Report 2000-027
On double extremes of Gaussian stationary processes
A. Ladneva, V. Piterbarg ISSN 1389-2355

On double extremes of Gaussian stationary processes

Anna Ladneva and Vladimir Piterbarg*
Faculty of Mechanics and Mathematics
Moscow Lomonosov state university

September 7, 2000

Abstract

We consider a Gaussian stationary process with Pickands' conditions and evaluate an exact asymptotic behavior of probability of two high extremes on two disjoint intervals.

1 Introduction. Main results.

Let $X(t), t \in \mathbb{R}$, be a zero mean stationary Gaussian process with unit variance and covariance function $r(t)$. An object of our interest is the asymptotic behaviour of the probability

$$
P_{d}\left(u ;\left[T_{1}, T_{2}\right],\left[T_{3}, T_{4}\right]\right)=\mathbf{P}\left(\max _{t \in\left[T_{1}, T_{2}\right]} X(t)>u, \max _{t \in\left[T_{3}, T_{4}\right]} X(t)>u\right)
$$

as $u \rightarrow \infty$, where $\left[T_{1}, T_{2}\right]$ and $\left[T_{3}, T_{4}\right]$ are disjoint intervals. To evaluate the asymptotic behaviour we develop an analogue of Pickands' theory of high extremes of Gaussian processes, see [1] and extensions in [2]. We follow main steps of the theory. First we assume an analogue of the Pickands' conditions.

A1 For some $\alpha \in(0,2)$,

$$
\begin{aligned}
& r(t)=1-|t|^{\alpha}+o\left(|t|^{\alpha}\right) \text { as } t \rightarrow 0 \\
& |r(t)|<1 \text { for all } t>0
\end{aligned}
$$

Then, we specify covariations between values of the process on intervals $\left[T_{1}, T_{2}\right]$ and $\left[T_{3}, T_{4}\right]$. We assume that there is an only domination point of correlation between the values. This makes some similarity with Pirabarg\&Prisyazhn'uck's extension of the Pickands' theory to nonstationary Gaussian processes.

A2 In the interval $S=\left[T_{3}-T_{2}, T_{4}-T_{1}\right]$ there exists only point $t_{m}=\arg \max _{t \in S} r(t) \in$ $\left(T_{3}-T_{2}, T_{4}-T_{1}\right), r(t)$ is twice differentiable in a neighbourhood of t_{m} with $r^{\prime \prime}\left(t_{m}\right) \neq 0$.
As an alternative of assumption A2 one can suppose that the point of maximum of $r(t)$ is one of the end points of $S, T_{3}-T_{2}$ is more natural candidate.

[^0]A3 $r(t)$ is continuously differentiable in a neighbourhood of the point $t_{m}=T_{3}-T_{2}, r^{\prime}\left(t_{m}\right)<0$ and $r\left(t_{m}\right)>r(t)$ for all $t \in\left(T_{3}-T_{2}, T_{4}-T_{1}\right]$.
A3' $r(t)$ is continuously differentiable in a neighbourhood of the point $t_{m}=T_{4}-T_{1}, r^{\prime}\left(t_{m}\right)>0$ and $r\left(t_{m}\right)>r(t)$ for all $t \in\left[T_{3}-T_{2}, T_{4}-T_{1}\right)$.

Denote by $B_{\alpha}(t), t \in \mathbb{R}$, a normed fractional Brownian motion with the Hurst parameter $\alpha / 2$, that is a Gaussian process with a.s. continuous trajectories, $B_{\alpha}(0)=0$ a.s., $\mathbf{E} B_{\alpha}(t) \equiv 0$, and $\mathbf{E}\left(B_{\alpha}(t)-B_{\alpha}(s)\right)^{2}=2|t-s|^{\alpha}$. For any set $T \subset \mathbb{R}$ we denote

$$
H_{\alpha}(T)=\mathbf{E} \exp \left(\sup _{t \in T} B_{\alpha}(t)-|t|^{\alpha}\right)
$$

It is known, [1], [2], that there exists a positive and finite limit

$$
\begin{equation*}
H_{\alpha}:=\lim _{T \rightarrow \infty} \frac{1}{T} H_{\alpha}([0, T]) \tag{1}
\end{equation*}
$$

the Pickands' constant. Further, for a number c denote

$$
H_{1}^{c}(T)=\mathrm{E} \exp \left(\sup _{t \in T} B_{1}(t)-|t|-c t\right)
$$

It is known, [2], that for any positive c, the limit $H_{1}^{c}:=\lim _{T \rightarrow \infty} H_{1}^{c}([0, T])$ exists and is positive. We stand $a \vee b$ for $\max (a, b)$ and $a \wedge b$ for $\min (a, b)$. Denote

$$
p_{2}(u, r)=\frac{(1+r)^{2}}{2 \pi u^{2} \sqrt{1-r^{2}}} e^{-\frac{u^{2}}{1+r}}
$$

and notice that for a Gaussian vector (ξ, η) where the components are standard Gaussian and correlation between them is $r, \mathbf{P}(\xi>u, \eta>u)=p_{2}(u, r)(1+o(1))$ as $u \rightarrow \infty$.

Theorem 1 Let $X(t), t \in \mathbb{R}$, be a Gaussian centred stationary process with a.s. continuous trajectories. Let assumptions A1 and A2 be fulfilled for its covariance function $r(t)$. Then

$$
\begin{aligned}
& P_{d}\left(u ;\left[T_{1}, T_{2}\right],\left[T_{3}, T_{4}\right]\right) \\
& \quad=K \sqrt{\pi A^{-1}}\left(1+r\left(t_{m}\right)\right)^{-4 / \alpha} H_{\alpha}^{2} u^{-3+4 / \alpha} p_{2}\left(u, r\left(t_{m}\right)\right)(1+o(1))
\end{aligned}
$$

as $u \rightarrow \infty$, where $K=T_{2} \wedge\left(T_{4}-t_{m}\right)-T_{1} \vee\left(T_{3}-t_{m}\right)>0$,

$$
A=-\frac{1}{2} \frac{r^{\prime \prime}\left(t_{m}\right)}{\left(1+r\left(t_{m}\right)\right)^{2}}
$$

Theorem 2 Let $X(t), t \in \mathbb{R}$, be a Gaussian centred stationary process with a.s. continuous trajectories. Let assumptions A1 and A3 or A3' be fulfilled for its covariance function $r(t)$. Then,
(i)for $\alpha>1$,

$$
P_{d}\left(u ;\left[T_{1}, T_{2}\right],\left[T_{3}, T_{4}\right]\right)=p_{2}\left(u, r\left(t_{m}\right)\right)(1+o(1))
$$

as $u \rightarrow \infty$.
(ii) For $\alpha=1$,

$$
P_{d}\left(u ;\left[T_{1}, T_{2}\right],\left[T_{3}, T_{4}\right]\right)=\left(H_{1}^{\left|r^{\prime}\left(t_{m}\right)\right|}\right)^{2} p_{2}\left(u, r\left(t_{m}\right)\right)(1+o(1))
$$

as $u \rightarrow \infty$.
(iii) For $\alpha<1$,

$$
P_{d}\left(u ;\left[T_{1}, T_{2}\right],\left[T_{3}, T_{4}\right]\right)=B^{-2}\left(1+r\left(t_{m}\right)\right)^{-4 / \alpha} H_{\alpha}^{2} u^{-6+4 / \alpha} p_{2}\left(u, r\left(t_{m}\right)\right)(1+o(1))
$$

as $u \rightarrow \infty$, where

$$
B=\frac{r^{\prime}\left(t_{m}\right)}{\left(1+r\left(t_{m}\right)\right)^{2}}
$$

2 Lemmas

For a set $A \subset \mathbb{R}$ and a number a we write $a A=\{a x: x \in A\}$ and $a+A=\{a+x: x \in A\}$.
Lemma 1 Let $X(t)$ be a Gaussian process with mean zero and covariance function $r(t)$ satisfying assumptions A1, A2. Let a time moment $\tau=\tau(u)$ tends to t_{m} as $u \rightarrow \infty$ in such a way that $\left|\tau-t_{m}\right| \leq C \sqrt{\log u} / u$, for some positive C. Let T_{1} and T_{2} be closures of two bounded open subsets of \mathbb{R}. Then

$$
\begin{align*}
& \mathbf{P}\left(\max _{t \in u^{-2 / \alpha} T_{1}} X(t)>u, \max _{t \in \tau+u^{-2 / \alpha} T_{2}} X(t)>u\right)= \\
& \quad=\frac{(1+r(\theta))^{2}}{2 \pi u^{2} \sqrt{1-r^{2}(\theta)}} e^{-\frac{u^{2}}{1+r(\tau)}} H_{\alpha}\left(\frac{T_{1}}{(1+r(\theta))^{2 / \alpha}}\right) H_{\alpha}\left(\frac{T_{2}}{(1+r(\theta))^{2 / \alpha}}\right)(1+o(1)), \tag{2}
\end{align*}
$$

as $u \rightarrow \infty$, where $\theta=t_{m}$.
Lemma 2 Let $X(t)$ be a Gaussian process with mean zero and covariance function $r(t)$ satisfying assumptions A1, A2 with $\alpha<1$. Let T_{1} and T_{2} be closures of two bounded open subsets of \mathbb{R}. Then, for any (fixed) $\tau>0$ the asymptotic relation of Lemma 1 holds true with $\theta=\tau$.

Lemma 3 Let $X(t)$ be a Gaussian process with mean zero and covariance function $r(t)$ satisfying assumptions A1, A2 with $\alpha=1$. Let T_{1} and T_{2} be closures of two bounded open subsets of \mathbb{R}. Then

$$
\begin{align*}
& \mathbf{P}\left(\max _{t \in u^{-2} T_{1}} X(t)>u, \max _{t \in \tau+u^{-2} T_{2}} X(t)>u\right)= \\
& \quad=H_{1}^{r^{\prime}(\tau)}\left(\frac{T_{1}}{(1+r(\tau))^{2}}\right) H_{1}^{-r^{\prime}(\tau)}\left(\frac{T_{2}}{(1+r(\tau))^{2}}\right) p_{2}(u, r(\tau))(1+o(1)) \tag{3}
\end{align*}
$$

as $u \rightarrow \infty$.

Proof of Lemmas 1-3. We prove the three lemmas simultaneously, computations of conditional expectation (4) and related evaluations are performed in parallel, separately for each lemma. We have for $u>0$,

$$
\begin{aligned}
\mathbf{P} & =\mathbf{P}\left(\max _{t \in u^{-2 / \alpha} T_{1}} X(t)>u, \max _{t \in \tau+u^{-2 / \alpha} T_{2}} X(t)>u\right)= \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{P}\left(\max _{t \in u^{-2 / \alpha} T_{1}} X(t)>u, \max _{t \in \tau+u^{-2 / \alpha} T_{2}} X(t)>u \mid X(0)=a, X(\tau)=b\right) \mathbf{P}_{0 \tau}(a, b) d a d b,
\end{aligned}
$$

where

$$
\mathbf{P}_{0 \tau}(a, b)=\frac{1}{2 \pi \sqrt{1-r^{2}(\tau)}} \exp \left(-\frac{1}{2} \cdot \frac{a^{2}-2 r(\tau) a b+b^{2}}{1-r^{2}(\tau)}\right)
$$

Now we change variables, $a=u-x / u, b=u-y / u$,

$$
\begin{aligned}
\mathbf{P}_{0 \tau}(x, y)= & \frac{1}{2 \pi \sqrt{1-r^{2}(\tau)}} \times \\
& \times \exp \left(-\frac{1}{2} \cdot \frac{(u-x / u)^{2}-2 r(\tau)(u-x / u)(u-y / u)+(u-y / u)^{2}}{1-r^{2}(\tau)}\right) \\
= & \frac{1}{2 \pi \sqrt{1-r^{2}(\tau)}} \exp \left(-\frac{u^{2}}{1+r(\tau)}\right) \times \\
& \times \exp \left(-\frac{1}{2} \cdot \frac{\frac{x^{2}+y^{2}}{u^{2}}-2 x-2 y+2 r(\tau)(x+y)-2 r(\tau) \frac{x y}{u^{2}}}{1-r^{2}(\tau)}\right) \\
= & \frac{1}{2 \pi \sqrt{1-r^{2}(\tau)}} \exp \left(-\frac{u^{2}}{1+r(\tau)}\right) \cdot \tilde{\mathbf{P}}(u, x, y) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathbf{P}= & \frac{1}{2 \pi \sqrt{1-r^{2}(\tau)}} \frac{1}{u^{2}} \exp \left(-\frac{u^{2}}{1+r(\tau)}\right) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{P}\left(\max _{t \in u^{-2 / \alpha} T_{1}} X(t)>u\right. \\
& \left.\max _{t \in \tau+u^{-2 / \alpha} T_{2}} X(t)>u \mid X(0)=u-x / u, X(\tau)=u-y / u\right) \tilde{\mathbf{P}}(u, x, y) d x d y .
\end{aligned}
$$

Consider the following families of random processes,

$$
\begin{aligned}
& \xi_{u}(t)=u\left(X\left(u^{-2 / \alpha} t\right)-u\right)+x, t \in T_{1} \\
& \eta_{u}(t)=u\left(X\left(\tau+u^{-2 / \alpha} t\right)-u\right)+y, t \in T_{2}
\end{aligned}
$$

We have,

$$
\begin{aligned}
\mathbf{P}= & \frac{1}{2 \pi \sqrt{1-r^{2}(\tau)}} \frac{1}{u^{2}} \exp \left(-\frac{u^{2}}{1+r(\tau)}\right) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{P}\left(\max _{t \in T_{1}} \xi_{u}(t)>x,\right. \\
& \left.\max _{t \in T_{2}} \eta_{u}(t)>y \mid X(0)=u-x / u, X(\tau)=u-y / u\right) \tilde{\mathbf{P}}(u, x, y) d x d y
\end{aligned}
$$

Compute first two conditional moments of Gaussian random vector process $\left(\xi_{u}(t), \eta_{u}(t)\right)^{\top}$. We have

$$
\mathbf{E}\left(\begin{array}{l|l}
\xi_{u}(t) & X(0) \\
\eta_{u}(t) & X(\tau)
\end{array}\right)=\mathbf{E}\binom{\xi_{u}(t)}{\eta_{u}(t)}+\mathbf{A}\binom{X(0)}{X(\tau)}
$$

where

$$
\mathbf{A}=\operatorname{cov}\left(\binom{\xi_{u}(t)}{\eta_{u}(t)},\binom{X(0)}{X(\tau)}\right)\left[\mathbf{E}\left(\binom{X(0)}{X(\tau)}\binom{X(0)}{X(\tau)}^{\top}\right)\right]^{-1}
$$

or

$$
\mathbf{A}=\frac{u}{1-r^{2}(\tau)}\left(\begin{array}{ll}
r\left(u^{-2 / \alpha} t\right)-r(\tau) r\left(\tau-u^{-2 / \alpha} t\right) & r\left(\tau-u^{-2 / \alpha} t\right)-r(\tau) r\left(u^{-2 / \alpha} t\right) \\
r\left(\tau+u^{-2 / \alpha} t\right)-r(\tau) r\left(u^{-2 / \alpha} t\right) & r\left(u^{-2 / \alpha} t\right)-r(\tau) r\left(\tau+u^{-2 / \alpha} t\right)
\end{array}\right) .
$$

We denote $\operatorname{cov} X$, the matrix of covariances of a vector X and $\operatorname{cov}(X, Y)$, the matrix of crosscovariances between components of X and Y. Substituting the values $X(0)=u-x / u, X(\tau)=$ $u-y / u$, of the conditions, we get from here that

$$
\mathbf{E}\left(\left.\begin{array}{l}
\xi_{u}(t) \tag{4}\\
\eta_{u}(t)
\end{array} \right\rvert\, X(0)=u-x / u\right)=\left(\begin{array}{c}
\frac{1}{1-r^{2}(\tau)}\left(r\left(u^{-2 / \alpha} t\right)\left(u^{2}-x-r(\tau)\left(u^{2}-y\right)\right)+\right. \\
\left.+r\left(\tau-u^{-2 / \alpha} t\right)\left(u^{2}-y-r(\tau)\left(u^{2}-x\right)\right)\right)-u^{2}+x \\
\frac{1}{1-r^{2}(\tau)}\left(r\left(u^{-2 / \alpha} t\right)\left(u^{2}-y-r(\tau)\left(u^{2}-x\right)\right)+\right. \\
\left.+r\left(\tau+u^{-2 / \alpha} t\right)\left(u^{2}-x-r(\tau)\left(u^{2}-y\right)\right)\right)-u^{2}+y
\end{array}\right)
$$

In conditions of every lemma 1-3 we have

$$
\begin{align*}
& \mathbf{E}\left(\begin{array}{l}
\xi_{u}(t) \\
\eta_{u}(t) \mid X(0)=u-x / u \\
X(\tau)=u-y / u
\end{array}\right)= \tag{5}\\
& \quad\binom{-\frac{1}{1+r(\tau)}|t|^{\alpha}+o(1)+u^{2} \frac{r\left(\tau-u^{-2 / \alpha} t\right)-r(\tau)}{1+r(\tau)}+(y-x r(\tau)) \frac{r(\tau)-r\left(\tau-u^{-2 / \alpha} t\right)}{1-r^{2}(\tau)}}{-\frac{1}{1+r(\tau)}|t|^{\alpha}+o(1)+u^{2} \frac{r\left(\tau+u^{-2 / 2} t\right)-r(\tau)}{1+r(\tau)}+(y-x r(\tau)) \frac{r(\tau)-r\left(\tau+u^{-2 / \alpha}\right)}{1-r^{2}(\tau)}}
\end{align*}
$$

as $u \rightarrow \infty$.
Now, let conditions of the Lemma 1 be fulfilled. Since $\alpha<2$ and $r^{\prime}(\tau)=O(\sqrt{\log u} / u)$ uniformly in $\left|\tau-t_{m}\right| \leq C \sqrt{\log u} / u$, we have,

$$
\begin{equation*}
\left|u^{2} \frac{r\left(\tau-u^{-2 / \alpha} t\right)-r(\tau)}{1+r(\tau)}\right| \leq \max _{\left|\tau-t_{m}\right| \leq C \sqrt{\log u} / u}\left|u^{2}\left(-u^{-2 / \alpha} t\right) \frac{r^{\prime}(\tau)}{1+r(\tau)}\right|=o(1) \tag{6}
\end{equation*}
$$

Thus

$$
\mathbf{E}\left(\begin{array}{l|l}
\xi_{u}(t) & X(0)=u-x / u \tag{7}\\
\eta_{u}(t) & X(\tau)=u-y / u
\end{array}\right)=\binom{-\frac{1}{1+r\left(t_{m}\right)}|t|^{\alpha}+o(1)}{-\frac{1}{1+r\left(t_{m}\right)}|t|^{\alpha}+o(1) .}
$$

as $u \rightarrow \infty$.
Let now the conditions of Lemma 2 be fulfilled, that is $\alpha<1$. In this situation even for fixed τ, by Taylor, the third terms in the column array of right-hand part of (5) tend to zero as $u \rightarrow \infty$, hence (7) takes place, with $\theta=\tau$.

Next, let $\alpha=1$, by differentiability of r,

$$
u^{2}\left(r\left(\tau-u^{-2} t\right)-r(\tau)\right) \rightarrow-\operatorname{tr}^{\prime}(\tau) \text { and } u^{2}\left(r\left(\tau+u^{-2} t\right)-r(\tau)\right) \rightarrow \operatorname{tr}^{\prime}(\tau)
$$

as $u \rightarrow \infty$, therefore in conditions of Lemma 3,

$$
\mathbf{E}\left(\begin{array}{l|l}
\xi_{u}(t) & X(0)=u-x / u \tag{8}\\
\eta_{u}(t) & X(\tau)=u-y / u
\end{array}\right)=\binom{-\frac{|t|+t r^{\prime}(\tau)}{1+r(\tau)}+o(1)}{-\frac{|t|-t(\tau)}{1+r(\tau)}+o(1) .}
$$

It is clear that

$$
\left.\begin{array}{l}
\mathbf{E}\left(\begin{array}{c}
\xi_{u}(0) \\
\eta_{u}(0)
\end{array} \left\lvert\, \begin{array}{l}
X(0)=u-x / u \\
X(\tau)=u-y / u
\end{array}\right.\right)=\binom{0}{0}, \tag{9}\\
\mathbf{E}\left(\left.\begin{array}{l}
\xi_{u}^{2}(0) \\
\eta_{u}^{2}(0)
\end{array} \right\rvert\, X(0)=u-x / u\right. \\
X(\tau)=u-y / u
\end{array}\right)=\binom{0}{0} . .
$$

Computing conditional covariance matrix, we have,

$$
\operatorname{cov}\left(\left.\binom{\xi_{u}(t)-\xi_{u}(s)}{\eta_{u}(t)-\eta_{u}(s)} \right\rvert\, \begin{array}{l}
X(0) \\
X(\tau)
\end{array}\right)=\operatorname{cov}\binom{\xi_{u}(t)-\xi_{u}(s)}{\eta_{u}(t)-\eta_{u}(s)}-\mathbf{B} \operatorname{cov}\binom{X(0)}{X(\tau)} \mathbf{B}^{\top},
$$

where

$$
\mathbf{B}=\operatorname{cov}\left(\binom{\xi_{u}(t)-\xi_{u}(s)}{\eta_{u}(t)-\eta_{u}(s)},\binom{X(0)}{X(\tau)}\right)\left[\mathbf{E}\left(\binom{X(0)}{X(\tau)}\binom{X(0)}{X(\tau)}^{\top}\right)\right]^{-1}
$$

Using expressions for $\xi_{u}(t)$ and $\eta_{u}(t)$,

$$
\mathbf{B}=\frac{u}{1-r^{2}(\tau)}\left(\begin{array}{cc}
r\left(u^{-2 / \alpha} t\right)-r(\tau) r\left(\tau-u^{-2 / \alpha} t\right)- & r\left(\tau-u^{-2 / \alpha} t\right)-r(\tau) r\left(u^{-2 / \alpha} t\right)- \\
-r\left(u^{-2 / \alpha} s\right)+r(\tau) r\left(\tau-u^{-2 / \alpha} s\right) & -r\left(\tau-u^{-2 / \alpha} s\right)+r(\tau) r\left(u^{-2 / \alpha} s\right) \\
r\left(\tau+u^{-2 / \alpha} t\right)-r(\tau) r\left(u^{-2 / \alpha} t\right)- & r\left(u^{-2 / \alpha} t\right)-r(\tau) r\left(\tau+u^{-2 / \alpha} t\right)- \\
-r\left(\tau+u^{-2 / \alpha} s\right)+r(\tau) r\left(u^{-2 / \alpha} s\right) & r\left(u^{-2 / \alpha} s\right)+r(\tau) r\left(\tau+u^{-2 / \alpha} s\right)
\end{array}\right) .
$$

Letting now $u \rightarrow \infty$, we get

$$
\operatorname{cov}\left(\left.\begin{array}{l}
\xi_{u}(t)-\xi_{u}(s) \tag{10}\\
\eta_{u}(t)-\eta_{u}(s)
\end{array} \right\rvert\, \begin{array}{cc}
X(0)=u-\xi / u \\
X(\tau)=u-\eta / u
\end{array}\right)=\left(\begin{array}{cc}
2|t-s|^{\alpha}(1+o(1)) & o(1) \\
o(1) & 2|t-s|^{\alpha}(1+o(1))
\end{array}\right),
$$

where $o(1)$ s are uniform of x and y, moreover they do not depends of values of conditions $X(0)$ and $X(\tau)$. Note that (10) holds true for all $\alpha \in(0,2)$. From (10) it also followed that for some $C>0$ all t, s and all sufficiently large u,

$$
\begin{align*}
& \operatorname{var}\left(\xi_{u}(t)-\xi_{u}(s) \mid(X(0), X(\tau))=(u-x / u, u-y / u)\right) \leq C|t-s|^{\alpha}, \tag{11}\\
& \operatorname{var}\left(\eta_{u}(t)-\eta_{u}(s) \mid(X(0), X(\tau))=(u-x / u, u-y / u)\right) \leq C|t-s|^{\alpha} . \tag{12}
\end{align*}
$$

Thus from (7-11) it follows that the family of conditional Gaussian distributions

$$
\mathbf{P}\left(\begin{array}{l|l}
\xi_{u}(\cdot) & X(0)=u-x / u \tag{13}\\
\eta_{u}(\cdot) & X(\tau)=u-y / u
\end{array}\right),
$$

is weakly compact in $C\left(T_{1}\right) \times C\left(T_{2}\right)$ and converges weakly, under conditions of Lemmas 1 and 2 , to the distribution of the random vector process

$$
(\xi(t), \eta(t))^{\top}=\left(B_{\alpha}(t)-|t|^{\alpha} /(1+r(\tau)), \tilde{B}_{\alpha}(t)-|t|^{\alpha} /(1+r(\tau))\right)^{\top},
$$

$t \in \mathbb{R}$, where \tilde{B} is an independent copy of B. If the conditions of Lemma 3 are fulfilled, the family of Gaussian conditional distributions converges to the distribution of

$$
(\xi(t), \eta(t))^{\top}=\left(B_{1}(t)-\left(|t|+\operatorname{tr}^{\prime}(\tau)\right) /(1+r(\tau)), \tilde{B}_{1}(t)-\left(|t|-t^{\prime}(\tau)\right) /(1+r(\tau))\right)^{\top} .
$$

Thus

$$
\begin{aligned}
& \lim _{u \rightarrow \infty} \mathbf{P}\left(\max _{t \in T_{1}} \xi_{u}(t)>x, \max _{t \in T_{2}} \eta_{u}(t)>y \mid X(0)=u-x / u, X(\tau)=u-y / u\right) \\
& \quad=\mathbf{P}\left(\max _{t \in T_{1}} \xi(t)>x, \max _{t \in T_{2}} \eta(t)>y\right) .
\end{aligned}
$$

In order to prove a convergence of the integral

$$
\begin{aligned}
\mathbf{I}\left(T_{1}, T_{2}\right)= & \int_{-\infty}^{+\infty} \\
& \int_{-\infty}^{+\infty} \mathbf{P}\left(\max _{t \in T_{1}} \xi_{u}(t)>x\right. \\
& \left.\max _{t \in T_{2}} \eta_{u}(t)>y \mid X(0)=u-x / u, X(\tau)=u-y / u\right) \tilde{\mathbf{P}}(u, x, y) d x d y
\end{aligned}
$$

as $u \rightarrow \infty$, we construct an integrable dominating function, which have different representation in different quadrants of the plane.

1. For the quadrant $(x<0, y<0)$ we bound the probability by 1 , and the $\tilde{\mathbf{P}}(u, x, y)$ by $\exp \left(\frac{x+y}{1+r\left(t_{m}\right)}\right)$, using relations $|r(t)| \leq 1$ and $x^{2}+y^{2} \geq 2 x y$. The last function is integrable in the considered quadrant, so it is a desirable dominating function.
2. Within the quadrant $(x>0, y<0)$ we bound the probability by

$$
\mathbf{P}\left(\max _{t \in T_{1}} \xi_{u}(t)>x, \mid X(0)=u-x / u, X(\tau)=u-y / u\right)
$$

and, using arguments similar the above, we bound $\tilde{\mathbf{P}}(u, x, y)$ by

$$
\exp \left(\frac{y}{1+r\left(t_{m}\right)}+\frac{x}{0.9+r\left(t_{m}\right)}\right)
$$

for sufficiently large u. The function $p(x)$ can be bounded by a function of type $C \exp \left(-\epsilon x^{2}\right)$, ϵ is positive, using, for example the Borel inequality with relations (7-10). Similar arguments one can find in [2].
3. Considerations in the quarter-plane $(x<0, y>0)$ are similar, the dominating function is

$$
C \exp \left(-\epsilon y^{2}\right) \exp \left(\frac{x}{1+r\left(t_{m}\right)}+\frac{y}{0.9+r\left(t_{m}\right)}\right) .
$$

4. In the quarter-plane $(x>0, y>0)$ we bound $\tilde{\mathbf{P}}$ by

$$
\exp \left(\frac{x}{0.9+r\left(t_{m}\right)}+\frac{y}{0.9+r\left(t_{m}\right)}\right)
$$

and the probability by

$$
\mathbf{P}\left(\max _{(t, s) \in T_{1} \times T_{2}} \xi_{u}(t)+\eta_{u}(s)>x+y \mid X(0)=u-x / u, X(\tau)=u-y / u\right) .
$$

Again, for the probability we can apply the Borel inequality, just in the same way, to get the bound $C \exp \left(-\epsilon(x+y)^{2}\right)$, for a positive ϵ.

Thus we have the desirable domination on the hole plane and therefore we have,

$$
\begin{aligned}
& \lim _{u \rightarrow \infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{P}\left(\max _{t \in T_{1}} \xi_{u}(t)>x\right. \\
& \left.\quad \max _{t \in T_{2}} \eta_{u}(t)>y \mid X(0)=u-x / u, X(\tau)=u-y / u\right) \tilde{\mathbf{P}}(u, x, y) d x d y \\
& \quad=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{\frac{x+y}{1+r\left(t_{m}\right)} \mathbf{P}\left(\max _{t \in T_{1}} \xi(t)>x, \max _{t \in T_{2}} \eta(t)>y\right) d x d y} \\
& \quad=\int_{-\infty}^{+\infty} e^{\frac{x}{1+r\left(t_{m}\right)}} \mathbf{P}\left(\max _{t \in T_{1}} \xi(t)>x\right) d x \int_{-\infty}^{+\infty} e^{\frac{y}{1+r(\tau)} \mathbf{P}}\left(\max _{t \in T_{2}} \eta(t)>y\right) d y
\end{aligned}
$$

Then we proceed,

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} e^{\frac{x}{1+r(\theta)}} \mathbf{P}\left(\max _{t \in T_{1}} \xi(t)>x\right) d x= \\
& \quad=(1+r(\theta)) \mathbf{E} \exp \left[\frac{\max _{T_{1}} \xi(t)}{1+r(\theta)}\right]=(1+r(\theta)) \mathbf{E} \exp \left[\frac{\max _{T_{1}} B_{\alpha}(t)-\frac{|t|^{\alpha}}{1+r(\theta)}}{1+r(\theta)}\right]= \\
& \quad=(1+r(\theta)) \mathbf{E} \exp \left[\max _{T_{1}} B_{\alpha}\left(\frac{t}{(1+r(\theta))^{2 / \alpha}}\right)-\left(\frac{t}{(1+r(\theta))^{2 / \alpha}}\right)^{\alpha}\right]= \\
& \quad=(1+r(\theta)) \mathbf{E} \exp \left[\max _{T_{1} /(1+r(\theta))^{2 / \alpha}} B_{\alpha}(s)-s^{\alpha}\right]=(1+r(\theta)) H_{\alpha}\left(\frac{T_{1}}{(1+r(\theta))^{2 / \alpha}}\right)
\end{aligned}
$$

where we use self-similarity properties of Fractional Brownian Motion. Similarly for $\eta(t), t \in T_{2}$. Similarly for $H_{1}^{ \pm r^{\prime}(\tau)}$. Thus Lemmas follow.

The following lemma is proved in [2] in multidimensional case. We formulate it here for one-dimensional time.

Lemma 4 Suppose that $X(t)$ is a Gaussian stationary zero mean process with covariance function $r(t)$ satisfying assumption A1. Let $\varepsilon, \frac{1}{2}>\varepsilon>0$ be such that

$$
1-\frac{1}{2}|t|^{\alpha} \geq r(t) \geq 1-2|t|^{\alpha}
$$

for all $t \in[0, \varepsilon]$. Then there exists an absolute constant F such that the inequality

$$
\mathbf{P}\left(\max _{t \in\left[0, T u^{-2 / \alpha}\right]} X(t)>u, \max _{t \in\left[t_{0} u^{-2 / \alpha},\left(t_{0}+T\right) u^{-2 / \alpha}\right]} X(t)>u\right) \leq F T^{2} u^{-1} e^{-\frac{1}{2} u^{2}-\frac{1}{8}\left(t_{0}-T\right)^{\alpha}}
$$

holds for any $T, t_{0}>T$ and for any $u \geq\left(4\left(T+t_{0}\right) / \varepsilon\right)^{\alpha / 2}$.
The following two lemmas are straightforward consequences of Lemma 6.1, [2].
Lemma 5 Suppose that $X(t)$ is a Gaussian stationary zero mean process with covariance function $r(t)$ satisfying assumption A1. Then

$$
\mathbf{P}\left(\max _{t \in\left[0, T u^{-2 / \alpha}\right] \cup\left[t_{0} u^{-2 / \alpha},\left(t_{0}+T\right) u^{-2 / \alpha}\right]} X(t)>u\right)=H_{\alpha}\left([0, T] \cup\left[t_{0}, t_{0}+T\right]\right) \frac{1}{\sqrt{2 \pi} u} e^{-\frac{1}{2} u^{2}}(1+o(1))
$$

as $u \rightarrow \infty$, where

$$
H_{\alpha}\left([0, T] \cup\left[t_{0}, t_{0}+T\right]\right)=\operatorname{Eexp}\left(\max _{t \in[0, T] \cup\left[t_{0}, t_{0}+T\right]}\left(B_{\alpha}(t)-|t|^{\alpha}\right)\right)
$$

Lemma 6 Suppose that $X(t)$ is a Gaussian stationary zero mean process with covariance function $r(t)$ satisfying assumption A1. Then

$$
\begin{array}{r}
\mathbf{P}\left(\max _{t \in\left[0, T u^{-2 / \alpha}\right]} X(t)>u, \max _{t \in\left[t_{0} u^{-2 / \alpha},\left(t_{0}+T\right) u^{-2 / \alpha}\right]} X(t)>u\right) \\
\quad=H_{\alpha}\left([0, T],\left[t_{0}, t_{0}+T\right]\right) \frac{1}{\sqrt{2 \pi} u} e^{-\frac{1}{2} u^{2}}(1+o(1))
\end{array}
$$

as $u \rightarrow \infty$, where

$$
H_{\alpha}\left([0, T],\left[t_{0}, t_{0}+T\right]\right)=\int_{-\infty}^{\infty} e^{s} \mathbf{P}\left(\max _{t \in[0, T]} B_{\alpha}(t)-|t|^{\alpha}>s, \max _{t \in\left[t_{0}, t_{0}+T\right]} B_{\alpha}(t)-|t|^{\alpha}>s\right) d s
$$

Proof. Write

$$
\begin{gathered}
\mathbf{P}\left(\max _{t \in\left[0, T u^{-2 / \alpha}\right]} X(t)>u, \max _{t \in\left[t_{0} u^{-2 / \alpha},\left(t_{0}+T\right) u^{-2 / \alpha}\right]} X(t)>u\right) \\
=\mathbf{P}\left(\max _{t \in\left[0, T u^{-2 / \alpha}\right]} X(t)>u\right)+\mathbf{P}\left(\max _{t \in\left[t_{0} u^{-2 / \alpha},\left(t_{0}+T\right) u^{-2 / \alpha}\right]} X(t)>u\right) \\
-\mathbf{P}\left(\max _{t \in\left[0, T u^{-2 / \alpha}\right]\left[t_{0} u^{-2 / \alpha},\left(t_{0}+T\right) u^{-2 / \alpha]}\right.} X(t)>u\right)
\end{gathered}
$$

and apply Lemma 6.1, [2] and Lemma 3 to the right-hand part.
From Lemmas 4 and 2 we get,
Lemma 7 For any $t_{0}>T$,

$$
H_{\alpha}\left([0, T],\left[t_{0}, t_{0}+T\right]\right) \leq F \sqrt{2 \pi} T^{2} e^{-\frac{1}{8}\left(t_{0}-T\right)^{\alpha}}
$$

When $t_{0}=T$ the Lemma holds true, but the bound is trivial. A non-trivial bound for $H_{\alpha}([0, T],[T, 2 T])$ one can get from the proof of Lemma 7.1, [2], see page 107, inequalities (7.5) and the previous one. These inequalities, Lemma 6.8, [2] and Lemma 5 give the following,

Lemma 8 There exists a constant F_{1} such that for all $T \geq 1$,

$$
H_{\alpha}([0, T],[T, 2 T]) \leq F_{1}\left(\sqrt{T}+T^{2} e^{-\frac{1}{8} T^{\alpha / 2}}\right)
$$

Applying Lemma 1 to the sets $T_{1}=[0, T] \cup\left[t_{0}, t_{0}+T\right], T_{2}=[0, T] \cup\left[t_{1}, t_{1}+T\right]$ and combining probabilities similarly as in the proof of Lemma 4, we get,

Lemma 9 Let $X(t)$ be a Gaussian process with mean zero and covariance function $r(t)$ satisfying conditions of Theorem 1. Let $\tau=\tau(u)$ tends to t_{m} as $u \rightarrow \infty$ in such a way that $\left|\tau-t_{m}\right| \leq C \sqrt{\log u} / u$, for some positive C. Then for all $T>0, t_{0} \geq T, t_{1} \geq T$

$$
\begin{aligned}
& \mathbf{P}\left(\max _{t \in\left[0, u^{-2 / \alpha} T\right]} X(t)>u, \max _{t \in\left\{u^{-2 / \alpha} t_{0}, u^{-2 / \alpha}\left(t_{0}+T\right)\right]} X(t)>u,\right. \\
& \quad \max _{t \in\left[\tau, \tau+u^{-2 / \alpha} T\right]} X(t)>u, \\
& \quad=\frac{\left(1+r\left(t_{m}\right)\right)^{2}}{2 \pi \sqrt{1-r^{2}\left(t_{m}\right)}} \cdot \frac{1}{u^{2}} e^{-\frac{u^{2}}{1+r(r)}} \\
& \quad \times H_{\alpha}\left(\left[0, \frac{T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right],\left[\frac{t_{0}}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}, \frac{t_{0}+T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right]\right) \\
& \quad \times H_{\alpha}\left(\left[0, \frac{T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right],\left[\frac{t_{1}}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}, \frac{t_{1}+T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right]\right)(1+o(1)),
\end{aligned}
$$

as $u \rightarrow \infty$.

3 Proofs

3.1 Proof of Theorem 1

We denote $\Pi=\left[T_{1}, T_{2}\right] \times\left[T_{3}, T_{4}\right], \delta=\delta(u)=C \sqrt{\log u} / u$, the value of the positive C we specify later on. $D=\left\{(t, s) \in \Pi:\left|t-s-t_{m}\right| \leq \delta\right\}$. We have,

$$
\begin{align*}
& \mathbf{P}\left(\max _{t \in\left[T_{1}, T_{2}\right]} X(t)>u, \max _{t \in\left[T_{3}, T_{4}\right]} X(t)>u\right)=\mathbf{P}\left(\bigcup_{(s, t) \in \Pi}\{X(t)>u\} \cap\{X(s)>u\}\right) \\
& =\mathbf{P}\left(\left\{\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right\} \bigcup\left\{\bigcup_{(s, t) \in \Pi \backslash D}\{X(t)>u\} \cap\{X(s)>u\}\right\}\right) \\
& \leq \mathbf{P}\left(\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right)+\mathbf{P}\left(\bigcup_{(s, t) \in \Pi \backslash D}\{X(t)>u\} \cap\{X(s)>u\}\right) . \tag{14}
\end{align*}
$$

From the other hand,

$$
\begin{align*}
& \mathbf{P}\left(\max _{t \in\left[T_{1}, T_{2}\right]} X(t)>u, \max _{t \in\left[T_{3}, T_{4}\right]} X(t)>u\right)=\mathbf{P}\left(\bigcup_{(s, t) \in \Pi}\{X(t)>u\} \cap\{X(s)>u\}\right) \\
& =\mathbf{P}\left(\left\{\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right\} \bigcup\left\{\bigcup_{(s, t) \in \Pi \backslash D}\{X(t)>u\} \cap\{X(s)>u\}\right\}\right) \\
& \geq \mathbf{P}\left(\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right) . \tag{15}
\end{align*}
$$

The second term in the right-hand part of (14) we estimate as following,

$$
\begin{equation*}
\mathbf{P}\left(\bigcup_{(s, t) \in \Pi \backslash D}\{X(t)>u\} \cap\{X(s)>u\}\right) \leq \mathbf{P}\left(\max _{(s, t) \in \Pi \backslash D} X(t)+X(s)>2 u\right) . \tag{16}
\end{equation*}
$$

Making use of Theorem 8.1, [2], we get that the last probability does not ecceed

$$
\begin{equation*}
\text { const } \cdot u^{-1+2 / \alpha} \exp \left(-\frac{u^{2}}{1+\max _{(t, s) \in \Pi \backslash D} r(t-s)}\right) \tag{17}
\end{equation*}
$$

Further, for $\epsilon=1 / 6$ and all sufficiently large u,

$$
\max _{(t, s) \in \Pi \backslash D} r(t-s) \leq r\left(t_{m}\right)+\left(\frac{1}{2}-\epsilon\right) r^{\prime \prime}\left(t_{m}\right) \delta^{2}=r\left(t_{m}\right)+\frac{1}{3} C^{2} r^{\prime \prime}\left(t_{m}\right) \log u / u
$$

Hence,

$$
\begin{equation*}
\mathbf{P}\left(\bigcup_{(s, t) \in \Pi \backslash D}\{X(t)>u\} \cap\{X(s)>u\}\right) \leq \mathrm{const} \cdot u^{-1+2 / \alpha} \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right) u^{-G} \tag{18}
\end{equation*}
$$

where

$$
G=\frac{-2 C^{2} r^{\prime \prime}\left(t_{m}\right)}{3\left(1+r\left(t_{m}\right)\right)^{2}}
$$

Now we deal with the first probability in the right-hand part of (14). It is equal to the probability in right-hand part of (15). We are hence in a position to bound the probability from above and from below getting equal orders for the bounds. Denote $\Delta=T u^{-2 / \alpha}, T>0$, and define the intervals

$$
\begin{aligned}
& \Delta_{k}=\left[T_{1}+k \Delta, T_{1}+(k+1) \Delta\right], 0 \leq k \leq N_{k}, N_{k}=\left[\left(T_{2}-T_{1}\right) / \Delta\right], \\
& \Delta_{l}=\left[T_{3}+l \Delta, T_{3}+(l+1) \Delta\right], 0 \leq l \leq N_{l}, N_{l}=\left[\left(T_{4}-T_{3}\right) / \Delta\right],
\end{aligned}
$$

where $[\cdot]$ stands for the integer part of a number. In virtue of Lemma 1 ,

$$
\begin{align*}
& \mathbf{P}\left(\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right) \\
& \quad \leq \mathbf{P}\left(\bigcup_{(k, l): \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset \emptyset \in \Delta_{k}, s \in \Delta_{l}}\{X(t)>u\} \cap\{X(s)>u\}\right) \\
& \quad \leq \sum_{(k, l): \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset} \mathbf{P}\left(\max _{t \in \Delta_{k}} X(t)>u, \max _{t \in \Delta_{l}} X(t)>u\right) \\
& \quad \leq \frac{(1+\gamma(u))}{2 \pi u^{2} \sqrt{1-r^{2}\left(t_{m}\right)}} H_{\alpha}^{2}\left(\frac{T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right) \sum_{(k, l): \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset} \exp \left(-\frac{u^{2}}{1+r\left(\tau_{k, l}\right)}\right), \tag{19}
\end{align*}
$$

where $\gamma(u) \downarrow 0$ as $u \rightarrow \infty$ and $\tau_{k, l}=T_{3}-T_{1}+(l-k) \Delta$. For the last sum we get,

$$
\begin{gathered}
S=\sum_{(k, l): \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset} \exp \left(-\frac{u^{2}}{1+r\left(\tau_{k, l}\right)}\right) \\
=\exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right) \sum_{(k, l): \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset} \exp \left(-u^{2} \frac{r\left(t_{m}\right)-r\left(\tau_{k, l}\right)}{\left(1+r\left(\tau_{k, l}\right)\right)\left(1+r\left(t_{m}\right)\right.}\right)
\end{gathered}
$$

Define θ by $t_{m}=T_{3}-T_{1}+\Delta \theta$, we obtain,

$$
\begin{aligned}
\frac{r\left(t_{m}\right)-r\left(\tau_{k, l}\right)}{\left(1+r\left(\tau_{k, l}\right)\right)\left(1+r\left(t_{m}\right)\right.} \leq & (\geq) \frac{-\frac{1}{2} r^{\prime \prime}\left(t_{m}\right)\left(\tau_{k, l}-t_{m}\right)^{2}}{\left(1+r\left(t_{m}\right)\right)^{2}}\left(1+(-) \gamma_{1}(u)\right) \\
& =-A((k-l) \Delta-\theta \Delta)^{2}\left(1+(-) \gamma_{1}(u)\right)
\end{aligned}
$$

where $\gamma_{1}(u) \downarrow 0$ as $u \rightarrow \infty$. In the last sum, index k variates between $\left(T_{\min }+O(\delta(u))\right) / \Delta$ and $\left(T_{\max }+O(\delta(u))\right) / \Delta$, as $u \rightarrow \infty$, where $T_{\min }=T_{1} \vee\left(T_{3}-t_{m}\right)$ and $T_{\max }=T_{2} \wedge\left(T_{4}-t_{m}\right)$. Indeed, for the co-ordinate x of the left end of a segment of length t_{m} which variates having left end inside $\left[T_{1}, T_{2}\right]$ and right end inside $\left[T_{3}, T_{4}\right]$, we have the restrictions $T_{1}<x<T_{2}$, and $T_{3}<x+t_{m}<T_{4}$, so that $x \in\left(T_{\min }, T_{\max }\right)$. The index $m=k-l-\theta$ variates thus between $-\delta(u) / \Delta+O(\Delta)$ and $\delta(u) / \Delta+O(\Delta)$ as $u \rightarrow \infty$. Note that $u \Delta \rightarrow 0$ as $u \rightarrow \infty$. Using this, we continue,

$$
\begin{gathered}
S=(1+o(1)) \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right) \frac{T_{\max }-T_{\min }}{\Delta} \sum_{m=-\delta(u) / \Delta+O(\Delta)}^{\delta(u) / \Delta+O(\Delta)} \exp \left(-A(m u \Delta)^{2}\right) \\
=(1+o(1)) \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right) \frac{T_{\max }-T_{\min }}{u \Delta^{2}} \sum_{m u \Delta=-u \delta(u)+O\left(u \Delta^{2}\right)}^{u \delta(u)+O\left(u \Delta^{2}\right)} \exp \left(-A(m u \Delta)^{2}\right) u \Delta \\
=(1+o(1)) \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right) \frac{T_{\max }-T_{\min }}{u \Delta^{2}} \int_{-\infty}^{\infty} e^{-A x^{2}} d x .
\end{gathered}
$$

Compute the integral and substitute this in right-hand part of (19), we get,

$$
\begin{align*}
& \mathbf{P}\left(\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right) \tag{20}\\
& \leq \frac{\left(1+r\left(t_{m}\right)\right)^{2}\left(1+\gamma_{2}(u)\right)\left(T_{\max }-T_{\min }\right) u^{-3+4 / \alpha}}{2 \sqrt{A \pi\left(1-r^{2}\left(t_{m}\right)\right.}} \frac{1}{T^{2}} H_{\alpha}^{2}\left(\frac{T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right) \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right)
\end{align*}
$$

where $\gamma_{2}(u) \downarrow 0$ as $u \rightarrow \infty$.
Now we bound from below the probability in the right-hand part of (15). We have

$$
\begin{align*}
& \mathbf{P}\left(\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right) \\
& \quad \geq \mathbf{P}\left(\bigcup_{(k, l): \Delta_{k} \subset D, \Delta_{l} \subset D} \bigcup_{t \in \Delta_{k}, s \in \Delta_{l}}\{X(t)>u\} \cap\{X(s)>u\}\right) \\
& \quad \geq \sum_{(k, l): \Delta_{k} \subset D, \Delta_{l} \subset D} \mathbf{P}\left(\max _{t \in \Delta_{k}} X(t)>u, \max _{t \in \Delta_{l}} X(t)>u\right) \\
& -\sum \sum \mathbf{P}\left(\max _{t \in \Delta_{k}} X(t)>u, \max _{t \in \Delta_{l}} X(t)>u, \max _{t \in \Delta_{k^{\prime}}} X(t)>u, \max _{t \in \Delta_{l^{\prime}}} X(t)>u\right) \tag{21}
\end{align*}
$$

where the double-sum is taken over the set

$$
\left\{\left(k, l, k^{\prime}, l^{\prime}\right):\left(k^{\prime}, l^{\prime}\right) \neq(k, l), \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset, \Delta_{k^{\prime}} \cap D \neq \emptyset, \Delta_{l^{\prime}} \cap D \neq \emptyset\right\}
$$

The first sum in the right-hand part of (21) can be bounded from below exactly by the same way as the previous sum, thus we have,

$$
\begin{align*}
& \sum_{(k, l): \Delta_{k} \subset D, \Delta_{l} \subset D} \mathbf{P}\left(\max _{t \in \Delta_{k}} X(t)>u, \max _{t \in \Delta_{l}} X(t)>u\right) \tag{22}\\
& \geq \frac{\left(1+r\left(t_{m}\right)\right)^{2}\left(1-\gamma_{2}(u)\right)\left(T_{\max }-T_{\min }\right) u^{-3+4 / \alpha}}{2 \sqrt{A \pi\left(1-r^{2}\left(t_{m}\right)\right.}} \frac{1}{T^{2}} H_{\alpha}^{2}\left(\frac{T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right) \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right)
\end{align*}
$$

where $\gamma_{2}(u) \downarrow 0$ as $u \rightarrow \infty$. We are now able to select the constant C. We take it as large as $G>2-2 / \alpha$ to get that left-hand part of (18) is infinitely smaller then left-hand part of (22) as $u \rightarrow \infty$.

Consider the second sum (the double-sum) in the right-hand part of (21). For sakes of simplicity we denote

$$
H(m)=H_{\alpha}\left(\left[0, \frac{T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right],\left[\frac{m T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}, \frac{(m+1) T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right]\right)
$$

and notice that

$$
H(0)=H_{\alpha}\left(\left[0, \frac{T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right]\right)
$$

In virtue of Lemma 9 we have for the double-sum in (21), taking into account only different (k, l) and $\left(k^{\prime}, l^{\prime}\right)$,

$$
\begin{aligned}
& \Sigma_{2}:= \\
& \leq \sum \mathbf{P}\left(\max _{t \in \Delta_{k}} X(t)>u, \max _{t \in \Delta_{l}} X(t)>u, \max _{t \in \Delta_{k^{\prime}}} X(t)>u, \max _{t \in \Delta_{l^{\prime}}} X(t)>u\right) \\
& \leq \frac{\left(1+r\left(t_{m}\right)\right)^{2}(1+\Gamma(u))}{2 \pi u^{2} \sqrt{1-r^{2}\left(t_{m}\right)}} \sum \sum H\left(\left|k-k^{\prime}\right|\right) H\left(\left|l-l^{\prime}\right|\right) \exp \left(-\frac{u^{2}}{1+r\left(\tau_{k, l}\right)}\right) \\
&= \frac{2\left(1+r\left(t_{m}\right)\right)^{2}(1+\Gamma(u))}{2 \pi u^{2} \sqrt{1-r^{2}\left(t_{m}\right)}} \sum_{n=1}^{\infty} H(n)\left(H(0)+2 \sum_{m=1}^{\infty} H(m)\right) \\
& \quad \times \sum_{(k, l): \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset} \exp \left(-\frac{u^{2}}{1+r\left(\tau_{k, l}\right)}\right),
\end{aligned}
$$

where $\Gamma(u) \downarrow 0$ as $u \rightarrow \infty$. The last sum is already bounded from above, therefore by (19) and (20) we have,

$$
\begin{aligned}
\Sigma_{2} & \leq \frac{2}{T^{2}} \sum_{n=1}^{\infty} H(n)\left(H(0)+2 \sum_{m=1}^{\infty} H(m)\right) \\
& \times \frac{\left(1+r\left(t_{m}\right)\right)^{2}\left(1+\Gamma_{2}(u)\right)\left(T_{\max }-T_{\min }\right) u^{-3+4 / \alpha}}{2 \sqrt{A \pi\left(1-r^{2}\left(t_{m}\right)\right.}} \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right)
\end{aligned}
$$

By Lemmas 6.8, [2], 7 and 8 we get that $H(0) \leq$ const $\cdot T, H(1) \leq$ const $\cdot \sqrt{T}$ and for $m>1$,

$$
H(m) \leq \text { const } \cdot e^{-\frac{1}{8} m^{\alpha / 2} T^{\alpha / 2}}
$$

hence

$$
\sum_{n=1}^{\infty} H(n)\left(H(0)+2 \sum_{m=1}^{\infty} H(m)\right) \leq \mathrm{const} \cdot T^{3 / 2}
$$

Thus

$$
\begin{equation*}
\Sigma_{2} \leq \mathrm{const} \cdot T^{-1 / 2} u^{-3+4 / \alpha} \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right) \tag{23}
\end{equation*}
$$

Now since by (1),

$$
\lim _{T \rightarrow \infty} \frac{1}{T} H_{\alpha}\left(\frac{T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right)=\left(1+r\left(t_{m}\right)\right)^{-2 / \alpha} H_{\alpha}
$$

we get that the double sum can be made infinitely smaller by choosing large T. Thus Theorem 1 follows.

3.2 Proof of Theorem 2.

We prove the theorem for the case $t_{m}=T_{3}-T_{2}$, another case can be considered similarly. First, as in the proof of Theorem 1 put $D=\left\{(t, s) \in \Pi:\left|t-s-t_{m}\right| \leq \delta\right\}$, but with
$\delta=\delta(u)=C \sqrt{\log u} / u^{2}$, for sufficiently large C. The evaluations (14), (16) and (17) still hold true. Further we have for $\epsilon=1 / 6$ and all sufficiently large u,

$$
\max _{(t, s) \in \Pi \backslash D} r(t-s) \leq r\left(t_{m}\right)+\left(\frac{1}{2}-\epsilon\right) r^{\prime}\left(t_{m}\right) \delta=r\left(t_{m}\right)+\frac{1}{3} C^{2} r^{\prime}\left(t_{m}\right) \log u / u^{2}
$$

Hence, (18) holds true with

$$
G=\frac{-2 C^{2} r^{\prime}\left(t_{m}\right)}{3\left(1+r\left(t_{m}\right)\right)^{2}} .
$$

Let now $\alpha>1$. For any positive arbitrarily small ϵ we have for all sufficiently large u that, $\epsilon u^{-2 / \alpha}>\delta(u)$, hence for such values of u,

$$
\begin{align*}
& \mathbf{P}\left(\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right) \\
& \quad \leq \mathbf{P}\left(\max _{t \in\left[T_{2}-\epsilon u^{-2 / \alpha}, T_{2}\right]} X(t)>u, \max _{t \in\left[T_{3}, T_{3}+\epsilon u^{-2 / \alpha}\right]} X(t)>u\right) . \tag{24}
\end{align*}
$$

We wish to apply Lemma 1 to the last probability for the intervals $[-\epsilon, 0]$ and $\left[t_{m}, t_{m}+\epsilon\right]$. To this end we turn to (5). Since for a sufficiently small $\epsilon, r^{\prime}\left(t_{m}\right)<0$, we have that

$$
\frac{r\left(\tau-u^{-2 / \alpha} t\right)-r(\tau)}{1+r(\tau)}<0 \text { for all } t \in[-\epsilon, 0]
$$

and

$$
\frac{r\left(\tau+u^{-2 / \alpha} t\right)-r(\tau)}{1+r(\tau)}<0 \text { for all } t \in\left[t_{m}, t_{m}+\epsilon\right]
$$

hence

$$
\underset{u \rightarrow \infty}{\limsup } \mathbf{E}\left(\xi_{u}(t) \mid X(0)=u-x / u, X(\tau)=u-y / u\right) \leq-\frac{1}{1+r\left(t_{m}\right)}|t|^{\alpha},
$$

for all $t \in[-\epsilon, 0]$, and

$$
\underset{u \rightarrow \infty}{\limsup } \mathbf{E}\left(\eta_{u}(t) \mid X(0)=u-x / u, X(\tau)=u-y / u\right) \leq-\frac{1}{1+r\left(t_{m}\right)}|t|^{\alpha},
$$

for all $t \in\left[t_{m}, t_{m}+\epsilon\right]$. All other arguments in the proof of Lemma 1 still hold true, therefore, using time-symmetry of the fractional Brownian motion, we have,

$$
\begin{align*}
& \limsup _{u \rightarrow \infty} u^{2} e^{\frac{u^{2}}{1+r\left(t_{m}\right)}} \mathbf{P}\left(\max _{t \in\left[T_{2}-\epsilon u^{-2 / \alpha}, T_{2}\right]} X(t)>u, \max _{t \in\left[T_{3}, T_{3}+\epsilon u^{-2 / \alpha}\right]} X(t)>u\right) \\
\leq & \frac{\left(1+r\left(t_{m}\right)\right)^{2}}{2 \pi \sqrt{1-r^{2}\left(t_{m}\right)}} H_{\alpha}^{2}\left(\frac{[0, \epsilon]}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right) \tag{25}
\end{align*}
$$

Using Fatou monotone convergence we have $\lim _{\epsilon\rfloor 0} H_{\alpha}(\epsilon)=1$, therefore

$$
\begin{align*}
& \limsup _{u \rightarrow \infty} u^{2} e^{\frac{u^{2}}{1+r\left(t_{m}\right)}} \mathbf{P}\left(\max _{t \in\left[T_{2}-\epsilon u^{-2 / \alpha}, T_{2}\right]} X(t)>u, \max _{t \in\left[T_{3}, T_{3}+\epsilon u^{-2 / \alpha}\right]} X(t)>u\right) \\
\leq & \frac{\left(1+r\left(t_{m}\right)\right)^{2}}{2 \pi \sqrt{1-r^{2}\left(t_{m}\right)}} \tag{26}
\end{align*}
$$

But

$$
P_{d}\left(u ;\left[T_{1}, T_{2}\right],\left[T_{3}, T_{4}\right]\right) \geq \mathbf{P}\left(X\left(T_{2}\right)>u, X\left(T_{3}\right)>u\right)=\frac{\left(1+r\left(t_{m}\right)\right)^{2}}{2 \pi u^{2} \sqrt{1-r^{2}\left(t_{m}\right)}} e^{-\frac{u^{2}}{1+r\left(t_{m}\right)}}(1+o(1))
$$

as $u \rightarrow \infty$. Thus (i) follows.
Let now $\alpha=1$. From now on, we redefine Δ_{k} and Δ_{l}, by

$$
\begin{aligned}
& \Delta_{k}=\left[T_{2}-(k+1) \Delta, T_{2}-k \Delta\right], 0 \leq k \leq N_{k}, N_{k}=\left[\left(T_{2}-T_{1}\right) / \Delta\right], \\
& \Delta_{l}=\left[T_{3}+l \Delta, T_{3}+(l+1) \Delta\right], 0 \leq l \leq N_{l}, N_{l}=\left[\left(T_{4}-T_{3}\right) / \Delta\right],
\end{aligned}
$$

for the case of $\Delta_{k}, k=0$, we denote $\Delta_{0}=\Delta_{-0}$, indicating difference with Δ_{0} for the case Δ_{l}, $l=0$. Recall that now $\Delta=T u^{-2 / \alpha}=T u^{-2}$. We have for sufficiently large u,

$$
\begin{equation*}
\mathbf{P}\left(\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right) \geq \mathbf{P}\left(\max _{t \in \Delta_{-0}} X(t)>u, \max _{t \in \Delta_{0}} X(t)>u\right) \tag{27}
\end{equation*}
$$

and

$$
\begin{gather*}
\mathbf{P}\left(\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right) \leq \mathbf{P}\left(\max _{t \in \Delta_{-0}} X(t)>u, \max _{t \in \Delta_{0}} X(t)>u\right)+ \\
+\sum_{k=0, l=0, k+l>0}^{[\log u / T]+1} \mathbf{P}\left(\max _{t \in \Delta_{k}} X(t)>u, \max _{t \in \Delta_{t}} X(t)>u\right) . \tag{28}
\end{gather*}
$$

First probability in right-hand parts of the inequalities is already considered by Lemma 3. We set $\tau=t_{m}=T_{3}-T_{2}, T_{1}=[-T, 0], T_{2}=[0, T]$, by time-symmetry of Brownian motion, we have that

$$
\begin{equation*}
H_{1}^{r^{\prime}(\tau)}([-T, 0])=H_{1}^{-r^{\prime}(\tau)}([0, T]) \tag{29}
\end{equation*}
$$

In order to estimate the sum, we observe, that for all sufficiently large u and all $t \in\left[T_{3}, T_{3}+\right.$ $\delta(u)], s \in\left[T_{2}-\delta(u), T_{2}\right]$,

$$
\begin{equation*}
r(t-s) \leq r\left(t_{m}\right)+\frac{1}{3} r^{\prime}\left(t_{m}\right)\left(t-s-t_{m}\right) \text { and } r(t-s) \geq r\left(t_{m}\right)+\frac{2}{3} r^{\prime}\left(t_{m}\right)\left(t-s-t_{m}\right) \tag{30}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& \frac{-u^{2}}{1+r\left(t_{m}+(k+l) \Delta\right)} \leq \frac{-u^{2}}{1+r\left(t_{m}\right)+\frac{2}{3} r^{\prime}\left(t_{m}\right)(k+l) T u^{-2}} \\
& \leq \frac{-u^{2}}{1+r\left(t_{m}\right)}+\frac{r^{\prime}\left(t_{m}\right)(k+l) T}{6\left(1+r\left(t_{m}\right)\right)^{2}}=\frac{-u^{2}}{1+r\left(t_{m}\right)}-a(k+l) T
\end{aligned}
$$

where $a>0$. Now, in Lemma 3 let $\tau=t_{m}+(k+l) \Delta, T_{1}=[-T, 0], T_{2}=[0, T]$, using the above mentioned property of the constants $H_{1}^{c}(T)$, we get, that for all sufficiently large u and T,

$$
\mathbf{P}\left(\max _{t \in \Delta_{k}} X(t)>u, \max _{t \in \Delta_{i}} X(t)>u\right) \leq C p_{2}\left(u, r\left(\tau_{m}\right)\right) e^{-a(k+l) T}
$$

From here we get,

$$
\sum_{k=0, l=0, k+l>0}^{[\log u / T]+1} \mathbf{P}\left(\max _{t \in \Delta_{k}} X(t)>u, \max _{t \in \Delta_{l}} X(t)>u\right) \leq C p_{2}\left(u, r\left(\tau_{m}\right)\right) e^{-a(k+l) T}
$$

Applying now Lemma 3 to first summands in right-part hands of $(27,28)$ and letting $T \rightarrow \infty$, we get the assertion (ii) of Theorem.

Let now $\alpha<1$. Proof of the Theorem in this case is similar to the proof of Theorem 1. We have to consider a sum of small almost equal probabilities and a double sum. Using the more recent definition of Δ_{k} and Δ_{l}, we have by Lemma 2,

$$
\begin{align*}
& \mathbf{P}\left(\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right) \\
& \leq \mathbf{P}\left(\bigcup_{(k, l): \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset} \bigcup_{t \in \Delta_{k}, s \in \Delta_{l}}\{X(t)>u\} \cap\{X(s)>u\}\right) \\
& \leq \sum_{(k, l): \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset} \mathbf{P}\left(\max _{t \in \Delta_{k}} X(t)>u, \max _{t \in \Delta_{l}} X(t)>u\right) \\
& \leq \frac{\left(1+r\left(t_{m}\right)\right)^{2}(1+\gamma(u))}{2 \pi u^{2} \sqrt{1-r^{2}\left(t_{m}\right)}} H_{\alpha}^{2}\left(\frac{T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right) \sum_{(k, l): \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset} \exp \left(-\frac{u^{2}}{1+r\left(\tau_{k, l}\right)}\right), \tag{31}
\end{align*}
$$

where $\gamma(u) \downarrow 0$ as $u \rightarrow \infty$ and now $\tau_{k, l}=T_{3}-T_{2}+(l+k) \Delta$. For the last sum we get,

$$
\begin{gathered}
S=\sum_{(k, l): \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset} \exp \left(-\frac{u^{2}}{1+r\left(\tau_{k, l}\right)}\right) \\
=\exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right)_{(k, l): \Delta_{k} \cap D \neq \emptyset, \Delta_{l} \cap D \neq \emptyset} \exp \left(-u^{2} \frac{r\left(t_{m}\right)-r\left(\tau_{k, l}\right)}{\left(1+r\left(\tau_{k, l}\right)\right)\left(1+r\left(t_{m}\right)\right.}\right) .
\end{gathered}
$$

Next,

$$
\begin{aligned}
\frac{r\left(t_{m}\right)-r\left(\tau_{k, l}\right)}{\left(1+r\left(\tau_{k, l}\right)\right)\left(1+r\left(t_{m}\right)\right)} \leq & (\geq) \frac{-r^{\prime}\left(t_{m}\right)\left(t_{m}-\tau_{k, l}\right)}{\left(1+r\left(t_{m}\right)\right)^{2}}\left(1+(-) \gamma_{1}(u)\right) \\
& =-B(k+l) \Delta\left(1+(-) \gamma_{1}(u)\right),
\end{aligned}
$$

where $\gamma_{1}(u) \downarrow 0$ as $u \rightarrow \infty$. Remind that now $u^{2} \Delta \rightarrow 0$ as $u \rightarrow \infty$. Using this, and denoting $m=k+l$, we continue,

$$
\begin{gathered}
S=(1+o(1)) \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right) \sum_{m=0}^{\delta(u) / \Delta+O(\Delta)} m \exp \left(-B u^{2} m \Delta\right) \\
=(1+o(1)) \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right) \frac{1}{\left(\Delta u^{2}\right)^{2}} \sum_{m=0}^{\delta(u) / \Delta+O(\Delta)} m \Delta u^{2} \exp \left(-B m \Delta u^{2}\right)\left(\Delta u^{2}\right)
\end{gathered}
$$

$$
=(1+o(1)) \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right) \frac{1}{u^{4} \Delta^{2}} \int_{0}^{\infty} x e^{-B x} d x=(1+o(1)) \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right) \frac{1}{B^{2} u^{4} \Delta^{2}}
$$

Substitute this in right-hand part of (31), we get,

$$
\begin{align*}
& \mathbf{P}\left(\bigcup_{(s, t) \in D}\{X(t)>u\} \cap\{X(s)>u\}\right) \tag{32}\\
& \leq \frac{\left(1+r\left(t_{m}\right)\right)^{2}\left(1+\gamma_{2}(u)\right) u^{-6+4 / \alpha}}{2 \pi B^{2} \sqrt{\left(1-r^{2}\left(t_{m}\right)\right.}} \frac{1}{T^{2}} H_{\alpha}^{2}\left(\frac{T}{\left(1+r\left(t_{m}\right)\right)^{2 / \alpha}}\right) \exp \left(-\frac{u^{2}}{1+r\left(t_{m}\right)}\right)
\end{align*}
$$

where $\gamma_{2}(u) \downarrow 0$ as $u \rightarrow \infty$.
Estimation the probability from below repeats the corresponding steps in the proof of Theorem 1, see (21) and followed. Thus Theorem 2 follows.

References

[1.] J. Pickands III (1969). Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145 51-73.
[2] V. I. Piterbarg (1996) Asymptotic Methods in the Theory of Gaussian Processes and Fields. AMS, MMONO, 148.

[^0]: *Supported in parts by RFFI Grant of Russian Federation 98-01-00524, by DFG - RFFI grant "Statistik in Funktionsräumen: asymptotische Theorie" and by EURANDOM. E-mail piter@mech.math.msu.su

