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Chapter 1

Introduction

The current population age structure in developed countries is to a large extent the result
of a secular movement from high fertility and mortality rates towards low, even below
replacement level fertility and mortality rates. This so-called demographic transition
started in Europe around the year 1800 with decreasing mortality, followed by decreasing
fertility around the year 1900. The total fertility rate (TFR) in Germany, for example,
dropped from 5.2 at the end of the nineteenth century to 1.4 in 2010.1 Over the same
period, life expectancy at birth among German women increased from 38.5 to 83 years.
These numbers are broadly representative of many now developed countries, albeit the
demographic transitions were mostly somewhat less pronounced and differed in the exact
timing. In the 20th century, the demographic transition became a global phenomenon.
In India, for example, female life expectancy at birth rose from 24.7 years in 1900 to 68
years in 2010, while the TFR dropped from 5.9 in 1950 to 2.4 in 2010.

A central consequence of this secular trend in these vital rates is population ageing
and is reflected by the so-called age dependency ratio, defined as the ratio of dependents
to the working-age population, a sub-case of which is the old-age dependency ratio.2

For example, Germany’s old-age dependency ratio has increased from 8.5% in 1890 to
a currently observed level of about 32%, with a projected level of 58.5% in 2050. Pure
scarcity arguments imply that population ageing induces large redistributional effects in
the economy. Ludwig et al. (2009) suggest that the ‘pure’ effect of population ageing on
factor prices (abstracting from any government policy) amounts to a 1 percentage point
decline in the real rate of worldwide return to physical capital and a 4 percentage point
increase in gross wages over the coming decades. Moreover, the shift of the population

1The TFR is a cross-section measure, defined as the expected number of newborns per woman
throughout her whole fertile phase of life. Detailed historical accounts of vital rates are to be found
in Mitchell (1975), Mitchell (1998) and the Institute for Population Research and Social Policy (2000),
upon request. Projections are taken from United Nations (2013).

2Dependents are usually defined as people younger than 15 and older than 64. A pension system’s
dependency ratio is typically defined as the ratio of those receiving pension benefits to those accruing
pension rights, reflecting old-age dependency.

1



2 CHAPTER 1. INTRODUCTION

pyramid towards older age groups that, on average, receive significantly lower income,
than the working-aged, increases lifetime income inequality substantially.

This dissertation is concerned with demography-driven inequality which is indepen-
dent of the demographic transition. To illustrate, consider a generation whose members
are fully identical ex ante in terms of preferences, the number of children they raise and
their probabilities of dying along the life-cycle. Individual fate, however, will sort their
heirs into those whose parents survived into old age and those whose parents died pre-
maturely. In a market economy with well-defined and within-family inheritable property
rights, uninsured mortality risk generates intragenerational inequality in the transfers
received among the members of the next generation, provided that their parents have
made private savings to provide for their old age. In short, the demographic environ-
ment converts ex ante equality into ex post inequality, which increases as time passes.
This dissertation analyzes the scope for reducing or even eliminating demography-driven
inequality.

One prominent alternative that may achieve a reduction in inequality is a Social
Security system (see, e.g., Deaton et al., 2002; Ludwig et al., 2009; and Rasner et al.,
2013). Chapters 2 and 3 of this dissertation analyze the long-run consequences of Social
Security, addressing intragenerational inequality of the kind illustrated by the above
example and intergenerational inequality, respectively. The long run is characterized
by time-invariant distributions of the key economic variables. The starting point is
the link between ex post inequality and ex ante uncertainty, Social Security is here
considered as a tool for insuring risks to lifetime income (see, e.g., Gordon and Varian,
1988; Shiller, 1999; Matsen and Thøgersen, 2004; and Gottardi and Kubler, 2011). The
ex ante perspective takes into account all insurance possibilities, including the insurance
against the state at birth. These scenarios lend themselves to a welfare evaluation on the
basis of Rawls’s (1973) veil of ignorance, the benchmark for evaluating Social Security
systems being the world without it. We do not address the question of whether other
institutional arrangements would have occurred without Social Security pensions. Nor
do we address the current financial pressures on Social Security systems that arise due
to the previous secular trend and the retirement of the baby-boom cohorts. Rather
we are concerned with the social long-run costs that would arise without such systems.
Particular emphasis is placed on family structure and within-family transfers.

The ‘world without it’ is also the benchmark against which we evaluate a large,
growth-orientated investment programme when there is spatial inequality, inter alia,
with respect to the vital rates in Chapter 4. Before turning to the differences from -
and complementary with - Chapters 2 and 3, we provide an overview of Social Security
systems in practice and of the academic debate regarding their long-run consequences.

Social Security pension systems in practice
Social Security pension systems are widespread. Already in the late 1980’s, the number
of countries that had implemented some kind of old-age Social Security system was 130,
albeit with different sizes and coverages (see Sala-I-Martin, 1996). Table 1.1 shows his-
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torical levels of Social Security in selected developed countries. Over the past five decades
Social Security expenditures grew substantially, with pension expenditures reaching more
than 10 per cent of gross domestic product in some countries. Redistribution within the
system is not only seen as an essential feature of Social Security, but is also typically
an explicit policy objective (Gillion, 2000). Redistribution occurs intragenerationally:
for example, from high-income workers to low-income workers or from non-survivors to
survivors, and, of course, intergenerationally, from workers to retirees, or from future
generations to those suffering current ill-fortune.

Pension systems differ substantially across countries. The chosen systems are typi-
cally “multi-pillar”, or “multi-tier” implementations that developed over several decades.3

A clear-cut characterization is therefore not straightforward. We provide a rough tax-
onomy here: we classify Social Security Pension systems according to the rule which
determines the pension benefit payments. A first distinction is made between funded
systems and unfunded pay-as-you-go systems. The former invests the pension contri-
butions of a generation at the going interest rate and pays the proceeds plus the assets
of those who die prematurely to the survivors of the same generation when old. Chile
is a prominent current example of a pension system with substantial reliance on such
funding. Countries like Japan, the Netherlands and Norway have had fully funded sys-
tems for decades. The German system, the oldest formal Social Security pension system,
started as a fully funded disability insurance system in 1889, and was converted to an
unfunded pay-as-you-go system only in the aftermath of the Great Depression and World
War II.

An unfunded pay-as-you-go system pays the pension benefits of current retirees from
the contributions paid by the current generation of workers. Within this class, we
further distinguish between defined contribution and defined benefit systems. In the
former, contributions into the scheme follow a pre-specified rule, with the pension benefit
following as a residual from the balanced budget requirement. In a defined benefit
system, the pension formula pre-specifies a targeted benefit level.4 The benefit formula,
in turn, may include several forms of indexation, for example, coupling to consumer
prices, real wages or demographic key variables, most prominently to the system’s old-
age dependency ratio. In fact, unfunded defined benefit pay-as-you-go systems like that

3Serious attempts have been made to classify real world pension systems. Two prominent typologies
are those employed by the World Bank and the OECD. The World Bank uses a “three-pillar” classifica-
tion. The first pillar is “a publicly managed system with mandatory participation and the limited goal of
reducing poverty among the old. The second pillar is a “privately managed mandatory savings system”.
Voluntary savings constitute the third pillar (World Bank, 1994). The OECD employs a “two-tiers”
classification, the first tier bundling redistribution components “designed to achieve some absolute, min-
imum standard of living, and the second tier bundling insurance components “designed to achieve some
target standard of living” (Queisser and Whitehouse, 2005).

4This classification leaves unaddressed the question of whether the system’s replacement rate is
defined in terms of current or previous wage income, thereby subsuming the alternative taxonomy which
splits pension systems into fixed replacement rate systems, and fixed contribution rate systems (see, e.g.,
Thøgersen, 1998).
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of the United States is still common. Point systems, which were found, for example,
in France and Germany, also fall into this category (Whitehouse and Queisser, 2007).
However, the recommendations for reforming the German point system – proposed by
the so-called “Rürup commission” in 2003 and adopted by the Bundestag in 2004 –
include the indexation of future benefits to a weighted mix of wages and the system’s
inverse dependency ratio. They converted the existing defined benefit system into a
(notional) defined contribution system, in that pension benefits are cut automatically if
the system’s dependency ratio is high (Barr and Diamond, 2008). Feldstein and Liebman
(2002) suggest that, after reforms in the 1990’s, the public pay-as-you-go pension systems
of countries like Sweden, Italy and Poland should also be classified as (notional) defined
contribution systems.

To summarize, the salient features of recent pension policy reforms are the intro-
duction of funded elements into unfunded schemes, the movement from defined benefit
systems towards defined contribution systems (for example, by introducing demographic
indexation into the pension benefit formula), and the reduction of the general size of the
system in order to encourage private savings. In the light of the looming retirement of
the baby-boom cohorts, the argument is that these reform packages make Social Secu-
rity pensions financially sustainable, thereby making future generations better-off. The
broader issue is, of course, that an unfunded pay-as-you-go system only functions as
long as individuals believe that they will receive an adequate pension payment at old
age in exchange for the contribution they made when young. This calculation crucially
depends on the next generation’s assessment of the risk of not receiving an adequate
pension, and so forth.

Social Security pension systems in theory
To take the arguably canonical example, it is commonly perceived that the Great De-
pression (and not the broader demographic trends) triggered the implementation of
unfunded Social Security. Given the U.S. experience, Blinder (1982, pp.60-61) argues
that the ex post compensation of those generations that suffered most from Great De-
pression consequences provides an intellectually defensible case for an unfunded public
pension system: “The people who retired in the early years of the Social Security system
(say, those who reached age 65 in 1940) were 54 or so when the Depression began. For
them, the Depression represented a huge and irreparable loss of lifetime income. It is
not something they could have been expected to have prepared for, nor subsequently
made up for. The Social Security system made huge transfers to these people, who had
contributed very little but drew substantial benefits. It thus transferred some of their
Depression losses to unborn generations. Was this bad social policy?” The argument also
holds for subsequent generations up to the point at which the system is fully matured,
albeit in weaker form.

However, the compensation of those suffering ill-fortune is not free: once installed,
unfunded Social Security pensions permanently transfer resources from future to cur-
rent generations. The reduction of net wage income when young and the provision of
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non-capital income when old tends to decrease private savings, thereby reducing the fu-
ture national capital stock and, if the economy is dynamically efficient, future resources
available for consumption.5 A full picture therefore includes the (very) long-run and
poses a related question: “For whom was this bad/good policy?” A salient feature of
deterministic overlapping generations models that address this question is that if egoistic
individuals behave rationally, then Social Security pensions are welfare-decreasing in the
long run, especially if financed on an (unfunded) pay-as-you-go basis. Most prominently,
Auerbach and Kotlikoff (1987) suggest that Social Security is not Pareto-improving.6

They calculate that the U.S. Social Security pension system causes a reduction of 24%
in the steady state capital stock, when compared to the hypothetical outcome without
the system.7 The loss for those generations is equivalent to more than 6% of lifetime
resources.

In 1938, President Roosevelt advocated the draft of the Social Security bill as fol-
lows: “No one can guarantee this country against the dangers of future depressions,
but we can reduce those dangers. ... we can provide the means of mitigating their re-
sults” (as cited in Gottardi and Kubler, 2011). Under this ex ante perspective, Social
Security can be rationalized on efficiency grounds alone, an argument that economists
usually feel more comfortable with. Krueger and Kubler (2006) and Gottardi and Kubler
(2011), for example, study economies subject to productivity shocks. The authors pro-
vide conditions under which the introduction of a marginal unfunded pension system is
welfare-improving under the classical Pareto-criterion, generalized to stochastic environ-
ments.8

5Dynamic efficiency is another term for productive efficiency in a dynamic setup. An economy that
is not dynamically efficient is dynamically inefficient in the sense that a reduction of the capital stock
today does not reduce resources at any future date and increases it in some futures.

6An allocation is called Pareto-optimal if there is no other feasible resource allocation that provides
at least an equivalent lifetime utility to every agent, yet even more to some. A Pareto-optimal allocation
requires first - on the production side - that the economy provides as much resources available for aggre-
gate consumption at every date as possible, given feasibility (i.e. dynamic efficiency), and second, that
the largest possible output is allocated optimally across generations. Under certainty, dynamic efficiency
implies Pareto-optimality (see De la Croix and Michel, 2002 whose proof builds heavily on Homburg,
1992). Dynamic inefficiency gives rise for potential Pareto-improvements through governmental inter-
vention, indicating that the First Welfare Theorem may fail to hold even in the absence of any traditional
market failure.

7To employ the proposed taxonomy, the US Social Security system is described as an unfunded
defined benefit pension system with benefits replacing 60% of the average indexed monthly earnings.

8Two ways of interpreting the term ’some’ in the definition of a Pareto-optimal allocation can be
found in the literature. With the overlapping generations structure in mind, a natural optimality bench-
mark would be one that is achievable in sequentially complete markets. The associated criterion is
known as ex interim Pareto-optimality (see Chattopadhyay and Gottardi, 1999, Demange and Laroque,
1999 and Demange and Laroque, 2000). Agents are identified by date and state, implying that agents
born at the same date but in different states are different agents. However, one might argue that the
overlapping generations structure renders all allocations Pareto-suboptimal; for agents are not able to
insure themselves against being born into a ’bad’ state of nature. The associated concept is ex ante
Pareto-optimality under which welfare is evaluated before any uncertainty is revealed. Agents are solely



7

While the experience of the Great Depression and the ability of Social Security
pension systems to mitigate future economic shocks encouraged their implementation,
suitably designed systems are also capable of mitigating the economic consequences of
a risky demographic environment. For example, Sánchez-Marcos and Sánchez-Mart́ın
(2006) calibrate a model with stochastic fertility to the U.S. economy and establish
ex ante insurance gains from a marginal unfunded Social Security system. They find,
however, that these gains are far too small for generating long-run welfare gains once
the ensuing reduction in the long-run capital stock is taken into account.

These contributions do not determine a unique optimal allocation. Moreover, most
developed countries run Social Security systems on a large scale (see Table 1.1). Chapters
2 and 3 of this dissertation determine the long-run optimal size of alternative Social
Security arrangements, which trades off insurance against the crowding out of capital
when there is a risky demographic environment. We shortly summarize the chapters.
They can be read independently of each other. All references are collected in the final
bibliography.

Chapter 2: Fertility
Chapter 2 studies the welfare consequences of unfunded pay-as-you-go Social Security
pension systems with (incomplete) demographic indexation when there are perpetual
shocks to the workforce size. The latter is of particular importance because it is a key
input in the aggregate production process and its relative size is the key variable in the
system’s budget. Shocks to the workforce arise due to fluctuations in fertility.9

Figure 1.1 depicts the historical course of the TFR in selected OECD countries. All of
these countries experienced a more or less pronounced baby boom - baby bust scenario
in the aftermath of World War II. Much of the debate on pension reforms is about
the looming implications of the baby-boomers’ retirement to financial sustainability.
The fact that there is considerable uncertainty concerning fertility has received less
attention. For example, the timing of the baby boom is still puzzling from a theoretical
point of view. This can be seen by the ex post realized fertility, or completed cohort
fertility (CCF). Figure 1.1 contains a limited time series of the CCF, with the horizontal
difference between the CCF and TFR curves representing the generational time-span
of roughly 30 years. The co-movement of CCF and TFR is striking and challenges the
’catching-up’ argument that the baby boom was the result of delayed fertility from the
Great Depression and World War II. If this were true, delayed fertility should have had
no effect on the CCF. Greenwood et al. (2005) provide additional evidence that “the

identified by the date when they appear on the scene, i.e. by the average of all possible incarnations
at birth. Since the ex ante criterion takes more insurance possibilities into account, ex ante optimality
implies ex interim optimality but the converse does not hold. The question of which criterion to use,
seems to be an ideological one.

9In light of current events, it should be noted that shocks to the relative size of the work force can
also be explained by stochastic migration flows into the working age population. Under the assumptions
that integration succeeds and that these people will stay in the respective target countries when retired,
the mechanism and results are similar to those with delayed fertility.
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mystery of the baby boom has not been cracked in economics”. Instead of providing a
further theory of endogenous fertility, we simply treat fertility as an exogenously given
stationary process around replacement levels and interpret the baby boom - baby bust
events as consecutive shocks to the size of generations.

Empirical evidence in favour of the impact of generational size on factor prices is hard
to find and hard to interpret. The reason is that the generational perspective reduces
even long historical time series to just a few observations. Further, significant structural
breaks, due to for example the two World Wars and the 1918–1920 “Spanish Influenza”
pandemic, with its detrimental impact on French vital rates, render standard time series
tools inappropriate. The literature on labour economics, however, confirms that the
level of lifetime labour income of large cohorts is considerably reduced due to their size
(see, e.g., Bloom et al., 1987; and Murphy and Welch, 1992 for the US economy, and
Brunello, 2010 for European countries).

Following Sánchez-Marcos and Sánchez-Mart́ın (2006) and Ludwig et al. (2009),
Chapter 2 takes a general equilibrium perspective. The economy in each period is
populated by two egoistic, overlapping generations, with stochastic total factor produc-
tivity and a stochastic number of workers. Two general equilibrium channels that arise
in a dynamic setup are explored. First, fertility fluctuations induce movements in fac-
tor prices, thereby generating intergenerational heterogeneity among otherwise identical
generations that are alive at different points in time. A member of a large generation
(a baby boomer) suffers from a relatively low realization of wages during her working
life and - since aggregate savings of a large generation tend to be high - a relatively low
realization of the real rate of return on her savings when retired. The opposite is true
for a member of a baby-bust generation.

Second, the pension system is seen as a means of sharing the fertility risk across
generations, but feeds back in advance on the accumulation of capital by affecting the in-
dividual consumption-savings decisions. We argue that the introduction of demographic
indexation into the pension benefit formula of an otherwise defined benefit system, pulls
the latter into the direction of a defined contribution system, thereby converting the
pension claim into an asset with essentially the same risk properties as private savings
in physical capital. If fully indexed, Social Security pensions do not contribute at all
to the intergenerational sharing of fertility risks. In fact, we establish that the long-
run optimal size of an unfunded pay-as-you-go Social Security pension system with full
demographic indexation is independent of shocks, brings the economy onto its golden
rule growth path, and maximizes a social welfare function which places equal weights
on generations that differ in size and the time they appear on the scene. This finding is
closely related to Hillebrand (2011), who determines the long-run optimal size of such a
system in the presence of stochastic total factor productivity alone. Shocks to the latter,
however, pull factor prices in the same direction, thereby limiting or even eliminating the
scope for intergenerational risk sharing from the outset. By treating the pension claim
as a quasi-asset along the lines of Merton (1983), Thøgersen (1998), Wagener (2003),
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Figure 1.1: The baby boom - baby bust in selected countries

Note: The vertical distance between TFR and CCF roughly corresponds with the average age of childbearing,
i.e. the time spanned by one generation. If the catching-up argument were correct, then CCF would have been
unaffected by the baby boom.
The best indicator for population reproduction is the so-called net reproduction rate, defined as the average
number of daughters that a hypothetical cohort of women would have at the end of their reproductive period if
they were subject to the fertility and mortality rates of a given period. Since the TFR is so frequently
encountered in the literature, we use it here to illustrate the baby boom.
Source: Human Fertility Database. Max Planck Institute for Demographic Research (Germany) and Vienna
Institute of Demography (Austria). Available at www.humanfertility.org (data downloaded on 10/18/2015).
The UK figure covers England and Wales. The historical depth of the German figure on the cross-sectional TFR
is due to the Institute for Population Research and Social Policy (2000), upon request.
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and Matsen and Thøgersen (2004), we establish insurance gains from incomplete demo-
graphic indexation in general equilibrium when individuals are sufficiently risk averse.

Chapter 3: Mortality
Chapter 3 studies the welfare consequences of funded Social Security pension systems
in the presence of otherwise uninsured mortality risk when individuals wish to make
transfers to their heirs. As outlined above, in the presence of uninsured mortality risk,
within-family transfers depend on realized lifespan and generate intragenerational het-
erogeneity with respect to transfers of wealth and the lifetime income of future gener-
ations. We consider Social Security Pension systems as a means of insuring the risks
associated with premature mortality among the members of the same generation. They
provide transfer insurance and insurance of the ex ante risk of future generations in-
heriting a particular amount of transfer wealth, thereby completing a very thin private
annuities market (Diamond, 1977, and Pashchenko, 2013). As in Chapter 2, however,
the gains from insurance come at the cost of a reduction in the future capital stock, since
the provision of annuities reduces intergenerational transfer flows (Auerbach et al., 1995
and Gokhale et al., 2001) and, therefore, the resources from which future generations
could save.

The chapter develops an analytical framework wherein both issues are closely linked.
While fully funded Social Security crowds out private transfers, we find that, once ex
ante insurance is taken into account, Social Security is welfare-improving over the long
run as long as capital is not too productive and the transfer motive is not too strong.
While transfer insurance and crowding out are qualitatively the driving forces behind
this result, ex ante insurance may tip the scales in qualitative evaluations of the overall
welfare effects. Altruists gain far less from Social Security than egoists. These results
are at odds with the seminal work of Barro (1974), who finds that government policy
intended to change the intergenerational distribution of resources is neutral in welfare
terms when individuals are altruistic towards their offspring. If financed on a pay-
as-you-go basis, Social Security substitutes for private inter vivos transfers. If fully
funded, Social Security substitutes for private savings. Therefore Social Security has no
real effects in aggregate. In contrast, the welfare effects in Chapter 3 arise due to the
presence of uninsured mortality risk, so that private savings and Social Security pension
claims are not real substitutes.

Of course, the notion that Social Security pensions can substantially reduce intragen-
erational inequality is not new. For example, Deaton et al. (2002) show that inequality
rises as time passes, since the effects of random returns and earnings shocks accumulate
over time. By substituting for private savings, Social Security pensions are capable of
reducing inequality.10 In Chapter 3, in contrast, uninsured mortality risk, not economic
conditions, generates inequality, while private savings and Social Security pension claims

10Some authors argue that Social Security pensions may foster inequality (see, e.g., Gokhale and
Kotlikoff, 2002). The argument is that annuitization reduces the net worth available for bequests in
low-income households more than that in high-income households.
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are not full substitutes. Chapter 3 establishes not only the non-neutrality of, but also the
existence of long-run welfare improvements from Social Security. The latter is usually
found to be at best welfare-neutral in the literature. The reason is that contributions
that study the adverse effect of annuitization on transfer flows assume that the assets
of those who die prematurely are redistributed in a lump-sum manner to the survivors,
thereby ignoring the system’s ability to insure the ex ante risk of inheriting a particular
amount of transfer wealth (see, e.g., Hubbard and Judd, 1987; Kingston and Piggott,
1999; Fehr and Habermann, 2008; and Caliendo et al., 2014).

Both chapters 2 and 3 focus on the long-run consequences of Social Security and
determine its long-run optimal size in the presence of uncertainties concerning vital rates
which are treated as exogenously given. While the chapters are similar in spirit in that
they trade off insurance against the crowding out of capital within a general equilibrium
framework, there are several conceptional differences. First, chapter 2 determines the
long-run optimal size of Social Security pensions assuming that individuals treat the
size of the scheme as given when making their consumption-savings decision. While
this is common practice in the literature, there is no obvious reason to assume that
successive generations are completely unable to revise previous policy. We follow this
idea in Chapter 3 and assume that individuals are able to revise the size of a fully
funded pension system set by previous generations. Whether upcoming generations
are also willing to revise previous policy depends on whether individuals are altruistic
towards their children – a point not treated in Chapter 2 where individuals are assumed
to save based on perfect selfishness. Second, it is well established that pay-as-you-go
pension systems crowd out private savings and thus reduce the future capital stock,
compared to the world without such systems (Feldstein, 1974, Auerbach and Kotlikoff,
1987). This standard crowding-out effect, which stems from the provision of non-capital
income at old age, is the driving force behind the effect on the capital stock in Chapter 2.
This mechanism differs fundamentally from that underlying Chapter 3, which relates to
premature mortality. While fully funded systems may even induce individuals to increase
their propensities to save from lifetime income, the provision of annuities reduces within-
family transfer flows and, therefore, the resources available to future generations. A third
difference concerns the nature of risk. The number of newborns constitutes an aggregate
risk in the sense that all members a focal generation experience the same shock and
this impedes the rise of private arrangements for coping with this kind of risk. Even a
mandatory system cannot be expected to fully eliminate fertility risk. Contrastingly, in
the case of mortality risk fate sorts members of the same generation into survivors and
non-survivors, but the pooling of resources allows them to get rid of idiosyncratic risks.
Note the strict separation between fertility and mortality. It is believed that fertility in
developed countries is unlikely to be affected by the mortality regime; for most women
survive their child-bearing age and child mortality is rather modest.

Chapters 2 and 3 study the insurance and sharing of demographic risks by means of
Social Security. By design and construction, they involve a no-growth setup, in the sense
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that the economies under consideration converge to some kind of a stationary equilib-
rium. It is interesting, therefore, to analyze the impact of demographic developments in
relation to the evaluation of a productive, growth-orientated investment programme.

Chapter 4: Migration11

Based on empirical evidence from upland Orissa, a remote and backward region located
in the east of India, Chapter 4 attempts to estimate the long-run benefits of India’s
rural road programme known as Pradhan Mantri Gram Sadak Yojana (PMGSY), the
aim of which is an improved integration of rural areas into the mainstream with respect
to production and trade, education and health.

In contrast to the settings of Chapters 2 and 3, the demographic transition is still
underway in India and life expectancy there is considerably lower, with infant and ma-
ternal mortality rates being far from negligible (so that net fertility per family is directly
affected by the prevailing mortality regime). The extended family, with its norms of mu-
tual obligations, however, is still alive and well which makes up in part for the lack of
a large-scale Social Security system. In contrast to the nuclear family setup of Chapter
3 wherein the pooling of resources only arises through the Social Security system, the
pooling of resources within the large extended family eliminates idiosyncratic risk to a
substantial extent.

A salient feature is spatial heterogeneity; India’s rural and urban areas differ sub-
stantially in the demographic environment and economic and educational opportunities.
For example, infant mortality rates in 2011 were 55 and 34 (per 1000 live births) in
rural and urban India, respectively. At the same time, the urban literacy rate was 85%,
approx. 16 percentage points higher than in the rural area.

We employ a two-sector overlapping generations model with human and physical
capital formation in the presence of premature mortality. The sectors are connected
by movements of both goods and people. As in Bell and Koukoumelis (2009), inter-
sectoral migration is the result of an economic decision in which young adults compare
expected utilities in towns and rural areas, a decision which depends on factors includ-
ing the magnitude of the rural-urban gap in mortality and morbidity. In equilibrium,
young individuals in villages are indifferent between migrating to towns and permanently
remaining in the rural sector.

Based on the findings of Bell and van Dillen (2014) and Bell and van Dillen (2015),
PMGSY is assumed to improve the villagers’ net terms of trade both as producers and as
consumers, school attendance, and mortality and morbidity rates. By improving those
ruling in the rural sector, PMGSY makes human capital less likely to exit. Valuing
the benefits of the programme is more complex than in the settings of the previous
chapters; for the roads affect decisions concerning the formation and maintenance of
human capital, including the quantity and quality of life itself. We estimate that PMGSY
generates benefits amounting to approx. 12 per cent of the value of output produced by
a surviving member of the first generation. Approx. 18 per cent of this gain accrues in

11This chapter was jointly written with Clive Bell.
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the spheres of education and health. We find that PMGSY has large long-run effects on
welfare through its influence on health and education. From 2020 onwards, improvements
in the terms of trade are of secondary importance.
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Chapter 2

The Optimal Size of Social
Security and the Long-Run
Welfare Consequences of
Demographic Indexation

2.1 Introduction

Many developed economies finance their social security programs on a pay-as-you-go
basis, so that the pensions of current retirees are financed by the contributions of cur-
rent workers. For quite some time, the pension benefit formulas in a number of countries
have been driven by the actual contributions made to the scheme. Feldstein and Liebman
(2001) suggest that Germany, Italy and Sweden, for example, run such so-called defined
contribution schemes. Demographic indexation of pension benefits reinforces the policy
of pre-specified contributions by cutting benefits when the ratio of retirees to workers
increases, which implies that the retirees must bear the burden of old-age dependency.
The system’s replacement rate, defined as the rate at which pension benefits replace
wage income, drops, while the system’s contribution rate is held constant. In that sense,
standard defined contribution systems can be seen as systems with full demographic
indexation. Further reform packages intend to force or induce households to establish
individual savings accounts as a supplement to, or substitute for, public pensions. How-
ever, these are implemented without referring to an optimality benchmark concerning
the respective weights of these pension pillars within the overall pension system. Where
insurance is concerned, this comes as no surprise because pension claims accumulated
within a classic defined contribution system exhibit risk properties similar to private
savings. From a risk sharing perspective, the split between the two forms of savings is
therefore of secondary importance.

This chapter derives the optimal size of full demographic indexation schemes in the

15
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long run and analyzes the welfare effects of introducing a small measure of a defined
benefit element. To that end, it develops a two-period overlapping generations economy
model that features production, stochastic total factor productivity and a stochastic
number of workers, with stochastically stationary productivity and population. The
model is set up so that individuals’ attitudes towards time determine the capital ac-
cumulation process. Further, individuals’ attitudes towards risk determine the split of
resources among contemporary generations. We find that the long-run optimal size of
the full demographic indexation scheme is independent of fertility shocks, brings the
economy onto its golden rule growth path, and maximizes a social welfare function that
places an equal weight on each generation independently of its size and the time it ap-
pears on the scene. This implies that what is commonly referred to as full demographic
indexation within a Social Security pension scheme effectively means that no demo-
graphic indexation occurs from a social planner’s perspective. Introducing an element
of defined benefit at the margin entails a crowding out of the long-run capital stock
but allows for gains from insuring risks to lifetime resources. The simple example with
a unit intertemporal elasticity of substitution in consumption across periods suggests
that such a marginal deviation from a full demographic indexation scheme is long-run
welfare-improving when the old are sufficiently risk averse, and the actual size of the
system exceeds the long-run optimal level. In that case, the economy is dynamically
efficient in the sense of Abel et al. (1989), implying that the insurance gains outweigh
the negative crowding out effect.

The link between stochastic fertility and the pension scheme design is rarely treated
in the literature, although the number of workers is a key variable in both aggregate
production and the pension budget. Treating fertility as an exogenously given stochas-
tic process, Ludwig and Reiter (2010) find that members of the German baby-boom
generations lose up to five per cent of lifetime consumption under the pension formula
prevailing at that time. This result can be interpreted in terms of Easterlin’s (1980)
informal discussion of the market bias against large generations, which suffer from low
wage income when young and low proceeds from savings when old. Bohn (2001) therefore
argues that ‘pure’ defined benefit schemes are more suitable than ‘pure’ defined contribu-
tion schemes to compensate for this market bias1. Sánchez-Marcos and Sánchez-Mart́ın
(2006) take up the idea and numerically analyze the long-run welfare consequences of
the introduction of a marginal defined benefit scheme. Calibrating a four-period OLG
model to the U.S. economy, they find substantial welfare losses in the steady state; the
crowding out of capital dominates insurance gains over the long-run.

The optimal size of Social Security is usually studied in partial equilibrium models
(see, e.g., Thøgersen, 1998; Wagener, 2003; and Matsen and Thøgersen, 2004). Within
this strand of literature, only Matsen and Thøgersen (2004) treat fertility risk explicitly

1Young (2001) lays out a similar setup and argues that a social planner also has a bias favouring
small generations. The argument is simple: the larger the generation, the higher are the social costs of
providing utility to each member.
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and derive the optimal size of a defined contribution scheme by means of a portfolio
choice approach. In the absence of adverse effects on capital accumulation, a case for
transfers from the young to the old can be made because the scheme is capable of hedging
risks to lifetime income.

This chapter contributes to the above literature in two ways. First, and in contrast
to Matsen and Thøgersen (2004), this chapter considers a continuum of pension mixes
between the defined contribution system and the defined benefit system, and determines
the degree of demographic indexation that minimizes the risk of the consumer’s portfolio
conditional on the state at birth. Conditional on the state at birth, the incorporation of
a defined benefit element in the pension formula is welfare-improving, unless the general
size of the system – measured as the replacement rate – is unreasonably high. This
result is obtained within a general equilibrium model, wherein factor prices are deter-
mined by the relative abundance of capital and labour inputs as well as pension policy
parameters, and physical capital is the only asset available in a setting with incomplete
markets. Second, and in contrast to Bohn (2001) and Sánchez-Marcos and Sánchez-
Mart́ın (2006), the chapter establishes the existence of a long-run stationary equilibrium
for an economy which runs with the full demographic indexation system: The equilib-
rium is characterized by stable distributions of the key variables. The chapter determines
the long-run optimal size of Social Security. It is therefore closely related to Hillebrand
(2011), who determines the long-run optimal size of a defined contribution scheme in a
production economy where the only source of aggregate uncertainty is a stochastic total
factor productivity parameter2. However, such shocks tend to pull factor incomes in the
same direction, thereby limiting or even eliminating the scope for intergenerational risk
sharing. The remaining role of the scheme is to bring the economy onto its golden rule
growth path, a problem first studied by Phelps (1961).

The remainder of this chapter is structured as follows. Section 2.2 lays out the eco-
nomic and demographic environment. Section 2.2.3 treats the individual saving decision
as exogenously given and derives the variance-minimizing degree of demographic index-
ation conditional on the state at birth. Section 2.3 endogenizes the savings decision; the
associated long-run optimal and socially optimal sizes are derived in Section 2.4. Section
2.5 provides the simulation results. The main conclusions are drawn together in Section
2.6.

2.2 Intergenerational sharing of fertility risk

This section builds a general equilibrium overlapping generations model of a closed econ-
omy that features production and stochastic but stationary productivity and population
growth. The capital accumulation process and factor prices depend on the relative
abundance of factor inputs and the pension parameters.

2An early attempt was made by Feldstein (1985) who derives, in a deterministic environment, the
optimal size of the scheme when individuals are myopic.
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2.2.1 Technology

Let the technology be Cobb-Douglas

Yt = F (εt;Kt, Nt) = εtK
α
t N

1−α
t , α ∈ (0, 1), (2.1)

where Yt, Kt, Nt, and εt denote aggregate output, capital stock, work force (equal
young population) and total factor productivity, respectively. {εt}∞t=0 is a sequence of
independent and identically distributed random variables with known distribution. In
the absence of premature death, shocks to the generational size are conveniently modelled
as a stochastic population growth factor nt = Nt/Nt−1 > 0, where {nt}∞t=0 is a sequence
of independent and identically distributed random variables with known distribution. A
high realization of nt represents a baby boom, a low realization a baby bust. Section 2.5
specifies the notion of a ‘real’ baby bust. The random variables ε and n are assumed to
be log-normally distributed.

Assumption 1. ln εt ∼ N (µε, σ
2
ε ), lnnt ∼ N (µn, σ

2
n).

’Developed’ countries are now at the end of their fertility transition3, and the question
addressed in this chapter concerns fluctuations rather than the previous secular trend of
fertility.4,5 We therefore impose

Assumption 2. There is replacement fertility on average, i.e. Ent = 1.6

Firms make their decision of what levels of inputs to hire after the realization of the
shocks. Therefore, they face no uncertainty. Capital depreciates fully within one period,
and factors are paid their marginal products:

Rt = αεtk
α−1
t (2.2)

wt = (1− α)εtk
α
t , (2.3)

where kt = Kt/Nt denotes the capital stock per worker. Given Kt, a baby boom causes
the capital stock per worker to be low, so that Rt is high and wt is low. Over the life-
cycle, members of a large generation suffer from a relatively low realization of wt when
young and - since aggregate savings of a large generation tend to be high - a relatively
low realization of Rt+1 when old. In that sense, (2.2) and (2.3) restate Easterlin’s (1980)
informal argument that life is disproportionally good if one belongs to a small generation.

3The chapter abstracts from changes in life expectancy and migration.
4The economic consequences of the induced population ageing are well documented; see, for example,

Roseveare et al. (1996) and Casey et al. (2003) on the general consequences for capital accumulation and
growth and the induced financial pressure within social security pension schemes. See also the in-depth
treatment within a full-blown (normative) Ramsey model in Cutler et al. (1990).

5Greenwood et al. (2005) argue that the mystery of the baby boom following the 1950’s has not been
cracked within endogenous fertility models.

6Still, there is the possibility of extinction, i.e., Nt approaches zero with positive probability.
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The Cobb-Douglas technology and Assumption 1 imply that, once the state (kt, εt, nt)
has been realized, Rt+1 is a log-normally distributed random variable.

2.2.2 Demographic indexation of pension benefits

We consider pure pay-as-you-go pension schemes, so that current pension benefits are
financed by the contributions of current workers. In particular, there are no pension
funds. Demographic indexation can be considered as linking pension benefits to the
economy-wide wage bill. Allowing for incomplete demographic indexation, the simplest
indexation structure links the pension benefit per retiree partly to the evolution of the
wage rate (wt), and partly to the evolution of the aggregate wage bill (wtNt),

bt+1 = θ × wt ×
(
wt+1

wt

)x
×
(
wt+1Nt+1

wtNt

)1−x
, x ∈ [0, 1]. (2.4)

Here, θ is the scheme’s replacement rate (that is, the rate at which the pension benefit
in t + 1 replaces own previous wage income in t). θ will serve as the measure of the
size of the scheme. We assume throughout θ > 0, although we cannot rule out that
its long-run optimal level is negative. 1 − x is the degree of demographic indexation.
Demographic indexation allows to display a continuum of pay-as-you-go pension mixes
between what is known as a defined benefit scheme (x = 1) and a defined contribution
scheme (x = 0), where an increase in the degree of demographic indexation (1−x) shifts
Social Security pensions away from defined benefit towards defined contribution. Both
schemes are frequently studied in isolation in the existing literature (see, e.g., Bohn,
2001). Obviously, (2.4) represents a class of pay-as-you-go pension schemes that are
equivalent if only fertility was deterministic and constant at replacement level. It follows
from (2.4) that bt+1 = θ×wt+1×n1−x

t+1 . Under the assumption that the individuals survive

both periods of life, n−1
t+1 is the old-age dependency ratio in period t + 1. An increase

in the latter cuts, ceteris paribus, pension benefits in that period whenever x < 1.7

Contributions are proportional to wages, and the pension budget is balanced in each
period by assumption, so that the contribution rate in period t is τt = τ(θ, x, nt) = θn−xt .

The next section treats the pension claim as a quasi-asset. Denoting the system’s
implicit rate of return by RPt+1 = (wt+1/wt)×n1−x

t+1 ×nxt −1, we may rewrite the pension
benefit in (2.4) as

bt+1 = τ(nt)wt ×RPt+1. (2.5)

7For example, the so-called sustainability factor in the German pension system (implemented in
2004) cuts benefits when the old-age dependency ratio increases. The aim was to retain the financial
sustainability of the pension system when the baby-boom generations retire. More precisely, it was
implemented in order to resolve the conflicting aims of paragraph 154 SGB VI to keep the contribution
rate below 22% until 2030 and the replacement rate (related to the artifical ’Eckrentner’) above 67%.
The cut in benefits is accompanied by measures to force or induce individuals to privately save for old
age, the so-called Riester-Rente.
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Given the vector (kt, εt, nt), equation (2.1) and Assumption 1, RPt+1 is log-normally
distributed.

It is assumed that physical capital and pensions claims are the only assets available.
In contrast to Matsen and Thøgersen (2004), we therefore have

Assumption 3. There is no risk-free asset.

The combination of Cobb-Douglas technology and full demographic indexation of
pension benefits (i.e. x = 0) implies that the two sources of old-age income are perfectly,
positively correlated. In contrast, if demographic indexation is incomplete (i.e. x > 0),
then current retirees share the fertility shock of the next generation.

2.2.3 Diversification of lifetime income

This section analyzes the welfare consequences of a deviation from the full demographic
indexation scheme, conditional on the state at birth, (kt; εt, nt). These consequences
concern the gains of the diversification of lifetime income; for the pension claim then
exhibits different risk properties than private savings in physical capital. Following
Matsen and Thøgersen (2004), the pension claim is treated as a quasi-asset. Matsen and
Thøgersen (2004) determine the optimal size of a pay-as-you-go pension system with
a fixed contribution rate (corresponding to x = 0) within a partial equilibrium setup
wherein factor prices and population growth are treated as exogenously given. This
seems to be at odds with the empirical evidence that the level of labour income of large
cohorts is considerably reduced due to their size (see, e.g., Brunello, 2010). In contrast,
the current general equilibrium approach makes explicit these interdependencies, through
(2.2) and (2.3). As noted above, the combination of Cobb-Douglas technology and full
indexation implies perfect correlation between capital income and the pension benefit.
As a consequence, the optimal size of the full demographic indexation system remains
undetermined, given (kt; εt, nt). Instead, we establish welfare gains of partial indexation
and derive the degree of demographic indexation which minimizes the variance of the
overall portfolio conditional on the state at birth.

Each generation consists of many ex ante identical purely selfish individuals. When
young, each of them inelastically supplies one unit of labour and pays contributions to
the scheme. Following Gordon and Varian (1988), Matsen and Thøgersen (2004), and
Ball and Mankiw (2007), they are assumed to live for two periods, but only draw felicity
from consumption at old age. This simplifying assumption is qualitatively not essential
for the intergenerational risk sharing problem, but it admits some analytical results. It
is relaxed in Section 2.3. The key insights, namely the existence of diversification gains
and the existence and uniqueness of the system’s long-run optimal size, carry over to
the case when the individual savings decision is endogenous (see Sections 2.4 and 2.5).

The representative member of the young generation therefore privately saves all net
wage income. When old, she consumes the proceeds from private savings plus the pension
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benefit,
ct+1 = wt(1− τ(nt))Rt+1 + bt+1. (2.6)

Using (2.5), we may rewrite (2.6) as

ct+1 = wt ×RTt+1 (2.7)

where

RTt+1 = Rt+1 + τ(nt)×
(
RPt+1 −Rt+1

)
(2.8)

is the effective return of the total portfolio, expressed in terms of a linear combination
of the individual asset returns RPt+1 and Rt+1.

By virtue of Assumption 1 and the fact that the vector (kt; εt, nt) and therefore wt
are known, RPt+1 and Rt+1 are lognormally distributed random variables.8 While this
does not imply that RTt+1 is likewise in general, Campbell and Viceira (2002) show that
it is approximately. Taking a second-order Taylor approximation of the logarithm of
(2.8) around lnRPt+1− lnRt+1 = 0 yields the following expression for rTt+1 ≡ lnRTt+1 (see
Appendix 2.A.1):

rTt+1 = τtr
P
t+1 + (1− τt)rt+1 + (1/2)× τt(1− τt)

(
rPt+1 − rt+1

)2
, (2.9)

with mean and variance

Etr
T
t+1 = τtµrP + (1− τt)µr + (1/2)τt(1− τt)x2σ2

n (2.10)

σ2
rT = τ2

t σ
2
rP + (1− τt)2σ2

r + 2τt(1− τt)σrP r, . (2.11)

where µr = Etrt+1, µrP = Etr
P
t+1 and Et[(r

P
t+1 − rt+1)2] = x2σ2

n. Finally, σ2
rP

=

σ2
ε + ((1− x)− α)2 σ2

n, σ2
r = σ2

ε + (1 − α)2σ2
n and σrP r = σ2

ε + (1 − α)(1 − α − x)σ2
n

denote the variances of rPt+1 ≡ lnRPt+1 and rt+1 ≡ lnRt+1 and the associated covariance,
respectively, given the information available in period t. As noted by Campbell and
Viceira (2002) and Matsen and Thøgersen (2004), the approximation is accurate over
short time periods and, fortunately, entails only negligible ’horizon effects’ for longer
time periods. Also ote that x = 0 implies σ2

rP
= σ2

r = σrP r = σ2
rT

, indicating that the
full demographic indexation system does not provide any intergenerational risk sharing
for any θ ∈ (0, 1). The approximation is therefore exact in that case.

The Taylor approximation implies that the stochastic structure of the individual
asset returns is inherited by rTt+1. Still, income and substitution effects depend on the
relative size of the generation. Suppose therefore that the current fertility realization is
at the replacement level (nt = 1). Then, for any x ∈ [0, 1], the fraction of wage income

8Throughout we encounter products of lognormal random variables. If some random variable X is
lognormally distributed, then Y = lnX is normally distributed. It follows that Y1 + Y2 = ln (X1 ·X2) is
normal. Likewise, Y1 − Y2 = ln (X1/X2) is normal.
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to be saved within the pension system equals θ. This allows a clear-cut analysis of the
impact of demographic indexation on the portfolio’s riskiness, as measured by σ2

rT
, given

the general size of the system, θ.
By (2.11), σ2

rT
depends on the variances of the individual asset returns, σ2

rP
and σr,

and, since these are not independent, on the covariance σrP r. If nt = 1, σ2
r is unaffected

by the degree of demographic indexation. However, the variance of the scheme’s implicit
rate of return, σ2

rP
, is a convex function of x with the minimum at x∗P = 1− α ∈ (0, 1).

The threshold value x∗P = 1−α separates the system into one which works like a defined
contribution (x < x∗P ), so that both rPt+1 and rt+1 increase with the fertility shock nt+1

(albeit the co-movement is dampened by x > 0), and one which works like a defined
benefits system (x > x∗P ), in which case rPt+1 decreases with nt+1. If x > x∗P , then a
further increase in x increases the variance of the implicit rate of return.

However, even if x is already large, the variability of the total portfolio may still be
reduced by a further increase in x; for the system compensates the market outcome.
σ2
rT

depends not only on the actual size of the scheme, as measured by θ, but also on
the covariance between the asset returns, rPt+1 and rt+1, respectively. An increase in x
decreases the said covariance for any x ∈ [0, 1], tending to reduce, ceteris paribus, the
variance of the total portfolio. Given nt = 1, it is readily verified by differentiating
(2.11) that the reduction in σrP r outweighs the potential increase in σ2

rP
as long as

x < x∗ = (1 − α)/θ, where x∗ is the variance-minimizing level of x, provided that
θ > (1 − α). Note that x∗ satisfies, for any θ ∈ (0, 1), ∂σ2

rT
/∂θ = 0. Therefore, if the

objective is to minimize the portfolio’s variance, then the generation should opt for the
classic defined benefit system (x = 1), or for the incomplete demographic indexation
system with x = x∗ if θ > (1 − α). Given the standard value of the capital share,
α = 0.3, and social security pension expenditures of around 10 per cent of the gross
domestic product (see Table 1 in Chapter 1), 0 < x ≤ 1 almost surely implies a lower
portfolio variance, when compared to the full demographic indexation system.

Finally note that the class of pay-as-you-go pension systems considered here is unable
to share i.i.d. productivity shocks across generations.

We next show that the risk reduction implies welfare gains of a deviation from full
demographic indexation only if individuals are sufficiently risk averse. Let the von
Neumann-Morgenstern utility function of a representative member of the generation
born in period t be of the CRRA type, with coefficient of relative risk aversion γ. Her
expected utility is

Vt(θ, x) = Et

[
β
c1−γ
t+1 − 1

1− γ

]
, (2.12)

where (2.12) specializes to βEt ln ct+1 in the limit as γ → 1. Maximizing (2.12) is
equivalent to maximizing ln β

1−γEtc
1−γ
t+1 (see Campbell and Viceira, 2002). Since β/(1−γ)

is simply a scale factor, the policy problem is equivalent to

max ln
[
Etc

1−γ
t+1

]
. (2.13)
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For later use, note that monotonicity of Vt implies that maximizing Vt, and therefore

problem (2.13), is equivalent to maximizing the certainty equivalent
[
Etc

1−γ
t+1

]1/(1−γ)
(i.e.

the sure old-age consumption that is necessary to make the individual as well-off as with
stochastic old-age consumption). Also note that the certainty equivalent is unaffected
by the full demographic indexation pension system (x = 0).

Since wt is treated as given, old-age consumption ct+1 is approximately lognormally
distributed and so is c1−γ

t+1 .9 Therefore, by virtue of ln
[
E
(
c1−γ)] = E

[
ln
(
c1−γ)]+1/2×

var
(
ln
(
c1−γ)) = (1−γ)E ln c+1/2×(1−γ)2σ2

c , σ
2
c = var (ln c), the problem associated

with the objective of maximizing Vt can be written as

max
[
Et ln ct+1 + 1/2× (1− γ)σ2

c

]
. (2.14)

Since the individual is risk averse, she values a reduction in the variance of ct+1. Yet
she dislikes a reduction in risk because it implies a reduction in the expected “pay-off”.
If γ > 1 (γ < 1) the former effect dominates (is dominated by) the latter, and the risk
reduction associated with the introduction of 0 < x < x∗ is, ceteris paribus, welfare-
improving (welfare-decreasing) conditional on the state at birth. If γ = 1, then these
effects exactly cancel out and the insurance provided by the scheme is welfare-neutral.
Since (2.7) implies ln ct+1 = lnwt + lnRTt+1 the policy problem (2.14) finally reads as

max
x

[
Etr

T
t+1 + 1/2× (1− γ)σ2

rT

]
, s.t. (2.10) and (2.11). (2.15)

Appendix 2.A.1 differentiates (2.15), given any nt. If nt = 1, then

dVt
dx

=− θ
[
µn − (1− θ)xσ2

n

]
− (1− γ)θσ2

n [θ(1− α− x) + (1− θ)(1− α)] ,
(2.16)

where the first line captures an income effect associated with the induced change in the
portfolios expected return, Etr

T
t+1. Given θ > 0 and Assumption 2, nt = 1 implies that

Etr
T
t+1 increases with x for any x ∈ [0, 1]. The second line captures the welfare impact of

the induced change in the portfolio’s variance, σ2
rT

. With an eye on Section 2.5, note that
the marginal increase in x from x = 0, is welfare-improving. It is also readily verified by
rearranging that the increase in x from any x < (1 − α)/θ is welfare-improving as long

as γ > 1 + µn−(1−θ)xσ2
n

(1−α−xθ)σ2
n

. Under Assumption 2, µn < 0, implying that the threshold value

of γ is unambiguously less than one.

By treating the state (kt, εt, nt) as given, the above focused on one particular general
equilibrium channel: fertility fluctuations induce movements in factor prices. While x∗

does depend on the actual size of the system, there is no clear guidance on the latter’s

9c ∼ LN implies ln c ∼ N . Since the normal distribution is closed under linear transformations,
(1− γ) ln c ∼ N , so that exp

(
ln c1−γ

)
∼ LN .
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optimal level. The next section therefore focuses on a second general equilibrium channel
which arises in a dynamic setup: The pension system crowds out private savings and
therefore the long-run capital stock for any x. We therefore close this section by defining
the optimal size θ of the full demographic indexation system as the solution to

max
θ
E0 lim

t→∞
Vt(θ, 0)

subject to

ct+1 = c̄(θ)εt+1k
α
t+1nt+1, (2.17)

kαt+1 = exp

{
α

t∑
i=0

αi ln(1− θ)

}
, (2.18)

where Vt(θ, 0) is defined in (2.12), c̄(θ) = (α+ θ(1− α)) and (2.18) suppresses all terms
that are independent of θ. Appendix 2.A.2 derives the full version of (2.18). The next
section shows that kαt is lognormally distributed, and so is ct+1. Recalling that x = 0
implies that the size of the system leaves the variance of old-age consumption unaffected,
the optimal size, θ∗, is given by

θ∗ = 1− α

1− α
, (2.19)

where α/(1−α) is the ratio of factor shares. A formal proof is found in Appendix 2.A.4,
which deals with the long-run optimal size when the savings decision is endogenous, but
still the young individuals optimally save a constant fraction of output.

Constraint to the particular class of pension systems with x = 0, θ∗ maximizes the
welfare of each generation in the steady state. We therefore use the term ‘long-run
optimal size’. Note that α > 1/2 implies θ∗ < 0 so that retirees are compelled to
make transfers to their children. In contrast, the long-run optimal size is positive if the
resources used to generate the capital stock under laissez-faire, (1 − α)εtk

α
t exceed the

contribution of capital to output, αεtk
α
t , or, equivalently, α < 1/2. A more detailed

discussion of this result is found in Section 2.4, which deals with the more general setup
of endogenous savings behaviour. There, we also motivate the long-run perspective by
showing that the long-run optimal size is the solution to a social welfare function. Section
2.5 combines insurance of lifetime income and the crowding out capital by studying
numerically the long-run welfare effects of introducing an element of defined benefit at
the margin.

2.3 The model with endogenous savings

As in the previous section, each generation consists of many ex ante identical purely
selfish individuals, but the representative individual may now consume in both periods
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of her life. When young, a member of the generation born in t allocates realized net
wage income between consumption cyt and saving in physical capital at. When old, she
receives the proceeds from savings, atRt+1, plus the pension benefit bt+1.

We employ a simplified version of the non-expected utility function developed in
Epstein and Zin (1989) and Weil (1990) (also see Blanchard and Weil, 2001). These
recursive preferences resolve the identification problem concerning the intertemporal
elasticity of substitution and the coefficient of risk aversion prevailing in expected utility
structures. We assume unit elasticity of substitution in consumption across periods,
but allow for a general coefficient of relative risk aversion γ > 0. This is achieved by
imposing logarithmic felicity from youth consumption and retaining the felicity function
at old age from the previous section. For our purposes, these assumption are appealing.
First, if both felicity functions were of the CRRA type, then the long-run equilibrium
exists only if γ < 1, even in the deterministic counterpart of the model. In contrast, the
unit intertemporal elasticity of substitution ensures existence and uniqueness of the long-
run equilibrium for all γ > 0, which allows to study the long-run effects of a marginal
deviation from the full demographic indexation system under alternative assumptions
on the individuals’ attitudes towards risk.

Her decision problem is to maximize

Ut = ln cyt + β ln
[
Etc

o
t+1

1−γ]1/(1−γ)
, (2.20)

subject to

cyt = wt(1− τt)− at, (2.21)

cot+1 = atR
e
t+1 + bet+1, (2.22)

cyt > 0, cot+1 > 0, (2.23)

where net wage income wt(1−τt) is treated as given, and Ret+1 and bet+1 denote subjective
expectations concerning the future rate of return on capital and the pension benefit at the
time of the consumption savings decision. We retain the specifications of the technology
and the pension formula from the previous section, so that Rt+1 and bt+1 follows from
(2.2) and (2.4), respectively.

The timing of shocks is relevant. We impose delayed fertility:10

Assumption 4. nt+1 is realized after the individuals’ consumption savings decision.

Assumption 4 is implicit in the existing economic literature on stochastic fertility (see,
for example Bohn, 2001, Matsen and Thøgersen, 2004 and Sánchez-Marcos and Sánchez-
Mart́ın, 2006). The exception is Smith’s (1982) early treatment of Pareto-effects from

10Delayed fertility probably influences completed fertility, and hence the size, composition, and growth
of the population. Since the focus is on intergenerational risk sharing, the timing of fertility is assumed
to have no effect on the fertility distribution itself. In particular, the expected number of newborns is
unaffected.
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unfunded Social Security Pension. We motivate Assumption 4 as follows. Economic
uncertainty is one of the main driving forces behind delayed fertility (see e.g. Kreyenfeld
et al. (2012) and the references cited therein). In the current setup, the stochastic total
factor productivity parameter captures the source of economic uncertainty, and delayed
fertility is seen as a response to economic uncertainty.11 Section 2.5 provides a sensitivity
analysis with respect to the timing of fertility.

For general γ > 0 and x ∈ [0, 1], the first-order condition with respect to at associated
with problem (2.20)-(2.23) is

1

cyt
= β

Et
(
cot+1

−γRt+1

)
Etcot+1

1−γ (2.24)

In the temporary equilibrium, the vector (at, c
y
t , c

o
t , kt+1, wt, Rt) satisfies, for any

(θ, x) and all states, the following: (i) factor prices are determined by (2.2) and (2.3);
(ii) the scheme is balanced, i.e. intergenerational transfers satisfy (2.4); (iii) given prices
and transfers, at is the solution to problem (2.20)-(2.23), that is, it solves (2.24) with
Ret+1 = Rt+1 and bet+1 = bt+1;12 and (iv) the goods market clears. Since contributions
to the pure pay-as-you-go pension scheme do not add to the capital stock, the latter
evolves according to Kt+1 = atNt. In per worker terms,

kt+1 = atn
−1
t+1. (2.25)

By Walras’ Law, (2.25) implies that the goods market clear.

In general equilibrium, the optimal savings decision affects the next period’s capital
stock and, therefore, the next period’s factor prices. Future factor prices, in turn, affect
the optimal savings decision. Yet it is well known that the logarithm implies that optimal
savings under laissez-faire is independent of the future interest rate, so that the ‘feedback’
effect is absent. Using equations (2.2), (2.3), (2.21), (2.22), and (2.25) in (2.24), shows
that this holds true in the current setup with non-expected utility defined in (2.20) and
Social Security, as long as the economy runs with the full demographic indexation system
(x = 0); for - as noted above - the pension benefit then exhibits the same risk properties
than physical capital. The remainder of this section focuses exactly on the case x = 0.

11Sobotka et al. (2011) conceptionalizes economic uncertainty as an aggregate phenomenon capturing
a general uncertainty felt by all people during recession. A prominent example is the productivity
slowdown in the 1980’s, which dampened both wage and capital income growth. We reject the notion
that economic uncertainty is higher in times of recessions.

12In contrast to equation (2.4), Abel (2003) assumes that the present value of the pension payment
received at old age is known at the time of the decision. This entails a strict separability between the
evolution of the pension parameters and the evolution of the capital stock even when we deviate from
the full demographic indexation scheme, which he calls a defined contribution scheme.
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2.3.1 Temporary equilibrium with full demographic indexation

We characterize the temporary equilibrium by optimal saving and age-specific consump-
tion as functions of the prevailing state, where the latter is summarized by the current
(endogenously determined) capital stock per worker, the exogenous shocks to productiv-
ity and fertility, and the pension policy parameters. Since x = 0, the aggregate shocks
then drop out in (2.24), and the temporary equilibrium allocation is independent of the
coefficient of risk aversion and given by the one obtained by imposing logarithmic felicity
from old-age consumption (γ = 1). Solving (2.24) for at and plugging the solution back
into the budget constraints (2.21) and (2.22) yields the unique temporary equilibrium
allocation:

cyt (θ, 0) = c̄y(θ, 0)εtk
α
t , (2.26)

cot+1(θ, 0) = c̄o(θ, 0)εt+1nt+1k
α
t+1, (2.27)

at(θ, 0) = ā(θ, 0)× εtkαt , (2.28)

where

c̄y(θ, 0) =
[α+ (1− α)θ] (1− α)(1− θ)

α(1 + β) + (1− α)θ
,

c̄o(θ, 0) = (α+ (1− α)θ) ,

ā(θ, 0) =
αβ(1− α)(1− θ)
α(1 + β) + (1− α)θ

.

Note the similarity with Section 2.2.3. Since τ(θ, 0, nt−1) = θ, the individual privately
saves a constant fraction of output per worker. While the general environment is stochas-
tic, optimal saving is then consistent with all subjective estimates concerning Ret+1 and
bet+1. Therefore, the equilibrium allocation (2.26)-(2.28) is consistent with the notion
of the so-called self-fulfilling expectations equilibrium, in which the agents’ expectations
concerning the future interest rate and pension benefit are confirmed ex post in all future
states, i.e. Ret+1 = Rt+1 and bet+1 = bt+1 (see Wang, 1993 and Hauenschild, 2002). It
should be noted that the self-fulfilling expectations equilibrium is the stochastic analogue
to Galor and Ryder’s (1989) concept of perfect foresight.

The inspection of ā(θ, 0) gives the classical result, first obtained by Feldstein (1974),
that a pay-as-you-go pension scheme crowds out private savings and hence the future
level of capital when compared to the corresponding laissez-faire economy. Intuitively,
both reduced net wage income when young and non-capital income at old age tend to
reduce individual savings, so that for any pair (θ, θ′) satisfying −α/(1 − α) < θ < θ′ <
1, at(θ, 0) > at(θ

′, 0). Therefore, given realizations of the series {nt}∞t=0 and {εt}∞t=0,
kt(θ, ·) > kt(θ

′, ·)∀t. A continuity argument and the simulations in Section 2.5 suggest
that the crowding out result also holds for small deviations from x = 0. Corollary 1
below gives a stochastic dominance result for the case x = 0.
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Let Vt(θ, 0) denote the associated indirect utility function. Using (2.25) - (2.28), and
ignoring terms that are independent of the pension parameters,

Vt(θ, 0) = ln c̄y(θ, 0) + β ln c̄o(θ, 0) + αβ ln ā(θ, 0)

+ α(1 + αβ) ln kt.
(2.29)

We next study the evolution of ln kt.

2.3.2 Long-run equilibrium with full demographic indexation

This section establishes the existence of the long-run equilibrium under full demographic
indexation, by showing that the logarithm of the capital stock per worker has stable law.
Recalling (2.25) and (2.28), capital accumulation follows the first-order autoregressive
process

ln kt+1 = α ln kt + ln z(θ, 0, εt, nt+1), (2.30)

where ln z(θ, 0, εt, nt+1) = ln ā(θ, 0) + ln εt − lnnt+1 is a normally distributed random
variable with mean µz = ln ā(θ, 0) + µε + µn and variance σ2

z = σ2
ε + σ2

n, respectively.

Let k∞(θ, 0) denote the long-run equilibrium capital stock in the presence of the full
demographic indexation scheme of size θ. The stochastic structures of the exogenous
shocks are fully inherited by k∞(θ, 0); for the exogenous shocks have stable law.13

Definition 2.3.1. Stable law

A random variable X has a strictly stable law if

a1X1 + a2X2 =d a3X,

where X1 and X2 are independent copies of X, and the constants a1, a2, a3 > 0 satisfy
aξ1 + aξ2 = aξ3, 0 < ξ ≤ 2 being the index of the stable law.

Remark. The normal distribution has stable law with index 2.

Proposition 1. Long-run capital distribution under full demographic indexa-
tion

Suppose the economy runs with a scheme of size θ ∈ (−α/(1− α), 1). If x = 0,
then14

ln k∞(θ, 0) =d

(
1

1− α2

)1/2

× ln z(θ, 0, ε, n), (2.31)

13Stable distributions are frequently used in financial economics (see, e.g., Derman et al., 2010 and
the references cited therein). A general background on stable distributions is provided, among others,
in Whitt (2002). Definition 2.3.1 is taken from Nolan (2016).

14=d means equality in distribution.
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where the first and second moments are given by

µk = µz/(1− α),

σ2
k = σ2

z/(1− α2).

Proof. See Appendix 2.A.3. The condition θ ∈ (−α/(1− α), 1) ensures strictly positive
consumption levels.

Since the individual optimally saves a constant fraction of output per worker under
full indexation, perfect correlation between RP and R continues to hold from the previous
section. Therefore, the crowding out effect stemming from Social Security with full
demographic indexation appears as a simple shift of the long-run capital distribution
under laissez-faire, in which case θ = 0. This notion is formalized by the next corollary
to Proposition 1 (k∞(0) denotes the long-run equilibrium capital stock under laissez-
faire).

Corollary 1. Suppose there is full demographic indexation (x = 0). Then

1. If θ > 0, then ln k∞(θ, 0) is first-order stochastically dominated by ln k∞(0).

2. If θ < 0, then ln k∞(0) is first-order stochastically dominated by ln k∞(θ, 0).

Note that we consider a very general tax-transfer scheme. If θ > 0, then the con-
tributions made by the young generation are transferred in a lump-sum manner as in a
pay-as-you-go pension system. As noted in Section 2.2.3, θ < 0 implies that the state
transfers a part of the retirees’ capital income to the young. In fact, we cannot rule out,
a priori, that a negative size of the system is optimal over the long run.

2.4 The optimal size of Social Security

While, at first glance, the reduction in the long-run level of the capital-labour ratio due
to positive transfers from the young to the old generation seems harmful, it is well known
that economies populated by an infinite sequence of overlapping generations with finite
lifespans may overaccumulate capital relative to Phelps’s (1961) golden rule of capital
accumulation. The associated long-run capital stock maximizes aggregate consumption.
Noting that c̄y(θ, 0) + c̄o(θ, 0) + ā(θ, 0) = 1, the logarithm of aggregate consumption (in
per worker terms) can be written as lnCt = ln (1− ā(θ, 0)) + ln εt + α ln kt.

15 There are
two effects stemming from the crowding out of private savings induced by an increase in
the size of the scheme. First, at any point in time, the fraction of output dedicated to
consumption is increased. Second, output is reduced in the long run. Total differentiation

15Since ln k∞ is normally distributed, lnC∞(θ, 0) is also normally distributed with µC = αµk(θ, 0) +
µε + ln(1− ā(θ, 0)), and σ2

C = ασ2
k + σ2

ε > σ2
k as σ2

ε > σ2
n/α.
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with respect to ā yields the familiar result of deterministic models that the propensity to
save that satisfies the golden rule, āGR, equals the capital share in output, i.e. āGR = α.

Recalling (2.28), the golden rule can be implemented in the decentralized economy
by setting θGR = β/(1+β)−α/(1−α), which is the solution to ā(θ; 0) = α. This section
shows first that θGR is the long-run optimal size of the scheme in terms of aggregate
consumption and welfare. Therefore, if the long run is of any interest, then the size of
the scheme should be chosen so as to bring the economy onto its golden rule growth path.
Secondly, the long run is indeed of interest; for the long-run optimal size implements
the allocation chosen by a benevolent planner who cares about undiscounted, average
generational welfare.

2.4.1 The long-run optimal size

The long-run optimal size of the scheme is defined as the time- and state-invariant
replacement rate under full demographic indexation which maximizes ex ante expected
indirect utility in the long run. Formally,

Definition 2.4.1. Long-run optimal size
The long-run optimal size of the system is defined as

θ∗ = arg max [V (θ, 0) |θ ∈ (−α/(1− α), 1)] , (2.32)

where V (θ, 0) = E0 limt→∞ Vt(θ, 0) and Vt (θ, 0) is defined in (2.29).

By Proposition 1, the stationary of the exogenous shocks implies that ln kt has a time-
invariant distribution, given θ ∈ (α/(1− α), 1). In particular, E [ln kt] = E [ln kt+1] =
µk. Using the definition of µk, V (θ, 0) can be written as the function V : (−α/(1 −
α), 1)→ R

V (θ, 0) = v̄ + ln c̄y(θ, 0) + β ln c̄o(θ, 0) +
α(1 + β)

1− α
ln ā(θ, 0), (2.33)

where v̄ is a constant which is independent of the pension policy parameters. As noted
above, the full demographic indexation scheme does not provide insurance of fertility risk,
c̄y(θ, 0), c̄o(θ, 0) and ā(θ, 0) are independent of the coefficient of relative risk aversion, γ,
and so is the long-run optimal size of the system. The next proposition establishes the
existence and uniqueness of θ∗.

Proposition 2. Existence and uniqueness of the long-run optimal size
The θ∗ defined in (2.32) is the unique value

θ∗ = τ∗ =
β

1 + β
− α

1− α
, (2.34)

and coincides with the golden rule size of the scheme.
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Proof. See Appendix 2.A.4.

Proposition 2 states that the long-run optimal size of the scheme is independent
of both productivity and fertility shocks. It extends the result of Hillebrand (2011),
who finds that the long-run optimal size of a standard defined contribution scheme is
independent of i.i.d. productivity shocks. In particular, θ∗ coincides with the long-run
optimal size in the deterministic counterpart of the model. Of course, this result is due
to the parametrization of the model. The economic intuition is that, due to perfect cor-
relation, both shocks hit capital income and pension benefits alike, so that contributions
to the scheme fully substitute for private savings in the form of physical capital. That
is to say, full demographic indexation renders the pension claim an asset with the same
risk properties as private savings. Since the full demographic indexation scheme does
not involve intergenerational risk sharing, the role of the system is restricted to bringing
about the golden rule growth path. Moreover, capital accumulation is unaffected by the
coefficient of relative risk aversion, implying that θ∗ is the long-run optimal size for any
γ > 0.

In contrast to Section 2.2, pure impatience (β < 1) implies β/(1 + β) < 1/2, so that
the optimal size may well be negative even if we impose α < 1/2. The long-run optimal
size is positive if the resources used to generate the capital stock under laissez faire exceed
the contribution of capital to output. In the general model with endogenous savings,
the former amounts to β(1 − α)/(1 + β)εtk

α
t . Note that this inequality is the sufficient

condition for dynamic inefficiency in Abel et al. (1989) (also see Abel, 2003). In passing
we note that θ∗ < 0 characterizes dynamic efficiency, while θ∗ > 0 characterizes dynamic
inefficiency of the underlying laissez-faire economy. In the latter case, a reduction in
the capital stock, and hence the pay-as-you-go pension scheme with strictly positive
transfers from the young to the old generations, is long-run welfare-improving. To get
some feeling, set β = 0.8 and α = 0.3. A discussion of these values is found in Section
2.5. These parameters imply a slightly positive long-run optimal replacement rate of
θ∗ = 0.0159. However, the long-run gains occur exclusively because the crowding out of
private savings ’heals’ dynamic inefficiency.

The fact that the sizes of real world pension schemes are not long-run optimally
chosen (for reasonable parameter values, even θ∗ < 0 – see the more detailed discussion in
Section 2.5) indicates that other aspects than long-run maximal aggregate consumption
are important. In this respect, it should be clear that θ∗ can be normatively rationalized
only if society does not effectively discount future generations’ welfare. We show next
that zero effective social discounting implies that society does not care about generational
size.

2.4.2 The socially optimal size

We rationalize the very long-run perspective of the chapter and the concept of long-run
optimality of the previous section by showing that the long-run optimal size defined in
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(2.32) implements the socially optimal allocation associated with a normative bench-
mark. It is the pension policy chosen by a hypothetical social planner who seeks to
maximize a class of social welfare functions defined by the sum of an infinite stream of
undiscounted generational lifetime-utilities.

Following Young (2001), we consider social welfare functions that differ in the extent
to which they account for the (relative) generational size. Let the social planner seek to
maximize

W0 = δ−1Nη
−1β ln co0 + E0

[ ∞∑
t=0

δtNη
t Ut

]
, (2.35)

subject to feasibility,

F (εt;Kt, Nt) = cytNt + cotNt−1 +Kt+1, (2.36)

where Nη
−1 is the ’inherited’ generation at t = 0 and Ut is defined in (2.20). In order to

derive analytical solutions, the remainder of this section assumes the logarithmic case,
i.e. γ = 1. The parameter δ ∈ [0, 1] discounts time (and needs not to be equal to β),
and the parameter η ∈ [0, 1] determines the extent at which the planner seeks to provide
utility to large generations.

The effective social discount factor δnηt involves both time discounting and weights
on generational size. Therefore, a generation that appears late on the scene may well
receive a higher weight in (2.35) than its predecessors as long as it is sufficiently large.
We impose δ̄(η) = δE[nη] ≤ 1. η = 0 means that the number of individuals attaining Ut
does not matter, and only the representative individual in each generation counts. From
this utilitarian perspective, one might argue that the effective discount factor should
be equal to 1/En = 1 (implying δ = 1), because it allows convergence to the golden
rule stationary equilibrium discussed above. Note that a zero social discount rate is in
the spirit of Ramsey (1928), who argues that discounting future generations’ welfare is
questionable on moral grounds; for symmetry over all generations at t = 0 demands
δ = 1. For the current parametrization of the model, the solution to the planning
problem is well-defined even when the planner places equal weights on all current and
future generations, independent of size. It will turn out that the equal weighting case
rationalizes the long-run optimal size of the pay-as-you-go pension system of the previous
section. Note that the equal weighting case can be endogenously rationalized on the
basis of normative considerations. In contrast, η > 0 implies non-zero effective social
discounting even for δ → 1, and it is not clear, a priori, what discount rate is appropriate.
In fact, convergence requires to exogenously set δ < 1/Enη, a choice which determines
the long-run stationary equilibrium at the outset.

Since the planner respects individual preferences, it is readily verified that the in-
tertemporal first-order condition satisfies the individual consumption Euler equation,

1/cyt = βEt
(
Rt+1/c

o
t+1

)
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Additionally, the intragenerational first-order condition of problem (2.35)-(2.36) deter-
mines the relative consumption of contemporaries,

cot = n1−η
t × (β/δ)× cyt .

Young (2001) solves the problem in the absence of productivity shocks by calculating
the percentage deviation from the age-specific consumption functions chosen by the
planner when the realization of nt is such that nηt = Enη. In this case the problem is
equivalent to an infinite-horizon planning problem with a constant discount rate. The
latter can be solved by standard dynamic programming techniques (see, e.g., Stokey and
Lucas, 1989). The following Lemma provides the ‘complete’ solution, i.e. the socially
optimal allocation, when both productivity and fertility shocks are present. Since the
productivity shocks are i.i.d., the solution is analogous to Young’s (2001).

Lemma 1. (Young, 2001) Socially optimal allocation
The socially optimal allocation associated with (δ, η) is given by

cyt
0
(δ, η;nt) = c̃y(δ, η;nt)× c̄yt (δ), (2.37)

cot
0(δ, η;nt) = n1−η

t × c̃o(δ, η;nt−1)× c̄ot (δ) (2.38)

k0
t+1(δ, η;nt) = k̃(δ, η;nt)× k̄t+1(δ), (2.39)

where

c̄yt (δ) =
δ (1− αδ)
δ + β

εtk
α
t ,

c̄ot (δ) =
β (1− αδ)
δ + β

εtk
α
t ,

k̄t+1(δ) = αδεtk
α
t

is the socially optimal allocation associated with constant fertility at replacement level,
and

c̃y(·;nt) = c̃o(·;nt) = k̃(·;nt) =
δ + β

δ (1 + αβ) + β (1− αδ)n−ηt
.

Here, c̃(·) is the percentage deviation of the actual consumption allocation in period
t from the allocation associated with deterministic replacement fertility that is due to
the fertility shock in that period. Note that the log-log structure implies that a fertility
shock is distributed equi-proportionally between current youth consumption and capital
accumulation.

Proposition 3 derives the socially optimal contribution rate, τ0
t (δ, η, nt). Due to

the combination of Cobb-Douglas technology, logarithmic utility and full depreciation,
τ0
t (δ, η, nt) is invariant to the capital stock. Therefore, τ0

t (δ, η, nt) can be expressed as
the product of its deterministic counterpart and a correction term that reflects fertility
fluctuations around replacement level. The latter arises only if η > 0
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Proposition 3. Socially optimal scheme
The socially optimal allocation can be implemented in the decentralized economy by

the state-dependent contribution rate

τ0
t (δ, η, nt) = τ̄(δ)× τ̃(δ, η, nt), (2.40)

where

τ(δ) =
β(1− αδ)

(δ + β)(1− α)
− α

1− α
(2.41)

τ̃(δ, η, nt) =
c̃(nt)β(1− αδ)− α(δ + β)

β(1− αδ)− α(δ + β)
, (2.42)

and c̃(nt) is defined in Lemma 1.

Hillebrand, 2011 shows that τ̄(δ) is the solution to the planning problem with deter-
ministic and constant fertility at replacement level, with limδ→0 τ̄(δ) = 1, and limδ→1 τ̄(δ) =
β

(1+β) −
α

1−α .

Obviously, η = 0 implies c̃ = τ̃ = 1. Therefore,

Corollary 2. If η = 0, then limδ→1 θ
0(δ) = θ∗.

Corollary 2 states that the socially optimal size of the scheme chosen by a benev-
olent planner who does not care about generational size can be implemented by the
full demographic indexation scheme. Intuitively, if the planner does not discount future
generations’ welfare, then the problem (2.35) - (2.36) is equivalent to maximizing welfare
of steady state generations; for an ever increasing number of generations (receiving the
same, non-vanishing weight in the social welfare function) is sufficiently ‘close’ to the
stationary equilibrium. Note that the social planner’s allocation with η > 0 cannot be
decentralized by the simple demographic indexation system defined in (2.4), because
with Social Security payments are linked to wage income rather than lifetime income.

2.5 Long-run welfare effects of partial demographic index-
ation

This section provides rough calculations on the long-run welfare consequences of intro-
ducing defined benefit elements at the margin. To that end, we generate long time-series
for productivity and fertility, and derive the time-series of the endogenous variables
for two scenarios: In the first, the economy runs with the full demographic indexation
scheme; in the second, the economy runs with the pension scheme with a marginal de-
viation from full indexation. While both economies are faced with the same series of
shocks, the associated capital stocks per worker will differ; for the pension design affects
individual savings behaviour.
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The model parameters are as follows: The coefficient of relative risk aversion is
γ = 2, which is a common value in the macroeconomic literature (see, e.g., Sánchez-
Marcos and Sánchez-Mart́ın, 2006). As a simple sensitivity exercise, we also report
results for the case γ = 0.5. We turn to subjective discounting. Auerbach and Kotlikoff
(1987), Fullerton and Rogers’s (1993) and Sánchez-Marcos and Sánchez-Mart́ın (2006),
for example, calibrate β to reproduce either the U.S. capital-output ratio or the gross
rate of return on aggregate capital. These works suggest that the annual discount rate
lies in 0.1%–0.2%. Since each period spans 40 years, these values imply that β lies in
the range 0.65− 0.92. Therefore, we continue to assume β = 0.8.16

The work of Abel et al. (1989) suggests that real economies are dynamically efficient.
However, this does not mean that these economies were dynamically efficient prior to
the implementation of Social Security pensions. In fact, setting the capital’s share to
the standard value found in the literature, α = 0.3, renders the laissez-faire economy dy-
namically inefficient in the sense that the laissez-faire economy overaccumulates capital
relative to the golden rule. The corresponding long-run optimal replacement rate (under
full demographic indexation) derived in Proposition 2 is slightly positive, θ∗ = 0.0159.
The actual size of the system, θ = 0.143, is chosen so as to match social security expen-
ditures of around 10% of gross domestic product (see Table 1 in Chapter 1).17 As to
the degree of demographic indexation, x = 0.1 is considered to be marginal. We main-
tain Assumptions 1 and 2, and impose σ2

n = 0.18 which fits well the empirical values
for the growth rate of the population under 25 years in industrialized countries. For
example, Sánchez-Marcos and Sánchez-Mart́ın (2006) estimate a variance of 0.164 for
the U.S. population.18 Finally, total factor productivity is simply a scale factor, which
does not affect results. For ease of exposition, the associated parameters are chosen so
as to generate values of k around 10.

Table 2.1 sets out the average numbers of the time-series. The respective coefficients
of variation serve as measures of volatility and are reported in brackets. We start with
the results for delayed fertility reported in the upper panel of the table. It is argued
above that the deviation from x = 0 can increase welfare if γ is sufficiently large. It turns
out that γ = 2 high enough to generate long-run welfare gains. Since the actual size of
the scheme is θ = 0.143 > 0.016 = θ∗, the economy under full demographic indexation

16Since the determination of β follows an indirect approach, the appropriate value of β remains
debatable. For example, Cooley and Prescott (1995) impose a quarterly psychological discount factor of
0.99, which translates into β = 0.99160 = 0.2, see Chapter 3.

17Contribution and replacement rates are only weak indicators of the size of a real world pension
system; for some countries finance large parts of the pension benefits by general revenues, and debt
financing is common.

18In general, the requirement (1−θn−1) > 0, which ensures positive consumption levels at any state of
nature, calls for a truncation of the fertility distribution, which would alter the moments of the underlying
distribution and would make necessary adjustments in the mean and variance parameters. While the
mean preserving character of the stochastic process {kt} would be unaffected by the truncation, the
low value of σ2 is enough to rule out the violation of the above inequality even for the long time series
produced here.
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(x = 0) is dynamically efficient. The welfare gains of marginal indexation then arise
because the (positive) insurance effects dominate the (negative) crowding out effect.

The magnitudes of these effects are as follows: the policy reform crowds out the
average capital stock per worker by 3.29 per cent, the coefficient of variation decreases
relatively modest by 1.00 per cent. Moreover, even high volatility in the capital stock
per worker translates into relatively modest volatility in factor prices. The reform pulls
the average factor prices in opposite directions, the wage rate decrease and the return
of capital increases. Since benefits are wage related, the system’s implicit rate of return
(denoted by RP ) is also decreased on average. The volatility of RP decreases significantly
by 7.3 per cent. Moreover, since R and RP are not perfectly correlated, the pension
claim allows a diversification of the individual portfolio. The diversification effect is best
seen by the volatility of the present value of lifetime income (LTI), which is reduced
substantially by 8.1 per cent.

By construction, volatility is unaffected by γ. Yet if γ = .5, then the individual
values the risk reduction much less so that the insurance effect cannot outweigh the now
less pronounced crowding out effect.

The lower panel of Table 2.1 reports the allocative and welfare effects for the case
in which fertility is realized prior to the individuals’ savings decision. To understand
the similarities between the upper and lower panel of the Table, the following corollary
to Proposition 2 is useful. It states that the timing of fertility does not affect savings
behaviour if the economy runs with the full indexation scheme.

Corollary 3. Suppose x = 0. Then, for all γ > 0, the timing of fertility has no effect
on individuals’ optimal savings and the long-run optimal size of the scheme.

Therefore, neither the average allocation nor volatility is affected by the timing of
fertility if x = 0. Yet the welfare consequences of the policy reform are sensitive to
the timing of fertility: Even if γ = 2, the reform yields long-run welfare losses for two
reasons. First, there is no longer a fertility risk to share across contemporary generations.
Second, the crowding out effect of capital which stems from the introduction of x > 0
is more pronounced on average when fertility is not delayed. To illustrate, we focus on
the equilibrium allocation with incomplete demographic indexation as γ = 1, in which
case (2.20) reduces to the standard time- and state-additive logarithmic expected utility,
ln cyt + βEt ln cot+1. Using (2.2), (2.3) and (2.25), equation (2.24) reduces to

1

wt(1− θn−xt )− at
= β

∫
n

∫
ε

R
(

at
nt+1

; εt+1

)
atR

(
at
nt+1

; εt+1

)
+ θw

(
at
nt+1

; εt+1

)
n1−x
t+1

dG(εt+1)dH(nt+1),

(2.43)

where G and H are the time-invariant cumulative distribution functions of the produc-
tivity shock and fertility shock, respectively. The solution to (2.43) yields the following
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consumption-savings allocation in temporary equilibrium:

cyt (θ, x;nt) = c̄y(θ, x;nt)× εtkαt (2.44)

cot+1(θ, x;nt+1) = c̄o(θ, x;nt+1)× εt+1nt+1k
α
t+1 (2.45)

at,(θ, x;nt) = ā(θ, x; , nt)× εtkαt (2.46)

where

c̄y(θ, x;nt) =
(1− α)(1− τ(nt; θ, x))

1 + αβ[Etc̄o(θ, x;nt+1)−1]

c̄o(θ, x;nt+1) = (α+ (1− α)τ(θ, x;nt+1))

ā(θ, x; , nt) =
αβ(1− α)(1− τ(nt; θ, x))

αβ + [Etc̄o(θ, x;nt+1)−1]−1 .

Since completed fertility is unaffected by assumption, the actual extent of delay is irrel-
evant for the determination of optimal saving.

Note that the capital processes with delayed and immediate fertility are defined
on the same state space. By virtue of equations (2.28) and (2.46), the effect of de-
laying fertility on capital accumulation can then be studied by means of the stochas-
tic properties of c̄o(θ, x;nt+1). Suppose x > 0, and define ñ > 0 as the solution
to (c̄o(·; ñ))−1 = Et(c̄

o(·;nt+1))−1. Assuming θ > 0, (c̄o(·;n))−1 is concave in n, so
ñ < En.19 Therefore, given net wage income, i.e. given (kt;nt, εt), delayed fertility
increases savings in period t if there is a ‘real’ baby bust, i.e. nt+1 < ñ. For realiza-
tions nt+1 > ñ, the additional risk due to delayed fertility decreases optimal savings.
The imposed parameter value α = 1/3 in conjunction with the policy parameters (θ, x)
implies that the threshold value ñ = 0.952 is approximately equal to the median of the
lognormal fertility variate, so that the occurrence of a ‘real’ baby bust is just as likely as
‘booms’, i.e., fertility realizations above the threshold value ñ. Due to the concavity of
(c̄o(·;n))−1, the propensity to save is higher than with non-delayed fertility. Given the
same history of shocks, the next period’s capital stock per worker exceeds that with im-
mediate fertility, and so does the wage rate. Finally, since optimal saving is increasing in
net wage income and fertility shocks are i.i.d., delaying fertility also increases savings in
all subsequent periods and the capital stock per worker is higher on average. Similarly,
θ < 0 implies convexity of (c̄o(·;n))−1. Table 2.1 confirms the argument for selected
values of γ 6= 1.

The volatility of the equilibrium allocation under full demographic indexation coin-

19The second derivative with respect to n is

∂2 (c̄o)−1

∂n2
=

(1− α)θxn−x−2

(α+ θn−x(1− α))2 ×
(

2(1− α)θxn−x

(α+ θn−x(1− α))
− (1 + x)

)
,

where the term in squared brackets is negative, as θ > − α(x+1)nx

(α−1)(x−1)
, a condition which is satisfied by the

assumption that θ > 0.
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cides with the one under laissez-faire economy. However, the crowding out of long-run
capital due to the prevalence of any pay-as-you-go pension scheme is substantial. The
average capital stock in the laissez-faire allocation is about 1.6 times higher, at 16.319,
than with the reformed scheme. These numbers confirm the results of Sánchez-Marcos
and Sánchez-Mart́ın (2006) who find that the crowding out effect of the introduction of
a defined benefit scheme far outweighs the induced insurance gains.

2.6 Conclusions

This chapter has studied pay-as-you-go pension systems, wherein the pensions of current
retirees are financed by the contributions of current workers. Contributions to such a
system do not contribute to capital accumulation, thereby crowding out the long-run
capital stock per worker. Against this drawback, a suitably designed scheme provides
a way of sharing economy-wide risks across generations, including shocks to the size of
generations. For quite some time, pension benefit formulas in many countries have been
driven by the actual contributions made to the scheme. In the extreme case, the con-
tribution rate is state- and time-invariant. In the setup of the chapter, such a rule can
be implemented by full demographic indexation of pension benefits, which renders the
pension claim an asset whose risk properties are the same as private savings in physical
capital: an increase in the ratio of retirees to workers cuts pension pension benefits and
the system does not provide insurance of lifetime income.

The chapter derives the long-run optimal size of a pay-as-you-go pension scheme with
full demographic indexation for an economy that features production, stochastic produc-
tivity and stochastic fertility. It shows that the full demographic indexation of pension
benefits implements the socially optimal allocation when future generations’ welfare is
not effectively discounted. The chapter further argues that introducing a small measure
of a defined benefit element seem to be appropriate if one is willing to take an inter-
generational risk sharing perspective. The simulations suggest long-run welfare gains of
this policy if individuals are sufficiently risk averse and the scheme’s actual size exceeds
the long-run optimal value. In that case, the economy is initially dynamically efficient,
implying that the insurance gains will outweigh the negative crowding out of capital. In
this connection, the timing of fertility matters. If individuals have their children only
after making their consumption-savings decision, then incomplete demographic indexa-
tion insures against the risks to lifetime income, and the crowding out of private savings
is less pronounced in comparison with non-delayed fertility.

One might argue that the imposed Cobb-Douglas production function is too strong
an assumption where distribution is concerned. However, since a pension benefit for-
mula with defined benefit elements breaks the perfect correlation between capital income
and benefit payments even with Cobb-Douglas technology, the specification of the pre-
sented model provides a useful benchmark for an analysis of the scope of insuring risks
to lifetime income. A generalization to the class of constant elasticity of substitution
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production functions, for example, makes it impossible to sign the involved income and
insurance effects without calibrating an economic model more carefully to a particular
economy. The latter may be an empirical question for future research.
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2.A Appendix to Chapter 2

2.A.1 Derivation of equations (2.9) and (2.16)

Dividing (2.8) by Rt+1 and taking the logarithm on both sides yields

rTt+1 − rt+1 = ln
[
1 + τ(nt)

(
exp

(
rPt+1 − rt+1

)
− 1
)]
. (2.A.1)

The second-order approximation around rPt+1 − rt+1 = 0 yields

rTt+1 − rt+1 = τ(nt)
(
rPt+1 − rt+1

)
+ (1/2)τ(nt)(1− τ(nt))

(
rPt+1 − rt+1

)2
. (2.A.2)

Since (rPt+1 − rt+1)2 is of the form (d − x lnnt+1)2, with d a constant, the conditional
expectation of excess return over the “benchmark asset” physical capital is Et(r

P
t+1 −

rt+1)2 = x2σ2
n. Rearranging yields equation (2.9) in the main text.

The problem (2.15) yields the following first-order condition with respect to x:

dVt
dx

= τ ′t,xµrP + τtµ
′
rP ,x + µ′r,x −

(
τ ′t,xµr + τtµ

′
r,x

)
+(1/2)

[(
τ ′t,x(1− τt)− τtτ ′t,x

)
x2 + 2τt(1− τt)x

]
σ2
n

+(1/2)(1− γ)

[
2τtτ

′
t,xσ

2
rP + τ2

t

∂σ2
rP

∂x
− 2(1− τt)τ ′t,xσ2

r + (1− τt)2∂σ
2
r

∂x

]

+(1− γ)

((
τ ′t,x(1− τt)− τtτ ′t,x

)
σrP r + τt(1− τt)

∂σrP r
∂x

)
.

Using ∂σ2
rP
/∂x = −2(1 − α − x)σ2

n, ∂σrP r/∂x = −(1 − α)σ2
n, and evaluating at nt = 1

so that ∂σ2
r/∂x = 0, yields (2.16).

2.A.2 Derivation of equation (2.18)

Taking the logarithm on both sides of kt+1 = [wt(1− θ)] /nt+1, yields

ln kt+1 = ln(1− α) + ln (1− θ) + α ln kt + ln εt − lnnt+1.

By iteration,

ln kt+1 =
t∑
i=0

αi ln(1− α) +
t∑
i=0

αi ln(1− θ)

+

t∑
i=0

αi ln εt−i −
t∑
i=0

αi lnnt+1−i + αt+1 ln k0.

Suppressing all terms that are independent of θ, x and rearranging yields equation (2.18).
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2.A.3 Proof of Proposition 1

Since −∞ ≤ lnα < 0 and E lnnt < ∞, there is convergence in distribution, the
distribution of ln k∞ being the unique solution to the stochastic fixed-point equation
ln k∞ =d α ln k∞ + (ln ā(θ, 1) + ln ε− lnn) (Vervaat, 1979). With α constant, it suffices
to show, for some constant ξ, that ξ lnn =d α(ξ lnn) + lnnt. Since lnn is normally
distributed by assumption, it has a stable law with index 2. By virtue of Definition
2.3.1, the solution to ξ2 = (αξ)2 +12 confirms the claim. The associated moments follow
directly from the discussion in Section 5 of Vervaat (1979).

2.A.4 Proof of Proposition 2

Let ν0 = 1+αβ
1−α , ν1 = (1 + β), ν2 = −(1 + β) = −ν1, ν3 = β − α(1+β)

1−α , µ1 = α
1−α < µ2 =

µ3 = α(1+β)
1−α .

With full demographic indexation, equation (2.33) can be rewritten in the form

V (θ) = v̄ + ν0 ln[1− θ] + ν1 ln[µ1 + θ] + ν2 ln[µ2 + θ] + ν3 ln[µ3 + θ] (2.A.3)

where θ ∈ (θ(0)θ(0)) = (− α
1−α , 1), and v̄ is a constant which is independent of the

pension policy parameters. Recall that ν3 < (>)0 means dynamic (in)efficiency of the
hypothetical laissez-faire economy. The first and second derivative with respect to θ are

V ′θ = −ν0
1

1− θ
+ ν1

1

µ1 + θ
+ ν2

1

µ2 + θ
+ ν3

1

µ3 + θ
,

V ′′θθ = −ν0
1

(1− θ)2
− ν1

1

(µ1 + θ)2
− ν2

1

(µ2 + θ)2
− ν3

1

(µ3 + θ)2
.

The limits limθ→θ(1) V
′
θ = +∞ and limθ→θ(1) V

′
θ = −∞ imply, by continuity, that there

exists at least one critical point. If V ′′θθ(θ
∗) < 0, then any critical point is a maximum.

Suppose ν3 ≥ 0. Then,

V ′′θθ < −
[
ν1

1

(µ1 + θ)2
+ ν2

1

(µ2 + θ)2

]
< −(ν1 + ν2)

1

(µ2 + θ)2
= 0,

implying concavity of V for all θ ∈ (θ(1)θ(1)). Suppose, at the contrary, ν3 < 0 and let
θ0 denote a solution to V ′θ = 0. Using V ′(θ0) = 0,

V ′′θθ(θ0) < − ν0

(1− θ0)2
− ν1

(µ1 + θ0)2
− ν2

(µ2 + θ0)2

− 1

µ3 + θ0

[
ν0

1− θ0
− ν1

µ1 + θ0
− ν2

µ2 + θ0

]
< − ν1

µ1 + θ0

[
1

µ1 + θ0
− 1

µ3 + θ0

]
< 0.
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Finally, equation (2.34) is confirmed by directly checking V ′θ( β
1+β −

α
1−α) = 0.
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Chapter 3

Fully Funded Social Security
Pensions, Lifetime Risk and
Income

3.1 Introduction

Social Security pensions are used all around the world. Already in the late 1980’s, the
number of countries that ran some kind of old–age Social Security programme was 130,
albeit with differing sizes and coverages (see Sala-I-Martin, 1996). A common argu-
ment against Social Security pensions is that they reduce the national capital stock.
Since capital is involved in the aggregate production process and its reduction will lead
to a reduced availability of resources in the future, Social Security pensions are seen
as welfare-decreasing in the long run, especially if financed on a pay-as-you-go1 ba-
sis (Auerbach and Kotlikoff, 1987). Recent pension policies intend to bring in more
funded elements into Social Security pensions. This chapter investigates the welfare
consequences of insuring mortality risk by means of fully funded Social Security. For
example, the German system, the oldest formal Social Security pension system, started
as a fully funded disability system in 1889, and was converted to a pay-as-you-go system
only in the aftermath of the Great Depression and World War II. Chile is a prominent
current example of a pension system with substantial reliance on funding. Countries like
Japan and the Netherlands also have had fully funded pension systems for decades.

In aggregate, fully funded Social Security invests the contributions of a generation
at the going interest rate and pays the proceeds plus the assets of those who die pre-
maturely to the survivors of the same generation when old. Several empirical studies
document a substantial reduction in bequest flows and capital (see, e.g., Auerbach et al.,

1If Social Security is financed on a pay-as-you-go basis, then the contributions of current workers
finance pension benefits of current retirees. In contrast to the funded scheme studied here, contributions
substitute for private savings without adding to the national capital stock.

45
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1995). Two aspects of insurance that arise from premature death are of particular in-
terest when individuals desire to make transfers to their heirs. First, Social Security
provides intergenerational transfer insurance by smoothing transfers across states. Sec-
ond, while death is certain, its timing is not, and those who die prematurely typically
do so with some amount of wealth if they have made private savings to provide for their
old age. Since the assets of the deceased are naturally transferred within their respective
families, intragenerational inequality in wealth arises, so mortality among parents gen-
erates the ex ante risk of their children inheriting a particular amount of wealth. Due
to the scheme’s transfer insurance property, future generations face a more concentrated
(or even degenerate) wealth distribution. Risk-averse individuals value the reduction in
ex ante risk.

In this chapter, capital reduction and insurance effects are combined in a simple
dynamic overlapping generations model, wherein individuals live for at most two peri-
ods, facing a positive probability of dying just before reaching retirement in the second
period. Intergenerational transfers occur within families, due to both premature death
and individuals’ desire to make positive inter vivos transfers. While fully funded Social
Security leads to a reduction in the long-run capital stock, we find that, once insurance
is taken into account, the reduction of capital and long-run welfare gains are not mu-
tually exclusive, whith the reduction in capital being related to premature mortality.
The point of departure is selfish behaviour, in the sense that bequest insurance provides
no marginal utility, but the scheme promises a higher effective rate of return than the
market.

The chapter relates to the literature on the long-run consequences from annuitiza-
tion by means of private markets (Kingston and Piggott, 1999 and Fehr and Habermann,
2008), and by means of Social Security (Hubbard and Judd, 1987, and most recently
Caliendo et al., 2014). The main feature of this strand of the literature is the restriction
to the life-cycle savings motive to finance old-age consumption, coupled with a lump-
sum redistribution of the assets of the deceased to all members of the next generation.
The long-run welfare effect of Social Security pensions may be summarized in terms of
two income effects. The first stems from a reduction of bequests, the second from the
pension payment at old age. With a zero interest rate, both effects exactly cancel out
in the long run so that the introduction of a fully funded Social Security pension system
leaves welfare unaffected in the long run. Moreover, if the previous pension policy is
revisable, then the pension system provides a higher effective rate of return than the
market interest rate: The induced substitution effect is welfare improving in the long
run. This chapter contributes to this literature by lifting the restriction to a lump-sum
redistribution and studying the pension system’s role in reducing the ex ante risks to
lifetime income. We build on early works on within-family transfers in the absence of a
bequest motive of Abel (1985) and Eckstein et al. (1985). To the author’s best knowl-
edge, only the appendix of Caliendo et al. (2014) provides a more recent treatment of
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within-family transfers in the pension context.2 Our setup allows a generalization of
Abel’s (1985) model to the case where individuals have an operative bequest motive.
In the light of the very small private annuities markets (see, e.g., Pashchenko, 2013)
a thorough evaluation of Social Security should account for the system’s capability of
insuring risks associated with premature mortality. However, previous studies with an
operative bequest motive either assume that intragenerational heterogeneity does not
arise (see, e.g., Sheshinski and Weiss, 1981; and Lockwood, 2012), or that private mar-
kets in annuities are available (see, e.g., Abel, 1986). We contribute to this literature by
characterizing the long-run distribution of lifetime income in the presence of uninsured
mortality risk and establishing allocative effects of the scheme relative to the world with-
out it. We also quantify the ex ante welfare gain associated with the introduction of a
fully funded Social Security pension system.

The chapter is structured as follows: Section 3.2 presents the model setup. Section 3.3
establishes the welfare-dominance of Social Security over laissez-faire when individuals
are perfectly selfish. The dynamics and long-run equilibria of the altruistic economy with
and without Social Security are derived in Section 3.4. Rough calculations in Section
3.5 suggest that Social Security is also welfare-improving in the long run in an economy
populated by altruistic individuals as long as capital is not too productive and the desire
to make transfers to the heir is not too strong. A decomposition of the overall welfare
effect into capital reduction and insurance gains is also provided. The main conclusions
are summarized in Section 3.6.

3.2 The model economy

The demographic and economic environment is similar to the one used in Abel (1985),
albeit the inclusion of an operative bequest motive requires a slightly more general
description of the mortality process. Moreover, we have to distinguish transfers between
the living (inter vivos) from transfers that occur after death from the deceased to the
living (bequest). We simply use the term transfer when both kinds of transfers are
possible. Note that either the one or the other transfer occurs.

3.2.1 The demographic environment

The economy in each period is populated by two overlapping generations whose members
live for at most two periods, namely, one young generation of workers and one old
generation of retirees. There is a positive probability, q, of dying at the very end of
the first period. At time t = 0, let there be a continuum of individuals indexed by
j ∈ [0, 1], all of whose parents survived to old age. All lineages stem from individuals

2Bell and Gersbach (2013) study the impact of uninsured mortality risk on human capital formation.
In their model, transfers are purely inter vivos, but individuals have two parents, which is an additional
source of inequality.
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born in t = 0. Each young individual gives birth (by parthenogenesis) to just one child
prior to the realisation of the states premature death and survival. From then onwards,
premature mortality sorts individuals into those whose parents survived both periods
of life and those whose parents died prematurely. Let the state a member of lineage j
is born into at any t be denoted by Ijt ∈ I := {0, 1}, where 0 and 1 indicate survival
and premature death of the individual’s parent, respectively. The lineage’s particular
mortality history up to and including period t is denoted by ςjt ∈ I0 × I1 × · · · × It ≡ It.
By assumption there is no aggregate uncertainty with regard to the number of premature
deaths per generation.

3.2.2 The economic environment

There is a single commodity which can be either consumed or saved. Aggregate output,
Y , is produced at the very beginning of each period by means of a production technology
that is linear in both capital and labour. In per worker terms,

Yt = F (1,Kt) = w +R×Kt, (3.2.1)

where Kt represents the aggregate capital stock at t. Capital has a lifetime of one period,
so that Kt equals national savings in t− 1. Note that (3.2.1) exhibits the property that
capital and labour are perfect substitutes, with constant returns to scale. While the latter
is standard in the literature, the former is very strong. Note however, that key features
of the model, like the optimal size of the scheme, are unaffected by this assumption.
Since factors are paid their respective marginal products, saving one unit of the good
today yields R units in the next period. We say that capital is unproductive if R = 1.
Due to linearity of the production function, factor prices are given and deterministic.

There is no private mechanism to pool individual mortality risk. In particular, private
annuities markets are assumed to be absent3. The proceeds from savings of those who
die prematurely are transferred to their respective direct descendants.

3.2.3 Preferences

All individuals have identical tastes. They derive utility from consumption in youth
and old age, denoted by cjt and cjt+1, respectively. They also draw utility from inter

vivos transfers, bj,0t+1, and bequests in case of premature death, bj,1t+1, if these motives are
operative. The superscripts 0 and 1 refer to the states survival I0

t and premature death
I1

0 , respectively. Intergenerational transfers stem from own previous savings, ajt , and are
transferred with interest.

3This assumption is also found in Sheshinski and Weiss (1981), Hubbard and Judd (1987) and
Caliendo et al. (2014).
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Formally, j’s preferences are represented by

U jt = u(cjt ) + β(1− q)
[
u(cj,0t+1) + ν(bj,0t+1)

]
+ βqν

(
bj,1t+1

)
(3.2.2)

Pure impatience is captured by 0 < β ≤ 1.4 Effective discounting is a mixture of impa-
tience and mortality. The function ν represents the felicity yielded by giving. The felicity
functions u(·) and ν(·) are assumed to be strictly concave. Felicity from consumption in
case of premature death is normalized to zero. Pathological behaviour is ruled out by
the assumption u(x) > ν(x),∀x. The latter condition simply states that an individual
who saved x/R units to old age prefers life to death even if the transfer motive is not
strong enough to generate positive inter vivos transfers. The transfer motive is operative
if ν(·) > 0.

Note that the preferences differ conceptually from ‘pure’ altruism à la Barro (1974)
and Weil (1987) where individuals care about the utility of their offspring, in fact, the
well-being of all future generations to come5. Here, transfers are motivated by the joy-
of-giving, so that the individual draws utility directly from the transfers they make,
pleasurable or when premature death afflicts them, but the pleasure does not depend on
his children’s utility gain (nor on the utility gain of any future generations of the same
lineage that appear on the scene after their direct descendants). This kind of bequest
motive is used by Abel (1986) and, more recently, Lockwood (2012). While this may look
like selfish behaviour at first glance, the preferences defined above may be interpreted
as the preferences of an individual who is concerned with the expected initial net wealth
position of his offspring, where ν(·) is the associated utility index.

Also note that the preferences defined in (3.2.2) implicitly impose risk neutrality
with respect to lifetime risk6.

3.2.4 Fully funded Social Security pensions

Under fully funded Social Security Pensions, contributions are proportional to wages
and are invested at the going market interest rate and paid as pension benefits to the

4Time preference is commonly measured as the marginal rate of substitution between young and
old-age consumption along a constant consumption path. With the time-additive preferences used here,
β is just built in and invariant to consumption levels.

5This imposes a very strong assumption on the individual’s capacity to form rational expectations
about the decisions of successive generations, and on the compatibility of their expectations with those
of their heirs.

6In fact, the preferences defined in (3.2.2) are a special case of

U jt = (1− q)φ
[
u(cjt+1) + ν(bjt+1)

]
+ qφ

[
ν(w(1− τ jt ) + bjt)

]
where the curvature of φ capture individual’s lifetime risk aversion (see Kihlstrom and Mirman, 1974).
Bommier (2013) shows that only an exponential form of φ is compatible with time-consistent preferences
when individuals live for more than two periods. Since φ is assumed linear in this chapter, (3.2.2) defines
preferences of an individual who is risk neutral with respect to mortality risk.
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surviving members of the same generation one period later. The scheme pools the risks
of premature mortality: the pension claims of those who die prematurely are divided
among the survivors of the same generation. In the happy event that individual j, born
in the beginning of period t, survives into old age, she will receive ajtR from her privately
placed savings ajt , and

τ jt wR+ τ jt
q

1− q
wR

from the pension scheme, where τ jt denotes period-t contribution rate for individual j.
Note that the second term captures the effect of pooling on old-age income. The latter
is [

ajt + τ jt w/(1− q)
]
R. (3.2.3)

If she dies prematurely, then her heir will receive only ajtR as bequest. Note that private
savings and Social Security pensions are not perfect substitutes: While saving one unit
conventionally yields R units in the next period, whether the individual survives or
not, the scheme promises a higher rate of return on contributions, R/(1− q), when the
individual survives, and pays nothing when she dies prematurely. The pension claim
is a state-dependent, i.e. risky, asset that can be used to equalize bequest streams
across states. Also note that the scheme is actuarially fair, so that the expected return
(including the death case) of the individual’s portfolio is unaffected by the scheme. Since
the scheme is fully funded, the contributions to the scheme add to the next period’s

capital stock, so Kt+1 = R×
∫ 1

0

(
ajt + τ jt w

)
dj.

We analyse two cases. First, individuals treat the pension policy as given. Second,
each generation can freely decide on the contribution rate. In the latter case, we con-
sider a string of consecutive generations, each member j ∈ [0, 1] of which chooses the
contribution rate so as to maximize her expected utility. This assumption is plausible
in a two-period setting.

3.3 The egoistic economy

This section studies the case of perfectly selfish individuals. Set ν(·) = 0 so that the
proceeds from saving generate no marginal utility when the individual dies prematurely,
be they transferred to the next generation or to the survivors of the same generation.7

Obviously, there will be no intentional bequests. We establish global convergence to the
unique long-run equilibrium. Whether the capital stock with the scheme falls short of,
or exceeds, the laissez-faire capital stock in the long run depends on the intertemporal
elasticity of substitution. Two welfare results are derived: First, a fully funded Social
Security scheme with time-invariant fixed contribution rate is welfare-increasing. Second,
the time-consistent pension policy, to which all subsequent generations will agree, does

7Similar models are developed in Abel (1985) and Eckstein et al. (1985). We use the model for
evaluating long-run welfare consequences of the scheme.
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even better. We show in Sections 3.4.1 and 3.4.2 that essential properties carry over to
the case of altruistic individuals.

3.3.1 Laissez-faire and a fixed contribution rate scheme

As a preliminary to the welfare analysis, we establish existence of a unique station-
ary equilibrium if the contribution rate is treated as given when individuals make their
consumption-savings decisions, i.e. τt = τ . We assume throughout that the fixed con-
tribution rate is small enough to ensure that even the poorest individuals make positive
private saving. Laissez-faire serves as the benchmark to evaluate the welfare conse-
quences of Social Security. We use the term ’Laissez-faire’ to describe the world without
the scheme, so legal and administrative basis of the latter is absent. The laissez-faire
economy corresponds to τ = 0.

When young, an egoistic individual j, born in period t, decides on private savings
and consumption in youth. When old, if she survives, she simply consumes the proceeds
from savings. The maximization problem of individual j in the presence of the fixed
contribution rate scheme,

max
ajt

u(w(1− τ) + bjt − a
j
t ) + β(1− q)u

(
ajtR+

τwR

1− q

)
, (3.3.1)

yields the Euler equation
u′(cjt ) = β(1− q)Ru′(cjt+1). (3.3.2)

Note the presence of mortality in (3.3.2), whose form is such that the scheme with a
fixed contribution rate does not affect intertemporal trade-offs. Let u be iso-elastic,
with parameter σ, u(c) = u0 + c1−σ−1

1−σ , u0 > 0. Then, the associated savings function

is ajt = āe(w(1− τ) + bjt )− (1− āe)τw/(1− q), where āe =
[
1 + (β(1− q)R1−σ)−1/σ

]−1

is the egoistic individual’s propensity to save from the present value of lifetime income.
Note that τ ≤ τ0 = āe(1−q)

1−qāe ensures non-negative private savings of those individuals who
do not receive any bequest. Plugging the optimal decision back into the direct utility
function, gives indirect utility of the egoistic individual j, V j

t,e(τ)8.

Since accidental bequests stem from the parent’s savings,

ajt = b̄jta
j
t−1 + w̄(τ), (3.3.3)

8We use V jt,e(τ) as a shortcut for V jt,e
(
cjt(τ), cjt+1(τ)

)
, where cjt(τ) and cjt+1(τ) denote the optimal

decision in the presence of the system with a fixed contribution rate.
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where

w̄(τ) = āe × w(1− τ)− (1− āe)τw/(1− q),
b̄jt = 0χ(Ijt−1 = 0) +Rāeχ(Ijt−1 = 1),

Eb̄t = Rāeq,

and χ is an indicator function so that χ(z) = 1 if z is true, and χ = 0 if z is false.
Ijt−1 = 0 indicates that the individual’s parent survived into old age, and makes no

intergenerational transfer. Ijt−1 = 1 indicates that the individual’s parent died early and
left an accidental bequest to the heir.

Lemma 2 establishes convergence to the unique stationary equilibrium. Part (ii)
of the Lemma states that the fully funded pension scheme with fixed contribution rate
crowds out the long-run aggregate capital stock by reducing the accidental bequests.
With an eye on Propositions 4 and 5, note that in the current setup, aggregates coincide
with ex ante expectations.

Lemma 2. Convergence to the unique stationary equilibrium distribution Let
Rāeq < 1 and τ ≤ τ0. Then

(i) ajt converges to aj∞ as t→∞, where the distribution of aj∞ is the unique solution
to9

aj∞ =d b̄jt × aj∞ + w̄(τ),

which is independent of aj0.

(ii) the long-run aggregate capital stock

Eajt = Ke(τ) = w̄(τ)/(1−Rāeq) (3.3.4)

is strictly decreasing in the contribution rate τ .

Proof. (i) By iterating (3.3.3), one obtains

aj∞ =d w̄(τ) + w̄(τ)

∞∑
i=1

b̄j1b̄
j
2 · · · b̄

j
i−1. (3.3.5)

By Jensen’s inequality, Eb̄t = Rāeq < 1 implies E log(b̄jt )(≤ logEb̄jt ) < 0, which is a
sufficient condition for convergence of the infinite sum (see Vervaat, 1979). (ii) w̄ is
strictly decreasing in τ .

In an economy populated by overlapping generations the reduction in the aggregate
capital stock is a misleading indicator for the welfare consequences of the scheme. We
next show that, once ex ante insurance is taken into account, the crowding out of capital

9=d means equality in distribution.
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is consistent with welfare improvements. First note that Lemma 2 implies convergences
in distribution of all other relevant variables. In particular, lifetime income and therefore

consumption in youth, cjt (τ) = (1− āe)
(
w + bjt + τw

1−q

)
converges in distribution. Since

the fraction q of total population dies early and bequests are transferred with interest,
i.e. Ebjt = qRKe(τ), aggregate first-period consumption in the stationary equilibrium is
given by

Ecjt (τ) = Ce(τ) = (1− āe)
(

w

1−Rāeq
+

τwq(1−R)

(1− q)(1−Rāeq)

)
, (3.3.6)

where the term in brackets is the ex ante expected value of the present value of lifetime
income. The latter is unaffected by the scheme whenever capital is unproductive, and
so is Ecjt (τ).

In the egoistic economy, different mortality histories across lineages result in different
levels of lifetime income. As a consequence, individuals can be unambiguously identified
by their lineages’ mortality histories. Without ambiguity, therefore, we drop the index
j and reinterpret, as Abel (1985) does, the time index t as the number of previous
consecutive generations within a particular lineage whose members died prematurely. By
the consumption Euler equation (3.3.2), cjt+1(τ) is proportional to cjt (τ). It is therefore
enough to focus on first-period consumption. In order to prepare for Proposition 4, the
following lemma restates a result provided by Abel (1985) in a slightly different form
and also recognizes that we work with a geometric distribution.

Lemma 3. (Abel, 1985) Geometric long-run distribution

In the long-run, individuals are geometrically distributed with probability mass func-
tion qt(1− q). First-period consumption of a type-t individual is

ct(τ) = w(1− τ)− w̄(τ) (āeR)t + w̄(τ)(R− 1)

t∑
i=0

(āeR)i . (3.3.7)

If Rāeq < 1, then limt→∞ ct(τ) = ∞ is compatible with the stationary equilibrium
defined in Lemma 2. In that case, there must be both winners and losers in the long
run (most likely, earlier). Figure 3.A.1 suggests that this true even when the long-run
distributions have bounded supports. Suppose, for example, that capital is unproductive
(this case is illustrated in Figure 3.A.1(a)). Solving ct(τ) ≥ ct(0) for t shows that welfare
of all but those whose parents died prematurely and so left no bequests (the poorest
without the scheme) is reduced relative to the laissez-faire, τ = 0; for they experience a
negative income effect due to a reduction in bequests that dominates the positive income
effect stemming from the scheme. Figure 3.A.1(b) illustrates this result when R >> 1.
Since type-t individuals occur with frequency qt(1 − q), individuals whose parents died
prematurely make up the fraction (1−q) of the total young population. Anticipating the
discussion in Section 3.5, let the economically active years start at the age of 20 and let
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life expectancy at birth be 80 years (i.e. q = 1/2). In that case, the scheme makes one
half of the young population better off. However, ex post inequality translates into ex
ante uncertainty, and the scheme produces a more concentrated distribution of lifetime
income in the stationary equilibrium. Risk-averse individuals value the reduction in ex
ante risk.

The next proposition avoids distributional aspects by evaluating welfare on the basis
of Rawls’s (1973) veil of ignorance. It exploits the fact that, under (3.4.7), individu-
als consume a constant fraction of lifetime income for all σ > 0 and all 0 < β ≤ 1,
thereby generalizing Caliendo et al.’s (2014) Proposition 5. Suppose all individuals are
present behind the veil and are asked whether they prefer to be born into the laissez-faire
economy or the economy that runs the fully funded pension scheme. Due to the direct
link between an individual’s family mortality history and wealth at birth in the egoistic
economy, ignorance refers to the ex ante risk of being born into a particular lineage.

Proposition 4. Ex ante welfare-improving Social Security pensions with a
fixed contribution rate

Suppose that capital is unproductive, with q > 0, and τ ≤ τ0 = āe(1−q)
1−qāe . Then, fully

funded Social Security Pensions increase ex ante welfare.

Proof. If R = 1, then (3.3.6) and (3.3.7) imply ct(τ) = w(1− āt+1
e ) +wτ

(
1−āeq
1−q ā

t
e − 1

)
,

with Ect(τ) = Ce(τ) = (1−āe)w
1−Rāeq . Therefore, Ce(τ) > c0(τ) > c0(0), and Ce(τ) < ct(τ) <

ct(0), t > 0, implying that the scheme induces a mean-preserving reduction in the
spread of consumption. The latter, in turn, implies second-order stochastic dominance,
i.e.

∫
t Vt(τ) >

∫
t Vt(0), which confirms the claim.

Proposition 4 is important, because it illustrates that the welfare impact of fully
funded Social Security pensions is systematically underestimated in the literature. In
fact, there are several contributions in the literature on accidental bequests in egoistic
economies that find no welfare impact stemming from the scheme if capital is unpro-
ductive (see e.g. Hubbard and Judd, 1987, and more recently Caliendo et al., 2014,
among others). The underlying assumption in the literature is that accidental bequests
are pooled and then transferred anonymously. In the long-run, the income effect from
reduced accidental bequests and the income effect stemming from reduced net wage in-
come and additional pension benefit exactly cancel out. Therefore, long-run welfare is
unaffected by the scheme when capital is unproductive.

3.3.2 Time-consistent pension policy

This section establishes that the welfare gains from Social Security Pensions are further
underestimated relative to those found in 3.3.1; for individuals treated the contribu-
tion rate as given when making their decisions. On the other extreme, contemporary
generations are able to decide for themselves on the individual contributions made to
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the pension system. In fact, in the two-period setup presented here, each generation
is able to revise previous pension policy without producing intergenerational conflicts.
This implies that the pension system essentially acts like privately organised, actuarially
fair annuities markets, with a competitive premium taken by the firms which fully and
exclusively reflects the prevailing mortality regime.10

The maximization problem of individual j is

max
cjt ,c

j
t+1,τ

j
t

u(cjt ) + β(1− q)u(cjt+1) (3.3.8)

subject to

cjt = w(1− τ jt ) + bjt − a
j
t (3.3.9)

cjt+1 = ajtR+ τ jt wR/(1− q) (3.3.10)

τ jt ∈ [0, 1]. (3.3.11)

The first-order condition with respect to τ jt is

u′(cjt ) = βRu′(cjt+1), (3.3.12)

where mortality has dropped out. Since individuals do not value their wealth after death,
the scheme promises a higher expected rate of return than the market does, and egoistic
individuals do not save privately. Of course, optimality of full annuitization is a well-
known result if individuals save due to pure selfishness (see Yaari, 1965). In the egoistic
economy, full annuitization eliminates all bequests. Moreover, under the assumption that
all are alike at t = 0, and receive zero bequests, there is intragenerational agreement on
the optimal policy for all t = 0, 1, 2, . . . ,∞. From (3.3.12) we have

Lemma 4. Unique time-consistent pension policy
There exists a unique time-consistent optimal contribution rate:

τ∗e =
[
1 + (βR1−σ)−1/σ/(1− q)

]−1
, ∀j, t. (3.3.13)

The pension policy (3.3.13) is termed time-consistent: All generations are able, but
not willing, to revise previous policies. The time consistent policy is therefore sustainable
in the long run. The associated indirect utility is denoted by Vt(τ

∗
e ).

For the remainder of this section, let β−1 = R = 1. In that case, Abel (1985) shows
that the long-run capital stock of the laissez-faire economy (τ = 0) falls short of the one
associated with the time-consistent policy in (3.3.13), i.e. τ∗ew if and only if σ < σ̃ ≡[
1− ln(1+q(1−q))

ln(1−q)

]−1
< 1. The reason is that each generation can revise previous policy, so

10One can think of a large number of insurance companies which receive the market interest rate on
their reserves and earn zero profits under perfect competition.



56 CHAPTER 3. MORTALITY

the increase in effective rate of return affects intertemporal trade-offs (compare (3.3.12)
and (3.3.2)). The associated income effect induces the young individual to increase
current consumption and to reduce savings. In contrast, the associated substitution
effect induces the individual to save more to old age. An intertemporal elasticity of
substitution larger than one (σ < 1) and perfectly selfish individuals imply that the
substitution effect dominates the income effect, so the propensity to save is higher with
the scheme. Whether this effect compensates for the elimination of accidental bequests
depends on whether σ is small enough. The following corollary states that if the fixed
contribution rate of Section 3.3.1 is small enough, then the associated capital stock
exceeds the one associated with the time-consistent policy defined in (3.3.13).

Corollary 4. Let β−1 = R = 1, and σ > σ̃. Then,

Ke(τ) > Ke(τ
∗
e ) as τ < τ̃ ,

where τ̃ = τ0 − 1−q
1+ 1

1−q
> 0.

As already shown in Section 3.3.1, the evolution of aggregates is an imperfect indi-
cator of welfare. The next proposition states that the time-consistent policy is ex ante
welfare-improving and dominates the system with fixed contribution rate for all σ > 0
and all τ < τ0.

Proposition 5. Dominance of time-consistent Policy

If R = 1, then the time-consistent pension policy defined in Lemma 4 dominates, in
welfare terms, the fully funded scheme with fixed contribution rate τ < τ0.

Proof. The proof is accomplished by constructing an auxiliary consumption allocation
induced by a policy that redistributes the assets of those who die prematurely to the
next generation in a lump-sum manner. With this policy, all members of a gener-
ation receive identical accidental bequests, and the Euler equation is of the form of
(3.3.2). The associated first-period consumption is cLSt = (1 − āe)

(
w + bLS

)
, where

bLS = qR
1+(β(1−q)R1−σ)−1/σ−qRw. First, R = 1 implies EcLSt = Ect(τ) and therefore

V LS > V (τ); for the lump-sum policy induces a mean-preserving elimination of any
spread in consumption. Second, if R = 1, then (cLSt , cLSt+1) and (ct(τ

∗
e ), ct+1(τ∗e )) are on

the same budget line. Therefore, while feasible, the auxiliary allocation is not chosen.
By revealed preference, V (τ∗e ) > V LS > V (τ).

The conclusion from Propositions 4 and 5 is that the crowding out of bequests and
capital induced by fully funded schemes is consistent with long-run welfare gains when-
ever capital is not too productive, a claim that follows at once from the strict inequalities
above and the continuity of V . Moreover, if each generation is able to revise previous
policy, then the scheme even increases long-run capital stock for plausible values of the
intertemporal elasticity of substitution. The associated substitution effect is positive
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in welfare terms. From a generational perspective, the revised contribution rate setup
seems plausible; for the scheme should be regarded as acting like annuities markets,
although contributions are wage-related. As a final remark, note that neither of the
policy regimes is Pareto-improving relative to the laissez-faire. This is obvious from the
discussion following Lemma 3 for the case of a fixed contribution rate. Moreover, the
time-consistent pension policy yields ct(τ

∗
e ) = w/(2− q) < w = limt→∞ ct(0).

3.4 The altruistic economy

This section studies the dynamics and long-run behaviour of the altruistic economy with
and without Social Security. It uses the apparatus of Section 3.3 to establish convergence
to the unique stationary equilibrium in the presence of uninsured mortality risk and an
operative bequest motive. The clear-cut welfare results derived for the egoistic economy
studied in the previous section are feasible because there are direct relationships, first,
between an individual’s family mortality history and her expected lifetime income, and
second, between expected lifetime income and welfare. Both links break in the altruistic
economy. The welfare consequences of the scheme are therefore studied numerically in
Section 3.5.

3.4.1 Dynamics under laissez-faire

When young, individual j, born in period t, decides on private savings and consumption
in youth. When old, if she survives, she allocates the proceeds from savings between
old-age consumption and inter vivos transfers. These choices are determined by the
individuals’ attitudes towards time, risk and their heirs.

The individual’s maximization problem is

max
ajt

U jt (3.4.1)

subject to

cjt = w + bjt − a
j
t , (3.4.2)[

cj,0t+1, b
j,0
t+1

]
≡ arg max

[
u(cjt+1) + ν(bjt+1)

]
s.t. cjt+1 + bjt+1 = ajtR (3.4.3)

bj,1t+1 = ajtR (3.4.4)

ajt ≥ 0, bj,0t+1 ≥ 0, cj,0t+1 ≥ 0. (3.4.5)

given the bequest bjt .
11 Intergenerational transfers, pleasurable or not, are non-negative;

for by assumption, individuals cannot be forced to accept negative bequests (liabilities

11By the assumption that bequests received are known prior to the decision, the individual is only
concerned with the uncertainty associated with her own life.
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left by their parents). For simplicity, both kinds are distributed at the very beginning of
each period. Since all individuals born in t = 0 have parents who survived into old age,
all receive the same bequests at that point in time so that there is no intragenerational
heterogeneity at this point. Without loss of generality, let bj0 = 0∀j. Unlike in the
case of egoistic individuals, problem (3.4.1) - (3.4.5) needs to be solved by backwards
induction. Assuming an interior solution to (3.4.3), u′(c) = ν ′(b).

The first-order conditions with respect to ajt may be written as12

u′(cjt ) ≥ β(1− q)Rν ′(bj,0t+1) + βqν ′(Rajt )R. (3.4.6)

Individuals save due to a pure life-cycle motive (i.e. for old-age consumption), and due
to an altruistic motive (i.e. for making direct intergenerational transfers). Recalling
(3.4.3), both motives are summarized in the first term on the right-hand side of (3.4.6).
The last term arises due to the prevalence of uninsured mortality risk, which tends to
increase private savings.

Let u and ν be iso-elastic, with common parameter σ:13

u(c) = u0 +
c1−σ − 1

1− σ
, (3.4.7)

ν(b) = γ
b1−σ − 1

1− σ
. (3.4.8)

The parameter u0 > 0 determines the felicity gap between life and death, a condition
which is implicit in the above requirement of non-pathological behaviour with respect
to the bequest motive (see Section 3.2.3). Also note that u0 > 0 does not affect the
inter-temporal consumption allocation. To use terminology carefully, σ > 0 is, by defini-
tion, the elasticity of marginal felicity from consumption and intergenerational transfers,
respectively. It is readily verified that limσ→1 u(c) = ln(c). The parameter 0 < γ ≤ 1
measures the strength of the bequest motive. For simplicity, we assume that both kinds
of transfers receive the same weight γ, albeit one can imagine that inter vivos may be
higher valued by the individual. Note that (3.4.8) implies that inter vivos transfers are
normal goods.

Since (3.4.7) and (3.4.8) satisfy the lower Inada condition (that is, limx→0 u
′(x) =∞,

and limx→0 ν
′(x) = ∞), inter vivos transfers are always positive if the parents survive

12It is readily verified that the second derivative with respect to ajt is negative, so the solution is
indeed a maximum.

13Abel (1986) and Lockwood (2012) employ these functional forms with u0 = 0. Lockwood (2012)
extends (3.4.8) to cover inter vivos transfer as luxury goods.
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into old age. The consumption-transfer allocation is

bj,0t+1 =
γ1/σ

1 + γ1/σ
Rā(w + bjt ) (3.4.9)

c0
t+1 =

1

1 + γ1/σ
Rā(w + bt) (3.4.10)

Moreover, individuals optimally save a constant fraction of the expected present value
of their lifetime incomes, i.e. ajt = ā(w + bjt ), where

ā =

{
1 +

[
βR1−σ

(
(1− q)

(
1 + γ1/σ

)σ
+ qγ

)]−1/σ
}−1

< 1 (3.4.11)

denotes the propensity to save from lifetime income under laissez-faire, a propensity
which is increasing in the strength of the bequest motive. Note that the desire to make
transfers to the heir unambiguously increases the said propensity relative to the case of
egoistic individuals, i.e. ā > āe.

In the absence of the scheme, the randomness of premature death causes individuals
to differ in the bequests they receive at the start of the first period of their lives: bjt arises
from the mortality history ςjt . Since premature death is identically and independently
distributed, intragenerational heterogeneity with respect to bjt arises and is increasing as
time passes. Recalling (3.4.4) and (3.4.9), savings evolve according to the stochastic first-
order difference equation with an identically and independently distributed coefficient

ajt = b̄jta
j
t−1 + w̄, (3.4.12)

with w̄ = ā × w and the random variable b̄jt = γ1/σ

1+γ1/σRāχ(Ijt−1 = 0) + Rāχ(Ijt−1 = 1).

Ijt−1 = 0 indicates that the individual’s parent survived into old age, and, in contrast

to the previous section, makes an inter vivos transfer. Ijt−1 = 1 indicates that the
individual’s parent died early and left an accidental bequest to the heir. Note that

Eb̄t = q × γ1/σ

1+γ1/σRā+ (1− q)×Rā = Rā q+γ
1/σ

1+γ1/σ .

The stationary equilibrium is given by prices (R,w), an allocation (cjt , c
j
t+1, b

j
t+1, a

j
t ),

and a time-invariant distribution lifetime income such that, given (R,w), the allocation
maximizes expected utility defined in (3.2.2), and individual choices are consistent with
the economy-wide resource constraint. Lemma 5 generalizes Lemma 2 by establishing
convergence of the altruistic economy to the unique stationary equilibrium.

Lemma 5. Convergence in distribution

(i) Let Rā q+γ
1/σ

1+γ1/σ < 1. Then, ajt converges to aj∞ as t→∞, where the distribution of
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aj∞ is the unique solution to

aj∞ =d b̄jt × aj∞ + w̄,

which is independent of aj0.

(ii) If Rā < 1, then the long-run capital distribution has bounded support, aj ∈ [w̄/(1−
γ1/σāR/(1 + γ1/σ)), w̄/(1− āR)].

Proof. By iterating (3.4.12), one obtains

aj∞ =d w + w

∞∑
i=1

b̄j1b̄
j
2 · · · b̄

j
i−1 (3.4.13)

(i) Eb̄t = Rā q+γ
1/σ

1+γ1/σ < 1 implies (by Jensen’s inequality) E log(b̄jt )(≤ logEb̄jt ) < 0, which

is a sufficient condition for convergence of the infinite sum, (see Vervaat, 1979). (ii)

The bounds follow by setting b̄t = Rā, t = 0, 1, 2, . . . ,∞ and b̄t = γ1/σ

1+γ1/σRā,
γ1/σ

1+γ1/σ <

1, t = 0, 1, 2, . . . ,∞, respectively.

The long-run distribution deserves some comment. First, if capital is unproductive
(i.e. R = 1), then the support is bounded without further assumptions. From (3.4.11),
however, the bounds are growing with R whenever σ < 1. If R > 1, then convergence and
boundedness require the interest rate to be sufficiently small, albeit R >> 1. Intuitively,
since bequests are transferred with interest, too large an interest rate makes bequests
grow without bounds as time passes, which is at odds with the requirement of a station-
ary equilibrium. Second, the underlying stochastic difference equation (3.4.12) follows
one particular lineage, lineage j, and the associated equilibrium distribution summarizes
the possible states into which the members of lineage j can be born. Recall, however,
that mortality is identically and independently distributed across both time and indi-
viduals, and that all individuals born in t = 0 are alike. Therefore, (3.4.13) must hold
for all lineages, and the system exhibits asymptotic stationarity: with a continuum of
individuals at any point in time and a long enough time horizon, the distribution of life-
time income of members of lineage j across time coincides with the distribution across
all lineages at a given point in time.

Proposition 6 states the long-run levels of aggregate lifetime income, capital stock
and consumption, respectively.

Proposition 6. Long-run Aggregates under Laissez-faire

Let Rā q+γ
1/σ

1+γ1/σ < 1. Then, aggregate lifetime income, capital stock and consumption
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in the laissez-faire economy converge to the long-run equilibrium values

ω(0) = lim
t→∞

∫ 1

0
(w + bjt )dj =

w

1−Rā q+γ1/σ

1+γ1/σ

<∞, (3.4.14)

K(0) = lim
t→∞

R×
∫ 1

0
ā(w + bjt )dj = āRω, (3.4.15)

C(0) = lim
t→∞

∫ 1

0
cjtdj + lim

t→∞
(1− q)

∫ 1

0
cjt+1dj =

(
(1− ā) +

Rā(1− q)
1 + γ1/σ

)
ω.(3.4.16)

Proof. Follows directly from the discussion in Vervaat (1979). (3.4.16) uses the fact that
only the fraction (1−q) of young workers survives into old age. The consumption-transfer
allocation is derived in Appendix 3.A.1.

Figure 3.A.2 displays the long-run distribution of the expected value of lifetime in-
come for alternative values of R. Note that ā > āe implies that the aggregates exceed
their counterparts in the egoistic economy.14

3.4.2 Dynamics with the optimal scheme

Following Sheshinski and Weiss (1981), we rely on the assumption that each generation
can freely decide on the contribution rate. Recalling (3.2.3), the individual’s maximiza-
tion problem is

max
ajt ,τ

j
t

U jt

subject to

cjt = w(1− τ jt ) + bjt − a
j
t , (3.4.17)[

cj,0t+1, b
j,0
t+1

]
≡ arg maxu(cjt+1) + ν(bjt+1) s.t. cjt+1 + bjt+1 = ajtR+

τ jt wR

1− q
(3.4.18)

bj,1t+1 = ajtR (3.4.19)

ajt ≥ 0, bj,0t+1 ≥ 0, cj,0t+1, τ
j
t ∈ [0, 1]. (3.4.20)

given bjt .

The first-order conditions with respect to ajt and τ jt may be written as

u′(cjt ) ≥ β(1− q)Rν ′(bj,0t+1) + βqν ′(Rajt )R (= if ajt > 0), (3.4.21)

u′(cjt ) = βRν ′(bj,0t+1). (3.4.22)

14We cannot obtain a similar result for the second moments. Applying the result in Section 5.2.2 of

Vervaat (1979), the long-run capital distribution has variance w̄2

(1−Eb̄2t )(1−Eb̄t)2
×
(
Eb̄2t − (Eb̄t)

2
)
, which

can exceed or falls short of its egoistic counterpart.
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respectively. Combining (3.4.21) and (3.4.22) gives

ν ′(bj,0t+1) = ν ′(Rajt ), (3.4.23)

so that no accidental bequests occur (i.e. the difference between inter vivos transfers
and the bequests in case of premature death is zero). A similar result is derived in
Abel (1986) and Lockwood (2012). Fuster (2000) derives this condition for the bequest
motive suggested by Barro (1974).15 By virtue of the assumptions on u and ν, (3.4.22)
implies τ∗ ∈ (0, 1). Moreover, the optimal contribution rate that brings about the
desired equality of bequests across states in (3.4.23) is unique; for the LHS of (3.4.23)
is monotonically decreasing in τ , while the RHS is independent of the contribution
rate. Finally, by virtue of the old-age budget constraint, individuals use pension benefits
exclusively to finance old-age consumption, while the proceeds from conventional savings
are used to finance intergenerational transfers.

Combining (3.4.21) and (3.4.23) yields

u′(cjt ) = βRν ′(Rajt ), (3.4.24)

which determines the optimal fraction of overall savings to be privately saved. Since
individuals are able to revise previous policies, the scheme affects intergenerational trade-
offs. In particular, mortality (the only source of uncertainty in the model) vanishes in
(3.4.24). The induced temporary allocation is, therefore, the result of the standard
income and substitution effects stemming from an increased effective rate of return of
the individual portfolio and an insurance effect, since the scheme allows equalization
of bequest streams. Recalling the first-period budget constraint, the LHS of (3.4.24) is
increasing in ajt . Since the RHS is decreasing in ajt , the lower Inada condition ensures
uniqueness of the optimal decision (ajt , τ

j,t).

Since all individuals at the beginning of time receive zero bequests, there will be
intragenerational agreement on the contribution rate for all t ≥ 0, so members of the
same generation receive the same amount of bequests in the presence of the scheme. In
the presence of the scheme, therefore, there is no need to keep the index j.

Using the parametrization (3.4.7) and (3.4.8), the consumption-transfer ratio is in-
dependent of lifetime income, and the income expansion paths under full insurance
for youth consumption, old-age consumption and both kind of intergenerational trans-
fers are straight lines through the origin. From (3.4.23), τtw = at(1 − q)/γ1/σ. Us-
ing this information in the first-period budget constraint and equation (3.4.24) gives
optimal private savings as a function of initial wealth, at = ā(τ∗)(w + bt), where

15In the pure altruistic case, one applies the envelope theorem to find the impact of the bequest on
the maximum utility attainable by her heir born in t+ 1.
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s̄(τ∗) = ā(τ∗)(1 + (1− q)/γ1/σ); or, in closed form,

ā(τ∗) =
γ1/σ

1− q + γ1/σ + (βR1−σ)−1/σ
(3.4.25)

is the time-invariant fraction of lifetime income that is privately saved. The linearity
of the model implies that the portfolio decision is independent of the overall savings
decision. The sum of annuitized and non-annuitized savings is given by st = s̄(w + bjt ),
where

s̄(τ∗) =

{
1 +

[
βR1−σ(1− q + γ1/σ)σ

]−1/σ
}−1

(3.4.26)

is the propensity to save from lifetime income. Note that the fraction 1
1+γ1/σ/(1−q) of the

individual’s portfolio is held as pension claims. We have therefore established

Lemma 6. Sequence of optimal contribution rates

The sequence

τ∗t =
āτ∗(1− q)
γ1/σ

w + bt
w

= ā(τ∗)(1− q)/γ1/σ ×
t∑
i=0

(Rā(τ∗))i . (3.4.27)

converges from below to

lim
t→∞

τ∗t = τ∗ =

[
1 +

(βR1−σ)−1/σ + γ1/σ(1−R)

1− q

]−1

. (3.4.28)

Proof. (3.4.27) is obvious from the above discussion. IfRā(τ∗) < 1, then τ∗t →
ā(τ∗)(1−q)

γ1/σ(1−Rā(τ∗))

as t→∞. Since the optimal split of the portfolio is independent of lifetime income, i.e.
τ∗w
ωt

= ā(τ∗)(1−q)/γ1/σ), τt+1 > τt ∀t <∞. Finally, using (3.4.25) confirms (3.4.28).

Note that Lemma 6 accounts for the transfer reduction induced by the scheme. The
fact that we can define a sequence of non-zero optimal contribution rates should be
contrasted with the seminal work of Barro (1974), who finds that government policy
intended to change the intergenerational distribution of resources is neutral in welfare
terms, so that the optimal contribution rate remains indeterminate. The present non-
neutrality result is not driven by the conceptional difference in bequest motives discussed
above. Rather, it is the existence of uninsured mortality risk that breaks the equivalence
of Social Security pensions and private savings, a risk that does not appear in Barro
(1974).

The essential result of the next corollary is that the sequence of optimal contribution
rates in an unproductive economy populated by altruistic individuals converges to the
time-consistent contribution rate of its egoistic counterpart.
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Corollary 5. τ∗ R τ∗e = 1
1+β−1/σ/(1−q) as R R 1.

The corollary states that τ∗ is independent of the strength of the transfer motive
when capital is unproductive. The economic intuition is as follows. Since the proceeds
from annuitized savings are used for old-age consumption, the fraction of lifetime income
saved in annuities is decreasing in the strength of the transfer motive. This tends to
decrease the optimal contribution rate, given lifetime income. In turn, non-annuitized
fraction of lifetime income in t increases with γ, and is transferred with interest to
the next generation in t + 1, independently of whether the individual survives into
old age. Since contributions are wage-related, this effect tends to increase the optimal
contribution rate. If capital is unproductive (R = 1), then both effects exactly cancel
out in the long run, so τ∗ is independent of the strength of the bequest motive. In
fact, a comparison of (3.3.13) and (3.4.28) establishes the results that long-run optimal
contribution rate coincides with the one obtained in an economy populated with perfectly
selfish individuals. Finally, since non-annuitized savings are transferred with interest,
the latter (former) effect dominates the former (latter) as R > 1 (R < 1).

Since the scheme is fully funded, contributions to the scheme add to the economy-
wide capital stock in the next period. Let K(τ∗) denote the long-run aggregate capital
stock in the presence of the scheme. We have the following results:

Proposition 7. Convergence with the scheme

If Rā(τ∗) < 1, then the economy with the scheme converges to the deterministic
steady state with

ω(τ∗) = lim
t→∞

(w + bt) =
w

1−Rā(τ∗)
, (3.4.29)

K(τ∗) = lim
t→∞

Kt = s̄(τ∗)Rω(τ∗), (3.4.30)

C(τ∗) = (1− ā(τ∗))ω(τ∗), (3.4.31)

(3.4.32)

Proof. By iteration, the sequenceKt+1 = R(at+τtw) = [(1−q)/γ1/σ+1]ā(τ)R
(
w + bjt

)
=

s̄w
∑t

i=0 (Rā)i + s̄ (āR)t converges if Rā(τ∗) < 1.

In the special case of unproductive capital, aggregate consumption is unaffected by
the scheme and is equal to wage income w. If, moreover, β−1 = R = γ = 1, then the
income expansion paths with respect to consumption and transfers are straight lines
through the origin with slopes equal to one, implying a perfectly smooth consumption-
transfer profile, ct(τ

∗) = ct+1(τ∗) = bt+1(τ∗) = at(τ
∗) = w/(2− q). Since u = ν in that

case, the allocation sequence can be obtained without specifying the felicity function. In
stationary equilibrium, K(τ∗) = C(τ∗) = w = C(0) < K(0), where τ∗ = 1−q

2−q ∀σ. While
the scheme contributes to capital accumulation, it unambiguously reduces the long-run
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capital stock. In general, however, the effect of the scheme on the long-run capital stock
is ambiguous a priori. To see why, the following lemma will be useful.

Lemma 7. Propensities to save

1. If σ = 1, then the propensity to save is unaffected by the scheme, s̄(τ∗) = ā.

2. If σ < 1, then the propensity to save in the economy with the scheme is higher than
in the economy without it, s̄(τ∗) > ā.

Proof. The first part follows directly from equations (3.4.11) and (3.4.26). Suppose
σ < 1. Comparing (3.4.11) and (3.4.26) gives s̄(τ) > ā if and only if

(1− q + γ1/σ)σ > (1− q)(1 + γ1/σ)σ + qγ.

Rewriting the LHS, we have (1− q+γ1/σ)σ = ((1− q)(1 +γ1/σ) + qγ1/σ)σ > ((1− q)(1 +
γ1/σ))σ, ∀σ > 0. As to the RHS, (1− q)(1 + γ1/σ)σ + qγ ≤

(
(1− q)(1 + γ1/σ)

)σ
+ qγ <(

(1− q)(1 + γ1/σ)
)σ

; for σ ≤ 1 by assumption.

Intuitively, there are two components of the effective return to saving, namely, the
expected return of the portfolio and the transfer insurance. Since the scheme is actuari-
ally fair, the expected rate of return of the portfolio (including the premature death case)
is simply R and therefore unaffected by the scheme, so the change in the propensity to
save must be due to the bequest insurance effect. With bequest insurance, the marginal
value of transferring one unit of consumption to the next period increases. In that sense,
the bequest insurance appears to be an additional return to saving, and Lemma 7 states
that if σ < 1 the effect of the transfer insurance on savings acts like a substitution effect
stemming from an increase in the portfolio’s return. The scheme increases the propen-
sity to save from lifetime income, which, in turn, tends to increase the long-run capital
stock.

Moreover, while both annuitized and non-annuitized savings add to the capital stock,
the scheme reduces the fraction of initial wealth that is privately saved, i.e. ā(τ∗) <
ā, t = 0, 1, 2, . . .. Only non-annuitized assets are transferred, and the resulting reduction
in transfers received at birth tends to reduce the long-run capital stock. Which of these
opposing effects dominates is eventually a numerical question.16

3.5 Simulations: the cost of (in-)equality

The infinite series w
(
1 + b̄1 + b̄1b̄2 + b̄1b̄2b̄3 + . . .

)
converges quickly, particularly when

the b̄t’s are small. It is thus fairly easy to generate approximate samples from the

16One might proceed instead by imposing σ → 1, in which case the fraction of initial wealth saved
for old age (in the form of both annuitized and non-annuitized assets) in the presence of the scheme
equals the propensity to save under laissez faire (s̄(τ∗) = ā(0)). If, moreover, R = 1, then the scheme
unambiguously decreases the long-run capital stock, i.e. K(τ) < K(0) for all 0 < γ ≤ 1.
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distribution of ω∞ by taking a fairly short truncation. To be more precise, we follow one
particular realization of the stochastic time series until |ωjt −ω

j
t+1| < 10−6. With R = 1,

for example, there is convergence within ten periods. A large sample of these stochastic
elements is generated.

The parameters of the model economy are determined as follows. In order to maintain
the two-period theoretical structure, let the economically active years start at the age of
20, and let one period span 40 years, implying that individuals reach retirement at the
age of 60, the upper bound of life being 100 years. It seems tempting to impose q = 1/2
as a benchmark as it implies a life expectancy at birth of 80 years. However, q = 1/2
also implies that only one half, no less, of all 20 years-old fail to reach retirement. Since
mortality rates begin to rise rapidly only after the age of 65 or 70, significantly lower
values for q seem more suitable. We opt for the latter perspective and treat q = 0.3 as
a benchmark.

Let σ = 2, which corresponds to the standard value of 1/2 for the intertemporal
elasticity of substitution frequently found in the literature. By way of sensitivity analysis,
Appendix 3.A.3 provides results for σ = .5. The remaining taste parameters are set so as
to match the following targets: First, most of the literature on real business cycles employ
a quarterly psychological discount factor of 0.9914 (see, e.g., Cooley and Prescott, 1995).
Since premature mortality is an important determinant of subjective discounting in the
present setup, let β = 0.35 which, in conjunction with q = 0.3, is equivalent to an effective
subjective discount rate of 1/(β(1 − q)) − 1 per period, or 3.58% p.a.17 Second, the
strength of the transfer motive is set so as to match old-age income from public transfers
in per cent of their disposable income, (τ∗w/(1−q))/(a(τ∗)+τ∗w/(1−q)) = 1/(1+γ1/σ).
Note that this number is independent of time preferences, mortality and the market rate
of return. The rough average for OECD countries of about 2/3 serves as the reference,
implying γ = 0.25.

3.5.1 The long-run allocation

Table 3.5.1 reports the average allocations with and without the fully funded Social
Security for alternative values of the probability premature death and the real rate of
return on physical capital. One can think of the upper and lower panel, respectively, as
separate islands, each with its particular q and R. Consider the constellation (1−q,R) =
(0.7, 1) in the lower panel, which serves as the benchmark scenario.18 The remaining
parameters yield Social Security expenditures of 29.3% of aggregate wage income, or
19.5% of gross domestic output, which are fairly close to the numbers in developed

17β is usually chosen so as to match the market rate of return. In the current setup, however, the
latter is exogenously given.

18Some data indicate an average annual real rate of return (reported as the lending interest rate
adjusted for inflation) for most high income countries roughly between 2.5% and 7.5% p.a. in recent
decades; see for example, the World Development Indicator data base, which covers the period 1961-
2013. Since we are mainly interested in the scheme’s very long-run welfare implications and the data
span no more than 1.5 generations, relatively modest real interest rates seem appropriate.
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countries when one includes other pillars of Social Security such as health care and
the like in the picture. The national savings rate in the long-run equilibrium with the
scheme is about 33%. In keeping with the theoretical results, aggregate consumption
is unaffected by the scheme, but the national capital stock and wealth are reduced
substantially: bequest wealth is 29% lower than under laissez-faire.19 The magnitudes
of both the wealth reduction and the ex ante insurance effect increase with R. For
example, the coefficient of variation for lifetime income under laissez-faire increases from
0.136 with R = 1 to 0.432 with R = 1.0340, in which case the equilibrium distribution
has unbounded support.

3.5.2 The long-run welfare consequences

Table 3.5.1 also contains the long-run welfare consequences of the scheme. Following
Kotlikoff and Spivak (1981) and Fehr and Habermann (2008), the latter are calculated
as the percentage increase in initial wealth (which coincides with the expected present
value of lifetime income in the current setup) that is necessary to make an individual
living in the laissez-faire equilibrium as well off as in the equilibrium with the scheme.
For individual j ∈ [0, 1] born in t, this percentage solves V ∗j (0, φj×ωjt ) = V ∗(τ∗, ωt(τ

∗)),

where φj is derived in the Appendix. Again, Rawls’s (1973) veil of ignorance will be used
to quantify the gains from insurance against the risk of being born into a particular initial
wealth position. Therefore, we ‘sum’ over all individuals in the laissez-faire equilibrium
to derive the long-run welfare consequence before the individual’s type is revealed,20

φ =

∫ 1

0
φjdj. (3.5.1)

In the linear model, the portfolio decision is independent of the decision on how
much to carry over to old age (i.e., the choice of sjt = ajt + τ jt w). Moreover, it can
be seen in equations (3.4.25) and (3.4.27) that the individual’s problem is scalable in
wealth: Both the optimal purchase of pension claims as a fraction of total savings,[
1 + γ1/σ/(1− q)

]−1
, and the propensity to save are independent of wealth. Since in-

tergenerational transfers arise from previous savings, bequests received (and therefore
the expected present value of lifetime income) by any individual j at the beginning of
her first period of life are proportional to wage income, where the factor of proportion-
ality is determined by the mortality history of her lineage. Since factor prices are fixed
by assumption and unaffected by the scheme, this holds true with and without Social
Security pensions, and the population average equivalent variation defined in (3.5.1) is
invariant to shifts in the equilibrium wealth distribution. The strength of the bequest

19Recall that only the fraction 1− q survives into old age, such that aggregate consumption in period
t amounts to c∗t + (1− q)c∗t .

20Recall that an individual’s family mortality history uniquely determines her wealth at birth if
individuals are perfectly selfish. In that case, (3.5.1) ’sums’ over all possible states.
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motive used to generate Table 3.5.1, γ = 0.25, suggests an ex ante welfare gain of 0.64%.
To put this number in perspective, the remainder discusses the relative importance of
insurance and the strength of the transfer motive.

Disentangling insurance

In the current setup, the scheme provides only transfer insurance and the induced ex
ante insurance manifested in a more concentrated long-run wealth distribution.21 To
quantify the relative importance of both forms of insurance, the overall welfare effect is
split into effects stemming from the reduction in wealth, transfer insurance, and ex ante
insurance of the state at birth, respectively. First, the average willingness to pay for
transfer insurance is calculated as follows. Suppose that each individual j in the laissez-
faire equilibrium enjoys unchanged initial wealth, but also bequest insurance through
the possibility of annuitization by means of the scheme. Denote the associated welfare
number by φ1 =

∫
φj1dj. Since the initial wealth distribution is unaltered by the scheme,

the transfer insurance effect coincides with the short-run welfare effect from the scheme.
While the smoothing of transfers across states is beneficial to risk-averse individuals,
an increase in the probability of surviving into old age reduces the gains from transfer
insurance. At the extreme, q = 0 implies that the contribution to the scheme is a
perfect substitute for private savings in physical capital (as in Barro (1974)) and such
gains vanish. Second, consider the ex ante risk of being born into a particular state. The
average percentage increase in initial wealth necessary to make the individuals in the
laissez-faire equilibrium as well off as they would be if they were faced with the ex ante
expected initial wealth position, φj2, solves V (φj2(w+ bjt )) = V (

∫
(w+ bjt )dj). If transfers

are motivated by the joy of giving, then individuals do not (fully) take into account the
scheme’s impact on future generations well-being, thereby also generating an externality
in the form of wealth reduction. This effect is obtained as the residual φ3 = φ−φ1−φ2.

The overall welfare gain is decreasing in the market rate of return. For modest real
rate of returns, transfer insurance considerably dominates ex ante insurance. However,
since bequests are transferred with interest, an increase in R increases the spread in the
long-run wealth distribution, so that ex ante insurance becomes increasingly important.
Consider, again, the benchmark constellation (1−q,R) = (0.7, 1.0340), in which case the
support of the laissez-faire equilibrium distribution is unbounded, and the contribution
of ex ante insurance to the overall welfare effect is 2.5 times the contribution of transfer
insurance. However, the increase in R also enhances the reduction in capital and wealth,
which is the far most important contributor to the overall effect if R is high.

By virtue of Lemma 7 the overall propensity to save with the scheme is higher
than without it whenever σ < 1. To illustrate what happens in this range, Table
3.A.2 replicates the allocative and welfare consequences of the scheme for 0.5, which

21The model setup is unambiguous at this point: the two period assumption implies that the annuity
is only paid once, excluding the insurance of longevity risk (i.e. the risk of running out of resources).
Recalling footnote 6, insurance of lifetime risk itself is also excluded.
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corresponds to a relatively high intertemporal elasticity of substitution of 2. The increase
in long-run capital induced by the scheme now goes along with a long-run reduction in
welfare; for the ex ante insurance is significantly reduced (for the unproductive panel,
the ratio of ex ante insurance bequest insurance gains is 0.062, compared to 0.28 in the
case where σ = 2).

Welfare gains and the strength of the bequest motive

Presuming R = 1, Figure 3.A.3 illustrates that the welfare consequences of the scheme
depend qualitatively on the strength of the bequest motive. The red line is the net welfare
effect as a function of the strength of the bequest motive. While altruists gain far less
than egoists from the scheme, the crowding out induced by the scheme is compatible with
long-run welfare gains as long as the strength of the transfer motive is low, although the
reduction in transfer wealth is quite substantial. However, overall welfare gains turn into
losses if the transfer motive is strong enough: while egoists (i.e. γ = 0) gain on average
3.29% of their expected lifetime income, individuals who value inter vivos transfers and
old-age consumption alike (i.e. γ = 1) suffer from a modest average welfare loss of
about -0.1% of expected lifetime income. The driving forces are transfer insurance (in
the egoistic economy, a higher effective rate of return) and the crowding out of wealth.
Both effects are decreasing in γ. Since R = 1, the laissez-faire equilibrium distribution
is bounded (see Proposition 6), such that ex ante insurance is relatively insensitive to
the strength of of the bequest motive. While ex ante insurance plays a minor role, it
may tip the scales in qualitative evaluations of overall welfare consequences from Social
Security pensions.

Long-run welfare consequences: the egoistic economy

Welfare effects crucially depend on whether the transfer motive is operative. Table
3.A.1 provides the welfare numbers for the egoistic economy. Individuals solely save due
to perfect selfishness. However, the scheme entails an increase in the effective rate of
return, inducing standard income and substitution effects. The latter are bundled in the
number φ1 (equivalently, in the first bar for egoistic individuals in Figure 3.A.3). Not
surprisingly, φ1 is decreasing in the probability of surviving into old age; for the effective
rate of return is decreasing in (1 − q). If capital is unproductive, then, on average,
the income effect stemming from the higher return is of the same size in absolute value
as the income effect stemming from the elimination of bequests. In the benchmark
1− q = 0.7, the remaining substitution effect falls short of the ex ante insurance effect:
11.76 − 10.53 = 1.23 < 2.06. As noted above, egoists gain much more from the scheme
than their altruistic counterparts. At first glance, one might argue that the optimal
scheme and the associated welfare gains are smaller in size; for the bequest motive
reduces the optimal degree of annuitization. By virtue of Corollary 5, however, the long-
run optimal contribution rate in the altruistic economy coincides with the one obtained
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in the egoistic economy if capital is unproductive. Given the insensitiveness of ex ante
insurance to γ, the increase in the effective rate of return is much more valued by egoists
than bequests insurance is valued by altruists.

3.6 Conclusions

The chapter analyzed the consequences of insuring mortality risk by means of standard
fully funded Social Security Pensions in two socio-economic setups: an egoistic economy
in which individuals save due to a pure life-cycle motive, and an altruistic economy in
which individuals save due to both a life-cycle motive and an altruistic motive which
reflects the joy of giving. In the former setup, the pension system promises a higher effec-
tive return than the market. In the latter setup, the pension system is an instrument to
smoothen intergenerational transfers across the states death and survival. Whatever the
individuals’ attitudes towards their heirs, the pension system reduces intergenerational
transfers, resulting in a lower but more concentrated distribution of lifetime income in
the long run.

Altruistic behaviour is commonly seen to reduce the fraction of lifetime income to
be optimally annuitized. Given equal market interest rate and population growth rate,
our model implies that, once the reduction in intergenerational transfer is taken into
account, the long-run optimal contribution rate is independent of the strength of the
transfer motive, and coincides with the one associated with the egoistic economy. If
capital is productive, then the pension system’s long-run optimal contribution rate is
even higher if individuals are altruistic, reflecting the desire to make transfers to the
heir.

The short-run welfare effects are clear-cut. Egoists gain from the higher effective rate
of return, while altruists gain from transfer insurance. The long-run welfare consequences
are not that obvious a priori. While the pension system reduces intergenerational trans-
fers, it also reduces the mortality-related ex ante risk of being born with a particular
amount of wealth. The model suggests that, once ex ante insurance is taken into account,
fully funded Social Security Pensions cannot be rejected a priori: if capital is not too
productive and the bequest motive is not too strong, then the scheme generates long-
run welfare gains, because insurance gains outweigh the crowding out of within-family
transfers.
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3.A Appendix to Chapter 3

3.A.1 The equivalent variation

The consumption-transfer allocation under laissez-faire, namely,

cj,0t = (1− ā)(w + bjt ) (3.A.1)

bj,0t+1 =
γ1/σ

1 + γ1/σ
Rā(w + bjt ) (3.A.2)

bj,1t+1 = Rā(w + bjt ) (3.A.3)

c0
t+1 =

1

1 + γ1/σ
Rā(w + bt) (3.A.4)

gives the indirect utility of individual j born in period t as

V j
t (0) = v̄(w + bjt )

1−σ, (3.A.5)

where

v̄ =
[
(1− ā)1−σ + β (āR)1−σ (1− q)

(
(1 + γ1/σ)σ + q/(1− q)γ

)]
/(1− σ), (3.A.6)

which approaches (1− āe)1−σ
(

1 +
(
β(1− q)R1−σ)1/σ) /(1− σ) as γ → 0.

With the scheme, the consumption-transfer allocation

c0
t = (1− s̄(τ∗))(w + bt) (3.A.7)

b0t+1 = bst+1 = Rā(τ∗)(w + bt) = atR (3.A.8)

c0
t+1 = γ−1/σRā(τ∗)(w + bt) (3.A.9)

gives the indirect utility of a member of the generation born in t as

Vt(τ
∗) = v̄(τ∗)(w + bt)

1−σ, (3.A.10)

where

v̄(τ∗) =

[
(1− s̄(τ∗))1−σ + β(1− q)

(
ā(τ∗)R/γ1/σ

)1−σ
+ βγ (ā(τ∗)R)1−σ

]
/(1− σ),

(3.A.11)

which approaches (1− τ∗e )1−σ
(

1 +
(
βR1−σ)1/σ (1− q)

)
/(1− σ) as γ → 0.

Recalling the definition of φj , the equivalent variation reads

φjt =

(
v̄(τ∗)

v̄

) 1
1−σ

ω(τ∗)/ωjt
w + bτt

w + bjt
. (3.A.12)
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For the egoistic economy, the equivalent variation of an individual whose j previous,
consecutive forebears within the lineage died prematurely is given by

φj =

[
1 +

(
β(1− q)R1−σ)1/σ

1 + (1− q) (βR1−σ)1/σ

]
×

[
1 + (βR)1/σ

1 + (1− q) (βR)1/σ

] 1
1−σ

× w

w + bj
, (3.A.13)

where w + bj = w
∑j

i=0 (āR)i. Recalling that there are qj(1 − q) type-j individu-
als in long-run equilibrium, the aggregate welfare effect stemming from the scheme is
φ =

∑∞
j=0 q

j(1 − q)φj , where the double sum converges, provided that the long-run
equilibrium exists, i.e. āRq < 1.
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3.A.2 Plots

Figure 3.A.1: Long-run distributions of lifetime income: the egoistic economy

The figure illustrates the distributions of lifetime income in the stationary equilibrium with (black bars) and without the scheme
(blue bars). The algorithm used to produce the figure is discussed in Section 3.5. The parameters are q = 0.5, β = 0.5, σ = 2,

R = 1.0240, w = 1.
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Figure 3.A.2: Long-run distributions of lifetime income: the altruistic economy

The figure illustrates the distributions of lifetime income in the stationary equilibrium of the altruistic economy in the absence of
the scheme. The algorithm used to produce the figure is discussed in Section 3.5. The parameters are q = 0.5, β = 0.5, σ = 2,
γ = 0.25, R = 1.0240, w = 1.
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Figure 3.A.3: The population average equivalent variation as a function of the strength
of the transfer motive

The figure illustrates the welfare consequences of the optimal scheme for different values of γ when capital is unproductive, i.e.
R = 1. The red line is the net effect. The bars represent a decomposition of the equivalent variation into bequest insurance, ex
ante insurance and crowding out of wealth. The first bundle of bars (on the far left) represents the decomposition of the
equivalent variation for the egoistic economy (i.e. ν(·) = 0) into (i) income and substitution effects induced by an increase in the
effective rate of return, (ii) ex ante insurance and (iii) capital reduction. The parameters use are R = 1, q = 0.3, β = 0.35, σ = 2.
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3.A.3 Tables

Table 3.A.1: Long-run welfare effects in the egoistic economy

σ R (1-q) φ− 1 φ1 − 1 φ2 − 1 φ3 − 1

2 1.0040 0.5 4.58 19.81 2.30 -17.53
0.6 4.04 15.83 2.30 -14.09
0.7 3.29 11.76 2.06 -10.53

1.0140 0.5 -1.57 16.82 3.94 -22.33
0.6 -0.68 13.55 3.89 -18.11
0.7 0.09 10.14 3.44 -13.66

1.0240 0.5 -7.60 14.23 6.72 -28.55
0.6 -5.30 11.54 6.49 -23.32
0.7 -3.40 8.69 5.64 -17.72

1.0340 0.5 -13.44 12.02 11.46 -36.91
0.6 -9.74 9.79 10.77 -30.30
0.7 -6.57 7.42 9.14 -23.12

0.5 1.0040 0.5 1.48 2.97 0.02 -1.52
0.6 1.17 2.82 0.04 -1.68
0.7 0.85 2.43 0.06 -1.64

1.0140 0.5 1.11 4.36 0.11 -3.36
0.6 0.60 4.11 0.20 -3.70
0.7 0.23 3.52 0.30 -3.58

1.0240 0.5 -0.56 6.33 0.50 -7.39
0.6 -1.26 5.92 0.89 -8.07
0.7 -1.47 5.02 1.27 -7.75

1.0340 0.5 -4.83 9.08 2.32 -16.24
0.6 -5.29 8.38 3.96 -17.64
0.7 -4.62 7.02 5.29 -16.92
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Chapter 4

Estimating the Long-run Benefits
of India’s Rural Roads
Programme: The Movements of
Goods and People

4.1 Introduction

Today, 1 billion people worldwide still lack access to an all-weather road (World Bank,
2015). Due to the link between improved infrastructure and rural poverty reduction,
especially investments in rural roads are considered by governments and foreign aid
donors alike as an effective and efficient way of improving welfare in rural areas. For
example, transport lending in 2015 accounts for 21 per cent of the World Bank’s total
active portfolio. In South Asia, this sector accounts for 16% per cent of the Bank’s total
lending (World Bank, 2015). The Bank also supports India’s rural road programme
known as Pradhan Mantri Gram Sadak Yojana (PMGSY), one of the largest programmes
in the region.1

The existing empirical literature indicates that improved road networks indeed can
generate diverse benefits in the spheres of production and trade, education and health.
For example, Khandker et al. (2009) find that transport costs were substantially reduced,

This chapter was jointly written with Clive Bell.
1The programme is large by any measure: it was launched in 2000 and is expected to be completed

by 2020. It seeks to provide all-weather road access for every community with a population greater
than 1000 by 2003 (all villages with population greater than 500 in 2007). By 2010, about 110 million
people had road access, which is equivalent to 70,5000 habitations, or about 47% of the unconnected
rural population of India as of the 2001 Census. At that time, the length of new and improved rural
road network under the programme reached 274,000 km, and total costs amounted to US$ 14.6 billion.
The programme is still underway at the time of this writing, and an estimated further US$ 40 billion
will be required to complete the programme by 2020 (World Bank (2010)).
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and output and net prices were boosted by rural roads in Bangladesh. Directly appli-
cable is the work of Bell and van Dillen (2014), who estimates that PMGSY reduced
unit transport costs by about 5 per cent of the net price received for the commodities
marketed. There is evidence that rural roads improve not only the commercial terms
of trade, but also education. A related and seemingly established finding is that school
construction has positive effects on children’s school enrollment and attendance (see,
e.g., Duflo, 2001; Burde and Linden, 2013; and Kazianga et al., 2013). Since school
construction reduces the effective distance to school in terms of travel time, rural roads
can be expected to have similar effects. In fact, Bell and van Dillen (2014) estimate
that PMGSY results in substantial savings in travel-time for secondary-school pupils
(just over 30 minutes a day) and far fewer days of involuntary absences for all grades.
Where health is concerned, Banerjee and Sachdeva (2015) find that PMGSY has pro-
moted preventive health care. The increase in health care usage comes not only from
an increase in income and a reduction in travel cost, but also from the increase in the
awareness about health care programmes, the improvement in health care supply and
the increase in social interactions. Bell and van Dillen (2015) go one step further and
show that PMGSY actually affects morbidity itself. They estimate that PMGSY has
reduced the average duration of incapacitating illness by 1.4 days per year in a region
of upland Orissa.

Valuating these benefits is another matter since the new roads affect not just the de-
cisions of what to produce and consume, but also those having to do with the formation
and maintenance of human capital, including life itself. Moreover, while valuating the
benefits that arise in connection with more favourable prices of goods, improved educa-
tional attainment and lower morbidity involves a common (money) metric, the benefits
of reduced mortality do not fit into this convenient scheme of things. Moreover, by
virtue of the effects on human capital accumulation, it is very likely that the empirical
literature underestimates the long-term effects of PMGSY.

This chapter attempts to estimate the long-run benefits of PMGSY. We develop a
computable two-sector overlapping generations model with rural-urban migration, hu-
man capital formation and premature mortality, and calibrate it to the available data.
Decisions in the spheres of production, consumption and education are made in a par-
ticular environment of morbidity and mortality. We estimate that PMGSY generates
benefits amounting to approx. twelve per cent of the value of output produced by a
surviving member of the first generation. Approx. 18 per cent of this gain accrues in
the spheres of education and health. Total benefits more than double for the next gen-
eration, and the ratio of commercial to non-commercial benefits falls substantially, to
less than one-to-one.

A salient feature of the model is spatial heterogeneity with respect to production and
health. We introduce an urban sector and thus allow young adults who grow up in the
rural sector to migrate to towns if they wish. Inter-sectoral migration is the result of an
economic decision in which young adults compare expected utilities in towns and rural
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areas. We build on Bell and Koukoumelis’s (2009) model of a dual economy. While the
urban sector is a simplified version of that in Bell and Koukoumelis (2009), we extend
their setup in that the rural and urban sectors differ in the goods they produce. In order
to draw a reliable picture of current and future migration patterns with and without
rural roads, we need to specify certain demographic features in detail, and to estimate
them in relation to the census and other data. In view of the dramatic and rapid de-
mographic transition underway in India, we include secular trends in the demographic
environment.2

The chapter complements Bell’s (2012) analysis of the long-run benefits of PMGSY,
which, in turn, extends Bell et al. (2006)’s one-sector model of human capital formation
and growth in the presence of premature adult mortality to include two goods, transport
costs and morbidity.3 In Bell (2012), there is just one sector, producing one good that
can be ‘exported’. The second good is ‘imported’. The resulting trade between them
necessarily involves transportation. The net prices of both goods are parametrically
given, but depend on whether there is an all-weather road. Moreover, the latter re-
duces mortality rates, pushes family output, school enrollment and attendance, thereby
enhancing human capital accumulation.

While the calibration of the model yields taste parameters that are fairly close to
those of Bell (2012), our estimates are higher for two reasons. First, we account for a
positive effect on the health outcome as detected in Bell and van Dillen (2015). Second,
a striking effect of PMGSY is to reduce the scale of migration in all periods under
consideration. Improvements in rural living-conditions make human capital less likely to
exit the rural sector, which further contributes to the overall welfare gains of PMGSY.
Our estimates are still rather conservative; for we employ the short-term results of the
above empirical studies. Where morbidity is concerned, for example, timelier and more
regular treatment can be expected to have positive long-term effects on health and
productivity. Moreover, the costs of pain and suffering during a bout of illness are not
taken into account.

The chapter is structured as follows. The model is set out in Section 4.2, the migra-
tion equilibrium being defined in Section 4.2.3. The functional forms and parameters
used in the simulations follow in Section 4.3, while the estimates of the demographic
details are presented in Section 4.3.2. Section 4.4 presents the main results, including
the sequences of the key economic variables with and without the road, the equivalent
variation and its decomposition. The conclusions are drawn together in Section 4.5.

4.2 The Model

With the model of Bell and Koukoumelis (2009) as a basis, we analyse the introduction
of rural roads as the policy intervention. Instead of allowing premature mortality only to

2Lee (2003) provides a detailed exposition of the (projected) Indian demographic transition.
3Bell (2012) provides a compact summary of the key features in Bell et al. (2006).
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occur once at the very end of the phase of life called young adulthood, when individuals
are in their late thirties and early forties, we introduce other age-specific mortality,
namely, among under-five years olds and among young adults who have just had their
children.

We account for the following benefits in the rural sector stemming from all-weather
roads: (i) more favorable prices facing the household as producer and consumer, (ii)
reduced time for children to go to and from school, and fewer absences of teachers, (iii)
lower morbidity and mortality due to timelier medical treatment. While the model has
some general equilibrium features, the prices of the two goods in the urban sector are
fixed. The roads will therefore affect only the prices faced by producers and consumers in
the rural sector, and then only exogenously by the reduction in unit transport costs. The
only endogenous prices are the wage rate per efficiency unit of labour and the (implicit)
rental of a unit of physical capital. Movements in these prices assist migration to bring
about equilibrium in each period. In contrast to the dualistic, labour-surplus economy
of Lewis (1954), the marginal productivity of labour in the rural sector is assumed to be
positive, and the urban labour market flexible enough to absorb the inflow of migrants
at full employment.4 In the migration equilibrium, young adults in the rural sector are
indifferent between migrating to the towns and staying in the rural sector in the current
period and all periods to come.

4.2.1 The rural sector

With the important exceptions of migration and a thorough treatment of vital rates along
the demographic transition now underway in India, the environment and households’
decisions in the rural sector are similar to the setup found in Bell (2012). However,
accounting for mortality among under-five years-old and among young adults who just
have had their children, requires the formal introduction of a sub-period at the start of
each full period.

Demographics

Given the U-shape of age-specific mortality, let death occur at the following possible
junctures: during childhood, prior to reaching school age; and during young adulthood,
either just after parents have had their children, or at the very end of young adulthood.
In accordance with the observed strong age pattern of migration, let all surviving children
born in the rural sector (labelled 1) stay there until adulthood, and suppose that only
young adults migrate to the urban sector (labelled 2). We use the following notation:

4In Lewis (1954), the withdrawal of surplus labour in the rural sector has no effect on the rural
output per family. Moreover, the urban wage rate is exogenously given and the supply of labour from
the rural sector is perfectly flexible at that rate. Once surplus labour is fully absorbed by the urban
sector, the withdrawal of labour is at the cost of lower rural production.



4.2. THE MODEL 83

Na
it: the number of individuals per family in the age-group a (= 1, 2, 3) in period t,

and in sector i (= 1, 2),

nit: the number of children born to a representative couple in sector i (= 1, 2) in
period t,

q1
it: the probability that infants and young children born in period t and in sector

i (= 1, 2) will die before reaching school age in that period,

q2
i,t: the probability that a young adult in sector i (= 1, 2) will die in the early phase

of period t,

qit: the probability that a young adult in sector i (= 1, 2) will die at the end of period
t, before reaching the third phase of life.5

dait: the fraction of period t that a surviving individual aged a (= 1, 2, 3) spends in
disability in sector i (= 1, 2),

Mt: the number of (young adult) rural-urban migrants per family in period t.

Figure 4.2.1 depicts the timeline of events. At the very beginning of period t, young
adults decide whether to migrate. Only after choosing where to live do they choose like
partners6. Each couple produces n1t children, out of which the fraction (1−q1

1t) survives
to school age. These young adults die with probability q2

1t just after they have had their
children. The survivors take in all orphaned children.

All this happens within the subperiod that precedes the decisions of the surviving
young adults. Knowing the realized net fertility per family they draw up a consumption
and investment plan7. At that point in time, the normalised population age structure
of the representative rural household comprises the following numbers of individuals:

N1t = (N1
1t, N

2
1t, N

3
1t)

=

(
(1− q1

1t)n1t, (1− q2
1t) · 2,

(1− q2
1t−1)(1− q1t−1) · 2 ·Nf

1t−1

Nf
1t

)
,

(4.2.1)

where the normalisation relates to a representative couple at the start of period t and
Nf

1t is the total number of rural households in period t. Denote by N 2
1t the total number

of young adults in the rural sector after the migrants have departed. Then Nf
1t = N 2

1t/2,
and it evolves over time according to

Nf
1t+1 = ((1− q1

1t)n1t −Mt+1)Nf
1t/2,

5In the present model structure, these statistics correspond to 5q0, 5q20 and 15q25, respectively, where

nqx denotes the probability that an individual will die before the age of x+ n, conditional on surviving
until the age of x.

6We assume, for simplicity, that there are as many women as men within in each age group, though
we are aware of the alarming disproportions in sex ratios in some Indian regions.

7Realized net fertility per family is directly affected by the prevailing mortality regime, first, because
q1
1t affects the number children in school age, and second, q2

1t determines the number of orphaned children
taken in by a surviving young couple.



84 CHAPTER 4. MIGRATION

Figure 4.2.1: Events and decisions in period t

Note: (1−m) denotes the length of the subperiod prior to the surviving young adults’ decision on consumption
and investment in human capital. All the old die at the end of each period.

Human capital and output in the rural sector

We use the notation introduced in Bell (2012):

λait: the human capital possessed by an adult in age-group a (= 2, 3) in period t, and
in sector i (= 1, 2),

γ: the human capital of a school-age child,

eit: the proportion of their school-age years actually spent in school by the cohort of
children (a = 1) in period t, and in sector i (= 1, 2).

xjit: the consumption of good j (= 1, 2) by each young adult in period t, and in
sector i (= 1, 2),

β: the proportion of a young adult’s consumption received by each child,

ρ: the proportion of a young adult’s consumption received by each old adult,

σit: the direct costs per child of each unit of full-time schooling in sector i (= 1, 2),

Human capital is formed through a process that involves the adults’ human capital
and the educational technology. The human capital attained by a child on becoming
an adult in period t + 1 depends, in general, on the numbers and human capital of the
adults, the level of schooling that child received, and the number of siblings of school-
going age, who were presumably competing for the adults’ attention, care and support
– all in the previous period. Formally,

λ2
1t+1 = Φ(e1t,λ1t,N1t), (4.2.2)

where λ1t = (λ2
1t, λ

3
1t) and Φ is increasing in all its arguments, except for N1

1t.

Simplifying with the application in mind, we ignore competition among siblings and
let Φ be multiplicatively separable in: (i) the educational technology; and (ii) the av-
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erage level of the adults’ human capital. This implies that formal education and the
adults’ human capital are complements in producing the children’s human capital. Par-
ents in rural India have most of their children when they are in their twenties, and in
their thirties, they are busy rearing them to adulthood. Normalizing the structure to a
representative couple within the extended family, these assumptions yield the following
specialization of (4.2.2):

λ2
1t+1 = ft(e1t) ·

N2
1tλ

2
1t +N3

t λ
3
1t

N2
1t +N3

1t

+ 1. (4.2.3)

The function ft(·) represents the educational technology, whose efficiency may vary with
time, and is assumed to be continuous and increasing ∀e1t ∈ [0, 1), with ft(0) = 0. The
assumption ft(0) = 0 implies that a child who receives no schooling will attain only
some basic level of human capital, which, without loss of generality, may be normalized
to unity – hence the ‘1’ on the RHS of (4.2.3). Let there be no depreciation of human
capital. Out-migration impinges on the process of human capital formation because
an increased proportion of old adults decreases the average level of the adults’ human
capital.

The rural household produces a single consumption good (good 1) by means of
labor alone, measured in efficiency units, under constant returns to scale. A natural
normalization is that a healthy adult who possesses human capital in the amount λa1t
is endowed with λa1t efficiency units of labor, which he or she is assumed to supply
completely inelastically.

All output produced in the interval preceding the decision point is simply consumed;
for under-fives are not at school (there is no investment in their human capital). Since
they do not work, the output in question is

ym1t = (1−m) · α1t

[
(1− d2

1t)2λ
2
1t + (1− d3

1t)N
3
1tλ

3
1t

]
,

where α1t denotes the rural output produced by one unit of human capital input in
period t.

In contrast, school-age children do contribute to the family output. However, they,
too, suffer ailments, which reduce the effective time left for schooling and work. Each
child supplies (1 − d1

1t − (1 + τ)e1t)γ efficiency units of labor when it spends e1t units
of time in school and, unavoidably, τe1t units of time travelling to and from school,
whereby γ ∈ (0, 1), i.e., a full-time working child is less productive than an uneducated
adult. When the decision about (xit, eit) must be made, i.e., after the realization of the
rates q1

1t, q
2
1t and n1t, considerably less than a full period remains, with consequences for,

inter alia, the level of full income. The household produces

y1t = m · α1t

[
N1

1t(1− d1
1t − (1 + τ)e1t)γ + (1− d2

1t)N
2
1tλ

2
1t + (1− d3

1t)N
3
1tλ

3
1t

]
(4.2.4)

units of good 1 in the remaining interval of period t. Aggregate rural output is denoted
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by Y1t = (ym1t + y1t)N
f
1t.

Prior to the decision about (xit, eit) the old adults are assumed to consume the
entire amount of their contribution to income in the subperiod. Children under five
make only limited claims on consumption, the latter being subsumed under young adult
consumption. Only after the children go to school do the sharing rules of the ’common
pot’ apply. Following Bell (2012), we normalize the budget identity at the decision point
by the number of (surviving) young adults. The said identity may then be written as:

P1t(β, ρ) ·p1t ·x1t+Q1t(α1t, γ, σ1t, τ) ·e1t ≡ p11tα1t ·(Λ1t+m ·N1
1t(1−d1

1t)γ)/N2
1t, (4.2.5)

where the RHS of (4.2.5) is the level of (normalized) full income in the time t - subperiod
of length m, and

Λ1t ≡ m ·
(
N2

1t(1− d2
1t)λ

2
1t +N3

1t(1− d3
1t)λ

3
1t

)
(4.2.6)

is the adults’ aggregate supply of efficiency units of labor. While the rural household
faces the price vector p1t = (p11t, p21t) for the two consumption goods, the term

P1t(β, ρ) ≡ 1 + (ρN3
1t + βN1

1t)/N
2
1t (4.2.7)

expresses the effect of the family’s demographic structure on the ‘price’ of the consump-
tion bundle x1t relative to education8. Analogously, the ‘price’ of a unit of full education
(e1t = 1) is

Q1t ≡ (m · p11tα1t(1 + τ)γ + σ1t)N
1
1t/N

2
1t . (4.2.8)

Preferences and decisions

The extended family’s decisions are motivated by egoistic and altruistic reasons, and by
mutual norms and obligations. The young adults’ preferences are defined over the levels
of consumption in young adulthood and old age, x1t and ρx1t+1, respectively, and the
human capital attained by their school-age children on attaining full adulthood (λ2

1t+1),
which they may value in both phases of their own lives. Investment in the children’s
education therefore produces two kinds of pay-offs, one altruistic, as expressed by the
value directly placed on λ2

1t+1, and the other selfish, inasmuch as an increase in λ2
1t+1

will also lead to an increase in ρx1t+1 under the said social rules.

The young couple draws up a plan for current consumption and investment in the
children’s education based on the family’s resources and expectations about its members’
state of health and other relevant variables in the coming and future periods. Given
assortative mating, the pair will agree wholly on what is to be done. Appealing to the
law of large numbers in order to rid the system of any uncertainty about the realized
levels of morbidity in period t,9 so that (adjusted) full income in that period is non-

8Note that (4.2.7) is unaffected by the introduction of the subperiod.
9The incidence of morbidity is uncertain at the level of the individual. However, if the extended

family is large enough, its realized levels of morbidity will differ little from the population rates.
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stochastic, let the preferences be represented as follows:

EtU1 = b1u(x1t) + b2(1− q1t)Et[u(x3
1t+1)] +Et[(1− q2

1t+1)(1− q1t+1)](1− q1
1t)n1tφ(λ2

1t+1).
(4.2.9)

The functions u and φ are assumed to be strictly concave. Observe that parents are
assumed to be altruistic only towards their own children. The altruistic motive makes
itself felt only when they themselves are young and actually make the sacrifices, whereby
λ2

1t+1 is non-stochastic by virtue of e1t being non-stochastic. As altruism disappears in
old age, the elderly make no bequests.

The individuals who make this decision, having survived thus far, will survive into old
age with probability (1−q1t) and consume the bundle x3

1t+1 = (1−m)x(p1t+1, α1t+1λ
3
1t+1)+

mρx1t+1, where x(p1t+1, α1t+1λ
3
1t+1) is the demand vector for consumer goods at prices

p1t+1 and income α1t+1λ
3
1t+1. Should the individuals die, the corresponding von Neumann-

Morgenstern utility index u is normalized to zero. Conditional on surviving into old age
at t+ 1, ρx1t+1, is a random variable viewed at time t, for its level depends on a whole
variety of future economic and demographic developments. The other hazard is that the
children will die as young adults in period t+1, each with probability q2

1t+1. The lottery
in question, therefore, involves the random number of individuals who survived through
full young adulthood in t+ 1. The contribution of this lottery to expected utility is the
last term in (4.2.9).

For simplicity, let there be perfect foresight about everything – with the vital excep-
tion of individual fates, i.e., whether an individual making a decision will die prematurely.
Under this assumption, ρx1t+1 becomes non-stochastic, conditional on surviving into old
age at time t + 1. After the migrants have departed, a young adult’s decision problem
therefore is compactly written as:

max
(x1t, e1t|{Zt+t′}t

′=∞
t′=0

)
EtU1 = b1u(x1t) + b2(1− q1t)u(x30

1t+1)

+ (1− q1
1t)(1− q2

1t+1)(1− q1t+1)n1tφ(λ2
1t+1(e1t))

s.t. x1t ≥ 0, e1t ∈ [0, (1− d1
1t)/(1 + τ)], (4.2.3), (4.2.5),

(4.2.10)

where the rural endowment and environment at the time of decision, as described by the
vector

Zt ≡ (N1t,Mt, n1t, q
1
1t, q

2
1t, q1t,d1t;λ1t, P1t, Q1t,p1t, τ, αt). (4.2.11)

are assumed to be known and treated as given, and the superscript ‘0’ denotes the
unerringly forecasted optimal choices of the next generation in t+1, namely (x0

1t+1, e
0
1t+1).

Let EtU1 at the optimum be denoted by V1t(p1t, q1t, q1t+1, n1t).



88 CHAPTER 4. MIGRATION

4.2.2 The urban sector

The urban sector is a simplified version of that in Bell and Koukoumelis (2009), with a
constant savings rate out of profits and full education of urban children. The townies’
preferences are analogous to their rural counterparts’, as in (4.2.10).

Demographics

The number of urban households evolves according to

Nf
2t+1 =

Nf
2t(1− q1

2t)n2t +Mt+1N
f
1t

2
.

Newly arrived migrants are assumed to choose partners in an existing network, to experi-
ence the urban morbidity and mortality profiles, and to adopt urban fertility behaviour.
Each couple produces n2t children. The family age structure is summarized by the vector

N2t =

(
(1− q1

2t)n2t, (1− q2
2t) · 2,

2(1− q2t−1)N2
2t−1

(1− q1
2t−1)n2t−1(1 + ξt)

)
, (4.2.12)

where ξt = MtN
f
1t−1/(n2t−1(1− q1

2t−1)Nf
2t−1) is the number of newly arrived migrants in

period t relative to the number of urban young adults who grew up in towns.

Output, physical and human capital in the urban sector

The technology in the urban sector exhibits constant returns to scale in physical capital,
K, and efficiency units of labour. Aggregate output may be written as

Y2t = F (Kt, L2t, t), (4.2.13)

where, under the assumptions that workers inelastically supply their human capital
endowments to firms and that children and the old are not involved in the production
of the urban good,

L2t ≡ (1− q2
2t)
(
λ2

1tMtN
f
1t−1 + λ2

2tn2t−1(1− q1
2t−1)Nf

2t−1

)
(4.2.14)

denotes the aggregate supply of efficiency units of labour. Recalling the definition of ξ,

the supply per family is Λ2t =
N2

2t(λ2
2t+ξtλ

2
1t)

1+ξt
Urban children are assumed to spend all of their school-age years in school, except for

the time during sickness, so e2t = (1− 2/180)(1− d1
2t)/(1 + τ2) is treated as exogenously

given. Migrants are endowed with human capital λ2
1t and make the same contributions

to the formation of human capital among the upcoming generation. As in the rural
sector, human capital is generated by a combination of formal educational technology
and the average level of adults’ human capital. Recalling that the fractions of migrants
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and native townies within a given age group are 1/(1 + ξt) and ξt/(1 + ξt), respectively,
that human capital does not depreciate (λ2

it−1 = λ3
it), and that the fraction (1 − q2

2t)
of young adults die before human capital formation within the family takes place, the
evolution of human capital is governed by

λ2
2t+1 =

ft(e2t)

1− q2
2t

·
(

(λ2
2t + ξtλ

2
1t)N

2
2t

(1 + ξt)(N2
2t +N3

2t)
+

(λ3
2t + ξt−1λ

3
1t)N

3
2t

(1 + ξt−1)(N2
2t +N3

2t)

)
+ 1,

(4.2.15)

Whenever λ2
1t < λ2

2t, migration into towns reduces on the average level of the adults’
human capital in that period and therefore dampens the urban human capital formation
process. Workers receive wage income according to their respective human capital en-
dowments. There is no urban unemployment, the (competitive) efficiency wage adjusts
to the inflow of migrants. Since goods prices in the urban sector are normalized to unity,
the wage is given by

wt = ∂F/∂L2t. (4.2.16)

An urban family’s wage income in period t is thus wt ·Λ2t. Note that the efficiency wage
moves in the opposite direction to ξt (and hence to Mt), given Kt and N2

2tλ
2
2t.

Preferences are the same in both sectors. Since investment in the education of urban
children is exogenous, the only remaining task is to determine the urban within-family
consumption allocation, given the (normalized) budget identity

P2t · p2t · x2t +Q21 · e2t = wt · Λ2t/N
2
2t, (4.2.17)

where the RHS is family income normalized to the number of young adults, p2t = (1, 1),
P2t ≡ 1 + (ρN3

2t + βN1
2t)/N

2
2t, and Q21 ≡ σ2tN

1
2t/N

2
2t. Note that family wage income is

exhausted by consumption of both goods and investment in education according to the
same social norms as in the rural sector.

The aggregate capital stock arises from urban savings in the previous period. As in
Lewis (1954), we assume ’classic’ savings behaviour, in the sense that a fixed fraction, s,
of the accruing profits is reinvested. We simply set s = 1. There is 100% depreciation of
physical capital within the 20 years spanned by each new generation. A migrant arrives
in the city with no savings in physical capital.

4.2.3 Migration equilibrium

The two sectors are connected by rural-urban migration, whose level is endogenously
determined. A young adult in a village decides whether to migrate to the towns on the
basis of the expected lifetime utilities offered by the two locations. A potential migrant’s
preferences are defined as in equation (4.2.9), but with with urban mortality and fer-
tility. Denote a migrant’s expected utility at the optimum, should he or she move, by
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V2t(p2t, q2t, q2t+1, n2t, w2t, w2t+1). Equilibrium is brought about by a level of migration
such that young adults who have grown up in villages are indifferent between migrat-
ing to the towns and staying in the rural sector. Formally, the migration equilibrium
requires V1t = V2t ∀t, where the equilibrating variables are the number of migrants per
family, Mt, and the efficiency wage rates.

4.3 Calibration

Given the degree of underidentification in the model, this chapter follows the standard
procedure in the literature on computable general equilibrium models in employing (i)
plausible functional forms, if only from common usage in the existing literature, (ii) what-
ever available econometric estimates for the parameters involved, and (iii) constellations
for the remaining parameters such that the simulated model replicates a benchmark year
and certain key magnitudes correspond to what is called ‘stylized facts’.

4.3.1 Functional forms

Rural technologies and preferences are taken from Bell (2012), albeit some parameter
values are adjusted significantly in order to ensure that the calibration algorithm suc-
ceeds.

Technologies

Let ft(eit) = zeit ∀t, i = 1, 2, where z > 0 represents a constant inter-generational trans-
mission factor, which reflects the quality of both child-rearing and the school system.

Let F (Kt, L2t, t) be of the Cobb-Douglas type, with constant returns to scale in
physical and human capital, so that

Y2t = F (Kt, L2t, t) = α2K
ε
tL

1−ε
2t , ε ∈ (0, 1).

Since all profits are reinvested, the sectoral savings rate equals ε. With full depreciation
of physical capital within one period Kt+1 = Kt∂F/∂Kt = εY2t.

Preferences

Recall that preferences are the same in both sectors. We form the Cobb-Douglas ag-
gregate xa1it · x

1−a
2it (0 < a < 1, i = 1, 2). Applying the logarithm to this index of

consumption, we obtain

u(xit) = a lnx1it + (1− a) lnx2it ∀ t, i = 1, 2. (4.3.1)



4.3. CALIBRATION 91

Let φ(·) be of iso-elastic form

φ(λ2
it+1) = 1− (λ2

it+1)−η/η , η > 0, i = 1, 2

4.3.2 Exogenous parameters

The road programme started in 2000, and since the whole numerical procedure hinges
on perfect foresight, this implies that t = 1 begins in 2000 and ends at the close of 2019,
and so forth for t = 2, 3, . . ..

Demographics: rural sector

In the current setting, each generation corresponds to a span of 20 years, the age at which
full adulthood is attained. With m = 0.75, the rate qt therefore corresponds to 15q25, the
probability that an individual will die before reaching 40, conditional on reaching 25. We
calculate Indian rural mortality rates using SRS-based abridged life tables. The average
values in the rural area in the time period 2001-2010 are 15q25 = 0.044 and 25q25 = 0.095,
respectively. Something closer to the latter is suited to our present purposes, to allow
for some mortality in the first part of old age. Hence, let q11 = 0.09. For under-fives, the
SRS-based value is q1

11 = 0.083. Finally, the mortality rate in the early phase of young
adulthood is q2

11 = 0.012. In conjunction with the normalization N2
1t = 2(1 − q2

1t), ∀t
and the prevailing state of affairs in rural India, let N11 = (3.254, 1.976, 0.993), with
n11 = 3.551 (United Nations, 2013).

If history and international experience are any guides, mortality rates across all age
groups are sure to fall over the coming generation, PMGSY or no. Notably, the relevant
rates have been fallen considerably and almost linearly in the last decades. It does
not seem too much to hope that this trend will continue. We assume, therefore, that
mortality rates will fall linearly until 2061 (t = 4) (for example, from q11 = 0.09 to
q14 = 0.07). In contrast, the drop in fertility has started and is assumed to become
stationary earlier than mortality. Thus, fertility is also assumed to fall linearly from its
current level to replacement fertility in 2041 (t = 3); see the upper panel of Table 4.3.1,
where we also report the estimated vital rates for t = 0.

Where morbidity and disability are concerned, school-age children typically suffer less
sickness than their parents, who, in turn, are in better health than their aged parents.
The findings from the Orissa survey confirm as much, the average number of days of
reported sickness being 5.6 a year. This number covers those individuals who suffered
from chronic ailments whenever the morbidity associated with their chronic conditions
falls into the category of acute sickness. Following Bell (2012), we use the vector d11 =
(0.02, 0.04, 0.08) as an estimate for period 1. Since it is easier to ward off premature
death than morbidity, the associated improvement to d1t = (0.015, 0.03, 0.06), t ≥ 2 is
assumed to be less dramatic than that in mortality.

Finally, we estimate an all-India flow of rural out-migration between 1981 and 2001
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Table 4.3.1: The demographic transition with and without the road

Period 0 1 2 3 4

No Road n1t 4.448 3.551 2.809 2.096 2.056
q1

1t 0.150 0.083 0.064 0.046 0.027
q2

1t 0.017 0.012 0.0107 0.009 0.008
q1t 0.125 0.090 0.083 0.077 0.070
n2t 3.522 2.758 2.399 2.048 2.024
q1

2t 0.083 0.046 0.0347 0.0233 0.012
q2

2t 0.009 0.007 0.006 0.006 0.005
q2t 0.090 0.070 0.065 0.061 0.056

Road V1 n1t 4.448 3.519 2.790 2.0857 2.050
q1

1t 0.150 0.0747 0.0579 0.0411 0.0243
q2

1t 0.017 0.0106 0.0096 0.0084 0.0072
q1t 0.125 0.081 0.0747 0.0693 0.063

Road V2 n1t 4.448 3.504 2.780 2.081 2.047
q1

1t 0.150 0.071 0.055 0.039 0.023
q2

1t 0.017 0.010 0.009 0.0079 0.0068
q1t 0.125 0.0765 0.0708 0.0652 0.0595

V1: 10% mortality reduction, V2: 15% mortality reduction.
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of individuals aged 5-19 in the year 1981. The estimation involves the following steps.
First, we use Census data for the initial (1981) and final year (2001), and the mortality
rates as reported in the SRS-based life tables to construct a hypothetical rural popula-
tion pyramid for 2001 that would represent the population age structure if no internal
migration had occurred. Second, and in order to correct potential measurement errors
concerning the vital rates, the latter is scaled so that the total rural population sums to
the actual population number in the final Census year (2001).10 Third, the difference be-
tween the hypothetical and the actual final population in each age class gives the desired
estimate for rural-urban migration. Finally, since migration is a flow variable between
census dates, and not a stock, the migration rate of 12.34% is the average from using
the initial population (aged 5-20) and the final population (aged 25-40) as the bench-
mark population. Our time structure and the scaling to a young couple that survived
the early phase of young adulthood gives M0 = 0.2439. The calculation of λ2

22 requires

information about ξ0, which in turn requires Nf
1−1 and Nf

2−1, respectively. Given Nit

and the total population by sector, Fit say, from Census data, one can readily calculate
the numbers of families for each sector and each period:

Nf
it = Fit/(N

1
it +N2

it +N3
it), i = 1, 2.

Using Nf
1−1 = 54184000, Nf

2−1 = 14461000, n2−1 = 3.49, and q1
2−1 = 0.0829 gives11

ξ0 = 0.286. Finally note that the (exogenous) sequences {nit}, {qit} allow to calculate
all future demographic variables for any migration stream {Mt}, t = 1, 2, . . ..

Demographics: urban sector

The abridged life tables give the rates 15q25 = 0.032 and 25q25 = 0.074, so we choose
q21 = 0.07. Mortality rates in the subperiod are q1

21 = 0.046, and q2
21 = 0.007, re-

spectively. Similar to their rural counterparts, these rates are assumed to fall lin-
early along the demographic transition (again see Table 4.3.1). With the normalization
N2

21 = 2(1 − q2
2t), the census data give N21 = (2.631, 1.986, 0.944), with n21 = 2.758

(United Nations, 2013). A diligent search, yielded no quantitative estimates concern-
ing rural-urban differences in morbidity. Since Bell and van Dillen (2014) focus on
the effects of PMGSY in a remote and backward region with high poverty and low
scores on other social indicators, we assume that townies are still in better health
than their rural counterparts in the presence of PMGSY: d21 = (0.01, 0.02, 0.04) and
d2t = (0.0075, 0.015, 0.0338), t ≥ 2 (see Section 4.3.4).

10The procedure abstracts, however, from international migration.
11In order to get some historical depth, use the same steps to calculate ξ−1 = 0.3389.
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Human capital

Human capital in both sectors evolves according to (4.2.3) and (4.2.15), given some
starting values for period t = 0. As to the latter, there is much illiteracy among the old
in rural areas, but less among their children, who are today’s parents. Literacy rates for
the age group 7+ increased from 44.7% in 1991 to 68.9% in 2011. Rising productivity
over the past generation also suggests that λ2

11 is substantially larger than λ3
11. Therefore,

we impose λ11 = (1.9, 1.2). The urban literacy rate increased less dramatically than its
rural counterpart, from 73.1% to 85.0% over the same period. While the sectoral gap has
decreased, urban literacy is still about 16 percentage points higher than in rural areas.
This consideration indicates that λ21 = (2.2, 1.4) is a reasonable guess to accompany
λ11 = (1.9, 1.2).

Prices

For simplicity, set the prices of both goods in the town at unity in all periods. The
consequences of this assumption for the economy’s growth path are discussed below. A
survey of 30 villages in upland Orissa for the year 2009-10 (Bell and van Dillen (2014))
yields the finding that in the absence of an all-weather road, the unit transport costs
for paddy, the main crop, were a bit less than 0.1, but those for other commercial crops
somewhat higher. Applying the same to fertilisers, seeds and other goods bought in,
households in such villages then face the price vector p1t = (0.9, 1.1) ∀ t. As for the
trip to school, the great majority of India’s villages have a primary one of their own;
but only a small minority have a secondary or high school, and in the absence of an
all-weather road, the daily round-trip time can be rather long. The averages for primary
and secondary school pupils in the Orissa villages lacking such a road were 23 and 76
minutes, respectively. Allowing, say, twelve hours for sleeping, eating and bathing at
home, and taking into account the higher opportunity costs of older children’s time, let
τ = 0.08. The direct costs of state schooling are surely modest: recalling (4.2.8), let σ1t

be 0.15 times the opportunity cost factor m · p11tα1t(1 + τ)γ, where γ = 0.65 is taken
from Bell (2012).

Preferences

Recall that preferences are the same in both sectors by assumption. Let the social norms
demand β = 0.6 and ρ = 0.8. Households are still rather poor, so their taste for good 1
should be at least as strong as that for good 2: accordingly, let a = 0.5.

The search algorithm described in Appendix 4.A.2 succeeds only when the sub-utility
function φ has relatively strong curvature. We choose η = 0.65, which is substantially
higher than that in Bell (2012), namely, 0.1. Note, however, that the 0.65-value is not
implausible. In their study of Kenya over the historical period 1950-1990, Bell et al.
(2006) found the values of η lie in the range 0.35 – 0.65, with a clustering around 0.5.
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4.3.3 Endogenous parameters

The efficiency parameter in the production functions (α1 and α2), as well as the efficiency
parameter in the educational technology (z), and the inter-temporal taste parameters
(b1 and b2) are chosen so as to satisfy the following calibration desiderata.

First, the households’ current choices of the level of investment in education in both
sectors should be in line with what we observe in the present. Children in India’s rural
areas typically start school at 6 years of age (that is, m = 0.75) and complete about 6
years of schooling on average. Hence, with up to 12 years of schooling available, and
noting that morbidity reduces the endowment of productive time, the model must be
set up so as to yield (1 + τ)e0

11 = (6/12)(1−d1
11). A further adjustment is needed for the

number of days lost due to bad weather, especially in the monsoon. The Orissa survey
yields an estimated 8.6 and 9.4 days a year, on average, for primary- and secondary-
school children, respectively, involuntary absences that were mainly attributable to their
teachers’ failure to arrive (Bell and van Dillen (2014)). Assuming a school year of
180 days, the required condition becomes (1 + τ)e0

11 = (1 − 9/180)(6/12)(1 − d1
11) =

(19/40)(1− d1
11), where τ = 0.08 and d1

11 = 0.02.

We anchor the sequence to some plausible configuration in the future. Let us suppose,
in line with the so-called Millennium Development Goals, that a full education for all
is attainable within one complete generation, where the definition of a ‘full education’
must make a full allowance for the claims on a child’s time made by illness, travelling to
school and other involuntary absences. That is to say, the model must be set up such
that parents in period 2 do choose e0

12 = ē12 = 0.95(1 − d1
12)/(1 + τ). In anticipating

that the next generation’s optimal choice involves a full education, the young adults in
period 1 do choose e0

11 = 0.431.

The parameters (α1, b1, b2) are chosen so as to meet these requirements. We impose
pure impatience for consumption, i.e. b1 > b2. Since premature mortality already
appears in connection with preferences over dated consumption, the pure discount rate
arguably should not greatly exceed 10 per cent or so per generation of 20 years. By
hazarding a guess at α1, we are then left to find a pair (b1, b2), with b2 ≈ 0.9b1, such
that the solution to problem (4.2.10) in period 1 indeed involves e0

11 = (19/20)(6/12)(1−
0.02)/1.08 and e0

12 = 0.866 is barely attained. We adopt b2/b1 = 0.8 and α1 = 5 from
Bell (2012).

We turn to urban output, beginning with total factor productivity. We set α2 =
6.75∀t to get an empirically defensible, sectoral aggregate output ratio of one-to-one.
While this ratio seems to be too high at first glance (the rural share in gross domestic
product was about 23 per cent in the year 2000), it should be noted first that the service
sector in towns is not included in the simulation, and second, that estimates of the urban
capital-output ratio are available and must be largely respected. There has been much
fluctuation in the latter since 1991. A recent estimate for manufacturing in the year
2000 is K1/Y21 = 4.33 years (Verma (2012)). Since we assume 100% depreciation, the
lifetime of capital goods is one period. In the current setup, one period spans 20 years, so



96 CHAPTER 4. MIGRATION

Verma’s estimate translates into 0.2165(= 4.33/20). A capital-output ratio fairly close
to this estimate (0.276× 20 = 5.5 years) is obtained by choosing an initial capital stock
per urban family of k11 = 14.732. Also note that the assumption of zero growth in total
factor productivity does not rule out growth in productivity per worker; for individual
human capital may well grow without bound when children are fully educated.

Finally, the population vectors and the initial human capital endowments allow for
the possibility that λ2

it < λ2
it−1. In order to rule out such behaviour in human capital

formation, we set z sufficiently high, namely z = 1.3. The transmission factor is also the
candidate for achieving the calibration target e0

12 = 0.866 (see Appendix 4.A.2). Table
4.3.2 summarizes the parameter values.

We close this section by noting that the household decision problems in both sectors
can be solved for any given migration sequence; for once the next generation’s investment
in education is correctly anticipated by the current period’s young adults, they have all
the information needed to determine p1x

30
1t+1 from (4.2.5), whereupon x30

1t+1 follows
from (4.3.1). Appendix 4.A.2 provides a compact description of the algorithm employed
to generate b01 = 29.375, which is used in the simulations. Complications arise because
the calibrated value for b1 depends on the migration equilibrium (see Appendix 4.A.2).
The value for b01 so derived is remarkably close to that obtained in Bell (2012).

Table 4.3.2: Calibration: parameters without the road

Preferences
(β, ρ) (0.6,0.8)
(b2/b1) 0.8
η 0.65
a 0.5

Technology
γ 0.9
z 1.3
α1 5
α2 6.75
ε 1/3

Prices
p1 (0.9, 1.1)
p2 (1, 1)
τ1 0.08
τ2 0.04
σ 0.15
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4.3.4 Life with the road

The improvements induced by the roads in the spheres of goods, education and health
are mainly taken from Bell and van Dillen (2014). They estimate that unit transport
costs are reduced by about 5 per cent of the net price received for commodities mar-
keted. Khandker et al. (2009) obtain a similar estimate for rural roads in Bangladesh,
once an allowance is made for greater volumes marketed. The latter also estimate that
the farm-gate price of fertilisers declined by 5 per cent. With a new road, therefore,
let p1t = (0.95, 1.05), ∀t. Where schooling is concerned, the analysis of the Orissa sur-
vey yields substantial savings in travel-time for secondary-school pupils (just over 30
minutes a day) and far fewer days of involuntary absences for all grades (about 2 in-
stead of about 9 for primary schools and 14 for secondary schools). These estimates
imply τ = 0.04 and ē1t = (1 − 2/180)(1 − d1

1t)/(1 + 0.04) = 0.9508(1 − d1
1t), where

d11 = (0.015, 0.03, 0.06) is derived from Bell and van Dillen (2015) who estimate that
PMGSY reduces the average duration of incapacitating illness by 1.4 days a year. We
further impose d2t = (0.01125, 0.0225, 0.045), t ≥ 2. Let the road be perfectly durable,
thereby maintaining these more favourable prices of goods, as well as travel-times to,
and involuntary absences from, school indefinitely.

One might expect substantial mortality improvements as the road makes (timely)
treatment more likely. Moreover, mortality improvements are likely to be non-neutral in
the sense that the reduction in mortality rates is age-specific. No such pattern is found
in the sample households (Bell and van Dillen, 2014). However, the respondents in the
village focus group interviews claimed that mortality rates had fallen by 25%. In light
of these mixed findings, let the provision of the road reduce current and future mortality
rates in all age groups by 10% (Variant 1).

4.4 Results

We report results for the PMGSY programme and the counterfactual without it up
to and including period T = 4. Since the maximization problems in period T require
information about the vector ZT+1, we extrapolate the growth rates associated with the
sequence {Mt}T−1

t=1 to obtain a first estimate for the value MT+1.

4.4.1 The counterfactual: no road

A long phase of low-to-moderate growth of GDP per capita at an annual rate of 1.3%12

and high population growth at the annual rate of about 2.3% between the 1950’s and
1991 had generated pressure on rural India. In t = 1, the rural population is 67% which
is close to the official 70% estimate (United Nations, 2014). Viewed in this light, the
trajectories of the key economic variables from t = 1 (2000-2020) are intuitively plausible

12In aggregate, the economy grew at the ‘celebrated’ Hindu rate of 3.5% p.a.
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(see Table 4.4.1). Low incomes and a more hazardous health environment in the rural
sector made far strong rural-urban migration in period 1, with a peak immediately
following (t = 2), when M2 - further spurred by the drop in rural fertility - will be
double that in t = 1. The model predicts that mortality-induced migration accounts
for 5.63 per cent and 4.02 per cent, respectively, of the total migration streams in those
periods13. It also indicates a substantial structural change in the aggregate economy at
about the year 2040 (t = 3). The preceding peak in migration and decreasing marginal
productivity in the urban sector make migration to towns increasingly unattractive (the
efficiency wage adjusts to in-migration, so w2 = 5.061 << w1), so migration declines
sharply, albeit with a partial recovery in t = 4, which reflects the fact that the economy
is far away from the steady state in which migration has come to a halt.

In this connection, note that under stationary technological and demographic condi-
tions, equation (4.2.3) becomes

λ2
1t+1 = f(ē1)(a2λ

2
1t + a3λ

2
1t−1) + 1,

where f(ē1) = z · 0.866, a2 = N2/(N2 + N3) = 1.984/(1.984 + 1.845) = 0.518 and
a3 = N3/(N2 +N3) = 1.845/(1.984+1.845) = 0.482 are constants and λ2

1t−1 = λ3
1t. The

relevant characteristic root14 is .5 · a2[1 +
√

(1 + 4a3/(a
2
2f(0.866)))]f(0.866). Moreover,

rural output grows at the same rate as λ2
1. The value chosen for z, 1.3, implies that the

rural sector will grow without bound. In fact, the asymptotic growth rate is g∗1 = 8.5%
per generation. A more favourable mortality regime in towns implies that urban human
capital grows at a higher rate than in the rural sector. Moreover, since all profits are
reinvested and there is no TFP growth (in α2) by assumption, urban output per family
will grow at the same rate as λ2

2, namely at g∗2 = 14.4% per generation. As sector 2’s
growth rate will exceed sector 1’s in the asymptotic limit, the rural sector will continue
to lose population, and at some point, and as a consequence of assuming fixed goods
prices, the demand for good 1 must be satisfied by imports. However, this will not
happen in the time span considered.

In 2060 (t = 4), a rural young adult is projected to be more than twice as productive
as his or her great-grandparents were in young adulthood in period 1. Likewise, the
level of real consumption will have doubled by that time. Due to price differences and
zero opportunity costs of education, the value of the urban optimal consumption bundle
is slightly lower than its rural counterpart. The rural sector is projected to produce
19.1 per cent of total gross domestic output, starting from an initial share of almost one

13We constructed an artificial migration equilibrium when the urban mortality rates are the same
as their rural counterparts. The migration sequence without an rural-urban mortality gap is M ′t =
{0.244, 0.444, 0.921, 0.319, 0.487, 0.430}. It should be noted that the calibration target e0

11 = 0.431 is
(almost) unaffected by this constellation.

14The characteristic roots are derived and set out in Bell (2012) and Bell et al. (2006). In general,
the eigenvalues of the linear second-order difference equation λt+1 = φ1λt + φ2λt−1 + c, where c is a

constant, are
φ1±
√
φ2
1+4φ2

2
(see, e.g., Hamilton, 1994).
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half. The migration flows in equilibrium and the vital rates imply that total population
will reach 1.74 billion people in period 4, a number lying comfortably between the high
fertility projection and the zero (international) migration projection for the year 2060
provided by the United Nations, namely 1.993 and 1.644 billion people, respectively
(United Nations, 2013). The rural population will make up only 31 per cent of the total
population at that time.

Table 4.4.1: The sequences of the endogenous variables without the road

Period 0 1 2 3 4

Rural x11t 3.553 3.637 5.622 7.832
x21t 2.907 2.975 4.600 6.408
e0

1t 0.431 0.866 0.866 0.866
λ2

1t 1.900 1.928 3.158 3.934
y1t 29.699 33.593 45.380 81.834

Y1t/Yt 0.489 0.341 0.274 0.191

Urban x12t = x22t 2.965 3.185 4.788 6.741
e0

2t 0.941 0.944 0.944 0.944
λ2

2t 2.200 3.239 3.961 4.894
kt 14.732 12.177 21.083 34.590
y2t 53.215 54.624 86.118 121.977

kt/y2t 0.276 0.223 0.245 0.284
wt 6.340 5.061 5.579 6.501

wt × Λ2t 26.075 26.766 42.198 59.769

Demographics Mt 0.244 0.547 1.065 0.388 0.755
ξt 0.286 0.408 0.694 0.141 0.270
N3

1t 1.063 1.642 1.619 1.845
N3

2t 0.793 0.829 1.406 1.471

Nf
1t 63.4 101.0 110.6 123.9 87.1

Nf
2t 25.1 58.9 131.2 173.4 220.2

F1t 635.7 691.2 694.0 534.0
F2t 318.6 673.5 935.5 1,202.5

F1t/Ft 0.67 0.51 0.43 0.31

b01 = 29.575. M5 = 0.450. Nf
it and Fi,t in millions.
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4.4.2 PMGSY

The effects of the programme are more easily seen in graphs. The trajectories of the
main variables, with and without PMGSY, are depicted in Figure 4.A.1. The numerical
details for those with PMGSY are given in Table 4.4.2.

A striking effect of PMGSY is to reduce the scale of migration in all periods un-
der consideration, as it brings about significant improvements in rural living conditions.
First, reductions in mortality induce young adults to choose higher investments in ed-
ucation in t = 1. The latter is further spurred by an increase in realized net fertility15

and hence in the weight on altruism in equation (4.2.9). Second, the reductions in
involuntary absences and in the time needed to travel to and from school result in a
higher natural upper bound on the level of education. In sum, the road promotes hu-
man capital formation and output in the rural sector, the latter being directly affected
by the involvement of school-age children in the production of the rural good in period
1. While the transmission factor z is sufficiently high to ensure λ2

12 > λ2
11, the value

of z in conjunction with the initial population and human capital endowment vectors
and the endogenously determined migration flow in the first period implies that human
capital formation accelerates only after some time has been passed. As a consequence,
the aforementioned growth effect (concerning ē1) makes itself felt only for t ≥ 2. Three
generations on, in t = 4, the levels of real productivity and consumption are 9.35 and
9.16 per cent higher, respectively. By that time, the shares of the rural sector in output
and population have been fallen to 42 and 60 per cent, respectively. Table 4.A.1 reports
the sequences of the main variables when there is a 15% reduction in mortality (Variant
2). In this more benign environment, the levels of real productivity and consumption in
t = 4 are about 9.9 and 9.7 per cent higher, respectively.

PMGSY has similar effects in the urban sector, for reduced in-migration enhances
physical and human capital accumulation. In t = 4, the level of real consumption in the
urban sector is about 14.5 per cent (Variant 1) and 15.8 per cent (Variant 2) higher,
respectively, than without PMGSY.

4.4.3 The equivalent variation and its decomposition

For the chosen constellation of functional forms and parameter values, how large is the
willingness to pay for the more benign economic and health environment yielded by the
road? This is obtained by estimating the equivalent variation for rural young adults in
period t in the following way (Bell (2012)). One calculates lump-sum payment to be
added to the family’s (normalized) full income and its allocation subject to the social
norms expressed by β and ρ, which leaves them indifferent between having the road
and living without it. Since individuals desire to smooth out consumption over the life-

15Realized net fertility is positively affected by the road because more women survive childbearing
age and more children survive their first years (see Table 4.3.1). As a consequence, total population with
the roads in t = 4 is slightly higher in the counterfactual.
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Table 4.4.2: The sequences of the main variables with the road (Variant 1)

Period 0 1 2 3 4

Rural x11t 3.544 3.708 5.695 8.161
x21t 3.207 3.355 5.152 7.384
e0

1t 0.461 0.940 0.940 0.940
λ2

1t 1.900 1.998 3.199 4.302
y1t 29.190 32.287 44.249 71.486

Y1t/Yt 0.530 0.440 0.428 0.417

Urban x12t = x22t 3.222 3.559 5.376 7.717
e0

2t 0.941 0.944 0.944 0.944
λ2

2t 2.200 3.229 4.032 4.990
kt 17.753 14.987 27.001 46.486
y2t 59.002 61.845 99.696 145.339

kt/y2t 0.301 0.242 0.271 0.320
wt 6.915 5.520 6.197 7.369

wt × Λ2t 28.911 30.304 48.851 71.216

Demographics Mt 0.244 0.266 0.607 0.014 0.285
ξt 0.286 0.208 0.526 0.009 0.094
N3

1t 0.978 1.373 1.402 1.955
N3

2t 0.924 0.920 1.590 1.708

Nf
1t 63.4 111.5 147.6 193.0 182.2

Nf
2t 25.1 48.9 98.1 114.6 125.4

F1t 692.5 883.1 1,039.2 1,082.5
F2t 270.8 512.4 639.4 714.3

F1t/Ft 0.72 0.63 0.62 0.60

b01 = 29.575. M5 = 0.356. Nf
it and Fit in millions.
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cycle, let there be another payment of equal size in period t + 1, conditional on the
individual surviving into old age. The payment in question is denoted by T 2

t . The total
undiscounted benefit accruing to a surviving member of the generation born in t = 1
(i.e. 2× 0.887 - see Table 4.4.3) is 12.6 per cent of the output produced over his or her
remaining life-cycle (that is, 2 × 1.017/(0.9 × 5 × 1.9 × ((1 − 0.04) + (1 − 0.08))). By
assumption, roads do not deteriorate, so that the benefits accrue in full in all subsequent
periods, causing this measure to increase to 26.9 per cent for those who are young adults
in period 2. The equivalent variations associated with the still healthier environment of
Variant 2 are 13.2 per cent in period 1 and 27.4 per cent in period 2, respectively. (see
Table 4.A.2).

Our estimates are based on the calibrated taste parameter b1, which is fairly close
to the one of Bell’s (2012). In Bell (2012), the corresponding numbers are 8.2 per cent
and 15.4 per cent, respectively. Our estimates are higher for two reasons. First, we
account for a positive effect on the health outcome. Second, improvements in rural
living-conditions make human capital more unlikely to exit the rural sector, further
contributing to the overall welfare gains of PMGSY.

Table 4.4.3: The EV and its decomposition (Variant 1)

Period 1 2 3

No road V1t 57.165 65.115 86.591

Road V1t 60.410 70.548 94.043
T 2
t 1.017 2.234 3.820

Decompositions V1t(∆p) 59.819 67.320 87.716
T 2
t (∆p) 0.829 (81.5%) 0.926 (41.5%) 0.571 (15.0%)

V1t(∆pc) 57.742 68.169 91.903
T 2
t (∆pc) 0.178 (17.5%) 1.272 (56.9%) 2.700 (70.7%)

Note: Results are reported for the case where the payments affect the migration decision. To obtain the EV for
t > 1, we reset the expected utility and migration sequences to their values without the road and without the
payment. However, the latter is relatively insensitive to whether it affects migration or not. The contributions
do not add to one; for the equivalent variation is not additively separable in its components.

In order to get hold of the individual contributions stemming from the various changes
induced by the road, we decompose the overall effect into (i) the effect stemming from
the reduction in transport costs alone, the associated equivalent variation being denoted
by T 2

1 (∆p); and (ii) the effect stemming from a combined contribution of the time
available for schooling, morbidity and mortality, respectively, the associated equivalent
variation being denoted by T 2

1 (∆pc). Due to initially high out-migration benefits in
the non-commercial spheres make themselves felt only after some time has been passed,
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so that the contribution of the reduction in transport costs to the overall benefit is
significantly higher than the 44% figure reported in Bell (2012). Over the longer run,
there is clear trend for the relative contributions: the value of the reduction in transport
costs, T 2

1 (∆p), is 81.5 per cent of T 2
1 in period 1; it falls to around 41.5 per cent of T 2

2 in
period 2, and just 15 per cent in period 3. In the first two periods, these values are fairly
close to the differences T 2

t − T 2
t (∆pc), indicating that the magnitude of the interaction

effects of changes in the terms of trade, education, morbidity and mortality is relatively
modest. However, and not surprisingly, uncertainty increases as time passes.

4.5 Conclusions

Rural roads enable the movements of goods and people. Yet although a simple dirt
track is no barrier to migration to towns in search of employment, rural all-weather
roads influence rural-urban migration by improving rural living standards and human
capital accumulation. Growth effects are also large. The overall benefits generated by
PMGSY are estimated to rise from about 12 per cent of the value of a surviving young
adult’s output in the absence of a road in the period 2000-20 to about one-fourth thereof
in 2020-40. A decomposition of the equivalent variation indicates that improvements in
the villager’s terms of trades yield only a weak improvement in rural welfare in the long
run.

The model indicates that urban dwellers also benefit from rural roads and the ensuing
lower in-migration of rural young adults whose human capital endowments typically falls
short of the endowments of those who grew up in towns. First, there is less downward
pressure on the urban wage rate per efficiency unit of labour. Second, reduced in-
migration enhances human capital accumulation in towns. A thorough evaluation of the
effects on urban welfare, however, requires a more detailed modelling of the urban sector
as was undertaken in this chapter. For example, future research should investigate the
urban sector’s capability to absorb the inflow of migrants.
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4.A Appendix to Chapter 4

4.A.1 Plots and tables

Figure 4.A.1: Selected variables with and without the road

Solid lines: road (Variant 1). Dashed lines: no road.
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Table 4.A.1: The sequences of the main variables with the road (Variant 2)

Period 0 1 2 3 4

Rural x11t 3.5140 3.711 5.728 8.204
x21t 3.203 3.357 5.183 7.422
e0

1t 0.463 0.940 0.940 0.940
λ2

1t 1.900 2.005 3.219 4.323
y1t 29.139 32.273 44.425 71.809

Y1t/Yt 0.532 0.445 0.439 0.431

Urban x12t = x22t 3.235 3.585 5.439 7.807
e0

2t 0.941 0.944 0.944 0.944
λ2

2t 2.200 3.228 4.038 4.998
kt 17.914 15.195 27.777 47.594
y2t 59.305 62.381 101.421 147.296

kt/y2t 0.302 0.244 0.274 0.323
wt 6.943 5.550 6.270 7.447

wt × Λ2t 29.060 30.567 49.696 72.175

Demographics Mt 0.244 0.197 0.584 0.016 0.285
ξt 0.286 0.197 0.513 0.011 0.087
N3

1t 0.974 1.369 1.393 1.949
N3

2t 0.933 0.928 1.622 1.719

Nf
1t 63.4 111.9 149.5 197.6 188.1

Nf
2t 25.1 48.4 96.4 110.4 120.0

F1t 694.9 893.7 1,062.7 1,116.3
F2t 268.8 504.2 619.4 685.0

F1t/Ft 0.72 0.64 0.63 0.61

b01 = 29.575. M5 = 0.286. Nf
it and Fit in millions.
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Table 4.A.2: The EV and its decomposition (Variant 2)

Period 1 2 3

No road V1t 57.165 65.115 86.591

Road V1t 60.547 70.849 94.572
T 2
t 1.061 2.358 4.098

Decompositions V1t(∆p) 59.819 67.320 87.716
T 2
t (∆p) 0.829 (78.1%) 0.930 (39.4%) 0.570 (13.9%)

V1t(∆pc) 57.874 68.446 92.195
T 2
t (∆pc) 0.219 (20.6%) 1.388 (58.9%) 2.847 (69.5%)
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4.A.2 Algorithm

Algorithm 1 Calibration and the sequence under perfect foresight

Start with initial guesses: αg, bg1, (b1/b2)g and {Mt}T+2
t=0 .

repeat
repeat

repeat
for t = 1 : T do . T : # of periods

(i) Solve the rural household’s decision problem under E1e
0
12 = ē2,

(ii) Solve the urban household’s decision problem,
(iii) Calculate the household’s next period budget constraint in both
sectors

end for
Use the resulting {M0

t }T+2
t=0 to calculate all demographic variables

until Convergence of {M0
t }T+2

t=0 . Migration equilibrium
if e0

11 6= 0.431 then . Calibration b1
Adjust b1 (e0

11 is decreasing with b1)
end if

until e0
11 = 0.431

if e0
1t ≤ ē1t, t ≥ 2 or e0

1t >> ē1t, t ≥ 2 then . Calibration z
Adjust z (e0

1t,∀t is increasing with z).
end if

until e0
1t = ē1t, t ≥ 2 . Sequence
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Chapter 5

Summary and Conclusions

A salient feature of the economic outcome is income and wealth inequality (Piketty and
Saez, 2014). Yet economic inequality seems to arise almost naturally from demographic
developments. For example, there is a seemingly never-ending sequence of generations
that differ, amongst others, in size and life expectancy, as was impressively demonstrated
by the phenomena of the demographic transition, starting at about 1800, and the baby
boom - baby bust scenario in the aftermath of World War II. Chapter 1 summarized the
ensuing redistributional effects in the economy. At the individual level, the members of
a given generation typically differ with respect to the time when death afflicts them, and
the place of birth. The resulting economic heterogeneities are examples of demography-
driven intergenerational, intragenerational and spatial inequality.

This dissertation analyzed the scope for reducing demography-driven inequality.
Chapters 2 and 3 focused on Social Security systems as a means of reducing inequality.
By virtue of the intimate link between ex post inequality and ex ante uncertainty, Chap-
ter 2 considered Social Security pension systems as a means of sharing risks to lifetime
income associated with fluctuations in the size of generations. Chapter 3 considered
Social Security pensions systems as a means of insuring risks associated with premature
death. These chapters contribute to the theoretical literature on the very long-run eco-
nomic and welfare effects of Social Security. We found that, once ex ante insurance is
taken into account, Social Security pension systems are welfare-improving in the long
run as long as capital is not too productive, in which case insurance gains dominate the
crowding out of resources.

While the steady state comparison is a common tool in the macroeconomic literature,
the results ignore the welfare effects on those generations that are living during the
transition towards the steady state with the Social Security pension system. Yet a
salient feature of Chapter 3, for example, is that if there are long-run welfare gains, then
all generations, not only steady state generations, gain from the pension system. In
contrast, we found short-run welfare gains even for cases in which the crowding out of
resources outweighs the insurance gains in the long run. This finding raises the question

109
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of whether the winners can compensate the losers, a question which is not addressed in
this dissertation. Future research may employ the lump-sum redistribution mechanism
introduced in the deterministic setup of Auerbach and Kotlikoff (1987), which taxes the
winners during the early phase of the transition and transfers the proceeds to future
generations.

Table 1 in Chapter 1 opens a second door for future research. The staggering in-
creases in medical outlays widens the gap between total and pension specific Social
Security expenditures. It is not merely that people are living longer in retirement, but
also that treating them is very expensive. Future research should therefore include in-
tergenerational inequality in the quality of life.

The overlapping generations models of Chapters 2 and 3 have been extended in
Chapter 4 to assess the benefits of a large-scale investment in rural roads, India’s Pradhan
Mantri Gram Sadak Yojana (PMGSY). There is a growing number of empirical short-
term estimates of its benefits in the spheres of goods, education and health. By employing
a calibrated model of a dualistic economy with human capital formation, Chapter 4
provided reasonable estimates on the programme’s benefits in the longer run. We showed
that the improvements in the villager’s terms of trade are of secondary importance in
the longer run, not least because the road boosts human capital formation and makes
human capital less likely to exit rural areas.
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