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Abstract

There are estimators for multivariate autoregressive models which are regarded as
multivariate versions of Burg’s univariate estimator. For two of these multivariate Burg
estimators the asymptotic equivalence with the Yule-Walker estimator is established in
this paper, so central limit theorems for the Yule-Walker estimator extend to these esti-
mators. Furthermore, the asymptotic bias of the univariate Burg estimator to terms of
n~1 is shown to be the same as the bias of the least-squares estimator; n is the number

of observations. The main results are true even for mis-specified models.
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1 Preliminaries

The most popular estimators for autoregressive models seem to be the Yule-Walker, the least
squares, and the Burg estimators. The Burg estimator was introduced by Burg (1968) for
univariate time series, and it was generalized to multivariate models by Morf et al. (1978),

Strand (1977) and others (cf. Jones, 1978).

Central limit theorems are well known for the Yule-Walker and the least squares estimators, as
is the asymptotic bias of them in the univariate case (Shaman and Stine,1988). Nicholls and
Pope (1988) also calculated the asymptotic bias of the multivariate least squares estimator.
Kay and Makhoul (1983) showed the asymptotic equivalence of the univariate Burg estimator
and the Yule-Walker estimator, but neither the asymptotic distribution of the multivariate
Burg estimator nor the bias seem to be known. Simulations indicate that the bias of the
univariate Burg estimator is about as large as the bias of the least squares estimator (Lysne
and Tjsstheim,1987), which tends to be smaller than the bias of the YW estimator, especially
if the process has roots near the unit circle (Shaman and Stine,1988). But unlike the least
squares estimator, the Burg estimators are stable (or: causal), which is a property often asked

for.

In this paper the asymptotic properties of the Burg estimators are investigated further: After
having defined the estimators, the asymptotic equivalence of the multivariate Burg estimator
and the Yule-Walker estimator is established in Section 2; the equivalence holds even for
mis-specified models. In Section 3 the asymptotic bias of the univariate Burg estimator is

shown to be the same as the bias of the least squares estimator.



We assume that {X;}, t € Z, is a d-variate stationary ergodic stochastic process of full rank

with values in R%; let the mean of its components be zero and the variance be finite. The

!
t( ) - ?:1 A;?)
by )A(t(b) = le B](p)XH_j, where A;p) and B](p) are the d X d matrices which minimize the

traces of S]()f) = F(X; — )A(t(f))(Xt — )A(t(f))—r and S]()b) = F(X; — )A(t(b))(Xt — )A(t(b))—r.

process can be forecasted by the linear predictor X X¢—; or, in reversed time,

It is well known that this leads to the Yule-Walker equations

1 AP 4l B (s 0 o -
_p L g g ) T 0 ... 0 s )’ (1)

where
Ry Ry R,
Ry = | 10 B (12)
é; RT, .. Ro

is a regular matrix of autocovariances R; := EXt_H'XtT; 0 and 1 are the d X d zero and identity

matrices. If d = 1, then A;p) = B](p) and S]()f) = ]()b) hold, and we define (b;p) = A;p) and

Sp = ]()f). The autocovariances are estimated by R; := %Zf:_f XH_Z'XtT, A_Z' = RZT (i >

0), where Xy,...,X,, are the available data. If the mean of the process is unknown, we

subtract the arithmetic mean %Z?:l X; from the data.

After replacing R; by R; in (1.2) we get the Yule-Walker (YW) estimator flgp), . ”74}(}9)7
Byy), .. .,B]()p),gz()f),gz()b) as solution of (1.1); in the univariate case we get qAﬁgp), . ”7&?]))7 Sp.
R(p-l-l) denotes the corresponding estimator of R,1).

The YW estimator can be calculated recursively using the (multivariate) Levinson-Durbin

algorithm (Whittle,1963):

5‘(()6) = g(()f) = Ro,

recursion for k > 1:



AW = (R, - A;’“‘l)Rk_])S,@f,
7=1
(k) ST s A1) 5T a1
Bk = (R; - B]‘ Rg—])skq ’
7=1
~ ~ k ~ k ~
4 = - AP, 0
0 o BP0,

For d = 1, Burg (1968) used the same recursive algorithm but estimated (bgf) b

c(k=1) - (k1)
t—

“(k Dimky1 €0 Ty,
¢§§ ) = : k—l—l(kt 1)2 ]z ) 9 (14)
3 Dimkp1 (€ +iy )
where égk_l) and ﬁgk_l) are the estimated forward and backward prediction errors
k-1 L k-1 L
= x =YX and Y = x = 3 AT X, (1.5)

j=1 =

which can be calculated recursively by égk) = égk_l) —qggf)ﬁi i D and 7715 )k = (bk t -,

For the multivariate case several versions of this method were proposed (see Jones, 1978),
the most popular seeming to be the one described by Morf et al. (1978), which uses the

Levinson-Durbin algorithm with some alterations:

peo= (Y DTYIE 3D R IRITYC S ik T )T,
t=k+1 t=k+1 t=k+1

A= SO S

B = g2 5T G2 (1.6)

4 i D AW gk,

W = A - B,

where A'/2 is the lower triangular matrix with positive diagonal elements defined by the

Cholesky decomposition of the symmetric, positive definite matrix A = AY2. AT/2; further



AT/? .= (Al/Q)T, A~V2 .= (A1/2)_1, A"T/2 .= (A_I/Q)T. The matrices S,gf), g,gb), A;k), B](k)
(j=1...k—1) are defined as in the Levinson-Durbin algorithm.

A different version was suggested by Strand (1977): Here Agf) is the solution of

1) L s (k1) - (k=1)T g(b)=1 I G (1) (k1) T a(F)=1 j(k
Agc )(; Z nzg—k )nzg—k ) )Sl(c—)l + (; Z eg )61(5 ) )Sl(g—)l Agc) =
t=k+1 t=k+1
2~ (k=1) - (k=1)T a(b)-1
B I
t=k+1
= (k (=1 5 (k) &(b
and B .= (§V1 AW GO T
Unlike the other method, the algorithm proposed by Strand (1977) reduces to the univariate
Burg estimator (1.4) for d = 1, but it is more expensive to calculate. Both Burg estima-
tors are known to be stable and are calculable recursively, which is particularly useful if a
model selection procedure has to be performed simultaneously; the same is true for the YW

estimator.

2 Asymptotic Distribution of Multivariate Burg Estimators

We want to find central limit theorems for both multivariate versions of the Burg estimator
by showing the asymptotic equivalence with the Yule-Walker estimator. In the following A®)

always denotes one of the Burg estimators of section 1.

Theorem 1 Under the assumptions on the process mentioned in section 1,

Al = Al) 4 0,(1/n) B = ple) 4 O,(1/n),
~]()f) _ g}()f) +0,(1/n) ~]()b) — 5*}()5) + O0,(1/n)

hold, where AP) = (A(p), .. .,flép)) etc.

i

Proof.
First the lemma is proved by induction for the method of Morfet al., then for Strand’s method.

~ - 1 & 1 & 1 & ~(b)—
AV = S((Jf)l/Q(*ZXtXtT)_l/z(*ZXtXtT—J(*ZXt—lXtT_1)_T/25(()b) =
nt:? nt:? nt:?

= SPHEE + 0,(1/m) T RS + 0,1 /) TSI =
= RiRg'+0,(1/n) = AT +0,(1/n),



and similarly B?) = B?) + O0,(1/n), from which
$i7 = (= AP+ 0p(1/m)(E + 0y(1/m)) = 57 + 0,1 /m)

and 5‘{6) = S‘{b) + O0,(1/n) follow.

Now we assume that the statement of the lemma has already been proved for 1,...
p—1,1i.e.
AF=Y = A=Y Lo (1/n) , B¥D = BE-Y L0 (1/n),
G : &b & (b
SO =8 Lo,i/ny , S =58P 1 0,1/n).
Also let the following assertions be shown, which are obviously true for & = 2:
Sl o= Zet’“ DT 10,01 m),
(b
Sl(c—z = - Z k+177t k-|—1 ‘|‘ Op(1/n),
(k-1 A(b (k— 2
Agc—l ). Sl(ﬂ—)Q Zet k-|—1 ‘|‘ @ (1/n)
A(k—1) & LN (k=2) S(k=2)T
Y-S0, =y anhd ™ 0,0 m).
t=k
Next we prove (2.2)—(2.4) for k + 1 instead of k:
Proof of (2.2):
1 (k=1) <(k=1)T R k=2) \ <(k=2)  7(k=1) ~(k—2
n 2(5 )61(5 ) - Z k 1 )nzg—k-l—)l)(ez(f ) Agc—l )7715—1“-)1
t=k+1 t=k+
5 E—1) p(k=1) a(f
S A S -

(2.3)

(2.4)

)=

— A AEDT+ ARSI, AT 1 0,(1/m) =

= 50, — A VBEISY, 4 0,(1/n) = 50, 4 0,(1/n),

~(k—1) - (k—

using (2.1)—(2.4). Similarly S‘I(gb_)l = L i T g g uT O,(1/n) can be shown.



Proof of (2.3):

1 1 i3 k—l B _ k—l _
el Z egk 1) Eikl)T _ Z (X, - A;k I)Xt—j)(Xt—k—ZBk 1 Xeopei)T =
n t=k+1 n t=k+1 7=1 7=1
= S-DT SR o) g
= Ry =Y Ry BYTIT ST AN IR
g=1 71=1
G E—1)T
+ 3 AR YR BT 4 0,(1/n) =

using (2.1), (1.1), and the definition of flgf) in the Levinson-Durbin algorithm (1.3).

Proof of (2.4): Because A;ﬂk)gl(gb | = (Blgk)ﬁlg{)l)T holds and (2.3) has been shown,

fEZ It = Zjaklmk )T = (A5 4+ 0,(1/n)T =
t=k+1 [ k+1

= BVSD +0,1/n).

From these considerations follows (2.1) for k + 1:
AP = SO+ 0,1/ m) AR S, 4 0,(1/m)S + 0,1 /n)) TS <
= ARSI + 0,110 = AL + 0,1 /).

TheproofforB,g),S,gf),S,g), 5) BW (j=1...k—1)is obvious.

The lemma can be proved the same way for the estimator of Strand (1977), because
A = A +o,(1/n)
follows from (1.7), using (2.2) and (2.3):

AP, +0,(1/m) + (S + 0,(1/m)SITTAPSY, = 2 (AP -5, + 0,(1/n).

It should be noted that the equivalence still holds if the mean of the process has to be

estimated by the arithmetic mean of the data.

Now central limit theorems for the Yule-Walker estimator can be extended to the Burg

estimators under the very general assumptions of section 1.



Theorem 2 Let{X,}, t € Z, be a d-variate stable AR (p)-process with coefficients Agp), . A;,p)
and with independent and identically distributed innovations; the innovations have zero mean
vector and a regular covariance matrix . Then

Vi(vecA®) — pecAP)) — N(O,R(_l ® X),

)

Sz(jf) — X in probability

hold. Here vecAP) = vec(Agp), .. .,Az(,p)) is the vector which is created by stacking the columns
of AP and @ denotes the Kronecker product.

This theorem is proved in Hannan (1970), ch. V1.2, Th. 1., for the YW estimator.

The same way central limit theorems for mis-specified models, as stated e.g. in Lewis and

Reinsel (1988), (3.5), can be extended to the Burg estimators,too.

3 Bias of the Univariate Burg Estimator

In the following we investigate the asymptotic bias of the univariate Burg estimator
P = (qggp),...,qgép))—r to terms of order n='; it will be shown that it is as large as the
asymptotic bias of the least squares estimator ¢(), which was calculated by Shaman and

Stine (1988) for a true model.

They used the assumptions EX}® < oo and E(|R(_pl) — R(_p1)|8) = O(1), where |A]| is the

absolute value of the largest eigenvalue of the matrix A.

In addition to that we assume for all » € N(for simplicity)
EX] <oo, EN;"=0(1), EN;"=0(1),

where N, := L Z?:p+1(é§p—l)2 + ﬁgﬁ;l)z) and N, := Ry — Z?;% qB;p_l)Rj; these assumptions
guarantee the uniform integrability of the terms appearing in the proof.

With the definitions Z, := Ly~ &7 V5® "V and 2, := R, - Y021 8V VR,
oW = 7,/N, and P = 7,/ N, hold.
As the Burg estimator is defined recursively and no other useful representation of it is known,

we compare it with the YW estimator, which can be calculated recursively by the Levinson-

Durbin algorithm, too. For the difference between YW and least squares estimators

lim n- (37 - 37) = BT dy,

n—oo



holds (see Shaman and Stine,1988, (3.7)), where #) is the YW estimator, ¢(P) is the least

squares estimator and d(,y := (d(y) 1, - - .,d(p%p)—r, with
p (»)
dip).j = Z |j = k| Rj—p®)
k=0

and

We will prove that

7}1_{%0 n- E@(p) _ (b(p)) — _R(—pl) <d(y), (3.1)
so that for the bias of (5(2?)

lim n-E(¢®) — ¢®)) = lim n- E(

n—oo n—oo

(» _ (b(p))

R

holds.

Theorem 3 Under the assumptions mentioned above and in section 1, the bias of the uni-
variate Burg estimator is equal to the bias of the least squares estimator,
lim n - E(qg(p) - (b(p)) = lim n- E((;B(p) - ¢(p)).
Proof.
The proof follows by induction; if FX; is estimated, X; has to be substituted by X; —

1 n .
o 2_j=1 X everywhere.

2 n ~

0 = azizm XX L — oM 1 2 2y 4 (1)
= = — = + —(XT+ X))+ h7).
TSI (X)) ke T(X7 1 x2) o (L4 S (T4 X) )

The proof of the uniform integrability of the terms appearing here and in the following is not

difficult and therefore omitted.

As A = O,(n™%) and E(|n - SR qAbgl)D — 0, the assertion of the theorem holds for p = 1:

oy — of! = —R3) - d).

Let now nE(qB(i) — (b(i)) — —R(_i)1 ~d;y be shown for 1 <7 < p—1. Using a Taylor expansion

>
X
>




7 (p)

where h;)” is the remainder term of order O,(n™?), we find from (1.4) and (1.5) that

2y p+1(XtXt—p ~ X 3hT) Xt—qugp_l) - X,y Xt_pﬂq?;p_l) +o..
ED pr1(XF —2X, >z Xt—qug‘p_l) + Z?:; é;p_l)@p_l)Xt_th_i +...
| R S P Sl D P TR
o XP - 2X, YT p+j</3(p_1) + Z y 11 o PGP X, i X i)

p—1
p b ]p b R, i+~ Z 4 ,p 1))(2]' terms of form X; Xy, ;) +

1 _

— Z 2] terms of form X;Xyy,_;)+

n p—

p—l

“(p—1 2(p=1)y, 1(p—1 1) 2(p=1) A

+ Z (¢§‘p - ¢;p ))(¢£p - (bg p j—i T 2 Z p ))Cbgp )Rp—j—i -

Jsi=1 7i=1

14 _
- Z qﬁép_]l)(bgp 1)(p — |7 — 4| terms of form X; X,y |;_;) —

74=1

2 N (- ~(p=1) 2 (p— .
- Z ((b(p 1) _ (b(p 41))q§(»p 1)(p — |7 —i| terms of form X; X,y |;_;) —

p=J p=J ?

12 o ol o Alp— .
- Z ((b;)p_jl) — qﬁép_jl))(qbgp b _ (bgp 1))(p — |4 — | terms of form XtXt_|_|j_Z»|)} X

74=1
-1 A1) g
><{1 + 5 [(2p terms of form X?) + 4n Z(qﬁ;p_ b qbgp_ ))Rj -
¥y 7=1
-2 Z p 1))(2]) — 2j terms of form X X1 ;) —

-2 Z qB;p_l)(Qp — 27 terms of form X;X;4;) —

7=1
p—1
—2n Z (&;p_l) _ é;p—l))(@p—l) (b(p 1) Ri_i—4n Z p 1))¢(p I)R]—i 4
Jn=1 7i=1

p—1
+2 Z (b;p_l)qbgp_l)(p — |7 — 4| terms of form X; Xy, ;) +

j,i—l

+2 Z p 1))((5519—1) - (;Abgp_l))(p — |7 — 4| terms of form X; Xy, ;) +
74=1

+4 Z p U)(fbgp_l)(p — |7 — 4| terms of form X; X,y ;)] + /Az?(%p)}.
74=1

Here ”j terms of form XXy, ” etc. means a sum of such terms, e.g. X1 Xp11+...+X; X4,

9



where only data near the boundaries of the data set appear. After multiplying the terms in

brackets and using the Yule-Walker equations one finds that

n- E@(p) _ (;(p)) .

P P
qu i qub ¢! — i —i[)Rj— +
p]1 p]zl
(b pl 1 1 1
v (- Ro—23 (p—j)o¥~ R+Z¢p P (p— 1 — iRy,
=1 7,i=1

because the expectations of most of the resulting terms are o(1/n).

The limit can be rewritten as

3 . 1=t . _
n- E(3P) — ¥y — EZ( S VR, — eV IR, )+
=1

LS g p]+¢LpR

p] 1
p—1 |
= Z]¢ DY Cb;p__j )d(p),j + ¢PpRo) =: gy,
p 7=1 7=1

and for the other components of ¢() — (/Aﬁ(p)

R o1 L R U o 1) L e A of ¢ 2 g 2 I Ol P A
(j=1...p=1)

hold because of (1.3).

Introducing (b(lp_l) = ((b;)p__ll), e, gp_l))—'— etc. we find by induction that

- B((GP,.LdP)T = (87, LT =
= n- E((ﬁ(p_l) — (5(17—1)) —n- E((gép) _ é;p))(ﬁ(lp_l) n - E(b ((b p—1) é(lp—l)) .

— =Ry dpo) - 907 4 S (R dip-1))1-

As (R(_pl_l)d(p—l))l = R(_pl_l)d(p—l)l holds, we have to show:
-1
_ Ro R ip).a
( — Ry ey — 9,00 + 0P REE ) - ‘
9p
R,y Ry d(p)p

10



After multiplication with R(,), using N, = Ry — Sre Rk, Sre Rp_i_k =
R, (i=1...p—1),and (b(lp_l) = R(_pl_l) (Rp-1, .. .,Rl) , we see that

Ry ... Ry B
: . ( R o1y = 900+ O RG L dipay, ) _
g
Ry ... Ro g
Ry
_d —a.R (b(p—l) (b(p)d :
_ (p=1) — IpL(p-1)?] + ¢p d(p-1)| + : 9p _
I’y
(Rp—17 SERE Rl) ) (_R(_pl 1)d gp¢ Y + gb;?p)R(_pl_l)d(p—l)l) + Rogp
~ R = KR @8 o T b~ 1 - KRy k@ — g, (S0 0P Risy — Ryo)

P — 1 — kR @Y 4 6P 5Pl Ry (P - gp(z 1O IR, i~ Ry)
—o" gy + 60 Ty, — 9(S0) Beol! ™Y = Ro)

P = kR @Y o Y = 1= k| Ry

~ ThZolp— 1= k| Ry @ 4 67 TG 1~ bRy
_¢(lp_1)Td(p—1) n (b;)p)(b(lp—l)‘rd(p_l)l + g,
the last identity still has to be proved.

It holds for all rows:

1. rows:=1,...,p—1:

p—1 -1
—(3 i = k| Ry Z|p—l—k|Rp p @) =
k=0 k=0

= (i kR @) = PO iRt 6P~ ) Ey-) =
k=1

P
= ) Ji— KR = —d,,i
k=0

11



2. last row:

_¢(lp_1)—rd(p_1) _I_ ¢]()p)¢(lp_1)—rd(p_1)l —I— gpr =
= _(b(lp_l)—r(d(p)J, RN d(p)p_l)—r + gpN =

p—1 p—1 p—1
= =" dgyn + D kP Ry + > 6P iy i+ 6P R =
k=1 k=1 k=1

P P P
= Z k¢§cp)Rp—k = Z ka;gp)Rp—k - p(z Rp—kqb;cp) - Rp) =
k=1 k=1 k=1

P
= - Z(P - k)Rp—k(I)gcp) = _d(p)m )
k=0
o (3.1) and the statement of the theorem follow. ]

The same theorem can be shown in a very similar way for the Burg estimator used by Morf

et al. (1978) in the case d = 1.

As a consequence we get the bias of the univariate Burg estimator for a true model from the

result of Shaman and Stine (1988):

Theorem 4 Let {X,},t € Z, be a univariate stable AR(p)-process, X; = ] 1 (b( )Xt ;te,
where ¢; are independent and identically distributed innovations, Ee; = 0, 0 < Ee < 00, and

let the assumptions of Theorem 3 hold. Then

v_l_zpﬂ 1( (») _ q)(p),).aj7 if p is even,

p=J

n- E($P) — ¢y —
U+Zl/2 p—1) (@;Zi)l—q)(p)')‘ij if p is odd,

p=J

if the mean of Xy is known. If FX; has to be estimated by %Z?:l X;, the additional bias

term ]
7—1
c = (Cl, .. .,Cp)T, Cj = Z((I)Ep) — (I);p_)z),
=0
appears.

Here a;, b; and v are defined by

- . T e
aj = (a1, .y aip) 50 =
0 else,

{]ﬁi:j+%j+&uwp—ﬁ

1 fi=53+1,7+43,....,p—7,

0 else,

b]‘ = (b]71, .. .,b]‘7p)T, bj,i = {

12



vi= (@260 pe o)
We still have to investigate the asymptotic bias of S, = b (1 - qg;j)Z)Ro:
Theorem 5 Under the assumptions of Theorem 4, the bias of S‘p s given by
nE(S, = Sp) — —pS,
for known EX;, and
nk(S, = S5) — —(p+1)%

for estimated mean.

Proof: Shaman (1983) showed that the YW estimator 5, = N, of S, has the asymptotic

bias

P P
E(S, = S,) — —pS, +23 iR = 3 |j —iloWeP R, (3.2)

J=1 Jn=1

if £X; is known. From the proof of Theorem 3 follows

p
nE(Nps1 = Npr) — —(p+ 1Ry + 23 6P (p+ 1 - j)R;~

7=1
3 6+ 11— iRy =
],21
= (p+1S—QZJ¢ R+Z|J—l|¢ PR,
74=1

so the bias of Np-l-l is
nE(Npy — 8,) — —(p+1)8, — pS, = —(2p + 1)5,.

It is easy to see that

= "1 u “(k)2
Ny = §p == 205, @+ 2% T1 1=
i=0 k=j+1
and consequently
R R p p * p
NE(Npp1 = 8,) — =328 [I =" =-38,=~-(p+1)S,
J=0  k=j+1 J=0

holds, which proves the assertion.

13



For unknown mean, the theorem can be shown the same way using

P P
nE(S, = 5,) — —(p+ 1)5, + 23 j6P R, = 3 [ —ilelPeP R,

7=1 74=1

instead of (3.2) (cf. Zhang, Th. 4.2, (2.10) and Th. 3.1). O

The asymptotic bias of the YW estimator can become very large if the process has roots near
the complex unit circle, but it can be reduced by (variable) tapering (Zhang,1992). For the
Burg estimator no improvement can be achieved in this way, because the untapered Burg
estimator has the same asymptotic bias as the tapered YW estimator, and nE(qBép) —qAﬁ;)p)) —0

if both estimators are tapered.

4 Conclusion

It is known from simulations that the Burg estimator has a smaller bias than the YW esti-
mator if a root of the process is near the unit circle, but a proof has been missing. We have
shown that the univariate Burg estimator has the same asymptotic bias as the least squares
estimator, which is usually smaller than the bias of the YW estimator. This makes the re-
duction of the bias possible. Also the Burg estimator is recursively computable and stable,
in contrast to the least squares estimator, so the Burg estimator has the major advantages
of both of these well known estimators. We have also shown that the multivariate Burg esti-
mators have the same asymptotic distribution as the multivariate YW estimator, and some
simulations (Strand,1977, Morf et al.,1978) seem to indicate that their bias is smaller than

that of the YW estimator, but no analytic results on this are known yet.

Acknowledgement: [ would like to thank Prof. Dr. R. Dahlhaus, who supervised my
Diplomarbeit, the major results of which are presented here, and Dr. D. Janas for their

support.
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