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Let 7 be an unknown covariance matrix. Perturbation (in)equalities are derived
for various scale-invariant functionals of 7 such as correlations (including partial,
multiple and canonical correlations) or angles between eigenspaces. These results
show that a particular confidence set for 7 is canonical if one is interested in
simultaneous confidence bounds for these functionals. The confidence set is based
on the ratio of the extreme eigenvalues of 7&1S, where S is an estimator for 7.
Asymptotic considerations for the classical Wishart model show that the resulting
confidence bounds are substantially smaller than those obtained by inverting
likelihood ratio tests. � 1998 Academic Press
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1. INTRODUCTION

Let 7 be an unknown parameter in the set M+ of all symmetric, positive
definite matrices in R p_p, and let S # M+ be an estimator for 7 such that

L(nS ) is a Wishart distribution W(7, n) (1.1)

for some fixed n�p. The goal of the present paper is to find a confidence
set C(S ) for 7, whose image ,(C(S )) under various functions , on M+

yields a reasonable confidence region for ,(7). We restrict our attention to
scale-invariant functions , ; that means,

,(rM )=,(M ) \M # M+ \r>0. (1.2)

Examples include correlations, regression coefficients, and eigenspaces.

Article No. MV971724

19
0047-259X�98 �25.00

Copyright � 1998 by Academic Press
All rights of reproduction in any form reserved.



File: DISTL2 172402 . By:DS . Date:07:04:98 . Time:13:23 LOP8M. V8.B. Page 01:01
Codes: 2592 Signs: 1650 . Length: 45 pic 0 pts, 190 mm

For A # R p_p let *(A) # R p denote the vector of its ordered eigenvalues
*1(A )�*2(A)� } } } �*p(A ), provided that they are real. Since *(7&1S )=
*(7&1�2S7&1�2) is a pivotal quantity, any Borel set B/R p defines an
equivariant confidence set

C(S ) :=[1 # M+: *(1&1S ) # B]

for 7, whose coverage probability P[7 # C(S )] does not depend on 7.
Here ``equivariant'' means that 1 # C(S ) if, and only if, A$1A # C(A$SA ) for
any nonsingular matrix A # R p_p. For instance, inverting the likelihood
ratio test of the hypotheses 7 # [r1 : r>0], 1 # M+, leads to a confidence
set of the form

CLR (S ) :={1 # M+: & :
p

i=1

log \ p*i

trace
(1&1S )+�;LR=

(cf. [1, Section 10.7]). Here ;LR is chosen such that P[7 # CLR(S )] equals
: # ]0, 1[. This set can be approximated by an ellipsoid if ;LR is small and
yields simultaneous confidence bounds for linear functionals of 7
analogously to Scheffe� 's method for linear models. But many functionals of
interest in multivariate analysis are nonlinear or even nondifferentiable so
that one cannot rely on linear approximations. Some implications of this
problem are discussed in Du� mbgen [3].

A different confidence set for 7, proposed by Roy [16, Chap. 14], is the
set of all 1 # M+ such that *1(1&1S )�;1 and *p(1&1S )�;p with suitable
numbers ;1 , ;p>0. If one is only interested in scale-invariant functions of
7 a possible modification of Roy's set is

C� (S ) :=[1 # M+: #(1&1S )�;]={1 # M+:
*1

*p
(1&1S )�

1+;
1&;= ,

where

# :=
*1&*p

*1+*p
,

and ; # ]0, 1[ is a critical value satisfying

P[#(7&1S )>;]=:.

Note that #(M )=#(rM )=#(M&1) for M # M+ and r>0.
It is shown in Section 2 that this set C� is a canonical candidate for C if

one is interested in simultaneous confidence bounds for correlations
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(including partial, multiple, and canonical correlations). This approach
sheds new light on Fisher's [9] Z-transformation. As a by-product one
also obtains simultaneous confidence sets for regression coefficients similar
to those of Roy [16].

Section 3 contains various results for eigenvalues and principal compo-
nent vectors. In particular, new perturbation (in)equalities for eigenspaces
of matrices in M+ are presented. The proofs for Sections 2 and 3 are
deferred to Section 5.

Section 4 comments on the practical computation and the size of C� . The
critical value ; and the corresponding confidence bounds of Sections 2 and
3 are of order O(( p�n)1�2). This seems to be remarkable, because the
parameter space M+ has dimension p( p+1)�2, so that in a linear model
one would expect confidence bounds of order O( p�n1�2). In fact, the set CLR

yields confidence bounds of that size.
The parametric assumption (1.1) is made here only for convenience. In

order to compute C� it suffices to know the distribution of #(7&1S ), at least
approximately. Another example for this condition to hold is Tyler's [19]
distribution-free M-estimator of scatter for elliptically symmetric distribu-
tions (see also Kent and Tyler [12] and Du� mbgen [6]). Alternatively, let
S be the sample covariance matrix of i.i.d. random vectors y1 , y2 , ..., yn # R p

with mean + and covariance 7 # M+. Under mild regularity conditions on
the distribution of the standardized vectors 7&1�2(yi&+), the distribution
of 7&1�2S7&1�2 can be estimated consistently as n tends to infinity by
bootstrapping (cf. Beran and Srivastava [2] and Du� mbgen [4]).

2. CORRELATIONS

Throughout this paper let y be a random vector in R p with mean zero
and covariance matrix 7. For v, w # R p, the covariance of the random
variables v$y and w$y equals v$7w, and their correlation is given by

\(v, w | 7) :=
v$7w

- v$7vw$7w

(where \(0, } | 7) :=0). An important function is

m(r, s) :=
r+s
1+rs

=tanh(arctanh(r)+arctanh(s)),

where r # [&1, 1] and s # ]&1, 1[. For fixed s, the Mo� bius transform
m( } , s) is an increasing bijection of [&1, 1] with inverse function

21PERTURBATION INEQUALITIES
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m( } , &s). It follows from Fisher's [9] results on the so-called Z-transfor-
mation \ [ arctanh(\) that for any pair (v, w) of linearly independent
vectors,

m(\(v, w | S ), &c)�\(v, w | 7)�m(\(v, w | S ), c),

with asymptotic probability 28(n1�2c)&1 as n � �, where 8 stands for the
standard normal distribution function. For extensions of this result see, for
instance, Hayakawa [10] and Jeyaratnam [11]. An interesting fact is that
looking at many correlations simultaneously leads automatically to the
Z-transformation without any asymptotic arguments. For notational
convenience the unit sphere in R p is denoted by S p&1.

Lemma 1. For arbitrary M # M+ and any \o # [&1, 1],

[\(v, w | M ): v, w # S p&1, v$w=\o]=[m(\o , &#(M )), m(\o , #(M ))].

Lemma 1 extends Theorem 1 of Eaton [7], who considered the special
case \o=0. If applied to M=7&1�2S7&1�2 or M=S &1�27S &1�2, it shows
that the quantity #(7&1S )=#(S &17) is of special interest.

Corollary 1. For arbitrary fixed \o # [&1, 1],

[\(v, w | S ): v, w # Rp "[0], \(v, w | 7)=\o]

=[m(\o , &#(7&1S )), m(\o , #(7&1S ))].

Further, let C(S ) :=[1 # M+: *(1&1S ) # B] for some Borel set B/R p.
Then for arbitrary v, w # R p"[0] the set [\(v, w | 1 ): 1 # C(S )] is an inter-
val with endpoints

m \\(v, w | S ), \ sup
M # C(I )

#(M )+ .

Note that supM # C(I ) #(M ) � ; for any confidence set C(S ) =
[1 : *(1&1S ) # B] with coverage probability 1&:. Therefore, within this
class of confidence sets, C� yields the smallest possible confidence intervals
for correlations. For instance, elementary calculations using Lagrange
multipliers show that

max
M # CLR (I )

#(M )=- 1&exp(&;LR),

and it is shown in Section 4 that this can be substantially larger than ;.
In addition to simple correlations \(v, w | 7) let us consider other correla-

tion functionals. For a subspace W of R p and v # R p let vW be the usual
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orthogonal projection of v onto W, and let vW7 be the unique minimizer
of W % w [ (v&w)$ 7(v&w). In other words, v$W7yW= v$W7y is the best
linear predictor of v$y given yW with respect to quadratic loss. For
u, v # R p, the partial correlation of u$y and v$y given yW equals

\(u, v, W | 7) :=\(u&uW7 , v&vW7 | 7)

and the multiple correlation of v$y and yW is given by

\(v, W | 7) :=max
w # W

\(v, w | 7)=\(v, vW7 | 7).

Finally, for a second subspace V of R p the first canonical correlation of yV

and yW equals

\(V, W | 7) := max
v # V"[0], w # W"[0]

\(v, w | 7).

For 1�i�min[dim(V), dim(W)], the ith canonical correlation of yV and
yW is given by

\i (V, W | 7) :=min
Vi

\(Vi , W | 7),

where the minimum is taken over all linear subspaces Vi of V such that
dim(Vi)=dim(V)+1&i. This formula is somewhat different from the
usual definition of canonical correlations and follows from Rao [15,
Theorem 2.2]. Here is our main result for correlation functionals.

Theorem 1. Let R(7) stand for any correlation functional \(V | 7)
defined above, where the first arguments ``V'' are arbitrary and fixed. Then,

max
1 # C� (S)

R(1 )=m(R(S ), ;)

and

min
1 # C� (S)

R(1 )={m(R(S),&;)
m(R(S),&;)+

for simple and partial correlations,
for multiple and canonical correlations.

Correlations are not the only class of functionals that lead automatically
to the critical quantity #(7&1S ). In Lemma 1 one could also consider
ratios v$Mv�w$Mw or ``regression coefficients'' v$Mw�w$Mw. Instead of
carrying through this program we give a corollary to Theorem 1 about
regression vectors. Recall that for any linear subspace W of R p and v # R p,
the vector vW7 # W minimizes E((v$y&w$yW)2) over all w # R p. Roy [16]
constructed confidence ellipsoids for vW7 for a fixed pair (v, W); see also
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Wijsman [20] for extensions and references to related work. The set
[vWH : H # C� (S )] has the same shape as Roy's confidence set. It is larger,
because one can treat arbitrary pairs (v, W) simultaneously.

Corollary 2. For any linear subspace W of R p and v # R p"W,

[vW1 : 1 # C� (S)]

={w # W: (w&vWS)$ S(w&vWS)�
;2

1&;2 (v&vWS)$ S(v&vWS)= .

3. PRINCIPAL COMPONENTS

For a subspace W of R p with orthonormal basis [w1 , w2 , ..., wdim(W)]
define

?(W | 7) :=E &yW&2�E &y&2= :
dim(W)

i=1

wi$7wi �trace(7),

where y is the random vector introduced in Section 2. Thus ?(W | 7) is the
percentage of variability of y explained by yW . Throughout we consider
spectral representations

7= :
p

i=1

*i (7) {i{i$, S= :
p

i=1

*i (S ) ti ti$

with orthonormal bases [{1 , {2 , ..., {p] and [t1 , t2 , ..., tp] of R p. Then
quantities such as

?I (7) := :
i # I

*i (7)�trace(7)=?(span[{i : i # I] | 7), I/[1, 2, ..., p],

are of special interest; see Eaton [8, Proposition 1.44]. One can interpret
?I (S ) as an estimator for ?I (7) as well as ?(span[ti : i # I] | 7). In the latter
case one takes into account that the principal component vectors {i are
unknown, too, and 1&?(span[ti : i # I] | 7) can be viewed as a relative
prediction error conditional on S. The following lemma provides con-
fidence bounds for both points of view.

Lemma 2. For arbitrary integers 1�k<l�p,

max
1 # C� (S )

*k

*l

(1 )=
1+;
1&;

*k

*l

(S ), min
1 # C� (S )

*k

*l

(1 )=max {1&;
1+;

*k

*l

(S ), 1= .
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Moreover,

m(26 (S )&1, &;)�26 (1 )&1�m(26 (S )&1, ;) \1 # C� (S ),

where 6 ( } ) stands for ?I ( } ) or ?(W | } ). In the latter case, these bounds are
sharp if W is an eigenspace of S.

Now we investigate special eigenspaces of 7. For integers 1�k�l�p
let

Ekl(7) :=span[v # R p: 7v=+v for some + # [*l(7), *k (7)]].

A natural measure of ``distance'' from a subspace V of R p to another sub-
space W is

max
v # V & S p&1

&v&vW&= max
v # V"[0]

\(v, W=)=\(V, W=),

where \(V) :=\(V | I ). Therefore, it is of interest to know upper confidence
bounds for the numbers \(E1k (7), Elp (S )) and \(E1k (S ), Elp(7)), where
1�k<l�p. We define

#kl :=
*k&*l

*k+*l

,

so that #=#1p .

Theorem 2. For 1�k<l�p,

max[\(E1k (1 ), Elp(S )), \(E1k (S ), Elp(1 ))]�f1(#kl (S ), ;) \1 # C� (S ),

where

f1(r, ;) :=
1

'+- 1+'2
, ' :=

(r�;&1)+

- 1&;2
- 1&r2

.

In particular,

max
1 # C� (S )

\(E1k (1 ), Ek+1, p(S ))

= max
1 # C� (S )

\(E1k (S ), Ek+1, p(1 ))=f2(#k, k+1(S ), ;),

where

f2(r, ;) :={2&1�2 �1&�1&;2�r2

1&;2 ,

1,

if r>;,

if r�;.
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Both functions f1 , f2 satisfy

fi (r, ;)

(;�2)- 1�r2&1
� 1 as r�; � �

and

(;�2) - 1�#kl (S )2&1=;
- *k *l

*k&*l

(S ),

a quantity familiar from asymptotic distributions of eigenvectors. The func-
tions f1, 2( } , 0.3) are depicted in Fig. 1.

A possible application of Theorem 2 is testing the hypothesis
``7v=*1(7)v'' for any unit vector v. This hypothesis is to be rejected unless

\(v, Elp (S ))2

= :
p

i=l

(ti$v)2�min[ f1(#1l (S ), ;)2, f2(#k, k+1(S ), ;)2: 1�k<l]

for all 1<l�p.

Fig. 1. The functions f1, 2( } , 0.3).
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4. COMPUTATION AND SIZE OF C�

There is an enormous amount of literature on the distribution of
*(7&1S ), and a good starting point is Muirhead [13]. These results can be
used to compute the critical value ; via numerical integration. Alternatively
we computed Monte Carlo estimates of ; based on 100,000 simulations; see
Table I. We utilized Silverstein's [17] observation that the eigenvalues of
n7&1S are distributed as the eigenvalues of the random tridiagonal matrix

W :=\
Y 2

1 Y1Z2 0

+ ,
Y1Z2 Y 2

2+Z 2
2

. . .
. . .

. . . Yp&1Zp

0 Yp&1Zp Y 2
p+Z 2

p

where Y1 , Y2 , ..., Yp , Z2 , Z3 , ..., Zp�0 are stochastically independent with
Y2

i t/2
n+1&i , Z 2

j t/2
p+1& j . Note, further, that n&1�2(W&nI ) converges in

distribution to the random matrix

B :=\
X1 Z2 0

+Z2 X2
. . .

. . .
. . . Zp

0 Zp Xp

as n tends to infinity, where X1 , X2 , ..., Xp , Z2 , Z3 , ..., Zp are independent
with XitN(0, 2). In particular, n1�2 log(*(7&1S )) converges in distribu-
tion to *(B), where log ( } ) is defined componentwise. Thus tanh(n&1�2q)
should be a reasonable approximation for ;, where q denotes the (1&:)-
quantile of (*1&*p)(B )�2. The last column of Table I (``n=�'') contains
Monte Carlo estimates of q, and the resulting approximations tanh(n&1�2q)
for ; are given in brackets.

As for the influence of the dimension p on the size of C� , we state a result
without proof, which can be obtained by modifying Silverstein's [17] and
Trotter's [18] techniques (see also Du� mbgen [5]).

Lemma 3. As p � � and p�n � 0,

;=2 - p�n (1+o(1)), ;LR=p2�(2n) (1+o(1)).

Thus

1�
maxM # CLR(I ) #(M )

maxM # C� (I ) #(M )
=

- 1&exp (&;LR)

;
=- p�8 (1+o(1))

27PERTURBATION INEQUALITIES
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Table I

Monte-Carlo Estimates of ; (tanh(n&1�2q)) and q for :=0.1, 0.05

p n=99 n=199 n=499 n=�

2 0.213 (0.212) 0.151 (0.151) 0.096 (0.096) 2.146
0.242 (0.241) 0.172 (0.172) 0.109 (0.109) 2.448

3 0.360 (0.355) 0.255 (0.256) 0.165 (0.164) 3.695
0.430 (0.425) 0.310 (0.309) 0.200 (0.199) 4.510

4 0.455 (0.452) 0.330 (0.331) 0.215 (0.214) 4.850
0.525 (0.522) 0.385 (0.387) 0.250 (0.252) 5.760

5 0.550 (0.543) 0.405 (0.404) 0.265 (0.264) 6.050
0.610 (0.607) 0.460 (0.459) 0.305 (0.304) 7.005

6 0.605 (0.600) 0.455 (0.454) 0.300 (0.299) 6.900
0.660 (0.660) 0.505 (0.507) 0.340 (0.339) 7.880

7 0.660 (0.650) 0.500 (0.498) 0.335 (0.332) 7.720
0.710 (0.703) 0.550 (0.548) 0.370 (0.371) 8.690

8 0.700 (0.688) 0.540 (0.534) 0.360 (0.359) 8.395
0.745 (0.735) 0.585 (0.580) 0.395 (0.395) 9.340

9 0.730 (0.721) 0.570 (0.566) 0.385 (0.384) 9.045
0.775 (0.763) 0.615 (0.610) 0.420 (0.420) 9.990

10 0.760 (0.748) 0.600 (0.593) 0.410 (0.406) 9.625
0.800 (0.786) 0.640 (0.634) 0.440 (0.440) 10.560

as p � � and p2�n � 0, showing that for high dimension p, the set CLR is
substantially ``larger'' than C� (cf. Corollary 0).

5. PROOFS

For later reference we recall the minimax representation of eigenvalues of
symmetric matrices (cf. [14, Section 1f.2]).

Lemma 4. (Courant and Fischer). For any symmetric matrix M # R p_p

and 1�k�p,

*k (M )= min
dim(V)= p+1&k

max
v # V & S p&1

v$Mv,

where V stands for a linear subspace of R p. K

Proof of Lemma 1. Let V be any two-dimensional linear subspace of
Rp. There exists an orthonornmal basis [x, y] of V such that

M� :=\x$
y$+ M(xy)=diag(*(M� ))=a \1+#~

0
0

1&#� + ,

28 LUTZ DU� MBGEN
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where a>0 and #~ :=#(M� ). If v, w are unit vectors in V such that v$w=\o #
]&1, 1[, then

v=cos(% )x+sin(%)y, w=cos(%+|)x+sin(%+|)y

for some % # [0, 2?] and | :=arccos(\o) # ]0, ?[. Repeated application of
the addition rule for cosines yields

v$Mw�a=\o+#~ cos(2%+|),

v$Mv�a=1+\o#~ cos(2%+|)+(1&\2
o)1�2 #~ sin(2%+|),

w$Mw�a=1+\o#~ cos(2%+|)&(1&\2
o)1�2 #~ sin(2%+|)

and, after some algebraic manipulations, one obtains

\(v, w | M )

=(\o+#~ cos(2%+|))�((\o+#~ cos(2%+|))2+(1&\2
o)(1&#~ 2))1�2.

This is a continuous, strictly increasing function of cos(2%+|) with
extremal values

(\o\#~ )�((\o\#~ )2+(1&\2
o)(1&#~ 2))1�2=m(\o , \#~ ).

But Lemma 4 implies that #~ �#(M ) with equality if Mx=*1(M )x and
My=*p(M )y. K

Proof of Corollary 1. First note that \( } ), C( } ) are equivariant in that

\(v, w | M)=\(rv, sw | M)=\(Av, Aw | A&1$MA&1),

C(M )=A$C(A&1$MA&1)A

for any v, w # R p, M # M+, r, s>0, and nonsingular A # R p_p. Hence,
the first half of Corollary 1 follows straightforwardly from Lemma 1.
Moreover,

[\(v, w | 1 ): 1 # C(S)]

=[\(S1�2v, S1�2w | M): M # C(I)]

=[\(TS1�2v, TS1�2w | M): M # C(I), T # Rp_p orthonormal]

=[\(t, u | M): M # C(I), t, u # S p&1, t$u=\(v, w | S)]

= .
M # C(I )

[m(\(v, w | S), &#(M )), m(\(v, w | S), #(M ))]. K

29PERTURBATION INEQUALITIES
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Proof of Theorem 1. At first it is shown that

m(R(S ), &;)�R(1 )�m(R(S ), ;)

for any correlation functional R( } ) and arbitrary fixed 1 # C� (S ). For
simple, multiple, and canonical correlations this follows straightforwardly
from their definition, Corollary 1, and the monotonicity properties of
m( } , } ). As for partial correlations, note that

Q1 (u, v) :=(u&uW1)$ 1 (v&vW1)

defines a symmetric bilinear functional on R p , whose restriction to any
subspace V of R p with V & W=[0] is positive definite. Moreover, one can
easily deduce from

Q1 (v, v)= min
w # W

(v&w)$ 1 (v&w)

that

*p(S &11 )�Q1 (v, v)�QS(v, v)�*1(S &11 ) \v # V"[0].

Since \(u, v, W | 1 ) equals Q1 (u, w)�(Q1 (u, u) Q1 (v, v))1�2, one can apply
Corollary 1 to (Q1 , QS , V) in place of (7, S, R p) in order to prove the
asserted inequalities for partial correlations.

It remains to be shown that these bounds are sharp. When considering
partial correlations \(u, v, W | } ), equivariance considerations show that
one may assume without loss of generality that S=I. Further, note that
\(u, v, W | } )=\(ru&w1 , sv&w2 , W | } ) for arbitrary w1 , w2 # W, r, s>0.
Thus we assume that u, v # S p&1 & W= and &1<\o :=u$v<1. Then there
exist orthonormal vectors x, y in W= such that

u=((1+\o)�2)1�2 x+((1&\o)�2)1�2 y,

v=((1+\o)�2)1�2 x&((1&\o)�2)1�2 y.

The matrix 1 :=I\;(xx$& yy$) belongs to C� (I ), because *(1 )=(1+;,
1, ..., 1, 1&;)$. Further, u$1w=v$1w=0 for all w # W, whence

\(u, v, W | 1 )=\(u, v | 1 )=m(\o , \;).

This proves the assertion for partial and simple correlations, where in the
latter case W=[0].

Since multiple correlations are a special case of (first) canonical correla-
tions, it suffices to consider \i (V, W | } ). For notational convenience we
assume that V & W=[0], the only practically relevant case. Let
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k :=dim(V)�dim(W) and \i :=\i (V, W | S ). It is well known that there
exists a nonsingular matrix X=(x1 , x2 , ..., xp) # R p_p such that

V=span[x1 , x2 , ..., xk],

W =span[xk+1 , xk+2 , ..., xk+dim(W )],

X$SX=\
Ik

diag( \1 , \2 , .., \k)
0

diag( \1 , \2 , ..., \k)
Ik

0

0
0

Ip&2k+ .

Now we define

1 :=X&1$ \
diag((1+\i;i)1�i�k)
diag(( \i+;i)1�i�k)

0

diag(( \i+;i)1�i�k)
diag((1+\i;i)1�i�k)

0

0
0

Ip&2k+ X&1,

where (;i)1�i�k equals (;)1�i�k or (&min[\i , ;])1�i�k . Then routine
calculations show that 1 # M+ with (\i (V, W | 1 ))1�i�k equal to
(m(\i , ;))1�i�k or (m(\i , &;)+)1�i�k , respectively. Moreover, 1 # C� (S ),
because any eigenvalue of S&11 equals one or

*1, 2 \\ 1
\i

\i

1 +
&1

\1+\i ;i

\i+;i

\i+;i

1+\i ;i++=1\;i

for some i # [1, 2, ..., k]. K

Proof of Corollary 2. For 1 # C� (S ) a vector w # W equals vW1 if, and
only if, \(w&v, W | 1 )=0. Together with Theorem 1 it follows that a vec-
tor w # W belongs to [vW1 : 1 # C� (S )] if, and only if,

\(w&v, W | S )2�;2.

Now the assertion follows from

\(w&v, W | S)2

=\((w&vWS)&(v&vWS), W | S)2

=max
x # W

((w&vWS)$ Sx)2�x$Sx
(w&vWS)$ S(w&vWS)+(v&vWS)$ S(v&vWS)

=
(w&vWS)$ S(w&vWS)

(w&vWS)$ S(w&vWS)+(v&vWS)$ S(v&vWS)
. K
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Proof of Lemma 2. By scale-invariance it suffices to consider matrices
1 # C� (S ) such that

(1&;) w$Sw�w$1w�(1+;) w$Sw \w # Rp, (5.1)

because every point in C� (S ) is a positive multiple of such a matrix. Then
it follows directly from Lemma 4 that

(1&;) *i (S )�*i (1 )�(1+;) *i (S ) \i.

This clearly implies the asserted bounds for (*k �*l)(1 ). Moreover,

2?I (1 )&1=2 :
i # I

*i (1 )<\:
i # I

*i (1 )+ :
i � I

*i (1 )+
&1

�2(1+;) :
i # I

*i (S)<\(1+;) :
i # I

*i (S)+(1&;) :
i � I

*i (S)+&1

=2(1+;) ?I (S)�((1+;) ?I (S)+(1&;)(1&?I)(S))&1

=m(2?I (S)&1, ;).

Analogously one can show that 2?I (1 )&1�m(2?I (S )&1, &;) and

m(2?(W | S )&1, &;)�2?(W | 1 )&1�m(2?(W | S )&1, ;)

for any subspace W of R p.
It can be easily shown that these bounds for (*k�*l)(1 ) and ?(W | 1 ) are

sharp (if W is an eigenspace of S ) by considering 1=� p
i=1 +iti ti$ with

suitable numbers (1&;) *i (S )�+i�(1+;) *i (S ). K

Proof of Theorem 2. Suppose that #o :=#kl(S )�;. Then

1 :=*k (S ) :
i # [k, k+1, ..., l]

ti ti$+ :
i � [k, k+1, ..., l]

*i (S ) ti ti$

defines a matrix 1 # C� (S ) such that span[tk , tk+1 , ..., tl] is contained in
E1k (1 ) & Elp(1 ). Hence \(E1k (1 ), Elp(S ))=\(E1k (S ), Elp(1 ))=1.

Now suppose that #o>;, and let 1 be any fixed point in C� (S ).
We derive upper bounds only for \o :=\(E1k (1 ), Elp(S )), because
\(E1k (S ), Elp(1 )) can be treated analogously. Let V :=E1k (1 ),
W :=Elp(S ), and let v # V & S p&1, w # W & S p&1 such that v$w=\o .
In particular, w&\ov # V= and v&\o w # W=. Since \(V, V= | 1 )=
\(W, W= | S )=0, this implies that v$1w=\ov$1v and v$Sw=\ow$Sw.
Consequently,

\(v, w | 1 )=\o (v$1v�w$1w)1�2, \(v, w | S )=\o (w$Sw�v$Sv)1�2.
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But,

v$1v�w$1w�*k (1 )�(w$Sw*1 (S&11 ))

�(*k (S) *p (S&11 ))�(*l (S) *1(S&11 ))

�} :=((1+#o)(1&;))�((1&#o)(1 +;))>1;

see also the proof of Lemma 2. Analogously, v$Sv�w$Sw�}. Together with
Theorem 1, it follows that

}1�2\o�\(v, w | 1 )�m(\(v, w | S ), ;)�m(}&1�2\o , ;).

This leads to the inequality ;\2
o+(}1�2&}&1�2)\o�;, whence

\o�(1+'2)1�2&'=\(1+'2)1�2+'+&1,

where

' :=(}1�2&}&1�2)�(2;)=(1&;2)&1�2 (1&#2
o)&1�2 (#o�;&1).

In the special case l=k+1 this bound can be refined as follows: Let
\� o :=(1&\2

o)1�2 and

u :=\� &1
o (v&\ow) # W= & S p&1/E1k (S ).

Then

S� :=\u$
w$+ S(uw)=a \1+#~

0
0

1&#~ + ,

where a :=(u$Su+w$Sw)�2 and #~ =(u$Su&w$Sw)�(u$Su+w$Sw) # [#o , 1[.
With

x :=\� &1
o (w&\ov) # V= & S p&1/Ek+1, p(1 )

one can show that u=\� ov&\o x, w=\ov+\� ox, whence

1� :=\u$
w$+ 1(uw)

=v$1v \\� o

\o+ ( \� o , \o)+x$1x \&\� o

\� o + (&\o , \� o)

=& \1+rb
rc

rc
1&rb+ ,
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where & :=trace(1� )�2, r :=#(1� ) # ]0, 1[, b :=1&2\2
o and c :=2\o\� o . Now

we seek to minimize b under the side condition

;�#(S� &11� )=(1&(1&r2)(1&#~ 2)�(1&#~ rb)2)1�2.

The smallest b satisfying this inequality is

b(r, #~ ) :=(1&(1&;2)&1�2 (1&#~ 2)1�2 (1&r2)1�2)�(r#~ ),

and elementary calculations show that

b(r, #~ )�bo :=b(ro , #o)=(1&;2)&1�2 (1&;2�#2
o)1�2,

where ro :=(1&;2)&1�2 (#2
o&;2)1�2. Consequently \2

o�(1&bo)�2= f2(#o , ;)2.
This bound is attained if u=tk , w=tk+1 , and 1 equals

:
i � [k, k+1]

*i (S) ti ti$

+&((1+ro bo) tkt$k+ro(1&b2
o)1�2 (tkt$k+1+tk+1 t$k)

+(1&robo) tk+1 t$k+1),

where & :=a(1&\2
o)(1&r2

o)&1. Verification of this claim is elementary and,
therefore, omitted. K
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