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Numerische Simulationen zur Entstehung von massereichen Sternhaufen
Die Entstehung von massereichen gebundenen Sternhaufen in Molekülwolken ist ein Wettrennen
zwischen effizienter Sternentstehung und energetischen Rückkopplungsprozessen massereicher
Sterne. Diese unterbinden den Sternentstehungsprozeß und treiben das Restgas aus dem System.

Der Einfluß des Gasausstoßes auf die dynamische Entwicklung von Sternentstehungsregionen
wurde untersucht. Bei kollisionsfreien numerischen N–Körperrechnungen wurde der Gasausstoß
aus einem gebundenen System aus Sternen und umgebenden Gas durch ein externes Potential
beschrieben. Die Sternhaufen bleiben nur dann gebunden, wenn entweder die Sternentstehungs-
effizienz wesentlich höher ist als die in der Galaxis typische, wenn die Zeitskala des Gasausstoßes
ein mehrfaches der dynamischen Zeitskala beträgt oder wenn sich das System anfangs nicht im
virialen Gleichgewicht befand.

Deswegen wurde außerdem die Entstehung von Sternhaufen aus anfänglich kalten, turbu-
lenten Molekülwolken untersucht. Zur numerischen Simulation des Gases wurde ”Smoothed
Particle Hydrodynamics“ mit einer idealisierenden Beschreibung der Sternentstehung verwen-
det. Die Sterne selbst werden wieder mittels kollisionsfreier N–Körperrechnung beschrieben, die
Rückkopplung wird durch thermisches Heizen des umgebenden Gases simuliert. Die Sternent-
stehungseffizienz der kollabierenden und fragmentierenden Molekülwolke und damit die Gebun-
denheit des resultierenden Systems wird wesentlich beeinflußt von der Zeitverzögerung zwischen
der Bildung der Sterne und dem Einsetzen der Rückkopplung, sowie von dem gewählten globalen
Dichtekriterium, das bestimmt zu welchem Zeitpunkt sich die Sterne während des Kollapses der
Wolke bilden.

Numerical Simulations on the Formation of Massive Star Clusters
The formation of massive bound stellar clusters in molecular clouds is a race between efficient
star formation and energetic feedback processes by high mass stars, which cancel star formation
and expel the residual gas.

The influence of gas expulsion on the dynamical evolution of star forming regions, initially
consisting of a bound system of stars and gas, is investigated. Collisionless numerical N–body
calculations were performed, describing the gas expulsion by a time variable external potential.
Bound clusters will only result, if the star formation efficiency is considerably higher than the
typical observed efficiencies in the Galaxy, if the gas expulsion timescale is several times longer
than the dynamical timescale or if the system initially is not in virial equilibrium.

Therefore the formation of clusters from initially cold turbulent molecular clouds is inves-
tigated, using smoothed particle hydrodynamics with an idealized star formation description.
Stars are treated as collisionless N–bodies and feedback is implemented by thermally heating
the surrounding medium. In the collapsing and fragmenting molecular cloud the star formation
efficiency and thus the boundness of the resulting system strongly depends on the time delay
between the formation of stars and the time when feedback from the stars begins and on a chosen
global density criterion, which determines when stars form during the collapse of the cloud.
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There is a theory which states that if ever anyone discovers exactly what the Universe is for
and why it is here, it will instantly disappear and be replaced by something even more bizarre
and inexplicable.
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There is another which states that this has already happened.

Douglas Adams, ∗11th March, 1952 †11th May, 2001
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Chapter 1

Introduction

Our understanding of the formation of massive bound stellar clusters is still unsatisfactory.
Although it is widely accepted today that star formation takes place in the cores of collapsing and
fragmenting cold turbulent molecular clouds, unsolved questions remain regarding the formation
of bound stellar clusters. Besides hot topics like the initial mass function, spatial structures, star
formation efficiency and dynamical properties of the newly-formed stars, the pure existence of
bound stellar clusters is a puzzle that is not solved until now.

Inspired by observations, star clusters are divided into two main groups: open clusters and
globular clusters. In our Galaxy, the loosely bound open clusters with a mass range from
hundreds to thousands of solar masses are preferentially found inside the Galactic plane. Open
clusters in general are very young, with maximum estimated lifetimes of roughly a few hundred
million years. The globular clusters, which are found in the Galactic halo, can contain up to
several million solar masses. They are strongly centrally concentrated with ages of 10 billion
years and beyond. Whereas formation of open clusters is common in our Galaxy even today, no
recently formed globular clusters are known. Up to now only one candidate for a young globular
cluster has been found by Knödlseder (2000). On the other hand, observations show that a large
number of massive stellar clusters form today in other galaxies e.g. in the starburst regions of
merging galaxies (Whitmore & Schweizer 1995, Zepf et al. 1999) or the Large Magellanic Cloud.
It is still unclear where the differences in these formation processes come from — why do such
massive clusters form in other galaxies, but not in our Milky Way ?

Peeking into the formation process of a cluster, we start with a fragmenting molecular cloud.
Stars form in the dense cores. In recent numerical simulations by Klessen & Burkert (2000)
and Klessen & Burkert (2001) the fragmentation of molecular clouds could be followed down
to the scale of the protostars. In their simulations stars accrete all the gas that is left in the
system. However, as soon as stars have formed, their energetic feedback, like stellar winds,
ionizing radiation and, in the later stages of the evolution, even supernovae will expel the
residual gas that is left over from star formation, thus limiting the star formation efficiency. The
star formation efficiency, which is the ratio of the mass of the formed stars to the initial gas
mass, is a crucial parameter determining the future fate of the stellar system: If it is too low,
expelling the gas will have a destructive effect on the system and it will develop into an unbound
association of stars. Only if the efficiency, at least in the local vicinity of the stars, is high enough,
massive bound clusters like the globulars will be able to form. Thus, a full understanding of
star cluster formation can only be obtained by examining the complex interplay between the
turbulent dynamics of the initial molecular gas clouds, star formation and stellar feedback.
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The aim of this thesis is to cast light on the circumstances that allow the formation of bound
clusters. We examine the influences of gas expulsion on the dynamical evolution of young stellar
clusters and simulate their formation starting with molecular clouds and incorporating stellar
feedback. This allows us to investigate how feedback alters the properties of the young stars,
the efficiency of star formation, the conditions required to form a bound stellar cluster and how
feedback destroys molecular clouds.

Although the general statements of this thesis will be adaptable to star clusters of various
sizes and masses, it will concentrate on the most puzzling representatives — the globular clusters.

The structure of this thesis is as follows:
Chapter 2 first gives a short overview of the main properties of globular clusters in our

and other galaxies. Different globular cluster formation scenarios and their implications will be
reviewed. Also the properties of molecular clouds, which are needed for a basic understanding of
cluster formation, will be presented. The chapter ends with an overview of recent observations
regarding “young globular clusters”. These are objects, to some extent being only a few million
years old, which presumable are the progenitors of globulars and are therefore of interest for
understanding the formation process.

Chapter 3 gives a general introduction into hydrodynamics, which in this work is needed to
describe the evolution of the molecular cloud gas. Starting with the Boltzmann equation, the
basic equations of hydrodynamics as well as of self-gravitating many particle systems are derived
schematically. Chapter 3 also presents the numerical methods used in this thesis: The stellar
part of the systems will be described by a collisionless N–body method. The gas dynamics is
followed using the more and more popular smoothed particle hydrodynamics (SPH), where the
gas is represented by spatially smeared out “gas particles”. SPH is intrinsically Lagrangian and
is able to follow high density contrasts.

Chapter 4 first concentrates on how an idealized description of star formation can be imple-
mented into the numerical scheme. After energetic considerations regarding the energy feedback
from massive OB stars into the surrounding interstellar medium and their ability to disrupt the
parental cloud, analytical derivations are presented, which give a threshold for the star forma-
tion efficiency that is needed to obtain a bound cluster after the expulsion of the residual gas.
The chapter ends with a description of the implementation of feedback, in which the thermal
energy of the SPH gas particles surrounding the stars is increased.

Chapter 5 shows the effects of gas expulsion on star forming regions, starting with a system
that already has formed stars. It emphasizes the importance of the star formation efficiency and
the gas expulsion timescale for the question whether the resulting stellar system is bound or not.
The dynamical evolution is investigated with special emphasize on the spatial enlargements and
the density distributions.

Chapter 6 then presents numerical simulations looking at the formation process itself. Start-
ing with a cold turbulent molecular cloud, the collapse and fragmentation are followed. Star
formation and energy feedback as given in Chapter 4 are included and their effects are studied.
The choice of parameters that leads to a dynamical stable or bound stellar system is investigated.

The thesis ends with Chapter 7, which provides a summary of the obtained conclusions as
well as a brief outlook on how to improve the numerical methods that were used.
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Chapter 2

Globular Clusters and Massive

Cluster Formation

If not all, at least a great fraction of stars is born in clusters. Based on observations in our
Galaxy, star clusters are divided into the loosely bound open clusters, found mainly in the
Galactic plane, and the compact globular clusters, which are part of the Galactic halo. This
thesis concentrates on the formation of massive star clusters. Defining a massive star cluster by
a mass threshold of 105M�, in our Galaxy only the old globular clusters fall into this regime
(Mermilliod 2000). Therefore, this chapter concentrates on the Globulars in our Galaxy, but
also on young massive clusters observed in external galaxies.

It is impractical to give a general definition of a globular cluster. Usually, star clusters
with ages greater than 10 billion years found in the bulge or halo regions of galaxies are called
“globulars”. But, if one wishes to incorporate the so called “young globular clusters”, forming at
the very moment in external galaxies and therefore having ages as low as several million years,
another approach is advisable: Globular clusters are gravitationally bound stellar systems that
contain up to several millions of stars which are centrally concentrated and show a spherical
symmetric density distribution. However, in our Milky Way globulars with only thousand solar
masses are known to exist, drawing near the masses of rich open clusters. All these forms of
appearance have to be included in a general definition of globular clusters.

This chapter starts with a short overview of the properties of old globular clusters. Several
actual formation models for mass-rich star clusters, their predictions that have to be matched
with observations, as well as their problems are discussed. Giant molecular clouds are likely to
be the progenitors of bound as well as unbound star clusters. In the second section, we therefore
give a brief review regarding the properties of molecular clouds. Young, mass-rich clusters of
which presumably at least a certain fraction might be the progenitors of future globulars are the
ideal test case for formation models. In the last section, the important aspects of these systems
derived from observations are listed.

2.1 Globular Clusters - A Short Overview

Recent overviews and citations to important papers regarding the properties of globular clusters
can be found in the extensive review by Meylan & Heggie (1997) or in the text book by Ashman
& Zepf (1999). Understanding globular cluster formation also implies the knowledge of the
properties of globular cluster systems of our and other galaxies as a whole. A useful review is
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given by Harris (1991) and also in the above mentioned text book. Tables for a large fraction
of the about 140 observed Galactic globular clusters can be found in Chernoff & Djorgovski
(1989). Harris (1996) provides tables of now 142 globular clusters accessible via world wide
web (WWW). Djorgovski & Meylan (1994) give a detailed analysis of correlations between the
different Milky Way globular cluster quantities. An introduction to the different aspects of the
dynamical evolution is given in the text book by Spitzer (1987). The mentioned citations are
the basis for the following overview.

Whereas external galaxies may contain considerably more than thousand globulars, in our
Milky Way presumably 160± 20 globulars exist, of which about 140 are observed (Harris 1991).
A useful quantity for comparing globular cluster systems of different galaxies is the specific
frequency

SN = Nt 100.4(Mv+15) , (2.1.1)

where Nt is the total number of clusters and Mv the absolut visual magnitude of the host galaxy.
There is a general trend for an increasing specific frequency from spirals or irregular to elliptical
and giant elliptical galaxies (e.g. Harris 1991). Explaining these frequencies will be crucial for
each formation model.

Milky Way globular clusters show masses in the range from several thousand up to several
million solar masses. Looking at the dynamics, up to now no evidence for dark matter, besides
neutron stars, white dwarfs or brown dwarfs in globulars has been found.

Regarding the spatial properties, the majority of globular clusters can be well described by
a spherical symmetric density distribution drawn from distribution functions first proposed by
King (1966). Postponing the mathematical description of those models to Chapter 5, we now
only mention the important parameters: First, the models have a finite spatial extension up to
the tidal radius rt. From observations, one gets the core radius rc, which is the radius where the
projected density dropped to half its central value. This core radius roughly equals the King
radius which is defined by the King profile (Binney & Tremaine 1987). Observations show that
the core radii lie in the large range of 0.03 pc and 30 pc. However, omitting clusters with extreme
values, the majority shows core radii between 0.3 pc and 10 pc. Globulars are distributed within
the Galactic halo with distances from 0.6 kpc up to 123 kpc from the Galactic center. The cluster
system is strongly concentrated towards the Galactic center (Figure 2.1), so the mean distance is
about 12 kpc. Figure 2.2 shows that the concentrations of globular clusters, which characterize
the King profile and are defined as log(rt/rc), are wide spread. The scaled central potential W0

is directly connected to the concentration and will also be defined in Chapter 5. Concluding
from the large variety of these numbers, one can see that the globular clusters in our Milky Way
alone span a large parameter space that has to be explained by formation models.

The ages of globular clusters can be determined principally using the turn-off point of the
main sequence in Hertzsprung-Russel diagrams (HRD), see e.g. Ashman & Zepf (1999). For
several years, measurements were in contradiction with the age of the universe — at least the
universe must be older than the objects within it. Problems in the age estimations are due
to errors in the distances and chemical composition as well as uncertainties in stellar evolution
models. During the last years, the estimated values of globular cluster ages have decreased and
now are in accordance with the age estimations of the universe. E.g. Carretta et al. (2000) give a
mean age of 12.9 Gyr±2.9 Gyr for a sample of nine globular clusters. Most Milky Way globulars
are equally old, but there is evidence for a subset of globulars being significantly younger than
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Figure 2.1: Spatial distributions of Galactic globular clusters projected onto the x–y plane (left)

and x–z plane (right); the center of the Milky Way is located at x = y = z = 0; the data have

been taken from Harris (1996).
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Figure 2.2: Left: histogram of the concentration c0; Right: histogram of the scaled poten-

tial W0; in both figures globular clusters which have presumable undergone core collapse are
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Figure 2.3: Histogram of the metallicity distribution; the data have been taken from Harris

(1996).

the others, with an age difference of about 3 Gyr.
Among the stars of a globular cluster, the relative metallicity, compared to solar values,

[Fe/H] = log(Fe/H)− log(Fe/H)� varies only little. However, individual clusters show different
metallicities. Looking at the histogram of metallicities (Figure 2.3), one can see two distinct
peaks at about [Fe/H] = −1.6 and [Fe/H] = −0.5. Zinn (1985) indeed showed by additionally
examining spatial and kinematic properties, that the two metal-poor and metal-rich cluster
systems are distributed differently within the Milky Way. Such bimodal metallicity distributions
have been observed in a large fraction of globular cluster systems around other galaxies (see
Ashman & Zepf (1999) and references therein).

Globular as well as open clusters can be disrupted by internal and external processes. Thus,
the cluster mass distribution observed today does not necessarily coincide with the initial mass
distribution. The most important internal process is evaporation of stars due to two-body
encounters. At times one star may gain such high velocities that it can escape from the bound
system. For a typical globular cluster, the timescale of this process is of the order of 10 Gyr.
However, the smaller the number of particles, the shorter is the timescale. The same behaviour,
that low mass clusters are disrupted faster, is caused by external processes like the influence of
the tidal field of the galaxy. Indeed, Elmegreen & Efremov (1997) argue that the different mass
distribution functions regarding open and globular clusters can be explained by preferentially
disrupting low mass clusters. This would evolve an initial power law distribution function, as
observed among open clusters, to the gaussian observed among globulars. This picture leads to
a universal formation scenario for both open and globular clusters.

2.2 Formation Scenarios

In the literature, formation scenarios for globular clusters are commonly divided into three
distinguishable types: Primary formation models stage the forming of the first globular clusters
in the framework of the building of cosmological structure. Peebles & Dicke (1968) first invented
this idea and supposed that globular clusters might have been the first objects formed in the
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universe. Secondary models assume that globular clusters form at the same time with their host
galaxies. A prominent theory in this regime was proposed by Fall & Rees (1985), where cooling
instabilities in the environment of the proto-galaxy lead to the formation of proto-globular
cluster clouds which successively form star clusters. Tertiary formation models set globular
cluster formation after the host galaxies have formed, e.g. in interacting or merging galaxies
(Ashman & Zepf 1992) or even by accretion of dwarf galaxies.

The primary formation model by Peebles & Dicke (1968) explains naturally the gaussian
cluster mass distribution with typical masses of order 106M� and radii of 10 pc, which is just the
Jeans mass and length at the time of recombination. However, this model leads to contradictions
with observations: First, globulars forming before their host galaxy cannot explain the observed
correlation between metallicities of the cluster and their host galaxies (Harris 1991). Second,
globular clusters show no signs of any dark matter halo, which should be expected if they form
as the first cosmological objects.

In the Fall & Rees (1985) picture, the 106 K hot gas around the proto-galaxy is thermally
unstable and develops a two-phase structure with cooler 104 K clouds embedded in the hot
medium. If these clouds last long enough at this temperature to grow to typical masses of
106M�, they will get gravitational unstable, collapse and form globulars. However, in their
original paper Fall & Rees (1985) did not take into account cooling due to H2 formation. The
clouds cannot persist long enough at temperatures of 104 K and just cool down further. The case
is even worse if cooling by metals is included. Thus, to save the model, one must assume heat
sources which keep the clouds from cooling further. Proposed mechanisms are the ultra-violet
or X-ray flux due to an earlier generation of stars or active galactic nuclei (for references see
Ashman & Zepf 1999).

The most prominent tertiary mechanism is the formation in external interacting or merging
galaxies. Ashman & Zepf (1992) list evidences for young globular cluster formation in such
environments. The observed excess in the specific frequency around ellipticals can then be
explained by forming a new population of clusters during the merging process of two spirals.
This scenario also can explain the bimodal metallicity distribution observed in many galaxies:
The younger systems will form in a more metal-rich environment compared to the old population.
The lack of dark matter mentioned above puts constraints on other tertiary models which assume
accretion of dwarf galaxies containing dark matter. Dwarf galaxies, in contrast to globulars,
also exhibit a significant range in metallicity (van den Bergh 2000). However, accretion of dwarf
galaxies might explain the high specific frequencies around elliptical galaxies.

Although the assumption that all globular clusters formed before their host galaxies is very
unlikely, van den Bergh (2001) proposes two distinct formation epochs for globulars: The first
one is set after reionization of the universe (Cen 2001) and is therefore primary, the second
family of clusters is formed during mergers and is thus tertiary.

Already mentioned in the last section, Elmegreen & Efremov (1997) propose a universal
formation mechanism for cluster formation. Therefore they do not need to explain the preferred
gaussian mass distribution around 106M� observed for globulars. Globular clusters then just
form at the high mass end compared to the less massive open clusters.
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2.3 Molecular Clouds as Progenitors of Massive Star Clusters

It is widely accepted that stars form in the cores of cold molecular clouds. A natural extension
to larger scales is to conclude that giant molecular clouds or complexes are the birthplaces of
stellar clusters. By that their properties fix the initial conditions and will have direct effects
on cluster formation. We follow the nomenclature of Blitz (1993): Molecular clouds are called
“giant” if their mass is approximately or larger than 105M�. The typical diameter is 45 pc, the
typical mean H2 number density is 50 cm−3.

Molecular clouds in general only show very small variations around the mean temperature
of 10 K, corresponding to an isothermal sound speed of a = 0.2 km/s. This almost constant
temperature is caused by the well-balanced heat input from cosmic rays and cooling caused
by the most abundant molecular species (Goldsmith & Langer 1978). For this reason, in this
thesis we use the isothermal equation of state to describe the molecular cloud gas. Only in
protostellar cores, where the number density exceeds 1010cm−3, the cloud becomes opaque and
the isothermal assumption is no longer valid.

Molecular clouds show self-similar structures, sometimes even believed to be fractal, down to
the smallest scales that are observable (Stutzki et al. 1998, Datta 2001). These spatial structures
are accompanied by structures in the velocity field: The velocity dispersion σ, measured from
line-widths, scales with the cloud size as σ ∼ Lα, where α is in the range of 0.20 to 0.6 (Blitz
1993, Goodman et al. 1993, Goodman et al. 1998). These velocities are commonly interpreted
as turbulent supersonic random motions with a typical Mach number of M ≈ 10. The observed
line-width relation can be transformed into a power spectrum of the velocities, which is the
Fourier transformation into k-space, where k is the wavenumber. It has been shown that a
power-law power spectrum P (k) ∼ k−n with n = 3 . . . 4 describes well the properties of the
clouds (Myers & Gammie 1999, Burkert & Bodenheimer 2000). In Chapter 6, we make use of
these properties to get justifiable initial conditions for the cluster forming simulations.

Molecular clouds are gravitationally bound. Without an internal or external driver for the
turbulence, the clouds will collapse on the dynamical timescale which is of order of 106 yr, even
in the presence of stabilizing magnetic fields (Mac Low et al. 1998, Mac Low 1999). However,
Blitz & Shu (1980) indicate lifetimes of about 107 yr. One way out might be that molecular
clouds are only an intermediate stage in the overall evolution of the interstellar matter. Then,
they might be short-lived and form stars without any delay (Elmegreen 2000).

However, of interest for this thesis is only the fact that turbulence in molecular clouds
exists. The intrinsic density and velocity fields will imprint their properties on the velocities
and spatial distribution of the forming stars and therefore may be of great importance regarding
the properties of the newly-born cluster.

2.4 Observations of Young Massive Clusters

Up to now, in our Galaxy only one candidate for a young massive or globular cluster has
been found by Knödlseder (2000). On the other hand, observations show that a large number
of massive stellar clusters form today or have formed recently in other galaxies e.g. in the
starburst regions of merging galaxies (Whitmore & Schweizer 1995, Zepf et al. 1999) or the
Large Magellanic Cloud (Drissen et al. 2000). An extensive list of galaxies with young globular
clusters is given by Schweizer (1999).
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The crucial question is whether these observed compact, bright blue objects really will evolve
into systems that look like the globular clusters today. Zepf et al. (1999) identified more than
1000 of such objects in the galaxy merger NGC 3256. As many of them show masses and
sizes comparable to Galactic globulars, they identify them as young globular clusters. They
conclude that due to the high efficiency of cluster formation, the excess of globulars around
elliptical galaxies can be explained, if they form by merging of gas-rich spiral galaxies. Fritze-
v. Alvensleben (1998) analysed the population of young star clusters in the galaxy merger
NGC 4038/4039. Using a spectrophotometric evolutionary synthesis model, she evolves the
luminosity function of the young cluster system to what it may look like in 12Gyr. She finds
that the final state is in good agreement with the observed gaussian luminosity function, which
reflects the gaussian mass distribution mentioned in Section 2.1.

Schweizer (1999) emphasizes that the young clusters in advanced mergers already have ages
which are of order 10 times the dynamical timescale of the systems. If they were not gravitation-
ally bound from the beginning, they now would resemble a loosely bound, expanding association.
To proof that these young massive clusters are really the progenitors of today’s globulars, one
also has to make sure that these system are compact enough to survive in the tidal fields of their
host galaxies.

Coming back to the universal formation scenario for open and globular clusters, we recall
that one difference between these two populations is the mass distribution, which is tightly
connected to the luminosity function. Whitmore et al. (1999) measured the young cluster
luminosity function in the merger NGC 4038/4039. They showed that it can be described by
a power-law like the open clusters in our Milky Way. Destruction of low mass clusters during
the evolution then could evolve this power-law into the gaussian distribution observed for the
globulars.

Observations of young clusters in the Large Magellanic Cloud even allow the measurement of
radial luminosity distributions (Elson 1991), which is not possible for the distant galaxy mergers.
Such observations are the ideal test case for comparisons with theoretical formation models.

Another point that has to be covered by formation models is the structure of the young
cluster systems as a whole: In the Large Magellanic Cloud, more than 10% of the young objects
are binary clusters (Dieball & Grebel 2000). There are hints that these binary clusters formed
approximately at the same time from one single giant molecular cloud (Dieball, Grebel & Theis
2000). Bhatia & MacGillivray (1988) even give possible evidence for a merging binary star
cluster. On the other hand, observations of the young double cluster NGC 1850 by Gilmozzi
et al. (1994) give hints that the smaller subcluster is considerably younger and may result from
induced star formation caused by the gas expulsion of the main cluster (see Figure 2.4, left).

The residual gas left over from star formation will leave the system after a few dynamical
timescales as suggested e.g. by observations of the gas-free young clusters (see also Figure 2.4,
left). This gas expulsion is probably caused by feedback of young massive stars, like ionizing
radiation, stellar winds or supernova explosions. The effect on the evolution of massive stellar
clusters will be examined in detail in Chapter 5. Gas expulsion from open clusters in our Galaxy
can be observed at the very moment (see Figure 2.4, right).
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Chapter 3

Basic Physical Concepts and

Numerical Methods

The complex evolution of astronomical problems like N–body systems or the gas dynamics of the
interstellar medium often can be solved only by numerical simulations. The numerical results
can be compared to actual observations. Through this cooperation, valuable new insights into
the physical understanding can be gained. This chapter describes the numerical techniques that
are used in this thesis:

Pure N–body methods are a useful tool to simulate the dynamical evolution of a large
amount of gravitationally interacting point masses. Beyond that, this method will be extended
to simulate the influence of a hydrodynamical gas on an embedded N–body system by applying
external forces.

For simulations of molecular clouds and star formation, the proper treatment of the hydro-
dynamical gas is essential. We use Smoothed Particle Hydrodynamics (SPH), because of its
unique ability to follow the dynamical evolution of fragmenting gas clouds over a wide range
of scale lengths. SPH is intrinsically a particle method and makes way for a straight forward
idealized star formation and stellar feedback implementation.

In the first section of this chapter we derive the hydrodynamic equations needed for the
description of physical gases. In the following section we present the gravitational N–body
problem and its connections to the hydrodynamic equations. The chapter ends with a description
of the used SPH, N–body and combined SPH & N–body codes.

3.1 The Hydrodynamic Equations Derived from the Boltzmann

Equation

In the following, we derive the basic ideas of hydrodynamics. The macroscopic physics of gases
is successfully described by just one equation – the Boltzmann equation:

d

dt
f(~r,~v, t) = Cf(~r,~v, t) . (3.1.1)

The distribution function f(~r,~v, t) is defined such that f(~r,~v, t) d3r d3v gives the number of gas
molecules inside the phase space volume P defined by [~r . . . ~r + d~r] and [~v . . . ~v + d~v] at time t.
The total derivative is d/dt. The following derivations are explained in detail by Reif (1987).
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In hydrodynamics, collisions between gas particles play an important role. In Equation (3.1.1)
they are described by the operator C acting on the distribution function f(~r,~v, t). Gas molecules
can be scattered into or away from the observed phase space volume P. We assume that the
particle density is low enough, so that only two-body interactions are of importance and the
velocities of the molecules before a collision are uncorrelated. Additionally, we neglect the influ-
ence of external forces on the scattering cross section and suppose that the distribution function
stays approximately constant during the interaction time and inside the space volume defined
by the scope of the interaction forces. One can find that the collisional term is given by

Cf(~r,~v, t) =
∫
~v1

∫
Ω′

dΩ′ d3v1 (f(~r,~v′, t) f(~r,~v′1, t)−f(~r,~v, t) f(~r,~v1, t)) |~v−~v1|σ(~v′−~v′1) , (3.1.2)

where ~v,~v1 and ~v′, ~v′1 are the velocities of the two molecules before and after the collision,
respectively. Because of momentum conservation, the scattered velocities ~v′, ~v′1 are functions of
~v,~v1 and the scattering angle Ω′. The differential scattering cross section of two particles with
the relative velocity ~v′−~v′1 is σ(~v′−~v′1). The integration covers all possible velocities ~v1 and solid
angles. The neglect of collisions involving three or more molecules shows up in Equation (3.1.2):
Only second order products of the distribution function f(~r,~v, t) appear.

The basic idea of hydrodynamics is to consider only the observable macroscopic spatial and
time dependent properties of the system. These are obtained by averaging microscopic properties
G(~r,~v, t) over the velocity space weighted with the distribution function:

<G(~r, t)>~v =
1

n(~r, t)

∫
~v

d3v f(~r,~v, t)G(~r,~v, t) , (3.1.3)

where n(~r, t) represents the particle density.
Multiplying the left hand side of the Boltzmann Equation (3.1.1) (using Einstein summation

convention from now on; ri and vi represent the components of the spatial position and velocity,
respectively)

df

dt
=
∂f

∂t
+
dri
dt

∂f

∂ri
+
dvi

dt

∂f

∂vi
(3.1.4)

by G and averaging over the velocity space we get after some mathematics

<G d

dt
f >~v =

∂

∂t
(n <G>~v) +

∂

∂ri
(n <vi G>~v)− n <

d

dt
G>~v . (3.1.5)

To compute the collisional term on the right hand side of Equation (3.1.1), we make use of the
equality

∫
dΩσ(~v′ − ~v′1) =

∫ ∫
d3v′ d3v′1 σ(~v,~v1 → ~v′, ~v′1):

<G Cf >~v =
∫
~v

∫
~v′
1

∫
~v′

∫
~v′
1

d3v d3v′ d3v1 d
3v′1 ·

(f(~r,~v′, t) f(~r,~v′1, t)− f(~r,~v, t) f(~r,~v1, t)) |~v − ~v1|σ(~v,~v1 → ~v′, ~v′1)G(~r,~v, t) . (3.1.6)
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Scattering processes are symmetric under permutation of (~v,~v1) ↔ (~v′, ~v′1) (inverse collision).
Next, the integration allows the formal permutation of (~v,~v′) ↔ (~v1, ~v′1). Applying both substi-
tutions to Equation (3.1.6) leads to a total of three equal expressions for <G Cf >~v. Summing
these up, we get

<G Cf >~v =
1
2

∫
~v

∫
~v1

∫
~Ω′

d3v d3v1 dΩ′ f(~r,~v, t) f(~r,~v1, t))|~v − ~v1|σ(~v′ − ~v′1) ∆G (3.1.7)

with ∆G = G(~r,~v′, t) + G(~r,~v′1, t)− G(~r,~v, t)− G(~r,~v1, t).
It is straightforward to see that conservation laws can be derived for the special cases

where ∆G = 0. The collisional term (3.1.7) of the integrated Boltzmann Equation <G d
dt f >~v=

<G Cf >~v cancels out and only the left hand side, Equation (3.1.5) remains:

n <
d

dt
G>~v −

∂

∂t
<nG>~v −

∂

∂ri
<nvi G>~v = 0 . (3.1.8)

The scattering process conserves the total mass, the total momentum, the total angular momen-
tum and, assuming that there are no internal degrees of freedom of the individual molecules,
the total kinetic energy of the participating particles. Thus, Equation (3.1.8) is valid for

G = mµ

G = mµ vj j = 1, 2, 3

G = mµ εijk rj vk i = 1, 2, 3

and G =
1
2
mµ ~v

2 . (3.1.9)

Here mµ is the molecular mass and εijk the Levi–Cevita tensor. In detail, from Equation (3.1.8)
we get the following conservation laws:

Mass Conservation

Let G = mµ. With the flow velocity ~u(~r, t) = <~v>~v and the gas density ρ(~r, t) = mµ n(~r, t) we
immediately get the continuity equation or the macroscopic conservation of mass:

∂ρ

∂t
+ ~∇(ρ ~u) = 0 . (3.1.10)

Momentum Conservation

Now, let G = mµ vj . The total derivative of the microscopic velocity, which is the acceleration,
is equal to the external force per mass: dvi/dt = Fi/mµ. Thus, Equation (3.1.8) leads to

∂

∂t
(ρ uj) +

∂

∂ri
(ρ <vi vj>~v) = ρFj , (3.1.11)

where ~F = ~F/mµ is the force per mass unit, which, in case of e.g. gravitation, is independent
of the velocity. This holds for the density ρ, too. Thus both quantities are not affected by the
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averaging over the velocity. We define ~w as the particle velocity with respect to the flow velocity
~u, therefore ~v = ~u+ ~w. Keeping in mind that ~u = <~v>~v and < ~w>~v= 0, we know that mixed
terms like <uiwj>~v= 0. We therefore replace

ρ <vi vj>= ρui uj + Pij with Pij = ρ <wiwj> (3.1.12)

in the second term of Equation (3.1.11) and get

∂

∂t
(ρ uj) +

∂

∂ri
(ρ ui uj) +

∂Pji

∂ri
= ρFj . (3.1.13)

It can be shown (e.g. Lüst 1978) that the stress tensor Pji can be decomposed into a sum of
the hydrostatic stress tensor, which includes the gas pressure p and the viscous stress tensor:
Pij = p δij + σij . We get

∂

∂t
(ρ uj) +

∂

∂ri
(ρ ui uj) +

∂p

∂rj
+
∂σij

∂ri
= ρFj . (3.1.14)

By introducing the momentum flux tensor
↔
Π= ρ ~u◦~u+

↔
P we get the short form of the momentum

equation:

∂(ρ ~u)
∂t

+
↔
∇
↔
Π= ρ ~F , (3.1.15)

where we define the tensor divergence as (
↔
∇)ij = ∂/∂ri. In a Newtonian medium, the com-

ponents of the stress tensor are proportional to the velocity gradient: σij = Aijkl ∂uk/∂xl.
Assuming that σij is isotropic (thus it vanishes for rigid body rotation) and symmetric in i and
j, the most general form for the tensor Aijkl is

Aijkl = a δij δkl + b (δik δjl + δil δjk) (3.1.16)

and we have

σij = η (
∂uj

∂ri
+
∂ui

∂rj
) + (ζ − 2

3
η) δij

∂ul

∂rl
, (3.1.17)

by introducing the shear viscosity η = a and bulk viscosity ζ = b + 2 a/3. This form of the
momentum equation describes the hydrodynamics of viscous media.

Energy Conservation

In the case G = mµ vi vi/2 (kinetic particle energy) we get, using again vi = ui + wi,

ρ ~u ~F − 1
2
∂

∂t
ρ ~u2 − 1

2
∂

∂ri
ρ uj ~u

2 − ∂

∂ri
uj Pij

− 1
2
∂

∂t
ρ < ~w2>~v −

1
2
∂

∂ri
ρ <wi ~w

2>~v −
1
2
∂

∂ri
ρui < ~w2>~v= 0 . (3.1.18)

We can identify the internal energy per mass εint = ρ < ~w2 >~v /2 and the conduction heat
flux Fi = ρ < wi ~w

2 >~v /2. Above equation can be decomposed into the conservation of the
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kinetic energy, connected with the velocity flow ~u, and the conservation of the internal energy,
connected with the individual motions ~w.

Additionally, we need one more equation to solve our system: The equation of state, which
connects pressure, density and temperature: p = p(ρ, T ). In our case of the interstellar medium,
we choose the ideal gas law p = ρRgas T/µ, where µ is the mean molecular weight, Rgas the
universal gas constant and T the temperature of the gas.

Now we have derived the complete system of the hydrodynamic equations. In our case, the
only “external” force is gravitation, which is caused by the gas itself. Therefore, we introduce
the gravitational potential Φ, which is given by the Poisson equation

4Φ = 4πGρ , (3.1.19)

where G is the universal gravitational constant. The force per mass or acceleration on a massive
particle is given by ~F = −~∇Φ.

In summary, the following set of equations describes the macroscopic behaviour of a gaseous
system, where D/Dt = ∂/∂t+ ~u ~∇ is the Lagrangian substantial derivative:

Continuity equation:

Dρ

Dt
+ ρ ~∇~u = 0 (3.1.20)

Equation of motion: Using the mass conservation equation times the velocity, one gets from
Equation (3.1.15) the equation of motion

ρ
D~u

Dt
+ ~∇p+

↔
∇
↔
σ= − ρ ~∇Φ (3.1.21)

Energy equation:

∂

∂t
(
1
2
ρ ~u2 + εint) +

∂

∂ri
(
1
2
ρ uj ~u

2 + Fi + ui εint +
∂

∂ri
uj Pij) = −ρ ~u ~∇Φ , (3.1.22)

with j = 1, 2, 3.
Poisson equation:

4Φ = 4πGρ (3.1.23)

Equation of state:

p = p(ρ, T ) =
ρ

µ
Rgas T (3.1.24)
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3.2 Collisionless Systems

If the constituents of a medium only show gravitational interactions, we deal with a pure N–
body system. In such systems, collisions only play a role if the system evolves over a time that
is much larger than the relaxation timescale (Binney & Tremaine 1987)

tr =
N

8 lnN
td with td =

√
1
G ρ̄

, (3.2.25)

where td is the typical crossing or dynamical timescale of the system, N the number of indi-
vidual particles and ρ̄ the average density inside a typical volume of the system. The “typical
volume” is often defined as the innermost volume containing half the mass of the system. The
relaxation timescale gives an estimation for the time after which one particle completely lost
information about its initial dynamical properties due to interactions with the other particles.
As we investigate the early evolution of stellar clusters, the evolution time is always less than the
relaxation timescale. Thus, regarding the stellar part, collisions can be neglected. If the num-
ber of interacting particles is large, we can describe the system statistically by the collisionless
Boltzmann Equation (compare Equation (3.1.1))

d

dt
f(~r,~v, t) = 0 . (3.2.26)

Here f(~r,~v, t) is understood as the distribution function for one particle species with the indi-
vidual masses mi.

By integrating over moments of the Boltzmann equations, like in section 3.1, but omitting the
collisional terms, we get the Jeans Equations, which are similar to the hydrodynamic equations
without the pressure term (Binney & Tremaine (1987)). Using the particle density n = ρ/mi

we infer from Equation (3.1.20) the continuity equation

∂n

∂t
+ ~∇(n~u) = 0 . (3.2.27)

The equation of motion (3.1.21) leads to

n
∂~u

∂t
+ n (~u~∇) ~u = − 1

mi

↔
∇
↔
σ −n ~∇Φ , (3.2.28)

where
↔
σ is again the stress tensor.

Bound star clusters, if in a first approximation assumed collisionless, will be in a station-
ary condition, that is their distribution functions do not evolve in time. We need a tool to
theoretically describe such distributions.

We define an integral of motion I as any function of the phase-space coordinates ~r and ~v

that is constant in time
d

dt
I(~r(t), ~v(t)) =

∂I

∂~r

d~r

dt
+
∂I

∂~v

d~v

dt
= 0 . (3.2.29)

By comparing to Equation (3.1.4), we see that this equals the condition for a stationary solution
of the Boltzmann equation. We conclude that any stationary solution of the Boltzmann equation
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Table 3.1: Scale Factors

code units scale factor physical units

mass M ′ M̂ M = M̂ M ′

length L′ L̂ L = L̂ L′

time t′ t̂ =
√
L̂3/(GM̂) t = t̂ t′

velocity v′ v̂ =
√
GM̂/L̂ v = v̂ v′

density ρ′ ρ̂ = M̂/L̂3 ρ = ρ̂ ρ′

energy E′ Ê = M̂2G/L̂ E = Ê E′

energy per mass ε′ = E′/M ′ ε̂ = ̂(E/M) = GM̂/L0 ε = E/M = ̂(E/M)E′/M ′

energy per volume E′/L′3 ̂(E/L3) = GM̂2/L̂4 E/L3 = ̂(E/L3)E′/l′3

temperature T ′ = ε′ T̂ = GM̂ µ/(L̂ Rgas γ̄) T = T̂ T ′

pressure p′ p̂ = GM̂2/L̂4 p = p̂ p′

Grav.const. G′ = 1 G = 6.6726 · 10−11N m2 kg−2

Gas const. R′gas = 1/γ̄ Rgas = 8.3145 JK−1 mol−1

depends only on integrals of motion. Vice versa, any distribution function f , only depending on
integrals of motion, is a stationary solution (Jeans Theorem). Three well-known integrals of
motion are the total energy and the components of the angular momentum.

3.3 Scaling of Physical Systems & Code Units

In gravitational or hydrodynamical systems we have the freedom to use arbitrary scale factors.
This enables us to compare one single numerical simulation with different examples in nature.
Additionally, this allows us to convert the absolute values into the number range which is best
fitted for the computer architecture.

In pure gravitational systems we can choose a scale factor M̂ for the mass and R̂ for the
length. For convenience, we build our conversions such that the gravitational constant is equal
to 1 in code units. In hydrodynamical systems, we additionally have the freedom to demand
that the mass per energy and the temperature have the same absolute values in code units.

However, If we put additional physical parameters into the simulations, like energy feedback,
we will have to convert the constants into code units, thus fixing the scale factors. By dimensional
argumentations we can find the appropriate scale factors given in table 3.1. In this units, the
equation of state of the ideal gas reads p′ = ρ′ T ′/γ̄ and the isothermal sound speed is given by
p′ = a′2T T

′ or a′T =
√
T ′/γ̄. Here, γ̄ = 1/(γ − 1), where γ is the constant adiabatic exponent.

For an ideal gas, γ̄ = 3/2.
In the following, we mark the scale factors with a hat. Where it is obvious from the context,

no distinction is made between physical and dimensionless code variables. In case of doubt, code
units are marked with an apostrophe.
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3.4 Numerical Simulations of Collisionless N–body Particles

In this thesis, two different kinds of simulations are presented: Pure N–body simulations and
combined hydrodynamical & N–body Simulations. The numerical schemes will be presented in
the two following sections.

3.4.1 Time Integration

Although it is possible to get the dynamical evolution of the system by a direct evaluation of the
Boltzmann Equation (e.g. Fokker-Planck methods, for a recent review see Baumgardt (2001))
in many cases the Monte-Carlo approach of an N–body particle system is more useful regarding
computational aspects. We construct an N–body realization of the system by assigning phase
space coordinates ~r and ~v as well as masses mi to an ensemble of N particles, such that the
mass inside a given finite phase space volume P is equal in both cases:∫∫

P

f̃(~r,~v, t) =
∑
i∈P

mi , (3.4.30)

where the sum goes over all particles inside P.
Here we use the mass distribution function f̃(~r,~v, t), which gives the total mass inside the

phase space volume [~r . . . ~r + d~r] and [~v . . . ~v + d~v] at time t.
If we choose an equal mass realization with mi =

∫ ∫
d3v d3r f̃(~r,~v, t)/N , the mass distribu-

tion function f̃(~r,~v, t) essentially depends on the phase space number density of particles and
we can choose our realization by selecting phase space coordinates ~r and ~v according to the
probability which is proportional to f̃(~r,~v, t).

The evolution of these bodies is determined by the Newtonian equations of motion, which
form a set of differential equations

d~vi

dt
= ~F(~ri) and

d~ri
dt

= ~vi , (3.4.31)

where F(~ri) is the specific force, only depending on the particle position ~ri, as we deal with
gravitation only. Thus, we have to solve the system of differential equations

d

dt
~y = ~̇y = ~f(t, ~y) with ~y =

(
~r

~v

)
and ~f =

(
~v
~F(~r)

)
. (3.4.32)

We use the leapfrog method which implements the time symmetric step ~y(t + δt/2) = ~y(t −
δt/2) + δt ~f(t, ~y(t)). Using the definitions in (3.4.32) and shifting the equation involving ~ri by
δt/2 we get the scheme

~vi(t+ δt/2) = ~vi(t− δt/2) + δt ~F(~ri) (3.4.33)

and

~ri(t+ δt) = ~ri(t) + δt~vi(t+ δt/2) . (3.4.34)

With an expansion in a Taylor series, one can show that the leapfrog scheme is second order
accurate.
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3.4.2 Self–Gravity: Treecode & GRAPE

In pure gravitational systems, the force per mass acting on a particle is given by the gradient
of the gravitational potential F = −~∇~rΦ. The potential itself is given by the Poisson equation

4~rΦ = 4πGρ . (3.4.35)

In the case of a set of infinitesimal small point masses, we get the force acting on particle i by
a superposition of the Newtonian forces caused by all other particles:

~Fi =
N∑

j, j 6=i

Gmimj

|~rj − ~ri|2
~rj − ~ri
|~rj − ~ri|

. (3.4.36)

A direct implementation of this force term fails on encounters between two or more N–bodies:
If the distance of two particles is too low, the forces and thus the acceleration and velocities
will be huge, requiring very low time steps that would make the code too inefficient. As our
simulations only take place in the collisionless regime, we can neglect N–body encounters and
apply the widely-used Plummer smoothing

~Fi =
N∑

j, j 6=i

Gmimj(~rj − ~ri)
(|~rj − ~ri|2 + ε2)3/2

, (3.4.37)

which avoids the divergences for small distances. The smoothing parameter ε should be of the
order of the mean interparticle distance. With smoothing, systems containing a huge number of
particles can be described by simulations using only a small number of N–bodies: The smoothing
increases the numerical relaxation time (3.2.25) of the N–body system. As long as the evolution
time of the N–body system is less than the relaxation time of the physical system, the numerical
simulation describes well the real evolution.

Even in pure N–body codes, one can study the influence of e.g. a gaseous environment by
superposition of a suitable external potential. Then the external force ~Fi,ext is added to the
inter-particle forces (3.4.37) for each particle:

~Fi,tot = ~Fi + ~Fi,ext . (3.4.38)

For a system consisting of N particles, using the direct summation (3.4.37), the computa-
tional effort scales as N2. Deriving the gravitational potential of a self–gravitating system is
the most time consuming step in the simulation of a gravitational system and thus limits the
number of particles that can be used. To speed up the computation, we present two possible
solutions: The hardware device GRAvity piPE (GRAPE) and the Tree method.

The GRAPE board releases the host computer from the force computation. This is done
by a hardwired ’pipe’-system which allows the simultaneous computation of several two-body
forces and its summation over all pairs (Okumura et al. 1993; Umemura et al. 1993; Steinmetz
1996; Makino et al. 1997).

The second way reducing the computational effort, the tree mechanism, was proposed
by Barnes & Hut (1986). Here the number of computations scales with N lnN . Performance
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characteristics of tree codes by Hernquist (1987) show that the method is well suited for colli-
sionless systems.

All particles of the ensemble are arranged on a hierarchical binary tree. The tree is con-
structed starting with the particles as leaves (first level). On the second level, all mutual particle
neighbours are grouped together to nodes. On the next level, mutual neighbours among nodes
plus particles left over from the foregoing levels are grouped together and also replaced by nodes.
This procedure is repeated until the top level of the tree is reached, consisting of only one node
which contains all the particles of the ensemble. In total, we get 2N−1 positions in the tree. The
tree represents the physical clumping of the system, which allows a fast search for neighbours
needed for the SPH algorithm described in the following section.

To speed up the computation of the gravitational force on particle i, we do not compute the
contributions of all other particles separately, but use the joint properties of a higher level node:

For every node n, the total mass mn = mk + ml, the center of mass and its quadrupole
moments are computed using masses mk and ml and positions ~rk and ~rl of its daughter nodes
or particles k and l.

Now we need a criterion when to “open” a node, that is, when we have to use the components
rather than the node itself. It has been useful to introduce an opening angle criterion

Rn

rin
= Θ , (3.4.39)

where the radius of a node is defined as

Rn = max(
mi

mn
|~rk − ~rl|+Rl,

mj

mn
|~rk − ~rl|+Rk) (3.4.40)

and rin is the distance to the node. If the particle “sees” the node under an angle that is less
than Θ, it is sufficient to compute the forces just with that node. Including quadrupole moments
of the node decreases the error. In the other case, the node is expanded into its daughters and
the opening angle criterion is applied recursively. In the limit Θ → 0 the method is exact. If
Θ is too large, errors increase too much. A value of Θ = 0.5 has proved to produce acceptable
results and is chosen in this thesis.

3.5 Solving the Hydrodynamic Equations by Smoothed Particle

Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method for the numerical integra-
tion of the hydrodynamic equations. Instead of a discrete grid describing the hydrodynamic
properties of the fluid, in SPH the grid cells are replaced by gas particles, which carry mass,
momentum and internal energy. These gas particles arrange themselves and build up their own
computational grid. The hydrodynamical properties are obtained by averaging a sufficient num-
ber of gas particles inside the smoothing kernel. Detailed reviews on SPH have been published
by Benz (1990) and Monaghan (1992). Mathematically, we replace the hydrodynamical partial
differential equations by simpler ordinary ones.

We give a basic description of the SPH method and state the representations of the hydrody-
namic equations. In the next chapter, the implementation of star formation and stellar feedback
is explained in detail.
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3.5.1 Basic Equations

In the SPH formalism, the hydrodynamical properties of the fluid are obtained by an averaging
process: Convolution of the physical quantity f(~r) with a kernel function W (~r−~r ′, h) gives the
smoothed representation

〈f(~r)〉 =
∫

V (h)

W (~r − ~r ′, h)f(~r ′)d3r′ . (3.5.41)

The Kernel must be normalized, ∫
V (h)

W (~r − ~r′, h) d3r′ = 1 , (3.5.42)

and its width must scale with the smoothing length h, leading to

lim
h→0

W (~r − ~r′, h) = δ(~r − ~r′) , (3.5.43)

where δ(~r − ~r′) is the three dimensional Dirac’s delta distribution. Hence, we have

lim
h→0

〈f(~r)〉 = f(~r) . (3.5.44)

The integration in Equation (3.5.41) has to be taken over the entire volume V (h) where the
smoothing kernel is greater than zero. By adopting a spherical symmetric kernel, it can be
shown that

〈f(~r)〉 = f(~r) + c
h2

6
~∇2

~rf(~r) +O(h3) . (3.5.45)

Therefore, replacing the exact scalars f(~r) by its smoothed representations <f(~r)> is accurate
up to first order in the smoothing length h. To derive the hydrodynamic equations of motion in
the SPH notation, one can also show that in first order

d

dt
<f(~r)>=<

d

dt
f(~r)> and ~∇ <f(~r)>=< ~∇ f(~r)> (3.5.46)

and 〈
A(~r)
B(~r)

〉
=
〈A(~r)〉
〈B(~r)〉

+O(h2) . (3.5.47)

The basic task to derive the equations of the SPH formalism is to evaluate integrals of the
type ∫

V (h)

f(~r′)W (~r − ~r′, h)d3r′ . (3.5.48)

We use the idea of Monte-Carlo integration: For the evaluation of the integral

I =
∫
V

g(~r′)d3r′ , (3.5.49)
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where g(~r) is an arbitrary integrable scalar function, we use N sampling vectors ~ri to get the
sampling values gi = g(~ri). The exact integral divided by the integration volume

Ī =
∫
V

1
V
g(~r′)d3r′ (3.5.50)

and the mean of the sampling values

ḡ =
∑
i∈N

1
N
g(~ri) (3.5.51)

will be equal if the number N of the vectors ~ri is sufficient. The summation goes over the entire
set N = [1, . . . , N ] of vectors. Thus,∫

V

g(~r′)d3r′ '
∑
i∈N

V

N
g(~xi) =

∑
i∈N

1
ν
g(~xi) . (3.5.52)

In the last step, we introduced the spatial density ν of the sampling points.
In SPH, each of the points carries a given mass mi. These points can be understood as

gas particles, leading to the name smoothed particle hydrodynamics. If we use the density
ρi = ρ(~ri) =<ρ(~ri)>, which is accurate to first order in h (see Equation (3.5.45)) the spatial
density is νi = ρi/mi. Substituting g(~r′) by the product f(~r′)W (~r − ~r′, h) we have

<f(~r)>=
∑
i∈N

mi

ρi
f(~ri)W (~r − ~ri, h) . (3.5.53)

That’s SPH :-) .
The smartness of SPH lies in the computation of the smoothed spatial gradient without

making use of finite differences or a grid. Integrating

< ~∇~r f(~r)>=
∫

V (h)

(~∇~r f(~r′))W (~r − ~r′, h)d3r′ (3.5.54)

by parts and neglecting the surface term, we have

< ~∇~r f(~r)>=
∫

V (h)

f(~r′) (~∇~r′ W (~r − ~r′, h))d3r′ (3.5.55)

or, using Equation (3.5.53),

< ~∇~r f(~r)>=
∑
i∈N

mi

ρi
f(~ri) ~∇~ri

W (~r − ~ri, h) . (3.5.56)

For the evaluation of expressions of the type (3.5.53) or (3.5.56), we need the density ρ at the
particle positions ~r. We get this from
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<ρ(~r)>=
∑
i∈N

mi f(~ri)W (~r − ~ri, h) . (3.5.57)

The gas particle mass is smoothed over the kernel volume.
The summation in the above equations has to be taken over the complete set of gas particles

N = [1, . . . , N ]. However, realizing that gas properties are local quantities, the computational
effort can be decreased by choosing a suitable kernel function W (~r−~ri, h), which rejects particles
outside the smoothing volume. We call the particles that lie inside the kernel of one particle its
“neighbours”. Then the summations in above equations have to be taken only over the list of
neighbours Nj = [nj,1, nj,2, . . . , nj,Nj ], with Nj being the number of neighbours of particle j. A
suitable kernel, proposed by Monaghan & Lattanzio (1985), is the spherical symmetric spline
kernel

W (rij) =
1
π h3



1− 3
2 v

2 + 3
4 v

3 if 0 ≤ v < 1

1
4 (2− v)3 if 1 ≤ v < 2

0 if v ≥ 2

with v =
rij
h
. (3.5.58)

This kernel has compact support and thus limits the number of neighbours. In our code, the
kernel and its derivatives are tabulated for fast access.

3.5.2 The Hydrodynamic Equations in SPH notation

In short, the principal SPH equations for computing physical quantities read

fj =
∑
i∈Nj

mi

ρi
fiWji and

(
~∇~r f

)
j

=
∑
i∈Nj

mi

ρi
fi

(
~∇~ri

W
)

ji
(3.5.59)

with

ρj =
∑
i∈Nj

mi fiWji , (3.5.60)

where fi = f(~r), Wji = W (~rj − ~ri), etc.
We now derive the SPH implementation of the hydrodynamic equations:

Continuity Equation:

The continuity equation (3.1.20) is fulfilled automatically, as mass is conserved as long as no
particles are lost or created during the simulation.

Equation of Motion:

The equation of motion (3.1.21) for one SPH particle j without viscosity and other forces reads

D~uj

Dt
= −

(
~∇p
ρ

)
j

−
(
~∇~rΦ

)
j
. (3.5.61)
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To evaluate the pressure gradient term, we use the symmetric form (Monaghan 1992) (~∇p)/ρ =
~∇(p/ρ) +p(~∇ρ)/ρ2 to get(

~∇p
ρ

)
j

=
∑
i∈Nj

(
pi

ρ2
i

+
pj

ρ2
j

)
mi

(
~∇~ri

W
)

ji
. (3.5.62)

The pressure itself is computed via the equation of state, knowing density and temperature
(internal energy).

Artificial Viscosity:

In SPH, an artificial viscosity is necessary to prevent gas particles from penetrating each other
and for the proper treatment of shock fronts. We use the artificial viscosity term described
by Monaghan (1992): ∑

i∈Nj

miΓji

(
~∇~ri

W
)

ji
. (3.5.63)

where Γji is given by

Γji =


− α (ci + cj)/2µji + µ2

ji

(ρi + ρj)/2
if ~vji · ~rji ≤ 0

0 if ~vji · ~rji > 0

with µji =
h~vji ~rji
~r2ji + ε2

(3.5.64)

Here, ~rji = ~rj−~ri, ~vji = ~vj−~vi and ci and cj are the sound velocities at the particle positions. The
parameter ε = 0.01h prevents divergences for small particle distances. The artificial viscosity
only contributes to the equation of motion if the two particles are approaching each other
(~vji · ~rji > 0). The term linear in the velocity produces a bulk and shear viscosity, whereas the
quadratic term helps handling high Mach number shocks. It vanishes for rigid body rotation
like the stress tensor introduced in Equation (3.1.17) and conserves total linear and angular
momenta (Monaghan 1992)

Energy Equation:

In our simulations, we restrict ourselves to an isothermal equation of state. We therefore do not
integrate the energy equation (3.1.22) in time. However, an implementation for the adiabatic
case can be found in Benz (1990).

Gravitation:

Due to the particle treatment of the gas dynamics, the implementation of self-gravity in SPH is
straightforward: The gravitational acceleration ~F = −~∇Φ on gas particle j due to gas particles
k is given by

~Fj =
∑
i∈N

Gm̃k

|~rkj |2
~ekj , (3.5.65)

where the unit vector is ~ekj = ~rkj/|~rkj |. As the masses of SPH particles are smeared out over
the kernel volume, particle j only sees the mass (assuming a spherical symmetric kernel)
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m̃k =

rkj∫
0

dr 4π r2kj ρ̃k(rkj) (3.5.66)

of its neighbour k, where ρ̃k(rkj) = mk Wkj is the smeared out density distribution of particle
k. We thus get the self-gravity term for the equation of motion as

~Fj =
∑
i∈N

GmkW̃kj

|~rkj |2
~ekj with W̃kj =

rkj∫
0

dr 4π r2kj Wkj . (3.5.67)

For all particles outside the kernel volume we have W̃kj = 1 and get the usual gravitational law.
This states the fact that the gravitational force is a long-range force, such that the summation
in (3.5.67) goes over the entire ensemble of particles. In consequence, the number of calculations
needed to evaluate the self–gravity scales with the number of SPH particles as N2.

To circumvent this numerical effort, we use the tree algorithm already described in Sec-
tion 3.4.2. The implementation used here for the SPH code was originally developed by Press
(1986) and is extensively described by Benz et al. (1990).

As already mentioned in Section 3.4.2, too, the hardware device GRAPE is another possi-
bility to increase the computational speed. The code we used for the SPH simulations cannot
handle gas and N–body-particles simultaneously when using GRAPE. Therefore, our gaseous
simulations exclusively base on the tree method. A code making use of GRAPE for simulations
with gas and N–bodies has been developed by Wetzstein et al. (2001) and will be of interest for
future simulations.

Resolution Limits of SPH with Self-Gravity:

Bate & Burkert (1997) showed that SPH has a mass-limited resolution: In order to follow
fragmentation processes properly, the mass resolution of the code, of the order of the mass
inside one smoothing length h, must be sufficient to resolve the local Jeans mass. The rule
of thumb that the smallest mass that a SPH code can resolve is twice the number of particle
neighbours Nneigh leads to a maximum density that can be resolved:

ρcrit =
15

32π

(
a2

G

)3 (
N

NneighM

)2

. (3.5.68)

Here, N is the total number of SPH particles, a2 = Rgas T/µ the square of the isothermal sound
speed and M the total mass of the system. Whitworth (1998) analytically confirmed this result.

3.5.3 Variable Smoothing Length

Until now, the smoothing length h was thought to be constant in time and space. To fully take
advantage of the abilities of SPH, we must note that, if we assume constant gas particle masses,
in high density regions the number of particles is high, too. SPH generates its own adjustable
“grid”. The statistical errors in evaluating the integrals in the form (3.5.59) will be connected
to the number of sample vectors or gas particles we use. It is therefore sufficient to use a smaller
smoothing length in high density regions and a larger one in low density regions, respectively.
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To keep the errors constant, we assign each gas particle i a smoothing length hi such that the
number of neighbours Ni is approximately constant in time. Given the smoothing length at
time t, we can estimate the new smoothing length at time t+ δt by

hi(t+ δt) = hi(t)
(

ρi(t)
ρi(t+ δt)

)1/3

. (3.5.69)

We have the problem that to compute hi(t+ δt) we need to know ρ(t+ δt) in advance – and vice
versa. Benz (1990) suggests to use the time derivative dhi/dt and evolve hi(t) in time. Using
the Taylor expansion of hi(t+ δt) and ρ(t+ δt) with respect to time we get

dhi

dt
= − hi

3 ρi

dρi

dt
=
hi

3
~∇~vi . (3.5.70)

In the last step we inserted the continuity equation (3.1.20). Thus we need to compute the
velocity divergence at the particle positions. We use the symmetric form ρ~∇~v = ~∇(ρ~v)−~v(~∇ρ)
and get

(ρ~∇~v)j =
∑
i∈Nj

~vij

(
~∇~ri

W
)

ji
=
∑
i∈Nj

~vij ~rji
|~rji|

(
∂

∂ri
W

)
ji

, (3.5.71)

where we made use of the kernel gradient pointing in the direction of ~rj − ~ri.
To make sure that, even if systematic errors occur, the number of neighbours is approximately

constant, corrections to the smoothing length are applied if the number falls below or rises beyond
certain limits.

3.5.4 Time Evolution

We solve the system of differential equations for one particle

d

dt
~y = ~̇y = ~f(t, ~y) with ~y =

(
~r

~v

)
and ~f =

(
~v

~a(t, ~r,~v)

)
, (3.5.72)

where ~a(t, ~r,~v) is the acceleration caused by the sum of all forces in the equation of motion. As
the SPH formalism is of first order, the general first order Runge-Kutta formula (Kutta 1901)
to predict the evolution of ~y is sufficient:

~y(t+ δt) = ~y(t) + δt c0 ~f(t, ~y(t)) + δt c1 ~f(t+ α1δt, ~y + β1 δt ~f(t, ~y)) , (3.5.73)

We use the Runge-Kutta-Fehlberg scheme (Fehlberg 1969), where the error is given by the
difference to the next higher order Runge-Kutta formula. Expanding the right hand side of this
second order formula into a Taylor series and comparing with the Taylor series of the first order
formula above, we get the error term

E = |ẏ(t) δt2 (α1c1 −
1
2
)| . (3.5.74)

A more general description of the method is given by Stoer & Bulirsch (1990). In the Fehlberg
scheme, we choose the remaining coefficients such that the error is small but not zero. If it was
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zero, the pair of functions would degenerate, making it impossible to obtain the error. Fehlberg
(1969) proposes α1 = β1 = 1/2, c0 = 1/256 and c1 = 255/256. Thus, E = |ẏ(t) δt2 1/512|.

Concluding, our system is evolved by

~rnew = ~r + δt
1

256
~v + δt

255
256

[~v +
1
2
δt~a(t, ~r,~v)] (3.5.75)

and

~vnew = ~v + δt
1

256
~a(t, ~r,~v) + δt

255
256

~a(t+
1
2
δt, ~r +

1
2
δt~v,~v +

1
2
δt~a(t, ~r,~v)) . (3.5.76)

The evolution of the smoothing length and the internal energy is done accordingly.
As our error is of second order, we must adapt our time step like δtnew = δt

√
Etol/E to

make sure our error is smaller than a given tolerance Etol (Press et al. 1999). If we approximate
ẏ(t) = (y(t+ δt)− y(t))/δt we get the new time step

δtnew = δt

√
512Etol

δt |y(t+ δt)− y(t)|
. (3.5.77)

In our simulations, we chose Etol = 1.0 10−5 in code units for all quantities, assuming that all
physical variables are of the same order in code units. For |y(t+ δt)− y(t)| we take the largest
absolut error of all quantities which are evolved in time.

In the previous section we argued that assuming different smoothing lengths for each of the
particles is a natural extension of the SPH formalism. Like that, it is consequent to introduce
individual timesteps for the particles: Gas particles in low density regions with slow dynamical
evolution need, regarding the above given time step criterion, far smaller time steps than the
ones in high density regions, and vice versa. By introducing individual timesteps, computing
time is efficiently distributed among the particles, and SPH shows its full power in following
simulations over large orders of density.

But evolving each particle with an arbitrary timestep would increase the computational effort
for the time integration immensely. Bate (1995) introduced a timestep scheme, where particles
are grouped together on predefined timestep bins L which have sizes 1/2L times a fixed global
timestep dt (Figure 3.1). Thereby, although allowing individual timesteps, with every substep
whole groups of particles can be advanced together. With regard to the maximum allowed
integer number in the code, we assign the maximum time step dt the integer 220 (level L = 0).
If we assign, to be on the safe side, the minimum step to 21 (level L = 19), the individual
timesteps can be as low as dt/2L = 2−19 dt. For the time integration of the particles on level Li,
the properties of lower level particles L < Li are linearly interpolated to the substep in order to
compute the force terms correctly.

After each timestep, the time bin level for each particle is computed from the new timestep.
Shifting the particle to lower levels is only possible, if its time is synchronized with the particles
on the lower level (left arrow in Figure 3.1). We only allow changing to the adjacent level. If
the new level is higher, the particle can be shifted at once to the new track, as synchronization
is obviously fulfilled. Skipping intermediate levels is allowed (right arrow in Figure 3.1)

The individual timestep scheme makes it necessary to introduce two new timestep criteria
(Bate 1995). First we use the Courant condition, which basically is the restriction that one
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Figure 3.1: Example for a timestep scheme with the global timestep dt (level L = 0) correspond-

ing to an integer 24. Here, the highest level L = 4 has a time step of dt/24. Arrows indicate

possible shifts of particles from lower to higher levels and vice versa.

particle must not move further than its smoothing length during one timestep. The full formula
is

δtcour =
0.3h

a+ h |~∇~v|+ 1.2 (αa+ β h |~∇~v|)
, (3.5.78)

where α and β are the artificial viscosity parameters discussed above and a the sound speed.
The last term in the denominator is only included if ~∇~v < 0. The second criterion, similar to
the Courant condition, makes sure that a particle does not move further than one smoothing
length due to its acceleration ~a:

δtacc = 0.3

√
h

|~a|
. (3.5.79)

The minimum of all three criteria is taken as the new particle timestep.

3.5.5 SPH & N–body

For the evolution of a system consisting of a hydrodynamic gas and a collisionless N–body part,
we use a code made available by Matthew Bate (Bate, Bonnell & Price 1995).

The SPH particles are treated in the same way as shown in the foregoing sections. The
gravitational softening is done as described by Equation (3.5.67). The gravitational interaction
between different N–body particles and between N–body and SPH particles is softened using the
Plummer softening given in Equation (3.4.37). The timestep for N–body particles is computed
via the error (3.5.77) given by the Runge-Kutta-Fehlberg scheme only.

The difference between the second order leapfrog integrator of the pure N–body code and
the first order Runge-Kutta-Fehlberg scheme shows up when looking at the simple testcase of
a bound system of two stars in circular orbit with relative distance a0. Figure 3.2 shows, for
each of the two codes, the time evolution of the relative error (a(t)− a0)/a0. Both simulations
used exactly the same initial conditions and timesteps. With the leapfrog integrator (left), the
distance fluctuates and the maximum deviation is about 10−5. In contrast, the Runge-Kutta-
Fehlberg scheme shows severe deviations – at the end of the simulation the error is about 0.7.
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Figure 3.2: Evolution of the error in distance of two stars in circular orbits. Initially, the stars

have a distance a0 = 1.0000, equal masses m = 1.0000 and initial velocities v = 0.707107 in

dimensionless code units. The orbit time is to = 4.4429. Plummer softening is switched off;

timestep ∆t = 0.1. Left: Leapfrog. Right: Runge-Kutta-Fehlberg scheme.

Later simulations with stationary N–body models show that this does not have effects on
collisionless simulations using many particles. However, if two-body interactions get important,
the first order scheme may induce errors.
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Chapter 4

Star Formation, Stellar Feedback and

Stability of Young Stellar Clusters

Feedback from stars is probably the most important limiting factor for the star formation ef-
ficiency and the formation of bound stellar clusters. During the formation of star clusters gas
expulsion, caused by feedback of young massive stars, terminates the star formation epoch and
can unbind the stellar system. Many mechanisms leading to gas loss exist, like ionizing radia-
tion, stellar winds or supernova explosions. It is still uncertain which of those play the major
role. The gas expulsion reduces the binding energy of the cluster and can lead to a disruption
of the system.

After explaining how star formation can be included in SPH simulations, this chapter gives
an overview of the possible expulsion mechanisms and estimates the amount of energy fed into
the interstellar medium. Next, analytical criteria to get a limit for the star formation efficiency
with regard to bound cluster formation are derived. In the last section, an implementation for
feedback in SPH simulations is proposed.

4.1 Implementation of Star Formation in SPH

Various ideas for the inclusion of star formation in SPH are discussed in the literature. Bate,
Bonnell & Price (1995) use sink particles, which are formed by replacing all particles inside a
gravitational unstable and collapsing region of the size of a smoothing length by one N–body
particle. Corrections for the gaseous forces at the boundary of the sink are applied. Sinks can
also accrete more gas. This method has been successfully applied to the numerical simulation
of fragmentation of molecular clouds and star formation (Klessen 1998). However, using sink
particles only makes sense where the mass of the individual particles is smaller than the mass
of the forming stars. In this case this method allows studying the properties of individual stars
that form and may give hints to the initial mass function.

As we deal with molecular clouds with masses of order 105M�, the mass of one gas particle
in simulations with about 105 particles is of the order of one solar mass. We therefore apply
the idealized star formation prescription used e.g. in galaxy formation simulations. In those
simulations, the mass of a gas particle equals that of a molecular cloud and is thus much larger
than the mass of individual stars: If such a region of gas is collapsing, a certain fraction or the
whole mass of that SPH particle is converted into one N–body particle. This particle has no
further gas properties and represents several stars. Various implementations can be found in
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Katz (1992), Gerritsen & Icke (1997), Thacker & Couchman (2000) and Springel (2000). In our
case of a 105M� cloud, the SPH particles have masses of order of molecular cloud cores.

In our simulations, the individual N–body particles do not represent individual stars, but
are thought to represent the distribution function of the stars in the statistical sense given in
Section 3.4.1.

For the idealized star formation mechanism, we need criteria to decide whether an individual
or a group of SPH particles forms a star. The main criterion we make use of is the Jeans criterion,
which tells whether the region around the SPH particle is gravitational unstable or not. We use
the Jeans mass MJ given by Scheffler & Elsässer (1992):

MJ = (
π Rgas T

4Gµ
)3/2 ρ−1/2 (4.1.1)

or

M ′
J = (

π T ′

4 γ
)3/2 ρ′−1/2 (4.1.2)

in dimensionless code units.
If the density is roughly constant over one smoothing length h, the mass inside the smoothing

volume of one SPH particle is M = 4π h3ρ/3. If we assume that stars only form in regions where
this mass exceeds the local Jeans mass, M > MJ , we get the density criterion

ρ > (
32 π

45
)(1/3) Rgas T

h2Gµ
(4.1.3)

or

ρ′ > (
32 π

45
)(1/3) T ′

h′2 γ
. (4.1.4)

Another method, used by Nakasato, Mori & Ken’ichi (2000), is to compare the dynamical
timescale td = 1/

√
4πGρ with the sound crossing time tc = h/a, where a2 = Rgas T/µ is the

isothermal sound speed. If the dynamical time is less than the sound crossing time, td < tc, the
gas region is considered to collapse:

1√
4πGρi

<
hi

ai
(4.1.5)

or

ρi >
Rgas Ti

4πGµh2
i

, (4.1.6)

which gives nearly the same result as (4.1.3). Nakasato et al. (2000) give an estimation for the
smoothing length h = β (mi/ρ)1/3, where β is a parameter between 1 and 2. They get

ρi > (
Rgas

4πGµ
)3
T 3

m2
i

1
β6

, (4.1.7)

so both criteria depend primary on the temperature.
In addition, stars are only allowed to form where the flow is converging, which requires
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~∇~v < 0 (4.1.8)

for the divergence of the velocity. By this we exclude regions which are Jeans unstable but are
actually expanding.

Another criterion to check is that the SPH particle remains in the unstable condition for a
time tu that is longer than the collapse timescale (Gerritsen & Icke 1997)

tu > (4πGρ)−1/2 . (4.1.9)

To prevent unphysical star formation in Jeans unstable low density regions, one can further
assume that star formation is prohibited for densities smaller than a global density ρglobal.

4.2 Stellar Feedback

Observations of globular clusters and old open clusters show that these system do not contain a
significant amount of gas. Consequently, the residual gas, which has been left over from the star
formation process, must have been expelled during or shortly after star formation took place.
The stars itself can feed an amount of energy into the surrounding interstellar medium that is
of the same order as the potential energy of the gas and can thus cause the expulsion of the
gas. Three different feedback mechanisms are discussed in the literature: stellar winds, ionizing
radiation and supernova explosions.

For a simple estimation on how much energy is needed to expel the residual gas, we consider
a spherically symmetric, homogeneous initial gas cloud. To completely expel the residual gas
from the cluster, the amount of energy fed into the gas must be comparable or greater than the
binding energy of the gas, which in case of a homogeneous density distribution for gas and stars
is

Wgas = 4π

R∫
0

(
1
2
ρg φg + ρg φs) r2 dr =

3 (ε2 − 1)GM2
c

5R
, (4.2.10)

where ε is the star formation efficiency, ρg and φg are the constant density and the gravitational
potential of the gas and φs is the potential of the stars.

For a typical molecular cloud with mass Mc = 105 M� and radius R = 10pc, the binding
energy of the gas is Wgas ≈ (ε2 − 1) 5.2 · 1049 erg = (ε2 − 1) 5.2 · 1042 J.

Supernovae release energies of about 1051 erg = 1044J and therefore are surely sufficient to
expel all the gas from the cluster on a short timescale. However, they take place not until
the end of the lifetime of massive stars. Earlier processes may be more effective. The energy
feedback by the stellar wind for a 15M� star is about 8.5 · 1048 erg = 8.5 · 1041 J (Abbott 1982).
With a lifetime of about 107 yr we get a rate of about 2.4 · 1034erg/s = 2.4 · 1027J/s.

Can the ionizing radiation of massive OB stars dominate the gas expulsion process ? A typical
ionizing star has an initial Strömgren radius Rstr = 20n−2/3 pc cm−2 = (1− ε)−2/3 0.36 pc with
the column density n = ρg NA/µ of the surrounding gas and µ = 2.36 g/mol in the case of
a molecular cloud. The mass therein is Mstr = 4π/3 ρg R

3
str = (1 − ε)−1 4.7 M�. During the

expansion phase (Spitzer 1968), the time dependent mass inside the H II region is (Franco, Shore
& Tenorio-Tagle 1994)

Mi = Mstr (1 +
7 ai t

4Rstr
)6/7, (4.2.11)
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where ai =
√
Rgas T/µ = 8.0 km/s is the sound speed inside the ionized region with T =

1.0 · 104 K and µ = 1.3 g/mol. After t = 107 yrs, the typical lifetime of an OB star, we have
Mi ≈ (1 − ε)−3/7 7.9 · 102 M�. To completely ionize the whole gas cloud, we therefore need
Mg/Mi = (1− ε)10/7 1.3 · 102 OB stars. This is in good agreement with reasonable initial mass
functions. Knödlseder (2000) showed that Cygnus OB2, a probable young globular cluster in
the Galactic disk, contains about 120 O stars, while the total mass could be as high as 105 M�.
We conclude, that the ionizing radiation from high mass stars is sufficient to expel the residual
gas.

We can estimate the rate of energy fed back into the interstellar medium by ionizing radiation
looking at the formation phase (Spitzer 1968) of the H II region: If a massive OB star starts
ionizing its surroundings, the radius RI of the ionization front will evolve like

RI = Rstr (1− e−t/tI )1/3 , (4.2.12)

where tI = 1/nH αB is the typical timescale for the formation phase and

Rstr =
(

3S0

4πn2
H αB

)1/3

(4.2.13)

the Strömgren radius. We define S0 as the flux of ionizing Lyman–α photons with energies
Eν = 13.6 eV, nH as the number density of hydrogen atoms and αB = 2.6 · 10−19m3/s as the
recombination coefficient. As for temperatures greater than 104 K cooling becomes efficient,
this temperature can be taken as an upper limit. As we deal with cool gas clouds only, the
temperature change is of order of ∆T = 104 K. The deposit of thermal energy into the interstellar
medium during the formation phase is then

∆E =
γ Rgas

µ
∆T Mstr . (4.2.14)

Using the mass density ρ = nH µ/NA, where NA is the Avogadro constant, and the ionized mass
inside the Strömgren sphere Mstr = 4π R3

str ρ/3, we get

∆E =
γ Rgas

NA
∆T S0 tI . (4.2.15)

Comparing this with the energy flux of the ionizing star integrated in time during the formation
phase Eν,tot = S0Eν tI we get the ratio

∆E
Eν,tot

=
γRgas∆T
NAEν

. (4.2.16)

Inserting the physical constants and ∆T = 10000K we conclude that about 10% of the ionization
energy is deposited in the surrounding medium. With a typical mean flux for OB stars of
S0 = 1048 s−1, given by Franco et al. (1994), we get an energy input rate of about 2 · 1029 J/s
for one typical OB star, which is about 100 times higher than the estimated energy input by
the stellar wind.
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4.3 Theoretical Limits for Bound Stellar Clusters after Gas Ex-

pulsion

We now give two analytical approaches to determine the necessary conditions to obtain bound
stellar cluster after the residual gas has been expelled. We only consider gas expulsion timescales
that are less than the dynamical timescales of the stellar part.

4.3.1 Radial Expansion due to the Gas Loss

We first present a criterion obtained by Hills (1980). He showed that a system of stars and gas
loosing more than half of its mass in less than a dynamical timescale will disrupt:

We consider a virialized, spherically symmetric gas cloud before the onset of star forma-
tion. The cloud has the kinetic energy Ekin,0 = 1/2M0v2

0 and the potential energy Epot,0 =
−αGM2

0 /Rc. Here, M0 is the mass, v2
0 the square of the velocity dispersion due to thermal

movement of the molecules and R0 the radius of the original cloud. The geometric factor α
allows the application to different spatial structures, assuming that the gas cloud changes its
size homogeneously (Mathieu 1983). Using the virial theorem, 2Ekin,0 + Epot,0 = 0, we get the
square of the velocity dispersion

v2
0 = α

GM0

R0
. (4.3.17)

Next we assume that a certain fraction, the star formation efficiency ε, of the gas mass is
transformed into stars with the same velocity dispersion. We thus get the mass Ms = εM0 of
the stellar system after the star formation event and the mass Mg = (1 − ε)M0 of the residual
gas which is driven out of the cluster shortly afterwards by feedback processes of the stars.

If the time that is needed to drive the gas out of the system (gas expulsion timescale) is small
compared to the dynamical timescale of the stars, the stars cannot react and will retain their
velocities and kinetic energies during the gas expulsion. Consequently, the radius of the stellar
system stays constant. The total energy E = Ekin +Epot shortly after the gas loss is therefore

E =
1
2
Msv2

0 − α
GM2

s

R0
. (4.3.18)

Substituting v2
0 by Equation (4.3.17), we get

E =
1
2
Msα

GM0

R0
− α

GM2
s

R0
. (4.3.19)

On a longer timescale, the system will again reach virial equilibrium by adapting its radius to
the new value R. The total energy then is E = Epot/2 or

E = − 1
2
α
GM2

s

R
. (4.3.20)

By equating the last two expressions (4.3.19) and (4.3.20) we obtain the ratio of the new to the
initial radius:

R

R0
=

ε

2 ε− 1
. (4.3.21)
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Hills (1980) concludes that “if less than half the mass of an interstellar cloud forms into stars
before the rest disperses [. . . ], the new stellar system dissociates and forms an expanding associ-
ation”. Thus, to obtain bound stellar clusters, a star formation efficiency ε > 0.5 is needed. As
the typical star formation efficiencies are less than 10%, the formation of gravitationally bound
old open clusters and globular clusters is an interesting and yet unsolved problem.

On the other hand, if the expulsion timescale is much longer than the dynamical time, the
cluster will expand adiabatically. In that case R · M is constant and therefore (Hills 1980;
Mathieu 1983) the ratio of final to initial radius is

R

R0
=
M0

Ms
=

1
ε
. (4.3.22)

Numerical simulations investigating the stability of young star clusters after gas expulsion
have been done by Lada, Margulis & Dearborn (1984). They showed that open star clusters,
initially in virial equilibrium with the surrounding residual gas and containing up to 100 stars,
can remain bound even if the star formation efficiency is as low as 30%. In their simulations
they treated the residual gas as a variable external potential added to that of the stars. Good-
win (1997) extended these simulations to globular clusters, increasing the number of particles,
allowing for different gas expulsion mechanisms and including loss of stars due to the galactic
tidal field. Klessen & Burkert (2000) and Klessen & Burkert (2001) presented high-resolution
simulations of cluster formation in turbulent molecular clouds. Their models lead to bound
clusters for very low star formation efficiencies. Additionally, a semi–analytic model by Adams
(2000) also claims that the formation of bound star clusters occurs even for global star formation
efficiencies much smaller than 50%.

4.3.2 Influence of Different Density Distributions on Stability

Now we look at a more detailed model to obtain a threshold for the star formation efficiency.
We assume that the stars after their formation virialize in their own potential and that of the
residual gas. We again consider instantaneous gas expulsion only. Is the remaining system of
stars still bound after the gas has been ejected ?

We assume different spherical symmetric density distributions ρs = ρ̄s r
−ns for the stars and

ρ0 = ρ̄0 r
−ng and ρg = ρ̄g r

−ng for the gas before and after star formation, respectively. Beyond
the cut-off radius R, the densities are set to zero. This describes a globally stable gas cloud with
constant radius, that only shows local fragmentation and star formation.

The total masses M =
∫ R
0 4π r2 ρ(r) dr of the original gas cloud, the residual gas and the

stars are

M0 =
4π

3− ng
ρ̄0R

3−ng , Mg =
4π

3− ng
ρ̄g R

3−ng and Ms =
4π

3− ns
ρ̄sR

3−ns . (4.3.23)

For the convergence of the integration, ng, ns < 3 is required. If we adopt a global star formation
efficiency ε = Ms/M0 we get the relations

ρ̄s

ρ̄0
= ε∗ with ε∗ =

3− ns

3− ng
Rns−ng ε and

ρ̄g

ρ̄0
= 1− ε . (4.3.24)

The local star formation efficiency, measured at a certain point in the cloud, may vary with
radius.
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We apply the virial equilibrium condition given by Spitzer (1978) to the stars in our system:

2Ekin,0 + Esg = 0 with Esg = −
∫
V

d3r ρs(r) r
dΦsg

dr
. (4.3.25)

Here, Ekin is the kinetic energy of the stars and Esg is the potential energy of the stars with
respect to the potential Φsg caused by the stars itself and the surrounding residual gas.

After gas expulsion, the remaining stellar system will only stay bound, if the total energy

Etot = Ekin + Es < 0 with Es = −
∫
V

d3r ρs(r) r
dΦs

dr
, (4.3.26)

where Es and Φs are the potential energy and the potential of the stars, respectively. If we again
consider only fast gas expulsion, the stars will keep their kinetic energies and Ekin = Ekin,0.
Now, inserting Ekin,0 from Equation (4.3.25) leads to the condition

Es <
1
2
Esg (4.3.27)

for bound stellar clusters (Elmegreen & Efremov 1999).
To derive Es and Esg, we directly apply the definitions in (4.3.25) and (4.3.26). However,

the term including only the stellar potential can also be written as the usual potential energy
term

Es =
1
2

∫
V

d3r ρs(r) Φs(r) , (4.3.28)

which can be evaluated more straight forward. The gravitational potentials inside and outside
a sphere are given by

Φ (r) = − 4πG

1
r

r∫
0

ρ
(
r′
)
r′

2
dr′ +

∞∫
r

ρ
(
r′
)
r′ dr′

 . (4.3.29)

The first term of the potential (4.3.29) comes from the sphere inside the radius r replaced by a
point mass, the second term is the constant potential in the center of a shell integrated from r

to infinity. To obtain Φs, we have to replace ρ = ρs in above equation. To obtain Φsg, we have
to insert the sum ρ = ρs + ρg.

Carrying out the integrations in eqs. (4.3.28), (4.3.25) and (4.3.29) using the given density
distributions, which are zero for r > R, the criterion (4.3.27) leads to

ε >
5− 2ns

10− 3ns − ng
. (4.3.30)

The results are visualized in Figure 4.1. In the special case, where the stars and the gas follow
the same density distribution, ns = ng, we get a local star formation efficiency that is constant
over the entire radius. The criterion then simplifies to ε > 1/2, which is equal to the result
obtained by Hills (1980) as shown in section 4.3.1.
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Figure 4.1: The minimum star formation efficiency εm that is needed to get a bound star cluster.

Left: εm with respect to the index ns of the star cluster. The different lines correspond, from

bottom to top, to different indices ng = 0, 0.2, 0.4, . . . , 5.0 of the gas cloud. Right: εm with

respect to the index ng of the residual gas. The different lines correspond, again from bottom

to top, to different indices ns = 0, 0.2, 0.4, . . . , 2.5 of the stellar part. We emphasize that ng ≥ 3
leads to infinite masses (corresponding to curves above the straight line in the left diagram)

In the more general case, the more concentrated the stars are with respect to the gas, the
lower is the critical star formation efficiency that allows the formation of bound clusters. This
expresses the fact that under this conditions the local star formation efficiency in the center of
the cloud is higher than the global one.

As the typical Galactic star formation efficiencies are less than 10%, different approaches
were made to explain bound cluster formation in clouds with low star formation efficiencies.
One way out may be a collapse of the star cluster before the gas is completely expelled, leading
to a higher “effective” star formation efficiency. Lada et al. (1984) and Verschueren (1990)
proposed a low or zero initial velocity dispersion to explain the collapse. This would decrease
the kinetic energy in (4.3.26) and allow a greater change in the potential energy. Saiyadpour,
Deiss & Kegel (1997) considered the effect of dynamical friction on the stellar cluster to reduce
the stellar velocities.

4.4 Implementation of Stellar Feedback in SPH

Stellar feedback by high mass stars causes the self regulation of the star formation process.
Thacker & Couchman (2000) examine various methods of implementing supernova feedback
in simulations of galaxy formation. They either distribute the feedback energy as thermal
energy over the SPH smoothing length or deposit it into one single particle. Nakasato, Mori &
Ken’ichi (2000) take into account energy feedback by supernova and stellar winds. Assuming
that thermalisation is fast enough, they distribute the energy as thermal energy smoothly over
the nearest neighbours. They also consider mass ejection. However, most destructive is the
ionizing radiation – once the interstellar medium is ionized, star formation will be terminated
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immediately.

Nearest Neigbour Heating

In our simulations we include feedback by massive stars by heating up the gas around each N–
body particle that has formed. We now estimate the amount of energy one N–body particle feeds
back into the medium, which is proportional to the relative amount of massive stars contained
in the particle. This energy is then smoothly distributed to the nearest gas particles, using the
SPH kernel, at every timestep of the N–body particle.

To get an idea on the initial number of OB stars in a star cluster we assume a Salpeter
(1955) initial mass function (IMF) f(m) which gives the number of stars inside the mass interval
[m. . .m+ dm]:

f(m) dm = km−α dm . (4.4.31)

The parameter α gives the slope of the IMF. Given the total mass M of the stellar system,
the normalization constant k is fixed by evaluation of the integral

∫
mf(m) dm from the lowest

allowed mass mmin to the highest allowed mass mmax:

k =
(2− α)M

m2−α
max −m2−α

min

. (4.4.32)

The total number of stars is

N =

mmax∫
mmin

f(m) dm =
2− α

1− α
M

m1−α
max −m1−α

min

m2−α
max −m2−α

min

. (4.4.33)

The cases α = 1 and α = 2 must be treated separately.
Thus, the total number NOB of OB stars with masses greater than mOB is

NOB =

mmax∫
mOB

f(m) dm (4.4.34)

and the number of OB stars per stellar mass is

κ =
2− α

1− α

m1−α
max −m1−α

OB

m2−α
max −m2−α

min

. (4.4.35)

For typical parameters mmin = 0.1M�, mmax = 100M�, mOB = 10M� and α = 2.35 we have
κ = 0.0054/M�

If we assume a mean energy rate η̄ which is fed into the interstellar medium by one typical
high mass star, with the above definition of the number of OB stars per mass, the energy rate
per mass is κ η̄. Additionally, if we assume that every single N–body particle feeds back energy
to its surroundings according to its mass and the ratio of OB stars κ, we get the energy feedback
from one N–body particle with mass mi evolved one timestep ∆t as ∆E = κ η̄ mi ∆t.

For example, stellar wind energy rates of η̄ = 2.4 · 1027J/s lead to
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∆E = 6.4 · 10−6 J/(s kg)mi ∆t , (4.4.36)

and ionizing energy rates of η̄ = 2 · 1029J/s to

∆E = 5 · 10−4 J/(s kg)mi ∆t . (4.4.37)

In code units, for a simulation with units R̂ = 50 pc and M̂ = 105M� we have (Table 3.1)
∆E′ = 3.9 · 102m′

i ∆t
′ for winds and ∆E′ = 3 · 104m′

i ∆t
′ for ionization, respectively.

In our simulations, we have the additional freedom to choose when we turn on the heating
from a N–body particle after its formation. This delay time tdelay may have severe influence on
the star formation efficiency and the boundness of the cluster.
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Chapter 5

Numerical Simulation of Gas

Expulsion from Star Forming

Regions

In this chapter we present simulations of gas expulsion from star forming regions. As shown
in Chapter 4, the loss of the residual gas can unbind the embedded stellar system and thus
determines the fate of the young cluster.

Our simulations start after the cluster has formed with a given star formation efficiency, but
before the residual gas has been expelled. The dynamical timescale of a typical globular cluster
with mass 105M� and radius 10 pc is td ≈ 1.5 ·106 yr. Assuming that the cluster contains about
N ≈ 105 stars, we get the relaxation time of tr ≈ 1.6 · 109 yr (Equation (3.2.25)). As we restrict
our simulations to the early evolution of young clusters, relaxation effects can be neglected and
we can represent the stellar system by collisionless, equal mass N–body particles.

In the first section, the effect of the ejection of the residual gas on the stellar system is treated
as a time variable external potential, similar to the approach of Lada, Margulis & Dearborn
(1984). Varying the assumed star formation efficiency and the timescale of gas expulsion shows
their effect on the boundness and the evolution of the density distribution of the young star
cluster.

To describe the physics more properly, we replaced the simple description of the residual gas
using an external potential by extending our simulations using SPH to follow the hydrodynamic
evolution of the gas.

Parts of this Chapter have already been published (Geyer & Burkert 2001).

5.1 Gas Expulsion in Pure N–body Simulations

In the following, all quantities are given in dimensionless code units (see Section 3.3). Thus,
taking typical globular cluster properties M̂ = 105 M� and R̂ = 10pc as mass and length units,
respectively, we obtain a time unit t̂ = (G ρ̂)−1/2 = 1.5 · 106 yr with the density unit ρ̂ = M̂/R̂3.

5.1.1 Initial Configuration and the Gas Expulsion Phase

As mentioned in the overview given in Section 2.1, globular clusters can be well described by
King (1966) distribution functions
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f(E) =

{
ρ1 (2π σ2)−3/2 (eE/σ2 − 1) E > 0
0 E ≤ 0

. (5.1.1)

As they only depend on an integral of motion, the energy, this is an isotropic equilibrium solution
of the collisionless Boltzmann equation as described in Section 3.2. The notation suggested by
Binney & Tremaine (1987) uses the relative potential and energy

Ψ = −Φ + Φ0 and E = −E + Φ0 = Ψ− 1
2
v2 , (5.1.2)

where σ is the velocity-dispersion parameter and the constant Φ0 is chosen such that the distri-
bution function vanishes for E ≤ 0. Here Φ is the gravitational potential and E the total energy
per mass. King models can be parameterized by either the dimensionless quantityW0 = Ψ(0)/σ2

or the concentration c = log10(rt/r0), using the King radius r0 = (9σ2/4πGρ(0))1/2.
The radial density ρ(r) and the potential Ψ(r) can be computed by numerical integration

of the Poisson equation 4Ψ = − 4πGρ(Ψ) or, using the dimensionless radius R = r/r0 and
dimensionless potential W = Ψ/σ2,

d

dR
(R2 dW

dR
) = − 9R2 ρ(W )

ρ0
. (5.1.3)

The density is obtained by integrating the distribution function over the velocity space:

ρ(W ) = ρ1 (eW erf (
√
W )−

√
4W
π

(1 +
2
3
W )) . (5.1.4)

The main advantage of a King model is its finite radius: Outside the tidal radius rt the density
vanishes. The tidal radius grows rapidly with increasing W0. In the limit W0 → ∞, the King
distribution equals the isothermal sphere.

To obtain a stable initial configuration of stars and gas, in a first step the stars are dis-
tributed according to a King distribution function with total mass equal to that of the initial
gas cloud. The potential is tabulated and is used for modelling the external gas potential during
the simulation. Therefore, stars and gas have equal density distributions. Finally, the mass of
the stars and the gas are scaled according to the given star formation efficiency. Now the stars
are in virial equilibrium within the sum of their own potential and the potential of the gaseous
component. The parameters of the different models are given in Table 5.1. The dynamical
timescales were obtained as described in Section 3.2 with td =

√
1/(G ρ̄). For each model, the

star formation efficiency is varied between 0.15 and 0.80.
To test whether the initial system is in virial equilibrium, several calculations without gas

expulsion are performed. The density distributions are well conserved.
For analysing the data, we use the following method to define the cluster center: We calculate

the center of mass for all particles inside a sphere with given boundary radius. The center of
mass of that sphere is shifted to the center of the coordinate system. Then the boundary radius
is increased and the scheme is repeated until the center of mass lies within the desired error
limit. Velocities are shifted to the frame of rest of the clusters.
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Table 5.1: Parameters of the Initial Configurations (N–body)

model W0 td Rt R1/2 N δ

N1 3.0 0.57 1.26 0.34 1000 0.1
N2 5.1 0.34 1.33 0.24 1000 0.1
N3 3.0 0.57 1.26 0.34 4000 0.05

W0 = ψ(0)/σ2: scaled central potential of the King profile; td: dynamical timescale at half-mass

radius; Rt: tidal radius of King profile; R1/2: half–mass radius; N : number of particles used in

simulation; δ: numerical (Plummer) smoothing length; total mass (stars and gas) of all models

was set to 1; all quantities are given in dimensionless code units (see text).

We simulate the gas expulsion starting at time t = t0 by multiplying the external potential
by a time dependent factor

ξ =


1 t < t0
1− (t− t0)/texp if t0 < t < t0 + texp

0 t > t0 + texp

, (5.1.5)

where texp is the time that is needed to drive the gas out of the system (gas expulsion time).
We can estimate the order of the gas expulsion time: The isothermal sound speed of a

molecular cloud gas with temperature T = 10 K and molecular weight µ = 2.36 g/mol is a =√
Rgas T/µ = 0.19 km s−1, where Rgas is the gas constant. If we consider a disruptive process

that starts at the centre of a cloud as given by model N1 and travels outwards with sound speed, it
will need approximately a time of texp = Rt a

−1 ≈ 6.6 106 yr (or texp ≈ 4, given the dimensionless
code units above) to reach the edge of the cloud. Fast processes (e.g. supernova explosions)
may remove the gas on shorter timescales. The gas expulsion time will therefore presumably
be of the order of a dynamical time which is equal to the unit of time. In the simulations we
use texp = 0, 2, 4 and 10, which are equal to 0, 3.5, 7.0 and 18 dynamical timescales at half-mass
radius of model N1 and N3 and 0, 5.9, 12 and 29 dynamical timescales of model N2.

5.1.2 Dynamics of the Cluster During and After Gas Expulsion

The typical evolution of the N–body part of a cluster with texp = 2 (3.5 dynamical timescales)
is displayed in Figure 5.1. Starting at t = 20 the external potential is slowly reduced to zero as
described in the previous section. The cluster expands. A certain amount of stars gets unbound
and starts leaving the system. The bound ones relax after the gas has been completely removed,
forming a broader configuration. A particle is supposed to be unbound if its total energy (kinetic
energy plus potential energy) is positive. This criterion is different from the one used in similar
simulations by Goodwin (1997), who marked all stars outside a given tidal radius as unbound.

Figure 5.2 shows the evolution of the Lagrangian radii containing 10%, 50% and 70% of the
current bound mass of the system and the virial ratio η = −2Ekin/Epot of the bound particles.
The constant mass radii and virial ratios before gas expulsion show that initially the system is
indeed in virial equilibrium. When the superimposed gas potential decreases (t > 20), the mass
radii increase rapidly and relax for t > texp. This behaviour is also reflected in the virial ratio:
The decreasing absolute value of the potential increases the virial ratio and causes expansion of
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Figure 5.1: Time evolution of model N3. The time t is given in dimensionless units. The star

formation efficiency is ε = 0.4, expulsion time texp = 2. The plots show the N–body particles

projected onto the x–y–plane; unbound particles are marked red. Gas expulsion starts at time

t = 20. 44



 

0 50 100 150 200 250 300
dimensionless time t

0.5

1.0

1.5

2.0

2.5

3.0

m
as

s 
ra

di
i

10% mass radius
50% mass radius
70% mass radius

 

0 50 100 150 200 250 300
dimensionless time t

0.70

0.80

0.90

1.00

1.10

vi
ria

l r
at

io
 η

Figure 5.2: Time evolution of the mass radii (left panel) and the virial ratio η (right panel) of

the system shown in Figure 5.1.

the system. By that expansion, the potential increases again and counteracts the actual motion
– the stellar system contracts again. Examining the 70% mass radius, several oscillation can be
observed. At the end, the system achieves a more extended equilibrium state, with a virial ratio
that deviates less than 3% from the equilibrium case η = 1.0.

The radial expansion factor of the cluster can be estimated in the adiabatic case (expulsion
timescale is much longer than the dynamical time), where R ·M is constant, by Equation (4.3.22).
This gives the ratio of final to initial radius

Rf

Ri
=
Mc

Ms
=

1
ε

with 0 < ε ≤ 1 . (5.1.6)

On the other hand, if the expulsion time is short compared to the dynamical time, we can
apply conservation of kinetic energy per particle during the ejection of the gas which leads to
Equation (4.3.21):

Rf

Ri
=

ε

2 ε− 1
with

1
2
< ε ≤ 1. (5.1.7)

If ε ≤ 0.5 the final system is unbound.
Figure 5.3 shows the ratio of the final to the initial half-mass radii of the bound particles at

the end of the simulations N3 and N2, compared to the theoretical predictions of Equation 5.1.6
and 5.1.7. If stars are lost and the bound mass of the cluster is not conserved, Equation 5.1.6
and 5.1.7 are not strictly valid any more and discrepancies to the analytic approximations occur.

As expected, the simulations with long gas expulsion timescales fit well the solid curve,
representing the adiabatic case. The faster the gas expulsion, the larger is the ratio of the final
to the initial radius compared to the theoretical result.

The models with fast gas expulsion follow the dashed curve well for high star formation
efficiencies. For low star formation efficiencies, the ratio of final to initial radii is smaller than
the analytical prediction, which emphasizes that the divergence for ε = 0.5 does not occur in
numeric simulations: The final radius is decreased by excluding the unbound particles which are
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Figure 5.3: Ratio of the final to the initial half–mass radii versus star formation efficiency of the

simulations (left: model N3; right: model N2) for various expulsion timescales texp.

located preferentially at high radii. Additional, the outgoing particles reduce the total energy
of the remaining system and leave behind a tighter bound core.

Ashman & Zepf (2001) stress that for understanding the globular cluster formation process,
one needs to explain that giant molecular clouds follow a tight mass–radius relation, whereas
globular clusters show no correlation between radius and mass. They propose that a star for-
mation efficiency, that varies from cloud to cloud, causes the different final radii of the formed
star clusters.

5.1.3 Constraints on the Star Formation Efficiency

After the gas expulsion the system of the remaining bodies relaxes again (Figure 5.2). Figure 5.4
shows the ratio of the number of finally bound stars to the initial number of stars for various star
formation efficiencies and gas expulsion timescales. The upper panel provides a resolution study
of the runs N1 and N3 with 1000 and 4000 particles, respectively. Within the uncertainties
they are indistinguishable. Large dots show results from Lada et al. (1984) obtained from
simulations with 50 (!) stars. As can be seen, the number of particles used does not influence
the results, at least in the instantaneous gas expulsion case. This proves that the early results
obtained by Lada et al. (1984) for open clusters also hold for globular clusters. For finite gas
expulsion timescales we use the dynamical timescale td as a basis for comparison: Our curves
with texp = 3.5, 7.0 and 18 td overlap with the points obtained by Lada et al. (1984) for texp = 3
and 4 td.

The right panel compares the initially more concentrated King model (N2) to the less con-
centrated one (N1). We find that the curves of model N2 with texp > 0 are shifted to lower
star formation efficiencies or higher ratios of bound stars, respectively. This is due to the lower
half-mass dynamical time of the more concentrated cluster N2 (Table 5.1), confirming that only
the ratio of the expulsion timescale to the dynamical timescale is important. Thus, more con-
centrated clusters have a larger chance to survive. In the case of instantaneous gas expulsion
(texp = 0) the models N1 and N2 yield the same curve.

The ratio of bound to unbound stars gives a threshold for the star formation efficiency ε
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Figure 5.4: Ratio of the number of bound stars to the initial number of stars in the relaxed

system after gas expulsion. Left: models N1 and N3; Right: models N1 and N2; each symbol

represents one run with given star formation efficiency and gas expulsion time; large dots are

results taken from Lada et al. (1984), Figure 2 therein.

necessary to form bound clusters. In case of instantaneous gas expulsion (see Figure 5.4) the
curves are centered around ε = 0.45, which is somewhat less than the theoretical limit ε = 0.5
for bound clusters given by Hills (1980).

Adams (2000) recently gave analytic approximations for the dependency of the number of
bound stars on the star formation efficiency in the case of instantaneous gas expulsion. For a
star formation efficiency ε = 0.5 about 73% of the stars are kept, in good agreement to our
results from Figure 5.4 (texp = 0). However, our results show a stronger dependence of mass
loss on the star formation efficiency ε. Contrary to Adams (2000), star clusters with a star
formation efficiency lower than ε = 0.4 are dissolved in our simulations. This discrepancy can
be understood from the fact that Adams uses density distributions of gas and stars with very
different concentrations. Thus, even if the global star formation efficiency is small, the local star
formation efficiency in the region of star formation could be as high as 90%, leading to a bound
system.

Besides these results in the instantaneous gas expulsion case, our simulations show that the
number of finally bound stars increases with the gas expulsion time. In order for more than 50%
of all the stars to remain bound the star formation efficiency must be equal to 45%, 30%, 25%
and 20% for gas expulsion times texp =0, 2, 4 and 10, respectively. The Galactic average star
formation efficiency in giant molecular clouds is of the order of a few percent (Myers et al. 1986,
Williams & McKee 1997). Koo (1999) has observed star formation efficiencies up to 15% in the
star forming-region W51B, maybe due to shock-interaction with a spiral density wave. Given
these star formation efficiencies, unrealistic high gas expulsion timescales are required to obtain
bound clusters. Only few clouds show star formation efficiencies up to 30% or 40% (Lada 1992)
and may stay bound.

Kroupa, Aarseth & Hurley (2001) showed that in simulations, which include collisions be-
tween particles, one third of all stars of the initial cluster remains bound in case of a global
star formation efficiency of 30%. The gas is removed on a timescale of order of the dynamical
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timescale. They argue that two-body encounters in the radial outwards flow scatter back par-
ticles. By that, kinetic energy is redistributed from radial outflow into orbital motions. This
process might enhance the number of final bound particles compared to our simulations.

5.2 Combined N–body and Hydrodynamical Simulations

In Section 5.1, the effect of gas removal is treated as a time variable external potential. To
describe the physics more properly, we extend our simulations using smoothed particle hydro-
dynamics as described in Section 3.5.

The conversion from code units to physical units is the same as in Section 5.1.1. Additionally,
we describe the internal energy of the gas with the dimensionless temperature that scales with
T̂ = GM̂ µ/(L̂ Rgas γ̄) as given in Table 3.1. For an ideal gas with γ̄ = 3/2 and µ = 1.0 g/mol,
we have T̂ = 3.5 103 K.

5.2.1 Initial Configuration and Models for Gas Expulsion

Murray & Lin (1992) proposed as initial conditions pressure-confined protocluster clouds. Indeed
Ashman & Zepf (2001) argue that high pressure environments like starburst galaxies or mergers
of galaxies would produce more compressed giant molecular clouds which could lead to globular
cluster formation.

As a reasonable initial configuration we therefore adopt a pressure-confined, isothermal
Bonnor–Ebert sphere (Ebert 1955; Bonnor 1956).

Assuming spherical symmetry and equilibrium, we can derive the differential equation for
the static pressure distribution using the three dimensional equation of motion (3.1.21) and the
Poisson equation (3.1.23):

1
r2
∂

∂r

r2

ρ

∂p

∂r
= − 4πGρ . (5.2.8)

Using the ideal equation of state p = RT/µρ we obtain

1
r2
∂

∂r

r2

ρ

∂ρ

∂r
= − 4πGµρ

Rgas T
. (5.2.9)

With the transformations (Bonnor 1956)

ρ = ρc exp(−ψ) and r =

√
β

ρc
ξ with β =

RT

4π µG
(5.2.10)

we get the Isothermal Lane-Emden-Equation

1
ξ2
∂

∂ξ
ξ2
∂ψ

∂ξ
= exp(−ψ) . (5.2.11)

The first boundary condition is the central density ρ(0) = ρc. The vanishing gravitational forces
in the center of a spherical symmetric sphere lead to dρ/dr = 0 at the center r = 0. Using the
above variables, this reads ψ = 0 and dψ/dξ = 0 at ξ = 0. Equation (5.2.11) can only be solved
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numerically. However, Bonnor (1956) showed that the solutions are stable to radial density
perturbations as long as the cut-off radius of the sphere rmax < rc, where rc is determined by
ξmax < ξc with ξc ' 6.451.

To get a SPH realization of a Bonnor–Ebert sphere we compress a homogeneous sphere,
such that its mass M and radius R = rmax are conserved. Each particle with radius rh in the
homogeneous sphere will be assigned a new radius rb in the Bonnor–Ebert sphere. The total
masses mh and mb inside the spheres given by these two radii must be equal. We have

mh(rh) =

rh∫
0

dr′h 4π r′2h ρh =
4
3
π r3h ρh (5.2.12)

and

mb(rb) =

rb∫
0

dr′b 4π r′2b ρb(r′b) = 4π

√
β3

ρc

ξb∫
0

dξ ξ2 exp(−ψ(ξ)) , (5.2.13)

where ξb =
√

ρc

β R and ρb = ρc exp(−ψ(ξ)). Equating the total masses of the homogeneous

sphere and the Bonnor–Ebert sphere, mh(R) = mb(R) we obtain

R3 ρH
√
ρc

3β3/2
=

ξmax∫
0

dξ ξ2 exp(−ψ(ξ)) . (5.2.14)

We get the central density and the parameter β of the configuration with given ξmax using
rmax = R =

√
β
ρc
ξmax:

ρc =
ρH ξ3max

3
ξmax∫
0

dξ ξ2 exp(−ψ(ξ))

and β =
R2

ξ2max

ρc . (5.2.15)

Thus, fixing ξmax, M and R determines ρc and β which essentially gives the temperature T of
the sphere.

In general, equating the masses inside the particle radius rh, mh(rh) = mb(rb) we obtain

ξB∫
0

dξ ξ2 exp(−ψ(ξ)) =
r3h
R3

ξmax∫
0

dξ ξ2 exp(−ψ(ξ)) . (5.2.16)

So for each particle with radius rh we can, by numerical integration, compute the corresponding
ξb and rb and build up the desired Bonnor–Ebert sphere.

Stars and star clusters form in molecular clouds with temperatures of order 10 K, and are
stabilized by a turbulent velocity field. In this first approach we neglect turbulence. In order to
prevent global collapse we then have to increase the temperature to its virial value T = 2.7 103 K.
This implies an energy Et = γ̄ McRgas T/µ, corresponding to a turbulent velocity field with
vtur =

√
2Et/Mc = 8.1 km/s. The initial configuration of the Bonnor–Ebert sphere is given
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Table 5.2: Parameters of the Initial Configurations Including Gas Dynamics (N–body & SPH)

model rh td N T δ R ξb

S1 0.7 0.8 2× 4000 0.76 0.01 1.0 4.0
S2 0.7 0.8 2× 11045 0.76 0.05 1.0 4.0

rh: half-mass radius; td: dynamical timescale at half-mass radius; N : number of particles; T :

gas temperature; δ: numerical (Plummer) smoothing length (N–body part only); R: cut-off

radius; ξb: dimensionless cut-off radius, see Bonnor (1956); total mass (stars and gas) of all

models was set to 1; all quantities are given in dimensionless code units (see text).

in Table 5.2. Simulations of a cold 10K molecular gas cloud stabilized initially by a turbulent
velocity field will be discussed in the following chapter.

To get a combined system of gas and stars, we add N–body particles with an equal density
distribution, scaling the masses of the stars and the gas according to the star formation efficiency
ε. The velocity dispersion of the particles is chosen according to the temperature of the gas.

Isothermal spheres extend to infinity. In order to get a finite configuration, the gas density is
set to zero at an arbitrary radius. To stabilize the gas sphere an external pressure is applied: For
each SPH particle, the individual pressure pi is decreased by the external pressure pext, which
is given by the pressure at the cut-off radius of the Bonnor–Ebert sphere:

pext = p(R) =
R

µ
ρ(R)T =

R

µ
T ρc exp(ψ(ξmax)) . (5.2.17)

Test calculations with pure gaseous Bonner-Ebert spheres using this procedure were in equilib-
rium and showed no dynamical evolution. If we convert a certain fraction of the mass inside
the Bonnor–Ebert sphere to stars with a given star formation efficiency ε, we decrease the den-
sity distribution: ρgas = (1 − ε)ρ. Equation (5.2.9) is not altered, so the system is still in
hydrodynamic equilibrium. But the pressure of the system decreases and we have

pext =
Rgas T

µ
(1− ε) ρ(R) . (5.2.18)

The N–body part of the system cannot be supported by an external pressure. Therefore the
velocity dispersion of the N–body particles is decreased and the system is allowed to relax until
a stable configuration is obtained.

Figure 5.5 shows the evolution of one typical setup prior to gas removal. About 2% of the
N–body particles are lost, but after some oscillations the main part achieves an equilibrium
state. This configuration is then used as initial model for following investigations. The different
models used are shown in Table 5.2.

To completely expel the residual gas from the cluster, the amount of energy fed into the
gas must be comparable or greater than the binding energy of the gas, which in case of a
homogeneous density distribution for gas and stars is

Wgas = 4π

R∫
0

(
1
2
ρg φg + ρg φs) r2 dr =

3 (ε2 − 1)GM2
c

5R
, (5.2.19)
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Figure 5.5: Evolution of the mass radii (left) and virial ratio (right) of a combined N–body and

SPH simulation. At the end of the stability test the system is in equilibrium.

where ρg and φg are the constant density and the gravitational potential of the gas and φs is
the potential of the stars.

As the processes of gas expulsion are not well understood, we choose two simplified scenarios,
where the energy input of the stars is high enough to expel all the residual gas: In our first model
we heat up the whole gas cloud by a factor of 10. This might resemble a young cluster where
the gas is heated up homogeneously by stellar winds or ionizing radiation (see Section 4.2).
As a result, the gas starts to expand and is removed. Our models are scale free and can be
applied to various initial conditions. For a typical molecular cloud with the parameters given
in Section 5.1, the binding energy of the gas is Wgas ≈ (ε2 − 1) 5.2 · 1042 J and the temperature
increase is ∆T = 2.4 · 104 K, which is equivalent to an energy input of ∆E = γ̄ Mg Rgas ∆T/µ ≈
(1− ε) 5.9 · 1043 J, where Mg = (1− ε)Mc is the mass of the residual gas.

In our second scenario we simulate an outward propagating shock front, disrupting the gas
cloud. Such shock fronts may be generated by combined supernova explosions and winds from
central high-mass stars. The formation of supershells and their ability to disrupt the cloud are
discussed in various papers with regard to chemical self-enrichment of globular clusters (Morgan
& Lake 1989; Brown et al. 1995; Parmentier et al. 1999). Goodwin, Pearce & Thomas (2000)
investigate single supernovae in gas clouds. In our simulation we heat up a small inner core
with radius R = 0.2. All 229 SPH particles inside R are heated by a factor of 200. Applying
again the typical parameters given in Section 5.1, the temperature increase is ∆T = 5.2 105 K,
corresponding to an energy input of ∆E ≈ (1− ε) 2.7 1043 J. This is less than the typical energy
ESN = 1044 J of a single supernova. However, it must be taken into account that only a few
percent of the supernova energy is fed into the gas (Goodwin, Pearce & Thomas 2000) and
therefore several supernovae may be needed to disrupt the cloud.

5.2.2 Evolution of the Cluster During and After Gas Expulsion

Figure 5.6 shows the time evolution of a system with gas ejection in a supershell. The shell
reaches a velocity up to 5 times the sound speed of the initial system. Once the internal pressure
of the expanding gas is smaller than the adopted external pressure, the outward propagating
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shell becomes unstable and develops substructures. At that stage, less than two dynamical
timescales after the gas removal started, the gas density in the cluster region is so low that its
gravitational effect on the stellar component is negligible. We therefore remove the gas and
follow the evolution of the stars alone. The globally heated cloud models show a very similar
evolution and are treated in the same manner.

Figure 5.7 corresponds to Figure 5.4 in the pure N–body case. For comparison, the dashed
curves reproduce the results of the pure N–body simulations.

For instantaneous gas expulsion (all the gas particles are removed at once), corresponding
to the case texp = 0 in Section 5.1, the simulations using the Bonnor–Ebert sphere as initial
configuration are in very good agreement with the simulations using a King density distribution.
The slightly higher dynamical timescale of the Bonnor–Ebert sphere (see Table 5.2) may cause
the small differences for small star formation efficiencies: the simulation was not run long enough
for all particles to get unbound. We therefore conclude that the density distribution has no
influence on the number of bound particles after gas expulsion, at least if texp = 0.

The asterisks in Figure 5.7, right panel, show system S1 where the temperature of the whole
cloud was increased by a factor of 10 with respect to the equilibrium model. The number of
bound stars increases slightly compared to the case with instantaneous gas expulsion. The
diamonds in the left panel show the results for a cloud centrally heated to T = 152 (system
S2). Compared to the first model S1, no significant differences are visible. Again, the number of
bound stars increases slightly. However, the gas expulsion process in both cases is much faster
than the timescales adopted in Section 5.1. Therefore, also in more realistic cases, high star
formation efficiencies are needed to sustain a bound star cluster.

One way out may be a collapse of the star cluster before the gas is completely expelled,
leading to a higher “effective star formation efficiency”. Lada et al. (1984) and Verschueren
(1990) proposed a low or zero initial velocity dispersion to explain the collapse. Saiyadpour,
Deiss & Kegel (1997) considered the effect of dynamical friction on the stellar cluster.

We implement the first approach by setting the initial velocity dispersion of the stars to
zero and heating the whole gas cloud. In each of the simulations, the cluster virializes after
gas expulsion within a half-mass radius that is about 40% of the initial radius, or about 2.7 pc
applying again the typical units. Only few stars that gain velocities higher than the escape
velocity of the cluster are ejected. For a wide star formation efficiency range the percentage of
bound stars at the end of the simulations is nearly constant and higher than 80% (Figure 5.7,
left panel, triangles). Even our run with the lowest star formation efficiency ε = 0.02 leads to
a bound system. However, small star formation efficiencies by definition lead to low mass star
clusters. In order to obtain observed globular cluster masses, our initial cloud mass has to be
rescaled to higher values. Even if this scenario is very unlikely, for reasonable initial conditions
bound clusters can be formed with masses and radii similar to observed globular clusters.

5.3 Density Distributions of the Star Cluster after Relaxation

We now study the structural evolution of the star clusters during the gas expulsion and after
relaxation. We fit King profiles to the density distribution ρ of the cluster in the following way:
The total mass of the cluster was set to the value given by the total mass of bound stars at
the given time. Fixing of two more parameters, in this case the scaled central potential W0 and
the tidal radius rt, determines the King density distribution ρk completely. The radial density
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Figure 5.6: Time evolution of model S2 during the gas expulsion phase (dimensionless time t).

The star formation efficiency is ε = 0.4 and central heating is applied. The plots show the

N–body particles (right) projected onto the x–y–plane; unbound particles are marked red. The

left figures show the logarithmic gas density in the x–y–plane; arrows indicate the velocity field.
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Figure 5.7: Ratio of the number of bound stars to the initial number of stars in the relaxed

system after gas expulsion; dashed lines indicate the results from Figure 5.4, model N3.

distribution is obtained by dividing the cluster into spherical shells with an equal number of 40
particles for run N3 to keep the error constant over the whole cluster radius. Only bound particles
were considered. For the fit, we used tabulated King profiles ρk withW0 = [1.0, 1.1, . . . , 9.9, 10.0].
Now, in a first step, the radius rt was fitted using an χ2 fit with

χ2 =
∑

i

(ρk(ri)− ρ(ri))2

ρ(ri)
(5.3.20)

for all values of the scaled potential W0. In a second step, the best fit for the scaled potential
W0, regarding the above χ2, was chosen. Another logarithmic criteria to choose the best W0

proved useful:

χ2 =
∑

i

(log ρk(ri)− log ρ(ri))2 . (5.3.21)

Figure 5.8 shows the fits for different timesteps. In the first timestep, both methods reproduce
the initial values. During and shortly after the gas expulsion, deviations from King profiles
occur: The density distribution shows an enhancement compared to the King profile in the inner
parts and a depression in the outer parts. This may be caused by particles getting unbound
preferentially in the outer parts of the system. After relaxation, the profiles again fit well the
remaining cluster. The method using the logarithm takes into account that the density varies
between several orders of magnitude. As can be seen, this method leads to better fits in the
outer parts of the clusters, where the density is low. Thus, the non-logarithmic fit leads to
smaller tidal radii and lower W0. Also, in the time evolution, the logarithmic method shows less
scatter. The discrepancies between the two methods show that the errors in determining W0

are not better than ±1.0.
The fitted values during the gas expulsion phase have to be taken with caution: From

Figure 5.9 we see that during gas expulsion the scaled potential raises fast and relaxes afterwards
at a value between 5.0 to 7.0. The diagram also shows the mean scaled potential regarding Milky
Way globular cluster as well as intervals containing 50% and 70% of all Milky Way globulars.
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Figure 5.8: Radial density and fitted King profiles at given timesteps; data taken from model

N3, star formation efficiency ε = 0.4 and expulsion time texp = 2.
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Figure 5.9: Evolution of the scaled central potential (left) and tidal radius (right), obtained

with the two fitting procedures described in the text; data taken from model N3, star formation

efficiency ε = 0.4 and expulsion time texp = 2; the horizontal solid line in the left diagram

gives the mean scaled potential W0 regarding Milky Way globular clusters (see Figure 2.2). The

dashed and dotted lines give the intervals containing 50% and 70% of all Milky Way globulars,

respectively.

Comparing these properties of more than 10 Gyr old clusters to those of the young clusters of our
simulations is reasonable, because they are preserved even during this long timescale (Murray
& Lin 1992). The good agreement of the chosen exemplary run with the mean scaled potential
is of course by chance. The variation of the final scaled potential W0 with the star formation
efficiency for the different expulsion times is shown in Figure 5.10. As one would expect from the
global expansion, the clusters tend to increasing concentrations with increasing star formation
efficiencies. All obtained values for the scaled potential lie well inside the given intervals. Large
scaled potentials can only be obtained in the case of fast or instantaneous gas expulsion or for
low star formation efficiencies.

Concluding from these simulations, the obtained relaxed, now gas free clusters, can be well
described by King profiles, like a substantial part of today’s globular clusters. However, to verify
the results simulations with different initial King parameters are necessary. By that, one might
be able explain the observed spread in the concentrations of Milky Way globulars (Figure 2.2).

5.4 Conclusions & Outlook

N–body and combined N–body & SPH calculations to investigate the influence of the residual
gas expulsion on the stellar part in star forming regions are presented.

We show that in the case of instantaneous gas expulsion, clusters with star formation effi-
ciencies greater than ε = 0.45 can keep more than 50% of the initial stars. Clusters with star
formation efficiencies less than ε = 0.40 are dissolved. Different concentrations of the initial
models show no effect at all on the number of bound stars if the gas is expelled instantaneous.

We confirm that gas expulsion timescales which are several times longer than the dynamical
timescale of the cluster can decrease the star formation efficiency needed to sustain bound
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Figure 5.10: Change in the final scaled potential W0 with respect to the star formation efficiency

ε; data taken from model N3; the horizontal solid line gives the mean scaled potential W0

regarding Milky Way globular clusters (see Figure 2.2). The dashed and dotted lines give the

intervals containing 50% and 70% of all Milky Way globulars, respectively.
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clusters considerably.
However, our simulations including the proper dynamics of the residual gas show that in

order to destroy the whole cloud by global heating or by supershells the gas expulsion must
take place on a short timescale, requiring a high star formation efficiency. Only few star forming
regions show such high star formation efficiencies. However, if the global star formation efficiency
averaged over a molecular cloud is low, bound cluster can form in regions where the local star
formation efficiency is high (Adams 2000).

Another possibility to form bound clusters with small efficiencies is indicated from the recent
simulations of Klessen & Burkert (2000) and Klessen & Burkert (2001), who study star formation
in turbulent molecular clouds. They find that the stars form preferentially in fragmenting
filaments, where most of the turbulent energy is dissipated. The newly-formed protostars have
small relative velocities corresponding to virial ratios η = −2Ekin/Epot < 1. We demonstrate
that models with stars having an initial zero velocity dispersion lead to a compaction of the
cluster and can explain bound systems even in low star formation efficiency regions: For star
formation efficiencies as low as ε = 0.15 more than 80% of the stars stay bound. Bound systems
are obtained even with star formation efficiencies lower than 10%. For future investigations it
is essential to know the velocity dispersion of newly-born stars in clusters. This initial velocity
dispersion may be a relic of the turbulent motions in the initial molecular cloud. In the following
chapter, we therefore focus on clustered star formation in a turbulent gaseous environment.
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Chapter 6

Numerical Simulation of Massive

Cluster Formation

The results of the foregoing chapter showed that strict conditions are necessary to form massive
bound stellar clusters. In this chapter we investigate how these circumstances can be achieved
during the formation process of the cluster. The formation of a bound stellar system is a race
between efficient star formation and feedback processes leading to an expulsion of the residual
gas. We start with a description of the initial models, representing giant turbulent molecular
clouds with a given power spectrum regarding the velocities. The clouds are thought to be on
the onset of instability: In our simulations, they collapse and fragment without an external
driver for the turbulence.

First, we examine how the various parameters regarding the star formation and feedback
implementation as presented in Chapter 4 affect the star formation process and the structure
of the resulting star cluster. In a next step, it is investigated under what circumstances bound
massive clusters can form. It will be shown that only rapid and spatial compact star formation
will lead to success. The spatial structures and evolution of the young clusters are examined.
As cloud collisions have long been proposed as a probable mechanism for triggering massive star
cluster formation, we also present a study of a simple head-on collision.

6.1 Initial Models

We choose our initial conditions to match the properties of giant molecular clouds, which are
generally believed to be the progenitors of massive star clusters like globular clusters. Gaussian
random fields are a useful tool to describe the turbulent random motions in those molecular
clouds. After a general description of gaussian random fields the realization used in the following
simulations are presented.

6.1.1 Gaussian Random Fields

We realize the initial turbulent velocity field of the molecular cloud using gaussian random fields.
Gaussian random fields can be fixed by their mean value, in our case the root mean square (rms)
velocity

√
v2, and the power spectrum P (~k) with respect to the wave number k. The power

is defined as the absolute value of the Fourier coefficients in k-space and thus determines the
distribution of the amplitudes among the different wavelengths of the turbulent perturbations
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in ~r-space. In the following, we will assume that the power spectrum is isotropic and follows a
power law.

Each velocity component vj(~r) can be described using the Fourier expansion

vj(~r) =
1

(2π)3

∫
v̂j(~k) ei

~k~r d3k . (6.1.1)

For vj(~r) to be real, vj(~r) = v∗j (~r), the complex conjugate must obey v̂∗j (~k) = v̂j(−~k). The con-
volution theorem for Fourier transformations gives the connection between the autocorrelation
function and the power spectrum P (~k) = |v̂j(~k)|2:∫

vj(~r ′) vj(~r ′ + ~r) d3r′ =
1

(2π)3

∫
P (~k) e−i~k~r d3k . (6.1.2)

A measurable quantity for molecular clouds is the velocity dispersion, which is directly connected
to the mean kinetic energy per mass

Ekin =
1

2V

∫
vj(~r ′) vj(~r ′)d3r′ . (6.1.3)

Using the above convolution theorem with ~r = 0 and assuming an isotropic power spectrum
P (~k) = P (|~k|), we get

Ekin =
1

2V
1

(2π)3

∫
4π k2 P (k) dk . (6.1.4)

If one measures the spectral energy, that is the energy of all the modes in the spherical shell in
k-space between k and k + dk, the connection to the power spectrum will be given by Ê(k) ∼
k2 P (k).

For a realization of a gaussian random field, we use the discretized Fourier transformation
(see Equation (6.1.1))

vj(~r) =
L3

(2π)3
∑
~k

v̂
j,~k
ei

~k~r , (6.1.5)

and assume that real and imaginary part of the Fourier coefficients v̂
j,~k

= u
j,~k

+i v
j,~k

are gaussian
distributed with variance σ2 = P (k):

P(u, v) =
1

2πP (k)
e− (u2+v2)/2P (k) . (6.1.6)

Variable transformation to spherical coordinates gives a uniform probability density function for
the phase φ

P(φ) =
1

2π
(6.1.7)

and the Rayleigh distribution for the amplitudes w of the Fourier coefficients v̂
j,~k

= w(cosφ +
i sinφ):

P(w) =
w

P (k)
e− w2/2 P (k) . (6.1.8)
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Figure 6.1: Time evolution of the number of particles per density unit for both initial runs.

Left: Model HIGH2, P (k) ∼ k−2. From top to bottom the lines show the timesteps t =
0.04, 0.08, 0.12, 0.16, 0.20, 0.24 and 0.28. Right: Model HIGH4, P (k) ∼ k−4. Shown timesteps

are t = 0.01, 0.02, 0.03, 0.08, 0.13, 0.18, 0.23 and 0.28.

This leads to the probability function P(X < w) =
w∫

−∞
P(w) or

P(X < w) = e− w2/2 P (k) , (6.1.9)

with maximum at w =
√
P (k). While φ is equally distributed between [0, . . . , 2π], the discrete

values for w can be derived by throwing a dice to get random numbers P(X < w) with 0 <

P(X < w) < 1 and using

w =
√
−2 ln(P(X < w))P (k) . (6.1.10)

6.1.2 Realizations

To get our initial conditions for cluster forming molecular clouds, we start with a cube with
length 2 in dimensionless units. Dubinski, Narayan & Phillips (1995) successfully describe the
power spectrum with the Kolmogorov law P (k) ∼ k−11/3. Myers & Gammie (1999) suggest
that most observed line width-size relations of molecular clouds can be produced by spectral
energy laws Ê(k) ∼ kp with p ' −1 . . . − 2. With Equation (6.1.4), this induces a power
spectrum P (k) ∼ kn with n = −3 . . . − 4. Burkert & Bodenheimer (2000) also show that such
power laws can reproduce the observed projected rotational properties of molecular cloud cores.
For our simulations, we use two different power laws P (k) ∼ k−2 and P (k) ∼ k−4. Table 6.1
summarizes the properties of the models. We superimpose gaussian random fields for the velocity
components vx, vy, vz and let the gas evolve without self-gravity but with periodic boundaries
until an equilibrium in the density distribution of the gas particles is reached (Figure 6.1). The
periodic force correction using the Ewald method is described by Klessen (1997). Without a
driver, the turbulence starts decaying (Figure 6.2). We chose the initial rms velocity such that,
as equilibrium is reached, the rms velocity is roughly 1.4 in dimensionless units. Compared to
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Figure 6.2: Time evolution of the rms velocities of models HIGH2 and HIGH4 for obtaining

initial conditions.

Table 6.1: Properties of the Realizations

Model Particles (cube) Particles (sphere) Power law rms vel. start rms vel. end
LOW2 80000 40000 k−2 6.0 1.38
LOW4 80000 40000 k−4 1.9 1.41
HIGH2 200000 100000 k−2 1.9 1.38
HIGH4 200000 100000 k−4 5.5 1.42

Properties of the realizations (“cube”) which are then used as the initial models for the following

simulations (“sphere”). In dimensionless units, the temperature of each models is T = 0.0092.

With the total mass m = 1.9 and the cube length l = 2, the mean initial density is ρ̄ = 0.24.

The dynamical timescale using this mean density is td = ρ̄−1/2 = 2.1. The mean isothermal

sound speed is aT = (T/γ̄)1/2 = 0.08.

the dimensionless isothermal sound speed a = 0.08, this gives a turbulent Mach number M = 18.
The slightly higher value compared to the typical one given in Chapter 2.3 (M = 10) makes
sure that the turbulent velocity field sustains long enough during the simulations to study its
effects. To get a roughly spherical cloud, we dropped particles outside the radius 1 and took
this as our initial conditions for the following simulations.

Figures 6.3 and 6.4 show the power spectra of the x–component of the velocity for the
initial realizations and for those timesteps, which are then used as the initial models for the
following simulations. In all cases, for low values of k, the slope of the power laws k−2 and k−4

is reproduced well. Figure 6.5 shows the time evolution of the density and the velocity field
of the runs HIGH2 and HIGH4. It is clearly visible, that the length scale of the turbulence in
HIGH4 (k−4) is greater, when compared to HIGH2 (k−2). The energy stored in the modes in
HIGH4 is shifted to longer wavelengths. In the following Sections, the feedback rates are scaled,
following Section 4.4, to a molecular cloud with mass M̂ = 105M� and radius R̂ = 50pc.
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Figure 6.3: Model HIGH2: Discrete power spectrum of the x component of the velocity at time

t = 0.0 (initial realization, left) and t = 0.20 (starting model for further runs, right). The

straight line indicates P (k) ≈ k−2.
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Figure 6.4: Model HIGH4: Discrete power spectrum of the x component of the velocity at time

t = 0.0 (initial realization, left) and t = 0.25 (starting model for further runs, right). The

straight line indicates P (k) = k−4.
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Figure 6.5: Cut through the logarithmic density (color encoded) and velocity fields (indicated

by arrows) at the spatial coordinate z = 0 of models HIGH2 (left) and HIGH4 (right). It is

clearly visible that in model HIGH4 most energy is stored in the long wavelength modes.
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Table 6.2: Initial Models for Cluster Formation Runs

name initial power spectr. ρglobal heating tdelay time crit.? εfinal

L1 LOW2 k−2 0.0 low 0.0 yes 0.050
L2 LOW2 k−2 0.0 high 0.0 yes 0.052
L3 LOW4 k−4 0.0 low 0.0 yes 0.067
L4 LOW4 k−4 0.0 high 0.0 yes 0.073
L5 LOW2 k−2 10.0 low 0.0 no 0.046
L6 LOW2 k−2 10.0 high 0.0 no 0.046
L7 LOW4 k−4 10.0 low 0.0 no 0.066
L8 LOW4 k−4 10.0 high 0.0 no 0.074
L9 LOW2 k−2 10.0 low 0.01 no 0.053
L10 LOW2 k−2 100.0 low 0.1 no 0.16
L11 LOW2 k−2 100.0 low 0.01 no 0.043
L12 LOW2 k−2 100.0 low 0.05 no 0.093
L13 LOW2 k−2 10.0 low 0.05 no 0.12
L14 LOW2 k−2 10.0 low 0.1 no 0.15
H1 HIGH2 k−2 100.0 low 0.1 no 0.16
H2 HIGH4 k−4 100.0 low 0.1 no 0.15
M1 LOW4 k−4 100.0 low 0.1 no 0.24
M2 LOW2 k−2 0.0 low 0.0 yes 0.088
M3 LOW4 k−4 0.0 low 0.0 yes 0.10
M4 LOW2 k−4 100.0 low 0.05 no 0.17

The initial models are described in Section 6.1.2; ”time crit.” tells whether the time criterion

from Section 4.1 was used or not; ρglobal gives the assumed density threshold, also described in

Section 4.1; tdelay gives the time delay for the heating as given in Section 4.4; the terms ”low”

and ”high” heating refer to the heating rates by stellar winds and ionizing radiation, respectively,

also given in Section 4.4; εfinal is the final star formation efficiency of the runs; all quantities are

given in dimensionless code units (see text).

6.2 Dependencies on Star Formation and Feedback Implemen-

tation

After the initial conditions have been fixed, we are now able to follow the collapse and fragmen-
tation of single molecular clouds to investigate under what circumstances bound or unbound
massive stellar clusters can form. During the collapse, the turbulence dissipates. Star formation
and feedback are implemented as described in the Sections 4.1 and 4.4. Table 6.2 gives a list of
the simulations that have been done using various sets of parameters.

Figure 6.7 compares the models L1 to L8 with shallow (left) and steep (right) initial power
laws. The different implementations of the star formation criteria and heating applied in these
runs only give slightly different star formation efficiencies and rates. The final star formation
efficiency in all cases is less than 10% and no bound cluster is formed – the stellar system
expands. Runs with the steeper power law k−4 initially show higher density contrasts, causing
higher star formation efficiencies. Comparing the star formation rates, the runs based on LOW4
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Figure 6.6: Time evolution of simulation L4; Left: Mass radii; Right: total number of N–body

particles and number of bound N–body particles.

show that star formation starts earlier in the evolution and the rates have a steeper rise than
the ones based on LOW2.

All these simulations end up in an unbound expanding association of stars. Figure 6.6 ex-
amplarily shows the evolution of the mass radii and the number of bound particles in simulation
L4. At the end nearly all the stars are unbound in the system of stars and gas. The expansion
will even be enhanced when all the gas has left the system.

The unboundness of the formed star clusters is caused by the low star formation efficiencies
combined with large spatial extension of the formed stellar system, which causes low absolute
values of the potential energy. In addition, the high velocities of the newly-formed stars due to
the collapse of the molecular cloud enhance the expansion process. Examples of the gas density
evolution and the structure of the forming stellar clusters will be shown in the following sections.

It is noteworthy that the whole star formation process in all simulations takes place within a
dimensionless time of 1, which is about half the initial mean dynamical timescale (see Table 6.1).
This rapid star formation matches the conclusions of Elmegreen (2000), who states that if
molecular clouds form stars, they will do so in a time that is of order of the dynamical time of
the cloud. In that picture there is no need to explain how self-gravitating molecular clouds can
support themselves for longer than the dynamical timescale.
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Figure 6.7: Study of the star formation efficiency (top) and star formation rate (bottom) for the

low resolution models with initial power laws k−2 (left) and k−4 (right). The star formation rate

is given in dimensionless units. With the typical mass and spatial scale factors M̂ = 105M�
and L̂ = 50 pc, a dimensionless rate 1.0 corresponds to 6 · 10−3M�/yr in physical units. Name

of the runs as explained in Table 6.2.
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Figure 6.8: Left: Dependence of the final star formation efficiency on the chosen time delay tdelay

and the global density threshold ρglobal; Data taken from Table 6.2; also shown are the results

from cloud collisions presented in Section 6.5. Right: Time evolution of the star formation

efficiencies of run L10 (ρglobal = 100.0) and run L14 (ρglobal = 10.0).

6.3 On the Way to Bound Star Clusters

The simulations of the foregoing section ended in unbound, expanding stellar systems. We now
look for parameters, which increase the star formation efficiency as well as the compactness of
the forming cluster and thus may lead to bound clusters.

The interplay between the timescale on which a substantial part of the stars has formed and
the heating timescale of the surrounding medium due to feedback essentially influences the star
formation efficiency. Figure 6.8 (left) shows the dependency of the star formation efficiency on
the chosen time delay, as described in Section 4.4. The higher the time delay, the longer is the
time that the surrounding gas can form stars before being stopped by feedback processes, and
consequently, the higher is the star formation efficiency.

The final star formation efficiencies for the single cloud models including time delay are in
good agreement with recent globular cluster formation simulations done by Nakasato, Mori &
Ken’ichi (2000) using SPH, too. They do not take into account the turbulent structure of the
initial cloud, but include heating and cooling processes. They obtain efficiencies between 9%
and 15%, depending on the number of particles and feedback parameters they use.

To conclude, a temporally delayed feedback process promotes rapid star formation. In run
L10, which uses a time delay of tdelay = 0.1 and also a global density threshold ρglobal = 100.0
(see Section 4.1), the first stars form at t = 0.45. As estimated in Section 4.4, the fraction of
OB stars is about κ = 0.0054/M�, which means that feedback does not start before roughly
200 solar masses of stars have formed. This threshold is reached at time t = 0.69. The assumed
time delay tdelay = 0.1 is therefore reasonable. However, the star formation rate will increase
substantially with time and the time delay derived from this argument decreases.

Another support for implementing a time delay is that it is still unclear when high mass
stars form – there could be a correlation between formation time and stellar masses. If massive
stars formed lately, the time delay could be even greater. Besides that, compact H II regions
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Figure 6.9: Comparing runs with different global density criteria and time delays. Left: Star

formation efficiency; Right: Star formation rate; units as in Figure 6.7.

could also delay the effect of the ionizing radiation.

Also, star formation takes a finite time. In our simulations, a time delay of 0.1 corresponds
to about 1.7 · 106yr. Scaling to other giant molecular cloud dimensions, given by the analysis
of Elmegreen & Falgarone (1996), with radius R̂ = 10pc, keeping the mass M̂ = 105M�, we
get the global time unit t̂ = 1.5 · 106yr. A time delay of t = 0.1 then corresponds to 1.5 · 105yr,
which is a reasonable timescale for star formation.

Another important parameter is the global density threshold. In run L10, we choose a global
dimensionless density of ρglobal = 100.0, which corresponds, if we use the scaling of Section 6.1.2,
to a number density of n = 1.4 ·103 cm−1, which is reasonable for dense clumps inside molecular
clouds. Even if Figure 6.8 (left) shows that the threshold ρglobal has only little effect on the final
star formation efficiency, the effects on the structure of the stellar clusters are important.

Figure 6.9 compares star formation efficiencies and rates of run L10, including a high time
delay, with runs with lower (L9) and no time delay and lower global density criterion (L5). Once
the global density threshold is reached in run L10, rapid, spatial compact star formation starts
and leads to a global star formation efficiency of more than 15%.

To work out the differences, we look at the time evolution of the gas density and the stellar
system for run L5 (Figure 6.11) and L10 (Figure 6.12). In simulation L5, stars start forming
very early. After a notable amount of stars has formed, feedback takes over and drives the gas
out of the central region. At late stages, only some star formation still goes on in the outer parts
of the molecular cloud, where the outwards driven gas shell compresses the gas. In the end, we
get a spatially extended, still expanding stellar association.

In run L10, on the other hand, star formation starts later. One can see that even at the time
the feedback takes over and the inner region of the cluster is already gas-free, the star cluster
shows lots of spatial structures on different scales. As we may see from the time evolution of the
star formation efficiencies in Figure 6.8 (right), the higher global density threshold postpones
the star formation. At that time, the high density regions of the underlying molecular cloud are
already in a late stage of collapse. Stars form very rapid and spatially concentrated.
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Figure 6.10: Projection on the x–y plane of the final state of the runs with same time delays

tdelay = 0.1, but different global density criteria; Black dots: SPH particles; blue dots: bound

N–body particles; red dots: unbound N–body particles; Left: Run L14, ρglobal = 10.0; Right:

Run L10, ρglobal = 100.0; Shown are the timesteps where the star formation efficiency ε = 0.14
in both cases.

Elmegreen (2000) points out that rapid star formation should lead to hierarchical structures,
connected to the structures of the underlying molecular cloud. E.g. Lada & Lada (1995) have
shown that the density distributions of the cluster OC 348 shows significant substructures.
Elmegreen (2000) also stresses that star formation does not take place everywhere in the cloud,
but only in distinct cores. Even if this cores only comprise a small fraction of the initial gas
mass, the local star formation efficiency can be much higher and could lead to bound clusters,
as shown afterwards.

In detail, Figure 6.10 shows the strong influence of the global density threshold on the
spatial distribution of stars: In the case of a low density threshold ρglobal = 10.0, the newly-
formed cluster shows a large spatial extension and a large fraction of stars (red dots) is unbound
and will leave the system of stars and gas. Using the high density threshold ρglobal = 100.0,
the simulations result in a compact cluster where the majority of stars is bound. So even if the
star formation efficiency in both runs is approximately the same, the dynamics of the resulting
system is completely different.

Chappell & Scalo (2001), who examine the effects of stellar winds on the gas and star
formation in galaxies in two dimensional simulations, showed that wind-driven gas networks
build up. Varying the time delay between 2.5 · 106 yr and 10 · 106 yr, they find that the star
formation rate and the clustering of the forming stars is enhanced in the case of large delays,
giving the same qualitative results as our simulations.

To validate the boundness or unboundness of the stellar cluster, we examine the binding
energy of the stellar parts of the simulations. Figure 6.13 compares the energies of all N–body
particles and Figure 6.14 the virial ratios of the bound particles from run L5 and L10. In both
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Figure 6.11: Run L5. Logarithmic column densities (left) and stars (right) for various time

steps. New stars with respect to the last shown timestep are marked green.
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Figure 6.12: Run L10. Logarithmic column densities (left) and stars (right) for various time

steps. New stars with respect to the last shown timestep are marked green.
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Figure 6.13: Kinetic, potential and total energy of all N–body particles included in the simulation

at the given times. Left: Run L5; Right: Run L10; the unsteadiness comes from the sudden

removal of the gas by hand.

cases, the total kinetic energy of the particles shows a steep rise caused by the increasing total
number of N–body particles. In Run L5, the total energy of the stars gets greater than zero
long before the end of the simulations, reflecting that most of the stars are unbound. Contrary,
in Run L10, the minimum of the potential energy is much lower, such that the total energy
remains less than zero nearly all the time. To be able to follow the simulations and confirm the
boundness of the cluster, at t = 3.24 all the gas still left in the system was suddenly removed by
hand. As shown in Chapter 5.1.3, this is the most destructive case of gas expulsion. Even this
most severe interference with the system unbinds only a small fraction of the stars (Figure 6.15).
This confirms that the majority of stars in this simulations are bound to the system.

Figure 6.16 shows the configuration of the system at time t = 1.71. At that time, already
most of the gas has been driven out of the central region of the cluster. Clearly two distinct
clusters of stars can be seen. Observations of double clusters exist: E.g. Gilmozzi et al. (1994)
give actual Hubble Space Telescope (HST) observations of the young double cluster NGC 1850
in the Large Magellanic Cloud (see Figure 2.4).

In the simulation, the distinct clusters are bound together and are likely to merge in the
future. However, in the tidal field of a galaxy, the system of subclusters might be disrupted. A
first approximation of the tidal cut-off radius rt, regarding the host galaxy as a point mass, is
given by Spitzer (1987):

rt = (
mc

2Mg
)1/3Rg . (6.3.11)

We use exemplarily the mass of our Galaxy, Mg = 2 · 1011M�, and the typical distance of
globulars from the galactic center, Rg = 12 kpc. The mass of the central cluster in the simulations
is about m′

c = 0.07 in code units. Using the mass and spatial scale factors M̂ = 105M� and
L̂ = 50 pc, the dimensionless tidal radius is r′t = 0.6, which is of the same order as the spatial
extension of the stellar cluster. In the regarded case, the subcondensations might float away
instead of merging. However, in the less strong tidal field of e.g. the Large Magellanic Cloud,
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Figure 6.16: Snapshot of run L10 at time t = 1.71. The substructure is clearly visible; stars

unbound to the system are marked red.

the system could survive.

The evolution of only the stellar part in the x–y plane as well as the evolution of the stellar
density distribution is shown in Figure 6.17. Also shown is a fitted King profile, using the
logarithmic method described in Section 5.3. Even though a lot of substructure can be seen in
the first stages of the evolution, King profiles fit well already at time t = 1.44. Later, as the
cluster splits up into two main parts, the fit gets worse. After the separation, the central cluster
in the figures can again be fitted with King profiles. At intermediate timesteps, the young star
cluster shows slight enhancements and depressions compared with the King profile, similar to
the ones mentioned in Section 5.3, which are probably caused by the substructure of the system.
In simulation L10, the gas was removed by hand at time t = 3.24 and only the evolution of the
stellar part was integrated.

We now look at the evolution of the mass radii of the bound stars and the total number of
the stars as well as the number of stars bound in the system (Figure 6.17). The jump in the
curves results from the sudden gas removal by hand at time t = 3.24. Although most of the gas
is already expelled from the center, a certain amount of stars, preferentially at large radii, get
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Figure 6.17: Run L10, the top figures show a time sequence of the projection on the x–y plane,

centered on the larger star cluster; the bottom figures show the density distribution at various

timesteps with fitted King profiles; density distributions are cut off at an arbitrary radius rcut;

unbound particles are marked red.
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unbound and cause the unsteadiness in the number of bound stars and in the evolution of the
mass radii. As star formation sets in, the mass radii decrease, reflecting the overall collapse of the
system. At about t = 1, the stellar part expands again, due to the high velocities gained during
the formation process. The mass radii increase until a maximum is reached and start shrinking
again. Looking at the virial ratio of the bound stars for run L10 (Figure 6.14, right), we can
see that the system has nearly reached virial equilibrium. The jump in the virial ratio again
has its cause in the removal of the gas. On the other hand, the virial ratio of run L5 continues
to increase. As we consider only bound particles with total energies Etot = Ekin + Epot < 0,
the virial ratio η = −2Ekin/Epot or η = −2 (Etot/Epot − 1) has a maximum value: In the
worst case, Etot = 0 and therefore η ≤ +2. Thus, the asymptotic limit of the virial ratios in
Figure 6.14 (left) near the end of the simulation does not mean that the system reaches some
sort of equilibrium state – the ratio just stops increasing because more and more particles get
unbound (compare Figure 6.6, run L4) and are omitted from the virial ratio determination.
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Figure 6.18: Runs H1 and H2; Left: Star formation efficiencies vs. time; Right: Dimensionless

star formation rates; units as in Figure 6.7.

6.4 Dynamical Evolution of Young Bound Clusters

Now we look at the runs H1 (P (k) ∼ k−2) and H2 (P (k) ∼ k−4), which both use 100000 particles
instead of the 40000 particles of simulations L1. . . L14. Both H1 and H2 use the initial conditions
and parameters that successfully lead to bound clusters as presented in the last section. After
most of the gas has been expelled from the center of the newly-formed star cluster and star
formation has stopped, at time t = 2.0 the residual gas was completely removed from the
simulation by hand and only the stellar part was followed by pure N–body simulations.

Table 6.2 shows that in both runs the final star formation efficiencies are consistent with the
ones derived with lesser particles. Due to the different initial power spectra, runs H1 and H2
show different behaviours regarding the time evolution of the efficiencies and rates (Figure 6.18).
In the case of H2, the steeper power spectrum leads to earlier star formation compared to H1,
ending with a shallower decline. As can be seen, star formation in run H2 was not yet terminated
at the time when the residual gas was removed by hand. However, one can expect that the
majority of stars has already formed. This behaviour is also reflected in the star formation rate.
Additionally, we see that, probably caused by the turbulent nature of the initial gas cloud, star
formation is not a smooth process: several smaller bursts manifest themselves with peaks in the
star formation rate. As already visible in Figure 6.11 or 6.12, star formation may take place in
various parts of the cloud starting at different times.

The time evolution of the energies of the stellar cluster (Figure 6.19) shows, that even after
the sudden gas removal by hand, the majority of the stars stays bound (compare also Figure 6.13,
run L10). We conclude that in both cases, H1 and H2, bound clusters have formed. The total
number stars and the number of bound stars in Figure 6.20 indeed confirm that after the
unsteadiness the number of bound stars is approximately constant; only few particles get lost.
The virial ratios in Figure 6.21 show that the stellar parts of the simulations tend towards virial
equilibrium. Even if the gas outside the cluster does not influence its dynamics, it contributes
to the potential energy. Thus, the sudden gas removal by hand decreases the potential well,
reflected in a jump in the virial ratios. As we are interested in the boundness, which depends
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Figure 6.19: Kinetic, potential and total energy of all N–body particles included in the simulation

at the given times. Left: Run H1; Right: Run H2; the unsteadiness comes from the sudden

removal of the gas by hand.
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the unsteadiness comes from the sudden removal of the gas by hand.

79



 

0 2 4 6 8 10 12 14
dimensionless time t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

vi
ria

l r
at

io
 η

H1
H2

Figure 6.21: Virial ratios vs. time for runs H1 and H2 only considering bound particles.
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Figure 6.22: Mass radii, considering only bound particles; Left: Run H1; Right: Run H2.

on the internal binding energy of the cluster only, removing the gas completely is necessary.
A slower expulsion of the gas would be less severe and more stars might stay bound; also the
final spatial extensions of the cluster could be decreased, as shown in Figure 5.3 for various
timescales.

The mass radii in Figure 6.22 show that the systems undergo heavy relaxation processes
during the evolution. The dynamical timescales at time t = 7 in code units are about td = 9.2
and td = 2.3 for the runs H1 and H2, respectively. Thus, compared to H1, system H2 needs less
time to relax until the mass radii are approximately constant.

In the case of run H1, one can also detect stellar groups that, although unbound to the system,
form loose associations travelling outwards together, e.g. the “red association” in Figure 6.24,
top left panel, at coordinates x = −1.8 and y = +1.1. An enlarged image is given in Figure 6.23
(left panel). At the end of the simulation, this subcluster is well beyond the tidal radius of the
large central cluster and has a mass of about 10% of the large one. To compute the evolution
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Figure 6.23: Properties of the small “red subcluster” found in Figure 6.24, top left panel, at

coordinates x = −1.8 and y = +1.1. Left: Spatial distribution, centered on the subcluster,

projected onto the x–y plane. Right: Evolution of specific energies.

of the energies (Figure 6.23, right panel) all particles inside a radius r = 0.5 with regard to
the subcluster center were included. The negative total energy shows that the small system is
bound. However, computing the virial ratio from these energies shows that the system is not
in equilibrium. Additionally, the subclusters consist of only about 100 particles, which gives a
poor numerical resolution. In reality, it might evaporate fast due to two-body encounters.

Goodwin (1998) was concerned about how much substructure a newly-formed young globular
cluster may have at maximum. He argued that after several 10 Mio years the new clusters must
have relaxed – all the substructure must have gone to resemble actual observed young globulars.
Looking at our simulations, we see that early in its evolution, the cluster is unspherical and has
lots of substructures or clumps. These deformations obviously come from the initial properties
of the turbulent gas cloud: The shallower power spectrum results in more individual clumps
(Figure 6.24). In the following evolution, the clumps will interact with each other and / or
merge. Observations of molecular clouds give hints that the steeper power spectrum P (k) ∼ k−4

is preferred by nature – therefore simulation H2, which shows less substructure, might be more
likely and also explains the properties of young clusters more easily. However, it must be noted
that at the end of the simulation also run H2 still is not really relaxed and shows substructures.

Figure 6.25 shows the radial stellar density evolution of the cluster of run H2. The cut off
radius was set such that a continuous decrease of the radial density was guaranteed. Beyond the
cut off radius, the density distribution is governed by disturbances due to outwards travelling
stellar associations unbound to the system and stars whose dynamical timescales are large and
which have not yet relaxed. The used cut-off radius matches the region shown in Figure 6.24. The
fitted King profile with the scaled central potential W0 = 7.2 at time t = 17, which corresponds
to a central concentration c = 1.6, is well in the range of the globulars observed today in our
Milky Way (see Figure 2.2). Further simulations will be needed to determine what the central
concentration of the new cluster depends on or where the spread in the observed concentrations
comes from, respectively.
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Figure 6.24: Snapshots of Run H1 (left column) and H2 (right column) early in the evolution

until the different clumps merge; stars unbound to the system are marked red. The steeper

power spectrum of simulation H2, where most power is in long wavelength modes, leads to one

major clump early in the evolution, whereas H1, using the shallow power spectrum, leads to

several clumps at first.
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Figure 6.25: Density distribution and fitted King profile for the timesteps shown in Figure 6.24,

run H2.

Observations of young clusters in the Large Magellanic Cloud by Elson (1991) show that
preferentially the youngest clusters have typical “humps” and “dips” in the radial densities
compared with fitted King profiles. The radial density given in Figure 6.25 (run H2) gives about
the same density range as the observations shown by Elson (1991). In the first shown timestep,
deviations from the King profile can be clearly seen. However, these are only transient features
and have already disappeared in the following snapshots. One explanation for these departures
from the relaxed profile may be merging subclusters (Elson 1991) like in our run H1. This
theory is corroborated by the complex dynamics of young cluster systems: A large amount of
close pairs of young clusters have been observed in the Large Magellanic Cloud. Dieball, Grebel
& Theis (2000) and Dieball & Grebel (2000) give evidence for coeval double clusters in the
Large Magellanic Cloud which might have formed from one single giant molecular cloud. Bhatia
& MacGillivray (1988) even observed a possible merger of young clusters (Figure 6.26). But
also our less sophisticated gas expulsion simulations in Section 5.3 show similar deviations from
King profiles and might explain the deviations as relics of the gas expulsion process (see also
Goodwin, Pearce & Thomas 2001). Shortly after the loss of stars due to the decreasing potential
the cluster relaxes again.

The compatibility with observations of course does not proof that the model used here is
valid. The scenario in which merging subcondensations form the young globular cluster after
relaxation is very attractive, but would favor the probably unlikely shallower power spectrum.
One must also mention that the fit of the King profile to the final cluster of the simulations is
strongly influenced by the assumed cut-off radius. Fits with lower cut-off radii lead to lower
scaled potentials W0. Thus, if outer parts of the new clusters are stripped off, maybe by tidal
interactions with the host galaxies, more centrally concentrated clusters might remain. On the
other hand, mass loss due to stellar evolution, which is not included in the presented models,
could lead to an expansion of the cluster core.

Figure 6.27 shows the asymmetric structure of the column densities of the gas expelled
from the central stellar cluster. Structures on various spatial scales show up. Clearly visible
are shell-like structures which are travelling outwards. Comparing improved simulations with
young star forming regions, e.g. Figure 2.4, might give hints to determine the age of the clusters,
independent of other methods.

Summing up, we derive a picture where globular clusters form in the dense central regions of
giant molecular clouds. Even if the global star formation efficiency is low, high local efficiencies
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Figure 6.26: NGC 2214, optical image from Bhatia & MacGillivray (1988); the core seems to

be consisting of two components.

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

 

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

 

1.00

0.20

-0.60

-1.40

-2.20

-3.00
 

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

time t= 2.01

Figure 6.27: Run H2. Logarithmic column densities (left) and stars (right) at time t = 2.01.

Unbound stars are marked red.
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can lead to bound clusters. It has to be checked whether the stellar subcondensations which
form first due to the turbulent motion merge and relax fast enough so that the resulting clusters
match the smooth radial density distributions of observed young mass-rich clusters. This picture
would lead to globular cluster systems where at least a fraction of the initial turbulent kinetic
energy of the progenitor clouds is conserved in the individual clusters or associations. One would
also have to check if the star clusters of this simulation are able to survive in the tidal field of
the host galaxy for times comparable to the ages of old globular clusters.
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6.5 Collisions of Molecular Clouds

It has long been speculated that globular cluster formation might be triggered by molecular
cloud collisions in the halo of protogalaxies or in interacting or merging galaxies. Ashman &
Zepf (1992) give an extensive review of evidences for young globular cluster formation in external
galaxies which at the moment undergo such violent events. Ashman & Zepf (2001) also stress
that molecular clouds in such high pressure environment show the right masses and spatial
extensions compared to observed globulars.

In their picture, the constant specific frequency of globulars around spirals (Harris 1991)
is caused by similar mass spectra of gas clumps that have been able to form globulars around
protospirals. It is suggested that at least some ellipticals form by mergers of spiral galaxies
(Naab & Burkert 2001). The observed excess in the specific frequency around ellipticals can
then be explained by forming a new population of clusters during the merging process of two
spirals. Different populations of globulars within one system have been detected by the bimodal
metallicity distributions of the clusters in our and other galaxies (see Ashman & Zepf (1999) and
references therein). The bimodality can be explained by globular cluster subsystems forming at
different times: Younger systems form in a more metal-rich environment compared to that of
the old population.

Collisions of molecular clouds have been studied by various people as a possible mechanism
for triggering efficient star formation, needed for the formation of globular clusters. Fujimoto
& Kumai (1997) investigate globular cluster formation by cloud collisions in the high-velocity
random motion of galactic halos. They explain the large number of young double clusters by
oblique cloud collisions which can split up the clumps into two objects. However, our simulations
of the last section show that stellar subcondensations may form from turbulent molecular clouds
without further assumptions.

Whereas most work was restricted to homogeneous or spherical symmetric clouds, Kimura
& Tosa (1996) look at collisions of clumpy clouds. They show that small clouds are even able
to pass through larger clouds without serious damage – such behaviour can not show up in
the homogeneous case. However, if the clouds are comparable in size, shocks build up and
clumps with masses greater than the Jeans mass are formed, probably leading to triggered star
formation.

For our initial setup of the merger simulations, we use two identical single cloud con-
figurations. At the start, the clouds nearly touch each other, the relative velocity is about
v′ = 4.0 = 50 a′T , where a′T = 0.08 is the mean isothermal sound speed in code units. With our
usual scales, the relative velocity is v = 12 km/s, which is still less than the relative cloud veloc-
ities of 100 km/s or more observed in the Large Magellanic Cloud and other galaxies (Kumai,
Basu & Fujimoto 1993). The lack of these latter high velocities in our Galaxy might explain the
absence of young globulars.

The time evolution of star formation efficiencies in our merger simulation M1 (Figure 6.28,
left) shows that by collisions of clouds star formation can be considerably increased. Additionally,
by triggering star formation this way, the overall time needed until all the gas is transformed
into stars or has been expelled due to feedback, respectively, decreases. Comparing the star
formation rates of the single cloud and the merger (Figure 6.28, right) shows that at late times
star formation has already stopped in the merger while at the same time some stars still form
in the single cloud case.

Figure 6.29 shows the time evolution of the column density and the stellar part. Stellar
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Figure 6.28: Cloud collision M1 compared to the single cloud H2; Left: Star formation effi-

ciencies vs. time; Right: Star formation rates normalized to the total initial gas mass of the

system

structures which form due to the collapse of the cloud, independent of the merging process, have
high speeds and cross the central stellar clump which forms by the collision. They are unbound
to the system, but may be observed as loose associations. This can be seen in the detailed
diagrams of the stellar cluster evolution in Figure 6.30: A large, unbound (red) association of
stars leaves the system to the left and expands. Of course the bound star clumps will undergo
the same merging processes as the ones in the last section.

Summarizing, we can see that collisions of molecular clouds in our model can increase the
star formation efficiency. The peak star formation rate is even four times higher compared to
the single cloud configuration. As these are still low resolution runs, more extensive simulations,
also with higher collision velocities, will be needed to test the model. Particularly, heating and
cooling processes may play an important role in the shocked regions (Kimura & Tosa 1996).

Additionally, oblique collisions will be much more likely. They yield shear and rotation to
the merger and may disrupt the clouds (Fujimoto & Kumai 1997). Especially in the case of
clumpy clouds, non head-on collisions might give considerable decreased star formation rates,
as not enough clumps are able to hit each other during the collision.
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Figure 6.29: Collision run M1. Logarithmic column densities (left) and stars (right) for various

time steps. New stars with respect to the last shown timestep are marked green.
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Figure 6.30: Snapshots of run M1; stars unbound to the system are marked red.
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6.6 Star Formation and Feedback – Caveats of the Implemen-

tation

After the presentation of the obtained results in the last section, we now will have a cautious
look at the implementation of star formation and feedback in the code.

First, each simulation using SPH and the idealized star formation description used in this
thesis at some time will violate the strict resolution limit of Bate & Burkert (1997), which mainly
is based on the Jeans limit (see also Section 3.5.2). This is even worsened by applying global
density thresholds. In our simulations we are mainly interested in the dynamics and structure of
the forming stellar system and not in the detailed gas dynamics on small scales at late epochs.
Our approach therefore is justifiable.

But turbulence on small scales could have an important influence on star formation and in
the worst case might destroy the dense cores, which in our picture would form stars right away.
Our treatment thus may overestimate the star formation efficiency. In addition, regarding the
actual resolution, we of course cannot make any statements about properties of individual stars,
like the initial mass function, binary fraction or competitive accretion processes.

Another important point is the interplay between the numerical timestep and the implemen-
tation of star formation and feedback. In the worst case, a high density SPH particle, which
fulfills all the criteria, is transformed into a stellar particle and heats up immediately all its
50 neighbours. “Immediately” means at least faster than the timesteps of these neighbours.
However, if we can assume that the density contrasts over one smoothing length are not too
strong, neighbouring particles will be on the same or similar timestep levels. Nonetheless, if
this heating is sufficient, none of these neighbours will be able to form stars itself – the star
formation may be underestimated. Figures 6.31 and 6.32 show on the right panels the actual
specific thermal energy distribution of the SPH particles at the last timestep. In the same panel
the specific thermal energies of the progenitor SPH particles for each N–body particle are plot-
ted. A large fraction of the gas particles has been heated up to the temperature limit T = 10.0
(code units). Only gas particles with specific temperatures less than about T = 0.5 were able
to form N–bodies. However, this means that star formation is not shut off immediately and
at least some neighbours of a star may form stars subsequently, even if they have been heated
a little. Also the time delay, which was used in this simulations, circumvents the problem of
artificially stopping star formation among neighbours by giving them some additional time for
transforming into stars.

From Figures 6.31 and 6.32 we can take the total amount of thermal energy put into the
gas, if we neglect the thermal energy of the gas that formed stars. In the case of run H2, the
thermal energy increases (code units) from E′thermal = 0.01 to E′thermal = 2.0. Using the units
from Section 4.4 and the scale factors from Table 3.1, this corresponds to an energy change of
∆Ethermal = 3.4 ·1042J or a rate ∆Ėthermal = 3.3 ·1027J/s over the simulation time. This roughly
matches the values that were estimated in Section 4.4.
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Figure 6.31: Run H1, last timestep; Left: Time evolution of kinetic, potential, thermal and

total energies of the gas; Right: Distribution of thermal energies among SPH particles at the

last timestep (broad distributed dots on the left side) and of the progenitors of the N–bodies at

the time of their formation (dots on right side).
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Figure 6.32: Run H2, last timestep; Left: Time evolution of kinetic, potential, thermal and

total energies of the gas; Right: Distribution of thermal energies among SPH particles at the

last timestep (broad distributed dots on the left side) and of the progenitors of the N–bodies at

the time of their formation (dots on right side).

91



-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0
y

time t= 0.000

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0
y

time t= 0.000

1.00

0.40

-0.20

-0.80

-1.40

-2.00

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

time t= 0.050

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

time t= 0.050

1.00

0.40

-0.20

-0.80

-1.40

-2.00

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

time t= 0.100

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

time t= 0.100

1.00

0.40

-0.20

-0.80

-1.40

-2.00

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

time t= 0.150

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

time t= 0.150

1.00

0.40

-0.20

-0.80

-1.40

-2.00

Figure 6.33: Example run showing ionization due to a point source in the center of a turbulent

molecular cloud with radius 50 pc and mass 105M�; flux of ionizing photons 5 · 1048 s−1; shown

is the density in the x–z plane and contours giving the ionization fraction from 0.1 to 1.0 in

steps of 0.1.

6.7 Towards an Improved Implementation of Stellar Feedback

A first improvement regarding the description of energy feedback is not to heat the neighbours of
all the gas particles, but only to heat the neighbours of selected OB stars. However, we then have
to decide for a radius inside which we heat up the particles. This could be e.g. the Strömgren
radius of the star, determined by the density at the position of the newly-formed star. But this
radius may be severely underestimated if the density drops of on small scales beyond the spatial
region around the star.

A vast improvement can be achieved by directly following the ionization. Kessel-Deynet &
Burkert (2000) implemented ionization into SPH using a ray tracing method. Figure 6.33 shows
the evolution of a turbulent molecular cloud with an embedded point like ionizing source located
at the center using this code. The developing shell is not at all symmetric – the ionization front
travels faster in low density regions. Instabilities might occur which may induce star formation
in the non-ionized parts of the cloud. A combination of this code with star formation and energy
feedback will give valuable new insights into the evolution of star forming regions.
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Chapter 7

Summary

This thesis concentrated on the basic conditions that must be fulfilled to form massive bound
star clusters like the globular clusters we see today in the halo of our and other galaxies or like
the young mass-rich clusters observed in star forming regions of external galaxies. In this last
section, the main statements are summarized and a brief outlook regarding improvements and
possible applications of the presented investigations is given.

7.1 Conclusions

In a first step we investigated the influence of residual gas expulsion on the dynamical evolution
of star forming regions: Shortly after the formation of stars from turbulent molecular clouds,
the cluster consists of a bound system of stars and gas. The gas will leave the system after a
few dynamical timescales due to the feedback of young massive stars, like ionizing radiation,
stellar winds or supernova explosions. This terminates the star formation epoch and reduces
the binding energy of the cluster and can unbind the stellar system.

To simulate the gas expulsion and early evolution of young star forming regions we performed
numerical N–body calculations, where the stars are represented by collisionless, equal mass N–
body particles. To model the ejection of the residual gas we used a time variable external
potential that linearly decreases with time. Initially the stars are in virial equilibrium within
the potential of the stars and the gas. Also combined N–body & SPH (smoothed particle
hydrodynamic) simulations were performed for a more self-consistent description of the gas
expulsion process.

Bound clusters can only sustain the expulsion of the residual gas if the star formation ef-
ficiency is high enough: The results showed that in the case of instantaneous gas expulsion,
clusters with star formation efficiencies greater than ε = 0.45 can keep more than 50% of the
initial stars. Clusters with star formation efficiencies less than ε = 0.40 are dissolved. Gas expul-
sion timescales which are several times longer than the dynamical timescale of the star cluster
can decrease the needed efficiency to sustain bound clusters considerably. But even these effi-
ciencies are greater than the typical observed star formation efficiencies in our Galaxy of less
than 10% . Thus, the formation of gravitationally bound open clusters and globular clusters is
yet unsolved.

However, it is not clear from the outset if the assumption of virial equilibrium after the stars
have formed is correct. Models with stars having an initial zero velocity dispersion lead to a
compaction of the cluster and can explain bound systems even in low star formation efficiency
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regions: For efficiencies as low as ε = 0.15 more than 80% of the stars stay bound. For follow-
up investigations it is essential to know the velocity dispersion of newly-born stars in clusters,
determined by observations and / or numerical simulations.

This problem directly leads to the second part of this thesis: The formation of a bound
stellar system is a race between efficient star formation and feedback processes leading to an
expulsion of the residual gas. The results regarding the idealized description of the gas expulsion
process show that strict conditions are necessary to form massive bound stellar clusters. How
can these circumstances be achieved during the formation process of the cluster ?

SPH simulations including idealized star formation and feedback descriptions due to high
mass stars were performed. Stars are allowed to form where the density exceeds the local Jeans
mass and a certain global density criterion. The feedback is done by heating the interstellar
medium surrounding the stars by an amount corresponding to the energy input of ionization or
stellar winds.

We chose our initial conditions to match the properties of giant turbulent molecular clouds,
which are generally believed to be the progenitors of massive star clusters like globular clusters.
The initial power spectra for the velocities were P (k) ∼ k−2 and ∼ k−4. Evolution of the systems
without self-gravitation and star formation gives the initial models with self-consistent density
and velocity distributions.

The simulations of the collapsing and fragmenting molecular cloud show that the star forma-
tion efficiency depends strongly on the time delay between the formation of stars, and the time
when feedback from the stars begins. The later the feedback sets in, the more stars may form.
This delay might be caused by the finite formation time of the stars and could be enhanced by
massive stars forming late in the evolution of the cluster. Next, the occurrence of bound systems
heavily depends on the chosen global density criterion, which essentially determines when stars
form during the collapse of the host molecular cloud. The later star formation starts, the more
compact is the resulting star cluster and thus greater the probability of staying bound after gas
expulsion. The goal was to present one possibility of forming bound star clusters. Comparison
with observations and more detailed numerical models must tell whether the made assumptions
for the initial conditions and simulation parameters are reasonable.

In the presented simulations, the main properties of a cluster-forming molecular cloud, such
as star formation efficiencies and rates, interaction with the residual gas, compactness and
boundness of the newly-born cluster and their dependencies on the initial conditions could be
investigated. However, the resolution is not high enough to make statements about individ-
ual stars. In addition, the star formation efficiency could be vastly influenced by turbulent
perturbations in the molecular clouds on scales that are not resolved.

Elmegreen (2000) argues that due to the short formation time of the cluster, protostar
interactions do not play a role in determining the average initial stellar mass function. Contrary,
the initial mass function would be caused primarily by the initial cloud structure. On the other
hand, Bonnell et al. (2001) and Bonnell et al. (2001) have shown that competitive accretion
among the protostars can influence the initial mass function. They find that the accretion rate
primarily depends on the local gas density. Observations of the young double cluster NGC 1850
in the Large Magellanic Cloud by Gilmozzi et al. (1994) (Figure 2.4) suggest that the two
clusters formed at distinct times with different initial mass functions. In Chapter 6.3 we showed
that if bound star clusters are formed, they show strong spatial structures, connected to the
initial molecular cloud density distribution.
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7.2 Outlook

Simulations of the fragmentation of turbulent molecular clouds with SPH down to the scale of
the protostars were done by Klessen & Burkert (2000) and Klessen & Burkert (2001). Only
with this resolution or higher can one begin to draw conclusions about the stellar initial mass
function, accretion processes or the binary fraction. Using up to 500000 SPH particles, these
computations were limited to the simulation of about 60 stellar cores – resembling open clusters
or associations. However, without feedback processes, nearly all the mass of the initial gas cloud
is accreted onto the stellar objects at the end of the simulation. Bate, Bonnell & Bromm (2001)
also have performed simulations of the fragmentation of a molecular cloud. In these calculations,
the resolution is high enough to resolve individual binary systems and circumstellar discs. They
use a polytropic equation of state to model the heating of collapsing gas at high densities but
do not include any other feedback. In the presented simulations, a higher resolution would be
needed for resolving the properties of individual stars. Combining the high-resolution simulations
mentioned above with feedback processes will lead to new valuable insights.

In addition, as energy feedback tremendously influences star formation, a more physical
description of the feedback processes must be achieved. Star formation in ionized regions will
be stopped abruptly. One approach is to include ionizing radiation like proposed by Kessel-
Deynet & Burkert (2000) into the code. Also the dynamics of stellar winds can dominate the
vicinity of massive OB associations (Abbott 1982). Goodwin et al. (2000) examine the effects of
expanding supernovae on the surrounding medium. These complex dynamic interactions need
high resolutions to resolve shock fronts travelling into the unperturbed surrounding medium.
Interactions of these shock fronts could lead to propagating star formation (Kimura & Tosa 1993,
Chappell & Scalo 2001). Further improvements can be achieved by the inclusion of radiative
transfer into SPH using the flux-limited diffusion approximation which is developed by Lang,
Kessel-Deynet & Burkert (2001).

In recent simulations of galaxy formation (Katz 1992, Gerritsen & Icke 1997, Thacker &
Couchman 2000, Springel 2000) and globular cluster formation (Nakasato, Mori & Ken’ichi
2000), star formation and energy feedback can only be done empirically with the idealized de-
scriptions similar to the one used in this thesis. An improved knowledge of the feedback processes
and star formation on small scales of turbulent clouds may lead to a better understanding of
how feedback behaves on the scale of larger regions and influence these galaxy formation scenar-
ios and cosmological simulations. Explanations for the differences in star formation efficiencies
observed for various galaxies (Young 1999) and in galaxy mergers could be derived.

Provided that the physical processes are well described in the simulations, a comparison of
the results with observations of young star clusters that recently expelled their residual gas may
lead to independent age estimations.
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New York.

Saiyadpour, A., B. M. Deiss & W. H. Kegel (1997). The Effect of Dynamical Friction on a
Young Stellar Cluster Prior to the Gas Removal . A&A 322, 756–763.

Salpeter, E. E. (1955). The Luminosity Function and Stellar Evolution. ApJ 121, 161–167.

101
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