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Abstract. A central limit theorem for the normalized empirical process, based on a (non-Gaussian) moving
average sequence Xy, ¢t € Z with long memory, is established, generalizing the results of Dehling and Taqqu
(1989). The proof is based on the (Appell) expansion

(X <a)=F(x)+ f(&) Xt + ...

of the indicator function, where F(z) = P[X; < #] is the marginal distribution function, f(z) = F'(x), and
the covariance of the remainder term decays faster than the covariance of X; . As a consequence, the limit
distribution of M-functionals and U-statistics based on such long memory observations is obtained.

1. Introduction .

Statistical inference for long memory time series has gained considerable attention in recent years; see
e.g. Beran (1991), Dehling and Taqqu (1989), Koul and Mukherdjee (1993) and the comprehensive survey
by Beran (1992) for additional references. Most of the studies deal with Gaussian observations X;,¢ € Z, or
(eventually) with instanteneous functionals X; = G(Y3) of a Gaussian long memory series Y3, ¢ € Z, using
well-developped techniques of Hermite expansions ( Major (1981)).

A natural generalization of Gaussian long memory series constitute linear (or moving average) processes

(1.1) Xe =) b, tEL,

s<t
with hyperbolically decaying coefficients
(1.2) by = L(t)t~P+L/2,
where the main parameter D € (0, 1) characterizes the decay rate of the "memory”, L(+) is a slowly varying
at infinity function, and &;,¢ € Z is an iid sequence with zero mean and variance 1. In particular, (1.1)

includes the case of (non-Gaussian) fractional ARMA processes (see Granger and Joyeux (1980)). More
generally, condition (1.2) can be replaced by the hyperbolic decay condition of the covariance

(1.3) r(t) = EX Xigs = 3 bpbegr = La(t)t™"

where Lo(t) ~ dL?(t) is a slowly varying at infinity function, d = fooo (u(1 4 u))=+D)2 gy,
The main object of this paper is the study of the asymptotics of the empirical process

(1.4) Py(e,t) = 5 > [LX <o) = F(a)],

where Xyt € Z is the linear process of (1.1)-(1.2), and
(1.5) F(z) = P[X: < «]
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is the (marginal) probability distribution function, which does not depend on ¢t € Z |, thanks to the strict
stationarity of the observation process X; (1.1). Our main result (Theorem 1 below ) is a generalization of
Dehling and Taqqu (1989), Theorem 1.1, who considered the case of instanteneous functionals of a Gaussian
sequence.

Introduce the (two-parameter Skorokhod) space D = D([—o0, +o0] x [0, 1]) of real functions ¢ = g(x,1),

(z,t) € [—00,4+20] x [0, 1], with the sup-topology, and write L5 for weak convergence of random elements
in D ( see Dehling and Taqqu (1989) for details).

The fractional Brownian motion Z(t),t € [0,1] is a (continuous) Gaussian process with zero mean and
the covariance

EZ()Z(s) = S (P77 + 1577 = |t = s[*77).

N | =

Put .
cp = / / |x—y|_Ddxdy/ (14 w)u| =PI/ 2qy,
o Jo 0

and

dy = d'’L(N)N'=% .
Then 1t 1s well-known that

Z r(t—s) = (ep+o(1))d%

and

Y It =s)| = O(dR).

Theorem 1. Assume that the characteristic function ¢(u) = Ee™o of the "noise” in (1.1) satisfies the
following condition: there exist constants C' > 0,6 > 0 such that

(1.6) 6(w)] < C(L+[ul)™’, weR.

Moreover, assume that moments E|&|" < oo, for all n < n*(D), where 9 < n*(D) < oo is estimated in
Remark 1 below. Then

(1.7) {dj_\,l [Nt] Fn(z,t); (2,1) € [—o0, +o0] X [0, 1]} = {Vep f(2)2(1); (x,1) € [—o0, +00] x [0,1]},

where f(x) = F'(x) is the marginal probability density.

Theorem 1 can be applied to obtain the limit distribution of various estimators of parameters of the
marginal distribution F'(x) of long memory moving average sequences (1.1) (see Sect. 2). Condition (1.6) is
a rather weak smoothness condition on the distribution of the "noise” ; hovewer, it guarantees the existence
and infinite differentiability of the density f(x) .

The empirical process (1.4) is a particular case of sums of more general ”instanteneous” functionals of
the form:

(V]
(1.8) Sn(t;H) = > H(X,),

H(-) € L%(F), EH(Xo) = 0. Limit distribution of (1.8) for long memory linear processes X;,t € Z of (1.1)-
(1.2) was studied by Surgailis (1981, 1983), Avram and Taqqu (1987), Giraitis and Surgailis (1989). There,

it was found that, at least for "nice” analytic functions H(-), this distribution is basically the same as if
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X:,t € Z were Gaussian, with the only difference that the Hermite rank of H(-) has to be replaced by the
Appell rank corresponding to the expansion

(1.9) H(z) = > apAp(n)/k!

k=0
in Appell polynomials Ap(x) = Ap(x; F), k > 0, with the generating function
(1.10) D A(x)/k = T Ee e,

k=0

Hovewer, the fact that Appell polynomials are not orthogonal in general makes the convergence of (1.9) a
very difficult problem and restricts the use of it basically to analytic functions only (see Giraitis and Surgailis
(1986)). In the latter case, the coefficients aj are given by

ar = FHM(X,) = /RH““)(y)dF(y),

which can be formally integrated by parts, giving

(111) o = CDPEHCX)Q) = (<1F [ 1))
where the functions

(1.12) Qr(y) = M)/ fy); k=01,..

form a biorthogonal system in L?(F) to the Appell system Ay (y; F'); k > 0 (see Giraitis and Surgailis (1986),
Daletskii (1991) ). The above facts helped us recently to extend the Dobrushin-Major-Taqqu theory to
non-smooth functionals H(-) of the linear long memory process (1.1)-(1.2), of arbitrary Appell rank (see
Giraitis and Surgailis (1994) ). In the case of the (centered) indicator function

H(y;z) = Wy <z)—F(z), yeER,

the corresponding Appell coefficient ag(x) = 0, while

(113) wle) = = [ H0r iy = 1)
which is not identically zero. This argument explains the leading term of the (Appell) expansion
(1.14) (X <a)—F(x) = —f(e)X: + ...
and the form of the limit empirical process in (1.7), as
[NVi]
(1.15) {5 > X e o1y Y {Vep 2(0); t € [0,1]);
s=1

see Davydov (1970) and Gorodetskii (1976).
The main step in the proof of Theorem 1 is the following ”weak uniform reduction principle” (c.f.

Theorem 3.1 of Dehling and Taqqu (1989)).



Theorem 2. There are constants C',v > 0 such that for any 0 < e < 1

(1.16) P ﬂa&(sggdj\ﬁz 1(X; <2)— F(z)+ f(0)X )|>€] < ONTY(1+73).

The proof of Theorem 2 uses the chaining argument of Dehling and Taqqu (1989), together with the
following asymptotics of the joint (bivariate) probability density fi(z1,z2) of (X1, X3):

(L.17) f(wr,wa) = flw)f(w2) +r)f (w)f (w2) +o(r(t))  (t —o0)

uniformly in 21,22 € R (see Lemma C below). In turn, the proof of (1.17) uses the factorization of
the corresponding bivariate characteristic function due to the independence of the noise variables, and the
asymptotics (1.2).

The rest of the paper is organized as follows. Sect. 2 is given to the proof of Theorems 1 and 2 and the
auxiliary Lemmas A, B, C, and D. Sect. 3 discusses applications to the limit distribution of some statistical
functionals based on the empirical distribution function.

2. Proofs of Theorems 1 and 2

Write §(u) = [ga e g(x)dz for the Fourier transform of a real function g = g(z), x € R3(d > 1),
whenever it is well-defined.

Lemma A. For any k > 0,

(2.1) [ kil < o
R
and
(2.2) limsup/ |u1|k|ﬁ(u1,u2)|du1duz < 00.
|t|—>oo R2

In particular, the marginal probability density f(x) is infinitely differentiable, and the bivariate probability
density fi(x1,x2) exists and is jointly continuous in R? for any sufficiently large t .

Proof. The characteristic function

(2.3) Ju) = B = T] o(ub;),  wé€R,

jz0
where ¢(u) = Eeitéo satisfies
(2.4) lo(u)| < C/(1+]ul)’
see (1.6). Choose J C {j € Z : b; # 0} such that k + 1 < §|J| < co. Then
F)l < JTle(ubp)l < CTTC +lubi)™ < O (14 Juh™*M,
7 7
which proves (2.1).
To prove (2.2), let {b1;}, {b2;} € l5 be two real sequences such that
(2.5) Sl > ki+l, =12
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where

(2.6) J1 = {j € Z:|by| > by},
T2 = {J €Z : |byj| < |bayl},

and k; > 0, ¢=1,2. Then

ki

H (b(ulblj —|—u2b2j)|du1duz < 0.
JEZ

(2.8) (up, ug) = Z/R |

Indeed, put ®;(uy,us) = HjeJ, d(u1b1; 4 usbsj), and assume J;, ¢ = 1,2 are finite. Then, similarly as in the
proof of (2.1),

|1 (ur,u)] < C T+ by +usboy )™ < C T+ s + Bjual) ™,
Jy J1

where 8; = by;/b1; and max |5;| < 1 — ¢, for some € > 0. Therefore

|1(ur,u)| < O+ ehu)™" = C(L+ efua )1,
Ty

and a similar estimate holds for ®s(uy, uz). Hence
2 2
|@(ur,uz)| < [ 1@iur,uz)] < O+ efus)=#4l,
i=1 i=1

which proves (2.8).

Now, take by; = b; and by; = bj_y. As b; — 0 ([t| — o0), for any k > 0 there exists ¢g > 0 such
that Jy, Jo defined in (2.6), (2.7), respectively, satisfy 6|J;| > k + 1, i = 1,2, for any [t| > 5. Moreover, the
corresponding estimates hold uniformly in [¢| > ¢y |, hence (2.2) follows from (2.8).

Lemma B. Assume that, for some n € Z,,
E|€0|n+2 < 0.

Then

(2.9) /R (14 )" (@)l < oo,

Proof. As f'(-) € C°(R) (see Lemma A), and

o~

(2.10) (wf(w) "™ = ~[2" 21 (@)] (u)

( 9(-) stands for the Fourier transform of g(-)), it suffices to show that the left hand side of (2.10) is in L}(R).
Indeed, this implies the boundedness of |22 f/(x)| and therefore the integrability of (1 + |z])" f'(z).
The m-th derivative of the characteristic function (2.3) can be written as

2.11) Frow = Y X (V) TTo ) @),

1<|J]<m [k|=m jes



where the first sum is taken over all subsets J C Zy of cardinality 1 < |J| < m, the second sum is taken

over all vectors k=(k; :je€ J), k; € Zy, k| =Dk =m, (TI’Z) = m!/H]’eJ k;!; finally,

Oe(u) = ] oluby).

JEZWN\J

Similarly as in the proof of Lemma A, for any n € Z, and any m € Z, one can find a constant C' = C},
such that, uniformly in J C Z4, |J| = m,

(2.12) |Dye(u)] < C(1+|u))™"5,

Furthermore, as |¢")(u)] < E|&|* (k> 2), ¢ (u)| < |u|FE3, hence, according to (2.11), (2.12),

Ol < e+ 3 S T sl I lulb

1<|J|<n+2 |k|=n+2 j:k;>2 jik;=1

IN

C(1+ Jul)™2.

Consequently, R
(@)™ 2] = [(n+ 2D (@) + wf ) ()]

C(14+ |u))™2

IN

This proves the lemma, according to (2.10) and the argument above.

Lemma C. There exists 6 > 0 such that, uniformly in z1,22 € R,
(2.13). fe(zr, 20) — fle) Fles) + () f (x) f (x2) = O@~P7.

Proof. Write pi(x1, 22) for the left hand side of (2.13). Then

(2.14) pi(xy,x0) = (2m)72 /Rz e~ D, (u)du,
where
(2.15) Pr(ur,us) = filuy, ug) — Fur) fuz) — r()ugusf () f(us).

According to Lemma A, for any § > 0,

(2.16) /R Po(w)|1(ju] > tP)du = O@=P~).

Indeed, choose k > (D +6)/6 , then
/ |F(w)1(|u] > t)du < t_ké/ ul*|fi(w)ldu < Ct7* = 0(=P~*)  (t — o)
R2 R2

by (2.2), and a similar estimate is valid for the two other terms on the right hand side of (2.15).
It remains to show that there exists 6 > 0 such that

(2.17) sup [pe(w)] = O(t=P~%);

lu| <2

indeed,

|/ e (u)L(fu] < tP)du| < @ PT = o).
R2



To prove (2.17), write

ﬁ(ul,uz) = qu(ulb_j—l—uzbt_j) = HHH =: ay -as - as,

JEZ J1 Ja J3

and, similarly,

~ ~

Flu)fluz) = HqS(ulb_j)q/)(uzbt_j) = HHH =: a} -ab - af,

jeZ Ji Jo Js
where
J1 = {jeL:|j| <t}
Jo = {j€L:|j—t| <t}
Js = Z\J1 U Js.
We have N N N
Ji(ur,us) — fur) f(u2) = arasas — ajabay

= (a; — d})asas + a}(as — ab)as + a)as(as — af).

Hence, (2.17) follows from |a;] < 1, |af| < 1,i=1,2,3, and

(2.18) a —a; = O(=P=3%),  i=1,2
(219) as — aé = —Clé cULUY T(t) + O(t_D_Bé)’

uniformly in |u| < t%.
Using the inequality

[TTer—TTei < > 1ei— il

[b;] < 1, |64 < 1, one has

lay — a}] < Z |p(uib_j 4+ usbi—j) — p(uib_;)p(uzbi_;)|,

li1<t2e
where, for |us| < %, |j| <t?°, and sufficiently small § > 0,
lusby—j| < CJt|=P~%

in view of the asymptotics (1.2) of b; , and the inequality (D + 1)/2 > D . Therefore, as |¢(y1 + y2) —
é(y1)o(y2)| < Clyz| with C' = 2sup,, |¢'(2)| < 2F|&y|, we obtain

jar —ay] = OC Y 1117775 = o(jt|=P~*"),

l71<t2e

or eq. (2.18) for ¢ = 1; the case ¢ = 2 is analogous.
It remains to prove (2.19). Note that |u| < t* and j € J3 imply

[uib—j| + Jusbi—j| = O@™"),
where 0 < §' < 8D. Therefore, for sufficiently large ¢ , the left hand side of (2.19) can be represented as
(2.20) az — ay = ag [exp{Qt(ul, u2)} — 1],
where
Qi(ur, uz) = Z P(urby, usbe—j)
l71>120 [t —g]>120
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and

o(z+y)
o(x)o(y)

is well-defined and twice continuosly differentiable in a neighborhood of (z,y) = 0 € R? . Note that

Y(x,y) = log

1/)($’ 0) = 1/)(0’ y) = 1/@(1‘, 0) = 1/)y(0’ y) =0,

ey (0,0) = ¢”(0) = —1, and
Yey(z +y) = (log¢)"(z +y).

Hence

Y(vi,v2) = /0 1/0 2(log‘z’)”(l‘+y)dacdy

and, as (log $)®)(2) is bounded in a neighborhood of z =0 ,

urb_y Uoby_ g
Plnboj,uabe-y) = / / [(log 6)"(0) + (x + y)(log )P(2)] dady
= —urusb_jbi—j + O((urb—j)*usb—j| + [urb_j|(uzbi—;)?).

Consequently,
Qt(ur, us) = —r(t)urus + 141 + s,

il = O(|U1U2|< Z |b_]'bt_]'|+ Z |b—jbt—j|>)a

l71<t2e [t—j1<t2®

O((ulus] + fur u3) (3 02— + 165 2-) ).
J

where

iz
Here, as |u;| <t’,i=1,2,so0

i = o* e begl) = O(t=P=%),

and

iy = O 302 lbeey) = O(=P=)
J
provided 6 > 0 is sufficiently small. In particular,
Q:(ur,us) = O’ r(t)) = O@=P+3%)

uniformly in |uy|, |us| < %, which implies

eQt(Unu2) _ 1 = @, (uy,us) + O(QF(u, us))

= —uyuar(t) + O(t_D_Sé).

By (2.20), this proves (2.19) and the lemma, too.

Put

(2.21) Sn(nsx) = > (UX; <z)— F(x) + f(2)X;).



Lemma D. There is a constant v > 0 such that, for any n < N,

— n
dy' ESK(niw,y) < gyl vl

where p(+) is a finite measure on R.

Proof. We have
Sn(nsz,y) = Sy(n;z) — Sn(n;y)

n

> H(X;),

j=1
where
H(z) = H(ze,y) = Uy <z <x)— Fe,y)+ (f(2) — fy)z
Therefore .
ESk(nsx,y) = Y plt—s),
t,s=1
where

p(t) = p(t;e,y) = EH(Xo)H(X).
Using the relations

/f(z)H(z)dz = 0,
R
/f’(z)H(z)dz = 0,
R
one can represent the covariance p(t) as
(2.22) p(t) = / / H(z1)H (z2)pe(21, 22)dz1d 29,
RJ/R

where
pi(21, 22) = iz, 22) = F(20) f(z2) + 7 (O F (20) F (22);
c.f. (2.13). Assume ¢ is large enough (¢ > #g). Then, according to Lemma C and (2.22),

(2.23) ol < 00 [ [ 1HEHC)Gr, 22)fdoadzs,

where v = (D +6)(1 —0) — D > 0, provided # > 0 is chosen sufficiently small.
Let us estimate the last integral, denoted by i(t). Put A_ = {(z1,29) € R? : |ps(21,22)]% < (1 +
2D =(1 4 |22)=?); Ay = R?\A_ Then

i(t) = //A_...+//A+... = () +ip (1)

Using the estimate

(2.24) el < 16 <=0+ P+ [ 1Fe)e
we obtain
(2.25) i) < ([ I+ 1E)E) < Co el
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where C_ := p_(R) and

pe@) = [ Q)+ 7@ [ )+ [ @l [ )

is a finite measure on R, according to Lemma B.
Next, as
|pt(2’1, Z2)|€_1 < (1 + |Zl|)n*(1 + |Z2|)n*’ (Zl’ Z2) € Ay,

with n, = [3(1 — 0)/60] 4+ 1, we obtain

0 < [ [ I COHEI ) (0 2] dedes

< [ [0+ aldad
= Q/R/R|pt(zl’22)||H(Zl)|(1+ |21 )" d 21 ds
. /R(4f(2)+2|f’(Z)I)IH(z)|(1+|z|)2n*+1dz,
Hence, by (2.24),
(2.26) iv(t) < pylz,yl,

where

p(4) = /4(4f(Z)+2|f’(z)|)(1+ |2]) 2+ dz
+ F(A)/R(4f(z) F21()) (14 |22+ dz
-I-/A|f’(x)|dx/R|z|(4f(z)_|_2|f/(z)|)(1+|Z|)2n*+1d2

is a finite measure, too, provided E|&)*"*t* < oo (see Lemma B). Combining (2.25) and (2.26), we obtain
that for all sufficiently large ¢ > ¢

(2.27) lp(t)] < 7PV pla,y],

where p(+) is a finite measure, independent of ¢ . The same bound clearly holds for 0 < ¢ < tg, too, which
can be shown by the same argument as in (2.25),(2.26). Consequently,

Ay ESK(nizy) < ple,yldy” Y [t—s|707

t,s=1

const ufe, ] (n/N)>~P=7/NTLA(N),

IN

which proves the required estimate, provided v > 0 is chosen sufficiently small ( v < 1 — D).

Proof of Theorem 2. Let A(z) = p(x), where p(z) = p((—o0, x]) is the measure of Lemma D. Then

Ao 2 F@+ [ 1P, er,

— 00

and the argument of Dehling and Taqqu (1989), Lemma 3.2, applies with small changes, yielding the estimate

(2.28) P[sgp dy'|1Sn(nsz)| > €] < ONTV(e73(n/N)+ (n/N)*~P)
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for some C' > 0,7 > 0 and all n < N. From (2.28), Theorem 2 follows similarly to the proof of Theorem 3.1
of Dehling and Taqqu (1989).

Proof of Theorem 1 follows from the ”weak uniform reduction principle ” (Theorem 2) and the convergence

(1.8) (c.f. Dehling and Taqqu (1989)).

Remark 1. From the proofs of Lemmas C and D, one can obtain the following estimate of the order n*(D)
of finite "noise” moments in Theorem 1:

. 9, ifo<D<1/3
n’(D) < {(5+3D)/(1—D), if1/3<D<1.

Remark 2. Theorems 1 and 2 can be generalized for the empirical process based on "nonlinear” observations
Y; = G(X;),1 < j < N, where G(-) is a measurable function , and X;,j € Z is a linear moving average
process of (1.1)-(1.2).

Remark 3. Theorem 1 and its proof remain valid, with unimportant changes, for a two-sided moving average
Xy =57 b€, where by = L(t)[t|=P+D/2 and L(-) varies slowly at £00, so that there is a slowly varying
function Ly(t), t > 0 and two constants [, [_ such that there exist the limits

Jim L(&)/Lo(t) = L.

In such a case, (1.7) holds with dy = Lo(N)N and

1 1 [e%)
cp = / / |x—y|_Ddxdy/ g(1+u)g(u)|_(D+1)/2du,
o Jo

where g(u) := |u|~(PHI21 if u < 0; = |u|~PHD/2_if u < 0.
3. Applications to M-estimators and U-statistics

M-estimators. Consider the model

X; = X; + 0o, J €L,

where X;, j € Z satisfy the conditions of Theorem 1, and # € R is unknown parameter. Let ¢(-) ' R — R
be a continuous function such that

L(0) := BEp(Xo—0) = Ep(Xo +0p —0) = / () f(x + 0 — 0p)de
R
is well-defined and 1-1 in a neighborhood © 3  and
(3.1) I'(6y) = 0.

The M-estimate 6TN of Ay 1s defined by

0= %21/;()?] —y)
(3.2) = /R1/)(x—67N)di(x),

where ﬁN(x) = N1 Zj\;l 1()?]' < ) is the empirical distribution function based on the observations
X1, .., Xn.
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Theorem 3. Assume, in addition, that () has bounded variation and I'(6y) = [g(x)f (x)dz # 0 .
Then

(3.3) Ndytep P (By — 6,) = N(0,1).

Remark 3. The above result implies, in particular, that the asymptotic efficiency of an M-estimate does not
depend on its kernel ¢(-), which is in sharp contrast with the iid case. This difference was first noted by
Beran (1991, 1992) in the case of Gaussian functionals.

M-estimators of the slope parameter in linear regression models with long memory moving average errors
are discussed in Giraitis, Koul and Surgailis (1994).

Proof of Theorem 3. It is not difficult to check that, under the conditions of the theorem, the estimate HAN
exists for all sufficiently large N, and is weakly consistent | i.e

(3.4) Oy = 6, (N — o).

According to (3.1) and (3.2),
(35) 0= /R (e —Ox)d[Ndy'ep (P = F)(@)] + Ndy'ep'!” /R (e = Oy) — v(x — 0))dF (),
where F(z) = F(z — 0;) . According to Theorem 2,

[ e = 0[N (P = Fa)) = = [ [N (Fy = P +0)] i)
/fx—l—ﬁch/; 12){ + op(1

(3.6)

uniformly in § € ©, where f(x) = f’(x) = f(x# —fy). Consequently, as cBl/sz_Vl Zj\;l X; = Zy, from (3.4)
and the continuity of the integral on the right hand side of (3.6) in 4,

[ e =[Nz e A Fo) = F)) = = [ Flo+ w)aie) eV 45 3, +0r(1)

(3.7) — Zl/ Fle + f0)du(x) = —Zl/ Fe)du(e

where Z; ~ A(0,1). Next , rewrite the second integral on the right hand side of in (3.5) as

/R(lzj(x —On) — (x — 00))dF(2) = /R1/)(x)(f(x +0x —0o) — f(z))de = T(0x) —T(0).

Using the fact that T'(+) is continuously differentiable at fy together with the mean value theorem and the
convergence (3.4), we obtain

Ndy'ep' " (D(6y) = T(00)) = Ndy'ep'* (6x — 0) T'(60) + or (1),
or the relation (3.3), in view of (3.5), (3.7).
U-statistics. Consider the U-statistic

(3.8) Un(h) = 3 h(X,, 0 X,)
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based on the observations Xi,...,Xx of a linear process satisfying the conditions of Theorem 1, where
h : R* — R is a measurable function, invariant under permutations of its arguments, and the sum Z/ 18
taken over all integers 1 < j, < N, p = 1,..k;jp # js(p # ¢). Using Theorem 1 and the argument of
Dehling and Taqqu (1989), Corollary 2, one has

Theorem 4. Let h(-) have bounded total variation and be degenerate , i.e.
/ h(zy, @2, .., n)dF(x1) = 0 (Vza, ...,z € R).
R
Then

{dj_\,kU[Nt](h); 0<t< 1} D[é;] {C%/ h(zy,...;xn)f (x1)...f (xg)dzy ... dzy, (Z(t))k 0<t< 1}.
Rk
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