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Abstract

For stationary linear processes Kolmogorov-Smirnov type goodness-of-fit tests for com-
pound hypotheses based on frequency domain bootstrap methods are proposed. Similar
bootstrap tests for comparing the spectral distributions of two time series are suggested.
The small sample performance of the tests is investigated by simulations, and a real data

example is given for illustration.

1 Introduction

In time series analysis, and generally in statistics, often parametric model classes are used
for purposes like prediction or (parametric) spectral density estimation, for which e.g. an
autoregressive model can be applied. In this case a model class has to be selected, and then
a model within the class must be estimated by some suitable estimator. There are several
possibilities for model class selection, especially selection procedures based on criteria like
AIC (Akaike, 1972). With these methods one tries to find the model class best suited to the
particular purpose from a given set of competing model classes. However, even if we knew
which of the model classes under consideration is the best, we still do not know whether it

has a good fit, or whether it is just the best under several unsuitable classes.

In this paper we will deal with some goodness-of-fit test statistics for stationary linear
time series which are functions of the periodogram; in contrast to most goodness-of-fit tests
we test a compound hypothesis. Since the asymptotic distributions of the statistics cannot
be evaluated analytically we estimate them by a bootstrap method that works on the peri-
odogram values, which is both an obvious and a universal approach, as the method is quite
independent of the model class under consideration (in contrast to similar work by Chen and

Romano, 1997, who use a time domain bootstrap).

Suppose we have a class of parametric models with parameter set @ and some obser-

vations Xy, ..., X7 from a realisation of a stationary time series {X;}. A goodness-of-fit
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test can be used to check the adequacy of the model class, i.e. to test the hypothesis that
the time series is generated by a model with some parameter 6y € O. In contrast to many
well-known goodness-of-fit tests (see Priestley, 1981, Ch. 6.2.6, Anderson, 1993) this is a
compound hypothesis, where 6y, the parameter which specifies the best model of the model

class, is unknown and must be estimated.

We will restrict ourselves to second order properties, so it is enough to test the hypoth-
esis
Hy: f €O against H : f¢ 0O
(in the sense: Hp:30 € O : f = fy against Hy : V0 € © : f # fy), where f and fy denote the

spectral densities of the process and of the model with parameter 8, respectively. Dahlhaus

(1988), ex. 3.4, considers the asymptotic distribution of the test statistic

Wr = Azt[gp ] VT (Fr(A) = F;(\)],

where Fr(\) = fOA IT(a)da and Fy(A) = fOA f;(a)da. Here f denotes the Whittle estimator
of the optimal parameter 8y € O, I is the periodogram of the data, and f; is the spectral
density of the estimated model. The limit distribution of Wy is difficult to calculate explicitly.

Furthermore, it depends on f and fs, which are unknown.

Another possible test statistic is Bartlett’s U, - statistic (Bartlett, 1954) generalized to

the situation of a compound hypothesis

In Section 2 we show that the asymptotic distribution of the test statistic Vr can be ap-

proximated by the distribution of the supremum of a certain stochastic approximation of
Fr(d) _ B . .

|\/T(F;(7r) — FZ(”)” over all A € (0,7]. In Section 3 we find that a bootstrap of the peri-

odogram values can imitate this distribution, thus yielding the critical values for the test.

An appropriate bootstrap method is suggested which creates a test of adequate power for

misspecified model classes, i.e. for model classes which do not contain the true process.

The goodness-of-fit test based on the test statistic Vy has for example no power in
the case that the parameter set © does not contain the true innovation variance (it cancels
out in the statistic V) and the shape of the spectral density is fitted correctly. Therefore

it is shown in Section 4 that it is possible to get a similar goodness-of-fit test using the test



statistic Wy. For this purpose we need a special periodogram bootstrap which also emulates

the dependence structure of the periodogram (cp. Janas and Dahlhaus, 1994).

Further we consider the problem of comparing two independent time series. For the
comparison one may choose a model class, estimate the necessary parameters for each of
them separately, and compare the results by testing equality of the parameters. However, a
more general approach is the calculation of a statistic which directly compares the spectral
densities of both series without making assumptions on a parametric model for the processes
(cf. Diggle and Fisher, 1991). In Section 5 bootstrap tests are introduced to compare the
spectral densities of the time series, using essentially the same bootstrap methods as in

Sections 3 and 4.

Some of the tests are illustrated by simulations and a real data example (Beveridge
Wheat Price Index) in Section 6; some possible improvements of the methods for small
sample sizes are summarized there, too. In this paper we restrict ourselves to test statistics
of Kolmogorov-Smirnov type, but the method allows the application of other test statistics

(e.g. Cramér-von Mises statistics), too.

Bootstrap methods for goodness-of-fit tests for time series are also investigated e.g. by
Paparoditis (1995), but with a different test statistic, and by Chen and Romano (1997) with
a time domain bootstrap. For a goodness-of-fit test for autoregressive models see Anderson

(1997).

2 Distribution of the test statistic

The Kullback-Leibler distance for Gaussian processes can be written up to a constant as

A6) = 5 [ tox )+ Lir

(cf. Parzen, 1983); it is used as a measure for the difference between the true process and
the model with parameter § € O, even for non-Gaussian processes, where f(A) and fs(})
are the corresponding spectral densities. The model with parameter 6y = argmingceA(8) is

the model in © which approximates the true process best (in the Kullback-Leibler sense).

Furthermore fo, = fif f € ©.

The unknown spectral density f(A) is approximately the expectation of the peri-



odogram of the data Xq,..., X7 at frequency A,

IT(/\) = (27‘1'1{271“)_1dT(/\)dT(—/\)7
where
T
dr(A) = thXtexp(—i/\t) (2.1)

is the Fourier transform of the tapered data, and %, is a data taper with H; 7 := ST h (see

assumption 5). The empirical Kullback-Leibler distance

- 1

) = oo [ toe s+

IT(XN)
Jo(A)

is a consistent estimator of the Kullback-Leibler distance A(#). By minimizing it we get the

YA

Whittle estimate § = argming.gq A(#) as an estimate of 6y, which for autoregressive models
is identical to the well-known Yule-Walker estimate. As far as the asymptotic convergence
is concerned, all integrals can be replaced by sums, e.g. =377, qﬁ(zTﬂ)IT(z%), n = [T/2],

instead of [; ¢(A)I7(A)dA (see Brillinger, 1981, Th. 5.10.2, Dahlhaus, 1985, Section 3).

Assumptions:

1. The spectral densities of the models have the form

o
A) = —h,(A), 6 ,
o) = The), o

with parameters = (o2, 771)7, 77 = (71,...,7,), and fulfill the Kolmogorov equation

2

o
o’

1
—/ log fs(\)dA = log
T JII

Here and in the following we set 11 := (0, 7]. © is assumed to be compact.

2. There is a unique 6y = (03, 7y )T minimizing the Kullback-Leibler distance A(-) in ©,

and it lies in the interior of ©.

3. The model spectral densities fg(\) are twice continuously differentiable as functions of
f € © with derivatives bounded uniformly for all # and A, and with uniformly bounded
total variations as functions of A. The matrix I'g = VZA(f) is positive definite. Further

there is a ¢g such that 0 < ¢g < fy(A) for all A € Il and all § € ©.



. {Xi} is a linear real valued stationary process X; = ) .2, a,€—,, where the ¢, are
independent identically distributed random variables with mean 0, variance ¢? and
existing cumulants of all orders ki, where |kg| < c* for some ¢ > 0. Furthermore, we

assume a, = O(|v|71*77) for some v > 0, and f(A) > 0 for all A € 1I.

. Either the data Xi,..., X7 are untapered, i.e. h; = 1 for all ¢ in (2.1), or they are
tapered with an asymptotically vanishing data taper of the form h; = hp(%) with
ho(z) = u(z/p)L0,p/2)(2) + 1 p/2,10—p/2)(%) Ful(1=2)/p) 11— 2,1)(7), where the function
w : [0,1] — [0,1] is twice differentiable with bounded second derivative and «(0) = 0,
u(0.5) = 1; p = p(T) with p(T) ~ T7°, where § < 1/6.

. [ is a spectral density estimator which converges to f uniformly, almost surely.

. The innovations satisfy a Cramér condition: 36 > 0,d > 0 such that for all |t| > d the
inequality |Fexp(ite;)] < 1 — 6 holds. Further, the limit of the dispersion matrix of
(H;%/z(dT(wl), co.,dp(wy)) T exists and is positive definite for fixed k. Furthermore,

we assume |a,| < y~1*! for large |v| and some 0 < v < 1.

. k4 is an estimator which converges almost surely to the fourth cumulant k4 of the

process innovations ;.

The second part of Assumption 5 that the data taper is asymptotically vanishing is

a realistic assumption. If an arbitrary taper is used the bootstrap procedure needs certain

modifications. Assumption 7 is necessary for the proof of the convergence of the empirical

distribution of the studentized periodogram values to the exponential distribution, which

follows from Theorem 1 in Chen and Hannan (1980) for untapered data, or else from Theorem

4.3 in Janas and von Sachs (1995). It has to be made for the bootstrap method used in Section

5, but not for the goodness - of - fit tests in Sections 3 and 4, because here the resamples

are drawn from an exponential distribution. It is not difficult to see that for e.g. a causal

autoregressive model Assumptions 1-3 are fulfilled, provided the parameter set © satifies

some restrictions.

To get an approximation of the test statistic Vr we first have to get an approximation

of the Whittle estimate. By a Taylor expansion

VoA (8o) = VeA(8) — VoA(H) = VEA(D) (60 — 0),



where 6 is between 6, and é, we find that
VT (0 - 80) = —T5'VTVA(6) + Op(T~Y?), (2.2)

holds with I'y = VgA(OO). This follows from the convergence of 0 to Ao in probability
(from A(H) — A(6), uniformly for all # € ©, cp. Dahlhaus, 1988), Assumption 3, and
VZA(0) = VIA() + Op(T~1/?) for all 6 € ©.

To derive the distribution of the test statistic V7 we get (cp. Lemma 1 below) by another

Taylor expansion for o
o= T

V) = VTGS - f) ~ VT - 80TVl

F, (/\)

o)) TOPTT) =

~—

(2.3)

- \/T(?;Ei; B ?j Ei;> T \/TWA(%)TF?W(?? Ei)) +O0p(T7Y?).

~—

Since

. 1
VoA () = ﬁ/H(IT(/\) — oy () VS, (A
the second summand is of the form evT f(IT(A) — fa, (A))@(A)dA. Tt is well known that

under Hg this converges for a linear process to a normal distribution with mean zero and
variance
2mc? [ GO NN+ (| G0N i, (NN,
II g II

where the second term is due to the (small but existing) dependence structure of the pe-
riodogram ordinates. Since this dependence structure is lost with an ordinary frequency
domain bootstrap there is no chance of a good bootstrap approximation unless x4 = 0 or
S @A) fo, (A)dX = 0 (cp. the discussion in Dahlhaus and Janas, 1996). Luckily the lat-
ter holds since it follows from Assumption 1 that [ f@o(/\)VTfe_Ol(A)d/\ =0 and (I'g);» =
V.V,A(fy) = 0. The first term of (2.3) is a so called "ratio statistic” (cp. Dahlhaus
and Janas, 1996) which can be approximated by a statistic of the form ev/T [ (Ir(\) —
Joo (M) p(N)dX with [ (A) fo, (A)dA = 0. Heuristically this is the reason why the ordinary

frequency bootstrap works for the statistic V. We make this precise in the following lemma.

Lemma 1 Under Assumptions 1-5, the approzimation

Fr(A) _ B

Fr(r)  Fy(r)

V() = VT( ) =V(\) +0p(T~1/?)

6



holds uniformly for all X € 11, where

V) = VT [ on@inepdo VT [ vyl - e ¢
STl [ (@) = fu @) Vs (0)de) T3S0 2210
and
i) = (gl ~ EADIDD ) [ e,
Under the hypothesis Hy we have
VO = VT [ (6x(a) +er(@)Ir(a)da, (24)
where
_ 1 -1 Tp-1 Fy (M)
0) = 5o(Vely! (@) T3 Vel (25)

In this case we have [ ¢r(a) f(a)da =0 and [ wi(a) f(o)da =

]

Proof: see Appendix A.

We now derive the joint distribution of the approximations V' (A):

Lemma 2 Under Assumptions 1-5, the approzvimations V (A1), ..., V(),) asymptotically have

a multivariate normal distribution, and their cumulants are

floy  fa(a)
fo(’Y)d’Y fo@o(’Y)d’Y

Cov(V(A), V() = 277/11(@(04) +wr(@)(Sul@) + wul@) F(a)da + of1),
Cum(V(A1),...V(A)) = o(l)  forr>2,

EVO) = VT [ o) Jdar+o(1),

uniformly for all X, \;, p € 11.

Proof: see Appendix B.

Under the hypothesis the expectation term vanishes asymptotically, so the distribution
of (V(A1),...,V(A,)) converges to a multivariate normal distribution with expectation zero.
The expectation of V() is diverging for some A € Il under the alternative, so asymptotically

it is possible to detect deviations from Hg.



Since V() is an approximation of V'(A) uniformly in A, we have V7 = sup,¢jo 1 [V/(A)[+
Op(T_l/Q)7 so by the continuous mapping theorem the distribution of Vp converges under
Hy to the distribution of the supremum of the absolute value of a Gaussian process with
zero mean and covariances as given in Lemma 2 (see Dahlhaus, 1988). This follows from the
observation that the set {V(\), A € [0, 7]} can be interpreted as an empirical spectral process
indexed by all functions {(¢r(:) + wa(+)), A € 11}, which converges as a stochastic process to
a Gaussian limit process under our assumptions (see Dahlhaus, 1988). The distribution of
Vr is difficult to derive analytically, but it may be approximated by a bootstrap method as

indicated in the next section.

3 Bootstrap of the test statistic

First we describe the frequency bootstrap which has been introduced in Franke and Hérdle
(1992); in Dahlhaus and Janas (1996) it is used for estimating the distribution of ratio
statistics and Whittle estimates. The wild bootstrap, which will be described in Section
4, imitates the variance of the integrated periodogram correctly for quite arbitrary weight

functions, even for linear processes with innovations that have non-vanishing fourth cumulant.

We get bootstrap resamples of the test statistic by a bootstrap of the periodogram
ordinates. The bootstrap as suggested by Franke and Hérdle (1992) is performed in the

following way:

1. Calculate the periodogram values I7();) at the Fourier frequencies A; = 2% for j =

1,...,n, where n = [T'/2].
2. Calculate a uniformly consistent estimate f of the spectral density.
3. Compute the studentized periodogram values €; = IT(/\j)/f(/\j) forj=1,...,n.

4. Rescale {¢;} and consider the approximately independent and identically distributed

rescaled values {¢;} = {¢;/¢.}, where &. = L37_ ¢
5. Draw independent bootstrap replicates {e;} from the empirical distribution of the ;.

6. Define the bootstrap periodogram values by {I7} = {f] - €7 }. Alternatively one may

draw the {7} from an exponential distribution with mean 1.



7. For a statistic S(/) which is a function of the periodogram, estimate the distribution of
S(I) — S(f) by the empirical distribution of the bootstrap statistic S(I*) — S(f) after

generating many independent periodogram resamples I* = (I,..., I*).

As we explain below Theorem 1 we recommend in this context to use the estimate f =/
and to draw the {¢7} from an exponential distribution. This guarantees that the bootstrap
test statistic has the correct distribution - even if the hypothesis is wrong. If we use this

method then Assumption 7 becomes unnecessary.

An advantage of this bootstrap method over model-based bootstrap methods in the
time domain is that it is not necessary to isolate innovations in the time domain which can
be regarded as approximately iid, because this can be difficult for complex models. Instead
one has to estimate the spectral density, which often is easier. Furthermore, one can use
spectral densities for the hypothesis which are difficult to translate to the time domain. Of
course this does not imply that a frequency domain bootstrap is generally preferable (cf.

Chen and Romano, 1997).

For each resample I of the periodogram the Whittle estimate 6* has to be calculated

by minimizing
. 1 & I*(\;
A0) = 52 Xl () + £33

J=1

),

over all § € ©. A*(f) is interpreted as an estimate of the distance A*(#) based on the

estimated spectral density f instead of f,

s o= 5 <1ogfe<A>+%>dA

with minimizing value 8* € ©. The statistical fluctuation of the periodogram I around the

spectral density f is imitated by the fluctuation of I* around the estimated spectral density

f.

We can estimate the distribution of Vp under the hypothesis by the bootstrap dis-
tribution (conditonal on the data) of the statistic V7 that is computed by substituting the
periodogram in the definition of Vy by the bootstrap periodogram I and the Whittle esti-
mator 6 by the Whittle estimator g* calculated by minimizing A

For every bootstrap resample and every Fourier frequency A; we can calculate

Vo0 =V - )

9



where the asterisk indicates that the resample is used for the calculation. Note that the
bootstrap periodogram values are available only at the Fourier frequencies, so we have to
replace integrals by sums: Fr(A;) = 2% i:l I7. We may also use such sums instead of
integrals in the definition of Fr(A;) so that its distribution can be expected to be imitated
better by the bootstrap distribution of F7(A;), especially for small samples. It can be shown

that the difference between sums and differences does not affect the asymptotic result of

Theorem 1 in our case (cf. Dahlhaus, 1985, Section 3; Brillinger, 1981, Th. 5.10.2).

The distribution (conditional on the data) of the supremum V7 of the values [V*();)],
j = 1,...,n, is our estimate for the distribution of Vy under the hypothesis, because for
f = fox the approximation (2.4) of V() by V(X) holds similarly for an approximation of
V*(A) by (under Hy)
i 27 o, . y
Vo) ITI/QT D (@A) +on () (3.1)

7=1
(see below). This can be shown as in the proof of Lemma 1 if I7 is substituted by I*, f by
f, and 6, by 6*.

It has been shown by Dahlhaus and Janas (1996) that the bootstrap method works
for the Whittle estimator and for ratio statistics; with similar arguments in our case the
convergence (in probability) under Hy of the multivariate bootstrap distribution of V*(X) to
the multivariate distribution of the original values V' (A) will follow for all finite sets of A € I1.
Although the Fourier coefficients of the functions (¢, (-) +wx(+)) do not fall exponentially as it
is assumed in Dahlhaus and Janas (1996) (to ensure the validity of an Edgeworth expansion
of the integrated periodogram), we still get the right covariances of the bootstrap resample,

which means that the bootstrap "works”:

Lemma 3 Under Assumptions 1-6, the approximations V*(/\) asymptotically have a normal

distribution, and their cumulants are

T _ N flo)  fer(@) ato s

ETO) = VT [ o) CHod TGy e, e

Cor™ (VN V() = 2r [ (9a(0) + &1(@)(Du(a) +8,()) F(a)da + of1) =
5 27 [ (6a(0) + wa (@) (0u(0) + (@) Fla)da, e

Cum*(V"(M\),.... V- (A\)) = o(l) forr>2, as.

10



uniformly for all A\, X;, p € 1. Here E*, Cov*, Cum™ denote the expectation, covariance and
cumulants of the bootstrap statistics conditional on the data. qAﬁA and @) are defined as ¢ and
wy are defined in Lemma 1 and (2.5), respectively, but with f replaced byf and 6y replaced
by 0. We have EXV"(\) — 0 for all X € TL if f € {f3,0 € O} (i.e. f = fou, which will be

assumed in the following, cp. also the discussion below Theorem 1).

Proof: See Appendix C.

We can see from Lemma 3 that the bootstrap imitates the finite-dimensional distri-
butions of the processes {V(A)} and {V (M)}, A € II, and therefore the distribution of their
absolute values is imitated, too, but we need to estimate the distribution of the supremum
of them over all A, which is our test statistic V. Theorem 1 states that the distribution of

Vr is imitated by the bootstrap:

Theorem 1 Suppose Assumptions 1-6 hold and the bootstrap is applied with f = f;- Then,
under Hgy, the conditional distribution of the bootstrap statistic V.j: converges to the distribu-
tion of the original statistic Vr a.s.:

sup [P(Vr < z) — P*(Vp < )| = o(1),

z€R
where P* denotes the conditional probability. Therefore the test which rejects Ho if Vr is
larger than the (1 — a)-quantile of the conditional distribution of Vi asymptotically has the

level o,

Proof: See Appendix D.

An important issue is the selection of the spectral density estimate f For several
applications a nonparametric estimate is the right choice since this leads to a model - free
bootstrap (cf. Dahlhaus and Janas, 1996). However, in the present context the situation is
different: With our bootstrap test statistic V; we want to estimate the distribution of the
statistic Vp under the hypothesis Hy - even if Hy is wrong, i.e. even if Vp itself has a different
distribution. This guarantees that the test has a good power. For this reason we recommend
using f = f; and drawing the €7 independently from an exponential distribution with mean

1 (which is the asymptotic distribution of I7(X)/f(A)).

If instead we used a nonparametric estimate f then f()/ ff were close to fo«(+)/ [ fox

also under the alternative leading to a low power of the test. Using exponentially distributed

11



€; avoids the distortion of the residuals which will result if an inconsistent spectral density

estimate is used (in particular under the alternative).

There is a second reason for using f = f; instead of a nonparametric estimator. Under
the hypothesis Hy we have f = fp, (in the "real world”) - but f = for (in the "bootstrap
world”) if and only if f is a parametric estimate itself. This implies that the conditional
expectation E*V*(/\) converges to zero under Hy which is necessary for the bootstrap to

work (see Lemma 3).

Dahlhaus and Janas (1996) prove that the bootstrap approximation of statistics of
the form [j; ¥ (a)Ir(a)da with [;; ¥ (a) f(a)da = 0 and ¥ («) smooth even leads to a better
approximation than a normal approximation. We conjecture that this also holds for the
approximation of the distribution of V. However, in the present situation the benefit of
the bootstrap is even greater since the variance of the asymptotic distribution of Vr is too

difficult to evaluate.

Simulation results, which give an impression of the performance of this modified test,

and an example can be found in Section 6.

4 'Wild bootstrap tests

Since the estimated variance of the innovations cancels out in the above test statistic the test
has no power for wrong 0. Only the other parameters (i.e. the shape of the spectral density)
can be tested. To overcome this restriction we discuss in the present chapter a bootstrap
approximation of the test statistic

Wr = S VT (Fr(X) = F; (V).

The hypothesis then is

H0:0€®0:{0|0:(02,7'1,...,Tp)T702€ [a,b]} C ©,b> a,

2 is not between a and b. To this purpose the

i.e. the test should reject if the variance o
bootstrap method must imitate the distribution of 42, which cannot be done by the above
bootstrap except in special cases (e.g. for Gaussian processes). The reason is that the part

of the variance of the integrated periodogram which stems from the correlation of different

12



periodogram ordinates (and which depends on the fourth cumulant of the innovations) is

ignored by independent resampling.

For this purpose Janas and Dahlhaus (1994) use the wild bootstrap which ”artificially”
introduces a dependence between the different resampled periodogram values: Instead of
generating the periodogram resample by I+ := fj *€;, as in Section 3, now a consistent estimate
R4 of the fourth cumulant k4 of the process innovations ¢ is calculated (cf. Grenander and

Rosenblatt, 1956, Ch.5.6), and the resamples are generated by
I7 = file 4 ), (4.1)

where

—_

& = ((1+0.5(ke/5H)? = —Zn: (5 —1). (4.2)
k=1

3

c* introduces a small correction to the bootstrap - periodogram which emulates the correlation
structure of the true periodogram. This provides an additional variance for the integrated
periodogram which stems from the correlation between different periodogram ordinates; % is
the estimated variance of the innovations, which converges to ¢ under Hy (see Assumption

4).

The resulting bootstrap periodogram values have (conditional) covariances converging

to
Cov™(I7, 1) = [ fr(8n + ka/T)

if f — f, 62 = 0% and k&4 — k4. Note that ¢* in (4.1) depends on the resample values
{¢;}, but it is independent of the index j. Janas and Dahlhaus (1994), Section 3, show that
with this bootstrap method a convergence in the Mallows dy-metric of the original statistics
and the bootstrap statistics is achieved (almost surely) for statistics which are integrated
periodograms [;; ¢(A)IT(A)dA; this implies that their distribution functions converge to the

same limit.

The distribution of the test statistic Wy now is estimated by the conditional distribution

of Wi = sup;_y [T (FF(\) — Fj

4 (Aj))], which is calculated as in Section 3 from the

bootstrap resamples % as in (4.1).

Of course we require that é 0= € O, which means in particular that 62 must lie in

[a,b]. Under the hypothesis, Hy : f € Og, the estimate 6% will converge to o3 € [a,b]. Using

13



Ju SV Jag WA = 7, 52 5 (0) = =5 f3,1(0) (see Assumption 1), and (2.2), we get the
following approximation, similarly as in Appendix A:
W) = VI(Pr(3) = () = (4.3
= V([ \pol@)(2(e) = fi, (@))da) = VI((VoFs, (A) (0 = ) + Op(171/%) =
= V([ (@) (@) = f(@)da) + VT( / \0(0) (F(@) = oy (@))de) +
TV, ) TT5 (o [ £ @) (@) = f(e)da

0 277 od
/H(VTfé’_o ()T (Ir(a) = f(a))dea) T +Op(T71?) =
= W) +0p(T™?.
Here we use I'y = VZA(OO) and
Vob(to) = (s [ Sl (@) rta) = Fla)da, [ (9-f5 (@) (1) ~ Fla))da)
The error term is uniformly of order Op(T=1/2) for all A € TI.

The above derivation assumes that o2 € [a,b], which is true under Hy. Otherwise,
we will have no convergence 6% — o2, so the Taylor expansion does not work. Under our
Assumptions 1-8, the wild bootstrap will imitate the multivariate distribution of the statistics

W(A;) for finite sets {A1,..., A} under the hypothesis (see Janas and Dahlhaus, 1994).

Lemma 4 Under Assumptions 1-6 and 8, and o € [a,b], the approzimations W ()\) asymp-

totically have a normal distribution, and their cumulants are

EWO) = VT [ \o(@)(f(0) = fuy(@))da+of1),

Coo(WA), (1) = 27 /H F2(0)or ()t () dov +
+2([ S@yen(@)da)([ f@)i(a)da) + o(1)
Cum(W(Ay),...,W(A)) = o(l) forr>2  where
“ale) = Xop(a) + (VaFh (V) 157 2174—0%]‘;01(04)7 (Ve @) DT

The remainder terms converge uniformly for all A, \;, pp € 11.

Proof: see Appendix B.

In the covariance expression the fourth cumulant x4 appears, which shows that the

ordinary frequency bootstrap will not work without a correction as in (4.1), because k4 [ ¥ f

14



cannot be expected to vanish in general. The cumulants of the bootstrap statistics VV*(/\)7
which are defined analogously to V" (A) in Section 3, converge to the same limits a.s. if a
spectral density estimate is used which is consistent under the hypothesis. As in Section 3

one should use a parametric spectral density estimate f = /s 0 e Oy, for the bootstrap.

We replace f, 8y, I, 0 by f, o, I*, é*, respectively, and use a Taylor expansion as in

4.3) to calculate the approximations W (\;). The properties of these approximations under
( pp j prop pp

the hypothesis are summarized in the following lemma.

Lemma 5 Under Assumptions 1-6 and 8, and Hy, the approzimations
() = VI () = 3. ()
asymptotically have a normal distribution, and their cumulants are
EW O = VT [ xou(@)(f(@) - for())da+o(1),
Co (TN, TV () = 2r( [ n()du(e)*(a)da+
/o[ Fla)bata)da)( [ flaydu(a)da) + o(1) -
 2n( [ da(@)u(a) P la)da+

/o) ([ F@yin(@)da)([ f(a)i,(a)da)
Cum* (W (M), .., W (N) = o(l) forr>2,

uniformly for all X\, \;; p € 11 (always a.s.). QL/\ s defined as 1y is defined in Lemma 4, but
with f replaced byf and 6y replaced by 0*. We have E*W*(/\) — 0 sz = fox.

Proof: See Appendix C.

Tk

The equicontinuity of the bootstrap statistics W (), which is necessary to get a valid
approximation of the supremum WFZ of the absolute values of these bootstrap statistics,

follows similarly as for V7 in Section 3.

Theorem 2 Suppose Assumptions 1-6 and 8 hold, and the wild bootstrap is applied with
f: J3- Then, under Ho, the conditional distribution of the bootstrap statistic Wi converges

to the distribution of the original statistic Wr a.s.:

sup |P(Wr < z) — P*(Wr < )| = o(1),
z€R
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where P* denotes the conditional probability. Therefore the test which rejects Hg if Wr is
larger than the (1 — «)-quantile of the conditional distribution of W5 asymptotically has the

level o,

Proof: See Appendix D.

Of course, one can also test the hypothesis that f = fp, with some given spectral
density fo, and the distribution of the test statistic sup, ey [V (Fr(A) = fif X[o.n(@) fo()dav)]
is imitated by the wild bootstrap (with f= fo) under Hy, too.

5 Comparison of two time series

(2)

Now suppose we have two independent time series Xl(l)7 .. .,X(Ti) and )(1(2)7 .., Xy, where

Ty and T, may be different, and we want to test whether their spectral densities are equal,
Ho: fON) = fA) for all A € I,

where () is the spectral density of time series 7, or we want to test whether the shapes of

their spectral densities are equal,
HE - fON) /P (N) = const. for all X € I,

against the alternatives f(D(X\) # FG(A) and fON)/FAN) £ FO(u)/fP () for some
A, € 11, respectively.

For tests of the hypothesis Hy Diggle and Fisher (1991) use the empirical spectral
process after dividing by the integrated periodograms. Their test statistic (we again focus
on tests of Kolmogorov-Smirnov type) is essentially

1 2
FRO) _ Fp'()

D = sup| - I
el P () PP (n)

where F}i) A) = Ju X[07/\](04)]7(j)(04)d04. Diggle and Fisher estimate its distribution by exchang-
1) 72
v

ing the periodogram values [ of the two time series for every j with probability 0.5.
Under Hg the periodograms are independent and (approximately) identically distributed. Of
course, this does not work under H{" since the periodogram values may have different distri-
butions. Further, the test does not work without modifications for time series with unequal

numbers of observations. Due to the division by the integrated periodogram, the test has
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no power against a difference in variance. Simply omitting the division will not work in
general, because then the dependence between different periodogram ordinates of one time
series no longer can be neglected as in the last section. In this case the method of Diggle and
Fisher (1991) will produce a critical value different from the true one, even asymptotically.

To overcome these restrictions we propose the following bootstrap methods.

5.1 Test of HY

For a test which is insensitive against a different scale of the spectral densities we use the
above test statistic D, but we propose a bootstrap method to estimate the distribution of D

under the hypothesis.

The distribution of D is estimated under H{ by the bootstrap distribution of

0y FPO

D® = sup - ,  where
P T W
) = =3 o)
(3 :1
n, = [T;/2].

For the generation of the bootstrap periodogram values I](i)* we suggest the following method:

First compute a nonparametric (consistent) spectral density estimate f(i) for each of the two
time series, ¢ = 1,2, and calculate the residuals e()

3, separately for each time series. Under H{, f((N\)/ fi; fO (7)d'y = fAWN/ fq FP(y)dy
holds, and therefore

, 7 = 1,...,n;, as indicated in Section

. (1) 2
$00) = e ey T SO [ o)

T [ SO0 T T T fH EI,

equals fG)(A) for all A\. Calculate the corresponding estimators §((\) by replacing f()
and f() by f(l) and f(Q), respectively, and generate the resamples ](Z) gl )(A ) ey)*,
7=1,...,n; where e;i)* are resampled independently from Egi), .. N( ) We have a bootstrap
method which assumes that I} is true, because (DN /([ ¢ (v) = 6B (N)/ [ §P(y)) holds.
This procedure guarantees that D* has asymptotically the same distribution as D has under

H{" - even if the hypothesis is not true. We prove this assertion under H! in the following

theorem.
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Theorem 3 Under HY and with Assumptions 1-7 holding for each of the two independent

time series Xl(l)7 .. .,X(Ti) and )(1(2)7 .. .,Xg), the conditional distribution of the bootstrap

statistic (%)

12D* converges to the same limit as the original statistic (%)UQD a.s.
if min (Ty,Ty) — oo holds. Therefore the test which rejects HL if D is larger than the

(1 — a)-quantile of the conditional distribution of D* asymptotically has the level a.

Proof: See Appendix E.

5.2 Test of Hy

If the variances of the processes are included in the hypothesis, we can use the obvious
modification of D,
1 2
E = sup [F) (A) = PR ()]
A€ll
As we have seen in Section 4, for statistics of this type we have to use the wild bootstrap to

(1) (2)

get the correct variance, except if the fourth cumulants 3 ’, x3”’ of the innovations of both

processes vanish.

The resampling of the periodogram ordinates works similarly as in the test of H{', but

now we Call use
T T,

A) = M (A )\

g( ) Tl—I_TQf ( )+T1_|_T2f ( )7

(and correspondingly §(A) := ﬁf(l)(/\) + %f@)(/\) ) instead of ¢()()\), which equals

both f(M(X) and f)(\) under Hy. When resampling I](li)*7 we have to add a term containing
/%Ef) which corrects the variance of the integrated periodogram (see Section 4); if we include

(1) (2) ()

ky = Ky  in the hypothesis Hp, we can estimate £;° from both time series, otherwise we

have to estimate it separately for each time series.

Defining E* = supyep |FE)*(A) — Fg)*(/\ﬂ with this bootstrap, we get the following

theorem:

Theorem 4 Under Hy and with Assumptions 1-8 holding for each of the two independent
time series Xl(l)7 .. .,X(Ti) and )(1(2)7 .. .,Xg), the conditional distribution of the bootstrap
statistic (%)UQE* converges to the same limit as the the original statistic (%)I/QE
a.s. if min (11,13) — oo holds; ¢ = C(Hi”, 5512)) is some positive constant. Therefore the test
which rejects Hy if E is larger than the (1 — «)-quantile of the conditional distribution of E*

asymptotically has the level a.
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Proof: See Appendix E.

It should be noted that in practice D and E are calculated as suprema over all Fourier

1) @)

frequencies A7, A7, 7 = 1,...,n1, k = 1,...,ng, of the two time series instead over all
A € 11, at least for the resamples, because only at these points the bootstrap periodogram
values are available. If Ty # T,, the Fourier frequencies of the time series lie at different
locations; in this case the statistics may be calculated as suprema of the absolute values of

e.g. the linearly interpolated normalized periodogram values.

6 Simulations and examples

In this section the performance of the goodness-of-fit test of Theorem 1 and of the comparison
test of Theorem 3 are illustrated for small samples by a simulation study. We do not include

simulations for the tests involving the wild bootstrap.

For small samples several additional considerations are necessary to improve the per-
formance of the bootstrap. These concern the selection of a suitable nonparametric spectral
density estimate (for comparison tests) and some small sample corrections. The latter e.g.
try to take into account deviations from the asymptotic distribution that stem from the data
taper or the bias of the residuals originating from the use of the estimated spectral density
instead of the unknown true spectral density. For these and other small sample corrections

see Section 6.3.

6.1 Simulations
6.1.1 Goodness-of-fit tests

First we want to explore the small sample performance of the goodness-of-fit test described
in Sections 2 and 3 by a small simulation study. For this purpose for each pair of several AR
processes and one ARMA process, and of several AR model classes, 2000 samples have been
simulated, each sample with 128 observations. The innovations of all simulated processes
are uniformly distributed with mean 0 and variance 1; note that these random variables
have fourth cumulants —1.2 # 0. For every sample 1000 resamples are generated using the
bootstrap method described in Section 3, based on a parametric spectral density estimate

within the model class under consideration (estimated by the Yule-Walker estimator), and
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these resamples are used to estimate the distribution of the test statistic under the hypothesis;
as hypotheses we use AR(0),...,AR(6) model classes. The inverse roots of the characteristic
polynomials 1 — E§:1 szj of the AR parts of order p, p = 1,...,6, of these models have
modulus 0.9 and the following phases:

p=1:0;

p=2:7/2, —71/2;

p=3:0,%/2, —7/2;

p=4: n/4, —n /4, 3n /4, =37 /4;

p=>5:0,%/4, —x /4, 3r /4, =37 /4;

p==6:7/2, —7/2, /4, =7 /4, 3n /4, =37 /4.

The normalized spectral densities of these models are plotted in Figure 1. The modulus
of the roots of the AR(2) model has been varied further (0.5, 0.7) to get some impression
about the effect of spectral peaks of different heights on the bootstrap test. Further, an
ARMA(2,1) model has been included as an example of a process for which all model classes
under investigation are misspecified. The power of the test is estimated by the relative
frequency of rejections for the 2000 simulated samples, and the critical values of the test
are determined separately for every sample by the bootstrap. The levels of significance have
been chosen as 2.5%, 5%, and 10%. In Table 1 one can see that the tests generally perform
reasonably well. There usually is a good agreement between the nominal and the estimated
level of significance, if one considers that the standard deviation of the power is about 0.35%,
0.49%, and 0.67% for the true models and the different levels; the tests for model classes with
several parameters tend to be too conservative, though. It is not possible to identify models
with too many parameters; for this purpose one has to use a model selection method (such
as using a model selection criterium like AIC etc). As these models are too large, but not

really "wrong”, a goodness-of-fit test does not have to reject in these cases.

Potential problems include the deviation of the true distribution of the periodogram
values from the asymptotic exponential distribution, correlation between the different peri-
odogram values, and the bias of the spectral density estimate that is the base of the bootstrap
procedure. These difficulties will arise especially when the sample size is small. The use of a
good parametric spectral estimate, e.g. a Yule-Walker estimate with data taper (used here) or
a Burg estimator, which have a smaller bias than the Yule-Walker estimator with no data ta-
per, is therefore recommended. A bootstrap calibration procedure (see Section 6.3) or a bias

correction of the spectral density estimate may further reduce these small sample problems,
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but have not been used in these simulations.

Chen and Romano (1997) report that smoothing the periodogram or testing the resid-
uals of the fitted model for white noise increases the power of their test method; this may

also be true for our method.

6.1.2 Comparison tests

Now we use the AR(7) models to illustrate the performance of the comparison test of The-
orem 3. For every pair (¢,7), 7,7 = 0,...,6, we generate 5000 samples, each consisting of
one realisation of the AR(¢) process of length 128 and one realisation of the AR(j) process
(independent of the other process), also of length 128, with parameters as given in Table
1. The variance of both processes’ innovations is 1, but using different variances does not
change the result as only the shapes of the spectral densities (cp. Figure 1) are compared.
For every sample we calculate the test statistic D, and we estimate its distribution under the
hypothesis H{ by drawing 1000 resamples as indicated in Section 5.1, separately for each
sample. Then we estimate the power of the test (at level 5%) by the number of rejections of
the hypothesis divided by 5000; the results are given in Table 2 for all pairs (¢, j) of models.
Note that the standard deviation of the estimated power is 0.3% under the hypothesis. The

simulation is repeated for time series of lengths 128 and 256, respectively (see Table 3).

One can see that the level of the tests are reasonably close to the nominal level of 5%.
However, it seems to be difficult to reject the hypothesis for some pairs of models, e.g. the
AR(2) and the AR(6), or the AR(0) and the AR(4) models. This can be seen from the low
power of the tests for these pairs in Tables 2 and 3 for the comparison tests, and in Table 1 for
the goodness-of-fit tests (with the higher order model as true model). The spectral densities
of these models are not different enough to be discriminated by the test for a moderate sample

size (cf. Figure 1).

6.2 Real data example

Asgillustration we use the Beveridge Wheat Prize Index, which is an annual index of European
wheat prizes for the years 1500-1869. After trend correction (cp. Figure 2 and Anderson,
1971, Appendix A.1) and subtraction of the mean we analyze these data by goodness-of-fit
tests. Furthermore, we compare the subset of the data for the years 1500-1599 with the
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level= 2.5%

fitted models

true models || AR(0) | AR(1) | AR(2) | AR(3) | AR(4) | AR(5) | AR(6)
AR(0) 2.8 3.7 1.6 1.7 1.4 1.0 0.7
AR(1) 100.0 4.1 4.2 4.4 4.4 4.7 4.6
AR(2,0.5) 2.4 7.5 2.4 2.0 0.8 0.7 0.4
AR(2,0.7) 13.5 50.0 2.0 0.8 0.8 0.6 0.4
AR(2) 100.0 | 100.0 2.0 1.7 1.7 1.2 1.4
AR(3) 1000 | 765 | 992 | 1.6 | 20 | 1.8 | 1.9
AR(4) 60.0 96.0 99.5 99.4 0.7 0.8 0.7
AR(5) 100.0 22.8 20.2 34.0 70.6 1.8 1.7
AR(6) 92.9 100.0 10.3 17.3 55.3 58.9 0.6
ARMA(2,1) || 100.0 | 100.0 28.8 2.7 3.4 2.0 1.0
level= 5% fitted models

true models || AR(0) | AR(1) | AR(2) | AR(3) | AR(4) | AR(5) | AR(6)
AR(0) 57 | 61 | 38 | 40 | 29 | 22 | 16
AR(1) 100.0 7.7 7.7 7.7 7.4 7.7 7.6
AR(2,0.5) 5.9 13.1 4.9 3.4 2.1 1.4 1.5
AR(2,0.7) 23.4 62.7 4.1 2.9 2.2 2.1 1.6
AR(2) 100.0 | 100.0 4.3 3.5 4.1 3.3 3.2
AR(3) 1000 | 875 | 997 | 4.0 | 48 | 41 | 34
AR(4) 72.2 98.5 100.0 99.9 2.0 2.1 1.6
AR(5) 100.0 32.1 30.6 46.0 80.9 3.9 3.7
AR(6) 99.5 100.0 18.5 26.9 73.3 76.1 1.9
ARMA(2,1) || 100.0 | 100.0 39.6 7.2 6.0 4.1 2.8
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level= 10% fitted models

true models || AR(0) | AR(1) | AR(2) | AR(3) | AR(4) | AR(5) | AR(6)
AR(0) 11.0 12.1 9.7 8.5 6.1 5.4 4.3
AR(1) 100.0 13.6 13.3 13.6 13.9 13.4 13.0
AR(2,0.5) 12.7 21.8 8.5 7.1 5.0 3.6 3.1
AR(2,0.7) || 39.8 | 91.0 | 9.2 | 68 | 58 | 49 | 43
AR(2) 100.0 | 100.0 8.2 9.3 9.8 7.7 7.7
AR(3) 100.0 94.1 99.8 9.3 9.6 8.5 8.6
AR(4) 86.3 99.7 100.0 | 100.0 5.3 5.2 5.2
AR(5) 100.0 | 457 | 442 | 584 | 893 | 85 | 8.1
AR(6) 100.0 | 100.0 | 32.1 | 417 | 867 | 884 | 4.7
ARMA(2,1) 100.0 100.0 54.0 13.7 11.5 8.0 7.4

Table 1: Estimated power (in percent) of goodness-of-fit tests for various models (true model
vertical, fitted model horizontal) and levels 2.5%, 5%, and 10%; 2000 samples with 128
observations, 1000 resamples for each sample.

The true models are (¢ iid uniformly distributed with mean 0 and variance 1):

AR(O) Xt = €4,

AR(1): Xy =0.9X,1 + ¢,

AR(2): Xy = —-0.81Xi_2+ ¢,

AR(3): Xy = 0.9X1_; — 0.8X;_s + 0.72X,_5 + ¢,

AR(4): Xy = —0.6561X;_4 + ¢,

AR(5): Xy =0.9X,_1 — 0.6561.X;_4 + 0.59049.X;_5 + ¢,
AR(6): Xy = —0.81X4_2 — 0.6561.X,_4 — 0.531441X;_6 + €,

ARMA(27 1) Xt = —0.81Xt_2 + € + 0.5675_17
AR(2,h): Xy = —h?- X, o+ ¢, h=05,0.7.
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level=5% 128 data

128 data || AR(0) | AR(1) | AR(2) | AR(3) | AR(4) | AR(5) | AR(6)
AR(0) 5.7 100.0 97.2 97.8 27.3 100.0 45.2

AR(1) - 4.5 100.0 52.3 100.0 38.5 100.0
AR(2) - - 4.4 87.9 100.0 100.0 19.1

AR(3) . . . 51 | 99.3 | 572 | 911

AR(4) . . . . 54 | 997 | 623

AR(5) . . . . . 59 | 100.0
AR(6) - - - - - - 4.3

Table 2: Estimated power of comparison tests for AR models (in percent). For every model
5000 samples with 128 observations have been calculated, and 1000 resamples have been used

for each sample.

level=5% 256 data

128 data || AR(0) | AR(1) | AR(2) | AR(3) | AR(4) | AR(5) | AR(6)
AR(0) 5.3 100.0 97.7 99.4 27.2 100.0 53.9
AR(1) 100.0 5.6 100.0 35.7 100.0 24.2 100.0
AR(2) 98.7 100.0 4.7 94.8 100.0 | 100.0 9.3
AR(3) 99.8 54.6 86.0 3.9 99.9 55.8 92.7
AR(4) 28.5 100.0 | 100.0 99.7 4.1 100.0 74.6
AR(5) 100.0 47.2 100.0 50.1 99.9 4.1 100.0
AR(6) 45.2 100.0 19.3 97.5 68.3 100.0 4.1

Table 3: Estimated power of comparison tests for AR models (in percent). For every model
5000 samples with 128 or 256 observations, respectively, have been calculated, and 1000

resamples have been used for each sample.
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3 Normalized Spectral Densities
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Figure 1: Spectral densities f(i)(-) of the AR(%) processes, i = 0,...,6, with parameters as
given in Table 1, divided by 77 f(X)d.
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model class || AR(0) | AR(1) | AR(2) | AR(3) | AR(4) | AR(5) | AR(6) | AR(7) | AR(8)

p-value (in %) 0.0 0.0 10.8 1.6 2.5 5.5 12.2 37.1 88.4

reject at level

5% X X X X

10% X X X X X

Table 4: Bootstrap goodness-of-fit test for Beveridge Wheat Price Index (1500-1869) using
5000 bootstrap resamples.

180 Wheat Price Data

160
140
120
100

80

1500 1550 1600 1650 1700 1750 1800 1850

Figure 2: Trend-free Beveridge Wheat Price Index (1500-1869).

subset for the years 1770-1869, assuming these are sufficiently independent so that the test of
Theorem 3 may be applied. As model classes for the goodness-of-fit tests we use the AR(7)

model classes, : = 0,...,8.

The goodness-of-fit test using 5000 bootstrap resamples produced the results given in
Table 4, where the p-values of the tests, i.e. the smallest levels of significance for which the
test rejects, are given. We can see that the hypotheses that the data follow a model from a
model class with orders 0, 1, 3, 4, and perhaps 5, may be rejected. For a different analysis

see Anderson (1971), Sct. 5.9.

Now we compare the data from the years 1500-1599 with those from the years 1770-1869
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Figure 3: Trend-free Beveridge Wheat Price Index for the years 1500-1599 and 1770-1869.

in order to see whether there can be found a significant difference between their distributions.
The data and nonparametric spectral density estimates can be found in Figures 3 and 4,
respectively. A test of the hypothesis HE : fO(X)/f@AN) = fO () /fP () for all A, € I,
has been performed as described in Section 5.1, using 5000 bootstrap resamples. As one can
conjecture from Figure 4, the comparison test of the hypothesis H{" cannot reject even for a
level of 10% (in fact, the test statistic corresponds to the 44%-quantile of the distribution of

the bootstrap statistic), so no change in the distribution can be found with this method.

6.3 Small sample corrections

The bootstrap methods used in this paper estimate the distributions of the test statistics
asymptotically correctly, but for finite samples there can be substantial deviations from these

distributions.

One of the reasons for this is that f will be a bad estimate of the spectral density f
if we have not enough data. The bias of a nonparametric estimate f()\) will be large if we
have to calculate a kernel estimate by smoothing over periodogram values too far away from
A which do not have an expectation close enough to f(A). To reduce this problem one should

use a local bandwidth, or alternatively a prefilter to get approximately equally distributed
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Figure 4: Estimated spectral densities of Beveridge Wheat Price Index for the years 1500-1599
and 1770-1869.

periodogram values before calculating the kernel estimate; this last approach has been used
in the above comparison tests with AR-models as prefilters whose orders have been selected
by the BIC criterium. The bias of a parametric spectral density estimate, which is used in
the goodness-of-fit tests, can be reduced by a bias-correction of the corresponding parameter

estimate.

The use of a data taper results in an increase of the variance of the integrated peri-
odograms (cf. Dahlhaus, 1983, Theorem 2) by a factor of v = TH47T/H§7T7 which should be
imitated by a corresponding increase of the variance of the bootstrap periodogram resamples,
e.g. by using IF = fy(ﬁ(ej — 1) + 1) instead of [T = fjej.

To avoid other difficulties we have used iid exponentially distributed random variables
with mean 1 in the simulations of the goodness-of-fit tests (with a data taper and the -

correction as above), instead of resampling from the estimated residuals {¢;}.

Another possibility of correcting the finite sample deviations mentioned above is the
use of a parametric bootstrap in the time domain to get a calibration curve for the critical

levels of the tests; this method has not been used in the calculations in Sections 6.1 and 6.2,
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though, because of its huge computational effort. The idea (cp. Loh, 1987) is to imitate the
data generation process together with the frequency domain bootstrap in order to find some
corrections for systematic distortions of the frequency domain bootstrap. As the true data
generation process is unknown, one has to fit a parametric model to the data. If this model
decribes the data reasonably well, the estimated corrections should be useful for the true
model, too. In contrast to our original data we know the true distribution of the generated
(pseudo-) data, and we can calculate the distribution of the test statistic by a Monte Carlo
simulation, so we can compare it with the estimated distribution of the test statistic given by
the periodogram bootstrap, and we can use these distributions to calculate the calibration

curve.

There are several possible ways for calculating a calibration curve, e.g. one can proceed
as follows (we restrict ourselves to a single time series of length 7', but for the comparison

tests a similar method can be applied):

1. Choose a model family © which seems to be appropriate to describe the data (for
the use in a goodness-of-fit test one should use the model family of the hypothesis).
The models should have a form which makes it easy to generate data from it, e.g. an

autoregressive model X; = Zi:l 0r X:_1 + ¢ for some suitable p.
2. Estimate a model parameter 8 € © from the data.

3. Calculate the corresponding residuals {7;}, e.g. 7 = Xy — >0_, 0, X, t = p+

1,...,T, and center them: #; := 7; — ﬁ Zf:pﬂ k-

4. Repeat steps 4 to 6 S times (s = 1,...,5): Generate T pseudo-data from the esti-
mated model 6 by resampling {nt*(s)} from the estimated innovations {7;}, e.g. Xt*(s) =
b1 ekXt*_(z) + 7775*(5)-
5. Treat the pseudo data {Xt*(s)} as the real data { X;} are treated in the test procedure, i.e.
calculate the test statistic and estimate its distribution with the periodogram bootstrap.
6. Calculate the quantiles qéB)(s) of the test statistic for some suitable set of & € A C
(0,1), e.g. for a = k/100, k =1,...,99.

7. Calculate the mean quantiles qéB) = %Zle qéB)(s) of the bootstrap distributions and

the quantiles g, of the true distribution of the test statistic (under the estimated model
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é), which is estimated by the empirical distribution of the S test statistics calculated
in step 5.

8. Calculate the quantile curves by interpolating the point sets {(«, qéB))} and {(a, q.)},
o € A, respectively.
9. Calculate the calibration curve («, #(«)), where 3 = §(«) is defined by q(ﬁB) = qq.
If we now want to test a hypothesis on our data set at a level of a with the periodogram
bootstrap, we use the g(a)-quantile of the bootstrap distribution of the test statistic instead
of the a-quantile as critical value. The calibration curve maps every requested critical value

« to the critical value § that we must use in the bootstrap test to get an improved result.

Other possible calibration methods include the estimation of a bias correction for a
given quantile or the estimation of calibration factors for the variances (or even calibration
curves for the distributions) of every single periodogram value. However, all these calibration

methods require a great computational effort.

Acknowledgement: The simulation programs are based on the extensible data anal-
ysis system Voyager developed by G. Sawitzki, M. Diller, F. Friedrich et al. at StatLab
Heidelberg. We thank R.v.Sachs for his helpful comments.

Appendix

A. Proof of Lemma 1:

From (2.2) we get

ﬁ(%ﬁi)—ggi;) = ﬁ(é_00)Tw(§:8;)+%ﬁ(é_oo)Tvz(gEi;)(é_oo):
— 1 -1 Tr—1 Fo(/\)
= V(g [ (02(0) = (@) Vs (0)da) TG Vo Fm)
+0p(T71?),

because

VoA (B) = 5- [ (1200 = fiy () Vs (A

T Ju
follows from Assumptions 1 and 2. The error term is uniform in A because of Assumption 3.

The parameter 8 lies between g and 6.



Therefore we get

= \/T(FT(F) . X[o (@) IT(a)da) — ﬁﬁ /H Xjo () fg, () dev +
Jr\/T(L (I () = fa, (@) Ve f5, (@)da) T Vg (FHO( )) L Op(T™?) =
2m Fy ()

. o odo a f(a) fé’o(a) o
_ ﬁ/ﬂ@( JIr(a)d -I-\/T/HX[O,A]( L el e L

o
Feo( ))

+O0p(T7Y?) =
Fou (7) P( )

VT (o [ ((11(0) = fog(@) VoS (@) T3V o
= V() +0p(T™'/?),

—~

because [;; IT(e)da = [ f(@)da+ Op(T~'/?). The remainder terms are uniform in A. The

representation of V' (A) under Hy follows with the arguments given prior to Lemma 1.

B. Proof of Lemmas 2 and 4:

From Lemma 6 and Lemma 7 of Dahlhaus (1983) and by the same arguments as in Dahlhaus

and Janas (1996), Lemma 1, we get for functions () bounded and of bounded total variation:
T1/2E/ PO () Ir(a)da = T1/2/ YW () f(a)da + o(1),
TCum(/ M () I (a da/¢ Ir(e)da) = 277/ P (a) f*(a)da +
/¢ Fla)da)( /H¢ ) f(@)da) + ofl)
T2 Cum( /H¢ o) I () a,...,/nwﬂ(a)h(a)da) — o(l) forr>3.

The remainder terms are uniform for all functions (9 which are uniformly bounded and of
uniformly bounded variation; this is the case for the functions {¢\+wx, A € 11} by Assumption
3.

Therefore the moments of V() are

_ 1/2 o wh (o a)an o f(O‘) o feO(a) “=
EV(\) = ET /H(@( ) +wr(a))ir(a)d +\/T/HX[O’A]( W td ™ Ty fultdy =

B fle)  Jal)
= VT | o) i ~ )t e,

since [j(oxa(a) +wy(a)) f(e)da = 0, and for the same reason

Coo(T(N).T) = Coo(1? [ (62(e) +wr(a) r(a)da, T [ (9,(0) +w,(a)) Ir(a)da) =
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= 20 [ FA0)(6r(0) +@r(@)(4(0) +wu(a))da +
FE( (@) @r(0) + or(@)da)( [ F(@)(64(e) + wu(@))da) + o(1) =
= 20 [ FA0)(6r(0) +@r(@)(@u(0) +wu(a))da -+ of1).
The proof for the higher order cumulants is obvious. Lemma 4 is proved similarly using
¥(-) as integrand; here the ky-term does not vanish, though. The convergence to a normal

distribution follows from the convergence of the cumulants to the cumulants of the normal

distribution.

C. Proof of Lemmas 3 and 5:
Asin (2.2) we get
Tl/Z(é* _ 0*) — —FS_ITI/QVQA*(O*) 1+ Ops (T—I/Z)7

where 'y = VZA*(6*) — T a.s.

By the same arguments as in Appendix A we can see that V*(A) = V" (A\)+Op«(T~/?)

with remainder term uniform in A, where

T = TS G+ e ) +

) Jox(A))

27 &
T 2203 o (M) e -
T =1 O 2%22:1 f(/\k) %Zk:l fé’*(Ak)

Here qAﬁA and @, are defined as ¢, and w,, respectively, but with I'y replaced by L'y, 8y by 6~,
f by f, and integrals by sums.

The proof of Lemma 3 now follows as in Dahlhaus and Janas (1996), cp. their Lemma
4, and Appendix B, using the uniform convergences ¢ (a) — ¢ (a) and &y (@) = wy(a) for

all A and o (Assumptions 3 and 6).

Similarly Lemma 5 follows from an expansion as in (4.3), using the theorem in Janas
and Dahlhaus (1994). Note that the additional term ¢* in the definition of % has no influence

on the conditional mean of the bootstrap periodogram.
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D. Proof of Theorems 1 and 2:

We have seen (Lemma 3) that under Hy the finite-dimensional distribution of (V(yy),...,
V(1)) is imitated by the conditional distribution of (V" (u1), ..., V" (1)) for all fixed p1, . . .,
pi € 11, and from Lemma 1 and Appendix C it follows that this holds for the statistics V' (p;)
and V*(u;), respectively, too. Theorem 1 will follow if the distribution of the supremum
of the absolute values over all A is estimated consistently by the conditional distribution of
the corresponding bootstrap statistic; this will be a consequence of the continuous mapping
theorem and the fact that the processes {V(A)} and {V" (A}, A € II, converge (almost surely)

to the same Gaussian limit process (in the sense of Dahlhaus, 1988).

The convergence of the empirical spectral process {V ()} follows under our assumptions
from Dahlhaus (1988), and for the bootstrap process {V"(A)} it follows from the convergence
of the finite-dimensional distributions to the Gaussian distribution with the same covariances
as for the original statistics, and from the equicontinuity of the process. The equicontinuity
can be shown similarly as in Pollard (1984), Lemma VIL.4(15), where it is proved for the
empirical process of independent and identically distributed random variables. The necessary
conditions on the covering numbers follow from Assumption 3. As the bootstrap periodogram
values [ are independent, though not identically distributed, the result carries over to our
case with some modifications: The mean of the random variables, P¢ in Pollard (1984), is
replaced by %Z?:1(</BA(/\J') + d}A(/\j))fj, and the mean of the empirical distribution, P, ¢, is
replaced by %Z?:1(</BA(/\J') + OAA)F (see (3.1)). As L3577 I*? is of order O(1) a.s., the
equicontinuity follows (see also Dahlhaus, 1988).

The proof of Theorem 2 follows essentially the same way as the proof of Theorem 1, re-
placing (/BA—I—LCJA by QLA, because the factor TV/2¢* in the additional term Tl/zc*%7r > i1 QLA(/\j)fj,
which is not covered by the above considerations, is of order Op«(1), and 2% > =1 QLA(/\j)fj —
Jna(a) flo)de =: z(A) uniformly for all A. As z(A) is (uniformly) continuous by Assump-
tions 3 and 4, this leads to the equicontinuity of the summed bootstrap periodogram generated

by the wild bootstrap.

Similar results for Gaussian time series have been obtained by Nordgaard (1995) who

shows the convergence of the bootstrap empirical process for a related bootstrap method.
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E. Proof of Theorems 3 and 4:

We write for short

PP = ([ xp@)1@)da)/( [ 19(@)da) = ([ xpa(a)fO(@)da)/( [ 19(a)da),
and similarly

D00 = (D o O 3517 = (2 30 a0 o 3050

Lt tim

Theorem 3 can be shown similarly as Theorems 1 and 2 by first approximating D(Ti)(/\)
and D(Ti)*(/\) by some suitable statistics D’g)(/\) and D’g)*(/\)7 proving the convergence of
the multivariate distribution of {Til/zD’g)(/\k), k e M} and {TZ'I/QD#)*(/\;C)7 ke M} (as.)
to the same limit distribution (for arbitrary finite sets M C N), and finally showing the
convergence of {Til/QD’g)(/\)} and {Til/QD’g)*(/\)} to the same Gaussian limit process by
proving equicontinuity. By the usual argument for a comparison test for independent Gauss-
sian random variables the convergence results for \/Jm(D’(TI)(A) — D’g«z)(/\))7 their

bootstrap counterpart, and the suprema follow.

The first two points can be handled as in Dahlhaus and Janas (1996), because D¥) (A)is
a ratio statistic; the additional assumptions in Dahlhaus and Janas (1996) are unnecessary in
our case as we do not need a higher order approximation of the statistic’s distribution by the
bootstrap. As the variance of Til/QD’g)(A) asymptotically only depends on the normalized
spectral densities (see Dahlhaus and Janas, 1996, Theorem 4), we have the same variances
under HY for i = 1 and i = 2, and /T, T/ (T} + Tg)(D’(Tl)(A) — D’g?)(A)) is asymptotically
normally distributed; the equicontinuity follows from the equicontinuity of the statistics of
the two independent processes (cp. Anderson, 1993, Sct. 5). As the same arguments hold
for the bootstrap processes {D(Ti)*(/\)} (cp. Appendix D), we get Theorem 3 similarly as
Theorems 1 and 2.

The proof of Theorem 4 is exactly the same except that now no approximations like

D’g)(/\) and D’g)*(A) are needed, and the asymptotic distributions of the processes depend
(%) (1 (2

on the fourth cumulants «;’, which is the reason for the appearance of ¢ = ¢(k; ', k) in

(1) (2)

the asymptotic distribution (¢ =11if ;' = k;"’); we omitt further details.
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