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Chapter 1

Introduction and Overview

Over the last one or two decades most European countries have been subject to a strong and
persistent increase in their unemployment rates. In fact, the combating of obdurately high
unemployment has become one of the most urgent issues of economic policy. This
phenomenon has disturbed European economies mainly since the late 1980s or even early
1990s — a fact that on the one hand results from a strong economic performance of virtually
all Western European economies throughout the decades succeeding World War Il. On the
other hand, the countries of Central and Eastern Europe (CEE), too, have had to face large-
scale open unemployment only since the beginning of the 1990s, the time when they
embarked upon the transition process from a formerly sociaist state to a market economy.

The pertinacious occurrence of high unemployment has far-reaching consequences on
labor markets and demands adequate policy reaction. A straightforward implication is the
need to adapt — if not restructure — social insurance and unemployment benefit systems. Such
an undertaking follows from the mere increase in unemployment compensation claimants. It
affects what is commonly referred to as the passive side of labor market policy — i.e
unemployment insurance regulations. Besides merely administering unemployment, however,
most European countries have turned to attempt to actively combat unemployment by
exercising measures of so-called Active Labor Market Policy (ALMP). In very genera terms,
ALMP measures epitomize the deliberate effort at acting against unemployment by trying to
improve the chances of labor market success for the unemployed.

These active measures can be coarsely classified into three types of labor market

programs. First, training programs, such as classroom training, on-the-job training, work
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experience, or job search assistance. Second, wage subsidies to the private sector, i.e
subsidies to employers or financial incentives to workers. Third, direct job creation in the
public sector. Clearly, ALMPs are aimed at combating structural unemployment. To give but
the most general grounds for their introduction, the original policy objectives center around
the classic efficiency and equity arguments:. ALMPs are meant to (@) develop human
resources and adjust manpower resources with a view to fostering economic growth, and (b)
to enhance both employability of and opportunities for disadvantaged groups, thus
contributing to social equity (OECD 1990).

One ducidating example of this newly emerged importance of employment issues
within economic policy is the response of European Union (EU) member states to the
alarmingly high unemployment rates across Europe. In June 1997, the EU member states
agreed on the Amsterdam Treaty. The agreement included a new title on employment, which
for the first time explicitly recognized the fact that employment issues have a status equal to
that of other key aspects of EU economic policy. This marked the beginning of the European
Employment Strategy, a strategy that was further elaborated during the subsequent
Luxembourg Jobs summit in November 1997. Hence, this concerted strategic effort has
become known as the Luxembourg Process. The Luxembourg Process aims at jointly
assessing European employment policy issues by virtue of annual National Action Plans
(NAPs) and Joint Employment Reports (JERS).

The principal idea of the Luxembourg Process is straightforward. EU member states
want to engage in a joint employment policy. Therefore they declare an annual set of
employment policy guidelines that each country has to trandate into an appropriately
formulated NAP. On the basis of both the NAPs and the actual economic development
throughout the year, the annual JER reviews each country's performance and tries to give
recommendations for the upcoming set of employment guidelines. The guidelines are then
adapted and reformulated for the following year, resulting in adjusted NAPs, etc.

Nowadays measures of ALMP constitute a large proportion of each country's set of
employment policies. ALMPs are the predominant means of fighting unemployment. Hence,
they are included in the Nationa Actions Plans and play a mgor role in the effort of the
Luxembourg Process to implement a joint employment policy successfully addressing the
unemployment problem. For achieving this, however, the Luxembourg Process (by means of
the JERS) needs to identify effective policy instruments and examples of good practice across

countries. But how can we know that a policy instrument is effective? This clearly implies the
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necessity to evaluate any such program, in order to identify whether or not there is a positive
causal effect of the labor market program on the desired outcome measure. But whereas the
general objective of identifying "examples of good practice" itself aong with the feedback
structure of the NAPs and JER is desirable, even the 1998 JER has to admit that "[s]ystematic
evaluation of employment and labour market policies is still not common practice in many
Member States’ (European Commission 1998). There is thus an apparent necessity for
European economic policy to learn more about the impact of active policy interventions on
the labor market.

This thesis assesses causal effects of European Active Labor Market Policy. It does so
from a threefold perspective. First, | will give a thorough discussion of methodological issues
that arise in the venture of causa inference. This foundational analysis includes an overview
of the predominant procedures to model causation in the empirical sciences. It subsequently
focuses on a particular statistical model — that is of prevalent use in evaluation research — and
the causal queries that can be asked, and answered, within the model. Second, | place the
undertaking of combating unemployment by means of ALMP in a European context.
Following from disillusioning diagnostics on the state of European labor markets, | show that
alarge variety of active labor market programs has been implemented across countries in both
Western and Eastern Europe. The analysis proceeds to investigate the findings of scientific
evaluation research on the effectiveness of these measures, and concludes with a set of
implications for economic policy derived from these results. Third, | will present two detailed
country studies on ALMP effectiveness. These studies analyze the causal effects of three
labor market programs in Poland using the datistical method of matching, a specific
nonexperimental variant of the causal model laid out in the first part.

European governments employ ALMP to fight unemployment. Failure or success of
this endeavor can only be judged by an evaluation of ALMP effectiveness. Determining
effectiveness implies establishing a causal relation between the potential cause — the labor
market program — and the presumed effect — on some appropriate response variable indicating
labor market success. Thus, the enterprise of causal inference constitutes the core of the
evaluation problem. Causal inference, however, has once been argued by Philip Dawid to be
"one of the most important, most subtle, and most neglected of al the problems of Statistics'
(Dawid 1979). Chapter 2 of this thesis reviews contemporary approaches at modeling
causation in the empirical sciences. In fact, recent years have seen an increased discussion of

causation and causal models in econometrics, statistics, sociology, computer science, and
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epidemiology.

Looking at how causation is modeled in the empirical sciences, Chapter 2 finds that
there are three mgjor approaches. (a) Structural Equation Models, (b) Potential Outcome
Models, and (c) Directed Acyclic Graphs. Structural Equation Models (SEM) for causal
inference are mainly used in economics and the social sciences. SEM originated from path
analysis developed by geneticists in the early 20" century (Wright 1921, 1934). Pioneering
work in SEM was done above al by Haavelmo (1943, 1944) and Koopmans and Hood
(1953). This work shaped the program of the Cowles Commission and had a decisive impact
on the development of modern econometrics. In fact SEM has remained the paradigm of
causal modeling in econometrics and the social and behavioral sciences (cf. Morgan 1990,
Heckman 2000).

The Potential Outcome Model (POM) is the causal model predominant in statistics. In
the POM, units are potentially exposed to a set of treatments, and have corresponding
responses associated with each treatment. The causal relation of interest is the effect on the
outcome variable of some particular treatment relative to some other particular treatment —
frequently called the "control" treatment. Since in reality each unit can only be exposed to one
treatment, the other treatment states and associated outcomes for the single unit represent
potentialities and are expressed in terms of counterfactuals. In its essence the POM dates back
to the work of Neyman (1923 [1990], 1935) and Fisher (1935). While Neyman was probably
the first to suggest the notion of potential responses, Fisher is commonly credited for the
invention of randomized experiments. Randomized experiments constitute one possible
setting under which the POM produces valid causal inference. This notion of potentia
outcomes was extended to observational studies by Rubin (1974, 1977). Due to his
contributions the model is often referred to as the "Rubin Model”. Related work in economics
are the earnings model of Roy (1951), and models for switching regressions (Quandt 1958,
1972).

Directed Acyclic Graphs (DAGS) represent a rather recent alternative approach at
modeling causation. As DAGs are of subordinate importance for the subject of this thesis, |
will touch upon them briefly. Let me merely mention what their proponents — cf. Pearl (1995,
2000a) and Spirtes, Glymour, and Scheines (2000) — think that DAGs can contribute to causal
modeling: In their view, DAGs, by virtue of a certain graphical language, manage to make
causal relations and assumptions and implications more explicit than other approaches such as
SEM or POM.
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Starting from these foundational findings, Chapter 2 picks out the POM as the main
causal model of interest in evauation research. Looking at the model | find that it is
formulated in terms of counterfactuals. What, then, are counterfactuals? This leads me to
analyze the semantic properties of counterfactuals, and the counterfactual approach to
causation in philosophica logic. It turns out that the central element of this approach is the
notion of 'possible worlds. | proceed to connect the counterfactual-based POM with the
possible world semantics for counterfactuals, reformulating the POM and its assumptions in
terms of counterfactual statements. This procedure (i) connects statistical and philosophical
understandings of counterfactuals and (ii) adds clarity to the counterfactual nature of the
POM. The chapter then takes a closer look at this crucial notion of proximity of possible
worlds, and finds that within the POM closest possible worlds are defined a priori, and
merely differ with respect to elements of the treatment set T along with associated outcomes.
Therefore, | give a detailed discussion of T using a smple set-theoretical framework. This
analysis also elucidates which causally meaningful counterfactual questions can be asked, and
answered.

Having thus established the underpinnings of causal inference, Chapter 3 turns to the
situation on European labor markets. The desolate economic situation in terms of high and
persistent unemployment rates led European governments to introduce or enforce efforts of
combating unemployment by means of Active Labor Market Policy. But even though most
countries spend a considerable share of their budget on these measures, a thorough evaluation
of ALMP effectiveness has remained the exception. This fact is particularly obvious from a
comparison with the US, where the conscientious evaluation of policy interventions has a
long tradition due to the abiding interest of both policy makers and the American public. The
US holds abundant examples of evaluations of labor market programs in which the evaluation
effort accompanied the program from the very first step of its implementation. This
proceeding has resulted in a large body of reliable evidence on program effectiveness. Indeed,
the shape of new programs has often been determined on the basis of experiences with
previous programs. The close connection between implementation of programs and their
evaluation has also contributed to rapid advances in research methods, as these could be
directly applied.

In Europe, however, evaluation research seems to have remained in its infancy, mainly
due to a disconnection of the policy effort from scientific research. On the one hand we

observe policy makers react to the bleak situation on labor markets and engage in an
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increasing number of active policy measures. For the EU, this operation has even taken on the
official shape of the Luxembourg Process. On the other hand, European scientists have
closely followed US advances in methods and devel oped adequate tools to answer evaluation
guestions with confidence. Chapter 3 sheds further light on this juxtaposed yet separate
progress on both the "policy side” and the "science side’. A tighter connection of the two
sides would imply a great leap forward for European evaluation research and ALMP
effectiveness.

Chapter 3 highlights some further differences of ALMP evaluation between the US
and Europe, such as the prevalence of nonexperimental data in Europe as opposed to a
substantial number of results derived from randomized experiments in the US. | then proceed
to investigate a selection of European country studies in detail. Across countries, this review
entails a large variety of programs implemented, and various scientific evaluation methods
applied to assess their impact. Quite a substantial number of studies utilize variants of the
POM delineated in Chapter 2.

Various messages for the design of economic policy can be extracted from the
presented evidence. In general, estimation results indicate that treatment effects are modest at
best. Training seems to be the most promising program — if there is any —, and public sector
programs fare substantially worse than private sector programs. Among the detailed empirica
findings at least three are particularly noteworthy. First, measures of increased individua job
search assistance — such as Counseling & Monitoring in the Netherlands, or the New Deal in
the UK — seem to be promising, even though a careful targeting is imperative (van der Klaauw
and van den Berg 2000). Second, an innovative ALMP measure in Switzerland called
"temporary wage subsidy” (Gerfin and Lechner 2000) displays large positive effects. This
program encourages job seekers to accept job offers that pay less than their unemployment
benefit by compensating the difference with additional payments. In this respect it would be
interesting to see whether other countries would make similarly positive experiences with this
program. Third, it appears to be a magor distorting factor for treatment effectiveness if
program participation restores benefit receipt eigibility. As a substantial number of studies
provides evidence for this hypothesis, this is one of the more robust results of current
evaluation research in Europe. In fact it is surprising that such regulations are still common
practice in many European countries, as too generous unemployment benefit systems have
frequently been identified as one labor market feature in Europe associated with high
unemployment (cf. for instance Nickell 1997).
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One example among OECD countries exercising such regulations is Poland. In thus
conducting an empirical evaluation of Polish labor market programs, Chapters 4 and 5 of this
thesis further focus the analysis of causal effects of European ALMP on a specific country.
Similar to other countries of Central and Eastern Europe, Poland has experienced substantial
unemployment rates only since the beginning of the transition to a market economy. In order
to combat unemployment and long-term unemployment the Polish government has applied a
broad menu of Active Labor Market Policies. Within this set of ALMP three programs have
been of particular importance: Training, Intervention Works, and Public Works.

Training programs are meant to solve skill mismatch in the Polish labor market.
Workers with redundant or no skills are trained in those occupations that are presumably
characterized by strong demand of entrepreneurs from expanding sectors of the economy.
Training is thus clearly aimed at increasing participants employment probabilities by
enhancing individual human capital. In its essence, Intervention Works is a program that gives
wage subsidies corresponding to the level of unemployment benefit payments. These wage
subsidies are given to firms in the private or public sector if they hire an unemployed person.
Subsidies are the larger the longer the individua is kept on in the firm. Public Works jobs are
directly created by the government, in particular by the municipalities, and are targeted
mainly but not exclusvely a the long-term unemployed. Many of these jobs are in
construction and cleaning of public buildings, parks etc., i.e. they have alow skills content. In
principle, though, both Intervention Works and Public Works have been conceived to enhance
or maintain the human capital of participants.

Chapters 4 and 5 provide microeconometric evidence on the effectiveness of these
three ALMP measures in terms of their treatment effects on individual participants. In
assessing causal effects these chapters apply a variant of the POM. As outlined in Chapter 2,
randomized experiments are one setting under which the POM produces valid inference.
Since the empirical application is set in a nonexperimental context, it is shown that in such an
observational study matching estimators can serve as a substitute for randomization. Thus, in
chapters 4 and 5 the method of matching is used to identify the desired counterfactual.

In terms of the POM, units, treatments, and outcomes are defined as follows: The units
under consideration are unemployed individuals having either participated in an ALMP
program — these are the treated units — or having not participated in any such program. The
latter constitute the (potential) comparison units. The treatment set comprises the three ALMP

programs Training, Intervention Works, and Public Works, and a non-participation state.
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Causal effects are inferred pair-wise, in turn relating each of the ALMP programs and the
non-participation state. The outcome variable of interest captures post-treatment labor market
success in terms of employment and unemployment rates.

Using retrospective data from the 18th wave of the Polish Labour Force Survey
(PLFS) as of August 1996, the studies focus on a supplementary questionnaire containing
individual labor market histories. The data follow individuals for a period of 56 months
(January 1992 to August 1996) entailing information on their respective labor force status for
every single month. This rich information is condensed to a trinomial variable of labor market
outcome (employed, unemployed, out-of-the-labor-force).

In Chapter 4, treatment and comparison groups are matched over individual
observable characteristics and pre-treatment labor market histories. Matching proceeds using
a dynamic 'moving window' feature accounting for changing macroeconomic environment:
Each treated unit is assigned a comparison unit with identical pre-treatment history from an
equa phase of the transition cycle. Furthermore, observations on controls are from the same
regiona labor market. The study uses the trinomia labor market outcome variable described
above to analyze the effect of ALMP measures on employment and unemployment rates.
Exploiting the history structure | take into account short-term (9 post-treatment months) and
medium-term (18 post-treatment months) effects. The matching estimator implemented is a
conditional difference-in-differences estimator of treatment effects.

Findings suggest that training has a positive effect on the employment probability for
both men and women. This effect is dightly more pronounced for women. Therefore, this
ALMP measure clearly seems to improve the efficiency of the Polish labor market. Regarding
Intervention Works there is no overall treatment effect for participating women, while | report
strong negative treatment effects on the employment rates of men who took part in either
Intervention Works or Public Works (Public Works for women are not being analyzed due to
smal sample size). As participation in any of these two ALMP measures entitles the
participant to a new round of unemployment benefits, Intervention Works and Public Works
seem to be a common intermediate stage between two spells of unemployment benefit receipt,
where the individual entered the program after having exhausted his benefit digibility. Hence,
while stigmatization might have some role to play, chapter 4 attributes most of the negative
overal treatment effects of these programs to ‘benefit churning'.

While chapter 5 focuses on a similar evaluation question — the impact of Polish ALMP

on employment outcomes —, it changes perspective to a more detailed account of the matching
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procedure and the discussion of results. In particular, chapter 5 discusses three stages of an
appropriately designed matching procedure and demonstrates how the method succeeds in
balancing relevant covariates. This procedure uses three matched samples from an exact
matching within calipers algorithm imposing increasingly stronger requirements. The validity
of this approach is illustrated using the estimated propensity score as a summary measure of
balance.

Like the previous chapter, Chapter 5 also applies the conditional difference-in-
differences estimator of treatment effects based on individual trinomia sequences of pre-
treatment labor market status. In this case, however, | give a detailed discussion on the
importance of considering these pre-treatment histories as determinants of program
participation. In assessing program impact, the focus is on the short-term response only, but
instead presents a more profound account of post-treatment outcomes. Again, general findings
suggest that Training raises employment probability, while Intervention Works seems to lead
to a negative treatment effect for men. The in-depth discussion of results finds that
appropriate subdivision of the matched sample for conditional treatment effect estimation can
add considerable insight to the interpretation of results. For instance, it turns out that the
overall negative impact of Intervention Works is amost exclusively due to the dismal post-
treatment labor market performance of male participants, and that the full sample effects are
driven by those individuals whose pre-treatment labor force status history consists of a
sequence of unemployment.

In short, the remainder of this thesis is organized as follows. Chapter 2 considers the
foundations of causal inference in the empirical sciences. It sketches three different ways of
modeling causation, and gives an in-depth account of the one causal model predominant in
evaluation research, i.e. the Potential Outcome Model. This account shows what causally
meaningful counterfactual questions can be asked, and answered. Chapter 3 considers Active
Labor Market Policy in a European context. | delineate the status quo of European labor
markets and the resulting urge of policy makers — exemplified by the Luxembourg Process —
to introduce active labor market measures to combat high and persistent unemployment.
Parallel to that, scientific evaluation research has come to answer evaluation questions with
confidence. | present recent state-of-the-art evidence on ALMP effectiveness derived from
academic research, and argue for an enforced inclusion of such research in the political
process. Chapter 4 narrows the scope on a particular OECD country and transition economy
and presents an evaluation of ALMP in Poland. Applying a specia variant of the causal
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model outlined in Chapter 2, the analysis implements a conditional difference-in-differences
estimator of treatment effects. Considering as the outcome a trinomia variable of labor
market status, the main findings suggest that Training has a positive effect on employment
probability for both sexes, while Intervention Works display strong negative effects for men,
and zero impact for women. This finding is underpinned by the complementary analysis of
chapter 5. Here | discuss three stages of an exact matching within calipers approach, and how
the method succeeds in balancing relevant covariates. Further attention is given to pre-
treatment labor market histories as the main determinants of program participation. | argue
that appropriate subdivision of the matched sample for conditional treatment effect estimation

can add considerable insight to the interpretation of results. Chapter 6 concludes.



Chapter 2

On the Role of Counterfactuals

In Inferring Causal Effects of Treatments

Abstract. Causal inference in the empirical sciences is based on counterfactuals. This chapter
presents the counterfactual account of causation in terms of Lewis's possible-world semantics,
and reformulates the statistical potential outcome framework and its underlying assumptions
using counterfactual conditionals. | discuss varieties of causally meaningful counterfactuals
for the case of a finite number of treatments, and illustrate these using a simple set-theoretical
framework. The chapter proceeds to examine proximity relations between possible worlds,

and discusses implications for empirical practice.
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In spite of all the evidence that life is discontinuous, a valley of rifts, and that random chance
plays a great part in our fates, we go on believing in the continuity of things, in causation and
meaning.

— Salman Rushdie, 'the ground beneath her feet' —

2.1 Introduction

Recent years have seen an increased discussion of causation and varieties of causal models in
the fields of econometrics, statistics, computer science, epidemiology, and sociology. Leaving
for the moment the century-lasting discourse on accounts of causation in philosophy aside — |
will get back to this at a later stage — this increased research on matters of causation in the
above-mentioned fields has led to three major approaches to modeling causation currently
dominating the debate on causal inference. These are (a) Structural Equation Models (SEM),
(b) Potentiad Outcome Models (POM), and (c) Directed Acyclic Graphs (DAG). In this
section, | will first give brief introductions to all three approaches, and then discuss somewhat
further how they are perceived in the academic community. Subsequently | will focus on the

scope of this chapter, its foundations and contributions.

2.1.1 Modeling Causation: Three Approaches
Structural Equation Models (SEM) as an approach to causation are mainly used in economics
and the social sciences. SEM has its origin in path analysis developed by geneticists (Wright
1921, 1934). Founding work in SEM has been done by Haavelmo (1943, 1944) and
Koopmans and Hood (1953), work that defined the program of the Cowles Commission and
set the stage for modern econometrics (cf. Morgan 1990, Heckman 2000). In fact, SEM has
remained the paradigm of causal modeling in contemporary econometrics and the social and

behavioral sciences. A set of equations

Y=Xb +e

IS meant to represent a stochastic model in which each equation represents a causa link
(Goldberger 1972). All causal connection between Y and X is captured by b, and we infer the

causal effect of variation of one element of X relative to its value before variation — holding
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al other elements of X constant — on Y relative to its value before variation of X. The "all-
other-elements-constant”-clause is well known in economics as the ceteris paribus condition,
and in its core goes back to Alfred Marshall (1890 [1965]).

The Potential Outcome Model (POM) of causation predominant in statistics describes
a setting in which units are potentially exposed to a set of treatments, and have corresponding
outcomes or responses associated with each treatment. The causal connection of interest is the
effect on the outcomes of some particular treatment relative to some other particular treatment
(often called "control” treatment). Since in reality each unit can only be exposed to one
treatment, the other treatment states and associated potential outcomes for the single unit are
counterfactuals. In its essence the POM dates back to the work of Neyman (1923 [1990],
1935) and Fisher (1935). Fisher is commonly credited for the invention of randomized
experiments, while Neyman was probably the first one to use a model for a treatment effect in
which each unit has two responses. Mgjor contributions to the development of the model
include Cox (1958), Cochran (1965), and above all Rubin (1974, 1977), who was the first to
apply the potential outcome framework to observational studies. See a'so Rosenbaum (1995a)
for further discussion. Due to Rubin's contributions the model is frequently referred to as the
"Rubin Moddl". Related work in economics are models for switching regressions (Quandt
1958, 1972) and the earnings model of Roy (1951). Due to the latter, economic applications
occasionally call the POM the "Roy-Rubin-Model".

The use of Directed Acyclical Graphs (DAGS) to assess causal questions is a rather
recent phenomenon. The main proponents of graphical approaches to causation are Spirtes,
Glymour, and Scheines (2000, first edition 1993) and Pearl (1995, 1998, 2000a).% It is
difficult to discuss the functioning and mechanisms of DAGs in just a few phrases — for an
introduction see the mentioned papers and books. Rather, | want to describe what their
advocates think DAGs are aimed at: They are amed at making causal relations and
assumptions and implications in causal models more explicit, in particular more explicit than
— in the view of its proponents — other approaches. For instance, Pearl (2000a) claims that
recent advances in DAGs have transformed causality from "a concept shrouded in mystery”
into a mathematical object with well-defined semantics and well-founded logic. This is

another aim of the graphical approach, namely to provide causal talk with a common language

! Robins (1986, 1987) offers a graphical approach within the framework of a general counterfactual causal
model, related to the POM. See Robins (1995) for how this relates to Pearl's (1995) approach, and see, for
instance, Greenland (2000), Robins and Greenland (2000), Pearl (2001) as starting points of the literature on
causal inference in epidemiology and the health sciences.
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helping researchers communicate (Pearl 1995, 1998), an aim that DAGs do not yet live up to
in the view of everybody — see the discussion of Pearl (1995), in particular Imbens and Rubin
(1995) and Rosenbaum (1995b). Pearl (2000a) strongly emphasizes the gain in clarity and
explicitness gained from causa models based on DAGs in his view. For better or worse, his
conclusion is that due to DAGs "causality has been mathematized" (Pearl 2000a).

Naturally, different approaches to questions of causation are viewed differently by
proponents of different approaches. For instance, perceptions of SEM as an adequate
approach to causation diverge strongly. Pearl (1998) unfolds the idea that the original
conceptua strength of SEM along with the clear conception of it among its founding fathers
has been lost since, or at least become "obscured”. In his perception, social and behavioral
scientists — including economists — nowadays struggle for an understanding of either b, or the
error term, or both (see Pearl 1998 for examples). In his belief, "the causal content of SEM
has gradually escaped the consciousness of SEM practitioners' (Pearl 1998) for two reasons:
(i) SEM practitioners have kept causal assumptions implicit in order to gain respectability for
SEM, because statisticians, "the arbiters of respectability”, abhor assumptions that are not
directly testable, and (ii) SEM lacks the notational facility needed to make causal
assumptions, as distinct from statistical assumptions, explicit. The latter point means that the
SEM founding fathers thought of the equality sign as the asymmetrical relation "is determined
by" rather than an algebraic equality, but did not invent a distinct sign for this relation. They
were aware of this distinction in meaning, but now their descendants seem to have lost this
clear conception — for more on this issue see Pearl (1998), who clearly develops this idea to
contrast it with DAGs as a more coherent tool of causal language.

On the other hand, Heckman (2000) is a clear proponent of SEM and forcefully
stresses the major role that econometric analysis played in the twentieth century anaysis of
causal parameters:

A maor contribution of twentieth century econometrics was the recognition that
causality and causal parameters are most fruitfully defined within formal economic
models and that comparative statics variations within these models formalize the
intuition in Marshall's [notion of a ceteris paribus change] and most clearly define
causal parameters.

This is how economists define causal effects.>® Heckman (2000) argues that the statistical

21t is a bit puzzling, though, that Heckman (2000, p.56) correctly defines causal effects in SEMs as partial
derivatives (or as finite differences of some factor holding other factors constant), but previously (p.53) speaks
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POM is simply a version of the econometric causal model.* This is in line with his finding
that the definition of a causal parameter does not require any statement about what is actually
observed or what can be identified from data. A finding that also the SEM founding fathers
would have subscribed to, as Pearl (1998) refers to Haavelmo (1943) who explicitly interprets
each structural equation as a statement about a hypothetical controlled experiment. Here it
becomes clear that the ideas of SEM and POM are not at al so far apart. In fact, a system of
structural equations is a system of functions from inputs to potential outcomes (cf. aso
Greenland 2000). Fortunately, recent years have seen substantial convergence of methods
from statistics and econometrics along with increased discourse between the two fields, even
though some controversy on who deserves credit for what will most likely remain (cf.
Heckman and Hotz 1989, Heckman 1996b, Heckman 2000, and Holland 1989, Rubin 1986,
1990, Angrist, Imbens and Rubin 1996).

In summary, one cannot but highly appreciate the vivid debate on causation in the
various fields, the expanding amount of causal models suggested, and the many analogies,
connections and distinctions that have been drawn between models from different fields. And
while one might well wonder whether optimism such as the one recently expressed by
Greenland (2000) — "[T]he near future may bring a unified methodology for causal analysis' —
seems justified, we do appear to have overcome previous pessimism such as the one
expressed by Pearl (1997): "Currently, SEM is used by many and understood by few, while
potential-response models are understood by few and used by even fewer." At least, the
number of applications has increased substantially; the "understanding” part, though, 1 would

not feel confident to make any judgements aboui.

2.1.2 Counterfactuals and Causation
Causation has been a mgjor field of philosophical discussion since at least the pathbreaking
works of David Hume (1740a [1992], 1740b [1993], 1748 [1993]), disregarding for the
moment early works on causes and effects by the Greek philosophers such as Aristotle and
others. Indeed, history has seen an abundance of philosophical approaches to causation, and

virtualy al of them had repercussions on or counterparts in other scientific fields. The

of "marginal causal effects’. The derivation given there defines the causal effect. There is no such thing as a
marginal causal effect.

3 A different concept of causation in econometrics is Granger causation, which | will not discuss in this chapter.
See Granger (1969) for the original account, and, e.g., Holland (1986), Granger (1986), Sobel (1995) for
discussion.

4 The formal equivalence of POM and recursive SEMs has been established by Galles and Pear| (1998).
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deterministic account of causation of David Hume demanded temporal priority, spatio-
temporal contiguity, and constant conjunction as constituent components of a cause-effect
relationship. Ideas that fit quite well with Newton-type mechanics. The other way around:
Quantum mechanics did force philosophers to re-think possible theories of causation and
consider incorporating probabilistic elements (cf. Skyrms 1984). Such a probabilistic account
of causation also displays close intertwining between philosophy, statistics, and econometrics
(cf. Samon 1980, Skyrms 1988, Sobel 1995). These incidents of feedback in both directions
are manifold between philosophy and other fields.

The volume edited by Sosa and Tooley (1993a) gives an excellent overview of
different approaches to causation by various contemporary philosophers, including
discussions of the problems inherent to each approach, and to a philosophically structuralist
account of causality in general. One of the most remarkable approaches to causation has been
the one suggested by David Lewis. Lewis (1973a) developed possible world semantics for
counterfactual conditionals, and proceeded to ground his theory of causation on these
counterfactuals (Lewis 1973b and 1986).

Causal inference in dtatistics is based on counterfactuals. In general this view is
uncontroversial. A recent approach to causal inference without counterfactuals suggested by
Dawid (2000) has met pronounced rejection — cf. the discusson of Dawid (2000), in
particular the comments by Pearl (2000b) and Robins and Greenland (2000). The POM has
remained the most prominent approach to causal inference in statistics. The previous
subsection has aready sketched the basic notions along with the historical evolution of the
model. The fact that the POM is based on a counterfactual notion of causation has first been
pointed out by Glymour (1986) in his discussion of the seminal paper on causa inference in
statistics by Holland (1986). However, to my knowledge there has been no further effort to
explicitly link the POM and the account of Lewis, even though the mere fact that there indeed
isalink has been stated occasionally, and the notion of "closest possible worlds® is common
in talk about causation (cf., e.g., Dawid 2000, Robins and Greenland 2000). The only explicit
link I know of is made in Galles and Pearl (1998) who give an axiomatic characterization of
causal counterfactuals in comparing logical properties of counterfactuals in structura
equation models and Lewis's closest-world semantics.

Why is it that this link has been kept implicit and statistics has sought so little
guidance in the philosophical account of counterfactual causation? Some might argue that the
POM is a well-defined causal model that does not need further metaphysica or logica
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underpinning. On the other hand, Pearl (1997) ascribed the — in his viewpoint — perceived
failure of the POM to become standard language in statistical inference to it resting "on an
esoteric and seemingly metaphysical vocabulary of counterfactual variables that bears no
apparent connection to ordinary understanding of cause-effect processes." Given the
pervasive number of recent applications, the reluctancy has disappeared. Or has it? In any
case, a fundamental assessment of counterfactuals and their role in causal inference can
clarify any researcher's thoughts on causation, the importance of which cannot be overstated
(Sobel 1995).

Are counterfactuals "esoteric and metaphysical” entities? And does the idea that they
are based on comparative similarity relations between worlds clarify much? Lewis (1973a)
replies to the possible objection that these conceptions might be "unclear” with saying that
"unclear" is unclear, and drawing the distinction between "ill-understood” and "vague".
Counterfactuals and comparative similarity are not ill-understood concepts: they are vague —
very vague indeed —, but in a well-understood way (Lewis 19734).

This chapter concentrates on the counterfactual-based nature of the POM. There have
been other connections of causes and counterfactuals (Simon and Rescher 1966) and logical
theories of counterfactual conditionals (Stalnaker 1984), but — as mentioned above — the
outstanding protagonist has been David Lewis with his account of counterfactual logic based
on possible-world semantics (Lewis 1973d), a theory on which he then based his theory of
causation (Lewis 1973b). Subsequent criticism on some details of his account led him to
refine and supplement his origina theory, including probabilistic elements, i.e. "chancy
counterfactuals’ (Lewis 1986).° From the perspective of those applying the POM there is need
to further investigate its underlying counterfactual nature, and to clarify the counterfactua

semantics that the model — implicitly — uses to infer causal relationships.

2.1.3 Chapter Outline
This chapter contributes to the literature on causation in explicitly linking the POM and
Lewis's account, and in delineating which counterfactual causal questions can be asked, and
answered, within the model. The procedure is as follows: | start with looking at how causation
is modeled in the empirical sciences and find that there are three major approaches. SEM,
POM, and DAG. | pick out the POM as the main causal model of interest in evaluation
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research. Looking at the model | find that it is formulated in terms of counterfactuals. What,
then, are counterfactuals? This leads me to analyze the semantic properties of counterfactuals,
and the counterfactual approach to causation in philosophical logic. It turns out that the
central element of this approach is the notion of 'possible worlds. | proceed to connect the
counterfactual-based POM with the possible world semantics for counterfactuals,
reformulating the POM and its assumptions in terms of counterfactual statements. This
procedure (i) connects statistical and philosophical understandings of counterfactuals and (ii)
adds clarity to the counterfactual nature of the POM. The chapter then takes a closer ook at
this crucial notion of proximity of possible worlds, and finds that within the POM closest
possible worlds are defined a priori, and merely differ with respect to elements of the
treatment set T along with associated outcomes. Therefore, | give a detailed discussion of T
using a smple set-theoretical framework. This analysis also eucidates which meaningful
counterfactual questions can be asked, and answered.

The remainder of this chapter is organized as follows. The second section presents the
counterfactual account of causation in terms of Lewis's possible-world semantics. It describes
the most prominent features of the theory and includes a short assessment of potential
metaphysical shortcomings — or, rather, an assessment of general obstacles for theories of
causation, and how Lewiss account addresses these. This comprises a concise review of
chancy counterfactuals. Section 2.3 unfolds the POM and its assumptions and reformulates it
using the — de facto underlying — ideas of counterfactual conditionals presented in section 2.2.
In this respect, sections 2.2 and 2.3 belong together in focussing on foundational aspects of
the model.

Sections 2.4 and 2.5 dlightly change perspective towards a more applied viewpoint.
The fourth section delineates how possible counterfactual worlds within the POM differ only
with regard to particular treatments and corresponding responses. In general the model alows
for finite T, but both theory and practice have focused on only two elements within T,
"treatment” and "control”. Thisis intuitively appealing, as a causal effect can only be inferred
for one treatment relative to some other treatment. However, as recent results in evaluation
research, eg., have made explicit extensions to multivalued treatment settings in
observational studies possible (Imbens 2000, Lechner 2001a), it appears imperative to discuss

various issues that arise for causal inference with finite T and relevant counterfactual queries.

® In fact Lewis recently suggested further refinement (Lewis 2000). For the discussion in this chapter, however,
only the main results from his original theory are relevant. The ongoing discussion is more important from a
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Section 2.4 thus presents a set of meaningful counterfactuals, and includes some examples for
illustration. A third subsection proceeds to consider notions about proximity relations between
possible worlds. 1 will show that the empirical procedure assumes or constructs closeness
ensuring that only the factor we manipulate is different between worlds. If the assumption
holds, then closeness is ensured, then the counterfactual conditions hold and the model
produces valid inference. The fifth section gives more details on a few specific problems that
could arise in practice — this section might be of interest above all for applied socia scientists

using matching methods. Section 2.6 concludes.

2.2 The Counterfactual Account of Causation

Many philosophical discussions of causation begin with — or entail at some stage — the
probably most famous quote of David Hume, and present the puzzle which the quote

COMprises:

[...T]herefore, we may define a cause to be an object, followed by another, and where
all the objects, similar to the first, are followed by subjects similar to the second. Or in
other words, where, if the first object had not been, the second never had existed.
[Hume 1748 [1993], his italics]

Of course it is not puzzling in the sense that Hume's work represents the foundation of the
analysis of causation. His writings — including the major Hume 1740a [1992] — have shaped
the examinations of the principles of causation until today. On the other hand, the cited
passage is puzzling in the sense that Hume certainly was aware of the regularity-based nature
of his first definition, but apparently not of the counterfactual nature of his alternative
definition.

Counterfactuals therefore did not play any role in Hume's understanding of causation,
and in fact it was not until the 1970s that the link between counterfactuals and causation
became object of athorough philosophical analyses. Before, philosophers had been concerned
enough with such a vague concept like counterfactuals themselves — cf. Menzies 2001a for a
concise review of early counterfactual theories.

The better understanding of a counterfactual approach to causation was basically due

strictly philosophical point of view (cf. Menzies 2001b).
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to the development of possible world semantics for counterfactual conditionals by Robert
Stalnaker (1984) and David Lewis (1973a, 1986). As the concept of possible worlds plays an
important role in this chapter, | will review the basic ideas in some detail. The discussion is
along the line of thought suggested in Lewis (1973a and 1973b) and further refined in Lewis
(1986). "Along the line of thought" in this context means that there are many aspects in the
philosophical assessment of causation that are of minor interest to econometricians,
statisticians, and social scientists. Philosophical approaches to causation have always tried —
or, rather, have always had to try — to give a metaphysical account fundamentally explaining
how causation works in our world. Needless to say that there have always been possible
objections and counterexamples to each 'structuralist' theory of causation, that the presented
theory could not grasp (cf., e.g., Sosa and Tooley 1993b). The empirical sciences however, do
not need a causal theory that explains how causal processes work under each and every
circumstances in our world. A 'realist’ or 'reductionist’ approach is sufficient: Clearly, specific
questions like whether it is the table top that causes the table feet to have exactly the length
they have, or whether it is rather the table feet causing the table top to assume the spatio-
temporal position it occupies, or maybe both, are of subordinate importance. Also, discussions
about direction of time in a cause-effect relationship are of minor concern, as a situation in
which the effect precedes its cause is extremely unlikely in the empirical sciences.®

This chapter therefore focuses on those aspects of a counterfactual theory of causation
in terms of possible worlds that are of direct use to empirical social scientists. It is both
impossible to include a full metaphysical account of this theory, or even to come anywhere
near a fair metaphysical account, as well as unnecessary in the given context. | would hope
that philosophers would nevertheless agree with (&) the main points | extract from Lewis's
theory, and (b) the claim that thinking along these lines can considerably help to sharpen any

researcher's thoughts on causal inference based on counterfactuals.

2.2.1 Possible World Semantics
Lewis's theory of causation employs possible world semantics for counterfactual conditionals,
providing truth conditions for counterfactuals in terms of relations between possible worlds.

Again, in this exposition we need not worry about the realism of these possible worlds,

6 To take an example from economic evaluation of policy interventions: Even if an individual participates in a
program because of her expecting the program to raise future earnings, it is not the (potential) future earnings
that may have caused her to participate, but the thought (in the present) of the program raising the earnings.
Expectation, though directed at the future, is very much a concept of the present.
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whether they are "maximally consistent sets of propositions’, or "theoretical entities having
no independent reality”, etc. (cf. Menzies 2001a). Regardless of metaphysical subtlety they
provide us with a useful framework of causal thinking.

This section considers the deterministic perspective. Possible world semantics for
counterfactuals are based on the main idea of comparative similarity between worlds. Given a
set of worlds W, according to Lewis (1973b) one world w T W is closer to a given world w
I W than another world we T W if w resembles w more than w resembles w. Naturally,
this notion of closeness is based on the idea of w being the actual world, and defining w,wi
T W with respect to their proximity to actuality’. Lewis imposes two formal constraints on
this similarity relation: (i) It produces a weak ordering of worlds such that any two worlds can
be ordered with respect to their closeness to the actual world, where "weak" implies that ties
are permitted, but any two worlds are comparable. (ii) The actual world is closest to actuality,
resembling itself more than any other world does.

For any two propositions C and E, define the following counterfactual conditionals:

(2.1a) CF> E "If C were (had been) the case, then E would be (have been) the case."®

and

(2.1b) ~CLl—= ~E "If C were not (had not been) the case, then E would not be (not have

been) the case.”

Then the counterfactual conditional C [ E is characterized by the following truth

condition in terms of the similarity relation:

(22) CLI—= Eistrueataworldw 1 W iff either (i) there are no possible C-worlds or (ii)

! "Actuality” meansthe "world of point of view", i.e. "actual" refers at any world w; to that world w; itself. Lewis
(1973a): "Actual’ is indexical, like 'I' or 'here', or 'now': it depends for its reference on the circumstances of
utterance, to wit the world where the utterance islocated.” The actual world is only one world among others, and
we call our world "actual” because it is the one we inhabit, not because it differsin kind from all the rest (cf.
Lewis 1973a).

8 »[I" represents a necessity operator or 'would'-counterfactual. | have omitted the consideration of the

possibility operator or ‘'might'-counterfactual "&', from the discussion. In terms of the truth conditions for

counterfactuals, "[I" implies truth at all accessible (from the actual world) worlds, while "&" implies truth only

at some accessible worlds (cf. Lewis 1973a). Causal inference in the social sciences is exclusively interested in
the 'would'-counterfactual.
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some C-world where E holds is closer to w than any C-world where E does not hold.

(i) is the triviad case and implies that the counterfactual is vacuously true. From the
perspective of w being the actua world, the idea of (ii) is that C LJ— E is (nonvacuously)
true in the actual world if it takes less of a departure from actuality to make the antecedent
true aong with its consequent, than it does to make the antecedent true without the
consequent (Lewis 1973b). Under the assumption that there must always be one or more
closest C-worlds this condition simplifiesto C LI E being nonvacuoudly true iff E holds at
all the closest C-worlds.

Example A. The classic illustration of Lewis (1973a): "If kangaroos had no tails, they
would topple over."

Lewis (1973a) underscores this exemplification in explaining what he thinks that such a
counterfactual sentence is supposed to mean: "In any possible state of affairs in which
kangaroos have no tails, and which resembles our actual state of affairs as much as kangaroos
having no tails permits it to, the kangaroos topple over". This statement entails most of what
the analysis of counterfactual conditionals is about, namely that a counterfactua sentence
corresponds to an actua state of affairs, and that the counterfactual is true if it deviates from

actuality only to minimum extent.

Example B. Assuming that it characterizes minimum deviation from actudity, the
counterfactual "If John participated in the computer course, he would find a job" is
true corresponding to the actua state of affairs in which John does not participate in
the computer course and does not find a job.

So far this principal idea considers propositions, not events. Lewis (1973b) extends this
setting by pairing the two: To any possible event e there corresponds the proposition O(e) that
holds at all and only those worlds where e occurs. Thus, O(e) is the proposition that e occurs,
i.e. O(e) is a sentence describing the occurrence of the particular event e, and counterfactual
dependence among events is simply counterfactual dependence among the corresponding

propositions. We then have a definition of causal dependence:

(2.3) Let candebetwo distinct possible particular events. Then e causally depends on c iff
O(c) L O(e) and ~O(c) L= ~O(e).
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This condition states that whether e occurs or not depends on whether ¢ occurs or not. The
dependence consists in the truth of the two counterfactuals O(c) L= O(e) and ~O(c)
[F—= ~O(e). Consider two cases. firgt, if ¢ and e do not actually occur, then the second
counterfactual is automatically true because its antecedent and consequent are true. Thus, e
depends causally on c iff the first counterfactual holds, i.e., iff e would have occurred if ¢ had
occurred. Second, if ¢ and e are actual occurrent events, it follows from the second formal
condition on the comparative similarity relation (cf. above) that the first counterfactual is
automatically true, because the condition implies that a counterfactual with true antecedent
and true consequent is itself true. Thus, e depends causaly on c iff, if ¢ had not been, e never
had occurred. Thisis exactly Hume's second definition of causation.
To put it smply:

(2.39) c causes e iff both ¢ and e are actua occurrent events and if ¢ had not occurred then e

would not have occurred.

Or, using the possible world semantics for counterfactuas:

(2.3b) c causes e iff both O(c) and O(e) are true in the actual world and in the closest (to the

actua world) possible world in which O(c) is not true, O(e) is not true.

2.2.2 Chancy Counterfactuals

What about this counterfactual theory if causation was probabilistic rather then deterministic?
It appears natura to compare the counterfactual account of causation — be it from a strictly
philosophical viewpoint (Lewis 1973b) or from a statistical perspective (cf. Holland 1986,
1988a, and see below) — with aternative approaches that identify causal dependence in terms
of probabilistic relations. There is a rich philosophical literature addressing probabilistic
causality in various forms, cf. Reichenbach (1956), Good (1961, 1962), and Suppes (1970) for
three classic theories, but also Salmon (1980, 1998) and Suppes (1984), among others.

Probabilistic concepts of causality are used in innumerable contexts of everyday life
and science.’ They have the advantage that they can indeed accommodate many of our
everyday experiences, that they appear to make it easy to understand how we can have
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knowledge of causal relations, in particular in cases where we seem to observe causation, but
no determination. As Glymour (1986) puts it: "Technical details aside, causal inference
becomes a datistical estimation problem.” Could it possibly sound any better to
econometricians? But on the other hand, probabilistic concepts of causality have the
disadvantage that they do not always coincide appropriately with our intuitive judgements
about causal relations, and that causation in terms of percentages may be difficult to conceive.

Nevertheless, contemporary physics — here: quantum mechanics — tells us that our
world is full of probabilistic processes that are of causal character (cf. Lewis 1986; or Skyrms
1984 for a discussion of the implications for causality of the Einstein-Podol sky-Rosen (1935)
paradox). Thus, Lewis (1986) argues that a theory of causation must accommodate the
conceptual possibility of chancy causation. He combines his counterfactual theory of
causation with elements of probabilistic concepts, and defines a more genera notion of causal

dependence in terms of chancy counterfactuals.

(24) CLI= Pr(E)=x "If C were the case, then E would be the case with probability x"

The counterfactual is thus an ordinary world counterfactual that can be interpreted according
to the semantics above. The Pr operator is a probability operator with narrow scope confined
to the consequent of the counterfactual. In this context, the definition of causal dependence

becomes:

(25) Let cand e betwo distinct possible particular events. Then e causally depends on c iff,
if ¢ had not occurred, the probability of €'s occurring would have been much less than

it actually was (given that ¢ occurred).

Obvioudly this definition comprises the deterministic causal relation in which the probability
of the effect along with the cause is 1 and the probability of the effect without the cause is 0.
Chancy counterfactuals are thus a straightforward extension to "normal™ counterfactuals. For
further discussion of probabilistic concepts of causation see, for instance, Hitchcock (1997),
Skyrms (1988) and references therein, and Sobel (1995) for the connection to causal inference

in the socia sciences.

9 Cf. Salmon (1980) both for an account of the three classic theories as well as a number of illustrative examples.
To name but one: "We have strong evidence that exposure to even low levels of radiation can cause leukemia,
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2.2.3 Applicability
In this subsection | will briefly review some of the problems that arise or need to be addressed
in (philosophical) theories of causation. In particular, | will discuss event causation, spurious
non-causal dependence, temporal asymmetry, as well as transitivity and preemption.

Above we adopted a definition of causal dependence relating two events. It is,
however, not evident that it is events that are the fundamenta relata of causal dependence.
The philosophical literature clearly distinguishes between event causation and causal theories
based on facts or state of affairs (cf. Bennett 1993). Moreover, it implies the necessity to
define a certain notion of what is an event — cf. for instance Lewis (1986) for his construction
of events as classes of possible spatiotemporal regions. But in general this problem does not
arise in the applied social sciences. First, Menzies (2001a) states that even under a
metaphysical perspective very different conceptions of events are compatible with the basic
definition of causa dependence in terms of counterfactuals. Secondly, it appears
straightforward to incorporate the events of interest in empirical research — such as, e.g., a
training program, medical treatment, etc. — into the above framework of event causation.

Another element of the above definition requires the causally dependent events to be
distinct from each other. This feature rules out what is called spurious non-causal dependence.
Consider an example from Kim (1973): Writing the letter "r" twice in succession is a
congtituent event in the event of writing "Larry". Thus. "If | had not written 'r' twice in
succession, | would not have written ‘Larry".” The counterfactua is true, but there is no causal
relation between the events. But since the events are not distinct from each other, the relation

does not count as causal dependence.

Example C. In econometric evaluations of employment programs one occasionally
finds puzzling statements of the sort that the program "increased significantly the
employment [...] during the period of program participation” (Fraker and Maynard
1987, my italics). Clearly, it is impossible to disentangle causal dependence from
spurious non-causal dependence if the potential cause (=being employed) is not
distinct from the potential effect (=being employed).

What is the temporal structure of causation? As socia scientists, both our intuition and the
analyses that we deal with in practice suggest clearly that causes would typically precede their
effects. But why do we commonly associate causal relations with the temporal direction from
past to present or future? Lewis (1979) addresses this point and indeed argues that the

though only asmall percentage of those who are so exposed actually develop leukemia."
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direction of causation is the direction of causal dependence, and that it is typically true that
events causally depend on earlier events, but not on later events. He notes, however, that the
conceptual idea of time-reversed or backward causation cannot be ruled out a priori.

| do not intend to go deep into this analysis, cf. Lewis (1979) and Horwich (1993) to
grasp the maor issues, but | do want to note the two main points emerging from the
discussion: (i) Lewis (1979) defines a determinant for an event as any set of conditions jointly
sufficient — given the laws of nature — for the event's occurrence. Looking from the two
directions of time, determinants can be causes or traces of an event. Any particular fact about
a deterministic world is predetermined throughout its past and postdetermined throughout its
future. Lewis (1979) observes it to be contingently true that events typicaly have very few
earlier determinants but very many later determinants'®. This is caled asymmetry of
overdetermination.

Lewis (1979) combines this de facto temporal asymmetry of causal dependence with
(if) his analysis of the comparative similarity relation between worlds. The comparative
similarity analysis implies that the most similar worlds are those in which the actual laws of
nature are never violated, and exact similarity regarding particular matters of fact in some
gpatiotemporal region is an important element of similarity if it can be ensured by a small,
local miracle, rather than at the cost of big, global miracle. In connection with the asymmetry
of overdetermination, this argument (cf. Lewis 1979, Menzies 2001a for details) implies that
it is easier to reconcile a hypothetical change in the actual course of events by preserving the
past and allowing for a divergence miracle than by shielding the future from change by virtue
of a convergence miracle. The main result here is that — given the asymmetry of
overdetermination — the present counterfactually depends on the past, but not on the future.

It has to be noted that — strictly speaking — Lewis (1973b) uses the definition given in
(2.38) and (2.3b) only as a definition of "causal dependence among actual events'. His actual
definition of causation is based on the notion of causal chains. Lewis (1973b) states that
causal dependence between actua events is sufficient for causation, but not necessary. As it
can happen that three actua events c, d, and e are of the form that d would not have occurred
without ¢, and e would not have occurred without d, but e would still have occurred without c,
causal dependence may not be transitive. Nonetheless, Lewis (1973b) insists that causation

must always be transitive, i. He therefore extends causal dependence to a transitive relation,

10 An example (Menzies 2001a): A spherical wave expanding outwards from a point source is a process where
each sample of the wave postdetermines what happens at the point at which the wave is emitted.
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where ¢, d, g, ... is afinite sequence of actual particular events such that d causally depends

onc, eond, etc. This he calls causal chain. The definition of causation then becomes

(26) cisacauseof eiff $ acausa chainleading from ctoe.

This definition ensures transitivity of causation, and it provides a solution to the problem of
causal preemption. Causal preemption takes place when the cause of an event preempts
something else from causing that event (cf. Horwich 1993 or Menzies 2001b for examples).
Using definition (2.6) it is possible, however, to distinguish preempting actual causes from

preempted potential causes.

2.3 The Potential Outcome Model for Causal Inference:

A Reformulation

The statistical model called POM — based mainly on work by Neyman (1923 [1990], 1935),
Fisher (1935), Cox (1958), Cochran (1965) Rubin (1974, 1977, 1978, 1980, 1986) — provides
a solid ground for causal inference in experimental and observational studies. As it is
implicitly cast into a counterfactual framework, it directly relates to — or: is grounded on —
many of the aspects of counterfactua logic presented in the previous section. | will give a
fairly detailed review of the basic model, and show how it is connected to the possible world
semantics presented above. Much of the presentation of the original POM is based on the

discussions in Holland (1986, 1988a), since these provide a very clear account of the theory.

2.3.1 The Causal Model
The logica elements of the POM are a quadruple of the form {U, T, D, Y}. These four
elements congtitute the primitives of the model. U is a population of N units u [u,...,uy] , T is
aset of M treatments™® t [ty,...,tm] to which each one of the units u may be exposed, D(u)=t

| chose to stick to the formulation of treatment, rather than, e.g., calling it a"cause" (Holland 1988a) for two
reasons. (i) The empirical context of the POM that we are interested in is exactly that of 'treatments' like
medicaments in health sciences or policy interventions such as training courses in the social sciences. (ii) From
an intuitive linguistic perspective a cause implies an effect. A priori we do not know whether an effect will be
observed, the cause of which we desire to infer. So, from the point of view that we do not yet know about an
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indicates that unit u is actually exposed to a particular treatment t out of T, and Y (u,t) equals
the value of the outcome that would be observed if unit u T U were exposed to treatment t 1
T.Uand T are sets, D isamapping of U to T, and Y (.) isin genera areal-valued function of
(u, d).

Note that the response variable Y depends on both the unit u and the treatment t to
which the unit is exposed. If u were exposed to somet, T T, we would observe the value of
the outcome Y (u,ty), and if u were exposed to somet, I T, the observed response value would
be Y(utz). The meaning of Y to be a function of pars (ut) is that it represents the
measurement of some characteristic of u after u has been exposed tot T T. This requirement
implies that it must be possible for any unit in U to be potentially exposed to any treatment t
out of T. Holland (1988a) emphasizes the importance of this condition: It entails a certain
notion of what is a cause, that is of fundamental importance in preventing us from interpreting
associational relations as causal ones, like, e.g., associations between sex and income or
between race and income. This condition of the POM and its relevance is discussed more
extensively in Holland (1986, 1988a, 1988b) and Glymour (1986). The main point that we
can derive at this stage is that this condition de facto states that causes must be events.

Cdl Y the outcome function and let Y{(u)=Y(ut). The mapping D is caled the
assignment rule because it indicates to which treatment each unit is exposed. The observed

outcome of each unitu 1 U is given by

Yo(W=Y (u,D(u)),

which isthe value of Y that is actually observed for unit u. Therefore, the pair (D(u),Yp(u)) —
where D(u) indicates the treatment in T to which u is actually exposed — constitutes the
observed data for each unit u. Note the distinction between Yp(u) and Y:(u): While the former
is the outcome actually observed on unit u, the latter is a potential outcome being actually
observed only if D(u)=t.

In the model, treatments are taken as undefined elements of the theory, and effects are

defined in terms of these elements (Holland 19884). The basic causal parameter of interest is

effect and that a zero effect is usually not called an effect, | think that we cannot call T a set of causes a priori.
The formulation of treatment is unambiguous.
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(2.7) Theunit-level treatment effect (UTE):

The unit-level causa effect of treatment t T T relativeto treatmentc T T (as measured
by Y) is the difference Y;(U)-Yo(U)=UTEc(u).22

There are three important things to note about this definition. First, the causal effect UTE;¢(u)
is defined at the individual-unit level. Second, UTE;(u) is the increase in the potential value
of Y:(u) over the potentia value of Y¢(u). Third, UTE;(u) is defined as the causal effect of t
relative to c. The following discussion will center around elements number two and three:
Consider UTE;¢(u) being the increase in the potential value of Y;(u), which is what
would be observed for the potential outcome if D(u)=t, over the value of Yc(u), which is what
would be observed for the potential outcome if D(u)=c. Here it becomes clear that this is a
definition based on causa dependence in counterfactual terms. Define the following set of

events:

e: Unitul U isexposedtotreatment 1 T, i.e. D(u)=t, and
€. Unitul U hasthe vaue Yi, (u) for variable Y,

where k=1,...,m, so that the number of events for each individual unitis2 M (as there are N

unitsin U, the total number of eventsis2° M” N). Then:

(2.8) The unit-level causal effect of treatment t 1T T relative to treatment § T T (as
measured by Y) is defined by the difference Y; (u)- Ytj (u):UTEtitj (u) iff the

counterfactual conditionas O(g) L= O(e*j)), ~O(e) LI—= ~O(e*;), and O(g)
[ O(e*j), ~O(g) L= ~O(e*)) aretrue.

To illustrate this reformulation, let us return to the treatment-versus-control case. Define the

events:

e1: Unit u is exposed to treatment t

12 Note that the two treatments in this definition are denoted with t (like "treatment") and c (like "control"). This
already hints at the discussion of randomized assignment of units into an experimental treatment or control
group. It also gives a particular flavor to the definition of an effect of one treatment relative to a control
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€: Unit u is exposed to treatment ¢
€*1: Unit u has the value Y;(u) for variable Y
€*5: Unit u has the value Y¢(u) for variable Y

In this specia case (2.8) smplifies to:

(2.8a) The unit-level causal effect of treatment t1 T relative to treatment ¢ T T (as measured
by Y) is defined by the difference Yi(u)-Yc(u)=UTE(u) iff the counterfactual
conditionals O(e;) L= O(e*1), ~O(e1) L= ~O(e*1), and O(ez) LI—= O(e*>), ~O(en)
(= ~O(e*,) aretrue.

Recall (2.3), and note that we have two underlying causal dependencies. €*1 causally depends
on e, and e*, causally depends on e,. However, to infer either of the two causal dependencies
— in this case: that between @ and €1 — we need the other one. This is because causa
inference can only be made relative to something (cf. below).

Furthermore note the formulation of "distinct possible particular events' in (2.3),
because looking at (2.8a) and recalling the specia case of (3a) we would seem to encounter a
problem: Not al of the events @, &, €1, and €', can be "actual occurrent events' for a
specific unit u, because at the individual-unit level only either e; and €4, or & and €, can be
"actually occurrent”. Now consider the formulation using possible world semantics for
counterfactualsin (2.3b): In our example, clearly e causes €*1, because either both O(e;) and
O(e*1) are true in the actual world or, in the closest (to the actual world) possible world, both
O(e1) and O(e*1) are not true, because in that closest world O(e) and O(e*») are true. It is
easy to see that the same argument holds the other way around for e, and €*,. Note that in this
particular case we only have two worlds, and we define the causal effect in one world (the e -
e*-world) relative to the second and trivially closest world (the e;- e* »-world), whichever one
may be the actual world. Thus, also the symmetry of the analysis appears obvious.

This causal analysis can be summarized in four steps: (i) The basic causal parameter of
interest is the unit-level treatment effect UTE of some treatment t relative to another treatment
c. (i) UTE is defined iff the pairs of events @ and €*1, and & and €*, (as defined above) are
both causally dependent. (iii) These pairs of events are causally dependent iff the

treatment, where the term "control" usually implies "no treatment". Moreover, note that the notation E. is meant
to indicate the causal effect of "t relativeto c".
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counterfactua conditionals O(e;) LI—> O(e*1), ~O(e;) L= ~O(e*1), and O(e;) LI—> O(e*»),
~0(e;) L= ~O(e*,) are true. (iv) A counterfactual conditional of the type O(a@) LI—= O(b) is
true in the actua world iff any aworld adong with b is closer to actuality than any aworld
without b.

Return to (2.7) and the third aspect we noted, that UTE(u) is defined as the causa
effect of t relative to c. Indeed, the effect of one treatment is always relative to the effect of
another treatment. We can only draw inference on the cause of an effect by relating two
effects of two distinct causes (or: potential causes, or treatments). This relativity condition is
one of the central aspects of the POM: a causal relation between a treatment and an effect can
be identified from "measuring” two alternative states of an outcome variable given some unit
has been exposed to some treatment or another. As Glymour (1986) puts it: "Causation is a
relation between two treatments and two possible variable states. The notion of t causing V;,
without specification of any aternative treatment, or any aternative state of Y, is not
defined.” Glymour (1986) regards this as an improvement on the bare counterfactual account
of causal relations, and he presents an example supporting his argument. | include this
example here, because | think it is highly elucidating with respect to the relativity condition
and the idea of possible worlds behind it [my italics]:

Example D. My Uncle Schlomo smoked two packs of cigarettes a day, and | am
firmly convinced that smoking two packs of cigarettes a day caused him to get lung
cancer. But it may not be true that in the closest possible world in which Uncle
Schlomo did not smoke two packs a day, he did not contract cancer. Reflecting on
Schlomo's addictive personality, and his general weakness of will, it may well be that
the closest possible world in which Schlomo did not smoke two packs of cigarettes a
day is a world in which he smoked three packs a day. | can reconcile this reflection
with the counterfactual analysis of causality by supposing [...] that 'smoking two
packs of cigarettes a day caused him to get lung cancer' is elliptical speech, and what
is meant, but not said, is that smoking two packs of cigarettes a day, rather than not
smoking at all, caused Schlomo to contract lung cancer.

This example highlights many of the inherent features of the model. | want to point out two
more aspects that will require further discussion below. First, many of our casual causal
thoughts are based on just that idea of inferring causal relations from saying "doing a relative
to not-doing-a', where not-doing-a may equal doing-nothing, and for most analyses this is
exactly the causal question of interest. Second, this example nicely raises the question of how
can we identify the closest world to actuality (or, the world that we are interested in and use as

a base category), or, for the very least, how can we derive any notion what the features of this
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closest world are supposed to look like. | will examine these two issuesin section 2.4.

Let us rephrase Example D using the framework introduced above. This will
accentuate the way the model works, even though it does not exactly correspond to an
"exposure to treatment™ context and may thus sound a bit odd at first sight, and even though it

disregards issues of timing, disturbing factors etc. Define the following events:

e1: Schlomo ("Unit u") smokes 2 packs of cigarettes aday. ("Treatment t")

& Schlomo does not smoke at al. ("Treatment c")
€*1: Schlomo contracts lung cancer. "Ye(u)™
€*,: Schlomo does not contract lung cancer. "Yc(w")

The outcome variable Y can be regarded as "health status’ or something similar. According to
(2.3) and (2.3a,b) e; causes e*1 because both are actual occurrent events and if the former had
not occurred then the latter would not have occurred. This aternative world is specified by &
and e ,. The two crucial things about this example are (i) that we have an explicit
specification of the closest possible world to actuality, and (ii) that this closest world to
actuality is defined by the fact that the actual occurrent events do not occur, i.e. e=~¢e;, and
€ )=~ e*1.

Feature (i) is far from unusual, because in fact the relativity condition in (2.7) per
definitionem specifies the closest world — i.e. the "treatment-c-world" — to the actual world —
i.e. the "treatment-t-world".*® Causal inference about treatment t is based on the
counterfactual relation to what would have happened under exposure to treatment c. In that
sense the model does not depend on searching for the closest possible world, but rather on
justifying the choice of what is claimed to be the closest possible world, or the relevant
aternative world. Feature (ii) of our example says that in the relevant aternative world
e=~e1, and e*,=~ e*1, i.e. treatment c is merely the absence of treatment t. This is a specia
case in which UTE is defined under the simplified condition that only O(e;) L O(e3) and
~O(e;) L= ~O(e3) need to be true.** In fact, this is how causal inference is usually made,
and it is what Glymour (1986) means with "elliptical speech": We infer the causal effect of

13 As pointed out in footnote 7 "actual world" means something like "world of departure”, or "world of point of
view", or "world of interest" due to the analysis being symmetric: If the c-world is closest to the t-world, then
aso the t-world is closest to the c-world, and the inferred causal effects are the same in magnitude, but in
opposite direction or with opposite sign.

* Because O(e) LI—> Of(e*) = O(~e1) LI—> O(~e*1) = ~O(e) LI—> ~O(e*1), and ~O(e;) LI—> ~O(e>) =
~O(~e)) LI ~0(~e*1) = Oer) LI O(e*).
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something relative to not-that-something. The general definition (2.8) accommodates this
simplified case, but above al it accommodates the case of "something relative to something
else”’, i.e. in the example a valid causal relation between treatment t and its outcome (= the e -
e*;-world) and some dternative treatment ¢ and its outcome (= the ex-e*world). It is
important to note, however, that according to (2.8) this causal relation between the g-€*;-
world and the e-e*;-world does entail some statements about the non-occurrence of either
event, as both conditionals ~O(e;) L= ~O(ez) and ~O(e;) L= ~O(e4) need to be true, and

therefore some consideration of the no-treatment-state is at least implicit.

2.3.2 Applicability

| have emphasized before that the definition of causal dependence is based on the notion of
distinct possible particular events. And it is with respect to any two distinct treatmentst and ¢
that we face the fundamental problem of causal inference in practice: It is impossible to
simultaneously observe Y;(u) and Y¢(u), and therefore also the causal effect UTE(u) is never
directly observable. This is why we need counterfactual statements about possible worlds.
The counterfactua statement enters in the form illustrated in Examples A and B: We have an
actual state of affairs — i.e. for instance we observe u being exposed to t and responding with
Y:(u). We then infer the causal effect of t on Y (u) by relating this actual state of affairs to the
counterfactual statement about how u would have responded — i.e. Yy (u) — if u had been
exposed to ¢, where the counterfactual characterizes a possible world with minimum deviation
from actuality.

Holland (1988a) stresses how the POM makes the unobservability of the causal effect
explicit in separating the observed pair (D,Yp) from the function Y. In fact, a model for causal
inference can be interpreted as some specification of the values of Y. In Holland's (1988a)
words, causa inference consists of combining (&) a causal model or causal theory, (b)
assumptions about data collection, and (c) observed data to draw conclusions about causal
parameters. The causal model has been laid out above — this section focuses on how and under
what assumptions this model can be applied. | will first discuss one basic assumption and
subsequently review the conditions under which we can identify the causal effect from data.
Usually this implies imposing restrictions on either Y and/or U that make it possible to assess
two potential outcomes for a single unit and therefore infer meaningful causal statements.

The stable-unit-treatment-value-assumption (SUTVA) is the pivotal assumption
ensuring that the causal framework of the POM is adequate in practice. SUTVA is advocated
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by Rubin (1980, 1986) to play a key role in deciding which questions are formulated well
enough to have causal answers. It is the a priori assumption that the value of Y for unit u
when exposed to treatment t is the same independent of (i) the mechanism that is used to
assign t to u, and (ii) what treatments d the other units\* u receive, and that this holds for al n
units within U and m treatments within T. SUTVA is violated when, for instance, there is
interference between units that leads to different outcomes depending on the treatment other
units received — i.e. Yy, depends on whether v u received t or some other d T T — or there
exist unrepresented versions of treatment or versions of treatments leading to "technical
errors' (Neyman 1935)* —i.e. Yy depends on which (uninteded) version of treatment t unit u
was exposed to.

In the counterfactual conditionals framework SUTVA can be represented as follows.

Define the following set of events:

g: UnityT U isexposedtotreatmentt1 T, i.e. D(u)=t, and
et Unityl Uhasthevaue Y, (u;) for variable Y,

wherei=1,...,n and j=1,...,m, so that the number of eventsis2 N” M. Then SUTVA assumes
that the counterfactual conditionals O(gj) LI O(e*jj) and ~O(g;j) L= ~O(e*jj) aretrue " ¢
and e*; with i=1,...,n and j=1,...,m independent of (i) the mechanism leading events g to

occur, and (i) the other occurring events e, k=1,...,n, 1=1,...m, itk, j* .1

15 For further detail cf. Rubin (1980) and Rubin's (1990) discussion of Neyman (1923 [1990]). Many aspects of
the POM for causal inference (in particular the notion of potential outcomes) are already present in the work of
Neyman (cf. also Speed 1990), where they are based on the methodological discussion of agricultural
experiments. In that context, possible violations of SUTVA are apparent: How should one avoid neighboring
plots treated differently (by, e.g., different fertilizers) to "interfere" given nature's powers (wind, rain etc.), or
how can one claim that each bag of fertilizer represents exactly the same treatment as any other bag of fertilizer
(cf. Rubin 1986)? Moreover, as Rubin (1990) points out, interference between units can be a major issue when
studying medical treatments for infectious diseases, or educational treatments given to children who interact with
each other.

16| useindividual statements of the form O(eij) o® O(e*;) to represent the POM using Lewis's semantics. Galles
and Pearl (1998) use an equivalent representation that could be called a "covering counterfactual” and translate
Lewis's statement A LI B as "If we force a set of variables to have the values A, a second set of variables
will havethevaluesB". If A standsfor aset of valuesx,...,x, of thevariables X4,...,X, and B for a set of values
Y1,--¥m Of Y1,...,Ynthen

Y W) =%&

2 —
Al o wn(W=%:8

YxT...xn (u) =Y
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The fundamental requirements of SUTVA therefore go hand in hand with the philo-
sophical underpinnings | have presented above. To conclude with Rubin (1986, his italics):

[T]he crucial point [...] is that we are not ready to estimate, test, or even logically
discuss causal effects until units, treatments, and outcomes have been defined in such
away that SUTVA isplausible.
Unit homogeneity is a name given by Holland (1986a) to the assumption that the responses of
all units to a particular treatment are the same, i.e. that units respond homogeneously to each

treatment:

Yi(w=Yy(v) " uvi U,anddlt] T.

Thisis a partia specification of Y in that it restricts the values that Y can take on but does not
specify them completely. The assumption is only likely to be justified if one can claim to be
working with a homogeneous sample. Under the assumption of unit homogeneity, the causal

effect of atreatment t relative to atreatment c is given by

UTEc(U)=Yt(u) = Yc(V)=Y(v)-Yc(W)

for any two distinct units u and v in U. In this case, UTE;. is a constant and does not depend
on the unit under scrutiny. Evidently, unit homogeneity solves the fundamental problem of
causal inference in that we only need to measure the two (observable) outcomes Ypy=t(u) and
Ypw)=c(V) for two units u and v to infer the causal effect of treatment t relative to treatment ¢
on any unit within U. This assumption affects condition (2.8) simply by providing us with an
easy answer with respect to what happens for any unit of U in the closest possible world to
that very unit. In the closest possible world to the one in which a unit u is exposed to t and
responds with Y;(u), u would be exposed to ¢ and respond with Y(u) by assumption, and
under unit homogeneity the latter value of Y is given by the response of any other unit V u of
U being (or having been) exposed to c.

Unless unit homogeneity holds, individual effects are impossible to observe.

Therefore, one of the most important causal parameters of interest is the average causal effect
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of atreatment, as it represents a useful summary of the unit-level treatment effects®’. Let E(.)

denote the average value of the argument.

(2.9) The average treatment effect (ATE) of treatmentt T T relative to treatment ¢ T T is
the expected vaue of the unit-level difference Yy(U)-Yo(u) over al u 1 U, ie
ATE=E(UTE)=E(Yt-Y)=E(Y1)-E(Yc).

The ATE is an unobserved quantity, since expectations of Y for both t and ¢ are taken over
the full range of U. In practice it is only possible to observe D(u) and Yp(u) over U, and
therefore only the joint distribution of D and Yp rather than D and {Y:tT T}. The average
value of the observed outcome Yp among all those units actually exposed to a particular
trestmentt T T can be written as E(Yp|D=t). For the two particular treatments t and ¢ this
becomes E(Yp|D=t)=E(Y:|D=t) and E(Yp|D=c)=E(Y|D=c), respectively. These two quantities
are aways observed in the data, and we can therefore define:

(2.10) The prima facie average treatment effect (FATE)'® of atreatment t T T relative to a

treatment ¢ 1 T is the difference in average responses between those units actually
exposed to t and those units actually exposed to ¢, i.e. FATE=E(Y|D=t)-E(Y.|D=c).

The distinction between FATE and ATE emphasizes the fact that the quantity that we can
always compute from the data (FATE) does in genera not equal the quantity about which we
desire to draw inferences (ATE). This results from the difference between E(Y;) and E(Y) on
the one hand and E(Y;|D=t) and E(Y.|D=c) on the other hand. The former are averages of Y
over al of U and constitute ATE, while the latter are averages of Y over only those unitsin U

actually exposed to t and c, respectively, and constitute FATE.

Y In practice, further questions arise as to whether it is e.g. the "average treatment effect on the treated”, or the
"average treatment effect on the population” that is the causal parameter of interest. Cf. Heckman (1992) and
Heckman, Lalonde, and Smith (1999) for discussion, and Angrist, Imbens, and Rubin (1996a) for more on the
POM and identification of the "local average treatment effect” (LATE).

18 This follows Holland (1988a) who calls this parameter "prima facie average causal effect FACE". It is not to
be confused with a"prima facie cause" as defined by Suppes (1970) in his probabilistic theory of causation (cf.
Suppes (1970) for the original definition and e.g. Sobel (1995) or Salmon (1980) for a discussion): Given two
time values t and t* with t<t*, the event ¢ is a prima facie cause of the event g if Prob(ey|c;)>Prob(e+), i.e. ¢
temporally precedes e and is positively relevant to it. As Holland (1986) points out, the association between
cause and effect defining a prima facie cause is indeed a causal effect under "certain conditions that have wide
use in science", while on the other hand FACE "is not always a causal effect”. This is also why | prefer the
labeling FATE to FACE.
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The two quantities are only equal when independence holds. Suppose that the
determination of which treatment a unit is exposed to is statistically independent of all other
variables, in particular the response function. Following — as common practice — Dawid's

(1979) notation of independence using the symbol "[1", this can be written as DII{Y: t 1
T}. Then E(Y{|D=t)=E(Y) for any tT T, and we have:

(2.11) If DII{Y::tT T}, then the prima facie average treatment effect of atreatmentt 1 T

relativeto atreatment ¢ T T is equal to the average treatment effect of t relative to c,
i.e. FATE=E(Y|D=t)-E(Y¢|D=C)=E(Y:)-E(Y¢)=ATEc.

The independence assumption is the key point to the applicability of the moddl, as it allows us
to draw inferences on the unobserved causal parameter of interest, the ATE, directly from the
FATE, which we can always compute or estimate from the data.

Under which conditions is independence likely to hold? The most probable case we
have in practice is that of a randomized experiment, in which — coarsely speaking — units are
randomly assigned to different treatments, so that the initial population and the
subpopulations in the treatments do not differ from each other on average. This makes (2.11)
likely to hold, thus yielding the ATE from the FATE. Holland (1988a) describes the relation
between randomization and independence as follows: Independence is an assumption about
the data collection process, i.e. about the relation of D and Y over the population U, while
randomization is a physical process that gives plausibility to the independence assumption in
many important cases. For instance, if U were infinite, then the law of large numbers together
with randomization would imply that (almost) every realization of D would be independent of
{Y}. However, randomization does not necessarily make independence plausible in each and
every case, as randomization does not assure that each and every experiment is "adequately
mixed”, but only that "adequate mixing" is probable (Leamer 1983). To take the simplest
example, imagine that U consisted only of very few units. Then the plain physical act of
randomization would not render the independence assumption plausible.

What does it mean when we talk about populations that do not "differ" from each
other, and "adequate mixing" in randomized experiments? This becomes clear when we
introduce other variables into the model. So far Y was the only variable measured on the units
u — agpart from the treatment indicator D. Let us now add a variable X to the model, where X
can be real-valued or vector-valued. In principle, X(u,t) is defined on U T and depends on
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both u and t. However, there is a specia class of X-variables that are of specific interest, as
defined in Holland (19884):

(2.12) X isacovariateif X(u,t) does not depend ont forany ul U.

Holland initially calls this class of variables "attributes® (in Holland 1986), but converts to
(2.12) as the preferable definition because it corresponds to the usual experimental usage. If
we consider specificaly the values the X-variables take on for units prior to treatment, then
the X-variables are always covariates.'® For a post-treatment concomitant, however, the
possibility that X(u,t) does depend on t cannot be excluded and "must be decided" (Holland
1988a), and if this the case, then X is not a covariate in the sense of (2.12).%° Randomization
on average guarantees balancing of covariates — observable and unobservable — across
subpopulations in different treatments, which in turn makes the independence assumption
plausible, so that (2.11) holds and we can infer the ATE from the FATE. In the words of
Rosenbaum and Rubin (1983): With "properly collected data in a randomized tria"”, X is
known to include all covariates that are both used to assign treatments and possibly related to
the response{Y}.

The introduction of covariates into the model becomes even more important in cases
in which we do not have randomization and therefore cannot arrange the values of D(u) to
achieve independence. In such an observational study we are still interested in inferring
causal effects of treatments, but now — differing from a randomized setting — D is not
automatically independent of {Y}. Given a (n observable) covariate (vector of covariates) X
one could check the distribution of X for subgroups in each treatment by comparing the
values of Prob(X=x|D=t) acrossthe valuesof t T T (Holland 1988a). If there is evidence that
Prob(X=x|D=t) depends on t, then the independence assumption may not appear plausible in
the observationa study. Instead, in the nonexperimental setting one usualy builds on a
weaker conditional independence assumption which says that treatment assignment and the

response are conditionally independent given a vector of covariates:

19 Note that this does not exclude unobservables a priori. In fact, it is difficult to express this feature. Holland
(1988a) speaks of "variables measured on units prior to [...] treatment” always being covariates, but | find that
misleading, in a sense that a priori the definition of a covariate says nothing about whether the variable can be
observed or not, and "measurement” implies observation. The point is: A pre-treatment variable is always a
covariate, beit observable or not.

20 cf. Rosenbaum (1984) for a discussion of adjustments for a concomitant variable that has been affected by
treatment.
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(2.13) [Rosenbaum and Rubin 1983:] Treatment assigment is strongly ignorable if the
response {Yi:t1 T} is conditionaly independent of treatment assignment D given the
observed covariates X, i.e. { Y} 11 D|X, and O<Prob(D=t|X)<1.

Rosenbaum and Rubin (1983) show that (2.13) aso holds for a balancing score B(X) defined
as a function of the observed covariates X such that the conditional distribution of X given
B(X) is the same for the exposure groups (D=t), i.e. XII D|B(X).?* Rosenbaum and Rubin
identify all functions of X that are balancing scores; the most trivial one being B(X)=X, and
the coarsest one being the propensity score: The propensity score Prob(D=t|X)=P;(X) is of
particular interest in practice, as it reduces the potential problem of conditioning on a high-
dimensional X — if X is vector-valued — to conditioning on a scalar, provided that R(X) is
known.

Strong ignorability is the basis for al causal inference on covariate-adjusted treatment
effects in observational studies (Holland 1988a). Adjusting for covariates yields the
covariate-adjusted prima facie average treatment effect, or C-FATE?2, based on conditional
expectations:

(2.14) C-FATE=E{E(Y:|D=t, X) — E(Y¢D=c, X)}.

Just like the FATE, the C-FATE does in general not equal the desired ATE. This only holds
under conditional independence:

C-FATE.  =E{E(Y{D=t, X) — E(Y{D=c, X)}
= E{ E(Y[X) — E(Yc[X)}
= E(Y1)-E(Yo)
= ATE«

This finding concludes the discussion of the POM for causal inference, as we have now
discussed all relevant features of the theory as well as the circumstances under which the

model can be applied in randomized trials and observational studies. For further discussion cf.

21 | fact Rosenbaum and Rubin (1983) prove this property for the two-treatment case D={ 0,1} . The extension of
this result to multivalued treatments is shown in Imbens (2000), and Lechner (2001a). The main result, however,
isthat of Rosenbaum and Rubin.
22"C-FACE" in Holland (1988a).
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Rubin (1974, 1977, 1986), Holland (1986, 1988d), Holland and Rubin (1983, 1988),
Rosenbaum (1984, 1995a), Rosenbaum and Rubin (1983, 1984a, 1984b), and Angrist,
Imbens, and Rubin (1996a).

2.4 Comparing Possible Worlds

The program of causal inference is clear from the previous sections: to draw inference about
the effect of some treatment t on some response variable Y. It is therefore necessary to
establish a counterfactual state of the world — i.e. some other possible world — characterized
by an alternative treatment c (with respective associated outcome) to which we can causally
relate the treatment-t-world. We have seen that ¢ could be either simply not-t or any other —
distinct possible particular — treatment. In this section | will show what such possible worlds
look like in the POM, and give some guidelines on the choice of appropriate aternative
worlds for inferring and interpreting causal relations.

From the discussion above, in particular the definition of causation based on possible
world relations, one could infer that something like "the quest for the closest possible world"
is at the heart of the problem of causal inference in statistics. But this is not the case — at least
not in a sense that we would have to compare multitudes of worlds and judge degrees of
proximity between them. In fact, the POM simply defines closest possible worlds. Section
2.4.1 considers these ex ante defined worlds and examines relations between them with
respect to meaningful causal interpretations. Subsequently, section 2.4.2 gives an account of
proximity relations between worlds and discusses why we might not always be interested in

the "closest" possible world, and under what circumstances this can be problematic.

2.4.1 Varieties of Counterfactuals
By definition the closest world to actuality is the one to which we relate the causa
comparison: If we want to infer the causal effect of treatment t relative to treatment c, then we
set the c-world as the closest world to the t-world. Were we instead interested in the effect of t
relative to some other treatment c*, then we would establish the c*-world as closest to the t-
world. This is clear from (2.8) and the explanation | have given in section 2.3. The idea that

we can consider these worlds as being "close" to each other becomes clear in the experimental
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context: The t- and the c-world are based on the same background — ideally represented by a
large number of concurrent covariates — and they merely differ in the fact that in the t-world
units are exposed to treatment t, while in the c-world units are exposed to c.

Let us dightly refine the discussion. First, call Ti the world solely defined by
treatment t, and associated outcome Y, , T2 the world defined by  and Y, etc., so that the M

treatments t,...,tm With associated outcomes Y ,...,Y; congtitute the M subsets Ty,...,Tm

within the set of treatment-worlds T. Second, define the causal effect of some treatment t

relative to another treatment t; as
Dtitj :Yti - Yt] 1

disregarding whether we are looking at unit-level or average treatment effects.

Let W denote the universal set comprising al possible worlds that differ only with
respect to the characteristic "treatment and associated outcome", so that I W.?3 In general, T
does not need to equal W, if we regard T as comprising just those worlds where we can either
control the types of treatment t or at least observe them, i.e. T is meant to comprise those
worlds with well-defined types of treatment. The complement T' of T is then given from
W=TE T' and contains treatment-worlds we can neither control nor observe. For both groups,
however, it is in principle possible to construct valid comparisons, and thus infer causa
relations, as T' can aways be defined recursively as "everything that is not T". The
relationship is depicted in the Venn diagram in Figure 2.1a, where W is represented by the
rectangle. In Figure 2.1a, T=TiE T2E...E T and TG Tj=&for dl T, T; T T, i.e. T is meant to
consist of exactly M mutually exclusive treatment-worlds. Clearly, once more this captures
the idea of distinct possible particular treatments — Each T; is well-defined, there is no
interference between the T worlds, and no unrepresented versions of treatment exist. The
special case for T'=A, and thus W=T, is displayed in Figure 2.1b.

Let us consider the complement T' and what is meant by "everything that is not T".
One could argue that "not T" is a well-defined treatment and should be included as one subset
in T, yielding T=W. The distinction, however, illustrates the difference between what could

be called a controlled control treatment and anuncontrolled comparison treatment.
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Consider the case in which treatment can only take on two values, M=2, the classic
treatment-t-versus-control-c setting, where the causal effect of interest is that of t relative to c.
In a randomized medical trial, where t is the medicament under study and c is a placebo, ¢
represents a controlled control treatment. It is (&) controlled by the experimenter, and (b) a
distinct alternative treatment in its own right, which is not merely characterized by the
absence of t, i.e. . Ty'. Therefore, in this case, W={T,T'} with T={T;,T¢} and T'=(TET)",
where T' is some unspecified treatment outside T characterized by not given the medicament
and not given the placebo. Of course, T' might not be of interest in the study, or we might not

even be able to obtain any information about it, but nonetheless it is an implicit part of the

study.

Figure 2.1 Possible treatment worldsin the POM.

2.1a 2.1b

2.1c 2.1d

On the other hand, consider the case of an observational study in labor economics, for
instance, aming at evaluating some government training program (=treatment t). In this case,

2 This account is still in the framework of the POM of section 2.3, and thus considers a finite number of
treatments. For an extension of the model to the case where the set of treatments is not finite see Pratt and
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the "alternative treatment” c is characterized retrospectively by the absence of training, so that
C represents an uncontrolled comparison treatment. It is (a) not under control of the
researcher, and (b) not defined on its own, but just by the absence of t, i.e. T.=T". Therefore,
W=T with T={T;, T¢} or, equivaently, W={T,T'} with T=T; and T'=T..

Note that the distinction between "controlled control treatment” and "uncontrolled
comparison treatment” is about the distinction itself, and does not imply that the one can be
used for valid causal inference, and the other cannot. But it is important to note the difference.
Clearly placebos are used to learn something about "not given the medication”, and in that
respect they may perform even better than "actually not given the medication”, because with
placebos the control units cannot be influenced by knowing that they are not given the
medication. Use of placebos ensures that the response is to the treatment itself, not the idea of
treatment. Hence, the controlled control treatment gives a well-defined alternative to t, while
the uncontrolled comparison treatment necessarily remains more vague.>* However, we will
see that this need not be a disadvantage in interpreting results. It has to be noted, though, that
if the control treatment is not well-specified, and the treatment shows no effect relative to the
control treatment, then it might well be that the control treatment is or contains a pre-empted
potential cause (cf. section 2.2.3) of the same effect, i.e. both treatment and control have the
same causal effect on the response variable, which the causal comparison between the two
cannot reveal.

In the next step, let us adopt the notion of treatment ¢ meaning the absence of any
treatment, be it controlled or uncontrolled, defined uniquely or recursively. Thus, denote
T=To and let T=Top,T1,... Tm-1 With M-1 "real" treatments and the "null" treatment, W=T.
Figure 2.1c depicts the case for M=2 and T;=T1, To=T1'. As Ty is the world with treatment t;,
and To the world with treatment to:

(215) Dyt =¥, - Yo =Yy, - Yy, =Dy,

This is the basic case which amost al causal inference studies are based on. We have just two

Schlaifer (1988).

24 Experimental settings do not necessarily imply awell-defined null treatment. While this is possible in medical
experimental studies of the type described above, it is far more difficult in experimental studies in labor
economics, e.g., due to the length of treatment (several months of participation in a training program) and the
difficulty of defining a proper alternative (cf. later this section). One example is the experimental evaluation of
the National Supported Work Demonstration (NSW) in the US: "Those assigned to the treatment group received
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treatment-worlds differing only by the treatment under study, where the aternative world is
characterized by the null treatment which equals the absence of treatment. This setting is
intuitively appealing: The closest-world relation is obvious, and the interpretation of results is
straightforward.

Let us extend this to the case where M>2, i.e. we have at least two "real” treatments
besides the null treatment. Figure 2.1d illustrates the simplest case for M=3 under
consideration and To=(TET;). The case of multivalued treatment has several important
implications for interpretation. First, consider particular treatments ;, §, t and the following

decomposition:

Dtitj =Y, - Ytj
=Yy o Yy Yy Y
N R A S
=Dy - Drg

Of particular interest is the special case where ty=to.

(Of coursg, if &ty in (2.16) we can only use the decomposition if M>3). Expressions (2.16)
and (2.16a) nicely show that any causal comparison between two treatments is implicitly
always related to any other baseline-treatment within T. The case in which the null treatment
is the basdline (2.16a) is of particular interest, since we have seen above that we are usually
used to inferring causal effects relative to the null treatment. This relating of causal
comparisons between two treatments — neither of which is the null — to the null treatment is
also necessary to identify the level of effects.

For the M=2 case property (2.15) has shown that the causal comparison of some
treatment t; relative to the absence of t; equals the comparison of t; to the null. Unfortunately,
this convenient feature does not hold for a causal comparison of t; relative to t' in the case of

M>2. There are two aspects to the t-versus-t;' relation in this context. First, we have the basic

all the benefits of the NSW program, while those assigned to the control group were left to fend for themselves."
(LaLonde 1986, my italics)
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result that

(217) Dtitil ! Dtito

becauseti to and Yy . * Y, . This can be seen when we consider what the effect of t; relative to

t' actualy is:
iy =Yy - Yy
(2.18) =Y, - F (Y Yoo Yo o Yo Yo )
M-1
=Y - A WM,
k=0

ki

where &w,=1 and, for instance,

_ 1 Pt =ty) Pt=ty)
2183 w, =W =—— or 2.18b) w, = = )
(2.182) wi M - 1 (2:180) W = 1- P(t=t;)
a Pt=t,)
r=0,rti

The causal effect of treatment § relative to t' as given in (2.18) is therefore the difference in
outcomes under t; and t;* (first line), which equals the difference between the outcome under t;
and some function of the outcomes under all other treatments except t (second line), which
could in an empirical application equal the difference between the outcome under { and the
weighted sum of all other outcomes (third line). | will refer to the function of the outcomes
under al other treatments in T as the absolute counterfactual to treatment t, as it is a
summary expression of al counterfactual possible worlds. Examples of weight functions for
empirical work are given as (2.18a) equal weights, and (2.18b) the probability of exposure to
a particular program (that is not t) relative to the sum of probabilities of exposure to any
program that is not .2

The second aspect to the f-versus-t' relation is that the complements to particular

treatments cannot be used as a common basdling, i.e.

25 This expression has been used, e.g., in Lechner (2001b). See also section 2.5.
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(219) Dy, * Dy - Dy

because clearly

M-1 M-1

Dy - Dtjtj' =(Y, - é W Yy ) - (Ytj - é viYy)
k=0 1=0
ki 1]
M-1 M-1
=Yy - Yy oA WYy, taviYy
k=0 1=0
KLi I ]
M-1 M-1
=Dy, - (awYy, - avY,)
k=0 =0
Kti It

Table 2.1 presents an overview of different causa queries and the corresponding
counterfactuals.

In the M=2 case, there are two possibilities, either (a) to=t1' or (b) b t;". The first case
(@) is the usual one, and applies for observationa studies. The second case (b) comprises two
possibilities depending on a relevance criterion. On the one hand, if t! t;', so that there exists
a T' world besides T={To,T1}, and t' is considered irrelevant for some reason, such as b
being explicitly specified — like in an experimental study —, then this implies that T' is
irrelevant. On the other hand, if one has reason to believe that ' t;" and if T' is relevant, then
there are two further possibilities: Either (i) one has some usable information about T', then
this converts to the M>2 case, or (ii) one does not have such information, which hints at a
violation of SUTVA because there exist unrepresented versions of treatment. Usually (as in
the agricultural setting of Neyman 1923 [1990]) one thinks of unrepresented versions of
treastment as unrepresented versions of the "actua" treatment — in this case, however, T'
comprises unrepresented versions of the null treatment.

For the M>2 case, as we have a variety of well-defined treatments, it makes sense to
assume that we have a specific to (even if it is defined via the absence of al other treatments)
and thus W=T. Table 2.1 depicts some possible counterfactual comparisons. First, the causa
effect of a particular treatment could be inferred relative to the null treatment. As in the M=2



Table2.1 Varieties of Counterfactuals

Number of
treatments
inT

Treatment Counterfactual
of interest treatment

Causal effect

Interpretation / Notes

M=2

M>2

t to

ty'

Dtlto :Ytl } Yto

Dtltl' :Ytl } Ytl'

Dite =¥ - Y

F (Y Yy oo Y o Yo Yo L)

it ” Dtjtk

The null treatment, in most cases the
counterfactual of interest. Usualy equals
t,', differs only if explicitly specified (as
in experimental studies), or if SUTVA is
violated.

Anything that is not t. Usualy applies in
observationa studies, where it equals t,.

The null treatment, agan the
counterfactual of interest in most cases.
Relevant as basdline.

Any other particular treatment can be used
as counterfactual, for interpretation
important to note that the basdline
(usualy the null) isimplicit.

Everything that is not t; — the absolute
counterfactual, the outcome of which is
given as a function of the outcomes of all
treatments except t,

For M>2, asin the discussion in the text, assume that W=T.
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case, this would be the causal question of interest in most cases. Second, one could construct
the causal comparison of a particular treatment relative to any other treatment within T. In
interpreting the effect it should then (a) be pointed out why this is considered to be a causal
guestion of interest, and (b) be noted that any other treatment (besides the two we relate) can
be used as baseline. The most relevant baseline is the null treatment, and in fact it should be
considered in any case in order to identify the level of the inferred effect.?® The third possible
counterfactual for M>2 in Table 2.1 relates a specific treatment t; to a function of the
outcomes of all other treatments except t. This | labeled absolute counterfactual. It infers the
causal effect of some treatment relative to (an appropriate combination of) all other alternative
treatments. This could be a weighted average as given in (2.18). In a sense this is similar to
the t;'=anything-that-is-not-t;-case for M=2, with the decisive difference that now it is
"everything”, not "anything", expressing the fact that al alternative treatments are well-
defined — and that the corresponding outcomes can therefore be appropriately weighted in an
empirica study. With respect to the absolute counterfactual, it can be of particular interest to
compare the null to the summary over all other treatments to infer whether the introduction of
the overall set of treatments yielded any positive response.

Finaly, it should be noted that one could of course construct many more
counterfactuals. For instance, one could use causal relations between treatments as a baseline
for causal relations between other treatments, or construct the comparison between a
particular treatment and a weighted combination of some, but not al of the aternative
trestments, etc. That, however, is pure mechanics, and | suppose it will be difficult — though

not impossible — to unfold the exact causal interpretations of such counterfactuals.

2.4.2 lllustration
This short subsection entails a few examples that further illustrate some of the ideas unfolded
in the previous section, and shows why we need a clear conception of the T worlds for causal

inference.

Example E. In the M=2 case, why can it can be insightful to distinguish a known or
well-defined no-treatment state (tp! t1") from a no-treatment state defined merely by the
absence of treatment (tp=t;")? Imagine some researcher planning to evaluate some

28 |f the effect of t; is positive relative to the null, and the effect of tj isnegative relative to the null, then the effect
of t; is strongly positive relative to t. Looking only at the last effect does not reveal the negative effect of t
relative to the null. Similarly, the effect of t; relative to t; could be positive, but still the effects of both of them
could be negative relative to the null.
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government training program for the economically disadvantaged in a
nonexperimental setting. She constructs a retrospective comparison group defined by
not having participated in the program. However, training usually takes time. Assume
an average of 2 months in this example. What did comparison group units do during
that time? Remain unemployed, continue job search, do nothing, take private training
course, etc.? Maybe some of that, maybe al of that, maybe none of that. In most cases,
the data doesn't tell. Thus, asit isimpossible to open this black box, one needs to make
some assumption about the comparison treatment. It is then fairly convenient to define
the no-treatment state as just that, the absence of the treatment under study. The causal
effect is that of the training program relative to any other possible (but unobserved)
aternative action the program participants would have engaged in had they not
participated. Clearly, this is quite different from the explicit specification of the no-
treatment state in an experimental medical study (to=placebo).

Example F. Consider the problem of compliance. For instance, in a long-term medical
study one could in principle distinguish four groups: those assigned to treatment who
are good compliers, those assigned to treatment who are poor compliers, those
assigned placebos who are good compliers, and those assigned placebos who are poor
compliers. In principle this defines four different treatments, and only the randomized
comparison gives the correct inference. Cf. Rosenbaum (1995b) for a discussion, and
Angrist, Imbens and Rubin (1996&) for more on compliance.

Example G. An observational study by Larsson (2000) evauates labour market
programs in Sweden. In the study M=3, and the treatments are Y outh Practice (YP),
Labor Market Training (LMT), Non-participation (=Null). In personal communication
with the author the interpretation was given that the null treatment comprises a state of
job search rather than non-participation. This finding has several implications: (a) If
one has usable information to distinguish job searchers from non-participants, this
converts to a case of M=4 with treatments YP, LMT, job search, non-participation
(=Null). (b) If in fact dl individuals in the null treatment are in job search, this
changes the counterfactual question, and the causal inference is on the effect of YP (or
LMT) relative to job search, and not relative to non-participation. (c) If the null
treatment comprises both individuals in job search and non-participants, this hints at a
violation of SUTVA.

2.4.3 Comparative Similarity
Much of what has been said in the previous sections referred to notions of possible worlds, to
entities that exist parallel to — or in addition, or besides — something we referred to as
actuality, and we viewed these possible worlds in terms of similarity or comparability.
Although 1 am convinced that the intuitive conceivability of this concept of actuality and
"surrounding” possible worlds is straightforward, | will discuss a few inherent aspects in this
section. More about the foundations of this concept can be found in Lewis (1973a, Ch4), in
which, for instance, he replies to a fictitious questioner asking him what sort of thing possible

worlds are [Lewis italics, my underscoring]:
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I can only ask him [the questioner] to admit that he knows what sort of thing our actual
world is, and then explain that other worlds are more things of that sort, differing not
in kind but only in what goes on at them Our actua world is only one world among
others. We call it aone actua not because it differs in kind from all the rest but
because it is the world we inhabit.?’

The POM picks up this idea in that the treatment worlds T T do certainly not differ in kind
from each other, but only in the treatment by which they are defined. In fact, the treatment
worlds T; are defined to differ from each other in exactly two aspects: the treatment § that
"goes on" a each (distinct possible particular) treatment world T;, and the outcome

Y, associated with t on world T;. Even though the treatment worlds T coexist, they only

represent potentialities: Recall that treatments are defined on units u, so that we actually have

the two differing features ti(u) and Y (u) on each Ti(u). However, for each u only one

particular Ti(u) is realized. This realized Ti(u) represents actuality. From the point of view of
actuality, the other treatment worlds are entities that might be called "ways things could have
been" (Lewis 19734). These he calls possible worlds.

In applying the POM we do not search for possible worlds. The treatment worlds T

are assumed to be, and defined to be the possible worlds. And the treatment world T* T; to
which we relate treatment world T is defined to be the closest possible world to infer the
causal effect of treatment  relative to trestment t;. Let us examine this a bit further and return

to the example with Clark Glymour's uncle Schlomo from section 2.3.

Example D [ctd]. In the actual world Schlomo smokes 2 packs of cigarettes a day. It
has been argued that the closest possible world to that actual world might be the one in
which Schlomo smokes 3 packs day. Nonetheless, we choose to define the world in
which he does not smoke at al as the closest world. Thus we infer a causa
comparison between actuality with Schlomo smoking 2 packs a day — associated with
the outcome "contracting lung cancer” — relative to the closest possible world in which
he does not smoke at all — associated with the outcome "not contracting lung cancer".
At first sight this appears to be an easy solution. But note that in this causally relating
an actual world to a closest world by definition it is implicitly assumed that no other
element than the one we either manipulate (in an experiment) or study (in an
observationa study) and the outcome associated with this element differs. This is just
the ceteris paribus clause of economics. In the example, the element that differsis the
reduction in packs of cigarettes a day from two to zero. But in the zero-world it may
be that (a) Schlomo takes the healthy road and stops drinking and starts working out a
lot, or that he takes on even worse compensatory vices instead, and e.g. starts taking

27 Cf. also section 2.2.1 and footnote 7.
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cocaine. Moreover, underlying changes in the zero-world may be that (b) the quitting
makes Schlomo lazy, silent, unmotivated, or maybe vivid, lively, energetic instead.
Elements (@) refer to observable differences, and elements (b) to unobservable, and the
examples show that both (a) and (b) could point into either a positive or negative
direction in health terms. For a causal comparison of the actual world relative to the
defined closest possible world it is necessary to either control for these potential
changes or to ensure that the assumption that these differences equal zero appears
credible. Clearly, in the example with Schlomo neither seems very likely.?®

This is where the proximity relation enters. The 3-pack-world may be closer to the 2-pack-
world in a sense that it is more likely that al other factors are the same. But still it may not be
the aternative world that we are interested in for inferring a causal relation. Therefore, the
causal effect (on some outcome) of some treatment t relative to some alternative treatment f
is based on T; being (i) the counterfactual world of interest relative to T and (ii) the closest
possible world by definition. Closeness has to be ensured either by assuming proximity, i.e.
on plausibility grounds, or by controlling for background factors establishing that they are the
same in both T and Tj, in particular those that could potentially influence the outcome.
Finally, one could proceed to discuss distance measures between possible worlds.
Thinking of closest possible worlds, this discussion comes up naturaly: If M>2, then there is
the actual world and at least two aternative worlds. Now which one of the alternative worlds
Is closer to actuality? This line of thought is a bit misleading, because actually — as shown
above — we would condition on background factors (or plausibility grounds, if these can be

conditioned on) to ensure that the possible worlds are equidistant. If T and T; differ only in

elementsti/tj and Y, /Ytj , and T and Ty differ only in elements ti/tc and Y /Y, , then this is

aso true for T; and Tk, and the three worlds are pairwise equidistant. In practice, this
argument would hold in an experiment with randomized controlled exposure to a set of
treatments. In an observational study, however, differences between groups of units across
treatment worlds do arise. Therefore, distances between treatment worlds can in principle be
measured by appropriately weighting the background factors, or calculating weight functions
such as (2.18b) based on propensity scores for each treatment world (cf. also section 2.5). |
will not pursue this discussion any further here, but conclude with Lewis observation on the

constructability of such proximity measures (Lewis 1973a, hisitalics):

28 The predominant difficulty in this example is the duration of treatment (=smoking a certain number of packs
of cigarettes a day), which goes on for decades. How could you possibly control for background factors,
observable or not, over such along time period? — In any case, | think that this example is easier to reconcile
with chancy counterfactuals: Given that Schlomo had not smoked 2 packs of cigarettes a day, the probability of
his contracting lung cancer would have been (much) lower.
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We could, however, define exact distance measures [...] for [...] constructions of
ersatz worlds. At worst, we might need a few numerical parameters. For instance, we
might define one similarity measure for distribution of matter and another for
distribution of fields, and we would then need to choose a weighting parameter to tell
us how to combine these in arriving at the overal similarity of two worlds. All this
would be easy work for those who like that sort of thing, and would yield an exact
measure of something — something that we might be tempted to regard as the similarity
'distance’ between worlds.

Clearly, thisis about distance measures between any two worlds. In the POM we depart from
actuality and look for that aternative treatment world that sets al these differences to zero,

except for the treatment and its associated outcome.

2.5 Practical Considerations

The following section briefly discusses some specific problems that might arise in empirical
work, in particular in observational studies. For causal contrasts, in the POM it is often
assumed that the N units are exposed to the M treatments at equal shares. In practice this is
unlikely to hold, even in a randomized experiment. And while in a randomized experiment
this does not necessarily influence causal comparisons between two treatments — because
subsamples are still balanced —, it would indeed affect the absolute counterfactual:
Participation probabilities are no longer the same, and therefore the assumption of equal
weights is unrealistic. Still, participation probabilities in a randomized experiment would be
known: This problem is more severe in an observationa study when the null treatment group
as a comparison group is unknown and has to be constructed. This usualy implies having to
estimate the participation probabilities.

The absolute counterfactual of (2.18) as a summary measure for the effect of some
treatment relative to all other treatments can also be represented using a weighted aggregate

of the pairwise causal comparisons between the particular treatment and all other treatments:

Mo- 1 Mo-l Mo- 1
(2.20) Dtitil :Yti - a WkYtk = a Wk (Yti = Ytk ) = a Wk Dtitk
k=0 k=0 k=0

kti kti kti
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This expression retains the causal interpretation of the effect of treatment t relative to the
hypothetical state of random exposure to any other program that is not {. Lechner (2001b)
uses this expression and calls it the composite treatment effect. Furthermore, Lechner (2001b)
shows that in an applied observational study it does indeed make a difference whether one
assesses t' as T'=Tp using a binary probability model or t' as T'={ToET:E..ETi.
1ETi+1E ...ETm1} using amultinomial probability model (and then equations (2.18) or (2.20)).
The first results in an insufficient specification of the alternative state by aggregating groups
into one alternative group without taking into account the different composition of subgroups,
while the second appears to correctly disentangle the desired absolute counterfactua. This
finding emphasizes the importance attributed to the definition of T' in section 2.4.1.

Note, though, that this is a problem arising in practice. In theory — or in an ideal
randomized experiment — the calculation of the absolute counterfactual in the multinomial
case would equa the T versus T'=Tp in the binomial case, as it captures al relevant
alternatives to a particular T. This holds even if participation probabilities differ across
subgroups. In an applied observational study, however, this does not hold, because group
compositions do differ, because binomial and multinomia probability models would yield
different participation probability estimates, and because the multinomial case compares
treatments pairwise (and the overall equivalence above would require a common support of
covariates over all subsamples). Thisis unlikely to be achieved in an observational study, also
because in practice heterogeneous programs are aimed at heterogeneous groups.

Finally it has to be noted that even though these two causal comparisons should be the
same in theory but differ in practice, they can nonetheless be calculated. However, a
meaningful causal interpretation may be difficult to derive (cf. also Lechner 2001b). This
again points to the fact that it may not be a problem to mechanically produce various causal
comparisons in mechanically ensuring proximity between worlds, but that it may well be a

problem to give these comparisons a clear-cut causal interpretation.

2.6 Conclusion

This chapter has tried to add clarity to the understanding, applying and interpreting of the
potential outcome model for causal inference commonly used in statistics and econometrics.
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At the outset we have found that there are three predominant approaches at modeling
causation in the empirical sciences: SEM, POM, and DAG. Being the model of particular
interest in evaluation research, the chapter has focused on the POM and its inherent
counterfactual nature. In order to clarify what is actually meant by counterfactual statements,
this chapter has presented the main elements of the counterfactual account of causation in
terms of Lewis's possible-world semantics. This included the basic notions of counterfactual
logic, and some of the problems associated with philosophical approaches to causation in
general, and the counterfactual approach in particular. 1 have pointed out that the pivotal
notion of Lewis's account is that of "closest possible worlds'.

The chapter has then proceeded to explicitly reformulate the potential outcome model
for causal inference using counterfactual conditionals. The main ingredients of the POM —
such as SUTVA — have a straightforward and elucidating representation in terms of
counterfactual events and their truth conditions. | have discussed various causally meaningful
counterfactuals that arise in applications of the potential outcome model with a finite number
of treatments, and illustrated these using a smple set-theoretical framework. The main result
in this respect was that the notion of closeness and proximity between possible worlds is an
inherent part of the statistical model, yet one that is implicitly used and taken care of. Causal
comparisons in the POM a priori assume that possible worlds differ only with respect to the
particular treatment and the associated response. However, one has to be aware of the fact that

mechanical productions of proximity do not necessarily generate clear-cut causal statements.



Chapter 3

Can Training and Financial Incentives

Combat European Unemployment?

Together with Christoph M. Schmidt

Abstract. Training programs and the creation of financial incentives are prevalent
instruments of Active Labor Market Policy throughout the European Union and its
neighboring economies. Yet, by contrast to the tradition of program evaluation in the US, in
Europe the thorough evaluation of their impact is still in its infancy. This chapter shows how
the desolate state of European labor markets in the 1990s led EU policy makers to initiate a
European Employment Strategy that has become known as the Luxembourg Process. Part of
this strategy is to combat unemployment by means of active labor market programs. We
demonstrate that — separate from the Luxembourg Process — academic evaluation research has
developed and implemented adequate tools to assess program effectiveness with confidence.
This finding is illustrated by a review of recent state-of-the-art evaluation studies across
Europe. Various messages for the design of economic policy can be extracted from the
available evidence. Training seems to be the most promising program — if there is any — and
public sector programs fare substantially worse than private sector programs. Major
distortions in program effectiveness emerge if benefit receipt eligibility is renewed after
ALMP participation. However, in terms of the European Employment Strategy it is surprising
that the Luxembourg Process seems to be largely disconnected from academic evaluation
knowledge. We strongly recommend policy makers to include independent researchers in the

effort of evaluating labor market policy interventions.
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3.1 Introduction

During the last century, the US have acquired an extensive experience with public sector
programs aiming at improving the economic situation of disadvantaged individuals. Since
labor market programs tend to bind substantial economic resources, a careful scientific
evaluation of these endeavors has been a long-standing concern of US policy makers and the
American public. By contrast, such measures of Active Labor Market Policy (ALMP) as
instruments to combat unemployment and poverty, and their respective evauation, are a
rather recent phenomenon in Europe.

For Western European countries this mainly reflects the strong economic performance
of the post-WWII era — they have experienced high and persistent unemployment rates only
since the 1980s or 1990s. Similarly, the formerly socialist countries of Central and Eastern
Europe — now being in the transition to modern market economies, many of whom are
knocking at the door to the European Union — did not have to address large-scale open
unemployment before the demise of the socialist regimes around 1990. Therefore, it has been
only over the last one or two decades that combating high unemployment, and in many
countries the particularly severe youth unemployment, has without doubt become one of the
most urging policy issues across Europe.

Figure 3.1 depicts the development of unemployment rates since 1966 for countries of
the European Union (EU, formerly EEC), transition countries of Central and Eastern Europe
(CEE), the US, and the total of OECD countries. While EU unemployment had been dlightly
below or around the OECD average until 1981, since then it has persistently exceeded the
OECD average, and since 1984 this difference has always exceeded two percentage points.
US unemployment displays an opposite development: Whereas the unemployment rate was
above OECD average until the early 1980s, it has been decreasing substantially since then,
lying below OECD total most of the years, and always since 1993. As described above,
European transition countries enter the picture only in the early 1990s, when unemployment
rates skyrocketed to levels clearly above OECD average.

Looking at this bleak situation, European policy makers felt the pressure to react. In
1997 the EU Commission started what has become known as the Luxembourg Process — the
formal recognition of employment issues as one of the key aspects of EU economic policy in
the Amsterdam Treaty, and thus a matter of common concern pointing to a joint European

Employment Strategy. Central elements of this strategy are the annua declaration of



Chapter 3: Can ALMP Combat European Unemployment? 57

employment policy guidelines by the EU Commission that are then followed by the

formulation of National Action Plans according to these guidelines.

Figure 3.1 Unemployment Rates 1966-1999
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Source: OECD (2000c), OECD (1998), OECD (1991).
OECD total=unweighted average, CEE=Hungary, Poland, Czech Republic, for 1990 and 1991 Czech Rep. only.

As one measure to combat high unemployment, most European countries entertain programs
of Active Labor Market Policy. ALMP can be broadly classified into training programs such
as classroom training, on-the-job training, work experience, or job search assistance, wage
subsidies to the private sector, i.e. subsidies to employers or financial incentives to workers,
or provision of jobs in the public sector. Many Western European countries spend a
considerable share of their budget on these measures. The transition countries copied much of
the design of their benefit systems and ALMP regulations from Western Europe — even
though the effectiveness of the programsis still at question.

Thus, there is a high demand for a better understanding of European labor markets and
of the impact of public sector programs on participants and labor markets at large. In addition,
due to substantial heterogeneity across European labor markets, it remains unclear what any
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one country can eventualy learn from experiences made in any other country — in an
economically integrated Europe it is therefore imperative to collect evidence throughout all its
constituent economies. The coarse but crucia distinction between the US on one side and
Europe on the other should not be confused with a uniformity of program effects across
European economies. While many of the particular evaluation questions asked are of a
distinct European character — in particular in their emphasis on youth programs, or the focus
on employment instead of earnings —, the programs having been implemented across Europe
and their respective effects are very heterogeneous.

It is certainly correct that ever since the first introduction of labor policy measures into
European economies there has been ongoing research on their evaluation. However, mainly
due to a lacking communication between the scientific community and those financing,
designing, and implementing public sector programs — even after introducing the Luxembourg
Process — we find this research to be — figuratively speaking — till in its infancy. Many
methodological issues remain unresolved, and the data often do not live up to the
sophisticated econometric techniques imposed upon them. Most importantly, social
experiments — which were able to generate a considerable body of valuable evidence on North
American labor market programs — are still the exception. In consequence, nonexperimental
data are highly prevalent in European evauation studies, with the unsurprising result that the
conclusions are often far from being clear-cut.

This chapter elucidates the conclusions that can be drawn regarding ALMP
effectiveness in Europe on the basis of the current state-of-the-art of evaluation research. We
embed this analysis in the context of the Luxembourg Process, which — as we will show —
could use a stronger connection to scientific evaluation practice if it wants to properly pursue
its goals. On the one hand, we provide some diagnostics on the desolate state European |abor
markets have dwelled in over the last decade, and show how this led the policy side to initiate
a European Employment Strategy and the Luxembourg Process. On the other hand, we sketch
recent advances in evaluation research and show how the science side has developed adequate
tools to answer evaluation questions with confidence. It will be clear from our account that a
closer connection of the two sides would be a great leap forward.

In much of what follows we do not further distinguish between the EU, OECD
Europe, the "Euro Zone" etc., as we believe that in most cases such a digtinction is
unnecessary and would make the discussion overly complicated. Therefore — unless

mentioned otherwise — we use the EU as a synonym for the general idea of "Western Europe”
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(thus including Norway and Switzerland) for sake of the argument and contrast with the US,
and within Europe merely contrast it with the transition countries of Centra and Eastern
Europe. We are aware of the fact that it has been argued that “while it is sometimes
convenient to lump all the countries of western Europe together in order to provide a suitable
contrast to North America, most of the time it is arather silly thing to do” (Nickell 1997). Not
only are we conscious about substantial intra-European differences, but we aso do believe
that with respect to the evauation of ALMP — ultimately the theme of this chapter — a
contrasting of the US and Western Europe is not merely a convenient but clearly the correct
thing to do.

Section 3.2 delineates the status quo of European labor markets. We begin with some
stylized facts on the economic environment, and proceed to show how this led the EU to
introducing the Luxembourg Process. We discuss this Process in some detail and connect it
with the current role of ALMP in Europe. Section 3.3 offers some intuitive reasoning on why
labor market programs can in principle be an effective policy tool in combating
unemployment. Section 3.4 describes and contrasts the received empirical evidence on ALMP
effectiveness for the US and Europe. Here we aso discuss some methodological issues that
emerge in the undertaking of program evaluation. Section 3.5 presents a detailed yet selective
review of recent state-of-the-art European evaluation studies organized along coarse regional
groupings. Specifically, we will discuss singled out examples from (i) the Nordic countries,
(i) the UK and Benelux, (iii) Central Europe, and (iv) the CEE transition countries. This
review contains a quite intriguing variety of program types implemented and estimation
methods applied. Section 3.6 gives an overview of the empirical results. Section 3.7 concludes
with a discussion of the general lessons for economic policy arising from the available

evidence.

3.2 The Status Quo of European Labor Markets

While section 3.1 presented a snapshot at the current situation, in this section we take a
somewhat closer ook at various aspects of European labor markets that are of interest for our
study. First, we look at the more general European employment situation, and then try to
identify what the Luxembourg Process intends to change or improve about this situation. As

measures of ALMP to fight unemployment are of predominant interest also in the
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Luxembourg Process, we then proceed to characterize their current role in European

employment policy.

3.2.1 Diagnostics

What is the status quo of European labor markets? For a glance at the economic environment,
Figure 3.2 displays annual growth rates of real GDP since 1984 for the US, the EU, and the
total of OECD countries.

Figure 3.2 Real GDP Growth 1984-1999

% annual change
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Source: OECD (2000d) Annex Table 1.

We observe a similar declining trend for al three series from the mid-1980s to the early
1990s, with respective dips down to negative growth rates for the US in 1991 and the EU in
1993. Since then growth rates seem to have recovered. However, in line with our observations
regarding the unemployment rate series (Figure 3.1), GDP growth since 1995 has been above
OECD average for the US, and below average — with the sole exception of 1998 — for the EU.
OECD predictions for the years 2000-2002 suggest that this trend will continue, although both
series are predicted to come closer to the OECD average, the US from above, and the EU
from below (OECD 2000d, Annex Table 1).
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Looking at some aggregate labor market indicators, we aso find different sides to the
same story. Panels a and b of Figure 3.3 show the development of employment rates and
activity rates, respectively, for the US, the EU, and the OECD overal, from 1993 to 1999.
Again, the US are clearly above OECD average in terms of employment rates and labor force
participation, while the EU countries lie below the OECD total. Furthermore, there appears to
be little change, at least not in this short time series. The only aspect worth noting is a dight
but apparent upward trend in both employment and activity rates for EU countries in recent
years. According to OECD predictions this trend is likely to continue (OECD 2000d, Annex
Tables 19 and 20).

Figure 3.3 Labour market indicators
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A corresponding picture emerges from plotting unemployment rates for the young (15-24
years old) and the long-term jobless (here: more than 12 months) among the unemployed.
Panels ¢ and d of Figure 3.3 underscore the difference between US and EU labor markets in

illustrating that youth and above all long-term unemployment is far less of a problem in the
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United States than in the European Union. The high incidence of long-term unemployment is
widely regarded as one of the distinct and most serious problems of European labor markets —
cf. Machin and Manning (1999) for an analysis of the causes of long-term unemployment and
the correlation between high unemployment and high long-term unemployment. For EU
countries in Figures 3.3c and 3.3d, one might expect a downward trend in youth and long-
term unemployment corresponding to the upward trend in employment and participation rates

of Figures 3.3aand 3.3b. Such atrend is—if at all there — less pronounced.

Figure 3.3 [ctd]
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3b: OECD (2000d) Annex Table 18 reports different activity rates for US (and thus for total OECD) due to
different base (>15 years rather than 15-64)

As a diagnostic result, we find that over the last decade European economies display stagnant
growth accompanied by low employment rates and low activity rates as well as high

unemployment, in particular long-term unemployment. “Low” and “high”, that is relative to
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the OECD average and above all the US. Unsurprisingly, unemployment has become the most
feared and most severe problem in European economies. It has been argued that structural
unemployment arises from the gap between the pressure on economies to adapt to change and
their ability to do so (OECD 1994). OECD economies are found to be inadequately equipped
and thus unable to cope with ongoing restructuring from manufacturing to service industry,
with adoption of new information technologies, and with a rapidly changing international
economy. Thisis also the basic conclusion of Ljungqvist and Sargent (1998) who anayze the
“European unemployment dilemma’ in the framework of a general equilibrium search model
and who strongly argue for reforming of benefit systems, i.e. the design and interplay of
active and passive measures of labor market policy. In their model, a welfare state with a very

generous entitlement program is a virtual “time bomb” (p.546) waiting to explode.

3.2.2 The Luxembourg Process

Facing the pressure of labor markets in decline, the Amsterdam Treaty — which EU member
states agreed on in June 1997 — introduced a new title on employment. This new Employment
Title for the first time gave explicit recognition to the fact that employment issues have a
status equal to that of other key aspects of EU economic policy. This is regarded as a crucid
step in what has been called the European Employment Strategy. While the Amsterdam
Treaty recognizes that the primary responsbility for design and implementation of
employment policies resides at member state level, it emphasizes that "member states |[...]
shall regard promoting employment as a matter of common concern and shall co-ordinate
their actions' (Article 2). Furthermore, in the Treaty the Union commits itself to a high level
of employment as an explicit goal: "The objective of a high level of employment shall be
taken into consideration in the formulation and implementation of Community policies and
activities' (Article 3).

The term Luxembourg Process results from the fact that it was at the Luxembourg
Jobs summit in November 1997 when member states decided that this European Employment
Strategy should be built on thematic grounds, grouped in four pillars and described in
Employment Guidelines. The four pillars of the strategy are (I) Employability, (1)
Entrepreneurship, (l11) Adaptability, and (IVV) Equal Opportunities. The procedure is as
follows: Each year, the Commission and the Council formulate employment guidelines within
each pillar. These guiddines then are trandated into National Action Plans (NAPs) for
employment by the member states. In turn, these NAPs along with labor market developments
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in each country over the year are then analyzed by the Commission and the Council and result
in an annual Joint Employment Report. In the next step, the findings of the Joint Employment
Report constitute the basis for reshaping the guidelines and country-specific recommendations

for member states employment policies for the following year.

Box 3.1 The Luxembourg Process — Employment Guidelines for 1998

The following overview of central guidelines is taken from European Commission (1998).
These guidelines call member states to "undertake concrete action to attain the following
objectives':

Pillar | — Employability
Implement a preventive approach so as to reduce significantly the inflow of young and
adult unemployed persons into long-term unemployment [Guidelines 1,2]
Shift people from welfare dependency to work and training, namely through a more active
labour market policy [3]
Develop partnership as a framework for the provision of training and lifelong learning
[4.5]
Facilitate the transition from school to work [6,7]

Pillar 11 — Entrepreneurship
Promote job creation in the social economy and at local level [10]

Pillar [l — Adaptability
Encourage the development of in-house training and investment in human resources [15]

Pillar IV — Equa Opportunities
Tackle gender gaps in employment and unemployment [16]
Facilitate reintegration into the labour market [18]

To illustrate the Luxembourg Process initiative, Box 3.1 gives an overview of those initia
1998 objectives — based on employment guidelines — that are of maor interest for the
purposes of our chapter. In particular, the first three guidelines focus on the tackling of youth
and long-term unemployment as well as the restructuring of the benefit system in moving
from passive to active measures. It is interesting to note that these three are the only ones in
the set of guidelines that are formulated using concrete figures as objectives, rather than only

subjective measures and/or unspecified declarations of intent. To quote from the original 1998
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guidelines (European Commission 1997b [their boldface, our underscores]):

[W]ithin a period to be determined by each Member State which may not exceed five years
and which may be longer in Member States with particularly high unemployment, Member
States will ensure that:

(1) every unemployed young person is offered a new start before reaching six_months of
unemployment, in the form of training, retraining, work practice, a job or other
employability measure,

(2) unemployed adults are also offered a fresh start before reaching twelve months of
unemployment by one of the aforementioned means or, more generally, by
accompanying individual vocational guidance.

[...] Benefit and training systems [...] must be reviewed and adapted to ensure that they

actively support employability and provide real incentives for the unemployed to seek and

take up work or training opportunities. Each Member State:

(3) will endeavour to increase significantly the number of persons benefiting from active
measures [...]. In order to increase the numbers of unemployed who are offered training
or any similar measure, it will in particular fix a target, in the light of its starting
situation, of gradually achieving the average of the three most successful Member
States, and at |east 20%.

Clearly, this does leave room for interpretation, but till these guidelines are surprisingly
concrete. Even more concrete answers to the aims behind the guidelines can be found in the
FAQ website to the 1997 Luxembourg Jobs summit (European Commission 1997a). There it
is indicated that the goal of the European Employment Strategy is to increase employment by
some 12 million jobs in 5 years, i.e. raising the employment rate from 60% to 65%. This
would imply bringing unemployment down to about 7%.

Even though this 5 year time period is not over yet, figures 3.1 and 3.3a along with the
aforementioned OECD predictions indicate that it will be difficult to achieve this objective by
the end of 2002. Thus, aso the latest Council Decision on the 2001 employment guidelines
has adjusted the goals accordingly. However, rather than decreasing the 65% target in the
light of the actual recent development, the time frame has been extended and the current
objectives target an overall employment rate of 70% to be reached by 2010 (cf. Council of the
European Union 2001). We do not intend to give a deeper analysis of the current employment
guidelines, as these have — unsurprisingly, we are still within the initial 5 year horizon —
remained more or less the same. While there has not been any further specification of
concrete targets (small exception: al EU schools should have internet access by the end of
2001), it seems very much as if the initia guideline formulations had been softened even
further in order to accommodate individual member states desire (or necessity) to possibly

deviate from the objectives.
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But even if many objectives remain vague, the basic feedback set-up of guidelines that
lead to NAPs, NAPs and actual developments that lead to annual Joint Employment Reports,
which in turn lead to revised guidelines for the next year etc. does seem promising. In
particular the Joint Employment Reports give a clear — if not always concise — account of
problems that have been addressed and problems that need to be addressed (cf. for instance
European Commission 1998, 2000). The Reports "ldentification of Good Practice” might
indeed help identify policy measures across countries that work. However, the main caveat
and major problem in this feedback set-up remains. "Systematic evaluation of employment
and labor market policies is still not common practice in many Member States' (European
Commission 1998). And how else would you be able to judge the performance of any
employment policy? Indeed it remains strikingly odd that only few member states turn to
independent scientific evaluation in order to achieve the desired monitoring of progress and
learn about the desired effectiveness of policy mix (cf. Council of the European Union 2001).

Ideally, this study would review evidence on ALMP programs implemented after the
beginning of the Luxembourg process. This, however, is not yet possible, and therefore most
or aimost all available results refer to programs either finished or at least initiated before the
introduction of EU Employment guidelines. Still, we are convinced that these results can
show how existing policies should be continued, adjusted, or abolished, and hence show

which of them should play a further role in the Luxembourg process.

3.2.3 Active Labor Market Policies in Europe

Panels ato ¢ of Figure 3.4 depict time series of the share of their GDP that the US, the EU,
the CEE countries, and the total OECD, respectively, alocated to (@) unemployment
compensation, (b) active measures in genera, (c) labor market training in particular. For the
unemployment benefit allocation in the EU, Figure 3.4a shows a more or less stagnant series
until 1990, then a steep incline until 1993, followed by a substantial decline until 1997 almost
back down to mid-1980s level. This shape is in line with the development of the
unemployment rate shown in Figure 3.1. While the curve for the OECD average is very close
to the EU series at a lower level, the US series varies less, athough it displays a similar
behavior for the 1990s — this, however, at a substantially lower (relative) level.

In terms of active measures delineated in Figure 3.4b, the EU has seen a more or less
steady increase since 1980, also including a more pronounced increase between 1990 and

1992, followed by a slow decrease since. The OECD average shows a similar though less



Chapter 3: Can ALMP Combat European Unemployment? 67

distinctive development. The US has spend a substantially lower GDP share on active
measures than the OECD total, decreasing very little but steadily ever since a short increase
between 1985 and 1986. The series for labor market training in Figure 3.4c display similar
shapes, although the EU high of 1992 is followed by a short steep decline, a steady increase
until 1996 and another dip in 1997. For the US, the 1986 high is also more pronounced, as is
the steady and substantial decrease up to a stagnant series from 1993 on.

Figure 3.4 Public Spending 1980-1997
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Figure 3.5 illustrates the development of public spending on (a) unemployment compensation,
(b) active measures, and (c) labor market training for the years 1985, 1991, 1997 for selected
European countries (cf. Martin 2000 for the composition of total spending on the various
measures). Countries are ordered by 1997 expenditure from left to right, including bars for the
EU average and OECD total to the far right. Unsurprisingly, Sweden and Denmark can be
found to the right in all panels, with Sweden leading expenditure on active measures, and
Denmark on labor market training. Both countries are similar in terms of their 1997 spending
on unemployment compensation. However, whereas in Sweden this implies a strong increase,
the panels underscore the fact that Denmark has been found the prime example among
European countries regarding the transition from a benefit system of passive measures to one

of active measures.

Figure 3.5 Public Spending by Countries

3.5a Unemployment Compensation
1%
o 300
[a)
o 589
S 150 1
* 38 iR HH
0.00 -+
NP 3 o ¢
& fquy‘}dﬁ(ﬁ@@@;cyf &
& Y &
[0 1985 B 1991 O 1997]
3.5b Active Measures
3.00
Q250
O 200
% 1.50
©  1.00
: 5 il
0.00 -
N Q8;b S o
S
& w@gw«gﬁy ERL
& <
|2 1985 ® 1991 O 1997 |




Chapter 3: Can ALMP Combat European Unemployment? 69

Figure 3.5[ctd]
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Other findings include the UK having reduced public spending on active measures (3.5b), and
having strongly reduced spending on benefits (3.5a), which results in a position to the far |eft.
Furthermore, a general look at Panel a revedls that the contemporary 1994 peak in benefit
expenditure in the EU seen in Figure 3.4a is concealed by looking at pre-peak (1991) and
post-peak (1997) numbers only. Countries like Germany and France display relatively little
change, noteworthy being France increasing its spending on active measures (3.5b) and
Germany temporarily devoting large budget shares to labor market training in 1991. The latter
is due to the offering of labor market training to large numbers of newly unemployed from the
Eastern Lander succeeding reunification (cf. the study by Lechner (2000) presented in section
3.5). Ireland managed to reduce unemployment compensation payments (3.5a), and largely
reduced spending on labor market training (3.5¢c). The Netherlands allocate a large share of
GDP to benefits (3.5a). Public spending of substantial amount on both passive and active
measures is a very recent phenomenon in Switzerland — a finding in line with significant
unemployment having only occurred in recent years. OECD and EU averages, respectively,

display relatively little change.
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3.3 Why can Measures of ALMP be Useful Policy Tools?

From the viewpoint of the individual worker — which is the perspective most
microeconometric evaluations take — participation in an ALMP program might increase
earnings and/or employment probabilities via increasing human capital. Whereas this
argument is intuitively appealing on the individual level, in fighting structural unemployment
training schemes, subsidized employment and similar policies can in principle only be useful
policy instruments if the problem they address results from some kind of market failure. In
theory, four basic functions have been attributed to measures of ALMP (cf. Calmfors 1995) —
for further discussion we refer to the prototypical paper by Calmfors (1994).

The first and most general possible function is to raise a society's welfare and output
by either letting the unemployed invest in human capital or putting them to work. This can be
argued to go hand in hand with a secondary goal of increasing the welfare of the unemployed
by providing meaningful activities for them. A second function of ALMP can be to maintain
the size of the effective labor force, an argument that holds above al in the framework
developed by Layard, Jackman, and Nickell (1991). The main idea here is that participation in
labor market programs can maintain the search effectiveness and skill level of the
unemployed, and thus keep up competition for the available jobs. Moreover, program
participation might prevent discouraged workers who do not find jobs from leaving the labor
force.

Thirdly, it has been proposed that measures of ALMP can help aleviate the moral
hazard problem of unemployment insurance, i.e. to counteract misuse of unemployment
benefits. As, in a deep recession, it may be impossible to test benefit claimants' willingness to
work by offering regular jobs, program participation offers may be a suitable substitute.
Clearly, such a policy would not increase employment, but rather reduce the number of
benefit claimants by "harassing” the unemployed (Calmfors 1995).

A fourth possible function of ALMP might be to induce re-allocation of labor between
different sub-markets. This argument has been one of three main policy directions identified
by the Manpower and Social Affairs Committee of the OECD, which was created in 1961. In
the original account, this is a Phillips curve-based argument, where ALMPs are meant to
improve the trade-off between inflation and unemployment by stabilizing employment during
the cyclica downswing and by removing labor-market bottlenecks during the upswing

(OECD 1990). The other two origina policy objectives cover the classical efficiency and
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equity arguments. ALMPs are meant to (i) develop human resources and adjust manpower
resources to structural changes with a view to fostering economic growth, and (ii) to improve
both employability of and opportunities for disadvantaged groups, and thus contribute to
socia equity (OECD 1990).

Conceivable theoretical drawbacks to ALMP are also manifold. In this connection the
main worries center around job creation schemes possibly giving rise to deadweight losses,
i.e. the subsidized jobs would have been created anyway, or substitution effects, i.e. the
subsidy leads firms to employ workers qualifying for the subsidy instead of unsubsidized
workers, or displacement effects, i.e. subsidized firms can expand employment at the expense
of employment in unsubsidized firms of the same sector. Another possible adverse side effect
is the lock-in effect of training and job creation programs. Even though programs might have
positive effects after completion, job search activity is likely to be low during participation.

The OECD (1993) and Camfors (1994) employ "macroeconomic" models trying to
incorporate the various beneficial and adverse effects of ALMP. However, whereas this type
of analysis does serve to illustrate that labor market programs work through several channels,
it becomes very difficult to empirically disentangle the effect of policy on the labor market
(OECD 1993). It is therefore no surprise that the evaluation literature has almost exclusively
focused on program effects on the average individual participant, leaving genera equilibrium

effects aside.

3.4 Received Wisdom: US versus Europe

What have we learned so far from empirical research on active employment polices? This
section reviews some received evidence by contrasting evaluation research on both sides of
the Atlantic. In afirst step, this mainly contrasts the facts that (a) US studies to a great extent
are based on experimental evaluations, while (b) European evaluation studies predominantly
(or amost exclusively) make use of nonexperimental data. These observations also reflect
different cultures of program evaluation: To have labor market programs evaluated by
independent researchers or (non-)profit agencies unrelated to the government is an almost
self-evident fact in the US. The nowadays widespread use of experimenta techniques results
from previous experience with nonexperimental evaluations in the 1970s and 1980s, where

researchers found these results to differ too strongly to deliver conclusive results. In Europe,
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on the other hand, policy makers in many countries are still reluctant to introduce social
experiments. Moreover, in many respects there does not seem to be a strong co-operation and

communication between policy makers and researchers.

3.4.1 The US Experience
A thorough scientific evaluation of the impact of Active Labor Market Policy on individual

employment prospects has been a long-standing concern of US policy makers and the
American public. The US have thus acquired a substantial amount of empirical evidence over
the last decades, as programs have been accompanied by scientific evaluation and the design
of subsequent programs has often been adjusted according to scientific advice based on
previous experience. In particular, this procedure led to the predominant use of experimental
evauation methods, since these have been believed to generate the most robust and unbiased
treatment effect estimates. Clearly, it is beyond the scope of this chapter to give a full account
of the US experience with evaluating labor market policies. This section merely intends to

sketch both the relevant methodological topics and the empirical lessons.

Methodological Considerations. With respect to the scientific approach to evaluation in the
US we find two central aspects. First, the distinction between studies set in an experimental or
a nonexperimental context, the predominant use of the former, and the discussion about which
approach can produce reliable estimates under what circumstances. Second, the focus on
earnings rather than employment as the outcome variable of interest.

It is the fundamental problem of any evaluation study that it is impossible to observe
individuals in different states of nature at the same time and place®. Specifically, while the
post-program employment performance of a participant in a training program can be
observed, we will never be able to observe the employment performance the same individual
would have experienced if he or she had not participated. Yet, a comparison between these
two states in order to establish the causal effect of treatment is at the heart of any sensible
study about the impact of a program. Thus, finding a credible estimate for the counterfactual
state of nature is the principal task of researchers engaged in evaluation studies.

This in fact is the main underlying problem of any empirical study trying to assess
labor market program treatment effects. The two principal evaluation designs are those of an

experimental study vs. a nonexperimental study. In a social experiment, potential would-be-
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participants are randomly selected into a treatment and a control group, thus ensuring that
both groups do not differ from each other systematicaly in neither observable nor
unobservable characteristics. This procedure rules out any potential problems of bias due to
selection-into-treatment and makes post-treatment outcomes of both groups directly
comparable. In a nonexperimental or observational study, however, an appropriate
comparison group (and thus a credible counterfactual) has to be constructed retrospectively.

Social experiments offer thus a very convincing study design for generating a credible
estimate of the counterfactual situation — since participants are chosen into the program by a
random mechanism, it is straightforward to find comparable individuals that happen to have
been randomly excluded in this assignment process. The construction of the desired
counterfactual does not require extensive statistical or econometric techniques. Many
evaluations of US labor market programs follow this reasoning and perform a social
experiment, like the National Supported Work Demonstration NSW in the 1970s, or the Job
Training Partnership Act JTPA in the 1980s. The most stable and widely accepted empirical
results on North American training and incentive programs stem from experimental
evaluations.

Often an experimental evaluation study is not a technically feasible option or meets
the resistance of program administrators. Many researchers who had to rely on
nonexperimental datain their analysis have emphasized the benefits of using longitudinal data
(cf., eg., Ashenfelter and Card 1985). This argument has shaped many nonexperimental
analyses, most significantly in the discussion of the mgor US training program of the 1970s,
training under the Comprehensive Employment and Training Act (CETA). A prominent
nonexperimental alternative to such a longitudinal analysis takes a cross-sectional approach,
using so-called control functions to model the implied sample selection bias. Thisis a strategy
dominating the European literature on program evaluation.

We have seen above that, whereas an experimenta study design partitions individuals
into treatment and control group and thus supplies the desired counterfactua directly, the
comparison group does not come naturaly to an observational study and has to be
constructed. In many cases the researcher can a least rely on the same dataset to establish a
comparison group, e.g. via matching methods. Occasionaly, however, comparison groups
have to be constructed from data sets other than those from which the treatment group

originated, where that data set may contain, e.g., different variables, or the same variables

29 A comprehensive review of this problem is given by Heckman, Lalonde and Smith (1999).
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measured differently. The construction of a comparison group is thus not a trivial exercise.
The researcher — in her effort to establish the counterfactual — has to certify that his
nonexperimental study meets the requirement formulated by Heckman, Ishimura and Todd
(1997) as "to compare the comparable’. In this sense, especially matching methods — by
conditioning on pre-treatment covariates — seem to go a long way towards establishing an
appropriate comparison group. This recent development has led to a renaissance of
nonexperimental evaluation methods, the applicability of which had been strongly questioned
since the influential paper by Lal.onde (1986).

It is with regard to the nature of the outcome variable of interest, where we find one
fundamental difference between North American and European evaluation studies. The US
literature primarily focuses on the impact of employment programs on post-treatment
incomes, rather than dealing with the participation effect on subsequent employment histories.
The latter is far more common in European evauations. This distinct emphasis is in line with
the fact that US labor market programs aim at reducing wage inequalities in raising individual
human capital of the economically disadvantaged (and therefore raising their wages), while
European labor policy measures focus on reducing unemployment in raising individual
employment probabilities. In the latter case, employment performance is usualy being
measured by ether employment (unemployment) rates or employment (unemployment)
durations, i.e. hazard rates. From a methodological viewpoint this obviously implies the use of
evaluation methods designed for dealing with discrete variables such as labor market states
rather than continuous variables such as incomes™®.

Empirical Evidence. This subsection presents a short summary of the quantitative evidence
available from the evaluation of US labor market programs along the lines of Stanley, Katz
and Krueger (1999). First, we look at basic findings for the various populations examined,
before turning to conclusions on the effects of various types of programs.

A first finding on the program impacts by target population is that disadvantaged
youth are in genera difficult to assist, athough some programs have succeeded in doing so.
Programs for disadvantaged youth under 21 — in particular high school dropouts — have been
less successful than programs for other populations, unless training was highly intensive or

quite well implemented. Programs offering government jobs appear successful in improving

30 ¢f. Ham and Lalonde (1996), Magnac (2000), and van den Berg (2000) for a comprehensive account of
duration methods for estimating treatment effects.
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employment rates during the subsidy period, but there is little or no evidence on long-term
positive effects. The target population of poor adults — especially single parents seeking to
leave welfare — appears to respond well to training programs. Above all those programs with a
subsidized employment focus seem promising. Furthermore, programs aimed at encouraging
additional job search assistance for dislocated workers appear to have positive effects.

Looking at program types job search assistance in general seems to be a measure that
reliably speeds the return to work and saves government money. While earnings impacts tend
to be moderate at best, Stanley et al. (1999) find the record for these efforts to be "consistent
and clear", as on average they do lead to a faster return to work. Among other program types,
earnings supplements, hiring subsidies, and subsidized employment lead to employment gains
for the disadvantaged. However, the increase in employment rates mainly occurs during the
period when the actual subsidy is offered. On the other hand, if subsidized employment is
combined with on-the-job training, adult trainees — but unfortunately not the disadvantaged
youth — in such programs show higher employment rates and earnings well after the period of

subsidized employment is over.

3.4.2 The European Experience
Quite afew of the distinct features of European evaluation research have aready been pointed
out in the previous section in order to appropriately contrast them with the US experience. We
thus keep the discussion rather short in this section. In a way this structure of discussing the
US first and Europe subsequently also reflects the fact that European evaluation research
appears to be (at least) one step behind US evaluation research.

The fact that European evaluation research is lagging behind the US can certainly
neither be attributed to the fact that unemployment is a comparatively "recent” phenomenon
in Europe (cf. section 3.1), nor even to a lack of understanding or a lack of willingness of
European researchers to follow American researchers in their development of modern
evaluation practice. Quite the contrary, one has to confess that in recent years evaluation
research — above al in economics — has been one of the "hot" academic topics in Europe,
resulting in a large number of studies across countries. Many European economists have
specialized in the field of evaluating labor market policies. European researchers clearly do
understand the methodological problems of an experimental vs. a nonexperimental design and
the inherent difficulty to establish a credible counterfactual etc., and European researchers can
handle the analytical tools that try to solve these problems.
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In our assessment, what makes Europe "lag behind® is the prevalence of
nonexperimental data, or — from the opposite perspective — the too few cases where an
evaluation is set in an experimental context. This in turn may partly be due to a lack of
communication between policy makers and the scientific community — policy makers in many
European countries still seem to be reluctant to introduce socia experiments, even though
most academic experts are caling for their introduction (cf., eg., Schmidt 1999).
Furthermore, even nonexperimental studies rarely go hand in hand with the program itself —
rather, programs are often implemented without any thought of whether they will ever be
evaluated. High quality data remains the exception. On the other hand academics often
conduct their studies without real connection to the program and possibly without ever being
able to communicate their results to policy makers®. Therefore, unsurprisingly, this European
"evaluation culture” has a lot to learn from US practice, and unfortunately we still have to
assert European evaluation research to be in its infancy® and results to be far from clear-cut,
even though we do observe an increasing number of evaluation studies, and even though these
studies increasingly display methodological rigor. The resulting evidence will be presented in
the next section.

3.5 Recent European Evaluation Studies

The following selective review of recent European evaluation studies is organized aong
coarse regional groupings. Specifically, we will discuss selected studies from (i) the Nordic
countries (ii) the UK and Benelux, (iii) Central Europe, and (iv) transition countries of CEE.
Rather than claiming to be comprehensive our review concentrates on very recent and
partially ongoing work that has been conducted in the field. For complementing information
on previous work see, for instance, Heckman, Lalonde and Smith (1999).

One aspect of particular interest in this section is the broad range: Even though we
present only a limited number of studies, and even though evaluation research in Europe still
has to catch up with the US, we find a substantial variety of studies. With respect to elements

of study design, the presented analyses vary eg. in ther evauation design

31 There is, however, the occasional counterexample where policy makers and academics do work together, cf.
the study by Gerfin and Lechner (2000) presented in section 3.5.3.
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(experimental/nonexperimental), in the target group being analyzed (youths/low-skilled
unemployed etc.), in the type of program being focused on (training, wage subsidies etc.), in
the outcome variable measuring program success (hazard rate, employment rate, earnings),
and in the econometric estimation technique being applied (duration models, matching
estimators, selection models). We thus believe that this selective review does go a long way in
giving an insight into current state-of-the-art European evaluation research and its policy

implications.

3.5.1 The Nordic Countries

Sweden. The Nordic countries - in particular Sweden - were among the first to introduce and
evaluate measures of Active Labor Market Policy. The paper by Larsson (2000) evaluates and
compares the treatment effects of two Swedish labor market programs directed at the young
unemployed: Youth Practice and Labour Market Training. Youth Practice was a large-scale
youth program targeting unemployed aged 18-24. It was a subsidized program placing
participants in both the public and the private sector. In order to minimize potential
displacement effects, participants were supposed to perform tasks that otherwise would not
have been done. The program aso included job seeking activities. Y outh Practice was subject
to some entry requirements trying to ensure that it was only used as a "last resort” after all
other alternatives had been tried.

The second labor market program evauated in the study is the traditiona Labour
Market Training, a program that already had existed for a "very long period". Its aim was to
improve the skills of unemployed job seekers in such a way that they are better matched to
labor demand. Regulations regarding allowance as well as job search during participation
were the same for both programs, while the main purpose differed to some extent: Labour
Market Training was targeted mainly at low-skilled individuals in the field in which they were
searching for jobs, whereas Youth Practice aimed at increasing young people's working
experience.

As Swedish Active Labor Market Policy is explicitty meant to enhance the
employability of the unemployed, Larsson (2000) chooses both employment probability and
earnings as outcomes to measure the programs success. She complements these two by also
estimating "probability of transition from unemployment to education”, in order to see

32 This has been a common assertion in European evaluation research, cf. — among others — Zweimiller and
Winter-Ebmer (1996) or Magnac (2000).
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whether for some people regular education might be a way of avoiding a vicious cycle of
temporary unskilled jobs, unemployment, and programs. To estimate treatment effects the
study employs a multivalued treatment setting, assuming an unemployed individual has three
treatment options: Y outh Practice, Labour Market Training, or job search remaining openly
unemployed. The estimation strategy then follows a propensity score matching set-up based
on the conditional independence assumption.

The paper finds the short-term effects on both earnings and employment to have been
significantly negative throughout for both programs. However, two years after program start
they began to become more positive and the only significantly negative effects were those of
Labour Market Training on earnings. Y outh Practice does not seem to have had any effect on
the probability of studies, while participation in Labour Market Training significantly
decreased the study probability of participants. A direct comparison of the two programs finds
Youth Practice to have been better (or, rather, less harmful) for participants than Labour
Market Training in terms of all outcome measures. Larsson (2000) tests the robustness of
these results by comparing them to estimates obtained from standard OLS regression and
probit analyses, where she notes them to be almost identical, except for Youth Practice
employment effects being zero in the short run and dightly positive in the long run.

What may be reasons behind the negative treatment effect estimates? With respect to
Youth Practice, participants apparently put less or no effort into finding a job during the
program, even though program regulations demanded continued active job search.
Furthermore, the negative outcomes might be due to insufficient planning and follow-up, as
well as low-qualified tasks that did not provide any human capita accumulation. Labour
Market Training, on the other hand, has been there for decades, so that start-up problems
cannot provide an explanation for its bad performance. A potential explanation might be that
courses do not fit the employers' requirements for labor, and that training thus displays both
professional and regional "lock-in" effects. Such lock-in effects also might be present in the
sense presented in section 3.3, namely that program participation substantially decreases job
search relative to the comparison group: In fact it turns out that in this study the "non-
participation” state is rather characterized by an alternative "program”, i.e. ongoing job search
assistance.>®

The recent study by Sianesi (2001) comes to a similar conclusion with regard to non-
participation stating that "in Sweden nobody is really left 'untreated™. Therefore it is

3 Thisinterpretation was given in personal communication with the author.
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important to note that the effectiveness of an ALMP program will be judged against the
alternative of continued receipt of employment offices’ services. In her analysis of Swedish
ALMP Sianesi (2001) assesses the whole set of programs — such as labor market retraining,
public sector employment, subsidized jobs etc. — condensed into one artificial "treatment”
state. This treatment is evaluated using propensity score matching. The findings indicate that
this treatment — trying to capture Swedish ALMP overall — at best displays zero effects on
employment probabilities. Thisis the result when cycling behavior is ruled out.

In general, however, findings point to negative treatment effects due to work disincentives
provided by the system: Participation in a labor market program for five months counts as
employment and renews eligibility for another spell of unemployment compensation. This
interaction between the active and the passive part of Swedish labor market policy appears to
be the most important and most distorting factor in evaluating the effectiveness of Swedish
ALMP. This conclusion receives strong support from the study by Regnér (2001) who
analyses employment training programs. Applying various specifications of a selection model
— linear control function, fixed effect, and random-growth — Regnér (2001) finds that training
had no or significantly negative effects on earnings. He also attributes this to cycling behavior

of program participants.

Norway. Using the same three types of selection models as Regnér (2001) — complemented
by a modified random growth model with unrestricted growth component — the study by
Raaum and Torp (2001) evaluates the effect of Norwegian labor market training on earnings.
The specification tests conducted by Raaum and Torp (2001) reject all models but the linear
control model, which reports a positive training impact on earnings. However, the authors
attribute this to favorable unobservable characteristics among the participants. An interesting
feature of this study is the availability of an internal comparison group, i.e. a group of
unemployed who applied for participation in the program but were rgjected. This group
displays higher "post-training” earnings than non-applicants, and thus appears to provide a
more suitable nonexperimental comparison group.

Denmark. Two closely related Danish studies, Jensen (1999) and Jensen, Svarer Nielsen and
Rosholm (2000), focus on the rather newly introduced Youth Unemployment Program (Y UP)
as of 1996. In strong contrast to other OECD countries, Denmark has experienced a dramatic

decline in its youth unemployment rate in recent years. The papers investigate whether this
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unique effect has been due to the YUP. The YUP appears to be a thoughtfully targeted and
carefully implemented labor market program, which works through a "combination of
benefits, incentives and sanctions’ (Jensen (1999)). The unemployed, low-educated youth
congtitute the target group, with the purpose of motivating them to undertake an education or
to find a job.

Jensen et a. (2000) investigate the effect of the program on the duration of
unemployment spells and on the transition rates from unemployment to schooling and
employment. Based on nonexperimental data, they estimate duration models for grouped
duration data, alowing for the presence of unobservables which may be correlated across
destination states in a competing risks model. The main finding of this analysisis a significant
increase in the transition rate from unemployment to schooling due to the YUP. Jensen et al.
(2000) attribute this effect mainly to a direct program effect (the effect experienced by
individuals who leave unemployment to participate in an educational program), and to a
smaller extent to a sanction effect (the effect from the removal of unemployment benefits
after 6 months if an individual does not accept the offer of a YUP dot).

They find these effects after correcting for seasonadlity in the transition rate from
unemployment to schooling. Furthermore, Jensen et al. (2000) report somewhat weaker
effects on the transition rate from unemployment to employment. They do not find an
announcement effect (individuals at risk of being affected by the YUP behave differently to
those not at risk). Thus, the two studies conclude that the YUP has been successful in
lowering youth unemployment in Denmark, at least in the short run.

In another Danish study Rosholm (1999) evaluates the Danish employment subsidy
program. In particular he studies the individua effects of having completed a temporary
employment subsidy on the hazard rates out of employment and unemployment. He accounts
for between-program selection bias by explicitly modeling the selection process. Rosholm
(1999) estimates two variants of a competing risks duration model on a non-random sample of
Danish workers followed during the period 1983-1990. This sample consists of treatment
participants and a nonexperimental comparison group consisting of participants in other types
of programs and of future participants, i.e. individuals who participated after 1990. Rosholm
(1999) reports the following findings on the treatment effect of the Danish ATB
("ArbegjdsTilBud" = job offer) program:

The effect on the unemployment to employment hazard of a private sector ATB is
generally positive, while the effect of a public sector ATB is mostly negative. The only



Chapter 3: Can ALMP Combat European Unemployment? 81

exception to the latter is the largest subgroup — medium-aged femaes — for which it is
significantly positive. Rosholm (1999) states the difference between private and public sector
ATB to be "real", since it persists even after including the selection process into the model. A
large average fraction of participants (approximately 50%) remain in their subsidized
workplace, with highest fractions for private sector ATBs, and for women. The effect on the
hazard rate from employment is strongly negative. Rosholm (1999) concludes that
employment subsidies appear to improve the employment chances of long-term unemployed
individuals. He tends to attribute the bad performance of public sector employment subsidies
to (perhaps unjustified) stigmatization.

3.5.2 The UK and Benelux

The United Kingdom. A recent paper by Bell, Blundell and van Reenen (1999) examines
alternative approaches to the evaluation of the impact of a temporary wage subsidy and a
training program. It does this in the context of a recent active labor market reform for the
young unemployed in Britain: Labeled the "New Deal for the Unemployed Y outh”, this active
labor market program was introduced in 1997 by the newly elected Labour Party government.
It was part of a general package of welfare-to-work reforms directed toward the low wage
labor market, with the "New Deal" specifically aimed at enhancing the employability of the
young long-term unemployed.

One of these unemployed individuals first enters a "Gateway" period, a period lasting
up to four months during which the individual receives extensive help in job search.
According to Bell et a. (1999) a substantial proportion of the unemployed are moved off the
register during this Gateway period. Those remaining are being offered four options,
comprising either work in a subsidized job in the private sector, or work in a subsidized job in
the public sector (two distinct but similar options), or participation in a training program. All
of the wage subsidy programs also contain a one-day-per-week training element. These
options, however, are semi-mandatory, as failure to comply without good cause may result in
benefit sanctions being applied.

The long-term unemployed in the UK, including those below 25 years of age, are
disproportionately male, even though "it is clear that long-term unemployment is a far greater
problem amongst the old than among the young". Moreover, Bell et a. (1999) find the key
characteristic of those eligible for the New Deal to be their low level of skill and consequent
low productivity. The authors argue that a key rationale of the scheme is to enhance the
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participants employability by making them more productive. Potentially, productivity might
increase through an experience or tenure effect and training opportunities associated with
having ajob — a dynamic effect that could have a permanent effect on unemployment.

In their evaluation approach Bell et a. (1999) emphasize the need to use intertemporal
or dynamic methods in order to understand whether the program will have any long-run
effects on the employment probabilities of the target group, i.e. will participants be able to
hold on to a job once the subsidy runs out. The paper suggests using a "trend adjusted
difference-in-differences’ approach as an empirical strategy for the ex-post evaluation, an
approach that potentially is able to deal with many econometric problems associated with
evaluation. However, as the authors point out, there are some difficulties arising from the fact
that there is no obvious control group which the treatment group could be compared to. A
complementing method proposed by Bell et a. (1999) is the construction of an ex-ante
general equilibrium model of the labor market, using existing information to calibrate the
parameters of the model.

In the empirical analysis they estimate the effect of job duration on productivity (in
terms of wages) for the target group using micro data from the British Labour Force Survey.
The paper concludes that the productivity effects appear to be relatively modest compared to
the size of subsidy deemed necessary to get the group into jobs. Thus, it seems likely that the
policy effects of the New Deal will be far more modest than its proponents have hoped for.

In this respect it is interesting to note that the 1998 Joint Employment Report
(European Commission 1998) aready identified the New Deal as an “Example of good
practice suggested by Member States’ in preventing youth and long-term unemployment
(Guidelines 1 and 2). This finding basically seems to be derived from the fact that the New
Dea “underlines the trend towards the activation approach” (European Commission 1998,
p.114). Moreover, in trying to assess the effective scope of the New Deal and other measures
in the UK the Report simply concludes that “it is impossible to determine the exact proportion

of long-term unemployed who benefit from such measures’ (p.115).

The Netherlands. Using data from a socia experiment, the paper by van den Berg and van
der Klaauw (2000) evaluates the effect of Counseling and Monitoring (C&M) on the
transition rate from unemployment to work. In the Netherlands, the Active Labor Market
Policy C&M is an activity provided by the local unemployment insurance (Ul) agencies. It is
provided to Ul recipients with relatively good labor market prospects, and it consists of
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monthly meetings with a local Ul agency employee for a period of 6 months. "Good |abor
market prospects’ refers to a Type | unemployed in a four-type categorization set up by Ul
agencies in order to better tune its services to the needs of the unemployed. During the
monthly meetings past job search activities are evaluated and plans for future job search
activities are made. Hence, the main goal of C&M is the reduction of the duration of
unemployment and consequently the total amount of Ul benefits paid. Van den Berg and van
der Klaauw (2000) emphasize the need for an evaluation study of C&M to focus on the
duration until exit to work and to take place on the individua level.

The data are administrative data coming from a social experiment, so that sample
selection bias from nonrandom participation or reliance on instrumental variables or
functional form assumptions are not an issue. The experiment was conducted at Rotterdam
and Eindhoven, the 2nd and 5th largest cities of the Netherlands, respectively. Van den Berg
and van der Klaauw (2000) report the local Ul offices in these cities to be relatively large
(large inflow into Ul) and to provide C&M of high quality. The participants in the experiment
were randomly selected into the treatment group receiving C&M and the control group not
receiving C&M. None of them knew in advance that the experiment was going on. Usualy,
all of them would have received C&M. However, none of the individuals in the control group
complained about not recelving C&M. This set-up ensures that the data do not suffer from
initial nonrandom non-participation in the experiment, and participants cannot leave the
experiment for any reason other than stopping collecting Ul benefits.

Van den Berg and van der Klaauw (2000) offer a theoretica and empirical
investigation of C&M of unemployed workers. In the theoretical part, they investigate the exit
rate to work using a job search model with multiple search channels and endogenous search
effort. The search channels include formal and informal job search. In the empirical analysis,
the authors estimate the effect of C&M on exit to work with non-parametric and parametric
methods, with duration models and with limited-dependent variable models. The duration
models concern common reduced-form hazard rate models, including eg. a mixed
proportional hazard specification where the transition rate from unemployment to
employment is allowed to depend on observed individual characteristics, on the elapsed
unemployment duration, on unobserved determinants and on a variable indicating whether the
unemployed receives C&M or not. The estimation of the model is based on a flow sample of
Ul recipients.

The empirical results show that providing C&M does not have a significant effect on
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the individual transition rate from unemployment to employment. From their theoretical
model and comparisons to other studies the authors find two reasons why the analyzed C&M
does not seem to be a successful labor market policy. First, the population of unemployed
individuals who receive C&M consists of Ul recipients with good labor market prospects, and
second, the program does not provide sufficient assistance. But athough the estimated effect
of C&M is smal, van den Berg and van der Klaauw (2000) conduct a cost-benefit analysis
showing that the Dutch C&M can be considered as cost effective. They attribute this finding
to the low costs of providing C&M. Looking at the results, the main question concerns the
choice of target group of the program: Obvioudy the Type | unemployed workers with
relatively good labor market prospects do not seem to be the ones who profit most from
receiving C&M, as they would be the ones who would be thought best in doing it "on their
own". On the other hand, however, they are the ones who aready have sufficient human
capital and mainly need job search assistance, while for Type Il to IV unemployed C&M may
not be too helpful, as they need to acquire human capital first.

3.5.3 Central Europe

France. Our review of ALMP in France focuses on the well-received study by Bonnal,
Fougére, and Sérandon (1997). A complementing overview of recent microeconometric
results on the evaluation of the effects of ALMP on youth employment in France can be found
in Fougéere, Kramarz, and Magnac (2000). These authors report training programs for
unemployed young workers in general to have no effect on post-treatment wages or
employment probabilities, except if they have alarge training content.

In their paper Bonnal et a. (1997) deal with the evaluation of public employment
policies set up in France during the 1980s to improve the labor market prospects of the most
disadvantaged and unskilled young workers. The evaluation is restricted to the short-term
impact of youth employment schemes on subsequent unemployment and employment
durations of recipients. Bonnal et a. (1997) estimate a reduced-form multi-state multi-spell
transition mode that includes participation in the program as an additional state. Given their
framework, participation in a program is allowed to affect the transition rates out of the state
following the program, and distinct types of programs (i.e. public sector programs vs. private
sector programs) are alowed to have different effects. Their model also allows for possibly
related unobserved heterogeneity in the specifications of al transition states, capturing the
potentially selective nature of program enrolment.
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In the empirical analysis they use nonexperimental micro data from administrative
records collected in the period from 1986 to 1988. The data provide information on the dates
of program entry and on durations of subsequent spells of employment and unemployment.
Bonnal et al. (1997) distinguish between two types of programs. First, the alternating work/
training program provided by private firms, including apprenticeship, qualification and
adaptation contracts, and "courses for the preparation to working life". Second, the "workfare"
program provided by the state and the public sector, including community jobs and "courses
for the 16-to-25-year-old". In the second type the amount of vocational and specific training is
generaly lower than in the first type. In this respect the paper addresses the main question:
can we aso differentiate these two types of program when we consider their impacts on
durations and outcomes of subsequent unemployment and employment spells?

Bonnal et a. (1997) use individual labor market transition data distinguishing between
six labor market states: unemployment, permanent job, temporary job, public employment
policy job, out-of-the-labor-force, and attrition. Their statistical model is of the mixed
proportional hazard type, with piecewise constant duration dependence. Their estimates show
the following: (i) French youth employment programs have differing effects on the recipients
trajectories. For instance, participation in the private sector program of the first type increases
the trangition rate from the following unemployment spell to regular employment for young
low-skilled males, while it has no effect on the same transition for young men with better
education. At the same time, the experience of a public sector "workfare" program has no
effect on the intensity of transition from unemployment to regular jobs for the least educated
young people, while this transition rate decreases significantly for young men with a
vocational diploma. This subgroup may even end up stigmatized with having a low
employment performance.

(i) Participation in programs is highly selective. It depends firstly on the state
currently occupied (better educated youths have higher transitions into a program from
unemployment than from temporary employment). Secondly, it depends on the educational
level (the least educated move less intensely from unemployment to programs). Findly, it
depends on past occurrences of program participation, but also on unobserved individual
heterogeneity. (iii) The duration of the period of entitlement to unemployment insurance does
not increase the expected duration of unemployment spells. While they are till qualified for
Ul, the least educated young workers enter programs more intensely.

In a more recent paper Brodaty, Crépon, and Fougére (2001) re-examine the
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evaluation of French youth employment programs. They use the same data as the above study
by Bonna et a. (1997) and re-estimate the impact of these programs on the subsequent
employment status by implementing matching estimators. In their specification they focus on
the propensity score as matching criterion. As the sample is extracted from the stock of
unemployed people at a given date (August 1986), a natural specification of the participation
probability may supposedly be derived from a competing risks duration model.

The results obtained by Brodaty et al. (2001) highlight the variability of program
effects, both between programs and among recipients of the same program. They emphasize
that this may be a particular problem as regards policy implications: due to the fact that their
results are pairwise comparisons, different improvements may be sometimes proposed to the
same person, or vice versa. In general on-the-job training programs in the private sector
(associated with higher amounts of vocational and specific training) give better results than
public sector programs. This result is in line with the Bonnal et a. (1997) study using a very
different approach. In order to assess differing program effects for participants with varying
conditional participation probabilities, Brodaty et a. (2001) study the relative effects of
different programs along subintervals of the common support, i.e. for specific values of the
propensity score. In general, positive effects on the whole common support are associated
with significant positive effects on the highest part of the support and no significant effects on
the lower part, while negative effects on the overall common support are associated with

significant effects on the lower part and no effect on the highest part.

Germany. While high and persistent unemployment has plagued the German economy for a
considerable time, it is the painful aftermath of the integration of East Germany which
generated most concern among economists. Correspondingly, there are several studies of the
impact of ALMP measures in Eastern Germany, one of which is reviewed here.

The paper by Lechner (2000) analyses the effect of public sector sponsored continuous
vocationa training and retraining in East Germany directly after unification. This training
program was part of an extensive (above al in monetary terms) introduction of ALMP
measures in Eastern Germany, aimed at avoiding high unemployment in a yet destabilized
and slowly adjusting market. Using nonexperimental data from the German Socio-Economic
Panel (GSOEP) for the period 1990-1994 the author presents estimates of the average
individual gains from training participation in terms of earnings, employment probabilities

and career prospects after the completion of the training program.
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The group being analyzed consists of workers of the former GDR having participated
in such a program between July 1990 and December 1992. Found to be a "highly informative
data set” in this study, the GSOEP comprises a random sample from the East German
population, thus containing both trainees and non-participants. Apart from many socio-
economic variables being included, the data also make it possible to track individua
employment histories on a monthly basis back to one year preceding unification.

Based on a nonparametric matching approach the findings suggest that in the short run
public sector sponsored training has a negative impact. Lechner (2000) attributes this to the
fact that participation in training reduces the job search efforts during treatment compared to a
comparable spell of unemployment. Severa months succeeding training, though, these effects
diminish and no statisticaly significant differences between trainees and controls can be
observed. Thus, the general finding is rather to attribute no positive earnings and employment
effects to public sector sponsored continuous vocational training. While the risk of being
unemployed seems to increase directly after treatment ends, this negative effect disappears
during the first year after training. Further analysis of long-term effects was not possible using
that very data set. It remains an open question whether the lack of a positive effect is due to
either participants being stigmatized for future employers or insufficient quality of the
program.

In finding the program to apparently be "very much a waste of resources’, Lechner
(2000) draws a rather pessimistic conclusion. He somewhat qualifies his view by saying that
(i) at this early stage the East German training structure had just been built from scratch, that
(i) a significant reduction in the official calculated unemployment rate was indeed achieved,
being one of the political aims of the program, even though individual labor market prospects
were apparently not enhanced, and that (iii) positive training effects may materialize only

after alonger time horizon.

Switzerland. A recent paper by Lalive, Zweimiller and van Ours (2000) presents some initial
evidence on the impact of ALMP and benefit entitlement rules on unemployment duration in
Switzerland. Switzerland exercises a reward-or-punish system of benefit regulation, where
after 7 months of unemployment duration unemployment benefits are conditional upon
program attendance. In this respect the Swiss case is interesting as Switzerland has gone
particularly far in activity testing by adopting new rules linking benefit eligibility closely to

participation in ALMP measures. Swiss ALMP measures entail both training courses and
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employment programs.

Using nonexperimental data from administrative records Lalive et a. (2000) employ a
"timing-of-events® duration method to study the impact of ALMPs on unemployment
duration. In addition to the conventional procedure of modeling the mechanism determining
selection into treatment together with the process of exit from unemployment, their approach
makes explicit use of the information contained in the timing of the treatment. Treatment can
be started at various points in time during an unemployment spell, and variation in that timing
can be exploited to identify the treatment effect. Within their duration analysis framework
Lalive et a. (2000) allow for unobserved heterogeneity. This relaxation of the conditional
independence assumption, however, needs a much more restrictive specification of both the
selection process into the programs as well as of the dependence of labor market outcomes on
individual characteristics and time.

Lalive et a. (2000) find the following results. (i) after participation in ALMP the
transition rate to jobs increases for Swiss women, but not for Swiss men. The job hazard rate,
though, is strongly reduced during participation. Taken together, the authors conclude that
programs prolong unemployment duration for men, but tend to shorten durations for women.
(if) Once the unemployment spell comes close to the running out of unconditional benefit
entitlement the job hazard rate increases strongly, both for women and for men. (iii) The
authors do not find any important selectivity effects regardless of gender.

Another econometric evaluation of Swiss ALMP is a study by Gerfin and Lechner
(2000) that is part of the same research program initiated by the Swiss government. Thus,
their data come from the same source as those used in Lalive et a. (2000). However, while
the latter restrict their sample to inflows into unemployment between December 1997 and
March 1998 — due to their econometric analysis being based on duration models —, Gerfin and
Lechner (2000) ground their evaluation approach on the stock of those having been
unemployed for less than a year in December 1997.

The data originate from administrative unemployment and social security records, and
are clamed to be "unusualy informative". This claim seems to be justified, as for a merged
random subsample of about 25,000 observations the data contain information on individual
labor market histories and earnings for at most 10 years prior to the current unemployment
spell. Moreover, the data include a variety of sociodemographic characteristics, regional
information, subjective valuations of placement officers, sanctions imposed by the placement

office, and information on previous and desired jobs. The authors are thus confident that after
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controlling for this wealth of information there will be little unobserved heterogeneity left that
is systematically correlated with program participation and labor market outcomes.

The active labor market programs can be grouped into three broad categories, (a)
training courses, (b) employment programs, and (c) temporary employment with wage
subsidy, which the authors abbreviate to "temporary wage subsidy". A basic difference
between (b) on the one hand and (c) on the other is that the former takes place outside the
"regular" labor market, while the latter must be a regular job.

Training courses consist of a large variety of 16 types of courses ranging from basic
courses to specific work-related training. In the analysis they are aggregated to five rather
homogeneous groups. Employment programs can take place in both private and public
ingtitutions. A main feature is that they should be as similar as possible to regular
employment, but still extraordinary, i.e. not in competition with other firms. Moreover, during
an employment program the unemployed has to continue her job search and must accept any
suitable job offer. While participation in both training and employment programs does not
extend the benefit entitlement period, a temporary wage subsidy might do so if its cumulated
duration exceeds 12 months. The am of a temporary wage subsidy is to encourage job
seekers to accept job offers that pay less than their unemployment benefit by compensating
the difference with additiona payments. As the income generated by the scheme is higher
then the unemployment benefit for remaining unemployed, it is financialy attractive for both
the unemployed and the placement office.

The evaluation strategy of the paper follows a propensity score matching setup
considering multivalued treatment. For an individual it is thus possible to have potentialy
been in one of nine mutually exclusive "treatments': one of five distinct types of training
courses (basic, language, computer, further vocational, and other), one of two types of
employment programs (private or public sector), temporary wage subsidy, or not participating
in any program. The analysis considers employment as the outcome variable. The results
show that for the respective participants in the programs temporary wage subsidy is superior
to aimost all other programs, with a mean gain between approximately 6% to 22% points. In
fact, temporary wage subsidy is the only program that dominates non-participation.
Summarizing al pair-wise and composite effects Gerfin and Lechner (2000) thus find that
temporary wage subsidy is the most effective program, while employment programs as well
as basic and language courses display negative treatment effects. For the other training

courses the authors find mixed results.
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Two aspects are particularly noteworthy about this study. First, it is based on an
unusually informative data set, showing that good data can go along way in helping to set up
a solid evaluation study. Second, it finds the rather interesting results that a traditional
employment program — probably due to taking place in a sheltered labor market — exhibits
negative effects, while a rather unique program of temporary wage subsidy seems to be a
powerful instrument. The only concern regards potential negative incentive effects of
temporary wage subsidy in terms of underbidding of the wages set in collective bargaining,

and avoidance of dismissal protection.

3.5.4 Transition Countries
From its very beginning the transition process of the formerly communist countries of Central
and Eastern Europe has been accompanied by vivid economic research trying to grasp a
deeper understanding of the developments in these countries. In this respect, aso the
implementation and evaluation of ALMP measures has attracted considerable interest. We
focus on recent experiences from two countries, Poland and Slovakia. For a survey of earlier

results and their implicit lessons for OECD countries see Boeri (1997).

Poland. In their microeconometric evaluation of the effectiveness of ALMP measures in
Poland, Kluve, Lehmann and Schmidt (1999)** apply the method of matching as a
nonexperimental substitute for randomization in labor market programs. Using retrospective
data from the 18th wave of the Polish Labour Force Survey (PLFS) as of August 1996, the
authors focus on a supplementary questionnaire containing information on individual labor
market histories in monthly representation, and implement a conditional difference-in-
differences estimator of trestment effects.

Along the lines of other transition countries during the 1990s Poland — facing high and
persistent unemployment rates — also introduced a variety of ALMP programs. These include
Training, Intervention Works (wage subsidy to private employers), and Public Works (a
public sector employment program). The PLFS data follow individuals for a period of 56
months (January 1992 to August 1996) entailing information on their respective labor market
state for every single month. Kluve et a. (1999) condense this information to a multinomial
variable of labor market outcome (employed, unemployed, out-of-the-labor-force).

Furthermore, they construct treatment groups for each policy measure, respectively,
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and individually and dynamically (exact point in time of program entry) match controls to
program participants. Doing this the dynamic 'moving window' feature accounts for changing
macroeconomic environment. The matching criteria applied in this procedure require the
control to (i) display identical characteristics with respect to gender, education, region, and
marital status, to (ii) hold an identical 12-month employment history preceding treatment, and
to (iii) display minimum age deviation. The conditioning on pre-treatment labor market
histories is a feature particularly noteworthy, as the employment record preceding entry into
treatment has been found to be an important determinant of program participation (Heckman
and Smith (1999); cf. also Card and Sullivan (1988) for an early application).

Having constructed treatment and matched comparison group following this
procedure, Kluve et al. (1999) use the trinomia labor market outcome variable described
above to analyze the effect of ALMP measures on employment and unemployment rates.
Exploiting the history structure they take into account short-term (9 post-treatment months)
and medium-term (18 post-trestment months) effects. The authors findings suggest that
training has a positive effect on the employment probability for both men and women. This
effect is dightly more pronounced for women. Therefore, this ALMP measure clearly seems
to improve the efficiency of the Polish labor market. Regarding intervention works there is no
overal treatment effect for participating women, while the authors report strong negative
treatment effects on the employment rates of men who took part in either intervention works
or public works (Public works for women are not being analyzed due to small sample size).
As participation in any of these two ALMP measures entitles the participant to a new round of
unemployment benefits, intervention works and public works seem to be a common
intermediate stage between two spells of unemployment benefit receipt, where the individual
entered the program after having exhausted his benefit eligibility. Hence, while stigmatization
might have some role to play, Kluve et a. (1999) attribute most of the negative overall

treatment effects of these programs to 'benefit churning'.

The Slovak Republic. Van Ours (2000) studies treatment effects of training programs and
subsidized jobs that were part of the Slovak program of Active Labor Market Policy. He aso
focuses on individual treatment effects. Of the ALMP measures introduced (and occasionally
re-organized) in the 1990s in Slovakia, the author analyses three main program types. (i)
Training, (ii) Socially Purposeful Jobs (SPJ), (iii) Publicly Useful Jobs (PUJ). The latter two

34 This study is included as chapter 4 in this thesis.
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are both programs of temporary subsidized employment, where SPJ were mainly created in
the private sector and concerned higher qualified functions, while PUJ were low ranking jobs
in the public sector best described as "community works'. The SPJ program has been the most
extensive Slovak ALMP program both in terms of expenditures and participants.

Using nonexperimental data from the unemployment register, van Ours (2000) focuses
on a sample of three Slovak districts with detailed labor market information on male workers
that started their unemployment spell in 1993. He investigates whether the exit rate to regular
jobs increases if an unemployed person enters a PUJ, a SPJ or a training program.
Furthermore he investigates a possible relation of the separation rate from a new job to
whether or not the worker previoudly participated in an ALMP. In an event history model of
labor force dynamics the author exploits information with respect to the duration of
unemployment, the duration of the stay in an ALMP, the destinations after that, and the
duration of subsequent employment spells.

In multivariate duration models, the variation in the durations at which treatment is
administered to individuals along with data on the corresponding pre- and post-treatment
durations can be exploited to identify the treatment effect. In order to account for possible
sdlectivity in the inflow into ALMP, van Ours (2000) establishes a model considering the
effect of ALMP on the transition rate from unemployment to a job and also the effect of
ALMP on the separation rate once workers have found a job.

He finds that in Slovakia short-term subsidized jobs seem to be the most efficient
active labor market policy. Workers that are or have been on a short-term subsidized job have
a higher job finding rate than other unemployed workers, and once they find a job their job
separation rate is lower than that of workers not having been on a short-term subsidized job.
On the other hand, van Ours (2000) reports long-term subsidized jobs to have a negative
effect on the job finding rate, and no effect on the job separation rate. His additional finding
of a positive effect of training on the job finding rate is attributed to the possibility of reversed
causality: some workers enter a training program only after they are promised a job. Training
does not seem to affect the job separation rate.

3.5.5 Expert opinions
The complexity of the unemployment problem makes it highly unlikely that labor market
experts will unanimously agree on the particular set of interventions that should be

implemented to alleviate the situation. Each expert would presumably favor his or her own
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mix of policy measures for tackling the unemployment problem. However, despite this lack of
unanimity, among the most promising avenues for identifying appropriate policy measures is
the attempt to extract expert consensus or agreement from the heterogeneous individual
recommendations. This is the innovative avenue taken by Profit and Tschernig (1998). At a
conference drawing together many labor economists familiar with the German labor market,
these authors collected and analyzed a survey of expert opinions on the perceived desirability
of various types of labor policy measures®. While the self-selected nature of the set of
respondents is obvious, it is nevertheless instructive to review this analysis.

The responses to the questionnaire suggest that economic experts do not expect a
single set of measures to work best in aleviating the unemployment problem. Instead, a wide
variety of measures is implicated at being promising, among them increased investment into
education and training in general, and increasing training and qualification programs in
particular. Among the most favored measures were also interventions atering the incentives
of labor market participants, abeit only represented by measures implying a more restrictive
environment, namely a stricter administration of unemployment benefits, enhanced
monitoring of the unemployed, and a reduction of unemployment benefit levels, not by
increased subsidies for low wage earners or subsidies for promoting (self-)employment. The
direct creation of public sector jobs was not among these most favored policy proposals.

In general, stronger distortion of individual decisions, for instance by increased
centralization of wage bargaining, by stricter regulation of standard weekly hours or by the
discouragement of overtime, did not appeal to the respondents. They were similarly
disfavorable to a general expansion of public activity, both by expansionary monetary or
fiscal policy. Instead, economists seem to favor the de-regulation of various aspects of |abor
and goods markets, for instance the de-regulation of small businesses and the de-regulation of
part-time work. Certainly for the German labor market the actual experience with any of these
concrete measures is limited. More importantly even, the empirica knowledge is extremely
scarce, since historically there has not been any systematic attempt at a scientific evaluation of
policy measures, let alone conceptually convincing experimental evidence. By and large,
though, the international experience with labor market policies is relatively consistent with the
responses analyzed in Profit and Tschernig (1998), although this result should certainly not be
exaggerated.

35 The authors repeated this exercise at a recent meeting of the European Economic Association, but due to
technical problemsthe response rate was prohibitively low.
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3.6 Collecting the Evidence

This section extracts the principa findings from the detailed review in the previous section.
The main features of the specific country studies are summarized in Table 3.1.

Looking at the types of programs, we find a substantial variety across countries.
Unsurprisingly, however, even though regulations differ greatly in their detail, a broad
categorization into the two types of "training-based" programs and "subsidy-based" programs
seems apt. The target group usually consists of unemployed individuals that either receive
unemployment benefits (in most cases) or are at least digible for the receipt. Many programs,
in particular in Northern Europe, focus on youth unemployment. Few of the programs make
finer distinctions in targeting, like e.g. the study by van den Berg and van der Klaauw (2000)
that analyses Counseling & Monitoring for unemployed workers with "relatively good |abor
market prospects’.

This study is also the only study in our review originating from a social experiment.
All other papers are set in a nonexperimental context. Most of the studies analyze treatment
effects on either employment (unemployment) rates or employment (unemployment)
durations or hazards, respectively. The minority of studies (Bell et al. 1999, Larsson 2000,
Lechner 2000, Raaum and Torp 2001, Regné 2001) also considers wages as outcome
variables of interest.

With respect to estimation methods, we find two methods of predominant use in
Europe: duration models and matching methods. This adso implies two fundamentally
different approaches to underlying assumptions. Either one explicitly models the selection
process and incorporates unobserved heterogeneity relying on some functional form
assumptions (as in most duration analyses). Or one matches individuals under the conditional
independence assumption claiming that one considers all relevant variables, and that selection
is on observables (as in the analyses focusing on post-treatment employment rates). Both
approaches have their advantages and disadvantages. However, there may be data situations
where one method seems to be more appropriate than the other (e.g. matching in the case of
Gerfin and Lechner 2000). Classic selection models — which played a maor role in early
evauation research (cf., eg., Bjorklund and Moffitt 1987) — nowadays seem to be of
subordinate importance, and are rarely applied. This may be due to their exclusive focus on

earnings as outcome of interest.



Table 3.1 Overview of recent European evaluation studies

Obser -
Study Country Measure Target Group  Type vation  Outcome of Estimation Results Notes
period interest method
Larsson Sweden 2 programs: Youth Young Non- 1991- Annual earnings, Propensity Both programs: short- Heterogeneity
(2000) Practice and unemployed experimental 1997 reemployment  score run0to—, problems
Labour Market probability, matching long-run O to slight +;
Training probability of (multivalued  youth practice better
regular education treatment), than labour training
OLS, probit
Sianesi Sweden VariousALMP Unemployed Non- 1994- Various Propensity At best 0 effects (if - Assumption of
(2001) measures experimental 1999 measures of score cycling excluded), one “treatment” ?
condensed into labour market matching otherwise — - Negative effects
one “treatment” status, in due to cycling
particular behaviour
employment
probability
Regnér Sweden  Training Unemployed Non- 1987- Earnings Selection 0 or —effects Cycling behaviour
(2001) experimental 1992 models: linear
control, fixed
effect, random
growth
Raaum and Norway Labour market Unemployed Non- 1989- Earnings Selection + for thelinear control Internal
Torp (2001) training experimental 1994 models: linear model, other models ~ comparison group
control, fixed  rejected

effect, random

growth (2)
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Obser-
Study Country Measure Target Group  Type vation  Outcome of Estimation Results Notes
period interest method
Jensen (1999) Denmark Youth Unemployed Non- 1996 Unemployment  Competing Sign. increasein U® Srelevant
Jensen, Employment low-educated experimental duration risksduration transition rate question?
Svarer Program youth model U® S, weaker: UR E
Nielsen,
Rosholm
(2000)
Rosholm Denmark Employment Unemployed Non- 1983- Unemployment  Duration Private sector: U® E  -Ul benefits
(1999) subsidy (public (U1 benefit experimental 1990 hazard, (MPH) generally +, E® U restored
and private) eligible) Employment strongly -, public -Selection issue?
hazard sector: U® E m0$|y - -50% remainin
, E® U strongly - subsidised firm
-Stigmatisation
(public sectors)
Bell, UK Temporary wage  Young Non- 1997- Productivity Trend-adj. Productivity effects ~ Complementary
Blundell, van subsidy, training  unemployed experimental 1998 =wages difference-in-  relatively modest method: ex ante
Reenen ("New Ded") differences (comp. to size of genera eq. model
(1999) subsidy) of labour market
van den Berg, Netherlands Counseling & Ul recipients Saocial 1998- Unemployment  Duration No sign. effect on Choice of target
van der Monitoring (w/ relatively experiment 1999 hazard models, individual transition  group?
Klaauw good labour limited dep. rate U® E (still:
(2000) market variable program cost
prospects) models effective)
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Obser -
Study Country Measure Target Group  Type vation  Outcome of Estimation Results Notes
period interest method

Brodaty , France Youth "The most Non- 1986- Employment Propensity On-the-job trainingin
Crépon, employment disadvantaged  experimental 1988 status score private sector +
Fougeére programs; and unskilled matching (=higher amount of
(2001) "workplace" young workers' (multivalued  vocational & specific

training programs treatment) training)

(private s.),

"workfare"

programs (public

S.)
Lechner Germany Training and Workersin East Non- 1990- Employment Partial Short-term -, long- - Built from
(2000) Retraining Germany experimental 1994 probability, propensity term O, "waste of scratch

earnings, career  score ressources’ - Reduced official
prospects matching unemployment
rate (main goal)

Lalive, Zwei- Switzerland Benefit receipt Unemployed Ul Non- 1997- Unemployment  Duration Unemployment
muller, van cond. onALMP  recipients experimental 1999 duration model duration: men -,
Ours (2000) participation women
Gerfin, Switzerland  Training (5 types), Unemployed Ul Non- 1997- Employment Propensity Temporary wage Excellent data
Lechner employment recipients experimental 1998 score subsidy ++, base
(2000) programs (private matching employment

+ public), (multivalued  programs —, training

temporary wage treatment) mixed

subsidy
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Obser-
Study Country Measure Target Group  Type vation  Outcome of Estimation  Results Notes
period interest method
Kluve, Poland Training, IW Unemployed Non- 1992- Employment Exact Training: men & Benefit churning
Lehmann, (wage subsidies experimental 1996 rates, covariate women +, IW: women
Schmidt private sector), unemployment  matching 0, men -, PW: men -
(1999) PW (public sector rates
employment
program)
van Ours Slovak Rep. Training, SPJ(So- Unemployed Non- 1993- Job finding rate, Duration Short-term subs. jobs  Training: reversed
(2000) cialy purposeful experimental 1998 job separation model +, long-term subs. jobs causality
jobs), PUJ (pub- rate -, training +
licly useful jobs)
Profit, Germany Questionnaire to No single measure, but various:
Tschernig labour +: Investm. in education & training in
(1998) economistson general, training & qual. programsin

what measure to
apply best

particular, incentives (stricter Ul
regulations)

-: public sector job creation, subsidies for
low wage earners

Columns 1-9 are self-explaining. "Notes" refers e.g. to special features of the study, or to potential problems for interpreting results. All of these points are explained in
detail in the corresponding text. The study by Bonnal et al. (1997) has been omitted from the table as the results are in line with Brodaty et al. (2001).
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Regarding overal results, we find a surprising coincidence with the answers given by
economists in the questionnaire of Profit and Tschernig (1998). Above al programs with a
large training content seem to be the measures that are most likely to improve employment
probability. Of course, this is not true for all types of courses (Gerfin and Lechner 2000), but
given that both direct job creation and employment subsidies in the public sector amost
always seem to fail (Rosholm 1999, Brodaty et al. 2001, Kluve et al. 1999) — in particular if
they are only meant to keep unemployed off the register (Lechner 2000) — this is a rather
robust result. In general, private sector programs seem to be far better than public sector
programs. However, overal treatment effects appear to be rather modest, so that one should
not expect too much from European ALMP.

In detail, we find three other results noteworthy: First, the highly positive effect of the
temporary wage subsidy in Switzerland, a program that encourages job seekers to accept job
offers that pay less than their unemployment benefit by compensating the difference with
additiona payments. As the income generated by the scheme is higher than the
unemployment benefit for remaining unemployed, it is financialy attractive for both the
unemployed and the placement office. This seems to be a promising aternative measure of
active labor market policy, and it would be interesting to see whether other countries would
make similarly positive experiences with it.

Second, an approach of "Counseling and Monitoring” as analyzed by van den Berg
and van der Klaauw (2000) seems promising. The fact that they do not find a significantly
positive effect seems to be only due to an inappropriate choice of target group, as those
unemployed "with relatively good job prospects’ are most likely not the ones that would
benefit most from C&M in their job search.

Third, we note that in quite many cases unemployment benefit regulations seem to be
closely connected with program effects. There are two points to this issue. First, with respect
to a tightening of rules it remains unclear, whether positive treatment effects can at all be
induced by a measure that forces individuals into participation (cf. Lalive et a. 2000).
Second, it seems to be a maor distorting factor for trestment effectiveness if program
participation restores benefit receipt eigibility. Given the substantial number of studies
providing evidence for this hypothesis — Rosholm (1999), Kluve et a. (1999), Sianes (2001),
Regnér (2001) — this appears to be one of the most robust results of current evaluation
research. In fact it is surprising that such regulations are still common practice in many

European countries, as too generous unemployment benefit systems have frequently been
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identified as one labor market feature in Europe associated with high unemployment (cf. for
instance Nickell 1997).

3.7 Lessons for Economic Policy

Even before the emergence of this latest generation of European evaluation studies any broad
overview of the European evidence would have suggested that one cannot conclude on any
particular Active Labor Market Policy to yield consistently greater employment impacts than
another. Throughout Europe there have been examples of studies supporting significantly
positive effects on employment rates, but also some rather disappointing results. Frequently
training has been estimated to have a positive impact on employment rates, but this has rarely
been the case for its effect on wages.

Many of the more recent studies present a leap forward in terms of data quality and
methodological rigor. Eventually, at least a few experimental studies have been performed or
are about to get started. Moreover, nonexperimental analysis has been developed further,
approaching — as far as the nonexperimental data allow — the credibility of experimental
results. Unfortunately, these advances imply that many of the more optimistic results in the
earlier European evaluation literature might be overstated.

The fact that the return to program participation varies tremendously across target
groups, time, and place has been one of the most important insights from the many studies on
the impact of labor market programs in the US. The recent generation of European evaluation
studies confirms this conclusion. Not only are the results heterogeneous across economies,
there is also convincing evidence that even within a country the precise formulation of target
group matters dramatically for the results to be expected (cf. Bell et a. 1999, van den Berg
and van der Klaauw 2000). Moreover, the economic environment and most importantly the
regulations governing the socia insurance system seem to be important elements in the
performance of labor market programs. For instance, it may be very difficult to generate a
positive effect on the future economic performance of program participants, if participation in
the labor market program restores digibility of unemployment benefits — then the major
purpose for entering treatment may be benefit churning, not the genuine desire to improve
one's labor market prospects.

This appears to be one of the findings that hold across economies. Besides,
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unsurprisingly, it may well be that the idiosyncratic nature of labor market problems needs
idiosyncratic approaches to their solution. Each European country certainly does have some
distinct labor market difficulties that a common monocausal approach will fall short of
addressing. There is no universal panacea in the set of ALMP that can cure unemployment for
each and every country. And simple co-ordination of Nationa Action Plans may not be
sufficient. But nonetheless — despite heterogeneity of countries, of programs, of effects —
current evaluation research can help avoid an ALMP practice of “shots in the dark”, and does
provide guidance with respect to sensible program implementation: At least we know some
strategies that do not seem to work at all (tying together benefit receipt eligibility and program
participation), and we know some schemes that might be worth trying for every European
economy (Temporary wage subsidy, New Deal, C&M).

The attempt of the annual EU Joint Employment Reports at identifying examples of
“good practice” takes a similar approach. What it absolutely lacks, however, is the deliberate
evaluation effort. We have shown that both sides — policy and science — move in the right
direction, but we are surprised — and discontented — to find that they do so separately. From
the very first step, the planning and implementation of ALMP measures should go hand in
hand with their evauation. Only a thorough scientific evaluation accompanying the
intervention can make an innovative program worthwhile. The Joint Employment Reports
prove that European policy makers have the explicit desire to know about the effectiveness of
labor market programs. And science has the means to provide just that knowledge. Finding
for every single European economy one or more programs that work, rather than following
the apparent practice of conducting untested large-scale interventions, might be an important
avenue to a Europe less vulnerable to high and persistent unemployment.

At this juncture, one can only hope that European policy makers will increase their
desire to include independent researchers in the effort of evaluating labor market policy
interventions. Undoubtedly, this would revitalize and decisively support the feedback
structure of the Joint Employment Reports, and thus help keep the Luxembourg Process on
the right path.



Chapter 4

Active Labor Market Policies In Poland:
Human Capital Enhancement,

Stigmatization or Benefit Churning?

Together with Hartmut Lehmann and Christoph M. Schmidt

Abstract. This chapter provides microeconometric evidence on the effectiveness of Active
Labor Market Policies in Poland. We sketch the theoretical framework of matching estimators
as a substitute for randomization in labor market programs. Using retrospective data from the
18th wave of the Polish Labor Force Survey we implement a conditional difference-in-
differences matching estimator of treatment effects. Treatment and control groups are
matched over individual observable characteristics and pre-treatment labor market histories to
minimize bias from unobserved heterogeneity. We also require that observations on controls
are from the same regional labor market and from an identical phase of the transition cycle.
Considering as the outcome a multinomia variable of labor market status, our first important
finding suggests that training of men and women has a positive effect on the employment
probability. For men public works and intervention works have negative treatment effects,
while participation in intervention works does not affect women's employment probabilities.
We attribute the negative treatment effects for men to benefit churning rather than to
stigmatization of intervention and public works participants.
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4.1 Background

The transition to a market economy had serious repercussions in the Polish labor market.
Most significantly, open unemployment rose from virtually zero to a peak of around 16% at
the end of 1993, declining dightly and hovering since then around 13%. Like in most
transition countries unemployment in Poland can be characterized as a "stagnant pool" (Boeri
1994). This stagnancy came about because of very low outflow rates from unemployment and
led to unemployment persistence and a large share of long-term unemployment. Individuals
with unfavorable demographic and skill characteristics, i.e. workers who are old and have
obsolete skills, whilst being an important element of the total stock of unemployment
dominate long-term unemployment (Géra and Schmidt 1998 and L ehmann 1998).

Given this context, Active Labor Market Policies (ALMP) might in principle have an
important role to play in combating unemployment in general and long-term unemployment
in particular. Further training and re-training measures might help to solve skill mismatch,
while subsidized employment in private and public firms and direct public job creation could
be useful instruments in the re-building of human capital of some of the long-term
unemployed. Measures of this kind are then meant to boost outflow rates from
unemployment, in particular from long-term unemployment, thus raising labor turnover and
improving the performance of the labor market. This rationale for labor market intervention
by the government was developed in mature market economies. Whether it can be easly
carried over into the context of a labor market in trangition is an important and contentious
issue that we do not further pursue here. This chapter has a more modest aim and focuses on
the evaluation of the three most important Polish ALMP, i.e. publicly financed further
training and re-training, intervention works® and public works.

Evauation of ALMP in a labor market in transition has its own difficulties. In most
transition countries rules for the assignment of ALMP measures and for the monitoring of the
unemployed are either not well developed or not strongly enforced, leading often to large
unforeseen distortions. Another difficulty is the absence of a stationary environment in which
the evaluation takes place. In addition, the quality of the data used for the evaluation is often
quite poor. These difficulties seem to be mirrored in the literature that exists on the evaluation
of Polish ALMP. Gora et a. (1996) and Gora and Schmidt (1998) look at the rather loose

! "Intervention works" basically entails wage subsidies to boost employment of the unemployed in private or
public firms.
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application of assgnment and monitoring rules in Poland and show some of the distortions
arising from this. Most of the studies that have tried to econometrically evaluate Polish ALMP
have certainly been plagued by data problems. These problems are mainly responsible for the
not entirely convincing model specifications that underlie the impact analysis of Polish
ALMP that have been undertaken in the past (cf. e.g. Puhani and Steiner 1997 and O'Leary
1998).

In our anaysis we use data from the supplement to the August 1996 wave of the
Polish Labor Force Survey (PLFS). This supplemental data set has a detailed retrospective
part on monthly labor market histories over the period from January 1992 to August 1996
which can be linked to the August 1996 PLFS quarterly wave. This linked data set allows
separate assessment of the three ALMP measures and lends itself to an evaluation procedure
that matches controls to the treated individuals, both conditional on pre-treatment histories as
well as on observable characteristics. Recent developments in the econometric evaluation
literature suggest that this kind of matching seems to perform well in controlling for
unobserved heterogeneity and self-selection (Heckman et al. 1997, 1998). Parallel to our
study Puhani (1998) employs a similar but distinct variant of this matching approach.

The next section presents the theory underlying our matching approach. Section 4.3
gives a brief account of the three ALMP measures evaluated. Section 4.4 discusses the labor
market histories in the August 1996 supplement and the matching algorithm, while section 4.5
looks at the empirical results. Matching estimates of treatment effects on the employment and
unemployment rates as well as on employment retention and job accession rates are presented
for the three ALMP measures, taking into account two regional taxonomies and two variants
of matching analyzing short- and medium-term treatment effects, respectively. Section 4.6

concludes.

4.2 Application of Matching Methods

Two problems affect the evaluation of measures of Active Labor Market Policy in transition
economies. The first is the usual evaluation problem that characterizes all nonexperimenta
analyses of interventions. Since counterfactual outcomes under no intervention cannot be
observed for individuals receiving the intervention, one has to find an appropriate group of

controls that, together with some identifying assumptions, facilitates the construction of the
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desired counterfactual. Matching estimators have recently received a lot of attention in the
econometric literature as one serious aternative nonexperimental evaluation approach (cf.
Heckman et a. 1997, 1998, Angrist 1998). The second problem stems from transition itself.
Interventions administered at different points of the transition cycle may have very distinct
effects and nonexperimental controls observed at a different time period may not be
appropriate. Since the interventions in our data are widely dispersed over the observation
period, a matching approach that very stringently enforces the same temporal structure across
intervention group and control group is a particularly promising evaluation strategy. This is
the approach chosen in our application.

Our empirical work isin the spirit of Card and Sullivan (1988) who anayze the effect
of the CETA training program on employment status by using conditional difference-in-
differences matching estimators that match over labor market histories. We extend their
analysis by considering a richer variable of labor force status (employment, unemployment
and out-of-the-labor-force), by matching over observable individual characteristics and by
adapting the analysis to the temporal structure of our data. All of their trainees received the
treatment within a single year; however, they did not consider the timing and the duration of
the treatment any further. In contrast, we establish the exact beginning and the duration of an
intervention, and match controls accordingly.

The formal development of matching techniques, in particular the role of exclusion
restrictions and of time-persistent individual heterogeneity has been discussed recently by
Heckman et a. (1997 and 1998) who explicitly derive a non-parametric conditional
difference-in-differences estimator of treatment effects. Another recent application of
matching methods can be found in Lechner (1997) who analyzes the effects of training in the
East German labor market.

The PLFS data provide information on labor force status at the individual level,
together with information on individual and household characteristics. In the empirical
analysis, the three ALMP interventions under scrutiny, training, intervention works and
public works, are considered separately. Thus, for purposes of the formal exposition, we only
need to consider a single intervention. Furthermore, in our matching approach we will
explicitly require that individuals who receive treatment are matched with individuals from
the identical set of observed pre-treatment and post-treatment months. Any reference to the
time period is therefore omitted from the exposition as well.

Denote the state associated with receiving the intervention with "1", and the state



Chapter 4: ALMP in Poland - Human Capital, Stigma, Churning? 107

associated with not receiving the intervention with '0". Assume that there are N; individuals
in the intervention sample, with indices i T 11, and Np individuals in the sample of potential
controls, with indices i T lo. Receiving the intervention is indicated by the individual indicator
variable D; (1 = yes, 0 = no). Denote the potential labor market outcomes in post-treatment
quaterq (g=1, 2, ..., Q) by Yq? If individua i received treatment, and Yq? if individua i did
not receive treatment. These outcomes are defined as multinomials with three possible
realizations ("0" = out-of-the-labor-force, '1" = employed, 2" = unemployed). While only
one of these two outcome variables can actually be observed for each individual i, this being

denoted Yy, the definition of potential outcomes allows for the formal construction of the
unobservable counterfactual outcome Yq?| D=1

For purposes of evaluating the impact of the intervention, the post-intervention labor
market success of each individual i will be summarized by the individua’s average

employment and unemployment rates, taken over the Q quarters following the intervention.

Using indicator function 1(.), these outcomes are %é (Y, =1) for employment rates and
q

%é (Y, =2) for unemployment rates, respectively. These formulations extend those of
q

Card and Sullivan (1988) from a binomial to a multinomial setting.
Using the indicator of intervention status D; and the index k T {1,2} observed

outcomes for individual i could be written as

41) 3A,1Y, =k = (0,4 1Y, =K+ D) 1Y =k) .

and the impact of the intervention on the average labor market status of individua i could be
expressed as

(42) D=3(a ,1(Ys =k)-a LYy =K)

for average employment rates (k = 1) and for average unemployment rates (k = 2).
Unfortunately, we can never observe qui and Yq? simultaneously for a given

individual, and neither the joint distribution of the two outcomes across the intervention



108 Chapter 4: ALMP in Poland - Human Capital, Stigma, Churning?

sample. Instead, we have to focus on evauation parameters for which we can construct
counterfactuals by invoking appropriate identification assumptions. Our interest here is on the
mean effects of treatment on the treated,

(43 E(D,X,.h,D;=1) = E@G@ L =K- & LYy =K)| X, h.D=) |

that is the mean of the average employment and unemployment rates, respectively, over the
population of the treated, conditional on observable individual characteristics X; and previous
labor market history h; which is captured by a sequence of labor market states in the four
quarters preceding the intervention. This dlightly extends the discussion of Heckman et al.
1997 to a pair of evauation parameters. Conditioning on previous labor market history was
advocated by Card and Sullivan (1988) and by Heckman et al. (1997, 1998), accounting for
the panel nature of their data.

More specifically, we will concentrate on average treatment effects over the joint

support Sof X and h given D=1,

_QE(Dk|X,h,D =1) dF (X ,hD =1)
QdF(x,h|D=1)

4.4 M,

In the absence of observations on the labor market status Yq? that recipients of the intervention

would have realized had they not received the intervention, one needs to invoke appropriate
identification assumptions in the construction of estimates for M; and Mz. The objective is to
replace those expected values whose sample counterparts are unobservable by expected
values whose counterparts can be constructed from sample data. In randomized experiments,
if several conditions regarding the timing of the randomization, the process of sample attrition
and the impact of randomization itself on individual behavior are met (cf. Heckman 19963,
Heckman et a. 1997), the counterfactual expected values under no intervention can be
estimated for intervention recipients by the mean values of the outcome for randomized-out
would-be recipients. Nonexperimental methods instead use data on non-recipient control
groups to estimate the required counterfactuals.

The principal idea of matching is to assign to (preferably) al individuals i in the

intervention sample as matching partners one or more individuals from the nonexperimental
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control sample who are similar in terms of their observed individual characteristics (cf.
Heckman et al. 1997). Within each matched set of individuals, one can then estimate the
impact of the intervention on individua i by the difference over sample means, and one can
construct an estimate of the overall impact by an average over these individual estimates.
Matching estimators thereby approximate the virtues of randomization mainly by balancing
the distribution of observed attributes across treatment and control groups, both by ensuring a
common region of support for individuals in the intervention sample and their matched
controls and by re-weighting the distribution over the common region of support.

As Heckman et al. (1997) point out, the strong assumptions traditionaly invoked in
the matching literature, conditional independence of the labor market status Yq? and of the

treatment indicator D;, given individual observable characteristics X, are not necessary to
ensure identification of the mean effects of treatment on the treated. Instead, weaker mean
independence assumptions are all that is needed for our matching estimators to identify the

desired evaluation parameters,
(45 E@(Yg=K)[X;h.D;=) = E@(Y3=k)|X;.h,D;=0)

That is, given the observable individual characteristics X; and previous labor market history h
that together form the basis for the individual matches, the fact that an individual received the
intervention is assumed not to carry further information on the distribution of his or her no-
intervention outcome.

In our empirical analysis, we use a variant of a nearest-neighbor matching estimator
that implicitly performs a conditional difference-in-differences comparison between
individuals in the intervention sample and their matched controls. For any treatment history h

for which at least one match could be found, we estimate the impact of the intervention by

. 1 o €1, ) o 1 1o o u
(46 M, = —a é-a UY,;=k) - a —(zallz=k)u ,
“ Ny itr, @Q 1 ‘ i 17 c(x) Mo Q a9 ¢}

where Ni, is the number of individuals with history h who receive the intervention

[o]

(N;=a Ny ), lin is the set of indices for these individuas, C(Xi) is the appropriate
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neighborhood of individual i's characteristics X, and njg is the number of controls with history
h who are falling within this neighborhood (N, = § Ny ), with the set of indices for control-
individuals with history h being lon. The variance of this expression is then estimated as a
function of the estimated probabilities from the underlying multinomial models?.

The overall effect of the intervention is estimated in a last step by caculating a

weighted average over the history-specific intervention effects,

o D
Z
5

@7 M, =

= Qo

> D>
= mo
2
5

using the treatment group sample fractions as weights. The variance is derived as the
corresponding weighted average of the history-specific variances.

The main impact of the intervention on labor market outcomes might arise from a
positive one-shot effect at the end of the treatment period. One would like to know, however,
whether workers who received the intervention were more successful in holding on to
employment after the first post-intervention quarter than workers in the control group (cf.
Card and Sullivan 1988). Hence, define the job retention rate as the probability of holding on
to ajob until post-intervention quarter Q conditional on being employed in the first quarter
after treatment. The intervention effect is then

@8 E(r|X, ,h,D, =) =E(1(Yy =1U...0Y5 =1
4.8
- 1(Yy =10...0Y§ =1)|Y, =1,X,,h,D,=D),

conditional on observable individual characteristics X; and previous labor market history h;.
The average impact r over the joint support Sof X and h given D=1 is then defined similarly
to the intervention effect in equation (4.4).

For pre-intervention history h we estimate the impact of the intervention on retention
rates as

2 \Whenever feasible we based the estimation on unrestricted multinomial models.
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The variance of this expression is calculated using the delta method. The overall effect of the
intervention, f, is estimated as in equation (4.7) by calculating a weighted average of the
history-specific effects, deriving the variance of this weighted average accordingly.

By raising their rates of access to a new job, the intervention might also exert a
positive influence on workers who were unemployed at the end of the treatment period. Hence
we define the job accession rate as the probability of starting a new job and holding on to it
until post-intervention quarter Q conditional on being unemployed in the first quarter after

treatment. The intervention effect is then

E(ai|xi D=1 =
(4.10) E(Q 1(Y =2U..0Y}, =20V} =10..0Y5 =1

[o]

-a, 10y’ =20..0Y7, =20Y; =10..UYg =1)|Y, =2 X,,h,D,=1),

conditional on observable individual characteristics X; and previous labor market history h;,
where r is the first quarter of being employed, 1<r £Q. The average impact over the joint

support Sof X and h given Di=1 is then defined accordingly (see equation (4.4)).

For pre-intervention history h we estimate the impact of the intervention on accession

rates as
_;:1 a.1(Y; =20..0Y}, =20y, =10..0Y}, =1)
a = -
h a LY, =2)
(4.12) o "

a a, 1(y=2u..0y? =20y =1U..UYg =1)

il lon

a 1y =2

it

The variance of this expression is again calculated using the delta method. As for the other

intervention effects, the overall effect of the intervention, &, and its variance are estimated by
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calculating the appropriate weighted averages of the history-specific effects and their

variances.

4.3 ALMP Measures in Poland

The ALMP measures that we analyze — training, intervention works and public works — have
been described at length in Lehmann (1998), Puhani and Steiner (1997) and Goéra et al. (1996)
for example. We therefore only briefly discuss these measures here. Besides presenting the
evolution of expenditures on these measures during the period of interest (1992-1996) we
concentrate on those institutional aspects of the design and implementation of the programs

that are central in the context of this chapter.

Table 4.1 Distribution of resour ces between passive and active labor market programs?

1992 1993 1994 1995 1996
Total expenditures’ 228275 237023 252787 27959 282539
PLMP 1969.74 198895 211721 240427 240797
ALMP 107.48 263.40 32343 33841 302.65
of which: % % % % %
Intervention Works 43.74 3854 43.02 41.25 34.39
Public Works 16.20 33.76 36.85 34.36 29.56
Training/Retraining 17.96 12.68 10.46 8.47 6.41
Loans (Self-employment) 14.91 9.03 6.11 591 6.84
Other 7.19 5.99 3.56 10.00 22.80

Participant inflows of major ALMP programsin % of labor force

Intervention Works 0.8 1.2 1.8 2.0 15
Public Works 0.2 0.4 0.6 0.7 0.6
Traning/Retraining 04 04 0.5 0.5 0.5

%in thousand Polish zlotys.
®in 1992 constant prices.
Source: Polish Ministry of Labor and Social Affairs.



Chapter 4: ALMP in Poland - Human Capital, Stigma, Churning? 113

Expenditures on labor market policies have only dlightly risen over the period 1992-96 as can
be seen in Table 4.1. Apart from 1992 when expenditures on ALMP amounted to only 5% of
PLMP, the ratio of expenditures on the types of programs has been about 1:8 throughout the
period. In an international comparison of Visegrad countries, Poland is roughly in line with
Hungary that also spends predominantly on PLMP, but spends relatively less than the Czech
Republic or the Slovak Republic. In relation to western OECD economies with similar
unemployment levels, Poland spends little on ALMP and has low inflow rates into ALMP
schemes. Of the three programs analyzed intervention works and public works have received
the bulk of funds, while we see a monotonic decline of the relative fraction of expenditures
going to training.

The main objective of training and re-training courses is to solve skill mismatch. By
increasing the human capital of the unemployed in skills that employers in the expanding
sectors want, the chances of the unemployed to enter a regular job are meant to increase and
bottlenecks in the supply of certain skilled workers are meant to be eliminated. Popular
courses are in the fields of data processing, accounting and secretarial work, as well as in
tailloring and welding. The length of the courses is relatively short, in our sample the mean
length being 2.6 months in the case of male and 2.5 months in the case of female trainees. The
courses are organized by the local labor offices (LLOs) or by private agencies, which are then
paid by the LLOs, or take place directly in firms. Trainees receive 115 percent of the amount
of unemployment benefit, part of which has to be repaid if they do not complete the course.

Intervention works (wage subsidies) have two maor goals. First, by hiring an
unemployed person on a subsidized job he or she can enhance or regain human capital that
might enable him or her to subsequently enter a regular job. Secondly, entrepreneurs can learn
about the productivity of a worker without paying him or her a full wage. Incentives to the
firm are structured in such a way that ensures the longest possible employment relationship.
The longer a previoudly unemployed worker is kept in an intervention works slot the higher
the cumulative subsidy going to the firm will be. Workers have an incentive to hold on to
such a subsidized job for at least 6 months as, in the period under study, an employment
relationship of this length entitled workers to another round of 12 months benefit receipt. The
modal length of intervention works jobs in our sample is 6 months for men (63%) and women
(48%), with very few jobs below this duration. So, most participants in intervention works
qualify in principle for another round of benefit payment.

Public works are directly created public jobs that are mainly but not exclusively
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targeted at the long-term unemployed. Like intervention works they are meant to enhance the
human capital of participants, many of the jobs offered are, however, of a very low skill
nature. The focus of these public works is the amelioration of the environment and the
improvement of local infrastructure. Public works are organized by the LLOs in cooperation
with municipal authorities. The incentive structures facing employers and workers are similar
to the ones in connection with intervention works. The cumulative subsidy is larger the longer
a previous unemployed is kept in a directly created public job, while such a worker qualifies
for another round of benefit receipt if he or she remains in the job for at least 6 months. Not
surprisingly the modal length of public works jobs is 6 months (53%).

Since the end of 1991 unemployment benefits have been limited to 12 months and
been paid as a flat rate amounting to slightly below the minimum wage. Unemployed persons
who exhaust their benefits have to rely on social assistance which is often, however, either
only sporadically paid or paid out in the form of material help (Géra and Schmidt 1998). So,
in many cases the only route to prolonged income support at a decent level is involvement in

an ALMP measure, which entitles the unemployed to a further 12 months of benefit payment.

4.4 The Data: Labor Market Histories
and the Matching Algorithm

The Polish Labor Force Survey (PLFS) is a quarterly survey, which was started in May 1992
and which has been structured as a rotating panel since its fifth wave (May 1993).
Supplements on labor market policies were introduced in August 1994 and in August 1996.
These supplements make it possible to generate a database for the evaluation of labor market
policies. This chapter focuses on the 18th wave of the PLFS, taken in August 1996, in
connection with its complementing supplement. Since we are interested in the effectiveness of
ALMP measures offered by Local Labor Offices (LLOs) to the unemployed or to the
previously unemployed, we use a sub-set of the full PLFS data set generated from this wave.
For the construction of treatment and control groups we select those respondents who were
registered at least once as unemployed between January 1992 and August 1996.

The supplement to the 18th wave includes individual labor market histories containing

information on an individual's labor market state in every single month from January 1992 to
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August 1996. Table 4.2 shows the various labor market states in these histories. Not al these
labor market states are mutually exclusive, as e.g. training and registered unemployment,
intervention works and employment are logical double entries. We re-coded such double
entries very carefully to ensure consistency of the data.®

We created sub-samples of ALMP participants, choosing those who had been offered
participation in training, intervention works or public works by their LLO and who had
accepted the offer. The sample sizes for these sub-samples are 241, 532 and 93 respectively.
We then generated a corresponding sub-sample of potential controls by selecting al those
who at least once had been registered as unemployed since January 1992 and excluding all

individuals in the ALMP sub-samples. This control sample has a size of 7784 records.

Table 4.2 Individual labor market history outcomesin August 1996 PL FS supplement

O
8
[0)

Outcome

Employment

Temporarily not in work (for "objective" reasons)
Participation in training course

Socia assistance recipient

Taking care of smdll child

Registered unemployed

Unemployment benefit recipient

Intervention works (wage subsidies)

Public works

© 00 NO Ol WN -

Source: PLFS supplement August 1996

As was discussed formally in some detail in section 4.2, we match participants and controls
not only across certain observable characteristics, but also across their pre-treatment history.
Since we want to use as many treatment and control cases as possible we apply a "moving
window" to the data as shown in Figure 4.1.% Given that an individual participated in a labor

market program at a particular point in time for a particular number of months, we require a

% A detailed account of the transformation and re-coding of the data can be found in Kluve (1998). Exploiting the
panel nature of the data, the author also showsin this study that recall error isaminor problem.

* Figure 4.1 and what follows focus on training. The same matching procedures apply for intervention works and
public works.
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control to have an identical pre-treatment labor market history at the same point in time. Also,
we compare employment outcomes for exactly the sequence of months that started when the
participant's program spell ended. Since non-participants might have an advantage insofar as
their job search activities are not restricted during the participants program spells, evaluation
of an ALMP measure at the individual level should take this into account. For example, the
impact of a training measure for an unemployed will consist of two countervailing effects
with respect to employment

On the one hand, during the training spell the unemployed individual will not be able
to engage in job search as vigorously as his or her not-participating colleague, i.e. ceteris
paribus participation lowers the probability of finding employment after the end of the
program. On the other hand, training is meant to increase the participant's human capital and
should therefore ceteris paribus increase the probability of finding employment after
completing the program. In this study we are interested in the net overall impact that arises
out of these two countervailing effects.

In matching across individual pre-program histories as well as in anayzing the post-
treatment outcomes we are mainly interested in the labor market outcomes "employed’
(="1"), "unemployed" (="2"), and "out-of-the-labor-force" (="0"). These redlizations, "0", "1"
and "2", are recorded on a quarterly basis, where quarters are those three-month-intervals
either ending in the month immediately preceding training or beginning in the month
immediately succeeding training. If those three months that form a quarter do not contain
identical entries, the interval is assigned the value of the event appearing twice, e.g. "212"
congtitutes a "2". If the interval reads "021", it constitutes a "1", since being in a "successful”
labor market state, i.e. being employed, during one month, constitutes a corresponding
"successful" quarter. Extending conventional matching to a dynamic setting implies that an

individual trainee's record has to meet the following requirements:

I. Anentry "training” must exist for at least 1 month in the 56 months observed.
ii. Therecord must have a complete 12-month pre-training history.
iii. The record must have a complete 9-month post-training history (i.e. Q=3).
iv. The beginning and the end of the training spell must be defined.

v. Demographic information that we use in the matching algorithm must be compl ete.



Figure 4.1 Matching over identical individual labor market histories applying a " moving window"
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As far as condition (i) is concerned we retain those observations with exactly one training
spell and we select that training spell of those few individuals with multiple spells that is the
longest and that has a complete pre- and post-training history. Requirements (ii) and (iii)
imply that very early (1992) or very recent (1996) spells of training cannot be part of our
analysis. The information stored in (iv) is crucia for our dynamic matching algorithm and
essential for the control of macroeconomic effects, while the demographic information (v)
includes the following categorical variables: gender (male/female), marital status (married/not
married), education (high = university; low = primary school or below; medium = all other),
and age.

Furthermore, in accordance with Heckman et a. (1997), who emphasize the need to
control for local labor market conditions, we perform the matching algorithm for two different
regional taxonomies. Taxonomy 1 considers a regional dummy distinguishing Warsaw/not
Warsaw. This distinction takes account of a more dynamic labor market in the capital, while
taxonomy 2 accounts for an exact regional match across al 49 voivodships. Theory predicts
that taxonomy 2 will yield the least biased estimators. We will see, though, that matching
conditional on exact voivodship matches reduces the number of participants who find
matching partners in the control sample.

All those observations meeting the above-described requirements with respect to
characteristics and, after the appropriate transformation from months into quarters, with
respect to 4 pre-training and 3 post-training quarterly labor market outcomes constitute the
data set of trainees for our analysis.

Matching proceeds then as follows. We match participants with all those controls who
satisfy our requirements in terms of observable attributes and identical pre-treatment history.®
In this, the 4-quarter pre-treatment history has to be identical for program participant and
corresponding control group member, while the control needs to have a complete 9-month-
history starting with the first month of the trainee's 9-month post-training history. Also, the
control has to be identical in the following categorical variables. gender, marital status,
education, and region.

If these requirements are met, we choose controls with the minimum distance in years
of age. Most, i.e. 97.6 per cent of the matched controls, do not deviate more than 5 years from

their treatment group matching partners, but we do alow for a maximum distance of 20 years.
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This procedure, which has the most stringent matching requirements compared with other
possible matching algorithms we employed, yields sufficiently large treatment and matched
control samples. Due to the stringent matching requirements this procedure also generated the
most robust results.

Using Q=3 post-treatment quarters focuses on the short-term treatment effects. To
estimate medium-term treatment effects we apply a second matching procedure ("second
match™") with the same stringent requirements, but where we compare labor market outcomes

for Q=6 post-treatment quarters.

4.5 Results

Basic demographic characteristics and labor market outcomes are described for the full
sample and the various sub-groups that are used in the analysis in Tables 4.3 and 4.4.
Potential controls are al those who between 1992 and 1996 were unemployed at least once
but did not participate during this period in any of the three ALMP. Looking at men (Table
4.3), the demographic characteristics indicate that relative to the full subsets of trainees,
intervention and public works participants (columns 3 — 5 in the upper panel) the group of
potential controls (column 2 in the upper panel) is dightly younger than trainees and
intervention works participants, but on average even more than four years younger than public
works participants. Marital status is quite similar across the three participant groups, but for
trainees the marriage rate is 7 percentage points higher than for controls.

The difference in educational attainment across treatment groups is striking: The
fraction of trainees with non-compulsory education® is dlightly higher than that among
potential controls, but substantially lower among intervention works and public works
participants. So, on this measure, unemployed individuals are targeted for training who have
dightly more human capital than the average unemployed while for intervention works and
public works we see individuals targeted with significantly less human capital than the
average unemployed. The differences in observable characteristics are on the whole

maintained as we move from the full subset of treatment groups to the smaller subsets of

® We apply a procedure of sampling with replacement, since we allow for an observation in the comparison
group sample to control for more than one trainee, if he or she meets the necessary requirements. Such a
constellation, however, rarely occurs.
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treatment groups that are used for the two types of matches (columns 1 — 6 of lower panel).

One particularly interesting labor market outcome is the employment rate, which is
shown here for August 1992 and August 1996. Recall that our matching algorithm requires
the pre-treatment history to be 4 quarters long and the post-treatment history to have a length
of at least three quarters. Hence, the two employment rate estimates shown are free from any
bias arising from the participation in an ALMP scheme.

Inspection of these employment rates shows large variations across the various
trestment groups and over time. Trainees have much higher employment rates than
individuals who participate in other schemes. It is aso noteworthy, that whilst the
employment rate of the full sub-sample of trainees has risen by 3 percentage points from
August 1992 to August 1996, during the same period it has fallen by 13 and 22 percentage
points for the full sub-samples of intervention works and public works participants,
respectively. A naive way to evaluate the three Polish ALMP measures would consist in
constructing a difference-in-differences estimator based on these differences and the
difference between the August 1996 and August 1992 employment rates of the set of potential
controls. Such a rough difference-in-differences estimator would indicate that training raises
the probability of employment for men by 4 percentage points, while intervention works and
public works lower this probability by 12 and 21 percentage points respectively. Such a crude
approach would, however, tell us little about the true impact of these programs at the
individual level.

Women hardly participate in the public works program; Table 4.4 and al subsequent
tables therefore only report the involvement of women in training and in intervention works.
Regarding employment outcomes the same pattern of discrepancies in observable
characteristics arises across the various sub-samples for women as for men. Inspection of
Tables 4.3 and 4.4 generates additional interesting information regarding differences between
men and women. In Poland women have a higher incidence of unemployment than men
which is reflected in the larger female pool of those in this 18th wave of the PLFS who have
been unemployed at least once between 1992 and 1996. Women tend to be represented more

substantially in training schemes, whereas men dominate intervention works.

® Compulsory education is defined here as primary school attainment or less.
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Table 4.3 Demogr aphic characteristics and employment rates for full sample, potential
controlsand treatment group sub-samples— MEN

Full Potential Treatment Groups
Sample® Controls® (Full Sub-sample)
Training W PW

Sample Size 3829 3369 A 307 75
Demographic Characteristics®
1. Average Age 334 331 35.2 355 37.7
2. Fraction Married 0.586 0.581 0649  0.625 0.613
3. Fraction of Non-
Compulsory Educatior® 0.784 0.801 0830 0616 0.613
Employment Rates!
1992 0.686 0.697 0671 0504  0.647
1996 0.679 0.684 0.700 0.372 0.423
Treatment Groups Treatment Groups
(Suitable for 1st Match)° (Suitable for 2nd Match)"
Training W PW Training W PW
Sample Size 53 164 45 31 102 20
Demographic Characteristics:
1. Average Age 36.6 36.5 37.2 38.3 36.4 36.7
2. Fraction Married 0660  0.665 0.556 0742  0.676 0.650
3. Fraction of Non-
Compulsory Education 0868 0.616 0.689 0839  0.627 0.550
Employment Rates:
1992 0726 0436 0.651 0700 0439 0.650
1996 0.755 0410 0.556 0.742 0436 0.650

4Individuals at least once registered as unemployed since January 1992 (Observations containing histories with
less than 15 entries are omitted).

P |ndividuals at least once registered as unemployed since January 1992 who did not participate in an ALMP
program.

“Individuals who participated in the corresponding ALMP program.

d At time of survey, i.e. August 1996.

¢ Excludes all individuals with primary school attainment or |ess.

" Employment rates are calculated for August 1992 and August 1996.

9 Observations that were used for the short-term matching analysis (Q=3).

" Observations that were used for the medium-term matching analysis (Q=6).
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Table 4.4 Demogr aphic characteristics and employment rates for full sample, potential
controls and treatment group sub-samples— WOMEN?

Full Potential Treatment Groups
Sample Controls (Full Sub-sample)
Training W
Sample Size 4230 3808 147 225
Demographic Characteristics:
1. Average Age 32.7 32.6 32.6 33.6
2. Fraction Married 0.697 0.698 0.673 0.644
3. Fraction of Non-
Compulsory Education 0.812 0.811 0.966 0.747
Employment Rates:
1992 0.489 0.500 0.381 0.360
1996 0.477 0.472 0.529 0.396
Treatment Groups Treatment Groups
(Suitablefor 1st Match) (Suitablefor 2nd Match)
Training W Training W
Sample Size 68 111 42 71
Demographic Characteristics:
1. Average Age 32.8 36.0 34.2 36.9
2. Fraction Married 0.676 0.6%4 0.714 0.732
3. Fraction of Non-
Compulsory Education 0.956 0.676 0.929 0.690
Employment Rates:
1992 0.476 0.387 0.550 0.380
1996 0.591 0.417 0.650 0.471

& See footnotes of Table 4.3. Public Works not reported due to small sample size.

The higher educational quality of female participants in both training courses and intervention
works is striking. For example, taking the full sub-sample of treatment groups, in training and
intervention works women have fractions of program participants with noncompulsory edu-
cation that are 13 percentage points higher than the corresponding fractions of male
participants.

Employment rates by contrast are substantialy lower for women than for men. Thisis

due to higher female unemployment rates as well as lower female participation rates during
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the period under study. Finally, our naive difference-in-differences estimator would establish
that for women training and intervention works raise the probability of employment by about
17 percentage points and 6 percentage points respectively.

Treatment effects are estimated as the average difference within matches of
employment and unemployment rates during either three or six consecutive quarters after the
intervention. The matching estimators are conditioned on observable individual
characteristics, identical pre-treatment histories and the local labor market. The first estimator
considers short-run effects, while the second estimator attempts to capture more persistent,
medium-term effects of treatment.

Tables 4.5 and 4.6 illustrate for men and women, respectively, how the weighted total
treatment effect of an ALMP measure on employment and unemployment rates is constructed
from the detailed results for specific labor market histories. First, for each pre-treatment
history a history-specific treatment effect is calculated as a simple average of the differences
in the post-treatment rates of individual treatments and their matched controls. In this
calculation, these individual differences are constructed as the differences between the
outcome for the treated individual and the average outcome over al his or her matching
partners.

Second, the history-specific estimates are condensed into an estimate of the overall
effect. This overal effect is calculated as the weighted average of the history-specific
estimates, where the weights are given by the fractions of the participants sample. As regional
taxonomy 2 is more disaggregated, the number of histories of individuals in the treatment
group and of matching partners declines. However, the difference is not severe for the
individuals in the treatment group, so the precision of the estimate of the total effect suffers
only dightly as we reduce bias when moving from the aggregate to the more sophisticated
regional taxonomy.

As can be seen in Tables 4.5 and 4.6, the vast majority of participants in intervention
works was unemployed at least for one quarter during the year preceding the beginning of the
treatment spell, and roughly 75 percent of participants were unemployed throughout the year
preceding the beginning of their spell on intervention works. However, a small number of
participants who were offered a dot on the scheme by their LLO comes from inactivity or
from employment. As we define any measure offered by the LLOs as an ALMP measure we
include these histories in our calculations. The dominance of the unemployment state in the

pre-treatment histories also characterizes the other ALMP schemes.
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Table 4.5 Aver age post-treatment employment rates and treatment effect by pre-
treatment labor market history: short-term effects — Intervention Works— MEN

Regional Taxonomy 1

treatment group matched controls

history N rate® std.err. N rate std.err. effect” std.err.
0000 2 0.000 0.000 9 0.208 0.287 -0208  0.287
0022 1 0.000 0.000 1 0.000 0.000 0.000  0.000
1110 1 0.333 0.000 1 0.000 0.000 0333  0.000
1111 10 0.900 0.095 134 0.727 0.141 0.173 0.170
1112 4 0.333 0.204 6 0417 0.247 -0.084 0.320
1122 10 0.167 0.085 21 0.475 0.158 -0.308 0.179
1222 5 0.400 0.219 17 0.678 0.209 -0278  0.303
2211 2 0.333 0.236 4 0.944 0.162 -0611 0.286
2212 1 0.000 0.000 1 0.000 0.000 0.000  0.000
2221 1 0.000 0.000 1 1.000 0.000 -1.000  0.000
2222 125 0107 0.025 4%  0.385 0.044 -0278  0.051
total® 162 741 -0248 0.044
Regional Taxonomy 2
treatment group matched controls
history N rate std.err. N rate std.err. effect std.err.
0000 2 0.000 0.000 2 0.500 0.354 -0500 0.3%4
1111 10 0.900 0.095 12 0.783 0.130 0.117 0.161
1112 3 0.444 0.240 3 0.222 0.240 0222  0.339
1122 4 0.083 0.072 4 0417 0.247 -0334  0.257
1222 2 0.000 0.000 2 0.833 0.264 -0.833 0.264
2211 2 0.333 0.236 2 0.833 0.264 -0500 0344
2222 100 0127 0.030 108  0.385 0.049 -0.258  0.057
total 123 133 -0236  0.051

& Average employment rate in the 3 post-treatment quarters.

b Difference between rates of treatment group and matched control group.

“ Total effect = weighted average of effects for individual histories using participants sample fractions as
weights.

Even with a casua glance at Tables 4.5 and 4.6 one notes the widely differing treatment
effects of the individual matches conditioned on pre-treatment histories. Not only do they
have very different magnitudes, but also the estimated treatment effect often changes its sign
as we go from one history to another. We also see that most individuals in the treatment group
are concentrated in a few histories. In previous work (Kluve et a. 1998) we checked the
sengitivity of the estimates of the overall treatment effects to the presence of these important

histories. To this purpose we removed one of these important histories at a time and re-
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estimated the overall treatment effects. The results of this procedure indicate that the total
treatment effect estimates are quite robust: in the case of significant estimates removing an
important history typicaly affects the magnitude of the overall estimates, while leaving the
sign unchanged.

Table 4.6 Average post-treatment employment rates and treatment effect by pre-
treatment labor market history: short-term effects — I ntervention Works —
WOMEN?

Regional Taxonomy 1

treatment group matched controls

history N rate std.err. N rate std.err. effect std.err.
0000 4 0417 0.217 46 0.137 0.172 0280  0.277
0002 2 0.167 0.118 4 0.083 0.195 0084  0.228
0022 1 0.667 0.000 1 0.000 0.000 0.667  0.000
1111 8 0.583 0.164 52 0.812 0.138 -0229 0214
1112 3 0.667 0.272 9 0.176 0.220 0491  0.350
1122 7 0.381 0171 8 0.476 0.189 -0.095 0.255
1222 2 1.000 0.000 4 0.333 0.333 0.667  0.333
2000 1 1.000 0.000 1 0.000 0.000 1000 0.000
2111 1 1.000 0.000 1 1.000 0.000 0.000  0.000
2211 5 0.400 0.219 9 0.333 0.211 0067 0304
2221 2 0.000 0.000 2 0.667 0.333 -0.667  0.333
2222 73 0.247 0.046 643  0.263 0.052 -0.016  0.069
total 109 780 0.010  0.056
Regiond Taxonomy 2
treatment group matched controls
history N rate std.err. N rate std.err. effect sd.err.
0000 3 0.556 0.240 4 0.333 0.272 0223  0.363
0002 1 0.000 0.000 1 0.667 0.000 -0.667  0.000
111 6 0.667 0.192 7 0.639 0.196 0028 0274
1112 2 0.500 0.354 3 0.083 0.195 0417 0404
1122 2 0.500 0.34 2 0.167 0.264 0333 0442
1222 2 1.000 0.000 2 0.833 0.264 0167 0.264
2000 1 1.000 0.000 1 0.000 0.000 1000  0.000
2111 1 1.000 0.000 1 1.000 0.000 0.000  0.000
2211 2 0.000 0.000 2 0.500 0.3%4 -0500 0.3%4
2221 1 0.000 0.000 1 0.333 0.000 -0.333  0.000
2222 63 0.265 0.049 83 0.255 0.053 0010 0.072
total 89 107 0026  0.062

2 See footnotes of Table 4.5.
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The overal treatment effects of the three ALMP programs on employment and
unemployment rates are displayed in Tables 4.7 and 4.8, where each total treatment effect
estimate is constructed as shown in Tables 4.5 and 4.6. Let us first consider Table 4.7 that

presents short-term effects.

Table 4.7 Overall treatment effects on employment and unemployment rates according
to treatment, gender and regional taxonomy: SHORT-TERM effects

Training
N N employment rate unemployment rate
treatment controls effect std.err. effect std.err.
Regional
Taxonomy 1 all 118 956 0.005 0.051 0.015 0.052
men 52 3 -0.041 0.079 0.024 0.080
women 66 562 0.042 0.065 0.008 0.066
Regional
Taxonomy 2 all 87 111 0.138 0.059 -0.092 0.059
men 36 39 0.148 0.092 -0.139 0.091
women 51 72 0.130 0.070 -0.058 0.073
Intervention Works
N N employment rate unemployment rate
treatment controls effect std.err. effect std.err.
Regional
Taxonomy 1  all 271 1521 -0.144 0.035 0.160 0.036
men 162 741 -0.248 0.044 0.252 0.045
women 109 780 0.010 0.056 0.025 0.057
Regional
Taxonomy 2 all 212 240 -0.126 0.040 0.161 0.041
men 123 133 -0.236 0.051 0.244 0.052
women 89 107 0.026 0.062 0.045 0.063
Public Works
N N employment rate unemployment rate
treatment controls effect sid.err. effect std.err.
Regional
Taxonomy 1 men 45 223 -0.156 0.078 0.159 0.078
Regional

Taxonomy 2  men 33 35 -0.131 0.087 0.152 0.088
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If matching is conditioned on the first regional taxonomy, no discernible effect of training on
employment and unemployment rates can be observed. When local labor market conditions
are seemingly better controlled for, we find a statistically significant positive overall treatment
effect of training on the employment rate. This positive effect can still be established when
the estimation is done separately for men and women, athough the separate treatment effects
for each gender are less well defined than the overall effect. Also, while training raises the
average employment rate by some 15 percentage points for male trainees and by 13
percentage points for female participants, training measures have a negative, but statistically
not significant impact on the unemployment rates of participants. So, the higher employment
rates could result from training measures preventing workers from flowing out of the labor
force rather than from lowering unemployment rates among active workers.

Irrespective of the regional taxonomy, according to our estimates intervention works
have a large negative and statistically significant effect on the employment rate of men. This
negative overal treatment effect of approximately minus 24 percentage points has its
counterpart in a positive and significant overall treatment effect on the unemployment rate,
which is, in absolute value, of the same magnitude. It is noteworthy, though, that women's
employment and unemployment rates do not seem to be affected by the participation in this
program. For men, the overall treatment effects of public works display a similar pattern as
the effects of intervention work. Public works seem to depress the employment rate of
participants and raise their unemployment rate, even if the magnitude of these effects is
somewhat smaller.

Turning to Table 4.8, we find that in the medium term the employment rate of women
is raised by 17 percentage points through participation in a training measure, while for men
the overall treatment effect amounts to only 10 percentage points and is also not well defined.
As in the short term the unemployment rates of both men and women are not affected by
training in the medium term. On the other hand, males who participate in intervention works
apparently have a more negative labor market experience even in the medium term. The
overall treatment effect estimates are, however, in absolute value, some 7 percentage points
lower than the effects in the short-term. A fina interesting result from Table 4.8 is the large
positive and dtatistically significant overal treatment effect of public works on the
unemployment rate if we use the second regional taxonomy. The number of cases in the
treatment and control groups is very low, though, and this result needs to be interpreted with

some caution.
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Table 4.8 Overall treatment effects on employment and unemployment rates according
to treatment, gender and regional taxonomy: MEDIUM-TERM effects

Training
N N employment rate unemployment rate
treatment controls effect std.err. effect std.err.
Regional
Taxonomy 1 al 71 481 0.046 0.059 -0.024 0.059
men 31 241 -0.010 0.089 -0.013 0.089
women 40 240 0.090 0.075 -0.032 0.077
Regional
Taxonomy 2 al 50 64 0.141 0.070 -0.123 0.071
men 21 23 0.103 0.110 -0.119 0.108
women 29 41 0.168 0.084 -0.125 0.089
Intervention Works
N N employment rate unemployment rate
treatment controls effect std.err. effect std.err.
Regional
Taxonomy 1 al 170 871 -0.075 0.039 0.112 0.039
men 100 423 -0.182 0.050 0.202 0.050
women 70 448 0.077 0.058 -0.016 0.060
Regional
Taxonomy 2 al 128 146 -0.060 0.044 0.122 0.045
men 73 80 -0.170 0.059 0.176 0.060
women 55 66 0.086 0.062 0.051 0.067
Public Works
N N employment rate unemployment rate
treatment controls effect std.err. effect std.err.
Regional
Taxonomy 1 men 20 102 -0.142 0.04 0.146 0.094
Regional
Taxonomy 2 men 13 14 -0.154 0.109 0.218 0.108

In summary, from an efficiency point of view training appears to be an ALMP program that
performs well in Poland. Both men and women raise their chances of being employed in the
short-term if they participate in this program, while women in particular benefit also in the
medium term. Previous microeconometric work did not find such a beneficia treatment effect

(cf. Puhani and Steiner 1997). In contrast, both subsidized employment (intervention works)
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and direct public employment (public works) are highly inefficient when targeted at men.
Whereas these measures are meant to raise the human capital of participants and thus ceteris
paribus raise their employment rate, our estimates imply that they do exactly the opposite in
the Polish case. It is certainly ironic, that the very ALMP program that seems to improve the
performance of unemployed individuals in the Polish labor market, training, has experienced
sharp expenditure cuts in recent years, while this has not been the case for the apparently
ineffective intervention works and public works.

Additional information about the effects of active labor market programs is provided
by employment retention and job accession rates. Given that an individual is employed in the
first quarter following treatment, we ask whether the ALMP program has raised the
probability that he or she will hold on to the job in the short-term or in the medium term (job
retention). Given that the first quarter after treatment was spent in unemployment, we analyze
the conditional probability of starting a new job and holding on to it (job accession). Since the
employment stock at a particular point in time is crucialy affected by job retention and job
accession, looking at the overall treatment effects on these two rates might also help us better
understand what lies behind the overall treatment effects on the employment rate. Given our
definitions of retention and accession rates, the number of individuals that we match might be
too small for serious statistical analysis. In the case of public works this is precisely what
happens and we do not analyze this ALMP measure when estimating the treatment effects on
retention and accession rates.

The short-term positive effect on the employment rate of both men and women that we
found in the case of training and the short-term negative effect on the employment rate of men
in the case of intervention works are reflected in the results reported in Table 4.9. The
increased employment rate of male trainees appears to be supported by an improved retention
rate, while the employment rate of female training participants apparently benefits from better
access to jobs. Intervention works, on the other hand, significantly depress the job accession
rate of men. If male participants find themselves unemployed in the first quarter after the end
of the program, they have a much lower probability of flowing to a regular job than if they
had not participated.

The medium-term estimates of the overall effects on retention and accession rates
shown in Table 4.10 are in genera less well defined. There are some interesting results,

nevertheless.
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Table 4.9 Estimated retention and accession rate treatment effects according to
treatment, gender and regional taxonomy: SHORT-TERM effects

Training
N N retention rate N N accession rate
treatment controls effect std.err.® treatment controls effect std.err.

Regional
Taxonomy 1 all 107 932 0.022 0.066 109 946 0125 0.065
men 47 384 0.082 0.069 45 356 -0.004 0.084
women 55 541 -0.018 0.095 60 555 0207 0.068

Regional
Taxonomy 2 all 76 9 0136 0104 85 109 0231 0.090
men 32 35 0326 0.127 32 35 0.162 0.097
women 40 59 -0.078 0171 48 69 0252 0.069

Intervention Works

N N retention rate N N accession rate
treatment controls effect std.err. treatment controls effect std.err.

Regional
Taxonomy 1  all 263 1513 0076  0.056 265 1515 -0100 0.025
men 146 707 0.008 0.102 158 735 -0.121  0.032
women 105 776 0.114 0.068 98 725 -0.067 0.045

Regional
Taxonomy 2 all 204 231 0.109 0.074 209 237 -0.092 0.039
men 112 122 0130 0.124 121 131 -0.179 0.059
women 80 97 0.011 0.098 81 98 0.023 0.051

& Standard errors are obtained by the delta method.

The treatment effect of training on the accession rate of women is still positive and large,
though not significant at conventional levels. Most noteworthy is the large negative effect of
training on the retention rate of women when the second regiona taxonomy is used. This
effect might be worrying as it seems to imply that the type of training courses women are
offered makes it difficult for them to hold on to a job for more than a year. In contrast, there is
a positive treatment effect of intervention works on the retention rate of women in the
medium term. So, if women are retained after the treatment spell ended, which is one of the
effects intended by the program, they have a greater probability of holding on to ajob for at
least 18 months than if they had not taken part in such a program.

Polish training measures seem to enhance the human capital of unemployed workers

of either gender and thus improve their chances to find employment in regular jobs. In
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contrast, for men, participation in ether intervention or public works appears to lower the
likelihood of finding regular work. One reason often given in the literature is that participation
in such employment programs carries a stigma Because of asymmetric information
employers do not know the productivity of new workers, some of whom they might hire from
the pool of the unemployed. Prospective employers might then perceive participants in such
employment programs as low productivity workers or workers with tenuous labor market

attachment.

Table 4.10 Estimated retention and accession rate treatment effects according to
treatment, gender and regional taxonomy: MEDIUM-TERM effects

Training
N N retention rate N N accession rate
treatment controls effect std.err.® treatment controls effect std.err.

Regional
Taxonomy 1  all 60 455 -0.027 0.103 63 463 0091 0.091
men 27 235 0021 0.153 29 239 -0.052 0134
women 30 216 -0.109 0.130 3 222 0231 0.098

Regional
Taxonomy 2 all 12 56 -0.017 0163 45 59 0.163 0.143
men 17 19 0240 0251 21 23 0.008 0.211
women 23 35 -0.345 0.155 23 35 0259 0.162

Intervention Works

N N retention rate N N accession rate
treatment controls effect <d.err. treatment controls effect std.err.

Regional
Taxonomy 1  all 162 862 0.187 0.075 161 827 0.007 0.044
men 91 408 0.105 0.133 96 417 -0.032 0.057
women 65 442 0237 0.091 55 371 0.031 0.081

Regional
Taxonomy 2 all 116 133 0177 0104 123 140 0044 0.055
men 67 74 0154 0.160 70 77 0099 0.072
women 46 56 0194 0.1%5 45 55 0.046 0.096

& Standard errors are obtained by the delta method.

While such stigmatization might affect some workers in Poland, it cannot fully explain our

results. If stigmatization were the full story, why do women placed on intervention works
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apparently escape this stigmatization? A competing explanation of the negative treatment
effects of intervention and public works for men could be benefit churning. There is
widespread anecdotal evidence that officials in Polish LLOs place some of the unemployed
into these schemes so that they re-qualify for benefit payment. In Table 4.11 we try to provide
some evidence for this type of interaction of ALMP programs and unemployment
compensation.

Table 4.11 Benefit churning - unemployment benefit situation of program participants

training inter vention works public works
all al men women men
N totdl 121 275 164 111 45
N conditional® 23 130 89 41 19
No. in benefits - 1st month” 16 86 66 20 11
No. in benefits - 2nd month 12 93 70 23 12
No. in benefits - 3rd month 11 e} 70 24 12
No. in benefits - 4th month 5 92 70 22 11
No. in benefits - 5th month 7 o1 63 23 11
No. in benefits - 6th month 4 85 62 23 10
No. in benefits - 7th month 5 83 60 23 11
No. in benefits - 8th month 4 85 6l 24 11
No. in benefits - 9th month 2 85 62 23 11
No. in benefits — al 9 months® 0 68 53 15 8
No. in benefits — at least 1 month® 16 102 76 26 13

#No. of program participants in each ALMP sub-sample conditional on a 6-month pre-treatment history with all
6 months unemployed and at least one of these months receiving benefits.

®No. of program participants conditional on (%) who received benefits in the first month after treatment.

°No. of program participants conditional on (%) who received benefits for all 9 months succeeding treatment.
9No. of program participants conditional on (¥) who received benefits for at least one of these 9 post-treatment
months.

The second row of Table 4.11 shows those participants in the various programs who, prior to
treatment, were unemployed continuously for at least six months and who aso received

benefits for at least one month. The second to last row of the table gives the number of
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participants who right after treatment were receiving benefits continuously for nine months.
An individual who appears in both of these rows might be thought of as someone engaging in
benefit churning. There is a circular flow that takes an individual from a long unemployment
spell with some benefit payment through an ALMP program and then immediately after its
termination back to another unemployment spell with continuous benefit payment for at least
9 months. Churning rates thus understood turn out to be 0 percent for trainees’, 60 percent and
42 percent for male participants of intervention works and public works respectively, and 37
percent for female participants of intervention works.

While these back-of-the-envelope calculations are based on small numbers, the large
fractions of male "benefit churners’ still make the point convincing that benefit churning
apparently contributes to a large extent to the poor performance of both the intervention
works and public work programs. As income support for those on long unemployment spells
is rather poorly developed in Poland (Gora and Schmidt 1998), officials of LLOs seem to
consider males, often heads of households, particularly worthy to receive prolonged income

support.

4.6 Conclusion

In this study we implement a conditional difference-in-differences matching estimator to
evaluate, at the micro level, the effectiveness of three measures of Active Labor Market
Policy in Poland: training and re-training, subsidized employment ("intervention works') and
direct public employment ("public works"). Our approach is insofar innovative as we apply a
"moving window" technique to the data to account for a changing macroeconomic
environment. Most importantly, we match simultaneously on observable characteristics and
pre-treatment labor market histories and thus ensure that selection bias and bias due to
unobserved heterogeneity are minimized.

Individual treatment effects are estimated by estimating the difference in employment
and unemployment rates of those subsets of treatment and control groups that have an
identical pre-treatment history. Employment and unemployment rates are averaged over 3

post-treatment quarters to characterize short-term effects, while averaging over 6 post-

" Participation in atraining scheme normally does not imply an employment relationship, i.e. does not carry with
it anew entitlement of benefit receipt.
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treatment quarters is the basis for analyzing the impact of these policies in the medium term.
The overall treatment effect of an ALMP measure is then calculated from the weighted sum of
the individua effects, where the weights are the fractions of the treatment group belonging to
each pre-treatment history.

How effective are Polish ALMP programs? Training and re-training is the ALMP
measure that performs well from an efficiency point of view. Our estimates suggest that the
short-term post-treatment employment rates of both femae and male participants are higher
than they would have been had these individuals not participated in the program. Key
ingredients of these results are higher employment retention rates in the case of men and
higher job accession rates for female trainees. In the medium-term we see a statistically
significant positive treatment effect only on the female employment rate; this rate, averaged
over 6 post-treatment quarters, is raised through training participation by an estimated 17
percentage points. These beneficial effects of the Polish training and re-training program
which could not be found in previous econometric work are in line with Puhani's (1998)
findings who uses the same data set. So, this ALMP measure clearly seems to improve the
efficiency of the Polish labor market and more resources should be dedicated to this program
in future.

In contrast, the Polish employment programs seem to be burdened by maor
distortions. Despite their intention to enhance or rebuild the human capital of unemployed
individuals, we find neither positive nor negative overall treatment effects for women who
participate in intervention works, but find strong negative overall treatment effects on the
employment rate of men who take part in intervention and public works. These negative
effects are somewhat reduced from minus 24 percentage points to minus 17 percentage points
as we move from the short-term to the medium-term perspective. Our estimates also show that
we obtain corresponding positive overall treatment effects on the male unemployment rate
that are, in absolute value, of the same magnitude as the negative treatment effects on the
employment rate.

Combining this information with the evidence of a sharply depressed job accession
rate for male participants of intervention works leads us to believe that Polish employment
programs are often the intermediate stage between two spells of unemployment benefit
receipt. We cite some numbers on this "recycling” of unemployment compensation recipients
which takes place above all via intervention works. These numbers strengthen our conviction

that while stigmatization might have some role to play, benefit churning explains most of the
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negative overal treatment effects of these programs. Out of "social considerations' officials
in LLOs deem males as heads of households particularly worthy of prolonged income support
from the state. On our evidence, a reform of the Polish employment programs seems to be
needed that eliminates the distortions arising from interactions between the unemployment

compensation system and these programs.



Chapter 5

Disentangling Treatment Effects of Polish
Active Labor Market Policies: Evidence

from Matched Samples

Together with Hartmut Lehmann and Christoph M. Schmidt

Abstract. This chapter estimates causal effects of two Polish active labor market policies —
Training and Intervention Works — on employment probabilities. Using data from the 18"
wave of the Polish Labor Force Survey we discuss three stages of an appropriately designed
matching procedure and demonstrate how the method succeeds in balancing relevant
covariates. The validity of this approach is illustrated using the estimated propensity score as
a summary measure of balance. We implement a conditional difference-in-differences
estimator of treatment effects based on individual trinomial sequences of pre-treatment labor
market status. Our findings suggest that Training raises employment probability, while
Intervention Works seems to lead to a negative treatment effect for men. Furthermore, we find
that appropriate subdivision of the matched sample for conditional treatment effect estimation

can add considerable insight to the interpretation of results.
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5.1 Introduction

The evaluation of active labor market policy (ALMP) in the transition countries of Central
and Eastern Europe faces serious methodical obstacles. Most importantly, studies typically
have to rely on nonexperimental data, a feature they share with most evaluation studies on
measures of active labor market policy in OECD countries. In fact, nonexperimental settings
are ill predominant in any European country study, as large-scale — or any — experimental
studies similar to those conducted in the US have remained highly uncommon.

Apart from this more general drawback early evaluation studies on transition countries
frequently had to be based on yet inadequate data: certainly, first of all, local national
statistics offices had to gather experiences in generating data sets. Moreover, as the urge to
evaluate programs already emerged almost simultaneously with the introduction of the data
sets and the introduction of the policy measures themselves, early studies could not exhaust
any long-term data. And yet another distinct feature of policy evaluation in a transition
country is the need to control for the —in early years after transition — quickly changing macro
environment, in particular if one aims at estimation of individual treatment effects.

The transition countries of Central Europe display a U-shaped pattern of output over
the first years of transition, showing an initial contraction in economic activity after the onset
of reform followed by, in the Polish case, robust expansion (cf. Blanchard 1997). The
effectiveness of ALMP measures depends — ceteris paribus — on the tightness of the labor
market and, therefore, on the point on the U-curve where the economy is located. Evaluating
the effects of ALMP measures administered over several years without controlling for the
large moves along the U-curve observed in Central European transition countries would
severely bias the results.

This study focuses on the evaluation of active labor market policy in Poland, with an
emphasis on two major points. First, with regard to the implicit missing data problem in any
nonexperimental evaluation study, we explore the potential of different matching procedures
to achieve covariate balance, and we demonstrate how in our case exact matching methods
may in an intuitively appealing way resolve the dilemma of constructing an adequate
counterfactual. To this end we discuss three stages of a matching procedure that is
meticulously adapted to the specific nature of the data. Our arguments are illustrated by
comparing covariate balance and balance in estimated propensity scores — a summary

measure of balance — across post-match samples.
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Second, we discuss our evaluation results in detail, confirming earlier results on Polish
ALMP (cf. Kluve, Lehmann and Schmidt 1999, Puhani 1998). We place particular emphasis
on the necessity of considering subsets of the population of treatment units in the
interpretation of results. We argue emphatically that a careful interpretation of results is as
important as the devotion of effort to constructing an adequate comparison group, an idea that
frequently seems to be overlooked in applied work. Specifically, we demonstrate that — even
though an appropriate matching method does control for the relevant variables — once the
comparison group is found, the analysis is not complete. Instead, pursuing the estimation of
conditiona treatment effects for appropriately defined subsamples may be useful to avoid
otherwise misleading resullts.

The chapter is organized as follows: Section 5.2 presents a brief description of the data
and gives a short exposition of the evaluation problem, showing how matching on covariates
and/or the propensity score can identify the treatment effect. Section 5.3 explains how our
matched samples were constructed and to what extent the matching methods applied succeed
in balancing observable covariates. Section 5.4 focuses on developing our matching estimator
of treatment effects, on interpreting treatment effect estimates, and on the importance of
conditioning treatment effect estimates on covariates for interpretation purposes. Section 5.5

concludes.

5.2 Data and Methods

5.2.1 The Data

We employ data from the 18" wave of the Polish Labour Force Survey (PLFS) as of August
1996. The PLFS is a quarterly rotating panel introduced in May 1992. The distinct feature of
the August 1996 wave is a supplementary questionnaire containing retrospective questions on
individual labor market behavior. From these questions, individual labor market histories in
quarterly structure have been constructed. The individual histories cover the 56-month-period
from January 1992 to August 1996. Yet, the retrospective data required considerable
preparatory work.

First, out of an initial number of 48,385 observations 11,102 individual labor market

histories lacked any entry, and were omitted from the analysis. The vast mgority of these are
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individuals who were inactive in August of 1996. From the remaining data we had to exclude
both treatment participants with too early (before January 1993) or too late (after November
1995) treatment spells since in our econometric approach we condition on pre-treatment
histories spanning one year and look at post-treatment labor market outcomes averaged over
three quarters. Incomplete spells containing too little information were also excluded from the
anaysis.

Our analysis focuses on individuals who experienced a least one spell of
unemployment during the observation period. For both treated units and potential comparison
units this ensures consideration of individuals potentially eligible for participation in ALMP
measures offered by the employment offices. Since we focus on two distinct ALMP
programs, Training and Intervention Works, the resulting samples of treatment participants
for both measures and their potential comparisons are substantially smaller than the initial
data set. We discuss sample composition in more detail in section 5.3.1.

Secondly, in order to be able to handle such rich data, we had to condense the
information contained in individual labor market histories. Monthly entries entail, e.g.,
"employed”, "unemployed”, "receiving unemployment benefits', "materna leave", etc.
Furthermore, individual histories indicate whether and when an individual took part in an
ALMP course. We compress the 30 possible monthly states occurring in the data into the
three labor market states "employed” (henceforth denoted "1"), "unemployed” (denoted "2"),
and "out-of-the-labor-force" (denoted "0"). Information on treatment participation is stored
separately. Kluve et al. (1999) give a more detailed account of data transformation and
adaptation. The resulting structure of individual spells for treatment and potential
comparisons will be illustrated further in section 5.3.2.

In our estimation of individual treatment effects we consider two distinct measures of
Polish ALMP: Training and Intervention Works*. For more information on institutional
details, on ALMP regulations and descriptions of courses we refer to earlier papers on the
topic (Kluve et al. 1999, Puhani 1998, Gora and Schmidt 1998). For our purposesin this study
it is mainly important to note the distinct nature of the two programs. Training is meant to
enhance, or a least sustain, individual human capital during a period of unemployment. The
Polish Training measure for the unemployed is training off-the-job whose final aim is raising

the unemployed person’s probability of re-employment in aregular job.

43 A third measure of Polish ALMP, Public Works (=direct job creation in the public sector), has been left out in
this study for the sake of brevity, and due to small sample sizes. Cf. also Kluve et a. (1999), Puhani (1998).
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Wage subsidy schemes like the Polish Intervention Works also have a human capital
enhancing or -preserving aspect. However, the enhancement or preservation of a person’s
human capital takes place on-the-job. This human capital component of the program is
thought to increase the chances of a participant to find regular, non-subsidized employment at
the same firm or elsewhere after the end of the program. In addition, if there is asymmetric
information about the productivity of potential employees, wage subsidy schemes are
designed to facilitate temporary job matches that might trandate into regular and lasting
matches at the same firm once the subsidy ends. A crucia feature of ALMP regulation in the
reported period, however, was that participation in Intervention Works was considered by the
law like any other employment spell entitling individuals to a new round of benefit receipt,
given the subsidized job lasted at least six months. Taking part in a Polish training measure
for the unemployed did, on the other hand, not entitle a person to renewed benefit payments

since this training was done off-the-job.

5.2.2 Matching as a Substitute for Randomization

Program evaluation aims at estimating causal effects, i.e. changes in the variable of interest
that are due to treatment participation. The formal setting is cast into the statistical "potential
outcome framework" for causal inference based on Neyman (1923 [1990], 1935), Fisher
(1935) and Rubin (1974, 1977). Let us consider a population indexed by i, and let Yi; denote
the variable of interest given individual i participated in a program, indicated by D=1.
Likewise, let Yo denote the outcome if D=0, i.e. if individua i was not a participant, and
define the single unit treatment effect as Di=Yi;- Y. However, outcomes Yi; and Yo are
"potential” in that we can never observe both of them ssimultaneously for one individua. The
parameter of interest in nonexperimental studies is the mean effect of treatment on the treated
population:

(51) Dlp4=E(D; D, =1) = E(Y,,| D, =1 - E(Y,|D, =1

The equation shows the inherent missing data problem, as we cannot observe the non-
treatment outcome Yip for treatment participants Di=1. We thus have to rely on establishing a
convincing substitute for E(Yo|Di=1) in equation (5.1) in order to identify the desired
parameter.

In an experimental study randomization ensures that potential outcomes Yi; and Yo are
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independent of treatment assignment Dy, i.e. Yi1,Yio A D;. Hence, program participants and
comparison group do not systematically differ from each other, yielding the expectation of Yo
for the comparison group as a substitute for the expectation of Yo of the treated group. Thus,

(5.28) E(Y,|D, =1)=E(Y,|D =0)=E(Y|D, =0,

where Y; is the actually observed value of the outcome variable, i.e. Yi= D;Yi1+(1-D;) Yio. Thus,
randomization ensures identification of the desired parameter D|p=1 from equation (5.1).
Randomization also implies an assumption referred to as stable-unit-treatment-value
assumption (SUTVA, see e.g. Rubin 1980): Potential outcomes for each individual are not
related to the treatment status of other individuals, i.e. Yo, Yi1" D; " it].

Given a nonexperimental setting it appears appropriate to substitute for missing
randomized-out controls by constructing a set of potential comparison units for whom we
observe the same set of pre-treatment covariates X; as for the treated units. The following

proposition given in Rubin (1977) extends the above framework to nonexperimental studies:

If for each unit we observe a vector of covariates X;, and Yo, Y1 Dj|X; holds " i, then
the population treatment effect for the treated D|p-1 is identified: it is equal to the

treatment effect conditional on covariates and assignment to treatment D|p=1x

averaged over the distribution X|D;=1.

Such a congtruction of counterfactual outcomes can only be sensible if conditioning is on
variables that themselves are not the outcome of treatment participation. Post-treatment
employment success is a case in point: by matching individuals who are or are not successful
the effect of treatment will necessarily be derived to be zero. Similar conceptual reservations
would hold for characteristics of post-treatment jobs such as industry or working hours.

Consequently, conditional on observable covariates assignment to treatment can be
considered as having been random, and unobservable characteristics possibly influencing
treatment participation are ruled out. In fact, by this proposition comparing a program
participant with a comparison individual displaying the same observable characteristics is like
comparing the two in a randomized experiment. We thus merely need to estimate E(Yo | X,
Di=0), so that
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(5.2b) E(Y, | D =1) =E, (E(Y,, | X;,D; =0)|D; =1),

identifying the mean effect of treatment on the treated of equation (5.1) for a nonexperimental
setting: constructing the appropriate weighted average over conditional (on X) no-treatment
outcomes mimics randomization by balancing all relevant covariates.

Ideally, in order to implement a procedure for estimating the conditional treatment
effect D|p=1x , we could simply match treated and comparison units on their covariate vector
Xi. While exact matching on X; achieves an exact balancing of attributes, it suffers from the
fact that X; might be of high dimension or contain continuously-distributed variables, so that
some treated units might not find comparisons. To avoid the problem of matching on a high-
dimensiona X, the method of propensity score matching has been proposed by Rosenbaum
and Rubin (1983). Define the propensity score as p(X)=Pr(Di=1|X|)=E(Di|Xi), i.e. the
conditional probability of receiving treatment given a set of covariates. Then the conditional
independence result from above extends to the propensity score: Yip,Yii* Di|Xi P
Yio, Yis" Dilp(Xi).

The reduced dimension comes at a cost, however. The propensity score is not known
and has to be estimated. Also, in samples of limited size, for some i and j it may occur that
p(Xi)=p(X;) even if Xt X;, resulting in imperfect balancing of the distributions of covariates.
Thus, the small sample performance of propensity-score matching might be quite dismal. In
fact, the literature indicates that the trade-off between exact matching and propensity score
matching** is one of truly empirical nature: The decision for one approach or the other should
depend heavily on the data, e.g. the number of observations, the dimension of X, time
structure of variables, etc., and certainly it should depend on what the researcher believes (and
justifies) to be the adequate modus operandi in each specific case.

Angrist and Hahn (1999) make this point forcefully by stating that existing theory
provides little in the way of specific guidelines as how to choose between the two. On the one
hand Hahn (1998) proves that exact matching is asymptotically efficient while propensity
score matching is not, and concludes that asymptotic arguments would appear to offer no
justification for anything other than full control for covariates. On the other hand Angrist and

Hahn (1999) show that in some plausible scenarios estimators controlling for the propensity

44 In practice, matching algorithms are manifold, including e.g. exact matching, matching within calipers (fixed
or flexible), minimum-distance matching, or optimal full matching minimizing total distance. For further
reference see Gu and Rosenbaum (1993), Rosenbaum (1995a), and Augurzky (2000).
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score can be more efficient than exact-matching estimators. The latter seems to be valid in
particular when cell-sizes are small, the explanatory value of the covariates is low conditional
on the propensity score, and/or the probability of treatment is far from %2.

Still, what counts in practice is how well balance is achieved, so that the researcher
can indeed "compare the comparable” (Heckman et al. 1997). Any matching procedure
allowing for any distance in either X or p(X) must be aware of that. And including a weak
predictor of p(X) into the estimation might be more harmful than covariate matching on a
reduced set of comparisons. Thus, both Dehgjia and Wahba (1998) — based on an empirical
study — and Augurzky and Schmidt (2000) — based on a simulation study — argue that it is
more important to achieve balance of relevant covariates rather than painstakingly modeling

the selection process.

5.3 Analyzing Matched Samples

5.3.1 Composition of Matched Samples
For each of the two measures under scrutiny — Training and Intervention Works — we start the
construction of matched samples from an initial sample consisting of treated individuals and
untreated potential comparison individuals, where every observation is required to have at
least one spell of unemployment. From this starting point we subsequently impose stronger
restrictionson X (i.e. enlarge the dimension of the matching criteria) step-by-step, in order to

obtain three samples of matched treatment-comparison units for each of the two measures:

Sample A: A comparison unit is matched to a treated unit if his or her labor market
history is observed without substantial gaps from a year before up to the beginning of
treatment and from the end of treatment until 9 months later. None of the observed

individual characteristicsis used as a matching criterion.
Sample B: A comparison unit is matched to a treated unit if requirement (A) is met,
and if he or she is identical in observable characteristics age, gender, education,

marital status, and region.

Sample C: A comparison unit is matched to a treated unit if requirements (A) and (B)
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are met, and if he or she displays an identical 4-quarter (12-month) pre-treatment

labor market history at the exact same point in time as the treated unit. °

Samples (A) through (C) are constructed applying an exact-matching-within-calipers
algorithm. For all three samples, if a treated individual finds any matching partner among the
potential comparisons, this observation is retained. All algorithms allow for an oversampling
procedure, i.e. a treated unit may be assigned more than one comparison unit. While we could
have sharpened the matching criteriain a different order, this sequence reflects our conviction
that timing is the pivotal aspect of comparison group construction in atransition economy.

The firmness in requirements (A) to (C) increases substantially. While under the weak
precondition of Sample (A) no treated unit is lost in the matching process, and amost al
potential comparisons are used, under requirement (C) some treated units do not find
matching partners, and the number of matched comparison units is far smaller. Thus,
algorithm (C) proceeds with replacement: some comparison units are matched to more than
one treated individual. Samples (A) and (B) are constructed from potential comparison units
with replacement, too, but here we use only the join of sets over matched comparison units.

Table 5.1 presents resulting sample sizes, as well as means of relevant variables. We
observe that there is a reduction in the number of treated units who find matching partners
from (A) to (C) of damost one third for Training, and amost one quarter for Intervention
Works. Due to matching-with-replacement, samples (C) contain comparison units matched to
more than one treated unit. With less than one percent, the number is very low for Training,
and with approximately one tenth it is also fairly low for Intervention Works. Table 5.1 also
shows that Training participants on average are better educated, somewhat younger and more
likely to be female than Intervention Works participants.

Throughout, we focus our attention on exact matching procedures. In sample (B), the
number of matching variables is limited, and they are al categorical variables. Moreover,
exact matching performs quite well: despite the substantial number of cells, approximately 9
out of 10 of treated units find a comparison unit. With regard to sample (C), our exact
matching approach is a very practical device to account for the pre-treatment employment

sequence. Further illustration is provided in the next sections.

4> We consider 6 age categories, 3 education categories, gender, marital status, and 49 regions, resulting in 3528
different cells for sasmple (B). Including a 4-quarter sequence of a trinomial labor market outcome variable (cf.
section 5.3.2) increases the number of cells to 3528* 3'=285,768 cells for sample (C).
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Table 5.1 Composition of matched samples

Training I ntervention Works
treated untreated treated untreated
Initial Sample Observations 121 7177 275 7177
Sample A Observations 121 6751 275 6757
age 345 331 36.3 33.1
%education® 91.7 80.7 64.0 80.7
%femde 56.2 53.0 40.4 53.0
%married 66.9 65.8 67.6 65.6
SampleB  Observations 114 983 244 1354
age 34.0 33.0 36.0 34.7
%education 939 98.9 69.3 87.4
%femde 56.1 62.1 40.6 51.9
%married 65.8 23.2 70.5 77.8
SampleC  Observations 87 111 212 240
[Individuals]® [110] [211]
age 334 33.8 36.0 35.2
%education 96.6 97.3 71.2 74.2
%femde 58.6 64.8 42.0 44.6
%married 67.8 70.3 70.3 70.4

& Excluding individuals with only primary school attainment or less.
® Number of observations that the algorithm matched exactly once.

5.3.2 Timing of interventions
In our preferred sample (C) we require treated and matched comparison units to display an
identical pre-treatment history. To achieve comparability across samples (A) to (C), we
impose the requirement on samples (A) and (B) that we observe any history at all in the year
preceding treatment, although the precise information what history was experienced exactly is
not used in matching. Moreover, to alow an assessment of post-treatment labor market
performance, we require for treated units and all comparison samples that we observe a post-
treatment sequence of labor force status variables in the nine months after treatment. In
accordance with our preparatory data work, we condense the monthly information for
treatment units to a sequence of three quarters of a multinomial outcome variable (0,1,2)

denoting labor force status (out-of-the-labor force, employed, unemployed).
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Correspondingly, for those comparison units eventually matched to the treated units, a
comparable three-quarter post-treatment multinomial sequence of labor force status is
computed as well, again starting at the exact point in time when the treatment spell of the
corresponding treated unit ended. Our analysis thus incorporates individual treatment duration
by conditioning on a complete (i.e. without major gaps) pre-treatment labor market history
being observed before month "start” and comparing labor force status outcomes after month
"stop". Thus, treated units and matched comparison units are always being compared during
the same period. Figure 5.1a illustrates this procedure for samples A and B, in which the
timing structure is considered, but the contents of individually matched labor force status
histories does not matter. Figure 5.1b proceeds to depict the case for inclusion of exact pre-
treatment histories in matching for sample (C)

We thus take advantage of the specific nature of the data with monthly information on
employment status for a 56-month period, considering the exact timing of "start” and "stop"
of treatment — a feature that is neither common nor possible in many studies, even those
focussing on duration data. Moreover, given the rapid upward moves of the Polish economy
along the positive section of its U-shaped curve of output between 1992 and 1996, we can
assume that labor market tightness has increased in Poland in the reported period. Hence, the
fact that we are able to compare treated and comparison units individually at the same point of
time seems particularly valuable.

There might be other ways to solve the crucial problem of finding the "starting point
of treatment” for comparison units. In principle, one could first match on characteristics X or
the propensity score conditioned on characteristics, p(X), and then directly impose
regquirements on comparable timing. A procedure following such a "partial balancing score” is
for instance used by Lechner (2000). It seems more natura to us, however, to incorporate

timing as a principal component of matching.

5.3.3 Covariate Balance
In section 5.2.2 we have emphasized that balance in all relevant factors — observed as well as
unobserved — is the principal objective in experiments, and in its observational counterpart,
the matching approach. In this section we examine whether the particular matching
procedures we applied here indeed succeed in balancing the distributions of pre-treatment
covariates between treatment units and their comparisons. Figures 5.2 and 5.3 show the

distributions of the two principal covariates age and region for treated and comparison units



Figure 5.1a Matching applying a " moving window" in samples (A) and (B)
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Figure 5.1b Matching over identical individual labor market histories applying a " moving window" in sample (C)
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when matching is according to requirements (A) and the analyzed trestment is Intervention
Works. By contrast to sample (A), samples (B) and (C) match on these individual
characteristics. The figures illustrate by how much matching on the correct timing aone

would miss out on balancing individual characteristics.

Figure 5.2 Distribution of age — Intervention Works
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Kernel density estimates of the relevant variable for treated and comparison units by STATA using an
Epanechnikov kernel and total bandwidth of (.5). Density estimates are not bound, their purpose is for
illustration only.

Figure 5.2 shows that if not accounting for age, the young would be over-represented among
the comparisons, and the mature (35-50, say) workers would be over-represented among the
treated units.

Figure 5.3 plots the frequency distribution for the 49 Polish voivodships. Including
regiona indicators among the matching covariates is firmly advocated by Heckman et al.
(1997) in order to control for the local labor market. This is the more imperative in the Polish
case, since local labor market conditions are quite heterogeneous in any typical transition
country. The matching criteria for samples (B) and (C) achieve complete balance — besides
oversampling of comparison units — in the distribution of voivodships for treated and
comparison units, while sample (A) displays considerable imbalance. Thus, if regional

information were left out of the matching algorithm, regional balance would not be assured.
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Figure 5.3 Distribution of region — I ntervention Works
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With respect to further socio-demographic characteristics, 59.6% of Intervention Works
participants are male, while there are only 47% men in comparison sample (A). Regarding the
three education categories, the middle category comprises 63.6% of Intervention Works
participants, and there is only one single individual out of the 275 treated (=0.36%) in the top
category. Among comparison units in (A), 24% and 78.4% are in the top and middle
categories, respectively. Table 5.1 shows that sample (B) and in particular sample (C) achieve
balance in terms of sex and education.

5.3.4 Pre-Treatment Histories
The literature on program participation has always been concerned with the focal problem of
controlling for observable characteristics, unobserved heterogeneity, and selection bias.
Mainly affecting a difference-in-differences estimation approach, Ashenfelter (1978) pointed
to a potentialy serious limitation of this procedure when he observed a relative decline in
pretreatment earnings for participants in subsidized training programs. This empirical
regularity has been called "Ashenfelter's dip" and has been confirmed by subsequent analyses
of many other training and adult education programs (cf. Bass 1983, Ashenfelter and Card
1985, Lal.onde 1986, Heckman, LalLonde, and Smith 1999). For instance, Ashenfelter and

Card (1985) apply a model that focuses on earnings changes as the determinants of
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participation. This line of thought was a natural consequence of Ashenfelter's discovery and
resulted in analyses using earnings histories to eliminate differences between participants and
nonparticipants®®. Clearly, the fact whether the pre-program earnings dip is transitory or
permanent determines what would have happened to participants had they not participated,
and the validity of any estimation approach depends on the relationship between earnings in
the post-program period and the determinants of program participation (Heckman and Smith
1999).

This rather established observation that it is earnings dynamics that drive program
participation has lately been put into serious question by Heckman and Smith (1999), who
argue that it is rather labor force dynamics that determine participation in an ALMP program.
This point had implicitly been made before by Card and Sullivan (1988), who analyze
training effects conditional on pre-program employment histories. Furthermore, Heckman and
Smith (1999) argue for a distinction between employment dynamics — indicating whether an
individual is employed or not — and labor force dynamics, incorporating also whether a
nonemployed person is either unemployed or out-of-the-labor-force. Their conclusion is "that
labor force dynamics, rather than earnings or employment dynamics, drive the participation
process’ (Heckman and Smith 1999). Therefore, we extend the "employment history setting”
considered in Card and Sullivan (1988) to a "labor force status history setting” reflecting also
movements in and out of inactivity.

We consider the 12-nonth labor market history of every single treated unit directly
preceding the exact point in time — i.e. month — that the individual entered the program. As for
the post-treatment outcomes, we condense the monthly information to a sequence of four
guarters of a multinomial outcome variable (0,1,2) denoting labor force status (out-of-the-
labor-force, employed, unemployed). For each treated unit in succession, the matching
algorithm for sample (C) computes labor market histories for all potential comparison units at
this point in time and matches those units who — in addition to the correspondence in the other
covariates — display identical "pre-treatment” histories. For illustration see Figure 5.1b.

Figures 5.4 and 5.5 draw the distributions of pre-trestment labor market histories for
samples (A) and (B) for both Intervention Works (Figure 5.4) and Training (Figure 5.5).
Representing a 12-month labor force status sequence with 4 quarterly realizations of a
trinomial variable (0,1,2) yields 81 possible sequences ("0000" to "2222"). For the purpose of
illustrating the balanced distributions — and only for that purpose — we classify these 81

¢ Heckman and Smith (1999) attribute this emphasis also to the limited data available to "early analysts".
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sequences into 11 categories (see Appendix A), so that on the abscissa the low categories
contain "inactive" sequences (mostly '0's), the middle categories comprise "unemployed”
sequences ('2's), and the high categories represent "employed" sequences ('1's). Categories 1,
6, and 11 exclusively embody the straight sequences (i.e. "0000", "2222", and "1111",
respectively).

Figure 5.4 Distribution of pre-treatment labor market history by sample — I ntervention
Works
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The 3* possible labor force status sequences are classified into 11 categories (see text and Appendix A).
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Figure 5.5 Distribution of pre-treatment labor market history by sample — Training
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The 3* possible labor force status sequences are classified into 11 categories (see text and Appendix A).

Thus, of the three peaks we observe in most of the graphs in figures 5.4 and 5.5, the left peak
represents the area of "inactive" histories, because histories with a low order number contain
many '0's. Accordingly, the peak in the middle expresses "unemployed" histories, and the
peak to the right depicts "employed" histories. In terms of balancing of distributions, the
picture is aimost the same for figures 5.4 and 5.5. Both samples (A) and (B) display only
limited accordance in pre-treatment histories for treated and comparison units. The figures

also show that treatment individuals in Training are quite different from those in Intervention
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Works. For the Training participants, the fractions of "employed" and "unemployed" histories
are quite close to each other, while in the Intervention Works sample we observe a far larger
fraction of "unemployed" histories among the trested. Moreover, for both Training and
Intervention Works the comparison samples (A) and (B) are too "successful” in that they
contain too many "employed" sequences relative to "unemployed” sequences in order to be
comparable to the treated units, where "unemployed” sequences dominate.

5.3.5 Propensity Score Balance

The preceding sections were concerned with balance in selected individual characteristics. It
is instructive to also provide a summary measure of balance, the propensity score. While the
estimation of propensity scores is usualy a principal step in the construction of matched
samples — with the hope that the resulting matched sample displays a balance in al relevant
characteristics but no possibility to test this presumption — we can use our samples to directly
analyze balance in the propensity score. Correspondingly, we predict post-match propensity
scores for samples (A) and (B), based on estimates derived from sample (A). We follow a
probit specification with interaction terms between some of the covariates,

(5.3) RD=1|X)=F(@,+a,X +a,X A X)

where F denotes the cumulative normal density function, X is the vector of covariates, and X
A X indicates al relevant interactions across covariates. Regressors comprise indicator
variables capturing age, education, gender, and region. Moreover, corresponding to the
condensation of pre-treatment labor market histories into 11 distinct "types' in section 5.3.4,
there are 10 indicators of pre-treatment history among the regressors. Finaly we interacted
age, gender and education in a saturated fashion.

This model is estimated using the treatment units (yielding the value "1") and
comparison sample (A) providing the "0" observations. Note that we observe both the
individual characteristics and the pre-treatment histories also with comparison sample (A),
although this information is utilized only in the construction of comparison samples (B) and
(C), respectively. The resulting coefficients are employed to predict propensity scores in
samples (A) and (B). Figures 5.6 and 5.7 document the distribution of propensity scores in
these comparison samples — relative to the corresponding distribution among treatment units —

for the two measures under study.
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Figure 5.6 Distribution of estimated propensity score by sample — Intervention Works
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Kernel density estimates of the propensity score for treated and comparison units by STATA using an
Epanechnikov kernel and total bandwidth of (.02). Density estimates are not bound, their purpose is for
illustration only. Y -axis denotes percentages.

Note that the density for treated units is not scaled relative to the number of observations in
the comparison pool, so that the figure depicts the distribution of scores rather than the
proportion of treated units to comparison units. In both figures 5.6 and 5.7 the comparison
units gather at the low end of the estimated score. Whereas for Intervention Works treated
units are distributed rather evenly, with the peak to the low end and then dlightly declining
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towards the upper tail, the majority of treated units for Training aso displays relatively low
scores, with an overall distribution quite close to that of comparison units. We find relatively
little change in balance from (A) to (B) for both Training and Intervention Works. For
Training the distributions are rather balanced — for Intervention Works, however, the
substantial imbalance in pre-treatment histories clearly finds expression in the score
distributions for (A) and (B) that do not yet control for this imbalance.

Figure 5.7 Distribution of estimated propensity score by sample— Training
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Kernel density estimates of the propensity score for treated and comparison units by STATA using an
Epanechnikov kernel and total bandwidth of (.02). Density estimates are not bound, their purpose is for
illustration only. Y -axis denotes percentages.
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5.4 Empirical Results

5.4.1 Distributions of Outcomes

To illustrate the substantial heterogeneity of labor market outcomes following Intervention
Works and Training, Figures 5.8 and 5.9 plot distributions for the post-treatment employment
success of treated units and comparisons in samples (A) to (C). There are 27 possible labor
market status sequences capturing employment performance in the three quarters succeeding
treatment (cf. also Figures 5.1a,b). Similar to the presentation of pre-treatment labor market
histories we classify these 27 possible sequences of 3 quarterly realizations of a trinomial
variable into 9 categories for illustration purposes. This categorization is outlined in Appendix
A. Once more, low categories contain "inactive" sequences (category 1="000"), middle
categories include "unemployed" sequences (category 5="222"), and high categories comprise
"employed" histories (category 9="111"). Accordingly, in the graphs the left peak depicts
"Inactive” sequences, the middle peak "unemployed" sequences, and the peak to the right
"employed" histories.

Looking at the Intervention Works samples in Figure 5.8, we find that in all samples
the "unemployed” sequences are clearly predominant for the treated units. At the same time,
comparison units display rather successful labor market histories in samples (A) and (B). For
our preferred comparison sample (C) this picture changes considerably, and a larger fraction
of comparison units also displays "unemployed” histories. However, the comparison group
still fares visibly better than the program participants. Attributing the most reliable results to
sample (C), we would conclude that during the 9 months directly succeeding participation in
Intervention Works the treated units on average were marginally — possibly insignificantly —
less successful in finding employment than the comparison units.

For the Training samples shown in Figure 5.9 we find dightly different results. Similar
to pre-treatment sequences of these samples (Figure 5.5), the "employed” and "unemployed”
peaks have approximately the same height also for the post-treatment sequence. But while for
samples (A) and (B) the "employed" peak is higher for comparison units than for treated
units, and the "unemployed" peak is higher for treated units than for comparisons, this relation
switches for sample (C). In (C) treated units display on average a dightly more successful
post-treatment labor market sequence than corresponding comparisons. We would thus

attribute a dightly — possibly insignificant — positive treatment effect to Training.
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Figure 5.8 Distribution of post-treatment labor market sequence by sample —
Intervention Works
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The 3° possible labor force status sequences are classified into 9 categories (see text and Appendix A).

Taken together, Figures 5.8 and 5.9 display three important patterns. First, moving from (A)

to (C) we do not observe much variation in the distributions for treated units. Thus, the fact
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Figure 5.9 Distribution of post-treatment labor market sequence by sample — Training
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The 3® possible labor force status sequences are classified into 9 categories (see text and Appendix A).

that we lose some treated units while increasing matching requirements does not seem to play

an important role. Second, without conditioning on pre-treatment labor market histories the
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comparison samples apparently contain too many "successful” individuals — a pattern which
we aready observed for pre-treatment labor force status sequences in Figures 5.4 and 5.5. For
samples (A) and (B) this would result in a far too negative estimate of treatment effects.
Third, across comparison units and treated units we observe clearly more "successful”
outcomes for Training than for Intervention Works. This is not surprising, as we noticed a
similar relation for pre-treatment labor market history distributions (Figures 5.4 and 5.5).

In Figures 5.10 and 5.11 we address the idea that participation in Intervention Works
might primarily be a vehicle to renew €ligibility for unemployment benefits. Recall that
according to Polish ALMP regulations Intervention Works renews benefit receipt eligibility,
whereas Training does not. Figures 5.10 and 5.11 perform a simple before-after comparison
of the variable "unemployment benefit receipt" for both ALMP measures, and for men and
women separately. The top panel of each figure indicates benefit receipt in at least two of the
three months directly preceding treatment. The middle panel shows benefit receipt in at |least
two of the three months directly succeeding treatment. The bottom panel plots benefit receipt
in at least two months of each of the three quarters succeeding treatment, i.e. at least 6 out of

9 months. We focus on sample (C) for both measures.

Figure 5.10 Distribution of benefit receipt by sex for sample C — I ntervention Works
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Figure5.10 [ctd]
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The upper panel indicates benefit receipt (="yes") during at least two of the last three months preceding
treatment. The middle panel indicates benefit receipt during at least two of the first three months succeeding
treatment. The bottom panel indicates benefit receipt during at least two of the three monthsin each of the three
quarters succeeding treatment.

Figure 5.10 shows for Intervention Works that a substantial fraction of both treated and
comparison units received pre-treatment benefits, although benefits do seem to play a more
important role for treated units. This pattern is more pronounced for men. In the middle and
bottom panel this situation aggravates substantially. While both short-term and medium-term
benefit receipt played a minor role for comparison units, we observe that approximately 60%
of the treated males received unemployment benefits in the quarter directly following
treatment, and that more than half of the treated males received benefits during the whole 9-
month post-treatment period. For females, this pattern is not quite as severe, but still post-
treatment benefit receipt plays a major role for Intervention Works participants.

The situation for the Training sample is quite different. As Figure 5.11 shows,
unemployment benefits do play some role for both treated and comparison units during the
one quarter directly before and after participation, at least for the males. However, in the
medium run this effect diminishes, and only very few observations in the treatment and
comparison group display benefit receipt for the whole 9-month period following treatment.
This pattern is even less pronounced for women than for men.

As a result, figures 5.8 through 5.11 indicate that individuals involved in Training
measures seem to be generally more successful before and after the treatment than those
participating in Intervention Works. However, these patterns are difficult to reconcile on the
basis of a more favorable impact of Training. Rather, this ssmple evidence suggests that
substantial benefit churning seems to take place in the case of Intervention Works, but not in

the case of Training.
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Figure 5.11 Distribution of benefit receipt by sex for sample C — Training
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The upper panel indicates benefit receipt (="yes") during at least two of the last three months preceding
treatment. The middle panel indicates benefit receipt during at least two of the first three months succeeding
treatment. The bottom panel indicates benefit receipt during at least two of the three months in each of the three
quarters succeeding treatment.

5.4.2 Treatment Effect Estimation

Our aim is to identify treatment effects of two different measures of Polish active labor

market policy, Intervention Works and Training, which we consider separately in the

empirical analysis. For purposes of the formal exposition of our estimation approach we

consider a single generic intervention. Furthermore, we explicitly require that treated units be

matched with comparison units from the identical set of observed pre-treatment and post-
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treatment months. Any reference to the time period is therefore omitted from the formal
exposition as well.

In addition to the terminology introduced in section 5.2, let N; denote the number of
treated units, with indices i T 11, and Np the number of potential comparison units, with

indices i T Ilo. Potential labor market outcomes in post-treatment quarter q (q = 1, 2, 3) are

denoted by qu, if individual i received treatment, and by Yq?, if individual i did not receive
treastment. Outcomes are defined as multinomials with three possible realizations ('0'=out-of-
the-labor-force, '1'=employed, '2'=unemployed), extending the formulations of Card and

Sullivan (1988) from a binomial to atrinomial setting.

We can only observe one of the two potential outcomes qui and Yq? for a given
individual. This actual outcome is denoted by Yg;. The objective is then to formally construct
an estimator of the mean of the unobservable counterfactual outcome E(YqﬁJ |Di=1). Following
the quarterly sequence of labor market outcomes might be too detailed, though, for a direct
economic interpretation of results. Thus, to condense the available information further, the

post-intervention labor market success of each individual i is summarized by the individual’s

average employment rate over the three quarters following the intervention. Using indicator

function 1(.), these employment rate outcomes are %é Y, =1 4 Observed outcomes for
q

individual i can then be written as

o]

(54 4,100 =D = 203, 10G =D+@ D) 1(Yg=1) .

Wl

and the impact of the intervention on the average labor market status of individual i can be
expressed as

(55 D=3@,1(% =D-3 1Y =1)

47 Kluve et al. (1999) extend this setting to considering both employment and unemployment rates, so that

corresponding outcomes would be %é_ LY, =w), where w T {1,2}. Comparing employment and
q

unemployment rate treatment effects shows for instance that exits to inactivity play a much larger role for

women than for men. Moreover, Kluve et al. (1999) also consider the medium run, i.e. 6 post-treatment quarters,

while we focus on the short-term case here. The extension to any number of post-treatment periods is

straightforward.
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for average employment rates. The parameters of interest in our evaluation analysis are
weighted population averages over these individual treatment effects, the mean effect of
treatment on the treated for types of individuals characterized simultaneously by specific sets
of characteristics X; and labor market histories before treatment hy,

(56) E(D|X.h.D =) = EF@,L0%=D- &, 1% =D)|X,h.D=)

The less inclusive the chosen set of characteristics conditioned upon — i.e. the more specific
characteristics are included in X — the larger is the population of treated individuals over
which the conditional mean is taken. As laid out above, previous labor market histories h; are
captured by the sequence of labor market states in the four quarters preceding the
intervention.

Our approach to combine the population averages of the treatment effects for
individuals in a given history-specific "cell" — characterized by demographic and other
characteristics, in particular labor market history — gives us considerable flexibility in
addressing the economic interpretation of results. The standard approach to evaluation would
be to consider the distinction of type-history cells primarily as a device to achieve
comparability of treatment and comparison units (see below). The ultimate interest there

typically liesin the average treatment effects over the joint support of X and h given D=1,
57) M =§ wE(D]|s,D=1),

with sindicating any possible combination of X and h, and ws representing the corresponding
relative frequency in the treatment sample. By contrast to this standard approach, in what
follows we will consider appropriate subsets of thisjoint support.

How does our particular observationa approach — matching — facilitate the estimation
of these parameters of interest? In randomized experiments the counterfactual expected values
under no intervention can smply be estimated for intervention recipients by the mean values
of the outcome for randomized-out would-be recipients. As we have shown in section 5.2,
matching methods can recover the desired counterfactual for a nonexperimental comparison
group: Within each matched set of individuals, one can estimate the treatment impact on

individua i by the difference over sample means, and one can construct an estimate of the
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overall impact by forming a weighted average over these individual estimates.

Matching estimators thereby approximate the virtues of randomization mainly by
balancing the distribution of observed attributes across treastment and comparison groups, both
by ensuring a common region of support for individuals in the intervention sample and their
matched comparisons and by re-weighting the distribution over the common region of
support. The central identification assumption is that of mean independence of the labor

market status Yq? and of the treatment indicator D;, given individual observable

characteristics. In our specific application these conditioning characteristics are the
demographic and regional variables X; and the pre-treatment history h;, i.e. from equation

(5.2) in our case,
(58) E@(Yy=D)|X, ,h,D,=1) = E@(Y,=D|X;h,D,=0)

Thus, by conditioning on previous labor market history we exploit the longitudinal nature of
our data.

In a standard difference-in-differences approach pre-treatment and post-treatment
outcomes are typically treated symmetrically; the identifying assumption is that the change in
outcomes that treated individuals would have experienced had they not received treatment,
would have been the same change — on average — that untreated individuals experience during
the same period. This assumption accounts for the phenomenon that treatment units typically
experience lower pre-treatment outcomes, even though they might be otherwise identical to
comparison units. It does not lend itself naturally to the analysis of categorica outcome
variables, though. In this context, a natural generalization of the difference-in-differences idea
is to condition on the specific realization of the outcome variable in the pre-treatment period,
as we do here. This is possible, since due to the categorical nature of the outcome the
conditioning remains tractable. Card and Sullivan (1988) and Heckman et a. (1997) advocate
such difference-in-differences approaches (cf. also Schmidt 1999).

Our matching estimator is one of oversampling exact covariate matching within
calipers, alowing for matching-with-replacement. Our particular attention to pre-treatment
labor market histories implements this idea of a generalized difference-in-differences
juxtaposition between treated units and comparison units. Due to the relevance of the previous

history for subsequent labor market success — state dependence is one of the issues most
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discussed in the labor literature — we also emphasize this variable in the construction of the
estimates. Specificaly, for any treatment history h for which at least one match could be

found, we estimate the impact of the intervention by

- 1 o €, 0 1 1o u
59 M, = —a &a,l=D) - a —(Ga/lg=n)u ,
Ny it I 63 iTlon| X;T C(X) Mo 3 H

where Nin is the number of individuals with history h who receive the intervention

(N, = éthh ), l1n is the set of indices for these individuals, C(X;) defines the caliper for

individual i's characteristics X, and njp is the number of comparisons with history h who are
falling within this caliper, with the set of indices for comparison-individuals with history h
being lon. The standard error of the estimated treatment effect is then constructed as a function
of the underlying multinomial probabilities. This procedure is outlined in Appendix B.

The overall effect of the intervention is estimated in a last step by calculating a

weighted average over the history-specific intervention effects,

é u

2 _ o @ Ny =0
(5100 M = 6} 5 NthhU ,

Ehn 8]

using the treated units sample fractions as weights. The variance is derived as the

corresponding weighted average of the history-specific variances.

5.4.3 Treatment Effect Results
In this section we analyze the treatment effect estimates which we obtain by applying the

estimator developed in the previous section. Table 5.2 presents average treatment effects on
the post-intervention employment rate for Intervention Works sample (C). The structure of the
table shows how the total treatment effect (-.126) is being calculated by computing history-
specific effects first. As explained above, for each treated unit, if he or she has more than one
matched comparison unit, the comparison units employment rates are averaged and handled
as if they were the employment rate of only a single unit. The total effect is the weighted
average of the history-specific effects using the treated units sample fractions as weights.
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Table 5.2 Average post-treatment employment rate treatment effect by pre-treatment
labor market history for comparison sample C — Intervention Works

treated units comparison units
job history N rate® std.err. N rate std.err.  effect” std.err.
0000 5 0.333 0.189 6 0.400 0.219 -0.067 0.289
0002 1 0.000 0.000 1 0.667 0.471 -0.667 0.471
1111 16 0.813 0.098 19 0.729 0.111 0.084 0.148
1112 5 0.467 0.202 6 0.167 0.167 0.300 0.262
1122 6 0.222 0.150 6 0.333 0.192 -0.111  0.244
1222 4 0.500 0.250 4 0.833 0.186 -0.333 0.312
2000 1 1.000 0.000 1 0.000 0.000 1.000 0.000
2111 1 1.000 0.000 1 1.000 0.000 0.000 0.000
2211 4 0.167 0.144 4 0.667 0.236 -0.500 0.276
2221 1 0.000 0.000 1 0.333 0.471 -0.333 0471
2222 168 0.183 0.027 191 0.333 0.036 -0.150 0.045
total® 212 240 -0.126  0.040

& Average employment rate in the three post-treatment quarters.

b Difference between rates of treated units and matched comparison units.

“Total effect is the weighted average of the effects for the individual histories using the treated units sample
fractions as weights.

Besides treatment effect calculation Table 5.2 shows which labor market state sequences
occurred in the data, thus picking up the theme of figure 5.4. We observe the same
predominance of "unemployed" histories which we aready noticed in the figure. The total
treatment effect casts a rather negative picture on the Intervention Works program, suggesting
that participation tends to lower post-treatment employment prospects. In principle, this
finding would conclude our analysis. we have described the nonexperimental context of the
study, we have shown by what means we overcome the problem of constructing the desired
counterfactual, and we have applied the appropriate estimation methods in order to obtain
credible treatment effect estimates. As far as the data permit, the causal effect of Intervention
Works participation is identified. Or isit?

In fact, looking at Table 5.3 we find that there may be more to it. First, we report
trestment effect estimates for comparison samples (A) and (B) obtained by taking sample
averages over the average employment rate in the three post-treatment quarters. The estimates
are far more negative than the one obtained using sample (C), clearly reflecting the over-
representation of "successful" labor force status sequences in the respective comparison
samples (cf. Figures 5.4 and 5.8). Furthermore, in accordance with our discussion of

expression (5.7), in Table 5.3 we subdivide the matched Intervention Works comparison
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sample (C) with respect to various covariates, and we compare the conditional treatment
effect for the subsample to the full sample estimate. Even a simple subdivision by gender
reveals an interesting finding: The significantly negative full sample effect consists of a —
more or less — zero treatment effect for women and a considerably larger negative effect for
men. On the other hand, a subdivision by date of program entry that parts the observation
period into two halves does not revead any apparent influence of changes in the

macroeconomic environment.

Table 5.3 Average post-treatment employment rate treatment effect for subsamples —
Intervention Works

matched
Subdivision by Categories treated comparison effect®  sd.err.
units units
Sample A - 275 6757 -.285 026
Sample B - 244 134 -.291 031
Sample C: - 212 240 -.126 .040
Gender Men 123 133 -.236 051
Women 89 107 026 062
Date of £ June 1994 116 137 -.135 .052
Program Entry 3 July 1994 9% 103 -115 .056
Program Entry & £ June 1994 Men 66 73 -.295 .069
Gender £ June 1994 Women 50 64 076 079
3 July 1994 Men 57 60 -.167 073
3 July 1994 Women 39 43 -.038 .089
Labor market history 1111 16 19 084 .148
2222 168 191 -.150 .045
Labor market history 1111 Men 10 12 A17 161
& Gender 1111 Women 6 7 028 274
2222 Men 100 108 -.258 057
2222 \Women 63 83 010 072

2 Average employment rate in the three post-treatment quarters.
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The next step is to further refine cells and classify the sample by both gender and date of
program entry. These subsamples indicate that post-treatment employment prospects for male
Intervention Works participants were quite unfavorable in the second period after July 1994,
but particularly severe during the first period until June 1994. For women the time period
distinction leads to the opposite result, but both the positive effect of the first half and the
negative effect of the second half are small and insignificant. This also points to the fact that,
as we increase the number of subdivisions, subsample sizes decrease and standard errors
increase.

Classification by labor market history allows us to look at the two major labor force
status sequences that drive the pesks from Figures 5.4 and 5.5. For "employed" (1111)
histories subsample sizes are rather small and the effects not well defined. For the subsample
of "unemployed" (2222) histories, which entails aimost 80% of total treated and comparison
units, we find a significantly negative treatment effect close to the full sample effect. This is
certainly no surprise, as the estimate of the full sample effect is dominated by the "2222"
subsample effect. If we further classify by labor market history and gender, treatment effects
for the "1111" subsample remain insignificant for both men and women, while the "2222"
subsample displays the same substantial male/female difference in the treatment effect that we
have seen for the full sample.

Table 5.4 reports the same comparison between samples and various subdivisions for
Training. Both treatment effect estimates from comparison samples (A) and (B) suggest an
insignificantly negative effect of Training participation, while the estimate obtained from
sample (C) indicates that Training raises the individual employment probability by 13.8%.
This sudden switch of signs is in line with our observations drawn from Figure 5.9. Further
looking at comparison sample (C), we conclude that in the case of Training a classification by
gender does not seem to add any insights to the interpretation: Treatment effects for men and
women are amost identical. While a categorization by gender and date of program entry
shows contradictory results (upward for men, downward for women from one period to the
other), the number of observations per subsample is in fact too smal to draw any firm
conclusions. Looking at a classification by labor market history, once more we find the
"peaks" from Figure 5.5, indicating here that the share of "1111" sequences is aimost as large
as the that of "2222" sequences. Again, subsample sizes are quite small for interpretation

pUrposes.
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Table 5.4 Average post-treatment employment rate treatment effect for subsamples —

Training
matched
Subdivision by Categories treated comparison effect®  sd.err.
units units
Sample A - 121 6751 -.027 .046
Sample B - 114 983 -.048 .049
Sample C: - 87 111 138 .059
Gender Men 36 39 148 092
Women 51 72 130 .070
Date of £ June 1994 33 52 212 .088
Program Entry 3 July 1994 39 59 .080 .064
Program Entry & £ June 1994 Men 15 17 .056 156
Gender £ June 1994 Women 23 35 313 104
3 July 1994 Men 21 22 214 094
3 July 1994 Women 28 37 -.020 .086
Labor market history 1111 24 A 071 115
2222 32 43 -077 103
Labor market history 1111 Men 11 12 045 194
& Gender 1111 Women 13 22 092 129
2222 Men 11 12 -.046 192
2222 \Women 21 31 .093 116

& Average employment rate in the three post-treatment quarters.

From these calculations results the observation that an appropriate subdivision of a matched
sample can substantially contribute to disentangling and identifying heterogeneous treatment
effects. In particular, the example of a smple classification by gender for the Intervention
Works sample is striking: The overall negative effect is amost exclusively due to the dismal
post-treatment labor market performance of male participants. Thus, while the recognition of
the principal idea that treatment effects are heterogeneous across the population has led to the

development of sophisticated econometric methods for constructing convincing
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counterfactuals, it is easy to forget the necessity to stratify the sample appropriately in order
to interpret the results in economicaly meaningful terms. Thus, controlling for observable
characteristics in establishing the statistical model does not seem to be sufficient — it appears
to be good advice to re-consider the same observable characteristics (which we already
controlled for) when analyzing the empirical results. This recommendation seems imperative
if one wants to assess for example targeting issues: bad targeting of programsis often claimed
to be one reason for disappointing treatment effects. In our particular application, Intervention
Works has been uncovered as an extremely disappointing measure in the case of men — a
result that would have remained hidden, had we not pursued an appropriate sample split.

Of course, these negative treatment effects could be explained by other factors than
poor targeting. Stigma is often given as a reason why participants of an employment program
like Intervention Works perform worse in the labor market than non-participants.*®
Prospective employers identify participants as "low productivity workers' and are not willing
to accept them into regular jobs. Another explanation, which might have particular merit in
the Polish case, is benefit churning. Workers with long unemployment spells who have
difficulty finding regular employment are identified by labor bureau officias and might only
be chosen for participation in an employment scheme so that they re-qualify for another round
of benefit payment.

While the presented evidence cannot pinpoint precisely the cause underlying the poor
labor market performance of males participating in Intervention Works, stigmatization seems
to be the least likely cause. For if participation in the scheme was a bad signal to prospective
employers, it is not clear why this would not be the case for female participants. It may be that
those males — males are for the most part heads of households — are targeted by labor bureau
officials who have especialy poor prospects for regular employment. Once the publicly
subsidized job comes to an end, so officials might reason, they at least qualify for another
round of unemployment benefits, if they cannot find regular employment elsewhere or if their
subsidized job is not transformed into a regular job. It is probably not a mere coincidence that
the large majority of Intervention Works jobs lasts six months, the length of time one needs to
work within the year preceding benefit receipt in order to qualify for unemployment benefits.

However, more work is needed to determine firmly the factor(s) that drive the poor

labor market performance of males after their participation in Intervention Works comes to an

48 A large part of the intervention works jobs are actually in the public domain, i.e. we can also think of this
scheme as a public employment program.
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end. For example, the fate of female participants after the end of the subsidized job needs to
be more thoroughly analyzed. Specifically, one needs to ask whether female participants are
more likely to be kept on by employers or whether they find regular jobs elsewhere more
readily than men because their characteristics are better than those of men, i.e. because the
targeting criteria are different for men and women. It could aso be that women who
participate in Intervention Works are selected into jobs that are more conducive to prolonged

job matches because demand in these jobs is strong (e.g. nursing jobs).

Table 5.5 Counterfactual treatment effects for samples C

Treatment Weights Effect® Std.Err. I nter pretation
Intervention Works  Intervention Works -.126 .040 Factual IW treatment
effect
Intervention Works ~ Training -.048 .064 Counterfactual IW
treatment effect
Training Training 138 059  Factua Training treatment
effect
Training Intervention Works .089 .083 Counterfactual Training
treatment effect
Intervention Works — Intervention Works -.218 .093 Differential treatment
Training effect Intervention Works
vs. Training
Training — Training 185 .087 Differential treatment
Intervention Works effect Training vs.

Intervention Works

2 Average employment rate in the three post-treatment quarters.

In addition to displaying the treatment effects by sample and subdivision, Table 5.5 presents
treatment effect estimates for comparison samples (C) obtained from a "counterfactual
experiment”. The first line reports the factual Intervention Works treatment effect estimate
computed as shown in Table 5.2. This estimate tries to answer the question: "How much did
Intervention Works participants benefit from participating in Intervention Works?' The

second line reports a "counterfactual” Intervention Works treatment effect for Training
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participants, i.e. it tries to answer the question: "How much would Training participants have
benefited, if they had participated in Intervention Works?' The estimate is obtained by
history-wise reweighting the Intervention Works sample using the fraction of the treated units
in the Training sample as weights. Looking at Table 5.2 this is the same as if for each history
the second column contained the corresponding number of observations from the Training
sample. Apparently, this reweighting by labor market history implicitly assumes that there are
no relevant changes in other el ements of X.

The estimate in the second line of Table 5.5 shows that, while the Intervention Works
effect on Training participants still displays a negative sign, the effect is insignificant, so that
Training participants participating in Intervention Works would have done better than
Intervention Works participants themselves. Looking at the effects of Training on Training
participants and Intervention Works participants, respectively, we find the counterpart to this
result: Intervention Works participants participating in Training instead would have not
gained as much from the treatment as Training participants themselves. Thus, persons with
better observable and unobservable characteristics seem to have been targeted for the Training
program.

The last two lines in Table 5.5 report differential treatment effects of Intervention
Works vs. Training. The estimates represent the difference between the difference of treated
and comparison units in Intervention Works (second to last column, Table 5.2) and the
difference of treated and comparison units in Training. Once more, differences are taken
history-wise and weighted using either Intervention Works participants or Training
participants sample weights. Both estimates clearly show that Training is the superior ALMP
to Intervention Works.

The methods used in this chapter alow us to evaluate ALMP at the individual level. It
thus tells us that those persons participating in Polish Training programs have better
employment prospects than they would have had had they not participated and also that they
have better employment prospects than those who take part in Intervention Works. The
methodology does not address the issue whether Training improves the overall performance
of the labor market, i.e., for example, whether it lowers the aggregate unemployment rate.
Even if Training is beneficia at the individual level, substitution effects - Training
participants just "jump the queue" of those in line for regular jobs - could neutralize its impact
at the aggregate level. On the other hand, the finding that a program is not even effective at

the individua level, like the Polish Intervention Works scheme, helps us to focus attention on
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targeting issues and/or wrong incentive structures that distort the behavior of labor bureau

officials and of the unemployed.

5.5 Conclusion

In this chapter we have analyzed treatment effects of two Polish measures of active labor
market policy: Training and Intervention Works. The analysis was based on matched samples
to overcome the inherent evaluation problem of constructing a credible counterfactual in a
nonexperimental setting. We have seen how matching methods can solve this problem by
balancing distributions of relevant covariates. Matching methods can be based on exact-
covariate-matching, propensity score matching, or a combination of both (partial score). We
have argued that on both theoretical and above all empirical grounds the decision for one
approach or the other depends heavily on the data.

We have illustrated our own approach to the data by the construction of three different
comparison samples using exact-matching-within-calipers, imposing increasingly stricter
preconditions. Figures 5.1 to 5.5 have depicted how strong requirements, i.e. a more detailed
match on observable characteristics substantially improve the balancing of covariates, and
thus the quality of the match. As long as sample sizes do not decrease considerably, such a
procedure appears promising. We have illustrated the balancing property of our exact
matching approach using the estimated propensity score as a summary measure of balance.

The estimation of the treatment effect is based on a history-specific generalized
difference-in-differences estimator. Our estimates suggest that, while Training seems to
clearly enhance individual employment prospects, Intervention Works participants fare
substantially worse than their comparisons. This is in line with previous findings (cf. Kluve,
Lehmann and Schmidt 1999, Puhani 1998). However, we do point to the fact that appropriate
subdivision of the matched sample can add considerable insight to the interpretation of
results. In our study, for instance, we find that the overall negative treatment effect of
Intervention Works is almost exclusively due to the dismal employment performance of male
participants, while women do neither gain nor lose anything by participating. From an
empirical point of view, we thus doubt that controlling for covariates in constructing the
counterfactual is sufficient to account for the heterogeneity of treatment effects — appropriate

subdivision of the matched sample may often add clarity to the economic interpretation.
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5.6 Appendices

A. Categorizing labor market status sequences

Pre-treatment

Category 1 2 3 4 5 6 7 8 9 10 11

Histories 0000 0001 0012 0022 2201 2222 2220 2211 1102 1110 1111

0010 0102 0202 2021 2202 2121 1012 1101
0100 1002 2002 0221 2022 1221 0112 1011
1000 0120 0220 2210 0222 2112 1120 0111
0002 1020 2020 2012 2221 1212 1021 1112
0020 0021 2200 0212 2212 1122 0121 1121
0200 1200 2120 2122 1210 1211
2000 0201 2102 1222 1201 2111
0210 0122 0211
2100 1220 2110
2010 1202 2101
2001 1022 2011
0110 0011
1010 0101
1100 1001

Post-treatment

Caegory 1 2 3 4 5 6 7 8 9

Histories 000 001 210 220 222 221 012 110 111

010 120 202 212 021 101
100 102 022 122 201 O11
002 112
020 121

200 211
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B. Calculation of treatment effects and variances

The history-specific treatment effect estimator (5.9) is based on the differences in average
employment rate outcomes between treatment and comparison units. One notable element of
this estimator is that multiple comparison units matched to a single treated unit (due to the
oversampling algorithm) are handled as if they were one single comparison unit. The variance
for (5.9) is then composed of the sum of independent single variances of each of the
employment rate averages entering (5.9) for "individua" treated and comparison units. This
appendix illustrates the generic calculation of this individual variance, and how this yields
variances for (5.9) and (5.10).

Within each stratum — defined by pre-treatment labor market history — employment

success in the three post-treatment quarters is summarized by the average employment rate

[o]

ai

. For the unrestricted multinomial model each of the 3°=27 possible outcomes is

associated with a separate probability. For instance, conditional on the k-th history the
probability to be employed in all subsequent quarters is p(111]h,), the probability to be
employed in the first and unemployed in the following two quarters is p(122|h,), the
probability to be unemployed in the first two and out-of-the-labor-force in the third quarter is
p(220|h,) etc. Let us order the 27 probabilities in the following way

[¢]
1
a_:o

3

p(000] hy) =p1
p(002| hy) =p2
p(020] hy) =ps
P(200] hy) =p4
p(022| hy) =ps
P(202| hy) =ps
p(220] hy) =p7
p(222| hy) =ps

P(001] hy) =pg
p(021] hy) =pa1o
P(201] hy) =pas
p(221] hy) =p12
p(010] hy) =p13
P(012| hy) =p1a
p(210] hi) =p1s
P(212] hy) =pae
p(100] hi) =p17
p(102| hy) =pas
P(120] hy) =p1g
P(122] hy) =p2o

p(011| hy) =p21
P(211] hi) =p22
P(101| hi) =p2s
P(121] hy) =p2s
P(110] hy) =pa2s
P(112] hy) =p2s

p(111] hy) =p27
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o 26

where p,, =1- a, _ Pn- Then, for each individual i with history k (suppressing the
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which yields the variance for both elements of the difference in (5.9). The variance of (5.9)
then results from the sum of the two history-specific variances (B4) for treated and
comparison units. Parallel to the derivation of the overall treatment effect (5.10) from the
history-specific effect (5.9), the variance of (5.10) is a weighted sum (with squared weights)

of the variance of (5.9).
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Conclusion

The most challenging empirical questions in economics involve "what if" statements
about counterfactual outcomes.

— J. Angrist and A. Krueger (1999) —

At the end of this thesis, it probably does not come as a surprise that | entirely subscribe to
this point of view expressed by Angrist and Krueger in their chapter in the 1999 Handbook of
Labor Economics. Having departed from disillusioning diagnostics on the current state of
European labor markets, mainly expressed in terms of high and persistent unemployment
rates, we have seen that European policy makers engage in measures of Active Labor Market
Policy to combat this phenomenon of widespread unemployment. The empirical question
induced by this undertaking clearly is of causal nature: Do ALMP programs actually cause
unemployment to decrease? This question is of immediate policy concern, and the answer to it
of decisive interest for decision makers in European governments.

This thesis has assessed quite a number of pivotal aspects that are involved in
answering this question. At the outset, Chapter 2 has presented the very foundations of causa
inference in the empirical sciences. | have discussed different ways of modeling causation,
and explicitly drawn the connection between the counterfactual theory of causation in
philosophical logic and a specific statisticadl model for causal inference based on
counterfactuals. This model is known as the Potentiad Outcome Model (POM). The
representation has given new insight into the foundations of the POM and the way it is being

applied. The model is of especial interest for answering the above question, as it is
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predominantly used in evaluation research — the type of research aiming at identifying ALMP
program effectiveness. In particular, chapter 2 has shown why we need counterfactuals to
address causal questions, and which causally meaningful "what if" questions can be answered
within the mode.

What would have happened to unemployed individuals participating in an ALMP
program in terms of their labor market success if they had not participated in the program?
This is the counterfactual question that evaluation studies on European ALMP seek to answer
in order to infer the causal effect of the program on some response variable indicating
individual labor market fortune. Chapter 3 has shown how the pressure of rising
unemployment in Europe led policy makers to react, and how for EU member states this
resulted in a concerted action called the Luxembourg Process, a joint employment strategy
developed and started in 1997. Since ALMP programs form a major part of this employment
strategy, Chapter 3 has devoted much attention to current ALMP practice in Europe. As a
result, we find that both the "policy side" and the "science side” have made considerable
progress in recent years. Policy in the form of launching the Luxembourg Process, and
science in further developing appropriate evaluation tools. However, the two seem to be
largely disconnected from each other. Frequently programs are implemented without any
deliberate evaluation effort, and scientists often conduct studies without any possibility to
communicate their results to decision makers. The main lesson from this account is that only a
tighter connection of those who ask the "what if" gquestion — the decision makers — with those
who know the answer — the researchers — can help combat European unemployment
effectively.

Nonetheless, this thesis has extracted those lessons on European ALMP effectiveness
that can be drawn from the available evidence. While chapter 3 has done so from a global
European perspective, chapters 4 and 5 have pinpointed detailed program effects of ALMP in
one particular European OECD country, Poland. Throughout chapters 4 and 5, the discussion
has aso centered upon methodical issues. These chapters delineate how matching methods — a
variant of the POM for observational studies — can identify the causal effect of program
participation on employment probability, and offer ample illustration for the claim that thisis
the appropriate empirical approach meticulously adapted to the Polish data

For the purposes of summing up, | will be as explicit as possible with respect to the
overall lessons that should be drawn for European ALMP from this thesis. Generaly
gpeaking, one should not expect too much from European Active Labor Market Policy.
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Whereas the cross-country evidence does make out some effective programs, the number of
disappointing results cannot be ignored. Regarding the broad ALMP classification given in
chapter 1, training seems to be the most promising program, even though country studies do
not unanimousdly report positive effects. Programs providing jobs in the public sector yield
very disappointing results and should be largely abolished given the current evidence. Wage
subsidy schemes to the private sector apparently do seem to work in quite a number of cases,
although the incentive structure needs to be well-specified. Moreover, basic ALMP programs
like job search assistance appear to be helpful.

It is certainly undisputed among economists that a practice of unconditional payment
of unemployment benefits for an indefinite period of time is associated with high European
unemployment (Nickell 1997). Some even argue for a causal relation between the two
(Layard et al. 1991, Ljungqvist and Sargent 1998). Such unconfined benefit regulations aso
display strong distorting effects on ALMP programs, as we have seen that the renewal of
benefit receipt eligibility conditional on program participation results in devastatingly
negative program impacts. Across countries there is abundant evidence that a labor market
program will not generate positive outcomes if individuals merely participate in order to re-
enter unemployment with renewed benefit receipt afterwards. Still, many countries follow this
practice. Thisis one of the most robust and most irritating results on ALMP in Europe.

Methodical implications from both the review in chapter 3 and the specific country
studies in chapters 4 and 5 are clear: Empirical evaluation research in labor economics is
capable of answering the relevant "what if" questions regarding ALMP effectiveness with
confidence. The hope remains that European policy makers will aggrandize their inclination
to listen to the answers.
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