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Kurzzusammenfassung
In der vorliegenden Arbeit werden Hochfrequenz- und X-Band-Elektronenspinresonanz-
(ESR) Spektroskopie sowie Messungen der statischen Magnetisierung an korrelierten
Elektronensystemen und metallorganischen Spinsystemen vorgestellt. Ergebnisse der
ESR-Spektroskopie an Na3Ni2SbO6 und Li3Ni2SbO6 mit hexagonaler Schichtstruktur
zeigen uniaxiale beziehungsweise orthorhombische antiferromagnetische Resonanzen im
magnetisch geordneten Zustand, mit Spinanregungslücken von 358 GHz bzw. 200
GHz. Das zweilagige Kagomé-Gitter Ca10Cr7O28, ein frustriertes Spinsystem, zeigt
einen anisotropen g-Faktor (gb = 1.94, gc = 2.01) in den Hochfrequenz-ESR Daten.
Die Analyse der X-band ESR Daten zeigt, dass die Temperaturabhängigkeit der
Linienbreiten in den verschiedenen kristallographischen Richtungen ähnlich ist. Bei
den metalloganischen Systemen wurden zwei Nickel-Dimere [Ni2L(dppba)]ClO4 und
[Ni2L(dppba)AuPh]BPh4 (1) mit ähnlichen Liganden untersucht, wobei bei (1) ein
zusätzliches Gold-Atom an das Phosphor-Atom eines Liganden gebunden ist. Beide
Systeme zeigen eine ferromagnetische Kopplung der Ni-Ionen sowie eine uniaxiale
Anisotropie von etwa -12 GHz. Der Au-Ligand bewirkt keine signifikante Änderung der
magnetischen Eigenschaften. Resultate der Messungen am [Ni(III)Ni(II)(LDA)](BPh4)2
Komplex zeigen einen Gesamtspin von S = 3/2, der auf ferromagnetische Kopplung
zwischen dem Ni2+- (S = 1) und dem Low-Spin (S = 1/2) Ni3+-Ion hinweist. Auch
in diesem Fall tritt eine uniaxiale Anisotropie (-49 GHz) auf. ESR-Messungen an
(HNEt3)2Cu(II)[12-MCCu(II)N(Shi)-4] zeigen typische Pulverspektren, die sich durch
einen S = 1/2 Spin-Hamiltonian und gx = 2,03, gy = 2,04 und gz = 2,23 beschreiben
lassen. [Gd(III)2L(OAc)4] PF6 besitzt eine magnetische Anisotropie, die auf Dipol-
Wechselwirkungen der Gadolinium-Ionen zurückgeführt werden kann.

Abstract
High-frequency as well as X-band electron spin resonance (ESR) spectroscopy, and
static magnetization measurements of correlated electron systems and metal-organic
spins systems are presented. ESR data of the honeycomb-lattice spin systems
Na3Ni2SbO6 and Li3Ni2SbO6 reveal uniaxial and orthorhombic antiferromagnetic res-
onances (AFMR), respectively, in the ordered state. In both materials, AFMR gaps of
358 GHz and 200 GHz, respectively, are found. The bilayer Kagomé lattice Ca10Cr7O28,
which is a frustrated spin system, demonstrates g anisotropy (gb = 1.94, gc = 2.01)
depending on the crystallographic axes on high-frequency ESR data. X-band ESR data
show a similar temperature dependence of the linewidths for the different axes. The
two Ni dimer compounds [Ni2L(dppba)]ClO4 and [Ni2L(dppba)AuPh]BPh4 (1) have a
similar ligand except an Au atom attached to the phosphorus atom of (1). In both
materials, ferromagnetic coupling and uniaxial anisotropy of about -12 GHz is found.
The Au ligand however does not significantly affect the magnetic properties. Results
presented for the mixed valence complex [Ni(III)Ni(II)(LDA)](BPh4)2 demonstrate a
total spin S = 3/2 which implies ferromagnetic coupling between the Ni2+ ion (S = 1)
and the low spin Ni3+ ion (S = 1/2). Again, there is an uniaxial anisotropy which
amounts to -49 GHz. ESR measurements of (HNEt3)2Cu(II)[12-MCCu(II)N(Shi)-4] with
Cu5-clusters organized in a metal-organic framework show typical powder spectra which
are described by a S = 1/2 spin-Hamiltonian and gx = 2.03, gy = 2.04 and gz = 2.23.
[Gd(III)2L(OAc)4] PF6 has a magnetic anisotropy which can be ascribed to dipolar
coupling between the Gd ions.
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Part I.
Introduction

Magnetism has been studied since earlier than 600 b.c. The mineral magnetite,
lodestone was first observed by the ancient Greeks [1]. It is called a magnet
due to its ability to attract iron. Depending on the intrinsic interactions and
electronic configurations, materials show different types of magnetism such as
diamagnetism, ferromagnetism, and other types [2]. Accordingly, theoretical un-
derstanding of macroscopic magnetism has developed, e.g. ferromagnets have
been explained by including exchange interaction and the idea of domains of
macroscopic size. However, these days the scale of size of materials is becom-
ing smaller, to nanoscale magnets, in order to, e.g. developing electronic devices
using molecules. Also, nanosize magnets are a good model to study quantum
phenomena [3].

From this point of view, single molecular magnets (SMMs) are an appropriate
material to investigate. They possess a magnetic core surrounded by organic lig-
ands. They are uniform in size with having an ability to approach the quantum
properties in nanoscale magnets such as quantum tunneling of magnetization [4],
a quantum level crossing [5], and so on [6]. Furthermore, magnetization relax-
ation time of SMMs is long at very low temperature because of their large spin
ground state with a uniaxial anisotropy. It leads to long coherence time of SMMs
which generates the chance to possibly apply them to quantum computing. Also,
their molecular scale with properties of bulk materials appeals in the field of
magnetic data storage [7,8]. If the range of applications is extended to molecular
clusters, there are possibilities to embody in drug delivery [9] or magnetocaloric
effects [10]. In order to fulfill those applications, there are still challenges, for
example, increasing of the blocking temperatures of SMMs, and increasing the
number of core spins or of the anisotropy [11].

While SMMs are isolated spin systems, many materials have a large number
of electrons. Positions and motion of electrons are correlated by Coulomb inter-
action and by exchange interaction between them [12, 14]. In case of antiferro-
magnetically coupled systems, geometrical frustrations can be present. Due to
the geometrical frustration, all the exchange interactions between spins cannot
be satisfied simultaneously. This situation leads to an unclear ground state [13].
Thus, frustration may suppress long-range order and hence allows the study the
effects of thermal and quantum fluctuations.
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By using the electron spin resonance (ESR) technique, spin systems of SMMs
and correlated materials can be studied. First ESR phenomena was observed by
E. K. Zavoisky in 1945 [16]. So far, it is applied in the fields of physics, chemistry,
medical, and so on [17]. ESR applied in this work uses a wide frequency range
of 10 - 1000 GHz and magnetic fields up to 15 T. It is a powerful tool to study
metal-organic materials with a finite number of paramagnetic core ions as well as
magnetic ordering, lattice dynamics, and low energy excitation in correlated spin
system [15]. In this thesis, four SMMs and three correlated materials are studied
by means of ESR.

In chapter II, the theoretical background which will be used to analyze the ESR
data will be described. Then, in chapter III, antiferromagnetic resonance phe-
nomena in frustrated spin systems will be discussed, while chapter IV includes
studies on metal-organic spin systems. In chapter V, the main results presented
in this thesis will be summarized.
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Part II.
Background and Experimental
Setup

1. Theoretical Background

In this chapter, the theoretical background for ESR data analysis is discussed.
The contents presented in this chapter are based on the books by S. Blundell [12],
C. Kittel [18], A. Abragam and B. Bleaney [19], C. Poole [20], and G. T. Rado
and H. Suhl [21].

1.1. The Resonance Phenomenon

1.1.1. Bloch Equation

Magnetization represents the macroscopic response of an ensemble of spins, which
is the sum of their magnetic moments. The equation of motion of magnetization
in magnetic fields can be expressed as follows,

dM

dt
= γM×H. (1.1)

In thermal equilibrium, the components of M are Mx = My = 0 and Mz = const.
in the magnetic field H = (0, 0, H0). However, in the non-equilibrium, the state
equation (Equation (1.1)) can be modified as (Bloch equation):

d

dt
~M = γ( ~M × ~H)− Mx +My

T2
+
M0 −Mz

T1
, (1.2)

where T2 and T1 are the relaxation times. T1 is called the longitudinal relaxation
time since it changes with Mz. While T2 is called the transverse relaxation time
which is associated with the coherence of a spin state. When Mz = M0, Equation
(1.2) can be written as,

d

dt
Mx = γH0My −

Mx

T2
, (1.3)

d

dt
My = −γH0Mx −

My

T2
, (1.4)
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1. Theoretical Background

M
x' 

M
y'

Δω T2 

Figure 1.1: Absorption (M ′
y) and dispersion (M ′

x) from the Bloch equa-
tions.

d

dt
Mz = 0, (1.5)

where the solution is Mx = A cos γH0t and My = −A sin γH0t which shows a
damped harmonic oscillation. In this case, transverse magnetizations precess
around the z-axis with angular frequency ω0 = γH0 in the clockwise direction.
ω0 is called the Larmor frequency.

If the coordinate system (x, y, z) is the laboratory frame of reference, then the
rotating frame having coordinates (x′, y′, z) rotates around the z-axis of the lab-
oratory frame. The frame (x′, y′) rotates with ω around the z-axis. Hence, this
motion leads to an effective magnetic field, h0 = H0 − ω/γ. When ω = γH0, the
magnetization M is constant in the rotating frame rotating with ω by h0 = 0.
When an alternating magnetic field H1(t) = H1 cosωtx̂ + H1 sinωtŷ is applied,
the Bloch equation in the rotating frame can be written as

d

dt
M ′

x = ∆ωM ′
y −

M ′
x

T2
, (1.6)

d

dt
M ′

y = −ω1M
′
z −∆ωM ′

x −
M ′

y

T2
, (1.7)

d

dt
M ′

z = ω1M
′
y +

M0 −M ′
z

T1
, (1.8)

where M′ is the magnetization in the rotating frame, ω1 = −γH1 and ∆ω = ω0−
ω. In the steady state, the Bloch equation can be solved. Resonance phenomena
can be explained from solutions of Equations (1.6) and (1.7) as followings,
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1.1. The Resonance Phenomenon

M ′
x =

γH1∆ωT
2
2M0

1 + (∆ωT2)2 + γ2T1T2H2
1

, (1.9)

M ′
y =

γH1T2M0

1 + (∆ωT2)2 + γ2T1T2H2
1

, (1.10)

where M ′
x is in plane with H1, referred to as dispersion, and M ′

y is 90◦ out of
plane with H1, referred to as absorption, as shown in Fig. 1.1. The detected
signals are proportional to the components M ′

x and M ′
y in continuous wave mode.

1.1.2. Magnetic Moment

The magnetic properties of paramagnetic compounds can be described based
on magnetic dipole moments. These dipoles are randomly oriented in the zero
magnetic field. However, in applied external magnetic fields the dipoles are pref-
erentially oriented along the magnetic field. The dipoles possess orbital angular
momentum and spin angular momentum. Their combination causes a total an-
gular momentum. The magnetic dipole moment of an electron can be written
as

~µ = γh̄ ~J, (1.11)

where ~µ is the magnetic dipole moment, h̄(= h/2π) is the reduced Planck con-

stant, ~J is the total angular momentum and γ(= −g(e/2me)) is the gyromagnetic
ratio with the dimensionless quantity g.

When a free atom is in magnetic field ~H along the z-axis, the magnetic dipole
moments are quantized with respect to the field direction. However, if only a spin
angular momentum exists, its energy is given by

E = −~µ · ~H = gµB ~S · ~H = gµBmsHz, (1.12)

where µB is the Bohr magneton, g is the g-factor, ms is the eigenvalue of the
z-component of the spin operator ~S, and Hz is the z-component of magnetic field
~H. Equation (1.12) shows the interaction of the magnetic dipole with an applied
field H which is called the Zeeman effect. The spin states of the isotropic atoms
are degenerated in the absence of an external magnetic field. The external field
affects the spins differently depending on their own quantum numbers. When
an atom is placed in the presence of an external field the energy levels are split
according to the Zeeman effect.
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Figure 1.2: (a) Energy diagram for a spin system of S = 1/2. Linear Zee-
man splitting depends on the external magnetic field H. Mi-
crowave radiation hν induces a transition between the neigh-
boring energy levels. (b) ESR absorption line with Lorentzian
line shape, a linewidth parameter ∆H, and an amplitude A
at the magnetic field H0.

Depending on the total spin number S, the spin states are split into N = 2S + 1
states in the magnetic fields. A magnetic dipole transition between the energy
levels can occur by the absorption of microwave radiation with energy hν, which
is a difference between the neighboring energy levels. When an isolated free elec-
tron system of S = 1/2 is considered, the energy levels are split into two energy
states, |ms〉 = +1/2 and |ms〉 = −1/2 in a magnetic field as shown in Fig.1.2
(a). At low temperatures the population of electrons in the lower energy state
|ms〉 = −1/2 is higher than that in the higher energy state |ms〉 = +1/2, ac-
cording to the Boltzmann distribution. Therefore when the system is exposed
to microwave radiation with appropriate frequency, the induced excitation from
the lower state to the higher state is dominant compared with induced relaxation
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1.1. The Resonance Phenomenon

from the higher state to the lower state.

1.1.3. Selection Rule

When a system is in magnetic fields, transitions between the different spin states
induced by an electromagnetic radiation obey the selection rule,

4L = 0,4S = 0,4ms = ±1. (1.13)

In this chapter, the selection rules are discussed. Let’s assume that there is
an isolated spin in magnetic field ~H which is applied along the z-axis. If an
alternating magnetic field is applied perpendicular to a strong external magnetic
field ~H along the z-axis, there will be an additional perturbation.

H
′

= Hxµx +Hyµy, (1.14)

where µx = gµBSx and µy = gµBSy. Equation (1.14) can be rewritten with the
components of oscillatory fields Hx = H1 cosωt and Hy = H1 sinωt as follows,

H
′
= gµBH1{coswtSx + sinwtSy}. (1.15)

It can be calculated as follows,

H
′
=

1

2
gµBH1{S+e

−iωt + S−e
iωt}, (1.16)

where S+ = Sx + iSy and S− = Sx − iSy are ladder operators and ω is the
angular frequency of the microwave radiation. The sum of all states | ϕn > can
be described as

| ψ(t) >=
∑
n

an(t)e−
iEnt
h̄ | ϕn >, (1.17)

where an(t) is the transition amplitude and En is the energy of the nth state.
From the Schrödinger equation the derivative of an(t) with respect to time can
be calculated as follows,

∑
n

an(t)e−
iEnt
h̄ H ′(t) | ϕn >=

∑
n

ih̄
dan(t)

dt
e−

iEnt
h̄ | ϕn > . (1.18)

Applying < ϕk | e
iEnt
h̄ on both sides,

7



1. Theoretical Background

ih̄
dak(t)

dt
=
∑
n

an(t)e
i
h̄
t(Ek−En) < ϕk | H ′(t) | ϕn > . (1.19)

Transition from an initial state | ϕn > to a final state | ϕk > can be known from
dak(t)/dt. In this case S+ and S− in the Hamiltonian H ′ increase or decrease a
quantum number of an eigenstate of a system as follows [52],

S±|sms〉 = h̄
√
s(s+ 1)−ms(ms ± 1)|sms ± 1〉, (1.20)

which causes transitions ms → ms ± 1. Hence, the selection rules are ∆S = 0
and ∆ms = ±1.

1.1.4. Line Position and g-factor

In an actual experiment, the magnetic field is swept while the frequency is kept
constant. According to hν = gµBHr, the position of a resonance line indicates
the magnetic field where the absorption in the sample takes place. From the
resonance field Hr, the g-factor can be calculated as,

g =
h

µB

ν

Hr

≈ 1

14

ν

Hr

, (1.21)

where the frequency ν is in GHz and the resonance field Hr is in T. For example,
when a microwave radiation with a frequency of 10 GHz is applied to a system
of S = 1/2, and the resonance occurs at 0.23 T, it implies g = 2. However, there
is not only the applied magnetic field but also a local field that is caused by an
interaction between a metal ion and its surrounding ions and molecules. This local
field and the external magnetic field produce total effective field Beff . Therefore,
the g-factor that is obtained in the experiment is also known as effective g-factor
ge. Consequently, the orbital motion of the metal ion is affected differently along
the x, y, and z axes in a molecule. This results in anisotropic g-factors, which
can be considered as a tensor, g̃. The Zeeman splitting can be written as,

E = µB ~H · g̃ · ~S. (1.22)

Most cases can be simplified to describe the g-tensor in a principal axis system.

g̃ =

gx 0 0
0 gy 0
0 0 gz

 . (1.23)

8



1.1. The Resonance Phenomenon

Matrix multiplication of Equation (1.22) with the components of ~S = (Sx, Sy, Sz)

and ~H = (Hsinθcosφ, Hsinθsinφ, Hcosφ) induces the effective g-factor

g =
√
g2x sin

2θcosφ2 + g2y sin
2θsin2φ+ g2z cos

2θ. (1.24)

In axial symmetry, the directions of x, and y axes are equal, but the direction of
the z axis may be different, which results in gx = gy 6= gz. Equation (1.24) can
be written as,

g =
√
g2x sin

2θ + g2z cos
2θ. (1.25)

1.1.5. Line Shape

Even though a resonance occurs at an exact magnetic field, a spectrum has a
finite line width, because electron spins interact not only with the external mag-
netic field but also their environment. Thus, information about line width and
line shape can be used to study spin systems.

The exchange interaction among the spins themselves influences the line width as
well. When the exchange interaction is isotropic the ESR resonance line focuses
more in the center of the line [22]. It is called an exchange narrowing. It can be
described by a Lorentzian line shape as shown in Fig.1.2 (b).

f(H) =
1

π

∆H

(∆H)2 + (H −H0)2
. (1.26)

Additionally, the intensity of the line is affected by the power of the applied mi-
crowave radiation, by the temperature, and by the concentration of the ions. The
absorbed power by the resonating spin system can be described as,

P =
1

2
ωχ”(H −H0)

2, (1.27)

where χ” is the imaginary part of the dynamic susceptibility and ω is the mi-
crowave frequency. ESR measurements observe only χ” corresponding to the
dissipated energy by absorption [23]. The absorbed power is proportional to the
intensity of the ESR line corresponding to the integral of the lineshape. For the
Lorentzian line shape, line area is proportional to the value of the amplitude A
times the linewidth ∆H.

I ∝ A∆H. (1.28)
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1. Theoretical Background

On the other hand, an anisotropic exchange interaction leads to an inhomoge-
neous line broadening. When a spin is located in a complex surrounding, all the
individual spins experience different local magnetic fields. Then resonances occur
at slightly different magnetic fields. A merging of all individual resonances of all
different spins causes the inhomogeneous broadening. It can be described by a
Gaussian line shape,

f(H) =

√
1

2π(∆H)2
exp

{
(H −H0)

2

2(∆H)2

}
. (1.29)

The interaction between spins with different Larmor frequencies is also one source
of inhomogeneous broadening [24].

1.2. Effective Spin Hamiltonian

An atom consists a nucleus with a charge of +Ze and Z electrons with a charge
of -e bound to the nucleus. The Hamiltonian of this system can be written as,

H =
∑{

− h̄2

2m
∇2
j −

(
1

4πε0

)
Ze2

rj

}
+

1

2

(
1

4πε0

)∑ e2

|rj − rk|
, (1.30)

where h̄ is the Planck constant, m is the mass of a particle, ε0 is the dielectric
permittivity, and rj and rk are the position vectors of the electrons with charge
e. The first term includes the kinetic energy of the electron and its Coulomb
potential of the nucleus. The second term represents the potential energy of the
interactions between the spins. In a compound, atoms interact with each other,
which results in crystal field effects, spin-spin interaction, quadrupole energy,
and nuclear spin interaction which will be discussed in the next sections. When
the compound is in magnetic fields, the Zeeman effect occurs. Note that the
magnitude of the Zeeman interactions is ∼ 1 cm−1 at the magnetic fields ∼ 1 T.
It is possible to analyze the ESR spectrum by an effective Hamiltonian because
the ground manifold is within few cm−1, considering the Zeeman effect. Hence a
simple Hamiltonian considering only the effective spins in the ground state can
be written as

H = HZeeman +HExchange +HAnisotropy. (1.31)

This simple Hamiltonian employs the concept of the effective spin S̃, which enables
the interpretation and classification of the obtained spectrum [91]. The terms of
the Hamiltonian can be modified depending on the particular investigated spin
system where the energy hierarchy may be different.
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1.3. Spin-Orbit Coupling and Dipolar Interaction

1.3. Spin-Orbit Coupling and Dipolar Interaction

Spin-orbit coupling and dipolar interaction cause magnetic anisotropy. Spin-orbit
coupling is a coupling between a spin angular moment of an electron and its or-
bital angular moment.

An electron has an orbital angular moment due to the movement around the
nucleus. When the electron moves with velocity ~v around the nucleus, it inter-
acts with the electromagnetic field generated by the nucleus. In the frame of the
electron, the nucleus moves around the electron. Hence, the nucleus with velocity
−~v moves around the electron and the resulting current creates the magnetic field
~B at the electron site. ~B can be written as

~B =
1

c
~v × ~5Φ, (1.32)

where Φ is the potential of the nucleus, ~v is the speed of the nucleus, and c is
the speed of light. When the distance between the nucleus and the electron is r,
Equation (1.32) can be rewritten as,

~B =
1

mcr

dΦ

dr
(m~v × ~r), (1.33)

where m is the mass of the electron, and m~v × ~r is substituted for the angular
moment ~l.

When this magnetic field interacts with the magnetic moment ~µs, the corre-
sponding Hamiltonian equation can be written as,

Hspin−orbit = −~µs · ~B

=
1

2m2c2

(
1

r

∂V

∂r

)
~l · ~s = ζ~l · ~s,

(1.34)

with the spin-orbit coupling parameter ζ. Here, the Thomas factor of 1/2 is mul-
tiplied to consider the time dilation between the nucleus and the electron [25].

When the spin-orbit coupling is weak in a multiple-electron system, the individual
orbital angular momenta can be added to a total orbital angular momentum L.
Also, the individual spin angular momenta are combined to a total spin angular
momentum S. Then the total angular momentum J is given by

11



1. Theoretical Background

~J = ~L+ ~S. (1.35)

This is called the LS-coupling or the Russell-Saunders coupling [26]. Equation
(1.34) can be written as,

HLS = λ~L · ~S, (1.36)

where λ = ±
(
ζ
2S

)
. In the case of less than half-filled shells, λ is positive, other-

wise, it is negative.

When both, orbital and spin angular momenta are present, the g-factor depends
on their coupling. The appropriate g-factor is given by

gL =
3

2
+
L(L+ 1)− S(S + 1)

2J(J + 1)
. (1.37)

This value is called the Landé g-factor. In magnetic fields, a system splits into
a multiplet of levels with different values of J . The magnitude of the splitting is
∼ 102 cm−1 for 3d electrons in magnetic fields.

Magnetic anisotropy is also caused by dipolar interaction. This interaction is
much smaller than the spin-orbit coupling. The magnitude of this interaction is
less than 1 cm−1. The dipolar interaction arises from the interaction between
spins. One magnetic dipole creates a local magnetic field and neighboring dipoles
experience it. The dipolar interaction can be written as,

Hdipolar =
µ0

4πr3
[3(m1 · r̂)(m2 · r̂)−m1 ·m2], (1.38)

where m1 and m2 are magnetic moments, µ0 is the permeability of free space, r
is the distance between the two dipoles, and r̂ is a unit vector parallel to the line
from the centers of the two dipoles.

12



1.4. Crystal Field Effect

1.4. Crystal Field Effect

Not only the spin-orbit coupling and dipolar interaction but also the geomet-
rical structure of the surrounding atoms/ions has an influence on the magnetic
anisotropy. When an ion is surrounded by other ions, the degeneracy of electron
orbital states can be broken, which is due to an electrostatic field produced by
the surrounding ions. This is described by the crystal field theory [27].

In this chapter, d-orbitals of transition metal ions are considered. As an exam-
ple, an isotropic ion such as Ni2+ is studied. Fig.1.3 (a) shows its electron orbital
states. The Ni2+ ion has five d-orbitals. Originally, i.e. in the case of a free ion,
they are completely degenerated.

Fig.1.3 (b) shows that the Ni2+ ion is located at the center of a ligand cage
of octahedral symmetry. The six non-metallic ions, such as O ([He] 2s22p4) or
Cl ([Ne] 3s23p5), occupy the vertices of the octahedron. Then the d-orbitals split
into two groups. This splitting is caused by the Coulomb repulsion between the
3d-orbitals of Ni2+ and the 2p-orbitals of the oxygen ions.

The 3d-orbitals in the eg and t2g states are shown in Fig.1.3 (b). The eg states
consist of two orbitals dz2 and dx2−y2 . These orbitals point directly to the p-
orbitals as shown in Fig. 1.4 (b). The t2g state includes the three orbitals dxy, dyz
and dzx. They point between p-orbitals as shown in Fig. 1.4 (a). The orbitals of
the eg state overlap with the 2p-orbitals more than the orbitals of the t2g state.
Hence, the eg states have a higher energy than the t2g states. On the other hand,
when an ion is in the cage of a tetrahedral symmetry, the t2g states have higher
energy than the eg states.

Now imagine a distorted octahedral symmetry with elongation along the z-axis.
Then the octahedral symmetry changes to a tetragonal symmetry [28]. The
resulting energy level splitting in tetragonal symmetry is shown in Fig.1.3 (c).
The five d-orbitals are split into such four groups: b1t, a1t, b2t and et. In this
case, the dz2 orbital energy is smaller than the dx2−y2 orbital energy, because the
distance between the dz2 orbital and the p-orbitals is longer due to the elongation
along the z-axis. Due to the axial distortion of the octahedral symmetry, there is
an energetically favorable direction that causes an axial magnetic anisotropy. An
elongation along the z axis causes an easy axis (D < 0). If there is a compression
along the z-axis or an elongation along the x and y-axis, the dz2 orbital energy
state is higher than the dx2−y2 orbital energy state. It generates an easy plane
type (D > 0) magnetic anisotropy.
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Figure 1.3: Effect of the crystal field depends on the local symmetry. (a)
A free Ni2+ ion has a spherical symmetry. The five d-orbital
(2L + 1 = 5) states are degenerated. (b) Ni2+ ion and six
ligands form a cubic symmetry. There is splitting into two
energy groups of energy levels. Due to a larger overlap be-
tween d-orbitals and p-orbitals of oxygen ions, the eg states
have a higher energy. The t2g states are located at lower en-
ergy because of a lower overlap. (c) The Ni2+ ion is in the
center of a distorted octahedron. The distances between the
transition metal ions and the six ligands are different. Hence,
the d-orbital states split into four groups as sketched.
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(a) 

dxy 

(b) 

dx2-y2 

Figure 1.4: Electrostatic interaction between p- and d-orbitals in an octa-
hedral symmetry. (a) The dxy orbital overlaps less with the p-
orbitals. In this case, the electrostatic energy is low. (b) The
dx2−y2 orbital points in the same direction as the p-orbitals,
which leads to higher overlap. Hence, the electrostatic energy
is high.

Quenching of the Orbital Angular Momentum The effective magneton num-
bers p (= g

√
J(J + 1)) for 3d ions can be calculated with the values of S, L, and

J using Hund’s rules. However, the predicted effective magneton numbers of the
transition metal ions do not agree with the value from experiments, except for
L = 0 for 3d5 and 3d10. This is due to the crystal field interaction for 3d ions
which is much stronger than the spin-orbit coupling. Hence, the third Hund’s
rule considering the spin-orbit coupling cannot be applied in this case. The 3d
ions rather follow effective magneton numbers with L = 0. This means that
the orbital angular momentum is quenched. The Lz in the spherical coordinate

system can be described as Lz =

(
h̄

i

)[(
x
∂

∂y

)
−
(
y
∂

∂x

)]
[29]. For the ground

state | ψ >, which is real, in case of completely non-degenerate levels (except for
Kramers degeneracy), the expectation value of Lz is purely imaginary. Never-
theless, < Lz > must be real because it is an observable quantity. Both Lz and
< Lz > can be imaginary and real, respectively, if < Lz >≡ 0 [30].

For example, Ni2+ has the spin configuration 3d8. In an octahedral crystal field,
the t2g levels are fully occupied by antiparallel spin pairs. The t2g orbitals do not
contribute to the magnetism. However, the eg levels are partially occupied by
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1. Theoretical Background

unpaired single spins. The operator Lz acts on the eg orbital state [31].

Lz|dx2−y2〉 = 2i|dxy〉, Lz|dz2〉 = 0. (1.39)

Therefore, the expectation values of Lz on the eg manifold are zero.

〈dx2−y2|Lz|dx2−y2〉 = 2i〈dx2−y2|dxy〉 = 0, 〈dz2|Lz|dz2〉 = 0. (1.40)

For Ly and Lx, the result will be the same.

〈dx2−y2 |Lx|dx2−y2〉 = −i〈dx2−y2 |dyz〉 = 0, 〈dz2|Lx|dz2〉 = −i
√

3〈dz2|dyz〉 = 0,
(1.41)

〈dx2−y2|Ly|dx2−y2〉 = −i〈dx2−y2|dzx〉 = 0, 〈dz2 |Ly|dz2〉 = i
√

3〈dz2|dzx〉 = 0.
(1.42)

From this result, the orbital moment vanishes for the eg orbitals. This is called
orbital quenching. Accordingly, the effective magnetic moment is obtained only
based on the spin contribution. Therefore the effective magneton numbers can
be rewritten as,

p = g
√
S(S + 1). (1.43)

Furthermore, ~L is also neglected to compute the Landé g-factor and the total
angular momentum.

1.5. Exchange Interaction

In the following, an exchange interaction is described in terms of electrostatic
interaction between particles with overlapping wave functions. In the total wave
function of both particles, there are two possibilities for the spin part: one is the
symmetric triplet state ψ+ and the other is the antisymmetric singlet state ψ−.

Let’s assume that electrons 1 and 2 are in the states ψa(1) and ψb(2), respec-
tively. The total wave function of these two electrons can be described by,

ψ±(1, 2) = A[ψa(1)ψb(2)± ψb(1)ψa(2)], (1.44)

where a and b are the quantum states of spins and A is the spatial part wave
function. When two wave functions of two electrons overlap, they have a force
of repulsion. Because of the Pauli’s exclusion principle, two fermions cannot
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1.6. Magnetic Anisotropy

occupy the same spatial locus. Therefore, the wave function would have an anti-
symmetric combination of the exchange of two electrons. This will be the singlet
state (S = 0). The other allowed state will be the symmetric triplet state (S = 1).

The exchange constant can be calculated from the difference between the en-
ergies E± of the two states ψ±.

J =
E+ − E−

2
. (1.45)

A negative J means that the spins are coupled antiferromagnetically. A positive J
means ferromagnetically coupled spins. The spin dependent part in the effective
Hamiltonian can be written as,

HExchange = −2J ~S1 · ~S2. (1.46)

The Heisenberg exchange Hamiltonian contains the coupling between the nearest
neighboring spins in a crystal. The generalization to a many-body system will be

HExchange = −
∑
ij

J ~Si · ~Sj, (1.47)

where i and j are spins and Jij is the exchange constant between them. When
the each pair of spins is summed twice, the factor 2 is eliminated.

1.6. Magnetic Anisotropy

For a system with total spin number S ≥ 1, energy splitting can occur at zero field
since spin-orbit interaction coupled the spin to the local crystalline environment.
This is described by the phenomenological Hamiltonian

HAnisotropy = S ·D · S =
(
Sx Sy Sz

)Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

SxSy
Sz

 , (1.48)

where D is a traceless (the sum of the elements on the diagonal is zero) and a
symmetric tensor (Dij = Dji). If D is diagonal, then Equation (1.48) can be
rewritten as,

HAnisotropy = DxxS
2
x +DyyS

2
y +DzzS

2
z , (1.49)
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1. Theoretical Background

with the following relations for D and E

D = Dzz − (Dxx +Dyy) /2, E = (Dxx −Dyy) /2. (1.50)

Considering Equation (1.50), Equation (1.48) can be rewritten as,

HAnisotropy = D
[
S2
z − S (S + 1)

]
+ E

(
S2
x − S2

y

)
. (1.51)

In an octahedral symmetry, the tensor D follows the relation Dxx = Dyy = Dzz.
Accordingly, the anisotropy parameters, D and E are zero. In a tetrahedral
symmetry, the relation is Dxx = Dyy 6= Dzz. Hence, the anisotopy parameter
E = 0, but D > 0.

Three Energy Levels of S = 1 Now a spin system S = 1 that is surrounded
symmetrically by non-magnetic ions is discussed. For example, a magnetic ion
is located in a cubic symmetry. Due to the total spin number, the spin system
possesses three degenerated energy levels at zero magnetic field. When a mag-
netic field is applied along the z-axis, the energy states are split according to
the Zeeman effect. Due to the symmetrical environment of the magnetic ion the
anisotropy parameters are zero, D = E = 0. For S = 1, the spin energy states
are |+ 1〉, |0〉, and | − 1〉. The allowed ESR transitions according to the selection
rules (Equation (1.13)) are | + 1〉 ⇀↽ |0〉 and |0〉 ⇀↽ | − 1〉. The two transitions
show the same resonance field, and only a single resonance signal is obtained as
shown in Fig. 1.5 (a).

For a tetrahedral symmetry, the situation is different, as shown in Fig. 1.5 (b). In
this case, the crystal field has an axial symmetry along the z-axis. Thus, the three
energy states are not degenerated at zero magnetic field due to a gap between
the states | ± 1〉 and |0〉. The Hamiltonian of the spin system can be described
with the Zeeman term and the anisotropy term. From ESR spectroscopy the
gap between the energy levels is obtained by extrapolating the frequency versus
magnetic field diagram to zero field. The gap is related to the uniaxial anisotropy
parameter D as ∆ = |D|

(
S2
z − (Sz − 1)2

)
. In this case, the two transitions do not

show the same resonance field due to the gap which is called zero-field splitting
(ZFS). Therefore, multiple resonance lines are obtained.

Furthermore, the sign of D depends on the crystal field of the studied spin system.
It can be deduced from the ratio of the intensities of the absorption lines in the
temperature dependence of ESR spectra. At low temperatures, the lowest energy
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Figure 1.5: Schema of the energy levels of S = 1 system in a magnetic
fields depending on the local structure. (a) Octahedral sym-
metry. The energy levels are degenerated at zero field and
split in the magnetic field. Two transitions with the same
resonance condition are obtained. (b) Tetrahedral symmetry.
The two transitions exhibit different resonance fields due to
finite ZFS.

states will have the highest population according to the Boltzmann distribution,
if D is negative. The intensity of the signal at low magnetic fields will decrease
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1. Theoretical Background

and the intensity of the signal at higher fields will increase when the temperature
increases, i.e. spectral weight of the ESR lines shifts upon heating. In this case,
the sign of D is negative, which implies a bistable magnetic ground state. This
magnetic anisotropy is called the easy axis. When the weight of the ESR line
shifts to the lower field when the temperature increases, the sign of D is positive.
In this case, there is a singlet magnetic ground state, which is called the easy
plane type magnetic anisotropy.

1.7. Multiple and Giant Spin Hamiltonian

The individual paramagnetic ions interact with each other via the exchange in-
teraction and interact with an external magnetic field due to the Zeeman effect.
Also, the ions have their individual magnetic anisotropy. Accordingly, Equation
(1.31) can be written as,

H = µB

j∑
i

gi ~Si · ~H − J
∑
ij

~Si · ~Sj +

j∑
i

Di

[
S2
z,i − Si (Si + 1)

]
, (1.52)

where µB is the Bohr magneton, gi is the g-factor of the ith ion, ~Si and ~Sj are
the spin vectors of the ith and the jth ions, Di is the axial single-ion anisotropy
of the ith ion, and J is the exchange constant. This is the so-called multiple-
spin Hamiltonian. When the exchange interaction and the anisotropy of the spin
system are comparable, the ground spin multiplet state and the excited spin mul-
tiplet state lie close to each other. In this case, the ground spin multiplet state
cannot be isolated. The multiple spin Hamiltonian can be applied to these kinds
of spin systems.

If the exchange interaction is much larger than the anisotropy of the spin system,
the ground spin multiplet state is lowered down in energy. Then, the ground spin
multiplet states can be isolated. In the case of SMMs, the spins in the ground
state can be approximated to one total spin. Therefore, the Zeeman effect term
and the anisotropy term determine the ground state. This is called the giant spin
model. The giant spin model Hamiltonian can be written as,

H = gµB ~S · ~H +D
[
~S2
z − S (S + 1)

]
, (1.53)

where g and D are the g-factor and the anxial magnetic anisotropy, respectively,
of a spin system. Therefore, depending on the characteristics of the spin system
and the experimental results, a suitable Hamiltonian should be chosen.
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1.8. Antiferromagnetic Resonance (AFMR)

When a system contains many paramagnetic ions, the Hilbert space dimension
is too large to solve the Hamiltonian analytically. The Hilbert space dimension
of Mn12-acetate, e.g., is 108, which corresponds to one spin species. Hence, it is
associated to a 108 × 108 dimensional Hilbert space. But the giant spin Hamil-
tonian includes only one giant spin. The Hilbert space dimension is 21 which is
suitable to diagonalize [32]. Therefore, the mesoscopic spin approach can explain
the behavior of most SMMs. The giant spin Hamiltonian describes the ground
spin system at low temperatures in a large variety of systems.

1.8. Antiferromagnetic Resonance (AFMR)

So far, isolated spin systems surrounded by the ligands have been discussed. Such
finite spin systems may be described by rather simple Hamiltonians as shown
above. However, in this chapter, spin systems with long range correlations will
be discussed, i.e. in the case of long range spin order. Even though the spins
are aligned antiferromagnetically or ferromagnetically, a resonance occurs. This
phenomenon is called ferromagnetic resonance or antiferromagnetic resonance.
The system of antiferromagnetic coupled spins is an interesting one due to the
reorientation of spins by the temperature or the magnetic field.

When spins in a compound are correlated, the lowest lying excitations in simple
cases are spin wave [33]. The ground state of the ideal ferromagnet consists of
perfectly ordered spins at T = 0. When N spins are in a one-dimensional chain,
the interaction between nearest neighbor spins can be described as,

H = −2J
N∑
i=1

Si · Si+1, (1.54)

where Si and Si+1 are the neighboring spins, and J is the exchange constant. The
first excited state of this ferromagnetic system can be described with one reversed
spin. But when all the spins are slightly tilted to share the reversed spin, it costs

Figure 1.6: A spin wave with one wavelength from a chain of spins.
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less energy. This situation creates a wave form of spin misalignment as shown
in Fig. 1.6. The plot shows the tilted spins viewed from above with one wave-
length. The relative orientations of spins generate oscillations that are spin waves.

In this chapter, antiferromagnetism will be discussed. In a simple Néel-type
AFM, this magnetically ordered state has electron spins that are aligned in op-
posite directions with neighboring spins. A simple antiferromagnetic spin system
is the combination of the two sublattices where each exhibits ferromagnetically
coupled spins. It is illustrated in Fig. 1.7. The AFMR systems have been studied
by Kittel, Nagamiya. Here, a uniaxial antiferromagnetic resonance is discussed.

1.8.1. Susceptibility of a Uniaxial Antiferromagnet

Now let’s talk about the antiferromagnet that is constituted by two sublattices,
1 and 2. They have all identical spins and are aligned oppositely to each other
along the ± z-axis. The macroscopic magnetizations of each sublattice can be
described by M1 and M2, which are the sum of the average magnetic moments
of the sublattices. In a mean-field approach, exchange fields H1E and H2E align
the magnetic moments in sublattices, and are proportional to the magnetizations
M1 and M2. The anisotropy fields H1A and H2A describe the effect of anisotropy
on the orientation of the magnetizations.

At T = 0 K, all magnetic moments of the magnetic atoms on the sublattices
are ordered which leads to zero net magnetism. The magnetization of the iden-

→ + 

Figure 1.7: Antiferromagnetic lattice with two sublattices. Two interpen-
etrating sublattices of ferromagnetically aligned spins form
the complete antiferromagnetic lattice.
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tical sublattices can be considered as M1 = M2 = M . The anisotropy energy EA
in one sublattice with the angular variation can be written as the product of the
anisotropy field HA and the magnetization M:

EA = K(α2
1 + α2

2) =
∑

HA ·M, (1.55)

where K is the anisotropy constant, and αi is the direction cosine between the
magnetization M and the z axis. If the preference axis of the anisotropy is the
z-axis, the anisotropy field of the z-axis can be described as,

HAz =

(
K

M

)
αi. (1.56)

In the case of K > 0, the magnetization M is aligned along the z-axis. Also, the
exchange field HE can be considered as,

HE = λMz, (1.57)

where λ is the exchange constant. When small external magnetic fields H0 is
applied along the z-axis, the magnetization M is aligned along the z-axis. When
H0 is applied perpendicular to the z-axis, the magnetization M is tilted away
from the z-axis by the angle θ. The angle θ is determined when the effect of
torques of effective fields the M is zero. The torques for M1 in sublattice 1 are

|M1 ×H0|+ |M1 ×H1E|+ |M1 ×H1A|
= M1H0 cos θ − λM2

1 sin 2θ −K sinθ cos θ = 0,
(1.58)

Equation (1.58) can be calculated as,

χ⊥ =
2M1 sin θ

H0

=
1

λ+K/2M2
0

, (1.59)

which is independent value of the temperature. However, it is dependent the
anisotropy term K/2M2

0 . Below the Néel temperature, χ⊥ and χ‖ different. Gen-
erally, χ⊥ is independent of the temperature. In contrast, χ‖ increases gradually
with increasing temperature. When the temperature reaches the Néel tempera-
ture, χ⊥ and χ‖ are equal [34].

When the external field H0 is strong enough, the antiferromagnetically aligned
spins start to align parallel to the field in order to gain Zeeman energy. At a
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critical field Hc, a so-called spin-flop occurs where spin rotates roughly perpen-
dicular to the external field direction. Here, the energies, K − 1

2
χ⊥H

2
0 (at H0⊥ẑ)

and −1
2
χ‖H

2
0 (at H0‖ẑ), are equal. It can be written as,

Hc =

√(
2K

χ⊥ − χ‖

)
=

√
2λK

1− α
, α =

χ⊥
χ‖

(1.60)

In this equation χ⊥ is approximated by λ−1 [18]. When H < Hc, the magnetiza-
tions M1, and M2 are alinged along the ± z axis. At H = Hc, the magnetization
jumps from χ‖H0 to χ⊥H0 because the loss in anisotropy is compensated by a
gain in Zeeman energy [35]. When H > Hc, the M1, and M2 start being aligned
parallel to the z-axis. This behavior is observed in the magnetization versus
magnetic fields [36].

1.8.2. Uniaxial Antiferromagnetic Resonance Theory

In this chapter the treatment of Keffer and Kittel for the uniaxial antiferromagnet
is discussed [37,38]. Imagine two identical sublattices, 1 and 2, which are coupled
antiferromagnetically. The change of angular momentum is the torques generated
by the effective fields on each sublattice [40]:

1

γi

dMi

dt
= Mi ×Hieff , (1.61)

where γi is the gyromagnetic ratio. An effective molecular field Mieff acting on
the sublattices can be described as,

H1eff = H10 + H1E + H1A, H2eff = H20 + H2E + H2A, (1.62)

where H10 and H20 are the magnetic fields which are applied on the two sublat-
tices, H1E and H2E are the exchange fields, and H1A and H2A are the anisotropy
fields of the two sublattices, respectively. The exchange fields are proportional to
the magnetizations by a constant λ.

H1E = −λM2, H2E = −λM1. (1.63)

The anisotropy energy makes the magnetization pointing to a certain crystallo-
graphic direction. The anisotropy fields are inversely proportional to the magne-
tizations by an anisotropy constant K.

H1A =
K

M1

, H2A =
K

M2

. (1.64)
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In case of zero external field, the effective fields acting on the spins of the sublat-
tices 1 and 2 are,

H1eff = −λM2 +
K

M1

, H2eff = −λM1 +
K

M2

. (1.65)

Both sublattices have the same g-factor due to the identical spin system on them.
In absence of the external magnetic field, one assumes that |H1A| = |H2A| = HA,
M1 = M2 = M0. When the external magnetic field is applied to the z-axis, the
magnetizations Mi are aligned to ± z-axis. Then, the transverse components Mix

andMiy are much smaller than the longitudinal componentMiz(Miz �Mix,Miy),
i.e.,

M2
iz =

[
M2

i −M2
ix −M2

iy

]
≈M2

0 , (1.66)

which shows that Miz is almost constant for the angular motion. Depending
on the direction of the applied magnetic fields, there are three cases of AFMR
resonance modes.

The case of H0 ‖ z-axis, when H0 < Hc When M1 and M2 are along to the
±z axis, the equations of motion are

dM1x

dt
= γ [(H0 +HA − λM2z)M1y − (−λM2y)M1z] , (1.67)

dM1y

dt
= γ [(−λM2x)M1z − (H0 +HA − λM2z)M1x] , (1.68)

dM2x

dt
= γ [(H0 −HA − λM1z)M2y − (−λM1y)M2z] , (1.69)

dM2y

dt
= γ [(−λM1x)M2z − (H0 −HA − λM1z)M2x] . (1.70)

Here, the z-component equations are negligible because only linear effects are
considered. Using M±

i = Mix ± iMiy, Equations (1.67) - (1.70) become

ωM+
1 = γ

[
(−λM1z)M

+
2 − (H0 +HA − λM2z)M

+
1

]
, (1.71)

ωM+
2 = γ

[
(−λM2z)M

+
1 − (H0 −HA − λM1z)M

+
2

]
, (1.72)

ωM−
1 = γ

[
− (−λM1z)M

−
2 + (H0 +HA − λM2z)M

−
1

]
, (1.73)

ωM−
2 = γ

[
− (−λM2z)M

−
1 + (H0 −HA − λM1z)M

−
2

]
. (1.74)
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Figure 1.8: Schema of the modes of magnetizations when H0 is applied
along the z-axis. The uniaxial antisotropy fiels HiA, the ex-
change fields λMi and the precession angles θi are illustrated.
The magnetization Mi is rotating with the angles θi. (a) The
low frequency mode (b) The high frequency mode.

Then, let’s assume that the average exchange field HE = λ (M1z −M2z) /2 and

λ (M1z +M2z) =
(
χ‖
χ⊥

)
H0 = αH0 due to a finite χ‖ in the magnetic fields. Hence,

the magnetizations on the two sublattices cannot be the same, i.e. |M1z| 6= |M2z|.
With this assumption, Equations (1.71) - (1.74) are calculated as [39],

ωl/γ = −
{√

(2HEHA +H2
A) + (αH0/2)2 −H0 (1− α/2)

}
, (1.75)

ωh/γ = +

{√
(2HEHA +H2

A) + (αH0/2)2 +H0 (1− α/2)

}
, (1.76)

where ”l” and ”h” represent the precession modes of low frequency and high fre-
quency, respectively.
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0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20 
h 
( = 0.6)


l 
( = 0.6)


h 
( = 0)

 

 



 (
T

)

Magnetic field (T)




l 
( = 0)

Figure 1.9: Field dependence of uniaxial magnetic AFMR modes with
α = 0 and α = 0.6. The slope with α = 0 is steeper than that
with α = 0.6. The AFMR gap ∆ when H0 = 0. The blue line
shows resonances at H0 ⊥ z perpendicular mode The dashed
line shows the resonance of the spin-flop mode. The spin-flop
mode is same in both cases of α = 0 and α = 0.6.

In absence of magnetic fields, the magnetization of the two sublattices rotate
around the axes of the uniaxial anisotropies which is along the ± z-axis. The
ratio of two angles θi, which are between the magnetization Mi and the ± z-axis,
can be defined as η = (θ2/θ1) [42]. However, when the resonance frequency is de-
creased by γH0 in the presence of external magnetic fields, this situation is called
low frequency mode with η > 1 (Fig. 1.8 (a)). In contrast, when the resonance
frequency is increased by γH0, it is called high frequency mode with η < 1 (Fig.
1.8 (b)).

At very low temperature, χ‖ of an ideal antiferromagnet approaches to zero.

27



1. Theoretical Background

When α = χ‖/χ⊥ = 0, and HE = λM1z = −λM2z, and Equations (1.75) and
(1.76) can be written as,

ω

γ
=
√

(2HEHA +H2
A)±H0. (1.77)

However, the magnetic susceptibility in a real antiferromagnet shows a finite value
χ‖ at low temperature. When a finite value of α is hence considered, Equations
(1.75) and (1.76) can be rewritten as,

ω

γ
=
√

(2HEHA +H2
A)±H0(1− α/2). (1.78)

Fig. 1.9 shows the four AFMR resonance modes when the external magnetic field
is applied to the z-axis. The modes labelled by the black solid lines occur when
H0 ‖ ẑ above and below the AFMR gap ∆. With the parameter α, the other
mode shown with red solid lines occurs. The slope of the lines is smaller with the
positive α.

The case of H0 ⊥ z-axis When the anisotropy field is much smaller than the
exchange field, the resonance frequency can be described as,

ω

γ
=
√

2HEHA +H2
0 . (1.79)

When H0 is perpendicular to the magnetizations, M1 and M2, and the exchange
field HE is much larger than H0, H0 can be neglected, i.e. [41],

ω

γ
= (2HEHA)1/2 . (1.80)

A ZFS can be calculated by means of Equation (1.80). The ZFS is called the
AFMR gap. This resonance mode, the blue line is shown on Fig. 1.9.

The case of H0 ‖ z-axis, when H0 > Hc The spin-flop resonance occurs in
this case. The resonance equation is written as,

ω

γ
=
√
H2

0 − 2HEHA. (1.81)

When the magnetic field reaches to the particular field which can overcome the
anisotropy field, a spin-flop occurs. Accordingly, the parameter α is not consid-
ered. The spin-flop field is,
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1.9. Simulation

H0 = (2HEHA)1/2 . (1.82)

The resonance of the spin-flop mode is same in the two cases with α = 0 or
α = 0.6. It is indicated by the black dashed line in Fig. 1.9.

1.9. Simulation

Susceptibility χ(T ) Analysis To simulate the magnetic susceptibility curve
of small spin clusters, the program julX is used [43]. This program is based
on the Hamiltonian, Equation (1.31), with maximum of four spins. It calcu-
lates the magnetic moments from first order derivatives of the eigen values, Ei,
µi = −dEi/dB without eigenfunctions. With eigenfunction it can calculate it as
dEi/dB =< Ψ | dH/dB | Ψ > [44].

Spectra Simulation To analyze and reproduce the experimental ESR spectra,
the EasySpin of the MATLAB toolbox which is available for free is used. This
program enables calculating spin systems with finite number of electron spins
and nuclear spins [45]. There are many functions to modify the Hamiltonian
depending on the spin system. For example, one can build up the program
sources for the giant spin model or the multiple spin model, etc.

Fitting with the Lorentzian Function In chapter 1.1.2, there is explanation
of the Lorentzian function of Equation (1.26). Normally, most compounds for
ESR spectroscopy are constituted by ideal particles with homogeneous environ-
ment [46]. Hence, most ESR spectra have the shape of a Lorentzian. From
the fitting with the Lorentzian function, relevant information on the magnetic
properties of the materials under study can be analyzed. The information on
linewidth, central field and area are obtained by the fitting. As discussed before,
the intensity I of the line is proportional to the susceptibility χ. The intensity
I is also proportional to the area of the line A. Therefore, the area A from the
local static spin susceptibility is to be compared to the magnetic susceptibility χ.
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2. Experimental Technique

The ESR experiment is performed with a sample placed in external magnetic fields
under irradiation with microwaves and detected the transmitted radiation [20,47].
To perform the ESR measurements, external magnetic fields, microwaves, and a
probe to place the sample and to propagate microwaves are required. In this
chapter, the high field and high frequency ESR setup applied will be described.

2.1. High Field - High Frequency ESR Setup

High field and high frequency (HF)-ESR at Heidelberg University is a combina-
tion of a millimeter wave vector network analyzer (MVNA) [48] and a cryogenic
superconducting magnet. The MVNA acts as the microwave source and detec-
tor. It enables to generate microwaves in a broad frequency range, from 8 GHz
to 1000 GHz. This broad tunable frequencies are multiplied from fundamental
frequencies of 8 GHz to 18 GHz which are generated by yttrium iron garnet (YIG)
oscillators. The fundamental frequency is multiplied by Schottky diodes.

The MVNA is controlled by a computer. A schematic drawing of the opera-
tion principle within the frequency range of 8 GHz ∼ 300 GHz is shown in Fig.
2.1. The actual frequency for measurement is managed by two Schottky diodes.
Firstly there are a harmonic generator (HG) and a harmonic mixer (HM). The
two YIGs generate the frequencies F1 and F2, and the source frequency F1 is mul-
tiplied by a harmonic number N by the Schottky diode in the HG [49]. Then, the
HG emits the wave of the harmonic frequency NF1 to the waveguide. This wave
propagates to the sample. After a coupling between the wave and the sample in
magnetic fields, the microwave propagates back and it is mixed with the wave
NF2 in the HM. This frequency NF2 is multiplied at HM by the harmonic number
N . Frequencies NF1 and NF2 are mixed at the Schottky mixer HM. It generates
the intermediate frequency Fif , according to Fif = NF1−NF2 = NFdiff , in order
to down convert the radiation frequency. Fif is in the MHz range and enters to
the network analyzer with an information of the amplitude and the phase which
is compared with the reference signal.

Phase lock loop (PLL) generates an output signal according to the phase of an
input signal. Here the PLL performs the phase locking of the signals from the
two YIGs to minimize the phase noise. The F2 is stabilized in accordance with
the F1 through the PLL. Hence, the PLL compares the Fdiff and the reference
frequency f [50]. Actually, the overall process is determined by the harmonic
number which select the operating frequency Fof of the MVNA receiver. There
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Figure 2.1: Schema of the working principle of high field and high fre-
quency ESR spectroscopy. The harmonic generator (HG) and
harmonic mixer (HM) multiply N times of the fundamental
frequencies F1 and F2 which are generated by YIGs. F1 and
F2 are slightly different frequencies because the YIG gener-
ated F2 is stabilized by another YIG. The HM multiplies the
NF1 to the NF2. Its result Fif in the MHz range is compared
with the generated signals from the YIGs in the network an-
alyzer and the phase lock loop (PLL).

are three operating frequencies, 9.010488 MHz, 34.010488 MHz, and 59.010488
MHz. The operating frequency is decided depending on the harmonic N . The
previously described reference frequency f is decided by the operating frequency,
f = fof/N . And the Fdiff is kept with an equal value of the reference frequency
f by PLL. Depending on desired frequencies, the Schottky diodes multiply the
frequencies by various harmonic numbers: X-band (ν = 8 - 18 GHz) by N = 1,
K-band (ν = 18 - 28 GHz) by N = 2, V-band (ν = 44-74 GH) by N = 4, W-
band (ν = 75-110 GHz) by N = 6, and D-band (ν = 110-170 GHz) by N = 9,
and higher frequencies by higher N . Reaching higher frequencies is possible by

31



2. Experimental Technique

Sixtupler 

MU Iso HPF MU HPF Iso 

Sixtupler 

 
MVNA 

 
 

counter 

Source Ditector 

F1 

Fif 

NF1 NF2 

YIG YIG 

F2 

SB SB 

Figure 2.2: The configuration of the ASAs system. The sextupler pro-
vides a frequency range of 62 - 112 GHz. The combination of
the two frequencies from the source and the detector is ap-
plied to the internal network to stabilize frequencies generated
from YIGs.

applying the extensions of an automatic source association (ASA)-1 and ASA-2.

The ASAs system enables to achieve high frequencies by applying multipliers. The
configuration of the ASAs system is shown in Fig. 2.2. Both sides of the source
(ASA-1) and detector (ASA-2) are connected with the multiplier ×6 (Sextupler).
Basically, the microwave is multiplied six times of the fundamental frequencies,
F1 and F2 in the sextupler which covers the range of 62 - 112 GHz. The multiplied
waves from both sides propagate Faraday isolator (Iso) and single Schottky multi-
harmonic tunalble multipliers (MU). The waves are multiplied again at MU which
performs the mechanical tuning. The self-bias (SB) boxes are connected to the
cap of the MU to check the self-current because these Schottky diodes are fragile.
By that, it is possible to check the emitting, the brokenness of the Schottky
diode and the coupling of microwave with the Schottky. After passing the MU,
the signal passes the high pass filter (HPF) which cuts off the harmonic signals
lower than the concerning harmonics. The two harmonic microwave NF1 and
NF2 are mixed at the mixer of the ASA-2 extension. Then the beat frequency
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Fif = NF1 −NF2 is inserted to the internal network of the MVNA for analysis.

2.2. Waveguide and Cryostat

The microwave from the source propagates along a cylindrical waveguide as shown
in Fig. 2.3. The length of a probe is 180 cm, because a sample will be mounted in
the superconducting coils which are located at the bottom of the cryostat. The
ends of the top of the two tubes are inserted to tapered horns which are con-
nected with the diodes. The tapered horns help concentrating the microwaves.
The generated microwave from the source part is reflected on a 45 degreed mirror
on the top of the probe and propagates to the sample which is mounted of the
bottom of the tube. The microwave couples with the sample. After the coupling
between the microwave and the sample, the transmitted microwave reflects twice
on 45 degreed mirrors. Finally the wave is detected by the MVNA.

If an electromagnetic wave propagates along a waveguide (the x-axis), it can
be described as follows,

E(x, t) = E0e
i(κx−ωt), B(x, t) = B0e

i(κx−ωt), (2.1)

where E(x, t) and B(x, t) are perpendicular to each other, κ is the wave number
and ω is the angular frequency.
If the waveguide is a perfect conductor, E = B = 0 is satisfied inside of the
waveguide. Hence, the boundary condition on the surface can be

E‖ = 0, B⊥ = 0. (2.2)

The electromagnetic waves satisfy the Maxwell equations inside the waveguide.
The resulting electromagnetic wave propagation along the x-axis can be described
as follows [52], [

∂2

∂y2
+

∂2

∂z2
+
(ω
c

)2
− κ2

]
Ex = 0, (2.3)

[
∂2

∂y2
+

∂2

∂z2
+
(ω
c

)2
− κ2

]
Bx = 0. (2.4)

There are three modes from the solutions of Equations (2.3) and (2.4): a trans-
verse electric (TE) mode at Ex = 0, a transverse magnetic (TM) mode at Bx = 0
and a transverse electromagnetic (TEM) mode at Ex = Bx = 0. Electric and
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magnetic fields of TE and TM modes are perpendicular to the direction of prop-
agation. The x-components, Bx and Ex, of TE and TM mode are parallel to the
direction of propagation. A TEM mode cannot occur at an empty waveguide. A
TEM mode is applied to transmission lines which use two conductors like coaxial
cables, microstrips and so on [51]. A TE mode and a TM mode are applied to a
general metal waveguide.

Let’s think about the TE mode propagating in a rectangular waveguide with
height a and width b along the y and z axes (a ≥ b) [52]. Considering the boundary
condition, the wave number κ =

√
(ω/c)2 − π2(m/a)2 + (n/b)2 is calculated from

Equation (2.4) [52]. The integers m and n are the number of half wavelengths of
a and b, respectively. Considering an attenuated wave due to a imaginary part
of κ, the cutoff frequency can be determined as [52,53],

Source Detector 

Scheme of ESR technique 

Magnet 

Sample 

Figure 2.3: Schema of a probe for transmission. The probe preserves
and carries microwaves. The entries on the top parts are
connected with diodes.
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2.2. Waveguide and Cryostat

ωcut = cπ

√(m
a

)2
+
(n
b

)2
. (2.5)

In the case of a cylindrical waveguide, the cutoff frequency can be written as,

ωcut = c
(kcr)mn

2πr
, (2.6)

where r is the radius of the waveguide, (kcr)mn is the nth root of the mth-order
Bessel function J ′m(kcr) [20]. The parameter (kcr)mn is 1.84 and 2.405 for TE11

and TM01 modes, respectively. When an applied frequency is below the cutoff
frequency, it cannot propagate through a waveguide. Furthermore, because of the
Ohmic losses in the waveguide walls, the microwave power is attenuated by the
factor e−αRz with the attenuation constant αR [20]. The attenuation constant αR
is proportional to the surface resistance Rs. Accordingly, a waveguide of an ESR
probe consists of brass and gold deposited brass. The overall of the two tubes are
made of brass with αR = 5.01× 10−2 Ω at 10 GHz [54]. And the bottom of the
brass tubes are plated with gold which has a lower surface resistance of 3.12×
10−2 Ω at 10 GHz [54]. The waveguide consists of two cylindrical tubes with
the diameter of 9 mm which implies the cutoff frequency of ∼9.7 GHz. These
tubes allow using of a broad range of frequencies, which can be generated by the
different settings of diodes.

ESR experiments are performed with a superconducting magnet system from
Oxford Instruments. The magnet reaches the magnetic fields of 18 T. There is a
variable temperature insert (VTI) in the inner part of the magnet coils. The VTI
enables the experiment from low temperature T = 2 K to the high temperatures
T ' 300 K. The height of the cryostat due to the space for the reservoir of the
liquid He is the decisive factor for the length of the probe of about 180 cm. The
total length for the transmission of microwaves is around 4 m. The attenuation
during propagation through the probe is about 0.3 dB/m at an applied frequency
of 300 GHz.
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Part III.
Frustrated Transition Metal Oxides

3. Introduction to Frustrated Spin Systems

In addition to the bare size of magnetic coupling, one of components governing
the magnetic ordering of the spin lattice is the geometrical arrangement of the
spins. When a spin cannot simultaneously satisfy all magnetic couplings acting
on it, the onset of long-range order can strongly suppressed as compared to the
mean-field value. Such cases are due to a competition between different kinds
of interaction due to the geometrical structure of its lattice [55]. It is called the
magnetic geometrical frustration or frustration.

The study of the frustrated spin system began by G.H. Wannier with antifer-
romagnetically coupled spins on a triangular lattice in 1950 [56]. The word
of frustration was introduced by G. Toulouse and J. Villain in 1977 [57, 58].
Representative frustrated lattices are triangular, one-dimensional spin chains, or
Kagomé lattice. The spins in those lattice have an antiferromagnetic coupling
with the nearest neighboring spins. It is ambiguous to predict the physical prop-
erties of the ground state due to the geometrical constraints. Therefore, the
frustrated spin system is interesting to study.

Let’s think about the triangular lattice with three spins on its vertices, respec-
tively. Their coupling is expressed by the exchange constant J . When all the
spins on the ground state are parallel to each other, J > 0, the satisfied spin
configuration is clear and they couple ferromagnetically to each other. However,
when the spins couple antiferromagnetically to each other, J < 0, the spin con-
figuration of a lattice is ambiguous. Fig. 3.1 shows some examples of frustrated
spin systems. Fig. 3.1 (a) shows the triangular lattice where the interactions of
the spin pairs are not satisfied. When the three spin pairs, J1, J2 and J3 are
coupled antiferromagnetically in a strict ising situation, the direction of one spin
is unpredictable. Contrastively, in the square lattice, the spin interactions can be
satisfied for all the antiferromagnetic spin pairs (Fig. 3.1 (b)).

There is another case of a frustrated spin system, i.e., the one-dimensional spin
chain. Fig. 3.1 (c) shows a coexistence of ferromagnetic and antiferromagnetic
interactions in the spin chain system. For example, there is a ferromagnetic cou-

36



plings J1 between neighboring spins and antiferromagnetic coupling J2 with next
nearest neighboring spins on the one-dimensional chain lattice. It is difficult to
determine the ground state which depends on the so-called frustration parame-
ter α = J2/J1 [59]. When the magnitude of the exchange interaction is like as
J3 < J1, J2, all the spins align parallel on the ground state. However, if J3 is com-
parable to J1 and J2 strong enough, the state of the spins cannot be determined
properly.

The ESR spectroscopy allows to study magnetic properties of the ground state
of frustrated spin systems. Especially the high field and high frequency ESR
technique is helpful to study a frustrated spin system with a big anisotropy gap.
Hence, the experimental result will offer information, like as g-factor, linewidth
and so on. The analysis of the data yields interesting information like anisotropy
gap, spin-flop, etc. From them, one can have an opportunity to investigate the
behavior of the spin system in the ground state as well as studying the evolution
of order in the temperature range between T = 0 and the actual 3D ordering
temperature TN .

In my thesis, I will discuss two different kinds of spin system, the honeycomb
spin system and the Kagomé lattice.

J1 J2 

J3 

(a) (b) 

J2 

J1 

J4 

J3 
J1 J1 

J2 

(c) 

Figure 3.1: Various geometrical crystal lattices which have spins coupled anti-
ferromagnetically. (a) Triangular lattice with antiferromagnetic cou-
plings, J1, J2, J3. The last spin is frustrated due to the constraints
of the lattice geometry. (b) Square lattice with antiferromagnetic
coupling. All the spin pairs are satisfied. (c) One-dimensional chain
lattice with coexistence of ferromagnetic and antiferromagnetic cou-
plings. Its spin system can be frustrated by the interaction of J2.
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4. Honeycomb-lattice spin systems Na3Ni2SbO6 and
Li3Ni2SbO6

In this chapter, the two materials Na3Ni2SbO6 and Li3Ni2SbO6 are studied. Both
are correlated spin systems with hexagonal structure by constituent Ni2+ ions in
one plane. It is called, as well, honeycomb structure. This structure is, e.g., used
to make cathodes for Na-ion batteries due to its capacity [60]. The two mate-
rials Na3Ni2SbO6 and Li3Ni2SbO6 began to be studied for possible development
of Na-ion batteries, which can have a large scale energy storage because of the
abundance and low price of Na [61]. Not only its value as a battery but also the
physical phenomena appearing in a complex spin lattice make them interesting
to be studied.

From the geometrical point of view, a system with honeycomb structure is not
frustrated by antiferromagnetic interactions. But there can be a strong mag-
netic fluctuation due to their low coordination [62]. The spin gap behaviors of
those systems can be studied by the temperature dependence of the magnetic
susceptibility χ and the specific heat C [63,64]. In this chapter, the family of the
honeycomb spin system is studied by HF-ESR.

Figure 4.1: Structure of Na3Ni2SbO6 [65]. The octahedral structure is
formed by SbO6 and NiO6 in ab plane. There are Na+ ions
between layers. In ab plane Ni2+ ions form a hexagonal struc-
ture with Sb2+ ions in centers of the hexagons.
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4.1. Crystal Structure and Magnetic Properties

Na3Ni2SbO6 and Li3Ni2SbO6 are provided by the group of Prof. V.B. Nalbandyan
at Southern Federal University [65]. For Na3Ni2SbO6, one Ni2+ ion constitutes
the octahedral structure with six O2− ions which are located edges of the octahe-
dron. In the ab plane the six octahedral NiO6 structures form a hexagonal lattice.
Fig. 4.1 shows the overall structure of Na3Ni2SbO6 and the hexagons in the ab
plane. And the center place of the hexagons is filled with the octaheral SbO6.
Na+ ions are located between the hexagon layers. Fig. 4.2 shows the exchange
couplings between Ni2+ ions [66]. In the ab plane Ni2+ ions are coupled both anti-
ferromagnetically and ferromagnetically. Ni2+ ions in ferromagnetic zigzag chains
are coupled with J2 = −22 K (FM) which is indicated by the green line [66]. The
distance between Ni2+ ions is 3.06 Å [66]. The ferromagnetic chains are coupled
antiferromagnetically to each other. Their exchange coupling is J1 = 15 K (AFM)
and their distance is 3.05 Å [66]. Ni-O angles in NiO6 octahedral structure are
between 81.2◦ and 96◦ [66].

Li3Ni2SbO6 has the same structure as Na3Ni2SbO6 as shown in Fig. 4.1. The
ionic ion Na+ is sustituted by the Li+. Layers of honeycomb lattice which con-
sists of octahedral structures of NiO6 and SbO6 are separated by the ionic ions

J1 15 K (AFM) 

J2 -22 K (FM) 

J3 0 K 

J5 1 K (AFM) 

(a) (b) 

Figure 4.2: (a) Schema of exchange couplings in Na3Ni2SbO6. (b) Table
of the exchange coupling resultings from band structure calcu-
lation [66]. The coupling between nearest neighbors J1 is an-
tiferromagnetic indicated by the purple line, the coupling be-
tween next nearest neighbor J2 is ferromagnetic (green line).
The next nearest neighbor coupling is J3 and the coupling
between the honeycomb layers is J5 [66].
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Li+ [65]. Ni2+ ions are coupled ferromagnetically with J2 = −25 K to lead zigzag
chains. The distance between Ni2+ ions is 2.99 Å [66]. Those chains are coupled
antiferromagnetically with J1 = 18 K and their distance is 2.98 Å. The distance
between Ni2+ ions on Li3Ni2SbO6 is shorter than the one on Na3Ni2SbO6. Be-
cause the ionic radius of Na+ is larger than Li+. It is caused by the different
spin configurations between Na+(2p6) and Li+(1s2). Ni-O in NiO6 octahedral
structure have angles between 83.4◦ and 94.9◦ [66].

The magnetic measurements and the X-band ESR measurements on Na3Ni2SbO6

have been done by the group of Prof. E. A. Zvereva in Moscow [65]. The mag-
netic susceptibility was measured with a Quantum Design SQUID magnetometer
at B = 0.1 T within T = 1.8 − 300 K. The magnetic susceptibility curve stead-
liy increases as the temperature decrease. Below the Néel temperature of 17 K
the susceptibility drops. This phenomenon indicates antiferromagnetic ordering.
The inverse susceptibility is analyzed by a Curie-Weiss law with a diamagnetic
term. It reveals a positive diamagnetism χ0 ∼ 1 · 104 emu/mol with the positive
Curie-Weiss temperature of Θ ∼ 12 K which indicates dominating ferromagnetic
coupling [65]. Band structure calculations indicate the existence of the ferro-
magnetic and antiferromagnetic couplings in the material [66]. Even though the
antiferromagnetic coupling is observed from the shape of susceptibility curve, the
ferromagntic coupling is predominant. The effective magnetic moment of 4.4µB
is calculated by the Curie constant [65]. The effective g-factor is 2.15 [65]. The
saturated magnetization is ∼ 4.3 µB as taken from the magnetic field dependence
of the static magnetization up to 25 T.

Li3Ni2SbO6 has similar magnetic properties as Na3Ni2SbO6. Its susceptibility
curve increases when the temperature decreases. Then it drops below TN = 15 K
which shows the antiferromagnetic ordering transition. By using the Curie-Weiss
law the inverse susceptibility is analyzed. The Curie-Weiss temperature is Θ ∼ 8
which indicates predominant ferromagnetic coupling between Ni2+ ions [65]. The
effective magnetic moment is 4.3µB [65]. The effective g-factor from the Curie-
Weiss analysis of the static susceptibility is 2.5 which is corresponding to a total
spin S = 1 of Ni2+ ion [65].

4.2. HF-ESR: Experimental Results and Discussion

Na3Ni2SbO6 The HF-ESR measurement were performed on loose powder of
Na3Ni2SbO6 in the frequency range of 50 - 560 GHz at the temperature T = 4
K. Fig. 4.3 shows ESR signals at 4 K. At f = 470 GHz three AFMR peaks are
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Figure 4.3: AFMR signals at 4 K in loose poder of Na3Ni2SbO6. At
f = 470 GHz three AFMR peaks are obtained. At 374 and
180 GHz, there is only one AFMR peak. At 60 GHz, there are
two AFMR peaks around 10 T. Symbols are corresponding to
the experimental data in Fig. 4.4.

obtained. There is only one AFMR line at f = 374 and 180 GHz. At 60 GHz,
there are two AFMR peaks at around 10 T.

Fig. 4.4 shows the frequency dependence of the ESR resonance fields at T = 4
K. In this case, four resonance modes are obtained since powder particles are
self-oriented in the magnetic fields. First of all, the first resonance mode shows
the behavior of the spins when the magnetic field is perpendicular to the easy
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Figure 4.4: Experimental data ω/γ vs. magnetic field and in terms of the
AFMR model simulation of the magnetic field dependence of
ESR data. When the easy axis is parallel to H, the second and
third resonance modes show the g-factor of 2.18. At zero field
the AFMR gap is 12.8 T. When the easy axis is perpendicular
to H, it reveals the g-factor of 2.05. At H > Hc the spin flop
region is simulated.

axis. The second and third resonance modes are obtained in the low field region
when the field is parallel to the easy axis. They correspond to the high and low
frequency modes which are introduced in chapter 1.8. Finally, the fourth reso-
nance mode occurs in the spin-flop region if the magnetic field is applied along
the easy axis.

The average of the total magnetic moments of the sublattices can be described
as macroscopic sublattice magnetization Mi of each sublattice. M1 and M2 are
almost parallel to ± ẑ in presence of the magnetic field. Their equations of motion
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Figure 4.5: The temperature dependence of ESR spectra at 388 GHz. At
T < 10 K, three resonance peaks are appeared on each spec-
trum. They move to higher magnetic fields when the temper-
atures increase. The intensity of the ESR spectra decrease at
high temperature.

are described by Equations (1.75) and (1.76). The anisotropy field is assumed
very small compared to the exchange field. Hence, the squared anisotropy field
H2
A in both equations is neglected. Then those equations can be written as,

ω/γ =

√
2C + (αH0/2)2 +H0 (1− α/2) , (4.1)

where C = HAHE, α = χ‖/χ⊥ and H0 = (g/2)H. The blue solid lines in Fig.
4.4 are fits to the data by means of Equation (4.1). The obtained parameters are
C = HAHE

∼= 82 T, α ∼= 0.0064 and g-factor of 2.18. At zero magnetic field, the
AFMR gap is ω/γ = 12.8 T.
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4. Honeycomb-lattice Spin Systems Na3Ni2SbO6 and Li3Ni2SbO6

The saturated magnetization is 4.3 µB/f.u. at 4.2 K, i.e., 23.9 J/T−1/mole. And
the susceptibility at 4 K is 0.05 erg/G2/mole (= 0.5 J/T2/mole) [65]. From the
parameter α = 0.0064, χ⊥ can be approximated. The inversed exchange constant
λ−1 is proportional to χ⊥ [67]. Hence, the calculation reveals an exchange con-
stant λ of ∼ 1.34 mole T2/J which leads to the exchange field HE = λM0

∼= 32
T. The parameter HEHA is the multiple of λK. Hence, an anisotropy constant
K of ∼ 61 J/mole is calculated. The anisotropy field is around 2.55 T which is
not a small value to be neglected. The frequency dependent ESR data are hence
by following new equations including HA. The modes for H ‖ ẑ are simulated
by [68],

ω/γ =

√
2HEHA +H2

A + (αH0/2)2 +H0 (1− α/2) . (4.2)

The initial parameters are HE = 32 T, HA = 2.55 T and α = 0.0064. The
simulation lines by applying Equation (4.2) are plotted in red in Fig. 4.4. Above
the AFMR gap, the simulation lines (blue lines) reproduce the red dots well.
Below the gap, there is a slight discrepancy between the simulation lines (blue
lines) and the third resonance mode.
The modes for H ⊥ ẑ are simulated by [68],

ω

γ
=
√

2HEHA +H2
A + (HA/HE)H2

0 +H2
0 . (4.3)

The pink line representing the best simulation of the first resonance mode is shown
in Fig. 4.4. It reveals the g-factor of 2.05. The spin-flop mode is simulated with
the same parameters of the other resonance modes (purple line).

The temperature dependent ESR spectra are measured at frequencies above and
below the AFMR gap of 12.8 T (∼ 358.4 GHz). Fig. 4.5 shows the temperature
dependence of ESR spectra at 388 GHz which is above the AFMR gap. The
spectra at low temperature are very broad. There are three resonance signals
around 1 T, 4 T and 11 T, respectively. When the temperature increases, the
linewidth of the ESR spectra decreases. At the Néel temperature TN = 17 K, the
resonance peak shifts to high magnetic field. By increasing the temperature, the
intensity of the ESR spectra also decreases.

The temperature dependent ESR spectra are analyzed by Lorentzian functions.
Fig. 4.6 shows the temperature dependence of the resonance fields. The main
feature is the strong shift of the resonance field when cooling beelow TN . Above
TN , there is a relative small shift as compared to the low field one. Here, the
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Figure 4.6: Temperature dependent resonance fields at 388 GHz above the AFMR
gap. Insert: (a) The sum of the linewidths of the ESR resonance
peaks. (b) The resonance fields shift to the higher magnetic fields in
vicinity of TN , and ESR peaks are merged.

resonance peaks shift to higher field upon heatings. Fig. 4.6 (b) shows the shifting
of signals at T < TN (= 17 K) in more detail. The shifts of the resonance field
below TN occurs due to the developed internal field which is regarded as the
antiferromagnetic resonance [69, 70]. The temperature dependence of the sum
of the linewidths of the three resonance ESR peaks, ∆L is plotted in Fig. 4.6
inset (a). When the temperatures approache to TN the linewidths increase which
indicate the critical evolution of spin-spin correlations and is consistent to the
presence of long range order below TN [71].

The temperature dependence of the ESR spectra at 280 GHz, i.e. below the
AFMR gap, is shown in Fig. 4.7. Below the AFMR gap the ESR resonance spec-
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Figure 4.7: Temperature dependence of ESR spectra at 280 GHz. The
broad resonance spectra at low temperatures have the three
resonance signals. At TN , the resonance fields shift to the
higher fields and then merge to the one peak. The intensity
of the ESR spectrum decreases at high temperature.

tra at low temperature are also very broad. The three resonance fields appear at
3 T, 11 T and 14 T, respectively, at 4 K. When the temperature increases, the
resonance peaks shift to higher magnetic fields. In vinicity of the Neél tempera-
ture TN = 17 K, the two resonance peaks disappear. And above the TN only one
resonance peak is observed.

Similar to the procedure at 388 GHz, the temperature dependent ESR spec-
tra at 280 GHz are fitted by means of Lorentzian functions. Fig. 4.8 shows the
temperature dependence of the resonance fields. The resonance signals move to

46



4.2. HF-ESR: Experimental Results and Discussion

0 50 100 150 200
0

2

4

6

8

10

12

14

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

 

 

M
a
g
n
e
ti
c
 f
ie

ld
 (

T
)

Temperature (K)

 

 
M

a
g

n
e

ti
c
 f
ie

ld
 (

T
)

Temperature (K)

 1
st
 reson. fields

 2
nd

 reson. fields

 3
rd
 reson. fields

Na
3
Ni

2
SbO

6

f = 280 GHz
0 20 40 60 80 100

0

2

4

6

8

10

12

 

 

L
in

e
w

id
th

 (
T

)

Temperature (K)

Na
3
Ni

2
SbO

6

f = 280 GHz

(a) (b) 

TN = 17 K 

Figure 4.8: Temperature dependent resonance fields at 280 GHz below the AFMR
gap. Insert: (a) The sum of the linewidths of resonance peaks of the
ESR spectra. Around TN an anomalous increase appears due to the
developement a long range order. (b) The resonance fields shift to
the lower magnetic field in vicinity of TN and then are merged to one
magnetic field.

lower magnetic field below TN . Similar to the result at 388 GHz, the shift sig-
nals mean the evolution of the internal magnetic field in the long range ordered
state [69]. But in this case the the resonance fields shift to the low field. Fig. 4.8
(a) shows the ESR linewidth versus the temperature. The increasing linewidth
occurs at the Néel temperature which indicates a long-range order [71, 72].

Li3Ni2SbO6 The HF-ESR measurement were performed on loose powder of
Li3Ni2SbO6 in the frequency range of 50 - 560 GHz at the temperature T = 4 K.
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4. Honeycomb-lattice Spin Systems Na3Ni2SbO6 and Li3Ni2SbO6

Fig. 4.9 shows the ESR signals at 4 K. At f = 480 GHz two AFMR lines are
obtained around 15 T. At 300 GHz, there are two AFMR lines at 6 T and 10 T.
At 150 GHz, one AFMR line at around 2.5 T is obtained. There are two AFMR
lines at 70 GHz. One is at around 7 T, the other is a broad one at around 11.5
T.

Fig. 4.10 shows the magnetic field versus the frequency in units of T at T = 4 K.
These resonance modes are analyzed by the mean field theory of an antiferromag-
netic resonance with orthorhombic anisotropy [71]. In this case, two anisotropy
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Figure 4.9: AFMR signals at 4 K in loose powder of Li3Ni2SbO6. At 480
and 300 GHz two AFMR lines are obtained. At 150 GHz,
there is only one AFMR line. At 70 GHz, there are two
AFMR lines. Symbols are corresponding to the experimental
data in Fig. 4.10
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Figure 4.10: Experimental data ω/γ vs. magnetic field and in terms of
the AFMR model simulation of magnetic field dependence
of ESR data. When the easy axis is parallel to magnetic
fields, the second resonance mode with a g-facotr of 2.1 is
obtained below the AFMR gap of 7 T. When the easy axis
is perpendicular to magnetic fields, the first resonance mode
reveals the g-factor of 2.06.

fields exist in the sample. The first resonance mode means the behavior when
the magnetic field is along to the second easy axis. The second resonance mode
represents a situation when the magnetic field is applied along the easy axis.

When two anisotropy fields HA1 and HA2 are much smaller than the exchange
field HE, the AFMR frequencies can be described as follows,

49



4. Honeycomb-lattice Spin Systems Na3Ni2SbO6 and Li3Ni2SbO6

0 2 4 6 8 10 12 14 16

2 K

Li
3
Ni

2
SbO

6

f = 330 GHz

 

 
E

S
R

 t
ra

n
s
m

is
s
io

n
 (

a
rb

. 
u
n
it
)

Magnetic field (T)

4 K

6 K

8 K
10 K

12 K

14 K

16 K

18 K

20 K

25 K

30 K

230 K

100 K

80 K

60 K

40 K

Figure 4.11: The temperature dependence of ESR spectra below the
AFMR gap of 330 GHz. The broad resonance spectra at the
low temperature is shrank when the temperatures increase.

ω

γ
=

1√
2

√
(1 + α2)H2

0 + C1 + C2 ±
√

(1− α2)
2
H4

0 + 2 (1 + α)
2
H2

0 (C1 + C2) + (C1 − C2)
2
,

(4.4)

where H0 = gH/2, C1 = 2λK1, C2 = 2λK2, and α = 1 − Aχ‖. The best
simulation parameters are C1 = 88 T, C2 = 50 T, α = 1 and g = 2.1. This
simulation line is plotted as a blue line in Fig. 4.10. There is parameter α = 1
which indicates a very small value of χ‖. Thus, χ ∼= 0.06 J T−2/mole at 4 K [65]
can be approximated as χ⊥. This yields the exchange constant λ is ∼ 16.7 mole
T2/J. Also, the other parameters of the anisotropy constants can be calculated
as K1 = 2.6 J/mole, and K2 = 1.5 J/mole.
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Figure 4.12: (a) Temperature dependent resonance field at 330 GHz
above the AFMR gap. While the first and second resonance
fields shift to the lower magnetic fields in vicinity of TN ,
the third ones move higher fields. (b) The temperature dep-
dendent the sum of linewidths of the ESR resonance peaks.
There is a shift at TN due to the presence of long range order.
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The second easy axis mode can be written as

ω

γ
=
√
H2

0 + C1. (4.5)

With the obtained parameters, Equation (4.5) yiels the simulation line (red line)
in Fig. 4.10 with the g-factor of 2.06. The AFMR gap is obtained as 7 T (∼ 200
GHz). In this sample, the hard axis resonance mode is not observed. As well,
there are many resonance fields (labelled by green dots) except the two main
AFMR resonance modes. But those are not explained by the AFMR mode with
orthorhombic anisotropy.

Temperature dependent ESR spectra at 330 GHz are shown in Fig. 4.11. At
low temperature the resonance peaks appear at 9 T and 11.5 T. When the tem-
perature increases, the width of ESR spectra decreases and the resonance field
shifts to 11 T. Fig. 4.12 shows the temperature dependent resonance fields and
linewidths. When T < TN , the resonance fields are shifted due to the developing
internal field, as in Na3Ni2SbO6, as shown in Fig. 4.12 (a). The linewidths show
an anomalous increase when the temperature approaches TN which indicates a
long range order occuring in the sample as shown in Fig. 4.12 (b).

4.3. Summary

HF-ESR studies are performed on Na3Ni2SbO6 and Li3Ni2SbO6. The frequency
dependence of the ESR spectra of Na3Ni2SbO6 shows four resonance modes which
indicate a uniaxial antiferromagnetic resonance. When magnetic fields are applied
along the easy axis, total three resonance modes are found which show a g-factor
of 2.18 and an AFMR gap of 12.8 T (∼ 358 GHz). But a spin-flop mode is not
observable in this case. When the magnetic fields are applied perpendicular to
the easy axis, a resonance mode is obtained which indicates a g-factor of 2.05.
The temperature dependence of the ESR spectra is studied above and below the
AFMR gap. The temperature dependence ESR data at 388 GHz and 280 GHz
show a rapid shift around TN which indicates the magnetic ordering at T < TN .
When the temperature increases, the resonance fields are shifted to higher mag-
netic fields or to lower magnetic fields at 388 GHz and 280 GHz, respectively.
It is caused by the developed internal field. The experimental resonance modes
are simulated with modified AFMR equations because the anisotropy field is not
small enough to be neglected. The simulation lines reproduce the experimental
ones quit well. But the simulation of the AFMR mode where the easy axis is
perpendicular to the magnetic field cannot be well reproduced. The resulting
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4.3. Summary

parameters are the anisotropy field of 2.55 T and the exchange field of 32 T.

Li3Ni2SbO6 is measured as well by the ESR technique. The mean field the-
ory of antiferromagnetic resonance with orthorhombic anisotropy is applied here
to analyze the result. The frequency dependence of the ESR spectra shows two
AFMR modes. One is the easy axis mode and the other is the second easy axis
mode. From the easy axis mode, a g-factor of 2.1 is deduced, and a g-factor of
2.06 on the second easy axis mode. The exchange constant λ and the antiferro-
magnetic constants K1 and K2 are revealed as 16.7 mole T2/J, 2.6 J/mole and
1.5 J/mole, respectively. The AFMR gap is 7 T (∼ 200 GHz) at zero magnetic
field. Temperature dependent ESR spectra are studied at 330 GHz which is above
the AFMR gap. It shows the rapid shift around TN . When the temperature in-
creases, the resonance fields are shifted to higher magnetic fields which indicates
the occurrence of internal antiferromagnetic fields in vicinity of TN .

The mean field theory considers an averaged effect of many-body system. It can-
not explain the details of the behavior of the sample. To achieve more successful
simulations, second-nearest-neighbor exchange interactions or more interactions
between spins should be considered. In the experimental point of view, the short
range antiferromagnetic fluctuation shows up in the temperature dependencies of
the resonance field and the linewidth.
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5. Spin-1 Kagomé Antiferromagnet Ca10Cr7O28

5.1. Kagomé Lattice

The antiferromagnetic Kagomé spin lattice is a good model to study spin frustra-
tion [73–75]. The first study was done by Ichiro Shoji in 1951 [76]. This structure
named from the Japanese basket because the lattice pattern looks like a bamboo
basket ’kagomé’. Fig. 5.1 (a) shows the kagomé lattice which has the pattern
of two triangles and two honeycombs each sharing a vertex. Due to the corner
sharing triangles, the spin frustration occurs when the kagomé lattice has anti-
ferromagnetic coupling [77,78]. For example, Fig. 5.1 (b) shows that the spins in
a honeycomb lattice align antiparallel and then the remaining spin in a triangle
lattice frustrates. The spins on the three corners of the honeycomb lattice frus-
trate as sketched in Fig. 5.1 (c). The Heisenberg model for the kagomé lattice
is

? (a) 

(b) 

? 

(c) 

? 

? 

Figure 5.1: (a) Schema of a kagomé structure lattice. The triangles and honey-
combs each a vertex share. (b) When all the spins on the honeycomb
couple antiferrmagnetically, the spin frustrates in the triangle lattice.
(c) Alternatively, the spins on the honeycomb lattice are frustrated.
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5.2. Crystal Structure

H = J
∑
〈i,j〉

~Si · ~Sj, (5.1)

where J is the exchange constant, the sum of spin ~Si and ~Sj runs over all the
nearest neighbors [80]. Kagomé lattice systems are mainly studied by means of
the magnetic susceptibility, the specific heat, neutron scattering, µSR and NMR.

Also, by means of the HF-ESR, the spin dynamics of a system can be stud-
ied. ESR measurments on the kagomé spin lattice have been used to study the
temperature dependence of the g-factor and of the linewidths in the vicinity of the
Néel temperature [81]. The observed properties are different. SrCr8Ga4O19 with
a total spin S = 3/2 and Cu3V2O7(OH)2· 2H2O with a total spin S = 1/2 show
shifts of the g-factor at low temperature [82, 83]. In contrast, ZuCu3(OH)6Cl2
with a total spin S = 1/2 has a g-factor which is temperature independent [84].

5.2. Crystal Structure

Ca10Cr7O28 is provided by the group of Prof. B. Lake at TU Berlin [79]. Cr5+

ions (3d1, S = 1/2) form the kagomé bilayers as shown in Fig. 5.2. Couplings
between nearest neighbor Cr5+ ions along J0 (green lines), along J1 (orange lines),
and along J2 (red lines) are presented. The slightly tilted different bilayers show
ferromagnetic interaction J0 [79]. This yields an effective spin of S = 1. Cr5+ ions
in the kagomé plane couple antiferromagnetically to each other [79]. In the center
of the hexagon, there is a Cr6+ ion. The antiferromagnetic exchange interactions
in the kagomé plane are J1 and J2. The bonding distance along J0 is 3.9 Å, along
J1 is 5.09 and 5.04 Å in upper and lower layer, respectively [79]. Also, the bonding
distance along J2 is 5.70 and 5.75 Å in upper and lower layer, respectively [79].

5.3. HF-ESR and X-band ESR: Experimental Results and
Discussion

HF-ESR: The crystal Ca10Cr7O28 was measured along two different axes, the
b-axis and the c-axis in magnetic fields up to 16 T. The frequency range was
ν = 60 − 390 GHz at the temperature T = 4 K. The kagomé plane is located
in the crystallographic ab-plane as shown in Fig. 5.2 (a). The crystallographic
c-axis is perpendicular to the kagomé plane.
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5. Spin-1 Kagomé Antiferromagnet Ca10Cr7O28

Fig 5.3 shows the plot of the frequency versus the resonance field applied along
the c-axis with several ESR spectra at 4 K. A single resonance peak is obtained
up to 220 GHz. Above it, there are two resonance peaks. In contrast, at 300
GHz, there are five resonance features. Such behavior is not expected for the
magnetic Cr5+ ion (S = 1/2). Hence, it is attributed the multiple scattering.
When the sample size is compatible to the wavelength of the applied microwave,
the microwave does not propagate along the direction of transmission. Then, the
incident wave and reflected wave can make nodes where those waves are canceled.

(a) 

Figure 5.2: Structure of the bilayered Ca10Cr7O28 [79]. J0 is a ferromag-
netic coupling. The green, light green, dark and light blue
balls mean Cr5+ ion in one layer, Cr5+ ion in the other layer,
and non-magnetic Cr6+ ions in both layers, respectively [79].
The bonding distance along J0 is 3.9 Å, along J1 (orange lines)
is 5.09 and 5.04 Å in upper and lower layer, respectively [79].
Also, the bonding distance along J2 (red lines) 5.7 Å ia 5.70
and 5.75 Å in upper and lower layer, respectively [79]. (a)
Photographic picture of Ca10Cr7O28. In crystallographic ab-
plane, the kagomé lattices are presented. The crystallographic
c-axis is perpendicular to the kagomé lattice.
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Figure 5.3: Plot of frequency versus resonance fields of the ESR resonance
line with representative ESR spectra of the Ca10Cr7O28 at 4
K. Magnetic field have been applied along the crystallographic
c-axis. Above 220 GHz, multiple features are obtained pre-
sumingly due to the standing wave.

Those nodes do not change their positions which lead to a standing wave inside
the sample. Multiple reflections can show up in ESR spectra as multiple features.
For an exact analysis, the related spectra are ignored. Hence, the ESR spectra
from 60 GHz to 190 GHz are analyzed. The analysis reveals the g-factor of 2.01
which is plotted by the red line, and the extrapolation of the red line to H = 0
implies that there is no ZFS.

The plot of frequency versus magnetic fields of ESR resonance line with ESR
spectra of the c-axis at 200 K and at ν = 160 - 330 GHz is shown in Fig. 5.4. At
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Figure 5.4: Plot of frequency versus resonance field of the ESR resonance
line with representative ESR spectra on the crystallographic
c-axis of Ca10Cr7O28 at 200 K. The g-factor is 2.03 with no
ZFS.

high enough temperature, multiple features are not observed. An analysis of the
four resonance spectra reveals a g-factor of 2.03 and no ZFS. The material does
not have the property of a magnetic anisotropy along the c-axis.

Along the crystallographic b-axis, the ESR measurements are performed in mag-
netic field up to 16 T at frequencies ν = 35− 390 GHz at the temperature T = 4
K. Fig. 5.5 shows the plot of frequency versus magnetic fields with representative
ESR spectra. A single resonance peak is obtained up to 150 GHz. Similar to
what is observed for the c-axis, multiple features show up due to standing waves
inside the sample. Hence, the ESR spectra from 35 - 150 GHz are considered for
analysis only. This reveals a g-factor of 1.94 which is smaller than the g-factor of
2.01 of the c-axis at 4 K. The frequency dependence of the ESR spectra at 30 K
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Figure 5.5: Plot of frequency versus resonance magnetic field dependence
of the ESR resonance line with representative ESR spectra
on the b-axis of the Ca10Cr7O28 at 4 K. The g-factor is 1.94
and the no ZFS. The multiple features are obtained above 150
GHz.

is shown in Fig. 5.6. From the analysis it reveals a g-factor of 1.93 and no ZFS.
Comparing those results, it shows that g-factors are different depending on the
axes.

X-band ESR: The X-band (9.58 GHz) ESR measurements have been performed
in the temperature range from 4 K to 230 K with a commercial EMX spectrom-
eter from Bruker at IFW Dresden. By HF-ESR, the multiple peaks are obtained
and the intensity of the spectra is quite small. In contrast, X-band ESR provides
a clear signal with a cavity resonator.

The temperature dependence of X-band ESR spectra along the c-axis at fre-
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Figure 5.6: Frequency versus resonance magnetic field dependence of the
ESR resonance line with representative ESR spectra along the
b-axis of Ca10Cr7O28 at 30 K. The g-factor is 1.93 and there
is no ZFS.

quencies range T = 4.07− 230 K is plotted in Fig. 5.7. The resonances occur at
0.36 T as well as the intensity of the spectrum is very high at 4.07 K. The spectra
of the X-band ESR are analyzed with fitting the derivate Lorentzian function,

y = y0 − 16
A

π

(
1

ω

)(
x− xc
ω

)[
4

(
x− xc
ω

)2

+ 1

]2
, (5.2)

where y0 is the background, xc is the center field which means the magnetic
resonance field, ω is the linewidth of the spectrum, and A is the area of the
spectrum.
The fitting result of all spectra along the c-axis is in Fig. 5.7 (a) and (b) showing
the peak area and the linewidth, respectively. Fig. 5.7 (a) shows the decreasing
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5.3. HF-ESR and X-band ESR: Experimental Results and Discussion
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Figure 5.7: The X-band ESR spectrum of Ca10Cr7O28 along the c-axis.
(a) Resonance peaks area as derived by analyzing the spec-
tra by means of a derivative Lorentzian. (b) Temperature
dependence of the linewidth along the c-axis. The linewidth
decreases upon decreasing the temperature.
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Figure 5.8: The X-band ESR spectrum of Ca10Cr7O28 along the b-axis.
(a) Resonance peak area as derived by analyzing the spec-
tra by means of a derivative Lorentzian (b) Temperature de-
pendence of the linewidth along the b-axis. The linewidth
decreases upon decreasing the temperature.
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5.4. Summary

area of the ESR spectrum as the temperature increases which means a decreasing
absorbed power by the resonating spin system. The linewidth decreases when
the temperature decreases as shown in Fig. 5.7 (b). Below 10 K, the linewidth
increases rapidly and drops around 2 K. The temperature dependence X-band
ESR data along the b-axis is plotted in Fig. 5.8. As well, the spectra are fitted
with the derivative Lorentzian function, Equation (5.2). The area is shown in
Fig. 5.8 (a). The area decreases when the temperature increases. Fig. 5.8 (b)
shows the decreasing linewidths by decreasing temperatures. The behavior of the
both the b-axis and the c-axis does not show clear differences.

5.4. Summary

HF-ESR studies have been performed along the crystallographic b and the c axis
of the bilayer kagomé lattice system Ca10Cr7O28. The b-axis is parallel, c-axis is
perpendicular to the kagomé planes.
The frequency dependencies of the ESR spectra along the c-axis at 4 K and 200
K show one resonance line at low fields but multiple ones at higher fields. This is
attributed to the presence of standing waves in the sample. The analysis hence
disregards the multiple peaks. The analysis reveals the g-factor of 2.01 and 2.03
at 4 K and 200 K, respectively. Also, there is no magnetic anisotropy in the spin
system of the material.
The temperature dependence of X-band ESR spectra is measured. By using
the derivative Lorentzian function, the area and the linewidth of the spectra are
derived from the data.
For the b-axis, the frequency dependences of the ESR spectra at 4 K and 30 K
show a change in the g-factor from 1.94 at 4 K to 1.93 at 300 K. ZFS is not found.
From the analysis of the temperature dependent ESR spectra at X-band the area
and the linewidth of the spectra are obtained. Both the area and the linewidth
for the b- and the c-axis show the same tendency depending on the temperature.
The linewidth decreases when the temperature decreases. When the temperature
decreases, the area increases which indicates a higher spin susceptibility at lower
temperatures.
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6. Introduction to Single Molecule Magnetism

Part IV.
Metal-Organic Compounds

6. Introduction to Single Molecule Magnetism

Single molecule magnets (SMMs) are good model systems to study magnets com-
prising a finite numbers of interacting paramagnetic centers. SMMs are isolated
spin systems and nanoscale magnets. Main characteristics of SMMs are following
as: the large spin number, the anisotropy and the negligible interaction between
the molecules. They offer a chance to study a quantum phenomenon of so-called
quantum tunneling of the magnetization which will be described below.

SMMs are constituted by a magnetic core and non-magnetic ligands. They pos-
sess a finite number of paramagnetic ions in the magnetic core. Those ions can
form a large spin due to exchange interactions between magnetic ions. Repre-
sentative magnetic ions are transition metal ions such as Mn, Fe, Ni, and Co.
There are several interesting SMMs, for example, Mn12 and Fe8 [85]. They have
twelve Mn ions and eight Fe ions in a core, respectively. The magnetic core is

ms 

Ms =  -10 

- 9 

- 8 

- 7 

Ms =  10 

 9 

 8 

 7 

ΔE = |D|S2 

Figure 6.1: Schematic diagram with the spin states S = ±10 with an
anisotropy energy barrier | D | S2.
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surrounded by the non-magnetic ligands. The intermolecular interaction is very
small compared to the intramolecular interaction. Hence, the interaction between
SMMs can be often neglected. Each molecule can be considered as an indepen-
dent magnetic unit.

The other characteristic of SMMs is a magnetic anisotropy which is caused by the
spin-orbit coupling. Anisotropy with a large spin number induces an energy bar-
rier between the degenerated spin states in SMMs. Basically, the energy potential
takes the form of the double wells because of the energy barrier as shown in Fig.
6.1. In this case, the spin state ±S lie lowest. With a given anisotropy parameter
D, the larger spin number the bigger energy barrier as follows, ∆E =| D | S2

z . A
spin has to overcome the energy barrier to reverse the magnetization.

Due to the large anisotropy barrier, the SMMs have a long relaxation time which
leads to a hysteresis in magnetization [86]. This relaxation is affected by the
temperature. When the relaxation time becomes longer compared to the mea-
surement time below a certain temperature, the magnetization will not flip during
the measurement. Thus, the spin states of SMMs depend not only on the exter-
nal magnetic field but also on the measurement time. The related temperature is

Figure 6.2: Image of the core of the Mn12-acetate. Total twelve Mn ions
are ferromagnetically or antiferromagnetically coupled to lead
to the large spin number S = 10 [89].
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6. Introduction to Single Molecule Magnetism

called the blocking temperature [87, 88]. Therefore, measurements on SMMs are
often performed at very low temperatures. In order to realize experimental situa-
tion where thermally activated, changes of the spin states are strongly suppressed.

The most prominent quantum phenomenon in SMMs is quantum tunneling of
magnetization. In the case of Fig. 6.1, a transition between the spin states
cannot be possible because the states are orthogonal. However, if there is a per-
turbation in xy-plane, it makes off-diagonal terms in a matrix which leads to a
mixing of states. The perturbation can occur by x, y component of an applied
magnetic field or a transverse anisotropy. Then, spins can transit from spin states
| m > in one side of the double potential well to spin states | m′ > in another
side [90,91]. This phenomenon is observed in the magnetization data. SMMs show
a hysteresis loop in the magnetization due to their energy barrier. Then due to
the transverse anisotropy, there are multiple steps at points of energy mixing [92].

One of the well-known SMMs is Mn12-acetate, which was synthesized firstly in
1980 [93]. Its unique magnetic properties were discovered in 1993 [94]; a large
spin number, a large anisotropy. The structure of [Mn12O12(CH3 COO)16(H2O)4]
· 2CH3COOH · 4H2O which is referred to as Mn12-acetate is shown in Fig. 6.2 [95].
All Mn ions are connected via oxygen ions. The four inner Mn4+ ions are fer-
romagnetically coupled and the eight outer Mn3+ ions are also ferromagnetically
coupled as well. And the four inner Mn4+ (S = 3/2) ions are antiferromagneti-
cally coupled with eight outer Mn3+ (S = 2) ions. Hence, the ground state can be
described by a total spin Stot = 10. Mn12-acetate has a strong negative uniaxial
anisotropy (D ∼ 60 K) [96]. Mn12-acetate shows the distinct properties of SMMs
such as the slow relaxation time, the quantum tunneling, and the magnetic hys-
teresis curve of the magnetization [11,97].

In the applicative point of view, SMMs may be in principle used for magnetic
devices such as quantum computing, high-density storage [98]. SMMs are very
small magnets in the unit of molecules. These molecules have large spins which
can play a role as digits. Thus, it can be applied to high-density storage like as
a hard disk [99]. On the other side, SMMs can be used to build up the quan-
tum computer. Superposition of large spin states can make possibly quantum
bits [100].

In this chapter, various characteristics of various metal-organic compounds are
studied by ESR spectroscopy. Through ESR measurement, the total spin number
and the magnitude of the magnetic anisotropy are determined.
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7. Ni Dimer Complexes with Au Ligand

SMMs behave like small magnets. They are discussed as possible ingredients of
future information storage devices. Hence, there is a requirement to deposit the
SMMs on planar surfaces in order to be able to use them in applications such
as high density information storage or quantum computing [101, 102]. However,
SMMs can lose easily their unique magnetic properties and their structures on
the surface [103].

Prior to the deposition on the surface, the behavior of Ni based SMMs with one
Au atom was studied. This is a first step to understand the influence of ligand
structure and metallic atoms on the magnetic properties of Ni2+ dimer complexes.
The results described in the follows has been published in [104].

Au 

S2 Ni 

O 
N 

P 

S1 S2 Ni 

O 

N 

P 

S1 

(a) (b) 

Figure 7.1: Structures of two Ni2+ dimer complexes.
(a) [Ni2L(dppba)]ClO4 without Au atom and (b)
[Ni2L(dppba)AuPh]BPh4 with Au atom. The two Ni2+

in the two complexes are connected by dppda ligand. The
average angle of Ni-S-Ni of both complexes is around 90◦.
The green, yellow, red, orange, pink balls means nickel,
sulfur, oxygen, phosphorus, gold atoms, respectively [104].
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7. Ni Dimer Complexes with Au Ligand

7.1. Crystal Structure

Two Ni2+ dimer complexes have been synthesized in the group of Prof. Kersting
at TU Leipzig. The details of the synthesis and chemical characterization of them
are described in [104]. The structures of the two complexes ([Ni2L(dppba)]ClO4)
’2ClO4’ and ([Ni2L(dppba)AuPh]BPh4) ’4BPh4’ are shown in Fig. 7.1. Both
complexes are the carboxylato-bridged ones which can be isolated as an air-stable
materials [104,105].

For 2ClO4, the two Ni2+ ions are connected by two sulfur (S) bridges and an
acetate bridge with the distance of 3.481(2) Å [104]. The angles of Ni-S1-Ni
and Ni-S2-Ni are 89.47(5)◦ and 90.08(5)◦, respectively [104]. The average dis-
tances of Ni-S, Ni-O, and Ni-N are 2.466(14)Å, 2.012(3)Å, and 2.229(4)Å, re-
spectively [104].

For 4BPh4, the two Ni2+ are also connected by two sulfur (S) bridges and an
acetate bridge. The angle of Ni-S1-Ni and Ni-S2-Ni are 89.54(5)◦ and 88.16(4)◦,
respectively [104]. The average distances of Ni-S, Ni-O and Ni-N are 2.472(1)Å,
2.0115(3)Å, and 2.229(4)Å, respectively [104]. An Au atom is attached to the
phosphorus (P) atom of the head part and that forms an almost perfectly linear
angle between C-Au-P of 177.8(2)◦ [104]. The distances of Au-C and Au-P are
2.048(7)Å and 2.3013(12)Å, respectively [104]. The binding of the Au atom to
the P does not have a significant effect on the main structure of Ni2+ with dppda
ligand.

7.2. Magnetization and HF-ESR: Experimental Results

Static magnetization measurements Static magnetization measurements on
2ClO4 and 4BPh4 were performed by Y. Krupskaya at IFW Dresden by means
of a commercial SQUID (superconducting quantum interference device) magne-
tometer from Quantum Design in the temperature range from 2 to 300 K in
magnetic fields from 0 to 5 T.

The field dependence of the magnetization of 2ClO4 and 4BPh4 measured at T
= 1.8 K is shown in Fig. 7.2. The two complexes show similar magnetization
curves. The magnetization is saturated at 5 T. For both compounds, a satura-
tion magnetization is around 4.2 µB/f.u. which corresponds to the theoretical
expectation of Stot = 2. It indicates a ferromagnetic coupling between the Ni2+

ions (3d8, SNi = 1) in the molecule.
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Figure 7.2: Magnetic field dependence of the static magnetization of
2ClO4 and 4BPh4 measured at T = 1.8 K. The magnetization
increases by increasing magnetic field. And it is saturated at
4.2 µB/f.u.. Both compounds show a similar behavior [104].

The temperature dependence of the magnetic susceptibility χ(T ) = M(T )/B
and the inverse susceptibility χ−1(T ) of both complexes at B = 1 T is shown in
Fig. 7.3. The susceptibility χ(T ) and the inverse susceptibility χ−1(T ) were sim-
ulated by the julX simulation program [43] by Y. Krupskaya with the following
Hamiltonian,

H = J ~S1 · ~S2, (7.1)

where J is the Heisenberg exchange constant and S1, S2 are the spin operators.
In Fig. 7.3, the fitting lines are plotted with black solid ones. The fitting repro-
duces the magnetic susceptibility data well which reveals a ferromagnetic coupling
of 23 K and 26 K between the two Ni2+ ions for 2ClO4 and for 4BPh4, respectively.
The coupling between Ni2+ ions of 4BPh4 is slightly stronger than 2ClO4.
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Figure 7.3: Temperature dependence of the static magnetic susceptibility,
χ = M/B and the inverse susceptibility χ−1 of (a) 2ClO4 and
(b) 4BPh4 measured at B = 1 T. Black lines correspond to
experimental data using the Equation (7.1). Both complexes
exhibit ferromagnetic couplings [104].

HF-ESR Measurements The 2ClO4 and 4BPh4 complexes are measured as
oriented powders in magnetic fields up to 15 T within the temperature range
from 4 K to 20 K at ν = 332 GHz. Typical ESR spectra of 2ClO4 and 4BPh4 are
plotted in Fig. 7.4.

Fig. 7.4 (a) shows the temperature dependent ESR spectra for 2ClO4. New
peaks are appearing one by one when the temperature increases from 4 K to 20
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Figure 7.4: The temperature dependence of the ESR spectra of (a)
2ClO4 and (b) 4BPh4 at ν = 332 GHz. Negative magnetic
anisotropy is suggested with the change of the intensity of
spectra according to the change of the temperature [104].

K. There are four resonance peaks at T = 20 K corresponding to the total spin
S = 2. The important phenomenon is the change of the intensity depending on
the temperatures. The intensities of four peaks are moved to the first resonance
peak at lowest field when the temperature decreases to 4 K. This means that the
axial magnetic anisotropy of the molecules is negative (D < 0).

The temperature dependent ESR spectra for 4BPh4 is shown in Fig. 7.4 (b).
At T = 20 K, also four resonance lines are observed. Similar to 2ClO4, the
observed spectral weight moves to lower magnetic fields when the temperature
decreases, which demonstrates to the negative magnetic anisotropy.
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Figure 7.5: The frequency dependence of the ESR spectrum of (a) 2ClO4 at T =
20 K and (b) 4BPh4 at T = 25 K [104]. In both materials, there is
the same g-factor of 2.17. Also, the ZFS are 40 GHz and 35 GHz for
2ClO4 and 4BPh4, respectively.

This change of the spectral weight can be explained by the change of the tem-
perature dependent population. Firstly, 2ClO4 and 4BPh4 have the same total
spin number S = 2 which yields to the five spin energy states | − 2〉, | − 1〉, · · · ,
and | + 2〉 in magnetic field. Due to the negative uniaxial anisotropy, the state
| ± 2〉 lie the lowest. According to the Boltzmann distribution, the population
on the lowest spin state is higher than the other spin states at low temperature.
Hence, the transition between |−2〉 → |−1〉 occurs at lower magnetic field much
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7.3. Discussion

more than the transition between | − 1〉 → |0〉, and the peak at lower field has
the highest intensity at low temperatures. When the temperature increases the
population on the higher spin states increases as much as reduced the population
on the lowest spin state. Therefore, at high temperature, the intensity of the peak
at lower field decreases and the intensity of the higher field increases. The higher
temperature up, the more ESR peaks appear. When the temperature reaches at
certain point, all the spin states have the same population. Finally, ESR peaks
disappear at high enough temperatures.

The ESR spectra for 2ClO4 and 4BPh4 are measured in magnetic fields up to
15 T at T = 20 K in the frequency range of ν = 150− 330 GHz. The frequency
dependencies for 2ClO4 and 4BPh4 with representative ESR spectra are shown
in Fig. 7.5. There are four resonance peaks in every ESR spectrum. The reso-
nance fields are plotted with symbols in the figure. Linear slopes of them mean a
g-factor of the sample by the resonance condition of g = hν/µBHr. A calculation
reveals the 2ClO4 and the 4BPh4 have the same g-factor of 2.17. The extrapola-
tion of the first resonance line (line 1) of both compounds reveals the zero field
splitting (ZFS); 40 GHz and 35 GHz for 2ClO4 and 4BPh4, respectively.

7.3. Discussion

In order to analyze the ESR spectra of 2ClO4 and 4BPh4, the giant spin model
Hamiltonian (Equation (1.53)) is applied. Also, the ZFS can be calculated from
the magnetic anisotropy D. Simply, the ZFS ∆ is the difference between the state
| 2,−2 > and the state | 2,−1 >. Therefore, it is,

∆ = |D|
(
S2
z − (Sz − 1)2

)
, (7.2)

Considering the negative sign of the magnetic anisotropy, |D| are - 13.3 GHz (∼
- 0.63 K) and - 11.6 GHz (∼ - 0.56 K) for 2ClO4 and 4BPh4, respectively.

Due to the magnetic anisotropy, the powder samples 2ClO4 and 4BPh4 are ori-
ented along a preferred axis that the molecule acquires a minimum energy in the
applied magnetic field. This preferred axis is called the easy axis. For a simula-
tion of ESR spectra, it is assumed a parallel orientation of the easy axis to the
external magnetic field. The simulation of the ESR spectra was done for ν =
332 GHz, T = 20 K by EasySpin [45]. The simulation parameters are the total
spin Stot = 2, the g-factor of 2.17 for both compounds and the different value of
the magnetic anisotropies |D| of 13.3 GHz and 11.6 GHz for 2ClO4 and 4BPh4,
respectively.
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Figure 7.6: Experimental and simulated ESR spectra at ν = 332 GHz,
T = 20 K and corresponding energy level diagrams for (a)
2ClO4 and (b) 4BPh4. The simulation ESR spectra, red line
for (a) and blue line for (b), reproduce the four resonance line
of the experimental data [104].

The experimental and simulated ESR spectra are shown in Fig. 7.6 together.
The simulation of the 4BPh4 at 4 K is shown in Fig. 7.6 (a). The experimental
data (gray line) is reproduced well by the simulation line (red line). Also, the
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7.4. Summary

resonance positions are well matched with the energy levels. Fig. 7.6 (b) shows
the simulation of the 2ClO4. The simulation line (blue line) reproduces the ex-
perimental data (gray line) well according to the energy level diagram. Therefore,
the parameters of the negative magnetic anisotropy, the g-factor are reasonable
values.

7.4. Summary

Magnetization data on 2ClO4 and 4BPh4 shows the saturated magnetizations
Ms = 4.2µB/f.u. for both complexes corresponding to the total spin S = 2 in
the magnetic ground state.
The frequency dependence of HF-ESR measurements on 4BPh4 show a g-factor of
2.17 and ZFS of 40 GHz (∼ 1.9 K). The uniaxial magnetic anisotropy D = −13.3
GHz (∼ 0.63 K) is negative which implies it is a magnetic easy axis. Hence, it has
a bistable magnetic ground state where the energy levels +2 and −2 lie lowest in
double potential wells.
The other complex, 2ClO4, has a g-factor of 2.17 and ZFS of 35 GHz (∼ 1.7 K)
and a negative uniaxial anisotropy D = - 11.6 GHz (∼ 0.56 K). Similarly, 2ClO4

has a bistable magnetic ground state.
Magnetization and ESR measurements show no significant difference between
2ClO4 and 4BPh4. Therefore, one concludes that one Au atom does not signifi-
cantly change the magnetic properties of the Ni2+ dimer complex. Although one
Au atom causes an insignificant influence on the Ni2+ dimer complex, this is a
possibility to deposit them on an Au surface. Further study can be found in the
Ref. [104].
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8. Mixed Valence Dinuclear Complex Ni(II)Ni(III)

8. Mixed Valence Dinuclear Complex Ni(II)Ni(III)

Valence is a measure of how strong an element forms a chemical bond with an-
other one. It was used to compute electrons forming bonds before the twenty first
century. However, the term of the oxidation state is more widely employed [106].
Nowadays, valence is used as ’mixed valence’ to indicate a certain situation such as
Fe3O4. In a Fe3O4 compound, Fe ion has two different oxidation states, i.e. Fe2+

and Fe3+ leading to different number of electrons [107]. Note that Fe2+ and Fe3+

indicate the different formal oxidation states while the actual oxidation state can
be different and the associated charge disproportionateness may be much smaller.

8.1. Crystal Structure

In the chemical point of view, mixed valence compounds are classified by the
existence of delocalization of an extra electron [108]. In this chapter, the Ni2+

Ni3+ 

N 

S 

Ni2+ 

2+ 

Figure 8.1: Structure of mixed valence complex [Ni(III)Ni(II)(LDA)]
(BPh4)2. Ni2+ and Ni3+ are connected by three sulphur
bridges. The green, dark green, yellow, violet balls represent
Ni2+, Ni3+, sulfur and nitrogen, respectively [110].
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and Ni3+ ions form a mixed valence compound with the half-integer spin system.
Fig. 8.1 shows the mixed valence dinuclear complex [Ni(III)Ni(II)(LDA)](BPh4)2
where LDA indicates the tridentate N2S ligand 2,6-di(aminomethyl)-4-tert-butyl-
thiophenol [109]. It has been synthesized by the group of Prof. Kersting at TU
Leipzig. The details of the synthesis and the structure were published [110].

The dinuclear [Ni2L3]
2+ complex is constituted by two units of N3S3Ni [110]. Two

Ni ions are connected by three tiolate sulfur atoms. The average bond lengths of
Ni-N and Ni-S are 2.089 Å and 2.380 Å, respectively [110]. The distance between
the two Ni2+ ions is 3.064(1) Å and the average angle Ni-S-Ni is 80.16◦ [110].
Due to different oxidation states, the Ni(III) ion has shorter Ni-N and Ni-S bond
lengths than the distance between the sulfur and the nitrogen and the Ni(II) ion.
The average bond lengths of Ni(III)-N and Ni(III)-S are 2.085(3) Å and 2.3659(9)
Å, respectively. The average bond lengths of Ni(II)-N and Ni(II)-S are 2.0923(3)
Å and 2.395(10) Å, respectively [110].

8.2. Magnetization and HF-ESR: Experimental Results

Static magnetization measurements Static magnetization measurements of
the mixed valence Ni(II)Ni(III) complex were performed by Y. Krupskaya at
IFW Dresden with a SQUID magnetometer in the temperature range from 2 to
300 K in magnetic fields up to 7 T. Fig. 8.2 shows the field dependence of the
magnetization of Ni(II)Ni(III) at T = 1.8 K. The saturated magnetization is ∼ 3
µB which corresponds to a magnetic ground state of a total spin Stot = 3/2 with
g = 2. Also, it implies ferromagnetic coupling between the Ni2+ ion (3d8, S = 1)
and the Ni3+ (3d7, S = 1/2).

The Ni3+ ion of the sample has the total spin S = 1/2 which is the low spin
state. The Ni3+ ion has seven spins on five d-orbitals. According to the Pauli
exclusion principle and the first Hund’s rule, the seven spins fill one by one the
five d-orbitals. However, in the case of cubic symmetry, there is an energy gap
between eg and t2g levels. The t2g is preferably occupied, because the energy cost
of placing of a pair of spins on the t2g state is less than the energy cost of placing
spins in the eg orbital state. Therefore, for Ni3+, t2g is fully filled up and then eg
is filled resulting in S = 1/2.

The temperature dependence of the magnetic susceptibility χ(T ) = M(T )/B and
the inverse susceptibility χ−1(T ) at B = 1 T are shown in Fig. 8.3. The sus-
ceptibility χ(T ) and the inverse susceptibility χ−1(T ) were simulated by the julX
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Figure 8.2: Magnetic field dependence of the static magnetization of
Ni(II)Ni(III) at T = 1.8 K. The saturation magnetiza-
tion is ∼ 3 µB/f.u.. It indicates a ferromagnetic coupling
[Y.Krupskaya].

simulation program [43] by using the equation (7.1). In Fig. 8.3, the simulation
line (red line) reproduces the susceptibility curve which reveals a ferromagnetic
coupling of ∼ 48.5 K between the Ni2+ and the Ni3+ ions. There is temperature
independent diamagnetic susceptibility χ0 of −1.153 · 10−3 erg/G2/mole which
is caused by the non-magnetic ions of the organic ligands. Also, the analysis of
the susceptibility curve reveals 25.9 % of independent paramagnetic impurity of
S = 1/2.

HF-ESR Measurements Ni(II)Ni(III) was measured as oriented powder in the
temperature range from 4 K to 20 K at ν = 249 GHz. The temperature depen-
dence of the ESR spectrum of the sample is presented in Fig. 8.4. At 4 K, there
are two resonance peaks at 6.66 T and 8.25 T. At T = 12 K, a new peak appears at
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Figure 8.3: Temperature dependence of the static magnetic susceptibility,
χ = M/B and the inverse susceptibility χ−1 of Ni(II)Ni(III)
at B = 1 T. Red line is the simulation.

9.9 T. Finally, at T = 20 K, there are three main resonance peaks at 6.66 T, 8.25
T and 9.9 T corresponding to the transitions between spin states of Stot = 3/2
of the molecule, i.e., | 3/2,−3/2 >→| 3/2,−1/2 >, | 3/2,−1/2 >→| 3/2, 1/2 >,
and | 3/2, 1/2 >→| 3/2, 3/2 >. When the temperature decreases, the intensity
of the peaks at higher fields is shifted to the peaks at lower fields. This change of
the spectral weight indicates a negative axial magnetic anisotropy of the molecule
(D < 0).

There are additional small peak features around the main ESR resonance peaks.
Due to the inhomogeneous local environment, each spin in the sample has slightly
different local field, resulting in the misalignment of the spins in the applied mag-
netic fields. The resonances of the misaligned spins appear at slightly different
magnetic fields from main resonance feature. In analysis, they are not considered
because they are not main features of this sample.
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Figure 8.4: Temperature dependence of the HF-ESR resonance spectra
at 249 GHz. Three resonance peaks appear at 20 K. When
the temperature decreases, the spectral weight moves to the
lower magnetic field which means a negative uniaxial mag-
netic anisotropy (D < 0).

In addition, HF-ESR measurements were performed on a loose powder sample
in a magnetic field up to 13 T at 4 K at frequencies of 83, 166, 249, 332 GHz.
Fig. 8.5 shows the frequencies versus magnetic fields of ESR resonance lines with
representative ESR spectra. An ESR spectrum at 4 K exhibits three separate
ESR lines. The blue resonance line reveals a g-factor of 4.2 which is almost
twice bigger than the red lines. This demonstrates that the first resonance is a
forbidden one which is presumptively associated with ∆ms = ±2. The forbidden
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Figure 8.5: Frequency dependence of the ESR spectrum of Ni(II)Ni(III)
at 4 K. Three g-factors of 3.7 (black line), 2.2 (red line) and
2.1 (blue line) are obtained for each resonance peak. There is
a ZFS of 50 GHz.

transition occurs by an admixture of spin states by the off-diagonal terms in a
spin Hamiltonian which considers an angle between z-axis of a crystal field and
z’-axis of the direction of an applied magnetic field [111]. The red resonance lines
have a g-factors of 2.15, and the extrapolation of the second resonance line to
H = 0 implies a ZFS of 49 GHz (∼ 2.4 K).

Fig. 8.6 shows the frequency dependence of the ESR spectra at 20 K. There are
three resonance peaks for spin system S = 3/2. Three resonance lines reveal the
g-factors of 2.15. The extrapolation of the first resonance line to H = 0 implies
a ZFS of 49 GHz (∼ 2.4 K).
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Figure 8.6: Frequency dependence of the ESR spectrum of Ni(II)Ni(III)
at T = 20 K. the ZFS is 50 GHz. There are three resonance
lines which corresponds to the total spin S = 3/2. The g-
factor of the resonance lines is 2.15.

8.3. Discussion

For the analysis, a parallel orientation of the magnetic anisotropy axis along the
magnetic fields is assumed. To analyze the ESR spectra, only the ground spin
multiplet state is considered, because all three resonance peaks appearing at 20 K
correspond to the ground spin multiplet state of the molecule. Note that not only
a system of S = 3/2 but also a spin system of S = 1/2 is considered due to the
impurity 25.9 % from the analysis of the susceptibility data. The Hamiltonian of
the system can be written as,

H =

[
D

(
S2
1z +

1

3
S(S + 1)

)
+ µBg~S1 · ~B

]
+ µBg~S2 · ~B. (8.1)
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Figure 8.7: Experimental and simulated ESR spectra and corresponding
energy level diagrams for Ni(II)Ni(III) at ν = 249 GHz, T =
20 K. simulated data reproduce the experiment data well.
Their resonances occur between the neighboring spin states.

The first two terms mean the spin system S1 = 3/2 with an anisotropy and the last
term indicates the spin system S2 = 1/2. The first term accounts for a splitting
among spin states at zero field due to the magnetic anisotropy. D is the uniaxial
magnetic anisotropy parameter. The second and third terms are the Zeeman
effect. Based on the experimental data, parameters for a simulation are g-factor
of 2.15 and D = -24.5 GHz which is calculated by | D |= ∆/

(
S2
tot − (Stot − 1)2

)
.

A simulated spectrum by EasySpin [45] with the experimental spectrum at ν =
249 GHz and at T = 20 K, and the corresponding energy level diagram are shown
in Fig. 8.7. The simulation spectrum reproduce the three observed ESR lines well
which corresponds to a total spin of Stot = 3/2. Also, the simulation confirms
the ZFS of 49 GHz and the negative sign of the uniaxial magnetic anisotropy
of - 24.5 GHz. The second peak of the system of S = 3/2 is overlapped with a
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8. Mixed Valence Dinuclear Complex Ni(II)Ni(III)

single resonance peak of the system of S = 1/2. Due to this impurity the second
resonance peak has the strongest intensity.

8.4. Summary

Magnetization data shows that the Ni-ions in Fig. 8.1 are coupled ferromagneti-
cally leading to the saturation magnetization Ms ∼ 3µB/f.u. which corresponds
to a total spin of Stot = 3/2 in the magnetic ground state. The analysis of the
susceptibility data reveals a ferromagnetic coupling of -48.5 K, a diamagnetic
susceptibility of -1.153 × 10−3 erg/G2/mole and an impurity of 25.9 % from a
spin system S = 1. From the frequency dependent ESR measurements, three
resonance lines are obtained. At 4 K, the g-factors of them are 4.2 and 2.15
which correspond to a forbidden transition and an allowed transitions, respec-
tively. From the frequency dependent ESR spectra, at 20 K, there are three
resonance peaks with the g-factors of 2.15. A uniaxial anisotropy D = −24.5
GHz corresponds to the zero field splitting of ∆ = 49 GHz (∼ 2.4 K). Finally, the
simulation reproduces the ESR spectrum at 249 GHz at 20 K well considering
the effect of the impurity.
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9. Gd Dimer Complex

Lanthanide (Ln) elements are called rare earth elements. They contain partially
filled 4f orbitals which govern their magnetic properties. Usually, trivalent ions
are realized in these elements. The outermost shell of Ln ions has the 5s25p6

spin configuration [18]. It is possible to study the effect of 4f -orbitals which are
shielded by outermost electron shells. Contrary to the transition metal ions, Ln
ions show the properties of the combination between the spin and orbital angular
momentum. The results presented below have been submitted for publication
[112].

9.1. Crystal Structure and Magnetic Properties

The dinuclear [Gd(III)2L(OAc)4] PF6 complex was synthesized by M. Grosshauser
from the group of Prof. P. Comba at Heidelberg University. The crytal structure
is shown in Fig. 9.1. It contains lanthanide(III) acetate salts and dinucleating
ligands with methanol solvent. Two Gd3+ ions are connected by µ2-OPh pheno-
late of the binucleating ligand and by two acetates. The distance between the
two Gd3+ ions is 3.791 Å [112]. The L indicates the ligand which provides two

Gd3+ 

O 

N 

Figure 9.1: Structure of [Gd(III)2L(OAc)4] PF6. Two Gd3+ ions are con-
nected by two oxygen bridges. The light green, red, and vio-
let balls represent gadolinium, oxygen, and nitrogen, respec-
tively [112].
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9. Gd Dimer Complex

pyridine and a tertiary amine donor to each site [112].

The magnetic susceptibility was measured on powder by M. Großerhauser [112].
At T = 300 K, χMT of the Gd dimer amount to 15.10 cm3 K mole−1, and the
value of χMT decreases to 9.71 cm3 K mole−1 at 2 K [112]. This indicates an
antiferromagnetic (AFM) coupling between Gd3+ ions in the complex [112].

9.2. HF-ESR: Experimental Results

The HF-ESR measurements were performed on the powder dinuclear Gd3+ com-
plex in magnetic fields up to 15 T and in the frequency range of ν = 32 - 321
GHz at T = 4 K. Fig. 9.2 shows representative ESR spectra at T = 4 K. The
plot shows ESR spectra with broad signals. Note that the spectra, however, ex-
hibit distinct features where the absorption is maximal. A slope of the maximal
absorption at low magnetic fields on all ESR spectra indicates a g-factor which
is 2.01 ± 0.02. The extrapolation of the slope to H = 0 gives ZFS of ∆ = 5.9 ±
1.05 GHz.

The temperature dependence of the ESR spectra of the dinuclear Gd3+ complex
at 130 GHz is plotted in Fig. 9.3. From T = 4 K to T = 40 K, there is a pro-
nounced shift of spectral weight to lower fields when the temperature decreases.
This transfer of spectral weight shows a negative axial magnetic anisotropy of the
molecule, D < 0, which implies the easy axis.

9.3. Discussion

The presence of magnetic anisotropy can be deduced from the detection of ZFS. In
general, such a ZFS may originate from spin-orbit coupling and/or dipolar inter-
action. In most cases of the SMMs, the magnitudes of the dipolar interaction and
the spin-orbit coupling are 10−1 cm−1 and ∼ 101 cm−1, respectively [19]. Thus,
the dipolar interaction is usually ignored due to the relatively large magnetic
anisotropy. In the case at hand, the orbital angular moment is not considered
due to L = 0 of the half-filled 4f -shells of the Gd3+ ion. Hence, the total angular
moment is J = S = 7/2. Therefore, one expects vanishing spin-orbit coupling
and may conclude that the experimentally observed ZFS is due to dipolar inter-
action.

Considering the dipolar interaction, the magnetic field by a dipole can be written
as,
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Figure 9.2: HF-ESR spectra of Gd3+ obtained at different frequencies ν =
50− 320 GHz.

B =
µ0

4π

1

r5
[3 (m · r) r−m] , (9.1)

where µ0 is the vacuum permeability of 4π×10−7 N/A2, r is the distance between
the two dipoles, m is the magnetic moment of the magnetic ion and r is the
distance vector between two ions [52]. It is assumed that the magnetic dipole is
aligned along the external magnetic field applied along the z-axis. Applying the
value g = 2.01, the magnetic moment can be written as m = gµBJ ' 7.04µB ẑ.
These dipole make the magnetic field of B = 0.24 T ' 0.32 K (at g = 2.01). On
the other hand, the exchange interaction J between Gd3+ ions is 0.13 cm−1 =
0.19 K as derived the analysis of χM [112], i.e, the magnetic field strength of the
dipole is comparable to the exchange interaction and the magnetic field caused
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Figure 9.3: Temperature dependence of the ESR spectra at (a) T = 4
- 40 K and (b) T = 60 - 150 K, obtained at ν = 130 GHz.
Resonance intensity in (b) are multiplied by a factor of 2 with
respect to those in (a).

88



9.3. Discussion
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𝜂 

Figure 9.4: Two identical Gd3+ ions in principle coordinate axes. The
blue balls are Gd3+ ions. r is the distance between them. ξ
is the angle between the z-axis and the ~r and η is the angle
between the y-axis and the projection of ~r [116].

by the dipolar interaction cannot be neglected [113,114].

The two Gd3+ ions have their own coordinates as shown in Fig. 9.4. To calculate
the magnetic anisotropy induced by the dipolar interaction there is the magnetic
anisotropy tensor as follows [115,116],

Ddipolar =

 g2x(1− 3 sin2 η sin2 ξ) −3gxgy sin2 ξ sin η cos η −3gxgz sin2 ξ cos ξ sin η
−3gygx sin2 ξ sin η cos η g2y(1− 3 cos2 η sin2 ξ) −3gygz sin ξ cos ξ cos η
−3gzgx sin ξ cos ξ sin η −3gzgy sin ξ cos ξ cos η g2z(1− 3 cos2 ξ)

 (µ2
B/r

3),

(9.2)

where µB is the Bohr magneton, r is the distance between the two Gd3+ ions, η
is the angle between the y-axis and the projection of ~r and ξ is the angle between
the z-axis and ~r. Equation (9.2) is applied for weakly coupled pairs of Gd3+

ions [116]. Equation(9.2) is applied to the following multiple spin Hamiltonian.
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Figure 9.5: Frequency dependence of the ESR spectrum of Gd3+ dimer
at 4 K. Red line represents the simulation of the resonance in
the ground state when the magnetic field is applied parallel
to the easy axis.

H = −JS1 · S2 + gµB

2∑
i=1

Si ·H + S1 ·Ddipolar · S2, (9.3)

where the first term describes the exchange interaction between two Gd3+ ions,
the second term considers the Zeeman effect, and the third term represents the
magnetic anisotropy of the system due to the dipolar interaction.

With the multiple spin Hamiltonian of Equation (9.3), the ground multiple spin
state is reproduced. Fig. 9.5 shows the best simulation with the parameters of
ξ = 30◦, η = 0◦, and gx = gy = gz ≡ g = 2.01. The simulation line (red line)
represents the simulation of the resonance in the ground state when the magnetic
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9.4. Summary

field is applied parallel to the easy axis. Its result shows a ZFS of 6.00 GHz which
agrees well with the experimental ZFS of 5.9 ±1.05 GHz.

9.4. Summary

HF-ESR studies on the aligned powder dinuclear Gd3+ complex show broad res-
onance spectra. The orbital angular moment of the Gd3+ is negligible because
of L = 0. The origin of the magnetic anisotropy can be the dipolar interaction,
not by the spin-orbit coupling. The coupling between the Gd3+ ions is 0.19 K
which is small compared to the magnetic field of 0.33 K by the dipolar interac-
tion. Considering the magnetic anisotropy induced by the dipolar interaction.
The best simulation parameters are ξ = 30◦, η = 0◦ and g = 2.01. This means
that ~r, which is the distance vector between the two Gd3+ ions, is tilted as much
as 30◦ from to the z axis. The simulation reproduced the ESR resonance line as
well as the ZFS of 5.9 GHz which implies the easy axis of the system.

91



10. High-spin Cu5 Complex

10. High-spin Cu5 Complex

10.1. Crystal Structure and Magnetic Properties

The complex (HNEt3)2Cu(II)[12-MCCu(II)N(Shi)-4] has been synthesized by the
group of Prof. Rentschler at Universität Mainz. Its structure is shown in Fig.
10.1. The details of the synthesis and the structure were published [117]. The five
Cu2+ ions are connected by oxygen and nitrogen atoms in a plain. The average
bond lengths of Cu-O and Cu-N are 1.91(2) Å and 1.94(2) Å, respectively [117].
The average distance from the central Cu2+ ion to the other four Cu2+ ions is
3.2463(2) Å [117]. Also, four Cu2+ ions are bridged by oxygen with the Cu2+

ion in the center with the average angle of 117.22(5)◦ [117]. The Cu2+ ion in the
center is connected to four oxygen ions with an average angle of 90.00(8)◦ [117].

N 
O 

Cu2+ 

Figure 10.1: Structure of (HNEt3)2Cu(II)[12-MCCu(II)N(Shi)-4]. Five Cu2+

ions are connected to each other by oxygen and nitrogen
bridges in a plane. The orange, red, light blue balls represent
copper, oxygen and nitrogen, respectively [117].
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Figure 10.2: Temperature dependence of the ESR spectra of Cu5 at ν =
250.9 GHz. Each ESR spectrum is broad and has a sharp
peak at 8.76 T.

Static magnetization measurements on (HNEt3)2Cu(II)[12-MCCu(II)N(Shi)-4] were
performed in Mainz in the temperature range from 2 to 300 K in magnetic fields
up to 7 T. The field dependence of the magnetization measured at T = 2 - 10
K. At 2 K, the saturated magnetization Msat is ∼ 1.1 µB [117]. Also, there is a
plateau below 60 K on the temperature dependence of the magnetic susceptibility
χT curve which means the antiferromagnetic coupling among the Cu ions [117].
To analyze χT , the isotropic spin Hamiltonian is applied. Its result is all couplings
are antiferromagnetic with J1 = 310.4 cm−1 between Cu2+ ion at the center and
four surrounding Cu2+ ions, and with J2 = 184.6 cm−1 between four surrounding
Cu2+ ions [117]. However, the ratio between these couplings is 1.7 which indicates
a total spin S = 1/2 in the ground state [117].
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Figure 10.3: Magnetic field dependence of HF-ESR spectra of Cu5 ab-
stained at different frequencies ν = 60− 430 GHz.

10.2. HF-ESR: Experimental Results

Cu2+ ion has a spin configuration of [Ar] 3d9. Four of the five d-orbitals are fully
occupied and there is one unpaired electron. According to the analysis of χT [117],
the five Cu2+ ions make a total spin S = 1/2. The frequency dependent ESR
measurements are performed in magnetic fields up to 16 T within the temperature
range T = 2 − 70 K at the frequency ν = 250.9 GHz. The ESR spectra of Cu5

are plotted in Fig. 10.2. There is a broad resonance feature with a width of ∼
1 T resonance width at T = 4 K. The intensity of the peak decreases when the
temperature increases. Above T = 70 K, the ESR spectrum disappears.

The frequency dependence is measured in magnetic fields up to 16 T at T = 4
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Figure 10.4: The temperature dependence of the powder simulation of
Cu5 at ν = 250.9 GHz.

K in the range of ν = 60 − 430 GHz. The frequency dependencies for Cu5

with representative ESR spectra are shown in Fig. 10.3. The black dots are
the magnetic field of a peak positions with which is high intensity in the broad
spectra. Those points are fitted by a linear function shown with a red line which
reveals a g-factor of 2.05 in Cu5. The extrapolation of the resonance line (red
line) to H = 0 shows no ZFS which implies no magnetic anisotropy.

10.3. Discussion

When a polycrystalline sample is grinned to very fine powder, the observed ESR
spectrum can be a combination of all individual spectra for different orientations
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10. High-spin Cu5 Complex
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Figure 10.5: Frequency dependent ESR spectra (gray spectra) with sim-
ulation ESR spectra (blue lines) at T = 4 K.

[118]. Hence, an obtained ESR spectrum may broad, because it contains signals of
all resonances corresponding to all possible orientations. These property reveals
through various g-factors for the three directional components of the magnetic
field. The resonance condition can be described as [119],

hν = g(θ, φ)µBH = µBH
√
g2x sin

2θcosφ2 + g2y sin
2θsin2φ+ g2z cos

2θ, (10.1)

were gx, gy and gz are g-factors in the direction of the principal axes. θ is the
polar angle and φ is the azimuthal angle. When a sample has an axial symme-
try, there are two principal values: g‖ and g⊥. If the magnetic field is parallel
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10.4. Summary

to the symmetry axis, there is a resonance which is related to gz = g‖. If the
axis is perpendicular to the magnetic field, a resonance occurs, which is related
to gx = gy = g⊥. In the case of a rhombic symmetry, there are three possible
orientations along all the principal axes, x, y, and z. ESR spectrum shows three
different g-factors, gx, gy and gz corresponding to the principal axes of a sample.

Each ESR spectrum shown in Fig. 10.3 is broad but there is a peak with a
high intensity at higher magnetic fields. This represents a ESR powder spec-
trum. The g-factor is already known, but the gx, gy and gz should be considered
for analyzing the ESR spectra. In consideration of all directions of the sample,
a simulation for a powder sample is performed. Fig. 10.4 and Fig. 10.5 show
the simulation of the temperature dependence and of the frequency dependence,
respectively. The simulation lines reproduce the experimental spectra well. Also,
it reveals gx = 2.03± 0.01, gy = 2.04± 0.01 and gz = 2.23± 0.01 which indicate
a g anisotropy.

10.4. Summary

The structure of (HNEt3)2Cu(II)[12-MCCu(II)N(Shi)-4] contains of five Cu2+ ions.
They are coupled antiferromagnetically and their saturation magnetization is
Ms ∼ 1.1µB/f.u. [117]. The analysis of χT reveals a total spin S = 1/2 in the
ground state [117].
Typical powder ESR spectra are obtained in both frequency dependence and
temperature dependence data. When the temperature increases, the intensity of
the ESR spectra decreases corresponding to the Boltzmann effect. The linear fit
of the frequency dependent spectra reveals a g-factor of 2.05. Also, this resonance
line shows no ZFS, which implies an isotropic system. The powder simulation
is performed for Cu5, because the observed ESR spectra contain all orientations
of g-factors in the powder. This simulation shows a g-anisotropy comprising of
gx = 2.03± 0.01, gy = 2.04± 0.01 and gz = 2.23± 0.01.
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Part V.
Summary and Outlook

In this work, correlated electron systems and metal-organic spin systems have
been investigated by using ESR. The main experimental technique applied is
HF-ESR performed in the frequency range of 30 - 600 GHz and in magnetic fields
up to 15 T. In addition, X-band ESR applying a resonator was applied, and static
magnetic properties were determined up to 7 T by means of SQUID magnetome-
ter.

The first studied materials are the honeycomb-lattice spin systems Na3Ni2SbO6

and Li3Ni2SbO6. Firstly, Na3Ni2SbO6 shows the long range antiferromagnetic
order below TN = 17 K. Accordingly, the ESR data shows antiferromagnetic res-
onance (AFMR) at low temperature. Analysis of the ESR spectra by using the
mean-field theory reveals an AFMR gap of 12.8 T (∼ 358 GHz) and g-factors of
2.18 and 2.05 for the parallel and perpendicular modes, respectively. The tem-
perature dependent ESR spectra indicate a rapid shift of the linewidth around
TN due to the development of internal fields. The simulation of AFMR mode
yield the anisotropy field of 2.55 T and the exchange field of 32 T.

Li3Ni2SbO6 has a similar structure a Na3Ni2SbO6 except that Li+ is substituted
for Na+. AFM order evolves at TN = 15 K. In this case, the orthorhombic an-
tiferromagnetic resonance is observed which exhibits two anisotropy fields. An
analysis of the ESR data reveals an AFMR gap of 7 T and g-factors of 2.1 and
2.06 for the easy axis mode and the second easy axis mode. Also, it reveals the
exchange constant λ, anisotropy constants K1, and K2 are 16.7 mole T2/J, 2.6
and 1.5 J/mole, respectively. The temperature dependent ESR spectra show a
change of linewidth around TN due to internal antiferromagnetic fields.

The last frustrated transition metal oxide under study is the kagomé lattice
Ca10Cr7O28 which is constituted by the distorted bilayer of kagomé lattice. The
g-factors along the c-axis are 2.01 at 4 K and 2.03 at 200 K, respectively. For
the b-axis it shows the g-factors of 1.94 at 4 K and 1.93 at 30 K, respectively.
The HF-ESR data shows no ZFS and the anisotropy of g-factors depending on
crystallographic axes. The temperature dependence of X-band ESR data reveals
that the linewidth decreases by decreasing temperature.

To investigate the influence of an attached gold atom on the magnetic proper-
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ties of a Ni2-complex, [Ni2L(dppba)]ClO4 (2ClO4) and [Ni2L(dppba)AuPh] BPh4

(4BPh4) are studied. The gold atom is attached to the phosphorus atom of the
head part of the latter one. For 2ClO4, the magnetization and susceptibility mea-
surements yield a ferromagnetic coupling of - 23 K between the Ni2+ ions and a
total spin S = 2. The same measurements on 4BPh4 reveal a similar ferromag-
netic coupling of - 26 K and a total spin S = 2. ESR data on both samples shows
similar magnetic anisotropies and the same g-factor. 2ClO4 and 4BPh4 have a
negative uniaxial anisotropy of - 0.63 K (= -13.3 GHz) and - 0.56 K (= -11.6
GHz), respectively. This demonstrates a bistable magnetic ground state. There-
fore, a gold atom does not give a significant change to the magnetic properties of
the Ni2 complex.

The second material is [Ni(III)Ni(II)(LDA)](BPh4)2 which contains mixed valence
Ni2+ and Ni3+ ions. The magnetization measurements show a ferromagnetic cou-
pling of - 48.5 K between the Ni ions and a total spin S = 3/2 which is a
summation of S = 1 for Ni2+ and S = 1/2 for Ni3+. Hence, in this case, Ni3+

(3d7) is in the low spin state. The ESR data reveal a magnetic anisotropy of -24.5
GHz and a g-factor of 2.15 which corresponds to the total spin S = 3/2 in the
ground state of the molecule. However, the analysis of the susceptibility and the
simulation of the ESR spectrum show an impurity contribution of 25.9 % from a
spin system with S = 1.

The third material is [Gd(III)2L(OAc)4]PF6. The coupling between two Gd3+

is 0.19 K which is a small value compared to the magnetic field of 0.24 T ∼= 0.33
K (with g = 2.0) by the dipolar interaction. Even though the orbital angular mo-
ment of the Gd3+ ion can be negligible, the ESR data shows a ZFS of 5.9 GHz.
This ZFS can be originated from the dipolar interaction. The calculation of the
magnetic anisotropy induced by the dipolar interaction results the parameters,
ξ = 30◦, η = 0◦ and g = 2.01. The angles of ξ and η means that ~r, which mean
the direction vector for two Gd3+ ions, is tilted around 30◦ from the z-axis.

The last material studied in this work is (HNEt3)2Cu(II)[12-MCCu(II)N(Shi)-4]
(Cu5). Five Cu2+ ions are located on a common plane and are coupled anti-
ferromagnetically. The ESR measurements on Cu5 show typical powder spectra,
no ZFS and a g-factor of 2.05. A powder simulation of Cu5 reveals a g-anisotropy
of gx = 2.03± 0.01, gy = 2.04± 0.01 and gz = 2.23± 0.01.

In summary, the results show how HF-ESR can contribute valuable information
on, e.g., magnetic anisotropy, spin order and spin dynamics.
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ful chance to study at University Heidelberg. I have learned how to think and
approach to Physics from his performance. He has always provided opportunities
to visit him anytime for discussions and has given clear and lucid explanations.
Also, I appreciate for his great effort to teach me in the physics field. Besides, I
am thankful for his kind and friendly behavior.

I would like to thank my committee members, Prof. Bernd Pilawa, Prof. Ul-
rich Schwarz, and Prof. Norbert Frank, for overseeing my dessertation.

Also, I would like to thank Dr. Changhyun Koo for his great support. He is
always available for helpful suggestions and discussions about experiments and
all matters for work.

I want to thank Dr. Vladislav Kataev for giving me the chance to start my
first research at the IFW. All the time it was very helpful to discuss with him
whenever there was any questions.

I also want to acknowledge Dr. Yulia Krupskaya for her support and valuable
comments in the laboratory and the office.

I thank the Sci-Ed it Publications to correction of syntax and grammar of the
page from 3 to 29.

I would like to express my gratitude to Alexander Ottmann, Christoph Neef,
Ahmad Omar, Ashwin Mohan, and Steven Rodan who are my colleagues as well
as my friends. Thanks to you, I felt here as my hometown. I have a full of grateful
memories with you.

Further, I am thankful to the whole group, Dr. Kunpen Wang, Dr. Jianxiu
Zhang, Msia Tavhelidse, Johannes Werner, Cebrail Pür, Elisa Thauer, and other
Master/Bachelor students for happy work atmosphere, for the interesting discus-
sions during our cake and coffee time. Thank you very much for the last years in
Heidelberg.

Finally, I would like to thank to my family and my friends for their support
and encouragement. Especially, I give a big thanks and love to our mom.
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