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ABSTRACT 

 

 

 

Naturally occurring cyclic peptides exist in the ascidians Lissoclinum Patella of the Pacific and 

Indian Oceans. The biological role of these structural interesting marine secondary metabolites 

is still unclear. The patellamides are able to bind a variety of transition metal ions. Some of the 

copper(II) complexes of cyclic pseudo-peptides are known to form carbonato-bridged 

complexes when exposed to CO2. 1 Thus, in previous studies a library of patellamide derivatives 

has been designed and prepared. The copper(II) coordination properties of these patellamide 

derivatives is widely understood. Interestingly, the corresponding dinuclear copper(II) 

complexes are able to very efficiently, catalytically hydrolyze phosphoesters and hydrate CO2. 

The natural peptides are produced by the cyanobacteria prochloron didemnid, a photosynthetic 

symbiont of L.Patella. Since the patellamides are extracted from an hydrophilic cytoplasmic 

environment, together with notably high concentrations of some transition metal ions like 

copper(II) and zinc(II). It is likely that a natural function of probably existing transition metal 

complexes in this environment is hydrolase activity. The biologic background as well as the state 

of the art regarding the copper(II) coordination chemistry is summarized in Chapter 1. 

The synthesis of the patellamide derivatives is shortly discussed.  

In Chapter 3, the electrochemistry of the copper(II) complexes is discussed. Cyclic voltammetry 

and square wave voltammetry were used to study the existence of a complexation equilibrium 

between various species in solution. From the obtained results, it is concluded that the 

copper(I/II) redox chemistry is probably not a biological relevant metabolic function at neutral 

pH. Under basic conditions, it is possible that stable copper(I) species exist. It can be proposed 

that these are carbonate or bicarbonate bridged. Moreover, under basic conditions an 

oxygenation test reaction was performed, and it was shown that a dinuclear copper(II) complex 

of an patellamide derivative is involved in an oxygenation reaction under these rather 

unphysiological conditions. A tentative mechanistic proposal is discussed, which is based on the 
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observation of a radical coupling product and insights obtained from a low temperature NMR 

experiment. 

In addition, the proposed copper(II) complexation equilibria of the ligand H4pat4 is discussed, 

and the respective EPR spectra with their simulations are in the focus of the last section of 

Chapter 3. Especially while regarding the formation of heterodinuclear copper(II)/ zinc(II) 

complexes with H4pat4 in Chapter 5 this equilibrium is requested. 

Since biological relevant hydrolysis chemistry is often based on zinc enzymes, zinc(II) complexes 

of the macrocyclic peptides were studied. Chapter 4 presents the formation of zinc(II) 

complexes, which are explored using isothermal calorimetric titrations in combination with 

NMR spectroscopy and mass spectrometry. After an overview of the biological relevance of 

zinc(II) based hydrolases, Chapter 4 presents a proposed zinc(II) complexation equilibrium. 

In Chapter 5, the formation of heterodinuclear copper(II)/zinc(II) complexes is described based 

on spectroscopic results. EPR spectroscopy, paramagnetic NMR and UV/vis spectroscopy in 

combination with mass spectrometry are used to describe two different heterodinuclear 

complexes. Furthermore, Chapter 5 descriebes the formation of a copper(II)/zinc(II) complex, 

due to a distinct cooperative effect, with a ligand that does not form stable spectroscopically 

characterizable homodinuclear zinc(II) complex. 

Phosphoester hydrolysis reactions with a model substrate of all complexes, described in the 

Chapters 3, 4 and 5, have been investigated in a kinetic assay. The pH dependent results are 

discussed in Chapter 6. Furthermore the substrate dependency of the initial rate was tested. 

All complexes disussed exhibit catalytic ativity in a pH range close to neutral. Comparison of all 

data obtained shows that the zinc(II) complexes are slightly more active than the corresponding 

homodinuclear copper(II) complexes. 
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KURZZUSAMMENFASSUNG 

 

 

 

Patellamide und Ascidiacyclamid sind natürlich vorkommende zyklische Peptide. Da sie aus 

Aszidien der Art Lissoclinum Patella (vorkommend im Pazifik und im Indischen Ozean) isoliert 

wurden bezeichnet man sie als marine Metabolite. Sie sind in der Lage verschiedene 

Übergangsmetallionen zu koordinieren. Einige der dinuklearen Kupfer(II)-Komplexe bilden in 

Gegenwart von CO2 carbonatoverbrückte Komplexe. Um die biologische Rolle der Patellamide 

in Hinblick auf eventuell existierende Kupfer(II)-Komplexe im biologischen Umfeld zu 

untersuchen, wurde eine kleine Bibliothek synthetisch leichtzugänglicher Derivate der 

Patellamide erstellt. Die Kupfer(II) Koordinationschemie dieser Derivate ist weitestgehend 

erforscht. Interessanterweise konnte vor kurzem gezeigt werden, dass die dinuklearen 

Kupfer(II)-Komplexe der Patellamid-Derivate in der Lage sind sowohl Phosphoester als auch CO2 

katalytisch zu hydrolysieren. 

Die natürlich vorkommenden zyklischen Peptide werden von den symbiotisch lebenden 

cyanobakterien der Art Prochloron Didemnid produziert. In Anbetracht der Tatsache, dass die 

natürlich vorkommenden zyklischen Peptide aus einer hydrophylen zytoplastischen Umgebung 

extrahiert wurden, zusammen mit bemerkenswerten Konzentrationen an 

Übergangsmetallionen wie Cu2+ und Zn2+ isoliert, liegt die Vermutung nahe, dass in der 

biologischen Umwelt existierende Komplexe als Hydrolasen arbeiten. 

Auf die Synthese der Patellamid-Derivate wird in Kapitel 2 kurz eingegangen.  

Die Elektrochemie der dinuklearen Kupfer(II)komplexe wird in Kapitel 3 diskutiert. 

Elektrochemische Ergebnisse wurden mittels cyclovoltammetrischer und square-wave-

voltammetrischer Experimente erlangt. Die voltammetrischen Experimente spiegeln die 

bekannte aber komplexe Gleichgewichtschemie der dinuklearen Kupfer(II)-komplexe in Lösung 

wieder, was eine exakte Zuordnung der irreversiblen Reduktionen schwierig machte. Die 

Zuordnung einzelner Potentiale beruht auf publizierten Daten anderer Systeme. So kann man 

annehmen, dass die irreversiblen und eher positiven Reduktionspotentiale zwischen 350 und 

450 mV zur Bildung unstabiler Kupfer(I)/Kupfer(II) Spezies gehören, was in Übereinstimmung 
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mit den relativ kleinen Stabilitätskonstanten zu erwarten war. Unter basischen Bedingungen 

und nach Einleitung von CO2 werden einige zusätzliche negative Reduktionspotentiale 

gefunden, welche darauf hindeuten, dass die dinuklearen Carbonato-verbrückten Komplexe 

der Patellamid-Derivate Kupfer(I) stabilisieren. 

Dieser Beobachtung folgend, wurde unter basischen Bedingungen der dinukleare 

Kupfer(II)komplex des Liganden H4pat1 einem Oxygenierungstest unterzogen. Der zeigte dass 

unter diesen recht unphysiologischen Bedingungen Kupfer-vermittelte Sauerstoffchemie 

möglich ist. Die Oxygenierungsprodukte wurden analysiert und deuten auf eine radikalischen 

Mechanismus hin. Ein vorläufiger mechanistische Vorschlag wird erläutert, der anhand eines 

tieftemperatur NMR Experiments an einem ESR-inaktiven dinuklearen Kupfer(II)-Komplex, 

erstellt wurde.  

Desweiteren, wird in Kapitel 3 das Kupfer(II) Lösungsgleichgewicht des Liganden H4pat4 

erläutert, das mit Hilfe von ESR Spektoskopie, den dazugehörigen Simulationen und Massen 

spektrommetrischen Ergebnissen aufgestellt wurde. Welches in Hinblick auf die später 

diskutierte Bildung heterodinuklearer Kupfer(II)/ Zink(II) Komplexe interresant ist. 

Da Hydrolyse Chemie in der Natur häufig von Zink(II) Enzymen betrieben wird, und Zink(II) 

ebenfall sehr konzentriert in den Aszidien gefunden wurde, wird in Kapitel 4 die Zink(II) 

koordinationschemie der Liganden H4pat1, H4pat2 und H4pat4 diskutiert. Welche mit Hilfe 

isothermaler kalorimetrischer Titrationen, NMR Spektroskopie und Massenspektrometrie 

erforscht wurde. Dieses Kapitel, das mit dem biologischen Hintergrund von Zink(II)-hydrolasen 

eingeleitet wird, endet mit einem vorgeschlagenen Lösungsgleichgewicht der verschiedenen 

dinuklearen Zink(II)komplexe. 

In Kapitel 5 wird die Bildung heterodinuklearer Kupfer(II)/ Zink(II) Komplexe diskutiert, und 

Anhand von ESR-, UV/vis- und NMR Spektroskopie verdeutlicht. Kapitel 5 liefert außerdem ein 

Beispiel eines Liganden der durch einen ausgeprägten kooperativen Effekt einen 

Kupfer(II)/Zink(II) Komplex bildet, obwohl es keinen stabilen spektroskopisch 

charakterisierbaren homodinuklearen Zink(II)komplex dieses Liganden gibt. 

Alle in dieser Dissertation beschrieben Komplexe wurden einem Phosphoesterhydrolyse Assay 

unterzogen. Die Fähigkeit, einen aktivierten Modell-Phosphoester zu hydrolysieren wurde 

sowohl in Abhängigkeit von pH Wert untersucht, als auch in einem 

substratkonzentrationsabhängigen Scan untersucht. Alle Komplexe des Liganden H4pat4 
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zeigten katalytische Aktivität in einem natürlich relevanten pH Bereich. Die Ergebnisse werden 

ausführlich verglichen und diskutiert. Der Vergleich zeigen deutlich, dass alle dinuklearen 

Zink(II) Komplexe leicht aktiver sind als die entsprechenden homodinuklearen Kupfer(II) 

Komplexe. 
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ABREVIATIONS AND ACRONYMS 

Å   Ångström 

Abs   absorbance 

Ala    alanine 

AP   alkaline phosphatase 

Arg   arginine 

Asn   asparagine 

Asp   aspartate 

ADP   adenosine diphosphate 

AP   alkaline phosphatase 

ATP   adenosine triphosphate 

B   magnetic field 

BDTBPH  bis-(2,2´,4,4´-ditertbutylphenole) 

BDNPP    bis-(2,4-dinitrophenyl)phosphate 

Bn   benzyl 

Brine   saturated aqueous NaHCO3 solution  

Bu   butyl 

Boc   tertbutylcarboxycarbonyl 

Calc.   calculated 

CAPS   3-(cyclohexylamino)-1-propanesulfonic acid 

Cbz   carboxybenzyl 

CHES   2-(cyclohexylamino)ethanesulfonic acid 

CW   continuous wave 

CT   charge transfer 

CD   circular dichroism 

COMU®   (1-cyano-2-ethoxy-2-oxoethylidenaminooxo)dimethylamino-  

   morpholino-carbenium hexafluorophosphate 

CV   cyclovoltammetry 

Cys   Cysteine 



  | IX 

 

COSY   correlation spectroscopy 

conc.   concentrated 

d   day(s) 

D   deuterium 

DART   direct analysis in real time 

DFT   density functional theory 

DMF   dimethyl formamide 

DNA   deoxyribonucleic acid 

DTPPH   2,4-ditertbutylphenole 

DTBQ   3,5-ditertbutylquinone 

DCM   dichloromethane 

DMSO   dimethylsulfoxide 

EDIPA   N,N-diisopropylethylamine 

EtOAc   ethylacetate 

EtOH   ethanol 

ESI   electron spray ionization 

EPR   electron paramagnetic resonance 

et al.   et alii 

eq.   equivalent(S) 

E.coli   escheria coli 

Et2O   diethylether 

EPR   electron paramagnetic resonance 

FAB   fast atom bombardment  

Fc/Fc+   Ferrocene/ Ferrocenium 

FDPP   pentafluorophenyl diphenylphosphinate 

g   Landéfactor 

G   gauss 

Glu   glutamin acid 

Gln   glutamine 

Gly   glycin 

h   hour(s) 

His   histidine 
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Hz   hertz 

HCA II   human carbonic anhydrase II 

HEPES   4-(2-hydroxyethyl)piperazin-1-ethanesulfonic acid 

HMBC   heteronuclear multiple bond correlation 

HSQC   heteronuclear single quantum correlation 

HR   high resolution 

ITC   isothermal titration calorimetry  

Ile   Ileucine 

K   Kelvin 

Leu   leucine 

LSE   least square error 

Met   methionine 

m   meta 

mV   milli volt 

M   mol/l 

MALDI   matrix assisted laser desorption/ionisation 

MES   2-(N-morpholino)ethanolicsulfonic acid 

Me   methyl 

MM   molecular mechanics 

MeOH   methanol 

MeCN   acetonitrile 

MS   mass spectrometry 

Min   min 

ml   milliliters 

mM   millimol/l 

NMR   nuclear magnetic reosance 

NOESY   nuclear overhauser effect spectroscopy 

NMM   n-methylmorpholine 

NIR   near infra red 

o   ortho 

OTf   triflate 

OAc   acetate 
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p   para 

PE   petroleum ether 

ppm   parts per million 

Phe   phenylalanine 

p.a.   pro analysi 

pdb   protein data bank 

PAP   purple acid phosphatase 

Ph   phenyl  

rt   room temperature, 25°C  

RNA   ribonucleic acid 

ROS   reactive oxygen species 

Ser   serine 

SQW   square-wave-voltammetry 

tert   tertiäry 

TLC   thin layer chromatography 

TFA   trifluoroacetic acid 

THF   tetrahydrofuran 

Thr   threonine 

TON   turnover number 

TOF   turnover frequency 

UV/vis-NIR  ultraviolet/ visible near infrared 

Val   valine 

vs.   versus 

%vol   volume percent 

%w   weigth percent 

ße   bohr magneton 

δ   chemical shift (NMR) 

ν   frequency 

ɛ   extinction coefficient 

γ   wavelength 
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1 Patellamides – Biology and Transition Metal Chemistry 

 

1.1 Cyclic Peptides from Ascidians - Marine Metabolites 

 

The ocean is inspiring and authoritative at the same time. For centuries it has lead humanity to 

great achievements and it is able to show us the limits of ambition. The ocean covers more than 

two thirds of the earth’s surface and, considering its depth, it represents the largest natural 

habitat on earth. Nevertheless, we are still at the beginning of understanding its ecosystems 

and its richness of species. The ocean has inspired humankind in various ways since the 

beginning of time. There are puzzling pictures from the early Bronze Age, in which the mysteries 

and features of the ocean are described. Artifacts like these are found at nearly all places where 

humans have ever been. The ocean is also an inspiration for science, as it harbors a vast amount 

of unknown and fascinating strategies of life; in addition, new and potentially useful molecules 

remain to be discovered in the oceanic ecosystems. 

Due to their huge differences compared to terrestrial life, organisms from the ocean were often 

assigned as sources of foreign or strange life- strategies. The biodiversity of the ocean is still to 

be estimated. From 2000 to 2010 more than 6000 potential new species were discovered, from 

these 1200 have been proved to be unique species. A global research network “the census of 

marine life” has attempted to count, map, monitor and to track all species.2 Each of these 

species has its own life strategy and a unique role in a specific ecosystem, which leads to the 

conclusion that each single species (from a bacteria to a shark) needs to produce and 

metabolize a diverse range of highly specialized substances. This is especially true for coral reefs 
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in tropic and subtropic regions, which bear a high biodiversity and thus an even higher range 

of promising molecules. 

For various reasons, Science is interested in finding new substances and understanding their 

biological function. They may help us to understand foreign ecosystems and could thus be 

directly and indirectly useful in dealing with ecologic challenges. Furthermore, the 

pharmaceutical potential of marine products is generally promising. Also, industrial use of 

marine products is conceivable, as there are substances, which may be used as efficient and 

sustainable catalysts. 

A classical pharmaceutical drug discovery process is based on high-throughput screenings of 

rationally designed compounds or of chemical libraries. Reviewing the number of hits by marine 

natural products in such screenings suggests that it is obvious that this number competes 

advantageously with the success of notionally realized combinatorial screenings. 3 Isolated 

marine natural compounds not directly necessary for the growth and development of their 

producer are defined as secondary metabolites.4  Most of them are involved, or assumed to be 

involved, in survival or interspecies communication strategies of their producing organisms. In 

1970 though, the Interest in secondary marine natural products was enhanced with the first 

reports of their antitumor activities.5,6 In 1980 the two first peptidic secondary metabolites 

(ulicyclamide and ulithiacyclamide) were discovered and isolated from marine organisms (in 

Lissoclinum Patella) (Figure 1.1).7 

 

Figure 1.1: Structures of Ulithiacyclamide (a) and Ulicyclamide (b).7  

a) b) 
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These peptidic marine natural products are formed in three ways:- (i) RIPP: ribosomal 

production and post- translational modification; (ii) the production on a non-ribosomal 

pathway (NRP), which is performed by NRP-enzymes in cytoplasm; or (iii) a mixed process, in 

which polyketide synthases (PKS) and NRP intervene. Thus, a large structural diversity is 

posisble, which gives the hosting organism the possibility to be highly accommodative to its 

environment.4 

 

Figure 1.2: Structures: Ascidiacyclamide (a), Patellamide D (b) and Westiellamide (c).8-10  

During the 1980s Ireland and Scheuer,11 and others,12 13-15 discovered further examples of cyclic 

peptides with a similar molecular scaffold (Figure 1.2). These were the patellamides A-G and 

ascidiacyclamide, which could be isolated from the same organism, Lissoclinum Patella. Since 

it is more common in nature that cyclic peptides and/or peptides with D-amino acids (e.g. and 

other unusual substances, like ß-aminoacids, γ-amino acids or hydroxo acids) are produced 

from a non-ribosomal pathway (NRP), the fact that the patellamides and ascidiacyclamide 

(Figure 1.2a) are produced ribosomally (RIPP) indicates them to have an essential biological 

role. 16-18 

 

1.2 The Prochloron - Lissoclinum patella Symbiotic Association 

 

Cyclic peptides like the patellamides (Figure 1.2a), wetsiellamide (Figure 1.2c) and 

ulithiacyclamide (Figure 1.1a) are found in the ascidia Lissoclinum Patella (Figure 1.3a), one 

type of a family of sessile filter animals, commonly called sea squirts, that live in coral reefs in 

a) b) c) 
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the Pacific and Indian Oceans. The peptides could be isolated in large quantities, up to several 

gram per dry weight.16,17 Like most ascidians L. Patella lives in a symbiotic relationship with the 

cyanobacteria Prochloron didemnid (Figure 1.5).  

     

Figure 1.3: A colony of the didemnid Ascidiacea Lissoclinum Patella covering corals (a), a 

photograph of a cut through a colony (b).both reproduced with permission from 19 

 

Since the biological function of these natural occurring cyclic peptides is still unclear, and 

considering that the unusual cyclic peptides are produced at the ribosome of Prochloron (RIPP), 

16,17,20,21 it is important to understand this symbiosis. 

The sea squirt Lissoclinum Patella belongs to the phylum Chordata, subphylum Urochordata 

(tunicates), class Ascidiacea, order Aplousobranchia and the family Didemnidea. Lissoclinum 

Patella can be found either as solitary organisms but mostly in colonies. Colonies of L. Patella 

are green to green-blue and can reach 10 - 25 cm in diameter, 1 - 2 cm in thickness and weigh 

up to 200g.22,23 The larvae of L. Patella resemble amphibian tadpoles and have nerve cords 

which they lose during their development.24 Ascidians are tunicates because adults (single 

zooids) of this class live in colonies (usually a few thousand per colony), which are entirely 

embedded in a tunic. The tunic is a matrix of proteins and cellulose-like carbohydrates 

containing calcareous spicules, which display for the single exemplars of the invertebrate L. 

Patella a kind of exoskeleton, which maintains their body shape as well as playing a role in 

digestion and storage of metabolism products. It is possible for a colony to fuse and divide 

within a day; in addition, a single zooid has the ability to perform a coordinated movement 

within its tunic.23,25 Bladder cells, which contain mycosporine-like amino acids (MAA) like 

shinorine,26 are embedded in the tunic. MAAs from L. Patella have a strong absorption in UVa 

(320 - 400 nm) and UVb (280 - 300 nm) but they are transparent to visible light,26,27 and as a 
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result they act as ideal sunscreens for L. Patella, allowing their producing organism, e.g. its 

symbiont, to photosynthesize efficiently. Zooids of L. Patella are connected to cloacal cavities 

in the tunic (Figure 1.4), which they use to excrete filtered water and waste products, but also 

for uptake of photosynthesis products and presumably N2-fixation products. A colony of L. 

Patella adheres usually to corals, sea grass or stone substrates through a reddish biofilm, which 

contains further different cyanobacteria, optimizing the utilization of all radiated light. The 

consideration that didemnid ascidians as L. Patella are playing a major role in the ecosystem 

reef has been demonstrated from observations of ascidians smothering scleratinian corals.28 

 

Figure 1.4: Lissoclinum patella colonie: schematic cut:. Drawing of a cross-section illustrating the 

organization of zooids and symbionts in the tunic. The zooids are embedded in the tunic, where they 

suck in and filter particles out of the seawater. Waste products and filtered water are excreted into 

the surrounding peribranchial space and in the cloacal cavities. Was redrawn and modified from ref.:26 

L. Patella harbors the endosymbiotic living cyanobacterium Prochloron didemid (Figure 1.5) in 

the cloacal cavities, the cyanobacterium involved with photosynthesis and probably N2- fixation 

for its host. Prochloron didemnid is a unicellular oxygenic photosynthetic prokaryote that 

possesses besides chlorophyll A and chlorophyll B plant-like thylakoids, and it lacks 

cyanobacteria-typical phycobilins,25,29 making Prochloron resembling plants chloroplasts. 

However, molecular biology has shown that Prochloron is not an ancestor of green-plant 

chloroplasts, it is now considered that both have the same ancestors.30 Despite the fact that 

the Prochloron can be obtained by simply manually pressing a colony, it has eluded cultivation 

and is thus considered to be an obligate symbiont. Larvae of L. Patella were released together 

with Prochloron-cells, and it could be shown that their settling on new substrates is controlled 
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by light conditions, providing the best photosynthesis conditions for the symbiont 

Prochloron.18,30 

    

Figure 1.5: Green Prochloron cells (left), Reproduced with permission from ref.31  individual Prochloron cells (right). 

Reproduced with permission from ref.16 

Prochloron didemnid is an excellent example for chemical diversity in marine cyanobacteria, 

because so far it has produced the widest range of secondary marine metabolites that have 

been reported. Therefore, Prochloron uses all three of the previously described ways for the 

formation of marine natural products (RIPP, NRP and PKS).4 Thus, it may be that the symbiont 

provides a chemical defense for its host. 

Understanding the lifestyle of symbiont and host is important for natural product discovery and 

chemical ecology, and indeed, also for determining the natural role of the patellamides. As they 

are produced by the cyanobacteria Prochloron, the patellamides are classified as marine 

cyanobactins. There are also some peptidic terrestrial cyanobactins known, most of them are, 

in contrast to the patellamides, non-ribosomal products (NRP).4 Patellamides are known for 

their versatility, their resistance to proteolysis and their ability to traverse membranes30 Hence, 

the patellamides from L. Patella display antibacterial-, antiviral- and cytotoxic-activity as well as 

they are able to reverse multiple-drug resistance in human leukemia cells.13,32-41 Recently 

published phylogenetical approaches confirm the suggestion that patellamides and some other 

secondary metabolites (e.g. trunkamide), are produced from a linear prepeptide, the 

production of which is dependent on a gene cluster of seven genes called PatA-PatF.16,17 Five 

of these seven genes are necessary to build a patellamide.21 Additionally, it is known that only 

small changes such as single- point- mutations lead to a different cyclic peptide. Studies have 

shown that it is possible to influence the DNA of prochloron cells by a single point mutation, so 

that (in an E.coli culture) a new artificial cyclic peptide is produced.16 It was assumed that, in 
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this way, the ascidians may use different secondary metabolites as a kind of immune- system 

or they may be used as signal substances against predators or to entice attractors, which may 

slightly differ from reef to reef. Additionally, the research confirmed that the amount and the 

kind of patellamide produced varies from ascidian to ascidian, which indicates that the 

patellamides are needed under the different environmental conditions present.28 However, it 

is still unclear on which exact conditions the patellamide production is dependent: water 

conditions as salinity, temperature or pH could play a role, but also it is possible that nutrients, 

predators or attractors in different regions may play a role. Parallel to these studies (the 

methods of which could be described as“reversive genetics”) Jaspars et al were able to achieve 

the same result by using a method called “shotgun cloning”.17 In shotgun cloning, all DNA 

fragments are transferred solely to an E. coli culture, then produces secondary metabolites that 

are finally analyzed by a high through-put method (e.g. LC-MS). In reversive genetics, in 

contrast, one first looks for a logically required amino acid sequence, transfers this particular 

DNA fragment to an E. coli culture and lets this produce secondary metabolites, followed by 

analysis of the final products. 18 

Between 30 and 50% of the carbon required by L. Patella is produced by Prochloron and mainly 

delivered as glycolate, which is an inhibitor of photosynthesis.18,42 Studies with radio labelled 

14CO2 have shown that most of the carbon transferred (from Prochloron to L. Patella) was found 

in the lipids, the nucleic acids and the proteins of the host.42 In addition to Prochloron providing 

nearly all of the necessary carbon, it is presumed that all nitrogen required for animal survival 

and nitrogen recycling comes from the same source, and this is indicated from the unusual 

N15/N14 abundance in Prochloron cells. 42-46 Contrary to these findings, it could be shown that 

Prochloron didemnid has no nif-genes, which are the known genes for N2-fixing enzymes.47 

There are numerous symbiotic cyanobacteria known, which fulfill in addition to photosynthesis, 

a second small molecule activation for their own metabolism or for that of their host. For 

example, in a lake at Yellowstone National park (which, is regarding its high salinity, is a biotope 

with extreme highly adjusted organisms) a cyanobacterium was discovered that is undergoing 

photosynthesis during the day and nitrogen-fixation at night.48 Prochloron in ascidians can vary 

the amount of patellamides and the sequences by only small changes in the prepeptide, 21,38 In 

this way it may be, that prochloron has a similar way of dealing with different processes with 

changing environment or nutrients. The aim to understand the natural biological function of 
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these cyclic peptides may thus lead to a better understanding of reef ecology. In addition, it 

may help indirectly to discover and investigate new pharmaceutically interesting peptides. 

 

1.3 Patellamides: Biosynthesis, Conformation and Chemical Features  

 

The chemical diversity of L. Patella is displayed by the fact that there are several families of 

azole and azoline based cyclic peptides isolated from this single species.24 There are the 21-

atom macrocyclic Lissoclinamides (Figure 1.6b), the 18-atom macrocyclic Westiellamide (Figure 

1.2c) (which could also be isolated from the terrestrial cyanobacteria Westiellopsis prolifica)10,49 

and the patellins (Figure 1.6a). Another interesting peptide from L. Patella is tawicyclamide 

(Figure 1.6c) which has a proline and a thiazoline instead of two oxazolines. Furthermore 

Prepatellamide A and B (Figure 1.7) could be isolated from L. Patella. In both peptides one of 

the oxazolines is hydrolysed which suggests that they may be precursor molecules for the 

respective Patellamides.4,18 All native cyclic peptides are 18- to 24-atom macrocylic azacrowns, 

with a scaffold composed of altering N-heterocycles combined with amides. 

 

Figure 1.6: Structures of Patellin 1 (a), Lissoclinamide 1 (b), Tawicyclamide A (c).  

Studies of the chemistry of the patellamides were encouraged by their known antibacterial, 

cytotoxic and antiviral activities. 13,32-41,50 The patellamides from L. Patella are low weight cyclic 

peptides and can be described as macrocyclic azacrowns with eight possible N-donors, with the 

potential to bind metal ions within this macrocyclic cavity. .(Figure 1.6, Table 1.1). Since these 

cyclic peptides are possible ligands for transition metal ions, it is necessary to have a look at 

c) b) a) 
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their diversity, biosynthesis, the combination of amino acids, the azacrown ring size, the 

peptide conformation and the overall configurations of the patellamides. 

 

Figure 1.7: Structures of Patellamide D (a) (red: Phe, blue: Cys, green: Ile, yellow: Thr), Patellamide 

skeleton (b), Prepatellamide skeleton (c).  

The patellamides are designated as pseudo-octapeptides because, formally, their scaffold of 

alternating azoles/azolines with amides originates from the condensation of eight amino 

acids24,35,50-52 (Figure 1.7 colored patellamide D for visualization).  

Tabel 1.1: Structural variations in the patellamide scaffold.9,11,12,15,37,53-55 

Pseudo-octapeptides R1 R2 R3 R4 R5 

 A   D-Val L-Ile D-Val L-Ile H 

 B   D-Phe L-Ile D-Ala L-Leu CH3 

 C   D-Phe L-Ile D-Ala L-Val CH3 

 D   D-Phe L-Ile D-Ala L-Ile CH3 

 E   D-Phe L-Ile D-Val L-Val CH3 

 F   D-Val L-Val D-Phe L-Val H 

 G   D-Ala L-Leu D-Phe L-Ile CH3 

Ascidiacyclamide D-Val L-Ile D-Val L-Ile CH3 

  Prepatellamide A   D-Val L-Ile D-Val L-Ile H 

 Prepatellamide B  D-Phe L-Ile D-Ala L-Leu CH3 

 

The condensation of eight amino acids is the first ribosomal step of the native patellamide 

synthesis. Biosynthesis starts with the ribosomal formation of a propeptide, which is initiated 

by a gene cluster with seven genes, called Pat A-G, but only five genes are required for the 

patellamide synthesis. The resulting propeptide has at its beginning a start-cyclization sequence 

a) b) c) 
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that is a pentapeptide and at its end a stop-cyclization-sequence which is a tripeptide.56 The 

heterocycles, i. e. thiazols, thiazolines and oxazolines are produced by cyclic condensation of 

serine, threonine and cysteine and, in some cases subsequent oxidation (Figure 1.8). The 

thiazoles/thiazolines are produced prior to the commencement of oxazoline condensation. 

Both steps are post translational modifications.43,57 The biosynthesis ends with a macrocyclic 

condensation of both peptide ends. This final step is directed by the start and end sequences 

and is presumably enzyme-driven.58,59 Due to the fact that all steps occur in prochloron 

ribosomes the synthesis is classified as ribosomal production and post-translational 

modification (RIPP). 

Until now no imidazole-containing cyclic pseudo-peptide has been discovered in L. Patella. This 

may be the case because the necessary 2,3-diaminopropionic acid is not abundant in the 

ribosome.60,61 However, considering the various metabolic roles of the imidazole-groups as side 

chains of histidine containing peptides and proteins, this fact increases curiosity about the 

natural role of the patellamides even more. 

 

     L-Val    L-CYS       L-Ala      L-Thr      L-Ser 

 

Figure 1.8: Post transalational heterocyclization of a hypothetical linear propeptide. 
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The absolute configuration (R* or S*) of the amides-stereo centers is another characteristic 

feature of this peptide family. The potential for the differences in absolute configuration at Cα 

is illustrated in Figure 1.6 and Table 1.1 and shown in Figure 1.9. 

 

Figure 1.9: Visualization of Cα and Cß. 

It is known that peptides containing D-amino acids are protease resistant and less immunogenic 

than their stereoisomers with only L-amino acids.62,63 Therefore, it is understandable that 

studies were able to show that D-amino acids and D-peptides have high potential for improving 

selectivity and maintaining activity of therapeutic agents64 Investigation of the dynamics of the 

glycopeptide peptidoglycan (Figure 1.10), an essential component of the bacterial cell wall, 

showed that the substitution of one single L-alanine with D-alanine lead to a significant change 

in the biological response.65 

 

Figure 1.10: modified Peptidoglycan. 

Thus, the consequent use of D-amino acids in a ribosomally produced peptide presumably 

plays a key-role in the biological function of the patellamides. Furthermore, the fact that 

N τ  
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amino acid residues that are opposite to each other adopt the same absolute configuration 

is the mainly influencing feature for the whole peptides structure. 

Another key feature of the patellamides is their structure, both, in solid state and in solution. 

Due to the heterocycles and the amides, the structure of the macrocycles is relativly rigid.66,67 

The dihedral angle χ [Namide-Cα-Cimi-X] is an indicator for the extension of deviation from 

planarity of the complete macrocycle (χ=0, 180° indicates planarity) and is the decisive factor 

for the macrocycles final structure. It has been shown with DFT calculations (Figure 1.11) that 

χ depends on the kind of azole-system and the size of the amino acid residues.68,69 By 

comparing the small-residue cyclic peptides (Figure 1.11a) it is obvious that the thiazol 

reference system has one minimum more than the oxazole and the imidazole reference 

system, which leads to the suggestion that thiazole-containing macrocycles have a higher 

flexibility than oxazole- or imidazole-containing macrocycles.66,69 The second observation 

from the data in figure 11 is that while changing to a sterically more demanding residue 

(Figure 1.11b), the rotational activation barrier increases and so there is for all three 

reference systems just one minimum left in the less planar range from 100°- 150°. 

Investigations of the crystal structures and DFT calculations on imidazole and oxazole 

containing cyclic octapeptides confirmed, by comparing the structures of C2- and C4- 

symmetric cyclic octapeptides, that the final structure of these peptides depends on the kind 

of azole used and not on the symmetry of the system.69 

 

 

Figure 1.11: Energy profiles – DFT calculated of the oxazole- , thiazole- and imidazole- reference 

systems, respectively, in relation to the dihedral angle.66,67,70 
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The solution structures of the patellamides are determined by NMR Spectroscopy52,71,72 in 

combination with molecular mechanics, molecular dynamics and Monte Carlo9 71,72 as well as 

DFT calculations.73 A mixed NOE-NMR and circular dichroism study indicated a figure-of-eight 

structure for patellamides A and C in non-polar solvents; in contrast in polar solvents the 

pseudo-symmetric patellamide A adopts the known saddle-shaped conformation whereas 

the non-C2-symmetric patellamide C remains in an figure-of-eight conformation.74  

All structural investigations in solution indicate that there are two main types of conformation 

in solution the “saddle-shaped” (square) and the “figure-of-eight” geometry (Figure 1.12), 

which depend on the degree of symmetry as well as on the polarity of solvents used. 

Additionally the NMR studies pointed out that most patellamides adopt in general in solution 

the same conformations as they adopt in the solid state.10,13,69,71,75 Within the saddle-shaped 

conformation the thiazoles and the oxazolines occupy the corners of a rectangle. The most 

important feature of this conformation is that all nitrogens are directed towards the center 

of the macrocycle. The figure-of-eight conformation therefore is characterized by a twist 

within the two opposite amide sides. 

               

Figure 1.12: Visualisation of possible conformations; drawings of all possible conformations. 

In 1988 the X-ray structure of ascidiacyclamide (Figure 1.13b) was reported by Ishida et al.9 

In later work the same group reported the X-ray structures of Patellamide A and D.73,76 Both 

Patellamide A and D seem on the first view to have similar rectangular structures, but on 

closer inspection, the C2-symmetric asciacyclamide (as the C2 symmetric patellamide A) 

crystallized in a so called saddle-shape conformation (Figure 1.13b) whereas patellamide D, 

which is less symmetric, crystallized in a so called twisted figure-of-eight form (Figure 1.13a).  

a) b) c) 
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Figure 1.13: crystalstructures of Patellamide D (a)77 and Ascidiacyclamid (b).9,70 

Also, patellamide B and C which have a lower than C2-symmetry, were later found to 

crystallize in a twisted figure-of-eight configuration.71 The different solid state conformations 

of the patellamides are related to the type of symmetry.54  

 

1.4 Patellamides and their Metal Complexes  

 

The last sections indicate that there are a number of attempts to discover the natural role of 

the patellamides. These approaches include investigations of their synthesis,53,69,78-80 finding 

the genetic information responsible for their production16,17 and also investigations towards 

their ability to coordinate metal ions. 1,70,81-85 The fact that transition metals like copper(II), 

vanadium(III) and zinc(II) are highly concentrated in the ascidians leads, together with the 

[18]- and [24]-azacrown structure of the cyclic peptides, to the assumption that coordination 

chemistry may play a major role for the cyclic peptides found in Lissoclinum Patella.86-88 

However, investigations of the metal ion coordination by marine secondary metabolites was 

rarely considered before 1993 when a review of the field by Pattenden stimulated greater 

interest in the topic.89 

In 1996 Jaspars et al. collectecd samples of Lissoclinum Patella, which revealed, after solvent 

extraction, that the concentration of copper(II) and the concentration of zinc(II) was 

approximately four orders of magnitude higher than in the surrounding seawater. 

Interestingly, the highest concentrations were detected in the dichloromethane extract, 

a) b) 
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which indicated that the metal ions must have been complexed.88 One suggestions for the 

biological function of the patellamides, considering the high copper enrichment, was 

copper(II) complexation, transport, storage or detoxificationor.88 The high copper(II) 

concentrations found in the ascidiacea Lissoclinum patella would be toxic for most organisms 

as toxicity towards copper(II) can be observed for most organisms at a concentration in a 

range from 10-7 to 10-6 M.1,41,88,90 

The copper(II) complexes of the patellamides have been investigated extensively 1,70,81-85 In 

addition, the zinc(II), calcium(II), magnesium(II) and potassium(I) complexes have been 

investigated.41,82,91-93 94 While comparing the calcium binding ability of patellamides A, B, C and 

D with synthetic analogues, via NMR and CD spectroscopy, it was concluded that only the 

conformationally more flexible peptides exhibit a significant affinity for calcium(II) ions. 91,93 The 

calcium(II) ions were proposed to be coordinated by the amides oxygen, preferring to form 1:1 

complexes with these ligands.91,93 The crystallization of a potassium complex (Figure 1.14) with 

a twice hydrolyzed ascidiacyclamide was also reported.82 The hydrolysis of the oxazoline 

moieties led to a more flexible macrocycle and thus, it was possible for potassium to coordinate 

to two heterocyclic nitrogens and two carbonylic oxygens. Astonishingly this potassium 

complex was able to form by addition of copper(II) perchlorate a purple compound which had 

an EPR spectrum indicative of two different mononuclear copper(II) complexes.82 
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Figure 1.14: Potassium complex of Ascidiacyclamide. (carbon=grey, sulfur=yellow, nitrogen = blue, 

oxygen=red)70,82 

Comparison of the zinc(II) coordination properties of ascidiacyclamide with those of an 

synthetic analogue showed the formation of three species, depending on the nature of the 

anion and the presence or absence of base.92 Complex formation by zinc(II) triflate, perchlorate 

and chloride led to the formation of two different mononuclear species. The NMR spectrum of 

the mononuclear species indicated C2 symmetric complexes. Only the use of zinc(II) chloride 

resulted in a dinuclear species, characterized by mass spectrometry.  

Freeman and Pattenden studied the coordination preferences of patellamides A,B and E and 

showed that all three have no affinity for the coordination of calcium(II) or magnesium(II).95 

However, the patellamides investigated showed a high affinity for the coordination of zinc(II) 

ions and an even higher affinity for the coordination of copper(II) ions. Interestingly, all 

investigations showed that the patellamides bind up to two metal ions. In the case of copper(II) 

and zinc(II) the binding constants for the first metal were in the range 2 x 104 to 3 x 105 and for 

the second metal ion in the range from 20 to 230. It was also confirmed that patellamides B 

and E underwent a conformational change from figure-of-eight to a saddle-shaped 

conformation while complexing copper(II) ions.95 

While for the patellamides there is no report of the formation of sandwich-type complexes nor 

clusters, Wipf et al. reported for the smaller analogue westiellamide (Figure 1.2) the formation 

of a silver(I) complex harboring four silver(I) ions with a sandwich-like structure.96 Bertram and 

Pattenden studied the possibilities of template-synthesis and reported the discovery of a 

sandwich complex with five silver(I) ions in between two four-thiazole containing patellamide-

model peptides.97 
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Figure 1.15: Silver(I) complex of Ascidiacyclamide. (carbon=grey, nitrogen = blue, oxygen=red)70,96 

In 1988 Hawkins et al. published circular dichroism studies of the interaction of the 

patellamides with copper(II). It was shown that mono- and dinuclear complexes were 

formed.1,81 One of the most significant discoveries was that the dinuclear copper(II) complexes 

of ascidiacyclamide reacted with carbon dioxide to form a carbonato-bridged complex (Figure 

1.16). This was characterized by X-ray crystallography, as well as through magnetic 

susceptibility measurements and ion-spray mass spectrometry.1 In this complex the two 

copper(II) ions are separated by a bridging carbonate and embedded in the saddle-shaped 

ligand. Each cpper(II) ion is coordinated by two heterocyclic nitrogen atoms (Nimi), one amide 

nitrogen atom (Namid), the carbonate and a water molecule. This crystal structure lead the first 

time to the idea that potentially existing dinuclear copper(II) complexes of the patellamides in 

vivo might be involved in the fixation of CO2. 1 
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Figure 1.16: Carbonato-bridged dinuclear Copper(II) complex of ascidiacyclamide; Top view (left), 

side view (right) (carbon=grey, sulfur=yellow, nitrogen = blue, oxygen=red).1,70 

There was also an electronic paramagnetic resonance (EPR) mass spectrometry (MS) and 

circular dichroism (CD) study in 1994 investigating the copper(II) binding properties of 

patellamide D.81 The study showed the formation of two mononuclear and three dinuclear 

complexes, one of which was a carbonato-bridged complex.81 The copper(II) coordination 

depended on the choice of the copper(II) salt, on the solvent employed and on the presence of 

base. Furthermore, it was concluded that in the dinuclear carbonato-bridged copper(II) 

complex of patellamide D, the ligand had a saddle-shape conformation as it does in the same 

complex with ascidiacyclamide. In later work the results were reinterpreted with the help of 

molecular modeling which showed that the coordination of metal ions could change the 

conformation of the cyclic peptide if necessary.98 Similar results were obtained by Jaspars et al. 

while investigating the copper(II) coordination properties of patellamide A, C and 

ulithiacyclamide with circular dichroism and mass spectrometry. Patellamide C showed a higher 

affinity for copper(II) ions than patellamide A. This finding was assigned to the greater 

willingness of a conformational change from figure-of-eight to saddle-shaped by patellamide C. 

Furthermore, this result indicated a cooperative effect of the macrocycle: that is, the 

coordination of the first metal ion preorganizes the macrocycle for the coordination of the 

second metal ion.41,88 Jaspars et al. studied the metal ion selectivity of these peptides and found 

out that there was no binding of cobalt(II), nickel(II) or mecury(II) and that patellamide C (as 

well as ulithiacyclamide) had a higher selectivity for copper(II) than patellamide A, in 

comparison to zinc(II).88 The higher selectivity of copper(II) over zinc(II) could be assigned to 

the ability of copper(II) ions to induce the conformational necessary change, for the uptake of 
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a second metal ion, in patellamide C earlier than zinc(II) does. Copper(II) favours a square planar 

or a square pyramidal coordination environment, which is provided for two metal ions when 

patellamide C adopts a saddle-shaped conformation. On the contrary zinc(II) is geometrically 

highly flexible (as in Chapter 4 described; zinc(II) could easily adopt tedrahedral, octahedral or 

trigonal bipyramidal geometries). From all their studies jaspars et al. concluded that it is more 

likely that copper(II) is the biologically relevant metal for the patellamides.94 

Tabel 1.2: Published complex stabilities of the patellamides.70 

Peptide Metal ion K1 K2 method reference 

Patellamide A Cu(II) 2.00*104 7.76*102 CD  41,95 

  3.31*104 1.00*104 MS 41
 

 Zn(II) 3.02*104 1.00*103 CD 41
 

  2.82*103 3.89*103 MS 41
 

Patellamide B Cu(II) 3.02*105 2.29*102 CD 95
 

 Zn(II) 3.02*104 1.19*10 CD 95
 

Patellamide C Cu(II) 6.70*104  CD 41
 

  6.31*104 6.03*103 MS 41
 

 Zn(II) 1.78*104 8.13*102 CD 41
 

  2.40*103 2.57*103 MS 41
 

Patellamide D Ca(II) 7.94*102  NMR, CD 91
 

Patellamide E Cu(II) 1.51*104  CD 95
 

 Zn(II) 7.94*104 2.00*10 CD 95
 

Ascidiacyclamide Ca(II) 7.94*102  NMR 91
 

 

The complex stabilities discussed above and in the literature are listed in Table 2. While 

interpretation of these values one has to keep in mind that different analytical methods were 

used.  
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1.5 Model Peptides and their Copper(II)-Complexes 

 

In order to model structural features of the patellamides and to investigate possible biological 

activities of probably naturally occurring patellamide-metal complexes, a range of artificial 

occurring cyclic peptides were synthesized. 69,70,83-85,99 The main focus for the design of new 

ligands was on the stereochemistry of the amino acid residues and the donor strengh of the 

azoles and azolines. A set of synthetic peptides was developed, labeled H4pat1 to H4pat5 and 

H4ascA (Figure 1.17). 

   

Figure 1.17: Synthetic pseudo octapeptides.100,101 69,99 

Even if imidazole-containing patellamides were not found in Lissoclinum patella, diamino 

propionic acid is not abundant in prochlorons ribosomes, they were chosen for this set of 

ligands. 99 Imidazoles are less hydrolytically sensitive than oxazoles, thiazoles and oxazolines.102-
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104 and offered the possibility of varying the electronic effect of the second hetero-atom by 

substitution of the residue at the nitrogen Nτ. The pKA values of the heterocyclic nitrogen donor 

of N-methylimidazole is 7.0, which is considerably higher than the pKA values of; oxazoles (pKA: 

0,8), oxazolines (pKA: 4.8) and thiazolines (pKA: 2.5).105  

All synthetic ligands have valine side chains. The ligands H4pat1 and H4pat2 have the same 

chemical composition but in contrast to H4pat2, H4pat1 adopts the native configuration 

(R*,S*,R*,S*) of the amino acid residues. The configurational change makes H4pat1 a C2 

symmetric ligand and H4pat2 a C4 symmetric ligand. The C4 symmetric ligand H4pat3 has the 

same configuration as H4pat2 but instead of four methyl-imidazoles there are four oxazoles. 

H4pat4, has a 4S* configuration, harbors two methyl imidazoles alternating with two benzyl 

imidazoles and therefore has C2 symmetry. In addition, there is the four benzyl-imidazole 

containing ligand H4pat5 with C4 symmetry. The most biomimetic ligand is H4ascA which differs 

from ascidiacyclamide only by substitution of two isoleucine- to two valine- side chains. 

Cyclic pseudo octapeptides are highly preorganized for the coordination of copper(II), and 

these artificial macrocycles show a strong cooperativity in the binding of two copper(II) ions. 

70,99,106 Various experiments and computational analyses illustrated the cooperativity of the 

binding event of two copper(II) ions, and it was possible to detect a dinuclear copper(II) 

complex via EPR-spectroscopy in at 10-fold excess of the macrocyclic ligand H4pat2.100 85 The 

equilibrium of copper(II) complexes of the artificial patellamides was experimentally explored 

in methanolic solutions because most of the artificial pseudo-peptides have only a low solubility 

in water, and also to keep all systems comparable. The equilibria can be described as follows 

(Figure 1.18): 

 

1.) All cyclic pseudo-peptides considered here prefer to coordinate two copper(II) ions. The 

 preorganization by the coordination of the first metal ion leads to a change in 

 conformation which facilitates the coordination of the second metal ion, and is thus 

 described as cooperativity. 

2.) Due to the large number of possibile mono- and dinuclear complexes (co-ligands: solvent, 

 deprotonated solvent, OH-, bridging or terminal), there is an complex equilibrium 

 between different species for all cyclic pseudo peptides (Figure 1.18). This 

 makes the spectroscopic characterization of a distinct single species difficult, 
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 compared to ligands which do form under diverse conditions selectively distinct 

 complexes. And also, crystallization of a single species has only rarely been 

 achieved.99 

3.) The copper(II) ions are always coordinated to two heterocyclic nitrogen atoms and one 

 deprotonated amide nitrogen atom. The formation of mono- and dinuclear complexes 

 with copper(II) involves two metal ion assisted deprotonation steps of the amide 

 nitrogen donors, the resulting drop in pH makes it necessary to add base for a complete 

 complexation. 

4.) Nevertheless, the equilibria of the different cyclic pseudo peptides are characteristic.  

The copper(II) complexation equilibria of all ligands are described by various spectroscopically 

monitored titration experiments (EPR, UV/vis-NIR, CD, MS), as a function of copper(II)- and 

base- (OMe-) concentration. The native configuration (R*,S*,R*,S*) of H4pat1 results in the most 

stable copper(II) complexes.106 Also, this ligand forms directly dinuclear complexes without 

evidence of any mononuclear species.. It was possible to trap the hydroxo bridged 

[Cu2H2pat1(µ-OH)]+ species and to structurally characterize it.99,101 The 4S* configured ligand 

H4pat2 forms a mononuclear copper(II) complex as well as a higher concentrated dinuclear 

copper(II) complex at low copper(II) and base ratios.85,100 With H4pat2 it was also possible to 

detect a carbonato-bridged species in contrast to H4pat1. Interestingly, H4pat2 forms a pink 

species upon addition of water to titration at a low base ratio. The ligand H4pat3, which has four 

oxazoles instead of four imidazoles shows at low copper(II) concentrations the formation of a 

2:1 ligand/copper(II) complex, a so-called outside-coordination. (Figure 1.18) UV/vis and CD 

spectroscopic monitored titration studies of the ligands H4pat4 and H4pat5 with copper(II) have 

been reported.107 Ligand H4ascA as a close analogue of ascidiacyclamide has a similar copper(II) 

coordination equilibrium as H4pat1 and H4pat2. Addition of copper(II), even without base, shows 

a d-d absorption band at 687 nm that increases rapidly with the addition of two equivalents of 

base. The fact that there is only one d-d band which does not shift upon addition of base 

suggests that both copper(II) ions have an identical coordination sphere, even if there would 

be a mononuclear species in solution, this would have the same coordination sphere. The 

corresponfding CD-spectrum shows an expected change in conformation upon addition of 

copper(II) which is visible below 400 nm. Addition of a third equivalent of base leads to a 

decreasing intensity and to a shift to higher wavelengths of the d-d absorption. Upon addition 

of a fourth equivalent of base the d-d band shifts to 660 nm. This result can be explained by 
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the formation of a dihydroxo complex and of a bridged hydroxo species at higher base ratios. 

The copper(II) coordination chemistry of H4pat4 will be in chapter 3 of this thesis. At low 

copper(II) concentrations, H4pat4 forms a single existing mononuclear copper(II) complex. 

Thermodynamic stabilities of all dinuclear copper(II) complexes with the patellamide 

derivatives were determined by isothermal titration calorimetry (Table 1.3). H4pat1 forms the 

most stable dinuclear copper(II) complex. The high thermodynamic stability of H4pat1 indicates 

that the alternating configuration promotes formation of dinuclear copper(II) complexes.  

 

Table 1.3. Copper(II) stability constants, entropies and enthalpies of complexation of the patellamide 

derivatives (standard deviations in brackets), obtained from ITC.106 

  [H2pat1Cu2]2+ [H2pat2Cu2]2+ [H2pat3Cu2]2+ [H2pat4Cu2]2+ [H2pat5Cu2]2+ 

N a) 1.90 (0.09) 1.84 (0.08) 1.99 (0.02) 2.03 (0.02) 1.89 (0.02) 

K 1.71x106 (0.71) 4.03x104 (0.55) 2.27x105 (0.14) 1.43x105 (0.08) 1.50x105 (0.09) 

∆H [kJ/mol] 46.8 (4.6) 84.52 (7.7) 62.7 (0.8) 74.8 (0.8) 73.5 (1.8) 

∆S [J/(mol K)] 278.6 371.5 313.8 349.3 344.7 

      
a)  computed CuII : (H2patn) ratio     
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Figure 1.18: Scheme of all possible complex structures in Pseudo octapeptide copper(II) 

equilibrium. 70   
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1.6 Hydrolase Activity by Model Complexes  

 

Since potentially existing copper(II) complexes of the patellamides assumably fullfil their 

metabolic role in a hydrophilic environment, its likely that this metabolic role is hydrolysis 

chemistry. Regarding the ubiquitious occurrence of CO2 and its various metabolic functions, it 

is obvious that nature needs various strategies to fix and to hydrolyse CO2. 

Hydrolysis of CO2 is important in context of climate change and the acidification of the oceans. 

The development of technologies that are able to fix and to hydrolyze atmospheric CO2 are 

thus important environmental questions. 108-110 The mechanistic and kinetic analysis of the 

carbonic anhydrase activity of dinuclear copper(II) complexes of patellamide derivatives has 

recently been described.111 The dinuclear copper(II) complex of the ligand H4pat1 was the most 

active [kcat=7.3 × 103 s−1 (uncatalyzed: 3.7 × 10−2 s−1)]111 and is, thus far, the most potent 

copper(II)-based model complex for the enzyme carboanhydrase.  

Phosphoester-hydrolysis is also an interesting reaction with respect to the structures of the 

dinuclear copper(II) complexes of the patellamide derivatives. Phosphoester have numerous 

biological functions as being part of the DNA, RNA, phospholipids, ADP, ATP and 

pyrophosphates. Nature needs substances and strategies to hydrolyze phosphoesters 

catalytically under various conditions, in hydrophobic pockets, in cytoplasm, at different 

temperatures and different pH values. Since there are numerous CO2 hydrolyzing systems that 

are also active in phosphoesters hydrolysis, this could also be a relevant reaction for  the 

dinuclear transition metal complexes of the patellamides. Therefore, the copper(II) complexes 

of the Ligands H4pat1 and H4pat2 have been shown to hydrolyze the model phosphoester 

BDNPP (2,2´,4,4´-bis(dinitrophenyl)phosphate).70,112 
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Figure 1.19: Graphical comparison of the catalytic effencies in CO2 hydrolysis, of the patellamide 

derivatives dinuclear copper(II) complexes, at various pKA values.107,111 

 

1.7 Aims 

 

On the continuous search for the natural role of the patellamides and ascidiacyclamide the 

coordination chemistry of specific derivatives shall be further investigated. Copper(II) is 

considered to play an important role in the natural chemistry of the patellamides. The 

copper(II) solution chemistry of a library of designed patellamide derivatives has been studied 

spectroscopically and thermodynamically. The first aim of this thesis was to study the 

electrochemical behavior of the corresponding copper(II) complexes. The electrochemical 

description of the copper(II) solution equilibria shall help to determine whether redox 

chemistry of potentially existing complexes under biological conditions is relevant.  

Zinc(II) is also highly concentrated in the ascidians88 and, in addition, it plays a key role in most 

hydrolyzing metallo enzymes. Thus, the focus of Chapters 4 and 5 lies on zinc(II) coordination 
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chemistry of the cyclic pseudo-octapeptides. Three peptides of the already existing library were 

chosen to explore their zinc(II) chemistry. 

The coordination chemistry of zinc(II) containing cyclic pseudo peptides in the present thesis 

was explored with the objective focus on catalytic hydrolysis chemistry. The challenging 

question the present thesis is whether the characterized dinuclear zinc(II) containing cyclic 

pseudo peptide complexes are able to hydrolyze phosphoesters under physiologic conditions? 

Thus, all described complexes were tested using phosphoester model assays.  
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2 Synthesis of Patellamide Derivatives 

 

The intention to describe the formation of zinc(II) complexes with patellamide derivatives 

required first the selection of appropriate ligands from an existing library (see Figure 1.17). The 

decision was made to explore the zinc(II) chemistry with the imidazole containing pseudo-

octapeptides H4pat1, H4pat2 and H4pat4 (Figure 2.1). By altering the configuration of the valine-

residues and the residues at Nτ of the imidazoles, it should be possible to determine which 

structural features are essential for the formation of the zinc(II) peptides.  

 

 

Figure 2.1: Structures of selected ligands: H4pat1 (a), H4pat2 (b) and H4pat4 (c). 

The three patallamide derivatives chosen for this study have similar donor sets (N-

methylimidazoles or N-benzylimidazols and amides) but are different in symmetry: H4pat2 is C4 

symmetric and H4pat1 and H4pat4 are C2 symmetric. In case of H4pat1, the C2 symmetry is a 

result of the alternating R*,S* configuration of the valine side chains, while in case of H4pat4, 

the C2 symmetry is the result of the alternation of N-methylimidazoles with N-benzylimidazoles. 

The conformation adopted by these artificial cyclic pseudo octapeptides depends mainly on the 

stereochemistry of the amino acid residue (Cα) between the imidazole moieties. From 

a) b) c) 
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comparison of the X-ray structures (Figure 2.2) of all three ligands it appears that all may be 

described as saddle-shaped. Comparison of NMR studies with X-ray crystallography indicated 

that in solution and in solid state these peptides adopt the same saddle-shaped 

conformation.101 

 

Figure 2.2: Crystal Structures of H4pat1 (a),101 H4pat2 (b)100,101 and H4pat4 (c)101. 

Although, all three crystal structures are assigned as saddle-shape conformed, there is a 

remarkable difference between them. The crystal structur of H4pat1 shows four imidazols that 

are oriented in a zig-zag fashion (Figure 2.2a). Contrary, in the the crystal structures of H4pat2 

and H4pat4 the imidazoles are more conical oriented.70,101 

 

2.1 Synthesis Strategy 

 

The patellamide derived cyclic pseudo octapeptides were prepared following a modular 

synthesis route.69,71,113,114 First heterocyclic building block were prepared (Figure 2.3), these 

were then formed to the final peptides in a cascade of deprotection- and coupling steps (Figure 

2.4).  

a) b) c) 
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Figure 2.3: Structures of protected monomers H4pat1 (a), H4pat2 (b) and H4pat4 (c). 

With this general approach it is possible to tune the final properties of the peptides while 

changing the type of heterocycle or the configuration of the amino acid side 

chain.66,69,85,99,105,113 In this thesis all cyclic pseudo-peptides were synthesized via a double 

dimerization to avoid the formation of trimers.100,101 

 

 

Figure 2.4: Schematic drawing of the modular synthesis route to the artificial cyclic pseudo peptides. 

First two deprotected pseudo dipeptides were coupled, and the resulting product was 

subsequently deprotected and cyclodimerized. All reactions are known in the literature and 

only slight modifications to the published procedures will be highlighted.6966,106 

 

2.2 Monomer Synthesis 

 

The preparation of all three heterocyclic building blocks 5, 6 and 21 (Figure 4.5) starts with the 

same molecule; the oxime 1, which was prepared by the reaction of methyl 3-oxobutanoate 

a) b) c) 
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with sodium nitrate in glacial acetic acid. The oxide obtained was reduced in a methanolic HCl 

solution under a hydrogen atmosphere using 10% palladium on charcoal as catalyst. The 

resulting ammonium chloride salt 2 is the starting material for all three monomeric building 

blocks. Using isobutyl chloroformate and n-methyl morpholine (NMM) as coupling agent and 

base, the ammonium chloride salt 2 was converted into peptides. Ammonium chloride salt 2 

was converted by coupling with Boc-protected R-valine into peptide 4, by coupling with Boc-

protected S-valine into peptide 3, or into peptide 18 by coupling with Cbz-protected R-valine. 

 

Figure 2.5: Scheme of monomer synthesis. 

The heterocyclic building blocks 5 and 6, the monomer subunits of H4pat1 and H4pat2, were 

prepared in a hetero-cyclization reaction (cyclo-Mannich condenzation) with methylamine and 

acetic acid. The benzyl imidazole building block 19 was obtained by hetero-cyclization with 

ammonia and trifluoroacetic acid. The formation of the benzyl imidazole building block 

required two additional steps. First the Cbz protecting group had to be substituted by a Boc 

protecting group via deprotection with palladium hydroxide and subsequent protection with 

Boc2O. A benzyl group was then attached by the addition benzyl bromide and sodium hydride 
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in DMF. All heterocyclic building blocks were obtained as crystalline white solids: the R-valine 

methyl imidazole 5 was obtained in 63.6%, the S-valine methyl imidazole 6 in 86.6% and the R-

valine benzyl imidazole 21 in 80.1% yield. 

 

2.3 Peptide Coupling and Cyclization 

 

For the preparation of the final cyclic peptides it was necessary that monomer a (Figure 2.6) 

was deprotect at one site. Deprotection of the carboxylate ester was achieved by hydrolysis 

with sodium hydroxide and Boc-deprotection by trifluoroacetic acid. The resulting deprotected 

monomers b and c were coupled using COMU as coupling agent and EDIPA as base. 

 

Figure 2.6: Schematic representation of the cyclo-peptide coupling. 
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The dipeptide building block d was first Boc-deprotected using TFA and subsequently methyl 

deprotected using NaOH. Finally, coupling to the desired cyclic pseudo-peptide e was achieved 

using COMU as coupling agent and EDIPA as base. After an extensive purification procedure by 

column chromatography and repetitive recrystallization all cyclic pseudo-octapeptides were 

obtained as crystalline white solids: yield of H4pat1 16.8%, H4pat2 8.8% and H4pat4 11.9%.The 

main influencing change in the cyclic pseudo-peptide synthesis was the use of COMU® as 

coupling reagent instead of FDPP. The uronium-type coupling reagent is less expensive, has a 

higher solubility and it is additionally easier to handle because of its stability. The herein 

reported yields are the result from the purification of only a part of the crude product after 

recrystallization and column chromatography. Nevertheless, with further time consuming 

purification steps it was possible to purify more of the crude product, which increases yields by 

approximately 2 to 3 time
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Parts of the following chapter are published in “Copper Solution Chemistry of Cyclic Pseudo-

Octapeptides”; Peter Comba, Nina Dovalil, Gebhard Haberhauer, Klaus Kowski, Nina 

Mehrkens, Zeitschrift für anorganische und allgemeine Chemie 2013, 639 (8-9), 1395-1400.  



 

 

3 Copper(II) Complexes of Patellamide Derivatives 

Since the biological function of the patellamides and ascidiacyclamide remains unknown and the 

donor set provided, as well as the shape of the macrocyclic peptides, appear to be suitable, 

copper(II) coordination chemistry is assumed to be of importance. Therefore, the copper(II) 

coordination chemistry of the patellamides and of their derivatives has been widely 

investigated.1,52,70,81-85,99 The biological role of potentially existing copper(II) complexes might be 

copper(II) transport and storage, oxygen activation, CO2 hydrolysis, carbonate transport, 

phosphoester hydrolysis, ß-lactam hydrolysis and glycoside hydrolysis.52,85,112,115-117 Biologically 

relevant electron transfer reactions, oxygenations and oxidations by copper proteins (tyrosinase, 

hemocyanine, plastocyanine, catechol oxidase) usually occur in a hydrophobic microenvironment 

provided by a protein.118 Considering the fact that the patellamides were isolated from ascidian 

cytoplasm together with high concentrations of copper(II) and zinc(II),88 the suggestion that 

potentially existing copper(II) complexes of the patellamides acting as small molecular systems in 

an hydrophilic environment as hydrolysis catalysts seems very likely. To combine structural 

properties and thermodynamic stabilities of the known copper(II) complexes of cyclic pseudo-

octapeptides with the electrochemical properties of the corresponding complexes, cyclo 

voltammetry (CV) measurements and square wave voltammetry (SQW) experiments were 

performed. Furthermore, knowing the reduction potentials Ered of dinuclear copper(II) complexes 

should give information about the stability of the according copper(I) species, and thus be able to 

answer the question whether there is a sufficiently stable copper(I) species which could be 

involved in biologically relevant electron transfer, oxygenation or oxidation reactions. 

Furthermore, the complexation equilibrium of the copper(II) complexes of H4pat4 were 

investigated by electron paramagnetic resonance (EPR) spectroscopy to provide important 

information about possible heterodinuclear complexes discussed in Chapter 5.  
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3.1 Electrochemical Studies  

 

Electrochemical properties of the copper(II) complexes of the ligands H4pat1-H4pat5 were 

investigated by voltammetry. Cyclic voltammetry was performed under anaerobic conditions in 

methanol (1mM complex) with ferrocene as the internal reference.119,120  

Table 3.1 (S. 42) lists all redox potentials of the copper(II) complexes of the patellamide derivatives 

H4pat1-H4pat5. Cyclic voltammetry proved to be inconclusive, since the processes studied are 

electrochemically irreversible (Figure 3.1). Based on the known structures and stabilities of the 

copper(II) complexes, chemically reversible processes were not expected. The donor set provided 

by the macrocyclic peptides consists of two heterocyclic nitrogen atoms and one amide per 

copper(II) center, and the ligand sphere is completed by two solvent molecules, hydroxide or 

methoxide (terminal or bridging) and is thus not expected to stabilize copper(I).121-124 

Electrochemistry reveals in all cases that the copper(II) complexes of the cyclic pseudo-peptides 

do exist in equilibria. Thus, there is a number of different species in solution (Chapter 1, Figure 

1.18) that can be electrochemically reduced. Moreover, the dinuclear copper(II) complexes with 

K values around 105 are only moderately stable.106,107 Therefore, it is not unexpected that 

complicated voltammograms are obtained as shown (Figure 3.1). These voltammograms are 

depending on the concentration of all species involved (ligand, copper(II), base),119 and exclude a 

simple assignment of the observed processes. 

The cyclic voltammograms of solutions of H4pat4 with two equivalents of copper(II), that have been 

taken upon addition of various equivalents of base, show a number of irreversible reduction waves 

(Figure 3.1). Since the cyclo voltammograms did not change significantly with multiple scans, it 

can be supposed that no decomposition occurs. The first CV (Figure 3.1 a) is of a solution with 0.5 

equivalents of base, with a ligand-copper(II) ratio of 1:2. The irreversible reduction at -370 mV 

belongs to solvated copper(II) ions (in methanol solvated copper(II) triflate shows an intense and 

irreversible reduction potential at -430 mV, which shifts to -350 mV upon addition of base). 

However, the signal assigned to free solvated copper(II) disappears upon further addition of base. 

The reduction potential of the solvated copper(II) is already disappeared at a ligand/copper(II)/ 
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base ratio of 1:1:2. Moreover, irreversible reduction potentials at 363 and 773 mV appear and 

grow in intensity with increasing addition of base. The assignment of these positive reduction 

potentials is this way not possible, because of various different reasons. First, according to mass 

spectrometry (Section 3.3) there are different mono- and dinuclear species in solution. Second, 

even if there would be a single hydroxo coligated dinuclear copper(II) complex in solution (which 

is according to MS the main component), it wold be hard to assigne the potentials. One one hand 

it is not clear wether the hydroxo coligand is bridging or terminal, and on the other hand for both 

kinds of species are some options possible. A hydroxo-bridged species for example could have 

one, two or three reduction potentials.121 Moreover, it is possible that both copper(II) ions are 

reduced at the same potential. Thus, a dinuclear copper(II) complex with a terminal hydroxid could 

have one or two reduction potentials. 

 

Figure 3.1: CV traces for selected copper(II) complexation-steps of H4pat4 (1mM in methanol with 0.1M 

(tBu)4NPF6 and vs. Fc/Fc+, 100 mV/s, Ag/AgNO3 0.01M, 25°C) 

Redox potentials of dinuclear hydroxo-bridged copper(II) complexes which are comparable to the 

copper(II) complexes of cyclic pseudo-octapeptides have been studied by Krebs et al.125,126. Casella 

et al. studied the differences between terminal or bridging coordinated hydroxides and water 

molecules at dinuclear copper(II) complexes and stated, that hydroxo-bridged dinuclear copper(II) 
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complexes have a poor ability to bind the electro-generated copper(I), and therefore, the 

processes have higher potentials.127 

To simplify the analysis, square wave voltammetry (SQW) measurements were undertaken in 0.1 

mM methanolic solution. Data reported in table 3.1 (s. 42) are those of the more sensitive SQW 

experiments. The higher-resolution of the square wave voltammetric titration (Figure 3.2) shows 

a very negative potential (-1242 mV) after flushing with CO2 for five minutes. This leads to the 

assumption that the formation of carbonato-bridged species stabilizes coordinated copper(I). 

 

Figure 3.2: SQW traces for selected copper(II) complexation-steps of H4pat4 (0.1mM in methanol with 

0.1M (tBu)4NPF6 and vs. Fc/Fc+, 25°C). 

The redox potential of a carbonato-bridged dinuclear copper(II) complex was determined to           

be -620 mV vs Ag/Ag+.128  Thus, the negative potentials at -302, -750, -1086 and -1242 mV obtained 

upon flushing with CO2 can presumably be assigned to different species with coordinated 

carbonate or bicarbonate.After flushing with CO2 the complex solutions of all ligands show a 

characteristic voltammogram (Appendix). All ligand-copper(II) solutions have the formation of a 

quite negative reduction potentials (-714 to -1289 mV) in common, which could presumably be 

assigned to the reduction of dinuclear copper(II) carbonato or bicarbonato species 
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Based on literature derived data of mono and dinuclear copper(II) complexes,121,126,127,129 and the 

square wave voltammograms of the copper(II) complexes of all five ligands H4pat1-H4pat5 (see 

Figure 3.2 and Appendix) reduction potentials around 350 -450 mV are tentatively assigned to the 

reduction of one of the central copper(II) ions to result in an unstable copper(II)-copper(I)-

complex. These rather positive reduction potentials are in agreement with the only moderate 

stability constants and the complex equilibria in solution. 

Considering the expected instability of the reduced systems and the positive reduction potentials 

in agreement with the only moderate complex stabilities, it is unlikely that copper(II)/(I) based 

oxygen activation may be of importance in neutral aqueous solution. 
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Table 3.1. Redox potentials of the copper(II) complexes of the patellamide derivates. 

Ligand CuII Base                                                                      reduction potentials [mV] vs. Fc/FC+   
      0.1M TBA-PF6 in MeOH 

H4Pat4 2eq          -214 354 746  1162 
 2eq  2eq       -750  382 784 1062 1218 
 2eq  3eq       -754  368 798 1054 1214 
 2eq  4eq      -778  350 764 1070 1210 

CO2     -1938 -1758 -1242 -1086 -750 -302     1054 1171 

      -1938 -1758 -1242 -1086 -750 -258 363(13) 773(20) 1060(7) 1195(24) 

H4Pat2 2eq            770 1186 1294 
 2eq  2eq         486 775 1178 1305 
 2eq  3eq         494 772 1187 1301 
 2eq  4eq        506 783 1178 1295 

CO2        -1289  -714      1178   

          -1289   -714   495(8) 777(5) 1181(4) 1299(4) 

H4Pat1 2eq              1239 

 2eq  2eq    -1402  -1102   466 794  1259 
 2eq  3eq   -1387  -1101   394 819  1259 
 2eq  4eq  -1378  -1094   411 836  1270 

CO2     -1762   -1168   -766  352 828   1254 

      -1762 -1389 -1168 -1099 -766   405(41) 819(16)   1256(10) 

H4Pat3 2eq           390 810 1038 1294 
 2eq  2eq         383 865 1042 1298 

 2eq  3eq        402 782 1117 1286 
 2eq  4eq   -1216    391 771 1107 1287 

CO2     -1806  -1202  -726 -354       1290 

      -1806   -1207   -726 -354 392(7) 807(36) 1076(36) 1291(5) 

H4Pat5 2eq             1154  
 2eq  2eq         291 794 1163  
 2eq  3eq        378 781 1152  

 2eq  4eq       439 776 1138  

CO2     -1709   -880 -728 -239     1154  

      -1709     -880 -728 -239 369(61) 784(8) 1152(8)   
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3.2 Oxygenation Properties of [Cu2(H4pat1)(OH)]+ 

 

Although, the electrochemical results indicate that in a hydrophilic environment at 

physiological pH no stable copper(I) species can be formed, under basic conditions and after 

flushing with CO2, low reduction potentials are visible. Considering the possibility that a 

naturally existing dinuclear copper(II) complex of a patellamide derivative may act as a cofactor 

in a protein, i.e. in a hydrophobic microenvironment, copper-based redox chemistry seems 

possible. Furthermore, this scenario may involve amino acid side chains of the protein acting 

as a base. Thus, it appears to be worth to check, whether a dinuclear copper(II) complex of a 

patellamide derivative could act as oxygenase or oxidase. 

There are biologically relevant oxygenation, oxidation and electron transfer reactions which 

have dinuclear copper centers in the active sides of the appropriate enzyme.118,130 For instance, 

the copper type-3 proteins tyrosinase, catechol oxidase and hemocyanine are important 

copper-type-3 proteins. While catecholase catalyzes the oxidation from catechol to quinone, 

tyrosinase catalyzes the oxygenation from the phenol derivative tyrosine to the corresponding 

quinone.131,132 Hemocyanine is the oxygen transporting protein of mollusks. Even if 

hemocyanine does not oxygenate phenols or oxidize catechols it was spectroscopically shown 

that oxygen binds in a side-on fashion between the two copper centers in µ-ƞ2:ƞ2-geometry, 

which is comparable to the oxy-forms of tyrosinase and catecholoxidase.133 All three proteins 

are structurally related and contain a dinuclear copper(II) center in their "resting state" ( the 

met-form, Figure 3.3). The met-form is hydroxo-bridged and features a copper(II)-copper(II) 

distance from 2.9 Å to 3.5 Å. The metal site is antiferromagnetically coupled and thus EPR 

silent.118,131,134 The literature-described mechanism of tyrosinase is illustrated in Figure 

3.5.135,136 The monophenolase cycle (creolase cycle) shown in blue can be described as a 

hydroxylation reaction and is the rate determining step.137 The second part of the catalystic 

cycle, the diphenolase cycle (catecholase cycle), displays a two-electron transfer process with 

a subsequent proton transfer.135,136 
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Figure 3.3: Schematic drawing of the tyrosinase catalysis.135,136 

Koval et al. published in 2006 a carbonato-bridged dinuclear copper(II) complex of a 

macrocyclic ligand with a copper(II)-copper(II) distance of 4.5 Å, that showed catecholase 

activity. 128 The reduction potential of this species was detected at -620mV (vs. Ag/Ag+) (-707 

mV vs. Fc/Fc+)120 which is comparable to the reduction potentials detected for all ligands at -

714 to -766 mV (Tabel 3.1).128 The copper(II)-copper(II) distance in the previously published 

crystal structure of [Cu2[H2pat1)(OH)(H2O)2]+ is about 3.6 Å.85 Thus, a similar reactivity is 

imagineable, the ability to oxygenate or oxidize a distinct model substrate. It is also possible 

that a bridging or terminal co-ligand may act as a radical and generate Copper(I).128,129,138,139 In 

2010 Kaizer and Speier reported a dinuclear hydroxyl-bridged Copper(II) complex that was able 

to act as catechol oxidase mimic, via the radical semiquinone.140 
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The chosen oxygenation assay is well established.137,141,142 The model substrate 2,4-

ditertbutylphenole (DTBPH) (Figure 3.7a) was dissolved under anaerobic and basic conditions 

in methanol. The previously prepared catalyst solution (anaerobic conditions, to avoid the 

formation of carbonato species) was added before the reaction was started by flushing with 

air. The formation of the product was monitored via UV/Vis-NIR spectroscopy (Figure 3.6). 

 

Figure 3.4: Time dependent change in the UV/Vis spectrum, of the oxygenation solution.  

The formed 3,5-ditertbutylquinone (Figure 3.7b) has an absorption maximum at 407 nm (ɛ= 

1830 L*mol-1*cm-1),137 and it was possible to calculate the turnover number (equation 1, Figure 

3.7 a), which shows the number of catalytic cycles a catylyst performs till it gets inactive. 

Furthermore, it is possible to calculate the turnover frequency (equation 2, Figure 3.7 b), which 

displays the efficiency of the catalyst. 

𝑇𝑂𝑁 =
[𝑝𝑟𝑜𝑑𝑢𝑐𝑡]

[catalyst]
  (1) 

𝑇𝑂𝐹 =
𝑇𝑂𝑁

𝑡𝑖𝑚𝑒
   (2) 
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The second observed absorption maximum at 421 nm belongs presumably to the formation of 

the corresponding semiquinone. The formation of semiquinone is characteristic for catalytic 

model systems with a radical intermediate.137 

        

Figure 3.5: Plot of the TON (a) and of the TOF (b) of the generation of DTBQ. 

The turnover number of this reaction is 3 after 2 hours, which indicates that the reaction is 

better described as a stoichiometric reaction rather than as catalytic. From the plot of the 

turnover frequency (Figure 3.7 b) it is obvious that the catalyst is deactivated within one hour. 

An interesting observation is that the reaction can be interrupted by flushing the solution with 

CO2 (Figure 3.8). When changing back from CO2 to O2 the reaction proceeds again. The behavior 

of CO2 as inhibitor leads to the assumption that both molecules be of co-ligands and CO2, i.e. 

CO2 may displace O2.  

 

Figure 3.6: Plot of the change in absorbance at 407 nm by time, interrupted by CO2. 
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To obtain more information about the reaction, the oxygenation products were characterized. 

The desired products were isolated by quenching the reaction with 6 M HCl, and extracting 

oxygenation products with dichloromethane. To identify the oxygenation products, the 

resulting brownish precipitate was investigated with mass spectrometry (Figure 3.9) and NMR 

spectroscopy (Figure 3.10). 

 

 

 

Figure 3.7: HR -ESI mass spectra of a) DTBPH, b) DTBQ+Cl- and c) BDTBPH; observed (top) calculated 

(bottom). 

The mass spectra of the oxygenation products show as highest mass the oxygenation 

substrate DTBPH (Figure 3.7 a), the quinone DTPQ (Figure 3.7 b) and the coupling product 

3,3,5,5-bis(ditertbutylphenole) BDTBPH (Figure 3.7 c). 

a) b) c) 
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Figure 3.8: aromatic region of the 1H NMR of the oxygenation products at 25°C in CDCl3. 

Due to the coupling product BDPBPH a radical pathway seems likely. However, in contrast to 

the mass spectrum, the 1H-NMR spectrum of the oxygenation products (Figure 3.10) shows the 

unreacted oxygenation substrate DTBPH and the quinone product in a ratio of 11:1. Also, the 

1H-NMR spectrum does not exhibit the coupling product BDTBPH. There is the possibility that 

BDTBPH evolved during the mass spectrometric analysis from a semiquinone intermediate 

which is paramagnetic and thus NMR silent. 

To obtain further mechanistic information mass spectra from the original oxygenation solution 

were also measured (Figure in appendix). Further an EPR spectrum of the concentrated 

reaction solution was measured (Figure 3.11). The EPR experiment at 113 K shows a spectrum 

that is typical for a dinuclear copper(II) complex. However, due to the fact that there is a 

copper(II) complex EPR signal detectable, there is definitely no dinuclear met-form-like 

copper(II) center in solution, which indicates that the oxygenation starts from a different type 

of species.  
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Figure 3.9: EPR spectrum of the frozen oxygenation solution at 113K (~.0.3 mM in MeOH, ν = 

9.439058 GHz) 

The mass spectrum of the oxygenation solution shows an intense signal for the complex 

[Cu2(H2pat1)(OH)]+. All other signals are far less intense except for those of the substrate and 

of the base ((nBu)4N+).  

In order to identify a putative dinuclear copper(II) dioxygen species, paramagnetic NMR 

measurements were performed. Koval et al published in 2005 a temperature-dependent 1H-

NMR experiment of an antiferromagnetically coupled dinuclear copper(II) complex.143 The 

signal of the µ-OH co-ligand of their sample shifts with decreasing temperature (from rt 

decreasing to -40°C) from -50 ppm to -30 ppm.  

A sample of [Cu2(H2pat1)(OH)]+ that was originally prepared for an nmr experiment was stored 

under air for some weeks. The paramagnetic 1H NMR spectrum did not change with time but 

the sample was EPR silent after the long storage time. Interestingly, while freezing in liquid 

nitrogen the sample color changed from green to blue. This observation might be explained 

with the formation of an antiferromagnetically coupled dinuclear copper(II) complex, that was 

formed while freezing. In order to monitor the change from the paramagnetic dinuclear 

copper(II) complex to the antiferromagnetically coupled species (virtually diamagnetic) a low 

temperature 1H-NMR experiment was performed (Figure 3.10). The number of signals 

increases as well as broad signals become narrower and better resolved with decreasing 
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temperatures. This indicates that the sample loses its paramagnetism with decreasing 

temperatures which might be due to coordination of coordination of a bridging hydroxid which 

was terminal coordinated at room temperature. Furthermore, at -80°C there is a broad doublet 

visible at -1ppm with an integral of one compared to the valine-H´s which might belong to a 

bridging hydroxo-species. Nevertheless, this interpretation is tentative and needs further 

experimental support. 

 

Figure 3.10: 1H NMR spectra of the blue EPR-silent copper(II) complex of H4pat1 at various 

temperatures: a) 25°C, b) at -40°C and c) at -80°C. 

A suggested preliminary proposal of the oxygenation mechanism is given by Figure 3.13. 
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  Figure 3.11: Sceme of the proposed mechanism.
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Assuming the deprotonated substrate as an electron donor, it may coordinates to one of the 

copper(II) centers and reduce the first copper(II) while forming a phenyl radical. The stabilized 

radical intermediate might undergo a recombination and form the coupling product BDTBPH, or 

react with dioxygen. The peroxo phenyl radical might coordinate to and reduce the second 

copper(II). Both copper(I) centers may react with O2 and form a dicopper(II) peroxophenyl 

complex, that rebuilds the starting form under the release of DTBQ.  

For a complete more throuout mechanistic understanding of the reaction additional experiments 

are necessary, e.g. 18O2 labeling, low temperature UV/Vis-NIR spectroscopy, Raman spectroscopy 

and variations in the reaction such as a change of substrate and study the reaction stoichiometry 

might also be helpful, as well as support by quantum chemical calculations. Recently, Solomon, 

Tolman and Cramer et al. published a macrocyclic hydroxo-bridged dinuclear copper(II) complex, 

which was oxidized to a copper(II)-copper(III) species and further to a copper(III)-copper(III) species 

that was able to act as an oxidation catalyst.144. They have been able to measure an EPR spectrum 

of the mixed valent species which looks pseudo-mononuclear. Thus, it smight also be tested 

whether in our system a copper(III) species may play an important role. 

 

3.3 Copper(II) Coodination Chemistry of H4pat4 

 

The coordination chemistry of the ligand H4pat4 was investigated previously by UV/Vis-NIR and CD 

spectroscopy107 but not by EPR spectroscopy. EPR gives crucial information about the relative 

orientation of the two copper(II) centers and their distance.  

Copper(II) has a d9 electron configuration with a S = 1/2 ground state. The magnetic energy levels 

(described by the magnetic quantum number ms) split when a magnetic field is applied (Zeeman 

phenomenom). The energy difference between the two levels ms=-1/2 and ms=1/2 can be 

described by hν= gßeB . The magnetic tensor g reflects the ligand field and the coordination 

environment around the copper(II) ions. Furthermore, the interaction of the unpaired electron 

with the nucleus results in a hyperfine structure of the spectrum obtained. The hyperfine coupling 
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(AHF) originates from the nuclear spin (copper(II) I = 3/2) and leads to four allowed transitions. Well 

resolved spectra of mononuclear copper(II) complexes may have additionally coupling, especially 

the so-called superhyperfine coupling (ASHF), which results from the interaction of the unpaired 

electron with the nuclei of donor atoms. All interactions are described with the spin Hamiltonian 

given in equation 3.145 

𝐻 = ∑ (ß𝑒𝐵𝑖𝑔𝑖𝑆𝑖 + 𝑆𝑖𝐴𝐻𝐹𝑖
(𝐶𝑢) 𝐼𝑖𝑖=𝑥,𝑦,𝑧 (𝐶𝑢) − 𝑔𝑛ß𝑛𝐵𝑖𝐼𝑖) + ∑ (𝑆𝑖𝐴𝑖(𝑁) 𝐼𝑖(𝑁)𝑖=1 − 𝑔𝑛ß𝑛𝐵𝑖𝐼𝑖(𝑁))  (3) 

 

Figure 3.12: Traces of selected EPR spectra (X-Band, 140k, 1 mM in MeOH) at distinct ligand: copper(II) 

: OMe- ratios; a)1:05:0.5 and ν = 9.445927 GHz, b) 1:2:2 and ν = 9.440451 GHz and c) 1:2:4. ν = 9.452096 

GHz. 

In order to study the copper(II) complexation equilibrium with ligand H4pat4, EPR spectra of frozen 

methanolic solutions (140 K) were taken at different ligand/copper(II)/base ratios (Figure 3.12). 

Surprisingly, at low copper(II) and low base concentrations (below one equivalent) it is possible to 

detect a mononuclear species (Figure 3.12 a). Comparing the detected EPR spectra with the 

copper(II) complexation equilibria of the other patellamide derivatives,85 which show at low 

copper(II) and low base ratios solvated copper(II) in addition to mononuclear and dinuclear 

copper(II) species or only dinuclear species, the spectra in figure 3.12 indicate that the in the 
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cooperative effect is less pronounced for H4pat4. When the copper(II) ratio exceeds 0.5 equivalents 

the formation of dinuclear species is also detectable. 

 

Figure 3.13: EPR spectra of [Cu(H3pat4)(OH]; first derivative a) second derivative b) and simulated second 

derivative of [Cu(H3pat4)(OH]. (X-Band, 140K, 1 mM in MeOH, ν = 9.445927 GHz) 

The spectrum of the mononuclear complex and its simulation performed with the program 

Xsophe145 are displayed in figure 3.13, and the EPR parameters obtained are given in table 3.2. The 

well resolved spectrum (Figure 3.13 a) exhibits superhyperfine coupling constants (second 

derivative; Figure 3.13 b). The superhyperfine coupling which is more precisely displayed in the 

second derivative (Figure 3.13 b) was simulated assuming that the copper(II) is coordinated to two 

different types of nitrogen atoms (one amide and two imidazoles).  

Table 3.2. Simulated EPR parameter. 
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The simulation of the dinuclear copper(II) complex (Figure 3.12 b) was performed using the 

program MoSophe.146 The simulation with MoSophe includes the relative orientation and the 

distance of both copper(II) ions (Figure 3.14).146 

 

Figure 3.14: schematic representation of the Euler angles ρ, τ and χ used for EPR simulations with the 

program MoSophe.146 

At a ligand / copper(II) / base ratio of 1:2:2, H4pat4 shows an EPR spectrum of a single dinuclear 

copper(II) complex (Figure 3.15 b black spectrum). It´s stoichiometry [Cu2(H2pat4)(OH)]+ emerges 

from mass spectrometry (Figure 3.15). The formally forbidden ΔmS = 1 transition, which is typical 

for dinuclear copper(II) complexes, is also detected (Figure 3.15 a black spectrum) but had a poor 

resolution. The simulated spin hamiltonian parameters are given in table 3.3 and are comparable 

to the parameters of the respective species by other patellamides derivatives85. The 

copper(II)····copper(II) distance of 5.16 Å is too long for a bridging hydroxide. 99 Thus the hydroxide 

is believed to coordinated terminally at one copper(II) ion. It is convincible that a bidentate co-

ligand such as bicarbonate or phosphate might coordinate in a bridging fashion at this metal-metal 

distance. 
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Figure 3.16: EPR spectra of [Cu2(H2pat4)(OH]+; a) ΔmS = 1 region and b) ΔmS=1/2 region; measured 

(black) and simulated (blue). (X-Band, 140K, 1 mM in MeOH, ν = 9.440451 GHz) 

Table 3.3. Simulated EPR parameter. 

 Cu
a
 Cu

b
  R [Å] 5.210 

g
x
 2.035 2.055    

g
y
 2.150 2.155  χ [°] 17 

g
z
 2.286 2.215    

A
x  [10-4cm-1] 125 25  τ [°] 47 

A
y  [10-4cm-1] 65 110    

A
z  [10-4cm-1] 212 120  ρ [°] 17 

 

The EPR spectrum of a ligand / copper(II) / base ratio of 1:2:4 (Figure 3.14 c) is interpreted as 

containing a mixture of more than one species. It appears to be a mixture of spectrum a) and b). 

However, subtraction of neither spectrum a) nor subtraction of spectrum b) leads to satisfactory 

results that could be simulated.  

High-resolution mass spectra of all methanolic solutions were measured. Figure 3.17 shows two 

selected mass spectra with a distinct pattern for dinuclear copper(II) complexes. It is possible to 
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Field [G]
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2
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+
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detected more masses belonging to mononuclear and dinuclear complexes (solvent, H2O, OH-, 

MeO-). 

 

Figure 3.17: Selected recorded mass spectra (top) and calculated (bottom) isotopic pattern for a) 

[Cu(H3pat4)]+ and b) [Cu2(H2pat1)(OH)]+ in methanol.  

 

Considering the findings described in this study by EPR spectroscopy, mass spectrometry and 

electrochemistry (Figure 3.1 and Figure 3.2) and the findings of published ITC, UV/Vis and CD-based 

studys107 the proposed complexation equilibria are displayed in figure 3.18. 

H4pat4 forms at low copper(II) and low base concentrations, in contrast to the other ligands a 

distinct mononuclear species. Starting with 0.75 equivalents of both copper(II) and base, the 

formation of a dinuclear species is detecable. At a copper(II) and base concentration of two 

equivalents, only one dinuclear copper(II) species with is detectable (Figure 3.16). The addition of 

higher base ratios leads to formation of further species.  

b) a) 
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Figure 3.18: Proposed copper(II) complexation equilibrium of H4pat4. 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of the following chapter are to be published in a manuscript entitled: “Dinuclear Zinc(II) and 

Copper(II)/Zinc(II) complexes of artificial Patellamides as Phosphatase models”; Peter Comba, 

Annika Eisenschmidt, Lawrence R. Gahan, Graeme R. Hanson, Nina Mehrkens, Michael Westphal, 

manuscript in preparation, 2015   
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4 Zinc(II) Coordination Chemistry 

4.1 Zinc(II) Hydrolases 

 

4.1.1 Zinc(II) enzymes – a general introduction 

 

In biological coordination chemistry there is no other metal known which has as many biological 

roles as zinc.147 Nevertheless, zinc(II) is often ironically described as “boring”. The d10 electronic 

configuration leads to the absence of ligand field stabilization energy with the consequence of a 

high geometric flexibility. It exchanges its ligands rapidly and prefers both hard and soft donors.147-

149 In 2007 Heinrich Vahrenkamp described the chemistry of zinc(II) and it´s lack of properties in 

the following way: “in essence, the non-properties of zinc(II) are the basis of its success: no redox 

chemistry, no ligand field effects, no typical coordination numbers or geometries, no stability or 

inertness of its complexes, no typical hard or soft characteristics. For generations of chemists zinc(II) 

was the boring element.”147 150 However, this unspectacular reputation is completely undeserved. 

Zinc(II) is the second most abundant inorganic transition metal in human bodies, and it is 

indispensable to all forms of life.147 Nature uses it in structural functions as well as in catalytic 

processes.150 Zinc(II) occurs in all enzyme classes; in 2007 it was reported that the number of 

known enzymes that contain zinc(II) in their active center exceeded 1000.151 There are about 5000 

further proteins known in which zinc(II) plays a role.152 The role of zinc(II) ions and proteins is, in 

the majority of cases, a structural one, comparable to the role of hydrogen bonds.147 A well-known 

example of this structural role is zinc(II)-finger proteins. Zinc(II) is necessary for effective growth 

and development due to its various functional roles.147 Zinc(II) can be 6, 5 or 4 coordinate, 
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depending on the ligands, solvent and possible co-ligands. In proteins in which zinc(II) plays a 

structural role, it is usually tetrahedrally coordinated by cysteine and histidine side chains (N2S2 

motif).149  

If the native role of zinc(II) is not structural it is mostly acting as a hydrolytic agent. Examples of 

zinc(II) containing hydrolyzing enzymes include alcohol hydrolases, phosphoesterases, carbonic 

anhydrases, carboxypeptidases, and metallo-ß-lactamases (Table 2.1).149 In hydrolyzing enzymes, 

the zinc(II) ion is tetrahedrally coordinated, usually coordinated by three amino acid side chains 

and one site occupied by a water molecule. The amino acid side chains are mainly provided by 

histidine and cysteine, the carboxylates of glutamine and asparagine can also be involved.149 When 

it comes to dinuclear or even trinuclear hydrolyzing zinc(II) enzymes, such as alkaline phosphatase, 

nuclease P1 or phospholipase C, it is often observed that the zinc(II) center is pentacoordinated in 

a trigonal bipyramidal geometry.149 Glutamate and aspartate are especially known to bind in a 

bridging manner between two zinc(II) centers, mainly besides a bridging hydroxide.153-155 For the 

whole group of zinc(II) enzymes the pKA value of a coordinated and activated OH2 molecule is the 

main influencing factor for the activity. Zinc(II) acts as a Lewis acid and lowers the pKA value of the 

coordinated water molecule, causing the nucleophilic OH- group to be available at physiological 

pH.156,157, 158 The Lewis acidic zinc(II) is thus neither involved in reactions with high energetic 

changes nor does it have colorful chemistry but it rather exhibits an ubiquitous hydrolysis 

chemistry.147,149,159,160  
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Tabel 4.1: Examples of zinc(II) based hydrolases. 

enzyme 
active side 

metal center 
Metabolic functions 

Zinc(II) 
coordination motif 

ref. 

purpel acid 
phosphatase 
(PAP) 

Fe(III)-Zn(II)* 
bone resorption 
iron transport 
generation of ROS 

His, Asn, His 
161, 162, 

163 

carbonic 
anhydrase (CA) 

Zn(II) 
hydration of CO2 

respiration, pH control 
fluid secretion 

His, His, His 
164, 149, 
165, 166. 

Metallo-ß-
lactamase 

Fe(II)-Zn(II)*2 
transduction of neuronal 
signals 

His, His, His 167 

carboxypeptidase Zn(II)-Zn(II) 
protein decomposition 
amino acid synthesis 

His, His, Glu 149 

alkaline 
phosphatase (AP) 

Zn(II)-Zn(II)-
(Mg(II)) 

bone mineralisation 
Asp, His, His 
 Ser,His, Asp 

168 

nuclease P1 Zn(II)-Zn(II)-Zn(II) 
hydrolysis of single strain 
DNA and RNA 

His, His, µ-Asp 
His, His, Asp 

His, Trp, µ-Asp 

169 

*PAPs are also known with Fe(III)-Fe(II) and Fe(III)-Mn(II) 
*2Metallo-ß-lactamases are also known with Mn(II)-Mn(II)  

 

Possibly the most abundant zinc(II) based hydrolyzing enzyme is carbonic anhydrase, a 

mononuclear zinc(II) enzyme. Carbonic anhydrase is one of the most effective enzymes known, it 

accelerates the uncatalyzed hydration of CO2 approximately 108-fold.170 Human carbonic 

anhydrase II (HCA II) is predominantly found in red blood cells where it catalyzes the hydration of 

respirated CO2 to HCO3
-. The first crystal structure of HCA II was published in 1988 with 2.0 Å 

resolution.171 Figure 4.1 shows the crystal structure of the engineered wild type variant of HCA II, 

which has an additional disulfide bond, that shall provide a higher stability for industrial reaction 

conditions.164 
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Figure 4.1: The X-ray structure of the disulfide-containing human carbonic anhydrase II with a silver 

backbone and an active site in ball and stick view. Colors; violet: zinc(II), blue: nitrogen, red: oxygen 

and yellow: sulfur.164, (Reproduced with permission from IUCr), (pdb: 4hba), (http://onlinelibrary.wiley.com/iucr/10.1107/S0907444913008743) 

Due to the various metabolic functions of carbonic anhydrases (e.g. respiration and pH regulation 

in the stomach) there are various isoenzymes, whose structures show only slight differences in 

contrast to their catalytic efficiency, which can differ greatly depending on the pH.118 The active 

site contains a tetrahedrally configured zinc(II) ion coordinated by three histidine residues (His94, 

His96, His119) and a water molecule. 
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Figure 4.2: Scheme of the catalytic hydration of CO2.118,164,172 

The mechanism of carbonic anhydrase is briefly described, because the dinuclear copper(II) 

complexes of the patellamide derivatives, described in this thesis, have recently been shown to act 

as efficient carbonic anhydrase models.111 While exploring the zinc(II) chemistry of the 

patellamides the possibility of carbonic anhydrase activity was considered and will be discussed in 

Section 4.2.4 of this Chapter. For the mechanism of CO2 hydration by HCA II (Figure 4.2) there are 

two possible pathways; the Lipscomb-mechanism (internal proton transfer) and the Lindskog-

mechanism (pentacoordinated bidentate intermediate).118,172 Theoretical studies assume the 

Lindskog mechanism to be the naturally relevant mechanism.173,174.Carbonic anhydrases could 

generally work in two directions; clockwise from CO2 to bicarbonate (as displayed in Figure 4.2), 

relevant for the CO2 uptake in green plants chloroplasts and in the uptake of produced CO2 from 

human body cells to blood plasma; and anticlockwise, which takes places when bicarbonate from 

blood plasma goes into pulmonary alveoli as CO2. 
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The pKA value of the zinc(II) bound water molecule in carbonic anhydrase in the enzyme´s resting 

state is ≈ 7. Catalysis starts with the deprotonation of the coordinated water by histidine 64. Due 

to a later step, in which this proton is given back to the catalytic cycle, histidine 64 could be 

described as proton shuttle. 

Besides the broad range of mononuclear zinc(II) complexes, there is a smaller range of dinuclear 

zinc(II) complexes that catalytically hydrolyze CO2 via a nucleophilic attack of coordinated water or 

hydroxide have been described in the literature.149,175,176, 177-180 As well as some dinuclear 

copper(II) complexes are also known that hydrolyse CO2.181,182 But the most efficient copper(II) 

based model complexes known so far are those of the patellamides. 111 

 

4.1.2 Zinc(II) in the active site of hydrolases 

 

Nature appears to have selected zinc(II) in the majority of the hydrolyzing enzymes because of the 

capacity of the metal ion to promote the deprotonation of a coordinated water molecule in the 

physiological pH range. This ability is tunable by slight changes in the first coordination sphere of 

the metal ion as well as by the hydrogen bond network, provided from the second coordination 

sphere.183-187 Thus, zinc(II) acts as a Lewis acid and lowers the pKA value of the water molecule so 

that a nucleophilic OH- group is available at physiological pH.188 The relatively high ionization 

potential, displayed in its Lewis acidity, gives the zinc(II) ion the ability to polarize H2O, C-O and P-

O bonds easily.189 There are many examples biomimetic approaches to model the hydrolytic active 

zinc(II) sites in these zinc(II) hydrolases. The key factor is the acidity displayed in the pKA value of 

the zinc(II) bond water molecule. The pKA value, therefore, is known to depend on the number and 

on the nature of the zinc(II) coordinating ligands.190 
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Figure 4.3: Structures of [Zn([12]aneN3)H2O]2+ (a)191, [Zn([12]aneN4)H2O]2+ (b)160 and [Zn(cadip)H2O]2+ 

(c)192. 

The first model complex (based on a macrocyclic ligand) for carbonic anhydrase was reported in 

1975 by Woolley et al. (Figure 2.3 c).192,193 Kimura et al., whose research was focused on 

mononuclear zinc(II) complexes of macrocyclic tri- and tetramines, reported that while the 

coordination number of zinc(II) decreased from 5 to 4, the pKA value of the zinc(II) bound water 

molecule decreased from 8.0 to 7.3 (Figure 4.3 a and b).194, 195, 191 This feature could be explained 

by the decreasing charge on the zinc(II) ion with a decreasing coordination number, which 

consequently increases the zinc(II) ions capacity to polarize the coordinated water molecule.188 

Furthermore, while comparing [Zn([12]aneN4)H2O]2+ (Figure 4.3b) with [Zn(CR)H2O]2+ (Figure 4.3c) 

the influence of the ligand’s geometry was studied. The change from a cyclen platform (Figure4.3 

b) to the more rigid ligand cadip (Figure 4.3c) leads to a higher pKA of the zinc(II) bound water.196  

  

a) b) c) 
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Figure 4.4: Structures of [Zn(tpa)H2O]2+ (a), [Zn(bpg)H2O]2+ (b), [Zn(tapa)H2O]2+ (c) [Zn(tnpapa)H2O]2+ 

(d).184. 

The substitution of a neutral pyridine (Figure 4.4 a) by an anionic carboxylate (Figure 4.4b) also 

results in a higher pKA value.197 This can be explained with the decrease of the Lewis acidity of the 

zinc(II) ion by coordination to a carboxylate, which results in a lower ability to polarize/ionize the 

coordinated water molecule. The effect of hydrogen bonding donors was investigated by Mareque-

Rivas et al. (Figure 4.4 c). N-H hydrogen bonding donors can polarize the O-H bond of the zinc(II) 

coordinated water molecule, which results in a decrease of the pKA value with an increasing 

number of coordinating amino pyridyl residues (Figure 4.4 c).184 However, the ability of hydrogen-

bonding donors to decrease the pKA value of the zinc(II) coordinated water is limited. Due to the 

effect of greater stabilization of the zinc(II) bound hydroxide by the H-bond network, the pKA value 

of zinc(II) coordinated water starts to increase again when the number of coordinating 

aminopyridyl residues exceeds 2, or 3.184 

a) b) 

c) d) 
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Peptide zinc(II) complexes that functionally and structurally mimic the active site of zinc(II) 

hydrolases are rare.189 In order to model the biologically relevant zinc(II) coordination sphere by 

histidine side chains Ichikawa et al. and Ibrahim et al. investigated the benzyl imidazole containing 

pseudo-peptides L1 and L2 (Figure 4.5). With the use of benzyl imidazoles, they achieved an increase 

in the hydrophobicity of the zinc(II) center’s microenvironment. Additionally, the benzyl residues 

were expected to help aromatic hydrolysis substrates by 𝜋-stacking, which could be confirmed by 

high hydrolysis rates of model phosphoesters in the physiological relevant pH range.198 

 

Figure 4.5: Structures of [Zn(L1)H2O]2+ (a) and [Zn(L2)H2O]2+ (b):198,199, 200 

Coordinated imidazoles are more labile then amines.159 This leads to a decreasing pKA value of the 

coordinated water when comparing [Zn(L1)H2O]2+ (Figure 4.5 a) with [Zn(L2)H2O]2+ (Figure 4.5 b). 

The more flexible tripodal ligand L2 provides an optimum geometry for a tetrahedrally coordinated 

zinc(II) ion.198 

 

Figure 4.6: Structure of [Zn2(BBPAP)H2O]+.201 

a) b) 
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Model systems containing two metal centers were in general found to cleave various substrates 

faster than the corresponding mononuclear species. Bringing two zinc(II) centers in close distance 

leads to the possibility of cooperation; either by double Lewis acid activation of the substrate or by 

Lewis acid activation of the substrate coupled with the provision of a metal bound hydroxide 

nucleophile. Additionally, in the dinuclear case the pKA value of the Zn- OH2 moiety is the main 

influencing factor for the ability of zinc(II) complexes to hydrolyze specific substrates under defined 

conditions (see also section 4.1.3).202-206 Therefore, dinucleating ligand systems based on the 

skeleton of bis(bipyridylamino) isopropane (HBBPAP) (Figure 4.6) were developed.201 This ligand 

scaffold inspired further investigations towards the use of bridging phenols or imidazolates as 

linkers between bipyridylamines.207-210, 211-218 

 

4.1.3 Zinc(II) based Phosphatases 

 

The present thesis aims to identify and characterize zinc(II) and zinc(II)/copper(II) complexes of the 

model peptides H4pat1, H4pat2 and H4pat4 and to investigate their ability to hydrolyze the model 

phosphoester BDNPP. Therefore, the impact of phosphatases shall be discussed. Due to the fact 

that the literature described dinuclear copper(II) complexes of patellamides derivatives, which 

actias hydrolase models,107,111,112 the focus of this section is on dinuclear phosphatases. 

 

Phosphoesters are ubiquitous and have various key functions in biological chemistry for all forms 

of life.189 They are found in the linkage of nucleotides in deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA), phospholipids in cell membranes, secondary messengers and they are part 

of several organic cofactors (the most important being adenosine triphosphate (ATP), the universal 

biological energy carrier). Phosphoesters are highly stable as illustrated, for example, by DNA, 

which has a half-life of 30 million years.219 Thus one could imagine that nature has evolved various 

phosphoester cleaving strategies. The necessity to understand the chemistry of phosphatases has 

thus various reasons including understanding diseases, understanding ecosystems and 

development of artificial phosphatases for agricultural and pharmaceutical uses. 
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Alkaline phosphatases (AP) are also omnipresent and encompass a whole class of enzymes with 

various metabolic roles. The class of phosphomonoesterases described in the literature is quite 

substrate unspecific and has its highest catalysis rates at pH > 7.5. AP has a homodinuclear zinc(II) 

center in its active site.220 The active center of E. coli AP is schematically displayed in figure 4.7a.221 

In addition to the two different coordinated zinc(II) ions a magnesium(II) ion is bridged to one of 

the zinc(II) ions by an aspartate. The metal-metal distances within the trinuclear active site are 3.94 

Å, 4.88 Å, and 7.09 Å.220 The role of the magnesium ion is not completely understood. 

 

Figure 4.7: Schematic representation of the active sides of AP a) and PAP b) in their resting 

state.163,203,220,221 

Purple acid phosphatases (PAP) are also a ubiquitous class of enzymes with a dinuclear metal 

center. However, in contrast to AP, PAP has an acidic to neutral pH optimum and always contains 

iron(III) in its active site (Figure 4.7 b). The enzyme’s purple color derives from a CT band from 

tyrosine-Fe(III).183,222-225 PAP is involved in osteoporosis and therefore is a very interesting target 

for pharmaceutical industry.162,163,226,227 While iron(III) is always present in PAP the second divalent 

metal ion depends on the kind of organism204,228 While in mammalian PAP iron(II) is the second 

metal ion, in plant PAP zinc(II) or manganese(II) were found.185,229-232, Despite these differences the 

active site is structurally the same in all types of PAP (Figure 4.7b).185,233 

 

a) b) 
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Figure 4.8: Schematic representation of possible phosphoester activation routes/mehanisms by 

dinuclear zinc(II) complexes.159,203-206 

For dinuclear zinc(II) complexes there are three possible hydrolyzing scenarios of a phosphoester: 

first a bridging hydoxide could hydrolyze the substrate, secondly a terminal hydroxide bound at 

the second zinc(II) center could hydrolyze the substrate, and the third option occurs by hydrolysis 

of a coordinated substrate through a non-coordinated hydroxide activated by a coordinated 

hydroxide (Figure 4.8). The pKA values of the hydrolysis is dependent on the scenario.159,203-206 

Since the naturally occurring patellamides were isolated from ascidian cytoplasm, it is likely that 

their supposed transition metal complexes existing in a hydrophilic environment are acting as 

hydrolases. Indeed, the dinuclear copper(II) complexes of H4pat1 and H4pat2 have been shown to 

act as phosphatase models as well as carbonaic anhydrase . However, in nature the most common 

hydrolyzing transition metal in metallo-hydrolase centers is zinc(II). While keeping in mind that 

zinc(II) is also highly concentrated in the ascidians (see chapter 1.4)88 one aim of this thesis was to 

determine if dinuclear zinc(II) complexes of patellamide derivatives could act as artificial 

phosphatases. Furthermore, the question of whether this hydrolyzing scenario may play a 

biological role arises. Answering this question might help to identify the biological role of the 

patellamides.  
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4.2 Zinc(II) Coordination by Patellamide Derivatives 

 

4.2.1 Isothermal Calorimetric Titrations 

 

The thermodynamic stability of zinc(II) complexes of the ligands H4pat1 and H4pat2 was determined 

by isothermal calorimetric titrations (ITC) with zinc(II) triflate towards the ligands (Figure 4.9). ITC 

is a commonly used method that delivers thermodynamic data like enthalpy ΔH, entropy ΔS, 

reaction stoichiometry N and stability constant K.234,235 During the experiment one reactant 

(solvated metal) is titrated into a sample solution containing the other reactant (ligand). The 

temperature of the reaction vessel is kept constant by the calorimeter. Thus the heat which is 

released or absorbed which each titration step had to be compensated by the calorimeter, which 

measures the voltage needed and calculates the compensated energetic difference. 236,237 All 

experiments were performed with an experimental procedure according to a previous study in 

which copper(II) triflate was titrated towards the same ligands.106  

 

 

 

 

 

 

 

 

 

Figure 4.9: Isothermal titration calometry plots of a zinc(II) titration to the ligands H4pat1 (a) and  

H4pat2 (b).  

a) b) 
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Table 4.2. Zinc(II) and Copper(II) stability constants, entropies and enthalpies of complexation of the 

patellamide derivatives H4pat1 and H4pat2 (standard deviations in brackets), obtained from ITC.106 

 [H2pat1Cu2]2+ [H2pat1Zn2]2+ [H2pat2Cu2]2+ [H2pat2Zn2]2+ 

N a) 1.90 (0.09) 1.51 (0.16) 1.84 (0.08) 1.69 (0.78) 

K 1.71x106 (0.71) 1.03x105 (0.30) 4.03x104 (0.55) 3.34x104 (0.57) 

∆H [kJ/mol] 46.8 (4.6) -40.86 (0.77) 84.52 (7.7) -7.686 (3.644) 

∆S [J/(mol K)] 278.56 -41.04 371.53 60.67 

     
a)  computed ZnII/CuII : (H2patn) ratio238    

 

Interpretation of the resulting ITC data leads first to the conclusion that zinc(II) complexes with the 

naturally configured ligand H4pat1 and the 4S* configured ligand H4pat2 are less stabile than the 

formation of the corresponding copper(II) complexes. The trend between the ligands is for the 

zinc(II) coordination the same as for the copper(II) coordination; H4pat1 forms a more stable 

complex as H4pat2. Beyond that, the coordination of zinc(II) is, in contrast to the coordination of 

copper(II), directed by the enthalpy and not by the entropy. The low enthalpy while complexing 

zinc(II) displays a change in coordination sphere of the metal ion from tetrahedral to trigonal 

bipyramidal or even octahedral, which involves at least one solvent molecule more than with the 

ligand-“free” zinc(II), and thus leads to a higher degree of organization in the whole system. In 

consequence; the low stabilities of the zinc(II) complexes compared to the corresponding 

copper(II) complexes, is a result of the zinc(II) ions adaption of an uncommon coordination sphere. 

This effect was already described for the native peptides by Jaspars et al. 41,94 With both ligands, 

H4pat1 and H4pat2, the simulations of the ITC data lead only to one stability constant per ligand 

with a ligand to metal ratio of approximately 1:2, which supports a cooperative binding event. The 

cooperative effect was already described in the copper(II) chemistry of both ligands; the 

coordination of the first metal ion preorganizes the ligand for the coordination of the second metal 

ion.99  From crystal structures and NMR spectra of previous studies it is known that both ligands 

(as well as H4pat4)101 are exist in a saddle-shaped conformation. The angle between both binding 

sides in case of H4pat1 is more ideal for the coordination of two metal ions, which is displayed in 

the higher stability of [Cu2H2pat1]2+ compared to [Cu2H2pat2]2+. The naturally configured ligand 
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H4pat1 has to undergo less structural change while coordinating metal ions than H4pat2. The same 

effect explains the higher stability of [Zn2H2pat1]2+ compared to [Zn2H2pat2]2+. Interestingly, both 

ligand 1H NMR spectra show only very small changes when base is added, which indicates that the 

ligand conformation does nearly not change with increasing pH- value (Figure 4.10 b). Thus, it is 

obvious that every necessary structural change occurs while the coordination of metal ions, and 

not due to the addition of base, which can be explained with a metal assisted deprotonation. 

 

4.2.2 Nuclear Magnetic Resonance 

 

The coordination chemistry of zinc(II) with the patellamide derivatives was studied using by NMR-

spectroscopic titrations in combination with high resolution mass spectrometry. The d10 character 

of zinc(II) allows the observation of the complex formation via NMR spectroscopy.  

Titration of zinc(II) triflate to H4pat1 in the presence of base leads to the formation of a complex. A 

pure single existing species can be observed under water-free and highly basic conditions (Figure 

4.11a). High-resolution mass spectrometric experiments (see Section 4.2.3) show even at low 

zinc(II) concentrations and at low base concentrations the dinuclear zinc(II) complexes 

[Zn2(H2pat1)(OH)]+ and [Zn2(H2pat1)(OMe)]+. The species shown in Figure 4.11 a) was investigated 

by 2D-NMR (HMBC), which indicates that this species with the formula [Zn2(H2pat1)(OH)]+ (the 

most intense signal in mass spectrometry) is a C2-symmetric complex with two chemically different 

imidazoles (Figure 4.12). 1H-13C HBMC shows that upon zinc(II) coordination, the evolving signals 

in the 1H NMR are not resulting from a splitting, but they do belong to aromatic 13C resonances 

that have been developed during the coordination of zinc(II) and can thus be assigned as “new” 

imidazole signals. The existence of two chemically distinguishable imidazoles may be interpreted 

in two ways: First, both zinc(II) ions have a different coordination environment, i.e. means that one 

zinc(II) coordinates one solvent molecule more than the other. Second; if the hydroxide (or 

methoxide) is terminally coordinated to one of the zinc(II) ions both coordination sides (imidazoles) 

would have a different chemical shift in the NMR experiment. A third option is the coordination of 

both zinc(II) ions in an NamidNimidazoleNamid binding motif, but MM and DFT calculations indicate that 

this option is unlikely.117 Moreover, the direct formation of a dinuclear zinc(II) complex supports 
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the assumption of a cooperative effect while H4pat1 is coordinating zinc(II). Unfortunately, the 

existence of this species occurs only under absolutely water-free conditions, which makes it 

impossible for this species to act as a hydrolysis catalyst. 

 

Figure 4.10: 1H-NMR spectra of a) H4pat1, b) H4pat1+7.5 equivalents of NaOMe  

and c) [Zn2(H2pat1)(OH)]+ in CD3OD (10mM), ν = 600 MHz, 25°C. 

  
Figure 4.11: 13C-1H HMBC NMR spectra of a) H4pat1 and b) [Zn2(H2pat1)(OH)]+ in CD3OD (10mM) and         ν 

= 600 MHz, 25°C. 
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The phenomenon, that the stability of zinc(II) complexes depends significantly on the presence or 

absence of water in solution is literature known.147 Recently, a mononuclear calixarene zinc(II) 

complex with three methyl imidazole donors was published, that coordinates zinc(II) under a 

massively increased ΔH and ΔS upon the addition of 0.1%Vol water to the in acetonitrile solvated 

complex.239 

When it comes to the 4S* configured ligand H4pat2, addition of zinc(II) (triflate or acetate) does not 

lead to the formation of spectroscopically detectable complexes. Addition of an excess of base 

leads to new signals in the 1H NMR spectrum. This can be assigned to the formation of new species. 

However, But the uncoordinated ligand is always the main component in solution and neither 

addition of an excess of zinc(II) nor of an excess of base, not even the absence of water in solution, 

leads to a single complex. This result reflects the relatively weak stability determined by ITC. H4pat2 

shows in the calculated ITC data a stability constant which is approximatively only one third of the 

stability with H4pat1. Since the thermodynamic stability of the zinc(II) complex of H4pat1 could only 

be described as moderate, the formation of stable zinc(II) complexes by H4pat2 is even more 

unlikely.  

A completely different result is obtainede by analyzing the 1H-NMR titration of zinc(II) triflate and 

sodium methanolate with the ligand H4pat4 (Figure 4.12). The 4S* configured ligand with C2 

symmetry (due to two benzyl residues at two opposite imidazoles) coordinates zinc(II) even 

without added base. Moreover, it starts to quantitatively form new species after the addition of 

small amounts of methanolate. There is no clean endpoint in this titration, neither with an excess 

of zinc(II) nor with an excess of base. Thus, there must be an equilibrium of various species. This 

coordination behavior was also observed when titrating copper(II) to the same ligand in EPR 

experiments (see Chapter 3, Section 3). Due to the fact that both, copper(II) and zinc(II) ions, show 

a similar behavior with H4pat4 and both deliver mass-spectrometrically the same stoichiometric 

composed species, it can be proposed that both metals form similar thermodynamically stable 

complexes with H4pat4. 
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Figure 4.12: 1H-NMR spectra of a) H4pat4, b) H4pat4 + 2eq ZnOTf2, c)  

H4pat4 + 2eq ZnOTf2 + 2eq OMe-, d) H4pat4 + 2eq ZnOTf2 + 4eq OMe-,  

e) H4pat4 + 2eq ZnOTf2 + 6eq OMe-, f) H4pat4 + 2eq ZnOTf2 + 8eq OMe-  

and g) H4pat4 + 2eq ZnOTf2 + 10eq OMe- in a CD3OD/CDCl3 mixture of 3:1 (10mM), ν = 600 MHz, 25°C. 

The described hydrolytcally active species (see Chapter 6) is already present at a ligand / zinc(II) / 

base ratio of 1:2:2 and its intensity grows with the addition of base. Due to the formation of solid 

zinc(II) hydroxide at a ligand / zinc(II) / base ratios larger than 1:2:4, it was not possible to 

distinguish or characterize a single species via NMR spectroscopy under these highly basic 

conditions. However, at a ligand / zinc(II) / base ratio of 1:2:4 it is possible to distinguish between 

the pure ligand and one main species (according to mass spectrometry [Zn2(H2pat4)(OH)]+, see next 

Section). Characterization of this main species was also done by 2D-NMR spectroscopy (15N-1H 

HMBC, Figure 4.13). The 15N-1H HMBC measurement of the ligand / zinc(II) / base-1:2:4-mixture 

produces a 2D-NMR spectrum of a mixture, in which it is difficult to distinguish between species 

(Figure 4.13b). The 15N-1H HMBC experiment was detected under the same conditions the pure 

ligand was measured (Figure 4.13a). A reduction of the number of scans leads to a 2D-NMR 

spectrum, that shows the pure ligand in addition to the main species (Figure 4.13c). This low 

resolution spectrum shows only the cross couplings of the outer imidazole nitrogens Nb and Nc 
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with the methyl groups 1,1` and 2 (Figure 4.13 right). Due to the fact that HR-ESI+ mass 

spectrometry of this component (Figure 4.14 and table 4.3) leads to a main species with the 

stoichiometry [Zn2H2pat4(OH)]+ it is concluded that the main species is a dinuclear zinc(II) complex, 

that has structurally two different types of imidazoles. Further, these cross couplings as well as the 

corresponding resonances in the 1H spectrum do not seem to split, which leads together with the 

fact that the ligand has also two chemically different types of imidazoles, to the conclusion that 

this complex has also C2 symmetry.  

 

 

Figure 4.13: 15N-1H HMBC NMR spectra of a) H4pat4, b) H4pat4 + 2eq ZnOTf2 and c) H4pat4 next to 

[Zn2(H2pat4)(OH)]+ (measured with a smaller number of scans) in a CD3OD/CDCL3 mixture of 3:1 (10mM), 

ν = 600 MHz, 25°C..  
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4.2.3 Mass Spectrometry 

 

In order to study the complex structure of the dinuclear zinc(II) complexes in solution, mass spectra 

(High-resolution electron-spray ionisation (HR-ESI+), fast atom bombardement (FAB) and matrix-

assisted laser-desorption/ ionization (HR-MALDI+) were measured. All the zinc(II) species described 

here are positively charged complex cations; negatively charged complexes were not detected. It 

was possible to identify, besides the signals belonging to the species listed in table 4.3, also a 

number of further species whose signals have a distinct pattern. In case of H4pat4, there was also 

a mononuclear zinc(II) species present. The interpreted spectra were obtained from 1mM 

methanolic solutions with varying macrocycle: zinc(II) (OTf): base (OMe-) ratios (see Table 4.3 and 

Appendix). Identified charged complexes of all three macrocycles are summarized in table 4.3. All 

mass peaks show the distinctive isotopic pattern of dinuclear zinc(II) complexes (Figure 4.14) 

except the mononuclear species of H4pat4.  

 

Figure 4.14: Recorded (top) and calculated (bottom) isotopic pattern for a) [Zn2(H2pat1)(OH)]+ b) 

[Zn2(H2pat4)(OH)(H2O)]+  c) [Zn(H3pat4)]+ in methanol and d) [Zn2(H2pat2)(CO2)(H2O)]+Na+ (odd mass). 

  

a) b) c) d) 
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Table 4.3: Detected Mass peaks in (HR-) ESI+ mass spectrometric measurements of various different 

ligand / zinc(II) / base mixtures of all three ligands. 

Ligand Complex 

detection ratio/ 
conditions  

peak found assigned to 

ligand / zinc(II) / OMe- [m/z] calc. [m/z] 

H4pat1 [Zn2(H2pat1)(OH)]+ all 1:2:OMe->>2 917,3284 917,3282 

 [Zn2(H2pat1)(OMe)]+  931,3442 931,3439 

 [Zn2(H3pat1)]+   835,4069 835,4068 

H4pat2 [Zn2(H2pat2)(OH)]+ 
all obtained with ecxess 

zinc(II) 
917,3 917,3 

 [Zn2(H2pat2)(CO2)(H2O)]+Na+ 
occurs only under OMe- 

ecxess  
985,3 985,3 

H4pat4 [Zn2(Hpat4)]+ in all samples  1051,4282 1051,3798 

 [Zn2(H2pat4)(OH)]+ 1:Zn>1:OMe->1 1083.4 1083.4 

 [Zn2(H2pat4)(OMe)]+ 1:Zn>1:OMe->1 1069.4 1069.4 

 [Zn(H3pat4)]+ in all samples  987,4949 987,4649 

 

As expected, the detection of dinuclear zinc(II) complexes and the relative intensities of the m/z 

peaks depends strongly on the concentration of base, especially for H4pat1 and H4pat2. While 

H4pat1 exhibited NMR spectra of dinuclear zinc(II) complexes only under highly basic and dry 

conditions, the same ligand exhibits under mass spectroscopic conditions evidence for the 

formation of various dinuclear zinc(II) complexes. With an increasing concentration of base (>>4 

equivalents) the dinuclear complex [Zn2H2pat1(OH)]+ (917.3284 m/z) represented the most intense 

peak. Interestingly the 4S*configurated ligand H4pat2, which does not exhibit 1H NMR spectra 

identicative of complex formation, gave mass spectra with a few signals that are assignable to 

dinuclear zinc(II) species with a distinct pattern). Upon the addition of an excess of methanolate, 

it was possible to detect a species, which may assidned to a carbonato complex. In contrast the 

mass spectra of all zinc(II) / H4pat1 mixtures, those of H4pat2 do not show any doubly charged 

species. When it comes to H4pat4, the number of species in all experiments increases. Neither the 

existence nor the absence of some species does depend on the concentration of base. The 

mononuclear species [ZnH3pat4]+ could always be found in solution (with more or less intensity). 

As well as the dinuclear species [Zn2H3pat4]+. Therefore, all dinuclear zinc(II) species, which contain 

co-ligands (solvent and/or base) do only exist if zinc(II) and methanolate have larger concentrations 
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than the ligand, and relative intensities of their peaks increasing with zinc(II) and methanolate 

concentration. 

 

4.2.4 Complexation Equilibrium of the Patellamide Derivatives with Zinc(II) 

 

A general scheme for zinc(II) complexation equilibria (Figure 4.15) for all three peptides can be 

proposed, based on the results discussed in this chapter and supported by MM and DFT 

calculations. The calculations, which are not part of this thesis, confirmed the coordination of two 

zinc(II) ions in an NimidazoleNamideNimidazole binding motif and were performed by Annika Eisenschmidt. 

117  

Addition of zinc(II) to a solution of cyclic pseudo peptide leads to the formation of mononuclear 

and dinuclear zinc(II) complexes, which are spectroscopically detectable and could be 

characterized in the cases of H4pat1 and H4pat4. While H4pat4 forms an equilibrium with various 

complexes existing next to each other, H4pat1 forms a stable and solely existing dinuclear zinc(II) 

complex, which is assumed to be hydroxo bridged. This species exists only under dry and basic 

conditions (Figure 4.15red). Even if it was not possible to characterize any zinc(II) complexes of the 

unnatural 4S* configured ligand H4pat2 via NMR spectroscopy, mass spectrometry indicates the 

formation of carbonato and/or hydrogen carbonato dinuclear zinc(II) complexes (figure 4.15 

green). However, for all ligands investigated, there is a clear preference to form dinuclear zinc(II) 

complexes, which can be explained with the cooperative effect as it is already known from the 

copper(II) chemistry of the cyclic pseudo peptides85,99,101,106 and supported by ITC. With the ligand 

with the benzyl residues, H4pat4, it is possible to observe mononuclear zinc(II) complexes at low 

zinc(II) concentrations. While H4pat1 and H4pat2 show a zinc(II) coordination behavior which differs 

fundamentally from their copper(II) coordination behavior, H4pat4 shows a similar behavior for 

both metal ions. (see also Chapter 3.3). 
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Figure 4.15: Scheme of all complex described structures in pseudo octapeptide zinc(II) equilibrium. 
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Parts of the following chapter are to be published in a manuscript entitled: “Dinuclear Zinc(II) and 

Copper(II)/Zinc(II) complexes of artificial Patellamides as Phosphatase models”; Peter Comba, 

Annika Eisenschmidt, Lawrence R. Gahan, Graeme R. Hanson, Nina Mehrkens, Michael Westphal, 

manuscript in preparation, 2015



 

 

5 Heterodinuclear Complexes 

 

One major result of the studies described in Chapters 3 and 4, is that the 4 S* configured and two 

benzyl residues containing ligand H4pat4 forms stable dinuclear complexes with both copper(II) and 

zinc(II). Titration experiments with the two metal ions show the development of complexation 

equilibria. While H4pat1 and H4pat2 interact with zinc(II) only weakly or under special and 

unphysiological (hydrophobic and highly basic) conditions, H4pat4 forms with both metal ions 

structurally comparable complexes. Additionally, H4pat4 is the only ligand known from the 

patellamide-derivative-library (Chapter 1 Figure 1.17), which forms a single mononuclear species 

at low copper(II) and low base concentrations. Due to the fact, that H4pat4 shows with both metal 

ions (titrations with the corresponding salts) a similar complexation behavior, it seems likely that 

both copper(II) and zinc(II) have similar stability constants, which lead to the idea that this ligand 

may form heterodinuclear copper(II)-zinc(II) complexes. Descriptions in the literature of 

approaches to heterodinuclear copper(II)-zinc(II) complexes, in which the binding sites for both 

metal ions are chemically identical, are rare.240-242 The combination of the facts that H4pat4 forms 

a mononuclear copper(II) complex and that both metals seem to have a comparable 

thermodynamic stability could make sequential  coordination of both metal ions possible.  

A mixed strategy of EPR spectroscopy, UV/Vis-NIR spectroscopy and paramagnetic 1H NMR in 

combination with high resolution mass spectrometry was chosen in order to investigate this 

complexation. Paramagnetic NMR on one hand delivers the opportunity to have a closer look on 

the complexation equilibrium at room temperature and therefore makes it possible to compare 

the obtained results to those of the only-zinc(II) titration. EPR spectroscopy on the other hand gives 

information about changes in coordination sphere of the copper(II) ion which makes it possible to 

compare the copper(II)-zinc(II) titration to the only-copper(II) titration.  



H E T E R O D I N U C L E A R  C O M P L E X E S    

  | 89 

 

Additionally, same experiments were carried out with the 4S* configured ligand H4pat2. Even if 

H4pat2 does not form stable, spectroscopically detectable zinc(II) complexes (weak interaction), 

this ligand exhibits a cooperative effect in copper(II) coordination. Since H4pat2 forms less stable 

complexes with copper(II) than the naturally configured ligand H4pat1, there is the chance that due 

to the cooperative effect it may be possible with H4pat2 to obtain heterodinuclear copper(II)-zinc(II) 

complexes with an excess of zinc(II). 

The enzyme PAP (described in Chapter 4) isolated from kidney beans, has a heterodinuclear 

iron(III)/ zinc(II) center in its active side.243 The major reason for studying the formation of 

heterodinuclear copper(II)/ zinc(II) complexes is, that all in this thesis described complexes were 

tested phosphatase activity (chapter 6) and thus the formation of heterodinuclear complexes 

delivers a higher comparability to enzymes like PAP. 

 

5.1 CuII/ZnII Complexation by H4pat4 

 

5.1.1 Electron paramagnetic resonance 

 

Before commencing the formation of heterodinuclear copper(II)-zinc(II) complexes, it was 

important to investigate the exact concentration at which the formation of a homodinuclear 

copper(II) complex starts. As already mentioned in Chapter 3, at a ligand / copper(II) / base ratio 

of 1:0.5:0.5 a single mononuclear copper(II) species, [Cu(H3pat4)(OH)]+, was identified. The 

formation of dinuclear copper(II) complexes starts upon adding further 0.25 equivalents of each 

copper(II) and base. Thus the starting point chosen for the addition of zinc(II) was at a ligand / 

copper(II) / base / ratio of 1:0.5:0.5. A mixed copper(II)/ zinc(II) complex was obtained by addition 

of 0.5 equivalents of zinc(II). In figure 5.1 the EPR spectra of the mononuclear copper(II) complex 

(black, discussed in chapter 3.3) as well as of the copper(II) / zinc(II) complex (blue) are overlaied. 

Since zinc(II) is a d10 ion with nuclear spin of zero all changes in an EPR spectrum are due to 
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geometric changes and thus changes in the coordination sphere of the precoordinated copper(II) 

ion occurring by the coordination of the second metal ion into the same ligand. Indeed, the g values 

of the mononuclear copper(II) species and the heterodinuclear copper(II) / zinc(II) complexes are 

very similar, while the hyperfine splitting differs. 

 

Figure 5.1: EPR spectra of [Cu(H3pat4)(OH)] (black) and [CuZn(H3pat4)(OH]+ (blue). (X-Band, 140K, 1 mM 

in MeOH, ν = 9.446309 GHz) 

The well resolved spectrum delivers a superhyperfine coupling (Figure 5.2 b), which could be 

simulated (Table 5.1), involving two different types of nitrogen (NimidazoleNamideNimidazole). The 

superhyperfine coupling of the mononuclear copper(II) complex (Chapter 3, Table 3.2)  is smaller 

than that of the heterodinuclear copper(II)-zinc(II) species, it is enlarged with the addition of 

zinc(II). This enlargement can be explained by slight changes in distances and in angulars from the 

copper(II) ion to the ligand. The simulated spin Hamiltonian parameters gII > g and AII >> A are 

suggestive of a distorted square pyramidal coordination sphere of the copper(II) ion and in good 

agreement with the parameters obtained from previously investigated patellamide derivative 

copper(II) complexes.85,100,101 Another influencing factor for the ligandssphere, and thus, for the 

spectral differences, is the charge; [Cu(H3pat4)(OH)] has no charge, while[CuZn(H2pat4)(OH)]+ is +1 

charged.  
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Table 5.1. Simulated EPR parameter. 

 [CuIIZnII(H2pat4)(OH)]+ [CuII(H3pat4)(OH)] Superhyperfine [10-4cm-1]  

g
x
 2.046 2.048 A

x
(N

im
) 12.1 7.2 

g
y
 2.078 2.076 A

y
(N

im
) 7.0 11.6 
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z
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z
(N

im
) 12.9 13.0 

A
x  [10-4cm-1] 13.4 6.3 A

x
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A
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y
(N

am
) 11.0 7.9 

A
z  [10-4cm-1] 155.0 159.0 A

z
(N
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) 13.2 13.1 

 

Figure 5.2: EPR spectra of [CuZn(H2pat4)(OH]+: a) first derivative and b) second derivative 

(detected:turquoise and simulated:black, X-Band, 140K, 1 mM in MeOH, ν = 9.446309 GHz). 

The coordination of copper(II) can also be followed via UV/Vis-NIR spectroscopy. In case of the 

ligand H4pat4 a complete complexation of both either solvated copper(II) as of solvated zinc(II) 

occurs with the addition of base, thus to a 1 mM methanolic solution of ligand plus one equivalent 

zinc(II) triflate, first a solution of copper(II) triflate was added stepwise (Figure 5.3 green), then 

base was added in 0.1 equivalent steps (Figure 5.3 blue). With the addition of base all solvated 

copper(II) is complexed (absorption > 800nm decreases) and the formation of two new d-d- bands 

is observable. In agreement with previous studies the absorption at approximatively 660 nm 
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belongs to a homodinuclear copper(II) species, while the absorption at 520 nm might belong to a 

new species, probably the expected copper(II)-zinc(II) species.  

 

Figure 5.3: UV/Vis titration of a) 0-0.5 eq. Cu(OTf)2 to H4pat4 1 eq. Zn(OTf)2 and b) 0-1.5 equivalents (n-

Bu)4OMe. 

To obtain further information about the complexation equilibrium, paramagnetic 1H NMR spectra 

were measured. The spectra were measured while zinc(II) triflate was titrated into a ligand / 

copper(II) solution (Figure 5.4). As expected 1H NMR spectroscopy shows a complexation 

equilibrium and the signals get broadened with the addition of zinc(II), indicating the cooperative 

coordination of copper(II) with increasing zinc(II) concentration. The expected shift or formation 

of new resonances in the low field region was first visible in spectrum d). The paramagnetic signal 

displayed in figure 5.4 f) belongs to Hα, the closest proton to the paramagnetic copper(II) ion. 

Surprisingly this grows with addition of zinc(II). This observation further indicates a cooperative 

effect. The addition of zinc(II) preorganizes the ligand for the coordination of a copper(II) ion.  

500 600 700 800

0.00

0.01

0.02

0.03
A

b
s
o
rb

a
n
c
e

Wavelength [nm]

a)

b)



H E T E R O D I N U C L E A R  C O M P L E X E S    

  | 93 

 

 

Figure 5.4: Paramagnetic 1H NMR of H4pat4/ Cu(OTf)2/ OMe-/ Zn(OTf)2: a) pure Ligand, b) 1:0.5:0.5:0, 

c)1:0.5:1:0.5, d) 1:0.5:1.25:0.75, e) 1:0.5:2:1.5 and f) paramagnetic shifted signal of Hα in MeOD-d4 and 

CDCl3 3:1. 

High-resolution mass spectra of each solution were taken and a copper(II)/ zinc(II) species with an 

additional zinc(II) ion which gives both even and odd masses could be identified (Figure 5.5). 

The complexation equilibria that involve both metal ions, copper(II) and zinc(II), are proposed in 

Figure 5.6. From comparison with the copper(II)-only and the zinc(II)-only equilibria (see Chapters 

3 and 4) a mixture of both equilibria is evident. This indictates further, that both metals have a 

similar stability constant with H4pat4, as it was proposed at the beginning of this chapter. 

a) 

b) 

c) 

d) 

e) 

f) 
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Figure 5.5: Hr-ESI+ mass spectra of: a) [[CuZn(H2pat4)(OH)(OMe)]+Zn]+ (odd) and b) 

[CuZn(H2pat4)(OH)(OMe)]+Zn]2+ (even) 

 

a) b) 
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Figure 5.6: Proposed copper(II)/ zinc(II) complexation equilibrium of H4pat4. 
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5.2 CuII/ZnII Complexation by H4pat2 

 

For the formation ofheterodinuclear copper(II)-zinc(II) complexes with the 4 S* configured ligand 

H4pat2, which forms less stable dinuclear copper(II) complexes than the naturally configured ligand 

H4pat1 but exhibits also a high preorganization for the coordination of two metal ions, a different 

strategy had to be applied. With H4pat2 a single mononuclear species was not expected to be 

found85,100,101, and zinc(II) triflate was therefore titrated to a solution that already contained a 

mixture of mononuclear and dinuclear copper(II) complexes (Figure 5.7 blue). 

 

Figure 5.7: Overlay of selected EPR spectra at distinct ligand / CuI I/ ZnII / OMe- ratios: 1:1:0:1(blue, ν = 

9.447735 GHz) and 1:1:4:2 (black, ν = 9.446188 GHz) (X-Band, 140K, 1 mM in MeOH). 

The blue spectrum displayed in figure 5.7 shows according to previous studys a mixture of a 

dinuclear copper(II) species and a mononuclear copper(II) species.100,101 Upon addition of 4 

equivalents of zinc(II) and one more equivalent of base, the black spectrum displayed in Figure 5.7 
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was detected. The spectrum has the characteristical shape belonging to a mononuclear copper(II) 

complex, but due to the fact that it was obtained by the addition of an excess of zinc(II) to a solution 

with mono and dinuclear copper(II) complexes it can be assigned to a heterodinuclear copper(II)-

zinc(II) complex. Spin Hamiltonian parameter obtained by simulation with Xsophe differ 

significantly from the parameters obtained by simulation (table 5.2) for the mononuclear copper(II) 

complex (which was obtained by spectral substraction, parameter are purple in Table 5.2).100 

   

Figure 5.8: EPR spectra of [CuZn(H2pat2)(OH]+: a) first derivative and b) second derivative 

(detected:turquoise and simulated:black). 2:4 (ν = 9.446188 GHz, X-Band, 140K, 1 mM in MeOH). 

Table 5.2. Simulated EPR parameter. 

 [CuIIZnII(H2pat2)(OH)] [Cu(H3pat2)(OH)] Superhyperfine [10-4cm-1] 

g
x
 2.082 2.074 A

x
(N

im
) 11.8 

g
y
 2.045 2.051 A

y
(N

im
) 12.6 

g
z
 2.260 2.259 A

z
(N

im
) 10.8 

A
x  [10-4cm-1] 13.8 14.2 A

x
(N

am
) 11.3 

A
y  [10-4cm-1] 15.2 14.7 A

y
(N

am
) 7.2 

Az  [10-4cm-

1] 
168.6 150.0 Az(Nam) 15.4 
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The spectrum obtained also exhibits a well resolved superhyperfine coupling, which could be 

simulated involving two different types of nitrogen donors as already described for H4pat4. Due to 

the fact that the spectrum obtained has similar spin Hamiltonian parameters as obtained for the 

complexes of H4pat4 the constitutional formula [CuZn(H2pat2)(OH)]+ was tentatively proposed for 

this species. Comparison of the copper(II)/ zinc(II) species with the previously described 

mononuclear copper(II) species85,100,101 shows that the hyperfine splitting in Z- direction in this case 

is enlarged, while the g values are nearly the same.  

 

Figure 5.9: UV/Vis titration of a) 0-0.5 equivalents Cu(OTf)2 to H4pat2 1 equivalent Zn(OTf)2 and b) 0-1.5 

equivalents (n-Bu)4OMe. 

Performing the same UV/Vis-NIR titration experiment as in case of H4pat4, leads in case of H4pat2 

to a different result. The first steps of the stepwise addition of copper(II) to the zinc(II) containing 

ligand solution shows a d-d band at about 650 nm which might belong to a mixed species (Figure 

5.9 a). However, further addition of copper(II) leads to the formation of the known dinuclear 

copper(II) complexes.101 (Figure 5.9 b). 

A preliminary complexation equilibrium based on the EPR results could be proposed and is shown 

in figure 5.10. Addition of an excess of zinc(II) leads to the formation of a mononuclear looking EPR 

spectrum (Figure 5.10 black), which can be assigned to the formation of a heterodinuclear 

complex, because this ligand does not exhibit any point in the copper(II) complexation equilibrium 

were a single mononuclear copper(II) species exists. 
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Figure 5.10: Proposed copper(II)/ zinc(II) complexation equilibrium of H4pat2. 
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Parts of the following chapter are to be published in a manuscript entitled: “Dinuclear Zinc(II) and 

Copper(II)/Zinc(II) complexes of artificial Patellamides as Phosphatase models”; Peter Comba, 

Annika Eisenschmidt, Lawrence R. Gahan, Graeme R. Hanson, Nina Mehrkens, Michael Westphal, 

manuscript in preparation, 2015
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6 Hydrolysis of Phosphoesters 

 

Phosphoesters are omnipresent in nature, and thus, nature has evolved various strategies to cleave 

them. Many Artificial model catalysts that are capable of hydrolyzing CO2 often exhibit the ability 

to hydrolyze phosphoesters as well.112,202 For example, the dinuclear copper(II) complexes of the 

patellamide derivatives are very efficient carbonic anhydrase models107,111 and these complexes 

also act as phosphatase models112. It therefore seems likely that zinc(II) containing complexes of 

the patellamide analogues might act as even more efficient phosphatases. A well known 

phosphatase that has a dinuclear metal center and is active at neutral pH is the enzyme purple acid 

phosphatase (PAP). The active site of PAP has a dinuclear heterovalent metal center, which is in 

some cases also heterodinuclear (Chapter 4, Table 4). Enzymatic mimics for the hydrolysis of 

phosphoesters have the advantage that they have the ability to hydrolyze various substrates, which 

can be used in further applications. For example the hydrolytic degradation of organophosphate 

pesticides or nerve agents, both of which are often phosphotriesters and, due to their high stability, 

accumulated in nature.244,245 

The phosphoester hydrolyzing dinuclear copper(II) complexes of the patellamide derivatives 

function most efficiently at neutral pH and in a narrow pH range112, thus a mechanistic scenario 

similar to that of PAP is quite likely. In order to determine whether the dinuclear complexes 

described in chapters 3, 4 and 5 have the ability to hydrolyze phosphoesters catalytically, they were 

tested in a hydrolysis assay which is widely applied in PAP research.208 However, it is not the focus 

of this chapter to go deeply into the mechanistic scenario of the phosphodiester cleavage, but 

instead provide an overview about the hydrolytic abilities of homo- and heterodinuclear copper(II)-

zinc(II) complexes of patellamide derivatives.  
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Phosphoester cleavage was followed by monitoring the concentration of the hydrolysis product 

2,4-dinitrophenolate, which has a strong absorption at 400 nm (ɛ = 12,100 M-1cm-1) at 25°C via 

UV/Vis-NIR spectroscopy (Figure 6.1).208,209 The multicomponent buffer used for the pH 

dependence of the initial rate is described in detail in Chapter 8. The complexes tested were 

prepared in methanol for solubility reasons and for keeping the results comparable to the results 

from previous studies. The model substrate BDNPP was dissolved in acetonitrile. All measurements 

were performed in solutions with the final solvent ratio of H2O : MeCN : MeOH 50:45:5. The final 

catalyst concentration and the BDNPP concentration are described separately for each 

measurement in the respective section. To prevent inhibition by carbonate all solutions were 

carefully degassed and kept under argon. Autohydrolysis of BDNPP was determined in duplicate 

and subtracted from the observed catalyzed hydrolysis rates, these were determined in triplicate. 

 

Figure 6.1: Reaction scheme of the dinuclear metal(II)-patellamide catalyzed BDNPP hydrolysis. 
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The activity in hydrolyzing BDNPP was measured at constant BDNPP concentration at different pH 

values from pH = 4.5 to pH = 11. The data obtained were fitted with equation 6.1 to produce a pH 

profile. Equation 6.1, is based on a model for diprotic systems, with two active intermediates En 

and En-1, and gives equilibrium constants KAI and KAII for two deprotonation steps, which are 

tabulated as pKAI and pKAII. V0max, the maximum initial rate, is also defined in equation 6.1. The 

value γ indicates whether, En (the active catalyst) is more active (γ < 1) or En-1 (the protonated 

form)(γ > 1). 246 

 

𝑉0 = 𝑉0,𝑚𝑎𝑥 ∗
(1+

𝛾∗𝐾
𝐴𝐼𝐼

[𝐻+]
)

(1+
[𝐻+]

𝐾
𝐴𝐼

+
𝐾

𝐴𝐼𝐼

[𝐻+]
)

   (6.1) 

 

𝑉 =
𝑉𝑚𝑎𝑥∗[𝑆]0

𝐾𝑀+[𝑆]0
     (6.2) 

 

𝑘𝑐𝑎𝑡 =
𝑉𝑚𝑎𝑥

[𝐾]0
      (6.3) 

 

To obtain further kinetic information, substrate dependent measurements were performed at the 

pH value with the maximum rate. The data obtained were fitted according the Michaelis-Menten 

approach (equation 6 .2 and 6.3), where Vmax is the maximum rate at saturation conditions and KM 

the Michaelis-Menten constant. The catalytic efficiency kcat (equation 6.3) can be used to compare 

different catalysts. 
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6.1 Dinuclear Complexes of H4pat4 

 

The ligand H4pat4 is the only ligand of the set investigated which forms both a homodinuclear 

copper(II) and zinc(II) complexes and in addition also a heterodinuclear copper(II)-zinc(II) complex. 

The homodinuclear complexes of H4pat4 [MII
2(H2pat4)OH]+ (M = Cu, Zn) were investigated in pH - 

dependent scans of the initial catalysis rate (Figure 6.2). 

 

Figure 6.2: pH profiles of the BDNPP hydrolysis with [Zn2(H3pat4)(OH)]+ (blue) and [Cu2(H3pat4)(OH)]+ 

(black); [BDNPP] 5mM and [cat.] 40µM, 25°C. 

 

The resulting pH profile Figure 6.2 is similar to those obtained in the previous study for 

[Cu2(H2pat1)OH]+ and [Cu2(H2pat2)OH]+.70,107,112 Both complexes hydrolyze BDNPP with a narrow 

pH profile. The dinuclear copper(II) complex has its maximum initial rate at pH 6.50, while the 

dinuclear zinc(II) complex has its maximum initial rate at pH 6.02, 0.5 pH units lower and has a 

broader pH activity range than the compared copper(II) complex. Both complexes function 

efficiently under neutral to slightly acidic conditions. The difference of 0.5 pH units between the 
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copper(II) and the zinc(II) complexes may be explained by the fact that macrocyclic N-donated 

coordinated zinc(II) is the better Lewis acid in comparison to corresponding copper(II) species and 

has the ability to deprotonate coordinated water at lower pH. (comparison of 

[Zn[12]aneN3(H2O)]2+: pKA = 7.3 (Figure 4.3a) and the corresponding [Cu[12]aneN3(H2O)]2+: pKA = 

8.4)159 

 

Figure 6.3: pH profiles of the BDNPP hydrolysis with [CuZn(H3pat4)(OH)]+ (green), [BDNPP] 8mM and 

[cat.] 15µM, 25°C. 

 

However, the mixed heterodinuclear copper(II)-zinc(II) complex was tested under slightly different 

conditions (Figure 6.3). The detected EPR spectrum of the mixed metal complex was detected at a 

ligand / copper(II) / zinc(II) / base ratio of 1:0.5:0.5:1 (Chapter 5). Therefore, this species is less 

concentrated by taking the same or a similar amount of stock solutions while in situ complex 

formation (compared to the homodinuclear complexes). The pH profile displayed in Figure 6.3 was 

obtained with a higher concentration of BDNPP. The pH value at which the catalyst exhibits its 

maximum rate is pH 6.41, as expected, between the pHmax values of the two homodinuclear 

complexes. Furthermore, there might be a second maximum in the pH profile at approximatively 

pH 8.5. There are various possible interpretations for this reproducible observation: (i) The active 

species could be a complex with three pKA values, which would consequently lead to a different 
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model and fitting equation (see ref.).247 (ii) The reaction solution might contain two different 

structural forms of the catalyst with different pH maxima. (iii), the active species at pH 6.5 could 

be the same as at pH 8.5 but hydrolysis of BDNPP at higher pH values might follow a different 

mechanism. An overview of the pH-dependend hydrolysis results obtain by fitting with equation 

6.1 is given in table 6.1. 

Table 6.1: Hydrolysis data of the dinuclear complexes of H4pat4 obtained by fitting with eq. 6.1. 

 

In order to investigate this, EPR spectra in methanol / buffer mixtures were detected (buffer / 

methanol = 1:3, 5mM complex). Figure 6.4 shows the EPR spectrum of a mononuclear copper(II) 

compound at pH = 6.5 b) and a different more complex spectrum at pH = 9.5 a). The spectrum 

detected at pH = 9.5 (Figure 6.4a) could not be satisfactorily simulated and might be the result of 

a mixture of various species. Comparison to literature known complexes1,101 tentatively indicates 

that there is probably a carbonato bridged species in solution. 

 pHmax 
V0,max 
[Ms-1] 

pKa(I) pKa(II) 

[Cu2(H2pat4)(OH)]+ 6.50 3.45x10-8 ±6.28x10-8 6.32 ± 0.57 6.58 ± 0.52 

[Zn2(H2pat4)(OH)]+ 6.02 1.78x10-8 ±2.24x10-9 5.32 ± 0.69 6.68 ± 0.71 

[CuZn(H2pat4)(OH)]+ 6.41 9.21x10-8 ±1.97x10-8 5.79 ± 0.12 6.59 ± 0.20 



P H O S P H A T A S E  A C T I V I T Y  O F  H O M O -  A N D  H E T E R O D I N U C L E A R  T R A N S I T I O N  M E T A L  

C O M P L E X E S  O F  P A T E L L A M I D E S     | 108 

 

Figure 6.4: EPR spectra of 5 mM frozen solutions of H4pat4 + 0.5eq. of copper(II) triflate and 1.5eq. of 

zinc(II) triflate in methanol/ buffer mixtures; a) pH 6,5, ν = 9.444516 GHz and b) pH 9.5, ν = 9.445288 

GHz, (X-Band, 140 K, 5 mM in buffer / MeOH 1:3) 

 

Due to the fact that frozen buffer solutions are poor glasses, the spectra of the buffer solvent 

mixtures have poor resolution, no half field transitions and no superhyperfine coupling could be 

detected. The EPR spectrum at pH 6.5 shows a signal looking like a mononuclear copper(II) species, 

which is in table 6.2 compared to the spectrum obtained complex in pure methanol (Chapter 5, 

Figure 5.2). Spin Hamiltonian parameters obtained upon simulation are given in table 6.2. Mass 

spectrometry of the buffer solutions did not show any complexes. Thus spectral parameters are 

displayed without a proposed formula for the complexes. However, the g values and hyperfine 

splitting are in the expected range for patellamide derivative copper(II) complexes.85,100,101 
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Figure 6.5: EPR spectrum of H4pat4 + 0.5eq. of copper(II) triflate and 1.5eq. zinc(II) triflate at pH 6,5: a) 

measured and b) simulated (X-Band, 140 K, 5 mM in buffer / MeOH 1:3, ν = 9.444516 GHz). 

Table 6.2: EPR parameters obtained by simulation with Xsophe. 

 pH 6.5 [CuIIZnII(H2pat4)(OH)]+ 

gx 2.054 2.046 

gy 2.077 2.078 

gz 2.250 2.280 

Ax  [10-4cm-1] 4.7 13.4 

Ay  [10-4cm-1] 17.1 11.5 

Az  [10-4cm-1] 185.7 155.0 

 

The by simulation obtained spin Hamiltonian parameters of the spectrum obtained at pH = 6.5, are 

different form those, of the spectrum detected from a methanolic solution in chapter 5. Due to 

the different solvent environment, the copper(II) center might be coordinated by a different 

coligand, which would explain the shifted gz  and the enlarged A values (except Ay). The assumption 

that [CuZn(H2pat4)OH]+ is the active species at pH 6.5, could this way neither be confirmed nor be 

excluded. But this spectrum indicates that there is presumably no dinuclear copper(II) complex in 
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solution, which acts as hydrolysis catalyst. Thus, the fit (eq. 6.1) for a diprotic hydrolysis system 

was used, assuming [CuZn(H2pat4)OH]+ is the active species at pH 6.5. Following this assignment,  

all active species containing the ligand H4pat4 would have the same constitutional formula 

[MII
2(H2pat4)OH]+. 

To compare the catalytic abilities of all dinuclear complexes of H4pat4, as efficiency and rate, a 

Michaelis Menten experiment was performed. The dependence of the initial rate on the substrate 

concentration was determined for each catalyst at its previously determined pH maximum 

([Cu2(H2pat4)OH]+ at pH = 6.51, [Zn2(H2pat4)OH]+ at pH = 6.00 and [CuZn(H2pat4)OH]+ at pH = 6.37). 

The substrate concentration was varied between 0.25 mM and 8 mM. Equation 6.2 and equation 

6.3 were used to obtain kinetic data, which are listed in table 6.3. It appears that the 

homodinuclear zinc(II) complex catalyzes the hydrolysis of BDNPP with a higher catalytic efficiency 

kcat as the corresponding homodinuclear copper(II) complex, and the highest catalytic efficiency is 

observed with the heterodinuclear copper(II)/ zinc(II) complex of H4pat4. Therefore, the same 

species has a small value of KM, which indicates that the catalyst-substrate intermediate of the 

heterodinuclear complex is less stable than thoses of the corresponding homodinuclear 

complexes. 
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Figure 6.6: Michaelis-Menten measurement fitted with equation 6.2; a) [Zn2(H3pat4)(OH)]+ (blue) and 

[Cu2(H3pat4)(OH)]+ (black). (both with [cat.] 40µM, 25°C) and b) [CuZn(H3pat4)(OH)]+ (green) ([cat.] 

15µM, 25°C). 

Table 6.3: Michaelis Menten parameter of the dinuclear complexes of H4pat4 obtained by fitting with 

eq. 6.2 and eq. 6.3. 

 
kcat 

[s-1] *10-3 
 

KM 

[mM] 
 

kcat/KM 

[M-1s-1] 
 

[Cu2(H2pat4)(OH)]+ 2.34 ± 0.07 16.56 ± 1.61 0.14 ± 0.04 

[Zn2(H2pat4)(OH)]+ 4.89 ± 0.00 16.98 ± 0.05 0.29 ± 0.02 

[CuZn(H2pat4)(OH)]+ 4.72 ± 0.04 13.93 ±0.17 0.34 ± 0.23 
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6.1 Dinuclear Complexes of H4pat1 and H4pat2 

 

With the ligands H4pat1 and H4pat2, the homodinuclear zinc(II) complexes are not expected to act 

as hydrolases due to the low complex stabilities in a wet environment (see chapter 4). They were 

tested anyway (Figure 6.7 and Appendix), but did not show any activity. The phosphatase activity 

of the proposed heterodinuclear complex (Chapter 5.2) was also examined. Figure 6.8 shows the 

pH profile obtained (blue trace). As there are reproducible two maxima, the pH profile is overlaid 

with the pH profile of [Cu2(H2pat2)(OH)]+ (black trace). A comparison of the spectra leads to the 

conclusion that there are two species present in solution, capable of hydrolyzing BDNPP; 

presumably [Cu2(H2pat2)(OH)]+ and [CuZn(H2pat2)(OH)]+. 

 

Figure 6.7: pH-profiles of the BDNPP hydrolysis with “[Zn2(H2pat2)(OH)]+”. 
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Figure 6.8: Overlaid pH profiles of the BDNPP hydrolysis with [Cu2(H2pat2)(OH)]+ (black, [BDNPP] 

6.25mM and [cat.] 40µM, 25°C.)70,107 and [CuZn(H2pat2)(OH]+ (blue,. [BDNPP] 5.25 mM and [cat.] 

30µM, 25°C). 

To obtain the desired hydrolysis data of the pH dependent hydrolysis by the proposed 

heterodinuclear complex [CuZn(H2pat2)(OH)]+ by fitting with equation 6.1 the detected initial rates 

from pH = 6.0 to pH = 6.5 had to be ignored, to avoid a obviously falsified result. The obtained data 

as well as those for [Cu2(H2pat2)(OH)]+ are displayed in table 6.4. Both complexes have narrow pH 

profiles and both do hydrolyse BDNPP with the maximum rate at pH values close to neutral. 

Interrestingly, the heterodinuclear complex of H4pat2 has a higher pHMax as the corresponding 

homodinuclear complex, which will be discussed in the next section. 

Table 6.4: Hydrolysis data of the dinuclear complexes of H4pat4 obtained by fitting with eq. 6.1. 
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pKa(I) pKa(II) 

[Cu2(H2pat2)(OH)]+ 6.69 1.57x10-8 ±1.24x10-9 6.37 ± 0.40 7.25 ± 0.65 

[CuZn(H2pat2)(OH)]+ 7.31 2.89x10-8 ±1.55x10-8 7.58 ± 0.52 6.76 ± 0.14 
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6.3 Mechanistic Discussion 

 

To summarize, all obtained pH profiles show a bell-shaped maximum close to neutral pH. This leads 

together with the facts that the obtained pKA values are in all cases approximatively separated by 

one unit (narrow profile) to the proposal of a mechanism similar to that of PAP.112,218 The obtained 

pKA values were assigned to belong to two deprotonation steps that are possible when considering 

a dinuclear aqua species as catalyst (Figure 6.9). In water solvated copper(II) ions are stronger lewis 

acids as zinc(II) ions. ([Cu(H2O)6]2+: pKA = 8.0 and [Zn(H2O)6]2+: pKA = 9.0).248 But, upon coordination 

to macrocyclic N-donating ligands this effect turns back, and Zinc(II) becomes compared to 

copper(II) the better lewis acid ([Zn[12]aneN4(H2O)]2+: pKA = 7.9 (Figure 4.3b) and the 

corresponding [Cu[12]aneN4(H2O)]2+: pKA > 10).159 In PAP mechanism the substrate coordinates to 

one metal center and is attacked by the generated hydroxide from the other metal center.112,218 If 

this or a similar scenario, is the hydrolysis pathway (see Figure 4.8) used by the dinuclear 

patellamide derivative complexes, it is expected that the pKA values of water coordinated to a 

zinc(II) ion is lower in comparison to a water molecule coordinated by a copper(II) ion. 

The two pKA values of [Zn2(H2pat4)OH]+ obtained by fitting the data to equation 6.1 are pKAI = 5.32 

and pKAII = 6.68. Thus, pKAI of the dinuclear zinc(II) species is lower as that of the respective 

dinuclear copper(II) species (pKAI = 6.32), in contrast to the pKAII of the dinuclear zinc(II) species 

which higher compared to that of the respective copper(II) complex (pKAII = 6.58). This leads to a 

broadened pH-profile of hydrolysis catalyzed by the dinuclear zinc(II) complex (Figure 6.2). The 

broader pH profile can be explained by the zinc(II) ions slower exchange rates compared to 

copper(II) (Zn2+; ~ 6x108 and Cu2+; 4.4*109 s-1 (water exchange in water at 25°C)),249 and thus the 

active aqua species might be available over a broader pH range. 

The corresponding heterodinuclear complex [CuZn(H2pat4)OH]+ has a pH maximum between the 

pH maxima of both homodinuclear complexes. The by fitting with equation 6.1 obtained pKAII value 

pKAII = 6.59 is close to that of the homodinuclear copper(II) species, and might thus be assigned to 
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the deprotonation of a copper(II) coordinated water molecule. In consequence pKAI = 5.79 can be 

assigned to the deprotonation of an aqua coligand coordinated by the zinc(II) ion, which is in 

agrrement with the zinc(II) ions higher lewis acidity in macrocyclic azacrown ligands.159 

The proposed heterodinuclear copper(II)-zinc(II) complex of the 4S* configured ligand H4pat2 

(Chapter 5) is also shown to act as phosphatase. Interestingly, this complex seems to exist in 

solution along with the corresponding homodinuclear copper(II) complex. Surprisingly, in this case 

the pH maximum of the heterodinuclear species lies slightly higher than that of the respective 

homodinuclear copper(II) complex.  

  

Figure 6.9: Schematic representation of the pKA values in relation to the considered active species (blue). 

While comparing the results listed in table 6.2 it appears that the zinc(II) containing complexes of 

the benzyl residue containing ligand H4pat4 show the highest catalytic efficiency. In addition the 

heterodinuclear zinc containing complexes of the ligand H4pat4 exhibits a the smallest Michaelis-

Menten constant, meaning that this complex has the highest affinity towards the substrate BDNPP. 

The most efficient catalyst remains the homodinuclear zinc(II) complex of H4pat4. The question 

arises then: why is the unnatural 4S* configurated ligand H4pat4 the fastest? Eventually due to the 
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benzyl residues which may help the substrate to coordinate by π-stacking. Another reason may be 

that a more hydrophobic microenvironment surrounds the dinuclear metal center due to the large 

benzyl residues and thus stabilizes the zinc(II) complexes of H4pat4. In the case of the tripodal 

benzyl histidine ligands investigated by Ichikawa and Ibrahim,198 the effect of the benzyl groups is 

just described as that of a bulky substituent.198 
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Table 6.5. Kinetic Properties of [M2(H2paty)(OH]+ in BDNPP-hydrolysis. 

 

Catalyst pHmax 
V0,max 

pKa(I) pKa(II) 
kcat KM kcat/KM 

ref 

[Ms-1] [s-1] *10-3 [mM] [M-1s-1]  

[Cu2(H2pat1)(OH)]+ 7.21 1.58x10-7 ±3.00x10-9 6.91 ± 0.21 7.31 ± 0.20 3.95 ± 0.07 26.4 ± 2.20 0.15 ± 0.03 

70,107,112 

 

[Cu2(H2pat2)(OH)]+ 6.69 1.57x10-8 ±1.24x10-9 6.37 ± 0.40 7.25 ± 0.65 0.39 ± 0.03 5.5 ± 0.64 0.07 ± 0.05 

70,107 

 

[CuZn(H2pat2)(OH)]+ 7.31 2.89x10-8 ±1.55x10-8 7.58 ± 0.52 6.76 ± 0.14 0.34 ± 0.30 5.74 ± 1.74 0.06 ± 0.17  

[Cu2(H2pat4)(OH)]+ 6.50 3.45x10-8 ±6.28x10-8 6.32 ± 0.57 6.58 ± 0.52 2.34 ± 0.07 16.56 ± 1.61 0.14 ± 0.04  

[Zn2(H2pat4)(OH)]+ 6.02 1.78x10-8 ±2.24x10-9 5.32 ± 0.69 6.68 ± 0.71 4.89 ± 0.00 16.98 ± 0.05 0.29 ± 0.02  

[CuZn(H2pat4)(OH)]+ 6.41 9.21x10-8 ±1.97x10-8 5.79 ± 0.12 6.59 ± 0.20 4.72 ± 0.04 13.93 ±0.17 0.34 ± 0.23  
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7 Summary and Outlook 

 

The biological function of the naturally occurring cyclic peptides patellamide A-F and 

ascidiacyclamide, found in the ascidians of the Pacific and Indian oceans, is still unclear. Since 

the discovery of a carbonato-bridged dinuclear copper(II) complex of ascidiacyclamide,1 there 

has been a discussion about metal ions playing a key role in the chemistry these peptides.18 

Due to the the high concentration of copper(II) found in ascidians,88  the copper(II) coordination 

chemistry of the patellamides has been extensively investigated.70 A library of easily accessible 

patellamide derivatives has been designed to study their copper(II) chemistry.85 Recently, 

dinuclear copper(II) complexes of these artificial cyclic pseudo-peptides have been shown to 

act as extremely efficient hydrolases at neutral pH. The complex [Cu2(H2pat1)(OH]+ has, on one 

hand, been shown to hydrolyze very efficiently CO2
111 and, on the other hand, this complex is 

also able to hydrolyze the model phosphodiester BDNPP.112 

The aim of this thesis was to explore the zinc(II) coordination chemistry of these cyclic pseudo-

octapeptides regarding biologically relevant hydrolysis chemistry. A further question was; 

whether the patellamide derivatives, known to preferably form dinuclear complexes, have the 

ability to form heterodinuclear copper(II) and zinc(II) complexes? Finally, this thesis aimed to 

test all explored complexes in a phosphoester hydrolysis assays. Besides this, the 

electrochemical properties of the patellamide derivative copper(II) complexes were 

investigated.  

The electrochemical results displays the equilibrium chemistry of the Patellamide derivative 

copper(II) complexes, and lead thus to the conclusion, that copper(I/II) based biological 

relevant redox chemistry is rather unlikely in neutral aqueous solution. Nevertheless, the 

complex [Cu2(H2pat1)(OH)]+ has been shown to take part in an oxygenation reaction under basic 

conditions. Kinetic properties were shortly discussed and oxygenation products have been 

identified via NMR spectroscopy and mass spectrometry.  
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The complexation equilibrium of the ligand H4pat4 was investigated by EPR spectroscopy in 

combination with high-resolution mass spectrometry. So far, H4pat4 is the only ligand of the of 

the patellamide derivative library that forms under specific conditions a pure mononuclear 

copper(II) complex. EPR simulations, cooperativity and the resulting copper(II) complexation 

equilibria have been discussed in Chapter 3. 

The zinc(II) chemistry of the patellamide derivatives is discussed in Chapter 4. Isothermal 

calorimetric titration (ITC) experiments show, that a homodinuclear zinc(II) complex of the 

naturally configured ligand H4pat1 has a higher thermodynamic stability than a homodinuclear 

zinc(II) complex of the 4S* configured ligand H4pat2. ITC experiments show that H4pat1 and 

H4pat2 prefer to coordinate two metal ions at once and exhibit a cooperative effect. In addition, 

the ITC experiment shows that zinc(II) coordination is rather enthalpy driven, in contrast to the 

corresponding copper(II) coordination. This is interpreted as a result of a change from a 

tetrahedral to a trigonal bipyramidal or octahedral coordination sphere, upon zinc(II) 

coordination by a patellamide derivative. This is believed to be one of the reasons for the lower 

stability of the zinc(II) complexes in comparison to the corresponding copper(II) complexes. 

The complexation behavior of zinc(II) by H4pat1 and H4pat4 was investigated by NMR 

spectroscopy, especially with the help of 2D methods i.e.  13C-1H HMBC and 15N-1H HMBC. The 

results, are interpreted in combination with HR mass spectrometry and lead to the proposal of 

a complexation equilibrium. 

Regarding the results of both, of copper(II) and of zinc(II) coordination by the ligand H4pat4, 

results of Chapters 3 and 4 indicate that H4pat4 forms similarly stable complexes with either 

metal ion. Under comparable conditions H4pat4 forms various species in equilibria with both 

metal ions. Thus, the formation of a heterodinuclear species was investigated in Chapter 5. 

Specifically, the 4S* configured ligand H4pat2 was examined in the formation of a 

heterodinuclear copper(II)-zinc(II) complex. Even if for both ligands, H4pat2 and H4pat4, 

heterodinuclear complexes were found, different strategies have been applied. Both ligands 

heterodinuclear complexes deliver EPR spectra that have been simulated and analyzed in 

combination with UV/Vis spectroscopy and mass spectrometry. 

In Chapter 6, all complexes were tested in a phosphoester hydrolysis assay. The kinetics were 

measured as function of pH and of as function of the substrate concentration. Results were 

analyzed considering a model for dinuclear hydrolyzing enzymes and considering Michaelis 
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Menten kinetics. All three dinuclear complexes of H4pat4 (Cu2
II, Zn2

II, CuIIZnII) were shown to act 

as phosphatases. The in chapter 5 proposed heterodinuclear copper(II)-zinc(II) complex of 

H4Pat2 has been shown to act as phosphatase as well. The pH profiles and Michaelis Menten 

plots are discussed with respect to their biological relevance. It could be shown, that all zinc(II) 

containing complexes are slightly more active than the corresponding copper(II) complexes. 

Having the biological relevance of these results in mind, a first conclusion is that, if possibly 

existing dinuclear copper(II) complexes of patellamides fulfill a metabolic function in the 

ascidian cytoplasm, it is likely that this is a hydrolytic reaction rather than any role involving a 

copper(I) state. The results of the zinc(II) chemistry, especially that of H4pat2 and H4pat1, lead 

to the conclusion that, if a metal ion has biological relevance for the patellamides, it is more 

likely that copper(II) is the relevant metal ion. However, regarding the zinc(II) chemistry of 

H4pat4 , these results deliver an interesting insight into the solution chemistry of the 

patellamide derivatives complexes from a diamagnetic point of view. The zinc(II) complexes of 

H4pat4 are efficient phosphoester hydrolysis catalysts, working in a neutral pH range. And in 

addition the zinc(II) chemistry showed, that the cooperativity i.e. the preferential formation of 

dinuclear complexes seems to be more important than metal selectivity.  

The exact mechanistic description of phosphoester hydrolysis, catalyzed by dinuclear 

complexes of the patellamide derivatives is in the focus of computational studies.117 The 

hydrolysis ability towards further substrates as ß-lactams and glycosides are aims of ongoing 

investigations as well.117 

The most challenging question is, whether copper(II)-patellamide derivative hydrolysis 

chemistry in vivo is possible. Therefore, a suitable imaging strategy is required, which is in the 

focus of an ongoing study.117 

The biological role of the patellamides and ascidiacyclamide remains thus a mystery, but this 

open question can be regarded from various perspectives and creates great scientific ideas. 

This way, I hope that this question remains still unsolved for a while. 
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8 Experimental Section 

 

8.1 Materials, Methods and Instruments 

 

8.1.1 Materials 

 

All solvents and reagents (absolute, p.a. grade and purum grade) were purchased and used 

without further purification. Dry solvents were kept over molecular sieves. MilliQ water (R > 

18MΩ) was used for the kinetic assays. Phosphoryl chloride was distilled and 2,4-dinitrophenol 

was three times recrystallized from ethanol before use. The cyclic peptides H4pat3 and H4LAscA 

were obtained from Dr. Michael Westphal. The peptide H3L1 was provided by Dr. Nina Dovalil. 

Both were used without further purification. 

 

8.1.2 Chromatography 

 

Thin layer chromatography (TLC) on silica gel 60 F254 plates (POLYGRAM® SIL G/UV, Macherey-

Nagel) was conducted in order to monitor reactions. Detection was accomplished with a UV-

lamp (λ=254 nm). Flash chromatography was performed using silica gel 60 (230-400 mesh) 

purchased from Macherey-Nagel. 
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8.1.3 Microanalyses 

 

Quantitative microanalysis was performed at the microanalytical laboratory of the University 

of Heidelberg with a Vario EL and a Vario MICRO cube instrument (Elementar). 

 

8.1.4 Mass Spectrometry 

 

Electrospray ionization mass spectra (ESI) were measured on a Finnigan LCQ spectrometer at 

the institute of Organic Chemistry of the University of Heidelberg. High-resolution electrospray 

ionization mass spectra (ESI-HR MS) were measured on a Bruker Apex-Qe hybrid 9.4 T FT-ICR 

instrument with an Apollo II MTP ion source in the positive-ion and negative-ion mode, 

respectively, at the Institute of Organic Chemistry of the University of Heidelberg. External mass 

calibration was performed on [argininen+H]+ cluster ions prior to analysis. A mass accuracy of 

1ppm was achieved. The instrument was controlled by the Bruker ApexControl 2.0.0 beta 

software. At the School of Chemistry and Molecular Biosciences of the University of 

Queensland, high-resolution mass spectra were measured on a Bruker microTOF ESI-MS 

spectrometer. High-resolution fast atom bombardement (FAB) mass spectrometric 

measurements were performed on a Finnigan TSQ 700 instrument at the institute of Organic 

Chemistry of the University of Heidelberg. The matrix used was nitrobenzylalcohol. High-

resolution direct-analysis-in-real-time (HR-DART) mass spectra were measured on a Bruker 

Apex-Qe hybrid 9.4 T FT-ICR instrument in the positive-ion mode, at the Institute of Organic 

Chemistry at the University of Heidelberg. 

Data analysis was performed with the Bruker Compass Data Analysis 3.4 software. 
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8.1.5 NMR Spectroscopy 

 

1H, 13C, 15N and 31P nuclear magnetic resonance (NMR) measurements as well as; two 

dimensional correlation spectroscopy (COSY), heterodinuclear single quantum correlation 

(HSQC), heterodinuclear multiple bound correlation (HMBC) and nuclear Overhauser-effect 

spectroscopy NOESY) were performed with a Bruker 200 MHz DRX, a Bruker 400 MHz Advance-

II, a Bruker 600 MHz Advance-II or a Bruker 900 MHz Advance-III spectrometer, respectively. 

Chemical shifts (δ) in ppm are calculated relative to TMS. For 1H and 13C NMR spectra the 

deuterated solvent peaks are indicated in brackets in the analytical data. For 31P NMR spectra 

85% H3PO4 (0 ppm) was used as reference for the chemical shifts δ. All reported coupling 

constants are 1H-1H couplings. Signal multiplicities are described by the following abbreviations: 

s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, dd = doublet of doublets, dt = 

doublet of triplets, tt = triplet of triplets, o = octet, m = multiplet and b = broad. In peptides the 

H-atom next to the N-amide is assigned with Hα and the second H-atom is assigned with Hß.The 

Bruker software package TopSpinTM was used to analyze the recorded data. All measurements 

were performed at 25°C, unless a different temperature is designated at the respective points, 

and the solutions for complex titrations were kept under Argon, unless carbonato-complexes 

were desired. 

 

8.1.6 EPR Spectroscopy 

 

X-Band continuous wave (CW) EPR spectra were recorded with a Bruker Biospin Elexsys E500 

at the University of Heidelberg or with an Elexis E580 spectrometer at the University of 

Queensland, fitted with either a super high Q cavity or an ER 4118X resonator. The microwave 

frequency and the magnetic field were calibrated with a Bruker ER 036TM Teslameter and a 

Bruker microwave frequency counter, respectively. Temperatures of 110 - 140 K at the sample 

position were achieved by a flow-through cryostat in conjunction with a Eurotherm B-VT-2000 

variable temperature controller. The Bruker Xepr software (version 2.4b.12) was used for 

Spectrometer tuning, signal averaging and visualization. Simulations of the mononuclear 
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copper(II) complexes and of the copper(II)-zinc(II) complexes were carried out with the Xsophe 

software from Bruker.145 The simulation of the dinuclear copper(II) complex spectrum was 

obtained using the Bruker software Molecular Sophe.146. All measurements were performed at 

140 K, unless a different temperature is designated at the respective points, and the solutions 

kept under Argon unless carbonato-complexes were desired. 

 

8.1.7 Spectrophotometric Titrations 

 

Spectrophotometric titrations were carried out with 1 mM cyclic peptide solutions in MeOH. 

Metal and base solutions (CuII(CF3SO3)2, CuII(CH3COO)2, ZnII(CF3SO3)2, ZnII(OMe)2, 

(nBu)4N(OMe), NaOMe)) in methanol (25 mM or 10 mM) were added in 0.1 equivalent steps 

and NIR-UV/vis-NIR and CD spectra were recorded. The spectra obtained were corrected with 

respect to the dilution factor. All measurements were performed at 25°C and the solutions kept 

under Argon unless carbonato-complexes were desired. 

 

8.1.8 NIR-UV/Vis-NIR and CD-Spectroscopy  

 

A Jasco V-570 spectrophotometer equipped with a JASCO ETC-505T cryostat, a TIDAS II 

spectrophotometer or a Varian Cary 50 Bio UV/Vis-NIR spectrometer with a peltier 

temperature controller were used to record UV/Vis-NIR spectra in the range of 200-900 nm, as 

well as time-course measurements at fixed wavelengths. All measurements were performed at 

25°C and the solutions kept under Argon unless carbonato-complexes were desired. 

 

8.1.9 CD-Spectroscopy  

 

Circular Dichroism (CD) spectra were measured with a JASCO J-170 spectropolarimeter 

equipped with a JASCO ETC-505T cryostat. A Jasco CD spectrometer with a peltier temperature 

controller were used to record CD spectra in the range of 200-900 nm. All measurements were 
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performed at 25°C and the solutions kept under Argon unless carbonato-complexes were 

desired. 

 

8.1.10 IR Spectroscopy 

 

A Perkin Elmer 16C FTIR spectrometer was used to record infrared (IR) spectra of solid samples 

in KBr pellets as well as of liquid samples in an irtran4 (CaF2) cuvette. Liquid samples were 

prepared from methanolic or deutero methanolic stock solutions. IR spectroscopic titrations 

were performed by stepwise addition of 0.5 equivalents of metal ion or base solution. IR spectra 

in solution were recorded between 450 and 4000 cm–1 at 25°C, and the solutions kept under 

Argon unless carbonato-complexes were desired. 

 

8.1.11 Electrochemistry 

 

Electrochemical properties were studied by cyclic voltammetry (CV) and square wave 

voltammetry (SQW) in methanol using (nBu)4N(PF6) as supporting electrolyte. All 

measurements were performed with a CH Instruments CHI660D electrochemical workstation, 

equipped with a CH Instruments Picoamp booster and Faraday cage, with a three-electrode 

setup consisting of a glassy-carbon working electrode, a Pt wire as auxiliary electrode and a 

Ag/AgNO3 reference electrode (0.01 M Ag+, 0.1 M (Bu4N)(BF4) in methanol). The solutions were 

thoroughly degassed and measured with a slight argon-flow was above the solution during the 

measurement. A scan rate of 100 mVs-1 was applied. 

The Copper(II) complex solutions were prepared in situ according to the spectrophotometric 

titrarions as follows: First a 25 mM CuII(CF3SO3)2 methanolic solution was added in 0.1 

equivalent steps to 0.1 mM ligand solution into the electrochemical cell (7ml). Afterwards, a 10 

mM (nBu)4N(OMe) methanolic solution was added in 0.1 equivalent steps to the 

electrochemical cell. In a final step a slight stream of CO2 was set above the solution for 10 

minutes, to generate carbonato complexes. After each step a CV and a SQW scan were 

recorded. 
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8.1.12 Isothermal Titration Calometry (ITC) 

 

ITC measurements were performed with a MicroCal ITC 200 instrument at the School of 

Chemistry and Molecular Biosciences of the University of Queensland. All experiments were 

done in methanolic solutions containing 0.1 M (nBu)4N(ClO4) for control of the ionic strength 

during each measurement. Initially, the reaction vessel contained 200 µL of a 1mM ligand 

solution in methanol. A 20 mM Zinc(II) triflate solution in methanol was added either in 38 steps 

of 1 µL or in 76 steps of 0.5 µL by an injection syringe to the ligand solution. The spectra 

obtained were analyzed by the program Origin 7® with the plugin Microcal LLC – VPViewer 2000 

ITC®. 

 

8.1.13 pH Measurements 

 

A Metrohm 713 pH-meter equipped with a KCl electrode was used to adjust pH values at 25°C. 

The pH meter was calibrated with pH standard solutions at pH 4, pH 7 and pH 9. Reported pH 

values of buffer/ solvent mixtures refer to the aqueous component. The pH value of a 1:1 

mixture of buffer and acetonitrile was the same as the corresponding buffer solution itself. 

250,251 
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8.1.14 Preparation of Buffers 

 

A multicomponent buffer was used to measure the pH-dependent and Michaelis-Menten 

kinetics. The aqueous buffers consisted of :  

 CAPS, N-cyclohexyl-3-aminopropanesulfonic acid, pKA = 10.40 

 CHES, 2-(N-cyclohexylamino)ethanesulfonic acid, pKA = 9.30 

 HEPES, 4-(2-hydroxyethyl)-1-piperazinylethanesulfonic acid, pKA = 7.55 

 MES, 2-(N-morpholino)ethanesulfonic acid, pKA = 6.15 

Each component was dissolved in Milli-Q water. The final concentration of each buffer was 50 

mM. The ionic strength was adjusted with LiClO4 (250mM) to µ = 0.45. Afterwards the 

multicomponent buffer solution was separated in 40 ml aliquots and their pH values were 

adjusted with 2 M NaOH. Metal ions were removed by stirring the adjusted buffers with Chelex 

100 overnight, and filtration through 45 µm syringe filters.  

 

8.1.15 Phosphoester Hydrolysis Assay 

 

The phosphatase-like activity was determined by measuring the hydrolysis of the model 

substrate bis(2,4-dinitrophenyl)phosphate (BDNPP). Phosphoester cleavage of BDNPP 

produces 2,4-dinitrophenolate, which can be detected by monitoring the increase of a strong 

absorbance at 400 nm (ε = 12100M-1cm-1) via UV/Vis spectroscopy at 25°C (settings see section 

8.1.8). Initial rates were obtained by the initial rate method, which leads to an assay-design 

where the initial linear portion of data can be reproducibly used for analysis. The reported rates 

are averages with standard deviations from triplicates. Each assay was corrected for 

autohydrolysis, which was also determined in triplicates. The substrate BDNPP was dissolved in 

acetonitrile. The catalysts [MII(H2patn)(OH)]+ ( MII = CuII, ZnII) were prepared in situ from stock 

solutions (ligand 1mM, MIIOTf2 25mM, (nBu)4N(OMe) 25mM) in methanol (for solubility 

reasons). The aqueous multi component buffer described in section 8.1.14 was used for pH-
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dependent kinetics. All assays were carried out in a mixture as follows: H2O/MeCN/MeOH = 

50:45.5; [MII(H2patn)(OH)]+ = 40µM, [buffer] = 25mM. To prevent the formation of CO3
2- (and 

consequently the formation of inhibiting carbonato-species), it was necessary to use freshly 

degassed solutions. The pH-dependence of the hydrolysis rate was measured in the range of 

pH 4.5 - 11.5. While measuring the substrate concentration dependence at a distinct pH the 

BDNPP concentration was varied between 0.25 - 10 mM. The resulting data were plotted with 

the program Origin (OriginLab) and fitted to Equation 7.1 (chapter 7.2).246 Reported pH values 

refer to the aqueous component. The pH value of a 1:1 mixture of buffer and acetonitrile was 

the same as the corresponding buffer solution itself.250,251 

 

8.1.16 Oxygenation Assay 

 

The oxygenation properties of [Cu2(H2pat1)OH]+ were studied according to a literature known 

procedure, which was performed as follows: 236.7 mg (1.149 mmol) of 3,5-ditertbutylphenol 

(DTBPH) were dissolved in 10 mL dry and degassed methanol. After the addition of one 

equivalent of base ((nBu)4NOMe, 1.92 mL of a 20% methanolic solution) under argon, 600 µL 

of the catalyst solution (1 mM in methanol under Ar) were added. Subsequently, a first UV/Vis 

spectrum was recorded. A slight flow of pressed air was conducted through the reaction 

solution while stirring, UV/Vis spectra were recorded as a function of time. The formation of 

the oxygenation product 3,5-ditertbutylquinone DTBQ was monitored at the increasing 

absorption at 407 nm (1830L mol-1 cm-1). After each spectrum taken, the measured solution 

was returned to the reaction mixture. Before each measurement the volume of the reaction 

mixture was corrected to the initial volume with dry and degassed methanol, to keep initial 

concentrations constant.   
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8.2 General Procedures 

 

Cyclic Peptides and their precursors were prepared according to known literature procedures 

with slight modifications. All moisture or air sensitive reactions were performed applying 

Schlenk-techniques. 

 

8.2.1 General Procedure for Methyl Ester Cleavage (GP1):113 

 

The methyl-protected amino acid (1eq) or methyl–protected peptide was dissolved in a 

MeOH/dioxane mixture = 10:7 (resulting in a 0.1 M solution) and cooled to 0°C. Then, a 2M 

NaOH solution (10 eq) was slowly added. The reaction mixture was allowed to warm up to rt. 

While stirring for at least one day, the reaction progress was monitored by TLC. After the 

consumption of all starting material, brine and 1 M HCl solution were added until a neutral pH 

value was reached. The reaction solution was extracted with DCM. The combined organic 

phases were dried over Na2SO4 and concentrated in vacuo to yield the desired acidic product. 

 

8.2.2 General Procedure for Boc Group Cleavage (GP2):113 

 

The respective of the Boc-protected Amine (1eq) was dissolved in DCM (resulting in a 0.1 M 

solution), and cooled to 0°C. At this temperature concentrated TFA (3ml/1mmol) was added 

slowly. After stirring for further 30 min at 0°C, the ice bath was removed, and the reaction 

mixture was stirred at rt while monitoring the reaction progress by TLC. After complete 

conversion, solvent and TFA were removed in vacuo. The remaining TFA was removed through 

repetitive stripping with EtOAc. Finally the deprotected amine was dried to yield a colorless 

foam. 
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8.2.3 General Procedure for Peptide Coupling with COMU (GP3):113,252 

 

The methyl deprotected acidic building block (1mM) was dissolved under Ar atmosphere in dry 

MeCN (100ml/ 10mmol). After addition of EDIPA (10eq) the reaction mixture was cooled to 0°C 

and the coupling reagent COMU (0.95eq) was added. After further stirring for 30 min the amine 

building block was added. The reaction mixture was permitted to warm slowly until rt was 

reached. The reaction mixture was stirred at rt until a TCL showed consumption of all starting 

materials. Solvent and base were removed in vacuo, and the resulting residue was dissolved in 

EtOAc and then extracted with H2O, 1M HCl solution and brine (each at least twice). The 

combined organic layers were concentrated in vacuo and then purified by flash 

chromatography with silica gel. 

 

8.2.4 General Procedure for Cyclic Peptide Coupling with COMU (GP4): 113,252 

 

The respective deprotected dimeric building block (1eq) was dissolved in dry MeCN (0.1 M) 

mixed with EDIPA (10 eq) and cooled to 0°C while stirring under Ar atmosphere. Then COMU 

(1.95 eq) was added before the reaction mixture was allowed to slowly warm to rt. The reaction 

progress was monitored by TLC until all starting material was consumed. Solvent and base were 

removed in vacuo. The resulting residue was dissolved in EtOAc and then extracted with H2O, 

1M HCl solution and brine (each at least three times). The combined organic layers were 

concentrated in vacuo and purificated by column chromatography with silica gel.  
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8.2.5 General Procedure for the preparation of dinuclear transition metal complexes of the 

Peptides (GP5): 

 

Complexes for all experiments were prepared in situ from stock solutions in dry and degassed 

MeOH, which has been stored under an Ar atmosphere. The concentration of the ligand 

solutions was 1 mM. For deprotonation, a methoxide base was used, either sodium 

methanolate or tetra butyl-ammonium methoxide salt ((nBu)4NOMe) was added.  
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8.3 Synthesis of H4pat1 

 

8.3.1 (E)-methyl-2-(hydroximo)-3-oxobutanoate (1): 

 

       Molecular formula: C5H7NO4 

       Molecular weight: 145.11 g/mol 

1 

Following known literature procedures,113,253 methyl acetoacetate (103.13 g, 936.57 mmol) 

was dissolved in glacial acetic acid (140 ml) and cooled to -5°C. While stirring at a temperature 

ranging from -5 to -10°C, 200 ml of aqueous sodium nitrite solution (148.55 g, 2152.09 mmol) 

were added slowly. The reaction mixture was stirred for 3 h at -5 °C and afterwards for 1.5h at 

rt. The reaction mixture was poured on 800 g ice. After extraction with diethyl ether (3x) the 

combined organic phases were washed with saturated NaHCO3 solution until CO2 production 

ended, dried over Na2SO4, and concentrated in vacuo to yield 1 (95.67 g, 659.28 mmol, 70.39%) 

as a white solid. 

 

1H NMR: (200 MHz, CDCl3): δ = 2.35 (s, 3H, COCH3); 3.85 (s, 3H, CO2CH3); 10.80 (bs, 1H, NOH) 

ppm. 
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8.3.2 1-Methoxy-1,3-dioxobutan-2-ammonium chloride (2): 

 

       Molecular formula: C5H10ClNO3 

       Molecular weight: 167.59 g/mol 

     2 

Compound 2 was prepared according to known literature procedures.113,253 The oxime 1 (50.43 

g, 347.53 mmol) was dissolved in EtOH (800 ml). Palladium on charcoal was suspended (10 %, 

25g) before 348 ml 3 M methanolic HCl (1040 mmol, 3eq) were slowly added. The reaction 

mixture was stirred for 3 days under a H2-atmosphere. Afterwards the mixture was filtered 

twice over Celite and the solvent was removed in vacuo. The crude product was dissolved in 

EtOAc, recrystallized at -20°C from EtOAc, filtered and washed with ice cold DCM. The 

ammonium chloride salt 2 (46.43 g, 277.05 mmol, 79.72%) was isolated as a white crystalline 

solid. 

Microanalysis: C5H10ClNO3: calc. (%): C 35.41, H 7.13, N 8.26; found (%): C 34.08, H 7.03, N 7.89 

(Report No. 33726) 

1H NMR: (200 MHz, DMSO - d6): δ = 2.38 (s, 3H, COCH3); 3.81 (s, 3H, CO2CH3); 5.30 (s, 1H, 

CHNH3), 8.91 (bs, 3H, NH3) ppm. 

13C NMR: (50 MHz, DMSO - d6): δ = 28.34 (COCH3); 53.92 (OCH3); 61.52 (CHNH3), 164.61 

(COCH3), 197.15 (CO2CH) ppm. 

HR-FAB+ MS: m/z calc. for C5H10NO3
+ 132.062, found 132.066. 
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8.3.3 Methyl 2-((S)-2-(tert-butoxycarbonylamino)-3-methylbutanamido)-3-oxobutanoate (3): 

 

       Molecular formula: C15H26N2O6 

       Molecular weight: 330.38 g/mol 

  3 

Following known literature procedures,66,113 (S)-Boc-valine (18.31 g, 84.27 mmol) and NMM 

(8.59 g, 84.27 mmol, 1 eq) were dissolved in anhydrous THF (450 ml) and cooled to -25°C. Then, 

isobutyl chloroformate (11.68 g, 84.27 mmol, 1 eq) was added carefully. After stirring the 

reaction mixture for 1h at -25°C, the ammonium chloride salt 2 (28.23 g, 168.54 mmol, 2 eq) 

was added. Subsequently, the reaction mixture was treated with NMM (8.59 g, 84.27 mmol, 

1eq) and the the cooling bath was  removed (over 2h) slowly. The reaction mixture was stirred 

for another day at rt before the solvent was removed in vacuo. The crude product was dissolved 

in EtOAc and extracted with brine, dried over Na2SO4, and concentrated in vacuo to a colorless 

oil. After addition of n-hexane, colorless crystals were obrtained on standing overnight at -20°C. 

Filtration yielded 3 (23.69 g, 71.78 mmol, 85.17%) as a white crystalline solid. 

Microanalysis: C15H26N2O6: calc. (%): C 54.53, H 7.93, N 8.48; found (%): C 54.67, H 7.57, N 8.80 

(Report No. 33435) 

1H NMR: (200 MHz, CDCl3): δ = 0.89 (d, 3H, CH(CH3)2, 3JH-H  = 6.7 Hz); 0.96 (d, 3H, CH(CH3)2,      3JH-

H  = 6.8Hz); 1.43 (s, 9H, C(CH3)3), 2.15 – 2.25 (m, 1H, CH(CH3)2), 2.37 (s, 3H, COCH3), 3.79 (s, 3H, 

CO2CH3), 4.09 (m, 1H, NHCHCO), 4.95-4.99 (m, 1H, CO2NH), 5.21 (d, 1H, BocNHCHCO), 7.01-

7.12, (m, 1H, NH) ppm. 

HR-DART+ MS: m/z calc. for [M+H]+: 331.182, [M+NH4]+ = 348.213, [2M+H]+ = 661.365, 

[2M+NH4]+ = 678.392; found: 331.186, 348.213, 661.365, 678.392.  
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8.3.4 Methyl 2-((R)-2-(tert-butoxycarbonylamino)-3-methylbutanamido)-3-oxobutanoate (4): 

 

       Molecular formula: C15H26N2O6 

      4     Molecular weight: 330.38 g/mol 

Following known literature procedures,66,113 (R)-Boc-valine (5.00 g, 22.90 mmol) and NMM 

(2.33g, 22.90 mmol, 1 eq) were dissolved in anhydrous THF (300 ml) and cooled to -25°C. Then, 

isobutyl chloroformate (3.18 g, 22.90 mmol, 1eq) was added slowly. After stirring the reaction 

mixture for 1h at -25°C, the ammonium chloride salt 2 (7.67 g, 45.80 mmol, 2 eq) was added. 

Subsequently NMM (2.33 g, 22.90 mmol. 1eq) was added to the reaction mixture and the 

cooling bath was removed (over 2h) slowly. The reaction mixture was stirred for another day 

at rt before the solvent was removed in vacuo. The crude product was dissolved in EtOAc and 

extracted with H2O and brine, dried over Na2SO4, and concentrated in vacuo to a colorless oil. 

After addition of n-hexane, colorless crystals formed on standing overnight at -20°C. Filtration 

and subsequent washing with ice- cold n-Hexane yielded 4 (4.81 g, 14.81 mmol, 63.61%) as a 

white crystalline solid. 

Microanalysis: C15H26N2O6: calc. (%): C 54.53, H 7.93, N 8.48; found (%): C 54.55, H 7.89, N 8.72 

(Report No. 33436) 

1H NMR: (200 MHz, CDCl3): δ = 0.89 (d, 3H, CH(CH3)2, 3JH-H  = 7.1 Hz); 0.95 (d, 3H, CH(CH3)2,      3JH-

H  = 6.7Hz); 1.42 (s, 9H, C(CH3)3), 2.09 – 2.28 (m, 1H, CH(CH3)2), 2.36 (s, 3H, COCH3), 3.78 (s, 3H, 

CO2CH3), 4.04 (m, 1H, NHCHCO), 4.93-5.04 (m, 1H, CO2NH), 5.21 (d, 1H, BocNHCHCO), 7.02-

7.14, (m, 1H, NH) ppm. 

13C NMR: (200 MHz, CDCl3): δ = 17.47 (CH(CH3)2); 19.23(CH(CH3)2); 28.01 (COCH3); 28.29 

(C(CH3)3), 30.88 (CH(CH3)2), 53.29 (CO2CH3), 62.95 (NHCHCO2), 80.23 (C(CH3)3), 166.34 

(NHCOC(CH3)3), 171.44 (CO2CH3), 180.25(NHCO), 197.98 (COCH3) ppm. 

HR-DART+ MS: m/z calc. for [M+H]+: 331.182, [M+NH4]+ = 348.213, [2M+H]+ = 661.365, 

[2M+NH4]+ = 678.392; found: 331.188, 348.213, 661.371, 678.400.  
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8.3.5 Methyl 2-((S)-2-(tert-butoxycarbonylamino)-2-methylpropyl)-1,5-dimethyl-imidazole-4-

carboxylate (5): 

 

       Molecular formula: C16H27N3O4 

       Molecular weight: 325.40 g/mol 

          5 

Following known literature procedures,66,113 the amide 3 (23.69 g, 71.78 mmol) was dissolved 

in xylene (450 ml) and glacial acetic acid (28.6 ml) and MeNH2 (25.6 ml) were added to the 

solution. The reaction mixture was refluxed for 3 h at 155°C. Then, further 19.7 ml glacial acetic 

acid and 9.85 ml MeNH2 were added, and the reaction mixture was refluxed for another 5 h. 

After cooling to rt the solvent, MeNH2 and acetic acid were removed in vacuo. The crude 

product was purified by flash chromatography with silica gel (5 x 30 cm, EtOAc/PE= 4:1) to yield 

5 (20.21 g, 62.19 mmol, 86.63%) as a white solid. 

Microanalysis: C16H27N3O4: calc. (%): C 59.06, H 8.36, N 12.91; found (%): C 58.97, H 7.94, N 

13.04 (Report No. 33487) 

1H NMR: (200 MHz, CDCl3): δ = 0.78 (d, 3H, CH(CH3)2, 3JH-H  = 6.6 Hz); 1.02 (d, 3H, CH(CH3)2, 3JH-

H  = 6.5 Hz); 1.38 (s, 9H, C(CH3)3), 2.08 – 2.46 (m, 1H, CH(CH3)2), 2.53 (s, 3H, imiCH3), 3.54 (s, 3H, 

CO2CH3), 3.85 (s, 3H, NCH3), 4.53 (t, 1H, NHCH, 3JH-H  = 9.4Hz), 5.35 (bs, 1H, NH) ppm. 

HR-DART+ MS: m/z calc. for [M+H]+: 326.207, [2M+H]+ = 651.407, found: 326.208, 651.409. 
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8.3.6 Methyl 2-((R)-2-(tert-butoxycarbonylamino)-2-methylpropyl)-1,5-dimethyl-imidazole-4-

carboxylate (6): 

 

       Molecular formula: C16H27N3O4 

       Molecular weight: 325.40 g/mol 

         6 

Following a known literature procedures,66,113 the amide 3 (4.81 g, 14.58 mmol) was dissolved 

in xylene (92 ml). Glacial acetic acid (5.8 ml) and MeNH2 (5.2 ml) were added, before the 

reaction mixture was refluxed for 3 h at 155°C. Then, additional 2 ml glacial acetic acid and 4 

ml MeNH2 were added, and the reaction mixture was refluxed for another 5 h. After cooling 

the mixture to rt, the solvent, MeNH2 and acetic acid were removed in vacuo. The crude 

product was purified by flash chromatography with silica gel (3 x 25 cm, EtOAc/PE 3:1) to yield 

6 (3.02 g, 9.28 mmol, 63.65%) as a white solid. 

Microanalysis: C16H27N3O4: calc. (%): C 59.06, H 8.36, N 12.91; found (%): C 58.86, H 8.46, N 

12.74 (Report No. 33486) 

1H NMR: (200 MHz, CDCl3): δ = 0.80 (d, 3H, CH(CH3)2, 3JH-H  = 6.5 Hz); 0.99 (d, 3H, CH(CH3)2, 3JH-

H  = 6.8Hz); 1.38 (s, 9H, C(CH3)3), 2.11 – 2.30 (m, 1H, CH(CH3)2), 2.51 (s, 3H, imiCH3), 3.54 (s, 3H, 

CO2CH3), 3.85 (s, 3H, NCH3), 4.50 (t, 1H, NHCH, 3JH-H  = 9.1Hz), 5.35 (d, 1H, NH, 3JH-H  = 9.4Hz) 

ppm. 

HR-DART+ MS: m/z calc. for [M+H]+: 326.207, [2M+H]+ = 651.407, found: 326.208, 651.408. 
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8.3.7 (S)-1-(4-(methoxycarbonyl)-1,5-dimethyl-imidazole-2-yl)-2-methylpropan-1-ammonium 

trifluoro acetat (7): 

       Molecular formula: C13H20F3N3O4 

       Molecular weight: 339.31 g/mol 

 

     7 

The imidazole building block 5 (4.50 g, 13.83 mmol) was converted into 7 (4.71 g, 13.88 mmol) 

according to general procedure GP2 using TFA (27.5 ml) and DCM (210 ml). In this way, 7 was 

obtained quantitatively as a white solid foam. 

1H NMR: (200 MHz, CDCl3): δ = 0.80 (d, 3H, CH(CH3)2, 3JH-H  = 6.4 Hz); 0.98 (d, 3H, CH8CH3)2, 3JH-

H  = 6.7 Hz); 2.08 – 2.46 (m, 1H, CH(CH3)2), 2.50 (s, 3H, imiCH3), 3.54 (s, 3H, CO2CH3), 3.85 (s, 1H, 

NCH3), 4.50 (t, 1H, NHCH, 3JH-H  = 9.1Hz), 5.35 (d, 1H, NH, , 3JH-H  = 9.6 Hz) ppm. 

13C NMR: (200 MHz, CDCl3): δ = 10.57 (imiCH3), 18.66 (CH(CH3)2); 18.96(CH(CH3)2), 31.21 

(CH(CH3)2),33.63 (NCH3), 51.92 (CO2CH3), 53.48 (NH3
+CH), 125.93 (CimiCO2), 139.17 (CimiNCH3), 

144.04 (CimiCH3), 169.85 (CO2CH3), 180.25(NHCO) ppm. 

HR-DART+ MS: m/z calc. for [2Mamine+H]+ = 451.303, [3Mamine+H]+ = 676.450, found: 

451.303, 676.452.  
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8.3.8 (R)-2-(1-(tert-butoxycarbonylamino)-2-methylpropyl)-1, 5-dimethyl-imidazole-4-carbox 

ylic acid (8): 

 

       Molecular formula: C15H25N3O4 

       Molecular weight: 311.38 g/mol 

         8 

According to general procedure GP1, the imidazole building block 6 (4.95 g, 15.20 mmol) was 

converted into 8 (3.77 g, 12.11 mmol, 79.65%) as a white solid. Using 2M NaOH (77 ml) and 

174 ml of a dioxane/MeOH mixture. 

1H NMR: (200 MHz, CDCl3): δ = 0.81 (d, 3H, CH(CH3)2, 3JH-H  = 6.3 Hz); 1.17 (d, 3H, CH(CH3)2, 3JH-

H  = 6.4 Hz); 1.37 (s, 9H, C(CH3)3), 2.70 – 2.88 (m, 1H, CH(CH3)2), 2.63 (s, 3H, imiCH3), 3.85 (s, 3H, 

NCH3), 4.62 (t, 1H, NHCH, 3JH-H  = 9.5Hz), 5.27 (s, 1H, NH) ppm. 

HR-DART+ MS: m/z calc. for [M+H]+: 312.192, [2M+H]+ = 623.376, found: 312.193, 623.381.  
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8.3.9 Methyl 2-((S)-1-(2-((R)-1-(tert-butoxycarbonylamino)-2-methylpropyl)-1, 5-dimethyl-

imidazole-4-carboxamido)-2-methylpropyl)-1.5-dimethyl-imidazole-4-carboxylate (9): 

 

       Molecular formula: C26H42N6O5 

       Molecular weight: 518.64 g/mol 

 

    9 

Following general procedure GP3, the methyl deprotected building block 8 (3.11 g, 9.99 mmol) 

was coupled with the boc deprotected building block 7 (4.06 g, 11.97 mmol) to yield 9 (5.18 g, 

9.99 mmol). After purification by flash chromatography with silica gel (3 x 30 cm, 

EtOAc/DCM/MeOH 70:29:1) 9 was obtained as a lightly yellow powder. Coupling was done 

using 100 ml MeCN, 8.56 g (20.00 mmol) COMU, and 3.84 ml EDIPA (2.85 g, 22.04 mmol). 

1H NMR: (200 MHz, CDCl3): δ = 0.73 (d, 3H, CH(CH3)2, 3JH-H  = 6.6 Hz); 0.83 (d, 3H, CH(CH3)2, 3JH-

H  = 7.1 Hz); 0.88 (d, 3H, CHCH3, 3JH-H  = 6.7 Hz); 1.01 (d, 3H, CHCH3, 3JH-H  = 7.03 Hz); 1.40 (s, 9H, 

C(CH3)3), 2.01 – 2.27 (m, 1H, CH(CH3)2), 2.48 (s, 3H, imiCH3), 2.50 (s, 3H, imiCH3), 3.06 – 3.20 

(m, 1H, CH(CH3)2), 3.46 (s, 3H, NCH3), 3.56 (s, 3H, NCH3), 3.85 (s, 3H, CO2CH3),4.58 (t, 1H, NHCH, 

3JH-H  = 9.4Hz), 4.94 (d, 1H, NHCH, 3JH-H  = 9.2Hz), 5.50 (d, 1H, NHBoc), 8.10 (bs, 1H, NH) ppm. 
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8.3.10 2-((S)-1-(2-((R)-1-(tert-butoxycarbonylamino)-2-methylpropyl)-1,5-dimethyl-imidazole-4-

carboxamido)-2-methylpropyl)-1.5-dimethyl-imidazole-4-carboxylic acid (10): 

 

       Molecular formula: C25H40N6O5 

       Molecular weight: 504.62 g/mol 

 

    10 

According to general procedure GP1, the dimeric building block 9 (5.18 g, 9.99 mmol) was 

converted into 10 (4.83 g, 9.57 mmol, 95.81%) as a yellowish solid. 2M NaOH (80.6 ml) and 180 

ml of a dioxan/MeOH mixture were used. 

1H NMR: (200 MHz, CDCl3): δ = 0.74 (d, 3H, CH(CH3)2, 3JH-H  = 7.3 Hz); 0.88 (d, 3H, CH(CH3)2, 3JH-

H  = 6.7 Hz); 0.96 (d, 3H, CHCH3, 3JH-H  = 6.7 Hz); 1.09 (d, 3H, CHCH3, 3JH-H  = 7.1 Hz); 1.40 (s, 9H, 

C(CH3)3), 2.06 – 2.22 (m, 1H, CH(CH3)2), 2.30 – 2.53 (m, 1H, CH(CH3)2), 2.60 (s, 3H, imiCH3), 2.63 

(s, 3H, imiCH3), 3.22 (bs, 3H, NCH3), 3.66 (s, 3H, NCH3), 4.49- 4.82 (m, 2H, NHCßH), 5.24- 5.46 

(m, 1H, NHBoc), 6.8 (bs, 1H, NH), 9.92 (bs, 1H, COOH) ppm. 
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8.3.11 (R)-1-(4-(((S)-1-(4-carboxy-1,5-dimethyl-imidazol-2-yl)-2-methylpropyl)carbamoyl)-1,5-

dimethyl-imidazol-2-yl)-2-methylpropan-1-ammonium trifluoroacetat (11): 

 

       Molecular formula: C22H33N6O5F3 

       Molecular weight: 518.53 g/mol 

 

   11 

The methyl deprotected dimeric building block 10 (4.83 g, 9.57 mmol) was converted into the 

twice deprotected dimeric building block 11 (4.92 g, 9.49 mmol) following general procedure 

GP2. Compound 11 is isolated as a yellowish foam. TFA (18.33 ml) and DCM (80 ml) were used. 

The crude product was used without further purification. 
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8.3.12 H4pat1 (12): 

 

       Molecular formula: C40H60N12O4 

       Molecular weight: 772.98 g/mol 

 

 

 

 

12 

The cyclic pseudo octapeptide H4pat1 was prepared according to general procedure GP3. The 

deprotected peptidic building block 11 (4.67g, 9.00 mmol) was converted into 12 (1.17 g, 

1.51mmol, 16.80%) and obtained as a white solid. After purification by repetitive 

recrystallization from a MeOH / diethyl ether mixture and flash chromatography with silica gel 

(3 x 20 cm, EtOAc/DCM/MeOH 70:29:1) the product was obtained as a white powder. Coupling 

was performed, using 90 ml MeCN, 7.72 g (18 mmol) COMU, and 11.63 ml EDIPA (90 mmol). 

1H NMR: (600 MHz, MeOD-d4): δ = 0.86 (d, 12H, CH(CH3)2, 3JH-H  = 6.8 Hz); 0.91 (d, 12H, CH(CH3)2, 

3JH-H  = 6.8 Hz); 2.27 (o, 4H, CH(CH3)2), 2.57 (s, 12H, imiCH3), 3.65 (s, 12H, NCH3), 5.11 (bd, 4H, 

CH, 3JH-H  = 7.1 Hz), 8.68 (d, 0.9 H, NH, 3JH-H  = 9.0 Hz) ppm. 

13C NMR: (150 MHz, MeOD-d4): δ = 10.14 (CHetCH3); 19.10, 19.98 (CH(CH3)2); 31.67 (NCH3), 

35.07 (Cß), 51.47 (Cα), 130.46 (CHet-CO), 135.04 (CHet-NCH3), 148.57 (C=N), 165.76 (CO) ppm. 

15N NMR: (60 MHz, MeOD-d4): δ = 115.6 (NH); 166.0 (NCH3), 246.0 (C=N) ppm. 

HR-ESI+ MS: m/z calc. for [M+H]+: 773.493, [M+Na]+ = 795.475; found: 773.49, 795.476.  
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8.4 Synthesis of H4pat2 

 

8.4.1 (S)-2-(1-(tert-butoxycarbonylamino)-2-methylpropyl)-1,5-dimethyl-imidazole-4-carbox-ylic 

acid (13): 

 

       Molecular formula: C15H25N3O4 

       Molecular weight: 311.38 g/mol 

         13 

According to general procedure GP1, the imidazole building block 5 (3.10 g, 9.57 mmol) was 

converted into 13 (2.90 g, 9.31 mmol, 97.28%) as a white solid. 46.7 ml 2M NaOH and 112.5ml 

of the dioxan/MeOH mixture were used. 

1H NMR: (200 MHz, CDCl3): δ = 0.78 (d, 3H, CH(CH3)2, 3JH-H  = 6.3 Hz); 1.11 (d, 3H, CH(CH3)2, 3JH-

H  = 6.4 Hz); 1.37 (s, 9H, C(CH3)3), 2.39 – 2.55 (m, 1H, CH(CH3)2), 2.58 (s, 3H, imiCH3), 3.68 (s, 3H, 

NCH3), 4.55 (t, 1H, NHCH, 3JH-H  = 9.5Hz), 6.81 (bs, 1H, NH) ppm. 

HR-DART+ MS: m/z calc. for [M+H]+: 312.192, [2M+H]+ = 623.376, found: 312.193, 623.381.  
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8.4.2 Methyl 2-((R)-1-(2-((R)-1-(tert-butoxycarbonylamino)-2-methylpropyl)-1,5-dimethyl-

imidazole-4-carboxamido)-2-methylpropyl)-1.5-dimethyl-imidazole-4-carboxylate (14): 

 

       Molecular formula: C26H42N6O5 

       Molecular weight: 518.64 g/mol 

 

   14 

Following general procedure GP3, the methyl deprotected building block 13 (2.96 g, 9.51 mmol) 

was coupled with the boc deprotected building block 7 (3.78 g, 11.14 mmol) to yield 14 (4.04 

g, 7.79 mmol, 81.90%), after purification by flash chromatography with silica gel (3 x 30 cm, 

EtOAc/DCM/MeOH 75:25:1) as a light yellow powder. Coupling was done, using 130 ml MeCN, 

8.57 g (20.01 mmol) COMU, and 3.84 ml EDIPA (3.88 g, 30.02 mmol). 

1H NMR: (200 MHz, CDCl3): δ = 0.73 (d, 3H, CH(CH3)2, 3JH-H  = 7.3 Hz); 0.81 (d, 3H, CH(CH3)2, 3JH-

H  = 6.8 Hz); 0.91 (d, 3H, CHCH3, 3JH-H  = 7.2 Hz); 0.99 (d, 3H, CHCH3, 3JH-H  = 7.5 Hz); 1.38(s, 9H, 

C(CH3)3), 2.00 – 2.31 (m, 1H, CH(CH3)2), 2.44 (s, 3H, imiCH3), 2.45 (s, 3H, imiCH3), 3.08 – 3.21 

(m, 1H, CH(CH3)2), 3.42 (s, 3H, NCH3), 3.56 (s, 3H, NCH3), 3.81 (s, 3H, CO2CH3),4.32- 4.55 (m, 2H, 

NHCH ), 5.20 (d, 1H, NHBoc, 3JH-H  = 9.0Hz ), 7.62 (d, 1H, NH, 3JH-H  = 9.5Hz) ppm. 
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8.4.3 2-((S)-1-(2-((S)-1-(tert-butoxycarbonylamino)-2-methylpropyl)-1,5-dimethyl-imidazole-4-

carboxamido)-2-methylpropyl)-1.5-dimethyl-imidazole-4-carboxylic acid (15): 

 

       Molecular formula: C25H40N6O5 

       Molecular weight: 504.62 g/mol 

 

    15 

According to general procedure GP1, the dimeric building block 14 (4.04 g, 7.79 mmol) was 

converted into 15 (1.11 g, 2.20 mmol, 28.80%), which was obtained as a yellowish solid. 63 ml 

2M NaOH and 138 ml of the described dioxan/MeOH mixture were used. 

1H NMR: (200 MHz, CDCl3): δ = 0.80 (d, 3H, CH(CH3)2, 3JH-H  = 7.2 Hz); 0.82 (d, 3H, CH(CH3)2, 3JH-

H  = 7.1 Hz); 0.90 (d, 3H, CHCH3, 3JH-H  = 6.7 Hz); 1.03 (d, 3H, CHCH3, 3JH-H  = 7.0 Hz); 1.39 (s, 9H, 

C(CH3)3), 2.10 – 2.41 (m, 1H, CH(CH3)2), 2.54 (bs, 6H, imiCH3), 3.21 (bs, 3H, NCH3), 3.62 (s, 3H, 

NCH3), 3.87- 4.39 (bm, 1H, CH(CH3)2), 4.55 (q, 1H, NHCßH, 3JH-H  = 8.7 Hz), 5.08 (t, 1H, 1H, NHCßH, 

3JH-H  = 10.0 Hz), 6.59 (d, 1H, NHBoc, 3JH-H  = 8.3 Hz), 8.65 (bs, 1H, NH) ppm. 
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8.4.4 (S)-1-(4-(((S)-1-(4-carboxy-1,5-dimethyl-imidazol-2-yl)-2-methylpropyl)carbamoyl)-1,5-

dimethyl-imidazol-2-yl)-2-methylpropan-1-ammonium trifluoroacetat (16): 

 

       Molecular formula: C22H33N6O5F3 

       Molecular weight: 518.53 g/mol 

 

   16 

According to general procedure GP2, the methyl deprotected dimeric building block 15 (1.55 

g, 3.07 mmol) was converted into 16 (1.58 g, 3.04 mmol) as a yellowish foam. Using 5.9 ml TFA 

and 25 ml DCM, a quantitative yield was reached and the product was used without further 

purification.  

1H NMR: (200 MHz, DMSO d6): δ = 0.80 (d, 3H, CH(CH3)2, 3JH-H  = 5.9 Hz); 0.86 (d, 3H, CH(CH3)2, 

3JH-H  = 7.0 Hz); 0.95 (d, 3H, CHCH3, 3JH-H  = 6.8 Hz); 1.01 (d, 3H, CHCH3, 3JH-H  = 6.7 Hz); 2.10 – 

2.39 (m, 1H, CH(CH3)2), 2.44 (s, 3H, imiCH3), 2.47 (s, 3H, imiCH3), 3.50 (bs, 3H, NCH3), 3.09- 3.20 

(bm, 1H, CH(CH3)2), 3.53 (bs, 3H, NCH3), 4.02 (q, 1H, NHCßH, 3JH-H  = 7.2 Hz), 4.42 (bs, 1H, NH2), 

5.07 (t, 1H, 1H, NHCßH, 3JH-H  = 9.9 Hz), 8.02 (bs, 1H, NH, 3JH-H  = 9.9 Hz), 8.43 (bs, 1H, COOH) 

ppm. 
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8.4.5 H4pat2 (17): 

 

       Molecular formula: C40H60N12O4 

       Molecular weight: 772.98 g/mol 

 

 

 

 

17 

The cyclic pseudo octapeptide H4pat1 was prepared according to general procedure GP3. The 

twice deprotected peptidic building block 16 (1.68 g, 3.32 mmol) was converted into 17 (0.22 

g, 0.28 mmol, 8.79%) as a white solid. After purification by repetitive recrystallization from a 

methanol / diethyl ether mixture and flash chromatography with silica gel (3 x 20 cm, 

EtOAc/DCM/MeOH 70:29:1) the product yielded as a white powder. Coupling was done, using 

35 ml MeCN, 2.78 g (6.48 mmol) COMU, and 5.6 ml EDIPA (32.4 mmol). 

1H NMR: (600 MHz, MeOD-d4): δ = 0.88 (d, 12H, CH(CH3)2, 3JH-H  = 6.7 Hz); 1.10 (d, 12H, CH(CH3)2, 

3JH-H  = 6.7 Hz); 2.36- 2.45 (m, 4H, Hß), 2.49 (s, 12H, imiCH3), 3.66 (s, 12H, NCH3), 4.92 (d, 4H, Hα, 

3JH-H  = 7.1 Hz), 7.89 (d, 0.1 H, NH, 3JH-H  = 9.0 Hz) ppm. 

13C NMR: (150 MHz, MeOD-d4): δ = 10.20 (CHetCH3); 19.83, 20.08 (CH(CH3)2); 30.98 (NCH3), 

34.24 (Cα), 51.63 (CH(CH3)2), 130.08 (CHet-CO), 135.05 (CHet-NCH3), 149.01 (C=N), 165.69 (CO) 

ppm. 

15N NMR: (60 MHz, MeOD-d4): δ = 114.1 (NH); 165.5 (NCH3), 241.5 (C=N) ppm. 

HR-ESI+ MS: m/z calc. for [M+H]+: 773.493, [M+Na]+ = 795.475; found: 773.493, 795.477. 
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8.5 Synthesis of H4pat4 

 

8.5.1 Methyl 2-((S)-2-(benzyloxycarbonylamino)-3-methylbutanamido)-3-oxobutanoat (18): 

 

       Molecular formula: C18H24N2O6 

       Molecular weight: 364.39 g/mol 

       18 

According to literature known procedures, 66,113 (S)-Cbz-valine (10.00 g, 39.79 mmol) and NMM 

(4.05 g, 39.79 mmol, 1eq) were dissolved in 520 ml dry THF and cooled to -25°C. Then, 1 eq. of 

isobutyl chloroformate (5.53 g, 39.79 mmol) was added carefully. After stirring the reaction 

mixture for 1h at -25°C, the ammonium chloride salt 2 (6.66 g, 39.79 mmol, 1eq) was added. 

The reaction mixture was treated subsequently with NMM (4.05 g, 39.79 mmol, 1eq). 

Afterwards, the cooling bath was removed slowly (over 2h), and the reaction mixture was 

stirred for another day at rt, before the solvent was removed in vacuo. The crude product was 

dissolved in EtOAc and extracted with H2O and brine, dried over Na2SO4, and concentrated in 

vacuo to a colorless oil. Colorless crystals were obtained on standing overnight at -20°C. 

Filtration and subsequent washing with ice-cold n-hexane yielded 18 (9.50 g, 26.07 mmol, 

65.52%) as a white crystalline solid. 

Microanalysis: C18H24N2O6: calc. (%): C 59.33, H 6.64, N 7.69; found (%): C 59.61, H 7.22, N 6.68 

(Report No. 33724) 

1H NMR: (200 MHz, CDCl3): δ = 0.85 – 1.07 (m, 6H, CH(CH3)2); 1.88- 2.29 (m, 1H, CH(CH3)2), 2.36 

(s, 3H, COCH3), 3.79 (s, 3H, CO2CH3), 4.05 (d, 1H, NHCαH, 3JH-H  = 6.6 Hz), 5.09 (s, 2H, CH2-Ar), 

5.19 (d, 1H, NHCHCOOMe, 3JH-H  = 6.6 Hz), 5.25- 5.35 (m, 1H, NHCHCOOMe), 6.99 (bt, 1H, NH, 

3JH-H  = 6.6 Hz), 7.26- 7.38 (m, 5H, Harom) ppm. 

ESI+ MS: m/z calc. for [M+H]+: 365.0, [M+Na]+ = 387.1; found: 365.0, 387.1 
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8.5.2 Methyl 2-((S)-1-(benzyloxycarbonylamino)-2-methylpropyl)-5-methyl-1H-imidazole-4-

carboxylate (19): 

 

       Molecular formula: C18H23N3O4 

       Molecular weight: 345.39 g/mol 

        19 

Compound 19 was prepared following known literature procedures.67 The twice protected oxo- 

peptide 18 (4.40 g, 12.07 mmol) was suspended in 200 ml xylene, before 1.85 ml TFA (2 eq, 

24.15 mmol, 2.75 g) and 0.53 ml ammonia in methanol (2 eq, 24.15 mmol, 0.41 g) were added. 

The reaction mixture was refluxed for 6h, with azeotropic removal of water. Then a further 2 

ml of TFA and 1 ml of ammonia were added, and the reaction mixture was refluxed for another 

6 h. After cooling to rt, solvent, ammonia and TFA were removed in vacuo. The crude product 

was purified by flash chromatography with silica gel (5 x 30 cm, EtOAc/PE 1:1) to yield 19 (1.60 

g, 4.63 mmol, 38.36%) as a white foam. 

1H NMR: (200 MHz, CDCl3): δ = 0.90 – 1.01 (m, 6H, CH(CH3)2); 2.08- 2.25 (m, 1H, CH(CH3)2), 2.15 

(s, 3H, COOCH3), 3.59 (s, 3H, imiCH3), 3.93- 4.13 (m, 1H, NHCαH), 5.09 (s, 2H, CH2-Ar), 5.25- 5.50 

(m, 1H, NH), 7.34 (m, 5H, Harom) ppm. 

HR-ESI+ MS: m/z calc. for [M+H]+: 346.176, [M+Na]+ = 368.158; found: 346.177, 368.158 
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8.5.3 Methyl 2-((S)-1-( tert-butoxycarbonylamino)-2-methylpropyl)-5-methyl-1H-imidazole-4-

carboxylate (20): 

 

       Molecular formula: C15H25N3O4 

       Molecular weight: 311.18 g/mol 

       20 

According to known literature procedures,67 9 the cbz- protected imidazole building block 19 

(4.03 g, 11.68 mmol) was dissolved in THF (200 ml). Then palladium hydroxide (45g) and Boc2O 

(1 eq, 2.55 g, 11.70 mmol) were suspended. The reaction mixture was stirred for 1 day under a 

H2-atmosphere before the mixture was filtered over celite. The solution was concentrated in 

vacuo. The crude product was dissolved in EtOAc, purified by flash chromatography with silica 

gel (5 x 25 cm, PE/EtOAc 2:3) and yielded the boc- protected imidazole 20 as a white foam (4.03 

g, 12.95 mmol,). 

1H NMR: (600 MHz, CDCl3): δ = 0.78 (d, 3H, CH(CH3)2, 3JH-H  = 5.5 Hz), 0.99 (d, 3H, CH(CH3)2,      3JH-

H  = 5.5 Hz), 1.41 (s, 9H, C(CH3)3), 2.40 – 2.53 (m, 1H, CH(CH3)2), 2.49 (s, 3H, imiCH3), 3.81 (s, 3H, 

CO2CH3),  4.29 (bs, 1H, CαH) ppm. 

HR-DART+ MS: m/z calc. for [M+H]+: 312.192, [2M+H]+ = 623.376, found: 312.193, 623.381. 
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8.5.4 Methyl-1-benzyl-2-((S)-1-(tert- butoxycarbonylamino)-2-methylpropyl)-5-methyl-

imidazole-4-carboxylate (21): 

 

       Molecular formula: C22H31N3O4 

       Molecular weight: 401.50 g/mol 

 

       21 

Following known literature procedures,67 the boc- protected imidazole building block 20 (4.03 

g, 12.95 mmol) was dissolved in dry DMF (400 ml) and cooled down to 0°C. At this temperature 

NaH (60% dispersion in mineral oil: 1.5eq, 777g, 19.42 mmol) was suspended. Subsequently 

1.5 eq. of benzyl bromide (3.33 g , 19.429 mmol) was added to the reaction mixture. Afterwards 

the mixture was stirred for 3h at 0°C, before it was allowed to warm up to rt. At rt the reaction 

mixture was stirred overnight. The next day the reaction mixture was slowly poured on Ice 

(1000 g). After allowing the mixture to warm up to rt the resulting solid was filtered off. The 

crude product was dissolved in DCM and extracted with H2O and brine, dried over Na2SO4, and 

concentrated in vacuo to yield as a yellowish solid 21 (4.16 g, 10.37 mmol, 80.07%). 

1H NMR: (600 MHz, CDCl3): δ = 0.64 (d, 3H, CH(CH3)2, 3JH-H  = 6.8 Hz), 0.96 (d, 3H, CH(CH3)2,      3JH-

H  = 6.8 Hz), 1.38 (s, 9H, C(CH3)3), 2.15 – 2.25 (m, 1H, CH(CH3)2), 2.45 (s, 3H, imiCH3), 3.89 (s, 3H, 

CO2CH3),  4.47 (d, 1H, CαH, 3JH-H  = 9.6Hz), 5.38 (d, 1H, CαH2-Ph, 3JH-H  = 5.0Hz), 7.06-7.37 (m, 

5H, CArH) ppm. 

HR-DART+ MS: m/z calc. for [M+H]+: 402.239, [2M+H]+ = 804.470, found: 402.239, 804.476. 
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8.5.5 Methyl 2-((S)-1-(tert- butoxycarbonylamino)-2-methylpropyl)-5-methyl-imidazole-4-

carboxylic acid (22): 

 

       Molecular formula: C21H29N3O4 

       Molecular weight: 387.47 g/mol 

 

  22 

Methyl deprotected building block 22 was prepared according to general procedure GP1 from 

the imidazole building block 21 (4.16 g, 10.37 mmol). Compound 22 (4.87 g, 12.57 mmol, 

quantitative) yielded as a white solid foam. 53 ml 2M NaOH and 126 ml of the dioxane/MeOH 

mixture were used. 

1H NMR: (600 MHz, CDCl3): δ = 0.42 (d, 3H, CH(CH3)2, 3JH-H  = 6.8 Hz), 0.68 (d, 3H, CH(CH3)2,      3JH-

H  = 7.1 Hz), 1.10 (s, 9H, C(CH3)3), 2.04 – 2.10 (m, 1H, CH(CH3)2), 2.31 (s, 3H, imiCH3), 4.14 (t, 1H, 

CαH, 3JH-H  = 9.2Hz), 5.10 (s, 1H, CH2-Ph), 6.80-7.19 (m, 5H, CArH) ppm. 

HR-DART+ MS: m/z calc. for [M+H]+: 388.223, found: 388.222. 
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8.5.6 Methyl 2-((S)-1-(1-benzyl-2-((S)-1- (tert-butoxycarbonylamino)-2-methylpropyl)-5-methyl-

imidazole-4-carboxamido)-2-methylpropyl)-1.5-dimethyl-imidazole-4-carboxylate (23): 

 

       Molecular formula: C32H46N6O5 

       Molecular weight: 594.75 g/mol 

 

23 

According to general procedure GP3, the methyl deprotected building block 21 (4.87 g, 12.57 

mmol) was coupled with the boc deprotected building block 5 (3.58 g, 10.61 mmol) to yield 23 

(5.04 g, 8.90 mmol, 85.57%) as a yellowish foam, which was recrystallized a few times in a 

CHCl3/MeOH mixture. Coupling was performed, using 80 ml MeCN, 4.22 g (9.85 mmol) COMU, 

and 40 ml EDIPA. 

1H NMR: (600 MHz, CDCl3): δ = 0.50-0.61 (m, 3H, CH(CH3)2); 0.81-0.87 (m, 6H, CH(CH3)2); 0.91-

0.97 (m, 3H, CH(CH3)2); 1.33 (s, 3H, C(CH3)3); 2.20 – 2.31 (m, 1H, imiBn-CH(CH3)2), 2.44 (s, 3H, 

imiBn-CH3), 2.53 (s, 3H, imi-CH3), 2.62- 2.78 (s, 1H, CH(CH3)2), 3.73 (s, 3H, NCH3), 3.89 (s, 3H, 

CO2CH3), 4.47 (t, 1H, imiBn-CßH, 3JH-H  = 9.1 Hz), 4.96 (t, 1H, imi-CßH, 3JH-H  = 9.6 Hz), 5.10-5.43 

(m, 2H, CH2-Ph) 6.98-7.36 (m, 5H, CArH) ppm. 

HR-DART+ MS: m/z calc. for [M+H]+: 595.360, [2M+H]+ = 1189.713, found: 595.358, 1189.704. 
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8.5.7 Methyl 2-((S)-1-(1-benzyl-2-((S)-1- (tert-butoxycarbonylamino)-2-methylpropyl)-5-methyl-

imidazole-4-carboxamido)-2-methylpropyl)-1.5-dimethyl-imidazole-4--carboxylic acid (24): 

 

       Molecular formula: C31H44N6O5 

       Molecular weight: 580.72 g/mol 

 

24 

Following to general procedure GP1, the dimeric building block 23 (8.00 g, 14.11 mmol) was 

converted into the yellowish solid 24 (4.76 g, 8.20 mmol, 58.04%). 2M NaOH (70 ml) and 220 

ml of a dioxin/MeOH mixture were used. The crude product 25 was used without further 

purification. 

HR-DART+ MS: m/z calc. for [M+H]+: 581.344, found: 581.344. 

 

8.5.8 (S)-1-(4-(((S)-1-(4-carboxy-1,5-dimethyl-imidazol-2-yl)-2-methylpropyl)carbamoyl)-1- 

benzyl-5-methyl-imidazol-2-yl)-2-methylpropan-1-ammonium trifluoroacetat (25): 

 

       Molecular formula: C28H37N6O4F3 

       Molecular weight: 578.63 g/mol 

 

             25 

According to general procedure GP2, the methyl deprotected dimeric building block 24 (4.76 

g, 8.19 mmol) was converted into 25 (4.90 g, 8.20 mmol), which is isolated as a yellowish resin. 

16.36 ml TFA and 160 ml DCM were used. The crude product 25 was used without further 

purification.  
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8.5.9 H4pat4 (26): 

 

       Molecular formula: C52H68N12O4 

       Molecular weight: 924.17 g/mol 

 

 

 

         26 

The cyclic pseudo octapeptide H4pat1 26 (900 mg, 0.93 mmol, 11.86%) was prepared from the 

deprotected building block 25 (4.90 g, 8.20 mmol), following general procedure GP3. After 

purification 26 was obtained as a white solid. Purification was done by repetitive 

recrystallization from a methanol/diethyl ether mixture and flash chromatography with silica 

gel (3 x 30 cm, EtOAc/DCM 65:35). Coupling was performed, using MeCN (30 ml), COMU (7.02 

g, 16.40 mmol), and EDIPA (20 ml). 

1H NMR: (600 MHz, MeOD-d4/CDCl3 3:1): δ = 0.72 (d, 6H, CH(CH3)2, 3JH-H  = 6.58 Hz); 0.87 (d, 6H, 

CH(CH3)2, 3JH-H  = 6.71 Hz); 1.01 (d, 6H, CH(CH3)2, 3JH-H  = 6.73 Hz); 1.12 (d, 6H, CH(CH3)2, 3JH-H  = 

6.62 Hz); 2.28 (m, 2H, Bn-imi-Hß); 2.41 (s, 6H, BnN-CHetCH3); 2.42 (s, 6H, CH3N-CHetCH3); 2.48- 

2.56 (m, 2H, CH3-imi-Hß); 3.66 (s, 6H, NCH3); 4.89 (d, 4H, Hα, 3JH-H  = 9.90 Hz); 5.37 (dd, 4H, CH2-

Ph, 2JH-H  = 16.98 Hz, 1JC-H  = 154.65 Hz); 6.90- 6.93 (m, 4H, HPh); 7.14- 7.20 (m, 6H, HPh) ppm. 

13C NMR: (150 MHz, MeOD-d4/CDCl3 3:1): δ = 10.32 (CH3N-CHetCH3); 10.35 (BnN-CHetCH3); 19.80, 

19,84; 19.86; 20.71 (CH(CH3)2); 30.99 (NCH3); 32.95 (CH3-imi-Cß); 34.47 (Bn-imi-Cß); 47.60 (CH2-

Ph); 51.02, 51.93 (Cα); 127.18 (CPh); 128.73 (CPh); 129.94 (CPh); 130.50 (CH3N-CHetCH3); 134.70 

(CH3-imiCHet-CO); 134.89 (Bn-imiCHet-CO); 137.78 (BnN-CHetCH3); 148.83 (CH3-imiC=N); 149.14 

(Bn-imiC=N); 165.04 (CH3-imi-CO); 165.57 (CH3-imi-CO) ppm. 

15N NMR: (60 MHz, MeOD-d4/CDCl3 3:1):δ = 119 (NH); 167 (NBn), 177 (NCH3), 248 (C=N) ppm. 

HR-ESI+ MS: m/z calc. for [M+H]+: 926.181, [M+Na]+: 947.537; found: 926.182, 947.538.  
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8.6 Synthesis of H4pat5 (27): 

8.6.1 H4pat5 (27): 

 

       Molecular formula: C64H76N12O4 

       Molecular weight: 1077.366 g/mol 

 

 

 

 

27 

According to general procedure GP2, the methyl deprotected peptidic building block 22 

(387.47mg, 1.04mmol) was boc-deprotected using TFA (6.5 ml) and DCM (70 ml) a quantitative 

Yield was expected, and the crude product was subsequently coupled to a tetramer as 

described in GP3. After purification by repetitive recrystallization from a methanol / Chloroform 

/ diethyl ether mixture and flash chromatography with silica gel (3 x 30 cm, EtOAc/DCM 20:80) 

the product 27 was isolated 164.80mg (149.25µmol, 14.35%) as a white powder. Coupling was 

done, using MeCN (100 ml), FDPP (1.12 g, 2.93 mmol), and EDIPA (0.8 ml, 4.39 mmol). 

1H NMR: (600 MHz, MeOD/CDCl3 3:1): δ = 0.59 (d, 12H, CH(CH3)2, 3JH-H  = 6.7 Hz); 1.01 (d, 12H, 

CH(CH3)2, 3JH-H  = 6.7 Hz); 2.28- 2.38 (m, 4H, CH(CH3)2), 2.43 (s, 12H,imiCH3), 4.86 (d, 4H, CßH, 

3JH-H  = 9.70 Hz), 5.43 (dd, 4H, CH2-Ph, 2JH-H  = 16.92 Hz, 1JC-H  = 184.06 Hz), 7.05-7.30 (m, 20H, 

Ph) ppm. 

13C NMR: (150 MHz,MeOD/CDCl3 3:1): δ = 9.18 (CHetCH3); 18.30, 19.01 (CH(CH3)2); 32.08 (Cα), 

46.58 (CH2-Ph); 49.98 (Cα); 126.178 (CPh); 127.56 (CPh); 128.57 (CPh); 133.33 (Bn-imiCHet-CO); 

136.28 (BnN-CHetCH3); 147.77 (Bn-imiC=N); 163.60 (CO) ppm. 

15N NMR: (60 MHz, MeOD/CDCl3 3:1): δ = 118.4 (NH); 177.6 (NBn), 246.9 (C=N) ppm. 

HR-ESI+ MS: m/z calc. for [M+H]+: 1077.619, [M+Na]+ = 1100.608; found: 1077.620, 1100.609.  



P H O S P H A T A S E  A C T I V I T Y  O F  H O M O -  A N D  H E T E R O D I N U C L E A R  T R A N S I T I O N  M E T A L  

C O M P L E X E S  O F  P A T E L L A M I D E S     | 162 

8.7 Synthesis of Phosphatase model substrate 

8.7.1 Pyridinium Bis-(2,4-dinitrophhenyl) phosphate (27): 254 

 

       Molecular formula: C17H12N5O12P 

       Molecular weight: 509.28 g/mol 

27 

2,4-Dinitrophenol (9.80 g, 53.2 mmol, 3 eq) was  dissolved in anhydrous MeCN (100 ml) under 

an Ar-atmosphere. After addition of anhydrous pyridine (8.6 ml, 106 mmol, 6 eq), the solution 

was cooled to 0°C and phosphoryl chloride (1.63 ml, 17.7 mmol, 1 eq) was added carefully. The 

reaction mixture was stirred for 30 minutes at 0°C before it was poured onto 100 g of ice and 

kept in the fridge over night. The resulting precipitate was filtered off and washed with a small 

amount of ice cold water. Afterwards, the crude product was recrystallized from acetone to 

yield BDNPP pyridinium salt 27 (7.62 g, 14.27 mmol, 80.62%) as a white crystalline solid. 

Microanalysis: C5H10ClNO3: calc. (%): C 40.09, H 2.37, N 13.73; found (%): C 40.03, H 2.56, N 

13.74 (Report No. 36464) 

1H NMR: (400 MHz, Acetone - d6): δ = 3.04 (bs, 1H, NH+); 8.11 (d, 2H, CArHortho, 3JH-H  = 9.2 Hz); 

8.23 (dd, 2H, CPyHMeta, 3JH-H  = 7.5 Hz, 3JH-H  = 6.6 Hz); 8.51 (dd, 2H, CArHMeta, 3JH-H  = 9.2 Hz, 4JH-H  

= 2.8 Hz); 8.71 (d, 2H, NO2C-CH-CNO2, 3JH-H  = 2.8 Hz); 8.76 (dd, 1H, CPyHPara, 3JH-H  = 7.9 Hz, 4JH-H  

= 1.5 Hz); 9.01 (d, 2H, CPyHOrtho, 3JH-H  = 5.4 Hz) ppm. 

13C NMR: (100 MHz, Acetone - d6): δ = 121.73 (NO2Cortho-CArH); 124.37 (CArHortho); 124.40 

(CArHMeta); 128.45 (CPyHMeta); 129.29 (COrthoNO2); 143.26 (CParaNO2); 143.30 (CPyHOrtho); 147.33 

(CPyHPara); 152.15 (POC) ppm. 

31P NMR: (162 MHz, Acetone - d6): δ = -14.13 ppm. 

HR-ESI- MS: m/z calc. for C12H6N4O12P- 428.975, found 428.972. 
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10 Appendix 

 

Figure A.1: CV traces for selected copper(II) complexation-steps of H4pat4 (0.1mM in methanol with 

0.1M (tBu)4NPF6 and vs. Fc/Fc+ at 25°C). 
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Figure A.2: CV of a selected copper(II) complexation-step of H4pat1 (1mM in methanol with 0.1M 

(tBu)4NPF6 and vs. Fc/Fc+ , 100 mV/s, Ag/AgNO3 0.01M,at 25°C). 

 

Figure A.3: CV of selected copper(II) complexation-steps of H4pat1 (0.1mM in methanol with 0.1M 

(tBu)4NPF6 and vs. Fc/Fc+ , 100 mV/s, Ag/AgNO3 0.01M,at 25°C). 
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Figure A 4: SQW overlays for selected copper(II) complexation-steps of H4pat1 (0.1mM in methanol 

with 0.1M (tBu)4NPF6 and vs. Fc/Fc+, 100 mV/s, Ag/AgNO3 0.01M,at 25°C). 
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Figure A.5: CV of selected copper(II) complexation-steps of H4pat2 (0.1mM in methanol with 0.1M 

(tBu)4NPF6 and vs. Fc/Fc+ , 100 mV/s, Ag/AgNO3 0.01M,at 25°C).  

 

Figure A.6: CV/ SQW overlay of a selected copper(II) complexation-steps of H4pat2 (0.1mM in 

methanol with 0.1M (tBu)4NPF6 and vs. Fc/Fc+ , 100 mV/s, Ag/AgNO3 0.01M,at 25°C).

1000 0 -1000 -2000

10µA

E[mV]

 H
4
pat

2
+2eq Cu

II
 +4eq OMe

-
 +CO2

 H
4
pat

2
+2eq Cu

II
 +4eq OMe

-

 H
4
pat

2
+2eq Cu

II
 +3eq OMe

-

 H
4
pat

2
+2eq Cu

II
 +2eq OMe

-
 

 H
4
pat

2
+2eq Cu

II

1500 1000 500 0 -500 -1000

E [mV]

H
4
pat

2
+2eq Cu

II
 +4eq OMe

-

5 µA



 

  | 183 

 

 

Figure A.7: SQW of selected copper(II) complexation-steps of H4pat2 (0.1mM in methanol with 0.1M 

(tBu)4NPF6 and vs. Fc/Fc+ , 100 mV/s, Ag/AgNO3 0.01M,at 25°C).  

 

Figure A.8: CV of selected copper(II) complexation-steps of H4pat3 (1mM in methanol with 0.1M 

(tBu)4NPF6 and vs. Fc/Fc+ , 100 mV/s, Ag/AgNO3 0.01M,at 25°C).  
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Figure A.9: SQW of selected copper(II) complexation-steps of H4pat3 (0.1mM in methanol with 0.1M 

(tBu)4NPF6 and vs. Fc/Fc+ , 100 mV/s, Ag/AgNO3 0.01M,at 25°C).  

 

Figure A.10: CV of selected copper(II) complexation-steps of H4pat5 (0.1mM in methanol with 0.1M 

(tBu)4NPF6 and vs. Fc/Fc+ , 100 mV/s, Ag/AgNO3 0.01M,at 25°C).  
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Figure A.11: SQW of selected copper(II) complexation-steps of H4pat5 (0.1mM in methanol with 

0.1M (tBu)4NPF6 and vs. Fc/Fc+ , 100 mV/s, Ag/AgNO3 0.01M,at 25°C).  

 

 

 

Figure A.12: HR-+ESI MS of oxygenation solution.  
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Figure A.13: X-Band EPR spectra of CuOTf2 1 mM in MeOH (black) and 5 mM in MeOH / Bufffer 3:1 

at pH = 6.5, both detected at 140K and 9.44 GHz.  

 

 

Figure A. 14: Recorded 13C NMR spectra in methanol with and without an in situ prepared H4pat2 

and zinc(II) triflate and sodium methanolate mixture, MeOD 1mM, 25°C, 400 mHz. 
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Figure A 15: Michaelis-Menten measurement fitted with equation 6.2; [CuZn(H3pat2)(OH)]+ ([cat.] 

30µM, 25°C). 

 

Figure A 16: pH-profiles of the BDNPP hydrolysis with “[Zn2(H2pat1)(OH)]+”. 
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