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Abstract. We prove that the distributions of spectral mean estimates from
linear processes admit Edgeworth expansions. As a consequence, Edgeworth
expansions are valid for Whittle estimates.

1. Introduction
We consider areal-valued stationary time series { X,},_, with EX; = 0 and spectral density f.
L et us denote by

A(0.f) = (J 0 (o) f(o) dar , ... , J 0" (o0) f(0r) dar)’ (EJ of) (1.1)
0 0

the spectral mean, where q)(r) are functions of bounded variation for r = 1, ... , d. The
canonical estimate of A(¢,f) is

A(¢,|T)E(J 0(0) 17(00) dot , ... J 0" (0)1;(0r) dor)’ (EI ol) (1.2)
0 0

where | isthetapered periodogram, i.e.

-
-1 2
()= (2n Hyp) | D, h X, exp (—ia) |
t=1
(cf. Dahlhaus (1983)).
By adifferent choice for the function ¢ we get estimates for the autovariances at different

lags, the spectral distribution function and the spectral density function at a
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finite number of points as well as quantities that are needed to compute the Whittle estimates.

If the underlying process { X;} is Gaussian, Edgeworth expansions of the statistic in
(1.2) have been given for d = 1 and specia ¢'s in the nontapered case by several authors:
Bentkus (1982) proves an expansion for kernel spectral density estimates and Taniguchi (1991)
shows the validity of Edgeworth expansions of generalized maximum likelihood estimators for
Gaussian ARMA-processes. Bose (1988) drops the assumption of Gaussianity. He gives
higher order approximations for a vector of autocovariances from alinear process.

In this paper we establish Edgeworth expansions for the distribution of the statistic given
in (1.2) when the processis linear. The expansions are valid for ¢'s whose Fourier coefficients
decrease exponentially. The data are allowed to be tapered. As an application of this result we
show that the distributions of the Whittle estimates admit Edgeworth expansions.

The paper is organized as follows: In section 2 we give the main results that include a
basic theorem for Edgeworth expansions for sums of dependent random vectors by Gotze and
Hipp (1983). The application of these results to the Whittle estimates is found in section 3. In
order to make the paper more convenient for the reader we have transferred al proofs to section
4.

2. Main results
First we gather the assumptions needed in this paper:

(A1) { X}z isareal-vaued linear process such that X, = Zuez a, &y
where e, arei.i.d. random variables satisfying Ee, =0, E €2 = 1, E €} = 0,
E 5™ < o for some fixed s> 3.

(A2) (el,eﬁ) fulfills Cramér's condition, i.e36>0,d>0 V |{t||>d
| E expit(e,,€9)) |<1-5.

(A3) Thefilter coefficients a, and the Fourier coefficients&u) of ¢ decrease
exponentialy, i.e.

J0<p<1 Viageu |aj<p", Jow)<p".



(A4) The data taper h: R — [0,1] istwice continuoudly differentiable,

1
hx)=0 forxe(0,1) and HZEJ h(x)dx > O.
0

(A5) Y, = lim DU/T fq)IT) is positive definite, where D denotes the dispersion
T—oo

matrix.

Remark 2.1.

(1) The assumption that the third moment of ¢, is zero can be dropped. It is only made for
convenience.

(2) The minimum assumption we need isE eﬁ < oo, The reason is that the statistics considered
involve quadratic functions of €, and Edgeworth expansions for sums of dependent random
vectors require the (s + 1)-th moment of etz with s at |east three.

In order to derive our main results we take the help of the following results of Gétze and Hipp
(1983) (henceforth referred to as GH).

Let {Zg by,
abstract measure space (Q, A, P) withE Z =0 Vt and

+ beatriangular array of d-dimensional, real-valued random vectors on an

.
St = 0?1/2 Z Zrg o (2.0)
t=1

where ¢ isanorming constant of order T to be specified. The function ‘¥ ¢ represents the
first (s — 1) terms of the Edgeworth expansion of the distribution of S; whenever such an
expansion is valid. For any random vector Z, D(Z) denotes the dispersion matrix of Z. Let ¢y
be the normal density with mean zero and dispersion matrix 2. , and @y the corresponding

R . : d :
distribution function. ¢ stands for ageneric constant. Let f: R — R be ameasurable function

with M (f) = sup (1 + ||x||)_r|f(x)| < oo, Define the average modulus of oscillation of f with
X

r&specttoafinitemeasurePby&(f,e,P)sf sup  [f(y) — f(x)| dP(X).

lly—x|l<e

b
Let Dj be o-fields on (Q,A,P) (writes (\U Dj) = D2 ) and 0 < p < 1 such that

j=a



C(l) EZ;=0 vt

s+l

C(2) ElZ;JI" " <Bgy <o Vit forsomes>3.

C(3) Y1 meDim  with EIZp =Yyl < p™.

[e)

C(4) VAeD.., ,BeD;;, |P(A~B)-P@A)PB)<p™.
C(5) Jemp>0 VO=e Vpi<m<T

#{te{L, ..., THE|E exp(i0 (Zrn* -+ Zypm | Dji 2| <1-m} 2pT.
C(6) VAeDp Vtpm E|[PA|D;:j=1)-PA|D,:0<|-t<m+p)|<p™.

C(7) lim D(S;) = Y, existsand is positive definite.

T—oo

Remark.

The Cramér type condition C(5) is a weaker assumption than the condition (2.5) in GH.
Nevertheless, it suffices for the results of GH to hold as is pointed out by remark (3.44) in
GH. The weaker condition C(5) means that Cramér's condition is fulfilled for a sufficiently
large number of t's. Whereas condition (2.5) cannot be fulfilled in the situations we will
discuss, by some effort it is possible to verify C(5).

Let s, besor (s—1) according to sis even or odd.

Theorem 2.1.
Assume that C(1) — C(7) hold. Then there exists a positive constant 6 not depending on f
and M So(f)’ and for arbitrary x > O there exists a positive constant ¢ depending on MSO(f)

but not on f such that
|E f(Sr)—If d¥ | < colf, T, @y) + o(T =202

The term o(+) depends on f through M So(f) only.



Corollary 2.2.
Assume C(1) — C(7). Then the following approximation holds uniformly over convex

measurable C ¢ Rd:
P(S;eC) = W1 (C) + o(T 522 |

To apply GH to the distribution of a spectral mean estimate first of all we haveto find a
representation of the statistic of interest in (1.2) as a sum of appropiate random vectors.
Parseval'sidentity implies

~

J @@ de = L Y 0% e,

=T

N T .
where ¢ (J)(r) EJ q)(J)(oc) cos(ou) do. are the Fourier coefficients of q)(J) and
0
c(n) = H;lT Zlq r<T Nt Xt My Xiap is the tapered autocovariance estimate of { X} .

If (1) are even, real valued functions, we get $0)(r) = $0)(— r) for re Z (otherwise

consider the even extension of q> ).

Equally, we have c(r) =c(-r) forreZ .

with y?(0) = 0%0) and v = 20 () forr=0 weobtain further

4 T ~() T
(2n H2,T) Z y(r) 2 he Xt P X
r=0 t=1

1 i v ¢
2 r=0

1 T T ~ i)
(2r Hz,T) 2 2 y(r) ht ht+r X Xpar s
t=1r=0

sinceh(r) =0 for |r| > 1. Let

T i
2 v 00 hoh, X X )ist..d (ertez w(r) hy by X, Xiap ), (2.1)
r=0 r=0



Zy, =Ug, —E Up, (2.2)

and 2 = TV2/ (2n H, ). (2.3)

Then the standardized version of (1.2), i.e.

T (I (o) 13(0r) dov — EJ 0(0r) 15(x) dor)
0 0

may be rewritten as

.
Sr= M2 77, (2.4)
t=1

We now state our main theorem.

Theorem 2.3.
Under conditions (A1) — (A5) theorem 2.1 and corollary 2.2 hold for S; defined in (2.4).

Remark 2.4.

(1) Asin Theorem 2.10 of Goétze and Hipp (1983) we can replace the Cramér condition (A2) by
smoothness conditions of the function to be integrated to get the expansion of Theorem 2.1.
Further, we have the analogous result to Theorem 2.11 of Gotze and Hipp about the tail
behaviour without Cramér's condition (A2).

(2) Usually, tapering causes alot of technical trouble (cf. Dahlhaus (1983)). The proofs of the
results given here need no special effort concerning tapering.

(3) Whereas in the cases of the estimates for the autocovariances (at different lags) and the
Whittle estimates it is not difficult to fulfill the assumptions (A1) - (A5), in the cases of the
estimates for the spectral distribution function and the spectral density function the assumption
(A3) is hardly to verify. It is an open question if the assumption that the Fourier coefficients
have to decay exponentially can be weakened and so Edgeworth expansions are valid at |east
for modified versions of the estimates mentioned (e.g. for smoothed versions and special
kernels).



3. Whittle estimates
Consider alinear process { X}, whose spectral density f, can be parametrized by 6 lying

within a compact set ® c R (e.g. ARMA-processes). Assume that Kolmogorov's formula
holds, i.e.

T

2
I log fg(o) do = 27 log g—n , (3.1)
-

where 62 represents the innovation variance. For sake of simplicity we assume o2 to be
known. Let 6, Int © be the true, unknown parameter. Minimization of the function

T

L(0) = J £ (@) 17(0t) dor (3.2)
0

yields the well-known Whittle esti mate6 for 0. (cf. Dzhaparidze and Y aglom (1983)).

We give the Edgeworth expansion of the distribution of 6 up to second order and prove
itsvalidity.

First we set down the assumptions needed additional to the general assumptions (A1) to
(A5).

(A6) The set of parameter ® — R is compact. The parameters are identifiable,
i.e0,#0, impliasfel # f62 on a set with positive Lebesgue measure.
The spectral density fy(ov) isfour times continuously differentiable with respect to

0e © and is two times continuously differentiable with respect to a.e [0,]. fy(or)
and its derivatives are uniformly bounded,

ie3 0<c<C<e V60O ,ae[0n] c<fy(0) <C, | folo) | <,

ae(i)

=14 and |- fo@sc, | = 12 Let 0y = 06267 with
oo

M 0 -1 . _ .

by = Tfe ,1 =123 . There exists d, > 0 such that

09

T
L% ) = I 0 (00) To(c) dor> dy forall 6 ©
0



We now state the theorem.

Theorem 3.1.
Assumethat (A1) - (A6) hold. Let o be an arbitrary fixed number such that 0 < o < 1/4.

(i)

(ii)

There exists a statistic 6 which solves

T a )
OJ o £ (0) I5(0)) dor = 0 (3.3)

such that for some d; >0

Po,(18 =6 <dy T“*) = 1-0(T"") (3.4)
uniformly for 6,€ ©.
For 6 satisfying (3.4)

sup [P, ((TK(80)"“(8 —6)) < x)—J 1+ T Ppyy) o)l =0T (35)

xeR

—o00

uniformly for 6, ©, where p;(x) denotes a polynomial in x whose coefficients are
continuous functions of the approximate cumulants of U(6,) (defined in (4.30)) of
order threeor less.

Remark 3.2.

(1) This result generalizes Theorem 3.2.1 by Taniguchi (1991) from Gaussian to linear
processes.

(2) The Edgeworth expansion isvalid up to higher order than given above

(cf. Taniguchi (1991)).

(3) The generalization to the multivariate case is not difficult, but requires cumbersome
notations.



4. Proofs

Proof of Theorem 2.3.
Conditions C(1) — C(7) haveto be verified. With Dj = o(ej) C(1), C(4) and C(6) hold trivialy.
C(7) isassumption (A5). C(2) followsfrom

st+1, 1/(s+1)
E U I
T
i s+l 1/(s+1)
< D2 IWON hehy, | X lacul @ Eleye, )
r=0 uveZ

2 2 ||$(r)” (Z |3u|)2 E |81|2(s+1))1/(s+1) <

reZ ueZ

IN

by the assumptions (A1) and (A3).

To prove C(3) define Y+, e Difm by

m
YTtm = 2 V(1) hehy, 2 & Gerv Eyy - (4.1)
r=0 [t—u|<m
[t=v|<m

It suffices to show

2.1/2 m
(E ”UT‘t - YT,t,m” )

IN
B®]

(4.2)

First notice that the sum in the definition (2.1) of Uy, can be restricted to the indices
{0, ..., [m/2]}, since
2.1/2

EN Y. w) hhy X Xl
r>[m/2]

<2 Y ool (¥ lah? € k)"

r>[m/2] ueZ

< %pm with 0<p <1 (4.3)
by assumption (A1) and the exponential decay of the coefficients ||p(r)|| (see (A6)).
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Next, we compute the difference between the restricted sum, Uy, . say, and Y

2,12
(E | Urgm = Yremll)

[m/2]

<2 z oI E k)Y (Y lacd Y lawrd* S lacd D lased)
[t—ul<m [t=v|>m [t—=ul>m veZ
[ro2] 4 1/4
<2 2 o E O™ (Tl Y lal+ X fal X [al)
ueZ [v|>[m/2] [ul>m veZ

(4.4

by the assumption (A1) and the exponentia decay of the coefficients |, ((A3) ). (4.3) and (4.4)
implies (4.2). It remains to check the Cramér type condition C(5).

T ~
2 Urj = 2 Euy 2 EW(O hj hj+raj—u‘55+r—v

|t=j|<m uveZ |t=j|<m r=0

= & Arim +ef Brim * G (4.5)
where
Atim = = > 2 W) e erjar (82 Bjry & + Gor, i €,) (4.6)
[iI€m r=0 vt uzt
Brim= 2, 2 Y(1) Neej Neajer 8 3y (4.7)
lil<m r=0

and C denotes a random vector stochastically independent of ,. Note that A and g, are also

T,tm
independent for all t. Let {g]} bei.i.d. rvs, {g} and{g;} independent and

*

g D g . Define A*T,t,maSAT,t,m with gs replaced by ef's
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Thus, with 6 R®

E|Eexp 0 D, Z;|D;:j=1)

ftjlm
=E|Eexp(ig0 Ap,p+i €20 By, |D;:j#0)
=E |E exp(i g 6 Aicr,t,m +igf elBT,t,m) |

<S@A-8)P([|0'ATim. 8By mll = )

+P([|6" AT . 0 By Il < d) (4.8)

by Cramér's condition on (g,,e? ) (see (A2)).
Hence C(5) will follow if constants d, d;, 1 > O exist such that for ||6]| = d,

"% 1
P(”O AT,t,m’ 0 BT,t,m ” 2 d) >

holds for a sufficiently large number of t's. Thisis verified, if there existse, n > 0 such that for
dl le]l = 1,

Pl A7 m: 0B mll = €)>n (4.9)

holds. But thisislemma4.2. Thus C(5) isfulfilled and the theorem follows. 1

First, we set down another lemmawhich will be needed.

Lemma 4.1.
Assume the conditions of Theorem 2.3. Then

.
0 it D, D(Ar(m) — D(A) for m<T and m— o,
t=1
1/2
where A =2 '1?2 Y o &y f o () (o) cos (o) dat,
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(il D(A) =2 (T +C,N )
where C, = 1-E €< 0,
- Ha '
N = L2 Jot o'
2
and X = T4 onfgo'f+EL-3)N.
H2
2
1 u '
(iii) PHa T t; Brim Brem @ N for m<Tandm — eo.
Proof.

Ad (i). First, we give asimplification for A, .

a]' Z at+j+r—v g, * aj+r Z at+j—u €y

V£t u-t

& Kesjar + Gar Xy — 23 Gur &

a 2 Qiru Cvu ™ Gur 2 a_u Ery —28 34 &

ueZ ueZ

2 (B84 + B4 3y -

u=0
Thus
T ~
AT,t,m - . z w(r) ht+i ht+J+r 2 €tru (81 a]'+r—u * 65+r a1—u)
[i|€m r=0 u£0
T ~
= 2 €y z () (& m(rl) + ar () (4.10)
u=0 r=0
where i
a},t,m(r’u) = 2 ht+j ht+j+r &y (4.11)

lit<m
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&em (W)= D, Ny hupy 8,8, - (4.12)

lit<m

Next, we calculate products of the termsin (4.11) and (4.12). We have

T
D, B () & m(sU) = (Har + O(Irl + 1)) (c(r o ) csA U) + O(p™)), (4.13)
t=1

where c(u)=zjezajaj+u ando, Ae{ +,-}.

We consider thecaseo=—,A=+.

T T
Z a'_l',t,m(r’u) afr,t,m(s.u) = Z & G+r—u K+s Ky 2 ht+j ht+j+r Nt+k Netkss
t=1 lil,[kI<m t=1

= Y & Fuudes acu (Har + O+ K|+ I +1s))
lil,IK|<m

by lemmaP 4.1 in Brillinger (1981).
Now (4.13) follows from assumption (A3) on the coefficients { a]-} .
From (4.10) and (4.13) we get
pu
it Y, D(ATim)
t=1
T T,
= 2 X Eeytuy X VOV (9 @ () + & (L)
t=1u

V20 r,s=0

(@ m(SV) + a7 m(SV))

T . O T
Y D WO (9) D (87 m(SU) + 8 n(rU) (&7 ¢ m(SU) + 8 ¢ m(SU))
t=1

u#0 r,s=0
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= Hyr gt XY 00+ u)+cr—u) Y, 0'©(c(s+u) +c(s—u) +Op™)

uz0 [r<T |SI<T

- H—;‘ > o) fle) €™+ & ™)da [o'(e) (o) €'+ &™) (4.14)
H2 u=0

for m<T and m — « by Parseval'sidentity.

Ad (ii).
D(A)

I}
N
&

Y, [ o(0) f(o) cos (o) dot [ o' (@) f(er) cos (o) dot E e,

H% u,v#0

= 4m ( Z J.q)(oc) f(a) cos (owu) dot jq)' (o) f(o) cos (ou) do

2
H2 ueZ

[ o(e) f(e) dot [ ¢' (00) F(t) dor)

22 (2] 0 @0 ) (o)da -2 -Jo(@) f(o)dufo (@f(e)da)
2

by Parseva's identity.

Ad (iii).
The proof isanalogousto (i) , but much ssmpler, and therefore omitted. 1

Lemma 4.2.
Assume the conditions of Theorem 2.3. Then

Je,np>0 V|oll=1 Vpl<m<T
#{te{1, ... T}: P(|0A; . 0B ]l 2 8)>n} 2pT.

Proof.
From the compactness of the unit ball, it sufficesto show that there is such a choice of € and n
for every fixed 6. Choose such a6 and write 6 = 6, + 0,, where 6, is orthogonal to 6,, and 0,

=c j o(a) f(or) dow for some c. Fix o > 0O (to be chosen).
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Case 1.
16]| = .. Then

”e AT,t,m ,9 Ttm”>|eBTt,m|'

By Cauchy-Schwartz inequality we find a positive constant a only depending on the coefficients

{a} and { [lw(n|[} with
0B | < a (4.15)

Lemmad4.1 (iii) delivers

T
ZTEHZT ZleBTtml - 9 27CH2T ZBTthTtm

t=1 t=1
M— oo ,
- O N®
' 2
= Mg, ot
H2
> o2 5 lIf 0fIF=b>o0. (4.16)

Assumew.l.o.g. a=max (b,1). Letc :% <landp = ;;8 .If lessthan p - T terms had the

property |6'BT,Lm|2 > ¢, we could bound the left-hand side of (4.16) by

S ' 2
> 18 Briml

t=1

N

(l-p)e+pa

ZRHZT

IA

a(1-p)e+p)
= ae+(1-¢)p)

= b ,
which isacontradiction to (4.16).
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Case 2.
|16,][= 1 — o In this case
” el AT,t,m ! el BT,t,m ” 2 |9' AT,t,m | '

Cauchy-Schwartz inequality providesfor

EI0 Ay [ <a

(4.17)

with abeing a positive constant only depending on the coefficients {g}, { WO} and E €3 .

By lemma4.1 (i) and (ii) we have

T T

— ' 2 v

Y E 0 Ay = 0613 Dy )0
t=1 t=1

M- oo

— 0 D(A) 0

20(X +CyN) 0.

Let A, be the smallest eigenvalue of . (A, > 0!). Then we can continue
> 2(A —|Col6N 6)>2; > 0

if |Col 6N 8 <A,.

But, by Cauchy Schwartz inequality
Colo'N 6= 4 Jefoff

H 2
< o?|Col 2 lIfo fll
H3

(4.18)
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and thus (4.18) holds with an o chosen sufficiently small. Now the assertion follows from
(4.17) and (4.18) asin case 1. This proves the lemma. L1

Before proving Theorem 3.1, we state some preparations and several lemmas. We set
down

L%0) = J 03 () fo(0r) dot (4.19)
0
L0@) = I 0% (e)1(c) dlox (4.20)
0
z©) = T P06 -eLV0)) (4.21)
fori=1,23.
Lemma 4.3.
Under (A1), (A3), (A4) and (A6)
0 E,L9@0) = L) + o1 ,i=123
(i) Eo(Z,(60))° ::3 2nj (05 (@) fo())” ot + o(1)
2 0
(i) Eo(Z,(6) Z,(6)) =4 2nj 06 (@) 9 () T5(0r) dor + o(1)
H3
0
(iv) VT E4(Z,(0))° = :g 8n2J 05 (@) To(0))’ da + o(1)
2
0

uniformly for 6€ ©.
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For the proof we refer to Dahlhaus (1983).

Lemma 4.4.
Under (A1) —(A6), for every o. > 0 and some d, > 0, we have

Po( Z/(®) | > d, T%) = o(T9), =123
uniformly for 6€ ©.
Thelemmais adirect consequence of Theorem 2.3.

The following result is due to Chibisov (1972).

Lemma 4.5.
Let Y be a random variable which has the stochastic expansion

Yo=Y+ T &t

where the distribution of Y(TS) has the Edgeworth expansion:
X
-1/2 —1/2
P(YP <x) :I (1+T 7 pyly)) d(y) +o(T )
0

Also & satisfies
P([£7) > p VT ) = o(T ),

wherep; — 0,p; VT -0 a T — oo Then

P(Y; <X) :J 1+ T 2 py(y)) doy) + o(T 5.

—o0

(4.22)

(4.23)

(4.24)
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We return to the proof of (i) in Theorem 3.1.

Proof of (i) in Theorem 3.1.
We use the argument similar to that of Taniguchi (1991). Consider the equation

2
0 =LMe, + L% 6, 6 -6y +% L6, (6 -6, + R(6), (4.25)
where
' 3
Rr@l<sl - sup L) o -6, . (4.26)
lo'-61<l6—60|

For every o > O there exists a positive constant d, such that
3 (04 -1/2
Poo(IR7(®)[>[6 =84 [ d, T") = o(T ) (4.27)
For the proof of (4.27) notice

Poo(sup | LT(8)] > dT")
0€O

IN

T

3

Po,(SUp Sup |4fel(x)|J|T(x) di > d1%)
60 rc[0] 00 4

T
< PeO(I IT(A) dA >% T
0

by (A6). But the last term is of the order o(T_llz) by Theorem 2.3. Therefore, on a set having

P, -probability at least 1 — o(T_llz), for some constants d; > 0 and d, > O we can rewrite
0
(4.25) as

0-65=(1(8g) + nT)_l(ST + 12156, (6 - 90)2 +ds 16 - 60|3 &7) (4.28)
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where n; and 6, are random variables whose absolute values are |ess than d, 7Y% and & is
arandom variable whose absolute valueis lessthen d, T* There exist asufficiently large
d, > 0 and an integer T, such that if T> Ty and [ — 8,/ < d.T - * (0 < a < 1/4) , the right-

hand side of (4.28) is less than d7T_1/2+a. Applying the Brower fixed point theorem to the
right-hand side of (4.28) we have proved (i) of Theorem 3.1. L1
Now we set down

Vy = VT(6 —6p) (4.29)
and
__Zi0) , 1 Zi6) Zx(6) _ 1 LO®) , Zy(6) |’
Ur(6) L@(0) +VT L@(0) L@(0) 20T L@e)  LOA(o) (4-30)
Lemma 4.6.

Under (A1) — (A6) we have the following stochastic expansion
IT(0-00) = Ug(6) + T &,

where &y satisfies Py (IS7] > p 1T ) = o(T "% for some sequence pr = 0,p; VT - = as

T— oo,

Pr oof.

From the equation L(Tl)(g) =0, we have

0=1T L¥(60) + # Z,(80)Vy + EGOL(TZ)(OO) Vo+ % LO(00)V2 + é LW@)VE  (4.31)

where |8 — 60| < |6 — 6| .

Werewrite (4.31) as
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_ T1%60) 1 L9 (60)
Vi=- 0 - B Z(80) Vy = B
Egb(00)  EgolP(0o)/T 2E 4 L7001/ T
@/
- % VA (4.32)
BEg L\ 7(00)T

Noting (3.4), (4.27) and Lemma 4.4 with O < o < 1/10, we can write (4.32) as

(1) ~
SERLL S CORE S (4.33)

= 1

EGOL'(FZ)(GO) T
Py -1/2

where Pg (| &r|>dg T?%) = o(T ) for some dg > 0.

Substituting (4.33) for the right-hand side of (4.32) and noting that

EooL(00) = o(T™) and Eq,LP(60) = L?(80) + o(T™) by Lemma 4.3(i)

we have

= 2160 , 1 Zi60) Za8) _ 1 L) ( Zu60) 7,1
L@@y TLO@®) LO®) 2T L@@y LO®Gy) T 7'

T

where P, (|5 | > dg T3%) = o(T 9), for some d,, > 0.
oo\t 17 Yo 9

Since 0 < o < 1/10, we have the desired result. 1

Proof of (2) in Theorem 3.1.
By Lemma 4.6 the Edgeworth expansion for VT (6 —0p) (up to order T_l/Z) is equal to that of

U;(60). Thus we have to derive the Edgeworth expansion for U,(60). Since U,(0¢) is a
smooth function of Z,(6¢) and Z,(6¢) this expansion follows from the expansion of the vector

(Z,(80),Z,(80)) by the well-known Transformation-Lemma (cf. Bhattacharya and Ghosh
(1978)). 1
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