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� Introduction

It has been noted by numerous authors that asymptotic results� where the dimension of

the underlying model is �xed while the number of observations tends to in�nity� are often

inappropriate for real applications� e�g� Portnoy �
���	 or Girko �
���	� In particular�

the literature on M�estimation in linear regression models with increasing dimension is

vast and still growing� see for instance Huber �
��
	� Portnoy �
���� 
���	� Bai and

Wu �
��� a�b	� Mammen �
���	 and the references cited therein� In the present paper we

investigate the related problem of M�estimation of a high�dimensional covariance matrix�

Let bPn be the empirical distribution of independent random vectors yn � yn�� yn��

� � � � ynn in R
p with unknown distribution Pn� and let Sn � Sn� bPn	 be an estimator for the

covariance matrix �n of Pn� both assumed to be positive de�nite� Of particular interest

is the condition number of ���n Sn�

�����n Sn	 ��
����

��
n Sn	

�p��
��
n Sn	

�

where ���A	 � ���A	 � ���A	 � � � � denote the ordered real eigenvalues of A � Rp�p�

For there are explicit bounds for various scale�invariant functions of Sn and �n such as

correlations� partial and canonical correlations� regression coe�cients or eigenspaces� all in

terms of �����n Sn	 �cf� D�umbgen 
���	� An example are the following sharp inequalities

for correlations� where ��	� denotes transposition�
���arctanh� x��nyp

x��nx y��ny

�
� arctanh

� x�Snyp
x�Snx y�Sny

���� � log �����n Sn	

�

for arbitrary x� y � Rp n f�g� Therefore it is of interest to study the probabilistic behavior
of �����n Sn	� If Pn is multivariate normal and Sn is the sample covariance matrix� a

modi�cation of Silversteins �
���	 arguments reveals that

�����n Sn	 � 
 � ��p�n	���� op��p�n	
���	��
�
	

see also the proof of Theorem ���� In connection with Pn� bPn we assume tacitly that
the dimension p � pn may depend on the sample size n such that p�n � �� Asymptotic

statements refer to n��� Expansions such as �
�
	 hold under more general assumptions

�



on the distribution Pn� provided that it has su�ciently light tails �cf� Girko 
���	� On the

other hand� the distribution of the extremal eigenvalues of the sample covariance matrix

is very sensitive to deviations from normality so that even the weaker assertion

�����n Sn	 � 
 �Op��p�n	
���	�
��	

may be false� even under elliptical symmetry of Pn� It is thus desirable to have an esti�

mator� whose distribution is less model�dependent� such that expansion �
�
	 or at least

�
��	 holds�

A possible alternative to the sample covariance matrix are M�estimators of scatter

as proposed by Maronna �
���	 and Tyler �
���	� The present paper focuses on two

estimators related to Tylers �
���	 M�functional� The latter is de�ned in Section � as

a matrix�valued function Q �� ��Q	 on the space of probability measures on Rp n f�g�
Section � provides a basic linear expansion for ���	 with a rather explicit bound for the
remainder term� As a by�product we obtain continuous Fr�echet�di�erentiability of ���	
with respect to the weak topology on the space of probability measures on Rp n f�g�

Section � describes estimators based on ���	� One obvious choice is the M�estimator
�� bPn	� which is distribution�free if P is elliptically symmetric around zero� In addition

we propose the estimator �� bP s
n 	� where

bP s
n is a symmetrization of bPn� This is an intu�

itively appealing method to get rid of unknown location parameters� The linear expansion

of Section � implies asymptotic normality of both estimators and consistency of certain

bootstrap methods� Some of these results and conclusions are not entirely new but nev�

ertheless stated explicitly for the readers convenience� In connection with the bootstrap

we use similar arguments as Bickel and Freedman �
��
	�

In order to prove Fr�echet�di�erentiability for �xed dimension p� one could also apply

general methods of Clarke �
���	� An advantage of our explicit expansion is that it enables

us to investigate the asymptotic behavior of �� bPn	 and �� bP s
n 	 as p � pn � �� This is

done in Section �� Under certain regularity assumptions assertion �
��	 is valid for both

estimators �� bPn	 and �� bP s
n 	� In particular� if P is elliptically symmetric� �� bPn	 is shown

to have the same asymptotic behavior as the sample covariance matrix in the Gaussian

�



model� including expansion �
�
	�

Another approach to the problem of unknown location� pursued by Tyler �
���	� is to

re�center bPn around an estimator b�n � b�n� bPn	 for P s center� Section � contains some
additional results on this method� also in view of dimensional asymptotics�

All proofs are deferred to Section ��

� De�nition and basic properties of the M�functional ����

Let us �rst introduce some notation� Throughout the set of symmetric matrices in Rp�p

is denoted byM� whileM� denotes the set of positive de�nite M �M� ForM �M� the

unique matrix N � M� with NN � M is denoted by M���� and M���� �� �M��	��� �

�M���	��� Further we consider the following a�ne subspaces of M� where I stands for

the identity matrix in Rp�p�

M��	 ��
n
M �M � trace�M	 � �

o
�

M�p	 ��
n
M �M � trace�M	 � p

o
� I �M��	�

Let f be a real or vector�valued function on Rp� and let � be a signed measure on Rp�

Then f��	 stands for
R
f�x	��dx	� This convention will be particularly convenient for

functions of several arguments� Further� for A � Rp�p we denote by A� the transformed

signed measure � 	A���
Througout let P and Q be probability distributions on Rp n f�g� We regard Q as

rotationally symmetric around zero in a weak sense if G�Q	 �
R
G�x	Q�dx	 is equal to I �

where

G�x	 ��

�
pjxj�� xx� � M�p	 if x 
� ��

� else�

here jxj denotes the standard Euclidean norm �x�x	��� of x� Note that G�Q	 equals p

times the matrix of second moments of jzj��z� where z � Q� If Q is spherically symmetric

around zero� one easily veri�es that in fact G�Q	 � I � More generally� this equality holds

if the vectors z � �zi	��i�p and ��iz��i�	��i�p have the same distribution for arbitrary

� � f�
� 
gp and permutations � of f
� �� � � � � pg� In general one tries to �nd M � M�

�



such that

G�M����Q	 � p

Z
M����xx�M����

x�M��x
Q�dx	 � I�

Note that G�M����Q	 � G��sM	����Q	 for all s 	 �� so that G��	 is only useful in
connection with scale�invariant functions onM� such as correlations�

De�nition� If the equality G�M����Q	 � I has a unique solution M inM��p	 ��M� �
M�p	� this matrix M is denoted by ��Q	� Otherwise we de�ne arbitrarily ��Q	 �� ��

An important property of G��	 and ���	 is linear equivariance� For nonsingular A �
Rp�p and M �M� one easily veri�es that

G
�
�AMA�	����AQ

�
� TG�M����Q	T ����
	

where T �� �AMA�	����AM��� is orthonormal�

Thus G�M����Q	 � I if� and only if� G
�
�AMA�	����AQ

�
� I � Hence

��AQ	 � rA��Q	A� with r �� p� trace�A��Q	A�	�����	

Necessary and su�cient conditions for ��Q	 �M� are as follows�

Theorem ��� Let V be the set of proper linear subspaces V of Rp� i�e� 
 � dim�V	 
 p�

�a	 If G�M����Q	 � I for some M �M�� then

Q�V	 � dim�V	�p for all V � V �

�b	 Suppose that

Q�V	 
 dim�V	�p for all V � V �����	

Then there exists a unique M �M��p	 such that G�M����Q	 � I �

�c	 Suppose that G�Q	 � I but Q�V	 � dim�V	�p for some V � V � Then Q�VV�	 � 


and

G
�
�a � b�I �  		����Q

�
� I for all a� b 	 ��

where  � M describes the orthogonal projection from Rp onto V� and V� stands for

the orthogonal complement of V�

�



Parts !a� b" are due to Tyler �
���	 and Kent and Tyler �
���	� Their proofs are

formulated for empirical distributions Q� but extension to arbitary distributions is mainly

straightforward� requiring only notational changes� The only exception is the existence

statement in part !b"� Two possible proofs are given in Section �� Part !c"� combined with

���
	� supplements part !b" in that condition ����	 is even necessary for ��Q	 �M�� This

will be needed in the proof of Theorem ��� below�

� Di�erentiability of ����

For M � M we de�ne kMk �� j���M	j � j�p�M	j� Since the dimension p may vary�

this particular choice of a norm is important� It is particularly useful in connection with

eigenvalues� because j�i�A	 � �i�B	j � kA � Bk for A�B � M and 
 � i � p� By way

of contrast� for growing dimension p expansions involving the Euclidean norm kMkE �
trace�M�	��� would be of little use� This is one reason why the results of Portnoy �
���	

cannot be applied here without unnecessary restrictions on p� Generally� we always use

the norm

kLk �� max
y�S�B�

kLyk

of a linear operator L from a normed vector space �B� k � k	 into another normed space�
where S�B	 denotes the unit sphere fy � B � kyk � 
g�

Now we investigate ��Q	 if Q is close to P in a certain sense and G�P 	 � I � By

equivariance of G��	 and ���	 it su�ces to consider the latter case�
The function G�M����x	 is di�erentiable with respect to M �M� with

D�x�B	 ��
�

�t

���
t��

G
�
�I � tB	����x

�
� F �x�B	� ���

�
BG�x	 � G�x	B

�
�

F �x�B	 ��

�
jxj��x�BxG�x	 � pjxj�	x�Bxxx� if x 
� ��

� else�

Note that D�x� I	 � � and trace�D�x�B		 � � for all B �M� The next lemma shows that

condition ����	 is closely related to the operator D�Q� �	�

Lemma 
�� The operator D�Q� �	 is nonsingular onM��	 if� and only if� Q�VV�	 
 


�



for arbitrary V � V � In that case�

trace�D�Q�B	B	 
 � for all B �M��	 n f�g�

The inverse operator of D�P� �	 � M��	 � M��	� if existent� is denoted by D���P� �	�
Here is our basic linear expansion for ���	�

Theorem 
�� For any b 
� there exist constants ��b	 
� and ��b	 	 � �not depending

on p or P � such that�����Q	� I �D���P�G�Q� P 		
��� � ��b	 kF �Q� P� �	kkG�Q� P 	k

whenever

��P 	 � I� kD���P� �	k � b and kF �Q� P� �	k � ��b	�

The latter two norms k � k refer to the linear operators D���P� �	 �M��	�M��	 and

F �Q� P� �	 �M�M� Note also that kG�Q� P 	k � kF �Q� P� I	k � kF �Q� P� �	k�
Theorem ���� Lemma ��
 and ����	 together imply that ���	 is Fr�echet�di�erentiable

with respect to the weak topology� The reason is that x �� F �x� �	 is a bounded� continuous
mapping from Rp n f�g into the �nite�dimensional space of linear operators L �M�M�

so that kF �Q� P� �	k � � as Q� P weakly�

Corollary 
�
 Suppose that ��P 	 � I � Then� as Q� P weakly�

G�Q	 � I and ��Q	� I � �D��
�
P�G�Q	� I

�
� o

�
kG�Q	� Ik

�
� �

One can even show that ���	 is continuously Fr�echet�di�erentiable� Instead of pursuing
this issue� we shall prove a related statement about limiting distributions of �� bPn	 and
�� bP s

n 	 in the next section�

� Related estimators and their properties in �xed dimen�

sion

At this point it is convenient to de�ne �� eQ	 �� �
� eQ�� ���Rp n f�g

��
for any probability

measure eQ on Rp with eQf�g 
 
�
�



Suppose �rst that the distribution Pn has a known �center� �n � Rp� Without

loss of generality one may assume that �n � �� Then a straightforward estimator for

��Pn	 is given by �� bPn	� An important example are elliptically symmetric distributions
Pn � L�Rn �

���
n u	� where Rn 	 � and u are stochastically independent� u is uniformly

distributed on the unit sphere of Rp� and �n � M��p	� Clearly ��Pn	 � �n� and the

empirical distribution bPn satis�es condition ����	 almost surely if n 	 p� Moreover� the

distribution of �����n ��
bPn		 depends neither on �n nor on L�Rn	 �cf� Tyler 
���	�

The center �n� no matter how it is de�ned� is rarely known in advance� In order to

avoid de�nition and estimation of an unknown location parameter one can also consider

the functional Q �� ��Q s	 with the symmetrized distribution

Q s �� L
�
z� � z�

��� z� 
� z�
�

where �z�� z�	 � Q� Q�

Here ����� denotes the product measure on R
p�Rp of �signed	 measures ����� on R

p�

One motivation for the functional Q �� ��Q s	 is the representation ��� IE
�
�z�� z�	�z��

z�	
�
�
of the covariance matrix of Q� Moreover� if z � Q has independent� identically

distributed components� then G�Q s	 � I � whereas G�Q	 may be di�erent from I � Thus

symmetrization partly corrects a possible de�ciency of M�estimators�

One easily veri�es that Q �� ��Q s	 is a�nely invariant in that

A��Q s	A� � r�
�
���AQ	 s

�
with r �� trace�A�A��Q s		�p���
	

for any nonsingular A � Rp�p and � � Rp� where � � AQ �� L�� � Az	� z � Q� If Q is

elliptically symmetric around � with scatter matrix �o � M��p	� then Q s is elliptically

symmetric around zero with the same scatter matrix �o�

An application of Theorem ��� utilizing the explicit error bound is the following Central

Limit Theorem for the distribution of �� bPn	 and �� bP s
n 	�

Corollary ��� Suppose that Pn converges weakly to some distribution P on Rp�

�a	 Let Pf�g � � and ��P 	 � I � Let Ln�� jPn	 denote the distribution of

n���
�
�
�
��Pn	

���� bPn�� I
�

�



�provided that ��Pn	 �M��� Then ��Pn	� I and

Ln�� jPn	 �w L�W 	�

where W � M��	 is a random matrix with centered Gaussian distribution and the same

covariance function as D���P�G�y	� I	� y � P �

�b	 Let Pf�g � � for all � � Rp and ��P s	 � I � Let L sn�� jPn	 denote the distribution
of

n���
�
�
�
��P s

n 	
���� bP s

n

�
� I

�
�provided that ��P s

n 	 �M��� Then ��P s
n 	� I and

L sn�� jPn	 �w L�W s	�

where W s �M��	 is a random matrix with centered Gaussian distribution and the same

covariance function as �D���P s� eG�y� P 	� I	� y � P � Here eG�x� y	 �� G�x� y	�

Remark ��� The covariance function of a random matrix W � M��	 is de�ned as the

function �A�B	 �� Cov
�
trace�WA	� trace�WB	

�
on M��	�M��	�

Remark ��
 In case of P being spherically symmetric around zero one can deduce from

equations ���

	 and ���
�	 in Lemma ��� that

IE
�
trace�WA	 trace�WB	

�
� ��
 � ��p	 trace�AB	 for A�B �M��	�

Remark ��� If Pn � P weakly� then the emprirical distribution bPn converges weakly to
P in probability� More precisely� dw� bPn� P 	 converges to zero in probability� where dw��� �	
metrizes weak convergence of probability measures on Rp� Consequently� the bootstrap

distributions Ln�� j bPn	 and L sn�� j bPn	 are consistent estimators of Ln�� jPn	 and L sn�� jPn	�
respectively�

Remark ��� Utilizing the equivariance properties of ���	� ����	 and ���
	� one can deduce
from Corollary ��
 that

n���
�
�
�
��Pn	

���� bPn	�� 
� �L ��� � �p	�Wo	 in part !a"�

n���
�
�
�
��P s

n 	
���� bP s

n 	
�
� 


�
�L ��� � �p	�W

s
o 	 in part !b"�

�



� Asymptotic behavior of ��cP
n
� and ��cP s

n
� in high dimension

Now we consider the case where

p � pn � � but p�n � ��

For the sake of simplicity it is assumed that Pn has no atoms�

Theorem ��� Suppose that ��Pn	 � I for all n� Let

��n �� max
u�S�Rp�

Z
�u�G�y	u	�Pn�dy	 � O�
	�

�n �� max
B�S�M����

Z �y�By
y�y

��
Pn�dy	 � o�
	�

Further let p � O�n���	� Then

IE kG� bPn	� Ik � o�
	 and IE k�� bPn	� G� bPn	k � o
�
IE kG� bPn	� Ik

�
�

If in addition p � O�n���	� then

IE kG� bPn	� Ik � O��p�n	���	�

Remark ��� Suppose that yn � �yn�i	��i�p � Pn has independent� identically distributed

components with continuous� symmetric distribution such that IE�y�n��	 � 
 and IE�y
	
n��	 �

O�
	� Then ��n � O�
	 and �n � O�p��	� For it follows from the one�sided version of

Bennetts �
���	 inequality that IPfjynj��p � 
��g � exp��anp	 for some number an
depending on the fourth moment of yn�� and p such that lim infn�	 an 	 �� Therefore�

since �u�G�y	u	� � p� and �y�By	���y�y	� � 
� one may replace these integrands of ��n and
�n with ��u

�y		 and �p���y�By	�� respectively� Then the assertion follows from tedious

but elementary moment calculations�

Remark ��
 The conclusions of Theorem ��
 and Remark ��� remain valid if �Pn� bPn	 is
replaced with �P s

n �
bP s
n 	� where the symmetry condition in Remark ��� becomes super#uous�

For the proof of Theorem ��
 consists essentially of bounding IE
�
kF � bPn � Pn� �	k�

�
and

IE
�
kG� bPn � Pn	k�

�
� But F � bP s

n � B	 can be written as a matrix�valued U�statistic�n
�

��� X
��i�j�n

F �yni � ynj � B	�


�



Let $P s
n be the empirical distribution of y sn��y

s
n�� � � � �y

s
nm� where m � mn �� bn��c and

y sni �� yn��i�� � yn��i� Then a simple convexity argument due to Hoe�ding �
���	 yields

IE
�
kG� bP s

n � P s
n 	k�

�
� IE

�
kG� $P s

n � P s
n 	k�

�
�

IE
�
kF � bP s

n � P s
n � �	k�

�
� IE

�
kF � $P s

n � P s
n � �	k�

�
�

���
	

see also equation �����	 in Section �� Now the signed measure $P s
n � P s

n can be handled

analogously as bPn � Pn�

Under spherical symmetry of Pn� restrictions on p beyond p � o�n	 are super#uous�

and one can obtain rather precise expansions�

Theorem ��� Suppose that Pn is spherically symmetric around zero for all n�

�a	 Then

IE kG� bPn	� Ik � O��p�n	���	�

IE
����� bPn	� I � �
 � ��p	�G� bPn	� I	

��� � O
�
log�n�p	p�n

�
�

Moreover� one can couple �� bPn	 with a standard Wishart matrix Mn �M with n degrees

of freedom such that

IE k�� bPn	� n��Mnk � o��p�n	���	�

In particular� ���� bPn		 � 
 � ��p�n	���� op��p�n	���	�

�b	 As for bP s
n �

IE k�� bP s
n 	� Ik � O��p�n	���	�

IE
����� bP s

n 	� I � n��
Pn

i��Hn�jynij	�G�yni	� I	
��� � o��p�n	���	�

where Hn is an increasing function from !���! into !�� �!� If in addition jynj��p converges
in probability to a constant �o 	 �� then

IE k�� bP s
n 	� �� bPn	k � o��p�n	���	�

	 The impact of plugging in estimates of location

For � � Rp let

Q��� �� L
�
z� �

��� z 
� �
�

where z � Q�







If Pf�g � �� one can easily show that Q��� converges weakly to P as Q�w P and �� ��

Thus Corollary ��� implies that

��Q���	 � ��P 	 as Q�w P and �� ����
	

whenever ��P 	 � M�� The following two results show that under moderate moment

assumptions on P the di�erence ��Q���	 � ��Q	 can be expanded explicitly� extending
results of Tyler �
���� Section �	�

Theorem �� Suppose that Pf�g � �� ��P 	 � I and
R jxj�� P �dx	 
�� De�ne

H�x� �	 �� pjxj����x� � x��	� �jxj��x��G�x	�

Then

��Q���	� I � �D��
�
P�G�Q	� I �H�P� �	

�
� o

�
kG�P � Q	k� j�j

�
as

Q �w P�

Z
jxj��Q�dx	 �

Z
jxj�� P �dx	� � � ��

Note that H��� �	 is an odd function� Thus the bias term H�P� �	 equals zero if P is

symmetric in that P �S	 � P ��S	 for all Borel sets S � Rp� As for the moment condition�

note that
R jxj�r P �dx	 
 � if r 
 p and P has a bounded density with respect to

Lebesgue measure�

Theorem �� Suppose that p � pn �� and p�n� �� Let ��Pn	 � I and Pn�f�g	 � �
for arbitrary � � Rp and all n� Moreover� let

p

Z
jxj�� Pn�dx	 � O�
	�

and suppose that either

��n � O�
	� �n � o�
	 and p � O�n���	

�cf� Theorem 	�
�� or�

Pn is spherically symmetric around zero for all n�


�



Then kH�Pn� �	k � O�
	 and for any sequence of positive numbers �n � o��p�n	��		�

sup
j�j��n

����� bP ���
n 	� I �D��

�
Pn� G� bPn	� I �H�Pn� �	

���� � op��p�n	
���	�

Since
R jxj��Np��� I	�dx	 � �p� �	��� the �rst moment condition is satis�ed for mix�

tures

Pn �
Z
Np��� 

�I	 �n�d	�

provided that
R
�� �n�d	 � O�
	� If b�n � b�n� bPn	 is an estimator such that

b�n � Op��p�n	
���	�����	

then under the assumptions of Theorem ��������� bP �b�n�
n 	� I

��� � Op��p�n	���	������ bP �b�n�
n 	� �� bPn	 �D���Pn� H�Pn� b�n		��� � op��p�n	���	�

In case of p��
R jxj� Pn�dx	 � O�
	� the sample mean b�n � R

x bPn�dx	 satis�es condi�
tion ����	� Alternatively consider Tukeys median

b�n � argmax
��Rp

inf
u�S�Rp�

bPnnx � Rp � x�u � ��u
o
�

Here b�n � Op��p�n	
���	� provided that

lim inf
n�	

inf
u�S�Rp�

���n

�
Pn
n
x � Rp � u�x � �n

o
� 
��

�
	 � whenever �n � ������	

This follows straightforwardly from the fact that

IE sup
halfspaces H
Rp

� bPn�H	� Pn�H		
� � cp�n

for some universal constant c� This is a consequence of Alexander �
���� Corollary ���	�

see also Pollard �
���� Sections 
��	 for techniques to prove it� If Pn is a mixture of normal

distributions as above� condition ����	 is satis�ed if

lim inf
n�	

�n�!�� r"	 	 � for some r 
��


�




 Proofs

��� Proofs for Section �

Proof of Theorem ��� �a� c	� Let G�Q	 � I � and let V � V with corresponding

projection matrix  �M� Then

dim�V	 � trace� 	 � p

Z
jxj��x� xQ�dx	 � pQ�V	

with equality if� and only if� Q�V  V�	 � 
� In this case G
�
�a � b�I �  		����Q

�
equals G�Q	 � I for all a� b 	 �� because G

�
�a �b�I� 		����x

�
� G�x	 for any nonzero

x � V V�� Note that �a � b�I � 		� � a� � b��I � 	 for any real �� �

First proof of the existence statement in Theorem ��� �b	� The arguments of

Kent and Tyler �
���	 can be modi�ed as follows� Without loss of generality let Q be

supported by the unit sphere S�Rp	� Any local maximum A �M��p	 of the functional

��A	 �� log detA� p

Z
log�x�Ax	Q�dx	

satis�es G�A���Q	 � I � because

�

�t

���
t��

��A� t�	 � trace�A�����A����	� p

Z
x��x

x�Ax
Q�dx	

� trace
�
A�����A�����I � G�A���Q		

�
for arbitrary � � M� Existence of such a local maximum is guaranteed if we can show

that limk�	 ��Ak	 � �� for any sequence �Ak	k in M
��p	 with limit A �M�p	 nM��

For that purpose assume without loss of generality that Ak �
Pp

i�� �i�Ak	�ki�
�
ki with

an orthonormal matrix ��k�� �k�� � � � � �kp	 converging to ���� ��� � � � � �p	 as k ��� For �xed
� 	 � and 
 � j � p de�ne

Sj ��
n
x � S�Rp	 �

pX
i�j

�� �ix	
� 	 
� ��

o
and Dj �� Sj n Sj���

where Sp�� �� �� Note that Sj is just the intersection of the unit sphere S�Rp	 with the

open ��neighborhood of the space span��j � � � � � �p	� Since

lim inf
k�	

min
x�S�Rp�nSj��

x�Akx

�j�Ak	
� lim inf

k�	
min

x�S�Rp�nSj��

jX
i��

�� �kix	
�


�



� min
x�S�Rp�nSj��

jX
i��

�� �ix	
�

� ���

it follows that

��Ak	 �
pX

j��

�
log�j�Ak	� p

Z
Dj

log�x�Akx	Q�dx	
�

�
pX

j��

�
log�j�Ak	� pQ�Dj	

�
log �j�Ak	 � O�
	

��

�
pX

j��

log�j�Ak	�
� pQ�Dj		 �O�
	

�
pX

j�J

log�j�Ak	�
� pQ�Dj		 � O�
	 as k ���

where J �� minfj � �j�A	 � �g 	 
� If � is su�ciently small� condition ����	 entails that

pQ�Sj	 
 p� j � 
 for � � j � p�

This will be shown to imply that

pX
j�t

log�j�Ak	�
� pQ�Dj		 � log�t�Ak	
�
p� t� 
� pQ�St	

�
���
	

whenever �t�Ak	 � 
�

In particular�

��Ak	 � log �J�Ak	
�
p� J � 
� pQ�SJ	

�
� O�
	 � �� �k� �	�

Inequality ���
	 is proved by reverse induction on t� If t � p� then equality holds in

���
	� Now suppose that �s�Ak	 � 
 and ���
	 is true for t � s� 
� Then

pX
j�s

log�j�Ak	�
� pQ�Dj		

� log�s�Ak	�
� pQ�Ds		 � log�t�Ak	
�
p� t � 
� pQ�St	

�
� log�s�Ak	

�

� pQ�Ss	 � pQ�St	

�
� log�t�Ak	

�
p� t � 
� pQ�St	

�
� log�s�Ak	

�

� pQ�Ss	 � pQ�St	

�
� log�s�Ak	

�
p� t� 
� pQ�St	

�
� log�s�Ak	

�
p� s� 
� pQ�Ss	

�
�


�



because log �t�Ak	 � log �s�Ak	 � � and p� t� 
� pQ�St	 	 �� �

Second proof of the existence statement in Theorem ��� �b	� This proof

may be of independent interest and is based on a well�known result from topology �cf�

Deimling 
���� Chapter 
 and problem ���	� which is closely related to Brouwers �xed�

point theorem�

Lemma ��� Let % be a compact� convex subset of Rm with � in its interior� and let

f � %� Rm be continuous such that

f�x	 
� f�rx � r 	 �g for all x � �%�

Then f�x	 � � for some x � %� �

For � 
 � 
 
 let %� be the set of all A � M�p	 such that �p�A	 � �� Then %� is

a compact� convex subset of M�p	 with I in its �relative	 interior� and A �� G�A���Q	

de�nes a continuous map from %� intoM�p	� Now suppose that

G�A���Q	� I 
� f�r�A� I	 � r 	 �g for all A � �%������	

Then Lemma ��
 implies that G�A���Q	 � I for some A � %��

It remains to be shown that condition ����	 holds for su�ciently small �� Assume the

contrary� Then there exists a sequence �Ak	k�� inM
��p	 such that Ak � A �M�p	nM�

�k ��	 and G�A���
k Q	 � I � rk�Ak � I	 for suitable rk 	 � for all k� Let  �M be the

projection matrix corresponding to V �� fx � Rp � Ax � �g � V � Then Fatous Lemma
entails that

trace� G�A
���
k Q		 � p

Z
�x�Akx	

��x�A
���
k  A

���
k xQ�dx	 � pQ�V	 � o�
	

as k ��� because x�A���
k  A

���
k x�x�Akx� � for all x � Rp nV� On the other hand�

trace� G�A
���
k Q		 � dim�V	 � rk trace� �  Ak	 � dim�V	 � rk�dim�V	 � o�
		�

whence Q�V	 � dim�V	�p� in contradiction to ����	� �


�



��� Proofs for Section �

Proof of Lemma 
��� For any B �M��	�

trace�D�Q�B	B	 � p

Z �
jxj�	�x�Bx	� � jxj��x�B�x

�
Q�dx	�

By the Cauchy�Schwarz inequality� �x�Bx	� � jxj��x�B�x	 with equality if� and only if� x

is an eigenvector of B� Hence� if ���� 	 � � � 	 ��m� are the distinct eigenvalues of B� and

if Vi �� fx � Rp � Bx � ��i�xg� then trace�D�Q�B	B	 � � with equality if� and only if�

Q�V�  � � � Vm	 � 
�

Now the assertion follows from the fact that m 	 
 whenever B 
� �� �

In order to prove Theorem ��� one needs explicit bounds for the norm of the remainder

term G��I �B	����Q	�G�Q	�D�Q�B	�

Lemma ��� There is a universal constant �o � R� �not depending on Q or p� such that

���G��I �B	����Q	�G�Q	�D�Q�B	
��� � �o kG�Q	kkBk�

for arbitrary B �M with kBk � 
���

Proof of Lemma ���� For A �M with ���A	 
 
 de�ne

K�x�A	 �� G��I � A	x	� G�x	� �D�x�A	�

Then for y �� jxj��x � S�Rp	�

K�x�A	 �
��I �A	G�y	�I �A	

y��I �A	�y
�G�y	

�
� �D�y� A	

�
�I � A	G�y	�I �A	� �
� �y�Ay � y�A�y	G�y	

y��I �A	�y
� �D�y� A	

�
AG�y	A� y�A�y G�y	 � �D�y� A	

y��I �A	�y
� �D�y� A	

�
AG�y	A� y�A�y G�y	 � ���y�Ay � y�A�y	D�y� A	

y��I �A	�y
�


�



The denominator y��I � A	�y is not smaller than �p��I � A	�	� As for the numerator�

given any unit vector u� pick v � S�Rp	 such that Au � jAujv� Then
���u��AG�y	A� y�A�y G�y		u

��� � kAk�
�
v�G�y	v� u�G�y	u

�
����u���y�Ay � y�A�y	D�y� A	u

��� � ��kAk� kAk�	ju�D�y� A	uj
� ��kAk� � kAk�	

�
u�G�y	u� ju�G�y	vj

�
�

Further there are orthonormal vectors eu� ev such that
u � ��
 � u�v	��	���eu � ��
� u�v	��	���ev�
v � ��
 � u�v	��	���eu � ��
� u�v	��	���ev�

so that

ju�G�y	vj � ���
����
 � u�v	eu�G�y	eu� �
� u�v	ev�G�y	ev���

� ����
 � u�v	eu�G�y	eu� ����
� u�v	ev�G�y	ev�
Hence

kK�Q�A	k � max
u�S�Rp�

Z
ju�K�x�A	ujQ�dx	

� ����I � A	��	
�

�kAk� � �kAk�

�
max

u�S�Rp�
u�G�Q	u

� ����I � A	��	
�

�kAk� � �kAk�

�
kG�Q	k�����	

Moreover� since kF �Q� �	k � kG�Q	k�

kD�Q� �	k � �kG�Q	k����	

Now let B � M with kBk � 
�� and de�ne A �� I � �I � B	����� i�e� I � B �

�I � A	��� Then it follows from the spectral representation of B and A� together with

a Taylor expansion of the function t �� 
 � �
 � t	����� that ����I � A	��	 � 
 � kBk�
k�A � Bk � ����	kBk� � ��kBk� and kAk � kBk�� � ���kBk� for universal constants
��� ��� � R�� Hence ����	 and ����	 imply that

���G��I �B	����Q	�G�Q	�D�Q�B	
���


�



� kK�Q�A	k� kD�Q� �A� B	k
� �
 � kBk	�
�kAk� � �kAk�	kG�Q	k� �kG�Q	kk�A�Bk
� kG�Q	k��kBk�� ����kBk�	

for suitable ���� � �������� ���	� �

Proof of Theorem 
��� For notational convenience let L �� D���P� �	� Suppose that
kLk � b 
� and kF �Q�P� �	k � � � "�� 
"� Now f�B	 �� L

�
G��I�B	����Q	�I

�
de�nes

a continuous mapping from % �� fB �M��	 � kBk � �g into M��	� where � � "�� 
��" is
some constant� One can write

f�B	 � LG�Q� P 	 � L
�
G��I � B	����Q	� G�Q	

�
� LG�Q� P 	 � B � LD�Q� P�B	 � L

�
G��I � B	����Q	� G�Q	�D�Q�B	

�
� LG�Q� P 	 � B �R�B	�

where

kR�B	k � bkD�Q� P� �	kkBk� b�okG�Q	kkBk�

� �bkF �Q� P� �	kkBk� �b�okBk�����	

� �b��� �o�	kBk�

according to Lemma ���� Since kLG�Q� P 	k � b�� this implies that

kR�B	k � kBk�� and kB � f�B	k � � for all B � %�

provided that b�� b� and ��� are su�ciently small� Then Brouwers Fixed Point theorem

shows that f�Bo	 � � for some Bo � %� If f�B�	 � � for some point B� � %� which is
equivalent to G��I � B�	

����Q	 � I � then kB�k � kLG�Q� P 	k � kR�B�	k � bkG�Q�
P 	k� kB�k��� whence

kB�k � �bkG�Q� P 	k � �b������	

Combined with inequality ����	 this yields

kBo � LG�Q� P 	k � kR�Bo	k
� �b�kF �Q� P� �	kkG�Q� P 	k� �b��okG�Q� P 	k�

� �b��
 � �b�o	 kF �Q� P� �	kkG�Q� P 	k�


�



It remains to be shown that ��Q	 � I � Bo� i�e� that Q satis�es condition ����	�

Suppose the contrary� Then� by Theorem ��
 !c" and ����	� there exists a proper projection

matrix  �M such that G�M����Q	 � I withM � �I�Bo	
����a �b�I� 		�I�Bo	

���

for arbitrary a� b 	 �� But then one easily veri�es that for suitable a� b 	 � the matrix

B� ��M�I belongs to �%� i�e� kB�k � �� For su�ciently small ��� this is in contradiction

to ����	� �

��� Proof of Corollary ���

As for part !a"� Pf�g � � implies that Pnf�g � � and Pno �� L�yn jyn 
� �	 �w

P � Consequently� by Corollary ���� ��Pn	 � ��Pno	 � I � and thus ��Pn	
����Pn �w

P � according to Rubins extended Continuous Mapping Theorem �cf� Billingsley 
����

Theorem ���	� Thus we may assume without loss of generality that ��Pn	 � I for all

n� Note further that kF �Pno � P� �	k � � and thus kD���Pno� �	 � D���P� �	k � ��

Furthermore� kF � bPn � Pn� �	k � Op�n
����	 and bPnf�g � Pnf�g � op�n

����	� De�ningbPno �� bPn�� ���Rp n f�g
�
we thus conclude that

kF � bPno � Pno� �	k � Op�n
����	 and G� bPno � Pno	 � G� bPn � Pn	 � op�n

����	�

Hence Theorem ��� yields

�� bPn	� I � �� bPno	� I � �D���Pno� G� bPno � Pno		 � op�n
����	

� �D���P�G� bPn � Pn		 � op�n
����	�

But Lindebergs multivariate Central Limit Theorem entails that L
�
n���G� bPn � Pn	

�
converges weakly to a centered Gaussian distribution onM��	 with the same covariances

as G�y	� y � P �

As for part !b"� note �rst that Pn � Pn �w P � P � Since P has no atoms� this implies

that P s
n �w P s� Again one may assume without loss of generality that ��P s

n 	 � I � The

operators F �P s
n � �	 and F � bP s

n � �	 can be written as

eh�Pn � Pn	
��F �Pn � Pn� �	 and eh� bUn	�� eF � bUn� �	�

��



respectively� where eh�x� y	 �� 
fx 
� yg� eF �x� y� B	 �� F �x� y� B	� and bUn stands for the
random measure bUn ��

�n
�

��� X
��i�j�n

�yni � �ynj

on �Rp	�� But � � eh � 
 and eh�Pn � Pn	 � 
� while k eF �x� y� �	k � p for all x� y � Rp�

Thus standard theory for U�statistics implies that

k eF � bUn � Pn � Pn� �	k � Op�n
����	�

eh� bUn � Pn � Pn	 � op�n
����	�

eG� bUn � Pn � Pn	 � � eG�� bPn � Pn	� Pn	 � op�n
����	

�cf� Hoe�ding 
���	� Consequently�

kF � bP s
n � P s

n � �	k � Op�n
����	 and G� bP s

n � P s
n 	 � � eG�� bPn � Pn	� Pn	 � op�n

����	�

Since kD���P s
n � �	�D���P s� �	k � �� Theorem ��� entails that

�� bP s
n 	� I � �D��

�
P s� � eG�� bPn � Pn	� Pn	

�
� op�n

����	�

But it follows from Rubins Theorem that eG��� Pn	� eG��� P 	 uniformly on compact subsets
of Rp� Consequently� one can deduce from the Central Limit Theorem that n��� eG�� bPn �
Pn	� Pn	 converges in distribution to a random matrix in M��	 with centered Gaussian

distribution and the same covariance function as eG�y� P 	� y � P � �

��� Proofs for Section �

The proofs of Theorem ��
 and Theorem ��� utilize the following two lemmas�

Lemma ��
 For any normed vector space �B� k � k	 let F�B	 be a maximal subset of the

sphere S�B	 such that kx� yk 	 
�� for di�erent x� y � F�B	� Then

&�F�B		 � exp�� dim�B		 and kLk � ����	 max
x�F�B�

kLxk

for any linear function L from B into another normed space� In particular�

kMk � � max
v�F�Rp�

jv�Mvj for all M �M� �

�




Lemma ��� For any �nite collection of functions g�� g�� � � � � gm � L��Pn	 and arbitrary

numbers t 	 ��

�
IE max

��j�m
gj� b�n	

�
���� � �

� log��m	
n

� max
��j�m

log IE cosh�tgj�yn		
��

t�

where b�n �� bPn � Pn�

In Lemma ��� the bound exp�� dim�B		 for the cardinality of F�B	 is standard and fol�

lows from considering balls of radius 
�� with center in F�B	 �cf� Pollard 
���� Section �	�

The bounds for kLk and kMk are elementary�
Proof of Lemma ���� This inequality is a modi�cation of Pisiers �
���	 Lemma 
���

which is tailored for our purposes� It follows from Jensens inequality and convexity of

exp��	 that
�
IE exp

�
�ntgj� b�n	��

����n
� IE exp

�
�t�gj�yn	� gj�Pn		��

�
� IE exp

�
IE
�
�t�gj�yn�	� gj�yn�		��

���yn���
� IE exp

�
�t�gj�yn�	� gj�yn�		��

�
�

�
IE exp��tgj�yn�		 � IE exp��tgj�yn�		

��
�

� IE cosh�tgj�yn		�

Thus IE��gj� b�n	
�	 �

�
IE cosh�tgj�yn		

�n
� where ��x	 �� cosh�ntx�����	 is convex and

increasing in x � �� Since ����y	 �
�
� log��y	��nt	

��
for y � 
� a second application of

Jensens inequality yields

IEmax
j

gj� b�n	
� � ���

�
IEmax

j
��gj� b�n	

�	
�

� ���
�X

j

IE��gj� b�n	
�	
�

� ���
�
mmax

j
IE��gj� b�n	

�	
�

�
�
���nt	 log��m	 � ���t	max

j
log IE cosh�tgj�yn		

��
� �

Proof of Theorem ���� Note �rst that kD�Pn� B	 � Bk � kF �Pn� B	k � n�nkBk
for all B �M��	� by the Cauchy�Schwarz inequality� Thus supB�S�M���� kD���Pn� B	�Bk

��



converges to zero� Therefore� according to Theorem ���� it su�ces to show that

IE kF � b�n� �	k� � o�
	�

IE kG� b�n	k� � O�p�n	 if p � O�n���	�

where b�n � bPn � Pn� Lemma ��� yields

kG� b�n	k � � max
v�F�Rp�

jv�G� b�n	vj�

kF � b�n� �	k � kG� b�n	k�
���F � b�n� �	

���
M���

�������F � b�n� �	
���
M���

��� � ����	 max
v�F�Rp��B�F�M����

jv�F � b�n� B	vj�

In order to bound the latter maximum we use a truncation argument� For any constant

K � ��

jv�F � b�n� B	vj �
���Z jxj��x�Bx 
fv�G�x	v 
 Kgv�G�x	v b�n�dx	

���
�

Z

fv�G�x	v � Kgv�G�x	v � bPn � Pn	�dx	

� K
���f� b�n j v� B�K	

���� g� b�n j v�K	 � �g�Pn j v�K	�

where

g�x j v�K	 �� 
fv�G�x	v � Kgv�G�x	v�
f�x j v� B�K	 �� jxj��x�Bx 
fv�G�x	v 
 Kgv�G�x	v�K

�and f�x j v� B� �	 �� �	� Note that v�G� b�n	v � g� b�n j v� �	 and g�Pn j v�K	 � ��n�K for

all K 	 �� Thus it su�ces to show that for arbitrary �xed K � ��

IE max
v�F�Rp�

g� b�n j v�K	� �
�

o�
	�

O�p�n	 if p � O�n���	�
����	

IE max
v�F�Rp��B�F�M����

f� b�n j v� B�K	� � o�
	�����	

Since jg��	j � p� IE
�
g�yn j v�K	�

�
� ��n� jf��	j � 
 and IE

�
f�yn j v� B�K	�

�
� �n� one

obtains

IE cosh
�
tg�yn j v�K	

�
� 
 �

	X
k��

t�k��np
�k�����k	'

��



� 
 � ��n�p	
��cosh�pt	� 
	

� exp
�
��n�p	

��cosh�pt	� 
	
�
�

IE cosh
�
tf�yn j v� B�K	

�
� exp

�
�n�cosh�t	� 
	

�
for all t 	 �� Combined this with Lemma ��� and ��� we get

�
IE max

v�F�Rp�
g� b�n j v�K	�

����
� �min

t	�

�
��p� 
	�n� ��n�p	

��cosh�pt	� 
	
��

t

� ���n�p min
r	�

�
�����n	p

��n� cosh�r	� 

��

r

� ���n�p h
�
�����n	p

��n
�
�����	 �

IE max
v�F�Rp��B�F�M����

f� b�n j v� B�K	�
����

� �min
t	�

�
��p� p�p� 
	 � 
	�n� �n�cosh�t	� 
	

��
t

� ��n h
�
�p���n�n	

�
����
�	

Here h�a	 �� minr	��a� cosh�r	� 
	�r is increasing in a 	 � with

h�a	 �

�
��a	��� �
 � o�
		 as a� ��
a� log a �
 � o�
		 as a���

Consequently� ����	 and ���
�	 imply ����	 and ����	� �

The next lemma summarizes some �in	equalities for spherically symmetric distribu�

tions�

Lemma ��� Let y � Np��� I	� Then IEG�y	 � I and

IE
�
trace�G�y	A	 trace�G�y	B	

�
�

trace�A	 trace�B	 � � trace�AB	


 � ��p
���

	

for all A�B �M� In particular� for spherically symmetric distributions P on Rp n f�g�

D�P�B	 � ��
 � ��p	��B for all B �M��	����
�	

Moreover�

IE
�
�v�G�y	v	k

�
� IE��v�y	�k	 � �kk'���
�	

��



for arbitrary v � S�Rp	 and integers k � 
�
IE exp

�
trace�G�y	B	

�
� IE exp�y�By	 � exp

�
trace�B	 �

trace�B�	

�
� �kBk	�
�

���
�	

for arbitrary B �M�

Proof of Lemma ���� The key point is that G�y	 � G�u	 and yy� � p��jyj�G�u	�
where u �� jyj��y and jyj� are stochastically independent with L�jyj�	 � ��p� Conse�

quently� for A�B �M�

IE
�
trace�G�y	A	 trace�G�y	B	

�
� IE

�
trace�yy�A	 trace�yy�B	

��
IE�p��jyj		

� �
 � ��p	�� IE
�
trace�yy�A	 trace�yy�B	

�
� �
 � ��p	�� IE�y�Ayy�By	

� �
 � ��p	��
pX

i�j�k�
��

AijBk
 IE�yiyjyky
	

� �
 � ��p	��
pX

i�j��

�
�fi � jgAiiBii � 
fi 
� jg�AiiBjj �AijBij �AijBji	

�

� �
 � ��p	��
pX

i�j��

�AiiBjj � �AijBji	

� �
 � ��p	��
�
trace�A	 trace�B	 � � trace�AB	

�
�

In particular� if A�B � M��	� then

trace�F �P�B	A	 � p�� IE
�
trace�G�y	A	 trace�G�y	B	

�
� ��p� �	�� trace�AB	�

Hence F �P�B	 � ��� � p	��B and D�P�B	 � ��
 � ��p	��B�
Generally� for any convex function � �M� R� Jensens inequality yields

IE��G�y		 � IE�
�
IE
�
yy�

���u�� � IE IE
�
��yy�	

���u� � IE��yy�	�

In particular� for v � S�Rp	 and integers k � 
�

IE
�
jv�G�y	vjk

�
� IE��v�y	�k	 � IE�y�k� 	 �

k��Y
j��

�
 � �j	 � �kk'�

��



while for any B �M�

IE exp
�
trace�G�y	B	

�
� IE exp�y�By	

� IE exp
� pX
i��

�i�B	y
�
i

�

� IE exp
�
����

pX
i��

log
�
�
� ��i�B		�

��
� IE exp

� pX
i��

	X
k��

�k���i�B	
k�k

�

� IE exp
� pX
i��

�
�i�B	 � �i�B	

�
	X
k��

��kBk	k
�

� exp
�
trace�B	 � trace�B�	��
� �kBk	�

�
� �

Proof of Theorem ��� �a	� Since M �� G�M���� bPn	 depends only on the directions
uni �� jynij��yni� which are uniformly distributed on S�Rp	� one may assume without loss

of generality that Pn is a standard normal distribution on R
p� With the same notation as

in the proof of Theorem ��
� the �rst two assertions in part !a" follow from Theorem ���

and ���
�	� provided that the following two claims are true�

IE max
v�F�Rp�

g� b�n j v�K	� � O�p�n	 uniformly in K � �����
�	

max
v�F�Rp�

g�Pn j v�Kn	
� �K�

n IE max
v�F�Rp��B�F�M����

f� b�n j v� B�Kn	
�

� O
�
log�n�p	� p�n

�
���
�	

for suitable numbers Kn in R��

Note �rst that

IE cosh
�
tg�yn j v�K	

�
� IE cosh

�
tv�G�yn	v

�
�

	X
k��

��t	�k � �
� �t�	���

according to ���
�	� Thus Lemma ��� and ��� yield

�
IE max

v�F�Rp�
g� b�n j v�K	�

���� � ���tn	
�
�p�n� log�
� �t�n	

�
� O��p�n	���	

��



if tn �� �p�n	
��� � 
��� Moreover� it follows from ���
�	 that

g�Pn j v�Kn	 � Kn exp��Kn��	 IE exp
�
v�G�yn	v��

�
� Kn exp��Kn��	 exp����	 for all v � S�Rp	

whenever Kn � �� because x exp��x��	 is decreasing in x � �� Setting Kn equal to

����	 log�n�p	 shows that a su�cient condition for ���
�	 is given by

IE max
v�F�Rp��B�F�M����

f� b�n j v� B�Kn	
� � O�p�n	����
�	

But for any B � S�M��		 and � 
 t � p���

IE cosh
�
tf�yn j v� B�Kn	

�
� IE cosh

�
�t�p	 trace�G�yn	B	

�
� exp

�
�t�p	� trace�B�	��
� �t�p	

�
� exp

�
�t��p	��
� �t�p	

�
�

according to ���
�	� Now ���
�	 follows from Lemma ��� and ��� if t � tn � p
�
�p�n	��� �


��
�
�

As for the assertion about coupling with a Wishart matrix� the preceding results show

that �� bPn	 may be replaced with G� bPn	� The matrixMn �� n
R
xx� bPn�dx	 has the desired

Wishart distribution� Further�

IE�G�yn	� yny
�
n	 � ��

IE
����v��G�yn	� yny

�
n	v

����� � IE
�
�v�G�yn	v	

�
�
Var

�
jynj��p

�
� ���p� �	�

IE
����v��G�yn	� yny

�
n	v

���k� �
�
IE
�
��v�G�yn	v	

k
�
� IE

�
��v�yny

�
nv	

k
���

� � �kk'�

see ���

	 and ���
�	� Consequently�

IE cosh
�
tv��G�yn	� yny

�
n	v
�
� 
 � �t��p� ��t		��
� 
�t�	 for � 
 t � 
���

If we take t � tn � �����p�n	���	�
�� for arbitrarily small � 	 �� it follows from Lemma ���
and ��� that IE

�
kG� bPn	� n��Mnk�

�
� o�p�n	�

As for the assertion about the eigenvalues of �� bPn	� one can modify Silversteins �
���	
arguments in order to show that

kn��Mn � TpDnT
�
pk � Op

�
�log�p	�n	���

�
�

��



where Tp is Haar�distributed on the group of orthonormal matrices in Rp�p� while Dn

denotes the non�random tridiagonal matrix

Dn �� n��

�BBBBBBBB	

n �n�p� 
		��� � � � � �

n� p� � ��n� 
	�p� �		��� � � �
���

n � p� � � � � �
� � � �n� p� �	���

�symm�	 n � p� �


CCCCCCCCA
�

Silverstein �
���	 derived from Ger(sgorins theorem that

���Dn	 � �
 � �p�n	���	� and �p�Dn	 � �
� �p�n	���	��

On the other hand consider unit vectors

un�� �� k������� 
� 
� � � � � 
� �� � � � � �	�� un�� �� k��������
� 
��
� � � � � ��
	k� �� � � � � �	�

in Rp with k � kn � p��� � O�
	 nonzero coe�cients� Then ���Dn	 � u�n��Dnun�� and

�p�Dn	 � u�n��Dnun�� with

u�n��Dnun�� � �kn	��
�k��X
i��

�n� p� �i	 � �
kX
i��

��n� i	�p� i� 
		���
�

� �
� �p�n	���	� � O�n����	� �

Proof of Theorem ��� �b	� Because of ���
	 and the proof of part !a"� we know that

k�� bP s
n 	�G� bP s

n 	k has expectation o��p�n	���	� Thus it su�ces to analyze G� bP s
n 	 in more

detail� This is just a matrix�valued U�statistic with Hoe�ding�decomposition

G� bP s
n 	 �

eG� bUn	 � I � � eG� b�n � Pn	 � eG� bRn	�

where eG�x� y	 � G�x� y	 and

bUn ��
�n
�

��� X
��i�j�n

�yni � �ynj and bRn �� bUn � � bPn � Pn � Pn � Pn�

Now we show that

IE k eG� bRn	k � � IE max
v�F�Rp�

jv� eG� bRn	vj � o��p�n	���	�

��



For that purpose we use once more a truncation argument� Let g�x j v�K	 be de�ned
as in the proof of Theorem ��
 and h�x j v�K	 �� 
fv�G�x	v 
 Kgv�G�x	v � v�G�x	v �
g�x j v�K	� Further let eg�x� y j v�K	 �� g�x� y j v�K	 and eh�x� y j v�K	 �� h�x� y j v�K	�
Then it su�ces to show that for suitable positive numbers Kn�

IE max
v�F�Rp�

���eg� bRn j v�Kn	
��� � op��p�n	

���	����
�	

IE max
v�F�Rp�

���eh� bRn j v�Kn	
��� � op��p�n	

���	����
�	

In order to prove ���
�	� let � be uniformly distributed on the set of permutations of

f
� �� � � � � ng and independent from �yni	��i�n� Then

bUn � IE
�
m��

nX
i��

�yn����i��� � �yn����i�

���yn��yn�� � � � �ynn�������	

bPn � Pn � IE
�
m��

nX
i��

�yn����i��� � Pn
���yn��yn�� � � � �ynn��

m��
nX
i��

�yn����i��� � Pn � IE
�
m��

nX
i��

�yn��i�� � �yn��i

���yn��yn	�yn
� � � ���
where m � mn � bn��c� Consequently� applying Jensens inequality three times while
using the fact that L

�
�yni	i

�
� L

�
�yn���i�	i

�
gives us

IE max
v�F�Rp�

���eg� bRn j v�Kn	
���

� IE max
v�F�Rp�

���eg� bUn � Pn � Pn j v�Kn	
���

� � IE max
v�F�Rp�

���eg� bPn � Pn � Pn � Pn j v�Kn	
���

� � IE max
v�F�Rp�

���eg�m��
nX
i��

�yn��i�� � �yn��i � Pn � Pn
��� v�Kn

����
� � IE max

v�F�Rp�

���g� $P s
n � P s

n j v�Kn	
���

� �
�
��p� 
	�m� max

v�F�Rp�
log IE cosh

�
tg�yn� � yn� j v�Kn	

���
t

� �
�
��p� 
	�m� max

v�F�Rp�
log IE cosh

�
tg�yn j v�Kn	

���
t����
	

for arbitrary t 	 �� where $P s
n was de�ned in Remark ���� The last inequality follows from

Lemma ��� and ���� applied to �m� $P s
n � P

s
n 	 in place of �n�

bPn� Pn	� The last equality is
��



due to G�yn� � yn�	 being distributed as G�yn	� Now we deduce from ���
�	 that

IE
�
g�yn j v�Kn	

k
�

� IE
�
�v�G�yn	v	

k
�
� �kk'�

IE
�
g�yn j v�Kn	

�
�

� IE
�
�v�G�yn	v	

	
��

K�
n � C�K�

n�

whence log IE cosh
�
tg�yn j v�Kn	

�
� Ct��K�

n�
�t
	��
� �t�	�� Consequently� if Kn ��

but K	
n � n�p� then ���
�	 follows by setting t � Kn�p�n	

��� in ����
	�

As for ���
�	� an exponential inequality for degenerate U�statistics yields

IE cosh
�
cneh� bRn j v�Kn	�Kn

�
� e

for some universal constant c 	 �� This follows from Nolan and Pollard �
���� Section �	

or Arcones and Gin�e �
���� Proposition ����d		� Hence� with ��x	 �� cosh�cnx����Kn	

for x � �� one can conclude from Lemma ��� and Pisiers �
���	 Lemma 
�� that�
IE max

v�F�Rp�

eh� bRn j v�Kn	
�
���� �

�
���

�
exp��p	 max

v�F�Rp�
IE�

�eh� bRn j v�Kn	
�
������

� �Kn�p� 
	��nc	

� O��p�n	��		�

because ����y	 �
�
Kn log��y	��nc	

��
�

Now we consider the random matrix eG� b�n � Pn	 in more detail� For �xed x � Rp

let v�� v�� � � � � vp be an orthonormal basis of Rp such that x � jxjv�� Then with yn �

�yn�i	��i�n and hn�r	 �� IE
�
�r � yn��	

�
��
�r � yn��	

� � jynj� � y�n��

��
�

v��
eG�x� Pn	v� � p IE

�
�jxj � v��yn	

�
��
�jxj � v��yn	

� � jynj� � �v��yn	�
��

� phn�jxj	�
v�i
eG�x� Pn	vi � p IE

�
�v�iyn	

�
��
�jxj � v��yn	

� � jynj� � �v��yn	�
��

� p�p� 
	�� IE
�
�jynj� � y�n��	

��
�jxj � yn��	

� � jynj� � y�n��

��
� p�p� 
	���
� hn�jxj		 for � � i � p�

v�i
eG�x� Pn	vj � � for 
 � i 
 j � p�

Hence eG�x� Pn	� I can be written as

phn�jxj	v�v�� � p�p� 
	���
� hn�jxj		�I � v�v
�
�	� I � ���Hn�jxj	�G�x	� I	�

��



where

Hn�r	 �� ��phn�r	� 
	��p� 
	 � !�� �!�

This leads to the representation n��
Pn

i��Hn�jynij	�G�yni	� I	 of � eG� b�n � Pn	�

Finally� suppose that jynj��p�p �o 	 �� Then one easily veri�es that hn�jynj	�p 
��

and thus Hn�jynj	�p 
� Since � � Hn 
 �� this implies that

IE
�����Hn�jynj	� 
	v��G�un	� I	v

���k� � IE
�
jHn�jynj	� 
jk

�
IE
�
jv��G�yn	� I	vjk

�
� �n�

kk'

for k � �� where �n � �� Thus log IE cosh
�
t�Hn�jynj	� 
	v��G�yn	 � I	v

�
is not greater

than 
��nt
���
� 
�t�	�� and a �nal application of Lemmas ��� and ��� gives us

IE
���G� bPn	� I � n��

nX
i��

Hn�jynij	�G�yni	� I	
��� � o��p�n	���	�

But part !a" provides the expansion IE k�� bPn	 � G� bPn	k � op��p�n	���	� Consequently�

IE k�� bP s
n 	� �� bPn	k � op��p�n	

���	� �

��� Proofs for Section �

Here is a preliminary result for proving Theorems ��
 and ����

Lemma �� For x � Rp n f�g� � � Rp� B �M let

H�x� �� B	 �� pjxj�	x�Bx�x�� � �x�	 � �jxj��x�B�G�x	� �jxj��x��F �x�B	�

i�e� H�x� �	 � H�x� �� I	� Then there is a universal constant c � R� such that for arbitrary

� � Rp�

���F �Q�Q���� �	�H�Q� �� �	
��� � �pQf�g


� Qf�g � cpj�j
Z
jxj��minf
� j�j�jxjgQ�dx	�

kH�Q� �� �	k � �j�j
�
p

Z
jxj��Q�dx	

����kG�Q	k����
Proof of Lemma ��� For any �xed B � S�M	�

F �Q� Q���� B	 �

Z �
F �x�B	� �
�Qf�g	��fx 
� �gF �x � ��B	

�
Q�dx	�

�




Since kF �x�B	k � p�

���F �Q� Q���� B	�
Z
fx 
� �g

�
F �x�B	� F �x� ��B	

�
Q�dx	

���
� �p�
�Qf�g	��Qf�g������	

Now de�ne

eH�x� �� B	 �� pjxj���x�Bx�x�� � �x�	 � �x�B� xx�	�

For u� v � S�Rp	 and � �� v � u�

jv�Bv � u�Buj � �j�j and v�Bv � u�Bu � �u�B� � ��B��

kvv�� uu�k � �j�j and vv� � uu� � u��� �u� � ����

Thus

���F �v� B	� F �u�B	� eH�u� �� B	���
� p jv�Bv � u�Buj kvv� � uu�k

�
���pu�Bu�vv� � uu�	 � p�v�Bv � u�Bu	uu� � eH�u� �� B	���

� �pj�j�� pku�Bu��� � ��B� uu�k
� �pj�j��

In particular� let u �� jxj��x and v �� jx� �j���x��	� where j�j 
 jxj� Then elementary
calculations show that for � �� �jxj����

j�j� � c�j�j� and j� � � � u��uj � c��j�j��

where c�� c�� are universal constants� Since

H�x� �� B	 � � eH�x� � � u��u� B	

�for arbitrary x� �	� these considerations yield

���fx 
� �g�F �x�B	� F �x� ��B		�H�x� �� B	
��� � p� �pjxj��j�j�����	

��



in general� while

���F �x�B	� F �x� ��B	�H�x� �� B	
���

�
���F �v� B	� F �u�B	� eH�u� �� B	���� k eH�u� � � � � u��u� B	k

� ��c� � �c��	pjxj��j�j� if j�j 
 jxj������	

Now ������ ����� ����	 together yield the �rst asserted inequality�

As for the second inequality� note that for arbitrary w � S�Rp	�

jw�H�x� �� B	wj � jw� eH�x� � � u��u� B	wj � �pjxj��j�j jxj��jx�wj�

Consequently� by the Cauchy�Schwarz inequality�

jw�H�Q� ��B	wj � �j�j
Z
p���jxj�� �w�G�x	w	���Q�dx	

� �j�j
�
p

Z
jxj��Q�dx	

����kG�Q	k���� �

Proof of Theorem ��� According to Corollary ��� it su�ces to show that

G�Q� Q���	 � H�P� �	 � o�j�j	

as

Q �w P�

Z
jxj��Q�dx	 �

Z
jxj�� P �dx	� � � �������	

Lemma ��� implies that

���G�Q�Q���	�H�P� �	
��� � j�jkH�Q� P� �	k� �p�
�Qf�g	��Qf�g

� cpj�j
Z
jxj��minf
� j�j�jxjgQ�dx	�

Under �����	 the right hand side is of order o�j�j	� For

j�j��Qf�g �
Z
jxj��minf
� j�j�jxjgQ�dx	 � ��

and kH�Q� P� �	k � �� because Rp n f�g � x �� H�x� �	 is a continuous mapping into the
space of linear mappings L � Rp �M such that kH�x� �	k � �pjxj��� �

��



Proof of Theorem ��� It follows from Theorems ��
 and ��� that IE kF � b�n� �	k �
o�
	 and IE kG� b�n	k � O��p�n	���	� Thus� by Theorem ���� it su�ces to show that

IE sup
j�j��n

kF � bP ���
n � bPn� �	k � o�
	������	

kH�Pn� �	k � O�
	������	

IE sup
j�j��n

���G� bP ���
n � bPn	�H�Pn� �	

��� � o��p�n	���	������	

Since bPnf�g � 
�n for all � � Rp almost surely� it follows from Lemma ��� and the

Cauchy�Schwarz inequality that

IE sup
j�j��n

���F � bPn � bP ���
n � �	�H� bPn� �� �	���

� �p��n� 
	 � cp��n

Z
jxj�� Pn�dx	 � O�p�n� ��n	������	

IE sup
v�S�Rp�

kH� bPn� v� �	k� sup
v�S�Rp�

kH�Pn� v� �	k

� �
�
p

Z
jxj�� Pn�dx	

�����
IE kG� bPn	k���� � O�
	������	

These two inequalites imply �����	 and �����	� Claim �����	 follows from �����	� together

with

IE kH� b�n� �	k � O��p�n	��		�

The latter assertion can be veri�ed as follows�

kH� b�n� �	k � �p
���Z jxj��x b�n�dx	

���
� � sup

v�S�Rp�

��� Z jxj��x�v G�x	 b�n�dx	
����

On the one hand�

p IE
���Z jxj��x b�n�dx	

��� � pn����
�Z

jxj�� Pn�dx	
����

� O��p�n	���	�

On the other hand� with �n �� �p�n	��	 Lemma ��� gives

IE sup
v�S�Rp�

��� Z jxj��x�v G�x	 b�n�dx	
���

� �p

Z
fjxj � �ngjxj��Pn�dx	

��



� IE max
u�v�F�Rp�

��� Z fjxj 	 �ngjxj��x�v u�G�x	u b�n�dx	
���

� ��np
Z
jxj��Pn�dx	

� ���n IE max
u�v�F�Rp�

���fn� b�n j u� v	
����

where fn�x j u� v	 �� fjxj 	 �ng�njxj��x�v u�G�x	u� and it su�ces to show that

IE max
u�v�F�Rp�

���fn� b�n j u� v	
��� � O��p�n	���	�����
	

As in the proof of Theorem ��
 or Theorem ��� one can show that

max
u�v�F�Rp�

log IE cosh
�
tfn�yn j u� v	

�
� O�t�	 �t� �� n��	�

Since &�F�Rp	� F�Rp		 � exp��p	� assertion ����
	 follows from Lemma ���� �

� Some �nal remarks

In principle di�erent M�estimators such as in Maronna �
���	 could be treated similarly�

But this would require stronger regularity assumptions �not to mention more complicated

notation	 without giving substantially better results�

An interesting special case is the maximum likelihood estimator for the multivariate

Cauchy distribution on Rp��� Suppose that yni � �ey�ni� 
	� with random vectors eyni �
Rp�� having distribution ePn� If we write

�� bPn	 � ��� bPn		pp
�
$�n � $�n $��n $�n

$��n 


�

with $�n � $�n� bPn	 � Rp�� and $�n � $�n� bPn	 � R�p�����p���� then �$�n� $�n	 is the maxi�

mum likelihood estimator for �e�n� e�n	 under the model assumption that

ePn�dey	 � const��p� 
	 det�e�n	
����

�

 � �ey � e�n	� e���n �ey � e�n	��p�� dey����
	

see Kent and Tyler �
��
	� The results of the present paper can be used directly to

derive asymptotic properties of �$�n� $�n	� where ���
	 is replaced with general regularity

conditions on ePn�
��



A possible objection to M�estimators of scatter is their breakdown�point of order

O�
�p	 only �cf� Stahel 
��
� Tyler 
���	� However one should keep in mind that com�

putaion of M�estimators is much easier than computation of the high�breakdown estimators

considered by Maronna et al� �
���	� so that resampling methods become feasible� The

breakdown properties of the estimator �� bP s
n 	 are currently investigated�
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