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Abstract

We develop recursive algorithms for subset modelling and prediction which gener-
alize the well-known Durbin-Levinson and Burg algorithms and include the univariate
version of the subset Whittle algorithm of Penm and Terrell (1982). The results are
derived using a basic property of orthogonal projections which leads to very simple
derivations of the standard versions of the algorithms. As an application of the results,
we obtain new and easily applied algorithms for the recursive calculation of the best
linear h-step predictors (for any fixed h > 0) of an arbitrary stationary process with
known mean and covariance function. .
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1 Introduction

A fundamental problem in time series analysis is the determination, for a series {X:,t =
0,+1,...} with E(XZ) < oo for all ¢, of the best linear predictor,

Zap(m) = 3 () Xy = $oXn(m), (11)

=1

where ¢, = (6m(1), .. ., bm(m))’, Xn(m) = (Xn, ..., Xnt1-m)’ and “best” means that ¢,
is chosen to minimize the mean squared error E[(Xn41 — Xn+1(m))?]. It is well-known (see
e.g. Brockwell and Davis, 1991) that the mean squared error is minimized if ¢,, is any
solution of the equation

where v,, = E[Xn(m)Xn41] and T = E[X,(m)X,(m)]. The corresponding mean
squared error is
Um = E(ng—l) - 7:'nr'r_7-zl7m’ (13)

where I';! is any generalized inverse of I',. All solutions ¢,,, = Tty,, of (1.2) give the
same linear predictor X,,11(m) = ¢, Xn(m).
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In the case when {X;} is a stationary process, the Durbin-Levinson algorithm allows
us to compute the predictors X,41(m) recursively in m, eliminating the need for matrix
inversions (see Algorithm 1 in Section 3). An overview of the Durbin-Levinson algorithm
and related algorithms may be found in Morettin (1984).

The Yule-Walker equations and the Durbin-Levinson algorithm also play an important
role in the modelling of time series data. In order to fit a zero-mean stationary autore-
gression of order m to a series of observations 2, ..., 7 of a time series at times 1,...,T
respectively, we replace the expected products E(X;44X:) by sample analogues and then
determine the corresponding ¢,, and vy,. Thus the Yule-Walker AR(m) model for the data
is obtained by replacing each expected product E(X;44X:) in equations (1.2) and (1.3)
by the corresponding sample value §(u) = (Z;T:—lu Teru:) /T, 0 < u < T, or its tapered
analogue (see Remark 2 in Section 3). If we denote the resulting sample analogues of ~,,
and T, by 4,, and ', respectively, then the Yule-Walker AR(m) model for the data is

Xy = b Xo—1(m) + Ze, {Zi} ~ WN(O,9m), (1.4)

where ) A A

b =I5 4 and 9m = 5(0) = YL Ain- (1.5)
In this case we note (see Brockwell and Davis, 1991, Problem 7.11) that except in the trivial
and uninteresting case when 9(0) = 0, the matrix I is non-singular for each m=1,2,...
and consequently the matrix I';;! in (1.5) is the unique inverse of I',. To fit a non-zero
mean stationary series to the observations yi, . .., yr, we can use the same procedure to fit
a zero-mean model to the mean-corrected data 1 = y1 —7, - . ., &7 = yr —¥. The model for
the original data is then obtained by replacing each X; in the model for the mean corrected
data by ¥V; — v.

Just as in the calculation of the best linear predictor X,41(m), the Durbin-Levinson
algorithm can also be used to determine the coeflicient vectors ¢,, recursively in m, thus
eliminating the need for any matrix inversions.

Tt is also possible to determine ¢, and &y, (and hence the Yule-Walker AR(m) model for
the data) using recursions based on forward and backward empirical residuals as described
below in Section 5. The idea of using forward and backward empirical residuals is due to
Burg (1968). However Burg used the empirical residuals in a different way, leading to an
AR(m) model for the data which differs from the Yule-Walker model. Further details and
generalizations of these algorithms are given in Section 5.

The purpose of this paper is to establish a basic result for orthogonal projections which
leads to very simple derivations of the standard Durbin-Levinson and Burg algorithms. It
also plays a key role in thé development of the generalized versions considered later in the
paper. These include the univariate version of the subset Whittle algorithm due to Penm
and Terrell (1982) and a corresponding subset version of the Burg algorithm. As a byproduct
of the analysis we also obtain two easily applied recursive algorithms for determining the
best h-step linear predictors of an arbitrary stationary sequence. Multivariate versions of
the algorithms can be derived analogously, but we shall consider these in a subsequent



paper. The recursive algorithms are even more advantageous in the multivariate than in the
univariate case. '

In Section 2 we prove the basic algorithm on orthogonal projections. In Section 3 we
"show how it leads at once to the classical Durbin-Levinson algorithm. We also derive and
discuss a sample version of the algorithm and the role of tapering in improving the parameter
estimates derived from it. In Section 4 we derive the subset Durbin-Levinson algorithm and
its empirical counterpart and derive two algorithms for h-step prediction. Section 5 deals
with corresponding subset generalizations of Burg’s algorithm.

2 The Basic Algorithm

Let X, Y and Z be random column vectors, all of whose components have finite second
moments. For any two such random vectors, say X and Y, we define the matrix of inner
products, '

<X, Y >:= E(XY’)

and we say that X and Y are orthogonal if < X, Y >= 0 or equivalently if <Y,X >= 0.
The best linear predictor of X in terms of Y and Z is defined to be the linear combination

(with matrix coefficients) of Y and Z, whose components each have minimum mean-square

distance from the corresponding component of X. If we denote this best predictor by '

X(Y,Z) = A/ Y + A5 Z,

then we know (see e.g. Brockwell and Davis, 1991,'Chapter 10) that X(Y, Z) is uniquely
determined by the requirement that the error vector X — A;Y — AyZ is orthogonal to Y
and to Z, i.e. by the equations ’

<Y, Y> <Y, Z> 1[4 ] _[<Y¥Y.X> ” 1)
<Z,Y> <Z,2> AL | T | <Z,X> |° ’

Note that although X (Y, Z) is determined uniquely by (2.1), there may be more than one
pair of coefficients A; and A, satisfying the equations. If this is the case then all of these
solutions will still give one and the same predictor. The second moment matrix of the
-prediction error vector is ’

vxjvz =< X - X(Y,Z),X - X(Y, Z) >
=<X,X>-A1<Y,X>-4:<Z,X>. (2.2)

Analogously to X(Y,Z), we define X(Y) and Z(Y) to be the best linear predictors in
terms of Y of X and Z respectively. Writing

X(Y)=BY -

and A
Z(Y)=CY,



we find that the equations analogous to (2.1) and (2.2) for X(Y) are

<Y, Y>B =<Y,X>, (2.3)
Cuxy =<X,X>-B<Y,X>, (2.4)

and for Z(Y) are
<Y, Y>C'=<Y,Z >, (2.5)
vziy =< Z,7>-C<Y,Z>. . (26)

We note also that
- B<Y,Z>=<XY>C(, h 2.7

since both sides are equal to B< Y, Y > C".
The following theorem shows how the predictor X(Y Z) can be determined in a simple

way from the predictors X(Y) and Z(Y).

Theorem 1 .

IfX, Y and Z are random vectors whose components all have finite second moments and if
the best linear predictors of X and Z in terms of Y are X(Y) = BY and Z(Y) = C'Y, with
prediction-error second moment matrices vx|y and vgjy respectively, then the best linear
predictor of X in terms of Y and 7 is '

X(Y,Z) = A1Y + A,Z, (2.8)

where
Ay =< X~ BY,Z > vzjy, (2.9)
A1 = B— AC (2.10)

and "’£|1Y is any generalized inverse of vzjy. The corresponding second moment matriz of
the prediction errors is
UX|Y,Z = VXY - A2'UZ|YA’2' (2.11)

Proof ‘
The best linear predictor of X in terms of Y and Z can be expressed as

X(Y,Z) = X(Y,Z - Z(Y)) = X(Y) + X(Z — Z(Y)) (2.12)
since Y and Z — Z(Y) are orthogonal. But
X(Z - Z(Y)) = A5(Z — L(Y))
where As satisfies

Ay < Z—%Y), Z—-ZL(Y) >=< X, Z—LY) >,
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ie.

Ay =< X, Z—LY) > vzly
=< X - X(Y), Z—Z4(Y) > vzy

=< X -X(Y), Z> vz,

where 'I)EI]'Y is any generalized inverse of vzjy. Substituting for X(Y) and X(Z — Z(Y)) in
(2.12) then gives X '
X(Y,Z) = BY + Ax(Z ~ 4(Y)), (2.13)

where A, is defined by (2.9). Replacing Z(Y) by CY gives the required result (2.8). To
determine vx|y z we rewrite (2.13) in the form

X - X(Y) = (X -X(Y, 2) + 42(Z — Z(Y)).
Using the orthogonality of the two terms on the right-hand side, we obtain
UX|Y =< X — )’t(Y), X - X(Y) >= UX|Y,Z -+ szz!yA;,

' which is the result (2.11). a

Corollary 1

Under the conditions of Theorem 1,

Z(Y,X) = D1Y + D;X, ‘ (2.14)
. where ‘ A
Dy =<Z—-CY, X > vxjy, (2.15)
Dy =C — D3B, , (2.16)
vzix, ¥y = vzjy — Dyvxjy Do, (2.17)

and v;qu is any generalized inverse of vx|y- In addition we can write

vx|v,z = vxjy — A2D2vx)y (2.18)

and
vz|x,Yy = vziy — D2A2vz)y. (2.19) |

Proof :
Equations (2.14-2.17) are obtained immediately from the theorem by interchanging the
roles of X and Z. Equation (2.18) follows from (2.11) and the relation

Dyvxjy =< Z—CY, X >=< Z— Z(Y), X(Y,Z) >= vzy 45,



which follows from (2.15) and (2.13). Equation (2.19) is obtained in exactly the same way
by interchanging X with Z and Dj with Aj. 0O

Remark 1. If X and Y have zero mean vectors then < X, Y > is the matrix whose (%, j)
element is the covariance of the i®*component of X and the j®* component of Y. In the
" non-zero mean case, we usually wish to compute X(I,Y, Z) where 1 is a vector of ones.
This is easily reduced to a zero-mean problem by observing that

X(1,Y,Z) = EX+X*(Y - EY,Z— EZ),
where X* =X — EX.

Remark 2. The predictors X(Y,Z), Z(Y,X), X(Y) and Z(Y) are all uniquely defined.

However the coefficients A, Az, B,C, D; and D, may not be uniquely defined since the

. matrices vx|y and vz|y may be singular. The coefficients will be unique if there is no linear
relation between any of the components of X, Y and Z, i.e. if

Var[(X’,Y',Z')d] # 0 for all d # 0.

Remark 3. In the course of the proof of Theorem 1 we showed that

A=< X-X(Y), Z-Z(Y) > vgjy (2.20)
and interchanging the roles of X and Z, we see also that ‘ A

Dy =< Z—AY), X = X(Y) > vxjy- . (2-21)

Equation (2.20) states that Aj is the partial regression coefficient of X onto Z given Y. This
interpretation is also evident from (2.13). Similarly Ds is the partial regression coefficient
of Z onto X given Y.

Remark 4. The conclusions of Theorem 1 can also be derived by direct algebraic manip-
ulation of equations (2.1) to (2.6), showing that if equations (2.1) to (2.6) hold then so do
equations (2.9) to (2.11) for some generalized inverse v;lly of vz|y. (Any generalized inverse
of vzpy in (2.9) will however give the same linear predictor A;Y + AsZ.) This means that
equations (2.9) to (2.11) can be used to solve the equations obtained from (2.1) when sample
estimates are substituted for the matrices E(YY"), E(YZ'), E(ZY'), E(ZZ'), E(YX') and
E(ZX'). In Section 3 we shall discuss the solution of these equations from a different. point
of view using the following results, the proofs of which are identical to those of Theorem 1
and Corollary 1.

Theorem 2

Let X, Y and 7 be finite-dimensional column vectors, all of whose components are elements
of the same inner-product space S. For any two such vectors, e.g. X and Y, we define the
matriz of inner products, ,

<X, Y >=[<X;,Y; >, 5,
where < X;,Y; > is the inner product of the components X; of X and Y; of Y. The
projection X(Y, Z) of X onto the span of Y and Z is defined to be the linear combination



(with matriz coefficients) of Y and Z, whose components each have minimum mean-square
distance from the corresponding component of X. The corresponding squared-error matriz
15 defined to be A A .

XY,z =< X - X(Y, Z), X -~ X(Y, Z) >.

IFX(Y) = BY and Z(Y) = CY are the projections of X and Z onto the span of Y, with
corresponding squared-error matrices vx|y and vzyy respectively, then X(Y,Z) and vxyv,z
satisfy the same equations (2.8)—(2.11) as in Theorem 1.

Corollary 2
Equations (2.14)—(2.21) remain valid in the context of Theorem 2.

Remark 6. Although we have not found references to Theorems 1 and 2 in the forms
stated above, the underlying idea is not new. It has been used for example in the context
of hierarchical regression. Thus if X is regressed linearly on Y and then a new regressor Z
is introduced, Theorem 1 gives the updating equations in Theorem 3.7(i) and (ii) of Seber
(1977). (We are grateful to Lutz Diimbgen for this comment.) However it seems not to
have been widely exploited in time series analysis in spite of the fact that its power and
simplicity lead to very simple derivations of well-known results as illustrated below.

The idea in all of the applications is to compute predictoré recursively by making use of
the solutions of simpler prediction problems.

3 The Durbin-Levinson algorithm

In this section we show how the Durbin-Levinson algorithm follows at once from Theo-
rem 1 and derive and discuss the corresponding empirical version used in the Yule-Walker
estimation of autoregressive coefficients.

Suppose that {X;,t = 0,=£1,...} is a zero-mean stationary process with E(X¢1oX:) =
v(u), t,u € {0,%1,...}. We restrict attention to the zero-mean case since corresponding
results for the non-zero mean case are easily derived using Remark 1 of Section 2.

Algorithm 1 (Durbin-Levinson)

Let {X:} be a zero-mean stationary process and let

m
Kng1(m) =) bm (i) Xn41—j (3.1)

j=1
be the best linear 1-step predictor of X, 41 given Xy, ..., Xp41—m, with corresponding mean
squared error v,,. Then the vectors ¢, = (¢m(1),...,¢m(m))" and mean squared errors



vm, m=1,2,..., satisfy the following recursions.
$mir(m+1) = [y(m+1) =L dm(i)y(m+1- 7!,
bmir() = m() —bmar(m+ Dhm(m+1-4), G=1,...,m,
Umn 41 = (1-¢hpa(m+1))om,

where the generalized inverse v, = 0 if vy, = 0. The initial conditions are vo = ¥(0) and

$1(1) = v(1)/+(0).

Proof
Apply Theorem 1 with

X = Xps1, Y =(Xn,Xnot,--s Xnt1-m) and Z= Xn_m,

noting that
'B=(¢m(1),--;6m(m)), C=(dm(m),...,ém(1)),

and
VXY = VZ|Y = Um. O

Remark 1. The Whittle multivariate version of the Durbin-Levinson algorithm can be
derived by much the same argument from Theorem 1 and Corollary 1. We shall study
algorithms for multivariate processes in a forthcoming paper.

Remark 2. (Yule-Walker estimation/data tapers) Suppose we are given observations
z1,...,z7 of a zero-mean stationary time series {X;}. For any m < T, the Yule-Walker
AR(m) model for the series is obtained by substituting the sample covariances §(u) =
'11?23:_1" L4y for the covariances y(u), u = 0, ..., m, in equations (1.2) and (1.3) and solv-
ing for ¢m (1), ..., ém(m) and vy,. I we denote the solution by ¢,, = ($m(1),- .-, Gm(m)Y
and ¥y, then the fitted model is

X = $m(DXem1 + -+ $m(m) Koo + Z2, {2} ~ WN(O, 9m),

where (cf. (1.2) and (1.3))

and , » ‘

By Remark 4 of Section 2 we can determine the fitted model using Algorithm 1 with covari-
ances replaced by the corresponding sample covariances. A more illuminating interpretation
of Yule-Walker estimation however is obtained as follows. We extend z; by defining z; =0

for t < 0 or t > T'. With a slight abuse of notation (since it does not depend on ) we then
write x; for the sequence {z:,t = 0,1,.. .}, that is

x=0(..,0,21,...,27,0,..). (3.4)



The shifted sequence {z;_;,¢# = 0,+1,...} will be denoted x;_;. The space S of real
sequences with finitely many non-zero components becomes an inner-product space if we
define, for any u,v € S,

<u,v>=T1Y wo,. (3.5)
t

With this inner product we see that

T—h
N 1
< X, Xt >= F(u) = T E ZtTt4u (3.6)
t=1

and hence that the sample Yule-Walker equations (3.2) and (3.3) are precisely the equations
determining the projection

%n32(m) = Y S () Xnt1-5 3.7

=t

of the sequence x,41 onto the set of linear combinations (with real-valued scalar coefficients)
of the sequences Xn41—j, j = 1,...,m. (Analogously equations (1.2) and (1.3) determine
the projection of the random variable X, 11 onto the set of linear combinations of Xy 1,
j =1,..., m, under the inner product < U,V >= E(UV’).) If we define the sequence x; by

Xt:(...,O,h]_:l?l,...,hT:L‘T,O,...) . (38)

where h; is a data taper with Zle hZ = T (usually one takes hy = h (t_gl,/ 2) - cp Where

2
er =T/ ZtT=1 h (t—%/z) and h : [0, 1] = [0, 0] is a smooth function with A(0) = k(1) = 0),
then we obtain as the solution of the same projection problem again the equation (3.7) where

now the coefficients ¢ (4) are the solutions of the tapered Yule-Walker equations, that is
of (3.2) and (3.3) with the tapered covariances

T—u
. 1
Y(u) =< Ktqu, Xt >= = Z htzihepu i (3.9)
’ Zt:l ht t=1

The tapered Yule-Walker estimates have much better small-sample properties (Dahlhaus,
1988). The above arguments offer an explanation for this improvement: In (3.7) all compo-
nents of x,4+1 are “predicted” with the same &m(j) from the corresponding components
of Xp41-; leading to problems at the edges (for example when 0 is “predicted” from
TT,...,TT41—m)- This problem is relaxed by using an adequate taper. By using Theo-
rem 2 we now get the empirical version of the Durbin-Levinson algorithm. '

Algorithm 2 (Empirical Durbin-Levinson)

With {x:} and 5(u) defined as in (3.4) and (3.6) or as in (3.8) and (3.9) respectively and
inner products as in (3.5), let

Znt1(m) =Y (i) Xnt1- (3.10)

j=1



be the projection of Xny1 on the span of X,,...,Xnt1-m, With squared error Oy, =< X —
%n41(m), X — Xpp1(m) >. Then the vectors ¢, = (¢m(1), - - -, dm(m)) and squared errors
Om, m=1,2,..., satisfy the recursions, :

4;m+1 (m+1) = [Hm+1)- Z?:l ém(J)'?(m +1 -5l

fl

$m1(7) $m(G) = $mir(m+ Dém(m+1-7), i=1,...,m,

and .
Bpgr = (1 — 72-n.+1(m +1))0m.

The initial conditions are 9 = %(0) and ¢1(1) = 4(1)/5(0).

Proof
Apply Theorem 2 with .

. /
X=%nt1, Y= Xn,%n-1,.--,Xnt1-m) and Z =X, _p,,

noting that . ) A .
B= (¢m(1)3 . -s¢m(m))7 C= (¢m(m)’ sy ¢M(1)):
and
VXY = Vz|Y = Um- . a

-4 Subset prediction and autoregression

We next consider a generalization of the Durbin-Levinson algorithm for calculating the best
linear predictor of X,41 in terms of a subset of the observations, Xi,...,X,. The same
algorithm can also be applied to fit a subset autoregression to observations of a stationary
time series and has been developed in this context by Penm and Terrell (1982).

A simple but important special case is h-step prediction, which requires the determina-
tion of the best predictor of X, 41 in terms of {X,+1-h, Xn+1~h—1,---}. More generally we
are concerned with prediction in terms of an arbitrarily specified subset of {Xn, Xn-1,---}-
It is straightforward enough to write down the equations analogous to (1.2), which deter-
mine the best linear predictor of X+ in terms of {Xn41-#,,+- -, Xn41-km - Qur aim here
however is to use Theorem 1 to derive a recursive algorithm for their solution. A more
complicated derivation of the analogue of this algorithm in the multivariate case was given
by Penm and Terrell (1982), who-used it for the fitting of subset autoregressions. Note that
Penm and Terrell have formulated their algorithm in terms of the missing lags while we
formulate it in terms of the present lags. Before stating the algorithm we introduce some:
simplifying notation.

Suppose that K = {k1,...,km} C {1,...,n}, where 1 < k1 < k3 < --+ <k <n. We
can then write the best linear predictor of X, 1 in terms of {X,41-j,j € K} as

Knr1(B) =D ¢x(DHXnt1-; (4.1)
j€K

10



for some coefficients ¢ (), j € K. Letting

XH(K) = (Xn+1—k17 EREP) Xn-i-l—km)l
and
¢K = (¢K(k1); RS ¢K(km))’:
we can rewrite (4.1) in the vector form,
Xos1(K) = ¢ Xn(K). (4.2)
If L is any non-empty subset {l1,...,0,} of K with l; <3 < --- < I, we define

bx(L) = (¢x (), -, bx ()

and use the notation ¢y and @x (L) for the vectors ¢y and ¢ (L) with the order of their
components reversed. If we define

vr = (v(k1), - -, Y(km))'

and
Tk = EXn(K)Xn(KY)

then the coefficient vector ¢y in (4.2) satisfies

Txdx =Vx (4.3)
and the mean squared error of the best predictor ¢x X, (K) is
vk = 7(0) — dxVk- _ | (44)

We now define the sets of indices
J= {kl;u-;km—l} and J* = {k’m —km_17...,km —kl}
and apply Theorem 1 with '

X=Xn41, Y=Xa(J), Z=Xntikm,

12 —/
B=1¢}, C=¢j;., vxjy =vj and vzjy = vJ..

This immediately gives the following algorithm expressing the best predictor X,11(K) and
its mean squared error vx in terms of ¢y, @ ., v, vy, ¥+ and y(kn). It is the univariate
version of the subset Whittle algorithm derived by Penm and Terrell (1982).

Algorithm 3

If{X;}isa zero-mean stationary process with covariance function v and if, in the notation
introduced above, Xny1(J) = ¢1Xn(J) and Xpy1(J*) = ¢5.Xn(J*), with mean squared
errors vy and vy. respectively, then Xny1(K) = ¢xXn(K) where

b1 (km) = (Y(km) — S5 70 072, (4.5)

11



-

ox(J) = b5 — o (km)Py ‘ (4.6)
and the mean squared error of X’n_,.l(K) i85
vk = vy — ¢x (kn)?vse, (4.7)

where the generalized inverse v;} is zero if vy» = 0. The initial conditions for the recursions

are specified in Remark 3 below.
Remark 1. Algorithm 1 is the special case of Algorithm 3 with K = {1,...,m}.

Remark 2. The lags in the set J* enter the recursions because they are the time lags
between the observations X, p1—k,,---) Xn+1—kn, and the earliest observation X, 1,
just as J is the set of time lags between the predicted observation X, 11 and the observations
Xpg1—kys-- s Xn4l—km_,- In the Durbin-Levinson algorithm the sets J and J* are identical.

Remark 3. In order to apply the algorithm to compute all subset predictors with maximum
lag less than or equal to r, we proceed as follows. '

1. Compute all predictors based on a single observation, i.e. with J = {j},for 1< j <.
For the predictor with J = {j} we have

o5 =7 /7(0) = p(4),

where p is the correlation function of {X:}, and
vy = 7(0)(1 - p(5)?)-

2. Use Algorithm 3 to compute all predictors based on m observations with maximum
lag r from those based on m — 1 observations with maximum lag r.

3. Continue until reaching the best predictor based on Xp,, ..., Xp41-r. This corresponds
to the subset K = {1,...,r}.

This procedure requires the storage of (;) coefficient vectors and mean squared errors
at the end of step 2 in order to take the next step in the iteration. If we are using the
empirical version to fit a subset Yule-Walker model as described below in Remark 4, then
a “best” model can be selected by minimizing an order-selection criterion such as AIC. As
we proceed through the iterations we must then keep track of the current best model and
its corresponding AIC value. We should also use tapered covariances (Dahlhaus, 1988) to
obtain estimates with better small-sample properties.

Remark 4. (Yule-Walker subset estimation) As in Remark 2 of Section 3, the Yule-
Walker subset antoregressive model for the'data z1,...,z7 with lags k1,...,km is

Xt = br (k1) Xoky + -+ Sk (k) Xt + Ze, {2} ~ WN(O, 9k),
where the vector ¢g = (bx,, - - ., $k,,)" and white noise variance 9% satisfy the equations

Txdg =9k . (4.8)

12



and »
g = 5(0) — pxik (4.9)
(cf. (4.3) and (4.4)), where I'x and 9x are obtained from I'x and yx respectively by
replacing each covariance y(u) by the corresponding sample covariance 4(u) as given in (3.6)
or (3.9). We can therefore determine the fitted model using Algorithm 3 with covariances
replaced by the corresponding sample covariances.
By the same argument used in Section 3, we obtain the following subset analogue of
Algorithm 2. Like Algorithm 2, it provides us with a direct empirical interpretation of the
fitted Yule-Walker model.

Algorithm 4 (Empirical subset algorithm)

With x; and 4(u) defined as in (3.4) and (3.6) or as in (3.8) and (3 9) respectively and with
inner products defined as in (3.5), let

m
Rn41(K) = ) dx (ki) Xnta1-k; (4.10)
i=1
be the projection of Xp41 on the span of Xn41—ky,-- - Xntl-kn- Lhen the vectors g;&K =

(dx(k1), ..., ¢x(km)) and squared errors g =< x — XKn41(K),x — Xn41(K) > satisfy the
TECUTSIONS,

brc(km) = (3km) — $137)072, A (4.11)

$x(J) =1 — $K(km)g.]‘ (4.12)
and X

tx = b5 — ¢x(km)*0e, : (4.13)

where the indez sets J and J* are defined as in Algorithm 8 and the generalized inverse 7.
is zero if 67+ = 0. The initial conditions are as in Remark 8 with 4(j) replacing ¥(j) and

p(3) = 4(1)/7(0) replacing p(3)-

Remark 5. (Causality) It is well-known (see e.g. Brockwell and Davis, 1991) that the
solution of the empirical Yule-Walker equations (3.2) always gives a causal fitted model,
i.e. the roots of the equation 1 — ¢m12 —e— ¢mmz = 0 lie outside the unit circle in the
complex plane. This is an important result since the derivation of the Yule-Walker equations
(1.2) requires stationarity of {X;} and zero correlation between Z; and X,,s < t. These
conditions are not satisfied if the model is not causal. Unfortunately the solution of the
empirical Yule-Walker subset equations (4.8) does not necessarily give a causal model. For
example, suppose we take a sample from the stationary causal ARMA process defined by
X; — Xi—1+0.5Xs—2 = Z; + Zs_1, where {Z;} is white noise, and suppose that the sample
autocorrrelations at lags 1,2 and 3 happen to coincide with those of the generating ARMA
process, i.e. p(1) = 3/4, p(2) = 1/4 and p(3) = —1/8. If we then attempt to fit a subset
AR(3) model to the sampled data with non-zero coefficients at lags 2 and 3 only, we find
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that the solution of (4.8) with K = {2,3} is ¢x(2) = 1 and ¢x(3) = —&. However the
subset model 1

X — 1—4Xt 5+ —Xt..3 = Zt, {Zt} WN(O g ) (4:14)

is not causal. The autocorrelations p(1), p(2) and p(3) of the stationary solution of (4.14)
are not equal to 3/4, 1/4 and —1/8 respectively. This is because (unlike 4(1), 5(2) and 4(3))
they do not satisfy the Yule-Walker equations,

[ 1 p(1) ] [ 11/14 } _ [ p(2) }

o) 1 [ =57 [T |

This is because of the non-causality of the model (4.14). Consequently (4.14) cannot be
interpreted as a model for the the data whose correlations at lags 1, 2 and 3 match the
corresponding sample autocorrelations. The same problem of interpretation arises whenever
the equations (4.8) give a non-causal model. It simply means that the data cannot be well-
fitted by a subset autoregression with the specified set of lags, K. In spite of this shortcoming
however, we can still correctly infer from the fitted model (4.14) (assuming that the sample

autocorrelations (1), 5(2) and p(3) are accurate estimates of the true correlations) that the
best linear predictor of X; in terms of X;_5 and X3 is

X = i—iXt—z - -?'Xt—s

Subset modelling is thus an appropriate method of generating best linear predictors in terms
of subsets of the data (based on estimated covariances) in spite of the fact that the subset
model may not be an appropriate model for describing the entire series. It simply gives the
best linear predictor within a prescribed class. A class of predictors which is of particular
interest is that of the h-step predictors. The remainder of this section is devoted to this
class, specifically to the recursive determination of h-step predictors for a stationary process
with known covariance function.

Instead of calculating best subset predictors for all subsets with maximum lag r, it is
frequently of interest to calculate the best subset predictor for one particular subset or
for a family of subsets. In such cases the number of steps required in the application of
Algorithm 3 may be reduced considerably. An example is the calculation of the best linear
h—step predictor of X,41 in terms of Xnq1-h,--., Xnt1—h—m- This is just the predictor

Xp41(K) with K = {h,h+1,...,h+m}. In order to determine Xn+1(K) from Algorithm
3, it suffices to determine ¢y, ¢> 7+ vy and vye, where

J={hh+1,...,h+m—1} and J*={1,2,...,m}.

To determine these quantities from the algorithm we need only ¢;, ¢;. vy and v+, where

now ,
J={hh+1,...,h+m—2} and J*={1,2,...,m—1}.

Continuing to work backwards we see that we can begin the iterations with the predictors
based on {k} and {1} only, and then apply Algorithm 3 one step at a time, computing two
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sets of coefficients and two mean squared errors at each step, arriving after m stages at the
required predictor X, +1(K). We make this process more explicit in the following algorithm.

Algorithm 5 (h-step prediction)

Let {X:} be a zero-mean stationary process and let

RL,m) = 32 D)1 (4.15)

=1

be the best linear predictor of Xp,4p given X, . .., Xnt1—m, with corresponding mean squared
()

error vy’ . Then the best linear predictor of Xp+n given Xy, ..., Xpn—m can be expressed as

m+41

X(h)h(m‘*'l) Z Sﬂ—l(J)XnH-g,
; o

where the coefficients and mean squared errors satisfy

¢ (m 1) = [y(m+ h) — Z¢(")(J)7(m+1 i vm (4.16)
j=1

¢ 1 (5) = s (4) - ¢5,1‘11<m+1)¢m(m+ 1-4), j=1,...,m, (417

vfﬂ_l = 'uﬁ,f') — ¢$,2'_),_1(m + l)z'um, , (4.18)

with initial conditions,

$(1) = p(h) and o = (0)(1 - p(R)?).

The function p is the correlation function of {X:} and the one-step prediction coefficients
ém(5), s =1,...,m, and mean-squared errors vy, are defined as in Algorithm 1.

Proof  With the above definition of K, J and J* Algorithm 5 immediately follows from
Algorithm 3. Note that for simplicity of notatlon we have shifted all variables, in particular

$W ()= ¢iG+h~1)(=1,...,m) and $0L, (1) =¢x(G+h-1)(=1,...,m+1). O

Remark 6. Note that the recursive calculations for determining qﬁm +1 and ¢my1 can be

(R)

performed in parallel. It also follows from Corollary 1 that the mean squared errors vm
satisfy the recursions,

vy = (1= ¢ (m + D)gmyr(m+ 1))l o

The above algorithm gives a recursion for getting the coefficients qu +1(-7) from the
(h) (7)- We now prove another algorithm which allows the calculation of the coefficients

(h+1)(3) from the ¢ ") () - an algorithm which for practical purposes is of even higher
importance. This algorithm does not follow directly from Algorithm 3 but with repeated
application of the basic algorithm from Theorem 1.
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Algorithm 6 (h-step prediction)

Let {X:} be a zero-mean stationary process and let ngf) () G =1,...,m) be the coefficients

of the best linear predictor of X1 given Xy, ..., Xn41-m with mean squared error 'u,(,’: ) as
given in (4.15). Then the coefficients ¢$,},L+l) () (7 =1,...,m) of the best linear predictor of
Xnihe1 given Xy, ..., Xpp1-m with mean squared error v,(,f""l) satisfy
m—1
$EFD(m) = [y(m+ k) — Y m-r(ihv(m +h— vzl (4.19)
i=1 |
¢ () = oM (G + 1) + ¢P (1)ém(5) — $G T (M)$m(m —5), §=1,...,m~1, (4.20)
oD = o + 601 (1) — 5 (m) Jom—, (4.21)

where the starting values ¢£,];)(j) = ¢m(j) and o) = U can be calculated with Algorithm 1
or from (1.2) and (1.3) directly (since m is fized). Furthermore vm—_1 = vm/[1 — ¢m(m)?]
(see Algorithm 1).

Proof  Application of Theorem 1 with

X = Xn-}-h, Y = (Xn—ly . -7Xn+1—m), and Z = Xn

yields ' :
¢+ 1) = $8HD(G) = B (V) (), G = 1,...,m— 1 (4.22)
and
o) = o0 ) — 60 (1) vy (4.23)

A second application of Theorem 1 and of (2.7) with

X = Xn+h+1; Y = (Xu, .. .Xn+2_m)l and Z = Xn+1—m

leads to
o+ (m) =< Z — ¢Y,X > UE|1Y

m—1
=[y(m+h) =Y $m-a(Ghy(m +h— vz, (4.24)

i=1
601 () = 69TV () - 64T (m)pm(m — ), §=1,...,m—1 (4.25)
o) = o0FD) — gD ()20, s . (4.26)
(The last two equations are (4.17) and (4.18) with k and m replaced by h+1 and m — 1
respectively). (4.22) and (4.25) now give (4.20) while (4.23) and (4.26) give (4.21). O
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5 Prediction error representations and Burg algorithms

In this section we derive a different kind of recursion for the best predictors, based on the
“forward” and “backward” residuals, which we now define. Let K, J and J* be the sets of
lags defined in Section 4 and suppose that the best linear predictor of X, in terms of the
components of Xy = (Xp41-k,, - - - ;Xn-l-l—k,,(,_l)l is Xpy1(J) = ZjeJ 65()Xnt1-j-

Then the forward residual at time ¢ for the lag subset J is defined as
er(t)=Xe =Y _ $s(i)Xs-;
jed
and the backward residual as

)= Xe— Y 65 () Xews-

jeJs

The expected squares of these residuals are the mean squared prediction errors v; and vy
respectively from Section 4. Since the process is univariate and stationary, the backward
and the forward mean squared prediction errors are the same. The following proposition
summarizes some properties of e7(t) and 1+ (t) and gives an update relation which leads to
algorithms of Burg’s type for prediction and modelling.

Propositibn 1

Let K ={ky,...,km} C{1,...,n}, where k1 < ks < +-+ < km, and let J = {k1,..., km_1},
J* =A{km —ki,...;km — km—1} and K* = J* U{kn}. Then :

(i) <egt),es(t) >=vs

(i) < () ns() >= vse
(ir)  <ez(t),ni(t —km) >=vior+(km) = dx{km)vre
(w) ex(t)=ces(t) — ¢x(km)ns(t — km)

(v) g+t —km) =5+ (t — km) — bx+(kn)es(t)

Proof
(i) and (ii) are just the definitions of the mean squared prediction errors.
(iii) is a restatement of equations (2.20) and (2.21) with

X:Xh Y:(Xt"k17"')Xt—km—1)l> Z:Xt-—kma

1 _I
B:¢J; C:¢J., Uxxy:’l)_] and UZIY:'UJ‘,

Ay = ¢K(km) and Dy = ¢K‘(km)
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(iv) is obtained by observing that
£1(2) = b (k) (t — km) = X — $5Y — $xc (km)(Z — $7.Y)
and noting from (4.6) that ¢; — ¢x (km)Bye = ¢x(J), whence
e7(t) = $xc(km ) (t = km) = X — o (J)'Y — ¢x (km)Z = ek (1)

The result (v) is proved in exactly the same way as (iv). : ' : O

‘We now turn to the empirical equivalent of Proposition 1. In the notation of Remark 2
of Section 3, our aim is the recursive determmatlon based on empirical prediction errors,
of ({)K and 9x satisfying

Txdx =9k (5.1)
and v
% = (0) — ¢xVk- (56.2)
By Algorithm 4, the projection Xnt1 (K) of the sequence Xp+1 on the span of X415, 5 € K,
is then
Rn1(K) = Z ¢’.7(K)xn+1—17 ' (5.3)
jEK

with empirical mean squared error

2
- N 1 . .
< %nt1 — K41 (K), X1 — X1 (K) >= T Zt: ($t+1 - §¢j(K)zt+l—j = UK.

The coefficients ¢; ;(K) and 9k are the solutions of the empiric¢al forward prediction problem.
It can easily be seen that the empirical backward prediction problem also leads exactly to
the same values. The forward and backward prediction error sequences for the lag subset J

are now )
Er(t) =% — Z o5(3)xe—5
jed
fre() =% — ), b (1)%eas
jeJ*

respectively; the corresponding empirical forward and backward mean squared errors are
Iy =< €J(t),€,](‘t) > and 9. =< fye (t),'f;,]t (t) >,
We can now state the following analogue of Proposition 1.

Proposition 2

Proposition 1 holds if we replace v by ¥, ¢ by $,€ by & n by i) and define the inner pfoducts
as in (8.4).
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Proof  The proof is identical to the proof of Proposition 1, defining

: .
X::Xt, Y = (xt—kly"’7xt—km_1) ) Z = Xt—km>
'

i = ~ ~
B =¢5, C=dj, vxly = 93 and vgy = 93+,

and applying Theorem 2 and Corollary 2 with inner products defined as in (3.4) |

With the aid of Proposition 2 we can now state a set of recursions based on empirical
prediction errors for solving equations (5.1) and (5.2).

Algorithm 7 (Burg solution of the subset Yule-Walker equations)

A solution of (5.1) is determined by the recursions

s Seer(t)ie(t = k) -
¢K(km) - Et e (_t)z ’ | (5‘4)
bic(7) = b ~ $xc k)b, (5.5)
7 _ Et @;(’t)ﬁ_,. (t —km)
¢K' (kM) - Zt EJ(t)z 3 (5’6)
bie-(I") = b+ — $rc(bm) s, (5.7)
g = [1 _‘¢K(km)¢K‘ (km)]ﬁ-] (5'8)
tge = [1— ¢x(km)dx: (km)lose, (5.9)
where the empirical forward and backward residuals satisfy
ek (t) = &5(t) = fxc(km )i (t — km) (5.10)
and R
" gt — k) = G0 (8 — k) br+ (km)érs (), » (5.11)

with initial conditions,
€¢(t) = ﬁ¢(t) =z, t=0,%1,42,...,

and

1 T

t=1

The performance of the estimators ¢ (km) and ¢x+(J*) suffers as a result of the poor
quality of €;(t) and s+(t — km) as estimators of es(t) and nse(t — kn) at the edges of
the observation domain (cf. the discussion in Remark 2 of Section 3 where tapering was
suggested as a means of improving the estimators). Algorithm 7 suggests the following
possibilities for improving the estimates, the third of which is a direct generalization to
subset modelling of Burg’s algorithm for fitting autoregressions:

19



(i) Replace the sums over all ¢ in (5.4) and (5.6) by the sums from ¢t =kp +1tot =T .

(ii) Estimate the correlation between the backward and forward residuals as
: - o
Et:km+1 €7 ()i (t — km)

(it @) (s 8

o 1/2
o vy
0J,J+ <—:——)
v
-~ ﬁJt 1/2
Sr+(km) = 05+ (“:“)
vy

This is in the spirit of the multivariate Burg-algorithm as given by Morf et al. (1978).

05,9+ =

and set

&K(km)

il

(iii) Minimize the sum of squares of the forward and backward residuals over the range
- of data values where these are defined. This corresponds to the original idea of Burg
(1968) for fitting AR(m)-models. In the context of subset modelling we find from
Proposition 1, parts (iii), (iv) and (v) that the Burg estimate of ¢x (k) should min-

mize
T
Sc= 3 [Cr0 = Frlhnire 6= k) + ¢~ ) = i) ).
t=kp+1
leading to
" k) = 'UJ('UJ + ’UJ-) Zt~km+1 GJ(t)ﬂ]t (t — m)
parlin) = Zt-—km+1 (ﬁ.zfﬁp (t —km)? + ”J-_el(t)z)
and
(;K‘ (km) — e ('BJ + '6-7') Zfzkm+1 gJ(t)ﬁ-(‘ (t - km) .

T A9 A ~ ~ 3
Dbkl (051 30 (¢ = km)? + 93, E5(1)?)
Of course all three methods generate different sequences of residuals and estimated coeffi-

cients.

We note finally that a Burg version of Algorithm 5 for A-step prediction can also be
derived from Algorithm 7. '
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