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Abstract

Aspherical neighborhoods on arithmetic surfaces

On arithmetic surfaces over local or global rings of integers this thesis exam-
ines whether a geometric point has a basis of étale neighborhoods which are
Kpπ, 1q with respect to a full class of finite groups c. These neighborhoods
are also called aspherical neighborhoods. In this thesis we will consider only
classes of finite groups c such that the order of all groups in c is prime to
the residue characteristics of the arithmetic surface in question. In the local
case we construct a basis of Kpπ, 1q-neighborhoods for any geometric point
of a normal (but not necessarily regular) arithmetic surface. In the global
case the existence of such bases of neighborhoods is proven under additional
regularity assumptions and a condition on the l-division points of the Jaco-
bian of the generic fibre. Moreover, we assume in the global case case that c
is the class of finite l-groups for a prime number l that is invertible on the
arithmetic surface.

Asphärische Umgebungen auf arithmetischen Flächen

Die vorliegende Arbeit beschäftigt sich mit der Existenz asphärischer étaler
Umgebungsbasen auf arithmetischen Flächen, auchKpπ, 1q-Umgebungsbasen
genannt. Genauer wird die Kpπ, 1q-Eigenschaft bezüglich einer vollen Klasse
endlicher Gruppen c untersucht, wobei die Ordnung aller Gruppen in c teiler-
fremd zu den Restklassencharakteristiken der jeweiligen arithmetischen Flä-
che ist. Das Basisschema der hier behandelten arithmetischen Flächen ist
dabei stets ein lokaler oder globaler Zahlring. Im lokalen Fall wird für alle
normalen (aber nicht notwendigerweise regulären) arithmetischen Flächen
eine Kpπ, 1q-Umgebungsbasis konstruiert. Für den globalen Fall sind zusät-
zliche Reguläritätsannahmen und eine Bedingung an die l-Teilungspunkte der
Jacobischen der generischen Faser notwendig. Außerdem beschränkt sich die
Untersuchung auf die Klasse cplq der endlichen l-Gruppen für eine auf der
arithmetischen Fläche invertierbare Primzahl l.
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Chapter 1

Introduction

A classical result in topology states that every CW-complex is locally contractible. In other
words, for every point x in a CW-complex X we find an open neighborhood U of x such that the
inclusion txu ãÑ U is a homotopy equivalence. In the category of CW-complexes this is equivalent
to saying that the induced maps of homotopy groups with base point x are isomorphisms, i. e.,
that txu ãÑ U is a weak homotopy equivalence. Since the homotopy groups of a point are trivial,
this amounts to saying that every point of X has a neighborhood with trivial homotopy groups.
As a consequence, we can cover X by contractible open subsets. The topological properties of X
are then completely encoded in the way these open subsets are patched together to form X.

We would like to have a similar result in étale homotopy theory. Let us sketch shortly what
étale homotopy theory is about. In [Fri II] it is explained how to functorially assign to a locally
noetherian scheme X with geometric point x̄ a pointed pro-CW-complex, the étale topological
type. Strictly speaking the étale topological type is not a pro-CW-complex but a pro-simplicial
set. After geometric realization, however, we can view it as pro-CW-complex. Its image in the
pro-homotopy category of CW-complexes is denoted Xét and is called étale homotopy type of X.
It was already constructed in [AM]. To the pro-CW-complex Xét we can associate its homotopy
pro-groups πnpXétq. In [SGA3], Exp. X, §6 there is already defined a first homotopy pro-group
for X, the "pro-groupe fondamentale enlargi" π1pX, x̄q. In order for étale homotopy theory to be
useful, the first homotopy group of the étale homotopy type Xét should be related to π1pX, x̄q.
And indeed, by [AM], Corollary 10.7 we have π1pXétq – π1pX, x̄q. It thus makes sense to define
the étale homotopy pro-groups of X as

πnpX, x̄q :“ πnpXétq.

If X is connected, geometrically unibranch, and noetherian, the étale homotopy pro-groups are
profinite (see [AM], Theorem 11.1) and thus can be interpreted as topological groups. In this
case the first homotopy group coincides with the fundamental group defined in [SGA1]. Further-
more, étale homotopy theory is compatible with étale cohomology in the following sense: Via
the isomorphism π1pXétq – π1pX, x̄q the locally constant étale sheaves on X are in one-to-one
correspondence with the local systems on Xét. If A is a locally constant sheaf on X and A its
corresponding local system on Xét, we have

HnpX,Aq – HnpXét, Aq

by [AM], Corollary 10.8.

Let us return to the problem of local contractibility. The étale homotopy type Xét is in general
not a CW-complex but a pro-CW-complex. In the category of pro-CW-complexes there is a
priori no canonical notion of homotopy equivalence. Yet, we can still speak of a weak homotopy
equivalence by saying that it induces isomorphisms on homotopy pro-groups. Following [AM],
we will write 7-isomorphism instead of weak homotopy equivalence. In general, we cannot expect
to find étale neighborhoods of a geometric point x̄ in X such that all homotopy pro-groups
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are trivial. This might not even be the case if X is a point, i. e., the spectrum of a field K.
If K is not separably closed, its absolute Galois group GK “ GalpKsep |Kq is nontrivial and the
fundamental group π1pSpec K, Spec K

sepq coincides with GK . The higher homotopy pro-groups
of the spectrum of a field, however, are always trivial. This is a consequence of the following
criterion, which is a corollary of [AM], Theorem 4.3 (see Corollary 2.5):

Let X be a locally noetherian scheme and x̄ a geometric point of X. Then the homotopy pro-
groups πnpX, x̄q vanish for n ě 2 if and only if

lim
ÝÑ
X1ÑX

HnpX 1,Aq “ 0 (1.1)

for all locally constant sheaves A and all integers n ě 1. The limit runs over the finite étale
coverings X 1 Ñ X.

When this criterion is satisfied, we say that X is Kpπ, 1q, i. e., Xét is a "pro-Eilenberg MacLane
space". In topology these spaces are also called aspherical (which accounts for the title of this
thesis). In case X is the spectrum of a field K, the criterion is satisfied as the étale cohomology
of X coincides with the group cohomology of the absolute Galois group of K and for group
cohomology the equality (1.1) always holds. In fact, the contrary is also true: If (1.1) is satis-
fied, the étale cohomology of X coincides with the group cohomology of its fundamental group.
The Kpπ, 1q-schemes are the analogues of contractible CW-complexes in the sense that they have
the homotopy type of a point in algebraic geometry, i. e., of the spectrum of a field.

We will need a slightly more specialized notion of Kpπ, 1q-spaces. In some situations, it is favor-
able not to examine all coverings of X but only the c-coverings for a full class of finite groups c.
There is a notion of c-completion for the category of pro-CW-spaces, which is universal in the
property that all homotopy pro-groups are pro-c-groups. Denoting by Xétpcq the c-completion
of the étale homotopy type Xét, we have π1pXétpcqq “ π1pX, x̄qpcq, i. e., formation of the funda-
mental group commutes with c-completion. However, this is not the case for higher homotopy
pro-groups, which boils down to the fact that in general c-completion of groups is not an ex-
act functor. We say that X is Kpπ, 1q with respect to c if only the first homotopy pro-group
of Xétpcq is nontrivial. We have a cohomological criterion analogous to (1.1), where we take the
limit only over the pro-c-coverings of X and require A to be contained in c and moreover to be
a π1pX, x̄qpcq-module (instead of only a π1pX, x̄q-module). This thesis is concerned with finding
systems of étale neighborhoods on a scheme which are Kpπ, 1q with respect to a full class of finite
groups c.

In case X is a smooth variety over C, neighborhoods of this kind were used by Artin in [SGA4] in
order to compare the étale cohomology of X with the classical cohomology of XpCq. The Kpπ, 1q-
neighborhoods of X are constructed by locally writing X as successive fibrations by affine curves
(see [SGA4], Exp. XI, §3) and restricting these fibrations to the locus where they are particularly
well behaved. These well behaved fibrations are called elementary fibrations. The fact that the
resulting neighborhoods are Kpπ, 1q can then be drawn from the long exact homotopy sequence
associated with an elementary fibration.

The scenario where X is a smooth variety over an algebraically closed field of positive character-
istic and c is the class of finite p-groups with p prime to the characteristic of X was treated by
Friedlander in [Fri I]. He also uses elementary fibrations and the homotopy sequence associated
with these fibrations. The major problem he has to deal with is non-exactness of c-completions
for a full class of finite groups c. If c is the class of finite p-groups, he can prove that under
certain conditions c-completion is indeed exact by using special features of p-groups. The diffi-
culties with c-completions are the reason for the restriction to the case where c is the class of
finite p-groups.

In the arithmetic setting Schmidt constructed in [Sch II] systems of Zariski neighborhoods of a
point x in the spectrum of the ring of integers of a number field, which are Kpπ, 1q with respect
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to a given prime number p. Notably, p does not need to be prime to the residue characteristic
of x.

The aim of this thesis is to obtain similar results for higher dimensional arithmetic schemes, i. e.,
for schemes which are flat and of finite type over the ring of integers of a local or global number
field. One would expect that the existence of Kpπ, 1q neighborhoods on an arithmetic scheme X
does not depend on the smoothness of X over a base scheme, which is a relative notion. It rather
seems more natural to have Kpπ, 1q-neighborhoods as soon as X is regular. The methods at our
hands, however, are all relative. Up to now there is no general way to compute cohomology groups
of higher dimensional schemes without using in some manner a fibration into curves. We explain
in Chapter 3 that even if X is smooth over the base scheme, we cannot expect to work only with
smooth fibrations into curves. This makes it impossible to use Friedlander’s results about the
homotopy fibres, where smoothness plays a prominent role in order to relate the geometric fibres
with the homotopy theoretic fibre. Instead, we are forced to work directly with the cohomological
criterion (1.1).

This thesis treats the case where the dimension of X is two and the orders of the groups in c are
prime to the residue characteristics of X. First results in this direction were already obtained by
to Baben in his dissertation (see [tB]). The present thesis is partly based on his ideas.

In the context of arithmetic surfaces there is no need to construct a fibration into curves. The
surface X already comes with a fibration X Ñ B, where the base scheme B is the spectrum of the
ring of integers of a local or global number field. Now, the interesting case is when the geometric
point x̄ we want to find a Kpπ, 1q neighborhood for maps to a singular fibre of X Ñ B. In
general, for an étale neighborhood U of x̄ we do not have a base change theorem for the structure
map U Ñ B. It is thus favorable to embed U in an arithmetic surface Ū over B where base change
holds, e. g. for Ū{B proper. Using resolution of singularities, which is known for two-dimensional
excellent curves, one can achieve that the complement of U in Ū is a particularly nice Cartier
divisor D.

According to the criterion (1.1) for every étale c-covering U 1 Ñ U and every cohomology class φ P
HnpU 1,Aq there has to be found a c-covering U2 Ñ U 1 such that φ maps to zero in HnpU2,Aq.
Unfortunately, the normalization of Ū in U 1 is not as well behaved as Ū itself. But the singularities
arising with such a c-covering are not too complicated. Chapter 4 shows that these singularities
are rational, i. e., that the exceptional fibres of a resolution of the singularities are rational curves.
More precisely, there is a desingularization such that the exceptional fibres are chains of P1’s.

In order to relate the cohomology groups of U with those of Ū , we can use the excision sequence

. . .Ñ HnpŪ ,Aq Ñ HnpU,Aq Ñ Hn`1
D pŪ ,Aq Ñ . . . .

In Chapter 5 the cohomology groups with support in D are calculated using Gabber’s absolute
purity theorem (see [Fuj]). Since in general D is not regular, this has to be done in several steps.
Here, among others, the rationality of the singularities arising with a c-covering of Ū comes into
play in order to prove that H3

DpŪ ,Aq vanishes in the limit over all c-coverings.

The next chapter (Chapter 6) treats the cohomology groups HnpŪ ,Aq. Via the Leray spectral
sequence for π : Ū Ñ B, the vanishing in the limit over all c-coverings of HnpŪ ,Aq is put down
to the vanishing of HppB,Rqπ˚Aq in the limit. As mentioned before, Ū is chosen such that there
is a base change theorem for the structure map π : Ū Ñ B. This makes it easier to treat the
cohomology groups HppB,Rqπ˚Aq. In the local case (i. e., where B is the spectrum of the ring
of integers of a local field) the only problematical group is H0pB,R2π˚Aq. It is closely related
with the cokernel of the intersection matrix of the singular fibres of π : Ū Ñ B. In the global
case (i. e., where B is the spectrum of the ring of integers of a global number field) additional
difficulties arise in the treatment of H1pB,R1π˚Aq. Here, the Jacobian of the generic fibre of π
enters and we run into the same problems with c-completion as Friedlander in [Fri I]. This is the
reason why we assume in the global case that c is the class of finite l-groups for a prime l different
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from the residue characteristic of x̄. Furthermore, also in the treatment of H1pB,R1π˚Aq the
cokernel of the intersection matrix plays a prominent role.

The vanishing in the limit of Hn`1
D pŪ ,Aq and HppB,Rqπ˚Aq treated in Chapters 5 and 6,

respectively, is subject to certain conditions on Ū . In Chapter 7 it is explained how to construct U
and Ū in order for these conditions to be satisfied. Moreover, it is proven that these conditions
are stable under c-coverings of U .

Finally, the results of the preceding chapters are collected in chapter 8 in order to prove the main
theorems of this thesis. They read as follows:

Theorem 1.1: Let Y {B be an arithmetic surface of local type and ȳ Ñ Y a geometric point.
Let c be a full class of finite groups such that the residue characteristic of B is not contained
in Npcq and for all but finitely many primes l P Npcq the extension Brµls Ñ B is a c-extension.
Then Y has a basis of étale neighborhoods at ȳ which are Kpπ, 1q with respect to c.

Theorem 1.2: Let Y {B be a regular arithmetic surface of global type and x̄ Ñ Y a geometric
point lying over a closed point x P Y mapping to b P B. We assume that x is contained in the
regular locus of pYbqred . Let l be a prime number different from the residue characteristic of x.
Let X0 denote the completion of the generic fibre Yη of Y Ñ B. Suppose that the action of the
inertia group at b̄ on the l-division points of the Jacobian of X0 factors through an l-primary
quotient. Then Y has a basis of étale neighborhoods at x̄ which are Kpπ, 1q with respect to l.
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Chapter 2

Setup and Notation

2.1 The Kpπ, 1q-property

Definition 2.1: A full class of finite groups is a full subcategory c of the category of finite groups
satisfying

(i) t1u P c

(ii) Any subgroup of a c-group is in c. Moreover, if

0 Ñ AÑ B Ñ C Ñ 0

is an exact sequence of groups, then B is a c-group if and only if A and C are.

In this thesis c will be either the full class of finite l-groups for a prime number l or the slightly
more general class cpl1, . . . , lnq for prime numbers l1, . . . , ln. It is defined as the class of all finite
groups G whose order is of the form

#G “ lr11 ¨ . . . ¨ l
rn
n

for non-negative integers r1, . . . , rn.

For a full class c of finite groups we define

Npcq :“ tn P N | DG P c with #G “ nu.

By property (ii) of the definition above Npcq is a monoid. If c is the class of finite p-groups, Npcq
consists of all powers of p and if c is the class cpl1, . . . , lnq for prime numbers l1, . . . , ln, Npcq
consists of all products of the form

#G “ lr11 ¨ . . . ¨ l
rn
n

for non-negative integers r1, . . . , rn.

In [AM] to a connected, locally noetherian scheme X with geometric point x̄ there is associ-
ated a connected, pointed pro-CW-complex Xet, the étale homotopy type, such that topolog-
ical coverings of Xet correspond to étale coverings of X. More precisely, Xét is a pro-object
of the homotopy category of pointed, connected CW-complexes. For Xét we consider the ho-
motopy pro-groups πnpXétq and for an abelian group A with a π1pXétq-action the cohomology
groups HnpXét, Aq. The first homotopy pro-group of Xét, π1pXétq, coincides with the "pro-
groupe fondamentale enlargi" defined in [SGA3], Exp. X, §6 (see [AM], Corollary 10.7). If X is
geometrically unibranch (e. g. normal), π1pXétq is profinite and coincides with the usual funda-
mental group defined in [SGA1], Exp. V. Moreover, for an abelian group A with a π1pXétq-action
the cohomology groups HnpXét, Aq coincide with the étale cohomology groups HnpX,Aq.
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For a full class of finite groups c a Galois c-covering of X is a Galois covering with Galois group
in c and analogously for Xet. A c-covering is a covering which is dominated by a Galois c-
covering. The étale coverings of X constitute a Galois category by [SGA1], Exp. V, §7. By
applying the following lemma to the fundamental group of X, we conclude that the same holds
for the c-coverings of X.

Lemma 2.2: Let G be a profinite group

(i) Let H1 and H2 be normal subgroups of G such that for i “ 1, 2 the quotient G{Hi is contained
in c. Then G{pH1 XH2q P c.

(ii) Let H1 be a normal subgroup of G such that G{H1 P c and H2 a normal subgroup of H1

such that H1{H2 P c. Let H denote the maximal subgroup of H2 which is normal in G.
Then G{H P c.

Proof: The first assertion follows from the exact sequence

1 Ñ H1H2{H1 Ñ G{pH1H2q Ñ G{H2 Ñ 1.

For the second assertion it suffices to prove that H1{H P c as G{H1 P c. Note that H is
the intersection of all groups gH2g

´1, where g P G runs through a system of representatives
of G{H1. Furthermore, the groups gH2g

´1 are normal in H1 and thus the result follows from
assertion (i).

The first statement of the lemma implies that the compositum of two c-coverings is again a
c-covering and the second one that the composition of two c-coverings is again a c-covering.

Let n be a positive integer and G a pro-group, which is assumed abelian if n ą 1. There
exists a pointed, connected pro-CW-complex whose nth homotopy pro-group is isomorphic to G
and whose remaining homotopy pro-groups vanish. It is unique up to a 7-isomorphism and
called Eilenberg MacLane space of type KpG,nq. In case G is a group (not just a pro-group),
Eilenberg MacLane spaces exist in the category of CW-complexes (see [EM]). The existence
of KpG,nq in the category of pro-CW-complexes for a pro-group G follows by taking inverse
systems of KpḠ, nq-spaces, where G is represented by an inverse system of groups Ḡ. By abuse
of notation we just write KpG,nq for any such pro-space and view it as an object of the category
of pointed, connected pro-CW-complexes. For any pointed, connected pro-CW-complex Z there
is a canonical morphism (up to homotopy)

Z Ñ Kpπ1pZq, 1q.

For a pointed, connected pro-CW-complex Z we denote by Zpcq the pro-c-completion of Z (which
exists by [AM] Theorem 3.4). There is a natural isomorphism

π1pZqpcq
„
Ñ π1pZpcqq

but the higher homotopy groups of Zpcq are not necessarily isomorphic to the c-completion of
the respective homotopy pro-groups of Z. Following [AM], in the category of pointed, connected
pro-CW-complexes a morphism X Ñ Y is said to be a 7-isomorphism if it induces isomorphisms
on all homotopy pro-groups.

Definition 2.3: Let c be a full class of finite groups and X a locally noetherian scheme with
geometric point x̄. We say that X is Kpπ, 1q with respect to c if the canonical morphism

Xetpcq Ñ Kpπ1pX, x̄qpcq, 1q

is a 7-isomorphism.
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The key method we will apply for examining the Kpπ, 1q property is provided by Theorem 4.3
in [AM]:

Proposition 2.4: Let c be a full class of finite groups and f : Z Ñ W a morphism of pro-CW-
complexes. The following assertions are equivalent:

(i) fpcq : Zpcq ÑW pcq is a 7-isomorphism.

(ii) π1pZqpcq
„
Ñ π1pW qpcq, and for every c-twisted coefficient group M P c,

HipW,Mq
„
Ñ HipZ,Mq @i ě 0.

(iii) π1pZqpcq
„
Ñ π1pW qpcq, and for every induced map Z 1 Ñ W 1 of corresponding c-covering

spaces, and every (untwisted) abelian M P c,

HipW 1,Mq
„
Ñ HipZ 1,Mq @i ě 0.

We want to apply this proposition to our situation where f is the classifying map (see [EM])

Xetpcq Ñ Kpπ1pX, x̄qpcq, 1q.

For a full class c of finite groups and a locally noetherian scheme X we denote by X̃pcq the
universal c-covering ofX. Then we have the following characterization of schemes of typeKpπ, 1q.

Corollary 2.5: Let c be a full class of finite groups and X a locally noetherian scheme. The
following assertions are equivalent:

(i) X is Kpπ, 1q with respect to c.

(ii) HipX̃pcq,Λq “ 0 for all i ě 1 and all Λ “ Z{lZ for a prime l P Npcq.

(iii) Let i ě 1 and Λ “ Z{lZ with l P Npcq. Then, for every c-covering X 1 Ñ X and every
class φ P HipX 1,Λq there is a c-covering X2 Ñ X 1 such that φ maps to zero under

HipX 1,Λq Ñ HipX2,Λq.

Proof: We first prove the equivalence of (ii) and (iii). Let Λ “ Z{lZ with l P Npcq. We have

HipX̃pcq,Λq – lim
ÝÑ
X1ÑX

HipX 1,Λq,

where the limit runs over all c-coverings X 1 Ñ X. Assertion (ii) is thus equivalent to the
following statement: For any c-covering X 1 Ñ X and every class φ P HipX 1,Λq there is a c-
covering X2 Ñ X which dominates X 1 Ñ X such that φ maps to zero under

HipX 1,Λq Ñ HipX2,Λq.

Let

X2 X 1

X

be a commutative diagram of pointed, connected locally noetherian schemes such that all mor-
phisms are étale and X 1 Ñ X is a c-covering. Then, as a consequence of the c-coverings consti-
tuting a Galois category, X2 Ñ X 1 is a c-covering if and only if X2 Ñ X is. This proves the
equivalence of (ii) and (iii).
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Let us show that (ii) implies (i). Since every M P c has a decomposition series into simple c-
groups, i. e., groups of the form Z{lZ, we may assume that for all abelian c-groupsM and all q ě 1
we have

HqpX̃pcq,Mq “ 0.

Therefore, for every c-twisted abelian M P c the Hochschild-Serre spectral sequence

Hipπ1pX, x̄qpcq, H
jpX̃pcq,Mqq ñ Hi`jpX,Mq

degenerates implying that the edge homomorphisms

Hipπ1pX, x̄qpcq,Mq Ñ HipX,Mq

are isomorphisms for all i. But these edge homomorphisms coincide with the homomorphisms in
cohomology induced by the classifying map Xetpcq Ñ Kpπ1pX, x̄qpcq, 1q. Moreover,

π1pKpπ1pX, x̄qpcq, 1qqpcq “ π1pX, x̄qpcq

and thus, by the equivalence of (i) and (ii) in Proposition 2.4, X is Kpπ, 1q with respect to c.

Finally, assume that X is Kpπ, 1q with respect to c. Let Λ equal Z{lZ for l P Npcq and j ě 1. By
the equivalence of (i) and (iii) in proposition 2.4 we have an isomorphism

lim
ÝÑ
X1ÑX

HjpX 1,Λq – lim
ÝÑ
X1ÑX

H1pπ1pX
1, x̄qpcq,Λq.

The right hand side is the limit over all open subgroups of π1pX, x̄qpcq with transition maps the
restrictions in group cohomology. But for any profinite group G and G-module Λ the limit over
all open subgroups H,

lim
ÝÑ
HĎG

HjpH,Λq

vanishes for all j ě 1. We conclude that

HjpX̃pcq,Λq “ 0.

2.2 Arithmetic Surfaces

Definition 2.6: A Dedekind scheme is an excellent, connected, normal, noetherian scheme B of
dimension less or equal to 1. We say that a Dedekind scheme B is a local Dedekind scheme if it is
the spectrum of a complete discrete valuation ring with finite residue field and a global Dedekind
scheme if B is flat and of finite type over Z or P1

Fp for some prime number p.

A local Dedekind scheme has two points: the generic point η and the special point s. Its fraction
field is a local field. The fraction field of a global Dedekind scheme is a global field, i. e., either a
number field or a function field.

Definition 2.7: By an arithmetic scheme we mean an irreducible normal scheme X which is
flat and of finite type over a Dedekind scheme B such that the generic fibre is nonsingular and
geometrically connected. If the dimension of X is two and the dimension of B is one, we speak
of an arithmetic surface. We say that X is of local type if B is a local Dedekind scheme and of
global type if B is global.
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Note that if X is an arithmetic surface of local type, it need not be a local scheme.

In this thesis we want to find for each geometric point of a given arithmetic surface X{B a basis
of étale neighborhoods with the Kpπ, 1q-property. Here, an étale neighborhood of a geometric
point x̄Ñ X is an étale morphism of geometrically pointed arithmetic surfaces, i. e., an arithmetic
surface X 1, étale over X together with a geometric point x̄1 which maps to x̄ on X. We have the
following theorem of Nagata (see [Nag] or [Lue] for a more modern exposition):

Theorem 2.8: Let Y be a noetherian scheme and Z Ñ Y separated and of finite type. Then
there exists a compactification Z̄ Ñ Y of Z Ñ Y , i. e., a proper Y -scheme such that Z admits
an open Y -immersion into Z̄ with scheme theoretically dense image.

Therefore, possibly after shrinking B and X (in case X{B is not separated), we have a com-
pactification X̄ Ñ B of X Ñ B. By [Lic], Theorem 2.8, if B is affine and X is regular, X̄ is
automatically projective over B. By blowing up in closed points we can modify the compactifi-
cation in order to obtain a particularly well behaved one. More precisely:

Definition 2.9: Let Y be a normal, noetherian scheme and D an effective Cartier divisor on Y .
We say that D has strictly normal crossings at a point y P Y if Y is regular at y and there is a
system of parameters f1, . . . , fn at y such that Zariski locally at y, D is given by divpfd1

1 ¨ ¨ ¨ fdnn q
for some non-negative integers d1, . . . , dn. We say that D has strictly normal crossings if it has
strictly normal crossings at every point y P Y . In this case we say that D is an snc-divisor (for
strictly normal crossings).

The divisor D has normal crossings if étale locally it has strictly normal crossings.

Two effective divisors are said to intersect transversally if they do not have a common irreducible
component and their sum has normal crossings at every point of the intersection.

Definition 2.10: Let X{B be an arithmetic surface. A tidy divisor is an snc-divisor whose
horizontal part meets each vertical divisor of X transversally.

In particular, the horizontal irreducible components of a tidy divisor do not intersect. Tidy
divisors have the following local structure:

Lemma 2.11: Let X{B be an arithmetic surface, D Ă X a tidy divisor and x P D a closed point
with image b P B. Let us fix a uniformizer π at b. Then there is a smooth scheme of finite type Z
over B of relative dimension 2, a closed point z P Zb, and a surjective homomorphism OZ,z Ñ

OX,x whose kernel is generated by an element F P OZ,z which takes the following form: There
is a system of parameters pπ, f, gq of OZ,z, a unit α P OˆZ,z, and non-negative integers j, k
with j ` k ą 0 such that

F “ f jgk ´ απ.

Furthermore, if we denote by f̄ and ḡ the image of f and g in Spec OX,x, we have either

pDOX,xqred “ div f̄ ` div ḡ or pDOX,xqred “ div f̄ .

Proof: Since D is tidy, Xb has strictly normal crossings at x. Hence, by [Liu], Proposition 2.34
and Remark 2.34 there is a smooth scheme of finite type Z over B of relative dimension 2, a
closed point z P Zb, and a surjective homomorphism OZ,z Ñ OX,x whose kernel is generated by
an element F P OZ,z which takes the following form: There is a system of parameters pπ, f, gq
of OZ,z, a unit α P OˆZ,z, and non-negative integers j, k with j ` k ą 0 such that

F “ f jgk ´ απ.

If both j and k are positive, Xb has two components at x and the support of DOX,x is contained
in pSpec OX,xqb as otherwise the horizontal part of D could not intersect Xb transversally at x.
If, say, k “ 0, Xb has one component at x and there are the following three possibilities: If D has



CHAPTER 2. SETUP AND NOTATION 13

two components at x, one of these corresponds to the vertical component div f̄ and the other one
is horizontal. We can choose the system of parameters pπ, f, gq such that it is given by div ḡ. If D
has a single vertical component at x, it is given by div f̄ . If D has a single horizontal component
at x, we can choose the system of parameters pπ, f, gq such that it is given by div ḡ. In any case
we have either

pDOX,xqred “ div f̄ ` div ḡ or pDOX,xqred “ div f̄ or pDOX,xqred “ div ḡ

and the Lemma follows (possibly interchanging f and g).

Definition 2.12: Let X{B be an arithmetic surface and Z Ď X a proper closed subscheme. We
say that a closed point z P Z is a special point of Z if either Z is not a tidy divisor at z or Z is
tidy at z and Z is singular at z.

With the same notation as in Lemma 2.11 the special points of D are precisely the points
where pDOX,xqred “ div f̄ ` div ḡ, i. e., where two irreducible components of D intersect. If D is
not tidy but only snc, the special points are the singular points and the points where D intersects
a vertical divisor non-transversally.

If Y is a scheme and Z Ď Y a closed subscheme, we say pY,Zq is a pair. By a morphism of
pairs pY 1, Z 1q Ñ pY,Zq we mean a cartesian diagram

Z 1 Y 1

Z Y.

Definition 2.13: Let Y be a normal scheme and Z Ď Y a closed subscheme such that Y ´ Z
is dense in Y . By a desingularization in the strong sense pY 1, Z 1q Ñ pY,Zq of pY,Zq we mean a
birational morphism Y 1 Ñ Y which is an isomorphism over the complement of Z such that Y 1 is
regular at every point of the preimage Z 1 of Z.

We say that pYmin , Zminq Ñ pY,Zq is the minimal desingularization of pY,Zq, if any other
desingularization factors through pYmin , Zminq Ñ pY, Zq.

If Y is an excellent two-dimensional scheme, e. g. an arithmetic surface, desingularizations in the
strong sense exist (see [Lip]). Furthermore, by [Liu], Chapter 9, Proposition 3.32 there exists
a unique minimal desingularization of pY,Zq. Desingularizations exist also with the additional
requirement that Z 1 be an snc-divisor (see [CJS]). Moreover, we can require that it be obtained
from the minimal desingularization pYmin , Zminq Ñ pY, Zq of pY,Zq by successively blowing up in
singular points of Zmin . In this thesis we need an even more restrictive type of desingularization:

Definition 2.14: Let X{B be an arithmetic surface and Z Ď X a proper closed subscheme. A
tidy desingularization pX 1, Z 1q Ñ pX,Zq of pX,Zq is a birational morphism X 1 Ñ X such that Z 1
is a tidy divisor of X 1 and pX 1, Z 1q Ñ pX,Zq factors as

pX 1, Z 1q “ pX0, Z0q Ñ pX1, Z1q Ñ . . .Ñ pXn, Znq Ñ pX,Zq,

where pXn, Znq Ñ pX,Zq is the minimal desingularization of pX,Zq and for i “ 1, . . . , n the
morphisms pXi´1, Zi´1q Ñ pXi, Ziq are blowups of Xi in special points of Zi.

It is important that the blowups in the definition of a tidy desingularization are only allowed
to take place in special points of Z and not in any closed points of Z. The existence of tidy
desingularizations follows from the existence of desingularizations pX 1, Z 1q Ñ pX,Zq such that Z 1
is an snc-divisor:

Proposition 2.15: Let X{B be an arithmetic surface and Z Ă X a proper closed subscheme.
Then there exists a tidy desingularization of pX,Zq.
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Proof: Note that since X is normal and irreducible, the complement of Z is automatically dense,
and thus the notion of a desingularization of pX,Zq is defined. Without loss of generality we may
assume that X is regular away from Z as X is singular in at most a finite set of closed points,
which we can remove from X if they do not lie on Z. By [CJS], Theorems 0.1 and 0.2 there is
a desingularization pX 1, Z 1q Ñ pX,Zq which is an isomorphism over the complement of Z such
that Z 1 is an snc-divisor. Moreover, we can assume that pX 1, Z 1q Ñ pX,Zq is obtained from the
minimal desingularization by successively blowing up in singular, hence special, points. Let D1
be the union of Z 1 with the finitely many vertical prime divisors containing the points where Z 1
intersects a vertical divisor non-transversally. After removing from X 1 all points of D1 which are
not contained in Z 1 and where D1 is singular, we may assume that the special points of D1 are
contained in Z 1. By construction they coincide with the singular points of D1. Blowing up in
singular points of D1 we achieve that D1 is an snc-divisor. This is equivalent to saying that Z 1 is
tidy.

Let X{B be an arithmetic surface with compactification X̄ Ñ B and x̄ Ñ X a geometric
point of X lying over a closed point x. Let Z be the union of X̄ ´ X with the singular locus
of X ´ x (equipped with the reduced subscheme structure). By the above we can find a tidy
desingularization pX̄ 1, Z 1q Ñ pX̄, Zq. By construction X̄ 1 Ñ X̄ is an isomorphism when restricted
to a (Zariski) neighborhood of x. Hence, given an arithmetic surface X{B and a closed point x P
X, we can find an open neighborhood U Ď X of x and a compactification Ū Ñ B of U such
that Ū ´ U is a tidy divisor and Ū ´ x is regular.

2.3 Tame coverings of arithmetic surfaces

Definition 2.16: Let X be a normal, irreducible scheme and D Ď X an snc-divisor. Set U “
X´D. An étale covering U 1 Ñ U is tame, if for any irreducible component C of D the associated
extension of function fields K 1|K is tamely ramified at the discrete valuation corresponding to C.
A tame covering of pX,Dq is a morphism of pairs pX 1, D1q Ñ pX,Dq such that X 1 Ñ X is finite
and X 1 ´D1 Ñ U is a tame étale covering.

Remark 2.17: The above definition of tame covering coincides with the one given in [Sch I],
Definition 1.4, as the proof of Proposition 1.14, loc. cit. shows.

For the rest of this section we fix an arithmetic surface X{B, a tidy divisor D Ď X and a
geometric point x̄ lying over a closed point x of U “ X´D. Moreover, we fix a full class of finite
groups c such that all integers in Npcq are invertible on X. We will mainly be interested in full
classes of finite groups of the form cpl1, . . . , lnq for prime numbers l1, . . . , ln which are invertible
on X.

Definition 2.18: A c-covering of pX,Dq is a tame covering pX1, D1q Ñ pX,Dq such that X1´

D1 Ñ X ´D is a finite étale c-covering.

If pX1, D1q Ñ pX,Dq is a tame covering, in general D1 is not a tidy divisor of X1. In fact, X1

might not even be regular at the points in D1. But using proposition 2.15 we find a tidy desin-
gularization pX 1, D1q Ñ pX1, D1q.

Definition 2.19: A desingularized c-covering pX 1, D1q Ñ pX,Dq is a cartesian diagram

D1 D1 D

X 1 X1 X,
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such that pX1, D1q Ñ pX,Dq is a c-covering and pX 1, D1q Ñ pX1, D1q is a tidy desingularization.

If c is not specified, we tacitly assume it to be the class of all finite groups with order prime to
the residue characteristics of X and speak of desingularized tame coverings instead of desingu-
larized c-coverings . Furthermore, we call the strict transform of D1 in X 1 the generalized strict
transform of D and we call the exceptional divisor of X 1 Ñ X1 the generalized exceptional divisor
of pX 1, D1q Ñ pX,Dq.

Remark 2.20: The factorization pX 1, D1q Ñ pX1, D1q Ñ pX,Dq in the above definition is
uniquely determined by the morphism X 1 Ñ X. Namely, X1 Ñ X is the normalization of X
in X 1 and the morphism X 1 Ñ X1 comes from the universal property of the normalization.
Therefore, we can exclude pX1, D1q from the notation and just write pX 1, D1q Ñ pX,Dq.

Lemma 2.21: The following assertions hold:

(i) If pX 1, D1q Ñ pX,Dq and pX2, D2q Ñ pX 1, D1q are both desingularized c-coverings, the
composite pX2, D2q Ñ pX,Dq is again a desingularized c-covering.

(ii) If pX 1, D1q Ñ pX,Dq and pX2, D2q Ñ pX,Dq are desingularized c-coverings, there is a
commutative diagram of desingularized c-coverings

pX 1, D1q

pX3, D3q pX,Dq.

pX2, D2q

(iii) Let X 1{B1 be another arithmetic surface with tidy divisor D1 Ď X 1. Let x̄ Ñ X 1 ´ D1 be
a geometric point. There is at most one desingularized tame covering pX 1, D1q Ñ pX,Dq
such that x̄Ñ X 1 ´D1 Ñ X ´D coincides with the fixed geometric point x̄Ñ X ´D.

In order to show this lemma, we need to know more about the local structure of desingularized
tame coverings. Therefore, we postpone its proof to the end of section 4.3 in the next chapter.

We denote by IX,D,x̄ the category of all desingularized c-coverings pX 1, D1q Ñ pX,Dq together
with a geometric point x̄ Ñ X 1 such that x̄ Ñ X 1 Ñ X coincides with the fixed geometric
point x̄Ñ X. By the above lemma IX,D,x̄ is a cofiltered category.

Lemma 2.22: Let A be a c-twisted π1pU, x̄q-module and i a non-negative integer. Then

lim
ÝÑ

pX1,D1qPIX,D,x̄

HipX 1 ´D1, Aq – lim
ÝÑ
U 1ÑU

HipU 1, Aq, (2.1)

where the limit on the right is over the étale c-coverings of U .

Proof: Any étale c-covering U 1 Ñ U can be lifted to a desingularized c-covering pX 1, D1q Ñ
pX,Dq.

Let C be a category in which direct limits exist. Let F : IX,D,x̄ Ñ C be a contravariant functor
and pX 1, D1q an object of IX,D,x̄. We say that F pX 1, D1q vanishes in the limit if the natural map

F pX 1, D1q Ñ lim
ÝÑ

IX,D,x̄

F pX2, D2q

is the zero map. If C is the category of abelian groups (or a subcategory thereof) and φ is an
element of F pX 1, D1q, we say that φ vanishes in the limit if the image of φ in lim

ÝÑIX,D,x̄
F pX2, D2q

is zero.
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For instance, we will use this terminology for the functors IX,D,x̄ Ñ Ab defined by

pX 1, D1q ÞÑ HipX 1, Aq,

pX 1, D1q ÞÑ Hi
D1pX

1, Aq.

for a locally constant sheaf A on Xet. Note that if F pX,Dq vanishes in the limit, this does not
yet imply that

lim
ÝÑ

IX,D,x̄

F pX 1, D1q “ 0.

The vanishing of the limit is equivalent (by definition) to saying that for every object pX 1, D1q
of IX,D,x̄ we have that F pX 1, D1q vanishes in the limit.
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Chapter 3

Non-existence of good Artin
neighborhoods

Before we start the construction of Kpπ, 1q-neighborhoods on arithmetic surfaces we explain why
Artin’s and Friedlander’s method using elementary fibrations is not promising in the arithmetic
setting. Let us review their line of reasoning.

Definition 3.1: An elementary fibration is a morphism of schemes f : X Ñ B that can be
embedded in a commutative diagram

X X̄ Y

B

j

f
f̄

i

g

satisfying the following conditions:

(i) j is an open immersion which is dense in every fibre and X “ X̄ ´ Y .

(ii) f̄ is smooth and projective with geometrically irreducible fibres of dimension 1.

(iii) g is étale with nonempty fibres.

Remark 3.2: Note that if X Ñ B is an elementary fibration embedded in a diagram as in the
above definition and if X̄ 1 Ñ X̄ is a finite étale morphism, then the pullback

fX̄1 : X ˆX̄ X̄ 1 Ñ B

is again an elementary fibration. Moreover, the pullback of X Ñ B via any morphism B1 Ñ B
is again an elementary fibration as smoothness is stable under base change.

In [SGA4] Artin defines good neighborhoods (now called good Artin neighborhoods) over an
algebraically closed field as successive elementary fibrations. More precisely, the definition is as
follows:

Definition 3.3: Let k be an algebraically closed field. A good Artin neighborhood over k is a
scheme X over k such that there exist k-schemes

X “ Xn, . . . , X0 “ Spec k

and elementary fibrations fi : Xi Ñ Xi´1, i “ 1, . . . , n.

In case k is the field C of complex numbers, denote by pXiqcl the analytification of Xi endowed
with the classical topology. As explained in [SGA4], Exp. XI, Variante 4.6 the elementary fibra-
tions fi : Xi Ñ Xi´1, i “ 1, . . . , n induce locally trivial fibrations pfiqcl : pXiqcl Ñ pXi´1qcl whose
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fibres are non-complete curves Ci. If x is a closed point of X, it determines points xi of pXiqcl
and ci of Ci. Since Ci is non-complete, we have

πnpCi, ciq “ 0

for i ą 1 and π1pCi, ciq is a finitely generated free group. By induction on i and using the long
exact sequence of homotopy groups associated to a fibration, we conclude that

πnpXcl, xq “ 0

for i ą 1 and that π1pXcl, xq is a successive extension of free groups. In particular, Xcl has
the Kpπ, 1q-property. Being a successive extension of free groups, π1pXcl, xq is a good group,
i. e.,

Kpπ1pXcl, xq, 1q
^ „
ÝÑ Kpπ1pXcl, xq

^, 1q,

where "p q^" denotes profinite completion. Hence, X^
cl is a Kpπ, 1q space, as well. By the

generalized Riemann existence theorem (see [AM], Theorem 12.9 and Corollary 12.10) the same
is true for Xét. Actually, the argument is the other way round: In the proof of the comparison
theorem of étale and classical cohomology ([SGA4], Exp. XI, Théorème 4.4), Artin implicitly
shows that if X{k is a good Artin neighborhood, X is Kpπ, 1q with respect to the class of
finite groups. Artin’s comparison theorem is then used in the proof of the generalized Riemann
existence theorem.

In [Fri I] Friedlander extends this result to smooth schemes over algebraically closed fields of
positive characteristic p. In this setting, he examines theKpπ, 1q-property with respect to a prime
number l ‰ p. Let us explain his key theorem. For an elementary fibration f : X Ñ S denote
by fpfétplqq the homotopy theoretic fibre of the associated morphism fétplq : Xétplq Ñ Sétplq
of l-completed étale homotopy types. Using the long exact homotopy sequence associated to the
fibre triple fpfétplqq Ñ Xétplq Ñ Sétplq, Friedlander shows (see [Fri I], Theorem 9):

Theorem 3.4: Let f : X Ñ S be an elementary fibration of connected, normal, noetherian
schemes, pointed by a geometric point x̄. Let l be a prime not occurring as a residue charac-
teristic of S. If R1f˚pZ{lZq is a π1pS, x̄qplq-module and if π2pSétplq, x̄q “ 0, then the natural
maps pXx̄qét Ñ fpfétq and fpfétq Ñ fpfétplqq induce a 7-isomorphism

pXx̄qétplq Ñ fpfétplqq.

Consequently, π1pfpfétplqqq is free, pro-l and

fpfétplqq Ñ Kpπ1pfpfétplqqq, 1q

is a 7-isomorphism.

In particular, under the assumptions of the above theorem, X is Kpπ, 1q with respect to l. Fried-
lander concludes the existence of Kpπ, 1q-neighborhoods in the following manner: By [SGA4],
Exp. XI, Proposition 3.3 any closed point x̄ of a smooth scheme over an algebraically closed
field k has a basis of étale neighborhoods which are good Artin neighborhoods. Fix one such
good Artin neighborhood and write

X “ Xn
fn
ÝÑ Xn´1

fn´1
ÝÑ . . .

f1
ÝÑ X0 “ Spec k

with elementary fibrations fi : Xi Ñ Xi´1. The property that R1pfiq˚pZ{lZq is a π1pXi´1, x̄qplq-
module is étale local, so we can assume that it holds for all i. The condition that π2ppXi´1qétplq, x̄q
is trivial holds for i “ 1. If it holds for i, Friedlander’s theorem asserts that Xi is Kpπ, 1q with
respect to l and in particular π2ppXiqétplq, x̄q “ 0. Therefore, by induction on i, X is Kpπ, 1q
with respect to l.

Let us now consider the arithmetic situation. The natural analogue of a good Artin neighborhood
is the following.
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Definition 3.5: An arithmetic good Artin neighborhood is an arithmetic scheme X{B such that
there exist B-schemes

X “ Xn, . . . , X0 “ B

and elementary fibrations fi : Xi Ñ Xi´1, i “ 1, . . . , n.

Note that the base scheme B is part of the datum of a good Artin neighborhood. If X{B is an
arithmetic scheme with geometric point x̄, an étale neighborhood of x̄ is a commutative diagram

X 1 X

B1 B

such that X 1{B1 is an aritmetic scheme and X 1 Ñ X is étale. We have to allow for a change of
the base scheme because we require the generic fibre of an arithmetic scheme to be geometrically
connected. Furthermore, if we hope to find étale neighborhoods that are arithmetic good Artin
neighborhoods, we have to admit that B can be replaced by an open subscheme in order to get
rid of unwanted singular fibres.

Fix a smooth arithmetic scheme X{B and a geometric point x̄ of X inducing a geometric point b̄
of B. Pick a prime l different from the residue characteristic of x̄. Suppose that B has a basis
of étale neighborhoods that are Kpπ, 1q with respect to l. This is the case if B is a local or
global Dedekind scheme (see [Sch II] for the global case, the local case is easy). If x̄ has a
basis of étale neighborhoods that are arithmetic good Artin neighborhoods, the same reasoning
as above shows that x̄ has a basis of Kpπ, 1q-neighborhoods with respect to l. Unfortunately,
bases of étale neighborhoods that are arithmetic good Artin neighborhoods do not exist for any
arithmetic scheme. In the remaining part of this chapter we explain why they do not exist. We
first treat the case of relative dimension one.

Lemma 3.6: Let B be a strictly henselian Dedekind scheme and X{B a proper, smooth arithmetic
surface with geometric point x̄ over a closed point x of X. There is an étale neighborhood X 1{B Ñ
X{B of x̄ such that any étale neighborhood X2{B2 Ñ X 1{B1 of x̄ is not an arithmetic good Artin
neighborhood.

Proof: Let Y Ñ X be the blow-up in a closed point x0 ‰ x of X. The special fibre of Y {B
has two irreducible components C1 and C2. For i “ 1, 2 choose three closed points c1i , c2i , c3i
in Ci different from x and different from the intersection point of C1 with C2. For each pi, jq
choose a horizontal divisor Dj

i intersecting Ci transversally at cji . Let Spec A Ď Y be an affine
open subscheme containing x, cji , D

j
i . This is possible as Y {B is projective by [Lic], Theorem 2.8.

Denote by px, pcji
, pDji

the prime ideals corresponding to x, cji , D
j
i , respectively. Using prime

evasion (see Lemma 7.6 for a version that applies in our situation) we find f P A such that

fP pDji
for i “ 1, 2 and j “ 1, 2, 3,

f R p2
cji

for i “ 1, 2 and j “ 1, 2, 3,

f R px.

In other words we have
div f “

ÿ

i,j

Dj
i `D,

where the support of D contains neither x nor cji . Choose an integer m ą 1 prime to the residue
characteristic of B. Let Y 1 be the normalization of Y in the function field extension

KpY qr m
a

fs|KpY q.
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and Y 1 Ñ B1 Ñ B the Stein factorization of Y 1 Ñ B. The morphism Y 1 Ñ Y is purely ramified
in the divisors Dj

i . Therefore, the special fibre of Y 1 has two irreducible components C 11 and C 12
dominating C1 and C2, respectively. Moreover, by the Hurwitz-formula C 11 and C 12, as well as the
generic fibre of Y 1 have genus at least one. The morphism Y 1 Ñ X is étale in a neighborhood
of x. We can thus find an open subscheme X 1 Ď Y 1 such that X 1{B1 is an étale neighborhood
of x̄.

We claim that any étale neighborhood X2{B2 Ñ X 1{B1 of x̄ is not an arithmetic good Artin
neighborhood. It suffices to show that X2 does not posess a smooth compactification over B2.
Denote by Y 2 the normalization of Y 1 in X2. Using resolution of singularities we find a regular
compactification X̄2 of X2. It can be obtained from Y 2 by blowing up in the singular locus.
Since Y 2 is normal, the singular locus is zero-dimensional. By the Hurwitz formula the strict
transforms of the irreducible components of the special fibre of X̄2 are again curves of genus at
least one. By [Liu], Theorem 3.21 there exists a unique minimal model X̄2

min of the generic fibre
of Y 2. We have a birational morphism

X̄2 Ñ X̄2
min

which is a successive blow-up in regular points. The exceptional fibres are thus rational. We
conclude that curves of genus at least one cannot be contracted. Hence, the special fibre
of X̄2

min Ñ B2 has at least two components. In particular, X̄2
min is not smooth over B2. Therefore,

there does not exist a smooth compactification of X2.

Corollary 3.7: Let X{B be an arithmetic surface and x̄ a geometric point above a closed point
of X. There is no basis of étale neighborhoods of x̄ that are arithmetic good Artin neighborhoods.

Proof: Assume there is a basis of étale neighborhoods of x̄ that are arithmetic good Artin neigh-
borhoods. Its base change to the strict henselization of B at x̄ is again a basis of arithmetic good
Artin neighborhoods. Replacing X{B by an étale neighborhood we may assume that X{B is
itself a good Artin neighborhood. The same holds for its base change to the strict henselization
of B at x̄. By Lemma 3.6 this is not possible.

Proposition 3.8: Let X{B be an arithmetic scheme and x̄ a geometric point above a closed point
of X. There is no basis of étale neighborhoods of x̄ that are arithmetic good Artin neighborhoods.

Proof: Suppose the contrary. In particular, there is an étale neighborhood X 1{B1 of x̄ which
admits an elementary fibration X 1 Ñ S1 over B1 such that S1 is regular. Denote by s the image
of x̄ in S1. Choose a curve C 1 passing through s1 which is regular at s1 and flat over B1. The
strict henselization of C 1 at x̄ is a Dedekind scheme B2 and the base change X2 of X 1 to B2 is
an arithmetic surface which is an elementary fibration over B2. By assumption X has a basis of
étale neighborhoods of x̄ that are arithmetic good Artin neighborhoods. Its pullback to B2 is a
basis of étale neighborhoods of x̄ in X2 that are arithmetic good Artin neighborhoods. But by
Corollary 3.7 such a basis of neighborhoods does not exist, a contradiction.

The proof of Proposition 3.8 shows that the existence of arithmetic good Artin neighborhoods
fails already at the first step. It fails in such a way that we cannot even expect to find a basis of
étale neighborhoods with smooth compactifications over some regular scheme of one dimension
less. Even if the initial arithmetic scheme X{B is smooth and has a smooth compactification,
we cannot hope to work with smooth fibrations. This makes it hard to determine the homotopy
theoretic fibre in order to use the long exact homotopy sequence. Instead, we will pursue a
more explicit approach using the cohomological criterion for the Kpπ, 1q-property provided by
Corollary 2.5.
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Chapter 4

Exceptional fibres

In this chapter we begin to work on the problem of constructing Kpπ, 1q-neighborhoods on
arithmetic surfaces. For an arithmetic surface X{B and a tidy divisor D Ď X we want to
investigate whether U “ X ´ D is Kpπ, 1q with respect to a given class of finite groups c. By
the cohomologial criterion for the Kpπ, 1q-property (see Corollary 2.5) we have to show that for
a geometric point x̄ of U

lim
ÝÑ
U 1ÑU

HipU,Λq “ 0

for i ě 1 and Λ “ Z{mZ with m P Npcq. The limit runs over all pointed finite étale c-
coverings U 1 Ñ U . By Lemma 2.22 this amount to showing that

lim
ÝÑ

pX1,D1qPIX,D,x̄

HipX 1 ´D1,Λq “ 0.

Remember that the category IX,D,x̄ is the category of all desingularized c-coverings of pX,Dq
together with a lift of the geometric point x̄. The reason why we have to desingularize the c-
coverings of pX,Dq is the following. Let pX1, D1q Ñ pX,Dq be a c-covering. Since X1 Ñ X
is étale over U , the open subscheme U1 “ X1 ´ D1 of X1 has essentially the same regularity
properties as U . However, the covering X1 Ñ X can ramify outside of U . Therefore, the
divisor D1 might not be tidy and in particular, X1 might not be regular at the points of D1.
With other words, new singularities arise when we replace pX,Dq by pX1, D1q. But in order to
calculate the cohomology groups of U1, which is the task of Chapter 5 and Chapter 6, it would
be very helpful if the complement of U1 were a tidy divisor.

At this point the reader might ask why we have to embed U in a bigger scheme at all. The reason
is that, in general, we do not have a base change theorem for the morphism U Ñ B but we would
like to compute the cohomology of U via the Leray spectral sequence associated with U Ñ B. We
circumvent this problem by first lifting comology classes on U to cohomology classes on a bigger
scheme X where base change holds. We could take for X a compactification of U but it turns
out to be more favorable to remove from the compactification of U a regular horizontal divisor in
order to obtain X. This makes X Ñ B a non-smooth analogue of an elementary fibration with
the advantage that the general fibres are affine curves.

Let us return to the subject of this chapter. We consider a desingularized c-covering pX 1, D1q Ñ
pX1, D1q Ñ pX,Dq. In this thesis we only examine the case where all elements of Npcq are
invertible on X. Hence, the c-covering pX1, D1q Ñ pX,Dq is tame. We want to understand the
singularities of X1 at the points in D1. This amounts to understanding the exceptional fibres
of X 1 Ñ X1. It turns out that only rational singularities can occur meaning that the exceptional
fibres of X 1 Ñ X are rational curves.
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4.1 The local structure of tame coverings

The local structure of a tame covering is described in [SGA1], Exp. XIII, 5.3.0 by the generalized
Abhyankar lemma:

Theorem 4.1: Let Y be a strictly henselian, regular, local scheme and D “
řr
i“1 div fi a

normal crossing divisor on X. Then every connected tame covering of pY,Zq is a quotient of a
tame covering of the form

Y1 “ XrT1, . . . , Trs{pT
n1
1 ´ f1, . . . , T

nr
r ´ frq,

where ni are positive integers prime to the residue characteristic of Y .

In the two-dimensional situation we are interested in, there are three possibilities: Either D is
zero meaning that every tame covering of pX,Dq is étale, i. e., trivial, or D “ div a is a prime
divisor, or D “ div a` div b has two irreducible components. In case D is a prime divisor the
situation is quite simple as in this case D is regular and we have:

Lemma 4.2: Let Y be a regular, noetherian scheme and D Ă Y a divisor whose underlying
reduced scheme is regular. Let pY1, D1q Ñ pY,Dq be a tame covering of pY,Dq. Then Y1 as well
as the underlying reduced subscheme of D1 in Y1 are regular. If moreover pY,Dq is smooth over
some regular, noetherian scheme B, so is pY1, pD1qredq

Proof: The problem is étale local so we may assume Y “ Spec R with R a strictly henselian local
ring. In this setting the divisor Dred is either empty or given by a regular element u P R. In the
former case Y1 is étale over Y and thus regular. In the latter case, by the generalized Abhyankar
lemma Y1 is a disjoint union of schemes of the form Spec Rr d

?
us with d prime to the residue

characteristic of Y . We conclude that Y1 and pD1qred are regular.

Assume now that pY,Dq is smooth over some regular, noetherian scheme B. We may assume
that B is the spectrum of a strictly henselian ring A. Then Y is étale locally isomorphic to the
spectrum of ArT1, . . . , Tns such that either D is empty or D “ div Tn. In the former case there
is nothing to prove and we thus assume D “ div Tn. By the generalized Abhyankar lemma Y1 is
a disjoint union of schemes of the form

Spec ArT1, . . . , Tn, T s{pT
d ´ Tnq – Spec ArT1, . . . , Tn´1, T s

and the reduced scheme underlying D1 is given by div T . This proves the result.

Let us return to the situation where X{B is a strictly henselian arithmetic surface. If D “

div a`div b and pX1, D1q Ñ pX,Dq is a tame covering, X1 might be singular. By the generalized
Abhyankar lemma (Theorem 4.1) it is a quotient of

X0 “ XrT1, T2s{pT
n1
1 ´ a, Tn2

1 ´ bq

with positive integers n1 and n2 prime to the residue characteristic ofX. It is quite complicated to
write down a general quotient ofX0 explicitly. However,X1 can be described as the normalization
of X in the function field extension KpX1q|KpXq and the subextensions of KpX0q|KpXq are
determined by the following lemma.

Lemma 4.3: Let K be a field and d a positive integer prime to the characteristic of K. Suppose
that µd Ď K and let a, b P Kˆ. Any subextension of Kp d

?
a, d
?
bq|K is of the form Kr n

?
a, m
?
arbss

with m,n|d, 0 ď r, s ď m´ 1 and gcdpr, s,mq “ 1.

Proof: Let K̄ be a separable closure of K and denote by GK the absolute Galois group of K.
Choose a primitive dth root of unity. This provides us with an identification H1pGK , µdq –
HompGK ,Z{dZq. Via the Kummer isomorphism

Kˆ
{pKˆqd ˆKˆ

{pKˆqd
„
ÝÑ H1pGK , µd ˆ µdq
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and the above identification the pair pa, bq corresponds to a surjection φ : GK Ñ Z{dZ ˆ Z{dZ
such that K̄kerφ “ Kp d

?
a, d
?
bq. Let L be a subextension of Kp d

?
a, d
?
bq|K. Then there is a

quotient Q of Z{dZˆ Z{dZ such that the image φQ of φ under the map

HompGK ,Z{dZˆ Z{dZq Ñ HompGK , Qq

satisfies K̄kerφQ “ L. By Lemma 4.4 below Q takes the form

Z{dZˆ Z{dZ ÝÑ Z{nZˆ Z{mZ
px, yq ÞÑ px̄, rx` syq

with m,n|d, 0 ď r, s ď m´ 1 and gcdpr, s,mq “ 1. Via Kummer theory the homomorphism φQ
thus corresponds to pa, arbsq P Kˆ{pKˆqn ˆKˆ{pKˆqm. This proves the result.

Lemma 4.4: Every quotient of Z{dZˆ Z{dZ takes the form

Z{dZˆ Z{dZ ÝÑ Z{nZˆ Z{mZ
px, yq ÞÑ px̄, rx` syq

with m,n|d, 0 ď r, s ď m´ 1 and gcdpr, s,mq “ 1.

Proof: Let Q be a quotient of Z{dZˆ Z{dZ. Consider the homomorphism

ϕ : Z{dZ idˆ0
ÝÑ Z{dZˆ Z{dZ π

ÝÑ Q.

The image of ϕ is isomorphic to Z{nZ with n|d and generated by πp1, 0q. The homomorphism
from Z{dZ ˆ Z{dZ to the cokernel of ϕ factors through the second projection Z{dZ ˆ Z{dZ Ñ
Z{dZ. Hence, its cokernel is isomorphic to Z{mZ with m|d and generated by πpr, sq with 0 ď
r, s ď m´ 1 and gcdpr, s,mq “ 1.

As a direct corollary of the generalized Abhyankar lemma (Theorem 4.1) and Lemma 4.3 we
obtain:

Corollary 4.5: Let X{B be the strict henselization of an arithmetic surface at a geometric point
and D a tidy divisor on X with two irreducible components Z1 “ div g1 and Z2 “ div g2.
Let pX1, D1q Ñ pX,Dq be a connected tame covering. Then, X1 is the normalization of X in a
function field extension

KpXqr m
?
g1,

n
a

gr1g
s
2s|KpXq

with m,n prime to the residue characteristic, 0 ď r, s ď n´ 1 and gcdpr, s, nq “ 1.

Before concluding this section, we prove another result about desingularized tame covering. We
do not need the explicit description from the rest of this section. As the assertion also concerns
the shape of tame coverings, we state it here.

Lemma 4.6: Let Y 1 Ñ Y be a flat morphism of schemes which is locally of finite presentation.
Let Z be a closed subscheme of Y and denote by Z 1 its preimage in Y 1. Then every connected
component of Z dominates a connected component of Z 1.

Proof: By [EGAIV.2], Théorème 2.4.6, the morphism Y 1 Ñ Y is universally open. In partic-
ular, Z 1 Ñ Z is open and thus Spec OZ1,z1 Ñ Spec OZ,z is surjective for every point z1 P Z 1
mapping to z P Z. Suppose there is a connected component Z 10 of Z 1 mapping nonsurjectively to
a connected component Z0 of Z. Then there are irreducible components Z1 and Z2 of Z0 with
nontrivial intersection such that Z1 is contained in the image of Z0 and Z2 is not. Let z P Z0 be a
point in the intersection of Z1 and Z2 and z1 P Z 10 a preimage of z. This produces a contradiction
as Spec OZ1,z1 Ñ Spec OZ,z is not surjective.

Corollary 4.7: Let X{B be an arithmetic surface and D Ď X a tidy divisor. Let pX1, D1q Ñ

pX,Dq be a tame covering. Then every connected component of D1 dominates a connected com-
ponent of D.
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4.2 Rational Singularities and the dual graph

We are interested in the type of singularities that arise in tame coverings pX1, D1q Ñ pX,Dq,
with an arithmetic surface X{B and a tidy divisor D. Since X1 is normal, the singular locus
is a finite set of closed points. In the following sections we examine the exceptional fibres of a
tidy desingularization of pX1, D1q. The exceptional fibres are curves over the residue fields of the
respective singular points such that all irreducible components are regular and have normal cross-
ings with all other irreducible components. They are determined by their respective irreducible
components with multiplicity and their dual graph, which is defined as follows.

Definition 4.8: Let C be a curve, i. e., a one-dimensional excellent scheme. The dual graph ΓC
of C is the graph defined as follows. Each vertex represents an irreducible component of C and
the number of edges between two vertices is given by the number of intersection points of the
corresponding irreducible components.

Lemma 4.9: Let Y be a normal surface, Z Ă Y a proper closed subscheme, and φ : pX,Dq Ñ
pY,Zq a tidy desingularization of pY, Zq. Let ΓD denote the dual graph of D. Then π1pΓDq is
independent of the chosen desingularization.

Proof: Let φ1 : pX 1, D1q Ñ pY,Zq be another desingularization with dual graph ΓD1 . There is
a birational map X 1 99K X over Y . Using elimination of indeterminacies, we find a regular
scheme X2 over Y and birational morphisms ψ : X2 Ñ X and ψ1 : X2 Ñ X 1 which are
isomorphisms over D and D1, respectively, such that the following diagram commutes

X2

X X 1

Y.

ψ ψ1

The morphisms ψ and ψ1 are consecutive blowups in closed points of D and D1, respectively. It
thus suffices to prove that blowing up X in a closed point x of D leaves π1pΓDq invariant. Assume
first that x is a regular point of D. Blowing up in x a vertex is added to ΓD and connected with
the vertex corresponding to the irreducible component of D containing x. Now assume that x is
a singular point of D represented by an edge of the dual graph connecting the vertices a and b,
say. Then this edge is removed from the dual graph. A new vertex is added and connected with a
and with b. In both cases π1pΓDq remains invariant.

Definition 4.10: A projective (not necessarily integral) curve C over a field k is called rational
if H1pC,OCq “ 0. An arithmetic surface X{B has rational singularities if there is a desingular-
ization φ : X1 Ñ X such that R1φ˚OC “ 0.

Remark 4.11: (i) By flat base change a curve is rational if and only if its base change to the
algebraic closure of the base field is rational.

(ii) A curve C over an algebraically closed field k is rational if and only if all its irreducible
components are isomorphic to P1

k and its dual graph is a tree (see [Deb], Definition 4.23).

(iii) If the geometric exceptional fibres of one desingularization of X are rational, the same
is true for any desingularization. Indeed, the exceptional fibres of two desingularizations
differ only by rational irreducible components and by Lemma 4.9, if the dual graph of one
desingularization is a tree, the same holds for the other one.

A particularly simple example of a rational curve is a chain of P1’s which we define as follows.
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Definition 4.12: Let C be a curve with irreducible components C1, . . . , Cn. We say that C is
a chain of P1’s if C1, . . . , Cn are isomorphic to P1

k for some field k, for i “ 1, . . . , n ´ 1 the
curve Ci intersects Ci`1 in exactly one point, which is moreover k-rational, and CiXCj is empty
for |i´ j| ě 2.

If C is a closed subscheme of another curve C0, we say that C is a bridge of P1’s in C0 if C is
a chain of P1’s and C intersects exactly two of the remaining irreducible components of C0 and
this intersection takes place in two k-rational points p1 P C1 and pn P Cn.

In particular, if C is chain of P1’s, it is a rational curve over some field such that the dual graph
is of the form

C1 C2 Cn´1 Cn
.

If moreover C is a bridge of P1’s in C0, the dual graph of C0 near C is of the form

Z1 C1 C2 Cn´1 Cn Zn
,

where Z1 and Zn denote the irreducible components of C0 intersecting C but not contained in C.

4.3 Explicit desingularizations

For this section we fix a henselian discrete valuation ring O with algebraically closed residue field k
and uniformizer π. We denote the closed point of Spec O by s and the generic point by η. Further-
more, let Z “ Spec R{O be smooth of finite type of relative dimension 3 and fix a closed point z
of Z lying over the closed point s of Spec O. We assume there are u, v, w P R such that divpπuvwq
is an snc-divisor such that the intersection of an arbitrary subset of tdiv π, div u, div v, div wu is
irreducible and pπ, u, v, wq is the maximal ideal corresponding to z. In particular, pπ, u, v, wq is a
system of parameters of OZ,z. Let j, k, l,m, r, s be non-negative integers such that j ` k` l ą 0,
m ą 0, r ` s ą 0, and gcdpm, r, sq “ 1. Let α be a unit of R. We define

A “ R{pujvkwl ´ απ,wm ´ urvsq.

This is an integral domain as gcdpm, r, sq “ 1 and it is of relative dimension 1 over O. We denote
its quotient field by K. The special fibre of Spec A has two irreducible components corresponding
to the prime ideals pu,wq and pv, wq except if k “ l “ 0 or j “ l “ 0. If k “ l “ 0, the special
fibre has one component corresponding to the prime ideal pu,wq and if j “ l “ 0, it has one
component corresponding to pv, wq.

We want to desingularize Spec A. In particular, we are interested in the exceptional fibres of a
desingularization of Spec A. In general, Spec A is not even normal but if either r or s is zero,
the normalization of Spec A is already regular as the next lemma shows. Note that by relabeling
variables we may interchange r and s. Therefore, it suffices to treat the case s “ 0.

Lemma 4.13: Assume s “ 0, i. e., A “ R{pujvkwl ´ απ,wm ´ urq. Consider the ring homo-
morphism

RÑ R1 “ Rru1s{pu1m ´ u, u1r ´ wq.

Define

A1 “ R1{pu1mj`rlvk ´ απq.
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Then the above homomorphism induces an integral ring extension

φ : AÑ A1,

which is the normalization homomorphism of A. In particular, the normalization of A is regular.
The support of the divisor div w Ă Spec A has only one irreducible component and the same
holds for div w Ă Spec A1. In particular, the dual graph of div w in Spec A1 coincides with the
one of div w in Spec A. If the support of div w Ă Spec A is vertical and isomorphic to A1

k, the
same holds for the support of div w in Spec A1. Moreover, div w Ď Spec A1 is tidy.

Proof: Write am` br “ 1 with coprime integers a, b. In K the equation

Xm ´ u

has the solution uawb. It follows that u1, being the image of uawb, is integral over A and thus
the ring homomorphism

AÑ A1

constitutes an integral extension of A. Furthermore, A1 is a regular ring so the normalization
of A is regular. The induced map of the support of div w in Spec A1 to the support of div w
in Spec A is given by the ring homomorphism

R{radpujvkwl ´ απ, ur, wq Ñ R1{radpu1mj`rlvk ´ απ,wq

with

radpujvkwl ´ απ, ur, wq “

#

pvk ´ απ, u, wq if j “ l “ 0,

pπ, u, wq else

and

radpu1mj`rlvk ´ απ,wq

#

pvk ´ απ, u1q if j “ l “ 0,

pπ, u1q else.

In both cases the support of div w in Spec A and in Spec A1 has only one irreducible component.
If the support of div w in Spec A is isomorphic to A1

k, it is not possible that j “ l “ 0 (in which
case div w is horizontal). We thus have

R{radpujvkwl ´ απ, ur, wq “ R{pπ, u, wq – krT s

and

R1{radpu1mj`rlvk ´ απ,wq “ R1{pπ, u1q “ Rru1s{pπ, u, w, u1q – krT, u1s{pu1q – krT s.

In general, if r and s are both positive, it is quite complicated to write down the normalization
of Spec A explicitly. However, we can take one step towards the normalization of Spec A:

Lemma 4.14: Assume that r and s are positive. Set

g1 “ gcdpm, sq, g2 “ gcdpm, rq,

and
m1 “

m

g1g2
.

Write
r

g2
“ am1 ` r2,

s

g1
“ bm1 ` s2
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with non-negative integers a, b, r2, s2 such that r2, s2 ă m1. If m1 “ 1, set g3 “ 1 and other-
wise g3 “ gcdpr2, s2q and define

r1 “
r2

g3
, s1 “

s2

g3
,

j1 “ g1j ` al, k1 “ g2k ` bl, l1 “ g3l.

Consider the extension

RÑ R1 “ Rru1, v1, w1s{pu1g1 ´ u, v1g2 ´ v, u1av1bw1g3 ´ wq

and define

A1 “ R1{pu1j
1

v1k
1

w1l
1

´ απ,w1m
1

´ u1r
1

v1s
1

q.

Then the above homomorphism RÑ R1 induces an integral ring extension

φ : AÑ A1

and the dual graphs of div w in Spec A and div w1 in Spec A1 coincide. Furthermore, if a
vertical irreducible component of div w Ă Spec A is isomorphic to A1

k, the same holds for the
corresponding component of div w1 Ă Spec A1. If m1 “ 1, A1 is regular and φ is a normalization
homomorphism of A. In particular, in this case the normalization of A is regular and div w Ď
Spec A1 is tidy.

Proof: One checks that φ is well defined and injective. There is exactly one point z1 of Spec A1
lying above z P Spec A. The induced map of function fields

φK : K Ñ K 1

is an isomorphism. Indeed, write

1 “ c1r ` d1g1, 1 “ c2s` d2g2, 1 “ c3m` d3g3

with integers ci and di. Identifying K with its image in K 1 we have

u1 “ ud1v´c1pbm
1
`g3s

1
qwc1g2m

1

, v1 “ u´c2pam
1
`g3r

1
qvd2wc2g1m

1

,

w1 “ u1´d3av1´d3buc3g2r
1

vc3g1s
1

wd3 ,

and thus K “ K 1. Moreover, u1, v1 and w1 are integral over A being roots of the normalized
polynomials in ArXs

Xg1 ´ u, Xg2 ´ v, and Xm ´ ug2r
1

vg1s
1

,

respectively.

Let us show the assertion concerning the dual graph. One checks that the support of div w1
in Spec A1 coincides with the support of div w in Spec A1. In order to see that the dual graphs
of div w Ă Spec A and div w Ă Spec A1 coincide we examine the induced morphism of the
underlying reduced subschemes. It is given by

R{radpujvkwl ´ απ, urvs, wq Ñ R1{radpu1j
1

v1k
1

w1l ´ απ,w1m
1

´ u1r
1

v1s
1

, u1av1bw1g3q

with

radpujvkwl ´ απ, urvs, wq “

$

’

&

’

%

puj ´ απ, uv, wq case 1: k “ l “ 0,

pvk ´ απ, uv, wq case 2: j “ l “ 0,

pπ, uv, wq case 3: else,
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radpu1j
1

v1k
1

w1l´απ,w1m
1

´u1r
1

v1s
1

, u1av1bw1g3q “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

pu1g1j ´ απ, u1v1, w1q case 1 and m1 ą 1,

pv1g2k ´ απ, u1v1, w1q case 2 and m1 ą 1,

pπ, u1v1, w1q case 3 and m1 ą 1,

pu1g1j ´ απ, u1v1, w1 ´ 1q case 1 and m1 “ 1,

pv1g2k ´ απ, u1v1, w1 ´ 1q case 2 and m1 “ 1,

pπ, u1v1, w1 ´ 1q case 3 and m1 “ 1.

Assume first that m1 ą 1. In case 1 the above morphism becomes

R{puj ´ απ, uv, wq Ñ R1{pu1g1j ´ απ, u1v1, w1q “ pR{pu
j ´ απ, uv, wqqru1v1s{pu1g1 ´ u, v1g2 ´ vq.

By our assumptions on divpπuvwq the spectrum of R{puj ´ απ, uv, wq has two irreducible com-
ponents, one irreducible, smooth curve over k with parameter u at z and one regular horizontal
component. The same holds for pR{puj ´ απ, uv, wqqrv1s{pv1g1 ´ vq, where the vertical prime di-
visor has parameter u1 at z1. We conclude that the dual graphs coincide. If the vertical irreducible
component of Spec R{puj ´ απ, uv, wq is isomorphic to A1

k, i. e., R{pπ, u, wq – krvs, we have

pR{pπ, u, wqqrv1s{pv1g1 ´ vq – krv, v1s{pv1g1 ´ vq – krv1s

and thus also the vertical component of pR{puj ´ απ, uv, wqqrv1s{pu1g1 ´ u, v1g2 ´ v is isomorphic
to A1

k. Cases 2 and 3 are analogous, as well as the case where m1 “ 1.

After the construction in Lemma 4.14 we are now ready to examine a desingularization of Spec A:

Lemma 4.15: Assume that m ą r, s ą 0 and that m, r and s are pairwise coprime. Let A1
be the normalization of A. Then the dual graphs of the special fibre of Spec A and of Spec A1
coincide and if an irreducible component of pSpec Aqs is isomorphic to A1

k, the same holds for the
corresponding component of pSpec A1qs. Furthermore, there is a desingularization X Ñ Spec A1

such that div w Ď X is tidy and the exceptional fibre E of X Ñ Spec A1 is a bridge of P1’s
in div w Ď X and the dual graph of div w has the form

E
Zu Zv

.

Proof: We use induction on pm, r` sq given the lexicographical ordering (note that 2 ď r` s ď
2m´ 2). The ring A is a noetherian ring of dimension 2 and it is singular at the maximal ideal
generated by u, v, and w.

Let us first examine div w Ď Spec A. It is the subscheme of Spec A determined by the ideal pwq:

A{pwq “ R{pujvkwl ´ απ, urvs, wq.

The underlying reduced scheme is given by

radpujvkwl ´ απ, urvs, wq “

$

’

&

’

%

puj ´ απ, uv, wq case 1: k “ l “ 0,

pvk ´ απ, uv, wq case 2: j “ l “ 0,

pπ, uv, wq case 3: else.

In case 1 div w has one horizontal component Zu corresponding to the prime ideal puj´απ, v, wq
and one vertical component Zv corresponding to pπ, u, wq. In case 2 it has one horizontal compo-
nent Zv corresponding to pvk´απ, u, wq and one vertical component Zu corresponding to pπ, v, wq.
In case 3 it has two vertical components Zu and Zv corresponding to pπ, v, wq and pπ, u, wq.
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Consider the blowup Y of Spec A in z. Let Y 1 denote the normalization of Y . The morphism Y 1 Ñ
Y factors through Y ˆASpec A1 Ñ Y as the latter is finite birational. We thus have the following
diagram:

Spec A Y

Spec A1 Y ˆA Spec A
1

Y 1.

The morphism Y 1 Ñ Spec A1 is a birational morphism of normal surfaces with exceptional
locus z1 P Spec A1. Let us calculate Y . By [Liu], Lemma 8.1.2(e), Y can be covered by 3 affine
open subschemes Spec Bu, Spec Bv, and Spec Bw, where

Bu “ Ar
v

u
,
w

u
s, Bv “ Ar

u

v
,
w

v
s, Bw “ Ar

u

w
,
v

w
s

considered as subrings of the quotient field of A. More precisely, define

Ru “ Rrvu, wus{pvuu´ v, wuu´ wq,

Rv “ Rruv, wvs{puvv ´ u,wvv ´ wq,

Rw “ Rruw, vws{puww ´ u, vww ´ vq.

Then Spec Ru, Spec Rv, and Spec Rw are smooth and of finite type over O and

Bu “ Ru{Iu,

Iu “

$

’

&

’

%

puj`k`lvkuw
l
u ´ απ,wmu u

m´r´s ´ vsuq if m ą r ` s,

puj`k`lvkuw
l
u ´ απ,wr`su ´ vsuq if m “ r ` s,

puj`k`lvkuw
l
u ´ απ,wmu ´ ur`s´mvsuq if m ă r ` s,

Bv “ Rv{Iv,

Iv “

$

’

&

’

%

pujvv
j`k`lwlv ´ απ,wmv v

m´r´s ´ urvq if m ą r ` s,

pujvv
j`k`lwlv ´ απ,wr`sv ´ urvq if m “ r ` s,

pujvv
j`k`lwlv ´ απ,wmv ´ urvv

r`s´mq if m ă r ` s,

Bw “ Rw{Iw,

Iw “

$

’

&

’

%

pujwv
k
ww

j`k`l ´ απ,wm´r´s ´ urwv
s
wq if m ą r ` s,

pujwv
k
ww

j`k`l ´ απ, 1´ urwv
s
wq if m “ r ` s,

pujwv
k
ww

j`k`l ´ απ, 1´ urwv
s
ww

r`s´mq if m ă r ` s.

Let us first treat the case where m “ r ` s. Since uw, vw P Bw are invertible, Bu and Bv
are subrings of Bw and thus Spec Bw Ď Spec Bu X Spec Bv. We can therefore omit Bw. By
Lemma 4.13 the morphisms

Bu Ñ B1u :“ Rrxs{puj`k`lxkpr`sq`ls ´ απ, xr`su´ v, xsu´ wq,

vu ÞÑ xr`s

wu ÞÑ xs

Bv Ñ B1v :“ Rrys{pvj`k`lyjpr`sq`lr ´ απ, yr`sv ´ u, xrv ´ wq

uv ÞÑ yr`s

wv ÞÑ yr
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constitute a normalization Y 1 of Y , where in the quotient field K of A we have x “ y´1. Since Y 1
is regular, it is already a desingularization of Spec A1. The divisor div w Ď Y 1 is given by

div w X Spec B1u “ Spec B
1
u{pwq “ Spec Rrxs{puj`k`lxkpr`sq`ls ´ απ, xsu, v, wq,

div w X Spec B1v “ Spec B
1
v{pwq “ Spec Rrys{pvj`k`lyjpr`sq`lr ´ απ, yrv, u, wq,

and its underlying reduced subscheme by

pdiv w X Spec B1uqred “

#

Spec Rrxs{puj`k`l ´ απ, ux, v, wq if k “ l “ 0,

Spec Rrxs{pπ, ux, v, wq else,

pdiv w X Spec B1vqred “

#

Spec Rrys{pvj`k`l ´ απ, vy, u, wq if j “ l “ 0,

Spec Rrys{pπ, vy, u, wq else.

The divisor div w X Spec B1u has two irreducible components. The first one is given by the
prime ideals pπ, u, v, wq of Rrxs and the second one by pπ, v, w, xq or puj`k`l ´ απ, v, w, xq, re-
spectively. The component corresponding to pπ, u, v, wq is isomorphic to A1

k and the component
corresponding to pπ, v, w, xq, respectively puj`k`l´απ, ux, v, wq, is isomorphic to the irreducible
component Zu of pSpec Aqs. Analogously, div w X Spec B1v has two irreducible components,
one of them isomorphic to A1

k and the other one isomorphic to the irreducible component Zv
of pSpec Aqs. We readily check that the irreducible components of div w intersect transversally
implying that div w is tidy. The components of div w X Spec B1u and div w X Spec B1v that
are isomorphic to A1

k patch together to form the exceptional fibre E – P1
k of Y 1 Ñ Spec A1.

Furthermore, we read off that the dual graph of the special fibre looks as follows:

Zu E Zv
.

Assume next that r ` s ą m. By the same reason as before we can omit Bw. Let us deter-
mine div w.

div w X Spec Bu“ Spec Bu{pwq

“ Spec Rrvu, wus{puj`k`lvkuw
l
u ´ απ,wmu ´ ur`s´mvsu, vuu´ v, wuu,wq,

div w X Spec Bv“ Spec Bv{pwq

“ Spec Rruv, wvs{pujvv
j`k`lwlu ´ απ,wmv ´ urvv

r`s´m, uvv ´ u,wvv, wq.

The underlying reduced scheme is given by

pdiv w X Spec Buqred “

#

Spec Rrvus{puj`k`l ´ απ, uvu, v, wq if k “ l “ 0,

Spec Rrvus{pπ, uvu, v, wq else,

pdiv w X Spec Bvqred “

#

Spec Rruvs{pvj`k`l ´ απ, uvv, u, wq if j “ l “ 0,

Spec Rruvs{pπ, uvv, u, wq else.

Again, the exceptional fibre E is isomorphic to P1
k and we read off the dual graph of the special

fibre:

Zu E Zv
.

By Lemma 4.14 we can replace Bu by

B1u “ R1u{px1j
1

y1k
1

z1l
1

´ απ, z1m
1

´ x1r
1

y1s
1

q

with
R1u “ Rurx

1, y1, z1s{px1g1 ´ u, y1g2 ´ vu, x
1ay1bz1g3 ´ wuq,
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where we use r ` s ´ m instead of r and j ` k ` l instead of j and similarly for Bv. The
integers m1, j1, k1, l1, r1, s1, g1, g2 and g3 are defined as in Lemma 4.14. Note that Spec R1u is
smooth and of finite type over O. Since s and m are coprime, we have that m1 ą 1 and r1, s1 ą 0.
Furthermore, pm1, r1 ` s1q ď pm, pr ` s ´mq ` sq ă pm, r ` sq in the lexicographical ordering
as m ą s. Hence, the induction hypothesis states that there is a desingularization Xu of the
normalization Y 1u of Spec B1u (which coincides with the preimage of Spec Bu in Y 1) such that div z1
is tidy, the exceptional fibre Gu of Xu Ñ Y 1u is a bridge of P1’s in div z1 and the dual graph
of div z1 has the form

Zu
Gu

E

.

We check that on Spec B1u the divisors div w and div z1 have the same support implying that
their dual graphs coincide.

Analogously, there is a desingularization Xv of the normalization Y 1v of Spec B1v such that div w Ď
Xv is tidy, the exceptional fibre Gv of Xv Ñ Y 1v is a bridge of P1’s in div w and the dual graph
of div w Ă Xv has the form

E
Gv

Zv.

.

Since Y 1 has only isolated singularities, the desingularizations Xu Ñ Spec Bu and Xv Ñ Spec Bv
can be patched together to a desingularization X Ñ Y 1. Combining the dual graphs of div w
in Spec Bu and Spec Bv we obtain

Gu
Zu E

Gv
Zv.

.

Since Gu and Gv are bridges of P1’s by induction, the whole exceptional fibre is a bridge of P1’s
and the assertion is proven for m ă r ` s.

Let us finally treat the case where m ą r ` s. We have

pdiv w X Spec Buqred “

#

Spec Rrwus{puj`k`l ´ απ, uwu, v, wq if k “ l “ 0,

Spec Rrwus{pπ, uwu, v, wq else,

pdiv w X Spec Bvqred “

#

Spec Rrwvs{pvj`k`l ´ απ,wvv, u, wq if j “ l “ 0,

Spec Rrwvs{pπ,wvv, u, wq else,

pdiv w X Spec Bwqred “ Spec Rruw, vws{pπ, uwvw, u, v, wq.

We read off the dual graph of the special fibre:

Zu Eu Ev Zv
,

where Eu and Ev are rational. By Lemma 4.14 we can replace Bw by

B1w “ R1w{px1j
1

y1k
1

z1l
1

´ απ, z1m
1

´ x1r
1

y1s
1

q

with
R1w “ Rwrx

1, y1, z1s{px1g1 ´ uw, y
1g2 ´ vw, x

1ay1bz1g3 ´ wq

using j ` k ` l instead of l and m´ r ´ s instead of m. If m1 “ 1, which happens if m´ r ´ s
divides rs, B1w is regular and div w Ď Spec B1w is tidy. Otherwise, since pm1, r1`s1q ă pm, r`sq,
the induction hypothesis states that there is a desingularization Xw Ñ Y 1v such that div z1 is tidy,
the exceptional fibre Gw of Xw Ñ Y 1v is a bridge of P1’s in div z1, and the dual graph of div z1
has the form
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Eu
Gw

Ev

.

Again, the dual graphs of div z1 and of div w coincide.

By analogous considerations for Bu and Bv we obtain: The normalization Y 1u of Spec Bu is regular
if s divides m´ r´ s. Otherwise, there is a desingularization Xu Ñ Y 1u such that div w Ď Xu is
tidy, the exceptional fibre Gu is a bridge of P1’s in div w and the dual graph of div w XXu has
the form

Zu
Gu

Eu

.

Similarly, the normalization Y 1v of Spec Bv is regular if r divides m´ r ´ s. Otherwise, there is
a desingularization Xv Ñ Y 1v such that div w Ď Xv is tidy, the exceptional fibre Gv is a bridge
of P1’s in div w and the dual graph of div w XXv has the form

Ev
Gv

Zv

.

As in the case r ` s ą m, the desingularizations Xu, Xv and Xw patch together to a desingu-
larization X Ñ Y 1. Putting the pieces of the dual graphs together, we check that in any case
(s|m´ r ´ s or not etc.) the exceptional fibre of X Ñ Spec A1 is a bridge of P1’s in div w and
the dual graph of div w is of the form as stated in the lemma. For instance, if r|m ´ r ´ s we
have

Zu
G2

Eu
G1

Ev Zv

.

This completes the proof in the case m ą r ` s.

We just proved that there exists a desingularization of Spec A1 such that the exceptional fibres
are bridges of P1’s in div w. In order to show that this is true for any tidy desingularization
of pSpec A1, div wq we need the following lemma.

Lemma 4.16: Let X{B be an arithmetic surface and D Ď X a tidy divisor. Let E be an
irreducible component of D which is a ´1-curve with field of definition k (i. e., a vertical prime
divisor with self-intersection ´rk : kpbqs, where b is the image point of E in B). Suppose that E
intersects each vertical divisor and each irreducible component of D in at most one point such
that all intersection points are k-rational and the total number of intersection points is at most 2.
Then the push-forward D1 of D to the contraction π : X Ñ X 1 of E is a tidy divisor.

Proof: The contraction X Ñ X 1 exists and is regular at the image point p of E by Castelnuovo’s
criterion as E is a ´1-curve (see [Liu], Chapter 9, Theorem 3.8). We have to show that D1 is tidy
at p. LetW 1 be either an irreducible component ofD1 or a vertical prime divisor passing through p.
Denote by W its strict transform in X. Then W is either an irreducible component of D or a
vertical prime divisor and intersects E transversally at a k-rational point, i. e., E ¨W “ rk : kpbqs.
Since X 1 is regular at p, we have

π˚pW 1q “W `mppW
1q ¨ E,

where mppW
1q denotes the multiplicity of W 1 in p, i. e., the maximal power of the maximal ideal

corresponding to p which contains the ideal sheaf at p corresponding to W 1. By the projection
formula

0 “ E ¨ π˚pW 1q “ E ¨ pW `mppW
1q ¨ Eq “ rk : kpbqsp1´mppW

1qq,
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and thus mppW
1q “ 1, i. e., W 1 is regular at p. If W 1 is the only prime divisor passing through p

which is either vertical or contained in D, we are done. If not, there is exactly one other such
prime divisor Z 1, which is regular at p by the same reason as W 1. We have to show that Z 1
intersects W 1 transversally at p. Since the problem is local on X 1, we may assume that p is the
only intersection point of Z 1 and W 1. Hence, Z and W do not intersect and

Z 1 ¨W 1 “ π˚pZ 1q ¨ π˚pW 1q “ pZ ` Eq ¨ pW ` Eq “ rk : kpbqs,

which is equivalent to saying that Z 1 and W 1 intersect transversally at p.

Corollary 4.17: In the situation of Lemma 4.15 let X 1 Ñ Spec A1 be the minimal desingular-
ization of Spec A1. Then div w Ď X 1 is tidy, the exceptional fibre is a bridge of P1’s in div w
and the dual graph of div w has the form

E
Zu Zv

.

Proof: If the desingularization X Ñ Spec A1 constructed in Lemma 4.15 is not the minimal
desingularization of Spec A1, there is an irreducible component E of the exceptional fibre which
is a ´1-curve. Using that the exceptional fibre of X Ñ Spec A1 is a bridge of P1’s in div w we
verify that the assumptions on E in Lemma 4.16 are satisfied. Contracting E we obtain another
desingularization of Spec A1 with the required properties and with one irreducible component
less. Having contracted all ´1-curves we arrive at the minimal desingularization of Spec A1,
which is thus of the desired form.

Corollary 4.18: In the situation of Lemma 4.15, for any tidy desingularization of Spec A1 the
exceptional fibre is a bridge of P1’s in div w and the dual graph of div w has the form

E
Zu Zv

.

Proof: By Lemma 4.17 the minimal desingularization X Ñ Spec A1 has the asserted properties.
Any other tidy desingularization evolves from X by successively blowing up special points of D.
In our situation the special points coincide with the singular points of D. After blowing up a
singular point of D the exceptional fibre still has the above described form.

4.4 The generalized exceptional fibre of a desingularized tame
covering

In this section we describe the singularities arising in a tame covering pX1, D1q Ñ pX,Dq of an
arithmetic surface X{B with tidy divisor D. It turns out that the singularities of X1 are locally
of the form Spec A, where A is the ring defined in the previous section. More precisely, we have
the following result.

Proposition 4.19: Let X{B be an arithmetic surface and D Ď X a tidy divisor. Let pX1, D1q Ñ

pX,Dq be a tame covering of pX,Dq and pX 1
min , D

1
minq Ñ pX1, D1q the minimal desingularization

of pX1, D1q. Then D1min is a tidy divisor and the exceptional fibres of X 1
min Ñ X1 are bridges

of P1’s in D1min . In particular, pX 1
min , D

1
minq Ñ pX,Dq is a tidy desingularization of pX,Dq.

Moreover, for any other desingularized tame covering pX 1, D1q Ñ pX,Dq the generalized excep-
tional fibres are bridges of P1’s in D1, as well.

Proof: The assertions of the proposition are étale local. Indeed, let pY,Zq Ñ pX,Dq be an étale
cover. We obtain a cartesian diagram
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pY 1, Z 1q pY1, Z1q pY, Zq

pX 1
min , D

1
minq pX1, D1q pX,Dq.

The upper row defines a desingularized c-covering of pY,Zq. The exceptional fibre Ey1 of a closed
point y1 P Y1 is the base change of the exceptional fibre Ex1

of the image point x1 P X1 to the
residue field of y1. If Ex1 is a bridge of P1’s, the same holds for its base change to kpy1q. Suppose
that Ey1 is a bridge of P1’s with dual graph

A1 E1 E2 En´1 En An
,

where A1 and An denote the irreducible components of Z1 passing through y1. The images
of A1 and An in D1 are two distinct irreducible components B1 and Bn of D1 intersecting
in x1. The exceptional fibre Ex1 connects the strict transforms of B1 and Bn. Each irreducible
component of Ex1 has at most two intersection points because otherwise there would be irreducible
components of Ey1

with more than two intersection points. With these restrictions the dual graph
of Ex1 has to be of the form

B1 F1 F2 Fm´1 Fm Bn
,

with m ď n. Furthermore, the intersection point of the strict transform of Bn with Fm is kpx1q-
rational. Hence, the field of definition of Fm is kpx1q and thus Fm is isomorphic to P1

kpx1q

and En equals the base change of Fm to kpy1q. The intersection point of Fm with Fm´1 also
has to be kpx1q-rational because otherwise En would have more than two intersection points.
Continuing this process, we obtain by induction on n that Ex1 is a bridge of P1’s. By the same
reasoning as in proposition 4.17 we obtain the statement about the minimal desingularization
of pY1, Z1q and as in Corollary 4.18 we conclude that the generalized exceptional fibres are bridges
of P1’s for any tidy desingularization of pY1, D1q.

Since X1 is normal, it has only isolated singularities. Let x be a singular point of X lying over a
closed point b P B. By Lemma 2.11 there is a smooth, connected scheme of finite type Z over B of
relative dimension 2, a closed point z P Zb, and a surjective homomorphism OZ,z Ñ OX,x whose
kernel is generated by an element F P OZ,z which takes the following form: There is a system of
parameters pπ, u, vq of OZ,z, a unit α P OˆZ,z, and non-negative integers j, k with j ` k ą 0 such
that

F “ ujvk ´ απ.

Furthermore, if we denote by ū and v̄ the image of u and v in Spec OX,x, we have either

pDOX,xqred “ div ū` div v̄ or pDOX,xqred “ div ū.

Shrinking Z we may assume that Z “ Spec R is affine and that u and v are contained in R such
that div pπuvq is an snc divisor and the intersection of an arbitrary subset of tdiv π, div u, div vu
is irreducible and pπ, u, vq is the maximal ideal corresponding to z. We may then replace X
by Spec R{F and D by divpuvq or divpuq, respectively. By Lemma 4.2 it suffices to treat the
case where D is singular, i. e., D “ divpuvq.

Let x1 P X1 be a point in the preimage of x. By Corollary 4.5 the strict henselization pX1q
sh
x1

of X1 at x1 is the normalization of Xsh
x in a function field extension

KpXsh
x qr

n
?
u, m
?
urvss|KpXsh

x q

with m,n prime to the residue characteristic, 0 ď r, s ď m ´ 1 and gcdpr, s,mq “ 1. Since the
assertions of the proposition are étale local by the first paragraph of the proof, we may assume
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that µm and µn are constant sheaves on X. Then, étale locally at x, the tame covering X1 Ñ X
is the normalization of X in the function field extension

KpXqr n
?
u, m
?
urvss|KpXq.

The normalization X2 of X in KpXqr n
?
us ramifies only in div u, which is regular. Lemma 4.2

thus implies that X2 is regular. So without loss of generality we may replace X with X2 and
assume that X1 is the normalization of X in KpXqr m

?
urvss. Hence, X1 is isomorphic to the

normalization of
Spec Rrws{pujvk ´ απ,wm ´ urvsq.

Replacing X by an open subscheme we may assume that the assumptions on Rrws from the
beginning of section 4.3 are satisfied: The divisor divpπuvwq of Spec Rrws is an snc-divisor
such that the intersection of an arbitrary subset of tdiv π, div u, div v, div wu is irreducible.
Moreover, by construction, pπ, u, v, wq is the maximal ideal corresponding to the image point
of x1 in Spec Rrws. The assertions now follow from Corollary 4.17 and Corollary 4.18.

Corollary 4.20: Let X{B be an arithmetic surface and D Ď X a tidy divisor. Let pX1, D1q Ñ

pX,Dq be a tame covering of pX,Dq and pX 1, D1q Ñ pX1, D1q a desingularization of pX1, D1q.
Assume that every irreducible component of an exceptional fibre of pX 1, D1q Ñ pX1, D1q intersects
the other irreducible components of D1 in at least two points. Then pX 1, D1q Ñ pX1, D1q is a tidy
desingularization.

Proof: We can factor pX 1, D1q Ñ pX1, D1q as

pX 1, D1q :“ pX 1
0, D

1
0q Ñ pX 1

1, D
1
1q Ñ . . .Ñ pX 1

n, D
1
nq Ñ pX1, D1q,

where pX 1
n, D

1
nq Ñ pX1, D1q is the minimal desingularization of pX1, D1q and for i “ 1, . . . , n

the morphism pX 1
i´1, D

1
i´1q Ñ pX 1

i, D
1
iq is the blowup of X 1

i in a closed point pi of D1i. By
proposition 4.19 the minimal desingularization pX 1

n, D
1
nq Ñ pX1, D1q is a tidy desingularization.

Moreover, blowing up in closed points does not destroy the tidiness of a divisor. Hence,D1i is a tidy
divisor of X 1

i for all i “ 0, . . . n. Suppose that pX 1, D1q Ñ pX1, D1q is not a tidy desingularization.
Then there is an index i such that pi is not a special point of D1i, i. e., pi is a regular point of Di.
Let i0 be the smallest such index. Then the exceptional fibre of pX 1

i0´1, D
1
i0´1q Ñ pX 1

i0
, D1i0q has

only one intersection point with the other irreducible components of D1i0´1. This does not change
by blowing up D1i0´1 in special points. We thus obtain a contradiction.

Our knowledge of the local structure of desingularized tame coverings now puts us in the position
of proving Lemma 2.21 from the previous chapter. For the convenience of the reader we restate
it here:

Lemma: The following assertions hold:

(i) If pX 1, D1q Ñ pX,Dq and pX2, D2q Ñ pX 1, D1q are both desingularized c-coverings, the
composite pX2, D2q Ñ pX,Dq is again a desingularized c-covering.

(ii) If pX 1, D1q Ñ pX,Dq and pX2, D2q Ñ pX,Dq are desingularized c-coverings, there is a
commutative diagram of desingularized c-coverings

pX 1, D1q

pX3, D3q pX,Dq.

pX2, D2q
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(iii) Let X 1{B1 be another arithmetic surface with tidy divisor D1 Ď X 1. Let x̄Ñ pX 1 ´D1q be
a geometric point. There is at most one desingularized tame covering pX 1, D1q Ñ pX,Dq
such that x̄Ñ pX 1´D1q Ñ pX´Dq coincides with the fixed geometric point x̄Ñ pX´Dq.

Proof: (i). Let X1 be the normalization of X in KpX 1q and X2 its normalization in KpX2q.
Furthermore, denote by X 1

1 the normalization of X 1 in KpX2q. We obtain a cartesian diagram

D2 D2 D

X2 X2 X.

Since U 1 “ X 1 ´ D1 is the normalization of U “ X ´ D in KpX 1q and U2 “ X2 ´ D2 is the
normalization of U 1 in KpX2q, U2 is also the normalization of U in KpX2q. It is thus an open
subscheme of X2 and U2 Ñ U is a finite étale c-covering as finite étale c-coverings are stable under
composition. Hence, X2 Ñ X2 is birational and an isomorphism on U2. Moreover, D2 Ď X2 is
a tidy divisor. The only remaining question is whether X2 Ñ X2 is obtained from the minimal
desingularization of pX2, D2q by successively blowing up in special points. By Corollary 4.20 it
suffices to show that every irreducible component of an exceptional fibre of X2 Ñ X2 meets the
other irreducible components of D2 in at least two points. The morphisms X2 Ñ X 1 and X 1 Ñ X
factor as

pX2, D2q“ pY0, Z0q Ñ . . .Ñ pYn, Znq “ pX
1
1, D

1
1qÑ pX 1, D1q,

pX 1, D1q “ pYn`1, Zn`1qÑ . . .Ñ pYm, Zmq“ pX1, D1qÑ pX,Dq,

where pYn, Znq Ñ pX 1
1, D

1
1q and pYm, Zmq Ñ pX1, D1q represent the minimal desingulariza-

tions of pX 1
1, D

1
1q and pX1, D1q, respectively, and for i “ 1, . . . , n and i “ n ` 2, . . . ,m the

morphism pYi´1, Zi´1q Ñ pYi, Ziq is the blowup of Yi in a special point pi of Zi. Let E be an
irreducible component of an exceptional fibre of X2 Ñ X2. There is i P t1, . . . , nuYtn`2, . . .mu
such that the image of E in Yi´1 is one-dimensional and its image in Yi is a closed point. This
closed point is precisely the point pi and we obtain a finite morphism from E to the exceptional
fibre of Yi´1 Ñ Yi in X2. Since Xi´1 Ñ Xi is the blowup of Xi in pi and pi is a special point,
its exceptional fibre intersects the other irreducible components of Zi´1 in two points. The in-
tersection points of E contain the preimages of these two points and thus there are at least two
intersection points.

(ii). LetK3 be the compositum ofKpX 1q andKpX2q andX3 the normalization ofX inK3. This
defines a c-covering pX3, D3q Ñ pX,Dq. We obtain rational maps X3 99K X 1 and X3 99K X2,
which, restricted to U3 “ X3´D3, are finite étale c-coverings of U 1 “ X 1´D1 and U2 “ X2´D2,
respectively. Using elimination of indeterminacies and the existence of tidy desingularizations we
find a desingularization pX3, D3q Ñ pX3, D3q dominating pX 1, D1q and pX2, D2q such that D3
is tidy. Suppose there is an irreducible component E of an exceptional fibre of X3 with only one
intersection point with the other irreducible components of D3. By similar arguments as in the
proof of part (i) the image of E in X 1 as well as in X2 is a point. Let us write

pX3, D3q “ pX3
0 , D

3
0 q Ñ . . .Ñ pX3

n , D
3
n q Ñ pX3, D3q,

where pX3
n , D

3
n q Ñ pX3, D3q is the minimal desingularization of pX3, D3q and for i “ 1, . . . , n

the morphism X3
i´1 Ñ X3

i is the blowup of X3
i in a closed point pi P D3i . There is i P t1, . . . , nu

such that the image of E is the point pi and the image of E in X3
i´1 is the exceptional fibre Ei

of X3
i´1 Ñ X3

i . Since E has only one intersection point, the same holds for Ei. Furthermore, the
blowup points pk for k “ 1, . . . , i´1 must not lie above Ei except possibly above the intersection
point qi of Ei with the other irreducible components. One checks that after blowing up in qi the
strict transform of Ei is still a ´1-curve. Therefore, we can contract E. Moreover, by similar
arguments as in the proof of part (i) the image of E in X 1 as well as in X2 is a point. Hence,
the contraction still factors through X 1 Ñ X and X2 Ñ X. After finitely many contractions we
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may assume that all irreducible components of exceptional fibres of X3 Ñ X3 have at least two
intersection points. Then the same holds for the generalized exceptional fibres of X3 Ñ X 1 and
of X3 Ñ X2 as these are contained in the exceptional fibres of X3 Ñ X3. The assertion now
follows from Lemma 4.20.

(iii). Set U “ X ´D and U 1 “ X 1´D1. Denote by x1 the image of the geometric point x̄ in X 1.
There is at most one étale covering U 1 Ñ U which induces x1 Ñ x and a morphism X 1 Ñ X is
completely determined by its restriction to a dense open subset.

4.5 Multiplicities of the exceptional divisors

Given an arithmetic surface X{B, a tidy divisor D Ď X on X, and a desingularized tame
covering pX 1, D1q Ñ pX,Dq, we have determined in the preceding sections the structure of the
support of D1. However, we have not yet dealt with the multiplicities in D1 of the irreducible
components of the generalized exceptional fibres. More precisely, we are interested in the pullback
of an irreducible component of D to X 1.

Definition 4.21: Let X{B be an arithmetic surface and D Ď X a Cartier divisor. Let f :
pX 1, D1q Ñ pX,Dq be a morphism such that pullback of Cartier divisors is defined (e. g. birational
or flat). Let x1 P D1 be a closed point and denote by x P D the image of x1 in X. Let us
call D1, . . . , Dn the irreducible components of D passing through x and D11, . . . , D1m the irreducible
components of D1 passing through x1. Restricting f to a suitable neighborhood of x1, the pullback
of Cartier divisors via f induces a homomorphism

Q ¨D1 ‘ . . .‘Q ¨Dn Ñ Q ¨D11 ‘ . . .‘Q ¨D1m.

We call this morphism multiplicity homomorphism at x1 and its transformation matrix with respect
to the above bases multiplicity matrix at x1.

In particular, the multiplicity homomorphisms are defined for a tidy divisor D and a desingular-
ized tame covering pX 1, D1q Ñ pX,Dq. Moreover, multiplicity homomorphisms are compatible
with composition. If pX2, D2q Ñ pX 1, D1q is another morphism as above and x2 a closed point
of D2 mapping to x1 P D1, the multiplicity homomorphism of pX2, D2q Ñ pX 1, D1q at x2 is the
composition of the multiplicity homomorphism of pX2, D2q Ñ pX 1, D1q at x2 and the multiplicity
homomorphism of pX 1, D1q Ñ pX,Dq at x1.

Lemma 4.22: Let X{B be an arithmetic surface and D Ď X a tidy divisor. Let pX 1, D1q Ñ
pX,Dq be the blowup of X in a singular point p of D. Then all multiplicity homomorphisms are
surjective.

Proof: Denote by D1 and D2 the irreducible components of D passing through p and by D11
and D12 their strict transforms in X 1. Furthermore, let E denote the singular fibre of X 1 Ñ X.
On E Ď D1 there are two points p11 and p12 where D1 is singular, namely the respective intersection
points with D11 and D12. The pullback of Di is given by D1i ` E. Hence, the intersection matrix
at p11 as well as at p12 (with respect to the bases tpD1, D2q, pD

1
1, Equ and tpD1, D2q, pE,D

1
2qu,

respectively) is
ˆ

1 0
1 1

˙

,

which is invertible. If p1 P E is a nonsingular point of D1, its multiplicity matrix is
`

1 1
˘

,

which is nonzero and thus its multiplicity homomorphism is surjective. The intersection homo-
morphism at any other closed point of D1 is the identity.
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Lemma 4.23: Let X{B be the localization of an arithmetic surface at a closed point x of codi-
mension 2 and D Ď X a tidy divisor. Let π : pX 1, D1q Ñ pX1, D1q Ñ pX,Dq be a desingularized
tame covering such that pX1, D1q is local with closed point x1 and pX 1, D1q Ñ pX1, D1q is the
minimal desingularization of pX1, D1q. Suppose that X1 is singular, i. e., that X 1 Ñ X1 is not
the identity. Let Z be an irreducible component of D. Then, there is exactly one irreducible
component Z1 of D1 lying above Z and the exceptional fibre E of X 1 Ñ X1 is a chain of P1’s
with dual graph

E1 E2 En´1 En
.

Moreover, E intersects the strict transform Z 1 of Z1 in one point p P E1 and the pullback π˚Z
of Z to X 1 takes the form

a0Z
1 ` a1E1 ` . . . anEn

with a0 ą a1 ą . . . ą an ą 0.

Proof: All assertions except the one about the coefficients a0, . . . , an follow from Corollary 4.17.
Denote by b the image of x in B. In order to simplify notation, we set E0 :“ Z 1. By the projection
formula we have

0 “ π˚Z ¨ En “ pa0E0 ` a1E1 ` . . . anEnq ¨ En “ rkpxq : kpbqspan´1 ` anE
2
nq.

Since the desingularization X 1 Ñ X1 is minimal, En cannot be a ´1-curve and thus E2
n ă ´1.

(The self-intersection of En has to be negative by [Liu], chapter 9, Theorem 1.27.) Hence,

an´1 “ ´anE
2
n ą an.

By induction we may assume that ai`1 ă ai for 0 ă k ď i ă n. Again by the projection formula
we obtain

0 “ π˚Z ¨ Ek “ rkpxq : kpbqspak´1 ` akE
2
k ` ak`1q.

By induction and using E2
k ď ´2 we conclude that

ak´1 “ ´ak`1 ´ akE
2
k ą ´ak`1 ` 2ak ą ak.

Lemma 4.24: Let X{B be an arithmetic surface and D Ď X a tidy divisor. Let π : pX 1, D1q Ñ
pX1, D1q Ñ pX,Dq be a desingularized tame covering. Then all multiplicity homomorphisms are
surjective.

Proof: By Lemma 4.22 we may assume that X 1 Ñ X1 is the minimal desingularization of X1.
Let x1 P D1 be a closed point and denote by x1 and x the image of x1 in X1 and X, respectively.
Without loss of generality we may replace X by its localization at x and X1 by its localization
at x1 andX 1 by its base change to the localization ofX1 at x1. If x1 is a regular point ofD1, there is
only one irreducible component of D1 passing through x1. Hence, the multiplicity homomorphism
at x1 is surjective if and only if it is nonzero, which is clear by taking the pullback of any irreducible
component of D passing through x.

Suppose that x1 is a singular point of D1. Then also x1 and x are singular points of D1 and D,
respectively. There are two irreducible components Z1 andW1 of D1 passing through x1 mapping
to the irreducible componentsW and Z of D passing through x. Assume first that x1 is a regular
point of X1. Then X1 “ X 1 and

π˚Z “ aZ1 and π˚W “ bW1
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with positive integers a and b. Hence, the multiplicity matrix is
ˆ

a 0
0 b

˙

,

which is invertible. If x1 is a singular point of X1, we are in the situation of Lemma 4.23. Using
the notation of this lemma we have

π˚Z “ a0Z
1 ` a1E1 ` . . . anEn

with a0 ą a1 ą . . . an ą 0 and

π˚W “ b1E1 ` . . . bnEn ` bn`1W
1

with b1 ă . . . ă bn ă bn`1 and where W 1 denotes the strict transform of W1 in X 1. Setting E0 :“
Z 1 and En`1 :“ W 1 we know that there is an integer i with 0 ď i ď n such that x1 is the
intersection point of Ei with Ei`1. The intersection matrix at x1 is

ˆ

ai bi
ai`1 bi`1

˙

and

det

ˆ

ai bi
ai`1 bi`1

˙

“ aibi`1 ´ ai`1bi ą aibi ´ aibi “ 0

as ai`1 ă ai and bi`1 ą bi. Therefore, also in this case the multiplicity homomorphism is
surjective.
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Chapter 5

Cohomology with support

Given an arithmetic surface X{B, a tidy divisor D Ď X and a full class of finite groups c we want
to lift, in the limit over all desingularized c-coverings, cohomology classes on U to cohomology
classes on X. Via the excision sequence associated with D ãÑ X this amounts to showing the
vanishing in the limit over IX,D,x̄ of the cohomology groups with support

Hi
DpX,Z{mZq

for m P Npcq. Assuming all integers in Npcq are invertible on X, we can apply absolute coho-
mological purity to compute these cohomology groups. Since in general, D is not regular (it
is singular in the special points S), we have to divide this task in two steps making use of the
excision sequences associated with D ´ S Ď X ´ S and S Ď X.

5.1 Absolute cohomological purity

Definition 5.1: Let c be a non-negative integer. A regular pair of codimension c is a pair pX,Zq
where X is a noetherian regular scheme and Z is a closed subscheme of X of pure codimension c
whose underlying reduced scheme is regular. A morphism of regular pairs pX 1, Z 1q Ñ pX,Zq is a
cartesian diagram

Z 1 X 1

Z X.

Remark 5.2: At first sight it seems more natural to require Z in the definition of a regu-
lar pair pX,Zq to be regular, not only its underlying reduced subscheme. However, we want
tame coverings of a regular pair pX,Zq to be morphisms of regular pairs. But if a tame cover-
ing pX 1, Z 1q Ñ pX,Zq ramifies in Z, Z 1 cannot be reduced.

For non-negative integers n and r we write Z{nZprq for the r-fold tensor product of µn with itself
and define Z{nZp´rq “ HompZ{nZprq,Z{nZq. The following theorem by Gabber (see [Fuj]) is
known as absolute cohomological purity.

Theorem 5.3: Let pX,Zq be a regular pair of codimension c and n a positive integer invertible
on X. Set Λ “ Z{nZ. Then

Hq
ZpΛq –

#

0 for q ‰ 2c

ΛZp´cq for q “ 2c.
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Remark 5.4: In [Fuj] it is required that Z be regular. But the étale sites of Z and Zred are
equivalent and hence, the statement also holds if only Zred is regular.

Proposition 5.5: Let f : pX 1, Z 1q Ñ pX,Zq be a morphism of regular pairs of codimension c.
Suppose that Z and Z 1 are irreducible and as cycles we have f˚Zred “ e ¨ Z 1red with a positive
integer e (the ramification index). Then, for any n P N invertible on X the following diagram
commutes

Hi
ZpX,Z{nZq Hi´2cpZ,Z{nZp´cqq

Hi´2cpZ 1,Z{nZp´cqq

Hi
Z1pX

1,Z{nZq Hi´2cpZ 1,Z{nZp´cqq.

purity

„

¨e

purity

„

Proof: Set Λ :“ Z{nZ and for any scheme Y denote by ΛY the constant sheaf on Y with stalks Λ.
Consider the following diagram of sheaves on Z

f˚H2c
Z pΛXpcqq f˚ΛZ

ΛZ1

H2c
Z1pΛX1pcqq ΛZ1 .

„

¨e

„

The horizontal maps are induced by the cycle maps which map 1 P Λ to the fundamental
class sZred {X and sZ1red {X1 , respectively. We want to show that the diagram commutes. It suffices
to do so for global sections as all sheaves involved are constant. Under the composition

f˚ΛZ Ñ ΛZ1
¨e
Ñ ΛZ1 Ñ H2c

Z1pX
1,ΛX1pcqq

the element 1 P Λ is mapped to e ¨ sZ1red {X1 and under the composition

f˚ΛZ Ñ f˚H2
ZpX,ΛXpcqq Ñ H2c

Z1pX
1,ΛX1pcqq

it is mapped to f˚sZred {X , which equals e ¨ sZ1red {X1 because f
˚Zred “ e ¨ Z 1red . Twisting by p´cq

and taking cohomology we obtain the commutative diagram

Hi´2cpZ,H2c
Z pX,Λqq Hi´2cpZ,Λp´cqq

Hi´2cpZ 1,Λp´cqq

Hi´2cpZ 1, H2c
Z1pX

1,Λqq Hi´2cpZ 1,Λp´cqq.

„

¨e

„

By Theorem 5.3 the cohomology groups on the left are canonically isomorphic to Hi
ZpX,Λq

and Hi
Z1pX

1,Λq respectively. This proves the result.

Corollary 5.6: Let X be a noetherian, regular scheme and f : X 1 Ñ X a tamely ramified
covering such that the branch locus D Ď X is regular. Let Z be an irreducible component of D
and let Z 1 denote its preimage in X 1. Then, for any integer n dividing the ramification index of
each irreducible component of Z 1, the canonical map
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Hi
ZpX,Λq Ñ Hi

Z1pX
1,Λq

is the zero map for all i P N.

Proof: By Lemma 4.2, X 1 and the underlying reduced subscheme of Z 1 are regular because the
branch locus D is regular. Denote by Z 1k, k “ 1, . . . , r the irreducible components of Z 1. For
each k we can now apply proposition 5.5 to the morphism

X 1 ´
ď

i‰k

Z 1i Ñ X

to conclude that
Hi
ZpX,Λq Ñ Hi

Z1k
pX 1 ´

ď

i‰k

Z 1i,Λq

is the zero map. But
Hi
Z1pX

1,Λq “
à

k

Hi
Z1k
pX 1 ´

ď

i‰k

Z 1i,Λq,

and the corollary follows.

Lemma 5.7: Let pX,Zq be a regular pair of codimension c and set U “ X ´Z. Let π : X Ñ Y
be a proper morphism such that Z is flat over Y . Set Λ “ Z{nZ for an integer n prime to
the residue characteristics of X. Then for any closed y P Y and any integer d the base change
morphisms

pRqpπU q˚Λpdqqy Ñ HqpUy,Λpdqq

are isomorphisms for any q ě 0.

Proof: Without loss of generality we may assume Y is the spectrum of a strictly henselian local
ring with closed point y. Then, µn – Z{nZ on X and it suffices to prove the lemma for d “ 0.
We may further assume that Z is reduced. We need to show that

HqpU,Λq Ñ HqpUy,Λq

is an isomorphism. Consider the following diagram of excision sequences

. . . Hq
ZpX,Λq HqpX,Λq HqpU,Λq . . . .

. . . Hq
Zy
pXy,Λq HqpXy,Λq HqpUy,Λq . . .

The homomorphisms HqpX,Λq Ñ HqpXy,Λq are isomorphisms due to proper base change. By
flatness the morphism pXy, Zyq Ñ pX,Zq is a morphism of regular pairs of codimension c yielding
a commutative diagram

Hq
ZpX,Λq Hq´2cpZ,Λp´dqq.

Hq
Zy
pXy,Λq Hq´2cpZy,Λp´dqq

„

„

The horizontal maps are purity isomorphisms and the vertical map on the right is an isomorphism
by proper base change. Hence, the vertical map on the left is an isomorphism and the lemma
follows by applying the five lemma to the above diagram of exact sequences.
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5.2 Cohomology and dual graphs

LetX{B be an arithmetic surface andD Ď X a tidy divisor In this section we relate the homology
of the dual graph of D with the cohomology of X with support in D. Later, we will apply this
in the situation where D is an exceptional fibre of a desingularized tame covering.

Proposition 5.8: Let C be a projective curve over an algebraically closed field k with only
ordinary double points and let ΓC denote its dual graph. Let S Ă C be a finite set of closed
points containing the set Csing of singular points of C. Define CN :“

š

iCi, where Ci are the
normalizations of the irreducible components of C. Set SN “ S ˆC CN . For n P N prime to the
characteristic of k consider the homomorphisms of cohomology groups with coefficients in Z{nZ

H1pC ´ Sq “ H1pCN ´ SN q H2
SN
pCN q H0pSN qp´1q H0pSqp´1q,α

β

„

purity norm

where α is the connecting homomorphism of the excision sequence associated to pCN , SN q. Then

kerpβq

kerpαq
– H1pΓC ,Z{nZq, cokerpβq – H0pΓC ,Z{nZq,

where HipΓC ,Z{nZq denotes singular homology with coefficients in Z{nZ and such that for
each s P S the canonical map

H0psqp´1q Ñ H0pSqp´1q Ñ cokerpβq

is identified with the inclusion of the direct summand of H0pΓC ,Z{nZq corresponding to the
connected component of ΓC containing s.

Proof: The group H1pΓC ,Z{nZq can be calculated using a cellular chain complex. The zero-
skeleton pΓCq0 consists of the nodes of the graph which correspond to the irreducible compo-
nents Ci and the one-skeleton pΓCq1 is all of ΓC . Thus, the one-cells are the edges of the graph,
which correspond to the singular points in Csing . We give each edge s a direction by choosing
an initial node C1psq and an end node C2psq. Then HipΓC ,Z{nZq is the ith homology of the
sequence

0 Ñ H1ppΓCq1, pΓCq0,Z{nZq
d
Ñ H0ppΓCq0,Z{nZq Ñ 0

and the map d can be identified with
à

sPCsing

Z{nZ ¨ sÑ
à

i

Z{nZ ¨ Ci.

s ÞÑ C2psq ´ C1psq

We conclude that

H1pΓC ,Z{nZq – kerp
à

sPCsing

Z{nZ ¨ sÑ
à

i

Z{nZ ¨ Ciq

H0pΓC ,Z{nZq – cokerp
à

sPCsing

Z{nZ ¨ sÑ
à

i

Z{nZ ¨ Ciq.

Let us first compute kerpβq{kerpαq.

kerpβq

kerpαq
“ ker

ˆ

H1pC ´ Sq

kerpαq
Ñ H0pSqp´1q

˙

“ kerpImpαq Ñ H0pSqp´1qq

“ kerpkerpH2
SN pCN q Ñ H2pCN qq Ñ H0pSqp´1qq

“ kerpH2
SN pCN q Ñ H2pCN qq X kerpH2

SN pCN q Ñ H0pSqp´1qq.
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Via the purity isomorphism H0pSN qp´1q Ñ H2
SN
pCN q, the cohomology group H2

SN
pCN q is

identified with
à

sNPSN

Z{nZ ¨ sN

by mapping sN P
À

sN1PSN1
Z{nZ ¨ sN 1 to the fundamental class sSN {CN . Let us first exam-

ine pH2
SN
pCN q Ñ H2pCN qq. We identify H2pCN q with

à

i

Z{nZ ¨ Ci

via the degree maps H2pCiq
„
Ñ Z{nZ of the components Ci. For each component Ci of CN and

each sN P Ci X SN the images of the fundamental classes sSN {CN in H2pCiq are the same. With
these identifications the map H2

SN
pCN q Ñ H2pCN q is identified with

à

sNPSN

Z{nZ ¨ sN Ñ
à

i

Z{nZ ¨ Ci,

sN ÞÑ CpsN q

where CpsN q is the component of CN which contains sN . Next we consider the map H2
SN
pCN q Ñ

H0pSqp´1q, which is induced by the norm map H0pSN q Ñ H0pSq. Via the above identifications
it takes the form

à

sNPSN

Z{nZ ¨ sN Ñ
à

sPS

Z{nZ ¨ s, (5.1)

sN Ñ spsN q (5.2)

where spsN q is the image of sN in S. The kernel of this map is generated by psN q2psq´ psN q1psq
where psN qjpsq P Cjpsq are the two preimages in SN of a point s P Csing . We thus get an
isomorphism

à

sPCsing

Z{nZ ¨ sÑ kerp
à

sNPSN

Z{nZ ¨ sN Ñ
à

sPS

Z{nZ ¨ sq.

s ÞÑ psN q2psq ´ psN q1psq

Therefore, kerpβq{kerpαq is isomorphic to the kernel of the composition
à

sPCsing

Z{nZ ¨ sÑ
à

sNPSN

Z{nZ ¨ sN Ñ
à

i

Z{nZ ¨ Ci,

which maps s P Csing to C2psq ´C1psq. Comparing with the calculation of H1pΓC ,Z{nZq at the
beginning of the proof we see that

kerpβq

kerpαq
– H1pΓC ,Z{nZq.

Next we compute cokerpβq. In the above notation the image of α is given by

t
ÿ

asN sN P
à

sNPSN

Z{nZ ¨ sN |
ÿ

sNPCi

asN “ 0 @iu.

It is generated by all elements of the form psN q1 ´ psN q2 with psN q1 and psN q2 lying on the
same component of CN . The image of β is the image of this set under the map (5.1), i. e., it
is the subgroup of

À

sPS Z{nZ ¨ s generated by s1 ´ s2 with s1 and s2 on the same irreducible
component of C. This subgroup coincides with the subgroup generated by s1´ s2 with s1 and s2

on the same connected component of C, which equals

t
ÿ

ass P
à

sPS

Z{nZ ¨ s|
ÿ

sPZ

as “ 0 @Z Ď C connected componentu.

Hence, cokerpβq is the direct sum of a copy of Z{nZ for each connected component and the result
follows.
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Proposition 5.9: Let X{B be an arithmetic surface and D Ă X an snc-divisor. Let S Ă D
be a set of closed points containing the set Dsing of singular points of D. Denote by DN the
normalization of D and set SN “ S ˆD DN . Then the following diagram of cohomology groups
with coefficients in Λ “ Z{nZ (n prime to the residue characteristics of X) commutes

H3
D´SpX ´ S,Λq H3pX ´ S,Λq H4

SpX,Λq

H1pD ´ S,Λp´1qq H0pS,Λp´2qq

H1pDN ´ SN ,Λp´1qq H2
SN
pDN ,Λp´1qq H0pSN ,Λp´2qq.

δ

δ

purity „ purity „

δ

purity

„

norm

All maps δ denote connecting homomorphisms of excision sequences.

Proof: Denote by Di, i “ 1, . . . r the irreducible components of D. Since

H3
D´SpX ´ S,Λq “

à

i

H3
Di´SpX ´ S,Λq,

it suffices to prove the proposition for each component Di separately. We may thus assume
without loss of generality that D is a regular irreducible curve. In this case the above diagram
reduces to

H3
D´SpX ´ S,Λq H3pX ´ S,Λq H4

SpX,Λq

H1pD ´ S,Λp´1qq H2
SpD,Λp´1qq H0pS,Λp´2qq.

δ

δ

purity „

δ

purity „

purity

„

Consider the commutative diagram

H3
D´SpX ´ S,Λq H4

SpX,Λq

H1pD ´ S,H2
D´SpX ´ S,Λqq H2

SpD,H
2
DpX,Λqq

H1pD ´ S,Λp´1qq bH2
D´SpX ´ S,Λp1qq H2

SpD,Λp´1qq bH2
DpX,Λp1qq

H1pD ´ S,Λp´1qq H2
SpD,Λp´1qq.

δ

„

δ

„

„

„

δbres´1

„ bsD´S{X´S

δ

„ bsD{X

The restriction
res : H2

DpX,Λp1qq Ñ H2
D´SpX ´ S,Λp1qq

is an isomorphism which maps the fundamental class sD{X to sD´S{X´S. For this reason, the
homomorphism δ b res´1 in the third line of the diagram is well defined and the lowermost
square commutes. Commutativity of the middle square follows because HDpXq is a free sheaf
which restricts to HD´SpX ´ Sq on D´ S. The upper square commutes due to compatibility of
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the spectral sequences

Hi
SpD,H

j
DpX,Λqq ñ Hi`j

S pX,Λq,

HipD ´ S,Hj
D´SpX ´ S,Λqq ñ Hi`j

D´SpX ´ S,Λq.

Furthermore, by [Fuj], Proposition 1.2.1 the following diagram commutes

H4
SpX,Λq

H2
SpD,H

2
DpX,Λqq

H2
SpD,Λp´1qq bH2

DpX,Λp1qq

H2
SpD,Λp´1qq H0pS,Λp´2qq.

„

„

„ bsD{X

„

purity

„

purity

Putting the two diagrams together, the assertion of the proposition follows.

5.3 Killing cohomology with support

For this section fix a proper arithmetic surface X̄{B with geometric point x̄ Ñ X̄ lying over a
closed point x P X̄. We assume that the residue fields of B are either finite or algebraic closures
of finite fields. Let D̄ Ď X̄ be a tidy divisor whose support does not contain x. Let D̄h be the
maximal subdivisor of D̄ with support on the isolated horizontal components of D̄, i. e., on the
horizontal components which do not intersect any other component. Set X “ X̄ ´ D̄h and U “
X̄ ´ D̄ and denote by D Ď X the restriction of D̄ to X. We write Dv for the maximal vertical
subdivisor of D and Dh for the maximal horizontal subdivisor, such that D “ Dv `Dh. Notice
that by construction Dv is also the maximal vertical subdivisor of D̄ and the maximal horizontal
subdivisor of D̄ is given by D̄h`Dh. Let W denote the union of all vertical prime divisors which
are contained in a singular fibre of X̄ Ñ B but not contained in D̄. Put differently, W is the
Zariski closure of the union of all reduced fibres pUbqred such that X̄b is singular. Denote by S
the finite set of special points of D̄, i. e., the set of singular points of D̄red .

Furthermore, we fix a full class of finite groups c such that all elements of Npcq are invertible
on X̄ and for all prime numbers l P Npcq we have µl – Z{lZ on X. We choose an integer n P Npcq
and set Λ “ Z{nZ.

We denote by IX̄,D̄,x̄ the category of all pointed desingularized c-coverings of pX̄, D̄q as defined
in Section 2.3. Viewing x̄ as geometric point of B we write IB,x̄ for the category of pointed finite
étale c-coverings of B. By

pB1 Ñ Bq ÞÑ ppX̄ ˆB B
1, D̄ ˆB B

1q Ñ pX̄, D̄qq

IB,x̄ becomes a subcategory of IX̄,D̄,x̄.

For pX̄ 1, D̄1q Ñ pX̄, D̄q in IX̄,D̄,x̄ let
X̄ 1 Ñ B1 Ñ B

be the Stein factorization of X̄ 1 Ñ X̄ Ñ B. Then X̄ 1 is an arithmetic surface over B1. We use
analogous notation for pX̄ 1, D̄1q as for pX̄, D̄q: We write U 1 for X̄ 1 ´ D̄, D̄1h for the maximal
subdivisor of D̄1 with support on the isolated horizontal components of D̄ and so on. Moreover,
we write E1 for the generalized exceptional divisor of pX̄ 1, D̄1q Ñ pX̄, D̄q.
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By Lemma 4.2 the preimage of D̄h under a desingularized c-covering pX̄ 1, D̄1q Ñ pX̄, D̄q is D̄1h and
thus the preimage of X is X 1. Furthermore, the preimage of Dv is D1v. Note that the preimage
of Dh is the sum of D1h and a divisor with support in E1.

We want to investigate whether U has the Kpπ, 1q property with respect to c, i. e., whether

lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

HipU 1,Λq “ 0.

for all Λ “ Z{nZ with n P Npcq. In this section we show that

lim
ÝÑ

IX̄,D̄,x̄

HipX 1,Λq Ñ lim
ÝÑ

IX̄,D̄,x̄

HipU 1,Λq

is surjective for i ě 2. To this end we examine the vanishing of the cohomology groups with
support Hi

DpX,Λq in the limit over IX̄,D̄,x̄.

Lemma 5.10: Let c be a full class of finite groups and M P c a finite abelian group with an
operation of Ẑ. Then HqpẐ,Mq “ 0 for q ě 2 and there is an open subgroup H Ď Ẑ of index
in Npcq such that the restriction map

H1pẐ,Mq Ñ H1pH,Mq

is the zero map.

Proof: By the example after Corollary 3.3.4 in [NSW] the cohomological dimension of Ẑ is one.
In order to show the statement concerning the first cohomology group, we write Ẑ “ G1 ˆ G2

with
G1 “

ź

lPNpcq
Zl and G2 “

ź

lRNpcq
Zl.

By [NSW], Proposition 1.6.2 the cohomology groups HipG2,Mq vanish for i ě 1 and thus by the
Hochschild-Serre spectral sequence associated to G2 Ď Ẑ we have

H1pẐ,Mq “ H1pG1,M
G2q.

There is an open subgroupH1 of G1 such that the restriction mapH1pG1,M
G2q Ñ H1pH1,M

G2q

is the zero map and the lemma follows by setting H “ H1 ˆG2.

Remark 5.11: The statement about the first cohomology of Ẑ is a consequence of the fact that Ẑ
is a good group with respect to c. Here, a profinite group G is said to be good with respect to a
full class of finite groups c if for all G-modules M P c and all q ě 0 the inflation

HqpGpcq,MkerpGÑGpcqqq Ñ HqpG,Mq

is an isomorphism.

Corollary 5.12: Let B be a Dedekind scheme with finite residue fields at closed points, b̄Ñ B
a geometric point above a closed point b and c a full class of finite groups. Suppose that

π1pb, b̄qpcq Ñ π1pB, b̄qpcq

is injective. Then for any finite Galkpbq-moduleM in c the cohomology groups Hqpkpbq,Mq vanish
for q ě 2 and there is a finite étale c-covering B1 Ñ B such that

H1pb,Mq Ñ H1pbˆB B
1,Mq

is the zero map.
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Proof: Since Galkpbq – Ẑ, the corollary follows from Lemma 5.10 noting that by assumption any
finite Galois c-extension k1|kpbq is globally realized by a finite Galois covering B1 Ñ B.

Proposition 5.13: Let Z ď Dv be a rational subdivisor (i. e., Z is a rational curve) and let V
be an open subscheme of X. Suppose that for every geometric point b̄ above a closed point b P B
the natural map

π1pb, b̄qpcq Ñ π1pB, b̄qpcq

is injective. Then the cokernel of

H2pV ´ S,Λq Ñ H2pV ´ Z,Λq

vanishes in the limit over IB,x̄ for all m P Npcq. (Remember that S is the set of special points
of D̄.)

Proof: Without loss of generality we may assume that V X Z is dense in Z. Otherwise, Z has
irreducible components in the complement of V , which we can remove without changing the
above cohomology groups. Denote by T the union of S with the finite set of closed points Z´V .
Then V ´ S “ V ´ T . By proposition 5.9 we have the following commutative diagram

. . . H2pV ´ Z,Λq H3
Z´T pV ´ T,Λq H3pV ´ T,Λq . . .

H1pZ ´ T,Λp´1qq H0pT,Λp´2qq,
βp´1q

„

where βp´1q is the p´1q-twist of the map β defined in proposition 5.8. It thus suffices to show
that the kernel of β vanishes in the limit over IB,x̄. Without loss of generality we may assume
that Z is contained in a single closed fibre of X Ñ B over some point b P B with residue field kpbq.
Let kpbq be an algebraic closure of kpbq and denote by Z̄ and T̄ the base change of Z and T ,
respectively, to kpbq. Moreover, write ZN for the normalization of Z and Z̄N for its base change
to kpbq. Consider the diagram of cohomology groups with coefficients in Λ

0 0

0 H1pZ̄N q
Gkpbq H1pZ̄ ´ T̄ qGkpbq H0pT̄ qp´1qGkpbq

0 H1pZN q H1pZ ´ T q H0pT qp´1q,

H1pkpbqqd H1pkpbqqd

0 0

β̄

β

=

where d is the number of components of ZN . The vertical sequences are exact sequences induced
by the Hochschild-Serre spectral sequences

Hipkpbq, HjpZ̄N q,Λq ñ Hi`jpZN ,Λq,

Hipkpbq, HjpZ̄N ´ T̄N ,Λqq ñ Hi`jpZN ´ TN ,Λq.

The upper horizontal sequence is exact by the following reason: According to proposition 5.8, the
first homology group H1pΓZ ,Z{nZq of the dual graph ΓZ of Z̄ is isomorphic to kerpβ̄q{kerpᾱq,
where ᾱ denotes the connecting homomorphism of the excision sequence associated to T̄N ãÑ Z̄N .
Since we assumed Z to be rational, ΓZ is a tree, and thus its first homology group vanishes. It
follows that the kernel of β̄ equals the image of the map

γ : H1pZ̄N ,Λq ãÑ H1pZ̄N ´ T̄N ,Λq “ H1pZ̄ ´ T̄ ,Λq.
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Taking Gkpbq-invariants we obtain the upper sequence of the above diagram which is therefore
exact. A diagram chase now shows the exactness of the lower horizontal sequence.

Again by the rationality assumption on Z, the cohomology group H1pZ̄N q vanishes. The above
diagram shows that the kernel of β equals H1pkpbqqd. By Corollary 5.12 this group vanishes in
the limit over IB,x̄.

Definition 5.14: Let Y {B be an arithmetic surface and Z Ă Y a tidy divisor. We say that pY, Zq
has enough tame coverings at a closed point p of Z if for every irreducible component C of Z
passing through p there is f P KpY qˆ with support in Z such that degCpfq ą 0 and degW pfq “ 0
for any other prime divisor W passing through p. We say that pY, Zq has enough tame coverings
if it has enough tame coverings at every closed point of Z.

The following lemma sheds some light on this definition.

Lemma 5.15: Assume that pX̄, D̄q has enough tame coverings. Let ȳ be a geometric point
of X̄. Denote by X̄sh

ȳ the strict henselization of X̄ at ȳ and by D̄sh
ȳ the restriction of D̄

to X̄sh
ȳ . Let pX̄ 1

0, D̄
1
0q Ñ pX̄sh

ȳ , D̄sh
ȳ q be a tame covering such that X̄ 1

0 is local. Then there
is a tame covering pX̄ 1, D̄1q Ñ pX̄, D̄q whose strict henselization at any lift ȳ1 of ȳ coincides
with pX̄ 1

0, D̄
1
0q Ñ pX̄sh

ȳ , D̄sh
ȳ q.

Proof: If ȳ does not lie above a point of D̄, the restriction D̄sh
ȳ is empty. In this case there are

no nontrivial tame coverings of pX̄sh
ȳ , D̄sh

ȳ q and we can take X̄ 1 Ñ X̄ to be the identity. Suppose
now that ȳ lies above a singular point y of D̄, i. e., there are two irreducible components D1

and D2 of D intersecting each other at y. Since pX̄, D̄q has enough tame coverings, there are f1

and f2 in KpX̄qˆ with support in D such that

degD1pf1q “ m1 ą 0, degD2pf2q “ 0,

degD1pf2q “ 0, degD2pf2q “ m2 ą 0.

Let h1 and h2 be functions in KpX̄sh
ȳ q

ˆ such that div hi “ pDiqX̄sh
ȳ

for i “ 1, 2 on X̄sh
ȳ . Then

on X̄sh
ȳ we have

div fi “ mi ¨ div hi.

By Corollary 4.5 the strictly henselian arithmetic surface X̄ 1
0 is the normalization of X̄sh

ȳ in a
function field extension of the form

KpX̄sh
ȳ qr

n
?
h1,

m
a

hr1h
s
2s|KpX̄

sh
ȳ q

with m,n prime to the residue characteristic, 0 ď r, s ď m´ 1 and gcdpr, s,mq “ 1. For i “ 1, 2
write

aimi ` bim “ gi “ gcdpmi,mq

with integers ai, bi and similarly,

am1 ` bn “ g “ gcdpm1, nq

with integers a, b. Note that in particular, gi and g are prime to the residue characteristic of ȳ.
Then, on X̄sh

ȳ we have the equalities

gi ¨ div hi “ ai ¨ div fi ` bim ¨ div hi.

g ¨ div h1 “ a ¨ div f1 ` bn ¨ div h1

Therefore,
KpX̄sh

ȳ qr
n
?
h1,

m
a

hr1h
s
2s “ KpX̄sh

ȳ qr
ng
a

fa1 ,
mg1g2

a

frg2a1

1 fsg1a2

2 s.
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Hence, we can take X̄ 1 to be the normalization of X̄ in the function field extension

KpX̄qr ng
a

fa1 ,
mg1g2

a

frg2a1

1 fsg1a2

2 s|KpX̄q.

Lemma 5.16: Let Y be a regular, noetherian scheme such that all elements in Npcq are invertible
on Y . Choose α P KpY q and set Z “ supp α. For an integer d P Npcq consider the extension
of function fields Ld “ KpY qp d

?
α, µdq|KpY q. Let Yd denote the normalization of Y in Ld and

define Zd to be the preimage of Z in Yd. Then, for any n P Npcq, there is M P Npcq such that
for all d P Npcq with M |d the ramification index of each irreducible component of Zd is divisible
by n.

Proof: The morphism Yd Ñ Y is tamely ramified as d is prime to the residue characteristics
of Y . It is at most ramified in Z. Write div α “

ř

i aiZi with ai ‰ 0. Then Z “
Ť

i Zi and the
ramification index in Zi is

ei “
d

gcdpai, dq
.

We set M 1 “ n ¨
ś

i ai and define M to be the maximal factor of M 1 lying in Npcq. If M |d,
we claim that n|ei for all i. It suffices to check this for d “ M because the ramification indices
for M |d are multiples of the ramification indices for d “ M . Writing a1i for the maximal factor
of ai contained in Npcq we have M “ n ¨

ś

i a
1
i and

ei “
M

gcdpai,Mq
“ n ¨

ź

j‰i

a1i,

which is divisible by n.

The lemma shows that if pY, Zq has enough tame coverings, for all n P Npcq we can find a
tame c-covering of pY, Zq such that n divides all ramification indices.

Proposition 5.17: Suppose that pX̄, D̄q has enough tame coverings. Suppose that for every
geometric point b̄ above a closed point b P B the natural map

π1pb, b̄qpcq Ñ π1pB, b̄qpcq

is injective. Then the cokernel of the restriction

H2pX,Λq Ñ H2pU,Λq

vanishes in the limit over IX̄,D̄,x̄.

Proof: Since pX̄, D̄q has enough tame coverings, we can use Lemma 5.16 in order to find a
desingularized c-covering

pX 1, D1q Ñ pX1, D1q Ñ pX,Dq,

such that m divides the ramification index of each irreducible component of D1. We have the
following cartesian diagram

X 1 ´D1 “ U 1 X 1 D1 S1 Y E1

X1 ´D1 “ U1 X1 D1 S1

X ´D “ U X D S.

It induces the following commutative diagram of excision sequences with coefficients in Λ “ Z{nZ:
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. . . H2pX ´ Sq H2pUq H3
D´SpX ´ Sq . . .

. . . H2pX 1 ´ pS1 Y E1qq H2pU 1q H3
D1´S1pX

1 ´ pS1 Y E1qq . . . .

Let φ be an element of H2pU,Λq and let φ1 be its image in H2pU 1,Λq. By proposition 5.6 φ1 is
mapped to zero in H3

Z1´S1pX
1´pS1YE1q,Λq. Hence, there is φ11 P H2pX 1´pS1YE1q,Λq mapping

to φ1. Since E1 is rational by Proposition 4.19, we can apply Proposition 5.13 with V “ X 1 ´ S1

and Z “ E1 to obtain a finite étale c-covering B2 Ñ B1 and thus via base change a finite
étale c-covering X̄2 Ñ X̄ 1 such that the image of φ11 in H2pX2 ´ pS2 Y E1q,Λq lies in the image
of

H2pX2 ´ S2,Λq Ñ H2pX2 ´ S2 Y E2,Λq.

and thus can be lifted to an element φ22 P H2pX2 ´ S2,Λq. Taking into account that H3
S2pX

2q

vanishes by purity (see 5.3), the excision sequence associated to pX2, S2q shows that the restriction
map

H2pX2,Λq Ñ H2pX2 ´ S2,Λq

is surjective. Hence, φ22 lifts to H2pX2,Λq. We have thus constructed a lift to H2pX2,Λq of the
image of φ in H2pU2,Λq.

Lemma 5.18: Let C be an integral projective curve over an algebraically closed field k. Let f :
C 1 Ñ C be a (possibly ramified) covering of degree d. Then for any integer n prime to the residue
characteristic of k the following diagram commutes.

H2pC, µnq H2pC 1, µnq

Z{nZ Z{nZ.

„tr „tr

¨d

Proof: The trace map is induced by the degree map

PicpCq Ñ Z

via the surjection

PicpCq – H1pC,Oˆq H2pC, µnq.

For a Cartier divisor D on C representing a class in PicpCq we have

degpf˚Dq “ d ¨ degpDq.

This accounts for the factor d occurring in the statement of the lemma.

Proposition 5.19: Suppose that the following conditions are satisfied:

(i) pX̄, D̄q has enough tame coverings.

(ii) Every connected component of D has at least one horizontal component.

(iii) For every geometric point b̄ above a closed point b P B the natural map

π1pb, b̄qpcq Ñ π1pB, b̄qpcq

is injective.
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Then the cokernel of
H3pX,Λq Ñ H3pU,Λq

vanishes in the limit over IX̄,D̄,x̄.

Proof: Since pX̄, D̄q has enough tame coverings, we can use Lemma 5.16 to find a desingular-
ized c-covering pX̄ 1, D̄1q Ñ pX̄, D̄q such that m divides the ramification indices of all irreducible
components ofDh. Denoting by E1 Ď X the union of all generalized exceptional fibres of X̄ 1 Ñ X̄,
we obtain the following diagram of excision sequences with coefficients in Λ

. . . H3pX ´Dvq H3pUq H4
Dh´S

pX ´Dvq . . .

. . . H3pX 1 ´D1vq H3pU 1q H4
D1h´S

1pX 1 ´D1vq . . . .

Let φ be an element of H3pU,Λq and denote by φ1 its image in H3pU 1,Λq. By Corollary 5.6 φ1
maps to 0 in H4

D1h´S
1pX 1 ´ D1v,Λq and thus can be lifted to an element φ11 P H3pX 1 ´ D1v,Λq.

Since X̄ 1 satisfies the same conditions as X̄ (see Lemma 7.2), we can replace X̄ with X̄ 1 and
assume φ lifts to φ1 P H

3pX ´Dv,Λq.

Next consider the excision sequence

. . .Ñ H3pX ´ S,Λq Ñ H3pX ´Dv,Λq Ñ H4
Dv´SpX ´ S,Λq Ñ . . . .

By purity we have
H4
Dv´SpX ´ S,Λq – H2pDv ´ S,Λp´1qq.

For each component Zi of Dv lying over a closed point bi P B with geometric point b̄i consider
the Hochschild-Serre spectral sequence

Hrpbi, H
spZi,b̄i ´ Sb̄i ,Λqq ñ Hr`spZi ´ S,Λq.

Since HjpZi,b̄i ´Sb̄i ,Λq “ 0 for j ě 2 as Zi,b̄i ´Sb̄i is an affine curve over an algebraically closed
field, we conclude that

H1pbi, H
1pZi,b̄i ´ Sb̄i ,Λqq – H2pZi ´ S,Λq.

By Corollary 5.12 there is a finite étale c-covering B1i Ñ B and thus via base change a finite
étale c-covering X̄ 1

i Ñ X̄ such that

H1pbi, H
1pZi,b̄i ´ Sb̄i ,Λqq Ñ H1pbi ˆB B

1
i, H

1pZi,b̄i ´ Sb̄i ,Λqq

is the zero map. Let B1 be the compositum of all extensions B1i. By compatibility with the
Hochschild-Serre spectral sequence and the purity isomorphism we conclude that φ1 maps to 0
in H4

D1v´S
1pX 1 ´ S1,Λq. As before we replace X̄ by X̄ 1 and may assume that φ1 maps to 0

in H4
Dv´S1

pX ´ S,Λq. Hence, φ1 lifts to φ2 P H
3pX ´ S,Λq.

Now consider the following excision sequence:

. . . H3pX,Λq H3pX ´ S,Λq H4
SpX,Λq . . . .

The cohomology group H4
SpX,Λq is the direct sum over the finitely many elements s P S (which

are closed points of X) of the cohomology groups H4
s pX,Λq. For s P S choose an irreducible

component Ds of D passing through s. Since pX̄, D̄q has enough tame coverings, we find a desin-
gularized c-covering pX̄ 1, D̄1q Ñ pX̄1, D̄1q Ñ pX̄, D̄q such that m divides the ramification indices
of all irreducible components of D̄1 lying over Ds and is unramified in all other prime divisors
passing through s. By Lemma 4.2 the scheme X̄1 is regular at all preimage points s11, . . . , s1r
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of s. Hence, we may assume that X̄ 1 Ñ X̄1 is an isomorphism in a neighborhood of s11, . . . , s1r.
Therefore, by Proposition 5.5, the homomorphism

H4
s pX,Λq Ñ

à

i

H4
s1i
pX 1,Λq

is the zero map. Take a desingularized c-covering pX̄2, D̄2q Ñ pX̄, D̄q dominating the cover-
ings pX̄ 1, D̄1q Ñ pX̄, D̄q constructed for each s P S. We obtain a diagram of excision sequences

. . . H3pX,Λq H3pX ´ S,Λq H4
SpX,Λq . . .

. . . H3pX2,Λq H3pX2 ´ pS2 Y E2q,Λq H4
S2YE2pX

2,Λq . . . ,

where E2 denotes the union of all generalized exceptional fibres of X̄2 Ñ X̄. The homomorphism

H4
SpX,Λq Ñ H4

S2YE2pX
2,Λq

is the zero map and thus φ2 P H3pX ´ S,Λq lifts to H3pX2,Λq. In total we obtain a lift
of φ P H3pU,Λq to H3pX2,Λq and we are done.

Proposition 5.20: Assume that for every geometric point b̄ above a closed point b P B the
natural map

π1pb, b̄qpcq Ñ π1pB, b̄qpcq

is injective and that pX̄, D̄q has enough tame coverings. Then for q ě 4 the cokernel of

HqpX,Λq Ñ HqpU,Λq

vanishes in the limit over IX̄,D̄,x̄.

Proof: Let q ě 4 and take an element φ of HqpU,Λq. By the same reasoning as in the beginning
of the proof of 5.19, we may assume that φ lifts to φ1 P H

qpX ´Dv,Λq. Consider the excision
sequence

. . . HqpX ´ S,Λq HqpX ´Dv,Λq Hq`1
Dv´S

pX ´ S,Λq . . . .

By purity and since Dv´S is a union of affine curves over a finite field (which has cohomological
dimension 1), we have

Hq`1
Dv´S

pX ´ S,Λq – Hq´1pDv ´ S,Λp´1qq “ 0.

We conclude that
HqpX ´ S,Λq Ñ HqpX ´Dv,Λq

is surjective and thus φ1 lifts to φ2 P H
qpX ´ S,Λq. Next consider the excision sequence

. . . HqpX,Λq HqpX ´ S,Λq Hq`1
S pX,Λq . . . .

By purity we have
Hq`1
S pX,Λq – Hq´3pS,Λp´2qq.

The finite set of closed points S has cohomological dimension 1 implying that

Hq`1
S pX,Λq “ 0

for q ě 5. We conclude that in this case the restriction

HqpX,Λq Ñ HqpX ´ S,Λq

is surjective and thus φ2 lifts to HqpX,Λq. Assume that q “ 4. By Corollary 5.12 there is a finite
étale c-covering B1 Ñ B such that

H5
SpX,Λq Ñ H5

SpX ˆB B
1,Λq

is the zero map and the result follows.
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Chapter 6

Higher direct Images

We stick to the notation of paragraph 5.3: X̄{B is a proper arithmetic surface with geometric
point x̄ Ñ X̄ lying over a closed point x P X̄. We assume that X̄ ´ x is regular. Furthermore,
we fix a tidy divisor D̄ Ď X̄ not containing x. We define X, U , D̄h, Dh, Dv, W and S as in
paragraph 5.3.

We further take a full class of finite groups c such that all integers in Npcq are invertible on X̄
and µl – Z{lZ on X̄ for all prime numbers l P c. Fix a positive integer n P Npcq. We set Λ “ Z{nZ
and also denote the corresponding constant sheaf on any scheme by Λ.

We add one more piece of notation to the general setup: Namely, we denote by η the generic
point of B and choose a geometric point η̄ above η. The absolute Galois group Galpη̄|ηq of η will
be denoted Gη. For a geometric point b̄ of B we write Ib̄ Ď Gη for the inertia group of Gη at b̄. It
can also be interpreted as the fundamental group π1pη

sh
b̄
, η̄q of the generic point ηsh

b̄
of the strict

henselization of B at b̄.

Our final goal is to show that the limit over IX̄,D̄,x̄ of HqpU 1,Λq vanishes for q ě 2 (for q “ 1 this
is automatically true). In section 5.3 we showed that, under certain hypotheses on X, for q ě 2
the cokernel of

HqpX,Λq Ñ HqpU,Λq

vanishes in the limit over the category IX̄,D̄,x̄. This breaks down to the existence of a desingu-
larized c-covering pX̄ 1, D1q Ñ pX̄,Dq such that the image of each cohomology class φ P HqpU,Λq
in HqpU 1,Λq lifts to HqpX 1,Λq. It remains to prove that HqpX 1,Λq vanishes in the limit. In
case q “ 2 we will only show that the cokernel of

H2
D1pX

1,Λq Ñ H2pX 1,Λq

vanishes in the limit, which is sufficient. Indeed, the excision sequence

. . .Ñ H2
D1pX

1,Λq Ñ H2pX 1,Λq Ñ H2pU 1,Λq Ñ . . .

induces an injection

cokerpH2
D1pX

1,Λq Ñ H2pX 1,Λqq ãÑ H2pU 1,Λq,

and we have to show the vanishing in the limit of precisely the cohomology classes lying in the
image.

Since the assumptions made so far on X̄ are also satisfied by X̄ 1, we can change notation and
henceforth seek to prove the vanishing in the limit over IX̄,D̄,x̄ of HqpX,Λq for q ě 3 and
of cokerpH2

DpX,Λq Ñ H2pX,Λqq.
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6.1 The Leray Spectral Sequence

Let Sm denote the category whose objects are first quadrant Em-spectral sequences

Ep,qm ñ Ep`q

and whose morphisms
φ : pEp,qm ñ Ep`qq Ñ pĒp,qm ñ Ēp`qq

are collections pφp,qr , φnq where φp,qr : Ep,qr Ñ Ēp,qr constitute a map of spectral sequences and φn :
En Ñ Ēn are homomorphisms which are compatible with φp,qr in the sense that

φnpF pEnq Ď F̄ pĒn

and that the induced maps of associated graded groups

gr En Ñ gr Ēn

are induced from the maps φp,qr .

Lemma 6.1: Let s ď n and m be positive integers. Let C be a cofiltered category and Φ : CÑ Sm
a contravariant functor. Suppose that

lim
ÝÑ
C

Ep,qm “ 0

for all integers p, q such that p` q “ n and p ě s. Then

lim
ÝÑ
C

F sEn “ 0.

Proof: Let C be an object of C and let Ep,qm ñ Ep`q be the spectral sequence corresponding
to ΦpCq. Let x P F sEn be nontrivial and denote by p ě s the natural number such that x P F pEn
but x R F p`1En. It follows that x lifts to some y P Ep,qm where q “ n´ p. By assumption, there
is a morphism C̄ Ñ C in C with associated map of spectral sequences

pφp,qr , φnq : pEp,qm ñ Ep`qq Ñ pĒp,qm ñ Ēp,qq,

such that φp`qm pyq “ 0. By compatibility of φn with φp,qr it follows that φnpxq is contained
in F̄ p`1Ēn. The assertion now follows by induction on p noting that F pEn “ 0 for p ą n for all
spectral sequences in Sm.

Corollary 6.2: Suppose that
lim
ÝÑ

IX̄,D̄,x̄

HipB1, Rjπ1˚Λq “ 0

for all integers i, j such that i` j ě 3 and for all integers i, j such that i` j “ 2 and i ě 1. Then

lim
ÝÑ

IX̄,D̄,x̄

HnpX 1,Λq “ 0

for n ě 3 and
lim
ÝÑ

IX̄,D̄,x̄

kerpH2pX 1,Λq
edge
Ñ H0pB1, R2π1˚Λqq “ 0.

Proof: We would like to apply Lemma 6.1 to the category IX̄,D̄,x̄ of desingularized c-coverings
of pX̄, D̄q, which is cofiltered by Lemma 2.21. With each arithmetic surface π̄1 : X̄ 1 Ñ B1

in IX̄,D̄,x̄, we associate the Leray spectral sequence

HipB1, Rjπ1˚Λq ñ Hi`jpX 1,Λq.
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A morphism pX̄2, D̄2q Ñ pX̄ 1, D̄1q in IX̄,D̄,x̄ induces a morphism X2 Ñ X 1 and thus a map of
spectral sequences

HipB2, Rjπ2˚Λq Ñ HipB1, Rjπ1˚Λq.

This map of spectral sequences is compatible with the pullback map HnpX2,Λq Ñ HnpX 1,Λq.
We conclude that the above construction defines a functor

Φ : IX̄,D̄,x̄ Ñ S2.

Setting s “ 0 for n ě 3 and s “ 1 for n “ 2 we obtain from Lemma 6.1 that

lim
ÝÑ

IX̄,D̄,x̄

F sHnpX 1,Λq “ 0.

But

F 0HnpX 1,Λq “ HnpX 1,Λq and F 1H2pX 1,Λq “ kerpH2pX,Λq
edge
Ñ H0pB,R2π1˚Λqq,

and hence the assertion of the corollary holds.

6.2 Killing the Cohomology of higher direct images

Corollary 6.2 of the previous section provides us with a method to prove the vanishing of
the cohomology groups HnpX 1,Λq in the limit over IX̄,D̄,x̄, namely by showing that the limit
of HipB1, Rjπ1˚Λq for i ` j “ n vanishes. In this section we show the vanishing in the limit
of HipB1, Rjπ1˚Λq for most combinations of pi, jq. The two most complicated cases – pi, jq “ p0, 2q
and pi, jq “ p1, 1q – are treated in separate sections.

Lemma 6.3: Suppose that either j ě 3 or j “ 2, i ě 2 and D̄h is not empty. Then

HipB,Rjπ˚Λq “ 0.

If in addition, for every geometric point b̄ above a closed point b P B the natural map

π1pb, b̄qpcq Ñ π1pB, b̄qpcq

is injective, the group
H1pB,R2π˚Λq

vanishes in the limit over IB,x̄.

Proof: Let b̄ be a geometric point of B. By Lemma 5.7 the stalk of Rjπ˚Λ at b̄ is isomorphic
toHjpXb̄,Λq. SinceXb̄ is a curve over an algebraically closed field, it has cohomological dimension
less or equal to 2. Therefore, Rjπ˚Λ “ 0 for j ě 3. Assume now that D̄h is nonempty and hence,
for all geometric points b̄ of B the curve Xb̄ is not complete. If Xb̄ is regular, it is irreducible and
thus affine. Since affine curves over algebraically closed fields have cohomological dimension less
than or equal to 1, H2pXb̄,Λq is nontrivial only if Xb̄ is singular. We conclude that R2π˚Λ is a
skyscraper sheaf and

HipB,R2π˚Λq “ 0

for i ě 2 as the residue fields at closed points of B have cohomological dimension 1. Furthermore,
applying Corollary 5.12 to every closed point b of B in the support of R2π˚Λ we find a c-
extension B1 Ñ B such that

H1pB,R2π˚Λq Ñ H1pB1, R2π1˚Λq

is the zero map.
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In case X̄{B is of local type we can even say a bit more:

Lemma 6.4: Suppose that X̄ is of local type. Then

HipB,Rjπ˚Λq “ 0

if either i ě 2 or j ě 3. Moreover, there is an étale c-covering B1 Ñ B such that

H1pB,RjpπY q˚Λq Ñ H1pB1, RjpπY q˚Λq

is the zero map for all q ě 0.

Proof: By Lemma 6.3 the cohomology groups HipB,Rjπ˚Λq vanish for j ě 3. Since

HipB,Rjπ˚Λq – Hipb, Rjπ˚Λq – Hipkpbq, HjpXb̄,Λqq,

by Lemma 5.7, the remaining assertions follow from Corollary 5.12.

Lemma 6.4 shows that in the local case the hypotheses of Corollary 6.2 are satisfied. Therefore,

lim
ÝÑ

IX̄,D̄,x̄

HnpX 1,Λq “ 0

for n ě 3 and
lim
ÝÑ

IX̄,D̄,x̄

kerpH2pX 1,Λq
edge
Ñ H0pB1, R2π1˚Λqq “ 0.

In case n “ 2 we still have to do some work in order to deduce that

lim
ÝÑ

IX̄,D̄,x̄

HnpU 1,Λq “ 0.

This will be done in section 6.5 (for both the local and the global case).

In the remaining part of this section we continue investigating the global case. The following
lemma and its corollary are valid in the global as well as in the local case. However, in the local
case they are trivially true (compare with Lemma 6.4) so their relevance lies in the global case.

Lemma 6.5: Let B be a Dedekind scheme with generic point η and F a c-constructible sheaf
on Bét. Suppose that for every geometric point b̄ above a closed point b P B the natural map

π1pb, b̄qpcq Ñ π1pB, b̄qpcq

is injective. Choose a finite set of closed points T Ď B such that F is locally constant on B ´ T .
Assume that the action of π1pB´T, η̄q on Fη̄ factors through π1pB´T, η̄qpcq. Denote by B̃pcq the
universal c-covering of B and by T̃ pcq the preimage of T in B̃pcq. Suppose that B´ T is Kpπ, 1q
with respect to c and

π1pB̃pcq ´ T̃ pcq, η̄qqpcq – ˚
xPT̃ pcq

π1pη
sh
x , η̄qpcq “ ˚

xPT̃ pcq

Ixpcq,

where ηshx denotes the generic point of the strict henselization of B at the point x and Ix the
inertia group of x in the absolute Galois group of η. Then for all j ě 2 there is a finite étale c-
covering B1 Ñ B such that

HipB,Fq Ñ HipB1,Fq

is the zero map.
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Proof: Denote by ι : η Ñ B the inclusion of the generic point. We will first reduce to the case
where

FÑ ι˚ι
˚F

is an isomorphism. We have an exact sequence

0 Ñ G1 Ñ FÑ ι˚ι
˚FÑ G2 Ñ 0

with skyscraper sheaves G1 and G2 with support in T . Since the points in T have finite residue
field,

HjpB,Giq “ 0

for j ě 2 and there is a finite étale c-covering T 1 Ñ T such that

H1pB,Giq “ H1pT,Giq Ñ H1pT 1,Giq

is the zero map. By hypothesis all finite étale c-coverings of T are globally realized so there is a
finite étale c-covering B1 Ñ B such that

H1pB,Giq Ñ H1pB1,Giq

is the zero map. By splitting the above exact sequence in two short exact sequences

0 Ñ G1 Ñ FÑ HÑ 0, 0 Ñ HÑ ι˚ι
˚FÑ G2 Ñ 0,

and using the associated long exact cohomology sequences we obtain isomorphisms

HjpB,Fq
„
Ñ HjpB, ι˚ι

˚Fq

for j ě 3 and a short exact sequence

0 Ñ H1pB,G2q Ñ H2pB,Fq Ñ H2pB, ι˚ι
˚Fq Ñ 0.

Noting that the hypotheses are stable under base change by a finite étale c-extension B1 Ñ B we
conclude that it suffices to prove the statement in case F – ι˚ι

˚F.

In this case F corresponds to a finite c-torsion π1pB ´ T q-module M. Consider the excision
sequence

. . .Ñ Hj
T pB,Fq Ñ HjpB,Fq Ñ HjpB ´ T,Fq Ñ . . . .

By assumption we have

lim
ÝÑ
B1ÑB

HjpB1´T 1,Fq – HjpB̃pcq´ T̃ pcq,Fq – Hjpπ1pB̃pcq´ T̃ pcqqpcq,Mq –
à

xPT̃ pcq

1HjpIxpcq,Mq,

where the limit is taken over all finite étale c-extensions B1 Ñ B and T 1 denotes the preimage
of T in B1. Since cdc Ix ď 1 for all closed points x P B by [NSW], Theorem 7.1.8, we conclude
that

lim
ÝÑ
B1ÑB

HjpB1 ´ T 1,Fq “ 0

for j ě 2 and thus there is a finite étale c-extension B1 Ñ B such that

HjpB ´ T,Fq Ñ HjpB1 ´ T 1,Fq

is the zero map. Taking into account that the hypotheses are stable under base change by finite
étale c-coverings of B it remains to show that for j ě 2 the image of Hj

T pB,Fq Ñ HjpB,Fq
vanishes in the limit over all finite étale c-coverings.

For a closed point x P B denote by Bhx the henselization of B at x. Consider the excision sequence

. . .Ñ
à

xPT

Hj´1pBhx ´ x,Fq Ñ Hj
T pB,Fq Ñ

à

xPT

HjpBhx ,Fq Ñ . . . .
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We have
HjpBhx ,Fq – Hjpx,Fxq “ 0

for j ě 2 and
Hj´1pBhx ´ x,Fq – Hj´1pKh

x ,Mq

where Kh
x denotes the fraction field of Bhx . Let x̄ be a geometric point over x. Then the

cohomological c-dimension of Ksh
x̄ is equal to one by [NSW], Theorem 7.1.8. Since all unramified

extensions of Kh
x are globally realized, Hj´1pBhx ´ x,Fq vanishes in the limit over all finite

étale c-extensions B1 Ñ B if j ě 3. For j “ 2 consider the commutative diagram of excision
sequences

H1pB ´ T,Fq H2
T pB,Fq H2pB,Fq

À

xPT H
1pKh

x ,Mq.

Taking the limit over all finite étale c-coverings B1 Ñ B we obtain

H1pB̃pcq ´ T̃ pcq,Fq H2
T̃ pcq
pB̃pcq,Fq H2pB̃pcq,Fq

À

xPT̃ pcqH
1pKsh

x ,Mq.

„

We conclude that in the limit over all finite étale c-extensions of B the image of H2
T pB,Fq

in H2pB,Fq vanishes.

Corollary 6.6: Suppose that B meets the hypotheses of Lemma 6.5 for the image T of S in B.
Then for all j ě 0 and all i ě 2 the cohomology groups

HipB,Rjπ˚Λq

vanish in the limit over IB,x̄.

Proof: By [SGA4], XIV, Théorème 1.1 the sheaves Rjπ˚ΛX̄ are constructible and by [SGA4],
XVI, Corollaire 2.2 their restriction to B´S is locally constant. The corollary now follows from
Lemma 6.5.

Combining Lemma 6.3 and Corollary 6.6 we conclude that under certain hypotheses on pX̄, D̄q

HipB,Rjπ˚Λq

vanishes in the limit over IB,x̄ if i` j ě 3 or if i` j “ 2 and i ě 2. By Lemma 7.2, once these
hypotheses are satisfied for pX̄, D̄q they are satisfied for all pX̄ 1, D̄1q in IB,x̄. We then obtain that

lim
ÝÑ

IX̄,D̄,x̄

HipB1, Rjπ1˚Λq “ 0

if i ` j ě 3 or if i ` j “ 2 and i ě 2. Therefore, in order to show that the hypotheses of
Corollary 6.2 are satisfied there is only the case pi, jq “ p1, 1q left for examination. It will be
treated in section 6.4.

6.3 The intersection matrix

In order to treat the cases pi, jq “ p1, 1q and pi, jq “ p0, 2q we have to deal with the cokernel of

H2
DpX,Λq Ñ H2pX,Λq.
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In this section we explain how to relate this homomorphism with the intersection matrix of the
irreducible components of the singular fibres.

Lemma 6.7: Suppose that B is strictly henselian with closed point s. Denote by ρ the intersection
matrix of the components of the special fibre of π̄ : X̄ Ñ B. Then, for any integer c the following
diagram commutes

H2
Dv
pX,Λpc` 1qq H2pX,Λpc` 1qq

H0pDv,Λpcqq H2pXs,Λpc` 1qq

à

CĎDv

Λpcq ¨ C
à

CĎX̄s,CXD̄h“H

Λpcq ¨ C.

base change„purity „

deg„„

ρ

Here, C always denotes irreducible components.

Proof: It suffices to prove the lemma for c “ 0. Since the residue field k is algebraically closed and
thus contains µm, the general case follows by twisting by c. Consider the following commutative
diagram

H2
Dv
pX,µmq H2pX,µmq H2pXs, µmq

à

CĎDv

H1
CpX,Gmq b Λ H1pX,Gmq b Λ

à

CXD̄h“H

H1pC,Gmq b Λ

à

CĎDv

Λ ¨ C PicpXq b Λ
à

CXD̄h“H

PicpCq b Λ

à

CĎDv

Λ ¨ C
à

CXD̄h“H

Λ ¨ C.

„

„ „

„
„

„

„ pdegCqC

Note that the direct sums on the right hand side run only over irreducible components of Xs

with trivial intersection with D̄h. The reason is that these are precisely the components of Xs

which are proper over B. The upper right horizontal isomorphism comes from Lemma 5.7. The
upper vertical maps are connecting homomorphisms of the Kummer sequence. Note that the
concatenation of the left hand side vertical arrows yields the purity isomorphism by definition as
the latter is normalized this way in codimension one. Moreover, the degree map in the statement
of the lemma is defined as the composition

H2pXs, µmq
„
Ð

à

CXD̄h“H

H1pC,Gmq b Λ
„
Ð

à

CXD̄h“H

PicpCq b Λ
pdegCqC
Ñ

à

CXD̄h“H

Λ.

The restrictions
PicpXq Ñ PicpCq

are given by D ÞÑ D ¨ C where D ¨ C denotes the intersection product of the divisor D with the
curve C. Composition with degC yields the intersection number pD ¨ Cq. We conclude that the
lower horizontal map is indeed given by the intersection matrix ρC1,C2 “ pC1 ¨ C2q.
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We set
Zpcq “ lim

ÐÝ
nPNpcq

Z{nZ “
ź

lPNpcq prime

Zl.

Lemma 6.8: Assume that pX̄, D̄q has enough tame coverings. Then, for every integer m P Npcq
there is a desingularized c-covering pX̄ 1, D̄1q Ñ pX̄, D̄q such that the image of

H2
D̄pX̄,Zpcqp1qq Ñ H2

D̄1pX̄
1,Zpcqp1qq

is divisible by m.

Proof: As in Lemma 6.7 absolute cohomological purity provides us with a functorial isomorphism
à

CĎD̄

Λ ¨ C
„
Ñ H2

D̄pX̄, µnq

for every integer n P c. Taking the projective limit, we obtain
à

CĎD̄

Zpcq ¨ C „
Ñ H2

D̄pX̄,Zpcqp1qq.

Moreover, if pX̄ 1, D̄1q Ñ pX̄, D̄q is a desingularized c-covering, the induced map
à

CĎD̄

Zpcq ¨ C Ñ
à

C1ĎD̄1

Zpcq ¨ C 1

is given by the pull-back of divisors. Let C Ď D̄ be an irreducible component and p P C a closed
point of D̄. Since pX̄, D̄q has enough tame coverings, there is fp P KpX̄qˆ such that degCpfpq “
mp ą 0 and degZpfpq “ 0 for all other irreducible components Z of D̄ passing through p. Hence,
in a Zariski neighborhood Up of p we have div fp “ mpC. Denote by m1p be the maximal factor
ofmp contained in Npcq. Let φp : pX̄p, D̄pq Ñ pX̄, D̄q be a desingularized c-covering with function
field extension

KpX̄pq “ KpX̄qr m
1
pm
a

fps|KpX̄q.

Then div fp Ď X̄p is divisible by m1pm. Thus, φ˚ppCq X φ´1
p pUpq is divisible by m, i. e., the

coefficients of all irreducible components of φ˚ppCq whose generic points lie over Up are divisible
by m. This property is conserved by further desingularized coverings.

There are finitely many closed points p1, . . . , pn P C such that the open subschemes Up1 , . . . , Upn
cover C. Let pX̄ 1, D̄1q Ñ pX̄, D̄q be a desingularized c-covering dominating all coverings con-
structed above pX̄pi , D̄piq Ñ pX̄, D̄q. Then the pullback of C to X̄ 1 is divisible by m.

Remark 6.9: Assume that X̄{B is the pullback of an arithmetic surface X̄0{B0 to the strict
henselization of B0 in some geometric point. Moreover, assume that D̄ is the pullback of a tidy
divisor D̄0 Ď X̄0. If pX̄0, D̄0q has enough tame coverings, the same holds for pX̄, D̄q and in the
proof of Lemma 6.8 we can choose the functions fp P KpX̄qˆ such that they are already contained
in KpX̄0q

ˆ and as such have support in D̄0. Hence, we may assume that the desingularized c-
covering pX̄ 1, D̄1q Ñ pX̄, D̄q constructed in Lemma 6.8 is the pullback of a desingularized c-
covering of pX̄0, D̄0q.

Corollary 6.10: Assume that B is strictly henselian and that D̄h is nonempty and meets all
irreducible components of W . If pX̄, D̄q has enough tame coverings, the cokernel of

H2
DpX, Ẑpcqp1qq Ñ H2pX, Ẑpcqp1qq

vanishes in the limit over IX̄,D̄,x̄.
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Proof: It suffices to prove that the cokernel of

H2
DvpX, Ẑpcqp1qq Ñ H2pX, Ẑpcqp1qq

vanishes in the limit over IX̄,D̄,x̄ as H2
Dv
pX, Ẑpcqp1qq is a direct summand of H2

DpX, Ẑpcqp1qq.
Taking the inverse limit over all Λ – Z{nZ with n P Npcq in the diagrams in Lemma 6.7, we
obtain a commutative diagram

H2
Dv
pX,Zpcqpc` 1qq H2pX,Zpcqpc` 1qq

H0pDv,Zpcqpcqq H2pXs,Zpcqpc` 1qq

à

CĎDv

Zpcqpcq ¨ C
à

CĎDv

Zpcqpcq ¨ C.

base change„purity „

deg„„

ρ

Note that since we assumed that D̄h meets all irreducible components of W , we have that C X
D̄h “ H if and only if C Ď Dv. The map

φ : H2
DvpX, Ẑpcqp1qq Ñ H2pX, Ẑpcqp1qq

is thus given by the intersection matrix ρ of the irreducible components of Dv. By [Liu], Theo-
rem 9.1.23 the intersection matrix of the components of the special fibre is negative semidefinite
and its radical is generated by the special fibre. Since we assumed that D̄h is nonempty, the sup-
port of D does not comprise all irreducible components of the special fibre. Hence, the restriction
of ρ to the components of D is negative definite. We conclude that

φbQ : H2
DpX, Ẑpcqp1qq bQÑ H2pX, Ẑpcqp1qq bQ

is an isomorphism and thus the cokernel of φ is c-torsion. Takem P Npcq such thatm¨coker φ “ 0.
By Lemma 6.8 there is a desingularized c-covering pX̄ 1, D̄1q Ñ pX̄, D̄q of pX̄, D̄q such that the
image of

H2
DpX, Ẑpcqp1qq Ñ H2

D1pX
1, Ẑpcqp1qq

is divisible by m. Taking into account that multiplication by m is injective on H2pX 1, Ẑpcqp1qq
this proves the result.

Remark 6.11: Assume that D̄h is nonempty and meets all irreducible components of W . In
case pX̄, D̄q has enough tame coverings, the base change of X̄ to the strict henselization Bsh

b̄

of B at any geometric point b̄ meets the hypotheses of Corollary 6.10. Using in the proof of the
corollary a desingularized c-covering of pX̄Bsh

b̄
, D̄Bsh

b̄
q which is the pullback of a desingularized c-

covering of pX̄, D̄q (it exists by Remark 6.9), we see that the cokernel of

H2
D
Bsh
b̄

pXBsh
b̄
, Ẑpcqp1qq Ñ H2pXBsh

b̄
, Ẑpcqp1qq

vanishes not only in the limit over IX̄
Bsh
b̄

,D̄
Bsh
b̄

,x̄ but also in the limit over IX̄,D̄,x̄.

6.4 The first higher direct image

In this section we treat the remaining case pi, jq “ p1, 1q: We examine the vanishing of

lim
ÝÑ

IX̄,D̄,x̄

H1pB1, R1π1˚Λq.
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We will only be able to prove this if c is the class cplq of finite l-groups for a prime number l. In
this case it suffices to prove the assertion for Λ “ Z{lZ (see Corollary 2.5). Therefore, in this
section c is assumed to be cplq and Λ “ Z{lZ. We assume throughout this section that µl is a
constant sheaf on X̄.

Let us recall the notation: The divisor D̄h is the maximal subdivisor of D̄ with support in the
isolated horizontal components of D̄, i. e., on the horizontal components which do not intersect
any other component. Set X “ X̄ ´ D̄h and U “ X̄ ´ D̄ and denote by D Ď X the restriction
of D̄ to X. We write π̄ : X̄ Ñ B for the structure morphism of X̄ and π : X Ñ B for
its restriction to X. The maximal vertical subdivisor of D is denoted Dv and the maximal
horizontal subdivisor Dh, such that D “ Dv `Dh. Let W denote the union of all vertical prime
divisors which are contained in a singular fibre of X̄ Ñ B but not contained in D̄. Denote by S
the finite set of special points of D̄, i. e., the set of singular points of D̄red .

The sheaf R1π̄˚Λ is closely related to the Jacobian of the geometric fibres of X̄ Ñ B. Indeed,
the stalk of R1π̄˚Λ at a geometric point b̄ of B is

H1pX̄b̄,Λq – H1pX̄b̄, µlq,

which parameterizes the l-division points of the Jacobian of X̄b̄. We will not explicitly need the
theory of the Jacobian variety. If we speak of l-division points of the Jacobian, it can just be
thought of the cohomology group H1pX̄b̄, µlq.

The diagram

X̄η X̄

η B

ιX̄

π̄η π̄

ι

induces the base change homomorphism

ι˚R1π̄˚µl Ñ R1π̄η˚pι
˚

X̄µlq “ R1π̄η˚µl,

which by adjointness corresponds to a homomorphism

φ : R1π̄˚µl Ñ ι˚R
1π̄η˚µl

of sheaves on B. We have the following

Lemma 6.12: Assume that for every closed point b of B the prime l does not divide the greatest
common divisor of the multiplicities of the irreducible components of X̄b. Then the above defined
morphism φ is injective and its cokernel is a skyscraper sheaf whose stalk at a geometric point b̄
over a closed point b of B is given by

cokerpH2
X̄b̄
pX̄sh

b̄ ,Zlq Ñ H2pX̄sh
b̄ ,Zlqqrls,

where X̄sh
b̄

denotes the base change of X̄ to the strict henselization of B at b̄.

Proof: The stalk φb̄ of this homomorphism at a geometric point b̄ over a closed point b of B is
given by the composition

H1pX̄b̄, µlq H1pX̄sh
b̄
, µlq H1pX̄ηb̄ , µlq H1pX̄η̄, µlq

Ib̄ ,„

where X̄ηb̄ denotes the pullback of X̄ to the generic point ηb̄ of the strict henselization Bsh
b̄

of B
at b̄ and Ib̄ the inertia group of b̄. We have a diagram
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H1pX̄sh
b̄
, µlq

0 H1pIb̄, µlq H1pX̄ηb̄ , µlq H1pX̄η̄, µlq
Ib̄ 0

H2
X̄b̄
pX̄sh

b̄
, µlq

H2pX̄sh
b̄
, µlq,

φb̄

ρ̄

where the horizontal sequence comes from the Hochschild-Serre spectral sequence for Ib̄ and the
vertical sequence is the excision sequence associated to X̄b̄ ãÑ X̄sh

b̄
. Let π be a uniformizer of Bsh

b̄
.

The group H1pIb̄, µlq is generated by the class σ given by

Ib̄ Ñ µl

g ÞÑ
g l
?
π

l
?
π
.

Via the purity isomorphism the image of σ in H2
X̄b̄
pX̄sh

b̄
, µlq corresponds to the divisor of X̄sh

b̄

given by the special fibre X̄b̄ “
ř

aiDi (note that X̄ is regular). Since we assumed that l does
not divide gcdpaiq, this image is not zero and thus the morphism

H1pIb̄, µlq Ñ H2
X̄b̄
pX̄sh

b̄ , µlq

is injective. This also proves the injectivity of φb̄.

In order to deal with the cokernel consider the diagram

0 H2
X̄b̄
pX̄sh

b̄
,Zlp1qq H2

X̄b̄
pX̄sh

b̄
,Zlp1qq H2

X̄b̄
pX̄sh

b̄
, µlq 0

0 H2pX̄sh
b̄
,Zlp1qq H2pX̄sh

b̄
,Zlp1qq H2pX̄sh

b̄
, µlq 0.

¨l

ρ ρ ρ̄

¨l

The snake lemma implies the exact sequence

0 Ñ kerpρq{lÑ kerpρ̄q Ñ cokerpρqrls Ñ 0.

The kernel of ρ is given via purity by the special fibre X̄b̄ “
ř

aiDi. By the above considerations
its image in kerpρ̄q thus coincides with the image of

H1pIb̄, µlq Ñ H2
X̄b̄
pX̄sh

b̄ , µlq.

We conclude that
cokerpφb̄q – cokerpρqrls,

which proves the lemma.

For the rest of this section we keep the assumption that for every closed point b of B the prime l
does not divide the greatest common divisor of the multiplicities of the irreducible components
of X̄b. According to Lemma 6.12 we have a short exact sequence

0 Ñ R1π̄˚µl Ñ ι˚R
1π̄η˚µl Ñ FÑ 0 (6.1)

with a skyscraper sheaf F with stalks F̄b “ cokerpρqrls, where ρ is the intersection matrix at b̄.
Our first step will be to examine the sheaf F. Naturally, this involves considerations concerning
the intersection of vertical prime divisors.
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Lemma 6.13: Possibly after replacing pX̄, D̄q by a desingularized l-covering of pX̄, D̄q, for each
geometric point b̄ such that X̄b̄ is singular the following holds: For every vertical component Z̄
of D̄b̄ we have Z̄ ¨Wb̄ ď 1. (Intersection products are taken in the base change of X̄ to the strict
henselization of B at b̄.)

Proof: We first show that after replacing pX̄, D̄q by a desingularized l-covering of pX̄, D̄q the
following holds for every closed point (not necessarily a geometric point) b of B: For every
vertical component Z of D̄ with nontrivial intersection with W there is exactly one intersection
point x with W and Z is isomorphic to P1

kpxq.

Since there are only finitely many singular fibres, we can treat each fibre X̄b for b P B separately.
Let pX̄ 1, D̄1q Ñ pX̄, D̄q denote the blowup of X̄ in W X Dv, which is a finite set of closed
points x1, . . . , xn. In particular, it is a desingularized l-covering. For the exceptional fibre Ei
corresponding to xi we have rkpxiq : kpbqs “ pW 1¨Eiq, whereW 1 denotes the strict transform ofW
in X̄ 1 and there is exactly one intersection point yi of W 1 with Ei. Moreover, Ei is isomorphic
to P1

kpxq.

Now we prove that after the above construction the assertion of the lemma holds for the geometric
singular fibres. Choose a geometric point b̄ over a closed point b P B such that X̄b̄ is singular,
which is equivalent to X̄b being singular. Let Z̄ be an irreducible component of D̄b̄ with nontrivial
intersection with Wb̄. Its image Z in X̄b is an irreducible component of D̄b with nontrivial
intersection with W . By the preparations in the preceding paragraph of the proof, Z thus
equals Ei for some i. Hence, there is exactly one intersection point x P Z and Z is isomorphic
to P1

kpxq. The base change of Z to the strict henselization of B at b̄ is the disjoint union of rkpxq :

kpbqs copies of P1
kpb̄q

each of which intersects Wb̄ transversally in exactly one point. Thus, Z̄ is
one of these copies of P1

kpb̄q
and the proof is complete.

If pX̄ 1, D̄1q Ñ pX̄, D̄q is a desingularized l-covering, Lemma 6.12 also holds on X̄ 1. We denote
the resulting skyscraper sheaf by F1.

Lemma 6.14: Assume that pX̄, D̄q has enough tame coverings and that every irreducible com-
ponent of W has nontrivial intersection with Dv. Then, for every geometric point b̄ of B we
have

lim
ÝÑ

IX̄,D̄,x̄

F1b̄ “ 0.

Proof: We will prove in Lemma 7.2 that for any desingularized l-covering pX̄ 1, D̄1q Ñ pX̄, D̄q the
pair pX̄ 1, D̄1q has again enough tame coverings. Moreover, it is easy to see that the condition on
singular fibres is also stable under desingularized l-coverings. It therefore suffices to show that F̄b
vanishes in the limit over IX̄,D̄,x̄.

Let b̄ be a geometric point of B such that X̄b̄ is singular (if X̄b̄ is nonsingular, F̄b “ 0, anyway).
An element of F̄b “ cokerpρb̄qrls is represented by a divisor Z “

ř

nCC with support in X̄b̄ such
that there is a divisor A with support in X̄b̄ such that

lZ “ ρb̄pAq.

Write A “ AW ` AD with supp AD Ď Db̄ and supp AW Ď Wb̄. By Lemma 6.8 and Re-
mark 6.9 there is a desingularized l-covering pX̄ 1, D̄1q Ñ pX̄, D̄q such that the image of AD
in H2

X̄1
b̄

pX̄ 1

B
1sh
b̄

,Zlp1qq is divisible by l. On X̄ 1 we have

ρ1b̄pA
1
W q “ lpZ 1 ´ ρ1b̄pA

1
Dqq, (6.2)

where A1W is the pullback of AW to X̄ 1

b̄
, A1D is the pullback of AD to X̄ 1

b̄
divided by l and Z 1

is the image of Z in H2ppX̄ 1qB1sh
b̄

,Zlp1qq. By hypothesis and by Lemma 6.13, we may assume
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that for each irreducible component C 1 of W 1

b̄
there is an irreducible component D1C1 of D̄

1

b̄
such

that pC 1 ¨D1C1q “ 1 and pZ 1 ¨D1C1q “ 0 for all other components Z 1 of W 1

b̄
. Write

A1W “
ÿ

aC1C
1,

where the sum is over all irreducible components C 1 of W 1

b̄
. The coefficient of D1C1 in ρ1

b̄
pA1W q

is aC1 ¨ pD1C1 ¨ C
1q “ aC1 . By equation (6.2) it is divisible by l. In total we get l|A1W , which

concludes the proof of the lemma.

Corollary 6.15: Under the assumptions of Lemma 6.14, we have

lim
ÝÑ

IX̄,D̄,x̄

H0pB1,F1q “ 0.

We need a slightly stronger version of Lemma 6.14, which states that the lemma also holds after
base change by a possibly ramified l-extension B0 Ñ B. Unfortunately, its proof is quite laborious
and, even more annoyingly, it forces us to assume that W is regular. Let us set up notation.
Suppose thatW is regular. Let b̄0 be a geometric point above a closed point b0 of B such that X̄b̄0

is singular. Let B0 Ñ Bsh
b̄0

be a finite, local l-extension, i. e., B0 is the normalization of B in
some l-extension of the function field of Bsh

b̄0
. Note that B0 Ñ Bsh

b̄0
is purely tamely ramified. The

base change of X̄ to B0 becomes singular at the special points of X̄b̄0 . Since W is regular, these
points are all contained in D̄0. Let pX̄0, D̄0q Ñ pX̄ˆB B0, D̄ˆB B0q be a tidy desingularization.
Define U0, D0, etc. as on X̄.

The composite pX̄0, D̄0q Ñ pX̄ ˆB Bsh
b̄0
, D̄ ˆB Bsh

b̄0
q is not a desingularized l-covering as it is

not étale over U . But by definition pX̄0, Z0q Ñ pX̄ ˆB B
sh
b̄0
, X̄b̄0q is a desingularized l-covering,

where Z0 is the preimage of X̄b̄0 in X̄0 (it is a multiple of the special fibre of X̄0{B0).

Denote by K the union of the vertical irreducible components of D̄ with nontrivial intersection
with W and by K0 its generalized strict transform in X̄0. Similarly, let W0 be the generalized
strict transform of W . By Proposition 4.19 the preimages in X̄0 of the intersection points of K
with W are bridges of P1’s connecting K0 with W0. We denote their union by P0. In other
words, P0 is the union of all exceptional fibres in X̄0 of intersection points of Dv with W .

Lemma 6.12 also holds on X̄0. We denote the resulting skyscraper sheaf by F0.

Lemma 6.16: The sheaf F0 is independent of the choice of tidy desingularization pX̄0, D̄0q Ñ

pX̄ ˆB B0, D̄ ˆB B0q.

Proof: We have to show that blowing up X̄0 at a special point of D̄0 does not change F0. Consider
the short exact sequence

0 Ñ R1pπ̄0q˚µl Ñ ι˚R
1pπ̄0qη0˚µl Ñ F0 Ñ 0

defining F0 (it is the analogue of sequence (6.1) on B0). Since B0 is strictly henselian, this
sequence reads

0 Ñ H1pX̄0, µlq Ñ H1ppX̄0qη0 , µlq
I0 Ñ F0pB0q Ñ 0,

where I0 denotes the inertia group in the absolute Galois group of η0. The group H1ppX̄0qη0
, µlq

I0

is independent of the special fibre by definition. Furthermore, H1pX̄0, µlq does not change with a
blowup in a closed point as the exceptional fibre is rational. We conclude that also F0 is invariant
under blowups in closed points.

If pX̄ 1, D̄1q Ñ pX̄, D̄q is a desingularized l-covering, we can construct a tidy desingulariza-
tion pX̄ 1

0, D̄
1
0q Ñ pX̄ 1 ˆB B0, D̄

1 ˆB B0q fitting into the diagram
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pX̄ 1
0, D̄

1
0q pX̄ 1, D̄1q

pX̄0, D̄0q pX̄, D̄q.

We obtain a morphism of sheaves
F0 Ñ F10,

where F10 is defined as F0 but with pX̄ 1
0, D̄

1
0q instead of pX̄0, D̄0q. By Lemma 6.16 the limit

lim
ÝÑ

IX̄,D̄,x̄

F10

is well defined. Our goal is to prove that this limit vanishes.

If pX̄, D̄q has enough tame coverings, it is not clear whether the same holds for pX̄0, D̄0q but we
have the following partial result:

Lemma 6.17: Let p0 be a closed point of D̄0 which is not contained in P0. Then, for every
irreducible component Z0 of D̄0 passing through p0 there is f P KpX̄qˆ with support in D̄0 such
that degZ0pfq ą 0 and degC0pfq “ 0 for any other prime divisor C0 passing through p0.

Note that the function f is required to be contained not only in KpX̄0q
ˆ but in KpX̄qˆ.

Proof: Let Z0 be an irreducible component of D̄0 passing through p0. Denote by Z1, . . . , Zn
(for n “ 1 or n “ 2) the irreducible components of D̄ passing through the image point p P D̄
of p0. Since p is not contained in W , these are also the irreducible components of W ` D̄ passing
through p. Since pX̄, D̄q has enough tame coverings, for i “ 1, . . . , n there is fi P KpX̄qˆ such
that degZipfiq ą 0 and degZj pfiq “ 0 for i ‰ j. The projections of div fi to

Q ¨ Z1 ‘ . . .‘Q ¨ Zn.

constitute a basis of this vector space. Let Z0 “ Z0,1, . . . , Z0,m denote the irreducible compo-
nents of D̄0 passing through p0. These are also the irreducible components of W0 ` D̄0 passing
through p0. As in section 4.5 we assign to pX̄0,W0 ` D̄0q Ñ pX̄,W ` D̄q the multiplicity
homomorphism

φp0 : Q ¨ Z1 ‘ . . .‘Q ¨ Zn Ñ Q ¨ Z0,1 ‘ . . .‘Q ¨ Z0,m

at p0 induced by pullback. By Lemma 4.24 all multiplicity homomorphisms of a desingular-
ized l-covering are surjective. Therefore, there is a linear combination of div f1, . . . , div fn with
coefficients in Q mapping to Z0,1 “ Z0 under the multiplicity homomorphism. Clearing denomi-
nators we obtain

d ¨ Z0 “ φp0pk1div f1 ` . . . kndiv fnq

with integers d, k1, . . . , kn such that d ą 0. In other words, setting f “ fk1
1 ¨ . . . fknn we have in a

neighborhood of p0

div f “ d ¨ Z0.

This is what we wanted to prove.

Corollary 6.18: Let Z be a vertical divisor on X̄0 and p0 P Z a closed point which is not
contained in P0 `W0. There is a desingularized l-covering pX̄ 1, D̄1q Ñ pX̄, D̄q such that in the
pullback of Z to X̄ 1

0 the prime number l divides all coefficients of prime divisors whose image
in X̄0 contain p0.

Proof: Using Lemma 6.17, we find f P KpX̄qˆ such that locally at p0 we have

div f “ dZ

with a positive integer d. Write d “ lnd1 such that l does not divide d1. The normalization of X̄
in KpX̄qr ln`1?

fs does the job.
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Lemma 6.19: Let Y {S be a proper, regular arithmetic surface over a strictly henselian Dedekind
scheme S. Let A Ď Y be a connected, tidy, vertical divisor with at least two irreducible components
whose dual graph ΓA is simply connected. Denote by A1, . . . , Ar (possibly r “ 0) the irreducible
components of A which have more than one intersection point with other irreducible components
of A and by Ar`1, . . . , As the remaining irreducible components of A. Then the intersection
matrix

ρ : A1 ¨ Fl ‘ . . .‘Ar`1 ¨ Fl Ñ A1 ¨ Fl ‘ . . .‘As ¨ Fl

is injective.

Proof: If A has only two irreducible components A1 and A2, the intersection matrix is
ˆ

A2
1

A1 ¨A2

˙

“

ˆ

A2
1

1

˙

,

which is injective independently of the value of A2
1. Assume now that s ą 2. Let a “

řr`1
i“1 aiAi

be an element in the kernel of ρ. Since ΓA is simply connected, the number of components of A
with only one intersection point is at least two, i. e., s ą r ` 1. Hence, As intersects only one
other irreducible component Ai of A. We have i ď r because otherwise s “ 2. Without loss of
generality we may assume i “ 1. The coefficient of As in ρpaq is a1, whence a1 “ 0. Thus, a is
in the kernel of the intersection matrix

ρ1 : A2 ¨ Fl ‘ . . .‘Ar`1 ¨ Fl Ñ A2 ¨ Fl ‘ . . .‘As ¨ Fl,

and the lemma follows by induction on s.

Since pX̄0, D̄0q does not necessarily have enough tame coverings in p P P0, it is slightly more
complicated to kill elements of the cokernel of the intersection matrix. However, this is not
the crucial point. The biggest problem is the following: Let pX̄1,W1q Ñ pX̄0,W0q be a tidy
desingularization. Then we cannot force the dual graph of W1 to be simply connected except
by requiring W to be regular. This is the reason why we assume in the next lemma that W is
regular.

Lemma 6.20: Assume W is regular and every irreducible component of W has nontrivial inter-
section with K. Suppose further that for every irreducible component Ki of Kb̄0 we have Ki¨Wb̄0 “

1. Then
lim
ÝÑ

IX̄,D̄,x̄

F10 “ 0.

Proof: Let pX̄ 1, D̄1q Ñ pX̄, D̄q be a desingularized l-covering. Then also W 1 is regular and every
irreducible component of W 1 has nontrivial intersection with K 1 by Lemma 7.2. Furthermore, by
Lemma 6.13 we may assume that the statement concerning the intersection product also holds
on X̄ 1. Hence, it suffices to show that F0 vanishes in the limit over IX̄,D̄,x̄.

As in the proof of Lemma 6.14 let Z “
ř

nCC be a vertical divisor of X̄0 such that there is a
vertical divisor A of X̄0 with

lZ “ ρb̄0pAq.

Write A “ AK `AW `AP `AR with supp AK Ď K0, supp KW ĎW0, supp AP Ď P0 and such
that KR has support in the union R0 of the remaining irreducible components of the special fibre
of X̄0. If pX̄ 1, D̄1q Ñ pX̄, D̄q is a desingularized l-covering, we write A1 “ A1K `A1W `A1P `A1R
for the analogous decomposition of the pullback of A to X̄ 1

0. Let T0 Ď D̄0zP0 be a finite set of
closed points containing all special points of K0 `R0 and such that each irreducible component
of K0 ` R0 contains at least one point in T0. By Corollary 6.18, for each p0 P T0 we find
a desingularized l-covering pX̄ 1, D̄1q Ñ pX̄, D̄q such that l divides the coefficients in A1 of all
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vertical prime divisors whose image in X̄ contain p0. Replacing pX̄, D̄q by a desingularized l-
covering which dominates the just constructed coverings for all points p0 P T0 we may assume
that AR and AK are divisible by l. We can thus write

lpZ ´AK{l´AR{lq “ ρb̄0pAW `AP q.

Changing notation we may assume that A has support in W0 ` P0.

Blowing up in special points of K we may assume that K is regular. Let C be a connected
component of W0`P0`K0. There is precisely one irreducible component of C that is contained
in W0 as W and K are regular and Ki ¨Wb̄0 “ 1 for every irreducible component Ki of Kb̄0 .
To this irreducible component in W0 are attached several (at least one by assumption) bridges
of P1’s connecting the said irreducible component of W0 with an irreducible component of K0.
By our hypothesis on the intersection number of components of K andW , each component of K0

is connected to W0 by precisely one bridge of P1’s. The dual graph of C is thus of the form

W0

P 1
0

K1
0

P 2
0

K2
0 .

P 3
0

K3
0

C:

The vertex labeled W0 denotes the irreducible component of C contained in W0, K1
0 , K2

0 , K3
0

are irreducible components of K0, and P 1
0 , P 2

0 , P 3
0 denote bridges of P1’s in P0. Of course, the

number of bridges of P1’s in C does not have to be equal to three as in the above figure. In
particular, the dual graph of C is simply connected. If there is more than one bridge of P1’s,
the irreducible components of C with exactly one intersection point with the other irreducible
components of C are precisely the irreducible components of K0 in C. If there is only one bridge
of P1’s, the components of C with only one intersection point are the irreducible component ofW0

and the irreducible component of K0 contained in C. In both cases we obtain from Lemma 6.19
that the intersection matrix modulo l

ρ̄b̄0 :
à

CiĎC,CiĘK0

Fl ¨ Ci ÝÑ
à

CiĂC

Fl ¨ Ci

is injective, where the direct sums run over irreducible components of C. We conclude that A “
0 mod l, i. e., A is divisible by l. Therefore, Z is contained in the image of the intersection matrix
and defines a trivial element of F10 “ cokerpρb̄0qrls.

We will need Lemma 6.20 in order to prove that H1pB, ι˚R
1π̄η˚µlq vanishes in the limit over all

desingularized l-coverings of pX̄, D̄q. Before we can do so we need two more elementary lemmas.

Lemma 6.21: Let G be a profinite group, H1 and H2 two closed subgroups and M a discrete G-
module. Suppose that H1 acts trivially on M . If the restriction of a class φ P H1pG,Mq
to both H1pH1,Mq as well as to H1pH2,Mq is zero, its restriction to H1pH1H2,Mq is zero.
Here, H1H2 denotes the closed subgroup of G which is topologically generated by H1 and H2.

Proof: Without loss of generality we may assume that G “ H1H2. Let x be a 1-cocycle repre-
senting φ. By assumption

xph1q “ 0 @h1 P H1 and
Dm PM such that xph2q “ h2m´m @h2 P H2.
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Since H1 acts trivially on M , we can thus write

xpgq “ gm´m

for all g P H1 YH2. Because a cocycle is determined by its values on a generating subset of G,
the above equation holds for all g P G.

Lemma 6.22: The natural homomorphism

H1pX̄b̄, µlq Ñ H1ppX̄0qb̄, µlq

is an isomorphism.

Proof: The stated homomorphism decomposes as follows:

H1pX̄b̄, µlq Ñ H1ppX̄ ˆB B0qb̄, µlq Ñ H1ppX̄0qb̄, µlq.

The left hand homomorphism is an isomorphism as X̄b̄ “ pX̄ ˆB B0qb̄. Since the singularities
of X̄ˆBB0 are rational by Proposition 4.19, the right hand homomorphism is also an isomorphism.

We are interested in the following part of the long exact cohomology sequence associated to the
short exact sequence (6.1):

. . .Ñ H0pB,Fq Ñ H1pB,R1π̄˚µlq Ñ H1pB, ι˚R
1π̄η˚µlq Ñ . . . . (6.3)

By Corollary 6.15 the limit over IX̄,D̄,x̄ of H0pB1,F1q vanishes. In order to show that the
cohomology group H1pB,R1π̄˚µlq vanishes in the limit it thus suffices to prove:

Lemma 6.23: Assume that the following conditions are satisfied:

(i) The scheme W is regular.

(ii) The action of Gη on the l-division points of the Jacobian of Xη̄ factors through an l-primary
quotient.

(iii) Every irreducible component of W has nontrivial intersection with Dv.

(iv) The pair pX̄, D̄q has enough tame coverings.

(v) Let T Ă B be a finite (possibly empty) set of closed points. Denote by B̃l the universal l-
covering of B and by T̃ l the preimage of T in B̃l. Then

π1pB̃
l ´ T̃ lqplq – ˚

s̄PT̃ l
Is̄plq.

Then
H1pB, ι˚R

1π̄η˚µlq

vanishes in the limit over IX̄,D̄,x̄.

Proof: The five term exact sequence of the Leray spectral sequence associated to ι : η Ñ B reads

0 Ñ H1pB, ι˚R
1π̄η˚µlq Ñ H1pη,R1π̄η˚µlq Ñ H0pB,R1ι˚pR

1π̄η˚µlqq Ñ . . . .

We have
H1pη,R1π̄η˚µlq “ H1pGη, H

1pX̄η̄, µlqq,

and H0pB,R1ι˚pR
1π̄η˚µlqq is the group of global sections of the sheaf associated to the presheaf

pB1 Ñ Bq ÞÑ
ź

η1ÑB

H1pη1, R1π̄η˚µlq “
ź

η1ÑB

H1pGη1 , H
1pX̄η̄, µlqq,
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where the product runs over all generic points η1 of B1 and Gη1 denotes the absolute Galois group
of η1. We view these groups as subgroups of the absolute Galois group Gη of the generic point η
of B. A class ϕ P H1pGη, H

1pX̄η̄, µlqq maps to zero in H0pB,R1ι˚pR
1π̄η˚µlqq if and only if there

is an étale cover B1 Ñ B such that the restriction of ϕ to H1pGη1 , H
1pX̄η̄, µlqq vanishes for all

generic points η1 of B1. This is the case if and only if the restriction of ϕ to the inertia group of
each geometric point of B vanishes.

Let η1|η be the minimal extension of η such that H1pX̄η̄, µlq is a trivial Gη1-module. It is fi-
nite Galois and by assumption it is an l-extension. The cohomology group H1pGη1

, H1pX̄η̄, µlqq
parameterizes finite l-extensions of η1 and vanishes automatically in the limit over all such ex-
tensions. We conclude that there is a finite l-extension η2|η such that

H1pGη, H
1pX̄η̄, µlqq Ñ H1pGη2 , H

1pX̄η̄, µlqq

is the zero map.

Denote by T Ď B the finite set of closed points p such that X̄b is singular. Then X̄η has good
reduction at all closed points in B ´ T . Hence, by smooth base change (see [SGA4.5], Exp. V,
Théorème 3.1), the action of Gη on H1pXη̄,Λq factors through π1pB´ T, η̄q. In other words, the
extension η1|η is unramified in B ´ T . Let ϕ be an element of the kernel of

H1pGη, H
1pX̄η̄, µlqq Ñ H0pB,R1ι˚pR

1π̄η˚µlqq.

In particular, ϕ is in the kernel of

H1pGη, H
1pX̄η̄, µlqq Ñ H0pB ´ T,R1ι˚pR

1π̄η˚µlqq.

By the above description there is an étale cover B1 Ñ B ´ T such that the restriction of ϕ
to H1pGη1 , H

1pX̄η̄, µlqq vanishes for all generic points η1 of B1. Without loss of generality we
may assume that η1|η is a subextension of each η1|η. Then Gη1 acts trivially on H1pX̄η̄, µlq and
by repeated use of Lemma 6.21 we find a common subextension η2|η of the extensions η1|η and
of η2|η such that the restriction of ϕ to Gη2 is trivial. The extension η2|η must necessarily be
an l-extension which is unramified in B ´ T . We conclude that ϕ can be lifted to an element ϕ̃
of

H1ppπ1pB̃
l ´ T̃ lqqplq, H1pX̄η̄, µlqq,

where B̃l denotes the universal l-covering of B and T̃ l the preimage of T in T̃ l. In order to prove
that ϕ vanishes in the limit over all desingularized l-coverings of pX̄, D̄q it suffices to show that ϕ̃
vanishes in this limit. By assumption we have

π1pB̃
l ´ T̃ lqplq – ˚

sPT̃ l
Isplq.

The first cohomology group of such a free pro-l-product is described by the following exact
sequence (see [NSW], Theorem 4.3.14):

0 Ñ H1pX̄η̄, µlq
π1pB̃

l
´T̃ lqplq Ñ H1pX̄η̄, µlqÑ

à

sPT̃ l

H1pX̄η̄, µlq{H
1pX̄η̄, µlq

Isplq Ñ

Ñ H1pπ1pB̃
l ´ T̃ lqplq, H1pX̄η̄, µlqqÑ

à

sPT̃ l

H1pIsplq, H
1pX̄η̄, µlqq Ñ 0.

Note that in the statement of Theorem 4.3.14 of [NSW] there occurs a modified direct sum
denoted ‘1 instead of the usual direct sum ‘. However, as explained in the proof of the cited
Theorem 4.3.14, the modified direct sum

à

sPT̃ l

1
H1pIsplq, H

1pX̄η̄, µlqq
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coincides with the usual direct sum as the module H1pX̄η̄, µlq is finite. The same reasoning
applies for

À

sPT̃ l H
1pX̄η̄, µlq{H

1pX̄η̄, µlq
Isplq.

The group Isplq is the maximal l-quotient of the inertia group of Gη at s. As we have seen
above, the restriction of ϕ to the inertia group of Gη at s vanishes and hence, so does the restric-
tion of ϕ̃ to Isplq. We conclude that ϕ̃ lifts to an element of

À

sPT̃ l H
1pX̄η̄, µlq{H

1pX̄η̄, µlq
Isplq.

Therefore, it suffices to prove that for a fixed geometric point s of B lying over T the quo-
tient H1pX̄η̄, µlq{H

1pX̄η̄, µlq
Isplq vanishes in the limit over IX̄,D̄,x̄.

Consider the sequence of stalks at s associated with the short exact sequence (6.1):

0 Ñ H1pX̄s, µlq Ñ H1pX̄η̄, µlq
Isplq Ñ F1s Ñ 0.

We would like to have a similar sequence with H1pX̄η̄, µlq in the middle. Let B1 Ñ B be the
normalization of B in η1. Since we assumed W to be regular, the singularities of X̄ ˆB B1 are
all contained in D̄ ˆB B1 (see Lemma 4.2). Let pX̄ 1, D̄1q Ñ pX̄ ˆB B1, D̄ ˆB B1q be a tidy
desingularization. Then Lemma 6.12 also holds on X̄ 1 and we obtain a short exact sequence

0 Ñ R1π̄1˚µl Ñ ι1˚R
1π̄1η1˚

µl Ñ F1 Ñ 0.

Taking stalks at s and using functoriality yields a diagram of short exact sequences:

0 H1pX̄s, µlq H1pX̄η̄, µlq
Isplq Fs 0

0 H1pX̄ 1
s, µlq H1pX̄η̄, µlq F1s 0.

Note that by setting B0 “ pB1q
sh
s we are in the situation described after Lemma 6.15 and F1s

equals F0pB0q. By Lemma 6.22 we have

H1pX̄s, µlq “ H1pX̄ 1
s, µlq.

Lemma 6.13 allows us to assume that for every vertical component Z̄ of D̄b̄ we have Z̄ ¨Wb̄ ď 1.
Then, by Lemma 6.20, Fs as well as F1s vanish in the limit over IX̄,D̄,x̄. Hence, for every
element ξ P H1pX̄η̄, µlq there is a desingularized l-covering pX̄2, D̄2q Ñ pX̄, D̄q such that
the image of ξ in H1pX̄2

η̄ , µlq is contained in H1pX̄2
η̄ , µlq

I2s plq. We conclude that the direct
sum

À

sPT̃ l H
1pX̄η̄, µlq{H

1pX̄η̄, µlq
Isplq vanishes in the limit over IX̄,D̄,x̄. Therefore, the coho-

mology class ϕ̃, which is an element of

kerpH1pπ1pB̃
l ´ T̃ lqplq, H1pX̄η̄, µlqq Ñ

à

sPT̃ l

H1pIsplq, H
1pX̄η̄, µlqqq,

vanishes in the limit and the same holds for the class ϕ in

H1pB, ι˚R
1π̄η˚µlq “ kerpH1pη,R1π̄η˚µlq Ñ H0pB,R1ι˚pR

1π̄η˚µlqqq.

This concludes the proof of the lemma.

We can now collect the results of this section to prove

Proposition 6.24: Assume that the following conditions are satisfied:

(i) The class c is the class of finite l-groups for a prime number l.

(ii) The scheme X̄ as well as W is regular.

(iii) For every closed point b of B the prime l does not divide the greatest common divisor of the
multiplicities of the irreducible components of X̄b.
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(iv) The action of Gη on the l-division points of the Jacobian of Xη̄ factors through an l-primary
quotient.

(v) Every irreducible component of W has nontrivial intersection with Dv.

(vi) The pair pX̄, D̄q has enough tame coverings.

(vii) Let T Ă B be a finite (possibly empty) set of closed points. Denote by B̃l the universal l-
covering of B and by T̃ l the preimage of T in B̃l. Then

π1pB̃
l ´ T̃ lqplq – ˚

s̄PT̃ l
Is̄plq.

Then
H1pB,R1π˚Λq

vanishes in the limit over IX̄,D̄,x̄.

Remember that hypotheses (i) and (iii) and the assertion that X̄ is regular are required to
hold throughout this section. This is the reason why they do not appear in the statement of
Lemma 6.23. However, we included these conditions in Proposition 6.24 for later reference.

Proof: We choose an isomorphism Λ – µl and show the proposition with Λ replaced with µl.
This allows a more natural interpretation of the cohomology groups involved. At first we show
that we may replace X with X̄ and π with π̄. Consider the excision sequence

. . .Ñ R1π̄˚µl Ñ R1π˚µl Ñ R2
D̄h
π̄˚µl Ñ . . . .

The sheaf R2
D̄h
π̄˚µl is the sheaf associated to the presheaf

pB1 Ñ Bq ÞÑ H2
D̄hˆBB1

pX̄ ˆB B
1, µlq.

Let pX̄ 1, D̄1q Ñ pX̄, D̄q be a desingularized l-covering such that the ramification index of each
irreducible component of D̄1h is divisible by l. Such a covering exists as pX̄, D̄q has enough tame
coverings. By Proposition 5.17

H2
D̄hXπ̄´1pUqpX̄ ˆB B

1, µlq Ñ H2
D̄1hˆBB

1pX̄ ˆB B
1, µlq

is the zero map. Since this holds for all étale B1 Ñ B, also

R2
D̄h
π̄˚µl Ñ R2

D̄1h
π̄1˚µl

is the zero map and thus the image of R1π˚µl in R1π1˚µl can be lifted to R1π̄1˚µl. Propositions 7.2
and 7.3 will show that our assumptions a stable under desingularized l-coverings. Hence, it suffices
to prove that H1pB,R1π̄˚µlq vanishes in the limit over all desingularized l-coverings.

Consider the cohomology sequence associated to the short exact sequence (6.1):

. . .Ñ H0pB,Fq Ñ H1pB,R1π̄˚µlq Ñ H1pB, ι˚R
1π̄η˚µlq . . . .

By Lemma 6.23 the cohomology group H1pB, ι˚R
1π̄η˚µlq vanishes in the limit. After replac-

ing pX̄, D̄q with a desingularized l-covering, the elements of H1pB,R1π̄˚µlq can thus be lifted
to H0pB,Fq. Since by Propositions 7.2 and 7.3 from the next chapter our assumptions are stable
under desingularized l-coverings, we are left with proving that H0pB,Fq vanishes in the limit.
This is precisely the assertion of Lemma 6.15.
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6.5 The second higher direct image

At this point we have tackled all hypotheses of corollary 6.2. Under the conditions stated in the
preceding sections the said corollary thus implies that

lim
ÝÑ

IX̄,D̄,x̄

HnpX 1,Λq “ 0

for n ě 3 and
lim
ÝÑ

IX̄,D̄,x̄

kerpH2pX 1,Λq
edge
Ñ H0pB1, R2π1˚Λqq “ 0.

The only thing left to prove is that in the limit over IX̄,D̄,x̄ the elements of H2pU,Λq cannot only
be lifted to H2pX,Λq but even to

kerpH2pX,Λq
edge
Ñ H0pB,R2π˚Λqq.

Proposition 6.25: Assume that D̄h is nonempty and intersects all irreducible components of W .
Let φ be in the image of

H2pX,Λq Ñ H2pU,Λq.

Assume further that pX̄, D̄q has enough tame coverings. Then there is a desingularized c-
covering pX̄ 1, D̄1q Ñ pX̄, D̄q such that the image of φ in H2pU 1,Λq can be lifted to an element ψ1
of H2pX 1,Λq, which lies in the kernel of the edge morphism

H2pX 1,Λq Ñ H0pB1, R2π˚Λq.

Proof: Consider the diagram

H2
DpX,Λq H2pX,Λq H2pU,Λq

H0pB,R2
Dπ˚Λq H0pB,R2π˚Λq.

edge„ edge

The left vertical arrow is an isomorphism because due to purity RjDπ˚Λ “ 0 for j ď 1. We
conclude that it suffices to show that the cokernel of

H0pB,R2
Dπ˚Λq Ñ H0pB,R2π˚Λq

vanishes in the limit over IX̄,D̄,x̄. We have a direct sum decomposition indexed by the irreducible
components Di of D

R2
Dπ˚Λ “

à

i

R2
Diπ˚Λ.

It is sufficient to prove that the cokernel of the vertical part vanishes after a desingularized c-
covering: We want to show that there is a desingularized c-covering pX̄ 1, D̄1q Ñ pX̄, D̄q as above
such that

cokerpH0pB,R2
Dvπ˚Λq Ñ H0pB,R2π˚Λqq Ñ cokerpH0pB1, R2

D1v
π1˚Λq Ñ H0pB1, R2π1˚Λqq

is the zero map. Both R2
Dv
π˚Λ and R2π˚Λ are skyscraper sheaves with support in the singular

locus ofX Ñ B. We can treat each singular fibre separately and thus assume that B is a henselian
discrete valuation ring. We only have to make sure that the constructed desingularized c-covering
extends to a desingularized c-covering above the initial base scheme. We have the following
diagram of exact sequences

0 H0pB,R2
Dv
π˚Zpcqq H0pB,R2

Dv
π˚Zpcqq H0pB,R2

Dv
π˚Λq 0

0 H0pB,R2π˚Zpcqq H0pB,R2π˚Zpcqq H0pB,R2π˚Λq 0.

¨m

ρ ρ

¨m

(6.4)
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The exactness of the above sequences can be checked by using the explicit description of the
cohomology groups involved: Let b̄ be a geometric point above the closed point b of B. Denote
by Bsh the strict henselization of B at b̄ and by Xsh , X̄sh and Dsh the base change of X, X̄,
and D to Bsh . Let k be the residue field of B and k̄ the residue field of Bsh and denote by G the
Galois group of k̄|k. Then

H0pB,R2
Dvπ˚Zpcqq – H2

Dsh
v
pBsh ,ZpcqqG – p

à

CĎDb̄

Zpcq ¨ CqG,

where G acts on the direct sum by permuting the components C of Dsh . This already shows the
injectivity of multiplication by m. Similarly,

H0pB,R2
Dvπ˚Λq – p

à

CĎDsh
v

Λ ¨ CqG.

and H0pB,R2
Dv
π˚Zpcqq Ñ H0pB,R2

Dv
π˚Λq corresponds to the canonical projection

p
à

CĎDb̄

Zpcq ¨ CqG Ñ p
à

CĎDb̄

Λ ¨ CqG,

which is surjective. In the lower row we have

H0pB,R2π˚Zpcqq – p
à

CĎXb̄

H2pC,ZpcqqqG – p
à

CĎXb̄,C{B
sh proper

Zpcq ¨ CqG.

The irreducible components of Xb̄ which are proper over Bsh correspond to the irreducible com-
ponents of X̄b̄ not intersecting D̄h. By assumption these irreducible components coincide with
the irreducible components of Db̄. The rest of the calculation for the lower sequence is analogous.

In order to show that the cokernel of the right hand side vertical map in the diagram (6.4) vanishes
after a desingularized c-covering it suffices to show that the cokernel of the middle vertical map
does so. The stalk of the morphism R2

Dv
π˚Ẑpcq Ñ R2π˚Ẑpcq at b̄ is

H2
Db̄
pXsh , Ẑpcqq Ñ H2pXsh , Ẑpcqq.

By Lemma 6.7 it is given by the intersection matrix ρ of the components of Db̄. Since Db̄ does not
contain all components of the geometric special fibre, ρ is injective. Denote by F the cokernel.
By Corollary 6.10 there is a desingularized c-covering pX̄ 1, D̄1q Ñ pX̄, D̄q such that FÑ F1 is the
zero map (where F1 is the respective cokernel defined on X 1). Note that this covering extends to
the initial base scheme by Remark 6.11. We have an exact sequence

0 Ñ H0pB,R2
Dvπ˚Ẑpcqq Ñ H0pB,R2π˚Ẑpcqq Ñ H0pG,Fq.

So the cokernel of H0pB,R2
Dv
π˚Ẑpcqq Ñ H0pB,R2π˚Ẑpcqq is a subgroup of F. This shows the

result.
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Chapter 7

Construction of
Kpπ, 1q-neighborhoods

In the preceding chapters we proved the vanishing in the limit over all desingularized tame
coverings of cohomology groups HipX,Λq, where X is an arithmetic surface (and similarly for
cohomology groups with support). The vanishing of these cohomology groups in the limit was
subject to various conditions on X. In this chapter we construct étale neighborhoods of a given
geometric point satisfying these conditions. Moreover, we show that these conditions are stable
under desingularized c-coverings

7.1 Stability of certain properties under desingularized tame
coverings

In order to apply the results of chapter 5 and of chapter 6 it is not enough that an arithmetic
surface X itself has the above mentioned properties. Since we are aspiring to show the vanish-
ing of a limit over all desingularized c-coverings (for a full class of finite groups) of X, every
desingularized c-covering of X has to have these properties. Therefore, we have to show that the
necessary properties are stable under desingularized c-coverings. We start with the base scheme.

Lemma 7.1: Let B be a global Dedekind scheme and b̄ Ñ B a geometric point over a closed
point b P B. Let l be a prime number which is invertible on B. The following properties are stable
under restriction to Zariski neighborhoods of b and étale l-coverings of B

(i) µl – Z{lZ on B, i. e., the quotient field of B contains the lth roots of unity.

(ii) For any closed point b1 P B and geometric point b̄1 over b1 the natural morphism

π1pb1, b̄1qplq Ñ π1pB, b̄1qplq

is injective.

(iii) Let T Ă B be a finite (possibly empty) set of closed points. Denote by B̃l the universal l-
covering of B and by T̃ l the preimage of T in B̃l. Then B ´ T is Kpπ, 1q with respect to l
and

π1pB̃
l ´ T̃ lqplq – ˚

sPT̃ l
Isplq.

where Is is the inertia group at s.

Proof: Property (i) is clearly stable under any étale morphism B1 Ñ B. The same holds for
property (ii): Let B1 Ñ B be étale and b11 a closed point of B1. Let b̄1 Ñ B1 be a lift of b̄1 Ñ B1
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with image b11. Consider the commutative diagram

π1pb
1
1, b̄1qplq π1pB

1, b̄1qplq

π1pb1, b̄1qplq π1pB, b̄1qplq

If
π1pb1, b̄1qplq Ñ π1pB, b̄1qplq

is injective, the same holds for π1pb
1
1, b̄1qplq Ñ π1pB

1, b̄1qplq.

Assume that property (iii) holds on B and let B1 Ñ B be an étale l-covering. Since by as-
sumption B is Kpπ, 1q with respect to l (set T “ ∅ in property (iii)), the same holds for B1.
Also if B1 Ñ B is an open immersion, B1 is Kpπ, 1q with respect to l by applying property (iii)
with T “ B ´ B1. Hence, in both cases property (iii) holds by [Sch II], Satz 8.1 and Be-
merkung 8.2.

Lemma 7.2: Let π̄ : X̄ Ñ B be a proper arithmetic surface and D̄ Ă X̄ a tidy divisor. Set X “

X̄ ´ D̄h and U “ X̄ ´ D̄. Let c be a full class of finite groups such that all integers in Npcq
are invertible on X̄ and µl – Z{lZ on B for every prime number in Npcq. Then the following
conditions are stable under desingularized c-coverings.

(i) Every connected component of D has at least one horizontal component.

(ii) D̄h is nonempty and intersects all irreducible components of W .

(iii) Every irreducible component of W has nontrivial intersection with Dv.

(iv) For every prime number l P Npcq and every geometric point b̄ of B there is an irreducible
component C of Wb̄ such that l does not divide the multiplicity of C in X̄b̄

(v) pX̄, D̄q has enough tame coverings.

(vi) W is regular.

Proof: Let pX̄1, D̄1q Ñ pX̄, D̄q be a c-covering and pX̄ 1, D̄1q Ñ pX̄1, D̄1q a tidy desingularization.
By Corollary 4.7 a connected component of D̄1 is mapped surjectively onto a connected compo-
nent of D̄. Furthermore, connected components of D̄1 are mapped surjectively onto connected
components of D̄1. Therefore, if pX̄, D̄q satisfies condition (i), so does pX̄ 1, D̄1q.

By Lemma 4.2 and Corollary 4.7, the preimage of D̄h in X̄ 1 is D̄1h. If D̄h is nonempty, the same
holds for D̄1h. Furthermore, suppose C 1 is an irreducible component of W 1. It maps surjectively
onto an irreducible component C ofW . If x P C is contained in D̄h, the (nonempty) preimage of x
in C 1 is contained in D̄1h. This proves that condition (ii) is stable under desingularized c-coverings.

Let C 1 be an irreducible component of W 1. It maps to an irreducible component C of W . Let x
be a closed point of X̄ in the intersection of C with Dv. Then the preimage of x in C 1 is contained
in the intersection of C 1 with D1v. This treats condition (iii).

Let l P Npcq be a prime number and b̄ a geometric point of B. Assume that there is an irreducible
component C of Wb̄ such that l does not divide its multiplicity nC . Let pX̄ 1, D̄1q Ñ pX̄, D̄q be
a desingularized c-covering and b̄1 a geometric point of B1 above b̄. Then there is an irreducible
component C 1 of W 1

b̄1
above C. The desingularized c-covering pX̄ 1, D̄1q Ñ pX̄, D̄q induces a

generically étale c-covering C 1 Ñ C. Therefore, C 1 has the same multiplicity nC over b̄ as C. The
multiplicity of C 1 over b̄1 divides nC and is thus not divisible by l.

In order to deal with condition (v) assume that pX̄, D̄q has enough tame coverings. Let pX̄ 1, D̄1q Ñ
pX̄, D̄q be a desingularized c-covering, p1 P D̄1 a closed point and Z 1 an irreducible component
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COVERINGS

of D̄1 passing through p1. We have to find f 1 P KpX̄ 1qˆ with support in D̄1 such that degZ1pf 1q ą 0
and degC1pf 1q “ 0 for all other irreducible components C 1 of D̄1 passing through p1. Let Z1, . . . , Zn
(for n “ 1 or n “ 2) denote the irreducible components of D̄ passing through the image point p P
D̄ of p1. Since pX̄, D̄q has enough tame coverings, for i “ 1, . . . , n there is fi P KpX̄qˆ with
support in D̄ such that degZipfiq ą 0 and degZj pfiq “ 0 for i ‰ j. The projections of div fi to

Q ¨ Z1 ‘ . . .‘Q ¨ Zn

constitute a basis of this vector space. Let Z 1 “ Z 11, . . . , Z
1
m denote the irreducible components

of D̄1 passing through p1. In section 4.5 we investigated the multiplicity homomorphism

φp1 : Q ¨ Z1 ‘ . . .‘Q ¨ Zn Ñ Q ¨ Z 11 ‘ . . .‘Q ¨ Z 1m

at p1 induced by pullback. By Lemma 4.24 all multiplicity homomorphisms of a desingular-
ized c-covering are surjective. Therefore, there is a linear combination of div f1, . . . , div fn with
coefficients in Q mapping to Z 11 under the multiplicity homomorphism. Clearing denominators
we obtain

d ¨ Z 11 “ φp1pk1div f1 ` . . . kndiv fnq

with integers d, k1, . . . , kn such that d ą 0. In other words, setting f “ fk1
1 ¨ . . . fknn we have in a

neighborhood of p1
div f “ d ¨ Z 1,

what we wanted to prove.

Let us treat the last property. The statement that W is regular is equivalent to pUbqred being
regular for every closed point b of B such that X̄b is singular. Indeed, since W is the Zariski
closure of the union of these pUbqred , we only have to show that W is always regular at the
finitely many closed points in the complement of pUbqred . But these points are intersection points
of W with D̄ and D̄ is tidy. In particular, D̄ has normal crossings with W and thus W is
regular at the intersection points. A desingularized c-covering pX̄ 1, D̄1q Ñ pX̄, D̄q induces an
étale covering pU 1b1qred Ñ pUbqred for every closed point b1 of B1 with image b in B. Therefore,
if pUbqred is regular, so is pU 1b1qred .

In the global case we have to treat one more property concerning the l-division points of the
Jacobian of the generic fibre of an arithmetic surface.

Proposition 7.3: Let π̄ : X̄ Ñ B be a proper arithmetic surface and D̄ Ă X̄ a tidy divisor.
Set X “ X̄ ´ D̄h and U “ X̄ ´ D̄. Let l be a prime number which is invertible on X. Let η
denote the generic point of B. Let η̄ be a geometric point above η and denote by Gη the Galois
group of η̄|η. The following property is stable under desingularized l-coverings: The action of Gη
on the l-division points of the Jacobian of Uη̄ factors through an l-primary quotient.

For the proof of Proposition 7.3 we will need the following proposition which is Proposition 4
in [Fri I] in the situation where the pro-group G is profinite.

Proposition 7.4: Let
1 Ñ FÑ GÑ HÑ 1

be a short exact sequence of profinite groups such that H1pF,Z{lZq is finite and H2pF,Z{lZq “ 0.
Then Fplq is free pro-l.

Assume in addition that KpH, 1qplq #
Ñ KpHplq, 1q is a 7-isomorphism. Then the action of H

on H1pF,Z{lZq factors through Hplq if and only if

1 Ñ Fplq Ñ Gplq Ñ Hplq Ñ 1

is exact.
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Corollary 7.5: Let
1 Ñ FÑ GÑ HÑ 1

be a short exact sequence of profinite groups such that H1pF,Z{lZq is finite and F has cohomo-
logical l-dimension 1. Let G1 Ď G be an open subgroup of l-primary index. Denote by F1 the
intersection of F with G1 and by H1 the image of G1 in H. If the action of H on H1pF,Z{lZq
factors through Hplq, the action of H1 on H1pF1,Z{lZq factors through pH1qplq.

Proof: It suffices to prove that for each homomorphism h1 : Z Ñ H1 the induced action of Z
on H1pF,Z{lZq factors through Zl. For a homomorphism h1 : Z Ñ H1 we denote by h the
composite homomorphism ZÑ H1 Ñ H. Setting Gh :“ Gˆh Z and G1h1 :“ G1ˆh1 Z the diagram

1 F G H 1

1 F1 G1 H1 1

induces the following diagram of exact sequences

1 F Gh Z 1

1 F1 G1h1 Z 1.

Noting that KpZ, 1qplq #
Ñ KpZl, 1q is a 7-isomorphism we check that the upper exact sequence

meets the conditions for Proposition 7.4. Hence, l-completion yields

1 Fplq Ghplq Zl 1

pF1qplq pG1h1qplq Zl 1.

The vertical maps are injective as F1 and G1h1 have l-primary index in F and Gh, respectively.
It follows that pF1qplq Ñ Ghplq is injective and thus so is pF1qplq Ñ pG1h1qplq. Let us check that
the assumptions of Proposition 7.4 continue to hold for the lower exact sequence in the diagram
implying that the action of Zl on H1pF1,Z{lZq factors through Zl. By [NSW] Proposition 3.3.5
we have cdlF1 “ cdlF “ 1 and thus in particular H2pF1,Z{lZq “ 0. We see that H1pF1,Z{lZq is
finite using the Hochschild-Serre spectral sequence for F1 Ď F and the finiteness of H1pF,Z{lZq.

Proof of Proposition 7.3: Let x̄ be a geometric point of Uη̄. Let η1|η be a finite Galois l-
subextension of η̄|η such that Gη1 acts trivially on H1pUη̄,Z{lZq. We have the following exact
sequence of pro-finite groups.

1 Ñ π1pUη̄, x̄q Ñ π1pUη1 , x̄q Ñ Gη1 Ñ 1.

A desingularized l-covering pX̄ 1, D̄1q Ñ pX̄, D̄q induces by base change to Uη1 a finite étale l-
covering U 1η1

Ñ Uη1 and we obtain the following diagram of short exact sequences

1 π1pUη̄, x̄q π1pUη1 , x̄q Gη1 1

1 π1pU
1
η̄, x̄q π1pU

1
η1
, x̄q Gη11 1.

Let us verify that Corollary 7.5 applies. Since Uη̄ is an affine curve over an algebraically closed
field, it is Kpπ, 1q with respect to l and has cohomological l-dimension less or equal to 1. We con-
clude that π1pUη̄, x̄q has cohomological l-dimension less or equal to 1 and H1pπ1pUη̄, x̄q,Z{lZq “
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H1pUη̄,Z{lZq is finite. Hence, by Corollary 7.5 the action of Gη11 on H1pU 1η̄,Z{lZq factors through
an l-primary quotient Gη11{Gη12 . We obtain the following diagram of extensions of η:

η12

η11 “ η1η1

η1 η1

η.

Since η1|η is an l-extension, the same holds for η11|η1. Furthermore, η12|η11 is an l-extension and
thus also η12|η1.

7.2 Neighborhoods with enough tame coverings

For the construction of étale neighborhoods with enough tame coverings we need the following
variant of prime evasion.

Lemma 7.6: Let r and s be positive integers. Let A be a noetherian ring and p1, . . . , pr
and q1, . . . , qs prime ideals such that for i ‰ j qi is not contained in qj. For j ď s define
the integer mj by

p1 ¨ . . . ¨ pr Ď q
mj
j zq

mj`1
j .

Then there is a P A such that for i ď r a P pi and for j ď s a R q
mj`1
j .

Proof: For i ‰ j we can find bij P qizqj . We define

bj :“
ź

i‰j

bmi`1
ij .

Then we have
bj R qj , bj P qmi`1

i for i ‰ j.

Furthermore, by assumption, we can choose aj P p1 ¨ . . . ¨ przq
mj`1
j . Then cj :“ ajbj for j ď s

satisfies
cj R q

mj`1
j , cj P qmi`1

i for i ‰ j, cj P pi for i ď r.

Finally,
a :“

ÿ

jďr

cj

has the required properties.

For the rest of this section we use the following notation: For an integral closed subscheme Z of
an affine scheme Spec A we denote by pZ the prime ideal of A corresponding to the generic point
of Z. Moreover, we write mxpZq for the multiplicity of a closed subscheme Z in a point x. It is
defined as the maximal power of px containing the ideal corresponding to Z.

Lemma 7.7: Let X{B be an arithmetic surface such that B is local with generic point η iso-
morphic to the spectrum of a global field (i. e., B is the localization of a global Dedekind scheme
at a closed point). Let x1, . . . , xn be finitely many points of X. Then there are horizontal prime
divisors G1, . . . , Gs, Gs`1, . . . , Gr such that G1, . . . , Gs and Gs`1, . . . , Gr each generate the Weil
divisor class group CH1pXq of X. Furthermore, the supports of Gi for i “ 1, . . . , r do not
contain xj for j “ 1, . . . , n and the supports of Gi and Gj for i ď s and j ą s are disjoint.
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Proof: The generic fibre Xη of X Ñ B is a smooth curve over a global field. By the Mordell-Weil
theorem (see [Wei]) its Weil divisor class group is finitely generated. Denote by C1, . . . , Cl the
irreducible components of the special fibre. The Weil divisor class group of X is generated by
the Weil divisor class group of Xη and by C1, . . . , C1. It is therefore also finitely generated, by
prime divisors D1, . . . , Dm, say.

Since X is quasi-projective over an affine scheme, there is an affine open subscheme Spec A Ď X
containing x1, . . . , xn, as well as the generic points of D1, . . . , Dm and of C1, . . . , Cl (see [Liu],
Proposition 3.3.36). By Lemma 7.6 we can choose f1, . . . , fm P A such that for i “ 1, . . . ,m

fi P pDizp
2
Di ,

fi R p
mCj pDiq`1

Cj
for j “ 1, . . . , l,

fi R p
mxj pDiq`1
xj for j “ 1, . . . , n.

Viewing fi as elements of KpXqˆ we obtain divisors D1´div f1, . . . , Dm´div fm generating the
Weil divisor class group. The supports of the divisors Di ´ div fi do not contain x1, . . . , xn and
the coefficients of C1, . . . , Cl are zero, i. e., Di ´ div fi are horizontal. Denote by G1, . . . , Gs the
prime divisors in the support of D1 ´ div f1, . . . , Dm ´ div fm. Then G1, . . . , Gs are horizontal
prime divisors generating the Weil divisor class group whose supports do not contain x1, . . . , xn.

Denote by z1, . . . , zt the intersection points of G1, . . . , Gs with the special fibre. Choose an
affine open subscheme Spec A1 Ď X containing x1, . . . , xn, z1, . . . , zt as well as the generic points
of D1, . . . , Dm and of C1, . . . , C1. Using Lemma 7.6 again we find g1, . . . , gm P A1 such that
for i “ 1, . . . ,m

gi P pDizp
2
Di ,

gi R p
mCj pDiq`1

Cj
for j “ 1, . . . , l,

gi R p
mxj pDiq`1
xj for j “ 1, . . . , n,

gi R p
mzj pDiq`1
zj for j “ 1, . . . , t.

Denote by Gs`1, . . . , Gr the prime divisors in the support of D1 ´ div g1, . . . , Dm ´ div gm.
As above Gs`1, . . . , Gr are horizontal prime divisors generating the Weil divisor class group
whose supports do not contain x1, . . . , xn. Moreover, z1, . . . , zt are not contained in the support
of Gs`1, . . . , Gr. Hence, the support of Gi for i ď s is disjoint from the support of Gj for j ą s
as z1, . . . , zt are the only possible intersection points of Gi with another divisor.

Lemma 7.8: Let X{B be an arithmetic surface and let G1, . . . , Gs be horizontal prime divisors
generating the Weil divisor class group CH1pXq of X. Let p be a closed point of X such that X is
regular at p and p is not contained in any Gj for j “ 1, . . . , s. Denote by X 1 Ñ X the blowup of X
in p. Let G be a horizontal prime divisor disjoint from G1, . . . , Gs with nontrivial intersection
with the exceptional locus E. Then G1, . . . , Gs, G generate CH1pX 1q bQ.

Proof: The Weil divisor class group of X 1 is generated by G1, . . . , Gs and E. Let G0 denote the
image of G in X. Since G1, . . . , Gs generate the Weil divisor class group of X, there are nj P Z
such that

G0 “

s
ÿ

j“1

njGj

in CH1pXq. By [Liu], Chapter 9, Proposition 2.23 the pullback of G0 to X 1 is given by

G`mppG0q ¨ E.
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Since p P G0, the multiplicity mppG0q is positive. In CHpX 1q bQ we thus have

E “
1

mppG0q
p

s
ÿ

j“1

njGj ´Gq.

Lemma 7.9: Let Y {B be an arithmetic surface such that B is local with its generic point iso-
morphic to the spectrum of a global field and x P Y a closed point. Let Ȳ be a compactification
of Y over B. Then there is an open neighborhood V Ď Y of x and a compactification X̄{B
of V dominating Ȳ such that D̄ “ X̄ ´ V is a tidy divisor and such that the following assertion
holds: For every closed point y P X̄ and every prime divisor Z of X̄ passing through y there
is f P KpX̄qˆ with support in ZY D̄ such that degZpfq ą 0 and degW pfq “ 0 for all other prime
divisors W passing through y.

Proof: Take an open neighborhood V 1 of x such that the complement contains all singular points
except x (if x is singular) and all vertical prime divisors not passing through x and set D1 “
Ȳ ´ V 1. By [Lip] we can replace pȲ , D1q by a desingularization (in the strong sense) and thus
assume that x is the only possible singular point of Ȳ and D1 is a Cartier divisor. Choose prime
divisors G1, . . . , Gr of Ȳ not passing through x as in Lemma 7.7. Making V 1 smaller we may
assume that G1, . . . , Gr are contained in D1.

Let pX̄,D0q Ñ pȲ , D1q be a tidy desingularization, which exists by Proposition 2.15. Since Ȳ
is regular at every point in D1, the morphism X̄ Ñ Ȳ is a consecutive blowup in closed points
over D1. Moreover, the exceptional fibre of each blowup in a closed point p is isomorphic to P1

kppq

(see [Liu], Chapter 8, Theorem 1.19). Denote by E1, . . . , En the irreducible components of the
exceptional locus of X̄ Ñ Ȳ . For each i “ 1, . . . , n choose two different closed points pi, qi P Ei
in the regular locus of D0 and (horizontal) prime divisors Di and Ki intersecting Ei transversally
at pi and qi, respectively. Since a horizontal prime divisor consists of only two points, namely
the special and the generic point, Di and Ki are regular and do not intersect D0 in any other
point. Denote by D̄ the sum of D0 and the prime divisors D1, . . . , Dn,K1, . . . ,Kn as above and
set V “ X̄ ´ D̄.

We claim that pX̄, D̄q has the required properties. By the definition of a tidy desingularization,
D0 is a tidy divisor. The property of being tidy is invariant under adding horizontal prime divi-
sors intersecting the special fibre transversally in a regular point of D0. Therefore, also D̄ is tidy.
Let y P X̄ be a closed point and Z a prime divisor of X̄ passing through y. Either G1, . . . , Gs
or Gs`1, . . . , Gr do not pass through the image point of y, say G1, . . . , Gs. Furthermore, ei-
ther D1, . . . , Dn or K1, . . . ,Kn do not pass through y, say D1, . . . , Dn. By Lemma 7.8 the
prime divisors G1, . . . , Gs, D1, . . . , Dn generate the first Chow group CH1pX̄qbQ. Hence, there
are m,m1, . . . ,mn, n1, . . . , ns P Z with m ą 0 and f P KpX̄qˆ such that

mZ “
n
ÿ

j“1

mjDj `

s
ÿ

j“1

njGj ` div f.

The prime divisors D1, . . . , Dn and G1, . . . , Gs do not pass through y. Therefore, degW pfq “ 0
for all prime divisors W different from Z passing through y and degZpfq “ m ą 0. Further-
more, D1, . . . , Dn, G1, . . . , Gs are contained in D̄ and thus f has support in Z Y D̄.

As a direct consequence of Lemma 7.9 we obtain:

Corollary 7.10: In the situation of Lemma 7.9 let U Ď V be a neighborhood of x such that D1 “
X̄ ´ U is a tidy divisor. Then pX̄,D1q has enough tame coverings.
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7.3 Construction of suitable étale neighborhoods

Definition 7.11: Let Y {B be an arithmetic surface and x̄ a geometric point of Y inducing a
geometric point b̄ on B. An étale neighborhood of x̄ in Y {B is an arithmetic surface U{B1 fitting
into a (not necessarily cartesian) commutative diagram

U Y

B1 B,

such that U Ñ Y is an étale neighborhood of x̄ and B1 Ñ B is an étale neighborhood of b̄.

Given an arithmetic surface Y {B and a geometric point x̄ of Y we want to construct an étale
neighborhood U{B1 of x̄ in Y {B such that B1 satisfies properties (i)-(iii) of Lemma 7.1 and U
satisfies properties (i)-(vi) of Proposition 7.2.

Lemma 7.12: Let B be a global Dedekind scheme and b̄ Ñ B a geometric point over a closed
point b P B. Let l be a prime number different from the residue characteristic of b. Then there is
an étale neighborhood B1 Ñ B of b̄ satisfying the following conditions:

(i) The prime l is invertible on B1 and µl – Z{lZ on B1, i. e., the quotient field of B1 contains
the lth roots of unity.

(ii) For all closed points b1 P B1 the natural morphism

π1pb
1, b̄qplq Ñ π1pB

1, b̄qplq

is injective.

(iii) Let T 1 Ă B1 be a finite (possibly empty) set of closed points. Denote by B̃1l the universal l-
covering of B1 and by T̃ 1l the preimage of T 1 in B̃1l. Then B1 ´ T 1 is Kpπ, 1q with respect
to l and

π1pB̃
1l ´ T̃ 1lqplq – ˚

s1PT̃ 1l
Is1plq, (7.1)

where Is1 is the inertia group at s1.

Proof: Choose an open neighborhood B1 Ď B of b on which l is invertible. This is possible
as l is prime to the residue characteristic of b. Etale locally on B1 the lth roots of unity are
isomorphic to Z{lZ. We can thus find an étale neighborhood B1 Ñ B of b̄ such that every étale
neighborhood B2 Ñ B1 of b̄ satisfies condition (i). We can further assume that the fraction
field K 1 of B1 is totally imaginary in case l “ 2 and K 1 is a number field. We claim that any
étale neighborhood B2 Ñ B1 of b̄ also satisfies conditions (ii). For a closed point b2 of B2 the
maximal l-extension of the finite field kpb2q is globally realized by the cyclotomic l-extension of B2,
which is unramified over B2 as l is invertible on B2. This shows that B2 satisfies condition (ii).
After [Sch II], Theorem 1.1(iv) we can shrink B1 further such that B1 is Kpπ, 1q with respect to l.
Then, by [Sch II], Satz 8.1 and Bemerkung 8.2 B1 ´ T 1 is Kpπ, 1q with respect to l for any finite
set of closed points T 1 and

π1pB̃1
l
´ T̃ 1

l
qplq – ˚

s1PT̃ 1
l
π1pK

sh
s1 qplq. (7.2)

Having constructed a base scheme B with the necessary properties, we now show the existence
of étale neighborhoods on an arithmetic surface over B satisfying properties (i)-(v) of Proposi-
tion 7.2.
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Proposition 7.13: Let π : Y Ñ B be an arithmetic surface of local or global type and x̄ a
geometric point above a closed point x P Y . Let c be a full class of finite groups such that the
residue characteristic of x is not contained in Npcq and in the global case assume c “ cplq for a
prime number l. Then there is an étale neighborhood U{B1 of x̄ and a compactification U Ď X̄
of U Ñ B1 such that the complement D̄ of U in X̄ is a tidy divisor with the following properties.

(i) Every connected component of D has at least one horizontal component.

(ii) D̄h is nonempty and intersects all irreducible components of W .

(iii) Every irreducible component of W has nontrivial intersection with Dv.

(iv) For every prime number l P Npcq and every geometric point b̄ of B there is an irreducible
component C of Wb̄ such that l does not divide the multiplicity of C in X̄b̄.

(v) pX̄, D̄q has enough tame coverings.

Proof: Denote by b the image of x in B. It suffices to prove the proposition in case B is local with
generic point the spectrum of a global field. Indeed, if Y {B is of global type, denote by Y0{B0 the
base change of Y {B to the localization of B at b. Suppose there is an étale neighborhood B10 Ñ B0

of b, an étale neighborhood U0 Ñ YB10 of x̄ and a compactification U0 Ď X̄0 of U0 Ñ B10 such
that the complement D̄0 of U0 in X̄0 is a tidy divisor with properties (i)-(v). We may assume
without loss of generality that B10 is local with closed point b1. Then B10 Ñ B0 is the localization
of an étale morphism B1 Ñ B at a closed point b1 above b and U0 and X̄0 are the base changes
of arithmetic surfaces U and X̄ over B1. Making B1 smaller we may assume that l is invertible
on B1, X̄ Ñ B1 is proper, U is an open subscheme of X̄ and X̄b1 is the only possible singular
fibre. Similarly, we may assume that D̄ “ X̄ ´ U is a tidy divisor whose vertical components
are all contained in X̄b1 . The irreducible components of D̄ are then in one to one correspondence
with the irreducible components of D̄0. Hence, conditions (i)-(iii) are satisfied. Moreover, the
geometric fibres at b̄1 of X̄ Ñ B1 and X̄0 Ñ B10 are identical, whence property (iv).

In order to achieve that pX̄, D̄q has enough tame coverings, we choose finitely many closed
points p1, . . . , pn in D̄0 including all special points of D̄0 such that there is at least one point pi
in each irreducible component of D̄0. Furthermore, denote by D1, . . . , Dm the irreducible com-
ponents of D̄0. For every irreducible component Dj of D̄0 passing through one of the points pi
there is fij P KpX̄0q

ˆ with support in D̄0 such that degDj pfijq ą 0 and degZpfijq “ 0 for all
other prime divisors passing through pi. Viewing fij as an element of KpX̄qˆ it has support
in the union of D̄ with finitely many vertical prime divisors mapping to closed points different
from b1 in B1. Removing these points from B results in fij having support in D̄. Now pX̄, D̄q
has enough tame coverings: Let p be a closed point of D̄ and K Ď D̄ a prime divisor passing
through p, which corresponds to an irreducible component Dj of D̄0. If p is a special point of D̄,
it equals pi for some i and fij serves our purposes. If p is a regular point of D̄, we can take fij
for any of the closed points pi lying on Dj .

If Y {B is of local type, it is the base change to B of an arithmetic scheme Y0{B0 such that B0

is local with generic point the spectrum of a global field and B is the completion of B0 at its
closed point. Taking completion does not affect the tidiness of a divisor, nor does it disturb
properties (i)-(v). Therefore, also in this case it suffices to prove the proposition for B local with
generic point the spectrum of a global field.

For the rest of the proof we assume that B is the localization of a global Dedekind scheme at
a closed point b. Choose a geometric point b̄ above b compatible with x̄. Replacing B by an
étale neighborhood of b̄ we may assume that all irreducible components of the special fibre are
geometrically irreducible. The irreducible components of the special fibre are then in one to one
correspondence with the irreducible components of the geometric special fibre Yb̄. Replacing Y by
an open subscheme we may further assume that all irreducible components of the special fibre Yb
contain x.
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Let m be the greatest integer in Npcq dividing all multiplicities of components of the closed
fibre Yb. We may assume that µm – Z{mZ on B. Let t be a uniformizer of B and denote by Y 1
the normalization of Y in KpY qr m

?
ts. Let

Y 1 Ñ B1 Ñ B

be the Stein factorization of Y 1 Ñ B. The morphism Y 1 Ñ Y can ramify only in irreducible
components of Yb. Let C be a component of Yb and y a closed point of C in the smooth locus
of C. Locally at y we can write

t “ αumn

with a positive integer n, α a unit at x, and div u “ C. Locally at x the covering Y 1 Ñ Y is
thus given by adjoining an mth-root of the unit α, which is étale. Moreover, the multiplicity of
a vertical prime divisor of Y 1 above C is n. We conclude that Y 1 Ñ Y is an étale c-covering
and the greatest integer in Npcq dividing all multiplicities over B1 of the vertical prime divisors
in Y 1b is 1. Let x1 be the image of x̄ in Y 1, i. e., x1 is a preimage of x. For every vertical prime
divisor C of Y there is a vertical prime divisor C 1 of Y 1 over C passing through x1 (Remember
that all irreducible components of the special fibre Yb contain x). Thus, the greatest integer
in Npcq dividing all multiplicities over B1 of the vertical prime divisors in Y 1b passing through x1
is still 1. After changing notation, we may assume that this is true already on Y . We conclude
that for any (Zariski) open neighborhood U of x and any compactification X̄ of U condition (iv)
is satisfied.

Possibly replacing Y by an open neighborhood of x, we may assume that x is the only singular
point of Y . We use Theorem 2.8 in order to construct a compactification Ȳ of Y . After a tidy
desingularization of pȲ , Ȳ ´ Y q we may assume that the complement of Y is a tidy divisor.
Property (iii) can be achieved by removing from Y one closed point (different from x) on each
irreducible component of W and blowing up these points. Then condition (iii) continues to hold
for every Zariski neighborhood of x contained in Y .

Choose an open neighborhood V of x and a compactification X̄{B as in Lemma 7.9. By Corol-
lary 7.10, for any open neighborhood U of x which is contained in V and such that D̄ “ X̄ ´ U
is a tidy divisor the pair pX̄, D̄q has enough tame coverings, i. e., condition (v) is satisfied.

On every irreducible component C of X̄b choose a closed point pC ‰ x in the smooth locus of C
and not contained in any other irreducible component of X̄b. For each irreducible component of X̄b

remove from V a (horizontal) prime divisor intersecting C transversally at pC . The complement D̄
in X̄ of the resulting open neighborhood U of x is tidy by construction and thus pX̄, D̄q has enough
tame coverings. Moreover, pX̄, D̄q has properties (i) and (ii).
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Chapter 8

The main results

In this chapter we collect the work of Chapters 4, 5, and 6 in order to prove the main theorems
of this thesis. The first theorem treats the local case and the second one the global case.

Theorem 8.1: Let Y {B be an arithmetic surface of local type and ȳ Ñ Y a geometric point.
Let c be a full class of finite groups such that the residue characteristic of B is not contained
in Npcq and for all but finitely many primes l P Npcq the extension Brµls Ñ B is a c-extension.
Then Y has a basis of étale neighborhoods at ȳ which are Kpπ, 1q with respect to c.

Proof: For every étale neighborhood V Ñ Y of ȳ we have to construct an étale neighborhood U Ñ
V of ȳ which is Kpπ, 1q with respect to c. Since U is again an arithmetic surface of local type
over some B1 over B, we may replace Y by U and B by B1. It thus suffices to show the existence
of an étale neighborhood U Ñ Y of ȳ which is Kpπ, 1q with respect to c.

Let l1, . . . , ln be the finitely many primes in Npcq such that Brµlis Ñ B is not a c-extension.
Consider the finite étale morphism

B1 :“ Brµl1 , . . . , µlns Ñ B.

Then
Y ˆB B

1 π
1

Ñ B1 Ñ B

constitutes the Stein factorization of Y ˆB B1 Ñ B. Replacing π : Y Ñ B with π1 : Y 1 Ñ B1 we
may assume µl – Z{lZ on B for all prime numbers l P Npcq.

By Proposition 7.13 there is an étale neighborhood U Ñ Y of ȳ and a compactification U Ď X̄
of U Ñ B such that the complement of U in X̄ is a tidy divisor satisfying properties (i)-(v) in
the statement of Proposition 7.13.

By Corollary 2.5 and Lemma 2.22 we have to show

lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

HnpU 1,Λq “ 0 (8.1)

for Λ “ Z{lZ with l P Npcq prime. For n “ 1 the cohomology group HnpU,Λq parameterizes
finite étale l-coverings and thus

lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

H1pU 1,Λq “ 0

is automatically satisfied.

Let us show equality (8.1) for n ě 2. We have chosen X̄ and D̄ such that the conditions (i)-(v) of
Proposition 7.13 are satisfied. By Proposition 7.2, for every desingularized c-covering pX̄ 1, D̄1q Ñ
pX̄, D̄q these conditions continue to hold on X̄ 1. By propositions 5.17, 5.19, 5.20 for n “ 2, n “ 3,
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and n ě 4, respectively, the restriction

lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

HnpX 1,Λq Ñ lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

HnpU 1,Λq

is surjective. Note that the assumptions made in these three propositions are among the condi-
tions (i)-(v) of Proposition 7.13. It is thus legitimate to apply them in our situation.

We are left with treating the cohomology groups HnpX 1,Λq. Let us first examine the case n ě 3.
By Corollary 6.2 it suffices to prove that

lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

HipB1, Rjπ1˚Λq “ 0

for i` j “ n. This is true by Lemma 6.4.

Suppose now that n “ 2. By Lemma 6.4

lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

HipB1, Rjπ1˚Λq “ 0

for pi, jq “ p1, 1q and pi, jq “ p2, 0q. By Proposition 6.25 the composition

lim
ÝÑ

IX̄,D̄,x̄

kerpH2pX 1,Λq Ñ H0pB1, R2π˚Λqq ãÑ lim
ÝÑ

IX̄,D̄,x̄

H2pX 1,Λq Ñ lim
ÝÑ

IX̄,D̄,x̄

H2pU 1,Λq

remains surjective. Again, the hypotheses of Proposition 6.25 are satisfied because they are
part of conditions (i)-(v) of Proposition 7.13. We can now apply the part of Corollary 6.2
concerning n “ 2, which says that

lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

kerpH2pX 1,Λq Ñ H0pB1, R2π˚Λqq “ 0,

and thus also
lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

H2pU 1,Λq

vanishes. This concludes the proof.

Theorem 8.2: Let Y {B be a regular arithmetic surface of global type and x̄ Ñ Y a geometric
point lying over a closed point x P Y mapping to b P B. We assume that x is contained in the
regular locus of pYbqred . Let l be a prime number different from the residue characteristic of x.
Let X0 denote the completion of the generic fibre Yη of Y Ñ B. Suppose that the action of the
inertia group at b̄ on the l-division points of the Jacobian of X0 factors through an l-primary
quotient. Then Y has a basis of étale neighborhoods at x̄ which are Kpπ, 1q with respect to l.

Proof: As in the local case we have to show the existence of an étale neighborhood U Ñ Y
of ȳ which is Kpπ, 1q with respect to c. We may assume that B satisfies properties (i)-(iii) of
Lemma 7.12. By Proposition 7.13 there is an étale neighborhood U Ñ Y of x̄ and a compactifica-
tion U Ď X̄ of U Ñ B such that the complement of U in X̄ is a tidy divisor with properties (i)-(v)
of Proposition 7.2. Since by hypothesis x is not a special point, we may assume that all special
points of the fibre X̄b are contained in D̄, i. e., W is regular. By shrinking B we may assume
that X̄b is the only possibly singular fibre of X̄ Ñ B. Let b̄ be the geometric point of B induced
by x̄ and denote by η the generic point of B. Denote by η1|η the minimal extension of η such
that Gη1 acts trivially on the l-division points of the Jacobian of Uη̄. After replacing B with an
étale neighborhood of b̄ we may assume that η1|η is purely ramified at b̄. By assumption, the
extension η1|η is thus an l-extension. By Proposition 7.3 this property continues to hold on
every desingularized l-covering of pX̄, D̄q. Furthermore, by Proposition 7.2 the above mentioned
properties (i)-(v) are also stable under desingularized l-coverings.
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Set Λ “ Z{lZ. As in the local case we have to show that

lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

HnpU 1,Λq “ 0

for n ě 2.

By the same reason as in the local case

lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

HnpX̄ 1,Λq Ñ lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

HnpU 1,Λq

is surjective (use Propositions 5.17, 5.19, and 5.20 as in the local case).

Again, we have to examine the cohomology groups HnpX̄ 1,Λq. Let us first treat the case n ě 3.
By Corollary 6.2 it suffices to prove that

lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

HipB1, Rjπ1˚Λq “ 0

for i` j “ n. This is true by Lemma 6.3 and Corollary 6.6. Note that for Corollary 6.6 we need
the assumption on the Jacobian of the generic fibre.

Suppose now that n “ 2. By Lemma 6.3 and Proposition 6.24

lim
ÝÑ

pX̄1,D̄1qPIX̄,D̄,x̄

HipB1, Rjπ1˚Λq “ 0

for pi, jq “ p2, 0q and pi, jq “ p1, 1q, respectively. For Proposition 6.24 we need the assumption
on the Jacobian again and moreover the hypothesis that W is regular. As in the local case the
theorem now follows by Proposition 6.25 and Corollary 6.2.
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