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1 Introduction

It has been noted by numerous authors that asymptotic results, where the dimension of
the underlying model is fixed while the number of observations tends to infinity, are often
inappropriate for real applications; e.g. Portnoy (1988) or Girko (1995). In particular,
the literature on M-estimation in linear regression models with increasing dimension is
vast and still growing; see for instance Huber (1981), Portnoy (1984, 1985), Bai and
Wu (1994 a-b), Mammen (1996) and the references cited therein. In the present paper we

investigate the related problem of M-estimation of a high-dimensional covariance matrix.

Let ]3n be the empirical distribution of independent random vectors y,, = yn1, ¥u2,
.+ Vun in RP with unknown distribution P,, and let .S, = Sn(]gn) be an estimator for the
covariance matrix ¥, of P,, both assumed to be positive definite. Of particular interest

is the condition number of 715,

Y57 18n) = Al(Lan)
Ap(E7055)

where A1(A) > A2(A) > A3(A) > --- denote the ordered real eigenvalues of A € RP*P.

For there are explicit bounds for various scale-invariant functions of 5, and X, such as

correlations, partial and canonical correlations, regression coeflicients or eigenspaces, all in

terms of v(3,;15,) (cf. Diimbgen 1994). An example are the following sharp inequalities

for correlations, where (-)" denotes transposition:

&'y a'Spy )‘ o logy(¥7150)
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for arbitrary x,y € RP\ {0}. Therefore it is of interest to study the probabilistic behavior

‘arctanh( ) — arctanh(

of 7(2;15n). If P, is multivariate normal and S, is the sample covariance matrix, a

modification of Silverstein’s (1985) arguments reveals that
(1.1) Y(E18n) = 144/ + op((p/m)'?):

see also the proof of Theorem 5.4. In connection with P,, ]3n we assume tacitly that
the dimension p = p, may depend on the sample size n such that p/n — 0. Asymptotic

statements refer to n — co. Expansions such as (1.1) hold under more general assumptions



on the distribution P,, provided that it has sufficiently light tails (cf. Girko 1995). On the
other hand, the distribution of the extremal eigenvalues of the sample covariance matrix

is very sensitive to deviations from normality so that even the weaker assertion
(1.2) Y(E7'S0) = 14 0,((p/n)'"?)

may be false, even under elliptical symmetry of P,. It is thus desirable to have an esti-

mator, whose distribution is less model-dependent, such that expansion (1.1) or at least

(1.2) holds.

A possible alternative to the sample covariance matrix are M-estimators of scatter
as proposed by Maronna (1976) and Tyler (1987). The present paper focuses on two
estimators related to Tyler’s (1987) M-functional. The latter is defined in Section 2 as
a matrix-valued function @ — X(Q) on the space of probability measures on R? \ {0}.
Section 3 provides a basic linear expansion for 3(-) with a rather explicit bound for the
remainder term. As a by-product we obtain continuous Fréchet-differentiability of X(-)

with respect to the weak topology on the space of probability measures on R” \ {0}.

Section 4 describes estimators based on ¥(-). One obvious choice is the M-estimator
E(ﬁn), which is distribution-free if P is elliptically symmetric around zero. In addition
we propose the estimator E(Igns)7 where ]3; is a symmetrization of P,. This is an intu-
itively appealing method to get rid of unknown location parameters. The linear expansion
of Section 3 implies asymptotic normality of both estimators and consistency of certain
bootstrap methods. Some of these results and conclusions are not entirely new but nev-
ertheless stated explicitly for the reader’s convenience. In connection with the bootstrap

we use similar arguments as Bickel and Freedman (1981).

In order to prove Fréchet-differentiability for fixed dimension p, one could also apply
general methods of Clarke (1983). An advantage of our explicit expansion is that it enables
us to investigate the asymptotic behavior of $(P,) and S(PF) as p = p, — oo. This is
done in Section 5. Under certain regularity assumptions assertion (1.2) is valid for both

estimators Y(P,) and X(PF). In particular, if P is elliptically symmetric, X(P,) is shown

to have the same asymptotic behavior as the sample covariance matrix in the Gaussian



model, including expansion (1.1).
Another approach to the problem of unknown location, pursued by Tyler (1987), is to
re-center ]5n around an estimator fi, = ﬁn(]gn) for P’s center. Section 6 contains some

additional results on this method, also in view of dimensional asymptotics.

All proofs are deferred to Section 7.

2 Definition and basic properties of the M-functional ¥(-)

Let us first introduce some notation. Throughout the set of symmetric matrices in RP*?
is denoted by M, while MT denotes the set of positive definite M € M. For M € MT the
unique matrix N € M+ with NN = M is denoted by M2 and M~'/? := (M~—1)'/? =
(M%)~ Further we consider the following affine subspaces of M, where I stands for

the identity matrix in RPX?:

M(0) := {M € M : trace(M) = 0}7

M(p) := {M € M : trace(M) :p} = [+ M(0).

Let f be a real or vector-valued function on R?, and let A be a signed measure on R?.
Then f(A) stands for [ f(x) A(dz). This convention will be particularly convenient for
functions of several arguments. Further, for A € RP*? we denote by AA the transformed

signed measure Ao A7,

Througout let P and @ be probability distributions on R” \ {0}. We regard @ as
rotationally symmetric around zero in a weak sense if G(Q) = [ G(z) Q(dz) is equal to I,

where

G(z) = {p|x|_2m@’ € M(p) ifz #0,

0 else;

here |z| denotes the standard Euclidean norm (z'z)'/? of z. Note that G(Q) equals p
times the matrix of second moments of |z|~'z, where z ~ Q. If ) is spherically symmetric
around zero, one easily verifies that in fact G(Q) = I. More generally, this equality holds
if the vectors z = (2;)1<i<p, and (éizw(i))lgigp have the same distribution for arbitrary

€ € {—1,1}? and permutations 7 of {1,2,...,p}. In general one tries to find M € M™*



such that
M= 2g2' M~1/2
—1/2 _ _
GM™77Q) = p/ Q) = L.

Note that G(M~'2Q) = G((sM)~'/2Q) for all s > 0, so that G(-) is only useful in

connection with scale-invariant functions on M™ such as correlations.

Definition. If the equality G/(M~/2Q) = I has a unique solution M in Mt(p) := Mt n
M(p), this matrix M is denoted by 3(Q). Otherwise we define arbitrarily ¥(Q) := 0.

An important property of G/(-) and X(+) is linear equivariance. For nonsingular A €

RPX? and M € M one easily verifies that

(2.1) G((AMA)T2AQ) = TGM™Q)T

where 7' := (AM A’)~"/2AM"/? is orthonormal.
Thus G(M~Y/2Q) = I if, and only if, G((AMA')—1/2AQ) = 1. Hence
(2.2) Y(AQ) = rAN(Q)A"  with r := p/trace(AX(Q)A").
Necessary and sufficient conditions for 2(Q) € M™ are as follows.

Theorem 2.1 Let V be the set of proper linear subspaces V of R?, i.e. 1 < dim(V) < p.
[a] If G(M~'/2Q) = I for some M € M*, then

Q(V) < dim(V)/p forall VeV.
[b] Suppose that
(2.3) QV) < dim(V)/p forall VeV.

Then there exists a unique M € Mt (p) such that G(M~'/?Q) = 1.
[c] Suppose that G(Q) = I but Q(V) = dim(V)/p for some V € V. Then Q(VUV1) =1
and

G((all+b(1 = 1)72Q) = I foralla,b>0,

where Il € M describes the orthogonal projection from R? onto V, and V* stands for

the orthogonal complement of V.



Parts [a, b] are due to Tyler (1987) and Kent and Tyler (1988). Their proofs are
formulated for empirical distributions ¢J, but extension to arbitary distributions is mainly
straightforward, requiring only notational changes. The only exception is the existence
statement in part [b]. Two possible proofs are given in Section 7. Part [c], combined with
(2.1), supplements part [b] in that condition (2.3) is even necessary for (@) € M*. This

will be needed in the proof of Theorem 3.2 below.

3 Differentiability of X(-)

For M € M we define [|[M|| := |\ (M)]| V |A,(M)]|. Since the dimension p may vary,
this particular choice of a norm is important. It is particularly useful in connection with
eigenvalues, because |A;(A) — A;(B)| < ||]A — B|| for A,B € M and 1 < ¢ < p. By way
of contrast, for growing dimension p expansions involving the Euclidean norm ||M||g =
trace(M?)'/2 would be of little use. This is one reason why the results of Portnoy (1988)

cannot be applied here without unnecessary restrictions on p. Generally, we always use

the norm
L|| := max ||L
2 = mag (L]
of a linear operator L from a normed vector space (B, || -||) into another normed space,

where S(B) denotes the unit sphere {y € B : ||y|| = 1}.

Now we investigate (@) if @) is close to P in a certain sense and G(P) = I. By

equivariance of G/(-) and X(+) it suffices to consider the latter case.
The function G(M~"/2z) is differentiable with respect to M € Mt with

)

D(z,B) = %L:OG((I—HB)‘I/%) = F(z,B) - 27" (BG(2) + G(x)B),
z|722'Bx G(z) = plz| *2'Bzxa’ if 2 £0,

Fle.B) = { o] (@) = ] e

Note that D(z, ) = 0 and trace(D(z, B)) = 0 for all B € M. The next lemma shows that
condition (2.3) is closely related to the operator D(Q,-).

Lemma 3.1 The operator D(Q, ) is nonsingular on M(0) if, and only if, Q(VUV?1) < 1



for arbitrary V € V. In that case,

trace(D(Q,B)B) < 0 forall B € M(0)\{0}.

The inverse operator of D(P,-) : M(0) — M(0), if existent, is denoted by D~!(P,").

Here is our basic linear expansion for X(-).

Theorem 3.2 Forany b < oo there exist constants k(b) < oo and €(b) > 0 (not depending
on p or P) such that

|2@ -1+ D7 (P.GQ-P)| < wO)1F(@Q - PIIGQ - P

whenever

S(P) = 1, IDTNPI<h and |[F@Q - P < (b).

The latter two norms || - || refer to the linear operators D™1(P,-) : M(0) — M(0) and
F(Q — P,-) : M — M. Note also that ||G(Q — P)|| = ||F(Q — P, )| < ||F(Q — P,-)||-

Theorem 3.2, Lemma 3.1 and (2.2) together imply that ¥(-) is Fréchet-differentiable
with respect to the weak topology. The reason is that 2 — F(z,-) is a bounded, continuous

mapping from RP \ {0} into the finite-dimensional space of linear operators L : M — M,

so that [|F(Q — P,-)|| = 0 as Q@ — P weakly.

Corollary 3.3 Suppose that ¥(P) = 1. Then, as @ — P weakly,
G@Q — I and $(@Q) ~1 = -D(PGQ ~1)+o(|lG@Q ~1). ©

One can even show that X(-) is continuously Fréchet-differentiable. Instead of pursuing
this issue, we shall prove a related statement about limiting distributions of E(]gn) and

3(P#) in the next section.

n

4 Related estimators and their properties in fixed dimen-
sion

At this point it is convenient to define E(@) = E(@ ( ‘ RP \ {0})) for any probability
measure ) on R? with Q{0} < 1.



Suppose first that the distribution P, has a known “center” p, € RP. Without
loss of generality one may assume that u, = 0. Then a straightforward estimator for
Y(P,) is given by E(ﬁn) An important example are elliptically symmetric distributions
P, = L(R, 2711/211)7 where R, > 0 and u are stochastically independent, u is uniformly
distributed on the unit sphere of R?, and ¥, € M™T(p). Clearly ¥(P,) = X,,, and the
empirical distribution ]3n satisfies condition (2.3) almost surely if n > p. Moreover, the
distribution of v(X715(P,)) depends neither on ¥, nor on £(R,) (cf. Tyler 1987).

The center p,, no matter how it is defined, is rarely known in advance. In order to

avoid definition and estimation of an unknown location parameter one can also consider

the functional @ — ¥(Q®) with the symmetrized distribution

Q° = ﬁ(zl—ZQ‘zl#ZQ) where (z1,22) ~Q ® Q.

Here A1 ®Aj denotes the product measure on R? x R? of (signed) measures Ay, Ay on RP.
One motivation for the functional @ — X(Q®) is the representation 27! IE((21 —23)(z1 —
ZQ)/) of the covariance matrix of (J. Moreover, if z ~ ) has independent, identically
distributed components, then G(Q®) = I, whereas G(Q)) may be different from /. Thus

symmetrization partly corrects a possible deficiency of M-estimators.

One easily verifies that @ — 3(Q*®) is affinely invariant in that
(4.1) AN(QHA" = r3((n+AQ)T) with r = trace(A'AS(Q%)/p

for any nonsingular A € RP*? and p € RP, where 4+ AQ = L(pu+ Az), z ~ Q. If Q is
elliptically symmetric around p with scatter matrix ¥, € M™T(p), then Q% is elliptically

symmetric around zero with the same scatter matrix X,.

An application of Theorem 3.2 utilizing the explicit error bound is the following Central

Limit Theorem for the distribution of ¥(P,) and $(PS).

Corollary 4.1 Suppose that P, converges weakly to some distribution P on RP.

[a] Let P{0} =0 and X(P) = I. Let L,(-| P,) denote the distribution of
2 (8(S(P)TV2R,) — 1)

8



(provided that ¥(P,) € M*). Then X(P,) — I and
Ln(-| P) = LOV),

where W € M(0) is a random matrix with centered Gaussian distribution and the same
covariance function as D™ (P, G(y) - I), y ~ P.
[b] Let P{u} =0 for all p € R? and X(P%) = 1. Let L:(-| P,) denote the distribution
of
(S (S(P)TVR) ~ 1)
(provided that X(PF) € M*). Then X(P?) — I and

La([Ba) —=w LOVE),

where W € M(0) is a random matrix with centered Gaussian distribution and the same

covariance function as 2D~ (P®,G(y, P) — 1), y ~ P. Here G(x,y) := G(z — y).

Remark 4.2 The covariance function of a random matrix W € M(0) is defined as the

function (A, B) — Cov (trace(WA),trace(WB)) on M(0) x M(0).

Remark 4.3 In case of P being spherically symmetric around zero one can deduce from

equations (7.11) and (7.12) in Lemma 7.5 that

IE(trace(WA) trace(WB)) = 2(142/p)trace(AB) for A, B € M(0).

Remark 4.4 If P, — P weakly, then the emprirical distribution P, converges weakly to
P in probability. More precisely, dw(]gn7 P) converges to zero in probability, where dy (-, )
metrizes weak convergence of probability measures on RP. Consequently, the bootstrap
distributions L, (- | P,) and L5(-| P,) are consistent estimators of L, (| P,) and L5(-| P,),

respectively.

Remark 4.5 Utilizing the equivariance properties of 3(-), (2.2) and (4.1), one can deduce
from Corollary 4.1 that

D2 (3 (S(P)TISP)) = 1) —e (M= A) (W) in part [a),

D2 (3 (S(PHTINPN) = 1) —e (M= A) (WS in part [b],



oy oy

5 Asymptotic behavior of ¥(F,) and ¥(P?) in high dimension

Now we consider the case where
p=p, — oo but p/n — 0.

For the sake of simplicity it is assumed that P, has no atoms.

Theorem 5.1 Suppose that X(P,) = I for all n. Let

w o= e [WGWWE A = O,
. y' By\? _

Further let p = O(n'/?). Then

~

E(G(P) — 1| = o(1) and B[S(P) - G(B)| = o(B(IG(P,) - 1]]).
If in addition p = O(n'/?), then

E(|G(B) =1 = O((p/n)'/?).

Remark 5.2 Suppose thaty, = (y.)i1<i<p ~ P, hasindependent, identically distributed
components with continuous, symmetric distribution such that IE(y? ;) = 1 and E(y;1 ;) =
O(1). Then k% = O(1) and ¢2 = O(p™!). For it follows from the one-sided version of
Bennett’s (1962) inequality that P{|y,|?/p < 1/2} < exp(—a,p) for some number a,
depending on the fourth moment of ,; and p such that liminf, . a, > 0. Therefore,
since (u/G(y)u)? < p? and (y'By)?/(y'y)? < 1, one may replace these integrands of x2 and
o2 with 4(u'y)* and 4p~2(y' By)?, respectively. Then the assertion follows from tedious

but elementary moment calculations.

Remark 5.3 The conclusions of Theorem 5.1 and Remark 5.2 remain valid if (£, ﬁn) is
replaced with (P?, ﬁns), where the symmetry condition in Remark 5.2 becomes superfluous.
For the proof of Theorem 5.1 consists essentially of bounding IE(HF(]?’n - P, )Hz) and
IE(HG(]?’n — Pn)Hz) But F(P?, B) can be written as a matrix-valued U-statistic

-1

0 T v

1<i<y<n
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Let P8 be the empirical distribution of y3,,¥5%,...,¥5,., where m = m,, := [n/2] and

Yo = Y¥n2i—1 — ¥Yn,2i- Then a simple convexity argument due to Hoeffding (1963) yields

E(|IG(Bs - P2)I?)
E(|F(Bs - P32

E((|IG(Ps - P3)I?),

(5.1) E(|F(Es - B2, )IP):

AN VAN

see also equation (7.20) in Section 7. Now the signed measure P — P® can be handled

analogously as ]5n - P,.

Under spherical symmetry of P,, restrictions on p beyond p = o(n) are superfluous,

and one can obtain rather precise expansions.

Theorem 5.4 Suppose that P, is spherically symmetric around zero for all n.

[a] Then

ORGP -1 = O((p/m)').
B |S(P) - 1= (14+2/p)(G(E) = D = O(log(n/p)p/n).

Moreover, one can couple E(ﬁn) with a standard Wishart matrix M, € M with n degrees
of freedom such that
E|[S(B,) = n~' Myl = o((p/m)"?).

In particular, 7(2(]3n)) =14 4(p/n)Y? + 0, ((p/n)"/?).
[b] As for PF,

i B S(P) ~ 1] = Ol(p/n)'/?),
B[S ~ 1 =n' Sy Hallyl) (Gl = D = ol(p/n)'7?),

where H,, is an increasing function from [0, o[ into [0,2[. If in addition |y,|*/p converges

in probability to a constant k, > 0, then
ES(B) = S(P)| = o((p/n)'?),
6 The impact of plugging in estimates of location

For pn € R? let
QW = ,C(z—,u‘z#,u) where z ~ ().

11



If P{0} = 0, one can easily show that Q) converges weakly to P as Q —» P and p — 0.
Thus Corollary 3.3 implies that

(6.1) S(QW) = B(P) as Q =y P and g — 0

whenever X(P) € M*. The following two results show that under moderate moment
assumptions on P the difference Z(Q®) — $(Q) can be expanded explicitly, extending
results of Tyler (1987, Section 4).

Theorem 6.1 Suppose that P{0} = 0, X(P) = I and [ |z|™* P(dz) < co. Define
Hw, ) = ple| ™ (pa’ + ap) — 20220 G(2).
Then
RQW) ~1 = =D PGQ) ~ T+ H(Pw)) +o(|G(P = Q) + |ul)

as

0 =, P, /|x|_1Q(dac) 5 /|x|_1P(dx), 0= 0.

Note that H (-, p) is an odd function. Thus the bias term H (P, u) equals zero if P is
symmetric in that P(S5) = P(—9) for all Borel sets S C RP. As for the moment condition,
note that [|z|7" P(dz) < oo if r < p and P has a bounded density with respect to

Lebesgue measure.

Theorem 6.2 Suppose that p = p, — 0o and p/n — 0. Let X(P,) =1 and P,({¢}) =0

for arbitrary p € RP and all n. Moreover, let

p [l Putde) = 0(1),

and suppose that either

(cf. Theorem 5.1), or,
P, is spherically symmetric around zero for all n.

12



Then |H(P,,-)|| = O(1) and for any sequence of positive numbers ¢, = o((p/n)'/4),

sup (| S(B) = 14+ D7 (P, G(Py) = 1+ H(Poy )| = op((p/m)'1?).

|ul<en

Since [ |z|72N,(0,1)(dz) = (p — 2)~1, the first moment condition is satisfied for mix-

tures

P, = /Np(o, ol 7, (do),

provided that [o=2m,(do) = O(1). If i, = [i,(P,) is an estimator such that
(6.2) fin = Opl(p/m)'?),

then under the assumptions of Theorem 6.2,

GO = Opl(p/m)'),
|SPEF) = () + DB H (P )| = op((p/n)'7).

In case of p~! [|2|2 P,(dz) = O(1), the sample mean Ji, = [ P,(dz) satisfies condi-

tion (6.2). Alternatively consider Tukey’s median

i, = argmax inf P,dz € RP:2'u < pul.
a §€RP wES(RP) { =H }

Here fi,, = Op((p/n)/?), provided that

(6.3) liminf inf : et (Pn{ac eRP: vz < en} — 1/2) > 0 whenever ¢, | 0.

n—00 uES(RP

This follows straightforwardly from the fact that

E sup  (Pu(H) = Pu(H))? < ep/n
halfspaces HCRP

for some universal constant ¢. This is a consequence of Alexander (1984, Corollary 2.9);
see also Pollard (1990, Sections 1-4) for techniques to prove it. If P, is a mixture of normal

distributions as above, condition (6.3) is satisfied if

lim inf m([0,7]) > 0 for some r < oco.

13



7 Proofs

7.1 Proofs for Section 2

Proof of Theorem 2.1 [a, c]: Let G(Q) = I, and let V € V with corresponding

projection matrix I1 € M. Then
dim(V) = trace(ll) = p/|x|_2x’H$Q(d9€) > pQ(V)

with equality if, and only if, Q(V U V1) = 1. In this case G((aH +o(I - H))_I/QQ)
equals G(Q) = I for all a,b > 0, because G((aH+b(I—H))_1/2x) = G/(z) for any nonzero
x € VUV Note that (all + b(1 — I1))* = a I + (I — 11) for any real . O

First proof of the existence statement in Theorem 2.1 [b]. The arguments of
Kent and Tyler (1988) can be modified as follows. Without loss of generality let () be

supported by the unit sphere S(R?). Any local maximum A € M™(p) of the functional
0(4) = logdetA—p/log(x’Ax)Q(dx)

satisfies G(A'/2Q) = I, because

d

' Az
%‘t:O

((A+1A) = trace(A"/2AA471/2) —p/ L Q)

= trace(A_l/zAA—l/Q(] _ G(AI/QQ)))

for arbitrary A € M. Existence of such a local maximum is guaranteed if we can show
that limg . £(Ag) = —oo for any sequence (Ag)y in M™T(p) with limit A € M(p) \ M*.

For that purpose assume without loss of generality that Ay = le Ni(Ag)TgiT),; with

an orthonormal matrix (741, ke, . . ., Tkp) converging to (7q, 72, ..., 7,) as k — oo. For fixed

e>0and 1 <j < p define

P
S; = {x € S(R?) : Z(TZ{$)2 >1- 62} and D; = S5;\ S,

=7

where 5,11 := (). Note that S; is just the intersection of the unit sphere S(R?) with the

open e-neighborhood of the space span(r;,...,7,). Since
A J
lim inf min L ORT > liminf min Z(T}mw)z
k—co  weS(RP\Sj+1 Aj(Ak) k=00 z€S(RP\Sj41 F

14



= min )2
2ES(RP)\S; 41 ;( )

> ¢

9

it follows that

((Ay) = ]Zi;(logA (Ag) — p/]log(x’Akx)Q(dx))
< é(logA (A%) = pQ(D;) (log X; (A1) + O(1))
- élogwk)(l—p@wm+0<1>
= Zp: log A;(AR)(1 —pQ(D;))+O(1) as k — oo,

.
Il
S

where J :=min{j : A\;(A) = 0} > 1. If ¢ is sufficiently small, condition (2.3) entails that
pR(S;) < p—j+1 for2<j<p.
This will be shown to imply that

T YA (00 (D) < loeh(A)(p— 141~ (S))
" whenever A;(Ag) < 1.

In particular,
((Ag) < log As(AR) (p— 7 +1-pQ(S)) +0(1) = —o0 (k= o).

Inequality (7.1) is proved by reverse induction on t. If ¢ = p, then equality holds in
(7.1). Now suppose that A;(Ax) <1 and (7.1) is true for ¢ = s + 1. Then

Zp: log A (Ax)(1 = pQ(D;))

i=s

< log Ao(AR) (1= pQ(Ds)) + log Me(A) (p — £ + 1= pQ(Sy))
S0+ pQ(S1)) (p—t+1-pQ(S))
)

= log As(Ag ( )
(S.) (p—t+1-pQ(5)

+ log A(Ap)
< log As(Ax Ss) + pQ(S1)) + log Ay (Ax)



because log A\;(Ar) <log As(Ax) < 0and p—t+1—pQ(S) > 0. O

Second proof of the existence statement in Theorem 2.1 [b]. This proof
may be of independent interest and is based on a well-known result from topology (cf.
Deimling 1985, Chapter 1 and problem 3.3), which is closely related to Brouwer’s fixed-

point theorem.

Lemma 7.1 Let 2 be a compact, convex subset of R™ with 0 in its interior, and let

[ : Q2 — R™ be continuous such that
flz) & {—rz:r >0} forallzedQ.

Then f(z) =0 for some z € Q. ]

For 0 < € < 1 let €. be the set of all A € M(p) such that A,(A) > e. Then Q. is
a compact, convex subset of M(p) with I in its (relative) interior, and A — G(AY2Q)

defines a continuous map from €, into M(p). Now suppose that
(7.2) GAYV2Q)—T ¢ {-r(A—1):r >0} forall AcdqQ..

Then Lemma 7.1 implies that G(AY2Q) = I for some A € Q..

It remains to be shown that condition (7.2) holds for sufficiently small €. Assume the
contrary. Then there exists a sequence (Ag)g>1 in M*(p) such that Ay — A € M(p)\M+
(k — o0) and G(A}*Q) = I — r(Ay, — I) for suitable ry, > 0 for all k. Let TI € M be the
projection matrix corresponding to V := {z € R? : Az = 0} € V. Then Fatou’s Lemma

entails that
trace(IG(AY?Q)) = p / (' Ape) L AVPIIAY 22 Q(da) < pQ(V) + o(1)
as k — 00, because x’Ai/zﬂAi/zx/x’Akx — 0 for all z € RP\ V. On the other hand,
trace(TlIG(AY?Q)) = dim(V) + ry trace(Il — [TA,) = dim(V) + ry(dim (V) + o(1)),

whence Q(V) > dim(V)/p, in contradiction to (2.3). O
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7.2 Proofs for Section 3

Proof of Lemma 3.1: For any B € M(0),
trace(D(Q, B)B) = p/(|x|_4($’Bac)2 — |x|_2x’B2x) Q(dz).

By the Cauchy-Schwarz inequality, (2’Bz)? < |z|*(2'B?z) with equality if, and only if, »
is an eigenvector of B. Hence, if A(;) > -+ > A,) are the distinct eigenvalues of B, and

if V;:={2 € RP: Bx = A(;}, then trace(D(Q, B)B) < 0 with equality if, and only if,
Q(ViU---UV,,) = 1.

Now the assertion follows from the fact that m > 1 whenever B # 0. O

In order to prove Theorem 3.2 one needs explicit bounds for the norm of the remainder

term G((I + B)~'/2Q) - G(Q) - D(Q, B).
Lemma 7.2 There is a universal constant k, € R* (not depending on Q) or p) such that

|6 +B)7Q) - @) - D@ B)| < sllG@IIBI

for arbitrary B € M with ||B|| < 1/2.

Proof of Lemma 7.2: For A € M with A\(A) < 1 define
K(z,A) == G((I - A)z) — G(z) —2D(z, A).

Then for y := |z|712 € S(RP),

(1= )G - A)
- Ay~ CW) =204

_ U-AGHUI-A) - (1 —2y'Ay +y'A’y)Gly)

- y (T~ A2y 2D(s, 4)

_ AGWA -y A%y Gly) +2D(y, A)

B y'(I — A%y 2D(y, A)

AG(y)A— A%y Gy) + 220/ Ay — y' A%y) D(y, A)
y' (I — Ay

K(z,4) = (

17



The denominator y'(I — A)%y is not smaller than A,((I — A)?). As for the numerator,

given any unit vector u, pick v € S(R?) such that Au = |Au|v. Then

W (AGA -y A%y Gy)u| < AP (VG ly)v+ dGly)u),
W (2y' Ay — y A%y D(y, Ayu| < (A + AP’ D(y, A)ul
< QAR+ AP (WG (y)u+ [/ Gly)o]).

Further there are orthonormal vectors u,v such that

wo= (L) /2) 5 (1 - ') /2) %,

o= () /) (1 ) 2) M,

so that

[WGy)el = 27 (1w 0)dG )i - (1 - u'v)G(y)]

< 27H 1+ W) @G (y)a 4+ 27 (1 — o) Gy)T.
Hence
IK@ A < max [ 0K (e, Al Q(de)
— 2 3 !
< (= AT (014 + 4 A%) max w'GQ)u
(7.3) = (1= A7) (10 AP + 4] AI°) 1G@)]I-

Moreover, since [F(Q, )]l = [G(Q)]]
(7.4) ID@, ) < 26Q)]

Now let B € M with ||B|| < 1/2 and define A := I — (I + B)~Y/% ie. 1+ B =
(I — A)~%. Then it follows from the spectral representation of B and A, together with
a Taylor expansion of the function ¢ — 1 — (1 +¢)~Y2, that A\ (I — A)~%) < 1+ | B,
124 — B|| < (3/4)||B||* + #'[|B]]* and [|A|| < ||B|l/2 + &"||B||* for universal constants
k', k" € RT. Hence (7.3) and (7.4) imply that

|c(r+8)7Q) - ¢@) - D@Q.B)|

18



IN

I1K(Q, Al + 1D(Q, 24 - B)|
(L+ IBIDLO[IA* + 4APHIG@)] + 211G (@)1124 - B

IG@N(IBI* + &1 B]1*)

A

IN

for suitable v"" = k"' (k' K"). ]
Proof of Theorem 3.2: For notational convenience let L := D™Y(P, ). Suppose that
L[| < b < oo and [ F(Q—P, )|l < e €]0,1]. Now f(B) := L(G((I+B)"/2Q) 1) defines
a continuous mapping from Q := {B € M(0) : ||B|| < p} into M(0), where p € ]0,1/2] is
some constant. One can write
[(B) = LGQ-P)+L(G(U+B)7/Q) - G(Q)
= LG(Q-P)+B+LDQ - P,B)+ L(G((I+ B)"V*Q) - G(Q) - D, B))
= LG@Q-P)+ B+ R(B),

where
IR(B)| < lID(Q = P, )IBIl + bro |G Q)] B
(7.5) < 20| F(Q — P, )||[IBIl + 20k, || B?
< 2b(e+ Kop)|| Bl

according to Lemma 7.2. Since ||[LG(Q — P)|| < be, this implies that
IR < [Bl/2 and |[B- [(B)] < p forall BeO,

provided that be, bp and ¢/p are sufficiently small. Then Brouwer’s Fixed Point theorem
shows that f(B,) = 0 for some B, € Q. If f(By) = 0 for some point By € €2, which is
equivalent to G((I + By)~'?Q) = I, then ||By|| < ||LG(Q — P)|| + |R(By)| < b||G(Q —
P)ll+ 1Bull/2, whence

(7.6) IBil < 261G(@Q - P)| < 2b.

Combined with inequality (7.5) this yields
|1Bo + LG(Q = P)|| = [[R(B,)]
< APIFQ = POIIGQ = P+ 86%%,[|G(Q = P)|)?
< AVH(1 4 2bk,) [|F(Q = P, ) |[I|G(Q = P
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It remains to be shown that ¥(Q)) = I + B,, i.e. that () satisfies condition (2.3).
Suppose the contrary. Then, by Theorem 2.1 [c] and (2.2), there exists a proper projection
matrix 1 € M such that G(M~'/2Q) = I with M = (I + B,)"/?(all4b(I —11))(I + B,)'/?
for arbitrary a,b > 0. But then one easily verifies that for suitable a,b > 0 the matrix
By := M —1 belongs to 092, i.e. ||By|| = p. For sufficiently small ¢/p this is in contradiction
to (7.6). ]

7.3 Proof of Corollary 4.1

As for part [a], P{0} = 0 implies that P,{0} — 0 and P, = L(y,|y. # 0) —w
P. Consequently, by Corollary 3.3, %(P,) = %(P,,) — I, and thus Z(P,)"'/?P, —,
P, according to Rubin’s extended Continuous Mapping Theorem (cf. Billingsley 1968,
Theorem 5.5). Thus we may assume without loss of generality that ¥(F,) = [ for all
n. Note further that ||F(P,, — P,-)|] — 0 and thus ||D7Y(P,,,-) — D7YP,-)|| — 0.
Furthermore, |F(P, — P,,)|| = Op(n~"/%) and P,{0} — P,{0} = op(n~'/?). Defining
P, :=P, ( er \ {0}) we thus conclude that

~

|F(Pro = Proy-)|| = Op(n™?) and G(P,, — P,,) = G(P, — P,)+o,(n"'/?).
Hence Theorem 3.2 yields

S(Py) =1 =5(Py) =1 = =D (Poo, G(Pao = Pao)) + op(n71/?)

— D YP,G(P, — P)) + o (n~1/2).

But Lindeberg’s multivariate Central Limit Theorem entails that ,C(nl/zG(]ADn - Pn))
converges weakly to a centered Gaussian distribution on M(0) with the same covariances
as G(y), y ~ P.

As for part [b], note first that P, ® P,, = P ® P. Since P has no atoms, this implies
that P? — P®. Again one may assume without loss of generality that 3(F}) = I. The

operators F(PF,-) and F(P?,-) can be written as

(P, @ P) " 'F(P, ® P,y and (U, 'F(U,,-),
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respectively, where %(ac, y) = {z # y}, ﬁ(x, y,B):= F(z —y, B), and U, stands for the

random measure

= (1) G0,
1<i<j<n

on (R?)2. But 0 < i < 1 and h(P, ® B,) — 1, while ||F(z,y,-)|| < p for all z,y € R2.

Thus standard theory for U-statistics implies that

Hﬁ(ﬁn_Pn(@an')H = Op(n_l/z)v

r(U, — P, @ P,)

G(U, — P, @ P,)

Op(”_l/z)v

2G((P, — P,) @ P,) 4 op(n~'/?)

(cf. Hoeffding 1948). Consequently,

=PI = 0p(n7?) and G(BF = BF) = 2G((By— Pa) @ Py) + op(n™'12).

I1E (P A
Since ||[D7Y(PS,-) — D7Y(P%,-)|| = 0, Theorem 3.2 entails that
S(PH) =1 = =D7(P*2G((P, = Po) @ Py)) + o (n7'/?).

But it follows from Rubin’s Theorem that G/(-, P,,)) — G-, P) uniformly on compact subsets
of R?. Consequently, one can deduce from the Central Limit Theorem that nl/zé((ﬁn —

P,) ® P,) converges in distribution to a random matrix in M(0) with centered Gaussian

distribution and the same covariance function as G(y, P),y ~ P. a

7.4 Proofs for Section 5

The proofs of Theorem 5.1 and Theorem 5.4 utilize the following two lemmas.

Lemma 7.3 For any normed vector space (B, || -||) let F(B) be a maximal subset of the
sphere S(B) such that ||z — y|| > 1/3 for different z,y € F(B). Then
HE®) < expdn®) and L] < (3/2) ma L]
€

for any linear function L from B into another normed space. In particular,

IM|| < 3 max [v'Mv| forall M € M. O
veF(RP)
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Lemma 7.4 For any finite collection of functions g1, ¢, ..,9m € LY(P,) and arbitrary

numbers t > 0,

log(2m)

E A2)7 < g(losl2m) log IE cosh (¢ t
( [max g5 n)) < ( o+ max log Cos(g](yn)))/7

In Lemma 7.3 the bound exp(2 dim(B)) for the cardinality of F(B) is standard and fol-
lows from considering balls of radius 1/6 with center in F(B) (cf. Pollard 1990, Section 4).

The bounds for ||L|| and ||M|| are elementary.

Proof of Lemma 7.4: This inequality is a modification of Pisier’s (1983) Lemma 1.6,
which is tailored for our purposes. It follows from Jensen’s inequality and convexity of

exp(-) that

(IE exp (j:ntgj(ﬁn)/Q))l/n = Eexp(it(gy‘(}’n) - gj(Pn))/Q)

IE exp (IE (:I:t(gj (Yn1) — 95(yn2))/2

yu))

< Eexp (it(gj (Yn1) — 9 (%2))/2)
< (IE exp(£tg;(yna1)) + IE exp(Ftg; (YnZ)))/2
= I[Ecosh(tg;(yn)).

Thus E ¢ (g;(A,)?) < (IE Cosh(tgj(yn)))n7 where 1 (z) := cosh(ntz'/?/2) is convex and
<

2
increasing in « > 0. Since ¢ ~!(y) (2 10g(2y)/(nt)) for y > 1, a second application of

Jensen’s inequality yields
IE m]axgj(ﬁn)Q < 7t (IE maXQb(gj(ﬁn)z))

s (X (g,(30)%)

IN

IN

07! (mmax B (g;(3,)%)

IN

((Q/nt) log(2m) + (2/t) max log IE cosh(tg; (yn)))2 a

Proof of Theorem 5.1: Note first that |D(F,, B) + B|| = ||F'(P., B)|| < 0nk.]|B|
for all B € M(0), by the Cauchy-Schwarz inequality. Thus supgeg(noy) 1D~ (Pn, B)+B]|
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converges to zero. Therefore, according to Theorem 3.2, it suffices to show that

E | FA P = (1),

E |GA* = Op/n) it p=0(n'"?),

where An = ]5n — P,. Lemma 7.3 yields

Al < G,
IG(A < 3U€r%?ﬁ<p [0'G(Ag)v],

1F < 1GAN+[FGa )|l

N < /
HF(Anv>‘M(o)H < (9/2)U6F<Rp§“§§F<M W' F(A,, B)ol.

In order to bound the latter maximum we use a truncation argument. For any constant

K >0,
W F(A,, B < ‘/|x|_2x’Bac1{v’G(ac)v < K}G(a)v A, (dw)]
+ /1{U/G(x)v > Ko'G(x)o (P, + P,)(dz)
= K|f(An]v, B, K)|+9(An] v, K) +29(Py | v, K),
where
glz|v,K) = H{'G(z)v > K}'G(x)v,
flz|v,B,K) = |z|7%2'Bx 1{v'G(2)v < K} G(2)v/K

(and f(z]v, B,0) := 0). Note that v'G(A,)v = g(A,|v,0) and g(P, | v, K) < k2 /K for
all K > 0. Thus it suffices to show that for arbitrary fixed K > 0,

_ J o(l),
1) B 55, 98 10 " = { Olp/n) it p=O(n'l?),
(7.8) IE max f(Ay v, B,K)? = o(1).

v€F(RP),BEF(M(0))

Since |g(+)] < p, E(g(yn| v, K)?) < 52, |F()] < 1 and B(f(yn |v, B, K)?) < 02, one

obtains

Ecosh(tg(ynw,lﬁ ) < 1—|—Zt2k 2= 2/ (2k)!
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= 14 (kn/p)*(cosh(pt) — 1)
< exp((kn/p)*(cosh(pt) — 1)),

IE cosh (tf(yn |v, B, K)) < exp (0721 (cosh(t) — 1))
for all ¢ > 0. Combined this with Lemma 7.3 and 7.4 we get

(IE max  g(A, |v K)z)l/2
Jdnax g(An] v,

2min ((2p+1)/n + (k0 /p)*(cosh(pt) — 1)) /1
262 /p E,n;gl ((S/Hi)pS/n + cosh(r) — 1) /r
(7.9) = 262/p h((3/K2)p%/n),

~ o 1

IN

IN

/2

A

< 2min ((2p+p(p+1) +1)/n+ 02 (cosh(t) - 1)) /1

(7.10) 202 h(5p%/(no?)).

IN

Here h(a) := min,~qo(a + cosh(r) — 1)/r is increasing in ¢ > 0 with

| @2a)2 (1 +0(1) asa—0,
ha) = { a/loga(l+o(1)) asa— oo.

Consequently, (7.9) and (7.10) imply (7.7) and (7.8).

a

The next lemma summarizes some (in)equalities for spherically symmetric distribu-

tions.

Lemma 7.5 Lety ~ N,(0,I). Then IEG(y) =1 and

trace(A) trace(B) 4 2 trace(AB)

(7.11) IE(trace(G(y)A) trace(G(y)B)) = 1+2/p

for all A, B € M. In particular, for spherically symmetric distributions P on R? \ {0},

(7.12) D(P,B) = —(1+2/p)~'B for all B € M(0).
Moreover,
(7.13) E((vGy)v)) < B('y)*) < 2¥!

24



for arbitrary v € S(RP) and integers k > 1,
trace( B?) )

(7.14) IEexp(trace(G(y)B)) < IEexp(y'By) < exp(trace(B)—l—W

for arbitrary B € M.

Proof of Lemma 7.5: The key point is that G(y) = G(u) and yy’' = p~l|y|*G(u),

where u := |y|~ly and |y|? are stochastically independent with L(]y]?) = X%. Conse-

quently, for A, B € M,

IE (trace(G/(y) A) trace(G (y) B) )
= (tface(yy’A) trace(yy'B ) / E(p~?ly[*)
= (1+2/p)" E(trace (yy'A) trace(yy B))
= (1+ 2/1))_1 ( 'Ay y'By)

= (1+2/p)” Z Aij Bre B (yiy; yrye)
2,7,k =1

P
= (1+2/p)70 Y (3li = Y AaBi + i # 1} (AuBy; + AyBy + A Bjy))
7,75=1
P
= (1+2/p)7" D (AuBjj + 24;;By;)
7,75=1

= (1+2/p)! (trace(A) trace(B) + 2 trace(AB)).
In particular, if A, B € M(0), then
trace(F(P, B)A) = p~'IE (trace(G(y)A) trace(G(y)B)) = 2(p+2)"!trace(AB).

Hence F(P,B) =22+ p)~!B and D(P,B) = —(1+2/p)~!

Generally, for any convex function % : M — R, Jensen’s inequality yields

Ev(Gy) = By(B(yy'|u)) < BEE(4yy)|u) = Evyy).
In particular, for v € S(R?) and integers k > 1,
k—1
E(lo'Gy)l) < B('y)*) = BeP) = T[0+2) < 2%,
7=0
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while for any B € M,

IE exp (trace(G(y)B))

IN
&
]
=

b=}

«
o

=

o
Il
—

k=0
= exp(trace(B) + trace(B?) /(1 — QHBH)-I_) o

Proof of Theorem 5.4 [a]: Since M — G(M~'/2P,) depends only on the directions
Wi = |Yni| "1y ni, which are uniformly distributed on S(RP), one may assume without loss
of generality that P, is a standard normal distribution on R?. With the same notation as
in the proof of Theorem 5.1, the first two assertions in part [a] follow from Theorem 3.2

and (7.12), provided that the following two claims are true:

(7.15) E max g(A,|v,K)? = O(p/n) uniformly in K > 0,
veF(RP)
max ¢(P,|v, K,)? + K2 IE max f(ﬁn |v, B, K,)*
veF(RP) veF(R?),BEF(M(0))
(7.16) = O(log(n/p)* p/n)

for suitable numbers K,, in RT.

Note first that

IEcosh(tg(ynM,K)) < Ecosh(tv’G(yn)v) < Z(Qt)zk = (1—4)7,
k=0

according to (7.13). Thus Lemma 7.3 and 7.4 yield

(1, max a3, o.502)" < /1) (2p/n = log(1 = 422)) = O((p/m)"")
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if ¢, := (p/n)"/? A 1/2. Moreover, it follows from (7.14) that

g(Py v, Ky)

IN

K, exp(—K,/3) I[Eexp (U’G(yn)v/3)

K, exp(—K, /3) exp(2/3) for all v € S(RP)

A

whenever K, > 3, because zexp(—z/3) is decreasing in & > 3. Setting K, equal to

(3/2) log(n/p) shows that a sufficient condition for (7.16) is given by

7.17 E A,|v,B,K,))? = O .
(7.17) P J(AL v ) (p/n)

But for any B € S(M(0)) and 0 < t < p/2,
IE cosh (tf(yn |v, B, Kn)) < E Cosh((t/p) trace(G(yn)B))
< exp((t/p) trace(B%)/(1 - 2t/p))
exp((¢/p)/(1 - 2t/p)),
according to (7.14). Now (7.17) follows from Lemma 7.3 and 74 if t = ¢, = ((p/n)1/2 A
1/2).
As for the assertion about coupling with a Wishart matrix, the preceding results show

that X(P,) may be replaced with G(P,). The matrix M,, := n [ 22’ P, (dz) has the desired

IN

Wishart distribution. Further,
E(G(yn) = yayn) = 0,
B(|o' (Gl ~yayi)e| ) = B((0Gy)0)?) Var(lyaP /) = 6/(+2),
B(|o(G ) - yarie] ) < (B(@VGE)0*) +B(2yyiet) /2 < afi

see (7.11) and (7.13). Consequently,

IN

I cosh (1 (G(yn) — yuyi)v) < 14382/p+ (4)*/(1 = 16%) for 0 <t < 1/4.

If we take t = t,, = (¢~'(p/n)'/?)Al/4 for arbitrarily small € > 0, it follows from Lemma 7.3
and 74 that I ([|G(P,) — n~'M,|12) = o(p/n).
As for the assertion about the eigenvalues of $(P,), one can modify Silverstein’s (1985)

arguments in order to show that
ln='M,, = T,0, 7|l = Oy ((log(p)/n)"/?),
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where T, is Haar-distributed on the group of orthonormal matrices in R?*?, while D,

denotes the non-random tridiagonal matrix

T e 0 S’
ntp—2  ((n-1p-2)" :
D, = n! n+p—4 0
(n—p+2)'/2
(symm.) n—p+2

Silverstein (1985) derived from Gersgorin’s theorem that
M(Dn) < (L4 (p/mY?)? and Ay(Da) 2 (1= (p/n)'/?)%.
On the other hand consider unit vectors
Uny = kTY20,1,1,...,1,0,...,0)", wu,_ = k~Y2(0,-1,1,-1,...,(=1)%0,...,0)

in R with k = k, = p*/2 + O(1) nonzero coefficients. Then A;(D,,) > u%7+Dnun7+ and
Ap(Dr) <y, Dy, with

k+1 k
W, Dyt = (kn)—l(Z(ner—zi) + QZ:((n—i)(p—i—l))l/?)
= (L& (p/m)'?)? + 0™/, o

Proof of Theorem 5.4 [b]: Because of (5.1) and the proof of part [a], we know that
IZ(PF) — G(P2)|| has expectation o((p/n)'/?). Thus it suffices to analyze G/(P?) in more

n

detail. This is just a matrix-valued U-statistic with Hoeffding-decomposition

G(P%) = G(U,) = T+2G(A, @ P,) + G(R,),

where G(z,y) = G(z — y) and

-1
ﬁn = (g) Z dy,; @dy,, and ]%n = ﬁn—Qﬁn®Pn+Pn®Pn.
1<i<y<n

Now we show that

E|G(R,)|| < 31 max [VG(R.)v| = o((p/n)'/?).
veF(RP)
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For that purpose we use once more a truncation argument. Let g(x|v, K) be defined
as in the proof of Theorem 5.1 and h(z | v, K) := I{v/G(2)v < K}V'G(z)v = v'G(x)v —
g(z | v, K). Further let g(z,y|v, K) :=g(z — y| v, K) and %(ac, ylv, K):=h(z —y|v, K).

Then it suffices to show that for suitable positive numbers K,

~ D - _ 1/2
(7.18) I max g(Rn|v, Kn)| = op((p/n)"7),
(7.19) EuemF?I){(P) (R, v, K,)| = op((p/n)'?).

In order to prove (7.18), let = be uniformly distributed on the set of permutations of

{1,2,...,n} and independent from (y,i)1<i<n. Then

—12:
5yn7'r2z 1) yn7r2z

(m
ﬁn®Pn = ]E(m_lz(synﬂ2l 1)
(

~

(7.20) U, = E

Yn1,¥Yn2,---5 Ynn)7

Yn2,-- '7Ynn)7

e
-1 _ -1
m Z 5yn,7'r(2i—1) ® Pn - ]E m Z 5yn 2i—1 yn,2i

Yn2,¥Yn4,¥Yn6, - - ')7

where m = m,, = |n/2|. Consequently, applying Jensen’s inequality three times while

using the fact that ,C((ym)z) = 'C((Ynﬂr(i))i) gives us

EuemF?I){(P) G(R, v, Ky,)
S IE max g(ﬁn_Pn®Pn|U7[(n)
veF(RP)
+2IE max |§(P,®P,— P, ® P, |v,K,)
veF(RP)
< 3 Everg?gp) g (m‘1 ; Oy izt @ Oypo; = n | Vs Kn)
= SIEUEI%?I){(P) 9By = P v, Ky)
< ((Qp +1)/m+ r%?f){(P) log IE cosh (tg(ynl — Va2 |v, Kn)))/t
(7.21) = ((Qp—l— 1)/m+ Er%?P){(P) log IE cosh (tg (yn|v, K, ))/t

for arbitrary ¢ > 0, where P;f was defined in Remark 5.3. The last inequality follows from
Lemma 7.3 and 7.4, applied to (m, Ps, P?) in place of (n,]gn,Pn). The last equality is
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due to G(yn1 — yn2) being distributed as G(y,). Now we deduce from (7.13) that
E(g(ynlv, K)F) < B((0G(yn)v)*) < 2%,
E(g(yalv, K,)?) < B((0Glyn o)) /K2 < C/KE,
whence log IE cosh (tg(yn | v, Kn)) < Ct?/K2+16t*/(1 — 4t%),. Consequently, if K,, — oo
but K2 < n/p, then (7.18) follows by setting t = K, (p/n)"/? in (7.21).
As for (7.19), an exponential inequality for degenerate U-statistics yields
IE cosh (cn%(én | v, Kn)/Kn) < e

for some universal constant ¢ > 0. This follows from Nolan and Pollard (1987, Section 2)
or Arcones and Giné (1994, Proposition 2.3(d)). Hence, with #(z) := cosh(cnz'/?/K,)

for > 0, one can conclude from Lemma 7.3 and Pisier’s (1983) Lemma 1.6 that

o= . 1/2 _ ~ i 1/2
(IE Uer%%%p) h(R, |v, Kn)z) < (¢ ! (exp(Qp) ué%‘?ﬁp) IE Qb(h(Rn | v, Kn)z)))
< 2K,(p+1)/(nc)
= O((p/n)*""),

2
because =1 (y) < (Kn log(Qy)/(nc)) .
Now we consider the random matrix é(&n @ P,) in more detail. For fixed z € R?

let vy, vq,...,v, be an orthonormal basis of R? such that # = |z|v;. Then with y, =

(nidigicn and ho(r) = B((r =y 1)? /(0 = yun)? + yal? = 42,)),

o Ge, Pyve = pIE((|2] = viya)? /(2] = vy + lyal = (v]y2)?))
= pha(l2]),
viGe, Py = pE((lya)?/ (2] = viya) + lyal® = (v1y2)?))
= pp— D B((lyal? = w20 /(2] = y0)? + [yl = 421))
= plp— 171 — h,(Jz|)) for2<i<p,
olG(z, Py, = 0 forl1<i<j<p.
Hence Gz, P,) — I can be written as

pha(lzl)oroy +p(p = D71 = ha(J2)) (T = v1vh) = 1 = 27 Hy(Je])(G(x) = 1),
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where
o (r) = 2(pha(r) = 1)/(p = 1) € [0,2[.
This leads to the representation n=' S0, Hy, (|y i) (G(yni) — ) of 2G(A,, @ P,).

Finally, suppose that |y,|?/p —p %o > 0. Then one easily verifies that A, (ly,|) —p 1/2
and thus H,,(|y,|) —p 1. Since 0 < H,, < 2, this implies that

B (|(Hllyal) DG - Do) = B Hayal) - 1) B (Gl - Dolf)

< e, 45!

for k > 2, where ¢, — 0. Thus logIEcosh(t(Hn(|yn|) — D' (G(yn) — I)v) is not greater
than 16¢,t?/(1 — 16t*)*, and a final application of Lemmas 7.3 and 7.4 gives us

B GOP) ~ 1= 0 S )Gy = D] = oo/,

But part [a] provides the expansion IE |2(P,) — G(P,)|| = op((p/n)/?). Consequently,
IE (|S(P2) = S(Pa)ll = op((p/n)"/?). O

7.5 Proofs for Section 6

Here is a preliminary result for proving Theorems 6.1 and 6.2.

Lemma 7.6 Foraz € RP\ {0},u € R?, B € M let
H{w, i, B) = plal™'Ba(ep’ + pa’) + 2a| ' Bu G () — el ~2'n F(e, B),

ie. H(z,p) = H(x,u,I). Then there is a universal constant ¢ € R™ such that for arbitrary
p e RP,

QPQ{M} )
Q{ T g el [l ming1, ul/le]} Q(do),

(v [ 1o @) PG @I,

|F@-0». ) -Ha@Q.u)| <
1 (@, 1,

IN

Proof of Lemma 7.6: For any fixed B € S(M),
FQ-QW.B) = [(F@.B) - (1-QUu) o # nbF(e - . B)) Qlda).
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Since ||F(z, B)|| < p,

[F@-@w.B)~ [tz # m(F@,B) = Flo — . B)) QUda)
(7.22) < 2p(1 - Q1)) Q.

Now define

H(x,v,B) = plz|3(2'Ba(xy' 4+ va') + 22’ By z2').
For u,v € S(R?) and v :=v — u,

|v/Bv —uw'Bu| < 2|y] and v'Bv—«'Bu = 2u'By++'By,

o' —wd'|] < 2|y and vv' —wu' = wy' +yu' + 47

Thus
HF(Uv B) - F(“v B) - ﬁ(uv 7 B)H
< p|v'Bv — ' Bul||Jov’ — ud/||
+ Hpu’Bu(UU' — uu') 4 p(v'Bv — ' Bu)uu' — H(u,~, B)H

< Aply P+ pllw' Buyy' + ' By ud|

< Gplyl*
In particular, let u := |z|7lz and v := | — pu|~}(z — u), where |u| < |z|. Then elementary
calculations show that for § := —|z| ™14,

47 < 161 and |y — 6+ ubul < 3P,
where ¢/, ¢’ are universal constants. Since
H(x,p,B) = —H (2,8 —u'6u, B)
(for arbitrary z, i), these considerations yield

(723)  |[{e # W (F(.B) ~ Flo . B)) = H(w. . B)| < pt-dplal ™|
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in general, while

HF(x, B) — F(z — pu, B) — H(x, B)H

|0, B) = P, B) = H (w7, B) | + | (u,y = § + w'5u, B|

IN

(7.24) < (6 + 4 ple| T pl? if |u| < |2l

Now (7.22, 7.23, 7.24) together yield the first asserted inequality.

As for the second inequality, note that for arbitrary w € S(RP?),
' H (e, Bl = |0 (2,6 — u'6u, Byw| < dple|~|ul o] "],
Consequently, by the Cauchy-Schwarz inequality,

' H@Qu Byl < dla] [ p2al ™! (w/Gla)w) /2 Q(da)

< Al [l @) Ie@) o

A

Proof of Theorem 6.1: According to Corollary 3.3 it suffices to show that

G(Q-QW) = H(P,p)+o|ul)

as
(7.25) Q =y P, /|x|_1Q(dac) - /|x|_1P(dx), w0

Lemma 7.6 implies that

|¢@=-Qv) — P w| < IWIHQ- PN+ 201 - Qfu}) ' Q)
+ eplpl [ 1ol min{L, lul/la]} Q(da).

Under (7.25) the right hand side is of order o(|y|). For

™' Q{n} < /le_lmin{lvlul/lwl}Q(df) — 0,

and ||H(Q — P,)|| = 0, because R?\ {0} 5 2 — H(z,-) is a continuous mapping into the
space of linear mappings L : R? — M such that ||H (z,-)|| < 4p|z|~L. o
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Proof of Theorem 6.2: It follows from Theorems 5.1 and 5.4 that IE ||F(A,, )| =

o(1) and IE [|G(A,)|| = O((p/n)'/?). Thus, by Theorem 3.2, it suffices to show that
(7.26) B s |F(P =Pl = o)
H|SEn
(7.27) 1H (P )|l = O(1),
(7.28) B sup |G(PY) = P) = H(Poyw)| = ol(p/n)7?).
lul<e

Since P,{u} < 1/n for all u € RP almost surely, it follows from Lemma 7.6 and the

Cauchy-Schwarz inequality that

E sup HF(]?’n —]372“)7') - H(ﬁnvﬂv )H

lul<en
(7.29) < 2p/(n- 1)+cpez/|x|—2pn(dx) — O(p/n+ &),
B sup [|H(Pav, )+ sup [[H(Pv,-)]|
veS(RP) S(Rp)
2 p N 1/2
(7.30) < 8( /|x| L) (e = o).

These two inequalites imply (7.26) and (7.27). Claim (7.28) follows from (7.29), together
with
E | H (Al = O((p/n)).

The latter assertion can be verified as follows:

1H@ ] < zp\ / 2 2 A, (de)

‘/|x| 22’ G(x (dx)H

sup
’UES RP)

On the one hand,

pIE‘/|x| 22 A, (dz) ‘ < pn 1/2 /|x| ’p (dx))

On the other hand, with &, := (p/n)"/* Lemma 7.3 gives

Y2 o).

sup ‘/|x| 220Gz (dx)H
’UES RP)
< 2 [{lal < 8.} ol Pu(do)
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=20, 1 N
+ Eu,u%?(%?) H/{|x| > 0t 2 vu G(x)uAn(dx)H

< 25np/|x|_2Pn(dx)

+ 5;1 IE max
u,veF(RP)

9

fu(Ay | u,0)

where f, (2 |u,v) = {|2] > 6,}0,|2|?2'v /G (2)u, and it suffices to show that

(7.31) IE  max
u,veF(RP)

foBaluv)| = Op/n)7?).
As in the proof of Theorem 5.1 or Theorem 5.4 one can show that

_ 2
uwrén}gt(};{p) logIEcosh(tfn (¥n | u, v)) = O(*) (t—0,n— c0).

Since #(F(RP) x F(R?)) < exp(4p), assertion (7.31) follows from Lemma 7.4. o

8 Some final remarks

In principle different M-estimators such as in Maronna (1976) could be treated similarly.
But this would require stronger regularity assumptions (not to mention more complicated
notation) without giving substantially better results.

An interesting special case is the maximum likelihood estimator for the multivariate
Cauchy distribution on RP~!. Suppose that y,; = (¥/;,1)’ with random vectors y,; €
RP~! having distribution B,. If we write

S(P,) = <z<ﬁn>>pp(2” e "1)

with fi,, = ﬂn(ﬁn) e R~ and 3, = En(ﬁn) € Re=Dx(=1) " then (ji,,3,) is the maxi-

mum likelihood estimator for (fi,,,%,) under the model assumption that
NP & y—1/2 S~ el ~ TP
(8.1)  P,(dy) = const.(p—1) det(X,) (1 + (7 — pn)'2, (7 — ,un)) dy;

see Kent and Tyler (1991). The results of the present paper can be used directly to

derive asymptotic properties of (fi,,, >,), where (8.1) is replaced with general regularity

conditions on P,.
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A possible objection to M-estimators of scatter is their breakdown-point of order
O(1/p) only (cf. Stahel 1981, Tyler 1986). However one should keep in mind that com-
putaion of M-estimators is much easier than computation of the high-breakdown estimators
considered by Maronna et al. (1992), so that resampling methods become feasible. The

~

breakdown properties of the estimator X(P?) are currently investigated.

References

ALEXANDER, K.S. (1984). Probability inequalities for empirical processes and a law of

the iterated logarithm. Ann. Prob. 12, 1041-1067

ArconNEs, M.A. aND E. GINE (1991). Limit Theorems for U-processes.
Ann. Prob. 21, 1494-1542

Bar, Z.D. aND Y. Wu (1994a). Limiting behavior of M-estimators of regression coef-
ficients in high dimensional linear models. I. Scale-dependent case. J. Multivariate

Anal. 51, 211-239

Bar, Z.D. aND Y. Wu (1994b). Limiting behavior of M-estimators of regression coef-
ficients in high dimensional linear models. II. Scale-invariant case. J. Multivariate

Anal. 51, 240-251

BENNETT, G. (1962). Probability inequalities for the sum of independent random vari-

ables. J. Amer. Statist. Assoc. 57, 33-45

BickeL, P. AND D. FREEDMAN (1981). Some asymptotic theory for the bootstrap.

Ann. Statist. 9, 1196-1217
BiLLiNGsLEY, P. (1968). Convergence of probability measures. Wiley, New York

CLARKE, B.R. (1983). Uniqueness and Fréchet differentiability of functional solutions

to maximum likelihood type equations. Ann. Statist. 11, 1196-1205

DemLING, K. (1985). Nonlinear Functional Analysis. Springer, Berlin Heidelberg

36



DUMBGEN, L. (1994). Perturbation inequalities and confidence sets for functions of a

scatter matrix. tentatively accepted for publication in J. Multivariate Anal.

GIrkO, V,L. (1995). Statistical Analysis of Observations of Increasing Dimension.
Kluwer, Dordrecht

HokerFDING, W. (1948). A class of statistics with asymptotically normal distribution.

Ann. Math. Statist. 19, 293-325.

HokerFDING, W. (1963). Probability inequalities for sums of bounded random variables.

J. Amer. Statist. Assoc. 58, 13-30
HuBERr, P.J. (1981). Robust Statistics. Wiley, New York

KenT, J.T. AND D.E. TYLER (1988). Maximum likelihood estimation for the wrapped
Cauchy distribution. J. Appl. Statist. 15, 247-254

KenT, J.T. AND D.E. TYLER (1991). Redescending M-estimates of multivariate loca-

tion and scatter. Ann. Statist. 19, 2102-2119

MAMMEN, E. (1996). Empirical process of residuals for high-dimensional linear models.

Ann. Statist. 24, 307-335

MaroNNA, R.A. (1976). Robust M-estimators of multivariate location and scatter.

Ann. Statist. 4, 51-67

MaroNNA, R.A., W.A. STAHEL AND V.J. YoHAI (1992). Bias-robust estimators of

multivariate scatter based on projections. J. Multivariate Anal. 42, 141-161

NoraN, D. aAND D. PorLLarD (1987). U-processes: rates of convergence.  Ann.

Statist. 15, 780-799

Pisier, G. (1983). Some applications of the metric entropy condition to harmonic
analysis. In: Banach Spaces, Harmonic Analysis, and Probability Theory (R.C.
Blei and S.J. Sidney, eds.), pp. 123-154, Lect. Notes Math. 995, Springer, Berlin
Heidelberg

37



PorrLarp, D. (1990). FEmpirical Processes: Theory and Applications. NSF-CBMS
Regionial Conf. Series Prob. Statist. 2, IMS, Hayward CA

PorrNoOY, S. (1984). Asymptotic behavior M-estimators of p regression parameters

when p?/n is large, 1. Consistency. Ann. Statist. 12, 1298-1309

PorrNoOY, S. (1985). Asymptotic behavior M-estimators of p regression parameters

when p?/n is large, II. Asymptotic normality. Ann. Statist. 13, 1403-1417

PorrNOY, S. (1988). Asymptotic behavior of likelihood methods for exponential fami-

lies when the number of parameters tends to infinity. Ann. Statist. 16, 356-366

SILVERSTEIN, J.W. (1985). The smallest eigenvalue of a large dimensional Wishart

matrix. Ann. Prob. 13, 1364-1368

Stahel, W.A. (1981): Breakdown of covariance estimators. Research report 31, Fach-
gruppe Statistik, ETH Ziirich

TYLER, D.E. (1986). Breakdown properties of the M-estimators of multivariate scatter.

Technical report, Rutgers University

TyLeEr, D.E. (1987). A distribution-free M-estimator of multivariate scatter. Ann.
Statist. 15, 234-251

38



