
 

 

 

Dissertation 
submitted to the 

Combined Faculties for the Natural Sciences and for Mathematics 
of the Ruperto-Carola University of Heidelberg, Germany 

for the degree of 
Doctor of Natural Sciences 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

presented by 
M.Sc. Asrar Ali Khan 

born in: Cuddapah (India) 
Oral-examination: 03.02.16 

 

  



 

  

  



 

 

 

 

Comparative secretome study of brown 

adipocytes and the role of ITIH4 in adipose 

biology 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Referees: 
PD Dr. Karin Müller‐Decker 
Prof. Dr. Stephan Herzig 

  



 

  

  



 

 

 

Summary 

Adipose tissues in mammals can be broadly classified into two main types: white and brown 

adipose tissue. Although both are defined as adipose tissues, they differ drastically in their 

function. The main function of white adipose tissues (WAT) is the storage of fat. Unlike its 

white counterpart, brown adipose tissue (BAT) specializes in burning fat via thermogenesis 

and is known to play an important role in non-shivering thermogenesis especially in 

hibernating animals and newborn babies. Recent evidence of functional BAT in adult humans 

and its ameliorating effect on metabolic disorders has brought BAT under the spotlight for 

treatment of metabolic diseases like obesity and type 2 diabetes mellitus.  

WAT also acts as an endocrine organ by secreting signaling molecules called 

adipokines such as leptin and adiponectin. Adipokines constitute the secretome of WAT and 

not only play an important role in WAT function but also affect whole-body energy 

homeostasis. Various studies have investigated the role of adipose tissue secretome in 

metabolic disorders like obesity and insulin resistance. The WAT secretome has also been 

extensively characterized in various settings such as in whole WAT, mature white adipocyte 

etc. However, the BAT secretome and its adipokines (‘batokines’) have not yet been 

investigated. 

 Thus, the main aim of this dissertation work was a comparative study of the white 

and brown adipocyte secretomes using a combination of Click-iT® AHA labeling and pulsed-

SILAC (stable isotope labeling by amino-acid in cell culture). In total 1013 proteins were 

detected and a subset of these proteins was selected based on their secretion with 

norepinephrine stimulation. An in vitro assay was developed and optimized to test their 

putative effect on insulin secretion. In addition, one of the secretome candidates, inter-

alpha-trypsin inhibitor heavy chain H4 (ITIH4) was investigated as a potential batokine and 

BAT activity marker. Although, the serum levels of ITIH4 did not correlate with BAT activity 

under cold stimulation, its expression was found to increase with adipogenesis and browning 

of white adipocytes. Using in vitro knockdown studies, a reduction in differentiation was 

observed which was characterized by reduction in mature adipocyte functions such as 

lipolysis, lipid and intracellular triglyceride storage, glucose uptake and lipogenesis. 

Therefore, rather than being a batokine, ITIH4 was shown to be important for adipogenesis 

and adipocyte biology. 

 In summary, this dissertation sheds light on BAT secreted proteins and also 

introduces a new player in field of adipogenesis, both of which might have a significant 

impact in BAT biology and in the treatment of metabolic disorders like obesity. 



 

  

  



 

 

 

Zusammenfassung 

In Säugetieren existieren zwei Arten von Fett: das weiße und das braune Fettgewebe. 

Obwohl beide als Fettgewebe bezeichnet werden, gibt es bedeutende funktionelle 

Unterschiede. Während das weiße Fettgewebe (white adipose tissue, WAT) hauptsächlich 

eine Speicherfunktion besitzt, ist das braune Fettgewebe (brown adipose tissue, BAT) darauf 

spezialisiert, Energie zur Wärmegewinnung zu verbrauchen. Dieser Thermogenese genannte 

Prozess dient vor allem bei Säuglingen und Winterschläfern zur Regulation der 

Körpertemperatur. Neuere Erkenntnisse haben gezeigt, dass aktives BAT auch bei 

erwachsenen Menschen existiert. Sein Potential zur Steigerung des Energieumsatzes hat 

dieses Gewebe in den Fokus neuer Therapien gegen metabolische Erkrankungen wie 

Adipositas und Typ 2 Diabetes gestellt. 

Neben seiner Speicherfunktion, fungiert WAT als endokrines Organ, welches 

sogenannte Adipokine sezerniert, die nicht nur lokal im Fettgewebe, sondern auch 

systemisch wirken. Bekannte Beispiele sind die Peptidhormone Leptin und Adiponektin. In 

ihrer Gesamtheit bilden die Adipokine das Sekretom des WAT. Während das WAT Sekretom 

auf der Ebene von Gewebe und einzelnen Adipozyten bereits gut untersucht ist, wurde das 

Sekretom des BAT und seine spezifischen Adipokine („Batokine“) bislang nicht systematisch 

analysiert. 

Das Hauptziel der vorliegenden Arbeit war deshalb die Durchführung einer 

vergleichenden Studie der Sekretome von WAT und BAT. Mittels einer Kombination von 

Click-iT® AHA Markierung und Pulsed-SILAC (stable isotope labeling by amino-acid in cell 

culture) konnten insgesamt 1013 sezernierte Proteine nachgewiesen werden. Ein Teil davon 

wurde selektiv in Abhängigkeit von Noradrenalin-Stimulation sezerniert. Es wurde ein in 

vitro Assay entwickelt, um die Effekte der Sekretome auf die Insulinsekretion von Betazellen 

darzustellen. Der Noradrenalin-abhängig sezernierte Faktor inter-alpha-trypsin inhibitor 

heavy chain H4 (ITIH4) wurde als beispielhaftes Batokin und potentieller BAT 

Aktivitätsmarker eingehend untersucht. Obwohl die ITIH4 Serumlevel nicht mit der Aktivität 

des BAT nach Kälteexposition korrelierten, konnte gezeigt werden, dass seine Expression 

während der Adipogenese sowie des „browning“ von weißen Adipozyten gesteigert war. 

Adipozyten mit Knockdown von ITIH4 zeigten eine Reduktion typischer Fettzellfunktionen, 

wie beispielsweise Lipolyse, Einlagerung von Triglyzeriden und anderen Lipiden, 

Glukoseaufnahme und Lipogenese. Folglich kann ITIH4 eine wichtige Rolle in der Entwicklung 

und Funktion von Fettzellen zugewiesen werden, es scheint aber kein spezifisches Batokin zu 

sein. 

Zusammengefasst, leistet die vorliegende Arbeit einen wichtigen Beitrag zum 

Verständnis des BAT als endokrines Organ und identifiziert eine neue Komponente in der 

Adipogenese. Beide Aspekte sind von enormer Bedeutung für das Verständnis der Biologie 

des BAT und können Ansatzpunkte für zukünftige Therapien gegen Adipositas und seine 

Folgeerkrankungen liefern. 
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Introduction 

Obesity and overweight 

Obesity: the modern day pandemic 

Obesity and overweight are defined as the excessive and harmful accumulation of fat. The 

WHO defines obesity in terms of the body mass index (BMI) which is the ratio of a person’s 

weight to their height squared (kg/m2). A BMI of 25 or greater is classified as overweight 

while a BMI of 30 or more is obesity. Since 1980 global obesity has doubled and currently 

most of the world’s population lives in countries where obesity and overweight kills more 

people than underweight and malnutrition (Figure 1). A large number of children are also 

affected by this disease. In 2013, the WHO estimated that 42 million children globally under 

the age of 5 years were overweight and obese. Previously considered a ‘disease of 

affluence’, obesity is now also prevalent in developing countries with middle or low incomes 

especially in urban environments (WHO fact sheet 311, 2015).  

The main cause of overweight and obesity is the perturbation of energy balance 

caused by an excessive amount of calories consumed relative to those expended (positive 

energy balance). This imbalance is becoming more prevalent due to the global increase in 

the consumption of high-calorie foods and the decrease in physical activity. Obesity is also 

associated with several severe co-morbidities like cardiovascular diseases (several heart 

diseases and stroke), diabetes, musculoskeletal diseases (like osteoarthritis), metabolic 

syndrome and cancer. Childhood obesity is a major risk factor for developing prediabetes 

(Li, Ford et al. 2009), bone and joint problems, breathing complications (Daniels, Arnett et 

al. 2005) and hypertension (Freedman, Mei et al. 2007). It also has a serious consequence in 

adulthood and contributes to increased predisposition to obesity and almost all the 

associated co-morbidities.  
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Figure 1: Prevalence of obesity worldwide. Age-standardized prevalence of obesity in men (A) and women (B) 

aged 18 and over (BMI>30 kg/m2), 2014. Figures obtained from the global status report on non-communicable 

diseases 2014. © Copyright World Health Organization (WHO), 2014. 
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Obesity and obesity-related co-morbidities 

As mentioned earlier, obesity leads to a number of other metabolic disorders or co-

morbidities. A systematic review by Guh, Zhang et al. (2009) identified 18 co-morbities 

associated with obesity. Statistically significant associations were identified by meta-analysis 

between obesity and type 2 diabetes, all cancers (with the exception of esophageal and 

prostate cancer), all cardiovascular diseases, asthma, gallbladder disease, osteoarthritis and 

chronic back pain. 

Metabolic syndrome is a combination of disorders consisting of insulin resistance, 

obesity, low-grade pro-inflammatory state, hypertension and dyslipidemia (Alberti, Zimmet 

et al. 2006). Metabolic syndrome in turn further increases the risk of cardiovascular diseases 

and type 2 diabetes in addition to other disorders like thrombophilia, non-alcoholic fatty 

liver disease and reproductive disorders (Cornier, Dabelea et al. 2008).  

The insulin resistance observed in obesity is generally a consequence of nutritional 

overload. During nutritional overload, adipose tissue dysfunction occurs which leads to the 

accumulation of fat in other organs and the release of harmful pro-inflammatory factors 

(discussed in next section). Both these events lead to obesity-related systemic insulin 

resistance (Sethi and Vidal-Puig 2007).  

Obesity leads to hypertension due to an increase in total blood volume and cardiac 

output. In general, cardiac workload is higher in obesity which makes obese patients 

hypertensive (Messerli, Ventura et al. 1982). Wong and Marwick (2007) suggested the 

existence of a cardiomyopathy of obesity supported by experimental models and 

epidemiological and clinical studies. The myocardial changes observed in obesity 

cardiomyopathy cannot be attributed to diabetes, hypertension or coronary heart disease 

alone and can be considered a direct consequence of obesity. These myocardial changes 

affect ventricular structures as well as systolic and diastolic function.  

The high metabolic and inflammatory environment of obesity is one of the main 

reasons for the development of osteoarthritis. Adipose-derived pro-inflammatory cytokines 

affecting joint degradation and local inflammatory processes are another factor in the 

development of obesity-related osteoarthritis. In addition, obesity-related perturbations in 

glucose and lipid metabolism and mechanical loads (that activate mechanoreceptors on 

chondrocytes) are other reasons for the development of osteoarthritis (As reviewed by 

Sowers and Karvonen-Gutierrez 2010). 

Similar to insulin resistance, adipocyte dysfunction is also one of the reasons behind 

obesity-related carcinogenesis. The insulin resistance, increased levels of secreted factors 

like leptin and endogenous sex steroids and chronic inflammation caused by obesity 

promote carcinogenesis and cancer progression by either having a growth-promoting effect 

on cancer cells or/and by inhibiting apoptosis. For example, the mitogenic and anti-
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apoptotic properties of IGF-1, insulin and leptin have shown to promote carcinogenesis 

(Pollak, Schernhammer et al. 2004, Hoda, Keely et al. 2007). 

Therefore, adipose tissue and its dysfunction contribute to the development of 

obesity and its related disorders and are important facets in the struggle against the global 

obesity pandemic. 

 

Adipose tissues 

Different shades of adipose tissues 

There are two main types of adipose tissues in mammals: white and brown (Table 1). White 

adipose tissue (WAT) is the classical fat storage organ. It has important immune and 

endocrine functions and also provides thermal insulation and mechanical protection to 

internal organs. Brown adipose tissue (BAT) on the other hand is adept in burning fuel 

reserves to produce heat and modulate body temperature through non-shivering 

thermogenesis. This is accomplished by uncoupling protein 1 (UCP1) that uncouples ATP 

production from the mitochondrial electrochemical gradient and generates heat. The 

presence of UCP1 is a defining feature of BAT. Both, white and brown adipose tissues play a 

vital role in maintaining whole body energy homeostasis and regulating insulin sensitivity 

and are important for health. For example, disruption of normal white adipose tissue 

function is associated with insulin resistance (Rosen and Spiegelman 2006) and on the other 

hand, activation of brown adipose tissue improves insulin sensitivity and weight loss 

(Cypess, Lehman et al. 2009).  
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Table 1: Characteristics of white and brown adipose tissues. Adapted and modified form 

Saely, Geiger et al. (2012) 

 White adipose tissue Brown adipose tissue 

Function Energy storage. Heat production 

(thermogenesis). 

 
Morphology Single large lipid droplet, 

variable amount of 

mitochondria. 

Multilocular lipid droplets, 

high number of 

mitochondria. 

 
 

Development  From Myf5-negative 

progenitor cells. 

From Myf5-positive 

progenitor cells (some Myf5-

negative brown fat cells 

which are derived from other 

lineages also exist). 

 
Human data Large amounts and 

dysfunction are associated 

with increased risk of 

obesity-related disorders. 

Large amounts are 

associated with decreased 

risk of obesity-related 

disorders. 

 
 

Impact of aging on fat mass Increases with age relative to 

total body weight. 

Decreases with age. 

 

One of the pivotal discoveries in the field of adipose tissue biology was the detection 

of functional brown adipose tissue in adult humans (Nedergaard, Bengtsson et al. 2007). 

Until this discovery, BAT was only thought to be present in human infants where it 

contributed to non-shivering thermogenesis. Morphologically, brown adipocytes differ from 

white adipocytes by having smaller multilocular lipid droplets (in contrast to a large 

unilocular lipid droplet in white adipocytes) and higher number and larger mitochondria 

(Cinti 2002). The large number of mitochondria confers the darker brown color to these 

adipocytes.  

Adipocyte differentiation or adipogenesis for both white and brown adipocytes 

consists of first commitment to a preadipocyte lineage and subsequent differentiation. The 
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white and brown adipocytes arise from different mesenchymal precursor cells: Myf5-

negative, for white adipocytes and Myf5-positive (myogenic precursor) for brown 

adipocytes. Despite their different developmental origins, both white and brown adipocytes 

share some common core adipogenic components like the transcription factor peroxisome 

proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding proteins (C/EBPs) 

like C/EBPα, C/EBPβ and C/EBPδ and bone morphogenic proteins (BMPs) (Farmer 2006). 

Other adipogenic factors are unique to brown adipocyte differentiation. These include PR 

domain–containing protein-16 (PRDM16) that induces brown adipocyte specific gene 

induction (Seale, Kajimura et al. 2007) and peroxisome proliferator–activated receptor γ-

coactivator-1α (PGC-1α) (Puigserver, Wu et al. 1998) that regulates oxidative metabolism, 

mitochondrial biogenesis and thermogenesis (As reviewed by Lin, Handschin et al. 2005). 

As mentioned earlier, UCP1 is responsible for BAT thermogenesis. There are several 

different means by which the thermogenic program, and in turn UCP1, can be activated in 

BAT (As reviewed by Villarroya and Vidal-Puig 2013). The most well characterized activation 

of BAT is via the sympathetic nervous system (SNS) in response to thermogenic stimuli. In 

this case norepinephrine binds to adrenergic receptors and activates protein kinase A (PKA). 

PKA in turn activates p38 MAP kinase and thyroxine 5’-dediodinase (5’-D), ultimately leading 

to the induction of the thermogenic genes. The liver can also activate BAT via the release of 

bile acids and fibroblast growth factor 21 (FGF21) that interact with TGR5 receptors and FGF 

receptor/b-Klotho (KLB) complexes respectively. On the other hand, natriuretic peptides 

(NPs) released by the heart activate BAT via interaction with NP receptors (NPRs) and 

activation of protein kinase G and p38 MAP kinase.   

In addition to brown and white adipocytes, a third type of adipocytes called ‘beige’ 

or ‘brite’ adipocytes are also present (Loncar 1991). These cells are brown-like adipocytes in 

white adipose tissues and resemble white adipocytes in their basal characteristics and origin 

but upregulate the expression of UCP1 upon cAMP stimulation (Wu, Bostrom et al. 2012). 

This phenomenon is called ‘browning’. There are several mediators of browning known like 

COX2, SIRT1, BMP7, Irisin etc. but all of them act via three core transcriptional regulators: 

PPARγ, PRDM16 and PGC-1α (As reviewed by Lo and Sun 2013).  All browning agents known 

so far bind, interact, activate or inhibit these core factors. The most commonly used 

browning agents for in vitro studies are rosiglitazone (a PPARγ agonist) and 

carbaprostacyclin or cPGI2 (a stable analog of PGI2 that also activates PPARγ). The browning 

process and brite adipocytes are important in combating obesity as mouse strains with a 

higher predisposition to browning show a lower tendency for becoming obese and vice 

versa (Guerra, Koza et al. 1998). In addition, it is also speculated that browning increases the 

plasticity of the white adipose depots by allowing a functional switch from energy storage to 

energy consumption (Wu, Cohen et al. 2013).  

Although brite adipocytes are functionally similar to classical brown adipocytes, 

there are a few key differences that set them apart. They are formed from Myf5-negative 
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precursor cells (Seale, Bjork et al. 2008) and also have distinct gene signature profiles 

compared to brown adipocytes (Wu, Bostrom et al. 2012). Moreover, the expression of 

Ucp1 and other thermogenic genes is upregulated upon activation in brite adipocytes (for 

example with β-adrenergic receptor agonists) while brown adipocytes express high levels of 

these genes at the basal conditions.  

 

Adipose tissue in health and disease 

Adipose tissues play a very important role in metabolic health. WAT is crucial for the 

maintenance of normal glucose and serum triglyceride levels and insulin sensitivity. Mice 

lacking WAT were found to suffer from severe metabolic abnormalities like insulin 

resistance, hyperglycemia, hyperlipidemia and fatty liver (Gavrilova, Marcus-Samuels et al. 

2000). BAT, due to its thermogenic capacity, is a promising candidate for counter-acting 

nutrient overload, obesity and diabetes. In humans, the activity of BAT inversely correlates 

with adiposity and the activation of BAT clears glucose at a systemic level thereby improving 

insulin sensitivity (Orava, Nuutila et al. 2011). In addition, it has been shown that BAT in 

mice can also clear triglyceride rich proteins from circulation and reduce hyperlipidemia 

(Bartelt, Bruns et al. 2011). It is estimated that BAT in humans could contribute as much as 

20% daily energy expenditure (Stock and Rothwell 1983). In a recent review, Betz and 

Enerback (2015) have highlighted the importance of human BAT in diabetes and obesity as 

well as the possibility of BAT being a potential drug target to treat these maladies. 

Dysfunctional adipose tissues are now considered one of the main contributing 

factors to obesity and obesity-related metabolic disorders like the metabolic syndrome, type 

2 diabetes and cardiovascular diseases (Goossens 2008, Bluher 2013). A positive energy 

balance, wherein the amount of calories ingested is higher than required, leads to obesity 

and increase in adipocyte size (hypertrophy). This leads to adipocyte dysfunction when the 

hypertrophic adipocytes are limited in their expansion due to factors like hypoxia and 

extracellular matrix (ECM) mechanics. Adipocyte dysfunction disrupts normal adipose tissue 

lipid metabolism and leads to release of pro-inflammatory factors (called adipokines, 

discussed in the next section). These factors not only impair adipocyte differentiation but 

also increase the infiltration of immune cells into the adipose tissue which further 

exacerbates the inflammation. In addition to changes in lipid metabolism and release of pro-

inflammatory secreted factors, adipose tissue dysfunction also leads to spillover of lipids in 

to the circulation and subsequent accumulation in to other non-adipose organs like liver and 

muscle (Figure 2). This ectopic fat storage is thought to lead to lipotoxicity and causes low-

grade systemic inflammation thereby accelerating the development of obesity and related 

metabolic disorders (Goossens 2008). 
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Figure 2: The dysfunction of adipose tissues and consequence on metabolic health. A positive-energy balance 

because of excess energy intake leads to hypertrophic adipocytes. This impairs adipose tissue function and 

causes lipid spill-over and increased release of pro-inflammatory cytokines. Subsequently, this leads to ectopic 

lipid accumulation in other organs and low-grade systemic inflammation. Adapted from Goossens (2008). 

 

Adipose tissue as an endocrine organ. 

As mentioned before, white adipose tissues are the primary site for fat storage in the body. 

They mobilize these stored fats to meet the energy demands of the body. Owing to recent 

advancement in obesity research, it is now widely appreciated now that white adipose 

tissues are also endocrine organs and secrete a wide range of hormones and signaling 

factors called adipokines.  

 Some of the important adipokines are chemokines that are closely related to adipose 

tissue inflammation. As mentioned in the previous section, changes in the production of 

these adipokines occur because of the expansion and subsequent dysfunction of adipose 

tissues during obesity. TNF-α, a pro-inflammatory cytokine, was the first adipokine to be 

described (Hotamisligil, Shargill et al. 1993). Apart from being expressed in adipocytes, TNF-

α is also expressed in macrophages. Similar to TNF-α, interleukin-6 (IL-6) is also an important 

adipokine secreted by adipocytes and skeletal muscle (Keller, Keller et al. 2003). Another 

pro-inflammatory cytokine is monocyte chemotactic protein 1 (MCP-1) that plays a role in 

macrophage recruitment to the adipose tissue (Sartipy and Loskutoff 2003).  

In addition, there are adipokines that are solely produced by adipocytes. Leptin is 

one such important adipokine controlling satiety and body weight (Fruhbeck 2002). 
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Adiponectin is another adipocyte-derived adipokine that influences insulin sensitivity and 

exhibits anti-inflammatory properties (Yamauchi, Kamon et al. 2001).  

Adipokines are important mediators of organ cross-talk between white adipose 

tissues and different organs of the body like the brain, muscles, liver etc. They can also act in 

an autocrine or paracrine manner and influence energy homeostasis, insulin sensitivity and 

the immune system (Figure 3). Thus, via adipokines, white adipose tissues not only control 

their own metabolism but also affect the systemic metabolism by acting on other organs. 

Due to their important role in metabolic health, several adipokines have been implicated in 

the pathogenesis of metabolic disorders like obesity and type 2 diabetes. Some of the 

important adipokines are described in the next section. 

 

 

Figure 3: Adipose tissue and multi-organ cross talk. Adipose tissues secrete factors called adipokines that act in 

an autocrine, paracrine and endocrine manner affecting various different organs. Via adipokines, adipose 

tissues are able to influence important systemic attributes like systemic insulin sensitivity, energy homeostasis, 

inflammation and the immune system. 
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Overview of some important adipokines 

Leptin 

Leptin is a 16 kDa peptide hormone produced by adipocytes, encoded by the obese (ob) 

gene in mice and LEP gene in humans. Circulating plasma levels of leptin correlate with 

adiposity (i.e. white adipose tissue mass). The main function of leptin is to increase energy 

expenditure and decrease food intake by acting on distinct neural cell populations in the 

hypothalamus. However, leptin is also considered to be a ‘pleiotropic’ hormone because of 

its involvement in a variety of different functions like angiogenesis, reproduction, cytokine 

production, phagocytosis etc. (Fietta 2005).  

The receptor for leptin is encoded by the diabetes gene (db) which is a class I 

cytokine receptor. It is subjected to alternative splicing and gives rise to six different 

isoforms out of which only the Ob-Rb (long form) participates in signal transduction. The 

extracellular leptin signal is received by this isoform and in turn activates the JAK-STAT 

pathway (Fruhbeck 2006). The most common mutations affect the tyrosine residue Y1138 

on the intracellular domain of Ob-Rb in mice, preventing STAT3 activation. However, such 

mutations occur rarely in humans (Farooqi and O'Rahilly 2006).  

 Ob/ob and db/db mice exhibit a host of different metabolic phenotypes like 

increased body weight due to increased adiposity and hyperphagia, lower energy 

expenditure, hyperglycemia, hyperinsulinemia and dyslipidemia (Campfield 2000). Obesity, 

independent of mutations in leptin or its receptor, is usually characterized with partial leptin 

resistance and hyperleptinemia. In leptin resistance, the high levels of leptin are not able to 

modulate energy homeostasis which results in excessive weight gain and development of 

metabolic diseases like type 2 diabetes mellitus. Selectivity is another aspect of leptin 

resistance. The concept of selective leptin resistance describes the phenomenon of leptin 

resistance with intact leptin sympathoexcitatory functions like its effect on arterial blood 

pressure but resistance to its metabolic functions like satiety and weight reduction. (Mark, 

Correia et al. 2002). Hyperleptinemia on the other hand is sometimes considered a 

consequence of aging, unrelated to changes in fat mass and suggested to play a causative 

role in age-related metabolic decline (Gabriely, Ma et al. 2002, Ma, Muzumdar et al. 2002).  

 

Adiponectin 

Adiponectin (also called apM1, Acrp30, GBP28, and AdipoQ) is a 30 kDa protein produced in 

mature adipocytes. Adiponectin is structurally similar to collagen VIII and X. It makes up 
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0.01% of the total plasma protein and circulates in the blood in its oligomeric forms, which 

include its multimeric (high molecular weight, HMW), hexameric (middle molecular weight, 

MMW) and trimeric (low molecular weight, LMW) isoforms. 

Unlike other adipokines, adiponectin is the only known adipokine that is reduced 

during obesity and has an insulin sensitizing effect. Low levels of plasma adiponectin are 

indicative of insulin resistance and diabetes (Tschritter, Fritsche et al. 2003). Adiponectin 

acts in an autocrine/paracrine manner within the adipose tissues and has been shown to 

regulate pro-inflammatory adipokine secretion in human adipocytes thereby preventing 

insulin resistance (Dietze-Schroeder, Sell et al. 2005). In addition, over-expression of human 

adiponectin in Apolipoprotein E-deficient mice, a mouse model that spontaneously develops 

atherosclerotic lesions on a standard chow diet, suppresses the development of 

atherosclerosis. (Okamoto, Kihara et al. 2002).  

Adiponectin acts via two receptors: AdipoR1 (skeletal muscle) and AdipoR2 (liver). 

Adiponectin signaling involves AMPK, PPAR α and PPAR γ. The stimulation of AdipoR2 leads 

to increased β-oxidation and reduced gluconeogenesis in liver while in skeletal muscle, 

AdipoR1 signaling leads to increased β-oxidation and glucose uptake. This leads to lowering 

of blood glucose, increased insulin sensitivity and reduced fat content in tissues 

The most widely characterized effects of adiponectin include the improvement in 

insulin sensitivity and its anti-inflammatory and anti-atherosclerotic properties. The insulin 

sensitizing effect of adiponectin is due to the activation of AMPK which increases glucose 

uptake, glycolysis and fatty acid oxidation. Another mechanism through which adiponectin 

reduces inflammation is by promoting phagocytosis of early apoptotic cells by macrophages 

(Takemura, Ouchi et al. 2007). Adiponectin reduces atherosclerosis by protecting the 

vascular endothelium against inflammation (Kadowaki and Yamauchi 2005), reducing 

monocyte adhesion to the endothelium and lowering NFκB levels (Tan, Xu et al. 2004). 

In contrast to leptin, there is an inverse relationship of fat mass and adiponectin 

levels. Increased visceral adiposity decreases adiponectin levels more strongly than 

subcutaneous adiposity. Adiponectin gene expression is also inhibited by pro-inflammatory 

cytokines like TNF-α and IL-6 (Bruun, Lihn et al. 2003). Insulin reduces the expression of the 

adiponectin receptors and leads to a state of adiponectin resistance during 

hyperinsulinemia (Kadowaki and Yamauchi 2005). Hypoadiponectinemia has been linked to 

insulin resistance, type 2 diabetes and cardiovascular complications like hypertension, 

progressive ventricular hypertrophy and diastolic dysfunction and therefore, considered an 

independent risk factor in the development of cardiovascular and metabolic abnormalities.  
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Resistin 

Resistin is a cysteine-rich protein that is secreted as a dimer. It was discovered while 

screening for genes that were downregulated in mouse 3T3-L1 adipocytes by 

thiazolidinedione (TZD) drugs like rosiglitazone (Steppan, Bailey et al. 2001). Resistin is 

mainly expressed in murine white adipocytes but in humans, it is expressed in macrophages 

and is induced by TNF-α (Patel, Buckels et al. 2003).  

Neither the receptor nor the signaling pathway for resistin has been discovered yet. 

In mice, resistin inhibits AMPK in liver, skeletal muscle and WAT. It has also been shown to 

be an important factor in the development of hepatic insulin resistance in high fat diet (HFD) 

fed mice (Muse, Obici et al. 2004). In addition, resistin also inhibits insulin secretion by 

inducing the expression of SOCS-3 both in vitro and in vivo (Steppan, Wang et al. 2005).  

Resistin has been extensively studied in rodent models (Summarized by Lazar 2007). 

Resistin secretion is similar to leptin i.e. levels increase with adiposity and after feeding. 

High levels of resistin contribute to the development of insulin resistance and type 2 

diabetes. Moreover, resistin has a pro-inflammatory effect and stimulates macrophages to 

release pro-inflammatory cytokines. It also upregulates vascular adhesion molecules like 

VCAM-1 and ICAM-1 in mice and human endothelial cells. There is also a direct correlation 

between serum resistin levels and atherosclerosis in humans. 

 

Adipokines in obesity and related disorders 

During obesity several pro-inflammatory factors are released by the adipose tissue. These 

factors include TNF-α, IL-6, MCP-1 and TGF-β1 (Hotamisligil, Shargill et al. 1993, Samad, 

Yamamoto et al. 1997, Sartipy and Loskutoff 2003). Macrophage infiltration also increases in 

obesity and leads to the increased circulating and local levels of these pro-inflammatory 

cytokines. The local adipose tissue expression of both TNF-α and IL-6 were also shown to be 

higher in patients with obesity-related insulin resistance (Kern, Ranganathan et al. 2001). 

TNF-α mostly exerts its influence in an autocrine and paracrine manner while the effect of 

IL-6 is more systemic (endocrine). Both cytokines increase lipolysis and fatty acid oxidation 

in adipocytes and increase the fatty acids in the blood. As mentioned earlier, this leads to 

ectopic fat deposition in other organs. It has also been shown that IL-6 can cause hepatic 

insulin resistance in mice by inhibiting early insulin receptor signaling and downstream 

insulin action (Klover, Zimmers et al. 2003). Interestingly, it has also been shown that the 

increase in expression of these cytokines precedes a rise in insulin secretion in obese mice 
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(Xu, Barnes et al. 2003). This points to the fact that adipose tissue inflammation is an 

important antecedent to obesity-related insulin resistance.  

BAT as an endocrine organ 

In relation to its white counterpart, BAT and its role as an endocrine organ has not been 

extensively studied. It is well documented that the activation of BAT (for example, by cold 

stimulation) leads to systemic metabolic changes in the body. These changes include 

decreased blood glucose and increased insulin sensitivity (Bukowiecki 1989). BAT partly 

contributes to this by an increased glucose uptake and improved insulin sensitivity 

(Gasparetti, de Souza et al. 2003). WAT and skeletal muscle also increase their catabolic 

processes (such as lipolysis in WAT) to provide fuel for BAT thermogenesis (Gasparetti, de 

Souza et al. 2003). These observations beg the question as to whether BAT has an important 

endocrine function beyond its role in thermogenesis. Another important observation that 

supports this idea is that mice completely lacking BAT (Lowell, V et al. 1993) were 

metabolically worse off than mice only deficient in UCP1 and lacking their thermogenic 

capacity (Enerback, Jacobsson et al. 1997). These studies suggest that BAT can affect whole-

body energy homeostasis by UCP1-independent mechanisms.  

Adipokines from BAT (‘batokines’) can be assumed to have the following 

characteristics: they might have different actions or effects compared to WAT adipokines, 

their target organs would be different from conventional adipokines and lastly, they would 

be released upon BAT activation (Villarroya, Cereijo et al. 2013). Recent studies in mice and 

rats have helped identify several paracrine and autocrine factors released by BAT.  Some of 

them include vascular endothelial growth factor-A (VEGF-A), insulin-like growth factor I (IGF-

I), fibroblast growth factor-2 (FGF2), IL-6 and bone morphogenetic protein-8b (BMP8b). 

These factors have varied functions like promoting angiogenesis (VEGF-A) to increasing 

sensitivity to noradrenergic stimuli (BMP8a) (As reviewed by Villarroya, Cereijo et al. 2013). 

Apart from these paracrine and autocrine factors, there are very few endocrine 

factors shown to be released from BAT. One of the earliest examples of BAT’s endocrine role 

was triiodinthyronine (T3) (Silva and Larsen 1983). It is considered a classical BAT endocrine 

product and has been shown via tracer studies that activated BAT is a major source of T3 in 

the body (Silva and Larsen 1985). Another important and well-documented endocrine factor 

released by BAT is the fibroblast growth factor 21 (FGF21) (Hondares, Iglesias et al. 2011). 

FGF21 increases glucose oxidation in several tissues and has shown to be protective against 

obesity and type 2 diabetes (Sarruf, Thaler et al. 2010). Normally, liver is the prime source of 

FGF21 but upon thermogenic activation BAT contributes to circulating FGF21 levels 

(Hondares, Iglesias et al. 2011). Studies using BAT transplantation have also shown that 

FGF21 levels are increased after transplantation and FGF21 could be a major factor in the 

metabolic improvement seen in transplant-recipient mice (Stanford, Middelbeek et al. 

2013). In addition, FGF21 can pass the blood-brain barrier reaffirming the idea that certain 
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batokines can act on the central nervous system. Lastly, FGF21 has also been shown to be 

expressed in brite/beige adipocytes, both in mice and humans (Wu, Bostrom et al. 2012, 

Lee, Werner et al. 2014). The most recent endocrine factor found to be enriched in BAT is 

neuregulin4 (Nrg4). The expression of Nrg4 was found to increase with brown adipocyte 

differentiation, adrenergic stimuli and acute cold exposure. Using binding assays on frozen 

tissue sections, Nrg4 was found to bind to liver most likely through direct binding of its ErbB 

receptors and reduce de novo lipogenesis (Wang, Zhao et al. 2014). 

 

Figure 4: Adipokines released from BAT. Apart from its role in non-shivering thermogenesis, BAT is also known 

to release its own set of adipokines. Albeit not as extensive as its white counterpart, these adipokines have 

various different target organs like liver, nervous system, WAT, endothelial cells and immune cells. They also 

exhibit a wide spectrum of functions like affecting hepatic metabolism, browning of WAT, angiogenesis, 

sensitization to sympathetic stimuli etc. Abbreviations: BAT, brown adipose tissue; BMP: bone morphogenetic 

protein, EGF, epidermal growth factor; ErbB, epidermal growth factor receptor; FFA, free fatty acid; FGF, 

fibroblast growth factor; IL, interleukin; NGF, nerve growth factor; Nrg, neuregulin; RA, retinoic acid; Rald, 

retinaldehyde; VEGF, vascular endothelial growth factor. Adapted from Wang, Zhao et al. (2015). 

Thus, it can be appreciated that BAT possesses an endocrine role in regulating 

whole-body metabolism (Figure 4). However, further work is needed to uncover the 

different players in BAT endocrine function. In this direction, a high-throughput screening 

approach could be vital in identifying several novel batokines. 
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Aim of the study 

The overall aim of this doctoral project was to investigate the secretome of primary brown 

adipocytes using a high-throughput screening approach involving mass spectroscopy and 

define the impact of individual mediators on BAT function.  

 The project is divided into two main parts. The first part comprises the comparative 

study of the white and brown primary adipocyte secretomes and secretomes from 

norepinephrine-stimulated and unstimulated primary brown adipocytes. We hypothesized 

that secreted candidates from the secretome screens can improve the insulin secretion 

from beta-cells. The optimization of a glucose-stimulated insulin secretion (GSIS) assay was 

carried out to test this hypothesis. The second part consists of investigating the role of inter-

alpha-trypsin inhibitor heavy chain family, member 4 (ITIH4), a candidate obtained from the 

secretome screening, as a batokine or BAT activity marker and its role in adipocyte biology 

and differentiation.  
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Results 

Brown adipocyte secretome study 

Secretome analysis of adipocytes in complete culture media 

A comparative secretome study was carried out to study the secretome of primary brown 

adipocytes by following the technique described by Eichelbaum, Winter et al. (2012). Briefly, 

the study technique was a combination of two metabolic pulse labeling methods: Click-iT® 

AHA labeling (Figure 5A) and stable isotope labeling with amino acids in cell culture (SILAC) 

(Figure 5B). The Click-iT® AHA labeling involved labeling a cell population with an azide 

bearing analog of methionine called L-azidohomoalanine (AHA). Labeling with AHA allowed 

the enrichment (by selective and covalent capture) of newly synthesized AHA-containing 

proteins using an alkyne-activated resin via click chemistry. A pulsed SILAC on the other 

hand was used to compare the proteome of two different cell types labeled with either 

‘intermediate’ or ‘heavy’ labeled arginine and lysine. The resultant secreted proteome 

obtained by the combination of these two techniques was then qualitatively analyzed using 

mass spectroscopy (Figure 5B). 
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Figure 5: Click-iT® AHA principle and secretome analysis workflow. (A) The desired monolayer culture was 

incubated with appropriate media (lacking methionine) supplemented with L-Azidohomoalanine (AHA). After 

an appropriate period of incubation, the media was collected and the newly synthesized secreted proteins 

were bound to an agarose resin. After washing the resin, the proteins were released from the resin by trypsin 

digestion. (B) The secretome analysis workflow started with a traditional SILAC setup where two cell 

populations were incubated with intermediate and heavy isotope labeled amino acids (lysine and arginine). In 

addition, the cells were incubated with AHA and NE (if stimulation was required). After incubation, the 

supernatants were collected and the secreted proteins were fished out and enriched using the Click-iT® AHA 

principle described above. Next, the secreted proteins were washed, digested fractionated and analyzed in a 

LC-MS/MS setup to obtain a qualitative comparison. The enrichment and LC-MS/MS were carried out in the 

lab of Dr. Jeroen Krijgsveld (EMBL). 

 

Optimum incubation time with SILAC-Met media was 24 

hours 

The effect of AHA on cell viability and the optimum secretion of adipokines from primary 

adipocytes was investigated before the secretome screening. For determining the 

cytotoxicity of AHA supplemented SILAC-Met media, primary inguinal white and brown 

preadipocytes from the SVF of C57BL/6J 8 weeks old male mice were differentiated until day 

08 and then incubated with either AHA-supplemented, methionine-supplemented, normal 
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DMEM or methionine-deficient SILAC-Met media for 6, 24 and 48 hours. After the 

incubation the amount of LDH released was measured in the supernatant. The LDH released 

was an indication of the amount of cell death. In addition to the cytotoxicity of the SILAC-

Met media, the optimum incubation time for maximal detection of secreted adipokines was 

also determined. To accomplish this, leptin and resistin were detected in the supernatant of 

primary inguinal white and brown adipocytes after different time points using the 

MILLIPLEX® MAP Mouse Metabolic Hormone panel on the Luminex xMAP® platform 

(MAGPIX®). 

 

 

Figure 6: Optimization of secretome conditions. Primary inguinal white and brown adipocytes from the SVF of 

C57BL/6J 8 weeks old male mice were isolated and differentiated. At day 08, the optimum incubation in SILAC-

Met media was determined by measuring the percentage of cell death (measured by LDH release) in the 

presence of AHA-supplemented, methionine-supplemented, normal DMEM and methionine-deficient SILAC-

Met media (A).  The optimum time point for maximum secretion of leptin and resistin was also determined in 

these cells (B) using the MILLIPLEX® MAP Mouse Metabolic Hormone panel. Abbreviations: iWA, inguinal white 

adipocytes; BA, brown adipocytes; AHA, L-azidohomoalaine; Met, methionine; DMEM, dulbecco's modified 

eagle medium. n=3, means ±SEM, * indicates significance. 
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As shown in Figure 6A, the amount of cell death in all of the treatments was 

significantly higher after 24 and 48 hours of incubation compared to 6 hours. Surprisingly, 

there was no significant difference between the 24 and 48 hours treatment. It was also 

observed that primary brown adipocytes were more sensitive to the deficiency of 

methionine in the growth media. As depicted in Figure 6B the amount of leptin and resistin 

secreted was significantly higher after 24 hours of incubation compared to 6 hours. As 

expected, inguinal white adipocytes (iWA) secreted higher amounts of both adipokines 

compared to brown adipocytes (BA) when compared to their respective undifferentiated 

states. 

Thus, taking together effect of AHA on cell viability and the secretion of leptin and 

resistin, a 24 hours incubation period was selected for incubation of both iWA and BA in 

SILAC-Met media for the subsequent secretome studies.   

 

Comparative secretome screening of inguinal white and 

brown adipocytes 

Three secretome studies were conducted using the workflow and incubation time 

mentioned earlier. Two of the screens compared the secretome of iWA and BA, one with 

norepinephrine (NE) treatment designated as WA (+NE) vs. BA (+NE) and the other without 

any stimulation or treatment (basal state) designated as WA (-NE) vs. BA (-NE). The third 

screen compared the secretome between NE-treated and untreated BA (BA ±NE). The 

following table contains the details of the three screens.  
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Table 2: Number of proteins detected in the secretome screens 

Screen Biological 

replicates 

Quantified 

proteins 

In at least 2 

replicates 

In all 3 

replicates 

p.adj-

value 

<0.01 

 

BA ±NE 

 

Replicate 1 719  

624 

 

275 

 

251 Replicate 2 279 

Replicate 3 718 

WA 

(+NE) vs. 

BA (+NE) 

Replicate 1 478  

461 

 

388 

 

69 Replicate 2 453 

Replicate 3 485 

WA (-NE) 

vs. BA (-

NE) 

Replicate 1 397  

353 

 

287 

 

50 Replicate 2 357 

Replicate 3 329 
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Figure 7: Classification and replicate correlation of the secretome screens. (A) All the proteins identified from 

the three secretome screens were classified according to the panther protein classes and GO biological 

processes. (B) The correlation and adjusted p-values between the replicates was determined for each of the 

three replicates for the three secretome screens. This analysis was carried out in the lab of Dr. Jeroen 

Krijgsveld (EMBL). Abbreviations: BA, brown adipocytes; WA, white adipocytes; NE, norepinephrine.  
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In total 1013 proteins were identified in the three secretome screens. Among these 

proteins, 406 were annotated as secreted. Figure 7A, shows the classification of all the 

proteins identified based on the Panther protein classes and Gene Ontology biological 

processes. According to the Panther protein classes, the top five classes represented in the 

screens were: hydrolases, nucleic acid binding proteins, enzyme modulators, signaling 

molecules and extracellular proteins. Similarly, according to the GO biological process 

proteins involved in metabolic process were highly represented, surpassing proteins 

associated with cellular processes and cell communication by nearly two fold higher 

representation. These classifications were in accordance to what is reported in other 

adipocyte secretome studies.  

The secretome studies were conducted with reciprocally labeled arginine and lysine, 

i.e. for example, among the three replicates of a screen, two of the replicates had heavy 

labeling of amino acids while the third replicate was labeled with the intermediate isotope. 

This accounted for selective incorporation of specific amino acids isotopes and to determine 

the reproducibility of the screen by assessing the correlation between the replicates. As 

shown in Figure 7B, the reproducibility of the screens was in the acceptable range of 70-85 

%, with the highest correlation for the BA ± NE screen (85 %). 

Thus, due to the expected classification of the secreted proteins and acceptable 

reproducibility of the screens, the protein hits obtained from the secretome studies were 

used considered for further functional studies.  

 

Proteins common between WA (+NE) vs. BA (+NE) and BA 

±NE screens were selected for further studies.  

Among the significant candidates (p.adj-value <0.01) obtained from the three screens, the 

proteins common between the two screens involving NE-treated white vs. brown adipocyte 

and NE-treated and untreated BA were selected for further functional characterization. 

These proteins were selected on the hypothesis that the systemic beneficial effects of BAT 

are associated with its beta-adrenergic activation via the sympathetic nervous system in 

response to cold stimuli and therefore, potential ‘batokines’ would not only be differentially 

secreted between NE-stimulated iWA and BA but also between NE-stimulated and 

unstimulated BA.  

 



Results 

 

 24 

 



  Results 

 

 25  

 

Figure 8: Significant candidates from the secretome screen and mRNA expression of some candidates. (A) Venn 

diagram depiction of the significant secretome candidates from the three secretome studies and the common 

significant candidates between the screens. (B) Heat map with the 29 secretome candidates common between 

two screens: WA (+NE) vs. BA (+NE) and BA ±NE. The list represents significant candidates with p.adj<0.01 and 

average log2 normalized ratio. (C) Validation of mRNA levels of three candidates: Anxa1, Erffi1 and Itih4 in 

three different experiments: (i) differentiated primary brown adipocytes from the SVF of C57BL/6J 8 weeks old 

male mice at day 08 with and without norepinephrine (NE) treatment, (ii) BAT from of C57BL/6J 12 weeks old 

females injected with NaCl for 14 days via an osmotic pump and CL-316,243 (CL), a thermogenic beta 3-agonist 

or NaCl (control) for 3 hours and lastly, (iii) BAT from cold-treated NMRI 8 weeks old females exposed to 

thermoneutrality as controls (30°C) for 2 weeks followed by 4°C for 3 hours. n=3, means ±SEM, * indicates 

significance compared to the appropriate controls. 

Based on the above criteria, 29 proteins common between the two screens (Figure 

8A) were selected as potential batokine candidates. Figure 8B shows the heat map of these 

29 candidates along with their evidence of secretion. Among the candidates, 9 proteins 

were not known to be secreted. Majority of the common candidates also showed lower 

secretion from BA with NE- treatment. The mRNA expression of three candidates from the 

BA±NE screen was investigated in three different BAT activation experiments to determine 

their co-relation to the secretome studies and to activated BAT. The expression of 

candidates Anxa1, Erffi1 and Itih4 was measured using qPCR in i) NE-treated primary BA, ii) 

BAT from CL-treated mice (3h) and iii) BAT from cold-exposed (3h) mice. As observed from 

Figure 8C, Anxa1 showed a reduced expression in BAT from CL-treated mice, while Erffi1 
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showed a consistent increase in mRNA expression in all three experiments which correlated 

with the secretion in the secretome screen. Itih4 on the other hand showed a very strong 

reduction with NE and CL-treatment in primary BA and BAT respectively that matched its 

secretion levels in the screen and a moderate increase with cold-exposure.  

Thus, the selected candidates showed mRNA expression in at least one experiment 

that corresponded to their protein secretion. In addition, expression data from microarray 

transcriptome analysis of BAT from the afore-mentioned cold-exposed mice correlated with 

the secretion of the secretome candidates (data not shown). These observations reinforced 

the notion that the 29 candidates could be promising batokine candidates for further 

unbiased functional studies.  

 

Batokine study 

The 29 candidates selected from the secretome screens were considered for a series of 

unbiased in vitro assays that highlight possible batokine functions. As depicted in Figure 9A, 

these studies would start with transfection of HEK 293A cells with cDNA expression vectors 

and collection of conditioned media (CM) from these cells. The CM, potentially containing 

the secreted proteins, would then be utilized in different functional assays. These in vitro 

assays include: glucose stimulated insulin secretion, lipolysis, hepatic gluconeogenesis, 

insulin sensitivity and browning (Figure 9A).  

 

Optimization of glucose stimulated insulin secretion (GSIS) 

assay for secretome candidates 

Krebs-Ringer bicarbonate HEPES buffer gives the highest fold 

increase in GSIS. 

As mentioned above, the functional characterization of the candidates involves the use of 

CM. Different types of CM were analyzed for their effect on GSIS to determine how the CM 

alone would in turn affect the assay. RPMI and Krebs-Ringer bicarbonate HEPES (KRBH) 

buffer with the addition of glucose, bovine serum albumin (BSA), fetal bovine serum (FBS) or 

combinations of them were used in the assay (Table 3). The concentration of these additives 

was selected based on experiments to determine their effect on the growth of HEK 293A 

cells and ectopic EGFP expression (data not shown). RPMI and KRBH buffer were used 

because RPMI is the growth media of INS-1E cells and KRBH buffer is used in GSIS assays. 
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Table 3: The composition of the different types of CM used in the GSIS optimization assay.  

Name Media/Buffer Glucose FBS BSA 

RPMI - - RPMI - - - 

RPMI+G RPMI 0.5 g/L - - 

RPMI+FBS RPMI - 5 % - 

RPMI+G+FBS RPMI 0.5 g/L 5 %  

RPMI+G+BSA RPMI 0.5 g/L - 1 % 

RPMI-fresh RPMI - - - 

KRBH - - KRBH - - - 

KRBH+G KRBH 0.5 g/L - - 

KRBH+FBS KRBH - 5 % - 

KRBH+G+FBS KRBH 0.5 g/L 5 %  

KRBH+G+BSA KRBH 0.5 g/L - 1 % 

KRBH-fresh KRBH - - - 
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Figure 9: Batokine study and optimization of GSIS assay. (A) The setup to study the batokine candidates would 

include the 29 candidates from the secretome studies and transfection of their expression constructs in to HEK 

293A cells. The conditioned media containing the over-expressed secreted candidate would then be used for 

different functional assays like insulin secretion (INS-1E cells), lipolysis (3T3-L1), gluconeogenesis (FAO cells), 

insulin sensitivity (Hepa 1-6) and browning (HIB1B). (B) The set up for optimizing the GSIS assay involves 

incubating HEK 293A cells with different compositions of condition media (CM) for 24 hours and then treating 

INS-1E cells with this CM followed by glucose stimulation for 30 minutes. The secreted insulin is measured 

from the supernatant using ELISA. (C) Using the setup mentioned above, different compositions of CM were 

used and the fold change in insulin secretion (glucose stimulated to unstimulated insulin secretion) was 

measured. Abbreviations: BSA, bovine serum albumin; FBS, fetal bovine serum; G, glucose; KRBH, Krebs-Ringer 

bicarbonate HEPES. n=2 (B), means ±SEM, * indicates significance. 

The optimization experiment was carried out as shown in Figure 9B. Briefly, different 

CMs were incubated on HEK 293A cells for 24 hours. After the incubation, the CMs were 

used to treat INS-1E cells for 2 hours, followed by 2 hour glucose stimulation by the addition 

of 20 mM glucose. In addition to these CMs, fresh RPMI (‘RPMI fresh’) and KRBH (‘KRBH 

fresh’) - which were not in contact with HEK 293A cells, were also used in the assay. The 

supernatant was collected and the secreted insulin was measured using ELISA. As shown in 

Figure 9C, the highest fold change (ratio of glucose treated to untreated) in insulin secretion 

was observed for KRBH fresh although the absolute values of secreted insulin values were 

low (data not shown) compared to the other samples.  

Thus, the highest fold change in GSIS and in turn the highest responsiveness to 

glucose was achieved when INS-1E cells were stimulated with glucose in fresh KRBH. 

Therefore, KRBH buffer was used for GSIS assays in the subsequent experiments.   
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Recombinant proteins lead to higher GSIS compared to conditioned 

media 

Next, the INS-1E cells were treated with either adiponectin CM or recombinant protein to 

determine an optimum method to expose the INS-1E cells to the secretome candidates. 

Adiponectin was used as a positive control in this experiment because it increases GSIS in 

INS-1E cells (Patane, Caporarello et al. 2013) and was also one of the 29 secreted proteins. 

The two pilot assays involved the use of adiponectin CM or recombinant adiponectin 

protein. 
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Figure 10: GSIS assay with conditioned media and recombinant proteins. (A) Conditioned media (CM) from HEK 

293A cells transfected with adiponectin cDNA expression vector (Origene, MC208100) was collected after 48 

hours and used to treat INS-1E cells. After 2 hours or 6 hours incubation with the CM, the INS-1E cells were 

washed with KRBH and starved in fresh KRBH for 30 minutes, washed again and stimulated with 20 mM 

glucose. The insulin secreted was measured using ELISA. The graphs depict the normalized insulin secretion for 

CM containing adiponectin (as a positive control) with subsequent glucose stimulation. (B) The INS-1E cells 

were directly treated with recombinant proteins either in RPMI for 2 hours (a) or with glucose in KRBH after 30 

minutes of starvation (b). The supernatant was collected and insulin was measured using ELISA. The graphs 

show normalized insulin secretion using recombinant adiponectin (as positive control) with 20 mM glucose 

stimulation. n=4, means ±SEM, * indicates significance compared to respective control. 

The setup of the assays is depicted in Figure 10. Briefly, the adiponectin CM was 

obtained from HEK 293A cells  and used to treat INS-1E cells for 2 hours and 6 hours 

followed by GSIS in KRBH with glucose stimulation (Figure 10A). As shown in the graphs, 

GSIS was not significantly increased with treatment with adiponectin CM but a trend was 

visible with 2 hour treatment. On the other hand, the use of recombinant adiponectin 

involved either (a) addition of the protein in RPMI with 2 hours of incubation or (b) addition 

of the protein in KRBH along with 20 mM glucose stimulation (Figure 10B). As can be seen 

from the graphs, both protocols resulted in a significant increase in GSIS in the presence of 
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recombinant adiponectin. The increase was larger when INS-1E cells were treated with 

recombinant adiponectin in RPMI.   

Thus, it can be concluded from the above data that, at least in the case of 

adiponectin, the use of recombinant protein was more effective than the use of CM to 

increase GSIS.  

 

ITIH4 and its role in adipocyte biology 

As stated above, the use of recombinant proteins seemed to be the most plausible option 

for use in the GSIS assay. However, obtaining the recombinant proteins for all the 29 

candidates was not feasible in the limited project period and the focus of the project was 

shifted to a single secretome candidate: inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4). 

ITIH4 is a 120-kDa acute phase protein that is cleaved by plasma kallikrein and is detectable 

in human and mouse serum. ITIH4 was one of the candidates from the initial secretome 

comparison between inguinal white and brown adipocytes. It was found to be about 4-fold 

highly secreted from brown adipocytes compared to white (Figure 11A) and its secretion 

was suppressed 4-fold by treatment with norepinephrine (NE) (data not shown).  

 

ITIH4 is preferentially secreted from brown adipocytes but 

serum levels are not changed after cold-exposure 

Owing to its secretion profile in the secretome screening, it was hypothesized that changes 

of ITIH4 levels in the serum would reflect the degree of BAT activity or its role as a possible 

batokine. To investigate this, ITIH4 levels were measured in the serum of cold-treated mice.  
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Figure 11: ITIH4 in the preliminary secretome screen, serum and mRNA levels. (A) ITIH4 was found to be 

preferentially secreted from primary brown adipocytes compared to white adipocytes in one of the secretome 

screens. ITIH4 was measured in the serum of cold-treated NMRI 8 weeks old females exposed to 

thermoneutrality as controls (30°C) for 2 weeks followed by 4°C for 3 hours, 8 hours and 24 hours (B). (C) Itih4 

mRNA expression was measured in the iWAT and BAT from the same animals from (B). (D) Itih4 mRNA 

expression was measured in differentiated primary inguinal white and brown adipocytes at day 08 from the 

SVF of C57BL/6J 8 weeks old male mice. n=6 means ±SEM, * indicates significance. 

As shown in Figure 11B, the levels of ITIH4 were detectable in the serum but were 

unchanged in cold-exposed mice. Interestingly, Itih4 mRNA levels increased in the 

intrascapular BAT of these mice (Figure 11C) and a 70-fold higher mRNA expression in 

primary brown adipocytes compared to inguinal white adipocytes was also detected (Figure 

11D). Therefore, it was concluded that ITIH4 might not correlate with BAT activity or be a 

potential batokine candidate under cold stimulation but could play a role in brown 

adipocytes biology or function.  
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Itih4 mRNA levels increase with adipogenesis and are higher 

in brown adipocytes 

Having observed an increase with cold-exposure in mRNA expression and higher mRNA 

levels in primary brown adipocytes, Itih4 mRNA levels were investigated in vitro in different 

adipocyte cell lines and in primary adipocytes (Figure 12). 

 

 

Figure 12: ITIH4 expression in cell lines and primary adipocytes during differentiation. PreBAT cells were 

differentiated and Itih4 mRNA (A) and protein expression (B) (with quantification relative to VCP using Image 

Labs) was measured on day 0, 02, 04 and 06. (C)  3T3-L1 cells were differentiated with or without rosiglitazone 

and Itih4 mRNA expression was measured at the end of differentiation (day 06 and day 08). Itih4 mRNA 

expression was measured during the differentiation of primary brown adipocytes (D), inguinal and abdominal 

white adipocytes (F) from the SVF of C57BL/6J 8 weeks old male mice. n=6, means ±SEM, * indicates 

significance 
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ITIH4 expression was first measured in PreBAT cells. This cell line was generated by 

immortalizing pre-adipocytes from the intrascapular BAT of newborn mice using the SV40 

Large T antigen (Hoppmann, Perwitz et al. 2010). These cells can be differentiated in to 

mature brown adipocytes by treatment with an induction media followed by differentiation 

media for 6 days. As shown in Figure 12A and B, Itih4 mRNA and protein expression 

increased with differentiation (adipogenesis) of PreBAT cells. Interestingly, the protein 

expression of full length 120 kDa ITIH4 was not changed with differentiation apart from 

small increase at day 02. However, the amount of the 57 kDa N-terminal fragment was 

increased with differentiation of PreBAT cells. Similarly, Itih4 mRNA expression also 

increased with differentiation of 3T3-L1 and the expression was higher in the presence of 

rosiglitazone - a potent Pparg agonist and browning agent (Figure 12C). Concerning primary 

adipocytes, Itih4 mRNA levels were higher in differentiated primary brown adipocytes 

compared to primary inguinal white adipocytes (Figure 12 D-F) but in addition, Itih4 mRNA 

expression increased with the differentiation of primary brown adipocytes, inguinal and 

white adipocytes.  

Thus, ITIH4 expression increased with differentiation in both adipocyte cell lines and 

primary adipocytes with a higher expression associated with brown adipocytes and 

browning. 

 

Rosiglitazone and isoproterenol significantly reduce Itih4 

mRNA expression in differentiated PreBAT cells while IL-6 has 

no effect. 

As shown in the previous section, Itih4 mRNA expression increases with adipogenesis. In 

addition, Itih4 mRNA expression has also been shown to increase in hepatocytes and HepG2 

cells with IL- 6 treatment (Pineiro, Alava et al. 1999, Bhanumathy, Tang et al. 2002). 

Therefore, Itih4 expression levels in mature adipocytes were investigated after treatment 

with IL-6 and compounds that affect mature adipocyte functions. PreBAT cells at day 06 of 

differentiation were treated with etomoxir (fatty acid oxidation inhibitor), AICAR (AMPK 

activator), rosiglitazone (PPARg agonist), isoproterenol (beta adrenergic agonist), LPS 

(endotoxin that stimulates the innate immune response) and thapsigargin (ER stress 

inducer) for 6 hours and also with different amounts of IL-6 for 48 hours. 
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Figure 13: Itih4 mRNA expression with different extracellular treatments. Differentiated PreBAT cells at day 06 

were treated with etomoxir (100 µM), AICAR (1 mM), rosiglitazone (10 µM), isoproterenol (10 µM), LPS (10 

ng/ml), thapsigargin (0.2 µM) for 6 hours (A) and with 1 ng/ml and 10 ng/ml IL-6 for 48 hours (B). Itih4 mRNA 

expression was measured using qPCR. n=6, means ±SEM, * indicates significance. Abbreviations: AICAR, 5-

Aminoimidazole-4-carboxamide ribonucleotide; LPS, lipopolysaccharides. 

As observed from Figure 13A, etomoxir, AICAR, rosiglitazone and isoproterenol 

reduced the expression of Itih4 mRNA after 6 hours of treatment. Among these four 

compounds, treatment with rosiglitazone and isoproterenol resulted in almost 50 % 

reduction in Itih4 expression. Interestingly, unlike in hepatocytes and HepG2 cells, IL-6 

treatment failed to increase Itih4 mRNA expression (Figure 13B).  

 



  Results 

 

 37  

Itih4 expression increases with Treg depletion in BAT and 

decreases with adipose tissues in db/db mice 

ITIH4 is an acute-phase protein and is associated with inflammatory processes (Pineiro, 

Alava et al. 1999) and infections (Pineiro, Andres et al. 2004, Gangadharan, Antrobus et al. 

2007) . In order to check the effect of a pro-inflammatory environment, Itih4 mRNA 

expression was measured in two different mouse models. In the first model, Iith4 mRNA 

expression was measured in the inguinal WAT and intrascapular BAT of regulatory T cell 

(Treg)-depleted mice. These are the same transgenic mice used by Medrikova, Sijmonsma et 

al. (2015) and express the diphtheria toxin (DT) receptor under the control of Foxp3 gene 

regulatory elements driving the expression of DTR in Tregs. Administering DT led to the 

whole body depletion of Treg cells and resulted in a significant increase in the invasion of 

pro-inflammatory macrophages in BAT. In the second model, Itih4 levels were investigated 

in the adipose tissue of ob/ob obese mice (experiment conducted by Dr. Roldan de Guia) 

that are known to have a chronic state of adipose tissue inflammation (Xu, Barnes et al. 

2003). This would also be an interesting comparison to ITIH5, another member of the inter-

α-trypsin inhibitor (ITI) family that has been shown to increase with obesity in human 

adipose tissue (Anveden, Sjoholm et al. 2012).  
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Figure 14: Itih4 mRNA expression in iWAT and BAT from Treg depleted mice and db/db mice. Itih4 mRNA 

expression was measured using qPCR in inguinal WAT and intrascapular BAT from 7 week old FoxP3DTR female 

mice that were either injected with 1xPBS (control) or diphtheria toxin (Treg depleted) (A) and from random-

fed 12 week old BKS.Cg-m+/+ Lepr DB/J (db/db) or C57Bl6/J control mice (wt) (B). (C) Differentiated PreBAT 

cells at day 06 were treated with indicated amounts of leptin for 48 hours. n=9 (A), n= 4 (B), means ±SEM, * 

indicates significance. Abbreviations: iWAT, intrascapular white adipose tissue; BAT, brown adipose tissue; 

Treg, T regulatory cells. 

As shown in Figure 14A, depletion of Tregs in BAT led to a 20-fold and 70-fold 

increase in Itih4 mRNA expression compared to control BAT and iWAT respectively. 

However, the increase in Itih4 mRNA expression after Treg depletion in iWAT was only 2-

fold compared to control iWAT. Interestingly, a significant degree of reduction in Itih4 mRNA 

expression was observed in iWAT and BAT from db/db mice (Figure 14B). This decrease was 

only observed in the adipose tissues while other metabolic organs like liver and the 

gastrocnemius muscle (GC) showed no change in Itih4 mRNA levels (data not shown). To 

investigate if this decrease in Itih4 mRNA levels was due to high amounts of leptin 

(hyperleptinemia) in db/db mice, differentiated PreBAT cells were treated with different 

amounts of leptin for 48 hours. Interestingly, leptin had no effect on Itih4 expression (Figure 

14C). 

Thus, Itih4 mRNA levels increased drastically with Treg depletion in BAT and 

decreased in iWAT and BAT of obese db/db mice.  
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ITIH4 knockdown in vitro was achieved using siRNA 

ITIH4 was postulated to play an important role in adipocyte function because of its 

expression in adipogenesis (in vitro), inflammation and obesity (in vivo). Therefore, to 

further understand its role in adipocyte biology ITIH4 knockdown was attempted using 

siRNA in PreBAT cells. First, the transfection and siRNA knockdown was optimized in PreBAT 

cells using siPka (siRNA against Prkaca - Protein Kinase, CAMP-Dependent, Catalytic, Alpha) 

as a positive control siRNA and different transfection reagents.  

 

Figure 15: Knockdown of ITIH4 in vitro using siRNA. (A) PreBAT cells were transfected with 20 nM of siPka 

(positive control) and siAllstar (negative control) using different transfection reagents before the start of 

differentiation. pKa mRNA expression was measured on day 06 of differentiation. (B) Five different siRNAs for 

ITIH4 were used to transfect PreBAT cells using RNAiMAX before differentiation. Itih4 mRNA expression was 

measured on day 06 of differentiation. siItih4_1 (20 nM) was used to transfect undifferentiated PreBAT cells 

and ITIH4 mRNA (C) and protein (D) expression (with quantification relative to VCP using Image Labs) was 

measured at different time points after differentiation using qPCR and immunoblotting. (E) Brown and inguinal 

white preadipocytes from the SVF of C57BL/6J 8 weeks old male mice were transfected with siItih4 (20 nM) 

and negative control (siAllstar) and mRNA expression was measured after 8 days of differentiation. n=6, means 

±SEM, * indicates significance to siAllstar (negative control). 
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Lipofectamine® RNAiMAX transfection reagent gave the highest knockdown of Pka 

when compared to the negative control (siAllstar) (Figure 15A). Using RNAiMAX, five 

different siRNAs against Itih4 were tested. The PreBAT cells were transfected with 20 nM of 

siRNAs 2 days before the start of differentiation and mRNA expression was measured after 6 

days of differentiation. Among them, siItih4_1 gave a 70 % reduction in Itih4 mRNA levels 

(Figure 15B). A time course experiment was also carried out to check the prevalence of ITIH4 

knockdown during different time points of differentiation using siItih4_1 siRNA. As shown in 

Figure 15C, Itih4 mRNA levels were consistently low throughout 7 days of differentiation. 

The 57 kDa N-terminal subunit of ITIH4, which was previously shown to increase with 

differentiation, was also reduced when the cells were transfected with siItih4_1 (Figure 

15D). Using similar transfection conditions, a high degree of knockdown (> 80 %) was also 

observed in differentiated primary inguinal white and brown adipose tissues (Figure 15E).  

Thus, an effective knockdown of ITIH4 was achieved using 20 nM of siItih4_1 and 

Lipofectamine® RNAiMAX transfection reagent in PreBAT cells and primary adipocytes. In 

further experiments siItih4_1 was used as the default siRNA for ITIH4 knockdown. 

 

Effects of ITIH4 knockdown 

ITIH4 knockdown in PreBAT cells leads to lower acidification 

of culture media and lower glucose utilization 

Next, the effects of ITIH4 knockdown in vitro were investigated using the optimized siRNA 

knockdown conditions.  
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Figure 16: Changes in media color, pH and media glucose with ITIH4 knockdown. PreBAT cells were transfected 

with siItih4 (20 nM) or siAllstar (negative control, 20 nM) before differentiation and changes in media color (A), 

pH (C) and glucose in the media (D) were recorded at different time intervals of differentiation. (B) Primary 

brown and inguinal white preadipocytes from the SVF of C57BL/6J 8 weeks old male mice were also 

transfected with siItih4 and the change in media color was measured on day 02 of differentiation. n=3, means 

±SEM, * indicates significance. 

The most striking and noticeable change after ITIH4 knockdown was the reduction of 

acidification of the PreBAT culture media. This reduction in acidification, as visualized by red 

media color (Figure 16A) and quantified by a higher media pH (Figure 16C) for siItih4 

transfected cells, was observable till day 06 of differentiation albeit the difference was 

stronger at the early stages of differentiation. These observations point to possible reduced 

metabolism which was indirectly confirmed by a higher residual glucose amount in the 

culture media for cells with ITIH4 knockdown (Figure 16D). However, similar changes were 

not observed with primary adipocytes (Figure 16B).  

Thus, ITIH4 knockdown appeared to have an effect on PreBAT cells which could be 

due to reduced growth or lower overall differentiation.  

 



Results 

 

 42 

ITIH4 knockdown leads to reduced lipid staining in both 

PreBAT cells and primary adipocytes 

Next, lipid staining of PreBAT cells after ITIH4 knockdown was investigated to explain the 

afore-mentioned reduction in media acidification and glucose utilization.  

 

Figure 17: Oil red O staining of differentiated PreBAT and primary adipocytes with ITIH4 knockdown. ITIH4 was 

knocked down using siItih4 (20 nM) before the start of differentiation in PreBAT cells and primary brown and 

inguinal white preadipocytes from the SVF of C57BL/6J 8 weeks old male mice. Oil red O staining was carried 

out at different differentiation time points for PreBAT cells (A) and at day 08 of differentiation (B) for primary 

differentiated adipocytes after the start of differentiation.  

As shown from the time course Oil Red O staining in Figure 17A, ITIH4 knockdown 

before differentiation in PreBAT cells resulted in a reduction in lipid staining when 

compared to untreated or negative (siAllstar) controls. This effect was even stronger in the 

case of primary intrascapular brown and inguinal white adipocytes (Figure 17B). Although 

the differentiation efficiency of the primary brown adipocytes was low in this experiment, 

subsequent knockdown experiments showed that the effect of ITIH4 knockdown was 

stronger in brown adipocytes than in inguinal white adipocytes (data not shown).  

Thus, using Oil Red O staining it was shown that ITIH4 knockdown leads to decreased 

lipid staining and this effect is stronger in primary adipocytes compared to the PreBAT cell 

line. 
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ITIH4 knockdown does not lead to decrease in BAT and 

adipogenic markers 

In order to fully characterize the effect of ITIH4 knockdown in adipocytes, the expression of 

some BAT and adipogenic markers was measured after ITIH4 knockdown. 

 

 

Figure 18: mRNA expression of BAT and mature adipocyte markers after ITIH4 knockdown. PreBAT cells were 

transfected with siItih4 (20 nM) or siAllstar (negative control, 20 nM) before differentiation and mRNA 

expression of various BAT markers like Ucp1 (A), Pparg (B), Cidea (C), Prdm16 (D), Pgc1a (D), Cebpb (D) and 

mature adipocyte markers like Atgl (D) and Hsl (D) were measured using qPCT at different time points of 

differentiation. n=3, means ±SEM, * indicates significance compared to siAllstar. 

Contrary to what was expected BAT differentiation markers like Ucp1, Cidea and Pgc-

1a were increased at the end of differentiation of ITIH4 knockdown PreBAT cells. Moreover, 

Ucp1 and Cidea mRNA expression increased with differentiation of these cells. Other BAT 

markers like Prdm16 and Cebpb and adipogenic marker Pparg were not changed (Figure 18 

A - D). Interestingly, mature adipocyte markers like Atgl and Hsl were decreased with ITIH4 
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knockdown (Figure 18D). In the case of primary adipocytes, markers like Cidea and Fabp4 

were reduced with ITIH4 knockdown before differentiation (Supplementary figure 1).  

Thus, at least in PreBAT cells the knockdown of ITIH4 did not lead to a decrease in 

the expression of BAT differentiation markers. 

 

Intracellular triglyceride amounts and lipolysis were 

significantly reduced with ITIH4 knockdown 

As mentioned above, the effect of ITIH4 on differentiation of PreBAT cells could not be 

confirmed using BAT and adipogenic markers. In order to validate this effect, both lipolysis 

and intracellular triglyceride (TG) accumulation were investigated in ITIH4 knockdown cells 

since lower overall lipolysis and TG amounts would be indicative of reduced differentiation 

and mature adipocytes. PreBAT cells were transfected with siItih4 and siAllstar (negative 

control) 2 days prior to the start of differentiation and lipolysis and TG amounts were 

analyzed on day 06 of differentiation. For the lipolysis assay, the cells were first starved and 

then stimulated with isoproterenol (10 µM). The non-esterified fatty acids (NEFA) were 

measured in the supernatant using a commercial NEFA kit. TG amounts were also measured 

at day 06 of differentiation. The cells were harvested, sonicated and centrifuged to obtain 

cell lysates containing TGs. The intracellular TG was measured using the Serum Triglyceride 

Determination Kit from Sigma. 
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Figure 19: Lipolysis and triglyceride (TG) amounts after ITIH4 knockdown. ITIH4 was knocked down using siIth4 

(20 nM) 2 days before differentiation in PreBAT cells. Lipolysis (depicted as non-esterified fatty acids, NEFA) 

after 3 hours of 10 µM isoproterenol treatment (A) and intracellular TG amounts (B) were measured at day 06 

of differentiation. Primary brown and inguinal white preadipocytes were transfected with siItih4 (20 nM) or 

siAllstar (negative control, 20 nM) 2 days before the start of differentiation and lipolysis for inguinal white 

adipocytes (C) and TG amounts for both brown and inguinal white adipocytes were measured at day 08 of 

differentiation (D). n=3, means ±SEM, * indicates significance compared to siAllstar (negative control). 

As observed from Figure 19A, ITIH4 knockdown resulted in a significant decrease in 

lipolysis when the differentiated PreBAT cells were treated with isoproterenol (β-adrenergic 

agonist) for 3 hours but no change in TG amounts was observed (Figure 19B). In primary 

cells however, ITIH4 knockdown led to significant reduction in lipolysis as well as TG 

amounts (Figure 19 C and D). Lipolysis in primary brown adipocytes could not be measured 

because ITIH4 knockdown led to very few differentiated brown adipocytes.  

Thus, ITIH4 knockdown affected both lipolysis and TG amounts in primary adipocytes 

while only lipolysis was affected with PreBAT cells.  
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ITIH4 knockdown reduces glucose uptake and lipogenesis in 

PreBAT cells 

In order to further validate the role of ITIH4 in differentiation, glucose uptake and 

lipogenesis- both crucial functions of differentiated adipocytes- were investigated in 

absence of ITIH4. As with previous experiments, ITIH4 was knocked down using siRNA 

before the start of differentiation. At day 02 of differentiation, the cells were incubated with 

D-[14C(U)]-Glucose and stimulated with insulin for 2 hours after which the cells were 

harvested and glucose uptake and lipogenesis were measured using a scintillation counter.  

 

 

Figure 20: Glucose uptake and lipogenesis after ITIH4 knockdown in PreBAT cells. ITIH4 was knocked down in 

PreBAT cells using 20 nM siRNA before the start of differentiation. Glucose uptake (A) and lipogenesis (B) were 

measured at day 02 of differentiation after incubating the cells with D-[14C(U)]-Glucose (0.5 µCi/well) and 

insulin (10 nM) for 2 hours. n=3, means ±SEM, * indicates significance compared to untreated. 

As shown in Figure 20A, ITIH4 knockdown led to a significant decrease in glucose 

uptake when compared to both untreated and negative controls (siAllstar). Similarly, 

lipogenesis was significantly reduced in the absence of ITIH4 (Figure 20B).  

Thus, it can be concluded that ITIH4 knockdown in undifferentiated PreBAT cells 

alters mature adipocyte functions like lipolysis, TG accumulation, glucose uptake and 

lipogenesis possibly due to its effect on differentiation.  
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Transcriptome analysis of ITIH4 knockdown in PreBAT cells at 

different time points of differentiation 

Next, global gene expression profiling was carried out on samples from different time points 

of differentiation following siRNA-mediated ITIH4 knockdown. This was done to fully 

characterize the gene expression changes occurring during differentiation with ITIH4 

knockdown using Affymetrix chips. Similar to previous ITIH4 knockdown experiments, 

PreBAT cells were transfected with siAllstar (negative control) or siItih4 and differentiation 

was started after 2 days. Cells were harvested at day 02, day 04 and day 07 of 

differentiation and were subjected to microarray analysis. The microarray and subsequent 

analysis was carried out by Dr. Carsten Sticht from the Center of Medical Research, 

University of Heidelberg.  
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Figure 21: Gene expression profiling of PreBAT cells at different differentiation time points with ITIH4 

knockdown. PreBAT cells were transfected with siItih4 (20 nM) and siAllstar (depicted here as NC, 20 nM) 2 

days before induction of differentiation. Cells were harvested at day 02, 04 and 07 of differentiation and 

microarray analysis was carried out on GeneChip® Mouse Transcriptome Assay 1.0 chips. The 3D scatterplot 

(A), heat map (B), volcano plots for day 02 (C), day 04 (D), day 07 (E) and Venn diagram of significant hits (F) 

(from comparing negative control and siItih4 samples from the same time point) were generated from the 

transcriptome data. Abbreviations: d2, day 02; d4, day 04; d7, day 07; NC, negative control (siAllstar). n=3 for 

each group. 

 



  Results 

 

 49  

Figure 21 shows the data obtained from the microarray analysis. It can be observed 

from the 3D scatterplot (Figure 21A) and heat map (Figure 21B) that most of the biological 

replicates (with the exception of d7_NC1: day 07 negative control 1) cluster together. Thus, 

there was a high degree of reproducibility among the replicates. It can also be inferred from 

the heat map that the effect of time (day of differentiation) is stronger that the siRNA 

treatment since both the negative control (NC) and siItih4 samples for a time point cluster 

together. The volcano plots (Figure 21 C, D and E) show all the 25,190 genes obtained from 

the microarray analysis compared day-wise (in other words, negative control vs. siItih4 for 

day 02, for day 04 and for day 07) and all significantly altered genes (q-value < 0.05) are 

shown above the threshold (red dotted line). Figure 21F depicts the same day-wise 

comparison of significant genes (significant index = 1) including the genes common between 

the groups in the form of a Venn diagram. 

 

Further analysis of ITIH4 knockdown transcriptome reveals 

regulation of important metabolic pathways and possible 

targets 

The transcriptome data obtained from the microarray analysis of ITIH4 knockdown PreBAT 

cells during differentiation was further analyzed using Cytoscape and gene set enrichment 

analysis (GSEA) of KEGG pathways. Significant genes with a 2-fold or higher change in 

expression were selected and visualized using the ‘Venn and Euler Diagrams’ plugin for 

Cytoscape. Alternatively, for the GSEA of KEGG pathways, the list of genes were first 

annotated using entrez-IDs which resulted in reduction of the dataset to about 22,000 

probe sets/genes. Using this dataset GSEA was performed using the KEGG pathway 

database. Dr. Carsten Sticht from the Center of Medical Research, University of Heidelberg, 

carried out this analysis.  
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Figure 22: Further analysis of microarray data from ITIH4 knockdown cells. (A) A 2-fold cut off was selected for 

significant genes for the different groups and the Venn diagram was generated using Cytoscape. (B) Gene Set 

Enrichment Analysis (GSEA) was carried out on KEGG pathways and some of the pathways important in 

metabolism are depicted. Some of the promising targets from the microarray like Ahsg (C), Arxes1 (D) and 

Depp (E) were validated using qPCR.. n=3, means ±SEM, * indicates significance compared to day 02 siAllstar 

(negative control). Abbreviations: NC, negative control (siAllstar); NES, normalized enrichment score.  
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Table 4: List of top 10 genes that were downregulated with ITIH4 knockdown according to 

the rank metric score from GSEA. 

Day 02 Day 04 Day 07 

Egln3 (Egl-9 Family Hypoxia-
Inducible Factor 3) 

Depp (Decidual Protein Induced By 
Progesterone) 

ITIH4 (Inter-Alpha-
Trypsin Inhibitor Heavy 
Chain Family, Member 
4) 

C10orf99 (Chromosome 10 
Open Reading Frame 99) 

Doc2b (Double C2-Like Domains, Beta) Ppp1r15a (Protein 
Phosphatase 1, 
Regulatory Subunit 
15A) 

Cox7a1 (Cytochrome C Oxidase 
Subunit VIIa Polypeptide 1) 

Cxcl13 (Chemokine (C-X-C Motif) Ligand 
13) 

Depp (Decidual Protein 
Induced By 
Progesterone) 

Prelid2 (PRELI Domain 
Containing 2) 

Serpina3n (Serpin Peptidase Inhibitor, 
Clade A Member 3N) 

Tbx5 (T-Box 5) 

Tshr (Thyroid Stimulating 
Hormone Receptor) 

Prg4 (Proteoglycan 4) Gadd45a (Growth 
Arrest And DNA-
Damage-Inducible, 
Alpha) 

Pdk1 (Pyruvate Dehydrogenase 
Kinase, Isozyme 1) 

Mmp11(Matrix Metallopeptidase 11) Hoxc10 (Homeobox 
C10) 

Elovl3 (ELOVL Fatty Acid 
Elongase 3) 

Fbxo31 (F-Box Protein 31) Tas2r126 (Taste 
Receptor, Type 2, 
Member 41) 

Ppp1r3b (Protein Phosphatase 
1, Regulatory Subunit 3B) 

Tat (Tyrosine Aminotransferase) Gm867 (predicted gene 
867) 

Adrb2 (Adrenoceptor Beta 2, 
Surface) 

Ahsg (Alpha-2-HS-Glycoprotein) Slc9b2 (Solute Carrier 
Family 9, Subfamily B 
Member 2) 

Ero1l (ERO1-Like) Ctla2a (Cytotoxic T Lymphocyte-
Associated Protein 2 Alpha) 

Gm7168 (predicted 
gene 7168) 

 

As can be observed from the Venn diagram in Figure 22A, very few targets with a 

fold change of two or greater were common between the different day-wise groups. 

Interestingly, the common target between all three different groups was miRNA-3079. In 

order to validate the microarray data three genes: Ahsg, Arxes1 and Depp were selected 

from the different sample groups (Figure 22A) and their mRNA expression was analyzed 

using qPCR (Figure 22 C - E). The mRNA expression of the three candidates corresponded 

with the expression from the microarray analysis. Figure 22B shows the important metabolic 

pathways that were regulated with ITIH4 knockdown. Some of the pathways that were 

upregulated include the p53 signaling and TGF-β signaling pathway. Other pathways like 

circadian rhythm, hedgehog signaling pathway, type I diabetes mellitus, insulin secretion, 

pentose phosphate pathway, fructose and mannose metabolism and biosynthesis of amino 

acids were downregulated with ITIH4 knockdown. Other pathways that were significantly 

downregulated (NES>2) at day 02 were the oxidative phosphorylation pathway, PPAR 
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signaling, insulin signaling, carbon metabolism, glycolysis/gluconeogenesis and biosynthesis 

of unsaturated fatty acids (Supplementary figure 2). This initial time point (day 02) is 

important since effects of ITIH4 knockdown on differentiation would be strongest at the 

early stages of differentiation. Table 4 shows the top 10 genes that were downregulated 

with ITIH4 knockdown. These genes include Egln3 (HIF-1 signaling), Cox7a1 (oxidative 

phosphorylation), Ppp1r3b (insulin signaling), Elovl3 (fatty acid elongation), Tshr (cAMP 

signaling pathway), Gadd45a (MAPK, FoxO and p53 signaling) and Pdk1 (PPAR, FoxO and 

AMPK singaling). Thus, it can be concluded from this data that ITIH4 knockdown affects 

important metabolic pathways and genes.  

 

ITIH4 knockdown in mature differentiated PreBAT cells 

So far the effect of ITIH4 knockdown had been studied with its knockdown before the 

initiation of differentiation. To investigate its possible effects on mature adipocyte function, 

adenoviral vectors were used to knockdown ITIH4 near the end of differentiation. PreBAT 

cells were differentiated and transduced at day 06 of differentiation with Ad_shItih4 or 

Ad_NC (negative control virus) with an MOI of 100. Itih4 mRNA expression and lipolysis was 

measured 2 days after transduction. 
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Figure 23: ITIH4 knockdown in mature adipocytes using adenoviral vectors. PreBAT cells were differentiated 

and were transduced with adenoviral vectors: Ad_NC (negative control) and Ad_shItih4 at an MOI of 100. Itih4 

mRNA expression (A) and lipolysis (B) was measured 2 days after transduction. (C) Immunoblotting of similarly 

transduced cells two days post-transduction. * indicates significance compared to untreated control. 

Abbreviations: NC, negative control (siAllstar); MOI, multiplicity of infection. 

As shown in Figure 23A, transduction with Ad_shItih4 resulted in 75 % reduction of 

Itih4 mRNA levels compared to the untreated and negative controls. However, there was no 

change in lipolysis in these cells (Figure 23B). Immunoblotting of Ad_NC and Ad_shItih4 

transduced mature PreBAT cells surprisingly did no show a reduction in protein expression 

of the 57 kDa N-terminal subunit (which was observed with siRNA knockdown) or the full 

length ITIH4 (Figure 23C).  

Thus, using adenoviral vectors ITIH4 knockdown was possible at the mRNA level but 

not at the protein level in differentiated PreBAT cells. No change in lipolysis was observed 

with adenoviral ITIH4 knockdown. Therefore, ITIH4 knockdown at least at the mRNA levels 

did not result in changes in the lipolytic capacity of the mature adipocytes.  
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Discussion 

Current technologies used in adipose tissue/adipocyte 

secretome studies 

Due to their high sensitivity and speed soft ionization techniques like MALDI (matrix-assisted 

laser desorption) and electrospray along with mass analyzers like time of flight (TOF), ion 

trap or quadrupole analyzers have made mass spectroscopy the technique of choice for 

extensive proteomic studies. Therefore, it comes as no surprise that liquid chromatography-

tandem mass spectrometry (LC-MS/MS) is used in most secretome studies and screens. The 

most challenging problem in secretome studies is the elimination of protein contaminants 

that usually mask the presence of relevant protein candidates. The common techniques to 

circumvent this problem include: 1) the treatment of cells with Brefeldin A (BFA) which 

blocks the classical secretory pathway and distinguishes the secreted proteins from leaked 

proteins, 2) growth of cells in the absence of serum and serum contaminating proteins and 

3) the use of labeling techniques like radioactive labeling with 35S methionine to 

discriminate contaminating non-labeled serum proteins. In general these methods help 

identify proteins secreted by the classical secretory pathway and discriminate secreted 

proteins from serum contaminants. However, treatment with BFA and the absence of serum 

are stressful to the cells and affect the cell physiology while 35S labeling induces DNA 

damage and leads to cell cycle arrest and apoptosis (Hu, Heikka et al. 2001). Thus, these 

methods have profound effects on the cells and could alter the normal cellular secretome.  
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Figure 24: Common workflow involved in adipose tissue/adipocyte secretome screening. Quantitative 

applications are depicted in red. Abbreviations: SILAC, stable isotope labeling by amino-acid in cell culture; 

CILAIR, comparing isotope-labeled amino acid incorporation rates; ICAT, isotope-coded affinity tag; DIGE, 

Difference gel electrophoresis. Adapted from Pardo, Roca-Rivada et al. (2012). 

 Figure 24 shows a workflow of a typical adipose tissue secretome study. First, either 

adipose tissue explants or adipocytes are subjected to appropriate labelling techniques that 

allows labeling of newly synthesized proteins. These techniques include: SILAC (stable 

isotope labeling by amino-acid in cell culture) in which cells are treated with different amino 

acid isotopes in cell culture media, CILAIR (comparing isotope-labeled amino acid 

incorporation rates) which consists of comparing secreted proteins based on different 

incorporation rates of a labeled amino acid (like 13C-labeled lysine) and radioactive 35S 

methionine labeling. Next, the supernatant containing the secreted proteins are collected 

and enriched using a variety of methods which include desalting, precipitating and 

concentrating using appropriate columns. The next step usually involves techniques for 

electrophoretic protein separation like 1D SDS-PAGE or 2-dimenstional electrophoresis (2-

DE) followed by LC-MS/MS and bioinformatics analysis of the identified proteins. 

The secretome workflow used in this study uses the SILAC method to label the newly 

synthesized proteins. However, the novel aspect of this secretome study was the use of 

Click-iT® AHA labeling which replaces methionine with its analogue L-azidohomoalanine 

(AHA) in the newly synthesized proteins. Due to this incorporation the secreted proteins can 

be efficiently and selectively fished out by covalent capture on alkyne-activated resin using 

click chemistry (copper-catalyzed azide–alkyne cycloaddition). The advantage of this step 

allows for the efficient elimination of protein contaminants especially from media serum 

which is a major hurdle in secretome studies (as mentioned earlier). In addition, the 

incorporation of AHA does not seem to have adverse effects on cellular growth as was 

measured here with the degree of LDH release. Click-iT® AHA labeling also eliminates the 

need for extensive time-consuming peptide fractionation. Another advantage of the present 

secretome study is use of pulsed-SILAC (pSILAC). pSILAC, unlike full SILAC labeling, is capable 

of differentiating and quantifying newly synthesized proteins from pre-existing proteins. The 
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efficacy of this screening system had been validated by Eichelbaum, Winter et al. (2012) by 

comparing the secretomes of primary hepatocytes and cell lines – Hepa1-6 and Hepa1c1. 

Thus, the combination of Click-iT® AHA and pSILAC labeling circumvents some of the 

fundamental drawbacks of common secretome screens and can be considered a powerful 

and reliable tool in the study of adipose tissue/adipocyte secretomes.  

 

Comparative brown adipocyte secretome screen 

The secretome screening carried out in this study is the first documented secretome 

analysis involving brown adipocytes. The secretome screens involved comparing the 

secretome from inguinal white adipocytes and brown adipocytes in the presence and 

absence of norepinephrine stimulation as well as factors from only brown adipocytes under 

the same stimulatory conditions. Among the 1013 unique proteins identified, 406 proteins 

had evidence of secretion (experimental and prediction by SignalP). This list does not 

include proteins that were secreted through alternative non-classical secretory pathways. 

Therefore, this number might underrepresent the actual number of truly secreted proteins. 

Moreover, this number is close to what was obtained in other adipocyte secretome studies. 

For example, the first whole human adipose tissue secretome by Alvarez-Llamas, Szalowska 

et al. (2007) identified 259 proteins, of which 108 contained a signal peptide. Similarly, 

Roca-Rivada, Alonso et al. (2011) detected about 50% secreted proteins from the secretome 

mapping of their secretome analysis of different rat adipose tissue depots. Another aspect 

of the current study is the number of detected secreted proteins that were represented as 

extracellular proteins and signaling molecules according to Panther protein classification. 

This is also in accordance to other adipocyte secretome studies (Alvarez-Llamas, Szalowska 

et al. 2007, Chiellini, Cochet et al. 2008) and further underlines the importance of 

extracellular remodeling and extracellular matrix proteins secreted by the adipose tissue (As 

reviewed by Mariman and Wang 2010). 

  

Potential batokine candidates  

As mentioned earlier, 29 candidates that were differentially secreted proteins between two 

screens were selected for further evaluation. Namely, these candidates were common 

between NE-stimulated white vs. NE-stimulated brown adipocytes and NE-stimulated vs. 

unstimulated brown adipocytes. This criterion was selected on the assumption that a 

potential batokine would have differential secretion when BAT is activated by the 

sympathetic nervous system (SNS) (for example, with cold stimulation). Of course these 

candidates also include proteins that show increased or decreased secretion with NE stimuli. 
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The following table shows the classification of these 29 candidates and what their secretion 

levels imply.  

 

Table 5: Distribution of the 29 batokine candidates and their potential classification 

BA +NE vs. BA –NE WA +NE vs.BA +NE Classification and 
description 

Number of 
candidates 

 

↑ 

 

↑ 

General 

adipokine: 

Proteins secreted 

in NE-stimulated 

BA and WA. 

6 

 
↑ 

 

↓ 

Potential 

batokines: Higher 

with NE in BA and 

higher than NE-

stimulated WA. 

4 

 

↓ 

 

↑ 

Novel adipokine 

from WA: Down-

regulated with NE 

stimulation in BA 

but higher in WA. 

10 

 
↓ 

 

 
↓ 

 

NE-inhibited 

batokine: Down-

regulated with NE 

in BA but higher in 

BA compared to 

WA. 

9 

 

As evident from Table 5, the secretion of most batokine candidates was lowered 

with NE stimulation of BA. Therefore, the secretion of these candidates is inversely 

correlated with activated BA and a reduction in their secretion could perhaps bring about 

the beneficial systemic effects of activated BAT. It is also feasible that the list of batokine 

candidates contains a pair of counter-regulatory hormones whose secretion is regulated in 

opposite directions with BAT activation. 
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Known adipokines like adiponectin, resistin, ANGPTL4, LPL, adipsin (complement 

factor D) etc. were present in the list of selected 29 batokine candidates.  In contrast, other 

prominent adipokines like leptin, IL-6 and TNF-α were absent in the selected list as well in 

the complete the secretome screen. This could be due to primary adipocyte culture and 

stimulation conditions, stability of the factors during the 24 hour incubation period or no 

secretion from one cell population of the comparative study.  

Interestingly, 5 members of the collagen alpha chain proteins were among the 29 

batokine candidates. As mentioned earlier, extracellular matrix proteins like the collagen 

alpha chains are important secreted factors for the maintenance of the adipose tissue 

extracellular matrix. An interesting secretome candidate is osteopontin (OPN) which so far 

has been known to be primarily secreted from immune cells including adipose tissue 

macrophages and contributes to obesity-induced macrophage infiltration, inflammation and 

insulin resistance (Nomiyama, Perez-Tilve et al. 2007). In addition, OPN also stimulates 

hepatic gluconeogenesis (Kiefer, Zeyda et al. 2010). It would be interesting to investigate the 

relationship between OPN function and BAT activation. Other interesting candidates are 

dermatopontin (DPT) which regulates ECM architecture (Kato, Okamoto et al. 2011) and 

nucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2, autotaxin) that has been shown 

to influence BAT activity, energy expenditure and adipose tissue expansion (Nishimura, 

Nagasaki et al. 2014). 

It is worth noting that other extracellular stimuli, apart from SNS response to cold, 

can also activate thermogenesis in BAT. These activators include irisin, natriuretic peptides, 

bile acids and FGF21 (As reviewed by Villarroya and Vidal-Puig 2013). Therefore, it is 

possible that batokines released by such alternative activation of BAT might not be included 

in this secretome study.  

 

GSIS and other functional assays for batokines 

The GSIS assay using INS-1E cells was the first functional assay to be optimized for 

investigating the effects of the batokine candidates on insulin secretion. It was concluded 

from these experiments that glucose stimulation in fresh KRBH buffer and the use of 

recombinant batokine adiponectin were the optimum conditions for this assay. It was 

surprising to note that fresh RPMI and KRBH - - CM resulted in a very low fold change in 

insulin secretion due to very high basal insulin secretion in the absence of glucose. This 

would suggest that an insulin secretagogue (or secretagogues) is present in the RPMI media 

and is also released by HEK 293A cells that stimulates insulin secretion on its own 

independent of glucose. Nonetheless, this complicates the direct use of CM for the GSIS 

assay and makes the use of fresh KRBH the optimum method for the stimulation and 

detection of GSIS.  
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At least in the case of adiponectin, the recombinant protein resulted in an increase 

in GSIS while adiponectin CM had no effect. Furthermore, preliminary experiments using 

two commercially available recombinant secretome candidates affected GSIS (data not 

shown) but additional experiments are needed to confirm this observation. However, not all 

29 candidates were commercially available and it could be possible that the other candidate 

CMs are more effective than adiponectin in modulating GSIS. Therefore, it would be still be 

worthwhile to pursue the optimization of the assay using conditioned media.  

 

ITIH4 as a batokine and BAT activity marker 

Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) is a 120 kDa acute-phase glycoprotein 

which is strongly expressed in liver where it has shown to be important in early liver 

development and regeneration (Bhanumathy, Tang et al. 2002). It is well documented as a 

biomarker for various diseases like prostrate cancer (Davalieva, Kiprijanovska et al. 2015), 

heart disease (Nayak, Kashyap et al. 2012), amyotrophic lateral sclerosis (Tanaka, 

Shimazawa et al. 2013). It is highly sensitive to cleavage by plasma kallikrein and is cleaved 

in to smaller fragments that are thought to be bioactive (Pu, Iwamoto et al. 1994, 

Nishimura, Kakizaki et al. 1995) .  
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Figure 25: Proteolytic cleavage of ITIH4. Full length ITIH4 (120 kDa) is initially cleaved in to two polypeptides 

with molecular weights of 85kDa (N-terminal) and 35 kDa (C-terminal). The 85 kDa polypeptide is further 

cleaved culminating with extensive cleavage in the proline-rich region (PRR).  

 

As shown in Figure 25, the full-length ITIH4 is first cleaved into the 35 kDa C-terminal 

and 85 kDa N-terminal polypeptides. The 85 kDa polypeptide is further cleaved into several 

fragments including the 57 kDa N-terminal polypeptide that was detected in PreBAT cells. 

The 35 kDa fragment is O-glycosylated and not cleaved further. Interestingly, Mohamed, 

Abdul-Rahman et al. (2008) showed that this fragment is increased in the serum of certain 

cancer patients like breast cancer, epithelial ovarian carcinoma and germ cell ovarian 

carcinoma but not in nasopharyngeal carcinoma and osteosarcoma. In addition, Song, Patel 

et al. (2006) characterized the cleavage products from the proline-rich region (PRR) of ITIH4 

and showed that certain diseases like diabetes, colon cancer, breast cancer etc. have 

specific cleavage patterns in this region.  

Thus, it is possible that BAT activation could lead to changes in certain ITIH4 

bioactive fragments in the serum rather than the whole protein and this change in ITIH4 

cleavage profile could bring about the systemic changes observed with BAT activation and 

reflect BAT activity. In conclusion, an ELISA would be insufficient to capture the complete 

ITIH4 profile in the serum and more sensitive and comprehensive methods like LC-MS/MS 

would be needed. 
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ITIH4 as a regulator of adipocyte differentiation 

The role of ITIH4 in adipocyte biology was investigated after observing a 70-fold higher 

expression of Iith4 mRNA expression in primary brown compared to inguinal white 

adipocytes. Itih4 mRNA levels were shown to increase with differentiation of various 

adipocyte cell lines and primary adipocytes. Itih4 expression was also higher with 

rosiglitazone treatment during the differentiation of 3T3-L1 cells which induces a brite-like 

phenotype in these cells. Moreover, only Itih4 mRNA levels among the six members of the 

ITIH protein family were increased with differentiation of inguinal white precursor cells in 

the presence of cPGI2 (a potent browning agent) (Supplementary figure 3). Therefore, Itih4 

expression was also upregulated with browning and differentiation in vitro.  

Upon ITIH4 knockdown, impairment of differentiation was observed with a stronger 

phenotype displayed in primary adipocytes compared to PreBAT cells. This was concluded 

from reduction in lipolysis, TG accumulation, glucose uptake, lipogenesis and Oil Red O 

staining. However, the adipogenic markers were not changed with differentiation for 

PreBAT cells. The change in adipogenic markers is generally considered a gold standard in 

studying effects on adipogenesis. One reason for the lack of changes in adipogenic markers 

could be the PreBAT cell physiology. The presence of the Large T antigen could push these 

cells to a stronger differentiation phenotype thereby making them immune to the effects of 

ITIH4 knockdown to a certain extent. This could also be the reason for the stronger 

differentiation phenotype observed in the primary adipocytes compared to PreBAT cells. 

Only two adipogenic markers - Cidea and Fabp4 - were measured in primary adipocytes. 

These markers were decreased after ITIH4 knockdown. Other markers also need to be 

measured in primary adipocytes to conclusively prove the effect of ITIH4 on differentiation. 

Alternatively, another plausible explanation for no changes in adipogenic markers could be 

that ITIH4 has a differentiation independent effect on adipocyte function. For example, the 

observed changes in lipolysis, lipogenesis and TG accumulation could be due to increased 

fatty acid oxidation after ITIH4 knockdown. To investigate this hypothesis, fatty acid 

oxidation assays using the Seahorse XF analyzers or radioactive tracers can to be carried out.  

Alternatively, the same metabolic assays like lipolysis, lipogenesis and TG accumulation can 

be carried out after ITIH4 knockdown in differentiated adipocytes to investigate the 

differentiation independent effects of ITIH4. This was attempted in differentiated PreBAT 

cells using adenoviral vectors. Adenoviral-mediated knockdown resulted in reduction of 

mRNA levels but not in protein levels. This could be due to fact that ITIH4 is heavily 

glycosylated (Chandler, Brnakova et al. 2014), which increases its stability.  

 The exact mechanism as to how ITIH4 affects differentiation could not be elucidated. 

However, the transcriptome analysis of ITIH4 knockdown cells was able to shed light on 

possible target genes and pathways affected.  An interesting target is Depp (Decidual 

protein induced by progesterone) or Fig (Fasting-induced gene) which is highly expressed in 
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human WAT. Mouse Depp mRNA expression was shown to increase with fasting in lung, 

skeletal muscle and WAT and also with differentiation of 3T3-L1 cells (Kuroda, Kuriyama et 

al. 2010). Another target could be Arxes1 (Adipocyte-related X-chromosome expressed 

sequence 1) which was shown to be required for adipogenesis (Prokesch, Bogner-Strauss et 

al. 2011). Various microRNAs have been shown to be important for adipogenesis (As 

reviewed by Peng, Yu et al. 2014). In this regard, miR-3079 is also a promising target since its 

expression was significantly altered at all time points after ITIH4 knockdown. Interestingly, 

at day 02 its expression was transiently increased and later decreased. So far miR-3079 has 

not been functionally characterized. However, it should be noted that ITIH4 is not a 

transcription factor and most likely affects the expression of these targets indirectly.  

The pathways affected with ITIH4 knockdown also hint to the possible mechanism 

behind its effect on adipocyte differentiation. The oxidative phosphorylation pathway was 

initially downregulated with ITIH4 knockdown. The top component decreased in this 

pathway was Cox7a1 which was shown to be highly expressed at the protein level with cold 

exposure (4°C) in mice BAT (Forner, Kumar et al. 2009) as well as hypothesized to be the 

more active isoform of COX7a which might increase the thermogenic capacity of BAT 

(Maurer, Fromme et al. 2012). Similar to the oxidative phosphorylation pathway, PPAR 

signaling was also decreased initially with ITIH4 knockdown. The expression of CD36 - which 

promotes adipocyte differentiation and adipogenesis (Christiaens, Van Hul et al. 2012) - was 

significantly decreased in this signaling pathway. Other important pathways were also 

downregulated at the initial time point like insulin signaling, carbon metabolism etc. 

Interestingly, these pathways and the afore-mentioned genes were back to normal levels at 

later time points of differentiation. This would imply that the PreBAT cells adapt and 

compensate for the downregulation of these pathways. In contrast, one of the pathways 

that were upregulated was the TGF-β signaling pathway. TGF-β signaling pathway plays an 

important role in browning (As reviewed by Yadav and Rane 2012) and inhibition of this 

pathways leads to browning in WAT (Yadav, Quijano et al. 2011). Therefore, it could be 

possible that ITIH4 interacts with a component of the TGF-β signaling pathway and 

influences differentiation.  

It is interesting to note the control of ITIH4 expression in mature adipocytes. A 

reduction in Itih4 mRNA expression was observed in differentiated PreBAT cells with 

isoproterenol and rosiglitazone treatment. Both these stimuli are adipogenic and a 

significant reduction in ITIH4 expression could again point to a differentiation independent 

function of ITIH4 in mature adipocytes. In addition, Iith4 mRNA expression did not increase 

with IL-6 treatment as was observed in hepatocytes and HepG2 cells. Taken together, this 

would indicate that in adipocytes transcription of Itih4 is not under the control of IL-6 

signaling but is influenced by AMPK, β-adrenergic and PPARγ signaling. 

Surprisingly, Itih4 mRNA levels were decreased in the adipose tissues of db/db mice 

while they were increased with Treg depletion. Both these models exhibit a pro-



Discussion 

 

 64 

inflammatory state in their adipose tissue depots but a possible explanation for this 

difference could be that the adipose tissues in db/db mice exhibit a more chronic grade 

inflammation while Treg depletion leads to an acute type of inflammation. As mentioned 

earlier, ITIH4 is an acute phase protein and therefore, its expression increases with Treg 

depletion. The high amounts of leptin in db/db mice could not be the reason for the 

decrease in Itih4 levels as in vitro treatment of differentiated PreBAT cells with recombinant 

leptin did not lead to changes in Itih4 mRNA levels. Other differences between the Treg 

depleted and db/db models like the presence of crown-like structures (CLS) and 

hypertrophic adipocytes in the adipose tissues of db/db mice could somehow affect Itih4 

expression and result in this discrepancy in Itih4 mRNA expression between the two models 

(Murano, Barbatelli et al. 2008). The decrease in Itih4 levels in db/db mice also hint to a 

possible role of ITIH4 in stabilizing the extracellular matrix (like the other members of the ITI 

family) since chronic models of inflammation and obesity involve extensive remodeling of 

the extracellular matrix and expansion of adipose tissues (Bost, Diarra-Mehrpour et al. 

1998).  

ITIH4 is a special member of the Inter-α-trypsin inhibitors (ITI) family of plasma 

protease inhibitors in terms of its structural properties. It possesses some unique features in 

its C-terminal region like a plasma kallikrein cleavage site, an ATP-dependent-protease like 

domain and a proline rich region (PRR). In addition, unlike the other members it cannot bind 

to hyaluronic acid and bikunin (light chain member of the ITI family) and is only 30-38 % 

identical to the other members of the ITI family both in humans and mice. By virtue of its 

difference structural properties, it is possible that ITIH4 has distinct functions compared to 

the other ITI family members and is therefore, an interesting serine protease inhibitor worth 

investigating.  

 

Summary and outlook 

The combination of Click-iT® AHA labeling and pulsed-SILAC is a powerful tool for studying 

secretomes. In addition, the brown adipocyte secretome has not been investigated in detail. 

Thus, using these techniques to characterize the brown adipocyte secretome is a promising 

strategy to discover novel adipokines secreted from brown adipocytes (‘batokines’) that 

help BAT communicate with different organs and influence whole-body metabolism. Indeed 

the data obtained from the three screens was in accordance to previously reported adipose 

tissue/adipocyte secretome studies in terms of number and functional classification of the 

secreted proteins. In addition, a number of unique and interesting secretome candidates 

were detected in the screen like dermatopontin, osteopontin and ectonucleotide 

pyrophosphatase/phosphodiesterase 2. To identify the metabolically relevant candidates a 

series of unbiased functional assays were planned. In this regard, the glucose stimulated 
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insulin secretion (GSIS) assay was optimized with regard to buffer/CM conditions for glucose 

stimulation and the use of CM or recombinant proteins. The use of CM would be further 

optimized and the assay will be tested in other insulin secreting cell lines like the mouse 

MIN6 cell line. This is a mouse insulinoma cell line and would be more compatible with the 

secretome candidates which are over-expressed mouse proteins. In addition, the high 

throughput lipolysis assay will be a promising assay to test whether the candidate batokines 

induce lipolysis in white adipocytes. An additional approach to study the batokine 

candidates would be to investigate the expression of corresponding receptors in different 

organs in order to narrow down possible function. For example, higher receptor expression 

of a batokine candidate in iWAT would point to its possible role in browning, lipolysis or 

glucose uptake in white adipocytes.  

The data presented in this dissertation work elucidates the function of ITIH4 in 

adipocyte biology. Knockdown of ITIH4 in primary preadipocytes and preadipocyte cell lines 

showed that ITIH4 is required for adipogenesis and affects key adipocyte functions. The only 

other known reported function of ITIH4 is its role in liver growth and regeneration 

(Bhanumathy, Tang et al. 2002). The findings presented here underlie the biological 

significance of ITIH4 apart from its extensive documentation as a biomarker for various 

diseases. In this regard, it would also be important to reaffirm the role of ITIH4 in 

adipogenesis through over-expression and rescue experiments as well as measuring 

adipogenic markers in primary adipocytes after ITIH4 knockdown. For ITIH4 over-expression 

and rescue studies, the electroporation of PreBAT cells using EGFP expression construct 

(pEGFP-N1) was optimized for use with ITIH4 expression constructs (Supplementary figure 

4). However, the mechanism through which ITIH4 influences adipocyte differentiation still 

needs investigation. MiR-3079 is a promising target and experimental modulation of its 

expression in PreBAT cells could yield valuable insights to the function of ITIH4. Also a co-

immunoprecipitation screen for ITIH4 interacting proteins would provide useful information 

in this direction. A recombinant ITIH4 myc-flag tag protein was successfully co-

immunoprecipitated using the flag tags (Supplementary figure 5). Another potential 

experiment would be to carry out a proteome analysis with ITIH4 knockdown and combine 

it with the transcriptome analysis. In addition to its mechanism, the role of ITIH4 in vivo also 

needs to be investigated. For this purpose, an adeno-associated virus (AAV) was generated 

which expresses Itih4 microRNA only in UCP1 expressing cells. Furthermore, it will be 

interesting to investigate the function of ITIH4 in other models of genetic and experimental 

obesity such as ob/ob or HFD fed mice respectively.  
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Figure 26: Overview of the project. The dissertation work started with three different secretome screens 

involving BA and WA with or without NE stimulation to identify batokine candidates. ITIH4 was among the 

1013 distinct proteins identified and was differentially secreted in the screens. Serum levels of ITIH4 did not 

change with cold treatment but Itih4 mRNA was increased in BAT. In vitro experiments in adipocyte cell lines 

and primary adipocytes pointed to a function of ITIH4 in adipogenesis. Abbreviations: BA, brown adipocytes; 

WA, white adipocytes; NE, norepinephrine. 
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Methods 

Molecular biology 

Genomic DNA Isolation from differentiated primary 

adipocytes 

The cells were first lysed using 500 µl of Lysis Buffer (10 mM Tris pH 8.0, 100mM NaCl, 15 

mM EDTA, 0,5% SDS, 0,5 mg/mL Proteinase K) and incubated overnight at 37°C. The lysis 

solution was then transferred to 2ml tubes and 250 µl of 6M NaCl was added. The tubes 

were gently mixed by inverting them and shaken at 800 rpm at room temperature for 5 

minutes. The tubes were then centrifuged for 10 minutes at 13000 rpm (4°C) and the 

supernatant was transferred to pre-chilled peqGOLD PhaseTrap A 2ml tubes (peqlab, 30-

0020A-01). Next, 700 µl of phenol/chloroform was added and mixed by inverting the tubes. 

The tubes were again centrifuged for 10 minutes at 13000 rpm (4°C) and the supernatant 

separated by the PhaseTrap™ was transferred to fresh pre-chilled peqGOLD PhaseTrap A 

2ml tubes. Next, 700 µl of chloroform was added and the same procedure of mixing and 

centrifugation was carried out as above. The supernatants were transferred to new 1.5 ml 

tubes and 1 µl of Pellet Paint® Co-Precipitant (Millipore, 69049) was added to each sample 

along with 550 µl isopropanol. The samples were mixed by inverting, shaken for 2 minutes 

(800 rpm) and centrifuged at 8000 rpm for 10 minutes (4°C). The supernatants were 

decanted and the pellets (visible due to the Pellet Paint® Co-Precipitant) were washed with 

1 ml 75% ethanol then centrifuged at 13,000 rpm for 5 minutes at 4°C. The pellets were air-

dried for 5 minutes and then re-solubilized in 150 µl Tris-EDTA buffer (pH 8.0) at 60°C for 2 

hours or overnight at 4°C. 

 

Plasmid DNA isolation 

Plasmid DNA from E.coli cultures was isolated using Qiagen kits. For small cultures of 2 ml – 

5 ml, QIAprep Plasmid Miniprep Kit was used while QIAGEN Plasmid Mega Kit was used for 

larger cultures of 200 ml or more. The manufacturer’s protocol provided along with the kit 

was followed for the plasmid isolations.  
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RNA isolation using Trizol 

Animal tissues (10-30 mg) were transferred into a 2 mL nuclease-free reaction tube 

containing 1 mL of Qiazol™ Lysis reagent and a stainless steel bead.  The samples were lysed 

using the TissueLyser™ for 90 sec/30 Hz. In the case of adherent cells, 700 µl (for 12-well 

plates or 500 µl for 24-well plates) of Qiazol™ Lysis reagent was added per well after 

removing the growth media. Lysates were incubated at room temperature for 5 minutes 

and then transferred to fresh 1.5 mL nuclease-free safe-lock tube containing 150 μl of 

chloroform (1/4th the volume of Qiazol™ Lysis reagent). The tubes were mixed well and 

incubated at room temperature for 5 minutes. The tubes were then centrifuged at 13,000 

rpm for 15 minutes at 4°C. The upper aqueous phase was carefully transferred into a fresh 

reaction tube containing 350 μl of isopropanol (half the volume of Qiazol™ Lysis reagent 

used). The tube was inverted several times then incubated at room temperature for 10 

minutes followed by a 10-minute centrifugation step at 12,000 rpm, 4°C. The supernatant 

was aspirated completely and the pellet was washed once with 1 mL of 70% ethanol. The 

tube was spun at 8000 g for 5 minutes at 4°C. The solvent was discarded and the pellet was 

briefly air-dried and re-suspended in 30 μl of pre-heated water, 65°C. 

 

Quantification of nucleic acids 

DNA/RNA concentration along with the degree of contamination was determined by using 

the NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Inc., Delaware, USA). 

2 µl of DNA or RNA samples were used for each measurement. TE buffer or water was used 

as the reagent blank depending in which solvent the DNA/RNA was eluted. The 

concentration was determined based on the absorbance of the sample at 260 nm. The 

purity was in turn assessed based on the ratios of the absorbances: 260/280 = ~1,8 (“pure” 

DNA), = ~2,0 (“pure” RNA); 260/230 = ~2,0 – 2,2 (“pure” nucleic acid), < 1,8 or 2,0 (with 

residual contaminants – phenol, guanidine, glycogen). 

 

cDNA synthesis from mRNA templates 

The First Strand cDNA Synthesis Kit (Fermentas GmbH, Sankt Leon-Rot, Germany) was used 

to generate full length cDNA from mRNA templates. Briefly, 1 μg of purified RNA in a total 

volume of 10 µl nuclease-free water was used for the cDNA synthesis. After adding 1 µl of 

oligo(dT)18 primers, the samples were denatured at 70°C for 5 minutes. After the 

denaturation, 9 µl of reaction mixture (4 μL 5x Reaction buffer, 2 μL 10 mM dNTP mix, 1 μL 

Ribolock™ Ribonuclease Inhibitor and 2 µL Moloney Murine Leukemia Virus (M-MuLV) 

Reverse Transcriptase) was added to the tubes. A ‘-RT’ control, without M-MuLV, was also 
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included to check for possible genomic DNA contamination in the RNA samples and 

reagents. The samples were then incubated for 60 minutes at 37°C followed by heat 

inactivation at 70°C for 10 minutes. The samples were then diluted 10 folds with the 

addition of 180 µl of water. The samples were stored at -20°C. 

Primer Sequence: 

 Oligo(dT)18 primer Thermo Fisher Scientific Cat. No. S0132 

5’- d(TTTTTTTTTTTTTTTTTT) -3’ 

100 µM (0,5 µg/µL) 

 

Quantitative real-time PCR 

The following reaction mixture was set up in 1.5 ml tubes based on the number of samples: 

Components 

Volume, µL 

Gene of Interest 

Endogenous 

Control Gene 

(i.e. TBP) 

2X TaqMan® Gene Expression Master Mix 10 10 

qPCR Probe (5 mM)/TaqMan® Small RNA Assay (20X) 0.5 0.5 

Forward primer, 10 mM - 1 

Reverse primer, 10 mM - 1 

Nuclease-free water 4.5 2.5 

 15 15 

 

The reaction mixture of 15 µl was pipeted into each well of a MicroAmp Fast 

Optical 96-well reaction plate along with technical duplicates of the cDNA samples (5 µL) for 

a final reaction volume of 20 µL. Water was used as a negative no template control (NTC) 

and ‘-RT’ as a control for genomic DNA contamination. The plate was covered with a 

MicroAmp Optical Adhesive Film and then centrifuged to spin down contents. The plate 

was run on the StepOnePlus Real-Time PCR System (Life Technologies GmbH, Darmstadt, 

Germany) using the standard running mode with the following thermal cycling conditions: 
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Steps 

Enzyme 

Activation 
PCR 

HOLD 
40 Cycles: 

Denaturation Annealing/Extension 

Temperature, 

C 
95 95 60 

Time 10 minutes 15 seconds 60 seconds 

 

For data analysis, the amplification plots were visualized and the baseline & 

threshold values were set to determine the threshold cycles (CT) for the amplification 

curves. All quantifications were normalized to the endogenous control (TBP) to account for 

variability in the initial concentration and quality of the total RNA. Relative-comparative CT 

(CT) method was used for quantitation.  

 

Polymerase chain reaction (PCR) 

Phusion high-fidelity DNA polymerase (Thermo Scientific) was used for PCR reactions. The 

manufacturer’s protocol (shown below) was followed for setting up the reactions. 

Components 
Volume, µL 

50 µl reaction Final conc. 

Nuclease-free water Add to 50 µl 1x 

5x Phusion HF Buffer 10 µl 200  µM each 

10 mM dNTPs 1 µl 0.5 µM 

Primer A X µl 0.5 µM 

Primer B X µl - 

Template DNA (100 ng) X µl - 

Phusion DNA polymerase 0.5 µl 0.02 U/µl 

 50 
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 The PCR was performed in a T300 Thermocycler (Biometra) using the following 

cycling conditions: 

 

 

2-step protocol 3-step protocol Cycles 

Temperature Time 
Temperat

ure 
Time 

Initial Denaturation 98°C 30 s 98°C 30 s 1 

Denaturation 

Annealing 

Extension 

98°C 

- 

72°C 

5-10 s 

- 

15-30 s/kb 

98°C 

X °C 

72°C 

5-10 s 

10-30 s 

15-30 

s/kb 

25-35 

Final extension 72°C  

4°C 

5-10 min 

hold 1 µl 

72°C  

4°C 

5-10 min 

hold 

1 

 

The 2-step protocol was utilized for large PCR products (> 1.5kb) and when the 

primer Tm values are at least 72°C. The annealing temperature was Tm +3°C of the lower 

Tm primer for primers larger than 20 nucleotides. For cDNA templates, the extension time 

was increased to 40s/1kb. 

 

Gel electrophoresis & extraction of DNA from agarose gel 

DNA Agarose Gel Electrophoresis. Agarose gel electrophoresis (AGE) was used to analyze 

DNA samples like PCR products and digested plasmids for contamination and fidelity. The 

agarose gel (1-3 %) was prepared with 1X TBE/TAE. The appropriate amount of agarose was 

melted in a microwave oven until the solution became clear. After cooling, 0.5 μg/mL 

ethidium bromide was added. The melted agarose was poured into appropriate casting tray 

with the well-comb and allowed to solidify. The gel was placed in the electrophoresis 

chamber and TBE/TAE buffer was poured until there was about 2-3 mm of the buffer over 

the gel. Appropriate amount of the DNA Sample Loading Buffer was added to the PCR 

product or digested plasmid (~0.5 µg). Gels were run at 120 V with constant current. The 

power was allowed to run until the blue dye approaches the end of the gel. The gel was 
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then visualized & documented with Intas Gel Imager and Intas GDS v3.32 program (Intas 

Scientific Imager Instruments GmbH, Göttingen, Germany) at =312 with varying intensity. 

 

RNA Agarose Gel Electrophoresis. Agarose electrophoresis was also used for assessing 

quality of total RNA isolated. The gel tray and electrophoresis chamber were washed 

thoroughly and cleaned with RNaseZap® RNase Decontamination Solution (ThermoFisher 

Scientific). A 2% agarose gel was used for 0.5 – 1 µg RNA with 10 µL of the RNA Sample 

Buffer. The mixture was heated at 60C for 10 minutes then allowed to cool on ice for 2 

minutes prior to gel loading. A clear, smear-free 2:1 ratio of band intensity for the 28S (~3 

kb) and 18S (~1.5 kb) ribosomal RNA was used as an indication of good RNA quality.  

 

Extraction of DNA from Agarose Gel. DNA fragments (70 bp to 10 kb up to ~10 µg) were 

excised from agarose gels under a UV lamp (=312, low instensity) using a scalpel and 

purified using the QIAquick Gel Extraction Kit according to the manufacturer’s instructions. 

The column was eluted with 30 µL of TE buffer. 

 

Restriction digestion of DNA 

PCR-amplified products or plasmid vectors (minimum of 500 ng) were incubated with 5 units 

of restriction enzyme/s (New England Biolabs or Fermentas) per µg of the DNA and 1X 

Reaction buffer for 2 hours. Bovine serum albumin (BSA) was also added depending on the 

enzyme/s. Final volume of the reaction varied from 20-50 µL using water as diluent. For 

majority of the enzymes, digestion was done at 37C on a heat block. Inhibition of the 

enzymes was done according to the manufacturer’s recommendation. The digested 

products were then analyzed via Agarose Gel Electrophoresis. 

 

Molecular Cloning 

Insert generation 

Insert DNA was generated by either annealing artificial oligonucleotides (denatured at 95 °C 

followed by slow cooling on a thermocycler), by restriction digest from existing constructs as 

described above or by Polymerase Chain Reaction (PCR). The insert DNA after the restriction 

digestion or PCR reactions were purified using the QIAquick PCR Purification Kit (Qiagen). 
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Ligation 

Restriction digested plasmids (100 ng) were ligated with either double stranded insert DNA 

generated by PCR, restriction digestion (at a vector to insert molar ratio of 1:4) or with 10 - 

100 picomoles of annealed artificial oligonucleotide, using T4 Ligase (New England Biolabs) 

and corresponding buffers for 2 hours at room temperature. 

 

Transformation 

One Shot TOP10 Chemically Competent E.coli (Life Technologies) (25 µl) were supplemented 

with 2.5 μl of ligation reaction, incubated for 30 minutes at 4 °C, heat shocked for 30 sec at 

42 °C, supplemented with 250 μl S.O.C. medium (Life Technologies), incubated for 60 

minutes at 37 °C at 600 rpm and plated on LB agar plates (Roth) containing either 50 mg/L 

Ampicillin (Sigma) or 50 mg/ml Kanamycin (Sigma). After overnight incubation at 37°C, 

single colonies were picked and cultured in LB medium containing appropriate antibiotic for 

another round of overnight incubation at 37°C at 180 rpm.  

 

Plasmid purification and analysis of clones 

Plasmid DNA was isolated using the QIAprep Plasmid Miniprep Kit (Qaigen) and 500 ng of 

plasmid DNA was digested with respective restriction digestion enzymes and analyzed by 

AGE to test for positive clones. 

 

Sequencing of plasmid DNA 

After confirmation using restriction digestion, the plasmid DNA was sequenced using sample 

sequencing services provided by LGC Genomics GmBH. For ‘Ready2 Run’ samples, 10 µl of 

plasmid DNA (minimum concentration 100 ng/ml) and 4 µl of primer (5 µM) were submitted 

in a 1.5 ml tube with the appropriate bar code sticker. 
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Cloning of recombinant plasmids 

The following are the DNA constructs/ recombinant plasmids that were used in the present 

study: 

pdsAAV-Ucp1p-GFPmut-mir122site-miR-Itih4: Double stranded AAV vector expressing Itih4 

miRNA under the control of Ucp1 mini-promoter and a miR-122 binding site. 

pCMV6-Entry-mmItih4-Myc-DDK-tag: Double stranded expression plasmid expressing a 

mouse ITIH4 myc-flag protein. 

 

Cloning of pdsAAV-Ucp1p-GFPmut-mir122site-miR-Itih4 

Briefly, pdsAAV-Ucp1p-GFPmut-mir122site-miR-Itih4 was cloned by cutting out the 170 bp 

miR-Itih4 insert from pcDNA™6.2-GW/EmGFP-miR-mmItih4 using SalI/XbaI and cloning it 

into the pdsAAV-Ucp1p-GFPmut-mir122site-miR-Tbl1 backbone. 

 

Cloning of pCMV6-Entry-mmItih4-Myc-DDK-tag 

The mouse ITIH4 C-terminal Myc-DDK tag expression construct was generated by first 

cloning out the 3kb insert from pCMV6-Kan/Neo-mmItih4-untag (MC206371, OriGene 

Technologies) using the primers: mItih4_AsiSI_Fwd (TC GCGATCGCATGAAGAGCCCTGCCCC) 

and mItih4_MluI_Rev (TAACGCGTTATCTCCACTGTCCAGCA) along with the phusion 

polymerase 2-step protocol; digesting it with AsiSI/MluI and inserting it into the pCMV6-

Entry-mmTigit-Myc-DDK-tag (MR213712, OriGene Technologies) backbone. 

 

Cell biology 

All cell culture experiments were performed in Class II laminar flow hoods under aseptic 

conditions. Cells were incubated in a controlled atmosphere (humidified 95% air/5% CO2) at 

37C. Culture media, antibiotics, fetal calf or bovine serum and buffers like Krebs-Ringer 

Buffer (KRB) were warmed at 37C before use. Unless otherwise stated, cell lines were 

cultivated in high glucose (4.5 mg/L) DMEM medium supplemented with 10% FBS, 100U/mL 

Penicillin, and 100 U/mL Streptomycin. The medium was changed every 3 or 4 days. 

Passages were performed at the beginning and end of the week.  
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Thawing, subculturing, and cryopreservation of Cells 

Cryopreserved cells were resuscitated by taking the vial out of the liquid nitrogen and 

immediately (<60 seconds) thawing in a water bath maintained at 37C. Two-milliliters of 

warm complete medium were combined with the cells. The cell suspension was transferred 

to properly labeled 15-cm culture plate containing appropriate amount of the medium. 

 

Passaging was done by removing the medium with a Pasteur pipet and washing the 

adhering cellular monolayer once with 1X D-PBS (without Ca2+ & Mg2+). The cell monolayer 

was trypsinized with 2 mL trypsin/EDTA solution. After incubation at 37C for 5 minutes, the 

plates were gently tapped to detach the cellular monolayer. The plates were incubated 

again for 2-3 minutes if the monolayer did not detach. The cells were then suspended 

thoroughly by adding appropriate amount of the complete culture medium. The suspension 

was transferred into a 15-mL Falcon tube, centrifuged (2000 rpm, 2-3 minutes), and the 

pellet resuspended with appropriate amount of complete medium for further passaging.  

 

For cryopreservation, cells were harvested in the log-phase of growth, resuspended in 1 mL 

of the freezing medium i.e. complete medium:DMSO (9:1) and transferred to 2-mL cryovials. 

The vial were then placed in the freezing container containing isopropanol and stored at -

80C for up to one week prior to eventual long term storage in a liquid nitrogen tank. 

 

Determination of cell number, viability and seeding of cells 

For manual cell counting, 10 µL of uniformly suspended cells were mixed with equal volume 

of 0.4% tryphan blue. The mixture was allowed to stand for 5-10 minutes and 10 µl was 

loaded on to the Neubauer hemocytometer. Cell number was counted in the four corner 

squares using an inverted cell culture microscope. The concentration of the cells was 

calculated using the following formula: 

 Concentration (cells/mL) = (Number of cells counted x 10,000 x dilution factor)/(Number of 

squares). 

 

For automated cell counting and viability determination, Invitrogen Countess 

Automated Cell Counter was used. Similar to the hemocytometer, 10 µl of cell suspension 

was mixed with 10 µl of tryphan blue in a 1.5 ml tube and 10 µl of this cell solution was 
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pipetted on to one of the chamber of a disposable countess® chamber slide. Next, the focus 

on the Countess is adjusted and the cells were counted. 

 

After counting, the cells were seeded on required culture dishes containing the 

recommended medium volume: 15-cm dish (25 ml), 10-cm dish (10 ml), 6-well plate (2 

ml/well), 12-well plate (1 ml/well), 24-well plate (500 µl/well) or 96-well plate (100 µl/well). 

 

Isolation of mouse preadipocytes from stroma vascular 

fraction (SVF) of intrascapular brown adipose tissue and 

inguinal white adipose tissue 

On the day before the isolation, 20 mg of Collagenase II was weighed in 2 ml tubes and the 

amount of constituents needed for the collagenase solutions was calculated. Before the 

beginning the isolation, the work space was covered with SCIENCEWARE® LABMAT™ Bench 

Liner (Bel-Art), the surgical instruments placed in 80% ethanol and petri dishes containing 

1X D-PBS (without Ca2+ & Mg2+) were placed on ice. After sacrificing the mice, the inguinal 

white adipose tissues (iWAT) and intrascapular brown adipose tissue (BAT) were excised and 

placed in ice-cold 1X D-PBS. Next, the organs were cleaned: lymph nodes were removed 

from the inguinal white adipose tissue and residual white adipose tissue was removed from 

the intrascapular brown adipose tissue. The collagenase solutions were prepared for iWAT 

and BAT as follows: 

Components 
10 ml Volume 

iWAT BAT Final conc. 

Collagenase (2 mg/ml) 0.75 ml 0.75 ml 1.5 mg/ml 

Bovine Serum Albumin (BSA) 0.5 ml 0.5 ml 0.5 % 

HEPES (1 M) - 0.15 ml 15 mM 

CaCl2 (1 M) - 0.032 ml 3.2 mM 

Fetal Calf or Bovine Serum 

(FCS, FBS) 
- 1 ml 

10 % 

DMEM (4.5 g/l glucose) 8.75 ml  7.54 ml - 
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The collagenase solutions were sterile filtered using 0.45 µm syringe filters and the 

minced tissue was added to the sterile solutions in 15 ml falcon tubes. For iWAT, 5ml of 

collagenase solution for 4 fat pads and 3ml for 2 BAT pads was used for digestion. The 

collagenase solutions were incubated for 10 minutes at 37°C in a water bath and then 

transferred to a 37°C incubator at 180 rpm for 1 hour. The tissue samples were checked for 

the completion of digestion by observing the presence of tissue clumps and the incubation 

time was decreased or increased accordingly. After the incubation, growth medium (DMEM, 

10% FBS, 1% Pen/Strep) was added to the collagenase solutions to a volume of 14 ml and 

the solutions were allowed to stand for 10 minutes to separate the floating lipid and 

adipocyte fraction from the heavier SVF fraction at the bottom of the tubes. The lighter 

upper fraction was removed and the tubes were centrifuged for 10 minutes at room 

temperature at 1000 rpm. The supernatant was aspirated and the SVF pellets were collected 

in 1 ml growth media. Growth media was added to the cell suspension to a final volume of 

10 ml and passed through a 70 μM cell strainer (BD biosciences). Additional growth media 

was added to the SVF cell suspension and the suspension was plated in appropriate cell 

culture plates or dishes.  

 

Differentiation of mouse brown and white preadipocytes 

from the stroma vascular fraction (SVF) 

The preadipocytes were washed twice with 1x D-PBS and fresh media was added for the 

first three days after isolation. Fresh media was added every second day till the cells 

reached confluency and differentiation was started (day 0). 

Primary pre-adipocyte differentiation media: 

475 ml DMEM high glucose (4.5 g/l glucose) 

25 ml FBS (5%)  

5 ml Pen/Strep (1%) 

In addition to: 

1:1000 dilution of 1 mg/ml Insulin (1 µg/ml final) 

1:1000 dilution of 250 µM Dexamethasone (0.25 µM final) 

1:100 dilution of 50 mM 3-isobutyl-1-methylxanthine (IBMX) (0.5 mM final) 

1:1000 dilution of Ascorbate Biotin Pantothenate (ABP)  

1:30000 dilution of 30 µM Triiodothyronine (T3) (1 nM final) - only for brown preadipocytes 
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Transient transfection methods 

Plasmid constructs and siRNAs were transfected into cells (70-80% confluency) using one of 

the following methods: 

 

Calcium phosphate 

Plasmid DNA (100 – 1000 ng/well) was mixed with 0.25 M CaCl2 (80 µL for 6-well) and the 

same volume of 2X BBS. After incubation for 15-20 min at RT, the mixture was added to the 

cells in fresh medium. Medium was changed 6-12 h after transfection.  

 

Cationic polymer or polyethyleneimine (PEI) 

Cells were plated at the desired concentration of 70-80 % the day before the experiment on 

a 6-well plate. The amount of polyethyleneimine (PEI) was calculated according to the 

amount of DNA to be transfected, i.e. for a 6-well plate 3.5 µl of PEI (7.5 mM) per 1 µg of 

plasmid DNA was used. The PEI and DNA tubes per well were prepared as follows: 
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Components 
50 µl Volume 

PEI DNA 

PEI (7.5 mM) 3.5 µl - 

Plasmid DNA (100 ng/ml) - 10 µl 

Nuclease-free water 21.5  µl  15 µl 

NaCl (300 mM) 25 µl 25 µl 

 

The PEI and DNA tubes were mixed and incubated at room temperature for 15 

minutes and DNA:PEI mixture was added to the cells dropwise. Medium was replaced after 

18 hours and cell extracts were prepared 48 hours post-transfection. 

 

Lipofectamine® 2000 transfection reagent 

The manufacturer’s protocol was followed for transfection of cells using the Lipofectamine® 

2000 transfection reagent. Briefly, for 100 ng of DNA per well in a 96-well plate, 1.5 µl of 

Lipofectamine® 2000 in 25 µl of Opti-MEM® medium was mixed with 500 ng of plasmid DNA 

in 25 µl of Opti-MEM® medium. The mixture was incubated at room temperature for 5 

minutes and 10 µl of it was added dropwise to each well. The growth media was replaced 

after 18 hours or earlier if cellular toxicity was observed. For a 6-well plate (1 µg of plasmid 

DNA per well), 9 µl of Lipofectamine® 2000 in 150 µl Opti-MEM® medium was mixed with  

1.3 µg of plasmid DNA in 150 µl Opti-MEM® medium and added to the cells after 5 minutes 

of incubation.  

 

Lipofectamine® RNAiMAX transfection reagent 

For transfection of siRNAs, Lipofectamine® RNAiMAX Transfection Reagent was used. Briefly 

per well for a 12-well plate, 20 nM of siRNA was dissolved in 32 µl of Opti-MEM® medium 

and mixed with 4 µl of Lipofectamine® RNAiMAX Transfection Reagent in 32 µl of Opti-

MEM® medium. The mixture was incubated for 10 minutes at room temperature and then 

growth media (DMEM, 10% FBS) was added to a volume of 1ml. The media was aspirated 

from the cells and the siRNA/ Lipofectamine® RNAiMAX solution was added dropwise. The 

growth media was replaced after 18 hours. 
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Neon® transfection system 

The Neon® transfection system was used with large plasmids and/or for cells that were 

difficult to transfect like differentiated PreBAT cells. Briefly, an appropriate number of cells 

(3x105 differentiated PreBAT cells/well for 12-well plate; 7x104 undifferentiated PreBAT 

cells/chamber for 8-well chamber slide) were resuspended in appropriate amount of Buffer 

R (10 µl/well for 10 µl Neon® tips) along with 1 µg of plasmid DNA. The Neon® tube was 

filled with 3ml of Buffer E2 and the corresponding plate/chamber slide for plating was filled 

with growth media (DMEM, 10% FBS) and placed in the incubator at 37°C. The cell 

suspension was then electroporated using the 10 µl tip at specific voltage, time pulse and 

number of pulses. Care should be taken that there should be not any bubbles in the Neon® 

tip as this will cause arcing. This can be prevented by carefully aspirating the cell suspension 

in to the tip. After electroporation, the cells were added to the plate/chamber slide 

containing the growth media. The growth media was exchanged and the cells were 

observed after 18 hours. For expression of the transgene, the cells were incubated for at 

least 48 hours. 

 

Biochemistry 

Total protein isolates from cells 

Cells were harvested in RIPA buffer which consists of 50 mM Tris-HCl (pH 7.6), 150 mM 

NaCl, 1% NP-40, 0.25% Na-deoxycholate, 1 mM EDTA (pH 8.0) and 1x protease inhibitor 

cocktail (PIC) (Sigma), 1x phosphatase inhibitor cocktail (Sigma). The growth media was first 

aspirated and cells were washed with 1X D-PBS and ice-cold RIPA buffer was added (5-10% 

volume of growth media). The cells were transferred into 1.5 ml tubes using flat-bottomed 

pipette tips. The tubes were placed on a rotary wheel at 4°C for 30 minutes and the 

centrifuged at top speed for 5 minutes. The supernatant was transferred to a fresh ice-cold 

1.5 ml tube. The samples were then stored at -80°C, used to measure protein concentration 

or to run an immunoblot. 

 

Quantification of proteins by BCA assay 

Protein concentration was determined using the Pierce® BCA Protein Assay Kit following the 

manufacturer’s instructions. Protein lysates were diluted 1:10 so as not to exceed the linear 

range of the BSA standard curve (0.1 - 2 mg/ml) and were measured in 10µl duplicates along 

with BSA standards (10µl) with the addition of 200 µl of assay reagent. 
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SDS-Polyacrylamide gel electrophoresis and immnuoblotting 

(western blotting) 

For SDS-polyacrylamide gel electrophoresis, 30 µg of protein samples containing SDS loading 

dye (1x) were denatured at 98°C for 5 minutes. The samples along with PageRuler™ 

prestained protein ladder were loaded on to a 10% or 12% SDS-polyacrylamide gel and 

separated at 120 V. The samples where then transferred to a nitrocellulose membrane using 

a wet blot transfer system at 4°C at 90 V for 60 minutes or 30 V for 18 hours. After the 

transfer, the immunoblots were stained with Ponceau S to determine the quality and 

efficiency of transfer. The immunoblots were then blocked in 5% skimmed milk in TBS-T for 

1 hour and incubated at 4°C overnight with the primary antibody in 5% skimmed milk TBS-T 

or 5% BSA as per supplier’s instructions. The immunoblots were then washed thrice with 

TBS-T for 10 minutes each and incubated with secondary antibody conjugated to horse 

radish peroxidase (HRP) at a dilution of 1:5,000 in 5% BSA or 5% skimmed milk for 1 hour. 

The immunoblots were washed again and the ECL™ Western Blotting Detection Reagent 

was applied on them to visualize the chemiluminescence using the ChemiDocTM XRS+ 

System. 

 

Immunoprecipitation for Flag-tag and Myc-tag proteins 

For co-immunoprecipitation of a desired protein, the cells were first harvested by aspirating 

the media and washing twice with ice-cold 1x D-PBS. Next, the cells were harvested in 300 

µl per well (for 6-well plate) of lysis buffer (BLB-CHAPS with 1x protease and phosphatase 

inhibitors) and transferred to pre-chilled 1.5 ml tubes. The tubes were centrifuged at 13000 

rpm for 5 minutes (4°C) and the supernatant was transferred fresh pre-chilled tubes. The 

protein concentration was measured using the BCA assay. The protein amount was 

normalized for each sample (250-500 µg) and the volume was adjusted to 400 µl with BLB-

CHAPS. At this stage 10µl of the sample was stored separately as ‘input’. Next, ANTI-FLAG® 

M2 affinity gel (25 µl) (A2220, Sigma-Alderich) was added to every sample and incubated in 

the cold room for 2 hours or overnight on the rotary wheel. After the incubation, the 

samples were washed thrice with BLB-CHAPS and 50 µl of 2X SDS sample buffer was added. 

The samples were heated at 98°C for 5 minutes. Similar procedure was followed for Myc-tag 

co-immunoprecipitation: 1µl of anti-Myc antibody (05-724, Upstate) was added to the 400 

µl protein samples. After the incubation at 4°C, 20 µl of Protein A/G PLUS-Agarose (sc-2003, 

Santa Cruz) was added to each sample and the samples were incubated in the cold room for 
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additional hour on the rotary wheel. The samples were then analyzed using 

immunoblotting.  

 

ELISA 

MILLIPLEX® MAP mouse metabolic hormone panel 

The MILLIPLEX® MAP Mouse Metabolic Hormone panel (Cat. # MMHMAG-44K) was used 

with the Luminex xMAP® platform (MAGPIX®) to detect leptin and resistin in tissue culture 

supernatant from primary adipocytes. The immunoassay procedure was carried out 

according to the manufacturer’s instructions. The supernatant samples were centrifuged at 

3000 rpm for 5 minutes at 4°C to remove cellular debris and assayed immediately or 

aliquoted and stored at -80°C. More than 2 freeze/thaw cycles were avoided. Briefly, 200 µl 

of Assay Buffer was added per well and the plates were shaken for 10 minutes at room 

temperature. Next, 10 µl of the matrix solution (growth medium- DMEM, 10% FBS, 1% 

Pen/Strep in this case) was added to the background, standard and control wells followed 

by the addition of 10 µl Assay Buffer to the background and sample wells. Standards, 

controls and samples (10 µl) were added to appropriate wells followed by 25 µl of the mixed 

anti-body immobilized beads. The plate was wrapped in foil and incubated overnight on a 

plate shaker at 4°C. After the incubation, the plate was allowed to reach room temperature 

and then washed thrice using a hand-held magnet and Wash Buffer. Detection antibodies 

(50 µl) were added to each well and the plate was sealed, covered with foil and stirred on a 

plate shaker for 30 minutes at room temperature. Without aspiration 50 µl of Streptavidin-

Phycoerythrin was added to each well. The plate was again sealed, covered with foil and 

stirred on a plate shaker for 30 minutes at room temperature. The plate was then washed 

like previously and 100 µl of Drive Fluid was added to all wells. Lastly, the plate was analyzed 

on the MAGPIX® with the xPONENT software. The Median Fluorescent Intensity (MFI) data 

was analyzed using a 5-parameter logistic method for calculating the concentrations of 

leptin and resistin in the samples.  

 

Mouse ITIH4 ELISA 

The mouse ITIH4 ELISA for mouse serum was carried out using the ELISA kit from Uscn Life 

Science Inc. (E97776Mu) following the manufacturer’s protocol. The sera samples were 

diluted 10 and 1000 folds in 1 xD-PBS. Briefly, 100 µl of standards, blank (or control serum) 

and samples were added to the wells and incubated at 37°C for 2 hours. The wells were 

decanted and 100 µl of Detection Reagent A was added to each well followed by 1 hour 
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incubation at 37°C. The wells were decanted again and washed thrice with 350 µl of 1x 

Wash Solution. After washing 100 µl of Detection Reagent B was added and incubated at 

37°C for 30 minutes. The wells were washed 5 times and 90 µl of Substrate Solution was 

added each well. The wells were incubated with the Substrate Solution for 10 minutes at 

37°C (protected from light) and 50 µl of Stop Solution was added to each well. The wells 

were then measured at 450 nm on a microplate reader (Mithras LB 940). The concentration 

of ITIH4 was determined using the standard curve.  

 

Rat Insulin ELISA 

Insulin in cell culture supernatant from INS-1E cells was measured using the Rat High Range 

Insulin ELISA from ALPCO™ (80-INSRTH-E01). The ELISA protocol was followed according to 

the manufacturer’s manual. Briefly, 5 µl of the standards, control and samples were added 

to the respective wells. Next, 75 µl of the Working Strength Conjugate was added to each 

well and incubated for 2 hours at room temperature while shaking at 700 rpm on a 

microplate shaker. The wells were decanted and washed 6 times with 350 µl of Wash Buffer. 

After the final wash, 100 µl of TMB Substrate was added to each well, covered with a plate 

sealer and incubated at room temperature for 15 minutes (at 700 rpm). Next, 100 µl of Stop 

Solution was added to each well and gently shaken before measuring the absorbance at 450 

nm on a microplate reader (Mithras LB 940). A 5 parameter logistic (pI) fit was used to 

calculate the insulin concentration from the standard curve.  

 

Cell lines 

PreBAT mouse brown preadipocyte cell line  

The PreBAT cell line was created and provided by Hoppmann, Perwitz et al. (2010) by 

immortalizing pre-adipocytes from the intrascapular BAT of newborn mice using the SV40 

Large T antigen.  

Media compositions: 

Growth media:  

400 ml DMEM (4.5 g/l glucose) 

100 FBS (20 %)  

5 ml Pen/Strep (1%) 
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Differentiation media:  

400 ml DMEM (4.5 g/l glucose) 

100 FBS (20 %)  

10 µl of 1 mM Insulin (20 nM final, 1:50,000 dilution) 

16.7 µl of 30 µM Triiodothyronine (T3) (1 nM final, 1:30,000 dilution) 

 

Induction media (prepared fresh): 

Appropriate volume of differentiation media 

1:1000 dilution of 0.125 M Indomethacin (0.125 mM final) 

1:1000 dilution of 2 mg/ml Dexamethasone (2 µg/ml final) 

1:100 dilution of 50 mM 3-isobutyl-1-methylxanthine (IBMX) (0.5 mM final) 

 

Passaging cells: 

Cells were passaged when 60-70% confluency was reached and care should be taken that 

the cells never be allowed to become completely confluent as this will hamper their 

differentiation capacity. Cells were generally split at the ratio 1:80 in the beginning and end 

of the week. For a 15 cm dish, the cells were first washed with 1x D-PBS and 3 ml of trypsin-

EDTA was added followed by 5 minute incubation at 37°C. The cells were collected in 

growth media and plated on to fresh plates or dishes. The cells were discarded after passage 

25.  

For transfections on 12-well-plates, 3x104 cells per well were plated one day before 

transfection to reach the desired confluency.  

 

Differentiation protocol: 

Induction media was added to the cells when they reached complete confluency (day 0). On 

the following day the media was changed to differentiation media and fresh differentiation 

media was added every day till day 06.  
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Freezing and thawing protocol: 

The cells were frozen in growth media supplemented with 10% DMSO. Generally, 2ml of cell 

suspension from a single 15 cm plate was split in to two cryotubes. Upon thawing, the cells 

were 50-60% confluent in a 15cm dish on the following day.  

 

Note:  

Mycoplasma contamination will result in growth retardation, differentiation becoming 

‘patchy’ and a ‘pale’ appearance under the microscope. 

Thorough washing with 1x D-PBS and starvation of cells in serum free DMEM (4.5 g/l 

glucose) for 4-48 hours is advisable for experiments involving growth factors like insulin (for 

example, glucose uptake assays). 

 

INS-1E rat insulinoma cells 

The INS-1E cells were obtained from AG Lammert (DDZ Düsseldorf). 

INS-1E growth media: 

50 ml heat inactivated FBS  

5 ml glutamine 200mM  

5 ml Penicillin/Streptomycin  

5.6 ml HEPES 1M  

5 ml sodium pyruvate 100mM  

1.75 ml 2-Mercaptoethanol 50mM  

500 ml RPMI 1640(1x) + GlutaMAX  

 

Passaging cells: 

INS-1E cells were passaged at a ratio of 1:4 every 3 days using trypsin-EDTA and INS-1E 

growth media.  
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Freezing and thawing cells: 

A 10 cm dish was harvested and the cells were resuspended in 4ml freezing media (50% INS-

1E growth media, 40% FBS, 10% DMSO). The cell suspension (1ml) was transferred to 

cryotubes and placed in the freezing container containing isopropanol, stored at -80°C for 

one week and transferred to long term storage in a liquid nitrogen tank. While thawing, one 

vial was plated on to a 10 cm dish and fresh growth media was added the next day.  

 

HEK 293A Human Embryonic Kidney cells 

The HEK 293A cells from the lab stock were used for transfection experiments and 

production of adenoviral vectors. The following culturing conditions were used: 

HEK 293A growth media: 

450 ml DMEM (4.5 g/l glucose) 

50 ml FBS (10%)  

5 ml Pen/Strep (1%) 

 

Passaging cells: 

The cells were split every 3 to 4 days by resuspending the cellular monolayer in 10 ml 

growth media (15 cm dish) and passaging them at a ratio of 1:10.  

For PEI transfections on 6-well plates, 2x105 cells per well were plated one day before 

transfection to reach the desired confluency of 70-75%. For chamber slides, 1x104 cells per 

chamber were plated for the same confluency. 

 

Freezing and thawing protocol: 

For cryopreservation, cells were harvested in the log-phase of growth, resuspended in 1 ml 

of the freezing medium (growth media, 10% DMSO) and transferred to 2-ml cryotubes. The 

tubes were stored at –80°C as described previously. One tube was thawed and plated on to 

one 15 cm dish. 
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3T3-L1 mouse embryonic white preadipocyte cell line 

The 3T3-L1 cells were used from the lab stock. The following conditions were followed for 

culturing them: 

3T3-L1 growth media: 

450 ml DMEM low glucose (1 g/l glucose) 

50 ml FBS (10%)  

5 ml Pen/Strep (1%) 

 

3T3-L1 differentiation media: 

450 ml DMEM high glucose (4.5 g/l glucose) 

50 ml FBS (10%)  

5 ml Pen/Strep (1%) 

 

In addition to: 

1:1000 dilution of 1 mg/ml Insulin (1 µg/ml final) 

1:1000 dilution of 250 µM Dexamethasone (0.25 µM final) 

1:100 dilution of 50 mM 3-isobutyl-1-methylxanthine (IBMX) (0.5 mM final) 

1:1000 dilution of Ascorbate Biotin Pantothenate (ABP)  

 

Note: 

ABP stock solution: 

50 mg/ml L-Ascorbate (1 g Sodium Ascorbate in 10 ml water) 

1 mM D-Biotin (4.89 mg Biotin in 0.5 ml 1M NaOH) 

17 mM D-Pantothenic acid hemicalcium salt solution (81 mg D-Pantothenic acid 

hemicalcium salt in 9.5 ml water) 
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Passaging cells: 

The cells were first washed with 1x D-PBS and trypsinized (2ml) for 5 minutes at 37°C. The 

cells were then collected in 8ml growth media, centrifuged at 2000 rpm for 3 minutes and 

plated at a density of 3x104 cells per 15 cm dish or at a ratio of 1:10. Cells were never 

allowed to become more than 80% confluent.  

 

Differentiation protocol: 

For differentiation of 3T3-L1 cells, 2x 104 (6-well plate) and 4x 105 (15 cm dish) were seeded 

and differentiation was started after 3 days when the cells were completely confluent (day 

0). At day 0 and day 02, the differentiation media mentioned above was added to the cells 

while at day 04 differentiation media with only Insulin and ABP solution was used. At the 

end (day 06), normal 3T3-L1 growth media was added.  

 

Freezing and thawing protocol: 

The same protocol for HEK 293A cells was used for freezing and thawing 3T3-L1 cells.  

 

In vitro metabolic assays 

Adipocyte staining with Oil Red O 

Adipocytes were stained with Oil Red O (a lipophilic dye) for the visualization of neutral 

triglycerides and lipids. This gives a rough visual estimate of the degree of differentiation.  

Briefly, differentiated adipocytes were first washed with 1x PBS and then with 10% formalin 

(in PBS) for 5 min. The cells were then fixed by the addition of 10% formalin (in PBS) and 

incubated for 1 hour at room temperature. After washing with 60% isopropanol the wells 

were dried and subsequently stained with Oil Red O working solution for 10 min. The wells 

were washed 5 times with water to remove any unbound dye and pictures of the stained 

cells were taken under the microscope. The plates were preserved with water in the wells at 

4°C. Alternatively, the dye was eluted out with 100% isopropanol and the O.D. measured at 

550 nm (including an empty well stained by the dye to account for unspecific binding of the 

dye to the plastic).  
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Measurement of glucose in cell culture supernatant 

The Glucose (HK) Assay Kit from Sigma (GAHK-20) was used to measure the glucose amount 

in cell culture supernatant. Briefly, the standards (0, 2.5, 5, 7.5 and 10 µl of 1 mg/ml Glucose 

Standard Solution) were pipetted first on to the plate to a final sample volume of 10 µl with 

water. The samples were pipetted next with a dilution of 1:2 or 1:4 with a final volume of 10 

µl. The Glucose Assay Reagent (100 µl) was added and the measurements were taken at 355 

nm. The glucose concentrations were calculated from the standard curve. 

 

Lipolysis assay for adipocytes 

The differentiated adipocytes were first washed once with Krebs-Ringer Buffer (KRB) (pH 

7.4, 37°C) and then incubated in the same buffer for 2 hours at 37°C. The adipocytes were 

then stimulated for 3 hours with KRB supplemented with 3% BSA (fatty acid free). After the 

dissolution of the BSA, 25 mM HEPES and 5 mM glucose was added along with (or without) 

0.5 µM norepinephrine or 10 µM isoproterenol to stimulate lipolysis in the cells. The cells 

were stimulated for 3 hours, the supernatant was collected and the non-esterified fatty 

acids (NEFAs) released by the cells were measured by the NEFA HR (2) Kit (WAKO). Briefly, 

two different volumes (5 µl and 50 µl) of samples and standard in duplicates were measured 

on 96-well microplates by first adding 100 µl of R1 buffer and incubating at 37°C for 10 

minutes followed by adding 50 µl R2 buffer and followed by a similar incubation. The 

measurement was carried out at 550 nm and the NEFA amounts were calculated using the 

following formula: 

NEFA (mg/dl) = (Esx28.2)/Estd 

Es- Absorbance of the sample (= Raw absorbance of sample – absorbance of reagent blank 

i.e. water) 

Estd- Absorbance of standard (= Raw absorbance of standard – absorbance of reagent blank 

i.e. water) 

 

 

 



Methods 

 

 90 

Intracellular triglyceride measurement from mature 

adipocytes 

For isolation and measurement of triglyceride amount (TG) from adipocytes, the cells were 

washed once with 1x D-PBS and 100 µl of Tx buffer (with 1x protease inhibitors) was added 

to each well (for a 12-well plate) and the plate was frozen at -80°C for at least 24 hours. 

After thawing the cells, the monolayer was scraped off and transferred to 1.5 ml tubes. The 

tubes were then sonicated in a Bioruptor (Diagenode) with three cycles of sonication for 30 

seconds (30 seconds on and 30 seconds off) at 4°C. The tubes were then centrifuged at 

13000 rpm for 15 minutes at 4°C. The middle aqueous phase (6 µl of it), avoiding the lipids 

floating on top, was transferred to fresh pre-chilled tubes containing 54 µl of water for 

protein measurement using the BCA assay. The remaining supernatant was used for TG 

measurement using the Serum Triglyceride Determination Kit from Sigma (TR0100). Briefly, 

the samples and standard were measured in 15 µl duplicates with 100 µl of Triglyceride 

Working Reagent (‘Assay Solution’) and another set of duplicates with 100 µl of Triglyceride 

Reagent Blank (‘Blank Solution’). The samples were incubated at 37°C for 5 minutes and the 

absorbance was measured at 550 nm. The NEFA amounts were calculated using the 

following formula and expressed per mg protein. 

TG in samples (mg/ml) = (Es x 2.5 mg/ml)/Estd  

Es- Absorbance of the sample (= absorbance of sample with Assay Solution - absorbance of 

sample with Blank Solution) 

Estd- Absorbance of standard (= absorbance of standard with Assay Solution - absorbance of 

standard with Blank Solution) 

 

Measurement of cytotoxicity using the cytotoxicity detection 

kit (LDH) 

The cytotoxic effect of AHA supplemented media on primary adipocytes was measured 

using the Cytotoxicity Detection Kit (LDH) from Roche (Product No. 11644793001). Briefly, 

the amount of Reaction mixture was first calculated and prepared in the ratio of 1:45 for 

Catalyst to Dye solution. Next, 10 µl of the sample, blank (growth media) and positive 

control (primary white adipocytes treated with 1% Triton x100, diluted 1:10) and 40 µl of 

water were measured for LDH amount by adding 50 µl of Reaction mixture and incubating 

at room temperature for 30 minutes in the dark. The absorbance was measured at 490 nm. 

The LDH release (% cell death) was depicted as % LDH compared to the positive control (100 

% cell death). 
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Glucose metabolism and lipogenesis assay for mature 

adipocytes 

Cells were either grown and differentiated in 10 cm dishes and transferred to 12-well plates 

or directly differentiated on to 12-well plates. For insulin stimulation, the cells were first 

washed twice with KRB and then incubated with KRB (pH 7.4) supplemented with 25 mM 

HEPES, 0.5% BSA, 5 mM glucose and 5 µl/well of D-[14C(U)]-Glucose (0.5 µCi/well) with 10 

nM insulin for 2 hours at 37°C. The left-over hot buffer was stored for the ‘input’ 

measurement later. The plates were harvested on ice by aspirating the buffer, washing 

twice with ice-cold KRB and lysing the cells in 200 µl 0.5 M NaOH/well with 5 minutes 

incubation on ice. Next, 400 µl PBS/well was added and the lysates (whole cell extract, WCE) 

were transferred to ice-cold 1.5 ml tubes. For measuring glucose metabolism 200 µl of the 

WCE was used and 300 µl of the WCE was used for lipid extraction (and measurement of 

lipogenesis). The rest of the WCE was frozen for protein measurement (BCA kit). For lipid 

extraction, 400 µl of chloroform:methanol (3:1) was added to 300 µl of WCE. The samples 

were mixed well, incubated for 2 minutes at room temperature and centrifuged for 2 

minutes at 13,000 rpm. The lower phase (200 µl) was transferred to a scintillation tube and 

the lipids were dried overnight under the fume hood. For the scintillation measurements, 

4ml of scintillation fluid (Rotiszimt Eco Plus, Roth) was added to the glucose and lipid 

samples, background sample (no radioactive material) and to 10 µl and 100 µl of input. 

Extreme caution should be taken not to contaminate the outside of the scintillation tubes. 

The samples were mixed properly and incubated for 1 day and the disintegrations per 

minute (DPM) were measured in a scintillation counter with 10 minute measurement per 

sample and automated background subtraction. The measurements were repeated after 2 

days.  

 

Glucose stimulated insulin secretion (GSIS) assay for INS-1E 

cells 

For the INS-1E GSIS assay, the plates were first coated with 0.01% poly-ornithin solution (10 

µg/ml) and incubated overnight at 37°C. On the next day the poly-ornithin solution was 

removed and the plates were washed twice with water and once with INS-1E growth media. 

The cells were plated on a 24-well plate (1.5x105 cells/well in 500 µl) and the assay was 

started after 5 days. For the assay, the cells were first incubated for 2 hours in RPMI 1640 

media (without glucose, 1% FBS) and then washed twice with KRB (0.1% BSA) and incubated 

in the same buffer for 30 minutes. The cells were washed again with the same buffer and 
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then treated with 5 mM or 20 mM glucose in KRB (0.5% BSA) to stimulate insulin secretion. 

Insulin amounts were measured in the supernatant using the rat insulin ELISA. The cells 

were harvested in lysis buffer to measure protein amounts (BCA assay) or intracellular 

insulin using the same ELISA kit.  

 

SILAC and AHA incorporation of primary adipocytes 

Primary adipocytes were treated with SILAC and AHA supplemented medium in order to 

carry out the secretome analysis. Briefly, the mature primary adipocytes were washed once 

with 1x D-PBS. Next, to remove methionine, lysine and arginine the cells were incubated 

with SILAC-Met media for 30 minutes. The SILAC media was prepared with 0.2 µl of AHA 

(500 mM) and 1 µl labeled amino acids per 1 ml media (arginine 84 mg/ml, lysine 146 

mg/ml). The depletion media was aspirated and the cells were incubated for 24 hours with 

appropriate replicate combinations of heavy and intermediate SILAC medium (as shown in 

the figure). After the incubation, the media was collected in 15 ml tubes and centrifuged at 

1000 rpm for 10 minutes. The supernatant was collected, 1x protease inhibitor was added 

and the samples were frozen at -80°C. The cells were washed thrice with 1x D-PBS and 

harvested for DNA isolation. The samples were then analyzed in the Krijgsveld lab (at EMBL, 

Heidelberg) after normalization using the total DNA amounts. 
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Adenoviral vector production 

The adenoviral vectors were produced using the BLOCK-iT™ U6 RNAi Entry Vector Kit and 

the BLOCK-iT™ Adenoviral RNAi Expression System from Invitrogen. Briefly, the adenoviral 

vectors were generated as follows: 

1. Designing the single-stranded DNA oligos: The Invitrogen’s BLOCK-iT™ RNAi Designer 

tool was used to design the appropriate shRNA against a target gene. The ORF and 

the 3’ UTR regions were selected as target regions and ‘pENTR™/U6’ was selected as 

the vector. The top four oligos were selected and the forward and reverse strands 

were ordered. 

2. Generating the Double-Stranded Oligo (ds oligo): The annealing reaction was set up 

according to the manufacturer’s protocol. However, after annealing at 95°C for 4 

minutes, the temperature was decreased by 5°C every 1 minute till 20°C. The 

efficiency of oligomerization was visualized by agarose gel electrophoresis.  

3. Ligation of oligos and pENTR™/U6 vector to generate entry clones: The ligation 

reaction between linearized pENTR™/U6 and diluted ds oligos was performed 

according to the manual and subsequently used for transforming TOP10 cells.  

4. Determination of shRNA knockdown efficiency of the entry clones: Next, the 

knockdown efficiency of the shRNAs was determined by PEI-mediated transfection 

of 293A cells by co-transfecting 1 µg each of the pENTR™/U6-ds oligos with over-

expression plasmid constructs and observing the protein levels of the target by 

immunoblotting. 

5. LR recombination reaction: Two entry clones with the highest knockdown efficiency 

were selected for LR recombination reaction in to the pAd/BLOCK-iT™-DEST vector 

to generate expression clones. The recombination protocol was carried out as 

described in the manual. The expression clones were sequenced to confirm the 

recombination. 

6. Adenovirus production: 

a. PacI digestion: The expression clones were digested with PacI to expose the left 

and right viral ITRs according to the manual. The digestion was confirmed by the 

presence of a 2000 bp fragment with agarose gel electrophoresis.  

b. Adenovirus production in 283A cells: The PacI-digested pAd/BLOCK-iT™-DEST 

expression plasmids were used to transfect (PEI) 293A cells on 6-well plates 

according to the protocol described in the manual. The cells were harvested from 

the 10 cm dishes after the cytopathic effect was observed in 80% of the cells and 

the cell suspension was used to make the crude viral lysate.  
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c. Generating the crude viral lysate by freeze-thawing: The harvested cell 

suspension was frozen at -80°C for 30 minutes and thawed in a 37°C water for 15 

minutes. This process was repeated two more times. The cell debris was pellet by 

centrifugation at 3000 rpm for 15 minutes at room temperature. 

d. Amplifying the adenovirus: Ten 15 cm dishes of 293 cells were infected with 100 

µl of the crude viral lysate and the same procedure of cell harvest and freeze-

thawing was carried out as described above.  

e. Cesium Chloride Gradient Purification and dialysis. The gradient purification of 

the viral lysates was carried out by following the protocol developed in the lab. 

Briefly, the amplified crude virus lysates were thawed on ice and the viral 

solution diluted with PBS-TOSH buffer to a final volume of 20 ml. Before the 

gradient was poured, the pH of all solutions used was adjusted to pH 7.2. Forty-

mL centrifuge tubes (Beckmann Polyallomer 25mm x 89 mm) were filled with 9 

ml 4M CsCl and carefully covered by a second layer of 2.2M CsCl. Finally, the 

virus-containing solution was added slowly to generate a third layer. The tubes 

were weighed and balanced by adding the appropriate solution. The virus was 

purified by ultracentrifugation (Beckmann ultracentrifuge XL-70) for 2 hours with 

a swing bucket rotor (SW28 rotor) at 24000 rpm and 4°C. The virus band 

(between the 4M and 2.2M CsCl layers) was removed by carefully puncturing the 

tube with 5-mL syringe and diluted with the same volume of a saturated CsCl 

solution and transferred into a 15-mL centrifuge tube (Beckmann Polyallomer 

14mm x 89 mm). The solution was gently over layed with 4M CsCl (1.5-2.5 mL). 

Subsequently, 2 to 3 mL 2.2M CsCl were added dropwise to form the third 

distinct layer and the step gradient was centrifuged for 3 hours at 35000 rpm and 

4°C in a swing bucket rotor (SW41 Ti rotor). After the second purification step, a 

bluish-fluorescent virus band between the 4M and 2.2M layers was extracted 

using 5 ml syringe. The extracted virus band was sealed in a dialysis tube (Roth) 

and overnight dialysis was carried out in dialysis buffer (1 x PBS, 10% glycerol, pH 

7.2) before adding 10% glycerol and storing the virus at -80 °C. 

7. Virus titer determination: The Adenoviral titer was determined using the Tissue 

Culture Infectious Dose 50 (TCID50) method used in the lab. Briefly, HEK293A cells 

were seeded at a density of 104 cells/well on a 96-well plate. Two hours after 

seeding, 100 µl of virus solution with decreasing concentrations (from 10-7 to 10-14) 

was added, infecting 10 wells per dilution. After 10 days of incubation at 37 °C, 

plaques were counted using the following formula: 

Titer: Ta = 10 1+(s-0.5) for 100 µl; T = Tax10 for 1 ml (ifu/ml) 

Where s is the sum of positive wells starting from the 10-1 dilution divided by 10 i.e., 10 

positive wells per dilution is equal to 1. 
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Materials 

Antibodies 

Mus Musculus Target Protein Source 

Inter alpha-trypsin inhibitor, heavy chain 4 
(ITIH4) 

ab118283 Abcam 

Valosin containing protein (VCP) ab11433 Abcam 

Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) 

sc-166545 

Anti-mouse IgG-HRP (goat) 170-6516, Biorad 

Anti-rabbit IgG-HRP (goat) 172-1019, Biorad 

Anti-goat IgG (H+L)-HRP (rabbit) R21459 

 

Buffers 

Buffer/Solution Components 

TX Lysis Buffer  

 

150 mM NaCl, 0.05% Triton™ X‐100, 10 mM 

Tris/HCl (pH 8.0), 1x 

Protease Inhibitor Cocktail 

Tris/HCl (10 mM, pH 8.0)  1.21 g Trizma® Base, 1 l Millipore H2O 

(autoclaved) 

Depletion/’SILAC-Met’ media 500 ml DMEM, high glucose, no glutamine, 

no methionine, no cysteine, no arginine, no 

lysine (21013-024), 50 ml dialysed FBS 

(GIBCO 26400, heat-inactivted), 1 ml 

Primocin, 10 ml 200 mM L-glutamine, 31.5 

mg L-cystine (100 mg/ml in 1M HCL) 

SDS Loading Dye (5x)  

 

250 mM Tris/HCl (pH 6.8), 0.5 M DTT 

(AppliChem), 10% SDS, 1 mg/ml 
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Bromophenol Blue, 50% Glycerol 

LB‐Agar  

 

40 g LB‐Agar (Luria/Miller; 10 g/l tryptone, 5 

g/l yeast extract, 10 g/l 

NaCl, 15 g/l agar‐agar), 1 l Millipore H2O 

(autoclaved and 

supplemented with antibiotic poured on 

petri dishes) 

LB‐Medium 25 g LB‐Medium (Luria/Miller; 10 g/l 

tryptone, 5 g/l yeast extract, 

10 g/l NaCl), 1 l Millipore H2O (autoclaved) 

SDS Running Buffer (1x) 200 mM Glycine, 25mM Trizma® Base, 0.1% 

SDS 

SDS Transfer Buffer (1x) 25 mM Trizma® Base, 192mM Glycine, 20% 

Methanol, 0.01% SDS 

PBS-TOSH (adenovirus production) 30.8 mM NaCl, 120.7 mM KCl, 8.1 mM 

Na2HPO4, 1.46 mM KH2PO4, 10 mM MgCl2, 

pH 7.2 

Dialysis Buffer (adenovirus production) 1 x PBS, 10% glycerol, pH to 7.2 

PEI Stock Solution 161.5 mg PEI in 500 mL dH2O; Stir for 1h; 

autoclave; freeze‐thaw 

thrice 

Blenis Lysis Buffer (BLB) with CHAPS 

(immunoprecipitation) 

10 mM KPO4 (PH 7.2), 1 mM EDTA, 5 mM 

EGTA, 10 mM MgCl2, 0.3 % CHAPS 

Krebs-Ringer Buffer (KRB) for lipolysis assay 115 mM NaCl, 5.9 mM KCl, 1,2 mM 

NaH2PO4, 1.2 mM MgCl2, 1.2 mM Na2SO4, 

2.5 mM CaCl2, 25 mM NaHCO3, pH 7.4 

Krebs-Ringer Buffer (KRB) for GSIS assay 135 mM NaCl, 3.6 mM KCl, 5 mM NaHCO3, 

0.5 mM NaH2PO4, 0.5 mM MgCl2, 1.5 mM 

CaCl2, 10 mM HEPES, pH 7.4 

Lysis Buffer for DNA extraction  10 mM Tris pH 8.0, 100mM NaCl, 15 mM 

EDTA, 0,5% SDS, 0,5 mg/mL Proteinase K 
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Tris-EDTA buffer (TE buffer) 1 mM EDTA, 10 mM Tris, bring to pH 8.0 

with HCl 

Tris-Borate-EDTA Buffer (TBE) 10 mM Tris, 0.1 mM EDTA, 9 mM boric acid, 

pH 8 

1X RNA Sample Loading Buffer (for AGE) 0.5 μL Ethidium bromide (1:10) + 0.5 μL 10X 

MOPS + 5 μL Formamide + 1.75 μL 

Formaldehyde + 1.7 μL 6x Loading dye + 0.55 

μL RNase‐free water 

RIPA buffer 50 mM Tris-HCl (pH 7.6), 150 mM NaCl, 1% 

NP-40, 0.25% Na-deoxycholate, 1 mM EDTA 

(pH 8.0) 

 

Chemicals 

Chemical  Supplier Catalogue number 

(+)-sodium L-ascorbate  Sigma  A4034  
14C glucose D-[14C(U)]  Perkin Elmer  NEC042X250UC  
14C-Mannitol, D-[1-14C]  Perkin Elmer  NEC314050UC  
2-Deoxy-D-glucose  Sigma  D8375  
3,3′,5-Triiodo-L-thyronine sodium salt (T3)  Sigma  T6397  
3,3′-Diaminobenzidine (DAB)  Sigma  32741  
30% Acrylamide/Bisacrylamide 37.5:1 
(Rotiphorese Gel 30)  

Carl Roth  3029.1  

3H-Deoxy-D-glucose, 2-[1,2-3H (N)]  Perkin Elmer  NET328001MC  
Acetic acid  Sigma  45731  
Agarose  Applichem  A8963  
Ammonium persulfate (APS)  Roth  9592.3  
Ampicillin  Sigma  A9518  
Attractene Transfection Reagent  Qiagen  301005  
Barium hydroxide solution 0.3 N 
(Ba(OH)2)  

Sigma  B4059  

Biotin  Sigma  B4639  
Boric acid  Sigma  31146  
BSA FA free (for ChIP and lipid assays)  Sigma  A8806  
BSA fraction V (for WB)  Biomol  1400  
BSA in solution (for cell culture)  Sigma  A9576  
Calcium chloride (CaCl2)  Carl Roth  CN93.1  
Carbaprostacyclin (cPGI2)  Biozol (Cayman)  69552-46-1  
Cesium chloride  Carl Roth  7878.2  
Chloroform  VWR  22.711.290  
Cytochalasin B  Sigma  C6762  
D-(+)-Glucose anhydrous  Applichem  A0883  
Dexamethasone (Dex)  Sigma  D-8893  
Dexamethasone water soluable (Dex)  Sigma  D2915  
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Dimethyl sulfoxide (DMSO)  Sigma  D2650  
Disuccinimidyl glutarate (DSG crosslinker)  Proteochem  c1104  
Dithiothreitol (DTT)  Carl Roth  6908.2  
D-Mannitol  Sigma  M4125-100G  
DMEM, high glucose, pyruvate  Life Technologies (Gibco)  11965-092  
DMEM, low glucose, pyruvate  Life Technologies (Gibco)  31885-023  
DMEM, high glucose, pyruvate  Life Technologies (Gibco)  11965-092  
DMEM, low glucose, pyruvate  Life Technologies (Gibco)  31885-023  
DMEM, no glucose  Life Technologies (Gibco)  11966-025  
DMEM, no glucose,/pyruvate/L-
glutamine,/phenol red/sodium 
bicarbonate, powder  

Sigma  D5030  

DNase / RNase free water  Life Technologies (Gibco)  10977023  
dNTPs (10 mM)  Life Technologies  R0191  
D-pantothenic acid hemicalcium salt  Sigma  P5710  
Dulbecco's phosphate buffered saline (D-
PBS)  

Life Technologies (Gibco)  14190094  

Eosin G  Carl Roth  7089.1  
Ethanol 99%  DKFZ   

Ethanol absolute (for analysis) Sigma  32205  
Ethidium bromide (EtBr)  Carl Roth  2218.2  
Ethylenediaminetetraacetic acid (EDTA)  Sigma  E5134  
(+)-Etomoxir sodium salt hydrate 
(Etomoxir)  

Sigma  E1905  

Fetal calf serum (FCS)  Life Technologies (Invitrogen)  10091-148  
Formaldehyde solution 37%  J. T. Baker  7040  
Forskolin  Sigma  F3917  
Gene Ruler 1kb DNA Ladder  Thermo Scientific  SM0314  
Glycerol 2-phosphate disodium salt 
hydrate (G2P)  

Sigma  G6251  

Glycerol, 99%  Sigma  15523  
Glycine  Sigma  33226  
HEPES 1M  Life Technologies (Invitrogen)  15630-056  
Histofix 4% Formaldehyde Solution for 
Histology  

Carl Roth  P087.5  

Hydrochloric acid 37% (12.1 M)  Sigma  30721  
IBMX (3-Isobutyl-1-methylxanthin  Sigma  I5879-1G  
Indomethacine  Sigma  I7378  
Insulin human  Sigma  I2643  
Isopropanol  Sigma  190764  
Isoproterenol hydrochloride  Merck (Calbiochem)  420355  
L-(-)-norepinephrine bitartrate (NE)  Sigma  A9512  
Laminin  Santa Cruz  sc-29012  
LB agar  Carl Roth  X969.1  
LB Medium  Carl Roth  X968.1  
L-Carnitine  Sigma  C0158  
L-glutamine  Life Technoligies (Invitrogen)  25030-081  
Lipofectamine 2000 Transfection Reagent  Life Technologies (Thermo)  11668027  
Lipofectamine RNAiMAX Transfection 
Reagent 

Life Technologies (Thermo) 13778075 

Lithium Chloride (LiCl)  Carl Roth  3739.1  
Magnesium chloride hexahydrate (MgCl2 
*6H2O)  

Sigma  M927  

MEM Non-Essential Amino Acids Solution 
(NAA)  

Life Technologies  11140  
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Methanol  Sigma  32213  
N,N,N',N'-tetramethylethane-1,2-diamine 
(TEMED)  

Carl Roth  2367.3  

NP-40 (IGEPAL)  Sigma  56741  
Oligo(dT)18 Primer  Thermo Scientific  SO132  
One Shot TOP10 Chemically Competent E. 
coli  

Life Technologies (Invitrogen)  C4040  

Orange G  Sigma  O3756  
PageRuler Prestained Protein Ladder  Thermo Scientific  26616  
Penicillin-Streptomycin (10,000 U/mL)  Life Technologies  15140-122  
Phenol/Chloroform/Isoamyl alcohol 
(25:24:1)  

Carl Roth  A156.2  

Phosphatase Inhibitor Cocktail 2  Sigma  P5726  
Polyethylenimin (PEI)  Sigma  764647  
Poly-L-lysine  Sigma  P9155  
Potassium chloride (KCl)  Carl Roth  6781.1  
Potassium dihydrogen phosphate 
(KH2PO4)  

Carl Roth  3904.1  

Protease Inhibitor Cocktail  Sigma  P8849  
QIAzol lysis reagent  Qiagen  79306  
Recombinant Mouse FGF basic (bFGF)  R&D Systems  3139-FB-025  
Recombinant Ribonuclease Inhibitor 
(RNaseOUT)  

Life Technologies (Invitrogen)  10777-019  

Rosiglitazone  Cayman Chemicals  71740  
Restore PLUS Western Blot Stripping 
Buffer-500 mL 

Thermo Scientific 46430 

Rotiszint scintillation liquid  Carl Roth  0016.3  
S.O.C. medium  Life Technologies (Invitrogen)  15544-034  
Skim milk powder extra grade  Gerbu  1602  
Sodium acetate (NaAc)  Applichem  A1522  
Sodium chloride (NaCl)  Sigma  31434  
Sodium deoxycholate (NaDOC)  Sigma  D6750  
Sodium dihydrogen phosphate (NaH2PO4)  Applichem  A3559  

Sodium dodecyl sulfate (SDS)  Sigma  62862  

Sodium fluoride  Sigma  S1504  

Sodium hydrogen carbonate (NaHCO3)  AppliChem  A0384  

Sodium hydrogen phosphate (Na2HPO4)  Neolab  4066  

Sodium hydroxide standard solution 8 

mol/l  

Sigma  35255  

Sodium orthovanadate (Na3VO4)  Sigma  S6508  

Sodium palmitate  Sigma  P9767  

Sodium pyruvate  Life Technologies  11360070  

sodium sulfate (Na2SO4)  Applichem  A3487  

Streptavidin MicroBeads  Miltenyi Biotec  130-048-102  

Streptozotocin  Axxora  LKT-S7870  

Sucrose  Sigma  S1888  

Sulforhodamine B sodium salt  Sigma  S9012  

TaqMan Gene Expression Master Mix  Life Technologies  4369016  

Triolein [9,10-3H(N)]  Hartmann  ART 0199  

Tris base  Sigma  T1503  

tri-Sodium citrate dihydrate  Sigma  71405  

Triton-X100  AppliChem  A1388  

Trypsin-EDTA solution  Life Technologies (Invitrogen)  25200072  
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Tween 20  Sigma  P9416  

Tyloxapol  Sigma  T0307  

Xylene  Merck  1.08681.2500  

Zinc sulfate solution 0.3 N Zn(SO)4  Sigma  Z2876  

 

Instruments 

Instrument Supplier 

0.5-10μl single-channel pipette (ErgoOne)  Starlab  
100-1000μl single-channel pipette (ErgoOne)  Starlab  
20-200μl single-channel pipette (ErgoOne)  Starlab  
2-20μl single-channel pipette (ErgoOne)  Starlab  
Analytical scales (M-Power)  Sartorius  
Automated cell counter (Countess)  Life Technologies (Invitrogen)  
Automatic glucose monitor (Accu-Chek Performa)  Roche  
Bacterial incubator (Function Line)  Thermo Scientific (Heraeus)  
Bacterial shaker  Infors AG  
Bacterial shaker / incubator (Multitron Standard)  Infors HT  
Benchtop centrifuge (Microfuge Heraeus Pico)  Thermo Scientific (Heraeus)  
Benchtop centrifuge, cooling (Microfuge Heraeus 
Fresco)  

Thermo Scientific (Heraeus)  

Blot imager (ChemiDoc XRS)  Biorad  
Bunsen Burner  Campingaz  
Calorimeter (IKA C7000)  IKA  
Centrifuge (Biofuge Prime) (cell culture)  Thermo Scientific (Heraeus)  
Centrifuge (Labofuge 400R)  Thermo Scientific (Heraeus)  
Centrifuge (Mikro 22R) (cell culture)  Hettich  
Centrifuge (Multifuge X3R)  Thermo Scientific (Heraeus)  
Centrifuge (Super T21)  Thermo Scientific (Heraeus)  
CO2 incubator  Sanyo  
Electrophoresis chamber  Steinbrenner  
Electrophoresis power supply (PowerPac™ Basic)  Biorad  
Electrophoresis power supply (PowerPac™ HC)  Biorad  
Extracellular flow bioanalyser (Seahorse XF96)  Seahorse Bioscience  
FPLC system (ÄKTA purifier)  GE Healthcare Life Sciences  
Freeze dryer (Alpha 1-2)  Martin Christ  
Freezer -20 °C (comfort / med line)  Liebherr  
Freezer -80 °C (Herafreeze)  Thermo Scientific (Heraeus)  
Fridge 4 °C (comfort / med line)  Liebherr  
Fumehood (Airflow RXC 90.1)  WALDNER Laboreinrichtungen  
Gel imager (IX)  Intas  
Handheld Reader System for Wireless temperature 
detection (model DAS-7006/7s)  

BioMedic Data Systems  

Hotplate stirrer (Model 375)  VWR  
Labcoat  Bierbaum Proenen  
Liquid nitrogen cryogenic tank  Thermo Electron  
Liquid scintillation counter (Tri-Carb® 2100TR or 
2900TR)  

Perkin Elmer  

Manual pipetting system (Liquidator 96)  Mettler Toledo  
Micro dismembrator S  Sartorius  
Microplate reader (Mithras LB 940)  Berthold  
Microplatereader SPECTROstar Omega  BMG Labtech  
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Microscope (Axio Imager.M2) (histology)  Zeiss  
Microscope (Axiovert 40 CFL) (cell culture)  Zeiss  
Microwave  Bosch  
Mini Trans-Blot® cell (buffer tank, lid, cassettes, 
electrodes)  

Biorad  

Mini-PROTEAN Tetra cell (buffer tank, lid, running 
module)  

Biorad  

Mini-PROTEAN® Tetra handcast systems (casting 
module, plates, combs)  

Biorad  

Multichannel pipette reference 8- and 12-channel 
variable  

Eppendorf  

Multistep pipette (Multipette Plus)  Eppendorf  
pH meter (GMH350)  GHM electronics, Greisinger  
PhenoMaster cages  TSE Systems  
Photometer (NanoDrop ND-1000)  Peqlab Biotechnology  
Pipette controller (accu-jet® pro)  Brandtech Scientific  
Real-Time PCR system (StepOnePlus)  Life Technologies (Applied Biosystems)  
Rocking platform (Duomax 1030)  Heidolph  
Rotating wheel  Neolab  
Rotating wheel (model 2-1184)  Neolab  
Scales (EG 2200-2NM)  Kern & Sohn Gmbh  
Sonicator (Bioruptor)  Diagenode  
Sterile biosafety cabinet (e3 Class II Type A/B)  SterilGARD  
Tabletop centrifuge (Mini Spin Plus)  Eppendorf  
Thermomixer comfort Heatblock  Eppendorf  
Timer (TR 118)  Oregon Scientific  
TissueLyser II  Qiagen  
Ultracentrifuge (XL 70)  Beckman  
Vacuum pump  Neolab  

 

Kits 

Kit Supplier and catalogue number 

BCA Protein Assay Kit  Thermo Scientific (Pierce), 23225 
BLOCK-iT™ Adenoviral RNAi Expression System  Life Technologies, K4941-00 
BLOCK-iT™ U6 RNAi Entry Vector Kit Life Technologies, K4945-00 
Cytotoxicity Detection Kit (LDH) Roche, 11644793001 
ECL Western Blotting Substrate  Thermo Scientific (Pierce) , 321061 
First Strand cDNA Synthesis Kit Fermentas, K1612 
Glycerol Standard Solution  Sigma, G7793 
HiSpeed Plasmid Maxi Kit 25 QIAGEN, 12663 
MILLIPLEX® MAP Mouse Metabolic Hormone panel Millipore, MMHMAG-44K 
Mouse ITIH4 ELISA Uscn Life Science Inc., E97776Mu 
Minute™ Adipose Tissue Fractionation Kit Invent Biotechnologies, Inc , AF-023 
QIAprep Spin Miniprep QIAGEN, 27106 
QIAquick Gel Extraction Kit QIAGEN, 28704 
QIAquick PCR Purification Kit  QIAGEN, 28104 
RNeasy Micro kit QIAGEN, 74004 
RNeasy Mini kit QIAGEN, 74104 
Rat High Range Insulin ELISA  ALPCO™, 80-INSRTH-E01 
Glucose (HK) Assay Kit Sigma, GAHK-20 
NEFA Standard Solution  Wako, 276-76491 
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NEFA-HR Reagent 1  Wako, 434-91795 
NEFA-HR Reagent 2  Wako, 436-91995 
Serum Triglyceride Determination Kit Sigma, TR0100 

 

Plasmids 

Name Description Source 

pdsAAV-Ucp1p-GFPmut-

miR122site-miR-NC 

Double stranded AAV vector 

expressing control miRNA 

under the control of UCP1 

promoter and miR-122 

binding site. 

Cloned with help from Karin 

Moessenboeck. 

pdsAAV-Ucp1p-GFPmut-

mir122site-miR-Tbl1 

Double stranded AAV vector 

expressing Tbl1 miRNA 

under the control of mini-

UCP1 promoter and miR-122 

binding site. 

Kindly provided by the 

Herzig lab (generated by 

Karin Moessenboeck). 

pdsAAV-Ucp1p-GFPmut-

mir122site-miR-Itih4 

Double stranded AAV vector 

expressing Itih4 miRNA 

under the control of mini-

UCP1 promoter and miR-122 

binding site. 

Generated by Asrar Ali Khan 

pcDNA™6.2-GW/EmGFP-

miR-mmItih4 

pcDNA™6.2-GW/EmGFP-miR 

vector (from BLOCK-iT™ Pol 

II miR RNAi Expression 

Vector Kits) containing Itih4 

miRNA 

Generated by Asrar Ali Khan 

pCMV6-Kan/Neo-mmItih4-

untag 

pCMV6-Kan/Neo expressing 

Mouse inter alpha-trypsin 

inhibitor, heavy chain 4 

(cDNA clone) 

MC206371, OriGene 

Technologies 

pCMV6-Entry-mmTigit-Myc-

DDK-tag 

pCMV6-Entry expressing 

Tigit (Myc-DDK-tagged) - 

Mouse T cell 

immunoreceptor with Ig and 

ITIM domains (Tigit) 

MR213712, OriGene 

Technologies 
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Plastic consumables  

Product Supplier Catalogue number 

10μl Graduated tips  Starlab  S1111-3800  
1000μl Blue graduated tips  Starlab  S1111-2821  
10ml Disposable Polystyrene 
Serological Pipet  

Corning (Falcon)  356551  

15ml Tube PP, sterile (cellstar)  Greiner Bio One  188271  
200μl Yellow tips  Starlab  S1111-0806  
250mL Vacuum Filter/Storage 
Bottle System, 0.22μm Pore  

Sigma (Corning)  430756  

25ml Disposable Polystyrene 
Serological Pipet  

Corning (Falcon)  356535  

300 μM Nylon mesh (Polyamid 
Monofil)  

Neolab  4-1411  

50ml Disposable Polystyrene 
Serological Pipet  

Corning (Falcon)  356550  

50 ml Syringe  BD Biosciences (Falcon)  1404297  
50ml Tube PP, sterile (cellstar)  Greiner Bio One  227261  
5ml Disposable Polystyrene 
Serological Pipet  

Corning (Falcon)  356543  

70μM Cell strainer nylon  BD Biosciences (Falcon)  352350  
96 Well Black with Clear Flat 
Bottom  

Corning (Falcon)  353219  

96-Well Microplates, clear, flat 
bottom (MicroWell)  

Thermo Scientific (Nunc)  95029780  

Bench liner (Labmat)  VWR  246750000  
Cell counting chamber slides 
(Countess)  

Life Technologies (Invitrogen)  C10228  

Cell Culture Dishes 100x20 mm  Corning (Falcon)  353003  
Cell Culture Dishes 150x25 mm  Corning (Falcon)  353025  
Cell Scrapers  Sigma (Corning)  CLS3010  
Combitips advanced, 10 mL  Eppendorf  30089464  
Combitips advanced, 5 mL  Eppendorf  30089456  
Cover Slips  Carl Roth  H878.2  
Cryo Cardboard Box, White  Neolab  Feb 01  
Cryogenic vials, 1.8ml  Starlab  E3110-6122  
Delicate Task Wipes  Kimberley Clark  7216  
Dialysis tubing Cellulose Ester  Spectrum Laboratories  131270  
Disposable Scalpels  Feather  EF7281 (2975-10)  
Disposal bags (Sekuroka)  Carl Roth  E706.1  
FPLC column (Superose 6, 10/300 
GL)  

GE Healthcare Life Sciences  17-5172-01  

Gas cartridge  Campingaz  Z00059581  
Gloves, Powder Free Textured 
Latex Exam  

blossom  BM 11226-PF-AV  

Glucose test strips (Acco-Chek 
Inform II)  

Roche  473360  

Grid insert for cryoboxes, 10x10  Neolab  Feb 03  
Histology Mega-Cassette System 
(Tissue-Tek)  

Sakura  4173  

Insulin syringes (Micro-fine 1ml U-
40, 0.33 mm x 12.7 mm)  

Becton Dickinson  320801  

large volume centrifuge tubes Sigma (Corning)  CLS431123  
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(500ml)  
Liquidator96 LTS tips  Steinbrenner  SL-LT-L20  
MicroAmp® Fast Optical 96-Well 
Reaction Plate  

Life Technologies  4346906  

MicroAmp® Optical 8-Cap Strips  Life Technologies  4323032  
MicroAmp® Optical Adhesive Film  Life Technologies  4311971  
Micro-osmotic pump (model 1002)  Alzet  4317  
Microscopy Slides  Carl Roth  0656.1  
Mouse Genome 430 2.0 Array 
(GeneChip)  

Affymetrix  900496  

MS Columns  Miltenyi Biotec  130-042-201  
needles (Neolus 27G,40 x 20 mm)  Terumo  NN-2719R  
Nitril Gloves, Safeskin Purple  Kimberley Clark  52001M  
Nitrocellulose membrane (Protran 
0.45 N)  

GE healthcare (Amersham)  10600002  

Nuclease free SafeSeal Tubes 
(Mμlti)  

Carl Roth  7080.1  

Octo MACS Separator Starter Kit  Miltenyi Biotec  130-042-108  
Paper towels comfort  Wepa  277200  
Parafilm M  Sigma  P7793  
Pasteur capillary pipetts long  Brand  747720  
Petri dishes, 94x16 mm  Greiner Bio One  632 180  
Pre-Separation Filters  Miltenyi Biotec  130-041-407  
Prot/Elec Tips (gel loading)  Biorad  223-9916  
Rodent Diet with 10% kcal% fat 
(low fat diet, LFD)  

Research Diets  D12450J  

Rodent Diet with 60% kcal% fat 
(low fat diet, LFD)  

Research Diets  D12492  

Round Bottom Polypropylene 
Tube with snap cap 14ml  

BD Biosciences (Falcon)  352059  

Safe-Lock Tubes 1.5 mL  Eppendorf  22363204  
Safe-Lock Tubes 2.0 mL  Eppendorf  22363352  
Safe-Lock Tubes, 1.5 ml  Eppendorf  0030 120.086  
Safe-Lock Tubes, 2.0 ml  Eppendorf  0030 120.094  
scintillation tubes, 5ml PP tube, PE 
cap  

VWR  720-0495  

Scintillation vials mini with 
screwcap  

Carl Roth  5404.1  

Soft-Ject Disposable Syringes 1ml  Henke Sass Wolf  5010.200V0  
Syringe Filter Unit, 0.45 μm 
(Millex-HV)  

Millipore  SLHV033RS  

TipOne graduated filtertips, 10μl  Starlab  S1121-3810  
TipOne graduated filtertips, 100μl  Starlab  S1120-1840  
TipOne graduated filtertips, 
1000μl  

Starlab  S1126-7810  

TipOne graduated filtertips, 20μl  Starlab  S1120-1810  
TipOne graduated filtertips, 200μl  Starlab  S1120-8810  
Tissue Culture Plates 24 well  Corning (Falcon)  353047  
Tissue Culture Plates 48 well  Corning (Falcon)  353078  
Tissue Culture Plates 96 well  Corning (Falcon)  353077  
Transponder (implantable 
thermometer) (model IPTT-300)  

BioMedic Data Systems  - 

Whatman cellulose blotting paper  Sigma (Whatman)  Z763187  
XF96 FluxPak  Seahorse Bioscience  102310-001  
XF96 Polystyrene Cell Culture 
Microplates  

Seahorse Bioscience  101085-004  
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Primers and oligonucleotides  

Name Sequence (5’ to 3’) Description 

Itih4_shrna_381_top AAAAGCGGATCTATGTCAGGCAAGATTCGTCTTGCCTGA

CATAGATCCGC 

shRNA oligos for 

Adenoviral vector 

production. 

Itih4_shrna_381_bottom CACCGCAGGCAGATGACACCTTATGCGAACATA

AGGTGTCATCTGCCTGC 

shRNA oligos for 

Adenoviral vector 

production. 

Itih4_shrna_611_top AAAAGCAGGCAGATGACACCTTATGTTCGCATAAGGTGT

CATCTGCCTGC 

shRNA oligos for 

Adenoviral vector 

production. 

Itih4_shrna_611_bottom TGCTGTTGACTGACACTTCAAACTTCGTTTTGGCCACTGA

CTGACGAAGTTTGGTGTCAGTCAA 

shRNA oligos for 

Adenoviral vector 

production. 

Itih4_shrna_861_top CCTGTTGACTGACACCAAACTTCGTCAGTCAGTGGCCAAA

ACGAAGTTTGAAGTGTCAGTCAAC 

shRNA oligos for 

Adenoviral vector 

production. 

Itih4_shrna_861_bottom TGCTGAGATGTAGATGTCCATCTGAAGTTTTGGCCACTGA

CTGACTTCAGATGCATCTACATCT 

shRNA oligos for 

Adenoviral vector 

production. 

Itih4_shrna_2884_top CCTGAGATGTAGATGCATCTGAAGTCAGTCAGTGGCCAA

AACTTCAGATGGACATCTACATCTC 

shRNA oligos for 

Adenoviral vector 

production. 

Itih4_shrna_2884_bottom TGCTGAACTCAATGAGGTTGAACTGGGTTTTGGCCACTG

ACTGACCCAGTTCACTCATTGAGTT 

shRNA oligos for 

Adenoviral vector 

production. 

Itih4_miRNA_394_top CCTGAACTCAATGAGTGAACTGGGTCAGTCAGTGGCCAA

AACCCAGTTCAACCTCATTGAGTTC 

miRNA oligos for 

Adeno-associated 

virus production. 

Itih4_miRNA_394_bottom TGCTGATAAGGTGTCATCTGCCTGCGGTTTTGGCCACTGA

CTGACCGCAGGCATGACACCTTAT 

miRNA oligos for 

Adeno-associated 

virus production. 

Itih4_miRNA_531_top CCTGATAAGGTGTCATGCCTGCGGTCAGTCAGTGGCCAA

AACCGCAGGCAGATGACACCTTATC 

miRNA oligos for 

Adeno-associated 

virus production. 

Itih4_miRNA_531_bottom AAAAGCGGATCTATGTCAGGCAAGATTCGTCTTGCCTGA

CATAGATCCGC 

miRNA oligos for 

Adeno-associated 

virus production. 
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Itih4_miRNA_940_top CACCGCAGGCAGATGACACCTTATGCGAACATAAGGTGT

CATCTGCCTGC 

miRNA oligos for 

Adeno-associated 

virus production. 

Itih4_miRNA_940_bottom AAAAGCAGGCAGATGACACCTTATGTTCGCATAAGGTGT

CATCTGCCTGC 

miRNA oligos for 

Adeno-associated 

virus production. 

Itih4_miRNA_2883_top TGCTGTTGACTGACACTTCAAACTTCGTTTTGGCCACTGA

CTGACGAAGTTTGGTGTCAGTCAA 

miRNA oligos for 

Adeno-associated 

virus production. 

Itih4_miRNA_2883_bottom CCTGTTGACTGACACCAAACTTCGTCAGTCAGTGGCCAAA

ACGAAGTTTGAAGTGTCAGTCAAC 

miRNA oligos for 

Adeno-associated 

virus production. 

mItih4_NheI_Fwd TGCTGAGATGTAGATGTCCATCTGAAGTTTTGGCCACTGA

CTGACTTCAGATGCATCTACATCT 

For cloning Itih4 

cDNA in to pEGFP-

N2. 

mItih4_KpnI_Rev CCTGAGATGTAGATGCATCTGAAGTCAGTCAGTGGCCAA

AACTTCAGATGGACATCTACATCTC 

For cloning Itih4 

cDNA in to pEGFP-

N2. 

mItih4_AsiSI_Fwd TGCTGAACTCAATGAGGTTGAACTGGGTTTTGGCCACTG

ACTGACCCAGTTCACTCATTGAGTT 

For cloning the 

Itih4 cDNA in to 

pCMV6-Entry-

mmTigit-Myc-

DDK-tag. 

mItih4_MluI_Rev CCTGAACTCAATGAGTGAACTGGGTCAGTCAGTGGCCAA

AACCCAGTTCAACCTCATTGAGTTC 

For cloning the 

Itih4 cDNA in to 

pCMV6-Entry-

mmTigit-Myc-

DDK-tag. 

 

Restriction digestion enzymes 

Restriction enzyme Supplier and catalogue number 

SalI New England Biolabs, R0138S 

XbaI New England Biolabs, R0145L 

MluI Fermentas, ER0561 

NheI New England Biolabs, R0131L 
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KpnI New England Biolabs, R0142S 

AsiSI New England Biolabs, R0630S 

 

Software and programs 

Software Source/supplier 

A plasmid Editor (APE) http://biologylabs.utah.edu/jorgensen/wayned/ape/ 
AxioVision Zeiss 
Cytoscape (version: 2.8.3) http://www.cytoscape.org/ 
Finch TV Geospiza 
GraphPad Prism 5  GraphPad  
Illustrator  Adobe  
Image Lab  Biorad  
Intas-Capture-Software  Intas  
ND-1000  Nanodrop  
Office  Microsoft  
Photoshop  Adobe  
UCSC Genome Browser  http://genome.ucsc.edu  
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Appendices  

Abbreviations 

2-DE 2-dimenstional electrophoresis 

Abd. Abdominal 

AHA Azidohomoalanine 

Ahsg Alpha-2-HS-glycoprotein 

AICAR 5-Aminoimidazole-4-carboxamide ribonucleotide  

AMPK Adenosine Monophosphate‐Activated Protein Kinase 

ANOVA Analysis of Variance 

APR Acute Phase Response 

Arg Arginine 

Arxes1 Adipocyte-related X-chromosome expressed sequence 1 

Atgl Adipose Triglyceride Lipase 

ATP Adenosine Triphosphate 

AAV Adeno-Associated Virus 

BA Brown adipocytes 

BAT Brown adipose tissue 

BBS Borate Buffered Saline 

BCA Bicinchoninic Acid 

BMI Body Mass Index 

BMP Bone morphogenic protein 

bp Base pair 

BFA Brefeldin A  

BSA Bovine Serum Albumin 

cAMP Cyclic Adenosine Monophosphate 

CD36 Cluster of Differentiation 36 

cDNA Complementary DNA 

Cebpb CCAAT/enhancer-binding protein beta 

Cidea Cell death activator CIDE-A 

CLS Crown-Like Structures 

CM Conditioned Media 

CoA Coenzyme A 

Conc. Concentration 

cPGI2 Carbaprostacyclin 

CREB cAMP responsive element binding protein 

cRNA Complementary RNA 

CRP C‐Reactive Protein 
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Ctrl Control 

Depp Decidual protein induced by progesterone 

Diff Difference 

dH2O Distilled H2O 

dl Deciliter 

DMEM Dulbecco’s Modified Eagle’s Medium 

DMSO Dimethylsulfoxide 

DNA Deoxyribonucleic Acid 

dNTP Deoxyribonucleotide Triphosphate 

DPBS Dulbecco’s Phosphate‐Buffered Saline 

ECL Enhanced Chemiluminescence 

E.coli Eschericha coli 

EDTA Ethylenediaminetetraacetic Acid 

ELISA Enzyme‐linked Immunosorbent Assay 

EMT Epithelial-Mesenchymal Transition 

FA Fatty Acid 

Fabp4 fatty acid binding protein 4 

FBS Fetal Bovine Serum 

FDR False Discovery Rate 

FFA Free Fatty Acid 

FGF21 Fibroblast growth factor 21 

Fig Fasting-induced gene 

FITC Fluorescein isothiocyanate 

GC Gastrocnemius Muscle 

GI Gastrointestinal 

Glut Glucose Transporter 

GO‐BP Gene Ontology Biological Processes 

GSEA Gene Set Enrichment Analysis® 

GSIS Glucose Stimulated Insulin Secretion 

HEK293 A Human Embryonic Kidney 293 A cell line 

HFD High Fat Diet 

HRP Horseradish Peroxidase 

hrs Hours 

Hsl Hormone Sensitive Lipase 

Hz Hertz 

IFN Interferon‐gamma 

IGF‐1 Insulin‐like Growth Factor‐1 

IgG Immunoglobulin G 

iNAMPT Nicotinamide phosphoribosyltransferase 

IL‐1 Interleukin‐1 

IL‐6 Interleukin‐6 
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IL‐8 Interleukin‐8 

ITI Inter-α-trypsin inhibitors 

ITIH4 Inter-alpha-trypsin inhibitor heavy chain H4 

iWA Inguinal white adipocytes 

iWAT Inguinal white adipose tissue 

kb Kilobase 

KEGG Kyoto Encyclopedia of Genes and Genomes 

LB Ludmilla Broth 

LC‐MS/MS Liquid Chromatography Tandem Mass Spectrometry 

Lpl Lipoprotein Lipase 

LPS Lipopolysaccharide 

LTQ Linear Trap Quadrupole 

Lys Lysine 

MCP‐1 Monocyte Chemotactic Protein‐1 

Met Methionine 

mRNA Messenger RNA 

mTOR Mammalian Target of Rapamycin 

MYC V‐Myc Avian Myelocytomatosis viral oncogene homolog 

NaAc Sodium Acetate 

NC Negative control 

NCI National Cancer Institute 

NE Norepinephrine 

NF‐κB Nuclear Factor‐kappa B 

NIH National Institutes for Health 

No. Number 

OCR Oxygen Consumption Rate 

PBS Phosphate‐Buffered Saline 

PCR Polymerase Chain Reaction 

PEI Polyethyleneimine 

PenStrep Penicillin‐Streptomycin 

pg Picogram 

Pgc1a Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

PI3K Phosphatidylinositol 3 Kinase 

Prdm16 PR domain containing 16 

Prkaca Protein Kinase, CAMP-Dependent, Catalytic, Alpha 

PRR Proline-Rich Region  

PPARα Peroxisomal Proliferator Activated Receptor alpha 

pSILAC pulsed- Stable Isotope Label with Amino Acids in Cell Culture 

qPCR Quantitative PCR 

Rel. Relative 

RNA Ribonucleic Acid 
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ROS Reactive Oxygen Species 

Rpm Revolutions per minute 

SDS Sodium Dodecyl Sulfate 

siRNA Small Interfering RNA 

SILAC Stable Isotope Label with Amino Acids in Cell Culture 

SNS Sympathetic Nervous System 

STAT3 Signal Transducer and Activator of Transcription 3 

SVF Stromal Vascular Fraction 

T3 Triiodinthyronine 

Taq Thermus aquaticus 

TBE Tris‐Borat‐EDTA 

TBS Tris‐Buffered Saline 

TBS‐T TBS‐Tween 

TEMED Tetramethylethylendiamin 

TG Triglyceride 

TGF‐β Transforming Growth Factor‐beta 

TNF‐α Tumor Necrosis Factor‐alpha 

TP53 Tumor Protein 53 

TX Triton™ X‐100 

U Units 

UCP Uncoupling Protein 

UV Ultraviolet 

VCP Valosin Containing Protein 

VLDL Very‐Low Density Lipoprotein 

Vol. Volume 

vWA von Willebrand type-A 

WAT White adipose tissue 

WHO World Health Organization 
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Supplementary figures 

 

 

Supplementary figure 1: Cidea and Fabp4 expression in primary adipocytes after ITIH4 knockdown. Brown and 

inguinal white preadipocytes from the SVF of C57BL/6J 8 weeks old male mice were transfected with siItih4 (20 

nM) and negative control (siAllstar) and mRNA expression was measured after 8 days of differentiation. n=3, 

means ±SEM, * indicates significance to siAllstar (negative control) according to student’s t-test. 
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Supplementary figure 2: Metabolic pathways modified with ITIH4 knockdown. PreBAT cells were transfected 

with siItih4 (20 nM) and siAllstar (depicted here as NC, 20 nM) 2 days before induction of differentiation. Cells 

were harvested at day 02, 04 and 07 of differentiation and microarray analysis was carried out on GeneChip® 

Mouse Transcriptome Assay 1.0 chips. The list of genes obtained from the transcriptome analysis was first 

annotated using entrez-IDs. GSEA was performed on this dataset using the KEGG pathway database by Dr. 

Carsten Sticht from the Center of Medical Research, University of Heidelberg. 



Appendices 

 

 114 

 

 



  Appendices 

 

 115  

 

 

Supplementary figure 3: mRNA expression of inter-α-trypsin inhibitor (IαI) family members during the 

differentiation of inguinal white adipocyte progenitors. Lin
−
CD29

+
CD34

+
Sca-1

+
 cells from posterior 

subcutaneous fat from 7-week old female NMRI mice were cultured and differentiated in adipogenic 

media ± cPGI2 for 8 days. Expression levels of the inter-α-trypsin inhibitor (IαI) family members: Itih1, Itih2, 

Itih3, Itih4, Itih5 and Itih5l were retrieved from the transcriptome data. Experiment carried out by Bayindir, 

Babaeikelishomi et al. (2015). 
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Supplementary figure 4: Optimization of electroporation conditions for PreBAT cells. PreBAT cells were 

electroporated with pEGFP-N1 (100 ng) using the Neon® transfection system. Different pulse voltages (V), 

pulse duration (ms) and number of pulses were tested for maximum number of EGFP-positive cells. Images 

were taken 2 days after electroporation and were converted to grayscale and inverted in Adobe Photoshop. 

 

 

 

Supplementary figure 5: Immunoblotting of ITIH4-my-DDK protein after co-immunoprecipitation. HEK 293A 

cells were transfected with 0.5 µg/well of pCMV6-Entry-mmItih4-Myc-DDK-tag vector (untransfected cells 

were controls) in a 6-well plate. Cells were harvested in RIPA buffer 48 hours after transfection and protein 

samples were co-immunoprecipitated using ANTI-FLAG® M2 affinity gel beads and immunoblotted using either 

anti-ITIH4 or anti-Flag antibodies. 
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