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Abstract:

We study a method for estimating a density f in RY under assumptions which are of qualitative
nature. The resulting density estimator can be considered as a generalization of the Grenander
estimator for monotone densities. The assumptions on f are given in terms of the density contour
clustersT'(A) = {x : f(x) > A}. We assume that for all A > 0 the setsT'(A) lie in agiven class C of
measurable subsets of RY. By choosing C appropriately it is possible to model for example
monotonicity, symmetry or multimodality. The main mathematical tool for proving consistency and
rates of convergence of the density estimator is empirical process theory. It will turn out that the
rates depend on the richness of C measured by metric entropy.



1. Introduction

We provide a method for estimating a density f in RY under qualitative assumptions like
monotonicity, Ssymmetry, modality. More generally, we assume that the density contour clusters
() =T:(A) ={x:f(x) =A}, 2 >0, dl liein agiven class C of measurable subsets of RY. For
example, if we choose C=Cj={ [0,x], x>0} thenthe class of densitieswithT'(A) € C,isthe
class of al nonincreasing leftcontinuous densities on the positive real line. Hence, the choice of C
can be interpreted as choosing a statistical mode.

The density estimator studied in this paper is based on estimators of the setsT'(A), so that density
estimation as considered here can be viewed as a certain two-step procedure: first estimate the
density contour clusters and then estimate the density by means of the estimated density contour
clusters.

For the moment consider the special case of estimating a monotone density on thereal line. If the
mode is fixed, then the maximum likelihood estimator of a, lets say, decreasing left continuous
density iswell known. It is the so-called Grenander estimator which is defined as the slope (more
precisely, the left-hand derivative) of the smallest concave majorant of the empirical distribution
function. Hence, the Grenander estimator is obtained by first estimating the distribution function
under the assumption that it is concave. This estimator is the smallest concave majorant of the
empirica distribution function. Then the density is estimated by the slope of the concave mgjorant.
It turns out, that for the special choice of C = C, our density estimator coincides with the
Grenander estimator. The connection of estimating density contour clustersin C, and the concave
majorant of the empirical distribution function will be given below.

Another density estimator known in the literature which is also constructed by estimating density
contour clusters has been considered by Sager [12]. In our notation he assumed that all setsT'(A),
A >0, lieinCY, the class of closed convex sets in RY. As estimators for I'(A) he used minimal
volume setsin €Y. A minimum volume set in C 9 to the parameter o is defined to be the smallest set
inCd which contains at least empirical mass o.. Sager constructed a density estimator out of a
nested sequence { C } of minimal volume sets by putting slicesC_ x [a,,b,] one on the top of the
other. The difficulty there is to choose the thickness of the slices, b, - &, in an appropriate way.
However, by construction the estimators { C } of the density contour clusters are nested. Note,
that in general thisis not the case for minimal volume sets to different parameters o.. In general,
minimal volume sets may overlap. They even may not intersect.



The density estimators considered in the present paper can also be visualized as putting slices
constructed out of minimum volume sets one on top of the other. But in contrast to the estimator of
Sager the thickness of the dlices as well as the parameters o corresponding to the minimum volume
sets depend on the data and come out of the procedure automatically. However, the problem that
the estimators of the density contour clusters may overlap also appearsin our context. Thiswill be
discussed below.

Before we give the organization of the paper we shortly discuss the assumption “I'(A) € CV A >
0”. An equivalent formulation for this assumptionis“f € F.", where

F. = {f: RIS [050), f(x) dx = 1,T,(\)e CVA>0}.

First consider the case d = 1. As already mentioned, for C = C; = { [0,X], x > O}, F equals the

class of all monotone decreasing (left-continuous) densities on the real line starting at zero. Let 1,
denote the class which consists of all unions of at most k > 1 closed intervals on the real line. F11

defines the class of unimodal densities on the redl line. The class F'lz\ F'll consists of densities
with at most two modes, more general F'Lk\ F1’k . consists of densities with at most k modes. In

order to model modality in higher dimensions there is no such natural choice as the class of
intervalsin the one-dimensional case. In principle every class which consists of connected sets can
be used to model unimodality. Standard examples are given by the classes of all closed balls,

ellipsoids and convex setsin RY, denoted by B9, E9 and C 9, respectively. In the multimodal case
the density contours become more complicated. Here classes which can be constructed out of the

convex sets by means of finitely many set-theoretic operations N, U, € seem to be appropriate (see
Polonik [10] for adiscussion). Taking C as the class of all balls with midpoint zero leads to the
class of spherically symmetric densities on R9 with center zero.

The paper is organized as follows: In Section 2 we define the estimators of the density contour
clusters and the density estimator itself. Furthermore we show the above mentioned connection to
the Grenander estimator. Section 3 contains asymptotic results about the density estimator. By
means of empirical process theory we show consistency and give rates of convergence. It will turn
out, that C enters the rates through its richness measured by metric entropy. The well known rate
of the Grenander estimator (nY3 for a density with no flat part and n"Y2 for an underlying uniform



distribution) will be re-derived up to a log-term. They come up only through the fact that the
corresponding class C, isaso caled VC-class. After some concluding remarks (Section 4), the
proofs of the results of Sections 2 and 3 are given in Section 5.

2. The density estimator

For any set C let 1 denote the corresponding indicator function. The following equality holds for
any dengity f:

2.1) f(x) = ﬁm(x) di  VxeR.

For many class C there exists an estimator of I'(A), denoted by T, (1), which liesin C (see
Polonik [10, 11]). This estimator is caled empirical generalized A-cluster (in C). (The definition
of Fn,©(7‘) will be given below). We define the plug in estimator of f as

(22) foc® = |1 0 di  VxeR

Ford=1and C=1, ke N, thisestimator hasimplicitly been used by Muller and Sawitzki [7] in
order to determine bootstrap critical values for tests of multimodality. They draw bootstrap samples
out of distributions determined by fn,zk-

The empirical generalized A-clustersin C:

Let F be adistribution on RY with Lebesgue density f. It is easy to see that T'(A) maximizes the
signed measure H, = F - A Leb over all measurable sets, i.e.

H,(IT(4)) = sup{ H,(C), C measurable }.

As afunction of A the maximal value E(A) = H, (I'(A)) is called excess mass functional. It has
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been introduced by Mller and Sawitzki [7] and can be used for investigating the modality of a
distribution (see Mller and Sawitzki[7, 8], Hartigan [4], Nolan [9], Polonik [10]).

Let (2, A, P) denote the underlying probability space and let X, X,,.... bei.i.d. random vectors
in RY with distribution F. Furthermore, let F,, denote the empirical distribution function of the first
n observations. Define the empirical version of H, as

Hpz = F,- 4 Leb.
The supremum of H, , over all measurable sets equals one and is attained at {X,, X,,....X.}.
Hence, in order to obtain a reasonable estimator of I'(A) by means of H,,,, one hasto restrict the
maximization to certain subclasses C of subsets of RY.
Definition: Let C be a class of measurable subsets of RY., Any set I', c(A) € C, such that

Hn,/l(rn,C()“)) = sup Ce @Hn,/l(c)

iscalled an empirical generalized A-cluster in C.

We called those sets generalized because they need not be connected as one perhaps would expect
for “clusters’.

In the one-dimensional case, more precisely, for C =1, Miller and Sawitzki [8] gave consistency
results for the empirical generalized A-clusters. In amore parametric setting Nolan [9] studied the
sets ' (A) for C = E d. She gave consistency results and asymptotic distributions for the
corresponding finite-dimensional parameters. Under more general conditions on C (analogous to
those used in the present paper; see results in Section 3) the empirical generalized A-clusters
I c(2) have been studied in Polonik [10, 11].

Remark 2.1: (i) Note that the empirical generalized A-clusters I') () are minimum volume
setsin C: by definition they have the smallest volume among all other setsin C which carry the
same empirical mass F (T, ~(1)). However, this mass itself is also random.

(if) Of course it is necessary for Fn,C(k) to be a d,;-consistent estimator of I'(A) that the
maximizing value of H, isunique up to F-nullsets. Thisisthe caseif and only if f has no flat part



at thelevel A, i.e. if Leb{x: f(x) = A} =0. Since we shall use such results about the estimation of
I"(\) assumptions about flat parts of f will enter the theorems about rates of convergence of the
density estimator given in Section 3.

The empirical generalized A-clusters exist for standard classes C like B9, E9 or €9, which denote
the classes of all closed balls, ellipsoids and convex sets, respectively, in RY. For the case of
convex sets this can be seen easily, because one only has to consider those convex polygons with
vertices in the observations. And these are (for fixed n) only finitely many. For C =59 or E9 the
maximization of H,, can also be reduced to afinite class of sets.

We shall assumein al of that what follows that:
(A) For all A >0thereexist an empirical generalized A-cluster inCand @ € C.
The sets l“n’@(?u) need not be uniquely determined. Note that it even may happen that for a fixed

level A there exist empirical generalized A-clusters which carry different empirical mass and
therefore also have different Lebesgue measure. However, the following properties hold:

Proposition 2.2:

(a) For each A >0 choose a set I, ~(4). For each such choice the function 4 — Leb(T;, ~(4)), 4
20 is monotonically decreasing and piecewise constant with at most n + 1 jumps. Moreover, the
sets I', ~(4) can be chosen such that A — I ~(4) is piecewise constant.

(b) Thereexists a level A, ., =0 suchthat Leb(I, (4)) = Ofor A> A, .
In order to obtain a reasonable representation for our density estimator we suppose the sets Fn,©(7“)
to be chosen such that:

(o)  the function A - T ~(X), L = O, is piecewise constant. Denote the (random)

levels where this function has jumps by 0 = Ay <A, <.< A=A, o0 Ky,



(B) For every fixed p 2> O the Lebesgue measure of I', (i) is minimal among all
empirical generalized p-clusters.

Furthermore, we definewith A, .. of Proposition 2.2 (b):
@)) Foc) =D for k> o

Because of assumption (A) there always exist choices of I') (1), A > 0, such that (c) and (B)
are satisfied. Thisfollows from the proof of Proposition 2.2 which is given in Section 5. Note that
(o) and (B) do not affect the results given below, because these results hold for any choice of sets
).

Note that in general the empty set is not an empirical generalized A-cluster in C for A >4, ...

However, for all standard classes C mentioned in this paper (y) does also not affect the asymptotic
results given in Section 3 (see Section 4 for more thorough discussion on (7)).

(or), (B) and (y) are supposed to hold in all of that what follows. The next proposition shows that
in many situationsf,, - automatically is a probability density.

Proposition 2.3: If 4 max > 0, then we have

n

foc() dx = F(l,(0).

Remark: Thevalueof &, ... (
on the underlying distribution. For example, if C=C2and n< 3then A

especialy if it is> 0) depends on the class C, the sample sizen and
nmax = 0, because for A =
0 the convex hull of the sampleisaempirical generalized A-cluster, and for A > 0 we either have a
datapoint itself or a line connecting two datapoints as empirical A-clusters. Both have Lebesgue
measure zero, and hence, by definition of A ., wehaved, .. =0.Forn2 4 this does not
happen if not three or more points lie on aline. And this in turn happens with probability zero if the
underlying distribution is continuous.

Because of Proposition 2.2 we call a class C normalizing if F (', -(0)) = 1. Examples for

normalizing classesare C=C,, 1, for d = 1, and C = B9, E9, € for higher dimensions. Also



those classes which can be constructed out of the former classes by finitely many set theoretic
operations N, U, ¢ are normalizing.
Under (o), (B), (y) the density estimator fn‘C(x) can be written as

(2.3) frc® = 2(,+1 ) Lr -

Hence, if in addition the sets rn’©(xj), j =0,..., k, are monotonically decreasing for inclusion, i.e.
rn,©(7‘j+1) C I‘n@(kj), then f,| - can be visualized as putting the slices Fn,©(7‘j) X [kj, xj+1] one on
top of the other.

However, unfortunately the monotonicity of the empirical generalized A-clusters need not hold. In
this case the density contour clusters of f, - need not necessarily lie in C, so that f, . does in
general not lie in the model class F.. But if the model is correct, i.e. if f € F, then as we shall
show in Section 3, f, -~ converges to f as n tends to infinity, so that at least asymptotically f, -
doesliein F.. However, there exist situations where the monotonicity of the empirical generalized
A-clusters holds automatically. For example, consider C = C; ={ [0,x], X = O}. In this class the
empirical generalized A-clusters are monotonically decreasing for inclusion, because they al start in

zero and their Lebesgue measures are decreasing (Proposition 2.2 (a)).

In,© and the Grenander estimator

As aready mentioned, F©o isthe class of al monotone decreasing, |eft-continuous densities on the
real line, starting at zero. In this model there exists a well-known estimator for the density: the
Grenander eti matorf (Grenander [5]), which is the maximum likelihood estimator of f in F Jt
has been shown by Grenander that f is given by the left-continuous of the smallest concave
majorant of F, denoted by Fr. Surprisingly, in this special situation fn@ and the Grenander
esti matorf coincide. This can be seen asfollows. Let

U (A :=inf{t>0:F(t) - At ismaximal }.

Here F(-) denotes the empirical distribution function of ni.i.d.-observations drawn from F. We



use the symbol “F” for the empirica distribution function and for the empirical distribution itself.
U,, has the property that

fa) <A <=> U(A) <x.

(This has already been used in Groeneboom [6]). Furthermore we have F“’@o(m =[0t,] wheret,
= argmaX,so{ F,([0,t]) - ALeb([O,t])} = argmax, .. ,{ F(t) - At}. Together with (B) it follows that t,
= U,(A). Hence, by using the monotonicity of the empirical generalized A-clusters we obtain that

foc® sA <=> xe I (4 <=> t;sx <=> U (1) <X,
and hence f“@o and fn coincide.

Note that f - has jumps at x = txj’ j =0,...k,, where the xj are defined in (o) above. By
definition of Fn’©(7\.) we have txj = X, for some k = k(j). On the other hand, the Grenander
estimator has jumps at those points where the slope of Fy, changes, or in other words, where F,
and Fp, coincide. Hence, the sets{l“n,Co(?»j), ] =0,.., Kk} can be constructed by first deriving Fn
and then choosing those points where the slope of Fy, changes as endpoints of the interval starting
at zero. The corresponding levels kj are given by the (left-sided) derivative of Fp, in txj-

3. Asymptotic results

In this section consistency results and rates of convergence for f, - will be given in terms of the
L ,-distance. Let d,(f,g) denote the L ,-distance of two functions, i.e. d,(f,g) = | [f(X) - g(x)| dx.
The L,-distance of two sets C, D is defined as the L ;-distance of the corresponding indicator
functions, so that d,(C,D) = Leb(C A D), where “A* denotes the symmetric difference and “L eb*
the L ebesgue measure.

In order to avoid measurability considerations we define for any function f : Q — R the
measurable cover function f* as the smallest measurable function from Q to R lying everywhere
above f. Of coursg, if f is measurable, then f* = f. Furthermore, let P* denote outer probability.
Note that for any o > 0 we have



P*(f> a) = P(f* > a).

See for example Dudley [2] for more details. We need the following definition:

Definition: C is called a Glivenco-Cantelli (GC)-class for F, or a GC(F)-class, if with
probability 1
SUPcofF(C) -F(C)/* - 0  asn— e,

Theclasses C = Cy, 1,, B Y, E9 are GC(F)-classes for all F. The classC¢ is a GC(F)-class if for
example F has a bounded L ebesgue density (see Eddy and Hartigan [3] for a characterization of the
GC(F)-property of C9). Moreover, al classes which can be constructed out of GC-classes by
means of afinite number of the set theoretic operations N, U, ¢ are GC-classes. As in Alexander
[1] we call such classes k-constructible: more precisely, a class C in a measurable space (X,A) is
called k-constructible from a GC-class D, if there exists a function ¢ from DX to A constructed
from N, U, ¢ such that C < ¢(DX). For example, the class of all at most k-sided polygonsin R2is
k-constructible from the class of all halfplanes, since they can be written as an intersection of at
most k halfplanes.

Theorem 3.1 (Consistency): Suppose that C is normalizing. If f € F, then there exists a
real-valued (non-random) function A = A(n,L), depending on f, with A(n,L) - 0asn — 0 and
L — oo, such that for all L, n > Owith L >n we have

L
BL) dy(fef) <20 [(F-F)T,A)-(F,-F) TW)] dA + A(nL).
In
Hence, if in addition C is a GC(F)-class then we have with probability 1 that
d(f,eH* =0 as N — oo,

Remark: It can be seen from the proof of (3.1) that A(n,L) < 4 Jj“ (L) di + 2 [:’(p(x) da,
where (L) := Leb{x : f(x) > A }. If f isbounded by M, say, then the last integral equals zero for L
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> M (because @(A) = 0 for A > M). Hence, if we denote A(m) = A(n,L), L > M, then the behaviour
of A(m) asn — O reflects thetail behaviour of f. It will be shown below that this behaviour also is
crucial for the rate of convergence of f, .

Moreover, it can be seen from (3.1) that the convergence is uniform over a certain class of
densitiesif A(n,L) tendsto zero uniformly over this class.

Rates of convergence:

We give rates of convergence for two different types of classes C. The first type are so-called
Vapnik-Cervonenkis (V C)-classes, and the second type are classes which satisfy a certain entropy
condition (see (3.3) below).

Note that the L ,-distance of f and f can be bound in terms of the L ;-distance of the sets Fn,©(7‘)
and I'(A). We have by means of Fubinis theorem:

Ao = [ 1] 15 00 -Lrp® d2 ] dx < [ Leb(I,-(2) A TTA) dA
J . n,©( ) K

(32) . ‘ dy(I;, -(A), T(A) di.

Note that thisinequality isaequality if the empirical generalized A-clusters are nested so that they
are density contour clustersof f .

(3.2) shows, that results about the behaviour of d,(I', ~(1), I'(A)) can be used to obtain results
about d,(f,f). Now, estimation of I'(A) by T, ~(A) is “critical” if f has flat parts at level A (see
Remark 2.1). Because of (3.2) such levels might also be critical for the estimation of the density
itself. From this point of view we define “critical levels’ asfollows: Let @(A) = ¢;(A) = Leb( T'(A) )

= Leb{x: f(x) > A}.

Definition: Alevel > Oiscalled a critical level (of f), if ¢ isnot differentiable at A.

Notethat if f hasaflat part at alevel A, i.e. Leb{x: f(x) = A} >0, then ¢ is not continuous at A and
hence such levels are critical.
Now we consider the case that C isaVC-class. VC-classes are defined through a combinatorical
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property as follows: Let D be afinite setin RY. A class C is said to “shatter” D iff every B < D is
of theform C n D for some C e C. If there exists a number k € N, such that C shatters no set
which consists of k elements, then C is called aVC-class and the minimal k with that property is
called the index of C. Examples for V C-classes are the classes of intervals, 1.;, and more general,
the classes‘L,., which consist of all unions of at most k intervals. Every subclass of aVC-class also
is a VC-class as for example the class C (as a subclass of 1,) which corresponds to the
Grenander estimator (see above). Examples for V C-classes in higher dimensions are the classes of
al halfplanes and the classes B9 and E 4.

For the proofs of the theorems given below we shall use results of Alexander [1] about the
behaviour of the set- and function-indexed empirical process. For that reason we shall also use
some of histerminology:

Alexander considers classes of functions or sets, respectively, which satisfy a certain measurability
condition which he called “n-deviation measurable”. Here we shall not give this definition and the

underlying construction of the empirical measure, because all the standard V C-classes which we
are interested in (the classes of balls, ellipsoidsin RY and classes which are k-constructible out of
the former classes as defined above) satisfy this measurability condition. Furthermore, we call C a
(v.k)-constructible VC-class, if C is k-constructible from a VC-class D whose index is smaller

than or equal tov.

Thetail behaviour of the underlying density f is crucial for the rates of convergence of the density
estimator. Thistail behaviour will here be measured in terms of the function

'n

() = ¥ = | o4) di.

JO

Figure 1:
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Theorem 3.2: Let C be a n-deviation measurable (v,k)-constructible VC-class. Suppose that
sup f(x) < e and that f has at most finitely many critical levels. If f € F, then we have

dy(fr e ) * = Op(P(n3 (log n) 13)) asn — oo,

Remarks 3.3: (i) If the support of f has finite Lebesgue measure, then Theorem 3.2 gives the
rate n/3 (log n) ¥3, because in this case ¥(n) = O(n) asn — O. If the support of f has infinite
L ebesgue measure, then W(n) tends to zero (asn — 0) slower than O(n). This leads to slower
rates of convergence of f, .. For example for the normal distribution in R we have ¥(1)) = O(n
(log 1m)¥2).

(i) Asalready mentioned, C,isaVC-class. Hence Theorem 3.2 aso gives arate of convergence
for the Grenander estimator: If f has a bounded support, then this rate is =43 (log n) 1/3
(Groeneboom [6] showed that 3 js the exact rate). Hence, although we did not use any special
properties of the Grenander estimator (such as monotonicity for example) we derived the exact rate
up to alog-term by only using the fact that the corresponding class C isaVC-class.

In the following theorem we also allow more richer classes than VC-classes. The richness is
measured in terms of the metric entropy with inclusion of € with respect to F, which is defined as

follows. Let

N/(e C F) = inffme N: 3 C,.-...C,, measurable, such that for every C € C there
exist i,j € {1,.., mwithC,c Cc G andF(G\C) < ¢ },

thenlog N, (&, C, F) is called metric entropy with inclusion of C with respect to F.

Theorem 3.4: Let C be such that there exist constants A, r > 0 with
(3.3 logN,(¢,C, F) < Ag™ Ve>0.
Suppose that sup f(X) < o and that f has at most finitely many critical levels. Then we have

di(f, o D * = Op(Hey)) asn — oo,
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where

0, = {nVY4log(n), r=1

f n-V(3+), r<i
=
\\ n—1/2(r+l)1 r>1.

Examples. Let C=CY d > 2. If the support of f is compact and sup{f(x)} < e, then (3.3) is
satisfied withr = (d-1)/2 (see e.g. Dudley [2]). Hence it follows from Theorem 3.4 that in this case
n—2/7 , d=2
di(foeds ) * = Opsf n-Y4ogn, d=3
n-1/(d+1), d=>4

Under mild conditions on the tail behaviour of f the assumption of a compact support can be

dropped (see Polonik [10]), so that for example these rates also hold for the normal distribution up
to an additional log-term which comesin through the behaviour of ¥ (see Remark 3.3 (i)).

The case of an underlying uniform distribution:

Theorem 3.2 and Theorem 3.4 can of course aso be applied to an underlying uniform distribution.
However, there they lead to rates which are far from the optimal. This can be seen in the special
case of the Grenander estimator. The rate of convergence of the Grenander estimator is known to
be N2 in the case of an underlying uniform distribution. However, Theorem 3.2 only gives the
upper bound n~Y3 (log n) 3. But we are able to re-derive the correct rate n2/2 up to a log-term
(see Corallary 3.5 (a) below).

Theorem 3.5: Let F be a uniform distribution on a set C with Leb(C) < . Let {3} be a
sequence of real numbers converging to zero asn — eo. Supposethat ||F, - F || = Op(B,) asn —
oo, If C € C then we have

d(f,cf)* = Op(B,log (VS,)) asn — eo,
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Corollary 3.6: Let F be a uniform distribution on a set C with Leb(C) < - and suppose that C
e C.

(a) If Cisan n-deviation measurable (v,m)-constructible VC-class then we have
dy(f,f)* = Op(n¥2logn)  asn— e
(b) If C satisfies the entropy condition (3.3) then we have

dy(f,f)* = Op(ar), asn — oo
where
f n-Y2 |og(n), r<i
n-Y2(logn)2, r=1

o, =
\ n-Yr+Dlog(n), r>1.
4. Concluding Remarks

¢ Computation: In the one-dimensional case, more precisely, for thecaseC=1,, k=1, 2, 3
there exists a computer program of Mduller and Sawitzki [8]) for calculating the empirical
generalized A-clusters. Since empirical generalized A-clusters are minimum volume sets (however,
for arandom parameter o; cf. introduction and Section 2), it is possible to use algorithms for
calculating minimum volume sets in order to calculate empirical generalized A-clusters. In higher
dimensions Nolan [9] gave some calculations for the case C = E9. One first has to calculate all
minimum volume ellipsoids (MVE), i.e. the MVE for all parameters o, = k/n, k = 1,.., n. Thenin
asecond step it is easy to calculate the empirical generalized A-clustersin E9 for al A > 0. For the
case C =C2, Hartigan [4] gave an algorithm for directly calculating a set I, g2(A) for afixed A >
0. However, for classes C of sets with more complicated shapes there exist no agorithms until

now.

¢ Relaxing the assumptions on critical values: Instead of assuming that f has at most finitely
many flat parts (see Theorem 3.2 and 3.4) one can make the following weaker assumption: for
each n > 0O there exists a constant CM7 <coandaregion An c [0,e0) with [0, max(f(x))] \An =
O(n) such that

Leb{x: [f(X)-A/<n}<C, n VAie A,
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and that for each n > 0, C/LT7 ~!'isintegrable over An'

¢ Thecasewheref ¢ F.. This case can be interpreted as awrong model. Let the setsI'(A) be
defined as those sets which maximize the measure H, = F - A Leb over theclassC, i.e.

H,(T=(A) = sup o H,(O).

This definition is completely analogous to the definition of Fn,C(k)- The setsI'~(A) are called
generalized A-clusters. (Suppose that they exist for each A > 0 and that they are unique (up to F-
nullsets)). It has been shown in Polonik [10] that for normalizing classes d,(f,, .f-)* converges
to zero with probability 1, where

fo(¥) = 1F©(/1)(x) dA VxeR.

Here C has to satisfy some additional assumptions (which all are satisfied for the standard class
1,, B9 EdandC9). It is difficult to interpret the function f.. However, it can be shown, that f..
often is a probability density. More precisely, one can show, that the integral of f- over RY equals
lim 5_ ,F(I'=(3)) (see Polonik [10]). Often this limit equals F(I"+(0)), and for standard classes C
we often have F(I'(0)) = 1.

¢ Uniformratesof f, .: Therates given in the Theorems 3.2 and 3.4 also hold uniformly over a
class of densities F if the tail behaviour in this class can be controlled uniformly. More precisely,

let sup 1. ¢ ‘Py(n) = G (n), then we have

Theorem 4.1: Let F be a class of densities such that every f € F has at most finitely many

critical levels. Let C be such that (3.3) is satisfied. Then we have that for every € > O there exists a
constant ¢ > 0 such that

supiep P[ di(f,ch* 2 ¢ Ve(ay) 1 <e forall n>ny(e)

where o, is the same as in Theorem 3.4. If C is an n-deviation measurable VC-class then the

same result holds with o, = n™3 (log n) 13,
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The proof of Theorem 4.1 is the same as the proofs of Theorem 3.4 and Theorem 3.2,
respectively. One only hasto notice, that Proposition 5.2 actually holds uniformly over F (this can
be seen from the proof).

¢ Remark on assumption (7): For many standard classes C we have Fn(Fn,C(k)) =0O(n ) as.
for A > &, max @ N — . Asin Polonik [10] this (weaker) property could be assumed to hold
instead of (y). However, in this case an additional O(n~1) would enter the calculations. Therefore,

in order to shorten the formulas, we prefer to assume (y).
5. Proofs

Proof of Proposition 2.2: Note that

E,.(}) = sup{ (F,- A Leb)(C): Ce C}

Hence E,, - equals the maximum over at most n + 1 (different) linear functions with siope< 0 and
is therefore a monotone decreasing concave function with at most n+1 changes of slope. Choose 0
Shy<A <.< kkn’ k., < n as those values of A where the slope of E,, c changes. It follows from
the above representation of E - that for all A & {A, 44,..., xkn} Leb(T",, (1)) equals the slope of
E,c a A. Hence, for these values of A the monotonicity of Leb(I", ~()) follows. If however the
monotonicity would be violated for avalue A € {1, A4,..., hkn} then the above representation of
E,, c would easily give a contradiction. This proves the first part of (a). Now it again follows from
v K

A-cluster for al A € [xj, 7»1-+1]. This proves the second part of (a).

In order to see (b) first note that Fn,@(kkn) is an empirical generalized A-cluster for al A > xkn.
Hence we have for every A > kkn that E -(A) = Fn(l"n@(kkn)) - A Leb(l“n,C(kkn)). Sinced e C
we have E, ~(A) = 0 and therefore Leb(Fn’C(kkn)) = 0. Otherwise E,, (1) would be strictly
smaller than zero for A large enough which would give a contradiction.

the above representation of E, - that every set I‘n,@(?uj), ] =0,.., k—1isanempirical generalized

1

Proof of Proposition 2.3: Let us first assume that the empirical generalized A-clusters are
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monotone for inclusion. Below we shall show that the general situation can be reduced to this
“case of monotonicity” via symmetrization arguments.

Let kj, j = 1.k, be the (random) levels of assumption (o) (see Section 2, or proof of
Proposition 2.2 above). Note that the assumption A, ., > Oisequivalent tok, > 1. For every j €
0,....k,-1 we define

Ancl) = l“n‘@(kj) \ rn,CO‘j +1)-

The monotonicity assumption says that rn,C(kjﬂ) < Fn,C(kj), j =0,..k,-1. Thus the sets
Anc(), ] =0,..., k-1, are disoint and we have

kn'l
U Acl) = Fn’C(O)\Fn’C(kkn).
j=1

Furthermore it follows together with (2.3) that f, - is constant on A ~(j) with f, ~(X) = A

j+1 for

all x e A (j). Hence we have

, Kn-l Kn-1
(5.1) l fLo0) dx= Y ] 00 dx= D) Ay Leb( Ay ().
: j=0 JAn,c() j=0

Now we derive a representation for kj .1+ Together with (5.1) this representation will give the
assertion. Note that for every j € {0,....k -1} the empirical generalized xj-cluster also is an
empirical generalized hj +p-cluster (see proof of Proposition 2.2). Hence it follows that for every |
€ {0,...k -1} we have

FaCnci)) - Ay LD, c(Ay40)) = BTy c(4)) - Ay44 Leb(T ().

From this equality we obtain that
N = [ R ca)) - FoTa e 1 7 [ Leb(I o(A4q) - Leb(T, () ].

(5.2) = Fo(Ac()) / Leb(A, ().

From (5.1) and (5.2) the assertion follows:
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kp-1

] facC) ax = X F(A,c0)) = FT,o(00) - Fo(Ty oy )-
. i=0

Now we show that the genera case, i.e. the case without the monotonicity assumption, can be
reduced to the special case proven above.

As already mentioned, f, ~(x) can be constructed in the “case of monotonicity” by putting the
glices S C(k) = C(x DX [kj , kj 1,1 = 1.k, one on the top of the other. However, if we
do thisand the sets ", C(k ) are not monotone, then the resulting figure in R%*1 does not equal the
subgraph of f, ~(x), i.e. S, = u SnC(k);t {(xy)e RIXR:0<y<f ncX), xe I'y(0)}.
Nevertheless, in any case, the volume of S cin R%1 equals the L,-norm of f, (x).

The volume of S - does not change if some of the Sn,CO\’j) are replaced by sets with tbe same
volume. We shall replace the sets FHIC(X) by their so-called “ Schwarz symmetrizations’ rn,C(x).
They are defined as balls with midpoint zero which have the same L ebesgue measure as I', -(1).
The sets Fn@(?‘) are monotonically decreasing (in A) for inclusion, because the L ebesgue measures
of the empirical A-clusters are decreasingin A (Propositi on 2.2). Hence, replacing the sets I, (1)
i- ) X [kj‘, kj_l], j=1,..., k_ one
on the top of the other, gives us afunction fn,@ which has the same properties as f| - used in the
above proven special case: It is a pure jump function which takes the same constant values 7Lj, j=

by 1"n () and putting the resulting symmetrized slices 1"n (.

0,....k,-1 as f, - on sets which have the same Lebesgue measure as the sets A, ~(j). By
congtruction ¥n,© has the same L j-norm asf, . This L;-norm can be calculated as in the “case of

monotonicity” treated above.
1

Proof of Theorem 3.1: As mentioned already, we shall use results about the empirical
generalized A-clusters. One of these results is the following inequality which has been used in
Polonik [10, 11]. (For completeness we give the proof of the inequality below.) If T'(A) € C then
we havefor every n >0

d, (I, c(A) = Leb{x [f(X)-A]<n}
(5.3) + ! [(Fy-F) (I, ) - (Fy - F) () 1.
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For any measurable set A < [0,e0) define
foclx A) = |, 1Fn,@(/1)(x) dA.

Analogously we define f(x, A) with T'(A) instead of Fn,C(k). We need the following lemmawhich
will be proven below:

Lemmab.l: For every measurable set A c [0,0) and every normalizing class C we have
dyfhet) < 2 dy(F, (), T)) dir 2 [ f(x, 49) dx
’ JA ’ .

where A€ = [0,e0) \ A.

ForO<m<LletA, =[n,L]. ItfollowsfromLemma5.1 that

IA

(54)  dy(fyo ) f(x, A, dx

2 "Ldl( (), ) dA + 2
n |

Let @(A) := Leb(I"(A)) = Leb{x : f(x) > A}, A > 0. The second integral on the right-hand side in
(5.4) can be written as 2[; o(A)dA + 2[2 ¢(A) dA. Both integrals can be made arbitrarily small be
choosing L large enough and 1 small enough, respectively. (Note that J:’ o(A) dA = | (F(x) - L) dx
and ];‘ () dr = | (MAf(x)) dx ). Asfor thefirst integral on the right-hand side in (5.4) it follows
from (5.3) that

"Ldl( (), M) dA < "L Leb{x: | f(X) - A| < n} dA
In m

L
+ ! ’ [ (F,-F) (I,c) - (F,-F) (ITA) ] dA.
In

Hence we have

L
di(foe )< 207! [(F,-F) (I, ) - (F,-F) (ITY)) ] dA + A(n.L)
In
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with

AL = 2 f(x, (4,9 dx + 2 " Leb{x: [f(x) - A| < i} dA.
. In

Now we show that A(n,L) > 0asm — 0and L — . We already know (see above) that the first
integral in the expression of A(n,L) convergesto zero asn — 0 and L — oo, respectively. Hence it
remains to consider the second integral. Note that for n small enough we have

(55  Leb{x [f(})-A]<n}=@(@-n) -0+ n) - Leb{x:f(x)=A1-n}.

Since there exist at most countable many levels u with Leb{x : f(x) = u} # 0 we have

L L
Leb{x: [ f(x) - A|<n}dd = ’ O(A-m) - @A+ n)dA
In n

21 L+
- ’ o(%) dA - ’ o(2) dA.
J0 JL —-n

Sincef isintegrable, both integralsin the last line converge to zero asmn — 0, and therefore A(n,L)

— 0asn —> 0and L — <. To finish the proof of the theorem it remains to show that the
measurable cover of

b [ (Fy-F) (I, cW) - (F,-F) (ITA) ] dA
In

converges to zero with probability 1 as n — < for every fixed n and L with L >n > 0. But this

follows from the GC(F)-property of C.
1

Proof of Theorem 3.2 and Theorem 3.4: Let o, be as follows:

f n 3 (logn)® if CisaVC-class

a =
" ™| defined asin Theorem 3.4 if C satisfies (3.3).
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First we give an outline of the proof in some heuristic arguments. In (3.2) we showed that
(5.6) d(f, e F) < | dy(l,c(A), ITA)) dA.

Therefore we look at the behaviour of dl(FnYC(X), I'(A)). If ¢ isdifferentiable at A then Leb{ x: |
fX) -A|<n} =0(M) (cf. (5.5)), and one can show (see Polonik [11]) that in this situation
d (I, (M), T(A)) = Op(cr,). However, in general these rates do not hold uniform over A. But we
shall show (Proposition 5.2 below), that there exists a function g, (i) such that for a “large

enough” (see below) region A,  [0,) we have

SUP ;o 4 [ Gy(A) AT, c(A), TTA) 1% = Opler,).
If in addition g, ~1(X) isintegrable over A, then it follows that

dy(foes ) = Op(a,

g.(2) ld1).
JAn

It will turn out that o, -[An gn(k)‘1 d\ =¥(a,,), such that the assertions of Theorem 3.2 and
Theorem 3.4, respectively, follow. Note that in genera dl(l“n@(?»), I'(A)) need not converge to
zero at critical levels A (cf. Section 3). Therefore, in (5.6), we shall leave out “small”
neighbourhoods around critical levels, such that these neighbourhoods tend to zero fast enough as
ntendsto infinity. Thisleads to the “large enough” region A, considered above.

Asabovelet (1) := Leb(I'(A)) = Leb{x : f(x) > A } and let ¢' denote the derivative of ¢ with
respect to A. The proof of the next proposition will be given at the end of Section 5.

Proposition 5.2: Suppose that the assumptions of Theorem 3.2 and Theorem 3.4,
respectively, hold. Let o, be asaboveand leta=a andb= b, 0< a< b < e, such that the
interval (a- o, b+ o] contains no critical level. For A € (a,b) let ém be defined through the
equation

Leb{x: [f{)-A/< &} = o(A-0r) — eA+ ) = —2¢'(§; ) o,
Then we haveasn — o

SUP ;¢ apy L1665 [V U dy (T, (D), TI) I* = Op(er).
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Let M = sup f(x) < . We obtain from Lemma5.1 with A = (o, ,M) that

‘M ‘ot
d(foc.f) < 2| d(F,c), I))+ 2 ) @(2) dA

Jo

Now we consider thefirst integral on the right-hand side. To simplify the notation we assume that
f has only one critical level A, > 0. (The proof for the case of more than one critical level is
completely analogous). Suppose that A, < M, then we have

‘Ao — on

dy(I7c(2). T(2)) dA

M
dy(I,c(2). T(A)) d2

JOn

Jon

; "l‘” Ay (T, (), T() d

0~ On

(5.7) +

dy (I}, =(2), T(A)) dA.

),o+05n

The second integral on the right-hand side of (5.7) is of the order O(c,,), because for any fixed ¢
> 0 we have for large enough n (such that o, < €) that

SUP ) e (29 - o g + ) ST (D) TTA))
S SUP ;¢ (- o i+ o) [ LEOTL (D) + Leb(ITA)) ]
< Leb(T, (4 - ) + Leb(IT4, - €))
< 2Leb(IThy - €) + Op(1) = Op(d).

The second inequality of this chain of inequalities follows from the monotonicity of the functions A
— Leb(I'(A)) and A — Leb(I', (1)) (for the latter see Proposition 2.2) and the third inequality
follows from the consistency of I',) (A) for all A that are no critical level (Polonik [10, 11]).

Now we consider the first and the third integral on the right-hand side of (5.7). They both are of
theform [: dl(l“n@(k), I'(A)) di, where aand b fulfill the requirements of Proposition 5.2. Hence
it follows from Proposition 5.2 and the definition of §,  that asn — o
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b .b
i c(2), TO) 1 < Opu(e) | 1 0(G5,)/ v 1] o2

In

Op:(0g) [ (b+ o -a) +

b
J@(Sh,0)/ dA]

‘b
= Op(ar) + OP*(’ eA - o) — @A +0oy) dA)

a

raton 'b+0!n
= Op(0) + op*(’ o(%) dA - ’ o) d.)

Ja—an b-on

ratan
< Op(ar) + op*(’ 9(2)d2 )

Ja—an

Thelast inequdity holds since ¢ is decreasing. Now we apply these upper bounds to the first and
the third integral on the right-hand side of (5.7). This gives

A +20(n
dy(T, (A, TU)) dA < Opu(oy) + op*(’ e dL ) = On(ar),
J ;LO + On E /10
and
)'0 — On 200
dy(T, (A), TU)) dA < Op.(oy) + op*(’o ¢ dL ) = On(¥(ay)).
J0n J

The assertion of the theorems follow by collecting the just derived upper bounds of the three
integrals on the right-hand side of (5.7).

For A, = M we of course split the integral on the left-hand side into two integrals extended over
(ot Ag - o) and (A - o, Ap), respectively. Upper bounds for these two integrals can be
obtained analogoudly to the one given above. They lead to the same resullts.

1
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Proof of Theorem 3.5: Let M = M(C) = 1/ Leb(C). First we show that
(5.8) [M-A] [Leb(CAT, ()] < 2supe_FC) - F(C)/.
This can be seen as follows:
H,(I'(A) - Hy(I7, o(A)) = [ F(C) - A Leb(C) | —[ F(I}, () - A Leb(I, () ]
= [ 1- ALeb(C)] - [ Leb(I,~(A) / Leb(I, (D)) - A Leb(I, (A)) ]
= [1/Leb(C)- 1] [ Leb(C) - Leb(T, (A)) ]
=[M-2] [Leb(CAT, (D) ].

Hence
[M-A] [Leb(CAT, (M))] < (F,-F) (T,c(A) - (F,-F) (C).

This proves (5.8). An application of Lemma5.1 with A = [0, M] together with (5.8) gives

‘M
dy( e ) <2 ’O Leb(T, (2) 4 C) dA

"] Leb(r, () AC) d

M-Bn

= Op(B,) ‘;)M'ﬁ” (M(C) - ) 1dA+ " Leb(I;, -(4) A C) dA

M-Bn

Now, the first term in the last line is of the order Oy(B,) O(log 1/B,). It remains to show that the
second integra in the last lineis not of dower order. Actually we have

Leb(I', (1) AC)dA = Op(B,).
IM-fn

This follows from SUP.g <k <M Leb(I', ~(A) A C) = Og(1), which in turn can be proven by
n :

analogous arguments as given after (5.7) above.
1
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Proof of Corollary 3.6: By taking oo = 1/2 it follows from Theorem 5.3 that in the situation of
@, IF,-Fll-= Op(n‘ﬂz), and in the situation given in (b) we have

n-1/2 r<i

IF,-Fll-=0O4 nY2ogn, r=1
n-l/(r+l)1 r>1

Now the assertions follow directly from Theorem 3.5.

Proofs of Section 5:

Proof of inequality (5.3): First note that

H,(IY) - H,(C) = "m) (F(X) - A dx - "C(f(x) - 1) dx

’ (f(x)-/l)dx-’. (f(X) - 1) dx
Irane le\ry

’ 1) - A | dx.
Iriyac

To shorten the notation we denote Dn,C(k) = Fn,©(7u) AT (M), so that Leb(Dn‘C(k)) = dl(l“n@(?»),
I'c(A)). Write Leb(D,, (1)) asasum of two terms:

Leb(D,, ~(2))
= Leb(D,, () N {x: [f(X) - A /< 1}) + Leb(D,, (A N {x [(x) - 1 [ > }).

The first term on the right-hand side is dominated by F{x: | f(x) - A | <n}. Asfor the second term
we have

H,(I) - Hy(I, (1) = .D w/f(x) - Adx
JUn,C
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21 Leb( Dn,C()“) N{X | fX)-A|=>n}).
It remains to show that

H,I) - Hy(T, (W) < (F, - F) (I}, c(A)) - (F, - F) (TTA)).

But this easily followsfrom 0 < H,, (T, c(A)) - H,,; (I'(A)) by using the fact that H, =H, + F, -
F.
1

Proof of Lemma 5.1:  For every given set A c [0,%) it follows immediately from the
definition of f(x, A) that f(x) =f(x, A) + f(x, A°). The analogous decomposition holds for f_ .
Hence,

f(x, A) dx

dy( £ of) < [ o0 A) - fx, A) Jox + [ £, (x A9 dx +

(5.9) f(x, A%) dx.

dy( £ (s A) £ A)) + [ £ (% A9 dx +

Now consider the second integral in the last line. Sincejfn@(x) dx = 1 (Proposition 2.3) we have:

A9 dx = 1 - l £ o(x, A) dx

0 dx - [ f(x A) dx
e - [

f(x, A%) dx

[' f(x, A) - f, -(x, A) dx +

< dy(f, (), (-, A)) + f(x, A%) dx.

Together with (5.9) the assertion follows.
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Proof of Proposition 5.2: The idea of the proof is the same as for the proof of Theorems 3.6
and 3.7 in Polonik [11]. However, since here we have to use the function-indexed empirical
process (and not only the set-indexed empirical process as in Polonik [11]) we need severa new
arguments and therefore we give the complete proof.

To shorten the notation let g,(A) = (I9'(§;, )| v 1)1, X e (ab). Choosen = a, in (5.3). Then, by
definition of E,,}hn, multiplication of (5.3) by g,(A) leadsto

9,(A) Ay (I, (M), T(A) <20+ o, g (W) [ (F,-F) (I, e(W) - (F,-F) (IA) ]
Hence, we obtain

d;(9n(A) I}, (1), 9,(4) TT2))
<20+ a7 [(Fy- F) (94(4) I, c(A) = (Fy - F) (9y() T 1,

(5.10) =20+ ot (Fy-F) [ ) (I, M\ - T,cWH\I(A)) ]

where we identify sets with their indicator functions and for any measure F and any integrable
function g we denote F(g) = jg dF. Let G- ={ r(C\D - D\C), r<1, C, D € C} and for a sequence
{0} of positive real numbers define

An = { &Jp A€ (a,b) dl(gn(/l) Fn’@(ﬂ’)’ gn(ﬂ’) I_(A’)) >3 6n } and

B,={3ge G, suchthat || gl & > 3 8, and
gl e <20,+ 20,7 [(F,-F)(9) [}

where for any measure G on RY, || - |l denotes the L ;-norm with respect to G. Then, since for
C,De Cand0<r<1wehaved(rC,D) = [((C\D - D\C)|| | , it follows from (5.10) that A, =
B,,- Hence, in order to prove Proposition 5.2 we have to show that there exists a constant C > 0
such that for 6, = C o /3 we have P*(B,) — 0 asn — . Note that with this choice of 6 we have
B, c C,, where

C,={3Fge G, suchthat|| g|l; &> C &, and
1<2C+ 20, [(F,-F) (9)//||9||1Leb}
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We shall show that P*(C) — 0 asn — co. In order to prove this it suffices to show that there
exists aconstant C > 4 such that

P*(wpg‘fG@:”g”l,Leb>3C0‘n/(Fn_F)(g)//”g”1,|_eb>an/4) —0 a Nn—ee

In the following the supremum is always extended over g € G which satisfy a certain condition.
To shorten the notation we omit “g e G.*. We have

PH(SUP g > Coy (Fa= P @11 G, > 0, /2)

< P*(sup 9|I1,|_ebSC2j o, | (F,-F) (@) /> C27 e ?)

—

Pr(sup 4 ll1 e SC2 o, [v(Q) [ >C21nV2¢2)

—

IN
M DM 1

1]
o

o
>

where v, = nJJZ(Fn - F). In order to prove that the last sum converges to zero as n tends to infinity,
we shall use results of Alexander [1]. For the case that C is aV C-classes his results can be used
directly. However, for the case that C satisfies (3.3) we need to extend his results from the set-
indexed to the function-indexed empirical process. We formulate this extension (Theorem 5.3,
below) for a special case such that we can use it directly. For aclass G of functionswith G ¢ Lp(F)
let

N, g(& G, F) := inf{me N: 3 g;,....g,, measurable, such that for every g € G
thereexist i, € {1,.., m} withg, <g<g and|| g - g ll,r < & },

where || - |||D,F denotes the Lp-norm with respect to F. Then log Np,B(e, G, F) iscalled metric
entropy with bracketing of G in LP(E).

Theorem 5.3 (Alexander): Let G be a class of functionswith 0 <g < 1. Let L(x) = log(x v
€), N >1, o > supy gvar v, (g), with v, = nY2(F, - F) and define ¥(L,n,a) = L2/ 20(1 +
L/3n2¢;)
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Part |: Supposethat G is a n-deviation measurable class of functions such that the graph region
class{ {(x.t), g(x) =t >0}, g € G } isa (v,k)-constructible VC-class. There exist constants K; =
K,(v.K), i = 1,2, such that if

L> OCl/Z
and L> K, nY2L(n)
and L> K, (aL(Va))Y?,

then
P*(supgeG [vy@ /[ >L) < 5 exp{-1V2 ¥(Lno)}.

Part I1: Suppose that
log N, g(e, G, F) < A e’ Ve>0.

Then there exist constants K; = K,(r,A), i = 1,2,3, such that if

Kia@=-0D2 jfr < 1
L >\ KyL(n) ifr=1
\\K3n(r—1)/2(r+1) Yr

then

P*(supgeG [vy@ /[ >L) < 5 exp{-1V2 ¥(Lno)}.

Part | of Theorem 5.3 directly follows from Theorem 2.8 of Alexander [1]. The proof of part I
essentialy is the same as the proof of Corollary 2.4 of Alexander [1]. The changes that have to be
made will be outlined below after the proof of Proposition 5.2.

Remember that M = sup {f(X)} <. Let C> 0 beaconstant. It will turn out that C can be chosen
to be bigger than 2 asrequired. Define

Gepy={9€ 6 llallye < MC2 0},

thenwehave p,; < P*(sup . [v,(f)/> C21nl2¢2).

30



Note that for any g e G- wehavevar(v(9))<|l g ||22,F <N1gllyrsM 1 glly g SO that

SUP geg . var( v,(9)) sMC2 ¢,

We now want to apply Theorem 5.3 for fixed nand j witho.=M C 2 o, andL = C 21 n12 ¢ 2.
First note, that if log N, (e,C,F) = O(e™), then log N, g(€,G,F) is of the same order. Thisis easy
to verify. Now one has to check that the conditions of Theorem 5.3 are satisfied with this choice of
o and L. Thisisan easy calculation, which in addition shows, that the conditions are satisfied for
al C>C,, C,large enough, independent of n and j. Hence, as required, C can be chosen to be
bigger than 2. It follows that

2. P <5 exp{-U2 YC21n2g2nMC2q)}
i=1 j=1

5 exp{ —(C2no3/ (8M (1+ o, /6M) }.
j=1

)

Sinceocn—>0asn—>ooandnocn3zlognitfollowsthat z pnj—>0asn+oo.
j=1

Remarks on the proof of Theorem 5.3, Part IlI: The proof of Alexander [1], Corollary
2.4, goes through almost word by word, if one replaces Sj by 8j2 and uses L ,-bracketing functions
instead of L,-bracketing functions. (In constructing the Sj one has to use Lemma 3.1 with H(x) =
log N, g(x2,G,F) instead of H(x) = log N, 5(x,G,F) ).

Alexander formulated this result only for the case that G is a class of sets, where he gave the
condition on the metric entropy in terms of the L,-bracketing numbers. However, for classes of
setsonehas || g |7, =11 g [l SO that N, (e, G, F) = Ny g(€%, G, F). Hence, for classes of setsit
does in principle no matter if the conditions are formulated in L;-or in L,-bracketing numbers.
However, for function classes G with0O<g<1foralge Gonehas| g ||22,F <9l f so that,
heuristically speaking, in order to control the L ;- aswell asthe L,-norm of functionsin G, one has
to give conditions in terms of the L{-norm.
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