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Abstract. Some modifications and generalizations of the bootstrap
procedure have been proposed. In this note we will consider the wild
bootstrap and the generalized bootstrap and we will give two arguments
why it makes sense to use these modifications instead of the original
bootstrap. The first argument is that there exist examples where
generalized and wild bootstrap work, but where the original bootstrap
fails and breaks down. The second argument will be based on higher
order considerations. We will show that the class of generalized and wild
bootstrap procedures offers a broad spectrum of possibilities for
adjusting higher order properties of the bootstrap.

1. Introduction. Bootstrap procedures are a powerful tool in modern statistics. In this note
we discuss two new proposals how to bootstrap: the wild bootstrap procedure and generalized
bootstrap procedures. Let us first recall the definition of generalized bootstrap. We will do this
for the context of observing an i.i.d. sample (X1, … , Xn) with distribution P. The statistical

problem is the estimation (or approximation) of the distribution of R(Pn,P). Here R is a real

valued function defined on a set of pairs of distributions including P and empirical measures. Pn

is the empirical distribution, i.e. Pn = 1n  ∑
i =1

n

δXi
, where δx is the point mass concentrated at

point x. Important examples of R(Pn,P) are T(Pn) – T(P) or [T(Pn) – T(P)] / S(Pn), where T is

a real valued statistical functional and S is a scale functional. In these examples an

approximation of the distribution L(R(Pn,P)) can be used for constructing confidence intervals

of T(P). The bootstrap idea is to approximate L(R(Pn,P)) by L*(R(Pn
*,Pn)) where L*(…) is the

conditional distribution L*( … |X1, … , Xn) given the sample and where Pn
*  is a random

measure.
In the bootstrap procedure, as it has been originally proposed in Efron (1979), the random

measure Pn
*   is chosen as empirical measure Pn

B
  of a sample with distribution Pn , i.e. 

Pn
B

 = 1n  ∑
i =1

n

δXi
*   where (X1

*, … , Xn*)  is a sample with distribution Pn . Usually, here the

calculation of L*(R(Pn
B

,Pn)  is done by Monte Carlo. For this purpose, M   i.i.d. samples

(X1
*, …, Xn*), with distribution Pn are generated. This gives M values R1, … , RM of

R(Pn
B

,Pn). The distribution L*(R(Pn
B

,Pn)) can now be approximated by the empirical

distribution of R1, … , RM. How large M has to be chosen depends on the application. Popular
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choices are M = 1000 or larger. The generation of the samples (X1
*, … Xn*) is nothing else than

n times drawing with replacement out of the set {X1, … , Xn}. This interpretation was also the

motivation for the nice name of bootstrap. The bootstrap procedure was been introduced in
Efron (1979). Introductions to bootstrap are also given in the articles Efron and Gong (1983)
and Efron and Tibshirani (1986) and in the book Helmers (1991). Many applications of
bootstrap are discussed in Efron (1982). Survey articles are Beran (1984), Hinkley (1988) and
Diciccio and Romano (1988). For an asymptotic treatment of bootstrap see also the books
Beran and Ducharme (1991), Mammen (1992a) and the references cited therein. A detailed
analysis of bootstrap based on higher-order Edgeworth expansions can be found in the book
Hall (1992). 

Let us now come to generalized bootstrap. In this approach the random measure Pn
*  used

in the resampling is of the form 

Pn
GB

 = n
–1

 ∑
i =1

n

Ni δXi
 ,

where (N1, … , Nn) are random weights which are conditionally (given X1, … , Xn))

exchangeable ( i.e. L*( N1, …,Nn ) = L*( Nπ(1), …,Nπ(n) ) for all permutations π of {1,
…,n} ). Conditions on (N1, … , Nn) under which generalized bootstrap works (i.e. is

consistent) are given in Mason and Newton (1992), see also section 3 and Häusler, Mason and
Newton (1992), Husková and Janssen (1992a,b). Resampling of empirical processes using
generalized bootstrap have been studied in Praestgaard and Wellner (1992). We get bootstrap as
a special case of generalized bootstrap if we use multinomialy distributed weights, i.e. (N1, … ,

Nn) ~ MULT (1/n, … , 1/n; n). Other exchangeable weights have been also proposed in a

Bayesian context (see Rubin (1981), Lo (1987), Weng (1989)). Let us mention here also the
following examples of generalized bootstrap.

EXAMPLE  1. (BOOTSTRAP  SUBSAMPLING).

n
m  (N1, … , Nn)  ~ MULT (1/n, … , 1/n; m) for an m < n.

EXAMPLE  2.   (I.I.D.  RESAMPLING).

Ni = Mi  or Ni = Mi / [n
–1

 ∑
i =1

n

Mi]  (i = 1, … , n),

where M1, … , Mn are i.i.d..



3

EXAMPLE 3. (GENERALIZED  JACKKNIFE).  For a deterministic vector ρ = (ρ(1), … ,

ρ(n)) in R
n
 put Ni = ρ(∏(i)), where ∏ is a random permutation of (1, … , n).

Another resampling scheme is wild bootstrap. The idea of wild bootstrap can be better
explained in the set up of a regression model

Yi = m(xi) + εi  (i = 1, … ,n).

Here x1, … , xn are deterministic design vectors. ε1, … , εn are independent with mean zero.

However, it is not assumed that they must have the same distribution. Y1, … , Yn are the

observations and m is an unknown regression function. Suppose a (parametric or

nonparametric) estimate m of m is given and we are interested in the distribution L(R(m,m)).

The wild bootstrap estimate is L*(R(m
WB

;m)), where again L*(   ) is the conditional

distribution L(     |Y1, … , Yn) given the observations. The estimate m*  is based on the sample

(xi,Yi
*), where 

Yi
* = m(xi) + εi

*

and ε1
*, … , εn*   are conditionally independent and are constructed such that 

E* εi
* = 0 , E*(εi

*)
2
 =  εi

2
 .

Here εi is the i-th residual Yi – m(xi) and E*(   ) is the conditional expectation. Sometimes (in

particular, if one expects that in the considered example higher order Edgeworth expansions are

accurate) one requires additionaly that E*(εi
*)

3
 = εi

3
. The random distribution L*(εi

*) could be

interpreted as an estimate of L(εi). This is an estimate of a distribution which uses only one

single real valued residual. Because this sounds a little bit silly wild bootstrap got its name. For

most applications no consistent estimation of every single L(εi) is necessary. What is needed is

the consistent estimation of distributions of certain averages of the εi. This makes the wild

bootstrap working. Wild bootstrap variance estimates have been proposed for linear models in
Wu (1986). That this resampling scheme could also be used for the estimation of distribution
has been remarked by Beran (1986). An example where bootstrap breaks down and where wild
bootstrap works is given in Härdle and Mammen (1993). Further discussions of wild bootstrap
can be found in Liu (1988), Liu and Singh (1991, 1992), Zheng and Tu (1988) and Mammen
(1992b, 1993), see also Mammen (1992a). In this note we consider only the following

constructions of ε1
*, … , εn* . First generate Z1, … , Zn i.i.d. ~ Q with E(Zi) = 0, EZi

2 = 1 (and,
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occasionally, EZi
3  = 1). Then put εi

* = εiZi. For choices of Q see Liu (1988) and Mammen

(1992a). 

2 . Asymptotic equivalence of bootstrap, wild bootstrap and normal
approximations.  For the comparison of bootstrap and wild bootstrap let us consider a model
which lies somehow between an i.i.d. model and a regression model. For the model of a
triangular area of independent observations Xn,1, … , Xn,n we are interested in estimating the

distribution of  R = R(Pn,Pn,i  (1 ≤ i ≤ n)) = T(Pn) – 1n ∑
i =1

n

T(Pn,i). Here Pn,i is the distribution

of Xn,i . To simplify matters we restrict ourselves here to linear statistical functionals T(P) = 

∫ x dP. As bootstrap estimate of L(R) we get then  Ln,B
*  = L*(T(Pn

B
) – T(Pn)).

The wild bootstrap estimate LWB
*   can be written as

Ln,WB
*  = L*( 1n ∑

i =1

n

Zi [ Xn,i – T(Pn)] ) ,

where Zi has a fixed conditional distribution: L*(Zi) = Q.

Bootstrap, wild bootstrap and normal approximations are closely related in this model. For
instance, here wild bootstrap turns out to be a special case of generalized bootstrap. Indeed, the

random factors Zi can also be interpreted as random weights. Therefore, Ln,WB
*  is nothing else

than i.i.d. resampling which is an example of generalized bootstrap, see example 2 in the
introduction. On the other hand we will see in the next section that consistency of generalized
bootstrap can be proved by constructing an accompaning asymptotically equivalent sequence of
wild bootstrap schemes. Furthermore, the normal approximation is a special case of wild

bootstrap. To see this one has to put Q = N(0,1). Then we get Ln,WB
*   = N(0,Sn

2), where Sn
2  is

the usual variance estimate Sn
2 =  1

n2
  ∑

i =1

n

(Xn,i – T(Pn))
2
.

The following theorem shows that bootstrap, wild bootstrap and normal approximation
work under the same conditions. This may look a little bit disappointing because in the
introduction we have promised to show that wild bootstrap works under weaker conditions than
bootstrap. The essential point is here that in the following theorem the distribution Q of Zi is

fixed. Things become quite different if Q is allowed to depend on n (see section 4).

To avoid any scaling we measure the accuracy of Ln,B
* , Ln,WB

*   and N(0,Sn
2) by the

Kolmogorov-distance d∞:

d∞(μ,v) = sup–∞< t < +∞ | μ(X ≤ t) – v(X ≤ t) | .

THEOREM  1 (Mammen, 1992b). For a sequence t(n) consider Lt(n),n = L(T(Pn) – t(n)).
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Then the following statements are equivalent. 

(i) d∞(LB
*, Lt(n),n) → 0   (in probability),

(ii) d∞(Ln,WB
* , Lt(n),n) → 0 (in probability),

(iii) d∞(N(0,Sn
2), Lt(n),n) → 0 (in probability).

The essential point behind these equivalences is that for asymptotic normality of a sum of
independent variables it is needed that the absolutely maximal variable is of smaller order than
the sum. Exactly the same is needed for bootstrap and wild bootstrap. In section 4 we look
more closely at the case where the absolutely maximal summand is of the same order as the
sum.

3. Consistency of generalized bootstrap.  As in the last section we consider again a
triangular area of independent observations  Xn,1, … , Xn,n and the linear functional T(P) = 

∫ x dP. Then the generalized bootstrap estimate of L(R) is

L*(n
–1

 ∑
i =1

n

Nn,i Xn,i – T(Pn)),

where for every n the weights Nn,1, … , Nn,n are (conditionally) exchangeable. We do not

want to assume that ∑
i =1

n

Nn,i is equal to n. Therefore it makes sense to consider the following

modification of the generalized bootstrap estimate

Ln,GB
*  = L*(n

–1
 ∑
i =1

n

Nn,i  [ Xn,i – T(Pn)] ).

The following theorem can be seen by application of the results in Mason and Newton (1992).

THEOREM  2. Put   Nn = 1
n  ∑

i =1

n

N n,i     and assume  1n  ∑
i =1

n

(Nn,i – Nn )2  →  1 ( in

probability)  and  E*([Nn,i – Nn ]2 1 ( | Nn,i – Nn | > τn )) → 0   (in probability) for every τn

→ ∞. 
Furthermore suppose that for a sequence t(n)
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d∞(Lt(n),n, N(0,Sn
2)) → 0 (in probability).

Then it holds that

d∞(Lt(n),n, Ln,GB
* ) → 0 (in probability).

Let us shortly sketch the basic idea of the proof (see also Mason and Newton, 1992). The

theorem follows from d∞(Lt(n),n,Ln,GB
** ) → 0   (in probability), where Ln,GB

**  is the conditional

distribution of S = n
–1

 ∑
i =1

n

Nn,i [Xn,i – T(Pn)], given the sample (Xn,1, … , Xn,n) and the

order statistic of Nn,1, … , Nn,n. Given this order statistic and the sample, the statistic S is a

rank statistic and classical techniques of the theory of rank statistics can be applied. The main
tool is the following lemma of Hájek (1961). For real numbers a1, … , an, b1, … , bn  with b1

+ … + bn = 0 consider S = ∑
i =1

n

bi a∏(i) and  T = ∑
i =1

n

bi aU(i), where ∏ is a random permutation

of (1, … , n) and U(1), … , U(n) are i.i.d. and uniformly distributed on {1, … , n}.

LEMMA  (Hájek, 1961). With  a = ∑
i =1

n

ai  it holds that

E(S  – T)2

Var (T)
   ≤  2 2 n

n – 1
   

max1≤ i ≤n| ai – a |

(ai – a )2∑i=1
n

 .

Applied to our situation (i.e. putting bi = Xn,i – T(Pn)  and ai = Nn,i) the right hand side of

the inequality converges to zero (in probability) under our conditions. Therefore the lemma
shows that the study of generalized bootstrap can be reduced to the study of wild bootstrap (or
equivalently: of i.i.d. resampling). Consistency of wild bootstrap follows from the result of the
last section and the theorem is proved. Again, this shows the strong relation between
generalized and wild bootstrap. 

4. Heavy tailed distributions.  Generalized bootstrap works under weaker conditions than
bootstrap. This follows from the following result of Arcones and Giné (1992). Remember that
subsampling is an example of generalized bootstrap (see example 1).

THEOREM  (Arcones and Giné, 1992). For an i.i.d. sample (X1, … , Xn) with (now fixed)

law in the domain of attraction of a p-stable law (1 < p ≤ 2) the subsampling estimate

L* [ (Xi
* – Xn

* )2∑i=1
m(n) ]-1/2 (Xi

* – Xn )2∑i=1
m(n)    has in probability the same weak limit  as
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[ (Xi – Xn )2∑i= 1
n ]-1/2 Xi – EXi ∑i= 1

n
  if m(n) → ∞ and m(n)/n → 0. Here Xn = 

n-1 ∑
i =1

n

Xi   and Xn
* = m(n)-1 Xi

*∑
i =1

m(n)

.

Let us shortly give some heuristics to indicate why this result holds and what is needed
here for the accuracy of bootstrap for finite n. Suppose 1 < p < 2 and without loss of generality
EXi = 0. We use the following two facts:

(1) P(Xi > x) = c1 x
–p

 + o(x
–p

),

P(Xi < – x) = c2 x
–p

 + o(x
–p

) for x → ∞ with c1 + c2 > 0.

(2) Order X1, … , Xn  by absolute value, i.e. |X(1)| ≥ … ≥ |X(n)|  . From the results in Hall

(1978) it follows

limr→∞ lim
n→∞

P(| 
X(i) - dr∑

i =1

r

[ X(i)
2∑

i =1

r

]1/2
   –  

Xi∑
i =1

n

[ (Xi – Xn)2∑
i =1

n

]1/2
  |  >  ε)  = 0,

where dr  =  c1 - c2
c1 + c2

  
p

1-p
 r1-1/p.

(1) shows that |X(i)|  is of order n
1/p

 for every fixed i. Because of (2), therefore the

distribution of ∑
i =1

n

Xi · [∑
i =1

n

(Xi – Xn)
2
]

–1/2
  is approximately determined by the behavior of

the distribution function of Xi  in the intervals [– β n
1/p

, – αn
1/p

] and [α n
1/p

, β n
1/p

]  with α
small enough and β large enough. A similar discussion applies in the bootstrap world.

However now the behavior of the distribution function of Xi
* in the intervals [– β m(n)

1/p
, – α

m(n)
1/p

] and [α m(n)
1/p

,β m(n)
1/p

] is determing. That implies: what is implicitely done by the
subsampling here is an extrapolation. First the distribution function of Xi is estimated in the

intervals ± [α m(n)
1/p

, β m(n)
1/p

]. Then it is assumed that (1) holds. This implies P(Xi > x) /

P(Xi > y) = (x/y)
–p

 (1 + o(1)) and an analogue expansion for the lower tails. These formulas

are now implicitely used for extrapolation from m(n)
1/p

 to n
1/p

. 
The surprising fact here is that knowledge of p is not necessary for subsampling. It is
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implicitely estimated by the resampling. Besides the choice of m(n) everything is automatically
done by the bootstrap. The optimal choice of m(n) depends on the accuracy of the expansion in
(1). Preliminary calculations suggest that subsampling (even with optimal choice of m(n))
cannot achieve the rate of accuracy of the limiting stable law. This is the price for not knowing
c1,c2 and p. At the end of this section let us mention that besides subsampling there exist also

other versions of generalized and wild bootstrap which will work here. Other examples where
wild bootstrap works and where classical bootstrap breaks down or is inaccurate are given in
Härdle and Mammen (1993) and Mammen (1992a).

5. Higher order performance of generalized bootstrap. Generalized bootstrap offers
a variety of possibilities for adjusting the higher order performance of the usual bootstrap. For

the root R = R(Pn,P) = ∫ x d(Pn – P) and for its studentized version RSTUD = RSTUD(Pn,P) = 

R(Pn,P)  [ ∫(x – ∫ xdPn)
2
 dPn ]

–1/2
  we consider the generalized bootstrap estimates FGB

* (x) and

FGB
STUD,*(x)  of P(R ≤ x) or P(RSTUD ≤ x), resp.. Let FB

*(x) and FB
STUD,*(x) denote the usual

bootstrap estimates. Then under conditions on the moments and mixed moments of the weights
N1, … , Nn   Hall and Mammen (1992) give asymptotic formulas for the first four cumulants of

the distribution functions FGB
*   and FGB

STUD,* . These formulas suggest (under additional
conditions on higher order cumulants) that

 FGB
* (x) – FB

*(x) =  FGB
STUD,*(x)  –  FB

STUD,*(x) + op(1/n)

= n–1 ψ(x) ϕ(x) + op(1/n).

Here ϕ is the standard normal density and ψ is the function 

ψ(x) = - 1
2

  x (β1 – β3) - 1
24

  (x3 – 3x) [3(2β3 + β4 – 2β1 – 2β5) + σn
-4

 μ4,n  β2],

σn
2
 = ∫ (x – ∫ xdPn )

2
 dPn and μ4,n = ∫ (x – ∫ xd Pn )

4
 dPn are the empirical variance and the

empirical centered fourth moment. The βi's are defined as

β1 =  n[ E*(N1 – 1)2 – 1] + 1,

β2 = E*(N1 – 1)4 – 4,

β3 = n E*(N1 – 1) (N2 – 1) + 1,
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β4 = n[E*(N1 – 1) 2  (N2 – 1)2 – [ E*(N1 – 1)2 ]2 ]  + 1,

β5 = n E*(N1 – 1)2 (N2 – 1) (N3 – 1) + 1.

It is assumed that  E*N1 = 1 and that the βi's are bounded. This means that the mixed

moments appearing in the definition of the βi's are not too different from the i.i.d. resampling

(from the wild bootstrap). The βi's are chosen such that β1 = … = β5 = 0 for the usual

bootstrap. We allow that the conditional distribution of the weights may be adaptively chosen

depending on the sample. Therefore also the βi's may depend on the sample. For instance, for

the generalized jackknife with ∑i=1
n ρ(i) = n we get β3 = β5 = 0 and β4 = – (β2 + 2) with β2

depending on ρ.  For a detailed discussion of this expansion we refer to Hall and Mammen
(1992). As a possible application let us mention here only that generalized bootstrap may be
used to adjust coverage probabilities of bootstrap confidence intervalls.
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