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Gittereichtheorie und kalte Atome außerhalb des Gleichgewichts

Abstract

In dieser Arbeit untersuchen wir die Quantensimulation von Gittereichtheorien durch

Experimente mit kalten Atomen. Wir machen einen expliziten Vorschlag für eine

(1+1)-dimensionale U(1) Gittereichtheorie. Ausgehend von einemGas, bestehend aus

fermionischen und bosonischen Atomen, ändern wir die Geometrie undmanipulieren

die Wechselwirkungen so, dass wir ein eindimensionales System und lokale Eichinva-

rianz erhalten. Ein weiterer wichtiger Aspekt dieses Vorschlags ist das explizite Nut-

zen von hochbesetzten bosonischen Zuständen, um die Physik starker Felder in der

Quantenelektrodynamik greifbar zu machen. Basierend auf dem Funktionalintegral,

präsentierenwir eineMethode, umU(1) und SU(N) Eichfelder außerhalb des Gleichge-

wichts, welche mit Materiefeldern wechselwirken, theoretisch zu behandeln. Wir zei-

gen, dass unter bestimmtenVoraussetzungen die Quantentheorie akkurat auf ein klas-

sisches statistisches Ensemble abgebildet werden kann. Wir nutzen diese Möglichkeit,

um die Aussichten zu evaluieren, Phänomene der Hochenergiephysik, wie Schwinger-

Paarproduktion und Stringbreaking, in zukünftigen Experimentenmit kalten Atomen

zu beobachten.

Lattice Gauge Theory and Cold Atoms Out of Equilibrium

Abstract

In this thesis we theoretically investigate the quantum simulation of lattice gauge

theories for cold atom experiments. We give an explicit proposal to study a (1 + 1)-

dimensional U(1) lattice gauge theory. Starting with a bosonic and a fermionic atomic

gas we tune the geometry and engineer the interactions such that we end up with a

one-dimensional system obeying the principle of local gauge invariance. A further im-

portant aspect of this proposal is the explicit use of highly occupied bosonic states in

order to make the investigation of strong field quantum electrodynamics feasible. In

addition, we present an approach based on the functional integral in order to theoret-

ically treat U(1) and SU(N) gauge fields interacting withmatter out of equilibrium. We

show that under specific conditions the quantum theory can be accurately mapped

onto a classical statistical ensemble. Further, exploiting this possibility, we study the

prospect to observe intricate high energy phenomena like Schwinger pair-production

and string breaking in such future cold atom experiments.
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Chapter 1

Introduction

Gauge theories belong to some of the most beautiful mathematical mod-
els describing nature. They emerge in strongly correlated systems in con-
densed matter physics [1] and they are central for the formulation of the
dynamics of the Standard Model of particle physics [2]. The most promi-
nent example of an Abelian gauge theory is the photon coupled to elec-
trons and positrons in quantum electrodynamics [3–5].

On the theoretical side, lattice gauge theory provides a unified framework
to construct the aforementioned theories on a discretized space. More-
over, in thermal equilibrium, these quantum theories can bemapped onto
classical statistics problem. In the absence of a sign problem the statisti-
cal theory can then be efficiently simulated byMonte Carlo techniques [6].
However, despite the significant knowledge gained from lattice gauge the-
ories in equilibrium, there remain fundamental open questions.

In particular the out-of-equilibrium dynamics of these quantum field the-
ories are one of the most active research fields of contemporary theoreti-
cal and experimental physics [7, 8]. In fact, deep questions regarding non-
equilibrium dynamics appear at various length scales ranging from the
early universe dynamics and heavy ion collisions to cold-atom systems.
Standard Monte Carlo techniques cannot resolve the difficult situation
given by these generic non-equilibrium problems since they suffer from
an inherent non-positive definite measure. Therefore, the study of the

1



Chapter 1: Introduction 2

real-time behavior of gauge fields interacting withmatter remains partic-
ularly elusive, but is necessary to understand the thermalization process
of these non-trivial theories [9].

This is not only a theoretical, but also an experimental challenge. In quan-
tum electrodynamics the creation of particles from the vacuum in an ex-
ternal electric field has been investigated since the work of Sauter [10–
12], but it has not yet been directly observed in an experiment. This non-
perturbative quantum phenomenon is exponentially suppressed unless
the field strength exceeds a critical size, which is given by an electric field
E ∼ M 2/e ∼ 1018V/m for quantum electrodynamics (QED) with elec-
tron massM and electric charge e. The new experimental laser facilities,
like the Extreme Light Infrastructure (ELI) [13], will make a large step to-
wards the observation of Schwinger pair-production, however, the direct
observation stays a challenging subject.

Moreover, strong non-Abelian gauge fields are also able to produce par-
ticle anti-particle pairs. In particular during a nuclear collisions at high
energy, color fields dominantly contribute to the dynamics of the Quark
Gluon Plasma. The initial state is usually described by the Color Glass Con-
densate characterized by field strengths of the order 1/g, where g is the
running gauge coupling [14] of quantum chromodynamics. Since the cou-
pling is small at these scales, the probability for quark pair production
is expected to be enhanced. However, the experimental accessibility of
heavy-ion collisions at the initial stages is highly difficult and a formidable
task.

One possibility to overcome the theoretical and experimental obstacles
is the usage of quantum simulators being tailor-made machines based
on quantum mechanical principles. They can then be employed to solve
very complex and hard problems [15]. Specifically, in order to address the
challenges given by lattice gauge theories in condensed matter and ele-
mentary particle physics, cold-atomexperiments provide the outstanding
possibility to study these non-trivial theories relevant for vastly different
scales. Atomic, molecular and optical physics deliver the suitable tools to
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engineer Hamiltonians of these complex theories and make the realiza-
tion of quantum simulators possible [16].

We illustrate the idea of quantum simulation by considering again the
critical field strength Ec = M 2/e of Schwinger-pair production. It is de-
termined by the electron/positron massM and the absolute value of the
electric charge e. However, the pair production itself is controlled by the
dimensionless ratioE/Ec for an applied electric fieldE. This implies that
different physical systems with very different characteristic scales can be
exploited to show the same phenomenons, when considering dimension-
less quantities. Therefore, one has to transfer all the essential properties
of the original theory, such as the dimensionality, the statistics of the par-
ticles, and the symmetries, to the cold-atom system.

In the case of lattice gauge theories the implementation of gauge invari-
ance in the atomic setup is a very demanding task [17–19]. Nevertheless,
once achieved thiswill deliver a newway to answer the fundamental ques-
tions in heavy-ion collision experiments or in strongly correlated materi-
als.

The purpose of this thesis is twofold. In the first part we present an ex-
plicit theoretical proposal of a quantum simulator realizing a lattice gauge
theory, whereas the second part investigates and discusses the theoreti-
cal treatment of Abelian and non-Abelian lattice gauge theories coupled
to matter.

Concerning the implementationof lattice gauge theories in cold-atomsys-
temsmany proposals choose quantum linkmodels [20] as a starting point.
Quantum links constitute a particular class of lattice gauge theories with
local finite Hilbert spaces. Therefore, a realization with atomic systems is
expected to be easier. However, the original lattice gauge theory of interest
is Wilson’s lattice gauge theory using an infinite dimensional representa-
tion corresponding to quantum electrodynamics or quantum chromody-
namics.
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We will exploit this fact and aim to a realization of the infinite dimen-
sional Hilbert space of quantum electrodynamics. The one-dimensional
U(1) gauge theory is special in the sense, that its structure is simpler in
comparison to higher spatial dimensions. This facilitates the Hamiltonian
tremendously. Hence, we will focus in the following on the conceptually
important example of quantum electrodynamics in one spatial dimen-
sion [21, 22].

We consider as a starting point a cold-atom experiment providing us with
an ultra-cold gas of bosonic and fermionic atoms. Finally, we have to ma-
nipulate this system such that the system is described by a lattice gauge
theory. In cold-atom systems one is able to reduce the dimension of the
system under consideration. Using a tight radial confinement and impos-
ing an optical lattice one can alreadymodel a one dimensional discretized
quantum field theory. In order to obtain a lattice gauge theory we further
have to reduce and tune the interactions. Angular momentum conserving
atomic scattering processes will play a crucial role in the construction. In
the end, the engineered Hamiltonian will respect the U(1) gauge invari-
ance [23]. This deductive bottom-up approach allows us to make a direct
connection between the original microscopic system and the parameters
of the lattice gauge theory.

In order to ensure that the experiment virtually realizes a lattice gauge
system, theoretical predictions building upon local gauge invariance are
necessary. Therefore, this thesis investigates the real-time dynamics of
U(1) and SU(N) gauge theories coupled to fermions on a lattice. Despite
the fact that the full quantumproblem is very difficult to solve [24], a large
class of non-equilibrium problems can be approximated by a classical-
statistical ensemble [25–29]. Choosing the functional integral as the start-
ing point we derive the classical-statistical approximation and clarify the
genuine quantum contributions [30–34].

This non-perturbative simulation method is applied to study the non-
equilibrium dynamics of Schwinger pair production and string breaking.
In particular, we will clarify the difference between Wilson’s formulation
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of lattice gauge theories and the corresponding quantum link models. We
will study the dynamics of these models in a yet unexplored parameter
regime and give bounds for the dimensionality of the local Hilbert space
in order to observe quantum electrodynamics [35, 36]. The aim of this the-
sis is to contribute to a deeper understanding of the non-equilibrium dy-
namics of lattice gauge theories from an experimental and a theoretical
perspective.



Chapter 2

Fundamentals of Lattice Gauge Theory

In this chapter,we give a brief introduction to gauge theories and inpartic-
ular to lattice gauge theories. We will formulate a gauge invariant action
and the Hamiltonian of U(1) gauge theories. These two objects will be the
starting point for the later chapters. The Hamiltonian is suited to study
the quantum simulation of lattice gauge theories, whereas the action will
reappear when we use the functional integral formulation. Further, we
will introduce quantum link models and connect them to Wilson’s for-
mulation of lattice gauge theory. For later purposes we comment on non-
Abelian gauge theories and their corresponding discretization. As far as
theoretical calculations and arguments are concerned we use units with
~ = c = 1. However, when modeling real systems, we will reintroduce ~
and c.

2.1 Abelian Gauge Theories

We consider a complex valuedmatter fieldψ(t,x) at the space-time point
(t,x) and define a gauge transformation of the matter field as

ψ(t,x)′ = V (t,x)ψ(t,x) , (2.1)

6
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where V (t,x) is an element of the fundamental representation of U(1),
i.e. V (t,x) = eiα(t,x) with α(t,x) being a real number. Moreover, since
we wish to study the propagation from one space-time point to another
we compareψ(t1,x1) andψ(t2,x2). Therefore, we consider the difference
ψ(t2,x2)−ψ(t1,x1) as ameasure for the change of thematter field. How-
ever, since we are able to gauge transform each space-time point sepa-
rately, this quantity is not gauge invariant. In order to get a more sensi-
ble quantity comparing two space-time points, we introduce the parallel
transporter U(t2,x2; t1,x1). This object is an element of U(1) connecting
space-time point (t1,x1) to space-time point (t2,x2). It has the following
transformation property

U(t2,x2; t1,x1)
′ = V (t2,x2)U(t2,x2; t1,x1)V

∗(t1,x1) . (2.2)

Now, we are able to compare the matter fields at two space-time points
by moving the field ψ employing the parallel transporter from (t1,x1) to
(t2,x2). This leads to the difference

ψ(t2,x2)− U(t2,x2; t1,x1)ψ(t1,x1) . (2.3)

Performing a gauge transformation yields

[ψ(t2,x2)− U(t2,x2; t1,x1)ψ(t1,x1)]
′

=V (t2,x2) [ψ(t2,x2)− U(t2,x2; t1,x1)ψ(t1,x1)] . (2.4)

This quantity is now determined up to a single gauge transformation. By
taking an infinitesimal distance, we can define the covariant derivatives
in the time and space direction in the following manner:

Dtψ(t,x) ≡ lim
ε→0

1

ε
[ψ(t+ ε,x)− U(t+ ε,x; t,x)ψ(t,x)] , (2.5)

n ·Dψ(t,x) ≡ lim
ε→0

1

ε
[ψ(t,x + εn)− U(t,x + εn; t,x)ψ(t,x)] , (2.6)

where n is a unit vector in the spatial direction and we introduced the
vector D = (D1, D2, D3). By definition the covariant derivatives will
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also transform like the difference in (2.4). Now, we consider the parallel
transporter linking two infinitesimally separated space-time points. We
will transport along the time direction and the spatial direction

U(t+ ε,x; t,x) = 1 + igφ(t,x) ε+ . . . , (2.7)

U(t,x + εn; t,x) = 1− ig n ·A(t,x) ε+ . . . , (2.8)

where we used U(t,x; t,x) = 1 and we introduced the gauge field four
vector (Aµ) = (φ,−A) with µ ∈ {0, 1, 2, 3}. The gauge coupling is de-
noted by g. Repeating the infinitesimal transformation we get an expres-
sion for the parallel transporter

U(t2,x2; t1,x1) = P exp

(
ig

∫
γ
dxµAµ

)
, (2.9)

where γ is the path connecting the points x1 = (t1,x1) and x2 = (t2,x2)

and P denotes path-ordering. In the following, we will use the abbrevia-
tionU(x1;x2) ≡ U(t1,x1; t2,x2). We further use (2.8) in order to express
the covariant derivative in time and spatial direction as

Dtψ(t,x) = [∂t − igφ(t,x)]ψ(t,x) , (2.10)

Dψ(t,x) = [∇+ igA(t,x)]ψ(t,x) . (2.11)

The transformation law for the parallel transporter in equation (2.2) de-
termines also the transformation law ofAµ. Consider the gauge transfor-
mation V (t,x) = 1 + iα(t,x) + . . . and insert this into (2.2) for an in-
finitesimal parallel transporter (2.8). This results in

φ(t,x)′ = φ(t,x) + g−1∂tα(t,x), (2.12)

A(t,x)′ = A(t,x)− g−1∇α(t,x) . (2.13)

Now, we couple the gauge field tomatter. Therefore, we write down an ac-
tion containing the covariant derivatives, which act on the complex field
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ψ(t,x). The final expression for the action is

SM =

∫
dt

∫
d3x

[
ψ∗iDtψ −

1

2M
(Dψ) · (Dψ)

]
. (2.14)

Note that the first order time derivative renders this model non-relativ-
istic invariant. The classical equation of motion is given by varying the
action with respect to ψ(t,x), i.e. δS

δψ(t,x) = 0, leading to

iDtψ(t,x) +
1

2M
D ·Dψ(t,x) = 0 . (2.15)

This equation (2.15) only determines the dynamics of the matter ψ(t,x),
but the the gauge field is external. In order to get a dynamical gauge field
as well, one has to construct a gauge invariant object solely depending on
Aµ. Therefore, we consider the commutator [Dµ, Dν] = DµDν −DνDµ

acting on the matter field ψ(t,x), where we introduced the four vector
notation of the covariant derivative Dµ = ∂µ − igAµ. The commutator
acting on the matter-field ψ(x) leads to the expression

[Dµ, Dν]ψ(x) = −igFµν(x)ψ(x) , (2.16)

where the field strength tensor is defined by

Fµν(x) ≡ ∂µAν(x)− ∂νAµ(x) . (2.17)

We note that an infinitesimal Wilson loop [37] immediately leads to the
abovedefinitionofFµν(x). In order to determine the transformationprop-
erties of Fµν we consider an explicit gauge transformation

[Dµ
′, Dν

′]ψ(x) ′ = −igFµν(x) ′ψ(x)′ (2.18)

and this leads to

V (x)[Dµ, Dν]ψ(x) = −igFµν(x)′V (x)ψ(x) . (2.19)



Chapter 2: Fundamentals of Lattice Gauge Theory 10

From the last equation we conclude the transformation property of the
field strength tensor

Fµν(x)′ = V (x)Fµν(x)V ∗(x) = Fµν(x) . (2.20)

This derivation of the transformation properties is cumbersome for the
Abelian case, but becomes convenient for the non-Abelian case. In order
to make the gauge field dynamical we consider the action

SG = −1

4

∫
dt

∫
d3xFµνF

µν . (2.21)

By varying the action SG with respect to the gauge field Aµ we get the
equation of motion

∂µF
µν = 0 . (2.22)

This leads to classical electrodynamics givenby thehomogeneousMaxwell
equations

∇ · E(t,x) = 0, ∇ ·B(t,x) = 0,

∇× E(t,x) + ∂tB(t,x) = 0, ∇×B(t,x) = ∂tE(t,x) , (2.23)

governing the dynamics of the electric fieldE(t,x) and themagnetic field
B(t,x). The potentials are connected to the electric andmagnetic field via

E(t,x) = −∇φ(t,x) + ∂tA(t,x), B(t,x) = ∇×A(t,x). (2.24)

Then the total action is given by the sum of (2.14) and (2.21):

S = SG + SM , (2.25)

describing a dynamical gauge fieldAµ coupled to a matter field ψ.
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2.2 Non-Abelian Gauge Theories

Since wewill investigate SU(N) gauge fields in this thesis, we briefly intro-
duce non-Abelian gauge theories. Using the parallel transporter we can
generalize the notions of Abelian gauge theories in a straightforward way
to the non-Abelian case. Therefore, we considermultiple matter fieldsψm
with m = 1, . . . , N . In equation (2.13) the matter field is locally trans-
formed by a phase, whereas in a non-Abelian theory it is a local unitary
transformation of the matter field

ψm(x)′ = Vmn(x)ψn(x) , (2.26)

where Vmn(x) is an unitary matrix and an element of the fundamental
representation of SU(N). This means we can write V (x) = exp[iαa(x)ta]

with a = 1, . . . , N 2 − 1 and the ta are the generators of SU(N) fulfilling
the Lie-algebra

[ta, tb] = ifabctc . (2.27)

The fabc are the structure constants of SU(N) and we will use the the stan-
dard normalization

tr [ta, tb] =
1

2
δab . (2.28)

We will frequently call a ∈ {1, . . . , N 2 − 1} the adjoint gauge index. We
can immediately generalize the parallel transporter to the non-Abelian
case by taking U(x2, x1) ∈ SU(N). Then we introduce the non-Abelian
parallel transporter as

U(x2, x1) = P exp

(
ig

∫
γ
dxµAµ

)
, (2.29)

where Aµ is a linear combination of the generators Aµ = taAa
µ. Com-

paring this to (2.9) shows the formulation in terms of parallel transporter
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makes the generalization from Abelian to non-Abelian gauge groups im-
mediate. The gauge transformation of the parallel transporter is by con-
struction

U(x2, x1)
′ = V (x2)U(x2, x1)V

†(x1) , (2.30)

where we suppressed the gauge indices. The same reasoning as in the
Abelian case leads to the covariant derivative

(DµΨ)m = ∂µΨm − igAc
µ(tc)mnΨn , (2.31)

whereΨ is a vector containing thefieldsψm. Then the action of thematter
fieldΨ coupled to a non-Abelian gauge field is given by

SM =

∫
dt

∫
d3x

[
Ψ† · iDtΨ−

1

2M
(DΨ) · (DΨ)

]
. (2.32)

As before we can introduce a field strength tensor as

[Dµ, Dν] = (−ig)Fµν . (2.33)

Note this object can again be expanded in terms of the generators, i.e.
Fµν = F a

µνt
a. The components are given by

F a
µν = ∂µA

a
ν − ∂νAa

µ + gfabcAb
µA

c
ν . (2.34)

Thus the pure gauge part is determined by the following expression

SG = −1

2

∫
dt

∫
d3xTrFµνF

µν , (2.35)

where Tr is the trace with respect to the generators.
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2.3 Discretized Gauge Theories

We will see that the formulation of an action in terms of parallel trans-
porters makes the gauge invariant discretization on a space-time lattice
straightforward. First, we will discuss the discretization of Abelian gauge
theories and generalize the discussion later to the non-Abelian case. Con-
sider a four dimensional space-time lattice with x = (aTn0, aSn) and
n = (n0,n) ∈ Z4. The matter fields on the lattice are still complex num-
bers and are given by

ψn ≡ ψ(aTn0, aSn) . (2.36)

The transformation property of the matter field is still

ψ′n = Vnψn , (2.37)

with Vn being an element of U(1) and it has support on the space-time
point n. The parallel transporter U(x2, x1) linking the two space-time
points on this lattice is separated by a lattice spacing in temporal direction
(aT ) or in spatial direction (aS) and it is given by

Uµ,n ≡ U(x+ µ;x) , (2.38)

where µ̂ is a unit vector in the µ direction

0̂ = aT (1,0) , (2.39)

î = aS(0, ei), i ∈ {1, 2, 3} . (2.40)

The object Uµ,n is frequently called the link variable. They are located be-
tween the lattice sites n and n + µ̂ and points in the direction of µ̂. The
transformation properties are analog to the continuum

U ′µ,n = Vn+µUµ,nV
∗
n . (2.41)
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For link variables pointing in the direction of−µ̂, we use the definition

U−µ,n ≡ U †µ,n−µ̂ . (2.42)

Because of the transformation properties of the parallel transporter we
can immediately write down a discretized gauge invariant action for an
external gauge field coupled to matter

SM = −t
∑
n,µ

[
ψ∗nUµ,nψn+µ̂ + ψ∗n+µ̂U

∗
µ,nψn

]
+M

∑
n

ψ∗nψn , (2.43)

where t determines the strength of the kinetic term andM is called the
mass parameter [38]. In order to make the gauge field dynamical we con-
struct a quantity which consists purely out of the links and forms a pla-
quette n→ n+ µ̂→ n+ ν̂ + µ̂→ n+ ν̂ → n leading to

Uµν,n ≡ Uµ,nUν,n+µ̂U
†
µ,n+ν̂U

†
ν,n . (2.44)

This is the discrete version of the smallest, aforementioned Wilson loop.
We will call Uµν,n the plaquette and frequently use the shorthand nota-
tion U�. In order to keep the notation simple we take the action to be
Euclidean. It is then given by

SG =
1

g2

∑
n

∑
µ<ν

Re(1− Uµν,n) (2.45)

or using the short hand notation

SG =
1

g2

∑
�

[
1− 1

2
(U� + U ∗�)

]
. (2.46)

The total action in Euclidean time is

S = SG + SM . (2.47)

Wewill consider thediscretizationprocedure involvingnon-Abelian gauge
theories andwewill focus on the important case of the SU(N) gauge group,
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but the discussion can be easily applied to other Lie groups. The matter
fields on the lattice have to transform with respect to the following rule

ψ′a,n = Vn,abψn,b . (2.48)

For the SU(N) non-Abelian gauge group the link is given by

Uµ,n = exp (igaAµ,n) . (2.49)

For simplicitywe assume the same lattice spacing a ≡ aS = aT in the spa-
tial and temporal direction. The vector potential again can be expanded in
terms of the generators of SU(N), i.e. Aµ,n = Aa

µ,nt
a, and we denoted the

gauge coupling by g. Then the pure gauge part of this non-Abelian lattice
gauge theory in Euclidean time is given by

SG =
2

g2

∑
�

Tr

[
1− 1

2
(U� + U †�)

]
, (2.50)

where the sum is performed over all elementary plaquettes. The prefac-
tors in SG have been chosen such that the correct naive continuum limit
is obtained when using the standard normalization of the generators ta.

2.4 Hamiltonian Formulation of QED

In this section, we quantize electrodynamics coupled to fermionic matter
on a lattice. In particular we will connect the previous discussion to the
Hamiltonian formalism. We set the stage by writing down the Lagrangian
density of quantum electrodynamics for continuous space-time:

L = ψ(iγµDµ −M)ψ − 1

4
F µνFµν . (2.51)
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The fermionic fields are given by ψ(x) and ψ(x) = ψ†(x)γ0 where the
γ’s are Dirac matrices and fulfill the Clifford algebra. Next, we have to de-
termine the canonical variables and determine a gauge invariant Hamilto-
nian. Therefore, we briefly outline the quantization of the pure gauge part
in the Hamiltonian formalism [39] and then generalize it to the lattice. We
choose the temporal axial gauge A0 = 0. Then the dynamical degrees of
freedom are the spatial components Ai and the canonical momentum is
given by the electric field

Ei ≡
∂L

∂(∂0Ai)
. (2.52)

The canonical commutator relation is

[Ai(t,x), Ej(t,y)] = iδi,jδ(x− y) . (2.53)

On the lattice this commutator becomes

[Ai,m, Ej,n, ] = iδm,nδi,j . (2.54)

Note that n and m are now defined on a spatial lattice meaning n =

(n1, n2, n3) andm = (m1,m2,m3). The spatial link variable

Uj,n = exp(igaSAj,n) (2.55)

is determined by the gauge fieldAj,n with j ∈ {1, 2, 3}. Using the Baker-
Campbell-Hausdorff identity [40] one gets the commutator relationships
between the electric field and the link:

[Ei,m, Uj,n] = gaSUi,mδi,jδm,n , (2.56)

[Ei,m, U
†
j,n] = −gaSU †i,mδi,jδm,n . (2.57)
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In order to simplify the following discussion we absorb the factors gaS in
the gauge fieldAµ. Then the commutators simplify to

[Ei,m, Uj,n] = Ui,mδi,jδm,n , (2.58)

[Ei,m, U
†
j,n] = −U †i,mδi,jδm,n . (2.59)

Since thematter fields live now on a spatial lattice, they are denoted by an
operatorψn. Further, they fulfill canonical anti-commutator relationships

{ψm, ψ†n} = δm,n . (2.60)

The operator representing a local gauge transformation at all space points
is denoted by V =

∏
n Vn, where the Vn are all representations of U(1).

The matter fields and the parallel transporter have to transform like

V ψnV
† = Ωnψn , (2.61)

V ψ†nV
† = ψ†nΩ

∗
n , (2.62)

V Un,iV
† = ΩnUn,iΩ

∗
n+î

, (2.63)

where the Ωn = eiαn are elements of the fundamental representation of
U(1). Since the Hamiltonian should be gauge invariant, we demand

V HV † = H . (2.64)

Further the operator V can be written as

V =
∏
n

exp(iαnGn) , (2.65)

whereαn is the local phase andGn is the generator of the transformation.
If one considers an infinitesimal gauge transformation at one lattice site
n, i.e. V = 1 + iαnGn + . . ., we will obtain the following relation

[H,Gn] = 0 (2.66)
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from (2.64). An explicit form of the Gauss’s law operator is given by:

Gn =
∑
i

(Ei,n − E−i,n)− ρn , (2.67)

where we introduced the charge density as

ρn = ψ†nψn (2.68)

and the abbreviation

E−i,n ≡ Ei,n−î . (2.69)

Note that one can always add a constant to the charge density without
changing the transformation properties, see chapter 3 for a detailed dis-
cussion. We can write down a gauge invariant Hamiltonian [41] for quan-
tum electrodynamics

H = −t
∑
i,n

si,n(ψ
†
nUi,nψn+î + ψ†

n+î
U †i,nψn)

+M
∑
n

snψ
†
nψn +

g2

2

∑
i,n

E2
i,n −

1

4g2

∑
�

(U� + U †�) , (2.70)

where we introduced the sign factors s1,n = 1, s2,n = (−1)n1 and s3,n =

(−1)n1+n2 and sn = (−1)n1+n2+n3 . We remark that the summation is with
respect to all spatial plaquettes. This is the Kogut-Susskind Hamiltonian
employing the staggered fermion discretization of quantum electrody-
namics in temporal axial gauge [22]. We define the physical part of the
Hilbert space via

Vn |phys〉 = |phys〉 (2.71)

or using an infinitesimal transformation we get

Gn |phys〉 = 0 . (2.72)

All the other states which do not fulfill this relation are gauge variant.
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2.5 Abelian Quantum Link Models

Quantum link models [20] are another way to implement local gauge in-
variance on the lattice using a finite dimensional local Hilbert space. In
order to make contact with Abelian quantum link model we remind our-
selves of the SU(2) algebra [42] of angular momentum operators

[Li, Lj] = iεijkLk (2.73)

with i, j, k ∈ {1, 2, 3}. Introducing raising and lowering operators we get

L+ = Lx + iLy, L− = Lx − iLy . (2.74)

The raising and lowering operators obey the following algebra

[Lz, L+] = L+ , (2.75)

[Lz, L−] = −L− . (2.76)

A direct comparison of these commutators with the commutators of link
and field (2.56) and (2.57) motivate the following substitution rule

Ui,n → L+,i,n, (2.77)

U †i,n → L−,i,n, (2.78)

Ei,n → Lz,i,n . (2.79)

Note that the spins now live also on the links denoted by the lattice point
n and the direction i. The new Hamiltonian is then given by

H =− t
∑
i,n

si,n(ψ
†
nL+,i,nψn+î + ψ†

n+î
L−,i,nψn)

+M
∑
n

snψ
†
nψn +

g2

2

∑
i,m

L2
z,i,m −

1

4g2

∑
�

(L� + L†�) , (2.80)
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where we introduced the plaquette term as

Lij,n ≡ L+,i,n+îL+,j,n+î+ĵL
†
+,i,n+ĵ

L†+,j,n (2.81)

and its abbreviation L�. The Gauss’s law operator is now

Gn =
∑
i

(Lz,i,m − Lz,−i,n)− ρn , (2.82)

where the density is ρn = ψ†nψn and we introduced

Lz,−i,n ≡ Lz,i,n−î . (2.83)

Note thatGn commutes again withH given in (2.80). We define the phys-
ical part of the Hilbert space via

Gn |phys〉 = 0 . (2.84)

The main difference between the Abelian lattice gauge theory in section
2.4 and the quantum linkmodels is the dimensionality of theHilbert space.
Note that the algebra

[Ui,m, Uj,n] = 0 , (2.85)

[Ei,m, Uj,n] = δm,nδi,jUi,m (2.86)

has only a representation on a infinite dimensional Hilbert space. On the
other hand the canonical commutator relations of the angularmomentum
imply that the underlying Hilbert-space is finite dimensional. The dimen-
sion is given by 2`+ 1with ` being the set consisting of positive half- and
integer numbers: ` = 0, 1

2 , 1,
3
2 , . . .. Formally one can recover the Hamil-

tonian (2.70) from the Hamiltonian (2.80) by sending ` to infinity and a
proper rescaling of the coupling constants.



Chapter 3

Lattice Gauge Theories with Cold

Atoms

In this chapter, we give an explicit proposal for an experiment realizing a
U(1) gauge theory coupled to fermionic matter in (1+1) dimensions. The
starting point is a gas of fermionic and bosonic atoms. By using optical po-
tentials we reduce the system from three spatial dimensions to one spatial
dimension. Further, we introduce another optical potential to engrave a
lattice structure in the remaining longitudinal direction. Next, wewill dis-
tribute the fermions such that we get a staggered fermion structure. We
will investigate angular momentum conserving scattering processes and
by choosing an appropriate external magnetic field we select particular
interaction terms. This selection in combination with the localized nature
of the bosons and fermions leads to a gauge invariant model system. Note
that we will emphasize the experimental perspective in this section.

3.1 The Schwinger Model

Numerical studies of (1 + 1)-dimensional QED, the massive Schwinger
model, are typically based on a lattice discretization of the continuum
model. We employ the staggered fermion discretization introduced in
chapter 2 according to which the Dirac spinor is decomposed in such a

21



Chapter 3: Lattice Gauge Theory with Cold Atoms 22

way that particle and antiparticle components reside on neighboring lat-
tice sites. The Hamiltonian [21, 22] of the theory is given by

HKS =
aS
2

∑
n

E2
n +M

∑
n

(−1)nψ†nψn

− i

2aS

∑
n

(
ψ†nUnψn+1 − h.c.

)
, (3.1)

where aS denotes the lattice spacing andM the fermion mass. Here, the
staggered fermion field operator ψn, which resides on lattice sites n, ful-
fills the canonical anti-commutation relation {ψn, ψ†m} = δn,m. The link
operatorUn and electric field operatorEn act betweenneighboring lattice
sites n and n+ 1 and obey the commutation relations

[Un, U
†
m] = 0 , (3.2a)

[En, Um] = gaSδn,mUm , (3.2b)

where g denotes the gauge coupling. We emphasize again that this alge-
bra necessarily entails an infinite dimensional local Hilbert space. Being a
U(1) gauge theory, the Gauss’s law operator Gn = En − En−1 − ρn gen-
erates local gauge transformations and commutes with the Hamiltonian
[HKS, Gn] = 0, see section 3.4 for details.

Recently, the prospect of constructing quantum simulators for gauge the-
ories has boosted the interest in these models as their implementation in
atomic systems is supposed to be possible [19]. We perform the substitu-
tion forEn andUn, i.e.En → gLz,n and the link operators are determined
byUn → [`(`+1)]−1/2L+,n andU †n → [`(`+1)]−1/2L−,n. The raising and
lowering operator are L±,n = Lx,n ± iLy,n and ` denotes the spin size.
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This leads to a quantum link model, which is still gauge invariant

HQL =
g2aS

2

∑
n

L2
z,n +M

∑
n

(−1)nψ†nψn

− i

2aS
√
`(`+ 1)

∑
n

(
ψ†nLn,+ψn+1 − h.c.

)
. (3.3)

It is this one-dimensional Hamiltonian which has become an active play-
ground [43]. As already mentioned, the finite dimensional representation
of the angular momentum algebra makes its implementation in systems
of ultra-cold atoms feasible.

3.2 Experimental Realization

Our starting point for the realization of the U(1) gauge theory coupled
to fermionic matter in a cold atom experiment is a genuine interacting
gas of fermionic and bosonic atoms [44]. The bosons φα(x) and fermions
ψα(x) fulfill the canonical commutator and anti-commutator relations,
respectively

[φα(x1), φ
†
β(x2)] = δα,βδ(x1 − x2) , (3.4a)

{ψα(x1), ψ
†
β(x2)} = δα,βδ(x1 − x2) . (3.4b)

Here, the Greek labels denotemagnetic hyperfine states of the atoms. The
particles are confined by external potentials and interact via inter- and
intra-species scattering processes. The corresponding Hamiltonian con-
sists of three parts:H = HT + HV + HI . The kinetic part describes the
movement of the atoms

HT =
~2

2Mb

∫
d3x

∑
α

|∇φα(x)|2

+
~2

2Mf

∫
d3x

∑
α

|∇ψα(x)|2 , (3.5)
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where Mb is the mass of the bosonic atoms and Mf is the mass of the
fermionic atoms. The potential energy contribution is determined by the
external potentials

HV =

∫
d3x

∑
α

V b
α(x)φ†α(x)φα(x)

+

∫
d3x

∑
α

V f
α (x)ψ†α(x)ψα(x) , (3.6)

whereas the atomic scattering processes [45] are described by

HI =

∫
d3x

∑
αβγδ

gbαβγδ
2

φ†α(x)φ†β(x)φδ(x)φγ(x)

+

∫
d3x

∑
αβγδ

gfαβγδ
2

ψ†α(x)ψ†β(x)ψδ(x)ψγ(x)

+

∫
d3x

∑
αβγδ

gbfαβγδ
2

ψ†α(x)φ†β(x)φδ(x)ψγ(x) . (3.7)

The coupling constants are determined by the scattering lengths of the
inter- and intra-species scattering processes. Throughout this work, we
use indices to denote purely bosonic terms by b, fermionic terms by f and
boson-fermion interactions by bf .

3.2.1 One-Dimensional Staggered Geometry

The basic ingredient for realizing a one-dimensional (1D) lattice structure
with lattice constant a is an optical lattice with tight radial confinement.
Employing a laser frequency which is blue detuned for fermions and red
detuned for bosons allows for positioning amesoscopic bosonic gas on the
links between the fermionic lattice sites, cf. Fig. 3.1a. In fact, the potential
energy contributions (3.6) can be split into an axial and radial part

V s
α (x) = V s

‖α(x) + V s
⊥α(r) , (3.8)
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Figure 3.1: Realization of the staggered lattice structure. The black arrow in-
dicates the off-resonant laser. (a) Blue/red detuning for fermions/bosons gen-
erates phase-shifted optical potentials for bosons and fermions with a lattice
period a. (b) The superposition of the lattice with period a by a super-lattice
of period 2a generates the staggered structure for the fermions.

with s ∈ {b, f} and r =
√
y2 + z2. Choosing a sufficient tight radial

confinement effectively renders the three-dimensional system to a one-
dimensional one. We denote the dimensionally reduced operators as

φα(x) = ϕb(y)ϕb(z)φα(x) , (3.9a)

ψα(x) = ϕf(y)ϕf(z)ψα(x) , (3.9b)

where ϕs(y), ϕs(z) denote the ground state wave functions in the y and
z directions, respectively. We assume that these states are independent of
the magnetic quantum number.

To generate a staggered structure for the fermions, the original optical
lattice with period a needs to be superimposed by an optical super-lattice
with period 2a, cf. Fig. 3.1b. Disregarding the effect of an overall confine-
ment in the longitudinal direction, the axial part of the potential is then
given by

V s
‖α(x) = V s

1,α cos2(kx) + V s
2,α sin2(2kx) , (3.10)

where we introduced k = π/a. The values of the amplitudes V s
i,α and

i = {1, 2}, are determined by the ac-Stark shift of the corresponding
magnetic substatesα. As already noted in [23], such a construction is spin-
independent and clearly distinct from the spin dependent proposal in [43].
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We note that the potential barrier between adjacent bosons is decreased
by generating the staggered structure for the fermions. An appropriate
choice of the amplitudes of the lasers building the super-lattice leads to a
double-well structure, which inhibits tunneling of bosons between neigh-
boring sites [46].

In the following, it is useful to switch to a representation in terms of local-
izedWannier functions. To this end, we first consider the bosonic degrees
of freedom. By tuning of the laser amplitude wemay choose V b

i,α such that
we obtain two Wannier functions which are sufficiently localized in the
left or right minimum of the elementary cell. The corresponding expan-
sion of the bosonic field operator reads

φα(x) =
∑
n,p

wb
α,np(x)φα,np , (3.11)

where n labels the elementary cells and p = {L,R} denotes the left-
right minimum in the elementary cell, respectively. We comment on the
Wannier functions in Appendix A. The determination of V b

i,α also fixes the
fermionic contributionsV f

i,α. In analogy to the bosons, wemay selectWan-
nier functions localized in the two minima of the elementary cell. We ex-
pand the fermionic field operators like the bosonic field operators leading
to ψα(x) =

∑
n,pw

f
α,np(x)ψα,np. Moreover, the structure of the super-

lattice suggests the definition

ψ2n,α ≡ ψα,nL, ψ2n+1,α ≡ ψα,nR , (3.12a)

φ2n,α ≡ φα,nL , φ2n+1,α ≡ φα,nR , (3.12b)

with n numbering the elementary cells in the optical lattice. We note that
the kinetic energy contributions (3.5) vanish, due to the fact that theWan-
nier functions corresponding to the differentminima in the optical lattice
do not have sizable overlap.
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3.2.2 Angular Momentum Conservation

In the previous section, we showed how the potential energy (3.6) can be
used to generate the staggered lattice structure. Moreover, we have seen
that the kinetic energy (3.5) vanishes due to the localization of the Wan-
nier functions at the potentialminima. Tofinally generate dynamics in the
cold atomsystem,whichmimics the Schwingermodel,wehave to tune the
interaction Hamiltonian (3.7), such that effectively only the desired gauge
invariant terms survive. To this end, we have to investigate the interac-
tion terms in more detail and establish the connection between the vari-
ous scattering lengths and coupling constants grαβγδ with r = {b, f, bf}.
First, we discuss the construction in free space and take into account the
lattice later.

We suppose that the inter-species interactions of bosons and fermions as
well as the intra-species interactions between bosons and fermions are
local and conserve angular momentum. Specifically, we consider bosons
with spin fb = 1 and fermions with spin ff = 1/2. Therefore, the two-
particle potentials are given by

V r(x1,x2) = δ(x1 − x2)
∑
Fr

gr,FrPf1,f2,Fr , (3.13)

where the total spin can take the values Fb ∈ {0, 2}, Ff ∈ {0, 1} and
Fbf ∈ {1/2, 3/2}. The interaction strengths are related to the s-wave
scattering lengths via

gr,Fr =
4π~2ar,Fr
Mr

, (3.14)

whereMr denotes the reducedmass. Note thatFb = 1 is not possible due
to Bose symmetry [45]. In general, the projectorPf1,f2,F for two particles
with individual spins f1 and f2 ontos the subspace with total spin F can
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be written as

Pf1,f2,F =
∑
M

|f1, f2;F ,M〉 〈f1, f2;F ,M | , (3.15)

where M = {−F ,−F + 1, . . . ,F − 1,F} are the possible magnetic
quantum numbers. Writing the interaction potential in second quantized
form, we may relate the interaction constants according to

grαβγδ =
∑
Fr

∑
M

gr,Fr 〈f1;α; f2; β|f1, f2;Fr,M〉

× 〈f1, f2;Fr,M |f1; γ; f2; δ〉 . (3.16)

Here, 〈f1;α; f2; β|f1, f2;Fr,M〉 are the Clebsch-Gordan coefficients for
coupling the individual spins f1 and f2 to the total spin Fr. Specifically,
we have f1 = f2 = 1 for boson-boson interactions (r = b), f1 = f2 = 1/2

for fermion-fermion interaction (r = f ) and f1 = 1/2, f2 = 1 for the
boson-fermion interaction (r = bf ).

As in the previous section, we again reduce the three-dimensional sys-
tem to one spatial dimension and expand the field operators in terms of
Wannier functions. Using a compact notation, where n = (n1, n2, n3, n4)

denotes the site indices andµ = (α, β, γ, δ) themagnetic quantum num-
bers, we have

HI =
1

2

∑
n,µ

U b
ng

b
µφ
†
n1α
φ†n2βφn4δφn3γ

+
1

2

∑
n,µ

U f
ng

f
µψ
†
n1α
ψ†n2βψn4δψn3γ

+
1

2

∑
n,µ

U bf
n g

bf
µ ψ

†
n1α
φ†n2βφn4δψn3γ . (3.17)

The coupling constants U r
n are determined by the dimensional reduction

and the overlap integrals of Wannier functions, see Appendix A. Note we
also assumed that all functions used to determine U r

n are µ independent.
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Figure 3.2: The application of aB-field splits the super-lattice for the individ-
ual magnetic substates of the bosons and fermions.

Based on this interaction Hamiltonian, we see that a plethora of possi-
ble interaction terms are generated. In order to realize the Hamiltonian
(3.3), however, we have to guarantee that only a small number of terms
contributes. To this end, we use the fact that an appropriate B-field and
external dressing [47] allows for a selection of a smaller number of in-
teraction terms whereas all other contributions are suppressed. We em-
phasize that this selection is achieved by the unequal shift of the bosonic
and fermionic energy levels, as depicted in Fig. 3.2. Most notably, this pro-
cedure results in the bosonic spin exchange with a simultaneous fermion
hopping (cf. Fig. 3.3) which corresponds to the gauge invariant interaction
term in (3.3). We note that this selection process does not exclude elastic
scattering terms, i.e. scattering processeswithout changing the individual
spins of the atoms.

Finally, we assume that all bosonic states are prepared in theαb ∈ {−1, 0}
sectors whereas the fermionic degrees of freedom are generated in the
staggered configuration with αf = 1/2 on even sites and αf = −1/2

on odd sites. As a consequence, interactions including the αb = 1 sec-
tor, which would be allowed in principle, are suppressed during the whole
time evolution. We further elaborate on this issue in the following sec-
tions.
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3.2.3 Bosonic Intra-species Interactions

In this section, we discuss the intra-species interaction terms of bosons
in more detail. Owing to localization, only on-site interaction terms of
bosons contribute, i.e. U b

n 6= 0 only, if all values ni in n are the same.
Accordingly, the bosonic interaction term is given by

Hb
I =

1

2

∑
n,µ

U b
ng

b
µφ
†
nαφ

†
nβφnβφnα , (3.18)

with n = (n, n, n, n) and αb, βb ∈ {−1, 0}. Again, we note that we disre-
gard terms containing the magnetic substates αb = 1which are excluded
by the spin conservation if initialized accordingly. Denoting the bosonic
degrees of freedom according to bn ≡ φn,0 and dn ≡ φn,−1, the interac-
tion term (3.18) is written as

Hb
I =

1

2

∑
n

(
gbb
†
nb
†
nbnbn + gdd

†
nd
†
ndndn + gbdb

†
nd
†
ndnbn

)
, (3.19)

where the coupling constants result from (3.16) and are

gb = U b
n

(
gb,0
3

+
2gb,2

3

)
, (3.20a)

gd = U b
ngb,2 , (3.20b)

gbd = 2U b
ngb,2 . (3.20c)

In addition, we assumed that the overlap integrals U b
n are the same in

all terms. In fact, the bosons bn and dn can be understood as Schwinger
bosons

L+,n = b†ndn , L−,n = d†nbn , (3.21a)

Lz,n =
1

2
(b†nbn − d†ndn) , (3.21b)

which constitute a representation [48] of the angular momentum algebra

[Li,n, Lj,m] = iδn,mεijkLk,n (3.22)
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withL±,n = Lx,n± iLy,n . As the hopping of bosons between neighboring
sites n→ n± 1 is suppressed, the constraint 2` = b†nbn + d†ndn is exactly
fulfilled. For later convenience, we introduce

g2aS
2
≡ 1

2
(gb + gd − gbd) , (3.23a)

∆b,0 ≡
1

2
(2`− 1)(gb − gd) (3.23b)

and further relabel the bosonic degrees of freedom to distinguish between
even and odd sites. For even sites we employ the same definition as above,
b2n ≡ φ2n,0 and d2n ≡ φ2n,−1, whereas we interchange their roles on odd
sites, i.e. b2n+1 ≡ φ2n+1,−1 and d2n+1 ≡ φ2n+1,0. Accordingly, on even
sites we still have (3.21) whereas on odd sites the role of the raising and
lowering operators are interchanged and the z-component of the angular
momentumchanges sign. Using this convention, the bosonic intra-species
interaction Hamiltonian is given by

Hb
I =

g2aS
2

∑
n

L2
z,n + ∆b,0

∑
n

(−1)nLz,n , (3.24)

where we disregarded an irrelevant constant which only depends on `.

3.2.4 Fermionic Intra-species Interaction Term

In this section, we discuss the intra-species interaction terms of fermions
in more detail. Again, only on-site interaction terms contribute due to
their localization such thatU f

n 6= 0only if all values ofni inn are the same.
Taking into account the Clebsch-Gordon coefficients, the corresponding
interaction term can be reduced according to

Hf
I =

∑
n

U f
ngf,0ψ

†
n,1/2ψ

†
n,−1/2ψn,−1/2ψn,1/2 , (3.25)

with n = (n, n, n, n). In general, this four-fermion interaction term does
contribute non-trivially to the dynamics. This contribution can also be
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written as a density-density interaction between αf = −1/2 and αf =

1/2 particles

Hf
I = U f

ngf,0
( ∑
n,even

ρn,1/2ρn,−1/2 +
∑
n,odd

ρn,−1/2ρn,1/2

)
, (3.26)

with density operators ρn,±1/2 = ψ†n,±1/2ψn,±1/2. Restricting ourselves,
however, to the staggered initial state |Ψ〉 with only αf = 1/2 particles
on even sites and only αf = −1/2 particles on odd sites. We immediately
see thatHf

I |Ψ〉 = 0. This implies that this four-fermion interaction does
not contribute to the time evolution due to an appropriate initial-state
preparation.

3.2.5 Inter-species Interaction Term

Regarding the fermion-boson scattering contributions to theHamiltonian,
we have to consider both the spin exchange process as well as elastic scat-
tering processes. According to the interaction selection described above,
the spin exchange term involving the correlated hopping of fermions and

Figure 3.3: The selection of the interaction results in a correlated bosonic spin
exchange plus a fermionic hopping. This is also known as interaction induced
hopping. Note that the inverse process is allowed as well.
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bosons is given by

Hbf
Ise

=
1

2

∑
n

U bf
n g

bf
µ (ψ†2n,αφ

†
2n,βφ2n,δψ2n+1,γ

+ ψ†2n,αφ
†
2n−1,βφ2n−1,δψ2n−1,γ + h.c.

)
, (3.27)

with µ = (α, β, γ, δ) = (−1/2, 0, 1/2,−1). The first term corresponds
to Fig. 3.3a, whereas the second term is shown in Fig. 3.3b. According to
equation (3.16), the coupling constant for this specific scattering process
is given by

gbfµ =

√
2

3

(
gbf,3/2 − gbf,1/2

)
. (3.28)

We emphasize that the spin exchange term does not change the staggered
occupation of fermions such that the four-fermion term (3.25) still does
not contribute. We anticipate that this applies to the elastic scattering
terms as well. Accordingly, the scattering properties of the fermions are
completely determined by their parity (even/odd sites) and we may drop
the spin label completely. This motivates to define ψ2n ≡ ψ2n,−1/2 and
ψ2n+1 ≡ ψ2n+1,1/2.

Employing the Schwinger boson representation and taking into account
that the overlap integral U bf

n does not depend on the specific lattice site
n, the spin exchange Hamiltonian can be written as

Hbf
Ise

=
1

2aS
√
`(`+ 1)

∑
n

(
ψ†nL+,nψn+1 + h.c.

)
, (3.29)

where we introduced [aS
√
`(`+ 1)]−1 = U bf

n g
bf
µ .
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The elastic scattering processes, on the other hand, are given by

Hbf
Iel

=
1

2

∑
nβ

U bf
n g

bf
µ ψ

†
2nφ
†
2n,βφ2n,βψ2n

+
1

2

∑
nβ

U bf
n g

bf
µ ψ

†
2nφ
†
2n−1,βφ2n−1,βψ2n

+
1

2

∑
nβ

U bf
n g

bf
µ ψ

†
2n+1φ

†
2n,βφ2n,βψ2n+1

+
1

2

∑
nβ

U bf
n g

bf
µ ψ

†
2n+1φ

†
2n+1,βφ2n+1,βψ2n+1 , (3.30)

whereβ ∈ {−1, 0}. We note again that the coupling constants gbfµ still de-
pend on the magnetic substates and are hence not identical for all terms.
Moreover, we observe that each U bf

n is independent of n, however, identi-
cal for the first and second line (further denoted byU bf

n1) as well as identi-
cal for the third and fourth line (further denoted by U bf

n3), cf. Appendix A.
The first term in (3.30) for which µ = (−1/2, β,−1/2, β), we obtain

Hbf
Iel,1

=
gbf,3/2

2

∑
n

U bf
n1ψ

†
2nd
†
2nd2nψ2n

+
gbf,1/2 + 2gbf,3/2

6

∑
n

U bf
n1ψ

†
2nb
†
2nb2nψ2n , (3.31)

where we used (3.16) again. The second term in (3.30) is the same as the
first one upon replacing b2n → d2n−1 and d2n → b2n−1. The third term in
(3.30) is different, because ofµ = (1/2, β, 1/2, β) and corresponds to the
different fermionic parity

Hbf
Iel,3

=
2gbf,1/2 + gbf,3/2

6

∑
n

U bf
n3ψ

†
2n+1d

†
2nd2nψ2n+1

+
gbf,1/2 + 2gbf,3/2

6

∑
n

U bf
n3ψ

†
2n+1b

†
2nb2nψ2n+1 . (3.32)

The fourth term in (3.30) is again the same as the third one upon replacing
b2n → d2n+1 and d2n → b2n+1. Employing again the Schwinger boson
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representation b†2nb2n = ` + Lz,2n and d
†
2nd2n = `− Lz,2n, the first term

(3.31) can be written as

Hbf
Iel,1

=
gbf,1/2 + 5gbf,3/2

6
`
∑
n

U bf
n1ψ

†
2nψ2n

+
gbf,1/2 − gbf,3/2

6

∑
n

U bf
n1Lz,2nψ

†
2nψ2n . (3.33)

The third term (3.32) can be expressed as

Hbf
Iel,3

=
gbf,1/2 + gbf,3/2

2
`
∑
n

U bf
n3ψ

†
2n+1ψ2n+1

−
gbf,1/2 − gbf,3/2

6

∑
n

U bf
n3Lz,2nψ

†
2n+1ψ2n+1 , (3.34)

and similar expressions are also obtained for the second and fourth line
by replacing Lz,2n → −Lz,2n∓1. We emphasize that both U

bf
n1 6= U bf

n3 and
gbf,1/2 6= gbf,3/2. Combining the first and second line leads to

Hbf
Iel,1,2

=
gbf,1/2 + 5gbf,3/2

3
`
∑
n

U bf
n1ψ

†
2nψ2n

+
gbf,1/2 + 5gbf,3/2

6

∑
n

U bf
n1ψ

†
2nψ2n(Lz,2n − Lz,2n−1) (3.35)

and combining the third and fourth line is given by

Hbf
Iel,3,4

= (gbf,1/2 + gbf,3/2)`
∑
n

U bf
n3ψ

†
2n+1ψ2n+1

+
gbf,1/2 − gbf,3/2

6

∑
n

U bf
n3ψ

†
2n+1ψ2n+1(Lz,2n+1 − Lz,2n) . (3.36)

We perform the substitution

Lz,n − Lz,n−1 = Gn + ψ†nψn , (3.37)

where Gn is Gauss’s law operator. When acting on physical states every
term containing Gn cancels out, see section 3.4 for a detailed discussion
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of Gauss’s law. Using the anti-commutator relationships shows that the
Hbf
Iel,1,2

+Hbf
Iel,3,4

is a bilinear in the fermionic operators, i.e. a sum ofψ†nψn
with only parity dependent prefactors. This shows that the elastic scatter-
ing terms only contribute to the potential energy of the fermions.

3.3 Cold-Atom QED Hamiltonian

Summing up all contributions, the cold-atom QED Hamiltonian takes the
form

H =
g2aS

2

∑
n

L2
z,n + ∆b,0

∑
n

(−1)nLz,n

+
1

2aS
√
`(`+ 1)

∑
n

(
ψ†nL+,nψn+1 + h.c.

)
+
∑
n

(
V f
n ψ
†
nψn + V b

n b
†
nbn + V d

n d
†
ndn
)
. (3.38)

The terms in the last line include the potential energy contributions, in
particular the energy due to the trapping of the atoms as well as due to
the elastic scattering terms. We emphasize that the fermionic contribu-
tion V f

n depends on the parity of n. Introducing the energy difference∆f

according to V f
2n = V f

0 −∆f/2 and V
f

2n+1 = V f
0 + ∆f/2, the fermionic

contribution to the potential energy is given by

Hf
V = V f

0

∑
n

ψ†nψn −
∆f

2

∑
n

(−1)nψ†nψn . (3.39)

Since the total particle number of the fermions is conserved, the first term
does not contribute to the dynamics and can thus be disregarded. The
bosonic potential term is treated in a similar fashion. Defining ∆b,1 ac-
cording to V b

n = V b
0 + (−1)n∆b,1/2 and V d

n = V b
0 − (−1)n∆b,1/2 and

using Lz,n = (b†nbn − d†ndn)/2 leads us to

Hb
V = ∆b,1

∑
n

(−1)nLz,n , (3.40)



Chapter 3: Lattice Gauge Theory with Cold Atoms 37

wherewedisregarded an irrelevant constant term.Adding the second con-
tribution in (3.38) and defining∆b ≡ ∆b,0 + ∆b,1, we obtain

Hb
V + ∆b,0

∑
n

(−1)nLz,n = ∆b

∑
n

(−1)nLz,n . (3.41)

Comparison of the cold-atom QED Hamiltonian with the target Hamilto-
nian (3.3) then shows that we still have an undesired contribution linear
inLz,n. However, this term does not contribute if we transform the Hamil-
tonian into the rotating frame or interaction picture. To this end, we split
the cold-atom QED HamiltonianH = H0 +H1 into two parts

H0 = ∆b

∑
n

(−1)n
(
Lz,n −

1

2
ψ†nψn

)
, (3.42a)

H1 =
g2aS

2

∑
n

L2
z,n +M

∑
n

(−1)nψ†nψn

+
1

2aS
√
`(`+ 1)

∑
n

(
ψ†nL+,nψn+1 + h.c.

)
, (3.42b)

where we introduced the mass parameter according to

M =
∆b −∆f

2
. (3.43)

Upon acting with the unitary transformation U(t) = exp(−iH0t), we
get the new Hamiltonian H ′1 = U †(t)H1U(t). Performing the canonical
transformation ψn → (−i)nψn we can finally identify the Hamilitonian
H ′1 with

HQL =
g2aS

2

∑
n

L2
z,n +M

∑
n

(−1)nψ†nψn

− i

2aS
√
`(`+ 1)

∑
n

(
ψ†nL+,nψn+1 − h.c.

)
. (3.44)

This is the quantum link Hamiltonian in (3.3). We note again that we have
to take the limit `→∞ in order to recover the Hamiltonian formulation
of the Wilson’s lattice gauge theory corresponding to (3.1).
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3.4 Initial State and Gauss’s Law

After discussing the necessary steps for realizing the Hamiltonian (3.44)
in a cold atom system, we briefly discuss the initial state and Gauss’s law
in more detail. To study the real-time dynamics of fermions coupled to
strong gaugefields, representedby two-component coherent bosonic sam-
ples, the system is supposed to be initialized in eigenstates of both the free
bosonic and fermionic theories

Hb,0 =
g2aS

2

∑
n

L2
z,n , (3.45a)

Hf,0 = − i

2aS

∑
n

[ψ†nψn+1 − h.c.] +M
∑
n

(−1)nψ†nψn . (3.45b)

To initiate thedynamic evolution, the system is then instantaneously quen-
ched to an interacting field theory governed by the Hamiltonian (3.44).
The bosonic samples are prepared in an excited eigenstate ofHb,0, deter-
mined by the number of bosonic atoms on each site 2` = b†nbn+d†ndn and
the eigenvalue of the operatorLz,n = (b†nbn−d†ndn)/2. The initial value of
the bosonic species imbalance drives the non-trivial real-time evolution
of the coupled system after the quench.

The fermions, on the other hand, are supposed to be initialized in the
ground state of the Hamiltonian Hf,0. Owing to the fact that the free
Hamiltonian is quadratic, the dispersion relation can be determined an-
alytically. Given an optical lattice withN elementary cells, i.e. 2N lattice
sites, the dispersion relation is given by two bands±ωk with

ωk =
√
M 2 + p2

k (3.46)
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and pk = 1
aS

sin(πkN ) as well as k ∈ {0, . . . , N − 1}. The corresponding
mode function expansion of the fermionic field operator reads

ψn =
1√
2N

∑
k

e
iπkn
N

(
M + (−1)n(ωk − pk)√

2ωk(ωk − pk)
Ak

−M − (−1)n(ωk + pk)√
2ωk(ωk + pk)

B†k

)
, (3.47)

and the momentum space creation/annihilation operators are defined
with respect to the zero-particle state |0〉 according toAk |0〉 = Bk |0〉 =

0. The Dirac vacuum state corresponds to a N -particle state where the
negative energy band is occupied and the positive energy band is empty

|GS〉D =
∏
k

B†k |0〉 . (3.48)

Due to the fact that the ground state is supposed to carry no charge,
ρn |GS〉 = 0, the charge operator for the staggered Dirac vacuum needs
to be defined according to

ρ(D)
n = ψ†nψn −

1

2N

∑
k

ωk − (−1)nM

ωk
. (3.49)

The experimental realization of the Dirac vacuum, corresponding to a
highly correlated fermionic initial state, is intricate but possible in prin-
ciple [49]. After performing the quench, the theory becomes a U(1) gauge
theory with the Gauss’s law operator defined according to

Gn = Lz,n − Lz,n−1 − ρ(D)
n . (3.50)

The Gauss’s law operator commutes with the Hamiltonian, [Gn, H] = 0,
and is the generator of local gauge transformations.

Finally, we note that the realization of the Dirac vacuum state is an im-
portant ingredient for simulating quantum electrodynamics. On the other
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hand, there are also other possible initial states which have been investi-
gated in the past [43]. In these cases, the quench to the interacting field
theoryhas beenperformed from theheavymass limit initial stateMaS �
1, which is obtained by disregarding the free hopping term in (3.45b).
In this case, the dispersion relation becomes flat and degenerate, ωn =

(−1)nM , and the ground state in theN -particle sector corresponds to a
state where the odd sites are occupied

|GS〉M =
∏
n

ψ†2n+1 |0〉 , (3.51)

with ψn |0〉 = 0. The charge operator is defined according to

ρ(M)
n = ψ†nψn −

1− (−1)n

2
, (3.52)

which immediately follows from (3.49) by replacingωk →M correspond-
ing to the heavy mass limit.



Chapter 4

Lattice Gauge Theories Out of

Equilibrium

In this chapter, we investigate the real-time dynamics of Abelian U(1)
and non-Abelian SU(N) gauge theories coupled to fermionic matter. Stan-
dard importance sampling is not a reliable technique for real-time lat-
tice gauge theories. However, for a large class of time-dependent quan-
tum mechanical problems, the system can be described by a classical-
statistical ensemble. The quantum corrections included in this approach
are analyzed via a diagrammatic representation depicted in a series ex-
pansion. This method is non-perturbative and is applied to pair produc-
tion in (3 + 1)-dimensional quantum electrodynamics. There are known
analytical results for constant background field, which are modified, if
the back-reaction of the produced fermion pairs on the gauge fields is in-
cluded.

4.1 Real-time Lattice Gauge Theory

The quantummechanical problemposed by strong gauge fields coupled to
fermions is an important theoretical question. In particular the Schwinger
mechanism describes the situation, where the electron-positron pairs are
produced from an electric field [10–12]. The critical field strength is given

41
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by Ec ∼ M 2/g ∼ 1018V/m for quantum electrodynamics (QED) with
electronmassM and gauge coupling g. Pair production appears as well in
quantum chromodynamics (QCD). During a nuclear collision at high en-
ergies, the strong color fields will influence the dynamics of the Quark-
Gluon plasma. Considering the Color-Glass condensate, its characteristic
field strengths are of the order of1/g, where g is the running coupling [14].
In such a situation, the quark pair production should be enhanced. A simi-
lar question can also be asked in scalar field theories coupled to fermions,
where one can show the importance of fluctuations for the production of
fermions [50].

The Pauli principle does not allow two fermions to occupy the same state.
Hence, their quantumnature is very important. A decent theoretical treat-
ment should include this particular feature of the fermions,whenwe study
the dynamics of such theories. It is well known that a quantum theory
in equilibrium in d spatial dimensions can be described by a classical-
statistical mechanics problem in (d+1) spatial dimensions. Nevertheless,
the production of fermions by strong fields or fluctuations is generically
not an equilibrium problem and the Euclidean formulation cannot de-
scribe such situations. In particular, there is no feasible general approach
for non-equilibrium problems.

However, a large class of physical problems can be mapped on a classical-
statistical ensemble [25–29]. The agreement between a quantumfield the-
oretic approach using resummation techniques and the corresponding
classical-statistical theories [30–34] was explicitly shown for scalar quan-
tumfield theories coupled to fermionicmatter [50, 51]. There exist already
derivations of the classical-statistical approximations for purely scalar
field theories andpure gaugefield theories. The classical-statistical theory
can also be connected to kinetic theories [52–54]. The relation between ki-
netic theory and the classical-statistical lattice simulations for gauge the-
ories was investigated in [55–57].
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We will study the real-time dynamics of U(1) and SU(N) gauge theories
coupled to fermionic matter on a discrete space-time lattice. The start-
ing point is the functional integral of the full quantum theory. Then we
will outline the classical-statistical approximation of the functional inte-
gral. From there we can give arguments concerning the validity of this
approach. The quantum corrections included in this description can be in-
terpreted by a corresponding diagrammatic representation of an underly-
ing series expansion. This non-perturbative approachwill then be applied
to electron-positron production in QED in three spatial dimensions. This
extends the study of previous one-dimensional results [58]. The analytic
expression for a constant background field can be used as a benchmark for
the early time behavior. However, we establish the necessity to include the
back-reaction of the produced fermion-pairs on the gauge fields.

The functional integral on the closed time path is the starting point to
handle real-time quantum field theories. The closed time path or Keldysh
contour [59, 60] is depicted in Fig. 4.1. It begins at time t0 and continues to-
wards a final time along the real axis. Then the contour propagates back-
wards to the initial time t0 . We discretize space-time on a four dimen-
sional hypercubic lattice

Λ = {(n0,n) |n0 ∈ 0, . . . , 2NT ; ni ∈ 0, . . . , Ni − 1}, (4.1)

with n = (n1, n2, n3) and i ∈ {1, 2, 3}. The vector µ̂ points along the
time contour if µ = 0 and is directed along the spatial coordinate axes
for µ ∈ {1, 2, 3}. Note that we consider an isotropic spatial lattice with
spacings ai = aS . The number of lattice points is given by Ni = NS for
i ∈ {1, 2, 3}. If we discretize the time contour, this leads to

tC(n0) =

t0 + aT n0, 0 ≤ n0 ≤ NT

tF − aT (n0 −NT ), NT + 1 ≤ n0 ≤ 2NT .
(4.2)

Here the final time tF = t0 + aTNT denotes an arbitrary late time and
n0 is a non-negative integer. We define the lattice spacing in the temporal
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Figure 4.1: Graphical representation of the real-time Schwinger-Keldysh con-
tour where C+ denotes the forward branch and C− is the backward branch.

direction as

a0 ≡ sgnC aT , (4.3)

where sgnC is +1 on the forward branch (0 ≤ n0 ≤ NT ) and −1 on the
backward branch (NT + 1 ≤ n0 ≤ 2NT ) of the closed time path.

We consider theWilsonian action on aMinkowskian lattice [61, 62]. In par-
ticular the pure gauge part is given by

SG[U ] =
2

g2
0

∑
n∈Λ

aS
a0

∑
i

Re tr (1− U0i,n)

− 2

g2
S

∑
n∈Λ

a0

aS

∑
i,j
i<j

Re tr (1− Uij,n) , (4.4)

where the gauge invariant plaquette term appears

Uµν,n = Uµ,nUν,n+µ̂U
†
µ,n+ν̂U

†
ν,n . (4.5)

Each link variableUµ,n is located between the lattice sites n and n+ µ̂ and
points in the direction of µ̂. In contrast to chapter 2 we also discretize the
time direction and have links in the temporal direction. If the link points
in the−µ̂ direction, we use the definition

U−µ,n ≡ U †µ,n−µ̂ . (4.6)

To simplify the following considerations we set g0 = gS = g. We use the
standard normalization tr [ta, tb] = 1/2 δab of the SU(N) generators ta,
with the adjoint gauge index a ∈ {1, . . . , N 2− 1}. Then the prefactors in
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SG can be chosen such that we obtain the correct naive continuum limit.
Note that for the U(1) gauge theory the overall factor 2 has to be replaced
by 1.

For the fermions we consider the naive discretization for simplicity

SF [ψ̄, ψ, U ] = Sif −M
∑
n∈Λ

a0a
3
Sψ̄nψn

+
i

2

∑
n∈Λ

n0 6=0,2NT

a0a
3
S

aµ
ψ̄nγ

µ [Uµ,nψn+µ̂ − U−µ,nψn−µ̂] (4.7)

and treat the issue of fermion doublers in Sec. 4.3. We employ the central
difference discretization for the fermions. The term Sif containing the
initial and final contributions of the fermionic fields is given by

Sif = i
a0a

3
S

aµ
ψ̄0γ

µ [Uµ,0ψ0+µ̂ − ψ0]

+ i
a0a

3
S

aµ
ψ̄2NTγ

µ [ψ2NT − U−µ,2NTψ2NT−1] . (4.8)

The initial state is given by a density matrix ρ(t0) and can be in thermal
equilibrium or describe non-equilibrium situations. An expectation value
of a general observable O(U, ψ̄, ψ) can be calculated from the functional
integral according to

〈O(U, ψ̄, ψ)〉 =

∫
[dU ]

∫ [
dψ̄ dψ

]
ρ(t0)

×O(U, ψ̄, ψ) exp(iSG + iSF ) . (4.9)

The action SG + SF contains the gauge and fermion degrees of freedom.
Moreover, we introduce the abbreviations∫

[dU ] =
∏
n∈Λ
µ

∫
dUµ,n , (4.10a)

∫ [
dψ̄dψ

]
=
∏
n∈Λ

∫
dψ̄ndψn . (4.10b)
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Note that the initial state ρ(t0) depends onUµ,n, ψ̄n andψnwith timen0 ∈
{0, 2NT}.

The evolution of the density matrix can be expressed by a functional in-
tegral on the closed time path

ZC =

∫
[dU ]

∫ [
dψ̄ dψ

]
ρ(t0) exp(iSG + iSF ) . (4.11)

This expression is normalized to one, because the contributions of the for-
ward and backward branch of the Schwinger-Keldysh contour cancel, if
there are no source terms, i.e. ZC = 1. This expression will be frequently
called thepartition function.Using the closed timepath thenormalization
is always included when we compute observables like (4.9). By introduc-
ing source terms we can construct a generating functional for correlation
functions from (4.11). For a pedagogical introduction to nonequilibrium
generating functionals in quantum field theory see [63]. In the following
discussion, we will not take the effect of source terms into account, in or-
der to keep the notation simple. The manipulations on the integrand of
the functional integral in (4.11) always implicitly assumes the presence of
sources, or a direct insertion of the observables. If we wish to obtain the
corresponding expectation values, we can take derivatives with respect to
the sources.

We observe that the complex factor ∼ exp(iSG + iSF ) in the partition
function (4.11) does not allow the efficient use of standard importance
sampling techniques. Hence, we will describe an alternative method to
approximate non-equilibrium problems and discuss its range of validity
in Sec. 4.2. We focus on quadratic fermionic actions and note that a simi-
lar approach is useful for theories with non-Gaussian fermion interaction
terms. This leads to the introduction of composite fields via a Hubbard-
Stratonovich transformation.
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4.1.1 U(1) Gauge Theory

In the following, we will motivate the classical-statistical approximation
for quantum electrodynamics. We will parametrize the link variablesUµ,n
in terms of the gauge fields Aµ,n, whereas the simulations will be per-
formed directly in terms of the link variables

Uµ,n = exp (igaµAµ,n) . (4.12)

The numerical algorithm will be given in Sec. 4.3. The functional integral
representation then reads

ZC =

∫
[dA]

∫ [
dψ̄ dψ

]
ρ(t0) exp (iSG + iSF ) . (4.13)

Weobserve that theparametrizationof theHaarmeasure in termsof gauge
fields can lead to non-trivial contributions to the exponent in the func-
tional integral [64]. This issue becomes crucial for SU(N) gauge theories
and will be discussed in Sec. 4.1.2. However, in the U(1) gauge theory, the
Haarmeasure is trivial and will not change the action in the functional in-
tegral. Moreover, we will assume a Gaussian initial density matrix for the
fermionic fields, i.e.

ρ(t0) = exp

− ∑
n,m∈Λ

a0a
3
Sa0a

3
Sψ̄n(K−1)nmψm

 ρG(A) , (4.14)

where thematrixK−1 only contributes atn0,m0 ∈ {0, 2NT}. In addition,
one can include a dependency on the initial gauge fields. If one wishes to
introduce correlated initial states, one can consider an additional imagi-
nary time branch [65]. Note that the pure gauge part ρG(A) is only depen-
dent on the initial field configuration Aµ,n with n0 ∈ {0, 2NT}. Such an
initial state assures that the fermionic fields build a quadratic form in the
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action

SFQ[A] =
∑
n,m∈Λ

ψ̄ni∆C[A]−1
nmψm (4.15)

of the functional integral (4.13). The inverse fermion propagator is given
by i∆C[A]−1. This object has support on the Schwinger-Keldysh contour
and depends on the gauge field A. The fermionic fields appear at most
quadratic in the exponent, hence we are able to integrate them out

ZC =

∫
[dA] ρG(A) exp

(
Tr log ∆C[A]−1 + iSG

)
. (4.16)

This procedure introduces a non-local effective interaction mediated by
the fermionic degrees of freedomgivenbyTr log ∆C[A]−1, where the trace
involves Dirac as well as space-time indices on the contour.

We label the gauge fields on the forward/backward branch of the contour
by+/− and perform the following transformation

A+
µ,n = Āµ,n +

1

2
Ãµ,n , (4.17a)

A−µ,n = Āµ,n̄ −
1

2
Ãµ,n̄ , (4.17b)

with n̄ = (2NT − 1−n0,n). We call Ā the classical field and Ã the quan-
tum field. Using the new coordinates we rewrite the partition function as

ZC =

∫ [
dĀ
]

[dÃ] ρG(A) exp
(
Tr log ∆C[A]−1 + iSG[A]

)
. (4.18)

The part of the action SG[A] containing only gauge fields is

SG[A] = −1

4

∑
n∈Λ

a0a
3
SFµν,n[A]F µν

n [A] , (4.19)
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when we expand in the lattice spacing and neglect higher order correc-
tions. The field strength tensor F µν

n is determined by

Fµν,n[A] = ∂µAν,n − ∂νAµ,n . (4.20)

We reformulate the action in the new coordinates Ā and Ã leading to

SG[Ā, Ã] = aTa
3
S

∑
n∈Λ+

Ãν,n∂µF
µν
n [Ā] . (4.21)

It is crucial that this part of the action is linear in Ã. The forward branch
is denoted by Λ+ and F µν

n [Ā] is the field strength tensor determined by
the classical field.

We also expand Tr log ∆C[A]−1 in (4.18) to linear order in the quantum
field Ã. This is then given by

Tr log ∆−1
C [A] = Tr log ∆−1

C [Ā] +
ig

2
Tr{∆C[Ā] sgnC /̃A}+ . . . , (4.22)

where∆C[Ā] is the fermion propagator in the background of the classical
field Ā with Ã = 0 and we use the notation /̃A ≡ γµÃµ. We observe
that the leading term of the expansion (4.22) will not contribute in the
functional integral. The reasoning is as follows: The quantum field Ã does
not appear in this expression. Hence the contributions of the+ branch is
canceled by the same contribution of the− branch resulting in

eTr log ∆−1C [Ā] = det ∆−1
C [Ā] = 1 . (4.23)

As a consequence we set this term to one for the following calculations.

Considering the linear order, the Ã contributions are given by

ig

2
Tr{∆C[Ā] sgnC /̃A} = −iaTa3

S

∑
n∈Λ+

j̄νnÃν,n , (4.24)
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where the fermion current is determined by

j̄νn =
g

2
tr{〈[ψ̄n, ψn]〉Ā γ

ν} . (4.25)

The trace over the Dirac indices is denoted by tr and the commutator
expectation value in the presence of the classical field Ā is denoted by
〈[ψn, ψ̄n]〉Ā. We will now give a detailed derivation of this expression and
how to determine 〈[ψn, ψ̄n]〉Ā.

We rewrite the second term in (4.22) and use a continuum notation. Note
that the inverse propagator is given by

i∆−1
C [Ā] ≡

(
i/∂x − g /̄A(x)−M

)
δC(x, y) , (4.26)

where we neglected higher terms in the lattice spacing and δC (x, y) is
the delta function on the time contour. Using the subscript C we highlight
that the closed timepath is implicitly included in this continuumnotation.
With this in mind the propagator is(

i/∂x − g /̄A(x)−M
)

∆C (x, y) = iδC (x, y) . (4.27)

We connect the contour-ordered correlation functions and the propaga-
tor through the relation

∆C (x, y) =
〈
TCψ(x)ψ̄(y)

〉
Ā
, (4.28)

where TC is the time ordering along the Keldysh contour. We indicate via
〈· · · 〉Ā that the correlation functions have to be calculated by (4.27) for a
given classical field Ā background. The propagator can be rewritten in the
following manner

∆C (x, y) = θC (x0, y0) ∆> (x, y) + θC (y0, x0) ∆< (x, y) , (4.29)
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where θC(x0, y0) is the Heaviside function on the closed time path [66].
The individual components of the closed time path propagator are

∆> (x, y) = 〈ψ(x)ψ̄(y)〉Ā , (4.30a)

∆< (x, y) = −〈ψ̄ (y)ψ (x)〉Ā . (4.30b)

Evaluating the trace in (4.24) leads to

Tr{∆C[Ā] sgnC /̃A} = tr

∫ tF

t0

∫
x
[∆>(x, x) + ∆<(x, x)] /̃A(x) . (4.31)

Again tr denotes the trace over Dirac indices. Further, we used the relation

θC (x0, y0) + θC (y0, x0) = 1 . (4.32)

For the fermionic fields the Keldysh propagator is determined by

∆K(x, y) ≡ ∆>(x, y) + ∆<(x, y) =
〈[
ψ(x), ψ̄(y)

]〉
Ā

(4.33)

and has to obey (
i/∂x − g /̄A(x)−M

)
∆K (x, y) = 0 . (4.34)

In addition, the equation (4.31) can be reformulated as:

Tr{∆C[Ā] sgnC /̃A} = tr

∫ tF

t0

∫
x

∆K(x, x) /̃A(x) . (4.35)

It is worth emphasizing that the term on the right hand side of the last
equation is related to the current

j̄ν(x) = −g
2

tr
{

∆K(x, x)γν
}

(4.36)

determined by the fermionic field coupled to Ã [67]. The trace tr is taken
with respect to the Dirac indices. Consequently, the partition function em-
ploying the expansion of Tr log ∆−1

C [A] to linear order in the quantum
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field Ã is

Zcl
C =

∫
[dĀ][dÃ] ρG(A)

× exp
{
iaTaS

∑
n∈Λ+

Ãν,n

(
∂µF

µν
n [Ā]− j̄νn

)}
. (4.37)

We will explain the physical interpretation of this approximation in more
detail in Sec. 4.2. This partition function is the classical-statistical descrip-
tion of the original quantum field theory. In order to evaluate this func-
tional integral, we integrate out the quantum field Ã. In addition we per-
form a Fourier transformation of the initial state ρG(A)with respect to Ã.
This results in the Wigner transform

ρG(A) =

∫
dΠ0 ρW

(
Ā0,Π0

)
exp

(
i
∑
n

a3
S Πµ

0Ãµ,0

)
, (4.38)

where we introduced the notation 0 = (0,n). Note that the momentum
Π0 is the conjugate variable of the classical field Ā0 at the initial time step.
Performing the integration with respect to Ã results in

Z cl
C =

∫
[dĀ]

∫
dΠ0 ρW (Ā0,Π0) δ[∂F [Ā]− j̄ ] . (4.39)

Weobserve that the argument of the delta function is given by the classical
equation of motion

∂µF̄
µν
n =

g

2
tr
{
〈
[
ψ̄n, ψn

]
〉
Ā
γν
}
. (4.40)

The Wigner function ρW determines the statistical initial conditions for
the classical equation of motion. The observables are determined by aver-
aging with respect to the ensemble produced by numerically solving the
classical field equations and choosing stochastic initial conditions accord-
ing to

〈O[Ā]〉 =

∫
[dĀ]

∫
dΠ0ρW (Ā0,Π0)O[Ā] δ[∂F [Ā]− j̄] . (4.41)
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As a technical remark we note, that changing variables introduces a Jaco-
bian in the functional integral. However, this can be taken to be constant
in the following discussion, for details see [53] .

4.1.2 SU(N) Gauge Theory

Now we will motivate the classical-statistical approximation for SU(N)
gauge theory coupled to fermionic matter. This will proceed along similar
lines as for the U(1) case. Hence, it is not necessary to repeat the entire
derivation, however, we will emphasize where differences appear.

In non-Abelian gauge theories the fermions carry a color index and have
to transformwith respect to the fundamental representation of the SU(N)
gauge group. The link variablesUn,µwill be given byAµ,n = taAa

µ,n, where
the ta are the generators of the SU(N) gauge group. This leads us to

Uµ,n = exp (igaµAµ,n) . (4.42)

Note that for the non-Abelian case an explicit parametrization of the Haar
measure introduces new contributions to the functional integral [64]. The
partition function is now

ZC =

∫
[dA]

∫ [
dψ̄ dψ

]
ρ(t0) exp (iSG + iSF − SM) (4.43)

with the standard gauge and fermion actions SG + SF and the term

SM = −1

2

∑
n∈Λ
µ

tr log [1 +N(Aµ,n)] . (4.44)

The trace is performed with respect to the adjoint gauge indices and we
introduced the expression

N(Aµ,n) = 2
∞∑
l=1

(−1)l

(2l + 2)!
(gaµAµ,n)

2l . (4.45)
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Wewill arrive again at the classical-statistical approximation of the quan-
tum theory, when we expand the exponent appearing in equation (4.43)
in powers of the quantum field Ã.

First, we investigate the contribution from SM . The linear term in Ã van-
ishes and the remaining zeroth order termwill be interpreted as the func-
tional integral measure of the classical field as

∫
[dĀ] exp(−SM [Ā]). We

see this by starting from the explicit expression for the Haar measure of
SU(N) gauge theories given by (4.44) and (4.45). Now, we expandSM in the
quantum field Ã resulting in

SM =− 1

2

∑
n∈Λ
µ

tr log[1 +N(Aµ,n)]

=− 1

2

∑
n∈Λ
µ

tr log(1 +N(Āµ,n))

− 1

2

∑
n∈Λ
µ

Ba(Āµ,n) sgnC Ã
a
µ,n + . . . , (4.46)

where we used the abbreviation A = Ā + 1
2 sgnC Ã. Note that B

a(Āµ,n)

is given by the first order term of the logarithm when expanding with re-
spect to Ã and evaluate it at Ã = 0. We note that this is a local function of
the classical field Ā. We observe thatBa(Āµ,n) has the same value on the
forward and backward branch. This is in contrast to the term sgnC , which
changes sign. Therefore, we conclude that the first order term vanishes.
After establishing the fact that the linear terms in the response/quantum
field leads to the classical equations of motion, the Haar measure will not
deliver any quantum contributions to this order.

The zeroth order term is theHaarmeasure of the classical field in the func-
tional integral, i.e. ∫

[dĀ] exp(−SM [Ā]) =

∫
[dŪ ] . (4.47)
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This will appear naturally in the definition of the expectation value of ob-
servables given in (4.9). Note that the pure gauge part of the actionSG can
be written as

SG[A] = −1

2

∑
n∈Λ

a0a
3
S tr {Fµν,n[A]F µν

n [A]} (4.48)

up to higher orders in the lattice spacing. The field strength for non-
Abelian gauge theories is given by Fµν,n = taF a

µν,n with

F a
µν,n[A] = ∂µA

a
ν,n − ∂νAa

µ,n − gfabcAb
µ,nA

c
ν,n . (4.49)

The trace sums with respect to the adjoint gauge indices. The numbers
fabc are the structure constants of the SU(N) gauge group. Wewill express
this theory in terms of the classical fields Ā and quantum fields Ã. This
results in three parts: a free part S1, an interacting part S2 being linear in
Ã, and an interacting part S3, which contains all parts not being linear in
the gauge field Ã. Hence, we get

SG[Ā, Ã] = S1 + S2 + S3 . (4.50)

The individual expressions are determined by

S1 =
∑
n1

Ãa
ν,n1

∂µ
[
∂µĀν,a

n1
− ∂νĀµ,a

n1

]
, (4.51a)

S2 =
1

2

∑
n1n2n3

V (3) abc
µνρ (n1, n2, n3)Ã

µ,a
n1
Āν,b
n2
Āρ,c
n3

+
1

6

∑
n1n2n3n4

V (4) abcd
µνρσ (n1, n2, n3, n4)Ã

µ,a
n1
Āν,b
n2
Āρ,c
n3
Āσ,d
n4
, (4.51b)

S3 =
1

6

∑
n1n2n3

V (3) abc
µνρ (n1, n2, n3)Ã

µ,a
n1
Ãν,b
n2
Ãρ,c
n3

+
1

8

∑
n1n2n3n4

V (4) abcd
µνρσ (n1, n2, n3, n4)Ã

µ,a
n1
Ãν,b
n2
Ãρ,c
n3
Āσ,d
n4
. (4.51c)

In the last expression we suppressed the lattice spacings in order to sim-
plify the notation. The symmetrized three- and four-point vertices of the
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gauge theory are denoted byV (3) andV (4) and are given in terms of Ā and
Ã. We will provide the continuum expressions for the vertex of the three
gluon interaction

V (3) abc
µνρ (x1, x2, x3) =

gfabcηµν(δx2,x3∂
x1
ρ δx1,x2 − δx1,x3∂x2ρ δx2,x1)

+ gfabcηµρ(δx1,x2∂
x3
ν δx3,x1 − δx2,x3∂x1ν δx1,x3)

+ gfabcηνρ(δx1,x3∂
x2
µ δx2,x1 − δx1,x2∂x3µ δx3,x1) , (4.52)

and the vertex of the four gluon interaction

V (4) abc
µνρσ (x1, x2, x3, x4) = δx,yδx,wδx,z

×
[
−1

4
g2fabef cde(ηρµησν − ηµσηνρ)

− 1

4
g2facef bde(ηµνησρ − ηµσηνρ)

−1

4
g2fadef cbe(ηµρησν − ηµνηρσ)

]
. (4.53)

of the SU(N) gauge theory. The Minkowski metric is given by
η = diag(1,−1,−1,−1). There are also expressions for the verticeswith-
out moving to a continuum notation for V (3) and V (4) and can be found
in [37].

Finally, we wish to obtain the classical-statistical approximation of the
partition function. Therefore, we neglect the contribution S3 including
the non-linear terms in the quantumfield Ã. Note that the fermionic con-
tribution to the action can again be integrated out. The fermions lead once
more to Tr log ∆−1

C [A] and which is then expanded in the quantum field
Ã. We observe once again, that the linear term in Ã is proportional to the
fermion current. This physical quantity is determined by

j̄a,ν(x) =
g

2
tr
{
〈
[
ψ̄n, ψn

]
〉
Ā
γνta

}
(4.54)

and is dependent on the gauge indices. The trace is with respect to the
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Dirac and fundamental gauge indices. At this point the remainder of the
derivationwill follow theAbelianU(1) case.We conclude that the partition
function for the SU(N) gauge theory interacting with fermionic matter
in the classical-statistical approximation is expressed in a similar way as
(4.39). It is expected that the equation ofmotion is now determined by the
classical Yang-Mills equation

∂µF̄
µν,a
n + gfabcAb

µ,nF̄
µν,c
n =

g

2
tr
{
〈
[
ψ̄n, ψn

]
〉
Ā
γνta

}
. (4.55)

4.2 Diagrammatics

After obtaining the classical-statistical approximation for the underlying
U(1) and SU(N) gauge theories coupled to fermionic matter we will give a
diagrammatic analysis.

4.2.1 Classical and Quantum Vertices

A A
+

A

A

A

A

++ +

Figure 4.2: Diagrammatic representation of Tr log ∆−1C [A] as given in (4.56),
with numerical prefactors being omitted. The fermion lines here denote free
propagators∆C[0].

Starting from the expression (4.16) of theAbelianU(1) gauge theorywhere
the fermions have been integrated out we consider the following expan-
sion

Tr log∆−1
C [A] = −

∞∑
m=1

(ig)m

m
Tr(∆C[0] /A)m . (4.56)
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Note that this expression neglects constant contributions [68]. We repre-
sent this expansion in diagrams given in Fig. 4.2 showing the correspon-
dence of them-th term wiht them-th diagram. If we express each term
in the expansion (4.56) in terms of the classical field Ā and the quantum
field Ã, the photon lines in Fig. 4.2 will be replaced by the classical con-
tribution Ā or quantum contribution Ã, respectively. The essence of this

Ā′

Ā′

Ã′ Ã′

Ā′

Ā′

Ā′

Figure 4.3: The classical vertices S2 of the SU(N) gauge theory, which are in-
dependent of the coupling g in terms of the rescaled fields Ā′ and Ã′.

expansion becomes obvious when we rescale the fields as

Ā = g−1Ā′ , (4.57a)

Ã = gÃ′ . (4.57b)

Note that the Abelian U(1) gauge action (4.21) is invariant with respect
to such a transformation since it contains one classical and one quan-
tum field. This is also true for the free part S1 in the SU(N) gauge ac-
tion (4.51). All these contributions do not depend on the coupling g. How-
ever, in a non-Abelian gauge theory, we have to take into account the self-
interactions as they are present in S2 and S3. The contribution of S2 is in-
dependent of g, which can be seen after rescaling the fields as it is shown
in Fig. 4.3. All coupling-independent non-linear parts will contribute to
the classical vertices. Complementary, the contribution ofS3 is a quantum
vertex since it is proportional to g4 using the rescaled fields, cf. Fig. 4.4.
Performing the classical-statistical approximation of pure gauge theories
we neglectS3 because it only contains non-linear terms in Ã. After rescal-
ing (4.57) an explicit coupling dependence is not present anymore in the
classical gauge dynamics. However, the coupling will enter in the initial
conditions.
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Considering fermions, we observe that the rescaling of the field will still
lead to a coupling dependence due to the quantumnature of the fermions.
The expansion ofTr log ∆−1

C [A] in the coupling using rescaled fields leads
to the expression

Tr log ∆−1
C [A] = Tr log ∆−1

C [g−1Ā′]

+ g2 i

2
Tr{∆C[g−1Ā′] sgnC /̃A

′}+O(g4) + . . . . (4.58)

Such an expansion in the coupling g becomes more feasible by connect-
ing it to the expansion in the rescaled quantum field Ã′. The first term
Tr log ∆−1

C [g−1Ā′]will vanish due to thenormalization given in (4.23). The
second term is proportional to g2. However, this term also contains all di-
agrams with only classical fields Ā′ except for one quantum field Ã′ and
is the diagrammatic interpretation of (4.24). All the terms being propor-
tional to g4 contain twoquantumfields Ã′, the terms containing g6 involve
three quantumfields Ã′, and so on. The explicit diagrammatic representa-
tion is given in Fig. 4.5. We emphasize that the contributions proportional
to g2 in the rescaled fields contain an infinite number of terms.

We remind ourselves, that the classical-statistical approximation neglects
all terms in (4.58) containing more than one quantum field Ã′. On the
other hand, this shows that the classical-statistical approximation is exact
to order g2 in the coupling constant. Hence,we conclude that the classical-
statistical approximation should be valid as long g � 1. The restriction
to weak couplings is important. However, we note that a theory can be
strongly correlated despite small couplings, e.g. in the presence of large

g4 Ã′

Ã′

Ã′

g4

Ã′

Ã′

Ã′

Ā′

Figure 4.4: The quantum vertices S3 of the non-Abelian gauge theory, which
are of order g4 in terms of the rescaled fields Ā′ and Ã′.
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Figure 4.5: Diagrammatic representation of Fig. 4.2 in terms of the rescaled
field Ā′ and Ã′. The term proportional to g2 corresponds to the coupling of Ã′

to the fermion current (4.24). All higher order terms O(g4) are neglected in
the classical-statistical approximation.

fields or occupation numbers. In particular, the classical-statistical ap-
proximation can be used to discuss the corresponding non-perturbative
physics in QED, or also QCD out of equilibrium, if the gauge coupling is
small enough. A detailed discussion of the situations, where one expects
the classical-statistical description to be valid, is discussed in the next sec-
tion.

4.2.2 Classicality Condition

For small couplings g� 1, which are required by the classical-statistical
approximation, we can describe large classical fields Ā ∼ O(1/g) if we
rescale as in (4.57). The inital value problems, whichwe discuss in this the-
sis, implement this conditions in the initial state. In particularwewill con-
sider (Coulomb gauge) Gaussian initial conditions for the discrete Fourier
transformed gauge fields

Āi,(0,n) ≡ Ai +
1

V

∑
q∈Λ̃∗

eiq·xnĀi,q . (4.59)
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For details we refer to Appendix C. We introduce the following notation
for the coherent fields

〈Āi,(0,n)〉 = Ai , (4.60a)

where we used 〈Āi,q〉 = 0, and the connected two-point correlation func-
tion is given as

〈
Āi,qĀj,q

〉
=
V

ωq

(
1

2
+ nq

)
Pij . (4.61a)

In addition one has to fix the expectation values of the first-order time
derivatives of the field. Note that nq delivers the initial occupation num-
ber of frequency ωq. The transverse projector is denoted by Pij . If we
consider quantum fluctuations, the occupation number will be given by
nq = 0. However, we can still get a valid classical-statistical description if
we consider a large initial coherent field

Ai ∼ O(1/g) . (4.62)

In particular this is relevant for the initial conditions of the Schwinger
pair production. This will be considered in Sec. 4.3.

On the other hand, if we describe small coherent fields, but consider large
initial occupation numbers

1� nq . O(1/g2) , (4.63)

for characteristicmomentaq, this will still lead to an accurate description
of the underlying quantum dynamics. Considering the time evolution of
large coherent fields or high occupation numbers one has to monitor its
behavior in order to ensure the validity of the classical-statistical simula-
tions. We will stop the time-evolution as soon as the characteristic time-
dependent occupation numbers become of order one.

It is highly important that the late-time evolution leading to thermal equi-
librium, involving characteristic occupancies of order one at the typical
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momenta given by the temperature, cannot be described by the classical-
statistical approach. It should be clear that a classical-statistical approx-
imation will suffer from Rayleigh-Jeans divergencies, if the theory is not
regularized by an ultraviolet cutoff. However, this is no restriction, if we
use the classical-statistical approximation at sufficiently early times and
respect the classicality conditions: Given a finite ultraviolet cutoff Λ of a
lattice regularized theory, the dynamics should be dominated by the large
coherent fields or the large occupations given the coupling constant was
chosen sufficiently small. The large field and the large occupation num-
bers should not be present close to the UV-cutoff. In such a situation the
results are insensitive to modifications in the ultraviolet cutoff scale. This
insensitivity indicates the applicability of the classical-statistical approx-
imation. This has been explained in detail for a scalar field theory [69].

Note that such a classicality condition restricts the bosonic sector and the
analysis is analog to the scalar field theory studies of [30, 33]. Another way
to state the classicality condition is that the anti-commutator expectation
values, such as |〈ĀĀ〉|, for typical bosonic field modes dominate in com-
parison to the commutators |〈ÃĀ − ĀÃ〉|. We emphasize that there is
one factor of the quantum field Ã more than in the corresponding anti-
commutator. This will allow for a discussion of the classicality condition
without referring to occupation numbers. Nevertheless, occupation num-
bers are often not problematic in practice since we check them at rather
high momenta, where we expect that gauge fixed quantities are accept-
able when using perturbation theory [63].

4.3 Real-time Simulation of QuantumElectrodynamics

This section gives an explicit algorithm, how the classical-statistical
approximation can be solved. Generally speaking we have to numeri-
cally solve an initial value problem on a space-time lattice. Indicated in
Sec. 4.1.1, these numerical calculations will be performed using the link
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variables Uµ,n instead of the gauge fields Aµ,n. Because we are mainly in-
terested in the Schwinger pair production we will restrict ourselves to
U(1) gauge theory coupled to fermions. The generalization to SU(N) gauge
theory follows along the very same lines andwas already employed in [70].

4.3.1 Lattice Action

We reconsider the Wilsonian action on a real-time lattice (4.4). For a U(1)
gauge theory this can be written as

SG [U ] =
1

g2

∑
n∈Λ+

∑
i

a4

a2
0a

2
i

Re Tr (1− U0i,n)

− 1

g2

∑
n∈Λ+

∑
i,j
i<j

a4

a2
ia

2
j

Re Tr (1− Uij,n) , (4.64)

where we introduced the notation a4 ≡ a0a1a2a3. Since we allow
anisotropic lattices we will distinguish between the different ai with i ∈
{1, 2, 3}. It is clear from our discussion in Sec. 4.1 that we only have to
consider the forward branch of the Schwinger-Keldysh contour. The spa-
tial and temporal plaquettes correspond to the electric and the magnetic
field and are defined as

Ei,n =
1

ga0ai
ImU0i,n , (4.65a)

Bi,n = − 1

2gajak
εijk ImUij,n . (4.65b)

Note that we will consider a central derivative discretization as outlined
in (4.7) for the fermionic fields. The fermion doubling problem,which nat-
urally arises in a lattice formulation of fermions [71], can be circumvented
in several different ways [72–75]. We will use Wilson fermions, since they
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can be used in a theory without any chiral symmetry:

SF [ψ, ψ̄, U ] = a4
∑
n∈Λ+

ψ̄n

[
iγµ

Uµ,nψn+µ̂ − U−µ,nψn−µ̂
2aµ

−Mψn

+
∑
i

Ui,nψn+ı̂ − 2ψn + U−i,nψn−ı̂
2ai

]
. (4.66)

The last contribution is present due to the discretized second derivative
term and vanishes in the naive continuum limit ai → 0. The Wilson term
ensures that spatial doubler modes are suppressed. In particular the low-
momentum excitations show a low-energy particle-like dispersion rela-
tion. We do not include a Wilson term for the temporal direction since
the doubler modes are suppressed for appropriate initial conditions. This
applies if the temporal lattice spacing is much smaller than the spatial
lattice spacing, a0 � ai [28, 76]. In order to simplify the calculation, we
use the gauge freedom and set U0,n = 1. This is the lattice version of the
temporal-axial gauge conditionA0,n = 0.

4.3.2 Equations of Motion

Using the action SG[U ] + SF [ψ, ψ̄, U ] we obtain discretized equations of
motion by varying the dynamical degrees of freedom. For the fermionic
fields, these are given

ψn+0̂ = ψn−0̂ − 2ia0

(
M +

∑
i

1

ai

)
γ0ψn

+
∑
i

a0

ai

[(
i+ γi

)
γ0Ui,nψn+ı̂ +

(
i− γi

)
γ0U−i,nψn−ı̂

]
, (4.67)

where we employed the temporal-axial gauge. Since we wish to calculate
the Dirac fieldψn+0̂ we have to determine the linkUi,n as well as the Dirac
field at the two time slices ψn and ψn−0̂. This is due to the central deriva-
tive discretization of the Dirac action SF [ψ, ψ̄, U ]. Hence, we need two
initial values for the Dirac field at the two time slices n0 = {0, 1}. In an
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explicit simulation, we take ψ(0,n) according to the chosen initial condi-
tion and perform a free field evolution of this state in order to obtain a
consistent value for ψ(1,n). This choice of initial conditions also keeps the
temporal doubler mode unexcited [76].

The equations of motion of the gauge sector (4.40) now contain a contri-
bution of the Keldysh two-point function:

∆K
n,m = 〈

[
ψn, ψ̄m

]
〉 . (4.68)

We evaluate this object by mode function expansion as described in Ap-
pendix B. Another way to do this is possible using so-called ‘low-cost’
fermions [77]. However, using the former approach the equations of mo-
tion (4.67) are essentially equations of motion for the mode functions de-
noted by Φu

λ,n,q and Φv
λ,n,q.

The Gauss’s law constraint in temporal axial gauge is given by

∑
i

Ei,n − Ei,n−ı̂

ai
= −g

2
Re tr{∆K

n+0̂,n
γ0} , (4.69)

and the trace is performedwith respect to the Dirac indices. This equation
is a constraint and has to be satisfied at each time step. In particular the
initial field configuration has to fulfill this condition. This implies that a
field configuration which fulfills Gauss’s law at initial times n0 = 0 will
respect it at later times n0 > 0.

Finally, in order to obtain a self consistent system of equations the equa-
tion of motion of the electric field is determined by

Ei,n = Ei,n−0̂ −
a0

gai

∑
j 6=i

Im[Uij,n + Uji,n−̂]

a2
j

+
ga0

2
Re tr{∆K

n+ı̂(γ
i − i)Ui,n} . (4.70)

Note that this equation corresponds to Ampere’s circuit law.
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4.3.3 Numerical Algorithm

Now, we want to present a numerical algorithm that can be used to solve
the above set of equations:

1. Initial conditions:

n0 = 0 : ψ(0,n) , Ei,(0,n) , (4.71a)

n1 = 0 : ψ(1,n) , Ui,(1,n) . (4.71b)

2. Solving the equations of motion:

2a. DiscretizedDirac equation: Givenψn−0,ψn andUi,n obtain theDirac
field at ψn+0 according to (4.67).

2b. Discretized Electric field evolution: GivenEi,n−0̂, ψn andUi,n obtain
the electric fieldEi,n according to (4.70).

2c. Spatial link propagation: Calculate the temporal plaquette

U0i,n =
√

1− (ga0aiEi,n)2 + iga0aiEi,n . (4.72)

Obtain the link Ui,n+0̂ from

Ui,n+0̂ = U0i,nUi,n . (4.73)

2d. Reiterate the steps 2a – 2c.

3. Classical-statistical sampling:

Reiterate the steps 1 – 2. Average the solutions to determine the ob-
servables.

4.3.4 Initial Conditions

Both the fermion sector and the gauge sector need individual initial con-
ditions. We will assume that these two sectors decouple at initial times
and consider both sectors as free.
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For the fermions, we determine the Dirac vacuum being characterized by
the correlation functions

〈ψ(0,n)〉 = 〈ψ̄(0,n)〉 = 0 , (4.74a)

∆K
(0,n),(0,m) =

1

V

∑
q∈Λ̃

M̄ − γip̄i
ω̄

eip·(xn−xm) . (4.74b)

The details leading to this result can be found in Appendix B.

In the gauge sector the initial state will be modeled by a Gaussian state.
Such states are completely characterized by the one-point and two-point
correlation functions of the gauge field [78]. Note that we have to choose
a gauge condition in order to fix the initial correlations. As mentioned
before, we will focus on the temporal-axial gauge, where A0,n = 0. On
the lattice the temporal axial gauge is given by U0,n = 1. There is a re-
maining residual gauge invariance under time-independent gauge trans-
formations [79]. We will exploit this gauge freedom at initial times n0 = 0

to enforce ∑
i

Ai,(0,n) − Ai,(0,n−ı̂)

ai
= 0 . (4.75)

In order to describe a coherent field with vacuum fluctuations, we fix the
one-point correlation functions

〈Ai,(0,n)〉 = Ai , (4.76a)

〈Ei,(0,n)〉 = Ei , (4.76b)

whereAi and Ei are the coherent fields. In addition we focus on the two-
point correlation functions

〈{Ai,(0,n), Aj,(0,m)}〉c =
1

V

∑
q∈Λ̃

1

|p̃|
Pijeip·(xn−xm) , (4.77a)

〈{Ei,(0,n), Ej,(0,m)}〉c =
1

V

∑
q∈Λ̃

|p̃|Pijeip·(xn−xm) , (4.77b)
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where Pij is the transverse projector. All the calculational details con-
nected to the initial conditions can be found in Appendix C.

Initially we set the vacuum modes only up to a finite momentum scale.
This scale is chosen to be below the ultraviolet cutoff. This choice ensures
that the energy density of the vacuum modes is small and will not signif-
icantly contribute to the dynamics of the system. We choose this finite
momentum scale at 5M in the following and verified the independence
of the result by additional calculations varying this value.

4.4 Fermion Production in Three Dimensions

As a first application we consider the production of electron-positron
pairs by a large coherent field, the so called Schwinger mechanism [10,
80, 81]. In order to quantify the production we define the dimensionless
field strength parameter

ε0 =
gE0

M 2
. (4.78)

In this chapter, the presented numerical results are performed for g = 0.3

and ε0 = 3.

In the gauge sector, we will consider the one-point correlation function
of the electric field. On the other hand we present results for the total
fermion densityN(t)/V being the number of electrons per volume. Fur-
ther we determine the normalized momentum distribution n(p, t).

4.4.1 Schwinger Mechanism

In a first calculation we neglect the back-reaction of the fermion current
on the gauge fields (4.70) and the classical-statistical sampling. In this way
we can compare to analytically known continuum results. In addition we
show that they can be reproduced with our real-time lattice simulations.
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We choose the Dirac vacuum as our initial conditions for the fermions.
Under all these assumption we only have to evolve the fermion equation
ofmotion (4.67) with a sudden switching-on of the electric field atn0 = 0.
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Figure 4.6: Time evolution of the total fermion density N(t)/V for ε0 = 3
with lattice parameters a0 = 0.002/M , a3 = 0.05/M , N1,2 = 12, N3 = 40.
Shown is a comparison of the continuum expression (black) with numerical
results for a1,2 = 0.75/M (red) and a1,2 = 0.25/M (blue).

The evolution of the total fermion density,N(t)/V at ε0 = 3 and two sets
of different spatial lattice spacings ai is depicted in Fig. 4.6.

We distinguish between two regimes: At early times (ttr ∼ 1/M ) we see
transient enhanced fermion production. This behavior can be explained
by a quench in the electric field. In contrast, at subsequent times, we de-
termined a linear growth of the fermion density. This is expected from the
analytic continuum results, which are collected in the Appendix E:

Ṅ(t)

V
=
M 4ε20
4π3

exp

(
− π
ε0

)
. (4.79)
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Note that when deriving this analytical result the initial time is send to
−∞ and it will not exhibit the transient/initial regime. The analytic re-
sult is given in Fig. 4.6 at times directly after the initial regime. The lat-
tice results for a3 = 0.05/M and a1,2 = 0.25/M coincide with the an-
alytic result whereas the result for a1,2 = 0.75/M shows deviations. In
this respect the real-time lattice simulations are able to reproduce known
results for small spatial lattice spacings. Note that we still observe devia-
tions from the analytic results due to the numerical restriction caused by
small lattices. Moreover, the numerical results oscillate around the ana-
lytical curve. This is due to the fact that we are not able to fully resolve
the momentum space withN3 = 40 grid points.
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Figure 4.7: Comparison of the continuum expression (black) with the normal-
izedmomentumdistributionn(p, t) (blue) for ε0 = 3 at p1,2 = 0 and t = 20/M .
The parameters are a0 = 0.001/M , a1,2 = 0.5/M , a3 = 0.05/M , N1,2 = 12,
N3 = 64 such that V = 115.2/M3.

The normalized momentum distribution n(p, t) for ε0 = 3, p1 = p2 = 0

at t = 20/M is depicted in Fig. 4.7. This can be compared to the ana-
lytic continuum value f(p), which can be found in Appendix E. The quan-
tity f(p)measures the electric field energy being transformed into virtual
electron–positron pairs. This is visible at the distinctive peak around ki-
netic momenta p = 0. Choosing a large field strength, the charged excita-
tions are separated and become real electron–positron pairs. The electric
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field will accelerate these real particles since we neglect the back-reaction
in this section. In this way the particles gain momentum up to p→∞.

There is agreement when comparing the numerical simulation and the
analytic result. Nevertheless there is a qualitatively different behavior for
largemomenta. Note that the analytic result assumes a static electric field
such that all momenta up to p→∞ are occupied. In the numerical simu-
lation the peak at large momenta is a consequence due to the initial parti-
cle production from the vacuum. The quench in the electric field enhances
the particle production at early times ttr ∼ 1/M . This results in the sin-
gle peak around p = 0 propagating to higher momenta during the time
evolution.

4.4.2 Back-reaction and Plasma Oscillations

In this section, we include back-reaction of the fermion current on the
gauge fields (4.70) and perform the classical-statistical sampling. As amat-
ter of fact, we find that a very small number of field configurations is
needed since the physics is completely determinedby the large zero-mode
of the electric field. We perform five distinct runs and observe that the in-
dividual realizations differ marginally when calculating volume averaged
quantities.

We compare the time evolution of the total fermion density N(t)/V for
ε0 = 3with andwithout including the effect of the fermionic current. This
is shown in Fig. 4.8. The particle number grows linearly without including
the effect of the produced fermionic current. The picture changes when
we consider the fermion density with back-reaction. The particle number
of the fermions develops into a staircase structure with decreasing step
height.
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Figure 4.8: Time evolution of the total fermiondensityN(t)/V for ε0 = 3with
lattice parameters a0 = 0.002/M , a1,2 = 0.5/M , a3 = 0.05/M , N1,2 = 12,
N3 = 40 such that V = 72/M3. The straight line depicts the result with-
out the back-reaction of fermions and the horizontal dashed lines indicate the
plateaus in the fermion density.

This qualitative feature is accessible, when considering the volume aver-
aged electric field

〈E3(t)〉 =
1

V

∑
n∈Λ

E3,n (4.80)

Figure 4.9: The volume averaged electric field 〈E3(t)〉 as a function of time.
The parameters are the same as in Fig. 4.8.
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for longer times in Fig. 4.9. The initial state enforces the expectation val-
ues of the electric components 〈E1,2(t)〉 and the magnetic components
〈Bi(t)〉 to be zero. Initially at t = 0 the electron-positron pairs are cre-
ated and subsequently accelerated. In this way a fermionic current arises.
This leads to an electric field counteracting the initial electric field. Note
that the electric field changes sign and reaches a first local minimum. The
electric field increases again, changes sign, reaches again a localmaximum
and this continues. These plasma oscillations are in accordancewith an al-
ternative investigation [58, 82, 83].

The oscillation of the electric field can also be found in the fermion sec-
tor. The particle production terminates when the magnitude of the field
strength is too small. This leads to the plateau structure inN(t)/V . How-
ever, when the electric field reaches a local extremum, the pair production
is present again. The envelope of the electric field decreases with time.
The oscillation frequency of the electric field increases with the number
of produced fermions.

We show thenormalizedmomentumdistributionn(p, t) at different times
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Figure 4.10: Normalizedmomentumdistributionn(p, t) for ε0 = 3 at p1,2 = 0.
The parameters are identical to Fig. 4.8.



Chapter 4: Lattice Gauge Theories Out of Equilibrium 74

in Fig. 4.10. For the definition of themomentumdistribution see Appendix
D. Since the electric field changes its sign in a repetitive manner, the elec-
trons and positrons are accelerated in an oscillatory way in momentum
space. This results in a peaked distribution which oscillates around p = 0,
similar to the electric field. In the next chapter we will use a similar ap-
proach to tackle lattice gauge theories built from cold atom systems.



Chapter 5

Strong Field QED with Cold Atoms

In chapter 3 we introduced an experimental setup which can be used
to quantum simulate a one-dimensional U(1) gauge theory coupled to
fermionic matter. In addition, we elaborated a theoretical approach to
study such gauge theories in the classical-statistical regime in chapter 4.
Consequently, we will combine the content of both chapters and inves-
tigate the non-equilibrium dynamics of gauge theories realized by cold
atom systems. In this chapter, we will explore the time evolution of quan-
tum link models in a yet less considered regime and test their ability to
depict the physics of strong field QED. Depending on the observable, the
realization of a U(1) gauge theory employing coherent many-body states
may be preferable in comparison to proposals using single atoms [17–19].

In particular, we plan to study Schwinger pair production in the proposed
cold atom experiment of chapter 3. This phenomena has not been ob-
served directly because of the large electric fields [13], but it is a long
standing prediction [11, 12] of quantumelectrodynamics. The critical field
strengthEc = M 2/g ∼ 1018V/m is givenby the electronmassM and the
absolute value of the electric charge g of QED. However, the pair produc-
tion phenomenon is determined by the dimensionless ratio E/Ec & 1,
where E is the electric field. Hence, changing the value of M and g in
order to make Ec smaller would make the phenomenon more easily ac-
cessible. One reason why quantum simulations can be powerful is that

75
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physical systems with vastly different scales can be used to investigate
the samephenomena, because dimensionless ratios are identical. The pro-
posed cold atom setup of chapter 3 allows for an investigation of pair pro-
duction at a completely different scale than strong field QED [43, 84]. This
experiment simplifies the realization of a strong electric field as we will
show in the following.

When considering a system of ultracold atoms in an optical lattice as
a quantum simulator for electron-positron pair production in QED, we
will focus again on one spatial dimension. We remind ourselves that the
key idea to realize gauge theories with cold atoms was the finite dimen-
sional representation of the links. This allowed us to engineer a cold atom
setup with a continuous U(1) gauge invariance. Our experimental pro-
posal has the possibility to directly tune the dimensionality of the local
Hilbert spaces, which allows us to tune from a quantum link model to the
Kogut-Susskind Hamiltonian [23]. We will always aim for the infinite di-
mensional Hilbert space of QED and study its approximation by experi-
ments employing Bose-Einstein condensates interacting with fermionic
atoms. The functional integral approach developed in the last chapter
is a suitable tool to tune from a quantum link model towards the Wil-
son formulation of lattice gauge theory. In particular we study the neces-
sary particle numbers per link in order to observe the QED phenomena of
Schwinger pair production. In previous publications quantum link mod-
els were investigated for small dimensional representations of the link
variable. This corresponds to using single atoms in order to realize the
link. The employed techniques to study such states are diagonalization
or matrix-product-states methods [35, 43, 85–87]. Note that the general-
ization of the functional integral representation to higher spatial dimen-
sions and non-Abelian gauge theories was already presented in chapter 4
and applied in [36], but the aforementioned methods are difficult to use
in these more general situations.
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5.1 Kogut-Susskind and the Cold Atoms

One main result of chapter 2 was a formulation of lattice QED using the
staggered fermion discretization. In particular, it is suitable for numer-
ical simulations and it is a possible starting point for a U(1) gauge the-
ory of a cold atom system [41]. The dynamical variables are the staggered
fermion field ψn, the link Un and the electric field En. They build the
Kogut-Susskind Hamiltonian [21, 22] of QED given by

HKS =
∑
n

{aS
2
E2
n +M(−1)nψ†nψn

− i

2aS

[
ψ†nUnψn+1 − ψ†n+1U

†
nψn

] }
, (5.1)

whereaS is the lattice spacing,M is themass and g denotes the gauge cou-
pling, which appears in the link Un = exp(igaSAn). We discussed how to
verify local gauge invariance employing Gauss’s law (3.50). The proposed
quantum simulator of chapter 3 can be described by the Hamiltonian

HQL =
∑
n

{g2aS
2

L2
z,n +M(−1)nψ†nψn

− i

2aS
√
`(`+ 1)

[
ψ†nL+,nψn+1 − ψ†n+1L−,nψn

] }
. (5.2)

Both models can be connected by the substitution rule:

En → gLz,n , (5.3)

Un → [
√
`(`+ 1)]−1L+,n , (5.4)

U †n → [
√
`(`+ 1)]−1L−,n . (5.5)

The structure of the commutator of link and electric field is not changed
by this substitution. Furtherwe force theHilbert space of the links and the
electric fieldfinite to befinite. This is themaindifference to the infinite di-
mensional QED case. The Schwinger boson representation was introduced
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in (3.21). Inserting the latter into (5.2) we get the Hamiltonian

HQL =
∑
n

{g2aS
4

[b†nb
†
nbnbn + d†nd

†
ndndn] +M(−1)nψ†nψn

− i

2aS
√
`(`+ 1)

[
ψ†nb

†
ndnψn+1 − ψ†n+1d

†
nbnψn

]}
, (5.6)

where we neglected irrelevant constants [23]. We use the density-phase
representation for the Schwinger bosons

bn =
√
`+ δρb,ne

iθb,n , (5.7)

dn =
√
`+ δρd,ne

iθd,n . (5.8)

If we expand the square root in the density fluctuation δρb,n and δρd,n, the
connection betweenHKS andHQL becomes obvious and we observe

HQL = HKS +O(δρ/`) . (5.9)

Hence the total number of bosonic atoms per site 2` can control the dif-
ference between (5.2) and (5.1).

5.2 Classical-Statistical Approach with Cold Atoms

Before performing the classical-statistical approximation for the Hamil-
tonian of the quantum simulator, we discuss if this approach can be used
to study the strong field physics of QED. The initial electric field is of the
order of the critical field strength Ec = M 2/g. In the cold atom experi-
ment this corresponds to |Ec| = g|Nb − Nd|/2 ∼ M 2/g, where Nb and
Nd are the number of atoms in the bosonic modes. ConsideringNb, Nd ∼
O(`) � 1, the dynamics in this regime can be accurately described us-
ing the developed functional integral approach in chapter 4. Similar crite-
ria for the validity of the classical-statistical approximation can be found
in [36, 88]. Hence, we can expect that the classical-statistical approxima-
tion is valid, when we study strong field QED.
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Since the detailed derivation of the classical-statistical approximation
was given in chapter 4, we can briefly point out the differences to the
gauge theories presented there. We collect the bosonic fields in φn =

(b†n, bn, d
†
n, dn) and define the generating functional in the presence of

sources Jn = (Jb,n, J
∗
b,n, Jd,n, J

∗
d,n) by Z[J ] = Tr{ρ0TCe

iJ ·φ}. Here, ρ0

is the initial density matrix, J · φ =
∑

n

∫
t,C Jn(t) · φn(t) with t the time

coordinate along the closed time path C, and TC denotes time-ordering
along C. Employing the coherent state basis, the functional integral rep-
resentation of the generating functional becomes

Z[J ] =

∫
[dφ][dψ†dψ] 〈+| ρ0 |−〉 eiS+iJ ·φ , (5.10)

with the action

S =

∫
t

∑
n

(ψ†ni∂tψn + b†ni∂tbn + d†ni∂tdn)−HQL , (5.11)

and the |+〉 and |−〉 are the initial coherent states appearing on the for-
ward and backward path leading to the matrix element of the density op-
erator 〈+| ρ0 |−〉, see Fig. 4.1.

Again the fermion degrees of freedom appear quadratically in the expo-
nent. We integrate out the fermions and perform the Keldysh rotation,
φn = φ̄n+sgnC φ̃n. Then we expand to first order in the bosonic response
fields φ̃n. Note that neglecting the higher-order terms is justified in the
classical-statistical regime [36]. In our case the corrections will be sup-
pressed by factors of N−1

b , N−1
d � 1. This leads to the following set of

self-consistent equations

i∂tbn =
g2aS

2
b†nbnbn + i

dnFn+1n

4aS
√
`(`+ 1)

,

i∂tdn =
g2aS

2
d†ndndn − i

bnFnn+1

4aS
√
`(`+ 1)

,

i∂tFnm =
∑
n′

[
hQLnn′Fn′m − Fnn′h

QL
n′m

]
. (5.12)
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Here, Fnm = 〈[ψn, ψ†m]〉 is the fermion equal-time correlation function,
whose evolution is governed by the matrix

hQLnm =
i[d†n−1bn−1δn−1,m − b†ndnδn+1,m]

2aS
√
`(`+ 1)

+M(−1)nδn,m.

The equations of motion (5.12) preserve Gauss’s law, i.e. ∂tGn = 0 at all
times. The derivation of the classical-statistical approximation with stag-
gered fermions is similar to the one presented in chapter 4 and leads to

∂tEn =
g

2aS
Re[Fn+1nUn],

∂tUn = igaSEnUn ,

i∂tFnm =
∑
n′

[hKSnn′Fn′m − Fnn′hKSn′m] , (5.13)

with

hKSnm =
i

2aS
[U ∗n−1δn−1m − Unδn+1m] +M(−1)nδnm .

By considering the time derivative of En = g(b†nbn − d†ndn)/2 and Un =

[
√
`(`+ 1)]−1b†ndn, insert the density-phase representation, one can show

that (5.12) approximates (5.13) up to orderO(δρ/`). This implies that both
the classical-statistical approximation and the approach towardsWilson’s
lattice gauge theory are consistent. We remind ourselves that ` controls
whether essential phenomena of QED can be observed or not.

5.3 Pair Production with Cold Atoms

In a homogeneous electric field E the creation of electron-positron pairs
can be interpreted as a processwhere virtual electron-positron dipoles are
separated over a finite distance and become real pairs. The binding energy
of these dipoles will be at the order of twice the rest mass energy. This
process can also be estimated [11, 12] when neglecting the back-reaction.
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Figure 5.1: For different numbers of atoms ` per link the fermion number den-
sity results in a staircase structure. The Schwinger formula corresponds to the
straight line, which neglects the back-reaction. When increasing the number
of atoms ` per link (blue and red line), we approximate the `→∞ result.

In one spatial dimension the analytic result for the production-rate is then
given by

ṅ = M 2E/(2πEc) exp(−πEc/E) (5.14)

and is depicted in Fig. 5.1.

At sufficiently early times we assume that the analytic estimate describes
the production rate of the full system and provides a benchmark for the
simulation method. The simulated system has a volume of NaS with pe-
riodic boundary conditions. The real-time evolution is performed accord-
ing to the equations (5.12) with the parameters g/M = 0.1 and aS ·M =

0.005 in the limit ` → ∞ and corresponds to QED described by (5.13).
N determines the number of lattice sites, but also denotes the number of
fermionic atoms. We checked that the employed lattices with N = 512

show no significant volume dependence anymore. Moreover, the results
are insensitive to changes in the lattice spacing, i.e. theUV-cutoff, as itwas
demanded in chapter 4. We use a particle number definition introduced
in [36, 77] and Appendix D. The results of the simulation for QED (` =∞)
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are then given in Fig. 5.1. They agree with the Schwinger formula at early
times and show the same qualitvative behavior as the three-dimensional
system in chapter 4. Again, the constant rate changes at later times and
results in a staircase structure [77, 89] with a decreasing step size.

Obviously, the corresponding cold atom system does not produce any par-
ticle since the number of atoms is fixed. However, the staggered formula-
tion for fermionic atoms allows the interpretation of two neighboring lat-
tice sites to represent particles and antiparticles. Then pair production is
described by the hopping of atoms between even and odd sites in the op-
tical lattice. The time evolution of the correlations describing the corre-
sponding phenomenon of pair production is shown in Fig. 5.1 as well. This
figure demonstrates the convergence of the quantum simulator’s dynam-
ics to the QED behavior as the number of bosonic atoms per lattice site
is increased. For ` = 2500 there are observable deviations from the QED
result, whereas the difference almost vanishes for ` = 5000.

Figure 5.2: The dynamics of the electric field and gLz as represented by the
bosonic species population imbalance is shown for different values of `. The
color code and the values of ` are the same as in Fig. 5.1. The back-reaction of
the produced pairs leads again to the plasma oscillations seen in chapter 4.

The time evolution of the electric field in the cold atom system is shown
in Fig. 5.2 for different values of `. Note that the electric field is given by
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E = g(Nb−Nd)/2 and corresponds to the occupation number difference
of the two addressed hyperfine states. In Fig. 5.2, we begin with the imbal-
ance Nb − Nd = 2M 2/g2 > 0 being the critical electric field strength
in the atomic system. On the other hand, we start with the Dirac vacuum
in the fermionic sector (3.50). This state is given by occupying the low-
estN/2 energy eigenstates. The contrasting juxtaposition of Fig. 5.1 and
Fig. 5.2 reveals a decrease of the electric field while the fermion number
grows due to pair production. The imbalance of the bosonic species be-
comes zero because of the correlated hopping process of the fermions.
The behavior of the imbalance of the atoms is again the plasma oscillation
encountered in chapter 4 and similar in [36, 77, 90]. As soon as the electric
field drops below a critical value, the particle creation effectively termi-
nates. This physical situation is reflected in the characteristic plateaus in
the particle number density. In this respect three and one dimensions are
similar.

Figure 5.3: At three instants of time t ·M = 25 (red), t ·M = 75 (blue) and t ·
M = 175 (black) themomentum distribution n(p, t) of the produced fermions
for ` = 104 is shown. For this value of ` we reproduce the QED result and
observe the acceleration of the charges.

Moreover, after the production of the electron-positron pair, the particles
get accelerated by the electric field. Therefore, we study the momentum
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distribution of the fermions [36, 77] in Fig. 5.3 for ` = 104 which repro-
duced theQED results. Due to thehomogeneous electric field, the fermions
are dominantly produced around zero momentum. In addition, they are
accelerated by the electric field to higher momenta at later times. The
fermions arrive at their maximum momentum at the same time as the
electric field vanishes. Thereafter, the current causes the decrease of the
electric field to a negative value and consequently leads to a deceleration
of the produced particles.

Figure 5.4: Thedynamics of the electric field for different system sizesN = 32
(blue),N = 128 (red) andN = 512 (black) with ` = 104.

The experimental setup is usually restricted in size, therefore we investi-
gate the dependence of the results on the system sizeN . The electric field
for differentN with fixed angularmomentum ` = 104 is shown Fig. 5.4. In
order to observe a reasonable approximation to the QED results we need
aboutN = 128 for a full oscillation period, but we note deviations at later
times. For N = 512 we see an accurate descriptions for the time ranges
considered in this work.
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5.4 String Breaking

The physics of confinement in the theory of quantum chromodynamics
(QCD) manifests itself in the formation of a string between two external,
static quarks. This confining string can break in theories with dynamical
fermions by the production of charged particle-antiparticle pairs which
result in a screening of the static sources [91–94]. It is important to note
that QED in one spatial dimension shares the intriguing phenomenon of
dynamical string breaking. It therefore serves as a popular model for ad-
dressing questions which are still too hard to answer in full QCD [89, 95].

Figure 5.5: Dynamical breaking of the string. We consider three instants of
time t1 ·M = 0.0 (black), t2 ·M = 8.4 (blue) and t3 ·M = 24.9 (red) for `→∞.

To study dynamical string breaking in QED in one spatial dimension we
prepare two static elementary charges ±Q located at ±d/2. The corre-
sponding electric field between the charges is given by E = Q whereas
it vanishes outside. In the remainder of this section we chooseQ = g. In
the cold-atom setup, this corresponds to a bosonic species imbalance of
Nb −Nd = 2Q/g inside the string |x| < d/2 whereas it vanishes outside
of the charges.

We first make contact to the corresponding QED literature [88, 89] by con-
sidering the limit ` → ∞ for g/M = 1.0, aS · M = 0.1 and N =
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Figure 5.6: The electric fieldE/M in the center of the string breaks due to the
dynamical fermion production (black). We also show the results for different
atom numbers ` = 20 (blue) and ` = 10 (red), but for the same distance of the
static charges.We observe the same behavior in the cold atom setup. However,
there is also the onset of an oscillation in the cold atom setup.

1024. To this end, we study the time-evolution of the elecric field En for
d/aS = 287. We chose this particular distance in order to detect clean
string breaking as we will explain in the following. We display the electric
field for different instances of time in Fig. 5.5.

Starting from the initial field configuration, the field energy is transferred
to the fermionic sector by particle-antiparticle production, while the am-
plitude decreases. The dynamics is such that opposite charges are pro-
duced on top of each other and are then accelerated by the electric field.
Depending on the value of d, the initial string may or may not contain
enough energy to produce the required charges ±Q to screen the exter-
nal charges.

In Fig. 5.5 we display the situation where d is chosen such that the pro-
duced amount of charge screens the external charges, which we would
then attribute to thephenomenonof string breaking. Considering the cold-
atom setup, the finite value of ` then again introduces deviations from the
QED behavior. Most notably, Fig. 5.6 implies that the breaking of the string
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Figure 5.7: Positive charge density ρ(x)/M determined by the even sites of
the Kogut-Susskind Hamiltonian. We observe that the left negative external
charge accumulates positive charge and gets screened.

in the quantum linkmodel needs less energy as theKogut-SusskindHamil-
tonian for the same parameters g/M = 1.0, aS ·M = 0.1 andN = 1024.
As expected, we again observe convergence towards the QED results upon
increasing the value of `.

Unlike in the Schwinger mechanism for a homogeneous electric field, we
directly observe charge separation owing to the spatially inhomogeneous
situation. Accordingly, we focus on the charge density ρn, which appears
as source term in the Gauss’s law.

If we rewrite the discretized Gauss’s law as

(En − En−1) |phys〉 = ρn |phys〉 , (5.15)

we can directly extract the charge density from the electric field. In Fig. 5.7
and Fig. 5.8, we display the time evolution of the local charge density for
QED and at the same time for the cold-atom setup in Fig. 5.9 and Fig. 5.10.
As described previously, the dynamical charges are produced on top of
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Figure 5.8: Negative charge density ρ(x)/M determined by the odd sites in
QED. We observe that the right positive external charge accumulates negative
charge and gets screened similar to Fig. 5.7.

each other such that the total charge density vanishes initially. The dy-
namical charges are then separated by the existing field such that positive
charges are accelerated towards−Q and negative charge towards+Q.

Figure 5.9: Positive charge density ρ(x)/M at the even sites in the cold atom
gauge theory. We observe the same qualitative behavior as in the QED case.
Again the left negative external charge accumulates positive charge and gets
screened (` = 20).
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As the dynamical charges cannot be considered as hardcore particles, the
charge density spreads beyond the static charges resulting in the out-
wards directed parts of the charge density. Thus, the external charges
are gradually screened and finally result in the breaking of the string.
At asymptotic times, the external charges are then supposed to become
screened by a cloud of charges, which decays exponentially [88, 96].

The same qualitative behavior can be observed in the cold atom setup.
Here, the breaking of the string corresponds to zero imbalance of the
bosonic atoms. It is remarkable, that in the case of stronger couplings
g/M = 1, we need less atoms to see the QED behavior in comparison to
the study of the Schwingermechanism in section 5.3. This is in agreement
with studies of the classical-statistical approximation in the strong cou-
pling limit [88]. Hence, we conclude that the number of requested atoms
is much smaller in order to observe string breaking at strong coupling.

Figure 5.10: Negative charge density ρ(x)/M at the odd sites in the cold atom
gauge theory. We observe a similar behavior as in Fig. 5.9 except that we focus
on the negative charge (` = 20).
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5.5 Correlation Functions of the Schwinger Model

Simulating non-perturbative processes of high energy physics by exper-
iments with ultracold atoms may open the field to resolve fundamental
questions in the strong-coupling regime of gauge theories. In the last sec-
tions we considered the discretized version of the Schwinger model. In
this section. wewill showhowone can use cold atomexperiments to study
the continuous Schwinger model in (1 + 1)-dimensions in equilibrium.
Therefore, we consider the Euclidean action

SE =

∫ β

0
dτ

∫
dz

[
1

4
F 2
µν − ψ̄(z)

(
/∂ + ig /A+M

)
ψ(z)

]
(5.16)

of themassive Schwingermodel, whereψ is now a two component spinor.
Using bosonization techniques [97] we get themassive sine-Gordonmodel

SE =

∫ β

0
dτ

∫
dz

{
1

2
[∂µϕ(z)]2 +

1

2
m2ϕ2(z)− α0 cos

√
4πϕ(z)

}
,

(5.17)

where we identify the parameters of (5.17) with (5.16) by

α0 =
MΛ

π
, m =

g√
π
, (5.18)

andΛ is theUV-cutoff.Note that thenewdynamical variable is the bosonic
field ϕ.

On the other hand, we find the sine-Gordon model again as a low-energy
effective theory of two tunnel-coupled one-dimensional Bose gases. The
Hamiltonian is given by

H =

∫
dz

2∑
j=1

(
~2

2mb

∂ψ†j
∂z

∂ψj
∂z

+
g

2
ψ†jψ

†
jψjψj − µψ

†
jψj

)

− ~J
∫
dz
(
ψ†1ψ2 + ψ†2ψ1

)
. (5.19)
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The bosonic fields are denoted by ψj(t, z) and g is the interaction of the
bosons, µ is the chemical potential, J is the tunnel-coupling andmb is the
mass of the atoms [98]. Its corresponding Euclidean action is

SE =

∫ β

0
dτ

∫
dz

2∑
j=1

ψ†j∂τψj +

∫ β

0
dτH . (5.20)

The density-phase representation [99] of the bosonic fields is given by

ψ1 =
√
ρ0 + δρ1 e

iθ1 , (5.21)

ψ2 =
√
ρ0 + δρ2 e

iθ2 , (5.22)

with the homogeneous background density ρ0 and the density fluctua-
tions δρ1 and δρ2 and the phases θ1 and θ2.

We define symmetric and anti-symmetric degrees of freedom for the den-
sity fluctuations and the phase,

δρs = δρ1 + δρ2, ϕs = [θ1 + θ2]/2 , (5.23a)

δρa = [δρ1 − δρ2]/2, ϕa = θ1 − θ2 . (5.23b)

In the quasi-condensate regime the density fluctuations and phase gradi-
ents are small. This allows for a systematic expansion in δρi and∇θi with
i ∈ {1, 2}. Moreover, terminating the series at second order allows the
full Hamiltonian to be separated into an independent sum of symmetric
and anti-symmetric degrees of freedom [99].

In the following, we will consider only the anti-symmetric degree of free-
dom and hence will omit the subscript a. The Hamiltonian becomes [98]

HSG =

∫
dz

[
gδρ2 +

~2n1D

4mb
(∂zϕ)2

]
+

∫
dz 2~Jn1D cosϕ . (5.24)
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This is the sine-Gordon model in the Hamiltonian formulation. Moving to
the action we get

SE =

∫ β

0
dτ

∫
dz [δρ (i∂τϕ) +H] (5.25)

and integrating out the momentum δρ leads to

SE =

∫ β

0
dτ

∫
dz

[
1

4g
(∂τϕ)2 +

~2n1D

4mb
(∂zϕ)2 + 2~Jn1D cosϕ

]
.

(5.26)

After a rescaling of the fields and parameters this action is of the same
form as the sine-Gordon action given in (5.17) with m = 0. This allows
the experimental setup to quantum simulate the sine-Gordonmodel. Such
an experiment is already realized [100] and was used to measure higher
order correlation functions of the phase difference ϕ. These correlation
functions can be used to identify qualitative different regimes of this in-
teracting theory. We introduce two length scales

λT = 2~2n1D/(mbkBT ) , lJ =
√

~/(4mbJ) , (5.27)

which canbe independently tuned in the experiment.Wedefine thehigher
order correlation functions of the phase through the equal-timeN -point
correlation functions

G(N)(z, z′) = 〈[ϕ(z1)− ϕ(z′1)] . . . [ϕ(zN)− ϕ(z′N)]〉 , (5.28)

with coordinates z = (z1, . . . , zN) and z′ = (z′1, . . . , z
′
N) along the length

of the Bose gases. Note that Fig. 5.11 depicts the full correlation function,
the connected part as well as the disconnected part of the correlation
function G(4) [97, 100]. We observe that in box A of Fig. 5.11 there is no
connected part and conclude that the equal time correlation functions can
be described by a quadratic theory for q = 0 and q = 14.7.

Further, we identify a connected part in B of Fig. 5.11 and we conclude
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Figure 5.11: The dimensionless ratio q = lJ/λT distinguishes the regime A
and B. The 4-point phase correlation functionG(N)(z, z′) is high dimensional,
thus we choose z3 = −z4 = 15µmand z′ = 0. This leads to symmetric crosses
with a vanishing correlation function. The color bar is normalized to themax-
imum value of the depicted correlation function. The entire experiment is de-
scribed in [100].

that the underlying theory cannot be quadratic in the phase. Thus, the
experiment is able to identify qualitative different regimes of an interact-
ing theory and can be regarded as a quantum simulator of the Schwinger
model.
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Conclusion and Outlook

In this section, we summarize the main results [36, 49, 100] of this thesis
and we will give an overview of future perspectives concerning the quan-
tum simulation of lattice gauge theories [101]. In particular, we will focus
on the prospects to investigate the non-equilibrium dynamics of quan-
tum simulators for fundamental gauge theories. We emphasize that one
of the most important goals is to understand the long-time behavior of
gauge theories coupled tomatter. The present work is a step towards a de-
tailed anddeep theoretical understanding of quantumsimulators of gauge
theories. Future experiments will offer the possibility to study the non-
equilibrium physics of gauge theories in cold-atom setups. One may even
envisage the realization of the Standard Model as a table top experiment.

This thesis gives an explicit proposal for an experiment, realizing a quan-
tum simulator of a one-dimensional U(1) gauge theory, that is coupled to
dynamical fermionic matter using cold atoms. There are two major con-
ceptional steps behind the proposed experiments: First, using an optical
periodic potential, one is able to imprint a lattice structure on a gas of
bosonic and fermionic atoms. This is a very convenient way to model the
underlying system by discrete degrees of freedom.Moreover, from a theo-
retical point of view, a description by discretized degrees of freedom, nat-
urally points to lattice gauge theories. The second step is to restrict the
amount of interactions by exploiting conservation laws and suppressing

94
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unwanted processes in order to engineer a systemwith local gauge invari-
ance. Realizing such a system may give researchers the unique chance to
interpolate from the weak to the strong coupling limit of a gauge theory.
This is an experimental situation which is very difficult to achieve in high
energy physics and makes quantum simulators an outstanding tool [102].

In fact, the prospects resulting from an Abelian one-dimensional gauge
theory are far-reaching and will be explained in the following. A future
possibility could be an implementation of a non-Abelian gauge group or
the generalization of the quantum simulators to higher dimensions [18,
23, 103]. Quantum linkmodels alreadyoffer a promising theoretical frame-
work to formulate non-Abelian links on a finite dimensional Hilbert-space
and in higher dimensions.

Similarly, these more complicated theories can be realized utilizing the
ideas put forward in chapter 3. Again, we can imprint the lattice structure
by an external optical potential. However, the precise engineering of the
interactions in order to obtain non-Abelian gauge invariance will become
extremely challenging. Indeed, there is no present experimental setup,
which realizes a dynamical non-Abelian gauge field coupled tomatter. Us-
ing alkaline-earth atoms [104] may provide a possibility to simplify the
experimental setups. Indeed, there are already proposals, how one could
be able to realize non-Abelian links exploiting these atoms [18].

Apart from the non-Abelian gauge groups, also higher dimensions are of
generic interest. An experiment in (3 + 1)-dimensions with a U(1) gauge
group would realize quantum electrodynamics as it is used to formulate
the Standard Model of particle physics. One main difference to one spa-
tial dimension is the presence of purely spatial plaquette terms or equiv-
alently ring exchange terms [105]. These interactions are very intricate
objects since they contain more link variables. If one realizes the link by
two bosons, one ends up with an interaction involving four initial bosonic
states and four final bosonic states. One current theoretical approach is to
use higher order perturbation theory in order to generate such terms [23].
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Proposals using this idea, produce the plaquette term at the fourth or-
der of such a perturbative series and one has to suppress the first, second
and third order in order to realize the desired Kogut-Susskind Hamilto-
nian [73].

It is an intriguing question if the design of the plaquette term is always
a necessary ingredient for planned quantum simulators. As explained in
the last paragraph, a Hamiltonian with gauge invariant interactions but
without a plaquette at the microscopic level can effectively create a ring
exchange through higher order processes. Assume, we are interested in
observables, which test the large distance properties of the quantum sim-
ulator. Then the effective theory describing the large distance behavior
will include an effectively created plaquette term. Note that this effective
theory will still be a gauge theory. Moreover, universality states that cer-
tain observables are insensitive to the microscopic details of the theory.
In this respect, one should still be able to study universal properties of
gauge theories even in the absence of the plaquette term at the micro-
scopic level.

However, not only the gauge fields are challenging objects. The fermion
doubling problemwill also play a crucial role in higher dimensions. While
the staggered fermions in one spatial dimension in the Hamiltonian for-
mulation will not suffer from the doubling problem, it is still present in
higher dimensions [106]. A solution to a doubler free implementation of
chiral fermions on a lattice is given by domainwall fermions [74]. By intro-
ducing an extra dimension one is able to achieve both: chiral fermions and
no doubling. Extra dimensions are conceptually no problem in cold-atom
systems since any quantum number or index of the quantum fields can be
considered as a candidate for a spatial dimension. This idea is usually sum-
marized in the concept of artificial or synthetic dimensions [107] and was
already used to implement static gauge fields in higher dimensions [108].

Currently, the proposed quantum simulators focus on coupling gauge
fields to fermionic matter. However, there are important theories, where
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the gauge field is coupled to a bosonic degree of freedom [109]. One fa-
mous example are SU(2) gauge fields coupled to a Higgs sector. Already,
the (1 + 1)-dimensional Abelian Higgs model possesses a topological de-
generate ground state. This model allows for sphaleron transitions being
thermal activated ‘hopping‘ processes from one degenerate ground-state
to another ground state. Sphalerons become again of interest in the con-
text of the chiral magnetic effect out of equilibrium [110].

A future experiment should aim towards the clean realization of a gauge
invariant Hamiltonian. However, most likely non-gauge invariant terms
can appear in the process of a clean realization of the desired Hamilto-
nian. An easy example for such a situation would be an unwanted inter-
action between bosonic and fermionic atoms in the quantum simulator
presented in this thesis. However, there are claims that gauge invariance
may be a robust property [111] in certain situations. This would be highly
relevant for the experimental realization. Hence, this deserves further in-
vestigation and may lead to improved setups for quantum simulators.

Note that our original motivation was the study of the long-time behavior
of gauge theories from first principles. This is a challenging theoretical
task. In particular, so far there is no theoretical framework being able to
study the equilibration of strongly coupled non-Abelian gauge theories in-
teracting with matter from first principles. However, this thesis outlines
a possibility to get theoretical insight for short- and intermediate-times.
The main idea consists in mapping particular classes of quantum prob-
lems onto a classical-statistical ensemble. We used this approach to elab-
orate the contributing quantum processes when studying the dynamics
of Abelian and non-Abelian gauge theories. We could identify them by an-
alyzing the diagrammatic contributions of quantum effects and investi-
gated the range of validity of this classical-statistical approach.

Consequently, we used this method to compare the dynamics of Wilson’s
formulation of QED with the atomic quantum simulator proposed in this
thesis. We studied in detail the two important phenomena of Schwinger
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pair production and string breaking. These two effects are very impor-
tant, because the Schwinger effect has not been observed so far and string
breaking is of great importance in QCD. Using the classical-statistical ap-
proach, we were able to determine experimental parameters in order to
get the same results in both theories. Hence, there is the prospect, that
both phenomena can be studied in an upcoming experiment.

The immediate next step concerning the classical-statistical approxima-
tion involving fermions should be the study of the next order in the quan-
tum corrections. In this way, one has the ability to improve the classical-
statistical method. Similar ideas were partially studied for purely bosonic
systems [31], but have not been used for fermions. However, this approach
will not be enough to study gauge fields, which are strongly interact-
ing with fermions. Such problems need new ideas, because the 2PI 1/N

re-summation is not able to tackle SU(N) gauge invariant theories [112].
Hence, one is in need for new theoretical ideas.

Finally, the idea of quantum simulation of lattice gauge theories goes far
beyond the study of non-equilibrium situations. It will allow for the pre-
cise measurement of the phase structure of the simulated lattice gauge
theories. This is relevant for QCD, but also for high temperature super-
conductors, where SU(2) gauge theories emerge as effective field theories.
In quantum information, Z2 gauge theories are a promising framework
for quantum computation [113]. The quantum simulation of lattice gauge
theorywill have an incredible potential to control the parameters of these
gauge theories and henceforth deepen our understanding of nature.



Appendix A

Overlap Integrals

We assume that the radial and longitudinal direction of the wavefunction
of the atoms decouple. Further the bosonic and fermionic atoms are in the
ground state with respect to the radial direction. Since the potential can
be approximated by a harmonic potential the wave functions introduced
in (3.9) are given by the ground state of the harmonic oscillator

ϕb(y) = (πa2
b⊥)−1/4e−

1
2(y/ab⊥)2 , (A.1a)

ϕf(y) = (πa2
f⊥)−1/4e−

1
2(y/af⊥)2 . (A.1b)

Here we introduce the length scale of the harmonic oscillator as

af⊥ =

√
~

Mfωf⊥
, ab⊥ =

√
~

Mbωf⊥
. (A.2)

The expressions for ϕb(z) and ϕf(z) are given by substituting y by z in
the above equation. We assumed that the ground state wave functions are
independent of the magnetic quantum number.

In order to determine the Wannier functions we approximate the optical
lattice by a harmonic oscillator at eachminimum of the optical lattice po-
tential

V s
‖ (x) = V s

1 cos2(kx) + V s
2 sin2(2kx) , (A.3)
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with s ∈ {b, f}, V b
1 = −V f

1 , V
b

2 = −V f
2 and k = π/a.

We will first focus on the bosons and later on the fermions. The minima
of the potential for the bosons are

xb,2n =
nπ

k
− 1

2k
arccos

V1

4V2
(A.4)

at the even sites and at the odd sites they are given by

xb,2n+1 =
nπ

k
+

1

2k
arccos

V1

4V2
(A.5)

with n being an integer, see Fig. 3.2. The minima of the bosonic potential
can be determined from the equation

cos(2kx) =
V b

1

4V b
2

. (A.6)

Because of parity symmetry it will be enough to consider one minimum.
We choose

xb,1 =
1

2k
arccos

V1

4V2
, (A.7)

which corresponds to site 1 in Fig. 3.2. For the bosons we approximate the
potential as

Vb(x) =− V b
2 −

(V b
1 )2

16V b
2

− V b
1

2

+
1

2

(
−k

2(V b
1 )2

2V b
2

+ 8V b
2 k

2

)
(x− xb,1)2 . (A.8)

Now, we focus on the fermions. Theminima of the fermionic potential are
given by

xf,2n = n
π

k
+

π

2k
; xf,2n+1 = n

π

k
. (A.9)
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For the fermionic atoms it is enough to Taylor expand the optical potential
around xf,1 = 0 to second order leading to

Vf(x) = V f
1 +

(
4V f

2 k
2 − V f

1 k
2
)
x2 + . . . , (A.10)

and the Taylor expansion around xf,0 = π/(2k) results in

Vf(x) =
(
V f

1 k
2 + 4V f

2 k
2
)(

x− π

2k

)2
+ . . . . (A.11)

Thenwe can identify the following frequencies of the harmonic oscillators

1

2
Mbω

2
b‖ ≡

1

2

(
−k

2(V b
1 )2

2V b
2

+ 8V b
2 k

2

)
, (A.12)

1

2
Mfω

2
f‖L ≡

(
V f

1 k
2 + 4V f

2 k
2
)
, (A.13)

1

2
Mfω

2
f‖R ≡

(
4V f

2 k
2 − V f

1 k
2
)
. (A.14)

In the experiment we will choose V s
1 and V

s
2 such that this results in pos-

itive expressions of ω2
b‖, ω

2
f‖L and ω

2
f‖R. We have two frequencies for the

fermions, whereas the bosons only have one frequency due to parity sym-
metry. The frequencies again define length scales for the harmonic oscil-
lator

ab‖ =

√
~

Mbωb‖
, af‖L =

√
~

Mfωf‖L
, af‖R =

√
~

Mfωf‖R
. (A.15)
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Then the Wannier functions for the bosons and fermions are approxi-
mated by the ground state of the local harmonic oscillators

wb
2n(x) = (πa2

b‖)
−1/4e

−1
2

(
x−xb,2n
ab‖

)2

, (A.16a)

wb
2n+1(x) = (πa2

b‖)
−1/4e

−1
2

(
x−xb,2n+1

ab‖

)2

, (A.16b)

wf
2n(x) = (πa2

f‖)
−1/4e

−1
2

(
x−xf,2n
af‖L

)2

, (A.16c)

wf
2n+1(x) = (πa2

f‖)
−1/4e

−1
2

(
x−xf,2n+1

af‖R

)2

, (A.16d)

where we assumed again the independence of the wave functions on the
magnetic state, i.e. wb

n(x) = wb
α,n(x) and wf

n(x) = wf
α,n(x), and n is the

site label. Since every site has one Wannier function we do not need the
parity label in (3.11). The dimensional reduction and the change of basis
to theWannier functions introduces the following overlap integrals in the
interaction term

U b
n =

∫
dy |ϕb(y)|4

∫
dz|ϕb(z)|4

×
∫
dx [wb

n1
(x)wb

n2
(x)]∗wb

n3
(x)wb

n4
(x) (A.17a)

U f
n =

∫
dy |ϕf(y)|4

∫
dz|ϕf(z)|4

×
∫
dx [wf

n1
(x)wf

n2
(x)]∗wf

n3
(x)wf

n4
(x) (A.17b)

U bf
n =

∫
dy |ϕb(y)ϕf(y)|2

∫
dz|ϕb(z)ϕf(y)|2

×
∫
dx [wf

n1
(x)wb

n2
(x)]∗(x)wb

n3
(x)wf

n4
(x) , (A.17c)

with n1, n2, n3 and n4 being integers and denoting the sites. All these in-
tegrals can now be performed since they are gaussian.
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Mode Functions for Fermions

The Dirac field operator can be expressed in terms of time-dependent
mode functions Φu

λ,n,q, Φ
v
λ,n,q and corresponding time-independent cre-

ation or annihilation operators bλ,q and d
†
λ,q. This leads to

ψn =
1

V

∑
q∈Λ̃

∑
λ

[
Φu
λ,n,qbλ,q + Φv

λ,n,qd
†
λ,q

]
, (B.1)

with the total volume V =
∏

iNiai and the spin index λ ∈ {1, 2}. We
define the conjugate lattice Λ̃ as

Λ̃ =

{
q

∣∣∣∣ qi =
Niaipi

2π
∈ Ni

2
, . . . ,

Ni

2
− 1

}
, (B.2)

andwe assume periodic boundary conditions in the spatial directions. The
creation and annihilation operators obey the canonical anti-commutator
relations {

bλ,q, b
†
λ′,q′
}

=
{
dλ,q, d

†
λ′,q′
}

= V δλ,λ′δq,q′ . (B.3)

The fermion occupation numbers are given by〈
b†λ,qbλ,q

〉
= V nuλ,q , (B.4a)〈

d†λ,qdλ,q
〉

= V nvλ,q . (B.4b)
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Note that we assumed an initial decoupling of the fermion and the gauge
sector at n0 = 0. This leads to

Φu
λ,(0,n),q = uλ,qe

ip·xn , (B.5a)

Φv
λ,(0,n),q = vλ,qe

−ip·xn . (B.5b)

Here, the vectors are xn = (a1n1, a2n2, a3n3) and p = (p1, p2, p3), where
we defined pi already in (B.2). The Dirac representation of the γ-matrices
is given by

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
. (B.6)

An explicit expression of the spinors uλ,q and vλ,p is

u1,q =

√
ω̄ + M̄

2ω̄

(
1 0

p̄3

ω̄ + M̄

p̄1 + ip̄2

ω̄ + M̄

)T
, (B.7a)

u2,q =

√
ω̄ + M̄

2ω̄

(
0 1

p̄1 − ip̄2

ω̄ + M̄

−p̄3

ω̄ + M̄

)T
, (B.7b)

v1,q =

√
ω̄ + M̄

2ω̄

(
p̄3

ω̄ + M̄

p̄1 + ip̄2

ω̄ + M̄
1 0

)T
, (B.7c)

v2,q =

√
ω̄ + M̄

2ω̄

(
p̄1 − ip̄2

ω̄ + M̄

−p̄3

ω̄ + M̄
0 1

)T
, (B.7d)

where we introduced

p̄i =
1

ai
sin

(
2πqi
Ni

)
, (B.8a)

M̄ = M +
∑
i

2

ai
sin2

(
πqi
Ni

)
, (B.8b)

ω̄ =
√
M̄ 2 + p̄2

1 + p̄2
2 + p̄2

3 . (B.8c)
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For later times n0,m0 > 0 the Keldysh Green’s function is determined
according to

∆K
n,m =

1

V

∑
q∈Λ̃

∑
λ

[
Φu
λ,n,qΦ̄u

λ,m,q(1− 2nuλ,q)

−Φv
λ,n,qΦ̄v

λ,m,q(1− 2nvλ,q)
]
, (B.9)

with the mode functions obeying the equation of motion (4.67) and Φ̄ =

Φ†γ0. The vacuum corresponds to nuλ,q = nvλ,q = 0 and is specified by the
following one-point correlation functions and the Keldysh Green’s func-
tion

〈ψ(0,n)〉 = 〈ψ̄(0,n)〉 = 0 , (B.10a)

∆K
(0,n),(0,m) =

1

V

∑
q∈Λ̃

M̄ − γip̄i
ω̄

eip·(xn−xm) , (B.10b)

where we employed that the one-point function vanishes meaning
〈bλ,q〉 = 〈dλ,q〉 = 0.



Appendix C

Mode Functions for Gauge Fields

We have to fulfill the Gauss law for the initial state given by the Dirac vac-
uum (4.69). Further we wish to fulfill the residual gauge condition (4.75),
therefore we perform a discrete Fourier transformation

Ei,(0,n) ≡ Ei +
1

V

∑
q∈Λ∗

eip·xnEi,q , (C.1)

and similarly for Ai,(0,n). Here, Ei denotes the coherent field in the zero-
momentum mode. Accordingly, the transversality condition in conjugate
space reads ∑

i

p̃iEi,q = 0 =
∑
i

p̃iAi,q , (C.2)

with

p̃i =
2

ai
e−iπqi/Ni sin

(
πqi
Ni

)
, (C.3a)

|p̃| =
√
p̃2

1 + p̃2
2 + p̃2

3 . (C.3b)
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We solve (C.2) via the mode function expansion given by

Ai,q =
1√
2|p̃|

∑
λ

[
aλ,qεi,λ,q + a†λ,−qε

∗
i,λ,−q

]
, (C.4a)

Ei,q = i

√
|p̃|
2

∑
λ

[
aλ,qεi,λ,q − a†λ,−qε

∗
i,λ,−q

]
, (C.4b)

with the polarization vectors ελ,q and index of polarization λ ∈ {1, 2}.
The creation and annihilation operators have to fulfill the commutation
relation [

aλ,q, a
†
λ′,q′
]

= V δλλ′δqq′ . (C.5)

The occupation number of the photonic modes is determined by〈
a†λ,qaλ,q

〉
= V nλ,q . (C.6)

The transversality (C.2) condition is fulfilled for the following choice of
polarization vectors

p̃ · ελ,q = 0 , (C.7a)

ε∗λ,q · ελ′,q = δλλ′ . (C.7b)

We give an explicit representation for the polarization vectors. For q1 6= 0

we use

ε1,q =
1√

|p̃1|2 + |p̃2|2

−p̃2

p̃1

0

 , (C.8a)

ε2,q =
1

|p̃|
√
|p̃1|2 + |p̃2|2

 p̃∗1p̃3

p̃∗2p̃3

−|p̃1|2 − |p̃2|2

 , (C.8b)
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and for the case q1 = 0 we choose

ε1,q =
1√

|p̃2|2 + |p̃3|2

 0

p̃3

−p̃2

 , ε2,q =

1

0

0

 . (C.9)

Then the polarization vectors fulfill

ε∗1,−q = −ε1,q , (C.10a)

ε∗2,−q = ε2,q (C.10b)

and the transverse projector P is given by

Pij =
∑
λ

εi,λ,qε
∗
j,λ,q = δij −

p̃ip̃
∗
j

|p̃|2
. (C.11)

Gaussian initial states are specified in terms of the one-point correlation
functions, corresponding to coherent background fields

〈Ai,(0,n)〉 = Ai , (C.12a)

〈Ei,(0,n)〉 = Ei , (C.12b)

where we used 〈aλ,q〉 = 0, and the connected two-point correlation func-
tions

1

2
〈{Ai,(0,n), Aj,(0,m)}〉 − 〈Ai,(0,n)〉〈Aj,(0,m)〉 , (C.13a)

1

2
〈{Ai,(0,n), Ej,(0,m)}〉 − 〈Ai,(0,n)〉〈Ej,(0,m)〉 , (C.13b)

1

2
〈{Ei,(0,n), Ej,(0,m)}〉 − 〈Ei,(0,n)〉〈Ej,(0,m)〉 . (C.13c)
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The discrete Fourier series (C.1) and the assumption n1,q = n2,q ≡ nq

leads to

1

2

〈
{Ai,q, Aj,q}

〉
=

V

|p̃|

(
1

2
+ nq

)
Pij , (C.14a)

1

2

〈
{Ai,q, Ej,q}

〉
= 0 , (C.14b)

1

2

〈
{Ei,q, Ej,q}

〉
= V |p̃|

(
1

2
+ nq

)
Pij . (C.14c)

The vacuum initial conditions containing quantumfluctuations are deter-
mined by nq = 0.
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Fermionic Observables

Themode function expansion of the Dirac field operators and the vacuum
initial conditions nuλ,q = nvλ,q = 0, can be used to determine the energy
density εn according to

εn = −1

2

∑
m∈Λ

tr{Hn,m∆K
m,n} . (D.1)

The trace is preformedwith respect to Dirac indices, and the latticeHamil-
tonian includes the spatial Wilson term determined by

Hn,m = δn0,m0

[(
M +

∑
i

1

ai

)
δn,m −

∑
i

1

2ai

(
iγi + 1

)
Ui,nδn+ı̂,m

+
∑
i

1

2ai

(
iγi − 1

)
U−i,nδn−ı̂,m

]
. (D.2)

The energy density can be expressed in terms of the mode functions

εn =
1

2V

∑
m∈Λ

∑
q∈Λ̃

∑
λ[

Φ̄v
λ,n,qHn,mΦv

λ,m,q − Φ̄u
λ,n,qHn,mΦu

λ,m,q

]
. (D.3)
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We define a momentum distribution by discrete Fourier transformation
of the mode functions

Φ
u/v
λ,(m0,m),q ≡

1

V

∑
q̃∈Λ̃

eip̃·xmΦ
u/v
λ,q̃,q , (D.4)

with p̃i = 2πq̃i/Niai for i ∈ {1, 2, 3}. We interpret this as a discrete
phase-space energy density of

εn,q̃ =
1

2V 2

∑
m∈Λ

eip̃·xm
∑
q∈Λ̃

∑
λ[

Φ̄v
λ,n,qHn,mΦv

λ,q̃,q − Φ̄u
λ,n,qHn,mΦu

λ,q̃,q

]
(D.5)

and observe

εn =
∑
q̃∈Λ̃

εn,q̃ . (D.6)

The discrete phase-space particle number density is then given by the to-
tal energy density divided by twice the single-particle energy density

Nn,q̃ ≡
εn,q̃

2ωn,q̃
. (D.7)

The single-particle energy density can be computed from the lattice dis-
persion relation

ωn,q̃ =
√
M̄ 2 + p̄1

2 + p̄2
2 + p̄3

2 , (D.8)

and

p̄i =
i

2ai

[
U−i,ne

− 2πiq̃i
Ni − Ui,ne

2πiq̃i
Ni

]
, (D.9a)

M̄ = M +
∑
i

1

2ai

[
2− Ui,ne

2πiq̃i
Ni − U−i,ne−

2πiq̃i
Ni

]
. (D.9b)

These expressions coincide with (B.8) for the free field theory. The nor-
malized momentum distributionNn0,q̃ – in chapter 4 denoted as n(p, t) –
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is then defined by

n(p, t) ≡ Nn0,q̃ = a1a2a3

∑
n∈Λ

Nn,q̃ . (D.10)

The total fermion density Nn0 – in chapter 4 denoted as N(t)/V can be
obtained from

N(t)/V ≡ Nn0 =
1

N1N2N3

∑
n∈Λ

∑
q̃∈Λ̃

Nn,q̃ . (D.11)
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Continuum Results for the Schwinger

effect

There are analytic results for the Schwinger effect in a static background
field [114]. The Dirac equation for the homogeneous background field E0

is analytically solvable in terms of parabolic cylinder functionsDν(z). We
define ε0 = gE0/m

2, ε2⊥ = m2 + p2
1 + p2

2 such that ω
2(p) = ε2⊥ + p2

3 and
η = ε2⊥/gE0. Then the analytic solution for the momentum distribution
f(p) is given by

f(p) = e−πη/4
[
η

2

(
1− p3

ω(p)

)
D1(p)

+

(
1 +

p3

ω(p)

)
D2(p)−

√
ε0η2

2

m

ω(p)
D3(p)

]
, (E.1)

with

D1(p) =
∣∣D−1+iη/2(p̂)

∣∣2 , (E.2a)

D2(p) =
∣∣Diη/2(p̂)

∣∣2 , (E.2b)

D3(p) = eiπ/4Diη/2(p̂)D−1−iη/2(p̂
∗) + c.c. , (E.2c)
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for

p̂ = −

√
2

ε0

p3

m
e−iπ/4 . (E.3)

The momentum distribution f(p) vanishes for kinetic momenta p3 →
−∞ and approaches a non-vanishing constant for large kinetic momenta
p3 →∞, i.e.

lim
p3→−∞

f(p) = 0 , lim
p3→∞

f(p) = 2e−πη . (E.4)

The production rate of electrons and positrons is a constant. Hence, the
total number ∆N of electrons and positrons, which are created per vol-
ume V during a time interval T , is determined by

Ṅ

V
=

(gE0)
2

4π3
exp

(
−πm

2

gE0

)
=
m4ε20
4π3

exp

(
− π
ε0

)
. (E.5)
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