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There exist several estimators of the memory parameter in long-memory time
series models with mean p and the spectrum specified only locally near zero frequency.
In this paper we give a lower bound for the rate of convergence of any estimator
of the memory parameter as a function of the degree of local smoothness of the
spectral density at zero. The lower bound allows one to evaluate and compare different
estimators by their asymptotic behavior, and to claim the rate optimality for any
estimator attaining the bound. A log-periodogram regression estimator, analysed by
Robinson (1992), is then shown to attain the lower bound, and is thus rate optimal.
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1. Introduction. Suppose that we have n observations Xi,..., X, from a long
range dependent, stationary, Gaussian time series {X;}2 _ with spectral density

(1.1) fA) = L|)(\|);), A€ [—m,7], a € (=1,1),

— 00

and L(A\) — C,C € (0,00), as A — 0. We will assume, without loss of generality, that
the mean of X; is zero (note that Theorem 2 below does not use this assumption).
The parameter o determines the behavior of the spectrum near zero and is just a
re-expression of the self-similarity parameter H = (o + 1)/2 and of the fractional
differencing parameter d = «/2, see, e.g., Beran (1994). When a = 0, f(A) tends to
a finite positive constant at zero frequency, while if « € (0,1) it tends to infinity and
if € (—1,0) it tends to zero.

Several estimators of o are now available both for the parametric case when L(A)
is specified for all A € [—7,#] up to a finite-dimensional parameter (e.g., Fox and
Taqqu (1986), Dahlhaus (1989) who required « € (0, 1)) and for the semiparametric
case when assumptions are made only about the local, for A — 0, behavior of L(\)
(as in (1.1) above), which then acts as an infinite-dimensional nuisance parameter
(e.g., Geweke and Porter-Hudak (1983), Kiinsch (1986), Robinson (1992,1993)).

Perhaps, the best known estimator of a in the semiparametric case is that pro-
posed by Geweke and Porter-Hudak (1983) which is based on the linear least-squares
regression of log-periodogram on log(2sin(A;/2)), for a certain number of Fourier
frequencies \; = 277 /n close to zero. Robinson (1992) analysed the asymptotic prop-
erties of a generalized and modified form of that estimator. It follows from his results
that under certain local smoothness conditions, which include the assumption

(1.2) LX) =C+O0(A"), as A = 0, C € (0,00), 3€(0,2],

the estimator has the convergence rate n=" M, for all o € (—1,1), where r = r(3) =
B/(28+ 1) and M,, — oo arbitrarily slowly.

In his more recent paper, Robinson (1993) analysed another estimator, originally
proposed by Kiinsch (1987), which was based on the local Whittle approximation of
the Gaussian likelihood for the frequencies near zero. Under much weaker assumptions
than those for the log-periodogram regression estimator, he established the estimator’s
asymptotic properties, which imply, under the condition (1.2), the rate n=" M, with
any M, such that log_l/(l"'w)(n)/Mn = o(1).

Note that Robinson (1992, 1993) proves not just the rate of convergence of the
considered estimators but their asymptotic normality with mean zero. By analogy
with many other nonparametric estimation problems, one can expect that if the
number of Fourier frequencies used is chosen to optimally balance the asymptotic
bias and variance, these estimators will attain the rate n=".

In this paper we consider the semiparametric model (1.1), (1.2) and give a lower
bound for the rate of convergence of any estimator of « as a function of the degree
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of local smoothness of L(\) at zero. More precisely, we show in Section 2 that,

the rate n="

cannot be improved on the class of spectral densities defined in (2.1).
The lower bound allows one to evaluate and compare different estimators by their
asymptotic behavior, and to claim the rate optimality for any estimator attaining the
bound. We show, in Section 3, that the lower bound is attained by a modified form
of Geweke-Porter-Hudak’s (1983) estimator suggested by Robinson (1992), i.e. that

this estimator is rate optimal for the class of spectral densities defined in (2.1).

2. The lower bound. For any 7 > 0, we define the class F(3,Co, Ky) as in
(1.1) and (1.2), but with the fixed bounds Cy and Ky for the constants in (1.2):

(2.1) F(B,Co. Ko) = {f: f(A) = CIA™*(L+ A(X)), 0 < C < C,

lal < 1, [AO)] < Ko\, X € [=m, 7).

The proof of the following theorem giving the lower bound for the rate of conver-
gence of arbitrary estimator of « is clearly related to papers of Samarov (1977) and
Hall and Welsh (1984). While the theorem states the lower bound for the risk for a
0 — 1 loss function 1{|z| > ¢}, it clearly implies similar result for any loss function
I(-) such that for some d > 0 [(x) > d 1{|z| > ¢} for all .

The notation «(f) in the theorem is used to emphasize that the parameter «
corresponds to the same spectral density f which defines the probability measure Ps.

THEOREM 1. There exists a positive constant ¢ such that

(2.2) liminf inf sup Pi{n"|&, —a(f)| = ¢} >0,
4n feF(83,Co,Kp)

where inf is taken over all estimators of a and r = 3/(28 + 1).

Proof. Let fo(A) =1, A € [—7, 7], be the spectral density of the white noise. We
assume without the loss of generality that Cy > 1, so that f, € F/(3,Cy, Ko). Define
a sequence of “perturbed” spectral densities as follows:

(23) JulA) = €A™ (14 Au(A), A € (0,7
where

0, 0< \<§, :=n1/26+1)
(2'4) An()‘) - { c;l)\hn _ 17 5n S )\ S 7,

h, = £6° with some x > 0, and

(2.5) en =1+ hylog(é,).
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On [—7,0) f.(X) is defined by symmetry. Note that f,(A) can be written as

e ATt 0 <\ <6,

rov -1

1, o, < A <.
LEMMA 1. (cf. Hall and Welsh (1984))
For all sufficiently large n
(Z) fn € F(ﬂ, Co,[(o) CLTLd
(ii) 7 (fa(X) = fo(X)2dXN < Kn™! for some constant K > 0.

The proof of the lemma is given in Section 4.
Denote by Py, and Py, the probability measures on R" generated by n observations

X = (Xy,...,X,) of the Gaussian stationary sequence with mean zero and spectral

densities f,, and fy respectively, and let A, = log(%(X)) denote the log likelihood
0

ratio.

LEMMA 2. (cf. Lemma 1 in Samarov (1977))

There exist positive constants Ky and Ko such that for all sufficiently large n
(i) my, = Fy A, < Ky < 00

(ii) o2 :=F; (A, —m,)? < Ky < oo.

This lemma, the proof of which is also given in Section 4, guarantees that the
measures Py, and Py, are close in a certain sense. It is easy to check, for example,
that for any event A and any a > 0

. M
(26) an{A} <e Pfo{A} + ?7

with M = ]&’12 + K.
Denote now the event

Un(f) = {n"]én —a(f)] 2 ¢}

and observe that for any pu, 0 < p <1,

el KO)Pf{Un(f)} 2 P {Un(fo)} + (1 = p) P {Un(fn) }-

Applying here (2.6), we get
M
sup  Pr{U.(f)} 2 pe” " (P {Un(fo)} = ) + (1 = 1) Py, {Un(fo) }-
fEF(ﬁ,Oo,IX’()) a

Now, since f, is chosen such that a(fo) — a(fn) = hn = &n™", Up(fo) UUL(fn) = Q,

the certain event, for any ¢ < /2, and we have

S P 2 e P U] = )+ (0 )P (U ))



Choosing p = 1/(1 + e™*), we get

e ° M
su P U, > 1 ——),
P 2 0 )
and the conclusion of the theorem follows if we choose ¢ > M/2, O

Remark 2.1. While the construction of the perturbation f,(A) in (2.3) is similar
to that of Hall and Welsh (1984), it is a bit simpler here since, unlike Hall and
Welsh (1984) who work with probability densities, we allow small perturbations in
JZ. f(A)dA. This last difference is also apparently related to the fact that their rate
is determined by the ratio /o while in our case it depends only on /3.

Since the rate in (2.2) is independent of «, it suffies for the proof to consider
perturbations of a “base” spectral density in F(3,Co, Ko) with any «a € (—1,1); we
have chosen the “base” density with a = 0 since this choice simplifies the proof. Note
that the lower bound would remain valid for classes of densities with the range of
values of « smaller than (—1,1), e.g. for a € [0, 1).

Note also that the assumed Gaussianity of the process is not a restriction for the
result of Theorem 1, since the lower bound established under the Gaussian assumption
will automatically hold for broader classes of processes.

Remark 2.2. Even though we concentrate here on the estimation of the memory
parameter «, in practice one also has to estimate the scale parameter C' in (2.1).
Robinson (1992, 1993) considered several estimates of C' and analysed their asymp-
totic properties. A lower bound, similar to (2.2) but with an additional logarithmic
term, for the rate of any such estimate can be easily obtained by only slightly modi-
fying the argument given here.

Remark 2.3. The parameter 3 defining the class F/(3,Cy, Ky) determines the
local degree of smoothness of the spectral densities in the class. Note that if 3 grows
to infinity, the class F(3,Co, Ko) become closer and closer to the purely parametric

" approaches the parametric rate n=1/2.

family, and rate n~

Remark 2.4. The result of the theorem can be also formulated in terms of
modulus of continuity of a(f) defined similarly to Donoho and Liu (1991), but with
the Ly norm which appears to be more natural here than the Hellinger norm.

r

3. Upper bound. In this section we show that the rate n™", given in the lower
bound in Theorem 1, is attainable and thus optimal. We believe that it can be
attained by a number of estimates of « including those discussed in Section 1. We
consider here the modified version of Geweke and Porter-Hudak’s (1983) estimator
which Robinson (1992) showed to be asymptotically normal. It appears to afford
the simplest proof in the present circumstances; a slightly more general proof will
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clearly go through for the other members of the class in Robinson (1992) (which have
smaller asymptotic variances), while a rather different and more difficult proof would
be needed for the estimates considered by Kiinsch (1987), Robinson (1993).

Define the discrete Fourier transform and periodogram
o 3 X 1) = e
(2mn)'? 2 7 '

Let [ and m be integers such that 1 < 1 < m < n/2, and put A\; = 2xj/n,
vi =logj—(m —1)713 logk, where > = >"7, .. We estimate o = a( f) by

w(A) =

_xjvilogI()))
zivi

For any Dy > 1 and r as defined in Theorem 1, the set

log®(n) Don®*  n*
<< : —— <m < Dgn?”
DO - log?’(n)’ DO == on }

Jo(r, Do) ={l,m: 1 <l<m<n/2;

is non-empty for n sufficiently large. In (3.1), m is a bandwidth number which
achieves its “optimal rate” in J,(r, Do), while [ is a limiting number designed to
avoid the anomalous behaviour of 1();) for finite j as n — oo, see Kinsch (1986).

THEOREM 2.

lim inf max sup NZTEf(éélmn — Oé(f))z < Q.
n l,m€Jn(r,Dg) FEF(B,Co,Ko)

Proof. Put v(X) = w(A\)/(CA™)Y? and v; = (Re{v(X;)}, Im{v();)}1)T. Because
Z; vy = 0,
> Vit
T
where u; = log |v(A;)|?+n, where n = 0.5772... is Euler’s constant, so that the u; have
approximate mean zero, see (3.10) below. From Robinson (1992), for I, m € J,(r, Do)

Gt = (f)

7
(3.2) Zj vi=m(l+0(———
as n — 00. Thus it suflies to show that
! T
EQY . viuj)* =0(n")

uniformly over I,m € J,(r, Do) and f € F(3,Co, Ko) as n — oo. (In the rest of the
proof, we will use the word “uniformly” in the same sense as here without repeating
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“over I,m € J,(r, Do) and f € F(3,Co, Ko)”.) This will follow if, uniformly as

n — oo,

(3.3) > viB(u;) = O(n®)
and
(3.4) Z vivg E(ujug) = O(n").

k,j: I<k<j<m

By Gaussianity, the moments in (3.3) and (3.4) can be analyzed in terms of the
first two moments of the v;. We have Fv; = 0,1 < j < n and the following properties
essentially follow from Theorem 1 of Robinson (1992): uniformly over I, m € J,,(r, Do)
and f € F(3,Co, Ko) as n — o0

(3.5) Efo(0) — 1] + [Ep*(\)] = 0<1°f.j Ty

uniformly in j € [[+ 1, m] and

(3.6) [Epo(Aj)o(Ae)| + [Ero(A;)o(Ae)] = O(

uniformly in k € [[+ 1,57 — 1], j € [l +2,m].

The proof of (3.3) and (3.4) uses techniques similar to those in the method-of-
moments proof of asymptotic normality of &, in Robinson (1992). Denote by I
the d x d identity matrix, by ¢4(-) the d-variate standard normal density, and for
a 2-dimensional vector x = (xq,22)7 put g(z) = log(||z||%) + 1, where ||Al|z =
(Tr(ATA))"/? denotes the Euclidean norm of a matrix A.

To prove (3.3), write

(3.7) Bt = |55 [ g} (a)ou(S P a)de,

where ¥; is the covariance matrix of v; and || is its determinant. It follows from
(3.5) that ¥; = I3/2 + o(1) uniformly, as n — oo, so that for n sufficiently large (3.7)
is bounded uniformly by

3 1
o= [ gy exp(— llal )de < o

from the properties of the normal distribution. Then (3.3) follows from (3.2) and
m € J,(r, D).

To prove (3.4), take j > k and denote by X the covariance matrix of (v;fp,vg)T
and, suppressing reference to j and k, & = Zj_kl, partitioned into 2 X 2 submatrices as

® Oy
¢ = .
l Q1 Py ]



Put also
= D 0 - 0 &
S R P
With z = (2T, yT)T,

Busue) = 02 [ g(2)gly)on(0'/22)dz
1 _
(3.8) |<I)|1/2/g y)a( CI)l/2 )[exp(—ézTCI)z) —1])d=
(3.9) HO [ [ ga)6x( @} %) da].

Using (3.5) and (3.6) and arguing as in the proof of Theorems 2 and 3 of Robinson
(1992), we have for some € > 0

)4 ()P explellel ).

Loz > ||z

uniformly, as n — oo, while also
/g CI)l/2 )2 T ®zdz =0
for all n large enough, because (3.5) and (3.6) imply that d =2I, + o(l) as n — oo.

)
Likewise |®| = O(1) and so it is readily deduced that (3.8) is O((log(7)/k)*+ (5 /n)*")
1

uniformly, as n — oo. To estimate (3.9), note from (3.5) that, for ¢ = 1,2,

62(011%2) = 6alv/20) (14 02D 4 (1))l )

k
uniformly, as n — oo (cf. (5.26) of Robinson (1992)).
Because
(3.10) [ o(@)ea(2w)da =0, [ lg(o)llleltea(v2e)de, <

it follows that (3.9) is uniformly O((log(j)/k)* + (j/n)*’) as n — oo. Then, for
I,m e J,(r, Do)

Y B g gy I (o 3

ke I<k<j<m n



(log m)? / m?2°+? m(logn)®  m?P*2

to verify (3.4). O

S

— O(TLQT)

Remark 3.1. Note that (3.5) and (3.6) can be deduced via a somewhat sim-
pler proof than those in Robinson (1992), where f that are not bounded outside a
neighborhood of zero are permitted. In Theorem 1 of Robinson (1992), 8 € (0,2] is
assumed. Observe that if the class F'includes f(A) of the form (2sin(A/2))=*h()) for
a bounded function h()), as in case of fractionally integrated autoregressive moving
average processes, then 5 < 2 no matter how smooth k() is, for example, even when
h(A) = 1. On the other hand, it seems that if we replace |A|= by [2sin(A/2)|7® in
the definition of F(f3,Cy, Ko) then 3 = oo is permitted in the latter situation, and
to take advantage of this we would also need to replace log(};) by log(2sin A;/2) in
the definition of &y, as in Geweke-Porter-Hudak’s (1983) original form. The point
is that A and 2sin A/2 are interchangeable when 3 € (0, 2], but not when 3 > 2.

4. Proof of lemmas.

Proof of Lemma 1. To prove the claim (i), it is enough to show that in (2.3) and
(2.4)

(4.1) IA,(N)] < Ko|A]?, for 6, < A < 7.
Combining the estimate

¢t =1 = hylog(8,) + O((hn log(6,))),
which follows from (2.5), with the estimate
(4.2) A — 1 — b, log(A) = O((hy log(A))?),
which holds uniformly for A > &, we have

(4.3) An(A) = (1= hy, log(8,)+O((hy 10g(6,))*) (1 + Ay log(A) 4+ O((hy log(A))?)) —1

= hulog(1) + O((h, log(5,))?).

n

Now, as in Hall and Welsh (1984), it is sufficient to notice that the maximum of
(6,/M)P|log(N/6,)| for A > 6, is achieved at A/§,, = ¢!'/8. Then, since h, = k67 < kAP,
(4.3) implies that for some K(/3):

8,0 £l * -+ K3 Lo () < K (9 < Ko’



if K < Ko/ K (), which proves the claim (i).
To prove the second claim, we write

[ =t )\_2/ (0 — fol V)2 A_Q/ (e — 1

&k 5n
_ 2(/ (e A — 12N+ [ (e A — 1)2dN) =: 2(1, + L), say,
0

5%
for some k > 2(23 4+ 1). It is easy to check that for sufficiently large C'; and some
no(k), I1 < Ci/n for all n > ng(k). Arguing similarly to the proof of claim (i), we
have, using (2.5) and (4.2),

b= /;"(cnxhn ~1)%d) :/5 (ha 1og(5A )+ O((hy log(8,))%))2dA

n n

)

5n
< 2h§/ log?(S)dA + O(8,h log'(8,)) < K82*! = K/n. O
0

Proof of Lemma 2 closely follows the proof of Lemma 1 of Samarov (1977). Denote
by A, and B, the n X n covariance matrices corresponding to the spectral densities
fo and f, respectively. Of course, A, = I,, the identity matrix. The log likelihood
ratio A,, has the form

A= = log Bl + (X = ) (1 = B )(X = ),

where XT' = (X,..., X,,), y is the n-vector of means (g, ..., i), and |B,| denotes the
determinant of the matrix B,,.
Denoting also D, = B, — I,,, we have

1
m, = Ey A, = §(TT(Dn) —log | B,.|)-

Set A, (8) =1, +6D,, 0 <60 < 1. Applying mean value theorem to A,(0) — A, (1)
and using the fact that

d i d
m log |A,(0)] = Tr(A; (@@An(@)),

see, e.g. Davies (1973), we obtain, for some 0 < §* <1,

1 0
(4.4) my = S Tr(Dy = A7H(07)D,) = - Tr(DAT (7)),

Denote by [|Allsp = supy =1 ||Az||z the spectral norm of a matrix A. The
following four inequalities are well known, see, e.g. Davies (1973):

(4.5) (2) I'r(CD) < [|C]el|Dl]e.
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(4.6) (i) IC D]z < [Cllel D]«

Let C'= {cj_r}i<jh<n bean xn Toephtz matrix generated by a function y(A) =
P oe o Gl X e ; =¢;, and > e oo c] < 00. Then
(4.7) (i) 11 < 0 [ 22

and, if C' is positive definite,

(4.8) (iv) 1C7 s < sup [1/7(M)].

AE[—7,7]

Applying (4.5) and (4.6) in (4.4), we get

(19) o < SIDRNAT ()

But by (4.7) and Lemma 1 (ii)

1DallE < (fn( ) — fo(A)?dA < K,

as n — oo.
[t is easy to see that the function 14 6*(f,()\) —1) generating the matrix A, (6*) is
bounded away from 0 for A € [—m, 7] and 0 < 6* < 1. Therefore, by (4.8) ||A;*(0)||sp
is bounded, which together with (4.9) gives the first claim of Lemma 2.
To prove the second claim, we use the well-known expression for the variance of

the Gaussian log likelihood (see, e.g., Davies (1973)), (4.7), and Lemma 1:

1 1
o = By (A = ma)* = J1BulL, = B = S11B, ~ L < Ky

as n — oo. a
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