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Abstract

In this dissertation we deal with the distribution of zeros of special
values of Goss zeta functions. Firstly, we prove an analogue of Riemann
hypothesis for curves defined over prime field of arbitrary genus as well
as for curves defined over Fq with q 6= p whose genus is bounded by
(p + q)/2. Secondly, we prove some results on partial zeta functions.
Thirdly, we apply the cohomological method to a specified curve and
prove an analogue of Riemann hypothesis for certain n. Finally, we set
up a relation between the ∞-adic and v-adic zeta functions.

Zusammenfassung

In dieser Doktorarbeit wird die Verteilung der Nullstellen der speziellen
Werte der Goss Zeta-Funktionen untersucht. Zuerst beweisen wir ein
Analogon der Riemannschen Vermutung für Kurven von beliebigem
Geschlecht, die über einem Primkörper definiert werden, sowie für
Kurven definiert über Fq von Charasteristik p, deren Geschlecht nicht
größer als (p + q)/2 ist. Zweitens beweisen wir einige Resultate für
partielle Zeta-Funktionen. Drittens wenden wir die kohomologische
Theorie der Kristalle auf eine gegebene Kurve an, um ein Analogon
der Riemannschen Vermutung für n, die eine spezielle Form besitzen,
zu beweisen. Schließlich geben wir einen Zusammenhang zwischen den
∞-adischen und den v-adischen Zeta-Funktionen an.
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1. Introduction

1.1 Motivation

The study of Riemann zeta function dates back to the first half of the nineteenth
century when it was introduced and studied by Leonhard Euler even before the
development of complex analysis. It was named after Bernhard Riemann due to
his memoir “Über die Anzahl der Primzahlen unter einer gegebenen Größe” in
1859, in which he extended Euler’s definition to a complex variable and proved
its meromorphic continuation and functional equation, as well as established a
relation between its zeros and the distribution of prime numbers. The Riemann
zeta function, usually denoted by ζ(s) is defined to be a function of a complex
variable s that analytically continues the infinite series

∞∑
n=1

n−s,

which converges when the real part of s is greater than 1. It has a simple pole at
s = 1 and trivial zeros at negative even integers.

The famous Riemann hypothesis, proposed in the above memoir by Riemann, as-
serts that any non-trivial zero of the Riemann zeta function lies on the critical line,
i.e., has real part equal to 1/2. It has huge impacts on the development of number
theory, for example, as already been observed by Riemann, the distribution of its
zeros has a close relation to that of the prime numbers. Lots of mathematicians,
including Hardy, Littlewood and Selberg, made significant contributions to the
very problem. Although the Riemann hypothesis remains unproved in the classi-
cal case, progress has been made in some analogues of it, for example, the Riemann
hypothesis for varieties over finite fields was proved by Deligne in 1974. The Goss
zeta functions, which are analogues of Riemann zeta function in function field case,
were also shown to satisfy the analogous Riemann hypothesis by Wan in the case
of projective lines over prime fields and Sheats in the case of general projective

1



1. Introduction

lines. In this thesis, we will try to extend the result to the function field of more
general curves.

Algebraic function fields over finite fields represent a striking analogy with alge-
braic number fields, i.e., finite extensions of the field of rational numbers Q. They
often serve as an important model of the theory of algebraic number fields. So
it is a natural question to ask whether there exists a nice analogue of Riemann
hypothesis for function fields and, if so, whether we can get our hands on it. As
a first step, in his book [Gos98], Goss defined function field analogues of classical
L-functions and zeta functions, for instance the Carlitz zeta function, or the L-
function attached to a Drinfeld module in analogy to that of an elliptic curve. More
details can be found in [Gos98]. In their book [BP09], Böckle and Pink associated
a global L-function to a flat crystal. In particular, for the crystals associated to
Drinfeld modules, this gives a new way to study Goss L-functions.

As in the classical situation, the special values of a Goss zeta function may reveal
lots of facts concerning function field arithmetic which we are interested in. Goss,
Wan, Diaz-Vargas and various mathematicians working on this field developed
an analogue of the Riemann hypothesis in the function field setting. A Goss L-
function is a continuous map from Zp to a ring of power series, and the Riemann
hypothesis is an assertion on the distribution of the zeroes of these power series.
The special values of Goss zeta functions at negative integers are polynomials, and
the main subject we will study in this dissertation is the zero distribution of these
polynomials.

The investigation into the distribution of the zeros of special values of Goss zeta
functions, also known as the Riemann hypothesis of positive characteristic, dates
back to 1990’s when D. Wan in [Wan96], J. Diaz-Vargas in [DV96] and J. Sheats
in [She98] completed the problem for all rational function fields over a finite field
and a chosen rational point. In [Gos00], D. Goss gave an interpretation of the
analogue of the classical Riemann hypothesis, focusing on the distribution of the
zeros. Although predicted by Wan in [Wan96] that it should be possible to refine
and generalize this method to general A with a rational ∞ point, there was no
further success in this direction. However, as we will mention in Chapter 5, G.
Böckle solved the problem for the curve defined by y2 +y = x3 +x+1 over F2 with
an F2-rational infinite point with the help of cohomological method, see [Böc13].
In particular, this method provides us a polynomial time algorithm. More details
will come up in Chapter 5.
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1.2. Structure of the thesis

1.2 Structure of the thesis

Let C be a smooth projective geometrically irreducible curve over a finite field Fq.
It is easy to show that the set of rational functions on C is a field of transcendental
degree one over Fq, i.e., a global function field, denoted by K. As an example,
the function field of the projective line over Fq is isomorphic to Fq(t) with t tran-
scendental over Fq. This is the analogue of the field of rational numbers Q. There
is a one-to-one correspondence between global function fields over Fq and smooth
projective geometrically irreducible curves over the same finite field. Let ∞ be a
fixed place of the function field, and by A we denote the ring of elements in K
which are regular away from∞, i.e., A := Γ(C−{∞},OC). We define K∞ to be the
completion of K at∞, and C∞ to be the completion of an algebraic closure of K∞.
Note that K∞ is the analogue of R and C∞ is that of C. It is necessary to point
out here that this is quite different from the number field case where the algebraic
closure of a number field completed at an infinity place is already complete. For
instance, when taking C to be the projective line P1 over Fq, the function field K is
Fq(t), the field of rational functions in one variable. Furthermore if∞ denotes the
place defined by 1/t, then A is Fq[t], the ring of polynomials, and K∞ is Fq((1/t)),
the field of Laurent series over Fq.

We can define the ∞-adic Goss zeta function, which, after renormalisation, can
be interpolated as power series:

ζA(−n, T ) =
∑
d≥0

T d ·

 ∑
a∈I∞,a⊂A
deg∞(a)=d

an∞

,
where n is an integer, I∞ is the group of all nonzero fractional ideals of A and
the ∞-adic exponentiation an∞ of an ideal a is as defined in Section 2.3.1.1. We
define also the ∞-adic Goss-Thakur zeta function, where, instead of summing up
the exponentiations of all ideals, we consider only the principal ideals, i.e.,

ζA(−n, T ) =
∑
d≥0

T d ·

 ∑
a∈A+,d

an


where A+,d denotes the subset of A consisting of the elements which are positive
with respect to certain sign function and of degree d. If A = Fq[t], then the set
A+,d contains all polynomials in A which are monic and of degree d. Clearly the
Goss zeta function and Goss-Thakur zeta function coincide when A has strict class
number 1. Although defined to be power series, thanks to Theorem 1 in [Tha95],
the value of Goss zeta function at any negative integer is in fact a polynomial.

3



1. Introduction

Furthermore, Thakur also gives an explicit upper bound of the degree of this
polynomial. On the other hand, after fixing a place v of K which is different from
∞, we can define the v-adic Goss zeta function as

ζ
(v)
A (−n, T ) :=

∑
d≥0

T d ·

 ∑
a∈I∞,{v},a⊂A

deg∞(a)=d

an∞,v

 ,

where n is an integer, I∞,{v} consists of all nonzero fractional ideals in I∞ which
are prime to v and the v-adic exponentiation an∞,v of an ideal a is as defined in
Section 2.3.1.2. Similarly, we also have v-adic Goss-Thakur zeta functions.

In his 1998 paper [She98], Sheats proved the following theorem for A = Fq[t]:

Theorem 1.2.1. Fix n ∈ Zp. As a function in T , the zeros of ζA(−n, T ) are
simple and lie in K∞. In fact, they have pairwise distinct valuations and lie in the
subfield Fp((t−1)).

The main tool he used to study the zero distributions is via Newton Polygons
associated to the power series, or in this case, polynomials, which is a piecewise
linear function from R to R and provides us insights on the valuations of the zeroes
of the power series. By associating a weight to any vector in Ns, he turned the
problem into the uniqueness of the optimal element in certain subset of Ns. With
the help of some combinatorical tools, he successfully proved the above theorem.
In Chapter 3, we will apply this method to a wider generality. To be more precise,
for any i = 0, 1, . . ., let ϕi be the smallest integer n such that the dimension of the
Riemann-Roch space L(n∞) is i + 1, and ϕ̃j := ϕj+1 − ϕj. Let Um(n) consist of
valid compositions of length m, as defined in Definition 3.2.7. We call an element
in Um(n) greedy if it is in reverse order lexicographically largest, and an element
optimal if it has the maximal weight, as in Definition 3.2.6. We prove the following
theorem:

Theorem 1.2.2 (Theorem 3.3.2, Theorem 3.5.7). Suppose that either p = q or
p 6= q and g ≤ p+q

2
. Let n be a fixed positive integer. The following holds:

(a) The x-coordinates of the break points of the Newton polygon associated to
ζA(−n, T ) are ϕi for all i = 0, 1, . . ..

(b) The slope of the i-th segment between ϕi−1 and ϕi is Gi
i, where Gi

i appears as
the last entry of the greedy element in Ui+1(n). In particular, the sequence
{G1

1, G
2
2, G

3
3, . . .} is strictly increasing.

4



1.2. Structure of the thesis

Let m ≤ g be the smallest positive integer such that ϕ̃i = 1 for all i > m. Except
for the ϕm zeros of lowest valuations, all other zeros of ζA(−n, T ) are simple with
pairwise distinct valuations.

As a part of this chapter, we also consider some examples, among which are hyper-
elliptic curves and curves of strict class number one. The examples suggest that it
is possible to improve the upper bound of the genus to O(q2). They also suggest
that we cannot expect to solve the problem completely by this method.

In Chapter 4, we will consider the special values of the partial Goss zeta functions.
Suggested by numerical experiments, the zeros of special values of partial Goss
zeta functions behave in a nice pattern. We only consider the case when A = Fq[t]
and the degree of place v is either 1 or 2. Let Γ be a function from N to Ns, sending
any n to a vector (t0, t1, . . . , ts−1) such that ti =

∑
j≡i (mod s) nj with n =

∑
j njp

j

the p-adic expansion of n. Let Im be a set of vectors consisting of Γ(n) where n
has a valid composition of length m, as defined in Definition 3.4.8. When v is of
degree 1, we prove the following theorem:

Theorem 1.2.3 (Theorem 4.2.7). Suppose that both ∞ and v are Fq-rational
places. Let n be any positive integer and b̄ be a nonzero congruent class with
respect to v.

(a) All segments of the Newton polygon associated to ζFq [t](−n, T, b̄) have width 1.

(b) The d-th slope is
∑d−1

j=1 Gm−j where m is defined such that Γ(n) ∈ Im\Im+1

and G = (G0, . . . , Gm−1, 0) is the t-greedy element in Vm(n).

In particular, all zeros of ζFq [t](−n, T, b̄) have pairwise distinct valuations at v.
Hence they are all simple.

When v is of degree 2, we present a recursive formula and apply it to the case when
q = 2 in Section 4.3.1; and in Section 4.3.2, we investigate instead the valuation
of S̃(n) := 1 +

∑
a∈Fq (t+ a)n which appears in the expansion of the coefficients

of partial Goss zeta functions. Theorem 4.3.9 provides a close formula to the
valuations as well as the leading terms of S̃’s.

In Chapter 5, we apply the cohomological method to the curve defined by y2 =
x3−x− 1 over F3, which is one of the only four non-trivial curves of class number
1 with a rational point, see [Hay79]. We prove the following theorem for this
particular curve:

5



1. Introduction

Theorem 1.2.4 (Corollary 5.4.4). Let n =
l∑

i=1

2 · 3ni with n1 < n2 < . . . < nl.

The slopes of the Newton polygon of zA(−n, T ) are:

2 · 3n1 , 2 · 3n1 , 2 · 3n1 + 2 · 3n2 , 2 · 3n1 + 2 · 3n2 + 2 · 3n3 , . . . ,

in increasing order. In particular, apart from the first slope, all slopes occur with
multiplicity 1.

Note that although this particular case is treated in Example 3.6.5, even in more
generality, we hope this method can provide a polynomial time algorithm.

In Chapter 6, we compare the ∞-adic with v-adic zeta functions. By setting up a
joint uniformizer at both places∞ and v, we can compare the∞-adic with v-adic
zeta functions twisted by a character. Denote by I∞,{v} (resp. Iv,{∞}) be the group
of nonzero fractional ideals of A∞ (resp. Av) which are prime to v (resp. ∞).

Then we can define ζ
{∞}
Av and ζ

{v},(v)
A∞ and their renormalisations z

{∞}
Av and z

{v},(v)
A∞

as in Section 6.4. We have the following result:

Theorem 1.2.5. (a) There exists a natural isomorphism φ : I∞,{v} → Iv,{∞}.

(b) Let (χ, χ′) be any pair of characters such that the diagram

I∞,{v}
χ

//

φ
��

Kalg

Iv,{∞}
χ′

77 (1.1)

commutes. Let ω̃ : I∞,{v} → Falg
q be the character of finite order sending any

a to ω(σ(a1
∞)) with ω as in the definition of v-adic exponentiation of an ideal.

Then we have:

z
{∞}
Av (−n, T, ϕ(a) (mod J′), χ′) = z

{v},(v)
A∞ (−n, T, a (mod J), χω̃−1)

for any a ∈ I∞,{v}.

In Section 6.5, we have more general results where the sets {∞} and {v} are
substituted by some more general ones.
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2. Drinfeld Modules and Goss
Zeta Functions

In this chapter, we provide the readers some background on Drinfeld modules and
Goss zeta functions.

2.1 Notation and Basic Definitions

Through out the dissertation, we fix the following notation.

• Denote by N the set of non-negative integers.

• Fix a prime number p. Given a positive integer n, let n =
∑l

i=0 nip
i be the

base p expansion of n, i.e., for 0 ≤ i ≤ l, we have 0 ≤ ni ≤ p− 1, and nl 6= 0.
Then we define the p-degree of n as degp(n) := l = blogp(n)c, and the p-digit

sum of n as digsump(n) :=
∑l

i=0 ni. We sometimes drop the index p if it is
clear from the context.

• We denote by C a smooth projective, geometrically irreducible curve over a
finite field k := Fq of characteristic p, where q = ps. The function field of C
is denoted by K.

• We denote a fixed infinite place of C by ∞. Note that here we do not
assume that ∞ is Fq-rational, and the degree of ∞ is denoted by d∞. Set
A := H0(C−{∞},OC). We denote by K∞ the completion of K with respect
to ∞, and its ring of integers is denoted by O∞. Set k∞ := O∞/m∞ where
m∞ is the maximal ideal of O∞. The completion of the algebraic closure of
K∞ is again algebraically closed, denoted by C∞. By [NX02, Proposition
1.2.5], the class number of A is hd∞, where h is the class number of K. The
tuple (K,∞, A) plays a role as analogous to (Q,∞,Z).

7



2. Drinfeld Modules and Goss Zeta Functions

• For a nonzero ideal a of A, we define the ∞-degree of a to be deg∞(a) :=
logq(|A/a|). For an element α 6= 0 in A, the ∞-degree of α is defined to be
deg∞((α)). This definition extends to the fractional ideals of A by setting
deg∞(a/b) = deg∞(a) − deg∞(b) and deg∞(0) = 0. We sometimes drop ∞
if it is clear from the context.

• Fix a uniformizer π∞ of the place ∞, and fix a d∞-th root of it, denoted by
π∞,∗.

• A sign function sgn∞ is an Fq-homomorphism from K∗∞ to k∗∞. We call an
element f positive at∞ or∞-positive if and only if sgn∞(f) = 1, and the set
of such elements in A\{0} is denoted by A+∞ , or A+ if no confusion is caused.
Denote by A+∞,d the set of∞-positive elements of∞-degree d. With respect
to a chosen sign function, the strict class number is hd∞(qd∞ − 1)/(q − 1).
Fixing a uniformizer π∞ at∞, we can define the corresponding sign function
by sending πn∞ · u with u in O∗∞ to u mod π∞.1

Example 2.1.1. If we choose the curve C to be the projective line over Fq, then K
is Fq(t), the field of rational functions in one variable over Fq. Choose the infinite
place∞ to be the “usual” infinite place (1/t), then A is the polynomial ring Fq[t],
K∞ is Fq((t−1)), the field of Laurent series in 1/t and O∞ is just Fq[[t−1]]. The
∞-degree of any α ∈ A is just its degree as a polynomial in t. If we choose a
uniformizer at ∞ to be 1/t, then the canonical sign homomorphism sends any
α ∈ A to its leading coefficient, which means that A+∞ contains all the monic
polynomials over Fq.

2.2 Drinfeld A-Modules

Drinfeld modules, named after Vladmir Drinfeld, were first introduced under the
name ‘elliptic modules’ in [Dri74] by Drinfeld. The name ‘elliptic module’ comes
from the analogy with elliptic curve, which we will briefly introduce here. An
elliptic curve over an algebraically closed field k can be defined as a variety of
dimension 1 equipped with a Z-module structure, such that for any invertible
n, the kernel of multiplication by n consists of n2 elements. By analogue: a
Drinfeld module of rank d over a scheme X is a group scheme G over X, locally
isomorphic to Ga and equipped with an A-module structure, such that the kernel
of multiplication by any nonzero a is finite over X, of degree |A/a|d over X. The
action of A on Lie(G) gives rise to a homomorphism A → OX ; this makes X

1This is the canonical sign function we are going to use once we fix the uniformizer.

8



2.2. Drinfeld A-Modules

a scheme over Spec(A). Note that here, the ring A can be defined for arbitrary
choice of the place∞. Elliptic curves over C can be interpreted as classes of certain
lattices in C. Analogously, we can describe Drinfeld modules over C∞ in terms of
A-lattices in C∞ defined over A.

In this section, we first introduce the algebraic definition and some important
properties of Drinfeld A-modules over an A-field; it is followed by the definition
of Drinfeld A-modules over a scheme X. We mainly follow [BP09], [DH87] and
[Gos98]. Then we will define τ -sheaves and A-motives, along with the τ -sheaf
corresponding to a given Drinfeld A-module. At the end of this section, we will in-
troduce two important examples of Drinfeld A-modules, namely the Carlitz module
and Drinfeld-Hayes module.

Throughout this section, we fix a curve C, a place∞ and thus the affine coordinate
ring A.

2.2.1 Definition of Drinfeld A-modules over an A-field

Before defining Drinfeld A-modules, we would like to recall some results on q-linear
polynomials. For details, one may refer to [Gos98, Chapter 1] and [DH87]. Let L
be a field containing k.

Definition 2.2.1. A polynomial f(X) ∈ L[X] is called additive if f(X + Y ) =
f(X) + f(Y ) holds in L[X, Y ].

It is called q-linear if it is additive and f(αX) = αf(X) for any α ∈ k.

It follows from the definition that all q-linear polynomials form a ring under addi-
tion and composition.

Now define L{τ} to be a skew polynomial ring over L with commutating law

(
∑

i≥0 aiτ
i)(
∑

j≥0 bjτ
j) :=

∑
k≥0(

∑k
i=0 aib

qi

k−i)τ
k. We embed L{τ} into L[X] via∑n

i=0 aiτ
i 7→

∑n
i=0 aiX

qi . Then L{τ} can be identified with the set of all q-linear
polynomials in L[X]. One may think of L{τ} as a ‘ring of operators’ with τ
being the Frobenius operator. Note that although L{τ} can be embedded into
L[X], these two rings possess completely different multiplications. Moreover, it is
worthwhile to point out here that in L{τ}, the constants are of the form aτ 0 with
a ∈ L, i.e., aX if considered as a q-linear polynomial. To avoid confusion, for a q-
linear polynomial f , we denote by deg(f) the degree of f as a polynomial in X and
by degτ (f) the highest exponent of τ appearing in the expression of f as an element
in L{τ}, i.e., for f(X) = a0X+a1X

p+ . . .+alX
pl with al 6= 0, we have deg(f) = pl

9



2. Drinfeld Modules and Goss Zeta Functions

and degτ (f) = l. For a q-linear polynomial f(X) = a0X + a1X
p + . . .+ alX

pl , we
define its derivative to be d(f(X)) := a0, which is the usual derivative of f as a
polynomial in X.

Now we give the definition of A-fields and Drinfeld A-modules over an A-field.

Definition 2.2.2. An A-field F is a field F equipped with a fixed homomorphism
ι : A → F . The homomorphism ι is called the characteristic of F . By abuse of
notation, we also call the kernel of ι the characteristic of F .

From now on, let L be an A-field of characteristic ι.

Definition 2.2.3. A Drinfeld A-module over L is a k-algebra homomorphism

ρ : A −→ L{τ}

a 7−→ ρa :=
r∑
i=0

ui(a)τ i

such that d ◦ ρ = ι and ρ does not factor through L, i.e., there exists at least one
a ∈ A such that ρa 6∈ L.

Given two Drinfeld A-modules ρ and ρ′, a homomorphism f : ρ → ρ′ of Drinfeld
A-modules over L is given by some f ∈ L{τ} such that fρa = ρ′af holds for all
a ∈ A.

Remark 2.2.4. The nomenclature of ‘Drinfeld A-module’ emphasizes that the no-
tion gives any L-algebra S an A-module structure by a.s := ρa(s).

Definition 2.2.5. The k-algebra homomorphism ch := d ◦ ρ : A → L is called
the characteristic or the characteristic homomorphism of the Drinfeld A-module
ρ. Its kernel is a prime ideal of A, denoted by p0. We say that ρ is

(1) of generic characteristic if p0 = 0;

(2) of special characteristic otherwise.

By abuse of notation, the ideal p0 is sometimes also called the characteristic of ρ.

Remark 2.2.6. The characteristic of a Drinfeld A-module over L is by definition
the same as the characteristic of L as an A-field.

The following proposition defines the rank of a Drinfeld A-module:

10



2.2. Drinfeld A-Modules

Proposition-Definition 2.2.7 ([Gos98, Lemma 4.5.1, Proposition 4.5.3]). For
any Drinfeld A-module ρ over L, there exists a unique integer r > 0 such that for
all nonzero a ∈ A, we have

degτ (ρa) = r deg(a).

We call this r the rank of the Drinfeld A-module.

Remark 2.2.8. From the definition of homomorphisms between DrinfeldA-modules,
it is easy to see that there exist non-trivial homomorphisms between two Drinfeld
A-modules only if they have the same rank.

In number field case, the elliptic curves over C are equivalent to the rank 2 Z-
lattices in C, and this equivalence gives us some analytic insights into the theory
of elliptic curves. Similarly, we can also associate an A-lattice in C∞ to any
Drinfeld A-module of generic characteristic over C∞ and vice versa. To do this,
we consider C∞ as an infinite dimensional vector space over K∞, equipped with
sup-norm extending the absolute value on K∞.

We first recall that for a normed vector space U , a subset S is called discrete in U
if every point u ∈ U has a neighborhood W ⊂ U such that W ∩ S = {u}.

Definition 2.2.9. A finitely generated A-lattice in C∞ is a finitely generated,
discrete sub-A-module of C∞.

Proposition-Definition 2.2.10. Given a Drinfeld A-module ρ of generic charac-
teristic over C∞, there exists a unique entire function expρ : C∞ → C∞ satisfying

expρ(ax) = ρa ◦ expρ(x), ∀x ∈ C∞, a ∈ A.

This function is called the exponential map associated to ρ.

Remark 2.2.11. We have the following commutative diagram, where the rows are
exact:

0 // C∞ ·a //

expρ

��

C∞ //

expρ

��

0

0 // ρ[a] // C∞
ρa
// C∞ // 0.

In the above diagram ρ[a] := Ker(ρa) ⊂ C∞ is called the torsion of a. The above
diagram remains true when we substitute C∞ by Kalg or even Ksep.

We slightly reformulate [Gos98, Theorem 4.6.9] which describes the correspondence
between Drinfeld A-modules and A-lattices.

11



2. Drinfeld Modules and Goss Zeta Functions

Theorem 2.2.12. Given a Drinfeld A-module ρ over C∞ which is of generic
characteristic, let expρ be the associated exponential map. Let Λ be the kernel of
expρ in C∞. Then this Λ is an A-lattice in C∞.

Conversely, given a finitely generated A-lattice Λ in C∞, we define

expΛ(x) := x
∏

α∈Λ,α 6=0

(1− x

α
).

Then there exists a Drinfeld A-module ρ such that

expΛ(ax) = ρa ◦ expΛ(x), for x ∈ C∞, a ∈ A.

In fact, for any a ∈ A, we have

ρa(x) = ax
∏

α∈Λ,α 6=0

(1− x

expΛ(α)
).

The above correspondence gives an equivalence between the category of Drinfeld
A-modules of generic characteristic over C∞ and the category of finitely generated
A-lattices in C∞.

Remark 2.2.13. Thanks to the above correspondence, we can complete the com-
mutative diagram in Remark 2.2.11 (where all columns and rows are exact):

0

��

0

��

0 // Λ

��

// Λ

��

// Λ/aΛ // 0

0 // C∞ ·a //

exp

��

C∞ //

exp

��

0

0 // ρ[a] // C∞
ρa
//

��

C∞ //

��

0

0 0

Remark 2.2.14. We can define the rank of an A-lattice Λ to be the dimension of
K⊗A Λ as an K-vector space. It can be shown that the rank of an A-lattice is the
same as the rank of the corresponding Drinfeld A-module. Moreover, the homo-
morphisms of Drinfeld modules correspond to the morphisms of the corresponding
lattices.

12



2.2. Drinfeld A-Modules

2.2.2 Drinfeld A-modules over a scheme X

Let X be a scheme.

Definition 2.2.15. A Drinfeld A-module of rank r > 0 on X consists of a line
bundle L on X and a ring homomorphism ρ : A → Endk(L), a 7→ ρa, such that
for all points x ∈ X with residue field kx the induced map

ρx : A −→ Endk(L|x) ∼= kx[τ ],

a 7−→
∞∑
i=0

ui(a)τ i

has coefficients ui(a) = 0 for i > r deg(a) and ur deg a(a) ∈ k∗x.

A homomorphism (L, ρ) → (L′, ρ′) of Drinfeld A-modules over X is a k-linear
homomorphism of line bundles L → L′ that is equivariant with respect to the
actions ρ and ρ′.

The characteristic of (L, ρ) is the morphism of schemes chρ : X → SpecA corre-
sponding to the ring homomorphism dρ : A→ EndOX (Lie(L)) ∼= Γ(X,OX).

Remark 2.2.16. In the special case when X = SpecR with R an A-field and the
line bundle L is free over X, the above definition is isomorphic to the algebraic
definition given in 2.2.3.

2.2.3 τ-sheaves and A-motives

The notion of A-motives was first introduced by Anderson in [And86], or more
precisely t-motives since he only considered the case when A = Fq[t]. In some
literature, the A-motives bear the name of abelian A-motives due to the similarity
to abelian varieties. In this section, we will briefly define τ -sheaves and A-motives,
then introduce the construction of the τ -sheaf corresponding to a given Drinfeld
A-module. Those who are interested may refer to the original paper [And86] by
Anderson or [BP09] for a more general theory.

Definition 2.2.17. A τ -sheaf M = (M , τM ) over A on a scheme X consists of
a quasi-coherent sheaf M on X × SpecA and an OX×SpecA-linear homomorphism
τM : (σ × id)∗M →M where σ denotes the absolute Frobenius on X over k.1

1We sometimes drop off the lower index of τM when the sheaf is clear from the context.

13



2. Drinfeld Modules and Goss Zeta Functions

A homomorphism of τ -sheaves (M , τM )→ (N , τN ) is a homomorphism f of the
underlying sheaves such that the following diagram commutes:

(σ × id)∗M
(σ×id)∗f

//

τM
��

(σ × id)∗N

τN
��

M
f

//N

We denote by QCohτ (X,A) the category of τ -sheaves over A on X.

We call a τ -sheaf coherent if its underlying sheaf is coherent. The full subcategory
of coherent τ -sheaves is denoted by Cohτ (X,A).

For any τ -sheaf M we define the iterates τnM of τM by setting inductively τ 0
M := id

and τn+1
M := τM ◦ (σ× id)∗τnM for any n ∈ N. For any n ∈ N, each (σn× id)∗M :=

((σn × id)∗M , (σn × id)∗τM ) is again a τ -sheaf, and τnM is a homomorphism of
τ -sheaves from (σn × id)∗M to M .

Definition 2.2.18. A τ -sheaf M is called

(a) nilpotent if τnM vanishes for some n;

(b) locally nilpotent if it is a union of nilpotent τ -subsheaves.

Definition 2.2.19. A homomorphism of τ -sheaves is called a nil-isomorphism if
both its kernel and its cokernel are locally nilpotent.

Proposition 2.2.20 ([BP09, Proposition 3.3.9]). A homomorphism of τ -sheaves
f : M → N is a nil-isomorphism if there exist n ≥ 0 and a homomorphism of
τ -sheaves α making the following diagram commute:

(σn × id)∗M

τnM
��

(σn×id)∗f
// (σn × id)∗N

τnN
��

α

tt
M

f
//N .

If M and N are coherent, then the converse is also true.

Due to Drinfeld, we can associate a coherent τ -sheaf to any Drinfeld A-module
(L, ρ). We quote the construction from [BP09]. Note first that U 7→ Homk(L|U,Ga×
U) defines a quasi-coherent sheaf of OX-modules on X. By right composition with

14



2.2. Drinfeld A-Modules

ρa it becomes a sheaf of OX ⊗ A-modules. We let M (ρ) be the corresponding
quasi-coherent OX×SpecA-modules on X×SpecA, which is easily seen to be locally
free of rank r. Let now σ ∈ Endk(Ga × X) denote the Frobenius endomorphism
relative to X. Then left composition with σ defines an OX×SpecA-linear homo-
morphism M (ρ) → (σ × id)∗M (ρ), and thus via adjunction an OX×SpecA-linear
homomorphism τ : (σ × id)∗M (ρ) → M (ρ). We denote the resulting τ -sheaf by
M (ρ). Clearly this construction is functorial in (L, ρ). Also it is easy to see that
Coker(τ) is supported on the graph of chρ and locally free of rank 1 over X.

We fix a homomorphism ch : X → SpecA.

Definition 2.2.21. A family of A-motives over X, or in short an A-motive on X,
of rank r and of characteristic ch is a coherent τ -sheaf M on X such that

(a) the underlying sheaf M is locally free of rank r, and

(b) the set-theoretic support of Coker(τ) is a subset of the graph of ch.

The category of Drinfeld A-modules does not permit the formation of direct sums
or tensor products or related operations from linear algebra. The passage to An-
derson’s t-motives, and more generally A-motives, adds this missing flexibility.

2.2.4 An Example: the Carlitz module

The Carlitz module was first inspected by Carlitz in [Car35], even before the
invention of Drinfeld modules. It is a special kind of Drinfeld A-module over K of
rank 1 with A being k[t] and K being k(t).

Definition 2.2.22. The Carlitz module is defined to be

C : A −→ K{τ}
a 7−→ a+ τ.

This is by definition a Drinfeld A-module of rank 1 of generic characteristic.

The next natural question is to write down the exponential map and the associated
A-lattice.

Definition 2.2.23. We define the following q-linear polynomials.

(1) For i ≥ 1, [i] := tq
i − t.
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(2) For i ≥ 1, Li :=
∏

1≤j≤i[j]; L0 := 1.

(3) For i ≥ 1, Di :=
∏

1≤j≤i[j]
qi−j ; D0 := 1.

Note that by [Gos98, Proposition 3.1.6] Li is in fact the least common multiple
of all polynomials of degree i, while Di is the product of all monic polynomials of
degree i in A.

We can write down the exponential map of Carlitz module explicitly:

expC =
∑
i≥0

1

Di

τ i.

By Remark 2.2.14 the associated A-lattice has rank 1. Let λ be a (q − 1)-th root

of −[1] in Kalg
∞ and ξ∞ :=

∏
i≥1(1 − [i]

[i+1]
). Define $ := λξ∞. We can check that

$A is the A-lattice associated to the Carlitz module. For more details one may
refer to [Gos98, 3.2].

2.2.5 Another Example: Drinfeld-Hayes module

Another example of rank 1 Drinfeld A-modules is the Drinfeld-Hayes module, or
rank 1 sign-normalized Drinfeld module. We call a continuous homomorphism
sgn : K∗∞ → k∗∞ a twisted sign function if there exists some σ ∈ Gal(k∞/k) such
that sgn = σ when restricted to k∗∞.

Definition 2.2.24. A Drinfeld-Hayes module, or rank 1 sign-normalized Drinfeld
module (for sgn) is a rank 1 Drinfeld A-module ρ of generic characteristic over C∞
such that for any a ∈ A, the leading coefficient of ρa agrees with the image of a
under the restriction of a twisted sign function sgn to A ⊂ K∞, i.e., it is given by

ρ : A −→ C∞{τ}

a 7−→ ρa :=

r deg(a)∑
i=0

ui(a)τ i,

where ur deg(a)(a) = sgn(a) for a twisted sign function sgn.

A result from Hayes states that any rank one Drinfeld module of generic char-
acteristic over C∞ is isomorphic to a Drinfeld-Hayes module. Therefore, we can
count the number of Drinfeld-Hayes modules. Let h be the class number of A.
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Proposition 2.2.25 ([Gos98, Proposition 7.2.17]). There are exactly h isomor-
phism classes of rank one Drinfeld modules over C∞.

Proposition 2.2.26 ([Gos98, Corollary 7.2.19]). There are exactly h(qd∞−1)/(q−
1) Drinfeld-Hayes modules.

In particular, if A has strict class number 1, then there exists a unique Drinfeld-
Hayes module for a fixed sgn.

Remark 2.2.27. One big advantage of the introduction of Drinfeld-Hayes modules
is that it allows us to formulate the explicit class field theory for function field.
For details one may refer to [RS97].

2.3 Goss zeta functions and their variations

The study of Riemann zeta functions has a long and profound history, where
engraved lots of great names. The Riemann hypothesis is among the most chal-
lenging and famous unsolved problems. As we have discussed in Chapter 1, we
will work on the analogue of Riemann hypothesis for function fields, i.e., on the
zero distribution of special values of the Goss zeta functions. In this section, we
will introduce the definition of Goss zeta functions and some variations.

2.3.1 The Exponentiations of Ideals

In this section, we want to give some detailed description of the exponentiation
of ideals, ∞-adically as well as v-adically, as the first step to define the Goss zeta
function.

In principal, the exponentiation map e : R∗×Z→ R∗, (x, y) 7→ xy is a bilinear map,
i.e., it is multiplicative at the first coordinate and additive at the second one. Here
we consider the domain of the first coordinate to be the group of fractional ideals,
with or without extra requirements, and the domain of the second coordinates to
be Z or more generally S∞ or Sv, which will be defined later. In commutative
algebra, the integral powers of ideals are defined to be ideals, while in his book
[Gos98], Goss defined the ∞-adic and v-adic exponentiations of fractional ideals
to be elements in C∞, and this is the definition we will introduce here.
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2.3.1.1 The ∞-adic Exponentiation

Recall that we fix a uniformizer π∞ at∞ and denote by sgn∞ a fixed sign function
on K∗∞. Besides the ideal class group Cl(A), we also have the strict ideal class
group Cl+(A) with respect to sgn∞. We can define the Hilbert class field H (resp.
the strict Hilbert class field H+) of K as the abelian extension of K which has
Galois group isomorphic to Cl(A) (resp. Cl+(A)). Corresponding to the field
extensions H+ ⊃ H ⊃ K, we have under the reciprocity map:∏

w 6=∞

O∗w × ker(sgn∞) ⊂
∏
w 6=∞

O∗w ×K∗∞ ⊂ A∗K .

Let m∞ be the maximal ideal of O∞, then we have ker(sgn∞) = πZ
∞ × (1 + m∞).

By [Böc02, Proposition 10.4], there exists a unique homomorphism

〈·〉 : I∞ −→ U
perf
1

where I∞ is the group of nonzero fractional ideals of A, and U
perf
1 is the group of

1-units in the perfect closure of K∞, such that for any∞-positive element α in A,
we have

〈(α)〉 = α · π−v∞(α)
∞ ,

i.e., for any ideal a of A, let a be an ∞-positive generator of ah(qd∞−1), then

〈a〉 = (a · π−v∞(a)
∞ )

1

h(qd∞−1) , where we take the 1-unit root.

Remark 2.3.1. Note that the map 〈·〉 depends on the choice of π∞. Suppose we
have two different uniformizers, say 1π∞ and 2π∞. We denote by 〈·〉1 and 〈·〉2
the corresponding 1-unit parts. Let u := 1π∞/2π∞, then u is a 1-unit in K∞.
It is stated in [Gos98, Proposition 8.2.15] that for any ideal a of A, we have
〈a〉1 = udeg a

∗ 〈a〉2 with u∗ the 1-unit d∞-th root of u.

Lemma 2.3.2. Given m and n in Zp such that m ≡ n (mod pk), for any ideal a
we have

〈a〉n ≡ 〈a〉m (mod πp
k

∞).

Then we can define the ∞-adic exponentiations of ideals.

Definition 2.3.3. For any s = (x, y) ∈ S∞ := C∗∞ × Zp and a a fractional ideal
in I∞, we define the ∞-adic exponentiation of a as:

as∞ := 〈a〉y · xdeg∞ a.

Let π∞,∗ ∈ C∗∞ be a fixed d∞-th root of π∞.
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Proposition 2.3.4 ([Gos98, Proposition 8.2.6, Corollary 8.2.7]). Let s = (x, y) ∈
S∞ and a = (α) ∈ I∞ such that α is ∞-positive. Then

as∞ = x−v∞(α)d∞〈α〉y.

In particular, for n ∈ Z we have

a
(π−n∞,∗,n)
∞ = αn.

Definition 2.3.5. For an integer n and a fractional ideal a of A∞, we define

an∞ := a
(π−n∞,∗,n)
∞ for abbreviation.

Remark 2.3.6. In other words, we embed Z into S∞ by sending an integer n to
(π−n∞,∗, n).

Important properties of the ∞-adic exponentiation defined above are that for any
a and b in I∞, any s and t in S∞, we have

as∞ · bs∞ = (a · b)s∞, as∞a
t
∞ = as+t∞ ,

which implies that our map is bilinear, thus a well-defined exponentiation map.

Remark 2.3.7. The integral ∞-adic exponentiation depends on the choice of π∞,∗.
For i ∈ {1, 2}, let iπ∞ be a uniformizer at ∞ and let iπ∞,∗ be a fixed d∞-th root
of iπ∞, then we denote by ia∞ the corresponding ∞-adic exponentiation of an
ideal a. Then [Gos98, Proposition 8.2.16] states that there exists a d∞-th root of
unity ζ such that 1a∞

1 = ζdeg a
2a∞

1 for any ideal a of A. To be more precise, let
u := 1π∞/2π∞ and let u∗ be the 1-unit d∞-th root of u, then ζ = u∗ · 2π∞,∗/1π∞,∗.

Example 2.3.8. As in Example 2.1.1, take A = Fq[t]. Then the integral ∞-adic
exponentiation of any ideal a of A can be given as an∞ = fna with fa the monic
polynomial generating a.

2.3.1.2 The v-adic Exponentiation

To define the v-adic exponentiation, we need a bit more work. Recall that we fix
a place ∞ and let S be a nonempty set of places which does not contain ∞. Fix
a place v ∈ S and denote by dv its degree. Let I∞,S contain all nonzero fractional
ideals of A which are prime to all places in S.

Let Kv be the completion of K with respect to v, and σ a homomorphism from
the value field V := K({a1

∞ : a ∈ I∞}) to Kv over K. By [Gos98, Proposition
8.2.9], the field V is finite over K, thus Kσ,v := Kv(σ(V)) is also finite over Kv.

19



2. Drinfeld Modules and Goss Zeta Functions

We denote by f the residue degree. Denote by Oσ,v the ring of integers in Kσ,v.
Then every element α ∈ O∗σ,v can be decomposed into

α = 〈α〉v · ω(α),

where ω(α) is a (qdvf−1)-th root of unity in Oσ,v and 〈α〉v is a 1-unit. There exists
a unique homomorphism generalising 〈·〉v to the fractional ideals of Kσ,v, which is
denoted also by 〈·〉v. To be more precise, for any fractional ideal a of Kσ,v, let a be a

doubly-positive generator of ah(qd∞−1)(qdv−1), then 〈a〉v = (a ·ω(a)−1)
1

h(qd∞−1)(qdv−1) ,
where we take the 1-unit root.

For the map 〈·〉v, we also have the interpolation lemma similar to Lemma 2.3.2.

Lemma 2.3.9. Given m and n in Zp such that m ≡ n (mod pk(qdvf − 1)), for
any fractional ideal a ∈ I∞,S we have

〈a〉nv ≡ 〈a〉mv (mod πp
k

v ).

The v-adic exponentiation map is defined as follows:

Definition 2.3.10. For any s = (x, y1, y2) ∈ Sv := C∗v × Zp × Z/(qdvf − 1), we
define the v-adic exponentiation for any a ∈ I∞,S as

as∞,v := 〈σ(a1
∞)〉y1

v · ω(σ(a1
∞))y2 · xdeg∞(a).

In particular, for α ∈ A∞ positive at both ∞ and v and prime to all places in S,
we have that:

(α)(1,n,n)
∞,v = 〈σ((α)1

∞)〉nv · ω(σ((α)1
∞)n · 1deg∞(α)

= 〈σ(α)〉nv · ω(σ(α))n = αn.

Definition 2.3.11. For an integer n and a fractional ideal a in I∞,S, we denote
by an∞,v := a

(1,n,n)
∞,v for abbreviation.

Remark 2.3.12. In other words, for v-adic exponentiation, we embed Z into Sv by
sending n to (1, n, n).

Similar as the ∞-adic exponentiation, we have the following nice properties:

as∞,v · bs∞,v = (a · b)s∞,v, as∞,va
t
∞,v = as+t∞,v

for any a, b ∈ I∞,S and s, t ∈ Sv. Thus it is a well-defined exponentialtion map.

Remark 2.3.13. As we have seen in Remark 2.3.7, the integral ∞-adic exponenti-
ation depends on the choice of the infinite place and π∞,∗. For the integral v-adic
exponentiation, it depends on the choices of both places v, ∞, the embedding σ,
the character ω as well as π∞,∗.
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2.3.2 Definition of Goss zeta function

Thanks to the introduction of ∞-adic and v-adic exponentiations, now we can
define the Goss∞-adic and v-adic zeta functions. Recall that S is a nonempty set
of places of K such that ∞ 6∈ S and v ∈ S.

Definition 2.3.14. Let n ∈ Z. We define the ∞-adic Goss zeta function as

ζA(−n, T ) :=
∑

a∈I∞,a⊂A

an∞T
deg∞(a),

and the v-adic Goss zeta function as

ζ
S,(v)
A (−n, T ) :=

∑
a∈I∞,S ,a⊂A

an∞,vT
deg∞(a).

Thakur introduced a principal ideal version of Goss zeta function when the place
∞ is k-rational, which, by its name, only sums over the principal ideals. Let P∞

(resp. P∞,S) be the subgroup of I∞ (resp. I∞,S) containing the principal fractional
ideals.

Definition 2.3.15. We define the ∞-adic Goss-Thakur zeta function as

ζA(−n, T ) :=
∑

a∈P∞,a⊂A

an∞T
deg∞(a),

and the v-adic Goss-Thakur zeta fucntion as

ζ
S,(v)
A (−n, T ) :=

∑
a∈P∞,S ,a⊂A

an∞,vT
deg∞(a).

2.3.3 Goss zeta function as the dual characteristic polyno-
mial

In Chapter 5, we will use cohomological method to investigate the zeros of the
special values of Goss zeta function. Therefore, we would like to introduce an
alternative definition of the Goss zeta function here. To be more precise, in this
section we will define the L-function attached to a given A-motive or a given τ -
sheaf. One may refer to [BP09] and [Böc13] and the references stated there for
more details.

We first introduce the global L-function of certain τ -sheaf following [Böc13]. Let
X be a scheme of finite type over k and M is an A-motive over X of characteristic
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2. Drinfeld Modules and Goss Zeta Functions

ch. For any closed point x ∈ |X|, we denote by px its image in SpecA under the
characteristic homomorphism. It is easy to see that dpx |dx. We denote by ix the
natural embedding of its residue field into X. Denote by M x := i∗xM .

Definition 2.3.16. The global L-function of M over x is

L(x,M , T ) := detA(id−Tτ |M x) ∈ 1 + T dxA[[T dx ]].

Definition 2.3.17. We define the global L-function of M as:

Lglob(X,M , s) :=
∏
x∈|X|

L(x,M , T ) |T dpx=p−s ∈ 1 + C∞[[T ]].

As we have seen in Section 2.2.5, for any ring A we can define a Drinfeld-Hayes
module, and the number of Drinfeld-Hayes modules is the strict class number of A.
Now we consider the case when A has strict class number 1. Then there exists a
unique Drinfeld-Hayes module. Denote the structure morphism SpecO+ → SpecA
by s and the A-motive associated to this Drinfeld-Hayes module by HA. Thus HA

is a locally free τ -sheaf on SpecO+ over A of rank 1. We quote the following
theorem from [Böc13].

Theorem 2.3.18 ([Böc13, Theorem 3.3]). Let A have strict class number one.
Let n ∈ N. Let H n be a locally free τ -sheaf on X over K whose restriction to
SpecA is nil-isomorphic to the n-th tensor power of HA. Let

L(∞,H n, T )−1 ∈ 1 + TA[T ]

be the characteristic polynomial of the restriction H n to Spec(k∞×K). Then we
have:

(a) ζA(−n, T ) = L(SpecA,H n, T ).

(b) L(X,H n, T )L(∞,H n, T )−1 = L(SpecA,H n, T ).

(c) H1(X × SpecK,H n) is a free finitely generated K-vector space which carries
an action H1(τ) induced from the action of τ on H n via the functoriality of
cohomology.

(d) L(X,H n, T ) = detK(1− TH1(τ) | H1(X × SpecK,H n)) ∈ 1 + A[T ].

(e) Let κ : (σ×id)∗D(H n)→ D(H n) denote the Cartier dual action on D(H n) =
Hom(H n,ΩX×SpecK) induced from τ . Then Γ(X × SpecK,D(H n)) is a free
finitely generated K-vector space and for the action induced from κ on global
sections, κ : Γ(X × SpecK,D(H n))→ Γ(X × SpecK,D(H n)), one has

L(X,H n, T ) = detK(1− Tκ | Γ(X × SpecK,D(H n))).
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3. On The Riemann Hypothesis
of Positive Characteristic

3.1 Introduction

As we have discussed in Chapter 1, in this chapter, we would like to generalize the
result of Sheats to general A’s. Recall that for an arbitrary curve, we can define
the principal ideal Goss zeta function, or Goss-Thakur zeta function, as

ζA(−n, T ) :=
∑
d≥0

T d
∑

a∈A+,d

an,

where A+,d consists of all functions of degree d which are positive at ∞. For a
positive integer n, the special value of ζA(−n, T ) at −n is in fact a polynomial.
We would like to look at the zeros of this polynomial. A natural method to do so
is by looking at the break points of the associated Newton polygon.

But a direct shortage of using the method of Newton polygon is that we cannot
expect to show that all zeros are simple. When the genus of the curve is not
0, by the Riemann-Roch theorem there exists no function of degree d where d is
a Weierstrass gap. Thus for these d’s, the coefficient of T d in the Goss-Thakur
zeta function is simply zero. In particular, one cannot expect a break point with
the x-coordinate being d. On the other hand, this situation can only happen for a
limited number of d’s, which, to be more precise, cannot exceed 2g and the number
of these d’s is exactly g. Hence we face an inevitable obstacle when dealing with
the zeros of small valuations.

However, we successfully generalize Sheats’ result to certain cases.

Theorem 3.1.1. Suppose that either p = q or p 6= q and g ≤ p+q
2

. Let n be a fixed
positive integer. The following holds:
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3. On The Riemann Hypothesis of Positive Characteristic

(a) The x-coordinates of the break points of the Newton polygon associated to
ζA(−n, T ) are ϕi for all i = 0, 1, . . ..

(b) The slope of the i-th segment between ϕi−1 and ϕi is Gi
i, where Gi

i appears as
the last entry of the greedy element in Ui+1(n). In particular, the sequence
{G1

1, G
2
2, G

3
3, . . .} is strictly increasing.

Let m ≤ g be the smallest positive integer such that ϕ̃i = 1 for all i > m. Except
for the ϕm zeros of lowest valuations, all other zeros of ζA(−n, T ) are simple with
pairwise distinct valuations.

Before going to an outline of this chapter, I would like to draw the reader’s atten-
tion to a question on the splitting field of ζA(−n, T ) posted by G. Böckle in [Böc13].
By the above theorem, there exists a trivial upper bound of the extension degree of
the splitting field, namely 2g. By the semigroup structure of the non-Weierstrass
numbers, the maximal multiplicity of a zero is ϕ̃0, i.e., the distance between 0 and
the first positive non-Weierstrass number. Moreover, from the proof of the main
theorem, we can gain some knowledge on the valuations of these zeros. Hence if
the gap sequence of the given curve is known, we can expect to gain some more
insight into the splitting field.

Let us have a quick look at the proof of the main theorem. The proof follows the
method of Sheats in [She98], i.e., we first expand each coefficient of T -powers with
respect to a chosen basis of the Riemann-Roch spaces, then investigate the valu-
ation of each non-zero summand, which is called the weight of the corresponding
vector. The key point of the proof is to show that there exists a unique optimal
element in the set of valid compositions, and it happens to be the so-called greedy
element. To show this, we use combinatorical method developed in Sections 3.2
and 3.4. We will then prove in Section 3.3 the case p = q and in Section 3.5 the
other case. To be more precise, in Section 3.5, we show that if there exists an
optimal element which is not greedy, then we can always construct a vector whose
weight exceeds that of the ‘optimal’ one, hence get a contradiction. After gaining
knowledge on the valuations of each coefficient, the theorem follows directly.

In Section 3.6, we will see an application of the above theorem to some special
curves, namely the curves whose A’s have strict class number 1, when the Goss
zeta functions are exactly the same as the Goss-Thakur zeta functions. Note that
as given in [Hay79], despite the projective lines, there exists exactly four curves
with the corresponding A of strict class number 1. In Section 3.7, we look at
some counter examples, when there exists an optimal element different from the
greedy one. This implies that we should not expect to generalize Sheats’ method
to full generality, while on the other hand, although we only proved the theorem
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3.2. Basic Definitions and Results

for curves whose genera are bounded by O(q), the examples suggest that we may
expect to improve the upper bound to O(q2) instead. In the last section, we can
see that for certain cases, namely for hyperelliptic curves or the curves with a
specified gap sequence, we are indeed able to achieve O(q2).

3.2 Basic Definitions and Results

In this section, we will introduce some basic definitions, e.g., the weight of a
vector, valid compositions, optimal and greedy elements, etc., as well as some
results regarding the weight. A particularly important result of this section is that
all greedy and optimal elements are τ -monotonic, which provides us some insights
on the structure of these elements. This result will play an important role when
we deal with the case q 6= p.

By convention, we equip any vector space Qk with a partial ordering, namely for
x = (x1, . . . , xk) and y = (y1, . . . , yk), we say x ≤ y if and only if xi ≤ yi for all i;
we say x < y if x ≤ y and there exists at least one i such that xi < yi.

Let L(n ·∞) := {a ∈ K∗ : divK(a)+n ·∞ is effective}∪{0} be the Riemann-Roch
space for n ∈ N. They form a sequence of finite dimensional sub-Fq-vector spaces
of A:

L(0 · ∞) ⊆ L(1 · ∞) ⊆ . . . ⊆ L((n− 1) · ∞) ⊆ L(n · ∞) ⊆ . . . ⊂ A

Let ln be the dimension of L(n∞). One has l0 = 1, and by the Riemann-Roch
theorem, l2g−1+k = g + k for k ≥ 0. Then we can choose a sequence of functions
f0, f1, . . . , fn, . . . such that for any n, the first ln functions form a basis of L(n∞).
We define a map:

ϕ : N −→ N
n 7−→ ϕn := deg(fn).

Note that this map is injective, and strictly increasing. By definition, for any
ϕd−1 ≤ n < ϕd, we have d = dimFq L(n∞) and the positive integers which do not
occur as images of ϕ are exactly the Weierstrass gaps. It is easy to see that ϕ0 = 0,
and ϕi = i+ g for any i ≥ g. Moreover, we define ϕ̃j to be

ϕ̃j := ϕj+1 − ϕj

for j ≥ 0.

We have some immediate properties of ϕ̃i’s.
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3. On The Riemann Hypothesis of Positive Characteristic

Lemma 3.2.1. We have the following:

(a) ϕ̃0 = ϕ1;

(b) 1 ≤ ϕ̃j ≤ g + 1 for any 0 ≤ j ≤ g − 1;

(c) ϕ̃j = 1 for any j ≥ g.

Moreover, we have
g−1∑
j=0

ϕ̃j = 2g.

All ϕi’s form a semigroup, which is called the Weierstrass semigroup. It has the
following important property:

Lemma 3.2.2 ([Tor94, Lemma 2.1]). The following hold:

(a) The curve C is hyperelliptic if and only if ϕi = 2i for i = 1, 2, . . . , g;

(b) The curve C is non-hyperelliptic if and only if ϕi ≥ 2i+1 for i = 1, 2, . . . , g−2
and ϕg−1 ≥ 2g − 2.

By Lemma 3.2.2, we infer the following properties of ϕ̃:

Corollary 3.2.3. The following hold:

(a) ϕ̃i ≤ ϕ̃0 for i = 1, 2, . . . , g − 1.

(b) The curve C is hyperelliptic if and only if ϕ̃i = 2 for i = 0, 1, . . . , g − 1.

(c) If the curve C is non-hyperelliptic, then

(i) ϕ̃0 ≥ 3, ϕ̃g−1 ≤ 2;

(ii) ϕ̃i ≤ g − i for i = 0, 1, . . . , g − 2.

We now define the weight of an m-tuple of rationals in terms of the ϕj’s:

Definition 3.2.4. Let X = (X0, . . . , Xm−1) ∈ Qm. Its weight is defined as

wt(X) := wt(X0, . . . , Xm−1) := ϕ0X0 + ϕ1X1 + . . .+ ϕm−1Xm−1.
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3.2. Basic Definitions and Results

Remark 3.2.5. Denote by X̃j := Xj + Xj−1 + . . . + X0 the partial sums of the
coordinates, then we can apply Abel’s summation formula to rewrite the above as

wt(X) =ϕm−1X̃m−1 − ϕ̃m−2X̃m−2 − . . .− ϕ̃0X̃0

=ϕm−1n− ϕ̃m−2X̃m−2 − . . .− ϕ̃0X̃0.
(3.1)

Definition 3.2.6. For any subset S of Qm, we say that X = (X0, . . . , Xm−1) ∈ S
is

(1) an optimal element of S if it has maximal weight among the elements in S;

(2) the greedy element of S if the tuple (Xm−1, . . . , X0) is lexicographically largest.

Note that for any given set S, the greedy element is unique by definition, whereas
it is likely to have several optimal elements.

Definition 3.2.7. An important subset of Qm for our purpose will be the follow-
ing:

Um(n) := {X = (X0, X1, . . . , Xm−1) ∈ Nm :X0 + . . .+Xm−1 = n,

p -
(

n

X0, X1, . . . , Xm−1

)
,

Xi is a positive multiple of q − 1, for i = 0, 1, . . . ,m− 2}.

We call the elements in Um(n) valid compositions .

We would like to make some observations regarding the greedy and optimal ele-
ments in Um(n).

Let τ(n) be the multiset consisting of all p-powers occurring in the p-adic expansion
of n. Thus for each pi, its multiplicity in τ(n) is exactly its coefficient in the p-adic
expansion of n. Let n = n0+n1p+n2p

2+. . .+nlp
l with 0 ≤ n0, n1, . . . , nl−1 ≤ p−1

and 1 ≤ nl ≤ p− 1, then

τ(n) = {p0, . . . , p0︸ ︷︷ ︸
n0 times

, p1, . . . , p1︸ ︷︷ ︸
n1 times

, . . . , pl, . . . , pl︸ ︷︷ ︸
nl times

}.

We align the elements in τ(n) in non-decreasing order, and denote by τ i(n) the
i-th element in τ(n). By convention, let τ 0(n) be 0. It is easy to see that degp(n) =
logp(max τ(n)).
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3. On The Riemann Hypothesis of Positive Characteristic

If q 6= p, then let s be logp(q). Then we define for h = 0, 1, . . . , s− 1 a submultiset
τh(n) of τ(n), which containes all pk’s such that k ≡ h (mod s), i.e.,

τh(n) := {pk : pk ∈ τ(n) s.t. k ≡ h (mod s)}.

Similarly, we can define τ ih(n) to be the i-th element in τh(n) and τ 0
h(n) := 0.

Definition 3.2.8. We call an element X = (X0, X1, . . . , Xm−1) τ -monotonic if

max τh(Xi) ≤ min τh(Xj)

holds for any 0 ≤ h ≤ s− 1 and i < j.

Definition 3.2.9. Define a map Γ as follows

Γ : N\{0} → Ns\{0}
n 7→ (|τ0(n)|, . . . , |τs−1(n)|)t.

By convention, set Γ(0) := 0.

Remark 3.2.10. Note that this map Γ is surjective, since for any s-tuple in Ns\{0},
denoted by (a0, . . . , as−1), there exists a natural candidate for the preimage, given
as follows:

n :=
s−1∑
i=0

bai/(p−1)c∑
k=0

min {ai − k(p− 1), p− 1}pi+ks.

An immediate consequence from the definition is that

(1, p, . . . , ps−1) · Γ(n) ≡ n (mod ps − 1).

We denote by ψ
0

the row vector (1, p, . . . , ps−1). Then we can rewrite the previous
statement as ψ

0
· Γ(n) ≡ n (mod ps − 1).

We can extend the map Γ to Nm as:

Γm : Nm −→Mats×m(N)

(X0, . . . , Xm−1) 7−→ (Γ(X0), . . . ,Γ(Xm−1)).

This map is again surjective following Remark 3.2.10.

Using the above notation, we can rewrite the conditions in the definition of valid
compositions. Recall that by Lukas’ lemma, the binomial coefficient

(
n
n′

)
equals

to the product of corresponding binomial coefficients of the p-adic expansion of n
and n′ in Fp, hence it is not divisible by p if and only if τ(n′) is a subset of τ(n).
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(1) For non-negative integers X0, X1, . . . , Xm−1 summing up to n,
(

n
X0,X1,...,Xm−1

)
is not divisible by p if and only if {τ(X0), τ(X1), . . . , τ(Xm−1)} is a partition
of τ(n), i.e., the disjoint union of all τ(Xi)’s happens to be τ(n).

(2) For i = 0, 1, . . . ,m− 2, Xi being a positive multiple of ps − 1 is equivalent to
that ψ

0
· Γ(Xi) ≡ 0 (mod ps − 1) and Γ(Xi) > 0.

In particular, if q = p, then the second condition is equivalent to each τ(Xi) being
a positive multiple of p− 1.

Lemma 3.2.11. The greedy and optimal elements of Um(n) must be τ -monotonic.

Proof. The greedy element is τ -monotonic by definition.

To show that an optimal element is τ -monotonic, we first observe that for any
non-τ -monotonic element X = (X0, X1, . . . , Xm−1) ∈ Um(n), there exists a pair
(i, j) with 0 ≤ i < j ≤ m− 1 and some h ∈ {0, 1, . . . , s− 1}, such that we can find
some pl ∈ τh(Xi) and some pk ∈ τh(Xj) such that l > k, then we can construct
another valid composition

X ′ := (X0, . . . , Xi − pl + pk, . . . , Xj + pl − pk, . . . , Xm−1),

and
wt(X ′) =ϕ0X0 + . . .+ ϕi(Xi − pl + pk) + . . .+ ϕj(Xj + pl − pk)

+ . . .+ ϕm−1Xm−1

=ϕ0X0 + . . .+ ϕiXi + . . .+ ϕjXj + . . .+ ϕm−1Xm−1

+ (pl − pk)(ϕj − ϕi)
=wt(X) + (pl − pk)(ϕj − ϕi) > wt(X).

The above argument shows that whenever we have a non-τ -monotonic element,
we can always construct another element with greater weight, hence an optimal
element must be τ -monotonic.

Definition 3.2.12. Let B = (b0, b1, . . . , bm−1) be an s ×m-matrix with integral
entries. Define the set of valid compositions of n with respect to B as

UB
m(n) := {X ∈ Um(n) : Γm(X) = B}.

The following lemma follows directly from construction.

Lemma 3.2.13. If UB
m(n) is nonempty, then it has a unique τ -monotonic element.
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3.3 The q = p case

Theorem 3.3.1. If q = p, then any optimal element in Um(n) must be greedy.

Proof. As shown in Lemma 3.2.11, the greedy element as well as all optimal ele-
ments in Um(n) must be τ -monotonic. Denote by G the greedy element and by O
any optimal element. It suffices to show that both G and O lie in the same UB

m(n),
i.e., Γm(G) = Γm(O) =: B. In fact, we can write down B explicitly:

B = (p− 1, p− 1, . . . , p− 1,Γ(n)− (m− 1)(p− 1)) .

If this is true, due to Lemma 3.2.13, for a fixed B, the set UB
m(n), if non empty,

contains a unique τ -monotonic element, so the optimal element must be greedy.

That Γm(G) = B is clear by the greediness of G.

Suppose that there exists some optimal element O such that Γm(O) = B′ for
some B′ 6= B. From the structure of valid compositions, we know that B′ must
of the shape (b0(p− 1), b1(p− 1), . . . , bm−2(p− 1), ∗) where ∗ = Γ(n)− (b0 + b1 +
. . . + bm−2)(p − 1) and bi ∈ Z>0 with at least one bi larger than 1. Let j be such
that bj > 1. Then we have that |τ(Oj)| = bj(p − 1), so that we can split the
multiset τ(Oj) into two multisets τ1,j and τ2,j such that τ(Oj) = τ1,j t τ2,j and
|τ1,j| = p− 1. Let Q be the sum of all elements in τ1,j. Then we construct a new
O′ = (O′0, O

′
1, . . . , O

′
m−1) by

O′i =


Q for i = j;

Om−1 −Oj +Q for i = m− 1;

Oi for i 6= j, m− 1.

It is easy to see that O′ is again a valid composition of n and it has weight

wt(O′)− wt(O) = ϕj(Q−Oi) + ϕm−1(Om−1 −Oj +Q−Om−1)

= (Oi −Q)(ϕm−1 − ϕj) > 0

because both ϕm−1 − ϕi and Oi −Q are positive. This contradicts the optimality
of O.

Hence we can conclude that the zeros of large valuations are simple.

Theorem 3.3.2. Suppose that p = q. Let n be a fixed positive integer. The
following holds:
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(a) The x-coordinates of the break points of the Newton polygon associated to
ζA(−n, T ) are ϕi for all i = 0, 1, . . ..

(b) The slope of the i-th segment between ϕi−1 and ϕi is Gi
i, where Gi

i appears as
the last entry of the greedy element in Ui+1(n). In particular, the sequence
{G1

1, G
2
2, G

3
3, . . .} is strictly increasing.

Let m ≤ g be the smallest positive integer such that ϕ̃i = 1 for all i > m. Except
for the ϕm zeros of lowest valuations, all other zeros of ζA(−n, T ) are simple with
pairwise distinct valuations.

Proof. Recall that we define the Goss-Thakur zeta function as:

ζA(−n, T ) :=
∑
d≥0

T dSd(n),

where Sd(n) =
∑

a∈A+,d
an. As we have seen, there exists no function of degree

d for d a Weierstrass gap, i.e., Sd(n) = 0, hence it suffices to consider only the
Sϕm(n)’s. Expanding Sϕm(n) with respect to the basis of the Riemann-Roch spaces
we fixed in Section 3.2, we have

Sϕm(n) =
∑

a∈A+,ϕm

an =
∑
ai∈Fp

(a0f0 + . . .+ am−1fm−1 + fm)n

=
∑
ai∈Fp

∑
X0+...+Xm=n

(
n

X0, . . . , Xm

)
aX0

0 . . . a
Xm−1

m−1 f
X0
0 . . . f

Xm−1

m−1 fXmm

=
∑

X∈Nm+1

TX ,

where

TX :=


∑
ai∈Fp

(
n

X0,...,Xm

)
aX0

0 . . . a
Xm−1

m−1 f
X0
0 . . . f

Xm−1

m−1 fXmm , if
m∑
i=0

Xi = n;

0, otherwise.

It is easy to see that TX is nonzero if and only if X ∈ Um+1(n). Comparing the
definition of the weight of X ∈ Um+1(n) and the valuation of TX at∞, we see that
v∞(TX) = −wt(X). Moreover, by Theorem 3.3.1, if the set Um+1(n) is nonempty,
then it contains a unique optimal element, which is just the greedy element. Let
Gm+1 be the greedy element in Um+1(n). Then TGm+1 is the summand with smallest
valuation hence it determines the valuation of Sϕm(n).
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3. On The Riemann Hypothesis of Positive Characteristic

Write n = n0 + n1 + . . .+ nl where

n0 = τ 1(n) + . . .+ τ p−1(n);

n1 = τ p(n) + . . .+ τ 2(p−1);

. . .

nl−1 = τ (l−1)(p−1)+1(n) + . . .+ τ l(p−1)(n);

nl = n− nl−1 − . . .− n1 − n0,

where l = bdigsump(n)

p−1
c. Hence l is the largest integer such that Ul+1(n) is nonempty

and the greedy element in Um+1(n) is just (n0, . . . , nm−1, nm + . . . + nl) for any
m ≤ l. We can thus compute the weight of TGm+1 thus the valuation of Sϕm(n):

v∞(Sϕm(n)) =v∞(TGm+1) = −wt(Gm+1)

=− (ϕ0n0 + . . .+ ϕm−1nm−1 + ϕm(nm + . . .+ nl)).

Therefore, we can compute the m-th slope as

v∞(Sϕm(n))− v∞(Sϕm−1(n))

ϕm − ϕm−1

= −(nm + . . .+ nl).

We can conclude that all of these points appear as break points of the Newton
polygon. In particular, when m ≥ g, all the slopes have horizontal width one,
which means that except for the zeros of the lowest g valuations, i.e., the 2g zeros
of smallest valuations, all the other zeros are simple and have pairwise distinct
valuations.

3.4 Some facts for the case q 6= p

After dealing with the case q = p, we now move on to consider the case q 6= p.
In this section, we will see some results which help to prepare for the proof of the
main result for the case q 6= p. We start by investigating some properties of the
structure of Γ(n) when n is a positive multiple of q − 1. This is followed by a
characterization of nonempty UB

m(n)’s and how to construct an optimal or greedy
element from existing ones for some other n or m. Next, we define some special
subsets of N depending on the maximal length of valid compositions. We can then
locate most of the entries of optimal and greedy elements with respect to these
sets. At the end of this section, we will show Proposition 3.8.2, where an element
of special properties is constructed. This will be of importance in our proof of the
main theorem.
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From now on, we always assume that q 6= p, i.e., s ≥ 2.

Let e0, e1, . . . , es−1 be the standard basis of column vectors in Qs. We define the
s×s-matrix E := (ε0, ε1, . . . , εs−1), where εi = pei−1−ei = (0, . . . , 0, p,−1, 0, . . . , 0)t

for i = 1, 2, . . . , s − 1, and ε0 = pes−1 − e0 = (−1, 0, . . . , 0, p)t; define R :=
(e1, e2, . . . , es−1, e0), and ψ

i
:= ψ

0
·R−i, i.e.,

E =


−1 p

−1 p
. . . . . .

−1 p
p −1

 , R =


0 1

1
. . .
. . . . . .

0 1 0

 ,

and ψ
i

= (ps−i, ps−i+1, . . . , ps−1, 1, . . . , ps−i−1).

Lemma 3.4.1 ([She98, Lemma 3.3, Lemma 4.2]). Let s ≥ 2. For a vector X, we
denote by Xj the j-th coordinate of X.

(a) For n ∈ N, we have that n ≡ ψ
0
· Γ(n) (mod ps − 1).

(b) For X ∈ Qs, we have that ψ
i
· EX = Xi(p

s − 1).

(c) Let Is be the identity matrix of size s× s. We have that E + Is = p ·R−1 and
RE = ER.

(d) For X ∈ Zs, we have that ψ
0
·RX ≡ p · ψ

0
·X (mod ps − 1).

(e) For X ∈ Zs, we have that ψ
0
·X ≡ pi · ψ

i
·X (mod ps − 1).

(f) For any k ∈ N, we have that RkΓ(n) = Γ(pkn).

Recall that we associate a partial ordering to the vector space Qs or Qm. The
following lemma concerns some basic properties of E with respect to this partial
ordering.

Lemma 3.4.2 ([She98, Lemma 4.2]). The following holds:

(a) {E−1X : X > 0} ⊆ (Q+)s.

(b) If X > Y , then E−1X > E−1Y .
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3. On The Riemann Hypothesis of Positive Characteristic

We define J to be the set of all Γ(n) where n is a positive multiple of ps − 1.

Lemma 3.4.3 ([She98, Lemma 3.4]). We have that

J = (EZs) ∩ (Ns\{0}).

In other words, J is a submonoid under ’+’ consisting of all positive elements of
the Z-lattice generated by the εi’s.

Corollary 3.4.4. The set J is stable under left multiplication by R, i.e., RJ = J.

Proof. This follows directly from Lemma 3.4.3 and Lemma 3.4.1 (c).

Lemma 3.4.5. Let B = (b0, b1, . . . , bm−1) be an s×m-matrix with integral entries.
Then UB

m(n) is nonempty if and only if the following two conditions are fulfilled:

(a) the columns of B sum up to Γ(n);

(b) for i = 0, 1, . . . ,m− 2, we have bi ∈ J.

Proof. If UB
m(n) is nonempty, then there exists some X = (X0, X1, . . . , Xm−1) such

that Γ(X) = B, i.e., bi = Γ(Xi). Conditions (a) and (b) follow directly from the
definition of a valid composition. The inverse follows directly from the surjectivity
of Γ.

Remark 3.4.6. One may notice that the above Lemma is quite similar to Lemma
3.5 in [She98], but we should remember that in our case, the last column of the
matrix B can be the zero vector.

Proposition 3.4.7. Suppose X = (X0, X1, . . . , Xm−1) is optimal (or greedy) in
Um(n), then

(a) If pk ∈ τ(Xm−1), then (X0, X1, . . . , Xm−2, Xm−1 − pk) is optimal (or greedy)
in Um(n− pk).

(b) If n′ is an integer such that τ(n′) ⊂ Γ(Xm−1), then (X0, X1, . . . , Xm−2, Xm−1−
n′) is optimal (or greedy) in Um(n−n′). In particular, in the case of n′ = Xm−1,
the tuple (X0, X1, . . . , Xm−2, 0) is optimal (or greedy) in Um(n−Xm−1).
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3.4. Some facts for the case q 6= p

(c) For any integer k ≥ 0, the tuple (pkX0, p
kX1, . . . , p

kXm−1) is optimal (or
greedy) in Um(pkn).

Proof. The greedy parts for all three statements are clear. We only need to show
that these hold for optimal elements.

(a) Suppose X ′ = (X0, X1, . . . , Xm−2, Xm−1− pk) is not optimal, then there exists
some Z = (Z0, Z1, . . . , Zm−1) ∈ Um(n − pk) such that wt(Z) > wt(X ′). We
consider Z ′ = (Z0, Z1, . . . , Zm−2, Zm−1 + pk). It clearly lies in Um(n) and we
can compute its weight as

wt(Z ′) = wt(Z) + ϕm−1p
k > wt(X ′) + ϕm−1p

k = wt(X),

and this contradicts the optimality of X.

(b) This follows directly from (a).

(c) It is easy to see that X ′ = (pkX0, p
kX1, . . . , p

kXm−1) is indeed a valid com-
position of pkn, since when looking at the p-adic expansion of n, multiplying
pk just means adding k to all exponents, while the coefficients stay invariant.
Therefore, for any p-power in τ(pkn), the exponent must be larger than k, i.e.,
each element in τ(pkn) is a multiple of pk.

Suppose that X ′ is not optimal, then there exists some Z = (Z0, Z1, . . . , Zm−1)
which is optimal in Um(pkn) and wt(Z) > wt(X ′). We define

Z ′ := (p−kZ0, p
−kZ1, . . . , p

−kZm−1).

Note that for any i, p−kZi is an integer, since all elements in τ(Zi) ⊂ τ(pkn)
are divisible by pk. Hence Z lies in Um(n), and

wt(Z ′) = p−kwt(Z) > p−kwt(X ′) = wt(X),

which contradicts the optimality of X.

Now, we introduce two sets of vectors and will try to fully characterize them.

Definition 3.4.8. For any m ∈ Z>0, we define:

Im := {Γ(n) : n ∈ N and Um(n) 6= ∅},
Jm := J ∩ (Im\Im+1).
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3. On The Riemann Hypothesis of Positive Characteristic

In other words, Im contains all vectors corresponding to those k’s which have valid
compositions of length m, and Jm is the set of all vectors corresponding to the
positive multiples of ps−1 whose longest valid decompositions have length exactly
m. Note that J1 = ∅, and for m ≥ 2, for any k such that Γ(k) ∈ Jm, its valid
compositions of length m always has 0 as the last entry. The relations among
different m’s are

I1 ⊃ I2 ⊃ . . . ⊃ Im ⊃ Im+1 ⊃ . . . ,

J = tm≥1Jm.

Remark 3.4.9. Recall that in [She98], Sheats defined similar subsets, also denoted
by Im and Jm. To distinguish these from the sets we defined here, let us denote the
sets defined by Sheats by ISm and JSm respectively. The main difference between ISm
and Im (resp. JSm and Jm) is that the vectors in ISm (resp. JSm) have by definition
nonzero last entries, but this condition does not apply to those in Im (resp. Jm).
However, there is a simple relation between ISm and Im (resp. JSm and Jm), which
will be given as follows:

Im = ISm ∪ Jm;

Jm = {(X0, . . . , Xm−2, 0) : (X0, . . . , Xm−2) ∈ JSm−1}.

Proposition 3.4.10. Let Im and Jm be defined as above. Then for m ≥ 2, we
have:

Im ={u ∈ Ns : ∃ v0, . . . , vm−2 ∈ J s.t. u ≥ v0 + . . .+ vm−2}
={u ∈ Ns : ∃ η

0
, . . . , η

m−2
∈ J s.t. u ≥ η

m−2
> . . . > η

0
}

={Ea ∈ Ns : a ∈ Qs,m− 1 ≤ min{a0, . . . , as−1}};
Jm ={Ea ∈ Ns : a ∈ Zs,m− 1 = min{a0, . . . , as−1}}.

Proof. The proof follows from Remark 3.4.9 and [She98, p. 136]. In the first
equation, suppose that (X0, X1, . . . , Xm−1) ∈ Um(n), then we can just choose
those vi’s to be the Γ(Xi)’s; the η

j
’s in the second equation are partial sums of∑

vi; and the third equation follows from Lemma 3.4.2 and Lemma 3.4.3; the last
one follows directly from the third one.

Note that for any Ea ∈ Im or Jm, we always have that ai ≤ mqs−1.

Definition 3.4.11. According to Proposition 3.4.10, we can define a sequence of
subsets: for i = 0, 1, . . . , s− 1, we define

J im := {Ea ∈ Ns : a ∈ Zs, ai = m− 1 = min{a0, . . . , as−1}}.

Note that Jm is the union of all J im’s, but this is not necessarily a disjoint union!
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3.4. Some facts for the case q 6= p

Lemma 3.4.12. Suppose that X = (X0, X1, . . . , Xm−1) ∈ Um(n) is greedy or
optimal. Then Γ(Xi) ∈ J2 for i = 0, 1, . . . ,m− 2.

Proof. Suppose that there exists some i such that Xi 6∈ J2. Then there exists a
valid composition of Xi of length 3, say (y0, y1, y2), where y0 and y1 are positive
multiples of ps−1 and y2 is either 0 or a positive multiple of ps−1. We can construct
a new composition X ′ of n, namely X ′j = Xj for any j 6= i,m − 1, X ′i = y0 and
X ′m−1 = Xm−1 + y1 + y2. It is clear that X ′ is again a valid composition and
X ′i < Xi, X

′
m−1 > Xm−1.

Then X cannot be greedy since (X ′m−1, . . . , X
′
0) is lexicographically larger than X;

on the other hand, X cannot be optimal either, since

wt(X ′)− wt(X) =(ϕ0X
′
0 + . . .+ ϕiX

′
i + . . .+ ϕm−2X

′
m−2 + ϕm−1X

′
m−1)

− (ϕ0X0 + . . .+ ϕiXi + . . .+ ϕm−2Xm−2 + ϕm−1Xm−1)

=ϕi(X
′
i −Xi) + ϕm−1(X ′m−1 −Xm−1)

=(ϕm−1 − ϕi)(y1 + y2) > 0.

Lemma 3.4.13. Let u ∈ Jm for some m ≥ 2. Suppose that v ∈ Ns such that
v ≤ (p− 1, p− 1, . . . , p− 1)t and v < u. Then u− v ∈ Im−1.

Proof. By Lemma 3.4.3, we know that u = Ea for some a ∈ Zs and v = Eb for
some b ∈ Qs. Then u− v = E(a− b). Since v ≤ (p− 1, p− 1, . . . , p− 1)t, Lemma
3.4.2 implies that b ≤ E−1(p − 1, p − 1, . . . , p − 1)t = (1, 1, . . . , 1)t. On the other
hand, since u ∈ Jm, we know that m − 1 = min{a0, . . . , am−1}. Since v < u, we
have that ai − bi ≥ m− 2 for any i, thus u− v ∈ Im−1.

Proposition 3.4.14. Suppose that n is a positive multiple of ps − 1, such that
Γ(n) ∈ Im+1. Let X be optimal or greedy in Um(n). Then we have

φmn ≤ wt(X) ≤ ϕm−1n,

where the φm’s are given as follows:

φ1 = 0, φ2 =
q + p− 2

q + p
ϕ1,

φm =
q + p− 2

q + p

((
2

q + p

)m−2

ϕ1 + . . .+
2

q + p
ϕm−2 + ϕm−1

)
.
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3. On The Riemann Hypothesis of Positive Characteristic

Remark 3.4.15. The reason to require Γ(n) lying in Im+1 is that in this case, for
G = (G0, G1, . . . , Gm−1) the greedy element in Um(n), we have that Gm−1 must
be nonzero. Because Um+1(n) 6= ∅, there exists some (X0, X1, . . . , Xm−1, Xm) ∈
Um+1(n), where Xm−1 > 0 and Xm ≥ 0, hence (X0, X1, . . . , Xm−2, Xm−1 + Xm)
lies in Um(n) and Xm−1 +Xm ≥ Xm−1 > 0. By the greediness of G, we must have
Gm−1 ≥ Xm−1 +Xm > 0.

Proof to Proposition 3.4.14. The upper bound is trivial since ϕi < ϕm−1 for all
i < m− 1, and

wt(X) =ϕ0X0 + ϕ1X1 + . . .+ ϕm−1Xm−1

<ϕm−1(X0 +X1 + . . .+Xm−1) = ϕm−1n.

Note that the upper bound is reached if and only if m = 2.

To prove the lower bound, it suffices to take only the greedy element G into
consideration. Let G be (G0, G1, . . . , Gm−1). Then Gm−1 > 0 by Remark 3.4.15.
Let n = n0p

0 + . . .+ nlp
l be the p-adic expansion of n, then let

n′ = nlp
l + . . .+ nl−s+1p

l−s+1 + min {nl−s, (p− 1)− nl}pl−s.

Clearly we have

Γ(n′) ≤ (p− 1, p− 1, . . . , p− 1)t.

By the greediness of G and the fact that Gm−1 must be a positive multiple of
ps − 1, we have that Gm−1 ≥ n′.

Let us now compare n′ and n−n′. Denote by m := min {nl−s, (p− 1)− nl}. Then
n′ ≥ (nlq +m)pl−s and n− n′ ≤ (nl−s + 1−m)pl−s. Hence

n′

n− n′
≥ nlq +m

nl−s + 1−m
.

And we can estimate the right hand side in the following two cases; denote i := nl
for abbreviation:

1. when nl−s = 0, . . . , p− 1− i, then m = nl−s, hence

RHS =
iq + nl−s

nl−s + 1− nl−s
= iq + nl−s.

In this case, the lower bound is iq;
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2. when nl−s > p− 1− i, then m = p− 1− i, hence

RHS =
iq + p− 1− i

nl−s + 1− p+ 1 + i
=
i(q − 1) + p− 1

nl−s + 2− p+ i
.

In this case, the lower bound is

i(q − 1) + p− 1

p− 1 + 2− p+ i
= q − 1− q − p

i+ 1
.

Vary i and we can get a lower bound of the right hand side:

RHS ≥ q + p

2
− 1,

and we achieve this lower bound when nl = 1, nl−s = p− 1. Hence n′

n−n′ ≥
q+p

2
− 1

and n′

n
≥ q+p−2

q+p
.

Now we prove the lower bound of wt(X) by induction:

for any m and the greedy element G = (G0, G1, . . . , Gm−1), we know that G′ =
(G0, G1, . . . , Gm−2) is the greedy element in Um−1(n−Gm−1), hence

wt(G) =wt(G′) + ϕm−1Gm−1

≥φm−1(n−Gm−1) + ϕm−1Gm−1

=φm−1n+ (ϕm−1 − φm−1)Gm−1

≥ (φm−1 + (ϕm−1 − φm−1)
q + p− 2

q + p
)n.

The proposition follows straightforwardly.

The next lemma concerns the size of φm compared with ϕm’s. Recall that we
always assume that q 6= p. Let χ be 2

p+q
.

Lemma 3.4.16. For any g and m ≥ g + 2, we have that

φm > ϕm−2.

Proof. Recall that

φ1 = 0, φ2 =
q + p− 2

q + p
ϕ1 = (1− χ)ϕ1,

φm =
q + p− 2

q + p
((

2

q + p
)m−2ϕ1 + . . .+

2

q + p
ϕm−2 + ϕm−1)

= (1− χ)(χm−1ϕ1 + . . .+ χϕm−2 + ϕm−1).
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Then

φm − ϕm−2 = (1− χ)(χm−2ϕ1 + . . .+ χϕm−2 + ϕm−1)− ϕm−2

= (1− χ)χm−2ϕ1 + . . .+ (1− χ)χϕm−2 + (1− χ)ϕm−1 − ϕm−2

=ϕm−1 − ϕm−2 − χ(ϕm−1 − ϕm−2)− χ2(ϕm−2 − ϕm−3)− . . .
− χm−2(ϕ2 − ϕ1)− χm−1ϕ1

= (1− χ)ϕ̃m−2 − χ2ϕ̃m−3 − χ3ϕ̃m−4 − . . .− χm−1ϕ̃0.

When m−2 is at least g, then by Corollary 3.2.3 and the fact that χ < 1, we have
an immediate lower bound of the above sum, which is reached when ϕ̃i = 2 for
i = 0, 1, . . . , g − 1, and we have:

φm − ϕm−2 ≥(1− χ)− χ2 − χ3 − . . .− χm−g−1 − 2χm−g − . . .− 2χm−1

=2− 1− χm

1− χ
− χm−g − χm

1− χ

≥1− χ+ χm−g

1− χ

=
1− 2χ− χ2

1− χ
.

Since 0 < χ ≤ 1
3
, 1− 2χ− χ2 must be positive, hence φm > ϕm−2.

The same holds for all m if we bound the genus g.

Lemma 3.4.17. Suppose that g < χ−2 − χ−1 − 1, then for any m ≥ 2, we always
have

φm > ϕm−2.

Proof. Same as above, we can compute the difference of φm and ϕm−2 as:

φm − ϕm−2 = (1− χ)ϕ̃m−2 − χ2ϕ̃m−3 − χ3ϕ̃m−4 − . . .− χm−1ϕ̃0.

If m− 2 ≥ g, then we can use the same argument as in the proof to Lemma 3.4.16
to obtain

φm − ϕm−2 ≥ 1− χ+ χm−g

1− χ
.

As χ < 1, and m− 2 ≥ g, we have

φm − ϕm−2 ≥ 1− χ+ χ2

1− χ
> 0.
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If m− 2 < g, then all ϕ̃j’s must lie between 1 and g+ 1, and we achieve the lower
bound when ϕ̃i = m−2+g

m−2
for i = 0, 1, . . . ,m− 3 and ϕ̃i = 1 for i ≥ m− 2, then we

have

φm − ϕm−2 ≥ (1− χ)− m− 2 + g

m− 2
χ2 − m− 2 + g

m− 2
χ3 − . . .− m− 2 + g

m− 2
χm−1

= 1− χ− χ2 − . . .− χm−1 − g

m− 2
(χ2 + . . .+ χm−1)

= 1− χ− χm

1− χ
− g

m− 2

χ2 − χm

1− χ

≥ 1− χ− χ3

1− χ
− gχ2.

As g < χ−2 − χ−1 − 1, then φm < ϕm−2.

From now on, we fix g0 to be χ−2 − χ−1 − 1.

Proposition 3.4.18. Suppose that g < g0 or m ≥ g+2. If X is optimal or greedy
in Um(n), then Γ(n−Xm−1) ∈ Jm.

Proof. Let X = (X0, X1, . . . , Xm−1) be optimal or greedy in Um(n). Clearly Γ(n−
Xm−1) lies in J ∩ Im since (X0, X1, . . . , Xm−2, 0) ∈ Um(n−Xm−1), and n−Xm−1,
which is the sum of X0, . . . , Xm−2, must be a positive multiple of ps − 1.

If Γ(n−Xm−1) 6∈ Jm, then Γ(n−Xm−1) ∈ J∩Im+1, in particular, Um+1(n−Xm−1) is
nonempty. Let G = (G0, . . . , Gm−1) be the greedy element in Um(n−Xm−1), then
Gm−1 > 0, by Remark 3.4.15. We define G′ := (G0, G1, . . . , Gm−2, Gm−1 +Xm−1) ∈
Um(n). Then by Proposition 3.4.14, we have

wt(G′) = wt(G) + ϕm−1Xm−1 ≥ φm(n−Xm−1) + ϕm−1Xm−1.

On the other hand, we have a natural upper bound for the weight of X:

wt(X) =
m−2∑
i=0

ϕiXi + ϕm−1Xm−1 ≤ ϕm−2(n−Xm−1) + ϕm−1Xm−1.

Since m ≥ g + 2 (resp. g < g0), we have by Lemma 3.4.16 (resp. Lemma 3.4.17)
that φm > ϕm−2, hence wt(X) < wt(G′), contradicting the optimality of X.

Corollary 3.4.19. Suppose that g < g0 or m ≥ g + 2. Let O = (O0, . . . , Om−1)
resp. G = (G0, . . . , Gm−1) be optimal resp. greedy in Um(n). Then Om−1 = 0 if
and only if Gm−1 = 0.
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Proposition 3.4.20. Suppose that g < g0 or m ≥ g+2. If X is optimal or greedy
in Um(n), then there exists some i such that Γ(Xj) ∈ J i2 for all 0 ≤ j ≤ m− 2.

Proof. By Lemma 3.4.12, for 0 ≤ j ≤ m− 2, we always have Γ(Xj) ∈ J2, i.e.,

min
i=0,1,...,s−1

(E−1Γ(Xj))i = 1

where (E−1Γ(Xj))i denotes the i-th coordinate of E−1Γ(Xj).

But by Proposition 3.4.18, we know that Γ(n−Xm−1) ∈ Jm, i.e.,

min
i

(E−1Γ(n−Xm−1))i = m− 1.

Since there is no carryover of p-adic digits in the sum n =
∑m−1

i=0 Xi, we can rewrite
E−1Γ(n−Xm−1) as:

E−1Γ(n−Xm−1) = E−1Γ(X0 +X1 + . . .+Xm−2)

= E−1Γ(X0) + E−1Γ(X1) + . . .+ E−1Γ(Xm−2),

hence the i-th coordinate of E−1Γ(n−Xm−1) is the sum of all i-th coordinates of
E−1Γ(Xj) for 0 ≤ j ≤ m−2. But each of them is at least 1, so there must exist at
least one i such that (E−1Γ(Xj))i = 1 for all 0 ≤ j ≤ m− 2, i.e., Γ(Xj) ∈ J i2.

Corollary 3.4.21. Suppose that g < g0 or m ≥ g + 2. If X is optimal or greedy
in Um(n), then (X0, . . . , Xm−2) is optimal or greedy in Um−1(n−Xm−1).

Corollary 3.4.22. Suppose that g < g0 or m ≥ g + 2. Let m be such that
Γ(n) ∈ Im\Im+1 and G = (G0, . . . , Gm−1) be the greedy element in Um(n). Then
the greedy element in Ui(n) for any i ≤ m is

(G0, . . . , Gi−2, Gi−1 + . . .+Gm−1).

Proposition 3.4.23. Suppose that q 6= p and g < g0. If there exists some n′

and m′ such that in Um′(n
′) exists an optimal element O′ = (O′0, . . . , O

′
m′−1) which

is different from the greedy element. Then there exist an n, an m and an O =
(O0, O1, . . . , Om−1) optimal in Um(n) satisfying the following properties:

(i) Γ(Oj) ∈ J0
2 , for 0 ≤ j ≤ m− 2.

(ii) degp(Om−1) < degp(Gm−1), where G = (G0, G1, . . . , Gm−1) is the greedy ele-
ment in Um(n).

(iii) Γ(Om−1) 6= Γ(Gm−1).
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(iv) Om−1 = pω̃ for some ω̃ ∈ N.

(v) ψ
0
· Γ(Om−1) = ψ

0
· Γ(Gm−1).

Remark 3.4.24. We first make some observations on the size of m if there exists
an optimal element in Um(n) which is not greedy. Firstly, m cannot be 1 since
U1(n) = {(n)}, which is a singleton-set. It means that there is no room for optimal
elements being different from the greedy element. Secondly, m cannot be 2 either,
since U2(n) = {(n − a, a) | 0 ≤ a < n, a ≡ n (mod ps − 1), τ(a) ⊂ τ(n)}, and the
weight of such a typical element (n − a, a) is wt(n − a, a) = ϕ1a, which is fully
determined by a, so the maximality of weight is equivalent to the maximality of a,
i.e., an optimal element must be greedy in U2(n). Therefore, m must be at least
3. We will see some examples for m = 3 in Section 3.7.

Proof of Proposition 3.4.23. Recall that we denote by digsump(n) the p-adic digit

sum of n, i.e., if the p-adic expansion of n is
∑l

i=0 aip
i with 0 ≤ ai ≤ p− 1 for all

i, then digsump(n) :=
∑l

i=0 ai.

Let Θ be the set of pairs of integers (m,n) satisfying the hypothesis. It is nonempty
by assumption. Let (m,n′′) be such that (m, digsump(n

′′)) is lexicographically
minimal. Note that in this case, the last entry of any optimal element in Um(n′′) is
nonzero. Suppose the contrary, i.e., we have (O0, . . . , Om−2, 0) optimal in Um(n′′).
By Corollary 3.4.19, the greedy element G is of the form (G0, . . . , Gm−2, 0). Then
by Corollary 3.4.21, (O0, . . . , Om−2) resp. (G0, . . . , Gm−2) is optimal resp. greedy
in Um−1(n′′). Clearly they are different and both have last entries being nonzero,
thus (m− 1, n′′) ∈ Θ and it contradicts the choice of (m,n′′). is not greedy. Also,
G′m−1 must be positive since O′m−1 must be so.

(i) By Proposition 3.4.20, there exists some h such that Γ(Oj) ∈ Jh2 for 0 ≤ j ≤
m − 2. If h = 0, then we just take n to be n′′. Otherwise, let n := ps−hn′′.
Then by Proposition 3.4.7(c), we know that O := (ps−hO′0, . . . , p

s−hO′m−1)
resp. G := (ps−hG′0, . . . , p

s−hG′m−1) is optimal resp. greedy in Um(n). It is
clear from construction that O 6= G and Γ(Oj) ∈ J0

2 for 0 ≤ j ≤ m− 2.

We fix such an n from now on. Note that digsump(n) = digsump(n
′′),

so (m, digsump(n)) remains lexicographically minimal. Note that for any
pair of integers (m1, n1), if either m1 < m or m1 = m and digsump(n1) >
digsump(n), we have (m1, n1) 6∈ Θ.

Before continuing, we introduce the following notation:

o := (o0, . . . , os−1)t := Γ(Om−1)

g := (g0, . . . , gs−1)t := Γ(Gm−1)

n := (n0, . . . , ns−1)t := Γ(n).
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3. On The Riemann Hypothesis of Positive Characteristic

As Om−1 > 0, we have that Gm−1 ≥ Om−1 > 0. We also define indices
0 ≤ ω, γ ≤ s − 1 such that ω ≡ ω̃ := degp(Om−1) (mod s) and γ ≡ γ̃ :=
degp(Gm−1).

(ii) By the greediness of G, we have γ̃ ≥ ω̃.

Suppose equality holds, then ω = γ, in particular, both gω and oω are positive.
This contradicts the following lemma:

Lemma 3.4.25 ([She98, Lemma 5.3]). For any 0 ≤ i ≤ s − 1, we always
have either gi = 0 or oi = 0.

(iii) By Lemma 3.4.25, we can also conclude that o 6= g, i.e., Γ(Om−1) 6= Γ(Gm−1).

(iv)-(v) To show the rest, we need to show the following two lemmas first.

Lemma 3.4.26. For any k such that ok > 0, we have

n− eγ − ek 6∈ Im.

Proof. By Lemma 3.4.25, if ok > 0, then gk must be 0. In particular, k 6= γ
and n− eγ − ek > 0.

Suppose that n− eγ − ek ∈ Im. Then there exist v0, . . . , vm−2 ∈ J such that
v0 + . . .+ vm−2 ≤ n− eγ − ek. Let pσ be the largest element in τk(n). Then
Γ(n− pσ) = n− ek. Set vm−1 := (n− ek)− (v0 + . . .+ vm−2) ≥ eγ > 0. Let
B be the matrix (v0, . . . , vm−1), then UB

m(n − pσ) is not empty by Lemma
3.4.5. Let X = (X0, . . . , Xm−1) be the τ -monotonic element in UB

m(n − pσ).
Since vm−1 ≥ eγ, the γ-th entry in Γ(Xm−1) must be nonzero. By the τ -
monotonicity of X as well as the greediness of G, the largest p-power in
τγ(n − pσ), which is also the largest p-power in τ gamma(n), must land in
τ(Xm−1) ∩ τ(Gm−1).

On the other hand, as assumed, ok > 0, hence pσ ∈ τ(Om−1) by the τ -
monotonicity of O. Thus Y := (O0, . . . , Om−2, Om−1 − pσ) is optimal in
Um(n − pσ) by Proposition 3.4.7(a). Since digsump(n − pσ) < digsump(n),
the pair (m,n− pσ) cannot be in Θ, hence Y must at the same time be the
greedy element in Um(n− pσ). But this cannot be since

degp(Ym−1) = degp(Om−1 − pσ) ≤ degp(Om−1)

< degp(Gm−1) = degp(Xm−1),

which contradicts the greediness of Y in Um(n− pσ).
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Recall that for i = 0, 1, . . . , s− 1, we defined the following row vectors:

ψ
i

= (ps−i, . . . , ps−1, 1, p, . . . , ps−1−i).

Lemma 3.4.27 ([She98, Lemma 5.5]). Let k be such that ok > 0, and set

v := (v0, . . . , vs−1)t := E−1(n− ek − eγ).

Then there exists an h such that vh < m− 1.

Furthermore, for any such h we have

(a) ψ
h
· g = ψ

h
· o;

(b) ψ
h
· o < ψ

h
· ek + ψ

h
· eγ;

(c) ψ
h
· eγ < ψ

h
· ek.

(iv) Let k be ω in Lemma 3.4.27, we have

ψ
hω
· o < ψ

hω
· eω + ψ

hω
· eγ

ψ
hω
· eγ < ψ

hω
· eω

Combining the above two inequalities leads to

ψ
hω
· o < 2ψ

hω
· eω,

so oω < 2, hence must be 1.

Now we need to show that only oω is nonzero. If s = 2, then it holds
automatically since ω, γ ∈ {0, 1} and they are distinct. Otherwise, suppose
there exists some ω′ 6= ω such that oω′ 6= 0. Then there exists an hω′ such
that

ψ
hω′
· o < ψ

hω′
· eω′ + ψ

hω′
· eγ

ψ
hω′
· eγ < ψ

hω′
· eω′

Since ω′ 6= ω and oω′ 6= 0, as shown in the proof to Lemma 3.4.27(c), we have

ψ
hω′
· eω < ψ

hω′
· eγ, ψhω · eω′ < ψ

hω
· eγ.

Then we have
ψ
hω
· eω′ < ψ

hω
· eγ < ψ

hω
· eω

ψ
hω′
· eω < ψ

hω′
· eγ < ψ

hω′
· eω′

but this is impossible because of the following observation: for any a and
i such that 0 ≤ a, i ≤ s − 1, let pa

′
be ψ

i
· ea, then 0 ≤ a′ ≤ s − 1 and

a′− a+ i ≡ 0 (mod s). More precisely, if a ≤ i, then a′ = i− a; if a > i, then
a′ = i− a+ s.
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3. On The Riemann Hypothesis of Positive Characteristic

(v) Again, let k be ω in Lemma 3.4.27. Then it suffices to show that we can
choose h to be 0, i.e., v0 < m− 1, since if so, then we can deduce (v) directly
from Lemma 3.4.27(a) with h = 0.

By (iv), we have that Om−1 = pω̃, hence Γ(Om−1) = o = eω. Thus

n− eω = Γ(n−Om−1) = Γ(O0) + . . .+ Γ(Om−2),

hence

v = E−1(n− eω − eγ) =
m−2∑
j=0

E−1Γ(Oj)− E−1eγ.

By (i), Γ(Oj) ∈ J0
2 for all 0 ≤ j ≤ m− 2, thus

v0 = m− 1− pγ

ps − 1
< m− 1.

Now we can construct some Z ∈ Um(n) as follows:

• θj :=
∑j

i=0 Γ(Oi) for 0 ≤ j ≤ m− 1;

• (ti,j)i,j := (t0, . . . , tm−1) := E−1(θ0, . . . , θm−1) = E−1(θi,j)i,j.

We will need the following lemma to proceed. First recall that we have defined:

n := Γ(n) = (n0, . . . , ns−1)t;

o := Γ(Om−1) = (o0, . . . , os−1)t;

g := Γ(Gm−1) = (g0, . . . , gs−1)t.

Lemma 3.4.28 ([She98, Lemma 6.1]). There exists some α with 0 ≤ α ≤ ω such
that

(a) ti,m−2 > m− 1 for α < i ≤ ω;

(b) tα,m−2 = m− 1;

(c) if gi > 0, then α ≤ i < ω;

Fix such an α from now on. Now we can continue the construction of Z.
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3.4. Some facts for the case q 6= p

• Define a matrix (dij)i,j = (d0, . . . , dm−1) as follows:

dm−1 := E−1Γ(n) = tm−1

di,m−2 :=

{
ti,m−2 if 0 ≤ i ≤ α or ω < i ≤ s− 1;

min{ti,m−2 − 1, pdi+1,m−2} if α < i ≤ ω.

di,j :=

{
tij if 0 ≤ i ≤ α or ω < i ≤ s− 1

min{di,j+1 − 1, pdi+1,j} if α < i ≤ ω.

• (δij)i,j = (δ0, . . . , δm−1) = E(dij)i,j;

• b0 := δ0, and for i = 1, 2, . . . ,m − 1, define bi := δi − δi−1. Define B =
(b0, . . . , bm−1);

Definition 3.4.29. With same notation as above, we define Z to be the τ -
monotonic element of UB

m(n).

An immediate question arousing is whether such a Z really exists or not, i.e.,
whether UB

m(n) is nonempty or not. We will show this in Proposition 3.4.32.
Before we can do this, we will need some preparations. The next lemma concerns
some properties of the δij’s.

Lemma 3.4.30 ([She98, Lemma 6.2]). As defined, δm−1 = n = Γ(n).

For δm−2, we have

(a) δh,m−2 = nh, for 0 ≤ h < α or ω ≤ h ≤ s− 1;

(b) 0 ≤ δh,m−2 ≤ max{nh − (p− 1), 0}, for α < h < ω;

(c) 0 ≤ δα,m−2 ≤ nα − p.

For 0 ≤ j ≤ m− 3, we have

(d) δhj = θhj, for 0 ≤ h < α or ω < h ≤ s− 1;

(e) 0 ≤ δh,j ≤ max{δh,j+1 − (p− 1), 0}, for α ≤ h ≤ ω.

For simplicity, from now on, τ ih := τ ih(n).

Corollary 3.4.31. For 0 ≤ j ≤ m− 3, we have
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3. On The Riemann Hypothesis of Positive Characteristic

(a) τ
δh,j+1

h ≥ psτ
δh,j
h ;

(b)
∑j

i=0 τ
δh,i
h ≤ ps

ps−1
τ
δh,j
h ≤ 1

ps−1
τ
δh,j+1

h ;

(c)
∑δh,j

i=0 τ
i
h ≤

ps(p−1)
ps−1

τ
δh,j
h ≤ p−1

ps−1
τ
δh,j+1

h .

Now we are ready to prove the existence of such a Z, i.e., the set UB
m(n) is

nonempty.

Proposition 3.4.32. We use the same notation as above. Then the set UB
m(n) is

nonempty, i.e., the Z defined in Definition 3.4.29 exists.

Proof. By Lemma 3.4.5, UB
m(n) is nonempty if and only if the matrix B satisfies

the following two conditions:

(i) b0 + b1 + . . .+ bm−1 = Γ(n) = n;

(ii) bj ∈ J for j = 0, 1, . . . ,m− 2.

The first condition is fulfilled by construction:

b0 + b1 + . . .+ bm−1 = δm−1 = E−1dm−1 = Γ(n).

To show the second condition, we recall that bj = δj+1 − δj = E(dj+1 − dj). By
Lemma 3.4.3, J = EZs ∩ (Ns\{0}), so it suffices to show that dj+1 − dj ∈ Zs and
bj ∈ Ns\{0} . The first one is immediate by the definition of d. To show bj > 0
for 0 ≤ j ≤ m− 2, it is equivalent to show that δj+1 > δj.

For 0 ≤ j ≤ m− 3, we know from Lemma 3.4.30(e) that 0 ≤ δh,j ≤ max{δh,j+1 −
(p − 1), 0} for α ≤ h ≤ ω, thus δh,j ≤ δh,j+1 for these h’s and the equality holds
when δh,j = δh,j+1 = 0. By Lemma 3.4.30(d), for 0 ≤ h < α or ω < h ≤ s − 1,
δh,j = θh,j ≤ θh,j+1 = δh,j+1. If bj = 0, then δj = δj−1, but this cannot be since
d0,j = w0,j = j for all j. So bj > 0 for 0 ≤ j ≤ m− 3.

For j = m− 2:

(1) for 0 ≤ h < α and ω < h ≤ s− 1, by Lemma 3.4.30(a),

δh,m−2 = nh = δh,m−1;

(2) for α < h ≤ ω, by Lemma 3.4.30(b),

δω,m−2 ≤ max{nh − (p− 1), 0} ≤ uh = δh,m−1;
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3.5. Proof of the main theorem

(3) for h = α, by Lemma 3.4.30(c),

δα,m−2 ≤ nα − p < nα = δα,m−1.

So δm−1 > δm−2.

3.5 Proof of the main theorem

In this section, we will use the tools developed from the previous sections to prove
the main theorems given below. Suppose now g1 = ps+p

2
.

Theorem 3.5.1. Suppose that g ≤ g1. For any pair (m,n), if Um(n) is nonemtpy,
then any optimal element must be greedy.

We will prove it by contradiction. Suppose that there exists a pair (m,n) such
that Um(n) is nonempty and contains an optimal element which is different from
the greedy element, such that the last entry in the optimal element is nonzero,
then we can construct a Z as in Definition 3.4.29. We will show that such a Z has
a larger weight than O. Before getting our hands on the proof, we first make some
observations.

Lemma 3.5.2 ([She98, Lemma 7.2]). degp(Zm−1) = degp(Gm−1) > ω̃.

Define

Q :=
ω−1∑
h=α

τ
δh,m−2

h . (3.2)

If Q 6= 0, then we define r to be its p-degree, and r̃ ≡ r (mod s) with 0 ≤ r̃ ≤ s−1.
The upcoming lemmas concern the p-degree of Q.

Lemma 3.5.3. Suppose Q is not zero, then

degp(Zm−1) ≥ r + s.

Proof. Note that if δh,m−2 = 0, then τ
δh,m−2

h = 0 by definition. If nonzero, τ jh is
a power of p whose exponent is congruent to h mod s. So the sum at the right
hand side of 3.2 is a sum of distinct p-powers, in particular, there can never be

carryovers. So r must be the exponent of some τ
δh,m−2

h , say pr = τ
δh′,m−2

h′ with
α ≤ h′ ≤ ω − 1. In particular, δh′,m−2 is positive. By Lemma 3.4.30 (b) and (c),
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3. On The Riemann Hypothesis of Positive Characteristic

0 ≤ δh′,m−2 ≤ max{nh′ − (p− 1), 0} if h′ 6= α, or 0 ≤ δh′,m−2 ≤ nh′ − p otherwise.
In both cases, n′h − (p− 1) must be at least δh′,m−2, hence

bh′,m−2 = nh′ − δh′,m−2 ≥ p− 1,

i.e., there exist at least p− 1 terms in τh′(Zm−1). Since pr ∈ τh′(Zm−2), we get

max τ(Zm−1) ≥ max τh′(Zm−1) ≥ pr+s

by the τ -monotonicity of Z.

Lemma 3.5.4. Suppose Q is nonzero with p-degree r. Suppose k′ 6≡ r (mod s)
and pk

′ ∈ τ(Zm−1), then

degp(Zm−1 − pk
′
) ≥ r + s.

Proof. Let h′ be such that τ
δh′,m−2

h′ = pr. Then it is easy to see that r ≡ h′ 6≡
k′ (mod s), hence τh′(Zm−1−pk

′
) = τh′(Zm−1). The rest of the proof is exactly the

same as above.

Corollary 3.5.5. Suppose Q is nonzero with p-degree r. Recall that Om−1 = pω̃.
Suppose pω̃+1 ∈ τ(Zm−1), then

degp(Zm−1 − pω̃+1) ≥ r + s.

Proof. If ω̃ + 1 6≡ r (mod s), then it follows directly from Lemma 3.5.4.

Otherwise, if ω̃ + 1 ≡ r (mod s), then we must have

ω = s− 1, α = 0, and r ≡ α (mod s).

By Lemma 3.4.30 (c), we have that

p ≤ nα − δα,m−2.

As pω̃+1 ∈ τ(Zm−1), it must lie in τα(Zm−1). Hence

τα(Zm−1 − pω̃+1) = τα(Zm−1)\{pω̃+1}

contains at least p− 1 terms. By the τ -monotonicity of Z, we have

degp(Zm−1 − pω̃+1) ≥ logp(max τα(Zm−1 − pω̃+1)) ≥ r + s.
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Next, we need some estimates on the weights. Let Z be as above. Then for
0 ≤ j ≤ m − 2, we define Z̃j and Õj’s in the same fashion as X̃ in Section 3.2.5,
i.e.,

Z̃j := Zj + Zj−1 + . . .+ Z0

Õj := Oj +Oj−1 + . . .+O0.

Lemma 3.5.6. We have

m−3∑
j=0

ϕ̃j(Z̃j − Õj) ≤
ps(p− 1)

(ps − 1)2
(1 + c)(Q+ pω̃),

where

c =

{
p−s(m−2−g) if m− 3 ≥ g;

g otherwise.

Proof. For 0 ≤ j ≤ m− 3, ϕ̃j ≤ g, and by definition,

Z̃j = Zj + Zj−1 + . . .+ Z0 =
s−1∑
h=0

δh,j∑
i=0

τ ih

Õj = Oj +Oj−1 + . . .+O0 =
s−1∑
h=0

θh,j∑
i=0

τ ih

Note that δh,i and θh,i might be 0 for some h and i. By Lemma 3.4.30 (d), we have
that δh,i = θh,i for 0 ≤ h < α or ω < h ≤ s− 1, so

ϕ̃j(Z̃j − Õj) = ϕ̃j

s−1∑
h=0

(

δh,j∑
i=0

τ ih −
θh,j∑
i=0

τ ih)

= ϕ̃j

ω∑
h=α

(

δh,j∑
i=0

τ ih −
θh,j∑
i=0

τ ih)

≤ ϕ̃j

ω∑
h=α

δh,j∑
i=0

τ ih.

By Corollary 3.4.31(c), we have

δh,j∑
i=0

τ ih ≤
ps(p− 1)

ps − 1
τ
δh,j
h ≤ p− 1

ps − 1
τ
δh,j+1

h .

51



3. On The Riemann Hypothesis of Positive Characteristic

Now we plug these arguments into the above estimate of
∑m−3

j=0 ϕ̃j(Z̃j − Õj), we
have

m−3∑
j=0

ϕ̃j(Z̃j − Õj) ≤
m−3∑
j=0

ϕ̃j(
ω∑

h=α

δh,j∑
i=1

τ ih)

≤
m−3∑
j=0

ϕ̃j(
ω∑

h=α

p− 1

ps − 1
τ
δh,j+1

h )

≤
ω∑

h=α

p− 1

ps − 1
(
m−3∑
j=0

τ
δh,j+1

h +

min{m−3,g}∑
j=0

(ϕ̃j − 1)τ
δh,j
h ).

If m− 3 ≥ g, then

m−3∑
j=0

ϕ̃j(Z̃j − Õj) ≤
ω∑

h=α

p− 1

ps − 1
(
m−3∑
j=0

τ
δh,j+1

h +

min{m−3,g}∑
j=0

τ
δh,j
h )

≤
ω∑

h=α

p− 1

ps − 1

ps

ps − 1
(1 + c)τ

δh,m−2

h ,

where c = p−s(m−2−g);

if m− 3 < g, then

m−3∑
j=0

ϕ̃j(Z̃j − Õj) ≤
ω∑

h=α

p− 1

ps − 1
(1 +

g

m− 2
)
m−3∑
j=0

τ
δh,j+1

h

≤
ω∑

h=α

p− 1

ps − 1
(1 +

g

m− 2
)

ps

ps − 1
τ
δh,m−2

h

In particular, we have that δω,m−2 = nω, hence τ
δω,m−2
ω = pω̃. Therefore,

m−3∑
j=0

ϕ̃j(Z̃j − Õj) ≤
ps(p− 1)

(ps − 1)2
(1 + c)(Q+ pω̃),

where

c =

{
p−s(m−2−g) if m− 3 ≥ g;

g otherwise.

Hence we have the desired inequality.

Now we are ready to prove Theorem 3.5.1.
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Proof to Theorem 3.5.1: Recall that as in Remark 3.2.5, for anyX = (X0, . . . , Xm−1)
in Um(n), we can write the weight of X as:

wt(X) = ϕm−1n−
m−2∑
j=0

ϕ̃jX̃j,

where ϕ̃j = ϕj − ϕj−1, and X̃j = X0 + . . . + Xj for j = m − 2, . . . , 0. Note that
X̃m−2 = n−Xm−1.

Then with the help of Z̃’s and Õ’s, we can write the difference of the weights as:

wt(Z)− wt(O) =
m−2∑
j=0

ϕ̃j(Õj − Z̃j).

For j = m− 2, since Õm−2 = n− Om−1 and Z̃m−2 = n− Zm−1, where Om−1 = pω̃

by Proposition 3.4.23(v),

ϕ̃m−2(Õm−2 − Z̃m−2) = ϕ̃m−2(Zm−1 − pω̃).

And it is at least Zm−1 − pω̃ since ϕ̃m−2 ≥ 1. Together with Lemma 3.5.6 we have

wt(Z)− wt(O) ≥ Zm−1 − pω̃ − (p− 1)
ps

(ps − 1)2
(1 + c)(Q+ pω̃).

Since g ≤ ps+p
2

where s ≥ 2. it is easy to see that when q 6= 4, we always have

ps

(ps − 1)2
(1 + c) ≤ ps

(ps − 1)2
(1 + g) ≤ 1.

Hence by Lemma 3.5.6:

wt(Z)− wt(O) ≥ Zm−1 − pω̃+1 − (p− 1)Q.

We want to show that this is positive. If it is true, then we get a contradiction to
the optimality of O.

Recall that we denote by Q :=
∑ω−1

h=α τh,δh,m−2
and r = degp(Q).

If pω̃+1 6∈ τ(Q), then in the summation pω̃+1 + (p− 1)Q, the greatest coefficient of
any p-power is at most p− 1, there cannot be any carryovers, hence

degp(p
ω̃+1 + (p− 1)Q) = max{ω̃ + 1, r}.

As shown in Lemma 3.5.2 and Lemma 3.5.3, both ω̃ and r are smaller than
degp(Zm−1). Hence we consider the following two cases:
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• if degp(Zm−1) > ω̃ + 1, then we have

degp(Zm−1) > degp(p
ω̃+1 + (p− 1)Q);

• if degp(Zm−1) = ω̃ + 1, then by Corollary 3.5.5 we have

degp(Zm−1 − pω̃+1) ≥ r + s > r = degp((p− 1)Q).

Otherwise, if pω̃+1 ∈ τ(Q), then there will be carryovers, and we have

degp(p
ω̃+1 + (p− 1)Q) ≤ r + 1 < r + s < degp(Zm−1).

Either way, we always get that Zm−1 > pω̃+1 + (p− 1)Q, hence

wt(Z)− wt(O) > 0.

When q = 4, then for elements in J2 must have the shape (1, 1)t, (3, 0)t or (0, 3)t.
By Proposition 3.4.23, for j = 0, 1, . . . ,m− 2, Γ(Oj) must lie in J0

2 , hence must of
the form (1, 1)t or (3, 0)t. Moreover, Γ(Gm−1) = (2, 0)t by (iii) and (v).

Claim 1. For O, we have Γ(O0) = (3, 0)t and Γ(Oj) = (1, 1)t for j = 1, . . . ,m−2.
For G, we have Γ(Gj) = (1, 1)t for j = 0, 1, . . . ,m− 2.

Proof. If Γ(Oj) = (1, 1)t for all j = 0, 1, . . . ,m − 2, then Γ(n) = (m − 1,m)t

and Γ(n − Gm−1) = (m − 3,m)t ∈ Jm−1 which contradicts to the existence of
G̃ := (G0, . . . , Gm−2, 0) ∈ Um(n−Gm−1).

Now let i be the largest such that Γ(Oi) = (3, 0)t. Suppose that i > 0. Observe
that n′ := Oi + . . .+Om−1, together with an optimal element (Oi, Oi+1, . . . , Om−1)
satisfies Proposition 3.4.23, but smaller than n, which contradicts to the minimality
of n as in the construction.

The statement concerning G is a direct consequence.

We can write down O and G explicitly

O0 = τ 1
0 + τ 2

0 + τ 3
0 ;

Oj = τ j+3
0 + τ j+1

1 , for j = 1, . . . ,m− 2;

Om−1 = τm1 ;

Gj = τ j+1
0 + τ j+1

1 , for j = 0, 1, . . . ,m− 2;

Gm−1 = τm0 + τm+1
0 .
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Now let us compare the weights of O and G:

wt(G)− wt(O) =ϕ̃m−2(τm+1
0 − τm−1

1 )−
m−2∑
i=1

ϕ̃i−1τ
i
1 +

m∑
i=3

(ϕ̃i−2 + ϕ̃i−3)τ i0

>(τm+1
0 − τm−1

1 )−
m−2∑
i=1

ϕ̃i−1τ
i
1.

The aim is to show that wt(G)− wt(O) > 0, which contradicts to the optimality
of O.

If m− 3 > 0, follow the above strategy and we can get the desired; if m = 3, then

wt(G)− wt(O) > τ 4
0 − τ 2

1 − ϕ̃0τ
1
1 ≥ 0.

Theorem 3.5.7. Suppose that p 6= q and g ≤ p+q
2

. Let n be a fixed positive integer.

(a) The x-coordinates of the break points of the Newton polygon associated to
ζA(−n, T ) are ϕi for all i = 0, 1, . . ..

(b) The slope of the i-th segment between ϕi−1 and ϕi is Gi
i, where Gi

i appears as
the last entry of the greedy element in Ui+1(n). In particular, the sequence
(Gi

i)i is strictly increasing.

Let m ≤ g be the smallest positive integer such that ϕ̃i = 1 for all i > m. Except
for the ϕm zeros of lowest valuations, all other zeros of ζA(−n, T ) are simple with
pairwise distinct valuations.

Proof. Recall that the definition of Goss-Thakur zeta function ζA(−n, T ) is

ζA(−n, T ) :=
∑
d≥0

T dSd(n),

where Sd(n) :=
∑

a∈A+,d
an.

Thanks to those f0, . . . , fd, . . . we defined before, we can rewrite Sd(n) as follows:

• if d 6∈ ϕ(N), then Sd(n) = 0;
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• if there exists some m ∈ N such that d = ϕ(m), then

Sd(n) =
∑

a∈A+,d

an =
∑

a∈A+,ϕm

an

=
∑

a0,...,am−1∈Fq

(a0f0 + . . .+ am−1fm−1 + fm)n

=
∑

a0,...,am−1∈Fq

∑
X0+···+Xm=n

(
n

X0, . . . , Xm

)
aX0

0 . . . a
Xm−1

m−1 f
X0
0 . . . fXmm

=
∑

X∈Um+1(n)

(
n

X0, . . . , Xm

)
(−1)mfX0

0 . . . fXmm .

Denote by TX the term corresponding to X. Clearly, v(TX) = −wt(X). By
Theorem 3.5.1, when g ≤ p+q

2
, there exists a unique term with maximal weight,

which is the greedy element in Um(n). Hence

v(Sϕm−1(n)) = −wt(Gm),

where Gm denotes the greedy element in Um(n).

Now we want to compare the differences of weights of Gm’s. By greediness and
Corollary 3.4.22, for Gm−1 = (Gm−1

0 , . . . , Gm−1
m−1) and Gm = (Gm

0 , . . . , G
m
m), we have

Gm−1
i =

{
Gm
i , for i = 0, . . . ,m− 2;

Gm
m−1 +Gm

m, for i = m− 1.

Hence

wt(Gm)− wt(Gm−1)

=ϕ0G
m
0 + . . .+ ϕm−1G

m
m−1 + ϕmG

m
m − (ϕ0G

m−1
0 + . . .+ ϕm−1G

m−1
m−1)

=ϕm−1G
m
m−1 + ϕmG

m
m − ϕm−1(Gm

m−1 +Gm
m)

=(ϕm − ϕm−1)Gm
m = ϕ̃m−1G

m
m.

This implies that when we look at the Newton polygon attached to ζA(−n, T ), the
points are (ϕm,−wt(Gm)) and the line segments have slopes −Gm

m and horizontal
width ϕ̃m−1 for m = 1, 2, . . .. They are clearly of strictly increasing order, hence
the Newton polygon consists of all these line segments.

Recall that the definition of m, ϕ̃i = 1 for all i > m. Hence except for the first m
slopes, all the line segments in the Newton polygon have horizontal width 1. This
is equivalent to say, that except for the zeroes of the lowest m valuations, which
mount to ϕm zeros, all other zeroes of ζ∞(−n, T ) are simple and have pairwise
distinct valuations.
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Remark 3.5.8. By Lemma 3.2.1, ϕ̃i = 1 for i ≥ g. Hence a somewhat weaker
version of Theorem 3.5.7 states that all the zeros except for the 2g zeros with
smallest valuations are simple with pairwise distinct valuations.

3.6 Examples: Non-rational Class Number One

Curves With a Rational Point

In this section, we will look at those curves of class number 1. In these cases, we
have a better understanding of the slopes as well as the zeros.

Example 3.6.1. Our first example is the curve defined by y2 +y = x3 +x+1 over
F2. This is the curve occurred in [Böc13]. Note that in this case, p = q = 2, and
this curve is an elliptic curve, i.e., g = 1. We can conclude from Theorem 3.3.2:

Proposition 3.6.2. Let n = 2n0 + 2n1 + . . . + 2nl be the 2-adic expansion of a
positive integer n with n0 < n1 < . . . < nl. Then the Newton polygon of ζA(−n, T )
has slopes

−(2n1 + . . .+ 2nl),−(2n2 + . . .+ 2nl), . . . ,−2nl ,

of increasing order. Furthermore, apart from the first one which has width 2, all
the other slopes have horizontal width 1.

In terms of zeros of ζA(−n, T ), except for the two zeros of smallest valuation, all
the other zeros are simple with pairwise distinct valuations.

Compare with [Böc13, Corollary 6.3], we need to remember that an interpolation
form of ζA(−n, T ) is treated there. Using the formula ζA(−n, T ) = zA(−n, Tπ−n∞ )
with π∞ a uniformizer at ∞, it is easy to see that they imply the same result.

Example 3.6.3. Let C be defined by y2 + y = x3 + ζ3 over F4 where ζ3 is a
primitive 3rd root of unity. In this case, q = 4 = p2 and the curve is also elliptic,
i.e., g = 1. Similar as the above example, we have

Proposition 3.6.4. Let n be a positive integer and n = n0 + n1 + . . . + nl where
n ∈ Il+1\Il+2 and (n0, n1, . . . , nl) is the greedy element in Ul+1(n). Then the slopes
of Newton polygon of ζA(−n, T ) are

−(n1 + . . .+ nl),−(n2 + . . .+ nl), . . . ,−nl,

of increasing order. Furthermore, apart from the first one which has width 2, all
the other slopes have horizontal width 1.

In terms of zeros of ζA(−n, T ), except for the two zeros of smallest valuation, all
the other zeros are simple with pairwise distinct valuations.
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Example 3.6.5. Let C be defined by y2 = x3 − x − 1 over F3. In this case,
p = q = 3 and the curve is elliptic, i.e., g = 1. Similarly, we have

Proposition 3.6.6. Let n be a positive integer and n =
∑l

i=0 3ki where l =
digsum3(n), k0 ≤ k1 ≤ . . . ≤ kl and at most two ki’s are the same. Set ni :=
3k2i + 3k2i+1 for i = 0, 1, . . . , b(l − 1)/2c, and nl := n− (n0 + . . .+ nl−1). Then the
slopes of Newton polygon of ζA(−n, T ) are

−(n1 + . . .+ nl),−(n2 + . . .+ nl), . . . ,−nl,

of increasing order. Furthermore, apart from the first one which has width 2, all
the other slopes have horizontal width 1.

In terms of zeros of ζA(−n, T ), except for the two zeros of smallest valuation, all
the other zeros are simple with pairwise distinct valuations.

Example 3.6.7. Let C be defined by y2 + y = x5 + x3 + 1 over F2. Unlike the
previous cases, this curve has genus 2, and the gap numbers are 1 and 3.

Proposition 3.6.8. Let n = 2n0 + 2n1 + . . . + 2nl be the 2-adic expansion of a
positive integer n with n0 < n1 < . . . < nl. Then the Newton polygon of ζA(−n, T )
has slopes

−(2n1 + . . .+ 2nl),−(2n2 + . . .+ 2nl), . . . ,−2nl ,

of increasing order. Furthermore, apart from the first two both of which have width
2, all the other slopes have horizontal width 1.

In terms of zeros of ζA(−n, T ), except for the four zeros of smallest valuation, all
the other zeros are simple with pairwise distinct valuations.

3.7 Some (Counter-)Examples

As we have seen from previous discussion, this method may fail for curves whose
genera are large with respect to p and q, where q 6= p. We first observe the following
examples.

Example 3.7.1. As the first counterexample, let us first consider the case q = 4
and the point ∞ is an F4-rational non-Weierstrass point. Hence its Weierstrass
gap sequence is by definition {1, 2, 3, · · · , g}. Then ϕi = g + i for i ≥ 1, hence
ϕ̃i = 1, i ≥ 1, ϕ̃0 = g + 1. We would like to find a ’small’ counterexample
in the sense of the 2-digit sum of n. By Remark 3.4.24, we can only expect
counterexamples when m is at least 3. Hence let us set m to be 3, i.e., Γ(n) ∈ I4.
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Observe that in this case, for any a ∈ J3, it must be of one of the following forms:
(1, 1), (3, 0) or (0, 3). To get a small digsum2(n), it is natural to consider 2 6| n and
Γ(n) = (3, 0)+(1, 1)+(1, 1) = (5, 2), i.e., n = 20 +2i1 +2i2 +2i3 +2i3 +2i4 +2j1 +2j2

where 0 < i1 < i2 < i3 < i4 are even and j1 < j2 are odd. To get an optimal O
different from the greedy G, O0 6= G0, hence Γ(O0) 6= Γ(G0) by the τ -monotonicity.
Therefore, we have Γ(G) is either(

3 1 1
0 1 1

)
or

(
1 1 3
1 1 0

)
.

If it is the first case, then we have j2 > i3 and j1 > i2. And it is easy to check that
O must be the same as G. So we can conclude that

G =

(
1 1 3
1 1 0

)
, O =

(
3 1 1
0 1 1

)
.

By the τ -monotonicity of G, we must have i3 > j2. Now let us compare the weights
of G and O:

wt(G) = (g + 2)n− (20 + 2j1 + 2i1 + 2j2)− (g + 1)(20 + 2j1)

wt(O) = (g + 2)n− (20 + 2i1 + 2i2 + 2j1 + 2i3)− (g + 1)(20 + 2i1 + 2i2).

Then wt(O) − wt(G) = (g + 1)(2j1 − 2i2 − 2i1) − (2i3 + 2i2 − 2j2). Hence j1 > i2.
Therefore we get the ordering of τ(n):

2i4 > 2i3 > 2j2 > 2j1 > 2i2 > 2i1 > 20,

and thus a candidate of n as n = 20 + 22 + 24 + 25 + 27 + 28 + 210. It is easy to see
that the greedy element in U3(n) is G = (20 + 25, 22 + 27, 24 + 28 + 210), and the
element O = (20 + 22 + 24, 25 + 28, 27 + 210) lies in U3(n) and is the only optimal
element in U3(n)\{G}. By comparing the difference of the weights, we can see
that when g ≥ 11, wt(O) ≥ wt(G), i.e., an optimal element is not necessary to be
the greedy one. In particular, when g = 11, we obtain two optimal elements, G
and O.

When g = 11, by computation, we can see that there are exactly two optimal
elements, namely O and G. Both of them have weight 18432, while the sum of the
corresponding terms has degree 18428, which is exactly the degree of the coefficient
Sg+2.

For g > 11, the above optimal element O is the only optimal one and hence the
degree of the coefficient Sg+2 is just wt(O).
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Example 3.7.2. Suppose that∞ a non-Weierstrass point as in last example. For
any prime p and q = p2, we consider n as follows:

n =(p− 1)p0 + (p− 1)p2 + . . .+ (p− 1)p2p

+ (p− 1)p2p+1 + (p− 1)p2p+3

+ (p− 1)p2p+4 + (p− 1)p2p+6.

The greedy element is

G = ((p− 1)p0 + . . .+ (p− 1)p2p−4 + (p− 2)p2p−2 + p2p+1,

p2p−2 + (p− 2)p2p + (p− 2)p2p+1 + p2p+3,

p2p + (p− 2)p2p+3 + (p− 1)p2p+4 + (p− 1)p2p+6).

Its weight is

wt(G) =(g + 2)n− ((p− 1)p0 + . . .+ (p− 1)p2p−2 + (p− 2)p2p + (p− 1)p2p+1

+ p2p+3)− (g + 1)((p− 1)p0 + . . .+ (p− 1)p2p−4 + (p− 2)p2p−2 + p2p+1).

And the only optimal element in U3(n)\{G} is

O = ((p− 1)p0 + . . .+ (p− 1)p2p,

(p− 1)p2p+1 + (p− 1)p2p+4,

(p− 1)p2p+3 + (p− 1)p2p+6).

Its weight is

wt(O) =(g + 2)n− ((p− 1)p0 + . . .+ (p− 1)p2p + (p− 1)p2p+1 + (p− 1)p2p+4)

− (g + 1)((p− 1)p0 + . . .+ (p− 1)p2p).

By observing the difference of the weight, we can conclude that

(i) if g = p5−p4−p2−1, then there exist two optimal elements in U3(n), namely
O and G;

(ii) if g < p5 − p4 − p2 − 1, then there exists a unique optimal element in U3(n),
and it coincides with the greedy element G;

(iii) if g > p5 − p4 − p2 − 1, then there exists a unique optimal element in U3(n),
which is just O.

In order to achieve a better bound of g, we vary n such that it is of the form

n =(p− 1)p0 + . . .+ (p− 1)p2p

+ (p− 1)pi + (p− 1)pi+2

+ (p− 1)pj + (p− 1)pj+2,
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where i > 2p odd and j > i + 2 even. Using same method as above, the greedy
element G is given by

G2 = (p− 1)pj+2 + (p− 1)pj + (p− 2)pi+2 + p2p,

G1 = (p− 2)p2p + p2p−2 + pi+2 + (p− 2)pi,

G0 = (p− 2)p2p−2 + (p− 1)p2p−4 + . . .+ (p− 1)p0 + pi,

and the only optimal element in U3(n)\{G}, denoted by O, is given by

O2 = (p− 1)pj+2 + (p− 1)pi+2,

O1 = (p− 1)pj + (p− 1)pi,

O0 = (p− 1)p2p + . . .+ (p− 1)p0.

Their weights are

wt(G) =(g + 2)n− ((p− 1)p0 + . . .+ (p− 1)p2p−2 + (p− 2)p2p + (p− 1)pi + pi+2)

− (g + 1)((p− 1)p0 + . . .+ (p− 1)p2p−4 + (p− 2)p2p−2 + pi);

wt(O) =(g + 2)n− ((p− 1)p0 + . . .+ (p− 1)p2p + (p− 1)pi + (p− 1)pj)

− (g + 1)((p− 1)p0 + . . .+ (p− 1)p2p).

Look at the difference and we can see that in order to assure the element O having
a larger weight than the greedy element, we must have that

g >
(p− 1)pj − pi+2 − p2p

pi − (p− 1)p2p − p2p−2
.

When j = i + 3 and i tends to ∞, we get a lower bound of the right hand side,
which is

p4 − p3 − p2.

Therefore, as long as g > p4 − p3 − p2 − 1, we can always find some n of this form
such that wt(O) > wt(G). In particular, when p = 2, this bound coincides with
the bound we already have in the previous sections, namely (p+ q)/2 = 3.

Example 3.7.3. When m = 4, suppose now that ∞ is a non-Weierstrass point
and n is an integer such that E−1Γ(n) = (4, 2p+ 2). Then clearly Γ(m) ∈ J5. By
computation, we see that the following n contributes to an interesting example

n =(p− 1)p0 + . . .+ (p− 1)p2p

+ (p− 1)pi + (p− 1)pi+2

+ (p− 1)pj + . . .+ (p− 1)pj+2p+4,

where i > 2p odd and j > i+ 2 even.
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Comparing with the above example, we see that gives the same bound on g in
order to make sure that the element O has a larger weight than the greedy one,
where O is given by

O3 = (p− 1)pj+2p+4 + . . .+ (p− 1)pj+4,

O2 = (p− 1)pj+2 + (p− 1)pi+2,

O1 = (p− 1)pj + (p− 1)pi,

O0 = (p− 1)p2p + . . .+ (p− 1)p0,

and G is

G3 = (p− 1)pj+2p+4 + . . .+ (p− 1)pj+4,

G2 = (p− 1)pj+2 + (p− 1)pj + p2p + (p− 2)pi+2,

G1 = (p− 2)p2p + p2p−2 + pi+2 + (p− 2)pi,

G0 = (p− 2)p2p−2 + (p− 1)p2p−4 + . . .+ (p− 1)p0 + pi.

In this case, the weights are computed as follows:

wt(O) =(g + 3)n− ((p− 1)p0 + . . .+ (p− 1)p2p + (p− 1)pi + (p− 1)pi+2

+ (p− 1)pj + (p− 1)pj+2)− ((p− 1)p0 + . . .+ (p− 1)p2p + (p− 1)pi

+ (p− 1)pj)− (g + 1)((p− 1)p0 + . . .+ (p− 1)p2p);

wt(G) =(g + 3)n− ((p− 1)p0 + . . .+ (p− 1)p2p + (p− 1)pi + (p− 1)pi+2

+ (p− 1)pj + (p− 1)pj+2)− ((p− 1)p0 + . . .+ (p− 1)p2p−2 + (p− 2)p2p

+ (p− 1)pi + pi+2)− (g + 1)((p− 1)p0 + . . .+ (p− 1)p2p−4 + (p− 2)p2p−2

+ pi).

It is clear that we get the same asymptotic bound of g as in the above example,
namely

p4 − p3 − p2 − 1.

Example 3.7.4. Let m and ∞ be as above. Suppose now p is an odd prime. Let
n be

n =(p− 1)p0 + . . .+ (p− 1)p2p

+ (p− 1)pi + (p− 1)pi+2 + (p− 1)pi+4

+ (p− 1)pj + (p− 1)pj+2 + (p− 1)pj+4

where i > 2p odd and j > i+ 4 even. Then as in the second example, the greedy
element G is given by

G3 = (p− 1)pj+4 + (p− 1)pj+2 + (p− 1)pj + 2p2p + (p− 3)pi+4,

G2 = (p− 3)p2p + 2p2p−2 + 2pi+4 + (p− 3)pi+2,

G1 = (p− 3)p2p−2 + 2p2p−4 + 2pi+2 + (p− 3)pi,

G0 = (p− 3)p2p−4 + (p− 1)p2p−6 + . . .+ (p− 1)p0 + 2pi.
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There exists a unique optimal element O in U4(n)\{G}, which is

O3 = (p− 1)pj+4 + (p− 1)pi+4,

O2 = (p− 1)pj+2 + (p− 1)pi+2,

O1 = (p− 1)pj + (p− 1)pi,

O0 = (p− 1)p2p + . . .+ (p− 1)p0.

Their weights are

wt(G) =(g + 3)n− ((p− 1)p0 + . . .+ (p− 1)p2p−2 + (p− 3)p2p + (p− 1)pi

+ (p− 1)pi+2 + 2pi+4)− ((p− 1)p0 + . . .+ (p− 1)p2p−4 + (p− 3)p2p−2

+ (p− 1)pi + 2pi+2)− (g + 1)((p− 1)p0 + . . .+ (p− 1)p2p−6 + (p

− 3)p2p−4 + 2pi);

wt(O) =(g + 3)n− ((p− 1)p0 + . . .+ (p− 1)p2p + (p− 1)pi + (p− 1)pi+2

+ (p− 1)pj + (p− 1)pj+2)− ((p− 1)p0 + . . .+ (p− 1)p2p + (p− 1)pi

+ (p− 1)pj)− (g + 1)((p− 1)p0 + . . .+ (p− 1)p2p).

The difference of the weights wt(O)− wt(G) is

wt(O)− wt(G) =− (2p2p − 2pi+4 + (p− 1)pj + (p− 1)pj+2)

− (2p2p−2 + (p− 1)p2p − 2pi+2 + (p− 1)pj)

+ (g + 1)(−2p2p−4 − (p− 1)p2p−2 − (p− 1)p2p + 2pi).

In order to get that wt(O) > wt(G), we will need

g + 1 >
(p− 1)pj+2 + 2(p− 1)pj − 2pi+4 − 2pi+2 + (p+ 1)p2p + 2p2p−2

2pi − (p− 1)p2p − (p− 1)p2p−2 − 2p2p−4
.

Let j = i + 5 and i tend to infinity and we get a lower bound of the right hand
side, hence an asymptotic bound of the upper bound of g, which is

p− 1

2
p7 − (p− 1)p5 − p4 − p2 − 1.

This bound is clearly worse than the one in the last example.

Example 3.7.5. Now let p = 2 and s = 3, i.e., q = 8. Same as above, we suppose
that ∞ is a non-Weierstrass point. Let

n = 20 + . . .+ 218 + 219 + 220 + 222 + 223 + 224 + 227.
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Clearly, it lies in J4. When we consider U3(n), we can see that the greedy element
G = (G0, G1, G2) is given by

G2 = 218 + 223 + 224 + 227

G1 = 215 + 220 + 222

G0 = 20 + . . .+ 212 + 219.

It is of weight

wt(G) =(g + 2)n− (20 + . . .+ 215 + 219 + 220 + 222)

− (g + 1)(20 + . . .+ 212 + 219).

One can show that there exists a unique optimal element in the set U3(n)\{G},
denoted by O = (O0, O1, O2), where

O2 = 222 + 223 + 227

O1 = 219 + 220 + 224

O0 = 20 + . . .+ 218.

Its weight is

wt(O) = (g + 2)n− (20 + . . .+ 218 + 219 + 220 + 224)− (g + 1)(20 + . . .+ 218).

Now we look at the difference of the weights:

wt(O)− wt(G) = −(224 − 222 + 218) + (g + 1)(219 − 218 − 215).

Hence, when g ≥ 55, the weight of O is not smaller than that of G. In particular,
when g = 55, there exists exactly two optimal elements in U3(n), namely O and
G.

Similar as above, we can generalize this to arbitrary p and get an asymptotic bound
of the genus. Here

n =(p− 1)p0 + . . .+ (p− 1)p3i + (p− 1)p3j1+1 + (p− 1)p3j1+2 + (p− 1)p3j2+1

+ (p− 1)p3j2+2 + (p− 1)p3k1 + (p− 1)p3k2 ,

where i = p2 + p ≤ j1 < j2 < k1 < k2.

The greedy element G is given by

G3 = p3i + (p− 2)p3j2+1 + (p− 1)p3j2+2 + (p− 1)p3k1 + (p− 1)p3k2

G2 = p3(i−1) + (p− 2)p3i + (p− 2)p3j1+1 + (p− 1)p3j1+2 + p3j2+1

G0 = (p− 1)p0 + . . .+ (p− 1)p3(i−2) + (p− 2)p3(i−1) + p3j1+1.
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And the unique optimal element O in U3(n)\{G} is given by

O2 = (p− 1)p3j2+1 + (p− 1)p3j2+2 + (p− 1)p3k2

O1 = (p− 1)p3j1+1 + (p− 1)p3j1+2 + (p− 1)p3k1

O0 = (p− 1)p0 + . . .+ (p− 1)p3i.

Compare the weights and we get

wt(O)− wt(G) =− ((p− 1)p3k1 − p3j2+1 + p3i

+ (g + 1)(p3j1+1 − (p− 1)p3i − p3(i−1)).

Hence we can get an asymptotic bound for g:

(p− 1)p5 − p3 − 1.

3.8 Example: Hyperelliptic curves and more

In this section, let C be a hyperelliptic curve. Then the gap sequence is {1, 3, . . . , 2g−
1}, i.e., ϕ̃i = 2 for i < g. Recall that we have shown in Proposition 3.4.14 that the
weight of optimal or greedy element is bounded as follows:

φmn ≤ wt(X) ≤ ϕm−1(n),

where φm are given as follows:

φ1 =0, φ2 =
q + p− 2

q + p
ϕ1,

φm =
q + p− 2

q + p
((

2

q + p
)m−2ϕ1 + . . .+

2

q + p
ϕm−2 + ϕm−1).

Lemma 3.8.1. For a hyperelliptic curve, we always have φm > ϕm−2.

Proof. Same as in the proof to Lemma 3.4.16, we have that

φm − ϕm−2 = (1− χ)ϕ̃m−2 − χ2ϕ̃m−3 − . . .− χm−1ϕ̃0.

If m− 2 < g, then

φm − ϕm−2 = 2(1− χ)− 2χ2 − . . .− 2χm−1 = 2(2− 1− χm

1− χ
) > 0

since χ = 2
p+q
≤ 1

3
.

If m− 2 ≥ g, then the statement follows directly from Lemma 3.4.16.

65
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Hence we have an unconditional version of Lemma 3.4.17 or Lemma 3.4.16. Anal-
ogously, we can conclude that if X is either optimal or greedy in Um(n), then there
exists some h such that Γ(Xi) ∈ Jh0 for all i = 0, . . . ,m− 1. Hence we can get an
unconditional version of Proposition 3.4.23:

Proposition 3.8.2. If there exists some n′ and m′ such that in Um′(n
′), there ex-

ists an optimal element O′ = (O′0, . . . , O
′
m′−1) which is different from the greedy ele-

ment. Then there exist an n, an m and an optimal element O = (O0, O1, . . . , Om−1)
in Um(n) such that

(i) Γ(Oj) ∈ J0
2 , for 0 ≤ j ≤ m− 2.

(ii) degp(Om−1) < degp(Gm−1), where G = (G0, G1, . . . , Gm−1) is the greedy ele-
ment in Um(n).

(iii) Γ(Om−1) 6= Γ(Gm−1).

(iv) Om−1 = pω̃ for some ω̃ ∈ N.

(v) ψ
0
· Γ(Om−1) = ψ

0
· Γ(Gm−1).

Furthermore, assume that there exists such a pair m and n, then we can construct
an element Z in Um(n) as in Section 3.4. Lemma 3.5.2, 3.5.3, 3.5.4 and Corollary
3.5.5 still hold. Then we have an analogue to Lemma 3.5.6 as follows

Lemma 3.8.3. The difference of the weight of Z and O is bounded by

wt(Z)− wt(O) > Zm−1 − 2pω̃ −Q.

Proof. Using the same method as in the proof to Lemma 3.5.6, we have

wt(Z)− wt(O) =ϕ̃m−2(Zm−1 − pω̃)−
m−3∑
j=0

ϕ̃j(Z̃j − Õj)

≥Zm−1 − pω̃ −
m−3∑
j=0

ϕ̃j(Z̃j − Õj)

≥Zm−1 − pω̃ −
m−3∑
j=0

2(
ω∑

h=α

p− 1

ps − 1
τ
δh,j+1

h )

≥Zm−1 − pω̃ −
ω∑

h=α

2(p− 1)

ps − 1

m−3∑
j=0

τ
δh,j+1

h
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≥Zm−1 − pω̃ −
ω∑

h=α

2(p− 1)

ps − 1

ps

ps − 1
τ
δh,m−2

h

=Zm−1 − pω̃ −
2(p− 1)ps

(ps − 1)2
(Q+ pω̃)

>Zm−1 − 2pω̃ −Q.

Theorem 3.8.4. For any pair (m,n), if Um(n) is nonemtpy, then any optimal
element must be greedy.

Proof. Suppose the contrary, then we can find a pair (m,n) and an optimal element
O satisfying Proposition 3.8.2. Then we can construct a Z as described in Section
3.4.

Recall that by Lemma 3.5.2 and Lemma 3.5.3, we have that

degp(Zm−1) = degp(Gm−1) > ω̃

and
degp(Zm−1) ≥ r + s

where r := degp(Q) if Q is nonzero.

If p ≥ 3, then in the sum 2pω̃ + Q, the multiplicity of a single p-power is at most
2, hence

degp(2p
ω̃ +Q) = max{ω̃, r} < degp(Zm−1).

Thus Zm−1 − 2pω̃ −Q > 0.

If p = 2, then 2pω̃ = pω̃+1. Recall that any p-power in Q is congruent to some pi

mod ps − 1, for i = α, . . . , ω − 1, and pω̃ ≡ pω (mod ps − 1).

If pω̃+1 6∈ τ(Q), then in the summation pω̃+1 + Q, the greatest coefficient of any
p-power is at most 1, there cannot be any carryovers, hence

degp(p
ω̃+1 + (p− 1)Q) = max{ω̃ + 1, r}.

As shown in Lemma 3.5.2 and Lemma 3.5.3, both ω̃ and r are smaller than
degp(Zm−1). Hence we consider the following two cases:

• if degp(Zm−1) > ω̃ + 1, then we have

degp(Zm−1) > degp(p
ω̃+1 + (p− 1)Q);
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3. On The Riemann Hypothesis of Positive Characteristic

• if degp(Zm−1) = ω̃ + 1, then by Corollary 3.5.5 we have

degp(Zm−1 − pω̃+1) ≥ r + s > r = degp((p− 1)Q).

Otherwise, if pω̃+1 ∈ τ(Q), then there will be carryover, and we have

degp(p
ω̃+1 + (p− 1)Q) ≤ r + 1 < r + s < degp(Zm−1).

Either way, we always have that

Zm−1 − 2pω̃ −Q > 0.

Hence Z has a larger weight than O, which contradicts to the optimality of O.

Now we can formulate the Riemann hypothesis for hyperelliptic curves.

Theorem 3.8.5. For any positive integer n, the break points of the Newton polygon
of ζ∞(−n, T ) have x-coordinates ϕi for i = 0, 1, . . . with slopes Gi

i, where Gi
i denotes

the last entry of the greedy element in Ui+1(n). Hence for 0 ≤ i ≤ g−1, there exist
exactly two zeros of valuation Gi

i; for i > g, there exist a simple zero of valuation
Gi
i.

Similarly, if the curve has gap sequence {1, 2, 4, 5, . . .}, i.e., ϕ̃i = 3 for i =
0, 1, . . . , b2g

3
c − 1. Note that for i = b2g

3
c, we have

ϕ̃i =

{
1 if g ≡ 0, 1 (mod 3);

2 else.

Using the same method, we can show that the same result holds.
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4. Some Results on Partial zeta
Functions

4.1 Introduction

In Chapter 3, we have seen the Riemann hypothesis for global Goss zeta functions.
In this chapter, we will consider instead the Riemann hypothesis for partial Goss
zeta functions. As we have seen, when dealing with the global Goss zeta func-
tions, we can only expect the zeros to be simple when they have relatively large
valuations when applying the method of Newton polygons. But luckily, based on
some numerical tests, this disturbing phenomenon will not occur when we turn to
partial Goss zeta functions.

Recall that we fix two distinct places ∞ and v of the function field K of a smooth
geometrically irreducible curve over Fq, where ∞ is Fq-rational. Denote by A the
ring of functions regular away from ∞. On this ring, we have a sign function and
a degree function with respect to the place∞. Hence for any d ∈ N, we can define
a subset A+,d consisting of ∞-positive functions of degree d. Let b̄ be a nonzero
congruence class with respect to v, then we can define the partial zeta function
with respect to b̄ as follows:

ζA(−n, T, b̄) :=
∑
d≥0

T dSd(n, b̄)

where Sd(n, b̄) =
∑

a∈A+,d,a∈b̄ a
n.

Suggested by various numerical experiments, the Newton polygon of ζA(−n, T, b̄)
for a given positive integer n and a fixed nonzero congruence class b̄ behaves much
better than that of ζA(−n, T ), in the sense that all the slopes have width 1, which
means that all the zeros are simple with pairwise distinct valuations. Moreover,
we observe from the data that the Newton polygons are independent of the choice
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of the congruence class b̄, and this suggests that we should expect some carryover
of the leading coefficients when summing up all the partial zeta functions to get
the global one.

Throughout this chapter, we always assume that A = Fq[t], and v = (f) with
f ∈ A+. We denote by sd the valuation of Sd(n, b̄) at v.

In this Chapter, we will concentrate on the following two cases: Section 4.2 is
devoted to the case when deg(v) = 1, where we have a complete understanding
of sd’s based on the results from Chapter 3. The main results in this part are
formulated as Theorem 4.2.6 and Theorem 4.2.7. The first one states that there
exists a unique so-called t-optimal element, which is an analogue of optimal element
in Chapter 3, and it must be t-greedy, which is, similarly, an analogue of greedy
element in Chapter 3, while the latter concerns the zero distribution of the value of
ζA(−n, T, b̄) at a given positive n, and it states that all zeros are simple of pairwise
distinct valuations. In the next section, we focus on the case when deg(v) = 2,
and try to look at the problem from two different aspects. In Section 4.3.1 we
state a recursive formula and then apply it to get a nice result when q = 2. In
Section 4.3.2 we will investigate the S̃’s appearing in the expansion of Sd(n, b̄) as
in Remark 4.3.1, and Theorem 4.3.9 offers a close formula to the valuations and
leading coefficients of S̃’s. However, this could not settle the general problem on
sd, since the formula of the valuation of S̃(n) depends significantly on the p-adic
expansion of n, on which we have not gained enough information.

4.2 Degree 1 place case

Throughout this section, we suppose that the place v = (f) is Fq-rational, i.e.
deg(f) = 1. We fix a representative b of b̄ such that deg(b) < deg(v), i.e. b ∈ F∗q.
Then we can expand the sum as

Sd(n, b̄) =
∑

a∈A+,d,a≡b(f)

an

=
∑

a1,...,ad−1∈Fq

(b+ a1f + a2f
2 + . . .+ ad−1f

d−1 + fd)n

=
∑

a1,...,ad−1∈Fq
X0+...+Xd=n

(
n

X0, . . . , Xd

)
bX0aX1

1 . . . a
Xd−1

d−1 fX1+...+(d−1)Xd−1+dXd .

Definition 4.2.1. For any element X in Nm+1, we define the t-weight as

wtt(X) = X1 + 2X2 + . . .+mXm.
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Let V be any subset of Nm+1. We call an element X = (X0, X1, . . . , Xm) in V
t-optimal (resp. t-greedy) if it has minimal weight (resp. it is lexicographically
maximal).

Definition 4.2.2. We define the following subset of Nm+1:

Vm(n) = {X = (X0, . . . , Xd) ∈ Nm+1 |X0 + . . .+Xm = n,

p -
(

n

X0, X1, . . . , Xm

)
,

Xi is a positive multiple of q − 1 for i = 1, 2, . . . ,m− 1}.

The elements in Vm(n) are called the t-valid compositions of n of length m.

Remark 4.2.3. Since we consider the partial zeta functions in this chapter, the t
occuring in the above definitions is merely an abbreviation of ‘teil’, the German
word for ‘partial’.

Remark 4.2.4. Note that the definition of the t-weight here coincides with the
definition of weight in Definition 3.2.4 for the case g = 0.

Remark 4.2.5. Recall that in Definition 3.2.7, we have defined the set of valid
compositions of n of length m as follows:

Um(n) := {X = (X0, X1, . . . , Xm−1) ∈ Nm :X0 + . . .+Xm−1 = n,

p -
(

n

X0, X1, . . . , Xm−1

)
,

Xi is a positive multiple of q − 1, for i = 0, 1, . . . ,m− 2}.

Hence for n′ such that τ(n′) ⊂ τ(n), we can embed Um(n′) into Vm(n) by sending
(X0, X1, . . . , Xm−1) to (Xm−1, . . . , X0, n−n′). In this way, we can say that Vm(n) is
the disjoint union of Um(n′) for all n′ such that τ(n′) ⊂ τ(n). For any X ∈ Vm(n),
we have wtt(X) = mn − n′ − wt(X ′) with X ′ = (Xm−1, Xm−2, . . . , X0) ∈ Um(n′),
n′ = n − X0 and wt is defined as in Definition 3.2.4 for g = 0. Based on this
observation, it is immediate to see that Γ(n) ∈ Im if and only if Vm(n) 6= ∅.

Theorem 4.2.6. There exists a unique t-optimal element in Vm(n) which is the
t-greedy element.

Proof. Let X = (X0, X1, . . . , Xm) be a t-optimal element in Vm(n). We claim
that Xm = 0. Otherwise, let X̃ be (X0 + Xm, X1, . . . , Xm−1, 0). It lies in Vm(n)
by definition and has a smaller t-weight than X does since wtt(X̃) − wtt(X) =
−mXd < 0. Thus for any t-optimal element X = (X0, X1, . . . , Xm) in Vm(n), we
have X ′ := (Xm−1, . . . , X1, X0) lying in Um(n). In Remark 4.2.5, we have that
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wtt(X) = mn − n − wt(X ′) = (m − 1)n − wt(X ′), hence X ′ must be optimal in
Um(n) in the sense of Definition 3.2.6. By Theorem 3.5.1, when g = 0, there exists
a unique optimal element in Um(n), and it must be the greedy one. Hence there
must exist a unique t-optimal element O in Vm(n), which arises from the unique
optimal, hence the greedy element in Um(n), thus O must be t-greedy in Vm(n) by
definition.

We can now conclude the following theorem concerning the distribution of zeros:

Theorem 4.2.7. Suppose that both ∞ and v are Fq-rational places. Let n be any
positive integer and b̄ be a nonzero congruent class with respect to v.

(a) All the segments of the Newton polygon associated to ζFq [t](−n, T, b̄) have width
1.

(b) The d-th slope is
∑d−1

j=1 Gm−j where m is defined such that Γ(n) ∈ Im\Im+1

and G = (G0, . . . , Gm−1, 0) is the t-greedy element in Vm(n).

Hence all zeros of ζFq [t](−n, T, b̄) are simple. Furthermore, all of the zeros have
pairwise distinct valuations at v.

Proof. From Theorem 4.2.6, we know that

vv(Sd(n, b̄)) = wtp(X
d)

where Xd is the t-greedy element in Vd(n). Since m is defined such that n ∈
Im\Im+1, we have Vm(n) 6= ∅ and Vm+1(n) = ∅. Let G = (G0, G1, . . . , Gm−1, 0) be
the t-greedy element in Vm(n). Then d ≤ m and for Xd = (Xd

0 , . . . , X
d
d ) ∈ Vd(n)

t-greedy, we have
Xd
d = 0,

Xd
i = Gm−d+i, for i = d− 1, . . . , 1,

Xd
0 = Gm−d + . . .+G0.

Hence we can compute sd := vv(Sd(n, b̄)) as

sd =
d−1∑
i=1

iGm−d+i.

Then the slope of the d-th line segment between (d, sd) and (d− 1, sd−1) is

sd − sd−1 =
d−1∑
i=1

iGm−d+i −
d−2∑
i=1

iGm−d+1+i =
d−1∑
j=1

Gm−j.
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So for 1 ≤ d < m, the difference of the d+ 1-th and the d-th slopes is

(sd+1 − sd)− (sd − sd−1) =
d∑
j=1

Gm−j −
d−1∑
j=1

Gm−j = Gm−d > 0,

which means that the horizontal width of each line segment in the Newton polygon
of ζ

(v)
∞ (−n, T, b̄) is always one, hence the statement follows.

4.3 Degree 2 Place

Suppose now that v is of degree 2, then b̄ ∈ (Fq/v)∗ ∼= F∗q2 and deg(f) = 2. As

in the last section, we fix a representative b of b̄, such that deg(b) < 2. For any
n ∈ N, we define

S̃(n) :=
∑

a∈Fp[t]+,≤1

an = 1 +
∑
i∈Fp

(t+ i)n.

Recall that in Chapter 3, we defined J and Im, Jm for m ∈ Z>0 as follows:

J = {Γ(n) | n is a positive multiple of p− 1};
Im = {Γ(n) | Um(n) 6= ∅} = {Γ(n) | Vm(n) 6= ∅};
Jm = J ∩ (Im\Im+1).

Remark 4.3.1. Observe that similar as in the previous section, we can expand the
summands in the definition of Sd(n, b̄) as follows.

• If the degree is even, i.e., of the form 2d, then

S2d(n, b̄) =
∑

a∈A+,2d
a≡b (mod f)

an =
∑

a1,...,ad−1∈Fq [t]≤1

(b+ a1f + . . .+ ad−1f
d−1 + fd)n

=
∑

a1,...,ad−1∈Fq [t]≤1
X0+...+Xd=n

(
n

X0, . . . , Xd

)
bX0aX1

1 . . . a
Xd−1

d−1 fX1+...+dXd

=
∑

X0+...+Xd=n

(
n

X0, . . . , Xd

)d−1∏
i=1

 ∑
a∈Fq [t]≤1

aXi

 bX0fX1+...+dXd

=
∑

X∈Wd(n)

(
n

X0, . . . , Xd

)
(−1)d−1S̃(X1) . . . S̃(Xd−1)bX0fX1+...+dXd ,
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where

Wd(n) := {X = (X0, . . . , Xd) ∈ Nd+1 |X0 + . . .+Xd = n,

p -
(

n

X0, . . . , Xd

)
Γ(Xi) ∈ J ∩ I3 for i = 1, . . . , d− 1}.

In particular, to guarantee S2d(n, b̄) not vanishing, we need

Γ(n) = Γ(X0) + . . .+ Γ(Xd) ∈ I2d−1.

• If the degree is odd, i.e., of the form 2d+ 1, then

S2d+1(n, b̄) =
∑

a∈A+,2d+1
a≡b (mod f)

an

=
∑

a1,...,ad−1∈Fq [t]≤1
ad∈Fq [t]+,1

(b+ a1f + . . .+ ad−1f
d−1 + adf

d)n

=
∑

a1,...,ad−1∈Fq [t]≤1
ad∈Fq [t]+,1

∑
X0+...+Xd=n

(
n

X0, . . . , Xd

)
bX0aX1

1 . . . a
Xd−1

d−1 aXdd fX1+...+dXd

=
∑

X0+...+Xd=n

(
n

X0, . . . , Xd

) d−1∏
i=1

 ∑
a∈Fq [t]≤1

aXi

 ∑
a∈Fq [t]+,1

aXd

 bX0fX1+...+dXd

=
∑

X∈W ′d(n)

(
n

X0, . . . , Xd

)
(−1)d−1S̃(X1) . . . S̃(Xd−1)S1(Xd)b

X0fX1+...+dXd ,

where

W ′
d(n) := {X = (X0, . . . , Xd) ∈ Nd+1 |X0 + . . .+Xd = n,

p -
(

n

X0, . . . , Xd

)
,

Xi ∈ J ∩ I3 for i = 1, . . . , d− 1,

Xd ∈ I2}.

In particular, we need Γ(n) ∈ I2d to make sure that S2d+1(n, b̄) does not
vanish.

Therefore, Sd(n, b̄) 6= 0 only if n ∈ Id−1.
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By convention, for any polynomial g ∈ Fp[t], by the leading coefficient of f with
respect to v, we mean the coefficient of f vv(g) in the v-adic expansion of g. Denote
the leading coefficient of S̃(n) with respect to v by l̃v(n). Sometimes we drop the
index v if it is clear from the context.

4.3.1 A Recursive Formula Within the same Congruence
Class And Its Application

In this section, we will first establish a recursive formula which connects partial
zeta functions with respect to the same congruence class. Afterwards, we will
apply this recursive formula to the case A = F2[t] to get a nice result.

Let c ∈ Fp[t]≤1 be such that bt+ c ≡ b (mod f). Then we have

{a | a ∈ A+,d, a ∈ b̄} = {at+ c+ if | a ∈ A+,d−1, a ∈ b̄, i ∈ Fq}.

Then we can rewrite the definition of Sd(n, b̄) as

Sd(n, b̄) =
∑
a∈A+,d

a≡b (mod f)

an

=
∑

a∈A+,d−1
a≡b (mod f)

∑
i∈Fq

(at+ c+ if)n

=
∑

k0+k1+k2=n

(
n

k0, k1, k2

)
(

∑
a∈A+,d−1
a≡b (mod f)

ak0)tk0ck1(
∑
i∈Fq

ik2)fk2

= −
∑

k0+k1+k2=n
q−1|k2,k2>0

(
n

k0, k1, k2

)
Sd−1(k0, b̄)t

k0ck1fk2 .

(4.1)

Now let A = F2[t], then the only degree 2 place is (v) = (t2 + t+ 1), i.e., we have
in this case f = t2 + t + 1 and b ∈ {1, t, t + 1}. Note that in this case, p = q = 2,
hence Γ(n) ∈ Im is equivalent to that digsum2(n) ≥ m − 1. By Remark 4.3.1, if
Sd(n, b̄) 6= 0, we must have digsum2(n) ≥ d− 2.

To get the result, we will need the following conjecture:

Conjecture 4.1. Denote by ñd the sum of the first d − 2 summands appeared in
the 2-adic expansion of n. Then we have

vv(Sd(n, b̄)) = vv(Sd(ñd, b̄)).
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We have computed for all n up to 210 and the results suggest the above conjecture.

Theorem 4.3.2. Assuming Conjecture 4.1, we have

vv(Sd(n, b̄)) =
d−2∑
i=1

µi2
ni ,

where ni’s are those appeared in the 2-adic expansion of n, i.e., n =
∑l

i=1 2ni with
n1 < n2 < . . . < nl, and µi is defined as

µi := #{j | i ≤ j ≤ d− 2, 2 | nj − ni}.

Proof. As we have seen above, Sd(n, b̄) = 0 when digsum2(n) < d − 2. Assuming
the conjecture, w.l.o.g we can assume that digsum2(n) = d − 2. Then in the
recursive formula (4.1), the only summands which are nonzero are those with
k1 = 0 and k2 ∈ τ(n). Hence we have

Sd(n, b̄) = −
∑
k∈τ(n)

Sd−1(n− k, b̄)tn−kfk.

Apply this recursively and we get:

Sd(n, b̄) =(−1)2
∑

k1,k2∈τ(n),k1 6=k2

Sd−2(n− k1 − k2, b̄)t
n−k1tn−k1−k2fk1+k2

= · · ·

=(−1)d−3
∑

σ∈Σd−2

S3(2nσ(d−2) , b̄)tmσfn−2
nσ(d−2)

(4.2)

where Σd−2 is the set of permutations of {1, 2, . . . , d − 2}, and mσ is defined as
follows:

mσ = n− 2nσ(1) + (n− 2nσ(1))− 2nσ(2) + . . .+ (n−
d−4∑
j=1

2nσ(j))− 2nσ(d−3)

= (2nσ(2) + . . .+ 2nσ(d−2)) + . . .+ 2nσ(d−2)

=
d−2∑
j=1

(j − 1) · 2nσ(j) .
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By the definition of Sd(n, b̄), we can compute the S3(2nσ(d−2) , b̄) directly:

S3(2nσ(d−2) , b̄) =
∑

a∈A+,3,a∈b̄

a2
nσ(d−2)

=
∑

a∈A+,1

(fa+ b)2
nσ(d−2)

= (tf + b)2
nσ(d−2)

+ ((t+ 1)f + b)2
nσ(d−2)

= f 2
nσ(d−2)

t2
nσ(d−2)

+ f 2
nσ(d−2)

(t+ 1)2
nσ(d−2)

= f 2
nσ(d−2)

.

Plug the above into equation (4.2), we have

Sd(n, b̄) = (−1)d−3fn
∑

σ∈Σd−2

t
∑d−2
j=1 (j−1)2

nσ(j)
. (4.3)

Now the question is how to compute the valuation of
∑

σ∈Σd−2
t
∑d−2
j=1 (j−1)2

nσ(j)
,

which is the determinant of the following (d− 2)× (d− 2) matrix

A =


t0·2

n1 t0·2
n2 . . . t0·2

nd−2

t1·2
n1 t1·2

n2 . . . t1·2
nd−2

...
...

. . .
...

t(d−3)·2n1 t(d−3)·2n2 . . . t(d−3)·2nd−2

 .

The above is a Vandermonde matrix, hence its determinant is

±
∏

1≤i<j≤d−2

(t2
nj − t2ni ).

Combine all the discussions above, we have now:

Sd(n, b̄) = (−1)d−1fn · det(A)

= ±fn ·
∏

1≤i<j≤d−2

(t2
nj − t2ni )

Its valuation at v is:
d−2∑
i=1

µi2
ni

with µi defined as in the statement.

Theorem 4.3.3. Assuming Conjecture 4.1, let n be a fixed positive integer and b̄
be a nonzero congruent class with respect to v. The we have the following:
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(a) All of the segments of the Newton polygon associated to ζ
(t2+t+1)
F2[t] (−n, T, b̄) have

width 1.

(b) The d-th slope is
d−2∑
i=1

2|nd−2−ni

2ni

where n = 2n1 + . . .+ 2nl, n0 < n1 < . . . < nl is the 2-adic expansion of n. In
particular, the slopes form a strictly increasing sequence.

Hence all zeros of ζ
(t2+t+1)
F2[t] (−n, T, b̄) are simple. Furthermore, all of the zeros have

pairwise distinct valuations at v.

Proof. By Theorem 4.3.2, we can directly compute the d-th slope of the Newton
polygon, which is

sd − sd−1 =
d−2∑
i=1

µi2
ni −

d−3∑
i=1

µi2
ni =

d−2∑
i=1

2|nd−2−ni

2ni .

Hence

(sd+1 − sd)− (sd − sd−1) =
d−1∑
i=1

2|nd−1−ni

2ni −
d−2∑
i=1

2|nd−2−ni

2ni

≥ 2nd−1 −
d−2∑
i=1

2|nd−2−ni

2ni > 0.

Then the statement follows.

Remark 4.3.4. Unfortunately this method cannot be applied to cases when q 6= 2,
since in these cases, we will need to face the fact that the elements in τ(n) may
have multiplicity at most p− 1, hence in equation (4.3), there may be more terms
with the same minimal valuations, therefore if we want to apply this method, we
also need to take the leading coefficients into consideration.

4.3.2 The Valuation of S̃

As we have seen, the method of Section 4.3.1 does not apply to the general case,
so we turn back to the expansion of Sd(n, b̄) in Remark 4.3.1. In this section,
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we will investigate the valuation of S̃’s and the leading coefficients. Although the
results cannot be applied directly to get the valuation of Sd(n, b̄), this may help to
get a deeper insight into the problem. As an outline of this section, the first part
provides an important division of N and the main result will be stated as Theorem
4.3.9. Sections 4.3.2.2 to 4.3.2.6 make up the proof to the main result.

Throughout this section, we always assume that p = q.

4.3.2.1 The Main Result

Definition 4.3.5. (1) We define the following subsets of N: for any i ∈ N,

Ci := {n ∈ N | (p+ 1)(p− 1)pi ≤ n < (p+ 1)(p− 1)pi+1}
C−∞ := {n ∈ N∗ | n < (p+ 1)(p− 1)}.

(2) For any i ∈ N ∪ {−∞}, we define subsets of Ci as follows:

C0
i :={n ∈ Ci | p− 1 - n};

C1
i :={n ∈ Ci | digsump(n) = p− 1};

C2
i :={n ∈ Ci | (p+ 1)(p− 1) | n};

C3
i :={n ∈ Ci | n ≡

p−1∑
k=1

pjk (mod (p2 − 1)pi) with 0 ≤ j1 ≤ . . . ≤ jp−1

≤ i+ 1, and digsump(n) ≥ 2(p− 1)};
C4
i :=Ci\(C0

i ∪ C1
i ∪ C2

i ∪ C3
i ).

Moreover, for any n ∈ C3
i , we denote by Zm = Zm(n) the number of k’s such that

jk = m.

The following are a few facts regarding the definition of Ci and Cj
i ’s.

Remark 4.3.6. Note that for n ∈ N, p − 1 divides n if and only if p − 1 divides
digsump(n).

Remark 4.3.7. For any n ∈ C3
i , we can write n as j(p2− 1)pi +

∑p−1
k=1 p

jk , then 0 <
j ≤ p−1 by the definition of Ci, and we can substitute the condition digsump(n) ≥
2(p− 1) by

Zi < j.
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The reason is that writing out the p-adic expansion of n, we have

n =j(p2 − 1)pi +

p−1∑
k=1

pjk

=(j − 1)pi+2 + (p− 1)pi+1 + (p− j)pi + Zi+1p
i+1 + Zip

i

+

p−1−Zi+1−Zi∑
k=1

pjk .

So if Zi ≥ j, then

n = jpi+2 + Zi+1p
i+1 + (Zi − j)pi +

p−1−Zi+1−Zi∑
k=1

pjk .

Clearly, the p-digit sum of n must be p− 1.

Moreover, we can also conclude from the p-adic expansion above that n ∈ C3
i

has p-digit sum either 2(p − 1) or 3(p − 1), where the former holds if and only if
Zi+1 > 0. In this case, we always have pi+2 ∈ τ(n).

Proposition 4.3.8. Following the definition, we have

C2
−∞ = C3

−∞ = C4
−∞ = C4

0 = ∅;
C−∞ = C0

−∞ t C1
−∞;

Ci = t4
j=0C

j
i for i ∈ N.

Proof. The first line is clear from definition. It suffices to show that Cj
i

⋂
Cj′

i′ = ∅
for any (i, j) 6= (i′, j′). Clearly, Cj

i

⋂
Cj′

i′ = ∅ for any i 6= i′. So we only need to

show that Cj
i

⋂
Cj′

i = ∅ for j 6= j′. For i = −∞, it is clear that C0
i

⋂
C1
i = ∅.

From now on, we assume that i ∈ N.

By definition of C4
i and C0

i , together with Remark 4.3.6, they are disjoint with
any other set. For C1

i , we have that C1
i

⋂
C3
i = ∅ since each element in C3

i by
definition has p-digit sum not smaller than 2(p− 1). So we are left with the only
nontrivial parts of this statement, which are that C1

i

⋂
C2
i = ∅ and C2

i

⋂
C3
i = ∅.

For any n, we can always write n as
∑

pi∈τ(n) p
i. Observe that∑

pi∈τ(n)

pi ≡
∑

pi∈τ(n)

pi mod 2 (mod p2 − 1).

Now for n ∈ C2
i , we have n ≡ (p− 1)p+ (p− 1) (mod p2 − 1). While for n ∈ C1

i ,
we have n ≡ a1p+ a0 (mod p2 − 1) with a1 + a0 = p− 1. Clearly C1

i

⋂
C2
i = ∅.
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For any n ∈ C3
i , n ≡

∑p−1
k=1 p

jk (mod p2 − 1). By definition,
∑p−1

k=1 p
jk ∈ C1

i′ for
some i′ and it cannot be a multiple of p2 − 1 since C1

i′
⋂
C2
i′′ is empty for any i′′,

hence n 6∈ C2
i . We have therefore C2

i

⋂
C3
i = ∅.

Recall that S̃(n) = 1 +
∑

i∈Fp (t+ i)n and s̃(n) denotes the valuation of S̃(n) at

v, while l̃(n) denotes the corresponding leading coefficient. Define D to be the
discriminant of f . The following theorem describes s̃ and l̃.

Theorem 4.3.9. For any i ∈ N
⋃
{∞} and any n ∈ Ci, we have the following

recursive recipe:

(0) if n ∈ C0
i , then s̃(n) = 0;

(1) if n ∈ C1
i , then S̃(n) = 0;

(2) if n ∈ C2
i , then s̃(n) = 0 and l̃(n) = 1;

(3) if n ∈ C3
i , i.e., n ≡

∑p−1
k=1 p

jk := n′ (mod (p2 − 1)pi) for some 0 ≤ j1 ≤ j2 ≤
. . . ≤ jp−1 ≤ i+ 1, such that digsum(n) ≥ 2(p− 1), then

s̃(n) = pi +
∑

pk∈τ(n′)
k≡i (mod 2)

pk = pi +

p−1∑
k=1

jk≡i (mod 2)

pjk ,

and

l̃(n) =

(
j

Zi + 1

)(
p− 1

Zi−2

)
. . .

(
p− 1

Zi′

)
D−(1+Zi+Zi−2+...+Zī),

where ī ∈ {0, 1} such that ī ≡ i (mod 2) and Zk := #{pk ∈ τ(n′)};

(4) for n ∈ C4
i , then let n′ be such that n ≡ n′ (mod (p2 − 1)pi) and n′ ∈ Ci′ for

some i′ < i, then s̃(n) = s̃(n′) <∞ and l̃(n) = l̃(n′).

The theorem will be proved in Sections 4.3.2.2 till 4.3.2.6.

Let us first make the following observation regarding case (4).

Lemma 4.3.10. The procedure in case (4) always results in n′ ∈ Cj
i′ for some

i′ < i and j ∈ {3, 4}.
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Proof. Recall that for any n ∈ C4
i , we let n′ ∈ Ci′ for some i′ < i be such that

n′ ≡ n (mod (p2− 1)pi). By Proposition 4.3.8, the subsets Cj
i ’s are disjoint, so we

only need to show that n′ does not belong to C0
i′
⋃
C1
i′
⋃
C2
i′ . It is easy to see that

n′ /∈ C0
i′
⋃
C2
i′ since the mod action preserves the divisibility of p− 1 and p2− 1. If

n′ ∈ C1
i′ , then n′ =

∑p−1
k=1 p

jk , with jk ≤ i′ + 2 ≤ i+ 1, hence n = j(p2 − 1)pi + n′.
But n cannot be in C3

i , hence by Remark 4.3.7, we must have #{k | jk = i} ≥ j
and the p-digit sum of n is p − 1, thus n ∈ C1

i which contradicts the disjointness
of C1

i and C4
i .

Remark 4.3.11. Since i′ is strictly smaller than i, the procedure in case (4) of
the theorem stops after finitely many steps, which means that after finitely many
steps, we can get some n′ which belongs to case (3), i.e. there exists some n′ ∈ C3

i′

for some i′ < i such that n′ ≡ n (mod p2 − 1).

To end this section, we present here a corollary to the theorem. This is merely
a special case of the above when digsump(n) is exactly 2(p − 1), i.e. n ∈ J3.
The reason to focus on these n’s is that as we have seen in Remark 4.3.1, those
terms occurring in the final formula of Sd(n, b̄) are of the shape S̃(Xi) where
γ(Xi) ∈ J ∩ I3 ⊃ J3.

Corollary 4.3.12. If n ∈ Ci has p-digit sum exactly 2(p − 1), then we have the
following possibilities:

(1) n ∈ C2
i iff #{k|pk ∈ τ(n), k even} = #{k|pk ∈ τ(n), k odd} = p − 1. In this

case, s̃(n) = 0 and l̃(n) = 1.

(2) n ∈ C3
i t C4

i iff #{k|pk ∈ τ(n), k even} 6= p − 1. In this case, let l be the
largest integer such that cl(n) := #{k|pk ∈ τ(n), k ≥ l, k ≡ l mod 2} ≥ p and
pl ∈ τ(n), then

s̃(n) = (1− p+ cl)p
l +

∑
pk∈τ(n),k<l
k≡l (mod 2)

pk.

Proof. Note that when digsump(n) = 2(p − 1), we always have n ∈ Cj
i for some

i ∈ N and j ∈ {2, 3, 4}.

The first parts of both statements follow directly from the fact that n =
∑

pk∈τ(n) p
k ≡∑

pk∈τ(n) p
k mod 2 (mod p2 − 1) and that the sets C2

i , C3
i and C4

i are disjoint by
Proposition 4.3.8.

The part concerning the valuation s̃(n) and the leading coefficient in (1) follows
directly from the theorem. In (2), it suffices to show that
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(i) if n ∈ C3
i , then i = l;

(ii) if n ∈ C4
i , then there exists some m ∈ C3

l such that s̃(n) = s̃(m).

In case (i), following Remark 4.3.7, we know that the p-adic expansion of n is

n = jpi+2 + (Zi+1 − 1)pi+1 + (p− j + Zi)p
i +

i−1∑
k=0

Zkp
k,

where Zi+1 ≥ 1, Zk ≥ 0 for k = 0, 1, . . . , i and
∑i

k=0 Zk = p− 1−Zi+1. Then it is
easy to see that l = i. The statement is just a reformulation of case (3) of Theorem
4.3.9. Otherwise, following case (4) of Theorem 4.3.9 and Remark 4.3.11, there
exists some n′ such that n ≡ n′ (mod p2 − 1) and n′ ∈ C3

i′ for some i′ < i, then
s̃(n) = s̃(n′). Note also that in this procedure, the p-digit sum remains invariant.
Also in this case, i > l, i.e. #{pi+2 ∈ τ(n)} + #{pi ∈ τ(n)} < p, hence we have
that for any l, cl(n) = cl(n

′), i.e. we get the same l for n and n′. Then by case (i),
l = i′ and we define m such that m ≡ n (mod (p2− 1)pl+1) and m ∈ Cl. It is easy
to show that m lies in C3

l and s̃(n) = s̃(m) by case (4) of Theorem 4.3.9.

4.3.2.2 A proof of case (2)

To prove (2), we need to look at S̃(n) from a different perspective.

We know that in Fp[t]/f with f an irreducible polynomial of degree 2, every
nonzero element has order dividing p2 − 1. Thus for any a ∈ Fp, we always have
(t+a)p

2−1 ≡ 1 (mod f), i.e. we can write (t+a)p
2−1 = 1+ζaf with some ζa ∈ Fp[t].

Therefore if n ∈ C2
i , say n = n′(p+ 1)(p− 1), then

S̃(n) =
∑

a∈Fp[t]≤1,+

an = 1 +
∑
a∈Fp

(t+ a)n

= 1 +
∑
a∈Fp

((t+ a)p
2−1)n

′

= 1 +
∑
a∈Fp

(1 + ζaf)n
′

= 1 +
∑
a∈Fp

(
1 +

n′∑
k=1

(
n′

k

)
ζkaf

k

)

= 1 +
n′∑
k=1

(
n′

k

)
fk

∑
a∈Fp

ζka

 ∈ 1 + fFp[t].
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Therefore,

s̃(n) = vf (S̃(n)) = 0,′ , l̃(n) = 1.

4.3.2.3 A proof of case (1)

Recall that for p a prime, we always have

∑
i∈F∗p

in =

{
−1, if p− 1 | n
0, else.

By Lucas’ lemma, if a =
∑
m

amp
m and b =

∑
m

bmp
m are their p-adic expansions,

then we have (
a

b

)
=
∏
m

(
am
bm

)
.

Hence the above binomial coefficient is nonzero if and only if τ(a) ⊆ τ(b).

The following lemma shows a simplified expansion of S̃.

Lemma 4.3.13 ([Gos98]). The following holds:

S̃(n) = 1−
n−1∑
k=0

p−1|n−k

(
n

k

)
tk.

Hence for any n ∈ C1
i , i.e. digsump(n) = p − 1, the only choice of k such that

τ(k) ⊆ τ(n) and p− 1 | n− k is 0, hence

S̃(n) = 1− 1 = 0.

4.3.2.4 A proof of case (0)

The following lemma will be of great importance to proving the rest of the theorem.

Lemma 4.3.14. For n′ ≡ n (mod (p2 − 1)pi), and s̃(n′) < pi, we have

S̃(n) ≡ S̃(n′) (mod fp
i

).
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Proof. For n′ ≡ n (mod (p2 − 1)pi), say n = n′ +m · (p2 − 1)pi, we have:

S̃(n)− S̃(n′) =
∑

a∈Fp[t]≤1,+

an −
∑

a∈Fp[t]≤1,+

an
′

=
∑
a∈Fp

(t+ a)n
′
((t+ a)m(p2−1)pi − 1)

=
∑
a∈Fp

(t+ a)n
′
(((t+ a)p

2−1)mp
i − 1)

=
∑
a∈Fp

(t+ a)n
′
((1 + ζaf)mp

i − 1)

=
∑
a∈Fp

(t+ a)n
′

mpi∑
k=1

(
mpi

k

)
ζkaf

k


=
∑
a∈Fp

(t+ a)n
′

(
m∑
k′=1

(
m

k′

)
ζk
′pi

a fk
′pi

)
.

Hence the valuation of S̃(n) − S̃(n′) is at least pi. Since we assume that s̃(n′) is
smaller than pi, we hence have the desired equivalence.

By Lemma 4.3.14, we only need to show that s̃(n) = 0 for n ∈ C0
0 . Using the

expansion of S̃(n) in Lemma 4.3.13

S̃(n) = 1−
n−1∑
k=0

p−1|n−k

(
n

k

)
tk,

it is easy to see that there exists no non-zero summand, hence S̃(n) = 1, i.e.,
s̃(n) = 0 and l̃(n) = 1.

4.3.2.5 A proof of case (3) and case (4)

Before we present the complete proof to case (3), we need to show some useful
lemmas first.

Lemma 4.3.15. For S̃ defined as above, and any r, s ∈ N, we have:

S̃(m)(tp
s − tpr) = tp

s − tpr + S̃(m+ ps)− S̃(m+ pr).
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Moreover, we have:

S̃(n)(tp
i+1 − tpi) =S̃(n+ pi+1 − pi+2)(tp

i+2 − tpi)− S̃(n+ pi − pi+2)

(tp
i+2 − tpi+1

).

Proof. The first statement follows directly from the definition of S̃:

S̃(m)(tp
s − tpr) :=(1 +

∑
a∈Fp

(t+ a)m)(tp
s − tpr)

=tp
s − tpr +

∑
a∈Fp

(t+ a)m(tp
s − tpr)

=tp
s − tpr +

∑
a∈Fp

(t+ a)m((t+ a)p
s − (t+ a)p

r

)

=tp
s − tpr +

∑
a∈Fp

(t+ a)m+ps −
∑
a∈Fp

(t+ a)m+pr

=tp
s − tpr + S̃(m+ ps)− S̃(m+ pr).

In particular, if we take m = n, s = r + 1 = i+ 1, then

S̃(n)(tp
i+1 − tpi) =tp

i+1 − tpi + S̃(n+ pi+1)− S̃(n+ pi)

=tp
i+2 − tpi + S̃(n+ pi+1)− S̃(n+ pi+1 − pi+2 + pi)

− tpi+2

+ tp
i+1 − S̃(n+ pi) + S̃(n+ pi − pi+2 + pi+1)

=S̃(n+ pi+1 − pi+2)(tp
i+2 − tpi)− S̃(n+ pi − pi+2)(tp

i+2

− tpi+1

).

The following two lemmas provide us the essential ingredients to prove the argu-
ment concerning the leading coefficients.

Lemma 4.3.16. The leading coefficient of tp
2−t
tp−t with respect to any degree 2 ir-

reducible polynomial over Fp always lies in F∗p. Moreover, the leading coefficient
equals to 1/∆ where ∆ denotes the discriminant of the chosen irreducible polyno-
mial.

Proof. Since tp
2 − t (resp. tp − t) is the product of all degree less or equal to

2 (resp. degree 1) irreducible polynomials over Fp, it is easy to see that the
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quotient tp
2−t
tp−t has valuation 1 at any degree 2 irreducible polynomial, say f , thus

the leading coefficient is just tp
2−t

(tp−t)f mod f . On the other hand, if we consider f as a
polynomial over Fp2 , it can be factored into a product of two degree 1 polynomials,

i.e., f = (t− α)(t− αp). Hence F := tp
2−t

(tp−t)f =
∏

β∈Fp2\Fp∪{α,αp}
(t− β).

We can first compute F mod (t− α) as follows:

F mod (t− α) =
∏

β∈Fp2\Fp∪{α,αp}

(α− β)

=
∏

β∈Fp2\Fp∪{α,αp}

(α− αp+1

β
) =

∏
β∈Fp2\Fp∪{α,αp}

α

−β
(αp − β)

=
∏

β∈Fp2\Fp∪{α,αp}

α

−β
·

∏
β∈Fp2\Fp∪{α,αp}

(αp − β).

Claim:
∏

β∈Fp2\Fp∪{α,αp}
α
−β = 1.

The proof of the claim follows directly from computation:

LHS = (−α)p
2−p−2

∏
β∈Fp2\Fp∪{α,αp}

β−1 = αp
2−p−2+p+1 ·

∏
Fp2\Fp

β−1

=
∏

βFp2\Fp

β−1 =
∏
β∈Fp2

β−1
∏
γ∈Fp

γ

=
−1

−1
= 1.

Therefore, we know that F mod (t− α) = F mod (t− αp), hence by CRT, we have
that the residue equals to that of F modulo f , hence must lie in F∗p.

We can get the explicit value of the residue by some further computation:∏
β∈Fp2\Fp∪{α,αp}

(α− β) =
1

α− αp
∏
γ∈Fp

(α− γ)−1
∏

β∈Fp2\{α}

(α− β)

=
1

α− αp
·
∏
γ∈Fp

(t− γ) |t=α ·
∏

β′∈Fp2\{0}

β

=
1

α− αp
· 1

αp − α
· (−1) =

1

(α− αp)2

= 1/∆.
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Recall that v = (f) with deg(f) = 2, and we denote by ∆ the discriminant of f .

Lemma 4.3.17. Given any degree 2 irreducible polynomial f over Fp, the leading
coefficient of (tp − t)p−1 with respect to f is always -1.

Proof. It is easy to see that (tp − t)p−1 has valuation 0 at f , hence its leading
coefficient is the residue modulo f . Moreover, we have

(tp − t)p−1 =
tp

2 − tp

tp − t

=
t− tp

tp − t
+
tp

2 − t
tp − t

≡ −1 (mod f).

Remark 4.3.18. An immediate consequence of the previous lemma is that for any
i ∈ N, the residue of (tp − t)(p−1)pi modulo f is always -1.

Before giving the proof to case (3), we need to note in particular that if S = S1+S2

with vv(S1) = vv(S2), then by the ultrametric triangle inequality, we always have
vv(S) ≥ vv(S1). Moreover, if we can show that the leading coefficients of S1

and S2 with respect to v do not cancel, then the equality holds. In our case,

following Lemma 4.3.15, we can always write S̃(n) as the sum of S̃(n1)( t
p2−t
tp−t )p

i

and −S̃(n2)(tp − t)(p−1)pi , where n1 = n − pi+2 + pi+1 and n2 = n − (p2 − 1)pi.
If we have s̃(n1) + pi = s̃(n2), then we can conclude that s̃(n) = s̃(n2) provided
l̃(n1)∆−1 + l̃(n2) does not vanish in Fp; if so, then l̃(n) = l̃(n1)∆−1 + l̃(n2).

Now we can give the full proof to case (3) of Theorem 4.3.9 by induction on i and
j.

First recall that for any n ∈ C3
i , we can write n by definition as

n = j(p− 1)pi+1 + j(p− 1)pi +
i+1∑
k=0

Zkp
k

satisfying the following:

(i) 1 ≤ j ≤ p− 1;

(ii)
∑i+1

k=0 Zk = p− 1 and Zi < j.
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4.3. Degree 2 Place

• For i = 0 and j = 1, we have Z0 = 0 and Z1 = p− 1, then

n = (p2 − 1) + (p− 1)p.

Following Lemma 4.3.15, we have:

S̃(n) = S̃(n− p2 + p)
tp

2 − t
tp − t

− S̃(n− (p2 − 1))(tp − t)p−1

= S̃(p2 − 1)
tp

2 − t
tp − t

− S̃((p− 1)p)(tp − t)p−1

= S̃(p2 − 1)
tp

2 − t
tp − t

,

hence S̃(n) has valuation 1 and leading coefficient ∆−1 by case (2) and
Lemma 4.3.16.

• Now let n ∈ C3
0 be such that j := bn/(p2 − 1)c > 1, then we have Z0 < j

and Z1 = p− 1− Z0. Suppose that the statement holds for all n′ ∈ C3
0 with

j′ < j. Following Lemma 4.3.15, we have:

S̃(n) =S̃(n− p2 + p)
tp

2 − t
tp − t

− S̃(n− (p2 − 1))(tp − t)p−1

=S̃((j − 1)(p2 − 1) + (p− 1− Z0)p+ (p+ Z0 − 1))
tp

2 − t
tp − t

− S̃((j − 1)(p2 − 1) + (p− 1− Z0)p+ Z0)(tp − t)p−1

= : S̃(n1)
tp

2 − t
tp − t

− S̃(n2)(tp − t)p−1.

Hence

n1 =

{
divisible by p2 − 1 if Z0 = 0;

(j − 1)(p2 − 1) + (p− Z0)p+ Z0 − 1 if Z0 ≥ 1.

Meanwhile, n2 ∈ C3 if Z0 < j − 1 and n2 ∈ C1 otherwise. Recall that tp
2−p
tp−t

has valuation 1 with leading coefficient ∆−1, and (tp − t)p−1 has valuation
0 with leading coefficient -1. Then we can calculate the valuation and the
leading coefficient of S̃(n):

(i) if Z0 = 0, then S̃(n1) has valuation 0 and leading coefficient 1, while
S̃(n2) has valuation 1 and leading coefficient (j − 1)∆−1, hence the
valuation of S̃(n) is 1 = Z0 + 1 and the leading coefficient is j∆−1 =(
j
1

)
∆−1 =

(
j

Z0+1

)
∆−1(Z0+1);
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(ii) if 0 < Z0 < j − 1, then by the induction assumption, S̃(n1) has valu-
ation Z0 and leading coefficient

(
j−1
Z0

)
∆−Z0 , while S̃(n2) has valuation

Z0 + 1 and leading coefficient
(
j−1
Z0+1

)
∆−(Z0+1), hence the valuation of

S̃(n) is Z0 + 1 and the leading coefficient is (
(
j−1
Z0

)
+
(
j−1
Z0+1

)
)∆−(Z0+1) =(

j
Z0+1

)
∆−(Z0+1);

(iii) if Z0 = j − 1, then S̃(n1) has valuation Z0 and leading coefficient(
j−1
Z0

)
∆−Z0 = ∆−Z0 , while S̃(n2) = 0, hence the valuation of S̃(n) is

Z0 + 1 and the leading coefficient is ∆−(Z0+1) =
(

j
Z0+1

)
∆−(Z0+1).

• Let n ∈ C3
i be such that i > 0 and j := bn/(p2 − 1)pic = 1, then we have

Zi = 0 and Zi+1 + Zi−1 + Zi−2 + . . . + Z0 = p − 1. Suppose now that the
statement holds for all n′ ∈ C3

i′ for i′ < i. Recall that we denote by ī the
residue of i modulo 2. Following Lemma 4.3.15, we have:

S̃(n) =S̃(n− pi+2 + pi+1)(
tp

2 − t
tp − t

)p
i − S̃(n− (p2 − 1)pi)(tp − t)(p−1)pi

=S̃(Zi+1p
i+1 + (p− 1)pi + Zi−1p

i−1 + . . .+ Z0)(
tp

2 − t
tp − t

)p
i

− S̃(Zi+1p
i+1 + Zi−1p

i−1 + Zi−2p
i−2 + . . .+ Z0)(tp − t)(p−1)pi

=S̃(Zi+1p
i+1 + (p− 1)pi + Zi−1p

i−1 + . . .+ Z0)(
tp

2 − t
tp − t

)p
i

= : S̃(n1)(
tp

2 − t
tp − t

)p
i

.

It is easy to see that n1 ∈ C2 if Zi−2 = Zi−4 = . . . = Zī = 0; otherwise, let
k be the largest integer such that k ≡ i (mod 2) and Zk 6= 0. Note that
k ≡ i ≡ ī (mod 2). Then we have:

n1 =Zi+1(p2 − 1)pi−1 + (p− 1)(p2 − 1)pi−2

+ (Zi+1 + Zi−1)(p2 − 1)pi−3 + (p− 1)(p2 − 1)pi−4 + . . .

+ (Zi+1 + Zi−1 + Zi−3 + . . .+ Zk+3)(p2 − 1)pk+1 + (p− 1)(p2 − 1)pk

+ (Zi+1 + Zi−1 + Zi−3 + . . .+ Zk+1 + 1)pk+1 + (Zk − 1)pk + Zk−1p
k−1

+ . . .+ Z0,

hence the valuation is

s̃(n1) = Zkp
k + Zk−2p

k−2 + . . .+ Zīp
ī

with leading coefficient

l̃(n1) =

(
p− 1

Zk

)(
p− 1

Zk−2

)
. . .

(
p− 1

Zī

)
∆−(Zk+Zk−2+...+Zī).

90



4.3. Degree 2 Place

Then we can calculate the valuation and leading coefficient of S̃(n):

(i) if Zi−2 = Zi−4 = . . . = Zī = 0, then S̃(n1) has valuation 0 and leading
coefficient 1, hence the valuation of S̃(n) is

pi = pi + Zip
i + Zi−2p

i−2 + Zi−4p
i−4 + . . .+ Zīp

ī

and the leading coefficient is

∆−1 =

(
j

Zi + 1

)(
p− 1

Zi−2

)(
p− 1

Zi−4

)
. . .

(
p− 1

Zī

)
∆−(1+Zi+Zi−2+Zi−4+...+Zī);

(ii) otherwise, let k be as above, then the valuation of S̃(n) is

pi + Zkp
k + Zk−2p

k−2 + . . .+ Zīp
ī

= pi + Zip
i + Zi−2p

i−2 + Zi−4p
i−4 + . . .+ Zīp

ī,

and the leading coefficient is(
p− 1

Zk

)(
p− 1

Zk−2

)
. . .

(
p− 1

Zī

)
∆−(1+Zk+Zk−2+...+Zī)

=

(
j

Zi + 1

)(
p− 1

Zi−2

)(
p− 1

Zi−4

)
. . .

(
p− 1

Zī

)
∆−(1+Zi+Zi−2+Zi−4+...+Zī).

• Now let n ∈ C3
i be such that i > 0 and j := bn/(p2 − 1)pic > 1, then we

have Zi < j. Suppose that the statement holds for all n′ ∈ C3
i′ for i′ < i, as

well as for n′ ∈ C3
i with j′ < j. Following Lemma 4.3.15, we have:

S̃(n) =S̃(n− pi+2 + pi+1)(
tp

2 − t
tp − t

)p
i − S̃(n− (p2 − 1)pi)(tp − t)(p−1)pi

=S̃((j − 1)(p2 − 1)pi + Zi+1p
i+1 + (p− 1)pi + Zi−1p

i−1 + . . .+ Z0)

(
tp

2 − t
tp − t

)p
i − S̃((j − 1)(p2 − 1)pi + Zi+1p

i+1 + Zi−1p
i−1 + Zi−2p

i−2

+ . . .+ Z0)(tp − t)(p−1)pi

= : S̃(n1)(
tp

2 − t
tp − t

)p
i − S̃(n2)(tp − t)(p−1)pi .

Similar as above, we have that n1 ∈ C2 if Zi = Zi−2 = . . . = Zī = 0, and
n1 ∈ C4 otherwise; regarding n2, we have that n2 ∈ C3

i if Zi < j − 1 and
n2 ∈ C2 if Zi = j − 1.

In particular, if Zi = 0, then as we can see from the above case, the valuation
of S̃(n1) cannot exceed (p−1)pi−2. By Lemma 4.3.14, we can apply the above
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analysis of valuation and leading coefficient of S̃(n1) directly. If Zi 6= 0, then
n1 = (j−1)(p2−1)pi+(Zi+1 +1)pi+1 +(Zi−1)pi+Zi−1p

i−1 + . . .+Z0, hence
by induction assumption, S̃(n1) has valuation Zip

i + Zi−2p
i−2 + . . . + Zīp

ī

with leading coefficient
(
j−1
Zi

)(
p−1
Zi−2

)(
p−1
Zi−4

)
. . .
(
p−1
Zī

)
∆−(Zi+Zi−2+...+Zī). To sum

up, we have the following cases for S̃(n1):

– if Zi = Zi−2 = . . . = Zī = 0, then S̃(n1) has valuation 0 with leading
coefficient 1;

– if Zi 6= 0, then S̃(n1) has valuation Zip
i + Zi−2p

i−2 + . . . + Zīp
ī with

leading coefficient
(
j−1
Zi

)(
p−1
Zi−2

)(
p−1
Zi−4

)
. . .
(
p−1
Zī

)
∆−(Zi+Zi−2+...+Zī);

– if Zi = 0 but not all Zi′ for i′ ≡ i (mod 2) are zero, then let k be the
biggest integer such that k ≡ i (mod 2) and Zk 6= 0, then S̃(n1) has
valuation Zkp

k + Zk−2p
k−2 + . . .+ Zīp

ī with leading coefficient(
p− 1

Zk

)(
p− 1

Zk−2

)
. . .

(
p− 1

Zī

)
∆−(Zk+Zk−2+...+Zī).

For S̃(n2), we have:

– if Zi < j − 1, then by the induction assumption, S̃(n2) has valuation
pi + Zip

i + Zi−2p
i−2 + Zi−4p

i−4 + . . .+ Zīp
ī with leading coefficient(

j − 1

Zi + 1

)(
p− 1

Zi−2

)(
p− 1

Zi−4

)
. . .

(
p− 1

Zī

)
∆−(1+Zi+Zi−2+Zi−4+...+Zī);

– if Zi = j − 1, then by case (2), S̃(n2) is zero.

Finally we can calculate the valuation and the leading coefficient of S̃(n):

(1) if Zi < j − 1 and Zi = Zi−2 = . . . = Zi mod 2 = 0, then the valuation of
S̃(n) is

s̃(n) = pi = pi + Zip
i + Zi−2p

i−2 + . . .+ Zīp
ī

and the leading coefficient is

l̃(n) = ∆−1 +

(
j − 1

1

)
∆−1 = j∆−1

=

(
j

Zi + 1

)(
p− 1

Zi−2

)
. . .

(
p− 1

Zī

)
∆−(1+Zi+Zi−2+...+Zī);
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(2) if Zi = j − 1 6= 0, then S̃(n2) = 0, hence S̃(n) = S̃(n1)( t
p2−t
tp−t )p

i
. There-

fore we have

s̃(n) = pi + s̃(n1) = pi + Zip
i + Zi−2p

i−2 + Zi−4p
i−4 + . . .+ Zīp

ī

and

l̃(n) = l̃(n1) ·∆−1

=

(
j − 1

Zi

)(
p− 1

Zi−2

)(
p− 1

Zi−4

)
. . .

(
p− 1

Zī

)
∆−(1+Zi+Zi−2+Zi−4+...+Zī)

=

(
j

Zi + 1

)(
p− 1

Zi−2

)(
p− 1

Zi−4

)
. . .

(
p− 1

Zī

)
∆−(1+Zi+Zi−2+Zi−4+...+Zī);

(3) if 0 < Zi < j − 1, then the valuation of S̃(n) is

s̃(n) = pi + Zip
i + Zi−2p

i−2 + Zi−4p
i−4 + . . .+ Zīp

ī

and the leading coefficient is

l̃(n) = (

(
j − 1

Zi

)
+

(
j − 1

Zi + 1

)
)

(
p− 1

Zi−2

)(
p− 1

Zi−4

)
. . .

(
p− 1

Zī

)
∆−(1+Zi+Zi−2+...+Zī)

=

(
j

Zi + 1

)(
p− 1

Zi−2

)(
p− 1

Zi−4

)
. . .

(
p− 1

Zī

)
∆−(1+Zi+Zi−2+...+Zī);

(4) if Zi = 0 and there exists at least one i′ < i such that i′ ≡ i (mod 2)
and Zi′ 6= 0. Let k be as above, then the valuation of S̃(n) is

s̃(n) = pi + Zip
i + Zi−2p

i−2 + Zi−4p
i−4 + . . .+ Zīp

ī

since
pi + Zkp

k + Zk−2p
k−2 + . . .+ Zīp

ī

= pi + Zip
i + Zi−2p

i−2 + Zi−4p
i−4 + . . .+ Zīp

ī,

and the leading coefficient is

l̃(n) = (1 +

(
j − 1

1

)
)

(
p− 1

Zk

)(
p− 1

Zk−2

)
. . .

(
p− 1

Zī

)
∆−(1+Zk+Zk−2+...+Zī)

=

(
j

Zi + 1

)(
p− 1

Zi−2

)(
p− 1

Zi−4

)
. . .

(
p− 1

Zī

)
∆−(1+Zi+Zi−2+Zi−4+...+Zī).
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4.3.2.6 A proof of case (4)

For case (4), we first observe the following:

Remark 4.3.19. According to the Lemma 4.3.10, we know that for any n ∈ C4
i for

some i, the corresponding n′ always satisfies that s̃(n′) exists. Moreover, assuming
(3), s̃(n′) is always smaller than pi.

Remark 4.3.20. The proof to case (4) therefore follows directly from case (3),
Remark 4.3.19 and Lemma 4.3.14.
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5.1 Introduction

In Chapter 3, we have seen that the Riemann hypothesis holds for the Goss-
Thakur zeta functions attached to certain curves. In particular, we explored some
examples in Section 3.6, where we used the same method to consider those curves
whose function fields have class number 1 and have at least one rational place.
In this chapter, we will look at one of these examples from another perspective,
namely using a cohomological method introduced by Böckle in his paper [Böc13].
To be more precise, the special value of Goss zeta function at a negative integer can
be viewed as the dual characteristic polynomial of certain Cartier dual action on
the global sections of a locally free τ -sheaf. Hence by investigating the τ -sheaf and
its dual, we can gain some information on the corresponding Goss zeta function. In
particular, the leading coefficient is just the determinant of the matrix representing
the Cartier dual action.

In this chapter, we only consider the curve given by y2 = x3− x− 1 over F3. This
is one of the only four non-trivial curves of class number 1 with a rational point
given in [Hay79]. As we have seen from Section 2.2.5, the number of Drinfeld-
Hayes modules attached to a given A is the same as the strict class number of
A. Hence there exists a unique Drinfeld-Hayes module attached to the coefficient
ring of this curve. The main result in this chapter provides a precise formula of

the slopes of the Newton polygon of zA(−n, T ) with n of shape
l∑

i=1

2 · 3ni with

n1 < n2 < . . . < nl, and in particular, apart from the first slope, all other slopes
occur with multiplicity 1.

Note that the above theorem is a special case of Example 2.6.5 of Section 3.6, but
we will approach with a different method.

This chapter begins by determining the unique Drinfeld-Hayes module, thus the
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5. A cohomological approach

corresponding τ -sheaf and the Cartier operator. Next, we fix an integer n of
a special form and determine the locally free τ -sheaf which is nil-isomorphic to
the n-th tensor power of the τ -sheaf. Then we determine bases of the global
sections of the dual sheaf which provides us a matrix description of the Cartier
dual action. Therefore the leading coefficient of the dual characteristic polynomial
can be described by the discriminant of the very matrix, which is very explicit to
compute.

5.2 The Drinfeld-Hayes Module and τ-sheaf

Let us first recall some notation from Chapter 2. Let q be a prime power, q = ps

with p a prime and s a positive integer. Denote by k the finite field Fq. By C we
mean a smooth projective curve over k whose function field is K, and we write
g = gC = gK for its genus. Fix a place ∞ of K and denote by A the ring of
functions in K which are regular away from ∞. Assume that ∞ is k-rational.
exact sequence 0 → A+ → A\{0} → F∗q → 0. For any d ∈ N we define the set
Ad := {a ∈ A | deg (a) = d} where deg (a) := logq (| A/ (a) |). Define A+,d to be
the intersection A+ ∩ Ad. Let B be the normalization of the ring A in the strict
Hilbert class field of K with respect to ∞. Then there exits a Drinfeld-Hayes
module over Spec(B) as we have discussed in Section 2.2.5. Moreover, the number
of Drinfeld-Hayes modules equals to the strict class number of A by Proposition
2.2.26. These Drinfeld-Hayes modules give rise to certain A-motives over B as
described in [And86, Section 1]. In this section, we will construct and try to have
a deep insight into this A-motive for A = F3[x, y]/(y2− x3 + x+ 1). Note that the
strict class number of A is 1, hence B = A and we have a unique Drinfeld-Hayes
module, thus a unique corresponding τ -sheaf.

The construction follows [Böc13]. More details concerning properties of A-motives
and τ -sheaves are referred to [Gos98, Chapter 5],[And86] and [BP09].

We consider the elliptic curve defined by y2 = x3 − x − 1 over F3. Let ∞ be
the natural infinite place. Hence A = F3[x, y]/ (y2 − x3 + x+ 1) has strict class
number 1 ,thus we have a unique Drinfeld-Hayes module. We first compute its
corresponding Drinfeld-Hayes module. To distinguish the base ring from the co-
efficient ring, we use bold letters for the base ring A = k[x,y]/ (y2 − x3 + x + 1).
Similarly, we denote by E the elliptic curve defined by y2 = x3 − x − 1 over F3.
The Drinfeld-Hayes module attached to A is the ring homomorphism

ρ : A→ A{τ}
a 7→ ρa
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where τ is the Frobenius homomorphism and A{τ} is the ring of skew polynomials
over A, given by

ρx = x +
(
y2 + 1

)
τ + τ 2,

ρy = y +
(
y3 − y

)
yτ + y

(
y2 − 1

) (
y6 + y4 + y2 − 1

)
τ 2 + τ 3.

This Drinfeld-Hayes module was computed by Hayes in [Hay91]. To outline the
computation briefly, we first note that it suffices to identify ρx and ρy. Let ρx =
x+a1τ + τ 2 and ρy = y + b1τ + b2τ + τ 3 with a1, b1, b2 ∈ A. By the commutativity
of ρx and ρy, we can get the above expressions for ρx and ρy.

Now we want to give the explicit construction of the corresponding A-motive
following [Böc13]. Define S := A ⊗k A. We consider M := A{τ} as the A-
A-bimodule such that an element a of A (resp. an element a of A) acts on M via
multiplication from the left by a (resp. via composition with ρa from the right).
It is easy to see that the actions of A and A commute, hence M can be viewed as
an S-module. In fact, it is a projective S-module of rank 1. Next we would like
to describe M explicitly. In order to distinguish from τ in A{τ}, we denote by Φ
the Frobenius as an element of M .

Following the same method as in [Böc13], we compute a minimal set of generator
of M over S, which is {1, β/α}, where α and β are computed by the formula
αΦ = β · 1 in M , hence we have

β = −y (x− x)− y + y

α = x− x− 1.

In terms of these generators, the action of τ on M from the left is given by

τ (1) = Φ = β/α,

τ (β/α) = (x− x) · 1−
(
y2 + 1

)
y · β

α
.

Note that the map E → E : (x, y) 7→ (x − 1, y) is an isomorphism with inverse
E → E : (x,y) 7→ (x + 1,y). Let D′ be the restriction of the graph of the above
isomorphism to SpecS. Then we can show that the locally free sheaf L associated
to the projective module M is OSpecS(D′). And let D = D′ ∪ {∞ ×∞} be the
closure of D′ in E×E. Then it is a divisor of degree 1 over both factors E and E.

To compute the associated τ -sheaf, we first let σE be the absolute Frobenius en-
domorphism of E. For a divisor D of E × E, its pullback under (σE × idE)∗ is
again a divisor of E × E. Let X (resp. X) to be the smooth projective curve
obtained by base change E (resp. E) to the algebraic closure of K (resp. K). For
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any n ∈ Z and D a divisor on E (resp. on X), we define D(n) (resp. (n)D) by
(a, b)(n) := (ap

n
, bp

n
) (resp. (n)(a,b) := (ap

n
,bp

n
)) on closed points. Note that for

a divisor D of E × E, we can base change it to X or X. Following [Böc13], the
base change of (σE × idE)∗D to X is 3D(−1) and to X is (1)D. In particular, the
degree of (σE × idE)∗D as a divisor on X is triple of the degree of D as a divisor
on X, and its degree as a divisor on X is the same as the degree of D as a divisor
on X. In particular, the base change of (σE × idE)∗ [∞] to X is 3[∞] and to X is
[∞].

Let ∆ be the diagonal divisor on E × E and D be the divisor defined by α = 0
and β 6= 0. Let f be the section β/α. Then we can compute the divisors of f at
X and X respectively (note that the order of ∞ as a pole of β is 3 on X and 5 on
X respectively):

divX(f) = [∆] + 3[D(1)]− [D]− 3[∞],

divX(f) = [∆] + [(1)D]− [D]− [∞].

We have a τ -sheaf (OX(D−3∞), s 7→ f ·s) on E on K, which means that OX(D−
3∞) is a coherent sheaf on E × SpecK, and s 7→ f · s is a homomorphism from
(σE × idE)∗ (OX (D − 3∞)) to OX (D − 3∞) with cokernel O∆+3∞.

By the equation of C, we have that dx = ydy and Ω = Ady. We need to describe
the Cartier operator C : Ady → Ady as defined in [Böc13, Lemma 2.5]. In our
case, it is characterized by the following formulas:

C(dy) = 0, C(xdy) = −dy, C(x2dy) = xdy,

C(ydy) = 0, C(xydy) = 0, C(x2ydy) = ydy.

Furthermore, C(f 3g) = fC(g) for any f ∈ A and g ∈ Adx. By abuse of notation,
we denote also by C the induced endomorphism C ⊗ id on A ⊗ Kdx. Then we
have C(f 3g) = f (1)C(g) for any f ∈ A⊗K and g ∈ A⊗Kdx.

5.3 The Special Value at Certain Integers

From now on, we fix a positive integer n such that n =
∑l

j=1 2pnj for n1 < n2 <
. . . < nl. Then ζA (−n, T ) has degree l. To simplify the notation, we denote by Qj

the twist Q(ij) of a point Q in X, and by hj the twist h(ij) of a function. Recall
that D = (x− 1, y), ∆ = (x, y) and f = (−y (x− x)− y + y) / (x− x− 1). The
divisor of f on X is divX (f) = [∆] + 3[D(−1)] − [D] − 3[∞]. For simplicity, we
define xi := xp

ni , yi := yp
ni , Di := D(ni), ∆i := ∆(ni), and fi := f (ni). From now

on, the divisors mentioned will be the divisors on X unless stated otherwise.
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Recall that Theorem 2.3.18 states the relation between Goss zeta function and the
global L-function associated to certain τ -sheaf. As stated in [Böc13, Remark 3.4],
it suffices to know H n after change of coefficients to K. Hence in our case, we
can take

H n = ⊗j(OX(2Dj − 3∞), s 7→ f 2
j s).

We consider the line bundle Ln (3l∞) = OX (2[D1] + 2[D2] + · · ·+ 2[Dl]− 3l∞),
whose dual is L∨n (−3l∞) = OX (3l∞− 2[D1]− 2[D2]− · · · − 2[Dl]) dx. Then

Hom(H n,ΩX×SpecK) = L∨n (−3l∞) .

Set Wn := H0 (L∨n (−3l∞)) to be the vector space of global sections of L∨n (−3l∞).
The Riemann-Roch theorem implies that dimK (Wn) = l. For simplicity, we some-
times drop dy from the notation of sections of L∨n (−3l∞).

By Theorem 2.3.18(e), let κ : (σ × id)∗D(H n) → D(H n) denote the Cartier
dual action on D(H n) = Hom(H n,ΩX×SpecK) induced from τ . Then κ-action
on Wn gives rise to the special value of Goss zeta function at −n. The next two
propositions describe the action of κ and the structure of Wn as a K-vector space.

Proposition 5.3.1. The homomorphism κ : (σ × id)∗ L
∨
n (−3l∞) → L∨n (−3l∞)

is given on sections as:
s 7→ C

(
(f1f2 · · · fl)2 s

)
where C is the Cartier operator.

Proposition 5.3.2. The following are bases of Wn:

(i) {s1, s2, · · · , sl} where sk is the unique global section of L∨n (−3l∞) with simple

zeros at ∆1,∆2, · · · , ∆̂k, · · · ,∆l and with value 1 at ∆k, for k = 1, 2, · · · , l;

(ii) {s̃1, s̃2, · · · , s̃l} where s̃k is the unique global section of L∨n (−3l∞) with sim-

ple zeros at ∆
(1)
1 ,∆

(1)
2 , · · · , ∆̂(1)

k , · · · ,∆(1)
l and with value 1 at ∆

(1)
k , for k =

1, 2, · · · , l;

(iii) {b1, b2, · · · , bl} defined as follows: let b̃k be the function defining the line with
a double zero at the point Dk and (thus) a single zero at −2Pk (defined under
the group law of elliptic curve) for k = 1, 2, · · · , l; let b̃jk be the function
defining the line with single zeros at Dj, Dk and (thus) −Dj −Dk. Set:

bk :=


l∏

j=1

b̃j when k = 1;

l∏
j=2,j 6=k

b̃j · b̃2
1k when k ≥ 2.
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Remark 5.3.3. To make life easier, we compute the divisors of the above sections:

(i) div (sk) =
l∑

j=1

(2[Dj] + [∆j])−[∆k]+[Rk]−3l∞ where Rk := −
(∑l

j=1 (2Dj+

∆j)) + ∆k defined by the group law of the elliptic curve;

(ii) div (s̃k) =
l∑

j=1

(
2[Dj] + [∆

(1)
j ]
)
−[∆

(1)
k ]+[R̃k]−3l∞ where R̃k := −

(∑l
j=1 (2Dj+

∆
(1)
j

))
+ ∆

(1)
k ;

(iii) div (b1) =
l∑

j=1

(2[Dj] + [−2Di]) − 3l∞; for k ≥ 2, div (bk) =
l∑

j=2, j 6=k
(2[Dj]+

−2Dj]) + 2[−D1 −Dk]− [−2D1]− [−2Dk]− 3l∞.

Remark 5.3.4. We can write down the explicit functions of bk’s as follows: it is
easy to see that b̃k = −yky + x + 1− xk + y2

k and b̃jk = (xj − xk) y− (yj − yk) x +
xkyj − xjyk − yk + yj. Thus for k = 1, we have

b1 =
l∏

j=1

(
−yjy + x + 1− xj + y2

j

)
;

and for k ≥ 2, we have

bk =
l∏

j=2,j 6=k

(
−yjy + x + 1− xj + y2

j

)
· ((x1 − xk) y − (y1 − yk) x

+xky1 − x1yk − y1 + yk)
2 .

Proof of Proposition 5.3.2. The first and second parts are straightforward. And
(iii) follows from Remark 5.3.3.

In the next step, we will look at the action of κ on these bases.
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The Action of κ on {s1, s2, · · · , sl}

By Proposition 5.3.1, we know that κ (sk) = C ((f1f2 · · · fl)2sk) where

div
(
(f1f2 · · · fl)2 sk

)
=2

l∑
j=1

(
[∆j] + 3[D

(−1)
j ]− [Dj]− 3∞

)
+

l∑
j=1

(2[Dj] + [∆j])

− [∆k] + [Rk]− 3l∞

=3
l∑

j=1

(
[∆j] + 2[D

(−1)
j ]

)
− [∆k] + [Rk]− 9l∞

=3
l∑

j=1

(
[∆j] + 2[D

(−1)
j ] + [T ]− (3l + 1)∞

)
+ [Rk]− [∆k]

− 3[T ] + 3∞

with T := −
l∑

j=1

(
∆j + 2D

(−1)
j

)
. Thus let t be a meromorphic section such that

div (t) =
l∑

j=1

[∆j] + 2[D
(−1)
j ] + [Tk]− (3l + 1)∞,

and let tk := (f1f2 · · · fl)2 skt
−3. By the properties of Cartier operator, we have

κ (sk) = C (t3tk) = t(1)C(tk). Following the definition of t, we know that t(1) has

simple zeros at ∆
(1)
j ’s and double zeros at Dj’s. Again by the properties of the

Cartier operator, we have that C(tk) has a simple pole at ∆
(1)
k and the residue

Res
∆

(1)
k
C(tk) = Res∆k

tk. Hence κ(sk) has simple zeros at all ∆
(1)
j ’s except ∆

(1)
k ,

i.e., it is a nonzero multiple of s̃k, and the constant is κ(sk)(∆
(1)
k ):

κ(sk)(∆
(1)
k ) = t(1)C(tk) = (t(1))′(∆

(1)
k ) · Res

∆
(1)
k
C(tk)

= (t′(∆k))
3 · Res∆k

tk

=

(
t

πk
(∆k)

)3

· (−π2
kt
′
k)(∆k) = −(t3t′k · π−1

k )(∆k)

=−
(
(t3tk)

′ · π−1
k

)
(∆k)

=−
((

(f1f2 · · · fl)2sk
)′ · π−1

k

)
(∆k)

=−
(
(f1f2 · · · fk)2s′k

)
(∆k) +

l∑
j=1

(
(f1f2 · · · fl)2

fj
f ′jskπ

−1
k

)
(∆k)
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=

(
(f1f2 · · · fl)2

fk
f ′kskπ

−1
k

)
(∆k) 6= 0

with πk a uniformizer at ∆k. Define µk :=
(

(f1f2···fl)2

fk
f ′kskπ

−1
k

)
(∆k). Note that by

definition, ∆k is neither a zero nor a pole of sk (resp. fj for j 6= k), but it is a
simple zero of fk, hence it is neither a zero nor a pole of fkf

′
k ·π−1

k , i.e. µk 6= 0 or ∞.
Define µ := diag(µ1, . . . , µl).

Therefore we have the action of κ on {s1, s2, · · · , sl} represented as

κ(s1, s2, · · · , sl) = (s̃1, s̃2, · · · , s̃l) · µ.

The Action of κ on {b1, b2, · · · , bl}

Let ν (resp. ν̃) be the l × l matrix with the (i, j)-th entry defined to be bj (∆i)

(resp. bj(∆
(1)
i )). It is easy to see that

(s1, s2, · · · , sl) ν = (b1, b2, · · · , bl) , (s̃1, s̃2, · · · , s̃l) ν̃ = (b1, b2, · · · , bl) .

Therefore, we can represent the action of κ with respect to {b1, b2, · · · , bl} by the
matrix

ν̃−1µν.

Valuations of the Determinants

The special value of our zeta function at n is the characteristic polynomial of the
action of κ at the corresponding linear system Wn, which is just the characteristic
polynomial of the matrix ν̃−1µν. In particular, the leading coefficient of the special
value is just the determinant.

Our aim is to compute the valuation with respect to the place ∞. Note that we
have v (x) = −2 and v (y) = −3, hence by the definition of xi and yi, we have
v (xi) = −2 · pni and v (yi) = −3 · pni . We will eventually show the following
proposition.that the valuation of the determinant of ν̃−1µν is

Proposition 5.3.5. Let the matrices µ, ν and ν̃ be defined as above. Then we
have

v(det(ν̃−1µν)) = −
l∑

k=2

2kpnk .
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Proof. The proof will be divided into two steps. Firstly, we compute the valuation
of the determinants of each matrix.

Lemma 5.3.6. We have

v(det(µ)) = −
l∑

k=1

(8k + 4)pnk +
∑
k=2

nk=nk−1+1

4pnk .

Proof. Since µ is a diagonal matrix, its determinant is just the product of all
diagonal entries

det (µ) =
l∏

k=1

µk,

where µk =
(∏l

j=1,j 6=k fj

)2

· f ′k ·
fk
πk
· sk (∆k). By definition fj =

−y(xj−x)−y+yj
xj−x−1

,

which has a simple zero at ∆j, a triple zero at P
(−1)
j and a simple pole at Pj, and

sk by definition takes value 1 at ∆k.

Hence we have for j 6= k

fj(∆k) =
−yk(xj − xk)− yk + yj

xj − xk − 1

whose valuation is

v(fj(∆k)) =


−3pnk if j < k;

pnj if j = k + 1 and nj = nk + 1;

−pnj else.

We still need to compute f ′k ·
fk
πk

(∆k). Since ∆k is a simple zero of fk, we have

that f ′k (∆k) = fk
πk

(∆k). To compute this, we take an explicit uniformizer at ∆k,
namely πk = y− yk. We first compute the Taylor expansion of x− xk at πk: since

(x− xk)3 − (x− xk) = x3 − x− 1−
(
x3
k − xk − 1

)
= y2 − y2

k

= π2
k − ykπk,

we have
x− xk =ykπk − π2

k + (x− xk)3

=ykπk − π2
k +

(
ykπk − π2

k + (x− xk)3)3

=ykπk − π2
k +O

(
π3
k

)
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It yields:

fk =
−y (x− xk) + (y − yk)

1 + (x− xk)
=
− (πk + yk) (x− xk) + πk

1 + (x− xk)
=
(
− (πk + yk)

(
ykπk − π2

k +O
(
π3
k

))
+ πk

) (
1−

(
ykπk − π2

k +O
(
π3
k

))
+
(
ykπk − π2

k +O
(
π3
k

))2
+O

(
π3
))

=
((

1− y2
k

)
πk − ykπ2

k +O
(
π3
k

)) (
1− ykπk +

(
1 + y2

k

)
π2
k +O

(
π3
k

))
=
(
1− y2

k

)
πk +

(
1− yk − y3

k

)
π2
k +O

(
π3
k

)
Hence we have

f ′k (∆k) =
fk
πk

(∆k) = 1− y2
k.

Thus for any k, we have

v(µk) = 2

(
−6pnk −

k−1∑
j=1

3pnk −
l∑

j=k+1

pnj +

{
2pnk+1 if nk+1 = nk + 1

0 else

)

= −6(k + 1)pnk − 2
l∑

j=k+1

pnj +

{
4pnk+1 if nk+1 = nk + 1

0 else
.

Therefore we have the valuation of the determinant of µ:

v (det (µ)) =
l∑

k=1

v (µk) = −
l∑

k=1

(8k + 4)pnk +
∑
k=2

nk=nk−1+1

4pnk .

Lemma 5.3.7. We have

v(det(ν)) = 3pn1 −
l∑

k=2

(6k − 7) pnk .

Proof. Recall that the matrix ν is defined to be the l × l matrix whose (i, j)-th
entry is bj (∆i), where

b1 (∆i) =
l∏

k=1

(
xi − ykyi + y2

k − xk + 1

yk

)
;

bj (∆i) =
l∏

k=2,k 6=j

(
xi − ykyi + y2

k − xk + 1

yk

)
·
(

1

x1 − xj
((y1 − yj)xi − (x1 − xj) yi

+x1yj − xjy1 + y1 − yj))2 for j > 1.
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In order to compute the determinant, we write ν as γρ where

ρ := diag (ρi) := diag

(
l∏

k=2

xi − ykyi + y2
k − xk + 1

yk

)
,

γ := (γij)i,j ,

where

γi1 :=
xi − y1yi + y2

1 − x1 + 1

y1

;

γij :=

(
(y1 − yj)xi − (x1 − xj) yi + x1yj − xjy1 + y1 − yj

x1 − xj

)2

·(
xi − yjyi + y2

j − xj + 1

yj

)−1

.

For ρ, we have for any i ≥ 2

v (ρi) =
i−1∑
k=2

(−3pni) + 3pni +
l∑

k=i+1

(−3pnk) = −3(i− 3)pni −
l∑

k=i+1

3pnk ,

and

v (ρ1) = −
l∑

k=2

3pnk .

Therefore the valuation of the determinant of ρ is:

v (det (ρ)) =
l∑

i=1

v (ρi)

=−
l∑

k=2

3pnk +
l∑

i=2

(
−3(i− 3)pni −

l∑
k=i+1

3pnk

)

=−
l∑

k=2

3(2k − 4)pnk .

On the other hand, for γ, we have for any i:

v (γi1) =

{
3pn1 for i = 1;

−3pni else;
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and for any i and any j ≥ 2, we have

v (γij) =− v
(

1

yj

(
xi − yjyi + y2

j − xj + 1
))

+ 2v

(
1

x1 − xj
((y1 − yj)xi−

(x1 − xj) yi + x1yj − xjy1 + y1 − yj)
)

:= (I) + 2 (II)

where

(I) =


−3pnj if i < j;

3pnj if i = j;

−3pni if i > j.

(II) =


−pnj if i = 1 or j;

−pnj − 2pni if 1 < i < j;

−3pni if i > j.

hence we have for j ≥ 2:

v (γij) =


pnj if i = 1;

pnj − 4pni if 1 < i < j;

−5pni if i = j;

−3pni if i > j.

Therefore, there exists a unique permutation σ ∈ Σl such that the valuation of∏l
k=1 γk σ(k) is minimal, which is σ = id. The valuation of the determinant of γ is

v (det (γ)) = v

(
l∏

k=1

γkk

)
= 3pn1 −

l∑
k=2

5pnk .

Thus
v (det (ν)) = v (det (ρ)) + v (det (γ))

= −
l∑

k=2

3(2k − 4)pnk + 3pn1 −
l∑

k=2

5pnk

= 3pn1 −
l∑

k=2

(6k − 7) pnk .
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Lemma 5.3.8. We have

v(det(ν̃)) = −
l∑

k=1

(12i− 3)pnk +
∑
k=2

nk=nk−1+1

4pnk .

Proof. Recall that the matrix ν̃ is defined as the l×l matrix
(
bj

(
∆

(1)
i

))
i,j

. Similar

as above, we can write ν̃ as the product of ρ̃ and γ̃ with ρ̃ = diagl (ρ̃i) where

ρ̃i =
l∏

k=2

(
x3
i − yky3

i + y2
k − xk + 1

yk

)
and γ̃ = (γ̃ij) where for any i and j ≥ 2:

γ̃i1 :=
x3
i − y1y

3
i + y2

1 − x1 + 1

y1

;

γ̃ij :=

(
(y1 − yj)x3

i − (x1 − xj) y3
i + x1yj − xjy1 + y1 − yj

x1 − xj

)2

·(
x3
i − yjy3

i + y2
j − xj + 1

yj

)−1

.

For ρ̃: since

v

(
x3
i − yky3

i + y2
k − xk + 1

yk

)
=


−3pnk if i < k − 1;

−3pnk if i = k − 1 and ni + 1 < nk;

3pnk if i = k − 1 and ni + 1 = nk;

−3pni+1 if i > k − 1,

we have:

v (ρ̃i) = −
i∑

k=2

9pni −
l∑

k=i+1

3pnk +

{
6pni+1 if ni+1 = ni + 1

0 else

= −9(i− 1)pni −
l∑

k=i+1

3pnk +

{
6pni+1 if ni+1 = ni + 1

0 else
.

Hence

v (det (ρ̃)) =
l∑

i=1

−9(i− 1)pni −
l∑

k=i+1

3pnk +

{
6pni+1 if ni+1 = ni + 1

0 else

=− 12
l∑

k=1

(i− 1)pni +
l∑

k=2
nk=nk−1+1

6pnk .
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On the other hand, for γ̃, we have for any i and j ≥ 2:

v (γ̃i1) =− 3pni+1

v (γ̃ij) =− v
(

1

yj

(
x3
i − yjy3

i + y2
j − xj + 1

))
+ 2v

(
1

x1 − xj
(
(y1 − yj)x3

i

− (x1 − xj) y3
i + x1yj − xjy1 + y1 − yj

) )
=: − (I) + 2 (II)

where

(I) =


−3pni+1 if j ≤ i

3pni+1 if j = i+ 1 and nj = ni + 1

−3pnj if j = i+ 1 and nj > ni + 1

−3pnj if j > i+ 1.

(II) =


−3pni+1 if j ≤ i

−pni+1 if j = i+ 1 and nj = ni + 1

−pnj − 2pni+1 if j = i+ 1 and nj > ni + 1

−pnj − 2pni+1 if j > i+ 1.

Hence we have

v (γ̃ij) =


−3pni+1 if j ≤ i

−5pni+1 if j = i+ 1 and nj = ni + 1

−4pni+1 + pnj if j = i+ 1 and nj > ni + 1

−4pni+1 + pnj if j > i+ 1.

Therefore, there exists a unique permutation σ ∈ Σl such that the valuation of∏l
i=1 γ̃iσ(i) is minimal, which is the product of (i − 1, i) for all i such that ni =

ni−1 + 1. The valuation of the determinant of γ̃ is

v (det (γ̃)) =−
∑
i=1

ni+1 6=ni+1

9pni −
l−1∑
i=1

ni+1=ni+1

15pni

=−
l∑

k=1

9pnk −
∑
k=2

nk=nk−1+1

2pnk .
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Thus

v (det (ν̃)) =v (det (ρ̃)) + v (det (γ̃))

=− 12
l∑

k=1

(i− 1)pni +
l∑

k=2
nk=nk−1+1

6pnk −
l∑

k=1

9pnk −
∑
k=2

nk=nk−1+1

2pnk

=−
l∑

k=1

(12i− 3)pnk +
∑
k=2

nk=nk−1+1

4pnk .

Now we can compute the valuation of the determinant of ν̃−1µν directly:

v(det(ν̃−1µν)) = −v(det(ν̃)) + v(det(µ)) + v(det(ν))

=
l∑

k=1

(12i− 3)pnk −
∑
k=2

nk=nk−1+1

4pnk −
l∑

k=1

(8k + 4)pnk +
∑
k=2

nk=nk−1+1

4pnk

+ 3pn1 −
l∑

k=2

(6k − 7) pnk

= −
l∑

k=2

2kpnk .

5.4 The Main result

We take π∞ := x/y ∈ K as a uniformizer at ∞ and recall that we define
zA(−n, T ) := ζA(−n, Tπn∞). We have the following interpolating lemma for z:

Lemma 5.4.1 (Goss). The polynomials zA(−n, T ) lie in O∞[T ] for n ∈ N. If
n, n′ ∈ N satisfy that n ≡ n′ (mod 3k), then

zA(−n, T ) ≡ zA(−n′, T ) (mod π3k

∞).

Now let us consider zA(−n, T )/(1− Tπn∞) and ζA(−n, T )/(1− T ). They are both
polynomials since the L-function possesses Euler product. Moreover, since the
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degree of ζA(−n, T ) is l+1 for n =
∑l

i=1 2 · 3ni with n1 < n2 < . . . < nl, the degree
of ζA(−n, T )/(1− T ) is l and we define the coefficients to be ãi,n: ζA(−n, T )/(1−
T ) =

∑l
i=0 ãi,nT

i. By definition of zA(−n, T ), we have that zA(−n, T )/(1− Tπn∞)
is also a polynomial of degree l. We define the coefficients to be zA(−n, T )/(1 −
Tπn∞) =:

∑l
i=0 ai,nT

i. Then we have that ãi,n = ai,nπ
n
∞. Moreover, zA(−n, T )/(1−

Tπn∞) satisfies the same congruence property as zA(−n, T ) in Lemma 5.4.1.

Theorem 5.4.2. We have a0,n = 1, a1,n = πn∞, and for 2 ≤ j ≤ l, we have

v(aj,n) = 2 · 3n1 +

j−1∑
i=1

2(j − i)3ni .

Proof. Since the constant term of ζA(−n, T ) is 1, we have the constant term of
zA(−n, T )/(1 − Tπn∞) is also 1, i.e., a0,n = 1. Since A+,1 = ∅, the coefficient of T
in ζA(−n, T ) is 0, thus a1,n = πn∞. Moreover, if l ≥ 2, then we can compute the
valuation of the leading coefficient following Proposition 5.3.5:

v(al,n) = v(ãl,n) + ln = l ·
l∑

i=1

2 · 3ni −
l∑

i=2

2i · 3ni

= 2 · 3n1 +
l−1∑
i=1

2(l − i)3ni < n < 3nl+1.

If l = 1, then we have nothing else to prove. If l ≥ 2, we apply induction on n.
Observe that for any n′ =

∑l′

i=1 2 · 3n′i with n′1 < n′2 < . . . < n′l′ and l′ ≥ 2, we

have v(al′,n′) < 3nl′+1. Now let n′ =
∑l′

i=1 2 · 3ni , then n′ ≡ n (mod 3nl′+1). Then
by the congruence property, we have

zA(−n, T )/(1− Tπn∞) ≡ zA(−n′, T )/(1− Tπn′∞) (mod 3nl′+1).

Therefore we have for any 2 ≤ l′ ≤ l:

v(al′,n) = v(al′,n′) = 2 · 3n1 +
l′−1∑
i=1

2(l′ − i)3ni .

Remark 5.4.3. For A = Fp[t], we have a closed formula for the leading coefficient

of ζA(−n, T ) for n =
∑l

i=1 (p− 1)pni with n1 < n2 < . . . < nl following Thakur
[Tha13, Corollary 6], which is

(−1)l
∏

1≤i<j≤l

(tp
nj − tpni )p−1.

In particular, the valuation of the leading term is no other than
∑l−1

i=1(p−1)(l−i)pni .
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The next corollary follows directly from Theorem 5.4.2 and the fact that zA(−n, T ) =
(1− Tπn∞)(

∑l
i=0 ai,nT

i).

Corollary 5.4.4. The slopes of the Newton polygon of zA(−n, T ) are:

2 · 3n1 , 2 · 3n1 , 2 · 3n1 + 2 · 3n2 , 2 · 3n1 + 2 · 3n2 + 2 · 3n3 , . . . ,

in increasing order. In particular, apart from the first slope, all slopes occur with
multiplicity 1.
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6. On the Comparison of Goss
∞-adic and v-adic Zeta Functions

6.1 Introduction

In Chapter 2, we have defined the Goss∞-adic and v-adic zeta functions. However,
we only dealt with the ∞-adic zeta functions in the previous chapters. In this
chapter, we will focus on setting up a relation between them.

Let∞ and v be two distinct fixed places and S be a finite set of places containing
v but not ∞. Define S ′ := (S\{v})∪ {∞}. Denote by I∞,S (resp. Iv,S

′
) the group

of nonzero fractional ideals of A∞ (resp. Av) which are prime to all places in S
(resp. S ′). We first show that there exists an isomorphism φ between these two
groups. Let J be a subgroup of I∞,S of finite index and let J′ := φ(J). We prove
the main result of this chapter as follows:

Theorem 6.1.1. Let (χ, χ′) be any pair of characters such that the diagram

I∞,S
χ

//

φ
��

Kalg

Iv,S
′

χ′

77 (6.1)

commutes. Let ω̃ : I∞,S → Falg
q be the character of finite order sending any a to

ω(σ(a1
∞)) with ω as in the definition of v-adic exponentiation of an ideal. Then

we have:

zSAv(−n, T, ϕ(a) (mod J′), χ′) = z
S′,(v)
A∞ (−n, T, a (mod J), χω̃−1)

for any a ∈ I∞,S.

The first step is to fix a joint uniformizer which allows us to compare the v-adic and
∞-adic exponentiations, as we will do in Section 6.3.1. The next section is devoted
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to recalling the definition of Goss zeta functions and its twist by a character. Then
we will state the main theorem and the proof is given in Section 6.5.

6.2 Notation

In this chapter, we will consider ∞-adic and v-adic zeta functions, thus we will
slightly alter the notation of previous chapters. From now on, we fix two different
places ∞ and v.

• The ring of functions regular away from∞ (resp. v) is denoted by A∞ (resp.
Av). The group of nonzero fractional ideals of A∞ is denoted by I∞. Denote
by K∞ (resp. Kv) the completion of K at ∞ (resp. v). Let O∞ (resp. Ov)
be the ring of integers in K∞ (resp. Kv), and denote by k∞ := O∞/m∞
(resp. kv := Ov/mv). We define a sign function sgn∞ : K∗∞ → k∗∞ (resp.
sgnv : K∗v → k∗v). An element a of K∗∞ (resp. K∗v ) is said to be ∞-positive
or positive at ∞ (resp. v-positive or positive at v) if and only if sgn∞(a) = 1
(resp. sgnv(a) = 1). We say an element of K is∞-positive or v-positive if its
image under the canonical inclusion into K∞ or Kv is so. In particular, an
element of K∗ can be positive at both ∞ and v, or in short, doubly-positive.

• Let d∞ be the degree of ∞ and dv be the degree of v. Denote by h the class
number of K. Then by [NX02, Proposition 1.2.5], the class number of A∞

(resp. Av) is hd∞ (resp. hdv) and the narrow class number is hd∞(qd∞ −
1)/(q − 1) (resp. hdv(q

dv − 1)/(q − 1)).

• Let S be a finite set of places of K such that ∞ 6∈ S. Later we will assume
that v ∈ S. The subgroup of I∞ consisting of fractional ideals prime to
all the places in S is denoted by I∞,S. The subgroup of I∞,S consisting of
principal fractional ideals is denoted by P∞,S. For a positive integer d, we
define P∞,S,(d) to be the subgroup of P∞,S, consisting of all principal ideals
whose order at ∞ is a multiple of d. Note that for an ideal (α) in P∞,S, we
have by definition that the order of α at any place in S is 0.

• The subgroup of P∞,S generated by ∞-positively generated principal ideals
is denoted by P

∞,S
+∞ . Its intersection with P∞,S,(d) is denoted by P

∞,S,(d)
+∞ .

• We define the group of doubly-positively generated principal ideals, denoted
by P

∞,S
+∞,+v , to be the group of principal ideals in I∞,S which have doubly-

positive generators.
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• We denote by J a subgroup of I∞,S of finite index. Some possible J’s can be
P∞,S , P∞,S+∞ and P

∞,S
+∞,+v defined above.

• Let S ′ be a finite set of places of K such that v 6∈ S. Then we can define

verbatimly the groups of ideals Iv,S
′
, Pv,S

′
, Pv,S

′,(d), Pv,S
′

+v , and P
v,S′,(d)
+v .

6.3 Comparison of the Exponentiations

6.3.1 Joint Uniformizer

Recall that as we have seen in Section 2.3.1, the ∞-adic (resp. v-adic) exponenti-
ation depends on the choice of the uniformizer π∞ (resp. the uniformizers π∞ and
πv). In order to make the exponentiations ‘comparable’, our first aim should be
to find suitable uniformizers.

Firstly we want to find a divisor of K satisfying the following properties:

(i) it is principal;

(ii) its support contains only v and ∞;

(iii) it is the divisor of a doubly-positive element in K∗.

The existence of such a divisor satisfying these properties is as follows. Let D be
a divisor defined as:

D = d′ · v − d′′ · ∞, with d′ :=
d∞

gcd(dv, d∞)
, d′′ :=

dv
gcd(dv, d∞)

.

Clearly the divisor D is of degree 0. But it is not necessarily principal. The
following is an example.

Example 6.3.1. We choose the curve C to be y2 = x3 − x − 1 over F5, and the
places∞ := (x2+3x+3, y+x−1) and v := (x4+3x3+3x2+x−1, y+3x3+x2+x−1).
The degree of the place∞ is 2 and the degree of v is 4, but the divisor v−2∞ is not
principal. In fact by computation, we know that in this case, the principal divisor
of shape n · v − 2n · ∞ with smallest positive n is 8v − 16∞ and 8v − 16∞ = (f)
with f given as follows

(xy + x+ 2)−8 · (x+ 4)8 · (x4 + 3x3 + 3x2 + x+ 4)8 · ((x3 + 2x2 + 3x+ 1)y + x6

+ 2x5 + x4 + 3x3 + x2 + 1)−4 · (x2 + 2)4 · ((x2 + x+ 3)y + 2x4 + 4x3 + 2x2)−1.
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AlthoughD is not necessarily principal, we always have that h·D must be principal,
hence satisfies both (i) and (ii). To satisfy (iii), we need to turn to the narrow class

groups, i.e., we consider instead h q
dv−1
q−1

qd∞−1
q−1

· D, which has support {v,∞} and
is the divisor of some doubly-positive element in K∗. Hence there exists a factor

m of h q
dv−1
q−1

qd∞−1
q−1

which is minimal such that m ·D satisfies the above properties.

Let α be in K∗ such that div(α) = mD and α is positive at both places. Define
l := lcm(dv, d∞). Fix a 1-unit lm-th root α∗ ∈ Kalg of α, then we define:

π∞,∗ := α−1
∗ , πv,∗ := α∗;

π∞ := πd∞∞,∗, πv := πdvv,∗.

Observe that by construction π∞ (resp. πv) has valuation 1 at∞ (resp. v) for any
embedding Kalg ↪→ Kalg

∞ (resp. Kalg ↪→ Kalg
v ).

Remark 6.3.2. By definition, α∗, π∞,∗ and πv,∗ are all doubly-positive.

Remark 6.3.3. Note that α∗ may not lie in K, but only in a finite field extension.
Thus it is possible that π∞ and πv are not in K. However, we always have that
certain powers of π∞ and πv lie in K, namely π

lm/d∞
∞ ∈ K and π

lm/dv
v ∈ K. Hence

in this case, we can compare the v-adic zeta functions and ∞-adic zeta functions
when restricted to some cZ for c being lm/d∞ or lm/dv. We will see more details
later.

To have a clearer idea of all the elements defined above, we can look at the following
diagram of fields:

K ′∞(π∞,∗) K ′v(πv,∗)

K ′(α∗)

K ′∞ := K∞(π
1/lpmp
∞,∗ ) K ′v := Kv(π

1/lpmp
v,∗ )

K ′ := K(α
1/lpmp
∗ )

K∞ Kv

K

where lp (resp. mp) is defined to be the p-power part of l (resp. m). And we
“connect” the fields on the right hand side and those on the left hand side via
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the fields in the middle, where on the top row the correspondence is given by
α∗ 7→ π−1

∞,∗, α∗ 7→ πv,∗. In this diagram, the lower extensions are purely inseparable,
and the upper layer is separable and tamely ramified.

Recall that S is a finite set of places of K such that v ∈ S and ∞ 6∈ S, and we
define S ′ to be (S\{v}) ∪ {∞}. Then we have the following isomorphisms:

Iv,S
′

��

∼= //
⊕

w/∈S′∪{v}
Z

=

��

I∞,S
∼= //

⊕
w/∈S∪{∞}

Z.

This induces an isomorphism between I∞,S and Iv,S
′
, denoted by φ. We will show

that π∞ and πv give a description of this isomorphism.

Before proceeding, we first consider the restriction of φ to the following subgroups
of I:

P∞,S,(md
′′) = {(a) ∈ I∞,S | v∞(a) ∈ md′′Z};

Pv,S
′,(md′) = {(b) ∈ Iv,S

′ | vv(b) ∈ md′Z}.

Lemma 6.3.4. The subgroups P∞,S,(md
′′) and Pv,S

′,(md′) are isomorphic under the
restriction of φ (when by abuse of the notation, this map is also denoted by φ):

P∞,S,(md
′′) // Pv,S

′,(md′)

(a) � φ
// (a · π−v∞(a)

∞ )

(b · π−vv(b)
v ) oo

φ′ � (b).

Note that one should keep in mind that by the definition of the π∞ and πv, we
have

π−md
′′

∞ = πmd
′

v = α ∈ K∗.

Proof. It is quite straightforward to show that φ is well-defined: firstly, it is clear
that this map is independent of the choice of the generator. For any element in
P∞,S,(md

′′), say (a), define a′ := a · π−v∞(a)
∞ . Note that a′ ∈ K∗ since v∞(a) is by

definition a multiple of md′′. Now we show that (a′) lies in Pv,S
′,(md′) by computing
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the valuations of a′ at v and ∞. Observe that vv(π∞) = vv(α
−d∞
∗ ) = − dv

d∞
. Hence

we have

v∞(a′) = v∞(a · π−v∞(a)
∞ ) = v∞(a)− v∞(a) · v∞(π∞) = 0;

vv(a
′) = vv(a · π−v∞(a)

∞ ) = vv(a)− v∞(a) · vv(π∞)

=
d∞ · v∞(a)

dv
∈ md′Z,

(6.2)

since v∞(a) ∈ md′′Z and d∞d
′′ = dvd

′. Clearly, this φ is a homomorphism.

For any element in Pv,S
′,(md′), say (b), the order of b at v is divisible by md′. We

define b′ := b · π−vv(b)
v . Same as above, we can show that (b′) lies in P∞,S,(md

′′) and
that φ′ is a homomorphism.

The fact that they are inverse to each other follows directly from the fact that
π∞,∗ = π−1

v,∗.

The claim that the φ is the restriction of the isomorphism I∞,S → Iv,S
′

is shown
by checking the divisor maps:

divAv(φ((a))) = divAv(a · π−v∞(a)
∞ )

=
∑
w 6=v

vw(a · π−v∞(a)
∞ ) · w

=
∑

w/∈S∪{∞}

vw(a · π−v∞(a)
∞ ) · w + v∞(a · π−v∞(a)

∞ ) · ∞

=
∑

w/∈S∪{∞}

vw(a) · w + (v∞(a)− v∞(a) · v∞(π∞)) · ∞

=
∑

w/∈S∪{∞}

vw(a) · w = divA∞(a).

Lemma 6.3.5. The following holds:

(a) For any a ∈ I∞,S, we have deg∞(a) = degv(φ(a)).

(b) When restricted to P∞,S,(md
′′), φ preserves the signs at both ∞ and v, i.e., for

some a in A∞ such that (a) ∈ P∞,S,(md
′′), there exists some b ∈ Av such that

(b) = φ((a)), and sgnv(b) = sgnv(a), sgn∞(b) = sgn∞(a).

Proof. For (a), it suffices to consider the principal ideals, hence the statement
follows directly from (6.2). For (b), the b in the statement can be chosen to be as
in Lemma 6.3.4.
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We define the following important subgroups of P∞,S and Pv,S
′
:

P
∞,S
+∞,+v := {(a) ∈ P

∞,S,(md′′)
+∞ | sgn∞(a) = sgnv(a) = 1};

P
v,S′

+v ,+∞ := {(b) ∈ P
v,S′,(md′)
+v | sgnv(b) = sgn∞(b) = 1}.

By Lemma 6.3.5 (b), they are isomorphic under φ and φ′ . Note that we omit the
degree constraints in the notation since m, d′′ and d′ are uniquely determined by
the places v and ∞. Both subgroups are of finite index in I∞ and Iv respectively.

Moreover, let J be a subgroup of P∞,S+∞,+v . We define

KJ := {α ∈ K∗| sgn∞(α) = 1, (α) ∈ J},

and for any fractional ideal a of A∞, we define

aJ := a ∩KJ.

6.3.2 Comparison of Exponentiations

Thanks to the π∞, π∞,∗, πv and πv,∗ defined above, we can define the corresponding
∞- and v-adic exponentiations following Section 2.3.1.

For an integer n, we define the∞-adic exponentiation of a nonzero fractional ideal
a as

an∞ := 〈a〉n∞ · π−ndeg∞(a)
∞,∗ .

where 〈·〉∞ sends any a to 〈a〉∞ := (b · π−v∞(b)
∞ )

1

h(qd∞−1) ∈ U1 with b an ∞-positive
generator of ah(qd∞−1) such that it is ∞-positive. We define the v-adic exponenti-
ation of a as

an∞,v := 〈σ(a1
∞)〉n∞,v · ω(σ(a1

∞))n,

where 〈·〉∞,v sends σ(a1
∞) to 〈σ(a1

∞)〉∞,v := (b · π−vv(b)
v )

1

h(qd∞−1)(qdv−1) ∈ U1 where

b is a generator of σ(a1
∞)h(qd∞−1)(qdv−1) such that it is positive at ∞ and v. We

can give an explicit description of 〈σ(a1
∞)〉∞,v as follows: for a in Iv,S

′
, let b be a

doubly positive generator of ah(qd∞−1)(qdv−1), then

〈σ(a1
∞)〉∞,v = (b · π−v∞(b)

∞ )
1

h(qd∞−1)(qdv−1) · πdeg∞(a)
v,∗ ,

where we take the 1-unit root. By definition, the sign part ω is a character of finite
order.

Lemma 6.3.6. We have the following

〈φ(a)〉v = 〈σ(a1
∞)〉∞,v.
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Proof. Let b be a doubly-positive generator of ah(qd∞−1)(qdv−1). Then degw(b) =
h(qd∞ − 1)(qdv − 1) degw(a) for w ∈ {v,∞}. We have

〈φ(a)〉v =
(
b · πn deg∞(b)

∞,∗ · πdegv(φ(b))
v,∗

) 1

h(qd∞−1)(qdv−1)

=
(
b · πdeg∞(a)h(qd∞−1)(qdv−1)

∞,∗

) 1

h(qd∞−1)(qdv−1) · πdeg∞(a)
v,∗

= 〈σ(a1
∞)〉∞,v.

Combining the above lemma with Lemma 6.3.5 (b), we have

Lemma 6.3.7. For any a in I∞,S, we have

φ(a)nv · πndeg∞(a)
v,∗ = an∞,vω(σ(a1

∞))−n.

6.4 Goss Zeta Functions Twisted by a Character

Recall that we have seen Goss zeta functions in Chapter 2, as well as partial Goss
zeta functions in Chapter 4. In this section, we would like to introduce partial
Goss zeta function twisted by characters.

Note that we have defined π∞ and πv in Section 6.3.1 which may not be in K.
Nevertheless we can consider the corresponding∞- and v-adic exponentiations. To
be more precise, the so-called∞- or v-adic integral exponentiations of a fractional
ideal may not lie in K but in a finite field extension of K. Hence the following
definitions may not agree with the original definitions by Goss, but there is a close
relation between them.

Definition 6.4.1. Let J be a subgroup of I∞,S of finite index, χ be a character
which factors through I∞,S/J. Let a be a representative of any equivalent class
of I∞,S/J such that a is an ideal of A∞. We can define the partial ∞-adic zeta
function twisted by χ resp. the partial v-adic zeta function twisted by χ as:

ζSA∞(−n, T, a (mod J), χ) = χ(a)nan∞
∑
d≥0

T d

 ∑
b∈J∩[a]−1,b⊂A∞

deg∞(b)=d−deg∞(a)

bn∞

 ;

ζ
S,(v)
A∞ (−n, T, a (mod J), χ) = χ(a)nan∞,v

∑
d≥0

T d

 ∑
b∈J∩[a]−1,b⊂A∞

deg∞(b)=d−deg∞(a)

bn∞,v

 .
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Remark 6.4.2. Here are some remarks on the indices of the zeta functions.

(1) The index S in ζSA∞(−n, T, a (mod J), χ) or ζ
S,(v)
A∞ (−n, T, a (mod J), χ) means

that we consider the ideals which are prime to all the places contained in S.
Note that in the definition of ∞-adic zeta functions the set S can be empty
but in the definition of v-adic zeta functions the place v must lie in S;

(2) the index (v) in ζ
S,(v)
A∞ (−n, T, a (mod J), χ) means that we apply the v-adic

exponentiation to the ideals;

(3) the index A∞ in ζSA∞(−n, T, a (mod J), χ) or ζ
S,(v)
A∞ (−n, T, a (mod J), χ) refers

to the open curve we work with in Definition 6.4.1;

(4) the index ∞ of an∞ is to remind us that we define the exponentiation of ideal
a with respect to the particularly chosen π∞ and π∞,∗ in Section 6.3.1;

(5) the index∞, v of an∞,v is to remind us that we define the exponentiation of ideal
a by first defining the ∞-adic exponentiation ·m∞ as above and then refining it
with respect to the place v and πv,∗ as in Section 6.3.1.

Remark 6.4.3. The definition of the partial zeta functions are independent of the
choice of the representative a. Given two different representatives of the same
equivalent class, say a and a′, then there exists some ã ∈ J such that a = a′·ã. Then
deg∞(a) = deg∞(a′) + deg∞(ã). Now let us compare each term in the definition.
Since χ factors through J, we have χ(a) = χ(a′). By the multiplicativity of∞-adic
exponentiations, an∞ = a′n∞ · ã∞. And the two sets {b ∈ J ∩ [a]−1 | deg∞(b) = d−
deg∞(a)} and {b′ ∈ J∩ [a′]−1 | deg∞(b′) = d− deg∞(a′)} coincide by sending each
b in the first set to b′ := b · ã−1 in the latter one. Thus ζSA∞(−n, T, a (mod J), χ) =
ζSA∞(−n, T, a′ (mod J), χ). The same applies to partial v-adic zeta functions.

We introduce some variations of the ∞-adic and v-adic Goss zeta functions.

Definition 6.4.4. Use the notation as above, we can define the following Goss
zeta functions.

(1) If the character χ is trivial, we call for abbreviation the partial ∞-adic and
v-adic zeta function, i.e.,

ζSA∞(−n, T, a (mod J)) := ζSA∞(−n, T, a (mod J), 1),

ζ
S,(v)
A∞ (−n, T, a (mod J)) := ζ

S,(v)
A∞ (−n, T, a (mod J), 1).
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(2) We define the global ∞-adic and v-adic zeta functions twisted by a character
as:

ζSA∞(−n, T, χ) :=
∑

[a]∈I∞,S/J

ζSA∞(−n, T, a (mod J), χ),

ζ
S,(v)
A∞ (−n, T, χ) :=

∑
[a]∈I∞,S/J

ζ
S,(v)
A∞ (−n, T, a (mod J), χ).

(3) The ∞-adic and v-adic global Goss zeta functions are defined as follows:

ζSA∞(−n, T ) := ζSA∞(−n, T, 1);

ζ
S,(v)
A∞ (−n, T ) := ζ

S,(v)
A∞ (−n, T, 1).

Remark 6.4.5. Since χ is chosen such that it factors through I∞,S/J, we have the
following

ζSA∞(−n, T, χ) =
∑

[a]∈I∞,S/J

χ(a)nζSA∞(−n, T, a (mod J)),

ζ
S,(v)
A∞ (−n, T, χ) =

∑
[a]∈I∞,S/J

χ(a)nζSA∞(−n, T, a (mod J)).

Remark 6.4.6. Equivalently, we can define the global Goss zeta functions as the
sum of the partial ones:

ζSA∞(−n, T ) :=
∑

[a]∈I∞,S/J

ζSA∞(−n, T, a (mod J));

ζ
S,(v)
A∞ (−n, T ) :=

∑
[a]∈I∞,S/J

ζ
S,(v)
A∞ (−n, T, a (mod J)).

The following diagram describes the relations between the above variations of ∞-
adic zeta functions:

ζSA∞(−n, T, a (mod J), χ)
χ=1

tt

∑
[a]∈I∞,S/J

**

ζSA∞(−n, T, a (mod J))

∑
[a]∈I∞,S/J **

ζSA∞(−n, T, χ)

χ=1
tt

ζSA∞(−n, T )

and we have a similar diagram for the v-adic zeta functions.
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For interpolating purpose, we introduce also the z functions as follows.

zSA∞(−n, T, a (mod J), χ) := ζSA∞(−n, T · πn∞,∗, a (mod J), χ);

z
S,(v)
A∞ (−n, T, a (mod J), χ) := ζ

S,(v)
A∞ (−n, T, a (mod J), χ).

And we can also define the global ∞-adic and v-adic z functions in a similar
manner. It is easy to see that the z functions interpolate by Lemma 2.3.2 and
Lemma 2.3.9.

Lemma 6.4.7. Given m and n in Zp such that m ≡ n (mod pk), we have

zSA∞(−n, T, a (mod J), χ) ≡ zSA∞(−m,T, a (mod J), χ) (mod πp
k

∞).

Given m and n in Zp such that m ≡ n (mod pk(qdvf − 1)), for any ideal a we have

z
S,(v)
A∞ (−n, T, a (mod J), χ) ≡ z

S,(v)
A∞ (−m,T, a (mod J), χ) (mod πp

k

v ).

6.5 The Main Result

We hope to establish the comparison between v-adic Goss zeta functions and ∞-
adic Goss zeta functions. Recall that we assume S to be a finite set of places of
C such that v ∈ S and ∞ 6∈ S, and define S ′ to be (S\{v}) ∪ {∞}. Throughout
this section, we will assume that

J = PS+∞,+v , J′ = PS
′

+v ,+∞ .

Recall that we have an isomorphism φ from I∞,S to Iv,S
′

and φ(J) = J′. In Section
6.3.1 we had a detailed description of this map.

At the end of last section, we defined the z functions. Besides the interpolating
property, the introduction of the z functions is also motivated by the following
example.

Example 6.5.1. Let us look at the zeta functions with respect to the triv-
ial class and twisted by the trivial character, i.e., ζ

S,(v)
A∞ (−n, T, 1 (mod J)) and

ζS
′

Av(−n, T, 1 (mod J′)). Recall that we define KJ = {α ∈ K∗ | sgn∞(α) = 1, (α) ∈
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J} and KJ′ = {α ∈ K∗ | sgnv(α) = 1, (α) ∈ J′}. Then by definition we have:

ζS
′

Av(−n, T, 1 (mod J′)) =
∑
d≥0

T d(
∑
b∈K

J′
degv(b)=d

bn)

=
∑
d≥0

T d(
∑
a∈KJ

deg∞(a)=d

φ(a)n sgnv(φ(a))−n)

=
∑
d≥0

T d(
∑
a∈KJ

deg∞(a)=d

an · π−nv∞(a)
∞ sgnv(a)−n)

=
∑
d≥0

T dml(
∑
a∈KJ

v∞(a)=−dmd′′

an · πndmd′′∞ sgnv(a)−n)

=
∑
d≥0

(T · πn∞,∗)dml(
∑
a∈KJ

v∞(a)=−dmd′′

an sgnv(a)−n);

ζ
S,(v)
A∞ (−n, T, 1 (mod J)) =

∑
d≥0

T d(
∑
a∈KJ

deg∞(a)=d

an)

=
∑
d≥0

T dml(
∑

a∈KJ,v∞(a)=−dmd′′
an).

From the above computations it is evident that the ζ functions only differ by a
‘twist’ of roots of uniformizers. Note that by our choice of uniformizers, π−1

∞,∗ =
πv,∗. Hence if we turn to the z functions then we have:

zS
′

Av(−n, T, 1 (mod J′)) = z
S,(v)
A∞ (−n, T, 1 (mod J), sgn−1

v ).

the relation between the partial twisted z functions can be stated as follows:

Theorem 6.5.2. Let (χ, χ′) be any pair of characters such that the diagram

I∞,S
χ

//

φ
��

Kalg

Iv,S
′

χ′

77 (6.3)

commutes. Let ω̃ : I∞,S → Falg
q be the character of finite order sending any a to

ω(σ(a1
∞)) with ω as in the definition of v-adic exponentiation of an ideal. Then

we have:

zSAv(−n, T, ϕ(a) (mod J′), χ′) = z
S′,(v)
A∞ (−n, T, a (mod J), χω̃−1)

for any a ∈ I∞,S.
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Proof. We have the following

ζS
′

Av(−n, T, a′ (mod J′), χ′) =
∑
d≥0

T d(
∑

b′∈[a′],b′⊂Av
degv(b′)=d

(b′)nv · χ′(b′)n)

=
∑
d≥0

T d(
∑

b′∈J′∩(a′)−1,b′⊂Av
degv(b′)=d−degv(a′)

(b′)nv (a′)nvχ
′(b′a′)n)

=
∑
d≥0

T d(a′)nvχ
′(a′)n(

∑
b′∈J′∩(a′)−1,b′⊂Av
degv(b′)=d−degv(a′)

(b′)nvχ
′(b′)n)

=
∑
d≥0

T d(φ(a))nvχ
′(φ(a)n)(

∑
b∈J∩a−1,b⊂A∞

degv(φ(b))=d−degv(φ(a))

(φ(b))nvχ
′(φ(b))n)

=
∑
d≥0

T dan∞,vω̃(a)−nπ−v∞(a)
∞ χ(a)n(

∑
b∈J∩a−1,b⊂A∞

deg∞(b)=d−deg∞(a)

bn∞,vω̃(b)−nπ−v∞(b)·n
∞ χ(b)n)

=
∑
d≥0

(T · πn∞,∗)dan∞,vω̃(a)−nχ(a)n(
∑

b∈J∩a−1,b⊂A∞
deg∞(b)=d−deg∞(a)

bn∞,vω̃(b)−nχ(b)n);

and on the other hand, we also have

ζ
S,(v)
A∞ (−n, T, a (mod J), χω̃−1) =

∑
d≥0

T d(
∑

b∈[a],b⊂A∞
deg∞(b)=d

bn∞,v · ω(b)−nχ(b)n)

=
∑
d≥0

T d(
∑

b∈J∩a−1,b⊂A∞
deg∞(b)=d−deg∞(a)

bn∞,va
n
∞,v · ω̃(b)−nω̃(a)−nχ(ba)n)

=
∑
d≥0

T dan∞,vω̃(a)−nχ(a)n(
∑

b∈J∩a−1,b⊂A∞
deg∞(b)=d−deg∞(a)

bn∞,vω̃(b)−nχ(b)n).

Thus by the definition of the z functions, we have:

zS
′

Av(−n, T, a′ (mod J′), χ′) =ζS
′

Av(−n, T · πnv,∗, a′ (mod J′), χ′)

=ζ
S,(v)
A∞ (−n, T, a (mod J), χω̃−1)

=z
S,(v)
A∞ (−n, T, a (mod J), χω̃−1).

6.6 Examples

In this section, we present several examples of zeta functions and explicit compu-
tations of them.

125



6. On the Comparison of Goss ∞-adic and v-adic Zeta Functions

Example 6.6.1. Take C to be the projective line over Fq for any q a prime power,
the places ∞ and v to be (1/t) and (t) respectively, and let S be {v}, then S ′ =
{∞}. Then both places are Fq-rational, and the rings A∞ and Av are:

A∞ = Fq[t], Av = Fq[1/t],

both of which have strict class number 1. We choose the sign functions as:

sgn∞ : A∞\{0} −→ F×q
f(t) 7−→ the leading coefficient of f ;

sgnv : Av\{0} −→ F×q
g(1/t) 7−→ the leading coefficient of g.

Note that in this case, the value field V is the same as K, thus the embedding σ
is trivial and ω̃ sends any (f) to sgnv(f) with f an ∞-positive generator. Then α
can be chosen as 1/t, with divK(α) = 1 · v − 1 · ∞, and the uniformizers are then
π∞ = 1/t, πv = t. Note that in this case, the uniformizers π∞ and πv lie indeed in
K, hence we have the right definitions of ∞- and v-adic Goss zeta functions. The
isomorphism from P∞,S,(1) = P∞,S to Pv,S

′,(1) = Pv,S
′
sends (f) to (f/tdeg f ). Hence

the doubly positively-generated principal ideal groups P
∞,S
+∞,+v = J or P

v,S′

+v ,+∞ = J′

have index (q − 1) in the corresponding fractional ideal groups. Thus the partial
Goss zeta functions are:

ζ
S,(v)
A∞ (−n, T, 1 (mod J), ω̃−1) =

∑
d≥0

T d(
∑

f∈Fq [t], fmonic, deg(f)=d

fn · sgnv(f)−n)

=
∑
d≥0

T d(
∑

f∈Fq [t], f(0)=1,deg(f)=d

fn);

ζS
′

Av(−n, T, 1 (mod J′)) =
∑
d≥0

T d(
∑

f∈Fq [t], f(0)=1,deg(f)=d

fnt−dn)

=
∑
d≥0

(T · π−nv )d(
∑

f∈Fq [t], f(0)=1, deg(f)=d

fn).

Thus we have

z
S,(v)
A∞ (−n, T, 1 (mod J), ω̃−1) = zS

′

Av(−n, T, 1 (mod J′)).

And the relation of the global ∞-adic zeta function and v-adic zeta function is

z
S,(v)
A∞ (−n, T, ω̃−1) = zS

′

Av(−n, T ).

If the zeta function zS
′

Av is twisted by a character χ′ which factors through J′, then
let χ be product of ω̃−1 and the composition of

I∞,S
φ
// Iv,S

′ χ′
// Kalg,
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then
z
S,(v)
A∞ (−n, T, χ) = zS

′

Av(−n, T, χ′).

Example 6.6.2. Take C to be the projective line over F2, the places ∞ and v to
be (1/t) and (t2 + t+1), respectively, and S := {v}. Then we have d∞ = 1, dv = 2.
The rings of functions A∞ and Av are:

A∞ = F2[t];

Av = F2[
1

t2 + t+ 1
,

t

t2 + t+ 1
] = F2[x, y]/(y2 + xy + x2 + 1).

We choose sign functions as:

sgn∞ : A∞\{0} −→ F∗2 = {1}
f 7→ the leading coefficient of f ;

sgnv : Av\{0} −→ F∗4 = {1, t, 1 + t}
f/(t2 + t+ 1)n 7→ f (mod t2 + t+ 1),

for some integer n such that f is not divisible by t2 + t + 1. Same as the above
example, the value field V in this case is the same as K, thus the embedding σ is
trivial and ω̃ sends any (f) to sgnv(f) with f an ∞-positive generator. Then we
can choose α to be t2 + t + 1, thus div(α) = v − 2 · ∞, where d′ = 1 and d′′ = 2.
Then the uniformizer πv,∗ is a square root of α and π∞,∗ = π−1

v,∗. Let S be {v},
then S ′ = {∞}.

Therefore we can write down the groups of ideals explicitly:

P∞,S = {(f)|f ∈ F2[t], t2 + t+ 1 - f} = P
∞,S
+∞ ;

P∞,S,(2) = {(f)|f ∈ F2[t], t2 + t+ 1 - f, 2 | deg f} = P
∞,S,(2)
+∞ ;

Pv,S
′
= {( f

(t2 + t+ 1)n
)|f ∈ F2[t], t2 + t+ 1 - f, deg f ≤ 2n} = Pv,S

′,(1);

P
v,S′

+v = {( f

(t2 + t+ 1)n
)|f ∈ F2[t], f ≡ 1 (mod t2 + t+ 1), deg f = 2n}

= P
v,S′,(1)
+v .

And the isomorphism between P∞,S,(2) and Pv,S
′,(1) is given by:

P∞,S,(2) // Pv,S
′,(1)

(f) � φ
//

(
f

(t2+t+1)deg f/2

)
.
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Hence the doubly positively-generated principal ideal groups are:

P
∞,S
+∞,+v = {(f) | f ∈ F2[t], f ≡ 1 (mod t2 + t+ 1), 2| deg f};

P
v,S′

+v ,+∞ = {
(

f

(t2 + t+ 1)deg f/2

)
| f ∈ F2[t], f ≡ 1 (mod t2 + t+ 1), 2| deg f},

both of which are of index 6 in I∞,S and Iv,S
′
, respectively. Let J be P

v,∞
+v ,+∞ .

The partial Goss zeta functions are computed as below:

ζ
S,(v)
A∞ (−n, T, 1 (mod J), ω̃−1) =

∑
d≥0

T 2d

 ∑
f∈F2[t],deg f=2d

f≡1 (mod t2+t+1)

fn

 ;

ζS
′

Av(−n, T, 1 (mod J)) =
∑
d≥0

T 2d

 ∑
f∈F2[t],deg f=2d

f≡1 (mod t2+t+1)

fn · (t2 + t+ 1)−nd

 .

Plug in the uniformizer πv,∗, then we get that

z
S,(v)
A∞ (−n, T, 1 (mod J), ω̃−1) = zS

′

Av(−n, T, 1 (mod J)).

Example 6.6.3. Take C to be the projective line over Fq, the places ∞ and v
to be (1/t) and (g) with g in Fq[t], irreducible and of degree a, respectively, and
S := {v}. Then we have d∞ = 1, dv = a. The rings of functions A∞ and Av are:

A∞ = Fq[t];

Av = Fq[
1

g
,
t

g
, · · · , t

a−1

g
] = Fq[x0, · · · , xa−1]/I,

for some I an ideal in Fq[x0, · · · , xa−1]. Note that this I defines the relation of the
xi’s, refer to the remark below.

Remark 6.6.4. For instance if we take C to be the projective line over F2, and the
place v to be (t3 + t+ 1). Then to write Av in the form of F2[x0, x1, x2]/I, we have
that x0 = 1/g, x1 = t/g, and x2 = t2/g, and the relations which generate I are

x2
0 + x0x1 + x1x2 = 0

x0x2 + x2
1 = 0.

The sign function sgn∞ is chosen as above, and sgnv sends f/gn to the residue
of f modulo g, where the integer n is uniquely chosen such that g - f . Similarly
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the embedding σ is trivial and ω̃ sends any (f) to sgnv(f) with f an ∞-positive
generator. Choose α to be g, thus div(α) = v − a · ∞, and d′ = 1 and d′′ = a.
Then we have that πv,∗ is a primitive a-th root of α and π∞,∗ = π−1

v,∗. Let S be
{v}, then S ′ = {∞}. Therefore we have the following groups of ideals:

P∞,S = {(f) | f ∈ Fq[t], g - f};
P
∞,S
+∞ = {(f) | f ∈ Fq[t], g - f} = P∞,S;

P∞,S = {(f) | f ∈ Fq[t], g - f, a | deg f};
P
∞,S
+∞ = {(f) | f ∈ Fq[t], g - f, a | deg f} = P∞,S;

Pv,S
′
= {( f

gn
) | f ∈ Fq[t], g - f, deg f ≤ an} = Pv,S

′
;

P
v,S′

+v = {( f
gn

) | f ∈ Fq[t], f ≡ 1 (mod g), deg f = an} = P
v,S′

+v .

And the isomorphism between P∞,S and Pv,S
′

is given by:

φ : P∞,S // Pv,S
′

(f) � //

(
f

gdeg f/a

)
.

Hence the doubly positively-generated principal ideal groups are:

P
∞,S
+∞,+v = {(f) | f ∈ Fq[t], f ≡ 1 (mod g), a| deg f, f is monic};

P
v,S′

+v ,+∞ = {( f

gdeg f/a
) | f ∈ Fq[t], f ≡ 1 (mod g), a| deg f, f is monic},

both of which are of order a(qa−1) in I∞,S and Iv,S
′
, respectively. Let J be Pv,S

′

+v ,+∞ .

The partial Goss zeta functions are computed as below:

ζ
S,(v)
A∞ (−n, T, 1 (mod J)) =

∑
d≥0

T ad(
∑

f∈Fq [t]+∞ , deg f=ad

f monic

fn);

ζS
′

Av(−n, T, 1 (mod J)) =
∑
d≥0

T ad(
∑

f∈Fq [t]+v , deg f=ad

f≡1 (mod g)

fn · g−nd).

By easy computation, we can see that

z
S,(v)
A∞ (−n, T, 1 (mod J), ω̃−1) = zS

′

Av(−n, T, 1 (mod J))
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Example 6.6.5. Take C to be the projective line over Fq, the places ∞ and v
to be v0 := (g0) and v1 := (g1) with gi irreducible and of degree ai, for i = 0, 1,
respectively. Let S be {v1}, then S ′ = {v0}. Then we have dv0 = a0, dv1 = a1. For
i ∈ {0, 1, }, the corresponding ring of functions Avi is:

Avi = Fq[
1

gi
,
t

gi
, · · · , t

ai−1

gi
] = Fq[x0, x1, · · · , xai−1]/Ii,

with sign function sgni(f/g
n
i ) = f modgi where n is an integer such that f ∈ Fq[t]

hence f is not divisible by gi. In this case, ω̃ sends any (f/gn0 ) to sgnv(f/g
n
0 )−1

with f/gn0 the ∞-positive generator.

Then h can be chosen as gd
′

1 g
−d′′
0 , with d′ := a0/ gcd(a0, a1) and d′′ := a1/ gcd(a0, a1),

thus div(h) = d′ · v1 − d′′ · v0. Therefore we can write down the groups of ideals
explicitly:

Pv0,S = {( f
gn0

) | f ∈ Fq[t], g0 - f, g1 - f, deg f ≤ na0};

P
v0,S
+v0

= {( f
gn0

) | f ∈ Fq[t], f ≡ 1 (mod g0), g1 - f, deg f = na0};

Pv0,S = {( f
gn0

) | f ∈ Fq[t], g0 - f, g1 - f, deg f ≤ na0, d
′′ | deg f};

P
v0,S
+v0

= {( f
gn0

) | f ∈ Fq[t], f ≡ 1 (mod g0), g1 - f, deg f = na0, d
′′ | deg f};

Pv1,S′ = {( f
gn1

) | f ∈ Fq[t], g1 - f, g0 - f, deg f ≤ na1};

P
v1,S′

+v1
= {( f

gn1
) | f ∈ Fq[t], f ≡ 1 (mod g1), g0 - f, deg f = na1};

Pv1,S′ = {( f
gn1

) | f ∈ Fq[t], g1 - f, g0 - f, deg f ≤ na1, d
′ | deg f};

P
v1,S′

+v1
= {( f

gn1
) | f ∈ Fq[t], f ≡ 1 (mod g1), g0 - f, deg f = na1, d

′ | deg f}.

And the isomorphism between Pv0,S and Pv1,S′ is given by:

φ : Pv0,S // Pv1,S′

(
f

gnd
′′

0

)
� //

(
f

gnd
′

1

)
.
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Hence the doubly-positivelygenerated principal ideal groups are:

P
v0,S
+v0 ,+v1

= {( f
gn0

) | f ∈ Fq[t], f ≡ 1 (mod g0), f ≡ 1 (mod gi) for i = 0, 1, deg f = na0,

d′′ | deg f};

P
v1,S′

+v1 ,+v0
= {( f

gn1
) | f ∈ Fq[t], f ≡ 1 (mod g1), f ≡ 1 (mod gi) for i = 0, 1, deg f = na1,

d′ | deg f}.

The partial Goss zeta functions are computed as below:

ζ
S,(v1)
Av0 (−n, T, 1 (mod J)) =

∑
d≥0

T d
′′d(

∑
f∈Fq [t], deg f=d′′d
f≡1 (mod g0)

fn · g−nd0 );

ζS
′

Av1 (−n, T, 1 (mod J)) =
∑
d≥0

T d
′d(

∑
f∈Fq [t], deg f=d′d
f≡1 (mod g1)

fn · g−nd1 ).

Thus if we consider the z functions, we have then

z
S,(v1)
Av0 (−n, T, 1 (mod J), ω̃−1) = zS

′

Av1 (−n, T, 1 (mod J)).
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