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Abstract

We consider a Gaussian stationary process with Pickands' conditions and evaluate an
exact asymptotic behavior of probability of two high extremes on two disjoint intervals.

1 Introduction. Main results.

Let X(t), t E 1R, be a zero mean stationary Gaussian process with unit variance and covariance
function r(t). An object of our interest is the asymptotic behaviour of the probability

Pd(Ui [Tl, T2], [T3, T4]) = P ( max X(t) > u, max X(t) > U)
tE[Tl,T21 tE[T3,T4J

as U -t 00, where [Tl, T2] and [T3, T4 ] are disjoint intervals. To evaluate the asymptotic behaviour
we develop an analogue of Pickands' theory of high extremes of Gaussian processes, see [1] and
extensions in [2]. We follow main steps of the theory. First we assume an analogue of the
Pickands' conditions.

Al For some a E (0,2),

r(t) = 1 - IWI( + o(IWI() as t -t 0,

Ir(t)1 < 1 for all t > O.

Then, we specify covariations between values of the process on intervals [T}, T2] and [Ta, T4 ].

We assume that there is an only domination point of correlation between the values. This
makes some similarity with Pirabarg&Prisyazhn'uck's extension of the Pickands' theory to non
stationary Gaussian processes.

A2 In the interval S = [T3 - T2, T4 - TI ) there exists only point t m = arg maxtES r(t) E
(Ta - T2,T4 - T1), r(t) is twice differentiable in a neighbourhood oftm with r"(tm ) =I O.

As an alternative of assumption A2 one can suppose that the point of maximum of r(t) is one
of the end points of S, Ta - T2 is more natural candidate.

*Supported in parts by RFFI Grant of Russian Federation 98-01-00524, by DFG - RFFI grant "Statistik in
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A3 ret) is continuously differentiable in a neighbourhood of the point tm = Tg - T2, r'(tm) < 0
and rCtm) > ret) for all t E (T3 - T2, T4 - TI].

A3' ret) is continuously differentiable in a neighbourhood of the point tm = T4 - TI' r'(tm) > 0
and r(tm) > ret) for all t E [T3 - T2, T4 - TI).

Denote by Ba(t), t E 1R, a normed fractional Brownian motion with the Hurst parameter 0./2,
that is a Gaussian process with a.s. continuous trajectories, Ba(O) = 0 a.s., EBa(t) == 0, and
E(Ba(t) - B a(s))2 = 21t - sla. For any set T c 1R we denote

Ha(T) = Eexp (sup Ba(t) -Itla) .
tET

It is known, [1], [2], that there exists a positive and finite limit

Ha := lim T
I

Ha([O, T)),
T->oo

the Pickands' constant. Further, for a number c denote

HfCT) = Eexp (sup BI(t) -Itl- ct) .
tET

(1)

It is known, [2], that for any positive c, the limit Hf ;= limT->ooHf([O, T]) exists and is positive.
We stand a V b for max(a, b) and a 1\ b for minea, b). Denote

(1 + r)2 u
2

P2(U, r) = v"f"=T2e-l+r
27TU2 1 - r 2

and notice that for a Gaussian vector (~, 1]) where the components are standard Gaussian and
correlation between them is r, P (~ > u, TJ > u) = P2(U, r)(1 + 0(1)) as u -+ 00.

Theorem I Let X (t), t E lR, be a Gaussian centred stationary process with a. s. continuous
trajectories. Let assumptions Al and A2 be fulfilled for its covariance function ret). Then

Pd (U; [TI ,T2], [Tg, T4J)

=KV7TA-I(I + r(tm))-4/aH~u-3+4/ap2(u,r(tm ))(1 +0(1))

as u -+ 00, where K = T2 1\ (T4 - t m ) - TI V (Tg - tm ) > 0,

1 r"(tm )

A = -"2 (1 + r(tm ))2'

Theorem 2 Let X(t), t E 1R, be a Gaussian centred stationary process with a.s. continuous
trajectories. Let assumptions Al and A3 or A3' be fulfilled for its covariance function ret).
Then,

(i)foro. > 1,
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as U-t 00.

(ii)For Q = 1,

as u -t 00.

(iii) For a < 1,

as u -t 00, where

2 Lemmas

For a set A c IR and a number a we write aA = {ax: x E A} and a + A = {a + x : x E A}.

Lemma 1 Let X(t) be a Gaussian process with mean zero and covariance function r(t) satis
fying assumptions AI, A2. Let a time moment r = r(u) tends to tm as u - 00 in such a way
that Ir - tml S CJloguju, for some positive C. Let T1 and T2 be closures of two bounded open
subsets of R Then

P ( max X(t) > u, max X(t) > u) =
tEu-2/ Ct Tl tET+U-2/ Ct T2

(1 + r(B»2 -~H ( TI ) H ( T2 ) ( (1»- e l+r(r) 1 0
- 27ru2/1- r2(B) a (1 + r(B»2/a a (1 + r(B»2/a + ,

as u - 00, where B = tm.

(2)

(3)

Lemma 2 Let X(t) be a Gaussian process with mean zero and covariance function r(t) satis
fying assumptions AI, A2 with a < 1. Let TI and T2 be closures of two bounded open subsets
of R Then, for any (fixed) r > 0 the asymptotic relation of Lemma 1 holds true with 0 = r.

Lemma 3 Let X(t) be a Gaussian process with mean zero and covariance function r(t) satis
fying assumptions AI, A2 with a = 1. Let TI and T2 be closures of two bounded open subsets
ofR Then

P ( max X(t) > u, max X(t) > u) =
tEu- 2T 1 tET+U-2T2

_ r'(T) ( T1 ) -r'(T) ( T2 ) ( ()( ( »
-HI (1+r(r»2 HI (1+r(r»2 p2 u ,rr) 1+01 ,

as U -t 00.
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Proof of Lemmas 1 - 3. We prove the three lemmas simultaneously, computations of
conditional expectation (4) and related evaluations are performed in parallel, separately for
each lemma. We have for u > 0,

P = P ( max X (t) > u, max X (t) > u) =
tEu-2 / a Tl tEr+u-2 / a T2

+00+00
= lip ( max X(t) > u, max X(t) > ul X(O) = a,X(T) = b) Por(a,b) dadb,

tEu-2/ a Tl tEr+u-2/ a T2

-00 -00
where

1 ( 1 a2 - 2r(T)ab + b2)
Por(a, b) = 27TVl _ r2(T) exp -2' 1 - r2(T) .

Now we change variables, a = u - x/u, b = u - yju,

1
Por(x,y) = 27TVl- r2(T) x

(
1 (u - xju)2 - 2r(T)(u - xju)(u - yju) + (u - yjU)2)

x exp - 2 . 1 _ r 2(T)

1 (U2 )= exp x
27TVl - r2(T) 1 + r(T)

(
1 ~ - 2x - 2y + 2r(T)(x +y) - 2r(T)~)

x exp - 2 . 1 _ r2(T)

1 (u2
) -= exp ·P(u,x,y).

27TVl- r2(T) 1 + r(T)

Hence,

1 1 ( u
2

) 1+
00

1+
00

(P = - exp P max X(t) > u,
27TJl- r2(T) u2 1 + r(T) tEu-2/ a Tl

-00-00
max X(t) > ul X(O) = u - xju,X(T) = U- yju) P(u,x,y) dxdy.

tEr+u-2 / a T2

Consider the following families of random processes,

~u(t) = u (X(u-2/a t) - u) + x, t E TI,

rJu(t) = u (X(T +u-2
/

a t) - u) + y, t E T2.

We have,

1 1 ( U
2

) 1+
00

1+
00

(P = - exp P max~u(t) > x,
27TVl-r2(T)U2 l+r(T) tETl

-00 -00
max rJu(t) > yl X(O) = u - x/u, X(T) = U- y/u) P(u, x, y) dxdy.
tET2
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Compute first two conditional moments of Gaussian random vector process (eu(t),7Ju(t))T. We
have

E (Eu(t) IX(O)) = E (~u(t)) + A (X(D))
7Ju(t) X(T) TJu(t) X(T) ,

where

A = cov ((eu(t)) (X(D))) [E ((X(D)) (X(O))T)]-1
7Ju(t) , X(T) X(T) X(T) ,

or
u (r(u-2/CXt) - r(T)r(T - u-2/a t) reT - u-2/a t) - r(T)r(U-2/a t))

A = 1 _ r2(T) reT + u-2/0 t) - r(T)r(u-2/CXt) r(u-2/ a t) - r(T)r(T + u-2/a t) .

We denote covX, the matrix of covariances of a vector X and cov(X, Y), the matrix of cross
covariances between components of X and Y. Substituting the values XeD) = u - x/u, X(T) =
u - y/u, of the conditions, we get from here that

E (~u(t)IX(O) =u-x/u) _
TJu(t) X(T) = u - y/u -

1-r\('r) (r(u- 2
/ CXt) (u2

- x - r(T)(u2
- y)) +

+r(T - u-2/ CXt) (u2 - y - r(T)(u2 - x))) - u2 + X

1-r)(7) (r(u- 2/ CXt) (u2 -y - r(T)(u2 - x)) +
+r(T + u-2/ CXt) (u2 - x - r(T)(u2 - y))) - u2 +Y

(4)

In conditions of every lemma 1-3 we have

as u -+ 00.

Now, let conditions of the Lemma 1 be fulfilled. Since a < 2 and r'(T) = O(Jlogu/u)
uniformly in IT - tml ::; CJlogu/u, we have,

Thus

(7)

as u -+ 00.

Let now the conditions of Lemma 2 be fulfilled, that is a < 1. In this situation even for
fixed T, by Taylor, the third terms in the column array of right-hand part of (5) tend to zero as
u --t 00, hence (7) takes place, with e= T.

Next, let a = 1, by differentiability of r,
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as u -> 00, therefore in conditions of Lemma 3,

( I (
Itl+tr'(T) (»)E ~u(t) X(O) = u - x/u) _ - l+r(r) + 0 1

7]u(t) X(r) = u - y/u - _ltl-t((T) + 0(1)
l+r r) .

It is clear that

E(~u(O) IX(O) = u - x/u) = (0)
17u(O) X(r) = u - y/u 0'

E(~~(O)I X(O) = u - x/u) _ (0)
7]~(0) X(r) = u - y/u - 0 .

Computing conditional covariance matrix, we have,

COy ( (~u(t) - ~u(s») IX(O») = COy (~u(t) - ~u(s») _ Bcov (X(O») B T
7]u(t) -17u(S) X(r) 7]u(t) - 7]u(s) X(r) ,

where

B=COv((~u(t)-~u(S») (X(O»)) [E((X(O») (X(O»)T)]-l
17u(t) -17u(S) , X(r) X(r) X(r)

Using expressions for ~u(t) and 17u(t),

r(u-2/ at) - r(r)r(r - u-2/ot)- r(r - u-2/ot) - r(r)r(u-2/ot)
-r(u-2/ as) +r(r)r(r - u-2/ as) -r(r - u-2/ as) + r(r)r(u-2/os)

r(r +u-2/ at) - r(r)r(u-2/ot)- r(u-2/ot) - r(r)r(r + u-2/ 0 t)
-r(r + u-2/os) + r(r)r(u-2/ as) r(u-2/ as) + r(r)r(r + u-2/ as)

Letting now u -> 00, we get

(8)

(9)

COy (~u(t) - ~u(s) IX(O) = u - ~/u) _ (21t - sl°(1 + 0(1» 0(1) ) (10)
rJu(t) -17u(S) X(r) = u -17/U - 0(1) 21t - sla(1 + 0(1» ,

where 0(1)8 are uniform of x and y, moreover they do not depends of values of conditions X(O)
and X(r). Note that (10) holds true for all a E (0,2). From (10) it also followed that for some
C> 0 all t, s and all sufficiently large u,

var(~u(t) - ~u(s)1 (X(O),X(r» = (u - x/u,u - y/u» ~ CIt - slo, (11)

var ('lJu(t) - 7]u(S) I(X(O), X(r» = (u - x/u, u - y/u» ~ Cit - slo. (12)

Thus from (7-11) it follows that the family of conditional Gaussian distributions

p (~u(')1 X(O) = u - x/u)
7]u(-) X(r) = u - y/u '

(13)

is weakly compact in G(T}) x C(T2) and converges weakly, under conditions of Lemmas 1 and
2, to the distribution of the random vector process
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t E JR, where B is an independent copy of B. If the conditions of Lemma 3 are fulfilled, the
family of Gaussian conditional distributions converges to the distribution of

(~(t),1](t)) T = (Bl(t) - (It I+ tr'(T))/(1 + reT)), Bl(t) - (It I - tr'(T))/(1 + reT)))T.

Thus

lim P (max~u(t) > x, max 1]u(t) > yl X(O) = u - x/u, X(T) = u - y/u)
u-+oo tETl tET2

= P (max~(t) > x,max1](t) > y) .
tETl tET2

In order to prove a convergence of the integral

max1]u(t) > yl X(O) = u - X/U,X(T) = U- y/u) P(u,x,y)dxdy
tET2

as u ~ 00, we construct an integrable dominating function, which have different representation
in different quadrants of the plane.

1. For the quadrant (x < O,y < 0) we bound the probability by 1, and the P(u,x,y) by
exp(l:r"(t)), using relations Ir(t)1 ~ 1 and x2+y2 ~ 2xy. The last function is integrable in the
considered quadrant, so it is a desirable dominating function.

2. Within the quadrant (x > 0, y < 0) we bound the probability by

P (max~u(t) > x, IX(O) = u - X/U,X(T) = U- y/u)
tETl

and, using arguments similar the above, we bound P(u, x, y) by

exp (1 + ;(tm ) + 0.9 +xr(tm )) ,

for sufficiently large u. The function p(x) can be bounded by a function of type C exp(-EX2),

E is positive, using, for example the Borel inequality with relations (7 - 10). Similar arguments
one can find in [2].

3. Considerations in the quarter-plane (x < 0, y > 0) are similar, the dominating function is

C exp(_ Ey2) exp (1 + ;(tm) + 0.9 +Yr(tm)) .

4. In the quarter-plane (x > 0, y > 0) we bound P by
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and the probability by

p( max eu(t)+ryu(s»x+yIX(O)=u-x/u,x(r)=u-y/u).
(t,s)ETl XT2

Again, for the probability we can apply the Borel inequality, just in the same way, to get the
bound C exp(-E(X + y)2), for a positive E.

Thus we have the desirable domination on the hole plane and therefore we have,

+00+00

lim ! JP (maxeu(t) > x,
u-->oo tETl

-00 -00

maxryu(t) > yl X(O) = u - x/u,X(r) = u - y/u) P(u, x,y) dxdy
tET2

+00+00

= ! ! e1-j~tl~n)p (maxe(t) > x,maxry(t) > y) dxdy
tETl tET2

-00 -00

+00 +00

= ! eHr(tm)P (maxe(t) > x) dX! eH~(T)P (maxry(t) > y) dy.
tETl tET2

-00 -00

Then we proceed,

+00

JeH~(6) P (maxe(t) > x) dx =
tEn

-00

~ (1 +r(8))E exp [~:T;~~)] ~ (1 + r(O))E exp [ maxn ~:(:~~& ] ~

= (1 + r(B))Eexp [II}~Ba C1 + r~e))2/a) - C1 + r~B))2/a ) a] =

= (1 + r(B))Eexp [ max BO'.(s) - sO'.] = (1 + r(B))Ha ((1 ~~))2/)'
Tl/(1+r(8))2/a + r a

where we use self-similarity properties of Fractional Brownian Motion. Similarly for ry(t), t E T2.
Similarly for Ht'(T). Thus Lemmas follow.

The following lemma is proved in [2] in multidimensional case. We formulate it here for
one-dimensional time.

Lemma 4 Suppose that X(t) is a Gaussian stationary zero mean process with covariance func
tion r(t) satisfying assumption A!. Let e, ! > e > 0 be such that

1 - ~ltlO'. ~ r(t) ~ 1 - 21tl0'.

for all t E [O,e]. Then there exists an absolute constant F such that the inequality

P ( max X(t) > u, max X(t) > u) ::; FT2u-le-~u2_~(to-T)a
tE[O,Tu-2/"'] tE[tou-2/a,(to+T)u-2/aJ

8



holds for any T, to > T and for any u 2: (4(T + to)!€t42 .

The following two lemmas are straightforward consequences of Lemma 6.1, [2].

Lemma 5 Suppose that X(t) is a Gaussian stationary zero mean process with covariance func
tion ret) satisfying assumption AI. Then

( )
1 1 2

P max X(t»u =Ha([O,T]U[to,to+T]) ro= e- 2U (1+o(1))
tE[O,Tu-2/ ct ju[tou-2 / o ,(to+T)u-2 / o ] Y 21ru

as u ~ 00, where

Ha ([0, T} U [to, to + T]) = Eexp ( max (Ba(t) -Itla)) .
tE[O,T]U[to,to+T]

Lemma 6 Suppose that X(t) is a Gaussian stationary zero mean process with covariance func
tion ret) satisfying assumption AI. Then

P ( max X(t) > u, max X(t) > u)
tE[O,Tu-2/ ct j tE[tou-2/ ct ,(to+T)u-2/ o ]

1 1 2
= Ha([O, T]' [to, to + T]) ro= e-"2u (1 +0(1))

y21ru

as u ~ 00, where

Ha([O, T]' [to,to + T]) = t
XJ

eSP (max Ba(t) - Itla> s, max Ba(t) -Itla > s) ds.J-00 tE[O,T] tE[to,to+T]

Proof. Write

P ( max X(t) > u, max X(t) > u)
tE[O,Tu-2/ ct ] tE[tou-2/ ct ,(to+T)u-2/ o ]

= P ( max X (t) > u) + P ( max X (t) > u)
tE[O,Tu-2/ oJ tE[tou-2 / ct ,(to+T)u-2/ ct J

-P ( max X(t) > u)
tE[O,Tu- 2 / o ]U[tou-2/ 0 ,(to+T)u-2 / oJ

and apply Lemma 6.1, [2] and Lemma 3 to the right-hand part.
From Lemmas 4 and 2 we get,

Lemma 7 For any to > T,

When to = T the Lemma holds true, but the bound is trivial. A non-trivial bound for
Ha([O, T]' [T,2T]) one can get from the proof of Lemma 7.1, [2], see page 107, inequalities
(7.5) and the previous one. These inequalities, Lemma 6.8, [2] and Lemma 5 give the following,
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Lemma 8 There exists a constant PI such that for all T ~ 1,

Ha([O, T], [T, 2T]) ::; PI (VT +T 2e-iT "'/2) .

Applying Lemma 1 to the sets TI = [0, T] u [to, to +T], T2 = [0, T] U [tl' tl +T] and combining
probabilities similarly as in the proof of Lemma 4, we get,

Lemma 9 Let X(t) be a Gaussian process with mean zero and covariance function ret) sat
isfying conditions of Theorem 1. Let T = T(U) tends to tm as u -+ 00 in such a way that
IT - tml ::; CJloguju, for some positive C. Then for all T > 0, to ~ T, tl ~ T

P ( max X(t) > u, max X(t) > u,
tE[O,u-2/"'T] tE[u-2/"'to,u- 2/"'(to+T)]

max X(t) > u, max X(t) > u)
tE[r,r+u-2 /"'T] tE[r+u-2/"'tl,r+u-2/"'(tl +T)]

= (1+r(tm))2 .~e-l+':.~"')
211"V1 - r2(tm) u2

XHa ([0, (1 + r~m))2/a] , [(1 +r;~m))2/a' (1 :~~~)2/a])
H ([0 T ] [t l tl +T ]) (1 (1))

x a '(1+r(tm))2/a' (1+r(tm))2/a'(1+r(tm))2/a +0,

as u -+ 00.

3 Proofs

3.1 Proof of Theorem 1

We denote II = [Tl, T2] x [T3 , T4], 8 = 8(u) = CJloguju, the value of the positive C we specify
later on. D = {(t, s) E II: It - s - tml ::; 8}. We have,

P ( max X(t) > u, max X(t) > u) = P ( U {X(t) > u} n {Xes) > U})
tE[Tl,T2] tE[T3,T41 ( ) IT

s,t E

= P ({ U {X(t) > u} n {Xes) > U}} U{ U {X(t) > u} n {Xes) > U}})
(s,t)ED (s,t)EIT\D

::; P ( U {X(t) > u} n {Xes) > U}) + P ( U {X(t) > u} n {Xes) > u}) .(14)
(s,t)ED (s,t)EIT\D
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From the other hand,

P ( max X(t) > u, max X(t) > u) = P ( U {X(t) > u} n {X(s) > U})
tE[Tl,T2J tE[Ta,T4]

(s,t)EII

= P ({ U {X(t) > u} n {X(s) > U}} U{ U {X(t) > u} n {X(s) > U}})
(s,t)ED (s,t)EII\D

~ P ( U {X(t) > u} n {X(s) > U}) . (15)
(s,t)ED

The second term in the right-hand part of (14) we estimate as following,

P ( U {X(t) > u} n {X(s) > U}) ~ P ( max X(t) + X(s) > 2U) . (16)
(s,t)EII\D (s,t)EII\D

Making use of Theorem 8.1, [2], we get that the last probability does not ecceed

canst. u-l+2/ o exp (_ u
2

) •
1 + ma:x(t,s)EII\D r(t - s)

Further, for E = 1/6 and all sufficiently large u,

1 1
max r(t - s) ~ r(tm) + (-2 - €)r"(tm )82 = r(tm ) + -3C2r"(tm) logu/u.

(t,s)EII\D

Hence,

(17)

p ( U {X(t) > u} n {X(s) > u}) ~ canst· u-l+2/a exp ( 1 +~~tm)) u-G
, (18)

(s,t)EII\D

where
-2C2r"(tm )

G = 3(1 + r(tm ))2·

Now we deal with the first probability in the right-hand part of (14). It is equal to the probability
in right-hand part of (15). We are hence in a position to bound the probability from above and
from below getting equal orders for the bounds. Denote ~ = Tu-2/a., T > 0, and define the
intervals

~k = [T1 + k~,Tl +(k+ 1)~], °~ k ~ Nk, Nk = [(T2 - Tl)/~],

~l = [T3 + l~,T3 + (l + 1)~], °:S I:::; Nl, Nl = [(T4 - T3)/~],
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where [.J stands for the integer part of a number. In virtue of Lemma 1,

p ( U {X(t) > u} n {X(s) > u})
(s,t)ED

:s p ( U U {X(t) > u} n {X (s) > u})
(k,l): AknD,60, AlnD,60 tEAk,sEAI

:s L P (maxX(t) > u, maxX(t) > u)
tEAk tEAL

(k,l): AknD,60, AlnD,60

< (1 + ,(u)) HZ ( T ) L ex (_ u
Z

) (19)
-27ruZJ1-rZ(tm) a (1+r(tm))Z/a (k,I):Ak nD#0,AlnD#0 p 1+r(Tk,z) '

where 'Y(u) to as u ~ 00 and Tk,l = T3 - Tl + (l - k)Li.. For the last sum we get,

S = L exp ( _ _ u...,.----,-z )
(k,l): AknD,60, AlnD,60 1 + r(Tk,Z)

r(tm) - r(Tk,l) < (» -!r"(tm)(Tk,Z - t m? (1 + (-h (u))
(1 + r(Tk,z))(1 + r(tm) - - (1 + r(tm))Z 1

= -A((k -l)Li. - OLi.)Z(1 + (-hI (u)),

where 'Yl(U) t 0 as u ~ 00. In the last sum, index k variates between (Tmin + O(8(u)))jLi.
and (Tmax + O(o(u)))jLi., as u ~ 00, where Tmin = n V (T3 - tm ) and Tmax = Tz /\ (T4 - tm ).

Indeed, for the co-ordinate x of the left end of a segment of length t m which variates having
left end inside [T1 , Tz] and right end inside [T3, T4], we have the restrictions Tl < x < Tz, and
T3 < x + tm < T4, so that x E (Tmin, Tmax ). The index m = k -l - 0 variates thus between
-8(u)jLi. + O(Li.) and o(u)jLi. + O(Li.) as u -+ 00. Note that uLi. ~ 0 as u ~ 00. Using this, we
continue,

(
Z) T, _ T,. 8(u)/A+O(A)

S = (1 + 0(1)) exp -1 +~(tm) max Li. mm L exp (-A(muLi.)Z)
m=-8(u)/A+O(A)

( ( )) (
u2 ) Tmax - Tmin 100

-Ax2

= 1 + 0 1 exp - () A Z e dx.
1+r tm Ul..l. -00

12



Compute the integral and substitute this in right-hand part of (19), we get,

p ( U {X(t) > u} n {Xes) > U}) (20)
(s,t)ED

< (1 + r(tm))2(1 + "Y2(u))(Trnax - Trnin)u-3+4/a 1 H 2 ( T ) ex (_ u2 )
- 2JArr(1 - r2(tm) T2 a (1 + r(tm))2/a p 1 + r(tm) ,

where "Y2(U) ! 0 as u -t 00.

Now we bound from below the probability in the right-hand part of (15). We have

p ( U {X(t) > u} n {Xes) > U})
(s,t)ED

;::: P (u u {X (t) > u} n {X (s) > U})
(k,l): llkCD,ll,CD tELlk,sELlI

;::: L P (maxX(t) > u, maxX(t) > u)
tEllk tEll,

(k,l): llkCD,LlICD

- LLP (maxX(t) > u, maxX(t) > u, max X(t) > u, maxX(t) > u) , (21)
tEllk tElll tEllk, tEll!,

where the double-sum is taken over the set

{(k, I, k', I') : (k', I') =1= (k, I), C:..k n D =1= 0, C:..l n D =1= 0, C:..kl n D =1= 0, C:..l' n D =1= 0}.

The first sum in the right-hand part of (21) can be bounded from below exactly by the same
way as the previous sum, thus we have,

where 'Y2(U) ! 0 as u -t 00. We are now able to select the constant C. We take it as large as
G > 2 - 2/0: to get that left-hand part of (18) is infinitely smaller then left-hand part of (22) as
u-too .

Consider the second sum (the double-sum) in the right-hand part of (21). For sakes of
simplicity we denote

H(m)-H ([0 T ] [mT (m+l)T ])
- a '(1+r(tm))2/a' (1+r(tm))2/a'(1+r(tm))2/a

and notice that

H(O) = Ha([0, (1 + r~m))2/a]) .

13



In virtue of Lemma 9 we have for the double-sum in (21), taking into account only different
(k,l) and (k',l'),

E2 := L LP (maxX(t) > u, maxX(t) > u, max X(t) > u, maxX(t) > u)
tEllk tEllz tEllk, tElll,

:S (1 +r(tm ))2(1 + feu)) LLH(lk _ k'I)H(ll-l'l) exp (_ u
2

)
27Tu2/1 - r2(tm ) 1 + r(Tk,d

= 2(1 + r;tm ))2(\+ r(u)) fH(n) (H(O) + 2 f H(m))
27TU /1 - r (tm ) n=l m=l

X L exp ( u
2

),

(k,l): llknD#0, lllnD#0 1 + r(Tk,l)

where feu) ! 0 as u ~ 00. The last sum is already bounded from above, therefore by (19) and
(20) we have,

200 ( 00 )E2 :S T2 ~H(n) H(O) +2l; H(m)

(1 + r(tm ))2(1 + f2(U)) (Tmax - Tmin)U-3+4/a ( u2 )
X exp- .2/A7T(1 - r2(tm ) 1 + r(tm )

By Lemmas 6.8, [2]' 7 and 8 we get that H(O) :S canst· T, H(I) :S canst· ..jT and for m > 1,

1 ",j2T"'!2
H(m) :S canst· e- sm ,

hence

Thus

Now since by (1),

E < canst. T-l/2u-3+4/a exp (_ u
2

) .
2 - 1 + r(tm)

(23)

we get that the double sum can be made infinitely smaller by choosing large T. Thus Theorem
1 follows.

3.2 Proof of Theorem 2.

We prove the theorem for the case tm = T3 - T2, another case can be considered similarly.
First, as in the proof of Theorem 1 put D = {(t,s) E II: It - s - tml :S 8}, but with

14



8 = 8(u) = C.jlogu/u2 , for sufficiently large C. The evaluations (14), (16) and (17) still hold
true. Further we have for E = 1/6 and all sufficiently large u,

1 1
max ret - s) :::; r(tm) + (- - E)r'(tm)8 = r(tm) + -3C2r'(tm) logu/u2 .

(t,s)ETI\D 2

Hence, (18) holds true with
-2C2r'(tm )

G = 3(1 + r(tm ))2'

Let now Q > 1. For any positive arbitrarily small €O we have for all sufficiently large u that,
w-2/ a > 8(u), hence for such values of u,

p ( U {X(t) > u} n {Xes) > u})
(s,t)ED

:::; P ( max X(t) > u, max X(t) > u) . (24)
tE[T2-W.-2/ a ,T2] tE[Ts,Ts+m-2 / a j

We wish to apply Lemma 1 to the last probability for the intervals [-E, OJ and [tm, tm + €OJ. To
this end we turn to (5). Since for a sufficiently small €O, r'(tm ) < 0, we have that

reT - u-2/a t) - reT)--'---------,-"'-,,------:,.....;.. < 0 for all t E [-E, 0]
1 + reT)

and
reT +u-2/a t) - reT) 0 £ 11 [t J

( ) < or atE tm , m + E ,
l+rT

hence
. 1
hmsupE(~u(t)IX(O) = u - X/U,X(T) = U - y/u):::; -1 () IW\
_00 +r~

for all t E [-E, 0], and

limsupE(17u(t)\ X(O) = u - X/U,X(T) = U - y/u) :::;
u-+oo

1 Itla
l+r(tm ) ,

for all t E [tm, tm + €OJ. All other arguments in the proof of Lemma 1 still hold true, therefore,
using time-symmetry of the fractional Brownian motion, we have,

lim sup u2el+~(~m)P ( max XCi) > u, max X(t) > u)
u-+oo tE[T2-EU-2/"',T2] tE[Ts,Ts+w.-2/"']

< (1 + r(tm ))2 H2 ( [0, €O] ) (25)
271"}1 - r 2(tm ) Q (1 + r(tm ))2/a

Using Fatou monotone convergence we have lim€!o H a ( E) = 1, therefore

limsupu2el+~(~m)P ( max XCi) > u, max X(t) > u)
u-+oo tE[T2 _w.-2/", ,T2] tE[Ts,Ts+w.-2/ a J

< (1 + r(im ))2 (26)
271"}1 - r 2(tm )

15



(28)

But

as u -4 00. Thus (i) follows.
Let now a = 1. From now on, we redefine !:i.k and !:i.l , by

!:i.k = [T2 - (k + 1)!:i., T2 - k!:i.], o:s k :s Nk, Nk = [(T2 - Tl)/!:i.] ,

!:i. l = [T3 + l!:i., T3 + (l + 1)!:i.], 0 :s l :s NI, Nz = [(T4 - T3)/!:i.] ,

for the case of !:i.k, k = 0, we denote!:i.o = !:i.-a, indicating difference with !:i.o for the case !:i.[,
l = O. Recall that now !:i. = Tu-2/ a = Tu-2. We have for sufficiently large u,

p ( U {X(t) > u} n {Xes) > u}) ? P (max X(t) > u, maxX(t) > u) , (27)
(

tEA_o tEAo
s,t)ED

and

P ( U {X(t) > u} n{Xes) > u}) :s P (max X(t) > u, maxX(t) > u) +
( )

tEA_o tEAo
s,t ED

[logu/T]+l

+ L P (maxx(t) > u, maxX(t) > u) .
tEAk tEAL

k=O,I=O, k+I>O

First probability in right-hand parts of the inequalities is already considered by Lemma 3. We
set T = tm = T3 - T2, T1 = [-T, 0], T2 = [0, T], by time-symmetry of Brownian motion, we have
that

(29)

In order to estimate the sum, we observe, that for all sufficiently large u and all t E [T3, T3 +
8(u)], s E [T2 - b(u), T2],

1 2
ret - s) :s r(tm ) + 3r'(tm)(t - s - tm) and ret - s) ? r(tm) + 3r'(tm)(t - s - tm). (30)

Hence

-~ -~
----,,...----:-::-----:---:-<------:---.,-----.,--------,---::-
1 + r(tm + (k + l)!:i.) - 1 + r(tm) + kr'(tm)(k + l)Tu-2

-u2 r'(tm)(k + l)T _u2 (k l)T
~ 1 +r(tm) + 6(1+r(tm»2 = l+r(tm) -a + ,

where a > O. Now, in Lemma 3 let T = tm+ (k + l)!:i., T1 = [-T, 0], T2 = [0, TJ, using the above
mentioned property of the constants HfCT), we get, that for all sufficiently large u and T,

P (maXX(t) > u, maxX(t) > u) :s Cp2(U, r(Tm)e-a(k+I)T,
tE6.k tE6.1
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From here we get,

[log ujT]+1

L P (maxX(t) > u, maxX(t) > u) < Cp2(U, r(Tm))e-a(k+I)T,
k=O,I=O, k+I>O tEAk tEAl -

Applying now Lemma 3 to first summands in right-part hands of (27, 28) and letting T ~ 00,

we get the assertion (ii) of Theorem.
Let now Q < 1. Proof of the Theorem in this case is similar to the proof of Theorem 1. We

have to consider a sum of small almost equal probabilities and a double sum. Using the more
recent definition of Ak and AI, we have by Lemma 2,

p ( U {X(t) > u} n {Xes) > U})
(s,t)ED

~ P ( U U {X(t) > u} n {X(s) > U})
(k,l): AknDi"0, AlnDi"0 tE.6.k,sE.6.z

~ L P (maxx(t) > u, maxX(t) > u)
tE.6.k tE.6.z(k,l): AknD#0, .6.znD#0

< (1 + r(tm »)2(1 + ')'(u) H2 ( T ) L ex (_ u
2

) (31)
- 27ru2 J1-r2(tm) a (1+r(tm»)2/a (k,I):.6.knDi"0,AznD# p l+r(Tk,d'

where ')'(u) 10 as u -+ 00 and now Tk,l = T3 - T2 + (l + k)A. For the last sum we get,

(
U

2
) ~ ( 2 r(tm) - r(Tk,z) )

= exp - 1 r t LJ exp -u 1 r T 1 + r t .+ (m) (Ie,l): .6.knDi"0, AlnD# ( + (k,l»)( ( m)

Next,
r(tm) -r(Tk,l) < (»-r'(tm)(tm - Tk,I)(1 () (u»)

(1 + r(Tk,I»)(1 + r(tm) - - (1 + r(tm »2 + - ')'1

= -B(k + 1)!1(1 + (-)')'1 (u»,

where 1'1(U) ! 0 as u -+ 00. Remind that now u2A ~ 0 as u -+ 00. Using this, and denoting
m = k + l, we continue,

2 6(u)/.6.+0(.6.)

S = (1 + 0(1» exp (- u ( ») L mexp (-Bu2mA)
l+rtm m=O
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(
U2 ) 1 roo ( u

2
) 1= (1 + 0(1)) exp -1 + r(tm) u46,2 Jo xe-Bxdx = (1 + 0(1)) exp -1 + r(t

m
) B2u46,2'

Substitute this in right-hand part of (31), we get,

p ( U {X(t) > u} n {X(s) > u}) (32)
(s,t)ED

< (1 + r(tm))2(1 + 'Y2(U))U-6+4/a 1 H 2 ( T ) ( u2 )
- 27rB2J(1 - r2(tm) T2 a (1 + r(tm))2/a exp -1 + r(tm) ,

where 'Y2(U) 10 as u ---7 00.

Estimation the probability from below repeats the corresponding steps in the proof of The
orem 1, see (21) and followed. Thus Theorem 2 follows.
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