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SUMMARY 

 

Microorganisms in nature live in interconnected communities, where the language of biochemistry 

creates means for communicating, fighting, and cooperating with each other. This work investigates 

one of the ways for microbial interactions - nutrient exchange. It is focused primarily on co-

metabolism of Saccharomyces cerevisiae and lactic acid bacteria - Lactococcus lactis and 

Lactobacillus plantarum - community whose composition was inspired by co-occurrence of yeast 

and LAB in a multitude of naturally fermented foods. Specifically, I was interested in detecting 

metabolic interactions between budding yeast and lactic acid bacteria, identifying transferred 

molecules, exploring metabolic mechanisms of their biosynthesis and excretion, and understanding 

possible causes behind them.  

A combination of experimental and computational methods was used to understand how nutritional 

dependencies shape communities of microorganisms. First step involved composing a synthetic 

community of common laboratory strains of yeast and lactic acid bacteria. Following a series of 

experiments with chemically defined media, LAB revealed their metabolic dependency on yeast for 

growth and survival. This mixed species community appears to be stable and is sustained through the 

flow of small nitrogenous molecules from yeast to bacteria. Nutrient cross feeding was found to be a 

result of overflow metabolism in yeast, which release excess catabolites under particular 

combinations of available nitrogen sources. The observed nutrient excretion involves a set of genes 

that regulate yeast nitrogen metabolism when depleted of preferred nitrogen sources. We have 

recreated co-metabolism of yeast-LAB community, as well as multiple natural bacterial 

communities, with multi-species genome-scale metabolic modeling. Simulation results demonstrated 

a link between metabolic cross-feeding and species co-occurrence, and proved its high potential of 

the method for predicting metabolite exchange in microbial communities. 

In this project, the inter-kingdom model community of wild type microorganisms has been 

established and characterized. Peculiarities of yeast regulatory network, in certain media 

compositions, cause “wasteful” excretion of amino acids and other metabolites. This in turn creates a 

stable niche for growth of lactic acid bacteria, which are auxotrophic for multiple amino acids. 

Described scenario of metabolic dependency between yeast and lactic acid bacteria demonstrates 

how survival of one species can be driven by metabolic idiosyncrasy of the other. The yeast-LAB 

interaction is established instantly, and thus can serve as a first step in evolution of cooperation.
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ZUSAMMENFASSUNG 

 

In ihrer natürlichen Umgebung leben Mikroorganismen in vernetzten Gemeinschaften, wo die 

Sprache der Biochemie die Grundlage für Kommunikation, Verteilungskämpfe und Kooperation 

ist. Diese Arbeit untersucht einen der vielen Wege mikrobieller Interaktionen – 

Nährstoffaustausch. Sie beschäftigt sich vorranging mit dem gemeinschaftlichen Stoffwechsel 

(Kometabolismus) von Saccharomyces cerevisiae und den Milchsäurebakterien (MSB) – 

Lactococcus lactis und Lactobacillus plantarum. Die Zusammensetzung ist inspiriert durch das 

gemeinschaftliche Auftreten von MSB und Hefe in einer Vielzahl natürlich fermentierter 

Nahrungsmittel. Ins besondere war ich daran interessiert die Stoffwechselinteraktionen zwischen 

Backhefe und Milchsäurebakterien zu entdecken, die ausgetauschten Moleküle zu identifizieren, 

die Stoffwechselmechanismen der Biosynthese und Ausscheidung zu erforschen, und die 

möglichen Gründe dafür zu verstehen.  

Eine Kombination aus experimentellen und theoretischen Methoden wurde benutzt um zu 

verstehen wie Nährstoffabhängigkeiten eine Gesellschaft von Mikroorganismen formen und 

prägen. Der erste Schritt war eine künstliche Gesellschaft aus laborüblichen Hefe- und MSB-

Stämmen zu etablieren. Durch eine Reihe an Experimenten mit chemisch definierten Medien 

zeigten MSB ihre metabolische Abhängigkeit von Hefe für Wachstum und Überleben. Diese 

zusammengesetzte Gesellschaft scheint stabil zu sein und wird durch den Fluss von kleinen 

stickstoffhaltigen Molekülen von Hefe zu MSB aufrechterhalten. Es zeigte sich, dass der 

Nährstoffaustausch eine Folge von Stoffwechselüberfluss in Hefe ist. Diese scheiden unter 

bestimmten Kombinationen von Stickstoffquellen überschüssige Stoffwechselabbauprodukte 

aus. Die beobachteten Stoffwechselausscheidungen erfordern einen Satz an Genen, die den 

Hefestickstoffstoffwechsel regulieren wenn präferierte Stickstoffquellen erschöpft sind. Mit 

Hilfe von Multi-Spezies genomumfänglichen Stoffwechsel-Modellierung haben wir den 

Kometabolismus von Hefe-MSB Gemeinschaften und vielen anderen natürlichen 

Bakteriengemeinschaften nachgebildet. Die Ergebnisse der Simulationen zeigen eine 

Verbindung zwischen Nährstoffaustausch und gemeinsamen Auftreten der Bakterienarten. Die 

entwickelte Methode hat sich bewährt für die Vorhersage von Stoffwechselproduktaustausch in 

mikrobiellen Gemeinschaften.  

In diesem Projekt wurde eine domänenübergreifende Modellgesellschaft aus Wildtyp-

Mikroorganismen etabliert und charakterisiert. In bestimmten Mediazusammensetzungen 

verursachen Besonderheiten im regulatorischen Netzwerk der Hefe die verschwenderische 

Ausscheidung von Aminosäuren und anderen Stoffwechselprodukten. Dies schafft eine stabile 

Nische für das Wachstum von Milchsäurebakterien, die auxotrophisch für verschiedene 

Aminosäuren sind. Das beschriebene Szenario von metabolischen Abhängigkeiten zwischen 

Hefe und Milchsäurebakterien zeigt, wie das Überleben einer Art von den Eigentümlichkeiten 

des Stoffwechsel einer anderen Art beeinflusst wird. Die Interaktion zwischen Hefe und MSB 

stellt sich sofort ein, und kann deswegen als erster Schritt in Richtung der Evolution von 

Kooperation dienen. 
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1 INTRODUCTION
1
 

1.1 Metabolic interactions in microbial communities 

Microbial communities are intertwined with metabolic exchanges, whether viewed as narrowly 

as a pair of symbionts, or as generally as earth-wide ecosystem lined up with trophic chains. 

Understanding metabolic interactions at global level is indispensable in microbial ecology and 

evolution. Seeing microbial metabolism in the community context (as opposed to pure cultures) 

reveals new phenotypes (Jarosz et al., 2014), helps designing synthetic communities for 

biotechnology (Santala et al., 2014; Zhou et al., 2015), and enables cultivating the 

‘uncultivables’ (Ling et al., 2015). Accumulating examples of metabolic cross-feeding (Morris et 

al., 2013; Seth and Taga, 2014) and evidence from metabolic modeling (Zelezniak et al., 2015) 

create an anticipation of many more to be discovered. This work is focused on nutrient exchange 

between microorganisms, arguably the most common metabolic interaction in microbial 

communities.  

Multiple studies show that metabolite exchanges form a strategy for group success (Lawrence et 

al., 2012; McNally et al., 2014; Morris et al., 2013; Pande et al., 2014; Ren et al., 2015). 

Metabolic interactions frequently contribute, through division of labor, to the emergent abilities 

at community level, such as biodegradation (Fowler et al., 2014; Lykidis et al., 2011), faster 

growth (Pande et al., 2014) or increased virulence (Alteri et al., 2015; McNally et al., 2014). 

Outsourcing metabolic functions to fellow members embeds each pathway in a specialized 

microenvironment, hence avoiding biochemical conflict (Johnson et al., 2012). Moreover, under 

nutrient-poor conditions species can be prompted to share metabolites and thus complement each 

other’s biosynthetic capabilities (Harcombe, 2010; Hom and Murray, 2014; Wintermute and 

Silver, 2010). Metabolic specialization can be found even within the same species, e.g., 

filamentous cyanobacteria with specialized heterocyst cells for nitrogen fixation (Kumar et al., 

2010). 

                                                 

1
 The text in this section is written by myself and reproduced with some modifications from Ponomarova 

and Patil, 2015. 
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1.2 Evolution of microbial interactions 

Despite benefits associated with cross-feeding, its evolution remains controversial, especially in 

case of metabolic cooperation (Foster and Bell, 2012; Oliveira et al., 2014). Emerging and 

maintenance of metabolic exchanges depends on particular circumstances, such as spatial 

structure of microbial community, nutrient availability, diffusion constraints and cost 

effectiveness of concerned biosynthetic processes (Allen et al., 2013; Hol et al., 2013; Morris et 

al., 2012). For example, aggregating or forming a biofilm maximizes efficiency of nutrient 

transfer and stimulates otherwise thermodynamically unfavorable metabolic processes (Agapakis 

et al., 2012). In extreme cases, metabolic dependency results in endosymbiotic relationship, a 

popular solution for hydrogen-producing ciliates that harbor methanogenic archaea for H2 

outflow (Fenchel and Finlay, 2010). 

1.3 Experimental methods to study metabolic interactions in microbial consortia 

Metabolic exchanges are ubiquitous in microbial communities. However, detecting metabolite 

cross-feedings is difficult due to their intrinsically dynamic nature and community complexity. 

Thus, while exhaustive description of metabolic networks operating in natural systems is a task 

for the future, the battle of today is divided between detailed characterizations of small, reduced 

complexity microbial consortia, and focusing on particular metabolic aspects of natural 

ecosystems.  

Shifting attention from isolated metabolism of pure cultures to that of microbial communities is 

challenging and requires new tools and methods. And, as in case of any complex network, when 

choosing a focus point in the large web of metabolic interactions, we have to compromise 

between resolution of detail and coverage. Detecting metabolic interactions requires 

methodological blend able to capture species identity, dependencies and the nature of exchanged 

metabolites. Multiple combinations of diverse techniques, from metagenomics to imaging mass 

spectrometry, offer solutions to this challenge, each combination being tailored to the community 

at hand.  

Enumerating metabolic exchanges, being difficult even for small communities, becomes 

overwhelming for natural communities with hundreds of species living in fluctuating 

environment. One of the main underlying reasons for this difficulty is that metabolites cannot be 
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directly attributed to a particular species or abiotic source. Furthermore, a large fraction of 

microbial diversity still remains largely undiscovered or uncharacterized for their metabolic 

needs and biosynthetic capabilities. These composite problems necessitate a trade-off between 

resolution and coverage (Fig. 1.1). 

 

Figure 1.1: Spectrum of microbial community study-systems directed by trade-off between complexity 

and tractability. Microbial interactions play a central role in biogeochemical cycles in numerous 

ecosystems, yet are difficult to investigate in molecular details. In contrast, synthetic communities allow 

controlled environment and ease of interpretation. Each study-system in this spectrum offers a choice of 

resolution to view microbial interactions. 

 

An attractive way to achieve increased resolution of metabolic dependencies is through 

constructing a smaller manageable model system or by focusing on a particular interaction 

within a large network. On the other end of spectrum, one can cover large system by grouping 

individual players into higher order units – guilds (e.g. methanotrophs, sulfur-reducers) or 

metabolite classes (e.g. electron equivalents, fixed nitrogen). Balancing between these two 

strategies can loosen the tangle and trace the main threads in the metabolic knot of interspecies 

interactions. 

1.3.1 Meta-omics methods  

Meta-omics analyses guide interaction discovery. Meta-omics technologies are culture 

independent and scalable in space/time. Metagenomics is a particularly powerful tool for 

discerning species identity and for detecting patterns of interspecies associations. These in turn 

can generate verifiable hypotheses about metabolic (and other) interactions between community 

members. Genotyping of associated microbes can reveal their functional palettes (Shafquat et al., 

2014) and task distribution among community members (Lykidis et al., 2011). For example, 

individual genomes of co-aggregated pair of archaea showed that one of the symbionts is 
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dependent on another for lipid, cofactor, amino acid, and nucleotide biosynthesis (Waters et al., 

2003). Following a specific community over time can also reveal metabolic dependencies as one 

species dynamically responds to change in abundance of the other, e.g. as shown in a activated 

sludge community (Ju and Zhang, 2015). Overlaying taxonomic data with other information, 

such as spatial distribution and geochemical profiles (Fuchsman et al., 2011) or specific 

enzymatic function (Bailey et al., 2013) can deepen insight into community co-metabolism. 

Beyond individual communities, metagenomics has allowed identifying species co-occurrence 

structure across different habitats/samples (Faust et al., 2012; Friedman and Alm, 2012) – 

associations that hint at interspecies interactions (Berry and Widder, 2014; Zelezniak et al., 

2015). 

Transcriptomics and proteomics are commonly used to complement metagenomics, to deduce 

what genome encoded metabolic potential is being used (Durham et al., 2015; Embree et al., 

2014). For instance, analysis of transcriptional patterns in co-culture of marine bacterium and 

diatom, as well as ocean samples, pinpointed cross-feeding of 2,3-dihydroxypropane-1-sulfonate, 

a new link in marine microbial food web (Durham et al., 2015). Metabolic applications of meta-

proteomics are more commonly used for relatively simple systems – it was used to demonstrate 

metabolic adjustments made by three species comprising model oral biofilm (Hendrickson et al., 

2014) or to show how a presence/absence of Aggregatibacter actinomycetemcomitans modulates 

metabolism of other bacteria in 10-species biofilm (Bao et al., 2015). Although not 

distinguishing between species, these results give a sense of complexity and scale of metabolic 

adjustments that happen in “real-world” communities. On a larger scale, meta-proteomics, in 

combination with meta-genomics, allowed proposing differential flow of nitrogen, sulfur and 

hydrogen among the abundant taxa of marine microbial communities in response to oxygen 

availability (Hawley et al., 2014). 

1.3.2 Isotope labeling for tracing community-scale pathways.  

Tracing of isotope labeled substrates, a standard approach in pathway discovery, can also be 

adapted to reveal flow of metabolites in microbial consortium. Although this is the most 

conclusive method for showing metabolite exchange, the major challenge is to distinguish 

labeling fingerprints of different populations. To do so, one can use artificially expressed 

reporter protein (Ruhl et al., 2011), species-specific peptides (Ghosh et al., 2014), or detect 
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labelled DNA or RNA in conjunction with metagenomics analysis (Verastegui et al., 2014). To 

give some examples, 13C labeling served to experimentally prove bacterial feeding on fungal 

exudates (Pion et al., 2013), to suggest a chain of toluene degraders in methanogenic enrichment 

culture (Fowler et al., 2014) and to identify key naphthalene-degrading bacteria in situ (Herbst et 

al., 2013). 

1.3.3 Imaging community structure – clues from the neighbors.  

Efficient mass transfer between organisms is a prerequisite of successful metabolic interaction, 

therefore it is not uncommon for microbial partners to form tight aggregates and develop special 

structures that facilitate metabolite exchange. Microscopic detection of these structures can be a 

powerful tool in identifying interacting microorganisms. Illustrative is an example of nanotubes 

formed by cross-feeding E. coli auxotrophs (Pande et al., 2015) or variety of formations in acid 

mine drainage community, such as cytoplasmic bridges, pili, and “synaps like connections” 

(Comolli and Banfield, 2014). 

Fluorescence in situ hybridization (FISH) based methods reveal spatial distribution of interacting 

partners, for instance showing stratification and co-aggregation patterns in biofilms (Almstrand 

et al., 2013) or bacterial groups attached to phytoplankton host (Cruz-López and Maske, 2014). 

In addition to resolving spatial structure, imaging, e.g. based on fluorescent dyes, can be used to 

assess general metabolic state of community members (Maurice and Turnbaugh, 2013; Vila-

Costa et al., 2012). 

1.3.4 Unbiased exploration using metabolomics.  

Mass spectrometry (MS) based methods can detect a broad spectrum of compounds and are 

being developed by day. This technique has a wide range of modifications, varying in application 

from a single cell to multiple colonies on a petri dish (reviewed by Watrous et al. (Watrous et al., 

2011)). MS can be used in an imaging set-up to study metabolic interactions (Shih et al., 2014). 

Potential of imaging-MS unfolded, for example, in a study of chemical interactions on 

actinomycete bacteria, showing interactions through spectra of secondary metabolites (Traxler et 

al., 2013). Application of MS to microbial interactions is, however, currently limited by various 

challenges in data analysis and compound identification (Chen et al., 2002; Garg et al., 2015; 

Jarosz et al., 2014; Traxler et al., 2013). Other methods that can facilitate interrogation of 
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metabolic space of the community are reviewed by Maurice et al. (Maurice and Turnbaugh, 

2013) and Wessel et al. (Wessel et al., 2013). 

Metabolomics alone usually does not provide sufficient resolution to pinpoint exchanged 

molecules. Elucidating cross-feeding in a complex nutritional environment is possible only in 

combination with other techniques such as stable isotope labeling and FISH. Such 

methodological blend allowed pinpointing nitrogen transfer from cyanobacteria to their 

symbiotic diatoms (Foster et al., 2011) or from methane-oxidizing archaea to sulfate-reducing 

bacteria in marine seeps (Dekas et al., 2009; Green-Saxena et al., 2014). Several examples of 

metabolic interactions detected through combination of different methods are described in Table 

1.1 

1.3.5 Divide and conquer through temporal / spatial compartmentalization.  

Using a defined assembly of microorganisms opens opportunities to employ methods 

inapplicable to complex systems. For example, species quantification can be easily done with 

selective plating, quantitative PCR or flow cytometry. However, for better control over 

metabolite production and consumption, as well as for discerning metabolic roles of different 

populations, modification to mixed cultures can be made. One of the simplest techniques is based 

on the cell-free culture filtrate – the so-called conditioned or spent medium. This approach is 

frequently used to assay activity of secretome of the donor microorganism(s) by adding its 

conditioned medium to the recipient culture. This allows identifying non-induced dependencies 

such as interaction network between gut symbionts knitted by polysaccharide degradation 

products (Rakoff-Nahoum et al., 2014). 

Other approaches try to preserve real time molecule diffusion between species, but keep 

symbionts physically separated, e.g. by means of semi-permeable membrane (Stadie et al., 

2013), structuring microenvironment in microfluidics device (Kim et al., 2008), encapsulating 

cells in hydrogels (Connell et al., 2013), or co-culturing in a Petri dish (Kerr et al., 2002). 

Artificial barriers provide better control over conditions and more convenient quantification, 

separation and analysis of interacting populations, also in a high-throughput manner (Leung et 

al., 2012). It is important to note that the co-culture conditions can have a profound impact on 

community metabolism (Goers et al., 2014) and hence caution is warranted when extrapolating 

the conclusions to other contexts. 
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1.3.6 In-silico methods to study metabolic exchanges  

Average microbial genome contains around thousand enzymatic reactions, making 

computational approach necessary to achieve holistic view of cellular metabolism. Genome scale 

metabolic modeling typically starts with genome sequencing and gene annotation, which 

provides a list of (presumably) functional metabolic reactions that represent microbial cell. This 

model reconstruction can either be fully automatic through pipeline resources, such as Model 

SEED (Henry et al., 2010), GEMSiRV (Liao et al., 2012), merlin (Dias et al., 2015) etc., or 

contain manual post-processing and curation steps (Hamilton and Reed, 2014). Both number and 

quality of model continuously grows, providing more opportunities for computational 

experiments. 

In silico studies can be extended to analyze multiple species interspecies interactions in 

microbial communities (Mahadevan and Henson, 2012), and steady state modeling can be scaled 

up to ecosystem level (Klitgord and Segre, 2010), revealing a coarse-grained, but often 

fundamental principles (Freilich et al., 2011). Quantitative predictions and dynamic simulations 

require more detailed input and thus usually applied to small, well described communities. 

Pairwise modeling has shown emergent biosynthetic abilities in co-cultures (Chiu et al., 2014), 

demonstrated that oxic/anoxic conditions stimulate mutualistic cross-feeding among gut bacteria 

(Heinken and Thiele, 2015). Quantitative effect of metabolite cross-feeding can also be 

calculated, as it was done using dynamic modeling (Song et al., 2014; Zomorrodi et al., 2014) or 

diffusion simulation of secreted nutrients between colonies in 2-3 species communities 

(Harcombe, 2010). Overlaying metabolic modeling with metagenomics data infers inter-species 

interactions and allows to make suggestions about ecological forces at play, e.g. habitat filtering 

and species assortment (Levy and Borenstein, 2014). Modeling sheds light on competition versus 

cooperation dilemma, showing that decision in favor of one or another strategy depends on 

intrinsic metabolic potential (Zelezniak et al., 2015), nutrient availability (Heinken and Thiele, 

2015; Klitgord and Segre, 2010) and spatial distribution (Allen et al., 2013). Mathematical 

models of community metabolism hold a great potential to suggest cross-feeding scenarios and 

thus to narrow down the search space for experimental studies. 
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1.3.7 Synthetic communities as model systems.  

While natural consortia are still difficult to scrutinize, enrichment cultures compromise between 

natural and synthetic communities (Fig 1.1). These are cultures obtained from natural samples by 

promoting growth of organisms of interest, typically by manipulating medium composition. 

Synthetic microbial communities provide further reduction in the complexity, creating a more 

tractable system for discovering metabolic exchanges (Grosskopf and Soyer, 2014; Song et al., 

2014). Communities constructed with the isolates from the same environment maximize 

resemblance to the natural community and preserve indigenous interactions shaped by co-

adaptation/evolution (Stadie et al., 2013). 

The pre-requisite for common history of member species can be relaxed when addressing 

fundamental questions like emergence and evolution of metabolic interactions (Andrade-

Dominguez et al., 2014; Hom and Murray, 2014). To this end, one might also turn to engineered 

dependencies through genetic manipulation and / or laboratory evolution (Harcombe, 2010; Mee 

et al., 2014; Summers et al., 2010; Wintermute and Silver, 2010). Despite being less “natural”, 

engineered interactions have obvious advantage of known identity of transmitted metabolite (or 

at least of the involved pathways), as well as being easier to obtain, monitor, and control. 

Engineered communities are most common object to study synergistic growth effects of 

metabolic cross-feeding (Mee et al., 2014; Pande et al., 2014). 

 

Figure 1.2: Most common means to create a synthetic microbial community. 

 

Another group of model systems for microbial interactions emerge from microbiota of fermented 

food (Wolfe and Dutton, 2015). These associations typically have reduced complexity compared 

with most environmental or host-associated systems, and can be grown in well controlled 
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environment without loss of tractability, e.g. chees rinds (Wolfe et al., 2014). Spatial 

organization, species succession, stability, resilience, and co-evolution history, such as those of 

water and milk kefir grains (Laureys and De Vuyst, 2014; Marsh et al., 2013), create a rich 

ground in search of metabolic interaction mechanisms. 

1.4 Synthetic community of yeast and lactic acid bacteria: motivation and design 

Yeast and lactic acid bacteria go side by side in their habitats, particularly in nutrient rich 

human-influenced environments. This inter-kingdom symbiosis is a common recipe for naturally 

fermented foods all over the world, including but not limited to kefir, kimchi, airag, togwa, 

sourdough, and sour beer. Yeast-LAB co-fermentations have occurred spontaneously and have 

been sustaining nutritional needs of our ancestors long before the science of microbiology has 

emerged. Growth of yeast and LAB in fermented products not only created a unique flavor 

profile, but also ensured food safety by outcompeting food spoilage microbiota and served as a 

source of probiotics. First proteomic evidence for yeast-LAB symbiosis in food dates back to 

3800 years (Yang et al., 2014). Despite such a long history our understanding of interactions 

between yeast and their bacterial neighbors is limited. 

Re-occurring symbiosis of yeast and lactic acid bacteria inspired the composition of synthetic 

microbial community used to study interspecies interactions in this work. Budding yeast 

Saccharomyces cerevisiae S90, together with representatives of two lactic acid bacteria families, 

viz., Lactococcus lactis subsp. lactis (Streptococcaceae) and Lactobacillus plantarum 

(Lactobacillaceae) were selected to assemble a synthetic community. All three species are 

prototrophic (without introduced auxotrophy markers). Working with these well-characterized 

strains provided methodological flexibility, such as host independence, ease of cultivation, and 

the availability of diverse molecular biology tools and manually curated genome scale metabolic 

models.  

The topic of interactions between yeast and lactic acid bacteria is not new, but studies to date are 

limited. Available data is gathered in the context of food microbiology, with an emphasis on co-

fermentation in sourdough (Gobbetti et al., 2005; Minervini et al., 2012) and dairy products 

(Álvarez-Martín et al., 2008; Narvhus, 2003; Sudun et al., 2013). These studies discuss how 

metabolic composition, such as flavor and aroma compounds, change with variation in microbial 

community compositions. Direct metabolic exchanges, due to a complex matrix composition of 
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fermented food, are typically not addressed. Suggestion of metabolic interactions, however, 

appear since 90’s (Gobbetti et al., 2005), leaving a lot of room for investigation. With 

development of new methods and approaches, we soon will know much more about yeast-LAB 

symbiosis. Such an example is provided in a recent study where authors demonstrate cross-

feeding (summarized in Table 1.1) between yeast and LAB isolated from water kefir (Stadie et 

al., 2013). 

1.5 Nitrogen metabolism and its regulation in S. cerevisiae  

1.5.1 TOR pathway 

Growth rate and behavior of the yeast cell is a function of the environment, which by large is 

defined through nutrient quantity and quality. Necessity to tune growth and regulation according 

to conditions resulted into dual role of nutrients: on one hand as biomass building blocks and 

energy sources, and on the other hand as signaling factors (Broach, 2012).  

In S. cerevisiae multiple interconnected signaling networks work in concert to sense nutritional 

status and optimize resource utilization accordingly. One of them, TOR (Target of Rapamycin) 

network, primarily reacts to the quality and quantity of nitrogen sources (Zaman et al., 2008). 

TOR was discovered through specific inhibition by macrolide drug rapamycin, hence the name 

(Loewith and Hall, 2011). Rapamycin treated yeast cultures display numerous phenotypic 

changes: halt in G0 phase, inhibition of protein synthesis, elevated autophagy, upregulation of 

stress response, accumulation of glycogen and trehalose, and induction of nitrogen catabolism 

(De Virgilio and Loewith, 2006b). These changes resemble the way yeast cell reacts to nitrogen 

deprivation, exposing the involvement of TOR in the nitrogen metabolism (Zaman et al., 2008). 

 This complex signaling system is conserved among many eukaryotes, but unlike most 

mammals, S. cerevisiae possesses two TOR complexes. TORC1, the only one responsive to 

rapamycin treatment, mainly controls growth, protein synthesis, nitrogen metabolism and 

autophagy in response to nutritional cues; and TORC2, a lesser-studied TOR complex, regulates 

actin polarization and overcoming DNA damage (Weisman et al., 2014). 

TORC1 is found to be associated with membranes: vacuolar (thus in proximity to nutrient 

storage), endosome or plasma membranes (de Virgilio, 2006a). Coincidentally, this location 

places TORC in vicinity to its upstream regulators, such as vacuolar membrane associated EGO 
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complex (Fig. 1.3). EGO couples TORC1 activity to signals from amino acids (Binda et al., 

2009; Kim and Guan, 2011). New studies also show that TORC1 depends on cellular trafficking, 

as was demonstrated through interaction with mutations of vacuolar protein sorting (VPS) 

complex, especially in class C genes (Fayyadkazan et al., 2014; Zurita-Martinez et al., 2007). 

Rapamycin inhibits TOR signaling by binding to FKBP12 (FK506-binding protein), which then 

attaches to TORC1 complex, assumingly blocking phosphorylation of its downstream targets 

(Shimobayashi and Hall, 2014). The latter are better represented in literature, although, due to 

multiplayer regulation and interconnection with other signaling networks, assigning a target to 

that or another pathway can be tentative.  

Multiple effects TORC1 enforces through activity of PP2A-like phosphatases – Sit4, Pph21, and 

Pph22 (Fig. 1.3). TOR1 complex phosphorylates Tap42 protein, which then binds to the 

phosphatases and modulates their specificity to certain substrates (Fig.1.3).   

Another TORC1 effector is Sch9, PKA-like kinase with TORC1-dependent phosphorylation. 

Through phosphorylating other intermediate regulators it eventually causes activation of genes 

responsible for ribosomal biogenesis (and initiation of translation) (Hughes Hallett et al., 2014). 

Similar role has a transcription factor Sfp1. Phosphorylated by TORC1, it then stimulates 

expression of ribosomal protein genes (Loewith and Hall, 2011). 

TORC1 also affects amino acid biosynthesis through upregulating RTG (retrograde signaling) 

pathway. Specific mechanism of TORC1 involvement is unknown, but resulting effect resembles 

response to dysfunctional mitochondria: upregulated transcription of anapleurotic enzymes 

refuels TCA cycle and thus replenishes carbon backbones (primarily 2-oxoglutarte) required for 

biosynthesis of glutamine and glutamate (Fig. 1.3 and 1.4). 

TOR signaling negatively regulates amino acid biosynthesis through indirect phosphorylation 

and thus deactivation of Gcn2. Active Gcn2 activates translation of Gcn4 that in turn activates 

transcription of amino acid biosynthesis genes (Smets et al., 2010). 
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Figure 1.3: Major TORC1-related signaling regulators. RTG – retrograde signaling; RP – ribosomal 

protein (genes). Connections include indirect interactions. Dotted lines show interactions with less 

understood/putative mechanism/mediators. Compiled based on (Ljungdahl and Daignan-Fornier, 2012; 

Loewith and Hall, 2011; Smets et al., 2010; Zaman et al., 2008) 

 

Sorting of amino acid permeases is controlled by TORC1 through Npr1 kinase in a way that at 

nutrient rich conditions constitutive permeases (like Tat2) are directed to the plasma membrane, 

and under nitrogen replete conditions NCR-controlled permeases like Gap1 are favored. 

1.5.2 Nitrogen source discrimination 

Nitrogen, making ~10% of S. cerevisiae cell by weight (Fraenkel, 2011), is an essential 

component of yeast nutrition. S. cerevisiae can assimilate around 30 different nitrogenous 

compounds (Godard et al., 2007), however “value” of these compounds to the yeast varies.  

Value of the compound depends on its fluidity as metabolic currency: while some metabolites 

can be easily incorporated into metabolic flow and are closer to the central pathways of the cell, 
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others require more enzymes, cofactors etc. for assimilation. Central to nitrogen metabolism are 

reactions that interconvert 2-oxoglutarate, ammonium, glutamine and glutamate (Figure 1.4). 

External nitrogen has to pass through this path to be further incorporated into biosynthetic 

reactions, typically transfer of amino/amide group from glutamate/glutamine to newly forming 

amino acids (Ljungdahl and Daignan-Fornier, 2012).  Glutamate is responsible for 85% of total 

incorporated nitrogen, and glutamine makes up the other 15% (Cooper, 1982). In addition, 

intracellular pool of glutamine indicates nitrogen status of the cell and initiates complex nutrient 

response programs (Crespo et al., 2002; Murray et al., 1998). Although usually less potent than 

glutamine, 2-OG pool can also regulate nitrogen metabolism (Leigh and Dodsworth, 2007). 

Amino acids other than glutamine can also convey global regulatory signals, for example 

arginine, and leucine were shown to regulate TORC1 activity in yeast and mammals as well 

(Jewell et al., 2015). 

Amino acids can be classified according to their “value”. The first group, supporting the highest 

growth rates, includes ammonium, glutamine, asparagine, and is shortly followed by serine, 

arginine, aspartate, glutamate, and alanine (Godard et al., 2007). These amino acids are 

considered preferable due to their proximity to TCA cycle and absence of non-metabolizable 

catabolites. The least favorite sources of nitrogen are such compounds as proline, valine, 

phenylalanine, and ornithine. Preferred nitrogen sources induce inhibition of genes responsible 

for utilization of other nitrogen sources. Strain S288c (whose prototrophic version we use in our 

experiments) has somewhat exceptional nitrogen preferences – it does not show repression in 

presence of ammonium and prefers, unlike other strains, glutamine to inorganic nitrogen, 

(Godard et al., 2007; Zaman et al., 2008). 

Pathway responsible for selective utilization of nitrogen sources is generally referred to as a 

nitrogen catabolite repression (NCR) pathway, or, less frequently, as nitrogen discrimination 

pathway (NDP). It governs expression of approximately 90 metabolic genes (Zaman et al., 

2008). Other publications have used as many as 390 genes to assess NCR activity (Godard et al., 

2007). Analogously to repressing the uptake of other carbon sources in presence of glucose, 

whenever a good source of nitrogen is present (such as glutamine) yeast cell focuses on its 

consumption and shuts down uptake and processing of other, suboptimal compounds. At this 

state NCR-sensitive genes are repressed. However, when yeast is grown on less favorite nitrogen 

source (such as proline), cell activates alternative metabolic routes to process the nitrogen which 
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is currently available. At this stage NCR controlled genes are activated. Of course, this is a 

simplified binary picture, and reality is much more of a “gray zone” between on and off states, 

involving multiple regulatory pathways. 

 

 

Figure 1.4: 2-oxoglutarate joins central carbon with central nitrogen metabolism through glutamate and 

glutamine. Ammonium (ammonium cation) is used by Gln1 and Gdh enzymes. 

 

NCR is governed by several transcription factors: activators Gln3, Gat1, Dal81, Dal82 and 

repressors Gzf3, and Dal80 (Bertram et al., 2000). These effectors cross-regulate each other 

(Ljungdahl and Daignan-Fornier, 2012), and combinatorially control downstream targets that 

direct metabolism of nitrogenous components, e.g. amino acids, allantoin, ammonia and urea 

(Bertram et al., 2000). Gln3 is a GATA-type transcriptional activator controlling the majority of 

NCR-sensitive genes. Gln3 is one of the most studied TFs, as the first sequenced and cloned 

NCR activator (Minehart and Magasanik, 1991). It activates transcription of other NCR 

transcription factors (GAT1, DAL80, GZF3), but also enzyme-encoding genes, such as arginase 

CAR1, glutamate dehydrogenase GDH2, and glutamine synthase GLN1 (Courchesne and 

Magasanik, 1988). Furthermore genes UGA1, CAN1, GAP1, PUT4, ASP3, GDH1, DAL1-2, and 

DAL4 are dependent on GLN3 (ter Schure et al., 2000).  GAP1 is a general amino acid permease, 

one of the multiple nitrogen metabolite transporters whose induction is a hallmark of nitrogen 
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catabolite derepression. Overexpression of Gln3, however, is toxic for the cell, which gives one 

of the possible reasons for nitrogenous metabolite excretion. 

TORC1, as a global nutrient controller, also affects (activates) NCR (Loewith and Hall, 2011).  

Mechanistic details of NCR regulation by TORC1 are beginning to emerge, to date highlighting 

the link through Gln3. TORC1, through a complex of phosphatases, modulates binding of Gln3 

to Ure2 (Fig. 1.3). This binding sequesters Gln3 in the cytoplasm and prevents it from activating 

transcription in the nucleus (Bertram et al., 2000; Tate et al., 2010). However, Gln3 can also be 

controlled through nitrogen limitation (likely by sensing the level of intracellular glutamine), in a 

TORC1-independent manner (Georis et al., 2011; Rai et al., 2013; Zaman et al., 2008). Together 

with transcription factors Rtg1 and Rtg3, Gln3 can be activated directly by intracellular levels of 

glutamine (Crespo et al., 2002).  

1.6 Metabolism and nutrient requirements of LAB 

Lactic acid bacteria taxonomically constitute an order Lactobacillales that includes families 

Aerococcaceae, Carnobacteriaceae, Enterococcaceae, Lactobacillacea, Streptococcaceae, and 

Leuconostocaceae. As the name suggests, one of the uniting factors for these bacteria is the 

production of large amount of lactic acid as the main end-product of carbohydrate fermentation. 

Other unifying features include positive Gram staining, resistance to acidity, absent sporulation, 

low GC content, and deficiency in respiration. 

Lactic acid bacteria are fastidious organisms with limited biosynthetic capacity, that for stable 

growth require a number of amino acids, vitamins, and other nutrients (Hayek and Ibrahim, 

2013; Snell, 1945; van Niel et al., 1999; Wegkamp et al., 2010). Amino acids are usually 

classified as essential (absolutely required), stimulatory, and non-essential. Requirements for 

essential amino acids varies largely between species (and strains) of lactic acid bacteria, 

estimated to fall somewhere between 3 to 14 amino acids (Hayek and Ibrahim, 2013).  

High level of auxotrophy among LAB is in accord with their protein-rich natural habitats. These 

bacteria possess an arsenal of proteolytic machinery together with developed system of 

transporters and enzymes oriented on peptide catabolism. Although minimal/defined media are 

prepared with individual amino acids for the sake of simplicity and tractability, there is evidence 

that short peptides would be a better nitrogen source, for example for L. lactis (van Niel et al., 

1999).  

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=186827&lvl=3&lin=f&keep=1&srchmode=1&unlock
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TCA cycle is not completely functional in lactic acid bacteria. Before the sequencing era (instead 

of common but rather uncertain inference from genome) activity of TCA enzymes has been 

directly estimated in cell-free extracts of several lactobacilli (Morishita and Yajima, 2014). The 

authors have found that none of the tested species possessed active isocitrate dehydrogenase, 2-

oxoglutarate dehydrogenase, or succinate dehydrogenase (Fig. 1.5). Activity of other enzymes in 

the cycle is species specific. Additional common feature of tested lactobacilli was operation of 

citric acid cycle fragment in the reductive mode. Resulting deficiency in production of 2-

oxoglutarate thus causes glutamine auxotrophy, which is very common among LAB. However, 

glutamine in the medium cannot be substituted for 2-oxoglutarate without growth arrest, 

presumably due to metabolite import issues (Morishita and Yajima, 2014).  

 

 

Figure 1.5: Tricarboxylic acid pathway in lactobacilli. Based on (Morishita and Yajima, 2014).  

Dotted/bold arrows show consensually undetected/present reactions for all tested species of lactobacilli. 

Enzymes: MDH – malate dehydrogenase, CS – citrate synthase, Cl – citrate lyase, AH – aconitase, IDH – 

isocitrate dehydrogenase, ODH – 2-oxoglytarate dehydrogenase, GDH – glutamate dehydrogenase, SDH 

– succinate dehydrogenase, FR – fumarate reductase, FH – fumarase. (O) and (R) denote oxidative and 

reductive reaction directions respectively. 
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In addition to incomplete TCA cycle, respiratory chain of lactic acid bacteria is also non-

functional due to the absence of the pathway for biosynthesis of heme, which is necessary for 

function of cytochrome oxidase. In some LAB menaquinone is also missing. However, it has 

been shown that respiration can be restored in many species with addition of exogenous heme 

(e.g. in L. lactis), or with the combination of heme and menaquinone (e.g. for L. plantarum) 

(Yamamoto et al., 2005). L. lactis shows increased survival when grown in co-culture with 

respiring strain (Rezaiki et al., 2004). Despite the lack of full TCA cycle, NADH for donation of 

electrons is generated in alternative way via glycolysis (Pedersen et al., 2012).  

1.7 Nutrient excretion 

Microorganisms can often utilize and secrete a large number of metabolites (Barve and Wagner, 

2013; Paczia et al., 2012). Plastic metabolic network is readily adapted and regulated in response 

to nutrients, e.g. to optimize resource allocation (Gallie et al., 2015; Xavier et al., 2011), but also 

in response to cues from other microorganisms (Estrela et al., 2015). For instance, certain 

bacterial species can modulate yeast metabolism, to reduce secretion of toxic ethanol, by 

deploying chemical signaling (Jarosz et al., 2014). Transcriptional response of Streptococcus 

species shows metabolic adaptations to other members of community (Liu et al., 2011). 

While many secreted metabolites were linked to particular function, e.g. communication, many 

exometabolome components remain unexplained. It is tempting to link excreted molecules to 

exogenous reasons, such as stress or response to other organisms. However, some of these 

overproduction phenomena - unexpected, and, at first glance, wasteful - could be explained by 

processes and constraints inside the cell itself.  

Overflow metabolism, when cells display seemingly inefficient metabolic strategy by releasing, 

for example, incompletely oxidized products is common in yeast, bacterial and mammalian cells. 

In exponentially growing E. coli culture 2-OG accumulates in the culture medium, assumingly 

by passive release (Yan et al., 2011). At later growth stages, partial re-uptake of 2-OG is 

conducted by active transport. Similar switch has also been described in E. coli for production 

and later consumption of acetate (Wolfe, 2005). In yeast, most commonly observed overflow 

metabolites are aerobically produced ethanol and glycerol, however overflow was also 

demonstrated for many other small metabolites, such a weak acids, lactate, pyruvate, fumarate, 

etc. Reasons for overflowing are not completely understood, and combine explanations as faster 
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growth strategy (Molenaar et al., 2009), limited respiratory capacity, and balancing redox ratio 

(NADH/NAD) (Vemuri et al., 2007). As for the mechanism, transposers can be involved, but 

also a “leakage” through lipid bilayer is a common process. The degree of metabolite seeping out 

of the cell will depend on intracellular pool, and extracellular nutrient availability (Dauner et al., 

2001; Romano et al., 2014; Yan et al., 2011).  

For a long time microbial exo-metabolome stayed out of focus, or was limited to relatively 

highly concentrated compounds. In recent years mass-spectrometry based methods allowed 

uncovering the unexpected diversity in exometabolome species (Paczia et al., 2012; Romano et 

al., 2014; Traxler et al., 2013). Besides commonly known and produced in relatively high 

amounts fermentation byproducts, such as ethanol and CO2, yeast can produce a huge variety of 

metabolites: esters, short-chain fatty acids, organic acids, phenols, alcohols, sulfurous 

compounds, etc. Yeast cells were shown to leak phosphate and phosphate-containing metabolites 

(Robertson and Button, 1979), amino acids (Paczia et al., 2012).  

Some of the metabolites are released as a direct consequence of primary metabolism. For 

example, fusel esters and fusel alcohols are secreted as unmetabolizable end products of amino 

acid degradation (Hazelwood et al., 2008); acetolactate and acetohydroxybutyrate are amino acid 

biosynthesis intermediates that leak out of the cell during fermentation (Bokulich and Bamforth, 

2013). Others have been linked to potential evolutionary function, for instance, yeast releasing 

volatile acetate esters attract fruit flies and thus disperse better (Christiaens et al., 2014). Another 

example involves quorum sensing, where yeast excrete tryptophol and phenylethanol to signal 

transition to filamentous growth (Sprague and Winans, 2006). Altogether, however, 

physiological reasons behind production of many compounds are still unexplored. 

When amino acids are used as a nitrogen source, most commonly they first undergo 

transamination, donating nitrogen to the 2-oxoglutarate or other keto-acid. In this way nitrogen is 

being centralized to the yeast metabolism in the form of glutamine, and remaining keto-acid 

either directed to the carbon processing pathways, excreted, or modified and then excreted. 

Branched-chain amino acids (valine, leucine, isoleucine), as well as methionine and 

phenylalanine, are usually catabolized through Ehrlich pathway. After transamination they 

undergo decarboxylation, and then, depending on redox state of the cell, are being converted into 

either fusel alcohol or acid and excreted (Hazelwood et al., 2008).  
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Expulsion of amino acids in yeast, contrary to amino acid uptake, was not properly researched 

due to unclear physiological role. Scarce data suggests that excretion of amino acids can occur 

with imbalanced central metabolism, for example in case of certain auxotrophies or when some 

nutrients are limiting (Velasco et al., 2004). Importance of amino acid release is indicated by 

presence of specific yeast proteins responsible for amino acid excretion, likely involving 

vesicular transport (Velasco et al., 2004). 

1.8 Aims of the study 

The goal of this work was to investigate principles of metabolic interactions in microbial 

communities with focus on interaction between yeast and lactic acid bacteria. Mechanisms and 

consequences of metabolic cross-feeding in this synthetic system were scrutinized by using an 

interdisciplinary blend of methods. Specifically, aims were to: 

- Detect metabolic interaction between microorganisms; 

- Identify metabolites exchanged between yeast and LAB; 

- Explore the predictive power of simulations of multi-species metabolism; 

- Verify stability of interacting microbial community; 

- Examine prerequisites for metabolite exchange in yeast-LAB community; 

- Reveal genetic determinants of metabolite extrusion by S. cerevisiae; 

- Determine environmental perturbations and intrinsic regulatory factors that alter the 

interaction strength. 
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2 METHODS 

2.1 Strains, media, and growth conditions 

Strains used in the experiments: Saccharomyces cerevisiae S90 (MATα, GAL2, S288c 

background, S1 parent strain), Lactobacillus plantarum WCFS1, Lactococcus lactis IL1403. 

Yeast were routinely cultured in YPAD medium, GM17 and MRS were used to cultivate L. 

lactis and L. plantarum respectively. All cultures were grown statically at 30˚C. Chemically 

defined medium CDM47 was developed in this study for conditioned medium and co-culture 

experiments (Table 2.1).  

For co-culture stability testing all combinations of three species were inoculated in starting 

amount of 0.01 (OD600) in 2 ml CDM47 cultures. Daily throughout 2 weeks 20 µl of stationary 

phase culture were transferred into fresh medium. 

Same conditions were used for adaptive evolution experiment that included yeast-LAB pairwise 

cultures and monocultures with and without rapamycin (20 nM) and lasted for approximately 2 

months.  

2.2 Quantification of species in co-cultures 

2.2.1 CFU count.  

CFU (colony forming units) were counted after plating 3 different culture dilutions on selective 

media, each in 3 technical and 3 biological replicates. MRS or GM17 agar plates supplemented 

with 10 µg/ml cycloheximide were used to estimate quantities of bacteria, and SD minimal agar 

to count yeast CFUs. 

2.2.2 Quantitative PCR.  

Alternatively, in order to quantify species in microbial co-cultures and follow their temporal 

dynamics we adopted a real-time quantitative PCR assay. Species specific primers (yeast primers 

only within experimental co-cultures) were designed (Table 2.2) and verified for selectivity with 

BLAST and cross amplifications from the other species used in our co-culture experiments.  
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Table 2.1: Chemically Defined Medium (CDM47) for co-cultivation of yeast and LAB. 

 

Component  Amount/L 

Glucose 15 g 

L-Histidine 0.17 g 

L-Isoleucine 0.24 g 

L-Leucine 1 g 

L-Methionine 0.125  g 

L-Valine 0.7 g 

L-Arginine 0.72 g 

Inositol 2 mg 

KH2PO4 3.1 g 

K2HPO4 6.48 g 

Biotin 6 mg 

Pantothenate hemicalciumsalt 1.2 mg 

Nicotinic acid 0.9 mg 

Pyridoxine HCl 4.8 mg 

MgCl2 0.386 g 

FeSO4·7H2O 4 mg 

ZnSO4·7H2O 5 mg 

Folic acid 0.56 mg 

p-Aminobenzoic acid 0.056 mg 

Potassium acetate 0.9 g 

Lipoic acid 1 mg 

Tween 80 0.5 g 

Adenine 11 mg 

Guanine 5.6 mg 

Uracil 23 mg 

Xanthine 3.8 mg 

MOPS 15 g 

Tricine 1.5 g 

(NH4)6Mo7O24·4H2O 0.19 mg 

MnSO4·H2O 0.288 mg 

CaCl2 30.2 mg 

CoCl2·6H2O 0.19 mg 

CuSO4 0.12 mg 

H3BO3 0.75 mg 

KI 0.11 mg 

K2SO4 23 mg 

EDTA 7.34 mg 

Nitrilotriacetic acid 7.34 mg 

L-Glutathione reduced 15 mg 

Ammonium citrate dibasic 1.7 g 

NaCl 3 g 

L-Tyrosine 0.3 g 

Thiamine HCl 0.56 mg 

Riboflavin 0.9 mg 

Ascorbic acid 0.5 g 

Pyridoxamine·2HCl 5 mg 

FeCl3 3 mg 
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Templates for qPCR analysis were prepared as described below. In brief, 1 ml of (co-)culture 

was pelleted and frozen until analysis. Frozen pellets were re-suspended in sterile PBS, 400 µl of 

mixture transferred into polypropylene screw cap tube with O-ring, previously filled with 0.5 ml 

of acid washed glass beads (0.2-0.3mm), kept on ice. Homogenization was done in FastPrep-24 

bead beater (4 m/s setting, for 2 min with intermittent cooling tubes on ice). Samples were 

briefly vortexed, diluted 1000x with PEG reagent (Chomczynski and Rymaszewski, 2004), 

vortexed again and incubated for 10 min at 95 ˚C. Obtained lysate was used directly for qPCR 

reaction. 

qPCR reaction mix was prepared using 1 µl of sample lysate and 19 µl of SYBR Green RT-PCR 

master mix (Life Technologies). Reaction conditions set to 40 cycles, 60˚C annealing 

temperature. Primers were synthesized and purified (desalting) by Sigma-Aldrich. Standard 

curve was made with serial dilutions of corresponding monocultures and generated on every 

plate. Data analysis was done using StepOne software (Applied Biosystems). 

 

Table 2.2: Species specific primers used for microorganisms quantification in co-cultures 

 

Primer sequence 

Forward 

 

Reverse 

Target species Target gene Amplicon 

size 

AGTGGCCTACCA

TGGTTTCA 

CTTGGATGTGGTAG

CCGTTT 

Saccharomyces 

cerevisiae 

18S rRNA 86 

GCAGGCGTAACT

AAAGCAGC 

AAGCGTTTCAGCAG

GGGTAA 

Lactobacillus 

plantarum 

HAD (HAD 

superfamily 

hydrolase) 

72 

GGCGCTCTAAAT

CGAGTCGA 

GCAAAGCCTGACTT

GCTGTC 

Lactococcus lactis dnaA 82 

 

Here we would like to note that finding a reproducible DNA extraction method that would give 

yields proportional to amount of microorganisms, irrespective of experimental conditions or 

target organism, presented an unexpected challenge. Type of medium used and cell culture age, 

https://my.labguru.com/biocollections/genes/31
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factors often not considered to be critical in microbial quantification experiments, turned out to 

be important. For example, most of the tested DNA preparation methods, including commercial 

DNA extraction kits, failed to reproduce a growth curve. Ultimately, supplementing chemical 

extraction step with mechanical cell disruption (described above) became a method of choice. 

This technical issue may in fact have serious implications for metagenomic samples preparation, 

especially when quantitative data is concerned. Many metagenomic DNA extraction methods 

rely on chemical cell lysis, which, depending on experimental conditions, can skew final counts 

by, for instance, under-representing lactobacillus.  

2.3 Yeast genome-wide deletion library screening 

Prototrophic haploid yeast collection of genome-wide single gene knockout library (Mulleder et 

al., 2012) of BY4741 background was used for this experiment (kindly provided by Dr. Markus 

Ralser, Cambridge University, UK). Library glycerol stock was thawed, pinned with a Singer 

Rotor robot in 96-pin format on YPAD agar plates and grown overnight (Fig. 2.1A). All 

cultivation was done statically at 30°C unless other conditioned are specified. From agar yeast 

were inoculated into liquid CDM47 medium in 96-well microtiter plates for overnight pre-

culture. Next, L. plantarum overnight culture, yeast pre-culture and CDM47 medium containing 

200 ug/ml of X-gal were mixed in a flat bottom 96-well plate with liquid handling robot (Biomek 

FXP, Beckman Coulter). Pipetting protocol was adjusted to yield plates with 120 µl of medium 

containing inocula of L. plantarum with final OD600 = 0.01, and knockout yeast strain with 

OD600 = 0.1 (on average across library). Resulting co-culture plates were used to take OD 

measurements every 2 hours during first 18 hours (before X-gal colored derivative starts to 

emerge). OD600 reading at this phase can be used to estimate yeast growth (we tested that 

mixing bacteria into yeast culture does not significantly influence OD readings). After 18 hours, 

every 6 hours plate cultures were re-suspended on orbital shaker for 5 min and imaged with a 

flatbed book scanner (CanoScan 9000F) until color had saturated. In this set up color 

development was used as a proxy for L. plantarum growth, since it has active beta-galactosidase 

genes (lacLM) and used yeast strain is galactosidase negative. Although co-culture of two 

species was analyzed, readouts of their growth were separated in time: initial phase before color 

development allowed reading OD roughly corresponding to yeast culture, and later stages of X-

gal conversion approximated bacterial growth (example outcome Fig.2.2). Screening was 

replicated in a three independent experiments. 
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Figure 2.1: Yeast knockout library screening for interactions with L. plantarum. A. Screening co-culture 

set-up and workflow. B. Intermediate steps of image analysis for colonies recognition and scoring of 

color development. 

 

2.4 Image analysis 

MATLAB script was created to process scanned images. For analyzing images of plates with 

liquid cultures, well areas were first cropped accordingly to the 96-well plate geometry. For 

analysis of mixed culture colonies, separating colonies from the background was done by multi-

step processing (Fig. 2.1B), using functions from MATLAB Image Processing Toolbox. Cultures 

were then scored proportional to “Saturation” component of image in HSV (hue-saturation-

value) color space, averaged across culture image area. Score dynamics for individual 

wells/colonies across measured time-points were used to rank the ability of each yeast mutant 

strain to support growth of L. plantarum. 

2.5 Flow cytometric assessment of yeast cell damage 

LIVE/DEAD® FungaLight™ Yeast Viability Kit (Life Technologies) was used in compliance 

with manufacturer instructions to access fraction of dead yeast cells and/or cells with 

compromised membranes. Five strains of S90 background with highly varying levels of 

interaction with LAB were tested (deletions of GLN3, GTR1, DAL81, URE2 and the wild type). 
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Exponentially growing cells were washed and carefully re-suspended in Tris buffered saline, pH 

7 to produce a suspension of optical density equal to 0.4. Cells were stained with propidium 

iodide (PI) and SYTO® 9 fluorescent dyes and counted with LSR-Fortessa analyzer (Beckton 

Dickinson). Fluorescent events were recorded at excitation/emission 480/500 nm for SYTO9 and 

490/635 nm for PI (Fig. 2.3). Gating was adjusted to exclude debris and cell duplicates. Each 

sample was measured until the minimum of 2000 of dead/damaged cells was reached. 

 

Figure 2.3: Separation of events of live cells (SYTO9 recorded in FITC channel) from dead/membrane-

compromised (PI recorded in Cy5 channel). 

 

2.6 Yeast strain construction 

Five strains of existing gene knockout strains (deletions GLN3, PEP3, DAL81, URE2 and GTR1) 

were taken from genome-wide deletion collection (Mulleder et al., 2012) for target DNA 

fragment amplification. Purified genomic DNA was used as a target in PCR reaction with 

previously described A-D primers (Winzeler, 1999). Resulting DNA amplicons contained 

kanMX4 with 200-400 bp of flanking genomic regions. These PCR products were used to 

transform WT S. cerevisiae S90 as described below.  

2.7 Yeast transformation 

Yeast transformation was done as described before (Gietz and Schiestl, 2007) with some 

modifications. Yeast mid-log culture (OD600=0.7, 50 ml) was centrifuged, washed, and re-
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suspended in 1 ml of sterile water. Then 100 µl of cell suspension was topped with 

transformation mix (240 µl PEG 3500, 50% w/v; 36 µl LiAc, 1.0 M; 50 µl boiled single stranded 

carrier DNA, 2mg/ml; 34 µL of PCR amplification product described above) and resuspended. 

After incubation for 40 min on 42°C water bath, cells were re-suspended in YPAD and incubated 

for 3-4 hours to allow for expression from integrated antibiotic marker. Clones were selected on 

YPAD medium with G418 antibiotic (300 ug/ml). Success of homologous recombination was 

verified by colony PCR using A-D, A-KanB, and C-KanD primer pairs as described in 

(Winzeler, 1999). 

2.8 Yeast exometabolome analysis
2
 

In order to identify secreted by S. cerevisiae and uptaken by LAB, samples of supernatant were 

taken continuously during yeast growth in monoculture, and later during LAB cultivation in 

yeast conditioned medium (Fig.2.4). Conceptual set-up of this experiment relied on the fact that 

concentration of metabolites secreted by yeast should increase with yeast growth, and later, when 

yeast conditioned medium is used for LAB cultivation, concentration of important for bacteria 

nutrients should decrease. Thus, when analyzing dynamic concentration profiles of individual 

ions, we can identify metabolites of interest by bell-shaped profiles.  

 

Figure 2.4: Yeast-LAB exometabolome analysis workflow. 

 

                                                 
2
 In collaboration with Uwe Sauer lab, ETH Zurich. 
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Supernatant samples were filtered through 0.2 µm syringe filters, then additionally through 3 

kDa cut-off centrifugal filters, and stored at -80°C until analysis. For assessing dynamic changes 

in metabolite concentrations we established collaboration with Uwe Sauer and Daniel C. Sevin, 

ETH Zurich. Non-targeted flow injection time-of-flight mass spectrometry (FIA-TOFMS) was 

implemented by our collaborators as described in (Fuhrer et al., 2011). Platform used: Agilent 

6550 ionFunnel QqTOF mass spectrometer, coupled to a Gerstel MPS2 autosampler and a 

Hitachi HPLC pump. Samples were diluted 10x and measured in technical duplicates. Flow 

injection analysis allowed omitting chromatographic separation step. Obtained m/z values were 

annotated using KEGG reference database (3225 unique compounds). Ion annotation settings 

allowed mass deviation 0.005 Da, -H(+) and +F(-) ions, neutral gains/losses: .H/K, .H/Na, .NaCl. 

2.9 Amino acid quantification
3
 

Amino acids in yeast conditioned medium were quantified in collaboration with Markus Ralser 

group using liquid chromatography (Agilent 1290 Infinity) and tandem mass spectrometry 

(Agilent 6460). Hydrophilic interaction chromatography was done using ACUITY UPLC BEH 

amide column with gradient elution, using mobile phases A (50:50 water:acetonitrile) and B 

(90:5:5 acetonitrile:methano:water), both containing 10 mM ammonium formate and 0.176% 

formic acid. Initial conditions were 75% solvent B at flow rate 0.7 ml/min, next over 2.55 min 

gradient descends until 5% eluent B, finishing with 5 sec isocratic 5% B, returning to initial 

conditions and equilibrating until 3.25 min before next injection. 

Triple quadrupole mass spectrometry was set in selected reaction monitoring (SRM) mode, with 

settings as follows: 7 V cell acceleration voltage, nebulizer pressure 50 psi, negative capillary 

voltage 3000 v, nozzle voltage 500 V, gas flow 8 L/min 300 C. Quantification was done in 

relation to external standard dilution series, individual amino acid identification was done by 

retention time and fragmentation pattern. 

2.10 Conditioned medium assay 

Yeast culture has been grown in CDM47 medium until exponential phase (OD600~1), 

centrifuged, supernatant was filtered through 0.2 µm filter and used for cultivating of lactic acid 

bacteria. Resulting filtrate was used to culture LAB as is, or supplemented with CDM47 (1:1 

                                                 
3
 Data were obtained during collaboration visit to Markus Ralser lab, University of Cambridge. 
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mix) or glucose stock solution depending on application. For comparisons of conditioned media 

prepared with different strains/mutants or in different media etc., cultures were harvested at 

similar OD600 (~1). 

2.11 Data analysis 

All data handling, was done using R software. Statistics to estimate correlation between 

untargeted metabolomics ion data and growth of microorganisms on few data points was 

calculated as F-score of Pearson’s correlation, or by overall distance correlation (R package 

‘energy’). Statistical significance analysis was done by t-test (paired for complete cases and 

unpaired in case of missing values) with multiple-testing correction. GO enrichment analysis was 

performed using “GOstats” R package and visualized by using GOrilla webtool (Eden et al., 

2009).  

 

Figure 2.5: Schematic representation of creating a multi-species model for enumerating metabolite cross-

feedings. A. Models of separate species have each a separate metabolic space. B. Models are united by 

shared level of metabolic species, allowing exchange of products. This joining reduces the total number 

of metabolites required for growth of all species in the community. 
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2.12 Simulations of metabolic exchanges in microbial communities 

Genome-scale metabolic models for individual species were obtained from ModelSEED 

database (automatic model reconstruction) or from published (Oliveira et al., 2005; Teusink et 

al., 2005; Zomorrodi et al., 2014) sources (manually curated). Additional curation steps to 

remove spurious inter-models exchanges (replacing dipeptide transporters with single amino 

acids, limiting spermidine-based growth etc.) were performed when necessary. Obtained models 

were joined into one in a way that allowed them to freely exchange each other’s metabolites that 

can cross the cell membrane/wall (Fig. 2.5). As a result, cross feeding community gets a chance 

to survive on fewer nutrients by supplementing each other’s biosynthetic capabilities (Fig. 2.5 A 

vs B). Flux simulations were done by using in-house software (by S. Andrejev and A. Zelezniak) 

and SMETANA (Zelezniak et al., 2015), solving linear programming problem using IBM ILOG 

CPLEX solver. 
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3 YEAST EXOMETABOLOME CREATES A STABLE NICHE FOR LAB 

3.1 S. cerevisiae sustains growth of lactic acid bacteria in stable mixed cultures 

In order to reveal potential exchange of nutrients between yeast and LAB one should consider 

carefully the chemical composition of the experimental medium. For growth-based detection of 

interspecies metabolic exchanges balancing medium composition is key - it should lack 

components that could be supplied by cross-feeding between community members, and at the 

same time be nutritionally rich enough to provide missing nutrients and support growth of all 

species (Fig. 3.1A). Community minimal medium design can be a successful strategy for 

discovering positive metabolic interactions between microorganisms. However, extensive search 

of binary interactions with culture methods (even for a small three species community addressed 

here) would involve numerous combinations, and thus remains infeasible.  

 

 

                                                                         

Figure 3.1: Medium design for revealing inter-species metabolic interactions. A. Balance of medium 

components dictates the best range to probe for metabolic dependencies. B. Medium design for optimal 

detection of cross-feeding from yeast to LAB. Areas represent compounds needed by each species. 

Excluding metabolite from one or another zone will define the direction of cross-feeding that can be 

observed. 

 

L. plantarum and L. lactis are fastidious bacteria with extensive nutritional requirements that 

include and surpass those of S. cerevisiae. We composed community medium by joining together 

recipes of previously described chemically defined media (Verduyn et al., 1992; Wegkamp et al., 
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2010; Zhang et al., 2009) created for independent growth of all three organisms. Then several 

variations of this universal medium were prepared by excluding groups of selected nutrients (Fig. 

3.1B).  Each resulting medium was used to compare growth of microorganisms in co-cultures 

and monocultures, observing whether any species can benefit from presence of others. In some 

media we observed interspecies dependencies, and finally selected medium CDM47 

(composition shown in Table A1) for further experiments.  

 

 

Figure 3.2: S. cerevisiae sustains growth of lactic acid bacteria. A and C. Co-culture of S. cerevisiae, L. 

lactis and L. plantarum in all combinations for 24 hours and 15 days with daily passaging. B. Dynamics 

of LAB growth in co-culture with S. cerevisiae (coloured line) and alone (grey line). 

 

After of co-culturing of three species in all combinations for 24 hours, absolute amounts of living 

cells were quantified by CFU count. While yeast did not show any significant variation between 

co-cultures and monocultures, LAB could grow exclusively in presence of S. cerevisiae (Fig. 

3.2A). Additionally, dynamics of LAB growth assessed by qPCR in monocultures and co-
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cultures with yeast is shown on Fig. 3.2B – it clearly demonstrates positive effect of yeast culture 

on L. lactis and L. plantarum. 

To check the stability of this positive interaction, co-culturing was extended to 15 days with 

daily passaging of microbial community into the fresh medium. At the end of the experiment in 

monocultures of lactic acid bacteria no living cells remained, but together with yeast LAB 

survived, forming stable communities, with especially high response of L. lactis (Fig. 3.2C). 

Proportions of species in mixed cultures after two weeks of propagation were similar to those 

established after 24 hours. In analogous two month long passaging experiment with binary 

combinations of yeast and LAB co-cultures remained stable. These findings reveal important 

property of designed synthetic community – stability over time, which indicates the possibility 

for this interaction to make a long lasting ecological and evolutionary impact on LAB survival.  

Robustness of microbial community is an indication of resistant interaction and, from 

biotechnology point of view, important pre-requisite for the development of mixed-culture 

applications.  

3.2 Growth promoting effect of yeast on LAB is mediated by small metabolites  

After capturing the dependency of lactic acid bacteria on co-culturing with S. cerevisiae, next 

step was to confirm or refute the hypothesis of yeast excreting metabolites that are used by 

bacteria as nutrients. To verify the role of extracellular metabolites, effect of yeast conditioned 

medium (cell-free filtrate of yeast culture) was tested on LAB (Methods). Conditioned medium 

was sufficient to reproduce co-culture effect and supported growth of L. lactis and L. plantarum 

(Fig. 3.3A). Results of this simple experiment can be summed up as follows:  

(i) diffusible factor(s) are responsible for sustaining LAB growth,  

(ii) direct physical contact between yeast and LAB is not required for interaction, and that 

(iii) release of growth promoting factor(s) is a property of yeast monoculture and does not need 

to be induced by bacteria.  

These findings allow assuming that indeed S. cerevisiae produces certain metabolite(s) that 

supplement(s) auxotrophy of lactic acid bacteria. 
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Figure 3.3: Effect of yeast conditioned medium on LAB. A. Effect of yeast conditioned (CDM47) 

medium on LAB, normalized by yeast cell density. B. Yeast conditioning of nutritionally challenging 

media improves growth of LAB, but in rich environments shows opposite effect, showing competition 

with bacteria for nutrients. CDM46 composition is same as that of CDM47 but w/o asparagine, CDM58 

has 11 more amino acids then CDM47, MRS and YPAD are undefined rich media. 

 

Composition of the medium used for conditioning experiment, again, matters a lot. Defined 

medium CDM47, unsuitable for mono-cultivation of L. plantarum, after conditioning with yeast 

can sustain growth of lactobacillus. At the same time conditioning of the rich medium, which 

alone can support growth of L. plantarum, reduces final yield of bacteria (Fig 3.3B). These 

differences between growth stimulating effects in rich and nutritionally limited media is quite 

intuitive. Conditioned medium is both supplemented with yeast fermentation products and 

depleted of primary nutrients. Thus, conditioning of incomplete minimal medium, even though 

reduces the total amount of nutrients, provides missing essential components and removes the 

narrowest nutritional bottleneck. On the contrary, conditioning of rich medium, which already 

contains all necessary nutrients for bacteria in excess, can only reduce the final yield by lowering 

the concentrations of carbon source, amino acids, vitamins and other nutrients.  

It can be suggested, that metabolic exchanges are common in nature, but remain hidden when 

probed in plentiful environments. Medium-driven differences of microbial neighborship can 

serve as an illustration of balance between competition and cooperativity. These processes are 
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not mutually exclusive for two given species (Freilich et al., 2011), and are determined by the 

environmental properties, such as type and amount of nutrients. 

 

Figure 3.4: Effect of yeast growth phase on its interaction with LAB. A. Effect of conditioned medium 

on L. plantarum. B. Effect of conditioned medium on L. lactis. 

 

To look at the dynamic changes of interaction in more detail, conditioned medium from different 

growth phases of yeast culture was characterized for their LAB growth-promoting effects (Fig. 

3.4). Results demonstrated variation in effect on two lactic acid bacteria: L. plantarum grows 

proportionally to yeast culture density, but L. lactis grows less in conditioned medium from late-

exponential/early-stationary phase. This hints at differences in LAB nutritional requirements – 

possibly two bacterial species live off different sets of metabolites produced by S. cerevisiae. 

Additionally, this experiment suggests a complex, dynamic and multicomponent nature of yeast 

exometabolome. 

3.3 Yeast exometabolome analysis 

Next step in characterizing bioactive molecules produced by S. cerevisiae was to identify their 

general chemical properties. Compounds responsible for LAB growth were resistant to 

autoclaving and protease treatment, remained in the flow through fraction following anione 

exchange chromatography and reverse phase solid phase extraction, passed through 3 kDa filter, 

could be precipitated with acetone, and could be partially extracted with acetonitrile but not with 
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low polarity organic solvents. These evidences pointed out that small hydrophilic metabolites 

were responsible for growth stimulation of the lactic acid bacteria. 

3.3.1 Insights from untargeted metabolomics 

To specifically identify metabolites secreted by S. cerevisiae and uptaken by LAB, microbial 

exometabolome dynamics was analyzed by using untargeted mass spectrometry (section 2.8). 

Samples of supernatant were taken during conditioning of the medium with yeast monoculture, 

and later during LAB cultivation in the yeast conditioned medium, revealing dynamic profiles 

for hundreds of ions in yeast-LAB exometabolome (data for L. plantarum is shown on Fig. 3.5). 

Metabolites that mediate yeast-LAB interaction accumulate with growth of S. cerevisiae and 

disappear from the medium with accumulation of bacterial biomass, creating bell shaped profiles 

(red cluster on Fig. 3.5). 

 

Figure 3.5: Exometabolome dynamics of S. cerevisiae and L. plantarum by untargeted metabolomics. 

Dotted lines show centroids for clusters of metabolites with similar dynamics. Group of candidate ions to 

be cross-fed from yeast to bacteria are highlighted in red. 
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This analysis revealed surprisingly large amount of metabolites flowing between microorganisms 

in the community. Top ranked exchange candidates (filtered by minimum 3x fold change and 

correlation with growth of microorganisms) match predominantly to the m/z of amino acids 

(labels in Fig. 3.6). 

 

Figure 3.6: Ions produced by S. cerevisiae and consumed by lactic acid bacteria (at least 3x fold change). 

Ion intensity is plotted against cumulative OD, where red points show measurements during yeast grow 

and black points correspond to values during bacterial growth in yeast conditioned medium. A. Yeast – L. 

lactis.  B. Yeast – L. plantarum. 

 

Some of the ions have been mapped to known compounds, but identity of the others, including 

those well correlating with the growth of both microorganisms, could not be specified beyond 

particular m/z ratio. Described exometabolome diversity most likely shows a mere “tip of an 

iceberg” that can be captured by state of the art metabolomics, and further exploration is needed 

to expose the multitude of inter-species connections. 

Detecting primary metabolites in culture medium has been for a long time considered an artefact 

of sample preparation or cell lysis effect. It took a sensitive instrument and extensive set of 

controls to prove otherwise and quantify curiously rich body of excreted compounds for yeast 

and some bacterial species (Paczia et al., 2012). Secretome of microorganisms is an emerging 
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topic that will keep gaining momentum as scientific community shifts from traditional 

monoculture to interactive multi-species experiments. 

3.3.2 Quantification of secretome components with targeted metabolomics  

To confirm identity and quantify amount of secreted amino acids yeast conditioned medium was 

analyzed for amino acids using a targeted LC-MS/MS setup. Among the quantified metabolites, 

most abundant amino acids were glutamine, threonine/homoserine (undistinguishable by the 

used MS method) and alanine, concentrated at 40-70 µM (Fig 3.7A). Targeted metabolomics 

results thus agree well with the untargeted experiment, as well as with the fact that L. lactis and 

L. plantarum are auxotrophic for some of these amino acids, originally missing from the 

medium. 

 

Figure 3.7: A. Amino acid concentration in yeast conditioned medium. Medium collected at log phase 

(OD600~1), measurements corrected for medium background. B. Dynamics of secreted amino acid 

concentrations in S. cerevisiae culture, black line showing yeast cell density. 

 

Extracellular amino acid concentrations in yeast culture increase proportionally to the cell 

density and stabilize during stationary phase (Fig 3.7B). This result is important from two points 

of view. First, it serves as an additional argument against the possibility of nutrients release due 

to cell death and lysis. If the mentioned assumption were true, we should have observed an 

increase, rather than stabilization, in amino acid concentration during the stationary phase, when 
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cells run out of nutrients and thus are more likely to die. Second, overlaying this plot with the 

dependency of lactic acid bacteria response on yeast growth phase (Fig 3.4), it becomes evident 

that metabolic cross feeding between yeast and bacteria is not limited to measured amino acids, 

at least for L. lactis, whose growth yield has a prominent deep on the background of steadily 

growing concentration of amino acids.  

In addition to amino acids, other components of yeast exometabolome were quantified, from 

expected fermentation by-products, such as succinate, to polyamines (Fig. 3.8). Known 

fermentation products of yeast metabolism were tested for ability to boost lactobacilli growth, 

but no positive effect was observed with succinic acid, citrate, isocitrate, 2-oxoglutarate or 

pyruvate.  

 

Figure 3.8: Conditioned medium effect can be partially recreated with metabolite mix. A. Compounds 

used for medium supplementation. B. Effect of different metabolite combinations on growth of L. lactis 

in comparison to effect of yeast conditioned medium (orange bar). 

 

Supplementing naïve medium with the identified compounds (in corresponding concentrations) 

restored the growth of L. lactis to ~ 40 % 
4
 of that observed in yeast conditioned medium (Fig. 

3.8B). This result agrees well with the prediction from genome scale modelling (see section 5.2) 

and the fact that glutamine is the only essential (for L. lactis) amino acid missing from the naïve 

                                                 
4
 This number is likely to increase significantly, as shown results are based on the old quantification data. Latest 

results (Fig. 4.7) were obtained using more sensitive method and show higher concentrations for all amino acids. 
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medium. Interestingly, glutamine was both necessary and sufficient to reproduce the majority of 

the effect, while other amino acids had stimulatory effect. Increasing concentration of either 

glutamine or non-essential amino acids improves growth of L. lactis. This suggests that the rest 

of the effect observed in yeast conditioned medium can be explained (among other options) by 

joined quantification errors for every quantified amino acid and by presence of other nitrogenous 

compounds that either were in concentrations below the limit of exact quantification (which was 

the case for phenylalanine) or could not be identified. 

L. plantarum, however, showed very limited response to all quantified components, indicating 

that other essential and yet non-identified components are excreted by yeast cells. According to 

literature (Wegkamp et al., 2010), the here-used strain of L. plantarum requires at least four 

additional amino acids. Auxotrophies for threonine and glutamine are covered (according to 

quantitative metabolomics data), but phenylalanine and tryptophan that were identified in 

untargeted screen could not be quantified due to very low concentrations. Perplexingly, 

supplementing medium with even millimolar concentrations of glutamine, threonine, 

phenylalanine, and tryptophan did not restore growth of L. plantarum.  In similar discord with 

literature evidence, putrescine did not stimulate grow of lactobacillus either. These discrepancies 

will have to be resolved by further supplementation testing. Missing pieces of the puzzle can 

possibly be found among aromatic catabolites or metabolism intermediates of tyrosine, which 

along with asparagine is being primarily uptaken by S. cerevisiae (data not shown).
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4 GENETIC AND ENVIRONMENTAL DETERMINANTS OF YEAST-

LAB SYMBIOSIS 

 

4.1 Rapamycin increases growth-stimulating effect of yeast on LAB 

Suspecting the involvement of nutrient sensing and signaling in yeast metabolite overproduction, 

we decided to test the effect of perturbing TOR (Target of Rapamycin) pathway, the major 

nutrient–sensing controller of eukaryotic cell. Treatment of yeast cells with rapamycin is specific 

in its point of action, but quite global in terms of its physiological effect (see Introduction). 

While affecting multiple processes in yeast, rapamycin treatment is reported to mimic starvation 

effect and activate nutrient metabolism and recycling pathways dormant in replete media. 

Rapamycin expectedly reduced the yeast growth, and at the same time reinforced positive effect 

on bacterial growth in dose dependent manner. Drug treatment of yeast during medium 

conditioning caused L. lactis and L. plantarum to reach up to three folds higher yields (Fig. 

4.1A). Dynamic exometabolome analysis (section 3.3.1) revealed that rapamycin increased 

secretion of multiple metabolites (Fig. 4.1B), especially of glutamine and aspartate. Interesting is 

appearance of pyridine metabolism intermediates (Fig. 4.2), however identity of these hits needs 

validation by another method. Many more metabolites, including those with no matches in the 

database, cross the threefold threshold in concentration change during production by yeast and 

consumption by lactic acid bacteria, proving the connection with increased growth of bacteria in 

rapamycin treated yeast conditioned media.  

Surprisingly, yeast adapted to presence of rapamycin not only avoids growth reduction but even 

outperforms untreated culture in biomass yield (Fig 4.1C). The difference becomes apparent after 

2-3 weeks of adaptive evolution. This effect needs further investigation to be explained, but in 

general suggests possible benefits behind an extended overflow metabolism exacerbated by 

rapamycin. Positive effects of rapamycin could be due to parallel use of multiple nitrogen 

sources, release of toxic/inhibitory components or reduction of end-product inhibition. 
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Figure 4.1: Effect of rapamycin on yeast secretome and fitness. A. Increased growth of L. plantarum in 

conditioned medium of rapamycin treated yeast. B. Secretome of rapamycin treated yeast versus 

untreated control (labelled are some metabolites most increased in presence of rapamycin). C. Long-term 

adaptation of S. cerevisiae to rapamycin demonstrates advantage of the drug treatment over naïve CDM47 

in terms of cell yield. Data produced by intern student Laura R. Ripoll. 
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Figure 4.2: Ions produced by S. cerevisiae in presence of 20 nM rapamycin and consumed by lactic acid 

bacteria (at least 3x fold change). Ion intensity is plotted against cumulative OD, where red points show 

measurements during yeast grow and black points correspond to values during bacterial growth in yeast 

conditioned medium. A. Yeast – L. lactis.  B. Yeast – L. plantarum. 

 

4.2 Identification of genes that effect yeast-LAB interaction 

To specify the involvement of TOR/rapamycin and to explore genetic underpinnings of yeast 

metabolite secretion, 88 yeast single gene knockout strains (Table 4.1) were selected for testing 

from a prototrophic deletion library (Mulleder et al., 2012). Since rapamycin specifically targets 
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TORC1 complex, deleted genes were chosen from upstream and downstream TORC1 route to 

clarify what specific parts of TOR-regulated processes are involved in interactions with L. 

plantarum and L. lactis (using conditioned medium assay). Most of the knockout strains affected 

bacteria similarly to the wild type, and a large fraction of tested mutants was not able to growth 

in CDM47 (Fig. 4.3A). Among genes that did modify the growth of LAB, 7 knockout mutants 

increased, and 2 reduced interaction strength in comparison to the wild type (Fig. 4.3A). To 

exclude the possibility of an artefact due to increased fragility of certain mutant strains (which 

could increase likelihood of cell lysis and thus inadvertently cause intracellular metabolite spill-

out), fluorescent staining assay for cell damage/viability was done, showing no correlation 

between yeast mutants death / membrane permeability and their ability to promote bacterial 

growth (Fig. 4.3B). 

 

 

Figure 4.3: A. Effect of TORC1 pathway related single gene knockouts on LAB growth, relative to wild 

type, normalized by yeast culture cell density. B. No correlation observed between yeast mutants death / 

membrane permeability and their ability to promote bacterial growth. 

 

Poor growth of the large fraction of mutants is not surprising since deleted genes coordinate 

nutrient response and metabolic regulation, and may affect growth in nutritionally replete 

medium. Additional instability may stem from plasmid genome used in the BY yeast library to 

compensate for the auxotrophies. Reproducible growth was later achieved for some strains by 

reproducing gene deletion in truly prototrophic S. cerevisiae of background S90 (shown in 

Figure 4.4 of this section). 
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Having a closer look at identified effector genes, seven knockout strains that increase interaction 

strength between yeast and LAB (URE2, GTR1, PEP3, GCN1, ALT1, LST4, and NIR1) showed 

effect on both L. lactis and L. plantarum. Deletion of either of two genes – GLN3 or DAL81 –  

 Table 4.1: Effect of yeast strains with deletions of TORC1 related genes on LAB growth in CDM47 

conditioned medium (relative to wild type). 

 

no difference not growing increase decrease 

DAL80 UGA2 DAL82 URE2 GLN3 

TOR1 UGA3 GZF3 GTR1 DAL81 

SIT4 ARG4 RTG1 PEP3 
 

DAL81 GDH3 DUR3 GCN1 
 

MSN2 GCN2 NCR1 ALT1 
 

MSN4 LEU3 NCR2 LST4 
 

GLT1 MCH3 UGA4 NIR1 
 

GAT1 CAR1 SPE1 
  

PTR2 CAR2 SCH9 
  

GNP1 ARO9 RTG3 
  

GAP1 ARO10 TPO5 
  

ASP1 ARO80 GGC1 
  

AVT6 PUT1 GDH2 
  

AGP1 PUT2 URA2 
  

AAT1 VID30 KGD1 
  

ZWF1  ARG4 
  

GCN4  PPM1 
  

GAP1  TOD6 
  

MEP3  GLY1 
  

GDH1  PDC6 
  

GNP1  AVT4 
  

ATG1  NDE1 
  

DAL1  PDC5 
  

DAL2  AVT1 
  

DAL3  GCC1 
  

DAL4  GIS1 
  

DAL5  MKS1 
  

DAL7  PDR12 
  

STP1  CYS4 
  

STP2  HOM2 
  

DUR1,2  HOM3 
  

UGA1  PDC1 
  

 

 

significantly reduces the growth promoting effect of S. cerevisiae on L. lactis, but absence of 

GLN3 only reduces growth of L. lactis. This difference once again points out inequivalent means 
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by which two LAB species depend on yeast, and presents an opportunity to further investigate 

these differences.  

Identified group of genes that alter yeast-LAB interaction are predominantly transcription 

factors, which can be caused by bias in knockouts selected for screening, but also could indicate 

that high level regulators can potentially provide more complex effect on metabolism than any 

single enzyme. Further in this work the focus will be on four knockout strains: ∆gln3 and ∆dal81 

(with reduced effect on LAB growth) and ∆ure2 with ∆gtr1 (increasing LAB growth). Their 

quantitative effects comparing with the wild type are shown on Figure 4.4.  

 

 

Figure 4.4: Gene knockouts that alter S. cerevisiae effect on LAB comparing with wild type. 

 

Remarkably, the genes whose deletion up- or downregulates yeast metabolite secretion, belong 

to key regulators of nitrogen catabolite repression (NCR) - process responsible for selective 

utilisation of nitrogenous nutrients (Hofman-Bang, 1999). When grown on good nitrogen source 

(e.g. glutamine) NCR-sensitive genes are off, and cell is concentrated on an “easy” pathway for 

utilization of very limited number of nitrogen substrates. On the other hand, when preferred 

nitrogen is not available, NCR-regulators activate processing of alternative nutrients. Rapamycin 

treatment also regulates NCR (both trough and independent of TORC1 signalling) by lifting the 

repression and activating alternative nutrient salvaging pathways according to “starvation 
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protocol”. Effect of rapamycin on yeast-LAB relationship phenotype agrees well with the picture 

obtained from knockouts testing, which can be traced to their common role in NCR gene 

regulation (Fig. 4.5). For description of interactions between NCR, TORC1, and other nitrogen 

regulators see also section 1.5. 

Particularly practical for understanding of yeast phenotype-genotype relationship are mutations 

associated with loss of function, in our case reduction, through knockout of GLN3 or DAL81. 

These are transcription factors that positively regulate uptake and degradation of less preferred 

nitrogen sources. Gln3 controls the majority of NCR-sensitive genes, including other key 

transcription factors, permeases, and catabolic enzymes (see section 1.5.2 for more details).  

Dal81 has fewer known targets, but also is pleiotropic: it regulates pathways for degradation of 

such nitrogenous compounds as urea, allantoin, GABA (André et al., 1995; Bricmont et al., 

1991; Talibi et al., 1995), mediates expression of amino acid permeases in response to signals 

from external amino acid sensing pathway (Abdel-Sater et al., 2004; Cardillo et al., 2010). 

Ure2 is a negative regulator of Gln3 that by binding prevents Gln3 from migrating into nucleus 

and initiating transcription (Fig. 1.3). Ure2 binding to Gln3 is promoted by intracellular 

glutamine and/or active TORC1. Accordingly, ∆gln3 and ∆ure2 have antagonistic effect on 

interaction with LAB (Fig. 4.4). Gtr1 and Pep3 are components of upstream TORC1 activators, 

EGO complex and VPS complex respectively (Fig. 1.3, Fig. 4.5). Knockout of these factors 

would result in inhibition of TORC1 activity, and thus are confirmed by the fact that growth 

reduction in LAB is associated with ∆gtr1 and ∆pep3 deletion strains. 

NCR does not rely entirely on Gln3 and Dal81. Downstream metabolic targets of NCR 

regulators tend to be cross-governed by several TFs, however, no effect was observed when 

testing knockouts of other NCR transcription factors: positive regulator GAT1, negative 

regulators Dal80 and Gzf3, together with a big set of downstream metabolic gene knockout 

(Table 3.1). Difference between targets of these TFs and those influencing metabolite 

overproduction might clarify specific metabolic players even further. Similarly, certain effect 

specificity seem to be responsible for interaction phenotype differences between ∆gln3 and 

∆dal81 mutants (both decrease growth of L. lactis but only ∆dal81 reduces growth of L. 

plantarum).  
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Figure 4.5: Interaction of NCR/TORC1 effectors agree with their effect on yeast-LAB interactions. Blue 

color highlites proteins which gene knockout downregulates effect of yeast on LAB, an red color shows 

effectors whose absence (addition in case of rapamycin) has a positive effect.  

 

Effect of all abovementioned regulators and rapamycin converges on the processes of uptake and 

metabolism of alternative (non-preferred) nitrogen sources. These metabolic changes are 

collectively controlled by several nutrient-responsive pathways, as well as metabolites directly. 

In the next section will be explored some specific consequences that disruption of selected 

regulators brings to yeast exometabolome.  

Surprisingly, deletion of TOR1 (specific Target Of Rapamycin) did not reproduce effect of 

rapamycin treated yeast on bacterial growth. Although ∆tor1 and rapamycin treatment are  

considered to be similar, there are differences. For example, it was observed that some aspects of 

yeast response to rapamycin or nitrogen are TORC1 independent, such as sorting of general 

amino acid permease Gap1 (De Virgilio and Loewith, 2006a). 

Several other sets of selected knockouts, besides TOR/NCR-related genes, were also tested: 

group of genes regulating autophagy and protein recycling (another process stimulated by 

rapamycin) and alcohol dehydrogenases and aldolases (these reactions are commonly involved in 

compound modification before release from yeast cell). However, results of these tests were 

negative (data not shown). 
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4.3 Exometabolome of yeast knockout strains 

Since deletion of several identified transcription factors up- or downregulate the growth of lactic 

acid bacteria, changes in exometabolome of concerned yeast deletion strains were explored. Re-

engineered deletion strains (in a more stable S90 background) were used to show significant 

differences in their amino acid profiles. Strains ∆ure2 and ∆gtr1 excrete more amino acids than 

the wild type, secreting more aspartate and proline respectively, and both overproducing 

glutamine and glutamate (Fig. 4.6). Especially dramatic are changes in ∆ure2 strain, which 

produces aspartate and glutamine in millimolar concentrations.  

 

Figure 4.6: Concentrations of amino acids (OD normalized) in exometabolome of knockout yeast strains, 

fold changes to the wild type. 

 

At the same time strains with reduced growth stimulating effect on LAB excrete in total fewer 

amino acids, cutting down on glutamine, serine and glycine. It is noteworthy, that ∆gln3, which 

reduces growth of L. lactis, but not of L. plantarum, together with reduction also shows elevation 
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of glutamate and phenylalanine – essential amino acids for L. plantarum, which potentially can 

explain the difference. 

Altogether, total concentration of amino acids in conditioned medium of knockout yeast strains 

corresponds to growth promotion in LAB (Fig. 4.7).  

 

 

Figure 4.7: Amino acids (OD normalized) in exometabolome of yeast strains. Mutants with increased 

positive effect on LAB are on the left-hand side, and decreased are on the right-hand side from the wild 

type. Data for extremely overproduced in ∆ure2 knockout amino acids aspartate and glutamine are 

omitted. 

 

4.4 Effect of medium composition on excreted metabolites 

Analysis of yeast knockout strains showed which of rapamycin-responsive processes are key to 

promoting growth of lactic acid bacteria. The branch of nitrogen catabolism genes, in particular 

those under NCR control, enable yeast for production of amino acids that are used as a nitrogen 

source by lactic acid bacteria. Since NCR is primarily regulated by quality of available nitrogen, 

next experiments involved testing the effect of different nitrogen sources on yeast-LAB 

interaction.  

NCR genes are induced when good nitrogen sources are not available. Knowing this, we asked if 

culturing yeast on poor nitrogen source would additionally stimulate amino acid biosynthesis and 

enhance bacterial growth. Test conditions included standard CDM47 medium which contains 

eight amino acids and ammonium, CDM47 without arginine, asparagine and ammonium (three 

best nitrogen sources in CDM47), medium with proline as sole nitrogen source (least favorite 

amino acid), and CDM47 with single amino acid omissions (Fig. 4.9). On the contrary to 

expectations, poor nitrogen sources that de-repress NCR-sensitive genes important for amino 

acid overproduction not only did not increase the positive effect on growth of either lactic acid 

bacteria, but caused a significant reduction.  
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Figure 4.9: Effect of nitrogen source on yeast-LAB interaction. Poor nitrogen sources reduce growth-

promoting effect.  

 

Some of the media effects were also analyzed for differences in amino acid profiles. Test 

conditions included media with the following single nitrogen sources: glutamine (most favorite), 

proline (least favorite), ammonia (good), regular test medium CDM47 (containing ammonia and 

8 different amino acids, including good nitrogen sources asparagine and arginine), and CDM47 

with an exclusion of asparagine, arginine, and ammonia. In accordance with the observed good 

growth of LAB, conditioned CDM47 contained the highest concentrations for most amino acids 

(Fig. 4.10). Likewise, depleted media that sustain least interaction with bacteria - with only 

proline, only ammonium, or six less-preferred amino acids as nitrogen source – those contained 

much lower amounts of amino acids. In addition, when grown on the best possible sole nitrogen 

source, glutamine, yeast overproduced primarily glutamate. Two other preferred amino acids 

arginine and asparagine also seem to be critical for nitrogen overflow, but their individual roles 

still need to be delineated.  
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Figure 4.10: Effect of medium composition on amino acid composition of yeast exometabolome. Values 

are corrected for corresponding medium blanks. 

 

Altogether, the results indicate that the observed connection between LAB and S. cerevisiae is 

linked to amino acid uptake and catabolism in yeast that are required /lead to the overflow 

metabolism.  Uptake of amino acids does not result in their full utilization, but in interconversion 

and spill-out, rather similar to the production of ethanol and glycerol as carbon overflow during 

rapid growth on glucose. Although theories behind overflow in carbon assimilation are not yet 

reconciled, it is possible that some of them, such as regeneration of co-factors and restoration of 

redox balance apply to the situation we observe with nitrogen.  

Amino acid profiles in different media correlate with the LAB response and depend on the 

number and quality of nitrogen source in the medium. Results suggest that presence of preferable 

amino acids is necessary for yeast to produce components helpful to LAB. Presence of good 

nitrogen source supposed to repress expression of NCR sensitive genes. Yet, counterintuitively, 

the activity of GLN3 and DAL81 (some of the main NCR players) was shown to be necessary for 

metabolite excretion as much as the presence of good nitrogen source. Perhaps NCR genes are 

important due to their involvement in amino acid permease sorting and can contribute at basal 

expression levels. 

So far, obtained results suggest two components to be essential for amino acid overflow (Fig. 

4.11). On one hand, presence of diverse amino acids, in particular those preferentially taken up 
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by yeast cell, gives material to convert into other amino acids (and other nitrogenous 

compounds) excreted into the culture medium. Preferred amino acids, such as asparagine and 

glutamine are more likely to “overflow”, possibly because of unrestricted uptake and complete 

utilization of their degradation products. On the other hand, as it is evident from mutant analysis, 

genes responsible for incorporating secondary nitrogen sources into central metabolism are also 

important for the rich extracellular exometabolome. Both these factors are present when wild 

type yeast are grown in our regular  test medium CDM47 – amino acid rich medium is 

complemented with basal level of expression of NCR genes (Fig. 4.11), thus yeast cells are in an 

overflow mode, extruding micromolar quantities of amino acids. However, if either of the 

driving forces gets diminished, either NCR (through knockout of essential transcription factor 

like DAL81 or GLN3) or richness of the medium (by eliminating preferred nitrogen sources) - 

fewer nutrients are being released from the cell. In contrast, upregulating NCR with the deletion 

of alternative transcription factors (URE2 or GTR1), while keeping the plentiful nitrogen sources, 

allows increasing the excretion and thus giving more benefit to LAB co-habitants. 

 

 

Figure 4.11: Driving forces of yeast-LAB interaction: metabolic genes under control of nitrogen 

catabolite repression and preferred (and diverse) nitrogen sources in the medium.  
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Described model (Figure 4.11) is a part of work in progress, requiring more of orthogonal 

confirmation from other experiments, since the picture metabolism regulation can be hard to 

deconvolute. A number of research publications suggest that yeast perceives amino acids in the 

medium not only as a substrate, but also as a signal to adjust regulatory state and metabolic 

activity. Presence of multiple amino acids in the test medium complicates the situation due to 

their interactions. Some amino acids can be easily interconverted to one another, in other case 

they can compete for the same transporter, thus the medium composition can be very different 

from what nutrients and in what amounts yeast cell can actually access. Although this thesis will 

reach conclusions in several more pages, work on this topic will go on. 

4.5 Genome-wide analysis of effect of yeast gene knockouts on symbiotic LAB 

Screening of genome-wide deletion strain collections is widely used in exploring genotype-

phenotype relationship in many microorganisms. In case of yeast-LAB interaction, identifying 

yeast genetic modulators of metabolite production would prove extremely useful to pinpoint the 

genes involved in inter-species interaction. To this end, we used the ability of L. plantarum’s 

native beta-galactosidase to cleave X-gal molecule with production of colored metabolite. This 

color reaction enabled quantification of bacterial growth associated with each yeast knockout 

strain in co-cultures (section 2.3). Screening allowed to identify genes associated with lowest 

color development per yeast, i.e. whose knockout abolishes L. plantarum growth. (Table 4.2). 

Gene ontology annotation showed that this group of genes was significantly enriched for 

categories “structural constituent of ribosome” in molecular function (MF) ontology group, 

mitochondrial translation” in biological component (BP) group and “mitochondrial ribosome” in 

cellular component (CC) group (Fig. 4.12). Enrichment groups were identical irrespective of 

number of screen replicates tested. Correspondingly, KEGG pathway enrichment showed 

overrepresentation of “oxidative phosphorylation”. 

While results were significant and reproducible between replicates, they do not agree with the 

subsequent conditioned medium assays. Yeast knockouts that took top place in the library screen 

and developed co-cultures with no color showed support to LAB in conditioned medium assays. 
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Figure 4.12: Gene onthology categories enriched among yeast deletion strains associated with reduction 

in L. plantarum growth. Colored boxes highlight (inverse-proportionally) groups with significant p-values 

(<0.05). 

 

There are several possibilities that could have led to this discrepancy. First, high-throughput 

screening approach dictates conditions different from low throughput tube co-culture testing, and 

could have skewed the results. Specifically, small culture volume combined with repetitive 

shaking (required for optical density measurements) could have caused elevated levels of 

dissolved oxygen in the medium. Such effects are prune to be aggravated in BY (and S288c) 

background strain, as they tend to have lower cytochrome c accumulation and lower respiratory 

rates (Gaisne et al., 1999). In these conditions respiratory chain deficient mutants (hits) might not 

be able to use up the oxygen from the medium as well as other strains. This in turn could have 

caused impeded growth of microaerophilic L. plantarum. Second possibility includes 

interference of identified knockout strains not with the bacterial growth, but rather with the beta-

galactosidase activity (color development). Third, screening was done in condition of true co-

culture, thus in comparison with conditioned medium assay, other interaction effects could have 

been induced by presence of L. plantarum in co-culture. The latter being true, however, does not 

diminish the investigation of conditioned medium interaction, since this type of experiment 

provides an essential “baseline” interaction description. 
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It should also be noted, that the yeast library in background BY shows irreproducible growth 

pattern in our chemically defined medium even for the wild type. These problems can be 

partially explained by plasmid instability and secondary mutations pertaining to the single gene 

deletions (Teng et al.). Eventually drawbacks were circumvented by reproducing several key 

deletions in S90 yeast background, and doing the same for full library might be a necessary task 

for the future, as plasmid genome and multiple auxotrophies may play a role in an aberrant 

growth. Further experiments are required to contextualize obtained results. 

Table 4.2: Yeast genes whose deletion is associated with reduction in L. plantarum growth 

 

Gene Name/Description ORF Hit replicated, # 

ATG5 AuTophaGy related YPL149W 3 

ATP7 ATP synthase YKL016C 2 

COX11 Cytochrome c OXidase YPL132W 2 

CTF19 Chromosome Transmission Fidelity YPL018W 2 

EMI5 Succinate DeHydrogenase YOL071W 3 

GIN4 Growth Inhibitory YDR507C 2 

GLO3 GLyOxalase YER122C 2 

GSH1 glutathione (GSH) YJL101C 2 

HIT1 HIgh Temperature growth YJR055W 2 

MRP1 Mitochondrial Ribosomal Protein YDR347W 3 

MRP51 Mitochondrial Ribosomal Protein YPL118W 2 

MRPL37 Mitochondrial Ribosomal Protein Large subunit YBR268W 3 

MRPL9 Mitochondrial Ribosomal Protein Large subunit YGR220C 2 

PYC1 PYruvate Carboxylase YGL062W 2 

QCR2 QH2:cytochrome-C oxidoReductase YPR191W 2 

RPL21b Ribosomal Protein of the Large subunit YPL079W 2 

RPS0b Ribosomal Protein of the Small subunit YLR048W 3 

RRG8 Required for Respiratory Growth YPR116W 2 

RSA1 RiboSome Assembly YPL193W 3 

RSM27 Ribosomal Small subunit of Mitochondria YGR215W 2 

SHU2 Suppressor of HydroxyUrea sensitivity YDR078C 3 

TVP18 Tlg2-Vesicle Protein YMR071C 2 

YDL062w Dubious YDL062W 2 

YKL169c Dubious YKL169C 2 

YNL226w Dubious YNL226W 2 

YPL080c Dubious YPL080C 2 

YTA12 Yeast Tat-binding Analog YMR089C 2 
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5 MODELLING OF METABOLIC INTERACTIONS IN MULTI-

SPECIES COMMUNITIES  

 

Mathematical modelling can be a powerful tool in predicting interspecies metabolic interactions. 

Simulation approach is also very resource efficient, requiring not more than genome sequences 

of individual community members (to be converted into genome scale metabolic models) and 

medium’s chemical composition. It is the process of getting and tuning individual models that 

takes the lion’s share of the effort. Automatic reconstruction of genome scale metabolic models 

is rapidly progressing, new optimized gap filling algorithms and annotation services appear (Dias 

et al., 2015; Hamilton and Reed, 2014), however, manually curated models are still considered to 

be more reliable. In both reconstruction cases though, one should be wary of the purpose models 

were designed to serve. 

Majority of modelling applications involve tasks of estimating gene essentiality and growth 

yields, and all of these tasks are done in relation to biomass composition, making the biomass 

reaction a “heart” of the model. At the same time, since simulations are usually done under 

assumption of rich medium conditions (most commonly used in lab), much less attention is 

devoted to nutritional essentiality, in particular which metabolites can be transported in/out of the 

cell, what metabolites are essential for growth, and what interconversion can and cannot happen 

between metabolic species inside the cell. In order to use individual species genome scale 

metabolic models to predict metabolic exchanges in the community, the accuracy of the models 

regarding nutrient essentiality is decisive in prediction result. While quality control of this aspect 

is not yet feasible for large scale simulations, it is a reasonable step for 2-3 species communities.  

5.1 Genome-scale multi-species modelling to explore metabolism of microbial 

communities
5
 

Microbial communities are present virtually at every spot of the Earth, thus making the question 

of their assembly an important pursuit. Due to the scale of this problem, computational approach 

                                                 

5
 Work described in this subsection was done together with Aleksej Zelezniak and Sergej Andrejev and 

described in Zelezniak et al., 2015 (except for the kefir network, which is yet unpublished). 
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holds a lot of appeal. We investigated the role of inter-species metabolite cross-feeding in 

shaping microbial consortia by applying a new algorithm, SMETANA (species metabolic 

interaction analysis), to previously described dataset of microbiomes from 1.297 communities 

found in diverse habitats (Chaffron et al., 2010). SMETANA enumerates all possible metabolite 

exchanges in multi-species communities relying solely on genome sequences of identified 

species (Zelezniak et al., 2015). Unlike other methods, it works independent of growth rate 

optimization and is scalable to large communities. 

We first tested SMETANA predictions on small microbial communities, with known metabolic 

cross-feeding relationships (Fig. 5.1). Correct predictions were obtained for ethanol, hydrogen 

(electron equivalents) and acetate exchange in three-species anaerobic community (Miller et al., 

2010), as well as carbon dioxide and nitrogen source exchange between yeast and algae in 

synthetic assembly (Hom and Murray, 2014). In addition to experimentally reported metabolic 

dependencies, we have also identified new potential exchanged metabolites, which can possibly 

be relevant under different conditions (e. g. alternative medium composition, result of adaptive 

evolution etc.). 

Next we compared SMETANA predictions on number of cross-fed metabolites in sample-level 

communities and in sub-communities of co-occurring species (species that live together with a 

chance higher than random across different sample communities). Results have shown that co-

occurring microbial communities are more metabolically interdependent, and also enriched in 

cooperative (mutualistic) interactions (Zelezniak et al., 2015), thus suggesting nutrient exchange 

to be a driver of microbial co-habitation. Furthermore, metabolic cross-feeding outweighs the 

risk for competition: communities that live in similar environments tend to be metabolically 

more similar (habitat filtering), yet it does not preclude exploitation of their complementary 

biosynthetic abilities to support each other. These findings put the problem of nutrient exchange 

in a global perspective. They illustrate prevalence of metabolic interdependencies in natural 

systems and illuminate the role of community metabolism in microbial ecology. Next step on 

this road, in part addressed in this thesis, is to dwell on mechanisms of metabolite exchanges that 

make up the microbial world. 
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Figure 5.1: Metabolite cross-feeding in microbial communities as predicted by simulations (reconstructed 

as in Zelezniak et al., 2015). A and B. Interacting microbial communities with metabolic exchanges 

described in (Miller et al., 2010) and (Hom and Murray, 2014). 

 

5.2 Simulating metabolic interactions in yeast-LAB community. 

To simulate yeast-LAB community co-metabolism manually curated genome-scale metabolic 

models for S. cerevisiae (Zomorrodi et al., 2014), L. lactis (Oliveira et al., 2005), and L. 

plantarum (Teusink et al., 2005) were selected. Yeast metabolic model is the most developed 

model in the field, and did not raise concerns. L. plantarum model, in agreement with our 

experimental observations, did not show any growth in the synthetic CDM47 medium, but L. 

lactis was growing in silico, indicating an erroneous nutrient essentiality. In order to reproduce 

the observed L. lactis amino acid requirements, also available from the literature (van Niel et al., 

1999), we have added to the original model or blocked total of 34 reactions (Appendix). These 

allowed accurately capturing the need for essential amino acids and restored nutrient dependent 

growth / no growth behavior observed experimentally. 
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Next, assembled community models were used to enumerate all possible flux-balanced 

interspecies metabolite exchanges (Methods 2.12) possible under CDM47 medium conditions. 

Results corroborate experimental findings, by showing nutrient flow from yeast to both lactic 

acid bacteria (Fig. 5.2). Glutamate / glutamine (interchangeable alternatives) are predicted to be 

secreted by yeast and consumed by L. lactis and L. plantarum, further cross-feeding of amino 

acids phenylalanine and proline (also detected in yeast exo-metabolome) from yeast to L. 

plantarum was observed (Fig. 3.20).  

 

 

Figure 5.2: Metabolic cross-feeding between yeast and LAB as predicted by simulations. Yeast model 

taken from (Zomorrodi et al., 2014). A. Based on manual reconstruction of LAB models (L. plantarum 

(Teusink et al., 2005) and L. lactis (Oliveira et al., 2005), modified. B. Automatically reconstructed LAB 

models (Henry et al., 2010). 

 

In addition, after comparison of simulation results obtained by using manually curated LAB 

models to the results obtained for automatically reconstructed models of lactic acid bacteria 

metabolism, similar results were obtained. Joint model predicted flow of glutamine / glutamate 

(as in manually created version), 2-oxoglutarate and spermidine from yeast to L. plantarum. In 

case of L. lactis, growth independent of yeast was observed, same as in case of manually created 

model before correction (described above). It is important to emphasize, that these simulations 

can capture only exchange of essential components that are absolutely necessary for growth, 

however in reality additional nutrients, with stimulatory effects could be involved (as shown in 

the experimental results section 3.3.2). 
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Figure 5.3: Enumeration of possible metabolic interactions in kefir community (Figure made by S. 

Andrejev). 

 

Finally, to subject yeast-LAB interaction to a more natural environment, we ran exploratory 

simulations for the community of species that live together in natural communities of milk kefir 

grains and for which genome scale metabolic models were available (Henry et al., 2010). 

Resulting community of 19 species in a milk-like in silico medium demonstrated a number of 

potential inter-species metabolic exchanges (Figure 5.3). Notably, even in a rich milk-like 

medium S. cerevisiae forms a hub of the community by donating multiple metabolites to LAB. 
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6 CONCLUSIONS AND OUTLOOK 

 

6.1 CONCLUSIONS 

Our results show that Saccharomyces cerevisiae enables growth of Lactobacillus plantarum and 

Lactococcus lactis by secreting essential nutrients. Resulting three species community remains 

stable for at least two weeks and can be simply sustained by passaging. Yeast sustain otherwise 

impossible growth of lactic acid bacteria by providing them with essential nutrients. This 

metabolite overflow is independent of bacterial symbionts and happens by virtue of strategic 

regulatory response.  

Untargeted mass spectrometry analysis provided a list of candidate exchange metabolites. 

Following targeted analysis confirmed that secretion of amino acids is responsible, at least 

partially, for growth of LAB. Metabolic modeling of three species community metabolism 

captured exchange of essential amino acids, demonstrating high predictive potential. 

Additional analysis of knockout yeast strains demonstrates involvement of TORC1/NCR 

signalling in metabolite overproduction. Availability of preferred nitrogen source and activity of 

nitrogen metabolism, specifically genes sensitive to nitrogen catabolite repression, both are 

necessary for pronounced nitrogen overflow in yeast. The balance of these two components 

defines the strength of yeast-LAB interaction.  

6.2 IMPLICATIONS AND OUTLOOK 

Sharing nutrients is an important factor to consider in microbial physiology, ecology, 

biotechnology and evolution. 

In physiology, fluxes through metabolic network depend on the input – medium composition. 

Although flexible, metabolic pathways operate under the set of physiological constrains, and thus 

lack or excess of metabolite in one branch has to be compensated with appropriate adjustments 

in the network. Such balancing mechanism was illustrated here, when nitrogen metabolism 

regulation in yeast resulted in overflow and excretion of still metabolizable compounds. As 

scientific community shift its attention from monocultures to complex communities, it becomes 
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apparent, that metabolic adjustments are not the matter of one cell anymore, and can 

considerably affect community life. 

In ecology, metabolic exchanges guide development and survival of microbial communities. 

Metabolite excretion by yeast modifies the environment and thus constructs a niche for lactic 

acid bacteria. Beyond this specific example, interrogation of multiple natural bacterial 

communities illustrated implication of metabolic mutualism in bacterial co-occurrence. 

Investigating metabolic links would help to understand why certain species are where they are, 

with results reaching from quite general ecological “laws” to concrete applications, e.g. 

understanding development of polymicrobial infections. 

In biotechnology, analysis of multiple factors that modulate exo-metabolome composition 

(genotype, nutrient availability, growth phase) provides the leverage point in regulating inter-

species interactions and thus community composition and properties. For biotechnological 

purposes this knowledge can advance our understanding of microbiology of multispecies 

fermentation in food and beverage industry, where both yeast and LAB are commonly co-

cultured. Moreover, grasping the reasons behind metabolite secretion/overflow will be 

instrumental in boosting efficiency of that or another biotechnologically relevant 

process/pathway. 

In evolution, microbial fitness largely depends on their handling of nutrients. Efficient 

scavenging or, on the contrary, excretion of nutrients appear to be strategies whose purpose can 

be revealed by multi-angular scrutiny. This work represents one small attempt to address this 

problem. Un-engineered nature of studied cross-feeding organisms hints at possible modes of 

inter-species relationships in natural environments. Another important corollary of this work is 

that act of “feeding” unrelated microorganisms does not necessary evolve in response to some 

reciprocal benefit from that organism, but can be a mere consequence of internal metabolic 

regulation and/or metabolic strategy. Such a dependency can further evolve into a bona fide 

mutualism (when two organism benefit from each other equally), hence suggesting a possible 

route for the evolution of cooperation. 
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