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Abstract

In this paper we investigate the merits of using a data taper in non–linear functionals of

the periodogram of a stationary time series. To this end, we show consistency for a general

class of statistics of the form  
-π
π

 Λ(ω) ζ(IT(ω))  dω, where Λ(ω) is a function of bounded

variation and where ζ is allowed to be a non–linear function of the periodogram IT(ω) of

the tapered data. The key step in deriving our asymptotic results is an Edgeworth

expansion for the finite Fourier transform of the tapered data, which do not have to follow

a particular distribution (i.e., we allow for non–Gaussianity). Important applications are

estimation of 
-π
π

 Λ(ω) g(f(ω))  dω, choosing ζ to be a suitable transform of a given

function g (see Taniguchi, 1980), the peak–insensitive spectrum estimator of von Sachs

(1992), where ζ is chosen to be a bounded (robustifying) Ψ-function, and the parametric

approach of Chiu (1990) on robust estimation of the parameters of the continuous spectrum

of the time series.

Keywords: EDGEWORTH EXPANSION; PERIODOGRAM; DATA–TAPER;

NON–LINEAR FUNCTIONALS; PEAK-INSENSITIVE SPECTRAL ESTIMATOR.

MSC Subject Classification 1991: Primary 62M10; Secondary 62E20.



1

1. Introduction

There is quite a number of important problems which demand for replacing a linear

functional of the periodogram of a stationary time series by a non–linear one (in

estimating the spectrum, autocovariance or related functionals): Either this is motivated by

the goal of estimating itself a non–linear function of the spectral density (cf. Taniguchi,

1980). Or it is rather the situation of the data sampled from an underlying model which

demands for some modification of the pure periodogram (as in the peak–insensitive

approaches of Chiu, 1990, and von Sachs, 1992, i.e. in the situation of outliers in the

frequency domain).

However, one will hardly find the introduction of the use of data tapers into the

mentioned problems, though using a taper in periodogram–based estimation problems is a

well–known remedy to reduce leakage effects (see, e.g., Tukey, 1967, Bloomfield,

1976, Dahlhaus, 1983). The difficulty in deriving both asymptotic and finite–sample

properties of these non–linear functionals with the use of data tapers lies in the changing

correlation structure of the tapered periodogram, which, up to now, was successfully

solved only for linear functionals (see Brillinger, 1981; Dahlhaus, 1985, 1990; Janas,

1993).

In this paper, we provide both the theoretical and practical background for using data

tapers. To this end, we show consistency of a general class of these taper–modified non-

linear functionals, without assuming a particular underlying distribution of the considered

time series (as, e.g., the Gaussian, which facilitates proofs immediately; see the remark to

Theorem 3.1). This asymptotic result enables us to investigate how using a taper

considerably improves the performance of the mentioned estimating procedures. In

particular, this has an important application in the context of detecting periodic

components in a stationary time series (see Chen, 1988, and von Sachs, 1993): We show
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how replacing classical (non–consistent and biased) linear spectrum estimators by

(consistent and asymptotically unbiased) peak–insensitive (i.e. non–linear) estimates

gains testing power, especially in situations where the detecting procedure would fail

without use of a data taper.

In the following preliminaries we give the global assumptions needed throughout the

whole work. The main results are collected in section 3, i.e. we give our main theorem on

consistency and all of the applications yielded. Section 4 deals with the key step in

deriving this theorem, i.e. Edgeworth expansion of finite Fourier transforms of tapered

data. In Section 5 we present some simulations, and, as a particular striking example, we

demonstrate the improvements of the taper–modified peak–insensitive estimator of von

Sachs (1992) in the problem of detecting periodic components. The last section, finally,

gives the proofs.

2. Preliminaries

We gather the assumptions needed in this paper:

(A1) {Xt}t∈Z is a real-valued linear process such that  Xt = ∑u∈Z  au εt–u , where 

εt  are i.i.d. random variables satisfying E ε1 = 0, E ε1
2 = 1, E ε1

s+1 < ∞ 

for some fixed s ≥ 3.

(A2) ε1 fulfills Cramér's condition, i.e.

 ∃ δ > 0, d > 0    ∀ |t| > d | E exp(itε1) | ≤ 1 – δ .

(A3) The filter coefficients au decrease exponentially, i.e.

∃ 0 < ρ < 1   ∀ large u   | au| < ρ
|u|

 .
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(A4) h: R → [0,1] denotes a data taper with bounded variation,

h(x) = 0  for x ∉ (0,1)  and  H2 :=  
0

1

h
2
(x) dx > 0 .

Given a sample X1,…, XT of size T, let  (ht⋅Xt ) t = 1,…,T denote the sample based

on the tapered data where ht = h(t/T), t = 1,…, T.

We consider the periodogram of (ht⋅Xt ) t = 1,…,T , i.e. 

                         IT(ω)  =  (H2,T)–1⋅ dT(ω) dT(–ω) ,     ω ∈ ∏ := (–π, π)  ,                (2.1)

where  dT(ω) = ∑
t = 1

T

ht⋅Xt  e
-iωt  is the finite Fourier transform of the tapered data and

where  H2,T = ∑
t = 1

T

ht
2  denotes the appropriate norming factor (with H2,T ~ T H2 ).

Let f(ω), ω ∈ ∏, denote the spectral density of X.

Finally, we assume

(A5)   ∑ = lim
T→∞

D((H2,T)–1/2(dT(ω1), … ,dT(ωd))')  is positive definite for fixed d ∈ N,

   where D denotes the dispersion matrix.

3. Main Results

3.1 The main theorem

Given a sample X1,…, XT of size T, consider the following kind of statistics

                            HT :=  
-π
π

 Λ(ω) ζ(IT(ω))  dω . (3.1)

In (3.1) assume that

(B1)      Λ(ω), ω ∈ ∏, is a real-valued function of bounded variation.
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Let Mr(m) := sup
x

(1 + ||x||)
–r 

|m(x)|  (r ∈ N) for any measurable function m: R → R . (3.2)

Assume further that

(B2)    ζ is a measurable function with  Ms0(ζ2) < ∞ , where s0 is s or (s – 1) according 

    to s is even or odd.

Note that unlike in most of the classical problems ζ may be a non–linear function!

Of course, the choice of ζ depends on the kind of problem considered (cf. Introduction):

If one wants to estimate the theoretical counterpart H of the quantity HT, e.g., a certain

(smooth) function g of the spectral density f(ω), then ζ has to be chosen dependent on g

(as it is the case in our first application below, in Theorem 3.2).

If, however, the choice of ζ is motivated by the sampling situation, i.e. the underlying

model (an outlier model, e.g.), then the form of H as asymptotic limit (in the mean) of

HT,T → ∞, determines the form of ζ (as it is in Theorem 3.6 below). Hence, we merely

define H to be the limit in the mean of HT, i.e. 

                  H  := lim
T→∞

 E HT ,                                                                             (3.3)

and do not specify it further, at this place.

With this definition (3.3) the main theorem of this work states as follows:

Theorem 3.1: Assume (A1) – (A5) , (B1) and (B2). Then, for all ε > 0,

                           P { | HT – H | > ε } →  0    as  T → ∞,

                          i.e.  HT converges weakly to H, as T → ∞.

The proof is mainly a consequence of an Edgeworth expansion of the finite Fourier

transform of the tapered data Xt. As this is a result of its own interest, it is derived in

section 4. How this is used to show Theorem 3.1 can be found in the appendix.
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Remark: Assuming Gaussianity of the time series Xt facilitates proofs considerably,

because, in this case, the p.d.f of (H2,T)–1/2⋅ dT(ω)  is the same as its asymptotic limit,

i.e. Gaussian (all of the asymptotics is in the elements of the covariance matrix of

(H2,T)–1/2⋅ dT(ω) , which still is not straightforward to handle, cf. the comments

introducing Theorem 4.3). In this case, under slightly more stringent moment conditions,

it is possible to derive asymptotic normality of the statistic HT (see von Sachs, 1992,

Theorem 3.2).

Let us replace the integral HT by the respective sum over the appropriate grid

frequencies of the interval ∏, the so–called Fourier frequencies ωk = 2πk
T

 , k = – N,…,

N, N = [T/2]. This makes no difference for our result as the error of approximation is

always of smaller order than the convergence considered in Theorem 3.1.

We now give a list of important consequences of this main result, where the

following two theorems and their corollaries deal with a nonparametric set up:

3.2. Application: Estimating a function of the spectral density

First we consider the following situation: Let ζ(x) = L–1{g(1/t) 1/t}{x} for an

arbitrary function g, such that ζ(x) fulfills Assumption (B2), where L–1{G(u)}{x}

denotes the Laplace inverse transform of G(u) at argument x (see Taniguchi, 1980). Note

that 

              L{F(x)}{u}  =   
0

∞

F(x) exp {– u x} dx  

  denotes the Laplace transform of F(x) at argument u, whereas the inverse writes as

               L–1{G(u)}{x}  =  (2πi) –1 
σ– i ∞

σ+i ∞
G(u) exp {u x} du  ,

  where σ is greater than the abscissa of absolute convergence.
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With this,  H  =   Λ(ω) g(f(ω))  dω , and we have the following

Theorem 3.2:   Under the assumptions of Theorem 3.1 

                 HT  =  
–π

π
Λ(ω) L–1{g(1/t) 1/t}{IT(ω)} dω   converges weakly to

                        H  =  
-π
π

 Λ(ω) g(f(ω))  dω  ,  as T → ∞.

Note that (A1) and (A3) imply that the spectral density f(ω) is bounded away from above

and below. Furthermore, we observe, for comparison only, that with (A1), (A3) and

(B2) the assumptions (1 – 3) of Taniguchi (1980) are either fulfilled or weakened as far as

we are concerned with proving consistency results (by a completely different technique,

not restricted to the case of a Gaussian time series)! Note also that unlike Taniguchi we do

not restrict to Λ(ω) being continuous; in particular we consider Λ(ω) = χ(0,λ)(ω), for

fixed 0 < λ < π, as a choice of interest.

Theorem 3.2 has a couple of corollaries for particular choices of g:

Corollary 3.3:  Let g(x) = xr , 0 < r < ∞. If  the number s0 in (B2) obeys  s0 ≥ 4 r ,

then Theorem 3.2 provides a consistent estimate of a functional of the r–th power of the

spectral density with  L–1{g(1/t) 1/t}{u} = u r / Γ(r+1) .             

The next corollary provides an estimate of the prediction error variance. The following

additional assumption on the characteristic function of ε1 is needed:

(B3)    For some integer p > 0, | E exp(itε1) | p dt < ∞.

Corollary 3.4: Let g(x) = log x. Then, under the additional assumption (B3),

  Λ(ω) log{α IT(ω)} dω  is a consistent estimate of   Λ(ω) log{f(ω)} dω , where  α :=

exp γ (with Euler's constant  γ = 0.57721...).
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This has important consequences: In situations which are governed by strong

leakage, the estimation of the prediction error variance, which is proportional to

  log{f(ω)} dω , is heavily biased, if one does without using a data taper.

Corollary 3.5:  Let g(x) = 1/ (x+ε), for some ε > 0. Then, with  L–1{g(1/t) 1/t}{u} =

ε–1 exp (–u / ε)  a consistent estimate of the "almost–inverse" of the spectral density is

provided (which might be useful for deriving MA-type spectral estimates).

3.3. Application: Nonparametric peak–insensitive spectrum estimation

Secondly, we turn to the situation of peak–insensitive kernel spectral estimation, as

introduced in von Sachs (1992):

There we are dealing with a nonparametric spectral estimator fT(α), which is defined as

the root, pointwise in α ∈ ∏, of the following equation in s > 0

                       HT(α,s) :=  T –1 ∑
k= –N

N

Kb(α–ωk)  Ψ (IT(ωk)
s  – 1)  =  0 ,                      (3.4)

where  Kb(ϑ) := b–1 K(ϑ/b) with a smooth kernel function K with compact support, with

smoothing parameter (bandwidth)  b = bT → 0  and  Tb → ∞ , as T → ∞ , and where Ψ

is some smooth bounded function (motivated by robust M–estimation in the frequency

domain), with   
0

∞

Ψ(x – 1) e–x dx = 0  to ensure asymptotic unbiasedness of the resulting

estimator fT(α). Note that (3.4) derives as a modification of the classical kernel spectral

estimator (smoothed periodogram) of the form,

                                  fT(α)  =   T –1 ∑
k= –N

N

Kb(α–ωk)  IT(ωk)                                     (3.5)

(choose Ψ(x) = x to end up with an estimator being asymptotically equivalent to (3.5)).

For the following we need an additional set of assumptions (which correspond to the

respective ones in Theorem 3.1 of von Sachs, 1992, i.e., (A1) and (A5). – Note that (A4)

of that theorem implies our Assumption (A5)):
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(B4)   Ψ is a bounded and Lipschitz–continuous real function with Ψ(0) = 0, having

bounded derivative Ψ' (except at a finite number of points) with Ψ'(0) > 0. (If Ψ is not

differentiable at 0, we assume continuity of Ψ' from the right and from the left with

Ψ'(0+) > 0 and Ψ'(0–) > 0 .). Further let   
0

∞
Ψ(x–1) e–x dx  = 0 .

(B5)    For the bandwidth bT in (3.4) assume that

                          TbT
2+ε → ∞   as  T → ∞ , for some ε > 0.

The convergence of fT(α) to f(α), for a fixed α ∈ ∏, is studied by the convergence of

HT(α,s) for s = f(α):

To match with our notation, Λ(ω) = (2π)–1 K((α–ω) / bT) / bT  and  ζ(x) = Ψ(x / f(α) – 1)

such that, by the above assumption on Ψ, lim
T→∞

 E ζ(IT(α)) = 0. Then, consider the

respective integral version of (3.4) with s = f(α), i.e.

            HT  =  HT(α)  :=  (2π)–1  
– π

π
bT

–1 K((α–ω) / bT)  Ψ(IT(ω) / f(α) – 1)  dω 

with      H  = lim
T→∞

 E HT  =  (2π)–1  K(β) dβ ⋅  Ψ(x – 1) e–x dx  =  0

(note that Kb(ϑ) is an approximate convolution identity). For details, see von Sachs

(1992), Theorem 3.3 for the convergence of HT(α,f(α)) and Theorem 3.1 on the

consistency of fT(α), where, in the proofs, the tapered situation for non–Gaussian data

was not covered. This gap is now closed by the following

Theorem 3.6: Under the assumptions of Theorem 3.1 and (B4) and (B5) the peak-

insensitive estimator fT(α), implicitly defined by (3.4), is a consistent estimator of the

spectral density f(α), for all α ∈ ∏.

Note that the consistency of fT(α) is yielded by the weak convergence of HT to H (see the

proof in the Appendix), where again the error between sums and integrals is negligible.
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Moreover, as important application, Theorem 3.6 holds true for time series data Yt which

are modelled as superposition of Xt with some periodic components St, consisting of P

periodic components (P ≥ 0 unknown) with unknown constants Ap and λp ≠ 0, and with

phases Φp uniformly distributed in (–π,π), i.e., Yt  =  St  +  Xt , where

                                        St  = ∑
p= 1

P

Ap cos{λpt + Φp}  .                                            (3.6)

I.e., the spectral density f of X can be estimated correctly even at the location of the deter-

ministic frequencies λp, i.e. without an asymptotic bias due to the peaks caused by St.

Note that Assumption (B5) implies the assumption (A5) of Theorem 3.1 of von Sachs

(1992) for a model of the form (3.6).

While it is well–known how, for S = 0, the performance of classical nonparametric

spectral estimators are improved by the use of a taper (see, e.g., Dahlhaus, 1990, Fig. 1),

we now want to give an example which is typical for the situation in the presence of

periodic components:

Let Xt be an AR[2] – process with a root of radius 0.88 at frequency 0.864 π. In the

following figures the spectral density f(α) of Xt  is shown as 'true spectrum'. As periodic

signal we add St = A⋅cos (0.48 π⋅t) with A = 4.0 and compare the performance of the

classical kernel estimator fT(α) defined by (3.5) with the peak–insensitive fT(α), where

we use a monotone Ψ–function with cut–off point c = 1.0 (see (5.1)). Both estimators are

with and without tapered data (using a cosine taper, see (5.2)). While a detailed

simulation study is postponed to section 5, we want to present two realizations of the

simulation runs, where the sample size is chosen to be T = 512 and the bandwidth b =

0.08 for all estimators:
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  Figure 3.1: AR[2] – process with one periodic component at 0.48 π (A = 4; T = 512):

0.00 π                  0.20 π                 0.40 π                  0.60 π                   0.80 π                  1.00 π

                 y – axis scaled logarithmically

          
  true spectrum

         
  non – robust kernel estimator, non – tapered, b = 0.08

          
  non – robust kernel estimator, 100% – tapered, b = 0.08

          
 robust kernel estimator, non – tapered, monotone Ψm, c = 1.0, b = 0.08

          
  robust kernel estimator, 100% – tapered, monotone Ψm, c = 1.0, b = 0.08

In the next figure we present an even better performance in a different sample of the same

simulation run:
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 Figure 3.2: same situation as in Figure 3.1, but a different sample of the same  

                        simulation run:

0.00 π                  0.20 π                 0.40 π                  0.60 π                   0.80 π                1.00 π

                 y – axis scaled logarithmically

          
  true spectrum

         
  non – robust kernel estimator, non – tapered, b = 0.08

          
  non – robust kernel estimator, 100% – tapered, b = 0.08

          
 robust kernel estimator, non – tapered, monotone Ψm, c = 1.0, b = 0.08

          
  robust kernel estimator, 100% – tapered, monotone Ψm, c = 1.0, b = 0.08

In this second sample of the same simulation run as in Figure 3.1 the 100% –tapered

robust estimator nearly performs perfectly: it is completely insensitive to the

comparatively strong contamination at frequency 0.48 π, whereas in the true spectral

autoregressive mode at frequency 0.864π it estimates close to the true spectrum!
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It might be interesting also to ask whether using a taper has some influence on the

choice of the smoothing parameter bT: From this example one immediately observes that it

can be crucial to be able to choose bT smaller (without losing robustness!) in order not to

underestimate spectral modes of the noise Xt (i.e. not to treat them as outliers in the

spectral domain). Heuristically, the leakage of the peaks is reduced by using a data–taper.

Indeed, it can be shown theoretically, by some algebra, that, with a taper of degree k ≥ 0

(see Dahlhaus, 1988, Def. 5.1, where k = 0 denotes the nontapered case), we end up

with a consistent estimator fT(α) in the presence of periodic components of type (3.6) if

the bandwidth bT fulfills the following condition :

                  TbT
1+[(1+ε)/(2k+1)] → ∞   as  T → ∞ , for some ε > 0.                         (3.7)

A proof of (3.7) is delivered by Lemma 3.11 of von Sachs, 1992.

With (3.7) we have the justification for imposing Assumption (B5) in Theorem 3.6.

For non–tapered data bT should be at least of order T –1/2+ε, where (3.7) allows for a

smaller bandwidth if using a taper (i.e., k ≥ 1), and, in principle, for a smaller bandwidth

the higher k is.

So this is another important aspect why one should use data tapers, in particular in the

context of peak–insensitive, i.e. non–linear, spectral estimators.

The considerations for the peak–insensitive estimator fT(α) have an important impact

on the use of nonparametric spectral estimators in combination with a detecting procedure

for hidden frequencies (like that of Chen, 1988). Due to the danger of overestimating the

spectrum of Xt at the location λp of the peaks, there might be a substantial loss of power

of the resulting test procedure which can be overcome by using a peak–insensitive

estimator (for details, see von Sachs, 1993). However, in the situation of spectral leakage

(e.g., if one spectral line is masked by a nearby second one of stronger signal–to–noise

ratio), it is often necessary to use a taper to detect all periodicities! We will examine this

very situation in the section 5 on simulations.
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3.4. Application: Parametric peak–insensitive spectral estimation

A third field of applications, which we only want to mention rather than study in

detail is a parametric one, namely peak-insensitively estimating a parametric spectral

density f(α,θ0), θ0 ∈ Θ (or its related functionals) as considered in Chiu (1990): In a set

up somewhat similar to the one of von Sachs (1992), i.e. with model (3.6), Chiu studies

three robustified modifications of traditional estimators. All of them are based on

replacing the pure periodogram by a modified one of the form IT(α) := ρ  g{IT(α) /

f(α,θ)} f(α,θ) , where θ is an estimate for θ0, and where ρ is an unbiased factor to make

the means of the modified periodograms approximately equal to f(α). First, Chiu (in his

Theorem 2) considers a modified sample autocovariance function from which one can

obtain an estimate of θ0 by the method of moments (such as Yule–Walker equations).

Another modification (Theorem 3) is the one for the 'approximate' maximum–likelihood

estimate (also known as Whittle estimate), which, in its tapered version, is covered by

Janas (1993). A third one, finally, deals with an estimate which minimizes a weighted

sum of squares of deviations of the (modified) periodogram and the spectrum (see Chiu,

Theorem 4). Note that in contrast to our second application in Theorem 3.6 (i.e. the work

of von Sachs, 1992) Chiu's estimators are iterative ones. So they heavily depend on the

robustness properties of the respective initial estimates.

Chiu's Theorems 1 – 4 deal more generally with asymptotic normality in case of a

Gaussian non–tapered time series. Our Theorem 3.1 shows that the consistency

assertions of these theorems continue to hold for the tapered, not necessarily Gaussian,

case!

Finally we would like to mention that, in general for non–linear functionals, it is still

an open problem how to prove asymptotic normality for non–Gaussian time series data:
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Regardless to the use of a taper, the proofs (as in von Sachs, 1992) only work with

Gaussian data as they heavily depend on the use of the normal distribution function.

4. Edgeworth expansions

In this section we establish Edgeworth expansions for sums of dependent random vectors

using the results of Götze and Hipp (1983) (henceforth referred to as GH). The theory of

Edgeworth expansions is our predominant mathematical tool and therefore shall be treated

in detail. After giving the general framework we derive expansions for finite Fourier

transforms of tapered data.

Let  {ZT,t}t=1,…,T  be a triangular array of d-dimensional, real-valued random vectors

on an abstract measure space (Ω, A, P) with E ZT,t = 0   ∀t  and

S T  =  cT
–1/2  ∑

t=1

T

ZT,t   ,     (4.1)

where cT  is a norming constant of order T to be specified. The function ψT,s represents

the first (s – 1) terms of the Edgeworth expansion of the distribution of ST whenever such

an expansion is valid. For any random vector Z, D(Z) denotes the dispersion matrix of Z.

Let ϕ∑ be the normal density with mean zero and dispersion matrix ∑ , and Φ∑ the

corresponding distribution function. c stands for a generic constant. For fixed r ∈ N let

f: R
d
 → R  be a measurable function with Mr(f) = sup

x
(1 + ||x||)

–r 
|f(x)| < ∞ (cf. (3.2)).

Define the average modulus of oscillation of f with respect to a finite measure P by 

ω (f,ε,P)  := ∫ sup
||y– x||≤ε

 |f(y) – f(x)| dP(x). Now we give the result of GH:

Let Dj be σ-fields on (Ω,A,P) (write σ ( Dj∪
j=a

b
 ) =: Da

b )  and 0 < ρ < 1 such that

(C1) E ZT,t = 0     ∀t.

(C2) E ||ZT,t||
s+1

 ≤ βs+1 < ∞    ∀t  for some s ≥ 3.
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(C3)  ∃ YT,t,m ∈ Dt–m
t+m    with   E ||ZT,t – YT,t,m||  ≤  ρm .

(C4)  ∀ A ∈ D–∞
t

  , B ∈ Dt+m
∞

      |P(A ∩ B) – P(A) P(B)| ≤ ρm 
.

(C5) ∃ ε, η, ρ > 0    ∀ ||θ|| ≥ ε     ∀ ρ–1 < m < T

      # {t∈{1, … , T}: E | E exp(iθ'(ZT,t–m + … + ZT,t+m) | Dj: j ≠ t)|  ≤ 1 – η} ≥ ρT .

(C6)  ∀ A ∈ Dt–p
t+p

  ∀t,p,m   E| P(A | Dj : j ≠ t) – P(A | Dj : 0 < |j – t|  ≤ m + p) | ≤ ρm .

(C7)  lim
T→∞

D(ST) = ∑   exists and is positive definite.

Remark: The Cramér type condition (C5) is a weaker assumption than the condition

(2.5) in GH. Nevertheless, it suffices for the results of GH to hold as is pointed out by

remark (3.44) in GH. The weaker condition (C5) means that Cramér's condition is

fulfilled for a sufficiently large number of t's. Whereas condition (2.5) cannot be fulfilled

in the situations we will discuss, by some effort it is possible to verify (C5).

Let s0 be s or (s – 1) according to s is even or odd.

Theorem 4.1: Assume that (C1) – (C7) hold. Then there exists a positive constant δ

not depending on f and Ms0
(f), and for arbitrary κ > 0 there exists a positive constant

c depending on Ms0
(f) but not on f such that

| E f(ST) – ∫ f dψ
T,s |  ≤  c ω(f, T–κ, Φ∑) + o (T–(s–2+δ)/2) .

The term o (·) depends on f through Ms0
(f) only.

Corollary 4.2: Assume (C1) – (C7). Then the following approximation holds

uniformly over convex measurable C ⊆ R
d
:

P (ST ∈ C)  =  ψT,s(C)  +  o (T–(s–2)/2) .
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4.1 Expansions for finite Fourier transforms of tapered data

For fixed d and integers j(1), … , j(d) in (0, T/2) let

dT(ω1, … , ωd) := ( Xt∑
t=1

T

 exp( – i ωk t))  , k = 1, … , d     (4.2)

be the finite Fourier transform of X1, … , XT  at Fourier frequencies ωk  :=  2π j(k) / T

(see Brillinger 1981).

Under suitable conditions on the sequence {Xt} of random variables the distribution

of dT admits a higher order approximation. Chen and Hannan (1980) have shown the

validity of such an expansion when {Xt} are i.i.d. (and fulfill Cramér's condition as well

as certain moment conditions). GH have generalized their result for strictly stationary

Markov-dependent sequences satisfying certain regularity conditions. Here, a

generalization of the result of Chen and Hannan (1980) is given for linear processes

{Xt}t∈Z with i.i.d. innovations {εt}t∈Z. Moreover, we allow the data to be tapered.

Whereas the generalization for linear processes is relatively easy to handle by the

mathematical tools of GH, tapering destroys the orthogonality relations of sine and cosine

functions which causes more trouble.

Theorem 4.3: Assume (A1) – (A5) . Then Theorem 4.1 and Corollary 4.2 hold for

 ST  := (H2,T )
–1/2  ∑

t =1

T

ht Xt ξT,t  ,

where ξT,t := (cos(ω1t), … , cos(ωdt) , sin(ω1t), … , sin(ωdt))' .

The proof is given in the appendix.

Remark. The expansion above allows to compute cumulants for non-linear functions of

the periodogram, as, for d = 1, IT = STST
'. Thus the consistency results for these

statistics are byproducts of Theorem 4.3 (cf. proof of Lemma 6.1).
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5. Simulations and applications to detecting periodicities

5.1 A simulation study for the peak–insensitive spectral estimator:

First we want to add a more detailed simulations study of the illustrating example of

section 3 on the improvement of the peak–insensitive estimator fT(α) by using a data taper

(see Figures 3.1 and 3.2). To Xt being an AR[2] – process with a root of radius 0.88 at

frequency 0.864 π, we add St = A⋅cos (0.48 π⋅t) with A = 4.0 and compare the

performance of the classical kernel estimator fT(α) defined by (3.5) with the peak-

insensitive fT(α), where we use a monotone Ψ–function Ψm with cut–off point c = 1.0:

                      Ψm(x)  =  ⎧⎨⎩
QH

–1 ⋅ max {–c, x}   for x ≤ 0

      min {x, c}         for x > 0
  ,                         (5.1)

where             QH := | 0
1  ΨΗ(x–1) e–x dx / 1

∞ ΨΗ(x–1) e–x dx |

and                ΨH(x)  =  max{–c, min{x, c}}  (see Huber, 1975).

Note that QH is used to cope with the asymmetric periodogram distribution, in order to

ensure asymptotic unbiasedness of the resulting estimator fT(α).

We want to compare non–tapered and 100% – tapered versions of both non–robust and

robustified kernel estimator, using a so-called 'cosine taper'

  hρ(x)  =  
⎧
⎨⎩

(1/2) [1 – cos(2πx/ρ)] ,     x ∈ [0, ρ/2) ,

        1 ,                                  x ∈ [ρ/2, 1/2] ,

hρ(1 – x) ,                          x ∈ (1/2, 1] .

                                      (5.2)

where ρ = 1 in this case. We do this by using a familiar error criterion, the Mean

Integrated Relative Squared Error (MIRSE)

                             E [  
-π

π
(fT(ω;b)/f(ω)  – 1)2  dω ]  (5.3)
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over the number n of Monte–Carlo replications (simulation runs) for fixed sample size T.

(We also give confidence sets belonging to the normal approximation, to roughly indicate

significant differences.) The smoothing kernel is chosen to be a Bartlett–Priestley Kernel

K(ϑ) = 3/(4π) ⋅{1 – (ϑ/π)2}  with compact support [– π, π].

In the following n = 50 simulation runs (which are sufficient to demonstrate the different

performance) the sample size is T = 512 and the bandwidth b = 0.08 for all estimators:

         estimator                   |  bandwidth b   |     MIRSE      |        confidence sets          ____________________________________________________________________
____________________________________________________________________
non–robust, non–tapered   |         0.08         |        4472       |         [4426; 4517]    
____________________________________________________________________
non–robust,   tapered           |         0.08         |        4579       |         [4520; 4638]    
____________________________________________________________________
robust Ψm , non–tapered   |         0.08         |        52.52      |        [50.23; 54.81]    
____________________________________________________________________
robust Ψm ,   tapered         |         0.08         |        0.147      |        [0.127; 0.168]    

For this comparison see also Figures 3.1 and 3.2 in section 3, which show two different

samples out of this simulation run. With both presentations it can be seen clearly that

tapering improves the peak–insensitive procedure drastically, where for the usual kernel

estimator it has no significant effect apart from reducing leakage outside the peak-

contaminated region of the spectral domain (for the price of an increased variance leading

to an even higher MIRSE).

5.2 Detecting periodic components:

Now we choose both a simulated example and an interesting data set to demonstrate

the ability of our estimator to detect periodic components in situations where it is

necessary to use a data taper (as mentioned in the introduction): In the procedure of Chen
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(1988) we use the peak–insensitive estimator fT(ω) for the noise spectrum f(ω) as a

normalization of the periodogram IT
Y(ω). Roughly speaking (for details, see the given

reference), this procedure is based on the statistic

                        zj  :=  IT
Y(ωj) / {fT(ωj) log T}  ,  j = 1,…, T ,                                       (5.4)

where  zj > 1 + ε   should indicate the presence of a periodic component at or close to

frequency ωj (for details on the appropriate choice of ε > 0 see also von Sachs, 1993).

As stated in section 3, choosing the peak–insensitive estimator fT(ωj) will face the danger

of losing power of zj at the location of the peaks. Note that in Chen (1988) it was shown

that, in contrast to fT(α), his estimator for the noise spectrum (a kernel estimator of type

(3.5), modified by leaving–out a fixed number of periodogram values) is not consistent at

the locations of the occurring periodicities. We now want to show that it is not only of

theoretical interest to deliver a (non–linear) estimator which is consistent even with the use

of a taper.

Our simulated example is a superposition of two periodic components of different

signal–to–noise ratio in Gaussian white noise Xt with T = 512: one with A1 = 10 and λ1

= 0.60π, the other closely located at λ2 = 0.63π with A2 = 1. Simulations show that the

procedure based on the classical estimator fT(α) is not able to detect the small periodicity

at λ2, regardless to the use of a data taper. However with fT(α) it is successful ending up

with estimates λ1 = 0.598, λ2 = 0.631, but only with 100% of the data tapered. I.e., in

any case without using a taper it would not be possible to cope the leakage and unmask

the small periodicity!

In Figure 5.1 we get an impression of the improvement of fT(α) by using a taper. Note

that the amplitude of the strong periodicity is very high, such that complete insensitivity

cannot be expected for finite sample size (T = 512).
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Figure 5.1:  White noise with two periodic components:  A1 = 10 at λ1 = 0.60π,

                                                                                       A2  = 1 at λ2 = 0.63π  (T = 512):

0.00 π                0.20 π                   0.40 π                 0.60 π                    0.80 π                 1.00 π

         two periodic components defined: λ1 = 0.60, λ2 =  0.63

   
peak-insensitive estimator, non – tapered, b = 0.03, c = 1.5

     
peak-insensitive estimator, 100% – tapered, b = 0.03, c = 1.5

Looking on the window in Figure 5.2 one observes that with the non–robust estimator

fT(α) only the strong periodicity can be detected; using a taper does not help at all. Note

that the presence of a periodic component is indicated by a vertical line crossing the critical

bound 1 + ε at any place where the test statistic zj exceeds this bound, here with ε = 0.40:
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Figure 5.2: Detecting procedure based on z in a window around 0.6 π of Figure 5.1:

0.49 π                  0.54 π                   0.58 π                 0.63 π                    0.68 π                   

          two periodic components defined: λ1 = 0.60, λ2 =  0.63

    
z based on non–robust estimator, non – tapered, b = 0.03, ε = 0.40: only λ1 =  0.60 detected

    
z based on non–robust estimator, 100% – tapered, b = 0.03, ε = 0.40: only λ1 =  0.60 detected

The same window is shown in Figure 5.3 for the detecting procedure based on the

peak–insensitive fT(α): Only with the use of a taper the test statistic z exceeds the critical

bound, again chosen to be 1.40, at the location 0.63π of the weak periodicity, too!
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Figure 5.3:  same situation as in Figure 5.2, 

                       but with z based on peak–insensitive estimator:

0.49 π                  0.54 π                   0.58 π                 0.63 π                    0.68 π                   

        two periodic components defined: λ1 = 0.600, λ2 = 0.630

z based on peak-insensitive estimator, non – tapered, b = 0.03, c = 1.5: only λ1 =  0.600 detected

 
z based on peak-insensitive estimator, 100% – tapered, b = 0.03, c = 1.5: λ1 = 0.598, λ2 = 0.631

For the application to a real data–set we choose the following data (which are from

Tamar Breus at the Space Research Institute in Moscow and were kindly provided by G.

Cornélissen and F. Halberg, University of Minnesota, Minneapolis): It is a segment of

length T = 512 of a time series of daily collected data, describing the rate of medical

infarctions, based on daily ambulance calls in Moscow from Jan 1st, 1979 through Dec

31st, 1981 (i.e., 1096 data points: Note that the procedure is successful with this chosen

smaller segment of size 512; there is no difference to the analysis with full data size!):



23

Figure 5.4: Moscow daily infarctions data May 28, 1980 – Oct 21, 1981 (512 data):

From the time series plot one might expect a long–term cycle in addition to the apparent

short–term (weekly) periodicity: Obviously, any of the following detecting procedures

shows the peak at 0.285π = 2π /7, which is indeed due to a weekly periodicity (and also

the first harmonic at 0.571π = 4π /7). Less obvious, but a rather difficult task, is to detect

the yearly cycle at 0.006π = 3π /512, which, for this kind of procedure, is only possible

with the use of data taper – we compare Figure 5.5 with Figure 5.6, both with ε = 0.48:
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Figure 5.5:  detection of periodicities in the infarctions data of Figure 5.4:

              test statistic z, based on peak–insensitive estimator, no taper, b = 0.05, c = 1.5:

0.00 π                  0.20 π                   0.40 π                    0.60 π                    0.80 π                 1.00 π

  2 periodicities detected: 0.285π = 2π /7 (weekly cycle) and 0.571π = 4π /7 (first 

   harmonic)
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Figure 5.6:  same procedure as in Figure 5.5 but now with the use of a data taper:

         test statistic z, based on peak–insensitive estimator, 100% taper, b = 0.05, c = 1.5

0.00 π                  0.20 π                    0.40 π                   0.60 π                   0.80 π                  1.00 π

 3 periodicities detected: 0.006π = 3π/ 512 (yearly cycle), 0.285π = 2π /7 (weekly cycle)

and 0.571π = 4π /7 (first harmonic).

 Note that this analysis is completely in accordance with the results of different detecting

procedures (which are not based on Fourier transform analysis).
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6. Appendix: Proofs

Proof of Theorem 3.1: With Theorem 4.3, i.e. the Edgeworth expansion of the finite

Fourier transform of Xt for the tapered case, this proof runs quite analogously to the

proof of Theorem 3.1 of von Sachs (1992), which was for the particular statistic HT(α,s)

as in (3.4), but excluding the tapered case. Note that we replace integrals by sums of

Fourier frequencies as the error of approximation is of smaller order than the convergence

considered in the theorem. For the reader's convenience we summarize the steps. First,

and this is the key step, we use a result similar to Lemma 5.1 of von Sachs (1992):

Lemma 6.1: Let IT be the periodogram of {ht Xt} as in (2.1), and let Z denote a

standard exponentially distributed rv (i.e. with parameter 1). Then

                (i)         E ζ (IT(ωj))   =   E ζ( f(ωj) Z
 )   +  o (T –1/2)          uniformly in ωj ,

               (ii)   Var{ζ (IT(ωj))}  =  Var{ ζ( f(ωj) Z
 ) }  +  o (T –1/2)    uniformly in ωj ,

              (iii)   Cov{ ζ (IT(ωj1
)), ζ (IT(ωj2

)) }  =  o (T –1/2)      uniformly in ωj1
 ≠ ± ωj2

 .

Proof:

We only prove (i). By the expansion given in Theorem 4.3 we get, with s = 3 and d = 1,

as IT(ωj) = ST(ωj)ST(ωj)
', where ST(ωj) = (H2,T )

–1/2 ∑
t =1

T

ht Xt (cos(ωjt), sin(ωjt))
' :

     E ζ (IT(ωj))  =  
R2

ζ (y1
2 + y2

2)  dψ
T,3(y1,y2)  =   

0

∞

ζ ( f(ωj) x ) e–x dx +  o (T –1/2) .

Note that the second order term of the mentioned expansion yields the remainder whereas

the first order term cancels due to symmetry arguments: Both ζ and φ2k are even functions

of y1 and y2, whereas the polynomials occurring in the derivatives of φ2k are odd in y1 or

y2. This is completely analogous to the proof of Lemma 5.1 of von Sachs (1992).

(ii) and (iii) can be shown quite analogously with s = 3 and d = 2.                                  
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With the definition (3.3) of H = lim
T→∞

 E HT it is sufficient for proving Theorem 3.1 to

show that                            HT – E HT  
P

→   0    as  T → ∞ ,                                      (6.1)

which will be implied by     var { HT }  →  0       as  T → ∞ .   (6.2)

By Assumption (B2) Var{ζ(Z)} is finite such that (6.2) follows by Lemma 6.1 (ii), (iii). 

Proof of Theorem 3.2: With assumption (B2) on ζ(x) = L–1{g(1/t) 1/t}{x}, with s0

= 2, this is an immediate consequence of Theorem 3.1 noting that

E L–1{g(1/t) 1/t}{IT(ωj)}  =  E L–1{g(1/t) 1/t}{f(ωj) Z}  +  o (T –1/2)  , uniformly in

ωj, due to Lemma 6.1 (i), and that  E L–1{g(1/t) 1/t}{f(ωj) Z}  =  g(f(ωj)), by the

definition of the inverse Laplace transform.

Proof of Corollary 3.4: Like Theorem 3.1 and Theorem 3.2 this result is a

consequence of the Edgeworth expansion for the finite Fourier transform. However the

singular behaviour of log x at x = 0 causes some trouble. Therefore, Theorem 4.3 is not

sufficient. The distribution of the finite Fourier transform has to be absolutely continuous.

Under the additional assumption (B3) on the characteristic function of ε1 this can be

proved in the white noise case for tapered data by applying the techniques developed in

the proof of Theorem 3.1. The assertion for the general case now follows analogously to

the proof of Theorem 1 in Chen and Hannan (1980).

Proof of Theorem 3.6: The proof is analogous to the proof of Theorem 3.1 in von

Sachs (1992); we want to give the main ideas: With H = 0, Theorem 3.1 yields  HT =

HT(α,f(α))  
P

→   0   as  T → ∞ . Then, using standard arguments of local monotonicity,

 as, e.g. in Huber (1964, Lemmata 2 and 3), the weak consistency of fT(α) can be

deduced by the one of HT. 

In extension of Theorem 3.6, consistency in the situation with periodic components St ≠
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0, see (3.6), is completed by Theorem 4.1 of von Sachs (1992), which holds regardless

to the use of a data taper. Note that for periodicities as in (3.6) the conditions for this

Theorem 4.1 are fulfilled by our Assumption (B5).                                                          

Proof of Theorem 4.3: We have to check (C1) – (C7) to hold for the process {ZT,t}.

Let Dj = σ(εj) . Conditions (C1), (C4) and (C6) hold trivially. (C7) is assumption (A5).

By (A1), (C2) follows from

E ||ZT,t||
s+1

 = E |ht Xt|
s+1

 || ξT,t ||
s+1

 ≤ E |Xt|
s+1

 ( ∑
j =1

d

(cos2(tωj) + sin2(tωj)))
(s+1)/2

 ≤ d
(s+1)/2

( |au|∑
u∈Z

)
s+1

 E |ε1|
s+1

 <  ∞ . 

(C3) can be verified by taking YT,t,m∈Dt–m
t+m  defined by

YT,t,m  := ht( auεt–u∑
u=–m

m

) ξT,t .

E || ZT,t – YT,t,m || = E |ht auεt–u∑
|u|>m

| || ξT,t || ≤  |au|∑
|u|>m

 E |ε1| d
1/2   

≤ ρ
m

by the exponential decay of the coefficients |au| and the moment conditions on εt.

It remains to check a Cramér type condition. The usual condition (2.5) in GH is not

fulfilled in our set up, but we will show the weaker condition (C5).

ZT,j∑
| t–j |≤m

 =  hj∑
| t–j |≤m

  aj–u∑
u∈Z

 εu ξT,j

=  ∑
u∈Z

εu   ∑
j=–m

m
ht+j   at+j–u  ξT,t+j   .

=  εt AT,t,m  + ζ ,

where AT,t,m := ∑j=–m
m ht+j aj  ξT,t+j  and ζ  denotes a random vector stochastically

independent of εt. Thus, with θ' := (θ1, θ1, θ2, θ2 , … , θd, θd ) ∈ R
2d
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E | E exp(i θ' ZT,j∑
j =t–m

t+m

| Dj: j ≠ t)|

= | E exp(i εt θ' AT,t,m | · E | exp(i θ' ζ ) |

≤ 1 – η  ,  η > 0

by Cramér's condition on εt (i.e. (A2)), if |θ'AT,t,m| is bounded away from zero. This is

verified in the next technical lemma from which the assertion follows.                            

Lemma 6.2: Assume the conditions of Theorem 4.3. Then 

   ∃ ε, ρ > 0   ∀ ||θ|| = 1   ∀ ρ
–1

 < m < T :  # { t∈{1, … , T}:  |θ'AT,t,m|
2
 ≥ ε }  ≥  ρT .

Proof: By the Schwarz inequality we obtain the following upper bound

     |θ' AT,t,m|
2
 ≤  ||θ||

2
  ||

 
ht+j aj∑

j =–m

m

 ξT,t+j  ||
2

≤   ( |aj|)2d ≤ a∑
j∈Z

 ,     (6.3)

where a is a positive constant only depending on {aj} and d. Further, assume for a

moment that the following lower bound holds for all ||θ|| = 1 and m < T large enough

1
T

  |θ' AT,t,m|2∑
t =1

T

 ≥  b     (6.4)

with b being a positive constant independent of T and m. Assume w.l.o.g. a ≥ max (b,1).

Let c = ba  ≤ 1 and ρ = 
c – ε
1 – ε

  . If less than ρ · T terms had the property |θ'At,m
T |

2
 ≥ ε, we

could bound the left-hand side of (6.3) by

1
T

  |θ' AT,t,m|2∑
t =1

T

 <  (1 – ρ) ε + ρ a   ≤  a ( (1 - ρ) ε + ρ )  =  b ,

which is a contradiction to (6.4). It remains to show the lower bound (6.4). 

Since  cT
–1 |θ' AT,t,m|2∑

t =1

T

 =  θ 'cT
–1 AT,t,m AT,t,m

'∑
t =1

T

θ  , it is enough to show that

cT
–1 AT,t,m AT,t,m

'∑
t =1

T

 → ∑  for m < T and m → ∞,     (6.5)
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because ∑ is assumed to be positive definite (assumption (A5)). Note that here cT = H2,T.

The left-hand side of (6.5) can be written as a dispersion matrix, i.e.

D(cT
–1/2 εt∑

t =1

T

 ht+j aj∑
|j|≤m

 ξT,t+j ) .     (6.6)

The right-hand side is  lim
T→∞

D(cT
–1/2 ht∑

t =1

T

Xt ξT,t ) .     (6.7)

We show the convergence of (6.6) to (6.7) for the corresponding complex-valued

counterparts, that is we replace the vectors

ξT,s  =  (cos (ω1 s), … , cos (ωd s), sin (ω1 s), … , sin (ωd s))'    (6.8)

by    ξT,s
c

 = (exp(– i ω1 s) , … , exp(– i ωd s) )' .     (6.9)

Then the assertion follows, since the real-valued versions (6.6) and (6.7) can be

reconstructed, e.g.

∑  =  1
2

  
Re ∑c – Im∑c

Im ∑c Re ∑c
 ,   (6.10)

where ∑c denotes the dispersion matrix corresponding to ξT,s
c

 (cf Brillinger, 1981, p. 89).

D(cT
–1/2 εt∑

t=1

T

 ht +u au∑
|u|≤m

 ξT,t+u
c

 )r,s

=  cT
–1 ∑

t =1

T

 au av∑
|u|,|v|≤m

 ht+u ht+v  exp(– i ωr (t + u)) exp(i ωs (t + v)) 

=  cT
–1 au av∑

|u|,|v|≤m

 exp(– i(ωr u – ωs v)) ∑
t =1

T

ht+u ht+v exp(– i (ωr  –  ωs ) t )   (6.11)

By lemma P4.1 in Brillinger (1981) we can substitute the term

∑
t =1

T

ht+u ht+v  exp(– i(ωr   –  ωs ) t)   (6.12)

by  H2,T(ω r  – ωs) = ∑t=1
T ht

2 exp(– i (ωr  – ωs) t) within the error bound O(|u| + |v|) ,

which does not cause trouble because of ∑u∈Z |u| |au| < ∞ .
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Thus, continuing in (6.11),

cT
–1 H2,T (ωr  – ωs ) au av∑

|u|,|v|≤m

 exp(– i (ωr u  – ωs v)) + O(cT
–1)

=  cT
–1 H2,T (ωr  – ωs ) ∑

u∈Z

au exp(– i ωr u ) ∑
v∈Z

av exp (i ωs v)  + O(cT
–1)

= H2,T (ωr  – ωs ) / H2,T  · f(ωr )  + O(cT
–1) ,   (6.13)

and for r ≠ s using the differentiability of the transfer function and the inequality

| H2,T(ωr – ωs ) | ≤ K | ωr – ωs|
–1

, K being a constant.   (6.14)

(see Dahlhaus, 1988, p. 822).

The last expression in (6.11) is the element (r,s) of the matrix in ∑c
 (see Brillinger, 1981,

lemma 4.3.2.).                                                 
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