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STATISTICAL INFERENCE IN COSMOLOGY

Analysis of cosmic data is the only way to determine whether General Relativity is the
law of gravity also on the largest scales in our Universe. The current standard model of
cosmology, ACDM, is based on General Relativity, and fits all currently available data
flawlessly. However, theoretical dissatisfaction with ACDM exists: cosmological data
probe gravitational interactions, and ACDM fits the data only because it introduces two
components of startling gravitional behaviour, the cosmological constant, A, and cold dark
matter (CDM). The cosmological constant has a suspiciously small value when regarded
from the perspective of quantum field theories, and cold dark matter has so far not been
detected in any experiment of particle physics.

This thesis examines the cosmological standard model from the vantage point of statistics. A
non-Gaussian likelihood approximation is presented and the need of an unbiased mechanism
for dealing with estimated covariance matrices is addressed. Concerning neutrinos, a
previously existent parameterization bias in the analysis of the cosmic microwave background
is resolved. Using weak lensing and type Ia supernova data of the next generation, it is
estimated how much can be learned about dark energy from these future data sets.

INFERENZSTATISTIK IN DER KOSMOLOGIE

Kosmologische Daten sind die einzigen aus welchen abgeleitet werden kann, ob die Allge-
meine Relativitatstheorie auch auf den grofiten Skalen unseres Universums die Gravitation
richtig beschreibt. Das momentane Standardmodell der Kosmologie, ACDM, baut auf
der Allgemeinen Relativitéitstheorie auf und fittet bisherige kosmische Daten problemlos.
Es besteht jedoch eine theoretisch motivierte Skepsis beziiglich ACDM: Kosmische Daten
untersuchen Auswirkungen der Gravitation, und ACDM fittet die Daten nur, weil es mit
der kosmologischen Konstanten (A) und der kalten Dunklen Materie (CDM) zwei neue
Substanzen mit erstaunlichen gravitativen Eigenschaften einfithrt. Aus quantenfeldtheo-
retischer Sicht hat die kosmologische Konstante jedoch einen verdéchtig kleinen Wert, und
Dunkle Materie lief§ sich bisher in Teilchenexperimenten nicht nachweisen.

Diese Dissertation untersucht das kosmologische Standardmodell geméaf statistischer Ge-
sichtspunkte. Eine nichtgaussche Néherung fiir Wahrscheinlichkeitsverteilungen wird
vorgestellt, sowie eine erwartungstreue Inferenzmethode fiir den Fall geschitzter Kovar-
ianzmatrizen. Das Vorkommen gewohnlicher Neutrinos wird durch eine vorurteilsfreie
Analyse bestéatigt. Anhand kiinstlicher Weak-Lensing- und Supernova-la-Datenséitze kiin-
ftiger Beobachtungskampagnen wird ermittelt, wie prézise diese Datensétze Eigenschaften
der Dunklen Energie einschranken konnen.






PREFACE

Why is the topic of statistical inference in cosmology so pressing an issue, that I dedicated
my entire thesis to it? To understand this, let us begin by taking stock. During this thesis,
Albert Einstein’s description of gravity, General Relativity, turned 100 years old. Einstein
published his theory on the 25th of November 1915, and apart from being able to explain
the precession of Mercury’s perihelion, the first experimental support for General Relativity
came only four years later in 1919, when an expedition led by Sir Arthur Eddington measured
the deflection of light by the Sun during a solar eclipse. Since then, further experiments
have shown Einstein’s theory of gravity to improve upon its Newtonian predecessor. The
redshift of light was measured in the Earth’s gravitational field, the Shapiro time-delay was
measured in the Solar System with the Cassini spacecraft, and the orbit of the binary pulsar
PSR 1913416 was found to decay at the rate predicted by General Relativity. Further
support for General Relativity has just recently been published on the 11th February 2016,
when the LIGO collaboration announced the detection of the gravitational waves pattern
of two merging black holes with a significance greater than 5.1 .

All of these experiments are perfectly in agreement with General Relativity. None requires
the introduction of new, strange parameters. However, all of these experiments assess
also rather small scales — from the size of the Earth to approximately the extent of the
Solar System. Likewise, these experiments also investigate comparatively high-density
environments because pulsars and black holes are certainly amongst the most dense objects
of the Universe, but also the Earth with its density of 5.5 g cm ™ is many orders of magnitude
more dense than the cosmic mean of a mere 1072 gcm™3.

Correspondingly, none of the aforementioned environments in which General Relativity was
found to be valid is representative of our Universe as a whole. Nonetheless, if we combine
General Relativity with the observationally well-established assumption of isotropy, and
the assumption of homogeneity, which is advisable for reasons of modesty, then a rather
successful description of the Universe can be derived. This has led to the current standard
model of cosmology, ACDM, whose name is composed of its two main ingredients, the
cosmological constant A, and cold dark matter (CDM). Baryons seem to contribute only
a minor percentage to the Universe’s density and are not even mentioned in the cosmic
standard model’s name.

So what is ACDM? It is the attempt to reproduce the success of General Relativity also on
cosmic scales; and it includes the sobering insight that this is only possible if we introduce
two new quantities: dark matter and dark energy. If we now interpret cosmology as a test
of General Relativity and rank it amongst the other tests already mentioned, why is it then,
that none but cosmology demands new parameters to fit Einstein’s law of gravity?

This problem is not solved yet, and while theoretical cosmologists currently investigate
a multitude of competitors for ACDM, it is clear that the final answer has to be filtered
out from accurate data, when subjecting them to a highly reliable and sensitive statistical
inference. This thesis is therefore closest in spirit to several other works in the literature
which dedicate themselves to a statistical analysis of cosmic data.
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The reader may be wondering who hides behind the curious ‘we’ in this thesis. In many
grammatical constructs, ‘we’ refers to ‘the reader and me, the author’ In the vast majority
of cases it refers however to me and my colleagues or coauthors who have all made important
intellectual contributions to the work presented here. Let me therefore present the individual
persons behind this ‘we’ in more detail and express my gratitude to them.

I take pride in having completed my doctorate under a scientifically and historically literate
supervisor, Luca Amendola. I am glad he has cast his knowledge into black and white by
publishing his book on dark energy, which runs in our cosmology group under the nickname
‘The Bible’. His book can however not replace Luca when it comes to generous support and
spurring ambitions. Luca’s scientific vision has provided the fruitful silver thread for this
thesis and for all this I am very grateful.

Furthermore, numerous coauthors have accompanied me during the last three years, broad-
ening my scientific and cultural horizon alike. Ruth Durrer has added multiple razor-sharp
arguments to my education. Alan Heavens has shared his vast experience on sophisticated
statistical methods. The unfamiliar creativity of the untamable Brazilian chaos was im-
pressively demonstrated by Miguel Quartin. Bjorn Malte Schéfer’s natural curiosity has
triggered many deeper thoughts.

Four unidentified referees have provided welcome opinions on our papers. Three identified
referees are welcome to further bestow on me their humorous remarks without the comforting
shelter of anonymity. Further stimulating discussions with Martin Kilbinger, Tom Kitching,
Martin Kunz, Ignacy Sawicki, Dominik Schwarz, Valeria Pettorino and Christof Wetterich
are appreciated.

What must have been a never-ceasing and tiring avalanche of bureaucracy was kept hidden
from me due to the assiduous work of Eduard Thommes and our secretaries. Including also
Elmar Bittner and his reliable management of the ITP computer network, I thank for all
this administrative support.

The Heidelberg Graduate School of Fundamental Physics (HGSFP) has given me the
opportunity to attend specialized lectures, and provided valuable funds. Further, this thesis
has received financial support through the RTG ‘Particle Physics beyond the Standard
Model’ (DFG fund 1904), and the transregional collaborative research centre TR 33 ‘The
Dark Universe’ of the German Science Foundation.

Finally, I am very pleased that my defence will be amended by the second referee, Matthias
Bartelmann, and the third and fourth examiner, Volker Springel and Hans-Christian Schultz-
Coulon. The defence stands in the shadow of a laborious man, whose recent cancer diagnosis
is an unfair return for his long-term commitment to the department. I wish him all my
best, hoping that modern medicine will grant him a full recovery and many more years of
untroubled curiosity.
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Table 1: Conventions used in this thesis

t cosmic time
n conformal time
a= 3—‘; dot: derivative with respect to cosmic time,

if not explicitely stated otherwise,

e.g. a coordinate time or proper time.

a =g prime: derivative with respect to conformal time
o U sign convention of the Bardeen potentials:
following Amendola & Tsujikawa (2010a).

(Note that Durrer (2008) uses & — —®.)

A density contrast
\%& Laplacian
) a perturbation or Dirac’s delta function

Furthermore,
e we assume the Universe to be spatially flat throughout the entire thesis.
e we use the sign convention (—,+ + +) for the metric.

e The terms ‘accuracy’ and ‘precision’; as well as their respective adjectives ‘accurate’
and ‘precise’, are often used synonymically within this thesis — but care has been taken
that this never leads to problematic statements in the statistical sense. The reason is
that accuracy and precision are colloquial synonyms already within a single language.
With physics being an international environment, the additional complication of
non-unique translations arises. Dictionaries of German, French, Italian and English
do not uniquely distinguish between precision and accuracy and even add to the list
of possible translations further closely related nouns, such as the French ‘exactitude’
and ‘justesse’ or the Italian ‘esattezza’.

Within statistical literature, precision and accuracy are however often contrasted, by
defining precision as the remaining statistical scatter, and accuracy as the lack of
biases or systematic errors. Obviously, these definitions imply that all statements
about precision and accuracy, in the statistical sense, can always be rephrased in
terms of statistical scatter and biases. There is no such ambiguity about scatter
and biases, as there is about the potentially colloquially meant precision or accuracy.
Within this thesis, we will therefore rather speak of biases and statistical scatter
whenever the distinction between precision and accuracy, in the statistical sense, is of
importance.
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Chapter 1

The standard model of cosmology

The current standard model of cosmology, ACDM, is derived from its underlying theory,
General Relativity. As this dissertation was written in a dark energy group, I will indicate
with footnotes where in the derivation of ACDM the standard assumptions are exchanged
against alternative assumptions such that well-known explanations for dark energy arise.

1.1 General Relativity

General Relativity gives up the Newtonian concept of a vectorial gravitational force, and
instead describes the effects of gravity by a dynamical spacetime through the metric tensor
g, Tt follows the construction principle that gravity can locally by transformed away by
transiting into a freely falling restframe (the strong equivalence principle!).
Such freely falling observers follow geodesics v through spacetime, defined by (Straumann,
2013)

Viy =0, (1.1)

meaning a geodesic is locally autoparallel to itself, and where V is the Riemannian connection
that is sensitive to spacetime curvature due to

i.e. it describes the change of the tangent space’s basis vectors 0; for infinitesimal displace-
ments. The functions I‘fj are known as Christoffel symbols.

A freely falling observer will find that their metric is locally Minkowskian, g = n#** =
diag(—1,1,1,1), and that derivatives of the metric are locally also zero g"”,, = 0 due to
the free fall.

Globally, however, gravity cannot be transformed away, leading to relative accelerations of
different freely falling observers. For example, two bodies that fall freely next to each other
above the Earth, will also approach each other and hence experience a relative acceleration.
These relative accelerations are described by the curvature of spacetime, which depends on

! This strong equivalence principle is given up in models of coupled dark energy - dark matter.



the second derivatives of the metric. In local coordinates and for a Riemannian connection
V, the Riemannian curvature tensor is

lm>

where the Christoffel symbols are

1 el
Ffj)\ = 59“ (gau,)\ + Jary — gz/)\,(,‘z)- (14)

In the free fall, the first order derivatives of the metric will be zero, such that the Christoffel
symbols then vanish. Often, this is rephrased as ‘the possibility to transform gravity locally
away .

The contraction of the Riemann tensor Rj; = R;il with the metric is the Ricci tensor, which
can further be contracted down to the scalar curvature R = R;. Being a scalar, R is an
invariant of the space time curvature under transformations, and therefore is the natural
invariant from which an action principle for GR can be constructed. Indeed, standard GR
in the vacuum follows from the Einstein-Hilbert action?

— 1 / 4

where /—g is the square root of the metric determinant, which is needed to have an
invariant measure. The constant A is known as the cosmological constant, and is allowed
due to the Lovelock-Theorem?®. The variation §Sgy with respect to the metric tensor leads
to the field equations of gravity in the vacuum, G, + Ag,, = 0, meaning it describes the
spacetime part of gravity. The Einstein tensor is given by

1
GMV = R/“, — igMVR, (16)

and satisfies V,G* = 0 due to the second contracted Bianchi identity (Straumann, 2013).
In order to include present forms of matter and energy, their Lagrangian £,; needs to be
added® to the action, leading to (Amendola & Tsujikawa, 2010a; Straumann, 2013)

1

Sen = /\/—_g <167TG(R _oA) + £M> dz (1.7)

which is the action of standard General Relativity. The variation 6Sgr now leads to
Einstein’s field equations with a source term

G,uu - 87TGT;W - Ag/un (18)

2More complicated functions of R could also be used, leading to f(R)-gravity.

3We will revisit this statement in Sect. 2.4 when disentangling a classical and a quantum contribution
to the cosmological constant.

4So called non-minimally coupled explanations of dark energy go beyond a simple addition.



where the energy-momentum tensor’® T}, stems from the variation of the matter Lagrangian
Ly with respect to the metric. In the reference frame of an observer moving with four-
velocity u, the energy-momentum tensor reads (Amendola & Tsujikawa, 2010a)

TMV = (p +p)ultuV +pgul/ + E/ﬂ/a (19)

where p and p are the energy density and the pressure of the cosmic matter fields and
¥, are viscous stresses. Densities, pressures and stresses are not Lorentz-invariant hence
the observed energy-momentum tensor has to be projected into the reference frame of the
observer as specified by his eigenvelocity u*.

The appearance of the pressure in Einstein’s field equations is of special interest: while we
are used from Newtonian gravity to the fact that pressure can counteract gravity, we now
see that in a fully relativistic theory of gravity, the pressure itself is a source of gravity.
This is because pressure contributes to the energy density and consequently gravitates.
Taking care of symmetries in the Einstein and energy-momentum tensors, Einstein’s field
equations are ten non-linear and coupled partial differential equations of second order in
the metric. This means the esteemed superposition principle from Newtonian gravity does
not carry over to GR’, and the field equations cannot be solved by recursion to a Green’s
function. Since they are of second order in the metric, their solution furthermore needs the
specification of two initial or boundary conditions.

Analytical solutions to the full field equations are however possible in case of highly
symmetric spacetimes, and for simple forms of the energy-momentum tensor. This leads to
analytical solutions such as the Schwarzschild- or Kerr metric for black holes, and according
to observational evidence, also the spacetime of our Universe seems to possess enough
symmetries, such that an analytical solution of cosmological relevance can be derived from
GR. This will be the subject of the next section.

1.2 FLRW cosmology

On the largest scales, our Universe provides such symmetries: observations of the cosmic
microwave background, galaxy catalogues or other sky maps show that the Universe is
isotropic around our position. If we further believe that the Earth’s position in the Universe
is in no way special, then this implies that the Universe is also isotropic around any other
point in it. This in turn implies spatial homogeneneity.

5Explanations for dark energy that add hypothetical constituents to T+¥ are e.g. quintessense and
k-essence.

6Gravity only probes the total energy-momentum tensor of all matter components in the Universe. This
makes a distinction between dark energy and dark matter — via their gravitational effects only — impossible.
See Sect. 2.3 for this dark degeneracy.

"It has been mused that the usually adopted split in a background metric and perturbations around
it and solving these two contributions independently of each other, may give rise to late-time cosmic
acceleration. This hypothesis is called backreaction of cosmic structures on the expansion, but it seems
that the effect is too small.



Time and space are not invariantly separable in General Relativity. If an observer sees
spatial homogeneity, this means his state of motion and his time-coordinate are fixed.
This is the origin of the cosmic time: the cosmic time is that time, that an observer on
spatially homogenous hypersurfaces sees. Under these observationally motivated symmetry
assumptions®, the curvature of the spatial hypersurfaces must be constant. Within this
thesis, it is furthermore assumed that the curvature is constant because of observationally
supported spatial flatness. The metric then takes the shape

G = —dt? + a2(t)[dr? + r*(d6> + sin® 6d$?)] (1.10)

which is called the spatially flat Friedmann-Lemaitre-Robertson-Walker metric (FLRW-
metric). Here a is the scale factor that only depends on time and we normalize a = 1 at
the present epoch. The angles # and ¢ are the two position angles on the celestial sphere.
The cosmic time is ¢ and refers to the proper time of an observer at rest with respect to
the coordinates (r, 6, ¢). Often it is convenient to switch to the so-called conformal time,
given by

n:/idt. (1.11)

In concordance with isotropy and homogeneity, the energy momentum tensor as seen by an
observer comoving with the cosmic flow cannot include any large-scale currents, 7% and
stresses T V i # j. For such a comoving observer, the energy-momentum tensor is then

T = diag(—p(t), p(t), p(t), p(t)). (1.12)

Here, it is important to note that p and p refer to the total energy density and pressure of
all matter constituents because all of them couple to gravity.

Einsteins field equations for the FLRW-metric then reduce to their (0,0)- and (i,7)-
component, which were renamed the Friedmann-equations (Straumann, 2013)

8rG A
0,0) > H2= "2 p4 =
. 8- 3 (1.13)
(i) = &= A9 gy A
) 0 3 p T op 37
where H = a/a is called the Hubble function. The conformal Hubble function is
dal
= ——. 1.14
"= (1.14)

It is convenient to split the total density p into different subspecies,

p(t) =3 pilt), (115)

8Looking out into the cosmos, we automatically look back in time. Consequently, we actually cannot
distinguish between a timelike evolution of the cosmos and a spatially isotropic variation. The Lemaitre-
Tolman-Bondi (LTB) metric restricts itself to isotropy but allows for a radial inhomogeneity. By allowing
for an underdense region around the Milky Way, it can in principle provide an explanation for dark energy.
However, LTB is in tension with the latest data (Amendola & Tsujikawa, 2010a).
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where for each subspecies, we define an equation of state parameter w; by the ratio of its
pressure to the density

w; = 2 (1.16)

Pi

This is convenient because although each particle species will contribute an energy density
pi, not all species will have a pressure. For non-relativistic particles, we have p < p,
for relativistic particles like photons we have w = 1/3. Particles of small mass may be
relativistic in the early Universe, and then become non-relativistic as they cool with the
expansion. Their equation of state parameter then changes with time. The cosmological
constant A has w = —1 but also other candidates for dark energy can achieve w = —1.
The energy densities p; will decrease with expansion in a way that depends on their
equation of state parameter. The Friedmann equations contain the automatically satisfied
conservation equation V, 7% = 0, which produces (Amendola & Tsujikawa, 2010a)

p+3H(p+p) =0. (1.17)

Using the equation of state parameter, the conservation equation (1.17) can be recast into
the form

d s d 4

— — = 1.1
(@) Hwpr(a’) =0, (1.18)
which describes adiabatic cooling as the volume a® increases with expansion. If integrated,
this leads to

pi = poa U, (1.19)

where pjy is conventially used to be the density of a certain species today, at a = 1.

From (1.19), we infer that non-relativistic matter with w = 0 dilutes as p(a) = ppa™ and
relativistic matter dilutes faster as not only its density drops, but also its pressure decreases,
leading to p(t) = ppa~. The energy density contributed by a matter species with w = —1
such as the cosmological constant stays constant.

If we insert (1.19) into the Friedmann equations, and demand that the expansion of the
Universe shall be dominated by a single species with w; only, then the scale factor evolves
as

3

a oc 230w, (1.20)
if w; is constant and w; # —1. For w; = —1, the solution of the Friedmann equations is
a o exp(Ht). (1.21)

Returning with (1.19) for multiple species to the Friedmann equations (1.13), the Hubble
function can be written as

H*(a) = HIE*(a), E*(a) =Y Qa0+ (1.22)

where the subscript zero denotes again quantities measured at a = 1. Consequently, Hj is
the Hubble constant. The density parameters €),; are defined as
A

= — 1.2
3H] (1:23)

Qo

bt



for the cosmological constant, and for usual matter constituents like neutrinos, baryons or
photons,

Qo = Lo (1.24)
Po,crit
where the critical density is
3H?
crit — 1.25
Poerit = gr ( )

which is the density needed today for the expansion of the Universe to come to a halt in
the future.
Dark energy research started with the observation that the Universe’s expansion has been
accelerating in the approximately past 5 billion years. Such an acceleration means d > 0.
From the Friedmann equations we obtain (Amendola & Tsujikawa, 2010a)

a e

- =——p(1+ 3w), 1.26

» A ) (1.26)
and consequently an accelerated expansion in the late Universe is only possible if there
exists a dominant energy form with equation of state parameter w < —1/3.

1.3 Redshift and distance measures

The basis of all distance measures in cosmology is the redshift z. It appears because as a
photon travels through the expanding spacetime, its wavelength is stretched by the scale
factor. So if a photon is emitted at time t., to which a scale factor a(t.) corresponds, then

Ao aflty)

e afte)

(1.27)

holds, where A, is the wavelength that the photon has at the epoch where the scale factor
is a(t,). As the expansion decreases the energy of the photon, the wavelengths will increase,
which — when applied to visible light — corresponds to a reddening. One therefore calls the
wavelength shift the redshift z which is defined by

LA A
=2

: (1.28)

where )\, is the wavelength that a photon has when it arrives at the observer. The redshift
is therefore a measurable quantity if a spectrum of a cosmological source is taken and if the
emission wavelength is known.

If one uses a cosmological model and specifies all parameters which the Hubble function
depends upon, then one can convert such measured redshifts into distances. Such derived
distances are therefore model-dependent and parameter-dependent quantities and one
sometimes finds in the literature the formulation that a certain observation ‘probes the
distance-redshift relation’.



Figure 1.1: Derivation of the angular diameter distance, following Durrer (2008). The
observer is at @ = 1, where z = 0. The object lies in a hypersurface of constant time, as seen
on the sky at a certain redshift z;. Photons leaving the ends of the object simultaneously,
travel along the dashed lines to us and the angular diameter distance is then D,,, = A/6.

Additionally, the concept of a unique distance does not exist in a curved spacetime. In a
Euclidean, non-relativistic space, the unique distance measures the length of the shortest
connection between two points at equal time. If a distance shall be measured in a spacetime
with noticable curvature, this simultaneity gets lost and it is necessary to describe in more
detail how a certain distance measure was derived. Of relevance for this thesis are the
following distance measures.

The comoving distance between two redshifts integrates up the distance travelled by a
photon. If we write the FLRW metric as ds* = —c2dt? + a?(t)dr?, then light travels on the
lightcone ds? = 0 of which the relevant root for distance measures is dr = —cdt/a(t). The
comoving distance is then the integral of dy

( ) X2 t1 c
Deom (21, 20 :/ dr = —/ —dt
X1 to a(t)

a(z2)
_c / da (1.29)
Hy Jo(z) @*E(a)

zZ2 dzl
H(z)

21

The angular diameter distance is defined such that if an object of size A subtends an angle
¢ on the sky, see Fig. 1.1, then we can define a distance D,y, such that in the Euclidean
relation A

g
holds. To derive it, we imagine the object has the physical arc length A and lies in a
hypersurface of constant time as seen in Figure 1.1. Then we can measure the angle it
subtends from two light signals that arrive at us today, and that left the both ends of the
object at the same time. These light signals will have travelled along the comoving distance
Dcom- The physical arc length is then A = a(2)Deomt. Consequently, (1.30) shows that

Dng = a(2)Deom is the angular diameter distance to us (Durrer, 2008). If it is measured
between two hypersurfaces of constant z; and zs where neither has a(z) = 1, then the

Dang = (1.30)



angular diameter distance between two redshifts is given by

a(z2)

a(z1)

This angular diameter distance is e.g. the distance of importance in gravitational lens theory,
and for measuring the size of Baryonic Acoustic Oscillations (BAO) or the sound horizon
on the CMB surface.

The luminosity distance is defined such that it reproduces the decrease of the flux of a
source as in a Fuclidean geometry. If a source emits per second the energy FE, then it has
the absolute luminosity Ly = F/s. The flux of such a source is then the energy received
by a detector per second and surface area. If the source radiates its photons isotropically,
then the flux will be constant on spherical shells centered on the source. The luminosity
distance Dy, is then defined via the flux F' as measured on these shells

L

lum

Dang(ZhZ?) = Dcom(21722)~ (131)

where 47 D?, is the surface of the sphere over which the source’s photons are distributed.

The luminosity distance is in all spacetimes related to the angular diameter distance via
the Etherington relation (Bartelmann & Schneider, 2001)

Dy (21, 22) = (a(21)> Dang(21, 22). (1.33)

a(22)

This comes about as follows: the source at redshift z; has a proper time interval dm = a(z;)dt.
An observer at redshift zy has however a proper time interval drg = a(zy)d¢. The observer
will then measure a flux with respect to another proper time interval than that of the
source. The total energy emitted by the source per its proper time interval is L,d7. As the
photons travel along the comoving distance towards us, they are additionally redshifted by
a(z1)/a(zp). The flux is then (Durrer, 2008)

[ La?(z)
" dmat(z0) D2

com

(1.34)

from which we identify Dy, = a*(20)/a?(21)Deom and therefore (1.33) holds.
Over small redshift differences, Az < 1, the curvature of spacetime is not important, and
in this limit all distance measures reduce in first order to a unique distance

cz
d=—+0(z 1.35
O (1.35)
where cz = v is the recession velocity of nearby galaxies whose detection demonstrated that
the Universe is not static.
As all of these distances depend on H; ', and as the Hubble constant is a measured quantity
with a non-zero error, it became conventional to write Hy = 100k km/s/Mpc and to keep
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the dependence on h explicit when speaking of length scales. One therefore often finds
expressions like 8K~ Mpc.

An important concept of relativistic gravity is that in contrast to Newtonian gravity, there
exists a horizon beyond which a causal connection is impossible. As light travels along the
comoving distance, this horizon rg is (Longair, 2008)

to cdt
ry = = —) 1.36
. / o (1.36)

where the lower integration bound ¢; is the cosmic time when a photon was emitted, and the
upper integration bound ¢, is the current epoch. For t; = 0, rg is the horizon as calculated
from the Big Bang onwards.

The formation of cosmic structures is not yet contained in the FLRW-metric, but can
only be described by a pertubative approach around it. This will follow in Sect. 4 but
beforehand, we need some statistical definitions for the emerging structures.

1.4 The Poisson equation in an expanding universe

A useful relation for the weak lensing presented later is the Poisson equation of a density
perturbation on an expanding background. Let us write the total gravitational potential as
P’ = & + @, where ® is the background value and @ is a local perturbation. We now wish
to relate the gravitational potential to the local density p = (1 + A(x))p(z), where the
background density p(z) will decrease with cosmic expansion although the density contrast
A(x) will typically grow.
The Poisson equation then describes how the local matter sources the gravitational potential
(Bartelmann & Schneider, 2001)

V290’ = 47Gp, (1.37)

where V? is the gradient with respect to physical coordinates. To single out the expansion
of the Universe, we change to comoving coordiantes x, such that V, = aV,. We then have

V2(® + @) = 4nGa’(1 + A)p. (1.38)

If we assume that the superposition principle holds, then the background equation V?L,CTD =
47Ga’p has to be seperately fulfilled, and we can single out the perturbative part

V20 = AnGa’Ap. (1.39)

This statement is far from trivial, and became famous as the Jeans swindle. Demanding
that the background solution obeys homogeneity, implies a constant gravitational potential.
This in turn implies a vanishing density due to the Poisson equation. However, the mean
density of the Universe is finite, so there exists a contradiction. This contradiction is luckily
resolved in an expanding universe because the effect of the finite background density is
cancelled by the Hubble expansion such that the perturbation (1.39) can indeed be analysed
separately from the background (Falco et al., 2013).
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Working our way forward from (1.39), the cosmic mean density drops as p = ppa— and

we can relate py to the usual density parameters Qo = po/peris, Where paiw = 3H3/87G.
Therefore (Bartelmann & Schneider, 2001)

3H2
a

Vi) = DA, (1.40)

which is the Poisson equation rephrased in terms of the usual cosmological parameters Hy
and €y and where V, is the gradient with respect to comoving coordinates.
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Chapter 2

Brinks of the cosmic standard model

Studying a model also implies understanding its limitations. Consequently, this chapter
will outline a few theoretical and observational brinks of ACDM.

The current state of cosmology may be summarized by stating that the abundance of the
different cosmic matter constitutents is quantitatively quite well under control — the error
bars on €, .., €2,,,, Q2 are down to a few percent. However, a qualitative explanation for
dark matter and dark energy is still missing. So what does it mean from an observer’s point
of view when we speak about dark matter and dark energy?

On the lowest level, it means that both are free parameters, needed to fit the background
observables like type la supernovae and BAO, and perturbation observables like the CMB
and the cosmic large-scale structure. All of these observables are in turn convolved
expressions of the Hubble function H(z), and the growth function. Future measurements
will not seriously alter our inference about the Hubble function or the growth function —
what they may alter, however, is our qualitative understanding of dark matter and dark
energy, assigning them the status of physically well understood phenomena, instead of mere
fitting parameters.

This summary of the cosmic standard model may appear mildly heretic in comparison to
the general tenor in cosmology, so let us back it up with further arguments. For dark energy,
multiple candidates are in the game, but they cannot yet be discriminated with the current
data. For example, the f(R)-model by Hu & Sawicki (2007) does not employ a cosmological
constant but has a limit in which it reduces to the phenomenology of ACDM. Likewise, for
dark matter, experiments like DAMA /LIBRA (Bernabei et al., 2014), XENON (Brown &
Xenon Collaboration, 2014) or LUX (Faham & for the LUX Collaboration, 2014) etc. hunt
for dark matter candidates, but yet have neither detected any WIMPs nor axions. Further,
no constraints from particle physics about the abundance of a dark component exist — the
standard model of particle physics does not include a dark sector.

Yet, it seems currently impossible that dark matter could be composed of standard model
particles. Neither the six leptons, nor the four gauge bosons have the properties required of
cold dark matter. A baryonic origin of dark matter is excluded as well: the abundance of
baryons in the Universe can be considered fixed already a few minutes after the Big Bang.
At this time the primordial nucleosynthesis (BBN) is completed and while subsequent
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astrophysical processes change the chemical composition of the baryons, they do not
significantly alter their total abundance. BBN constraints therefore provide a solid upper
limit on the total baryon density in our Universe, which turns out to be Q,h% = 0.022340.002
(Steigman, 2006). Using h = 0.68, we then arrive at €, = 0.048 £ 0.0043, which is about a
tenth of the dark matter abundance required in ACDM. It is therefore impossible that dark
matter consits of baryons which got locked-up after their creation into a electromagnetically
hardly interacting state, such as Massive Compact Halo Objects (MACHOs), neutron stars,
black holes, or other compact objects.

Prior to nucleosynthesis, a lock-up of standard model particles into primordial black holes
could however produce a dark matter candidate which does not require the postulation of a
dark particle. As this production mechanism precedes primordial nucleosynthesis, it also
evades the BBN constraints on the baryon density. Although not yet definitely ruled out,
the generation of primordial black holes requires initial conditions that are not favoured by
the cosmic microwave background (Young & Byrnes, 2015). In total, we can conclude that
dark matter is not understood yet.

For baryons themselves, the situation is somewhat better: the standard model of particle
physics seems to explain this sector sufficiently well. However, we then need to admit that we
do not know where the baryons come from cosmologically. The observed baryon-antibaryon
asymmetry in our Universe is still a subject of intense investigation (Steigman, 2006).
The remainder of this chapter studies a few brinks of ACDM in more detail.

2.1 The origin from inflation

There is strong need for the Universe to have undergone a very early phase of accelerated
expansion, called inflation. The reason is that the Friedmann equations are differential
equations and therefore require initial conditions. Without inflation, these initial conditions
appear highly fine-tuned and unnatural.
For example, in the remainder of this thesis, the Universe is always considered to be spatially
flat — however, spatial flatness is an unstable solution of the Friedmann equations. In order
to illustrate this, we allow for a spatial curvature K in this section only. The Friedmann
equations in conformal time are then (Durrer, 2008)
H? = %az p— K,
3 (2.1)

AnG
H = —%az(p +3p),

where we neglected the cosmological constant, or likewise absorbed it into p and where
H = Ha. (2.2)

Hence, the critical density is pei = 3H?/(8mGa?). Dividing the first Friedmann equation
by H? then yields

Q) —1= . (2.3)



The time derivative of the deviation from spatial flatness Q(¢t) — 1 is then (Durrer, 2008)

Q) = 1) = Q) - 1)

8nGa® [ 1+3
(). (24)

3 H

which shows that if there is no accelerated expansion with w < —1/3, then spatial flatness
is an unstable solution. Furthermore, solving (2.4) numerically, it turns out that in order
to have a spatial curvature of {2 & 1, the spatial flatness about 5 minutes after the Big
Bang (when nucleosynthesis took place), has to be on the order |Q(tyuee0) — 1] < 10715,
i.e. either the spatial flatness is extremely fine-tuned, or there should exist a convincing
mechanism that produces such a negligible spatial curvature in the early Universe. An early
inflationary era can provide this.

The second problem that an inflationary era can resolve, is the horizon problem. If we
assume the Universe before CMB decoupling was dominated by radiation and matter only,
and calculate from this the horizon (1.36) with (1.20) then this results in a horizon scale of
~ 1° in the CMB. The CMB is however uniform over much larger scales. Again, an early
period of accelerated expansion can explain this uniformity, as it increases the horizon scale.
Furthermore, the inflationary framework provides a convenient mechanism for the seeds of
cosmic structures. An expanding Universe can convert quantum fluctuations into classical
particles, if it drives spontaneously created particles out of causal contact before they can
annihilate. If the expansion is approximately exponential, a nearly scale invariant power-
spectrum of the initial density perturbations is the consequence. The detailed mechanism
is e.g. described in Mukhanov et al. (1992), and we shall only describe observations of such
an inflationary structure initialization in Sect. 2.2.

2.2 Accelerated expansion from a scalar field

The Universe currently undergoes a phase of accelerated expansion, and in Sect. 2.1 we
have seen that there is good reason to believe that there was previous phase of accelerated
expansion in the early Universe. A cosmological constant can provide an exponential
expansion; but other mechanisms can as well.

For example, a scalar field ¢ can produce an equation of state w = —1 and therefore mimic
a cosmological constant. As a canonical scalar field has no internal degrees of freedom,
it can be regarded as the ‘next to minimal’ model beyond a cosmological constant. In
the framework of inflation, such a hypothetical scalar field is usually called the ‘Inflaton’,
whereas a hypothetical scalar field responsible for the late-time cosmic acceleration is
referred to as ‘Quintessence’. The mechanism is however exactly the same.

Starting from the Lagrangian

Lo = 500,006 ~ V(6), (2.5)

we see that the behaviour of the field is fixed once the potential V' (¢) is specified. The energy
density p, = —T¢ and the pressure p, = T7/3 then follow from the energy momentum
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tensor

o2 6(/=5L)

L= — , 2.6
K /_g 5guu ( )
such that .
1., (2.7)
Py = §¢ — V(¢).
The equation of state is then
12
ps _ 39° = V()
wy = =0 = 2 , (2.8)
ps 50>+ V(9)
such that w = —1 is reached if ¢ = 0, and for slowly varying ¢ small deviations from
w = —1 exist. During the cosmic evolution, the field ¢ will also evolve, such that the

equation of state will additionally vary with redshift. The field ¢ adapts to expansion by
following the conservation equation V, 7% = 0 from (1.17), which then reads (Amendola &
Tsujikawa, 2010a) )

o(t) + 3H(t)p(t) + V,e = 0. (2.9)
If we further demand that this scalar field dominates the Hubble expansion, and omit a
cosmological constant, then the first Friedmann equation (1.13) is

1

H? =
M,

(;dﬂ +V(6))., (2.10)

where the energy density p, from (2.7) was substituted and 1/M} = 87G, where M,y is the
Planck mass to match the usual terminology of inflationary physics. We therefore see, that
if a scalar field was responsible for inflation, then the Hubble expansion H(t) is fixed by
the choice of the potential V' (¢), and vice versa: if the Hubble expansion during inflation
could be reconstructed from measurements, then the potential V' (¢) were known.

In fact, this reconstruction is being attempted. In the framework of inflation, when we
restrict ourselves to a slow-roll evolution of the field and neglect the kinetic term, then (2.9)
and (2.10) reduce to (Planck Collaboration et al., 2014)

BH(t)p ~ =V,

2 Vi9) 211)
3M2

Then one can attempt to measure the conventionally defined slow-roll parameters €, and
ny (Planck Collaboration et al., 2014)

_ MZVE ~ MZVigs
€y = 2V2 ; ny = T7

(2.12)
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which describe on one hand deviations of the Hubble expansion from a purely exponential
expansion for which wy, = —1. From (2.7) we had seen that w = —1 is reached if ¢ = 0.
Due to the conservation equation (2.9), this can however not be maintained, and the first

order deviation from wg = —1 in the slow-roll is then (Amendola & Tsujikawa, 2010a)
2
wy ~ Sev L. (2.13)

On the other hand, the slow-roll parameters €, and 7y allow to reconstruct the first terms
of the potential’s Taylor series via its derivatives V,4 and V4. For dark energy research, the
possible evolution of w with redshift is hoped to be measured soon, which would then allow
to reconstruct the potential V' (¢). For inflation, no time-resolved measurement is possible,
and instead the potential needs to be reconstructed from the Hubble expansion’s indirect
effect on the structure growth, which then imprints itself onto the power spectrum in the
CMB. From the CMB, we can infer the primordial power spectrum of scalar perturbations

2
! >ns—1+;;l;gk log(k/ko)+ § giortey (log(k/ko))? ..

ko

P(k) = A, ( , (2.14)

where ky = 0.05Mpc! is the pivot scale that can be well resolved by Planck and A, is the
amplitude. The scalar spectral index is n, and a possible running of it is dns/dlogk. In
the slow-roll approximation one has (Planck Collaboration et al., 2014)

ns— 1~ 27]V _6€V)

dn (2.15)
-~ 16eyny — 246, — 287
dlogh = 10V — Hev — 2y,
where & depends on the third derivative of the potential as
MyVip Visoo
£ = pT. (2.16)

If the data were good enough, a running of the running d?n,/d log k? and higher equivalents
could also be measured, which would give access to ever higher derivatives of the inflaton
potential. The current constraints by Planck are ny = 0.968 - 0.006 and the running is well
compatible with zero, dng/dlogk = —0.003 £ 0.007 (Planck Collaboration et al., 2015).
For the future it is being hoped that measurements of the tensor spectral index n; will
put additional competitive constraints on the slow-roll parameters for inflation. Similarly,
upcoming surveys which target late-time observables like weak lensing or type Ia supernovae,
hunt for a potential redshift evolution or a deviation from w = —1 of the equation of state
parameter of dark energy.

2.3 Dark degeneracy

It is true that ACDM fits the cosmological data so well, that until now, no deviation from
it has been detected. Yet, if one fits a model to data, one will always get constraints on the
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model parameters. This does not yet mean that the model describes the underlying physics
correctly. The model ACDM then appears in a very interesting light if we consider the
work by Kunz (2009). The results of Kunz (2009) shall be presented here, since they are an
important wake-up call to what happens if a parameterized model is fitted to the data.
ACDM is a successful fit to the cosmological data because it introduces two separate dark
components, dark matter and dark energy in the form of a cosmological constant A. Dark
matter has not yet been detected in any particle physics experiment, and the cosmological
constant is — although a natural degree of freedom in GR — still subject of strong debates
due to the problems described in Sect. 2.4. One may then ask, whether this split into a
dark component of w = 0 and one dark component w = —1, may be arbitrary. As Kunz
(2009) shows, this seems to be the case indeed.
Starting from the argument that the Einstein equations only probe the total energy-
momentum tensor of all cosmic matter constituents, and that the split

Thoae = T0V + T (2.17)

w2

of the dark energy-momentum tensor T4, , into two subcomponents with equations of state

wy and wy is arbitrary from the point of view of the Einstein equations, Kunz (2009) derives
the relation = 21 o

wpp(z) = S;)gﬂ (L1 2) H(z)g (=) (2.18)

08 (1 +2)% — H?(2)

for an FLRW metric. Here €2, refers to the abundance of a dark matter component with
w = 0, and wpg is the equation of state parameter for dark energy. The expansion rate
H(z) is what background observations probe. Increasing the measurement sensitivities
means that the errors on H(z) will go down, making the relation (2.18) less noisy. However,
even in the absence of any measurement uncertainties on H(z), we see from (2.18) that
the dark matter abundance 2, and the dark energy equation of state wpg are degenerate.
Fixing one, and inserting the measured constraints on H(z), the other is given by (2.18).
In this sense, dark energy and dark matter are not directly observable via cosmological
constraints only, which Kunz (2009) demonstrates for a combination of supernova- and
BAO data. If particle physicists could find dark matter by their experiments, and also put
constraints on its abundance, the degeneracy (2.18) could be broken.
In Kunz (2009), the author then proceeds to show that also the (in 2009 available) CMB-
data of WMAP cannot break the degeneracy (2.18), even though these are perturbations,
instead of background observations.
In summary, the work by Kunz (2009) demonstrates that ACDM suffers from what is
called a parameterization bias. To be fair, it should be pointed out that models which
introduce multiple separate fluids for dark energy on top of a dark matter, will also inherit
the problem of splitting (2.17), only that then, more energy-momentum tensors appear.
Consequently, Kunz (2009) argues that also such alternatives to ACDM have the problem
of parameterization biases. For the future of cosmology, it is therefore mandatory to keep a
close eye on on direct dark matter detections by particle physicists.
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2.4 The cosmological constant problem

The cosmological constant is a problem — independent of its value. Therefore, let us here not
orbit around the usual statement that the observed value of A is 122 orders of magnitude too
low when compared to expectations, especially as we have seen in Sect. 2.3 that cosmology
has a problem when measuring A. Let us rather comment why A is an interesting problem
on its own.

From the point of view of General Relativity, A is a classical degree of freedom which is
allowed basically due to a mathematical indeterminacy. This can be e.g. stated in the shape
of the following theorem.

THE LOVELOCK THEOREM: If the Einstein tensor in four dimensions shall
satisfy V,G* = 0 and only depend on the metric g, and its first and second
derivatives (as is the case in GR), then G* is unique, apart from a possible
addition of a constant A as in

Guu — Gw/ + Agw/a (219)
where the value of A is not specified by GR any further (Straumann, 2013).

Of course, one could relax the assumptions of the Lovelock theorem, and also allow for more
than 4 dimensions or allow G* to also depend on higher order derivatives of the metric
or other elements of a gravitational theory. All this would go beyond standard General
Relativity but at least within the framework of standard GR, Lovelock’s theorem shows
that A makes a natural appearance. It is true, A has the same dimension as the Ricci scalar
R, and therefore sets a second scale to the curvature of spacetime, and it is not clear where
this scale should come from, but it is generally admissible in GR.

Let us here however point out a problem. It is established beyond any doubt that matter
fields exist in our Universe, and these fields have interaction potentials. For the sake of
simplicity, let us assume a scalar field as in Sect. 2.2 and add a constant V{ to its potential

V(o) = V(¢) + Vo. (2.20)

This change of zero-point energy does not influence any other interactions, but it affects
gravity. The equation of state (2.8) shows that the addition of Vj is equivalent to introducing
a cosmological constant. The puzzle of what determines the level of a potential then
translates directly into the cosmological constant problem (Durrer, 2008).

Further, being a classical field theory from 1915, GR precedes quantum field theory.
Quantum field theory, in turn, treats a free field as a collection of infinitely many quantum
mechanical oscillators. As a quantum mechanical oscillator with kinetic term ¢ and potential
V(¢) cannot be at rest due to the uncertainty principle, this implies an infinite zero-point
energy for the free field (Martin, 2012)

<0|T,LW‘O> = —PvacYuv, (221)
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which is in quantum field theory addressed by adding or subtracting a constant to the
potential V(¢) as in (2.20). The problem of the zero-point energy therefore cannot be
ignored when quantum field theory shall include gravity. Additionally, quantum field theory
predicts spontaneous creation of particle-antiparticle pairs out of the vacuum. Experiments
on the Casimir effect demonstrate that these vacuum fluctuations exist, and it can be
expected that they gravitate normally, and therefore should also influence the value of an
observed cosmological constant (Martin, 2012).

Of course, a consistent theory of quantum gravity is still missing, but we can maintain
that however unproblematic A may be within the classical theory of GR alone, it does
become problematic when going beyond gravity. A very throrough review about the current
state of research on topic is given by Martin (2012). We therefore conclude that even if
cosmology stops to wonder about the cosmological constant at some point, other fields
of research, especially quantum field theory, will continue working on the cosmological
constant problem.
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Chapter 3

Supernovae of type Ia and clustering
statistics

In this chapter, the cosmological relevance of type Ia supernovae is described, and the
statistical basis for the description of data sets from cosmological structures are given. The
physics of cosmological structure formation itself is then described in chapter 4.

3.1 Supernovae of type Ia

Supernovae of type Ia are extremely luminous events that can outshine their host galaxies.
Historically, it was the analysis of supernova data under the assumption of a flat Universe,
that lead in 1998/1999 to the discovery of the Universe’s accelerated late-time expansion
(Riess et al., 1998; Perlmutter et al., 1999). The confirmation of the spatial flatness was
then brought in 2000, when the CMB experiments BOOMERANG and MAXIMA were
able to resolve the first acoustic peak in the temperature-fluctuation power spectrum (de
Bernardis et al., 2000; Balbi et al., 2000).
In order to understand supernovae, a little detour in stellar evolution is needed. A stable
star maintains the hydrostatic equilibrium (Maoz, 2007)

dP(r) _ _G’M(r)p(r)7 (3.1)

dr 72

where P, M and p are the pressure, the mass and the density respectively, and r is the
radius as measured from the center of the star. So a star is in equilibrium when the pressure
of each shell equilibrates the gravity of the outer stellar layers that press down on this shell.
This pressure can be provided by thermal pressure, or — in the case of stellar remnants —
the quantum mechanical Fermi pressure of either electrons or neutrons.

The main two factors that determine a star’s evolution are its mass and its metallicity. All
stars have in common that they initially burn hydrogen in their cores, synthesizing helium.
If hydrogen is exhausted, the core of the star contracts under its self-gravity, until the
fusion of successively heavier elements begins, which again provide enough thermal pressure
to counterbalance the self-gravity.
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If the star is massive enough, about M > 8M, (Maoz, 2007; Voigt, 2012), its core will
subsequently undergo H-, He-, C-, Ne-, and Si- burning. Then, nuclear fusion stalls because
heavier elements than iron rather release when decaying, instead of when being synthesized.
After having completed the Si-burning, the stellar core can then no longer produce enough
thermal pressure to counteract the self-gravity. It then collapses in free fall, until it has
reached a density where the quantum mechanical Fermi pressure of its neutrons stabilizes
it. This end result is called a neutron star.

While successivley heavier elements are burned in the core of such a massive star, the stellar
shells still contain lighter elements. When the core faces the iron catastrophe and collapses,
the outer shells of the star are not supported from below any more, and also collapse.
When they hit the solid surface of the newly formed neutron star, they are reflected and
forced again through the layers that fell after them. As these consist of combustible light
elements, a very luminous explosion results which can then be observed as a supernova.
The remaining hydrogen of the outer shells gives its presence away by absorption lines
in the supernova spectrum. The end of such a massive star therefore produces a type 11
supernova, where the type II is defined by the presence of hydrogen lines in the spectrum
(Amendola & Tsujikawa, 2010a).

In contrast, supernova of type Ia are thought to be thermonuclear disruption of a white
dwarf. A white dwarf is the remnant of a star with less than about eight solar masses.
Depending on the exact mass and metallicity of the star, its outer shells can become
convective and start to pulsate during its evolution. It is then possible, that the star blows
away its own shells before the core has reached the carbon-burning stage. The escaping
shells can be seen for a few 10.000 years as planetary nebulae before they disperse completely,
leaving behind the old stellar core (Maoz, 2007). This exposed core consists primarily of
carbon and oxygen, with some helium — in principle a highly combustible mixture, if put
under sufficient pressure. However, usually, the old core is supported by too low a pressure
for combustion: it does not yet burn carbon because it is stabilized against gravitational
collapse by the Fermi pressure of its degenerate electron gas. Such a stellar remnant is
called a white dwarf.

This balance between Fermi pressure and self-gravity inside a white dwarf can be tipped, if
the white dwarf accretes further mass. From hydrostatic equilibrium, it follows that the
pressure scales as

M
Pl (3.2)
r
and since for a spherical dwarf p oc M/r3 it is
M2

In a non-relativistic degenerate electron gas, pressure and density scale as (Maoz, 2007)
P o p°/3. (3.4)

Additionally, in a degenerate Fermi gas, the pressure is independent of the temperature — it
is solely provided by the quantum-mechanical Pauli principle for fermions.

20



Eliminating the pressure in (3.3), we have
roc M~Y3, (3.5)

meaning that when a white dwarf accretes further mass, it needs to shrink in order to
provide enough pressure to counteract the additional self-gravity.

Pressure, however, is proportional to the energy density .- of the electrons. In the
non-relativistic regime it therefore scales as

P e, oc v, (3.6)

i.e. the pressure scales with the squared electron velocity v.-. In the relativistic regime, we
have a linear relation instead
Eem X Up—. (3.7)

Increasing the pressure therefore means increasing the electron velocities. However, these
are limited by the speed of light v.- < ¢, so obviously, there will come a moment when the
Fermi pressure of the electrons cannot support the white dwarf against its own self-gravity
anymore. This moment is reached when the white dwarf exceeds the Chandrasekhar mass
of about 1.4M (Maoz, 2007).

A white dwarf more massive than 1.4M, will collapse and thereby exceed the critical
pressure needed for the fusion of its carbon and oxygen. As the pressure in the degenerate
white dwarf is independent of the temperature, burning carbon and oxygen cannot increase
the Fermi pressure. The thermal pressure of the heavy nuclei themselves is additionally
subdominant to the Fermi pressure. Therefore, a sufficient pressure to stop the gravitational
collapse cannot be built up and instead the nuclear fusion undergoes a runaway process
which then disrupts the white dwarf.

Forcing a white dwarf beyond its Chandrasekhar mass is currently believed to occur either
by accreting mass from a companion star in a double system (the single-degenerate scenario),
or by two white dwarves merging (the double-degenerate scenario). As it is always about
one Chandrasekhar mass that ignites, the luminosity of such a type la supernova scatters
only little. Spectroscopically, such a supernova is classified as Ia if the spectrum contains
the line of singly ionized silicon and no hydrogen lines (Amendola & Tsujikawa, 2010a).
Cosmologically, supernovae of type la are of special importance because their peak luminosity
scatters little anyway, and allows to be standardized further. Phillips (1993) and Hamuy
et al. (1996) have shown that less luminous type la supernovae fade faster. Consequently,
observations of type la supernovae typically sample the supernova’s lightcurve for about 40
days in order to correct for this peak luminosity - lightcurve width effect (Riess et al., 1998).
Additionally, extinction is being corrected for, as well as the fact that depending on the
redshift of the supernova, its brightness in different astronomical filters such as the V' and
B band will vary; this correction became known as K-correction (Perlmutter et al., 1999).
After these corrections, it can then be assumed that the observed supernovae of type Ia
have an intrinsic brightness that scatters only very little.

The only directly measurable quantity that is related to the intrinsic brightness of an object,
is the flux F' which we receive from it. For reasons of historical compatibility with the
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ancient astronomers Hipparchus and Ptolemy, an astronomical convention is to then convert
these measured fluxes into apparent magnitudes defined by (Voigt, 2012)

my — mg = —Z logy, (Z]:::) (3.8)
if F1 and F5 are fluxes of two different objects. The zero-point of this scale has traditionally
been the brightness of the star Vega (aLyrae) but nowadays there exist hints that Vega
belongs to the class of stars that exhibit slight periodic variations of their brightness.
Consequently, the zero-point of the magnitude system is now calibrated on the 96 stars of
the North Polar Sequence and Vega has now a magnitude of m = 0.03 mag (Voigt, 2012).
As the perceived brightness of an object depends on its distance to us, an absolute magnitude
is defined as the apparent magnitude that the object would have if it lay in a luminosity
distance of 10 parsec:

Dlum
Cosmologically more relevant are distances in megaparsec, so from (3.9) follows
Dlum
— M =51 —_— 25. 3.10

The quantity m — M is also known as distance modulus p. From calibrations on Cepheid
stars, it is known that the absolute magnitude of nearbye type la supernovae is approximately
M = —19.5 in the astronomical B-band, which is as bright as an entire galaxy (Voigt, 2012).
However, because the distance to nearby Cepheid stars scales with the Hubble constant, the
absolute magnitude of the supernovae is degenerate with the determination of the Hubble
constant (Riess et al., 1998). The remaining scatter around this absolute magnitude after
all corrections is about 0.21mag (Phillips, 1993; Hamuy et al., 1996).

Via the luminosity distance the distance modulus depends on the background expansion
and therefore on the cosmological parameters. The need of Perlmutter et al. (1999); Riess
et al. (1998) to constrain themselves to a spatially flat Universe arises because supernova
data alone cannot distinguish well between a cosmological constant and curvature. The
CMB is needed to break this degeneracy. Riess et al. (1998) point out that CMB and
supernova data yield nearly orthogonal constraints in the (£2,,, 24 )-plane: While the SNe
Ia are approximately sensitive to the combination €2,, — €25, the angular scale of the first
acoustic peak is sensitive to Q,, + Qs (Riess et al., 1998).

The fact that the absolute brightness of type Ia supernovae needs to be determined from
Cepheid observations under the assumption of a Hubble constant (Riess et al., 1998),
does however not challenge the discovery of the acceleration: The Hubble constant Hj is
proportional to the derivative @ of the scale factor today; the acceleration is the second
derivative @ of the scale factor with respect to cosmic time, such that it measures changes
in the Hubble parameter throughout cosmic history. These changes can be measured
independently of Hj.
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3.2 Random fields and power spectra

The density fields of our Universe are a single realization of a random process. Therefore,
only the statistics of given sky maps are studied. If f(z) is such a sky map, then its 2-point
correlation function is given by

§y) = (f@)f(x+y)), (3.11)

where £ can only depend on the modulus y in an isotropic and homogenous Universe
as long as x and y lie in a spatial hyperplane of constant time. Due to the attractive
nature of gravity, the correlation function of galaxy positions is typically positive on small
scales. In order to integrate to zero, this implies a negative correlation on very large scales,
however this effect is typically not seen in cosmic data due to the presence of noise. Note,
that the angular brackets actually denote an ensemble average over different realizations
of the random process. In cosmology, this ensemble average is necessarily replaced by a
spatial averaging, as we have only one sky to observe. If the coherence length L., is much
smaller than the horizon, this replacement is well motivated. However, in the presence of
gravitational lensing, minute differences between directional averages and ensemble averages
exist (Bonvin et al., 2015).

Further, if the Fourier transform is given by

flo = [ @asi@)et,

. (3.12)
_ 31.F —ikx
@) = o [ R
then one defines a power spectrum P(k) by
(f(R)[*(K)) = (27)%0p(k — k') P(k). (3.13)
The Wiener-Khinchin theorem then states that
1 . 3
&(r) = 2n)? /P(k) exp(—ik - r)d’k, (3.14)

such that the 2-point correlation function and the power spectrum are Fourier conjugates.
As £(r) is a real valued function, and as the cosmological power spectrum only depends on
the modulus k, equation (3.14) can be further simplified to

P(k) = 4r / {(r)SiZfTerr. (3.15)

Conventionally, the power spectrum of the late-time large-scale structure is normalized by
(Amendola & Tsujikawa, 2010a; Bartelmann & Schneider, 2001)

0% = — [ P(k)W3(k)k2dk, (3.16)
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evaluated at R = 8h~'Mpc, and where Wg(k) is a window function that smoothes out
structures on scales smaller than R.

If the statistics of a field is non-Gaussian, then higher-order correlation functions exist, e.g.
the three-point function

(f@)f(x+y)f(z+2)). (3.17)

The Fourier transforms of these quantities are called polyspectra and are of cosmological
importance in basically two cases: for studying primordial non-Gaussianities (Amendola,
2002; Fergusson & Shellard, 2007) and then for studying the non-linear structure growth in
the late Universe.
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Chapter 4

Cosmological structure formation

Slight over- and underdensities A of the cosmic matter distribution
(4.1)

where p is the background density, can become gravitationally unstable, and thereby
enhance with cosmic time, leading to the growth of cosmic structures. If the relative over-
or underdensity with respect to the cosmic mean density is small enough, then the growth
of these structures can be described with linear perturbation theory around the cosmic
background solution. About 380.000 years after the Big Bang, these growing structures of
the early Universe have imprinted themselves as temperature fluctuations on the nowadays
observable cosmic microwave background (CMB). These fluctuations in the temperature 7'
have a relative amplitude of AT /T ~ 107°, demonstrating that the assumption of linearity
is well justified for CMB physics (Durrer, 2008).

In the subsequent evolution of the Universe, a web of dark matter has formed from these
early perturbations, and galaxies have formed along this cosmic web, allowing its indirect
observation. It is assumed that the initial conditions that lead to the primary perturbations
A™M(E) of the cosmic matter field, were set by inflation as described in Sect. 2.1.

If the statistics of these initial perturbations is Gaussian, A™ (k) ~ G(0, P(k)), then they
can be completely described by a power spectrum P(k), that quantifies the variance of the
cosmic over- and underdensities as a function of their scale. We shall assume that all matter
species in our Universe followed the same initial power spectrum which is the so-called
‘adiabatic mode’ of inflation.

However, since different matter species possess different interactions, they will develop
differing power spectra during the cosmic evolution. The nowadays observed power spectrum
of photons is highly oscillatory due to the pressure in the coupled photon-baryon plasma in
the early Universe. In contrast, the pressureless cold dark matter simply collapses under
gravity, leading to a relatively featureless power spectrum, only adorned by very mild
wiggles, that are an imprint of the baryonic acoustic oscillations onto the dark matter power
spectrum, because both couple to gravity. The following calculations will quickly become
technically demanding, so a short summary of the main physical effects seems due.
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The linear growth of these structures can be described by perturbing Einstein’s field
equations, and splitting them into a background solution and perturbations around it. Due
to diffeomorphism invariance, the definition of the background is however arbitrary, leading
to questions of gauge dependence (Mukhanov et al., 1992; Amendola & Tsujikawa, 2010a;
Durrer, 2008) which need to be adressed.

The perturbed Einstein equations will then depend on a perturbed energy momentum tensor.
On the microscopic level, T"" arises as second moment of a phase space distribution function
f and the perturbations dT*” therefore originate from perturbations of this distribution
function. The evolution of the phase space distribution function is governed by the Liouville
equation or the Boltzmann equation, where the latter also needs the definition of a collision
term. We therefore see, how quickly the complexity of fully relativistic structure formation
grows.

Fortunately, under certain circumstances, the relativistic and microscopic approach can be
significantly simplified: the equations of ideal hydrodynamics follow from the Boltzmann
equation by taking moments. Also, on subhorizon scales, gravity can be approximately
described as Newtonian. Consequently, there exists a limit for cosmic structure formation,
in which it is sufficient to describe the gravitational instability of a perturbed ideal fluid
under Newtonian gravity. This limit is well satisfied for the late-time growth of dark matter
perturbations.

For describing the structure growth in the early Universe, this limit is however not sufficient:
The horizon scale at decoupling corresponds to about 1 degree on the observed CMB map,
which corresponds to the size of a thumbnail when held up against the sky. We can therefore
see structures on much larger scales than their cosmic horizon, and therefore have to take
into account horizon effects, to which Newtonian gravity is insensitive. Also, the ideal
fluid approximation is not always well fulfilled in the pre-CMB area: obviously, during
recombination, the mean free path of photons grew from initially zero (which corresponds to
an ideal fluid), to infinity (which corresponds to free streaming). In order to account for this
growing mean free path and the decreasing collision rate of photons during recombination,
the photons must be described with the Boltzmann equation, including a collision term
that describes the Thomson scattering of photons on electrons. Neutrinos, if approximated
as having a zero cross section with matter, also free stream and consequently cannot be an
ideal fluid.

Since all matter components couple to the metric, they will influence the evolution of each
other’s perturbations by gravitational interaction. The complexity of this early-universe
physics is therefore usually handled with Boltzmann codes like CLASS (Audren et al.,
2013a; Blas et al., 2011) or CAMB (Lewis & Challinor, 2011). If one is only interested
in late-time cosmology, such codes can compress all the complex effects from the early
Universe into a transfer function, which — if multiplied with an initial inflationary power
spectrum — translates this into the post-CMB power spectrum. The further evolution of
this post-CMB power spectrum can then be approximately described in the framework of
Newtonian gravity.

The following sections will cast these considerations into mathematical form.
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4.1 Relativistic structure growth: Perturbing Einstein’s
field equations

In chapter 1, we have solved the Einstein equations G* = 8nGT*” under the symmetry
assumptions of homogeneity and isotropy, leading to the FLRW metric. The matter in our
Universe is however not perfectly homogeneously distributed, as pronounced structures like
voids and filamentary overdensities exist. We can study the growth of these structures by
perturbing the FLRW metric.
In general, a metric can exhibit scalar, vector and tensorial perturbations. In an expanding
universe, vector perturbations decay because they are redshifted. Tensorial perturbations
give rise to gravitational waves, and collapsing structures originate from scalar perturbations
of the metric. At linear order, scalar, vector and tensor perturbations decouple and the
following analysis will therefore only focus on scalar perturbations.
We use the ansatz

G'=G'+6G" and TF=T"+5T", (4.2)

where quantities marked by an overbar are the background quantities that lead to the
FLRW solution and 0G* and 0T} are the perturbations. The background solution leads to
the FLRW cosmology and what remains to be solved are the perturbed Einstein equations,

SG" = 87 GST", (4.3)

meaning the evolution of the background is not affected by the evolution of the perturbations.
As Einstein’s field equations are however non-linear coupled differential equations, the
superposition principle that is so often used for linear differential equations, does not
hold and perturbations may affect the evolution of the background. This means that first
averaging over the large-scale inhomogeneities of our Universe and then solving the Einstein
equations (which leads to the FLRW solution) and then working our its perturbations,
does not need to produce the same result as first working out the Einstein equations of
the inhomogeneous Universe, and then average, and identify perturbations on top of the
average. This effect is known as back reaction. The final proof of whether back reaction is
important in ACDM or not, is yet to be worked out, but the current consensus in cosmology
is that back reaction seems to be negligible, and the ansatz (4.2) is then well justified in
cosmology.
Accepting (4.2), the perturbations dG* stem from perturbations of the metric, for which
we set

G = Guv + 0Gpw, (4.4)
where g, is the FLRW metric.
The inversion of a 4 x 4-metric is a highly non-linear operation but we want to restrict
ourselves to a linear perturbation analysis. Therefore, dg"” is not simply the matrix inverse

of 0g,,. Instead, demanding that the splitted total metric 4.4 satisfies g,,g"? = 07 leads to
(Amendola & Tsujikawa, 2010a)

09" = —69asg™" 3" (4.5)
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The split into a background and its perturbations is gauge-dependent. Before we choose a
gauge in the following calculations, let us first point out what the issue with gauges is:
General Relativity describes gravity by a curvature of spacetime, yet, we cannot associate a
meaning to spacetime curvature in particular coordinates, because the reference frame is
subject to choice. Mathematically, this means that General Relativity is invariant under
diffeomorphisms . A Diffeomorphism is a bijective and smoothly differentiable map, and
the inverse map is so as well. Consequently, a diffeomorphism allows to map smoothly and
uniquely back and forth between two manifolds. Diffeomorphism invariance of General
Relativity then means, that if {g,,,} are the metric and the matter fields that solve the
Einstein equations, and ¢* is the pull-back of a diffeomorphism ¢, then {¢*(g), ¢*(¢¥m)}
solve the Einstein equations as well. In other words: solutions that can be mapped onto
each other by a diffeomorphism, are physically equivalent (Straumann, 2013).

We can then use diffeomorphisms to gauge: this will not change the physical setup, but the
freedom to choose the background coordinates may simplify calculations (Mukhanov et al.,
1992). For example, let us transform old coordinates z* onto new coordinates y* = p(z#),
then the metric changes as (Amendola & Tsujikawa, 2010a)

0z 0xP

g,uu = @%gaﬁ- (46)
In order to work out the theory of a physical effect, e.g. structure growth, it is sufficient to
work consistently within one gauge, because physically, this gauge is as good as any other.
Only when observables shall be compared to actually measurements, then gauge-invariant
observables are mandatory such that the physical interpretation is unambiguous.

In this introduction to relativistic structure growth, we will work in the longitudinal gauge in
which the Bardeen potential ® is equal to the Newtonian gravitational potential (Mukhanov
et al., 1992). For a very thorough comparison and derivation of the equations for structure
formation in both gauges, see Ma & Bertschinger (1995). In the longitudinal gauge, the
line element of the spatially flat perturbed FLRW metric, with scalar perturbations only, is

ds? = a®(n)[—(1 4 2W)dn* + (1 + 20)8;;dz'da’] (4.7)

where we use the sign convention for the Bardeen potentials ¥ and ® from (Amendola
& Tsujikawa, 2010a), and 7 is the conformal time. Derivatives with respect to n will be
denoted by a prime. We then have

(24 0 w o (29/a® 0
59#”‘( 0 2a2¢>5ij> A _< 0 —2wa;) @Y

where (4.5) was used for the inversion. To first order, the perturbed Christoffel symbols are
then

1 i 1.
5F5A = 55.9”& (gal/)\ + go&\,u - gu)\,a) + 59“ (5.9&1/,)\ + 59@)\,1/ - 591/)\,(1) (49)
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which follow to be (Amendola & Tsujikawa, 2010a)
oIy, = '
0Ty = 03[P + 2H(® — V)]
5r81 =0T}, = 0,V
51"0 =9’ 5Z

(4.10)

The meaning of the perturbed Christoffel symbols 5F§-k is that an observer, comoving
with the background expansion, will see local gravitational fields due to the small-scale
inhomogeneities.
The linear perturbation of the metric is then propagated through to the Einstein tensor for
which we need the perturbed Ricci tensor

OR, = 0TS, , — T2, , + 670 T0, + 1% 610 , — 6T, T2, — 2,617, (4.11)

pv,o pov,v pur av

The Ricci scalar R = Rf; = g8 Rpg,, has then the perturbation
OR = 0g""Roy + 9" 0Ray, (4.12)

where the background FLRW metric raises the indices of the perturbed Ricci tensor such
that no terms quadratic in the perturbation appear. Following the same logic also for the
perturbed Einstein tensor one has (Amendola & Tsujikawa, 2010a)

1 1
5G;w = 5R;w - iégMVR - §QMV5R7 (413)

and the perturbed Einstein tensor with one index up is
0GY = 09""Goy + 9" 0G oy, (4.14)

which shows that the perturbations pick up information about the background evolution as
encoded in G,,. This is the reason why, for example in the cosmic microwave background,
different structures emerge depending on the previous Hubble expansion of the Universe,
which in turn depends on the present matter constituents via (1.22).

For the scalar perturbations of the FLRW metric we now obtain the non-diagonal perturbed
Einstein tensor (Amendola & Tsujikawa, 2010a)

2
6GY = f[:m(w — @) + V°9]

5
Cé (4.15)

0G, = S[(H? + 2H)U + HY' — &" — 21 ']6;

a?

+ i[V2(\If + ®)6; — (VU + ®)j}]
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where the Laplacian is meant to be covariant V2f = fil! and covariant derivatives with
respect to some spatial coordinate 4 of the background metric are denoted by fj;. Equation
(4.15) describes the perturbations of the geometrical sector in the Einstein equations.
In order to derive the full perturbed Einstein equations, this has to be combined with
perturbations of the energy-momentum tensor.

For an observer with four-velocity wu,, the energy-momentum tensor takes the form (1.9),
where it is the question of how p, p and ¥, and their perturbations arise. Later, in Sect. 4.2,
we will describe a microscopic derivation of the perturbed energy-momentum tensor from a
phase space distribution. Here, we only want to describe how the Einstein equations react to
perturbations of the energy-momentum tensor once T is given. To have a clearer physical
picture also here, we could e.g. imagine that the energy-momentum tensor is derived from

a Lagrangian £ by
-2 0(\/—gL
T, = v=9£) (4.16)
V=g g
which is for example of interest when studying dark energy candidates for which the
Lagrangian is given, e.g. for quintessence field ¢, where,

1 v
Lo = =59" 0upDup = V(). (4.17)
The symmetry assumptions of the FLRW background then demand the background energy-
momentum tensor to be diagonal

T = (p + p)yuta” + pg", (4.18)

where u* is the velocity of an observer comoving with the cosmic expansion, meaning
u* o O such that in this reference frame, only the dilution with the passing of cosmic time
appears.
In the perturbed FLRW metric (4.7), the velocity of an observer is of course perturbed by
local gravitational potentials. These can introduce motions of matter with respect to the
comoving coordinates x’; these motions are usually called peculiar velocities and are given
by '
1
vt = adx (4.19)
d
where 7 is the conformal time and the dz’ are comoving as given in the metric (4.7). The
velocity of an observer in this perturbed metric is then u* = dz*/ds such that at first order
(Amendola & Tsujikawa, 2010a)

u = , u' =

1—-v ) V'
0 -, 4.20
- (4.20)

Lowering the indices, we have u, = g, u” reducing to (Amendola & Tsujikawa, 2010a)

uy = —a(l+ ), u; = av;. (4.21)
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These perturbed velocities lead to a non-diagonal energy-momentum tensor in a universe
that deviates from FLRW. Similary, stresses can appear, such that a stress-energy tensor
E; can be added to the energy-momentum tensor.

Projecting onto the velocity (4.20), we find the perturbations of the energy-momentum
tensor to be (Amendola & Tsujikawa, 2010a; Mukhanov et al., 1992)

§TY) = —dp
0T} = —6Tg = (p + p)v' = (1 + w)pv’ (4.22)
5Tj = 5p5§~ + E;

The perturbations dp of the pressure can be related to a perturbation of the density for a
barotropic fluid, where the equation of state fixes the pressure if the density is given and
vice versa. Usually, this is parameterized by a sound speed dp = c2dp.

We now have all ingredients to set up the perturbed Einstein equations, but as usual,
solving differential equations is easier in Fourier space where the derivatives are replaced
by multiplications with the wave vectors; in our context, comoving spatial wave vectors
are meant since the differential operators work on the expanding background and time
derivatives are kept explicitely to give access to the dynamics. Understanding the following
®, U p, 0 and E; as Fourier amplitudes, the perturbed Einstein equations read (Amendola
& Tsujikawa, 2010a; Mukhanov et al., 1992)

k20 + 3H(D' — HT) = 4rGa2dp (4.23)
kZ(CI)/ — H\I/) = —47TGCL2(1 + w)p0 (4.24)
O+ IHD — HY' — (H? + 21T = —dnGa?c2op (4.25)
3a? (kik; 1 ,
1.2 _ [ Y i
K@+ W) = = <|k|2 3%) 5 (4.26)

This is the system that in principle needs to be solved for all matter components in the
Universe. If ¥} = 0, then (4.26) reduces to

d=—0. (4.27)

Numerical codes such as CLASS (Blas et al., 2011; Audren et al., 2013a) however use
extensively the fact that the structure formation must additionally satisfy the conservation
equation V,T* = (. Just like in hydrodynamics, the u = 0 component of this conservation
equation will be a continuity equation and p = ¢ gives rise to the Euler equation. However,
since V, T" = 0 is a covariant equation, the continuity equation and the Euler equation
will also be covariant and we have (Amendola & Tsujikawa, 2010a)

p=0 = A+ 3H(E —w)A = —(1+w)(0 + 3P") (4.28)
p=i = 0+ [H1-3w)+ ] 0=V (£LA+ D), (4.29)

where A is the density constrast (4.1) and 6 = ik - v is the velocity divergence. These
equations describe the evolution of relativistic fluids on an expanding background. If a
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non-relativistic fluid is being studied, the equations simplify due to w = 0 and on a static
background H = 0. In CLASS, these equations are used as ‘short-cuts’ when solving the
structure formation equations (4.25) and (4.26) which also allows a cross-check of whether
the finite differencing schemes produce energy or matter due to numerical inaccuracies.
In this section, we have taken special care to describe the gravitational perturbations
of the spacetime through 6G*”. The perturbed Einstein equations then also need a
perturbed energy-momentum tensor. Here, we have used a macroscopic definition of
the energy-momentum tensor (4.16). This may however be an insufficient description if
particle interactions have to be modelled more carefully. In the following, we describe how
perturbations 07" can be calculated from kinetic theory.

4.2 Perturbations of the energy-momentum tensor from
microscopic physics

Hydrodynamics of fluids is an effective theory, gained from kinetic theory by averaging
over phase space cells. In an ideal fluid, the mean free path between collisions is Agee = 0.
However, we will later study the cosmic microwave background, which was released exactly
because the mean free path of photons suddenly became Age. > 0. Therefore, prior to the
CMB release, there must have been a transition phase where the mean free path began
to increase, and in this phase, the photons can no longer be described as a fluid. Let us
therefore go back to kinetic theory at this point.

We imagine an ensemble of particles, whose trajectories through phase space are described
by some setup-specific Hamiltonian equations of motion. We introduce coordinates x* and
denote in this section by an overdot @#, their derivative with respect to proper time s. The
canonically conjugate momenta p* are then

_ OL(aM, 3")
S Ogm
where L is the Lagrange function of the ensemble.

The relativistic phase space is spanned by the seven (x#, p*). The zero-component p° of the
momentum is not an independent phase space coordinate, since the particles must obey

G (2)p'p” = —m?. (4.31)

So if the particles live on a spacetime M, and we introduce coordinates x and the tangent
space T'M of the spacetime, then the constraint (4.31) restricts the particles to the seven-
dimensional subspace (Durrer, 2008)

P, = {(z,p) € TM|g(z)p"p” = —m?}, (4.32)

Py , (4.30)

which is called the mass shell. Particles of different masses m are confined to different mass
shells P,,,. If T, M is the tangent space at a fixed x, the fibre of the mass-bundle is then
(Durrer, 2008)

Pp(z) = {p € TuM|gu (2)p!'p” = —m?}. (4.33)
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The evolution of the ensemble can be described by the evolution of a phase space distribution
function f(z*,p'), which shall describe the probability with which certain position- and
momentum states in phase space are occupied at a given time. The invariant measure du
of probability in phase space can be constructed from the invariant measure |g|d*zd*p by
multiplying it with the delta-function 20p(g,,p"p” + m?) in order to restrict it to the mass
shell (Durrer, 2008). The factor 2 will disappear by simplifying the delta function via

dp[h(z)] = Z ‘5}5((2))’ with roots h(z;) = 0. (4.34)

Expanding the mass shell constraint as
Splguwp!p” + m?] = dplps + 2p0(90ip’) + 9P’V +m?), (4.35)

and defining that Py(z, p) shall be the zero component of the four vector p for which the
argument of the delta function vanishes, the delta function reduces to

op[Fo(z, p)]

2| Po(,p)|

The invariant measure on the seven-dimensional mass shell is then
du = 19126p(gup"p” +m?)d*zd"p

_ op[Po(z,p)] 4,04
= By py TP (437)

~ lgld'z \/lgld®p
|P0(C(],p)| ‘

In the last line, the transition to the seven-dimensional mass shell by integrating over p°
has been made.

For Einstein’s field equations, we need an energy-momentum tensor. On the microscopic
level, this is the second moment of the phase space distribution function (Durrer, 2008)

™ (z) = /P ( )Mp”p”f(wap)d?’p. (4.38)

dplgup!'p” + m? = (4.36)

Consequently, perturbations of the energy-momentum tensor can be calculated from a
perturbed phase space distribution function and then be plugged into the perturbed Einstein
equations (4.25). We therefore have to study the evolution of a perturbed phase space
distribution function.

4.3 Evolution of the phase space distribution function

The Liouville equation states that the total time derivative of the phase space distribution
function has to vanish; in a relativistic setting, the proper time s is meant and we have

d

gf(x,p) = 0. (4.39)
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As the system evolves in time, the probability with which different phase space cells dz#dp’
are occupied, changes. Including also the implicit time dependences, this expands to
(Durrer, 2008)
ozt of  op' Of
ds Ozt * ds Op'
0
8p’1 ;=0
where the derivative with respect to p° is left out, since we operate on the mass shell.
The external forces, under which the phase space distribution function develops, enter the
Liouville equation through the derivatives of the conjugate momenta p. However, General
Relativity describes gravity not by a force, but by the curvature of spacetime. In the
generally relativistic setting, we therefore have to relate the conjugate momenta to the
spacetime curvature, which is achieved as follows: given some metric g,, that solves the
Einstein equations G* = 87G'T*", the Lagrange function of a freely falling particle in this
spacetime is

d
7]‘7:
ds (4.40)

—[ﬂ%m+pi

Lz, i) = %gu,,(x)x'“x'”, (4.41)

where m is the mass of a particle, if it has one, or in case of a massless particle, some
arbitrary constant that does not affect the equations of motion.
The Euler-Lagrange equations are

d oL oL
I (4.42)

For the Lagrange function (4.41), the Euler-Lagrange equations yield (Straumann, 2013)
1
ja+§fﬁwww—%mﬁﬂﬁzo (4.43)

The prefactor of ##&" is an oddly written Christoffel symbol that can be identified if the
summation over all ;4 and v is carried out explicitly. Consequently, the Euler-Lagrange
equation of motion for the freely falling particle is (Straumann, 2013)

i+ T9,it" =0 (4.44)

which is the geodesic equation. From the definition of the conjugate momenta (4.30), we
find for the freely falling particle
P = mat (4.45)

and if we finally insert this into the geodesic equation, we find the derivative of the conjugate
momentum to be (Durrer, 2008)

mpt = —T* p*p”. (4.46)

rvo

We can now insert this p* into the Liouville equation in order to include gravity (Durrer,
2008)

7 v a
pro, —T,,p"p

u éhifzo (4.47)

34



where we have also replaced mz#* by p* in the first term.

The Liouville equation describes particles for which collisions can be neglected. It can be
specialized to an FLRW-universe by plugging in the Christoffel symbols of the FLRW-metric
and by demanding that the phase space distribution function must respect the symmetry
assumptions of FLRW, i.e. f shall only depend on the absolute momentum, but not its
direction. The Liouville equation for the FLRW-metric then shows that the phase space
distribution function of photons adapts to expansion only by redshifting the momenta of the
particles under consideration. The reason is, that if photons were in thermal equilibrium
in the early Universe, then their phase space distribution function was the black-body

spectrum
1

= Sl 1
where p is the absolute value of the comoving momentum, and hence ap is the physical

photon energy. A chemical potential has been omitted as supported by observations. For
neutrinos, the distribution function is a Fermi-Dirac distribution,

(4.48)

1
~exp(ap/T) +1°

(4.49)

For both distributions, the expansion redshifts the momentum, which can be absorbed into
a redefined temperature

Ainj

T(a) = = =T, (4.50)

such that the black-body spectrum stays a black-body spectrum and the Fermi-Dirac dis-
tribution stays a Fermi-Dirac distribution, only the temperature changes. After decoupling,
when the particles under consideration cease to be tightly interacting, this ‘temperature’
gets detached from its thermodynamical definition in the previous equilibrium state, but
stays the parameter that uniquely defines the distributions (Durrer, 2008). If collisions
which might bring a distribution out of thermal equilibrium during a decoupling process are
neglected, and only the evolution in a homogeneously expanding universe shall be studied,
then it is sufficient to parameterize the evolution of the phase space density as f = f(v),
where v = ap is the redshift corrected momentum.

If particles have a non-vanishing cross section and collide, the exchange of momentum during
a collision, as well as the divertion of the particle propagation directions, will additionally
affect the evolution of the distribution function. This can be taken into account by adding
a collision term to the Liouville equation. Under the assumption that only 2-body collisions
are relevant, and that there is no correlation in the position of particles, the Liouville
equation can be replaced by the Boltzmann equation (Durrer, 2008; Bartelmann, 2013)

d - - df+(£€,p) df,<£li',p)
o =

(4.51)

where df, /dt denotes the particles being scattered into the phase space fi(x,p) per unit
time, and f_(x,p) denotes the depopulation of phase space cells due to collisions. The

35



exact details of the collision term C[f] depend on the nature of the particles and anisotropic
differential collisional cross sections are common. For example for photons, the main
scattering process is Thomson scattering off electrons, which is highly anisotropic and also
polarization dependent.

In the context of structure formation, we are interested in how the phase space distribution
function develops small perturbations, being exposed to a slightly perturbed background
metric. If we denote background quantities by an overbar and make the ansatz f =
f(v) + F(z*,v,60,¢) and re, = fﬁy + 6I',, where 61", results from perturbations of the

p
metric, then to first order the perturbed Liouville equation is (Durrer, 2008)

zzaf_ ) /J,l/af

P'Ouf —T),p"p

@pi ;wp p 87271 =0. (452)
The solution of the perturbed Liouville and Boltzmann equations quickly becomes technical,
especially because the background-perturbation split is gauge dependent, and because the
details of the solution differ between the individual particle species, depending on whether
they are massive or massless, and depending on their collision term. The usual CMB reviews
therefore omit these technicalities completely. However, the upcoming chapter 7 depends on
one of these details, so let us describe the general procedure of how the perturbed Liouville
equation (4.52) or the Boltzmann equation can be solved.

The motivation to solve (4.52) is two-fold: On the one hand, the CMB is composed of
photons, and the perturbations in the phase space density of the photons are responsible
for the observed CMB temperature fluctuations. We therefore need to derive a theoretical
prediction of the CMB power spectrum from (4.52) together with a collision term for
Thomson scattering.

On the other hand, all particle species couple to the metric, and therefore, the perturbations
of all other particle species will influence the perturbations of the photons via the Einstein
equations. These depend on the perturbed energy-momentum tensor and we know that
for each particle species, the energy-momentum tensor is on the microscopic level related
to the particles phase space density by the moment (4.38). Therefore, (4.52) has to be
solved for all other particle species as well, in order to get the time evolution of their
energy-momentum tensor and couple them gravitationally to the photons via Einstein’s
equations.

Let us therefore describe the solution of the perturbed Liouville or Boltzmann equation.

4.4 Solving the perturbed Liouville or Boltzmann equa-
tion

Following Durrer (2008), the following equations are derived in the longitudinal gauge,

however, the sign convention of the Bardeen potentials ® and ¥ from Amendola & Tsujikawa

(2010a) will be used. As in the upcoming chapter 7, we will restrict ourselves to scalar
perturbations only.

36



The FLRW-metric with scalar perturbations in this convention is (Amendola & Tsujikawa,
2010a; Durrer, 2008)

ds® = —a’(n)(1 + 20)dn” + a*(1 + 2®);;da’da’, (4.53)

where ;; is the metric of the spatial hypersurfaces. From this metric the perturbed
Christoffel symbols can be derived by (4.9).

For the metric (4.53), the perturbed Christoffel symbols are functions of the gravitational
potentials ¥ and ® and therefore depend on the perturbations of all particle species such that
they are gravitationally coupled. Additionally, they also depend on the Hubble expansion
of the background solution.

We had dissected the phase space density into f = f(v) + F(a*,v, 6, ¢), where v = ap, is
the redshift-corrected momentum. If the phase space density is uniquely defined through a
temperature, as is the case for the Bose-Einstein distribution (4.48) and the Fermi-Dirac
distribution (4.49), then the fluctuations F'(x*,v,0,¢) can be translated into fluctuations
of this temperature.

To stick to the notation of Durrer (2008), we transform the fluctuations onto

F =F + ®v(df/dv), (4.54)

where the correction ®v(df/dv) originates from the gauge-invariant formulation of pertur-
bation variables in Durrer (2008), but else does not affect the physical interpretation of the
CMB power spectrum since it only contributes a non-measureable monopole.

The perturbations F(z#, v, 0, ¢) still carry the full information about the momenta. For
the CMB, we are however only interested in how spatial variations of F evolve with time 7,
and how they map onto the sky seen in direction n. We therefore write z* as (n, ) and
drop the information on the momenta by integrating them out (Durrer, 2008)

M(n,z,n) =

a*p

/ v3 Fdv, (4.55)

where p is the mean density. For photons, where the temperature is the only variable in
the distribution function, these perturbations are the temperature fluctuations

M(n, @, n) = (Sg(n,w,n). (4.56)

If there exists a collisional integral, it is also integrated over momentum
m s (dfy  dfo) 5
_ — 7 14d 4.57
C[M] a4p/v (dﬁ a v, (4.57)

where we see from the prefactor 1/(ap) that the collisions become less frequent with
progressing expansion.

The Liouville or Boltzmann equation of the full phase space distribution function f can
now be translated into a differential equation for the reduced phase space function M,
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which we do not need to cite here since it is still the Liouville or Boltzmann equation.
Differential equations are easier to solve in Fourier space, since a Fourier transformation
turns differential operators into algebraic ones. Therefore, one conventionally dissects
M(n, x,n) into spatial Fourier modes, keeping the time dependence explicitely

M(n, k,n) = /dgxeikw/\/l(n,:c,n). (4.58)

Likewise C'[M)] is also dissected into Fourier modes. The transformation to Fourier space has
the further advantage that in the linear growth studied here, different Fourier modes evolve
independently of each other. This gives the possibility for approximations which is heavily
used in the Boltzmann solver CLASS (Blas et al., 2011) because sub- and superhorizon
modes evolve differently.

The CMB is however observed on the sky, and it is therefore easiest to not dissect it into
plane waves, but into spherical harmonics instead

AT

T(mo, n,to) = Y mYim(n), (4.59)
l,m

and the usual coefficients C, are

<alm, a7m> = Cg&g@/émm/. (460)
Both, the Fourier modes e~%*® and the spherical harmonics Yj,, are a complete set of
orthonormal basis functions. A convenient bridge between these two sets is provided by a
third orthonormal set, the Legendre polynomials P, which can be analytically expanded in
spherical harmonics and Fourier modes alike

47 ¢

s o)
_ (4.61)

e =N (20 + 1)ijo(kt) Po(pa).

=0

Py(n-n')

In order to approach the CMB spectrum C,, we therefore expand the Fourier modes
M(n,k,n) in Legendre polynomials. We call the direction cosine to the line of sight
w=k-n/|k|, such that M(n, k,n) = M(n, k, ) and since p € [—1, 1], the expansion in
Legendre polynomials is now possible, leading to (Durrer, 2008)

Mt Je, ) = 326+ 1)(=0) M(t, k) Po(p). (4.62)

The expansion coefficients are then

1

Mo k) =5 [ aurn. ko) Pi(w) (4.63)

-1
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As the perturbations grow, the M, will develop a power spectrum My, defined by (Durrer,
2008)
(Mo(n, k), Mo (n, k")) = My(n, k) (21)°5° (k — k') S0 (4.64)

where §%(k — k')dy reflects that the different Fourier modes evolve independently, and the
different /-modes are also orthonormal.
The power spectrum of the CMB of course mixes the different k-modes, so the k-dependent

power spectrum M, relates to the CMB power spectrum on the sphere by the integration

(Durrer, 2008)

(QZQ/H%%M%) (4.65)

™

So we see that in order to calculate the CMB power spectrum, we need to solve the evolution
equation for the different M,. For photons, this is given by the hierarchy

. /+1
/\/l+l~cL

14 ) ) 1 . 1
¢ 20 + 1Mg+1—k7Me71+lng = (5@05/\404—5(5@1[—k(@+‘y)+ﬁv(b)]+ﬁro5ggM2,

20+ 1
(4.66)

where V® is the velocity of the baryons, and K(ty,ta) = fttj aorn.dt is the optical depth
that includes the Thomson cross section o7 = 6.65 - 1072°cm? for collisions between photons
and electrons. The factor n. is the number density of free electrons that decreases with
expansion and then drops rapidly during recombination.

For neutrinos, there is no optical depth and if we treat them as massless relativistic particles,

the hierarchy is (Durrer, 2008)

. k —k

where N is the neutrino equivalent of M,. Equations (4.66) and (4.67) are nothing less
than the Boltzmann equation and the Liouville equation, only heavily disguised by the
consecutive transformation into Fourier space and then into P, space. The physics is however
the same as discussed in Sect. 4.3 and especially, since it is a differential equation, initial
conditions have to be specified, for which we use an initial power spectrum as generated by
inflation.

Notice that (4.67) is a hierarchy: different multipoles N, couple to their neighbouring
multipoles Ny and N,_i, if the latter exists. This coupling between the multipoles
describes the free-streaming of the neutrinos, which are treated as collisionless in the standard
approach. In chapter 7, we will modify this hierarchy in order to replace freestreaming
neutrinos by a relativistic fluid.

This section has served a twofold purpose: first, we saw how perturbations of an energy-
momentum tensor can be derived from kinetic theory if the hydrodynamical, or macroscopic
description of a matter species via its Lagrangian is insufficient. We have also seen, why
perturbations of the phase space distribution are observable as temperature fluctuations in
the cosmic microwave background (4.60).

Next, we derive the Newtonian limit of structure growth, as this applies to dark matter on
subhorizon scales in the late Universe, which we will need for studying weak lensing.

39



4.5 Newtonian limit and fluid approximation

Above, we have studied cosmological structure formation in a fully relativistic setting.
Clearly, on scales where spacetime curvature can be neglected, this will reduce to a
Newtonian limit. But why should it be possible to treat even structures of cosmological
extent still within the Newtonian approximation, as done in simulations like EAGLE
(Schaye et al., 2015) or the Millenium simulations (Boylan-Kolchin et al., 2009; Springel,
2000)? The reason is that although General Relativity provides a consistent treatment and
a theoretically sound framework, the equations for the Universe’s expansion and its forming
structures can also partly be constructed from Newtonian gravity and hydrodynamics — if
one is willing to add in by hand correction terms to account for relativistic effects and if
one ignores some problematic theoretical interpretations of the Newtonian treatment as
described below.

Let us review how the Friedmann equations (1.13) without a cosmological constant can be
‘derived’ from Newtonian gravity, with the following toy model.

The observed Hubble flow tells us that galaxies escape radially from us today. We can then
assume spherical symmetry and at first order model the Universe as a homogeneously filled,
expanding and self-gravitating sphere.

The equation of motion of a test mass m (e.g. a galaxy) on the surface of a sphere of radius
r and mass M is then

where p is the mass density. We now add in by hand that in a relativistic treatment, the
pressure of a fluid contributes an energy density p, = 3p, leading to
GMm e

. 0+ 30) (4.69)
Furthermore, let us assume that such an isotropically expanding sphere will be subject to
adiabatic cooling. We had seen in Sect. 1.2 that the two Friedmann equations automatically
contain adiabatic cooling, and that the second Friedmann equation can be replaced by
the first law of thermodynamics. So please note that assuming adiabatic cooling here is
equivalent to already taking one of the two Friedmann equations as given. Denoting the
internal energy as U = %ﬂr3p, where the pressure is left out, and the volume as V', we have

dU + pdV = 0 = 3r¥ip +r°p = 3pr’r. (4.70)

Combining (4.69) and (4.70) we find (Longair, 2008)
8rG
2% = ”T(wp +12p), (4.71)

where 277 is the time derivative of 72 and the term in brackets on the right hand side is the
time derivative of pr?. Hence, the time integral of (4.71) is

o\ 2
<r> _ 87er+cor;st (4.72)

r 3 r
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which is the first Friedmann equation with an integration constant which cannot be used as
a cosmological constant, because it has the wrong scaling with r. Instead, this constant
represents the spatial curvature.

We therefore see that a hand-waving construction of the Friedmann equations is possible.
However, the result of this derivation should be interpreted exactly within the setup of its
derivation: If we assume the initial conditions were set by some explosion-like mechanism,
then it describes the peculiar motion of particles on a static background which evolve
under Newtonian gravity. This is not a valid derivation of the cosmological Friedmann
equations: since we measure escape velocities larger than the speed of light, we know that
the escape results from the background expansion, instead of a superluminal galaxy motion
with respect to a static background. Furthermore, the explosion-like mechanism that set
the initial conditions, should not be confused with the Big Bang: the mentioned explosion
would take place at a given point in time and at a given special spatial point on a static
background. In contrast, the cosmological Big Bang corresponds to the point in time where
all physical distances are compressed to a singularity because the scale factor goes as a — 0.
Consequently, the cosmological Big Bang is not a point in space, it is a contraction of
space, and in the cosmological standard model, the Big Bang has happened today at each
point about 14 billion years ago.

Notwithstanding these inconsistencies of interpretation, we have nonetheless an equation
that describes the escape of galaxies. Similarly, a semi-Newtonian derivation of cosmological
structure formation exists. The late-time growth of cosmic structures is often modelled with
numerical simulations which treat the cosmic matter fields as perfect fluids that develop
instabilities under Newtonian gravity. In chapters 5 and 9, we will use a growth function
that results from such a treatment, so a presentation of it seems adequate.

We begin by taking the Newtonian limit of gravity and replace the tensorial Einstein
equations by the Poisson equation

V2p = 4nGp. (4.73)

Next, we derive the non-relativistic limit of hydrodynamics from the kinetic theory presented
in Sect. 4.2. Working with a fixed Newtonian background, the determinant factor v/—g¢ in
the energy-momentum tensor (4.38) is identical to unity. The transition from microscopic
theory to fluid dynamics then starts by taking moments of the phase space distribution
function f with respect to p* in order to lose the microscopic information on the p*. The
first moment is the current (Bartelmann, 2013; Durrer, 2008)

JH(t, ) Z/Ciff(t,w,p)p“z (1,v) (4.74)

where v is the velocity and the energy is £ = F,. The second moment of f is the
energy-momentum tensor on the static background

v d3p (L, V
T = ?Of(t,w,p)pp- (4.75)
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Before, we had seen the conservation law V, 7" = 0 in a general relativistic setting. If
we had not restricted ourselves to FLRW-Universes, we would also have encountered the
conservation law for the current, V,J* = 0. Depriving the covariant derivative V of a
flexible spacetime, it reduces to V,, — 3, such that the (special)-relativistic fluid equations

read
0,J" =0, and 0,7" =0. (4.76)

Both of these conservation laws arise on the microscopic level as momentum integrals
of the Boltzmann equation: upon introduction of a global coordinate system with x =
(ct,x', 2%, 23), and the dot being the derivative with respect to the coordinate time ¢, the
Boltzmann equation (4.51) simplifies to (Bartelmann, 2013)

817

a = C[f]. (4.77)

The phase space distribution function f in (4.77) still carries the entire information on the
momenta — however, hydrodynamics is only interested in what a fluid does when observed
on a macroscopic level, i.e. how its velocity field, its density and its pressure evolve, and
consequently, the microscopic information on the individual momenta can be marginalized
over.

Let us begin by taking momenta over the collision term

/ Clf]d%p, / Clflp"dp, (4.78)

where C[f] describes the population and depopulation of phase space cells due to scattering.
If the collisions are elastic, then they will conserve energy and momentum and particle
number. Hence, if only enough particles are averaged over, then it is true that there is a
redistribution of energy, momentum and particle number but the net change is zero due to
the conservation. The integrals (4.78) are then zero. The defining property of a perfect
fluid is now that there exist microscopic fluid elements, which compose the entire fluid, and
which consist internally of enough particles, such that averaging over them the collision
integrals (4.78) vanish. The collision term of collisionless dark matter vanishes by definition.
The equations of hydrodynamics now follow by taking moments of the Boltzmann equation.
The mean is given by

Josans [l ape v L [einw (4.79)

which is 9,,J%. In the non-relativistic limit this is the usual continuity equation (Bartelmann,
2013; Longair, 2008)
Op+ V- (pv) =0. (4.80)

From the first moment
/&ef p“d3p+/sb§£ p“d3p+/pg£ p'd’p = /C[f] p'd’p, (4.81)
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follows 0, T* = 0, and if we take the non-relativistic limit, this produces the Euler equation
for momentum conservation (Bartelmann, 2013; Longair, 2008)

1
v+ (v-V)v= —;Vp — V. (4.82)

The above demonstrates how generally relativistic structure formation with a microscopic
description of the energy-momentum tensor, can be reduced to a hydrodynamical description
under Newtonian gravity. The cosmic structures will then be fluid instabilities that grow
under gravity.

4.6 Newtonian structure formation

For cosmological structure formation equations(4.73,4.80,4.82) are applied to the cosmic
matter densities. One then introduces the usual splitting

p=p+ap,
=p+ op,
p=pwop (4.83)
¢ = ¢+ 00,
v =0+ 0v,

where background quantities are denoted by an overbar. These backgroud quantities evolve
with the FLRW solution and due to homogeneity Vp = Vp = 0 on hypersurfaces of constant
cosmic time. The first order perturbations of the continuity equation (4.80) is then (Longair,
2008)

A=—-V.jv, (4.84)

where the dot denotes the derivative with respect to cosmic time. The perturbation of the
Euler equation is (Longair, 2008)

1
5 + (6v - V) = —EV(Sp — V¢ (4.85)

Finally, the linearly perturbed Poisson equation is (Longair, 2008)
V35¢ = 4rGdp, (4.86)

which is a very nice result, since in Newtonian gravity, the superposition principle holds
exactly.

Let us consider the meaning of these equations. In cosmology, we actually have to work on
an expanding background, but the non-relativistic hydrodynamics employed here uses a
static and absolute background. This means all gradients V are taken with respect to what
would in cosmology be called physical coordinates. We can then introduce the expanding
Universe by hand, if we transform to comoving coordinates. We set

x = a(t)r, (4.87)
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where 7 is in comoving coordinates and « is in physical coordinates. The gradients V in
(4.84,4.85,4.86) are then V =V, = éVT. Additionally, the velocity v splits into

v=x =ar +ar

4.88
= v+ v, ( )

meaning that the background flow v = ar is given by the Hubble flow at a fixed comoving
coordinate r, and that there exists an additional migration along comoving coordinates
0v = ar, which are the peculiar velocities, and we denote them as dv = au.

This reparameterization allows us to include the expansion of the Universe by hand and
the comoving Euler equation then follows to be

1

w+2Hu = —;Vﬂip — = V,d¢. (4.89)
pa? a?

For adiabatic perturbations, we have ¢ = dp/dp at constant entropy. The continuity
equation (4.84) and the comoving Euler equation (4.85) can then be combined to the
usual wave equation by taking another time derivative of the continuity equation and the
comoving divergence of the Euler equation, and then eliminating V, - v’ that appears in
both equations. This elimination produces a differential equation for the evolution of the
density contrast A (Longair, 2008)

. . 2
A+ 2HA = %V?A + 4rGpA. (4.90)

This result may appear suprisingly simple in comparison to the generally relativistic
description of structure formation. The simplicity results however mainly from the fact
that using a scalar Newtonian potential is indeed a massive simplification in comparison to
a fully tensorial description of gravity as in GR.

The wave equation (4.90) is solved by Fourier modes

A o exp(ilk. - T — wt]) (4.91)

such that the comoving divergence V2 is replaced by a multiplication with the comoving
wave vector k., producing (Longair, 2008)

A+ 2HA = A(4nGp — k>c?), (4.92)

where k. = ak. We therefore see that the growth of the density contrast A is determined by
the equation of an oscillator, damped by the cosmic expansion and driven by the gravitational
attraction 4rGpA of already overdense regions. The term —k?c?A originates from the
pressure; obviously it is able to counteract the gravitational attraction, meaning that fluids

with a pressure do not enhance primordial density contrasts as easily as pressureless fluids
do.
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In fact, the growth of cosmic structures can be understood better, if we reduce (4.92) to an
undamped harmonic oscillator by excluding the expansion term 2HA’, corresponding to a
static Universe. The eigenfrequency of the oscillator that solves the ansatz (4.91) is then

w? = 2k* — 47Gp. (4.93)

Obviously, if w is real, the ansatz (4.91) describes an oscillation in time, where the sign of w
determines whether the phase rotates clockwise or counterclockwise in the complex plane.
This happens if w? > 0, i.e. ¢2k? > 47Gp meaning that the pressure of the fluid provides
a sufficiently strong restoring force in order to support the fluid against gravitational
collapse. This is e.g. true for the baryon-photon plasma in the pre-CMB Universe and
these oscillations have imprinted themselves onto the CMB power spectrum.

On the other hand, if the pressure is smaller than the gravitational attraction, then w is
imaginary, which cancels the imaginary prefactor of the phase in (4.91). We can then have
A o exp | AJt, where |A| is the growth rate. The positive solution then corresponds to an
exponential growth of the structures.

Of course, such an exponential growth never occurs in the real Universe: first of all, as soon
as the growth becomes non-linear, equation (4.92) is not an adequate description anymore.
Secondly, our Universe expands, such that the eigenfequency (4.93) evolves with time as p
reduces with expansion. Additionally, the Hubble-drag term 2H A’ damps the growth of
structures, leading to an algebraic growth instead of exponential instability. For example,
during matter domination, the growth of dark matter follows D, o a.

In the extreme case of a vanishing pressure, w? will always be negative. This is true for
pressureless cold dark matter, which is the reason for why it forms structures much more
efficiently than baryons whose structure formation is hindered by a pressure.

Obviosuly, whether a fluid that possesses some pressure oscillates or not, also depends
on the scale A oc k71, indicating that collapse can set in on the largest scales, even if the
smallest scales are still supported by pressure!.

The function D, (t) that is the growing-mode solution of the second-order differential
equation (4.92) is usually called growth function. As the expansion of the Universe influences
the structure growth by providing the Hubble drag, and as the expansion depends via
Einstein’s equation on the matter content of the Universe, we see directly that the shape
of D, carries information about the cosmological parameters. Mapping the growth of
structures therefore provides a second window onto the cosmological parameters, apart
from geometrical probes such as Supernovae of Type Ia and BAOs.

Let us finish this section with a warning: The result of such a Newtonian calculation cannot
be sensitive to horizon- and retardation effects. This is especially important for structure

'The wavelength that separates growth and oscillation is called the Jeans wavelength and is known e.g.
from the context of star formation. There, a similar analysis is carried out that describes why a molecular
cloud can collapse under its self-gravity if it loses enough thermal energy through radiation. This collapse
is facilitated if the molecular gas has a high metallicity, which enable a strong radiative cooling and thereby
reduce the pressure very efficiently until collapse sets in. In cosmology, such radiation processes are not the
dominant trigger of collapse. Instead, the scaling with &, the Hubble drag and the evolution of w with the
expansion are the dominating effects.
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growth in the early Universe, where the standard model predicts that with the progress of
time, modes re-enter the horizon that had previously been driven out of the horizon by
inflation. Such effects can be correctly accounted for by solving the full perturbed Einstein
equations. A typical procedure in modern cosmology is to run a Boltzmann solver like
CLASS or CAMB in order to model the early structure formation, and to let this code
calculate a transfer function T (k, z) that translates an initial inflationary power spectrum
into a power spectrum at lower redshift of approximately z &~ 100 or z ~ 10. Until z ~ 100,
the horizon has increased to such an extent that modelling structure formation on the
observable scales with the Newtonian approximation seems to be sufficiently precise.
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Chapter 5

Cosmic shear

We have seen that the growth of cosmic structures depends on the cosmological parameters.
In the late Universe, the dominant clustering matter component is dark matter, whose
power spectrum can be calculated from the formalism presented in chapter 4. However, as
dark matter does at best only emit a tiny amount of radiation when decaying into standard
model particles, the dark matter fields of the Universe cannot be directly observed.

Due to their gravity, overdensities of dark matter however attract baryons. It can therefore
be expected that the baryons in our Universe trace the dark matter web. If the baryonic gas
cools enough when falling into the dark matter potential wells, galaxy formation can set in.
Therefore, observing galaxies allows to infer the distribution of the underlying dark matter.
This inference is however complicated by the issue of biases: what triggers galaxy formation
is not yet understood in all detail, but it is clear that the galaxies form stochastically along
the overdensities of the dark matter web, tracing it in a biased way. The hope is that this
bias will be better understood in the future, such that it can be subtracted from data or be
included into the total uncertainty on the data.

We can therefore assert that mapping galaxies will allow to infer the dark matter power
spectrum. One way to achieve this, is via galaxy clustering analysis, e.g. (Gil-Marin et al.,
2015) for which the issue of biases is quite important. Another mechanism that is less
sensitive with respect to biasing is weak lensing on cosmic scales, also called cosmic shear.
The following sections shall describe this mechanism in more detail.

5.1 Deflection in gravitational potentials

Light of distant galaxies needs to propagate through the inhomogeneous gravitational
potentials between its origin and the Earth. As light propagates along geodesics and as
geodesics adapt to gravitational fields, the inhomogeneity of the gravitational potentials
deflects lightrays and imprints itself onto the images of the distant galaxies, leading to
magnification or demagnification and distortion. This effect is known as gravitational
lensing. The observed deflection will build up continuously during the photon propagation,
such that weak lensing is an integrated effect. Typically, a magnification or distortion of
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about one percent builds up on cosmic scales (Kilbinger, 2015).

In this section, it will be handy to denote the speed of light in vacuum explicitely by c¢. We
will use a coordinate time ¢, and a spatial vector . We will additionally assume there is
no gravitational slip, such that the Bardeen potentials are related by ¥ = ®.! If a lens is
confined to a spatial extent that is much smaller than the Universe’s curvature radius, then
its metric can be approximated by the post-Minkowskian line element

29 29
ds® = —c? <1 + 2) dt* + (1 — 2) dax?. (5.1)
c c
Light rays that pass this lens, run on the light cone of the metric and have ds = 0. If we
additionally demand that ®/c* < 1 and Taylor expand to first order, then we find from
ds = 0 that there exists an effective speed of light that is smaller than the vacuum value

(Narayan & Bartelmann, 1996)
20
=c (1 + ) : (5.2)

Of course, the light does not actually slow down when passing the potential ®. Instead,
clocks go slower in the vicinity of masses — but since we used a coordinate time t, which is
adequate for a distant observer, we are insensitive to this and instead see in our coordinates
an effectively lower speed of light.

We can then associate an effective index of refraction n with the lens, defined by ¢ = ¢/n,
leading to (Narayan & Bartelmann, 1996)

c 20
to lowest order in ®/c2.
As demonstrated by Perlick (2000), Fermat’s principle carries over to the problem studied
here, such that the light rays will follow paths that extremize the total propagation time
7 = [ ¢dt. The extremization 67 = 0 then leads to the deflection angle

5 2
a=-> / V. ®d), (5.4)

where d\ is the line-of-sight integration and V; ® that component of the gravitational
potential’s gradient that is perpendicular to the light path, meaning V| is a two-dimensional
operator. Usually, it is sufficient to employe Born’s approximation and integrate along a
radial coordinate wy, instead of the perturbed light path .

For suitably aligned, and sufficiently compact and strong lenss such as galaxies or galaxy
clusters, the extremization 67 can often lead to multiple solutions, depending on the

If ® # U is explicitely kept in the lensing formalism, and if additionally to lensing the motion of solid
particles is studied, then the presence of gravitational slip can be measured. This is for example possible
on lensing galaxy clusters.
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symmetries and the structure of the potential ® and the direction of the initially incident
light ray. Consequently, multiply lensd sources are known e.g. the famous Einstein cross
(Dai et al., 2003). For lensing by the cosmic large-scale structure, such multiple images do
not appear, and one speaks of weak lensing.

The deflection angle of a light ray can only be determined when the initial position of the
source is known, which is typically not true. What is measurable however, is the differential
deflection of neighboring light rays. We interpret the deflection angle as a map on the
sphere, introducing spherical angles @ = (6, ¢), and investigate variations of the deflection
with 8. Note, what this implies: as & is a gradient field by (5.4), it cannot have a curl,
V x & = 0. The weak lensing observables derived in the next section can therefore only
have E-modes, no B-modes.

5.2 Convergence maps

We have seen that the angular diameter distance D, is defined such that if an object of
physical size d subtends the angle Af, then D,,,A0 = d. The weak lensing formalism is
easier to derive in comoving angular diameter distances w, defined by

Dong(2) = a(z)w(z). (5.5)

We can then transform the gradient V, perpendicular to the line of sight to a gradient
with respect to the spherical angles (6, ¢) by
1
V,=—Vy, (5.6)
wr,

where wy, is the comoving angular diameter distance to the lens L that was responsible for
the deflection.
From the redshifts z, we can infer distances w(z) once we specify a cosmological model.
This distance information for source and lens is then incorporated into the so-called reduced
deflection angle (Bartelmann & Schneider, 2001)

Ws
(6, w,) — 22/ dwy =L | B0, wy], (5.7)
2 Jo Wy

where wy is the distance to the source, w;, are the distances to the lenss that lie between
observer and source and that are integrated over, and @ is the position on the sky where
the source is seen after it was deflected by a(8). Below, in the lens equation, we will see
that a is the deflection angle on the observer’s sky.

An isotropic focusing or defocusing of lightrays is described by the divergence of o and we
define

Vo - a(0,w) = 2k(0,w), (5.8)
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where £ is the convergence. From (5.7) it follows that a source at distance wy has (Bartel-
mann & Schneider, 2001)

K0, w,) = — /Ows i, (e ~ L)L ( > .9 ) O[Owy, wy), (5.9)

_I._
c? W ox3 013

where the derivative with respect to the angles on the sphere was converted into derivatives
with respect to the anguar separation @ via the small angle approximation x(0,w’) = w'6.
The focusing or defocusing of lightrays leads to a magnification or demagnification of single
sources and can already be of direct cosmological interest, if standardizable candles, such as
type-la supernovae, are investigated. Also, very faint sources can make it above the limiting
flux of a telescope if they are sufficiently magnified, which can allow to study extremely
highly redshifted sources.

For cosmology, the interest in sources is however usually limited to their property of letting
themselves be lensd — what is being studied intensively, are the statistical properties of the
lensing matter fields in order to probe the growth of structure.

From (5.9), we see that the 2-dimensional Laplacian (97 +d5)® of the gravitational potential
appears. If this were the 3-dimensional Laplacian, the Newtonian Poisson equation would
allow to substitute it by the density contrast, whose growth can be derived as in Sect. 4.
In order to achieve this, we use that a given lens is more or less effective, depending on its
position between source and observer: from (5.7), we see that if the lens is positioned very
close to the source, w; ~ wy, then it can barely deflect the source. Likewise, if the lens
is positioned very close to us wy, =~ 0, then the integral will again be approximately zero
and no deflection occurs. Consequently, only such lenss are effective that lie at a distance
0 < weg < wy, i.e. well in between us and the sources. More quantitatively, the efficiency
of a lens is modulated by the distance prefactor (ws; — wy)wy, in (5.9). This is a parabola
which peaks at wy, /2, such that lenss that lie half way between observer and source are
geometrically most efficient (Kilbinger, 2015).

If we imagine such an effective lens provides the gravitational potential ®“<(w), then we
would like to add its second derivative along the line of sight, 9?®™f, to (5.9). We can
safely do so, because this second derivative will be

Ws 92 FHWeff Weff Ws
/ O* Dkt () du — OPVett (w)
0

52 5 ~ 0, (5.10)

w=0

meaning it averages out along the line of sight (Bartelmann & Schneider, 2001). The reason
is that 0,®"" is a gravitational force, and the most effective lenss will be so far away, that
their gravitational attraction on source and observer can safely be neglected.

We can consequently add the term 9?®/9x3 to the two-dimensional Laplacian in (5.9), and
then exploit that the 3-dimensional Laplacian V2® is related to the cosmic density contrast
via (1.4)

3HZQ

2
d =
Vv 2a

A. (5.11)
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The convergence field x(6,w;) is then given by (Bartelmann & Schneider, 2001)
3H§QO /ws de (ws — wL)wL A[UJLH, ’LUL] .
0

2¢2 Wy a(wyg)

k(6,w,) = (5.12)
where the term A[w;0,wr] describes the growing structures as a function of their distance
wy, to the observer. The integral then includes the inhomogeneous matter fields in front of
the source plane which perturb the photon propagation.

Up until here, we have worked with sources at a single, fixed distance w,. In order to
include all galaxies in the Universe that can act as sources, the single-redshift convergence
k(0,w,) needs to be averaged over the source redshift distribution.

If p(z)dz is the number of galaxies in the redshift slice dz, then we can convert this into a
source-distance distribution G(w) by

G(wg)dws = S(2)p(z)dz. (5.13)

Here, S(z) is meant to be a selection function. It can either refer to all galaxies that made
it into the catalogue at all, or it can be a more complicated function. For example, it
could tag either blue or red galaxies. It could also fold in a redshift-dependent selection
function in order to split the galaxies into distinct populations which then allows weak
lensing tomography?. Widely spread selection functions for tomography are the Heaviside
function, leading to rectangular redshift bins, or
2
Lz~ 2) ) , (5.14)

1
S(z) = NI exp <_2A22

leading to Gaussian redshift bins. The convergence weighted by the source distribution is
then

7(0) = /0 M .G )k (0, w,). (5.15)

where wy;, is the maximum distance, given by the limiting flux of the observing instrument.
Conventionally, the above average is often also expressed in terms a weighting function

W (w) which is defined by

W (w) = / M GGl ) =Y (5.16)

w wS

which combines the geometrical efficiency with the number of lensd sources, and is there-
fore also known as lensing efficiency function (Kilbinger, 2015). In terms of (5.16), the
convergence as weighted with the source distribution is then (Bartelmann & Schneider,

2001)
3HgQO Wlim -
d
2c2 /0 wrW(ws) a(wr)

where we kept explicit that the averaged convergence depends on the chosen function G.

Rg(e) = A[U)L07UJL], (517)

2Tomography can only be achieved by partitioning the source distribution p(z)dz. All matter in front of
the sources will automatically act as lenss, such that they cannot be meaningfully binned.
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5.3 Convergence, shear and the lensing potential

The reduced deflection angle a from equation (5.7) is in general a complicated integral, as it
depends on the mass distribution of the lens. Its interpretation is however straightforward:
it is the amount by which the detected image of a source shifts due to intervening masses,
although the source actually lies at position 3, i.e.

B=6—0a0). (5.18)

This equation is known as the lens equation. Mapping between images and sources can
then be described locally by the Jacobian matrix

_ 98
00’

which includes a derivative of e and therefore describes in linear order the distortions of a
light bundle originating from B and being mapped to . In components, the Jacobian is

A(6) (5.19)

8041»
0)=10; — —|. 5.20
A®) = (8- 557) (5.20
The choice of the coordinates @ is arbitrary. Conventionally, one first introduces a lensing
potential ¢ defined by

a(6) = Vyi(8). (5.21)

This can be achieved by employing V| = w;'Vy in equation (5.7) and then using that
since Vy is perpendicular to the line of sight, it can be pulled out of the line of sight integral
such that the lensing potential follows to be (Kilbinger, 2015)

Ws
b(O.w) = 2 / dwy " B ,0, ). (5.22)
2 Jo wswy,
This lensing potential is the combination of all effects that determine the deflection of
lightrays that start from the source distance wy and are seen by the observer in direction 6.
As it contains the integral over the gravitational potential ® of the lensing mass distribution,
we see already here that for lensing by the cosmic large-scale structure, 1) will be a stochastic
quantity and it will inherit the power spectrum from the density fluctuations in the Universe.
In terms of the scalar lensing potential, the local mapping (5.20) reads (Bartelmann &

Schneider, 2001)
8%(9))

A6) = <5 00,00,

This mapping can be split up into a scalar contribution, by taking the trace, that then
describes the isotropic focusing or defocusing of the mapping. The remaining anisotropic
contribution after subtracting the trace from A is then a shear matrix.’

(5.23)

3This is completely analogous to calculating the pressure of an energy-momentum tensor from the trace,
and defining that the trace-less part is then the anisotropic stress tensor which leads to shearing forces.
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The trace of A is
Tr(A) = (2 — VX)) =2(1 — k), (5.24)

where
5(6) = ;v%(e), (5.25)

is the convergence due to (5.21). We decompose the Jacobi matrix as A = (1 — k)Z — T,
and consequently the shear matrix is

= (71 7 ) , (5.26)

Y2 —M

where the shear components are

. 1 (aw a%p)
1=35\ 303 = 522 |

2 \ 005 005 (5.27)

_ 0%
2= 50,00,
The Jacobi matrix is then
1 _ S s l—k—m —2
A=1-r)I-T= ( o 1 rat %) (5.28)

From the two tensorial shear components v, and 7, the shear

v =R+ (5.29)

can be constructed by taking the square root of the determinant of —I". While the two
shear components 7, and 7, still depend on how the coordinates @ were chosen, the scalar
shear 7 is independent of the coordinate choice and can therefore be regarded as a genuine
attribute of the lensd image.

Let us understand what shear and convergence do. We imagine a circular source 683
represented in polar coordinates

cos(a)

6B =B (Sm(a)> , (5.30)

such that a is the phase and |/ is the original radius of the source. The mapping of sources
03 onto images 06 is given by the inverse Jacobian

60 = A15p. (5.31)
For v = 0, we have

1 0
56 = (16” : ) 5B, (5.32)
1—k
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such that the mapping is a multiple of the identity matrix and the convergence only focuses
or defocuses isotropically but it does not distort. If there exists a shear 7, then the mapping
can best be worked out in the eigenbasis of A~!

Ay O
50::<(j A_)éﬁ, (5.33)

where the eigenvalues are Ay = 1/(1—kF ). We then see, that if we choose two orthogonal
axes in the intrinsically circular source, e.g.

p=(0): 2= () o

then these will be originally of equal length, but then be mapped onto
01 =A.B1, 0:=2X_p,, (5.35)

which means that the circular source gets distorted to an ellipse with semi-major axis
a = A;|f| and semi-minor axis b = A_|3|. We therefore conclude that the shear v of weak
lensing is responsible for distorting circular sources to ellipses, and the convergence increases
or decreases images.

The shear is the usual quantity that is being assessed in weak lensing surveys. The ellipticity
€ is defined in terms of the semi-major and semi-minor axes as

_a—b

=— (5.36)

and consequently, the ellipticity of an image gives away the shear at first order (Bartelmann
& Schneider, 2001; Kilbinger, 2015)

_>\+—)\7_ Y
TN 1-&

~ (5.37)

where the last approximation holds for k < 1 which is typically true for weak lensing. We
therefore see that if we have a resolved image of an intrinsically circular source, then we
can measure the ellipticity that it acquired by lensing from (5.36) and compare this to the
theoretical prediction (5.37). If the convergence « is known, the last approximation does
not need to be carried out; /(1 — k) is in any case the directly observable quantity and
also known as reduced shear (Kilbinger, 2015).

An observational complication arises because weak lensing catalogues typically use galaxies
as lensd sources, and galaxies are not intrinsically circular. Instead, their shapes vary
significantly, which leads to an intrinsic source ellipticity €, at lowest order. This has to be
added to the ellipticity induced by lensing (Kilbinger, 2015)

62&—1—65%7—1—65. (5.38)
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Observations indicate that the intrinsic ellipcities of galaxies follow rather well a Gaussian
distribution with standard deviation o ~ 0.2 (Kilbinger, 2015). One can then suppress the
intrinsic ellipticities by averaging over N galaxies, such that

O¢
a, N = .
VN
So for N — oo, the shot noise o, x of the intrinsic ellipticities vanishes, as the differently
oriented sources average out to a circular source. The signal-to-noise ratio is then

S 7

N o /VN’

As typical values for the shear v are in the regime of a few percent, one needs to average
over a few hundred galaxies, in order to achieve a signal to noise above unity. As typically
galaxies within a solid angle element are averaged over, this will limit the angular resolution
of the catalogue way below the point spread function of the observing instrument.

The measurement of ellipticities is in reality complicated further due to pixelisation and the
point spread function of the observing instrument, as well as potentially irregular shapes of
the original galaxies. Often, spatial moments of the galaxy surface brightness yield a useful
measure of ellipticities, see Bartelmann & Schneider (2001) for an overview.

Although weak lensing has so far been observed in infrared and visible light, for example
with CFHTLenS (Heymans et al., 2013; Kilbinger et al., 2013) and DES (Chang et al.,
2015), the future of cosmology will likely see a routinely executed weak lensing analysis in
radio frequencies as well. The reason is the resolution of a galaxy, such that its ellipticity
can be measured: infrared and visible light is emitted by the stellar population of a galaxy.
This is only the innermost core of the galaxy, leading to a small picture. Galaxies are
however surrounded by a vast halo of neutral hydrogen. The 21-cm line of this gas can then
be detected with radio observatories like the upcoming SKA (Takahashi et al., 2015).

(5.39)

(5.40)

5.4 Weak lensing power spectra

As a final step, we now need to take into account that the cosmic density field is a random
field, and cosmological models can predict its statistics, but not its single realization on the
sky. Consequently, even though we measure just a shear or convergence map (5.17), which
originates from a projected overdensity map Afw;@,wy], only the statistics of this map can
be predicted by theoretical models, and we hence have to derive the power spectrum of the
shear or convergence map.

Let us imagine we were given a measured convergence map x(6). Then we could directly
measure the correlation function

Cu(l@]) = (£(0)r(0 + b)), (5.41)

where it was used that the sky-projected correlation function in an FLRW-universe needs to
be radially symmetric and where the angular brackets actually denote an ensemble average,
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which is in practice however replaced by a spatial average. The angular power spectrum of
this measured convergence is then

(RO () / 4206 / d2peC+9C, (@)

27?) dp(€ — E/)/dQ(be“M (o)) (5.42)
= (27)%5p (€ — €)C, (1),

where C, () is the angular power spectrum of the convergence. Likewise an angular power
spectrum (%(£€)4*(£")) of the shear exists.
The measured power spectrum (5.41) then needs to be related to a theoretical prediction.
Such a theoretical power spectrum can be calculated in the following way.
We need to include that lensing is an effect integrated along the line of sight, such that
we see a 2-dimensional projection of an inherently 3-dimensional power spectrum. The
integration over a redshift can be achieved with Limber’s approximation that converts a
3-dimensional power spectrum into a 2-dimensional one. Limber’s approximation states that
if a 2-dimensional stochastic quantity X (@) is the projection of a 3-dimensional stochastic
quantity Y (w8, w) meaning

Wlim

X(0) = i Q(w) Y(wh,w)dw, (5.43)

where Q(w) is a radial weighting function, then the 2d angular power spectrum P, (¢) of
X is related in the flat-sky approximation to the 3-dimensional Cartesian power spectrum
P,(k) of Y as (Bartelmann & Schneider, 2001)

Wlim

Po(l) = Q*(w)Py(k = t/w)dw (5.44)

0
For a constant weight function (), this equation is rather intuitive, as the marginal of a
Gaussian is still a Gaussian and hence the powerspectra of the two Gaussians are related.
The Limber approximation (5.44) generalizes this result by demanding that correlations of
Y exist only on scales that are smaller than typical scales on which the weight function @)
varies.

As the convergence (5.17) is a twodimensional projection of the density contrast A, with

the weight function

3H§QO = w

= W (w)— 5.45
Quw) = 52 W (w) =, (5.45)

it follows that the angular power spectrum P, (¢) of the convergence is related to Pa(k) via
(Bartelmann & Schneider, 2001)

Clu(l, wp) = 9212490 /0 " dw ZZE;")) Pa (£/w, w). (5.46)
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This integrates up the power spectrum Px (¢/w,w) which evolves with w, due to the finite
lookback time and can then be related to measured power spectra.

As a last step, we need to clarify why convergence spectra are typically calculated, but
shear spectra are measured. The reason is, that the ellipticity is easier to measure,
whereas calculating with the scalar convergence instead of with the spin-2 shear is easier.
Conveniently, the shear and the convergence have the same power spectrum. To show this,
we Fourier transform the lensing potential

U(8) / V(0)et. (5.47)

From equations (5.25) and (5.27) we then find that the Fourier-transformed convergence
and shear are (Bartelmann & Schneider, 2001)

h= 3B +B)(0)
1=~ (G = B0, A= -t (0 (5.48)

From the power spectrum 5.42, we know that we only need to care about £ = £'. Hence
proving that A2 and 42 are identical also proves that the power spectra are identical, and
indeed

4/ = [ — 1) + 4BB] [0 = (0 + B[O = 41aP, (5.49)

which completes the proof that the power spectra of shear and convergence are identical.
This is not too surprising, as both, shear and convergence, inherit their statistics from the
second-order derivatives statistics of the lensing potential.

Weak lensing is sensitive to cosmological parameters because it probes the conversion
of redshifts into distances, see e.g. (5.16), and on the other hand the growth of cosmic
structures by integrating over the evolving power spectrum of the gravitational potentials.
In chapter 9, we will use this to forecast the constraints on cosmological parameters from a
Euclid-like survey.

o7



Chapter 6

Introduction to multivariate
statistical methods

Being physicists, we assume that certain natural laws govern our Universe, and that these
laws can be cast into a mathematical form. In other words, we construct a mathematical
model M of the Universe. This model will depend on parameters which we want to measure,
so M = M(0), where 8 = (64, ...,0,) are the n model parameters. The true values of these
parameters are however inaccessible to us, due to measurement errors, degeneracies between
the different 6;, or limited data sets. We therefore have to estimate or infer such parameters.
This is done within the framework of statistics. The better the data, and the better the
statistical analysis, the more precisely can the parameters of a model and the model itself
be inferred from cosmic data.

The first concession that statistics makes, is to admit that we have to deal with defined
estimators instead of true quantities. An estimator is a random variable. A random variable
x is drawn from a probability density function f(z) and we write

x ~ f(x). (6.1)

If f(z) has a broad width, then z has a great uncertainty; if f(z) is sharply peaked, then x
does not scatter much.

A true quantity is not a random variable. If g(x) is a function of a random variable z, then
g(x) is also a random variable. A random vector @ is a multivariate random variable, and
again drawn from a probability density function

x ~ f(x). (6.2)

Measured data X are on the one hand produced by an underlying model that uses some
true parameters 8, but are on the other hand subject to random noise and therefore also
random variables. Consequently, as functions of random variables return again random
variables, we can only infer estimators @ of the true parameters 8, where the 8 are random.
A probability density function f(x) is defined such that the probability P of finding x in
the interval [a,b] is P(x) = f; f(z)dz. Probabilities P are defined to fullfil the Kolmogorov
axioms
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1. P>0

2. >, P, =1, especially P(A)+ P(A) =1
3. P(A,B|C) = P(A|C)P(B|A,C) = P(B|C)P(A|B,C),

where P(A) is the probability that event A occurs, and P(A) is the probability that it
does not occur. P(A|B) is the probability of A occuring, given that B has already occured.
P(A, B) is the probability that A and B occur simultaneously. For continous probabilities,
the second rule implies [*° f(z)dz = 1.

From the last rule follows directly Bayes’ theorem

P(A|C)P(B|A,C)

PAIB,C) = == 5 ey

(6.3)

which shows that probabilities are not symmetric under exchange of the premises and the
implications. This is of central importance if A is interpreted as a model M (@) and B is a
data set X. We then have

P(M(0))P(X|M(6))

PM(O)|X) = =208

(6.4)

We will return to this equation below, after having clarified some further aspects of
probability densities.

A probability density can be defined in terms of its moments, provided they exist. The n-th
moment m,, of the multivariate random variable x, that follows the distribution function
P(x) is (Mardia et al., 1979)

my, = /[cc RE® .. Qx|P(x)d"r, (6.5)
where ® is the outer tensor product. Note, that we write m,, although in case of a
multivariate variable the zeroth-order moment is a scalar (unity), the first moment is a
vector (the mean ), the second moment a matrix, and the higher order moments tensors
of respective rank.

Central higher order moments m¢ follow after the mean has been subtracted from the data,
leading to (Gregory, 2005)

me = /[(:1: —p)R(x—p)® ... (x— p)P(e—p)d. (6.6)
The second central moment is called the covariance matrix
¢~ [ P@)@- - (6.7

and is a first estimate of the probability distribution’s width. The higher order moments
then correct this width. If — apart from the mean — only even moments exist, then the
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probability distribution is symmetric about the mean. If also odd moments exist, the
probability distribution is said to be skewed, typically possessing one long tail. Dealing
with a skewed probability distribution can be quite counterintuitive at first, because the
event that occurs on average is then not the event that occurs most likely.

Not all probability distributions have all moments. The only independent moments of a
Gaussian distribution are its mean and its covariance. Once the mean and the covariance
are given, all higher moments of a Gaussian are fixed, due to Wick’s theorem. A Cauchy
distribution does not have a mean or a covariance, or any other moments because the
integrals (6.6) do not converge.

6.1 Moment-generating function

If the moments of a probability density function P(x) exist, then the moment-generating
function m,(t) is given by the Laplace transform of P(x) (Gregory, 2005)

“+o00

ma(t) = () = / ¢ P(a)d"z, (6.9)
where t is the Laplace conjugate to . If the moment-generating functions of two prob-
ability density functions exist and are identical, then the probability density functions
are also identical. The moments m,, then follow from the moment-generating function by
differentiation

dr d"
@mz(mt:o :@@t'mﬂt_o
dT t-x
S )l (6.9)
=[x ®..®=x]e"™) o
= mn

where in the second to third line, it was used that the differentiation with respect to ¢ and
the integration over x commute. Equivalently, there exists a central moment-generating
function (Gregory, 2005)

My u(t) = (@MW), (6.10)

The moments are then coefficients in a Taylor expansion of the moment-generating function

because )
t(x—p) - p)’
5] + 3l e )

(et@h)y — <1+t.(zc—p,)+ (6.11)

where the tensor product is hidden in the powers for notational brevity'. We therefore see
that an rth derivative with respect to ¢t produces the rth moment.

'The meaning is unambiguous if one writes everything in components.
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6.2 Reparameterization

Under a reparameterization from the variable & ~ f(x) to a variable y(x), the distribution
g(y) can be calculated from (Anderson, 2003)

f@)d"z = g(y)d"y (6.12)
meaning
9(y) = f(x =gy(z))[J]| (6.13)
where g is the inverse function of y(x) and the Jacobi determinant |J| of the transformation
Is
ox
J=det| —]. 6.14
1= der (52 (6.14)

If N random samples X; are drawn from their distribution f(X;), then sample estimators
of the distribution’s mean and covariance can be calculated. The estimated mean is

=Y X, (6.15)
Ni=

which is the sample mean. The sample covariance matrix S is also an estimator of the true
covariance matrix of f
1 N

S=~51 ;(Xi - X)(X;, - X)". (6.16)

The factor 1/(N — 1) in the definition of the sample covariance matrix accounts for the fact
that due to estimating the mean X from the data as well, one degree of freedom is lost.
Both, X and S are then unbiased estimators, where the definition of a bias B is (Anderson,
2003)

B(6) =(0) — 0, (6.17)

i.e. a bias is defined as the difference between the estimated mean? () and the true quantity
0. An unbiased estimator has B(6) = 0, and while a linear function of an unbiased estimator
is again unbiased, a non-linear function in general is not.

6.3 The Gaussian distribution and the Central Limit
Theorem (CLT)

The moment-generating function allows to prove the central limit theorem, which demon-
strates why one can produce a Gaussianly distributed data set out of an intrinsically

2To be specific, this is the definition of a mean-bias. Definition of biases with respect to other statistical
quantities, as e.g. the median, also exist. Within this thesis, a ‘bias’ will always refer to the mean-bias.
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non-Gaussian data set, provided there are enough data points to average over. We prove
the central limit theorem (CLT) for the univariate case following Gregory (2005).

Assume that there are n independently and identically distributed random variables z;,
meaning they are drawn from from the same distribution p(z). We now average over them,

producing the mean
1 n
I=—> (6.18)
e
Further, p(x) must have a finite mean p and variance o2 but is apart from these requirements
arbitrary. Under these prerequisites, the sample average x for n — oo will be

T~ G(u,o%/n), (6.19)

where G(p, 02 /n) is the Gaussian of mean p and variance o2 /n. Equivalently, the rescaled
variable Y follows

T—p
Y = ~ N(0,1 6.20
N (6.20)
where A/ (0, 1) is the normal distribution.
This can be proven as follows. Without loss of generality, apart from assuming a finite
variance, we rescale the random variables by subtracting the mean and dividing out the
variance

y=T K (6.21)
g

By the definition of o and p, we then have (Gregory, 2005)
(z) =0, () =1, (6.22)
In terms of the z;, the variable Y is then

1 n
Y =—% 2, (6.23)
Vn =

and its moment-generating function is then

my (£) = () = <eXp (té \jﬁ>> _ <exp (%) >n (6.24)

Note the power of n in the last equality, which arises because independent probabilities
multiply, and the samples z; are independent draws from p(x). The average can then be
expanded into a series (Gregory, 2005)

tz; tz; 1222 1323
<eXp (ﬁ)> _ <1+ﬁ+ = +3!n3/2+....>, (6.25)
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where the second term is zero due to (z;) = 0, and in the third term (2?) = 1, because of the
rescaling by o. The power of n in the moment-generating function can then be expanded as
2 1) r

my(t) = ll NI

n 6.26
_q 1 [t2 #3(23) (6.26)
= \a e )]
If we now introduce a shorthand for the series expansion
2 )
then N
U
my (1) = [1 4 } (6.28)
n
If we now draw ever more samples, such that n — oo, then
t2

because the other fractions will be supressed by the powers of n in their denominator. As
we saw previously in equation (6.11), that each summand gives rise to one moment, we
therefore see that the higher moments die out, if we average over increasingly more samples
n. At the same time, for n — oo, we have

u n
lim [1 4 n} — e, (6.30)

n—00

Consequently, in the limit of n — oo, the moment-generating function of Y is (Gregory,
2005)

my (t) = e?, (6.31)

which is the Laplace transform of the standard normal distribution N. Hence, the central
limit theorem is proven. Most importantly, we also see the limit in which it arises: if n is
large but finite, higher moments of the initial distribution p(x) can survive — if they exist.

6.4 Mahalanobis distances and p-values

From General Relativity, we are familiar with a non-trivial metric in order to assign distances.
In multivariate statistics, a Mahalanobis distance is the equivalent concept and assesses the
statistical distance between random variables (Anderson, 2003).
If € ~ P(u,C) and y ~ P(u, C) are two multivariate random samples, drawn from the
distribution P(u, C), and if g and C are the mean and the covariance matrix of P, then a
Mahalanobis distance between & and y is (Mardia et al., 1979)

de = /(x — y)TC (@ — y). (6.32)
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where the subscript C' indicates that the distance is measured in units of the covariance
C, but other choices could have been made. The meaning of the Mahalanobis distance
becomes clear when rescaling

Li — Hi Yi — Hi

Ti = v Y
0i 0

(6.33)

such that the rescaled covariance matrix is then the identity matrix. Then, the Mahalanobis
distance would simply be the usual Euclidean distance. Therefore, the Mahalanobis distance
measures how many standard deviations @ and y lie away from each other, in other words
whether they are compatible within the expected noise. Consequently, if this distance
exceeds a certain critical value, one would typically begin to wonder (a) whether & and y
are really drawn from the same distribution, (b) whether the covariance matrix has been
correctly assessed or (c) whether the distribution P may have surprisingly large higher
moments, such that the covariance matrix alone does not well capture the statistical scatter.
However, having statistical noise means that sometimes, a data set must be a very unlikely
random sample from the tails of its probability distribution. The Mahalanobis distance
will then be surprisingly large, even though the two samples do indeed stem from the same
distribution. In order to quantify how often this will be the case, the statistical distribution
of Mahalanobis distances themselves needs to be worked out. Due to mathematical
simplifications, usually the distribution of the squared Mahalanobis distance is worked out.
A famous example of a squared Mahalanobis distance is (Anderson, 2003)

dé;,u = X2 = (SC - u)TCil(w - “’)7 (634)
where x follows the multivariate Gaussian G(u, C), and (Mardia et al., 1979)
B, =T = (x— p)TS (@ — ). (6.35)

where a sample estimated covariance matrix has been used instead of the true covariance
matrix. The cosmologically relevant version of the 72 distribution has been worked out
during this thesis and can be found in chapter 10.

The distribution of x? is indeed the y2-distribution, which arises as follows. If x, ..., z, are
v independent standard normally distributed samples, x; ~ A (0, 1), then the sum

y=Y a, (6.36)
i=0
follows the x? distribution, given by
1 v—2 y
2 r—=
_ Y 6.37
X (y,v) )Y eXp< 2>, (6.37)

where v are the degrees of freedom.
In case of the Mahalanobis distance (6.34), one has the sum
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So if C' is indeed the correct covariance matrix, and g is the correct mean of the data, such
that

T . Hi L N(0,1), (6.39)
then (6.38) follows indeed the x2-distribution. If however, the mean pu is a parametric
model that introduces some systematic error, then the Mahalanobis distance (6.38) does
not follow the y2-distribution. Likewise, if C is not the correct covariance matrix, then
(6.38) also does not follow the x2-distribution.

If C and p are indeed the correct covariance and mean, and we average the distance (6.38)
over the data, we find

(2 — 1) (C5Y) (s — ) = Tr (CC™) = dim(w), (6.40)

i.e. the result is the dimension of the data set, which is then identical to the degrees
of freedom in the y? distribution. This is the origin of the usual rule-of-thumb that a
x?/degF = 1 is a good fit. However, as soon as one needs to estimate g or C, the degrees
of freedom will reduce due to the additionally estimated quantities. For a discussion of the
degrees of freedom, see e.g. (Andrae et al., 2010).

Further, the distribution of x? has a certain width — consequently, one will not always find
a x?/degF =~ 1 even if the fit is correct. As mentioned before, sometimes, the realization of
the statistical noise will necessarily be a very unlikely one, and the found value of ¥? is
then surprisingly large. How often this happens, is quantified by p-values. The p-value for
any statistic S is the probability P, that under the realization of the noise, this statistic is
equal to, or exceeds a certain critical threshold S, (Sellke et al., 2001)

p=P(S=>5). (6.41)

However, the realization of the noise will depend on the underlying true model M that
generated this noise. Writing this explicitely, the p-value is (Lyons, 2014)

p=P(S > S|M). (6.42)

The p-value really needs to be taken literally: It is the fraction of times, that the realization
of noise around the true model M produces a measured statistic S that is as extreme or
more extreme than a chosen threshold S..

In case of the test statistic S being the measured x?, the p-value is then the upper-tail
integral of the x2-distribution P(x?),

p= / PO (6.43)

2
c

These values are usually tabulated at the end of statistics books, e.g. (Mardia et al., 1979).
From (6.43) together with (6.39), we see directly which error we make when we use a wrong
model to explain the statistical noise: if mean and covariance are not the correct ones,
then the Mahalanobis distance does not follow the y2-distribution. If the errors are e.g.
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overerstimated, then one will find too often that & and the mean p are compatible within
their errors, meaning that one will find too often a low Mahalanobis distance. This will
lead to distortions of the x? distribution. If we nontheless calculate the p-value (6.43), then
the resulting p-value will be based on wrong assumptions.

In general, the p-value is not the probability of the model being wrong. Converting a p-value
into such a statement would need a prior on M, see Sellke et al. (2001) for a thorough
discussion of how often a correct hypothesis is rejected and how often a wrong hypothesis
is accepted when using p-values.

This also explains why a p-value is usually only adopted to reject a null-hypothesis Hy. Say
we have reason to believe that Hyj is true, and then a measurements produces a statistic S
whose p-value is p = P(S > S.|Hy) < 1075, then the interpretation of this p-value were: if
we had done everything correctly, and H, were correct, then we would measure such small
a p-value only 1:107° of the times — it seems so unlikely, that the current measurement
is this very rare case, so we think instead that there must be an error somewhere, and
possibly Hy is wrong.

6.5 Parameter estimation

If a data vector & has been observed, and there exists a theoretical model that can make a
parameterized prediction for the mean g = p(8), then the parameters @ can be estimated
by minimizing a Mahalanobis distance. For a Gaussian distribution of @, minimizing y? is
equivalent to maximizing

L(x|0) = |210| exp (—;XZ) : (6.44)
m

which is called the likelihood. Accordingly, as a minimal Mahalanobis distance means that
the observed data vector is most compatible with the mean (@), those parameters 6 that
maximize the likelihood are a good estimate of the true parameters. Consequently, this
procedure is known as maximum likelihood estimation.

Obviously, if we include only enough parameters into pu(€), then we can decrease the
Mahalanobis distance to arbitrarily small values. This is called overfitting, and can be
detected by an evidence calculation, see Sect. 6.8, or a cross-validation technique. There
are many forms of cross-validation, but all have in common that they hide some data points
from the analysis, and then fit to the remaining points only. This will detect a join-the-dots
like overfitting, because as soon as the hidden points are reincluded in the analysis, their
Mahalanobis distance to an overfitted model will be much larger than the other points’
distances. In the extreme case, it will appear as if the hidden points stem from another
distribution. In contrast, if the fit lies smoothly within the statistical scatter, then the
hidden points will be statistically compatible with the used points and the fit.
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6.6 The scaled-y? distribution and the Wishart distri-
bution

Paving the way for the Wishart distribution, we also mention the scaled y?-distribution.
Let x1,...,z, be n samples drawn from a Gaussian distribution, z; ~ G(0,0?), with the
true covariance o2 # 1. Then, we can study the distribution of their averaged square

1
s°==> . (6.45)
nes
If we divide out the variance, we have
s2 1 x?
poilied D (6.46)

We can then introduce the auxiliary variables m; = z;/0, such that m; ~ N(0, 1) again.
But then, we know that

y=> m;~x*(n), (6.47)
=1

by the definition of the x? distribution.
Consequently, we can derive the distribution of s? from

52 1
by transforming variables,
d n
d% = (6.49)

The distribution of s? is then
ns?) 2 1 ns? 5

The last line is the unnormalized scaled-y? distribution, where the scaling with o accounts
for the non-unit variance.

The Wishart distribution is the multivariate generalization of the scaled-y?-distribution. It
replaces the scalar samples x; ~ G(0,02) by multivariate samples X; ~ G(0,X), and the
ordinary square by the tensor product. The density of

A=> XX/, (6.51)

=1
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is then the Wishart distribution (Anderson, 2003)

\A[n_Tp_l exp (—%Tr (AE_I))

AlX n) = 52
where p is the dimension of the X; and I', the multivariate Gamma function
p
T,(t) = 7Pt~ DAT[ Tt - (i - 1)/2). (6.53)

i=1

6.7 Bayesian and frequentist statistics

Statistics can be broadly grouped into the classes of Bayesian statistics, and frequentist
statistics. The prerequisites described in the previous Sect. 6 are common to both. The
two classes differ however in whether they assume data X to be given, wanting to infer
the likelihood that a certain model M is true (the Bayesian perspective), or whether they
assume a model M to be true a priori, and then calculating the likelihood of measuring
the data X, given this model (the frequentist perspective.)

Particle physicists are traditionally frequentists as this branch of statistics relies heavily
on repetitive executions of an experiment. Particle physicists can achieve this by letting
e.g. their accelerators run for longer, producing more collisions between particles. Current
cosmological research tends to use Bayesian statistics instead, as we have only one Universe
to observe, which fundamentally limits the amount of data that we can ultimately get. Also,
Bayesian statistics allows to address the question of model selection better than frequentist
statistics does.

The point where frequentist statistics and Bayesian statistics begin to differ, is in how they
interpret the term ‘probability’. To a frequentist, a probability is a frequency: given that
the outcome of an experiment can be (eq, ..., e,,) different events, the probability of event e;
is the frequency with which e; occurs if the experiment is repeated an infinite number of
times.

This is certainly one good definition of probability, but another good definition is to interpret
a probability as a credibility. For example, one could want to investigate nuclear reactor
accidents. The data will then be actually occured accidents — and one certainly does not
want to repeat such accidents for a large number of times in order to be able to speak of a
frequency. Yet, from the general understanding of reactors, and the general understanding
of a cause-and-reaction chain, one will believe that certain models explain reactor accidents
quite well, while other models seem contrived and unlikely. Bayesian statistics provides a
mathematical framework to quantify this assessment of probability as a degree of belief. In
total, Bayesian statistics accounts more flexibly for the fact that the interpretation of a
data set might be ambiguous, as e.g. multiple models could explain the taken data.

The relation between frequentist and Bayesian statistics is encoded in Bayes theorem (6.4)

P(Or)P(X|61)

P(Ou|X) = =

(6.54)
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where P(0,/|X) is the posterior likelihood that quantifies the degree of belief that we
have in M being true and having the parameters @, given that the data X were observed.
We now indicate by the subscript M that the parameters are to be evaluated within the
framework of the model M. This is done to avoid the confusion of whether M (6;) and
M (85) are to be called different models, because the parameters take different values — or
whether different models are really different from first principles, such that model M;(0)
makes different predictions than Ms(0), even though the parameters take the same values.
Within this thesis, the latter point of view was adopted.

Further, P(X8),) is the likelihood of getting a data set X, assuming the model M is true
and its parameters take the value 6. This is the quantity that frequentists evaluate, and will
in the following be rewritten as L(X60,,). Usually, the model is then called a hypothesis.
The term P(0)) is called a prior for the model parameters. We will rewrite priors as P ().
Tracing the origin of the priors back to Bayes theorem, we see that they are mandatory
in order to interchange the order of premises and consequences. They therefore cannot
be omitted. A prior quantifies the credibility distribution that we assign to a parameter,
before data were taken. A good prior is a prior that can be overruled by the data. It is
however non-trivial to come up with such a prior. Various concepts are currently in use:

e Theory-motivated priors. Often, a theory makes precise predictions for the upper
and lower boundary of a parameter. Typical choices for the prior are then to use a
uniform distribution between these boundaries, or a powerlaw distribution.

e Conjugated priors. Conjugate priors stem from the same family of distributions as
the posteriors. For example, convolving a Gaussian with a Gaussian produces again
a Gaussian, so a Gaussian prior is conjugate to a Gaussian posterior. In general,
conjugate priors usually allow for an analytical expression for the posterior. They are
therefore quite popular, if the prior is only needed to parameterize some uncertainty,
and where the exact shape of the prior is not very important (Anderson, 2003).

e Objective priors. Objective priors try to quantify the prior belief that without
having taken data, we have no means from which to draw information. Consequently,
objective priors try to be uninformative. In low dimensions, this can be achieved
quite well, but in higher dimensions, priors that were uninformative for low dimen-
sions, can become informative. Consider for example the flat (uniform) prior for a
Euclidean distance r to the origin. In one dimension, the uniform prior is completely
uninformative. In high dimensions, r is the radius of a hypersphere. As the volume
of an n—sphere is V,,(r) = 7/%"/T'(n/2 + 1), the flat prior on r suddenly becomes
very informative. A famous prior, that is invariant under reparameterizations, and
therefore regarded as uninformative, is the Jeffreys prior |/|Zz(0)|, which is the square
root of the Fisher information’s determinant (Jeffreys, 1961b). Another method of
constructing an objective prior are to maximize the entropy between likelihood and
posterior, for example through an evaluation of the Kullback-Leibler divergence (Sun
& Berger, 2006). The idea behind this is, that if the entropy is maximized, the prior
has the least possible effect on the posterior.
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¢ Exact frequentist matching priors. Using such priors, the credibility contours of
the Bayesian posterior map exactly to the likelihood contours of a frequentist coverage.
L.e. if the experiment, that was analyzed in a Bayesian way, could be reproduced
arbitrarily many times, then the frequentist analysis would find the same likelihood
contours as the Bayesian credibility levels. Usually, such priors need to be explicitely
constructed (Sun & Berger, 2006).

e Priors from other experiments. Often, if two experiments are combined, one finds
the formulation that ‘a prior of the other experiment is added’. What is meant, is that
the two likelihoods of the experiments are combined, and one is interpreted as a prior
that updates the constraining power of the old data set to a new, more constraining
posterior likelihood. Such priors are not to be confused with the purely constructed
Bayesian priors described above. Instead, such priors mimic the procedure of learning
by taking new data. Care needs to be taken, that these priors are not used twice or
hidden. For example, baryonic feedback models could include baryonic parameters
that are to be determined, and they are determined such that the model reproduces
the expectations from ACDM. If this model, with fixed baryonic parameters, is then
used to analyze real data, the remaining free cosmological parameters will be biased
towards ACDM.

Note also, that a prior parameterizes whether one has measured parameters or not. If the
posterior peaks sharply within the prior range, then the data are informative and provide a
good measurement of the parameters. If the posterior covers the entire prior space, then
we have not learned anything from the data — we are just stuck on our prior beliefs.

The term P(X) is the likelihood that the parametric model M (@) can produce the data at
all, independent of its parameter values. P(X) is consequently given by (Trotta, 2008)

P(X) = / L(X|02)P(03,)d"0. (6.55)

Equation (6.55) therefore completely marginalizes over all parameters, and P(X) is therefore

also known as marginal likelihood or evidence. In the following, we will write the evidence as

£. When inferring parameters of a model, € is an unimportant normalization constant. As it

integrates out the parameters, it obviously cannot affect the parameter inference any more.

However, when comparing different models My, ..., M,,, then ¢ is of central importance.

Having clarified these concepts, Bayes’ theorem as used within Bayesian statistics is
P(0r)L(X|6)

P(6y|X) = : . (6.56)

6.8 Occam’s razor and model comparisons

The evidence has so far been presented as a mere normalization constant for the posterior
likelihood, but it has more interesting qualities, and these shall be mentioned.
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Evaluating the evidence is numerically cumbersome and special codes like Nested Sampling
were developed for this purpose (Skilling, 2004). Evaluating e is however often well worth
the pains, as the evidence penalizes models that are too complicated in the light of current
data, and it further allows to compare different models.

The penalization of too complicated models is also
called Occam’s razor. The principle of Occam’s razor
AL exploits that the evidence will sink with wide prior
ranges which can be understood from the toy model
in Fig. 6.1: shown in black is a wide prior on a
I parameter 6. As the prior is normalized, we have
= [P(0)d0 =1 = P(6)AF. The likelihood is depicted
' in blue and has the peak height L(#'), and width

_ AL. The evidence is then the overlap of prior and
Figure 6.1: Toymodel for the evalua- 141 15004

tion of the evidence.

- / LX|0:,)P(6:)d"0 = L(O'YP(6)AL

N AL
= L(0 )A—P

(6.57)
In the last line, the normalization of the prior was used. We therefore see, that the
evidence includes a factor L(6’), which is the goodness of the best fit. Typically, one has
L x eXp(—%XZ) and if the inclusion of a new parameter leads to a significant improvement
in the goodness of the fit, then L(#') will strongly increase the evidence. If, however,
including the new parameter does not significantly improve the fit to the data, then the
term L(#') will stay approximately constant. However, including a new parameter enforces
that a new prior interval AP needs to be defined. If this interval is wide, the term 1/AP
will bring the evidence down, thereby penalizing the inclusion of the new parameter.
Frequentist statistics does not have a similary good mechanism to assess how many pa-
rameters the data warrant. Increasing the number of parameters will lead to a slow and
monotonic decrease of x?/degF and it cannot well be seen when fitting to the noise begins.
The evidence can then be used to compare different models to each other, where e.g. model
My may be the standard model of cosmology, and model Ms adds one more parameter to it.
If for one special value of the new parameter, the old model M; is re-established, then one
speaks of a nested model. Model comparisons can however also be conducted on models
that differ entirely.
The question of ‘How likely is my model M in light of the data?’ cannot be answered, as
likelihoods are normalized, and in order to assess the likelihood of one model, all other ever
possible models would need to be known. However, one can still gain relative statements,
such as M is with the current data more likely than M, with the following mechanism:
The evidence ¢ = L(X|M;) was the likelihood of the model M; being able to produce the
data X at all. If we invert this, L(M;|X) is the likelihood of the model, given the observed
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Table 6.1: Jeffreys scale

| log (ig%g) | | odds interpretation prob. of favoured model
<1.0 3:1 better data is needed <0.75

< 2.5 12:1 weak evidence 0.923

<50 < 150:1 moderate evidence 0.993

> 5.0 > 150:1 strong evidence > 0.993

data. The inversion is done with Bayes theorem

P(M)

LX) = LX|M:) 5

(6.58)

where P(M;) is a prior on the model, and P(X) is a prior on getting the data, whatever
model may be true. The term P(X) will again appear when we invert the evidence of
another model M. It will then drop out if we take the ratio

LOMLIX)  POM)L(X|M,)

LOLIX) ~ POL)L(X| M)
Py e (6.59)
= PO e

The last line contains two ratios: first, the ratio of our prior beliefs about the models. This
quantifies which model we prefer for various reasons. The second ratio quantifies which
model the data prefer. Being natural scientists, it is the second ratio that counts more.
So on this basis, we see that the evidence allows to assess in a quantitative manner which
model is more likely the one that produced the data. The interpretation of the evidence
ratios is usually done with the Jeffreys scale, see Tab. 6.1 (Trotta, 2008).

6.9 The Fisher matrix

The Fisher matrix F' is a quick way to map out the posterior likelihood. It is defined as
(Tegmark et al., 1997; Amendola & Tsujikawa, 2010a)
Fup = (0,05L) (6.60)

such that it is the averaged Hessian matrix in parameter space. The approximated posterior
is then the Gaussian

1
P = Nexp(—iFagApaApg). (6.61)

Consequently, if the diagonal elements of the Fisher matrix are much larger than the
off-diagonal elements, then the covariances between parameters will be small, and the
measurement will be precise.
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As Gaussians allow for many analytical results, the Fisher matrix allows for a recipe-like
manipulation of posteriors which shall be described here.

If two experiments constrain certain parameters independently, then the posterior likelihoods
can be multiplied. This corresponds to an addition of the Fisher matrices. If, however,
there exists a cross-correlation between these experiments, then these must be taken into
account too.

If one changes the parameterization of a model, this corresponds to a basis change in the
posterior space. If one changes from the parameter set p to the parameter set g, then the
Jacobian matrix for this basis exchange is

_op
-

The Fisher matrix then transforms as any other linear map under a basis change as

J (6.62)

F,=J'F,J (6.63)

A degenerate Fisher matrix means that one parameter cannot be determined.

Fixing a parameter p; at its best fit value, also called mazimizing that parameter, means
that Ap,, is identically to zero. Equivalently, the row and column from the Fisher matrix
that represent this parameter can be discarded.

Marginalizing a parameter, i.e. integrating it out, can be achieved by dropping a row
and column from the inverse Fisher matrix. This result is a consequence of the following
analytical integral for Gaussians:

/OO e dx = \/7% (for a > 0). (6.64)

[e.9]

So if a multidimensional Gaussian is marginalized, the result will be again a Gaussian, and
the integral (6.64) just contributes a constant factor.
For example, if we marginalize the 2-dimensional Gaussian posterior

1
Pyp o eXp<_§pin‘jpj) (6.65)

where we assume without loss of generality that the best fit values lie at zero, and where
the Fisher matrix is

Fiy Fio
F = 6.66
(F 12 Fao ( )
then the recipe of marginalizing the parameter p, is to first invert, leading to
1 F —F
Fle——— 72 2. 6.67
F Fy — Ff <—F12 Fiy (6.67)

After striking out the second row and colum, the remaining entry of the Fisher matrix is
then Fip = Fy; — F% /), leading to the one-dimensional posterior

1
Pip o< exp (=5 (Fuu = P/ Fa)i? ) (6.68)
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On the other hand, carrying out the marginalization analytically, we have
1
Pypdpy = eXp(_ipiFijpj)d]h

. L F 2 (6.69)
= /exp (—2(F11 - F122/F22)p%) exXp <—2 [Fupl - pz} > dp.

22
Here, only the second term depends on p, and its integral is given by (6.64) which returns
a constant. We therefore see that only the first term remains, and is identical to the result
(6.68) that we obtained by dropping a row and a column. As the marginalization of one
parameter returns a lower-dimensional Gaussian, this calculation can be reapeated for an
arbitrary number of parameters.
If the Fisher matrix is seen as a linear map from the data space to the parameter space,
then it describes by how much the data set X is compressed into the parameter set 8. The
determinant of a linear map describes how the hypervolume changes during the mapping.
A useful figure of merit (FoM) is therefore given by the determinant of the Fisher matrix,
and if only two parameters are targeted, by the determinant of the 2 x 2 submatrix

FoM = |F2><2’. (670)

For example, dark energy research could be interested in the (w,, wp)-submatrix of the
Fisher matrix, if the CPL-parameterization is used (Chevallier & Polarski, 2001).

Often, it is claimed that the Fisher matrix satisfies the Cramer-Rao bound (Cramer, 1946).
However, in Sect. 9.4, we will show why the Cramer-Rao bound is in general not a quantity
of interest in cosmology, and why the Fisher matrix can even violate it.

6.10 Metropolis-Hastings and Hamilton Monte Carlo
Sampling

If a likelihood is non-Gaussian, analytical results like marginals are typically not possible.
If one then wants to map out the posterior, it is necessary to take refuge to numerical
methods. If the number of parameters to be determined is n,, and if n, is small, then
one can simply evaluate the posterior on a grid. Typically, the posterior will however
be of a roundish shape and for increasing n,, the volume of the empty edges in the box
will increase relative to the volume of appreciable posterior likelihood. Grid methods are
therefore quickly limited by numerical speed.

The solution is then to switch to a sampling method of which the Metropolis-Hastings
algorithm and the Hamilton Monte Carlo shall be described here.

A Markov process borrows the idea of transition probabilities between different states
as known from thermodynamics or quantum mechanics. If there exist multiple discrete
probability levels P;, and the possibility of a transition from state P; to state P; has the
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rate probability r;_,;, then an equilibrium between the occupation of the different states P;
is reached if
Tiesj Pi = TjiPj (6.71)

meaning that the population and depopulation occurs at transition rates whose ratio is
identical to the probability of the states. This principle is sometimes called detailed balance.
If applied to atoms, it regulates the absorption and emission of photons between the different
electron shells. For example, the phenomenon of phosphoresence occurs for substances that
absorb photons in order to reach equilibrium with an external light source — once put in
the dark, they are brought out of equilibrium and begin to re-emitt photons in order to
now equilibrate with the darkness.

A Monte Carlo Markov Chain now mimicks the occupation of different probability states
by sampling: discrete evaluations P(6;) of the posterior at ¢ discrete points in parameter
space serve as the P;.

The Metropolis-Hasting algorithm for sampling a posterior P(0) is given by the following
procedure (Hajian, 2007a):

Metropolis-Hastings algorithm

1. Come up with a good/better guess for a Gaussian approximation Gp(@) to the
posterior. Obviously, the Fisher matrix can provide this, but a crudely estimated
parameter covariance matrix from potential previous analyses also fulfills the purpose.

2. FOrR i =0 TO Nyconmc
if + = 0 evaluate the posterior P at some point 6, in parameter space, preferentially
one with a presumed high likelihood, else use the current 6; of the chain.

3. Draw a random step in parameter space A@; ~ Gp(0).

4. Calculate P(0; + A@;) and R = %.

5. IF R > 1, then the posterior probability at the new point 8; + A@; is larger than the
old probability; the new point is then accepted as 0,1 = 0, + AB;.

6. Ir R < 1, then draw « ~ Uniform|[0, 1].
IF a > R, then 6,1 = 0, i.e. the point 8; + A0, is rejected because it has too low a
probability.
Ir, however, o < R, then 0,,1 = 6, + A0, i.e. the trial point is accepted because it
has still a fairly high probability.

7. Store all points @;. These then build up the Monte Carlo Markov Chain.

If the chain samples the posterior badly, its parameter covariance should be determined,
and a new run beginning at point (1) should then be started. Here, points (4-6) mimic the
detailed balance. Rejecting a sample should therefore rather be regarded as the compound
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process of first accepting it testwise on the state of lower posterior likelihood, and then
re-emitting it in order to reach the balance condition (6.71).

Point (1) of this algorithm is a means of optimization: if the Gaussian approximates the
posterior well, then the random steps in point (3) will approximately follow the orientation
of the posterior. If the Gaussian approximation is bad, the random steps will guide the
sampler towards regions of very low posterior likelihood. This will then result in a high
rejectance rate in step (6).

If the starting point 8, of a chain is a very unlikely combination of parameters, then the
chain will at the beginning first run up the posterior gradient due to point (5). This
phase is called burn-in, and corresponds to a beginning population of so far completely
unpopulated states P;*. Consequently, overproportionally many points will be accepted.
Only when the sampler has reached the peak region it will begin to equilibrate with the
underlying probability distribution. In equilibrium, the density n of accepted points is then
proportional to the posterior likelihood

n(6) o< P(0), (6.72)

which is why the sampler can be used to assess the posterior likelihood. For parameter
inference, the proportionality is sufficient, as all probability distributions can be normalized
retrospectively, if needed.

Marginalizing parameters of an MCMC run is achieved by histograming the chain as a
function of all parameters that shall remain. This is structurally equivalent to what usual
Monte Carlo integration routines like VEGAS (Lepage, 1978, 1980) or MISER do (Press
& Farrar, 1990).

As known from thermodynamics, it will typically take time before the emission rates between
the different states have reached the equilibrium condition (6.71). For the Monte Carlo
Markov chain this means that is should not be aborted too early; typical length for chains
used in this thesis were 10° points, in case of DALI often 107 points, simply because the
sampler was so fast and allowed for it.

In the terminology of MCMC-runs, reaching equilibrium is usually referred to a chain
having converged. Whether a chain has converged can best be decided by comparing it
to other chains. If those chains find the same best fit and parameter covariance (within
the sampling errors) and do not show any offsets when plotted, and if all chains sample
the entire parameter space sufficiently, then usually equilibrium has been reached (Audren
et al., 2013a; Allison & Dunkley, 2014). In equilibrium, an efficient sampling is usually
reached if the ratio between accepted and rejected points is about 0.3. If the acceptance
ratio is much closer to one, it means that the sampler only makes very small steps A8,
and consequently R ~ 1. Such small steps inhibit the sampler from propagating efficiently
through the entire parameter space. In the opposite limit of a very small acceptance ratio,
the sampler uses too large steps and gets rejected because it leaves the region of appreciable
posterior likelihood.

3In the analogy to the phosphoresent substance above, the burn-in corresponds to taking the substance
out of the dark and putting it into the light to ‘charge up’.
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These considerations imply that the Metropolis-Hastings algorithm presented above works
best for approximately Gaussian likelihoods. In case of strong non-Gaussianities, large steps
AB; ~ Gp will often guide the sampler into the wrong direction, thereby bringing down the
acceptance ratio, and very small steps will sample the non-Gaussian posterior inefficiently.
These problems can be solved by updating to a Hamilton Monte Carlo (HMC) Sampler.
An HMC sampler is actually nothing else than a Metropolis-Hasting sampler — only that it
increases the distance between subsequent samples in a very intelligent way. It begins by
introducing a potential energy U(0) as (Hajian, 2007a)

U(@) = —log P(0). (6.73)
It then introduces further a kinetic energy
Ku)=u"u/2, u~N(0,1), (6.74)

where the velocity w is a random variable drawn from the multivariate normal distribution.
Kinetic and potential energy are then combined into a Hamiltonian

H(0,u)=U(0) + K(u). (6.75)

The exponential of the Hamiltonian, which corresponds to the Boltzmann factor in thermo-
dynamics, is then related to the posterior likelihood P(0) as

exp (—H(6,u)) = P(O)N(0,) (6.76)

So if the auxiliary velocities u are marginalized over, which is equivalent to not protocolling
them in the chain, then sampling exp(—H) allows to sample P(8).

The HMC algorithm now uses the Hamiltonian (6.75) in order to increase the distance
between two Metropolis-Hastings steps. The Hamiltonian equations of motion are

oH
o0,

(6.77)

0:11/, U; =

These can be solved numerically and as they will later only provide auxiliary steps, it is
sufficient to apply the leapfrog algorithm (Hajian, 2007a)

€ e (OU
w5 =0 -5 (57),,

0;(t +¢€) = 0,(t) + eu;(t + ¢/2) (6.78)

€ e (OU
wi(t+ =) =u(t) — = ( > :
2 2\ 00; O(t+e)

The HMC sampler now alternates between leapfrog steps and Metropolis-Hastings steps.
Its algorithm can be represented as (Hajian, 2007a)
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Hamilton Monte Carlo algorithm

1. FOor 1 =0 TO Nycmce
if + = 0, choose a starting point 8,
else use the current 8; of the chain.

2. Draw a random velocity u; ~ N(0,7).
Leapfrog loop

(a) Use 6; and wu; as initial conditions for the Hamiltonian equations of motions.

(b) For j =0 to Np
make leapfrog steps that update (0;,u;) — (0,41, w;j11)

3. Having arrived at (@y,,uy, ), calculate R = exp[—H(0;,u;) + H(On,,un,)].
4. Ir R > 1, the new point is accepted, 8,,1 = 6;.

5. Ir R < 1, draw a ~ Uniform|0, 1].
IF o > R, then 0;;, = 0;, i.e. the trial point Oy, is rejected.
IF a < R, then 0,4, = Oy, , i.e. the trial point is accepted.

We therefore see that the HMC algorithm includes the Metropolis-Hastings algorithm and
its rule of detailed balance, in order to decide over acceptance and rejectance. However, it
replaces the rule by which A8; = 6, — 6,_; is calculated. While Metropolis-Hastings draws
AB; ~ Gp, HMC calculates it via the leapfrog loop. By solving the Hamiltonian equations
of motion, the sampler is guided along isocontours of H as Hamiltonian dynamics conserves
energy. Once the sampler has found regions of high likelihood, it will then be automatically
guided towards regions of comparably high likelihood. Drawing a random kinetic energy u;
before each leapfrog loop ensures that different levels of likelihood are covered.

While calculating the leapfrog moves, the gradient of the potential energy must be evaluated.
As the potential energy is U(0) = —log P(8), this is typically the most expensive step
in the entire algorithm. The leapfrog loop is however a purely auxilliary feature in the
algorithm, used to guide the sampler through parameter space. A less accurate evaluation
of this loop does not harm the entire algorithm. Therefore, a speed-up can be achieved by
supplying additionally an approximate posterior that is much faster to evaluate than the
real posterior.

During this thesis, the DALI approximation to non-Gaussian posteriors was used as
approximate potential for the HMC sampler. If P(0) is the real posterior, and Dp(8) is its
DALI approximation, then we can define two Hamiltonians

Hp(@,u) =U(0) + K(u), Hp(@,u)=—logDp(0)+ K(u) (6.79)

Hp behing the Hamiltonian of the real posterior, and Hp being the Hamiltonian of the
DALI approximation. While the Metropolis-Hastings decision rule over acceptance and
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rejectance in the HMC algorithm must use the full Hamiltonian Hp, the leapfrog moves
can be calulated along the DALI contours

wit + S) = w(t) — < (a(_logDP)>
0(t)

2 2 00;

Oi(t +¢€) = 0;(t) + eu;(t + €/2) (6.80)
€, e (0(—log Dp)

e = =5 (5527),

The algorithm for a DALI-aided HMC sampler as developed during this thesis is then:

DALI-aided HMC algorithm

1.

For ¢ =0 1O Nycnmce
if 2 = 0, choose a starting point 8y,
else use the current @; of the chain.

Draw a random velocity u; ~ N (0,7).
DALI Leapfrog loop

(a) Use 6; and u; as initial conditions for the Hamiltonian equations of motions.
(b) For j =0 to N
make leapfrog steps along DALI, following (6.80) in order to update (8, u;) —
(041, wjt1)

Having arrived at (y,,uy, ), calculate R = exp[—Hp(0;,u;) + Hp(Oy,,uy, )] from
the real posterior P(6) — not (!) from DALI’s Hp(0).

Ir R > 1, the new point is accepted, 0;,1 = 0,.

Ir R < 1, draw a ~ Uniform]0, 1].
IF oo > R, then 6,1 = 0;, i.e. the trial point Oy, is rejected.
IF o < R, then 0, = 0y, , i.e. the trial point is accepted.

In summary, the DALI-HMC algorithm runs along DALI, but it equilibrates with the real
posterior P(8).

The chain that this algorithm builds up will peak where the actual posterior likelihood
peaks, not where the fiducial for DALI lay. Accordingly, DALI can not only be used to
forecast parameter constraints but also to analyze real data.
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Chapter 7

Testing for neutrinos in the cosmic
microwave background

This chapter presents a work that has been executed with Ruth Durrer during a two-month
stay at the cosmology group in Geneva in 2014. The presentation follows closely our
publication (Sellentin & Durrer, 2015). This work contains rather standard statistical
methods but deals with multiple intricacies of how the statistical results shall be interpreted.
Most importantly, a model comparison is carried out and it is shown how conclusions drawn
from a data set can be adulterated if an unphysical model is fitted to the data; this is
sometimes referred to as ‘parameterization bias’

We addressed the question of how certain we can be that the massive relativistic particles
detected by the CMB are neutrinos. The problem is somewhat subtle: from the point of
view of a particle physicist, a certain particle type is defined by its properties as its mass,
and its interactions with other particles. Standard neutrinos, as known from Earth-bound
experiments, have a tiny mass, are highly relativistic, and can be very well approximated
as free-streaming. The claim of having detected neutrinos in the CMB is traditionally
based on the detection of a particle species which is relativistic and which has a nearly zero
mass. These could be neutrinos, if these particles were also free-streaming. But it could be
other light and relativistic particles, if they were not free-streaming. We therefore tested
explicitely for free-streaming in order to test for another defining property of neutrinos.
We have shown that free-streaming particles are preferred over a relativistic perfect fluid
with Ay? ~ 21. We have also studied the possibility of replacing the neutrinos by a
viscous fluid and found that also a relativistic viscous fluid with either the standard values

e = %, = 1/3 or best-fit values for ¢?; and 2, has Ax? ~ 20 and thus cannot provide a

vis

good fit to present CMB data either.

7.1 Neutrinos in the early Universe

The cosmic microwave background (CMB) is the most precious cosmological dataset which
we analyse to determine the content of our Universe because its physics is linear and hence
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can be very precisely described. Alone and in combination with other data like Type Ia
supernovae, the CMB has been used to infer that our Universe is presently dominated by
dark energy which may be in the form of a cosmological constant A contributing a density
parameter of 2y ~ 0.7, and pressure less matter which is dominated by cold dark matter
with wy, = Qh? = Qeamh?® + Wh? = Weam + wp =~ 0.14 where the contribution from baryons
is wy = Qph? ~ 0.022, see Planck Collaboration et al. (2015) for the latest values.
Furthermore, there are the photons which make up the CMB and which contribute Q.,h? =
2.48 x 1075 and there are cosmic neutrinos. In the standard model of 3 massless neutrino
species, they contribute a density parameter of €,h% = 1.69 x 107°. Taking into account
neutrino masses, in the minimal model with normal hierarchy and with a maximal neutrino
mass of 0.056eV (Forero et al., 2014), one obtains £,h? ~ 0.5 x 1073.

These are very small numbers. Nevertheless, during the radiation dominated epoch at
temperatures above about 1€V, neutrinos and photons are the dominant constituents of the
Universe, and the neutrinos contribute a fraction fr.q = €,/(€2, +Q,) >~ 0.4 to the total
energy density of the Universe. At recombination, zge. =~ 1100 they still contribute

fdec = QI// (Q'y + Ql/ + Qm/(l + Zdec)) ~0.1 )

i.e., 10% to the total energy density of the Universe.

The first indication that cosmic neutrinos are really present in the Universe in thermal
abundance came from nucleosynthesis calculations. The abundance of primordial helium-4
is very sensitive to the expansion rate at temperature 7, ~ 0.08 MeV, which is determined
via the Friedman equation by the energy density of the Universe. At this temperature the
energy density is dominated by photons and neutrinos such that these species determine
the background expansion rate. The observed helium-4 abundance requires Neg ~ 3 + 1
species of neutrinos (Steigman, 2012) in order to provide the correct expansion rate during
nucleosynthesis. Somewhat more stringent results have been obtained from the recent
Planck data, Neg = 2.99 & 0.4, see Planck Collaboration et al. (2015).

However, the nucleosynthesis results really only require a relativistic component with the
given energy density in order to provide the correct background expansion. However,
neutrinos are not only relativistic in the early universe, but they possess additional particle
properties to which the background expansion alone is insensitive. Especially, neutrinos
are collisionless below T}, ~ 1.4MeV corresponding to the redshift z, ~ 10*° where they
decouple from the cosmic fluid. The CMB data is not only sensitive to the presence of
relativistic components in addition to photons via their contribution to the background,
but it also allows us to study their perturbations which are sensitive to additional particle
properties of this relativistic species which we can then compare with those expected from
true neutrinos.

In the CMB, neutrinos are usually modeled as collisionless particles in order to mimic the
neutrino free-streaming, i.e. the standard CMB analyses assume by default that if there
exist light relativistic particles, then they will be neutrinos, and their abundance is then
constrained by the CMB data. We will lift this question to a higher level and ask whether
the detected relativistic particles are indeed neutrinos or could we also fit the CMB with a
relativistic fluid instead?
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There is no doubt that the CMB detects three relativistic species apart from the photons.
We will refer to these as ‘neutrinos’ for brevity, although at first, it is not clear that they are
the standard model neutrinos. We shall assume an agnostic point of view and not choose
any model of neutrino interaction. We just study whether a perfect fluid or a viscous fluid
of relativistic particles can fit the present CMB data. More detailed studies of constraints
of neutrino properties with cosmological data, where the latter are given by concrete non-
standard particle physics models and where not only CMB but also large scale structure
data is considered can be found in Basboll et al. (2009); Archidiacono & Hannestad (2014).
Another model for cosmic neutrinos which we shall call the ‘viscous free-streaming model’
has been studied before (Hu, 1998; Hu et al., 1999; Trotta & Melchiorri, 2005; Archidiacono
et al., 2011; Gerbino et al., 2013; Audren et al., 2014), however, we shall argue that this
model uses an imperfect parameterization and is neither a perfect nor a viscous fluid. The
model adopted in these works therefore seems unnatural to us.

We first compare the standard CMB-anisotropy calculation with a computation where the
relativistic particles are modeled as a perfect fluid. We use the package Monte Python (Au-
dren et al., 2013a), using standard cosmological parameters wy, Wedm, i, Ts, As, Zreio along
with the Planck nuisance parameters, see Ade et al. (2014).

We fix the background density of the neutrinos to the Planck-2013 best fit since the presence
of relativistic particles has been accurately measured and we just want to investigate how
precisely the particle properties of the detected relativistic particles can be measured. This
means we keep Neg fixed. The primordial helium fraction is then determined by the value
of wy. We have checked that allowing the mass of the neutrinos to vary, does not make any
difference to our results. Therefore, for the sake of simplicity, we show the results for one
massive eigenstate with the close to minimal mass of 0.06 eV, the other two eigenstates are
treated as massless. We do not adopt any additional priors. Allowing also Neg and with
it the primordial helium fraction to vary as a function of N.g, does not alter any of the
following results. It leads of course to larger error bars on the other parameters.

We find that treating neutrinos as collisionless particles fits the data significantly better
than a simple relativistic perfect fluid.

Next we show that neutrinos can neither be modeled as a viscous fluid. We also compare
our results with the approach which is found in previous literature (Trotta & Melchiorri,
2005; Archidiacono et al., 2011; Gerbino et al., 2013).

7.2 Neutrinos in the CMB

In standard CMB computations one assumes that neutrinos are massless, freely streaming
particles and one solves the Liouville equation for them, see, e.g., Durrer (2008).

No+EN, = 0, (7.1)
N1+]§[2N2—No] = ];:(q)—i—\lf), (7.2)

20+1
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Here N, is the /th multipole moment of the energy integrated neutrino distribution function
in Fourier space and k is the wave number, while ® and W are the Bardeen potentials. The
moments 0 to 2 are related to the neutrino density perturbation, §,, the potential of the
velocity perturbation, V,,and the anisotropic stress, II,, in longitudinal gauge by

6, = 4No+ ), :
V, = 3M, (7.5)
I, = 12\5. (7.6)

One truly only needs these first three moments of the distribution function since only they
enter the energy momentum tensor which couples to the gravitational field and affects the
evolution of the CMB photons. Nevertheless, in the Liouville equation each mode N is
coupled by free-streaming to Ny and Ny_; such that power between the different multipoles
is exchanged. Especially, power that would enter §,,V, and II, via Ny, N7 and N5 without
free-streaming, can be propagated into higher order multipoles by free-streaming, and
thereby vanish from the energy-momentum tensor and the Einstein equations. Therefore,
in order to obtain Ny, N; and N, with sufficient precision in case of free-streaming, one
usually solves the neutrino hierarchy up to £, . ~ 10 — 20. The minimum of 10 results
from the need to avoid problems from so called numerical ‘reflections’ when solving the
differential equations (7.3) with a finite differences method.

Below we shall consider treating neutrinos as a relativistic perfect fluid, which corresponds
to cutting the hierarchy at ¢ =1 or as a relativistic viscous fluid, which corresponds
to cutting the hierarchy at ¢, = 2. We shall also consider a viscous fluid with arbitrary
sound speed ¢Z; and viscosity ¢?. This corresponds to cutting the hierarchy at %, = 2

and replacing (7.1) to (7.3) by the following system of equations, see Hu (1998); Hu et al.
(1999); Trotta & Melchiorri (2005):

No+ENT = H(L— 32N (7.7)
Nt B (o 32M) = O BN+ LBt Y) (7

2 2

N+ k [2/\/3 _ 32 5/\/1] — 0 (7.9)

and the higher multipoles stream freely with

M+2€—H[(£+1)MH—EM_1] =0, (>2. (7.10)
In addition, the fact that the perturbations have to be evaluated in the rest frame of the
fluid, leads to subtle changes of Eqs. (7.7-7.9) as described in (Audren et al., 2014). We
include these for our modeling of the massive and massless neutrinos because otherwise the
results would be gauge dependent. In our viscous fluid model we differ from the treatment in
the above mentioned papers by cutting the hierarchy at ¢% = 2 in the and we consistently

max
also set N3 = 0.
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Figure 7.1: The temperature anisotropy spectra at fixed cosmological parameters for
different values of the cutoft in the neutrino hierarchy, ¢, =1,2,3,6,8,17. For ¢y > 2
the result changes very little. In the bottom panel, the difference between Cj for the viscous
neutrino fluid (¢4, = 2) and free-streaming neutrinos, is compared to cosmic variance,
which roughly corresponds to the Planck error out to ¢ ~ 2000. For low ¢ cosmic variance
does not allow to discriminate between the viscous fluid model and free-streaming neutrinos,

but for high ¢ the difference between these two models is up to three times larger than

cosmic variance o, = Cf - /2/(20 + 1) f,. (Note that here ¢ denotes the maximal

neutrino multipole while ¢ refers to the CMB multipoles.)

In Fig. 7.1, we show the CMB anisotropy power spectrum for fixed cosmological parameters
by modeling the neutrino hierarchy up to ¢4, . Already for ¢ = 2 the difference between
the standard calculation setting ¢% . = 17 becomes very small. Nevertheless, as is visible
from the lower panel, for a cosmic variance limited experiment, like Planck for ¢ < 2000,
this difference for ¢ = 2 is highly significant.

max

In Fig. 7.2, we show how the fit to the data improves as a function of the maximally allowed

neutrino multipole: truncating at ¢, = 1,2 leads to the deteriorated fits of the ideal
and relativistic viscous fluid. Truncating at ¥ . = 5 leads actually to a slightly better fit
than solving the Boltzmann hierarchy up to ¢4, = 17. At the same time, it is evident

from Fig. 7.4 that the best-fit values and the 1o contours of the cosmic parameters do
not change when cutting the hierarchy anywhere between ¢ =4 and ¢, = 17. The
negative Ay? = —1.29 for ¢ =5 therefore does not seem to stem from physics but might
be due to numerical inaccuracies and to the modeling of the experimental uncertainties
(see also the discussion about model ‘evidence’). But even if truncating at different €2
may lead to typical changes in Ay? on the order of unity, the conclusion that the ideal and
the standard viscous fluid are worse fits than free-streaming neutrinos which we shall draw,
remains valid since their Ax? is much higher.

We have investigated whether neutrinos can be modelled by a relativistic perfect or viscous

fluid. For this, we have replaced the massless and massive neutrinos by a (relativistic)
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Figure 7.2: The improvement of the fit, Ax? = x*(¢4,..) — X*(¢%,.. = 17), as a function of
the maximal considered neutrino multipole ¢} in the Liouville equations for the neutrinos.

Free-streaming neutrinos correspond to Ay? = 0.
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Figure 7.3: The temperature anisotropy spectra for best-fit parameters modeling neutrinos
as a perfect fluid (blue), a relativistic viscous fluid (red) and standard free-streaming
neutrinos (black) are shown. The difference of the best-fit spectra is not visible by eye.
However, the bottom plot shows the difference in units of the cosmic variance error and
here it becomes clear, that the Planck experiment can distinguish the spectra.

perfect fluid or a (relativistic) viscous fluid and run the modified CMB code CLASS (Blas
et al., 2011; Audren et al., 2013b) in combination with Monte Python (Audren et al., 2013a)
to find best-fit values of the standard cosmological parameters from the Planck data. In
Fig 7.3 we compare the spectra obtained in this way with the spectrum from free-streaming
neutrinos and in Fig. 7.4 we show the best fit parameters. By eye, the curves look identical.
But when considering the difference in units of the cosmic variance, it becomes clear that a
cosmic variance limited experiment like Planck can measure the small difference.

Not only are several of the cosmological parameters significantly different, see Fig. 7.4, but
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the fit is also much worse. The Ax? for both fluid approximations increases by:
AXiZdeal ~ 217 AX\Z/iSC ~ 20. (711)

Let us formulate this in terms of the Bayes factor, K (see Jeffreys (1961a); Kass & Raftery
(1995)) which indicates whether model M; (for us free-streaming neutrinos) is favoured

over model M, (for us either ideal fluid or viscous fluid neutrinos). The Bayes factor is
defined as (Jeffreys, 1961a)

P(D|M;) _ P(Mi|D)P(M,) _ P(My|D) (7.12)
P(D|M,) — P(My|D)P(My) — P(My|D)’ |

K

The last equality is due to the fact that in our case, both models have the same parameters
so the model spaces are identical. The difference is only that in model 1 the neutrinos are
the standard free-streaming neutrinos while in model 2 they are an ideal or a viscous fluid.
Since we want to test exactly this hypothesis (or rather we want to see whether the CMB
data is sensitive to this hypothesis) we cannot give model 2 a smaller model probability.
We therefore set P(M;) = P(M,). Here P(M|D) is the probability of a model given the
data while P(D|M) is the probability of the data given the model. The prior, P(D) drops
out in the ratio K. But the P(M|D) are exactly the likelihoods which we determine in our
MCMC code, so that

2log(K) = Ax?. (7.13)

According to Ref. Kass & Raftery (1995), while —2 < 2log(K') < 2 is ‘not worth mentioning’
a value 2 < 2log(K) < 6 can be interpreted as ‘positive’ but not strong evidence while
10 < 2log(K) is ‘decisive’ evidence (see also Appendix B in Jeffreys (1961a)). First we
conclude that all the fluctuations in Ay? for ¢2 > 4 are ‘not worth mentioning’ The

max
contrary holds for ¢, < 2. in this case the evidence in favour of the free-streaming model
is truly ‘decisive’.
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Figure 7.4: The best fit parameters for neutrinos modeled as a perfect fluid (blue), as a
relativistic viscous fluid (orange), as a viscous fluid with arbitrary sound speed ¢Z; and
viscosity ¢ (green), and as standard free-streaming neutrinos (black) are shown. We
also show free-streaming neutrinos with different ¢ _ as indicated in the legend in light
blue to grey shades. The best-fit values of several parameters for the perfect fluid and the
free-streaming model differ significantly. The best-fit values of most parameters for the
viscous fluid and the free-streaming model are similar, they all agree within 1.5¢0 apart
from n, which for the relativistic viscous fluid model differs by more than 20. Truncating
the Boltzmann hierarchy for the neutrinos at other maximally allowed ¢ > 3 (indicated in
different shades of blue) leads to parameter constraints that are indistinguishable from the
standard Planck fit, consistent with Fig. 7.1. Allowing also Neg to vary does not change

these results, as can be seen in Fig. 7.7.
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This shows that cosmic neutrinos cannot be modelled either by a relativistic perfect fluid
or by a viscous fluid. Nevertheless, one may be surprised that the ideal fluid model is
not much more strongly excluded than the viscous fluid. Also, our value of AxZ,.; is
significantly smaller than other values published in the literature, see e.g. Archidiacono
& Hannestad (2014). One reason for this at first surprising finding is that we include all
Planck nuisance parameters in our MCMC analysis and allow for the priors suggested
by the Planck collaboration. As an illustration of how this affects the results we show
the 1d likelihoods of the nuisance parameters in Fig. 7.6. As one can see there, the fluid
models prefer different values for some of the nuisance parameters, especially the best fit
amplitudes of the inferred kinetic SZ-effect, A, and of the cosmic infrared background
at 146GHz, A.i43 are very different for the ideal fluid model than for the viscous fluid
or free-streaming model, but as is evident from Fig. 7.6, these parameters are very badly
constrained by the data. The increase in AxZ.,, in Ref. Archidiacono & Hannestad (2014),
however is not only due to a less conservative CMB analysis but also to the inclusion of
large-scale structure data. We avoid the inclusion of large-scale structure data here, in
order to keep the properties of neutrinos at high energies (i.e. in the early universe) separate
from late-time cosmology effects, where properties of neutrinos can also be used to explain
dark energy phenomenology (Ayaita et al., 2013). Furthermore, the topic of this work is
whether the free-streaming of neutrinos can be detected in the CMB.

To test the importance of the nuisance parameters we have also run a chain where we fixed
them to their best-fit values in the free-streaming model. This, of course, reduces the size
of the model space significantly. In this case the increase in Ax? for both, the ideal and the
viscous fluid model in comparison to standard LCDM is larger namely

AXiQdeal ~ 32 ) AX\zzisc ~ 30 ) (714)

with fixed nuisance parameters.

However, these increases in Ax? are not trivial to interpret: fixing the nuisance parameters
to the best-fit values of the Planck collaboration is a form of including knowledge about
which parameter values the current CMB data prefer, when fitted with free-streaming
neutrinos. Therefore, the self-consistent values are those given in Eq. (7.11).

Let us also compare this analysis with previous work (Trotta & Melchiorri, 2005; Archidia-
cono et al., 2011; Gerbino et al.; 2013) on neutrino clustering properties, where a somewhat
different standpoint has been taken. There, eqs. (7.1) to (7.3) are replaced by egs. (7.7)
to (7.10). A similar, non-perfect-fluid treatment has already been suggested in Hu (1998);
Hu et al. (1999). However, egs. (7.7) to (7.10) describe neither a perfect nor an imperfect
fluid since the higher moments, ¢ > 3, are not damped by collisions but evolve like those of
free-streaming particles. We dub this mixture model ‘viscous free-streaming model’.

The advantage of the viscous free-streaming model is that it is ‘nested’ inside the standard
model of free-streaming neutrinos with two additional parameters which take the values
¢y = %, = 1/3 in the standard model. The viscous free-streaming can then be regarded as
a phenomenological model that allows for a transition between free-streaming and viscosity.
Previous works, especially Gerbino et al. (2013) have found that the preferred values of these
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Figure 7.5: The best-fit parameters for neutrinos modeled as a viscous fluid with variable

cZp and ¢ and %, _, (blue), for neutrinos modeled as a viscous free-streaming fluid with
0¥ .. = 17(orange), and for standard free-streaming neutrinos (green) are shown. The

best-fit values of most parameters for the two different viscosity models differ by about one
standard deviation.

parameters are indeed close to the standard relativistic ones. Nevertheless, the physical
meaning of co and c,;s remains unclear in the viscous free-streaming since only the evolution
of the first and second moment but not higher moments are affected by collisions in this
model. This seems unphysical to us and we are not aware of a physical example which
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leads to such a behaviour. Viscosity damps out all higher moments and thereby inhibits
free-streaming of all higher moments. Nonetheless, it has been found that the viscous
free-streaming model succeeds in fitting also the latest Planck Data (Planck Collaboration
et al., 2015), preferring again the standard values for ¢Z; = ¢, = 1/3 which represent in
fact the only case in which the inconsistency between viscosity and free-streaming vanishes.
It is not too surprising that the data prefer the only parameter values for which the
unphysical model turns into a physically sound one. For a more detailed discussion of
how the cutting of /-modes and the effective fluid parameters ¢Z; and ¢, map to particle
properties, see Oldengott et al. (2015).

However, modelling a true viscous fluid, not only requires the introduction of the new
parameters ¢z and 2 but also either cutting the neutrino hierarchy at £ = 2 or describing
the evolution of the higher moments with a collision term, as e.g. in Basboll et al. (2009).
Accordingly, in our model of a viscous fluid we set N, = 0 for all £ > 3 and fit for ¢Z; and
cZ.. As we have discussed above, this model with % = ¢, = 1/3, i.e., the relativistic
viscous fluid, provides a bad fit to the observed CMB anisotropies. Before concluding that
the three relativistic particles in the CMB are indeed free-streaming neutrinos, we need,
however, to check whether another value of ¢Z; and 2, might provide a better fit.
Introducing two new free parameters, will of course improve the fit, and we find that the
difference in x? for the best fit with respect to the relativistic viscous fluid is: Ax? ~ —0.58,
with the negative sign indicating an improvement of the fit. The standard value of
cs = 1/3 is excluded at 30 whereas ¢ = 1/3 is compatible within one standard deviation.
Nevertheless, in this case, the model space of the new model 2 is increased which enhances
the Bayes factor in favour of model 1. A rule of thumb is that each new parameter has to
improve Ax? by at least 1 in order to compensate the ‘Occam’s razor factor’ P(Msy)/P (M)
in Eq. (7.12). Hence the modest improvement of the best fit by 0.58 after the introduction
of two new parameters, leads to the conclusion that these two new parameters are not
justified.

For the viscous free-streaming model, we find that the fit improves by Ay? ~ —3.72 with
respect to free-streaming neutrinos. This improvement of the fit is somewhat stronger than
what is usually expected when adding two additional parameters, Ax? ~ —2, but this can
be a usual statistical fluctuation in Ax? as it leads to a 21log(K) ~ Ax?+2 = —0.72, hence
‘not worth mentioning’

In Fig. 7.4 we have compared the parameter values obtained by replacing neutrinos by a
perfect fluid, a relativistic viscous fluid or by a viscous fluid with arbitrary effective sound
speed %z and viscosity, ¢, with the results for standard neutrinos. For completeness,
we compare in Fig. 7.5 also the parameter constraints for variable viscosity parameters
¢y = 2, for a viscous free-streaming fluid and for a true viscous fluid that cannot build up
moments with order higher than ¢ = 2.
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7.3 Likelihoods of the nuisance parameters and N.

In Fig 7.6 we show the marginalised 1-parameter distribution of the nuisance parameters
used in our analysis of the Planck data. We use the priors as suggested by the Planck
Collaboration (Ade et al., 2014). As one sees in the figure, several of these parameters
are not well constrained by the data. Also, in the perfect fluid model several nuisance
parameters take quite different values than for the viscous fluid or the free-streaming
model. This allows the perfect fluid model to fit the data not significantly worse than
the viscous fluid model. Fixing these parameters leads to a somewhat larger value of
AXigeal — DXiise = 2, see Eq. (7.14).

In Fig. 7.7 we compare the two-dimensional likelihoods of both, the ideal fluid model and
the viscous fluid model with and without varying Neg. Even though the error bars of course
increase when including this additional parameter, the main results are unchanged. While
the peak value of Ng for the viscous model changes by less than one standard deviation, the
ideal fluid would actually prefer a lower N.g. Note also that the width of the distribution
of Neg in the viscous fluid model is very similar to the standard one, (see Ade et al. (2014),
Fig. 21) while for the ideal fluid model N g is somewhat more constrained. Nevertheless,
the increase in Ay?, which is the main point of this study, remains stable.

7.4 Conclusions

We have studied how neutrinos are detected in the CMB and have shown that they are
not only relevant as additional relativistic degrees of freedom, but CMB anisotropies and
polarisation are also very sensitive to their clustering properties. While the Planck-2013
data is in good agreement with free-streaming neutrinos, it cannot be fitted by neutrinos
modeled as a relativistic perfect fluid. The best-fit model with perfect fluid neutrinos
leads to a Ay? = 21 with respect to the best fit free-streaming neutrinos. Even including
anisotropic stress, i.e. allowing for a relativistic viscous fluid cannot fit the data. The
increase in y? with respect to the best-fit models with free-streaming neutrinos is Ay? ~ 20.
Using the evidence scale introduced by Jeffrey (Jeffreys, 1961a), this result can be considered
as ‘decisive evidence’ for neutrino free-streaming in the CMB.

The fit can be improved only slightly when allowing arbitrary values for the effective sound
speed and the viscosity, ¢Z; and ¢Z_. But including these two additional parameters and
truncating the neutrino Boltzmann hierarchy at /7 = 2 in order to consistently model
a viscous fluid, the fit improves by Ay? = —0.58 w.r.t. the best relativistic viscous fluid
model with fixed values c%; = c2, = 1/3. Therefore, the introduction of these additional
parameters is not favoured.

Using observations of the cosmic microwave background anisotropies and polarization we
have not only found that there are 3 species of light particles, but we can also infer that
these relativistic particles are freely streaming, making it plausible that these particles
are indeed neutrinos. These results are robust under the variation of N.g as an additional

parameter and N.g is found to peak at the standard value of three neutrino species.
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Figure 7.6: The 1d likelihoods of the Planck nuisance parameters for free-streaming neutrinos
(solid, blue), the viscous fluid model (dotted, green) and the ideal fluid model (dashed,
orange). The best-fit values indicated on top of each panel are those of the viscous model.
Especially the best-fit amplitudes of the kinetic SZ-effect, Ay,. and of the cosmic infrared
background at 146GHz, A.i146 are not well constrained and are very different for the ideal
fluid model and for the viscous fluid or free-streaming model.
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Figure 7.7: Comparing the results of Fig. 7.4, with the results for a varying Neg. The
inclusion of the parameter N.g does not significantly alter the best-fit values of the other
cosmological parameters, and Neg itself peaks at around the standard value of three neutrino
species. The 1-parameter likelihoods of the ideal fluid model remain virtually unchanged.
Those of the viscous fluid model change mainly by widening. The best-fit parameters move
by less than one standard deviation.
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Chapter 8

DALI: Derivative Approximation for
LIkelihoods

In this chapter, our new method DALI (Derivative Approximation for Llkelihoods) is first
derived, and then applications of it are presented. In section 8.1, the general framework
of DALI is described. In section 9.3, it is described how DALI can not only be used
for forecasting, but also for the analysis of real data: the DALI series allows to drive a
Hamilton Monte Carlo sampler, which can read in real data (or mock data), such that the
unapproximated likelihood of real (or mock) data can be speedily sampled. Section 9.4
contains considerations about the applicability and validity of the Cramer-Rao inequality.
This chapter follows rather loosely the publications Sellentin et al. (2014); Sellentin (2015);
Sellentin & Schéfer (2016) as further insights were gained between publication of these
papers and the submission of this thesis.

8.1 The non-Gaussian extension of the Fisher matrix

Evaluating a multidimensional likelihood can be a computationally costly procedure. If
speed matters, often a good approximation of the likelihood is required. A widely used
approximation of likelihoods is the Fisher matrix approximation, which singles out the
Gaussian part of a likelihood (Tegmark et al., 1997). Because many analytical results for
Gaussians are available, such as the position of the 1-0 confidence contours and higher-order
equivalents, the Fisher matrix approximation is fast to evaluate. It has also become widely
used as it allows for the easy computation of figures of merit, simple determinants of the
matrix elements and manipulations thereof, that can be used to evaluate the expected
performance of an experiment, for example as introduduced to dark energy research by
Albrecht et al. (2006).

The alternatives to the Gaussian approximation are grid evaluations of the likelihood,
or sampling techniques such as Monte Carlo Markov Chains (MCMC), Nested Sampling
(Audren et al., 2013a; Allison & Dunkley, 2014; Skilling, 2004), and Population Monte Carlo
that uses iterative updates of a mixture model to capture non-Gaussianities (Kilbinger
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et al., 2010; Wraith et al., 2009). These methods tackle the challenge of characterising
non-Gaussian likelihoods by using sophisticated numerical algorithms. Gram-Charlier and
Edgeworth-type expansions can also be used to capture non-Gaussianities, but suffer from
regions in the parameter space where the approximated likelihood turns negative, thereby
violating the Kolmogorov axioms for a probability (Cramer, 1946).

Nonetheless, likelihood approximations are urgently needed throughout the physical sciences,
whenever evaluating a full likelihood is numerically too costly, e.g. when forecasting
parameter constraints of a future experiment, where many different configurations need
to be simulated, see e.g. Pillepich et al. (2012); Laureijs et al. (2011a). A quick check
of the resulting likelihood is also desirable when optimizing a data analysis pipeline, or
when establishing novel observables and testing how precisely they can constrain model
parameters, see e.g. Chantavat et al. (2014).

Non-Gaussian likelihood approximations, that maintain positive definiteness and normaliz-
ability, whilst rivaling the Fisher matrix in terms of speed, have recently become a focus
of research. Transformations of the likelihood to Gaussianity are one way of tackling this
problem (Joachimi & Taylor, 2011). During this doctorate, we have developed another
approximation, named DALI: Derivative Approximation for Llkelihoods. It was published
in the papers Sellentin et al. (2014) and Sellentin (2015) and the application to weak
lensing has been published in Sellentin & Schéfer (2016). DALI assumes that the data are
Gaussianly distributed but is else independent of the application, i.e. it would work for all
observables to which it would be specified.

This is achieved by building on the Fisher matrix, but expanding the posterior to higher
orders. If the posterior P really is Gaussian in the parameters, the higher order derivatives
of log P will be zero, such that the extended method falls back onto the Fisher matrix and
nothing is lost. If the higher order derivatives are non-zero, a gain in shape fidelity is to
be expected. As many posteriors have a smooth shape and resemble often a “surrealistic’
version of an ellipse, i.e. the ellipses are slightly curved, flexed or otherwise distorted,
already the inclusion of just a few higher-order derivatives promises good improvements. We
begin the presentation of DALI by discussing why Gaussian data can produce non-Gaussian
parameter likelihoods.

Y

8.2 (Gaussianity

DALI assumes a data set X with Gaussian errors, leading to the unapproximated likelihood

L(X|p) = (8.1)

1 1 T -1
WeXP(_2<X_N) C (X_N));

where p is a vector of p parameters. The mean of the data g and the covariance matrix C
are predicted by a parameterized physical model and can in general both depend on the p
parameters. These parameters shall be constrained by maximizing the likelihood using the
data which is collected in the data vector X. The number of data points is d and |C| is
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the determinant of the covariance matrix. The covariance matrix is given by

Clp) = (X —p) (X —p)"), (8.2)

such that for a linear model, the parameters enter already quadratically in the covariance
matrix.
The corresponding log-likelihood £ = —In(L) of the Gaussian Eq. (8.1) is

L ;Tr (n(C) + (D)), (8.3)

where we neglected the 27 factors of the normalization, and where D = (X — p)(X — )7
is the data matrix. Angular brackets denote averaging over realizations of the data.

The numerical cost of evaluating this likelihood will increase with the number of data
points, the complexity of calculating the model predictions g and the calculation of the
covariance matrix under variation of the parameters. In case of Bayesian inference, the
likelihood could be updated to a posterior by multiplying with priors and normalizing by
the corresponding evidence. Consequently, we will in the following use the terms likelihood
and posterior rather interchangeably.

The assumption of Gaussian errors is not a severe constraint, since due to the central limit
theorem, all data that stem from a distribution of finite variance, can be rebinned into
a data set with Gaussian errors — if enough data points are available. However, having
Gaussian errors in the data space does not mean that the resulting likelihood will be
Gaussian in the parameter space. This is only exactly fulfilled if all parameters are linear,
and if there are no degeneracies between the parameters. Therefore, the mathematical
tools available to exploit Gaussian likelihoods, such as their analytical marginalization over
nuisance parameters, cannot automatically be used in the parameter space. However, a
Gaussian likelihood can also be expected if the data set is constraining enough, such that
essentially a linear Taylor approximation of the model and the covariance matrix around
the best-fit point is sufficient. This explains why the Fisher matrix has become so popular
in forecasting the performance of precision experiments, which were designed to tightly
constrain targeted parameters.

In contrast, achieving extremely constraining data with a new experiment cannot be
expected by default if for example extensions to a standard model are to be investigated
and new parameters measured for the very first time. If the forecasted data is not expected
to be extremely constraining, the likelihood will not be peaked so sharply around the
best-fit that a linear Taylor approximation of the model, and the covariance matrix alone
may not be good enough. This already hints at why the following non-Gaussian likelihood
approximation needs to build on higher order derivatives.

We specialize to two opposite cases: First, if the model predicts the mean of the data as a
function of some parameters, pu = p(p), and the covariance matrix is parameter independent.
Then, we specialize to the opposite case of the model predicting the covariance as a function
of the parameters, C = C(p), and the mean of the data being constant.

The latter occurs for example, when the mean is zero but fluctuations around that mean
can be of different amplitudes, and this is encoded in the covariance. Examples are a
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measurement of pure noise, which clearly has mean zero, but where the covariance of the
noise depends on parameters. Another example is any kind of mode decomposition, where
again it is clear that a mode has mean zero. A cosmological example is the galaxy power
spectrum, which arises from density fluctuations around the cosmic mean value, and where
the mean overdensity must be zero, due to mass conservation. The power spectrum can
then be used as the covariance in the following framework, where it is the covariance of the
Fourier amplitudes of the overdensity field.'

8.3 Problems when approximating likelihoods

Approximating a likelihood is more complicated than approximating a more general function
because one typically wishes the likelihood to be positive semi-definite at all orders; otherwise
negative probabilities occur, which are non-sensical. Positive semi-definiteness is a strong
constraint and not automatically fulfilled by a usual Taylor series approximation of the
likelihood. For example, Taylor approximating a standard normal distribution of some
variable z yields,

exp(—z®) =1—2° + ;iLA + O(z°). (8.4)

If truncated at second order, this approximation becomes negative at 2-o from the best-fit,
or begins rising to infinity at about 2-0 when truncated at fourth-order. This divergence
makes the likelihood approximation not normalizable, such that no measure for relative
likelihoods can be defined. Both, second- and fourth-order approximation of the standard
normal distribution therefore violate defining properties of a likelihood. Obviously, a
continuation of the Taylor approximation Eq. (8.4) to very high orders would remedy both
of these issues but this would be a cumbersome approach. It is well known that Taylor
approximating the log-likelihood instead, reconstructs the Gaussian likelihood much more
quickly

exp(—2?) = exp(—L) = exp(=T (L)), (8.5)

where T (L) denotes the Taylor series of the log-likelihood. If this Taylor series is evaluated
at the maximum of the standard normal distribution then already the first- and second-order
terms of this series recovers the Gaussian likelihood completely, and all higher orders of
the series are identically zero. The approximation schemes Eq. (8.4) and Eq. (8.5) are
both mathematically valid ways of approximating the standard normal distribution, even
though they lead to entirely different Taylor series. The scheme outlined in Eq. (8.5) is
however much more advantageous because it leads already at second order to the desired
approximation, and negative likelihoods then do not appear at all, since the exponential
function is always positive. Therefore, we see that the choice of which quantity shall
be approximated influences decisively how quickly the approximation recovers the shape

LOften, however, such analyses are carried out by comparing a measured power spectrum to a parame-
terized power spectrum, which is then treated as the mean. In these cases the covariance matrix would
then be the covariance of the power spectrum (a four-point function) instead of the powerspectrum.
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of the original function, and whether unwanted artifacts appear when truncating the
approximation at low orders.

The choice of Taylor approximating the log-likelihood, instead of the likelihood, to second
order in multiple dimensions yields a Hessian matrix whose expectation value is the Fisher
(or information) matrix. Denoting partial derivatives by 0, f = f,a, the Fisher matrix of
Eq. (8.1) can be written as

Faﬂ :<£’aﬁ>’ﬁ

1 B ~ B (8.6)
=5Tr (Co™'CaCo™'Cl ) + o Co i

where the derivatives are evaluated at the maximum likelihood point p and summation
over repeated indices is implied and Cj is evaluated at the maximum likelihood point and
therefore constant and cannot be derived with respect to parameters.

The corresponding likelihood approximation is then given by

1
L(X|p) = N - eXp(—iFaﬂApaApﬁ) (8.7)

where the Ap, = po — Pa are the offsets from the best-fit point p, and N is a normalization
constant.

The Fisher approximation results in the usual ellipsoidal, multi-variate correlated Gaussian
confidence contours, which often do not recover the shape of a non-Gaussian likelihood
distribution well. A continuation of the Taylor series is then desirable in order to capture
these non-Gaussianites. This wish for a continuation of the series is predicated on the
requirement to solve the issue of normalizability and positive-definiteness at all orders. Also,
it is preferrable to recover the essential shape of the likelihood with as little additional
terms as possible for computational efficiency. Clearly, just as there exist multiple ways in
approximating the likelihood Eq. (8.4), there will exist multiple ways for continuing the
approximation from that given by the Fisher matrix. These extended approximations will
pick up the desired information about the likelihood’s shape with different efficiencies. Let
us first demonstrate why a usual continuation of the log-likelihood Taylor approximation
does not produce the desired result.

8.3.1 Parameter-dependent mean

We consider a posterior that depends on n parameters p,, where « takes the values 1...n.
Denoting with P the posterior distribution, we expand the log-likelihood £ = —log(P) as
a function of the parameters p, in Taylor series around the maximum of the likelihood,
indicated by the subscript 0:

1
—L =log P ~log Py + 3 (log P) 5'0 Apo,Apg

—1—;! (logP)

+i! (logP)

| ApalpsAp, (8.8)

Lo ’Y’

ApoApsAp, Aps,
»045'75‘0 PaAP3APyADs
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where summation over repeated indices is implied. The first order derivatives vanish because
we are at the maximum of the posterior. Expanding to the second order yields the Fisher
approximation. From the third order onwards, non-Gaussianities are taken into account,
that correct for misestimates of the posterior by the Fisher matrix, and thereby lead to a
deformation of its shape. We can write the approximation

1 1
P = Nexp _7FaBApocApﬂ - *SaﬂvApozApﬁApv
2 3!

) (8.9)
- IQaﬁvéApaApﬁAp’yApé - 0(5) s
where N is a normalization constant,
Faﬂ = ﬁ,aﬂ )
Sapy = Lapy (8.10)
Qaﬁ'yé = £,ozﬁ'y§~
Working out the derivatives, we find
= l’l’,aBMIJ’,'y + CYCI ) .
The fourth-order tensor is
Qaﬁ'yﬁ = l"l’7a'y(5Ml"l’,ﬂ + N,(S’YMIJ’,,BOC
+ 1 s Mp ., + Mup.,
Hoops MR T b sV, (8.12)

+ H’,awﬁMlJ’,d + IJ’,,B'yM“’,(Sa
+ l’l’,(S'yﬂMl'l’,a .

Here, the n x n matrix F,z is the usual Fisher matrix. We dub the n x n x n tensor S,g,
the flexion tensor and define the scalar

S = Sapy ApaApsAp,. (8.13)
Likewise we call Q)o3,5 the quarxion tensor and define its scalar

Q = Qapr6Apa ApsAp,A.ps (8.14)

Now we see, that if we truncate after the second order, i.e. at the Fisher matrix, then the
exponential Eq (8.9) contains only a quadratic form with a negative sign. The argument of
the exponential function is consequently always negative, which ensures that the probability
stays finite. This handy feature is not necessarily true for the quarxions and never true for
the flexions: The flexion is cubic in the Ap and will therefore always become negative at
large enough Ap. Whenever negative flexion and quarxions terms become larger than the
term from the Fisher matrix, the argument of the exponential becomes positive and the
higher order Taylor approximation of the log-likelihood leads to a likelihood which diverges
at large Ap.
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8.3.2 Parameter-dependent covariance

For a constant mean, and a parameter-dependent covariance matrix, the log-likelihood’s
Taylor-approximation has

Saﬁv :'Cvotﬁv |i7
= 2T (C,'C,, C;'C5 ;' Ca) (8.15)

+ gTr (C5'C,C'Crap) .

and

Qapys =Lapys |p
=9Tr (C;'C,Cy'C,, C;'C5Cy ' C )

3
+5T (C3'C 5 Cy'Cag) (8.16)
~ 12T (C;'C..5C;'C5 G C)

+2Tr (Cy'C., Cy'Clags)

which gives the Taylor series of the log-likelihood up to fourth order, after being averaged
over realizations of the data.

Just like in case of a parameter-dependent mean, this approximation will in general be
unnormalizable since it will diverge somewhere in parameter space. This is partly due to
the odd powers of Ap, which will clearly become negative on one side of the fiducial point
(about which the expansion is made) if they are positive on the other side of the fiducial
point; the argument of the exponential function will then become positive even for small
displacements from the best-fit point, and the approximation will begin to diverge. Also
the summation over even powers of Ap can lead to divergences, as terms of the structure
Ap1 Api Ap; Aps will appear that are linear and cubic in Ap.

Secondly, we observe that even if only first-order derivatives of the covariance matrix were
non-vanishing, the above series would still not terminate after the Fisher approximation.
The first lines of Eq. (8.15) and Eq. (8.16) contain only first order derivatives of the
covariance matrix and make it clear that at the n-th Taylor order a term of the shape

Tr ((Co™'Ca Apa)”) (8.17)

appears, where we have expressed the repeated multiplication of the same matrices as
a power. As new information on the parameter dependence of the covariance matrix is
encoded in its higher order derivatives, the terms Eq. (8.17) do not add any of the new
information which we target; they simply stem from the slowly convergent Taylor series of
the logarithm.

Therefore we see that a Taylor approximation of the log-likelihood beyond second order
is a valid but laborious way to include non-Gaussian behaviour: the log-likelihood would
need to be approximated to much higher than the 4th order, before it can be expected to
be normalizable for a physical application.
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8.4 The DALI principle of construction

We have learned in the previous sections that a Taylor expansion of the log-likelihood to
higher orders will in general lead to divergences. These divergences can only be avoided in
an application-independent way if the argument of the exponential is negative everywhere
in parameter space. One way of achieving this is to demand of the approximation to have
the shape

L~ Nexp(—Q), (8.18)

where Q is a quadratic function of the parameters and therefore always positive definite.
The expansion Eq. (8.9) of the log-likelihood does not have this shape.

Demanding the approximation to take the form (8.18), obviously raises the question how
to choose Q. If any arbitrary positive definite Q is constructed from the components of
Sapy and Qapys, then the approximation will in general not possess a good shape fidelity,
meaning that it will not converge towards the true underlying distribution in a transparent
way.

In order to remedy this problem, and to ensure a controlled convergence of the approxi-
mation to the true likelihood, we therefore demand that Q shall be a function of a Taylor
approximation of some quantity in the log-likelihood. Then we can achieve normalizability
and shape fidelity at the same time: The Taylor approximation will guarantee the conver-
gence of the approximation towards the underlying likelihood, and the quadratic form will
guarantee the normalizability.

In the following, we will indeed construct the DALI series from a Taylor approximation of
the mean p(p) and the covariance C(p). The convergence criterion for this approximation
is given in Sec. (8.6).

8.5 Beyond Gaussianity with DALI

8.5.1 Parameter-dependent mean

We consider now cases in which the parameters appear only in a theoretical model p that
is compared to a data set, and not in the covariance matrix. With M = C~! being the
inverse of the parameter-independent and positive-definite covariance matrix in the data
space, the log-likelihood is then

L= (X~ ulp) M (X — plp)). (8.19)

The log-likelihood therefore is already a quadratic form in g and we can satisfy the DALI
principle from Sec. (8.4) if we Taylor expand the mean around the best-fit p,

X 1
1(P) = [+ 1o Apa + SH s AP AP -y (8.20)
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where fi = pu(p). The log-likelihood then expands to

L ) ) 1
L~ glm— fM[m = )~ (m— )M <u,aApa + 2“,aBApaAp5>

1 1
+ oo M APaAps + S Mt g, Apa ApsAp, (8.21)

1
+ guvaﬁMum;ApaApBprAp(; + ...

The first term on the right hand side is an irrelevant constant that can be absorbed in the
normalization; the second term averages out to zero, while the remaining terms include
non-Gaussianities into the approximation and we have arrived at our aim. We can now show
that this DALI series is just a resummation of the Taylor expansion of the log-likelihood.
It is obvious from their definition Eq. (8.10) that flexions and quarxions posess some
symmetries under index permutation. When taking the full flexion or quarxion term, all
the distinct terms of the same type in Eqgs. (8.11) and (8.12) become indistinguishable. For
instance, by renaming the indexes,

Ko Mp Apo ApsApy, = p o M p sAp, Apa Apg (8.22)
= p g, Mp  ApsAp,Ap,, . (8.23

Therefore we can simplify

S =3p oM p  Apa ApsAp, ,

(8.24)
Q = (4 0rsMpp g + 345, M pt 50 ) Apa Aps Apy Aps

Now, as anticipated, the expansion can be arranged in order of derivatives. That is, to
second order in the p derivatives we have

1
P = Nexp [ — 5HaMp s ApaAps

1

- (2“,aﬁM“,7ApaAp6Ap'y (8.25)

1
+ 8#,57MN,,304AP<1APBAPWAP6> + O(3) 17

which is exactly the normalizable and positive definite DALI series (8.21). Likewise, at
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third order we have

P=N

1 1
exp [— SHaMpsAPalps — <2M,aﬁM M., APaAPsAD,

1
+gtsM u,gaApaApﬁApyAm)
(1 (8.26)

6#,5MM,BMAP&APﬁAP~yAP6

1
+ ﬁﬂ,aﬁaM 1 Apa Aps Ap, Aps Ap,

1
+ 3,3,2,H,amMu,amAPaApgAvap(;ApTAp; + (9(4)],

The approximated posteriors (8.25)—(8.26) represent true distributions and are the second-
and third-derivative correction, respectively, over the Fisher approximation.

8.5.2 Parameter-dependent covariance

In order to derive the DALI series for a parameter-dependent covariance matrix and a
constant mean, we express the variation of the covariance matrix over the parameter space
by its Taylor series and single out the constant zeroth-order term

C(p) = Co + T, (8.27)

where C)y is the constant covariance matrix evaluated at the likelihood maximum, and

© ™). R R
© = 2~ (Pa = Pa)(Pn = Pn) (8.28)
n=1 :

is the p-dimensional Taylor series of the covariance matrix, beginning at the first derivative
CW. The derivatives are chosen to be evaluated at the maximum likelihood point, denoted
by p. For g = 0 the data matrix is D = X X7 which is parameter independent. The
log-likelihood is then given by

1 1
L= _Tr(In(C)) + -Tr ((XXT)C!
: (n(C) + ;T (X X")C7) B (3.20)
S (m (Coll + Co ' T4y]) + (X XT) (Co + Ty )

where angular brackets denote averaging over the data and (X X7) is kept explicitely, in
order to emphasize that it does not depend on parameters, although it will later average
out to be the measured covariance matrix. So far, the covariance matrix has only been
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rewritten, but no approximation has been made. We will now approximate, in order to
achieve a quadratic form.
If the Taylor series 7&;) is evaluated only sufficiently close to the maximum likelihood point,

then we will have 7210) < Cy and we can consistently approximate Eq. (8.29) up to second
order in 7210) This leads to the targeted shape Eq. (8.18). We therefore approximate by
applying the matrix inversion identity (also known as Woodbury identity)

(A+B)'=A"-A"(1+BA") 'BA™ (8.30)
to find an approximation for the inverted covariance matrix
1\ et 11 el
(Co+Tty) =Ci'+C'Te, Cy (8.31)
—Ci'Tity Cy'Tiey Cot + O(3),

where the approximation was truncated at second order since we target the shape Eq. (8.18).
The quadratic term of the logarithm’s Taylor expansion is,

2

n(l+2) =z — % +O(2%). (8.32)

The quadratic approximation of the log-likelihood then becomes
1 _ 1 _
L~ §T1" (hl(Co) +Co'Tiey — §Co Ty Cy'! (}J)>
1
+ 5T (XXT)(Cg' - €' T Cy'! (8.33)
+ €' T Co ' T, + 0(3))]

Applying (X XT) = Cj the likelihood approximation simplifies to

L ~ Nexp(—L)
1
= Nexp ( Z ch Tl ) + 0(3)>
1 (8.34)
= NeXp ( Z C)& Apa + C?&,B ApaAp,B + . )

C:(Coo Apa + ic,aﬁ Apalips + )] + (9(3)) ,

where In(Cy) and CyCy' = 1 are constants and were absorbed into the normalization
constant N. In the last step, a repeated multiplication of the same terms appears. This
can be rewritten as

L~

2 8.35
= Nexp (—iTr((Cgl(C,aApaJr;C,agApaApg—i-...)) >> , ( )
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where the repeated multiplication of the same matrices in the trace was made more explicit
by denoting it as a square.

We therefore have arrived at an approximation of the shape Eq. (8.18) that includes higher
order derivatives of the covariance matrix. This approximation will consequently remain
normalizable everywhere in parameter space. This result generalizes the usual Fisher matrix
in a straightforward way: if the Taylor-approximation 7?0) is truncated at first order, the
usual Fisher matrix approximation Eq. (8.6) of the likelihood is obtained and the higher
order corrections are then

1
L ~ N exp <—4Tr (C’glC,a CalC,5> ApoApg

1 ) .
—Tr (C3'Ca Cy'Clsy) Apalipsiip,

1
~1Tr (C3'Crap C5' C ) ApaSpsAp, Aps (8.36)

1
~ 511 (€5 C o C5 ' C se) ApaApsp, Aps Ap,

i T (G5 Coasy €5 Coss) Dpa s s )

where we have chosen to truncate the Taylor expansion of the covariance matrix at third
order for brevity; the continuation to fourth and higher orders of the covariance matrix
is however obvious from Eq. (8.35). The terms that are cubic and quintic in the Ap can
become negative and thereby decrease the likelihood estimate in regions, where it had been
overerstimated by the even-order terms. In total however, the terms combine to a quadratic
form, and thereby the approximation is known to not diverge anywhere in parameter space.

8.6 Criteria of applicability

Non-Gaussianity can arise from at least two sources. For example if the data has only
little constraining power then even the likelihood for a model with only mildly non-linear
parameters will develop non-Gaussianities. In contrast, if the data are very constraining
non-Gaussianites will still occur if parameters are degenerate with each other over a finite
range. In this case the non-Gaussianities can be recovered by DALI.

The approximation of Eq. (8.35) is strictly valid if the following criteria are fulfilled:

e The data set X must be so constraining that the likelihood is confined to a region Ap
where the second-order Taylor approximations Eq. (8.32) and Eq. (8.31) dominate
over their higher orders.

e Approximating the log in Eq. (8.33) requires

Tr (Cy' Tey) < 1 (8.37)
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Figure 8.1: The unapproximated likelihood of Eq. (8.39) is depicted in grey. Since Eq. (8.39)
is the equation of a circle, the likelihood has a ring shape. Left: The Fisher approximation
in blue, with fiducial point indicated by the small blue dot. The Fisher matrix is singular
and therefore appears as a set of parallel lines. Right: in blue the DALI approximation
using second-order derivatives of the covariance matrix Eq. (8.39).
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Figure 8.2: Like Fig.(8.1) only for a likelihood using the covariance matrix Eq. (8.40). The
likelihood is again depicted by the empty grey ring, and the different approximations are
depicted in blue: Fisher matrix (left), DALI with second order derivatives of the covariance
matrix (middle), DALI with third order derivatives (right).
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which can be solved for parameter offsets Ap

1
Tt (CoH(Cra+3Coas Aps + )

Ap, < (8.38)

The last requirement will be fulfilled if the data set confines the preferred parameter
space to an area within which the Taylor approximation captures well the variation of the
covariance matrix throughout the parameter space. DALI is therefore expected to work
well in case of rather constraining data and degenerate parameters, while a good recovery
of non-Gaussianities for weakly constraining data and mild non-linear dependences on the
parameters would require Taylor-approximating the log-likelihood to much higher orders
with the corresponding difficulties detailed in Sect. (8.3). If the condition Eq. (8.38) is
only marginally fulfilled, the DALI approximations will still converge although they will
not pick up all the shape information of the likelihood. Mismatches between the shape
of the approximation and the real likelihood shape will then be observed. This is already
known from the Fisher matrix, and expected to be more mild in DALI since the higher
order derivatives will correct upon the Fisher matrix misestimates.

8.7 Numerical complexity and marginalization

The one incontrovertible advantage of the Fisher matrix is its speed. A quick estimate of
the complexity of the DALI approximation can be obtained by observing that the expensive
computations needed for the matrices are the evaluations of the vectors of the derivatives.
For n parameters, there are n possible first derivatives, so the complexity rises linearly
with n. It rises with n(n + 1)/2 when second-order derivatives are included, because there
are n(n + 1)/2 distinct derivatives then. Likewise, it rises as (n® + 3n? + 2n)/6 when
including third-order derivatives. Since every numerical derivative of order p requires (at
lowest accuracy) p + 1 evaluations of the posterior, the complexity for large n goes like
n? and (2/3)n® for second and first order, respectively. In comparison, grids or MCMC-
routines evaluate the full likelihood (which implies generating theoretical predictions of
the data at every point in parameter space) typically thousands of times already for
e.g. four parameters. Therefore only for O(1000) [O(100)] parameters does DALI with
second [third] order derivatives require roughly the same O(10°) evaluations of a typical
Monte Carlo run in large parameter spaces. In practice the evaluation of the posterior
is thus significantly faster with DALI, as most forecasts in cosmology rely on less than a
dozen of free parameters, and the posterior can be numerically costly to compute. Notice
however, that only Gaussian posteriors are again Gaussians with fewer dimensions if they are
marginalized. This analytical result makes marginalizations with Fisher matrices extremely
fast. For non-Gaussian posteriors, for which DALI is interesting, there exists no general
analytical marginalization. Therefore DALI will be slower in this respect than Fisher matrix
approximations. Let us point out that this is not a flaw of DALI — is necessarily the price
that one has to pay, if the non-Gaussianity of a posterior shall be captured because with
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the loss of Gaussianity, also its analytical results are lost. The public DALI code takes care
of the needed numerical replacements like the numerical marginalization.

8.8 Parameter-dependent covariance matrix and mean

We now have two DALI approximations, one dealing with constant covariance matrices
and a parameter-dependent mean, and one dealing with a constant mean and a parameter-
dependent covariance. An interesting question is whether the two approximations can be
combined to approximate a likelihood where both mean and covariance matrix depend on
data. So far, if both, p and C' depend on the same parameters, no quadratic form that
is at the same time a Taylor series has been found due to the appearance of cross-terms?
between derivatives of p and C, e.g. p,o C,5 .. Neglecting these cross-terms will produce
a DALI expansion that is a simple multiplication of Eq. (8.35) and Eq. (8.26). This may be
a good approximation in many cases, e.g. when the covariance matrix depends strongly on
some parameters but not on those on which the mean depends. However, due to omitting
the cross-terms, in general this expansion will not be able to recover all information and
therefore it may not yield a good approximation.

8.9 Illustrative test cases

The strength of this new approximation scheme was tested on two toy models of particularly
severe non-Gaussianities which arise from degeneracies. Both toy models are two-dimensional
and have g = 0. The data set consists of 50 data points. The covariance matrix of the first
is diagonal and given by

Cij(p) = (07 + 13)d5, (8.39)

with the Kronecker delta ¢;;. Since p? + p3 = const is the equation of a circle, this model
produces a ring-shaped unapproximated likelihood, with the interior of the ring being
a region of zero likelihood. All points which lie exactly on the circle will maximize the
likelihood and any of them could be chosen as fiducial point for evaluating the DALI
approximation. Taking more than 50 data points would decrease the thickness of the ring
but would never be able to lift the degeneracy, even for an infinite number of measurements.
Such likelihoods appear for example in particle physics for measurements of the Cabibbo-
Kobayashi-Maskawa matrix (Charles et al., 2015).

The covariance matrix of the second toy model is,

Cij(p) = (P + p3)i;, (8.40)

which again possesses a closed degeneracy line of a somewhat boxy ring shape. Again, each
point along the line pf +pj = const can serve as a fiducial point for the DALI approximation.

2In Sellentin et al. (2014), the appendix contained an approximation for parameter-dependent mean
and covariance, but this approximation is not a strict Taylor expansion and not always positive definite.
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The unapproximated likelihoods of these two models are depicted as grey shades in Fig. (8.1-
8.2), where the two shades indicate the 68% and 95% confidence contours. Both toy
models were then approximated by Eq. (8.35), truncated at different orders. The Fisher
matrix of both cases is degenerate and appears as parallel non-closing lines. Changing the
evaluation point of the derivatives cannot break this degeneracy. The second-order DALI
approximation already finds the full circle, since no higher than second-order derivatives
exist in this case. For the second toy-model, a complete recovery of the likelihood would
require the calculation of fourth-order derivatives. Although this could be done analytically
in the case at hand, in general such a calculation would need a numerical solution. We
therefore maintain the truncation of the expansion Eq. (8.35) at third-order, as implemented
in the public code DALI. The resulting approximation can be seen in Fig. (8.2, right) for
third-order derivatives, or second-order derivatives in Fig. (8.2, middle). The degeneracy of
the Fisher matrix is lifted in both cases, and the improvement in shape fidelity can easily
be seen. As typical applications of this method would not posess such strong parameter
degeneracies, it can be expected that the DALI method will reconstruct the likelihood
contours with great accuracy.

A C++ code for DALI is public at DALI. However, due to the structural similarity with
the Fisher matrix, any already existing Fisher code can easily be upgraded to a DALI code
by adding the higher order derivatives.
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Chapter 9

Scientific results from DALI

Having established the framework of DALI in the previous chapter, we proceed here to
present various scientific uses of DALI. This chapter follows partly our publications Sellentin
et al. (2014) and Sellentin & Schéfer (2016).

9.1 Forecasts for type Ia supernovae

We consider now an application of our method to supernova data. The measurable quantity
is the distance modulus, which is related to the dimensionless luminosity distance by,

i = 5logd(z), (9.1)

where the index 7 denotes the dependence on a given redshift and d is the dimensionless
luminosity distance. The log-likelihood for the supernovae after marginalization of the
Hubble constant and the absolute luminosity is (Amendola & Tsujikawa, 2010b)

E:—logL:1<S2—>, (9.2)

where the sums are

$u=Y u (9.3)

where m; is a measurement at redshift z; and the corresponding theoretical mean p;. The

log-likelihood can be written as

1

where X; = m; — p; and the inverse covariance matrix is,

2
SS%
- 9.5
SO Y ( )

Mij = Sisjéij —
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where s; = 1/0; and only here we de not imply a summation over the repeated indices. If
one assumes s; = 1/o0 (constant) then the covariance matrix is

_ 1
Mij =0 2 <51] - N) . (96)
So finally we have
O 2
SN _ i
5 = (o) )
a1 \ d;  dlogd (&1
OPpa Ips

Similarly, the flexion and quarxion tensors and the DALI expansion are then obtained by
replacing p; with 5log d;.

Notice that a parameter that appears additively in p;, like the offset, will not enter the
DALI terms; therefore, the analytic marginalization of the posterior affects only the Fisher
term and remains analytic also in DALIL.

In order to demonstrate the potential of DALI, we show how accurately it can recover
the “banana-shaped” posterior of the Supernova Union2.1 catalogue (Amanullah et al.,
2010). This catalogue comprises the distance moduli of 580 SNela, which we use for the
data points m;(z;) of Eq. (9.3), together with their respective errors o;. We compare
this data set with the distance moduli obtained from a flat wCDM cosmology with the
Chevallier-Polarski-Linder parameterization for the dark energy equation of state (Chevallier
& Polarski, 2001; Linder, 2003),

w(a) = wy + we(l — a). (9.8)

We choose the fiducial parameters to be the best fit parameters of the supernova posterior
found in (Amanullah et al., 2010) for the wCDM model and evaluate the distance moduli
at the redshifts of the Union2.1 catalogue.

In Figure 9.1 we depict in grey solid contours the non-approximated posterior (obtained
with a grid method), which we will frequently refer to as the “full” posterior.
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Figure 9.1: Un-approximated posterior of the Union2.1 catalogue (grey) and approximations
(dark-blue) for w, = 0. The confidence contours are drawn at the 1 and 20 confidence
levels. Panel (a): The Fisher Matrix; panel (b): Eq. (8.25), DALI to second order; panel (c):
Eq. (8.26), DALI to third order.
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Figure 9.2: As Fig. 9.1 but for a mock catalogue of 1000 SNe and marginalizing over w,.
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Figure 9.3: As Fig. 9.2 but this time marginalized over €, in the interval [0, 1]. Note that
the upper half of the Fisher-ellipse covers parameter ranges with high w,, indicateing that
the Fisher matrix does not capture the underlying physics well, whereas DALI does.
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Here and in all other figures the contours are drawn at 1 and 20 (we follow standard
procedures and use 1o and 20 as shorthand notation for 68.3 and 95.4% confidence levels).
The improvement of the shape fidelity by successively adding higher order derivatives to
the posterior can be seen as one inspects panel (a) which is the Fisher matrix, (b) DALI
with second-order derivatives and (¢) DALI with third-order derivatives in Figure 9.1.

As the observational campaigns for dark energy proceed and more data are collected the
posteriors are expected to become more and more Gaussian. To investigate the use of
DALI in this respect, we mock a future supernova catalogue with 1000 SNela, uniformly
distributed in the redshift range 0 < z < 2. We use a flat CPL-cosmology with Qfd = 0.285,
wid = —1 and wi? = 0 as fiducial. In the (£2,,, wy)-plane, such a catalogue yields a posterior
of similar shape to Figure 9.1, which DALI can recover nicely.

We further demonstrate the potential of our method on a posterior with higher non-
Gaussianity: in Figure 9.2, we marginalized the posterior of Figure 9.1 over w, in the range
(—00,+00), and our method can recover the shape of this heavily non-Gaussian posterior
quite accurately. In Figure 9.3, we marginalized instead over €2,,. Notice that the upper
half of the Fisher ellipse extends far into the the parameter space of positive w,, which
corresponds to a completely different expansion history of the universe, one that is ruled
out at many o by supernova data.

The leakage of the DALI contours out of the true likelihood when including third-order
derivatives in Figs. 9.2 and 9.3 is a numerical artefact. Already from the Fisher matrix
approach it is known that numerical derivatives have to be estimated accurately since they
determine size and orientation of the error contours. Figs. 9.2 and 9.3 had been generated
with an old version of the DALI code which used a numerically fast but rough algorithm
for calculating third derivatives: it took another derivative of precomputed and splined
second derivatives. The public version of DALI uses a more accurate routine: it calculates
third derivatives by using finite differences on the original function, not any already derived
quantities. Redoing the analysis with the improved code results in Fig. 9.4, demonstrating
that with the more carefully conducted estimate of third derivatives, the erroneous leakage
of the DALI likelihoods disappears.
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Figure 9.4: Replacement of the third-order derivatives of Fig. 9.2 and Fig. 9.3, using the
public version of the DALI code where third-order derivatives are calculated more accurately.
This demonstrates that the previously observed mismatch between the true likelihood and
the DALI contours was only due to numerical inaccuracies.
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9.2 Forecasts for Euclid weak lensing

In this section, we use DALI on a weak lensing data set in order to test how constraining
it is, if no external priors are added. Including priors into a data analysis can mask the
information content of a given data set alone. However, since the information content
of a data set is usually estimated with the Fisher matrix, priors are added to enforce
an approximately Gaussian likelihood. Here, we estimate the information content of a
Euclid-like weak lensing data set with and without priors. Additionally, we demonstrate
how DALI allows switching to a speedy Hamiltonian Monte Carlo sampling of a highly
curved likelihood with acceptance rates of ~ 0.5. This shows how quick forecasts can be
upgraded to accurate forecasts whenever needed.

Weak cosmic lensing is currently a field of intense focus: It allows the measurement of the
cosmological parameters especially in the late Universe and is therefore an ideal probe for
dark energy physics or models of modified gravity. Weak gravitational lensing has been
observed with increasing singificance by e.g. CFHTLenS (Kilbinger et al., 2013; Heymans
et al., 2013), allowing the determination of cosmological parameters.

In the future, weak lensing will be investigated on about a third of the sky with the upcoming
Euclid satellite (Laureijs et al., 2011b). While the Euclid data set is not yet available, its
constraining power on different extensions of the current cosmological standard model is
being forecasted, see e.g. Amendola & Tsujikawa (2010c). Also, statistical techniques are
being improved, or the data analysis is being refined, for example by switching from a
two-dimensional weak lensing analysis to weak lensing tomography (Hu, 1999, 2002) and
3d cosmic shear (Heavens, 2003; Castro et al., 2005; Heavens et al., 2006), or by including
higher-order polyspectra of the weak lensing shear (Munshi et al., 2010), or by combining
lensing with other tracers of cosmological structure growth. There will be large-scale lensing
surveys on the way to Euclid with an emphasis on dark energy, for instance the Kilo-degree
Survey (KidS) (de Jong et al., 2013) and the Dark-Energy survey (DES) (Melchior et al.,
2015).

All these different surveys need a tool in order to assess the information content of the
data set under a specific analysis, i.e. a way to forecast the expected constraining power
of the analysis. In principle, Monte Carlo Markov Chains (MCMC), Nested Sampling or
grid-based likelihood evaluations are a well suited tool for these aim, but they are very time
consuming, such that the Fisher matrix is used instead.

However, using the Fisher matrix, demands that the posterior can be well approximated
by a multivariate Gaussian. As weak lensing possesses strong parameter degeneracies,
this is not automatically guaranteed and usually, the weak lensing data set is combined
with external probes or priors such that parameter degeneracies are broken. This removes
non-Gaussianities at the cost of mixing weak lensing with other data sets.

Another question is how sensitive weak lensing is alone. In order to answer this question,
existing non-Gaussianities have to be captured accurately. Obviously, DALI is a well-suited
tool for this and we shall in the following compare it to the Fisher matrix approximation
and to MCMC-evaluations.

Our cosmological parameter set consists of @ = (Q,,,, 0, ns, h, w) which are the density of
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cold dark matter today, the normalization of the power spectrum, the primordial spectral
index, the Hubble constant and a redshift-independent dark energy equation of state
parameter. Our fiducial cosmology is €2, = 0.25,03 = 0.8, ny = 0.96,h = 0.7, w = —0.98.
We keep the density of baryons fixed to €2, = 0.04. We model Euclid’s weak lensing survey
(Laureijs et al., 2011b) to reach out to a median redshift of 0.9 and to yield n = 4.8 x 108
galaxies per steradian. We assume that the shape measurement produces a Gaussian noise
with standard deviation o, = 0.3. We use a sky fraction of fg, = 0.35 and a multipole
range of 30 to 3000. For the redshift distribution of the galaxies, we use the common
parameterization (Refregier & the DUNE collaboration, 2008)

p(2)dz (;)2 exp <— (;>B> dz. (9.9)

We model the processing of an initial density fluctuation power spectrum during the early
phases of the Universe with the ansatz

Ps(k, 2) o< k™ T?(k, 2), (9.10)

where T'(k, z) is the transfer function for which we use the fit by Bardeen et al. (1986).
We also include the additional variance of the cosmic density field on nonlinear scales as
described by Smith et al. (2003). The growth of the power spectrum is then modelled by
D, (a) = 6(a)/d(1). The spectrum is normalised to the value og,

5 * k2 dk .,

o5 = 52 W=(8 Mpc/h x k) Ps(k), (9.11)
0

with a Fourier-transformed spherical top-hat W (x) = 3j;(z)/x as the filter function, where

J1(z) is the spherical Bessel function of the first kind.

With the comoving Poisson equation

A® = 3Q,,/(2x%)9, (9.12)

we convert between the density contrast ¢ and its gravitational potential ® such that from
the spectrum of the CDM density perturbations the spectrum of the gravitational potential

® follows to be
3Q,,

To include redshift information, one divides the galaxy sample into ny;, redshift intervals
and computes the lensing potential ¢ at the position 6 for each redshift bin i separately,

) k™ T (k)2 (9.13)

6i(6) = / Y w09, (9.14)

hence 1;(#) is related to the gravitational potential ® by projection with the weight function
Wi(x)

Dy (a) Gi(x) .

Wi(x) =2 " "

(9.15)
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Modes ¥y, of the lensing potential ;(f) are obtained by the decomposition g, =
[ dQ ()Y, (0) into spherical harmonics Yy, (0). The distribution p(z)dz of the lensed
galaxies in redshift is incorporated in the lensing efficiency function G;(x),

Glo= [ asg (1—") (9.16)

min(x,X:) X'

with dz/dx’ = H(x’)/c and the bin edges x; and x;41, respectively. Angular spectra Cy, ;;(¢)
of the tomographic weak lensing potential can be written as the variance (Ve i¥,,, ;) =
30O Cij(€), which we approximate by the corresponding flat-sky expression,

C%M@=Ami§m@%%uﬂ%%=WM- (9.17)

The convergence k and the shear v follow by double differentiation of the lensing potential
with respect to angles, k = £%¢)/2, therefore their spectra are equal to £*Cy, ;;(£) /4. Observed
spectra of the weak lensing shear will contain a constant contribution o2ny, /7 known as
shape noise, which translates into

Cuii(0) = Cii (0) + 0—2% x (45, (9.18)
which will be at the same time the covariance matrix for measurements of modes ¥, ;.
The covariance between different redshift bins, Cy ;;(¢), is non-zero for ¢ # j because light
rays share the section between the observer and the closer tomography bin, such that
they contain partially the same statistical information. We will mainly work with 2d-weak
lensing, but for an additional comparison with 2-bin tomography, we choose bins such that
they contain the same number n of galaxies.

Weak gravitational lensing derives its sensitivity on cosmological parameters from a combi-
nation of the amplitudes of gravitational potentials and geometry: The amplitude of the
spectrum is set by (€,,05)?. Additionally, the growth function D, (a), the peak of the power
spectrum and the lensing efficiency function G;(x) carry a weaker dependence on €2,,.
Therefore, the hyperbolic degeneracy line between these two parameters will approximately
follow €2,, o< o3 *. The growth of dark matter fluctuations depends also on the background
expansion and therefore also on the equation of state w for dark energy. The dark energy
equation of state also influences the conversion of redshifts into distance measures. The
shape of the spectrum P(k) is mainly determined by n, h and ,,, which is reflected in the
spectra Cy ;;(¢) more weakly due to the weighting functions W;(x). The shape parameter
of the power spectrum is I' = ,,,h, which introduces a degeneracy between 2, and h which
will again be a hyperbolic line.

On the full sky, 2¢ + 1 independent m-modes contribute to each /-mode. The likelihood for
the /-modes when averaged over the m-modes is then

)2€+1

cqwmnzchM@mw (9.19)
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Figure 9.5: The marginalized Fisher matrix (grey) in the €,,, h-plane. The blue rectangle
indicates the area bounded by the constraints A > 0, £2,,, > 0 which might be interpreted as
minimal priors that could be applied to foster the constraining power of the weak lensing
data set.

Observational issues like an incomplete sky coverage and a point spread function lead to a
coupling of different /. Although of course relevant for analyses of real data sets, this is
often omitted for forecasting (Hannestad et al., 2006) because non-diagonal or non-block
diagonal covariance matrices are much harder to invert. For a Monte Carlo sampler, this
inversion would be necessary for each sample, and we therefore assume that the different
¢-modes decouple for the sake of speed.

The likelihood for each observed mode vy, ; if the theory predicts a covariance CA’WJ- (0), is
Gaussian in the data,

1
V @m)mindetCy(0)

£ (o) = xp (=i ColO Nigtions ), (9:20)

due the fact that both the cosmic structures as well as the noise are approximately Gaussian
random fields. Consequently, the logarithmic likelihood L = —In £ is up to an additive
constant equal to

14 . N
L= Ze: 2;1 (Tl" (In) Cy + (Cy ) wem,ﬂﬂem,j) (9.21)

We will often refer to Eq. (9.21) as the true likelihood since no approximations apart from
physical approximations such as the flat-sky approximation and integrating the lensing
signal along a straight line were used so far, and the assumption that the projected lensing
potential has nearly Gaussian fluctuation statistics.

In the following, we compare which parameter space is preferred by the Fisher matrix,
DALI and MCMC and their Figure of Merits (FoM): The Fisher matrix allows a convenient
definition of a FoM via the determinant of 2 x 2 submatrices

FoM = \/ detF2X2. (922)
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Figure 9.6: Comparison of the different likelihood approximations with the MCMC-sampled
likelihood (depicted in blue) for 2d-weak lensing. The contours enclose 68%), 95% and 99% of
the likelihood. Solid grey: Fisher approximation combined with the additional constraints
Q,, > 0 and h > 0 (implemented by sampling from the Fisher matrix and discarding
all unphysical samples before marginalizing). DALI with second-order derivatives of the
covariance matrix is shown in open green contours, DALI with second and third derivatives
is shown in open blue contours. The dots in the bottom right panel are samples drawn
from the Fisher matrix approximated likelihood and are predicted to be points of high
likelihood by the Fisher matrix. However, when calculating the unapproximated likelihood
of these samples, they turn out to be extremely unlikely parameter combinations. This
demonstrates that the sharp cutoff towards lower h in the bottom right panel is correct. In
the top left and bottom right panel, the likelihood asymptotes roughly towards h =~ 0.4,
and the cutoff in the ng, h-plane is just a different projection of this behaviour. The purple
line in the bottom left panel indicates the constraint w < —1/3 for accelerated expansion,
and it can be seen that over ~ 90% of the MCMC and DALI contours fall within the
parameter space of accelerated expansion, thereby indicating strongly the presence of a
dark energy, whereas ~ 30% of the Fisher matrix cover parameter regions that would not
lead to accelerated expansion.
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Figure 9.7: Figure of merit from the different approximations, relative to the MCMC figure
of merit. The non-Gaussian DALI approximations always perform better than the Fisher
matrix, although no clear trend can be made out. However, the DALI FoMs differ by
maximally ~ 30% from the MCMC FoM, whereas the Fisher FoM differs about two times
more, namely by up to ~ 65%.

This corresponds to using the area enclosed by a chosen confidence contour in a given
parameter plane as a FoM. We generalize this concept to our non-Gaussian forecasts by
defining that the FoM shall be the area enclosed by the 95%-confidence contour.

We begin by evaluating the Fisher matrix for this setup. Fig. 9.5 shows the marginalized
Fisher matrix approximated likelihood in the €2,,,, h-plane. Clearly, the Fisher matrix reaches
far into unphysical regions of negative {2, and h. Sensitivity with respect to the Hubble
constant enters weak lensing through the shape parameter I' = €2,,h which is a length scale
and must therefore be positive definite. Negative h and €2, are therefore non-sensical and
these negative values must be excluded. This shows, that the Fisher matrix cannot be used
for a 2d weak lensing analysis for the Euclid satellite without enforcing by priors that the
shape parameter has to be positive definite. In Sect. 9.4, we discuss why the Cramer-Rao
inequality does not need to hold if unphysical parameter ranges are covered by the Fisher
matrix.

For the comparison of the Fisher matrix with DALI and MCMC, we therefore augment
the Fisher matrix with the prior knowledge €2, > 0, h > 0. In practice, we implement this
by drawing samples from the Fisher matrix approximated likelihood, and discarding all
samples that fall into the unphysical regions. The introduction of these sharp cutoffs in §2,,
and h leads to a non-Gaussian likelihood approximation. This approximation is depicted in
grey in Fig. 9.6 and was also used for comparing FoMs in Fig. 9.7.

A comparison with MCMC-sampled likelihoods shows that the data are actually more
constraining than predicted by the Fisher matrix, and a DALI evaluation of the likelihood
contours reveals that the problem is entirely due to non-Gaussianities and degeneracies
between non-linear parameters.

In Fig. 9.6, a comparison between the Fisher matrix, DALI and MCMC samples of the
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likelihood is shown. For MCMC and DALI, no prior constraints like €2,, > 0 were used.
Highly curved degeneracy lines and asymmetric likelihood shapes are evident. These curved
degeneracy lines are well approximated by DALI, although not perfectly. As the likelihood
asymptotes to h &~ 0.4 in the €2,,, h-plane and in the h,w-plane, negative h are excluded
without the use of any priors. This shows that the 2d weak lensing analysis is able to predict
a lower bound of A > 0.5 on its own. Also due to the highly curved likelihood shapes, €2,
does not become negative but stays confined to the physical region. These strong changes
in the allowed range of €2,, and h in comparison to the Fisher matrix, propagate into
the constraints of the remaining parameters og, n,, w. For dark energy, the curved DALI
approximation predicts 0.3 > w > —2.0. In contrast, the Fisher matrix allows much smaller
and even positive w. This is interesting for the forecasting of dark energy constraints: An
accelerated expansion of the universe requires w < —1/3. About one third of the Fisher
matrix covers however the parameter space w > —1/3, and only two thirds fall into the
parameter range of accelerated expansion. In contrast, DALI and MCMC both favour the
accelerated expansion by a much larger degree: about 90% of their preferred parameter
range corresponds to an accelerating universe. Note, that the fact that the Fisher matrix
also covers parameter regions of decelerated expansion stems from it being by construction
symmetric around the best fit point.

Already in case of the type la supernovae in Sect.9.1, we observed that this high symmetry
leads to the Fisher matrix covering parameter ranges of decelerated expansion, whereas
the real likelihood did not. The symmetry problem is especially evident in the bottom
right panel of Fig. (9.6). There, we drew samples from the Fisher matrix (depicted as black
dots) that are predicted by the Fisher matrix approximation to have a high likelihood,
but that turn out to be extremely unlikely parameter combinations when inserted into the
unapproximated likelihood.

Fig. 9.7, demonstrates that the DALI FoMs are closer to the MCMC FoM than the Fisher
FoM. This illustrates that DALI is the more trustworthy tool for forecasting in the presence
of non-Gaussianities and that modelling parameter degeneracies correctly, can remove the
necessity to impose priors in order to establish a Gaussian likelihood. This allows the
scientific return of a single data set to be optimized independently of external priors.

We will now test which non-Gaussianities remain if a prior on h is introduced to a 2d-weak
lensing analysis or if the analysis is improved by updating to a 2-bin tomography. This
testing for non-Gaussianities is not possible with the Fisher matrix, but of high interest,
as the usual forecasts use the Fisher matrix nonetheless. We use a Gaussian prior on h
with standard deviation o5, = 0.03, roughly corresponding to the precision of current local
constraints on the Hubble constant (Riess et al., 2011). Fig. 9.8 shows that even when
using this prior, the posterior likelihood is not peaked sharply enough but non-Gaussianities
remain. It also shows that switching to 2-bin tomography outperforms the inclusion of this
prior into a 2d weak lensing analysis. Figure 9.9 shows a comparison of the Fisher and
DALI forecasts and MCMC for 2-bin tomography. The likelihood is then well approximated
by a multivariate Gaussian.
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Figure 9.8: Yellow: DALI constraints for 2d weak lensing with a Gaussian prior on h from
local measurements. Since DALI with second-order derivatives and DALI with second and
third-order derivatives agree very well, only the latter are shown. Blue: MCMC-sampled
likelihood for a 2-bin tomography analysis of the same data set without a prior on h.
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Figure 9.9: 2-bin tomography for the same weak lensing survey increases the constraining
power enough such that the Fisher matrix (grey contours) agree well with the MCMC
contours (solid blue). DALI finds nearly the same confidence contours as the Fisher matrix

since only minor non-Gaussianity is present.
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9.3 Accelerating Hamilton Monte Carlo with DALI

In this section, we use DALI to aid MCMC-sampling the unapproximated weak lensing
likelihood. Since MCMC chains need a data set for calculating the likelihood, we generated
a ACDM mock data set which our sampler reads in.
The Metropolis-Hastings algorithm (Metropolis, 1985) works well for approximately mul-
tivariate Gaussian likelihoods but has problems with following highly curved likelihoods.
We therefore employed a Hamilton-Monte-Carlo (HMC) sampler, which uses Hamiltonian
dynamics for describing a random walk on a potential P corresponding to the logarithmic
likelihood,

P(z,) =—1In(L), (9.23)

and a kinetic energy to introduce the randomness needed for sampling.

The algorithm takes multiple leapfrog steps along contours of approximately constant
likelihood before performing a Metropolis-Hastings step by which it decides whether the
new point is accepted or rejected (Hajian, 2007b). For each leapfrog step, the HMC sampler
takes derivatives of the logarithmic likelihood and follows these, thereby adjusting well to
curved likelihoods, see Sect. 6.10.

Calculating derivatives of the true log-likelihood can be numerically costly. A gain in
performance can then be achieved if the log-likelihood is replaced by an approximation
which is fast to evaluate, such as DALI. Consequently, we do not use the log-likelihood
of Eq. (9.21) for the sampler, but its DALI approximation for the leapfrog steps along
the potential. Calculating the true weak-lensing likelihood is then only needed in the
Metropolis-Hastings steps. This procedure speeds up the performance of our sampler by a
factor ranging between 30 and 100, depending on how many leapfrog steps were done in
each iteration of the HMC algorithm.

A potential issue with using DALI contours to guide an HMC sampler is that DALI might
exclude regions of the parameter space that are actually preferred by the true likelihood. In
order to avoid this problem, we introduce a temperature to widen the potential Eq. (9.23),

In P(xz,) = InP(z,)/T. (9.24)

If the temperature is set too high, the contours of the potential Eq. (9.24) will not generate
samples that follow the true likelihood well. This leads to a reduction of the acceptance
rate. We find that 7' = 3 leads to an acceptance rate between 0.3 and 0.5 while still giving
the sampler the possibility to reach all regions in parameter space that are erroneously not
covered by the DALI approximation. In Fig. 9.10 we plot samples of such an MCMC-chain,
demonstrating that the sampler has indeed been able to cover the true likelihood fully: The
accepted samples are surrounded by a rim of rejected samples. This rim shows that the
sampler had the chance to explore regions of parameter space with low likelihood.

Note, that this procedure is not limited to forecasting: the DALI contours can also be used
to accelerate an HMC sampler that calculates the likelihood conditioned on real data, as
long as the peak of the real likelihood lies in the vicinity of the fiducial for which DALI was
calculated. All that would need to be changed is that the HMC sampler reads in the actual
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Figure 9.10: Samples from a Hamilton Monte Carlo Chain: For the approximate potential,
the tempered DALI likelihood Eq. (9.23) was used. Rejected samples are depicted in red,
accepted samples in blue. Clearly visible is a red rim where accepted and rejected samples
do not mix, demonstrating that the sampler was able to reach all points in parameter space
that are preferred by the data. In the other two-dimensional planes, there also exists a ring
of rejected samples.

data, instead of the mock data. We therefore advise to store DALI tensors or even complete
DALI-driven HMC codes from forecasts, as they can be recycled in the data analysis once
the real data are available.

In contrast, using the Fisher matrix as an approximate potential for the HMC sampler has
proven ineffective: since it does not capture the curvature of the likelihood, the sampler is
frequently guided towards regions of extremely low likelihood if it follows the isocontours of
the Fisher approximation. Consequently, even after adjusting the number of leapfrog steps,
no higher acceptance rate than 0.02 in our application could be gained, while many regions
of the preferred parameter space were not sampled (in an acceptable time) at all.

9.4 Revisiting the Cramer-Rao inequality

The Fisher matrix has also become widely used in cosmology, as it represents the lower
bound on the variance of parameter estimators. This statement is known as Cramer-
Rao inequality: if 02(6;) is the variance of an unbiased parameter estimator 6;, then the
Cramer-Rao bound states (Tegmark et al., 1997)

o?(0:) > 1/\/(Fa), (9.25)

if all other parameters 0; are fixed. If other parameters 6; are to be inferred jointly with 6,
then the minimum achievable variance increases to
o2(6;) > (F~ 1)/ (9.26)

- (]
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where it was used that the inversion marginalizes out the other parameters.

The tenor in cosmology is, that the Cramer-Rao inequality guarantees that the Fisher
matrix leads to the tightest achievable parameter constraints. However, let us have a closer
look at the assumptions: first, the Cramer-Rao inequality makes a statement about the
variance of a parameter. This will only be the identical to the 68%-confidence contour, if
the posterior is Gaussian. In general, cosmologists are however interested in the confidence
contours, not in the variance, so care has to be taken. More elaborate considerations about
the Cramer-Rao inequality can be found below.

9.4.1 Frequentist and Bayesian Fisher matrix

Suppose there exists an observable m = [my, ..., m,] to which a theoretical prediction by a
model p corresponds that is a function of a parameter set: g = p(py, ..., o). In the Fisher
matrix formalism the observed outcome is the mean values of the observables assumed as
the null hypothesis. This method allows a quick way to estimate errors on cosmological
parameters, given errors in observable quantities. The frequentist Fisher matrix is defined
as the Hessian of the log-likelihood function £ = —log(P),

Fap = (=(log P(m, p1)),ap) - (9.27)

This can be simplified as follows

Fog = (—=(log P(m, p1)).ap)
P,
= <— 2 1 (log P) a(log P)ﬂ> (9.28)
= ((log P) a(log P) s)
since P P
7a18 7a6 mn n
<P>/de 8a5/dx0 (9.29)
In the case of Gaussian data, the likelihood for n data points is
p— 1 e—%(mi—ui)Cgl(mj—ltj)_ (9_3())
(2m)"2/|C]

The Fisher matrix is then (suppressing the data indices 7, j and implicitly summing over
them unless otherwise specified) (Tegmark et al., 1997)

1
Fos = §Tr[C’7aC_1C’,5C_1} Oy (9.31)

By the Cramer-Rao inequality, a model parameter p, cannot have a variance smaller than
1/(Faa)? (evaluated for unbiased estimators) when all other parameters are fixed, or a
precision (F~')1/2 when all other parameters are marginalized over. Notice however that
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the Cramer-Rao inequality concerns variances and does not say anything about the relative
size of the confidence regions.
The purely Bayesian definition of the Fisher matrix is instead:

Fyp = —log(P(m, ))as | .. (9.32)

where the derivatives have to be evaluated at the best fit values of the parameters, i.e. for

parameters such that
P,=0. (9.33)

This definition makes no reference to the average over the data, which in the Bayesian
context are fixed once and for all by the current experiment. Expressions (9.27) and (9.32)
are however in general different and the Cramer-Rao inequality does not hold in general for
FB. We can also write

FaBﬁ = —10g<P(mle»))7aﬂ ‘BF

Pag
=~ .t (log P) o (log P) gl 5o (9.34)
_ Pag
N P |sr

due to Eq. (9.33) .

We show now that the only cases in which (9.27) (evaluated at the best fit) and (9.32)
coincide are a) when the data are Gaussian and the parameters enter in a linear way in the
mean and in the variance and b) in the case of forecasting.

In fact we have

1
(log P) o = —5Tr [CaC™' +CD,—C7CuCD, (9.35)

where we defined the data matrix with its components

D;; = X;X; (9.36)
and the data vector
X=m-—p. (9.37)
Notice that
Dij,a = _2:ui,och : (938)

The best fit condition (log L) , = 0 gives
Tr[C'C,C™'D] = Tr[C,Ct+C'D,)]. (9.39)
If C' does not depend on the parameters, the best fit equation becomes

Do=0. (9.40)
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Finally we have
Fo% = —(log P) aplpr =

1
5 Ir C'C.s(I —C7'D)—C'Cy(CC,
+C'D,)+C'C,CT'CCTID (9.41)

+C'CCCC™'D —2p ,,C'X
+21,C 'y — C'CC' D g
BF
Inserting the best fit condition (9.39) we obtain

ng = —(log P) us|5r

1
=T [0—10@5(1 — D)+ 00,

(9.42)
— 2u7aﬁ0_1X + 2u7a0_1u’4
BF
= Fop(r) + XapBr) ;
where ]
Yap = 5Tt [C7'Cap(I = C7'D)| = psC'X. (9.43)

This shows that if the parameters enter linearly in C' and in u, the two Fisher matrices
coincide (always assuming Gaussian data). The matrix 3 expresses the difference between
frequentist and Bayesian Fisher matrices. The first one is the one that ensures the Cramer-
Rao inequality. The second one is the matrix that approximates the posterior.

Now, when we do forecasts, we generate mock data with variance given by C' and mean
given by pu. If we evaluate the average Fisher matrix for many mock data, then we obtain

(D)=C (9.44)
(X)=0 (9.45)

so that
(Zap) = 0. (9.46)

When forecasting, we in general identify the two Fisher matrices, or rather we can say that
the generation of mock data implements the frequentist approach. Analysing real data,
however, one should use the Bayesian Fisher matrix, because this is the approximation to
the posterior.

9.4.2 Fisher matrix versus Fisher information

We demonstrate that the Cramer-Rao inequality does not need to apply if the Fisher matrix
covers unphysical parameter ranges. To illustrate this, we imagine a distribution function
f(X,8), where X is the data set, and for simplicity only one parameter  shall be estimated
(else, one would simply need to marginalize over the other parameters).
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The Cramer-Rao inequality actually holds for the Fisher information Z (Cramer, 1946),
which is the averaged squared gradient of the log-likelihood,

I:/f(X,0)[6910g(f(X,9))]2d”:p. (9.47)

In contrast, the diagonal Fisher matrix elements are the averaged curvature of the negative
log-likelihood

Fop = — / F(X,0)0509 log(£(X, 0))d". (9.48)

Explicitely calculating the second derivatives in FEq. 9.48 shows that the Fisher matrix and
the Fisher information are related by

F99 =7 — /89(99f(X, Q)an (949)

In order for the Fisher matrix to be identical to the Fisher information, the second term
needs to vanish, which will be the case if the differentiation with respect to the parameters
and the averaging over the data interchange. This however requires that the distribution
f(X,0) and its derivatives exist for all combinations of the data and the parameters. This
will usually be the case, but not always, because physical parameters often have bounds
beyond which they become non-sensical (e.g. negative masses). So if the Fisher matrix
reaches into unphysical domains of the parameter space, the Cramer-Rao inequality can
break down. We found this to be true in the case of the Fisher matrix from weak lensing in
Fig. 9.5.

9.5 Analytical inversion with the Sherman-Morrison-
Woodbury formula

Having taken a deeper look at the Fisher matrix in (9.4.1) and (9.4.2), let us here also
include a new result derived in Amendola & Sellentin (2016) about how to invert the Fisher
matrix analytically under the addition of priors. This allows to optimize the constraints on
interdependent parameters much more effectively than by simple trial-and-error inversion
under ad hoc assumed priors. As the outcome of inverting a big matrix cannot be foreseen
intuitively, the following formula is a great help in understanding better which parameters
affect the uncertainties of other parameters the most.

The idea is entirely based on the Sherman-Morrison-Woodbury formula (Sherman &
Morrison, 1950; Woodbury, 1950). This formula states that if M is a square matrix and
u, v are vectors then

M- luvT™M1

1+ v™M 1o’
where T" denotes transposition. The formula allows to quickly find the inverse of M when a
matrix uv? is added to M. If we demand that M is a non-degenerate Fisher matrix, i.e. the

M+uv") =M1~ (9.50)
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inverse of the covariance matrix of parameters, then M is symmetric and positive definite.
If we further set w = v, we can construct a prior matrix P = uu" where the vector w is

u=1{0,0,..p.' ..} =p. ', (9.51)

where py, is the prior standard deviation on the control parameter 6, that shall quantify
the expected improvement on 6, in a feasible future experiment. The vector @ is the k-th
basis vector. Introducing a matrix P =@’ ie. a matrix whose elements are all zero except
for Py, = 1, we can write P = p,zzls, and Eq. (9.50) then specializes to

M-1PM~

M+P)yt=M1- —
(M+P) 14+ Tr(PM™h)

(9.52)

The variance o?

parameters, is given by 02 = M. Its improved variance o
to the k-th control parameter is then

of our target parameter 6;, after having marginalized over all other
2 after having added a prior

7,new

Ol new = (M +P);;! (9.53)

M~IPM ™),
_ M- (M~TPM™)is 9.54
Y14+ Te(PMTY (9:54)
-2 M—llsM—l i
— M;l . Dy (_2 _ ) (955)
1+ p,°>Tr(PM-1)

2 pl:2(M71|SMil)ii

= o 9.56
l\/lillsl\/li1 i
Pyt O,

Now we use the fact that the fully marginalized variance of the control parameter is
Tr(PM™1) = 62 and
(MTIPM™)ii = pioi oy, (9.58)

where pi = Mt /\/M;'M ! is the correlation coefficient and one has |p;x| < 1 because of

positive-definiteness of M. So we derive our main result

2 2 2
2 2 Pik9i 9%
i,new ~ “1 2 29

(9.59)

which describes directly and transparently how the variance of the target parameter 6;
decreases if we measure better the parameter ;. This formula therefore is a highly
convenient replacement for the typically needed numerical inversion where no intuition can
be built.

Also, if the prior on the control parameter k is very weak, i.e. p, — oo, the error o; of
the target parameter, does not change. This equation can be trivially applied even when
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the control parameter coincides with the target parameter, by putting : = k£ and the self
correlation p;, = 1.

From the previous equation, the decrease Ao} = o7 .., — 07 follows to be
Ao? 2
21 — plk , (960)
o; 1+e¢

]

where € = p? /o?. This tells us that if we add a prior to the error on the control parameter
which is € times the current error, then the target parameter constraint decreases by a
fraction p% /(1 + ). At most, the fractional decrease is then p% < 1. So the very simple
recipe for choosing the most convenient control parameter to improve the estimation of the
target parameter, is to select the most correlated one. This of course was to be entirely
expected; our formula (9.60) quantifies the effect in a very simple way as a function of the
correlation coefficient and of the ratio e.

A generalization to several control or target parameters is described in Amendola & Sellentin
(2016).
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Chapter 10

Parameter inference in case of an
uncertain covariance matrix

All of the previous works have assumed that the statistical fluctuations of the data are
Gaussian, and that this Gaussian has a precisely known covariance matrix. In the following,
we will relax this assumption and demand that the covariance matrix can only be estimated,
such that it will have a non-zero uncertainty itself. This chapter follows closely our
publication Sellentin & Heavens (2016), but amends it by more detailed calculations.

10.1 Estimated covariance matrices

A very common problem in statistical inference concerns data that are Gaussian-distributed.
The likelihood of the observed data X, is a multivariate Gaussian, characterised only by a
mean data vector pu and a covariance matrix 3:

G(X |, =) = exp [~5 (X0 — )7 (X, - )] (10.1)

127X 2

The posterior probability of the parameters is proportional to the likelihood, now treated
as a function of the parameters (through the dependence of the mean and the covariance
matrix), multiplied by a suitable prior. Ideally one has analytic expressions for the mean
and covariance in terms of the model parameters, but in many cases these are not available,
and one or both may need to be estimated from simulated data which mimic the experiment
that is to be analysed (e.g., Semboloni et al. (2006); Heymans et al. (2013)), or from the
data themselves (e.g., Budavari et al. (2003)). However, although an unbiased simulated
covariance matrix S can be constructed, its inverse is not an unbiased estimator of the
inverse (or precision) matrix X', which is what is needed in the likelihood Eq. (10.1).
One can construct an unbiased estimator of 7! by a rescaling of S (Anderson, 2003), as
advocated by Hartlap et al. (2007). This widens up the credible intervals. If simulations
are computationally cheap, then one can generate a large number N of simulated datasets
and obtain an accurate estimate of the covariance matrix. This asymptotic regime occurs
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only when N far exceeds the size of the data vector, p. In many practical cases this is
not possible, and the number of simulated datasets is small, with the consequence that
statistical noise in the precision matrix propagates into errors in the parameters (Taylor
et al., 2013; Dodelson & Schneider, 2013; Hamimeche & Lewis, 2009). However, there is a
more fundamental difficulty with the approach adopted, as it assumes that the likelihood is
still Gaussian, albeit with a different precision matrix, whereas in fact it is not.

A principled way to tackle the problem is to recognise that the simulated data provide
samples of the covariance matrix, so S is itself a random object, based on a number of
simulations. For Gaussian data, we have the advantage that the sample distribution of S is
known, for a given true covariance matrix 3, and we can exploit this, with a suitable prior,
by constructing the probability of 3 conditional on the sample S, and then marginalising
over the unknown covariance matrix 3. This can be done analytically for our preferred
choice of Jeffreys prior for 3. As a consequence, we properly propagate the uncertainty in
the covariance matrix into the final inference, computing the quantity we want, i.e., the
likelihood given the simulated covariance matrix S and the number of samples N on which
is it based: P(X,|u, S, N). This object, where we keep the dependence on the number of
simulated datasets N explicit to emphasize its importance, is the main result of this work.
It is not Gaussian, but rather follows a modified version of the multivariate ¢-distribution.
In practical terms, it is no more expensive to compute than the Hartlap-scaled Gaussian
likelihood, but statistically sound, and can be retrospectively applied to many analyses that
have used a different likelihood function by appropriate re-weighting of points, provided
that the chains adequately sample the parameter space that the ¢-distribution favours.

10.2 Replacing a true covariance matrix by an esti-
mator

We adopt the usual position in which cosmologists find themselves when inferring model
parameters 0 from a data set: observing epochs of the Universe, we usually have just one
observation X, which is a single realization of some statistical process. The errors on the
data vector X, are often not known analytically, but there may be reason to believe that
X, stems from a multivariate Gaussian process

Xo~ Ny (1(0),%(0)), (10.2)

and the specification of a covariance matrix 3(0) is therefore sufficient to describe the
statistical scatter of X,. Here, p is the dimension of the data vector and its covariance
matrix. Both, the mean of the data, and the covariance matrix may depend on the
parameters @ that are to be inferred. In the following, we do not denote this dependence
on O any more, but it is still implied.

Under these conditions, and if 3 were known precisely, the likelihood would be a multivariate
Gaussian Eq. (10.1). In the following we show that this Gaussian likelihood should be
replaced, if the true ¥ must be replaced by an estimator of it. One method — viable for
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Frequentists — of estimating the covariance matrix, is to draw further independent data
vectors from the distribution of X, and to calculate their sample covariance. Sadly, these
repeated independent measurements are usually impossible in cosmology.

However, if we believe that we can simulate the observation then we are able to generate
further samples X; that are statistically equivalent to X,. The covariance matrix can then
be estimated from these simulations.

If we run N independent simulations, then

_ 1 N
X==>X; (10.3)
Ni:l

is the average, and an unbiased estimator of X is
S=—)>) (X;, - X)X, - X)". (10.4)

i=1

We would now like to replace the inverse covariance matrix 3 by its estimator S~'. In the
following, we derive an analytical replacement for Eq. (10.1) after this exchange. We then
study the effects that an estimated covariance matrix introduces to parameter estimation.

10.3 Derivation of the multivariate t-distribution

If 3 is not exactly known, it must be marginalized over, adopting a fiducial distribution for
it that captures as much information about 3 as we have access to. Given an estimate S
from simulations, this fiducial distribution can be derived as follows.

Any matrix of the type M = Y™, Y, Y7 is by construction a Wishart matrix (Anderson,
2003; Mardia et al., 1979), if Y is drawn from a multivariate Gaussian. We therefore know
that S follows the Wishart distribution

n—p—1

|S| 2 exp (—%nTr (E_ls))
2% |5 /n|5T, (2)

W(S|X/n,n) = , (10.5)

where we call n = N — 1 the degrees of freedom and I', is the p-dimensional Gamma
function (Anderson, 2003).

We can invert this distribution to yield a fiducial distribution P(X|S) of ¥ conditioned on
the estimator S by using Bayes” Theorem

W(S|Z)r(E) = P(S|8)r(S), (10.6)

and adopting priors 7. Since the determinant of the positive-definite covariance matrix is
strictly positive, it is a scaling parameter, and we therefore assume the independence-Jeffreys
prior (Jeffreys, 1961b; Sun & Berger, 2006)

ptl

(X)) x |27 7. (10.7)
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This is by construction invariant under reparametrizations, and can therefore be regarded
as uninformative, independent of the choice of parameters. The power (p + 1)/2 also leads
to N — 1 degrees of freedom in the inverse Wishart distribution, which is an intuitive result.
Another power would only change the degrees of freedom, showing that the influence of the
prior can be lessened by increasing the number of simulations N. We therefore have

P(X|S) x W(S|%/n,n)m(%)
x |27 F exp (—;nTr (z—ls)) (10.8)
o« WH(Z|nS, n),
so X follows an inverse Wishart distribution

n+p+1

WE|Cn) = IC|2 |32 nixp (—%Tr (E*IC'))
27T, (g)

where we have abbreviated C' = nS. Increasing the number of samples, n, will make this
distribution more sharply peaked, meaning the true covariance X is better estimated. In
general however, the inverse Wishart distribution is highly skewed for low n, and it has a
biased expectation value.

Given the distribution Eq. (10.9), we can now marginalize the multivariate Gaussian
likelihood over the unknown covariance

, (10.9)

/ G(X|p, )W H(Z|nS, n)dS
0

nt+p+1

x |Z|TVHZT T x

10.10
exp (—;nTr (E*IS> — ;()(0 —p)'s (X, — p,)) dx ( )

_ Nipt1 1 1
:/\E\ 2 exp (—2Tr<2 Q)) d,

if we define @ = nS + (X, — u)(X, — u)?. The last line is structurally the integration
over an unnormalized inverted Wishart distribution W™(2|@Q, N). So we know the result
is the normalization constant as in Eq. (10.9). Therefore, the marginalization results in

/ G(X|p, )W H(Z[nS, n)dS
0

(10.11)
x |Q["=.
Resubstituting @ we have
QI = nS + (X0 — w)(Xo - w)'|°*
X, — 'S (X, - N
_InS . p) S 1) -%
n (10.12)

w|z

_ ns|-% (1 NC.SRTIERTE S u))‘
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We therefore arrive at an unnormalized multivariate ¢-distribution
/ G(X|p, )W H(Z|nS, n)dS
0

N <1+ (Xo—u);s__ll(Xo —u)>_

(10.13)

w|z

It is however not the standard expression of a multivariate ¢t-distribution. The standard
expression assumes that there are N data vectors that determine the data mean (i.e. where
the likelihood peaks) and the data covariance (i.e. the width of the likelihood). In contrast,
we have assumed that there is exactly one data vector that determines where the likelihood
will peak —and N simulated vectors from which we estimate the covariance.

The standard expression for the ¢-distribution is

Cp|S|_1/2
+p

(1 n (X*M)TS‘l(X*u))VT

v

T(X, %) =

(10.14)

where v are the degrees of freedom and p is the dimensionality of the data set, and the
normalization constant is,
v+
r(s)

- (e (3)

Here, the I' are now the usual one-dimensional Gamma functions.

We can work out the normalization of our ¢-distribution by transforming Eq. (10.14) onto
our cosmological setup of just one observed data vector. We demand v = N — p in order to
get the same powers in the denominator. For v = N — p Eq. (10.14) reads

(10.15)

c |S|71/2
T(X,pn,X) = P — - (10.16)
X—p)TS Y X-p)\ 2
(1+( H)pr( u))
with the normalization
¢ = L (%) (10.17)
P (m(N )T (252)
The normalization means that
/T(X,u, 3)dPr =1, (10.18)

i.e. it is a normalization with respect to the integration over the p elements of X. We can
get to our parameterization Eq. (10.13) by demanding,

N—p
X =X/, 10.19
N1 ( )
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which implies for consistency that

N—p
oy _ 10.20

which is just a redefinition which we shall not explicitely distinguish in notation.
The multivariate transformation reads,

T(X,p,X)dPr =T(X,, p, X)dPxg

S T(Xo E) = T(X, 1, %) det ( X ) | (10.21)

dX,

The variable transformation of X to X, is a p X p matrix because all p elements of X
must be derived with respect to all p elements of X ,. Fortunately, this is a diagonal matrix
in our case

dX . N—p
ix. = diag,,,, ( N1 1) (10.22)
and its determinant is 2
dX N —p\?
= — ) 10.2
det (dXO> <N— 1> (10.28)

Combining this determinant with the normalization Eq. (10.17), we therefore arrive at a
normalized cosmologist’s version of a ¢-distribution

Gl S|

(1 + (Xo—u)q;\}?:ll(Xo—u))

T(Xm 22 E) =

- (10.24)
2

with the normalization
C, = b (]D (10.25)
» = —. )
(7(N —1)”*T (—N2p>

The normalization depends on the dimension p and the number of simulations N such that
we must demand N > p. If a covariance matrix must be replaced by an estimator from
simulations, the likelihood Eq. (10.24) replaces the multivariate Gaussian Eq. (10.1).

10.4 Attempting to debias a Gaussian likelihood

Instead of using the t¢-distribution Eq. (10.24) it has become standard in cosmology to
follow a procedure outlined by Hartlap et al. (2007), where the authors propose to stick
with a Gaussian likelihood, and only to replace the true inverse covariance matrix by a
scaled inverse sample covariance matrix

>t as (10.26)
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Figure 10.1: The lo-confidence contour of a one-dimensional normal distribution lies at
1/4/2 = 0.707. However, if the covariance is estimated from simulations, its random scatter
will make the estimated likelihood randomly too narrow or too broad. In 68% (90%) of the
estimated covariances, the then deduced 1o-contour falls into the area bordered by the dark
blue (dashed blue) lines. The number of simulations increases with « from Eq. (10.27).
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Figure 10.2: Comparison of the two Gaussian likelihoods and the t-distribution for a
particular estimated S, using N = 5,p =1, = 0.5 which are examples. The grey shaded
areas indicate the heavy and short wings of the Hartlap-scaled likelihood.
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with N 5
—p—

= (10.27)
This is motivated by the fact that S~ follows an inverse Wishart distribution, which has a
biased expectation value (S™') = o™X ! as shown in Anderson (2003). Here, the angular
brackets denote averaging over the inverse Wishart distribution.
Hartlap et al. (2007) argue that this debiased inverse covariance matrix will remove all biases
from parameter inference. However, the situation is more complex. In a Bayesian analysis
one would not necessarily define an estimator @, but if one does, the bias is by = (6) — 0
where the angular brackets now denote the average over the likelihood of the parameters.
Adopting the wrong sampling distribution will yield incorrect posterior distributions, with
biased parameter estimates (should they be made) and incorrect errors, even if the inverse
covariance matrix itself has been debiased.
We compare univariate examples of the likelihoods and the modified ¢-distribution Eq. (10.24)
in Fig. 10.2: the Hartlap-scaled and the unscaled Gaussian only differ in width, whereas
the t-distribution has a more sharply peaked central region but broader extreme wings than
a Gaussian, allowing for more scatter away from the peak.
Additionally, the scaling in Eq. (10.26) implies a sharp mapping between the estimator S~
and 7!, which does not account for the randomness of ™', due to the finite width of
the inverse Wishart distribution. Therefore, aS™! applied to a single given S~* should not
be interpreted as a reliable ‘debiasing’ but rather a scaling that widens up the Gaussian
likelihood Eq. (10.1) in an essentially random way. This randomness will propagate through
the parameter inference and introduce a scatter of the likelihood contours of which we show
a simple example in Fig. 10.1. This scatter can only be reduced by estimating the inverse
covariance matrix more precisely.

10.5 Comparison of the distributions

We assess whether the procedures Eq. (10.24) and Eq. (10.26) introduce errors into the
parameter inference by a Frequentist experiment based on the cumulative probability
P(< z) of a random variable z. By simulating the estimation of a data mean, given many
different estimated S~' and realizations of the data, we can generate the true cumulative
distribution. We can then compare with the cumulative distributions that assume either
the Hartlap-scaled Gaussian or the modified ¢-distribution to this truth. In Fig. 10.3, we
find that the t-distribution correctly reproduces the actual cumulative distribution — the
line is straight with a slope of unity. The Hartlap-scaled likelihood does not capture the
scatter around the peak correctly, which will lead to a misestimate of the parameter errors,
even on average. As expected, the discrepancy decreases as more simulations are included
in the estimation of S (i.e., as « — 1).
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Figure 10.3: Predicted cumulative probability versus the actual cumulative probability.
The latter was calculated by evaluating the Hartlap-scaled Gaussian likelihood and the t-
distribution for 150 estimated covariance matrices and 10,000 data sets. The ¢-distribution
follows the diagonal line of unit slope, meaning it predicts correctly the shape of the
likelihood, whereas the Hartlap-scaled likelihood is typically too broad.

10.6 Assessment of confidence in higher dimensions

The issue at hand can be studied in higher dimensions by investigating the distribution of
the following quantities:

X =(Xo—p) T (X, —p), (10.28)
which is the true y?; the same quantity but with the estimated S replacing X,

T°=(Xo—p)' S (Xo—p); (10.29)
and the Hartlap-scaled version

H>=(X,—p)" a8 (X,—p). (10.30)

By construction, we have (H?) = (x?), meaning the Hartlap-scaling does indeed debias the
expectation value. It does however underestimate statistical scatter, as we shall show in
the following.
x? follows the X%-distribution, which only arises if the covariance is precisely known and
indeed the correct covariance of X,. The quantity 7 will not follow the X?)—distribution,
because it contains not only a random vector X, ~ N, (p, ), but additionally the random
estimate of the covariance matrix that follows the Wishart distribution W(2/n,n). T2
therefore follows - .
("pn“) ~ Fnpit, (10.31)
where n = N — 1, and the F},,,_,41 is the F-distribution of p and n — p + 1 degrees of
freedom (Anderson, 2003). Consequently, a change of variables shows that,

S R

N RN (T )

(10.32)
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Figure 10.4: Left: The distribution of different interpretations for (X, — u)"'S™ (X, — p),
using p = 3, N = 10. Dots represent simulations, solid lines are the analytical Xf,— and
T*-distribution. For N > p, the T*-distribution approximates the x’-distribution. The
closer N is to p, the more differs the T2-distribution from the X?D—distribution, being broader
than an leading to a cumulative distribution that rises more slowly. The Hartlap-scaled
H? follows the black distribution which is more sharply peaked than the X%, although the
Xﬁ—distribution is the minimal scatter that one can achieve; this means the Hartlap-scaled
H? underestimates the joint scatter of X, and S~'. Right: The cumulative distributions
of x? and T? from the left. The vertical lines mark the 68% and 90% confidence limits.

instead of 7% ~ x2. Only for N — oo will the Wishart distribution tend towards a delta
function, and the distribution of 72 will then tend towards a Xg—distribution.

The distribution of the Hartlap-scaled H? is more sharply peaked than that of 2, thereby
suggesting that the experiment has less statistical scatter than the X?; distribution on
average. This is impossible since the X;% distribution is subject to scatter of the random
vector X, only.

The cumulative probabilities P.(x?) or P.(T?) give our confidence that the mean p of the
multivariate vector X, is enclosed within an ellipsoid bounded by x? or T2. The more
slowly rising cumulative distribution function of 72 therefore shows that we need 7? > y?
in order to achieve the same confidence that the mean is captured within the confidence
contours. In parameter space, this will lead to an increase of the Bayesian confidence
intervals.

10.7 Reweighting an MCMC chain that sampled from
a Gaussian likelihood.

We have shown above that T2, x? and H? follow different distributions, which will affect
parameter inference. Often, the error of confusing a 72 with a x? or H? can retrospectively
be undone with very little numerical effort by reweighting an existing MCMC chain.
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Figure 10.5: Unnormalized weights G(X o, u, S™')/P(X,, ., S, n) for mapping between
a Gaussian likelihood and a ¢-distribution. The normalization depends on the dimensionality
of the data set, and leads to an offset along the y-axis, that is however independent of
theoretical parameters. The number of simulations in the covariance matrix is N. The
vertical lines depict the x? values (2.71,4.61,6.25,7.78,9.24,10.64) that enclose 90% confidence
for a multivariate Gaussian.

In Fig 10.5 we plot weights for reweighting a chain that sampled from exp(—x?/2). If a
Hartlap-scaling has been applied, it would additionally need to be removed.

We note that the maximum of the ¢-distribution in the full parameter space coincides with
the maximum of x? (and also of H?), but once any parameters are marginalised over, the
resulting parameter posteriors will not in general peak in the same place.
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Chapter 11

Conclusions

As cosmologists, our principal goal is to determine the physical model that describes our
Universe, and the values that the parameters of this model take. Implications of this goal
are a theoretical satisfaction with the found solution, and a strong support by cosmological
data. Ultimately, one could hope to establish a cosmological standard model, that is
theoretically sound and firmly rooted in fundamental physics, and which is additionally
indisputably preferred over all contender models by the cosmic data. These goals and hopes
shall provide the criteria by which we draw the conclusions from this thesis.

11.1 On ACDM

Let us first answer whether a satisfactory cosmological model, as described above, has
already been established. After all, the current standard model, ACDM, fits all currently
available data on cosmic scales, and its parameters are well constrained. Further, ACDM is
derived from the consistent framework of General Relativity, which is experimentally well
supported on sub-galactic scales. Therefore, if ACDM did not require dark matter and
the cosmological constant, it would be a theoretically satisfactory model. However, with
dark matter escaping direct detections so far, and with the cosmological constant being
observationally indistinguishable from a vacuum energy that is expected to be order of
magnitudes larger, doubt-raising questions of fine-tuning and unnaturalness arise as has
been argued in Sect. 2.4.

These doubts about ACDM could be defused (although not resolved), by relegating the
problematic aspects of dark matter and dark energy to other areas of physics. The problem
of vacuum energy could be passed to the domain of quantum field theories, stating that
although it manifests itself in cosmological observations, it actually originates from another
branch of physics and is therefore not a shortcoming of ACDM itself.

Concerning dark matter, primordial nucleosynthesis rules out that dark matter consists of
standard model particles, as argued in chapter 2. One could therefore promote the dark
matter problem to a postulation of a dark particle and thereby re-attribute it to particle
physics. Of course, the inverse is also true: the null-results of currently executed direct
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dark matter searches could be explained by claiming there exists a fundamental problem
with gravity on galactic and super-galactic scales instead.

Hence, as long as the dark components of ACDM remain unexplained, ACDM does not yet
satisfy all criteria demanded of a convincing cosmological model, and potential alternatives
have to be discussed.

11.2 On deviations from A\CDM

Having argued why ACDM does not yet fulfil all requirements demanded of a satisfactory
cosmologcial model, let us next answer whether there is any serious reason to doubt ACDM.
Disproving ACDM could be achieved by proving one of its assumptions wrong. Large-scale
isotropy is however observationally so well established, that it cannot be seriously contested.
Homogeneity is not observable, as our observations are restricted to the backwards lightcone,
but is demanded by the paradigm that our Earth’s position in the Universe is not preferred.
We have therefore good reason to believe that the background Universe can be well described
with a FLRW metric, and structure growth with perturbations of FLRW.

Remaining reasons for doubt are then the question of whether General Relativity describes
gravity on cosmic scales correctly and whether the ingedients to the Universe’s energy-
momentum tensor are accurately known. At the time of submitting this thesis, a recent
recapitulatory study of these doubts is given in Planck Collaboration et al. (2015), where
models of modified gravity and dark energy are confronted with the latest data. Planck
Collaboration et al. (2015) studies constraints on a variable equation of state w for dark
energy. For scalar field types of dark energy, Planck Collaboration et al. (2015) puts
constraints on the field’s potential via a parameterization similar to the Taylor expansion
from Sect. 2.2. Furthermore, Planck Collaboration et al. (2015) studies observational
consequences of modified gravity via the gravitational slip

=—— 11.1
n=—g (11.1)

and potential modifications yu(a, k) of the Poisson equation
— kU = 47Ga*p(a, k) pA (11.2)

where deviations of  and p from unity indicate deviations from General Relativity.

In Planck Collaboration et al. (2015), no significant deviations of w,n or u from their
ACDM values are found. However, in chapter 6, we have argued that a parameter can be
considered measured, if its standard deviation is much smaller than the parameter’s allowed
prior range. As long as a cosmological model does not predict the prior ranges of w,n and
i, it is therefore unclear whether the data used in Planck Collaboration et al. (2015) have
already acquired the needed precision to measure w,n and pu.

This problem of lacking theoretically motivated prior ranges cannot be resolved by de-
manding ever more accurate cosmological data. However, the inverse is true: the better
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cosmic data and their analyses are, the more likely is a serendipitous detection of potential
deviations from ACDM.

We therefore conclude that given current data, the Universe is observationally compatible
with the phenomenology of ACDM, although this does not necessarily mean that ACDM
describes our Universe qualitatively correctly. We will next outline which steps need to be
undertaken to arrive at a robust model of the Universe.

11.3 Towards a robust cosmological model

If ACDM succeeds to also fit the future cosmic data, and its inherent problems could
be eliminated by a direct detection of dark matter and a resolution of the cosmological
constant problem, then ACDM would almost certainly advance to the incontestable model
of cosmology.

While it is still thinkable that ACDM may not be the correct explanation of the Universe,
further theoretical progress on alternative cosmological models is needed, as well as an
improvement of cosmological data and their analysis.

This thesis has contributed to the latter, and apart from having detected and resolved
a parameterization bias concerning neutrinos in the cosmic microwave background, two
omnipresent statistical tools of cosmology were examined critically: the Fisher matrix and
the scaling of estimated covariance matrices as proposed by Hartlap et al. (2007).
Concerning the Fisher matrix, we found that it is often used too optimistically, trusting
in the Cramer-Rao inequality, and trusting in the usually untested assumption of the
underlying posterior being well approximated by a multivariate Gaussian distribution.
This thesis reassesses the significance of the Cramer-Rao inequality for cosmology and
furthermore contains a Derivative Approximation of Llkelihoods (‘DALI’) which extends
the Fisher matrix approximation by including non-Gaussianities. DALI is not restricted to
cosmology, but can also be applied in any other scientific context where a parameterized
model is compared to data, as e.g. in particle physics. As DALI approximates likelihoods,
it can be used for speedy forecasts (see Sect. 9), but it can also guide and speed up a
Hamiltonian Monte Carlo sampler. DALI can thereby also be used for the analysis of real
data (see Sect. 6.10 and Sect. 9.3).

Concerning the parameter inference with estimated covariance matrices, we disproved the
claim of Hartlap et al. (2007) that their method is unbiased, and replaced it by a truly
unbiased method. A wide variety of current and future surveys is directly affected by this:
weak lensing surveys like CFHTLenS (Heymans et al., 2013; Kilbinger et al., 2013), KiDS
(de Jong et al., 2013) and DES (Chang et al., 2015) and galaxy clustering surveys like BOSS
(Gil-Marin et al., 2015) have so far all used the method of Hartlap et al. (2007) and therefore
all suffer from the mentioned bias. Future analyzes should employ the unbiased inference
from chapter 10. As the differences between the Hartlap-scaled Gaussian likelihood and
the t-distribution here presented are especially important in the wings of the likelihoods,
a strong impact on evidence calculations and model selection is expected, which shall be
investigated in future works as well.
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