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Regulatory T cell-deficient scurfy mice develop
systemic autoimmune features resembling

lupus-like disease
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Abstract

B6/nude mice.

functional Tregs.

Introduction: Scurfy mice are deficient in regulatory T cells (Tregs), develop a severe, generalized autoimmune
disorder that can affect almost every organ and die at an early age. Some of these manifestations resemble those
found in systemic lupus erythematosus (SLE). In addition, active SLE is associated with low Treg numbers and
reduced Treg function, but direct evidence for a central role of Treg malfunction in the pathophysiology of
lupus-like manifestations is still missing. In the present study, we characterize the multiorgan pathology, autoantibody
profile and blood count abnormalities in scurfy mice and show their close resemblances to lupus-like disease.

Methods: Scurfy mice have dysfunctional Tregs due to a genetic defect in the transcription factor Forkhead box
protein 3 (Foxp3). We analyzed skin, joints, lung and kidneys of scurfy mice and wild-type (WT) controls by conventional
histology and immunofluorescence (IF) performed hematological workups and tested for autoantibodies by IF,
immunoblotting and enzyme-linked immunosorbent assay. We also analyzed the intestines, liver, spleen and heart, but
did not analyze all organs known to be affected in scurfy mice (such as the testicle, the accessory reproductive
structures, the pancreas or the eyes). We transferred CD4™ T cells of scurfy or WT mice into T cell-deficient

Results: We confirm previous reports that scurfy mice spontaneously develop severe pneumonitis and hematological
abnormalities similar to those in SLE. We show that scurfy mice (but not controls) exhibited additional features of SLE:
severe interface dermatitis, arthritis, mesangioproliferative glomerulonephritis and high titers of anti-nuclear antibodies,
anti-double-stranded DNA antibodies, anti-histone antibodies and anti-Smith antibodies. Transfer of scurfy CD4" T cells
(but not of WT cells) induced autoantibodies and inflammation of lung, skin and kidneys in T cell-deficient B6/nude mice.

Conclusion: Our observations support the hypothesis that lupus-like autoimmune features develop in the absence of

Introduction

Scurfy mice have a missense mutation in the transcrip-
tion factor Forkhead box protein 3 (Foxp3) gene and
therefore lack functional CD4"Foxp3* regulatory T cells
(Tregs) and develop a lymphoproliferative disease with
multiorgan inflammation, especially in the skin, the lung
and the liver ([1,2]; reviewed in [3]). A main mediator of
inflammation is the unrestrained activity of autoreactive
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CD4" effector T (Teg) cells, which infiltrate tissues, re-
cruit other inflammatory cells and ultimately lead to tissue
damage [4]. Also, B cells are activated and high levels of
immunoglobulins are present in the serum ([2,5]; reviewed
in [3]). The contribution of B cells and autoantibodies for
inflammation pathogenesis in scurfy mice was recently
highlighted. B cell-deficient scurfy mice have less chronic
inflammation and prolonged survival, and B cell transfer
into these mice restores autoimmunity [6]. Interestingly,
in the bone marrow, scurfy mice have fewer B cells and
higher numbers of cells of the myeloid lineage as com-
pared with wild-type (WT) littermates [7,8]. In a recent
publication it was shown that these effects depend on
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granulopoietic effector cytokines (granulocyte macrophage
colony-stimulating factor, tumor necrosis factor, interleu-
kin 6 (IL-6)) and that Tregs do not directly affect B lym-
phopoiesis, but that they reduce the production of
granulopoietic cytokines by suppressing the respective T
cells [7].

As their main effect, Treg cells are crucial for main-
taining peripheral tolerance [9,10]. The most important
subset are CD4" cells that constitutively express the IL-2
a-chain (CD25) and Foxp3 [11]. Not only is Foxp3 a use-
ful Treg marker (which allows differentiation from acti-
vated CD4" T cells), but its stable expression is required
for Treg differentiation and function [12], as Foxp3 defi-
ciency leads to a severe autoimmune-mediated multiorgan
inflammation in mice [1,2] and to the related IPEX syn-
drome (immune dysregulation, polyendocrinopathy, enter-
opathy, X-linked) in humans [2,13-16]. Tregs mainly
suppress T cells, but there is evidence that they also target
a variety of other immune cells, such as B cells and den-
dritic cells (DCs) [9,11,17].

Scurfy mice develop a severe, generalized autoimmune
disorder that can affect almost every organ system, in-
cluding the conjunctiva, the liver and the reproductive
system (testicles and accessory reproductive structures)
[2,3,16]. Older reports also describe inflammation of the
intestines and (as in human IPEX) of the pancreas,
whereas newer ones do not [2,3]. Some of the auto-
immune features in scurfy mice closely resemble those
found in systemic lupus erythematosus (SLE), such as
pneumonitis, whereas other typical characteristics of
SLE, such as nephritis, have not been reported [2,3]. In
line with this, impaired Treg function was observed in
human SLE and decreased frequencies and function of
Tregs correlate inversely with clinical disease activity
([9,18,19]; reviewed in [20]). In addition, a homeostatic
imbalance of Tregs and conventional T cells has been
described in experimental lupus, and the transfer of
CD4"CD25 Foxp3" Tregs was reported to prolong drug-
induced remission [21,22].

As in scurfy mice, autoreactive T cells also play a cen-
tral role in SLE pathogenesis in vivo because they are ex-
panded, infiltrate affected organs and provide help for B
cell activation. As a consequence, B cells are hyperreac-
tive and produce (auto)antibodies [23-28].

In order to test the hypothesis that scurfy mice, as a
consequence of their Treg deficiency, may exhibit a var-
iety of autoimmune features resembling systemic
lupus-like disease, we investigated these mice for typ-
ical manifestations of SLE. We analyzed for signs of
nephritis, pneumonitis, arthritis and the occurrence of
typical serum autoantibodies and reevaluated skin
manifestations for lupus-like abnormalities. We also
analyzed the intestines, liver, spleen and heart, but not
all the other organs known to be affected in scurfy mice
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but not typically involved in SLE (such as the testicles or
the accessory reproductive structures, the pancreas or the
eyes) [16].

We show that Treg-deficient scurfy mice indeed share
typical features of SLE, as they are positive for anti-
nuclear antibodies (ANAs) and anti-double-stranded
DNA (anti-dsDNA), anti-histone and anti-Smith (anti-
Sm) antibodies (Abs). In addition, they are anemic and
lymphopenic and develop pneumonitis, nephritis, arth-
ritis and hyperkeratotic skin lesions that histologically re-
semble cutaneous lupus erythematosus. Furthermore,
transfer of CD4" T cells from scurfy mice, but not from
WT controls, induced autoantibody production as well
as pneumonitis, nephritis and severe skin disease in CD4"
T cell-deficient B6/nude mice.

Because scurfy mice exhibit more autoimmune fea-
tures than are typical for SLE, we do not claim that the
scurfy mouse is a lupus model. However, our experi-
ments foster the hypothesis that lack of Treg function
and the consequent lack of peripheral tolerance lead to
systemic autoimmune features resembling those in SLE.

Methods

Scurfy mice

Female heterozygous B6.Cg-Foxp3Y/] (scurfy) mice were
purchased from The Jackson Laboratory (Bar Harbor,
ME, USA) and bred to C57BL/6 WT male mice to gen-
erate hemizygous male B6.Cg-Foxp3/Y (scurfy) off-
spring). C57BL/6 WT male littermates were used as
controls.

As recipients for transfer experiments, B6.Cg-FoxnI™/]
(nude) (B6/nude) mice were purchased from The Jackson
Laboratory. All mice were held under specific pathogen-
free conditions at the central animal facility of the Interfa-
cultary Biomedical Faculty, University of Heidelberg,
Germany. Animal work was performed under the animal
protocol (35-9185.81/G2010/10) approved by the local
animal care committee (Regierungsprésidium Karlsruhe).

Detection of autoantibodies

Serum samples were taken from scurfy and WT mice on
day 21 of life. For evaluation of autoantibodies by im-
munofluorescence (IF), sera were diluted (as indicated in
the figure legends) and added to slides precoated with
either Crithidia luciliae (dsDNA) or HEp-20-10 cells
and primate liver cells, respectively (ANAs) (all from
EUROIMMUN, Liibeck, Germany). As a secondary Ab,
goat-anti mouse immunoglobulin G (IgG) Alexa Fluor
488 (Invitrogen, Carlsbad, CA, USA), diluted 1:500 in
phosphate-buffered saline (PBS), was used. For semi-
quantitative analyses, the slides were scored according to
fluorescence intensity as follows: 0 = no positive staining,
1 =weakly positive staining, 2 =intermediate positive
staining and 3 = strongly positive staining.



Hadaschik et al. Arthritis Research & Therapy (2015) 17:35

Anti-histone Abs were measured by enzyme-linked im-
munosorbent assay (ELISA) (Inova Diagnostics, San
Diego, CA, USA). The results are presented in units per
milliliter. Horseradish peroxidase—conjugated goat anti-rat
Abs (1:2,000 dilution; SouthernBiotech, Birmingham, AL,
USA) served as secondary Abs. Further analysis was per-
formed by immunoblotting as described elsewhere [29,30].

Hematological analysis

Scurfy and WT mice were bled at day 21 of life into
tubes with sodium citrate to prevent clotting. Blood
samples were immediately sent to the University of
Heidelberg multidisciplinary center for blood analysis.

Histological analysis of skin inflammation

When the mice were at day 21 of life, routine necropsies
were performed for histopathologic evaluation, and skin
tissue was fixed in 4% neutral buffered formalin. Fixed
tissues were embedded in paraffin, and 5-um sections
were cut and stained with hematoxylin and eosin (H&E).
Skin inflammation was scored in a graded fashion as
previously described [31].

Histological analysis of joints
Hind paws were prepared and analyzed by using previ-
ously described histopathologic techniques [32-35]. Stain-
ing with H&E allowed a general assessment, and toluidine
blue (TB) destaining was performed to determine cartilage
matrix loss. Tartrate-resistant acid phosphatase (TRAP)
staining was performed to identify osteoclasts. Histomor-
phometric parameters (area of cartilage destruction, in-
flammation and erosion, as well as osteoclast numbers)
were quantified by using the OsteoMeasure™ image ana-
lysis system (OsteoMetrics, Decatur, GA, USA).
Additional immunohistochemistry was done for T cells
(anti-CD3; Novocastra Laboratories, Newcastle upon
Tyne, UK), B cells (anti-CD45 receptor; BD Biosciences
PharMingen, San Diego, CA, USA), macrophages (clone
F4/80; AbD Serotec, Puchheim, Germany) and granulo-
cytes (MCA771G; AbD Serotec) as reported previously
[33-35], followed by quantitative analysis of the inflam-
matory infiltrate by tissue cytometry using HistoQuest™
software (TissueGnostics, Vienna, Austria) [36,37].

Analysis of involvement of inner organs
Lungs, kidneys, spleens, hearts, intestines and livers were
obtained from scurfy and WT mice; processed according
to standard laboratory procedures; and stained with
H&E. Kidney sections were also stained with periodic
acid-Schiff (PAS) and analyzed by a blinded pathologist
experienced in renal pathology of mice (WU).

For IF analysis, kidneys and back skin tissue samples
were embedded in OCT compound and flash-frozen,
and 5-um cryosections were cut and fixed in acetone
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followed by 30 minutes of blocking with 5% goat serum
in Tris-buffered saline (TBS). Slides were incubated with
goat anti-mouse IgG Alexa Fluor 488 (Invitrogen) at
1:500 dilution in TBS for 1 hour in the dark.

Urinalysis was done by using the dipstick (Combur 5 Test
HC; Roche Diagnostics, Mannheim, Germany) method
with a semiquantitative system that allows scoring for ery-
throcyturia, leukocyturia and proteinuria from 0 (negative)
to + (positive) and ++ (highly positive). For proteinuria, a
score of at least ++ was considered pathologic because
healthy mice also showed mild signs of proteinuria under
these testing conditions (with a maximum of + positivity).

Scoring of pulmonary inflammation was based on a
method published [38] and adapted [39] previously. In
brief, for each vessel, we obtained a perimeter score accord-
ing to the percentage of vessel perimeter surrounded by
cells, calculated the mean width of the infiltrate (cellf soft-
ware; Olympus Soft Imaging Solutions, Miinster, Germany)
and multiplied these values for the final score [38].

Transfer experiments

CD4" T cells were isolated from lymph nodes of sick scurfy
mice and male WT controls using magnetic activated cell
sorting with CD4 microbeads (Miltenyi, Bergisch Gladbach,
Germany). Purity of greater than 95% was confirmed by
fluorescence-activated cell sorting analysis; CD4" T cells
were washed three times in PBS; and 2 x 10° cells resus-
pended in 100 pl were injected into male B6/nude mice
via tail vein injections. Four weeks after transfer, recipient
mice were analyzed for autoantibody production (ANAs,
anti-dsDNA Abs) for signs of inflammatory skin disease
and for involvement of inner organs (lung and kidney) as
described above.

Statistical analysis

The data are expressed as mean + SD. Student’s ¢-test or
Fisher’s exact test (two tailed) was used for comparison of
group values and discriminatory measures. One-way ana-
lysis of variance was used for repeated measurements of
the same variable where appropriate. Wilcoxon’s matched-
pairs test was used for the comparison of individual paired
values if the distribution was not Gaussian. Significance
was analyzed using Prism and InStat software (GraphPad
Software, La Jolla, CA, USA), and P-values <0.05 were
considered significant.

Results

Scurfy mice spontaneously develop a lupus-like

skin phenotype

Scurfy mice appear smaller than their WT littermate con-
trols and have scaly skin on their ears, eyes and tails
(reviewed in [3]). Around day 21 of life, scurfy mice are sig-
nificantly smaller than normal and runted and exhibit se-
vere skin inflammation (Figure 1a). In contrast to WT
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Figure 1 Scurfy mice spontaneously develop severe autoimmune lupus-like skin inflammation. We observed an inflammatory skin disease
in scurfy mice that was a consequence of uncontrolled T cell expansion. A macroscopic view of scurfy (Sc) mouse and wild-type (WT) littermate
control on day 21 of life (a) and a closer view of the tails of WT mouse (b) and scurfy mouse (c) are shown. Histological examination revealed
interface dermatitis with effacement of the dermoepidermal junction and strong lymphohistiocytic inflammatory infiltrates, both of which are key
histological features of cutaneous lupus erythematosus. Representative hematoxylin and eosin-stained sections of back skin of WT mouse (d) and
sick scurfy mouse (e), as well as a higher magnification image of inflammatory infiltrate in scurfy skin (f), are also shown. (g) Summary of skin
pathology scores of scurfy (n=13) and WT (n = 13) back skin. Representative direct immunofluorescence images show scurfy (h) and WT (i) back
skin tissue sections showing linear deposits of murine immunoglobulin only in scurfy skin.
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mice, the tail skin of scurfy mice is scaly and erythema-
tous and reveals hyperkeratosis (Figure 1b,c). On histo-
logical analysis of inflamed scurfy back skin, the
predominant features are interface dermatitis with ef-
facement of the dermoepidermal junction (Figure le)
and strong lymphohistiocytic inflammatory infiltrates
(Figure 1f), both of which are histological features charac-
teristic of cutaneous lupus erythematosus [40,41]. Using a
previously described scoring system for skin pathology
that comprises epidermal as well as dermal changes [31],
we found significant skin inflammation in all scurfy skin
samples, but no WT skin samples (Figure 1g). Using direct
IF on cryosections of back skin, we found strong deposits
of mouse IgG in the dermoepidermal basement mem-
brane zone (similar to the lupus band observed in patients
with SLE) in the skin of scurfy mice, but not in that of
WT littermate controls (Figure 1h,i).

Scurfy mice develop mesangioproliferative
glomerulonephritis

Kidneys sections were stained with H&E and PAS and
analyzed by direct IF. All but one scurfy mouse devel-
oped mesangial glomerulonephritis (eight (89%) of nine)
typical of World Health Organization (WHO) class II
lupus nephritis, whereas the kidneys of WT mice were
not affected (Figure 2a—d) [42]. On the basis of direct IF
analysis, the majority of scurfy mice showed murine IgG
deposits in the glomerula, whereas WT mice did not

(Figure 2e,f). Urinalysis in a series of 14 scurfy mice
showed proteinuria in 21% and erythrocyturia in 29% of
mice, but no leukocyturia (data not shown).

Pneumonitis in scurfy mice

All but one scurfy mice (five (83%) of 6), but no controls
(zero of six) (P =0.0152), developed pneumonitis charac-
terized by alveolar wall thickening, interstitial edema and
perivascular and peribronchial (lymphocyte enriched)
inflammatory infiltrates and focal hemorrhages resem-
bling human and murine lupus pneumonitis [39,43-45]
(Figure 2g—j). In analyzing perivascular inflammatory
infiltrates in scurfy lungs, we found that the mean per-
imeter score was 2.7 + 1.5 and the width varied from 2
to 22 cell layers thick, with a mean of 47.4 + 36.8 pm,
leading to a significantly elevated total score (Figure 2j).

Hyperreactive spleens and analysis of other inner organs
In line with the literature, we also found germinal cen-
ter hyperplasia, depletion of lymphocytes in mantle
zones and parafollicular areas of scurfy spleens, but not
those of WT controls. In addition, scurfy mice, but not
WT mice, showed periportal and perisinusoidal inflam-
matory infiltrates in the liver. There were no signs of in-
flammation in the intestines or the heart [1,2,16,31]
(data not shown).
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Figure 2 Development of glomerulonephritis and pneumonitis in the majority of scurfy mice, but not in wild-type mice. Scurfy (Sc)
mice developed mesangial glomerulonephritis comparable to World Health Organization class Il lupus nephritis in humans. Representative
hematoxylin and eosin (H&E)-stained sections of a wild-type (WT) kidney (a) and a scurfy mouse kidney (b), a periodic acid-Schiff stain of a
glomerulum from a scurfy mouse kidney (c). (d) Glomerulonephritis occurred in eight (89%) of nine scurfy mice, but not in controls (P = 0.0004).
Lung involvement resembling lupus pneumonitis was found in all but one scurfy mouse (83%), but not in controls (P=0.0152). Representative
examples of direct immunofluorescence of a scurfy mouse kidney (e) and a WT kidney (f) are shown. Also shown are representative H&E-stained
sections of a WT lung (g) and a scurfy lung (h), a higher-magnification image of a peribronchial inflammatory infiltrate in a scurfy lung (i) and the

Scurfy mice are anemic and lymphopenic

Hemoglobin, hematocrit and erythrocyte counts were
strongly reduced in scurfy blood in contrast to WT con-
trols (Figure 3a—c). Complete blood cell counts revealed
severe lymphopenia and leukocytosis in scurfy mice and
slight (albeit not significant) changes in thrombocyte
counts in comparison to WT mice (Figure 3d-f).

Scurfy mice produce autoantibodies to nuclear antigens
All sera of scurfy mice contained not only ANA, but
also anti-dsDNA-Abs. ANA staining showed a cytoplas-
mic and nuclear pattern and some samples were still
positive at a dilution of 1:1000, while WT controls were
negative for anti-dsDNA-Abs and had no or only weak
staining for ANA (Figure 4a-c). Using a semiquantita-
tive scoring system, scurfy showed significantly elevated
values for both ANA and anti-dsDNA Abs when com-
pared with controls (Figure 4d).

Scurfy mice also had significantly elevated serum levels
of anti-histone Abs in ELISA analysis (145+58 U/ml
versus 66 + 36 U/ml; P=0.0031). A detailed immunoblot
analysis of autoantibody suptypes revealed that 80% of
scurfy (but not WT controls) had Abs against Sm anti-
gen (8 of 10 versus 0 of 10; P=0.0007) and that 90%
were positive for Ul ribonucleoprotein (RNP) Abs (di-
rected against RNP-A) (P =0.0001), but did not develop

Abs against Ro or La or against Scl-70 or Jo-1 antigens
(data not shown).

Scurfy mice show cartilage degradation and nonerosive
arthritis

Clinically, the majority of scurfy mice showed moderate,
diffuse swelling of the paws, which was hard to distin-
guish from subcutaneous edema. In histological analyses,
scurfy mice showed increased cartilage degradation com-
pared with WT controls, and they developed inflamma-
tory infiltrates within the synovial membrane, whereas
controls did not (Figure 5a,b,d). No osteoclasts were de-
tected within the joint, and therefore no erosions were
found (Figure 5c). Histomorphometric analysis revealed
that (besides fibroblasts) the inflammatory infiltrate con-
sisted mainly of CD3" T lymphocytes (12.8 +2.1%) and
B cells (7.4 £ 1.9), but also some neutrophils (3.7 + 3.4%)
and macrophages (3.1 + 1.9) (Figure 6a—c).

Transfer experiments

Scurfy CD4* T cells induce autoantibody production in

B6/nude mice

To evaluate if autoreactive CD4" T cells from scurfy
mice could induce autoantibody production via T cell-
mediated B cell help, we transferred purified CD4" T
cells from scurfy mice and WT controls into B6/nude
mice, which completely lack CD4" T cells but possess a
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Figure 3 Hematological analyses reveal anemia and lymphopenia in scurfy mice. Freshly drawn blood of scurfy (Sc) and wild-type (WT) mice
was immediately subjected to hematological analyses after being drawn. Scurfy mice were anemic, showing significantly reduced (a) erythrocytes,
(b) hemoglobin and (c) hematocrit in comparison to WT controls. Upon analyzing the white blood cell count, we found elevated total leukocytes
(e), but reduced lymphocytes (d), in scurfy blood, whereas thrombocytes did not show significant differences (f). The results are shown as mean + SD
for scurfy mice (n=13) and WT mice (n = 14) from two separate experiments. P-values are given in the figure.

normal B cell repertoire. Four weeks after transfer, we
evaluated the presence of autoantibodies in the sera of re-
cipient mice and found ANAs (ten of ten mice, 100%) and
anti-dsDNA Abs (ten of ten, 100%) in B6/nude mice that
received scurfy CD4" T cells (Figure 7a,b). Among the B6/
nude mice that received WT CD4" T cells, only very few
showed weak ANA positivity and only two mice showed
very weak anti-dsDNA Abs (Figure 7c,d). These results in-
dicate that, in the absence of functional Tregs, autoreac-
tive CD4" T cells expand and are able to induce ANAs as
well as anti-dsDNA Abs via T cell-mediated B cell help.

Scurfy CD4* T cells induce organ inflammation in

B6/nude mice

After transfer of CD4" T cells from scurfy mice, but not of
WT CD4" cells or PBS, T cell-deficient B6/nude mice de-
veloped severe pneumonitis (seven of seven, 100%) and

skin disease (seven of seven, 100%) resembling the disease
spontaneously occurring in scurfy mice (Figure 8a—d).

In addition, four (57%) of seven mice that received
scurfy CD4" T cells developed proteinuria and erythro-
cyturia as observed by urinalysis after 4 weeks of CD4" T
cell transfer. Two of these mice also showed typical histo-
logical features of mesangioproliferative lupus nephritis in
histological analysis (Figure 8e), whereas none of the con-
trol mice developed kidney disease.

Discussion

Scurfy mice lack CD4"Foxp3" Tregs and thus one crucial
mechanism of peripheral tolerance. As a consequence,
they die early as a result of a generalized systemic auto-
immune disease [4]. Several autoimmune features of
scurfy mice closely resemble those found in SLE, and Treg
dysfunction has been reported in SLE [19]. Because the
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Figure 4 High titers of antinuclear antibodies and anti-double-stranded DNA antibodies develop in the absence of functional regulatory

T cells. Antinuclear antibodies (ANAs) could be detected in all scurfy (Sc) sera when diluted 1:100 on slides coated with HEp-20-10 cells (upper panels)
or primate liver tissue (lower panels) (a). In addition, all scurfy, but no control (wild type (WT)), sera were positive for anti-double-stranded DNA
(anti-dsDNA) antibodies (diluted 1:100) on slides precoated with Crithidia luciliae (b). Examples of scurfy and WT sera at different dilutions (c) and a
summary of the quantitative analysis of ANA and anti-dsDNA antibody positivity in scurfy and WT sera at the dilution of 1:100 (d) are given. The results
are shown as mean + SD for scurfy (n=20) and WT (n = 20) mice. P-values are given in the figure.
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Figure 5 Arthritis in scurfy, but not wild-type, joints. All scurfy (Sc; nine of nine), but no control (wild type (WT); zero of nine) mice developed
arthritis, as indicated by an inflammatory infiltrate (P < 0.0001). (@) Typical hematoxylin and eosin-stained cross-sections of the hind paws of a
scurfy mouse (right panel) and a WT mouse (left panel) are shown. In addition, scurfy mice showed increased cartilage degradation (toluidine blue
(TB) staining in (b)), but no osteoclasts were detected within the joint, and therefore no erosions were found (tartrate-resistant acid phosphatase
(TRAP) staining in (c)). (d) Graphed data of the quantitative analysis of inflamed area, cartilage damage and eroded area in scurfy and WT mice
are shown. The results are shown as mean + SD for scurfy (n=9) and WT mice (n=9). P-values are given in the figure.
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Figure 6 T cells dominate the inflammatory infiltrate in arthritis in scurfy mice. As a consequence of the unleashed T cell proliferation in
this regulatory T cell (Treg)-deficient mouse model, the inflammatory infiltrate was dominated by T cells with lower frequencies of granulocytes.
(@) A representative immunohistochemical analysis of the hind paw of a scurfy mouse stained with anti-CD3 (upper panel) and neutrophil marker
anti-Ly6-B.2 (lower panel) is shown. The quantitative analysis of the inflammatory cellular infiltrate was done by tissue cytometry. A representative
scurfy joint is shown in (b) and summarized in (c). T, T cells; B, B cells; mfi, Mean fluorescence intensity; N, Neutrophils; M, Macrophages. The
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severe autoimmune disorder seen in scurfy mice (and in
human IPEX) includes many more autoimmune features
than are typical for SLE (including hypogonadism, pan-
creatitis, cholangitis and conjunctivitis), indicating overlap
with other autoimmune diseases, the aim of the present
study was not clearly at defining the scurfy mouse as a
prototypical lupus model. Our aim was to evaluate the hy-
pothesis that dysfunction of peripheral tolerance as a con-
sequence of Treg malfunction (as seen in scurfy mice)
leads to some of the typical features of SLE and therefore
represents a lupus-like disease [9].

We confirm previous studies in showing that scurfy
mice develop autoimmune characteristics compatible with
SLE as pneumonitis, anemia, thrombocytopenia and in-
flammatory skin involvement [2,31]. —In addition, we re-
port, as new findings underscoring our hypothesis, typical
SLE-like phenomena such as glomerulonephritis, lympho-
penia and nonerosive arthritis. Moreover, the intensive
workup of scurfy skin showed that the cutaneous manifes-
tations closely resemble those found in SLE, including the
presence of linear IgG deposits resembling a lupus band.
Most importantly, however, scurfy mice tested positive for

the presence of ANA and anti-dsDNA autoantibodies (as
well as for anti-histone- and anti-Sm Abs).

Pneumonitis is commonly observed in scurfy mice.
Perivascular inflammation in scurfy lungs histologically
resembles lung involvement in humans as well as that in
murine lupus models [39,43-45]. As typically seen in
SLE, scurfy mice developed mesangioproliferative glom-
erulonephritis meeting the criteria of WHO class II
lupus nephritis, which may have been overlooked in previ-
ous analysis if sections were not specifically stained with
PAS or by IF [42]. Scurfy mice also developed nonerosive
arthritis characterized by a T cell-enriched synovitis and
by cartilage damage, thus resembling the arthritic manifes-
tations of human SLE [46]. Because of ethical issues re-
lated to severe lung involvement, scurfy mice must be
analyzed within the first 3 to 4 weeks of life. Therefore,
one can only speculate whether their arthritis would re-
main nonerosive or if osteoclasts would be attracted into
the inflamed joint at a later time point [47].

In addition, we characterized the inflammatory skin
disease as interface dermatitis with effacement of the
dermoepidermal junction and strong lymphohistiocytic
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* PBS-treated nude

inflammatory infiltrates, both of which are key histo-
logical features of cutaneous lupus [40,41].

In line with our hypothesis, we found an SLE-typical
autoantibody pattern with ANA and anti-dsDNA, anti-
histone and anti-Sm Abs. These autoantibodies have es-
caped previous attention and could be detected in our
study using sensitive techniques [2,48].

In transfer experiments, we could show that CD4"
T cells of scurfy mice, but not those of WT mice, trans-
ferred disease into T cell-deficient B6/nude recipients.
This finding underscores the hypothesis that autoreac-
tive CD4" T cells expand in the absence of functional
Tregs and that these cells are able to induce lupus-like
pathology in lungs, skin and kidneys as well as production
of typical autoantibodies via T cell-mediated B cell help.
Interestingly, CD4" T cells from scurfy lymph nodes can
also induce myositis and inflammation of the salivary
glands (resembling Sjogren’s syndrome) upon transfer into
susceptible (RAG-1-knockout) recipients [49,50].

Thus, the systemic lupus-like features observed in
scurfy mice appear to be a consequence of Treg dysfunc-
tion and uncontrolled CD4" T cell expansion, and,

interestingly, a deficiency in Treg number and function
has also repeatedly been postulated in human and mur-
ine SLE [21,51,52]. Therefore, the finding that scurfy
mice present with many important characteristics of SLE
supports the idea of a pathogenic role of Treg deficiency
in this autoimmune disease. In line with this, the adop-
tive transfer of Tregs prevented the development of
autoimmune disease in scurfy and had protective effects
in lupus-prone mice [22,31,53,54].

As in SLE, there are signs of strong B cell activation in
scurfy mice, as they have splenomegaly with germinal cen-
ter hyperplasia and high levels of class-switched IgG auto-
antibodies [2]. In a recent publication, authors described
using B cell-deficient scurfy mice to show that B cells are
important for autoimmune pathology and that therapeutic
B cell depletion decreased tissue pathology and increased
survival [6]. The B cell activation observed in scurfy mice
could be explained either by lack of direct suppression by
Tregs or by increased helper stimuli provided by activated
autoreactive CD4" T cells. The latter view is supported by
an observation that Treg-depleted Foxp3”™® mice exhibit
an expansion of follicular helper T cells that strongly
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augmented B cell proliferation, hyperimmunoglobuline-
mia and anti-dsDNA autoantibody production [55]. In
line with these observations, our data show the induc-
tion of autoantibodies in recipient B6/nude mice after
transfer of autoreactive scurfy CD4" T cells, which
proves that autoreactive CD4" T cells expanding in the
absence of functional Tregs are responsible for auto-
antibody production via T cell-mediated B cell help.
These findings provide an important link from missing
Treg control as present in scurfy mice to B cell-
mediated autoimmune processes in SLE.

Conclusions

The absence of functional Tregs is associated with the
development of a multiorgan autoimmune disease due
to activation of autoreactive CD4" T cells and additional
B cell-mediated disease. The developing autoimmune
disease resembles human (and murine) SLE in many re-
spects, although scurfy mice develop an even broader
spectrum of autoimmune manifestations [3].

The data presented herein support the hypothesis that
the lack of peripheral tolerance can lead to SLE-like fea-
tures and thus underline an important role of Tregs in
the pathogenesis of SLE, as suspected on the basis of pre-
vious reports on defective Treg function in active lupus
[9]. The genetic defect in scurfy mice is precisely charac-
terized and affects only Foxp3" Tregs; consequently, all

pathological features described in scurfy mice can be at-
tributed to the lack of Treg control. Interestingly (as in
SLE), we found not only direct T cell-mediated tissue in-
flammation but also B cell hyperreactivity and autoanti-
body production, which also fosters the idea that Tregs
are important for maintaining peripheral tolerance against
B cell-mediated autoimmunity.

Abbreviations

Ab: Antibody; DC: Dendritic cell; ELISA: Enzyme-linked immunosorbent
assay; Foxp3: Forkhead box protein 3; H&E: Hematoxylin and eosin;

IF: Immunofluorescence; IgG: Immunoglobulin G; IL: Interleukin; IPEX
syndrome: Immune dysregulation, polyendocrinopathy, enteropathy,
X-linked; PAS: Periodic acid-Schiff, PBS: Phosphate-buffered saline;

RNP: Ribonucleoprotein; SD: Standard deviation; SLE: Systemic lupus
erythematosus; TB: Toluidine blue; TBS: Tris-buffered saline; T Effector
T cell; TRAP: Tartrate-resistant acid phosphatase; Treg: Regulatory T cell;
WHO: World Health Organization; WT: Wild type.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

ENH participated in the design of the study, carried out part of the
histological and IF analyses, performed data analysis and drafted the
manuscript. XW carried out part of the histological and IF analyses,
performed data analysis and drafted the manuscript. HL performed
quantitative analysis of the arthritic inflammatory infiltrate by tissue
cytometry and helped in drafting the manuscript. BH did genotyping,
urinalysis and hematological analysis of mice; carried out histological
workups (all organs except for the paws); and helped in drafting the
manuscript. BN did histological workup of the paws (H&E, TB and TRAP
staining) and additional immunohistochemistry (T cells, B cells, macrophages



Hadaschik et al. Arthritis Research & Therapy (2015) 17:35

and granulocytes) and helped in drafting the manuscript. GS performed
detailed analysis of autoantibodies by ELISA and immunoblotting and
helped in drafting the autoantibodies part of the manuscript. WU is a
pathologist experienced in renal pathology of mice; he analyzed kidney
specimens and helped in designing the respective figures and their
description and in drafting the manuscript. AHE participated in the design of
the study and critically revised the manuscript. JS helped to interpret the
data and critically revised the manuscript. GHS conceived and designed the
study, performed data analysis and wrote the final manuscript. All authors
read and approved the final manuscript.

Acknowledgements

We thank Clemens Scheinecker for critical reading of the manuscript and
discussion of the data. ENH received grant support from the Else
Kroner-Fresenius-Stiftung and an international reintegration grant from
the European Union.

Author details

'Department of Dermatology, University of Heidelberg, Im Neuenheimer
Feld 440, 69120 Heidelberg, Germany. “Department of Pathology, Affiliated
Zhong-Da Hospital, Southeast University, 87 Dingjia Bridge, Gulou, 210009
Nanjing, China. *Department of Rheumatology, Medical University of Vienna,
Wahringer Gurtel 18-20, 1090 Vienna, Austria. “Department of Pathology,
Hietzing Hospital, Wolkersbergenstrasse 1, 1130 Vienna, Austria.

Received: 23 September 2014 Accepted: 23 January 2015
Published online: 23 February 2015

References

1. Godfrey VL, Wilkinson JE, Rinchik EM, Russell LB. Fatal lymphoreticular
disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic
environment: potential model for thymic education. Proc Natl Acad Sci U S A.
1991,88:5528-32.

2. Godfrey VL, Wilkinson JE, Russell LB. X-linked lymphoreticular disease in the
scurfy (sf) mutant mouse. Am J Pathol. 1991;138:1379-87.

3. Sharma R, Sung SS, Fu SM, Ju ST. Regulation of multi-organ inflammation in
the regulatory T cell-deficient scurfy mice. J Biomed Sci. 2009;16:20.

4. Suscovich TJ, Perdue NR, Campbell DJ. Type-1 immunity drives early lethality
in scurfy mice. Eur J Immunol. 2012;42:2305-10.

5. Huter EN, Natarajan K, Torgerson TR, Glass DD, Shevach EM. Autoantibodies
in scurfy mice and IPEX patients recognize keratin 14. J Invest Dermatol.
2010;130:1391-9.

6. Aschermann S, Lehmann CH, Mihai S, Schett G, Dudziak D, Nimmerjahn F. B
cells are critical for autoimmune pathology in Scurfy mice. Proc Natl Acad
Sci U S A 2013;110:19042-7.

7. Kim S, Park K, Choi J, Jang E, Paik DJ, Seong RH, et al. Foxp3 regulatory T
cells ensure B lymphopoiesis by inhibiting the granulopoietic activity of
effector T cells in mouse bone marrow. Eur J Immunol. 2015;45:167-79.

8. Riewaldt J, Duber S, Boernert M, Krey M, Dembinski M, Weiss S, et al. Severe
developmental B lymphopoietic defects in Foxp3-deficient mice are
refractory to adoptive regulatory T cell therapy. Front Immunol. 2012;3:141.

9. Scheinecker C, Bonelli M, Smolen JS. Pathogenetic aspects of systemic lupus
erythematosus with an emphasis on regulatory T cells. J Autoimmun.
2010;35:269-75.

10.  Walker LS, Abbas AK. The enemy within: keeping self-reactive T cells at bay
in the periphery. Nat Rev Immunol. 2002;2:11-9.

11, Shevach EM. Mechanisms of Foxp3+ T regulatory cell-mediated suppression.
Immunity. 2009;30:636-45.

12. Basten A. Fazekas de St Groth B. Special regulatory T-cell review: T-cell
dependent suppression revisited. Immunology. 2008;123:33-9.

13. Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy,
enteropathy, X-linked: Forkhead box protein 3 mutations and lack of
regulatory T cells. J Allergy Clin Immunol. 2007;120:744-50.

14.  Wildin RS, Freitas A. IPEX and FOXP3: clinical and research perspectives.

J Autoimmun. 2005;25:56-62.

15. Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of
the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX)
syndrome. J Med Genet. 2002,39:537-45.

16.  Lyon MF, Peters J, Glenister PH, Ball S, Wright E. The scurfy mouse mutant
has previously unrecognized hematological abnormalities and resembles
Wiskott-Aldrich syndrome. Proc Natl Acad Sci U S A. 1990;,87:2433-7.

20.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Page 11 of 12

DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D, Shevach EM.
Autoantigen-specific TGFB-induced Foxp3* regulatory T cells prevent
autoimmunity by inhibiting dendritic cells from activating autoreactive

T cells. J Immunol. 2007;179:4685-93.

Bonelli M, von Dalwigk K, Savitskaya A, Smolen JS, Scheinecker C. Foxp3
expression in CD4™ T cells of patients with systemic lupus erythematosus: a
comparative phenotypic analysis. Ann Rheum Dis. 2008,67:664-71.

Bonelli M, Savitskaya A, von Dalwigk K, Steiner CW, Aletaha D, Smolen JS,
et al. Quantitative and qualitative deficiencies of regulatory T cells in
patients with systemic lupus erythematosus (SLE). Int Immunol.
2008;20:861-8.

Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in
autoimmune disease and therapeutic opportunities. Immunol Rev.
2008;223:371-90.

Humrich JY, Morbach H, Undeutsch R, Enghard P, Rosenberger S, Weigert O,
et al. Homeostatic imbalance of regulatory and effector T cells due to IL-2
deprivation amplifies murine lupus. Proc Natl Acad Sci U S A. 2010;107:204-9.
Weigert O, von Spee C, Undeutsch R, Kloke L, Humrich JY, Riemekasten G.
CD4 + Foxp3+ regulatory T cells prolong drug-induced disease remission in
(NZB X NZW) F1 lupus mice. Arthritis Res Ther. 2013;15:R35.

Gottlieb AB, Lahita RG, Chiorazzi N, Kunkel HG. Immune function in systemic
lupus erythematosus: impairment of in vitro T-cell proliferation and in vivo
antibody response to exogenous antigen. J Clin Invest. 1979,63:885-92.
Koning F, Yokoyama WM, Maloy WL, Stingl G, McConnell TJ, Cohen D, et al.
Expression of Cy4 T cell receptors and lack of isotype exclusion by dendritic
epidermal T cell lines. J Immunol. 1988;141:2057-62.

Hoffman RW. T cells in the pathogenesis of systemic lupus erythematosus.
Clin Immunol. 2004;113:4-13.

Murata H, Matsumura R, Koyama A, Sugiyama T, Sueishi M, Shibuya K, et al.
T cell receptor repertoire of T cells in the kidneys of patients with lupus
nephritis. Arthritis Rheum. 2002;46:2141-7.

Scheinecker C, Zwolfer B, Koller M, Ménner G, Smolen JS. Alterations of
dendritic cells in systemic lupus erythematosus: phenotypic and functional
deficiencies. Arthritis Rheum. 2001,44:856-65.

Koller M, Zwolfer B, Steiner G, Smolen JS, Scheinecker C. Phenotypic and
functional deficiencies of monocyte-derived dendritic cells in systemic lupus
erythematosus (SLE) patients. Int Immunol. 2004;16:1595-604.

Dumortier H, Monneaux F, Jahn-Schmid B, Briand JP, Skriner K, Cohen PL,
et al. Band T cell responses to the spliceosomal heterogeneous nuclear
ribonucleoproteins A2 and B1 in normal and lupus mice. J Immunol.
2000;165:2297-305.

Stummvoll GH, Fritsch RD, Meyer B, Hoefler E, Aringer M, Smolen JS, et al.
Characterisation of cellular and humoral autoimmune responses to histone
H1 and core histones in human systemic lupus erythematosus. Ann Rheum
Dis. 2009,68:110-6.

Huter EN, Punkosdy GA, Glass DD, Cheng LI, Ward JM, Shevach EM. TGF-3-
induced Foxp3™ regulatory T cells rescue scurfy mice. Eur J Immunol.
2008;38:1814-21.

Hayer S, Redlich K, Korb A, Hermann S, Smolen J, Schett G. Tenosynovitis
and osteoclast formation as the initial preclinical changes in a murine
model of inflammatory arthritis. Arthritis Rheum. 2007;56:79-88.

Schett G, Tuerk B. Bone histomorphometry in arthritis models. Methods Mol
Med. 2007;135:269-83.

Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, et al.
Bone histomorphometry: standardization of nomenclature, symbols, and
units. Report of the ASBMR Histomorphometry Nomenclature Committee.

J Bone Miner Res. 1987;2:595-610.

Redlich K, Gértz B, Hayer S, Zwerina J, Doerr N, Kostenuik P, et al. Repair of local
bone erosions and reversal of systemic bone loss upon therapy with anti-tumor
necrosis factor in combination with osteoprotegerin or parathyroid hormone in
tumor necrosis factor-mediated arthritis. Am J Pathol. 2004;164:543-55.

Eferl R, Hasselblatt P, Rath M, Popper H, Zenz R, Komnenovic V, et al.
Development of pulmonary fibrosis through a pathway involving the
transcription factor Fra-2/AP-1. Proc Natl Acad Sci U S A. 2008;105:10525-30.
Leonard JP, LaCasce AS, Smith MR, Noy A, Chirieac LR, Rodig SJ, et al.
Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients
with mantle cell lymphoma. Blood. 2012;119:4597-607.

McKenzie Jr WN, Sunderrajan EV, Kavanaugh JL, Braun S, Ansbacher L,
Walker SE. Sex hormones modulate the response of pulmonary perivascular
inflammation to cyclophosphamide therapy in MRL/MpJ-lpr/Ipr mice. Am J
Pathol. 1988;131:530-8.



Hadaschik et al. Arthritis Research & Therapy (2015) 17:35

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

52.

53.

54.

55.

Chowdhary VR, Grande JP, Luthra HS, David CS. Characterization of
haemorrhagic pulmonary capillaritis: another manifestation of Pristane-
induced lupus. Rheumatology (Oxford). 2007;46:1405-10.

Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, et al.
Selective depletion of Foxp3* regulatory T cells induces a scurfy-like disease.
J Exp Med. 2007;204:57-63.

Wenzel J, Zahn S, Tuting T. Pathogenesis of cutaneous lupus erythematosus:
common and different features in distinct subsets. Lupus. 2010;19:1020-8.
Weening JJ, D'Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, et al.
The classification of glomerulonephritis in systemic lupus erythematosus
revisited. J Am Soc Nephrol. 2004;15:241-50.

Barker TT, Lee PY, Kelly-Scumpia KM, Weinstein JS, Nacionales DC, Kumagai
Y, et al. Pathogenic role of B cells in the development of diffuse alveolar
hemorrhage induced by pristane. Lab Invest. 2011;91:1540-50.

Schwab EP, Schumacher Jr HR, Freundlich B, Callegari PE. Pulmonary
alveolar hemorrhage in systemic lupus erythematosus. Semin Arthritis
Rheum. 1993;23:8-15.

Onomura K, Nakata H, Tanaka Y, Tsuda T. Pulmonary hemorrhage in patients
with systemic lupus erythematosus. J Thorac Imaging. 1991,6:57-61.

van Vugt RM, Derksen RH, Kater L, Bijlsma JW. Deforming arthropathy or
lupus and rhupus hands in systemic lupus erythematosus. Ann Rheum Dis.
1998,57:540-4.

Korb-Pap A, Stratis A, Mihlenberg K, Niederreiter B, Hayer S, Echtermeyer F,
et al. Early structural changes in cartilage and bone are required for the
attachment and invasion of inflamed synovial tissue during destructive
inflammatory arthritis. Ann Rheum Dis. 2012;71:1004-11.

Paxton H, Bendele T, O'Connor L, Haynes DC. Evaluation of the RheumaStrip
ANA profile test: a rapid test strip procedure for simultaneously determining
antibodies to autoantigens U1-ribonucleoprotein (U1-RNP), Sm, SS-A/Ro,
SS-B/La, and to native DNA. Clin Chem. 1990;36:792-7.

Sharma R, Zheng L, Guo X, Fu SM, Ju ST, Jarjour WN. Novel animal models
for Sjogren’s syndrome: expression and transfer of salivary gland
dysfunction from regulatory T cell-deficient mice. J Autoimmun.
2006;27:289-96.

Sharma R, Jarjour WN, Zheng L, Gaskin F, Fu SM, Ju ST. Large functional
repertoire of regulatory T-cell suppressible autoimmune T cells in scurfy
mice. J Autoimmun. 2007;29:10-9.

Crispin JC, Tsokos GC. T cells. In: Wallace DJ, Hahn BH, editors. Dubois’ lupus
erythematosus and related syndromes. 8th ed. Philadelphia: Elsevier;

2013. p. 96-103.

Hahn BH, Kono D. Animal models of SLE. In: Wallace DJ, Hahn BH, editors.
Dubois’ lupus erythematosus and related syndromes. 8th ed. Philadelphia:
Elsevier; 2013. p. 190-236.

Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development
and function of CD4*CD25" regulatory T cells. Nat Immunol. 2003;4:330-6.
Horwitz DA. Regulatory T, cells in systemic lupus erythematosus: past,
present and future. Arthritis Res Ther. 2008;10:227.

Leonardo SM, De Santis JL, Gehrand A, Malherbe LP, Gauld SB. Expansion of
follicular helper T cells in the absence of Treg cells: implications for loss of
B-cell anergy. Eur J Immunol. 2012;42:2597-607.

Page 12 of 12

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J




	Abstract
	Introduction
	Methods
	Results
	Conclusion

	Introduction
	Methods
	Scurfy mice
	Detection of autoantibodies
	Hematological analysis
	Histological analysis of skin inflammation
	Histological analysis of joints
	Analysis of involvement of inner organs
	Transfer experiments
	Statistical analysis

	Results
	Scurfy mice spontaneously develop a lupus-like skin phenotype
	Scurfy mice develop mesangioproliferative glomerulonephritis
	Pneumonitis in scurfy mice
	Hyperreactive spleens and analysis of other inner organs
	Scurfy mice are anemic and lymphopenic
	Scurfy mice produce autoantibodies to nuclear antigens
	Scurfy mice show cartilage degradation and nonerosive arthritis
	Transfer experiments
	Scurfy CD4+ T cells induce autoantibody production in B6/nude mice
	Scurfy CD4+ T cells induce organ inflammation in B6/nude mice


	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

