-its:20080017
http://dx.doi.org/10.1109/CVPR.2005.446
http://dx.doi.org/10.1007/s00138-008-0156-9
http://dx.doi.org/10.1109/TITS.2013.2272100
http://dx.doi.org/10.1007/s00138-011-0385-1
http://dx.doi.org/10.1109/IVS.2002.1187993
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The work of [Heng et al., 2013| made use of a 4-camera rig surround view configura-
tion similar to the one considered in this thesis. The aim of the authors was the ex-
trinsic calibration of the camera rig. Although they did not consider the overlap on
the fields of view, they performed a time analysis that allowed them to match common
features across different camera views based on a local history and motion estimation. In
[Knorr et al., 2014], extrinsic calibration of a camera rig was also performed, considering

only the overlaps on the fields of view of adjacent cameras.

The work of [Esparza et al., 2014b| was developed as a contribution to this thesis and
it first introduced the idea of performing stereo measurements by means of surround
view systems. The authors considered a 4-camera setup on a standard configuration and

evaluated the amount of existing overlap on the fields of view.

More detailed literature review is provided in following chapters, according to the specific

topics.


http://dx.doi.org/10.1109/IROS.2013.6696592
http://dx.doi.org/10.1109/IVS.2014.6856403

Chapter 3

Foundations

This chapter presents a comprised collection of concepts which set the base for the work
carried out throughout this thesis. In particular, two main sections cover topics related
to Computer Vision (CV) and Computer Graphics (CG). Prior to the introduction into
CV and CG, a common section is dedicated to describe the convention of coordinate

systems used in this thesis.

3.1 Reference Coordinate Systems

In systems where multiple sensors work together, the definition of reference coordinate
systems plays an important role for the system description. Throughout this thesis, a
global origin of coordinates is considered, which corresponds to a distinctive position on
a vehicle. In particular, the norm DIN70000 is considered, which defines the origin of
coordinates in the middle of the vehicle rear axis at ground level. The orientation is
defined such that the x—coordinates are positive in the forward-driving direction and

z—coordinates are positive in the direction of the floor normal, as shown in Figure 3.1.

19
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FI1GURE 3.1: Global coordinate system DIN70K. The origin of coordinates is defined

in the middle of the rear axis, at ground level. The z—coordinates are positive in the

forward-driving direction and z—coordinates are positive in the direction of the floor
normal.

Given the large amount of sensors utilized in the setups proposed in this thesis, together
with the different conventions existing in the fields of CV and CG, a hierarchy of coordin-
ate systems is used, where the pose of each sensor is always described with respect to a
reference that occupies a higher position in the hierarchy, being D70K the top reference.
In the following sections, a description is given on how measurements can be transformed
between different origins of coordinates, as well as the local conventions employed for

each kind of sensor.

3.1.1 Sensor Frame & Sensor Pose Description

For this work the sensor frame is defined as the reference of coordinates which origin is
coincident with the virtual center of the sensor (virtual center of projections, in the case
of central cameras), and its three axes are parallel to the axes of its parent coordinate

system. In Figure 3.2 an example is depicted.
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Sensor
Frame [ I | t ]

Global
Reference

FIGURE 3.2: Definition of the Sensor Frame. The sensor frame reference coordinate

system is defined as a pure translation from the global reference of coordinates to the

sensor’s virtual center (center of projections in the case of ideal central cameras). This
definition is independent from the sensor orientation.

Considering the sensor frame reference, the pose of any sensor can be described with re-
spect to its parent coordinate system in terms of six parameters. Of these six paremeters,
three describe the position of the sensor, and three the orientation. In this thesis, the
orientation of the sensor is described in terms of extrinsic rotations over the sensor frame
axes. The magnitude of the rotations is represented by the Tait-Bryan angles («a, S,
v), with a body-fixed convention (rotations are applied about successively rotated axes)

[Paul, 2008|. The result of the consecutive rotations is depicted in Figure 3.3.

As a convention for the rest of the thesis, the orientation of each sensor will be described
assuming z—coordinates to be positive along the principal direction (optical axis in the
case of cameras) and the z—coordinates positive with the sensor’s up-vector. This con-
vention will be used to describe sensor poses and a conversion to local sensor coordinates

will be subsequently applied in each case.
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FIGURE 3.3: Sensor pose description. The orientation of a sensor is described with

respect to the sensor frame coordinate system. Upper left: parallel orientation to

parent reference. Upper right: pure roll rotation. Lower left: roll and pitch rotations.
Lower right: all roll, pitch and yaw rotations.

Once the hierarchy of the coordinate systems is described, conversion between different
references is possible so that metric measurements from a sensor A can be expressed with
respect to a different sensor B, and vice versa. The transformations to be applied to the

coordinates for this purpose are presented in the following section.

3.1.2 Rigid Body Transformations

In order to describe rigid transformations between different coordinate systems, homo-
geneous 4 X 4 matrices can be utilized. In particular, distinction between two differ-
ent transformations has to be made: transformation from local sensor coordinates to
global reference coordinates, and transformation from global reference coordinates to

local sensor coordinates.

3.1.2.1 Local to Global Frame Transformation

A transformation matrix Mg 1, can be defined that transforms the homogeneous repres-
entation of a point P in local sensor coordinates Py, to global reference coordinates Pg.
As support, the sensor frame (SF) is considered as an intermediate coordinate system,

as in Eq. 3.1.

Pop— (R(aO,TB,W) ?) P, (3.1)
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The transformation from sensor frame to global coordinates (G), as defined in the pre-

vious section involves a pure translation t, as in Eq. 3.2.

Ps = It P
a=\gr ) 5" (3.2)

Expressions 3.1 and 3.2 can be combined to form Eq. 3.3, where Mg 1, is the 4 x 4
homogeneous matrix describing the transformation between a local sensor coordinate

system and its parent reference.

= Mg, P

The rotation matrix R(«, 3,7) is defined as in Eq. 3.4

R(a7 B, 7) = RZ(V)Ry(B)Rx(O‘) (3'4)

where
cosy —siny 0

R.(y) = | siny cosy 0
1

0 0
cosf 0 sin
R,B)=| 0 1 0 (3.5)
—sinf 0 cosf

1 0 0
R,(a)=|0 cosa —sina

0 sina cosa

3.1.2.2 Global to Local Frame Transformation

This transformation converts the homogeneous representation of a point P in global

reference coordinates Pg to local sensor coordinates Pyr. It is represented by the matrix
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M, G, which can be described based on the previous local-to-global transformation, as

in Eq. 3.6.
1 ¢\ [R(a,8,4) 0\]
p— a’ 77
Mpo=Mg), =

These transformations are important both in CV and in CG, but especially so for ap-
plications combining both of them, as in Image Based Rendering (see Section 3.3.2).
Furthermore, once the extrinsic relations between sensors are defined, there still exist
different local axes conventions that are used for each different kind of sensor. The next
section describes the axes conventions typically used in CV and in CG, that are also

considered in this thesis.

3.1.3 Axes Convention in Computer Graphics and Computer Vision

In order to transform the representation of coordinates between different systems, the
global transformations described in the previous sections are used. Nevertheless, both
in Computer Vision and in Computer Graphics specific conventions exist for the local

camera axes definition.

These coordinates are considered locally, for example, in order to describe camera pro-
jection models. In Figure 3.4 the conventions utilized in Computer Vision and OpenGL-

based Computer Graphics are compared.
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FIGURE 3.4: Axes Convention in Computer Vision and Computer Graphics (OpenGL
convention). Left: CV - the optical axis is along the positive z—direction.
Right: CG - the optical axis is along the negative z—direction.

In order to apply changes of axes convention between CV and the global reference used in

this thesis (as described in Section 3.1.1), the 3 X 3 matrices 3.7 and 3.8 can be applied.

0 0 1

Mgiobatcv =1 -1 0 0 (3.7)
0 -1 0
0 -1 0

Mcvciobar = |0 0 —1 (3.8)
1 0 0

In the same manner, change of axes convention in the context of CG can be carried out

by applying Egs. 3.9 and 3.10.

0 —1
McG,Giobat = | =1 0 0 (3.9)
0
-1 0
Mcaiobar,ca=| 0 0 1 (3.10)
-1 0

3.1.4 Camera Registration

In order to estimate the pose of multiple cameras with respect to a common global refer-

ence, several approaches have been proposed in literature [Hartley and Zisserman, 2000,


http://dx.doi.org/10.1017/S0263574700223217
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[Esquivel et al., 2007], [Heng et al., 2013], [Pless, 2003]. Different solutions exist depend-
ing on the camera rig restrictions: there are offline and online solutions, as well as al-

gorithms that require calibration targets or can work on natural scenes.

In the experiments described in this thesis, the extrinsic registration of the cameras
was done offline by means of special calibration targets as well as additional cameras
and bundle adjustment. The registration was assumed static for the duration of each
experiment, ie. no online calibration algorithm was considered. For each different camera
configuration that was proposed and evaluated, a new extrinsic registration session was

conducted.

Open source libraries exist that allow for camera extrinsic registration. In particu-
lar, the author invites the reader to see the OpenCV |Bradski, 2000] and OpenGV
[Kneip and Furgale, 2014] libraries.


http://dx.doi.org/10.1007/978-3-540-74936-3_9
http://dx.doi.org/10.1109/IROS.2013.6696592
http://dx.doi.org/10.1109/CVPR.2003.1211520
http://dx.doi.org/10.1109/ICRA.2014.6906582
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3.2 Computer Vision

The field of Computer Vision comprises all the steps required in the process of gaining
information about the world by means of camera images. Generally speaking, it can
be understood as the process of taking images of the world as an input, and generating

higher level understanding of the world as an output.

In this section, basic Image Processing and Computer Vision concepts are presented. In
particular, a review of camera models is introduced together with basic image transform-
ations and interpolation techniques. Finally, an introduction to multiple view geometry

is given.

3.2.1 Camera Models

Image acquisition represents the first step within a complete CV system. In the process
of acquiring an image, the 3D world is projected onto a 2D image plane, thus it is not
possible to recover depth information for the imaged objects [Jdhne, 1997|. Depending
on the characteristics of the cameras and optics employed, different models have been
proposed in literature that can explain how a 3D point is projected onto the image
plane. These models normally account not only for ideal projections, but also for other
distortions introduced by the camera lenses. This section introduces a review of both

projection and distortion models for standard and omnidirectional cameras.

As for omnidirectional cameras, there exist multiple solutions that allow for large FoV to
be imaged, some involving the use of exposed mirrors, eg. catadioptric cameras. Given
their exposed nature, catadioptric cameras are not commonly used by the automotive
industry. For this reason, fisheye lenses are the only omnidirectional cameras considered
in this review. The reader is invited to find further literature on this topic in the works
of |Geyer and Daniilidis, 2000] and [Barreto and Araujo, 2001]. A detailed survey on

omnidirectional camera models can also be found in [Sturm et al., 2011].

3.2.1.1 1Ideal Pinhole Model

The well-known pinhole projection model for standard cameras is presented in this sec-
tion. The ideal pinhole model describes the camera aperture as a single point, through

which all light rays pass. An ideal pinhole camera is illustrated in Figure 3.5.


http://rd.springer.com/book/10.1007/978-3-662-03477-4
http://dx.doi.org/10.1007/3-540-45053-X_29
http://dx.doi.org/10.1109/CVPR.2001.990992
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Focal plane

FIGURE 3.5: Pinhole camera model. The ideal pin-hole camera model assumes all light
rays passing through a single common point and projecting onto a focal plane.

The image plane is defined bering parallel to both camera axes at a focal distance f
from the pin hole. In this model, a 3D point P = (X,Y,Z )T is imaged in normalized
coordinates p = (X/z,Y/z, l)T. Therefore, the tangent of the angle defined by the view
ray and the optical axis, together with the focal length f, characterize the distance

between the principal and projection points on the image plane.

The relation between the angle 6 described by the view ray and the optical axis, and the

distance p to the principal point is given by Eq. 3.11.

p= ftané (3.11)

This model can approximate the imaging characteristics of many standard cameras but

does not account for distortions due to imperfections on the lenses.

3.2.1.2 Fish-Eye Models

Fish-eye lenses offer the possibilty to acquire images with an ultra-wide field of view,
by means of a special mapping between viewing rays and pixel coordinates. This spe-
cial mapping involves the bending of viewing rays and, for fields of view of 180° or
above, large barrel distortions are unavoidable. In order to model the mapping between
the 3D world and the 2D image plane for cameras with fisheye optics, a separation
between projection and distortion models is commonly used [Geyer and Daniilidis, 2000,
[Barreto and Araujo, 2001].


http://dx.doi.org/10.1007/3-540-45053-X_29
http://dx.doi.org/10.1109/CVPR.2001.990992
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Ideal Fish-Eye Projection Models

In the following, some of the most commonly used projection models for fisheye optics
are presented. They differ from each other in the projection function considered to map 6
and p, which stand for the angular distance to the optical axis (in [rad]) and the distance
over the image plane to the principal point (in [pel]), respectively. The coordinates (v, v")

represent normalized image coordinates [Abraham and Forstner, 2005].

- Equidistant model

This model considers a projection function of the kind represented in Eq. 3.12.

p=ch (3.12)

The projection of a world point P = (X,Y, Z)" to normalized image coordinates
is described by Eqs. 3.13, 3.14.

, X VX2+Y2

U = —————arctan ———— (3.13)
VXZ+Y? Z
) Y VX2 Y2

V' = ———=arctan ———— (3.14)

VX212 Z

The inverse projection is described by Egs. 3.15, 3.16, 3.17.

X = N sin Vu'? + v’ (3.15)
/
Y= sinVu? +o? (3.16)

7 = cos Vu? +v? (3.17)

- Stereographic model

This model considers a projection function of the kind represented in Eq. 3.18.

0
p = ctan 3 (3.18)

The projection of a world point P = (X,Y, 7 )T to normalized image coordinates
is described by Eqgs. 3.19, 3.20.


http://dx.doi.org/10.1016/j.isprsjprs.2005.03.001
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VX2+Y2+224+ 7
v = r (3.20)
VX2 4+ Y2+ 72+ 7
The inverse projection is described by Eqgs. 3.21, 3.22, 3.23.
2u’
- (3.21)
20/
U T (3:22)
1— (u”+0?)
T (3.23)

- Orthogonal model

This model considers a projection function of the kind represented in Eq. 3.24.

p = csinf (3.24)

The projection of a world point P = (X,Y, 7 )T to normalized image coordinates
is described by Eqgs. 3.25, 3.26.

, X
u = (3.25)
VXZ+Y2 4 22
Y
v = (3.26)
\/X2 +Y2 4+ 72
The inverse projection is described by Eqgs. 3.27, 3.28, 3.29.
X = (3.27)
Y =4 (3.28)
Z =1 - @247 (3.29)

- Equisolid model

This model considers a projection function of the kind represented in Eq. 3.30.
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7
p = csin 2 (3.30)

The projection of a world point P = (X,Y, Z )T to normalized image coordinates
is described by Egs. 3.31, 3.32.

X Z
e s anmm—— 3.31
¢ 2<X2+y2)\/ X1V 1 2 (331

Y Z
e /1 — 3.32
EWGTre +Y2)\/ X2 Y2y 22 (3.52)

The inverse projection is described by Eqgs. 3.33, 3.34, 3.35.

X =201 (2 +0?) (3.33)
Y = 20/1— (w2 + 0?) (3.34)
Z=\1- @247 (3.35)

Nonideal Fish-Eye Projection Models

The projection models above were aiming at describing the projection ideally,
without considering deviations due, for example, to lens imperfections. These are
normally accounted for in the distortion model, being radial and tangential the
main distortion components. This is valid both for standard projective and fisheye

cameras. In Figure 3.6 the effect of the main distortion components is depicted.
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FIGURE 3.6: Main distortion components. The most commonly considered distortions

are radial and tangential. As expressed by their names, radial distortions refer to the

difference in radial distance to the center of projections between the ideal and observed

projections. Tangential distortions refer to the angular deviation from the ideal location
on the image plane.

In this thesis, a modified version of the general projection model originally
proposed by |Geyer and Daniilidis, 2000] and [Barreto and Araujo, 2001] is con-
sidered to model the projection of a world point onto the image plane. This
modification was initially proposed by [Mei and Rives, 2007| and it is described in

the following, extracted from their original paper.

Let P be a point expressed in camera coordinates and Pg its projection on the unit
sphere. The camera model proposed by [Mei and Rives, 2007] firstly introduces a
change of reference frame corresponding to a translation of magnitude & over the

optical axis, as in Eq. 3.36. This is illustrated in Figure 3.7.

PP = (PS,Cm PS,y) PS,z + é)T (336)
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Tp

FIGURE 3.7: Change of reference frame as described in the model
from [Mei and Rives, 2007], which is given by a translation of magnitude ¢ over
the optical axis.

Following the previous transformation of coordinates, the normalized undistorted
ideal pinhole projection (x,+,,) of point P onto the image plane can be described
by means of Eqgs. 3.37, 3.38.

/ PS,w

T, = =
“ PS,2+£

(3.37)
Pg

= 3.38

Yu= Pt e (3.38)

Based on this ideal projection, a distortion model is considered with both radial
and tangential components. In particular, the radial distortion L£(p) is modeled

by three parameters ki, ko, k3 by means of Eq. 3.39, where p = /2> + 9/.°.

L(p) = 14 k1p? + kap® + ksp® (3.39)

The tangential distortion dx, dy is modelled by two parameters 1, 5 as in Eq. 3.40.

d ti(p® + 22.°%) + 2oy,

dy ta(p? + 2y,%) + 2t12,y,,
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Both distortions are applied by means of Eq. 3.41, obtaining the normalized dis-
torted point (z/, + v/).

/ / d

Yy v, L(p) +dy

Finally, the unnormalized observed projection (x,y) of point P on the image
plane can be obtained by considering focal lengths v,, 7, and skew factor o, as in

Eq. 3.42, where (¢, yo) represents the principal point or center of distortions.

T\ _ (7e(wat ava) 2 (3.42)

y YylYu + Yo

In Figure 3.8 the angular resolution in terms of angle per pixel along the lines
passing through the center of distortions is shown for the cameras considered in
this thesis. The cameras have been intrinsically calibrated based on the model

proposed in [Mei and Rives, 2007].
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FIGURE 3.8: Angular resolution for the fisheye cameras used throughout the exper-

iments of this thesis, which have a total resolution of 1280 x 960 pixels and hori-

zontally cover 185° approximately. The resolution is represented in terms of angle per

pixel, along the vertical and horizontal lines passing through the principal point. The

graphs have been generated considering the camera calibration based on the model of
[Mei and Rives, 2007].
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The camera models that have been presented in this section are those relevant for
the work carried out in this thesis. Further literature on the topic can be found
in [Hartley and Zisserman, 2000| and [Ray, 2002].

3.2.2 Image Transformations

In this section a series of standard image processing transformations are presen-
ted. In particular, an introduction into the concept of image warping is given.
Different interpolation techniques are also presented that offer different tradeoff
levels between quality and complexity, which are typically chosen depending on

application requirements.

3.2.2.1 Image Warping

Image warping is a process that implies image resampling at specific locations
which are defined by the warping functions [Heckbert, 1989|. The intensities at
the given locations are used to raster a new image that meets certain geometrical
characteristics, eg. new size, distortion free, projective transformation, etc. These
locations are not necessarily integral, thus different interpolation techniques are of-
ten used. Warping functions can be represented by planar motions [Szeliski, 2006],
but also by nonlinear functions. A typical example of image warping is the use of
cylindrical or spherical projections for panning cameras. Other relevant applica-

tions of image warping include:

e Resizing: Either to enlarge or reduce the size of an image, intensity values
not corresponding to a single pixel are usually required. The grid of sample

locations for the resize images can be considered a warping function.

e Distortion correction: The warping function is defined by the correspond-
ences between ideal projection and real observed image coordinates. The
distortion-corrected image is obtained by sampling the image at the coordin-

ates that correspond to the ideal raster positions [De Villiers et al., 2008].

e Transformation of coordinates: The mapping of images between coordinates
systems is a common problem that usually implies nonlinear warping func-
tions. One of the most typical examples is the 2D projection of the earth’s

surface used in cartography |Tobler, 1973|, [Snyder, 1997].
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An example of image warping is depicted in Figure 3.9.

Input Pixel
Coordinates

Output Pixel

Coordinates
Input Image

Warping Function

QOutput Image

FIGURE 3.9: Warping function. For each output pixel coordinate, the warp function

describes the corresponding coordinates on the original image. The warping function

can be defined in order to perform distortion correction or any transformation of image
coordinates.

Depending on how severe the warping is, large changes in pixel sizes may occur
between the original and warped images. This can cause jaggies or other image
artefacts [Blinn, 1989] due to nonadequate interpolation techniques. The works of
[Turkowski, 1990] and [Van Ouwerkerk, 2006] evaluate these effects in detail.

3.2.2.2 Interpolation Techniques

Image interpolation works in two dimensions and aims to achieve a best approx-
imation of a pixel intensity value, based on the values of the surrounding pixels.

In the following, some of the most commonly used interpolation techniques are
described.

Bilinear Interpolation

Bilinear interpolation is an interpolation technique which takes into consideration
the intensity values of the four neighbouring pixels to the desired location (z,y).

The estimated intensity value T(x, y) is proportional to the proximity to each of the
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neighbours and is given by Eq. 3.43, where 1, x5, y1, yo describe the coordinates

of the four neighbouring pixels.

1
I(z,y) @o—a1)(ga—v1)

(3.43)

+ o+ + ~
A/'—_'\A
=
<
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Despite allowing to estimate intensities at nonintegral pixel coordinates, bilinear
interpolation is known to produce a number of image artefacts (eg. aliasing). More
computationally demanding techniques are usually utilized in order to reduce these

effects. Figure 3.10 illustrates the operations graphically.

+o B+-0

FIGURE 3.10: Bilinear interpolation. The intensity value at a given location is determ-
ined by the four nearest neighbours and it is proportional to the proximity of these.

Bicubic Interpolation

Bicubic interpolation is commonly used for image resampling since it outperforms
bilinear interpolation with regard to fine detail. This interpolation technique es-
timates the intensity value at a given location by considering sixteen neighbouring
pixels. It is based on the idea of estimating the parameters of a 3-degree poly-
nom which passes through neighbouring pixels and has the same first derivative.
Bicubic interpolation can be broken into two one-dimensional cubic interpolations
along each direction. One-dimensional cubic interpolation can be computed as in
Eq. 3.44.
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(3.44)

Based on Eq. 3.44, two-dimensional bicubic interpolation in pixel coordinates (z, y)

can be conducted as by means of Eq. 3.45

Tyicunic(25y) = Lounie(Ix (z, y—1), Ix (2, 90), Ix (2, 11), I (2, 12), )

where

Ix(2,y) = Lupie(L(z_1, ), Lo, v), I(z1, ), Lz, y), )

In Figure 3.11, the complete process is shown graphically.
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FIGURE 3.11: Bicubic interpolation. Bicubic interpolation can be split into two one-
dimensional cubic interpolations anlong both x- and y-directions. Cubic interpolation
involves the fitting of a degree-three polynom that meets the intensity values on neigh-

bouring pixels and their first order derivative.



Foundations 39

Despite producing better level of detail than bilinear interpolation, certain image
artefacts may be still introduced due to negative lobes on the interpolation function
[Blinn, 1989).

Lanczos Interpolation

The Lanczos interpolation has been reviewed in literature |Turkowski, 1990],
[Blinn, 1989| as an optimal alternative for image interpolation preserving detail

and minimizing aliasing artefacts.

In particular, the filtering is applied by means of Eq. 3.47

lz]+a ly]+a

S(y)= Y. > syLlx—i)Lly—j) (3.47)

i=|z]—a+1 j=|y|—a+1

where s;; represents the intensity of the original image at position (7, j) and L(x)
is Lanczos’ kernel with size parameter a, as defined in Eq. 3.48. The term |z] is

used to represent the floor function.

L) = sinc () sinc (¥/a) ?f r<a (3.48)
0 ifz>a

After resampling, rastering of the virtual images is possible as in Figure 3.9. The

effect of considering different values for the parameter a is shown in Figure 3.12

for a one-dimensional function.
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FIGURE 3.12: Lanczos interpolation for different values of the parameter a.

In the experiments presented in this thesis, a Lanczos filter with a size parameter
a = 4 has been considered to deal with large changes in pixel size. No significant

change has been observed by applying different size parameters.

3.2.3 Multiple View Geometry

This section reviews basic concepts in the field of multiple view geometry relev-
ant for the work in this thesis. In particular, stereo vision, epipolar geometry
and keypoint-based computer vision are the aspects on which this section fo-
cuses. The contents presented in this section can be found in more detail in
[Hartley and Zisserman, 2000].

3.2.3.1 Stereo Vision

Stereo Vision is the process of extracting 3D information from several view images
of a single scene |[Hartley and Zisserman, 2000]. Assuming known camera poses
and calibrated cameras, from two corresponding image points  and x’, the 3D co-
ordinates of the world point X can be estimated by means of simple triangulation,

as shown in Figure 3.13.
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[R]{]

FIGURE 3.13: Stereo Vision. Based on multiple views of a single scene, the 3D position
of an object can be determined by triangulation, based on the projection of the object
onto both image planes.

Prior to the 3D reconstruction, stereo vision requires a series of preprocessing
steps that reduce the complexity of the feature matching or disparity estimation.

Among others, these include:

e Distortion correction. In this step distortions due to, for example, lens im-
perfections are removed. A typical example of this kind of distortions is
the barrel distortion, which normally occurs for very wide angle lenses. To
achieve this, the image intensities are mappend to the image coordinates that

the ideal projection model predicts.

e Epipolar rectification. This step is aimed at aligning epipolar lines with
raster lines. If both images from a camera pair are epipolar-rectified so that
each corresponding epipolar line is projected onto the same raster line, the
search of correspondences becomes a one-dimensional search, thus reducing

computational complexity.

Combining restrictions based on the epipolar geometry with the projection and
distortion camera models presented, both dense and feature-based stereo schemes

can be considered. In a dense stereo setup, a disparity is estimated for every pixel
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on an image, while feature-based stereo is based on the prior search of distinctive
image point, lines or structures. In the case of point features, these are usually

referred to as keypoints or corners |Szeliski, 2006].

In the following sections, epipolar rectification and keypoint-based stereo vision

are described in further detail.

3.2.3.2 Epipolar Geometry & Epipolar Rectification

Epipolar geometry refers to the projective properties that arise from the examin-
ation of more than one view of a single scene, observed from different perspectives
[Hartley and Zisserman, 2000]. Before going into further details, it is worthwhile

to define some basic concepts:

e Baseline: is the line joining the camera centers of two views of a common

scene.

e Epipole: is the point of intersection of the line joining the camera centers
with the image planes. Equivalently, it is the projection in one view of the

camera center of the other view.

e Epipolar plane: is every plane that contains the baseline. All epipolar

planes form a pencil.

e Epipolar line: is the intersection of an epipolar plane with the image plane.
All epipolar lines intersect at the epipole. The intersection of a single epipolar
plane with both image planes defines two corresponding epipolar lines across
both views. In perspective cameras, epipolar lines are straight. This is not
true for nonperspective cameras, due to the nonlinearity of their projection

fuction.

These elements are described in Figure 3.14.
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F1GURE 3.14: Epipolar geometry. Any 3D point not contained in the baseline defines a

triangle together with both camera centers. The plane to which this triangle belongs is

an epipolar plane. All epipolar planes define a pencil which pases through the baseline.

The intersection of any epipolar plane with the image planes defines the epipolar lines.
In perspective cameras, epipolar lines are imaged as straight lines.

The Fundamental Matrix

The fundamental matrix is a 3 x 3 matrix of rank two that relates correspond-

ing points in two different views. Considering corresponding homogeneous image

coordinates x and «, the fundamental matrix F satisfies Eq. 3.49.

Z'Fx=0

(3.49)

For correspondence search, the fundamental matrix can be used to obtain the

epipolar line ! where the projection 2’ of z lies, as depicted in Figure 3.15.
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FIGURE 3.15: Fundamental matrix. Given a projection x of X, the fundamental matrix
defines the epipolar line ! on the other view where the projection &’ lies.

Epipolar Rectification

Epipolar rectification is a standard step in stereo vision processing, in order
to reduce the correspondence search space, thus saving in computation efforts
[Hartley and Zisserman, 2000]. It can be regarded as a projection of the world
into a virtual camera pair, which fulfills the resctriction that each common point
observed by both cameras is imaged on the same image row. A common model
used for this purpose is the ideal pinhole model. This model projects the world

into a plane which is a fixed distance f away from the projection center.

In conventional perspective cameras, a linear rectifying transformation H exists,
as described in Eq. 3.50, where K¢, Ky, are the projection matrices of the original
and virtual cameras respectively, and R is the rotation that is applied to the

original camera to rectify it.
H = KyRK_' (3.50)

For nonperspective cameras, a linear epipolar rectification transformation does
not exist, thus the previous expression is not valid. In Chapter 5, an extended
discussion is presented on existing possibilities for epipolar rectification of omni-

directional images.

Once the epipolar rectification has been carried out, the search of correspond-
ences across the rectified images can be performed. In the following section, an

introduction is given into keypoint-based computer vision techniques.


http://dx.doi.org/10.1017/S0263574700223217

Foundations 45

3.2.3.3 Keypoint-based CV

In computer vision, the concept of feature refers to a certain amount of inform-
ation which can be used to carry out a certain kind of processing [Lowe, 2004],
[Oja et al., 1999]. The process of extracting distinctive features is usually split
into two more specific steps, namely feature detection and feature description.
The nature of the features considered depends largely on the application that is
to be conducted. In the literature there exist many examples of possible features:
line segments, corner-like keypoints, or even tracks of a primitive feature can be
considered as a higher level feature themselves. For the work carried out through-
out this thesis, focus has been put into 2D keypoints which fulfill certain local
constraints as features. In the following, a review of the keypoint detection and

description techniques utilized is presented.

Keypoint Detection

Several possibilities exist for keypoint detection, as in [Harris and Stephens, 1988]

and [Shi and Tomasi, 1994]. Depending on the task at hand, different charac-
teristics may be desirable from a feature, thus the detection process shall be
based on different tests. Keypoint detectors invariant to scale [Lowe, 2004],
[Mikolajczyk and Schmid, 2004], as well as to affine transformations [Morel and Yu, 2009|
have been proposed. The detector originally proposed by [Rosten and Drummond, 2005|
has been largely used throughout this thesis and is therefore described in the fol-

lowing.

The FAST (Features from Accelerated Segment Test) keypoint detector was origin-
ally proposed in |[Rosten and Drummond, 2005| with the aim to reach real-time
performances on solving the problem of 3D model-based tracking. In order to
detect a FAST keypoint at any pixel location p, a Bresenham circle of radius
3 surrounding p is considered, which is defined by 16 pixels [Bresenham, 1965|.
Pixel p is a corner if there exists a set of n contiguous pixels in the circle which
are all brighter than [ + ¢, or all darker than I - ¢, where I is the intensity of the
image at p and t is a predefined threshold. An example image from the original

paper of [Rosten and Drummond, 2005] is shown on Fig. 3.16.
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FIGURE 3.16: Description of the FAST (Features from Accelerated Segment Test)
keypoint detector. Taken from [Rosten and Drummond, 2005].

Open source implementations exist of the FAST keypoint detector |[Bradski, 2000].

Keypoint Description

Up to this point discussion was focused on the detection of image keypoints, which
provides no more than a list of 2D coordinates of the representative keypoints. The
next step is therefore to provide a description for each of the detected keypoints.
A review on local descriptors can be found in [Mikolajezyk and Schmid, 2005].
In the following, the BRIEF (Binary Robust Independent Elementary Features)

descriptor is presented, since it is largely used in this thesis.

The BRIEF descriptor was originally proposed in [Calonder et al., 2010] as an
efficient keypoint descriptor based on binary strings. It can be computed using

simple intensity difference tests as described in the following.

On a first step, a patch p of size S x S is defined, centered on the keypoint p.
A test T (p; @1, @) is defined as in Eq. 3.51 where I(z) is the pixel intensity in a

smoothed version of the patch p, at pixel location .

1 if I(m) < I(x)

_ (3.51)
0 otherwise

T(p;wl,wz)Z{

A set of binary tests is then defined by means of unique (z,x)-location
pairs that leads to the complete binary description. In the original paper of
[Calonder et al., 2010| different spatial arrangements of the binary tests are eval-

uated. These are shown in Figure 3.17.
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FIGURE 3.17: Spatial arrangements for the binary tests in the BRIEF keypoint
descriptor. Taken from [Calonder et al., 2010].
I) (X,Y) ~iid. U(-%,5)

I) (X)Y) ~ iid. G(0,555%)

1) X ~ iid. G(0,55%),Y ~ iid. G(zi,1i55?)

1V) (z;, y;) are randomly sampled from discrete locations.
V) Vi :2; = (0,0)T and y; takes all values on a coarse polar grid.

Open source implementations exist of the BRIEF keypoint descriptor [Bradski, 2000].

Descriptor Matching

Once the descriptors are computed for all detected keypoints, these can be com-
pared with a list of descriptors corresponding to keypoints from another image.
Usually, a match is given if a minimum similarity score is reached. Depending on
the kind of descriptor considered, different similarity measurements can be defined.
In the case of binary descriptors like BRIEF, it is common practice to compute the
Hamming distance between the binary words, which can be conducted by simply

counting how many of the tests described in Eq. 3.51 produce a different output.

Since brute-force matching of keypoint descriptors implies huge computation ef-
forts for large amounts of these (cuadratic with respect to the number of detec-
ted keypoints), several approaches have been proposed in literature to perform
minimum distance searches on high-dimensional spaces [Nene and Nayar, 1997|,
[Samet, 1990], |Beis and Lowe, 1997|. In setups where information about the rel-

ative camera pose is available and epipolar rectification is conducted (as usually
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in stereo vision), the matching can be restricted to the keypoints on a common

raster line.

Once the matches are available, 3D reconstruction is possible by means of trian-

gulation. This process is described in the following section.

Triangulation

Assuming known camera poses and calibrated cameras, from two corresponding
image points  and x’, the 3D coordinates of the world point X can be estimated.
Figure 3.18 depicts the triangulation scheme for the ideal case where the bearing

rays perfectly intersect.

CI

FIGURE 3.18: Ideal triangulation. The 3D rays 1, @’, defined by the projections z
and x’, intersect perfectly. The intersection X is the estimated position of the real 3D
point X.

In the ideal case, the estimated position of the point X can be obtained by solving
Eq. 3.52, where Cand C' represent the position of both camera centers expressed
in terms of a common reference frame and 0, 0 are expressed in camera frame,
i.e. they already account for the orientation of the cameras with respect to the

reference coordinate system.

Ctdia=X=C'+d o (3.52)

In most cases, however, the view rays will not perfectly intersect in 3D space, thus

this solution for the triangulation problem is not applicable. Different approaches
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can be adopted to overcome this. In the following, a simple mid-point intersection

approach is described.

Mid-point Algorithm

The mid-point algorithm is a basic workaround technique to allow triangulation
of 3D rays that do not perfectly intersect. Its principle is very simple, and it
consists on finding the two points along the corresponding view rays with minimum
distance between them. The triangulated point X corresponds to the mid point
between these. Figure 3.19 depicts the mid-point algorithm for nonintersecting

rays.

Ficure 3.19: Mid Point Algorithm. The 3D rays @t and @’ do not intersect. The
intersection is approximated by considering the point that has minimum distance to
both 3D rays.

The mid-point solution can be obtained by solving Eq. 3.53 for d, d” and e.

~ 1 -~ 1 -~
X:C+d-ﬁ—l—§ek:0+d'-ﬁ’—§ek (3.53)

The unit vector k can be obtained as the cross product of i and @ as in Eq. 3.54

and e stands for the minimum distance between both 3D rays.

k=10xu (3.54)
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As described in Section 3.1, once the 3D measurements are conducted they can be
transformed to any other reference coordinate system. In systems with multiple
stereo camera pairs, it seems reasonable to define a global reference to which all
measurements refer. In the case of study in this thesis, this will be vehicle’s origin

of coordinates, as defined in Section 3.1.

In Chapter 5 an extended discussion is presented about the accuracy of the 3D
measurements depending on the precision of the keypoint detector and descriptors

considered for the use case of automotive surround view systems.
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3.3 Computer Graphics

The term Computer Graphics refers to the generation of images based on objects
models, by means of graphic software and hardware. In a way, it can be seen as
the opposite to Computer Vision, where images of the world are taken as an input,

and higher level models are generated.

The main topics covered in this section include 3D Graphics and Image Based

Rendering. An open source rendering toolkit is also presented.

3.3.1 3D Rendering

The term 3D Rendering refers to the process by means of which a virtually gener-
ated 3D scene is “drawn” as a 2D image or frame. There exist different rendering
techniques, depending on the type of application requirements. There are, for
example, applications that require photo-realistic results (eg. movie making) or
real-time rendering (eg. video games). A trade-off between quality and render-
ing time has to be found. Since driving assistance is a field where large latencies
are not permitted, the focus of this thesis will be put into real-time rendering

techniques.

3.3.1.1 Real-Time Rendering

A huge amount of dedicated graphic hardware exists that allows for accelerated
rendering [Fernando et al., 2004]. Different APIs have been stablished in the last
decades to interact with GPUs, being OpenGL [Woo et al., 1999] and DirectX
[Bargen and Donnelly, 1998] the dominant ones. For this thesis, only OpenGL is

considered.

The APIs make use of geometrical descriptions of objects, together with color and
texture properties to create a virtual description of a scene. Once the scene is
built, a virtual camera is positioned at a desired location within the scene and the

rendering is carried out, ie. a 2D “picture” of the scene is taken.

The geometrical description of objects is based on the so-called wireframe model.
The wireframe model allows for description of a solid physical object in terms
of lines and points that represents the object’s significant edges. The resulting

description is a polygonal mesh, of which most basic elements are points, lines and
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triangles, as illustrated in Figure 3.20. Despite the term Point being very general
and Vertex rather specific of Computer Graphics, in this section both terms will

be used as equivalent.

F1cURE 3.20: Wireframe model. The most basic entities in this model are points, lines

and triangles. A mesh of triangles is usually defined that approximates a given surface.

The size and amount of triangles relates to the wellness of the surface smoothness
approximation.

Complementing the geometrical properties of objects, texture and lighting can be
used. For this purpose, every vertex can normally be assigned a texture coordin-
ate and a normal. The API takes these attributes from the application and the
consecutive vertex operations are usually pipelined. In the following, the OpenGL

fixed-pipeline vertex operations are introduced.

3.3.1.2 Vertex Operations on a Fixed Pipeline

In order to define complex scenes with multiple objects, the rendering APIs offer
different functionalities to deal with multiple coordinate systems. In particular,
transformation matrices can be applied per vertex that allow for independence
between scene objects and rendering cameras. In this section, a description of the

vertex operation process in OpenGL is described.

In computer graphics, as in computer vision, there is no hard requisite for a global
reference coordinate system, since the absolute positions of cameras and objects
are not relevant; the relative positions are. In other words, if the situations are

considered where a) an object is brought away from the camera and b) the camera



Foundations 53

is brought away from the object in the opposite direction, the output generated in

the rendering process is exactly the same. This effect is illustrated in Figure 3.21.

FIGURE 3.21: Relative poses in computer graphics. All transformations are relative
between objects and render cameras. Displacing an object in one direction is equivalent
to displacing the camera in the oposite direction.

Nevertheless, in complex scenes where many different coordinate systems exist,
a global reference is helpful. Since this will be the case in this thesis, the first
step is to define a global “world reference” coordinate system. This system can be
considered as the reference for describing all the objects present in the scene, as

well as the camera view that will be rendered on every frame.

The vertices that describe each object can be defined in terms of an object-specific
local coordinate sytem. A 4 x 4 model matrix M,, defines the transformation
of a vertex in local model coordinates V" to global world coordinates V¥, both
expressed in homogeneous coordinates, as in Eq. 3.55. The matrix M,,, corresponds

to a Local-To-Global transformation as presented in Section 3.1.2.2.

Ve =M, V" (3.55)

A view matrix M, also exists that defines the vertex transformation from world
coordinates to the so-called camera “eye coordinates”, as in Eq. 3.56. The eye
coordinates are referred to the center of projection of the render camera. The
view matrix corresponds to a Global-To-Local transformation as presented in Sec-
tion 3.1.2.2.

V=M, W (3.56)

Both model and view matrices are graphically described in Figure 3.22. The
composite transformation of the model matrix and the view matrix usually receives
the name modelview matrix. The modelview matrix is independent from the world

reference, and only encapsulates the relative pose between camera and model.
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F1GURE 3.22: Modelview matrix. This matrix describes the relative transformation
that exists between any object (model) and the render camera. It is independent from
any global reference coordinate system.

The virtual camera used for the 3D rendering normally makes use of an ideal
projection model to map eye coordinates to screen coordinates. In order to decide
which vertices belong to the visible field of view, a view frustum is defined and a

transformation M, to clip coordinates is applied, as in Eq. 3.57.

V=M, V" (3.57)

The frustum does not only describe the angular field of view of the camera, but

also a minimum and maximum depth.

-‘"'----'--f-‘ ‘ot - o
. ’\ Visible space

FIGURE 3.23: Perspective camera frustum. The frustum defines the volume in front of

the render camera which will be rendered. Any object lying outside of it will be clipped

and will not be visible on the rendered view. As an addition to the lateral field of view
limits, the frustum considers a minimum and maximum depth.
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In particular, for a perspective camera, OpenGL defines M, as in 3.58, where [, 7,
t, b, n, f stand for left, right, top, bottom, z-near, z-far as described in Figure 3.23,

respectively.

n r41
g 0
0 2= = 0
— t—b t—b
M, = 0 0 (3.58)
0o 0 -1 0

From clip coordinates, a transformation into normalized device coordinates (NDC)

is performed by means of Eq. 3.59.

Tnde Ic/wc
Ynde | = | Ve/we (3.59)
Zndc Zc/wc

Once the vertices are expressed in terms of NDC, they can be mapped onto the
rendering viewport (in window coordinates), by means of Eq. 3.60. The viewport

is expressed in pixel units and defined by its height h, width w and origin (xg, yo)-

Lwi %xndc + (370 + %)

=12 + (o + 1) (3.60)
Ywi Qyndc Yo B
Rwi f%nzndc + f#

The complete OpenGL vertex operations pipeline is shown in Figure 3.24.

» ModelView Projection Divide Viewport
Matrix Matrix by w Transform

Object Eye Clip Normalized Window
Coordinates Coordinates Coordinates Device Coordinates
Coordinates

FIGURE 3.24: GL vertex operations. This diagram shows the complete pipeline through
which all vertex described in the graphics application go until the final view is rendered.

In order to bring larger flexibility to the render pipeline, new OpenGL API versions
allow the use of nonfixed pipelines by means of vertex and pixel shaders. This is,
however, out of the scope of this thesis. For further reading on this topic, the

author recommends [Rost et al., 2009].
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3.3.2 Image Based Rendering

Within the large range of topics covered by the computer graphics field, the so-
called Image Based Rendering (IBR) is of special relevance for this thesis. IBR
makes reference to the techniques employed for generating novel views of a scene,
based on real images of it. The main idea behind IBR is to combine images of a
given scene with geometrical knowledge of the same scene in a way that a virtual

3D reconstruction is generated thus allowing rendering from any view point.

In order to achieve this, the real images are used as textures and the corresponding
texture coordinates are calculated based on: a) the geometry, b) the position of
the real camera with respect to the geometry, and c¢) the intrinsic parameters of
the real camera itself. The vehicle’s origin of coordinates is defined as the joint
between the rendered and real worlds. The D70K reference is used as the top level

on the hierarchy of coordinate systems for both real and virtual cameras.

The position of a real camera within a scene is considered first. In the use case
relevant for this thesis, the camera pose is assumed to be known with respect to
the D70K origin. A 4 x 4 matrix M, prox exists that transform any vertex yP7OK

expressed given in the vehicle’s origin to the camera coordinate system.

Ve = M. prox VP8 (3.61)
Since the virtual world reference is defined coincident with the vehicle’s origin
of coordinates, every geometry vertex V" that belongs to an object m can be

transformed to vehicle coordinates by means of Eq. 3.62, through its model matrix
M,,.

VPTOK — M, V™ (3.62)

With the previous expressions, a virtual vertex V™ can be transformed to the

coordinate system of a real camera in the present setup, as in Eq. 3.63.

V= Mc,D?OKMm |46 (363>

A representation of all the coordinate systems considered is shown on Figure 3.25.
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FiGURE 3.25: IBR Coordinate systems. Real coordinates are combined with virtual
ones, in order to use images as perspective-correct rendering texture.

Once a vertex is expressed in the local coordines of a real camera, its projection
model can be applied, obtaining its projection on the image plane. This step
has been described in detail in Section 3.2.1.2. The obtained image coordinates
correspond to the texture coordinates that can be assigned to the vertex prior to

the rendering.

3.3.2.1 Geometry Support

In order to perform the IBR, a geometry has to be provided as projection surface.
On this geometry, each vertex can be assigned texture coordinates, as has been
described in the previous section. Different possibilities have been presented in
Chapter 2 as an input source for the geometry information. The work presented
in the following chapters of this thesis is focused on the application of computer
vision techniques in order to generate the 3D information that can be used as
support for the IBR.

3.3.3 A 3D Rendering Toolkit: OpenSceneGraph

For the aspects of this thesis related to computer graphics, the OpenGL API has
not been considered directly. Instead, the OpenSceneGraph 3D rendering toolkit
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has been used.

The OpenSceneGraph is an open source high performance 3D graphics toolkit,
used by application developers in fields such as visual simulation, games, virtual
reality, scientific isualization and modelling [Osfield et al., 2004]. OpenSceneGraph
is written entirely in Standard C+-+ and OpenGL and it runs on today’s most com-
mon operating systems. It offers support for animation, camera manipulation and

other special effects providing large degree of scalability and portability.

Implementation details remain out of the scope of this thesis, but a very complete
set of examples is available within the source code distribution. Further reading
can be found in [Wang and Qian, 2010| and [Wang and Qian, 2012].



Chapter 4

Reference Sensor: 3D Laser Range
Finder

In this chapter the 3D Laser Range Finder sensor is presented as an enabler for
ground truth generation in automotive computer vision applications. The con-
tent of this chapter is mainly extracted from the papers |Esparza et al., 2014c¢],
[Esparza et al., 2014b|, which have been published within the framework of this

thesis.

In order to bring vision-based driver assistance systems to the market, the de-
veloped image processing algorithms have to fulfill high requirements regard-
ing functional safety and legal constraints [Stein, 2012] and need to be evalu-
ated before putting them into a real product. Lately, 3D Laser Range Finders
(LRF) were introduced as a possibility to obtain ground truth measurements
in real world scenarios for testing and evaluating computer vision algorithms
[Morales and Klette, 2011|, [Geiger et al., 2012a]. LRFs enable to monitor the
vehicle surrounding with high precision 3D measurements. Distances to reflect-
ing surfaces are measured and these measurements are usually converted to 3D
coordinates, as seen from the virtual center of the LRF. In order to use the LRF
as a reference for these algorithms applied to multi-camera systems, a registration
of the LRF with all the cameras in the system is needed. A description of the
problem is depicted in Figure 4.1.

99
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LRF

?
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FIGURE 4.1: Registration of a 3D LRF to a multi-camera system. Assuming calibrated

cameras and known extrinsic poses [Rc | T'c] with respect to a common reference system

Oprok, the pose of the LRF [Rpgr | Trrr| can be estimated by means of external
targets.

Previous work in this field coped with the registration of 2D LRFs using planar
calibration patterns to perspective [Zhang and Pless, 2004] or catadiotric cam-
eras [Mei and Rives, 2006|. These methods were extended to work with 3D LRFs
[Unnikrishnan and Hebert, 2005], [Scaramuzza et al., 2007, [Pandey et al., 2010].
In [Haselich et al., 2012], multiple cameras were registered to a 3D LRF by estim-
ating each camera position individually. In the work of [Geiger et al., 2012b], a
calibration toolbox was presented that provides registration of a 3D LRF with
a stereo camera system in the 3D domain by matching automatically detected

calibration target planes.

The presented methods provide only a locally best solution since they are limited
to determining the pose of an LRF relative to a single camera or a stereo system.
Hence these approaches show a visible mismatch when evaluated on the other

cameras of the system (see Figure 4.8¢).

In contrast to this, a new registration method of a 3D LRF with a multi-camera
system is introduced, as in the original paper |Esparza et al., 2014c|. Instead of
using a single camera, a set of cameras is considered which are previously registered
and referenced with respect to a global coordinate system. The LRF is then
registered by minimizing the reprojection error of the LRF measurements over all
cameras of the system. It is demonstrated that the global method provides a more

stable global pose estimation of the LRF.
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4.1 Selection of Corresponding Measurements

The proposed method relies on manual selection of corresponding points visible
across different sensors, which is a critical part during the registration process. In
order to ease the correspondence search, a calibration target has been designed.

A picture of the custom target is shown in Figure 4.2.

FIGURE 4.2: Utilized target. It is designed such that its color properties make it dis-
tinguishable on camera images and, simultaneously, its geometry is clearly recognizable
in the range data from the LRF.

This target is constructed such that its color properties make it distinguishable
on camera images and, simultaneously, its geometry is clearly recognizable in the
range data from the LRF, as highlighted in Figure 4.3.

FIGURE 4.3: Example of rasterized depth map, as seen from the 3D LRF vir-
tual center. In red: Target used for manual selection of keypoints. Taken from
[Esparza et al., 2014c|.

Before registration, keypoints are manually labelled, each label consisting of the
pixel position of the target’s center in the camera image and the corresponding
3D coordinate measured by the LRF.
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Since manual inspection of 3D data is complex and tedious, a 2D depth map
based on range information is generated in order to ease the task. For rotating
LRFs, a set of key directions can be defined, and the measurements closest to
these are taken. This generates a full 2D matrix that encodes depth which can
be rastered as an image. This process resembles that of a cylindric warping of an
image sequence acquired by a camera panning 360°. An example of the resulting
view is shown in Figure 4.3. Although this preparation step is used for simplicity
of data inspection, the original 3D measurements are to be considered during the

whole registration process.

4.2 Registration of 3D LRF

The extrinsic calibration is based on the minimization of the global reprojection
error of key geometrical points onto the different camera images. Keypoints are
selected by means of the proposed target in a way that the whole surrounding of
the vehicle is covered. Each keypoint shall be selected such that it is present on
the LRF data and on, at least, one camera image. Also all cameras should con-
tribute to keypoints, since the method is aimed at a global solution that minimizes
the reprojection error over all cameras. For each keypoint, a measurement S is

considered, as in Eq. 4.1.
s = {U", P} (4.1)

In Eq. 4.1, k represents the camera index, P = (X,Y,Z)" the measured 3D
position of the keypoint with respect to the LRF centre and U* a 3D-vector
defined as the direction on which the keypoint lies, as observed from the virtual
center of camera k. U* can be calculated from the pixel coordinates u* = (u, v)*
corresponding to the keypoint in camera k, given that the cameras are intrinsically
calibrated. This is done according to the model proposed in [Mei and Rives, 2007|,
as described in Section 3.2.1.2. The generation process for measurements S is

shown in Figure 4.4.
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FIGURE 4.4: Generation of reference measurements S for the registration process. A
target is considered and its position with respect to each sensor is used. For the LRF,
the scale-correct 3D coordinates are used. For the cameras, the view rays are used.

A set of parameters 0 = {X,Y., Zp,ar, v, B} is assumed that describes the
pose of the LRF with respect to the vehicle’s coordinate system. Based on this
set of parameters, a 4 x 4 translation and rotation matrix Mprox, Lrr (f) can be
defined, such that a point P observed from the LRF origin, can be described as
another point @ (#), with respect to the vehicle’s origin, by means of Eq. 4.2.

Qo) (P
( . >—MD70K,LRF(9) <1> (4.2)

Similarly, for any given point @ represented in vehicle coordinates, a transform-
ation My, prox to local camera frame coordinates, namely V¥ can be applied by
means of Eq. 4.3. For every camera k, the transformation matrix My prox is
known, given the previous registration of the multi-camera system with respect to

the global origin of the vehicle.

vH) Q
< . ) = My, prox - <1> (4.3)

By combining Eqs. 4.2 and 4.3, it is now possible to describe any point P observed
by the LRF with respect to the coordinate system of any camera k as function of

the parameter set 6, as in Eq. 4.4.

(Vk1(9)> = M. prox - Mprox.Lrr (6) - (f) (4.4)

For each keypoint S; and for a given LRF pose estimate 6, an error measure e; ()
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can be defined, as the angular distance between V¥, and U; seen from camera k’s
center. Considering Vf and U; as the normalized V¥ and U; respectively, e; ()

can be obtained by means of Eq. 4.5.

e; () = arccos (Vf 0" - fL) (4.5)

In the described setup, as in the work of [Scaramuzza et al., 2007|, the angular
error is more suitable for characterising the quality of the pose estimation than
the pixel error. This is due to the non uniform pixel density over the whole FoV

on cameras with fish-eye optics, as was shown in Section 3.2.1.2.

Using non-linear search algorithms, a set of parameters 6 can be obtained, by

minimizing the cost function over all reference keypoints, as proposed in Eq. 4.6

i . B 1 2 (rk (T 1
0 = argmin : e; (0) = arg;an zi:arccos (Vl- (0) UZ> (4.6)

such that the overall reprojection error is minimum over all cameras on the system.

4.3 Results of the 3D LRF Registration

For evaluating the proposed method, a vehicle equipped with a Velodyne HDL-64E
S2 LIDAR and a multi-camera system in a common surround-view configuration
(as in Section 2.1.1) was used. The Velodyne LIDAR provides a full 360° field
of view on the horizontal direction and a field of view of 26.8° on the vertical
direction, distributed over 64 independent laser beams. This accounts for a vertical
angular resolution equivalent to approximately 0.43° per laser beam. As described
in Section 4.1, a rasterization of the depth map is generated for the sake of data

inspection. For this, horizontal angular steps of 0.5° are considered.

The multi-camera system consists of four fish-eye cameras with a horizontal FoV
of 185° and a resolution of 1280 x 960 pixels. The cameras were mounted on the
front and rear ends of the vehicle, as well as on the left and right external mirrors,
as on the configuration presented in Section 2.1.1. A set of 240 measurements (60
measurements per camera) was manually labelled, each comprising the camera
index, the 3D position of the target measured from the LRF center and its corres-

ponding 2D pixel coordinates in the camera image, as defined in Eq. 4.1. For the
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measurements, the positions of the target were chosen such that different ranges

are covered, while posing a uniform distribution over the FoVs of all cameras.

In order to evaluate the proposed method, focus has been set on two aspects.
First, evaluation of the robustness of the presented approach over multiple runs
with different measurements. Second, evaluation of the reprojection error of the 3D
LRF measurements onto the image plane of the cameras and comparison the results

to a single-camera registration method, as proposed in [Scaramuzza et al., 2007].

4.3.1 Evaluation of the Robustness of the Pose Estimation

The robustness of the presented approach is evaluated by examining the variation
of the estimated pose parameters over multiple repetitions. In particular, this
is aimed at evaluating the stability of the parameters, depending on the amount
of measurements used for the pose estimation. Hence the number of keypoints
used for the registration of the LRF was varied between 1 and 10 per camera
(between 4 and 40 in total). This process was repeated 100 times. Figure 4.5
shows the distribution of the six pose parameters over different iterations. Careful
analysis of these results shows that the estimation of the parameters becomes more
stable when the amount of reference keypoints is increased. However, the variance
of all parameters does not decrease significantly after a certain point. It can be
concluded that with approximately 5 measurements per camera (20 measurements
for the whole system) a stable pose can be estimated. A good selection of keypoints
may further reduce the number of measurements needed. Table 4.1 shows the
average estimated position and orientation of the LRF considering 5 reference

points per camera.

X |m] ox[m| Y|m oy[m] Z[m| oz]m|
0.894 0010 -0.012 0.009 1993  0.009

a [deg] oq [deg] 7 [deg] oy [deg] B [deg] op [deg]
0.141 0069 0981 0135 0592  0.129

TABLE 4.1: Averaged parameter estimation of the 3D LRF pose over 100 repetitions,
considering 5 reference points per camera. Data extracted from [Esparza et al., 2014c].


http://dx.doi.org/10.1109/IROS.2007.4399276

Reference sensor: 3D Laser Range Finder 66

Z_‘ZS%%%%%%%%%% Lisdssese s

S

0.85

x 0-80r = 0.5
0.75F
-1.0r
0.70
0.65F - E -5
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Points per camera Points per camera
0.107— 18—
0.05F 1 L6f
00F . 141 . —
W B EdhEEE e E S . |
~0.05F : ’ 1 w5 1.21 T T
E : =
;70.107 . 1 = 1.0f 1
-0.15}F ] 0.8F | L
-0.20F 1 0.6F . . ’ ]
-0.25} ] 04
~0.30— ;
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Points per camera Points per camera
: 1.6- ]
204 ] 141 —
202 , ] 12 : i
: ) _ 10f . i
o0
= 200} ] Zosy ]
N =00 % % =5
198} | ] 0.4 [ ingy
. 02f . : ,
196+ — 0.01 ’ . 4
—0.2F
1.94F - 1 —0.4L J
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Points per camera Points per camera
(A) Variance of position parameters (B) Variance of orientation parameters

FIGURE 4.5: Variance of position (a) and orientation (b) parameters of the 3D
LRF registration based on the number of measurements per camera. Taken from
[Esparza et al., 2014c].

4.3.2 Evaluation of the Reprojection Error

The reprojection error represents a good quality measure to describe the accuracy
of the estimated parameters that define the pose of the LRF with respect to the
global coordinate system |[Hartley and Zisserman, 2000]. It can be expressed in
terms of pixel error or angular error. Although the angular error may be a more
correct metric given the non-uniform distribution of pixels over the whole field
of view of the cameras, the pixel error is also analyzed since it is an important
figure for data association and in data fusion systems [Scaramuzza et al., 2007|. A
test set was defined, consisting of 40 measurements uniformly distributed over all
cameras in the system. The evaluation was performed by reprojecting the 3D LRF
measurements of the test set into the associated camera image using the estimated
pose as in Eq. 4.4. The results were compared with manually labelled reference
data.
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Based on the results presented in Sec. 4.3.1, five measurements for each of the four
cameras (20 measurements in total) were considered for the registration of the

LRF to the multi-camera system. Table 4.2 shows the average errors obtained.

¢ |deg| o |deg] e [pel] o [pel]
0.624 0285  4.649  2.308

TABLE 4.2: Reprojection error after registration of the 3D LRF with the multi-camera
system. Data extracted from [Esparza et al., 2014c].

Given the angular resolutions of the LRF data which was considered for the ex-
periments (namely 0.43° and 0.5° for the vertical and horizontal directions) the

resulting 0.624° error can be considered a good result.

As reference, the results are compared with a single-camera registration as pro-
posed in [Scaramuzza et al., 2007]. The LRF was registered to every camera in the
system individually using 20 measurements for the pose estimation. Evaluation is
in every case performed over all cameras of the system. For all the experiments,
the registration process was repeated 100 times. In Figure 4.6, the mean of the re-
projection error is shown for each combination of datasets used for pose estimation

and evaluation.

Mean error [deg] Mean error [pel]
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FIGURE 4.6: Comparison of the mean reprojection error in degrees (a) and in pixels
(b) of different single and a multi-camera LRF registration. The error is depicted for
every camera individually. Taken from [Esparza et al., 2014c].

As expected, it can be observed that the cases where registration and evaluation are

conducted with data from the same single camera produce the smallest error. One
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can also notice that the error increases strongly if the estimated pose is evaluated
on any other cameras of the system. Evaluation on the cases where all cameras are
used for the registration, on the other hand, produces a much smaller reprojection
error over all cameras in the system. This global best is only slightly outperformed
by the cases where both pose estimation and evaluation are performed with data

of the same camera individually.

Although the average reprojection error is a good indicator of for the accuracy
of the registration, it is also interesting to look into the maximum reprojection
error found for each case. This approximates the worst-case scenario and defines
an upper bound limit to the magnitude of the errors which are to be expected.

Results are shown in Figure 4.7.
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FIGURE 4.7: Comparison of the maximal reprojection error in degrees (a) and in pixels
(b) of different single and a multi-camera LRF registration. The error is depicted for
every camera individually. Taken from [Esparza et al., 2014c].

A graphical comparison of the results obtained after registration of the LRF glob-
ally with the multi-camera system, and with a single camera is presented in Fig-
ure 4.8. The improvement of the proposed global multi-camera approach with re-
spect to a single-camera registration is clearly visible by comparison of Figure 4.8¢
and Figure 4.8d.
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FIGURE 4.8: Reprojection of LRF points using different input for registration. The
quality of the registration can be clearly observed by comparing the edges of the walls
to the reprojected points. a) Original image. In red: area selected for visualization.
b) Registration using rear camera only - LRF points projected onto rear camera image.
¢) Registration using front camera only - LRF points projected onto rear camera image.
d) Registration using all cameras - LRF points projected onto rear camera image.
Taken from [Esparza et al., 2014c].

4.4 Ground Truth Generation for 3D Measurements

In order to use the 3D measurements from the LRF as ground truth, an error

metric has to be defined that can be applied to the depths obtained by means of
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computer vision algorithms.

In the following it is proposed to use the image plane as a common domain, where
visual comparison is possible and an error metric can be defined for the accuracy
of the measured distances. The 3D measurements from the lidar and obtained
by means of CV algorithms are projected onto the image planes and compared.

Figure 4.9 shows an overview of the complete setup utilized.

Velodvne LiDAR 'L

[ - - -
(‘rmr Kﬂ > | b }
- & ) Crar

N

FIGURE 4.9: Setup overview. Left: Configuration for reference measurements. The

lidar was registered to the surround-view system, so that 3D measurements can be re-

projected onto any image plane and used as reference. Right: CV-based measurements
to be evaluated. Taken from [Esparza et al., 2014b].

Since the measurements given by the lidar are very sparse in the vertical direction
- it has a vertical resolution of 64 lasers, compared to the 960 pixels of the camera
imager - each measurement is thickened after reprojection, in order to become a

denser depth reference. In particular, a 20-pixel high mask is used to achieve this.

As an error metric, the differences between the pixel depth values obtained by CV
algorithms and the nearest lidar measurement projected on the proposed common
domain are considered. A set C is considered of 3D measurements obtained by
means of any image-based 3D reconstruction approach to be evaluated, and a set
V of 3D points given as a result of the lidar measurements. The distance dV of
each point in V' to the camera center can be computed since the lidar has been
registered to the vehicle’s coordinate system, as in Section 4.2. An L1-norm error

metric can be now defined as in Eq. 4.7.

_ 1 v 50
“= dim(CNV) ie%;‘m 47 - ] (47)

Figure 4.10 shows an example of the ground truth generated for the front camera
measurements, where color encodes distance to the camera center of each lidar

measurement.
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Om sm 10m 15m 20m

FIGURE 4.10: Ground truth generation based on lidar. The reference measurements

backprojected onto front camera image. Color encodes distances to camera center.

Since the floor is considered as reference for the multi-camera registration, it can be

considered for the ground truth or filtered out, as shown in the center and bottom
images.

4.5 Conclusions

A new approach for global registration of a 3D LRF to a multi-camera system
has been proposed. The proposed approach shows improved results compared to
a state of the art LRF registration with respect to a single camera, if evaluated

for the multicamera system.

The robustness and stability of the developed method have been demonstrated
and an L1-norm error metric has been proposed for evaluation of CV-based meas-
urements, considering the reprojection of reference measurements to the camera

image planes.
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The proposed error metric will not cover the entire measurement space of an
automotive CV system, but it covers the most relevant fraction of it for driving

assistance applications.



Chapter 5

3D Measurements with Automotive

Surround View Systems

This chapter is aimed at describing the proposed 3D reconstruction scheme and
evaluating the accuracy of the 3D measurements achieved by means of stereo
vision with fisheye surround view cameras. Benchmarking of the measurements is
done with respect to a 3D LRF, which data requires registration to the considered

multicamera system. This process has been described in detail in Chapter 4.

The chapter is organized in three main sections, which correspond to three different

groups of experiments carried out within the framework of this thesis.

5.1 3D Reconstruction with Fisheye Optics

This section addresses the main considerations with respect to performing 3D
stereo reconstruction based on automotive surround view camera systems. These
setups put very hard restrictions on the stereo processing, namely, very large stereo
bases between adjacent cameras, extreme misalignments of the optical centers and

very severe distortions due to the fisheye optics.

The 3D stereo reconstruction process is analyzed with respect to different factors.
Firstly, the precision of the feature detection and matching together with the
accuracy of the camera synchronization are discussed for large stereo bases. Ana-

lysis of the existing overlaps in the camera fields of view is conducted and epipolar

73
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rectification process is described accordingly. Finally, experimental setup and res-
ults are presented. The content of this section has been mainly extracted from
[Esparza et al., 2014b|, which was published within the framework of this thesis.

5.1.1 Precision of Keypoint Detection

There exist large amounts of computer vision applications for which high accur-
acy 3D reconstruction is a very important requirement. For such applications, the
accuracy of the keypoint detectors plays a big role, with state of the art keypoint
detectors reaching sub-pixel accuracies [Ke and Sukthankar, 2004]. For the pro-
posed application, a certain tolerance on the accuracy of the 3D measurements
is acceptable, and therefore in the following it is studied what the effects are, of

considering a keypoint detector with an accuracy of 1 pixel at best.

For the following discussion, the stereo camera pair depicted in Figure 5.1 is con-
sidered, with cameras covering a FoV of 180° horizontally, and a resolution of
1280 x 960 pixels.
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FIGURE 5.1: Typical stereo setup with fisheye optics. B represents the stereo base,

and z the distance to the projection center of camera Cs. d stands for the disparity of

the projection of point P on both images. 6 is the angle defined by the optical axis of
camera C7 and the projection of P.
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Under this setup, the relation in Eq. 5.1 exists.

B
tanf = — (5.1)
2

In Eq. 5.1, B represents the base between both camera centers, z is the distance to
point P, assuming it lies on the optical axis of camera Cs, and 6 is the angle formed
by the projection of P into the center of camera C) and its optical axis. At this
point, it is important to note that the standard pinhole expression in Eq. 5.2 that
relates disparity d and focal length f does not hold for this setup, since cameras

with fisheye optics are being considered.

tan = ; (5.2)

For the considered optics an equidistant mapping function is more suitable, as
in Eq. 5.3, where K [P¢/rad] depends on the imager and optics characteristics.
Other projection models for fisheye optics have been presented in more detail in
Section 3.2.1.2.

d=K-0 (5.3)

For a camera with a horizontal field of view of 180 degrees and an image width of
1280 pixels, K has a value of K = 1280/x [pel /rqq].

Bringing Eqs. 5.1 and 5.3 together leads to Eq. 5.4 that relates the estimated
depth to the pixel disparity, for given B = By and K = K.

1

z(d) = By - tan [4/x0]

(5.4)
In Figure 5.2 it is shown that, for a given target depth, a wider stereo base provides
a finer sampling. In other words, the wider the stereo base, the smaller becomes
the distance step represented for each pel of disparity. This was described in
[Okutomi and Kanade, 1993] as a magnification effect on the disparity, due to the
stereo base. The authors also pointed out the large disparities as a new source
of error, since incorrect matches are more prone to happen, the bigger the search
range is. This is, however, out of the scope of this discussion, since the calculations

assume correctness in the keypoint matching.

In the following a generic keypoint detector is considered with an accuracy of
1 pixel at best. This detector introduces a maximum quantization error of 1/2
pixels. For such a maximum error, Figure 5.2 shows the maximum uncertainty on

the depth estimation to be expected for different stereo bases.


http://dx.doi.org/10.1109/34.206955
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FIGURE 5.2: Left: Distance estimates, based on image disparities for different stereo

bases. Right: Uncertainty due to one pixel accuracy at best, with respect to target

depths. Expected error is shown for different stereo base lengths. Note that the calcu-

lations are done with fisheye optics, therefore the large uncertainties for narrow stereo
bases.

This relationship can also be evaluated with respect to the distance. If a target
distance is set, the maximum error for such a distance can be estimated, con-
sidering the quantization error as the only source of errors, and no mismatches.
The behaviour of this error with respect to the target distance is characterized in

Figure 5.2.

Based on this discussion, it is observed that for the proposed setup, at a distance
of up to 30 meters the expected error is within 1 meter, due to the coarse precision
of the keypoint detection. This seems acceptable for the accuracies required by
driving assistance functions. Therefore, it seems reasonable not to opt for high
accuracies on keypoint detection, but rather to work on a coarser level, for the
proposed wide stereo base setup. It can also be observed, that for the large stereo
bases considered, a disparity of 200 pixels corresponds to distances of approxim-

ately 6 meters.

5.1.2 Impact of Temporal Jitters with Large Stereo Bases

It is common understanding that traditional stereo vision with small stereo bases
requires high accurate synchronization in order to keep errors on depth estimation
low. This is a restriction which may considerably increase costs and complexity of
the acquisition system, since a camera triggering system is required. In the follow-
ing it is argued in favour of systems with a wide stereo base, where synchronization

can be relaxed since the impact on accuracy is largely reduced.
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A maximum temporal jitter of half a frame period is assumed. In the extreme
case, the motion of the vehicle would be such, that one camera center is moving

over the line joining both epipoles.

Under such a motion pattern, the lack in synchronization would generate, at most,
a maximum camera displacement equal to AB = v - At, where v represents the
magnitude of the velocity and At is the maximum time offset between image pairs.

This is illustrated on Figure 5.3.
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F1GURE 5.3: Left: The maximal relative motion between cameras of a stereo pair, is

such that the movement is along the line joining both camera centers. Right: Max-

imal displacement. A ghost point is generated, since the assumed distance B between
cameras is not valid, due to the relative motion.

The effect of the time shift of images of one camera with respect to the other
can result in the effective stereo base being different to the geometric stereo base.
This, as a side effect, creates a ghost measurement 25,5, as depicted in Figure
5.3. The reason why zgn.s exists, is due to the fact that the calibrated stereo base
B is assumed to be valid, although the real effective base in this situation is equal

o (B —AB). In this case, the error being made can be estimated by means of
Eq. 5.5.

B B-AB) AB . AB o
= 7 Sghost T real T 1 0, o tanfpeqs  tanbrew (B — AB) ’

Based on Eq. 5.5, it is possible to visualize the expected maximum depth error
due to lack of synchronization for different depth ranges and stereo bases. These

can be seen in Figure 5.4.
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FIGURE 5.4: Error analysis due to loose synchronization. The magnitude of the velocity
considered is v = 10km/n and the imager frame rate equal to 30fps, which translates
to a maximum AB = 46mm, assuming a maximum synchronisation shift of 1/2 frame

These results estimate, for a stereo base equal to 3m, an error below 0.5m at a
distance of 30m. This error is comparable to that expected due to the quantization
error of the keypoint detector. Therefore, it can be concluded that the use of
wide stereo bases introduces certain levels of robustness for the 3D reconstruction

against loose synchronization of the camera pairs.

5.1.3 Description of the Overlapping Fields of View

On the current system configuration, given the strong deviation of the optical axes,
the field of view of each camera of a camera pair overlap only partially. Therefore
stereo processing is only meaningful on the fraction of the images that correspond

to this area.

In the following, a simple two dimensional model of the camera setup is proposed,
in order to describe the effective field of view of each camera pair. All camera
centers are assumed to be contained on a single plane parallel to the ground plane,
and the maximum field of view of the cameras to be contained on this plane. This
is a reasonable assumption since the considered camera setup fulfills the condition
that ||C. 1 — C. gl < ||Cayr. — Cuy.rll, where C, and Cg represent the positions

of the Left and Right cameras on each stereo pair.

Based on this assumption, and with known intrinsic and extrinsic calibration,
Eq. 5.6 can be defined that expresses the effective field of view of the left camera;

i.e. the fraction of its own field of view that may overlap with the field of view of
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its adjacent right camera.

[¢_7 ¢+}L ~ [— arccos (Oxy LRF/2 2y.R)s /2] (5.6)

In this expression, Rr/, represents a 2D rotation matrix over the normal e, of the
ground plane, of magnitude equal to half of the field of view of the cameras. Oxy
stands for the normalized projection of the optical axis of each camera over the

XY plane. A similar expression can be obtained for the right camera.

This model provides an estimate of the amount of overlap existing for each pair of
adjacent cameras. This approximation is only valid as long as the 2D optical axes
of the cameras do not intersect in front of both image planes. This situation is not
possible on the discussed setup, since the cameras are mounted on each side of the
vehicle, looking outwards. From the previous expresion, it can be inferred that
the field of view of the resulting virtual cameras will be asymmetric with respect

to their principal points. In the following this effect is analyzed.

The optical axis Oy of the virtual camera is defined by the principal point. It is
possible to describe Oy by means of Eq. 5.7, where 'ECRCL is the normalized vector

joining both camera centers.
O CRCL X ez (57)

Based on the previous definitions, the asymetric field of view [¢)~,¢"],, of the

rectified virtual cameras can be described by means of Eq. 5.8.
[w’, ¢+] v = [— arccos (Oxy VRF/QOW R), ATCCOS (Oxy VRF/EOIM)] (5.8)

In this expression, Oxyy represents the normalized projection of Oy over the XY
plane. Figure 5.5 depicts how the principal point is largely displaced with respect

to the center of the field of view shared by a camera pair.
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FIGURE 5.5: Overview on the stereo pair overlaps. Left: 2D representation of overlap-
ping fields of view for 2 adjacent cameras. Right: Nonsymmetric rectified fields of view
with respect to the principal point. Taken from [Esparza et al., 2014b].

5.1.4 Epipolar Rectification with Fisheye Optics

Once the shared field of view of adjacent cameras is defined, the epipolar recti-
fication model can be introduced. It is well understood that fisheye optics intro-
duce distortions such that epipolar planes do not project into the image planes
as straight lines [Abraham and Forstner, 2005], [Herrera et al., 2009]. This effect

can be seen in figures 5.6a and 5.6b.

(A) Epipolar lines on front camera image (B) Epipolar lines on right camera image

FIGURE 5.6: Example of epipolar lines with fisheye optics corresponding to a front -
right camera pair. Taken from [Esparza et al., 2014b)].

In particular, considering the use of fisheye cameras, the linear transformation

presented in Eq. 3.50 has to be replaced by a nonlinear transformation.

As discussed earlier in Section 3.2.1.2, the camera projection model proposed in
[Mei and Rives, 2007] is considered to represent T, which accounts for both the

projection and distortions of the fisheye optics.


http://dx.doi.org/10.1016/j.isprsjprs.2005.03.001
http://dx.doi.org/10.3390/s91209468
http://dx.doi.org/10.1109/ROBOT.2007.364084
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For the rectification model Ty, an epipolar-equidistance rectification model was
introduced in [Abraham and Forstner, 2005| that allows for epipolar rectification
of very large fields of view in both vertical and horizontal directions. This will be

introduced in the following.

5.1.4.1 Epipolar-Equidistance Rectification Model

A rectification model for non-perspective omni-directional cameras requires a non-
linear function (u,v),, = Tv (Xy) to be defined, which maps a 3D point represen-
ted in virtual camera coordinate system Xy = (x,y, z) into virtual pixel coordin-
ates (u,v)y. In order to cover a large field of view, this function has to fulfill some
special properties. In particular, it should be such that distances to the principal
point are proportional to the angle with respect to the optical axis, rather than
to their tangents, as it happens in the pinhole model. The epipolar-equidistance
model proposed by [Abraham and Forstner, 2005 considers a function Ty such
that (u,v)y ~ (¢, B)y, where ¢ and (3 are defined as in Eq. 5.9.

1) = arctan \/ﬁ 3 = arctan ¥ (5.9)

In particular, its inverse transformation is given by Eq. 5.10, where (u/, v") repres-

ent normalized coordinates in the virtual camera coordinate system.

x sin o/
y | = | cosu'sin’ (5.10)
z

cosu’ cosv’

Therefore, a rectification model like this causes that the coordinate v depends
exclusively on the angle 3, while the coordinate u depends on the position of the

point on the epipolar plane.

Considering that the camera centers of the virtual cameras are the same as those
from the real ones, the relation between virtual camera coordinates and original
camera coordinates is given by Eq. 5.11, where the subindex C refers to real
camera, and Rc v is a 3 X 3 matrix that represents the relative rotation between

virtual a real camera.

(u,v)e = Te (ReyTy' ((w,v)y)) (5.11)


http://dx.doi.org/10.1016/j.isprsjprs.2005.03.001
http://dx.doi.org/10.1016/j.isprsjprs.2005.03.001
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In the following a new formulation for the inverse rectification model introduced in
[Abraham and Forstner, 2005] is given, where the offset of the center of symmetries

with respect to the virtual image center is accounted for.

A reference epipolar plane is defined that contains the principal point, as intro-
duced in Eq. 5.7. Over the reference epipolar plane a horizontal field of view of
Yy = [w‘t — w‘j} is covered, which can be computed by means of Eq. 5.8. On the
reference epipolar plane the view ray that projects onto each pixel position (u,v)

can be computed by means of Eq. 5.12.

~

do(u) = Rot([teuc, X €] X &, (y +u - Ay))Oy (5.12)

In this expression, Rot(e, «) is a 3 x 3 matrix that defines a rotation around axis
e by an angle o, and At is the angular distance between two consecutive pixels

on the same row of the virtual image.

The rest of the epipolar planes can be described as a revolution of the reference
one, over the baseline joining both camera centers. According to this, the inverse

projection function T+ (u,v) of the virtual cameras can be defined as in Eq. 5.13.
Ty (u,v) = Rot(toye,, (By + v - ABy))do(u) (5.13)

This inverse function describes the viewing direction for each pixel coordinate
(u,v)y and maps it onto the unit sphere. The angular step Af corresponds to the
distance between consecutive epipolar planes and 5y = [ﬁ‘t — ﬂﬂ can be defined

based on 1y and on the desired aspect ratio.

5.1.5 Change of Pixel Sizes

So far it has been described how the virtual views can be defined so that constraints
for epipolar rectification are met. At this point, the next step is to resample the
original images at the desired locations, which implies a change in pixel sizes. This
effect is pronounced when considering fisheye optics and disaligned optical axes,
as depicted in Fig. 5.6 by means of the epipolar lines. The problem of image inter-
polation has been largely discussed in literature and was introduced in Chapter 3.
In the experiments here conducted a Lanczos filter [Turkowski, 1990| with a size
parameter a = 4 has been applied for image interpolation. No significant change

has been observed by applying different size parameters.


http://dx.doi.org/10.1016/j.isprsjprs.2005.03.001
http://dx.doi.org/10.1016/B978-0-08-050753-8.50042-5
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After resampling, rastering of the virtual images is possible. In Fig. 5.7 an example
of the results after all the described steps is shown. As can be observed, epipolar
rectification is achieved for a large field of view, while avoiding the mentioned

image artefacts.

FIGURE 5.7: Result of the rectification process. The image pair corresponds to the
original images in Fig. 5.6. It can be observed how now the epipolar planes project into
straight lines on the virtual images. Taken from [Esparza et al., 2014b)].

5.1.6 Feature-based Disparity Estimation

After conducting the epipolar rectification step, detection and matching of features
is to take place. In standard stereo vision setups, the vertical disparity of common
features after epipolar rectification is expected to be below one pixel. Nonaccurate
calibration may lead to failures in fulfilling this requirement. In the considered sur-
round view setup, due to the large stereo bases, factors like temperature changes,
vibrations, etc, introduce a high variance on the relative camera calibration. For
this reason, the assumption of a static extrinsic calibration is not strictly valid.
In order to deal with this issue, it is proposed to relax the assumption that the
vertical offset between different views of a common feature is below one pixel, and
accept a larger tolerance on the vertical direction. In this way, vertical offsets lar-
ger than a predefined maximum can be discarded. How large this tolerance should
be, depends largely on the quality of the camera intrinsic and extrinsic calibration,
as well as on the chosen resolution for the epipolar-rectified images. For the ex-
periments in this thesis, the values utilized are described in following sections. As
keypoint detector and descriptor those proposed by [Rosten and Drummond, 2005]
and |[Calonder et al., 2010| are considered, as described in Chapter 3.

After the matching process, triangulation of correspondences is carried out. For
rays not perfectly intersecting, the mid-point of the segment covering the shortest

distance between both is considered.


http://dx.doi.org/10.1109/ICCV.2005.104
http://dx.doi.org/10.1007/978-3-642-15561-1_56
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An overview of the proposed system is presented in Figure 5.8, where every step

can be related to the relevant concepts that were introduced in Chapter 3.

Epipolar rectification Keypoint detection & matching

Extrinsic + Intrinsic Cal. FAST + BRIEF
Warping Hamming

@ Triangulation of correspondences @
Extrinsic + Intrinsic Cal.

Mid-point algo. . e .

®

FIGURE 5.8: Overview of proposed system, showing the 3 subsequent processing steps.
Top left: epipolar rectification is conducted based on the intrinsic and extrinsic calib-
ration information.

Top right: Keypoint detection and matching, based on FAST detector and BRIEF
descriptor. Matching is performed based on Hamming distance.

Bottom: Triangulation of correspondences. Since the extrinsic and intrinsic parameters
of the cameras are known, the correspondences can be triangulated. For nonintersecting
rays, the midpoint algorithm is used.

5.1.7 Experimental Setup

For the initial experiments four cameras are considered, which offer a resolution of
1280 x 960 pixels covering a horizontal field of view of approximately 180 degrees
per camera. In Table 5.1, the effective field of view is shown for each adjacent

camera pair on the configuration used.
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TABLE 5.1: Effective fields of view on current setup, calculated by means of Egs. 5.6
and 5.8. Data from [Esparza et al., 2014b].
Camera Pair [vr,v1] [deg] (VR Vg] [deg] [¥y, ] [deg]
Front-Right [—4.60,90.00] [—90.00, 4.60] [—60.76, 33.84]
Right-Rear [—11.20,90.00] [—90.00, 11.20] [—11.56,67.23]
Rear-Left [—7.03,90.00] [—90.00, 7.03] [—70.88,26.15]
Left-Front [—0.43,90.00] [—90.00, 0.43] [—29.69, 59.88]

The operating frequency is set to 30 frames per second and the cameras are not
synchronized. A common time-stamping system is used by the frame logger that
guarantees a maximum temporal jitter of half a frame period. In previous sec-
tions it has been discussed why this is acceptable at low speed maneuvering with
large stereo bases. The cameras use a CMOS technology with rolling shutter, and
frames are compressed previous to storage using JPEG compression. The epi-
polar rectification is done as described in Section 5.1.4 and an output resolution
of 640 x 480 pixels is used. A search window for corresponding features is set
equal to + 3 pixels on the vertical direction and 200 pixels on the horizontal dir-
ection. In Section 5.1.1 it has been demonstrated that 200 pixels are sufficient, for
the considered wide stereo base setup, to detect objects which stand a minimum
distance of 6 meters away from the cameras. The implementations for the keypo-
int detector [Rosten and Drummond, 2005] and descriptor [Calonder et al., 2010]
are those available within the OpenCV Library [Bradski, 2000] and matching is

performed based on Hamming distance.


http://dx.doi.org/10.1109/ICCV.2005.104
http://dx.doi.org/10.1007/978-3-642-15561-1_56
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5.1.8 Sample Images

In the following, example images obtained before and after conducting the epipolar

rectification are shown for different camera pairs. Detected corresponding features

are also displayed.

FIGURE 5.9: Result of the rectification and feature matching processes. Upper row:
Original images. Middle row: Epipolar rectified images. Lower row: Found correspond-
ences. The image pair corresponds to the Left-Front camera pair
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FI1GURE 5.10: Result of the rectification and feature matching processes. Upper row:
Original images. Middle row: Epipolar rectified images. Lower row: Found correspond-
ences. The image pair corresponds to the Front-Right camera pair
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FIGURE 5.11: Result of the rectification and feature matching processes. Upper row:
Original images. Middle row: Epipolar rectified images. Lower row: Found correspond-
ences. The image pair corresponds to the Right-Rear camera pair



3D Measurements with Automotive Surround View Systems 89

FIGURE 5.12: Result of the rectification and feature matching processes. Upper row:
Original images. Middle row: Epipolar rectified images. Lower row: Found correspond-
ences. The image pair corresponds to the Rear-Left camera pair



3D Measurements with Automotive Surround View Systems 90

5.1.9 Evaluation

For evaluating this approach, 10 static sequences were considered. Results cor-
respond to single frames, without time accumulation. The error is evaluated by
reprojecting all measurements to the front and rear cameras only and results are
shown in Table 5.2.

TABLE 5.2: Absolute and relative error analysis, as presented in Eq. 4.7. Quartile
information is included since it is representative for discussion of results. Data from
|[Esparza et al., 2014b].

Seq. ID | Measurements Mean [m] o [m| Q50 [m] Q75 |m| Q50 [%] Q75 |%]
1 5670 1.14 1.69 0.49 1.38 5.16 11.43
2 4280 0.97 1.76 0.38 1.04 4.17 9.23
3 1515 0.98 1.61 0.34 0.96 4.00 10.01
4 5115 1.31 1.85 0.52 1.84 6.51 17.51
) 6205 1.48 2.10 0.58 1.75 7.17 17.35
6 11084 1.10 1.69 0.42 1.31 4.96 12.07
7 4542 0.88 3.04 0.19 0.77 4.43 12.53
8 6487 2.54 6.58 0.25 1.28 4.27 16.54
9 6238 1.93 6.69 0.36 1.32 6.09 17.92
10 22531 0.62 1.36 0.21 0.52 3.34 7.68

The average error achieved is approximately between 4+1 and £2 meters on a range
which covers distances of up to 20 meters, which is reasonable for park & maneuver
systems. In most sequences, quartile information shows relative errors lower than
6% and 20% for 50% and 75% of all measurements, respectively. Although all
sequences were recorded on similar conditions, larger level of error is observed in
some of them. A deeper look into the data shows a high level of confusion on the
feature matching process, due to certain repetitive patterns. This effect has been
highlighted on Fig. 5.13.
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Om sm 10m 15m 20m

FIGURE 5.13: Comparison of estimated depth values with reference. Above: Reference

measurements backprojected onto front image. Below: Measurements of the camera

pairs left-front and front-right backprojected onto front image. Color encodes distances

to camera center, and is on the same scale for both images. Red: High confusion area
due to repetitive pattern. Taken from [Esparza et al., 2014b].

In the present system configuration, the considerable overlap of the field of view
of any pair of adjacent cameras is limited to approximately 90 degrees. Therefore
only in these regions 3D information could be recovered. Furthermore, objects in
the very close vicinity of the ego vehicle show a very large disparity on the rectified
images. The feature search was restricted to 200 pixels on the horizontal direction,
which allows detection of objects which are, at least, in the order of 6 meters away
from the vehicle. In the areas where 3D information could be recovered, the
distances compare well with the distances obtained by the lidar, as can been seen
in Figue 5.13. No time accumulation is required, thus being the 3D information
recovered from single pairs of images. Furthermore, considering that these results
are based on a general purpose feature detector and descriptor, performance is
expected to benefit substantially from denser state-of-the-art disparity estimators

which would allow for more 3D measurements and a reduced count of outliers.

There is a very wide field of potential applications for the proposed system within
driving assistance, especially in low speed parking and maneuvering. In the next
sections, focus will be put into the optimization of the current camera mounting

as well as on performing measurements on a nearer area around the vehicle.
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5.1.10 Conclusions

The experiments carried out in this section show that 3D spatial reconstruction
is feasible based on stereo measurements with automotive surround view cameras.
The benefits of such a system have been discussed in the context of field of view
coverage and accuracy of the measurements. In the areas where 3D information
could be recovered, the distances compare well with the distances obtained by the
lidar, as can been seen in Figure 5.13. No time accumulation is required, thus

being the 3D information recovered from single pairs of images.

In the present system configuration, the considerable overlap of the field of view
of any pair of adjacent cameras is limited to approximately 90 degrees. Therefore
only in these regions 3D information could be recovered. Furthermore, objects in
the very close vicinity of the ego vehicle show a very large disparity on the rectified
images. The feature search was restricted to 200 pixels on the horizontal direction,
which allows detection of objects which are, at least, in the order of 6 meters away

from the vehicle.

As discussed in Chapter 4, limitations exist by using a lidar for benchmarking
since the fields of view of both sensors are not completely coincident. In particular,
objects too near to the ego vehicle, or too high, remain outside the visibility range
of the lidar. The latter is, however, not crucial for these use cases, since for driving
assistance such heights usually lack interest. There is a very wide field of potential
applications for the proposed system within driving assistance, especially in low

speed parking and maneuvering.

The focus of this work was to demonstrate feasibility of the approach using stand-
ard open source disparity estimators, although proprietary algorithms with su-
perior performance exist. The next step presented in this thesis will focus on
optimization of the current camera mounting as well as on performing measure-

ments on a nearer area around the vehicle.
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5.2 Towards Surround 3D Measurements

In the previous section it has been shown that stereo reconstruction is possible
under the described four-camera surround view setup. Nevertheless, it has also
been shown that the areas around the vehicle where this is possible are largely
restricted. This section presents an extension of the current standard surround
view system where eight fisheye cameras are used. It is based on the work of

[Esparza et al., 2014a|, which was done within the framework of this thesis.

In the field of park and maneuver assistance, different configurations have been
proposed for surround-view systems. The most common criteria used to define
the mounting of cameras is the amount of space in the vicinity of the vehicle that
is imaged by at least one camera. In the work of [Ehlgen and Pajdla, 2007]| the
position of catadioptric cameras mounted on a truck was optimized in order to see

every point on the ground plane in the truck surrounding by at least one camera.

Surround view configurations with more than four cameras have been previously
proposed in literature. In [Liu et al., 2008] a system with six cameras that indi-
vidually cover small fields of view is proposed. This system, however, does not
consider 3D measurements. This section proposes an extension to the conven-
tional surround view configuration with additional cameras in order to increase
the area around the ego vehicle where 3D measurements are possible. In particular
8 fisheye cameras are considered with a horizontal field of view of approximately
180 degrees. In addition to the standard four positions four cameras were added
on the four corners of the vehicle so that the angular distance between the optical
axes of adjacent cameras is reduced from 90 to 45 degrees approximately. Dis-
tances between camera centers were also reduced as a result. This involves that

3D measurements are possible on closer distances to the ego vehicle.

Areas lying within the possible driving path of the ego vehicle were prioritized,
thus seeking better overlaps on the front and rear ends of the vehicle. Such a
configuration allows for a surround stereo system, where 3D measurements can
be effectively conducted on every direction, except for the very near vicinity of
the ego vehicle, where other sensors like ultrasound perform well on measuring

distances to objects.


http://dx.doi.org/10.1109/WACV.2007.41
http://dx.doi.org/10.1007/978-3-540-78157-8_16
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FIGURE 5.14: Overview on the stereo pair overlaps. Areas where stereo measurements

are possible are displayed in green, and those where not, in red. Left: Traditional

configuration. Right: Proposed configuration. For the new configuration, a complete

coverage for stereo estimation is possible outside the area limited by an ellipse of half
axes equal to 2.6m and 3.2m. Taken from [Esparza et al., 2014a].

In Figure 5.14, a schematic representation of the existing fields of view is depicted,
both for a traditional surround view configuration and for the proposed extended
setup. Real calibration data from the setup has been considered to generate this
view. As can be seen, a close-to-full 360 degree surround stereo system can be

achieved considering a minimum distance from the vehicle.

5.2.1 Experiments

A setup with 8 cameras has been considered for these experiments, which offer a
resolution of 1280x960 pixels covering a horizontal field of view of approximately
180 degrees per camera. The cameras used are of the kind described in Section 5.1

and a similar operating mode has been considered.

The positions were manually adjusted to fit the exterior design of the vehicle and
to lay on salient areas where their fitting would be feasible in practice. The cam-
eras were intrinsically calibrated with the method described in Section 3.2.1.2.
Extrinsic calibration for the cameras was also done, by means of special calibra-
tion targets as well as additional cameras and bundle adjustment, as described in
Section 3.1.4.
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Epipolar rectification of the fisheye images for the stereo matching process is done
according to the work presented in Section 5.1, and an output resolution of 640 x

480 pixels was used.

In order to evaluate the amount of shared field of view in the present camera con-
figuration, different experiments were carried out. On a first step, the 2D model
proposed in Section 5.1 was considered to create an initial estimate of the over-
lapping areas, based on camera calibration. From a more empirical perspective, a
pedestrian walking around the ego vehicle was considered. The pedestrian com-
pleted a whole loop in approximately 60 seconds, keeping a distance to the vehicle
of approximately 2 meters. This experiment is aimed at evaluating in which areas
the system is blind to the pedestrian, and whether this fits to the initial expec-
ted results. As a reference, data from a lidar scanner was considered, which was
mounted on the roof of the vehicle, and registered to the multicamera system as
described in Chapter 4. While the vehicle was static, the 3D measurements were
accumulated over time in order to see the path that the pedestrian follows based
on the reference lidar sensor and to compare it with the one estimated by the

proposed system.

5.2.2 Results

Table 5.3 presents an analysis of the overlapping fields of view of each adjacent
camera pair on the presented configuration, according to the 2D model presented
in Section 5.1.3. The existing overlaps are between 118 and 148 degrees. For the
new configuration, it is estimated that a complete coverage for stereo estimation
is possible outside the area limited by an ellipse of half axes equal to 2.6m and
3.2m. Theoretically, this means than any object not contained by this ellipse is
observed by more than one camera and therefore its position could be estimated.
In practice, there still exist large parallaxes between adjacent cameras on very

near ranges that may make the process difficult.
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TABLE 5.3: Analysis of the stereo base and overlapping fields of view for each adjacent

camera pair. Taken from [Esparza et al., 2014a].

Camera Pair Co-C1 C1-Cy Cy-C3 (C3-Cy

Distance between camera centers {m} | 1.12 1.22 2.61 0.97
Available field of view {deg} 131.99 143.12 136.96 130.00
Camera Pair Cy-Cs5 C5-Cs Cs-C7 Cr-Cy

Distance between camera centers {m} | 0.96 2.64 1.21 1.04
Available field of view {deg} 118.61 148.17 136.08 135.08

In Figure 5.15 results of the feature matching process after epipolar rectification

are shown for four of the camera pairs in the system.
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FIGURE 5.15: Result of the feature matching for four different camera-pairs. Color
encodes normalized disparity, based on JET scale. Taken from [Esparza et al., 2014a].



3D Measurements with Automotive Surround View Systems 98

The timely accumulated path followed by a pedestrian walking around the ego
vehicle is shown in Figure 5.16. Approximately 75% of the path could be measured
by the system. Regarding the estimated dephts, the data obtained by means of

stereo measurements compares well to the data from the reference lidar sensor.

FI1GURE 5.16: Comparison of path followed by pedestrian walking around the vehicle.

Color encodes the number of detections per area on the tessellated surface and is sat-

urated at the count of 500 detections. Left: Lidar. Right: Stereo Video. Taken from
[Esparza et al., 2014a].

Figure 5.17 shows two additional static scenes where lidar measurements and stereo
measurements are overlaid, without time accumulation. It can be observed that
distances match well to the reference and measurements are possible on every

direction around the ego vehicle.



3D Measurements with Automotive Surround View Systems 99

Y

ol A

“f f
;‘a‘r//

s,

.,
if

4.0
5

I-up

“3s - -1s -0 -5 0 5 w15 20 25 s 00 15 - -5 0 5 0 15 a2

FIGURE 5.17: Comparison of obtained distance information for two different sequences.

Blue: Surround stereo measurements. Red: Lidar measurements. All measurements

are from a single frame, without time accumulation. Distance indications are given in
meters for both x- and y-axes. Taken from [Esparza et al., 2014a).

5.2.3 Comparison with Four-Camera Setup

In order for the results obtained with the eight-camera configuration to be com-
pared to the standard four-camera setup, the same scenes from Figure 5.17 have
been processed without taking into consideration the extra cameras. The results

can be seen in Figures 5.18 and 5.19.

It can be observed how the density of measurements obtained is noticeable larger
on the setup with eight cameras. Furthermore, the coverage of the field of view

around the vehicle is largely improved with shorter distances available.
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FIGURE 5.18: Comparison of reconstruction results with four and eight camera setup.

Top: four camera setup on standard configuration. Bottom: eight camera setup as

discussed in this section. Red: reference lidar measurements. Blue: measurements

by means of multi-camera stereo. Black crosses: camera positions. Taken from
|[Esparza et al., 2014a].
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FIGURE 5.19: Comparison of reconstruction results with four and eight camera setup.

Top: four camera setup on standard configuration. Bottom: eight camera setup as

discussed in this section. Red: reference lidar measurements. Blue: measurements

by means of multi-camera stereo. Black crosses: camera positions. Taken from
|[Esparza et al., 2014a].
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5.2.4 Conclusions

In the presented system configuration, the overlap of the fields of view of adjacent
cameras has been increased by means of additional cameras from 90 degrees aprox-
imately on previously existing configurations to over 130 degrees on the current

one.

Of the 360 degrees followed by the pedestrian on the vicinity of the vehicle, ap-
proximately 75% can be covered under the proposed configuration. The distance
at which this was evaluated is approximately 2 meters from the vehicle. Nearer
objects are in general difficult to consider due to very large parallaxes. However,
other sensors typical of Park & Maneuver systems, like ultrasonic sensors, per-
form well on very short distances, being both systems a good combination for

maneuvering assistance in the very rear and near ranges.

In the next section focus will be put on performing 3D measurements on nar-
row drive ways and parking spots, for which a new camera setup and epipolar

rectification model are proposed.
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5.3 Mapping of Narrow Driveways and Parking Spaces

This section discusses stereo reconstruction in narrow drive paths and parking
slots. For this purpose a new camera configuration is proposed and a new polar

epipolar rectification model is introduced.

Using the 4-camera configuration described in Section 2.1.1, recent research has fo-
cused in the detection of parking spots [Unger et al., 2014] and automatic parking
[Furgale et al., 2013, which involves the mapping of narrow drive ways or parking
spaces, prior to the actual vehicle maneuvering. For these tasks, mono-camera

techniques like structure from motion are usually considered [Unger et al., 2014].

Although great progress has been done in these fields, certain problems still remain
which are not anymore algorithmic, but rather show the physical limitations of
the considered setups. In the case of structure from motion, for example, the pre-
requisite of camera movement in order to achieve 3D measurements can certainly
be an inconvenient in parking situations. As for stereo techniques with traditional
surround view configurations, in Section 5.1 it has been shown that the areas
around the vehicle where 3D measurements can be conducted are highly restric-
ted. Furthermore, narrow driving spaces mean that the surface resolution for side
cameras is extremely low and large parallaxes exist across camera views, making
this approach nonreliable in practice. As a result of the large parallax, light re-
flections on the surface of objects can also play an important role in the disparity
estimation process, usually increasing the rate of false positives. In Figure 5.20 an

example situation is shown, where these problems are depicted.


http://dx.doi.org/10.1007/s00138-011-0385-1
http://dx.doi.org/10.1109/IVS.2013.6629566
http://dx.doi.org/10.1007/s00138-011-0385-1
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FIGURE 5.20: Scene description: conventional surround view setup for narrow drive
ways. There is a large parallax and the surface resolution for the side camera is very low.
Performing stereo measurements in the current setup is therefore limited by physical
restrictions, rather than by the wellness of the algorithms. Taken from [Esparza et al., |.

In general the mapping of narrow drive ways and parking spaces previous to the
vehicle automatic maneuvering remains an open problem. As an example the
park-in situation depicted in Figure 5.20 can be considered: the important sur-
faces possess normal vectors almost perpendicular to the driving direction and are
therefore hard to observe in front of the car. Further example images are given in

Figures 5.21 and 5.22 from the real camera setup.

F1GURE 5.21: Example of traditional configuration prior to entering a narrow drive

path or park space. The images correspond to the Front-Right camera pair, and are

epipolar-rectified. The large parallax can be observed on the green vehicle. In particu-

lar, the side of the car offers a very different surface resolution to each of the cameras,
which reduces the chances of correct keypoint matching.



3D Measurements with Automotive Surround View Systems 105

FIGURE 5.22: Example of traditional configuration inside a narrow drive path or

park space. The images correspond to the Front-Right camera pair, and are epipolar-

rectified. The lateral side of the white vehicle is observed from very different perspect-
ives by both cameras. This complicates the search of correspondences.

In this section a new camera configuration is proposed that can mitigate the prob-
lem of the large parallaxes and low surface resolution. This configuration involves
a relative camera pose such that measurements near the line joining both camera
centers have to be carried out, namely near the epipoles. A new model to achieve
epipolar rectification on the proximities of the epipoles is presented. This model
transforms every epipolar plane not into an image raster line, but into a polar
direction. It is shown, by means of experimental results, that the proposed model
allows for 3D reconstruction in the vicinity of the epipoles without involving large
changes of pixel size and measurement of the parking spots can be conducted prior

to the vehicle’s maneuvering.

5.3.1 Proposed Camera Setup

In this section a new camera mounting configuration is proposed where special
focus has been put into the pre-measurement of front-parking spots. As discussed
previous sections, stereo vision based on surround view cameras has certain restric-
tions due to different surface resolutions and large parallax which are not easily
solved algorithmically. In particular, the amount of imaged surface area per pixel
depends largely on the angular distance between the surface normal and the view
ray from the camera center, i.e. the larger the angle, the larger the surface that is
covered per pixel. Considering a front-side camera pair as depicted in Figure 5.20,
the difference in surface resolutions between both cameras is very large, thus the
projections onto both image planes differ strongly. Furthermore, the very differ-

ent perspective from both cameras makes the illumination conditions especially
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relevant. Different light reflections on each camera view usually add confusion

problems on the feature matching process.

In order to enhance the similarities across different views, it is proposed to mount
two surround view cameras approximately at the top of the windshield. A pos-
sible mounting position for the cameras would be directly on the roof the vehicle.
Alternative positions can be considered without loss of generality on the algorith-
mical description presented on the next sections. By considering such a setup, the
differences are reduced between the projection of the lateral surfaces onto both
cameras, thus the chances for success on the feature matching process are higher.

In particular, the proposed configuration is depicted in Figure 5.23.

UpperLeft UpperRight

FIGURE 5.23: Proposed new setup: additional cameras are considered, mounted on
top of the windshield. The parallax is largely reduced and both cameras have a similar
surface resolution. Taken from [Esparza et al., |.

The described configuration does, however, have a drawback if the relative pos-
ition of both cameras is considered. In particular, the area where 3D measure-
ments are to be conducted corresponds to the vicinity of the line joining both
camera centers, i.e. near the epipoles. This situation resembles that of a pure for-
ward motion on a mono-camera configuration or axial stereo [Alvertos et al., 1989,

[Nguyen and Huang, 1992], [Dalmia and Trivedi, 1995].

Since lateral stereo implies a much more common camera setup than axial ste-
reo, existing epipolar rectification models for fisheye optics (like the one proposed

by [Abraham and Foérstner, 2005]) do not account for such a setup. In the next


http://dx.doi.org/10.1109/34.35494
http://dx.doi.org/10.1109/ICPR.1992.201498
http://dx.doi.org/10.1109/ICIP.1995.529734
http://dx.doi.org/10.1016/j.isprsjprs.2005.03.001
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sections, a polar-epipolar rectification model is proposed that allows for epipolar
rectification in the vicinity of the epipoles without involving large changes of pixel

size, and is valid for large fields of view in both horizontal and vertical directions.

5.3.2 Coincident Optical Axes

Given the camera mounting proposed in Section 5.3.1, the relevant scene content
is mostly perceived near the epipoles, as depicted in Figure 5.24. In general, epi-
polar rectification models are defined so that epipolar lines are mapped to parallel
raster lines. As a result, epipoles and their vicinities are infinitely expanded thus
generating large changes in pixel size. This can be explained since the epipoles
are contained by all epipolar lines. To overcome this issue, the proposed model
is aimed at creating radial epipolar lines with the origin located at the principal

point, and common for both virtual cameras. In this way, both virtual optical

axes are coincident.

FI1GURE 5.24: Epipolar lines on original fisheye images, for the camera configuration
depicted in Figure 5.23. Top row: Front-UpperLeft camera pair. Bottom row: Front-
UpperRight camera pair. Taken from [Esparza et al., |.
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In order to achieve this, the rotation matrix Ry in Eq. 5.11 (presented in Sec-
tion 5.1.4.1) is split into two different matrices Rgry and Re gr, where the first
part of the index, SF, refers to the intermediate sensor frame reference coordinate
system, which has an orientation common to all cameras on the system, as defined

in Section 3.1.1. Equation 5.11 becomes therefore Eq. 5.14.
(u,v)c = Te [ResrRysp Ty [(u,0)v]] (5.14)

To guarantee that both virtual images share epipolar lines on the radial directions,
it is sufficient to define a common Ry g for both rectifying cameras on a camera

pair such that the optical axes are aligned and pass through both camera centers.

The optixal axis Oy of both virtual cameras is defined as the normalization of the

vector b joining both camera centers C; and (5, as in Eq. 5.15.
b=0,—-C; (5.15)

Based on the -, y-, z-components of b (b;, by, b.), two of the three parameters

defining the camera orientation can be extracted by means of Egs. 5.16, 5.17.

o, = arctanl;—x (5.16)

z

Vv

b
7, = arctan ——2%—— (5.17)

/b;132 + b22

The third parameter missing to fully describe Ry sr accounts for the roll angle,
which represents the rotation over the optical axis. This parameter can be set
freely, but must be the same for both virtual cameras. The author recommends
fixing it such that the x-axis of the camera is parallel to the reference floor plane
considered for the extrinsic calibration, so that the up-vector of the camera is
as parallel as possible to the floor’s normal. The centers of the virtual cameras
remain the same as those of the real cameras. In Figure 5.25 a graphic description

of the previous parameters is provided.
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—Real camera

- Rectifying virtual camera

F1GURE 5.25: Coincident optical axes for virtual rectifying cameras. The orientation

of the virtual cameras is defined based on Egs. 5.16 and 5.17. The roll angle can be

freely set, common to C; and Cs. Projection centers of virtual and real cameras remain
the same.

Ideal Projection Model

Once the orientation of the virtual rectifying cameras has been defined, different
ideal nonlinear models can be considered for Ty that project the world onto the
virtual image plane. Several models have been proposed in literature that allow
for an ideal projection of large fields of view (see Section 3.2.1.2.) For these
experiments, the equidistant model has been considered, which inverse model is
given by Eqgs. 5.18, 5.19 and 5.20.

X = %sin u'? 4 v’ (5.18)
w4
v’ : 2 2
Y = ——=sinVu* 4+ (5.19)

7 = cos Vu? +v? (5.20)

Expressions 5.18, 5.19, and 5.20 are given in CV-coordinates, where (u',v’) rep-

resent image coordinates normalized with respect to the principal point.

Zooming Correction

The equations presented so far can be directly applied to both cameras of any axial

stereo pair. However, experience shows that the apparent forward motion between
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the cameras has a zooming effect that has to be accounted for. In conventional
lateral stereo vision setups, the rectified optical axes are approximately orthogonal
to the stereo baseline, thus the scaling difference across views is neglectable. In
this setup, however, the difference in scale of the imaged objects is relevant. In
particular, this is especially true for distances at a range comparable to the stereo

base between both camera centers. In Figure 5.26 this effect is depicted.

d
tan eback = m tan 6ﬁﬂ0nt

FIGURE 5.26: Description of the zooming effect. The image from the front camera can
be seen as a zoomed version of the image from the rear camera. This effect can not be
neglected, since d ~ b in the vicinity of the ego vehicle. Taken from [Esparza et al., |.

Although scale-invariant keypoint detectors and descriptors exist in literature
[Lowe, 2004], they are computationally expensive. To compensate for the scale
differences, it is proposed to use different projection models for the epipolar recti-

fication of each of the cameras that directly account for a correction factor.

It is possible to differentiate between front and back cameras, ie. the camera which
is closer and further from the scene, respectively, as illustrated in Figure 5.26. For
the back camera, a modified version of the equidistant model presented in the
previous section is introduced. A term « is introduced that accounts for the

zooming factor, thus transforming Eq. 5.20 into Eq. 5.21.
Zaek = ecos V u'? + v (5.21)

The term « can be obtained by means of Eq. 5.22, where d represents the expec-
ted distance to the scene. Different values can be considered, depending on the
expected depth to objects. Since the aim of this work is to measure narrow drive
ways and parking spaces, short distances are the most relevant. Therefore, values

of o approximately equal to 2 are recommended (d ~ ||b]).

_d+|b]

y (5.22)
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The projection Gt onto the unit sphere is given by the normalization of the
(X,Y, Zyaer) vector, as in Eq. 5.23.

<X7 K Zback)T

(5.23)
H(XaYa Zback)”

Upack =

Once the rectifying model is defined, the original images can be sampled at the
coordinates obtained by means of Eq. 5.14. Since a rectifying model has been used
that does not introduce large pixel size changes, normal bilinear interpolation can
be considered (see Section 3.2.2.2).

Figure 5.27 shows the results of the rectification based on the proposed model.
Visual inspection of the images shows that common objects visible on both views

lie on the same polar epipolar lines.
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FIGURE 5.27: Result after epipolar rectification. The rectified images correspond to

those shown in Figure 5.24. Top row: Front-UpperLeft camera pair. Bottom row:

Front-UpperRight camera pair. Reference epipolar lines are drawn in white. As can be

observed, epipolar lines are perfectly straight and the epipoles are coincident with the
new virtual principal points. Taken from [Esparza et al., |.

5.3.3 Feature matching

After the epipolar rectification is complete, the feature search and matching is
performed. Considering conventional epipolar rectification, the matching of fea-
tures across different images is restricted by the pixel row information. Under the
assumption of good calibration, one can be certain that corresponding features lay
within one pixel from one another, on the vertical direction. In other words, the
disparity can be represented as a one-dimensional offset on the horizontal direc-
tion. In the model presented in this section, epipolar lines are not coincident with

the horizontal raster lines, but warped on a polar style, centered on the principal
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point. Therefore, the correspondence search space is not restricted to a pixel line,
but it depends on the angle of each keypoint in normalized image coordinates,

with the principal point as reference.

The epipolar line to which an image point (u,v) corresponds is therefore determ-

ined by its angular location as seen from the principal point, as in Eq. 5.24.

!/

© = arctan o (5.24)

Although this may appear much less efficient than line search, the search area for
every given pixel coordinates can be precomputed offline and efficiently searched
based on a look-up table. The area in pixels that corresponds to a fixed polar
band depends on the distance p to the principal point and can also be accounted
for offline. After the correspondence search is performed, 3D reconstruction is

conducted by means of triangulation, as described in Section 3.2.3.3.

In Figure 5.28 the curves representing depth as a function of disparity are rep-
resented, both with and without the proposed zoom correction factor. It can be
observed that a similar range of disparities covers a much smaller range of depths
when the zooming effects are corrected. This causes the measurements to be more

accurate in the near range of the vehicle.



3D Measurements with Automotive Surround View Systems 114

N

o

o No zoom correction With zoom correction

_ 5

E 45+ efront =10° 'E. 45F gfmnt =10°

: a0l efmnt =20° ;' ol Hfront =20°

5 Qﬁ’”m =30° 5 gfront =30°
35F J— — o 5K — o

§ efmm =40 § 35 - gﬁom =40

S — Oy = 50° N = Gpon = 50°

\,g 250 gfront =60° ;,E\ 25 Qﬁfont =00°

) IS

v I\

Q Q

= =

3 S

2 2

Q Q

0.5

0 10 20 30 40 50 60 o 10 20 30 20 50 60
Disparity [pel] Disparity [pel]

FiGUrE 5.28: Estimated depth as function of disparity. The curves represent the

distance to the front camera center. Both cases have been considered, with and without

zoom correction. With zoom correction it can be observed that disparities cover a

smaller range of depths, thus increasing the accuracy in this area, ie. in the vicinity of

the vehicle. The curves have been generated according to the real stereo setup, namely

a = 2, rectified resolution of 512 x 512 pixels, and maximum distance to virtual optical
axis 0,0, = 7/2 rad. Taken from [Esparza et al., |.

5.3.4 Experiments

In order to evaluate the proposed camera configuration and polar-epipolar recti-
fication model, different scenes have been recorded with the camera configuration
shown in Figure 5.23. A lidar sensor has been considered for reference 3D meas-
urements. The lidar was mounted on the roof of the vehicle and registered to the

global common reference with the method proposed in Chapter 4.

The cameras considered in these experiments are similar to those used in Sec-
tions 5.1 and 5.2 under the same operating configuration. For each adjacent

camera pair on the system setup, previous intrinsic and extrinsic calibration was
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available. Intrinsic and extrinsic camera calibration were performed as described
in Sections 3.2.1.2 and 3.1.4.

The output resolution of the epipolar-rectified images was set to 512x512 pixels and
the zoom correction factor o was set for an expected distance equal to the stereo
baseline d = ||b||, which in the considered setup is equal to 2.24 and 2.28 meters
for the two camera pairs. As keypoint detector and descriptor, those proposed
by [Rosten and Drummond, 2005] and [Calonder et al., 2010| were considered, re-

spectively and matching was performed based on hamming distance.

Three different scenes have been used for evaluation under the described config-
uration. The scenes represent a situation: 1) prior to entering a front parking
spot, 2) while in a narrow drive way, 3) approaching the end of a parking space.
The rectification model presented was applied to the images and results of the 3D

reconstruction are shown in the next section.

5.3.5 Results

Results of the rectification process as well as the 3D stereo reconstruction are
shown in Figure 5.29. It can be observed how the disparity vectors are radial
and virtually intersect on the principal points, which are coincident with the epi-
poles. Length of the vectors, just like in conventional stereo, encodes depth. In
Figure 5.28 it has been shown what the depth-disparity relation looks like in the
present setup. Features can be matched in the near vicinity of the epipoles, which
is the main goal of the proposed rectification model. The zoom effect was correc-
ted in short distances - comparable to the base between cameras - thus most of

the detected common features correspond to areas near the ego vehicle.

Results of the 3D reconstruction are also shown on the right-most column of
Figure 5.29, together with the reference measurements of the lidar sensor. It
can be observed that drive ways can be measured prior to the vehicle’s movement,
even in very narrow situations. Furthermore, visual comparison of the point clouds

shows a good degree of correspondence with the reference measurements.

In Table 5.4, results are shown for the estimated depths, compared to the 3D
reference measurements obtained with the lidar. The results correspond to a L1-
norm error metric obtained by projecting all 3D measurements onto the front
camera image. Since the lidar was registered to the global reference system, a

one-dimensional comparison is possible. This has been explained in detail in


http://dx.doi.org/10.1109/ICCV.2005.104
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Chapter 4. In all evaluated scenes the absolute error is below 1.5 meters for
90% of the measurements and the distance-relative error under 20%. The second
scene, corresponding to the narrow driving path, shows the best overall perform-
ance with a relative error below 14% and an absolute error below 0.6m for 90% of

all measurements.

TABLE 5.4: Accumulated absolute and relative error analysis based on a Ll-norm

error metric. The results on this table correspond to the distance to the front camera

center after reprojection of every 3D measurement, compared to the reference lidar

measurements. Quartile information is included since it is representative for discussion
of results. Data from [Esparza et al., |.

Frame ID | Masurements Q50 [m] Q75 [m|] Q90 [m] Q50 [%] Q75 (%] Q90 [%]

1 10203 0.24 0.51 1.40 05.86 11.01 18.21
2 10619 0.18 0.30 0.60 04.43 07.55 13.23
3 15407 0.08 0.16 0.63 03.59 06.62 15.82

All values in Table 5.4 correspond to measurements without time accumulation

and were obtained from the single frames shown in Figure 5.29.
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FIGURE 5.29: Results obtained on three different scenes. Top row: Before entering a

parking spot. Middle row: on a narrow drive way. Bottom row: End of front parking,

with a very close front vehicle. Left column: Section of the original front fisheye image.

Central left and central right columns: Epipolar-rectified images (white: result of the

feature matching). Right column: 3D reconstruction based on stereo measurements

(blue) and reference lidar (red); distance indications are given in meters for both x-
and y-axes. Taken from [Esparza et al., |.

For comparison, the same scenes have been recorded with the conventional four-
camera setup, and 3D reconstruction has been carried out in the way described in

Section 5.1. Measurements are presented in Figures 5.30, 5.31, and 5.32.
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FI1GURE 5.30: Comparison of the standard four-camera configuration with the extended
setup presented in this section. Top: measurements from the standard four-camera
configuration, considering the reconstruction scheme proposed in Section 5.1. Bottom:
measurements obtained with the configuration presented in this section. Blue: stereo
measurements. Red: reference lidar. Distance indications are given in meters for both

x- and y-axes.
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FI1GURE 5.31: Comparison of the standard four-camera configuration with the extended

setup presented in this section. Top: measurements from the standard four-camera

configuration, considering the reconstruction scheme proposed in Section 5.1. Bottom:

measurements obtained with the configuration presented in this section. Blue: stereo

measurements. Red: reference lidar. Distance indications are given in meters for both
x- and y-axes.
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FIGURE 5.32: Comparison of the standard four-camera configuration with the extended

setup presented in this section. Top: measurements from the standard four-camera

configuration, considering the reconstruction scheme proposed in Section 5.1. Bottom:

measurements obtained with the configuration presented in this section. Blue: stereo

measurements. Red: reference lidar. Distance indications are given in meters for both
x- and y-axes.

The results presented in Figures 5.30, 5.31, and 5.32 shows the limitations of

the conventional four-camera setup on narrow drive paths and parking situations,
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compared to the extended setup presented in this section. Much narrower paths

can be measured with objects closer to the ego vehicle.

5.3.6 Discussion

The proposed camera setup has shown to allow for 3D reconstruction on narrow
drive ways and parking spaces, and parallax was reduced compared to standard
surround view configurations. Based on the described polar-epipolar rectification
model, good reconstruction rates have been observed in image areas in the vicinity

of the epipoles.

A zoom correction factor has been introduced that accounts for the scale differ-
ences across views, due to the relative forward translation that exists between
the cameras. In particular, a value of & = 2 was considered, which enhances
the matching of features that correspond to objects located a distance d = ||b||
from the reference front camera. Depth curves with respect to disparity values
have been generated for the current setup, both with and without zoom correction
for comparison. It has been shown that the proposed correction allows for larger
disparities to represent shorter distances, which is a benefit for the near-range

application under consideration.

In order to evaluate the accuracy of the 3D measurements in the three situations
considered, a lidar sensor was used for benchmarking. All measurements were
conducted without time accumulation and the results shown for each scene corres-
pond to a single frame from each camera. These results compare well to other state
of the art parking assistance systems [Unger et al., 2014] and the new configura-
tion largely outperforms the four-camera setup, as considered in Section 5.1. The
proposed camera mounting allows to share the cameras with standard surround
visualization systems and the estimated depth can directly be utilized by other

higher level functionalities, like pedestrian detection or autonomous parking.


http://dx.doi.org/10.1007/s00138-011-0385-1




Chapter 6

Visualization

This chapter is aimed at describing both the algorithmical processing required to
give an interpretation to the 3D data acquired by means of stereo vision, as well
as the approaches utilized for optimal visualization. The chapter is divided in
four main sections. Firstly, in Sections 6.1 and 6.2, an approach is proposed in
order to describe the geometry that can be used as support mesh for the Image
Based Rendering (IBR), with or without depth information, and in Section 6.3 a
series of visual enhancements based on depth information are proposed. Section
6.4 presents a front inspection view which does not rely on surrounding spatial

information.

6.1 Static Mesh Definition for IBR

As described in Section 3.3.1, a wireframe model has to be defined as support for
the IBR. This model is given as a mesh of triangles, which are described in terms
of vertices. This section presents how the vertices can be defined in absence of
depth information and is based on the work of [Shimizu et al., 2010]. Since the
authors did not provide implementation details, the own solution of the author is

presented in the following.

In the following the two main parts in the projection surface are differentiated: the
flat floor area, and the elevated wall area. The floor area is used to represent the
vicinity of the vehicle and is based on the assumption of near-range free space. The
surface wall is used to create the elevation effect that allows to project high objects,
e.g. other vehicles, pedestrians or buildings. Assuming no information about the

distance to these objects, a fixed projection depth p,,.. can be considered.

123
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The construction of both floor and wall surfaces is based on a polar mesh that
represents the environment, thus a set of N radial directions is used as support.

Each n-th direction corresponds to an angle 6,,, defined such that the 360° FoV

around the vehicle is uniformly covered.

Similarly, a uniformly distributed set of distances p,, and angles o are defined for

floor and wall as in Eqgs. 6.1 and 6.2, respectively.

O = %pmm, with m € [0, M — 1] (6.1)

a, = %f, with ¢ € [0,Q — 1] (6.2)

A graphic representation of the vertices that define the surface mesh is shown in

Figure 6.1.
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B/

Po Pmax

FIGURE 6.1: Definition of the static projection surface construction. Top: flat floor

surface. The polar mesh is defined by a set of IV reference directions and M distances.

Bottom: elevated wall surface. The mesh is defined by the same N reference directions
as the floor and a set of @ reference angles.

The construction of vertices Vﬁw belonging to the flat floor in the vicinity of the
vehicle (superindex f) is given by Eqs. 6.3 and 6.4, with a constant height value
of z/ = 0.
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On the elevated walls of the surface (superindex w), the vertex coordinates of Vi,

are computed by means of Egs. 6.5, 6.6 and 6.7, where the parameter h represents

the maximal height of the projection surface.

wo __
q,m

x [pmaz + hsinay) cos b,

y:;:n = [pmax + hsin qu] sin en

Zgm = h (1 —cosay)

(6.7)

The wireframe mesh is then defined as a list of triangles built with the vertices

previously described. According to these coordinates, the floor mesh is defined

with the steps described in pseudocode in the following:

triang list _floor = {}
for m = 0..M-1 do
for n = 0..N-1 do
triang list _floor < triang (Vﬁw anH’n, V{n+l,n+1)
triang list _floor < triang (anm, V{n+1,n+17 Vf;,nﬂ)
end for
triang list _ floor < triang (VT{%N_l, V£1+17N_1, V#H’O)
triang list _floor < triang (Vf;’N_l, an+170, V£z+1,0)

end for

Pseudocode for wireframe mesh definition of the surface’s floor.

As for the wall mesh, a similar definition exists:
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triang list _wall = {}
for ¢ = 0..Q-1 do
for n = 0..N-1 do

triang _list_wall < triang (Vi Vi1 n Vit nit)

)

triang list _wall < triang (ngm Viiint1s VZJ’HH)

end for
triang list _wall < triang (V}I"7N_1, Viiin-1s Vf]ﬂLo)
triang list _wall < triang (V;‘ijl, Vo100 V(;”+170)

end for

Pseudocode for wireframe mesh definition of the surface’s wall.

Once the vertex coordinates are computed and the triangles defined, the corres-

ponding 2D texture coordinates can be computed. This step has already been

described in detail in Sections 3.3.2 and 3.2.1 by means of the model-to-camera

transfomation and fisheye projection model, respectively. It is therefore not ex-

plained here.

In the next section an approach is proposed in order to dynamically adapt the

shape of the projection surface based on 3D depth information obtained either by

means of stereo measurements, or through fusion with measurements from other

vehicle sensors.
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6.2 Dynamic Render Geometry from Depth Measurements

In previous chapters it has been shown that several approaches exist to recover
depth information in the context of surround view systems. These are either based

on camera information or on measurements from other sensors on a vehicle.

At the same time, in the previous section it has been described how a static mesh
of triangles can be built as support for the IBR. The next step is to design an
approach that allows the projection surface to dynamically adapt to the available

depth information.

The solution adopted in this thesis is an occupancy grid based approach, although
other possibilities exist [George and Borouchaki, 1998|, [Shewchuk, 2002|. In the
following, an introduction into occupancy grids is given together with the descrip-

tion of their application for dynamic mesh generation.

6.2.1 Occupancy Grids

An occupancy grid can be defined as an approach for world perception and mod-
elling that uses a probabilistic tesselated representation of spatial information
[Elfes, 1989].

Occupancy grids are especially interesting because they provide an abstraction
layer between the sensors and the function layers. Any sensor that can provide
depth information on a given direction can feed it into the grid, which acts as

support for data fusion.

Most occupancy grid approaches are based on two-dimensional maps [Thrun, 2003].
For this thesis, the basic case of a 2D binary map is considered, where the state
of every bit defines whether a location on space is occupied by an object or not.

In Figure 6.2 an example of 2D binary grid is given.


http://dx.doi.org/10.1016/S0925-7721(01)00047-5
http://dx.doi.org/10.1109/2.30720
http://dx.doi.org/10.1023/A:1025584807625
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FI1GURE 6.2: Occupancy grid. Every cell on the cartesian grid corresponds to a space
in the real world around the ego vehicle. The binary state of the cell represents whether
this space is occupied or not by an object.

Based on the grid data, different approaches can be considered to dynamically
generate a render geometry. The approach considered in this thesis is based on
the static radial surface described in Section 6.1, extended to adapt its depth on
every radial direction. In this way, the occupied environment can be approximated

by the mesh of triangles. This is presented in detail in the following section.

6.2.2 Dynamic Adaptation of the Projection Surface

In order to dynamically adapt the projection surface to the occupancy grid on each

instant, a radial extractor function is introduced that allows for iteration over all



Visualization 130

key directions that define the mesh construction as it was described in Section 6.1.

In this way, pme can be replaced by pr! .. for each radial extractor over 6, thus
a good depth approximation can be achieved on every radial direction with inde-

pendence from the others.

It is possible to define b;; as the binary state of the (7, j)-th grid cell and ¢;; and
R;; its angle and distance as from the grid’s center, respectively. A tuple ©;;
is defined as in 6.8 that represents the two consecutive radial directions between
which the (i, j)-th cell is contained.

@ij = {ena 971,-1—1} such that Qn < ¢7lj7 9n+1 > ¢ij (68)

For every radial direction 6,,, a group of distances fy, can be defined that contains

occupancy information along it.

fo, = {Rij | 0n € Oy, b5 = 1} (6.9)

In the same way, a test 7(i,j,n) can be defined that describes whether the n—th
radial extractor over the radial direction 6, intersects the (i, j)-th grid cell. This
information is especially useful near the center of the extractor functions, since not

every cell intersected by a direction 6,, contributes to fy, according to its definition.

(6.10)

(i, .n) 1 if 6, intersects cell (7, j)
7(i,j,n) =
/ 0 otherwise

The set of distances to occupied cells that are intersected by the direction 6, is
defined by ¢y, as in Eq. 6.11.

90, = {Rij | 7(i,7,n) = 1,b; = 1} (6.11)

In Figure 6.3 a representation is given for the grid cells that may determine fy,
and gy, on a given direction 6,,. From these, only the occupied cells will contribute
to the final estimated depth.
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\

FIGURE 6.3: Grid cells C;; that can determine fy, and gs, for a given direction 6,,.
Left: Reference direction 6,,.
Center: {Cy; | 0, € ©;;,}.
Right: {C;; | 7(4,j,n) = 1}.

The resulting depth p',, corresponding to 6, is computed by means of Eq. 6.12.
Distances representing the closest objects are given preference, since these are the

most relevant for maneuvering.

Prmaz = min{ fo, U g, } (6.12)

In Figure 6.4 a visual description of the resulting radial distances after processing

the occupancy grid is given.
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FIGURE 6.4: For every radial direction described by its angle 6,, the shortest distance

to an occupied cell on the grid is searched. The corresponding maximum radial depth

P s 18 estimated so that the mesh can be adapted accordingly. Red: occupied cells
that define the radial depth p},,.. in the current frame.

Based on the depths extracted from the occupancy grid, Eq. 6.1 is replaced by
Eq. 6.13.

n—_n i - 1
Pm M — 1pma:m with m € [07M ]-] (6 3)

Similarly, Eqs. 6.3, 6.4 are replaced by Eqs. 6.14, 6.15, and Eqgs. 6.5, 6.6 by
Eqgs. 6.16, 6.17, respectively.
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:L’fnn = pr cos B, (6.14)
Y = Py, 506, (6.15)
Tyn = [Pmaz + hsinag] cos b, (6.16)
Ygn = [Pmaz + hsinag] sind, (6.17)

With the new expressions, a depth is considered on every direction from the center
of the vehicle, so the mesh of triangles is dynamically adapted to fit the available
occupacy information. Although these expressions are thought to be used inde-
pendently for each new frame, it is common practice that the occupancy grids
accumulate occupancy information over time in order to increase their accuracy.
Nevertheless, with the proposed approach certain artefacts still remain. In follow-
ing sections extra visualization enhancements are proposed, based on the available

depth information.
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6.3 Depth-based Visualization Enhancements

This section focuses on the rendering enhancements utilized for ultimately im-
proving the comprehension and understanding of the scene by the driver. The
problems discussed include the density of triangles after dynamic mesh adapta-

tion and stitching of multiple images on a composite view.

6.3.1 View-dependent Projection Surface

In the description of the system done until now, a projection surface centered with
respect to the vehicle has been considered, where a virtual camera freely navig-
ates around it. For smooth surfaces, like the depth-independent one presented in
[Shimizu et al., 2010], this is a good approach since the projection of the mesh
onto the virtual rendering camera produces a quite homogeneous distribution of
triangles over the image plane. Under dynamic solutions, like the one presented
in 6.2.2, the density of polygons on the viewport area is not uniform due to the

different depths considered. This effect is depicted in Figure 6.5.
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FIGURE 6.5: Radial depth extraction, independently from render camera position.

Top: Radial depth extractor functions. Bottom: Projection of the depth reference

vertices to the render camera. The observed mesh does not have a uniform distribution
of triangles over the image plane.

In order to correct this effect, a new mesh-camera paradigm is presented, where a
link is established between the virtual camera position and the center of the radial
mesh. In particular, this is implemented by means of an XY cartesian offset of the
polar coordinates considered in the previous sections. In Figure 6.6 a comparison

of both approaches is shown.
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FIGURE 6.6: New mesh definition paradigm. Left: Standard case, with the center of
the radial depth extractor functions aligned with the vehicle. Right: New paradigm
- the center of the radial extractors is displaced based on the render camera position.
The apparent density of triangles is always uniform with respect to the render camera.

By considering a set of radial extractors which center is aligned with the virtual
render camera, the apparent density of mesh triangles on the image plane is again
uniform. With the described approach, artefacts arising from the dynamic surface

deformation can be partly removed, improving the final visualization.

One of the problems that still remain open is the seam that exists between images
from the different cameras. In order to combine multiple images on a composite
single view, a stitching scheme seems quite necessary. This issue is addressed in

the next section.

6.3.2 Stitching

Image stitching can be defined as the process of combining different images of a

common scene obtained from different positions and orientations [Szeliski, 2006].

Given the large parallax that exists on conventional surround-view camera sys-
tems, there is usually no single 2D image transformation that can stitch images
from adjacent cameras at all depth levels. A solution commonly adopted is to

define a static seam with an alpha blending area around it [Shimizu et al., 2010].

In this section, a novel method is proposed that allows for efficient dynamic stitch-

ing, based on occupancy grid data. The main idea of this method is not to perform


http://dx.doi.org/10.1561/0600000009
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additional image transformations (appart from the projection onto the render sur-
face), but to dynamically search for the optimal seam location. To achieve this, a

situation like in Figure 6.7 is considered.
a Namm
Olleft

dd
C‘fmnt
%

Origin of stitching seam

FIGURE 6.7: Dynamic stitching seam. In order to stitch images from different cameras

on the composite surround visualization, stitching seams are defined between adjacent

cameras. Every seam defines a certain width around itselft, where alpha blending is

applied. The dynamic approach is based on occupancy grid information and aims to
avoid elevated objects lying on the stitching band.

The origin of the stitching seam is defined as the closest point to the vehicle where
the fields of view of two adjacent cameras overlap. From this point, a radial
extractor as the one presented in Section 6.2.2 is used to perform a polar analysis

of the occupancy on the area where the fields of view overlap.

A binary classification is performed for every radial direction, either as occupied
or free, attending to depth. Based on this classification, a clustering is done in

order to detect large occupied and non occupied areas.

In the current configuration, the focus is to avoid stitching seams going through
nearby elevated objects, since the projections of these differ mostly across different
camera views, making the seam very visible on the composite view. Therefore, the
stitching seam is transferred to the widest non occupied cluster. The algorithm

can be summarized in the following steps:
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1:
2:
3:

Extract depth information in a polar style, from the seam origin
Classify each reference direction as occupied or non occupied
Perform clustering of occupied (Coceypied) and non occupied (C'gree)

radial directions

: Select the widest non ocupied cluster to contain the seam

Cseam — argmaxo width{Cyee}
Set the seam at the center of the chosen cluster Oseqm < center{Cseam}
Assign a stitch band around the seam

Perform alpha-blending on the stitching band

Pseudocode for stitching algorithm. Steps required to dynamically compute the optimal
seam based on occupancy information and blend a composite view.

With this approach, it can be avoided that elevated objects in the near vicinity of

the vehicle are intersected by the stitching seam, which effects are very perceptible

to the eye.

The depht-based visual enhancements proposed in this section can be summarized

in the flow chart shown in Figure 6.8.
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FIGURE 6.8: Flowchart for the visualization of each frame.
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Dynamic
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Static Surface Static Surface Surface
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Default
Seam

Dynamic
Seam

Y

Load Images
To Texture

Y

Texture Coords.

Computation

Y

Image-Based
Rendering

The different branches

show the options on each step previous to the rendering process, depending on the
availability of depth information. All the enhancements that have been proposed in
this section are highlighted in red.
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6.4 Special Views Without Depth Information

Despite the benefits of having an external virtual camera that can be freely moved
around the vehicle, there also exist situations that do not necessarily require a
change of perspective. As an alternative, an image warping can be conducted that

enhances certain visualization aspects or corrects a given kind of distortion.

If a unique center of projections can be considered for a camera, a 2D nonlinear
transformation function can be applied to the original images that fulfills some

requirements with respect to distortions, without need of 3D depth information.

In the following, an example is given of a virtual view that can be described

independently from environmental information.

6.4.1 Front Inspection View

In the standard surround view configuration, as presented in Section 2.1.1, there
is usually an exposed front camera with a very wide field of view. In driving
situations where the path of view of the driver is reduced laterally, eg. when
leaving a garage or entering a road crossing, the front camera normally gets an
earlier view than the driver. Given the large fields of view provided, a 180° front

inspection view can be generated.

The method proposed here is aimed at fulfilling these requirements:

e Fisheye distortions have to be corrected, so that vertical lines are displayed

vertical.
e A complete 180° horizontal field of view must be preserved.

e The horizon line must be centered in the image and must be horizontal.

This is achieved by conducting a cylindrical warping of the original image. The
projection cylinder is defined such that its axis is parallel to the floor’s normal. In
this way it can be guaranteed that the vertical lines are projected as vertical on
the new image. Furthermore, the horizon line is described by the intersection of
the image plane with the horizontal plane passing through the camera’s center of
projections. Since the normal of this plane is parallel to the axis of the cylinder,

the horizon line is perfectly horizontal on the new warped image. The height of
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the cylinder can be used to control the position of the horizon line over the new

projection.

6.5 Results

Prototypic implementation of the concepts presented in this chapter has been
carried out, and this section contains visualization results in order to evaluate the

level of enhancement that can be achieved.

Figures 6.9, 6.10 and 6.11 show real examples of the dynamic depth-based projec-
tion surface deformation. As comparison a static mesh is considered as described

in Section 6.1.

FI1GURE 6.9: Example of dynamic projection surface adaptation - Scene 1. Based on
occupancy grid information a depth extractor is applied as presented in Section 6.2.
The effects of the adaptive mesh can be observed on the dark vehicle, especially on
the back wheel. Without depth information the projection surface is set to its default
shape, thus wheels are projected on the floor. On the contrary, with correct depth
information, the walls of the surface approximate well the side of the car, providing a
more intuitive representation. Top: default static mesh. Bottom: Adapted mesh.
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F1GURE 6.10: Example of dynamic projection surface adaptation - Scene 2. Based on
occupancy grid information a depth extractor is applied as presented in Section 6.2. The
effects of the adaptive mesh can be observed on the gray vehicle, especially on the lower
part of the main body and wheels. Without depth information the projection surface
is set to its default shape, thus the car body and wheels are projected on the floor. On
the contrary, with correct depth information, the walls of the surface approximate well
the side of the car, providing a more intuitive representation. Top: default static mesh.
Bottom: Adapted mesh.
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F1GURE 6.11: Example of dynamic projection surface adaptation - Scene 3. Based on
occupancy grid information a depth extractor is applied as presented in Section 6.2.
The effects of the adaptive mesh can be observed on the rear parts of both vehicles.
Without depth information, the projection surface is set to its default shape, which does
not necessarily fit the real scene. Both vehicles are therefore wrongly projected on the
floor surface. On the contrary, with correct depth information the walls of the surface
approximate well the sides of the cars, providing a more intuitive representation. Top:
default static mesh. Bottom: Adapted mesh.

Figures 6.12 and 6.13 show real examples of a parking situation where the dynamic
stitching is applied. Comparison of default static seam location with dynamically

adapted solution is given that shows the level of enhancement achieved.
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FIGURE 6.12: Dynamic stitching. Based on occupancy grid information, a dynamic
stitching scheme has been designed. In areas of the render surface located within the
field of view of more than one camera a radial depth extractor function is defined
and the optimal seam location is searched such that no close-range elevated object is
intersected by it. Top: static default stitching seam. Bottom: dynamic stitching seam.
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FIGURE 6.13: Dynamic stitching. Based on occupancy grid information, a dynamic
stitching scheme has been designed. In areas of the render surface located within the
field of view of more than one camera a radial depth extractor function is defined
and the optimal seam location is searched such that no close-range elevated object is
intersected by it. Top: static default stitching seam. Bottom: dynamic stitching seam.

Figures 6.14 and 6.15 present the results obtained by applying a front inspection
view transformation. Distortions on the vertical direction are corrected while
keeping the full horizontal field of view. This transformation does not rely on depth
information and is statically computed offline, based on intrinsic and extrinsic

camera calibration data. Original images are shown for comparison.
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FIGURE 6.14: Example Front Inspection View - Scene 1. Top: original fisheye image.

Bottom: Undistorted view. Considering intrinsic and extrinsic camera calibration, no

depth information is required in order to correct camera distortion and meet verticality
constraints. This is accomplished by means of a cylindrical warping.
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FIGURE 6.15: Example Front Inspection View - Scene 2. Top: original fisheye image.

Bottom: Undistorted view. Considering intrinsic and extrinsic camera calibration, no

depth information is required in order to correct camera distortion and meet verticality
constraints. This is accomplished by means of a cylindrical warping.






Chapter 7

Discussion

In the context of driver assistance, surround view systems have gained popularity
in recent years since they can aid the driver in the tasks of parking and maneuv-
ering on a visually intuitive way. Common setups include up to four wide angle
cameras that allow for a 360° visualization around the vehicle, where areas out of

the line of sight of the driver can observed.

One of the main handicaps encountered in existing systems is the lack of real
spatial information on the available visualization. This is a common problem that

stems from the imaging process, in which depth information is lost.

The work carried out in this thesis was aimed a studying the possibility to use
the surround view cameras in combination with state of the art computer vision
algorithms, in order to estimate the spatial information that was lost during the
imaging process. The ultimate goal is to use this information to enhance the
visualization that can be presented to the driver for aiding with the tasks of parking

and maneuvering.

Certain approaches were previously proposed in literature, where mono-camera
solutions - like structure from motion - were studied for the described camera
configurations. Up to the knowledge of the author there was, however, no pre-
viously existing work on real-time stereo vision for the overlapping fields of view
of surround view cameras. This has been the main field of research for the work

presented in this thesis.

This work includes a detailed analysis of the advantages and disadvantages of
applying stereo vision techniques to camera setups where the stereo bases are as

large as on a vehicle. In particular, discussion has been presented regarding the

149
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accuracy of time synchronization and of the feature detection. A thorough model
has also been proposed to describe the existing overlap on the fields of view of

adjacent cameras, based on intrinsic and extrinsic calibration data.

The main reconstruction scheme has been designed based on epipolar rectification,
detection and matching of keypoints, and triangulation of correspondences. As a
result, robust 3D spatial information was recovered without time accumulation,

thus the update rate is given by the frame rate of the imager.

Especially relevant limitations have been detected with respect to the field of
view of the proposed system. In particular, existing four-camera setups enable
for approximately 90° overlaps only, for each pair of adjacent cameras, thus not
allowing for a complete coverage of the surrounding of a vehicle. What is more, due
to the large parallax existing between cameras, measurements cannot be conducted

on very near objects and narrow drive paths.

To overcome these limitations, new camera configurations have been proposed. In
particular, the restricted overlap on the fields of view has been addressed by means
of additional cameras mounted on the vehicle. By considering eight instead of four
cameras, distributed over the exterior of the vehicle, a coverage of approximately
360° horizontally has been demonstrated and evaluated. In a similar way, addi-
tional cameras have been mounted on the roof of the vehicle in order to improve
the detection rate on narrow drive paths and parking slots. A new polar-epipolar
rectification model has been proposed to deal with the apparent forward motion

existing in the last-mentioned camera configuration.

Given the lack of ground truth for the measurements under consideration, a 3D
laser range finder has been considered as a reference sensor. The 3D LRF can
deliver very accurate distances to reflecting 3D surfaces, with its virtual center of
projections as reference. In order to be able to compare the depth measurements
obtained by means of stereo with the reference ones, a method has been developed
to register the 3D LRF with respect to the multi-camera system. The robustness of
the registration process has been evaluated and an error metric has been proposed
to evaluate the accuracy of the stereo measurements. In all the experiments, the

proposed metric has been considered.

Once the scheme for 3D spatial reconstruction has been proposed and solutions
have been evaluated for the lateral limitations, different visualization aspects have
been discussed and analyzed with respect to the available depth information. In

particular, a novel concept has been proposed to combine occupancy information
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with image-based rendering techniques, by means of an occupancy grid and a

dynamic rendering surface.

It has been observed that dynamics on the projection surface do not come at no
cost, and new image artefacts are introduced by varying the observable density of
mesh triangles. A solution has been proposed for this, and the problem of stitching

has been discussed, also based on occupancy information.

The output visualization can be delivered to the driver by means of a display,
commonly embedded in the control panel inside the vehicle. An overview of the
complete system can be seen in Figure 7.1 that includes all stages discussed in this

work.
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FI1GURE 7.1: Depth-based surround view visualization. Depth is obtained by means of
Computer Vision and other sensors on a vehicle. Occupancy information is processed
and image-based rendering technique are conducted and shown to the driver by means
of a display. Different kinds of sensors in different configurations can be considered.
For the visualization tasks in this work, a data fusion layer is assumed that makes the
depth analysis independent from the type of sensor. The different camera configurations
utilized throughout this thesis are also shown. Red: convendtional four-camera setup,
used in Section 5.1. Green: additional cameras aimed at improving the surrounding
field of view coverage, presented in Section 5.2. Blue: additional upper cameras aimed
at performing 3D measurements on narrow drive paths and parking spaces, presented
in Section 5.3.

Based on the presented methods and configurations, a complete system can be
built. All main aspects, from camera mounting up to rendering and displying
have been addressed on this work and the basis for potential new products have

been set.

Open points still exist that could not be worked out within this thesis. In par-

ticular, initial evaluation of the proposed methods based on proprietary keypoint
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disparity estimators has shown room for improvement with respect to the open
source functionality considered for this thesis. Furthermore, a real time prototype
could not be accomplished yet due to the complexity of such systems in addition
to the algorithmical design. Aspects of the system not considered until now would
most likely become prominent under real time constraints and would have to be

addressed separately as a completely new topic.

In line with the real time prototype, the author sees special interest in conducting a
proper user experience study, where physiological conclusions can be obtained with

the accuracy and methodology that such a perception-focused project requires.



Chapter 8

Summary

The aim of this thesis was the development of new concepts for environmental
3D reconstruction in automotive surround-view systems, where information of the
surroundings of a vehicle can be displayed to a driver for assisting on the tasks of

parking and low-speed manouvering.

Different aspects of the system have been addressed, in particular, computer vision
techniques have been applied to fisheye images in order to obtain depth measure-
ments. Based on the depth measurements, a geometry analysis has been performed
that allows for render surfaces to be dynamically defined. Considering camera ex-

trinsic and intrinsic calibration, image-based rendering has also been conducted.

Restrictions with respect to the system field of view have been identified within
the present camera configuration. New camera setups have been proposed to solve
these limitations and have been evaluated with respect to a reference lidar sensor.

Based on the lidar, a ground truth generation approach has been presented.

Visual aspects of the system have been dedicated a chapter, where enhancements
were proposed. These enhancements are aimed at improving the perception of real

depth in a comprehensive manner.

Prototypic realization was carried out that shows an approximate measure of the

results achieved and prove the feasibility of the proposed concept.

In the experiments carried out throughout this thesis only automotive quali-
fied cameras have been considered in configurations equal or similar to existing
products commercially available, thus the adoption of the methods proposed could
easily be adopted by the industry. Furthermore, not only visualization systems

would benefit from this work, but many other driver assistance functions, too,
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since no degradation of other system aspects are introduced and additional accur-

ate depth information is generated based on exsisting sensors.

The density of keypoint correspondences as well as real time implementations
remain open points of this work, which could be possible future research lines.
Additionally, much work can still be done to understand the real physiological

requirements of environmental perception systems in the field of driver assistance.
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