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Abstract. A general minimum distance estimation procedure is presented for
nonstationary time series models that have an evolutionary spectral representation. The
asymptotic properties of the estimate is derived under the assumption of possible
model misspecification. For autoregressive processes with time varying coefficients the
estimate is compared to the least squares estimate. Furthermore, the behaviour of
estimates is explained when a stationary model is fitted to a nonstationary process.

1. Introduction.

Stationarity has always played a mgjor role in the theoretical treatment of time series
procedures. For example, the spectral density is defined for stationary processes and the important
ARMA-model is a stationary time series model. Furthermore, the assumption of stationarity is the
basis for a general asymptotic theory: it guarantees that the increase of the sample size leads to
more and more information of the same kind which is basic for an asymptotic theory to make
sense.

On the other hand many series show a nonstationary behaviour (e.g. in economics or sound
analysis). Special techniques (such as taking differences or the consideration of the data on small
time intervalls) have been applied to make an analysis with stationary techniques possible.

If one resigns from stationarity the number of possible models for time series data explodes.
For example, one may consider ARMA models with time varying coefficients. In that case the
time behaviour of the coefficients may again be modeled in different ways. Therefore, we try to
consider in this paper ageneral class of nonstationary processes together with ageneral estimation
method which is a generalisation of Whittle's method for stationary processes (Whittle, 1953).

Whittle's method (cf. Dzhaparidze, 1986; Azencott and Dacunha-Castelle, 1986) is based on
minimization of the function

L(6)= 417J {Iog Fo(0) + :bT((}}:))}dx
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where fo(A) is the model spectral density and In(A) is the periodogram. The Whittle estimate is
asymptotically efficient and Lt1(0) is (up to a constant) an approximation to the Gaussian
likelihood function. Since L1(6) may be interpreted as a distance between the parametric spectral
density fo(A) and the nonparametric estimate In(A), the Whittle-estimate is a minimum distance
estimate. In the case where the model is misspecified minimization of L1(0) therefore leads to an
estimate of the parameter with the best approximating parametric spectral density. This best
approximating paramter also minimizes the asymptotic Kullback-L eibler information divergence.
For autoregressive processes the Whittle estimate isidentical to the Yule-Walker estimate. If adata
taper is applied in the calculation of the periodogram then the estimate also has good small sample
properties (cf. Dahlhaus, 1988). Asymptotic normality of the Whittle estimate also holds for non-
Gaussian processes. However, this requires identifiability of the model which basically only holds
for linear processes.

In this paper we generalise the method of Whittle to processes that only show locally a
stationary behaviour (cp. Definition 2.1). We replace the periodogram In(A) in Ln(0) by alocal
version and integrate over time (cp. Section 3.1). The resulting estimate again is efficient.

If the model is misspecified the estimate again may be regarded as an estimate for the best
approximating model (‘best’ in the sense of distances between spectral densities or in the sense of
the Kullback-L eibler information divergence - cp. Section 3). We prove asymptotic normality also
in the misspecified case. In particular we can describe the behaviour of the estimate if a stationary
model isfitted and the true process is nonstationary (Section 5).

Although we use a spectral density approach our goal in this paper is not the estimation of the
spectral density. We mainly are interested in parametric inference for nonstationary time series
models that may be defined purely in the time domain. An example are autoregressive processes
with time varying coefficients. Such models are studied in detail in section 4. In particular, we
give the estimation equations for such models and study the relation of our estimate to the least
sguares estimate.

Section 6 contains some practical considerations and a simulation example and Section 7
concluding remarks.

2. Asymptotic theory and locally stationary processes

One of the difficult problems to solve when dealing with nonstationary processes is how to
set up an adequate asymptotic theory. Asymptotic considerations are needed in time series analysis
to simplify the situation sinceit is usually hopeless to make calculations for afinite sample size.

However, if X1,...,.XT are observations from an arbitrary nonstationary process, then letting
T tend to infinity, i.e. extending the process into the future will not give any information on the



behaviour of the process at the beginning of the time intervall. We therefore need a different
asymptotic concept.
Suppose for example that we observe

X, = a(t) X,_; + & with e, iid N (0,69
fort =1, ..., T. Inference in this case means inference for the unknown function a(t) on the
intervall [1,T]. We have informations on a(t) on the grid {1,2,3, ... , T}. Anaogously to

nonparametric regression it seems natural to set down the asymptotic theory in a way that we
"observe" a(t) on afiner grid (but on the same intervall), i.e. that we observe the process

(2.2) Xyr =a[ X7 e fort=1,..,T
(where ais now rescaled to the intervall [0,1]).

To define a general class of nonstationary processes which includes the above example we
may try to take the time varying spectral representation

(2.2) X1 = u(%) + f exp(in) AL, 1) de(h) .

(similar to the analogous representation for stationary processes). However, it turns out that the
eguation (2.1) has not exactly but only approximately a solution of the form (2.2). We therefore
only require that (2.2) holds approximately which leads to the following definition.

(2.1) Definition. A sequence of stochastic processes X, (t =1, ... , T) is called locally

stationary with transfer function A° and trend . if there exists a representation

(2.3) X1 = u(%) + f exp(int) A2, (1) dE(A)

where
(i) &(A) isastochastic process on [—7,mt] with % =§(-A) and

Kk
cum{d&(y), ... , A&} =N, A G (g oo s Ayey) by -
j=1



where cumy ... } denotes the cumulant of k-th order, g, = 0, g,(A) = 1,
lg,(Ay, ... s A _y)| < const, for al k and (L) = ZT: S(A + 2mj) is the period 2n
extension of the Dirac deltafunction.

—o0

(i) There exists aconstant K and a 2r-periodic function A: [0,1] x R —C with
A(u—A) =A(u,A) and

(2.4) sup | Agy () =A () | < KT
t,A ’

for all T. A(u,A) and p(u) are assumed to be continuousin u.

The smoothness of A in u guarantees that the process has locally a "stationary behaviour".
Below we will require additional smoothness properties for A, namely differentiability in both
components.

In the following we will denote by s and t always time points in the intervall [1,T] whileu
and v aretime pointsin therescaled intervall [0,1],i.e.u=t/T.

(2.2) Examples. (i) Suppose Ytis a stationary process and u, ¢ : [0,1] — R are continuous.
Then

o= ol

islocally stationary with A;’,T (A) = A(% , A). If Yt is an AR(2)-process with (complex) roots
close to the unit circle then Yt shows a periodic behaviour and ¢ may be regarded as a time
varying amplitude function of the process Xi1. If T tends to infinity more and more cycles of the
processwithu=t/T € [Uo- €, Uo + € ], i.e. with amplitude close to 6(uo) are observed.

(i) Suppose €; isan iid sequence and
_ N [t
%oz Sl e

. . . o _ t R S t Y
Then X1 islocally stationary with Ag1 () =A(L ,4) = J;O @(T) exp (—iAj).
(ii1) Autoregressive processes with time varying coefficients (cp. Section 4) are locally
stationary. This was proved in Dahlhaus (1994, Theorem 2.3). However, in this case we only

have (2.4) instead of A°_ (A) = A(% ).



The above definition does not mean that a fixed continuous time process is discretized on a
finer grid as T tends to infinity. Instead it means heuristically that with increasing T more and

more data of each local structure are observed. If u and A° do not depend on't and T then X does
not depend on T as well and we obtain the spectral representation of an ordinary stationary
process. Thus, the classical theory for stationary processesis a specia case of our approach.

Letting T tend to infinity no longer means looking into the future. Nevertheless, a prediction
theory within this framework is still possible. One may e.g. assume that X1 is observed for t <
T/2 (i.e. on the timeinterval (0,1/2)) and one tries to predict the next observations. A result on the
local prediction error similar to Kolmogorov's formulafor stationary processes has been proved in
Dahlhaus (1994, Theorem 3.2).

By f(u,A) := |A(u,\)|?2 we denote the spectral density of our process. In Dahlhaus (1994,
Theorem 2.2) we show under smoothness conditions on A that

o

fur) = lim L cov(Xur g1 Xur 4 91.7) €XR(=iR9),

T

S=—o0

where X . is defined by (2.3) (with A?_ (1) = A(OA) fort<land A% (1) = A(1) for

t > T - with respect to A the above convergence is in quadratic mean). This means that if there
exists a spectral representation of the form (2.3) with a smooth A(u,A) then |A(u,7u)|2 iSuniquely
determined (there may exist several other non-smooth representations).

There are similarities of our definition to Priestley's definition of an oscillatory process (cf.
Priestley, 1981, chapter 11). However, there is the major difference that we consider double
indexed processes and make asymptotic considerations.

3. Fitting parametric models to locally stationary processes.

In this section we discuss the fitting of alocally stationary model with time varying spectral

density fo,0 € © ¢ =" to observations X171+ - » Xy1. As motivated in the introduction we

obtain the parameter estimate by minimization of a generalisation of the Whittle function where the

usual periodogramis replaced by local periodograms over (possibly overlapping) data segments.
Let h: R — R be adatataper with h(x) = 0 for x¢ [0,1) and (for N even)

N-1
dyur) = diunr) =, r1(ﬁ)x[uT]_N,2+s+LT exp (—iAs),
s=0



N-1
Hin® = X h(S) ep -ing),
s=0
-1
N2) = gt gy AP

Thus, I(u,A) isthe periodogram over a segment of length N with midpoint [uT]. The shift from
segment to segment is denoted by S, i.e we calculate | over segments with midpoints

= SG—-1)+N/2 (=1,...,M)whereT=S(M —1) + N, or, written in rescaled time, at
time points U=t [ T. We now set

} dh

1 log fy(u ) + N
4t M g; L {log fo(uA) + fo(u )

and

6, =argmin L(8) .
e)

The use of adata taper which tends smoothly to zero at the boundaries has two benefits: First
it reduces leakage (as in the stationary case). Second it reduces the bias due to nonstationarity by
downweighting the observations at the boundaries of the segment. It isinteresting to see that the
taper does not lead to an increase of the asymptotic variance for overlapping segments (Theorem
3.3). Furthermore, some estimates are even approximately independent of the taper (cp. Theorem
4.2 and the discussion after that theorem).

The above motivation of the function Lt () is heuristic. We now give a stronger justification
for the particular form of Lt (0). Suppose f is the true probability-density of the observations
X1,T1,...XT,1T and f the true spectral-density. Analogously, let f, and f, be the corresponding
densities of our model. If f and f, are Gaussian distributions with mean zero then we have shown
in Dahlhaus (1994, Theorem 3.4) that the asymptotic Kullback-Leibler information divergenceis

lim 4 € log /7,
T

10T f(ud)  f(u) 1T f(u,\)

T

where the constant is independent of the model spectral density. Therefore, we may regard



1
L(e) ::Af%tofj; log fo(u,A) + f(u,k)\ dA du

as a distance between the true process with spectral density f(u,A) and the model with spectral
density f(u,A) . The best approximating parameter value from our model classthenis

0,:= agminL(6).
6e®

If the model is correct, i.e. f = f,. , then it is easy to show that 6o = 6”.

The function L+ (8) is now obtained from L(08) by replacing the unknown true spectral
density f by the nonparametric estimate In. We conjecture that L+ (0) is an approximation to the
exact Gaussian likelihood function (asin the stationary case - cf. Azencott and Dacunha-Castelle,
1986, Chapter XI11). This means that 6 is an approximate Gaussian MLE (the benefits of 6,
over the exact MLE are discussed at the end of Section 4).

We now prove convergence of 6 to 8, in the case where the mean is known (i.e. we assume

u(u) = 0). The situation of an unkonown mean is treated in Theorem 3.6 and Remark 3.7. A key
step in the proof is the use of the more general central limit theorem A.2 which is of independent
interest.

(3.1) Assumption.
() We observe the redlisation X 1T X7 of alocally stationary process with true transfer

function A° and mean p(u). The true spectral density is f(u,A) = JA(U,L)[2 with A asin

Definition 2.1. A(u,A) is differentiable in u and A with uniformly bounded derivative
0
ou oA

(i) Asamodel we fit a class of locally stationary processes with spectral density f,(u,A),

A. g4 is continuous.

0e® c Rp, © compact. The fy(u,A) are uniformly bounded from above and below. The
components of f,(u,A), Vfy(u,A) and sze(u k) are continuous on © x [0,1] X [- m,m]

(V denotes the gradient with respect to 6). Vf and \% f are differentiable in u and A
with uniformly bounded derivative 9.9 gwhereg = i fo Org= 9.9 fgl :
ou oA o6, 20; 96; °
(i) 6, existsuniquely and liesin the interior of ©.
(iv) N,Sand T fulfill therelations T" << N<<T 2/InTandS=N or S/N — 0.

(v)  Thedatataper h: R — R with h(x) = 0 for all x¢[0,1] is continuous on R and twice



differentiable at all x¢ Pwhere Pisafinite set and sup |h'(x) | < o .
xe P

The assumptions on N,S and h are discussed below Theorem 4.2, in Section 6 and in
Remark A.3.

(3.2) Theorem. Suppose that Assumption 3.1 holds with p(u) = 0. Then

0 — 0,
in probability.
Proof. Below we prove that
(3.1) sup | L(8) —=L(®) | > 0
0

in probability. Since L(6) is minimized by 6, we have L (1) < L-(8,) and L(8,) <L(8)
which implies L(@T) — L(8,) and therefore also @T — 0, in probability. To prove (3.1) we
follow the idea of Hannan (1973, Lemma 1) and approximate the function gy(u,A) = fe(u,k)_1 by
the Cesaro sum of its Fourier series

(L)( z (1- )(1—m ) Go(!,m) exp(—i 2 ul —i A m)

Qm—

with L such that sup | gg(u.X) — g(L)(u,k)| <e. We obtain

—_—

_ M
sup | L(6) —L(6) |< OM 1)+gﬁ ﬁ Z
) =

{I(u2) + f(uA)} di

A

1y a-tha- '””)sup |Go(t.m) |

f,m=—L
M T
ﬁ ; Lt exp(—i 2r U 0 —iAm) {IN(uj,x) —f(uj,k)} dr | .

By using Lemma A.8 and Lemma A.9 the | ... | -term converges for all { and m to zero in



probability, whileﬁ Y [ 1y(u.1) di converges to [ f(u,) d du. This proves the result.

(3.3) Theorem. Suppose that Assumption 3.1 holds with p(u) = 0. Then we have

~ D _ _
VT©O =09 > N (0., T (V+W)T )
with

1n
| —Toy) V2f;(1)dk du + ﬁ 0“ (V logfe) (V logfe) d du,
-

4

1=
v =1 f f PVfg Vige * di du,
0 -m

— 3

T
[ fun) f(up) Vg (uh) Vigrup)' h(k, —Ap) dA du du,

T

1%
W:&Eg

4

and ¢, =H,/H3 if S=Nand ¢, = 1if SN — 0.

Pr oof. We obtain with the mean value theorem

VL (6,) — VL (8, = {V'L (6% (6, -6},

with |6 — 8, < [0: =6, (=1, ..., p). If 6 liesin theinterior of ©, we have VL (6-) = 0.
If 6T lies on the boundary of ©, then the assumption that 8, isin the interior implies |6T - 90| >0
for some 8 > 0, i.e., we obtain PN |V L(8,)| =€) < P(| 65— 0,| = 8) — 0 for al & > 0. Thus,

the result follows if we prove

(M) V2L o) — V2L.(8,) > 0
(ii) VAL (8) 5 T
D
(i) T VL, (0 — N (0, (V +W)).

We have
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VL, (8) = 4L ﬁ Zj {IN(uj,x) —fe(uj )} Vfgl(uj,k) dr
j
and

1 T
0=VL(g,) =L J J {f(u) —fo (ur)} Vf;;(u,k) di du.
0

Therefore

ﬁ

VTV L;(8,) = {In(D) = f(u M} v f;(l)(uj ) dh+ 0(%)

£

L ——

which, by using Theorem A.2 implies (iii). Furthermore
n
V2L, (6) =L Ly J {(y —f)) VI -V, Vi di.
j
-
The smoothness conditions and Lemma A.8 and LemmaA.9 imply (i) and (ii).

(3.4) Corollaries and Remarks.

0] If the model class contains the true model, then we have feo =f. Inthissituation T", V and
W simplify . In particular, we haveV =T.

(i) 1f g,(A,—2A,u) =0 (for exampleif the processis Gaussian) then W = 0. If in addition
f=fg,and ¢, = 1, then

~ D 1
T (0:-06p) > N (0T7).

In Dahlhaus (1994, Theorem 3.6) we prove that T" is the limit of the Fisher information
matrix. Thus, 8, is (Fisher-) efficient in this situation.
(iii)  If the model is stationary (all f, do not depend on u) then the above theorem gives the

asymptotic distribution also in the case where the true underlying process is nonstationary
(cp. section 5).
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(iv)  Alternatively, we get the asymptotic distribution if a nonstationary model is fitted to a
stationary process.

(v)  If both the model and the true process are stationary, then the above distribution becomes
the same as for the classical MLE and the Whittle estimate (cf. Hosoya and Taniguchi,
1982). We therefore have proved efficiency also for a new estimate (minimum distance fit
to segment spectra estimates) in the classical stationary situation.

(3.5) Remark (model selection). In a practical application the problem of model selection
arises. For example we might wish to compare an AR(2)-model where the coefficients are
polynomials in time with a stationary AR(p) model of higher order. We will not solve this problem
satisfactorily in this paper. However, we now give a heuristic derivation of the AlC-criterion
(Akaike, 1974) in this Situation. The criterion is used in the example of Section 6.

As a criterion of the quality of our fit we take EL(@T), i.e. we estimate the expected
Kullback-Leibler information divergence between the model and the true process (up to a
constant). A quadratic expansion of L(6) around 6, and L(6) around QT gives

N N 'V N
(32 L(67) = L(6)) + 5 (61 —6;) V°L(8) (67 — 6))

and

L1(89) = L(6r) + 1 (61 —69) V°L,(67) (6 - 6).

~ P
Since EL,(6,) = L(6,), VZL(OO) =T and VZLT(OT) — T'with T asin Theorem 3.3 we may now
estimate EL(67) by

L.(67) + E(0r —6,) T (61 —6,) = L(67) +1u (T +W)) (if N = 0)

with V,W and I" asin Theorem 3.3. If the model is Gaussian and correctly specified (f = feo),
OthenW =0and V =T, leading to

=Lir)+ 7

which isthe AIC (the AIC isusualy 2LT(6T) + 2_? + const.).

Apart from the crucial assumption f = feo there is another problem: Inspection of the proof of
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Lemma A.8 shows that
E L;(8,) —L(6y) = O( ﬁ +$ +¥ In N)

which is of ahigher order than p/T. To get rid of this problem it may be helpful to look only at the
difference of LT(6T ) for different models asin Findley (1985).

If astationary model isfitted the above considerations still hold. However, a stationary model
usualy is fitted with a different empirical likelihood (e.g. the "exact" stationary Gaussian
likelihood function or with the stationary Whittle function). Those likelihoods will in general not
converge to L(0) if the true distribution of the process is nonstationary. However, for Yule-
Walker estimatesit follows from the proof of Theorem 5.1 that

1 I+(A)
= [{10g (%) +fe(7»)} di

converges to L(8) also for nonstationary processes (where (1) is the ordinary periodogramm).
Thus, for AR(K)-processes and Y ule-Walker estimates we may take the usual
Gt 41

1 10y Ok K+1
> 105 5ty

and compare it to the above L; (5T) + p/T for anonstationary fit.
The first termin (3.2) (L(6,)) may be regarded as a bias term (between the true f and the
fitted fg_) while the second is the variability of the estimate. Thus, minimizing the criterion

Lt(6;) + p/T means balancing these two terms (for example for a higher model order the first
term usually becomes smaller while the second gets larger).

A careful investigation of the problems arising in model selection go beyond the scope of this
paper. In particular such an investigation would require a different asymptotics where the model
order isalowed to increase with the sample size.

We now discuss the situation where the mean function p(u) is unknown and estimated by

ﬁ(:_) at pointsu = t/T. Let

1

X—u 2
ZTCHZ’N(O) |dN (U,?\«)l ’

I\ (UA): =
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M, 7 (U A)
Lo =L LY [ {logfyu) + f:(ujj,x) } i,

j=1 —m

6, := argminLt(®,n) and 6, := argminLt(6,0).
6] L6

The asymptotic properties of 8, follow from Theorem 3.2 and Theorem 3.3.

(3.6) Theorem. Suppose that Assumption 3.1 holds and in addition that

@3 i )-u(4)=oll ")
and
a9 (b)) 7)) =odm ™

uniformly int. Then

VT(®,-6,) 50,
i.e B, isconsistent and has the same asymptotic distribution as 8 .
Proof. The result is proved in the appendix.

(3.7) Remark. If the trend function is parametric with parameter T then conditions (3.3) and

(3.4) are e.g. fulfilled for p(u) = w.(u) where 7 isthe least squares estimate. For akernel estimate

;1 with bandwidth bt we need a bandwidth b, >> TY2, This means that the segment length of the
local periodogram is not long enough for the mean estimate.

4. Fitting autoregressive models with time varying coefficients.

In this section we discuss autoregressive models with time varying coefficients. Such models
have e.g. been studied before by Subba Rao (1970), Grenier (1983), Hallin (1978), Kitagawa and
Gersch (1985) and Melard and Herteleer-de Schutter (1989). For simplicity we assume through-
out this chaper that the mean of the processis zero. Let X1 be asolution of the system of differ-
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ence equations

P
(4.1) ' (% ) Xyy1 = G(%)et for te Z

j=0

where ay(u) = 1 and the ¢, are independent random variables with mean zero and variance 1. We
assume that 6(u) and the a]-(u) are continuous on R with 6(u) = ¢(0), q(u) = a]-(O) foru<0; o(u)
=o(1), a]-(u) = a]-(l) for u > 1, and differentiable for ue (0,1) with bounded derivatives.The
existence of such a process Xt,7 isdiscussed in Miller (1968). In Dahlhaus (1994, Theorem 2.3)
we have proved that X1 islocally stationary with spectral density

2 P .
fun) = 28 1Y g e(ing) [*
=0

The estimation eguations.

Suppose now that a,(u) = @, ..., a(u)) and cg(u) depend on a finite dimensional
parameter (they may be e.g. polynomials in time). With the above form of the spectrum f,(u,A)
and Kolmogorov's formula (c.f. Brockwell and Davis, 1987, Theorem 5.8.1) we obtain after
some straightforward calculations

M
0)=11 {Iogcs(u)+
SO 2 )

N

(S )3 + Cy)) Ty W) (S (U)ag() + CyU))+ e (t.0) — Cp() Ty (u)~ Cy(u)]}

with
T

6y (U) :f 1 (UA) exp(iA) dn

—T

N-1
-1
=H,(0) 2 h(ﬁ) h(ﬁ) XiTu =N2 + s+ 1T K[Tu—N2+t+1T -

s,t=0
s—t=j

C(W) = (cp (WD), ., ey(up) and 2\ (u) = {eyi—}ije . p

(the analogous relation holds for L(8) with % Zi replaced by the integral over time and I, (u,A)
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replaced by the true spectrum f(u,A)).
A nice explanation of the nature of the estimate 6; can be obtained from the following
heuristics. The Yule-Walker estimate of a(u) in the segment of length N with midpoint uis

au(u) = — Z(U)'C(u)
with asymptotic variance proportional to ¢ 2(u)X(u)-1, and
6r(U) = cy(u,0) — Cy(u)' Zy(u)™* Cy(u)

with asymptotic variance 264(u). If the model is reasonably close to the true process we can
expect 6§2T(U) ~62(u). Since logx =(x—1)— %(x —1)*+o((x—1)’) we therefore obtain for

L1(6) in aneighbourhood of the minimum

<

€ Z 264(u) V" (o3(u) —63(u)f

i=

N\l—\

(4.2) +§¢.JZ a(u) —a,(4)) 65(u) ™ S(u) (a(u) —a(w) +§,&.;|og@a(uj)+§

Therefore, §; is (approximately) obtained by aweighted least squares fit of a,(u) and c2(u) to
the Yule-Walker estimates on the segments (note that the Y ule-Walker estimate with data-taper has
good small sample properties - cf. Dahlhaus, 1988). If the parameters separate, i.e. 6 = (t,v) with
a(u) = a(u) and c(u) = 6%(u) , we can estimate T and v separately.

The above representation justifies the use of graphical tools for model selection and
diagnostics on aplot of the Yule-Walker estimate over time.

A weighted least squares fit to a nonparametric estimate of the AR-coefficients weighted by
the asymptotic inverse of the variance has been suggested for time varying AR(1) processes by
Y oung (1994). He used the estimate as atool for fitting non linear time series models.

We now give an explicit formulafor 6, if the a,(u) are linear in @ and 62(u) is constant over
time. Suppose, that some functions f,(u), ... , f,(u) are given (e.g. the polynomials f, (u) = uk-1y
and we fit the model a]-(u) = ZE=1 bjk f, (u) with o2 constant. Let
b= (Byg, - by o s by, oo, by) .0 8= (b, 0%’ Let further F(u) be the matrix
F(u) = {fi(u)fj(u)}i,j =1 ..k andf)=(fu, .., f (u))". If A ® B denotes the left direct
product of the matrices A and B then direct cal culations show that the parameters that minimize
L(6) are given by
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R M M
(43) br=- (L D Fwe Ty (L Y i e cyw)
j=1 ji=1
and
P 1 M 1 M
(4.4) or =L > ey +brl ¥ f(u)®cyu)
j=1 j=1

i.e. we obtain alinear equation system similar to the Y ule-Walker equations. In case that the model
isincorrect we obtain the same equations for the parameter 6, = (b('),og) where ﬁ Zj is replaced

by the integral over time and ZN and C, are replaced by the corresponding theoretical values. In

particular the minimizing values 6, and @N exist and are unique. If 02 is not modelled to be
constant then the estimation equations are not linear.

If different submodels (e.g. polynomials of different orders) are fitted to the q(u) for different
J, the estimate is obtained as in (4.3) and (4.4) after deleting the corresponding columns and rows
in

M
L3 Fu) © X

j=1
and

M
ﬁ D, f(u) ® Cy(u) .

j=1
Alternatively, one may use a Levinson-Durbin type algorithm asin Grenier (1983).

Least Squares Estimates
We now prove that a weighted least squares estimate is an equivalent estimate for

2
autoregressive models. Let f, (u,A) = 65(;) ko(u,\) where

Kg(UA) = |Jio a(u)exp (inj)]

where ad(u) = 1,

and
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= argmin [.(6).
00O
To derive the asymptotic properties of 8; we need the following lemma.

(4.1) Lemma. Suppose X1 is alocaly stationary process with mean p(u) = 0 and uniformly
bounded spectral density and ¢ : [0,1] — R is differentiable with bounded derivative. Suppose
S/ N — 0. Then we have for all fixed i, k, to and t1 € No

Ttl

53 w3 E ot xax s =of+ofS)

If & = do and ¢pg and % de are uniformly bounded in 6, then the supremum over 6 of the above

2
differenceisalso of order Op(m +0 (32)

Proof. We have with Yj:= Xj 1 Xj+),T and hy= h(ﬁ)h(JNM)

N-1-K
1

&FZlMuJ)cN( K=o Z¢(u)H @ & Ve

N—1—

72 1(0) z q)(S(J 12r+s+1)hYSU eenn Op(ﬁ)

T-K

s 4ol

where

S
Han(0)sE

G= Z h, with S ={t-S(j-1) -1 =1...M} n{0,...N -1 - |K[}.

The smoothness properties of h together with h(0) = h(1) = 0 imply

=1+ O(f;) uniformly int.

Therefore, the above expression is equal to
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Tty

S 3ol el ol

0

(4.2) Theorem. Suppose that Assumption 3.1 holds with p(u) =0 and Sfulfills TS*/ N4 — 0.
Then

JT (B;,—0;) >0
(also in the misspecified case), i.e. §; has the same asymptotic distribution as 6 .

Proof. We only give a sketch. We have in the AR-case

Lior=3 % 3 (1o B e s 3 o ui-m).
Lemma 4.1 therefore gives
sup |L+(6) - L+(6)] = 0,(1)
which implies asin Theorem 3.2 that
6 8,
In the same way we get
VT(VL(80) = VL (85)) = 0i(1)

and

Sup|V7L(6) — V*L1(6)| = 0,(1).

By using the same Taylor expansion for 8; and L, asin the proof of Theorem 3.3 we now obtain
the result..

It isremarkable that Theorem 4.2 holds regardless of the choice of the data taper and for most
of the Sand N. The effect of the choice of these parameters can probably only be seen in ahigher
order asymptotics. This shows the low sensitivity of 6, with respect to the choice of S, N and h.
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In the general case it is difficult to calculate 8, . However, in the homoscedastic case
o3(t/T)=0? i.e. 6 =(0%1) weobtan

N . 1 T p t
(4.5) 1:T:argm|nTt:;+1 J;)a;(f)xt_”
and
2_1 % -zt °
ST 2, ,%?T(T)Xt—w

If the & arelinear in t (as in the polynomial case) we therefore have a linear least squares
problem.

We now compare the minimum distance estimate 6, to the least squares approach in the
heteroscedastic case. Suppose that the parameters separate, i.e. 6 = (t,x) where &'(u) = &/(u) and
o5(u) = 62(u) . Thus, we have

fiun) = S 1 Uy,

Kolmogorov's formula gives

n 2
f log f,(u\) dA = 21 log GKSE) .

2
Therefore,
f f, Vi 'dA=0
and
f o Vetdh = f (Vlogfy) (Vlog ;) dh.
Similarly,

fﬂ (V.logf,) (Vlogf,) dr=0.
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If the model is correctly specified (f = feo where 0o = (to0,x0)) We therefore obtain for the
minimum distance estimate g_ = (%,.,%,) from Theorem 3.3 that

(a3 N (0vy)

where

V, = f V(U)du
0

and

OEP= f (V,1og fe (A1) (Vl0g fo, (h,U)) A

We now study the behaviour of the least sgares estimate %, as defined in (4.5) (x may be
estimated afterwards e.g. by somefit of the estimated residuals at time point t/T to o2 (t / T)). The
following theorem implies that the LSE is less efficient in the heteroscedastic case. For ssimplicity
we restrict ourselves to the case where the model is correct.

(4.3) Theorem. Suppose Assumption 3.1 (i) - (iii) holds with u(u) =0 and f = o, - Then we
have

VT(% —1)3 N (0,U)

where
U= { f o2 () V(u)du}_l{ f ot ) \7(u)du} { f o2 () \7(u)du}_1.

WehaveU > V; " withU = V" if and only if 6% (u) is constant.

Proof. We only give a sketch. As in Theorem 4.2 we can show by using Lemma 4.1 that

ﬁ(%T - %T) 20 where %, minimizes
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where S=1 and N and h fulfill Assumption 3.1 (iv) + (v). It iseasy to show that To minimizes

Lo f_nk( T

It now follows in exactly the same way as in the proofs of Theorem 3.2 and 3.3 that

and
where

r
and

\Y;

which provesthefirst part.

=4 fo f o, Vi dhdu = 5 L 62 (U) V(U) du

1 T 2 1 o
=4 fo f g Ve e du = L fo o (U) V(U) du
The matrix

[[ot v [ o @vd

fo 62 (UV(U)du fo V(U

IS non-negative definite which leads with Theorem 12.2.21(5) of Graybill (1983) to U > Vgol .
o (u) is constant we have U = Vgol. Conversely let U = Vgol. Theorem 8.2.1(1) of Grayhill
implies that the above matrix is singular, i.e. there exists avector (x',y") # 0 with

Since V(u) ispositive definite we have 6% (u) =

[ (02,0 x+ ¥}V (03, x +y)du=0

-y;/x; which implies the result.
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Thus, the least squares estimate is less efficient than the minimum distance estimate 6, in the
heteroscedastic case. It is heuristically clear that a weighted least squares estimate will be fully
efficient. However, such an estimate has no computational advantages since the weights depend
on the unknown parameters and the estimation equations therefore are nonlinear.

A third candidate for estimation is the exact (Gaussian) maximum likelihood estimate from
which we conjecture that it is also efficient. Since atime varying AR-model can be written in state
space form the MLE can be calculated by using the prediction error decomposition together with a
numerical optimization procedure. However, the system matrices in the state space form are time
varying, which leads to an extremely large computation time. Therefore, the MLE is not a suitable
candidate - in particular if different models are fitted to the datain a model selection process.

The following procedure seems to be reasonable for autoregressive models in a practical
situation: For homoscedastic models one uses the linear equation system (4.3) and (4.4) together
with the AIC as in Remark 3.5 for model selection and a graphical investigation of the
nonparametric estimate a(u) for diagnostic checking. An example is given in Section 6. For
heteroscedastic errors one may minimize the modified likelihood (4.2) which also leads to linear
estimation equations (for models linear in the parameters). The final estimate may be improved by
aone-step MLE. Of course adetailed simulation study is necessary to verify these suggestions.

We finally remark that the minimum distance estimate 6; can be computed for arbitrary
locally stationary models while for the L SE and the state space representation of the MLE a specid
form of the model is necessary.

5. Fitting stationary models to nonstationary processes.

We now discuss the situation where the fitted model is stationary, i.e. f,(A) = f,(u, A) does
not depend on u. In this situation we obtain

r J;)lf(u,k) du
L(o) = 4—nj {10gt,() + —m } an

and therefore, for 8, = arg min L(6) the equations
0

T

b 1
’ ( j f(u,A)du) Vf;;(x)dx = [ feo(X)Vf;;(k) d .
-t 0

-

Thus 0, is that parameter for which f,(A) approximates the time-integrated true spectrum

gt f(u,A)du best.
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In the case of a stationary AR(p)-model the above equations are the (theoretical) Y ule-Walker
equations, i.e. we obtain for 6, = (8, 63) With 8, = (ay,., --- , 3op)

8= C and 62=c(0) + aC

with
b4 1
o(k) = J { j f(uA)du} exp(irk) d,
-t 0

For 6T = (?9;[,8%)' we obtain the corresponding equations

a1

~ ~2 A A
ar=-2r Cr ad or=¢;(0) + & Cr

with

]
[EnY

M M
er(k) J {ﬁ D Iua} exp(ixk)dx:ﬁ D (U k),
ji=1

~

Cr

I
o
=
P
N>

>
Q
—~
S
N
\—/_

a
M)
=

I
~

>
Q
=
|
!
—-—
<
[uey
©

.....

The asymptotic distribution of VT (6T —0p) isgiven in Theorem 3.3. Straightforward calculations
giveinthiscase

L coli =i)ij=1,..p 0
(¢
T =
0 i
2(50

The matrices V and W simplify only minor. (Note, that if the true process is also stationary with
f(\) # feo(k) and g,(A,— A1) is constant, then W disappears - however, this does not hold in the
nonstationary case).

However, 6T is not the estimate one would usually use for stationary models. For example,
for AR-processes one would use e.g. (tapered) Yule-Walker estimates, the Burg algorithm or
(Gaussian) maximum likelihood estimates. In the following theorem we prove that Y ule-Walker



24

estimates have the same asymptotic behaviour as §T if the true processis (possibly) nonstationary.

(5.1) Theorem. Suppose the true process is of the form (2.3) with u(u) = 0. Let 5T = (ér,EZ)
be the Y ule-Walker estimate for a stationary AR(p)-modd, i.e.

- -1~ ~ - .
ar = —>1 Cr, of = ¢r(0) +3 Cr

with&rk) =2 DT X X0 Cr = @), - Srp) and X = {6 —)}ij=y, . p- If
07 isasin section 3 with S=1 and N and a taper as in Assumption 3.1, then VT (61 — 07)
convergesto zero in probability and

—~ D _ _
ITO7-60) = N (O (V+W)T )
withT" asabove and V,W asin Theorem 3.3.

Proof. With 6, as above we have

_(iT a+Cr) = iT (ar—a0)
and

- (27 +6T) =27 (@& —a) .
Thus, it is sufficient to prove that vT (Cr(k) — cr(K)) tends to zero in probability. Since

M

cr(k) = I\%I 2 cN(uj,k) thisfollows from Lemma 4.1.Therefore, the first assertion is proved if
=1

we choose T¥4 <<N<<T¥2 The asymptotic normality then follows from Theorem 3.3 .

For tapered Y ule-Walker estimates, i.e. the corresponding estimate with

er(k) = H°1(0) > ho(Jf) ho(* +T|k| ) X; Xy (with a taper hy that may be different from
2,T

the taper hused in 6T ), we expect the following result: 5T will no longer converge to 6, but to

_ X ", (U) f(uh) du
0o =arg minﬁ Jn {Iog fo(A) + ) } dA
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with h, (u) = { ik h% (v) dv} - h3(u). We conjecture that VT (ET - e'o) is asymptotically normal

with T,V,W in Theorem 3.3 where (3 ... duisawaysreplacedby fiih, (u) ... du.

A few remarks on the use of data tapers seem to be necessary. For stationary time series
tapered estimates are less efficient than nontapered estimates or equally efficient if the taper
disappears asymptotically (c.f. Dahlhaus, 1988). On the other hand their small sample behaviour
is very often much better, in particular the resolution problems of the nontapered estimate are
cured. In the situation of this paper Theorem 5.1 says that the asymptotic behaviour of the

nontapered Y ule-Walker estimate is the same as of the (tapered) estimate §T . However, for small

samples we conjecture that 61 will be much better.

6. A simulation example

We now briefly present asimulation example for the estimate 6T in amisspecified situation. If

we have alocally stationary process with smoothly varying characteristics then it islikely that 6T
leads to reasonable results for a large sample size, since then the data within each segment are
close to a realisation of a stationary process. The interesting question now is how the estimate
behaves for moderate or small sample sizes, i.e. whether the asymptotics together with the model
of local stationarity yields to areasonable description also for small data sets.

We have generated T = 128 observations of a time varying AR(2)-process (4.1) with
parameters as described below. Several models were fitted by using the equations (4.3) and (4.4).

The choice of the data taper is different from stationary time series. Theorem 3.3 says that
there is no efficiency loss for overlapping segments. Theorem 4.2 even means that all estimates
are stochastically equivalent to the least squares estimate, regardless of the taper. We have used the
100 % - Tukey Hanning taper h(x) = % [1 — cos(2rx)]. This taper has in addition to good bias
properties with respect to leakage also the advantage that the observations at the edge of each
segment are weighted down which makes the estimate heuristically less sensitive against the
instationarity within the segments.

The shift should in general be as small as possible - the theoretical results hold even for S= 1.
However, this choice is very computer intensive. In the simulation we chose S = 2. For the
segment length we chose N = 16 (i.e. M = 57). We also tried other parameters. The results turned
out to be very insensitive to the choice of N, Sand h which isin accordance with Theorem 4.2.

Asthe parameters of the true AR(2)-process we chose o(u) = 1,

a,(u) = — 1.8 cos (1.5 — cos 4mu)
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a,(u) =+ 0.81
together with Gaussian innovations €, i.e. for u fixed the roots of the characteristic polynomial are

& exp [£i(1.5—-cos4ru)] .
Figure 1 below shows the observations. As it could be expected from the above parameters they
show a periodic behaviour with time varying period-length. The |eft picture of Figure 2 showsthe
true time varying spectrum of the process. We have fitted atime varying AR-model of order p to
the data where the coefficients were model ed as polynomials with different orders. Thus, we have
fitted the model

K.
|
au) = X but (=1,..,p)
k=0
6’=cC
to the data. The model ordersp, K, ... , Kp were chosen by minimizing the AlIC-criterion

P
AIC(D, Ky, .., Kp) =log 67(p, Ky, ...\ K) +2(p+1+ Y K)/T.
=1

Table 1 shows these values for p = 2 and different K, and K, . The values for other p turned out
to be larger. Thus, amodel with p = 2, K1 = 6, K2 = 0 was fitted.

The corresponding spectrum is the right picture of Figure 2. The difference to the true
spectrum is plotted in Figure 3. The function a,(u) and its estimate are plotted in Figure 4. For

&,(u) we obtained 0.71 (a constant was fitted because of K, = 0) while the true a,(u) was 0.81.

Furthermore, 6> = 1.71 while 62 = 1.0.

The quality of thefit is remarkable. However, two negative effects can be observed. The fit
of a;(u) becomes rather bad outside u; = 0.063 and u,, = 0.938. Thisis not surprising, due to the
behaviour of a polynomial and the fact that the use of L(6) as a distance only punishes bad fits
inside the interval [u,,u,,]. This end effect vanishes if one chooses K; = 8 instead of K, = 6. A
better way seems to be to modify L(6) and to include periodograms of shorter lengths at the end
points (e.g. I, (N/(4T),A)). The second effect is that in the frequency representation the peak is
underestimated. This is due to the non-stationarity of the process on the intervals (uj —N/(2T), U
+ N/(2T)] where IN(uj,k) and cN(uj,k) are calculated.

We finally remark that this exampleistypical. The same properties can be observed for other
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64 the results turned out to be quite good.
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Figure 1. T=128 realisations of a time varying AR-model
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0.673
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0.901
0.888

Vaues of AIC for p =2 and different polynomial orders
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Figure 3. Difference of estimated and true spectrum
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Figure 4. True and estimated time varying coefficient a (u)

7. Concluding remarks.

In this paper we have presented an asymptotic theory for processes that have an evolutionary
spectral representation. We have derived the asymptotic behaviour of minimum distance estimates
in the spectral domain and of least squares estimates for time varying autoregressive processes.
The results aso hold when the model isincorrect, i.e. when it does not contain the true process.

The theory leads to a new estimate for various nonstationary models. Simulations show that
this estimate works quite well in practice. It is attractive that the classical stationary ARMA model
can be included as a specia case (as for AR-models in the simulation example). Furthermore, the
AIC criterion seems to work reasonably well in this situation (although a strict theoretical
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justification is still missing). In particular, the AIC can be used to decide between stationary and
nonstationary models (as in the example where the stationary model correspondsto K; =K, =0).

The parameter estimates are minimum distance estimates in the spectral domain. Since our
distance function is an approximate Gaussian likelihood the results can in principle only apply to
models whose parameters can be identified from this distance function, i.e. to time varying linear
models. Here are the limitations of the approach-although it may be possible to derive similar
results with other distance functions for nonlinear models.

As any asymptotic theory our approach simplifies the situation (for example, time varying
AR-processes have locally the spectral density of a stationary AR-process). The benefit of this
simplification is a framework for such processes which makes theoretical results for parameter
estimates possible. It is obvious that it is (in principle) possible to study the behaviour of other
estimates (e.g. exact MLE'S or local Burg estimates) within this framework. Furthermore, one
may look for modifications of the suggested procedures, e.g. with better bias properties (cp.
Remark A.3) and better edge properties. For stationary models our asymptotic theory is the same
asthe classica asymptotic theory.

On the other hand one could argue that with the simplification important features of a

nonstationary process are lost, e.g. the specia form of A{1 for atime varying AR-process (cf.
Meélard and Herteller-de Schutter, 1989). However, one may use this theory also to study some of
these effects. For example, one could study the asymptotic properties of the modified estimator for

AR-modeiswith [A{ T ()] instead of JA(uA)[” in L(0) and L(6).

Appendix: A central limit theorem.

This appendix contains the technical details of the proof of Theorem 3.2 and Theorem 3.3. It
basically consists of the proof of the following Theorem A.2. This theorem is of independent
interest. It has applications that go beyond the scope of this paper.

Suppose S, M, N, G, U and | (u,A) are defined asin section 3. For
0: [0,1] X [-rt,r] —» C we set

1 M
1O = 15 2

[ o) Iy(un) dr
=1~

TC
and
1 =&

Jo): = j j o(u,A) f(uA) dA du .

0

To prove asymptotic normality for VT (J+(¢) — J(d)) we need the following assumptions.
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(A.1) Assumption.

(i) Let X,; bealocaly stationary process with mean p(u) = 0 as in Definition 2.1. Suppose
that the functions A(u,A) (from Definition 2.1) and ¢j(u,k) (=1,...,k) are2r-periodic
in A and the periodic extensions are differentiable in u and A with uniformly bounded

derivative 9 9 A (q>j respectively). ga is continuous.
ou JA

(i) The parametersN,Sand T fulfill therelations T+ << N << T >/InT and S= N or
S/N—- 0.
(i) The datataper h: R — R with h(x) = 0 for all x¢ [0,1] is continuous on R and twice

differentiable at all x¢ Pwhere Pisafinite set and sup | h'(x) | < o .
x¢ P

(A.2) Theorem. Suppose X , ... , Xy 1 are redisations of a locally stationary process and
Assumption A.1isfulfilled. Then

where £ is a Gausssian random vector with mean zero and

1 b
cov(g, &) =2m ¢, [ [ [ o) { oi(ur) +u-1)} fup)” o
0 -

+ ([ 0(un) 0i(u— 1) F(UA) F(U) hy(h, — A, 1) A ] du

1 1
with ¢, = (| h(u)‘cu) / ( h(u)” du)” if S= N and ¢, = 1if SN — 0.
0 0

(A.3) Remarks. The conditions on M, S and, in particular, on N seem to be restrictive.
However, we regard it as remarkable that VT consistency holds at all. Most of the restrictions on
N result from the VT -unbiasedness (Lemma A.8). Inspection of the proof leads to the conjecture
that it is not possible to relax these conditions (apart from some log-terms). This can be made clear

by some heuristics: with the periodogram over the first segment we estimate f at time % . To

conclude from thisto f at zero VT - consistently we need % — 0. On the other hand the bias of

the periodogram (with a data taper) is O(N_Z) which leads to the condition g — 0. We conjecture
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that the rate O(N_z) cannot be improved with a periodogram type estimator. A periodogram

without taper would |ead to a bias of O(N_l) and therefore to % — 0 which contradi cts% — 0.

Thus, without taper it is not possible to achieve VT-consistency at all. It is noteworthy that the use
of a data taper does not lead to an increase of the variance if S/ N — 0 . However, thisis
heuristically clear since in this case all observations are used "equally often” (as T — o). Note the
similarity of the covariance structure to an analogous result in the stationary case (cf. Brillinger,
1981, Theorem 7.6.1).

Theorem A.2 is proved by proving the convergence of the cumulants of all orders (Lemma
A.8, LemmaA.9 and LemmaA.10). A key role in the proofsis played by the following function.

LetLiR—>R, Te R+, be the periodic extension (with period 2m) of

[T, o < UT
Lr©@=) 1)), UT<o<x .

(A.4) Lemma. Letk,|,S M, N, TeN, «,B,v,u xeR and [ : = (- x,x]. We obtain with
aconstant K independent of T:

(@ L+(c) ismonotoneincreasing in T and decreasing in aie [0,7].
(b) Jn Lo(0) dor < KT forall k> 1.

(©) jH L(o) du<KInTforT>1.

(d) Jo Ly(o) <K .

(e

N—r

Jn Li(B-0)Ly(o+7y) da<K L (B+7)InT.

(f) T(V) LT(M) <|-T( Hys LT(M) + LT(V) LT( )

(9) Ly(ca) <K Li(o) for Jco < .

() Jn Ly(0)' Ly, (S(0 - B)" docSKNI'\ék_l INM {k=1} InS{l=1}.
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() J-HLNOL =X)Ly (X = W)Ly (S(oe = x)) L, (S(x = B))dx < K%InMInS Ly =) Ly, (S(oc—B)).

()] -[H Ly =x) Ly(x=u) Ly, (S(on—x)) dx < K% INMInSL(A—n).

Proof. The proofs are technical but straightforward. Some of them may be found in Dahlhaus

(1983) or Dahlhaus (1985). (f) is proved by considering the cases |v| > il T lu| = V=ul
2 2

(e) isaconsequence of (f) and (g) . (h) isproved by splitting the integral into J.Iocl CUs and

J|oc| e T Jiss, gsayg - - () and () then follow from (f) and (h).

For a complex-valued function f we define

N-1

Hy(F()A) 1= Y. f(S) exp(=iLs)

s=0

and, for the data taper h(x)
k(.

and Hy) = Hy () -

Direct calculation gives
s
J Hn(B—o) Hyy(oe—7y) doe =2 Hy (B -7) -
-

(A.5) Lemma: Let N,Te N . Suppose h fulfills Assumption A.1(iii) and y: [0,1] — R is
differentiable with bounded derivative. Then we havefor 0<t< N

(] [sg] ) = Wl L] @ + olapiv’ @IN L)

= O( sup. WL L) + sup Iy (U) | L) -
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The same holds, if V(f) is replaced on the left side by numbers y; with

sup [yst (3] = o).

Proof. Summation by parts gives

sl i -l < 3, vl rgevcins

S s—1 N-1
= _ S) _yl2—= _ “H_wlt
) _;) {w(7) “’( T )}Hs(h(N)’MJr{"’( - “’(T)} Hy(h
We now have (again with summation by parts, c.f. Dahlhaus, 1988, Lemma5.4)
| Hy(h (N) ) SK LA SK Ly(h)

uniformly in s< N which gives the result with the mean value theorem.

N)”“)'

We remark that Lemma A.5 also holds under weaker assumptions on the data taper (e.g. if h

is of bounded variation).

(A.6) Lemma. Lety be differentiable with bounded derivative and t = S(j-1) +N/2,

U =1 / TwithN,M,Sand T asin Assumption A.1(ii). Then
M - . 1
12 w(w) explirsi)] < K(sup [w(w)] + sup [/ (W)]) Ly(Sh) -
j=1

Proof. Similar to the above proof.

(A.7) Lemma. Suppose h fullfills Assumption A.1(iii). Then

IH ) <K N L)

Proof. Repeated summation by parts (cf. Lemma5.4 in Dahlhaus, 1988).



(A.8) Lemma. Suppose Assumption A.1 holds. Then

E J.(6) = J(0) + o(T %) .

Proof. We have

E J:(0) = I\%I z f o) 5o H o) cum (dy(u,A),dy(uy,— 1)) dA. .

=1 ¢

Since

T
Cum(XS,T’Xt,T) = J_n exp (iY (s— t)) AZT(Y) A?,T(Y) dy
the above expression is equal to

M T
1 Zf q)(uj’)\’) o Hl (0) H (At —N/2+1+ - T (Y)h( ) }V_'Y)
=1

Hy (A;;—N/2+1+ T ) h(N) Y= A) dy dh.

Application of LemmaA.5 and A.6 shows that thisisequal to
T

,\%I ﬁ{ L f o(uA) fu; ) 'HNO“ 2,'; de’“J’O(”_nnLNmzdx)'

Let g(u,A) = fn d(u,A +7) f(u,y) dy. Since ¢ and f are both differentiable g istwice
-

differentiable in A with bounded second derivative (partial integration). Thus the above expression
iswith LemmaA.4(b) and LemmaA.7 equa to

M TC
1 Hy)P N
(A.1) = jgl,_fng( i) ot (6) TNG) dn + o InN)

M La|[*
= ﬁ Z g(u;,0) + O(j |7\,|2| I\:\I(S)I dr) + O(%In N)

j:

[N
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= J(9) + O(M ™) + O(N ) + o inN).

(A.9) Lemma. Suppose Assumption A.1 holds. Then
T cov (Ip(9y), Ip(9)) = cov(&;.§;) + o(1)
with &, asin Theorem A.2.

Proof. Weseti=1andj=

(A.2) T cov (Jr(9,), Jr(9,)) =

2 fj 1 (U, &) d2(Ui, )

(21 M H2 N(O)? %
[ cum (cy (uy, 2, dhy(t— 1)) cum (cy (U, =) , Ay (o 1))
+oum (dy (U, 2) , chy(Uy, 1)) oum (dy (U, = 2) , dy (U, — 1)
+cum (dy (U, 2) Ay (U, —A) , dy (U, 1) dy (U~ 1) ] dh

We study the behaviour of the three terms separately. The first term iswith similar argumentsasin
the proof of LemmaA.8

T
ff Hy (Aij _Niz+1+-, 1 () h(N) 7L—V1) Hy (A?k—N/2+1+-,T(’Yl) h(N) T +71)
-

HN (Aoj —N2+1+-,T (Yz) h(ﬁ) ) _}"_72) HN (A<t>k—N/2+1+~,T(Yl) h(ﬁ

1H+Yz)

~exp {i(y, +7,) (tj —t)} dy, dy;

which, by using LemmaA.5, isequal to
Y
(A3 JA ) A -1) Al Al -1,) -

HNO\' —vy) Hy(v; — 1) Hy(L +7v,) Hy(= Y, —A\) exp{i(y; +7,) (ti -t} dy, dy;
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plus aremainder term Ry with

M -
(A4 | Y, 01(uh) da(uieh) Ry i

i k=1

s
KM [ Ly 0= Ly =10 L+ 1) L= =2) Ly (S0 + 7)) ey oy
—Tt
since, by LemmaA.6

M
D 0a(wA) Auyry) Ay, ) exp{i Sy +7,) i} = O(Ly (S, + 12))-
j=1

From LemmaA .4 (j) followsthat (A.4) is bounded by

2
KM¥~%meHn$nNmQ—m.

Integration over A and | gives with the constants the upper bound K ¥ (InM) (In'S) (In N) which

tends to zero. We now replace ¢,(u; , &) by o,(u;,y;) and then o,(u, , 1) by o,( U 7y)-
LemmaA.6 gives

M
|2 (¢1(Uj ) 7“) - ¢1(uj , 71)) A(Uj ) 'Yl) A(uj ) 72) exp(i( Yt Yz) tj) |
j=1

<K b= vy Ly (S, + 7))

and therefore we obtain for the corresponding difference term the upper bound

MZTN2 ffff Ly =) LR+ 72) Ly(=v2=2) Lm(S(Yl + 72))2 dy, dy, di du

IN

K T 1 NNM hs<k PN 5550
M2 N2 S N

where the integration is done in the order A, ,, 1 . Thus, the first term of (A.2) isequal to
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Mo T N
MO 2, I 0072 02ur) A 1) A —1) AL 1) Al =)

-

|H2,N (71 + 72) |2 exp{ i(Yl + 72) (tj - tk)} le de +0(1) .

Similarly, we now replace A(U; , ,) by A(y;, —v,) and A(uy , —v,) by Ay, ;). Afterwards
we substitute o. = y; +7,, Y =y, and obtain with h,(u,y) = ¢;(u,y) f(u,y) for the above expression

T N-1 M

2 2 T~ 7+ N\ T . . .
{MHz,TN(O)}2 f on,kzzl " (K: ] U LCH) hzwk,v)fnem{ jo(r — 9)+iauS( — k)} dachy+o(L).

If S=N thisisequal to

L 1=
21 THan(©) [ < . _2nH , .
mf z;, hy(u;.v) ha(uj,y) dy +o(1) = H§4 Of Lq)l (u,y) d2(u,y) f(u,y) dydu+o(M™)

—T J:
1 k _—
where H, = fo h(u) du. If S< N the above expression is equal to

T

2nT M N2 ,
= h . h , h2 I h S d 1) .
{M Ha n(0)}2 J j%l 1(uJ v) ho(uk,y) r,sE:‘o (N) (N) v+ 0(1)

o 5= S(k - j)

i—k|<N
li-ki< S
Straightforward cal culations show that thisis equal to

1n
2n | | 0400 02(u) f(un)” dy du+ o)
0 —m

With the substitution @ — — i we see that the second term of (A.2) converges to the same

expression with ¢o(u,—7y) instead of ¢o(u,y). An analogous derivation for the third term of (A.2)
leads to the result .
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(A.10) Lemma. Suppose Assumption A.1 holds. Then

T2 cum (3(0y), .. , 3(6, ) = o(1) .

Proof. Let[I=(-mn], A=y ..., X))

M
T U2 cum(3p(9y), -, 30 ) =T L2 {2n M HZ,N(O)}_Q y

i1 =1

[
f { TT 0,0y . M)} cum(dy(uy, A dy(U =), .y (4, Ay )y (4, = A) 2 (dh) .

HQ v=1

Using the product theorem for cumulants (cf. Brillinger, 1981, Theorem 2.3.2) we have to sum

over al indecomposable partitions{P,, ... , P} with |P| > 2 of the scheme
a b
q b

where a and b, stand for the position of dy(u. , A;) and dN(u-i ,— ;) respectively. This sum will

o

be denoted by Zip. The elements of a set P, from such a partition are assumed to be in a fixed

order, so that the following definitions are reasonable. If P, = {c,, ... , ¢, } we set

— - L _ k_

P ={Cp - Gt Bry 1= Boys v Boy_p) ad B =— D7 Be;- Furthermore, let m be the

size of the corresponding partition and 3 := ([3E>l L e ,[35 ). Using this notation we obtain asin
m

the proof of Lemma A.8 (i) for the above expression

M 0
= T2 M H, () 2 2 f {TT o,(u, 2}

115+ j Q:]'HQ v=1

(Tt (8] uzene 7 Ba)h (] 2= Ba) A, zass -1 By () =2 =B, )

HZQ—m v=l
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m l
{ T, 6,0} expiXt, B, +By ) A" " (@B).
v=1 Y Y v=1 Y

AsinLemmaA.9 we now replace successively all HN(A (B) h

) A —B) by the corresponding

A(ujV,B) Hy (A —B) terms. We get for example as an upper bound for the error with LemmaA.5

TQ/z
|v| MIN

2| [ M7 {HLN(x ~Ba) Ln(-2, Bbv)}{HLM(s<BaV+BbV))}

HQ HZP—m

225" apy . ()

The special structure of a partition is expressed in the structure of the corresponding 3. Every 3,

ce U=, P« iscontainedin ]_[izl Ly (A, - Bav) Ly(=2, - Bbv) exactly twice as an argument,

once with positive and once with negative sign. We therefore have ZQ (-B, -B,) =0
v=1 Y v

while every partia sumis different from O by the indecomposability of the partition.
Integration over al 2, and afterwards over all B (starting with B4, ) givesasan upper bound

TQ/Z NQ 02

(] T
K MN nNY = anM)* H(ns <K o~ N(nNInMIns)' - o0.
g M ) =g ) Lan9 o1 ) )

Similarly, the resulting main term is bounded by

02
Ko Dl [ AT ~Ba) L, ~Boy L(S(Ba, o)} 27 B 1
m p&-m v=1
(@)

012 [} 012
T N o maminsinn' <k T— (nminsinn) -0
M'N g-1 T'-

which proves the result.

Proof of Theorem 3.6. Consistency of 8, follows with the proof of Theorem 3.2 if we show
that
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~ p
sup |L (6.1) —L (B.1)|—> 0
i.e. if we show

1 M T / i " \ p
sl 3 [ (8-t (u2) ) ey a0
where ¢(u;,A) = fi(u, A" . Thiswill be proved below. A Taylor expansion then gives
ﬁ{VL (eT’ ) VL (90’ ) VZLT(G’I‘I) ﬁ(éT—eo)

with |8 — 8, <[8; -8, |. Asin the proof of Theorem 3.3 we obtain vT VL(6:.1) 50, Inthe
proof of Theorem 3.3 we showed that

VT VL1 (8ot) + TVT (B;—85) =5 0

i.e. the result follows if we prove that

VT VL1 (801) = ¥T VL 1 (8ot) —> 0

and

VoL, (6.0) ST

Together with the proof of Theorem 3.3 the result therefore follows if we show that
(A.5) rlz waymu
for ¢ (U ) = VEg(uA )™ and

(A6) sup ik 35 [ (18 ()~ ()} odu2) a1 >0

for ¢4 (UA ) =fo(ud )'l and ¢, (U ) = VaAy(u,A )'1. The last expression is equal to

ik 3, [ afu) (2eH, @)



41

(A.7) (o (U ) ¥, =) + oA o, =) + A H{u A oM, = A}

which by means of the Cauchy-Schwarz inequality iswith

M T ~
) f (2nH,(0) ] o, ) it

‘2
bounded by

o i)l (2% 8 [ o) o 'z.gyu&}_

M T
nce ﬁ > f n(u;,A) d is bounded in probability (Theorem A.2) and

=1

O YN e IS VT

s=1

(A.6) is proved. To prove (A.5) we note that VT8, — 0. Since VvT}'* -4 0 we need a better
estimate for the first and second term of (A.7). Summation by parts gives with

t—-1
o =VT{2nM Hay(0))F, Fy(A): = X (S exp(~iks) and t;=t,-N /2

M T A
VT ﬁ 2. f %o(uj’y“) {ZnHz,N(O)}_ldﬁ_”(uj,k) dﬂ,_“(uj, —k) d

=0 2 S [P adud ) (R -1 -Ru(-0) d
RN

| 2] 6 U2 o

o A [ o

=1

Summation by partsimplies H,,(—A) < KL () uniformly in t. We now can prove by similar
methods as in the proof of LemmaA.9 that
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var [ {u,3) 6 (U A~ 3) = O(N)

uniformly in uj and t. Since E dij‘”(uj,k) = 0 the whole expression tends to zero in probability.
The second term of (A.7) istreated in the same way which proves the result.
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