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Zusammenfassung

Das Ziel der vorgestellten Arbeit ist die Anwendung datengetriebener Methoden auf kom-
plexen und hoch-dimensionalen astronomischen Datenbanken. Der Schwerpunkt der Arbeit
liegt dabei in der Erforschung neuer Datenrepräsentationen, um die Analyse der Daten mit Hilfe
existierender Methoden des statistischen Lernen zu ermöglichen. Anhand von verschiedenen wis-
senschaftlichen Anwendungen werden die Vorteile der untersuchten Ansätze für Klassifizierungs-,
Visualisierungs- und Regressionsaufgaben an astronomischen Daten aufgezeigt.

Im ersten Teil der Arbeit wird eine alternative Methode zur Bestimmung von spektralen
Rotverschiebungen vorgeschlagen, welche die, von SDSS bestimmten, Rotverschiebungen als
Wissensbasis nutzt. Die neue Darstellungsweise der Daten enthält hierbei nur Informationen,
welche für die Bestimmung der Rotverschiebung, sowie der Detektion von multiplen Rotver-
schiebungen, notwendig sind. Anschließend wird eine neuartige Repräsentation von regelmäßi-
gen Zeitreihen vorgestellt, basierend auf wiederkehrenden neuronalen Netzen. Dies erlaubt
eine explorative Untersuchung von großen nicht-klassifizierten Datenbanken. Danach wird die
Verwendung von Gaußschen Mischverteilungsmodellen als Darstellung für den statischen Teil
von unregelmäßigen Zeitreihen diskutiert. Diese Darstellung ist allgemeiner formuliert als die
Darstellung durch einzelne Merkmale, da sie die Einbeziehung photometrischer Unsicherheiten
ermöglicht und nicht durch systematische Beobachtungseffekte beeinflusst wird.

Abstract

The goal of the presented work is the application of data-driven methods on complex and high-
dimensional astronomical databases. The focus of the work is the exploration of novel data
representations in order to enable the use of statistical learning approaches in the analysis of
data. With the help of diverse science cases, the advantages of the introduced approaches for
classication, visualization and regression tasks are shown by applying the developed methodology
to astronomical data.

In the first part, an alternative approach for estimating redshifts of spectra by using the
knowledge about the redshifts provided by the SDSS pipeline is presented. A novel data repre-
sentation is employed which contains only information relevant for estimating the redshift and
the detection of multiple redshift systems. Subsequently, a novel data representation for regu-
larly sampled light curves based on recurrent networks is presented. This allows an explorative
investigation of huge databases with unlabeled data. Finally, a new way of representing the static
part of irregularly sampled light curves by a mixture of Gaussians is discussed. This represen-
tation is more general than the extraction of features, as it allows the inclusion of photometric
uncertainties and avoids the introduction of observational biases.
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Chapter 1

Introduction

With the advances in instrumentation, data acquisition and data processing, the amount of
publicly available astronomical data increased enormously. This technical development increased
the observational efficiency of sky surveys and thus the produced amount of data. Famous
examples are SDSS (Sloan Digital Sky Survey, e.g., SDSS DR10, Ahn et al., 2014) in the optical
or FIRST (Faint Images of the Radio Sky at Twenty-Centimeters, Becker et al., 1995) in the
radio bands. Alongside imaging and spectroscopic surveys, another rapidly growing area of
astronomical databases emerged, the time-domain astronomy. Examples are CRTS (Catalina
Real Time Survey, Drake et al., 2009) or the Kepler Space Mission (Borucki et al., 2010) that
have studied the temporal behavior of millions of objects. With future surveys, such as the
LSST (Large Synoptical Survey Telescope, Ivezi et al., 2011), the data produced per night will
easily exceed the terabyte scale and will create its own challenges in terms of data processing
and analysis. The open-access data policy in astronomy makes it an interesting field for the
application of big-data methodology for both computer scientists and statisticians alike (e.g.,
Tiňo and Raychaudhury, 2012). Besides that, huge efforts have been made by the virtual
observatory community (e.g., GAVO1 and IVOA2) to allow a fast and easy access to the large
variety of astronomical data. The two most outstanding and most widely used tools provided
by the VO are the catalog access and matching facility TOPCAT (Taylor, 2005) and ALADIN
(Bonnarel et al., 2000), a tool for visualizing and matching astronomical imaging data.

In contrast to the exponentially growing amount of data, the number of approaches dealing
with those high-dimensional, complex, possibly structured and partially irregular observations
has only grown slowly over time (Ball and Robert, 2010). A specifically challenging problem in
astronomy is the absence of a ground truth for most of the data and the missing possibility of
designing own experiments. Additionally, the observations are often irregular, incomplete, and
biased in the way they have been observed. Despite that, the observed relations are usually
superpositions of several wanted and unwanted physical effects and their disentanglement is not
always easily possible. As a consequence, astronomy requires high-quality analysis tools to gain
knowledge from databases. For example, Graham et al. (2015) claim in a recent publication to
have found a high-fidelity super-massive black hole binary candidate. The object was detected
because out of ≈ 250, 000 spectroscopically confirmed quasars, it was the only one showing pe-
riodic behavior with a period of P ≈ 5.16 yrs in its light curve. This demonstrates impressively
which efforts have to be undertaken to detect such an extraordinary behavior in huge databases.
In recent literature, data-driven methodology has gained attention in the astronomical commu-
nity. Here, the advantages of data-driven methodology for visualization and classification tasks
(e.g., Matijevič et al., 2012) as well as the detection of outliers (e.g., Protopapas et al., 2006)

1German Astrophysical Virtual Observatory http://www.g-vo.org/
2International Virtual Observatory Alliance http://www.ivoa.net/
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Chapter 1. Introduction 2

has been discussed. Machine learning methodology in astronomy has so far mainly focused on
photometric redshift regression (e.g., Polsterer et al., 2013), the classification of light curves
(e.g., Richards et al., 2011), and estimating periodicity in irregularly sampled observations (e.g.,
Graham et al., 2013). Usually, learning tasks are not performed on raw observations but rather
on extracted features, such as photometric measurements. This bears the risk that the choice
of features has a large impact on the quality of the respective approach.

This thesis embeds the analysis of high-dimensional and complex data into the context
of modern machine learning techniques. The focus of this work is to find more general data
representations than features that are physically more meaningful. Consequently, the results
are also more easily understandable and can provide a detailed insight into the drawbacks of
existing methodologies. Apart from the development of a representation, the new approaches
are applied to a broad set of large databases using massive parallelization on computer clusters.

In Chapter 2, the background part, the basic methodological (machine learning) and sci-
entific (astronomical applications) concepts are explained. The respective sections are easy to
understand for experienced readers of the respective fields. It is the connection between the two
fields that comprises the main work of this thesis. The part on machine learning is very diverse
and covers a wide range of tasks and concepts of machine learning algorithms. The astronomical
introduction links the performed methodological work with current state-of-the-art astronomy
and highlights the additional benefit gained by the use of a data-driven methodology. This thesis
is written as a cumulative one and consequently, three publications are subsequently included
as they were published in the respective journals. As usual for scientific publications, each of
them contains an introduction and a methodological section which is just a compressed version
of what is written in the background part.

The publications are presented in Chapter 3. In the first one, an alternative way of esti-
mating the redshift of spectra by using the full information content available in the spectra is
described. Therefore, the spectra are represented by a high-dimensional feature vector which
solely contains information about the spectral features. Subsequently, distances between the
spectra are calculated and eventually redshifts are inferred from the nearest neighbors. This
allows a more general estimation of redshifts, as effects originating from the continuum can be
efficiently suppressed.

The visualization of regularly sampled time series (brightness as a function of time) is the
topic of the second publication. The central part of this work is to find a new two-dimensional
representation of light curves that still contains the maximum information content. To that
end, a new visualization algorithm is developed which can measure the prediction power of the
compressed representation directly on the original data. The new algorithm is then employed
on a number of regularly sampled and classified light-curves of an X-ray emitting binary black
hole and a striking difference compared to classical visualization methods can be seen.

Most photometric survey are, however, ground-based and as a consequence, environmental
effects prohibit a homogeneous sampling of the time sequences. The classification of irregular
time series was, so far, done by representing the observations by a set of statistical features.
With the presented work, the arbitrariness of the selection (and preprocessing) of the features
can be avoided by describing the time series data as a probability density function. The new
representation is very useful for transferring knowledge between databases as it is able to describe
the photometric uncertainties correctly. Eventually, the presented methodology performs up-to-
par with state-of-the-art feature-based classification methods and can thus be seen as a more
general alternative to feature selection which can furthermore be used for visualization.

After the publications, Chapter 4 offers a discussion of the obtained results. There, the
broader astronomical context and use of the newly introduced methodology is discussed in more
detail. Finally, the results of this thesis are summarized in Chapter 5.



Chapter 2

Background

In this section, an extensive introduction to the science cases treated in the attached publications
is given. The performed tasks are set into an astronomical context and prior work in the
respective fields is discussed. Subsequently, an introduction to the topic of machine learning is
given and the used concepts are explained in great detail.

2.1 Astronomical question to be solved with machine learning

The interplay between astronomy and machine learning is a win-win-situation for both sides.
While astronomy provides an easy access to large and complex databases to the machine learning
community, new analysis methods will increase the understanding of data inherent properties
and allow a better access to the underlying physics.

2.1.1 Identifying outliers in spectroscopic databases

The detection of peculiarities in spectra can lead astronomy in a less biased way towards the
discovery of new classes of objects and physics (e.g., Decarli et al., 2010; Meusinger et al., 2012).
The focus of this work is on spectra which cannot be explained by a single-redshift system. This
is a good tracer for outliers, per definitionem, only rarely represented in the SDSS database and
can reveal undetected and unexpected behavior.

Sources of relative redshifts

In this section, the merging of supermassive black holes and the origin of gravitational lenses are
described. While the origin of both processes are very different, they both are rare events and
exhibit a relative shift of (one or several) spectral features with respect to the reference redshift.
However, the relative shift between the two redshifted systems is severely different and can be
used to discriminate the two different origins.

Supermassive black hole binaries (SMBHB) The interaction and merging of galaxies
(see e.g., Toomre and Toomre, 1972) is a process which has been studied on hundreds of objects,
with Messier 51 being probably the most famous one. The evolution and formation of galaxies
in the universe is tightly correlated with merging events (White and Rees, 1978) which is also,
more recently, supported by numerical simulations (Kannan et al., 2015). In addition, Richstone
et al. (1998) showed that (at least) the most massive galaxies host a super massive black hole
(SMBH) in their center. Hence, the merging of the galactic centers and the SMBHs should
be inevitable (Begelman et al., 1980). Due to the conservation of angular momentum, the
two (or more) merging SMBH will encounter a binary stage. The average distance of the

3
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binary is continuously decreased by different effects on different scales that involve dynamical
friction by gas, slingshot ejection of stars and eventually emission of gravitational waves (see
e.g., Milosavljević and Merritt, 2003; Gualandris and Merritt, 2008; Popović, 2012, for more
detailed descriptions of those processes). It remains unclear, what the typical time scales for
the merging processes are, but as long as they are not dramatically short or long, numerous
SMBHs in the binary stage should be detected. So far, only a handful of objects are known to
be SMBHB and a few dozens are considered to be bona-fide candidates (e.g., Komossa et al.,
2003; Maness et al., 2004; Valtonen et al., 2008; Rodriguez et al., 2009).

The detection and determination of the frequency of merging events can deliver valuable
insights in the nature of galaxy formation and evolution. Additionally, the merging of SMBH
may actually also explain the growth rate of the SMBH in the center of galaxies, which cannot
be explained solely by accretion rates according to the Eddington limit. As studied in Sanders
et al. (1988), the merging might also play a considerable role in the activation of galactic nuclei.

As the SMBH themselves do not emit any radiation, their detection has been limited to their
interaction with the environment. In the Milky Way, the existence of a massive central region
was inferred by studying the behavior of orbiting stars and clusters in its vicinity (Gillessen
et al., 2009). Another strong indication of the existence of SMBH are active galactic nuclei
(see e.g., Antonucci, 1993). The observed extremely luminous emission originates from a very
confined region and is most likely caused by accretion of surrounding material onto the SMBH.
The emission is a composite of (multiple) black body components superposed by discrete narrow
and broad atomic emission lines, such as the Balmer series or iron lines. In radio-loud galaxies
the observed emission might be heavily influenced by jet activity which can cause a Doppler-
boosting of the emitted light (Urry and Padovani, 1995).

To detect SMBHBs in large scale surveys, two distinct approaches have been used so far.
The first one assumes that if the SMBHs are in binary stage, the entire system might exhibit
brightness variations in a periodic fashion which can, for example, occur if one of the SMBH
crosses the accretion disk of the other and thereby enhances its activity. The most famous
example of a SMBHB detected by this method is OJ287 (Valtonen et al., 2008), but also in
a recent publication, (Graham et al., 2015) SMBHB candidates have been found with this
approach. Alternatively, one can assume that at least one of the SMBHs is active and due to
the binary motion a shift between the two SMBHs or the SMBH and the host galaxy should be
observed. This method has revealed another dozen good SMBHB candidates, but the selected
samples are potentially also heavily contaminated by objects in which gas kinematics causes the
double-peaked emission (Fu et al., 2012). The latter approach will be discussed in more detail in
a later subsection. It is, however, worth noting that the detection of any of the two mentioned
effects does not proof the existence of a SMBHB. Further measurements, such as the change of
the spectral shift over time (e.g., Liu et al., 2014) need to be studied in order to confirm the
existence of a SMBHB.

Gravitational lenses As predicted by the theory of general relativity, the line-of-sight align-
ment of two astronomical sources can, depending on the geometry of the alignment, cause
gravitational lensing. The principle behind gravitational lensing is that the intermediate object
is heavy enough to bend its surrounding space such that the deflection (lensing) of light can
be measured. The consequences of gravitational lensing are manifold. Depending on the mass
distribution of the lens, either multiple images of the source or arc-like rings can be observed.
Some examples of gravitational lenses are shown in Figure 2.1. Gravitational lenses are a very
important laboratory to address many kinds of astronomical questions. They are, for example,
suitable scales to measure the absolute mass and the mass distribution of the lens (Kochanek,
1991). Additionally, they allow detailed insights on the lensed source as the spatial extent and
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intensity of the source are magnified (Marshall et al., 2007). Furthermore, by measuring the
light travel times of different lensed source images (Kochanek, 2002) allows a direct estimate of
the Hubble constant without the gauging effect of the distance ladder.

(a) J1000+022 (b) Abell 383 (c) J1038+4849

Figure 2.1: Examples of gravitationally lensed objects. All lenses have been observed with the
Hubble space teletscope. Credit: https://www.spacetelescope.org/

If the lensed source images has a separation lower than the fiber diameter of a given spectro-
graph (3′′ in case of SDSS), the acquired spectrum should contain contributions of the source and
the lens. Since the lens is in-between the observer and the source, two different redshift system
(one for the source, one for the lens) should be apparent in the spectrum as long as the brightness
of the lens and of the lensed source image are of a comparable order. As the two sources are not
gravitationally bound and the lensing effect only occurs for certain source-lens and lens-observer
distances, it is expected that the two redshifts should differ quite significantly. Therefore, the
difference in redshift can exceed unity. Consequently, the different redshift systems are easily
separable in terms of spectral resolution, but it might be on the other hand more complicated
to assign the correct redshifts to the respective systems. A huge advantage in the search for
gravitational lenses is that they have been detected before (see e.g., Muñoz et al., 1998; Bolton
et al., 2006) and thus the search strategies are more elaborate than for the SMBHB. Addition-
ally, high-resolution imaging enables astronomers to validate possible candidates by resolving
the separate components or detect arc-like structures.

Detection of multiple redshift systems

In Section 2.3, it will be shown that the SDSS database does not allow to extract these objects
directly from the database. Only objects properties which obey expected behavior (in terms of
templates) are reliable. This is the reason why several efforts have been made to detect peculiar
objects in the raw spectra. Smith et al. (2010) focus on a relative shifts of the [OIII]-doublet.
Bolton et al. (2006) analyze the residuals after removing the best-fitting spectral template and
identify potential spectral lines. A more advanced and data-driven approach to detect shifts
between Hβ and [OIII] lines has been presented by Tsalmantza et al. (2011). This approach
seems also the most promising in terms of completeness and reliability, as it takes into account
the measurement uncertainty and computes the likelihood of a double-redshift system. However,
all of the approaches used so far, still depend on a model for the continuum and the lines. These
(cf. Section 2.3) were inferred by performing a principal component analysis (PCA) on spectra
that have been manually shifted to their rest frames. This can cause a significant drawback on
the methodology, as the subtraction of the (wrong) continuum may create artifacts which might
mimic features. Despite Bolton et al. (2006), all approaches focus on specific spectral features
which imposes strong limitations on the flexibility of the approach. Furthermore, the approaches

https://www.spacetelescope.org/
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in the literature have solely focused on shifts between emission lines, while absorption lines are
indicative of the redshift of the galaxy as well and have been entirely ignored so far.

2.1.2 Analysis of time series data

With the automation of survey telescopes and the improvements in instrumentation and data
processing, the number of photometric surveys increased dramatically3 The observed variability
of sources can have manifold origins. In the Galactic plane, the majority of variable sources
are stars on the instability strip and eclipsing binaries. Outside the galactic plane supernovae
or the variability of star-forming and active galaxies and quasi-stellar objects are the cause of
variability. For both stellar and extragalactic origins, the time scale of variability ranges from
hours (see e.g., Lindgren et al. (1975) for Wolf-Rayet stars and Heidt and Wagner (1996) for BL
Lacs) to several years (see e.g., Soszyñski et al. (2009) for long-periodic variables and Valtonen
et al. (2008) for the super massive binary black hole candidate OJ287).

As variability can be caused by a variety of physical effects, an analysis of a monochromatic
light curve can only give hints about the origin of the variability. Graham et al. (2014) show,
e.g., that light curves can indicate quite reliably whether an observed variability is of stellar
origin or caused by a quasar. A detailed classification, however, requires more information
like photometric colors or spectra. The imprints of the origin of the variability in stellar light
curves are usually very clear and unique and therefore allow a more detailed classification. In
Figure 2.2, light curves of two pulsating variables and three different types of eclipsing binaries
are shown. All of those variable stars are periodic and thus, the visualization can be compressed
from the original light curve (left side) to a phase-folded one. Given the correct period P for a
light curve with photometric observations measured at observation times t, a light curve can be
phase-folded by converting the time-axis to a phase

φ = t/P − floor(t/P ) (2.1)

where the function floor(x) rounds x down to the nearest integer.

Variable stars

As aforementioned, this work focuses on variable stars. As mentioned in Watson (2006), stellar
variability is generally divided into extrinsic and intrinsic variability. Extrinsic variability is
caused by alignment effects (binaries, rotational variables, microlensing), intrinsic variability
denotes that a changing physical state of the star is causing the variable behavior (pulsations,
eruptions, bursts). In this part, the focus will be on pulsating and eclipsing variables.

Instability strip The instability strip (Gautschy and Saio, 1995, and references herein) de-
notes a region in the Hertzsprung-Russell-Diagram (HRD, Russell, 1914) where the pulsating
variable stars are located. In Figure 2.3, the absolute magnitude, using the distance modulus
and the parallax estimated by Hipparcos (Perryman et al., 1997), is shown as a function of the
color B− V . Due to the lack of a temperature estimate this plot reflects a mixture between the
observable Color-Magnitude-Diagram (CMD) and an HRD. The gray dots in the background
are a 2-dimensional density estimate of all stars observed by Hipparcos. The colored points are
variable stars of different classes as extracted from General Catalog of Variable Stars (GCVS,
Samus et al., 2004). The location of the instability strip is marked by the black dashed lines4.
The deviations from the instability strip, main sequence and the giant branch can be mainly
attributed to the variability, which shifts objects vertically in the plot.

3A selection of existing open-access optical time series databases will be given in Table 2.1.
4It should be noted, that binaries are of course not pulsating variables, but are just plotted the same way.
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Figure 2.2: Raw (left) and phase-folded (right) light curves for different types of stellar vari-
ability, denoted in the subplots, from the ASAS survey (Pojmanski, 1997).

The location in the HRD and the shape of the phase-folded signals are the defining properties
of the different variability classes. The underlying physical mechanism driving the pulsations
is the same for all the classes in the instability strip. The photosphere of those stars contains
Helium in different ionization stages located at different depths of the photosphere. Depending
on the temperature of this location Helium is predominantly neutral (HeI), ionized once (HeII)
or ionized twice (HeIII). When the stellar envelope starts contracting, the inner layers of the
photosphere are heated. The fraction of HeIII in the HeII layer increases, which in turn causes
the opacity of this layer to increase. Since now the radiation from the inner parts cannot escape
the shell anymore, it is driven outwards due to the radiation pressure. As a consequence of the
increasing distance, the temperature of the former HeII layer drops. Thus, the newly formed
HeIII starts to recombine to HeII again. Since now the radiation pressure in this layer decreases
strongly, the gravitational force attracts the outer shell again. This leads to a compression of the
envelope which was the starting point of the pulsation. Even though the underlying mechanism
behind the pulsation is the same for all stars in the instability strip, the different subclasses can
vary quite strongly in period and amplitude.

The interest in pulsating stars is very high, since many different effects can be tested on
them. The most prominent correlation is the period-luminosity dependence (Benedict et al.,
2007 for cepheids and Cáceres and Catelan, 2008 for RR Lyrae). This makes pulsating stars
good standard candles in the local universe for distances that are too large to be measured with
parallaxes but too close to see the effects of the cosmological expansion. In addition, the new
discipline of astroseismology (Gilliland et al., 2010) analyzes different pulsation modes and can
thereby obtain detailed information on the interior of those pulsating stars. As a consequence,
many stellar parameters, such as the radius, age and metallicity can be estimated very accurately.
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Figure 2.3: Absolute magnitude (using Hipparcos parallaxes) versus color. The different types
of variable stars (extracted from the General Catalog of Variable Stars, Samus et al., 2004) are
marked; the approximate location of the instability strip is highlighted by the black dashed lines.

Binary stars The variability in binary systems originates from the mutual occultation of two
stars or a star and a planet. Since the detection of exoplanets requires very high photometric
precision and are easier detectable in regular observations they will not be considered any further.
The shape of the variability of an eclipsing binary depends on multiple aspects, such as the radius
and the spectral type of each of the stars. Additionally, the orbital parameters have a severe
impact on the observed light curve, e.g. inclination.

From a physical perspective, a binary is in one of the following states: detached (ED), semi-
detached (ESD) or contact binaries (EC). Those states are defined according to the Roche lobe
of each star, which defines whether the tidal force from the other star exceeds the gravitational
force of the object itself, and thus leads to an overflow of material. For semi-detached binaries
one star fills its own Roche lobe and the other does not, for detached (contact) binaries none
(both) fill their Roche lobe. Apart from the orbital and geometrical parameters also physical
effects (e.g., limb darkening) influence the shape of the variability. For each of the classes,
examples were shown in Figure 2.2.

A very special kind of binary stars are the X-ray binaries. In those binary systems a main-
sequence or giant branch star orbits a compact object like a white dwarf, a neutron star or
even a stellar black hole. These binary systems are discriminated according to the mass of
the non-compact object (high/low) as then the material overflow is caused by different physical
processes (stellar wind/Roche lobe overflow). Depending on the type of the compact object,
the X-ray emission is caused by thermal emission of the accretion disk, formed by the conser-
vation of angular momentum. An additional component originates if the compact object has
a strong magnetic field. Then the ionized material from the accretion disk is channelled along
the magnetic field lines and eventually hits the surface (so this does not happen for black holes)
of the compact object with extremely high speed. This causes a heating on the surface (hot
spot) which increases the local temperature to several million Kelvin. This causes black body
radiation in the X-ray wavelengths. Consequently, the hardness of the X-ray radiation (frac-
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tion of high-energetic to low-energetic X-ray emission) is strongly dependent on the type of the
compact object.

The detection and analysis of binary stars is of great importance, since with given average
distance and orbital period of the system, the summed absolute mass of the two binary stars can
be determined. The frequency with which binaries occur constrains also the theory of stellar (and
therefore also galactic) evolution. Additionally, the X-ray binaries provide good experiments for
testing and validating accretion disk theories (Shakura and Sunyaev, 1973), which play also an
important role in other fields of astronomy, e.g., for quasars.

2.1.3 Inspection of regularly sampled time data

The launch of two recent space observatories, COROT and Kepler (Auvergne et al., 2009; Borucki
et al., 2010), have opened the window into a new era of time series data. Apart from Hipparcos
(with a rather high cadence of 10 days), these are the first surveys to observe huge areas in
the optical with a reasonably short cadence in regular time intervals. Those regularly sampled
time series data offer two very important insights into stellar and extragalactic astronomy: they
allow a long-term study of variability on short and long time scales and it enables scientists to
treat time series data as a regular sequence. From a methodologically point of view, these can
be handled in a more straight-forward way. The short cadence and high photometric precision
of the observations over a long time interval are especially interesting for studying RR Lyrae
stars or for occultations by small (earth-like) exoplanets which was the primary goal of both
missions. While the selection of both fields in Kepler and Corot favor, following the mission
goal, the observations of galactic stars, the regular observations permit a view not biased by
observation strategy. Thus, the observed sources can be seen as a statistical ensemble which
are “drawn” unbiased and thus should be relatively representative of the population of variable
stars in our Galaxy. Consequently, the understanding and classification of the different sources
in the observed field of view can have considerable impact on our understanding of the evolution
of our own Galaxy.

For the analysis of the acquired data, new methodology needs to be developed as the se-
quential nature of the data bears huge advantages over the irregularly sampled ground-based
light curves. Additionally, the photometric error of the space-based observations is significantly
lower (due to the missing atmosphere) and thus better insights into the physical processes of the
variable source can be gained. While the observations provide unique opportunities in under-
standing the variable nature of a huge variety of different variable sources, the analysis of the
data volume produced by them is computationally demanding. For example, Kepler observed
within its first complete public release Q1 (33.5 days) over 150,000 variable sources with a ca-
dence of 29.4 min and thus producing over 240 million photometric measurements. It is evident,
that this amount of data cannot be inspected manually and that definitely a pre-sorting has to
be done. In principle, two basic ways exist to perform this pre-clustering; transferring knowledge
from existing, ground-based time series database or cluster on the acquired data solely.

The transfer of knowledge seems on first sight to be easier applicable, as already available
knowledge (experience) has to be only transferred. In reality, however, it is quite hard to per-
form this task. The knowledge to be transferred is either the classes of objects which have
been observed in Kepler and another survey (label transfer), or the properties that have lead to
this classification (knowledge-transfer). The label transfer is rather straight-forward to apply.
However, the common sources between Kepler and, for example, the All Sky Automated Sur-
vey (ASAS) hardly exceed 1,000. Consequently, they do not provide a sufficient database for
predicting these classes on Kepler data. The method of knowledge-transfer is, however, much
harder to apply, as the observational biases of the different surveys as well as the very different
photometric uncertainties have to be taken into account accordingly. It is therefore unclear how
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the prediction quality of the class assignment decreases by predicting from a very irregularly to
a regularly sampled survey with much shorter cadence.

Unsupervised methodology (more details are given in Section 2.4) can potentially be a good
alternative, as biases from other classifiers and surveys are absent. Additionally, this could
provide also a new understanding of the different existing classes of variability and should be
in principle even able to highlight outliers. The application of unsupervised algorithms on
time series data/sequences bears, however, other difficulties. In a first step, the raw sequences
should be transformed to a vector representation, which should be insensitive to the median
brightness of the compared objects and insensitive to shifts along the temporal axis. Due to
the absence of labels for the Kepler database5, the analysis of X-ray time series, with already
assigned physical states, is preferred. For this, the X-ray binary system GRS1915+105 (a known
microquasar) was monitored with the Rossi X-ray Timing Explorer (RXTE) by Greiner et al.
(1996). Subsequently, Belloni et al. (2000) manually inspected all the observations and assigned
to each time series one of 12 distinct classes. These are believed to be also different physical
states6 the binary system was observed in. This dataset provides the perfect testbed for the
presented visualization algorithm.

2.1.4 Classification of irregular sampled light curves

The assignment of classes to a given set of irregularly sampled photometric data points is an
extremely challenging task since many different parameters influence the temporal behavior of
the source. The creation of models for different variability classes is very difficult for sparsely
sampled light curves as they depend on (partially) degenerate parameters. The most important
parameter for modeling (and also classifying) light curves is the period of the signal and huge
efforts have been made to find a methodology which is suitable for all types of variability (see
e.g., Stellingwerf, 1978; Scargle, 1982; Schwarzenberg-Czerny, 1989). In Graham et al. (2013)
it was, however, shown that the dependency between type of variability and quality of the
period estimate could not be broken by any of the proposed algorithms. Additionally, even the
modeling of correctly phase-folded light curves with correctly assigned classes is difficult since
even little deviations from the true underlying parameters cause huge deviations due to the
repetitive structure of the underlying signal.

Classical way The classification of time series data was in the past treated in two different
ways. The first implied prior knowledge about the observed source, e.g., from spectral or multi-
band photometric data. Those acquired data were then modeled and the position in the HRD was
thereby confined. This allowed to infer the different types of variability. In the second approach
multiple domain experts were asked to label (phase-folded) light curves manually. The manual
classification strongly relies on a correct determination of the period. It is also evident that
the technical feasibility and limited human resources are severe drawbacks of these methods. It
should be noted that if new variability classes occur later on, they remain undiscovered and are
labeled wrongly.

First data-driven approaches To circumvent the problem of re-observing sources or engag-
ing a large number of experts, alternative approaches have been investigated. Feeding extracted

5Labels have been provided by Debosscher et al. (2011). However, in the third publication it will be argued
why these results should be handled with care. The main concern is that the very different sampling between the
learning and testing set was not taken into account accordingly. Thus, the given labels should be rather seen as
a hint but are far away from being reliable.

6Examples for two of the states are given in the respective publication.
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feature vectors to classification algorithms (see, e.g., Hastie et al., 2009) has gained much at-
tention in recent works (Debosscher et al., 2007; Richards et al., 2011; Donalek et al., 2013).
The main idea has been to reduce the irregular light curves to homogeneous measures (called
features hereafter) which are independent of the sampling and the phase of the light curve.
Typical choices for the features are the period, the intensity of the respective periodic signal,
median absolute deviation and many more (see e.g., Richards et al., 2011, for a complete list).
Those features are then used to train a classifier (see Section 2.4) that is able to assign labels
to unlabeled data.

Weaknesses One of the big shortcomings of classical and learning-based approaches is, that
the photometric errors are not taken into account accordingly. Neither the domain experts,
nor the feature-based approach respects the (sometimes quite severe) uncertainty introduced
by noisy measurements, the strong observational bias which is introduced by seasonal effects,
and potential systematic bias of the observation strategies. It is interesting to notice that the
number of observations correlates quite drastically with the labels. Since the methodology is
not defined generic enough, it is not suited to transfer obtained knowledge between datasets
directly. Transfer means that the classifier is trained on one database and is used to predict
labels on another. Even though, this direct approach has been applied (Debosscher et al., 2007),
it should be noted that a lot of information which exists in the tested data is simply discarded,
because the errors are not considered accordingly. The existing methodology also lacks a natural
extension to regularly sampled time series. There the use of features is highly questionable as
the sequential nature of the data is not considered.
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2.2 Complex Data in Astronomical Databases

The amount of publicly available astronomical data has increased dramatically over the past
decade. A major part of this data flood can be attributed to a rather manageable number of sky
surveys, e.g., FIRST (Becker et al., 1995), 2MASS (Skrutskie et al., 2006) or SDSS (see, e.g., Ahn
et al., 2014). The concept behind those surveys is to observe and/or monitor fields or all of the
sky in an automated and unbiased fashion. The scientific aims of the different surveys are very
distinct and therefore, also the observation strategy and methodology (imaging, spectroscopy)
differ significantly. In total, all these surveys produce a huge and rich variety of different data
types over different wavelengths and (spatial and spectral) resolution. This variety is a blessing
and a curse at the same time as it offers huge possibilities for answering scientific questions,
but makes the application of analysis techniques computationally and methodologically more
challenging. In order to understand the usability of a methodology on a given database, the
databases have to be described by common properties, explained in the following.

2.2.1 Database characteristics

The characterization of a database is an inevitable step before a developed methodology can
be applied. A common description of databases in big data science is given by the four V’s:
Volume (number of entities, dimensionality), Variety (homogeneity, dimensionality), Veracity
(uncertainty, complexity) and Velocity. In the presented work, velocity is not an issue as only
static databases are considered. With the launch of GAIA (Perryman et al., 2001) or first light
of LSST (Ivezi et al., 2011), speed will become a major issue. All other properties are described
in the following.

Homogeneity

A database is usually composed of N entities, each of which has a number of entries (features)
in a database. If this number of entries has the same meaning and returns a valid number for
all entities, the database is called homogeneous. An example of a homogeneous database is the
photometric database of SDSS, as each object observed in the r band has corresponding values in
the ugiz bands as well. If an object is observed in a band, but not detected, it will be assigned a
magnitude which is beyond the brightness limit of the SDSS. However, a non-detection is a valid
entry as well. The homogeneity of a database is an important requirement for the application of
data-driven approaches since only then the reliability of an approach can be judged in a uniform
way throughout the sample.

In order to apply data-driven approaches to an inhomogeneous database, it has to be homog-
enized. A straight-forward example of homogenization is interpolation (e.g., by using physical
models). For example, each spectrum in the spectral database of SDSS has, by its nature, a
slightly offset dispersion solution, i.e., the first pixel does not always correspond to the exact
same wavelength value. Since the offset from a general grid is fairly low, the entire spectrum
can be interpolated (flux-conserving) to a more general grid. Time series databases, obtained by
ground-based observations, are an example for fully inhomogeneous databases as the temporal
sampling is subject to many environmental effects.

Dimensionality

The dimensionality of a database denotes how many independent entries (features) exist per
entity. Usually, no prior knowledge is imposed on the database, all quantities (and even their
combinations like, e.g., colors) are seen as independent properties. This assumption can obvi-
ously also prohibit a detailed understanding of processes if, e.g., each temporal measurement
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of a time series is seen as an independent measurement even though two adjacent photometric
measurements can be strongly correlated.

Uncertainty

The level of uncertainty in a database denotes how heavily an observed signal is truncated
by noise. A common notion of the level of uncertainty in astronomy is the signal-to-noise
ratio (SNR) where a SNR = 1 indicates that the observed signal is of the same order as the
statistical uncertainty of the signal. In astronomy, the uncertainty of a measurement depends on
multiple factors that are independent. The introduced uncertainties can be categorized in three
groups: physical, technical and analytical uncertainty. The physical uncertainty, only occurring
in ground-based observations, originates from the time-dependent behavior of the atmosphere.
The technical uncertainties are caused by the non-ideal technical infrastructure of the telescopes,
e.g., misalignment, efficiencies and pixelization. Eventually, analytical uncertainties are either of
a statistical nature (Poisson noise) or are artifacts that are introduced in the adjacent analysis of
observations. The different uncertainties are indistinguishably superimposed and consequently,
measurements performed under different circumstances (weather, hardware, brightness) can be
compared directly only if the respective uncertainty is estimated and taken into account correctly.
In feature extraction approaches, the inclusion of the uncertainty poses one of the major issues
and will be discussed later on.

Complexity

The complexity of data refers to the underlying physical behavior of an observed source. An
observed single-band image of a distant star can principally be considered a non-complex signal
since it can be described with an analytical model (e.g., Moffat profile) and only the scaling
has to be adapted. However, it should be noted that also the description of a point source can
be very complex if the superimposed uncertainties are of a larger magnitude than the signal of
the point source, such as for faint stars. An image of an extended nearby spiral galaxy is more
complex as it is a superposition of an underlying behavior (e.g., Sersic profile) with an imposed
structure (e.g., spiral arms) and many visible local sub-structures (e.g., clusters or supernovae),
so that the overall model has many adjustable parameters.

2.2.2 Examples of astronomical databases

To understand the practical implications of the database characterizations, two different astro-
nomical database types, which are also used in the publications, are presented.

Spectroscopic data

Spectroscopic data are complex, (nearly) homogeneous, noisy and high-dimensional data. Oc-
casionally, parts of the spectra are missing due to technical problems, however, it is assumed
that those can be interpolated linearly. An illustrative example of the different effects impairing
the original (complex) physical measurements are shown in Figure 2.4. In this work, the Sloan
Digital Sky Survey (SDSS, Ahn et al., 2014) spectroscopic database is used, since it is one of the
largest existing spectroscopic database at optical wavelengths. As the understanding of the data
acquisition and processing of each of the delivered data is a key point in applying data-driven
learning methods, the SDSS and its data reduction pipeline (that is to remove detector and
night sky behavior) will be explained in more detail.

For the spectroscopic observations, a 2.5 m telescope located at Apache Point observatory is
dedicated to the SDSS. The spectra are acquired by attaching optical fibers to pre-manufactured
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Figure 2.4: Artificial optical spectrum (top) with impacts by night sky (center) and detector
noise and discretization (bottom).

plates which are designed for certain sky regions. Since the light is then transported via optical
fibers (3′′ in diameter) to the spectrograph, all spatial information is lost. The older spectro-
graph (SDSS) was able to record 640 spectra in parallel, the newly installed BOSS spectrograph
can deal with over 1,000 spectra at a time. The reduction of the 2-dimensional spectral data
into 1-dimensional spectra is described in detail in Stoughton et al. (2002). Here, only a short
summary is given. The analysis of 1-dimensional spectra is described in Section 2.3.

The first step in the reduction of the spectra is the subtraction of the detector bias and the
division by flat fields in order to correct pixel-to-pixel sensitivity variations as well as distortions
along the optical path. In order to account for different hardware introduced effects, such
as grating/mirror efficiency, standard stars are observed occasionally. It is assumed that the
hardware behaves in a well defined manner between the observations and thus, all these effects
are considered to be static and will not be considered any further. The most important and
frequently changing impact on the spectra is the night sky emission that has to be accounted for.
Extra fibers on each respective plate point to empty regions in order to estimate the contribution
of the night sky. The SDSS pipeline then interpolates the night sky behavior to the positions
of the observed sources. While this seems like a straight-forward task it happens occasionally,
according to our publication in 1 out of 1,000 cases, that the night sky is heavily over-estimated.
While the origin of this effect remains unclear, it shows that the data preprocessing can have a
considerable impact on individual scientific questions, e.g., the identification of outliers.

Time series data

Time series (also called light curves) are repetitive photometric observations of distinct sky re-
gions or of all the sky. Due to seasonal, atmospheric, and weather effects in ground-based (GB)
observations, objects cannot be observed in a regular fashion. Consequently, GB light curves are
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extremely inhomogeneous. The inhomogeneity does in this case not only refer to the irregular
sampling of the observations but also to very different photometric errors, according to the ob-
serving conditions at the time (and location). As the average time between two measurements
is typically much larger than the time scales of the variability of most of the objects, it is hardly
possible to interpolate the data, as in the case of spectra. On the other hand, several space
missions have been dedicated to the search for exoplanets and solar-like pulsational behavior.
Therefore, regions in the Milky Way have been observed continuously with different cadences,
delivering homogeneous time series data. Those datasets are extremely valuable for understand-
ing the mechanisms of variable behavior and yield interesting insights in the biases introduced
by the irregular observations performed by GB measurements. Table 2.1 gives an overview of
some of the publicly available time series databases.

Name Start Bands Area Reference

HipparcosS 1989 optical MW Perryman et al. (1997)

MAssive Compact Halo
1992 V,R MW, LMC Cook et al. (1995)

Objects (MACHO)

Optical Gravitational Lensing
1992 V,I

MW, SMC,
Udalski et al. (1992)

Experiment (OGLE) LMC

All Sky Automated Survey
1997 V,I all sky Pojmanski (1997)

(ASAS)

Robotic Optical Transient
1998 unfiltered all sky Marshall et al. (1997)

Search Experiment (ROTSE)

Sloan Digital Sky Survey
1998 u,g,r,i,z Stripe 82 Ivezić et al. (2007)

(SDSS)

Catalina Real-Time Survey
2003 V all sky Drake et al. (2009)

(CRTS)

COnvection, ROtation and
2007 unfiltered MW (field) Auvergne et al. (2009)

planetary Transits (COROT)S

Kepler missionS 2009 unfiltered MW (field) Borucki et al. (2010)

Table 2.1: A selection of existing optical photometric surveys with some selected attributes, like
observed region (MW: Milky Way, MC: Magellanic Cloud) and filterbands. The three surveys
observed with space telescopes are marked with an S.
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2.3 Schemes of data analysis

As a consequence of the immense incoming data stream, the online analysis of data has become as
important as the technical feasibility of the surveys themselves. Apart from the data reduction,
the software needs to be able to analyze the obtained data in an extremely reliable fashion, as
systematic deviations will affect all obtained results. The correctness of the analysis is validated
only rarely, such that even small problems can have severe impacts on huge databases and remain
potentially undetected.

The data analysis is usually science case dependent. However, most of the analysis techniques
in astronomy belong to one of the following tasks

1. Clustering/Visualization (unsupervised)

2. Classification (supervised)

3. Regression (supervised)

where the tasks in brackets refer to the nomenclature in computer science whether at least parts
of the data are labeled (supervised) or not (unsupervised). In the following, those tasks will be
explained using the example of the SDSS spectral pipeline. This is described in further detail
in Stoughton et al. (2002); SubbaRao et al. (2002).

2.3.1 Unsupervised approaches

In the absence of assigned labels for the database entities, clustering usually is the first step to
be done in order to obtain an overview over the broad variety of the acquired data. Clustering
denotes the detection of overdensities in the high-dimensional feature space and many approaches
have been described in the literature to achieve this goal such as K-means (Lloyd, 1982) or
DBSCAN (Ester et al., 1996).

The simplest approach to get an impression of the different data present in SDSS could be
to plot color-color diagrams over all observed objects. This type of visualization can already
impart a good idea about existing structures within the data. Throughout this work, only
visualization will be considered7. The goal of visualization is to project a given data set into
a lower-dimensional space with the aim to visually inspect and cluster those data according to
existing substructures. While for the five bands ugriz this is an achievable task (even though,
those are for all color-color and color-magnitude diagrams already more than 100 plots), higher
dimensional data require a more efficient dimensionality reduction that allows an inspection in
lower-dimensional space. An important aspect of this dimensionality reduction is that distances
from the high-dimensional space should be preserved as well as possible in the lower-dimensional
projection. Visualization is, however, not part of the SDSS pipeline. Instead, clustering was
performed in a very rudimentary, and therefore also very subjective, way by handing a set of
2,200 spectra to domain experts with the task to cluster them manually (Vanden Berk et al.,
2001). The classes obtained from the different experts are then merged into common classes
and to each of them a template is assigned. In total, 33 unique classes defined by a respective
template spectra were obtained. All those different classes are considered to be independent
classes such that for a given target spectrum only one class can be assigned. The majority of
those templates describe stars on the main sequence or in later evolutionary states (e.g., white
dwarfs) nearly all of which could be described by a more principle model composed of a black
body radiation with superimposed spectral lines. It is therefore questionable how well the chosen
templates reflect the true behavior of the different classes (stars, galaxies, quasars). A strong

7In this work, visualization and dimensionality reduction are used interchangeably.
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imbalance between the frequency of those classes in the data (25.7%, 63.7%, 10.6%) compared
to the fraction of templates attributed to them (69.7%, 18.2%, 12.1%) is apparent.

2.3.2 Classification

Classification denotes the assignment of a discrete class (in this case a template) to an unlabeled
spectrum. For this purpose, a set of training objects with known labels is required. With the
help of those, labels for unseen data can be assigned using different approaches, such as support
vector machines (Chang, 2011) or random forests (Breiman, 2001).

As shown in Figure 2.4, SDSS spectra are a superposition of an underlying continuum and
superimposed spectral absorption/emission features. To get an idea of the importance of the
different spectral features, all spectra that have been used for clustering were shifted with respect
to their manually assigned redshift into their rest frames. In a next step, a principal component
analysis was performed on those in order to obtain the most important spectral features apparent
in the learning set. A list of those features can be found in the Appendix A.1.

In order to assign classes to unlabeled spectra, the templates were then combined with the
principle components (which are freely variable in amplitude, but constrained in broadness) in
a way such that the deviation between the model and data points is minimized (least-square
fitting). In order to account for the shifting due to the redshift of a source, the optimization of
the redshift is performed on a grid, simultaneously. The template with the lowest deviation was
then assigned to be the class of the tested spectrum.

2.3.3 Regression

Regression denotes the estimation of a continuous property, such as redshift or slope. While
classification denotes the assignment of discrete classes, regression is usually performed on phys-
ical parameters (such as redshift) but in principle the same methodology as for classification can
be used.

In case of the SDSS spectra, the simultaneous fitting of template, redshift and principle
components to an unseen spectrum, delivers numerous regression values. Apart from red-
shifts, line widths, amplitudes, many more parameters are extracted and stored in a database.
This database is accessible via a standard Structured Query Language (SQL) interface under
http://dr10.sdss3.org/. Thus, the highly complex spectra are converted into a catalog of simple
descriptors. This is a very handy way of describing spectra which are well represented by any
of the given templates. However, it remains questionable how helpful such a database structure
is when it comes to real scientific questions.

2.3.4 Shortcomings

The above considerations make it evident that there exists a degeneracy between the class
template, redshift and amplitude of the main components. This implies that if the fitting
procedure fails in any of the tasks, all of the respective properties and classes will be assigned
wrongly. In order to identify these misfitted spectra one can study the behavior of the residuals;
the “SMALL DELTA CHI2” flag indicates whether several solutions with comparable reduced
chi-squared values exist. This flag is activated for more than 15% of all analyzed spectra!
Consequently, a manual investigation of all the misfitted spectra is impossible. In Figure 2.5,
an illustrative example is given that shows that the value of residuals is not a sufficient tracer
for truly suspect spectra.

The organization of the database is well suited for the detection and analysis of behavior
that can be well described by the chosen set of templates together with the superimposed main
components. However, the provided database does not allow access to information which is not

http://dr10.sdss3.org/
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Figure 2.5: Artificial data highlighting drawbacks of solely minimizing the residuals. On the
left side the feature was entirely ignored by the fit, but due to the lower signal-to-noise ratio,
the impact on the residual is lower than for the fairly well prescription of the more prominent
feature on the right side.

encoded in the applied model. This lead many astronomers to a reinspection of the raw data
in order to select spectra which fulfill a given requirement. For example, Collinge et al. (2005)
were aiming to identify feature-free power-law spectra in the SDSS spectral database. As no
catalog feature existed, that allowed an explicit query, the entire database was mined just for
this task. In a differently organized database, the authors could have pointed out some objects,
which they identified to be interesting candidates and the database could have returned a set
of spectra which obey similar properties. The selection based on similarity instead of extracted
features is also a more natural way in terms of human perception.

Eventually, it is important to understand why the application of data-driven methodology
could be advantageous over static models. In the following, models will be discriminated into
static and dynamic (learning) models. Static models do not adapt to the data provided and
thus, remain fixed throughout the analysis. On the contrary, dynamic models take into account
the data they have been provided and adapt to them accordingly. The SDSS reduction pipeline
is an example of a static model. This choice entails three important consequences:

1. The underlying (static) model is not reproducible.

As the expert team decided on a common set of templates using their expertise, it is
impossible for a neutral person to come up with a set of templates which is similar to the
presented one. Given a fixed dataset, a data-driven approach could actually learn a set of
templates which is reproducible by anybody.

2. The selection of the (static) templates cannot be validated.

The choice of templates is solely subject to the expertise of the investigators. Only one set
of templates has been provided and thus, it cannot be validated whether a better/more
general set of templates could exist. If, however, the model is generated by the data,
the given dataset can be split into different subsets from which the model(s) can learn.
Subsequently, the best model is chosen on the basis of an objective function8 .

8That is the criterion judging the quality of a model, a commonly used measure is the root-mean-square of
the residuals.
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3. The (static) model will, independent of the incoming data, remain unchanged.

In case a given (potentially unknown) class was underrepresented in the dataset handed
to the experts, it will never be represented in form of templates, even if the occurrence of
the class is extremely frequent in the newly incoming data. For the static models, the only
way out is a manual interaction, i.e., introduction of a new template. The dynamic model
will learn the behavior and weight the importance of the newly arisen subset according to
its frequency.

All the points discussed in this section will be explained in greater detail in the following
Section 2.4. This is an easy-to-read introduction to the mentioned dynamic (or data-driven)
models.
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2.4 Learning from data

Machine learning is a modern statistical approach for hypothesis testing by creating, validating
and selecting and rejecting models. This strategy was pursued automatically by humans in the
past. Experiments were performed and the acquired data lead to a fundamental understanding
of processes occurring in Nature, e.g., Newton’s laws. With the advance of new technology,
experiments and, a new theoretical background, some of this knowledge has been revised and/or
adjusted such that, e.g., Newton’s laws are now seen as a special case of Einstein’s general
relativity theory. The understanding of science has been either driven by experiments that con-
tradicted existing theories or by predictions made from theories and later-on (not) confirmed by
experiments. With the advances in computer technology, each of those paradigms (experimental
and theoretical) was supplemented with a computer-driven extension, data-driven science and
simulations, respectively. Machine learning learning offers a new approach to validate existing
models in huge database allows to develop new models, according to the supplied data. Addi-
tionally, the detection of outliers has always been of great interest in astronomy, as they can
challenge the integrity of the underlying models.

In order to highlight the differences in the process of model selection performed visually and
data-driven, a simple two-dimensional clustering task is considered in Figure 2.6. The respective
datapoints are drawn from three Gaussian distributions whose centers are highlighted in the
last frame. With each step (from left to right) more and more datapoints are drawn from these
distributions. At each step a dashed line separating the potentially existing clusters in the
given data is drawn. The number and course of these separating lines is subject to the choice
of the individual investigator and infinite different lines could be drawn that would separate
the hypothetical clusters equivalently well. One can immediately see that the human decision
making is very flexible, e.g., a new class can be introduced easily and old decisions can be revised.
The price for this flexibility is that the choice of the clusters is irreproducible, as anyone might
see different classes in the respective subplots. Additionally, visual inspection can be performed

Figure 2.6: The principle of visual adaptive clustering. From the left to the right more
random points are drawn from three Gaussians, whose centers are indicated in the last plot
with large colored dots. The human-based clustering is very flexible and can adapt easily to
newly occurring clusters. However, the visual clustering is very subjective and is thus not easily
reproducible. For comparison, a clustering based on a basic data-driven clustering algorithm
(K-means, MacQueen, 1967) with three centers is shown in the last frame as background color.

only due to the sufficiently low dimensionality of the data. Probably in three, definitely in four
dimensions more than one plot have to be created in order to obtain a fundamental understanding
of the relations between the different dimensions. In high-dimensional data, a visual inspection
is impossible to perform and alternative approaches need to be developed that are efficient and
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better reproducible than the human inspection. The training of flexible algorithms (adaptive
learning) is state-of-the-art research (Zliobaite et al., 2012), but will not be investigated in this
thesis. Instead the application of existing machine learning methods on astronomical data is
focused. The use of data-driven methodology requires the definition of an objective criterion
that evaluates the quality of a given model. Different definitions of this objective criterion exist
and obviously its choice has a severe impact on the performance of the learning algorithm. This
objective criterion should reflect what similarity means in the context of the respective science
case. A more detailed description of the concepts of model selection and data similarity will be
given subsequently.

In the following subsections, some fundamental problems arising from the use of deterministic
and purely model-based approaches are highlighted. As a consequence, new methodology as
provided by statistical learning is introduced and the advantages and disadvantages of those are
discussed. The structure and content of this section are mainly inspired by Bishop (2006); Ivezić
et al. (2014). It is the aim of this short introduction to outline some of the concepts of machine
learning and probability theory.

2.4.1 Model selection

Model selection is the process of judging the quality of each of a set of candidate models on a
provided dataset. Two central definitions are of great importance for model selection: model
complexity and validation. To highlight the meaning of those terms a typical regression problem
is considered. The data (green dots in Figure 2.7) are generated from the sigmoidal logistic
function

1

1 + e−x
(2.2)

by drawing samples of x from a uniform distribution between [0, 1). Gaussian noise with a
mean µ = 0 and a standard deviation of σ = 0.1 is added. The task is now to fit a function f
which interpolates between the data points. The fit is optimized by minimizing a given objective
function, e.g., the widely used least square measure:

E(x,y|w) =

n∑

i=1

(f (w, x)− yi)2 =

n∑

i=1






θ∑

j=1

wjN (xi − µj , σ)


− yi




2

(2.3)

where f (w, x) is a continuous function which is linear in the weights w ∈ Rθ. In the
presented case, f (w, x) is a mixture of Gaussians with θth degree and the width σ is adapted
(but fixed for all j) according to θ. This minimization will obviously favor high values of θ since,
as soon as θ � n, the objective will eventually reduce to zero. This fact is called over-fitting.
The over-fitting occurs since the number of degrees of freedom of the model exceeds the number
of data points and consequently, the model can imitate any abrupt behavior. However, most
correlations between physical quantities are smooth rather than abrupt. Therefore, a low fitting
error does not necessarily imply a good prediction quality. In order to measure the prediction
quality, the sample of data points has to be split into a training and a validation set. Here, the
k-fold cross-validation is used, i.e., the dataset is split into k equally-sized folds. The model is
then optimized (trained) on k − 1 folds in order to predict on the data from the kth fold. The
cross-validation measures the generalization of a given model and, thus, the abruptness of a
model will effectively be penalized as the performance is evaluated on unseen (test) data instead
of optimizing the model only on training data. In Figure 2.7, the difference between the least
square error (deviation from green points) and the validation error (deviation from blue points)
are given. The former one favors the highest degrees in the function f , while the validation error,
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which is a measure of the prediction quality, indicates that a degree of θ = 4 is sufficient/ideal
to describe the underlying shape.
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Figure 2.7: Randomly drawn training (green) and validation (blue) points from a sigmoid
function (gray dashed line) with normal noise. The fit (red line) is performed with a mixture of
Gaussians with θ components (increasing in horizontal axis) and with increasing regularization
values λ towards the bottom. The two best predicting models are highlighted by a purple box.

Another way of limiting the model complexity θ is the introduction of a regularization term
λ such that the error function becomes

Eregularized(x,y|w, θ) ≡ E(x,y|w, θ) + λwTw. (2.4)

The insertion of the parameter λ leads to a penalty on large weights and thus, smoother models
are strongly favored over abrupt ones. The price for the penalization is that another free
parameter λ arises which has to be optimized for each problem, individually. In Figure 2.7,
it can also be seen that an intermediate regularization (middle row) yields a lower validation
error and delivers a more suitable model. On the other hand, a high value of λ can lead to
over-simplification (lowest row), while a too low choice does not constrain the complexity of the
model at all. The combination of validation and regularization can limit the complexity of the
given model. As a consequence, the smoother model can more reliably predict formerly unseen
points and therefore yields a better prediction performance.

2.4.2 Similarity and data representation

The notion of (dis-)similarity is the basis for all the following methods and is therefore discussed
in more detail. A typical choice for the similarity between two vectors x,y ∈ Rn is

D (x,y) =

(
n∑

i=1

|xi − yi|p
)1/p

(2.5)
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which transforms into the Euclidean (Manhattan) distance for p = 2 (p = 1). Apart from the
exponent in the definition, also the individual dimensions of the vector might be weighted to
highlight or suppress the importance of a certain vector component. By definition, all of the
dimensions of the vectors are treated thereby independently. Other similarity measures can
also include the interaction between non-independent dimensions. However, instead of utilizing
a notion of similarity, it is more desirable to obtain distances between vectors. A similarity
measure is called a distance if it obeys the following conditions:

1. D (x,y) ≥ 0 and only 0, if x = y

2. D (x,y) = D (y,x)

3. D (x, z) ≤ D (x,y) +D (y, z).

The similarities defined so far are tailored for measuring distances between two vectors. Other
measures of similarity can be used if two probability densities have to be compared. While
Equation 2.5 also provides a valid distance for probability densities it does not take into account
that the given densities are normalized. Therefore, tailored similarity measures between densi-
ties, such as the Kullback-Leibler divergence and the Bhattacharyya distance, exist. Throughout
this work, similarity between vectors and densities will always be measured with an according
distance. The choice of the distance has a considerable impact on the final results. The mod-
ification and adaption of the distance measure (e.g., by introducing dimensional weights in
Equation 2.5) has a model character as well; this is called metric learning.

In this work, only distances between vectors and distributions are considered. In the subse-
quent publications, conversions of data that are not vectors or densities themselves into such, are
investigated. This conversion bears, however, many risks as the intermediate model, converting
non-vectorial to vectorial data, has to follow quite naturally from the presented data type.

The SDSS spectra, for which the redshift is to be estimated, are of a vectorial nature already9.
However, to provide the regression approach only with information that is relevant for estimating
the redshift, a preprocessing (e.g., subtraction of the continuum) is applied to the spectra. This
step reflects more a data manipulation than a real conversion, however, it is inevitable in order
to be able to estimate redshifts.

In the other two science cases, light curves which are of a sequential nature are considered.
For visualizing regularly sampled, variable length and potentially time-shifted signals the se-
quences are converted into a fixed-length vector representation. This is done by employing a
model to the sequences. This new representation then allows to compare the sequences. On the
contrary, in the third publication the sequential behavior of the irregularly sampled light curves
is discarded and the observed photometric datapoints are converted into a probability density.
As mentioned earlier, several ways exist to measure distances between those densities.

2.4.3 Curse of dimensionality

The similarity measures introduced in the previous part have a well understood meaning in low
dimensions. However, with increasing dimensionality of the data, the classical notion of distance
looses its relevance. This is the curse of dimensionality. Data with an enhanced dimensionality
require a more complex model to be described accordingly. This imposes strong limitations on
the use of data- and model-driven approaches on these high-dimensional data as they have to
account for very detailed behavior of the data.

9This is only true, because dependencies between different wavelengths have been neglected. In fact, the
measurements between the pixels are correlated by the physical processes of the object.
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To visualize the problem, a simple two class classification task is considered. Given that in a
dataset each item is represented by a four-dimensional vector10, the dimensionality of the data
is four. To perform a classification, the high-dimensional space can be subdivided into regular
bins and in each bin the majority of contained objects dictates the label of an formerly unseen
object. Assuming that all quantities are normalized between [0, 1), the four-dimensional space

can be subdivided into
(

1
∆

)d
sub bins if a bin width of ∆ is desired. For a width of ∆ = 0.01

those are already 100 million sub-bins! Thus, already four dimensions can be seen as a high-
dimensional classification problem; in the presented work, the treatment of feature vectors with
100−1, 000 dimensions will be discussed. This leads to a computationally infeasible complexity.
Apart from this, the classification in the geometrical subdivision method depends strongly on
the chosen length and, even more severely, the high-dimensional space usually contains large
areas not populated by data.

To avoid the geometrical separation of the high-dimensional space into a larger number of
bins, one can either use a different measure for estimating the local density at a given point or
one can project the initial high-dimensional vector into a lower-dimensional space. Examples
for both approaches are the basis for the presented stduies and are explained in greater detail
in the following.

2.4.4 Local density estimations

In order to explain the concept of local density estimations, the two-class classification problem,
introduced in Section 2.4.3, is considered again. Instead of investigating the local neighborhood
by dividing the high-dimensional feature space into hypercubes, the continuous definition of the
density is reviewed. The probability of a value x occurring in a region R can be computed by

P (x ∈ R) =

∫

R
p (x) dx (2.6)

where p (x) is the probability distribution of x. For a large enough number of N observations,
K ≈ NP data points will be contained in the region R. If the region R is small enough,
the probability distribution p (x) can be considered to be locally flat and therefore constant11.
Hence, Equation 2.6 can be approximated by P ≈ p (x)V . Combining this, the probability
distribution can be estimated by

p (x) =
K

NV
(2.7)

with V being the volume enclosed by R. To estimate the local density for a given dataset either
the volume V or the number of investigated objects N can be fixed to a constant. This gives
rise to support vector machines and the k-nearest neighbors approach, respectively.

Support vector machine

In the support vector machine (SVM), the volume to be investigated is defined by the radius R
of the chosen kernel. The kernel assigns a high importance to objects that are close in (a given)
distance compared to the kernel radius R. Typical choices for the kernel12 in a SVM are the
rational square or the radial basis function

RBF (xi, xj) = e−
(xi−xj)

2

R2 (2.8)

10This corresponds in an astronomical meaning to 4 different measurements, e.g., colors.
11It should be noted at this point, that the assumption of a large enough volume and local flatness are actually

contradictory, however, for an approximate estimation they can be satisfied simultaneously.
12Note that the use of the boxcar function will turn the SVM into a histogram with bin width R, however, it

is discontinuous and thus not suited for mathematical optimization.
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which will be used in the publication.
The SVM is a distance-based method projecting a given distance matrix into a higher di-

mensional space where the different classes are more easily separable. In this projected space,
the SVM is trained by finding hyperplanes that separate the classes optimally. As soon as the
projected dimension is chosen high enough, any dataset can be optimally separated. In order to
avoid over-fitting in the low-dimensional space, a regularization term C may be introduced in the
objective function. The error parameter C13 is comparable to the inverse of the regularization
parameter λ in Equation 2.4. It reflects the trade-off between high (low) model complexity and
over-(under-) fitting of the training data for high (low) values of C. As in regularization, this is
a parameter which has to be fine-tuned for a given classification problem by performing a grid
search over C. Besides classification, the SVM can also be used for regression tasks.

k-nearest neighbors

Instead of fixing the volume to be investigated, it is also possible to estimate the probability
density by choosing the number of data points k to be investigated. For this, distances (or
dissimilarities) to the nearest datapoints are measured. From these, information about the
tested data item is induced. A visualization of the two-class classification problem is shown in
Figure 2.8. The concept of inspecting the local neighborhood can be easily extended to perform
clustering/visualization (K-means) and regression tasks. In contrast to the SVM, the kNN is
not necessarily convergent but comes with a higher classification accuracy.

2.4.5 Dimensionality reduction

Instead of dealing with high-dimensional data, a dimensionality reduction algorithm can be
applied that reduces a feature vector to its most important (not necessarily meaningful) char-
acteristics. Dimensionality reduction is a process which projects a high-dimensional vector into
a lower dimensional representation. The performance of the dimensionality reduction can be
measured by the loss of information caused by the reduction. Ideally, the algorithm would try
to preserve the distances between two items in the high-dimensional space also in the lower
dimensional representation. Due to the confinement in lower dimensions, the high-dimensional
distances can only be preserved approximately, because the information content that can be
stored in the lower-dimensional representation is limited.

There are multiple ways to perform a reduction of dimensionality and the used methodology
strongly depends on the data to be reduced and the overall goal of the dimensionality reduction.
The simplest data reduction algorithm (and most prominent one in astronomy) is to discard
data. For example, Collinge et al. (2005) search for BL Lac candidates by mining the SDSS
database for featureless spectra. Because also some stellar sources (DC white dwarfs) enter via
this selection criterion, all sources are plotted in a color-color-diagram (g − r versus r − i) and
a separation is introduced by visual inspection. Effectively, the authors discarded all knowledge
encoded in the other 8 color combinations and might, therefore, lose valuable information and,
even worse, create a significant selection bias.

Another very frequently used reduction algorithm is the principal component analysis (PCA,
Hotelling, 1933) where for a given dataset the main components contributing to the signal are
extracted and presented as basis functions. The main drawback of this method is that it is
a linear model and is not able to describe more complex behavior. Additionally, the PCA
is based on the minimization of χ2 and consequently, focuses mainly on the conservation of
distances between dissimilar points. To preserve local distances, the t-distributed stochastic

13In this work, a ν-SVM will be used. The value ν is just a normalized version of C and therefore, the grid
optimization of it can be performed between 0 and 1.
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Figure 2.8: Classification depending on different choices of k in a nearest neighbors classifier.
The background color encoding highlights the course of the classification boundary, which is
very abrupt (smooth) for low (high) values of k.

neighbor embedding (abbreviated by t-SNE, van der Maaten and Hinton, 2008) can be used.
The principal idea is to preserve the local density of each point by minimizing the Kullback-
Leibler-divergence between the probability density in the high- and low-dimensional space.

Another dimensionality reduction algorithm is the autoencoder (Kramer, 1991) which is also
used in this work. The autoencoder is a special artificial neural network (ANN) where the high-
dimensional structure is represented by a low-dimensional hidden layer (bottleneck). In order
to understand the working principle of the autoencoder, a fundamental understanding of ANN
is required, which is provided in the following.

Artificial neural networks

The simplest form of an artificial neural network (ANN) is the 2-layer network (following nomen-
clature in Bishop, 2006), which consists of an input layer, a hidden layer, and an output layer.
Each layer consists of a set of nodes, the number of nodes in the input and output layer is
fixed by the dimension of the input vector and the desired dimensions of the output vector,
respectively. For the connection between each two nodes a weight and an activation function are
assigned. The activation function is usually represented by a step-like potential which causes
a node to react or not, However, the optimization requires a continuous function which is then
reflected by a non-linear, sigmoidal function, such as the sigmoid (Equation 2.2) or the tangens
hyperbolicus. Thus, the ANN can allow for very complex and non-linear behavior which on one
side is suitable for very complicated underlying models but also bears the risk of over-fitting.

The mathematical structure of the ANN is explained for the example of d-dimensional input
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vectors (e.g., d=3 photometric measurements of 2MASS) and a 1-dimensional real-valued output
vector (e.g., inferred redshift). A sketch of the proposed ANN is shown in Figure 2.9.
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Figure 2.9: Sketch of an artificial neural network with 3 input dimensions, 1 hidden layer with
5 neurons and a 1-dimensional output yt.

Each dimension of an input vector x ∈ Rd is fed to its respective input node i. Subsequently,
the activation value aj for each node of the hidden layer is computed with

aj =
d∑

i=1

ujixi (2.9)

where uji is the weight matrix for the hidden layer. The activation value is then processed
through the hidden activation function h (·) to obtain the hidden unit zj = h (aj). The output
activations are then computed

ak =
m∑

j=1

wkjzj (2.10)

with the output weights wkj , where m is the dimension of the hidden layer (m = 5 in the
presented case). The regression value is then obtained by employing the output activation
function g (·) to the output activations y = yk = g (ak) where y has only one component in the
example. Combining all the steps from before the presented regression problem can be computed
as

y = g




m∑

j=1

wkjh

(
d∑

i=1

ujixi

)
 . (2.11)

The ANN is then trained by optimizing Equation 2.3 with respect to the input uji and
output wkj weights. Already in the presented example, 20 free parameters (weights) have to be
optimized simultaneously. This optimization is very costly and in order to speed up the training,
back-propagation is used which utilizes the difference between computed and expected output to
update the weights. A more detailed description is given in Bishop (2006). As aforementioned,
the ANN is a non-linear model with huge flexibility and thus, instead of optimizing solely
Equation 2.3, a regularization as in Equation 2.4 can be introduced in order to avoid over-fitting.
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Autoencoder

The working principle of the ANN was explained in the preceding section with the help of a
regression problem. The concept of this is easier to understand because the training of the
weights is equivalent to minimizing the objective function 2.4. The autoencoder is a very simple
neural network which can be used for dimensionality reduction. It consists of a combination of
an input, a hidden and an output layer. The dimensionality of the input layer is fixed by the
dimensions of the provided input (say D), the number of neurons in the hidden layer is freely
tunable (H), the number of the output neurons is dictated by the required output dimensionality,
two in this case. To allow the autoencoder to measure the reconstruction error of the original
input, the described structure is mirrored (cf. Figure 2.10). Thereby a bottleneck (blue) is
created. The autoencoder is now trained by optimizing all intermediate weights such that the
reconstruction error between the initial parameter representation θ and the reconstructed one θ̃

‖θ − θ̃‖2 (2.12)

is minimized. The optimization of the autoencoder is quite time consuming as the algorithm
has 2 · ((D ·H)(H · 2)) free parameters. Additionally, again a least-square algorithm is used to
optimize the autoencoder and, thus, more weight is put on preserving large distances instead of
local ones, as for the PCA. On the other hand, the autoencoder allows a direct reconstruction
(decoding) of the initial weights from a pair of given two-dimensional coordinates. This decoding
part will be used in the presented visualization algorithm.
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Figure 2.10: Sketch of an autoencoder (AE), reducing the dimension of the output weights of
the ESN (explained in the following) to two. The plain autoencoder would try to minimize the
difference between θ and θ̃. In the coupled version the reconstruction error on the data itself is
measured instead by feeding the reconstructed weights θ̃ to the same ESN.

Recurrent neural network

As aforementioned, dimensionality reduction algorithms are solely meaningful when they are
employed to vector data. To convert the provided regularly sampled light curves into vectors, a
recurrent neural network is used.

The ANN presented in the former section was a fully-connected one. Different architectures
of neural nets exist which include multiple hidden layers and different degrees of connectivity.
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The focus of this section will, however, be on the recurrent network architecture. The concept
behind a recurrent architecture is that it includes feedback connections in order to have access to
computations of the previous time steps. An illustration of this can be found in Figure 2.11. The
big advantage of the chosen architecture is, that it is able to trace the dynamical behavior of the
observed system. This description is very suitable for approximating time series or sequential
data (e.g., such as text). In the science case presented later on, it turned out that especially
a very sparsely connected version of the recurrent network, the echo state network (ESN), is a
good descriptor for the inspected time series. Another huge advantage of the ESN is that only
the output weights wlk have to be trained and are used for prediction. The input weights uji
and the weights connecting the cyclic nodes vkj are set to fixed values, which in turn define a
reservoir. It is worth noting, that the best values for u, v can be found using a grid search over
them for a representative training sample. Subsequent to this training, they are fixed throughout
the visualization process. A big advantage of the ESN is that it is invariant against time shifts
and returns for time series of variable length a fixed-length representation and is thus tailored
for employing it on astronomical data.

VU W

y(t) y(t+1)

Figure 2.11: Sketch of an echo state network with a hidden layer containing 5 nodes connected
in a directed circle (red).

Model-coupled visualization

The idea of the proposed visualization is now to use the ESN in combination with the autoen-
coder (AE). Instead of minimizing Equation 2.12, which measures the similarity between the
original and reconstructed model parameters, a new objective is formulated. The idea is to
measure the predicition quality of the reconstructed parameters on the raw data and thus the
objective function is changing to

‖y − ỹ‖2 = ‖y − f(θ̃)‖2. (2.13)

This newly defined objective function gives a much more intuitive feeling of similarity, as it does
not measure the numerical similarity between the parameter vectors θA and θB of object A and
B. Instead it measures how well a set of model parameters learned on A can also predict on
B with respect to a given model. This circumvents additionally the problem of parameter re-
normalization which occurs when model parameters are compared, e.g., temperature and scaling
of blackbody radiation are not of the same order of magnitude and would therefore be weighted
differently.

While here only (regularly sampled) time series data are visualized, the concept can be
extended to any (physical) model and visualization algorithm as long as they obey the following
characteristics
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1. Visualization algorithm has to be able to encode & decode

2. Model has to return a fixed-length vector representation of raw data

3. Model has to be able to make predictions on data given a fixed-length vector

While many models fulfill these requirements, the model should obviously be tailored for the
supplied data in order to obtain a meaningful visualization. These models can be physically
motivated (e.g., stellar spectra) or can be of a general kind (e.g., the proposed ESN for time series
data). Additionally, the model should be non-trivial since, for example, a simple blackbody law
can be easily represented with a single dimension (temperature). On the other hand, a complete
stellar spectrum, including emission and absorption lines of different widths, has a considerable
number of free parameters and is therefore tailored to be visualized. The number of visualization
algorithms that allow decoding, that is the projection from the lower dimensional space into
higher dimensional space, is strongly limited. Besides the used autoencoder, only the different
versions of the PCA (like probabilistic, non-linear or extreme PCA) are potential alternatives
for the visualization.

2.5 Contributions to the respective publications

The initial science driver behind the first study was the detection of new SMBHB candidates. I
thought that the existing methodology implied some strong limitations on the SMBHB search.
K. L. Polsterer provided general ideas to resolve this question and I investigated several of them.
My contribution comprised the data acquisition, the adjustment of the data (preprocessing) and
the methodology to the given problem. Subsequently, I implemented the concept in Python
and started the parallelization of the program. The script was executed on a HADOOP-cluster,
kindly provided by the third author M. Hoecker. Finally, I interpreted and discussed the obtained
results in great detail and exclusively wrote the paper. There, I was also in charge of replying
to the referee’s concerns.

The basic idea of coupling a visualization algorithm to a fixed model and thereby recon-
structing the prediction error was developed by the leading author N. Gianniotis. In order to
highlight the importance of the presented algorithm, I helped to acquire datasets and to apply
the new algorithm, by interpreting and discussing the scientific side of the experiment. P. Tiňo
and K. L. Polsterer provided supervision over the work, R. Misra contributed the RTXE data.
Additionally, I assisted with the implementation and improvement of the algorithm by experi-
menting with different visualization methods. The explicit inclusion of astronomical data into
the experiments helps to highlight the special importance of this work to astronomy. For large
astronomical surveys, such as COROT and Kepler, a generalized approach to investigate the
nature of the huge variety of objects is urgently needed and under current investigation. Due
to its importance in computer science, this publication was recommended for publication in
“Neurocomputing”.

My intention for starting the work described in the third publication was to avoid the ar-
bitrariness of feature selection in light curve classification. I thought about generalizing the
concepts of features and thereby developed the principle of static light curves which do not re-
quire features for their description. I acquired and preprocessed the data and implemented and
parallelized the algorithm. N. Gianniotis contributed the theoretical fundament to this work by
introducing me to different measures of density similarity. Again, K. L. Polsterer provided me
with supervision and the respective computer architecture for the experiment. Subsequently, I
acquired the data and discussed the results of the experiments. Finally, I wrote major parts of
the publications and was responsible for handling the referee responses.
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Publications

This thesis is written in cumulative form. According to §7.2 of the PhD regulations in Astron-
omy & Physics (dated 10th of April, 2014) of the University of Heidelberg, three publications
are required to submit a cumulative thesis. In the course of my PhD studies, I was engaged in
the publication of the following articles which are the basis of this thesis and are included as
they have been published in the respective journals. None of these publications was or will be
used in a cumulative thesis of another co-author.

Publication I
Title: ”Determining spectroscopic redshifts by using k nearest neighbor regression. I. Descrip-
tion of method and analysis”
Authors: Sven Dennis Kügler, Kai Lars Polsterer, Maximilian Hoecker
This article has been accepted for publication in Astronomy & Astrophysics (A&A)
Credit: Kügler et al., A&A, volume 576, pages 132-146, 2015, reproduced with permission
c©ESO. All rights reserved.

Publication II
Title: ”Autoencoding Time Series for Visualisation”
Authors: N. Gianniotis, D. Kügler, P. Tino, K. Polsterer, R. Misra
This article has been accepted for publication in ESANN 2014 proceedings, European Sympo-
sium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges
(Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8.
All rights reserved.
The publication is accessible via www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-37.pdf

Publication III
Title: ”Featureless Classification of Light Curves”
Authors: Sven Dennis Kügler, Nikolaos Gianniotis, Kai Lars Polsterer
This article has been accepted for publication in Monthly Notices of the Royal Astronomical
Society (MNRAS) c©: 2015, 451 (4), 3385-3392 Published by Oxford University Press on behalf
of the Royal Astronomical Society. All rights reserved.
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ABSTRACT

Context. In astronomy, new approaches to process and analyze the exponentially increasing amount of data are inevitable. For spectra,
such as in the Sloan Digital Sky Survey spectral database, usually templates of well-known classes are used for classification. In case
the fitting of a template fails, wrong spectral properties (e.g. redshift) are derived. Validation of the derived properties is the key to
understand the caveats of the template-based method.
Aims. In this paper we present a method for statistically computing the redshift z based on a similarity approach. This allows us to
determine redshifts in spectra for emission and absorption features without using any predefined model. Additionally, we show how
to determine the redshift based on single features. As a consequence we are, for example, able to filter objects that show multiple
redshift components.
Methods. The redshift calculation is performed by comparing predefined regions in the spectra and individually applying a nearest
neighbor regression model to each predefined emission and absorption region.
Results. The choice of the model parameters controls the quality and the completeness of the redshifts. For ≈90% of the analyzed
16 000 spectra of our reference and test sample, a certain redshift can be computed that is comparable to the completeness of SDSS
(96%). The redshift calculation yields a precision for every individually tested feature that is comparable to the overall precision
of the redshifts of SDSS. Using the new method to compute redshifts, we could also identify 14 spectra with a significant shift
between emission and absorption or between emission and emission lines. The results already show the immense power of this simple
machine-learning approach for investigating huge databases such as the SDSS.

Key words. methods: data analysis – astronomical databases: miscellaneous – methods: statistical – galaxies: distances and redshifts –
catalogs

1. Introduction

In the past decades, the rapidly increasing amount of available
data has been one of the greatest challenges in astronomy. In
contrast to the amount of data, the number of techniques and
the knowledge of how to analyze these large data sets has only
increased slowly over time. When the first digital, photometric
all-sky surveys were performed, the amount of available data
was already too large to be inspected manually. With the advent
of spectroscopic surveys and additional photometric surveys in
multiple wavelengths, the available data volume increased so
rapidly that novel approaches are mandatory.

So far, the most successful survey in astronomy has been
the Sloan Digital Sky Survey (SDSS, York et al. 2000), which
in its current 10th data release (DR10, Ahn et al. 2014) con-
tains photometry for one billion objects and spectra covering
the near-UV to the near-IR for roughly three million objects.
In the future, surveys such as the Large Sky Area Multi-Object
Fiber Spectroscopic Telescope (LAMOST, Cui et al. 2012) will
reach this amount of data in a fraction of the time needed by
SDSS. Thus more advanced techniques for handling those im-
mense data streams have to be developed.

The determination of spectral redshifts and classifications of
the SDSS spectra is based on template fitting. Therefore gener-
alized templates are created by combining spectra of similar ob-
jects for all empirically determined classes of objects. By fitting
those templates to the spectra, a number of predefined properties,
such as redshift, can be individually computed for every object.
The best fitting template is determined by applying all available
templates to the data while allowing for some variation in a set
of parameters (e.g. width of features) and testing the reliability
of every model by computing a reduced χ2. Instead of using the
full information available, just a simplified model with a lim-
ited flexibility is applied, which does not allow a more detailed
discussion of individual properties. Furthermore, the choice of
the reference spectra and the creation of these templates have a
strong impact on the determined properties.

With this publication we want to emphasize the power of sta-
tistical learning in huge spectral databases. From here on, “huge”
refers to a large number of entities and dimensions. While this
approach can in principle be applied to any database, we fo-
cus on SDSS. There are many applications of machine-learning
techniques in astronomy (see Borne 2009; Ball & Brunner
2010). So far, spectroscopically derived properties have mainly
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been used as ground truth to estimate redshifts on photometric
data, for example in Laurino et al. (2011), Gieseke et al. (2011),
Polsterer et al. (2013). In contrast less attention has been paid
to the application of machine learning to the spectral data itself
(see Richards et al. 2009; Meusinger et al. 2012), which can be
mainly attributed to the “curse of dimensionality” (see Bellman
& Bellman 1961). The ultimate goal would be to obtain spectral
properties that are not based on the created templates but rather
on the rich experience existing in the database instead.

The algorithm presented in this paper will perform a con-
sistency check of the redshift calculated by the SDSS pipeline.
We therefore assume that the majority of the spectra is fairly
well described by one of the templates, so the redshift is deter-
mined to be reasonably precise. Of course the templates do not
describe all kinds of objects perfectly, thus at least some will
be misfit. The great improvement in calculating redshifts based
on a data-driven approach is that the redshifts can be determined
model-independent. This method is suitable for determining red-
shifts of unknown spectra and in a forth-coming paper we will
present a value-added catalog of redshifts to the existing SDSS
spectra. In this paper we focus on the technical side and explain
the impact of the choice of different model parameters. To high-
light the power of this new method, some outliers in terms of
redshift in the used subsample are presented. The motivation for
employing new methods for redshift computation is manifold:

1. Validation: cross-validating the self-consistency of the com-
puted redshifts is crucial for understanding caveats of the
SDSS pipeline. The independent determination of a redshift
increases the confidence and the number of reliable redshifts.

2. Calculating redshifts: we are able to determine model-
independent redshifts of existing and future spectra with high
precision. This is possible since we are determining the red-
shift as an ensemble property and thus the theoretical resolu-
tion can be improved statistically with the number of similar
spectra in the reference database, as well as with the dimen-
sion of the feature vector.

3. Rare objects: many different attempts have been performed
to find rare objects showing shifts between spectral fea-
tures in the SDSS spectral database (see Bolton et al. 2004;
Tsalmantza et al. 2011). With the presented method we will
be able to detect more of those since our method can deal
with lower signal-to-noise ratio (S/N) than with template fits.

4. Unexpected behavior: this can be caused by objects of a pre-
viously unknown class or by a superposition of two classes.
Those objects might possibly be the science drivers in the
near future. Also, artifacts in the reduction pipeline/in the
data can be discovered.

The paper is structured as follows. Section 2 describes the data
used for creating and testing our model. In Sect. 3 we explain the
basic approach used in our method in more detail. In Sect. 4 we
discuss the performance of our method in terms of precision and
reliability. Also some outliers and peculiar objects are discussed
in more detail. A summary and an outlook follow in Sect. 5.
In a follow-up paper, we describe the value-added catalog that
gives redshifts for all available objects based on specific spectral
regions. Additionally, a catalog containing all detected outliers
will be presented there.

2. The SDSS spectroscopic database
For testing our method, we are analyzing the spectroscopic
database of SDSS. This survey uses a dedicated 2.5 m
mirror telescope located at the Apache Point Observatory

(New Mexico, USA) to map the northern galactic cap and is a
joint project by USA, Japan, Korea, and Germany.

The telescope was first used to image different stripes of
the northern hemisphere in five filter bands using the drift
scan method. Subsequently, interesting objects were selected
by brightness limits and different color cuts for spectroscopy
(R = λ/∆λ ≈ 2000) with 3600 Å ≤ λ ≤ 10 000 Å (Eisenstein
et al. 2001; Richards et al. 2002; Strauss et al. 2002). Those se-
lection criteria have a direct impact on the quality of reference
sample. In the current DR10 (Ahn et al. 2014) more than three
million spectra were taken of which far more than two million
are nonstellar sources according to the SDSS-classification.

It is important to mention that depending on the applied
learning technique, a large number of reference objects with a
representative sampling is mandatory. With millions of objects,
the SDSS is more than sufficiently large1.

2.1. Data calibration/SDSS pipeline

As mentioned in the caveats of SDSS, the night sky subtraction
can suffer from severe inaccuracy by rapidly changing condi-
tions, e.g., auroral activity. Thus the night sky subtraction leaves
a severe signature in some of the spectra, which is sometimes not
taken into account correctly in the error estimation. As a conse-
quence, faint features in the vicinity of strong night sky emission
lines might be artifacts. The spectra are automatically labeled,
both flux- and wavelength-calibrated, and eventually combined
with potentially pre-existing observed spectra of the same object.

In a second step, the calibrated spectra were processed via
an identification pipeline that assigned a redshift, a classifica-
tion, and a velocity dispersion to the individual spectra (Bolton
et al. 2012). The classification and redshift determination was
performed with a principal component analysis (PCA) of a rest-
frame shifted training sample. A linear combination of eigen-
spectra were then shifted with respect to flux and wavelength
until a minimal residual was reached. The precision of the red-
shift for a single line is limited by the resolution per pixel
(∼100 km s−1) of the spectrograph but can be improved by com-
puting it independently for all lines that are available. This
method is extremely efficient for spectra that show the expected
behavior and as confirmed by performing a self-consistency
check later on, and the quality of the SDSS redshifts has high
reliability.

2.2. Reference and test sample

The analysis of the method was performed on a small subsam-
ple of the SDSS data in order to make the different model and
parameter evaluations computationally feasible. The analysis of
the algorithm is limited to the plates 0266 to 0289, including the
exposures of all modified Julian dates (MJDs). Additionally, the
sample was restricted to the redshift range between 0.01 ≤ z ≤
0.5. The selected restriction allows a more reliable prediction of
the regression value because the density of reference targets in
the direct neighborhood is sufficiently high. The chosen subsam-
ple includes 16 049 spectra in total. The redshift distribution of
the spectra can be found in Fig. 1. In the following, this sample

1 This statement is not only valid for the in-sample method presented
here but also for the application on other datasets, as long as the wave-
length coverage and the target selection criteria are comparable. This
is because the data complexity of the reference sample, SDSS in this
case, remains the same and thus a comparable number of references is
needed for similiar precision.

A132, page 2 of 14



S. D. Kügler et al.: Determining spectroscopic redshifts by using k nearest neighbor regression. I.

0.1 0.2 0.3 0.4
zSDSS

No
rm

al
iz

ed
 F

re
qu

en
cy

Entire SDSS
Subsample

Fig. 1. Comparison of the redshift distribution of the selected subsam-
ple (green) and the entire SDSS (blue). There is a steep drop in the
frequency toward redshifts z > 0.25. Single redshift bins are apparently
undersampled.

is used as reference and test set at the same time; that is, we
will perform a leave-one-out cross validation. That means that
all but the target spectrum are reference spectra. Since we are
only able to compute redshifts within the covered feature space,
under-represented objects (high-redshifted galaxies, QSO) will
yield worse redshifts than normally represented redshifts.

3. Applied method

The basic idea for determining the spectroscopic redshift z is to
perform a comparison between similar objects. This is done by
finding objects that look similar in terms of Euclidean distance
and then computing the regression value of the unknown target
by comparing it to the redshifts of the most similar spectra.

To be able to compare the spectra, instead of using the plain
SDSS spectra we have to pre-process them. The method is a
purely data-driven approach without deriving a generalization,
and thus the quality of the redshifts relies directly on the chosen
reference sample. While this seems contradictory on first sight,
the method performs comparably on a smaller but representative
reference set. It is obvious that the choice of a representative ref-
erence sample can only be obtained when domain-knowledge is
included. Limiting the reference sample in redshift space would
limit the derived values, respectively.

3.1. k nearest neighbor regression

Our method is based on k nearest neighbor (kNN) regression,
which is a commonly used technique in statistical learning
(Hastie et al. 2009). All spectra have d datapoints (correspond-
ing to the individual flux measurements in the spectra) and are
thus members of a d-dimensional feature space. The reference
sample R consists of m entities and corresponds to the number
of reference spectra from which the model learns, 16 048 in this
case. Mathematically this sample can be described with

R = ((x1, y1) , . . . , (xm, ym)) ∈ Rd × R (1)

where xi is the ith d-dimensional input vector (spectrum un-
der consideration) corresponding to the flux value in each pixel,
and yi is the redshift value z assigned by the SDSS pipeline.

The kNN regression is based on calculating similarities in the
d-dimensional feature space. For any d-dimensional feature vec-
tor s, the similarity to a reference object xi can be estimated with
distance measure ∆ (xi, s). The most commonly used metrics are

∆ (xi, s) =


d∑

j=1

|xi j − s j|p


1/p

:=



Manhattan for p = 1
Euclidean for p = 2
Minkowski otherwise.

The impact of the choice of the metric on the final results was
only marginal. Therefore we only use the common Euclidean
distance. In general, the neighborhood Nk(s) is determined on
the basis of the representation of the reference objects xi in the
feature space, such that

y(s) =
1
k

∑

xiεNk(s)

yi = mean
xiεNk(s)

(yi) (2)

however, here we make use of a modified version:

y(s) = median
xiεNk(s)

(yi) . (3)

Different algorithms exist for finding the k most similar spectra
Nk(s). The most straight-forward one is the brute-force method
where each spectrum is simply compared to each of the others
and the distance is computed. In contrast, spatial structures exist
(kd-, ball-trees) that are able to structure the data in advance. The
average time to find the closest spectra is thus significantly lower
once the search structure is created. When experimenting with
spatial trees, we learned that the dimension of our data is appar-
ently so high and the data themselves are so unstructured that
spatial trees do not perform significantly better than the brute-
force method, and as a consequence only the brute force method
is used throughout the paper and for the future catalog.

The considered kNN regression is limited to interpolating
values within the reference sample. As a consequence, redshifts
of objects with extremely high redshift or very peculiar spectral
features cannot be determined correctly.

3.2. Requirements

The method of kNN regression can only work efficiently if the
following requirements are met:

1. The majority of the redshift determinations by SDSS is
correct.

In the following the deviation of the SDSS redshifts in
comparison to the correct redshift is assumed to be small.
This is verified by comparing our results to the redshifts
determined by SDSS. One has to keep in mind that for a
large fraction of the data, the template fitting works quite
well, and the redshifts are fairly reliable.

2. The number of objects in the reference data set is large
compared to the dimensionality.

This is already met in our test subsample. Nonetheless
this is quite surprising because the number of entities is
approximately the number of dimensions (4000). It appears
that the multidimensional feature space is sufficiently
homogeneously populated with reference objects. Applying
this method to the entire database will just strengthen that
assumption further.

3. It is possible to distinguish noise from real signals for most
of the data.

This requirement is harder to meet because the distinc-
tion between signals and noise, especially for low S/N
spectral lines, has always been a huge challenge for as-
tronomers. In this work, we use an approach that is based on
a simple similarity measure used by the type of the applied
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regression method. The basic assumption is that when a
detectable line exists anywhere in the spectrum, it should be
possible to find similar spectra that, within their errors, have
a similar redshift. Those form a sharp distribution around
the real value. On the other hand, a spectrum that contains
pure noise will yield an even distribution of redshift values
over the entire tested redshift range, and thus the average
deviation from the median or mean will be quite high. In
the distribution of so-called errors, which correspond to the
deviation of reference redshifts across similar spectra, one
would naively expect a superposition of two behaviors. The
dominant component is a distribution that shows a drop
toward higher deviations with a width that is comparable to
the sensitivity of the method. This distribution corresponds
to redshifts based on true absorption or emission lines.
Underlying the first component there is a flatter distribution
that represents the spectra that contain mostly noise. This is
discussed further in Sect. 4.

3.3. Preprocessing

The preprocessing is needed to make the spectra comparable.
Effects like apparent brightness are not important, since we
are interested solely in absorption and emission features, there-
fore the behavior of the continuum has to be estimated and
subtracted.

3.3.1. Regridding

The dispersion resolution between different fibers on a single
plate and between the plates themselves differ slightly. To always
be able to compare the correct wavelength bins, which do not
exactly agree with redshift bins, the spectra have to be regridded.
We therefore create a global grid that is defined by

log (λ (p)) = 0.0001 · p + 3.5222 (4)

where λ is the wavelength in Å for a given pixel position p, with
0 ≤ p < 5100. The parameters of the function are chosen such
that the dispersion solution corresponds to the average of our
selected subsample. The regridding is performed such that the
total flux is conserved.

3.3.2. Continuum estimation

The determination of the continuum is a very tricky problem that
is known to cause difficulties when performing it automatically.
For this reason we do not use the traditional continuum estimates
(e.g., spline fitting, local weighting of polynomials2) and use a
new hybrid method consisting of the following three approaches:

1. fit multiple Gauss model to the data,
2. weight penalty function with variance,
3. iterate three times, perform κ-clipping.

To save computation time we follow the approach by Gieseke
(2011) and use a multiple Gauss decomposition via gradient
based optimization. This minimizes the risk of over- or under-
estimating the continuum flux, as well as over-fitting, which can
be encountered when applying spline fits. To fit the continuum,
a number of n normalized Gaussians with the same width w [px]

2 E.g., onedspec-package in the Image Reduction and Analysis Facility
(IRAF) software package or norm.pro from the Interactive Data
Language (IDL) software.
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Fig. 2. Top: spectrum with uncertainty. Upper center: decomposed con-
tinuum representation by Gaussians. Lower center: spectrum with con-
tinuum fit and masked regions (ignored when fitting the continuum).
Bottom: the extracted feature vectors are solely all pixel values with a
value above (below) zero for emission (absorption), and all other values
are set to zero.

are placed on the dispersion axis with the first Gaussian being
placed with an offset ω [px] and all following with a spacing
of d [px]. The intensity of every individual Gaussian is a free
parameter to be fitted. In comparison to polynomial and spline
fitting, the decomposition is less sensitive to individual spectral
features and the computational effort is significantly lower. An
illustration of the decomposition is shown in Fig. 2. The root-
mean-square is computed based on the initial fit that is weighted
with respect to the uncertainty ivar (see 3.3.3). Afterwards, pixel
values where the difference between fit and model exceeds κ·rms
are masked out for all future iterations of the continuum esti-
mation. This is helpful for excluding large-scale deviations and
accounting for detector or night-sky artifacts.

Adjacently the spectrum is now normalized with respect to
the estimated continuum C by a simple min-max-normalization:

Fluxnorm =
Fluxraw −min (C)
max (C) −min (C)

(5)

such that the continuum of the normalized flux is located be-
tween 0 and 1 and the features are normalized with respect to
continuum. Since only the features are of interest for the next
task the continuum is subtracted such that a flat spectrum is ob-
tained. While we were testing different pre-processing param-
eters, it turned out that the quality of the overall redshift only
marginally depends on the parameters used for estimating the
continuum. An overview of the parameters and their impact on
computation time and the quality is given in Table 1. In contrast
to the literature, we treat the Ca-break also as a feature, and thus
if the continuum behaves smoothly around the break, it can be
seen as two close-by absorption lines afterwards.

3.3.3. Uncertainties

The SDSS spectra are affected by several uncertainties stemming
from the night sky, by detector deficiency, and by read-out noise
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Table 1. Parameters used in preprocessing with tested value range and
impact on the outcoming distribution as well as on the time effort for
the preprocessing.

Parameter Range Impact
description [used value] [result / time]

n Number of Gaussians 8−20 low / linear[12]

d Spacing between 300−700 low / nonecenters [450]

ω
Initial center offset 100−400 none / noneof first Gaussian [200]

w Gaussian width 100−1000 low / none[300]

i Number of iterations 1−3 none / linearfor sigma clipping [3]

κ
Noise deviation for 0.1−3 low / nonefeature refitting [0.3]

which are quantified pixel-wise by the inverse variance ivar,
which corresponds to the noise uncertainty σ given by

σ =
1√
ivar
· (6)

After normalizing ivar with respect to the continuum as de-
scribed above, the extracted signal-to-continuum spectra are di-
vided by 3σ in order to normalize the noise to values between −1
and 1. Those are called normalized S/N spectra (NSN-spectra
hereafter). As a consequence, the contrast between real signals
and noise is increased further and artifacts stemming from a bad
sky subtraction or bad pixel are heavily suppressed.

3.4. Feature extraction

To extract the feature vectors, we split the spectra into positive
and negative flux components with respect to the fitted contin-
uum (see bottom plot in Fig. 2). We thereby create two feature
vectors per spectrum. This simplification allows keeping the en-
tire redshift-dependent information while no longer being de-
pendent on the continuum shape. The separation enables us to
compute individual redshifts for absorption and emission. By
extracting subregions of this feature vector, we can even obtain
redshift information on single spectral regions. All values above
the continuum (>0) are included in the feature vector for emis-
sion, and all values below the continuum are simply set to zero.
For absorption values larger than zero are set to zero. Those ex-
tracted vectors are the input for our kNN-search described in
Eq. (3).

4. Experiments

We conducted two experiments with different selections of fea-
tures and different reference samples. In the following they are
named Experiment 1 and 2.

4.1. Description of experiments

Both runs have been done on the full set of NSN spectra. For the
first experiment, we applied the algorithm to the entire spectra
and only distinguish between absorption and emission. In the
second experiment we limited the dimensionality of the feature
vector by just comparing specific spectral regions where features
are expected for the redshift given by SDSS.

Table 2. Regions considered.

Spectral type λlow [Å] λhigh [Å] Name

Emission

2799 2799 MgII
3346 3426 NeV
3727 3729 [OII]
3798 3835 Hε Hζ

4102 4102 Hδ

4341 4363 Hγ

4861 5007 Hβ [OIII]
6550 6584 Hα [NII]
6716 6731 [SII]

Absorption
3934 3969 H+K
5173 5173 Mgb
5890 5896 NaD

Naively, one would expect high precision in the former
method because the full information content is available and
thus the confusion between features of different origin (e.g.,
misidentifying Hβ as Hα) should be fairly low. Other emis-
sion/absorption signatures are available to cross-validate the red-
shift and hence minimize the probability of confusion. On the
other hand the obtained final regression value is only valid for
the entire spectrum and thus generalizes the information content
too heavily.

For this reason a second experiment was conducted with a
comparison restricted to single regions where prominent emis-
sion/absorption signatures are expected. It is worth noting that
this experiment is tailored to detect shifts in individual spectral
lines. Additionally, the methodology can be easily extended to
allow a clustering or classification of the individual lines. We as-
sume that the redshift of SDSS is correct for the entire spectrum,
but we search for redshift deviations in individual components.
Since confusion will have a significant impact on the determi-
nation of the redshift, we restrict the redshift deviation of the
reference sample to a spectral window W defined by

W = λ1 − λ0 =
(
1 + zhigh

)
· λhigh − (1 + zlow) · λlow (7)

with

zlow = ztarget − f ·
(
1 + ztarget

)

zhigh = ztarget + f ·
(
1 + ztarget

)
(8)

where f is the allowed deviation from the SDSS redshift (ztarget)
in units of the speed of light. A list of the spectral regions that
have been considered can be found in Table 2. This list contains
lines that are usually strong in star-forming and star-bursting
galaxies and QSOs. The free parameter f influences the compu-
tational efforts, the chance of confusion (improving for small f )
and the sensitivity to outliers where huge redshift deviations
were achieved with large f , respectively. Throughout this pa-
per, we use a value of f = 0.05. The big disadvantage of the
second experiment is that confusion becomes a major concern.
Especially for the entire data set, it might be wise not to compare
spectra to spectra of any redshift since it is likely that, for exam-
ple, the Hβ (λ4861) line can look similar to the [OIII] (λ5007)
line, see Fig. 3, which obviously would lead to an incorrect re-
gression value. The benefit of this concept is its huge flexibility.
Redshifts can now be computed for individual regions indepen-
dently, so that shifts can be detected. A more detailed discussion
of the trade-off of confusion and multiregion regression value
determination is given in Sect. 5.
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Fig. 3. Cut-out of the same spectral region for three spectra with differ-
ent redshifts. If only this part is available, the Hβ line is indistinguish-
able from any of the two [OIII] lines.

4.2. Maximum deviation limit

One of the prerequisites in using the kNN approach was that a
clear separation between noise and signal can be made. In prin-
ciple there are two ways to reject spectra with no signal, the pre-
and the post-selection. To preselect one assumes that a signal
has a certain shape and exceeds a given S/N limit. This can be
simplified further to a measure that compares the average of a
spectral region with a nominal value. Because this preselection
requires detailed knowledge about the shape, size and symmetry
of spectral features, physical knowledge about the morphology
of lines is required. To be independent of physical assumptions3,
the possibility of a post-selection is chosen. The selected con-
cept assumes that the deviation of the redshifts of the nearest
neighbors over all targets follows a smooth distribution. For this
distribution an upper limit can be (freely) selected that separates
redshift estimates into good and noisy ones. This maximum de-
viation limit will be abbreviated by MDL.

An even bigger advantage of this method is that it allows
experimenting with this free parameter in the evaluation stage,
such that the kNN search is not performed for every individual
value of MDL.

4.3. Validation strategy

To avoid biases in the regression values and when tuning the
parameters, the leave-one-out strategy is used. This means that
the closest object (which is always the object itself) is not used
for determining the redshift.

The fundamental assumption that most SDSS redshifts are
correct has already been discussed in Sect. 3.2. Assuming now
that all redshifts are correct, we can compute something like a
completeness, a correctness, and a sensitivity. The completeness
is a very straightforward measure. It is the fraction of objects
for which a redshift could be determined within the respective
acceptance limit. In contrast to that the correctness is the fraction
of objects where the computed and the SDSS redshift agree
within their errors. Finally, the sensitivity gives the reliability of
all redshifts; i.e., it gives the typical deviation from the redshift,

3 Obviously the reference values by SDSS are obtained via physical
modeling.
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Fig. 4. Normalized completeness, sensitivity, and correctness tested
against different values of k and MDL. MDL is chosen to be 0.0015
as marked.

therefore the standard deviation of the difference between SDSS
and computed redshift of all valid spectral features is computed.

4.4. Parameter tuning

Despite the parameters described in the preprocessing step only
two parameters have to be fine-tuned for the regression step4.
Those are the number of k nearest neighbors used for the com-
parison and the MDL that marks a spectrum as reliable. With the
test strategy described in the previous section, this fine-tuning
can be solved on a discrete grid (see Fig. 4). Two separate things
are shown in this plot, the large scale behavior of the properties
on the righthand side and on the left a zoom-in to the lowest
values of the MDL.

With increasing MDL, which is equal to accepting more
noisy spectral features, the properties behave just as expected;
while the completeness is increasing, the sensitivity and cor-
rectness of the model are decreasing. One can further see that
the completeness is a fairly flat function up to an MDL of 0.08
where it starts a more rapid, step-wise increase. The regression
model breaks already down at a MDL of 0.05 where the sensi-
tivity and correctness show a steep decrease. Since the increase
of the completeness is only very tiny for high values of MDL,
we now focus on the region of very tiny values of MDL.

On the small scale, the completeness strongly depends on
the choice of the MDL and slight increases in the MDL yield
a strong increase in completeness. Then the behavior becomes
very flat, so the gain by further increasing the MDL is only
marginal. When increasing the MDL 5 times, the completeness
fraction increases by less than 2%. It is worth noting that the
completeness depends quite heavily on k. Smaller k values result

4 This is only partially true because different ways of computing the
redshift and calculating the deviation exist. Besides the parameter tun-
ing, one has to choose a similarity measure and to preprocess and select
the features, accordingly.
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Fig. 5. Dependence of test properties on k. For this plot, MDL is fixed
to 0.0015. k is chosen to be 40 as marked.

in a more complete regression model. This indicates that the
number of good references is in the range of 10−20. For higher
values of k more deviation is introduced in the regression model.

The sensitivity of the regression model only decreases in the
beginning and then follows a fairly flat behavior with a slightly
decreasing tendency. The dependence on the number of used
neighbors is only marginal, though one can see that emission
favors low k (little number of reference objects), while the sen-
sitivity of the redshift in absorption is slightly better for higher
values of k. In the end the fraction of outliers on the good regres-
sion side only slightly changes with increasing MDL and k. The
decrease over the entire tested range is on the order of 0.5%.

The flat increase in completeness for MDL values greater
than 0.001 allows us to minimize the effects on the sensitivity
and correctness. We analyzed the impact of the choice of k on
the different testing properties as well. The behavior of those
with a fixed value of MDL of ≈0.0015 can be seen in Fig. 5. An
increasing number of nearest neighbors improves the sensitivity
at the cost of a lower completeness. Thus as for the MDL, the
choice of k depends strongly on the desired completeness and
precision.

4.5. Computational efforts

Applying the method described above to the test set is already
quite time-consuming on a single machine. It is evident that
the computational effort for three million spectra is many times
greater than with 16 000; i.e., the time complexity of a brute
force kNN search scales with O(n2), thus the calculation time
would already be years on a single machine. For future surveys,
this number will increase even faster such that more efficient ap-
proaches have to be found to resolve that problem. To speed up
the calculation we parallelized the computation of the distances.
The results presented here should only give an overview of what
is possible with even the simplest methods when such a huge
data amount is available.

It is worth noting that an online nearest neighbor search of
incoming data (streaming) with a spectral database of the size
of SDSS (≈3 000 000 spectra) is computationally feasible on a
modern laptop. Assuming that a new instrument (e.g., 4MOST,
de Jong et al. 2012) will obtain 2400 spectra simultaneously,
the approximate comparison time is on the order of 40 h/core
using a standard Python implementation. Using a machine with
a simple GPU and a C-implementation will yield a speed-up of at
least 100 compared to the single-CPU machine and can evaluate
such a huge amount of data (<30 min) in less than the typical
exposure time. Fortunately, the computation of the distances can
be perfectly parallelized, so this method is well suited for larger
surveys on modern computer architecture.

As already stated, the computational effort also depends
strongly on the number of reference objects used for compari-
son, and that needs to be tuned carefully in order to minimize
computing time. On the other hand, the impact of selection ef-
fects is minimized by increasing the number of reference objects
that have to be chosen in the most unbiased manner.

5. Results

In the following, we use the median absolut deviation (MAD) as
a deviation measure, which is defined as

MADv = median (|v −median (v)|)
for a list of values v. In the following we always use the normal-
ized difference in redshift, which is defined as

∆Znorm =
zkNN − zSDSS

1 + zSDSS

which corresponds to the difference in velcocity in terms of c
in the rest frame of the SDSS redshift. In Fig. 4 one can see
the behavior of the completeness, sensitivity, and correctness as
a function of the MDL as well as for different k. The curves
follow the expected behavior; decreasing MDL will yield a low
completeness but high-quality redshifts as a result. In the middle
is a plateau until the MDL exceeds ≈0.10. Beyond this value the
completeness starts to converge to one and the quality of the red-
shifts to 0, while for the value added catalog a high completeness
is desirable with a moderate loss of sensitivity, so MDL = 0.07
and k = 10 are chosen. This increases the fraction of objects
with a reliable redshift either in emission or in absorption up to
a total of 80%. With this choice of parameters we still have bet-
ter sensitivity than does SDSS with a significantly lower value
in completeness (in SDSS ≈96% of the targets have NO red-
shift warning). As stated earlier, the choice of the reference sam-
ple, especially at high redshifts, will increase this fraction of
our method significantly. For example, when we exclude spectra
with z > 0.25 the completeness increases to ≈90%.

In the following we concentrate on detecting and verifying
outliers using MDL = 0.015 and k = 40. With that choice we
have traded high sensitivity for a lower completeness of ≥50%.
This enables us to efficiently detect outliers that show wrong or
multiple redshift components. In the following, the outlier de-
tection for both experiments is discussed in detail.

5.1. Experiment 1

When using the entire spectral range for computing the red-
shift, we can obtain redshifts for 56% (emission) and 49% (ab-
sorption) of the spectra. Figure 6 presents the evaluation of the
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(a) Emission

(b) Absorption

Fig. 6. Evaluation of the performance for emission a) and absorption b): the relative deviation from the SDSS redshift as function of the SDSS
redshift (top), the distribution of the MAD of the calculated redshift (middle) and the frequency of the relative deviation (bottom) are shown for
the good (left) and the rejected noisy (right) spectral features, respectively. The blue background shade in the upper right figure reflects the objects
which are entirely dominated by noise and thus their computed redshift just reflects a random draw of redshifts from the initial distribution, see
Eq. (9).
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achieved performance. In the second row of each figure, one can
see the frequency of deviations for emission and absorption5. As
expected, there is an exponential drop-off and an underlying uni-
form contribution. The top figure shows the relative deviation (in
units of the speed of light) between the redshift by SDSS and the
computed ones. For nearly all of the objects with prominent fea-
tures, this deviation is below 0.1% c, which corresponds roughly
to the SDSS resolution.

In emission one can see three groups of outliers: three points
between a redshift of 0.2 ≤ z ≤ 0.3 (G1, magenta background), a
straight line in the lower right of the plot (G2, cyan background),
and three points that deviate significantly from the expected red-
shift below a redshift of z ≤ 0.1 (G3, blue dots). The cause of
each of the outliers groups is different but nonetheless under-
stood. The members of G1 are affected by the lack of reference
objects in a comparable redshift range (z > 0.2), which agrees
perfectly with the distribution shown in Fig. 1. Thus the near-
est neighbors will all have a lower redshift, moving all of those
points to this region in the plot. It is worth noting that one would
naively expect all of those points to lie on a horizontal line, and
the deviation from the reference set should be the same for all
objects. In fact, it turned out that the lowest point in this group
is a truly shifted object. G2 is actually a superposition of the
problem just described and what was defined earlier as confu-
sion. This confusion occurs since the relative shift in redshift
of ∆Znorm ≈ −0.25 corresponds roughly to the shifts between
Hα−Hβ (∆Znorm = 0.26), Hα−[OIII] (∆Znorm = 0.24), [NII]−Hβ

(∆Znorm = 0.26), and [NII] − [OIII] (∆Znorm = 0.24). In this case
the spectra usually show strong emission in either Hβ or [OIII],
which are then (due to missing references) misidentified as [NII]
or Hα. Finally spectra with real shifts are likely to be observed
close to the horizontal green line. They are discussed further in
Sect. 5.3. The behavior of the noisy features can be explained by
another superposition of two effects. The first group of objects is
the one where the relative deviation is fairly low over the entire
redshift range. Those objects are the result of the choice of the
MDL – their redshift is still very accurate but they were moved
to the uncertain features. A large number of spectra can be de-
scribed very nicely with the applied model. This indicates that
the MDL was selected quite conservatively. The rest of the data
points in this plot do not show any signal of an emission feature,
so they are just a random selection of redshifts from the initial
distribution shown in Fig. 1. The distribution of redshifts is ap-
proximated fairly well by a Gaussian (mean = 0.14 and standard
deviation = 0.10). The functional form (cf. blue background plot
in upper row) is

((0.14 ± 0.1) − zSDSS) / (1 + zSDSS) . (9)

In absorption two outliers could be detected that show some
anomalies that are described well by the computed redshift. Even
redshifts with high MAD are still fairly reliable, supporting the
restrictive limit on the MDL. The precision in absorption is close
in value to the emission, one per mil in units of the speed of light.
Obviously the chance of confusion is dramatically lower than for
the emission, which is the consequence of having fewer potential
features. In a regular galaxy only three strong absorption features
can typically be observed.

5 Note that the bin width is changing by a factor of 25 from the left to
the right side. For this reason the frequency between the two plots is not
directly comparable

5.2. Experiment 2

In contrast to the first experiment the number of potential nearest
neighbors of a specific spectral region now depends strongly on
the choice of the redshift bin and additionally on the likelihood
of the respective feature appearing in a galaxy spectra. It then be-
comes inevitable to discuss the chosen regions individually. To
still have a good comparison of the redshifts between the differ-
ent regions, the MDL is set to 0.0015. For the sake of complete-
ness, all the figures comparing the noisy and the good features
are presented in the Appendix A. Without restricting the results
any further, the number of potential outliers increases drastically
owing to the problem of additional confusion with different spec-
tral features as well as to the limited number of used reference
objects. Thus in order to remain clear and minimize the effect of
methodological artifacts, the deviation/outlier constraint is not
just tested for k = 40 but for a full list of nearest neighbors,
namely k = [5, 10, 20, 30]. If the MAD violates the MDL or if
the computed redshift agrees in its tolerance with the SDSS red-
shift for any k, the object is not marked as an outlier. Likewise,
objects that have redshifts z < 0.05 or z > 0.3 are automatically
excluded from the outlier detection algorithm because here the
limited number of comparison objects introduces spurious red-
shifts. Since the different regions are biased by different effects,
they are discussed in more detail.

In the following we discuss the individual spectral emission
and absorption features, along with groups and individual outly-
ing spectra. Exemplarily extensive plots for two spectral features
are shown in Figs. A.1 and A.2 for Hβ and NaD, respectively.

5.2.1. Emission

MgII, NeV (λ2, 799, λ3, 346-3,426). For those spectral regions
a redshift of z = 0.45/0.18 is required to allow for a redshift de-
termination. Since the number density of objects is fairly sparse
for such high redshifts, and the NeV feature does not occur in
many of those spectra, none of the redshifts can be trusted.

[OII] (λ3, 727-3, 729). This feature does not occur in all star-
forming or active galaxies so that fewer than half of the redshifts
could be trusted. Even in this small fraction of objects, two out-
liers were detected that both show an actually shifted [OII]-line
that is correctly described by the value determined by us.

Hε , Hζ (λ3, 798-3, 835). One of the objects found to have a
shift in the [OII]-feature could be rediscovered. Both the other
additional spectral features are real.

Hδ (λ4,102). This spectral feature only appears in emission for
star-forming, bursting and active galaxies. The number of refer-
ence objects exhibiting a clear sign of emission is fairly rare. In
the corresponding plot one can see that two straight regions are
apparent at ∆Znorm = 0.04/−0.04, which are caused by confu-
sion. The remaining object shows some very strong noise in the
vicinity of the expected spectral feature.

Hγ,[OIII] (λ4, 342 − 4, 363). The only two remaining spectra
have ∆Znorm = −0.032. When investigating the origin of this
shift, it appears that the shift is dominated by noise because
the number of active and starburst objects (objects that possibly
emit strong Balmer lines) in the specific redshift bins is very low
(<5). When selecting the redshift those few objects are therefore
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strongly dominated by noise. Consequently, this feature is not
very reliable as long as no representative reference sample can
be selected.

Hβ, [OIII] (λ4, 861-5, 007). In this spectral region the impact of
confusion becomes dominant. Fourteen objects show a reason-
ably low deviation to be marked as good estimates. The horizon-
tal line at ∆Znorm = 0.03 is caused by a misidentification of the
red [OIII] line with the Hβ-feature. The line at ∆Znorm = 0.01 is
due to the confusion between the red and the blue [OIII] lines.
The negative confusion at ∆Znorm = −0.03 is the reverse effect of
the first one. Another horizontal component at ∆Znorm = −0.055
is caused by a misidentification between the blue [OIII] line and
HeII emission at λ4,685.

Apart from all this confusion there is one regular shift that
cannot be confirmed owing to the lack of other emission features.
The MAD for this object (0.0014) is close to the MDL so a lower
choice of the MDL would tag this object as unreliable.

Hα, [NII] (λ6, 550-6, 584). The outlier on the very top of the
plot was already marked by the first run and is a truly shifted
spectral feature. One of the shifts of the remaining two outliers
is the result of an Hα-line in absorption and emission such that
the red [NII]-line was mistaken for it. In the other a very weak
[NII] emission line led to confusion with the Hα line.

[SII] (λ6, 716-6, 731). The only object marked in the plot was
also detected in the Hα-line as an outlier. It was already marked
as an outlier in Experiment 1.

5.2.2. Absorption

CaII (HK) (λ3, 934-3, 969). All three targets highlighted as out-
lier are truly shifted spectral features, where one of them is the
object already detected in emission (cf. Experiment 1).

Mgb (λ5, 173). Six of the objects are located on a horizontal
line around ∆Znorm = −0.06. This corresponds to a misidentifica-
tion of the Mgb absorption with the Hβ in absorption. Indeed, all
highlighted objects show a very prominent Hβ feature in absorp-
tion. Two of the remaining objects have a very strong absorption
feature stemming from deficient nightsky subtraction that was
not properly described by ivar. Three objects are active galaxies,
and they show extremely strong emission features in this region.
The number of active galaxies in the reference sample is not suf-
ficient to reproduce this behavior. The remaining object shows a
true shift in the Mgb line.

NaD (λ5, 890-5, 896). For seven spectra a shift of the NaD
could be confirmed by a manual inspection. For all the others
a badly subtracted sky at around λ7200 was not described cor-
rectly by ivar, leading to a very prominent absorption feature
that was mistaken for NaD.

5.3. Manually investigated objects

To validate the method, a manual inspection of the outliers is
mandatory. A spectrum was investigated if it was selected as an
outlier in any of the spectral regions (from Experiments 1 and 2)

and if it was not part of one of the horizontal lines introduced by
confusion. The outliers have different origins that can be roughly
classified into three groups: objects with real multiple redshift
components (true), objects with detectoror nightsky artifacts that
were not properly described by ivar (fake), and objects where the
redshift computation simply failed (wrong).

Thirty-seven objects were eventually investigated manually,
three of which have been marked by several features as outliers.
Fourteen of the outliers (38%) are spectra with truly shifted red-
shift components. In 11 of those, the shift between the redshift
components is lower than 10 000 km s−1, so those components
certainly do have a physical origin. The three remaining spec-
tra of the true class are likely to be superpositions and/or lensed
objects. The fake category contains ten objects where a badly
described detector/nightsky artifact was confused with NaD or
Mgb absorption. It is impossible to exclude those objects pre-
viously because there is no unique position or indication of the
existence of such a feature. The thirteen spectra in the wrong
class are mainly the result of a biased reference sample that also
contains a low number of active and star-bursting galaxies. There
is a good chance that the fraction of those objects can be signif-
icantly decreased if a more representative reference sample is
used for the comparison.

A short summary of all manually investigated objects
with identifier, SDSS, and computed redshift can be found in
Table A.1.

5.4. Most prominent outliers

The most prominent outliers are briefly described here to em-
phasize the power of this outlier detection scheme. In Fig. 7 one
can see the three truly shifted objects with the highest velocity
offset. While the first two (J094419.05-004051.44, J120419.07-
001855.93) were even tagged independently by the separate
runs, the last one (J113154.29+001719.02) did not show up in
the second experiment because the relative shift between our
computed and the SDSS redshift (0.077 c) exceeds the allowed
range of the shift (0.060 c). In the first and last objects the model
applied by SDSS describes the absorption behavior quite well,
but the emission features are not described at all such that a
second component with a strongly shifted redshift is needed to
describe them. While they demonstrate the power of the method
quite nicely these objects are astronomically less interesting.
Owing to missing signs of interaction, it is likely that they are
just simple superpositions of objects. In the i-band of the first
object, a tiny and asymmetric arc (cf. Fig. 8) can be seen that
could indicate a lensed object. The redshift of the second object
was estimated incorrectly by SDSS because apparently none of
the template models was able to describe both the continuum and
the line behavior at the same time. The newly estimated redshift,
on the other hand, describes the spectrum quite well. While the
new fit does not support the existence of another component, it
is worth noting that on the SDSS image a clear symmetric arc
can be seen at a distance of a few arcseconds.

5.5. Summary of outliers

In Table A.1 all outliers found are summarized. Targets where a
true feature exists are marked. The possible origins for the ex-
istence of multiple redshift components are miscellaneous. For
a very high shift between the redshifts, the most likely expla-
nation is a chance superposition of two objects. In this case an
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Fig. 7. Three most extreme outliers obtained from our regression model.
The green line in the background is the SDSS spectrum with the gray
spectrum at the bottom being the typical noise deviation. The red curve
shows the fitted spectrum with a redshift as obtained by SDSS, the blue
curve is the overplotted spectrum with the redshift as obtained by our
regression model.

Fig. 8. SDSS i-band image of J094419.05-004051.44 (smoothed with
Gaussian blur of 3-pixel width). In the right image the asymmetric arc
has been overplotted by a green circle.

arc due to gravitational lensing might be observed. The num-
ber of gravitational lenses in the near universe is very limited
so far (Muñoz et al. 1998). Spectra with the velocity shifts be-
tween the lines lower than <10 000 km s−1 might be good can-
didates for being super-massive black hole binaries (SMBHB,
Tsalmantza et al. 2011; Fu et al. 2012; Popović 2012). The

kinematics of the broad line region are a very common cause
of such observed line shifts as well (Shen et al. 2011).

Eventually one could only distinguish between the differ-
ent origins by either deep-imaging (lenses) or follow-up spec-
troscopy (SMBHB, Liu et al. 2014). High-resolution imaging in
the multiple wavelengths could also distinguish single from mul-
tiple sources (e.g., Rodriguez et al. 2009).

6. Summary

This paper presents a new methodology that performs a redshift
computation based on pre-exisiting SDSS redshifts. The aim is
to obtain improved redshifts for emission and absorption, as well
as for individual spectral features. This enables astronomers to
detect spectra with multiple redshift components. The basic prin-
ciple of the presented method is to perform a self-consistency
check such that objects that look similar should have a compara-
ble redshift.

First of all, it is worth noting that this method performs quite
well in calculating the redshift for very different kinds of spec-
tra. The only requirement is that the density of reference objects
is reasonably high in the d-dimensional Euclidean space popu-
lated by the spectra. It could be shown that with its current set
of reference spectra (which is limited to redshifts z ≤ 0.5, but
the reference sample is just densely populated until z ≈ 0.2) this
method can reach higher sensitivity than the SDSS pipeline for
individual spectra. So far, only the completeness is considerably
lower than in the SDSS pipeline, but this will be improved using
a larger and more representative reference sample that covers all
redshifts.

To show the power of this new tool, we presented outliers
found in the data set. For this a more conservative (more sen-
sitive, but less complete) parameter set was chosen. We were
able to detect outliers by two different statistical redshifts. The
first approach focuses on the overall behavior of the spectra, so
is less affected by confusion but is less informative. The second
approach focuses on the behavior of predefined regions. Its com-
pleteness rate is higher; i.e., more objects with exotic behavior
have been found. On the other hand, the number of highlighted
objects that appear due to methodological artifacts is also in-
creased. In summary both methods yield very interesting objects
where the SDSS redshift was incorrect.

Even though these methods work quite well, plenty of pa-
rameters exist that are tunable and that have an impact on the
final result. In the data preprocessing several models describing
the continuum behavior were investigated. The normalization of
the spectra with respect to this continuum and their noise might
have an effect on the number of true outliers, too. In addition,
the feature extraction has a strong impact on the final results and
might be tailored to certain scientific needs.

In a next step, we will investigate the impact of the choice of
the reference sample. Each redshift bin should contain enough
reference objects to minimize systematic effects of to the sample
bias. This discussion is part of a forthcoming paper, where the
methodology is applied to the full SDSS spectroscopic database.

In a final step, the impact of the mathematical composition
of the regression values used in Eq. (3) could be investigated. It
would also be interesting to study the behavior of different se-
lection measures, such that a clearer distinction between noisy
and good features can be made. Additionally, one could apply
a pre- instead of a post-selection to distinguish between signals
and noise on the data level. This would make the reduction of the
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reference sample in the computational step easier, as only refer-
ence objects with an existing signal would be used for compari-
son. On the other hand, it would introduce more biases that have
to be tuned by the increased number of parameters. Some physi-
cal knowledge about the type of signal that is expected would be
required.

Finally, the outlier detection could be modified. Depending
on the scientific use case, the trade-off between completeness
and sensitivity can be adjusted by using different detection cri-
teria. Those detected outliers can be related to future outlier cat-
alogs. Since we are currently only investigating a small fraction
of the database (<1%), a huge number of objects are expected to
be marked as outliers for the entire dataset; i.e., that the number
of objects to be investigated will be so large (≈5000) that a man-
ual inspection will be extremely time-consuming. At any rate,
the discovery potential of this straightforward redshift determi-
nation approach is huge. The applicability on new incoming data
was already shown on this simplified and just partially represen-
tative sub-sample.
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Appendix A

Table A.1. Summary of all manually investigated spectra.

Identifier zSDSS zEST ∆z Spectral feature Class Remarks
[plate-MJD-fiber] [km s−1]
0266-51 602-0095 0.0673 0.1266 ± 0.0005 16 600 Em,Hα,[NII],[SII] true Fig. 7 top
0286-51 999-0236 0.2075 0.0940 ± 0.0007 –28 200 Em,CaII,NaD true possible lense, Fig. 7 center
0268-51 633-0423 0.1699 0.1689 ± 0.0005 –300 OII,Hε ,Hζ true shifted BL/NL
0275-51 910-0265 0.0596 0.0614 ± 0.0013 500 Em wrong low number density of

reference objects (see Fig. 1)
0279-51 984-0449 0.2049 0.1264 ± 0.0014 –19 600 Em wrong member of G1
0280-51 612-0323 0.0576 0.0605 ± 0.0007 800 Em wrong low number density of

reference objects (see Fig. 1)
0282-51 658-0493 0.2409 0.1600 ± 0.0009 –19 600 Em wrong member of G1
0267-51 608-0601 0.0620 0.1709 ± 0.0006 30 700 Abs fake fake feature at λ6, 901
0282-51 630-0400 0.2690 0.1796 ± 0.0008 –21 200 Abs true Fig. 7 bottom
0274-51 913-0617 0.0966 0.1159 ± 0.0004 5200 OII true dual core in image
0272-51 941-0332 0.2201 0.2184 ± 0.0010 –500 Hε ,Hζ true NL shifted vs. absorption
0288-52 000-0215 0.1531 0.1543 ± 0.0007 200 Hε ,Hζ true shifted BL/NL
0268-51 633-0354 0.0918 0.0928 ± 0.0006 200 Hδ wrong strong noise in spectral region
0271-51 883-0371 0.1202 0.0851 ± 0.0012 –9500 Hγ wrong litte active & starburst spectra
0273-51 957-0579 0.1312 0.0946 ± 0.0007 –9800 Hγ wrong litte active & starburst spectra
0279-51 608-0034 0.1010 0.0975 ± 0.0014 –1000 Hβ,[OIII] wrong high MAD
0271-51 883-0570 0.0531 0.0638 ± 0.0013 3000 Hα,[NII] wrong low number density of

reference objects (see Fig. 1)
0286-51 999-0089 0.1296 0.1263 ± 0.0004 –900 Hα,[NII] wrong very weak features only
0267-51 608-0593 0.1631 0.1642 ± 0.0005 200 CaII true
0275-51 910-0142 0.1516 0.1526 ± 0.0005 200 CaII true
0266-51 602-0604 0.2995 0.3353 ± 0.0012 8200 Mgb fake λ6, 913
0266-51 630-0374 0.1661 0.1449 ± 0.0007 –5500 Mgb fake λ5, 892
0270-51 909-0537 0.1774 0.1589 ± 0.0010 –4800 Mgb wrong QSO, sparse in reference
0277-51 908-0277 0.2822 0.2593 ± 0.0013 –5400 Mgb wrong QSO, sparse in reference
0285-51 930-0170 0.1794 0.1685 ± 0.0009 –2800 Mgb wrong QSO, sparse in reference
0288-52 000-0215 0.1531 0.1544 ± 0.0006 300 Mgb true shifted BL/NL
0266-51 630-0318 0.1483 0.1706 ± 0.0008 5800 NaD fake λ6, 901
0267-51 608-0092 0.1467 0.1456 ± 0.0005 –300 NaD true only NaD shifted
0267-51 608-0320 0.1164 0.1836 ± 0.0010 18 000 NaD fake λ6, 976
0269-51 910-0531 0.1278 0.1958 ± 0.0011 18 000 NaD fake λ7, 045
0270-51 909-0114 0.1970 0.1960 ± 0.0007 –300 NaD true only NaD shifted
0274-51 913-0548 0.1000 0.0979 ± 0.0002 –600 NaD true only NaD shifted
0283-51 660-0602 0.1281 0.1968 ± 0.0007 18 200 NaD fake λ7, 053
0284-51 943-0531 0.1578 0.1958 ± 0.0005 9800 NaD fake λ7, 048
0284-51 943-0603 0.2013 0.1985 ± 0.0006 –700 NaD fake λ7, 062
0285-51 663-0602 0.2426 0.1979 ± 0.0007 –10 800 NaD fake λ7, 058
0285-51 930-0035 0.1222 0.1212 ± 0.0002 –300 NaD true only NaD shifted

Notes. The spectral features Em, Abs are from Experiment 1, all others mark the respective regions where the feature was detected as an outlier.
The sorting is by number of spectral features, spectral feature, and finally identifier.
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Fig. A.1. Analysis of the Hβ,[OIII] region. One can see the relative difference in redshift against the SDSS redshift (top), the distribution of the
deviations (middle), and a histogram of the relative difference in redshift (bottom). Noisy spectral features are marked in red, good features in
green.

Fig. A.2. Analysis of the NaD region. One can see the relative difference in redshift against the SDSS redshift (top), the distribution of the
deviations (middle), and a histogram of the relative difference in redshift (bottom). Noisy spectral features are marked in red, good features in
green.
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Abstract. We present an algorithm for the visualisation of time series.
To that end we employ echo state networks to convert time series into
a suitable vector representation which is capable of capturing the latent
dynamics of the time series. Subsequently, the obtained vector representa-
tions are put through an autoencoder and the visualisation is constructed
using the activations of the “bottleneck”. The crux of the work lies with
defining an objective function that quantifies the reconstruction error of
these representations in a principled manner. We demonstrate the method
on synthetic and real data.

1 Introduction

Time series are often considered a challenging data type to handle in machine
learning tasks. Their variable-length nature has forced the derivation of feature
vectors that capture various characteristics, e.g. [1]. However, it is unclear how
well such (often handcrafted) features express the potentially complex latent dy-
namics of time series. Time series exhibit long-term dependencies which must be
taken into account when comparing two time series for similarity. This temporal
nature makes the use of common designs, e.g. RBF kernels, problematic. Hence,
more attentive algorithmic designs are needed and indeed in classification sce-
narios there have been works [2, 3, 4] that successfully account for the particular
nature of time series.

In this work we are interested in visualising time series. We propose a fixed-
length vector representation for representing sequences that is based on the Echo
State Network (ESN) [5] architecture. The great advantage of ESNs is the fact
that the hidden part, the reservoir of nodes, is fixed and only the readout weights
need to be trained. In this work, we take the view that the readout weight vector
is a good and comprehensive representation for a time series.

In a second stage, we employ an autoencoder [6] that reduces the dimension-
ality of the readout weight vectors. However, employing the usual L2 objective
function for measuring reconstruction is inappropriate. What we are really in-
terested in is not how well the readout weight vectors are reconstructed in the L2

sense, but how well each reconstructed readout weight vector can still reproduce
its respective time series when plugged back to the same, fixed ESN reservoir.
To that end, we introduce a more suitable objective function for measuring the
reconstruction quality of the autoencoder.

495

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. 
Available from http://www.i6doc.com/en/.



2 Echo state network cost function

An ESN is a recurrent discrete-time neural network. It processes time series com-
posed by a sequence of observations which we denote by1 y = (y(1), y(2), . . . , y(T )).
The task of the ESN is given y(t) as an input to predict y(t + 1). An ESN is
typically formulated using the following two equations:

x(t+ 1) = h(ux(t) + vy(t)) , (1)

y(t+ 1) = wx(t+ 1) , (2)

where v ∈ RN×1 is the input weight, x(t) = [x1, . . . , xN ] ∈ RN×1 are the
latent state activations of the reservoir, u ∈ RN×N the weights of the reservoir
units, w ∈ RN×1 the readout weights2. N is the number of hidden reservoir
units. Function h(·) is a nonlinear function, e.g. tanh, applied element-wise.
According to ESN methodology [5] parameters v and u in Eq. (1) are randomly
generated and fixed. The only trainable parameters are the readout weights w
in Eq. (2).

Training involves feeding at each time step t an observation y(t) and recording
the resulting activations x(t) row-wise into a matrix X. Typically, some initial
observations are dismissed in order to “washout” [5] the initial arbitrary reservoir
state. The following objective function ℓ is minimised:

ℓ(w) =
1

2
‖Xw − y‖2 + 1

2
λ2‖w‖2 , (3)

where λ is a regularisation term. How well vector w models y with respect to
the fixed reservoir is measured by objective ℓ. The optimal solution is w =
(XTX + λ2I)−1XTy where I is the identity matrix. We express this as a
function g that maps time series to readout weights:

g(y) = (XTX + λ2I)−1XTy = w . (4)

3 Vector representation for time series

Given a fixed ESN reservoir, for each time series in the dataset we determine its
best readout weight vector and take it to be its new representation with respect
to this reservoir.

3.1 ESN reservoir construction

Typically, parameters v and u in Eq. (1) are set stochastically [5]. To eliminate
dependence on random initial conditions when constructing the ESN reservoir,
we strictly follow the deterministic scheme3 in [7]. Accordingly, we fix the topol-
ogy of the reservoir by organising the reservoir units in a cycle using the same

1For brevity we assume univariate time series, i.e. y(t) ∈ R .
2Bias terms can be subsumed into weight vectors v and u but are ignored here for brevity.
3We stress that our algorithm is not dependent on this deterministic scheme for constructing

ESNs; in fact it also works with the “standard” stochastically constructed ESN type as in [5].
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coupling weight a. Similarly, all elements in v are assigned the same absolute
value b > 0 with signs determined by an aperiodic sequence as specified in [7].
Further, following this methodology we determine values for a and b by cross-
validation. The combination a, b with the lowest test error is used to instantiate
the ESN reservoir that subsequently encodes the time series as readout weights.

3.2 Encoding time series as readout weights

Given the fixed reservoir, specified by a and b, we encode each time series yj in
the dataset by the readout weights wj using function g(yj) = wj (see Eq. (4)).
We emphasise that all time series yj are encoded with respect to the same fixed
reservoir. Hence dataset {y1, . . . ,yJ} is now replaced by {w1, . . . ,wJ}.

4 Autoencoding with respect to the fixed reservoir

The autoencoder [6] learns an identity mapping by training on targets identical to
the inputs. Learning is restricted by the bottleneck that forces the autoencoder
to reduce the dimensionality of the inputs, and hence the output is only an
approximate reconstruction of the input. By setting the number of neurons
in the bottleneck to two, the bottleneck activations can be interpreted as two-
dimensional projection coordinates z ∈ R2 and used for visualisation.

The autoencoder is the composition of an encoding fenc and a decoding fdec
function. Encoding maps inputs to coordinates, fenc(w) = z, while decoding
approximately maps coordinates back to inputs, fdec(z) = w̃. The complete
autoencoder is a function f(w;θ) = fdec(fenc(w)) = w̃, where θ are the weights
of the autoencoder trained by backpropagation.

4.1 Training mode

Typically, training the autoencoder involves minimising the L2 norm between
inputs and reconstructions over the weights θ:

1

2

J∑

j=1

‖f(wj ;θ)−wj‖2. (5)

However, this objective measures only how good the reconstructions w̃j are
in the L2 sense. What we are really interested in is how well the reconstructed
weights w̃j are still a good readout weight vector when plugged back to the fixed
reservoir. This is actually what the objective function ℓ in Eq. (3) measures. This
calls for a modification in the objective function Eq. (5) of the autoencoder:

1

2

J∑

j=1

ℓj(f(wj ;θ)) =
1

2

J∑

j=1

‖Xjf(wj ;θ)− yj‖2 +
1

2
λ2‖f(wj ;θ)‖2 , (6)

where ℓj and Xj are the objective function and hidden state activations asso-
ciated with time series yj (see Eq. (3)). The weights θ of the autoencoder can
now be trained via backpropagation using the modified objective in Eq. (6).
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Fig. 1: Example X-ray radiation regimes β (left) and κ (right).

4.2 Testing mode

Having trained the autoencoder f via backpropagation, we would like to project
new incoming time series y∗ to coordinates z∗. To that end we first use the fixed
ESN reservoir to encode the time series as a readout weight vector g(y∗) = w∗

(see Eq. (4)). The readout weight vector w∗ can then be projected using the
encoding part of the autoencoder to obtain the projection fenc(w

∗) = z∗.

5 Experiments and Results

We present results on two synthetic datasets and on a real astronomical dataset.
In all experiments we constructed the ESN reservoir deterministically according
to [7] and fixed the size of the reservoir to N = 200. We used a washout pe-
riod of 200 observations. Regularisation parameter λ for the ESNs was fixed to
10−4. The number of neurons in the hidden layers of the autoencoder was set
to 10. The proposed algorithm can handle out-of-sample data and hence apart
from projecting training data only, we also project unseen test data. We apply
no normalisation to the datasets. Moreover, we also constructed visualisations
using the popular t-SNE algorithm [8] on the raw signals. We found the visu-
alisation produced by t-SNE did not differ greatly over a range of perplexities
{5, 10, . . . , 50}.
NARMA: We generated sequences from the following NARMA classes [7] of
order 10, 20, 30, of length 800, using the following equations respectively:

y(t+ 1) = 0.3y(t) + 0.05y(t)

9∑

i=0

y(t− i) + 1.5s(t− 9)s(t) + 0.1,

y(t+ 1) = tanh(0.3y(t) + 0.05y(t)

19∑

i=0

y(t− i) + 1.5s(t− 19)s(t) + 0.01) + 0.2,

y(t+ 1) = 0.2y(t) + 0.004s(t)

29∑

i=0

y(t− i) + 1.5s(t− 29)s(t) + 0.201,

where s(t) are exogenous inputs generated independently and uniformly in the
interval [0, 0.5). These time series constitute an interesting synthetic example
due to the long-term dependencies they exhibit.
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(a) NARMA by t-SNE.
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(b) NARMA by our method.
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(d) Cauchy by our method.
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Fig. 2: Colours represent classes. The proposed algorithm supports out-of-
sample visualisation, hence markers • and N are the projections of the training
and testing data respectively. Note that in the NARMA and Cauchy plots • and
N heavily overlap.
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Cauchy class: We sampled sequences from a stationary Gaussian process with
correlation function given by c(xt, xt+h) = (1 + |h|a)− a

b [9]. We generated 4
classes of such time series by the permutation of parameters a ∈ {0.65, 1.95}
and b ∈ {0.1, 0.95}. We generated from each class 100 time series of length 2000.
X-ray radiation from black hole binary: We used data from [10] concerning
a black hole binary system that expresses various types of temporal regimes
which vary over a wide range of time scales. We extracted subsequences of length
1000 from regimes β and κ that were chosen on account of their similarity (see
Fig. 1).

6 Discussion and Conclusion

We show the visualisations in Fig. 2. Unlike t-SNE which operates directly
on the raw data, the proposed algorithm can capture the differences between
the time series in the lower dimensional space. This is because our method
explicitly accounts for the sequential nature of time-series; learning is performed
in the space of readout weight representations and is guided by an objective
function that quantifies the reconstruction error in a principled manner. Of
course, the perfectly capable t-SNE is used here as a mere candidate from the
class of algorithms designed to visualise vectorial data in order to demonstrate
this issue. Moreover, we demonstrate that our method, by its very nature,
is capable of projecting also unseen hold-out data. Future work will focus on
processing large datasets of astronomical light curves.
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ABSTRACT
In the era of rapidly increasing amounts of time series data, classification of variable objects has
become the main objective of time-domain astronomy. Classification of irregularly sampled
time series is particularly difficult because the data cannot be represented naturally as a
vector which can be directly fed into a classifier. In the literature, various statistical features
serve as vector representations. In this work, we represent time series by a density model.
The density model captures all the information available, including measurement errors.
Hence, we view this model as a generalization to the static features which directly can be
derived, e.g. as moments from the density. Similarity between each pair of time series is
quantified by the distance between their respective models. Classification is performed on
the obtained distance matrix. In the numerical experiments, we use data from the OGLE
(Optical Gravitational Lensing Experiment) and ASAS (All Sky Automated Survey) surveys
and demonstrate that the proposed representation performs up to par with the best currently
used feature-based approaches. The density representation preserves all static information
present in the observational data, in contrast to a less-complete description by features. The
density representation is an upper boundary in terms of information made available to the
classifier. Consequently, the predictive power of the proposed classification depends on the
choice of similarity measure and classifier, only. Due to its principled nature, we advocate that
this new approach of representing time series has potential in tasks beyond classification, e.g.
unsupervised learning.

Key words: methods: data analysis – methods: statistical – techniques: photometric –
astronomical data bases: miscellaneous.

1 IN T RO D U C T I O N

The variation of the brightness of an astronomical object over time
(hereafter called light curve or time series) is an important way to
obtain knowledge and constraint properties of the observed source.
With the advent of large sky surveys such as the Large Synoptical
Sky survey (LSST; Ivezi et al. 2014), the incoming data stream
will be so immense that the applied methodology has to be reliable
and fast at the same time. While the origin of variability can be
very different, a huge fraction of the variable objects in the sky
has a stellar origin. From those variable stars many show (quasi-)
periodic behaviour, and originate from the instability stripe in the
Hertzsprung–Russell diagram or are multistar systems where the
origin of the variability is the mutual occultation. The main focus of
this work will be on periodic sources, but in principle the presented
methodology can also be used for non-periodic sources (see e.g.
Donalek et al. 2013).

� E-mail: dennis.kuegler@h-its.org (SDK); kai.polsterer@h-its.org (KLP)

The classification performance of periodic sources is already
fairly high provided that the period and the amplitude of the variation
are determined correctly (Bailey & Leland 1899; Bailey 1902; Bono
et al. 1997). But apart from the very soft boundaries between the
classes, the quality of the period-finding algorithm depends on the
type of variability itself (Graham et al. 2013) and thus a dependence
between those two properties is encountered. In order to break this
dependence, one can either rely on only (quasi-) static features1 for
the classification or estimate the period and derive classifications
by analysing the phase-folded light curves (see e.g. Debosscher
et al. 2007, and references herein). Richards et al. (2011) showed
that the inclusion of static features yields an improved classification

1 Throughout this paper, we will divide features derived by other authors in
three categories: non-static – everything directly related to period finding
and features derived from the periodogram; quasi-static – features that treat
the data as function instead of a time series, e.g. slope, linear trend; static
– all features that treat the measured fluxes only as an ensemble and thus
the temporal information is discarded, e.g. median, standard deviation. A
complete list of features used here is given in Table 1.

C© 2015 The Authors
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Figure 1. Schematic view of all steps from the raw data to the classification
method.

performance and that the contribution of the static and non-static
features to the accuracy is of the same order.

In this work, we introduce a novel representation of time series
that aims to replace the static features. We represent each noisy
data point by a Gaussian; the mean of the respective Gaussian is
the measurement and the standard deviation is given by the mea-
surement uncertainty (photometric error). Hence, every time series
is represented by a mixture of Gaussians (MoG) that conserves all
static information available in the data. We advocate that this is a
simple and natural choice. In contrast to that, features can be seen
as derivatives (such as moments) of this density model and there-
fore only describe certain properties of it. For instance, Lindsay &
Basak (2000) show that moments are just able to describe the tails
of a distribution but do not necessarily give a good description of
the underlying distribution.

As a consequence, the proposed density-based representation
presents an upper boundary to the static information content which
can be made available to the classifier. The similarity of two den-
sities is thereby judged using three widely used distance measures,
the L2-norm, the Kullback–Leibler divergence (KLD) and the Bhat-
tacharyya distance (BHA). These measures of similarity are then fed
into two different classifiers. Finally, we compared the classification
performance of the density- and feature-based approaches.

The aim of this work is to introduce an alternative and more gen-
eral notion of similarity between light curves, which correctly takes
into account measurement uncertainty. In the new representation,
all static information contained in the observations are conserved in
a more principled way and adjacently fed to the classifier. Conse-
quently, we expect that this new representation provides a reference
in terms of classification performance.

In Section 2, the new representation and its respective application
to the classifier are described. After describing the used data in
Section 3, the results of two different experiments are presented
in Section 4. We conclude with a discussion of our approach in
Section 5.

2 M E T H O D

In this section, the methodology is described. A sketch of the en-
tire classification process is shown in Fig. 1. Each step is anno-
tated with the respective subsection in the text; the FCLC software
which includes all steps described in the following is available at
http://ascl.net/1505.014.

2.1 Converting data points into densities

The key idea of our method is to convert the individual data points
with their errors as a continuous density. We treat each data point
as a normal distribution with a mean μ equal to the magnitude y
and a width σ equal to the photometric error �y of the respective

Figure 2. The principle of the conversion to densities, every point is de-
scribed by a normal distribution which are then added up to a PDF.

measurement. This allows us to convert the discrete M number of
observations into a continuous density by using

PDF (x) = 1

M

M∑

i=1

N (x | yi, �yi) , (1)

where N (μ, σ ) is the normal distribution with expectation μ and
width σ , which returns the probability of the occurrence for a given
value x. Each light curve is, after subtracting the median, converted
to such a probability density function (PDF); a visualization of this
process is shown in Fig. 2. This idea was already mentioned in the
work of Aherne, Thacker & Rockett (1998).

2.2 Parsimonious mixtures of Gaussians

An important step to make the computation of the distances compu-
tationally feasible is to reduce the number of Gaussians in the MoG.
The look-up function for individual values of x scales linearly with
the number of Gaussians in the mixture. The computation of the dis-
tance between every two densities scales directly with the number
of Gaussians m in each density. Thus, the computational complexity
for computing the distance matrix is of the order ofO(n2m), where n
is the total number of light curves to be classified. This computation
gains a significant speedup by reducing the number of Gaussians;
reducing the number of observations (typically M = 300) to an

MNRAS 451, 3385–3392 (2015)

 at U
niversity H

eidelberg on July 20, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 



Featureless classification of light curves 3387

MoG with m = 20 components yields an effective gain in speed of
( 300

20 ) ≈ 15.
We tested several ways described in the literature to reduce the

number of Gaussians effectively (Crouse et al. 2011). After exper-
imenting with the different methods, we found that the method by
Runnalls (2007) yielded the most satisfactory results. The basic idea
is that two similar (in terms of the KLD, see below) Gaussians can
be approximated by a single normal distribution. The dissimilarity
between two normal distributions with amplitudes W0; W1 means
μ0; μ1 and widths σ 0; σ 1 is thereby measured by

D = 0.5ω log

(
ω̃0

σ0
2ω̃1

σ1
2ω̃1

+ ω̃1
σ1

2ω̃0

σ0
2ω̃0

+ ω̃0ω̃1
(μ1 − μ0)2

σ
2ω̃0
0 σ

2ω̃1
1

)
(2)

with ω = σ 0 + σ 1; ω̃0 = σ0
ω

; ω̃1 = σ1
ω

. The pair of normal distribu-
tions with the closest distance D is then merged into a new single
Gaussian with weight W01 = W0 + W1, expectation μ01 = W0

W
μ0 +

W1
W

μ1, and variance σ 2
01 = W0

W
σ 2

0 + W1
W

σ 2
1 + W0W1

W 2 (μ0 − μ1)2. The
search and replacement is then performed iteratively until the de-
sired number of new components is reached. An example of a
reduced MoG is shown in the bottom plot in Fig. 2. Apart from the
decreased computational complexity, the reduction in number of
components used in the MoG has yet another very interesting side
effect. Due to the loss of information, the new PDF is always just a
smoothed version of the density based on the real data. As the data
are irregularly sampled, this smoothing is effectively a better rep-
resentation of the true underlying density. Obviously, the number
of Gaussians to be used is a parameter which has to be optimized.
Here, it will be optimized by maximizing the classification accuracy
for a given data set and classifier.

Another aspect to mention is the conservation of outliers. Since
iteratively only the most similar Gaussians are merged into a single
one, the presence and probability of outliers will remain unchanged
throughout this procedure.

2.3 Similarity of probability densities

After converting all light curves to PDF, we apply different measures
of similarity between two given probability densities P(x), Q(x). As
light curves differ in apparent magnitude, we subtract the median
magnitude in order to align the densities of different objects.

2.3.1 L2-norm

The most obvious choice for comparing two densities is the L2-
norm, defined as

L2 (P (x),Q(x)) =
∫

(P (x) − Q(x))2 dx. (3)

While the L2-norm is a very robust and reliable measure of the
similarity, it is not very sensitive to faint tails as differences in the
main components are penalized more heavily. But, as stated in the
Introduction, the tails contain the vast majority of information of a
density. Hence, we do not expect the L2-norm to be a good distance
measure for our classification problem.

2.3.2 Bhattacharyya distance

The Bhattacharyya distance (BHA), defined as

BHA (P (x), Q(x)) = −log
∫ √

P (x)Q(x) dx, (4)

is a generalization of the Mahalanobis distance which, in contrast to
the latter one, takes into account the difference in shape. The BHA
has been used in classification problems before (see e.g. Aherne
et al. 1998) and thus seems a very good choice for our method.

2.3.3 Symmetrized Kullback–Leibler divergence

The Kullback–Leibler divergence (KLD),

KLD (P (x), Q(x)) =
∫

P (x) log

(
P (x)

Q(x)

)
dx, (5)

is a measure of similarity of two probability densities in information
theory. It consists of two terms, one being the entropy (information
content) of P(x) and a term which is the expectation of log(Q(x))
with respect to P(x). The second term is the log-likelihood that the
observed density Q(x) was drawn from the model density P(x). The
KLD is capable of describing also difference between densities in
faint tails. The KLD itself cannot be treated as a distance directly
since – even though it returns zero for identical densities – it is not
symmetric. We circumvent this problem by simply symmetrising
the KLD and thus we finally compute

KLDsym (P (x),Q(x)) = KLD (P , Q) + KLD (Q, P ) . (6)

2.4 Computation of distances

The KLD and the BHA cannot be computed analytically for two
MoG and thus must be approximated by performing the integra-
tion. Even though analytical approximations exist for the KLD (see
Durrieu, Thiran & Kelly 2012, and references herein), we encoun-
tered numerous difficulties when using them in practice, e.g. as
non-positive distances. For this reason, we decided to perform the
integration for all distances numerically. For our one-dimensional
case, we found the following numerical integration to be sufficient:
∫ ∞

−∞
F (x) dx ≈ � (F (x0) + F (x0 + �) + · · · + F (x1)) . (7)

The integration above is performed from −∞ to +∞. Here the
integral is numerically approximated and therefore a finite range
must be defined. The lower and the upper boundary are chosen
very generously by integrating from x0 = μ(i) − 5σ (i), with i =
argmini∈MoGμ(i) to x1 = μ(i) + 5σ (i), with i = argmaxi∈MoGμ(i).
In order to retain the same precision for all integrals, we chose the
integration width � for all integrations to be the same. To be on
the safe side, we set � = 0.001 but when experimenting with this
width, it turned out that � = 0.005 is sufficiently small to minimize
computation time (scales with �−2) without any loss in accuracy.
Obviously, a good estimate for � is given by taking a fraction of
the typical standard deviation in the MoG, as then the integration
resolution is below the typical scale width of the density. To prevent
the integration from encountering ill-defined (that is, negative values
in the square root or log) values we add a small constant to each
of the densities which does not yield any measurable impact on the
final classification.

In Fig. 3, the impact of the injection of a single outlier on the
L2, BHA, and KLD with respect to its injection position (x-axis)
is shown. Therefore, a single measurement value with a typical
photometric error is inserted into the distribution from Fig. 2 and the
distance to the undistorted distribution is computed, respectively. It
is evident, that the KLD reacts way more heavily to a single outlier,
which will eventually also limits its use for classification task, as
shown in the results. Note that in principle, the KLD distance would
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Figure 3. The effect of an outlier added to the distribution in Fig. 2 is
shown. The x-axis gives the magnitude of the injected point with respect to
the median, the left y-axis are the KLD/BHA distance in the upper plot, and
the L2/BHA distance in the lower one. The right y-axis denotes the ratio of
the respective distance measures.

Table 1. Computed features from observations and from the
density model with respective formulas of an example light
curve.

Feature Moment Data Model
feature feature

Amplitude A = 0.5 · x0.95, 0.05 0.150 0.141
Beyond1Std 1 − ∫ σ1+σ2

σ1−σ2
P (x)dx 0.446 0.435

FPRMid20a x0.60, 0.40/x0.95, 0.05 0.325 0.309
FPRMid35a x0.675, 0.325/x0.95, 0.05 0.479 0.468
FPRMid50a x0.75.0.25/x0.95, 0.05 0.625 0.631
FPRMid65a x0.825, 0.175/x0.95, 0.05 0.804 0.789
FPRMid80a x0.90, 0.10/x0.95, 0.05 0.904 0.899
Skew σ3/σ

3
2 −0.185 −0.182

SmallKurtosis σ4/σ
4
2 − 3 −1.365 −1.361

MAD xMAD 0.083 0.083

MedianBRP
∫ x0.5+A/5

x0.5−A/5 P (x)dx 0.142 0.126
PercentAmpl.b incl. median of LC 0.013 –
PDFPb incl. median of LC 0.021 –
StetsonKb incl. # observations 0.894 –

Notes. aFPR: FluxPercentileRatio, xf, g = xf − xg
bFeatures without equivalent model description.

diverge to infinity; the plateau is just encountered due to the added
small constant mentioned above.

2.5 Relation to features

Our density representation directly relates to the features2 used in
Richards et al. (2011); a detailed definition of all the used features
is given in the Appendix A. As shown in Table 1, we can recover
all but three features directly from the density, except for StetsonK,
PercentAmplitude, PercentDifferenceFluxPercentile (PDFP). Stet-
sonK contains the discrete number of observations as one of its
input parameters, the latter two the absolute median value of the
magnitudes. No equivalent measures for those exist for our median-
subtracted and normalized densities.

2 To compute the features we use the PYTHON package provided at
http://isadoranun.github.io/tsfeat/FeaturesDocumentation.html, also used in
Nun et al. (2014).

To explain all the other features we use the common notion of
moments of a density

σn =
∫ +∞

−∞
xnP (x)dx (8)

with σ 0 = 1, σ 1 being the mean, σ 2 the standard deviation and so
on. Another frequently used integral is the percentile, xf, where the
density contains a certain fraction f, defined by

xf :
∫ xf

−∞
P (x)dx = f . (9)

Additionally, the median absolute deviation (MAD) is defined as

xMAD :
∫ xMAD

0
P (x − x0.5) + P (x0.5 − x)dx = 0.5, (10)

where x0.5 is the median. One can see that most features can be ex-
pressed in terms of our PDF and thus the computed density contains
most of the information encoded in the features.

2.6 Classification

In this subsection, we are describing the functionality and use of
the different classifiers applied in this work. The first two of those
classifiers depend actually on a distance matrix which is the direct
outcome of our distance measure. For the features, the distance
matrix is created by computing the Euclidean distance

D (v, w) ≡
Nfeat∑

n=1

√
(vn − wn)2 (11)

between two feature vectors v, w. For the interested reader, more
details on the used classifiers can be found in Hastie, Tibshirani
& Friedman (2009). We use the implementations provided in the
PYTHON package SCIKIT-LEARN.3 To exclude effects originating from
the preprocessing of the features, we also classified the light curves
with a min–max normalized version of the features. In the following,
the applied classifiers k nearest neighbours (kNN) and the support
vector machine (SVM) are explained in more detail.

2.6.1 k nearest neighbours

Once the distances between all light curves are computed, we can
sort the matrix for each candidate light curve and look at the types
of the closest reference light curves. The only free parameter is
k, the number of neighbours chosen per test light curve. Another
degree of freedom can be introduced by weighting the distances
to the neighbours, e.g. decaying distance. In practice, we obtained
no significant gain and thus we use a classical majority vote. If
the number of objects of a certain class is equal for two (or more)
different classes, a random class out of those is assigned.

2.6.2 Support vector machine

A slightly better performance in classification can be reached if the
distance matrix is used as the kernel of an SVM. In this work, we
use the radial basis function (RBF) kernel which reads

Kij = exp

(
− 1

δ2
Dij

)
(12)

3 http://scikit-learn.org/
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Featureless classification of light curves 3389

Table 2. Overview of classifier parameters to be optimized.

Classifier Parameter Range

kNN No. of neighbours k 1, 2, ..., 30
Weights Uniform (fixed)

Softening parameter ν 0.01, ..., 1.00 (adaptive)
Kernel width δ 0.01, ..., 100 (adaptive)

ν-SVM
Kernel RBF (fixed)
Kernel degree 3 (fixed)

Number of trees T 100, 200, ..., 1000
RF Split algorithm gini (fixed)

Max. number of features All (fixed)

with D being the distance matrix and δ the bandwidth. As a con-
sequence, low distances will have a kernel value close to unity and
distances significantly larger than δ will be close to zero. We take
the ν-SVM as the kernel classifier. Two parameters have to be tuned
in a ν-SVM, namely the kernel width δ and the width of the soft
margin ν. The soft margin controls the fraction of misclassifications
in the training of the classifier.

2.6.3 Random forest

Given the success in Richards et al. (2011), we use the random forest
(RF) as a candidate classifier as well. RF extends the concept of a
single decision tree by using an ensemble of randomized decision
trees. Unfortunately, by its very nature, this classification method
can only be used on features. At each node of a tree, the features
are split such that the information content (entropy) is maximized at
each decision. The dominant free parameter in an RF is the number
of decision trees, which is the only one considered in this work.

2.7 Performance and optimization

Each of the classifiers presented has several free parameters to be
optimized but we stick for all the methods with the most important
ones. For the kNN comparison this parameter is the number of
investigated k nearest objects, the ν-SVM classifier has the tunable
softening parameter ν, and the kernel width δ and eventually the RF
can be built up of T number of trees. While other parameters (e.g.
tree depth in RF) might have an impact on the classification quality,
it is not the aim of this work to investigate this possible gain with
the choice of these parameters. Also the process of feature selection
is skipped and throughout this work always all features defined in
Table 1 are used. All the parameters are evaluated for each classifier
and data set independently on a fixed grid and the respective value
with the highest accuracy is eventually chosen. A summary over the
tuned parameters and their respective search ranges, as well as all
parameters that have not been optimized, are shown in Table 2.

We judge the performance of a classifier by computing the ac-
curacy defined as the mean fraction of correctly classified targets
over a 10-fold cross-validation; the uncertainty in accuracy is given
by the standard deviation. In addition, we compute the confusion
matrix of the best classifiers to investigate possible caveats in the
presence of multiple and unbalanced classes.

3 DATA

We conduct experiments with the different representations and clas-
sifiers on two data sets. This has the advantage that we have two
independent measures for the predictive power of our method. In

Table 3. Types of variables, number of entities and
average number of observations.

Survey VarType Entities 〈No. of obs〉

Cepheids 3567 225
OGLE Eclipsing binaries 3929 330

RR Lyrae 1431 323

Mira 2833 342
ED 2292 570
RR Lyrae AB 1345 412

ASAS EC 2765 524
ESD 893 547
DSCT 566 492
DCEP-FU 660 561

the first experiment, three classes are to be separated; in the second,
a more complex seven class classification is performed. In fact, in
the former data set the classes are defined more broadly (e.g. no
distinction between different binary classes) and thus it is expected
that the classification accuracy will be higher than in the latter case.
It is the aim of this experiment to show, that our classification al-
gorithm can perform comparably well to state-of-the-art classifiers
for very broad and detailed classification tasks alike.

3.1 OGLE

The Optical Gravitational Lensing Experiment (OGLE; Udalski
et al. 2008) is a survey originally dedicated to the search for mi-
crolensing events and dark matter. Therefore, stars of the Magellanic
clouds and the Galactic bulge were monitored for the unique traces
of microlensing events. Consequently, millions of stars have been
monitored, delivering a rich data base of variable stars. In our work,
we use the data set used in Wang, Khardon & Protopapas (2012)4

where some RR Lyrae, eclipsing binaries and Cepheids in the Mag-
ellanic clouds were extracted from the OGLE-II survey. The objects
selected were known to be periodic before and thus their period was
known as well. In the publication, the determination of the period
is the main goal, but the data base presents a good test bed for
classification as well, since a correctly determined period favours
also good classification results and thus the classification is very
reliable. The total number of objects is listed in Table 3. Some of
the files contain lines with invalid entries, that is a few lines with a
measurement error of zero, which have been removed.

3.2 ASAS

The All Sky Automated Survey (ASAS; Pojmanski 1997) is per-
formed with telescopes located on Hawaii and in Las Campanas
and is led by the Warsaw University in Poland. The sky is observed
in the I and V bands with an initial limit of 13 mag (later extended
to 14 mag). In 2005, the ASAS catalogue of variable stars (ACVS;
Pojmanski, Pilecki & Szczygiel 2005) was published which is the
starting point for our experiment. From the ACVS, we extracted
all objects with a unique classification which is not miscellaneous.
Subsequently, we removed all light curves having less than 50 ob-
servations and all classes with less than 500 members. A summary
of the classes used can be found in Table 3. For the classification
we used the magnitude ‘Mag_2’ (which corresponds to a 4 pixel
aperture) which is a reasonably good measure of the brightness for

4 www.cs.tufts.edu/research/ml/index.php?op=data_software
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Figure 4. Classification accuracy versus the number of Gaussian com-
ponents using the kNN classifier on both data sets. Accuracy is largely
insensitive to the exact choice of the number of Gaussian components.

fairly bright and faint stars. Due to the extension to the faint end,
the classes given could inherent some false classifications itself,
especially since also subclasses (e.g. detached and contact binaries)
are annotated and hence, it is expected, the class assignment in the
given catalogue is not as reliable as in the OGLE case.

4 R E SULTS

As stated in the methodology, the impact of the reduction of the
number of Gaussians has to be quantified. In Fig. 4, we show em-
pirically that the impact on the final accuracy is only marginal, as
long as the number of components exceeds 10. For all conducted
experiments, we fix the number of Gaussians to 20.

In Tables 4 and 5, the results of the different experiments for
the OGLE and ASAS data set are shown, respectively. Since the
L2-norm performs, independently of the chosen classifier, always
worse than the BHA and KLD metrics, we exclude it from the
discussion in the following.

For the OGLE experiment, we see that each method (feature
and density methods) performs comparably well within the typical
deviation between the 10 cross-validation folds. It is worth noting,
the RF, claimed to be the best classifier in Richards et al. (2011),
does not perform any better than the other classifiers. It is further

Table 4. Results for the optimal classifiers for the three-class
classification of OGLE data. The performance is the average frac-
tion of correctly classified objects in a 10-fold cross-validation
with the standard deviation of this performance being the error
(all given in per cent).

kNN ν-SVM RF

Features 95.09 ± 0.74 96.86 ± 0.52 95.61 ± 0.82
(raw) k = 8 ν = 0.04, δ = 0.31 T = 500

Features 95.51 ± 0.81 96.88 ± 0.67 95.59 ± 0.83
(norm.) k = 10 ν = 0.06, δ = 0.08 T = 500

93.44 ± 0.88 95.92 ± 0.68 –
L2

k = 3 ν = 0.06, δ = 0.69 –

95.14 ± 0.70 95.51 ± 0.94 –
KLD

k = 5 ν = 0.14, δ = 0.33 –

94.84 ± 0.83 96.01 ± 0.71 –
BHA

k = 7 ν = 0.08, δ = 0.14 –

Table 5. Results for the optimal classifiers for the seven class
classification of ASAS data. The performance is the average frac-
tion of correctly classified objects in a 10-fold cross-validation
with the standard deviation of this performance being the error
(all given in per cent).

kNN ν-SVM RF

Features 74.22 ± 1.24 78.02 ± 0.68 79.98 ± 1.16
(raw) k = 11 ν = 0.19, δ = 0.53 T = 400

Features 77.60 ± 0.76 80.47 ± 1.21 79.99 ± 1.55
(norm.) k = 17 ν = 0.17, δ = 0.10 T = 400

79.57 ± 0.80 82.08 ± 0.89 –
L2

k = 19 ν = 0.01, δ = 0.56 –

78.96 ± 1.87 75.56 ± 0.94 –
KLD

k = 23 ν = 0.26, δ = 0.34 –

79.73 ± 0.83 81.11 ± 0.90 –
BHA

k = 29 ν = 0.20, δ = 0.14 –

interesting to see that the feature-SVM is performing slightly better
than the SVM based on the density representation. As mentioned
in Section 2, three features exist which cannot be described by the
density-based approach. When removing those respective features
from the feature list, the accuracy of both feature-SVMs drops by
one per cent, indicating that the difference in accuracy does originate
from those. The strength of the variation with respect to the median
observed brightness appears to bear some information about the type
of variability. We elaborate further on this issue in the discussion
section. That the impact of those median-based features is anyway
not too high is supported by the results of the seven class ASAS
classification. It becomes apparent that the more generic definition
of the density enhances the accuracy in contrast to all the feature-
based classifiers. The confusion matrices of the best classifiers from
the density and feature based classification are shown in Figs 5 and
6. It can be seen that classes with more members achieve a higher
accuracy which is expected due to the higher number of training
objects. Otherwise, no significant biases in any direction between
the two different classification approaches can be detected. While
the gain in accuracy is again only marginal, it can be shown that the
same quality is only reached if the three features, not describable
by the densities, are included. Else the classification rates of the
feature-based SVMs drop again by 1 per cent. Apart from this, it
can be observed that the classification quality of the density-based

Figure 5. The accuracies (given in per cent) of the feature based (left) and
density (BHA-metric) based ν-SVM classifier are shown for the OGLE data
set. The x-axis shows the labels according to the classifiers, the y-axis the
given ones; the colour scale stands for the respective accuracy; from zero
(white) to hundred (green) per cent.
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Featureless classification of light curves 3391

Figure 6. The accuracies (given in per cent) of the feature based (left) and
density (L2-metric) based ν-SVM classifier are shown for the ASAS data
set. The x-axis shows the labels according to the classifiers, the y-axis the
given ones; the colour scale stands for the respective accuracy; from zero
(white) to hundred (green) per cent.

classifiers depends quite strongly on the choice of the distance
metric. The KLD does perform in three of the four experiments
worse than the BHA which supports the statement that the BHA
distance is a good distance measure for classification tasks. On the
other hand, one should realize that the choice of the metric, that is
the distance between two given feature vectors, is in principle, also
a free methodological factor in the classification problem. Apart
from the standard Euclidean distance and the Mahalanobis distance
no other measures have been investigated in the literature.

5 D ISC U SSION

In this work, we present a generalization of static features for the
classification of time series. In contrast to previous work, we do
not rely on describing static densities with a set of features but
use the densities themselves to measure the similarity between two
light curves. By doing so, we can reduce the number of degrees
of freedom in the methodology from four (pre-processing, feature
selection ,choice of metric, choice of classifier) to two (choice of
metric and choice of classifier). This allows us to skip the step of
feature selection. The proposed approach follows first principles by
simply assuming a model for representing the data; once a met-
ric is chosen, classification in a kernel setting follows naturally.
The strong point of the newly proposed representation is the fact
that it captures all the information present in the data (including
measurement errors) and makes it available to the classifier.

As highlighted in the results, the choice of the metric used in
the density representation plays an important role. A priori, we are
not aware of any natural choice of a metric. We have shown in
our experiments that the BHA and L2 distance are performing very
well in terms of accuracy. In principle, other (or combinations of)
metrics might exist that are more suited for a given classification
problem.

Our approach presents a different way of performing classifica-
tion. Therefore, it provides independent evidence that the widely
used features are indeed well chosen for the classification problems
considered so far. However, it is unclear how well the chosen fea-
tures generalize to other classification problems. On the other hand,
the density representation is formulated generically and encodes all
information available in the data. Additionally, the proposed method
naturally encodes also uncertainty in the measurements, which is
not taken into account in the feature-based approaches so far. As
a consequence, it is now possible to learn a classification on data

Figure 7. A histogram over the number of observations for the Mira and
detached binaries classes in the ASAS survey are shown. The number of
observations clearly correlates with the class label: if a bisectional line is
introduced at 427 observations, a classification rate of 75.1 per cent can be
reached.

of one survey that contains small (large) measurement uncertainty,
and predict on data of another survey with large (small) photometric
error. While this is problematic for feature-based approaches, it is
automatically taken care of in the density representation.

We have shown that the feature- and density-based approaches
perform comparably well in terms of accuracy for the given data
sets. As aforementioned, there are three features that cannot be
derived from the density representation which appear to increase
the classification accuracy. In particular, the StetsonK value de-
pends directly on the number of observations in a light curve, and
for this reason it cannot be derived from our representation. It is
questionable why the number of observations should be a defining
property of a class. The only reason why it contributes to the per-
formance is because certain classes are apparently observed more
often than other ones (see Table 3) and not because it is an inherent
physical property. In Fig. 7, we show that it is possible to classify
ASAS light curves into Mira and detached binaries with a 75 per
cent accuracy solely using the number of observations that hap-
pened to be recorded. The brightness of stars that vary over a wide
range of magnitudes, such as MIRA, will frequently drop below
the survey-specific detection limit. Hence, faint observations will
not be recorded in the data base. This raises the following problem:
absent recordings are ambiguous because it is not evident whether
the source was too faint to be detected or simply not observed. As a
consequence, the number of observations, and thus StetsonK, hints
to the variability type of a star within one survey. However, this
feature is survey dependent as surveys differ in data base structure
(e.g. some give upper limits) and detection limits, and thus does not
generalize. If non-detections are not treated accordingly, the defini-
tion and use of the StetsonK value can cause dramatic bias on the
classification, especially when knowledge is transferred between
different surveys, as done, e.g. in Blomme et al. (2010). Similarly,
the PercentAmplitude and the PDFP directly depend on the appar-
ent magnitude of the respective object, which is also not an inherent
property of a class. Conclusively, the only reason why these three
features contribute to the accuracy is because of the presence of a
(or several) bias in the observations and not because they capture
physical characteristics of the data. We do not state that the features
in question are useless for classification (indeed they increase the
accuracy), but argue that they do not generalize and are therefore
not useful for knowledge transfer between surveys with different
observational bias. It should be considered, to redefine these
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features accordingly, such that they do not rely on the observation
strategy of a survey.

In summary, the proposed method (a) introduces a more general
notion of distance between light curves in contrast to static fea-
tures, (b) naturally incorporates measurement errors, (c) performs
equally well as state-of-the-art feature-based classifications, and (d)
yields an independent measurement of the accuracy as compared to
feature-based classification.

As a future prospect, the density-based representation could be
useful in unsupervised settings where the notion of distance is more
critical in the absence of labels which are the driving force in a
classification task. Feature sets that have been optimized for clas-
sification do not necessarily provide a good similarity measure. In
subsequent work, we will investigate whether the proposed notion
of distance naturally distinguishes between the different variabil-
ity types. Additionally, we advocate that besides static features also
temporal information should be incorporated in a similar vein. How-
ever, the design of such a time-dependent representation remains an
open question.
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APPENDI X A : D ETAI LED DESCRI PTI ON
O F F E AT U R E S

In the following, we give a detailed description of the static fea-
tures used in Richards et al. (2011). The computation of the
software is done using the PYTHON FATS package, available under
https://pypi.python.org/pypi/FATS. The error in the definition of
the StetsonK value in older versions was corrected manually.

Amplitude: Absolute difference between the highest and the lowest
magnitude.

Beyond1Std: Fraction of photometric points that lie beyond one
standard deviation with respect to the (with photometric errors)
weighted mean.

FluxPercentileRatio (FPR): Relative difference of flux percentiles
with respect to the 95–5 percentile difference. The number after the
FPR gives the width of the percentile, always centred on 50, e.g.
FPR20 = F60−F40

F95−F5
.

Skew: The skew of the distribution of magnitudes.

SmallKurtosis: Kurtosis of the magnitudes for small samples.

Median absolute deviation (MAD): Median deviation of the absolute
deviation from the median.

Median buffer range percentage (MedianBRP): Fraction of data
points lying within one-tenth of the amplitude around the median.

PercentAmplitude: Largest absolute difference from the median
magnitude, divided by the median magnitude itself.

PercentDifferenceFluxPercentile (PDFP): The 95–5 flux percentile
difference, divided by the median of the flux.

StetsonK: More robust measure of the kurtosis, as defined in Stetson
(1996).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Chapter 4

Discussion

The results of the individual publications were already discussed at an earlier point. In this
chapter the usefulness and implications of these new approaches are discussed and the obtained
scientific results are put in a broader context. The following considerations are discussed for
each presented publication, respectively.

1. Generalization. The model generality refers to how flexible a model is. In the best case,
the applied model is generic enough to be used on any given dataset without fine-tuning
but is neither susceptible to over-fitting nor to over-simplification.

2. Applicability. The newly developed methodology should be eventually employed on large
existing databases. Therefore, these approaches have to be feasible in terms of computa-
tional complexity (scaling) and reliability, e.g., in the sense that they do not depend on
starting conditions too heavily.

3. Advances compared to model-driven approaches. The initial motivation to introduce a new
methodology was to analyze databases without the deficits of standard model-driven ap-
proaches. It is therefore necessary to justify the need of new methodology and highlight
the advantages and weaknesses of each approach, respectively.

4. Insights gathered. A new methodology is considered useful if it is validated with respect
to existing methodology and is able to provide some additional benefit. It is argued why
the revealed knowledge remained undetected with the former approaches and could be
discovered by the presented ones.

5. Future work. Eventually, the presented approaches will be embedded in a broader context
and possible limits and extensions are discussed. Some work under current consideration
is also presented.

In summary, two central questioned will be answered in this section.

Was new methodology needed?
Can the presented approaches eventually replace existing ones?

60
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4.1 Determination of spectroscopic redshifts

Generality The presented approach to extract possible multiple redshifts in spectra general-
izes very well, as long as the training and testing set come from the same wavelength-regime
and the spectra are of a comparable resolution. Since the data items are compared directly to
each other, the number of parameters/methods that have to be chosen are only very few. The
preprocessing has only a minor impact on the results, but changing the regression approach
(here, k nearest neighbors) can have quite dramatic impact on the results. The algorithm can
further be trained on any other provided dataset, e.g., coming from the infrared. Apart from
estimating redshifts, other problems could be solved by modifying the preprocessing. The com-
parison of the continuum behavior could, for example, be used to estimate the strength of the
Calcium break in spectra. Additionally, an initial clustering could be performed by using the
same approach.

Applicability In practice, the methodology is easily applicable and due to the use of a non-
parametric regression algorithm, the number of degrees of freedom for this algorithm is man-
ageable. On the other hand, the computational expense of applying this methodology to a huge
dataset is fairly high, the computational complexity scales with O

(
N2D

)
. It should, however,

be noted that the extracted feature vectors contain a considerable amount of entries that are
close to zero. Performing dimensionality reduction beforehand, can limit the computational cost
of the algorithm. This decrease of cost can thereby not only be attributed to the lower dimen-
sionality of the representation (which changes the complexity linearly), but also due to a more
efficient search structure in the comparison by using spatial tree structures (see, e.g., Bentley,
1975). Additionally, time can be saved by replacing the very robust and reliable leave-one-out
cross-validation by a smaller training set. However, the loss in accuracy and completeness as a
function of the size (and selection) of the training set have to be closely monitored as otherwise
systematic (selection) effects may occur.

Advances The detection of multiple-redshift objects in the spectral database of SDSS can
also be solved in a purely model-driven way. However, this introduces a lot of problems which
limit the model-based approach. First of all, the simultaneous fitting of a template, spectral
features and the redshift causes an unnecessary over-complication of the model. This is especially
troublesome, if multiple (say r) redshifts are to be detected, as then the complexity of the model
scales with

O ∼ (Ntemplates ·Nredshifts)
r > (50000)r

where Ntemplates is the number of templates and Nredshifts is the number of tested redshifts.
Apart from the complexity, an effective mechanism has to be chosen that can select the best-
performing model. As shown in Subsection 2.4.1, this cannot be solely done on the basis of
minimizing the difference between fit and data as then the model with the largest value of r
is always favored. The possible solutions to that are regularization and/or splitting the data
into training and validation set. Other approaches used for detecting multiple line system focus
mainly on individual spectral regions where a local fit is employed to some pre-defined lines.
These assumptions limit the use (and the generality) of these techniques dramatically as, e.g., in
the case of an SMBHB also just one SMBH could be active while the absorption lines of the host
galaxy indicate a relative movement of the active SMBH. However, it should be noted, that also
the presented approach is not yet capable of describing an arbitrary number of superimposed
redshift systems. The first experiment allowed only for a shift between emission and absorption,
the second one between pre-defined emission and absorption regions. Apart from lines that
might be missed in these selected regions, the use of the MAD for measuring the confidence of
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a detected redshift system is still questionable. Especially, the low fraction of less than 60% of
good redshifts indicates that more appropriate measures should be investigated. This statement
is supported by a large fraction of noisy objects for which the redshift was anyway determined
correctly. Conclusively, a purely model-driven approach can explain expected behavior much
better, then the presented one, however, when it comes to extraordinary objects, which was the
initial motivation, a data-driven approach might be of big help.

New insights The application of the newly introduced methodology revealed objects which
have not been noted to be special before. All of the proposed objects have been flagged either
with “SMALL DELTA CHI2” or “MANY OUTLIERS” by the spectroscopic pipeline of SDSS.
The pipeline denotes that something went wrong, however, the fraction of objects with either
one of the flags is way too high to closely inspect the nature of all of them. The pipeline
casts warnings quite generously which makes them fairly useless for the detection of spurious
spectra. In summary, the existing pipeline, as well as other existing approaches, are not able to
detect those outliers in an unbiased way, as the presented approach does. Therefore, it makes
it an extremely powerful tool for investigating huge spectral (or generally high dimensional)
databases. The three most prominent examples have been shown in the respective publication,
and for one of them further investigation was carried out in order to confirm the existence of
a giant arc. This investigation is illustrated in Figure 4.1 where observations in the sdss g,
sdss i and Ks, obtained with MODS and LUCI (both instruments at the LBT) are shown. In
all bands the arc is clearly visible and in the g-filter slight evidence can be seen, that the arc
is actually part of a full circle surrounding the object (marked by a red circle). However, even
with the generous exposures of 5 (13) min for MODS (LUCI) at a 8.4 m telescope only a fraction
of the arc can be resolved. The radius of the circle is of the order of 20′′ and it is interesting
to see that its center does not coincide with the center of the very nearby galaxy. The object
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Figure 4.1: Images of the lens candidate SDSS J120419.07-001855.93 observed at the LBT.
Observations (a), (b) performed with MODS; (c) with LUCI and (d) is a false-color image
from the SDSS survey. In the first image, the potential ring/arc is highlighted.

was also detected in Goto (2005) and was classified as an E+A galaxy (Dressler and Gunn,
1983) at redshift z = 0.094. In the SDSS spectrum very prominent Balmer absorption and
no significant emission from star-formation is visible which supports this interpretation further.
Even though, tidal tails are not uncommon for this galaxy type, it is interesting to see that the
arc-like structure seems at no point connected to the central galaxy. While this does not rule
out a tidal tail per se, it leaves at least some doubts about the origin of the segment of a circle.
However, the large extend of this structure weakens the hypothesis of a gravitational lens since
the number of lenses as extended as this is very limited so far (see, e.g., Muñoz et al., 1998); a
huge mass would be required to explain the observed ring. Further observations are needed to
reveal the true origin of the observed structure, potentially, a spectroscopy would help to gain
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further insight. However, this object is the best example for highlighting the advantages of the
presented approach. In Fig. 4.2, one can see that, despite the blue end, the spectrum is nearly
perfectly describable by a single blackbody radiator with some superimposed absorption lines.
Since the SDSS pipeline is trying to fit spectral templates and redshifts simultaneously but does
not allow for a large redshift for stellar templates at the same time, it was not able to describe
that object accordingly. On the other hand, the newly presented method breaks the degeneracy
between template selection and redshift estimation and can therefore more reliably estimate the
redshift of this object.
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Figure 4.2: SDSS Spectrum of the lens candidate SDSS J120419.07-001855.93. Planck’s law,
with superimposed absorption lines (see Tab. A.1) at redshift z = 0.094, is fitted to the data.

Future work The k nearest neighbor regression is a useful alternative (or more of an ex-
tension) to the state-of-the-art models used for analyzing spectra. With its huge flexibility and
ability to detect outliers, it can be used to check results from other analysis pipelines for correct-
ness. Additionally, valuable knowledge hidden in the data can be revealed. So far, the algorithm
still relies on a set of given training objects (supervised learning). With some modifications of
the extracted model and the distance measure, this algorithm could also be transformed into a
unsupervised database where the elements are sorted by the shift along the y-axis. In practice,
this scenario is harder to realize as the distance has to be defined such that it is invariant against
the amplitude of the spectral features and the continuum. The next steps of this model should
be to test how the computational complexity can be reduced in an effective way and how the
extracted sparse feature vectors could be turned into a lower dimensional structure. Finally, the
application of the algorithm to the full SDSS database is desirable, as then a large number of
peculiar objects can be identified and the performance of the presented algorithm against the
existing approaches can be evaluated.

4.2 Visualization of time series

Generality The echo-state network (ESN) is a discrete time recurrent neural network and
is the underlying model in the presented model-coupled autoencoder (AE). The ESN is able
to capture the latent behavior that is causing the dynamical behavior of a time series. The
presented method can be extended to visualize all kinds of data by solely replacing the ESN
with a model that suites the presented science case. This highlights the broad applicability and
generality of the proposed algorithm, which can be extended to symbolic sequences (e.g., text).
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Applicability The application of the ESN-coupled AE on real data introduces some problems.
First of all, the data have to be normalized in advance such that value range does not exceed the
interval [−1, 1]. Secondly, the optimization of the AE is fairly costly. It includes the repetitive
(expensive) use of the ESN, as eventually the reconstruction error should be measured directly on
the data (time series, in this case). Additionally, in the presented case the AE has 2.040 trainable
weights which have to be optimized. This optimization is not only costly, but convergence
depends on initial random conditions. This is an undesired but inevitable behavior. To reduce
the impact of the initial conditions, the optimization could be performed several times with
different initial values, and eventually only the model with highest likelihood is kept. However,
this would lead to another significant increase of computation time14. Despite the size of the
ESN reservoir and the size of the hidden layer of the AE, no other initial parameters have to be
set. Therefore, this methodology can be applied to any kind of unknown dataset without any
further tuning.

Advances The direct application of dimensionality reduction algorithms on sequential data
is not meaningful. This is because time series can be of variable length, should be treated
in a shift-invariant way and eventually the sequential nature (neighboring data points are not
independent) should be respected. All of those requirements are not met if the sequence is
treated merely as a vector. In order to visualize sequential data, they have to be transformed
into a vector representation, using an according model. This could be, for example, a physically
motivated law such as the temporal behavior of an eclipsing binary. This would yield a much
more meaningful representation than applying dimensionality reduction on interpolated, and
phase-folded binary light-curves, as done in Matijevič et al. (2012). However, the choice of
the model is dictated by the provided data and therefore drives the visualization. The model
parameters returned by applying the model to the time series are then to be visualized. If
the number of parameters is sufficiently low the parameter space can be inspected visually by
creating the respective subplots. This visual inspection becomes already intractable for a simple
binary model and therefore, the application of a dimensionality reduction algorithm is inevitable.
Consequently, without the data-driven methodology a visualization of time series would not be
possible. The huge advantage of this methodology is that it is capable of visualizing huge
amounts of data in an unsupervised fashion and is therefore tailored to be applied on databases
produced by Kepler or similar. The visualization algorithm in its current state is missing the
capability of dealing with periodic behavior if the periodicity is longer than the memory of the
ESN. ESNs with jumps or the inclusion of time-warping in the ESN are potential alternatives
to incorporate periodic behavior quite naturally.

New insights Unfortunately, no other unsupervised methodology was used on non-periodic
time series data so far and therefore, the performance of the presented approach cannot be
judged. However, the ESN-coupled autoencoder provides an extremely powerful method to
inspect huge database of sequential data in an explorative fashion. To highlight the importance
and necessity of the presented approach, light curves as obtained from the Kepler survey are
visualized in Figure 4.3a. From the catalog by Debosscher et al. (2011) sources with little
evidence for periodicity (Pf1 > 0.5), but considerable variability (amp11 > 2e−4) were selected
and only a subset of 303 smoothly variable objects has been kept. In the visualization a clear
(arc-like) structure becomes visible with some overdensities around the black and the magenta
markers. This highlights that also the non-periodic light curves show common behavior and can
therefore be clustered using the presented approach. In order to validate the correctness of the

14On the other hand, multiple individual processes are straight-forward to parallelize. Thus, using as many
cores as desired initial value settings would effectively not increase the computation time at all.
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Figure 4.3: Visualization of non-periodic Kepler light curves. On the left side (a) the visual-
ization using the ESN-coupled autoencoder is shown. The light curves of the marked objects
are plotted in (b), the y-axis is scaled arbitrarily for each curve for better visibility.

visualization, six light curves from distinct regions of the arc are plotted in Figure 4.3b. There,
one can see that all objects located in the upper part of the visualization (green and black) are
dominated either by random variability or consist of pure noise. The points further down in the
representation exhibit some long-term variability (blue) and eventually the long-term behavior
mixes with events on shorter time scales (red). It is also worth noting that the area between
the blue and the magenta point is populated with light curves which exhibit long (∼ 15 d)
quasi-periodic behavior. The majority (> 75%) of the visualized light curves have either been
marked as miscellaneous or as active stars in the catalog of Debosscher et al. (2011). This
shows the large potential in the application of visualization methods as it allows an unbiased
view on the similarity of the given light curves. According to the NASA Exoplanet Archive15,
the outlier (KIC 9761615) on the very right of the plot is a potential exoplanet transit. Even
though, the inspection of the first quarter of the light curve does not allow detailed conclusions
it appears that this source is an active and strongly varying one rather than a good candidate
for an exoplanet. In recent work (Kügler et al., 2015)16, the application of the proposed method
on a larger dataset of Kepler lightcurves was performed. There, quite striking correlations
between the variability behavior and the physical properties of the stars (such as temperature
and surface gravity) were detected. It is pleasing to see that already known correlations between
the variability behavior and physical properties were re-detected in the proposed visualization.
Thereby no physical knowledge, such as periodicity, was imposed.

Future work The ESN-coupled AE is a unique tool to visualize sequential data in a fashion
that preserve the similarity (dictated by the model) between data and not just the similarity
between model parameters. The use of the ESN as the underlying model makes it especially
useful for the visualizing regularly sampled astronomical time series. Even though, the number
of tunable parameter is low, it is very flexible and can be applied to any given sequential data
without much tuning. More efforts should be invested in decreasing the arbitrariness of the
visualization introduced by the random initial state. Current work focuses on the inclusion of
periodic behavior, as well as the use of physically motivated models.

15 http://exoplanetarchive.ipac.caltech.edu
16 http://arxiv.org/abs/1508.03482

http://exoplanetarchive.ipac.caltech.edu
http://arxiv.org/abs/1508.03482
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4.3 Featureless classification

Generality The representation of the static part of an irregularly sampled light curves by
a parsimonious mixture of Gaussian is a very natural one. The conversion to a probability
density allows the use of the same classifier throughout different datasets. The major advantage
of the approach is that observational biases are either considered (photometric errors) or are
circumvented (sampling) such that the representation quality only depends on the number of
observations and how independently they have been drawn. This opens also the possibility
to perform an initial clustering on an unseen dataset as a generic distance can be computed
which is not depending on the choice of handcrafted features. Therefore, the approach is very
general. The down-side is that only parts of the available information are used because, so far,
the dynamical information is discarded.

Applicability The conversion of the light curve into a parsimonious mixture of Gaussian
is a computationally inexpensive task. However, the computation of the distance matrix is
very costly, it scales with O

(
N2
)
. The distance between two mixtures of Gaussians can be

approximated, however, testing different boundaries yielded very imprecise approximations, that
were not sufficient for classification. Apart from the computational costs, the algorithm is easily
applicable as it has only one free tunable parameter for the mixture of Gaussians and another
one for the kNN (two for the SVM) classifier.

Advances Employing a purely model-driven approach for classification to irregularly sampled
light curves is a very difficult task as mentioned before. On the other hand, data-driven ap-
proaches have been established for classification tasks for quite a long time. The use of purely
data-driven methodology introduces certain issues that have to be considered. The creation and
selection of features has been the central way of classifying light curves. However, in none of the
presented publications the usefulness and reliability of the selected features has been evaluated
properly. So far, the usefulness of features has been solely tested in terms of classification per-
formance in in-sample tests. This is an extremely dangerous way of validating the performance
because it mocks a correct treatment of survey-specific biases. The biases are the same for all
observations within one survey. If the biases and uncertainties are not taken into account accord-
ingly, the classifier itself will be biased instead. This limits the generality of the feature-based
approach as the importance of the individual features is changing for each provided dataset.
Even worse, the importance can even change for a single database if the selection of the training
and testing set is not absolutely random. This problem can be only circumvented if a classifi-
cation algorithm is employed which does not allow the introduction of a bias. In the presented
experiments, it was shown that the classification performance decreases by 1% if biased features
are excluded. While this seems a fairly low fraction it should be considered, that this refers to
in-sample test. It is urgently required to investigate the impact of those biased features in a
setting where the training and testing set have distinct biases. Besides the bias of the features,
the impact of the uncertainty of the measurements could be investigated by learning on a faint
(high photometric errors) subsample and predict on a bright (low error) one of the same survey.
Including the uncertainties of the photometric measurements allows a comparable classification
performance for noisy sources and additionally non-detections (that are upper limits) can be
taken into account quite naturally, as opposed to the deterministic feature-based approach.

New insights The presented methodology enables the community to cross-check the results
of their respective classification algorithms to a very well-defined standard classification algo-
rithm. Newly provided features can be tested for their biases as in principle the classification
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performance of the presented algorithm solely depends on the chosen metric (and less on the
classifier). Consequently, the presented work revealed a strong bias which is caused by the in-
complete way of recording variable objects. Namely, if an object has been observed but not
detected in this observation it is currently not noted in the database. This is a very poor way
of recording observations as a non-detection, and therefore a lower limit in terms of magnitude,
can yield extremely valuable information about the nature of the object. On the other hand, the
missing recording of these events gives rise to an misleading increase in performance accuracy
by including heavily biased features such as the StetsonK value. While the StetsonK value is
subject to observational biases, other values like the PercentAmplitude and PercentDifference-
FluxPercentile (PDFP) include effects of spatial bias. The distance modulus (dm = m −M)
towards the Magellanic clouds is of the order of dmMC = 18.5. Consequently, the amplitude of
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Figure 4.4: The clear separation between cepheids and RR Lyrae stars in the OGLE dataset
only exists, since all stars are located in the Magellanic clouds. However, this is a very special
situation which does not generalize for all regions of the sky, therefore the use of features
including the median brightness is highly questionable.

variability and the apparent magnitudes provide quite strong evidence on the location of the
observed object. As an example, cepheids and RR Lyrae stars both vary typically with an am-
plitude up to 1.5 mag, therefore they would be indistinguishable using just the amplitude. On
the other hand, OGLE is focusing on the observation of the Magellanic clouds and thus the ap-
parent brightness of RR Lyrae (cepheids) stars is of the order of 19 mag (16 mag). In Figure 4.4,
it is shown that the introduction of the apparent magnitude provides additional information
allowing for a better distinction between the classes. However, it is questionable whether such
incidental knowledge should be used in the classification of light curves, especially when the
survey observes large areas in the sky which do not obey this behavior. If the same classification
scheme would now be used for an all-sky survey (such as ASAS) where the majority of stars
is observed in the Milky Way, the learned classifier would not be applicable. If the median
apparent magnitude is used, it should be used as a singular feature and not be encoded with
other characteristics as done in PercentAmplitude and PDFP.

Another great advantage of the newly introduced methodology is that now even unsupervised
algorithms may be applied in a meaningful way. This is of course also possible for a given set
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of features, however, removing or changing the importance of individual features will change
the outcome of the algorithm significantly. The presented representation is a very natural one
and it has been shown that the L2-norm is a suitable measure to describe distances between
the probability densities. Therefore, a self-organizing map (SOM, also called Kohonen map,
Kohonen, 1990) is suited to visualize the prototypes which are inherent in a given dataset. In
Figure 4.5a the Kohonen-map for the static probability densities of the OGLE data can be seen.
Each of the data items provided to the SOM is normalized, the learned prototypes are, however,

(a) Trained self-organizing map (b) Class memberships

Figure 4.5: A self-organizing map trained on the static probability densities of the OGLE
data. The obtained prototypes are shown in (a), in (b) the class assignment for Cepheids (red),
binaries (green) and RR Lyrae stars (blue) are shown.

not necessarily normalized. One can see in Figure 4.5b that all of the obtained prototypes can be
more or less uniquely associated with one of the provided classes. Note that the frequency with
which a class occurs has a considerable impact on the area covered in the self-organizing map.
Therefore, the RR Lyrae stars (blue) are confined in a small region. This effect could be avoided
by changing the distance and learning function of the SOM, this would, however, not change
the general conclusions drawn from it in the following. For datasets with more classes (such as
ASAS), more confusion is also added to the SOM. The classes will then be not as separated
anymore since only the static behavior is considered and different classes become distinct only if
the time behavior is included. However, the presented methodology can provide a rough guess
on the class of a given light curve. Subsequent inclusion of the time behavior, can then describe
the different classes in more detail.

Future work The most obvious extension to the density-based classification algorithm is to
include the temporal behavior. Again, the explicitly time-dependent features can be strongly
survey-dependent. Therefore, the included features have to be shown to be independent of
sampling and observation strategy! The only defining temporal property which is potentially
unbiased would be the estimate of the period. It should be noted that all the period-finding
algorithms do depend on the sampling and require a large number of independent observations.
Therefore, the quality of the period estimate is depending on the sampling and on the photo-
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metric uncertainties of the observations. Furthermore, the chosen period-finding algorithm also
has an impact. Therefore, even the period and its uncertainty (or false alarm probability) can
be only included with care. The inclusion of the period is not entirely straight-forward, and two
obvious ways might be investigated. With the known periods of all objects, the distance matrix
can be extended with respect to the period

D (i, j) = Dstatic (i, j) + γDperiod (i, j) (4.1)

where Dstatic is the distance with respect to the static distribution and γ is a freely tunable
parameter which has to be optimized. Dperiod (i, j) is the distance in terms of period which
could be computed by

Dperiod (i, j) =
Pi
Pj

or Dperiod (i, j) = log10

(
Pi
Pj

)
(4.2)

with Pi being the period of data item i. Parameter γ does not need to be a scalar, but could be
also a matrix which is adapted for the comparison between all classes. This optimization of the
metric is known as metric learning (see Xing et al., 2003, and references herein). The down-side
of this approach is that yet another parameter has to be introduced. In order to circumvent this
problem, the classification could be also run on the static matrix and the period-matrix Dperiod

independently. In order to obtain the final class label, the respective classifier should be able
to return a probability so that eventually a Naive Bayes classifier (Rish, 2001) can be applied.
Apparently, this approach cannot be fine-tuned with an extra parameter and comes at the cost
of lower flexibility. In addition to the inclusion of the period, the generality of the concept can
be tested by performing transfer learning with the proposed algorithm. In this approach the
classifier would be trained on one dataset (e.g., ASAS) and is supposed to provide labels on
another one (e.g., OGLE). If the applicability of this transfer learning scheme was validated,
the classifier can be also trained on a mixed dataset. This would provide a good alternative to
visual inspection for new upcoming surveys. The knowledge of a visually classified subsample
can then be included as well and thereby enlarge the knowledge which is made available to the
classifier.
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Summary

In this thesis, state-of-the-art machine learning techniques were applied to complex and high-
dimensional databases. Machine learning approaches imply that no explicit physical model was
employed on the data, instead general models (e.g., ESN) or the data themselves have been
used as a model (redshift regression, light curve classification). In order to apply these learning
techniques, a new fixed-length vector representation for the data was obtained. Subsequently,
the distance/similarity between the new representations of the provided data was measured.
This similarity measure is then used to obtain regression values, visualize , and classify test
observations. The big advantage of analyzing datasets without using explicit models is that
the analysis is not influenced by potentially wrong (or just incomplete) models. Additionally,
data-driven algorithms are more flexible and able to learn from the provided dataset. The model
is thus evolving with the supplied data and the decision about the emergence of a new class is
effectively left to an objective function. In this way, the approach is less biased more easily re-
producible than the human decision making. Therefore, learning approaches provide a powerful
alternative to the manual inspection which is still the most prominent approach in astronomy.
The power, inherent in data-driven approaches, was shown in three very distinct science cases
which cover a broad range of common astronomical tasks, namely regression, visualization, and
classification. In addition, the respective methods were applied on very different data types,
covering optical spectra as well as regularly and irregularly sampled light curves0. The major
focus of this work was to provide new representations of astronomical data that are flexible and
can be easily extended to a broad range of similar observations and problems. Subsequently,
these new representations were made available to state-of-the-art learning algorithms to achieve
the required tasks. In order to enable the astronomical community to use the presented method-
ology in diverse science cases, it is necessary that the methodology is easily applicable, i.e., has
a low number of freely tunable parameters, and is computationally efficient.

Redshift estimation The detection of SMBHB, gravitational lenses and other peculiar ob-
jects is an actively debated topic in astronomy. For this purpose, SDSS spectra were inspected
for the existence of potential multiple redshift systems. Existing approaches focused thereby on
shifts between pre-defined spectral features, e.g., double-peak [OIII]-lines (Smith et al., 2010)
or shifts between the [OIII] and the Hβ (Tsalmantza et al., 2011). However, focusing only
on predefined spectral features limits the generality, and thereby the completeness, of these
approaches. The results from the SDSS redshift pipeline are in this case of little use since
the analysis is not tailored for the detection of objects not describable by any of the template
prototypes.

In the presented work, an approach that can detect multiple redshift systems for different
spectral features and independent of the underlying continuum was introduced. This was done
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by first subtracting the continuum to obtain a new vector representation tailored for estimating
redshifts. The redshift of a test spectrum was estimated by scanning the database for the
most similar representations using a k nearest neighbor search. Eventually, the median of their
redshifts was then assigned to the test spectrum. For matters of clarity, the analysis was solely
performed on a subset of ≈ 16, 000 SDSS spectra. Within those ≈ 0.1% showed peculiarities
in their spectra which were either caused by badly subtracted night sky or by the existence of
multiple redshifts. A big advantage of the presented methodology over the SDSS redshift pipeline
is that the simultaneous fitting of the class and the redshift can be disentangled. This led to the
discovery of SDSS J120419.07-001855.93, an E+A galaxy with a spectrum that is very similar to
that of a single F-star. The presented methodology does not respect the continuum behavior of
the spectrum and does not get confused by the underlying blackbody emission of the spectrum.
On the contrary, the SDSS pipeline cannot separate class and redshift fitting and therefore fails
to describe the spectrum since only non-stellar sources are tested for larger redshifts. Hence, the
methodology can be used as an alternative cross-validation for the results obtained by SDSS.
With ever growing spectral databases, an independent estimate of the redshift, without imposing
any explicit physical model, will gain importance as it allows to cross-validate the correctness
and detect outliers at the same time.

Time series visualization Time series, obtained from space-based observations, provide an
unhampered and complete view on the dynamical behavior of astronomical sources. Surveys,
such as Kepler, provide an immense amount of data and therefore enable astronomers to reveal
formerly unknown variability behavior. So far, the detection and analysis of the Kepler light
curves focused on the search for dedicated object classes with already known variability behavior
(e.g., RR Lyrae in Kolenberg et al., 2010 or binaries in Prša et al., 2011). In a more general
classification by Debosscher et al. (2011), more than 60% of the sources are not assigned to
any of the pre-defined classes. Apart from this, the reliability of the assigned labels is highly
questionable. For example, if the catalog by Prša et al., 2011 is used as ground truth, the
precision of Debosscher et al. (2011) in detecting binaries is < 50%. Thus, a more general
approach to visualize (and later on classify) all light curves according to their latent dynamics
bears a huge discovery potential.

In the second publication, visualization was performed by coupling an echo-state network
with an autoencoder. The ESN captures the latent dynamics inherent in the light curves by
respecting sequential properties, such as invariance against shifts and the variable length of
sequences. The autoencoder is then used to reduce the dimensionality of the parameters resulting
from the ESN to two. The crux of this algorithm is that, due to the coupling, the reconstruction
error caused by the encoding can be directly measured on the data, instead of merely measuring
the reconstruction error on the model parameters. For a set of labeled artificial and X-ray data,
it has been shown that the coupling between the encoder and the model allows to separate
different variability classes in a more reliable way. The subsequent application of the newly
developed methodology to 300 unclassified Kepler stars allowed to cluster the variable sources
according to their dynamical behavior. Even though, the visualization quality of the presented
algorithm on unclassified Kepler data was judged only empirically, it is satisfying to see that
different subclasses with different dynamical properties emerge. The obvious next step would be
to apply the algorithm to the entire Kepler database. A step towards this direction was made in
Kügler et al. (2015) where ≈ 6, 200 non-periodic Kepler light curves were visualized. Only being
presented the light curves, the visualization appears to learn about physical properties (e.g.,
surface gravity) and separates eventually main sequence stars from giants in the visualization.
While this behavior has been noticed before (Huber et al., 2010; Bastien et al., 2013), it is
pleasing to see that this correlation is also revealed by the presented visualization algorithm.
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Light curve classification Ground-based observations of variable sources are sampled very
irregularly. The incompleteness of the observation is depending on seasonal effects, the weather
at a given location, and the observation strategy of a given survey. Consequently, the obtained
light curves are extremely inhomogeneous. As stated in the former paragraph, comparing (even
regularly sampled) light curves is not straight-forward; the inhomogeneity adds another un-
certainty because now even the knowledge about the dynamical behavior is incomplete. The
common strategy to represent a given light curve as a fixed-length vector is the extraction of
features. This representation can be used to train classifiers on a subset of light curves that
have been manually labeled. In Richards et al. (2011) it has been argued that as many features
as possible should be extracted and the decision about the importance of features can be left
to the very powerful random forest classifier. This approach has shown to be reliable on dif-
ferent datasets, however, other issues relating to the use of features have been neglected so far.
First of all, the features should not depend directly on properties that are survey-inherent, e.g.,
sampling. It can be easily shown that some of the features17 do not obey this behavior and are
strongly biased due to the observation (recording) strategy. Secondly, the features are treated
as point estimates which strongly limits their use if they are extracted from different surveys.
Even within a single survey, the uncertainty can vary significantly as fainter sources tend to
show higher uncertainties. Lastly, the feature-based classification does not allow to infer any
physical knowledge about mis-classified sources as (most of) the features are meaningless from
an astrophysical perspective. The arbitrariness of the feature selection, and therefore of the
distances between light curves, prohibits the use of unsupervised methodology as the outcome
would differ drastically if features are added or omitted.

The introduced methodology uses probability density functions (PDFs) to represent the
static part of the light curves. It was shown that the classification performance is comparable to
that of state-of-the-art classifiers (using the random forest) if only static features are considered.
Besides that, the use of PDFs has great advantages. Since the data representation is a very
natural one, the only degrees of freedom in the presented methodology are the choice of the
metric and of the classifier. In contrast to that, the feature-based classification is preceded by
feature selection and normalization. Another disadvantage of the features is, that they cannot
deal properly with outliers, while in the density-based approach only a low probability is added
to the overall distribution which, depending on the chosen metric, is negligible. Additionally,
the photometric uncertainties are captured accordingly and therefore also non-detections can
be included quite naturally, if recorded. Finally, the new density-based representation allows a
meaningful application of unsupervised methodology, such as the self-organizing map shown in
Section 4.3.

Conclusion The findings of this thesis highlight that new approaches are needed to solve the
mentioned scientific questions. The advantages of the introduced methodology were highlighted
in very diverse, astronomically relevant science cases. The application of the approaches to huge
databases revealed interesting objects on one side and severe drawbacks of the existing method-
ology on the other. However, this implies by no means that the data-driven approaches are
always superior and should replace existing ones. The presented algorithms should be seen as
complementary approaches which are of a high value when big volumes of data are available. In
that case, data-driven algorithms can provide a significantly less biased view on the data which is
especially helpful when the physics behind these high-dimensional and highly complex data still
needs to be explored. Additionally, the application of a well designed machine learning approach
to a large dataset should recover the knowledge independently obtained by human inspection.

17In the presented case, it has been only shown for static features. This statement holds also for non-static
features, e.g, the maximum slope.
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However, it is important to notice that it is much harder to understand the results of a machine
learning task than the ones of a model-driven approach. A model-driven approach allows a
direct interpretation of physical properties rather than incomprehensible (and also physically
meaningless) parameters. Fixing the missing link between meaningless parameters which origi-
nate from the application of purely data-driven methods and real physical quantities should be
the main concern on the data analyst’s and astronomer’s side as only this can eventually lead to
a common understanding of data. A step towards this goal has been done by applying physical
models to existing data in a probabilistic setting. For example, Lewis and Bridle (2002) provide
a fully probabilistic estimate of the parameters of the cosmic microwave background (CMB). In
parallel, the new direction of semi-supervised machine learning approaches is emerging slowly
(see, e.g., Richards et al., 2012). There, substantial but incomplete knowledge can be provided
to the algorithm and eventually the best solution, balancing the given knowledge and evidence
acquired from the data, is found.

It was shown, that the way of representing (and also preprocessing) the available astro-
nomical data has a huge impact on the usability of data-driven approaches. Effectively, the new
representation is translating the scientific question into a form that is understandable by learning
approaches. This is quite nicely illustrated in the first publication. If only the raw data would
be fed to a regression algorithm, the similarity of spectra would be dominated by the continuum
and therefore the similarity would not be judged according to redshift. The representation of
the data is thus a trade-off between making the data understandable for the learning approach
and keeping them meaningful for scientists. For visualizing light curves, a purely data-driven
model was employed to obtain a new representation. While the resulting weights of the ESN are
entirely useless for a physical interpretation, the coupling of the autoencoder to the ESN allows
to study the impact of a change in the weights on modeling the light curves. This enables us to
obtain a physical intuition about the similarity of light curves in a two-dimensional projection,
even though one has to be still aware of the fact that the underlying ESN interprets the similarity
between light curves potentially quite different than our human perception would. Therefore,
the coupling of a physically motivated model to the autoencoder is a valuable method to obtain
an understanding of the latent behavior. Eventually, by classifying light curves it has been
shown that understanding the extracted features is way more troublesome than understanding
the PDF. On the other hand, learning approaches are tailored for vectorial data (features) and
therefore a broader variety of algorithms exists, for example the random forest, that are not
applicable for this more general representation.

Conclusively, the application of machine learning approaches in astronomy is still in its
infancy. The potential, in terms of science cases, to be tackled with alternate methodology
is huge. The analysis of radio cubes (e.g., Punzo et al., 2015), morphological studies (e.g.,
Lintott et al., 2008), the automated clustering of spectral databases (e.g., Cui et al., 2012) and
the treatment of upcoming (peta-byte sized) sequential databases (e.g., Ivezi et al., 2011) are
certainly just the most prominent examples and reflect only the tip of the iceberg. It is inevitable
that computer scientists, statisticians and astronomers work hand in hand so that astronomy
can benefit from the knowledge provided by these disciplines.
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Kügler, S. D., Gianniotis, N., and Polsterer, K. L. (2015). An Explorative Approach for Inspect-
ing Kepler Data. ArXiv e-prints.

Lewis, A. and Bridle, S. (2002). Cosmological parameters from CMB and other data: A Monte
Carlo approach. Physical Review D , 66(10), 103511.

Lindgren, H., Lundstrom, I., and Stenholm, B. (1975). Short-periodic light variations in Wolf-
Rayet stars. Astronomy and Astrophysics, 44, 219–222.

Lintott, C. J., Schawinski, K., Slosar, A., et al. (2008). Galaxy Zoo: morphologies derived from
visual inspection of galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal
Astronomical Society , 389, 1179–1189.

Liu, X., Shen, Y., Bian, F., Loeb, A., and Tremaine, S. (2014). Constraining Sub-parsec Binary
Supermassive Black Holes in Quasars with Multi-epoch Spectroscopy. II. The Population with
Kinematically Offset Broad Balmer Emission Lines. The Astrophysical Journal , 789, 140.

Lloyd, S. (1982). ”least squares quantization in pcm”. IEEE Transactions on Information
Theory , 28(2), 129–137.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations.
In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Statistics, pages 281–297, Berkeley, Calif. University of California Press.

Maness, H. L., Taylor, G. B., Zavala, R. T., Peck, A. B., and Pollack, L. K. (2004). Breaking
All the Rules: The Compact Symmetric Object 0402+379. The Astrophysical Journal , 602,
123–134.

Marshall, P. J., Treu, T., Melbourne, J., et al. (2007). Superresolving Distant Galaxies with
Gravitational Telescopes: Keck Laser Guide Star Adaptive Optics and Hubble Space Telescope
Imaging of the Lens System SDSS J0737+3216. The Astrophysical Journal , 671, 1196–1211.

Marshall, S., Akerlof, C., Kehoe, R., et al. (1997). The ROTSE Project. In American Astronom-
ical Society Meeting Abstracts, volume 29 of Bulletin of the American Astronomical Society ,
page 1290.
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Situation. In Lecture Notes in Computer Science, Springer-Verlag, LNCS 7505 , pages 57–71.

Toomre, A. and Toomre, J. (1972). Galactic Bridges and Tails. The Astrophysical Journal , 178,
623–666.

Tsalmantza, P., Decarli, R., Dotti, M., and Hogg, D. W. (2011). A Systematic Search for Massive
Black Hole Binaries in the Sloan Digital Sky Survey Spectroscopic Sample. The Astrophysical
Journal , 738, 20.

Udalski, A., Szymanski, M., Kaluzny, J., Kubiak, M., and Mateo, M. (1992). The Optical
Gravitational Lensing Experiment. ActaA, 42, 253–284.

Urry, C. M. and Padovani, P. (1995). Unified Schemes for Radio-Loud Active Galactic Nuclei.
Publications of the Astronomical Society of the Pacific, 107, 803.

Valtonen, M. J., Lehto, H. J., Nilsson, K., et al. (2008). A massive binary black-hole system in
OJ287 and a test of general relativity. Nature, 452, 851–853.



Bibliography 80

van der Maaten, L. J. P. and Hinton, G. E. (2008). Visualizing High-Dimensional Data Using
t-SNE. Journal of Machine Learning Research, 9, 2579–2605.

Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. (2001). Composite Quasar Spectra from
the Sloan Digital Sky Survey. Astronomical Journal , 122, 549–564.

Watson, C. L. (2006). The International Variable Star Index (VSX). Society for Astronomical
Sciences Annual Symposium, 25, 47.

White, S. D. M. and Rees, M. J. (1978). Core condensation in heavy halos - A two-stage theory
for galaxy formation and clustering. Monthly Notices of the Royal Astronomical Society , 183,
341–358.

Xing, E. P., Ng, A. Y., Jordan, M. I., and Russell, S. (2003). Distance metric learning, with ap-
plication to clustering with side-information. In ADVANCES IN NEURAL INFORMATION
PROCESSING SYSTEMS 15 , pages 505–512. MIT Press.

Zliobaite, I., Bifet, A., Gaber, M., Gabrys, B., Gama, J., Minku, L., and Musial, K. (2012).
Next challenges for adaptive learning systems. SIGKDD Explor. Newsl., 14(1), 48–55.



Appendix A

SDSS Spectral Features

Feature λvac[Å] Type

O VI 1033.82 Em
Lyα 1215.24 Em/Abs
N V 1240.81 Em
O I 1305.53 Em
C II 1335.31 Em
Si IV 1397.61 Em
Si IV / O IV 1399.8 Em
C IV 1549.48 Em
He II 1640.4 Em
O III 1665.85 Em
Al III 1857.4 Em
C III 1908.734 Em
C II 2326.0 Em
Ne IV 2439.5 Em
Mg II 2799.117 Em
Ne V 3346.79 Em
Ne VI 3426.85 Em
O II - Doublet 3727.092, 3729.875 Em
He I 3889.0 Em
K 3934.777 Abs
H 3969.588 Abs
S II 4072.3 Em
Hδ 4102.89 Em/Abs
G 4305.61 Abs
Hγ 4341.68 Em/Abs
O III 4364.436 Em
Hβ 4862.68 Em/Abs
O III - Triplett 4932.603, 4960.295, 5008.24 Em

Table A.1: List of spectral features used by SDSS to estimate the redshift of a given spectrum.
The list can be found under http://classic.sdss.org/dr6/algorithms/linestable.html
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Feature λvac[Å] Type

Mg 5176.7 Abs
Na 5895.6 Abs
O I - Doublet 6302.046, 6365.536 Em
N I 6529.03 Em
N II 6549.86 Em
Hα 6564.61 Em/Abs
N II 6585.27 Em
S II - Doublet 6718.29, 6732.67 Em
CaII - Triplett 8500.36, 8544.44, 8664.0 Abs

Table A.1 continued.



Appendix B

Redshift Regression for Individual
Regions

Here the subplots for all chosen spectral regions are shown individually. The meaning of them
is the same as the one in Figure 6 of the first publication.
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Figure B.1: Regressional redshift versus spectroscopic one for the emission feature MgII
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Figure B.2: Regressional redshift versus spectroscopic one for the emission feature NeV
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Figure B.3: Regressional redshift versus spectroscopic one for the emission feature [OII]
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Figure B.4: Regressional redshift versus spectroscopic one for the emission feature Hε,Hζ
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Figure B.5: Regressional redshift versus spectroscopic one for the emission feature Hδ
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Figure B.6: Regressional redshift versus spectroscopic one for the emission feature Hγ
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Figure B.7: Regressional redshift versus spectroscopic one for the emission feature Hβ, [OIII]
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Figure B.8: Regressional redshift versus spectroscopic one for the emission feature Hα, [NII]
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Figure B.9: Regressional redshift versus spectroscopic one for the emission feature [SII]
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Figure B.10: Regressional redshift versus spectroscopic one for the absorption feature H+K
break
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Figure B.11: Regressional redshift versus spectroscopic one for the absorption feature Mgb
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Figure B.12: Regressional redshift versus spectroscopic one for the absorption feature NaD



Appendix C

Scripting Tool for the Large
Binocular Telescope (LBT)

Part of this PhD thesis was dedicated to the design of a scripting tool for the Large Binocular
Telescope (LBT) in Arizona, USA. The scripting tool (SC hereafter) was originally written as a
consequence of losses in telescope time due to scripting errors (especially problems with the guide
star selection for the AGW, explained below). It is a web tool based on a cgi-form delivering the
data from the input form to a Python18 script, which is then analyzing and checking the data for
completeness/correctness using the basic ideas from the scriptchecker tool written by S. Allen 19

(SCT hereafter) and some self-written algorithms (cf. section C.1.3). The requirements for the
tool changed as the LBT was approaching the first observations in binocular mode in February
2014, shortly after finishing seeing-limited commissioning of LUCI2 on the right side of the LBT.
Apart from delivering error-proven scripts, the scripting tool now had to take into account more
severe issues such as synchronized telescope offsets, failures of telescope presets as well as basic
functionality of an observation planning tool (which is beyond its original purpose). Thus, the
evolution of the scripting tool reflects the developments in software design on instrument side
as well as on telescope side (telescope control software; TCS) which were necessary to run the
first binocular telescope efficiently. Even though, the tool is self-explanatory on its surface some
special features and problematic issues will be explained in some more detail in the sections
below.

C.1 Constitution

As already stated the tool consists of three basic layers, namely the input form, the evaluation
page and the output (in form of LUCIFER scripts), see also figure C.1.

C.1.1 Form page

The input form consists of the same parts as the out coming script file does, namely

• Archive information

• Telescope setup

• Readout setup

• Instrument setup

18https://www.python.org/
19http://abell.as.arizona.edu/∼lbtsci/Instruments/LUCIFER/Scripts/scriptcheck.html
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Figure C.1: Three layers of the SC.

• Observing setup

plus two further sections:

• Scriptor mode

• Scriptchecker setup

All of these sections can be unselected individually by clicking the respective radio button. This
value is then send to the form and is applied to the section after a reload of the page (with
the now changed form values). The big advantage of writing all those changes directly into
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the form is that all other values are stored immediately, so that a refresh of the page within
the program does not reset the input values (internal refresh hereafter). In contrast to this, a
refresh of the browser does reset all the input values (external refresh hereafter). The script
file sections contain the standard fields as given in the standard scripts, the preset input fields
(such as filter wheels and readout mode) are displayed in lists in order to prevent typos from the
user. The ”mask-position” list, the ”refresh” button as well as the ”Offset choice” radio button
lead automatically to an internal refresh in order to change fields according to the chosen value
(unlocking ”mask choice”, refreshing guide star selection and unlocking upload field for batch
files respectively). After entering all the necessary input values (empty fields are ignored) a click
of the submit button starts the main script, forwarding the user automatically to the evaluation
page.

Scriptor mode

The choice of the scriptor mode fixes the type of script which will be created. After choosing
from the list

• Acquisition/Generic

• Spectroscopy

• Imaging

• Calibration

• LMS

• Longslit

the non-necessary parts of the SC are hidden and some standard values are applied (e.g.,
readout mode=mer for spectroscopy). If a (spectroscopic) calibration script has to be created,
the nominal standard exposure times and lamps for the flats and arcs (obtained by testing on
the telescope) can be inserted by clicking on the respective button. Furthermore, the respective
mode allows the creation of automatized acquisition and calibration files (in Longslit and LMS
mode). Despite the guidestar-selection this task might be the most time-saving step when using
the scriptor.

Scriptchecker setup

The SCT setup gives the opportunity to let the respective script check with the SCT written
by S. Allen. As a sanity check, which after intensive testing might be avoided, all automatically
created scripts are processed through the SCT as well, so that systematic errors can be detected.
Further details on the SCT are given in the succeeding section.

C.1.2 Evaluation page

The two parts of this page are the output of the SCT setup as well as the link to the final script
files. The SCT mainly checks the syntax of the tested script by reading the script line per line
and comparing the line to standard line syntax. Some semantic errors, such as the choice of the
save and readout mode, are tested as well using basic logic. Another interesting feature of the
SCT is that offsets are visualized in an external DS920 window, giving the user the possibility
to check if the the offset motions move the guide star out of the allowed patrol field (see section

20http://hea-www.harvard.edu/RD/ds9/site/Home.html

http://hea-www.harvard.edu/RD/ds9/site/Home.html
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below). Apart from the latter feature, the outputs of the SCT are directed into a temporary file
where the PERL-syntax is translated into HTML-language and is displayed on the evaluation
page. As the web-server is not capable of using graphical programs such as DS9, a new dither-
position check for the guide star was implemented in the SC. It basically follows the offset steps
and gives a warning/error if the an offset moves the guide star into the flagged/forbidden region
(for definitions of those regions, see section C.1.3). The scripts (in form of a .zip file in order
to force the browser to open the download dialog) can then be downloaded by clicking on the
respective link. A sample script for a acquisition script can be seen in listing C.1.

C.1.3 Specific elements

Despite some sanity checks (such as testing the types of input variables) the SC offers more
complex and easy-to-use tools which will be explained in the succeeding sections.

Guide star selection

Apart from typos, the selection of the guide star was the major reason for erroneous scripts.
The Auto-Guiding and Wavefront sensing unit (AGW hereafter) needs a guide star in order to
guide the telescope well and to minimize atmospheric effects causing wavefront distortions. In
order to accomplish this, the provided guide star has to be sufficiently bright (13<R<16.5) and
has to have a certain position with respect to the detector. The rather unique appearance of
this allowed patrol field is caused by the geometry of different optical elements: The different
shapes of the constrained regions can be parametrized by the values given in Table C.1, a
visualization of the forbidden and flagged regions can be seen in Figure C.2. The guide

Obj shape Forbidden region Flag region Flag

center diam./ end point center diam./ end point
(x,y)[′] leng.[′] (x,y)[′] (x,y)[′] leng.[′] (x,y)[′]

I circle (0,0) 11.0 - (0,0) 10.0 - FA
II square (0,0) 6.0 - (0,0) 7.0 - VA
III circle (0,17.15) 34.3 - (0,17.15) 33.3 - GA
IVi line (-4.50,3.18) - (-5.16,0.78) (-4.08,3.18) - (-4.08,0.78) TA
IVii line (4.80,0.72) - (3.90,3.90) (4.08,0.72) - (4.08,3.90) TA

Table C.1: Parameters for the different patrol field regions for the telescope pointing to
RA=DE=PA=0

star algorithm downloads the respective field from the Naval Observatory Merged Astrometric
Dataset (NOMAD21 hereafter) which is a cross-match of several astrometric catalogs (such as the
Hipparcos22) and the 2 Micron All Sky Survey (2MASS23 hereafter). Subsequently, all objects
with proper magnitudes are processed through a positional check, in order to exclude objects
lying outside the allowed/flagged patrol region. If more than 10 objects are found within the
unflagged region, the 10 brightest of them are shown in the HTML table and can be selected by
typing their respective table number. If less than 10 objects are unflagged, the table is filled up

21http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/nomad/
22http://www.rssd.esa.int/index.php?project=HIPPARCOS catalog
23http://www.ipac.caltech.edu/2mass/

http://www.rssd.esa.int/index.php?project=HIPPARCOS
http://www.ipac.caltech.edu/2mass/
http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/nomad/
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[START_ARCHIVE_INFORMATION]

PARTNER =LBTO

PI_NAME =TestPI

PROP_ID =test_ID

[END_ARCHIVE_INFORMATION]

[START_INSTRUMENT_SETUP]

CAMERA =N3.75

FILTER =J

GRATING_UNIT =mirror

#CENTRAL_WAVELENGTH =

#MASK =

MASK_POSITION =no_mask_in_use

FLEXURE_COMP =on

[END_INSTRUMENT_SETUP]

[START_TELESCOPE_SETUP]

TARGET_NAME =SDSS_140000.0+000000.0

TARGET_COORD =14 00 00.0 +00 00 00.0

GUIDE_NAME =NOMAD0900_0234108_R16.97_d3.8

GUIDE_COORD =13 59 56.66 +00 03 46.9

POSANGLE =5.0

ROT_MODE =position

TELESCOPE_MODE =active

[END_TELESCOPE_SETUP]

[START_READOUT_SETUP]

DIT =10

NDIT =1

NEXPO =1

ROE_MODE =o2dcr

SAVE_MODE =normal

[END_READOUT_SETUP]

[START_OBSERVING_SETUP]

OFFSET_TYPE =relative

COORD_SYS =DETXY

OFFSET =10 0

OFFSET =-20 0

OFFSET =0 5

OFFSET =0 10

ACQUISITION =5 5

[END_OBSERVING_SETUP]

Listing C.1: A sample acquisition script
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Figure C.2: The different regions of the patrol field. The forbidden/flagged regions are marked
red/orange, the preferred region is marked green.

with flagged objects until 10 or the maximum of flagged and unflagged objects is reached. By
choosing the table number, the guide star is automatically selected for the script file.

Offset batch file

As for a couple of observations (such as exoplanet transits) a huge amount of different offsets is
needed, the SC offers the user up to 110 fields which can be used to input their offsets. But as
typing such a huge amount of numbers into a web form is an obvious error source a batch file
can be uploaded to the web form. If it has the correct format, the page does an internal reload
and inputs all the offset values into the respective columns so that it is still possible to apply
changes manually.

LMS implementation

Despite the guide star algorithm, the implementation of LMS-file processing is a heart piece of
the SC. Lucifer Mask Simulator (LMS) files are produced simultaneously to the multi-object-
spectroscopy (MOS) mask which is produced in Tucson/Arizona. This file contains the complete
information (such as guide star, filter, grating) for the SC to produce the respective script files.
Next to the arcs and flats special spec and acquisition scripts for the telluric are written. The
user can select the slit positions into which the telluric should be moved in order to illuminate
the complete wavelength range. All in all, the upload of one LMS file yields (if the filter/grating
combination is known) 6 clean scripts with which the entire MOS observation can be accom-
plished. Further fields are added in LMS mode in order to guarantee that no manual user-input
is needed, e.g., for choosing filters for the target or telluric acquisition.
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C.2 Upgrade to binocular observations

With the completion and installation of the second LUCIFER instrument, the possibility of
performing binocular observations arose. Binocular observations were the key motivation for
building the LBT. Binocular thereby denotes the parallel (synchronized) observations with the
two different mirrors using the corresponding (homogeneous) or a different (inhomogeneous)
instrument on the other side. The hope of this observation type is to gain a huge flexibility in
observations (e.g., simultaneous spectra from the near-IR to the optical) and eventually, also
save valuable and costly observation time.

In order to run a telescope efficiently in binocular mode, preparation tools have to be made
available to the community that are reliable, and easy to understand. Consequently, with the
new instrument also a new format of the scripts was introduced, which is based on the XML
format. An example of the new script type is shown in Listing C.2

The XML format is a machine-readable format and thus no conversion between plain ASCII
files and the XML has to be done. Additionally, constraints on the entered values can be set in
XML and thereby effectively avoiding typos or invalid values.

In order to prepare the SC for binary observations, several new things had to be added.
Apart from introducing new respective options on the form page, an obvious visualization tool
for understanding the losses in time due to the use of the binocular mode had to be provided.
Several other constraints arise from the pointing limit, which indicates the maximum angle the
pointings of the two mirrors can differ, without violating the hardware limits. Eventually, the
SC has to be able to arrange the observation items in the order that was intended by the user.

The installation of LUCIFER 2 enabled also the use of adaptive optics, as it is the first
instrument with the high-resolution camera N30. The experience with the adaptive optics
system is still very limited, so that only approximated times (e.g., for closing the AO-loop) for
the observation in diffraction-limited mode are available. Consequently, the overall execution
times of the scripts are highly uncertain and more development is needed to also account for
potentially fatal events, like a break of the AO-loop.
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<observationProgram>
<label>Imaging−script by NOTSPECIFIED with LUCI2,LUCI1</label>
<partner>LBTB</partner>
<pi>NOTSPECIFIED</pi>
<propID>NOTSPECIFIED</propID>
<observationBlocks>
<observationBlock idBlock=”1”>

<observationItems>
<observationItem idItem=”1”>

<itemType>REGULAR</itemType>
<useBinocularMode>true</useBinocularMode>
<synchronizeInstruments>true</synchronizeInstruments>
<telescope>

<mount objectName=”Standard Star A” ra=”300.0” dec=”+10.0” epoch=”2000.0” />
<mirrors>
<mirror usageType=”1”>

<rotationAngle angleType=”POSITION ANGLE”>20</rotationAngle>
<offset offsetType=”0” absoluteOffset=”true” equatorialCoordinate=”false”>

<coord>7.5</coord>
<coord>−0.2</coord>

</offset>
<guideStarsAuto>false</guideStarsAuto>
<guideStars>

<guideStar objectName=”!N1000−0563247 R13.48 d0” ra=”300.051” dec=”10.066” epoch=”2000.0” />
</guideStars>
<useActiveOptic>true</useActiveOptic>
<useAdaptiveOptic>false</useAdaptiveOptic>
</mirror>
<mirror usageType=”2”>

<rotationAngle angleType=”POSITION ANGLE”>20</rotationAngle>
<offset offsetType=”0” absoluteOffset=”true” equatorialCoordinate=”false”>

<coord>4.6</coord>
<coord>7.4</coord>

</offset>
<guideStarsAuto>false</guideStarsAuto>
<guideStars>

<guideStar objectName=”!N1000−0563247 R13.48 d0” ra=”300.051” dec=”10.066” epoch=”2000.0” />
</guideStars>
<useActiveOptic>true</useActiveOptic>
<useAdaptiveOptic>false</useAdaptiveOptic>
</mirror>
</mirrors>

</telescope>
<instruments>

<instrument usageType=”1”>
−<lamps></lamps>
<lampsTime></lampsTime>
<calibrationModeStatus>0</calibrationModeStatus>
<cameraWheelPosition>1</cameraWheelPosition>
<filters>

<filter>2</filter>
<filter>4</filter>

</filters>
<gratingPosition>1</gratingPosition>
<maskPosition>2</maskPosition>
<flexureCompState>true</flexureCompState>

</instrument>
<instrument usageType=”2”>

−<lamps></lamps>
<lampsTime></lampsTime>
<calibrationModeStatus>0</calibrationModeStatus>
<cameraWheelPosition>1</cameraWheelPosition>
<filters>

<filter>2</filter>
<filter>2</filter>

</filters>
<gratingPosition>1</gratingPosition>
<maskPosition>2</maskPosition>
<flexureCompState>true</flexureCompState>

</instrument>
</instruments>
<detectors>

<detector usageType=”1”>
<dit>20</dit>
<ndit>1</ndit>
<numberOfReads>2</numberOfReads>
<nexp>1</nexp>
<roeMode>LIR</roeMode>
<saveMode>NORMAL</saveMode>
<frameType>SCIENCE</frameType>

</detector>
<detector usageType=”2”>

<dit>30</dit>
<ndit>1</ndit>
<numberOfReads>2</numberOfReads>
<nexp>2</nexp>
<roeMode>LIR</roeMode>
<saveMode>NORMAL</saveMode>
<frameType>SCIENCE</frameType>

</detector>
</detectors>

</observationItem>
−<observationItem idItem=”2”></observationItems>

</observationItems>
</observationBlock>
</observationBlocks>
</observationProgram>

Listing C.2: A sample binocular imaging script
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	Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	Astronomical question to be solved with machine learning
	Identifying outliers in spectroscopic databases
	Analysis of time series data
	Inspection of regularly sampled time data
	Classification of irregular sampled light curves

	Complex Data in Astronomical Databases
	Database characteristics
	Examples of astronomical databases

	Schemes of data analysis
	Unsupervised approaches
	Classification
	Regression
	Shortcomings

	Learning from data
	Model selection
	Similarity and data representation
	Curse of dimensionality
	Local density estimations
	Dimensionality reduction

	Contributions to the respective publications

	Publications
	Determining spectroscopic redshifts by using k nearest neighbor regression
	Autoencoding Time Series for Visualisation
	Featureless classification of light curves

	Discussion
	Determination of spectroscopic redshifts
	Visualization of time series
	Featureless classification

	Summary
	Bibliography
	SDSS Spectral Features
	Redshift Regression for Individual Regions
	Scripting Tool for the Large Binocular Telescope (LBT)
	Constitution
	Form page
	Evaluation page
	Specific elements

	Upgrade to binocular observations

	Acknowledgement

