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Noise characteristics of the Escherichia coli rotary
motor
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Abstract

Background: The chemotaxis pathway in the bacterium Escherichia coli allows cells to detect changes in external
ligand concentration (e.g. nutrients). The pathway regulates the flagellated rotary motors and hence the cells’
swimming behaviour, steering them towards more favourable environments. While the molecular components are
well characterised, the motor behaviour measured by tethered cell experiments has been difficult to interpret.

Results: We study the effects of sensing and signalling noise on the motor behaviour. Specifically, we consider
fluctuations stemming from ligand concentration, receptor switching between their signalling states, adaptation,
modification of proteins by phosphorylation, and motor switching between its two rotational states. We develop a
model which includes all signalling steps in the pathway, and discuss a simplified version, which captures the
essential features of the full model. We find that the noise characteristics of the motor contain signatures from all
these processes, albeit with varying magnitudes.

Conclusions: Our analysis allows us to address how cell-to-cell variation affects motor behaviour and the question
of optimal pathway design. A similar comprehensive analysis can be applied to other two-component signalling
pathways.

Background
Biological systems sense stimuli from their environment
using cell-surface receptors, and process this informa-
tion to make reliable decisions, e.g. where to move, or
whether to divide or to express new enzymes. Typically,
intracellular signalling molecules are activated by modi-
fication, e.g. phosphorylation or methylation, and inter-
act in complicated biochemical reaction networks. The
biochemical reactions in such networks rely on probabil-
istic collisions of a limited number of molecules. Hence,
the number of signalling molecules fluctuates with time,
making signal processing noisy. The abundance of noise
sources in a cell is in stark contrast to the remarkable
accuracy with which cells are known to respond to min-
ute amounts of chemical concentration, including grow-
ing axons and immune cells [1,2].
The high biological relevance of noise has widely been

recognised and studied extensively in gene expression
[3-7]. In contrast, noise in signal transduction is less

well characterised, despite its importance for accurate
sensing and cell-decision making. Examples of eukaryo-
tic systems, in which signalling noise has been consid-
ered include the ultrasensitive thresholding cascades
[8,9], pheromone sensing in yeast [10,11], signal trans-
duction in photoreceptors [12], feedback loops for noise
suppression [13,14], and eukaryotic chemotaxis [15].
Furthermore, signalling noise has been considered in
parts of bacterial pathways [16-19]. However, such ana-
lyses have either been not comprehensive, or signal and
noise transmission have not been compared in detail
with experimental measurements along the pathway. An
important class of signalling pathways are the bacterial
two-component systems, including hundreds of path-
ways responsible for wide ranging functions such as sen-
sing of and responding to nutrients, osmolarity,
antibiotics, as well as quorum signals [20]. A particularly
well characterised example is the chemotaxis pathway in
E. coli (Figure 1), allowing cells to swim towards nutri-
ents and away from toxins with high sensitivity over a
wide range of ambient concentrations [21-25]. Specifi-
cally, the kinase CheA autophosphorylates when recep-
tors are active and passes on phosphoryl groups to the
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response regulators CheY and CheB. Phosphorylated
CheY (CheY-P) modulates the probability of counterclock-
wise (CCW) or clockwise (CW) rotation of the motor. The
rotational directions of motors correspond to the two
swimming modes of the bacterium, namely smooth swim-
ming and tumbling, respectively. Adaptation, i.e. the

reversal of the effect of changes in the ligand concentra-
tion, is mediated by reversible receptor methylation and
demethylation, catalysed by enzymes CheR and phos-
phorylated CheB (CheB-P), respectively. Using the E. coli
chemotaxis pathway as an example, we are interested in
the behaviour of the rotary motor, i.e. the cell’s final out-
put, and how its rotation is affected by signalling and
noise.
To characterise signal propagation along the pathway,

we use the so-called linear response function. This func-
tion characterises the response to a small time-varying
input signal, such as impulse, sinusoidal and step stimuli.
However, knowing the linear response function allows
the calculation of system response to arbitrary input sig-
nals, provided they are sufficiently small (see Figure 2
and Methods). Typically, any system is subject to various
sources of noise, i.e. random fluctuations in the input, as
well as from signal processing. This is true in particular
for biological systems, which rely on biochemical reac-
tions and conformational changes of signalling mole-
cules, which are intrinsically probabilistic. Here, we use
the noise power spectrum to characterise fluctuations.
The power spectrum captures the correlations between
fluctuations in motor behaviour at different time points
(see Figure 2 and Methods). In order to make the analysis
easier, we typically consider the Fourier transforms of the
dynamical equations of our model. The Fourier trans-
form is an equivalent description of time-dependent data,
and represents its decomposition into its frequency com-
ponents. Using this analysis, there are several fundamen-
tal questions we would like to address:
Firstly, what types of signals are transmitted and what

types are attenuated by the pathway? Early work showed
that the system responds to the time-derivative of the
input signal [26]. A number of research groups have mea-
sured the averaged response of cells to chemotactic signals
[26-28], and found that slowly, as well as rapidly changing
input signals are not transmitted by the pathway. The
response to slowly changing signals is attenuated by adap-
tation, which reverses the activation by ligand binding
[28-30]. Rapidly changing signals were conjectured to be
attenuated by a third-order filter [26,27]. While the phos-
phorylation dynamics of CheY-P has been shown to con-
tribute a first-order filter [30], the exact filtering dynamics
of the full pathway has not been addressed.
Secondly, how is noise generated, amplified or filtered in

the signalling pathway, and how do different sources of
noise affect the motor behaviour? The power spectrum of
the motor rotation was measured for wild-type cells and
mutant cells lacking the chemotaxis signalling pathway
[31]. The spectrum was found to have a large low-fre-
quency component in the wild-type cells, indicating that
there is a dominant noise source in the signalling pathway
with long correlations. In simulations of the signalling

Figure 1 Chemotaxis pathways of E. coli. The pathway consists of
transmembrane chemoreceptors, which constantly undergo
molecular transitions between their on (black) and off (white)
conformations. Receptors signal to CheA, which subsequently
autophosphorylates. The average receptor activity is modulated by
ligand binding and unbinding, as well receptors methylation and
demethylation. CheA phosphorylates the response regulator CheY,
which diffuses through the cell and binds to the rotary motors.
Upon CheY-P binding, motors switch from their default state of
CCW rotation (i.e. running mode) to CW rotation (i.e. tumbling
mode). In addition, CheY-P is dephosphorylated by its phosphatase
CheZ. Receptor methylation is catalysed by CheR, which
preferentially modifies inactive receptors. Receptor demethylation is
catalysed by CheB, which is activated by phosphorylation, and
modifies preferentially active receptors.
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pathway, the adaptation dynamics can play an important
role in generating long correlations [16,31]. However, only
signalling up to CheY-P was considered. Other studies
include stochastic simulations of the noisy biochemical
reactions of the pathway [32], and addressed the mechan-
ism of motor rotation [33-37], including the thermody-
namics of motor switching [38-40]. However, noise
generation, filtering and amplification has not been
addressed systematically for the various levels of the sig-
nalling pathway from chemoreceptors to motors.
Finally, how reliably are concentration input signals

transmitted through the pathway in the presence of
noise? An important task for the cell is to generate an
appropriate motor response to input signals in the pre-
sence of fluctuations in the input, as well as due to
noise in the biochemical signalling pathway. Further-
more, cell-to-cell variation in protein expression influ-
ences signal transmission and noise filtering. Comparing
these two aspects of the pathway dynamics, namely che-
motactic signal transmission and noise filtering, in close

comparison with experimental data along the pathway is
a novel perspective in our present study.
In the following, we present a mathematical model for

the chemotaxis signalling pathway. A simplified pathway
is discussed in the text to provide intuitive understand-
ing. However, results are shown for an extended model
for the full pathway provided in the Methods section.
We discuss the average (deterministic) response of the
signalling pathway to concentration signals. We analyse
the noise sources in the signalling pathway and their
effects. Finally, we vary pathway parameters and study
how they affect signal and noise transmission. We also
discuss briefly how our approach can be applied to
other two-component systems and signalling pathways.

Results
Experimental measurements of response and noise
spectrum
The signal propagation in the chemotaxis pathway has
been characterised by the response to small
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Figure 2 Characterisation of signal and noise propagation. Signal response and fluctuations can be analysed in the time domain or
frequency domain, the latter allowing for analytical treatment. Analysis of signal propagation: A small stimulus Δc(t) (Input) is applied, which
results in a measurable response ΔR(t) (Output). The response ΔR(t) of the system to an impulse input represents the linear response function cR
(t) (up to a constant factor). In the frequency domain, this stimulus is a constant. The Fourier transformed linear response function

�R̂ ∝ χ̂R(ω) can be analysed for its frequency-resolved transmission behaviour. Noise propagation: Fluctuations are characterised by their
correlations over the time interval τ. The autocorrelation function K(τ) (Inset) typically decreases as a function of interval length. In the frequency
domain, the noise power spectrum SR(ω), which is the Fourier transform of the autocorrelation function, characterises the frequency components
of the noise.
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concentration signals (linear response function; see
Methods). Specifically, the response has been measured
at the level of CheY-P using fluorescence resonance
energy transfer (FRET) by Shimizu et al. [28]. In that
study the system was stimulated by a periodic variation
of the concentration of attractant a-methyl-DL-aspartate
(MeAsp). Using a series of frequencies of the stimula-
tion, the magnitude (modulus) and phase, i.e. the lag
between signal and response, of the response was deter-
mined. In cell-tether experiments of motor rotation, the
response to short impulses of attractants was measured
at the level of the motor by Block et al. [26] and Segall
et al. [27]. Such data determines the linear response
function up to a constant factor. Experimental results
are shown in Figure 3. Noise propagation in wild-type
cells has only been studied at the level of the motor by
Korobkova et al. [31]. We use the experimental response
functions to calibrate our model, and subsequently study
the noise power spectrum and signal-to-noise ratio.

Simplified model for the pathway
Here we consider a simplified pathway to gain intuition
of the key processes involved. The simplified pathway
consists of chemoreceptor signalling in response to
ligand binding and receptor methylation, as well as the

rotary motor. Specifically, we use stochastic differential
equations in a Langevin approach [41] to describe the
dynamics of each type of signalling protein. We assume
throughout that fluctuations in concentration are small,
allowing us to describe the average behaviour of a sig-
nalling molecule by a deterministic dynamics and the
fluctuations around the mean by additive noise.
We assume N receptors form cooperative signalling

complexes, which can switch between an active (on) and
an inactive (off) state. Their activity A is described by
the Monod-Wyman-Changeux (MWC) model [42-47].
The activity depends on the external ligand concentra-
tion c at the receptor complex, as well as the methyla-
tion level M of the complex as detailed in Methods.
We consider NC receptor complexes in a cell, and

assume that each complex signals independently of the
others. The total activity Ac of all receptors in a cell is
determined by the sum over all signalling complexes j.
The dynamics of the total activity is

dAc

dt
=

NC∑
j=1

∂A

∂M

dMj

dt
+

∂A

∂c

dcj
dt

+ ηAj(t), (1)

i.e. the dynamics of the complex activity is affected by
changes in the receptor complex methylation level (first

Figure 3 Calibration of the model. (A and B) Fourier transformed linear response function. (A) Magnitude of the response function of the
rotary motor measured by Block et al. [26] (circles) and Segall et al. [27] (plus symbols). The fit of our model is shown by the solid line. The
dashed line represents a 3rd-order filter for comparison. (B) Magnitude (left) and phase (right) of the response function at the level of the
response regulator CheY measured by Shimizu et al. [28]. The symbols are measurements at 22°C (circles) and 32°C (plus symbols). Grey lines
represent the fit of our model to the magnitude of the response. (C) Switching rates of the motor from CCW to CW rotation k+ (squares) and
from CW to CCW rotation k- (circles) as a function of the concentration of signalling-active unphosphorylated double-mutant Y**. The cellular
concentration of Y** varied as a result of induced expression in cells in which wild-type CheY and other cytoplasmic chemotaxis proteins had
been deleted. A fit using the model of Turner et al. [39] is shown as well (solid and dashed lines; cf. Methods).
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term), changes in ligand concentration (second term), as
well as fluctuations due to the switching of the complex
between its states (last term). All noise terms h(t) intro-
duced in this section are discussed in Methods.
Changes in the concentration originate from time-

varying input signals 〈c(t)〉, as well as fluctuations due to
ligand diffusion. The dynamics of the concentration at
the jth receptor complex is given by

dcj
dt

=
d〈c(t)〉
dt

+ ηcj(t), (2)

where the first term captures average concentration
changes (indicated by angular brackets 〈...〉), affecting all
receptors, and the second term describes concentration
fluctuations at each receptor complex, assumed to be
uncorrelated between different receptor complexes.
Adaptation is provided by reversible receptor methyla-

tion and demethylation, whose dynamics is described by
the following equation [47]:

dMj

dt
= γR(N − Aj) − γBA3

j + ηMj(t). (3)

The total methylation level Mj of a receptor complex j
is changed by methylation of receptors in the inactive
state by CheR (first term) and demethylation (second
term). This latter rate is assumed to be strongly depen-
dent on the receptor complex activity as only active
receptors are demethylated by phosphorylated demethy-
lation enzymes CheB-P. These may act cooperatively, in
agreement with time course data of wild-type and a
CheB adaptation mutant [47]. The last term represents
fluctuations due to the noisy processivity of the methy-
lation and demethylation enzymes.
The motor is described as a two-state system with

CW and CCW rotating states, corresponding to running
and tumbling modes, respectively. The dynamics of the
motor bias X is derived from the Master equation of an
ensemble of two-state motors, and is given by

dX
dt

= k+(Ac)(1 − X) − k−(Ac)X + ηX(t), (4)

with X the fraction of motors in the CW rotational
state and applying the single-motor limit. In Eq. 4, the
first term represents the switching from CCW to CW
with the transition rate k+, the second term represents
switching from CW to CCW with transition rate k-, and
the third term describes temporal fluctuations in switch-
ing rates due to the stochastic nature of motor switch-
ing. Note that the Langevin equation for the two-state
motor is exact [48], see also Additional File 1.
Here, transition rates are modulated by the receptor

signalling activity Ac, whereas in the full pathway model
CheY-P modulates motor switching. These rates have

been experimentally measured using signalling mutants
expressing varying amounts of constitutively active sig-
nalling molecule CheY [39]. The switching rates, includ-
ing a fit of the model we used [39] (cf. Methods) to the
data, are shown in Figure 3C.

Signal propagation
We consider the response to input concentration signals
at various levels in the signalling pathway to study how
signals are transmitted to the rotary motor (see Meth-
ods). Briefly, an input signal Δc(t) is a concentration
change relative to a constant background concentration
c0, affecting all receptors equally and representing a
“meaningful” input to the chemotaxis signalling path-
way. Hence, the concentration is given by 〈c(t)〉 = c0 +
Δc(t). Furthermore, cells are assumed to be adapted to
the pre-stimulus concentration c0 with the various levels
R of the signalling pathway adapted to their steady-state
values R*.
Analytical results for linear response functions
We can analytically calculate the Fourier transformed
linear response function from the dynamical equations
Eq. 1-4 without noise (see Methods). We can analyse
the filtering of the signal at each level of the pathway.
The Fourier transformed linear response function for
the total activity of all receptors in a cell is

χ̂Ac(ω) =
−iωNC

∂A
∂c

ωM − iω
. (5)

The receptor activity is a high-pass filter: The magni-
tude of the response function is small for frequencies ω
below ωM = (gR + 3gBA*

2)∂A/∂M, which is the charac-
teristic frequency due to adaptation. For frequencies
above ωM the response function is a constant, given by
the number of receptor complexes NC participating in
the response, and their sensitivity ∂A/∂c to ligand, evalu-
ated at steady-state. The sensitivity is proportional to
the receptor complex size N, i.e. it describes the amplifi-
cation of the response of a single receptor.
Similarly, the Fourier transformed response of the

motor is given by

χ̂X(ω) =
ω2

ωX − iω
χ̂Ac(ω). (6)

The motor is a low-pass filter, i.e. its dynamics intro-
duces a frequency-dependent response, which is con-
stant below the characteristic frequency ωX = k∗

+ + k∗
− of

the motor due to the steady-state switching rates k∗
+ and

k∗
−. The parameter ω2 describes the sensitivity of motor
switching with respect to changes in receptor activity
(Methods). At frequencies above ωX the response is
reduced. From Eq. 6 it is obvious that receptors and
motor are in a cascade: The motor response introduces

Clausznitzer and Endres BMC Systems Biology 2011, 5:151
http://www.biomedcentral.com/1752-0509/5/151

Page 5 of 23



a new filter proportional to (ωi - iω)-1 which simply
multiplies the response function of the response of the
receptor activity. The response functions of the full
pathway including the phosphorylation reactions are
shown in Additional File 1.
For further analysis, we can write the Fourier trans-

formed linear response function as

χ̂R(ω) = |χ̂R(ω)|eiφR(ω), (7)

where |χ̂R| is the magnitude and jR is the phase of the
response function, which characterise the amplitude and
lag of the response behind the input signal, respectively.
Model calibration
Figure 3 shows experimental data for the response func-
tion, as well as the fits of our full pathway model. Block
et al. [26] and Segall et al. [27] measured the response
of the motor using impulses of attractant. For our fit we
adjusted adaptation and motor switching rates. Com-
pared to the data by Shimizu et al. [28] at the same
temperature, adaptation rates are one order of magni-
tude larger, i.e. adaptation is faster in these experiments.
The parameter ωX of the motor switching is 2.1/s, con-
sistent with switching rates of about 1 Hz [29]. It is not
clear from where the difference in adaptation rates
between the two sets of experiments originates. How-
ever, different strains and media can lead to large varia-
tions in receptor expression level [49]. Besides different
experimental conditions, Shimizu et al. [28] used popu-
lations of cells, whereas measurements by Segall et al.
[27] were done on single cells. For the fit of our model
to the data by Shimizu et al. [28], we adjusted only the
adaptation rates, as measurements were restricted to
low frequencies. The fit at 32°C yields the same adapta-
tion parameters as obtained from fitting dose-response
curves of adapting cells [47] (Figure 3B, left). The adap-
tation rates for room temperature are one order of mag-
nitude smaller. Importantly, fitting to the magnitude of
the Fourier transformed response yields a good fit for
the phase of the response as well (Figure 3B, right).
Fitted parameters are given in the Methods.
Signal filtering along the pathway
Figure 4 shows simulated time courses of the chemotac-
tic response to an concentration impulse and the Four-
ier transforms of corresponding linear response
functions, as well as our analytical results. As can be
seen in the figure, linear response functions for the
numerically solved non-linear model indeed match the
analytically calculated functions, confirming that our
calculation results are valid for the chosen input signal.
We observe how the input signal is transmitted through
the pathway, with the effective pulse durations becoming
progressively longer along the pathway (Figure 4, left),
including total receptor activity in a cell (Ac),

phosphorylated kinase CheA, phosphorylated response
regulator CheY, and finally the motor (X). In Figure 4,
middle we show the corresponding linear response
functions.
The receptor activity acts as a high-pass filter, i.e. it

transmits high-frequency signals, but not low-frequency
signals. As can be seen from our simple model (cf. Eq.
5), this property is due to adaptation, which introduces
the time-derivative of the signal Δc(t) up to the charac-
teristic frequency ωM, eliminating the response to slowly
changing attractant concentrations. The activity of che-
moreceptors is the input to further levels in the path-
way. The response of CheA-P is fast, and shows no
qualitative difference to the response of receptors in the
frequency range shown. In contrast, due to the fast but
finite rates of phosphorylation and dephosphorylation,
preventing the CheY-P concentration to respond to
rapidly changing input signals, the response at the level
of CheY is reduced at high frequencies. Similarly, the
motor introduces another high-frequency filter due to
slow switching between its two states. This additional
filter can be deduced from Eq. 6, where the motor
response function takes the response of chemoreceptors
as input, and additionally introduces a characteristic
cut-off frequency ωX due to slow motor switching rates.
Hence, the chemotaxis pathway acts as a band-pass filter
[26], which only transmits input signals within a
selected frequency range, which is of the order of 1 to
10 s. This time scale corresponds to the average time
between two tumbles, allowing sensing of concentration
changes during periods of running. As shown in Figure
4, middle the phase tends towards π/2, i.e. a quarter
period, at low frequencies. This has been analysed only
for the receptor complex activity [28]. This phase differ-
ence is due to adaptation and represents the fact that
the system takes the time derivative of the stimulus
below the characteristic frequency ωM of adaptation.
The phase shift of the receptor activity increases to π at
high frequencies, indicating that the activity simply fol-
lows the output (a negative sign is due to the negative
response of the activity to attractant concentration [28]).
The phase at high frequencies for the response of CheA
follows the phase of the receptor activity, except for a
small increase of the phase shift. In contrast, the phase
of CheY and the motor increase significantly beyond π
indicating that slow rates of modification and motor
switching introduce a lag of the response behind the
stimulus.

Noise propagation
To understand the noise characteristics of the motor,
we consider the noise sources and their transmission
in the pathway. Each step in the signalling pathway is
essentially probabilistic, hence, noisy: ligand diffusion
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and binding, receptor switching between its functional
on and off states, as well as receptor methylation and
demethylation, phosphorylation and dephosphoryla-
tion of signalling proteins CheA, CheY and CheB, and
switching of the rotary motor between its two states,
CW and CCW rotation. To characterise fluctuations
of the phosphorylated signalling protein δR(t) around
its mean value 〈R(t)〉, we use the power spectrum SR
(ω) and the variance 〈δR2〉 = 〈R2(t)〉 - 〈R(t)〉2 (cf.
Methods).
Analytical results for noise spectra
Considering Eq. 1-4 with noise, we can analytically cal-
culate power spectra (see Methods). The power spec-
trum of activity fluctuations is given by

SAc(ω) = NC

ω2
[
Sa(ω) +

(
∂A
∂c

)2
Sc(ω)

]
+

(
∂A
∂M

)2
QM

ω2
M + ω2

. (8)

In this equation we considered fluctuations from
receptor switching (first term in numerator), ligand dif-
fusion (second term), as well as the receptor methylation
dynamics (third term) at each of the NC receptor com-
plexes per cell. We have assumed that fluctuations at
different receptor complexes are independent. There-
fore, we obtain the sum of NC identical spectra for all
complexes. The individual terms Sa(ω), Sc(ω) and QM

are given by Eq. 30, 34 and 36 in Methods. The fre-
quency dependence of the ligand noise, as well as noise

Figure 4 Chemotaxis pathway response and noise spectra in the full pathway model. (Left and Middle) Response upon impulse stimulation
with attractant MeAsp. (Left) Time courses for MeAsp concentration c, total activity of receptors Ac, CheA-P and CheY-P, and motor bias X
obtained from simulation of the full pathway model using the Euler method for integration of the differential equations without noise. (Middle)
Fourier transformed ligand signal, as well as response functions. Symbols correspond to the numerical simulation in the left panel, and solid lines
to analytically calculated functions. (Right) Analytically calculated noise spectra of ligand and for the total activity of receptors Ac, CheA-P and
CheY-P, and motor bias X (thick black lines). Also shown are the contributions to the spectrum from ligand binding (L; thin solid black lines),
receptor switching (RS; thin red lines and symbols), receptor methylation and demethylation (M; green lines), as well as phosphorylation and
dephosphorylation of CheA, CheY and CheB (P; blue lines) and motor switching (MS; dashed grey line).
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from receptor complex switching, indicates filtering of
slowly varying fluctuations with frequencies below the
characteristic frequency ωM due to adaptation. In con-
trast, only high-frequency fluctuations from the receptor
methylation dynamics are filtered by the adaptation
dynamics. This is due to finite rates of methylation and
demethylation fluctuations introducing correlations in
the receptor methylation level.
The power spectrum of fluctuations in the motor bias

is obtained as

SX(ω) =
ω2
2SAc(ω) +QX

ω2 + ω2
X

. (9)

The first term represents transmitted noise from
receptor complexes, including the noise power spectrum
of the receptor activity and the sensitivity ω2

2 of motor
switching rates to changes in activity. The second term
is motor switching noise. Both noises are filtered by the
motor, as its finite rates of switching introduce correla-
tions with characteristic frequency ωX. The noise spectra
of the full pathway including the phosphorylation reac-
tions are shown in Additional File 1.
Noise filtering along the pathway
In Figure 4, right we show the power spectrum of fluc-
tuations at the various levels of the signalling pathway, i.
e. total receptor activity, CheA-P, CheY-P and the
motor. We also plot the individual contributions from
processes generating noise, namely ligand diffusion,
receptor switching, methylation and demethylation of
receptors, and phosphorylation and dephosphorylation
of proteins, as well as motor switching. This allows us
to follow how noise is generated and transmitted at the
various levels of the pathway. The noise spectrum of the
receptor activity has its largest contribution at low fre-
quencies, which originates in the receptor methylation
and phosphorylation dynamics. Most of the fluctuations
from phosphorylation stem from CheB (the separate
contributions to the phosphorylation noise are not
shown in Figure 4, right). At high-frequencies, the activ-
ity noise spectrum is at. This is due to ligand and recep-
tor switching noise, which is removed at low frequencies
by adaptation, but not at high-frequencies. The general
behaviour of the noise spectrum corresponds to the sim-
plified model (cf. Eq. 8).
The noise spectrum of CheA-P has generally the same

shape as the activity spectrum with a large low-fre-
quency component, mainly due to receptor methylation
and CheB phosphorylation dynamics. This spectrum
also has an almost flat high-frequency behaviour in the
frequency range shown. Apart from ligand and receptor
switching noise, the flat part of the spectrum is largely
determined by fluctuations from CheA autophosphoryla-
tion, which has roughly the same shape as activity noise

at high frequencies because autophosphorylation
depends on the receptor activity.
The noise spectrum of CheY-P is also largest at low

frequencies. However, at high frequencies the spectrum
falls off as noise is filtered due to the finite rates of
CheY phosphorylation and dephosphorylation, which
introduce correlations in the fluctuations.
The motor introduces another layer of filtering of

transmitted noise with the characteristic motor switch-
ing frequency ωX (cf. Eq. 9). Hence, transmitted noise is
reduced by two filters in the frequency range shown,
namely due to the CheY-P and motor dynamics. How-
ever, the main contribution to the spectrum is due to
the motor switching itself, which is reduced only by a
first-order filter with characteristic frequency ωX.

Cell-to-cell variation of motor behaviour
How are the signal response, fluctuations and the signal-
to-noise ratio (SNR) affected by changing parameters of
the pathway such as size of receptor complexes, protein
concentrations and reaction rate constants? In this sec-
tion, we discuss the effect of cell-to-cell variation on the
power spectrum of the motor. In the next section, we
discuss the SNR and its contributions, and how they
depend on receptor complex size and adaptation rates.
According to our model parameters obtained from fit-

ting the Fourier transformed linear response to data, the
main contribution to the power spectrum comes from
the steady-state switching of the motor between CCW
and CW state. However, cell-to-cell variation in protein
content and motor switching rates can lead to modifica-
tions of the largely Lorentzian-shaped spectrum. These
modifications are caused by the transmitted noise from
receptor methylation and phosphorylation dynamics
(green and blue lines in Figure 4, right). Specifically, Fig-
ure 5A shows the motor power spectrum for increased
motor switching rates as well as reduced adaptation
rates and number of chemoreceptors in a cell. In all
cases the low-frequency component of the transmitted
noise becomes more prominent.
An increased low-frequency component has been

observed in the motor power spectrum for cells with
low motor bias [31]. Both, wild-type cells and mutants
lacking the signalling pathway were measured. Hence,
the mutant’s spectrum represents the component to the
power spectrum from steady-state motor switching only.
Wild-type cells showed a large low-frequency compo-
nent compared to the mutants. Figure 5B shows that
our model can reproduce these experimental data
(shown in the Inset), provided we assume a low CCW
to CW switching rate leading to small motor bias (see
Methods for the details of parameters). Specifically, the
low-frequency component of our spectrum originates
from noise in the methylation and phosphorylation
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dynamics in cells with low motor bias. Furthermore,
experiments show that the low-frequency component in
the motor power spectrum is reduced by increasing the
expression level of CheR [31]. In Figure 5C we show
that our model reproduces this experimental finding
(shown in the Inset). The low-frequency component due
to noise from receptor methylation and demethylation is
effectively reduced by increasing the methylation rate
constant.

Signal-to-noise ratio at the motor
To characterise how signals are transmitted in the pre-
sence of noise, we define the SNR at the level of the
motor as

SNR =
�X2

〈δX2〉 (10)

with ΔX2 and 〈δX2〉 defined in Methods. For optimal
signalling this ratio should be maximised. For simplicity,
we only discuss the receptor activity in the text, while in
the figures we additionally show the contribution from
phosphorylation processes as transmitted to the motor
in the full pathway model.
Optimal receptor complex size
Receptor complexes amplify small signals proportionally
to their size N. However, also concentration fluctuations
are expected to be amplified. Hence, we hypothesise
that the receptor complex size could be optimised to
yield a balance of advantageous amplification of signals
and detrimental amplification of input noise.
In Figure 6A we show the integrated motor response

ΔX2 (see Methods) to a step stimulus for varying back-
ground concentration and receptor complex size. We
assume that the step stimulus size is a constant fraction
of 10 percent of the background concentration. The
integrated response has a characteristic variation with
background concentration with the maximum in the
sensitivity range of Tar receptors (indicated by their dis-
sociation constants). Furthermore, the response
increases with receptor complex size N. We calculated

Figure 5 Effect of cell-to-cell variation on power spectrum of
the motor in the full pathway model. (A) Predictions about how
different cell parameters affect the motor power spectrum, in
particular its low-frequency component. The black line (wild-type
WT1) is the same as the total motor spectrum in Fig. 4, right. The
motor spectra for increased motor switching rates (MS; red line), as
well as reduced rates of receptor methylation and demethylation
(M; green line) and the total number of receptors (blue line) are
shown as well. Arrows indicate the features in the spectra that are
affected. Dashed box is the area shown in panel (B). (B) Motor
spectrum of cells with low motor bias (black line), as well as the
component from steady-state motor switching only (grey line).

(Inset) Measured power spectra for wild-type cells (WT2) with low
motor bias (black) and mutant lacking the signalling pathway (grey).
Axes are the same as in the main panel. Error bars indicate the
measurement uncertainty. Spectra were traced from data presented
by Korobkova et al. [31]. Model parameters are listed in the
Methods. (C) Motor spectrum of cells with varying CheR expression
level. Shown are WT2 (black line; same as in panel B), as well as 2-
(red), 4-(green) and 10-fold (blue) CheR-expression level compared
to wild-type. (Inset) Measured power spectra of cells with
corresponding CheR-expression level (see main panel). Axes are the
same as in the main panel. Spectra were traced from data
presented by Korobkova et al. [31]. Model parameters are listed in
the Methods.
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the integrated signal response of the receptor activity
(see Methods). This quantity scales linearly with recep-
tor complex size, �A2

c ∝ N, due to coherent addition of
the signalling responses of different receptor complexes,
amplification of concentration changes by receptor com-
plexes, as well as filtering by adaptation.
In Figure 6B and 6C, we show the variance (i.e., the

integrated noise power spectrum, see Methods) of the
transmitted noise of the pathway at the level of the
motor. Only the contribution to the variance from
ligand diffusion depends on the background concentra-
tion. Compared to the signal response, the maximum of

the variance is shifted to a slightly lower concentration.
The contribution to the variance from switching of
receptor complexes is relatively small compared to the
other contributions and roughly constant with receptor
complex size, whereas those from ligand diffusion,
receptor methylation and phosphorylation dynamics
increase with receptor complex size.
To understand these behaviours of the variance more

intuitively, we analysed the receptor activity analytically
(for details of the calculation, see Methods). We find,
the contribution to the variance of the receptor activity
from receptor switching is indeed constant, independent

Figure 6 Integrated response, variance due to transmitted noise and SNR in the full pathway model when varying ambient
concentration and receptor complex size. (A) Integrated response of the motor. (B) Variance of the motor including only contributions from
receptor switching, ligand diffusion, methylation and phosphorylation. (C) Individual contributions to the variance of the motor. (D) SNR based
on the signal response and variance shown in (A) and (B). (E) SNR as a function of receptor complex size at ambient concentration 0.02 (solid),
0.03 (dashed) and 0.05 mM (dotted line). Optimal complex size is indicated by arrows.
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of N. The contribution from ligand diffusion scales stee-
ply as N2, the difference between ligand noise and ligand
signal amplification being due to (i) noise from different
complexes is added up incoherently, and (ii) the main
contribution to the variance coming from high-fre-
quency ligand noise, which is not filtered by adaptation.
The contribution from receptor methylation grows
approximately linearly with receptor complex size as a
result of the incoherent addition of fluctuations at dif-
ferent receptor complexes and the sensitivity of the
receptor complex activity with respect to changes in
methylation level increasing proportionally with N. The
contribution to the variance from phosphorylation pro-
cesses grows with receptor complex size similar to the
contribution from the methylation dynamics. Overall,
the total variance of transmitted noise at the level of the
motor has contributions from receptor switching, the
dynamics of receptor methylation, and phosphorylation.
The latter is approximately constant or grows slower
than the amplified signal response, whereas the compo-
nent from ligand diffusion increases steeper than the
signal response with growing receptor complex size.
The resulting SNR, i.e. the ratio of integrated signal

response and variance of the noise, is shown in Figure
6D and 6E. The SNR is largest at background concen-
trations in the sensitivity range of the Tar receptor.
Furthermore, due to the different dependencies of the
signal and the noise on the receptor complex size, the
SNR has a maximum at a particular receptor complex
size (Figure 6E). The SNR grows below that complex
size due to signal amplification, while the amplified
ligand noise from ligand diffusion is still below the
internal noise level from receptor switching and recep-
tor methylation and phosphorylation dynamics. Above
the optimal receptor complex size, the SNR decreases
because the ligand noise is amplified more than the
signal.
Optimal adaptation rates
As shown above, adaptation filters slow input signals,
with the adaptation speed determining what input fre-
quencies are transmitted by the pathway. Furthermore,
the adaptation dynamics filters input noise. Hence,
adaptation rates may be expected to be optimised for
signal and noise propagation.
Figure 7A shows the integrated signal response at the

level of the motor for varying rates of receptor methyla-
tion (gR) and demethylation (gB). Varying these para-
meters describes changing the concentrations of
receptor modification enzymes CheR and CheB. The
integrated signal response is found to be maximal when
both rates of methylation and demethylation become
small simultaneously. Then, the adapted receptor activ-
ity is in the steep region of dose-response curves, and
the initial response to attractant is maximal. At the

same time adaptation becomes slow and, therefore, the
response lasts long. Interestingly, varying the two para-
meters independently has different effects on the signal-
ling response: the integrated signal response increases
for vanishing gR, whereas it decreases for vanishing gB.
There are two effects that contribute to this behaviour,
illustrated in Figure 7B: Firstly, if the concentration of
one of the receptor modification enzymes is reduced,
the receptors becomes modified predominantly by the
opposing enzyme, hence driving the receptor activity
towards saturation (A* = 0 or A* = 1). This effect would
tend to quench the response by receptors. Secondly, as
the enzyme concentration is reduced, adaptation times
increase. Hence, this effect increases the integrated sig-
nal response as the time the receptor activity deviates
from the adapted state increases. According to calcula-
tions shown in Methods for the integrated response of
receptors, the first effect dominates in the case of
reduced gB: Due to the strong activity dependence of the
demethylation rate, reducing the demethylation rate
constant effects the adapted activity of receptors
strongly. Hence, receptors are quickly driven into
saturation for vanishing gB. In contrast, in the case of
reduced gR the second effect dominates and the
increased adaptation time leads to an increased inte-
grated signal response. At large methylation and
demethylation rates, adaptation times are reduced lead-
ing to a decreasing integrated signal response.
The variance of fluctuations is shown in Figure 7C

and 7D. The individual contributions from transmitted
noise at the level of the motor look qualitatively similar.
For gR and gB such that the adapted receptor activity is
in the steep region of dose-response curves, the variance
of transmitted noise is largest. In contrast, for either
vanishing gR or gB all contributions decrease, consistent
with calculations for the variance of the receptor activity
in Methods. In these cases, the adapted receptor activity
becomes saturated, hence, quenching fluctuations trans-
mitted by receptors.
The resulting SNR is shown in Figure 7E. The SNR

increases for vanishing gR and decreases for vanishing
gB. According to Figure 7E, a large SNR is obtained for
small gR and large gB, corresponding to the parameters
of our model.

Fluctuation-response relationships
Park et al. [50] presented the idea that the signalling
response to concentration signals and fluctuations in the
chemotaxis pathway are not independent of each other,
because they are produced by the same molecular inter-
actions. Specifically, based on measurements at the level
of the motor these authors proposed a fluctuation-
response theorem, namely an approximate linear rela-
tionship between the adaptation time to step stimuli

Clausznitzer and Endres BMC Systems Biology 2011, 5:151
http://www.biomedcentral.com/1752-0509/5/151

Page 11 of 23



and the variance of fluctuations in CheY-P
concentration.
Using our model, we tested this hypothesis and varied

the adaptation rates, as well as the total CheY concen-
tration in a cell, resulting in a shifted adapted CheY-P
concentration at steady state. We find that the variance
of CheY-P (normalised by the squared adapted value)
decreases as the adapted CheY-P value increases except

for very small adapted CheY-P concentrations (Figure
8A), indicating that the relative strength of fluctuations
decreases as expected. In Figure 8B we show the adapta-
tion time, approximated by the inverse of the character-
istic frequency due to adaptation, plotted against the
variance of CheY-P. We find that at low adaptation
times (thick line styles), the adaptation time increases
with the variance of CheY-P, indicating that cells with

Figure 7 Integrated response, variance due to transmitted noise and SNR in the full pathway model when varying receptor
methylation and demethylation rate constants gR and gB, respectively. (A) Integrated response of the motor. (B) Illustration of the effects of
vanishing gR and gB on adapted activity (indicated by dot and circle along dose-response curve; left), as well as on time courses (right) for three
cases, gR ® 0 (top right), gR/gB = const (middle right) and gB ® 0 (bottom right). For further explanation see text. (C) Variance of the motor
including only from receptor switching, ligand diffusion, methylation and phosphorylation. (D) Individual contributions to the variance of the
motor. (E) SNR based on the signal response and variance shown in (A) and (C).
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large fluctuations also respond longer to concentration
signals. In contrast at long adaptation times, the adapta-
tion time decreases with increasing variance of the path-
way (grey parts of the curves). This behaviour can be
directly traced back to the non-monotonic variance
shown in Figure 7. It is maximal when the adapted
CheY-P concentration is about 5 μM, i.e. when typically
half of CheY is phosphorylated. The exact relationship
depends on what parameters varied, exemplified by the
different curves in Figure 8B. For each parameter and
small adaptation times, we find an approximate linear
relationship in line with Park et al. [50], see Inset.

Discussion
Biological signalling pathways employ biochemical reac-
tion networks and molecular state transitions to sense
and process signals from the environment. Fluctuations
inherent in these processes determine the signals which
can reliably be transmitted. Here, we studied the signal
and noise propagation in the E. coli chemotaxis signal-
ling pathway, which controls the bacterial swimming
behaviour in chemical gradients. Specifically, we consid-
ered the dynamics of ligand diffusion, receptor methyla-
tion and demethylation, receptor complex switching
between on and off, phosphorylation and dephosphoryla-
tion of the kinase CheA, and response regulators CheY
and CheB, as well as from rotary motor switching
between CW and CCW direction. We assume coopera-
tive chemoreceptor signalling complexes, whose activ-
ities depend on ligand concentrations and receptor
methylation level, described by the MWC model
[42-47].
We formulated a model which includes all processes

in the signalling pathway. Not included is the dynamics
of gene expression and enzyme localisation to the che-
moreceptor cluster, which is assumed to be much
slower than the dynamics of signalling processes (dis-
cussed below). To make results intuitive we also pre-
sented a simplified version of the model, which only
includes the dynamics of the activity of chemoreceptors,
ligand concentration and receptor methylation level, as
well as the motor dynamics. To calibrate the model, we
first collected experimental data sets for the signalling
pathway and rotary motor [26-28], and the motor
switching behaviour [31,51]. Using the Fourier trans-
formed linear response function, we subsequently fitted
our model parameters. We found a range of parameters
fitting different data sets, revealing a striking experimen-
tal variation, which may require further characterisation
in the future.
Despite the fitting, there is a discrepancy of our

response function and the data at large frequencies.
Block et al. [26] and Segall et al. [27] conjectured that
the pathway is a third-order low-pass filter. In contrast,
we find that the only relevant filters in that frequency
range are due to CheY-P and motor dynamics, leading
to only a second-order filter. One explanation for the
missing filter is that experimental concentration pulses
were not short enough, leaving a signature from the
input signal at large frequencies. Alternatively, additional
processes such as a slow release of CheY-P from the
chemosensory complexes as discussed in Ref. [52] could
lead to an additional filter. However, CheY-P/CheZ
complex formation and potential oligomerisation of
CheY-P/CheZ complexes [53-55] are not expected to
contribute to high-frequency filtering (Additional File 1).

Figure 8 Fluctuation-response relationships. (A) Variance of
CheY-P fluctuations (normalised by the squared adapted CheY-P
value) as a function of adapted CheY-P value for varying adaptation
rates gR (solid line) and gB (dashed line) and total CheY
concentration (dotted line). The filled circle marks the point, where
parameters for the three parameter variations coincide. (B)
Adaptation time, calculated as (l1∂A/∂M)-1, plotted against the
variance of CheY-P fluctuations. Adapted CheY-P concentration of
5μM is indicated by the open circles. Legend is the same as in (A).
Our parameters are given in Additional File 1. (Inset) Variance of
CheY-P concentrations plotted against the adaptation time as
extracted from measurements of motor rotation by Park et al. [50].
The line is a linear fit through the data.
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The motor behaviour is the final cell output, which
contains characteristic noise signatures of all upstream
signalling components, including the receptors. We
found that motor switching is the dominant contribu-
tion to the spectrum of the fluctuations in motor bias
(Figure 5). This may be not surprising as motor switch-
ing enables E. coli to tumble and change its swimming
direction, and is therefore crucial for its search strategy.
However, low-frequency contributions from signalling
and adaptation may become more significant for some
cells or under certain conditions (Figure 5). Specifically,
we predict that due to cell-to-cell variation of protein
contents or fast motor switching, these low-frequency
components become comparable to motor switching
noise. For instance, Korobkova et al. [51] measured
power spectra in cells with low motor bias and found
that the low-frequency component is increased com-
pared to mutants lacking the signalling pathway, and
that increasing the expression level of CheR decreases
the low-frequency component. Our model is able to
reproduce these spectra, demonstrating the general
applicability of our approach. Long correlations in
motor bias may enable subpopulations of cells to swim
further without tumbling or to tumble more frequently.
To test our predictions, adaptation rates can be varied

using cells expressing different amounts of CheR and
CheB from an inducible plasmid. Alternatively, the nat-
ural variability in protein expression between cells can
be exploited. Numerous wild-type cells could be moni-
tored. By extracting the adaptation times for chemotac-
tic stimuli, the adaptation rate constants for individual
cells can be inferred. Subsequently, the same cells can
be used to measure long time traces of motor switching
and noise spectra can be calculated. While we included
a number of noise sources in our model, others have
not been included. For instance the binding and unbind-
ing of the adaptational enzymes to the C-termini of the
receptors [56] may introduce low-frequency fluctuations
in the motor noise power spectrum. However, as shown
for enzyme CheR in Figure 9A, this contribution is sig-
nificantly smaller than the methylation and demethyla-
tion noise. In the same plot we also show the CheR
gene-expression noise, which only contributes at very
low frequencies (observation times larger than 103 s).
Furthermore, the ligand noise may be underestimated in
our model since fluctuations of the ligand concentration
at individual receptor complexes were treated as uncor-
related. If the fluctuations are treated as strongly corre-
lated (on the scale of the polar chemoreceptor cluster),
the ligand noise becomes substantially larger as com-
plexes coherently transmit the ligand noise (see Figure
9B). Taken together, we believe that we included the
main noise sources in our model although due to
subtleties, the magnitude of noise contributions are

much harder to pinpoint exactly. Our full-pathway
model allows us to connect to a large variety of data
and literature. For instance, we also investigated how
the response to concentration signals is related to fluc-
tuations in the chemotaxis pathway (Figure 8), similar to
ideas presented by Park et al. [50]. We do not find one
unifying fluctuation-response theorem, but a nonlinear
trend for the relationship between adaptation times and
variance in CheY-P. For small adaptation times we find
an approximate linear relationship in line with experi-
ments [50].
Although chemotaxis is one of many capabilities a cell

has and may not be optimised in isolation without the
rest of the cell, we speculate the cell aims to maximise
the SNR for most efficient signalling and chemotaxis.
We found that the SNR is maximised at particular
receptor complex sizes similar to values of receptor
cooperativity extracted from FRET dose-response curves
[46]. In line with the data, the “optimal” complex size
increases with external ligand concentration, and hence
with receptor methylation level. While our complex

Figure 9 Effects of CheR localisation and gene expression
noise, as well as correlated ligand noise on noise power
spectrum. (A) Total power spectrum of the motor excluding CheR
localisation and gene expression noise (black line), and
contributions to the motor power spectrum from receptor
methylation and demethylation (green solid line), CheR localisation
(dashed line) and gene expression noise (dotted line). (B) Total
power spectrum of the motor excluding correlated ligand noise
(solid black line), and contributions to the motor power spectrum
from uncorrelated ligand noise at receptor complexes (solid grey
line; original model) and correlated ligand noise across the whole
receptor cluster (dashed grey line). For details, see Additional File 1.
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sizes appear overestimated, noise from ligand molecules
rebinding to the same receptor complex [57] has not
been considered here. This may well increase the noise
level from external sources and hence decrease the pre-
dicted optimal receptor complex size. Using our model,
we also analysed the effect of varying the methylation
and demethylation rate constants. We found that a large
SNR is obtained for small methylation and large
demethylation rate constant, corresponding to our fitted
model parameters from FRET dose-response curves [47].
To describe the noise, the Langevin approximation is

expected to work for the phosphorylation and depho-
sphorylation of the abundant protein CheY. However,
its applicability is less clear for receptor signalling due
to both extrinsic ligand noise and intrinsic noise from
receptor methylation. Furthermore, the switching of the
binary motor may constitute relatively large noise. As
shown in Additional File 1 the Master equation and
Langevin approximation yield the same results for
receptor signalling [58]. As for the motor, the Langevin
equation is exact [48]. However, we explicitly tested that
the statistical properties of the time series obtained for
two-state switching and Langevin equation are the same.
For constant rates, as well as for noisy rates due to fluc-
tuations in CheY-P concentration, the power spectra
obtained for the two processes are the same (Additional
File 1). In Additional File 1 we further show that noise
terms are indeed sufficiently small that linearisation of
the pathway equations is justified.

Conclusions
We presented a comprehensive analysis of signal and
noise propagation in the chemotaxis pathway of E. coli.
Our full-pathway model allowed us to successfully
explain a large variety of experimental data from the lit-
erature. However, our work goes beyond E. coli chemo-
taxis as similar methods can be applied to many other
pathways.
The E. coli chemotaxis pathway is a member of the

large class of two-component systems, containing hun-
dreds of closely related pathways involved in stress
response, virulence and inter-cell communication
[20,59]. In these pathways, activation of a sensor histi-
dine kinase results in its autophosphorylation, and sub-
sequently in phosphorylation of a response regulator,
which typically binds to DNA and regulates gene
expression. The final output, i.e. activation of gene
expression, is again binary and hence similar to the bac-
terial chemotaxis pathway (Figure 10). There are parti-
cularly well-studied examples of two-component
systems: (i) the VanS (kinase)/VanR (response regulator)
system conferring vancomycin resistance in Gram posi-
tive bacteria [60], (ii) quorum sensing in Vibrio harveyi,
where the three kinases LuxN, LuxQ and CqsS respond

to different autoinducers and first phosphorylate the
phosphotransferase LuxO (which has no equivalent in
the chemotaxis pathway), which then phosphorylates the
response regulator LuxU [61], and (iii) the phosphorelay
controlling sporulation in Bacillus subtilis. The relay
contains at least four kinases KinA-KinB and the phos-
photransferase Spo0F, which phosphorylates the
response regulator Spo0A [62].
Our work may also be applicable to other bacterial

chemotaxis pathways, which are often considerably
more complex than E. coli’s pathway and still need to
be understood in detail. For instance, the photosynthetic
bacterium Rhodobacter sphaeroides has several homolo-
gues of each of the chemotaxis proteins in E. coli [63].
Interestingly, Rhodobacter has two chemotaxis receptor
clusters, one polar cluster similar to E. coli and one
cytoplasmic cluster, which is thought to sense the meta-
bolic state of the cell. Both clusters need to be present
for chemotaxis [63]. The soil bacterium Bacillus subtilis
has three adaptation systems [64]: one based on methy-
lation and demethylation of receptors similar to E. coli
and two independent of receptor methylation, the
CheC/CheD system and the CheV system. Furthermore,
in B. subtilis, sensory adaptation is not determined by
the level of receptor methylation but the location of
methylation sites on the receptors. Hence, our analysis
presented here may also help elucidate the design of
these pathways and clarify the computational problems
these bacteria try to solve.

Figure 10 Comparison of E. coli chemotaxis and other two-
component systems. In the chemotaxis pathway (left panel) and
other two-component systems (right panel), a sensor kinase is
activated by a cell-external signal, upon which it
autophosphorylates and passes on a phosphoryl group to its
response regulator, which typically induces a transcriptional
response. The time course of the final output, i.e. gene expression,
can be directly mapped onto the binary output of the chemotaxis
pathway.
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Methods
MWC model for activity of receptor complexes
The MWC model describes signalling by receptor com-
plexes, which can switch between their on and an off
states. The average activity of a complex is given by

A =
N

1 + eF(c,M)
, (11)

ranging from zero to N. The free-energy difference F
(c, M) between the on and off state is

F(c,M) = N − 1
2
M +N

[
νa ln

(
1 + c/Koff

a

1 + c/Koff
a

)

+ νs ln

(
1 + c/Koff

s

1 + c/Koff
s

)]
,

(12)

which is a function of the concentration c present at
the receptor complex site and the methylation level M
of the receptor complex. The methylation level of a
complex is the sum of methylation levels of all recep-
tors in a complex. Here, we consider two receptor
types, Tar (indicated by index a) with fraction υa of
receptors in the complex, and Tsr (indicated by index
s) with fraction υs of receptors. Receptors are sensitive
to attractant MeAsp with dissociation constants Kon

and Koff in the on and off state, respectively. We use
the following parameters for the MWC model for
receptor complexes: Koff

a = 0.02mM, Kon
a = 0.5mM,

Koff
s = 100mM and Kon

s = 106 mM[44,47].

Stochastic differential equations for full pathway model
Equations 1-4 represent a simplified model of the
chemotaxis pathway to illustrate signalling and noise
transmission. In the following, our model used for the
full signalling pathway is summarised. Equations 1
and 2 equally apply to the full pathway model. How-
ever, instead of Eq. 3, the dynamics of the methyla-
tion level of complex j in the full pathway model is
described by

dMj

dt
= γR(N − Aj) − γBAjB2

p + ηMj(t)

= γR(N − Aj) − γB

V2
cell

AjN2
Bp
+ ηMj(t)

(13)

Here, we explicitly include the number of CheB-P (Bp)
molecules NBp in the demethylation term, with Vcell the
cell volume.
In addition, we take into account phosphorylation

and dephosphorylation of CheA (Ap), CheY (Yp) and
CheB (Bp), which are described by the following equa-
tions:

dNAp

dt
= Ac

(
kA

NCN

)
(NA,tot − NAp)+

−
(

ky
Vcell

)
(NY ,tot − NYp)NAp+

−
(

kb
Vcell

)
(NB,tot − NBp)NAp+

+ ηA,p(t) + ηA,Yp(t) + ηA,Bp(t)

(14)

dNYp

dt
=

(
ky
Vcell

)
(NY ,tot − NYp)NAp − k−yNYp+

− ηA,Yp(t) + η−Yp(t)
(15)

dNBp

dt
=

(
kb
Vcell

)
(NB,tot − NBp)NAp − k−bNBp+

− ηA,Bp(t) + η−Bp(t)
(16)

with Ni the number of molecules of species i in a cell
volume. Note, that we neglected the binding of CheY-P
to its phosphatase CheZ for simplicity, and describe
dephosphorylation of CheY-P by the effective depho-
sphorylation rate k−yNYp. As shown in Additional File 1
this simplification has no qualitative effect on the
response function. The term hA,p describes the noise
associated with CheA autophosphorylation. The terms
ηA,Bp(t) and ηA,Yp(t) represent the noise generated in
phosphorylation of CheB and CheY by CheA, respec-
tively. The terms η−Bp(t) and η−Yp(t) describe the noise
associated with dephosphorylation.
Note that some noise terms appear in two equations.

This is due to the fact that we assign noise terms to a
specific process, e.g. phosphorylation of CheY by CheA.
Hence, the corresponding noise term ηA,Yp(t) appears in
the dynamics of CheA-P and of CheY-P. As a positive
fluctuation in the dynamics of CheA-P due to phosphor-
ylation of CheY corresponds to a negative fluctuation in
the dynamics of CheY-P, these noise terms appear with
opposite signs in the two equations. The noise intensi-
ties and parameter values of the model are summarised
below. Finally, instead of Eq. 4 the dynamics of the
motor is now described in terms of

dX
dt

= k+(NYp)(1 − X) − k−(NYp)X + ηX(t), (17)

where we use experimentally derived switching rates k

+ and k- as a function of CheY-P concentration (cf. Fig-
ure 3C and below).

Model for motor switching rates
Turner et al. presented a model for motor switching to
explain the observed motor switching rates [39]. The
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model for motor switching is an MWC model, where 26
subunits of the motor assume one of two states corre-
sponding to CW and CCW rotation. While these subu-
nits bind the molecule CheY-P independently of each
other, the switching of states occurs cooperatively. The
authors derive the overall rates of switching (averaging
over all possible CheY-P occupancy states) as

k+(Yp) = k+(0) ·
(
1 + μYp

KCCW

1 + Yp
KCCW

)mcoop

(18)

k−(Yp) = k−(0) ·
(
1 + μYp

KCCW

1 + Yp
KCW

)mcoop

, (19)

where mcoop = 26 is the number of motor subunits,
-kBT ln(μ) is the free-energy difference of switching per
molecule of CheY-P, and KCCW and KCW are the disso-
ciation constants for binding CheY-P in the CCW and
CW state, respectively.
Motor switching rates k+ and k- have been derived

experimentally as a function of the concentration of a
signalling mutant CheY**, which is constitutively active
[39], as shown in Figure 3C. The cellular concentration
of Y** varied as a result of induced expression in cells in
which wild-type CheY and other cytoplasmic chemotaxis
proteins had been deleted. To obtain the switching rates
in terms of CheY-P, rather than signalling mutant
CheY**, we rescaled the dissociation constants of CheY
binding to the motor such that the switching rates are
equal, i.e. CW bias about 1/2, at CheY-P concentration
3.2 μM [65]. We fitted the above model to the experi-
mental data in Figure 3C and the CW bias at 33° [39]
and used the rate constants k+ and k- in our full path-
way model (Eq. 17).

Characterisation of signal and noise propagation
Signal response
The mean, or deterministic response of a system to an
arbitrary, sufficiently small signal is described in terms
of a characteristic function of the system, the linear
response function cR. The time-dependent response ΔR
(t), i.e. the deviation from the adapted state due to a
small input signal Δc(t), is linear and determined by

�R(t) =
∫ t
−∞ χR(t − τ )�c(τ )dτ . (20)

Hence, the time course of the response is determined
by the convolution of the linear response function and
the input signal. The linear response function describes
the dynamics of the pathway and the convolution with
the input signal represents the fact that the current state
of the system is determined by the history of the input
signal [66]. Importantly, for a nonlinear system to

respond linearly to a stimulus, the input signal has to be
small. For the receptor complex activity, a signal is
small if the change in ligand concentration is small
compared to the apparent dissociation constants for the
on and off states. These dissociation constants depend
on the background concentration as the system adapts
to the background concentration c0, resulting in a parti-
cular free-energy difference F*. Thus, the concentration
change has to be small compared to c0 + Kon

a and

c0 + Koff
a . In this case, the change in free-energy differ-

ence due to the concentration change is much smaller
than kBT. In Figure 4, the background concentration c0
= 0 and the peak concentration of the impulse is 10-3

mM, compared to Kon
a = 0.5mM and Koff

a = 0.02mM.
Hence, the input signal is indeed small.
The Fourier transform of Eq. 20 reads more simply

�R̂(ω) = χ̂R(ω)�ĉ(ω). (21)

χ̂R(ω) is also called the frequency-dependent gain [12].
The modulus |χ̂R(ω)| describes what frequencies of the
input signal are transmitted well, and which ones are
attenuated.
Typically, finite activation rates of the system limit the

response to rapidly changing input signals, i.e. high-fre-
quency signals. In this case, the Fourier transformed lin-
ear response functions falls off at high-frequencies, and
the system is called a low-pass filter. If low-frequency
components of the input signal are filtered out rather
than high frequencies, the system is called a high-pass
filter. The chemotaxis pathway is a band-pass filter (see
Figure 2), filtering out low and high-frequency
components.
To obtain a succinct measure for the signalling

response due to an input concentration change Δc(t),
we define ΔR2 the integral of the response over fre-
quency

�R2 =
1
2π

∫ ∞
−∞ dω|χ̂R(ω)�ĉ(ω)|2. (22)

Noise
Fluctuations δR(t) around the mean value 〈R(t)〉 can be
characterised by their correlations at different time
points. The autocorrelation function K is defined as

K(τ ) = 〈δR(t)δR(t + τ )〉, (23)

i.e. the average value of the product of fluctuations at
two time points. It only depends on the interval between
time points if the dynamics of R(t) is stationary, i.e. the
mean value 〈R(t)〉 and variance 〈δR2(t)〉 do not vary with
time t. Averaging over different measurements of R(t) is
indicated by angular brackets. Typically, correlations
decay with the interval length τ between time points.
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Here, we use the power spectrum to characterise fluc-
tuations. According to the Wiener-Kinchin theorem the
power spectrum is the Fourier transform of the autocor-
relation function [67],

SR(ω) =
∫ ∞
−∞ K(t)eiωtdt. (24)

For exponentially decaying correlations as in Figure 2,
the power spectrum is Lorentzian, i.e. has the frequency
dependency

SR(ω) ∝ 1
ω2 + ω2

α

. (25)

The power spectrum can be calculated from the abso-
lute square of the Fourier transform of time series δR(t)
measured or simulated over a time interval T,

SR(ω) = lim
T→∞

〈δR̂(ω)δR̂∗(ω)〉
T

, (26)

where the Fourier transform is defined on the finite
measurement interval T and the average 〈·〉 is over mul-
tiple time series.
The variance of a stationary process can be calculated

as the integral of the power spectrum over frequency,

〈δR2〉 = 1
2π

∫ ∞
−∞ dω SR(ω). (27)

Noise sources
Determining the noise intensity
Here, we use the Langevin approximation to describe
fluctuations (noise) around average molecule numbers.
For instance, consider the following general stochastic
differential equation:

dR
dt

= r1 − r2 + η(t). (28)

The rates r1 and r2 typically depend on the concentra-
tions of proteins in the signalling network. The noise
term h(t) is composed of two terms h1(t) and h2(t),
which are associated with the rates r1 and r2, respec-
tively. We assume h1 and h2 to be independent, i.e. 〈h1

(t) h2(t’)〉 = 0. In general, this is justified as different
reactions are catalysed by different proteins. Using 〈hj(t)
hj(t’)〉 = Qjδ(t - t’), the noise intensities can be calculated
if we make the assumption that fluctuations are due to
so-called birth and death processes, i.e. creation and
destruction of the molecules with average rates r∗1 and
r∗2. Then the associated noise intensities are Q1 = r∗1 and
Q2 = r∗2[8]. The intensity of the total noise h(t) is the
sum Q = Q1 + Q2 due to the independence of the two
noises. As forward and backward rate are equal at

steady state, Q is twice the reaction rate in one direction
at steady-state.
Switching noise
The switching noise hA(t) in Eq. 1 is due to the switch-
ing of each receptor complex between on and off states.
We assume the switching to be a fast process, which
can be described by the following dynamics of the
receptor-complex on-bias a:

da
dt

= k1(N − a) − k2a + ηa(t). (29)

The noise term ha(t) is a Gaussian white noise with
zero mean and noise intensity Qa = 2k2A*, where we
used that the receptor complex activity A = 〈a〉 which is
equal to the (quasi) steady-state activity of a, and A =
A* when adapted. The power spectrum of a due to
switching between on and off states is

Sa(ω) =
Qa

ω2 + (k1 + k2)
2 , (30)

where k1 + k2 is the characteristic frequency of switch-
ing. Hence, the high-frequency component of fluctua-
tions δa(t) is reduced due to averaging by the finite
rates of switching. Hence, the power spectrum of activ-
ity fluctuations hA(t), which are due to fluctuations in
the rate of receptor complex switching da/dt, is

SηA(ω) = ω2Sa(ω). (31)

This result is due to the Fourier transform of the rate
of receptor complex switching da/dt yielding iωâ.
Hence, the power spectra of a and da/dt differ by a fac-
tor ω2 as the power spectrum is proportional to the
magnitude squared of the Fourier transform according
to Eq. 26.
Ligand noise
The number of ligand molecules in the vicinity of a
receptor complex fluctuates due to binding/unbinding,
and potential rebinding of previously bound ligand
molecules at this complex, as well as diffusion [57,68].
Here, we use a simplified description of diffusion to cal-
culate the spectrum of noise in the ligand dynamics hc

(t) in Eq. 2. Consider a volume whose dimensions are
given by the diameter of a receptor complex s =

√
NsR,

where sR = 1 nm is the size of a receptor dimer [69].
The change of ligand-molecule number L in this volume
is determined by the exchange rate kD ≈ D/(2s2) due to
diffusion [70]:

dL
dt

= kD(c0s3 − L) + ηL(t) (32)

where kDL is the rate of molecules moving out of the
volume by diffusion, and kD times the mean
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concentration c0 in solution serves as a proxy of the rate
of ligand molecules moving into the volume. The noise
term hL(t) is assumed to be Gaussian and white, with
zero mean and noise intensity QL = Dsc0.
The power spectra of the number L and concentration

c of molecules at receptor complex j are respectively

SL(ω) =
Dsc0

ω2 + k2D
, (33)

Sc(ω) =
SL(ω)
s6

, (34)

where s6 is the squared volume given by the dimen-
sion of the receptor complex. The zero-frequency limit
of the power spectrum of the ligand concentration Sc(0)
= c0/(Ds), which corresponds to calculations by Berg
and Purcell [71] and Bialek and Setayeshgar [57] for the
uncertainty in sensing ligand concentration.
The noise hc(t) in Eq. 2 is related to rate of change of

the ligand concentration, similar to the considerations
of the switching noise above. Hence, the power spec-
trum of the ligand fluctuations hc(t) is

Sηc(ω) = ω2Sc(ω). (35)

Methylation noise
The size of fluctuations in the rate of methylation of a
receptor complex j in Eq. 3 is estimated from the aver-
age rates of methylation and demethylation at the
adapted state, respectively. The noise hM (t) is assumed
to be Gaussian and white, with zero mean, noise inten-
sity QM = 2gR(N - A*) and power spectrum

SηM(ω) = QM. (36)

Motor switching noise
The noise in motor switching rate in Eq. 4 is assumed
to be a Gaussian white noise term with zero mean,
noise intensity QX = 2k+(A∗

c )(1 − P∗
CW) and power spec-

trum

SηX(ω) = QX. (37)

Calculation of response functions
After linearising around the steady state and inserting
the Fourier transforms we obtain for the simplified
model

−iω�Â = −iω
∂A
∂M

�M̂ − iω
∂A
∂c

�ĉ (38)

−iω�M̂ = −ω1�Â (39)

−iω�P̂CW = ω2�Âc − ωX�P̂CW , (40)

where

ω1 = γR + 3γBA∗2 = γR(3 − 2A∗
r )/A

∗
r (41)

with A∗ = N · A∗
r ≈ N/3[72] the adapted activity of a

receptor complex, A∗
r denoting the adapted activity of

individual receptors. In the second equality we have
used that at the adapted state γR(N − A∗) = γBA∗3. The
parameter ω2 = (1 − P∗

CW) ∂k+
∂Ac

− P∗
CW

∂k−
∂Ac

is the deriva-

tive of the motor switching rates with respect to activ-
ity, and ωX = k+* + k-* is a characteristic frequency
due to motor switching at steady state. ΔA is the
response of every receptor signalling complex, and ΔAc

= NCΔA is the activity response of all receptor com-
plexes in a cell. Solving for �Âc and �P̂CW, and divi-
sion by the stimulus �ĉ yields the response functions
in Eq. 5 and 6.

Calculation of noise power spectra
To calculate spectra, we linearise the deterministic parts
of Eq. 1-4 similar to the calculation of the response
functions, and formally Fourier transform the equations.
We obtain

−iωδÂc = −iω
∂A
∂M

∑
j

δM̂j +
∂A
∂c

∑
j

η̂cj+

+
∑
j

η̂Aj

(42)

−iωδM̂j = −ω1δÂj + η̂Mj
(43)

−iωδP̂CW = ω2δÂc − ωXδP̂CW + η̂X. (44)

We solve for the Fourier transformed activity fluctua-
tions δÂc and obtain

δÂc =

∂A
∂M

∑
j η̂Mj +

∂A
∂c

∑
j ηcj +

∑
j η̂Aj

ωM − iω
, (45)

which yields the power spectrum in Eq. 8. The para-
meter ωM = ω1∂A/∂M, and we used Eq. 31 and 35.
From Eq. 44 we obtain for the Fourier transformed fluc-
tuations in the motor bias δP̂CW

δP̂CW =
ω2δÂc + η̂X

ωX − iω
, (46)

and their power spectrum is given by Eq. 9.
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Integrated signal response, variance and SNR
Optimal receptor complex size
The integrated response of the receptor activity to a step
stimulus is

�A2
c =

∫ ∞

−∞
dω|χ̂Ac(ω)�ĉ(ω)|2

=
πN2

C

(
∂A
∂c

)2
(αc)2

ωM
,

(47)

where we inserted Eq. 5. Hence, the activity response

scales as �A2
c ∝ (

Ntot/N
)2(

N2
)2
/N ∝ N, where we used

that NC = Ntot/N with Ntot the total number of receptors
in a cell.
The variance of the receptor activity is given by the

integral of the power spectrum of activity fluctuations
Eq. 8

〈δA2
c 〉 =

NC

2π

∫ τ−1

−τ−1
dω

ω2
[
Sa(ω) +

(
∂A
∂c

)2
Sc(ω)

]
ω2 + ω2

M

+
NC

2π

∫ τ−1

−τ−1
dω

(
∂A
∂M

)2
QM

ω2 + ω2
M

,

(48)

where we consider the frequency range relevant for
motor switching indicated by τ-1 ≈ 0.1 ... 1 Hz. The con-
tribution from receptor switching is

〈δA2
c 〉a =

NC

2π

∫ τ−1

−τ−1 dω
ω2Sa(ω)

ω2 + ω2
M

≈ 2k2A∗
r Ntot

πτ (k1 + k2)
2 (49)

where we used Qa and inserted Eq. 30 for the power
spectrum of receptor switching noise and used that it is
almost constant and equal to its zero-frequency value
over the integration range. Furthermore, the factor
ω2/(ω2 + ω2

M) ≈ 1 and A∗
r = A∗/N is the adapted activity

of an individual receptor. Hence, according to this sim-
ple calculation the contribution to the variance from
receptor switching is roughly constant with receptor
complex size.
The contribution from ligand diffusion is

〈δA2
c 〉c =

NC

2π

∫ τ−1

−τ−1
dω

ω2
(

∂A
∂c

)2
Sc(ω)

ω2 + ω2
M

≈ NC

(
∂A
∂c

)2

〈δc2〉,
(50)

where 〈δc2〉 = c0/(Dsτ) is the variance of the ligand
concentration measured during the time interval τ. We
used Eq. 34 and the same argument as for the switching
noise to calculate the integral. Hence, the contribution
to the variance from the ligand diffusion grows as
〈δA2

c 〉c ∝ N5/2 as a result of incoherent addition of noise
from different receptor complexes, the sensitivity ∂A/∂c

increasing as N2, and the size dependence of receptor
complexes s ∝ N1/2.
The contribution to the variance from receptor

methylation is

〈δA2
c 〉M =

NC

2π

(
∂A
∂M

)2 ∫ τ−1

−τ−1
dω

QM

ω2 +
(
ω1

∂A
∂M

)2
≈ 2NtotγR(1 − A∗

r )A
∗
r

ω1

∂A
∂M

(51)

where we defined ω1 = γR + 3γBN2(A∗
r )

2, inserted
QM = 2γRN(1 − A∗

r ) and ωM = ω1(∂A/∂M). Hence,
〈δA2

c 〉M grows approximately linearly with receptor com-
plex size.
The SNR grows linearly with N for small complex

sizes, and decreases as N-2 for larger complex sizes,
resulting in an optimal medium receptor complex size,
in qualitative agreement with Figure 6.
Optimal adaptation rates
The integrated signal response of the receptor activity
Eq. 47

�A2
c =

πN2
C

(
∂A
∂c

)2
(αc)2

ω1
∂A
∂M

, (52)

where the numerator expresses the initial response of
receptors of concentration changes and the denominator
the filtering by adaptation. The sensitivity
∂A/∂c = NA∗

r (1 − A∗
r )h(c), where h(c) = ∂F/∂c,

ω1 = γR + 3γBN2(A∗
r )

2, and ∂A/∂M = NA∗
r (1 − A∗

r )/2.
The adapted activity can be obtained analytically for our
simplified model from the steady state of the methyla-
tion dynamics Eq. 3,

Ar
∗ =

3

√
1
2

β +

√
β2

4
+

β3

27
− β

3
3

√
1
2β +

√
β2

4 + β3

27

, (53)

and is only a function of the ratio b = gR/gB. Expand-
ing the adapted activity around A∗

r = 0 (for gR ® 0)

yields A∗
r ∝ γ

1/3
R

, and around A∗
r = 1 (for gB ® 0) yields

A∗
r ∝ γB. Similarly, ω1 ∝ γ

2/3
R (const. + γ

4/3
B ). Hence,

∂A/∂c ∝ γ
1/3
R (γB) and ω1∂A/∂M ∝ γ

4/3
R (γB).

The initial response to concentration changes decreases
slower than adaptation times, resulting in an increased sig-
nal response for vanishing gR. For vanishing gB, the initial
response to concentration changes decreases faster than
adaptation speed, hence yielding a vanishing signal
response. The overall dependence of the integrated signal

response is �A2
c ∝ γ

−1/3
R (γB) for gR ® 0(gB ® 0). For the

contributions to the variance of the receptor activity from
receptor switching, ligand diffusion and receptor
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methylation dynamics we obtain 〈δA2
c 〉a ∝ γ

1/3
R (γB),

〈δA2
c 〉M ∝ γR(γ

2/3
B )and 〈δA2

c 〉M ∝ γR(γ
2/3
B ), respectively.

Hence, according to our simplified model the SNR of the

receptor activity goes as SNR ∝ γ
−2/3
R (γ 4/3

B ), in qualitative

agreement with Figure 7.

Numerical integration of different equations of the full
model
Only the full pathway model without noise was solved
numerically (cf. Figure 4). We used an Euler method to
integrate the differential equations 13-17 without noise.
As concentration input signal we used a triangular
impulse of duration 0.02 s, c0 = 0 and peak concentra-
tion 10-3 mM. The integration time step was Δt = 10-3,
maximum integration time was 100 s. In each integra-
tion step, first the receptor complex activity was calcu-
lated according to Eq. 11 based on the current ligand
concentration and receptor methylation level from the
previous iteration. All other variables x were updated in
each time step i according to xi+1 = xi + Δt · rate, where
rate is given by the r.h.s. of the differential equations for
the respective variable.

Parameters
Rate constants and total cell concentrations of proteins
for the full pathway model are given in Table 1. The
noise terms ηAj, ηcj, ηMj and hX are the same as in Eq. 24
and 27-29 and their power spectra are given there. The
noise associated with phosphorylation and dephosphory-
lation ηAp, ηA,Bp, ηA,Yp, η−Bp and η−Yp are assumed to be
Gaussian white noise terms with zero mean and auto-
correlations 〈hi(t)hi(t’)〉 = Qiδ(t - t’) with noise intensities

Table 1 Parameters of the full pathway model, including
references to literature

Parameter Value Reference

[A]tot 5 μM [73]

[B]tot 0.28 μM [49]

[R]tot 0.16 μM [49]

[Y]tot 9.7 μM [49]

Vcell 1.4 fl [73]

NA,tot 4215 calculated from above

NB,tot 236 calculated from above

NR,tot 135 calculated from above

NY,tot 8177 calculated from above

NA,tot = NNC 7027 [49,73]

k2 103 s-1 [74]

kA 103 s-1 [75]

ky 100 μM-1 s-1 [76]

kB 15 μM-1 s-1 [76]

k-Y 5 s-1 adjusted to yield steady-state value

k-B 1.35 s-1 (0.35 s-1) [77,78]

gR 0.0061 s-1 [47]

gB 3.14 μM-2 s-1 [47]

The literature values are given in parentheses where different from our
parameter values. k-Y was determined by the condition that at steady-state
with A∗

R = 1/3, the concentration [Yp]* = [Y]tot/3[73].

Table 2 Intensities of Gaussian white noise terms in the
full pathway model

process index i noise intensity Qi

receptor switching a 2k2A*

ligand diffusion L 2Dsc0
receptor de/methylation M 2gR(N - A*)

CheA autophosphorylation Ap A∗
c

(
kA

NCN

)
(NA,tot − N∗

Ap
)

CheY phosphorylation A, Yp
(

ky
Vcell

)
(NY ,tot − N∗

Yp)N
∗
Ap

CheB phosphorylation A, Bp

(
kb
Vcell

)
(NB,tot − N∗

Bp
)N∗

Ap

CheY dephosphorylation -Yp k−yN∗
Yp

CheB dephosphorylation -Bp k−bN∗
Bp

motor switching X
2k∗

+k
∗
−

k∗
++k

∗−

Index i represents noise term hi.

Table 3 Fitting parameters for response function of the
full pathway model for Fig. 3

Parameter Block et al., Segall et al.
[26,27][s-1]

Shimizu et al. [28]

32°C
[s-1]

22°C
[s-1]

adaptation:

l1(∂A=∂M ) 0.178 0.018 0.0039

l9 0.0263 0.0027 5.6 10-4

motor switching:

l7 4.4 10-4 - -

l8 2.111 - -

Motor switching rates where not adjusted when fitting to the data by Shimizu
et al. [28] as the high-frequency response was not measured in these
experiments.

Table 4 Parameters for cell-to-cell variation in Fig. 5A

Parameter WT1 (black line) red line green line blue line

k∗
+[s

−1] 1.05 52.4 1.05 1.05

k∗
−[s

−1] 1.06 53.0 1.06 1.06

gR [s-1] 0.0061 0.0061 6.1 10-5 0.0061

gB [μM-2 s-1] 3.14 3.14 3.14 10-2 3.14

Ntot 7000 7000 7000 70

For additional parameters see Table 1.
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Qi given in Table 2. Fitting parameters of the Fourier
transformed response function Figure 3 are listed in
Table 3. Parameters for Figure 5 are listed in Tables 4
and 5, and those for Figure 8 are listed in Table 6.

Additional material

Additional file 1: Supplementary information. Supplementary
information in .pdf format, including the extended model for the
chemotaxis pathway, additional mathematical derivations and validity
checks.
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