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Abstract. In this paper we develop a Conditional Least Squares (CLS) procedure for
estimating bilinear time series models. We apply this method to two general types of
bilinear models. A model of type I is a special superdiagonal bilinear model which
includes the linear ARMA model as a submodel. A model of type II is a standardized
version of the popular bilinear BL(p, 0, p, 1) model (see e.g. Liu and Chen (1990),
Sesay and Subba Rao (1991)). For both models we show that the limiting distribution of
the resulting CLS estimates is Gaussian and the law of the iterated logarithm holds.
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1  Introduction

In the last 20 years there has been a growing interest in the nonlinear modelling of time

series data (for a review see e.g. Andel (1989), Tong (1990) and Tjøstheim (1992)). This

interest is motivated mainly by the fact that a lot of real data sets exhibit features e.g.

occasional sharp spikes, which cannot sufficiently explained by the theory of linear time

series. 

One of the approaches to nonlinear time series modelling is the bilinear one. In the

context of time series, bilinear models have been introduced by Granger and Andersen

(1978). A real valued stochastic process in discrete time {Xt}t∈Z is said to be a bilinear

time series of type BL(p, q, k, r) if it satisfies the difference equations 

Xt  =  α  + ∑
i=1

p

 ai Xt-i  +  ∑
j=1

q

 cj εt-j  +  ∑
j=1

r

∑
i=1

k

bij εt-i Xt-j  +  εt , (1.1)

for each t ∈ Z, where {εt}t∈Z is an iid zero mean white noise process. 

Such a bilinear time series is particularly attractive in modelling processes with sample

paths exhibiting occasional sharp spikes as they occur in vibration wave, econometrics

and control theory (see e.g. Mohler (1973)).
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Here we will present a new approach to solve the estimation problem for two submodels

of the general bilinear model defined in (1.1). The model of our major interest is the

special bilinear extended ARMA model of the type

(I) Xt  =  ∑
i=1

p

 ai Xt-i  +  ∑
j=1

q

 cj εt-j  +  ∑
j=w

r

∑
i=1

k

bij εt-i Xt-j  +  εt , 
(1.2)

with w ≡ max {q, k} + 1.

The other model which we consider here, is one of the most often considered bilinear

models in the literature. It is defined by the difference equations

(II) Xt  =  α  +  ∑
i=1

p

 ai Xt-i  +  εt-k ∑
j=k

r

bkj Xt-j  +  εt , k ≥ 1, (1.3)

with bkj ≠ 0 for at least one j, k ≤ j ≤ r, α ≡ – bkkσ2 and εt ~ N(0, σ2).

For a stationary and ergodic bilinear time series many different ideas to solve the

estimation problem have been proposed in the literature (see e.g. Subba Rao (1981),

Pham and Tran (1981), Subba Rao and da Silva (1989), Liu (1990), Liu and Chen

(1990), Sesay and Subba Rao (1992)), but the asymptotic properties of the deduced

estimates are known in some very restrictive models only. The approaches differ not only

in the method of estimation they use but also in the type of bilinearity they can capture

and in the results which are attainable. The most frequently applied methods for

estimating the parameter of the bilinear process are the Least Squares (LS) method (e.g.

Pham and Tran (1981), Guegan and Pham (1989)) and the Method of Moments (MM)

(e.g. Tang and Mohler (1988), Kim, Billard and Basawa (1990), Liu and Chen (1990)). 

In the case of LS estimation up to now even in the simple bilinear model considered by

Pham and Tran (1981) nothing is known about the limiting distribution of the LS

estimates. Simulations of the distribution of the estimates sometimes indicate an

asymptotic normal behaviour and sometimes they do not (cf. Kim and Billard (1990) and

Subba Rao and da Silva (1989) respectively).

If we restrict our considerations to a Gaussian innovation process, in most of the cases

where we fail to prove an asympotic normal behaviour of the LS estimates, the
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application of the MM method yields to strong consistent and asymptotic normal

estimates (e.g. Kim, Billard and Basawa (1990), Liu and Chen (1990)). But until now

the bilinear BL(p, 0, 1, 1) model is the most general bilinear model which has been

shown to be asymptotic normal estimable (in Liu and Chen (1990)). 

Here we propose a new method for estimating the parameter of bilinear time series which

is based mainly on a Conditional Least Squares (CLS) approach applied to the AR

residuals of the bilinear process.

We will show that this procedure supplies estimates for the parameter of both models

(1.2) and (1.3), where the method of estimating the model II is applicable also to the case

of a more general innovation sequence {εt}t∈Z whose first eight cumulants coincide with

that of the Gaussian distribution N(0, σ2). We will prove that as well in model I as in

model II the estimators defined by means of this CLS method satisfy both the Central

Limit Theorem (CLT) and the Law of the Iterated Logarithm (LIL). 

In view of these results it is possible for the first time that we can estimate the parameter

of a bilinear time series which includes a non zero moving average part (i.e. cj ≠ 0 for

some j in (1.2)) by an asymptotic normal estimate. Furthermore, in estimating the model

(1.2) we do not need to impose the common assumption of Gaussian innovations neither

for the definition of the estimation procedure nor for proving the asymptotic properties of

the estimates. Up to now in the literature for proving an asymptotic normal behaviour of

bilinear estimates it is usually required that the innovations follow a Gaussian law (e.g.

Kim and Billard (1990), Kim, Billard and Basawa (1990)). Thus the results concerning

the estimation of the bilinear model in (1.2) obtained here, are fundamental theoretical

results for improving the general linear (Gaussian or nongaussian) ARMA approximation

to time series data by applying this bilinear extension. It is our hope that basing on our

results, in practice in many cases forecasts deduced from the usual ARMA fit can be

improved by fitting the bilinear extended ARMA model (1.2) to the data.

Furthermore, we are not aware of any comparable results in estimating the model (1.3),

which state the CLT or the LIL for the estimates under consideration, though this model

is one of the most often considered bilinear models (mainly in the case α = 0) in the

literature (e.g. Subba Rao and Gabr (1984), Jou (1989), Wittwer (1989), Sesay and

Subba Rao (1988, 1991)). 

To prove our results we need to impose some appropriate moment conditions on the
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process {Xt}t∈Z and a kind of 'linear' invertibility of the underlying bilinear process. The

required moment conditions are weak since we can prove the strong consistency of the

suggested estimates under the assumption of the existence of the fourth moment of the

process {Xt}t∈Z only. In a certain sense this is a minimum requirement since even in the

case of the simple bilinear model 

Xt = b εt-1 Xt-2 + εt ,        εt iid ~ N(0,σ2),  t∈ Z. (1.4)

the fourth order mixed moments are necessary to identify the parameter (b, σ2) from the

moments. Note the following result whose proof is given in chapter 4:

Lemma 1.1

Let {Xt}t∈Z  denote the bilinear time series defined by the equation Xt = b εt-1 Xt-2 + εt ,

where {εt}t∈Z denotes an iid sequence with E(εt
2n) < ∞ for some n ≥ 1, and E(εt

m) = 0

for all 1 ≤ m ≤ 2n - 1, m odd. Then we have the following assertions:

(i) If b2 E(εt
2)  < 1 , then {Xt}t∈Z  is a stationary, ergodic and causal process.

(ii) E(Xt
2n) < ∞    ⇔      b2n E(εt

2n)  < 1.

(iii) In the special case of Gaussian innovations with  1/4  <  b4σ4  < 1/3 we have: 

The bilinear process {X t}t∈Z defined by X t = b εt -1  X t-2 + εt  with an iid 

Gaussian sequence {εt}t∈Z where b  := (1/bσ2) – b, σ2  :=  (bσ2)/b   and σ2 and

σ2 respectively denotes the variance of the innovations, is a stationary, ergodic 

and causal process. Moreover the fourth moment of the process exists and the 

first, second and third order moments of the processes {Xt}t∈Z and {X t}t∈Z  

coincide.

The assertion (iii) makes the identification problem obvious. Even in the Gaussian

innovation case we require the first four moments of the process to identify the parameter

determining the bilinear process by its moments only. If we apply the assertion (ii) of this

lemma to the bilinear model (1.4) we see that the requirement E|Xt
4| < ∞ is equivalent to

b4σ4 < 1/3 and E|Xt
8| < ∞ corresponds to b8σ8 < 1/105. 

The paper is organized as follows:
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In chapter 2 the CLS procedure for estimating the parameter of the bilinear models (1.2)

and (1.3) is presented explicitly.

In the third chapter the results on the asymptotic behaviour of these parameter estimates

are summarized. 

The main proofs are given in the fourth chapter then. 

2  Conditional Least Squares estimation of bilinear time series

To motivate the application of the CLS method to bilinear models first we restrict our

attention on the bilinear model (1.4). 

One of the most often considered methods for estimating bilinear models is the method of

Least Squares (LS) (e.g. Pham and Tran (1981), Wittwer (1989)). In the Gaussian

innovation case this method coincides with the method of Conditional Maximum

Likelihood estimation.

Given observations X1,…, XN generated by the difference scheme in (1.4) according to

the concept of LS we try to minimize the sum

∑
t=3

N

{εt(b)}2 = ∑
t=3

N

{Xt – b εt-1(b) Xt-2}2  (2.1)

with respect to b which provides us with an estimator bLS of the parameter b.

In the literature it is well known that there exist at least three problems in applying this

method. The first is that we need to ensure the invertibility of the bilinear process,

because otherwise the residuals εt-1(b) in (2.1) cannot be estimated from the observations

X1,…, XN only. To guarantee the invertibility of the process we have to restrict the space

of the admissable parameter values in a complicated manner (see e.g. Pham and Tran

(1981)). A further problem is that to make inference on the limiting distribution of the

standardized quantity N1/2 (bLS – b) we have to require that all moments of the bilinear

process exist. In model (1.4) this requirement forces b to be zero (cf. Lemma 1.1)! 

Apart from these problems arising in the deduction of the asymptotic behaviour of the LS

estimate we are also faced with finite sample problems. For minimizing the sum of the

least squares we need a numerical minimization procedure which requires an initial value

placed in a neighbourhood of the value of the true parameter. To find such an initial value

is also far from being trivial.
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Minimizing the sum in (2.1) can be interpreted as searching for that parametervalue which

minimizes the empirical expectation of the quadratic distance between Xt and its forecast

E(Xt | εt-1, εt-2,…) which is based on the information contained in the past innovations

εt-i, i ≥ 1. (If we assume the process {Xt}t∈Z to be invertible, the σ - field generated by

εt-i, i ≥ 1, and that generated by Xt-i, i ≥ 1, coincide.) If we relinquish the information

contained in the recent innovations we can forecast Xt by E(Xt | εt-i, εt-i-1,…) for i > 1

too. But for each i > 1 we get E(Xt | εt-i, εt-i-1,…) = 0 (=E(Xt)) such that each of these

forecasts is only as good as the best forecast of Xt if no more information is available.

Moreover they do not contain any information on the parameter b and σ2 determining

the bilinear series.

The idea now is to consider not only forecasting Xt but to study also forecasting products

like Xt Xt-s, s ≥ 0 with the hope that these forecasts contain more information on the

underlying parameter. Applying this idea to model (1.4) we obtain

 E(Xt Xt-s | εt-2, εt-3,…)  =  
σ2+ b2σ2 Xt-2

2  , s = 0   

   bσ2 Xt-2    ,  s = 1

        0           ,  s ≥ 2

. (2.2)

This result now motivates the following procedure to estimate the parameter b and σ2

determining the bilinear model in (1.4). First we apply the equation in (2.2) for s = 0 and

try to minimize 

∑
t=3

N

{Xt
2 - (β11 + β12 Xt-2

2 )}2  

in β1 = (β11, β12)t to get an estimate β1 = (β11 , β12)t of (σ2, b2σ2)t. Αnd analogously

we apply the equation (2.2) for s = 1 also and try to minimize

∑
t=3

N

{XtXt-1 - β2Xt-2}2 

in β2 to get an estimate β2 of bσ2.

By taking these estimators into account in a second step we can define estimates of the

parameter b and σ2 by b ≡ β2 /β11 and σ2 ≡ β11 respectively. Due to the conditioning in

(2.2) these estimates are called Conditional Least Squares (CLS) estimators.
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We will show that these estimates are strong consistent estimates provided E(Xt
4) < ∞.

Moreover, if also E(Xt
8) < ∞ then the limiting distribution of the vector N1/2 ( b – b , σ2

– σ2)t follows a centred Gaussian law.

The idea to analyze the second order conditional moments of the bilinear process to define

CLS estimators of the underlying parameter can also be applied to the more general

bilinear models (1.2) and (1.3).

In these more general bilinear models first we estimate the AR coefficients a1,…, ap of

the process separately and afterwards we apply the CLS approach to the process {vt}t∈Z

of the AR residuals defined by vt ≡ Xt – ∑i=1
p ai Xt-i. 

So in the first step of the estimation procedure we take the Yule - Walker equations into

account to define estimates for the AR coefficients a1,…, ap. Then, in the second step we

make use of the CLS method to estimate quantities which are uniquely determined by the

conditional second order moments of the AR residual process and which can be applied

to define an estimator of the parameter θ0  which we are really interested in. The main task

in applying this method is to prove the identifiability of the parameter θ0 . We have to

check whether θ0  is uniquely determined by the set of quantities, each of them

minimizing the expected value of a conditional sum of squares, or not. E.g. in the case of

model (1.4) this corresponds to checking whether θ0  = (b, σ2)t is uniquely determined

by argminβ1
 Ε[{Xt

2 - (β11 + β12 Xt-2
2 )}2] and argminβ2

 Ε[{XtXt-1 - β2Xt-2}2] or not. 

The proof of the identifiablity of the parameter is divided up into two parts. The first part

is given in the proof of the asymptotic properties of the CLS estimates where it is shown

that the minimizer of the expected value of the conditional sum of squares is uniquely

determined for any conditional sum of squares considered. The second step which

consists in proving that these minimizer uniquely determine the parameter of interest θ0

will be given here. 

To this purpose we consider the quantities which are estimated by the CLS estimates in

more detail. We will need the following theorem which is applicable not only to the

special bilinear models (1.2) and (1.3) but also to general standardized superdiagonal

bilinear models. A bilinear model is defined to be of a superdiagonal type iff bij = 0 for i

< j in (1.1). Moreover the model is called standardized iff E(Xt) = 0. (In contrast to the

linear ARMA case the mean of a bilinear process usually depends on the parameter
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determining the process. For a further discussion of the standardization of bilinear

processes we refer to the appendix.)

Since we restrict ourselves to the study of stationary bilinear time series only, here we

always assume 

(A0) {Xt}t∈Z is a stationary, ergodic, causal and square integrable solution of the 

bilinear equations (1.1) where {εt}t∈Z is such that E(εt
4) < ∞ and E(εt

3) = 0.

Later, in Theorem 3.1 we will give conditions for this assumption to be satisfied for the

types of bilinear models we consider.

In the following we use cov(· , ·| t-m) as an abbrevation for cov(· , ·| εt-m, εt-m-1,…).

Theorem 2.1

Let {Xt}t∈Z be a standardized superdiagonal bilinear time series with E|Xt|4 < ∞.

Under (A0) the following equations hold for m ≥ 1 and s ≥ 0 :

(i) cov(ut , ut-s | t-s-m)

= ∑
j=s

r

bsj σ
2 E(Xt-j | t-s-m) + δs,0 σ2 + ∑

j=s+1

r

∑
i=s+1

k∧(s+m-1)

i≤j

bij {δi,j (bi-s,i-s (c4
ε + σ4)) +

+ ∑
n=i-s

r

bi-s,n σ2 E(Xt-j Xt-s-n | t-s-m) },

where bij ≡ 0 for i > k and c4
ε denotes the fourth cumulant of ε1.

(ii) cov(vt , vt-s | t-s-m) 

= ∑
i=s+1

q∧(s+m-1)

ci ci-s σ
2  +  cs σ

2 I{1 ≤ s ≤ q∧(s+m-1)}  +

+  ∑
i=s+1

q∧(s+m-1)

∑
j=i-s

r

ci bi-s,j σ
2 E(Xt-s-j | t-s-m)  +

+  ∑
i=1

q∧(m-1)

∑
j=i+s

r

ci bi+s,j σ
2 E(Xt-j | t-s-m)  +  cov(ut , ut-s | t-s-m), 

with c0 := 1
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(iii) cov(Xt , Xt-s | t-s-m) 

= ∑
i=1

p

 ai cov(Xt-i , Xt-s | t-s-m)  +  cov(vt , vt-s | t-s-m)  +  

+  ∑
n=1

τ-1

∑
i1=1

p∧(τ-1)

. . . ∑
in=1

p∧(τ-1-i1-..-in-1)

ai1
·...·ain

 cov(vt , vt-s-i1-...-in
 | t-s-m),

where τ := ((q∨k) +1 – s) ∧ m.

For the proof of this theorem we refer to Grahn (1993, chapter 3).

Moreover the corresponding results for the (unconditional) covariances of the several

processes can be deduced from studying the a.s. behaviour of the conditional covariances

for m → ∞. This is the content of the following corollary. 

For brevity here we additionally apply the notation w ≡ (q ∨ k) + 1 and w'  ≡ (q  + 1)

∨ k. 

Corollary 2.2

Under the assumptions stated in Theorem 2.1 the following equations hold for s ≥ 0 :

(i) cov(ut , ut-s ) = δs,0 σ2 + ∑
j=s+1

r

∑
i=s+1

k

i≤j

bij {δi,j (bi-s,i-s (c4
ε + σ4 ))  + 

+ ∑
n=i-s

r

bi-s,n σ2 E(Xt-j Xt-s-n) }

(ii) cov(vt , vt-s ) = ∑
i=s+1

q

ci ci-s σ
2  +  cs σ

2 I{1 ≤ s ≤ q}  +  cov(ut , ut-s )

(iii) cov(Xt , Xt-s ) = ∑
i=1

p

 ai cov(Xt-i , Xt-s)  +  cov(vt , vt-s)  +

+  ∑
n=1

w'-s−1

∑
i1=1

p∧(w'-s-1)

. . . ∑
in=1

p∧(w'-s-1-i1-..-in-1)

ai1
·...·ain

 cov(vt , vt-s-i1-...-in
).

Now we apply Theorem 2.1 to the AR residuals vt ≡ Xt – ∑i=1
p ai Xt-i of the bilinear

models defined in (1.2) and (1.3) and show their relevance for the definition of

estimators for the parameter determining the bilinear models (1.2) and (1.3). First we

discuss the case of the bilinear model (1.2). In model (1.2) we get:
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cov(vt , vt-s | t-w) ( = E(vt ·vt-s | t-w))

= ∑
i=s

q

ci ci-s σ
2  + ∑

j=w

r

{∑
i=1

q

ci bi+s,j σ
2 + bsj σ

2} Xt-j  +  ∑
j=w

r

∑
i=s+1

q

ci bi-s,j σ
2 Xt-s-j 

+ ∑
j=w

r

∑
n=w

r

∑
i=s+1

k

bij bi-s,n σ2 Xt-j Xt-s-n 

= γ(s)  +  ∑
j=w

r+s

dj(s) Xt-j  + ∑
j=w

r

∑
n=w

r

hj,n(s) Xt-j Xt-s-n , (2.3)

where γ(s) denotes the covariancefunction of a MA(q) process with the parameter c1, ..,

cq and σ2, 

dj(s) := bsj σ
2 + ∑

i=s+1

w-1+s

(ci bi-s,j-s + ci-s bij ) σ
2 and hj,n(s) := ∑

i=s+1

k

bij bi-s,n σ2,

and ci ≡ 0 for i > q and bij ≡ 0 for i, j out of the summation domain.

The representation of c(vt , vt-s | t-w) in (2.3) shows that the conditional covariances

depend on the parameter and a finite set of Xt's only! 

The estimation procedure in model I

Step (i). In model (1.2) the Yule – Walker equations with a1,…, ap  hold for s ≥ w'

(cf. Corollary 2.3 applied to model (1.2)), and thus we can define an estimator a for a by

solving the empirical Yule - Walker equations

Cp,w'-1 a = c, (2.4)

where Cp,w'-1 ≡ { c(w'-1+ i-j)}1≤i,j≤p , c = (c(w'),.., c(w'+p))t and c(s) denotes the

empirical estimate of the covariancefunction c(s) (≡ cov(Xt,Xt-s)) of the process {Xt}t∈Z.

If the matrix Cp,w'-1 is invertible, at least asymptotically, the solution a of (2.4) is

asymptotically uniquely determined, and we can define the estimated AR residuals by vt

:= Xt – ∑i=1
p ai Xt-i.

Step (ii). In view of equation (2.3) now we try to minimize the conditional sum of

squares 

∑
t=(r+s)∨p+1

N

{vt vt-s – Eβs(vt·vt-s | t-w)}2 (2.5)
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with respect to βs to obtain an estimate of

βs
0
  =  (γ(s); dj(s), w ≤ j ≤ r+s; hj,n(s), w ≤ j, n ≤ r)t , (2.6)

for 0 ≤ s ≤ w-1. If a minimum of the penalty function exists we denote it with βs and call

it the CLS estimator of βs
0
.

Step (iii). Now in the third step of the estimation procedure we give the algorithm for

identifying the parameter bij, cj and σ2 from the the minimizer βs
0
 of E[{vt vt-s –

Eβs(vt·vt-s | t-w)}]2 , 0 ≤ s ≤ w-1.

The estimation of βs
0  includes the estimation of γ(s), 0 ≤ s ≤ w-1. The function γ(s) can

be interpreted as the covariancefunction of the MA(q) process {Zt}t∈Z defined by Zt =

∑j=0
q ci' et, with c0' = 1, ci' = ci, 1 ≤ i ≤ q, and E(et

2) = σ2. If the process {Zt}t∈Z is

invertible, its covariancefunction γ(s) uniquely determines the underlying parameter.

Wilson (1969) gave an explicit algorithm for evolving c1,…, cq and σ2 from the

covariances γ(0),…, γ(q). Since w - 1 ≥ q we can apply this algorithm here also. The

estimates c1,…, cq and σ 2 resulting from the application of this algorithm to the estimated

covariances γ(0),…, γ(q) are called the Wilson - estimates with q covariances. If w-1 is

strictly greater than q moreover we can make use of the additional information involved

in the estimated covariances γ(q+1),…, γ(w-1) for improving the asymptotic efficiency of

the estimates of the parameter c1,…, cq and σ2.

What remains now is to define an algorithm for identifying the quantities bij from c1,…,

cq, σ2 and βs
0 , 0 ≤ s ≤ w-1. This algorithm will be applied later to define estimates of the

bij's from the estimates βs, cj and σ 2. To this aim we consider dj(s) for w ≤ j ≤ r+s,

which is part of βs
0
, 0 ≤ s ≤ w-1, in more detail. By definition (see (2.3)) we have 

dj(s) := bsj + ∑
i=s+1

w-1+s

(ci bi-s,j-s + ci-s bij ), (2.7)

where for simplicity we suppose σ2 ≡ 1 (if not, we consider dj(s)/σ2 ).

Thus the task to identify the bilinear parameter bij reduces to proving the invertibility of

the transformation from bij to dj(s), given ci. Since this transformation is a linear one, we

have to check whether or not the matrix T defined by

Tb = d, (2.8)
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is an invertible matrix, where b ≡ (b0,. , b1,. ,…, bw-1,.)t and d ≡ (d·(0), d·(1),…,

d·(w-1))t with bi,. denoting the components bij, w ≤ j ≤ r+i, and d·(i) is defined

analogously. According to (2.7) the matrix T can be computed as

T  =  

   D0      U0,1            U0,w-1 

  L1,0                             

                                     

                                      

                          Uw-2,w-1

  Lw-1,0       Lw-1,w-2      Dw-1

,

with Di = 

 
 
 
 

i+1→

 
 

1
0

0
c2i

c2i 0 0 1

  ∈ M{(h + i)×(h + i)}, 0 ≤ i ≤ w-1,

U0,j = 
2cj

2cj

 ,  Ui,j = 

 
 
 
 

i+1→

 
 

   cj-i

    0       
                   
    0            
  cj+i             
                         
            cj+i   0  0   cj-i

 ∈ M{(h + i)×(h + j)},

1 ≤ i < j ≤ w-1

Li,j = 
i+1→ 

0
 

0
ci+j

ci+j 0 0

  ∈ M{(h + j)×(h + i)}, 1 ≤ j < i ≤ w-1, 

and Li,0 ≡ 0, where h := r – (w-1).

For proving the invertibility of this matrix, we consider it as a special case of the more

general matrix 
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T =   

   D0      U0,1               U0,w-1 

 L1,0                               

                                 

                                    

                                    Uw-2,w-1

  Lw-1,0
         Lw-1,w-2

      Dw-1

,

where Di = 
1 0

* 1
  ,Ui,j =  

* 0

* *
  , Li,j = 

0 0

* 0
  and Li,0 ≡ 0.

The matrix T can easily be seen to be equivalent to a lower triangle matrix. Beginning

with the last but r row up to the first row we can transform T by elementary row

operations to a lower triangle matrix. During these operations the main diagonal remains

unchanged, which implies det |T| = 1 and hence the invertibility of T too.

Thus the coefficients bij are uniquely determined by equation (2.8), and we can define

asymptotically unique estimators for bij by solving the equation 

T b  =  d (2.9)

with respect to b. Here d denotes the estimate for d which we implicitely obtain by

estimating the whole vector βs
0 , 0 ≤ s ≤ w-1, and T denotes the estimate of the matrix T

defined in (2.8) which corresponds to estimating the parameter of the MA part by the

Wilson algorithm.

In a similar way we can proceed in estimating model (1.3). First we consider the

quantities which can be estimated by the CLS approach and second we give an algorithm

for identifying the true underlying parameter from these quantities.

As it was the case in analyzing model (1.2) the CLS approach heavily relies on the

structure of the conditional covariances of the AR residuals of the bilinear process.

According to Corollary 2.2 applied to the bilinear process defined in (1.3) the covariances

fulfill the equation 
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cov(vt , vt-s | t-k-1)   (= E(vt·vt-s | t-k-1))

= δs,k ·{bkk σ
2 E(Xt-k | t-k-1) + ∑

j=k+1

r

bkj σ
2 Xt-j } + 

(2.10)

 +  δs,0·{σ2 + bk k
 2   σ4  + ∑

j=k

r

∑
n=k

r

bkj bkn σ2 E(Xt-j Xt-n | t-k-1)}.

In contrast to the representation in (2.3) the representation in (2.10) still includes

quantities which are difficult to estimate, e.g. E(Xt-k | t-k-1). This will cause a problem in

the estimation of the parameter of this kind of bilinear models and we have to introduce

an additional step in the estimation procedure to avoid this difficulty.

The estimation procedure in model II

Step (i). Analogously to step (i) in model I we use the second order moment structure

of the process to define the estimator of the AR parametervector a. Here the Yule -

Walker equations with AR parameter a even hold for s ≥ 1 such that we can define an

estimator a for a by 

Cp,0 a = c, (2.11)

with Cp,0 := {c(i - j)}1≤i,j≤p , c = (c(1),.., c(p + 1))t. The asymptotic invertibility of the

matrix Cp,0 is already guaranteed by the condition c(0) > 0 (Brockwell and Davis (1991,

Prop. 5.1.1)) which always holds in the cases we consider here. Thus as well the

estimator a as vt also are at least asymptotically uniquely determined. 

Step (ii). While in the first step the definition of the estimate is independent of the

distribution of the innovations, in this step we will make use of the supposed Gaussian

distribution explicitely in the sense that we make use of the knowledge about the first

eight moments of the distribution of the innovations. Analogously to step (ii) in model I

we consider the conditional covariance E(vt vt-s | t-w) in (2.10) to deduce CLS estimates.

If we consider equation (2.10) in more detail the special difficulty in analyzing model II

becomes obvious. Unlike to model I, in the case bkk ≠ 0 we cannot parametrize the

conditional covariance in σ2 , bij, and bkj bkn σ2. 

We can avoid this problem if first we estimate bkkσ2 by bkkσ2, second we minimize 
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∑
t=(r+l)∨p+1

N

{ut ut-k – bkkσ2 Xt-k – Eβ(ut ut-k – bkkσ2 Xt-k | t-k-1)}2 (2.12)

with respect to β, where β denotes the vector (bkj σ
2, k+1 ≤ j ≤ r)t, and third we deduce

an estimator for σ2 by using some higher order moment properties of the bilinear

process.

To estimate bkkσ2 we make use of the relation

E(ut·ut-k
2) = 2bkkσ2 E(ut

2) (2.13)

which can be proved easily.

Given a sample X1,…, XN according to this equation now we can estimate bkkσ2 by

bkkσ2 ≡ { ∑
t=k+p+1

N

ut ut-k
2 }/2{ ∑

t=k+p+1

N

ut
2} . (2.14)

Having estimated bkkσ2 we define an estimator β for β 0 ≡ (bk,k+1σ2,…, bk,rσ
2)t by

trying to minimize the penalty function defined in (2.12). Here, in contrast to the

procedure applied to model (1.2) we cannot make use of the equation (2.10) to deduce an

estimator for σ2 since in the above model for bkk ≠ 0 the troublesome product bkkσ2

E(Xt-k | t-k-1) appears which cannot be represented as a deterministic function of the

sample X1,…,XN only. Hence we will suggest another procedure for estimating σ2 in

this model.

Step (iii). The crucial relation we need is the following one

E(vt
4) = 3Var {(∑

j=k

r

bkjσ Xt-j )2} + 6bkkσ2{E(vt
3) – 2 (bkkσ2)3} + 6 (bkkσ2)4. (2.15)

The proof of (2.15) is given at the end of this chapter.

The main utility of the equation (2.15) is that we can estimate C := Var {(∑j=k
r bkj σ Xt-j

)2} only by replacing bkkσ2 by its estimate defined in (2.14) and by replacing the

theoretical moments of vt with their empirical counterparts. 

On the other hand also σ4·C = Var {(∑j=k
r bkjσ

2 Xt-j)2} can be estimated by replacing

the theoretical moments with their empirical counterparts and bkjσ
2 by bkjσ2 only.

Provided that C ≠ 0 thus an estimator for σ2 is defined by 

σ2 ≡ | σ4C/ C | 1/2 (2.16)
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where C and σ4C denotes the estimator of C and σ4·C respectively.

Studying the case C = 0 in detail we get 

C = 0   ⇔   ∑
j=k

r

bkj σ Xt-j = 0  a.s.   ⇔   ∀ j: bkj = 0   by Lemma 4.6

According to this equivalence now the additional assumption included in the bilinear

model (1.3), namely that there exists at least one bilinear coefficient bkj, k ≤ j ≤ r, with

bkj ≠ 0, ensures C ≠ 0. If we prove that C converge to C we may use σ2 defined in

(2.16) as an estimator for σ2.

Then an estimator bkj for bkj, k ≤ j ≤ r, can be defined by 

bkj ≡ bkjσ2 / σ2 (2.17)

with σ2 defined in (2.16) and bkjσ2 being the component of β.

PROOF OF (2.15).

By definition of vt and taking the Gaussian assumption into account we obtain

(we use 'c' as an abbrevation for 'cumulant' here)

E(vt
4) = c(vt , vt , vt , vt)

= ∑
i,j,l,m=k

r

bki bkj bkl bkm c(εt-k Xt-i , εt-k Xt-j , εt-k Xt-l , εt-k Xt-m )

and by applying the product theorem for cumulants (see e.g. Brillinger (1981)) further

we obtain

= ∑
i,j,l,m=k

r

bki bkj bkl bkm { 3σ4 c(Xt-i , Xt-j , Xt-l , Xt-m ) + 6σ4 c(Xt-i , Xt-j )·

·c(Xt-l , Xt-m ) + 36σ2 c(εt-k , Xt-i )·c(εt-k , Xt-j )·c(Xt-l , Xt-m ) + 

+ 6 c(εt-k , Xt-i )·c(εt-k , Xt-j )·c(εt-k , Xt-l )·c(εt-k , Xt-m ) }

= 3σ4 ∑
i,j,l,m=k

r

bki bkj bkl bkm c(Xt-i , Xt-j , Xt-l , Xt-m ) + 6 { ∑
i,j=k

r

bki bkj σ2·

·c(Xt-i , Xt-j )}2  +  36 (bkk σ2)2 ∑
i,j=k

r

bki bkj σ2 c(Xt-i , Xt-j )  +  6 (bkk σ2)4
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= 3Var {(∑
j=k

r

bkj σ Xt-j )2} + 36 (bkk σ2)2 ∑
i,j=k

r

bki bkj σ2 c(Xt-i , Xt-j )  +  6 (bkk σ2)4.

Thus it remains to prove, that 

6 (bkk σ2) ∑
i,j=k

r

bki bkj σ2 c(Xt-i, Xt-j ) = E(vt
3) – 2 (bkk σ2)3.

But this equation can immediately deduced from the product theorem for cumulants as

follows:

E(vt
3) = c(vt , vt , vt)

= ∑
i,j,l=k

r

bki bkj bkl c(εt-k Xt-i , εt-k Xt-j , εt-k Xt-l )

= 2 ∑
i,j,l=k

r

bki bkj bkl {3σ2 c(Xt-i , Xt-j )·c(εt-k , Xt-l ) + c(εt-k , Xt-i )·c(εt-k , Xt-j )·

·c(εt-k , Xt-l )} 

= 6 (bkk σ2) ∑
i,j=k

r

bki bkj σ2 c(Xt-i , Xt-j )  +  2 (bkk σ2)3.▲

3  Results

Theorem 3.1 is the basic result for proving the asymptotic properties of the estimators

deduced in chapter 2. We prove the CLT and the LIL for the empirical moments of the

process {Xt}t∈Z. As a first application we obtain a result concerning the asymptotic

behaviour of the Yule Walker estimator of the AR parameter in the general standardized

superdiagonal bilinear model. This is the result of Theorem 3.2. Since both bilinear

models under our consideration belong to this special class of bilinear models this result

will be applied to the estimation as well in model (1.2) as in model (1.3) too.

Before we state Theorem 3.1 we give some preliminary computations which are useful

not only for formulating the assertions of Theorem 3.1 but also for a better understanding

of the proof of the theorem. 
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In Theorem 3.1 we establish conditions for both guaranteeing the existence of a

stationary, ergodic and m - times integrable solution of the bilinear equations (1.1) and

implying the CLT and the LIL for the empirical moments of the bilinear process to hold.

These conditions shall be motivated by the following considerations.

First we rewrite the bilinear process in (1.1) as a vectorprocess by introducing the vectors

Xt := (Xt , Xt-1 ,.., Xt-h+1)t, α  :=(α , 0,.., 0)t and D := (1, 0 ,.., 0)t ∈ Rh with h :=

max{p, r}, εt := (εt , εt-1 ,.., εt-q)t ∈ Rq+1 , and the matrices 

A =  

a1 ap 0 0
1 0 0

0
1 0

, Bi = 

bi1 bir 0 0
0 0

0 0

  ∈ M(h, h) and 

C = 

1 c1 cq

0 0

0 0

  ∈ M(h, q+1). 

With this notation the bilinear equations (1.1) can be represented in state space form as

Xt = α + A Xt-1 + ∑
i=1

k

εt-i Bi Xt-1  + C εt 

(3.1)
Xt = D Xt .

Applying the notation used in (3.1) the idea underlying the proof of the first part of the

Theorem 3.1 can be motivated easily. The proof is based on the study of the sequence of

the vectorvalued stochastic processes defined by

SN(t)   ≡   

                0                 N < 0

              C εt               N = 0

C εt + ψ(t)⋅SN-1(t-1) , N > 0

      , t ∈ Z, (3.2)

where Ψ(t) = A + ∑i=1
k εt-i Bi.

For the results of Theorem 3.1 to hold we require some conditions which are imposed

mainly for proving the following statements concerning the behaviour of SN(t):

(i) For each t ∈ Z : SN(t) converges in Lm for N → ∞
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(ii) The process {Yt}t∈Z with Yt := a.s. - lim
N→∞

SN(t)  fulfills 

 the bilinear equations (1.1) with α = 0.

Here Lm denotes the space of all functions f such that |f|m dP < ∞.

Now we show how the conditions required in Theorem 3.1 arise in the proof of the

assertions (i) and (ii) above. As the conditions required for verifying (i) guarantee the

validity of (ii) also, we restrict our attention on proving (i) here. 

For m = 2 the proof of (i) has been worked out explicitly by Liu and Brockwell (1988,

proof of Theorem 3.1). Analogously to the method they suggest, Liu and Liu (1990)

extended the idea to the case m > 2. Thus we only give a sketch of the proof here.

Since for any m ≥ 2 the space Lm is a complete space, (i) can be verified by proving that

for each t ∈ Z : {SN(t)}N∈N is a Cauchy - sequence in Lm. To prove this property we

consider the sequence of the first differences of SN(t)

ΔN(t)  ≡  SN(t) – SN-1(t)  =  

         0               N < 0

       C εt             N = 0

ψ(t)⋅ΔN-1(t-1),  N > 0

. (3.3)

According to its definition {ΔN(t)}t∈Z  is a strictly stationary process for each N ≥ 1 with

ΔN(t) being measurable with respect to the σ-field Ft-1, generated by εt-i , i ≥ 1, for each t

∈ Z.

Now the main effort is to prove that there exists an δ ∈ (0,1) such that

E{||ΔN(t)|| mm}  ≤  const·δ N/2    for N ≥ N0 (3.4)

holds, where || x || mm  ≡ Σ i |xi|m  for x = (x1,…, xr)t, such that we immediately can

deduce the Cauchy - convergence of {SN(t)}N∈N in Lm then.

In view of the inequality

E{||ΔN(t)|| mm} ≤ |E{ΔN(t)⊗m}| ,

where | x | ≡ Σ i |xi| , for proving (3.4) it suffices to study the behaviour of VN :=

E{ΔN(t)⊗m} only (here ⊗ denotes the tensor product and ⊗m its m - fold application). 

Our aim now is to deduce a recursion formula for VN such that by controlling the

behaviour of the transition matrix appearing in the recursion formula we can gain the
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geometrical decrease which we require in (3.4). By some tedious computations and under

some additional assumptions on the behaviour of the higher order moments of the

innovation process, we can deduce both a vector YN which contains VN as a component

and a matrix Γm such that for N ≥ N0 the following recursion is valid:

YN  =  Γm  YN-1  =  Γm
2  YN-2  = …  =   Γm

N-N0  YN0
. (3.5)

(For m = 2 the vector YN and the matrix Γm has been computed explicitely in the bilinear

model with k = 2 by Liu and Brockwell (1988, YN ≡ uN therein) and for m = 4 by Liu

and Liu (1990).)

Let us now assume ρ(Γm) < 1. Then we can further conclude (cf. Proposition 2.1 in Liu

and Brockwell (1988)) that

 | VN |  ≤  | YN |  ≤  const·δ N/2   for N ≥ N0.

Since E{||ΔN(t)|| mm} ≤ | VN |, by means of the inequality above and applying the

recursion in (3.5) we obtain (3.4). 

Obviously the condition ρ(Γm) < 1 is the crucial condition in this argumentation and thus

we impose this condition in Theorem 3.1. 

If we replace the matrix C in the definition of SN(t) by another matrix C we recognize

that this causes no difference in the evaluation of the vector YN and the matrix Γm, since

we only make use of the recursive definition of ΔN(t) and the measurability and

stationarity properties of Δ0(t). Thus the matrix Γm is independent of the moving average

part of the bilinear process which is represented by the matrix C!

After these preparations now we state the announced theorem.

(Notice that in contrast to the definition in (1.1) where we defined the bilinear BL(p, q,

k, r) model, in formulating the subsequent result the quantity 'k' is used with another

meaning such that here we consider a bilinear BL(p, q, s, r) model!)

Theorem 3.1

Let {Xt}t∈Z be the bilinear BL(p, q, s, r) process defined in (3.1) with α = 0. If for

some ν  ∈ N  the corresponding innovation sequence {εt}t∈Z is a 2νs - th order

symmetric innovation sequence and if moreover ρ(Γ2ν) < 1, where Γ2ν is implicitely

defined in (3.5), then the following assertions hold:
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(i) There exists a strictly stationary, causal and ergodic solution {Xt}t∈Z of (3.1) 

with E[Xt
2ν] < ∞. The unique strictly stationary solution Xt is the first 

component of the vector

Xt = ∑
n=1

∞
[∏

i=1

n

Ψ(t+1–i)] C εt-n + C εt ,

with Ψ(t) defined in (3.2) and the infinite sum can be interpreted either as an 

almost sure or L2ν limit.

(ii) To give the result concerning the asymptotics of the empirical mixed moments of 

he process {Xt}t∈Z moreover we need the following definitions:

Let K := {(0, k1,…, ki) : k1 ≤…≤ ki, 0 ≤ i ≤  ν  – 1, kj ∈ Ν 0  for 0 ≤ j ≤ i} 

denote the set of indices for identifying the several mixed moments of the process

up to the order ν. For  k = (0, k1,…, ki) ∈ K  we further define μk := E[X0
 
·

Xk
1 
·…· Xk

i 
] and ηk,t := Xt Xt+k

1
·…·Xt+k

i
 – μk 

. 

Moreover for u ∈ [0,1] we define the process of the partial sums SN,k(u) := 

∑t=1
[Nu] ηk,t and a continuous version ξN,k(u) := SN,k(u) + (Nu – [Nu])·ηk,[Nu]+1.

Then for all k ∈ Ν and for all γ = (γ1 ,.., γk)t ∈ Rk and ki∈K , 1 ≤ i ≤ k, we 

have

{N–1/2 ∑
i=1

k

 γi ξN,ki
(u) }s∈[0,1]  

D
→

C[0,1]
   {cγ B(u)}u∈[0,1] 

where {B(u)}u∈[0,1] denotes the standard Brownian motion and 

cγ := limN→∞  E[(∑
i=1

k

 γi ξN,ki
(1) )2]/N exists with 0 ≤ c < ∞ ,

and the law of the iterated logarithm

{N·loglog(N∨ e)}–1/2 ∑
i=1

k

 γi ξN,ki
 is relative compact in (C[0,1], ||·||∞)

holds.

REMARK.
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Since the assumptions of Theorem 3.1 do not depend on the moving average part of the

bilinear process (cf. the discussion before Theorem 3.1), the theorem remains valid even

if we admit processes with α ≠ 0, provided that the matrix I – A is invertible. This is due

to the fact that for α ≠ 0 the process in (3.1) can be transformed equivalently to a

process with α = 0 by changing the MA part of the model only if we suppose the matrix

I – A to be invertible (cf. the appendix). In the case of a general superdiagonal bilinear

processes (bij = 0 for i > j) Liu (1992) proved that the condition ρ(Γ2ν) < 1 always

implies ρ(A) < 1 and hence the invertibility of I – A. Thus in this case we do not need to

impose any additional assumption even in the case α ≠ 0.

In view of this remark, for applying Theorem 3.1 to the bilinear processes defined in

(1.2) and (1.3), we impose the following assumption on these bilinear BL(p, q, k, r)

processes:

(A1) {Xt}t∈Z is a general superdiagonal bilinear process driven by a 4k-th order 

symmetric innovation sequence {εt}t∈Z such that ρ(Γ4) < 1.

According to assertion (i) of Theorem 3.1 this assumption implies our basic assumption

(A0).

Furthermore we will make use of the following assumptions for proving the CLT and the

LIL for the various estimates under consideration:

(A2) Cp,w'-1 := {c(w'-1+ i-j)}1≤i,j≤p  is invertible, where c(i) := cov(Xt, Xt-i) and p 

corresponds to the order of the AR part of the bilinear process 

(A3) The MA - part of the bilinear model, defined by the MA coefficients c1,..., cq 

and σ2, is invertible

(A4) εt cannot take on only two values a. s.

Now we come to the study of the asymptotic properties of the estimates of the parameter

determining the bilinear process. In chapter 2 we suggested first to fit an AR(p) process

to the bilinear process. To this purpose we applied the Yule - Walker equations. Now we

give the theoretical justification for proceeding in such a way.
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Theorem 3.2 (Estimation of the AR parameter)

In the general standardized superdiagonal bilinear model which fulfills (A1) and (A2),

we obtain the following result 

N1/2 (a – a) is asymptotically normal distributed with expectation zero
and 

the LIL, i.e. a – a = O(LN) a.s. with LN ≡ {N/loglog(N∨ e)}–1/2, holds

where a  denotes the w'-th order Yule-Walker-estimator of a. 

(Remind that w' ≡  max{q + 1, k}.)

Now we look for theoretical results attainable in the estimation of the remaining parameter

of the bilinear model. To this purpose we consider each bilinear model ((1.2) and (1.3))

separately.

3.1  Asymptotics in model I

In this part we will prove that the estimates of the parameter determining the bilinear

model I satisfy both the CLT and the LIL. In model I defined in (1.2) the parameter of

our interest is θ0  = (a1
0,..., ap

0; bi j
0 , 1 ≤ i ≤ k, w+1 ≤ j ≤ r; c1

0,..., cq
0, σ0

2)t, where we use

the index '0' to denote the true parametervalue. The estimator of θ0  is defined in chapter

2. Here we consider θ0  ∈ Θ with

Θ ≡ {(a1,..., ap; bij, 1 ≤ i ≤ k, w+1 ≤ j ≤ r; c1,..., cq, σ2)t ∈ Rp+k(r-w)+q × R+
0 : 

 (Α1), (A2) and (A3) are fulfilled}

For θ ∈ Θ as well the maximum eigenvalue of Γ4 (see assumption (A1)) as also the

zeroes of the polynomials occuring in (A2) and (A3) are continuous functions in the

parameter θ. Thus for any θ ∈ Θ we always find an open neighbourhood of θ such that

each parameter in this neighbourhood belongs to Θ too. Hence Θ is an open subset of

Rp+k(r-w)+q × R+
0. 
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Theorem 3.3 

In a bilinear model of type I defined in (1.2) fulfilling the assumptions (A1) - (A4), the

estimator θ  of θ 0 , where θ  is defined by means of the estimation procedure worked

out in the equations (2.4) - (2.9), has the following asymptotic properties:

(i) θ  → θ 0   a.s.

(ii) if moreover ρ(Γ8) < 1 holds and {εt}t∈Z is an 8k-th order symmetric innovation 

sequence , then

N1/2 (θ – θ 0 ) is asymptotically normal distributed with expectation zero 
and 

the LIL, i.e. θ  – θ 0  = O(LN) a.s., holds.

REMARK.

From the proof of Theorem 3.3 it becomes obvious that we can define a moment

estimator of θ 0  which has the same asymptotic distribution as the estimator θ  since as

well a  defined in (2.4) as βs from (2.5) also can be represented as differentiable

functions of the empirical mixed moments of the process {Xt}t∈Z only. The moment

estimator which corresponds to the estimator θ  is a minimal one in the sense that it

depends on the first four moments of the bilinear process only. 

The great advantage of the CLS procedure in comparison to the usual MM procedure

consists in the ability to solve the identification problem by means of the uniqueness of

the minimizer of the conditional variance. In the MM case the identification of the

parameter determining the process from the moments is the main problem in applying

MM to bilinear time series. (cf. Introduction)

According to this theorem the CLS procedure works well in the sense that it produces

asymptotic normal estimates which moreover fulfill the LIL. In principle it is possible to

compute the corresponding asymptotic covariance matrix also. But since even in the very

simple bilinear model (1.2), the evaluation of this matrix needs extensive computations,

we restrict ourselves on proving the asymptotic normal behaviour here.
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3.2  Asymptotics in model II

Here we will prove as well the CLT as the LIL for the parameter estimates defined in

chapter 2 part 2. In model II the parameter of interest is θ = (a1,..., ap; bkj, k ≤ j ≤ r; σ2)t

∈ Rp+(r+1-k) × R+
0.

The main results are summarized in the following theorem.

Theorem 3.4

In a bilinear model of type II defined in (1.3) fulfilling the assumptions (A1) and (A4)

the estimator θ  = ((a))t, bij, σ  2) t of θ 0  with a  denoting the first order Yule-Walker-

estimator of a defined in (2.11), and bij, and σ  2 are defined in (2.14) - (2.16), has the

following asymptotic properties:

(i) θ  → θ 0   a.s.

(ii) if moreover ρ(Γ8) < 1 holds then

N1/2 (θ – θ 0 ) is asymptotically normal distributed with expectation zero 
and 

the LIL, i.e. θ  – θ 0  = O(LN) a.s., holds

REMARK.

As it was the case in the bilinear model of type I here also the deduced estimator θ  is

asymptotically equivalent to a moment estimate. This becomes obvious from the proof of

the Theorem which shows that approximately θ  can be represented as a differentiable

function of the empirical mixed moments of the process only. 

For a further discussion of this property we refer to the remark after Theorem 3.3.

3.3  Asymptotics in the unknown mean case

The results obtained in the sections 3.1 and 3.2 are stated for the case that we know the

mean of the process {Xt}t∈Z to be zero. Here we consider the case of an arbitrary

unknown mean μ. Thus μ is an additional parameter which have to be estimated also.

26



Given the sample X1,…, XN an obvious estimate for μ is the empirical mean μ := N-1

∑t=1
N Xt. We will show that the results of the previous chapters remain valid even if we

include the estimation of the mean.

If the mean of the process have to be estimated the Yule - Walker estimates defined in

(2.4) and (2.11) respectively will be modified in the way that c(i) is replaced with c(ii)  ≡

N-1 ∑t=i+1
N (Xt – μ)(Xt-i – μ). The modified Yule - Walker estimator shall be denoted

with a. With these notations we get the following result, which is an extension of

Theorem 3.2.

Theorem 3.5 (Estimation of the AR coefficients in the unknown mean case)

In a standardized superdiagonal bilinear model with expectation μ which fulfills (A1)

and (A2), we obtain the following result 

N1/2 (((a)t, μ) – ((a)t, μ))t is asymptotically normal distributed with expectation zero

and 

the LIL, i.e. ((a)t, μ) – ((a)t, μ)  = O(LN) a.s., holds

In view of this generalization of Theorem 3.2 subsequently we will generalize the results

of the parts 3.1 and 3.2 to the case of a standardized superdiagonal bilinear model with

expectation μ, where μ is estimated by μ. 

Theorem 3.6

If instead of the zero - mean processes considered in the Theorem 3.3 and 3.4 now we

consider the corresponding μ - mean processes with unknown μ and if we estimate μ by

μ , the deduced results concerning the estimation of θ 0  can be carried over to the

estimation of the extended vector  θμ
0 := (μ, (θ 0 )t)t too. 

REMARK.

If we study the proof of Theorem 3.6 carefully we recognize that estimating μ has an

influence on the asymptotic distribution of the parameterestimates which is not

neglectable. The estimates are still asymptotic normal distributed but their asymptotic

variance does increase if μ have to be estimated also.
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4  Proofs

Proof of Lemma 1.1

Proof of (i). See e.g. Guegan (1981).

Proof of (ii).

From the causality property of {Xt}t∈Z which is due to (i), we can conclude that not only

the quantities εt-1·Xt-2 and εt  but also the variables εt-1 and Xt-2 are independent for each

t ∈ Z. Thus it is a straightforward matter to compute the 2n-th moment of Xt as 

E(Xt
2n) = ∑

i=0

2n
2n
i

 bi E(εt
i) E(εt

2n-i) E(Xt
i) 

= ∑
i=0

i even

2(n-1)
2n
i

 bi E(εt
i) E(εt

2n-i) E(Xt
i)   +  b2n E(εt

2n) E(Xt
2n)

where in the last equation we applied the assumptions on the distribution of the

innovations. As a first consequence we get the equivalence

E(Xt
2n) < ∞ ⇔  { E(Xt

2(n-1)) < ∞ } ∧ { b2n E(εt
2n)  < 1 }  

⇔  b2m E(εt
2m)  < 1  for all  1 ≤ m ≤ n

Taking Jensen's inequality into account moreover we remark that 

b2m E(εt
2m) ≥ b2(m-1) E(εt

2(m-1))  for m ∈ N 

such that the assertion is obvious now.

Proof of (iii).

From the equation 

b2σ2 = 1 – b2σ2 (1)

we conclude that σ2 > 0 and b2σ2 < 1, such that according to assertion (i) of the lemma

the process {Xt}t∈Z is a stationary process. Moreover due to (1) we have 

b4σ4 = (1 – b2σ2)2 = b4σ4 – 2b2σ2 + 1.

From the requirement  1/4  <  b4σ4  < 1/3  further we deduce that  b4σ4 < 1/3 which
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according to assertion (ii) ensures the existence of the fourth moment of the process

{Xt}t∈Z. Thus it remains to prove that the first three mixed moments of the processes

{Xt}t∈Z and {Xt}t∈Z coincide. From Guegan (1984) and Kumar (1986) we know the

explicit form of these moments. For 0 ≤ s ≤ u we have

E(Xt) = 0, E(XtXt-s) = δs,o·σ2/(1 – b2σ2), E(XtXt-sXt-u) = δs,1·δu,2·bσ4/(1 – b2σ2).

Straightforward computations show that also 

E(Xt) = 0, E(XtXt-s) = δs,o·σ2/(1 – b2σ2), E(XtXt-sXt-u) = δs,1·δu,2·bσ4/(1 – b2σ2)

holds.▲  

Proof of Theorem 3.1.

Proof of (i).

In the case ν = 1 this result is due to Liu and Brockwell (1988). Applying the same

method as Liu and Brockwell (1988), Liu and Liu (1990, cf. (3.1) - (3.10)) generalized

this result to ν ≥ 2 also. In the case ν > 2 Liu and Liu (1990) state the result without

performing the proof explicitly. But the explicit proof is obvious as well from the way of

proving the cases ν = 1 and ν = 2 as from some additional arguments [(2.21) - (2.25) in

the reference above] also, though a lot of straightforward but tedious computations are

necessary to write down the proof in a closed form.

Proof of (ii).

The first who recognized this result were Liu and Liu (1990, cf. Theorem 4.3 and

Theorem 4.4). But they gave the explicit proof for ν = 1 only. Since some more

considerations are needed for proving the most general case v ≥ 1 we will give the

explicit proof for any arbitrary ν ∈ N here.

Analoguously to the way in which Liu and Liu (1990) used to prove their Theorem 4.2 (ν

= 1) here we will verify the conditions for applying Corollary 5.4 and Theorem 5.5 of

Hall and Heyde (1980) for proving the case ν > 1. To show the assertion (i) the main

step is to verify these conditions for γ being an unity vector in Rk, k∈N arbitrary, but

fixed. In view of the structure of the necessary conditions in Hall and Heyde (1980,

Theorem 5.5) the generalization to any γ ∈ Rk is immediate then. Thus we restrict the

proof to the case of γ being an unity vector in Rk here.
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In this case the linear combination of processes considered in assertion (ii) reduces to a

single process {ξN,k(u)}u∈[0,1] with k ∈K,. According to Corollary 5.4 of Hall and

Heyde (1980) the crucial condition to verify is

∑
m=1

∞

{E[E(ηk,0 | F–m )2]1/2  +  E[(ηk,0 – E(ηk,0 | Fm ))2]1/2} < ∞ , (✴)

where  Fm ≡ σ(εt , t ≤ m).

According to the theory developed by Hall and Heyde (1980) this condition is used for

approximating the sequence {ηk,t}t∈Z which is involved in {ξN,k(u)}u∈[0,1] by a

sequence of martingale difference schemes to which we can apply the classical martingale

limit theory then.

If k = (0, k1 ,…, ki), the definition of ηk,t implies E[ηk,0 – E(ηk,0 | Fm )] = 0 for m ≥ ki,

such that (✴) is already fulfilled if

∑
m=1

∞

{E[E(ηk,0 | F–m )2]1/2} < ∞ (1)

holds. For proving (1), the following decomposition of Xt turns out to be the basic tool.

According to the proof of assertion (i) of Theorem 3.1, for m > s it is possible to

represent Xt as

Xt = S0(t) + ∑
n=1

m-s-1

Δn(t)  +  ∑
n=m-s

∞

Δn(t), (2)

with Sn(t) and Δn(t) from (3.2) and (3.3) respectively, and where the infinite sum in (2)

converges almost surely and in L2ν also. We want to remind that the variable 's'

corresponds to the bilinear BL(p, q, s, r) model we consider here. 

By the definition of Sn(t) and Δn(t) we observe that for each n ≥ 0 there exist measurable

functions fn,1 and fn,2 such that for all t ∈ Z we have

Sn(t) = fn,1(εt ,…, εt-s-n) and Δn(t) = fn,2(εt-1 ,…, εt-s-n).

Hence, for m > s, the sum Um(t) := S0(t) + ∑n=1
m-s-1Δn(t) is independent of F–m for all t

∈  N 0, whereas Σm(t) := ∑n=m-s
∞  Δn(t) still depends on F–m. In view of (2) these

definitions yield a decomposition of Xt in

Xt  =  Um(t)  +  Σm(t). (2')
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Now we take the vector form of Xt stated in (3.1) into account to obtain the following

representation of ηk,0 

ηk,0 = 
h'X0X'k1hh'Xk2X 'k3h .. h'Xki-1X'kih – μki      if i is even

h'X0X'k1hh'Xk2X 'k3h .. h'X'kih – μki               if i is odd
 ,

where h ≡ (1, 0 ,…, 0)t ∈Rp∨r. Applying the decomposition (2') to ηk,0 for m > s we

obtain (we consider the case 'i is even' only, because the case 'i is odd' can be treated

analogously):

ηk,0 = htUm(0)Um
t(k1)hhtUm(k2)Um

t(k3)h .. htUm(ki-1)Um
t(ki)h – 

– E[the same expression] + 
(3)

+ meancorrected terms, where in each term at least one Σm(kj) for 0 ≤j≤ i occurs

If now we consider E(ηk,0 | F–m ) for m > s, the first term in (3) vanishes by applying

the conditional expectation since it is independent of F–m. Thus we restrict our attention

to the other meancorrected terms, where in each term at least one Σm(kj) for 0 ≤ j ≤ i

occurs. Introducing the definition

V:= {Vm : Vm(kj) ∈ {Um(kj), Σm(kj)}, 0 ≤ j ≤ i, such that ∃ 0 ≤ j0 ≤ i with

Vm(kj0
) = Σm(kj0

)}

the conditional expectation E(ηk,0 | F–m ) can be computed as

E(ηk,0 | F–m ) 

= E[ ∑
Vm∈V

htVm(0)Vm
t(k1)hhtVm(k2)Vm

t(k3)h .. htVm(ki-1)Vm
t(ki)h | F–m] – 

– {the corresponding unconditioned expectation}.

By means of the inequality 

E[{E(X | F ) – E(X)}2] ≤ Var(X) ≤ E(X2) 

applied to  X = ∑
Vm∈V

htVm(0)Vm
t(k1)hhtVm(k2)Vm

t(k3)h .. htVm(ki-1)Vm
t(ki)h  further

we obtain
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E[E(ηk,0 | F–m )2] 

≤ E[{ ∑
Vm∈V

htVm(0)Vm
t(k1)hhtVm(k2)Vm

t(k3)h .. htVm(ki-1)Vm
t(ki)h}2],

≤ K· ∑
Vm∈V

E[{htVm(0)Vm
t(k1)h .. htVm(ki-1)Vm

t(ki)h}2], (4)

where K is a constant independent of m.

Hence for proving (1) it suffices to consider each summand in (4) seperately. Without

loss of generality now we consider a summand with Vm(ki) = Σm(ki). In this case we

obtain

E[{htVm(0)Vm
t(k1)h .. htVm(ki-1)Vm

t(ki)h}2]

= E[ ∑
n=m-s

∞

∑
k=m-s

∞
htVm(0)Vm

t(k1)h .. htVm(ki-1)Δn
t(ki)hhtΔk(ki)Vm

t(ki-1)h .. 

.. htVm(k1)Vm
t(0)h]

≤ ∑
n=m-s

∞

∑
k=m-s

∞
E[|htVm(0)| |Vm

t(k1)h|..|htVm(ki-1)| |Δn
t(ki)h| |htΔk(ki)| |Vm

t(ki-1)h| .. 

.. |htVm(k1)| |Vm
t(0)h|]

≤ ∑
n=m-s

∞

∑
k=m-s

∞
E[||Vm(0)||2ν

 2  ||Vm(k1)||2ν
 2  ·..· ||Vm(ki-1)||2ν

 2  ||Δn(ki)||2ν ||Δk(ki)||2ν ],

with ||x||2ν
2ν :=∑i=1

r xi
2ν  for x∈Rr,

≤ ∏
j=1

i-1
E[ ||Vm(kj)||2ν

 2ν]1/(2ν)·{ ∑
n=m-s

∞
E[ ||Δn(ki)||2ν

 2ν]1/(2ν)}2 (5)

by an application of Hölder's inequality.

Now we make use of a property of Δn(t) which was used implicitely for proving our

assertion (i), namely the validity of the inequality (3.4) which says

For each t ∈N : E{||Δn(t)||2ν
2ν} ≤  const·δ n/2 , δ ∈ (0,1) for n large.

This result implies

∑
n=m-s

∞

E{||Δn(ki)||2ν
2ν} ≤ const·λm for an λ ∈ (0,1)
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and

E{||Vm(kj)||2ν
2ν} ≤ const   for 0 ≤ j ≤ i–1 and m > s,

where the constants can be chosen independently of m > s. Thus we can estimate (5) by

K'·λm/ν, with a constant K' independent of m > s.

Since the number of summands occuring in (4) is a finite number which is independent of

m, and since each summand in (4) can be estimated by const·λm/ν with λ ∈ (0,1) (λ

possibly changes from summand to summand), (1) and thus also (✴) is proved now.

Hence we can apply Theorem 5.5 and Corollary 5.4 of Hall and Heyde (1980) which

yields the assertion (ii) for γ being an unity vector in Rk for any k∈N.

In the general case of γ being any realvalued k–dimensional vector as well the validity of

the crucial condition (✴) as the validity of the other conditions required for applying the

results of Hall and Heyde (1980) also, can be reduced easily to the basic case considered

above.▲

The basic tool for proving the results concerning the asymptotic behaviour of the defined

estimates is included in the following obvious result.

Lemma 4.1

Let {XN}N∈N  be a sequence of random k×1 - vectors and f = (f1,…, fm)t : Rk →  R m

be a function which is continuously differentiable in a neighbourhood of x0 ∈ Rk. 

Then we have

(i) If  N1/2(XN – x0)  is asymptotically (for N →  ∞) normal distributed, then 

N1/2{f(XN) – f(x0)}  is asymptotically normal distributed also 

(ii) If XN – x0 = O(LN) a.s., then f(XN) – f(x0) = O(LN) a.s.

In view of Theorem 3.1 and Lemma 4.1 above for proving the CLT and the LIL we will

apply the following considerations.

Let θ0  =((θ1
0 )t, (θ2

0 )t)t denote the true parameter where θ i
0  are allowed to be of different

dimension and let θi denote the corresponding estimators. Furthermore let us suppose
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that θ i
0  = fi(Mi), i = 1, 2, for some continuously differentiable functions fi and vectors Mi

whose components belong to the set of the theoretical mixed moments of the process

{Xt}t∈Z. Often we can observe that within a small error term we can represent the

estimates θi  as  θi = fi(Mi), i = 1, 2, where Mi denotes the empirical estimate of the

vector Mi. If now for each i = 1, 2,  Mi – Mi  fulfills the requirements of Lemma 4.1 we

can conclude that both the multidimensional CLT and the LIL hold for the vector θ =

((θ1)t, (θ2)t)t. 

For the estimates we consider here the conditions for applying Lemma 4.1 can be

satisfied by taking Theorem 3.1 into account which states the CLT and the LIL for the

empirical mixed moments of the process {Xt}t∈Z.

Thus a desirable property for proving the asymptotic behaviour of an estimator z of z0 in

the way described above, is that the pair (z–
0, z) fulfills the condition (CA) with moments

of the order m, i.e.

(i) there exists both an finite dimensional vector Mm whose components belong to 

the set of the theoretical mixed moments of the process {Xt}t∈Z up to the order 

m and a function f ∈ C1 {N(Mm)} such that z0 = f(Mm)
(4.1)

(ii) |z – f(Mm)| = 
op(N-1/2) 

o(LN) a.s.
,where Mm denotes the vector of the corresponding 

empirical estimates of the theoretical moments Mm.

Here we use C1 {U} as an abbrevation for the set of functions {f :U → V, f is

continuously differentiable in U} and N(x) denotes a suitable neighbourhood of x.

The condition (CA) is the crucial condition we will verify for the several estimates under

our consideration.

Since often we will prove part (ii) of the condition (CA) for both error terms at the same

time, for simplicity we introduce the following abbrevation. 

NOTATION

Any sequence rN with the properties rN = 
op(N-1/2) 

o(LN) a.s.
 will be denoted by oN.

Now we apply this concept to the estimators of our interest. 
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Proposition 4.2

Under the assumptions of Theorem 3.2 the pair (a, a) fulfills the condition (CA) with

moments of the order 2.

Proof.

According to Corollary 2.2 the standardized superdiagonal bilinear process satisfies the

Yule-Walker-equations with AR parametervector a for s ≥ w', i.e.

Cp,w'-1 a = c,

where c = (c(w'),…, c(w'+p))t and Cp,w'-1  = {c(w'-1+i-j)}1 ≤ i, j ≤ p .

Due to the assumption (A2) the vector a fulfills part (i) of the condition (CA) with m = 2

because both the vector c and the matrix (Cp,w'-1 )-1 are continuously differentiable in its

components in a neighbourhood of the second order mixed moments of the process.

Since the Yule - Walker - estimator a is defined by replacing the theoretical moments in

the above equation with its empirical counterparts, the second part of the condition (CA)

is satisfied too.▲

In view of this proposition now the proof of Theorem 3.2 is immediate.

Proof of Theorem 3.2

According to Theorem 3.1 the assumptions of the Theorem 3.2 imply that the conditions

for applying Lemma 4.1 are fulfilled if we choose XN as M2 and x0 as M2, where M2

denotes the vector of the first w'+p second order mixed moments of the process and M2

its empirical counterpart. In view of the Proposition 4.2 the result is obvious then.▲

For proving the Theorem 3.3 first we verify the condition (CA) in (4.1) for the pair (βs
0 ,

βs), 0 ≤ s ≤ w-1, where βs
0  and the corresponding estimate βs are defined in (4.6) and

(4.7) respectively. 

Proposition 4.3

In a bilinear model of type I fulfilling the assumptions (A1) - (A4), we have for each 0 ≤

s ≤ w-1 
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(i) βs  → βs
0   a.s.

(ii) if moreover ρ(Γ8) < 1 and {εt}t∈Z is an 8k-th order symmetric 

innovation sequence, then the pair (βs
0 , βs) fulfills the condition (CA)

with moments of the order 4.

Proof.

In (2.5) we defined βs , 0 ≤ s ≤ w-1, to be the minimizer of the penalty function

QN
s
 (βs) := ∑

t=(r+s)∨p+1

N

{vt vt-s – Eβs(vtvt-s | t-w)}2 , (4.2)

if such a minimum exists. According to the linear representation of Eβs(vtvt-s | t-w) in

terms of βs in (2.3), we recognize that QN
s
 is a quadratic function in the components of

βs. Thus for minimizing QN
s
 we consider the solutions of the equation

∇QN
s
 = 0 (1)

with ∇QN
s
 being a linear function of the parameter βs. Hence, in general, the equation (1)

has an unique solution which moreover can be computed explicitly. According to the

linearity of ∇QN
s
 we have the expansion

∇QN
s

 (βs) = ∇QN
s

 (βs
0 ) + (βs – βs

0 )t ∇2 QN
s

 (βs
0 ). (2)

Thus, for proving the almost sure convergence of βs to βs
0  we only have to verify the

following conditions:

(C1) N-1 ∇ QN
s
 (βs

0 ) → 0    a.s.

(C2) N-1 ∇2  QN
s
 (βs

0 ) → V0 > 0    a.s.

To prove part (ii) of the Proposition 4.3 moreover we need the condition

(C3) the pair (0, N-1 ∇ QN
s
 (βs

0 )) fulfills the condition (CA) in (4.1) with m = 4

to be satisfied.

According to Theorem 3.1 the general assumptions of Proposition 4.3 imply E|Xt| 4 < ∞.

Hence we can take the ergodic theorem into account to deduce M4 – M4 = o(1) a.s. So
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the condition (C3) implies the condition (C1). Thus we restrict our effort on proving the

conditions (C2) and (C3) only.

It should be noted here that for verifying these conditions we only apply the general

assumptions of the proposition but not the additional assumption required for assertion

(ii).

Check of (C2).

If we compute the second order derivatives of QN
s
 with respect to βs at βs

0  we obtain

∇2 QN
s
 (βs

0 ) = 2 ∑
t=(r+s)∨p+1

N

(∇Eβs
0)t (∇Eβs

0) .

This equation holds due to the linearity of Eβs in βs (cf. equation (2.3)) which implies ∇2

Eβs = 0 (Eβs is used as an abbrevation for Eβs(vtvt-s | t-w) here). Since ∇ Eβs moreover is

linear in (1; Xt-i ; Xt-j Xt-k ; 1 ≤ i ≤ r+s, w ≤ j ≤ r, w+s ≤ k ≤ r+s)t and the assumptions

of Theorem 3.3 imply E|Xt| 4 < ∞, we can apply the ergodic theorem to deduce

N-1 ∇2 QN
s
 (βs

0 )  →  V := 2 E{(∇Eβs
0)t (∇Eβs

0)} a.s.

From the definition of the matrix V it is immediate that we always have V ≥ 0. Thus for

verifying the condition (C2) it remains to prove that if αt V α  = 0 for some α then we

have α = 0. 

Since Eβs is stationary in t ∈ Z we get

αt V α   =  0   ⇔   E[(αt ∇Eβs
0)2]  = 0   ⇔   αt ∇Eβs

0  = 0  a.s.  for all t ∈ Z.

According to Lemma 4.6 now the last equivalence implies α = 0 such that we can

deduce V > 0 which proves the condition (C2).

Check of (C3).

For verifying this condition we need to analyse the penalty function QN
s
 in more detail. To

this purpose we define

Qs (βs , a, M4) := E[{vt(a) vt-s(a) – Eβs(vt vt-s | t-w)}2] (4.3)

where M4 denotes a suitable vector of theoretical mixed moments of the process {Xt}t∈Z

up to the order four and vt(a) ≡ Xt – ∑i=1
p ai Xt-i and a ≡ (a1,…, ap)t.
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The fact that for βs fixed the conditional expectation Eβs belongs to span{1; Xt-i ; Xt-j Xt-k

; 1 ≤ i ≤ r+s, w ≤ j ≤ r, w+s ≤ k ≤ r+s} together with the linearity of vt(a) in Xt-i , 0 ≤ i ≤

p imply that Qs is really a function of the moments up to the fourth order only. Thus Qs is

a polynomial in M4. These features combined with the linearity of Eβs in βs moreover

imply that Qs and hence its partial derivatives ∂ ∂βs {Qs(βs
0  , · , ·)} are arbitrarily often

differentiable functions also.

According to Proposition 4.2 now there exists a continuously differentiable function g

with a0 =g(M2
0) (= g(M4

0), since M4
0 can be chosen such that M2

0 ⊂ M4
0 ) and a = g(M4) +

oN, such that further we can conclude that there exists a continuously differentiable

function f with the properties

f(M4
0) = ∂

∂βs
  Qs (βs

0  , a0, M4
0)

and

 f(M4) =  ∂
∂βs

 Qs (βs
0  , a, M4) + oN. (3)

(In order to avoid misunderstandings caused by the notation, we denote the true

underlying AR parametervector and the true theoretical moments of the process by a0 and

M0 respectively.)

On the other hand we can represent the quantity of interest, N-1 ∇ QN
s
 (βs

0 ), by means of

the function Qs defined in (4.3) as follows

∂
∂βs

 Qs (βs
0  , a, M4) = N-1  ∇ QN

s
 (βs

0 ) + oN. (4)

According to its definition βs
0  minimizes Qs( ·, a0, M4

0) and we get ∂ ∂βs {Qs(βs
0 , a0,

M4
0)} = f(M4

0) = 0, which together with (3) and (4) proves (C3).

Hence the conditions (C1) - (C3) are verified (reminding that (C3) implies (C1) here) and

it remains to show how these conditions can be used to deduce the assertions of the

Proposition 4.3.

Since the proof of the assertion (i) is obvious we restrict our effort on proving the
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assertion (ii) here.

Since ∇ QN
s
 (βs) = 0 in view of the expansion in (2) we obtain

– N-1  ∇ QN
s
 (βs

0 ) = (βs – βs
0 )t N-1 ∇2  QN

s
 (βs

0 ).

By means of (C2) moreover we get

– (V0)-1 N-1  ∇ QN
s
 (βs

0 ) = (βs – βs
0 )t {1 + o(1)}  a.s. (5)

At this stage we make use of the additional assumptions presumed in part (ii) of the

proposition. According to Theorem 3.2 these assumptions imply that M4 and M4
0 fulfill

the requirements of Lemma 4.1 with XN = M4 and x0 =M4
0. Hence according to this

Lemma and in view of the equation (5) the validity of the condition (C3) can be applied to

deduce

 (βs – βs
0 )t · o(1) = oN

A second application of the condition (C3) moreover ensures the existence of an f ∈ C1

{N(M4
0)} such that

(βs – βs
0 )t =  (V0)-1 {f(M4) – f(M4

0)}  + oN.

If now we define 

h(·) ≡ (V0)-1 {f(·) – f(M4
0)} + βs

0 ,

then h is a continuously differentiable function with the properties h(M4
0) = βs

0  and h(M4)

= βs + oN such that the pair (βs
0 , βs) fulfills the condition (CA) with m= 4, which proves

(ii).▲

Proof of Theorem 3.3

According to the propositions 5.14 and 5.15 the pair (γ0, γ) := {((a0)t, (βs
0 ) t) t , (at ,

(βs)t)t} satisfies the condition (CA) in (4.1) with m = 4. Moreover, by means of

Theorem 3.1, the assumptions of Theorem 3.3 imply that M4
0 and M4 hold the

requirements for applying Lemma 4.1 to the pair (γ0, γ). Thus the vector N1/2 (γ – γ0)t is

asymptotically jointly normal distributed and the LIL is valid also.

The asymptotic behaviour of the estimator of interest θ now can be deduced from the

asymptotics of the estimator γ by applying continuously differentiable mappings to γ. 
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According to our procedure for estimating θ0  we apply the Wilson algorithm to a

selection of the components of the vector γ first. Since in the neighbourhood of the true

value this algorithm can be regarded as a continuously differentiable transformation, an

application of Lemma 4.1 implies the desired asymptotic behaviour for the vector ((γ –

γ0)t , cj – cj
0, 1 ≤ j ≤ q; σ2 – σ0

2)t to hold also. Furthermore the mapping from (γt, cj, 1 ≤

j ≤ q; σ2)t to θ (see (2.9)) is continuously differentiable in a neighbourhood of the true

parameter. Again applying Lemma 4.1 now implies the assertion of the Theorem 3.3.▲

For the proof of Theorem 3.4 first we consider the estimates defined in the steps (ii) and

(iii) of the estimation procedure seperately. This is the content of the following

proposition.

Proposition 4.4

In a bilinear model of type II fulfilling the assumptions (A1) and (A4) we have 

(i) the pair (bkkσ2, bkkσ 2) fulfills the condition (CA) with moments of the order 

4, where bkkσ 2 is defined in (2.14)

(ii) β  →   β 0    a.s, where β   minimizes the penalty function defined in (2.12).

If moreover ρ(Γ8) < 1 and {εt}t∈Z is an 8k-th order symmetric innovation 

sequence , then the pair (β 0 ,β ) fulfills the condition (CA) with moments of the

order 4.

(iii) the pair (σ2, σ2) fulfills the condition (CA) with moments of the order 4, 

where σ2 is defined in (2.16).

Proof.

Proof of (i).

First we observe that ut (= Xt – ∑i=1
p ai Xt-i )is linear as well in a as in Xt-i , 1 ≤ i ≤ p

also. Since in the bilinear model of type II the Yule - Walker - equations already hold for

s ≥ 1, the assumption (A2) is always fulfilled here and we can apply Proposition 4.2 to

deduce that the pair (a, a) fulfills the condition (CA) in (4.1) with m = 4. If now we

consider the equation (2.14) defining bkkσ2 we recognize that it is possible to find both a

vector M4 and a continuously differentiable function f such that bkkσ2 = f(M4) + oN and

bkkσ2 = f(M4) also. Thus the assertion is proved since both requirements of the condition
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(CA) are satisfied.

Proof of (ii).

In (2.12) we defined β to be the minimizer of 

PN(β) := ∑
t=(r+l)∨p+1

N

{ut ut-k – bkkσ2 Xt-k – Eβ(ut ut-k – bkkσ2 Xt-k | t-k-1)}2 .

In view of the explicit representation of Eβ (·) in terms of β in (4.15) we notice that PN is

a quadratic function in β and that it depends on the estimated values a and bkkσ2. Since

both the pair (a, a) and the pair (bkkσ2, bkkσ2) fulfill the condition (CA) in (4.1) with m

= 4 the main characteristics of the function PN coincides with those of the penalty

function QN
s
 defined in (4.2). Thus we can prove the stated assertion by going along the

lines of the proof of Proposition 4.3 (ii).

Proof of (iii).

The proof is analogously to the proof of (i).▲

Proof of Theorem 3.4.

From the propositions 5.14 and 5.17 we conclude that the pair (γ0, γ) := {(at, bkkσ2,

(β0)t, σ2)t ; (at, bkkσ2, (β)t, σ2)t} fulfills the condition (CA) in (4.1) with m = 4.

Due to Theorem 3.1, the assumptions of Theorem 3.4 imply that the theoretical moments

gathered in M4 and their empirical counterparts M4 from the proof of Proposition 4.4

hold the requirements for applying Lemma 4.1 too. So we can conclude that the vector

N1/2 (γ – γ0)t is asymptotically jointly normal distributed and the LIL holds. Obviously

this is also tue for the transformed quantity N1/2 (θ – θ0 )t.▲

Proof of Theorem 3.5.

Analogously to the proof of Theorem 3.2 the following proposition is the crucial result

we need for proving the Theorem.

Proposition 4.5

In a standardized superdiagonal bilinear model with expectation μ which fulfills (A1)

and (A4), the following assertions hold:
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(i) the pair (a, a) fulfills the condition (CA) in (4.1) with moments of the order 2

(ii) the pair ( μ, μ) fulfills the condition (CA) with moments of the order 1

Proof.

Proof of (i). 

The proof goes along the lines of the proof of Proposition 4.2 and thus is omitted.

Proof of (ii).

Choose f = id.▲   

The proof of Theorem 3.5 now is immediate since the assumptions of the theorem imply

that we can take Theorem 3.1 into account to verify the conditions (i) and (ii) of Lemma

4.1 by choosing XN = M2 and x0 = M2. The assertion follows from the above

proposition then.▲  

Proof of Theorem 3.6.

The influence of estimating μ on the estimation of the AR coefficients of the bilinear

model is studied in Theorem 3.5. Thus it remains to consider the effect of estimating μ on

step (ii) and (iii) here. We have to replace the sample {X1,…, XN} with the sample {X1

– μ ,…, XN – μ}. But in the deduction of the desired results this replacement causes no

major difficulties. According to Proposition 4.5 we can make use of the same arguments

as they were applied in the proof of the Theorems 5.3 to cope with the fact that the true

parameter a is not available, but only its estimated version a. In both cases the influence

of first estimating a and ((a)t, μ)t respectively is not neglectable but treatable.▲  

4.1. Auxiliary Results

The following Lemma is basic for proving the parametrization properties of the

conditional expectations of the bilinear process (cf. chapter 2). Although our emphasis

here is on analyzing bilinear processes only the result is given in a more general context.
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Lemma 4.6

Let Xt = f(εt-1, εt-2, ...) + εt  for t ∈ Z with a measurable function f and an iid sequence

{εt}t∈Z  such that the assumption (A4) is fulfilled. If for all t ∈ Z

b + ∑
i=1

r

ci Xt-i  + ∑
j=1

m

∑
k=1

n

 djk Xt-j Xt-k  = 0     a.s., where b, ci and djk ∈ R 

then 

b = ci = djk = 0 for all i, j, k in the summation domain.

Proof.

A proof of this result can be found in Grahn (1993, proof of Lemma 5.20).▲

Appendix: Standardized bilinear time series

If {Xt}t∈Z follows a stationary linear ARMA model we know that E(Xt) = 0 independent

of the choice of the parameter ai, cj, and σ2 determining the model. For modelling data

sets with unknown mean μ ≠ 0 we extend the model class by admitting processes

{Xt}t∈Z such that {Xt - μ}t∈Z is a zero mean ARMA process also where μ is treated as

an additional parameter then. 

But in the bilinear case in general the mean of the bilinear process is a function of the

parameter ai, cj, bij and σ2. For example, let us consider the bilinear time series defined

by Xt = α + b εt-1Xt-1 + εt. Then we obtain E(Xt) = α + bσ2. In most of the 'classical'

literature concerning bilinear time series (e.g. Granger and Andersen (1978), Subba Rao

and Gabr (1984), Liu and Brockwell (1988)) only the case α = 0 is considered such that

the expectation of the bilinear series is uniquely determined by the parameter of the

process.

Here we introduce the definition of standardized bilinear time series which have the

common property of a zero mean. Especially for fitting bilinear processes to real data sets

we find it more natural to classify the bilinear models with respect to its mean than to the

parameter α in (1.1) which would be possible also. 
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Definition (standardized bilinear time series)

A bilinear time series of type BL(p, q, k, r) defined by means of the equations (1.1) is

said to be a standardized bilinear time series if α ∈ R is such that E(Xt) = 0. Moreover

in accordance with the ARMA case we call {Xt}t∈Z a standardized bilinear time series

with expectation μ if the process {Xt - μ}t∈Z is a standardized bilinear time series.

In a standardized bilinear time series with expectation μ the parameter of interest is the

vector θ = (μ, ai, cj, bij, σ2)t with α excluded since due to the standardization of the

bilinear process the value of α is uniquely determined by the parameter θ (e.g. the

standardized version of the bilinear time series Xt = α + b εt-1Xt-1 + εt corresponds to α

= – bσ2). The models defined in (1.2) and (1.3) are standardized bilinear models too.

Moreover both models belong to the more general class of superdiagonal bilinear models.

In the literature there is some confusion concerning this naming (cf. Tong (1990), p.

112) but here we will call a general bilinear time series to be of the superdiagonal type iff

bij = 0 for i > j. Analogously we define the subdiagonal bilinear model (bij = 0 for i < j )

and the diagonal bilinear model (bij = 0 for i ≠ j ).

A general result of Liu and Brockwell (1988, Theorem 3.1) provides us with sufficient

conditions guaranteeing the existence of a stationary, ergodic and causal solution of the

bilinear equations (1.1) in the case α = 0. In order to apply this result to the case α ≠ 0

also we make use of the following considerations where we apply the state space

representation of the bilinear process given in (3.1).

If we assume the matrix I – A defined therein to be invertible, which e.g. is fulfilled if

ρ(A) < 1, we can apply the equation in (3.1) to Xt to conclude that

{Xt – (I–A)-1α }

 = α + A {Xt-1 – (I–A)-1α } + A(I–A)-1α  +  ∑
i=1

k

 εt-i Bi {Xt-1 – (I–A)-1α }  +

+ ∑
i=1

k

εt-i Bi (I–A)-1α  +  C εt  – (I–A)-1α 
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 = A {Xt-1 – (I–A)-1α } + ∑
i=1

k

εt-i Bi {Xt-1 – (I–A)-1α } + Cεt + ∑
i=1

k

εt-i Bi(I–A)-1α 

since  α  +  A(I–A)-1α   –  (I–A)-1α   =   α  +  (A–I)(I–A)-1α   =  0,

 = A {Xt-1 – (I–A)-1α } + ∑
i=1

k

εt-i Bi {Xt-1 – (I–A)-1α } + C εt ,

with εt := (εt , εt-1,…, εt-q∨k)t and C = C(α) = 

1 c1 cq∨k

0 0

0 0

 ∈ M(h, q∨k+1), 

where the coefficients ci  are uniquely determined by the moving average coefficients cj

and the first components of the vectors Bi (I–A)-1 α , 1 ≤ i ≤ k . (Here 'q∨k' denotes the

maximum of q and k.) Hence we recognize that provided that the matrix I – A is

invertible, the process {Xt – (I–A)-1α }t∈Z satisfies the state space equation

Yt = A Yt-1  +  ∑
i=1

k

εt-i Bi Yt-1  +  C εt ,
(1)

Yt = DYt.

Thus a change of α in (3.1) effects the bilinear representation in (1) only in the moving

average part.

Liu and Brockwell (1988) proved the existence of an ergodic and strictly stationary

solution of (3.1) in the case α = 0. The crucial condition for their result to hold is ρ(Γ) <

1, where Γ is a matrix defined implicitely in their equation (3.8). Going along the lines

of the proof of Liu and Brockwell's Theorem 3.1 (cf. the first part of chapter 3 also) we

notice that the matrix Γ is independent of the moving average coefficients of the bilinear

process under consideration. Hence the condition ρ(Γ) < 1 is sufficient for bilinear

processes defined by means of the equations (1) too. If α ≠ 0 and I – A is invertible, this

result carries over to the transformed process {Xt – (I–A)-1α }t∈Z also since the process

fulfills (1) then. Thus for any α ∈ R the value of α does not influence the validity of the

condition ρ(Γ) < 1 as long as we only consider bilinear processes where the matrix I – A

is invertible. 

Thus, analogously to the linear case in the bilinear case also the condition guaranteeing
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the stationarity and ergodicity of the bilinear process does not depend on the moving

average part of the process.
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