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Abstract

Kernel smoothing in nonparametric autoregressive schemes offers a power-
ful tool in modelling time series. In this paper it is shown that the bootstrap
can be used for estimating the distribution of kernel smoothers. This can be
done by mimicking the stochastic nature of the whole process in the bootstrap
resampling or by generating a simple regression model. Consistency of these
bootstrap procedures will be shown.

1 Introduction

Nonlinear modelling of time series has appeared as a promising approach in applied
time series analysis. A lot of parametric models can be found in the books of Priestley
(1988) and Tong (1990). In this paper we consider nonparametric models of nonlinear
autoregression. Motivated by econometric applications, we allow for heteroschedastic
errors:

(11) Xt:m(Xt_l,... ,Xt_p)—|—O'(Xt_1,... 7Xt—q)€t7 t:0,1,2,... .

Here (&) are i.i.d. random variables with mean 0 and variance 1. Furthermore,
m and o are unknown smooth functions. Ergodicity and mixing properties of such
processes have been discussed in Diebolt and Guegan (1990). For simplicity, in this
paper we consider only the case p = ¢ = 1. In this particular case, (1.1) can be
interpreted as discrete versions of the general Black-Scholes formula with arbitrary
(nonlinear) trend m and volatility function o

dSt = m(St) + O'(St) th 5



where W, is a standard Wiener process. The class of processes (1.1) contains also as
a special case the QTARCH processes. These processes were proposed by Gourieroux
and Montfort (1990) as models for financial time series.

Estimation of m and o can be done by kernel smoothing of Nadaraya-Watson type:

(12) () = 7 3 Kl = X0) Xt [ fule)
(13 P = o 3 Koo — X0 X2/ jule) = (e

Here K} (-) denotes A=K (-/h) for a kernel K. The estimate py, is a kernel estimate
of the univariate stationary density p of the time series {X;}

(1.4) pu(z) = % 2_: Ki(x — X) .

Asymptotic normality of my, 5, and pj, has been shown in Robinson (1983). Uniform
consistency results have been given in Collomb and Hardle (1986), Hardle and Vieu
(1992), Delecroix (1987) and Ango Nze and Portier (1994). Asymptotic expansions
for bias and variance have been derived in Auestad and Tjgstheim (1990) and Masry
and Tjgstheim (1994). Tests for parametric models based on the comparison of these
estimates and parametric estimates have been proposed in Hjellvik and Tjgstheim
(1993), compare also Yao and Tong (1995).

Recently, so-called local polynomial estimators for m and o have attracted much
interest in the literature. For nonparametric regression these estimators have been
studied in Stone (1977), Tsybakov (1986), and Fan (1992, 1993) [see also Fan and
Gijbels (1992, 1995)]. Hérdle and Tsybakov (1995) applied the idea of local poly-
nomial fitting to autoregressive models. As an example consider a r-th order local
polynomial estimator of 1, which is given as a,, where (G, ... ,a,_1)7 minimizes

T-1 r—1 r— X J 2
Z [(h (l’ — Xt) (Xt—l—l - Z a; ( - t) )
=1

=0

In particular for » = 2, a local linear estimator /<"

modified Nadaraya-Watson type estimator:
S Xew (X0 =€) Ko (o = X0) (
R 2
> (X)) Ko - X))

where é(:z;) = > XiKu(x — Xy)/ >, Kin(z — X;) denotes the center of the design

points around x. All bootstrap results presented in this paper also hold true for local

of m can be written as a

(L5) @) = () + v — @) .
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polynomials. It is only for the sake of simplicity that we restrict our attention in
the following to the case r = 1, i.e. to kernel estimates i, and &4, cf. (1.2) and (1.3).

In this paper several bootstrap procedures will be considered which approximate the
laws of 1y, and 7. The first resampling scheme (autoregression bootstrap) follows a
proposal of Franke and Wenzel (1992) and Kreutzberger (1993). This approach is
similar to residual-based resampling of linear autoregressions as discussed by Kreif}
and Franke (1992). It is based on generating a bootstrap process

X = m(Xt*—1) + &(Xt*—1) £f »

where m and & are some estimates of m and o and where €},... &% is an 1.i.d.
resample. In our second bootstrap approach (regression bootstrap), a regression model
is generated with (conditionally) fixed design (Xo,..., X7)

X; = Th(Xt_l) + &(Xt—l) 5: 5

where, again, an i.i.d. resample of residuals €7, ... , ¢} is used. In the third bootstrap,
again a regression model is generated with (conditionally) fixed design (Xo,... , X7)

X7 =nm(Xia) +n;

Heren;, ... ,n} is an independent resample where 1) has (conditional) mean zero and
variance (X;—1,(X;_1))?. This procedure has been called wild bootstrap by Mammen
(1992), Hardle and Mammen (1994). Mathematics for autoregression bootstrap will
turn out as the most difficult one. Note that in this bootstrap proposal a complicated
resampling structure has to be generated.

The paper is organized as follows. An explicit description of the three bootstrap
procedures can be found in the next section. In the third section we state our main
results on consistency of the bootstrap procedures. Simulation results will be given
in Section 4. Section 5 contains some auxiliary results on uniform convergence of my,
and 67 on increasing subsets of the real line (cf. Lemma 5.1 and 5.3) which may be
of some interest of its own. The proofs are defered to Section 6.

2 How to Bootstrap

We consider a stationary and geometrically ergodic process of the form
(26) Xt = m(Xt_l) + O-(Xt—l) Et.

The unique stationary distribution is denoted by m. Simple sufficient conditions for
stationarity and geometric ergodicity are the following

e The distribution of the i.i.d. innovations &; possesses a Lebesgue density p.,
which fulfills inf,ec pe(2) > 0 for all compact sets C
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e m,o and 0! are bounded on compact sets and

. Elm(z)+o(z)e]
im supyy) oo = < L.
This is a direct consequence of Theorems 1 and 2 in Diebolt and Guegan (1990),
compare also Meyn and Tweedie (1993) or Doukhan (1995, p. 106/107). The as-
sumptions ensure that the stationary distribution 7 of the time series { X;} possesses
a strictly positive Lebesgue density, which we denote by p. From (2.6) we obtain

@) o) = [ (‘U(”;)(“)) dr(u).

For a stationary solution of (2.6), geometric ergodicity implies that the process is
strongly mixing (a-mixing) with geometrically decreasing mixing coefficients (cf.
Doukhan, 1995, chapter 2.4 and 1.3). Moreover this property carries over to pro-

cesses of the type Y; = fi(X3).
To keep our proofs simple, we need somewhat stronger assumptions

density p. satisfying inf,ec p-(2) > 0 for all compact sets C.
(A5) L, + L, Eler| < 1.

For the sake of simplicity we assume that the observed data Xi,..., X are realiza-
tions of the stationary version of (2.6).

2.1 Autoregression Bootstrap

Let I = [—v7,vr] be a growing interval with v7 — oo for T' — oo. More detailed
assumptions on vy will be given later. We define

(2.8) () = rg(e) - Hlz| < a7}

(2.9) on(r) = on(x) - Hlo| < v} + H{lz] > 97} -

Outside of I the estimates rmy, and &;, are replaced by constants. This is done because
mp(x) and 6p,(x) are no reliable estimates for || large. Other definitions of ), and
oy, outside of I would work, too.

The bootstrap procedure requires calculation of residuals

g Ximmy(X)
! &g(Xj—l) 7




where ¢ > 0 denotes a bandwidth possibly different to the bandwidth 2 > 0 used
for the kernel smoother of interest. We remove those &; corresponding to the X;_4
outside of [—yr,yr]. Let A ={j = 1,... ., T||X;-1| < vr}. Then, we recenter the
remaining residuals

and define Fy as the empirical distribution given by &;, j € A. Then, we smooth
this distribution by convoluting it with some probability density Hb( ) =1 H(%),
where H is a probability density with mean 0 and variance 1. Let FTb = FT x Hy be
this smoothed empirical law. Let us denote the density of FTJ, by fTJ,. We draw the

bootstrap residuals e, ¢ =1,...,T, as 1.i.d. variables from FTJ). Then, we get the
bootstrap sample X7,..., X} by

X7 =g (XL) +6,(X7Ly) &

with, for sake of simplicity, X§ = X .

Analogously to (1.2) the bootstrap sample X7,..., X5 defines for each point z a
kernel estimate 7} (2). The conditional distribution of VT h{rm}(x) — m,(x)} given
Xi,..., X7 is denoted by Lg(x). This is the bootstrap estimate of L(x), the distri-

bution of VTh{m(z) —m(x)}.
The distribution of VTh{G}(x) — o?(x)} is denoted by L7 (x), its bootstrap estimate

by LE(x). Consistency of these estimates will be shown in the next section.

2.2 Regression Bootstrap
With an i.i.d. resample ¢7,... %, generated as in the last subsection, we put
X =1y (Xioa) + 04(Xioa) &7

Here 1, and &, are kernel smoothing estimates (cf. (1.2), (1.3)) with bandwidth g.

The original sample Xy,..., X7 acts in the resampling as a fixed design. We now
define

mZ(l‘) = ﬁ Z[\h( Xt) t*-|—1 /ﬁh(x) >

2

oy (x) = T_1 Zﬁh( - X3) ;f—l [ pr(x) — g (x) .

The conditional distribution of VTh{m}(x)— m,(x)} is denoted by Lrp(x) and the
conditional distribution of vTh{} (z) — 62(x)} is denoted by LGz(x). These are
our second type of bootstrap estimates for L(x) and L7 (x).

5



2.3 Wild Bootstrap

This procedure starts by generating an i.i.d. sample 7;,...,7; with mean 0 and
variance 1. [Often, for a higher order performance, the distribution of 7, is chosen
such that additionally E 77 = 1; for a discussion of this point and for choices of the
distribution of 7,, compare Mammen (1992).] Put now n; = (X — mn(Xi21)) 7,
The Wild Bootstrap resample is defined as

X = mg(Xt—l) + 05 -

As in the last subsection, this resample can be used for calculating mj(x). The
conditional distribution of v/ T'h{r}(z)—1,(x)} is denoted by Ly (). In particular,
Wild Bootstrap is appropriate in cases of irregular variance functions o(x). Such
models may arise when o () acts only as a nuisance parameter and the main interest
lies in estimating m.

3 Bootstrap Works

In this section we present our main results. We give assumptions under which the
three Bootstrap procedures of the last section are consistent. We start with the
first Bootstrap procedure. Here and in the following, C' denotes a positive generic
constant.

(B1) There exists o, > 0 such that o(z) > o, for all x € R.
(B2) m and o are twice continuously differentiable with bounded derivatives.

(B3) Ecf < oo. p. is twice continuously differentiable. p., p. and p” are bounded and
SUP,er |7 pe(@)] < o0

g,h =0, Th® = B>>0and g ~ T7 with 0 < oo < & for T' — o<,
b—0and g/b'* - 0as T — oo .
Y1 — 00, infjy1<2 vy /o0 P(2) > (glog T')? and 7/ log T is bounded.

H is a probability density, twice continuously differentiable with bounded de-
rivatives and satisfies [v*H(v)dv < oo, [0?|H'(v)|dv < cc.

(B8) K has compact support [—1,1], say. K is symmetric, nonnegative and three
times continuously differentiable with K(1) = K'(1) =0 and [ K(v) dv=1.

Assumption (B4) allows for the rate A ~ T~'/5 as well as for faster rates of conver-
gence. Bandwidths of order O(T~'/%) have been motivated by optimality consider-
ations. For bandwidths of order 0(T‘1/5) the variances of my, 6, dominate the bias
parts. By comparison with bootstrapping nonparametric statistics in other simpler
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situations oversmoothing of the reference estimates i, &, in the sense that T'¢° — oo
seems to be necessary. We require a bit more due to technical reasons.

Condition (B5) is needed for purely technical reasons in the proof of Lemma 6.5. It
implies together with (B4) a very slow convergence of b to 0. In simulations the boot-
strap seems to work even without any smoothing (corresponding to b = 0 for finite T').

We are now ready to state our first theorem.
Theorem 1: Assume (A1) - (A5), (B1) - (BS). Then for all x € R :
dr(Lp(x), L(x)) — 0 (in probability),

dr(LE(x), L7(x)) — 0 (in probability) .

Here di denotes the Kolmogorov distance, i.e. for two distributions P and @) the
distance di (P, Q) is defined as sup,cp |P(X <2)— Q(X < z)|.

We come now to the discussion of regression bootstrap. We assume

(RB) Assume (B3), (B4), and (B8). Furthermore, suppose that o is continuously
differentiable and that m is twice continuously differentiable with bounded derivat-
ives.

Theorem 2: Assume (A1) - (A5), (RB). Then for all x € R:
dr(Lrp(x), L(x)) — 0 (in probability)

dr(LEp(x), L7(x)) — 0 (in probability).

We come now to the Wild Bootstrap. We assume

(WB) Assume (B3), (B4), (B8), that m is twice continuously differentiable with

bounded derivatives and that ¢ is continuous.
Theorem 3: Assume (A1) - (A5), (WB). Then for all x € R :
dr(Lwp(x), L(x)) — 0 (in probability).
Remark. Note that less smoothness assumptions on ¢ are made for wild bootstrap

compared with regression bootstrap. Furthermore, autoregression bootstrap requires
even more smoothness assumptions as regression bootstrap.



4 Simulations

In this section we intend to demonstrate the finite sample size performance of the
bootstrap and wild bootstrap proposal of the paper. For this purpose we consider
the processes (t =1,...,T)

(410) Xt =4. SiH(Xt_l) + Et,

(4.11) X, =4/1+08X2, &,

(4.12) X, = 09X,y + /054 0.25X2 e,

Here e, : t = 1,...,T are i.i.d. error variables with standard normal law. Equation

(4.11) is a model of ARCH(1)-type, and (4.12) is a discrete version of the Black-
Scholes formula for stock prices. It has been modified by assuming a nonconstant
volatility. In both cases, o(x) grows proportional to x.

Figure la and 1b show typical realizations of size T' = 250 of the models (4.10) and
(4.11).

At first we consider the local linear estimator mg““n for m in the first model with

bandwidth & = 0.4 . Based on a Monte Carlo simulation of size M = 2000, Figure
2a and 2b show the simulated density of Th(m!"(z) — m(z)) for z = 0 and
x = —m/2 (thick lines) together with three bootstrap estimates of this quantity (thin
lines) based upon different original time series. Here we make use of the bootstrap
proposal of Section 2.1. The pilot bandwidth ¢ is chosen to be equal to 1, and the
size of the resample is 2000.



Figures 3a and 3b are devoted to the behaviour of the usual kernel estimator &5 of
the volatility function o(x) = v/1 4 0.8 22 in model (4.11). In this case all bootstrap
estimates are again obtained by using the first bootstrap proposal (cf. Section 2.1).
The plots show again three different bootstrap approximations together with the
simulated true distribution of vTh(é,(z) — o(z)) for £ = 0 and 2 = 1, respectively.

In both cases, the bootstrap provides a reasonable approximation of the densities of
the estimators of interest.

Finally Figure 4a (for model (4.10)) and Figure 4b (for model (4.11)) give us an im-
pression of the density of the stationary distribution 7 of the corresponding processes

(X5).



Considering model (4.12), we illustrate how the bootstrap can be used to get approx-
imative confidence intervals and to select an appropriate bandwidth. Figure 5 shows
the data, i.e. a sample of size T = 500 from (4.12). Figure 6a-c show the kernel
estimates with bandwidth ~ = 0.8 of the trend function m(z) = 0.9z , the volatility
function o(x) = v0.5 + 0.25 22 and the stationary density of (4.12). As our sample
is essentially contained in the interval [—4, 6], the estimates are of course quite poor
outside of this interval.
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Figure 7a shows a pointwise 90%-confidence band for m(a) based on a Monte Carlo
simulation of size M = 500, whereas Figure 7b provides the bootstrap approximation
of this confidence band based on the sample of Figure 5 and using g = 1. Here, as
in the above cases too, we use the unsmoothed law of the sample residuals for the
resample, i.e. b = (. This case is not covered by our theoretical results, but it works
in practice quite well. The two confidence bands are quite close in the central part
around 0 where we have enough data in the sample of Figure 5.

Analogously, Figure 8a-b and 9a-b show pointwise 90%-confidence bands for o(x)
and for the stationary density p(x). In the interval [—2.5,4.5], the bootstrap provides
a good approximation of the confidence band for p(x) apart from a slight shift to
the left near 0 - for p(0), e.g., the 90%-bootstrap confidence interval is [0.19,0.28],
compared to the Monte Carlo result of [0.20,0.30]. The bootstrap confidence band
for o(«) has a similar shape as the Monte Carlo band, but it is considerably shifted to
the right for x around 0. This is not surprising because variance function estimates
are not very reliable even for sample sizes of T' of order 500. From Figure 6b we see
that for our particular sample the estimate 4 (x) lies by chance considerably above
o(x). This cannot be caused by smoothing bias alone, as can be seen by looking at
other kernel estimates with smaller h.
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Finally, Figure 10a-b for m(a) and Figure 11a-b for o(z) show Monte Carlo estimates
and the corresponding bootstrap approximations for the root mean-square (rms) error
of my(x) and &,(x) as function of x. Between -4 and 4 the bootstrap approximation
comes very close to the "true” rms-curves [only for &,(x) near 0 the bootstrap-rms is
a bit too small.] It is also possible to consider the rms as function of A for fixed z.
Then its bootstrap approximation can be used for local bandwidth selection.
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5 Auxiliary results: Uniform Convergence of the
Kernel Smoothers

In this section we collect some results on uniform convergence of our estimates my,
and &, on slowly growing intervals of the form [—~vp,y7], vv = o0 as T'— oo .
These results are essential for our proof of consistency of the bootstrap proposals of
Section 2. For all bootstrap procedures it is not sufficient to consider behaviour of
my, and &, only on fixed compact sets.

Lemma 5.1: Assume (Al)-(A5), (B1)-(B4), (B6) and (BS8). Then we have

sup |my(x) —m(x)| = op (gl/6> )

|z <vr
Proof: We use the decomposition
mg(w) —m(z)

_ e XJo(Xen | 2, Ky (v = Xy) (m(Xo) — m(2))
2 By (x = Xy) 20 By (x = Xy) '

By our assumption on ¢, it suffices to show

(5.13) up %Z: Ky = X) o (X) e = Op ((Tg)™7),
(5.14) sup % zt: K, (x—X,)—plx)] = Op(g?),
(5.15) ol p(e) = CgllogT

and

(5.16) e e (xz_t ?2&”‘_(?3‘ m(x))‘ = rlo)

Claim (5.16) is an easy consequence of the differentiability of m. Note that the
lefthand side of (5.16) is bounded by

sup Et ](9 (l‘ — Xt) |l’ — Xt| - sup ‘m/(x)
v 2o Ky (x = Xy) z '
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This is of order O(g) due to the compactness of the support of K. A proof of (5.13)
is a bit more involved. Since we will make repeatedly use of the following argument
we present it here in detail. In a first step we divide the interval [—yr,y7] into

equidistant subintervals of length § = (g5/T)1/3. We get

1
— sup

T Z I(g ((E — Xt) g (Xt) Et1
lz|<vr

t

< maxsup —
K3

Z I(g ((E — Xt) g (Xt) Et1
t

where the suprema on the right hand side are taken over all & € [—yr+(i—1)d, —yr+
6] and where the maximum is taken over all ¢ € {1,...,[2y7/6] + 1} . Let us denote
x; = —yr + (i — 1) . By the mean value theorem we get the following upper bound
for the right hand side of the last inequality

6 C

Jo(Xe)erpa| + 2T Z:U(Xt)|5t+1| )

where C' is some upper bound of |K’|. Since ), 0(X¢)|ew1| = Op(T') we get with
our choice of § that the second term is of order Op((Tg)~/?). It remains to show
that the first term is of order Op((T'g)~'/?). For this purpose, we consider

{max > (TQ/g)l/S}
ZP{ > (T 2/9)1/3}
< ZE |

< o) % 22:5 (K (i = X1) 0® (X1)] €€F

Z K, )o(Xi)er

IA

(Xt)5t+1

Z K, )o(Xi)er

by Burkholder’s inequality (cf. Hall and Heyde (1980), Theorem 2.10). We ob-
tain that the last expression is of order O ((log T)7/(Tg7)2/3> , which is o(1) by the
assumption on g, since

ERS (2= X1) 0" (X)) £ sup o%(a)- O(g™") = O <l>

|| <y

(5.14) is an immediate consequence of

(5.17) sup ZA — &K, (z — X))

o, <<1ogT> )
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¢ > 0 arbitrary, and

(5.18) sup [EK, (z — X1) — p(z)] = O(g*) .
To see (5.18) observe that EK, (z — Xl) = f N (v)p(x —gv) dv . A Taylor expansion
for p together with the fact that [vK (v = 0 (K is symmetric!) yields the desired

result.

In order to prove (5.17) we make use of an exponential inequality for strong mixing
processes (cf. Doukhan (1995), Proposition 1, p. 33). Before doing so we apply the
splitting device for the supremum over x,|z| < vz, discussed above. It turns out that

it suffices to consider
)
e (;) |

For the choice §/¢g* = (log T)3 [/ T g ewitharbitrarye > 0 the second term is of the

desired order. For the first rerm, the above mentioned exponential inequality gives

us that
{max

< ZP{ > K, (= — ERy (zi — Xt g
< O <?> - exp <—bmlog T> ,

Z K, — &K, (2 — Xy)

ZA — &K, (z; — Xy)| > Nivaz

> M?*/Tg'~*(log T)3}

_ M2 (log T)3}

for some constant b > 0. This is of the order = o(1) for M large enough.
It remains to verify (5.15). With (2.7) we obtain

gz k(S

> /[ L it p(v) dnu),

Y ’VT C’)/T |’U|<2’7T/Uo

since, for T large enough, |(z — m(u))/o(u)| < (v + Lnyr + |m(0)]) /o, < 2v1/0,
for all @, u € [—y7,yr] . Assumption (B6) together with n[—~r,vr] — 1 yields the
desired result. |

Lemma 5.2: Under the assumptions of Lemma 5.1 we have on every compact in-
terval B

sup [rity(x) —m(z)| = Op (¢%)
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Proof: As B is a fixed interval, p is bounded away from 0 by a fixed constant on B.
Therefore, by the same type of argument used in the proof of Lemma 5.1

2 By(w — Xi)o(Xy)ern
2 (2 = X5)

uniformly on €' under the assumption on g. Therefore, it remains to show

S K, (= X)(m(X) —m() |
SR, (- %) ‘ = Orlg)

A Taylor expansion of m(X;)—m(x) up to second order terms yields for the numerator

= Op(g?)

sup
zeEB

_ZA (z— X)) (X, —2)m QTZA ) (X, —z)’m (&) .

The second term divided by 1/T ", K, (x — X;) is obviously of order ¢* (recall that
m” is bounded). For the first term, application of the exponential inequality [cited
in the proof of Lemma 5.3] and of the same splitting device for the supremum over
x as above concludes the proof. [ ]

Remark. Under stronger assumptions (including the assumption that the Laplace
transform [ exp(§u)p-(u) du of p. exists for |§] small enough) we are able to show
that the following stronger result holds.

sup Z K, )o(Xi)erm

log T
jel <vr VTy
Together with Lemma 5.2, this implies a known uniform convergence result for m on
compact sets, cf. Masry and Tjgstheim (1994). Since we don’t need better rates, we

don’t give more details here.

Additionally, we need uniform convergence of &, on the growing interval [—vr, vr].
This is the content of the following lemma.

Lemma 5.3: Under the assumptions of Lemma 5.1, we have

sup [6,(x) = o(2)| = op(g"*yr) .

|| <y

Proof: From (B1) we have o(z) > o, > 0 for all z € R. 6, satisfies

K, (e — X;)X2
&%:ng, "L i) > 0.
S Y e
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Since o?(z) = £ [ X} | X = 2] — m*(x) we obtain
sup [6,(v) — o(x)] < sup |65(x) = o*(2)] - sup |5, () + o (2)[

|| <yr || <yr @

Et K, (:1; - Xt) X7:2+1
> Ky (2 — X3)

From Lemma 5.1 and from Lipschitz-continuity of m

— & [XP X, = 7]

|| <yr || <yr

< ot [sup + sup ‘m3(:1;)—m2(:1;)‘] .

sup ‘m;(l’) — mQ(:L')‘
|z <vr

< sup iy (2) —m(z)] lsup [rig(2) = m(z)[ +2 sup Im(w)ll

lz|<vr lz|<vr lz|<vr
= op(g"/yr).
It therefore suffices to deal with
3, Kl — Xo)X? 3, Ky = X0) (X, — mi(a) — ()

41 2
— & X, |X, = =
> Wy (r — X5) [ t+1| ! :1;]

Since

2 By = X5)

Xi = mi(x) — o*(2)

= m?*(X;) — m*(x) + 2m(X,)o(Xo)er + X (Xy) — o (x) + o*( X)) (57?“ — 1)

the assertion of Lemma 5.3 follows from (5.19) - (5.22) together with (5.14) and
(5.15).

319w (ST (o= X0 (Xt~ 1| = Or ((70)'").
(5.20) e (37 Ky (o = X m(Xo(Xer| = op ((1%/9)"") .
b2 [y | = o),
(5.22) sup 21 By (xit)[ifg) ((;T);j)_ 02(1;))‘ = Op(g7r).

Claims (5.21) and (5.22) follow from the equalities sup, .. [m(z)m'(z)| = O(yr)
and supy, <, |o(z)o'(x)] = O(yr), see (B2). Equations (5.19) and (5.20) can be
shown analogously to (5.13). In the proof o(X;)ee is replaced by o*(X¢)(e7,, — 1)
or m(X;)o(X;)ert1, respectively. ]

The next lemma describes performance of & on fixed compact sets B.
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Lemma 5.4: Under the assumptions of Lemma 5.1 we have on every compact in-
terval B

sup |6,(x) — o(2)] = Op(g*y7).
zeEB

Remark. As for the conditional mean function m, we can achieve better rates for
the uniform convergence in Lemma 5.4 under stricter conditions.

We conclude this chapter with some weak consistency results concerning the deriv-
atives of my,.

Lemma 5.5: Assume (A1) - (A5), (B2) - (B3) and (BS8), and let g ~ T7*,0 <
o<t ForalzeR

/

(i) m,(x) — m'(x) in probability

(i1) sup |y (u) —m"(u)| — 0 in probability.
uE[z—h,z+Ah]

Proof: It suffices to deal with 1, instead of m,, cf. (2.8). We have, abbreviating
g7 K'(-/g) by Ky(-),

m!(z) = %Zt Ky = X0) Xe _ %Et Ky(x — Xt)Xt-I—l% > K (e — Xy) )
g %Et [(g(x _Xt) <% Et [(g(x —Xt)>2

In the proofs of Lemmas 6.3 and 6.4, it is shown that

Z[& — Xi) = p(x) in probability

1
T Z K,(x — X¢)Xep1 — m(a)p(x) in probability.
t
We will show that

(5.23) ZI (x = Xi) — (),

(5.24) Z Ky — X)) Xep1 — (m(z)p(x))’

in probability as T'— oo . To see (5.23) observe that, by direct computation,

E (% Z ([&”;(:1; - X)) =€ [[&”;(:1; — Xt)|.7:t_1]>> = O(1/(Tg%)) = o(1).

t
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Furthermore, we get
1 T — Xt
N Z[’: |:[(/ ( ) ‘ft_1:|
9* = g
1 ; x—m(Xe1) qu ) 1
= — K'(v) p. — dv
Tg Z/ )7 ( d(X) o(Nea)) a(X)

= X [e et (TR S 0t

since, by symmetry of K, [ K’(v) dv = 0. Because of K(—1) = K(1) = 0 we have
Jv K'(v) dv=—1. This implies that
X
)l

%ZE {K’ (x
- _Z (i) sy O

By (2.7) and the ergodic theorem this converges towards - <E P. <$;7(n)g()1)> ﬁ) =
p'(@).

To see (5.24) replace Xiy1 by m(X;) + 0(X;)erqr and treat both terms separately.
We have

(T Y Kj(x— X))o Xt)gm) = O(1/(T¢*)) = o(1)

and

( Z K (x — X)m(X,) — E[K)(x — Xt)m(xt)m_l]) = O(1/(Tg%)) .

The remaining conditional expectation equals

B riame e () e

Differentiability of m and p. together with the facts that [ K’(v) dv = 0 and
JvK'(v) dv = —1 gives us that this expression is equal to (up to terms of order

OP(Q))

%Z; (m,(x)ps (%) + m(z)pl (x ;&it;1)> a()i_l)> 0(;7:—1) '

The ergodic theorem concludes the proof of (i).
For the proof of (ii) one can proceed as in (i) to show that

iy (u) —m”(u) — 0 in probability.
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Here we make use of [ K”(v) dv = 0, [vK"(v) dv = 0 and [v? K"(v) dv = 2,
which are easy consequences of (B8). It remains to show that this convergence holds
uniformly for v € [ — h, 2 + h]. This can be done e.g. by calculation of higher order
moments of my(u) —m"(u). |

6 Auxiliary Results and Proofs

Before proving the validity of all three bootstrap procedures we show some prelimin-
ary results on the performance of the first bootstrap procedure which tries to capture
the time series structure of the process {X;}. In particular, we show that the boot-
strap innovations &f approximate the true residuals ¢; in Mallows distance defined
as

E(X,Y) = &(L(X), L(Y)) = inf {E(U V)

LU = LX), L(V) = L‘(Y)} .

Corresponding to the definition of FT and FTJ), let 7 denote the empirical distribu-
tion of the ¢;, j € A, and let Frry = Fr * H, denote the smoothed version of this
empirical law. Let F. denote the law of the innovations ;.

Proposition 6.1: For T' — oo, we have

(m () = riny(x))*

d%(&fa@f) = d%(FsvﬁTJ?) <2 d%(FstTJ?)—I_ZL sup ~9 +
el <vr G4(x)
(o(x) = &4(x))” 1
+ 5 &ley] - sup A +0p| =
Y e o3(x) r

Proof: By the triangular inequality
da(21.7) < dao((Fey Fry) + do(Fro, Fry) -

For the second term, let J be Laplace distributed on A, i.e. J = 7 with probability

|,IT| for each j € A. We consider the random variables ¢; and &; which have marginals

Fr oor FT, respectively. Let x be a random variable with density Hy. Then ;5 + y
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and £y 4 x have marginals Fr or FTJ), respectively. Therefore,
d3(Frp, Frp) < E(es+x—¢7—x)°

1 . 1 .
= WZ(@j-@j—WZ&)Q

JEA ic€A
2 1 ’ 1 ’
< WZ(@—@)Q—Q (WZ(@—@)) +2 (W25>
JEA JEA €A
2~ ., 2 ’
< WZ(@—@J‘) e > e
JEA ic€A
2
2 Xj —ry(Xjm1) X — m(Xj—1)>2 2
= — — — + E; .
4] ]26; ( q(Xj-1) o(Xj-1) |AJ? ]26;

The first term on the right-hand side is bounded by

4 sup — sup =
|$|S'VT 0-3(:1;) JjEA |1’|§'7T 0-3(:1;)

m(x) — my(z))? 1 5 o(z) — 6,(x))?
(m (=) (2)) +4WZ|€j| (o(x) — &y(w))

as |X;—1] <~r for all j € A. By the definition of A and by the law of large numbers
for stationary processes we have for a suitable constant § > 0 that P(|A| > §T) — 1
for T' — oo, i.e. |A| grows at the same rate as T'. Therefore,

1 1 2 1
WZ|€]‘| += Eled, W<Z€]> = Op (T)
jeA oA
which implies the rest of the assertion. i

Corollary 6.1: Under the assumptions of Lemma 5.1
dy(e,e7) — 0 if b—0 for T — oco.

Proof: By Lemma 5.2 and 5.4 the second and third term in Proposition 6.1 vanish
for T'— oo. For the first term, we have

do(Fe, Fry) < do(Fy, Frr) 4+ do(Fr, Fry)

As |A| = oo for T' — oo , the first term converges to 0 by Lemma 8.4 in Bickel and
Freedman (1981). Let £,y be as in the proof of Proposition 6.1. Then,

d3(Fr, Fry) < & ey —es—x)* =EX* = 0% =1(1).
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As next step, we show that X; and X are not too far apart in a distributional sense.
For this purpose, we consider samples of conditionally independent error variables
€1,...,ér with the following properties: (i) &,...,&p are condtionally i.i.d. [given
the original data Xy, ..., X7]. (ii) & has a conditional distribution [given the original
data Xo, ..., X7] which is identical with the unconditional distribution of {e;} and
(iil) £%(& — )% = d2(&s,¢7) = [d3(ey,£7)]. We define now a process X; by Xo = X,
and . . .
Xe = m(Xio1) + o(Xeo1)ér

The process {X,} starts with the same value Xy = X at time 0 as {X;} and we
suppose that the bootstrap process {X;} starts also with X§ = X,. We will show
that |X; — X7| — 0 in mean for T — oo [given the original data Xo,..., X7]. We
use the common initial value for all 3 processes for convenience only. Note that for
T — oo the influence of this initial value vanishes exponentially fast. First, we show
that under our assumptions | X;| < vy with high probability.

Lemma 6.1: Under the assumptions of Lemma 5.1 and assuming b — 0 for T — oo,

P*(|X]| > ~vr) — 0 in probability.

Proof: As a first step, we show that £%|X7| is bounded. By the definition of g, &,
for || > y7 we have

|Xt*+1| = |5I+1| ) 1{IXZ‘|>WT} + |m9(Xt*) + &9()(75*) ) 5I+1| ’ l{IXZ‘ISWT}
< et + Im(X7) + o (X7) - ef | + op(1)

using Lemma 5.1, 5.3 and the boundedness of £*|¢%| which follows from Corollary
6.1. Let L <1 be an upper bound for L., + L,E*|e%| and C be an upper bound for
EXlex| + |m(0)] + o(0) - £|eZ]. Then, by Lipschitz continuity of m and o, we have,
iterating with respect to ¢,

t
EIXrLl < L-EIXJ+0< < LTEXg 4+ ) LFC

k=0

C
< €1X —_
< | 0|-|-1_L

Now, we consider P*{X; > ~r} since the arguments for P*{X; < —~r} are com-
pletely similar. We use the abbreviations

qgr(z) = (yr —m(z))/o(x) and  gr(z) = (y7 — my(x))/,(x).
Remark that ¢r(x) = yr for |x| > v7 and, by Lemma 5.1 and 5.3,

gr(z) = qr(x) 4+ op(1) uniformly in |z| < 7.
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Therefore,

P{XT > 97}

Per > qr(X72))}
= PH{el > yr, [ X7 > e
+Per > qr(Xisy) +op(1), [X7i] <77}

The first summand is bounded by P*{e} > 7} which converges to 0 for vp — oo,
using Corollary 6.1. Denoting by p* the probability density of X} ,, the second
summand is

/W Pt > gr(e) 4 op(1)}p"(2)da /W A 1T

. —p qr(x) +o0p(1)

_ [Tl et 0@ e o e
_/_W qT(x)p( )dz{1 + op(1)} /_W ’YT—m(l')p( yda {1 + op(1)} - E7|€7).

IA

For the inequality, we have used Markov’s inequality and the fact that ¢p(x) is
positive and bounded away from 0 uniformly in |z| < 47 for all vz large enough.
Now, by Lipschitz continuity of m and o, ~pr —m(x) > yr — Ly, - |2| — Im(0)| >
(1= Loyr — lm(0)] for [e] <z, o(e) < L, - o] +o(0).

Therefore, for a suitable constant C*, the last integral is bounded by

- | L& 1N, 4 0(0)
: {L;|x| 4+ o(0)}p™(x)dx < C~ — 0

0= Lo o] ), B (A e (]
for 7 — oo as, by the first part of the proof, £| X[ ;| remains bounded. [ ]

Proposition 6.2: Assume b — 0 for T — oo and suppose that the assumptions of
Lemma 5.1 hold. Then .
X7 —X;

sup &* = op(1).

1<t<T

Proof: Let () = m()1{| -| < yr} and 5(-) = o()1{|-| <7z} + 1{] - | > 72} .

EXNX; =X = €7 iy (XLy) = m(Ximr) + (6,(XLy) — o(Xima)) &)

IA

+o(Xi)(e] — &)
& ling(X_y) = (X[ )| + €7l Xy) = m(Kiea)|
& (185X = #(X )|+ 15X = o X)) [er]
+E o (Xi)|er — &

As, by Lemma 5.1 and 5.3, m, —m and 6, — & converge to zero uniformly on R, we
have that the first and third term converge to zero in probability. For the second
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term we have from the definition of m and from Lipschitz continuity of m
E i X;,) = m(Ximy)|
= E7m(X7 ) = m(Xe)|H{IXE, | <7+ €7 m (X)) [T{XT [ > a7}
< L,E%X;,—Xi_1|+ op(1), by Lemma 6.1

Exactly along the same lines we obtain
E716(X7) — o(Xema)| |ef] < €71ETI[La€ *|XT, = Xima| + 0p(1)] -
Finally, by Proposition 6.1,
E*o(Xi)|er — & =E a(Xq) EX|er — &1 = op(1) .
Thus, we have shown that

ENXT =Xl < (L + E7ETIL0) €7IXT) = Numa | 4 0p(1)
t—1

< D (L +E7EIL,) 0p(1)

v=0

as we have chosen XJ = Xj .
The result follows from (A5). Observe that £ *|et| < E*|eT —&1|+E7[E1| < op(1) +1,

since £ ¢ = 1, to obtain the assertion. |

Corollary 6.2: Under the assumptions of Proposition 6.2, we have

T
* 1 Y *
€ {f ?:1 |Xt—Xt|}—>() Jor T = .

Proof: Let (&;,¢7), t =1,...,T, be chosen such that £~ (§;—¢})? = dj (&4, ¢7) for all
t. Looking at the proof of Proposition 6.2, the op(1)—term converges to 0 uniformly
in t < T. Therefore, the Corollary follows immediately from the Proposition as, in
particular, L = L,, + L,& |e;| < 1 by (Ab).

|

Proof of Theorems 1-3: In all three cases we split the terms which have to be
investigated into a variance and bias part. For the bootstrap of Theorem 1, e.g., this
separation is as follows:

VTh(ri (@) = mi(x))
VIRY, Kiyfa = X)o( Xz | VTR, Kie = Xi)(m(X:) — m(z)
Yo Kn(z — Xy) Yo Kn(z — Xy)
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and, correspondingly,

VTR () — i ()
VIR, Kyla = X0), (X0 )zt | VTR, Kl = X7)(00,(X;) = tivg(z)
S Ku(x — X7) S Kn(z — X;) ‘

For the regression like and the wild bootstrap we obtain similar expressions, where
X7 has to be replaced by the original observations X; in the appropriate places.

Now, we show that

i) the numerators of the variance parts of the original estimator iy, (x) and its
three bootstrap versions have the same asymptotic behaviour (formulated pre-
cisely as Lemma 6.2),

ii) the rescaled numerators of the bias parts of the original estimator and its three
bootstrap versions converge to the same limit (compare Lemma 6.3, where the
bias components of the regression-like and the wild bootstrap are identical),

iii) and, for the bootstrap of section 2.1, the denominators of variance and bias
parts coincide asymptotically for the original estimator and its bootstrap ver-
sion (compare Lemma 6.3).

Lemmas 6.2 - 6.4 together prove the assertions of Theorems 1-3 concerning the es-
timate mp(x). The validity of the three bootstrap procedures for approximating the
law of &7(z) can be shown in a completely analogous manner.

We deal with the variance parts first.

Lemma 6.2:

(i) Assume (A1) - (A5), (B1)-(B4) and (BS8). Then for all x € R

\/>Z [Xh l‘ —Xt Xt)5t+1 :>N(O T ( ))

where 73(z) = o*(z)p(x) [ K*(v)dv

(i) Assume (A1) - (A5) and (B1) - (B8). Then, for the bootstrap of section 2.1,
for all x € R in probability

\/g S Kile = X7)3,(X7 ety = N (0,7(x))
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(tii) Assume (A1) - (A5) and (RB). Then, for the bootstrap of section 2.2, for all
x € R in probability

\/g ST Kl — X)8,(Xo)eiy, = N(0,7%(x))

(iv) Assume (A1) - (A5) and (WB). Then, for the wild bootstrap of section 2.3, for
all x € R in probability

\/>Z[Xh - Xi) 77t-|-1 :>N(O T ( )

Proof: (i) It suffices to verify the assumptions of a version of the central limit
theorem for martingale difference arrays (Brown, 1971), namely

(6.25) %Z EKF (x — Xi)o* (Xe)er | F] — o’(x)p(a) / K*(v) dv

in probability and for all § > 0 , again in probability,
(6.26)

h
= Z £ { Kz = X0)o (Xl U K7 (2 = X0)o*(Xo)et, > 8}

ft:| — 0

Here F; = o(X1,...,X}) = 0(Xi1,69,...,6) . Since K and o are bounded in a

neighborhood of x assertion (6.26) can be concluded from
1 5 5 1
w Y & (ehal{el, > 00T} =0 73 ) =oll).
t
To see (6.25) consider that, by (A4), £ [e7,,|F] = 1, and therefore the Lh.s. equals
1 X - X
ﬁZ{I(z (x t)O'Q(Xt)—g |:[(2 (x h t) UQ(Xt) ft_1:|} +
m(X Xy
e (S TR o ) o (X))

It is easy to see, that the expectation of the square of the first summand is O(1/(Th?)) =
o(1) . The second summand equals, using the symmetry of K,

TZ/A oz + ho)p (x _Ug((:i"‘)‘l) + a()}g_l)>a()i_1) dv .
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Differentiability of o and p. and boundedness of the derivatives of p. and o~! imply
that this term is equal to

/K?(v)dv o (z) - %Xt:pe (x _Ug((tit)‘l)) a()é_l) +O(h)

— /Kz(v)dv co(z)- € p5< ) , T — oo,

by the ergodic theorem. Observe that o(X;)™" ([
ition density of the underlying process, i.e. by (2 7)

e () s = o () g et =0

In order to verify (ii) we will verify conditions quite similar to (6.25) and (6.26).
Since the Lindeberg condition can be obtained quite easily, we focus on (F; =

o(X7,..., X7))

m(X )] Jo(X1)) is the trans-

u > €At = XN e 1)
R (o () o (55
S Z [n ( i) g<X:_1>u>

o, (mg(Xt*—l) + (X7 u) fT,b(U) du

Observe that £*(e})? — €& = 1, by Corollary 6.1, and that the first summand is
of order Op(1/(Th?)), by the same arguments as above It suffices to deal with the
integral, which is equal to

x—my( X/ ) hv 1
T Z/ o “h”f”< S T @(X:_l)) 5

The argument of fTJ) is bounded in absolute value by C'~r. This will be shown in

)

the proof of Lemma 6.3 below. Therefore, using Lemma 6.5 to replace fTJ) by p. and
Corollary 6.1 for the uniform convergence of 6, to o on compact sets, we obtain that
the last expression equals.

1 -2 2 r — g (X7 ) hv 1
72 [ Kt . ( 55 &g<X:_1>> 5,y T eth)
= [Kw @tz ( ;TX(X>)> ey el
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using again the differentiability of o and p. as in proving (i). Finally, we have to
verify that this term converges in probability towards 7%(z), i.e.

TZ ( UgX?)?)l)> Go(Xi1) TZ ( XtXf)l)> U(;t—n

where ~ denotes asymptotic equivalence and where we know already from proving
(i) that the r.h.s. converges to p(x). Such a result, which means that the Bootstrap

process has in some sense an ergodic behaviour, will be needed at several places later
on. We present the arguments in some detail here. The proof can be splitted up into
the following steps.

(6.27) - Zps ( Xf) 1>> &g()lq_l)1{|)(;_1| > yr} = op(1) .

(6.28) %Z; {pf (x ;f;éﬁ_l)) &g()l(;_l) o (x ;:@){(ﬁ%ﬁ) 0(;?_1)}

KX <yrp = op(l).

(6.29) TZ ( X;if*)l)) U(;;_l)mxr_n>7T}:0p<1>.

r (o) s () s

1 b
:c')(th:p(t —Xt|> :

With (6.27) - (6.30) the desired result follows from Corollary 6.2. This completes
the proof of (ii). To see (6.27) observe that m,(X; ;) = 0 and 6,(X;_ ;) = 1 on
{|X7_1| > 77}, thus the lefthand side of (6.27) equals + >, p.(z) 1{|X7_,| > 77}
which is op(1) by Lemma 6.1. Similarly, (6.29) follows from Lemma 6.1 together
with boundedness of p. and o~}

(6.30) %Z

Recall that m, = m, and 6, = &, on [—vr,y7r] such that m, and &, converge
uniformly on this growing interval by Lemma 5.1 and Lemma 5.3. Together with
boundedness of p. and p., this implies (6.28).

By boundedness of p. and % and by the last part of assumption (B3), the derivative
of %ps <$;(—m)()> is bounded. This implies (6.30).

For a proof of (iii) and (iv) we make use of a central limit theorem for triangular
arrays of independent observations. The Lindeberg condition can be verified in both
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cases by routine arguments and also for the variance the argument is quite simple.
In case (iii) we have

g (@Z Ko — Xt)&g(Xt)efH) 2
Th Z K* ( t) (*(Xe) + op(1)) €7(£7)?

— /[& ) dv - p(z)-o*(z), as T — oo , in probability

as £7(e7)? — 551 = 1 and the remaining term is a kernel estimate with kernel K?.
For replacing 62(X;) by 0*(X;) + op(1) we have used the fact that, by (BS), the sum
extends only over those t with |X; — 2| < h and that 67(z) — 02(2) uniformly on
[ — h,x + h]. The latter can be easily shown quite similar to Lemma 5.5.

For case (iv) we similarily obtain, using in particular £e7 = 1,

(i o)
_ ﬁ21< ) (i iy (X))
- e (55 ) (e = (X, 4 o)
O (57) o0t + orl)
- g (S ) 0 gy S () et = ) o)

— Uz(x)p(x)/[(z(v) dv , as T — oo .

as the expected square of the second term of the previous line is of order Op(ﬁ)
due to boundedness of K and the compactness of its support.

In a next step we have to deal with the kernel estimates for the stationary density.
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Lemma 6.3:

(i) Assume (A1) - (A5), (B1), (B3), (B8), and let h — 0 such that Th — oo for
T — 0. . Then for all z € R

%Z Ki(x — Xi) — p(x) in probability
¢
(i) Assume (A1) - (A5) and (B1) - (BS8). Then for all x € R
%Z Ki(x — X]) — p(a) in probability
¢
for the bootstrap process (X)) of section 2.1.

Proof: Conclude (i) from

(6.31) £ (% zt: {Kn(z — Xy) — E[Kp(x — Xt)|.7:t_1]}> = O(%) =o(1)
and
(6.32) %zt: E[Kn(x — Xy)|Fiz1] — p(x) in probability .

(6.31) follows by direct computation, while (6.32) is a consequence of the ergodicity
of the Markov chain (X;), namely by (2.7)

% Z £ [[(h(l' — Xt)|ft_1]

= X [ (e )
- L o (Y L
_ %zt:pf (51? ;&it)—l)> U()i:—ﬁ + Op(h) ,

since p. is continuously differentiable with bounded derivative and | K(v)dv = 1.
The ergodic theorem gives us the result because of (2.7).

In order to prove (ii) observe that
2
b 1 e b % e b Ed
&7 Z:{Ah(x — X7) = &7z = XO)FL} | = Op(7) = op(1)
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and

N

EXKn(x — X)) Fr ] = / K(v)fry (:1;
[_171]

- mg(X;—l) B Uh) 1 dv
Gy(Xiy) Gy(Xiy)

where fTJ) denotes the density of the bootstrap residuals, c.f. section 2.1. The

argument of fTJ) is bounded in absolut value by

| 2] + supger [1i2g(2) — rin(@)] + sup,er [(z)] + A

infoep &(2) = sup,ep |64(x) — ()]

SC"}/Tv

using Lemma 5.1 and Lemma 5.3. By Lemma 6.5 below, fTJ) converges uniformly on
[—C~r, Cyr| towards p.. Thus, it suffices to consider

%Z / K(v) p. (x - n;(())((i - Uh) @()1(:_1) o

— Op(h) +/K(v) dv %;Ps (x ;ﬁéii_l)) &g()l(t*_ﬁ |

We dealt with such an expression already in the proof of Lemma 6.2 (ii). This
concludes the proof of Lemma 6.3 . ]

Finally, it remains to deal with the various bias parts.
Lemma 6.4:

(i) Assume (A1) - (A5), (B2) - (B4) and (B8). Then for all x € R

\/gz Kp(z — X)) (m(Xy) — m(x)) — b(x) in probability,

where b(z) = B - [v?K(v) dv - [p/(z)m/(z) 4+ sp(z)m”(z)] .
(i) Assume (A1) - (A5) and (B1) - (BS8). Then for all x € R

[ h . e~ y . : .
T Z Ki(x — X )(my(X]) —my(x)) — b(x) in probability.
¢
(iii) Assume (A1) - (A5) and (WB). Then for all x € R

\/g D Kz — Xo)(rng(X,) —ving(2)) — b(x) in probability,
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Proof: A Taylor expansion for the left hand side of (i) yields

(6.33)

\/gzt: Ky(x — Xo)( Xy —2)m/(x) + %\/gzt: Kp(z — X)) (X, — x)Qm”(Xt)

where Xt denotes a suitable value between x and X;. For the first summand of (6.33)
we have

%s (Z {Kp(x — X)Xy — 2) — E[Kp(x — X)) (X, — :1:)|.7:t_1]}> = O(h)

and the conditional expectation part is equal to

\@Z/ ok (R ) s

A Taylor expansion for p. and the fact that [v K(v) dv = 0, by symmetry of K,
leads to the following expression for the conditional expectation part

op(1) + \/ﬁ/qﬂ[x’(v) dv %zt:p/s (:1; ;&f;l)> 02()1(75_1)

— on(l) +B/v21<(v) dv/p; (“' ;Z;”) U%u) dr(u) |

by the ergodic theorem. Boundedness of p” yields that
o —mu), 1 d / r—m(u), 1 ,
d = — . d = :

The second summand of (6.33) can be dealt with quite similar. It converges towards
1B [v K(v) dv-p(x)m”(z) , but we omit the details.
Let us proceed with a proof of (ii). Differentiability of m, around x, a similar

decomposition as in (6.33), the facts that 7}, and 1] estimate m’ and m” consistently,
by Lemma 5.5, and conditioning yield that it suffices to show (6.34) and (6.35).

(6.34) \/gz £ {Kh(x ~ X)X — )

ft*—l} — B p'(x) /UQI((U) dv

(6.35) \/gz £ [Kh(x ~ XY (X7 — 2)?

ft*_l} — B p(:)c)/vQK(v) dv
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The conditional expectation in (6.34) is equal to

\/?zt: / v [&’7(U)JET,b<x — ﬁ;z(())(é__ll)) T hv> &g()l(t*_ﬁ dv .

A Taylor expansion for fTJ) together with the fact [ v K (v) dv = 0 yields for a suitable
value Zf between (z — i, ( X/ ,))/0,(X] ) and (x — iy (X[ )+ hv)/6,(X ) that

the above expression equals

\/ﬁZ/v K(v fTb At*)mdv.

In the proof of Lemma 6.3 we have seen already that |Zf| < Cnr for a suitable
constant ' > 0 . Since fr, converges uniformly to p, (cf. Lemma 6.5) on this
growing interval and since p! is bounded, the term under investigation is equal to

VI [t o 3 S (S

Similar arguments as in the proof of Lemma 6.2 (ii) (cf. (6.27) - (6.30)) and Corollary
6.2) yield (6.34).

(6.35) can be obtained along the same lines. We omit the details.

Finally, a proof of (iii) can be obtained analogously since we have that /) and )
estimate m’ and m” consistently, by Lemma 5.5. |

Lemma 6.5: Assume (Al) - (A5), (B1), (B3) - (B7). Then for all ¢ > 0 and
7=0,1 .
swp |fy(w) = (2)] = or(1)

|z|<evr

Proof: Let A = {t; |X;_1] < 7} as in section 2.1. In a first step we compare fTJ)
with fr; defined as
Jrp(x Z Hy(e

teA

We have uniformly in « € R for some constant C'(j = 0,1).

FEhw) = PR < sup ) s 3 =
teEA
p— C -
T AP S A&
2C [m(x) — my(z)| o) = % (w)l 1
< —{ su - + (€ ledl +op(1)) sup ————=— ¢ + Op(—=—
= {msET Gy() (el ord ))|x|ng %) P(\/TbZ)



by the same type of argument as in the proof of Proposition 6.1. Together with
Lemma 5.1, 5.3 and (B1) we conclude

X 1/6
sup Frolie) = frate) = on (L5 ) + Opl ) = o)

z€ER

by our assumptions on b.

In the second step we compare fr(x) with its expectation. We divide the interval
[—cyr, eyr] into subintervals of length § > 0. The number of this subintervals is of the
same magnitude as 2¢yr /4. The supremum over all « belonging to such a subinterval
can be bounded using the mean value theorem. If we denote the intersection points
by x; we obtain

1
sup | {Hb)(st—x) £ H, (51—:1;)}
el<eve | T 4
J ! (7) ()
< O pite + max TZ{H?? (er —a;) — &€ HY (a4 —:1;2)} )
teA
where Hj(u — x) = —3 H'(*5%) denotes the derivative of H,(u — x) with respect to

T.
Choose § = b/*%/log T and obtain for the second summand (3 > 0)

P{mas |% S {#0 2 € HO e — 20} | > )

tEA
i) ~yrlog T B
ZﬁszzvarH (st—x)<(’)<Tij+4>—0(1).

Finally, since & Hy(e1 — x) = [ H(v)p-(z + bv)dv

sup € i(er — o) = o) < sup | [ H0) ule+ o) )} o] = O

z€ER

using (B3). As H is a probability density we have, using (B7), [ H'(v)dv = 0 and
JvH'(v)dv = —1. Since

E Hy(e; —v) / —H'(v){pe(x + bv) — pe(x)}dv,

and since p! is bounded, we have

sup |€ Hi(er — x) — pl(z)]
rER

< sgp\ [o PR | = o)
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