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Form vs. Function:
Theory and Models for Neuronal Substrates

The quest for endowing form with function represents the fundamental motivation behind all
neural network modeling. In this thesis, we discuss various functional neuronal architectures
and their implementation in silico, both on conventional computer systems and on neuromorpic
devices. Necessarily, such casting to a particular substrate will constrain their form, either
by requiring a simplified description of neuronal dynamics and interactions or by imposing
physical limitations on important characteristics such as network connectivity or parameter
precision. While our main focus lies on the computational properties of the studied models,
we augment our discussion with rigorous mathematical formalism. We start by investigating
the behavior of point neurons under synaptic bombardment and provide analytical predictions
of single-unit and ensemble statistics. These considerations later become useful when moving
to the functional network level, where we study the effects of an imperfect physical substrate
on the computational properties of several cortical networks. Finally, we return to the single
neuron level to discuss a novel interpretation of spiking activity in the context of probabilistic
inference through sampling. We provide analytical derivations for the translation of this “neural
sampling” framework to networks of biologically plausible and hardware-compatible neurons
and later take this concept beyond the realm of brain science when we discuss applications in
machine learning and analogies to solid-state systems.

Form vs. Funktion:
Theorie und Modelle für neuronale Substrate

Das Streben nach der Ausstattung von Form mit Funktion repräsentiert die fundamentale Mo-
tivation von neuronaler Netzwerkmodellierung. In dieser Arbeit diskutieren wir verschiedene
neuronale Architekturen und ihre Implementierung in siliziumbasierten Substraten, sowohl auf
konventionellen Computersystemen als auch auf neuromorpher Hardware. Notwendigerweise
wird eine solche Abbildung auf ein bestimmtes Substrat ihre Form einschränken, entweder durch
die Erfordernis einer vereinfachten Beschreibung neuronaler Dynamik und Wechselwirkung oder
durch das Auferlegen physikalischer Einschränkungen auf wichtige Eigenschaften wie etwa die
Netzwerkkonnektivität oder die Präzision einzelner Parameter. Während unser Hauptaugen-
merk auf der Rechenfähigkeit der untersuchten Modelle liegt, ergänzen wir unsere Diskussion
mit rigorosen mathematischen Formalismen. Wir beginnen mit einer Untersuchung des Verhal-
tens von Punktneuronen unter synaptischem Beschuss und liefern analytische Vorhersagen über
statistische Eigenschaften einzelner Neuronen und neuronaler Ensembles. Diese Überlegungen
werden später nützlich, wenn wir zu einer funktionalen Netzwerkebene übergehen, auf der wir
die Effekte imperfekter Physikalischer Substrate auf die Recheneigenschaften einiger kortikaler
Modelle untersuchen. Zum Schluss kehren wir auf die Ebene einzelner Neuronen zurück, um
eine neue Interpretation von Feuermustern im Kontext von stichprobenbasierter probabilistis-
cher Inferenz zu diskutieren. Wir liefern analytische Herleitungen für die Übersetzung dieses
sogenannten “neural-sampling”-Konzeptes in biologisch plausible und hardwarekompatible neu-
ronale Netzwerke. Später überqueren wir auch die Grenzen der reinen Neurowissenschaft in-
dem wir Anwendungen auf maschinelles Lernen und Analogien zu physikalischen Festkörpern
erörtern.
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"For a while, almost everyone was nervous about switching from the brain to the jewel. In
the early days, the jewel was a separate device that learned its task by mimicking the brain,
and it had to be handed control of the body at one chosen moment. It took another fifty
years before it could be engineered to replace the brain incrementally, neuron by neuron,
in a seamless transition throughout adolescence."
So Grace had lived to see the jewel invented, but held back, and died before she could use
it? Jamil kept himself from blurting out this conclusion; all his guesses had proved wrong
so far.
Margit continued. "Some people weren’t just nervous, though. You’d be amazed how
vehemently Ndoli was denounced in certain quarters. And I don’t just mean the fanatics
who churned out paranoid tracts about ’the machines’ taking over, with their evil inhuman
agendas. Some people’s antagonism had nothing to do with the specifics of the technology.
They were opposed to immortality, in principle."
Jamil laughed. "Why?"
"Ten thousand years’ worth of sophistry doesn’t vanish overnight," Margit observed dryly.
"Every human culture had expended vast amounts of intellectual effort on the problem of
coming to terms with death. Most religions had constructed elaborate lies about it, making
it out to be something other than it was - though a few were dishonest about life, instead.
But even most secular philosophies were warped by the need to pretend that death was for
the best.
"It was the naturalistic fallacy at its most extreme - and its most transparent, but that
didn’t stop anyone. Since any child could tell you that death was meaningless, contingent,
unjust, and abhorrent beyond words, it was a hallmark of sophistication to believe other-
wise. Writers had consoled themselves for centuries with smug puritanical fables about
immortals who’d long for death - who’d beg for death. It would have been too much to
expect all those who were suddenly faced with the reality of its banishment to confess that
they’d been whistling in the dark. And would-be moral philosophers - mostly those who’d
experienced no greater inconvenience in their lives than a late train or a surly waiter -
began wailing about the destruction of the human spirit by this hideous blight. We needed
death and suffering, to put steel into our souls! Not horrible, horrible freedom and safety!"

Greg Egan, Border Guards, 1999





1. Prologue

The result is that the philosophy of mind is unique among
contemporary philosophical subjects, in that all of the most
famous and influential theories are false.

John Searle, Mind, 2004

Searle is right, of course – and the reason is quite obvious. Compared to other natural
sciences such as physics or astronomy, neuroscience is only a very young discipline. Sur-
geons have been repairing broken skulls since the Neolithic Era and even treating mental
disorders with trepanation, but they had only naked-eye phenomenological evidence to
work with. The lack of proper means of observation gave rise to some – from our modern
perspective – rather ludicrous medical theories, which remained surprisingly dominant in
Western medicine for several millennia.1 Any attempt for a theory of mind formulated
before the 20th century was therefore as doomed to fall short of physical reality as an
explanation of ferromagnetism2 or radioactivity without an understanding of quantum
mechanics. To add insult to injury, the dominance of theology on metaphysics was not
particularly helpful either, as, for example, Searle convincingly demonstrates in his critical
analysis of Cartesian dualism (Searle, 2004).

It is only for little over a century that we have started gaining insight into the “quanta”
of thought, which Golgi and Cajal have identified to be single cells – the neurons. It is even
quite likely that an even more microscopic level of description is needed for a thorough
understanding of thought, if we consider the complex interaction of genes, proteins and
neurotransmitters. In any case, if we are ever to appease the philosophers’ search (and,
in fact, our deeply human desire) for a correct theory of mind, our understanding must
reach down to at least the level of neuron and synapse dynamics.

However, an understanding of microscopic dynamics is clearly not all there is when it
comes to explaining macroscopic phenomena. Even if microscopic interactions completely
determine the macroscopic behavior of dynamical systems, it is often difficult, if not
impossible to comprehend the behavior of large systems in terms of their components’
behavior alone. The semiclassical Ising model is a prime example for the emergence of
complex phenomena such as phase transitions from relatively simple interactions between
pairs of particles. An understanding of high-level ensemble phenomena must therefore

1 In an address delivered at the International Congress of Physiology, Richet (1910) comments on the
theory of humorism as follows: But what is truly extraordinary, what surpasses our wildest dreams,
is the fact that for sixteen hundred years all physicians and all physiologists remained bound in the
shackles of this incomprehensible error of the four cardinal humours. By what miracle was the spirit of
conservatism or of routine able to hide the truth to such a degree? The men of science and the doctors
of former times were no less intelligent than those of to-day. Nevertheless they accepted without
a shadow of proof these childish theories; they could not see most simple facts, and they saw most
complicated things which not only did not exist but which were not even probable.

2 See (Feynman et al., 2011) for an intuitive explanation of the Bohr – van Leeuwen theorem.
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1. Prologue

be based on a thorough description of microscopic dynamics, but must also operate at
a higher level of abstraction, defining new (macroscopic) properties and variables which
obey their own laws of motion.

Under these premises, we are compelled to argue in favor of a functionalist approach
to neuroscience in general and theoretical and computational neuroscience in particular.
Indeed, although not often explicitly stated, functionalism is fundamental to all natural
sciences, but this notion comes loaded with etymological baggage due to its prominence in
the philosophy of mind. We must therefore establish what we consider to be the fundamen-
tal tenets of functionalism in the context of theoretical and computational neuroscience.

Firstly, we argue that the mathematical equations that describe generalized laws of
motion do not always have to be exact in order to provide a useful description of the
behavior of a physical system. Although technically incorrect, Newtonian mechanics is,
for all practical purposes, sufficient for describing phenomena from the smallest (particle
trajectories in monoatomic gases) to the largest (planetary orbits3) of scales. A useful
approximation is a fundamental requirement whenever a complex physical system is to
be described with a tractable amount of reasonably complicated equations. While being
arguably the most complex among known physical systems, biological neural networks
must be amenable to a similar treatment. This is, for example, the main argument
behind our use of point neurons, which are also ubiquitous in contemporary theoretical
and computational neuroscience.4

Secondly, we argue that equations do not necessarily need to model fundamental quan-
tities to be useful. In particular, “high-level” ensemble observables such as temperature
and pressure or even more abstract quantities such as entropy are not only practical, but
become even necessary to describe and understand particular aspects of physical reality.
This applies not only to the description of neural ensembles, but also to the information
that functional units in the brain (single neurons, cortical microcircuits) may exchange.
While there are certainly situations in which individual spike timing is essential, infor-
mation can also be encoded in, e.g., spatiotemporal firing rate patterns (Decharms and
Zador, 2000). If then, for example, a neural population encodes information in its firing
rate only, then a functional representation of this population by means of a single number
– its firing rate – is justified (and individual membrane potentials may be neglected).

Thirdly, we must define the notion of faithful simulation. Consider a physical system
– in our case, this is usually a neural network – that we wish to model using a different
physical device, usually a silicon substrate. If we define a set of dynamic variables to be
a full representation of all the relevant information about the system to be modeled, then
any other physical system that, at some level of abstraction, encodes a representation
of these variables, with sufficiently similar5 dynamics to their original counterparts, is
a faithful simulation of the original physical system. In other words, a simulation that

3 Yes, even for Mercury, for which the amount of the perihelion precession caused by general relativity
amounts to less than an arc-minute per century (Clemence, 1947).

4 This does not mean that the spatial structure of the dendritic tree has no computational properties.
We make this clear in Section 2.1.4. However, for the theoretical and computational models discussed
here, we choose the point neuron model as an appropriate level of abstraction. Any statements about
biology must, of course, be validated with appropriate data.

5 The required precision can admittedly be the subject of dispute. However, just as the motion of
individual molecules is usually not considered in air flow simulations, it is usually possible to find a
general consensus of what can be considered irrelevant imperfections of the assumed model.
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computes the evolution of another system with sufficient precision is a good simulation.6

This is an essential assumption that we must make if we are to learn anything from
computer simulations. When arguing for particular physical realizations of neuronal
systems, statements along the lines of “it does not rain in a computer simulation” are
sometimes heard.7 Taken unequivocally, such a statement must be wrong. While no
current computer can predict the position of individual raindrops, the usefulness of
weather simulations lies beyond any reasonable doubt.

From this functional rationale, a certain level of dichotomy between form and function
becomes almost unavoidable in computational neuroscience. By the very nature of their
field of research, modelers are constantly confronted with questions that pit form and
function against each other. What is the optimal level of abstraction for a particular
neuron or network model? What are its target computational properties? How does
it correlate with experimental data? With what degree of accuracy and efficiency can
it perform particular tasks? How robust is it with respect to various types of noise?
Or, in summary: Can I design a network model with the following list of functional
properties that is constrained in form by the following list of theoretical and experimental
considerations?

By virtue of sheer numbers and the inevitability of natural selection, nature has im-
proved form to achieve function over the course of billions of years. It has managed to
enclose the pinnacle of known computational power within less than two liters of the
most complex form of matter known to man. The interesting question is whether we are
able to do the same in much less time but also with a much more guided strategy. If
the methodology of modern physics and astronomy has anything to teach us, it is that
we should simultaneously attack this problem with data, mathematics and silicon. The
tenets of functionalism outlined above lie at the heart of this approach.

It is with this mindset that we approach neural theory and computation throughout
this thesis. We take inspiration from biology, formulate mathematical models of neural
dynamics and discuss implementations in neuromorphic hardware.

As this work is going to cover a broad range of topics and we wish it to be a useful
reference for the interested reader, we considered it necessary to provide an ample intro-
duction of the conceptual and material tools required throughout the main body of this
work. Chapters 2 and 3 are intended to provide this knowledge base and are designed to
provide the reader with at least an elementary mindset of a neurophysiologist, modeler,
theoretician and neuromorphic hardware engineer. As such an (over)ambitious scope can
not be covered exhaustively within the narrow confines of this thesis, we will often point
out additional literature – especially textbooks – that should provide an adequate amount
of detail on the respective topic.

In Chapter 4 we investigate the behavior of neurons under Poisson bombardment - a
popular assumption in many network models with good support in experimental data.
We derive detailed equations for the stochastic properties of certain point neuron mod-
els in this regime, which we will later use when we discuss various functional network

6 We shall later discern between simulation and emulation when referring to conventional (von Neumann)
computing architectures and physical-model neuromorphic hardware, respectively.

7 This has been used to argue in favor of the necessity of “biomorphic” hardware, which represents a
detailed physical model of biological neural circuits.
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models. Additionally, we derive expressions for pairwise shared-input correlations of such
neurons, which become useful for a formal understanding of the effects of finite-size pools
of uncorrelated noise sources.

In Chapter 5 we discuss the physical implementation of cortical network models in ana-
log neuromorphic hardware. We focus our discussion on a particular hardware system,
but we study generally relevant phenomena and design techniques that are expected to be
useful in any analog device of limited size. This chapter is intended as a toolbox for mod-
elers that are prepared to face the challenge of working with an imperfect computational
substrate in order to reap the benefits of low power, massive parallelism and enormous
speedup that can be gained by departing from conventional von Neumann architectures.

Finally, in Chapter 6, we discuss several models for Bayesian inference in neural net-
works. Inspired by the ability of the brain to perform such computations, we build our
networks with biologically-inspired neuron models, but also discuss applications that go
beyond the realm of brain science. In particular, we consider problems ranging from psy-
chophysics to machine learning and also discuss some interesting parallels to solid-state
phenomena.

Many of the results that are discussed in this manuscript, both theoretical and experi-
mental, are the outcome of collaborative efforts and have already been published in various
forms. In particular these include several publicly available reports (Brüderle et al., 2010;
Jordan et al., 2014; Petrovici et al., 2011, 2012) and the following journal papers and
conference contributions (co-first authorship is denoted by a *):

• D. Brüderle, M. A. Petrovici, B. Vogginger, M. Ehrlich, T. Pfeil, S. Millner, A.
Grübl, K. Wendt, E. Müller, M.-O. Schwartz, D. de Oliveira, S. Jeltsch, J. Fieres,
M. Schilling, P. Müller, O. Breitwieser, V. Petkov, L. Muller, A. Davison, P. Krish-
namurthy, J. Kremkow, M. Lundqvist, E. Muller, J. Partzsch, S. Scholze, L. Zühl,
C. Mayr, A. Destexhe, M. Diesmann, T. Potjans, A. Lansner, R. Schüffny, J. Schem-
mel and K. Meier. A comprehensive workflow for general-purpose neural modeling
with highly configurable neuromorphic hardware systems. Biological Cybernetics,
104:263–296, 2011.

• T. Pfeil*, A. Grübl*, S. Jeltsch*, E. Müller*, P. Müller*, M. A. Petrovici*, M.
Schmuker*, D. Brüderle, J. Schemmel and K. Meier. Six networks on a universal
neuromorphic computing substrate. Frontiers in Neuroscience, 7:11, 2013.

• M. A. Petrovici*, J. Bill*, I. Bytschok, J. Schemmel and K. Meier. Stochastic
inference with deterministic spiking neurons. arXiv preprint arXiv:1311.3211, 2013.

• M. A. Petrovici, B. Vogginger, P. Müller , O. Breitwieser, M. Lundqvist, L. Muller,
M. Ehrlich, A. Destexhe, A. Lansner, R. Schüffny, J. Schemmel and K. Meier.
Characterization and compensation of network-level anomalies in mixed-signal neu-
romorphic modeling platforms. PloS one, 9(10):e108590, 2014.

• D. Probst*, M. A. Petrovici*, I. Bytschok, J. Bill, D. Pecevski, J. Schemmel and K.
Meier. Probabilistic inference in discrete spaces can be implemented into networks
of lif neurons. Frontiers in computational neuroscience, 9, 2015.
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• J. Jordan, T. Tetzlaff, M. A. Petrovici, O. Breitwieser, I. Bytschok, J. Bill, J.
Schemmel, K. Meier and M. Diesmann. Deterministic neural networks as sources of
uncorrelated noise for probabilistic computations. Accepted for presentation at the
CNS 2015 conference. To appear in BMC neuroscience.

• M. A. Petrovici, I. Bytschok, J. Bill, J. Schemmel and K. Meier. The high-
conductance state enables neural sampling in networks of LIF neurons. Selected
for oral presentation at the CNS 2015 conference. To appear in BMC neuroscience.

Furthermore, some of the topics that we discuss here have also been addressed in sev-
eral Bachelor, Master and Diploma theses that the author of this thesis has coordinated
and co-supervised (Breitwieser, 2011, 2015; Bytschok, 2011; Korcsak-Gorzo, 2015; Leng,
2014; Müller, 2011; Petkov, 2012; Probst, 2014; Rivkin, 2014; Roth, 2014; Stöckel, 2015;
Weilbach, 2015). In the beginning of each chapter, we therefore specifically point to other
literature that has already been written on the respective subject and that has provided
material for this manuscript. The sources of previously published material are listed again,
in detail, in Section A.3.
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2. Introduction: From Biological
Experiments to Mathematical Models

Bruce C. Gibb, The emergence of emergence, 2011

At first glance, scientists seem to have needed a surprisingly long amount of time to
find the physical correlate of thought. While the brain itself, as an organ, has long
been considered the seat of the mind1, it was only at the turn of the 20th century that
Cajal and Golgi established the “neuron doctrine” neuron

doctrine
- the hypothesis that the neuron is

the fundamental functional unit of the brain. In the light of much earlier achievements
in the physics of small scales, such as Bernoulli’s kinetic theory of gases in the early
18th century, this comparatively slow development might appear paradoxical, especially
given Hooke’s and van Leeuwenhoek’s discovery of the cell over two centuries before the
discovery of the neuron. However, when considering the complexity of the “elementary”
components involved, and moreover that of the emergent phenomena complexity

and
structure

, a theory of mind
has to appear much less intuitive – and probably much less mathematically tractable –
than thermodynamics.

Evidently, if we strive for more than just a phenomenological description of high-level
information processing in the brain, we need to understand the functionality of its fun-
damental components. In this context, Section 2.1 represents as a brief introduction to
the morphology and electrophysiology of neurons and synapses. In it, we review those

1Notable exceptions include Aristotle, who believed it to be a blood-cooling device (Gross, 1995).
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2. Introduction: From Biological Experiments to Mathematical Models

processes in nerve cells that appear most relevant to information processing and commu-
nication. These “microscopic laws of motion” represent the fundamental building blocks
for all theoretical and functional models that we discuss later on.

We should make clear that it happens with the mindset of a physicist when we follow
such a reductionist approach. When we describe higher-level phenomena to “emerge”

emergence from low-level dynamics, there is no deus ex machina involved. When the whole becomes
more than the sum of its parts, as is arguably the case for the brain, it is because a large
ensemble of simple components exhibits features that are impossible to observe when
only few such components interact. A useful description of such a system often involves
the definition of new macroscopic variables, but they always represent a high-level view
of a system that is entirely governed by fundamental interactions between its microscopic
constituents.

Evolution is not equivalent to engineering and therefore its constructs, incrementally
perfected over billions of years, always inherit vestiges of their predecessors, which might
not necessarily serve a functional purposecomplexity

and func-
tionality

. Additionally, all biological units need to per-
form metabolic and reproductive activities, for sustainment and growth, which massively
add to their structural complexity. It is therefore quite likely that a rather high level
of abstractionabstraction is sufficient (and probably even best suited) to understand information
processing in neural networks. To which extent one can push this abstraction, however,
remains an open question and subject to much debate among researchers in the field.

The requirement of abstraction, as well as a precise description thereof, is well-
established throughout all physical sciences. It is the search for a minimal, but complete
set of laws required to describe a given system that gives rise to the notion of a modelmodel .
For the most part, a “model” is understood as synonymous to a “mathematical model”
of a system, that is, a set of rules and parameters, preferably expressed as equations,
which completely describe the dynamics of variables associated to the relevant properties
of the system. This makes it possible to apply a vast array of mathematical tools and
formalisms to analyze and predict its behavior. The unparalleled success of this approach
has established it as the centerpiece of all natural sciences.

Building on the aforegoing electrophysiological considerations, Section 2.2 outlines the
construction of several abstract models for neurons and synapses. The presented neuron
models exhibit various levels of abstraction, particularly concerning the spike generation
mechanism of neurons, which are crucial for the investigations described in Chapters 4 to
6.
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2.1. Morphology and Electrophysiology of Biological Neurons and Synapses

2.1. Morphology and Electrophysiology of Biological
Neurons and Synapses

This section serves as a short overview of the biological mechanisms that underpin neuron
and synapse dynamics. Understanding them is indispensable to formulating abstract
models of neurons and synapses. For a much more in-depth view of the phenomena
described here, we recommend Alberts et al. (1994) for the molecular biology topics and
Gerstner and Kistler (2002) for the mathematical treatment.

2.1.1. Electrical Properties of the Cell Membrane

Just like every other cell, a neuron’s interior is separated from the outside environment
by the so-called plasma membrane cell

membrane
. It consists mainly of a lipid bilayer, but also contains

various (transmembrane) proteins which are essential for building up and dynamically
changing a voltage across the membrane (Figure 2.1).

While highly permeable to small neutral molecules such as water, the lipid bilayer itself
is practically impermeable to ions and polar molecules, which are the main charge carriers
in organic media, thereby effectively insulating the interior of the cell from its exterior.
Due to its narrow width of roughly 5 nm, the membrane effectively acts as a capacitor,
with a typical capacitance membrane

capacitance
of Cm = 1 µF/cm2. For a patch of membrane with an area

of 1µm2, membrane voltage changes of several tens of mV can therefore be achieved by
moving only several thousand monovalent ions across the membrane, about 3 orders of
magnitude below the total number of ions in the cytosol. It is important to note that only
those ions lying very close (<1 nm) to the membrane influence its voltage, therefore any
changes in the membrane potential need not affect ion concentrations in the rest of the
cytosol.2 This property is quintessential for enabling the high speed of neuron membrane
potential dynamics required by real-world interaction and information processing – an
aspect we shall return to later.

Cells make good use of their capability of establishing a gradient across their membrane,
both chemical and electrical electrochem-

ical
gradient

. Indeed, transmembrane gradients are the driving force of
essentially all metabolic processes in the cell, especially solute transport and ATP syn-
thesis.3 However, the capability of the plasma membrane to maintain an electrochemical
gradient is necessary, but not sufficient, to explain the existence of the gradient itself. The
structure responsible for the (trans)membrane potential is the Na+-K+ pump.4

2Let us assume a neocortical pyramidal cell has a total area of S = 3 · 104µm2 and a volume of
V = 104µm3, with a specific membrane capacitance of c = 1µF/cm2 and a Na+ concentration of
[Na+] = 3 · 107ions/µm3. The number of ions required for an increase in membrane potential
by 10mV is then N = cSU/e ≈ 2 · 107, as compared to the total number of ions in the cell
Ntot = [Na+]V = 3 · 1011. This is only an approximate calculation, as estimates of cell sizes vary
considerably, see e.g. Ambros-Ingerson and Holmes (2005).

3The quintessential question in the search for the origin of life is how this gradient could have appeared
in early cell-like structures. Furthermore, while in prokaryotic cells, ATP is synthesized at the plasma
membrane, in eukaryotes this process is taken over by specialized organelles - mitochondria and plas-
tids. It has been argued that it was the acquisition of these organelles by early prokaryotes that
enabled the evolution of complex life. For an excellent discussion on these topics, we refer to Lane
and Martin (2010, 2012).

4Actually, an electrochemical gradient would exist even without the Na+-K+ pump, due to the high
concentration of organic compounds inside the cell. These, in turn, cause a high intracellular osmo-
larity, which would force water to move into the cell by osmosis. The Na+-K+ pump counters this
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2. Introduction: From Biological Experiments to Mathematical Models

Figure 2.1.: Sketch of the plasma membrane, with embedded active pumps and leakage
channels. See text for details. Image taken from expertsmind.com.

The Na+-K+ pumpNa+-K+

pump
is an ATPase, a carrier protein embedded in the plasma membrane

that hydrolyzes ATP to provide the energy for its operation. Within a full pump cycle,
it transports 3 Na+ ions from the cell plasma to the extracellular medium and 2 K+ ions
from the extracellular medium into the plasma. This leads to an excess of negative charge
(or rather, a net total deficit of positive charge) inside the cell, which in turn translates to
a negative membrane potential.membrane

potential
As the electrochemical gradient increases, the pumping

process becomes less efficient and the membrane potential reaches some equilibrium value.
The activity of Na+-K+ pumps alone, however, would only account for about a tenth of

the measured equilibrium value of some -70mV. A second type of transmembrane protein
plays an essential role here: the K+ leakage channelK+ leakage

channel
. This channel protein is permanently

“open” and only allows the passage of K+ ions. Because of the high concentration of
potassium inside the cell, due to the Na+-K+ pump, an outflow of K+ ions is established,
that pulls down the membrane potential even further. This happens until an equilibrium
value is reached, the so-called Nernst potentialNernst

equation
, the value at which diffusive and electrical

forces counterbalance:
EX =

RT

zF
ln

[X]ext

[X]int
, (2.1)

where R is the universal gas constant, F the Faraday constant, T the absolute tempera-
ture, z the charge of the ion in question X and [X]ext/int its extracellular and intracellular
concentrations, respectively. However, various ions tend to have different Nernst po-
tentials, due to their different charges and concentrations, hence the resting membrane
potential becomes something like a weighted mean thereof.

Figure 2.2 shows the equivalent circuit that determines the resting potentialresting
potential

Vrest of the

potentially destructive effect by increasing the net extracellular concentration of inorganic ions.
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2.1. Morphology and Electrophysiology of Biological Neurons and Synapses

Figure 2.2.: Left: Full equivalent circuit of a cell membrane, with different ion concen-
trations acting as batteries. The Na+ and K+ batteries are governed by the
Na+-K+ pump and the K+ leakage channel, as described in the text above.
Na+ leakage channels also exist (see Figure 2.1), but are much fewer in num-
ber (with a ratio of about 1:100 with respect to K+ leakage channels). The
two other ions that have significant contributions to the membrane poten-
tial are Ca++ and Cl−, which have their concentrations regulated by similar
pumping and leakage mechanisms. Right: Reduced equivalent circuit, with
all ion concentrations condensed into a single battery and conductance.

membrane. Taking into account only the contributions from monovalent ions5, Vrest can
then be calculated from the Goldman-Hodgkin-Katz (GHK) equation6 Goldman-

Hodgkin-
Katz

equation

:

Vrest =
RT

F
ln

∑
i PX+

i
[X+

i ]ext +
∑

i PY −i
[Y −i ]int∑

i PX+
i

[X+
i ]int +

∑
i PY −i

[Y −i ]ext
, (2.2)

with PX denoting the permeability of the membrane to the ion type X. For a single ion
type, it can be easily seen how the Nernst equation is merely a special case of the more
general GHK equation. Because the membrane permeability to K+ is usually at least an
order of magnitude above the permeabilities to all other ion types, Vrest lies rather close
to the K+ reversal potential, which usually lies around -80mV.7

At this point, we can reduce the equivalent circuit equivalent
circuit

from Figure 2.2 to a simple RC
circuit, with a single battery defining the rest or leak potential (here, as well as in most
abstract neuron models, Vrest and El can be used interchangeably) leak

potential
as calculated from the

GHK equation (Figure 2.2). The term "leak potential" stems from the intuitive picture
that following any temporary external electric stimulation, the capacitor leaks charges
into the battery and reverts to its rest potential along an exponential curve. Indeed, membrane

potential
ODE

the
associated ODE of the membrane potential can be easily derived from Ohm’s law in the

5 For ions of higher valence, such as Ca++, extensions to the GHK equation exist - see, e.g., Pickard
(1976). However, since during resting conditions, both the permeability and the concentration of
Ca++ ions is comparatively low, calcium does not play a significant role in defining Vrest.

6 Permeability and conductance are closely related, but not equivalent. Channel conductance is, in
particular, strongly voltage dependent. For a detailed discussion, see, e.g., Schultz et al. (1996).

7 To get a feeling of the relevant variables, a numerical example is in order. For that, we consider
measurements of the squid giant axon from Hodgkin (1958). The values given by Hodgkin read:
PNa+ = 1, PK+ = 100, PCl− = 10 (permeabilities are given relative to PNa+), [K+]ext = 20, [K+]int =
200, [Na+]ext = 440, [Na+]int = 50, [Cl−]ext = 540, [Cl−]int = 40 (ion concentrations given in
mmol/l). At a temperature of 37 ◦C, the Nernst potentials then read ENa+ = 58.1, EK+ = −61.5
and ECl− = −69.6, with the equilibrium membrane potential lying at El = −58.6 (potentials given in
mV).
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reduced equivalent circuit:

Cm
du

dt
= gl(El − u) + I, (2.3)

where I stands for any external current source. The variable τm = Cm/gl is called the
membrane time constantmembrane

time
constant

and quantifies the speed at which the membrane potential reacts
to external stimuli. This characteristic variable can be found in virtually any abstract
neuron model. See Sections 2.2 and 4 for a much more detailed discussion of membrane
potential dynamics.

We now have a good mathematical model for the membrane potential of a cell in its
resting state. Note that until this point, we have not yet addressed excitable cells (in
particular, neurons), so the above considerations are, in principle, valid for any biological
cell.

The above model also accounts for membrane dynamics under external current stimu-
lation, albeit while implicitly neglecting the spatial extent, i.e., the 3D structure of the
cell. It is extremely important to keep in mind that point models invariably limit the
computational power of the units modeled as suchpoint neuron

model
. Also, for all point models, any claims

of biological plausibility need to be reviewed carefully, especially since many neuron types
have a very distinct branching structure. While most models and methods considered
throughout this thesis do not take the spatial structure of the cells involved into consider-
ation, we will address this issue briefly both from a theoretical perspective (Section 2.1.4),
as well as in the case of a concrete cortical network model (Section 5.3).

2.1.2. Action Potentials and the Hodgkin-Huxley Neuron Model

Just like all other cells, excitable cells establish an electrochemical transmembrane gra-
dient for metabolic reasons. In addition to that, however, evolution has provided them
with ways of manipulating their membrane potential, thereby allowing much faster com-
munication and computation than would normally be possible through chemical diffusion
processes. While many types of excitable cells exist, which also play an essential role in in-
formation processing (such as receptor cells or myocytes), the particular class of excitable
cells we are interested in here are the neurons in the central nervous system.

Neurons do not exchange information permanently.8 Their communication is mediated
by all-or-nothing events, so-called action potentials (APs), or simply spikesaction

potentials,
spikes

. These are
large pulses in the membrane potential with an amplitude of about 100 mV and a typical
duration of several ms.

As a rough approximation, it can be said that action potentials occur when the mem-
brane potential of a neuron increases beyond a certain value (usually around -50mV).
The membrane then spontaneously depolarizes, usually exceeding 0mV, after which it
quickly hyperpolarizes, even dropping below its resting potential for several ms. During
this hyperpolarized state, also called the refractory phaserefractory

phase
, even strong stimuli can not

initiate a second AP.
These phenomenological findings can be explained by another class of transmembrane

proteins: voltage-gated ion channelsvoltage-
gated ion
channels

. This hypothesis (later confirmed by Erwin Neher

8 This is, of course, not absolutely true, since mechanisms such as local ion depletion, neurotransmitter
diffusion or electrical crosstalk do enable additional communication pathways between neurons. Fur-
thermore, electrical synapses (see Section 2.1.3) can also create a continuous link between membrane
potentials.
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and Bert Sakmann, Nobel Prize 1991), along with a stochastic description of their dy-
namics, has earned Alan Lloyd Hodgkin and Andrew Huxley the 1963 Nobel Prize. The
Hodgkin-Huxley model consists of a set of four differential equations and remains the
most accurate model of neuronal membrane dynamics to date.9

Similar to leakage channels, voltage-gated ion channels only allow the passage of specific
ion types. However, their conformation changes as a function of the membrane poten-
tial, thereby affecting their permeability. In a simplified picture10, these transmembrane
proteins can be thought of as having "gates" molecular

gates
which open and close stochastically, depend-

ing on the membrane potential. Figure 2.5 sketches several possible states for the Na+

and K+ voltage-gated ion channels. Both channel proteins have four gates, with the Na+

channel possessing two different types of gate.11 If we denote the probabilities of the three
gate types being open by m, h (for Na+) and n (for K+), respectively, and the maximum
conductance of the ion channels (in a fully open state) by gNa+ and gK+ , then the average
currents flowing through the two ion channels read

〈INa+〉 = gNa+m3h(u− ENa+) and (2.4)

〈IK+〉 = gK+n4(u− EK+). (2.5)

The voltage dependence of the gating variables m, h and n is given by

ẋ = − 1

τx(u)
[x− x0(u)], x ∈ {m,h, n}, (2.6)

with specific time constants τx(u) and equilibrium values x0(u). Alternatively, some
authors prefer to use a somewhat different form of the above ODE:

ẋ = αx(u)(1− x)− βx(u)x, x ∈ {m,h, n}, (2.7)

with x0(u) = αx(u)/[αx(u) + βx(u)] and τx(u) = 1/[αx(u) + βx(u)]. Figure 2.4 shows fits
for τx(u) and x0(u) with the original parameters from Hodgkin and Huxley (1952).

9 Modern extensions of the original model mainly include the addition of other types of ion channels
and the morphology of neural cells.

10 We have to stress that the Hodgkin-Huxley model is purely phenomenological and that the “gates”
referenced multiple time in the text are only a mechanistic interpretation of the integer exponents in
the gating variable equations. This is, however, quite close to reality: voltage-sensitive transmembrane
proteins have, indeed, multiple identical compartments that change their conformation depending on
the membrane potential. The voltage dependence of channel protein conformations is still the subject
of intensive research, see, e.g., Long et al. (2007) for recent results on the structure of voltage-gated
K+ channels.

11 More recent studies from the 1990s have shown that the K+ channel also features several inactivation
mechanisms of its own, one of which is similar to the ball-and-chain model of Na+ inactivation from
Figure 2.3. See Kurata and Fedida (2006) for a review.
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Figure 2.3.: Ball-and-chain model of a voltage-gated Na+ channel. Upon excitatory stim-
ulation of the neuron, its membrane potential increases, thereby (stochas-
tically) triggering an opening, or activation, of the channel protein. The
resulting influx of Na+ ions increases the membrane potential even further,
which causes even more Na+ channels to open. This feedback loop contin-
ues until the “ball-and-chain” components of the molecule, which also react
to high membrane voltages, but on a slower timescale, block the channel,
thereby inactivating it. Note the difference between inactivation, which is an
active self-blocking of ion channels, and deactivation, which is the process
by which, when the membrane potential shifts outside the range that caused
the channels to open in the first place, they simply close again. The latter is
exactly what happens with voltage-gated K+ channels in the Hodgkin-Huxley
model, following a spike (see text for details). Image courtesy of Penn State
Department of Biology.
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Figure 2.4.: Gating variables of the voltage-gated Na+ and K+ ion channels in the
Hodgkin-Huxley model. Left: Equilibrium values as a function of the mem-
brane potential u. Note how the m and n gates open at higher values of u,
thereby activating the Na+ and K+ channels, respectively. Conversely, the
h gates close for high u, thereby inactivating (i.e., actively closing) the Na+

channels. Right: Time constants as a function of membrane potential u.
Due to their fast dynamics (low time constant), the m channels open quickly,
allowing the sharp onset of the action potential. Both the inactivation of the
Na+ channels via the h gates and the activation of the K+ channels via the
n gates occur on a slower timescale, jointly causing the falling flank of the
action potential.
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Figure 2.5.: Spiking dynamics in the HH neuron model. Top: membrane potential during
a single spiking event caused by a short step current stimulus at t = 0 ms.
Bottom: zoom-in on the time axis during the AP showing the evolution
in time of all the relevant dynamic variables. (a) Current stimulus. (b)
Membrane potential. The initially small change of ≈ 10mV caused by the
current stimulus results in a fast opening of the voltage-gated Na+ channels
which is strong enough to trigger a cascade effect that ultimately results in
the rising flank of the AP. After the peak voltage is reached, inactivation of
the Na+ channels and activation of the K+ channels causes the membrane
potential to drop below the leak potential and slowly return to the resting
state. (c) Evolution of Na+ channel conductance (solid curve) and gating
variables (dashed curves). The fast activation due to the m gates (in green) is
followed by a slower inactivation due to the h gates (in red). This difference in
time constants allows the sharp onset of the AP. Together with the activation
of the K+ channels (n gates, see panel (e)), the inactivation of the Na+

channels is responsible for the refractory period that follows the AP. (d) Gate
configuration of Na+ channels. This is only a symbolic representation, since
the conformational changes of the proteic subunits that build up individual
gates are stochastic processes. (e) Evolution of the K+ channel conductance
(solid curve) and gating variable (dashed curve). The slower dynamics of
the n gates as compared to the m gates allows the buildup of the AP before
the decay towards the K+ reversal potential. Note the long tail of the K+

conductance compared to the Na+ conductance. (f) Gate configuration of
K+ channels. As in panel (d), this is only a symbolic representation. For the
full set of parameters used for this simulation, see Tables A.1 and A.2.
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2. Introduction: From Biological Experiments to Mathematical Models

Now we can return to the equivalent circuits from Figure 2.2. For the sake of clarity,
let us further assume that the leak and pump conductances - and thereby also gl - are
constant. We can now extend the reduced equivalent circuit by the voltage-gated Na+ and
K+ channels described above. With equations 2.4 and 2.5, the ODE for the membrane
potential then becomes

Cmu̇ = −gNa+m3h(u− ENa+)− gK+n4(u− EK)− gl(u− El) + I (2.8)

The four ODEs given by Equations 2.6 and 2.8 fully define the Hodgkin-HuxleyHH model neuron
model.

Let us take a look at the dynamics of this model, with Figure 2.5 serving as graphi-
cal guidance. The parameters used in this simulation are given in Tables A.2 and A.1.
Without external stimulus, the membrane potential is at rest and does not change in time.
Note that in the HH model, the rest potential is not equal to the leak potential El, but lies
significantly lower, due to the K+ channels always being open with nonzero probability.
The Na+ and K+ voltage-gated channels are predominantly closed, or deactivateddeactivation , due
to the m and n gates, respectively. Upon stimulation with a strong enough step current,
the m-gates start opening, activatingactivation the Na+ channels and allowing an influx of Na+,
thereby increasing the membrane potential even further and leading to a cascade effect
that pulls the membrane potential close to ENa+ . This represents the steeply rising flank
of the action potential. Due to their slower dynamics (τh � τm, see Figure 2.4), the
inactivationinactivation of the Na+ channels via the m gates becomes dominant only with a certain
delay, thereby not interfering with the sharp action potential onset.

If only Na+ channels were present, the membrane potential would now slowly
(τm = Cm/gl ≈ 10 ms) decay towards El. However, on roughly the same timescale
as the inactivation of the Na+ channels, the activation of the K+ channels occurs.12

These quickly pull the membrane potential back down towards EK+ , thereby generating
the steep falling flank of the action potential. Again, due to their slow dynamics, the h
gates remain closed and the n gates remain open for some time, leading to the relatively
long characteristic “undershoot” of the membrane potential following the sharp spike.
During this so-called refractory periodrefractory

period
, another spike is difficult to elicit, due to both the

Na+ channels being inactivated and the K+ channels being open.

Apart from spiking when receiving strong and fast enough stimulation, HH neurons
exhibit some other very interesting and maybe even surprising dynamics, which will be of
particular interest later on, when we formulate more abstract neuron models. Whether
these features are of any computational relevance is an important topic of ongoing debate.

Let us first turn our attention towards the “spiking threshold”. Does there exist a value
of the membrane potential which, once reached, guarantees that the neuron will spike?
As we can see from Equation 2.8, one can control the equilibrium value of the membrane
potential by varying the external input current I, thus allowing to define a “threshold
current” that is analogous to a threshold potential, should one exist. Medical dictionaries
define the so-called rheobaserheobase as the minimal electric current required to excite a tissue
given an indefinitely long time during which the current is applied.
12 Note that already in the deactivated state, individual n gates have a significant probability (p ≈ 0.3)

of being open. However, for a channel to be permeable, all gates have to be open at the same time,
the probability of which scales with p4 and is therefore much lower.
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2.1. Morphology and Electrophysiology of Biological Neurons and Synapses

Figure 2.6.: Searching for the rheobase of an HH neuron (and not finding it). When
stimulated with a step current of 7 pA/cm2, the neuron goes into a regular
spiking mode (blue curves). If one increases the current slowly enough, one
can reach double that value (and, in principle, any value) without triggering
a spike response (red curves).

Figure 2.6 shows an HH neuron stimulated with a step current which is strong enough
to trigger persistent spiking while it remains on. Following its definition, one must assume
that the rheobase is smaller or equal to the applied stimulus. However, if one increases
the input current slowly, even at double the value of the previous stimulus, no spike
is triggered. Indeed, if the input current is increased slowly enough, one can converge
smoothly to any membrane potential value. Even for step currents, there is no clear
threshold for which spiking is initiated. When decreasing the step value with fine enough
granularity, the neuron responds with an increasing delay, with a spike of decreasing
amplitude (not shown here).

This goes to show that HH neurons do not have a firing threshold in the precise mathe-
matical sense. While the threshold assumption may be a very practical one13, as we shall
discuss later in Section 2.2.1, it is important to keep in mind that it is a mathematical
abstraction of an otherwise different physical phenomenon. In compliance with common
terminology, we will nevertheless use the terms “suprathreshold” supra- and

subthreshold
regimes

and “subthreshold” when
describing regimes where a neuron fires or does not fire, respectively.

Another interesting phenomenon is the so-called (post-)inhibitory rebound inhibitory
rebound

. When stim-
ulated (inhibited) by a negative current, the membrane potential naturally drops below
El. If the stimulation ends abruptly and the inhibitory current was long and strong
enough, a single spike can be elicited (Figure 2.7). The explanation for this behavior lies
again in the difference between the time constants of gate dynamics. The temporarily
low membrane potential results in a stronger deactivation of the K+ channels (n gates)
and a weaker inactivation of the Na+ channels (h gates). Upon the abrupt termination
of the inhibitory stimulus, the membrane is pulled back towards El, but the fast m gates

13 See also Kistler et al. (1997) for a similar discussion related to a different type of simplified neuron
model (the spike-response model).
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2. Introduction: From Biological Experiments to Mathematical Models

Figure 2.7.: Inhibitory rebound of an HH neuron. Given a high enough amplitude, both
excitatory (blue curves) and inhibitory (red curves) stimuli can cause a spike
in the HH model, if their onset (in the excitatory case) and end (in the
inhibitory case) are quick enough.

open quicker than the other two gate types can react to the change in voltage, causing an
overshoot, which, when large enough, leads to spiking.

This effect is impossible to account for in neuron models governed by a single, first-order
ODE, which possess a resting potential (stable fixed point of u). The extremely popular
LIF model, discussed in detail in Section 2.2.1.1, is one such example. This is one of
the reasons why neuron models of intermediate complexity have been developed and are
being used for modeling cortical function. We point to Sections 2.2.1.2, 3.3.1 and 5.5 for
further elaboration on this topic.

The third and final phenomenon we shall address here is resonanceresonance . It is similar to
the inhibitory rebound in that it is also caused by the different timescales on which gate
dynamics evolve and it can also not be reproduced with first-order, single-ODE models.
When stimulated periodically with a current of an amplitude that would otherwise not
elicit a spike, an HH neuron can be provoked to fire, as shown in Figure 2.8. This
happens only if the pulse frequency of the stimulus is close to a specific value for the given
neuron, hence the denomination of the effect. As shown in e.g. Izhikevich (2007), in vitro
recordings of cortical neurons also show rebound and resonant spiking.

2.1.3. Synapses

After having discussed the individual dynamics of the fundamental building blocks of
neural networks, we now turn to the other key ingredient in neural information processing:
the interneuron interaction.

When the membranes of two neurons lie in close proximity to each other14, a so-called

14 More precisely, where the axon of the presynaptic cell touches a dendrite of the postsynaptic cell. See
Section 2.1.4 for more details on neuron morphology and its functional consequences.
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2.1. Morphology and Electrophysiology of Biological Neurons and Synapses

Figure 2.8.: Resonance phenomenon in the HH model. If an excitatory stimulus is too
weak, it may not trigger a spike (blue curves). However, a pulsed stimulus
with the same amplitude and correct frequency (which depends on the model
parameters, especially the gating variable time constants), can cause a reso-
nance phenomenon where the driven oscillations of the membrane lead to an
AP.

synapse synapsecan form, enabling the transmission of electrical signals between the two cells.
Through a synapse, a spike of the presynaptic neuron can elicit a temporary change in
the membrane potential of the postsynaptic cell called a PSP PSP15. Depending on whether
the PSP has a positive (excitatory) or negative (inhibitory) influence on the membrane
potential, it is also called an EPSP EPSP,

IPSP
or an IPSP, respectively. Two fundamentally different

types of synapses exist: electrical and chemical ones.

Electrical synapses electrical
synapse, gap

junction,
synaptic

cleft,
connexons

are very simple in their structure. In an electrical synapse, the
neuron membranes are separated by a narrow space called a gap junction or synaptic
cleft, which is several nm wide. At the site of the gap junction, the membranes contain
numerous junction channels called connexons, which can be thought of simply as pores
that connect the cytoplasm of the two cells. These channels are wide enough to allow the
passage of all relevant charged ion types (among others), thereby enabling the passive flow
of ionic currents and thus the transmission of electrical signals. Electrical synapses are
therefore very fast, with synaptic delays synaptic

delay
(time lag between the arrival of the presynaptic

spike and the onset of the PSP) on the order of 0.2ms. They also allow signal transmission
in both directions. However, despite their distinct speed advantage, they only represent
a distinct minority of synapses in the neocortex. One reason might be that due to their
simple structure, they lack the versatility and plasticity of chemical synapses.

Chemical synapses chemical
synapse,
bouton,

neurotrans-
mitters

, on the other hand, have a distinctly asymmetric structure. The pre-
synaptic terminal, or synaptic bouton, contains specialized transmission molecules called
neurotransmitters. These are enclosed in so-called vesicles, spherical formations about

15 Which stands for “postsynaptic potential” and is therefore a rather unfortunate acronym for something
representing a temporary change in the latter.
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2. Introduction: From Biological Experiments to Mathematical Models

Figure 2.9.: Electrical synapse. In an electrical synapse, cell membranes are separated by
an extremely narrow synaptic cleft. Special transmembrane proteins called
connexons bridge the synaptic cleft and allow the passage of, among others,
charged ions. Electrical excitations of the presynaptic membrane can thereby
propagate passively to the postsynaptic membrane. Image taken from Purves
et al. (2001).

40 nm in diametervesicle surrounded by a plasma membrane. Vesicle membranes contain a
particular type of protein which, when activated by Ca++ ions, causes the fusion of the
vesicle to the cell membrane. When the presynaptic cell fires, the AP causes the opening
of voltage-gated Ca++ channels, thereby creating an influx of Ca++ ions into the synaptic
bouton. The resulting high Ca++ concentration causes the vesicles lying in the proximity
of the cell membrane to fuse with it, releasing their contents into the synaptic cleft. The
released neurotransmitters can now freely diffuse throughout the synaptic cleft, which
is about 20 nm wide, reaching the postsynaptic terminal within several ms (and making
chemical synapses an order of magnitude slower than electrical ones). At the postsynaptic
terminal, the target neuron membrane contains a high density of receptor proteins called
ligand-gated ion channelsligand-gated

ion channels
, which change their conformation in the presence of particu-

lar molecules. The neurotransmitter molecules cause the opening of these ion channels,
creating an influx of charged ions into the postsynaptic cell. Formally, this amounts to
an increase in (postsynaptic) membrane conductance for a specific ion type and is conse-
quently dubbed a PSC16PSC . This, in turn, elicits a PSP on the postsynaptic membrane. Due
to Brownian motion and enzymatic metabolization, the transmitter molecules eventually

16 Coincidentally, the abbreviation “PSC” can stand for either postsynaptic current (generated by the
influx of ions through the ligand-gated ion channels) or postsynaptic conductance. The reader is
therefore encouraged to pay particular attention to the context in which this acronym appears.
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2.1. Morphology and Electrophysiology of Biological Neurons and Synapses

Figure 2.10.: Chemical synapse. When the presynaptic neuron fires, the elevated mem-
brane potential at the presynaptic terminal causes voltage-gated Ca++ chan-
nels to open, creating an influx of Ca++ ions. These bind to vesicles contain-
ing neurotransmitter molecules, causing them to fuse with the cell membrane
and spill their contents into the synaptic cleft. The diffusing neurotransmit-
ters eventually reach the postsynaptic terminal, where they activate specific
receptors in the postsynaptic cell membrane, which in turn allow the pas-
sage of charged ions, thereby eliciting a PSP. Eventually, the neurotrans-
mitter molecules break loose from the receptors and are reabsorbed by the
presynaptic cell for re-release. Image modified from Knodel (1998).

break loose from the receptors, returning them to a closed state and ending the PSC.
The freed neurotransmitter molecules or their metabolites can then be reabsorbed and, if
necessary, reconstituted by the presynaptic terminal and enclosed in new vesicles, thereby
becoming available for future release.

If multiple spikes arrive in close succession temporal
and spatial
summation
of synaptic

inputs

, their effects on the membrane conduc-
tance/current are summed up (aside from short-term saturation/depletion mechanisms,
which will be discussed in Section 2.2.2.2). The same is true for PSCs arriving from
different synapses. Since the neural membrane integrates over its inputs, PSPs sum up
as well, both temporally (over different spikes) and spatially (over different synapses).

The various steps and components of this complex chain of events have many profound
functional consequences.

The use of neurotransmitters as intermediates requires their metabolization by the
presynaptic neuron. Therefore, it appears reasonable that every neuron releases the same
set of neurotransmitters at each of its efferent synaptic sites. This principle, coined by
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Figure 2.11.: Simulation of synaptic events. A single neuron is stimulated by an excitatory
and an inhibitory presynaptic partner. Their spikes cause changes in the
membrane conductance: red for excitatory (towards ENa+) and blue for
inhibitory (towards EK+). Despite the two synapses having the same weight
(as can be seen from the equal height of their PSCs), the inhibitory PSPs are
significantly smaller than the excitatory ones due to the membrane potential
lying much closer to ENa+ than to EK+ . When synaptic events arrive in
quick succession, both temporal and spatial summation of their effects can
be observed. Even when PSCs are too far apart to superpose, PSPs may still
do so, due to the relatively long membrane time constant. A more detailed
understanding of these phenomena, we point to the section on mathematical
models of synaptic interactions (Section 2.2.2) and the analytical solution of
the membrane potential equation (Sections 4.2.1 – 4.2.4).

John Eccles in 195417, is known as Dale’s lawDale’s law , and remains until today an important rule
of thumb with only few known exceptions.

The receptors activated by particular neurotransmitters are only permeable to specific
ion types. Depending on whether channeled ions increase or decrease the neuron mem-
brane potential, receptors can be classified as either excitatory or inhibitory. The two
major neurotransmitters in the mammalian CNS are glutamate and GABA, which pref-
erentially target excitatory and inhibitory receptors, respectively. Therefore, and as a
corollary of Dale’s law, depending on whether a neuron is glutamatergic or GABAergic,
it can be either excitatory or inhibitory, but usually not both at the same time.

Given that communication at chemical synapses happens through diffusion, a fraction
of the released neurotransmitter molecules can escape the synaptic cleft and diffuse freely

17 There has been quite some historical controversy surrounding the precise wording of Dale’s law. It
concerns the ambiguity of the original statement from 1954 about whether one neuron may release
multiple types of neurotransmitters at its terminals (Eccles et al., 1954). A revised version that is in
compliance with today’s knowledge has been formulated by Eccles in 1976: "I proposed that Dale’s
Principle be defined as stating that at all the axonal branches of a neurone, there was liberation of
the same transmitter substance or substances." (Eccles, 1976)
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into the intercellular medium. These can then affect neighboring neurons non-synaptically
in various ways, triggering complex metabolic pathways that may, in turn, cause profound
changes in the dynamics of the neural network. This capability of neuromodulation neuromodu-

lation
gives

chemical synapses far-reaching functional control over a wide range of temporal and spatial
scales, much in contrast to their electrical counterparts.

Due to the complexity of the neurotransmitter release-reuptake-cycle, synaptic trans-
mission can vary over time in various ways. It can either be subject to intrinsic dynamics,
such as a gradual weakening of the synapse due to vesicle depletion, or be influenced
externally by e.g. the firing of the postsynaptic neuron. This phenomenon, called synaptic
plasticity synaptic

plasticity
, can obviously carry deep functional consequences for any network of spiking

neurons. As such, it plays an essential role in learning, adaptation, memory formation
etc., and is therefore a key component in neural modeling.

Because of their complexity, synaptic dynamics are rarely modeled in full detail. Es-
pecially when it comes to plasticity, models become increasingly phenomenological and
less mechanistic. Many famous models of synaptic plasticity, such as the Hebb and BCM
rules, have been originally formulated as firing-rate dependent and are therefore not easily
implementable in spiking neural network models. Section 2.2.2 will address the modeling
of synaptic transmission and plasticity in more detail.

2.1.4. Spatial Structure of Neurons

Until now, we have only considered the dynamics of structureless, pointlike neurons. The
structure of neural cells is, however, important for two reasons. First and foremost, the
structure of a neuron can have a profound impact on the way it processes inputs from
other neurons. Secondly, the interplay of membrane morphology and electrochemistry
leads to a preferred directionality in the transmission and processing of information.

A sketch of the functionally most relevant structural components of a neuron can be
found in Figure 2.12. A characteristic feature of a neuron is the branching tree of dendrites
that grow out of the cell body or soma soma. Synaptic stimuli generate electrical excitations of
the cell membrane that travel across the dendrites towards the soma. Projecting out of
the soma is a single so-called axon axon, which is usually longer and thicker than the dendrites.
At the junction between soma and axon, also called the axon hillock axon hillock, the ion channel
density is particularly high, making it the area most likely to trigger an AP. The AP then
travels along the axon towards terminals connecting it, via synapses, to other neurons,
through which it can impinge on their respective membranes.

An AP that has been initiated at the axon hillock can only move away from the soma,
which we shall henceforth label as the forward direction forward

propagation
. The reason for this lies within

the very mechanisms that generate the AP described in the previous section. While
the leading edge of the spike moves forward due to the activation of Na+ channels, the
trailing edge does so due to the inactivation of the Na+ channels and activation of the K+

channels. Thus, at any point in time, the membrane excitation can not move backwards
due to the Na+ channels towards the soma having already been inactivated.

Let us now consider a simple model for the propagation of electrical signals along
the neural membrane. The so-called cable theory cable theorydates back to the work by Thomson
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Figure 2.12.: Sketch of a neural cell. The cell nucleus resides in the cell body or soma.
Thin, branching projections called dendrites gather information from affer-
ent neurons. Spikes generated by this neuron are transmitted to efferent
neurons via the axon, which is surrounded by a myelin sheath for faster sig-
nal transmission via saltatory propagation, from one node of Ranvier to the
next. Dendrites of target neurons dock via synapses at the axon terminals.
Modified from http://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg.

(Lord Kelvin) from the 1850s, and was initially developed to model signal transmission
in submarine telegraphic cables. We will not provide a full mathematical derivation here,
since it is only of peripheral interest to the present work (see Section 5.3), and recommend
Chapter 2.5 of Gerstner and Kistler (2002) instead, which features an in-depth discussion
of the cable equations.

Neural cable theory assumes, in a first approximation, that all components of the
neuron (dendrites, soma, axon) transmit electrical signals passivelypassive

signal trans-
mission

. The radius of the
“neural cable” is modeled as constant and, at any point on the membrane, incident
currents are assumed to sum up linearly. These are indeed very crude simplifications
of neural electrophysiology18, but the mathematical tractability gained from sacrificing
biological fidelity yields important insights into the effects of spatial structure on the
propagation of electrical signals, which obviously has functional implications for neural
information processing. We consider it crucial to accentuate this aspect, especially given
the fact that, as we shall see later, network models very often do not take into account
the full consequences of neural morphology.

18 As we have seen in Section 2.1.2, active (voltage-gated) channels on the membrane are a major
component of membrane dynamics, even in the subthreshold regime. Dendrites also become thicker as
they join and approach the soma, with the soma diameter being many times larger than that of distal
dendrites. Finally, transmembrane currents do not sum up linearly, as the transmembrane proteins
are not ideal resistors.
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Figure 2.13.: The neuron membrane can be viewed as being composed of infinitesimal
segments dx, each of which contains a longitudinal resistor rldx and a leak
circuit, which consists of a capacitor cmdx and a resistor rm/dx connected in
parallel. Due to gauge freedom one can set the voltage of the cell exterior,
represented by the bottom horizontal wire, to zero (ground). The cable
equation can be found by applying Ohm’s law over the longitudinal resistive
element and Kirchhoff’s current law at a node along the inner cell membrane
(top horizontal wire).

In classical cable theory, the membrane acts as a sequence of infinitesimal infinitesimal
circuits

RC circuits
connected in parallel (Figure 2.13). Here, rldx represents the longitudinal resistive element
and rm/dx and cmdx the transversal resistive and capacitive elements, respectively. The
latter are equivalent to 1/gl and Cm, which have been discussed in Section 2.1.1. External
currents that excite the membrane are subsumed under the notation iextdx. Note how
the additive rules for resistors, capacitances and currents lead to the factors “· dx” and
“/dx”, depending on whether they are connected in parallel or in series. The infinitesimal
elements we use here are measured per membrane-length unit (and hence [rm] = Ωm,
[rl] = Ω/m, [cm] = F/m and [iext] = A/m).

Without loss of generality, we can assume the resting potential of the membrane to be
0. The longitudinal current through the membrane i(t, x) causes a voltage drop over the
longitudinal resistance rldx of

u(t, x)− u(t, x+ dx) = i(t, x)rldx. (2.9)

The current flowing through the infinitesimal RC circuit at point x is the sum of the current
that charges the capacitance cmdx and the one flowing through the resistor rm/dx:

iRC(t, x) = cmdx
∂

∂t
u(t, x) +

u(t, x)

rm/dx
. (2.10)

Conservation of current at point x demands that

i(t, x+ dx)− i(t, x)− iext(t, x)dx+ iRC = 0. (2.11)
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In the limit of dx → 0, we can rearrange equations such that we can substitute
u(t,x+dx)−u(t,x)

dx and i(t,x+dx)−i(t,x)
dx by ∂u(t,x)

∂x and ∂i(t,x)
∂x , respectively. As a final step, we

can now substitute Equations 2.9 and 2.10 into Equation 2.11 (and drop the arguments
x and t for clarity). The cable equationcable

equation
describing this system then reads

1

rl

∂2u

∂x2
= cm

∂u

∂t
+

u

rm
− iext, (2.12)

By setting λm =
√
rm/rl (the so-called electrotonic length scaleelectrotonic

length scale
) and τm = rmcm (the

membrane time constant, see also 2.3), we can rewrite equation 2.12 as

τm
∂u

∂t
− λm

2∂
2u

∂x2
+ u = rmi

ext, (2.13)

Each of the two specific constants in this equation describes an intuitive property of the
membrane. Assume, for instance, that we inject a constant current iext(t, x) = δ(x)/rm at
x = 0 and wait until the membrane potential does not change anymore in time. Equation
2.13 then becomes

λm
2∂

2u

∂x2
= u− δ(x) (2.14)

and we can find the stationary solution

u(x) =
1

2
exp

(
− |x|
λm

)
. (2.15)

It now becomes apparent that the electrotonic length scale λm is a measure of the atten-
uation of an input signal along the membrane. More precisely, it represents the length
after which a stationary signal becomes weaker by a factor of 1/e.

Similarly, if one injects a current homogeneously along the entire membrane, the spatial
derivative in Equation 2.13 vanishes and we are left with

τm
∂u

∂t
= −V + rmi

ext, (2.16)

which is exactly equivalent to the pointlike leaky neuron model by Equation 2.3. For a
constant current iext(t) = 1/rmΘ(t), we can easily write down the solution

u(t) = Θ(t)

[
1− exp

(
− t

τm

)]
(2.17)

and see that the membrane time constant τm is a measure of the reaction speed of the
membrane to changes in stimulus.19 Similar to λm, it represents the time after which the
membrane gets closer to its new equilibrium value by a factor of 1/e.

19 For a dendrite with a radius of 1µm, we can find typical values of rl = 3 ·105 Ω/µm, rm = 5 ·1011 Ωµm
and cm = 5 · 10−14 F/µm. The corresponding electrotonic length scale and membrane time constant
are λm = 1.2 mm and τm = 25 ms.
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Figure 2.14.: Special solutions to the cable equation. The membrane potential is given in
arbitrary units, as we are only interested in the shape of the curves. Left:
stationary solution with respect to time. A constant current is applied at
a single point x = 0 along the membrane. The membrane potential decays
exponentially as a function of distance to the point of injection, with a
decay constant equal to the electrotonic length scale λm. Right: stationary
solution with respect to space. All points along the membrane receive the
same current, which in this case is a step function at t = 0. The membrane
potential decays exponentially towards the new equilibrium value, with a
decay constant equal to the membrane time constant τm.

We can now search for analytical solutions to the cable Equation 2.13. In order to
promote an intuitive understanding, we note how, although it appears here in the con-
text of electrodynamics, this type of PDE is found in many areas of physics, including
thermodynamics and quantum mechanics. It is closely related to e.g. the Fokker-Planck
(a.k.a., depending on context, Smoluchowski) and Schrödinger equations. This already
gives us a strong hint that dispersion dispersion(i.e., spreading of wave packets) plays an important
role in the time evolution of membrane excitations. We need to stress, however, that the
cable equation does not describe a diffusion process and is only formally similar to one.
A detailed discussion of the Fokker-Planck equation as a formalization of a true diffusion
process is, however, of central importance to the behavior of neurons driven by stochastic
stimuli and shall be discussed in detail in the context of stochastic neural computation
(Chapter 6).

The general approach to solving linear PDEs such as the cable equation is by using the
Green’s function formalism. For a generic linear PDE

Lu(t, x) = f(t, x) (2.18)

with an arbitrary linear differential operator L = L(x, t), the Green’s Green’s
function

functionG(t, t′, x, x′)
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is defined as the solution to

LG(t, t′, x, x′) = δ(t− t′)δ(x− x′). (2.19)

It can be easily checked by substitution that the general solution of the PDE is given by

u(t, x) =

t∫
−∞

∞∫
−∞

G(t, t′, x, x′)f(t′, x′)dt′dx′. (2.20)

In particular, if L is translation invariant (as it is in our case), G serves as a convolution
operator for Equation 2.20:

G(x, x′, t, t′) = G(x− x′, t− t′) (2.21)

In the following, we will drop all parameters from Equation 2.13 for clarity. This can
be done by rescaling time and space to unit-free coordinates

x→ x/λm (2.22)
t→ t/τm (2.23)

and by additional rescaling of the external current

iext → rmi
ext (2.24)

The cable equation then becomes

∂u

∂t
− ∂2u

∂x2
+ u = iext (2.25)

and the Green’s function can be given in closed form:

G(t, t′, x, x′) =
Θ(t− t′)√
4π(t− t′)

exp

[
−(t− t′)− (x− x′)2

4(t− t′)

]
. (2.26)

Let us consider a synapse lying at a location that we define as x = 0 along a dendrite.
Upon arrival of an afferent spike, the current that flows through the synapse and excites
the membrane can be modeled as

i(t, x) = wsynδ(x)Θ(t) exp

[
− t

τ syn

]
. (2.27)

If we neglect boundary effects, we can plug Equations 2.27 and 2.26 into Equation 2.20
to find out how this signal propagates along the dendrite (Figure 2.15).

As expected, we observe the formation of the characteristic PSP shape at the point
of injection (blue curve). The steepness of the rising flank is partly determined by the
synaptic time constant τ syn, while the falling flank is largely governed by the membrane
time constant τm. At points lying further away on the dendrite, however, the PSP
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Figure 2.15.: Propagation of membrane potential excitations. The neural cable is excited
by a simulated synaptic current with a sudden onset at t = 0 and an expo-
nential decay with time constant τ syn = τm/5 at the point x = 0 along the
membrane. The time course of the membrane potential (PSP) is measured
at integer multiples of half the electrotonic length scale λm/2. Two char-
acteristic dispersive effects become apparent. The amplitude of the PSP
decreases and it becomes broader as it propagates away from the current
injection site. In addition, the rising flank becomes less steep and the peak
voltage is reached later, amounting to an effective dendritic delay.

becomes distorted - the peak voltage is reached later, due to the finite propagation speed
signal

propagation
speed

of electrical signals along the membrane. Loosely defined as the speed at which the
voltage peaks advance, the signal propagation speed is, quite intuitively, a monotonically
decreasing function of τm and a monotonically increasing function of λm. Additionally,
the further away one goes from the point of injection, the smaller the peak voltages
become, reflecting the previously discussed effect of the electrotonic length scale.

We now turn our attention to the propagation of action potentials. By their very
nature, it is no longer possible to neglect the active mechanisms that govern their time
course. Their propagation is therefore determined by a combination of the passive cable
theory from above and the voltage-gated channels from the Hodgkin-Huxley model (Sec-
tion 2.1.2). However, the results we have gained from studying the behavior of purely
passive dendrites can give us some important insights.

In order for an AP to propagate from position x further along the axon, it must elicit
a high enough voltage change at the position x + ∆x for the active mechanisms to take
over and cause an AP at this new position. The reaction speed to stimuli at any point
along the membrane is governed, as we have seen (in e.g. Equation 2.17 or 2.14), by the
membrane time constant τm and the electrotonic length scale λm. A fast propagation
of action potentials towards their target neurons (as would e.g. be required by a quick
reaction of the animal to a sensory stimulus) can be aided by two morphological features
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of axons, both of which have the effect of increasing λm.
One straightforward possibility is to increase the diameteraxon

diameter
of the axon. The total

surface area of the axon would grow, allowing more charge to flow through per unit of
time, but also requiring more charge per unit of voltage. This would lead to a decrease
in rm but also to a simultaneous increase in cm, thereby leaving τm unaffected. However,
the longitudinal resistance rl would also be reduced, leading to an increase in λm and
thereby increasing the passive signal propagation speed. Evolution has put this effect to
use, as famously illustrated by the millimeter-thick giant squid axons on which Hodgkin
and Huxley performed their Nobel-earning experimental work.

However, particularly in younger taxa20, evolution has found a more efficient solution.
Especially those neurons which require long axonal projections, such as motor neurons
which project from the spine to the extremities, have their axons surrounded by a so-called
myelin sheathmyelin

sheath,
Schwann
cells

. The myelin is produced by specialized glia called Schwann cells that wrap
themselves around the axon in multiple layers, effectively increasing the thickness of the
membrane. This decreases the membrane capacitance, but more importantly, it greatly
increases the resistance across the membrane. This, in turn, leads to an increase in λm

and thereby to a faster signal transmission. Between the Schwann cells there remain some
unmyelinated axon surface patches, called the nodes of Ranviernodes of

Ranvier
. At each such node, the

voltage-gated proteins have access to the intercellular medium and can therefore actively
“refresh” the AP by the Hodgkin-Huxley mechanism. Due to the “jumping” nature of the
APs, their propagation along a myelinated axon is called “saltatory”saltatory

propagation
.

The interplay between active and passive transmission also determines the direction-
ality of the AP propagation. Having reached some point along the axon, the AP can
not propagate backwards, because those patches of axon membrane lying behind have
already been excited and then remain refractory for a significant period of time.

What about the propagation of action potentials from the axon hillock backwards
AP back-
propagation

through the dendritic tree? Even without voltage-gated ion channels, APs can still
backpropagate by passive transmission only. Moreover, if dendrites are equipped with a
high enough density of such channels, the AP propagation should be, in principle, quite
similar to the one in unmyelinated axons. Indeed, both varieties of backpropagating APs
have been found to occur in nature (Waters et al. (2005)). They have been hypothesised
to play a significant functional role as well, allowing a sort of feedback mechanism for
synaptic plasticity phenomena that require the “knowledge” of both afferent and efferent
spiking activity. One such mechanism, called STDP, will be briefly addressed in Sections
2.2.2.2, where we discuss synaptic plasticity.

We conclude this section with several important remarks. Since spike initiation is quite
narrowly localized in space - at the axon hillock - it is both the shape and the timing of
the PSPs at that precise site that determines whether the neuron spikes or not. We have
seen how these PSP features strongly depend on the position of synaptic current injection,
as well as the membrane properties of the dendritic tree (in particular, λm and τm). We

20 It is noteworthy that myelination can also be found in some older taxa as a result of convergent
evolution. While not morphologically identical, invertebrate myelin sheaths serve the same functional
purpose as in vertebrates.
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therefore conclude that the morphology of a neural cell is essential to the information
processing that it performs. The position of a synapse can, for example, influence both
delay-based computation, which is essential in e.g. synfire chain models (see Section 5.4),
as well as PSP size and shape, which determines functionality in virtually all network
models.

As we shall see in the section on simulation software (3.1), dendritic delays can be
taken into account for point neuron models, but not morphology-dependent PSP shapes.
Modeling the full structure of the dendritic tree would be computationally costly, while
also severely limiting the analytical tractability of network dynamics. It is precisely due
to their analytic and computational tractability tractability

vs.
biological
fidelity

that the remainder of this work is largely
dedicated to point neuron models. We therefore need to point out that while the im-
plementation of algorithms in neural networks from a machine learning perspective does
not require biological fidelity, any claims about biology coming from single-compartment
modeling must be treated with appropriate care and rigor.
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2.2. Abstract Models

At this point, we have formulated a mathematical model of biological neuron dynamics
and have given an approximate description of synaptic interaction. In its full complexity,
our neuron model (Hodgkin-Huxley equations plus the cable equation) is computationally
extremely costly, with 4 ODEs for the soma and 1 ODE for each dendritic compartment
that is modeled as a single cable (assuming a spike can only be triggered at the soma).
Synapse dynamics are even more complicated; modeled in full detail, each synapse would
require multiple ODEs for neurotransmitter release at the presynaptic site, diffusion in
the synaptic cleft, ligand-gated channeling at the postsynaptic site, neurotransmitter me-
tabolization etc.

If we are to simulate neural networks at the level of individual neurons and synapses, a
small set of simple, linear ODEs would be highly advantageous. Simplification, of course,
comes at the price of accuracy – or worse, at the expense of functionality, as we have
already discussed for the HH model (Section 2.1.2). The formulation of abstract models
therefore always requires a careful consideration of the tradeoff between functionality
(and/or faithfulness to biology) and computational complexity.

In the following, we will elaborate the neuron and synapse models that have been used as
building blocks for all the network models discussed in later chapters. Furthermore, these
models define the target dynamics of the circuits implemented in our neuromorphic hard-
ware. In Section 2.2.1, we will address simplifications of the HH equations and formulate
two abstract neuron models: the simple leaky integrate-and-fire model as a stripped-down
version of the HH neuron and the more complex adaptive exponential integrate-and-fire
model, which even includes dynamics beyond the HH equations. In Section 2.2.2, we will
formalize synaptic dynamics and discuss two simple models of synaptic plasticity.

2.2.1. Neurons

As already addressed in Section 2.1.4, the first simplification we make is to utterly neglect
signal propagation in the dendritic tree. We assume our neurons to be pointlikepoint neuron

models
, so all

input currents have an immediate effect on the membrane potential of the (pointlike)
soma. However, the distance of a synapse from the soma, i.e., the dendritic delay, can
still be taken into account. Here, we model the delayed arrival of PSPs at the soma by
delaying the arrival of spikes. In both cases, the result is a temporal shift of the PSP
incidence at the soma; however, in this model, we lose the (potentially computationally
relevant) reshaping of the PSP as a function of the distance it travelled.

In a second step, we reconsider the equations of the HH model, which had been moti-
vated by the desire to have a mechanistic model of the biological dynamics in excitable
cells. In particular, most of the model complexity serves almost exclusively for modeling
action potentials: the voltage-gated channel dynamics effectively make up three (Equa-
tion 2.6) of the four ODEs – and most of the fourth (Equation 2.8) as well. However,
spikes are generally assumed to be stereotyped events, i.e., with nearly identical shape
(Gerstner and Kistler (2002), Dayan and Abbott (2001)). Under this assumption, it
is only the timing of the individual spikes that matters, thereby rendering its detailed
modeling redundant.21 In many simplified neuron models, the spiking mechanism is
21 It is important to remember that this, too, is a simplification and does not hold without exception.

34



2.2. Abstract Models

therefore replaced by a threshold threshold
models

condition: when a neuron’s membrane potential reaches
the said threshold at time ts, it is instantaneously pulled back to a reset value and the
neuron “sends a spike” to its efferent neurons. These spikes are typically modeled as a
delta function of time. We discuss such a model in Section 2.2.1.1.

One needs to remember, however, that the reduction in the number of equations of
motion (and the accompanying reduction of the system’s phase space spanned by its
dynamic variables) invariably leads to a loss of “dynamic richness”.22 In particular, it is
impossible to reproduce the driven-oscillator-like subthreshold dynamics of the HH model
(see the end of Section 2.1.2) in a one-dimensional space. To what extent this results in a
loss of computational functionality depends on the network model. In any case, networks
based on one-dimensional neuron models can still exhibit extremely interesting dynamics
(Chapter 4) and perform complex computational tasks (Chapter 6).

Evidently, the simplified one-dimensional model class outlined above does not need
to be the end of the path of abstraction. Indeed, the basic23 HH model has its own
shortcomings and can not capture the entire observed spectrum of single-neuron behavior.
This can, however, be remedied by the inclusion of additional dynamic variables which, for
example, influence subthreshold dynamics on longer timescales adaptive

models
. We shall discuss in detail

two network models that rely on 2D neuron dynamics in Chapter 5. Their underlying
neuron model is described in detail in Section 2.2.1.2.

2.2.1.1. The Leaky Integrator

The leaky integrate-and-fire (LIF) model LIF modelis one of the simplest neuron models that can
claim biological relevance. It is almost as old as modern neuroscience itself (Lapicque,
1907), although its name was introduced only about half a century later (Brunel and
Van Rossum, 2007). The name basically says it all, and we have already discussed the
differential equation of this model in the section on passive membrane properties (Equation
2.3). A (u̇ ∝ −u)-term represents the leak, whereas the integration of the input current
is embedded via u̇ ∝ I:

Cm
du

dt
= gl(El − u) + Isyn + Iext . LIF

equation
(2.28)

Here, we have subdivided the total input current I into a synaptic component Isyn and
a generic external one Iext. The latter gives additional control over the model and is
equivalent to a modulation of El. The firing is taken care of by a simple threshold rule:

While most neocortical neurons appear to conform to this assumption, networks exist – e.g., in the
elephantnose fish – in which different shapes of action potentials have been measured (Sugawara et al.,
1999) and hypothesized to play a functional role (Mohr et al., 2003a,b).

22 As an example, we mention the Poincaré-Bendixson theorem, which makes a statement about the
periodicity of orbits (limit cycles) for two-dimensional dynamical systems. In particular, it forbids
the existence of chaotic behavior such as strange attractors. This clearly does not hold for higher-
dimensional phase spaces, such as the Lorenz system with its well-known “butterfly attractor”.

23 I.e., with additional dynamics that only cover the generation of action potentials - as described in
Section 2.1.2 and defined by Equations 2.6 and 2.8 with the parameters from Section A.2.1
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if the membrane potential crosses a threshold ϑ from below24, a spike is emitted:

neuron spikes at t = tspike ⇐⇒ u(tspike) = ϑ . (2.29)

The outgoing spikes are defined only by the time of their occurrence and form a so-called
spike trainspike train , which is modeled as

ρ(t) =
∑

spikes s

δ(t− ts) . (2.30)

Whenever the neuron spikes, its membrane is reset to a potential %reset
potential

. In order to model
the refractoriness of biological neurons, the membrane is clamped to the reset potential
for a duration τref called the (absolute) refractory timeabsolute

refractory
time

:

u(tspike < t ≤ tspike + τref) = % . (2.31)

The Equations 2.28, 2.29 and 2.31 fully define the LIF model. Despite formally being
described by three equations, it is important to note that the model itself only has a
single dynamic variable, namely the membrane potential u, thus being one-dimensional1-D model .
It might seem that the synaptic interactions condensed into Isyn offer additional degrees
of freedom, but this is not the case, since Isyn is fully determined by the spike trains, and
therefore by the membrane potentials, of other neurons in the network - as we shall see
in Section 2.2.2.

To gain some intuition for this model, we shall briefly describe several simple single-
neuron experiments. In particular, this means that there is no synaptic stimulus, so
Isyn !

= 0. The general solution of the LIF equation 2.28 can be easily found:

u(t) = u0e
− t
τm +

e−
t
τm

τm

t∫
0

dt′
(
El +

Iext(t′)

gl

)
e
t′
τm . (2.32)

If the current remains constant in time, the equation takes an even simpler and more
intuitive form:

u(t) = El +
Iext

gl
+

(
uo − El −

Iext

gl

)
e−

t
τm , (2.33)

where u0 := u(t = 0) and τm = Cm
gl

represents the membrane time constantmembrane
time
constant

(see also
Equation 2.13), which quantifies the relaxation speed of the membrane potential towards
the equilibrium value El + Iext/gl.

If the equilibrium value lies below the spiking threshold (El + Iext/gl < ϑ), the current
stimulus is called subthresholdsubthreshold

stimulus
. The time course of the membrane potential then cor-

responds to the charging/discharging of a capacitor. If the equilibrium value lies above
the spiking threshold (El + Iext/gl > ϑ), the current stimulus is called suprathresholdsuprathresh-

old
stimulus

.
The trajectory of the membrane potential then remains piecewise exponential, but be-
comes discontinuous, due to the reset when crossing the threshold. Consequently, the LIF

24 This is the standard textbook definition, but in this formulation of the model, the “from below” can
be omitted, since the equations prevent the membrane potential from ever lying above the threshold.
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Figure 2.16.: Membrane potential of an LIF neuron with step current stimulus. The mem-
brane potential always converges exponentially towards the equilibrium value
El + Iext/gl with a time constant τm = Cm

gl
. During subthreshold stimula-

tion (blue), the membrane follows the charge/discharge curve of a capacitor.
During suprathreshold stimulation (red), the neuron spikes regularly with a
rate given by Equation 2.36.

neuron fires periodically periodic
firing

, with a firing rate that can be computed by setting appropriate
boundary conditions for Equation 2.33:

u0 = % (2.34)
u(T ) = ϑ (2.35)

⇒ ν = (τref + T )−1 =

(
τref + τm ln

%− El − Iext

gl

ϑ− El − Iext

gl

)−1

(2.36)

The firing rate of a neuron as a function of its input - in this case, of the input current
Iext - is appropriately called an f-I curve f-I curve,

gain
function,
activation
function

. The terms gain function and activation function
are often used synonymously in literature. Figure 2.17 shows the f-I curve of two (nearly)
identically parametrized LIF neurons, one with and the other without a refractory period.

Without refractoriness, the firing rate diverges for large input currents, as the argument
of the logarithm in Equation 2.36 approaches unity. The asymptotic behavior can be easily
found with an appropriate Taylor expansion of Equation 2.36 in (Iext)−1:

ν(Iext)
Iext→∞
≈ 1

τm(ϑ− %)

(
El −

%+ ϑ

2
+
Iext

gl

)
. (2.37)

The inclusion of a nonzero refractory period enables a more biologically plausible, con-
vergent behavior towards a finite firing rate which, again, follows directly from Equation
2.36:

ν(Iext)
Iext→∞
−−−−−→ 1

τref
. (2.38)

We shall see the activation function reappear prominently in Chapter 6.
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Figure 2.17.: f-I curve of an LIF neuron. Without refractoriness, the firing rate diverges
with a linear asymptotic behavior. If the refractory time is nonzero, the firing
rate converges towards a maximum value of 1/τref . The inset represents a
zoom onto the point of firing initiation. We can see that the firing rate is a
continuous function of time - there is no jump at Iext = 0.5 nA. This feature
is characteristic of type I models.

As can be seen in Figure 2.17, the transition from a non-firing (subthreshold excitation)
to a firing state (suprathreshold excitation) is a continuous function of the input current.
This is a characteristic feature of so-called type I modelstype I

models
, which display a sharp voltage

threshold and a zero-frequency onset of stable oscillations (regular spiking). In contrast,
so-called type II modeltype II

models
s do not have a sharp threshold and oscillations start with nonzero

frequency. Two examples, both derived as simplifications of the HH model (which is
itself of type II), are the Connor model for type I (Connor et al., 1977) and the Fitzhugh-
Nagumo model for type II (FitzHugh, 1961); depending on their parameters, some models
can be either (Morris and Lecar, 1981).

It should be noted here that the formal definition of model types varies throughout
literature (see, e.g., Ermentrout, 1996) and there is no clear-cut criterion for classifica-
tion. Some authors define the type of the excitability directly from the f-I curve, in which
case the LIF model is classified as type I excitable. However, most authors discuss this
classification in terms of bifurcation theory (in particular, Hopf vs. saddle-node bifurca-
tions), therefore making it difficult to formally classify the linear LIF model as either type
according to these criteria. For a comprehensive discussion of phase plane analysis, we
refer to Chapter 3 of Gerstner and Kistler (2002).

2.2.1.2. The Adaptive Exponential Integrate-and-Fire Model

Up to here, we have argued from the perspective that action potentials are stereotyped
events with no information contained in their shape but only in their timing. Furthermore,

38



2.2. Abstract Models

we have implied that the LIF model captures the most important aspects of subthreshold
dynamics, rendering any additional terms and equations of the HH model essentially
perturbative. We now reconsider these hypotheses by raising two issues.

Let us first consider the spike initiation of an LIF neuron. Due to the firing condition
(Equation 2.29), the spike timing depends critically on the choice of the threshold. Since
biological neurons do not have such a threshold, the extraction of this parameter from
electrophysiological data is conceivably difficult and prone to error. Even if we loosely
define the “biological threshold” as the initiation point of the membrane potential upswing
during a spike, then clearly the nonlinear terms in the HH equation play an important
role for the membrane dynamics close to this threshold. Such effects can not be captured
by a purely linear model such as LIF.

The second argument comes directly from electrophysiological data. A regular oscilla-
tory behavior, as described above for LIF neurons, is only one of many possible responses
of different neuron types in the cortex to a constant current stimulus (see, e.g., Markram
et al., 2004b). In contrast, both the LIF model and the basic HH model can only pro-
duce constant-frequency oscillations. The adaptive exponential integrate-and-fire (short:
AdEx AdEx model) model covers both of the above issues - expectably at the price of added complexity.

The issue of spike generation can be addressed by adding nonlinear (current) terms to
the equation that governs the membrane potential. In case of the AdEx model, the added
term exponential

term
is an exponential function of the membrane potential:

Iexp = gl∆T exp

(
u− ET

∆T

)
(2.39)

This term offers two degrees of freedom. The threshold voltage threshold
voltage

ET plays a similar role to
the “hard” threshold ϑ in the LIF model. Loosely speaking, when the membrane potential
crosses ET from below, Iexp begins to dominate the membrane dynamics, pushing the
membrane potential even further “upwards”. In contrast to the LIF model however, this
is not an all-or-none condition: at any point in time, the positive contribution of the
exponential term can be countered by an appropriate negative contribution from external
stimuli (e.g., inhibitory afferents). The relative strength of Iexp is modulated by the
so-called slope factor slope factor∆T, which is required to be positive.

The more important issue is the one related to spike pattern complexity. This is ad-
dressed by including an additional dynamic variable, the adaptation adaptation

variable
variable w. It enters

the membrane potential ODE linearly and is itself described by a first-order linear ODE
with jumps upon spiking. Before we address the resulting dynamics, we first write down
the full mathematical description of the AdEx model:

Cm
du

dt
= gl(El − u) + gl∆T exp

(
u− ET

∆T

)
− w + Isyn + Iext , (2.40)

τw
dw

dt
= a(u− El) + b τw ρ− w , (2.41)

where ρ(t) represents the neuron’s own spike train (Equation 2.30), and a, b, and τw are
adaptation parameters adaptation

parameters
discussed below. As these equations still lack a mechanism for
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pulling down the membrane potential following a spike, the reset mechanism of the LIF
neuron is kept in place, albeit with a different, much higher spiking threshold Vspike:

tspike ⇔ u(tspike) = Vspike (2.42)
u(tspike < t ≤ tspike + τref) = % (2.43)

Another advantage of the exponential term becomes apparent here. Barring all constants
that can be removed by an appropriate linear transformation of u, the solution to an ODE
of type

du

dt
= exp(u) (2.44)

is
u(t) = − log(c− t) . (2.45)

Once the exponential term becomes dominant, the membrane potential diverges
asymptoticallyasymptotic

divergence
, reaching infinity in finite time (i.e., at t = c). Therefore, as long as

the cutoff Vspike is high enough, the spike timing does not critically depend on the precise
choice of Vspike.

As mentioned above, the inclusion of a second dynamic variable is the most important
departure from the simple LIF model. The time constant τw governs the rate at which the
adaptation variable w decays back to 0 and is usually on the order of hundreds of ms. The
parameter a determines the influence of the membrane potential on the adaptation; it is
used to, for example, model variations in the ion concentration caused by sustaining either
a high or a low membrane potential. The parameter b represents the quantal increase of
the adaptation variable following a spike, sharing a similar electrophysiological motivation
as a. Since it only comes into play when the neuron spikes, b is used to emulate so-called
spike frequency adaptation (SFA)spike

frequency
adaptation

.
Depending on the choice of the parameters a and b, the adaptation variable w can have

both an excitatory and an inhibitory effect on the membrane potential. Very often, a and
b are chosen to be positive, thereby causing a negative adaptation current and therefore
a firing rate that tends to decrease over time. In this case, the adaptation acts as a
homeostatic mechanism on both the membrane potential and the spike frequency of the
neuron. Figure 2.18 shows an example of adapting AdEx dynamics.

More important, however, is the fact that w enables the AdEx model to emulate a
vast array of complex firing patternsneuronal

firing
patterns

, including, but not limited to, the driven oscillations
and the inhibitory rebound spiking we discussed earlier for the HH model (Section 2.1.2).
Figure 2.20 shows an array of typical cortical neuron firing patterns reproduced by an
AdEx neuron with appropriate parameter settings. For a much more in-depth discussion
of AdEx dynamics, we refer to Gerstner and Brette (2009) and Naud et al. (2008).
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Figure 2.18.: Exemplary dynamics of the AdEx model with a step current stimulus. The
parameters were chosen to simulate a slowly adapting behavior (i.e., a slowly
decaying firing rate). Top: temporal evolution of the membrane potential
u. The main component of the membrane potential dynamics is the same as
in the LIF model: an exponential decay towards an equilibrium potential, as
seen in the trace segments that precede the spikes. This equilibrium potential
becomes lower over time due to an increasing (negative) adaptation current
−w. When it exceeds the spike threshold (-50 mV), the membrane potential
diverges asymptotically. Bottom: temporal evolution of the adaptation
variable w. The leak component of the adaptation ODE can be easily seen
in the exponentially decaying segments between the spikes. The quantal
increase following each spike causes the jumps in the trace. The dependence
of w on u is a bit more subtle, but it can be seen in the slight increase of w
around 50 ms and the inflection point of the curve around 250 ms. Figure
taken from Gerstner and Brette (2009).
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Figure 2.20.: Eight firing patterns generated by AdEx neurons stimulated by a constant
current. The voltage traces are shown with scale bars that correspond to
100 ms and 20 mV, respectively. Each of the voltage plots is accompanied
by a depiction of the model’s trajectories in the phase plane spanned by u
and w. (The membrane potential u is denoted by V in the plots.)

The locus of states where the temporal derivative of a dynamic variable
is zero is called a nullcline. (Therefore, trajectories always cross nullclines
either vertically or horizontally.) Intersections between nullclines are called
fixed points. As becomes evident from Equations 2.41 and 2.40, the w-
nullcline (green) is a straight line, whereas the u-nullclines (black) are a
superposition of a linear and an exponential component. The u-nullclines
with and without current stimulation are represented as solid and dashed
lines, respectively.

The neurons are always initialized at their resting state, i.e. at the (stable)
fixed point of the system without current stimulus, which is denoted by a
blue cross. The reset condition causes the trajectories to be discontinuous:
upon spiking, the membrane potential is reset to ureset and the adaptation
variable is incremented by b. The points where trajectories reenter the phase
plane following a spike are marked by blue rectangles. If this happens more
than once, the first and last point of reentry are accompanied by the index
of the preceding spike.

(a) Tonic spiking.
(b) Adaptation.
(c) Initial burst.
(d) Regular bursting.
(e) Delayed accelerating.
(f) Delayed regular bursting.
(g) Transient spiking. The stable fixed point is indicated with a black, filled
circle.
(h) Irregular spiking.

Figure taken from Naud et al. (2008). The AdEx parameters that were used
for the different firing patterns are given in Table 1 of the paper.

43



2. Introduction: From Biological Experiments to Mathematical Models

On a final note, it should be mentioned that the LIF model is a special case of the
AdEx modelLIF from

AdEx
and can be emulated by an appropriate setting of the parameters ∆T, a

and b. Setting a = 0 and b = 0 effectively removes adaptation. The exponential term is
removed by setting ∆T = 0, since

lim
x→0,x>0

x exp(a/x)
y=1/x

= lim
y→∞,y>0

exp(ay)

y
=

{
0 for a < 0
∞ for a > 0

. (2.46)

The exponential current then becomes an all-or-none firing condition, rendering ET for-
mally (and numerically) equivalent to the hard threshold ϑ in the LIF model.25

2.2.2. Synapses

As outlined in Section 2.1.3, synaptic interaction is a complex phenomenon, arguably
even more complex than the neuron dynamics themselves. For this reason, few, if any,
detailed26 biophysical synaptic models exist. The most widely used synapse models in
computational neuroscience are purely phenomenological: synaptic interactions are mod-
eled by stereotypical functions of time called interaction kernelssynaptic

interaction
kernel

which sum up linearly
over space (i.e., over different synapses) and time. The total impact of all synapses can
then be written as

f syn(t) =
∑

synapses k

∑
spikes s

wkεk(t− ts) , (2.47)

where wk denotes the weight or strength of the kth synapse and εk its synaptic interaction
kernel. The interaction kernel can, in principle, assume an arbitrary shape, but in most
models it is constrained by the biophysics of synaptic interaction. Before addressing the
exact nature of the synaptic input f syn, we shall first discuss the shape of the synaptic
kernels ε(t).

As described in Section 2.1.3, the synaptic release of neurotransmitters happens very
quickly, as does their diffusion towards the postsynaptic terminal, due to the narrow width
of the synaptic cleft. The removal of neurotransmitters from the postsynaptic terminal,
however, may occur on a wide range of time scales, depending on the nature of the
transmitter and receptor molecules. Therefore, a useful phenomonological model is the
difference-of-exponentials function27:

ε(t) = AΘ(t)
1

τrise − τfall

[
exp

(
− t

τrise

)
− exp

(
− t

τfall

)]
,difference-

of-
exponentials
kernel

(2.48)

25 What works well in theory may not be equally unproblematic in practice. Expressions which may con-
verge to finite values, but contain terms that diverge in the required limit, are notoriously problematic
in software implementations. Neural simulation software handles such problems with varying degrees
of success: NEST 2.1.1, for example, returns an error, while Neuron 7.1 returns a warning. Therefore,
when such a limit is required (such as for the L23 model fit in Section 5.3), particular care needs to
be taken. For hardware implementations, such terms become even more problematic, due to limited
parameter precision (see Section A.2.2.2). On the HICANN chip, this issue is solved by having the
exponential term implemented in a separate circuit that can be effectively decoupled from the cell
membrane (see Section 3.3.1).

26 In the spirit of the Hodgkin-Huxley model of neuron/membrane dynamics.
27 Incidentally, this function is identical to the PSP shapes derived in Section 4.2 (Equations 4.39 and

4.59). In order to avoid any confusion, we note explicitly that Equation 2.48 represents a phenomeno-
logical model of PSCs, whereas Equations 4.39 and 4.59 represents the shape of a PSP, i.e., the
analytical solution of the LIF equation driven by a single, exponentially shaped PSC.
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Figure 2.21.: The three different synaptic interaction kernels described in the text. All
three kernels have been scaled to unit area. The time constants were set to
τrise = 2 and τfall = τ syn = 10 (in arbitrary units of time).

where the two exponential functions model the (stochastic) arrival and removal of neuro-
transmitters at the postsynaptic site, governed by their respective time constants τrise and
τfall. For now, A simply represents a constant factor that transforms εk to an amplitude
and units of choice.

Very often, even simpler kernels are used in both theoretical and computational ap-
proaches. In the limit of identical time constants τrise and τfall, the interaction kernel
becomes a so-called α-function, as can be easily derived via l’Hôpital’s rule:

lim
τrise→τfall=τ syn

ε(t) ∝ Θ(t)t exp

(
− t

τ syn

)
. α-kernel(2.49)

The probably most popular synaptic interaction kernel results from the assumption that
the diffusion of neurotransmitters happens much faster than their removal. If one therefore
neglects τrise, the synaptic interaction kernel becomes a simple exponential function:

lim
τrise<<τfall=τ syn

ε(t) ∝ Θ(t) exp

(
− t

τ syn

)
. exponential

kernel
(2.50)

The three kernels discussed above are depicted in Figure 2.21. Equation 2.50 represents
the synaptic interaction model used from here on throughout this work.

Now that we have established the functional shape of the synaptic interaction, we need
to discuss its nature. The neuron model equations discussed in earlier sections (Equations
2.28 and 2.40) may suggest that synaptic transmission is equivalent to current injection
into the membrane. On the other hand, we have explicitly discussed in Section 2.1.3
how (chemical) synapses cause an increase in the membrane conductance for specific ion
types. While the latter is certainly true, arguments can be made for modeling synaptic
interactions as currents. Indeed, both current and conductance-based synaptic models
are widely used in theoretical and computational neuroscience.28 Below, we explain the
28 We point out again that, depending on the context, the abbreviation PSC may refer to either a

postsynaptic current or a postsynaptic conductance.

45



2. Introduction: From Biological Experiments to Mathematical Models

Figure 2.22.: Circuit diagram of an LIF neuron with COBA synapses. Incoming spikes
trigger changes in the synaptic conductances towards their respective rever-
sal potential, generating an input current that depends on the momentary
value of the membrane potential.

reasoning behind these models and briefly outline their differences. A much more detailed
discussion is provided in Section 4.2.

2.2.2.1. Current-Based and Conductance-Based Models

Conductance-Based Synaptic Interaction

As outlined in Section 2.1.3, an incoming spike causes a synapse to locally change the
conductance of the neural membrane towards the reversal potential of the ion type its
ligand-gated ion channels are permeable for. Consequently, in this scenario, f syn repre-
sents a conductance and shall therefore be renamed gsyn. Figure 2.22 shows a schematic
of the corresponding circuit.

Here, we need to explicitly differentiate between excitatory (gsyn
e ) and inhibitory (gsyn

i )
conductances, since they “connect” the membrane to different reversal potentials Erev

e and
Erev

i , respectively. Since membrane dynamics are primarily determined by Na+ and K+

flows, the reversal potentials are usually chosen as

Erev
e = ENa+ and (2.51)

Erev
i = EK+ . (2.52)

We can now apply Ohm’s law to the synaptic conductances in Figure 2.22 to obtain
the total synaptic current

Isyn = gsyn
e (Erev

e − u) + gsyn
i (Erev

i − u) . (2.53)

This equation underpins the conductance-based (COBA)COBA
model

synaptic model. Note how the
synaptic current explicitly depends on the membrane potential. By plugging the synaptic
current into the LIF equation (Equation 2.28), we can now obtain the COBA LIF equation:

Cm
du

dt
= gl(El − u) + gsyn

e (Erev
e − u) + gsyn

i (Erev
i − u) + Iext .COBA LIF

equation
(2.54)

Despite saving a more thorough discussion for later (Section 4.2), we can already point
out several important characteristics of the COBA LIF equation. Firstly, the relationship
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Figure 2.23.: COBA vs. CUBA synapses. Left: PSP saturation as the membrane ap-
proaches the inhibitory reversal potential. The effect is visible for excitatory
PSPs as well, but is much weaker due to the larger distance towards the
excitatory reversal potential. Right: effect of an increased total conduc-
tance. Both the COBA and the CUBA neuron are stimulated with identical
excitatory and inhibitory Poisson spike trains. Despite the dynamic range of
the membrane potential being smaller than in the left plot, the membrane of
the CUBA neuron fluctuates significantly stronger than the one of its COBA
counterpart. This happens because due to the increased total conductance
of the COBA neuron, which leads to a faster membrane and thereby smaller
PSPs.

between the membrane potential and its derivative is no longer determined only by a
constant coupling gl (as it was in the simple LIF equation), but also by explicit functions
of time gsyn

e and gsyn
i . This makes the task of finding a closed-form solution for the tem-

poral evolution of the membrane potential much more difficult (see, in particular, Section
4.2.4). Secondly, due to the dependence on the distance towards the reversal potentials,
summation of PSPs is no longer linear. This is particularly visible for inhibitory PSPs,
where saturation effects can easily appear due to the close proximity of the inhibitory
reversal potential to the dynamic range of the membrane potential. This effect is also
present, albeit less visible, for excitatory PSPs, in particular since the spike threshold
prohibits large depolarizations of the membrane. Thirdly, judging just by the formal
equivalence of the three conductance-regulated additive terms in the COBA LIF equation,
the total membrane conductance gtot = gl + gsyn

e + gsyn
i becomes itself a function of time

– and, in particular, larger than gl alone (since conductances can only be positive by
definition). Therefore, the “reaction speed” of the membrane given by its time constant
τeff = Cm

gtot increases and becomes itself time-dependent. This, in turn, causes the effect
of an incoming spike on the membrane potential to depend on all other spikes received
from all presynaptic partners. Figure 2.23 shows an example of these effects.
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By assuming a particular synaptic interaction kernel, we can now provide a closed-form
expression for the COBA synapse dynamics. With the exponential kernel from Equation
2.50, the excitatory and inhibitory synaptic conductances can be written as

gsyn
x (t) =

∑
syn k

∑
spk s

wkΘ(t− ts) exp(− t− ts
τ syn

), x ∈ {e, i} . (2.55)

The total synaptic current Isyn then becomes

Isyn(t, u) =
∑

x∈{e,i}

∑
syn k

∑
spk s

wkΘ(t− ts)(Erev
x − u) exp(− t− ts

τ syn
) . (2.56)

Current-Based Synaptic Interaction

While the conductance-based nature of chemical synapses is an empirical fact, it does
not necessarily imply that synaptic interaction models must be conductance-based them-
selves. The reason for this non sequitur lies within the spatial structure of neurons (Section
2.1.4). An incoming spike may cause a local change in the membrane conductance, but the
elicited PSP propagates passively towards the soma. The soma therefore only experiences
an incoming current and is not affected by distal conductance dynamics. If one wishes
to use a point neuron model, it is somewhat natural to consider the “point” to represent
the soma, since it is there where the afferent inputs are summed up to generate action
potentials. It can therefore be argued that a current-based (CUBA) synaptic interaction
modelCUBA

model
is more natural when combined with a point neuron model.

In this scenario, the membrane potential equation remains identical to Equation 2.28:

Cm
du

dt
= gl(El − u) + Isyn + Iext .CUBA LIF

equation
(2.57)

With the exponential kernel from Equation 2.50, the total synaptic current can be written
as

Isyn(t) =
∑
syn k

∑
spk s

wkΘ(t− ts) exp(− t− ts
τ syn

) (2.58)

These equations express the fact that, in contrast to the COBA scenario, CUBA PSPs
are summed up linearly and do not otherwise interact with each other. As we shall see
in Section 4.2, this greatly simplifies the analytical treatment of membrane potential
dynamics.

We end this section with a brief explanation of commonly used nomenclatureneuron/sy-
napse model
nomencla-
ture

for the
synapse dynamics discussed above. Network models in computational neuroscience rarely
use different types of neuron or synapse models simultaneously. Furthermore, any single
neuron usually has the same dynamics for all of its afferent synapses. As a consequence,
synaptic attributes are often allocated to the used neuron model. Therefore, it is com-
mon to speak of, e.g., “COBA EXP LIF neurons”29, despite the fact that COBA EXP
characterizes the synapse model and LIF the neuron membrane dynamics.

29 In PyNN, for example, neuron models implicitly characterize their synapse dynamics. This is accounted
for by the typical naming of neuron models, such as, e.g., IF_cond_alpha or aEIF_curr_exp.
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2.2.2.2. Synaptic Plasticity

In living tissue, the coupling strength between neurons is not a fixed quantity, but may
change over time. These variations can be tracked back to morphological changes in their
synaptic connections. which can be broadly classified based on the time scales on which
they occur. In this section, we will only give a brief overview of theoretical models of
synaptic plasticity. In particular, short-term plasticity will play an important role in the
dynamics of the spiking network models discussed in Sections 5.3 and 6.5. For a more
detailed discussion of synaptic plasticity, we recommend “Part three” (Chapters 10-12)
of the textbook by Gerstner and Kistler (2002) and “Part III” (Chapters 8-10) of the
textbook by Dayan and Abbott (2001).

Structural Plasticity

On very long time scales in the order of days to years, neurons in the brain rewire as
a consequence of, e.g., cognitive (learning, memory formation), genetic (aging) or envi-
ronmental (injury, disease) factors. The formation of new connections and pruning of old
ones is called structural plasticity structural

plasticity
and is mediated by highly complex biochemistry: it

involves not only electrical interactions, but also multiple molecular signalling pathways
(neurotransmitters, genetic factors etc.). While providing a fertile ground for modern
experimental techniques (Caroni et al., 2012), the complex nature of structural plastic-
ity has so far forestalled the formulation of a unified theory, making it a rare sight in
computational and theoretical neuroscience models.

Long-Term Plasticity: Rate-Based Models

On intermediate time scales in the order of minutes to hours, existing synapses may also
change their weight. Depending on whether synapses are strengthened or weakened, one
speaks of long-term potentiation (LTP) LTP/LTDand long-term depression (LTD), respectively.30

A well-known rule of thumb for LTP was coined by Donald O. Hebb (Hebb, 2002): "When
an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased." - which is often paraphrased
as “What fires together wires together.” This is commonly referred to as Hebb’s law Hebb’s lawand
has found its way in many models of synaptic plasticity.

Most mathematical formulations of Hebbian learning rules are rate-based and can gen-
erally be written as

dwij
dt

= F (wij , νi, νj) , Hebbian
learning

rule

(2.59)

where wij denotes the synaptic weight between the presynaptic neuron j and the post-
synaptic neuron i and νj and νi their respective firing rates. In order to account for
Hebb’s law, the function F usually features a positive dependence on the product of the
neurons’ firing rates. In the rare cases anti-

Hebbian
learning

rule

where the dependence is chosen to be negative, the
plasticity rule is called anti-Hebbian.

30 Sometimes long-term and short-term plasticity are abbreviated as LTP and STP, respectively. This can
be easily confused with long-term and short-term potentiation and must be inferred from the context,
if necessary. Here, we use “P” as an abbreviation for potentiation and do not abbreviate short-term-
and long-term plasticity.
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The simplest possible rate-based Hebbian learning rule is given by

dwij
dt

= cνiνj . (2.60)

For positive c - which conforms to Hebb’s law - synapses are strengthened when both the
pre- and postsynaptic neuron fire. This is also an obvious drawback of this simple model:
synaptic weights increase indefinitely for nonzero firing rates. However, this can be easily
fixed by introducing an upper bound to the learning rate c:

c→ c(wij) = γ(wmax − wij)β . (2.61)

Still, this model has the limitation that it can not simultaneously account for LTP and
LTD (and neither does Hebb’s original rule). This can, however, be included, by allowing
more complex functions F , along with more complex behavior with various functional
consequences. Below, we list three such learning rules that have enjoyed relative popularity
in theoretical studies.

The so-called covariance rule proposed in Sejnowski (1977) strengthens the synapse if
neural activity is positively correlated and weakens it otherwise:

dwij
dt

= γ(νi − 〈νi〉)(νj − 〈νj〉) .covariance
rule

(2.62)

By adding a quadratic term to the plasticity equation, Oja’s rule

dwij
dt

= γ(νiνj − wijν2
i )Oja’s rule (2.63)

enables a homeostatic mechanism of sorts: under certain conditions, it can be shown
that the afferent weights of a neuron converge asymptotically to a configuration where∑

j w
2
ij = 1 (Oja, 1982). Finally, the plasticity rule proposed by Bienenstock, Cooper and

Munro (BCM rule, see Figure 2.24)

dwij
dt

= c1ν
2
i νj − c2νiνjBCM rule (2.64)

allows neurons to become selective to particular input patterns and has been successfully
used to model the development of receptive fields (Bienenstock et al., 1982).

Long-Term Plasticity: Spike-Based Models

The above considerations are based on empirical observation and sucessfully repro-
duce some experimentally verified phenomena, but remain at a rather abstract level. In
particular, they make no statement about how firing rates are encoded at the site of a
particular synapse and offer no mechanistic model of how an individual synapse performs
the required computation of F (wij , νi, νj). For a better understanding of the microscopic
phenomena that enable long-term plasticity, having a spike-based plasticity rule is more
convenient.

The arguably most popular spike-based model is STDPSTDP , which is short for spike-timing-
dependent plasticity. It is based on the observation that the timing of pre- and post-
synaptic spikes is critical to the evolution of synaptic weights (Bi and Poo, 1998; Markram
et al., 1997). While by now a lot of experimental evidence for STDP exists, Figure 2.25
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Figure 2.24.: BCM plasticity rule. The parameters c1 and c2 in Equation 2.64 were both
set to 1. Depending on the postsynaptic firing rate νi, the synapse is either
weakened (LTD, blue hue) or strengthened (LTP, red hue). The fixed point
defined by ∆wij

wij

!
= 0 is unstable. The presynaptic firing rate νj serves as a

linear modulator of the change in synaptic strength.

51



2. Introduction: From Biological Experiments to Mathematical Models

probably remains the most recognizable result of an STDP measurement protocol. Given
these measurements, it is quite straightforward to formulate a phenomenological STDP
model.

For any pair of pre- and postsynaptic spikes, we can define the synaptic weight change
to be some function W of the difference in spike timing, as well as of the current synaptic
weight itself. For any pre- and postsynaptic spike trains ρj and ρi (as defined in Equation
2.30), the total synaptic weight change can be written as a sum over all weight changes
induced by all pre- and postsynaptic spike pairings:

∆wij =
∑

postsynaptic spikes k

∑
presynaptic spikes l

W (wij , t
k
i − tlj) . (2.65)

The function W is generally split, depending on the relative timing of the pre- and post-
synaptic neuron ∆t := tki − tlj , into a causal and an acausal branchcausal and

acausal
branches

:

W (wij ,∆t) =

 A+(wij) exp
(
−∆t
τ+

)
for ∆t > 0 (causal branch)

−A−(wij) exp
(

∆t
τ−

)
for ∆t < 0 (acausal branch) .

(2.66)

The causal and acausal branches are also often called Hebbian and anti-Hebbian, respec-
tively. In most models, the function W factorizes into a pure weight-dependent term A
and a pure spike-timing-dependent term. For simplicity and analytical tractability, the
latter is often chosen as a decaying exponential function of the pre- and postsynaptic
spike interval, which is also in reasonable agreement with the experimental data shown in
Figure 2.25.

In this formulation, the weight-dependent term can be chosen individually for each
branch (“+” encodes the causal and “−” the acausal branch):

A+(wij) = f(wmax − wij)η+ and (2.67)
A−(wij) = f(wij − wmin)η− . (2.68)

The parameters η+ and η− represent learning rates. For reasons of physical plausibility,
the synaptic weights are bounded from above and below by wmax and wmin, respectively.
The function f controls the shape of the weight dependence. Popular choices include the
soft-bounded multiplicative update rulemultiplica-

tive
rule f(x) = x (2.69)

and the additive rule with hard boundsadditive rule

f(x) = Θ(x) , (2.70)

where Θ denotes the Heaviside step function.
In order to avoid a switch from excitation to inhibition, it is usually assumed that

wmin ≥ 0. Apart from being theoretically problematic, such a switch would cause a
violation of Dale’s law (see Section 2.1.3); in particular, it would be biologically implau-
sible, since excitation and inhibition are usually mediated by different neurotransmitters.
Indeed, the existence of “inhibitory STDP” has not yet been properly studied.
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Figure 2.25.: In-vitro measurement of STDP for an excitatory synapse. The black cir-
cles denote individual measurements of the EPSP amplitude, which reflects
the synaptic weight. When the presynaptic neuron spikes before the post-
synaptic one (causal relation), the synapse is strengthened. When the timing
of pre- and postsynaptic spikes is reversed (acausal relation), the synapse is
weakened. The relative weight change is largest when the pre- and post-
synaptic spikes appear in quick succession, regardless of their order. The
overlayed solid line represents a schematic timing-dependent learning rule
W (ti, tj). Figure taken from Sjöström and Gerstner (2010), which is itself
modified from Bi and Poo (1998).

As already mentioned, the STDP model described here, while very popular with com-
putational and theoretical neuroscientists, remains purely phenomenological. However, it
is significantly closer to an electrophysiological explanation of long-term plasticity than
the rate-based models described in the previous section. In this model, the synapse only
needs to “know” the timing of pre- and postsynaptic spikes. While the former is trivial,
the latter has been shown to be possible by action potentials that propagate back-

propagating
action

potentials

back from the
soma throughout the dendritic tree (Markram and Sakmann, 1995). While the biological
basis of STDP is not yet completely understood, the standard STDP model described
above has evolved into more complex STDP models based on experimentally established
synaptic molecular dynamics (see, e.g., Shouval et al., 2010). Moreover, these models
also typically strive to explain the vast array of different STDP shapes observed across
different species and brain regions (Abbott and Nelson, 2000).

Short-Term Plasticity: The Tsodyks-Markram Mechanism

Changes in synaptic efficacies also occur on shorter timescales, on the order of mil-
liseconds to seconds. Such changes are usually due to physiological reasons and do not
necessarily encode learning processes, since they are only transient. However, since they
are practically ubiquitous in neural tissue (see, e.g., Thomson and Deuchars, 1994), they
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do play an important role in the way the brain encodes and processes information.
Many experiments have demonstrated that synaptic efficacy is influenced by the firing

rate of the presynaptic neuron. Both weakening and strengthening of synapses have been
observed, sometimes even simultaneously (see, e.g. Markram et al., 1998a, for an extensive
collection of experimental papers). Analogously to their long-term counterpartsshort-term

depression
and
potentiation

, these
short-term synaptic weight changes are abbreviated as STD (short-term depression) and
STP (short-term potentiation). Here, we discuss a phenomenological model of short-term
synaptic plasticity: the Tsodyks-Markram-Model (short: TSO, see Tsodyks and Markram,
1997b)TSO model . For a comprehensive list of biophysical models, we again refer to the review by
Markram et al. (1998a).

Initially, the TSO model was designed for representing STD only and was extended later
to encompass STP as well. We shall therefore also start with a discussion of STD in the
TSO model. The TSO model assumesrecovered,

effective and
inactive
partitions

that the total amount of synaptic resources, which
could, for example, model the total number of vesicles within a synapse, is naturally
limited and subdivided into three partitions: recovered, effective and inactive, which
assume the fractions R, E and I of the total resource amount, respectively. The first
model equation must therefore read

R+ E + I = 1 . (2.71)

When the synapse is not activated by presynaptic spikes, all resources are collected into
the recovered partition, such that the resting state is (R,E, I) = (1, 0, 0). Upon arrival of
a presynaptic spike, a portion Uutilization

of synaptic
efficacy

(utilization of synaptic efficacy) of the recovered parti-
tion is instantaneously transferred to the effective partition, which can be interpreted as
neurotransmitter release into the synaptic cleft. The net synaptic effect (postsynaptic cur-
rent/conductance) is therefore considered proportional to the amount of resources in the
effective partition. The effective partition inactivates exponentially with a time constant

inactivation
time
constant

τinact, which models the removal of neurotransmitters from the postsynaptic site and is
therefore equivalent to the synaptic time constant τ syn from Equation 2.50. The resources
removed from the effective partition are transferred to the inactive partition, which then
decays exponentially back into the recovered partition with a recovery time constantrecovery

time
constant

τrec,
thereby modeling neurotransmitter reuptake by the presynaptic terminal. With this, the
TSO model of STD is fully defined and we can cast its dynamics into equations:

dR

dt
=

I

τrec
−
∑

spikes s

URδ(t− ts) (2.72)

dE

dt
= − E

τinact
+
∑

spikes s

URδ(t− ts) (2.73)

Note that the dynamics of I must not be explicitly given, since they follow directly from
Equations 2.71 – 2.73.

In order to model STP, the original TSO model from Tsodyks and Markram (1997b)
was extended in Markram et al. (1998b) by making U itself a dynamic variable. The
first incoming spike of a train triggers a resource transfer of amplitude U0, but with each
incoming spike, U is increased by a certain amount ∆U . By setting ∆U = U0(1 − U),
one can ensure that the synapse may never use more resources than it has available. In
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between spikes, U decays back towards its resting state U0 with a facilitation time constant
facilitation

time
constant

τfacil. The final equation of the complete TSO model thereby reads:

dU

dt
=
U0 − U
τfacil

+
∑

spikes s

U0(1− U) δ(t− ts) (2.74)

Typically, synaptic time constants are much shorter than those of short-term plasticity
(both depression and facilitation). By integrating Equations 2.72 – 2.74 under this as-
sumption, we can calculate the change in the TSO variables as a function of the interspike
interval ∆t:

Rn+1 = Rn(1− Un+1) exp

(
−∆t

τrec

)
+ 1− exp

(
−∆t

τrec

)
(2.75)

En+1 = En exp

(
−∆t

τinact

)
+RnUn+1 exp

(
−∆t

τinact

)
(2.76)

Un+1 = Un exp

(
−∆t

τfacil

)
+ U0

[
1− Un exp

(
−∆t

τfacil

)]
. (2.77)

For a constant presynaptic firing frequency ν, we can now easily derive steady-state ex-
pressions for the TSO variables by setting Xn+1

!
= Xn =: X̃ (with X ∈ R,E,U):

Ũ =
U0

1− (1− U0) exp
(
− 1
ντfacil

) (2.78)

R̃ =
1− exp

(
− 1
ντrec

)
1− (1− Ũ) exp

(
− 1
ντrec

) steady-state
expressions

(2.79)

Ẽ =
R̃Ũ exp

(
− 1
ντinact

)
1− exp

(
− 1
ντinact

) . (2.80)

Figure 2.26 shows several examples of STD, STP and a combination of both using the
TSO mechanism.

The TSO mechanism of short-term plasticity plays an important role in later sections
of this manuscript. In the cortical attractor memory model discussed in Section 5.3, it
takes part in controlling the duration of particular activity patterns. In the LIF-based
sampling networks from Section 6.5, it is used to constrain interneuron coupling strengths
by simulating renewing synapses.
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Figure 2.26.: Simulation of synaptic plasticity using the TSO mechanism. The cell is
stimulated by a 100 Hz regular spike train for 100 ms. Synaptic efficacy is
plotted on the left hand side and the resulting membrane potential trace on
the right hand side. U0 was set to 0.2, so the first PSC/PSP in the topmost
example (no TSO) is five times as high as the first PSCs/PSPs of the other
three examples. The synaptic time constant (equivalent to τinact) was set
to 2 ms. For the purely depressing mode, we have set τrec = 100 ms and
τfacil = 0 ms. For the purely facilitating mode, we have set τrec = 0 ms and
τfacil = 200 ms. The third mode is a combination of the previous two, with
τrec = 100 ms and τfacil = 200 ms. Note how in this regime, where STD and
STP are happening simultaneously, the synaptic efficacy first rises before
dropping off.
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3. Artificial Brains: Simulation and
Emulation of Neural Networks

Comic by Zach Weiner, SMBC 3054

When describing increasingly complex1 systems, the required array of equations equiv-
alently grows in size and complexity. In many (usually simple) cases, statistical methods
can be applied to distill macroscopic equations from those governing the microscopic com-
ponents of a system, with thermodynamics offering a paradigmatic example. More often
though complexity

vs. mathe-
matical

tractability

– and this is usually the case for neural networks – complexity rises beyond math-
ematical tractability. In such cases, it is nowadays possible to fall back onto simulating
these systems.

Owing to recent advances in general-purpose computing architectures, very large sys-
tems of coupled equations can be numerically evaluated in reasonable time on parallel
multiprocessor machines. Especially in neuroscience, the advent of modern-day comput-
ers and algorithms has had an enormous impact, with computational neuroscience now
dominating the theoretical research landscape. Simulating simulationnetworks of tens of thousands
of spiking neurons has, by now, become routine (see, e.g., Brette et al., 2007) and plans are
even underway to simulate the entire human brain with very large scale parallel machines
(Markram, 2012).

It is clear that any hardware back-end is ultimately only as powerful and versatile as the
software softwarecontrolling it allows it to be. Therefore, neural network simulators represent the
backbone of computational neuroscience – with the present work making no exception.
Section 3.1 gives a brief overview of the simulation software used for the various neural
network models presented later on, with a particular focus on the abstraction offered by

1Here, complexity can be understood both as number of constituent components, as well as concerning
the nature of the equations describing their dynamics and interactions.
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the simulator-independent language PyNN and the integration with the Python program-
ming language provided by this common interface.

It might now appear that the combination of powerful software and fast general-purpose
hardware is the best possible instrument for modeling neural networks. While this ap-
proach is, indeed, hard to surpass in terms of versatilityversatility

vs.
scalability

, it is rather questionable whether
it is optimal in terms of power efficiency and scalability. Obviously, these potential draw-
backs result from the hardware architecture. Von-Neumann-style machines require a huge
structural overhead in order to enable their use as general-purpose computers.

A machine specifically designed for neural network simulations has no need for such
structures and could therefore outperform a conventional machines by orders of magni-
tude in terms of speed and power efficiencyspeed and

power
efficiency

, while using essentially the same VLSI tech-
nology. Tailoring hardware to the specific needs of neural network modeling also has the
potential to overcome scalability problems, which appear on conventional architectures
due to communication bandwidth bottlenecks between the processing cores.

One particular class of such machines are aptly named “neuromorphic” devicesphysical
implementa-
tion

. They
break away from the classical description-abstraction-simulation paradigm by realizing
a physical implementation of the system to be studied (Mead, 1989, 1990; Mead and
Mahowald, 1988). In this context, it is more intuitive to say that they emulateemulation the system
rather than simulating it. This particular approach is not without limitations of its own
– but the motivation behind neuromorphics is that whatever such systems might lose
in versatility through their choice of a physical model, they more than make up for in
efficiency, speed and scalability (Furber et al., 2012; Indiveri et al., 2006; Rocke et al.,
2008; Schemmel et al., 2010; Vogelstein et al., 2007).

The vision of a universal neuromorphic emulator lies at the very heart of the present
work. While the models and methods developed here strive for generality, they have been
tested and studied on several particular neuromorphic systems. In Sections 3.2 and 3.3,
we describe these systems in detail, as these details will be essential in understanding
the particular strategies chosen for the implementation of the models that we shall later
elaborate on.

Just as with conventional hardware, a complex stack of software modules is required for
operating neuromorphic systemssoftware

stack
. The interplay between hardware, software and the users

themselves can be systematized into a particular workflow, which is to a large extent
characteristic for the employed hardware platform (Brüderle et al., 2011)workflow . The most
relevant aspects of the software and workflows built around the neuromorphic devices
used for this work are addressed subsequently to their respective hardware description.

In the hardware-related sections 3.2 and 3.3, we only offer a high-level modeler’s view
of the neuromorphic systems. For a more detailed description of the constituent circuits,
we point to the relevant publications in the respective sections. The material (text and
figures) of Sections 3.2 and 3.3 is taken entirely from publications that were co-authored
by the author of this thesis, in particular Pfeil et al. (2013) and Petrovici et al. (2014).
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3.1. Simulation of Neural Networks

Computer simulations are an irreplaceable tool for computational neuroscience. While
significant efforts are being made towards simulating large-scale, highly detailed cortical
models (see, e.g., Markram, 2006), most simulation software is designed to handle more
abstract neuron models (Brette et al., 2007), such as the ones we are using in our present
work. Depending on the particular requirements of an individual network model, such as
the required neuron model or the network size, or on the specific investigated question,
which might require large amounts of simulation runs, one may choose to favor one par-
ticular simulation engine that is exceptionally adept for the task at hand. Unfortunately,
switching from one simulation software to another is rarely straightforward and usually
involves a complete rewrite of the entire simulation code.

This represents the motivation behind PyNN PyNN, a simulator-independent API for the
high-level definition of point neuron networks (Davison et al., 2008). PyNN abstracts
away the details of the software back-end and unifies the interface for instantiating neu-
rons and synapses, controlling their parameters and recording relevant dynamic variables.
Individual back-end-specific modules that remain hidden from the user then take care
of the translation of the networks defined in PyNN to the chosen simulation engine. A
particularly useful feature of PyNN in the context of our work is that it also supports
both the Spikey chip (Section 3.2) and the waferscale system (Section 3.3) as emulation
back-ends.

All the network models that we discuss later on are defined via PyNN. For our software
simulations, we use either NEST NEST(Diesmann and Gewaltig, 2002; Gewaltig and Diesmann,
2007; Website, 2009) or NEURON NEURON(Hines and Carnevale, 2003; Hines et al., 2008; Hines
and Carnevale, 2006) as back-ends. For the hardware emulations, we use the Spikey chip
for the small network models and the ESS (Section 3.3.4) of the waferscale system for the
networks with a larger number of neurons.

Figure 3.1.: Schematic of the PyNN architecture and its interaction with several simula-
tion/emulation back-ends. Figure taken from Davison et al. (2008).
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3.2. The Spikey Chip

The central component of the single-chip neuromorphic setup we will use in Chapter 5
Spikey is the “Spikey” neuromorphic microchip. It contains analog very-large-scale integration

(VLSI)VLSI circuits modeling the electrical behavior of neurons and synapses.
In such a physical modelphysical

model
, measurable quantities in the neuromorphic circuitry have

corresponding biological equivalents. For example, the membrane potential u of a neuron
is modeled by the voltage over a capacitor Cm that, in turn, can be seen as a model of
the capacitance of the cell membrane.

In contrast to numerical approaches, dynamics of physical quantities like u evolve con-
tinuously in time. We designed our hardware systems to have time constants approxi-
mately 104speedup times faster than their biological counterparts allowing for high-throughput
computing. This is achieved by reducing the size and hence the time constant of electrical
components, which also allows having more neurons and synapseshardware vs.

biological
domain

on a single chip with
fixed dimensions. To avoid confusion between hardware and biological domains of time,
voltages and currents, all parameters are specified in the biological domain.

3.2.1. The Neuromorphic Chip

On the Spikey chip (Figure 3.2), a VLSI version of the LIF neuron model (Section 2.2.1.1)
with COBACOBA LIF

neurons
synapses (Section 2.2.2.1) is implemented:

Cm
du

dt
= −gl(u− El)−

∑
i

gsyn
i (u− Ei) . (3.1)

The time course of the synaptic activation is modeled by

gi(t) = pi(t) · wi · gmax
i (3.2)

where gmax
i are the maximum conductances and wi the weights for each synapse, respec-

tively. The time course pi(t) of synaptic conductances is a linear transformation of the
current pulses shown in Figure 3.2B (in green), and hence an exponentiallyexponential

PSCs
decaying func-

tion of time. For a more detailed layout of the relevant circuits, we refer to Schemmel
et al. (2006) and Indiveri et al. (2011).

The implementation of STDPSTDP is described in Schemmel et al. (2006) and Pfeil et al.
(2012a). Correlation measurements between pre- and post-synaptic action potentials are
carried out in each synapse, and the 4-bit weight is updated by an on-chip controller
located in the digital part of the Spikey chip. As STDP is not relevant for our studies, we
do not discuss it in more detail.

Short-term plasticity (STP)STP modulates gmax
i (Schemmel et al., 2007) similar to the

model by Tsodyks and Markram (1997a). On hardware, STP can be configured individ-
ually for each synapse line driver that corresponds to an axonal connection in biological
terms. It can either be facilitating or depressing, but, in contrast to the original model,
not both at the same time.

The propagation of spikesspike
propagation

within the Spikey chip is illustrated in Figure 3.2 and de-
scribed in detail in Schemmel et al. (2006). Spikes enter the chip as time-stamped events
using standard digital signaling techniques that facilitate long-range communication, e.g.,
to the host computer or other chips. Such digital packets are processed in discrete time
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Synapse
(B)

Line
Driver
(A)

Neuron
(C)

El
gl

Eexc

Einh

Cm Vreset

Vth
Vm

mux

int
ext

exc/inh

weight
RAM

tfall
inhexc

Figure 3.2.: The Spikey neuromorphic chip. Left: Microphotograph of the chip (fabri-
cated in a 180 nm CMOS process with a die size of 5×5 mm2). Each of its 384
neurons can be connected to any other neuron on the chip. In the following,
we give a short overview of the technical implementation of neural networks
on the Spikey chip. (A) Within each synapse array, 256 synapse line drivers
convert incoming digital spikes (blue) into a linear voltage ramp (red) with
a falling slew rate tfall. For simplicity, the slew rate of the rising edge is not
illustrated here, as it is, in general, chosen to be comparatively small. Each
of these synapse line drivers are individually driven by either another on-chip
neuron (int) or an external spike source (ext). (B) Within each synapse,
depending on its individually configurable weight wi, the linear voltage ramp
(red) is then translated into a current pulse (green) with exponential decay.
These postsynaptic pulses are sent to the neuron via excitatory (exc) and
inhibitory (inh) input lines, which are shared by all synapses belonging to the
same column. (C) Upon reaching the neuron circuit, the total current on
both input lines is converted into conductances. If the membrane potential u
crosses the firing threshold ϑ, a digital pulse (blue) is generated, which can
be recorded and fed back into the synapse array. After each spike, u is set
to % for a refractory period τref . Neuron and synapse line driver parameters
can be configured as summarized in Table 3.1. Figure taken from Pfeil et al.
(2013).
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3. Artificial Brains: Simulation and Emulation of Neural Networks

in the digital part of the chip, where they are transformed into digital pulses entering
the synapse line driver (marked red in Figure 3.2A). These pulses propagate in continu-
ous time between on-chip neurons, and are optionally transformed back into digital spike
packets for off-chip communication.

3.2.2. System Environment

The Spikey chip is mounted on a network module (see the schematic in Figure 3.3. Dig-
ital spike and configuration data is transferred via direct connections between a field-
programmable gate array (FPGA)FPGA and the Spikey chip. Onboard digital-to-analog con-
verter (DAC)DAC, ADC and analog-to-digital converter (ADC) components supply external parame-
ter voltages to the Spikey chip and digitize selected voltages generated by the chip for cal-
ibration purposes. Furthermore, up to eight selected membrane voltages can be recorded
in parallel by an oscilloscope. Because communication between a host computer and the
FPGA has a limited bandwidth that does not satisfy real-time operation requirements
of the Spikey chip, experiment execution is controlled by the FPGA while operating the
Spikey chip in continuous time. To this end, all experiment data is stored in the local
random access memory (RAM)RAM of the network module. Once the experiment data is
transferred to the local RAM, emulations run with an acceleration factor of 104 compared
to biological real-time, independently of the emulated network size.

Execution of an experiment is split into three steps. First, the control softwarecontrol
software

within
the memory of the host computer generates configuration data (such as synaptic weights,
network connectivity, etc., see Table 3.1), as well as input stimuli to the network. All data
is stored as a sequence of commands and is transferred to the memory on the network
module. In the second step, a playback sequencer in the FPGA logic interprets this data
and sends it to the Spikey chip, after which it triggers the emulation. Data produced by
the chip (essentially, spike times) is recorded in parallel. In the third and final step, this
recorded data stored in the memory on the network module is retrieved and transmitted
to the host computer, where they are processed by the control software.

Having a control software that abstracts away the hardware details greatly increases the
accessibility for a diverse community of users. However, modelers are already struggling
with mutually incompatible interfaces to various software simulators. That is why the
Spikey system supports PyNNPyNN API , a widely used application programming interface (API)
that strives for a coherent user interface, allowing portability of neural network models
between different software simulation frameworks (such as NEST or Neuron) and hardware
systems (such as the Spikey system or the wafer-scale device in Section 3.3).

3.2.3. Configurability

In order to facilitate the emulation of a large variety of network models (with a declared
focus on biologically-inspired structures), it is essential to support the implementation
of different neuron and synapse types. This can be achieved by varying the appropriate
parameters of the implemented neurons and synapses. We assume, implicitly, that the
implemented COBA LIF dynamics are sufficient for a good enough approximation of the
neuron/synapse dynamics that are to be modeled.

The Spikey chip provides 2969 different analog parameters (Table 3.1) stored on current
memory cells that are continuously refreshed from a digital on-chip memory. Most of
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Network Module

RAM
Sequencer

DAC/ADC

Neuromorphic Network

Host Computer

Control
Software

PyNN

Spikey Chip

(FPGA)

(neuronal network
modeling language)

Figure 3.3.: Integrated development environment. User access to the Spikey chip is pro-
vided using the PyNN neural network modeling language. The control soft-
ware controls and interacts with the network module which is operating the
Spikey chip. The RAM size (512MB) limits the total number of spikes for
stimulus and spike recordings to approx. 2 · 108 spikes. The required data
for a full configuration of the Spikey chip has a size of approximately 100 kB.
Figure taken from Pfeil et al. (2013).
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3.2. The Spikey Chip

these cells deliver individual parameters individual
parameters

for each neuron or synapse line driver. However,
due to the size of the current-voltage conversion circuitry, this was not achievable for all
parameters. In particular, this concerns the reversal potentials El, Erev

e and Erev
i , for each

neuron.2 As a consequence, groups of 96 neurons share shared
parameters

most of these voltage parameters.
Parameters that can not be controlled individually are delivered by global current memory
cells.

In addition to the possibility of controlling analog parameters, the Spikey chip also offers
an almost arbitrary configurability of the network topology. As illustrated in Figure 3.2,
the fully configurable synapse array allows connections from synapse line drivers (located
alongside the array) to arbitrary neurons (located below the array) via synapses whose
weights can be set individually with a 4-bit 4-bit weightsresolution. This limits the maximum fan-in
to 256 synapses per neuron, which can be composed of up to 192 synapses from on-chip
neurons, and up to 256 synapses from external spike sources. Because the total number of
neurons exceeds the number of inputs per neuron, an all-to-all connectivity is not possible.
However, it is rather sensible to assume that network models only rarely require all-to-all
connectivity. For all Spikey experiments that we discuss here, the connection density is
completely unproblematic.

3.2.4. Calibration

Device mismatch that arises from the inevitable variability in the manufacturing process
causes fixed-pattern noise fixed-pattern

noise
, which manifests itself as parameter variability from neuron to

neuron as well as from synapse to synapse. Electronic noise (including thermal noise) also
affects dynamic variables such as the membrane potential u. Consequently, experiments
will exhibit some amount of both neuron-to-neuron and trial-to-trial variability variabilitygiven the
same input stimulus.

To facilitate modeling and provide sufficient repeatability of experiments on Spikey
chips, it is essential to minimize these effects by calibration calibrationroutines. Many calibration
routines target parameters with a direct correspondence to biology, such as membrane time
constants (described in the following), firing thresholds, synaptic efficacies or PSP shapes.
Others have no biological equivalents, such as compensations for shared parameters or
workarounds of defects (Bill et al., 2010; Kaplan et al., 2009; Pfeil et al., 2012b). In
general, calibration results are used to improve the mapping between biological input
parameters and the corresponding target hardware voltages and currents, as well as to
determine the dynamic range of all model parameters (see, e.g., Brüderle et al., 2009).

While the calibration of most parameters is rather technical, but straightforward (e.g.,
all neuron voltage parameters), some require more elaborate techniques. These include
the calibration of τm, short-term synaptic plasticity, as well as synapse line drivers.

The membrane time constant τm

calibration
τm = Cm/gl differs from neuron to neuron mostly due

to variations in the leakage conductance gl. However, gl is independently adjustable for
every neuron. Because this conductance is not directly measurable, an indirect calibration
method is employed. To this end, the threshold potential is set below the resting potential.
Following each spike, the membrane potential is clamped to % for an absolute refractory
time τref , after which it evolves exponentially towards the resting potential El until the

2 Strictly speaking, El is of course not a reversal potential in the same sense as Erev
e and Erev

i (see Section
2.1.1). However, from a purely mathematical perspective, these three parameters have equivalent
contributions to the LIF equation 2.54.

65



3. Artificial Brains: Simulation and Emulation of Neural Networks

10 80τm[ms]
0

150

n
eu

ro
n
s

10 80τm[ms]
0

150

Figure 3.4.: Calibration results for membrane time constants. Left: Before calibration,
the distribution of τm values has a median of 15.1ms with 20th and 80th
percentiles of τm

20 = 10.3 ms and τm
80 = 22.1 ms, respectively. Right: After

calibration, the distribution median lies closer to the target value and narrows
significantly: the median is 11.2ms, with τm

20 = 10.6 ms and τm
80 = 12.0 ms.

Two neurons were discarded, because the automated calibration algorithm
did not converge.

threshold voltage triggers a spike and the next cycle begins (see Figure 2.16 and Equation
2.36). If the threshold voltage is set to ϑ = El− 1/e · (El− %), the spike frequency equals
1/(τm +τref), thereby allowing an indirect measurement and calibration of gl and therefore
τm. The effect of calibration on a typical chip can best be exemplified for a typical target
value of τm = 10 ms. Figure 3.4 depicts the distribution of τm of a typical chip before and
after calibration.

The short-term plasticity hardware parameters have no direct translation to model
equivalents. In fact, the implemented transconductance amplifier tends to easily saturate
within the available hardware parameter ranges. These non-linear saturation effects can
be hard to handle in an automated fashion on an individual circuit basis. Consequently,
the translation of these parameters is based on short-term plasticity courses averaged over
several circuits.
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3.3. Wafer-Scale Integration

Going from single chips to multi-chip systems can be achieved in various ways. For exam-
ple, multiple Spikey modules can be interconnected on a backplane to form larger neural
networks (see, e.g., Jeltsch, 2010). However, this appears to be quite inefficient consider-
ing the large communication overhead imposed by the non-neuromorphic hardware parts.
Considering the fact that individual chips are actually cut down from a wafer, previously
to which they lie in close physical proximity to each other, a potential solution is con-
ceptually almost apparent, although technically far from trivial: employ an entire wafer
as a single neuromorphic substrate. This the core idea behind the concept of wafer-scale
integration.

Figure 3.5 shows a 3D-rendered image of the BrainScaleS wafer-scale hardware system.
The 8 inch silicon wafer contains 196 608 neurons and 44 million plastic synapses imple-
mented in mixed-signal VLSI circuitry. As for the Spikey chip (Section 3.2), due to the
high integration density of the circuits, the intrinsic time constants of their dynamics are
small, fostering a speedup of approx. 104 compared to biological real time. The principal
building block of the wafer is the so-called HICANN (High Input Count Analog Neural
Network) HICANNchip (Schemmel et al., 2008, 2010). During chip fabrication, only a limited area
called a reticle reticlecan be simultaneously exposed during photolithography, which is one of
the reasons why such a wafer is cut into individual chips after production. For the Brain-
ScaleS system, however, the wafer is left intact, and additional structures are grown onto
the wafer surface in a post-processing step. This process establishes connections between
all 384 HICANN blocks that allow a very high bandwidth for on-wafer pulse-event com-
munication (Schemmel et al., 2008). The neuromorphic wafer is accompanied by a stack
of digital communication modules for the connection of the wafer to the host PC and to
other wafers (see Section 3.3.2 and Figure 3.6).

3.3.1. HICANN Building Block

On the HICANN chip (lower left of Figure 3.6), one can recognize two symmetric blocks
which hold the analog core modules. The upper block is depicted in detail in Figure
3.7. Most of the area is occupied by the synapse array synapse

array,
neurons

with 224 rows and 256 columns.
All synapses in a column are connected to one of the 256 neuron circuits located at the
center of the chip. For each two adjacent synapse rows, there is one synapse driver that
forms the input for pre-synaptic pulses to the synapse array. Synapse drivers are evenly
distributed to the left and right side of one synapse array (56 per side). A grid of horizon-
tal and vertical buses busesenables the routing of spikes from neuron circuits to synapse drivers.

Up to 64 neuron circuits (a.k.a. DenMems DenMem, short for dendritic membranes) can be
interconnected to form neurons with up to 14336 synapses (see Table 3.2). The neurons
emulate the dynamics of the AdEx model in analog circuitry, defined by equations for the
membrane voltage u, the adaption current w and a reset condition that applies when a
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Figure 3.5.: The BrainScaleS wafer-scale hardware system. (A) Wafer comprising HI-
CANN building blocks and on-wafer communication infrastructure covered
by an aluminum plate. (B) Digital inter-wafer and wafer-host communica-
tion modules. Also visible: mechanical and electrical support.
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Figure 3.6.: Architecture of the BrainScaleS wafer-scale hardware system. Left: The
HICANN building block has two symmetric halves with synapse arrays and
neuron circuits. Neural activity is transported horizontally (blue) and verti-
cally (red) via asynchronous buses that span over the entire wafer. Exemplary
spike paths are shown in yellow on the HICANN. Incoming spike packets are
routed to the synapse drivers. In the event that a neuron spikes, it emits a
spike packet back into the routing network. Right: Off-wafer connectivity is
established by a hierarchical packed-based network via DNCs and FPGAs. It
interfaces the on-wafer routing buses on the HICANN building blocks. Sev-
eral wafer modules can be interconnected using routing functionality between
the FPGAs.
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spike is triggered:

Cm
du

dt
=− gl(u− El) + gl∆T exp

(
u− ϑ
∆T

)
− w + Isyn , (3.3)

τw
dw

dt
= a(u− El)− w , (3.4)

if u ≥ Vspike :

{
u→ %

w → w + b
. (3.5)

An absolute refractory mechanism is supported by clamping u to its reset value for the
refractory time τref . We refer to Section 2.2.1.2 for a more detailed discussion of this
neuron model.

The generated spikes are transmitted digitally to synapse driverssynapse
drivers,
synapses

(which effectively
implement analog multipliers), synapses (additional digital multipliers) and finally other
neurons, where postsynaptic conductance courses are generated and summed up linearly,
resulting in the synaptic current Isyn:

Isyn =
∑

synapses i

gi(E
rev
i − u) , (3.6)

τ syndgi
dt

= −gi + wsyn
i

∑
spikes s

δ(t− ts) , (3.7)

with the same notations as in Section 2.2.2.1. In the hardware implementation (Millner
et al., 2010), each neuron features two of such synaptic input circuits, which are typically
used for excitatory and inhibitory input. Nearly all parameters of the neuron model and
the synaptic input circuits are individually adjustable by means of analog storage banks
based on floating gatefloating

gates
technology (Lande et al., 1996).

In the hardware neuron, both the circuit for the adaption mechanism and the expo-
nential term circuit can be effectively disconnected from the membrane capacitance, such
that a simple LIF model can also be emulated. The hardware membrane capacitance is
fixed to one of two possible values. As the parameters controlling the temporal dynamics
of the neuron such as gl and the time constants are configurable within a wide range, the
hardware is able to run at a variable speedupvariable

speedup
factor (103−105) compared to biological real

time. In particular, the translation of the membrane capacitance between the hardware
and the biological domain can be chosen freely due to the independent configurability of
both membrane and synaptic conductances, thereby effectively allowing the emulation of
point neurons of arbitrary size - within the limits imposed by the hardware parameter
ranges.

In contrast to neurons, where each parameter is fully configurable within the specified
ranges (see Table 3.3), the synaptic weightssynaptic

weights
are adjustable by a combination of analog

and digital memories. The synaptic weight wsyn is proportional to a row-wise adjustable
analog parameter gmax and to a 4-bit digital weight specific to each synapse. The gmax of
two adjacent rows can be configured to be a fixed multiple of each other. This way, two
synapses of adjacent rows can be combined to offer a weight resolution of 8 bits, at the
cost of halving the number of synapses for this synapse driver.

Long-term learning is incorporated in every synapse through STDPSTDP (see Section 2.2.2.2).
The implemented STDP mechanism follows a pairwise update rule with programmable
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Nr of Neurons Synapses/ DenMems/ Neurons/
Neuron Neuron HICANN

196 608 224 1 512
98 304 448 2 256
49 152 896 4 128
24 576 1792 8 64
12 288 3584 16 32

6144 7168 32 16
3072 14 336 64 8

Table 3.2.: Some typical usage scenarios of the wafer-scale hardware system. The number
of synapses per neuron can be increased by interconnecting DenMems to form
larger point neurons.

update functions (Morrison et al., 2008). As the models we discuss here (Chapter 5) do
not incorporate STDP, we refer to Brüderle et al. (2011); Schemmel et al. (2006, 2007)
for details on the hardware implementation and to Pfeil et al. (2012a) for an applicability
study of these circuits.

In contrast to the long-term learning, the implemented short-term plasticity short-term
plasticity

mechanism
is not permanent, i.e., all effects decay over periods of up to several hundred ms. It is
motivated by the phenomenological model by Markram et al. (1998a) (see also Section
2.2.2.2, but note that the dynamics are not identical!) and depends only on the presynaptic
activity, therefore being implemented in the synapse driver. For every incoming spike, a
synapse only has access to a portion U of the recovered partition R of its total synaptic
weight wsyn

max, which then instantly decreases by a factor 1−U and recovers slowly along an
exponential with the time constant τrec, thus emulating synaptic depression. Facilitation
is implemented by replacing the fixed U with a running variable U , which increases with
every incoming spike by an amount U(1 − U) and then decays exponentially back to U
with the time constant τfacil:

wsyn
n+1 = wsyn

maxRn+1Un+1 (3.8)

Rn+1 = 1− [1−Rn(1− Un)] exp

(
− ∆t

τrec

)
(3.9)

Un+1 = U + Un(1− U) exp

(
− ∆t

τfacil

)
(3.10)

with ∆t being the time interval between the nth and (n+1)st afferent spike. In contrast to
the original TSO mechanism, the hardware implementation does not allow simultaneous
depression and facilitation (Bill et al., 2010; Schemmel et al., 2008). See Section A.2.2.1
for details about the hardware implementation and the translation of the original model
to the hardware STP.

All of the neuron and synapse parameters mentioned above are affected by fixed-pattern
noise fixed-pattern

noise
due to transistor-level mismatch in the manufacturing process. Additionally, the

floating gate analog parameter storage reproduces the programmed voltage with a limited
precision on each re-write. This leads to trial-to-trial variability trial-to-trial

variability
for each experiment

(see Section A.2.2.2 for exemplary measurements). Limited configurability, such as the
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Description Name Min Max Unit Comment

Neuron (Adaptive Exponential Integrate&Fire)

Absolute refractory period τref 0.16 10.0 ms
Spike detection potential Vspike -125.0 45.0 mV
Reset potential Er -125.0 45.0 mV
Leakage reversal potential Vrest -125.0 45.0 mV
Membrane time constant τm 9 105 ms
Adaptation coupling param a 0 10.0 nS adaptation can be fully

disabled
Spike triggered adapt. param b 0 86 pA
Adaptation time constant τw 20.0 780.0 ms
Threshold slope factor ∆T 0.4 3.0 mV exponential spike

generation can be fully
disabled

Spike initiation threshold ET -125.0 45.0 mV
Excitatory reversal potential Erev

e -125.0 45.0 mV
Inhibitory reversal potential Erev

i -125.0 45.0 mV
Exc. synaptic time constant τ syn

e 1.0 100.0 ms
Inh. synaptic time constant τ syn

i 1.0 100.0 ms

Synapses

Weight wsyn 0 0.300 µS 4-bit resolution
Axonal delay (on-wafer) delay 1.2 2.2 ms not configurable

Short Term Plasticity

Utilization of synaptic efficacy U 0.11 0.47 possible values:
[1
9 ,

3
11 ,

5
13 ,

7
15 ]

Recovery time constant τrec 40.0 900.0 ms One of the two time
constants has to be set to
0.0. Available range
depends on U (maximum
range given).

Facilitation time constant τfacil 35.0 200.0 ms

Stimulus

External spike sources ν 0.0 4000 Hz cf. Scholze et al. (2011b)

Table 3.3.: Parameter ranges of the BrainScaleS wafer-scale hardware. All ranges corre-
spond to a membrane capacitance of Cm = 0.2 nF and a hardware speedup
of 104 compared to real time. It is possible to choose an arbitrary value for
Cm, but then the ranges of parameters a, b and of the synaptic weights are
multiplied by Cm

0.2 nF .
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discretization of available synaptic weights, is another source for discrepancy between
targeted and realized configuration. The trial-to-trial variability, which cannot be reduced
by calibration calibration(Section 3.3.3), is assumed to be less than 30 % (standard-deviation-to-mean
ratio) for synaptic weights. Other neuron parameters are assumed to have a much smaller
variability: El, ϑ, Erev have a standard deviation of less than 1 mV in the biological
domain.

For technical details about the HICANN chip and its components, we refer to Schemmel
et al. (2008, 2010).

3.3.2. Communication Infrastructure

The infrastructure for pulse communication in the wafer-scale system is supplied by a
two-layer approach. While the on-wafer network routes pulses between neurons on the
same wafer, the off-wafer network connects the wafer to the outside world, i.e., to the
host PC or to other wafers.

The backbone of the on-wafer communication consists of a grid of horizontal and vertical
buses busesenabling the transport of action potentials by a mixture of time division and space
division multiplexing. Each HICANN building block contains 64 horizontal buses at its
center and 128 vertical buses located on each side of the synapse blocks, as can be seen
in Figure 3.7. A bus can carry the spikes of up to 64 source neurons by transmitting a
serial 6-bit signal encoding the currently sending neuron (with an ID from 0 to 63).

When a neuron fires, its pulse is first processed by one of eight priority encoders priority
encoders,

merger tree

and
finally injected into a horizontal bus after passing a merger stage. By enabling a static
switch of a sparse crossbar between horizontal and vertical buses, the injected serial signal
can be made available to a vertical bus next to the synapse array. Another sparse switch
matrix crossbar

switches
allows to feed the signals from the vertical buses into the synapse array, more

precisely into the synapse drivers which represent the data sinks of the routing network.
Synapse drivers can be connected in a chain, forwarding their input to their top or bottom
neighbors, thereby allowing to increase the number of synapse rows fed by the same routing
bus.

The bus lanes do not end at the HICANN border but run over the whole wafer by
edge-connecting the HICANN building blocks (Figure 3.6). Both the sparseness of the
switches and the limited number of horizontal and vertical buses represent a possible
restriction for the connectivity of network models. If an emulated network requires a
connectivity that exceeds the on-wafer bus capacity, some synapses will be impossible to
map to the wafer and will therefore be lost.

Pulse propagation delays delaysin the routing network are small, distance-dependent and
not configurable. The time between spike detection and the onset of a PSP has been
measured as 120 ns for a recurrent connection on a HICANN. The additional time needed
to transmit a pulse across the entire wafer is typically less than 100 ns (Schemmel et al.,
2008), hence the overall delay sums up to 1.2 - 2.2 ms in the biological time domain,
assuming a speedup factor of 104.

Also, in case of synchronous bursting of the neurons feeding one bus, some pulses are
delayed with respect to others, as they are processed successively. A priority encoder
handles the spikes of 64 hardware neurons with priority fixed by design. If several
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Figure 3.7.: Components and connectivity of the HICANN building block. The figure
shows the upper block of the HICANN chip. Most of the area is occupied by
the synapse array with 256 columns and 224 rows. Each synapse column is
connected to one of 256 neuron circuits, from which up to 64 can be inter-
connected to form larger neurons with up to 14336 input synapses. When a
neuron fires, a neuron-specific 6-bit address is generated and injected into one
of eight accessible horizontal buses after passing a merger stage. Via two stat-
ically configurable switches (crossbar and synapse driver switch) these pulses
are routed to the synapse drivers, each of which controls two synapse rows.
Every synapse is configured to a specific 6-bit address, so that, when a pre-
synaptic pulse with a matching address arrives, a post-synaptic conductance
course is generated at the associated neuron circuit. Both switch matrices
are sparse, i.e. configurable switches do not exist at all crossings of horizontal
and vertical lines, but e.g. only at every 8th crossing (sparseness S=8). On
the wafer, the horizontal and vertical buses, as well as the horizontal lines
connected to the synapse drivers do not end at the HICANN borders, but go
beyond them.
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neurons have fired, the pulse of the neuron with highest priority is transmitted first to
the connected horizontal bus. The priority encoder can process one pulse every two clock
cycles (2× 5 ns), leading to an additional delay for the pulses with lower priority. In rare
cases some pulses may be completely discarded, e.g., when the total rate of all 64 neurons
feeding one bus exceeds 10 kHz for longer than 6.4 ms (in biological real-time).

A hierarchical packet-based network provides the infrastructure for off- off-wafer
communica-

tion,
PCS

and inter-wafer
communication. All HICANNs on the wafer are connected to the surrounding system and
to other wafers via 12 pulse communication subgroups (PCS). Each PCS consists of one
FPGA and 4 ASICs (Application Specific Integrated Circuits) that were designed for high-
bandwidth pulse-event communication (so-called Digital Network Chips or DNCs) DNC. Being
the only communication link to/from the wafer, the off-wafer network also transports
the configuration and control information for all the circuits on the wafer. As depicted in
Figure 3.6, the network is hierarchically organized: one FPGA is connected to four DNCs,
each of which is connected to 8 HICANNs of a reticle. Each FPGA is also connected to
the host PC and potentially to up to 4 other FPGAs.

When used for pulse-event communication, an FPGA-DNC-HICANN connection sup-
ports a throughput of 40 Mevents/s (Scholze et al., 2011b) with a timing precision of 4 ns.
In the biological time domain, this corresponds to monitoring the spikes of all 512 neurons
on a HICANN firing with a mean rate of 8 Hz each with a resolution of 0.04 ms. The
same bandwidth is available simultaneously in the opposite direction, allowing a flexible
network stimulation with user-defined spiketrains.

For further technical details about the PCS, the FPGA design and the DNC, we refer
to Scholze et al. (2010, 2011a) and Hartmann et al. (2010).

3.3.3. Software Framework

The utilized software stack (Brüderle et al., 2011) allows the user to define a network
description and maps it to a hardware configuration. As for the Spikey chip, the network
definition can be done in PyNN, thus abstracting away the hardware details. In principle,
one could use only the PyNN level for completely hardware-agnostic modeling hardware-

agnostic
modeling

. As it turns
out, however, more challenging emulation scenarios (large networks that are sensitive
to parameter distortions) do require at least a high-level understanding of the hardware
itself, which constitutes the subject of the entire Chapter 5.

The mapping mappingprocess (Brüderle et al., 2011; Ehrlich et al., 2010) translates the PyNN
description of the neural network structure, as well as its neuron and synapse models and
parameters, in several steps into a neuromorphic device configuration. This translation is
constrained by the architecture of the device and its available resources.

The first step of the mapping process is to allocate static structural neural network
elements to particular neuromorphic components during the so-called placement placement. Sub-
sequently, a routing routingstep is executed for establishing connections in between the placed
components. During the final parameter transformation parameter

transforma-
tion

step, all parameters of the net-
work components (neurons and synapses) are translated into hardware parameters. First,
the model parameters are transformed to the voltage and time domain of the hardware,
taking into account the acceleration and the voltage range of 0 V to 1.8 V (Millner et al.,
2010). Afterwards, previously obtained calibration calibrationdata is used to reduce mismatches
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between the target behavior and real behavior of the analog components.
The objective of the mapping process is to find a configuration of the hardware that best

reproduces the experiment specified in PyNN. The most relevant constraints are sketched
in the following.

Each hardware neuron circuit has a limited number of 224 incoming synapses. By
interconnecting several neuron circuits one can form larger neurons with more incoming
synapses (see Section 3.3.1), with the trade-off that the overall number of neurons is
reduced. Still, each hardware synapse can not be used to implement a connection from an
arbitrary neuron but only from a subset of neurons, namely the 64 source neurons whose
pulses arrive at the corresponding synapse driver. For networks larger than 10 000 neurons
it is the limited number of inputs to one HICANN that becomes even more restricting, as
there are only 224 synapse drivers (see Figure 3.7), yielding a maximum of 14366 different
source neurons for all neurons that are placed to the same HICANN. Hence, one objective
of the mapping process is to reduce this number of source neurons per HICANN, thus
increasing the number of realized synapses on the hardware. In general, this criterion is
met when neurons with common pre-synaptic partners are placed onto the same HICANN
and neurons with common targets inject their pulses into the same on-wafer routing bus.

All of the above, as well as the limited number of on-wafer routing resources (see
Section 3.3.2) make the mapping optimization an NP-hard problem. The used placement
and routing algorithms, which improve upon the ones described in Brüderle et al. (2011)
and Fieres et al. (2008) but are far from being optimal, can minimize the effect of these
constraints only to a certain degree. Thus, depending on the network model size, its
connectivity, and the choice of the mapping algorithms, synapses are lostsynapse loss during the
mapping process; in other words, some synapses of a network defined in PyNN will simply
not exist in the corresponding network that is emulated on the hardware.

3.3.4. Executable System Specification (ESS)

The ESSESS is a detailed simulation of the hardware platform (Brüderle et al., 2011; Ehrlich
et al., 2007) that replicates the topology and dynamics of the communication infrastruc-
ture as well as the analog synaptic and neuronal components.

The ESS encompasses a numerical solver of the equations that govern the hardware
neuron and synapse dynamics, as well a detailed reproduction of the digital commu-
nication infrastructure at the level of individual spike transmission in logical hardware
modules. The ESS is a specification of the hardware in the sense that its configuration
space faithfully maps the possible interconnection topologies, parameter limits, parame-
ter discretization and shared parameters. Being executable, the ESS also covers dynamic
constraints, such as the consecutive processing of spikes which can lead to spike time jitter
or spike loss.

Variations in the analog circuits that are inherent to analog VLSI are not simulated at
transistor level but are rather artificially imposed on the ideal hardware parameters. All of
this allows to simultaneously capture the complex dynamic behavior of the hardware and
comply with local bandwidth limitations, while allowing relatively quick simulations due to
the high level of abstraction. Analogously to the neuromorphic hardware itself, simulations
on the ESS can be controlled using PyNN, with only a few additional hardware-specific
commands. Both for the real hardware and for the ESS, the mapping process translates
a PyNN network into a device configuration, which is then used as an input for the
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respective back-end. One particular advantage of the ESS is that it allows access to state
variables which can otherwise not be read out from the real hardware, such as the logging
of lost or jittered time events.
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4. Dynamics and Statistics of
Poisson-Driven LIF Neurons

The miracle of the appropriateness of the language of mathe-
matics for the formulation of the laws of physics is a wonderful
gift which we neither understand nor deserve. We should be
grateful for it and hope that it will remain valid in future
research and that it will extend, for better or for worse, to our
pleasure, even though perhaps also to our bafflement, to wide
branches of learning.

Eugene Wigner, The Unreasonable Effectiveness of
Mathematics in the Natural Sciences, 1960

Eugene Wigner wrote a famous essay on the unreasonable
effectiveness of mathematics in natural sciences. He meant
physics, of course. There is only one thing which is more
unreasonable than the unreasonable effectiveness of mathemat-
ics in physics, and this is the unreasonable ineffectiveness of
mathematics in biology.

Israel Gelfand, alleged quote

In Chapter 2, we have described how point neuron and exponential synapse models can
be obtained as an abstraction of the complex electrochemical dynamics of neurons and
synapses observed in vivo. Throughout the remainder of this thesis, we shall continue
working with such abstract models, in particular point LIF and AdEx neurons with either
current or conductance-based synapses with an exponential interaction kernel.

Despite the relatively simple form of their governing differential equations, it turns out
that closed-form solutions for their phase space trajectories are not always easily found.
Furthermore, when subjected to background synaptic bombardment, as is usually the case
in vivo, even these simple models turn out to have a surprising behavior. In particular,
important differences appear between current- and conductance-based synaptic interac-
tion. As the investigated questions are of rather fundamental nature, we are not the first
to discuss these problems. Related work, although treated from a different perspective,
can be found in, e.g., Richardson and Gerstner (2006).

In Section 4.1, we start with a short recapitulation of some fundamental statistical con-
cepts and use the opportunity to define important notations. We then study closed-form
solutions and approximations thereof for COBA and CUBA LIF neurons in Section 4.2.
In particular, we show how the high-conductance state enables us to find a good approx-
imation for COBA LIF neurons. Based on these findings, we move on to the description

79



4. Dynamics and Statistics of Poisson-Driven LIF Neurons

of statistical properties of LIF dynamic variables under balanced Poisson stimulation in
Section 4.3. We derive general expressions for the first two moments of the distribution
of a Poisson-driven dynamic variable and apply these findings to the synaptic current
and the membrane potential of LIF neurons. This enables a theoretical understanding
of the qualitatively different behavior of COBA and CUBA neurons at high input rates.
In Section 4.4, we then use our previous results to derive quantitative expressions for
shared-input correlations of LIF neurons, both for the free membrane potential and at the
level of spike trains.

A significant part of this work has been done in collaboration with Ilja Bytschok and
Johannes Bill and has been the subject of several technical internal reports dating back
to 2009-2011. Furthermore, the investigated subjects have also been the driving questions
behind the Diploma thesis by Bytschok (2011), from which we especially use material in
Section 4.4.
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4.1. Probability Theory: Essentials

As a short introduction to the following sections, we review several fundamental con-
cepts, definitions and notations from probability theory to which we will return repeatedly
throughout this work.

4.1.1. Random Variables and Probability Distributions

Consider an experiment that can produce several outcomes to which we attach some
uncertainty. We denote the (multidimensional) outcome of the experiment by capitals –
Z represents a set of random variables (RVs) random

variable
– while a specific outcome z = (z1, ..., zn)

is denoted by minuscules. The complete set of possible outcomes z is called the sample
space sample

space
Ω =

n∏
i=1

Ωi, with zi ∈ Ωi , (4.1)

where
∏

denotes a Cartesian product. Each outcome z can occur with a probability f(z):

P (Z = z) = f(z) . (4.2)

f(Z) is called the joint probability distribution of the variables Z1, . . . , Zn joint
multivariate
probability

distribution

. Similarly
to using f(z), when the interpretation becomes clear from the context, we shall use the
shorthand notation of P (z) in lieu of the more cumbersome P (Z = z).

If Ω is discrete, in order for f to represent a probability distribution, we require

f(z) ≤ 1, ∀z ∈ Ω (4.3)

discrete
probability

distribution

and ∑
z∈Ω

f(z) = 1 . (4.4)

If either Ω or
∑
z∈Ω

f̃(z) is finite, any mapping f̃ : Ω → R can be transformed into a valid

probability distribution by normalization normaliza-
tion

:

f(z) :=
f̃(z)∑

z∈Ω

f̃(z)
. (4.5)

4.1.2. Joint and Conditional Distributions

If one is only interested in the joint probability distribution over a subset of RVs, the total
PDF f(z) needs to be marginalized over all other RVs marginaliza-

tion
:

f(z1, . . . , zm) =
∑

zm+1∈Ωm+1

∑
zm+2∈Ωm+2

. . .
∑
zn∈Ωn

f(z) . (4.6)

It is quite apparent that this operation is very demanding from a computational point
of view. The total number of operations required to perform marginalization scales
exponentially with the number of variables one needs to marginalize over. This can occur
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at its most extreme in normalization scenarios, where the denominator in Equation 4.5
represents a marginalization of the distribution over all RVs. The problem of marginal-
ization and normalization is a key issue in computational statistics and will represent a
focal point of Chapter 6.

If a subset X of the RVs are fixed to some value xconditional
distribution

, such as when they represent inputs
to the stochastic system, then the resulting distribution P (Y = y|X = x) over all other
RVs Y is called a conditional distribution. Conditional, marginal and joint distributions
are intimately linked through Bayes’ ruleBayes’ rule :

P (Y = y|X = x) =
P (Y = y,X = x)

P (X = x)
. (4.7)

Such conditional distributions are often called posterior distributionsposterior
distribution

, in which context
the fixed or observed variables are referred to as evidence. The process of calculating
posterior distributions given evidence is called probabilistic inferenceinference .

A set of RVs {Xi} is called mutually independentindepen-
dence

if and only if their joint probability
factorizes:

p(X1 = x1, . . . ,Xn = xn) =
∏
i

p(Xi = xi) (4.8)

A set of RVs is called pairwise independent if every pair of RVs in the set is independent.

4.1.3. Moments of Probability Distributions

Given any function g : Ω→ R, the quantity E[g(Z)] is called the expected value of g over
Z and is defined as

E[g(Z)] =
∑
z∈Ω

g(z)f(z) . (4.9)

Depending on the context, we shall use E [·] and 〈·〉 interchangeably, in order to improve
the readability of some equations. The nth raw momentsraw moment µ′n of a probability distribution
over a scalar RV Z are defined as the expected values of Zn. The central momentscentral

moment
are

the moments about its mean E[Z]. The first raw and second central moment are called
the mean and variancemean,

variance
of Z, respectively, and are often denoted by µZ and σ2

Z (or simply
Var[Z]):

µZ := µ′1(Z) = E[Z] (4.10)

σ2
Z ≡ Var[Z] := µ′2(Z − E[Z]) = E

[
(Z − µZ)2

]
. (4.11)

σZ is also called the standard deviation of Z. Similar to the variance, but for pairs of
RVs, the covariancecovariance is defined as

Cov[X,Y ] := E [(X − µX)(Y − µY )] . (4.12)

A pair of RVs is called uncorrelatedcorrelation if and only if their covariance vanishes. In particular,
independent RVs are always uncorrelated. The converse is, of course, not necessarily true,
as can be easily exemplified by considering the case where p(Y = x|X = x) = p(Y =
−x|X = x) = 1/2.
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In case of multivariate distributions, the mean is represented by a vector µ and the
variance becomes a covariance matrix covariance

matrix

1 Σ:

µZ := E[Z] (4.13)

ΣZ ≡ Cov[Z,Z] ≡ Var[Z] := E
[
(Z − µ)(Z − µ)T

]
, (4.14)

with the covariance of two multidimensional RVs defined as

Cov[X,Y ] := E
[
(X − µX)(Y − µY )T

]
(4.15)

The covariance can be transformed to a sometimes more convenient representation

Cov[X,Y ] = E[XY T ]− µXµTY . (4.16)

For a set of random variables {Z1, . . . ,Zn} of equal dimensionality, the following equa-
tions hold:

E

[
n∑
i=1

Zi

]
=

n∑
i=1

E [Zi] (4.17)

Cov

 k∑
i=1

Zi,
n∑
j=k

Zj

 =
k∑
i=1

n∑
j=k

Cov [Zi,Zj ] . (4.18)

4.1.4. Continuous Random Variables

If Ω is an infinite subset of Rn (i.e, one has n constinuous scalar RVs), the equations above
remain, in general, unchanged, except that summations over (subsets of) Ω are replaced
by integrals. One additional concept is required, which is the cumulative cumulative

distribution
function

(multivariate)
distribution function (CDF), defined as

F (z) = P (Z1 ≤ z1, Z2 ≤ z2, . . . , Zn ≤ zn) , (4.19)

which must satisfy the following conditions:
1. F is monotonically increasing and right-continuous
2. lim

z→− ~∞
F (z) = 0

3. lim
z→+ ~∞

F (z) = 1

If F is absolutely continuous, one can define a probability density function (PDF) f(z)
which must satisfy probability

density
functionF (z) =

z1∫
−∞

. . .

zn∫
−∞

f(z)dz . (4.20)

1 Sometimes, the covariance matrix is simply called a variance, regardless of the dimensionality of the
RV. This denomination is meant to show how the variance matrix of multidimensional RVs is a natural
extension of the scalar variance of scalar RVs. The term “covariance matrix”, on the other hand, points
towards the fact that individual matrix elements of ΣZ are, indeed, covariances between the scalar
components of Z.
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4. Dynamics and Statistics of Poisson-Driven LIF Neurons

In particular, for any hyperrectangle In = I1 × · · · × In, with Ii = [ai, bi] ∈ R, it holds
that

P (z ∈ In) =

b1∫
a1

. . .

bn∫
an

f(z)dz . (4.21)

In the limit of In becoming infinitesimally small around some value z0, the probability for
P (z ∈ In)→ f(z0)dz of a continuous RV is the closest equivalent to P (Z = z0) = f(z0)
for a discrete RV Z (which is why we have chosen an identical notation f(·) for discrete
probability distributions and continuous PDFs).
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4.2. Closed-Form Solutions for the LIF Equations

In the following, we discuss closed-form solutions for the LIF membrane equations. We
shall see that, for the CUBA case, such solutions are more easily found. Despite the
fact that an exact solution for the COBA case can not be given, we shall discuss how
the high-conductance state enables us to find a quantitatively good approximation. Fur-
thermore, we discuss some counterintuitive properties of membrane statistics in the high-
conductance state that are observed in computer simulations, which we then treat ana-
lytically in Section 4.3.

4.2.1. Reformulation of the LIF Equation with an Effective Membrane
Potential

We have discussed in the introduction how neurons “integrate” their input, as long as they
are in the subthreshold regime. While this is, indeed, an essential property of subthreshold
membrane potential dynamics, it is often useful to adopt a somewhat different view. In
this section, we will introduce a new variable ueff , which will call an “effective membrane
potential”. This variable will represent a (linear) function of the input u as a

low-pass
filter of ueff

, while the true
membrane potential will become a low pass filter thereof. Up to a certain point, this
formalism applies to both COBA and CUBA synapses; the remaining – and important
– differences between the two models (as already mentioned in Section 2.2.2.1) will be
addressed in detail throughout the following sections.

We start by restating the set of equations that govern the LIF neuron model. For the
membrane potential, we have

Cm
du

dt
= gl(El − u) + I , (4.22)

where the input current I can be partitioned into an external background Iext (injected
directly into the neuron, be it in tissue or in software simulations) and a synaptic stimulus
current Isyn:

I = Iext + Isyn . (4.23)

The total synaptic current total
synaptic
current

Isyn obeys the equation

CUBA COBA

Isyn =
∑

synapses k

isyn
k (4.24) Isyn =

∑
synapses k

gsyn
k (Erev

k − u) , (4.25)

where isyn
k and gsyn

k denote the current/conductance arriving from the kth synapse (which,
themselves, are sums of PSCs). We can now define a total conductance total

conductance
gtot, which

represents the sum of all the conductances that affect the membrane:

CUBA COBA

gtot = gl (4.26) gtot = gl +
∑
k

gsyn
k , (4.27)
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an effective membrane time constanteffective
membrane
time
constant

, which depends on gtot:

τeff =
Cm

gtot
, (4.28)

and an effective membrane potentialeffective
membrane
potential

, which can be expressed as a weighted sum of all the
mechanisms that affect the membrane (leak, external current, synaptic stimulus):

CUBA COBA

ueff =
glEl+I

ext+
∑
k
isyn
k

gtot (4.29) ueff =
glEl+I

ext+
∑
k
gsyn
k Erev

k

gtot . (4.30)

By dividing the RHS of Equation 4.22 by gtot and rearranging the terms, we finally obtain

τeff
du

dt
= ueff − u . (4.31)

The appeal of this formulation lies in its simplicity. By abstracting away the complex
interaction of external stimuli into an effective membrane potential, one can view the
membrane potential simply as a variable that decays exponentially (“leaks”) towards some
target value ueff(t). This effective potential encompasses the neuron’s own leak potential,
as well as all external stimuli – synapses in particular.

In this formulation, a hallmark effect of conductance-based synapses becomes immedi-
ately apparent: as synaptic bombardment increases, so does gtot (Equation 4.27), resulting
in a smaller τeff and therefore in a faster membrane and smaller PSPs (see also Figure
2.23). The existence of this so-called high-conductance state (see Section 4.2.5) with
its accelerated membrane dynamics has important computational consequences, and has
been covered by vast amounts of literature2. In particular, it plays an essential role in the
LIF sampling framework discussed in Section 6.5. For now, we will use Equation 4.31 for
a formal derivation of the PSP shapes produced by exponential synapses.

4.2.2. Analytical Solutions for the LIF Equations: CUBA Synapses

Having unified the mathematical description of COBA and CUBA LIF neurons into a
common ODE (Equation 4.31), we can now attempt to find a unified solution for it. It
quickly becomes apparent that this is not possible in the general case.

Assuming the solution of the ODE

d

dt
f(t) = b(t)− a(t) · f(t) (4.32)

exists and is unique3, it takes on the form

f(t) = exp

(∫ t

−a(x) dx

)[∫ t

b(x) exp

(∫ x

a(y) dy

)
dx+ C

]
, (4.33)

2For a good review with a comprehensive bibliography, see Destexhe (2007).
3The Picard-Lindelöf theorem guarantees existence and uniqueness for our particular case, but it only
applies between two consecutive spikes.
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where
∫ t
g(x) dx denotes the antiderivative of a function g(t). For clarity, we now write

out the time dependencies explicitly. By setting

a(t) =
1

τeff(t)
(4.34)

and
b(t) =

ueff(t)

τeff(t)
, (4.35)

we can now obtain the solution to Equation 4.31:

u(t) = exp

(
−
∫ t dx

τeff(x)

)[∫ t ueff(x)

τeff(x)
exp

(∫ x dy

τeff(y)

)
dx+ C

]
. (4.36)

In LIF neurons with COBA synapses, gtot depends explicitly on time. In the particular
case of exponential conductances (Equation 2.58), τeff is proportional to a sum of inverse
exponentials. Finding an analytical solution for u(t) therefore requires a closed-form
expression for

∫ t
exp[exp(x)] dx. Such an expression does not exist and therefore neither

does a closed-form solution for the membrane potential of LIF neurons with exponential
COBA synapses.

However, in particular situations, it is possible to effectively reduce COBA LIF neurons
to a CUBA-like description. Such a case will be made in Section (4.2.4) for the so-called
high-conductance state. We will therefore proceed to solving Equation 4.33 in the CUBA
case and return to this result later on.

We can start by plugging gtot, τeff and ueff from 4.26, 4.28 and 4.29, respectively, into
4.36 to obtain

u(t) = exp

(
−
∫ t dx

τm

)∫ t glEl + Iext +
∑
k

isyn
k

glτm
exp

(∫ x dy

τm

)
dx+ C

 . (4.37)

We further assume a constant external current stimulus Iext. After explicitly writing out
the synaptic currents (Equation 2.58), we can arrive at a closed-form solution for the
membrane potential of an LIF neuron with exponentially decaying CUBA synapses under
synaptic bombardment:

u(t) =
exp

(
− t
τm

)
glτm

[(
glEl + Iext

) ∫ t

exp

(
x

τm

)
dx membrane

potential of
an LIF

neuron with
exponential

synaptic
currents

+

∫ t ∑
syn k

∑
spk s

wkΘ(t− ts) exp

(
−x− xs

τ syn
k

+
x

τm

)
dx


= . . .

= El +
Iext

gl
+
∑
syn k

∑
spk s

τ syn
k wk

gl

(
τ syn
k − τm

)Θ(t− ts)
[
exp

(
− t− ts
τ syn
k

)
− exp

(
− t− ts

τm

)]
.

(4.38)
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Figure 4.1.: Characteristic PSP shapes. PSPs are symmetric in τm and τ syn (blue line
and red dots). When τm = τ syn, the PSP can be described by an α-function
(green line), which is similar in shape to generic PSPs (other lines). When
either time constant becomes very small, PSPs take on a “more exponential”
shape (black line).

Despite being somewhat lengthy, this equation paints a very intuitive picture. The
first two terms represent a constant offset given by the leak potential El and the external
current Iext. The last term represents a linear superposition of PSPs which take the shape

difference of
exponentials

of a difference of exponentials (DOE):

PSP(t) =
τ syn
k τmwk

Cm

(
τ syn
k − τm

)Θ(t− ts)
[
exp

(
− t− ts
τ syn
k

)
− exp

(
− t− ts

τm

)]
,CUBA PSP (4.39)

reflecting the linearity of the ODE for the effective membrane potential (Equation 4.31).
The shape of a single PSP follows trivially from calculating u′(t) − u(t), where u′ repre-
sents the value of the membrane potential when a single spike, i.e., a single term in the
double sum, is added to the others.

A short discussion of the DOE PSP is in order.
The decaying nature of the membrane potential and synaptic conductance become

apparent in the exponential terms depending on τm and τ syn, respectively. Most notably,
the PSP is symmetricPSP

symmetry in
τm and τ syn

in τm and τ syn, which is central to the analytical derivation of the
noisy LIF activation function in Section 6.5.3. However, there is one essential asymmetry:
due to the reset following a spike, the membrane potential itself has no memory of its
past. It may, however, react to stimuli that have preceded the spike, due to the fact that
the membrane conductance is not reset at the time of spiking. Therefore, independently
of plasticity and adaptation, a single neuron has a “synaptic memory”synaptic

memory
with a specific time

constant τ syn that may stretch beyond its last spike, a property that is essential for the
LIF sampling framework described in Section 6.5.
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In the limit of τ syn → τm, the shape of the PSP becomes a function of the type t exp(−t):
PSP shape

for
τ syn = τm

lim
τ syn→τm

PSP(t) =
wk
Cm

t exp

(
− t− ts

τm

)
. (4.40)

In literature, this is often called an α-function α-function. As can be seen in Figure 4.1, the shape
of an α-PSP is qualitatively similar to that of a DOE PSP.

When either time constant (τm or τ syn) is close to zero, the PSP shape becomes “more
exponential” and the neuron reacts “faster” to afferent spikes - i.e., the maximum of the
PSP is reached sooner, although the amplitude decreases. This limit appears naturally
in the high-conductance state (see Section 4.2.5) and also plays an important role in the
discussion of probabilistic inference in networks of LIF neurons (Section 6.5).

On a final note, we need to repeat that the PSP shapes discussed above are not to
be confused with the PSC shapes discussed in Section 2.2.2. All neuron/network models
discussed in this manuscript are based on synapses which generate exponential PSCs,
which lead to DOE PSPs as an analytical solution of the LIF equation. The formal
similarity to DOE-PSCs is purely coincidental.

4.2.3. The High-Conductance State I: First Observations

As already stated, it is not possible to find a general solution for the LIF neuron with
exponential COBA synapses as we just did in the case of CUBA synapses. However, a
good approximation for such a solution can be found in the high-conductance state high-

conductance
state

(HCS).
We will set out by qualitatively describing the effects of the HCS on the membrane and
conductance dynamics and use these to find the abovementioned approximate solution to
the COBA LIF equation. Later on (Section 4.3), we will derive exact expressions for the
statistics of the synaptic input (be it current or conductance) and membrane potential.

As implied by its name, the HCS is characterized by a high total membrane conductance

gtot = gl +
∑
k

gsyn
k . (4.41)

While “high” is not precisely defined in literature, it is usually assumed that in the HCS
the synaptic conductance is the dominant term in the total membrane conductance:∑

k

gsyn
k =: gsyn � gl . dominant

synaptic
conductance

(4.42)

A high synaptic conductance can be achieved by either increasing the weight of single
synapses or by increasing the total number of incoming spike events. The former is
unrealistic in a biological regime due to the small size (and thereby limited number of
ligand-gated ion channels) of single synapses. The latter, however, is quite common in
cortex high total

input firing
rates

, where individual neurons can have on the order of 104 presynaptic partners, each
of them firing, on average, at several Hz.

In a first approximation, we can model this scenario by stimulating a neuron with
two spike sources, an excitatory and an inhibitory one, each of them representing the
combined firing of all the excitatory and inhibitory presynaptic partners, respectively
(Figure 4.2). For simplicity, their firing rates are set as equal and their weights are scaled
with |Erev

x − El| in order to keep their PSPs approximately equal. As we ramp up the
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Figure 4.2.: Membrane potential statistics for different synaptic conductance regimes (sim-
ulation). A single COBA LIF neuron is stimulated by an excitatory and an
inhibitory Poisson spike source with identical firing rates. Their synaptic
weights are normalized to their respective reversal potentials in order to keep
the process symmetric. The upper two plots show how the membrane po-
tential distribution first broadens and then narrows down again as the input
firing rates are increased. The lower two plots show the dependence of the
membrane potential distribution on the synaptic weight of the inputs: at
lower rates (bottom left), the distribution broadens, as expected, while at
higher rates, the synaptic weight has nearly no effect on the width of the
distribution. One can already observe that for all but the lowest input rates,
the membrane potential distribution can be well approximated by a Gaussian,
which will be explained in Section 4.3.
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total synaptic conductance by increasing the firing rates of the two sources, an interesting
and somewhat surprising effect occurs. At first, the width of the membrane potential
distribution broadens, as one would expect from a stronger stimulation. However, as the
firing rate increases further, the distribution becomes narrower once again. On the other
hand, at low firing rates, an increase of the synaptic weight results in a broadening of the
membrane potential distribution, again as expected. For high firing rates however, the
synaptic weight appears to have no effect on the distribution.

We shall see later how these effects can be understood in the framework of an analytical
description of the synaptic conductance and membrane potential statistics. For now, we
can restrict ourselves to the phenomenological observation of two properties of the HCS
that appear in the regime of high firing rates:

1) the membrane potential distribution narrow u-
distribution

becomes much narrower than the distance towards
the reversal potentials and

2) the membrane potential distribution weak wsyn-
dependence

of u-
distribution

is not (or only weakly) affected by the synaptic
weights.

From the narrowness of the membrane potential distribution, we can deduce that

3) the relative fluctuations of the total membrane conductance are very small small
relative

fluctuations
of gtot

,

since large conductance fluctuations would naturally result in large membrane potential
fluctuations.

We can now use these three observations to derive an approximative closed-form solution
for the COBA LIF equation which holds in the HCS in the same way we were able to do
for CUBA LIF neurons in general.

4.2.4. Analytical Solutions for the LIF Equations: COBA Synapses

Intuitively speaking, the difficulty of finding a closed-form solution to the COBA LIF
equation has two reasons: the dependence of the PSP amplitude on the momentary value
of the membrane potential (e.g., saturation as u approaches Erev

x ) and the fluctuating
nature of the total conductance which leads to a non-constant effective (membrane) time
constant. In the HCS, these problems can be circumvented due to the narrow membrane
potential distribution, which leaves the distance |Erev

x −El| approximately constant, and
the small relative fluctuations of the total conductance, which render τeff approximately
constant as well. (In Section 4.2.2, we have given a more technical argument, which we
can now resolve in the HCS as well.)

However, the substitutions are not quite trivial, since if we simply replaced u and gtot

with their average values, we would have no membrane dynamics left. We will therefore
treat the problem as perturbative perturbative

approxima-
tion

and start by considering the effect of a single additional
single spike on ueff (Equation 4.30) coming from the jth synapse:

∆jueff(t) = ueff
′(t)− ueff(t) (4.43)

=

glEl + Iext +
∑
k

gsyn
k (t)Erev

k + εj(t)E
rev
i

gtot(t) + εj(t)
(4.44)

−
glEl + Iext +

∑
k

gsyn
k (t)Erev

k

gtot(t)
, (4.45)
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where ueff
′(t) denotes the time course of the membrane potential with the additional spike

and εj(t) represents the time course of the additional PSC. We have also made time depen-
dencies explicit in order to preempt any ambiguity when we later make approximations
of the sort f(t) ≈ 〈f〉. Since we assume the amplitude of εj(t) to be small with respect
to gtot(t), we can expand ueff

′(t) in εj(t) up to first order:

ueff
′(t) ≈

glEl + Iext +
∑
k

gsyn
k (t)Erev

k

gtot(t)
(4.46)

+ εj(t)

gtot(t)Erev
j −

[
glEl + Iext +

∑
k

gsyn
k (t)Erev

k

]
[gtot]2 (t)

(4.47)

= ueff(t) +
εj(t)

[
Erev
j − ueff(t)

]
gtot(t)

, (4.48)

leaving us with the perturbative contribution of a single PSC to the total effective mem-
brane potential:

∆jueff(t) ≈
εj(t)

[
Erev
j − ueff(t)

]
gtot(t)

. (4.49)

We can now write the effective membrane potential as an offset value plus the sum of all
synaptic perturbations:

ueff(t) ≈ ueff
0 +

∑
syn k

∆kueff(t) (4.50)

= ueff
0 +

∑
k

gsyn
k (t) [Erev

k − ueff(t)]

gtot(t)
, (4.51)

where we have returned to our previous notation

gsyn
k (t) =

∑
spk s

Θ(t− ts)εj(t− ts) . (4.52)

Finally, we can use our previous observations of the small fluctuations of ueff and gtot for
replacing them with their average values, leaving us with

ueff(t) = ueff
0 +

∑
k

gsyn
k (t) (Erev

k − 〈ueff〉)

〈gtot〉
. (4.53)

This approximation effectively solves the problem of finding a closed-form solution to
Equation 4.36. Since the total conductance can be assumed as approximately constant in
the HCS, the effective membrane time constant is no longer explicitly a function of time

τeff ≈ 〈τeff〉 =
Cm

〈gtot〉
, (4.54)
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so the third integrand in Equation 4.36 can be treated just like in the CUBA case. By
performing the following replacements in Equation 4.37:

gl →
〈
gtot
〉

, (4.55)
τm → 〈τeff〉 and (4.56)

glEl + Iext +
∑
k

isyn
k

gl
→ ueff

0 +

∑
k

gsyn
k (Erev

k − 〈ueff〉)

gtot
(from Eqn. 4.53) , (4.57)

we can obtain a solution membrane
potential of

an LIF
neuron with
exponential

synaptic
conduc-

tances and
PSP shape
in the HCS

that is analogous to Equation 4.38 for COBA LIF neurons in
the HCS:

u(t) = ueff
0+
∑
syn k

∑
spk s

τ syn
k wk (Erev

k − 〈ueff〉)
〈gtot〉

(
τ syn
k − 〈τeff〉

) Θ(t−ts)
[
exp

(
− t− ts
τ syn
k

)
− exp

(
− t− ts
〈τeff〉

)]
,

(4.58)
with the shape of a single PSP being again a DOE:

PSP(t) =
τ syn
k 〈τeff〉wk (Erev

k − 〈ueff〉)
Cm

(
τ syn
k − 〈τeff〉

) Θ(t− ts)
[
exp

(
− t− ts
τ syn
k

)
− exp

(
− t− ts
〈τeff〉

)]
.

(4.59)
For now, we are still missing closed-form expressions for ueff

0, 〈ueff〉 and 〈τeff〉 in Equa-
tions 4.58 and 4.59. We shall first derive these in Section 4.3, as well as in Section 6.5.2
within the framework of an entirely different formalism. Let us, however, anticipate Equa-
tions 4.104 and 4.105 in order to demonstrate the validity of our closed-form expressions
for the CUBA and COBA LIF neurons.

In Figure 4.3, we compare the theoretical prediction of the membrane potential time
course (Equations 4.38 and 4.58) with the results from NEST simulations in the limits
of low- and high-frequency Poisson input. Both the CUBA and the COBA neurons were
stimulated with identical Poisson trains, one excitatory and one inhibitory. As expected,
the CUBA prediction is exact, since it is possible to integrate the membrane potential
equation analytically. For small input rates and weights, the COBA neuron behaves
almost identically to the CUBA one, since the total conductance, as well as the distance
towards the reversal potentials does not change significantly. For the HCS, where we
were able to formulate an analytical expression for the COBA membrane as well, the
prediction lies neatly on top of the simulation data, thus validating our approach. Note
how the COBA neuron behaves significantly differently from the CUBA one, despite them
receiving identical input. Not only is the membrane potential distribution narrower, as
already discussed in Section 4.2.3, but it also has a different time course (not being just
a “vertically compressed” version of the CUBA membrane potential time course). This
is a consequence of the CUBA neuron reacting to stimuli on much faster time scales
(τeff � τm).

Before moving on, we need to point out what may at first appear as a contradiction of
our premises. Note how the synaptic weight enters Equation 4.59 multiplicatively. This
might look like a potential invalidation of our perturbative argument: if one would in-
crease all synaptic weights, surely all PSPs would become larger and accumulate towards
larger membrane potential fluctuations. This is, in fact, not necessarily the case in the
HCS, as we have observed experimentally in the previous section: at high enough input
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Figure 4.3.: CUBA and COBA membrane potentials: analytical prediction vs. simulation
data (NEST). Both neurons received identical Poisson input of frequency ν
from an excitatory and an inhibitory source, respectively. Left: low-frequency
input (ν = 40 Hz). The two neuron models behave nearly identically, since
the weak input does not affect the total conductance and distance towards
the reversal potentials significantly. Right: high-frequency input (ν = 5000
Hz). The COBA membrane has a smaller dynamic range, due to the

〈
gtot
〉
in

the denominator of Equation 4.58. Its time course is also different, due to a
modified PSP shape (τeff << τm). In all of the depicted cases, the theoretical
prediction agrees very well with the simulation results.

rates, the width of the membrane potential distribution becomes independent of the in-
dividual synaptic weights. Intuitively speaking, larger synaptic weights lead to a larger
total conductance and thereby to a smaller τeff , which also enters the PSP amplitude mul-
tiplicatively. It turns out that these two effects cancel out at high firing rates, a formal
proof of which will be given in Section 4.3.5.

In summary, at this point, we have a full analytical description of the membrane poten-
tial and PSPs for CUBA LIF neurons in general and COBA neurons in the HCS (under
the assumption of exponential synaptic interaction kernels); for the latter however, we are
still missing closed-form expressions for 〈ueff〉 and 〈τeff〉. We shall derive these in Section
4.3. We can, however, already understand several properties of the HCS from the form of
Equations 4.58 and 4.59.

4.2.5. The High-Conductance State II: PSP Shapes

The most apparent property of the HCS was already mentioned earlier, but now follows
directly from the equation describing individual PSPs. Similarly to the CUBA PSP, the
COBA PSP is a DOE where the membrane time constant τm = Cm/gl has been replaced
by an effective time constant τeff = Cm/g

tot. Since the HCS is defined by a large gtot,

94



4.2. Closed-Form Solutions for the LIF Equations

the membrane time constant becomes very small, allowing the cell to react very quickly
to incoming stimuli fast

membrane
. This already becomes apparent when considering Equation 4.31

in the limit of vanishing τeff : the membrane potential becomes approximately equal to
the effective membrane potential, which is a linear transformation of the total synaptic
conductance (Equation 4.30).

For the PSP shape, this can entail a reversal of the role of the membrane and synaptic
time constants. Note, again, the symmetry of Equations 4.39 and 4.59 in τ syn and τm

or τeff , respectively: it is always the smaller of the two time constants which determines
the rising flank of the PSP. Typically, τm > τ syn, so the rising flank of a (CUBA) PSP is
determined by τ syn and the falling flank by τm. In the HCS, these roles can be reversed nearly

exponential
PSPs

,
with the small τeff causing a nearly instantaneous rise of the PSP to its maximum value.

In addition to the “more exponential” shape of the PSPs, the HCS also causes them to
shrink small PSPs, due to 〈τeff〉 entering the PSP equation multiplicatively. This is a nice confirmation
of the small relative fluctuations of the membrane potential distribution discussed in
Section 4.2.3.

What we are still missing is a formal understanding of the somewhat counterintuitive
relationships between the input firing rate, the synaptic weight and the membrane poten-
tial distribution (Figure 4.2). For this, we shall now investigate the statistical properties
of additive Poisson processes.

95



4. Dynamics and Statistics of Poisson-Driven LIF Neurons

4.3. Single-Neuron Statistics

In this section, we begin by deriving general closed-form expressions the distribution of
Poisson-driven dynamic variables. Using the results from the previous section, we can
then find quantitative expressions for the distributions of the synaptic input and the
membrane potential of both CUBA and COBA LIF neurons. These will also allow us to
explain the interesting “anomalies” found in the computer simulations of COBA neurons
from the previous section.

4.3.1. Statistics of Additive Poisson-Driven Processes

We begin by addressing the general problem of a dynamic variable controlled by a Poisson
point process. Later on, the equations we derive here can be applied to different intrinsic
neuronal variables, such as membrane potentials, input currents, synaptic conductances
etc.

Consider a random variable Y (T ) ∈ R. Let its evolution in time be determined by a
Poisson process with rate λ that triggers events at times ti, which cause changes in Y (t),
given by some kernel κ(t − ti), that sum up linearly. Our goal is to find the first two
moments of the distribution of Y , i.e. its mean E[Y ] and variance Var[Y ].

Note how we have explicitly dropped the time dependence in the characterization of
the distribution of Y . This is neither an omission nor trivial, but rather a consequence of
the ergodicity of the dynamics of Y . We will address the ergodicity of Markov processes
in a more formal fashion in Section 4.1. For now, it is only important to know that
the Poisson process is ergodic - and by extension also Y (t), since it is fully determined
by a Poisson process. The distribution of Y (t) over time is therefore equivalent to the
distribution of Y (T ) at a fixed time T over all its possible histories (“distribution over
trials”). We will make use of this property in our formal derivation of E[Y ] and Var[Y ],
which is easier to perform in a trial-based setting.

Let us start by considering a time interval t ∈ [0, T ). From the linearity of changes in
Y (t), it follows that

Y (T ) =
∑

0≤ti<T
κ(T − ti) . (4.60)

Assuming that exactly n events have taken place in [0, T ), it follows from the definition
of the Poisson process that each event has an equal probability of occurring at any time
t ∈ [0, T ):

pn(ti) := p(ti|n events) =
1

T
. (4.61)

Since events generated by a Poisson process are, also by definition, independent, the times
ti follow a multivariate uniform distribution:

pn(t1, . . . , tn) := p(t1, . . . , tn|n events) =
n∏
i=1

pn(ti) =
1

Tn
. (4.62)

The probability for the Poisson process to produce n events in [0, T ) is

pλ(n) =
e−λ·T · (λ · T )n

n!
. (4.63)
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4.3. Single-Neuron Statistics

So we can now write, using Bayes’ rule:

p(n, t1, . . . , tn) = pn(t1, . . . , tn|n)pλ(n) =
λn

n!
e−λT (4.64)

With Equations 4.64 and 4.60, it is now possible to calculate the moments of Y (T ). In
the limit of T →∞, these become equivalent to the moments of Y .

From the definition of the expectation value, it follows that

E[Y (T )] =
∞∑
n=0

T∫
0

dt1 . . .

T∫
0

dtn Y (T, n, t1, . . . , tn) p(n, t1, . . . , tn)

=
∞∑
n=0

T∫
0

dt1 . . .

T∫
0

dtn

n∑
i=1

κ(T − ti)
λn

n!
e−λT (4.65)

We can rearrange the terms depending on their running variables and use the linearity of
the integral operator (

∫ ∑
=
∑∫

) to obtain

E[Y (T )] = e−λT
∞∑
n=0

λn

n!

n∑
i=1

T∫
0

dt1 . . .

T∫
0

dtn κ(T − ti) . (4.66)

For any i ∈ {1, . . . , n}, the integrand κ(T − ti) only depends on a single running variable
ti, so it factors out of all but one of the integrals:

T∫
0

dt1 . . .

T∫
0

dtn κ(T − ti) =

T∫
0

dt1 . . .

T∫
0

dti−1

T∫
0

dti+1 . . .

T∫
0

dtn︸ ︷︷ ︸
n−1 independent variables

T∫
0

dti κ(T − ti)

= Tn−1

T∫
0

dt κ(T − t) , (4.67)

leaving us with

E[Y (T )] = e−λT
∞∑
n=0

λn

n!

n∑
i=1

Tn−1

T∫
0

dt κ(T − t)

= λe−λT
∞∑
n=0

(λT )n−1

(n− 1)!︸ ︷︷ ︸
eλT

T∫
0

dt κ(T − t)

= λ

T∫
0

dt κ(T − t)

(τ=T−t)
= λ

T∫
0

dτ κ(τ) (4.68)

97



4. Dynamics and Statistics of Poisson-Driven LIF Neurons

In the limit of T →∞, we obtain the desired expectation value of Yexpectation
value of a
Poisson-
driven linear
process

:

E[Y ] = λ

∞∫
0

dτ κ(τ) . (4.69)

For calculating the variance of Y , we can use the univariate case of relation 4.16:

V ar[Y ] = E[(Y − E[Y ])2] = E[Y 2]− E2[Y ] . (4.70)

With Equation 4.69, the second term can be easily written down as

E2[Y ] = λ2

 ∞∫
0

dτ κ(τ)

2

(4.71)

For the first term, we can use the definition of the expectation value and find, equivalently
to 4.65 and 4.66:

E[Y 2(T )] =
∞∑
n=0

T∫
0

dt1 . . .

T∫
0

dtn Y
2(T, n, t1, . . . , tn) p(n, t1, . . . , tn)

=
∞∑
n=0

T∫
0

dt1 . . .

T∫
0

dtn

[
n∑
i=1

κ(T − ti)

]2
λn

n!
e−λT

= e−λT
∞∑
n=0

λn

n!

T∫
0

dt1 . . .

T∫
0

dtn

[
n∑
i=1

κ(T − ti)

]2

. (4.72)

By exlicitly squaring the sum we obtain[
n∑
i=1

κ(T − ti)

]2

=
n∑
i=1

κ2(T − ti) +
n∑
j=1

n∑
k=1

κ(T − tj)κ(T − tk) (4.73)

We can now plug this back into the multiple integral in the expression for E[Y 2(T )] and,
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for any triple (i, j, k), perform a similar factorization as in Equation 4.67 to obtain

T∫
0

dt1 . . .

T∫
0

dtn

[
n∑
i=1

κ(T − ti)

]2

=

T∫
0

dt1 . . .

T∫
0

dtn

 n∑
i=1

κ2(T − ti) +

n∑
i=1

n∑
j=1

κ(T − ti)κ(T − tj)


=

n∑
i=1

T∫
0

dt1 . . .

T∫
0

dti−1

T∫
0

dti+1 . . .

T∫
0

dtn︸ ︷︷ ︸
n−1 independent variables

T∫
0

dti κ
2(T − ti)

+
n∑
j=1

n∑
k=1

T∫
0

dt1 . . .

T∫
0

dtj−1

T∫
0

dtj+1 . . .

T∫
0

dtk−1

T∫
0

dtk+1 . . .

T∫
0

dtn︸ ︷︷ ︸
n−2 independent variables

T∫
0

dtj

T∫
0

dtk κ(T − ti)κ(T − tj)

= nTn−1

T∫
0

dt κ2(T − t) + n2Tn−2

 T∫
0

dt κ(T − t)

2

, (4.74)

which , similarly to Equation 4.68, leaves us with

E[Y 2(T )] = e−λT
∞∑
n=0

λn

n!

nTn−1

T∫
0

dt κ2(T − t) + n2Tn−2

 T∫
0

dt κ(T − t)

2


= e−λT

λ
∞∑
n=0

(λT )n−1

(n− 1)!︸ ︷︷ ︸
eλT

T∫
0

dt κ2(T − t) + λ2
∞∑
n=0

(λT )n−2

(n− 2)!︸ ︷︷ ︸
eλT

 T∫
0

dt κ(T − t)

2


= λ

T∫
0

dt κ2(T − t) + λ2

 T∫
0

dt κ(T − t)

2

(τ=T−t)
= λ

T∫
0

dτ κ2(τ) + λ2

 T∫
0

dτ κ(τ)

2

(4.75)

In the limit of T →∞ we therefore obtain

E[Y 2] = λ

∞∫
0

dτ κ2(τ) + λ2

 ∞∫
0

dτ κ(τ)

2

. (4.76)

This can now be plugged, together with the expression for E2[Y ] (Equation 4.71) into
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Equation 4.70 to obtain the sought variance of Yvariance of
a Poisson-
driven linear
process

:

Var[Y ] = λ

∞∫
0

dτ κ2(τ) . (4.77)

We complement the results of this formally rigorous, trial-based approach by a less
formal but more intuitive picture, in which we consider the evolution of Y over time.

Consider a time window [0, T ) which is much larger than the duration4 of a single
kernel κ. Assume that Y is stimulated by a single event at some random time ti. The
time-average of Y over [0, T ) is given by

E[Yi] = E[κ(t− ti)]

=
1

T

T∫
0

dt κ(t− ti) . (4.78)

For N events, the expectation value becomes

E[YN ] = E

[
N∑
i=1

Yi

]
(4.17)

=
N∑
i=1

E [κ(t− ti)]

(4.78)
=

N

T

T∫
0

dt κ(t− ti) . (4.79)

On average, a Poisson process with rate λ produces E[N ] = λT events in a time T .
By plugging this into Equation 4.79, performing an appropriate change of variables and
taking the limit T →∞, we recover the result from Equation 4.69:

E[Y ] = λ

∞∫
0

dτ κ(τ) . (4.80)

Similarly, for the time-variance of a single kernel, we have

Var[Yi]
(4.16)

= E[Y 2
i ]− E2[Yi]

=
1

T

T∫
0

dt κ2(t− ti)−
1

T 2

 T∫
0

dt κ(t− ti)

2

(4.81)

4 We loosely define the duration of a kernel as the time interval over which it is significantly different
from 0. For example, we could choose the duration of κ(t) as the length ∆t = t2 − t1 of the shortest

interval [t1, t2) with the property that
t2∫
t1

κ(t) dt > (1 − ε)
∞∫
−∞
|κ(t)| dt for some predefined “allowed

relative error” ε.
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4.3. Single-Neuron Statistics

In a Poisson process, events arrive independently of each other, so Cov[Yi, Yj ] = δijVar[Yi].
Therefore,

Var[YN ] = Var

[
N∑
i=1

Yi

]
(4.18)

=
N∑
i=1

Var[Yi]

(4.81)
=

N

T

T∫
0

dt κ2(t− ti)−
N

T 2

 T∫
0

dt κ(t− ti)

2

(4.82)

As above, we can now replace N with E[N ] = λT , perform a change of variables and let
T →∞ (whereby the second term vanishes) to recover the result from Equation 4.77:

Var[Y ] = λ

∞∫
0

dτ κ2(τ) . (4.83)

Note how we have arrived independently at the same results using first the distribution
over trials and then the distribution over time - as expected given the ergodicity of Y . We
can therefore use the derived moments of the distribution in both contexts, whether we
discuss large populations of stochastically equivalent Y -type RVs or long measurements
of an individual Y . Finally, due to the linearity of Y , Equations 4.69 and 4.77 can be
easily generalized to stimulation by n independent Poisson processes:

E[Y ] =
n∑
k=1

λk

∞∫
0

dτ κi(τ) mean and
variance of
a superposi-

tion of
Poisson

processes

(4.84)

Var[Y ] =
n∑
k=1

λk

∞∫
0

dτ κ2
i (τ) . (4.85)

4.3.2. The Gaussian Approximation

In the previous section, we have calculated the first two moments of the distribu-
tion of an additive Poisson process, but have made no statement about the shape of
the distribution itself. This could be done by calculating all central moments up to
some order, which would (almost) uniquely determine the distribution. However, we will
provide a more intuitive argument here and follow up with a formal proof in Section 6.5.2.

Consider, again, the value of Y at the end of the time window [0, T ) from the last
paragraph. Each event causes a change in Y (T ) that can be considered as an RV of its
own:

Yi := Y (T | a single event has occurred at ti) . (4.86)

As the distribution of ti is flat (due to the events being generated by a Poisson process)
and the kernel κ does not diverge in either direction, we can assume that the PDF of Yi
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does not have any particularly nasty characteristics.5 Due to the Poisson nature of the
generating process, the Yi-RVs are independent and identically distributed (IID). With
our definition of Yi, Y (T ) can now be written as a sum over our newly defined RVs

Y (T ) =
n∑
i=1

Yi . (4.89)

The central limit theoremcentral limit
theorem

(CLT) of probability theory guarantees that a sum of n IID RVs,
each with moments µ and σ, converges almost surely to a Gaussian in the limit of large
enough n (n → ∞). For a high Poisson event rate λ, the number of events n = λT can
become arbitrarily large as well and therefore CLT applies to Y (T ), rendering p(Y (T )|n)
Gaussian:

p(Y (T ) = y|n)
n→∞
−−−−→ fN (y, nµ, nσ2) . (4.90)

The number n of events itself follows a Poisson distribution (Equation 4.63), which in
the same limit of large λT can be well approximated by a Gaussian distributionGaussian

approxima-
tion

with
mean and variance both equal to λT :

pλ(n)
n→∞
−−−−→ fN (n, λT, λT ) . (4.91)

With Bayes’ rule, we can now write

p(Y (T )) =

∫
n

p(Y (T ), n) dn =

∫
n

p(Y (T )|n)pλ(n) dn (4.92)

Such an integral over a product of Gaussians can be shown to yield a Gaussian as well
(Bishop, 2009). As in the previous section, we can now invoke the ergodicity of Y to
argue that the distribution of Y (T ) over mutliple trials (which we have discussed above)
is equivalent to its distribution over time. We can therefore conclude that if the Poisson
rate is high enough, the distribution of any additive Poisson process is Gaussian, with a
mean and variance given by Equations 4.84 and 4.85. As we now have a full statistical
description of additive Poisson processes, we can move on to predict the distribution of
input currents, conductances and membrane potentials of the previously discussed LIF
neuron models.

4.3.3. Current and Conductance Statistics

Under the assumption of identically shaped PSP kernels, the Poisson-driven synaptic input
of CUBA and COBA neurons looks the same, up to the synaptic weight - a multiplicative

5 For a monotonically decreasing κ we can calculate the CDF of Yi:

p(Yi < y) = p (κ(T − ti) ≤ y) = p(ti ≤ T − κ−1(y)) = 1− κ−1(y)

T
, (4.87)

and from there its PDF:
p(Yi = y) =

∂

∂y
p(Yi < y) =

1

T

∂

∂y
κ−1(y) . (4.88)

For non-monotonic kernels, the support of κ can simply be partitioned into a set of intervals on each
of which κ is monotonic and the CDF becomes a sum of terms that have the same form as the one in
Equation 4.87.
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4.3. Single-Neuron Statistics

Figure 4.4.: Probability distributions of Poisson-driven input current and conductance:
theoretical prediction vs. simulation results (NEST). Excitation and inhibi-
tion were chosen to be balanced (identical firing rates and identical-amplitude
but opposite-sign PSPs; for the COBA neuron, this implied a rescaling of the
synaptic weights with Erev

x − El). The average total input is therefore zero
for the CUBA neuron, but nonzero in the COBA case, as conductances are,
by definition, non-negative. An increased firing rate (while maintaining the
balance) only results in a broader distribution of the total synaptic input for
the CUBA neuron. In the COBA case, both the mean and the variance of the
distribution increase. The increase of the mean total synaptic input is essen-
tial for achieving a HCS. Altogether, the theoretical prediction is in excellent
agreement with the simulation data.

factor typically expressed in nA or µS, respectively (compare Equations 2.55 and 2.58).
For exponential synapses, the interaction kernel is given by

κ(t) = wkΘ(t) exp(− t

τ syn
k

) . (4.93)

We can now use Equations 4.84 and 4.85 to obtain the mean and variance of the total
(Poissonian) synaptic input:

E[f syn] =

n∑
k=1

νk

∞∫
0

wkΘ(t) exp(− t

τ syn
k

) dt =

n∑
k=1

wkνkτ
syn
k , mean and

variance of
the synaptic

input

(4.94)

Var[f syn] =

n∑
k=1

νk

∞∫
0

[
wkΘ(t) exp(− t

τ syn
k

)

]2

dt =
n∑
k=1

1

2
w2
kνkτ

syn
k , (4.95)

where f syn represents the total synaptic current or conductance and νk the input fre-
quency at the kth synapse. Figure 4.4 shows a comparison of the predicted distributions
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to simulation data. Note how opposing currents (excitatory and inhibitory) may cancel
out in the CUBA model, as, e.g., reflected by the zero mean current in the figure. This
can not happen in the COBA case, in which all conductances are (by definition) strictly
non-negative. This “feature” of conductances is what enables the HCS in the first place.

Before moving on to membrane potential distributions, we need to point out a particular
feature of the input distributions. As one would already expect from the invocation of
the CLT in the previous section, the width and mean of the input distributions must
increase as the number of PSC kernels in an interval [0, T ) increases, but their ratio
(or relative width) must decrease. Indeed, as the abovementioned “kernel frequency” is
actually the Poisson rate ν, both phenomena follow directly from Equations 4.94 and 4.95.
In particular, for a single input source, the width-to-mean-ratiowidth-to-

mean ratio
of synaptic
input

takes the form[
σ

µ

]
f syn

=
1√

2νkτ
syn
k

, (4.96)

which converges to 0 as νk increases. In particular, this validates the assertion we made
in Section 4.2.3 about the relative fluctuations of the total membrane conductance being
very small. We will make use of this hereby rigorously derived property of the HCS in
the following section.

4.3.4. Free Membrane Potential Statistics

We now turn to the distribution of the membrane potential of Poisson-driven LIF neurons
with exponential synapses. In particular, we are interested in the free membrane poten-
tial, i.e., the firing threshold θ is set high enough to prevent the neuron from spiking.
Again, we can use the mean and variance Equations 4.84 and 4.85 and apply them to
the CUBA (Equation 4.38/4.39) and COBA (Equation 4.58/4.59) equations/PSP kernels.

For CUBA neurons, the calculation is straightforward. For the expectation value of the
membrane potential, we obtain

E[u] = El +
Iext

gl
+

n∑
k=1

νk

∞∫
0

τ syn
k τmwk

Cm

(
τ syn
k − τm

)Θ(t)

[
exp

(
− t

τ syn
k

)
− exp

(
− t

τm

)]
dtexpectation

value of the
CUBA
membrane
potential

= . . .

= El +
Iext

gl
+

n∑
k=1

wkνkτ
syn
k

gl
, (4.97)

and for its variance

Var[u] =
n∑
k=1

νk

∞∫
0

{
τ syn
k τmwk

Cm

(
τ syn
k − τm

)Θ(t)

[
exp

(
− t

τ syn
k

)
− exp

(
− t

τm

)]}2

dtvariance of
the CUBA
membrane
potential

= . . .

=

n∑
k=1

[
τmτ

syn
k

Cm(τm − τ syn
k )

]2

w2
kνk

(
τm

2
+
τ syn
k

2
− 2

τmτ
syn
k

τm + τ syn
k

)
. (4.98)
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For COBA neurons, we have initially assumed that we are able to find expressions for
ueff

0, 〈ueff〉 and 〈τeff〉 in order to calculate the PSP shape, so we need a slightly different
approach. In Section 4.2.1, we have already derived an expression for ueff in Equation
4.30. Now, we just need to calculate its expectation value:

E[ueff ] = E

glEl + Iext +
∑
k

gsyn
k Erev

k

gl +
∑
k

gsyn
k

 . (4.99)

In the previous section, we have argued that in the high-frequency regime, the relative
fluctuations of the synaptic conductance become very small. This permits a replacement
of all gsyn

k by their expectation values (Equation 4.94), leaving us with expectation
value of the

COBA
effective

membrane
potential

E[ueff ] =

glEl + Iext +
∑
k

wkνkτ
syn
k Erev

k

gl +
∑
k

wkνkτ
syn
k

. (4.100)

Note the similarity with the equivalent equation for CUBA neurons (Equation 4.97),
which could have been derived identically from the expression for ueff in the CUBA case
(Equation 4.29). In the same approximation, the average effective time constant can be
written as expectation

value of the
COBA

effective
time

constant

E[τeff ] =
Cm

E[gtot]
=

Cm

gl +
∑
k

wkνkτ
syn
k

. (4.101)

We can now derive an expression for ueff
0 from the assertion that calculating the expec-

tation value of Equation 4.53 must be self-consistent:

E[ueff ]
!

= ueff
0 + E


∑
k

gsyn
k (t) (Erev

k − 〈ueff〉)

〈gtot〉

 (4.102)

By using the newly derived expressions for E[ueff ] and E[gtot], we obtain

ueff
0 = E[ueff ]−

∑
k

E
[
gsyn
k (t)

]
(Erev

k − E[ueff ])

〈gtot〉
(Eqns. 4.100,4.101)

= . . .

=
gl

E[gtot]

(
E[ueff ]− El −

Iext

gl

)
(4.103)

We can now proceed to calculating the moments of the membrane potential distribution
analogously to the CUBA case. The expectation value E[u] must be identical to E[ueff ],
since u is merely a low-pass-filtered version of ueff (Equation 4.31). A formal calculation
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Figure 4.5.: Free (ϑ→∞) membrane potential distributions of Poisson-driven CUBA and
COBA neurons: theoretical prediction (crosses) vs. simulation results (con-
tinuous lines, NEST). The simulation parameters are identical to the ones
from Figure 4.4. The balanced input regime (on average, excitation and in-
hibition have the same impact, i.e., identical rates and identical-amplitude
PSPs) is reflected by a constant mean membrane potential, which lies at the
resting potential of El = −60 mV for both neurons. In the CUBA case, an
increased input rate manifests itself in an increased variance of the membrane
potential (Equation 4.98), which is a direct consequence of the increased vari-
ance of the input current (see Figure 4.4). In the COBA case, the input
conductance distribution becomes broader as well, but in the HCS a result-
ing broadening of the membrane potential distribution is countered by an
increased total conductance (Equations 4.101 and 4.105), in the end leading
to an opposite effect (compare also with Figure 4.2, top right). Again, the
theoretical prediction is in excellent agreement with the simulation data.

using Equations 4.58 and 4.84 yields the same result:

E[u] = ueff
0 +

n∑
k=1

νk

∞∫
0

τ syn
k wk (Erev

k − 〈ueff〉)
〈gtot〉

(
τ syn
k − 〈τeff〉

) Θ(t)

[
exp

(
−t
τ syn
k

)
− exp

(
−t
〈τeff〉

)]
dt

= ueff
0 +

n∑
k=1

wkνkτ
syn
k (Erev

k − 〈ueff〉)
〈gtot〉

expectation
value of the
COBA
membrane
potential

(Eqn. 4.103)
= E [ueff ]

(Eqn. 4.100)
=

glEl + Iext +
∑
k

wkνkτ
syn
k Erev

k

gl +
∑
k

wkνkτ
syn
k

. (4.104)
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For the variance, we obtain

Var[u] =

n∑
k=1

νk

∞∫
0

{
τ syn
k 〈τeff〉wk (Erev

k − 〈ueff〉)
Cm

(
τ syn
k − 〈τeff〉

) Θ(t)

[
exp

(
−t
τ syn
k

)
− exp

(
−t
〈τeff〉

)]}2

dt variance of
the COBA
membrane
potential

= . . .

=

n∑
k=1

[
〈τeff〉 τ syn

k (Erev
k − 〈ueff〉)

Cm(〈τeff〉 − τ syn
k )

]2

w2
kνk

(
〈τeff〉

2
+
τ syn
k

2
− 2

〈τeff〉 τ syn
k

〈τeff〉+ τ syn
k

)
,

(4.105)

where 〈ueff〉 and 〈τeff〉 are given by Equations 4.100 and 4.101, respectively.

Figure 4.5 shows the excellent agreement between the above theoretical predictions and
simulation data. Excitatory and inhibitory inputs are balanced, so the average membrane
potential lies at the resting potential El = −60 mV. In the CUBA case, the frequency
dependence of the variance (Equation 4.98) is reflected by the broadening of the distribu-
tion at a higher input rate. Interestingly , the opposite appears to happen in the COBA
case: the variance drops slightly with increasing input rate - as evidenced by the higher
peak of the normalized PDF. This mirrors our previous observations from Section 4.2.3
(Figure 4.2). With Equations 4.105, 4.100 and 4.101, we are now able to explain all of
our experimental observations, which we do in the following section.

4.3.5. The High-Conductance State III: Theory vs. Experiment

We have previously defined the HCS as a state where the synaptic conductance dominates
the total membrane conductance (Equation 4.42). In general, this is assumed to be the
result of a high-frequent synaptic bombardment. We can now analyze how the variance
of the membrane potential distribution behaves in this regime.

In the limit of high input rates (and non-vanishing synaptic weights), the effective time
constant (Equation 4.101) goes to zero: COBA τeff

in the HCS

E [τeff ] ∝

(∑
k

νk

)−1
∑
k

νk→∞

−−−−−−−−−→ 0 . (4.106)

We can therefore neglect all additive 〈τeff〉-terms in the variance of the membrane poten-
tial, leaving us with

Var[u]

∑
k
νk→∞

−−−−−−−−−→
n∑
k=1

[
〈τeff〉 (Erev

k − 〈ueff〉)
Cm

]2

w2
kνk

τ syn
k

2
variance of
the COBA
membrane
potential in

the HCS

=
1

2

∑
k

w2
kνkτ

syn
k (Erev

k − 〈ueff〉)(∑
k

wkνkτ
syn
k

)2 (4.107)

∝ 1∑
k

νkτ
syn
k

. (4.108)

This result immediately implies two conclusions about the properties of the HCS:
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Figure 4.6.: Variance of the membrane potential of an LIF neuron when stimulated by
Poisson inputs as a function of the input rate and synaptic input weight. For
CUBA neurons (left), it increases linearly with the rate and quadratically with
the weight, as follows directly from Equation 4.98. In the COBA case (right),
the variance behaves similarly in the low-conductance regime (small input
rates and relatively small weights, in the foreground of the figure), which is
not surprising, as in this regime COBA and CUBA neurons are functionally
identical. For increasing input rates however, the variance reaches a peak and
then drops off again, going to zero in the limit of large input rates (background
of the figure). In this regime, the variance effectively loses its dependence on
the synaptic input weights. This theoretical prediction precisely mirrors the
phenomena shown in Figure 4.2.

1) the variance of the membrane potential is (approximately) inversely proportional to
the total input rate and

2) the variance of the membrane potential becomes largely independent of the synaptic
weights,

which precisely mirror the experimental observations from Section 4.2.3. As argued in
Section 4.2.5, our third assumption concerning the small relative fluctuations of the mem-
brane potential now follows directly from the inverse input rate entering the PSP height
multiplicatively (see Equations 4.59 and 4.101).

The full wsyn and νsyn dependence of the membrane potential variance can be seen in
Figure 4.6 for both CUBA and COBA neurons. In the CUBA case, the variance scales
quadratically with wsyn and linearly with νsyn, as evidenced directly by Equation 4.98.
The COBA variance starts off similarly to the CUBA variance in the case of small input
rates: the intersection of the variance surface with the wsyn-Var[u]-plane (left foreground)
is quadratic, whereas its intersection with the νsyn-Var[u] plane starts off as linear (right
foreground). For high input rates, the trend is reversed: the variance reaches a maximum
and then begins to drop, ultimately becoming nearly independent of wsyn, as evidenced
by the surface becoming almost flat in the wsyn-direction.
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The independence of the free membrane potential variance on the synaptic input weights
in the HCS is not only an interesting phenomenon, but may play a significant role during
learning. In many scenarios where neural networks learn to perform certain tasks, be
they biologically plausible or more abstract, but useful for, e.g., machine learning, it
turns out that homeostatic mechanisms can be a potent ingredient (see, e.g., Habenschuss
et al., 2012). In broad terms, homeostasis homeostasisensures that the output of a constituent unit
in a network remains unchanged despite changes in its input. If we assume that the
connectivity of a neural network remains unchanged (no structural plasticity) – which
is a simplifying, but common assumption in computational neuroscience and machine
learning – then the only changes that a neuron experiences in its input are changes in its
afferent synaptic weights. If we further assume that the output spike train of a neuron
depends only on the dominant time constant in its dynamics (which, in the HCS, is the
synaptic one) and on the moments of its membrane potential distribution (we shall provide
a rigorous treatment of this conjecture in Section 6.5.3), and the ratio of excitation to
inhibition remains balanced, then the wsyn-independence discussed above directly provides
a neuronal homeostatic mechanism. Most interestingly, this feature is not added to the
network by virtue of additional dynamic components, but rather a direct consequence of
the LIF dynamics in the HCS. In other words, this form of homeostasis is, by default,
built into the physics of COBA LIF neurons.
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4.4. Shared-Input Correlations of Neuronal Dynamics

When an overlap between the presynaptic populations of two neurons exists, it induces
correlations in their behavior, even if the two neurons have no direct synaptic connec-
tion. In this section, we discuss quantitative measures for these shared-input pairwise
correlationsshared-input

correlations
. Building on the expressions derived in the previous sections, we can now

make quantitative predictions of shared-input correlations both for the free membrane
potential and for the spike trains of neurons with partly overlapping Poisson background
pools.

4.4.1. Multivariate Distributions and the Correlation Coefficient

We shall start by extending our conclusions from Section 4.3.1 to multivariate distribu-
tions of additive Poisson processes. In Section 4.3.2, we have argued that a single additive
Poisson-driven RV will follow a Gaussian (marginal) distribution, with a mean and vari-
ance given by Equations 4.84 and 4.85, respectively. A set X of such RVs will therefore
follow a multivariate Gaussian (joint) distribution, which is defined by the PDF:multivariate

Gaussian
f(x,µ,Σ) =

1

(2π)k/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
, (4.109)

where the mean vector µ is defined as

µ := E [X] , (4.110)

Figure 4.7.: Two conductance-based LIF neurons, each with a total amount of excitatory
input channels of Sytot = 7. They consist of Sy1p = Sy2p = 2 “private“
input channels for each neuron and Sys = 5 input channels shared by both
neurons. As expected, the membrane potential time course is very similar,
due to the high proportion of shared inputs, but not identical. In this section,
we discuss quantitative measures for their degree of similarity. Figure taken
from Bytschok (2011).
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4.4. Shared-Input Correlations of Neuronal Dynamics

Σ represents a covariance matrix with elements

Σ = Cov[Xi, Xj ] , (4.111)

and |Σ| denotes its determinant.
In the following, since we will later investigate second-order (pairwise) correlations

between neural state variables, we will restrict ourselves to bivariate distributions, but
this framework can be straightforwardly extended to correlations of any order. For two
RVs X1 and X2, the multivariate Gaussian from above reduces to bivariate

Gaussian

f(x1, x2) =
1

2σ1σ2

√
1− ρ2

exp

[
− 1

2 · (1− ρ2)

(
z2

1 + z2
2 − 2ρz1z2

)]
, (4.112)

where Z1 and Z2 (with their respective values z1 and z2) represent normalized versions of
the original RVs:

z1 :=
x1 − µ1

σ1
z2 :=

x2 − µ2

σ2
. (4.113)

In this notation, the covariance has also been normalized to the Pearson product-moment
correlation coefficient (or simply correlation coefficient CC) correlation

coefficient

ρ =
Cov[X1, X2]

σ1σ2
= Cov[Z1, Z2] , (4.114)

which lets us rewrite the covariance matrix as

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
. (4.115)

This is a more convenient notation, since the CC is a bounded measure of the correlation
between RVs6 and is also insensitive to linear transformations of the sample space Ω, as
follows directly from Equation 4.114. In particular,

ρX1,X2 ∈ [−1, 1] , (4.118)

with the extreme values 1 and −1 representing a linear dependence of X1 and X2, i.e., per-
fect correlation and anticorrelation, respectively. For independent variables, ρX1,X2 = 0.
Due to these useful properties, we choose the CC as the measure of choice for correla-
tions between continuous, real-valued RVs. In the following sections, we shall use the
previously found equations for the membrane potential distribution in order to predict
neuronal shared-input correlations in the subthreshold regime.

Following all of the above, Figure 4.8 shows two examples of how we expect the mem-
brane potential distributions to look like for a pair of LIF neurons. Here, we only show the

6 The relation
|Cov[X,Y ]| ≤ σXσY (4.116)

follows directly from the Cauchy-Schwartz inequality for the inner product space of square-integrable
functions (to which finite-variance Gaussian PDFs belong by definition)∣∣∣∣∫

Rn

f(x)g(x) dx

∣∣∣∣2 ≤ ∫
Rn

|f(x)|2 dx ·
∫
Rn

|g(x)|2 dx. . (4.117)
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special case of µ1 = µ2 and σ1 = σ2. In general, iso-probability loci are ellipses centered
at µ, with the projections of their axes being proportional to σ1 and σ2, respectively. For
some probability density p, the iso-probability locus follows directly from Equation 4.112:

iso-
probability
loci of
bivariate
Gaussians

1

R
x2 − 2ρ

R
xy +

1

R
y2 = 1 , (4.119)

which is the canonical form of an ellipse, where

R = −2(1− ρ2) ln
(

2pσ1σ2

√
1− ρ2

)
. (4.120)

For uncorrelated RVs (ρ = 0), the main axes of the ellipses are parallel to the RV axes.
For correlated RVs (|ρ| > 0), the ellipses become tilted and squeezed towards the line

y(x) = sgn(ρ)
σy
σx

(x− µx) + µy . (4.121)
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Figure 4.8.: Two examples of bivariate normal distributions of neuron membrane poten-
tials with identical means and variances. Left: independent inputs. Right:
some inputs are shared, causing the membrane potentials to have positive
correlation. The colormap represents the height of the joint density func-
tion f(u1, u2) (red is high, blue is low). The continuous lines represent iso-
probability loci and have an elliptical shape. Figure taken from Bytschok
(2011).

4.4.2. Derivation of the Free (Subthreshold) Membrane Potential CC

Let us start by considering the general case of two LIF neurons that are fed by multiple in-
dependent Poisson sources which we denote by their indices i ∈ {1, . . . , n}. These sources
are characterized by their rates ν = (ν1, . . . , νn), by the synaptic weights via which they
are connected to the two neurons w1 = (w11, . . . , w1n) and w2 = (w21, . . . , w2n), as well
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as by their respective time constants τ syn
1 = (τ syn

11 , . . . , τ syn
1n ) and τ syn

2 = (τ syn
21 , . . . , τ syn

2n ).7

Furthermore, the neurons themselves may have different parameter sets, which we denote
by P1 and P2. What we are looking for is an expression for

ρu1,u2 = ρ(P1,P2,w1,w2, τ
syn
1 , τ syn

2 ,ν) . (4.122)

We have shown previously (Section 4.2) that the membrane potential of CUBA LIF
neurons in general and COBA LIF neurons in the HCS can be written as a sum over
PSPs from individual spikes (Equations 4.38 and 4.58). Due to this linearity, we can
group the PSPs by their synaptic source and write the membrane potential as a sum over
all input sources of the contribution of each individual source:

ui =
n∑
k=1

uik , (4.123)

where each uik is a Poisson-driven stochastic process with mean and variance given by
the equations derived in Section 4.3.4. We can exploit the bilinearity of the covariance to
find

Cov[u1, u2] = Cov

 n∑
k=1

u1k,

n∑
j=1

u2j


=
∑
k

∑
j

Cov[u1k, u2j ] . (4.124)

Since we have defined the individual Poisson sources as independent, the membrane po-
tential contributions that they generate are also independent and therefore uncorrelated:

k 6= j =⇒ Cov[u1k, u2j ] = 0 , (4.125)

which allows us to further simplify the membrane potential covariance equation: covariance
of

membrane
potentials

driven by a
(common)

set of
independent

Poisson
sources

Cov[u1, u2] =
∑
k

Cov[u1k, u2k] . (4.126)

For calculating Cov[u1k, u2k], we can use the same formalism as we did in Section 4.3.1
for the variance of Poisson-driven processes. All we need to do is replace the terms E

[
Y 2
]

and E2[Y ] by E [XY ] and E [X]E [Y ], respectively, where X and Y are both Poisson-
driven processes that have the same rate λ but different kernels κX and κY , respectively.
In particular, Equation 4.76 transforms to

E [XY ] = λ

∞∫
0

dτ κX(τ)κY (τ) + λ2

∞∫
0

dτ κX(τ)

∞∫
0

dτ κY (τ) (4.127)

7 Here, we explicitly allow the violation of Dale’s law, which would, in principle, not only require
sgn(w1j) = sgn(w1j), but also τ syn

1j = τ syn
2j , since the synaptic transmission should be mediated by the

same type of neurotransmitters (see Section 2.1.3). However, Dale’s law does not necessarily apply
to artificial neural networks in general. In particular, allowing it to be violated turns out to be quite
useful, such as for various types of neuromorphic hardware or for the specific class of networks we
discuss in Chapter 6.
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and Equation 4.71 becomes

E [X]E [Y ] = λ2

∞∫
0

dτ κX(τ)

∞∫
0

dτ κY (τ) . (4.128)

With this, we can now writecovariance
of two RVs
driven by
the same
Poisson
process

Cov[X,Y ] = λ

∞∫
0

dτ κX(τ)κY (τ) . (4.129)

We can now calculate the subthreshold membrane potential CC explicitly. The CUBA
and HCS COBA kernels are given by Equations 4.39 and 4.59, respectively. In the CUBA
case, the covariance becomes

Cov[u1, u2]
(Eqns 4.129, 4.39)

= . . .

=

n∑
k=1

[
νk

2∏
i=1

wik
τ syn
ik τmi

Cmi

(
τ syn
ik − τmi

)membrane
potential
covariance
and CC of
two
Poisson-
driven
CUBA
neurons

×
(

τ syn
1k τ

syn
2k

τ syn
1k + τ syn

2k

+
τm1τm2

τm1 + τm2
−

τ syn
1k τm1

τ syn
1k + τm1

−
τ syn

2k τm2

τ syn
2k + τm2

)]
. (4.130)

With Equation 4.98 for the membrane potential variance, we obtain for the CC:

ρu1,u2 =
π (ν,w1,w2, τ

syn
1 , τ syn

2 ,φ12)
2∏
i=1

√
π (ν,wi,wi, τ

syn
i ,ψi)

, (4.131)

For a simplified representation, we have defined the kth elements of the vectors φij and
ψi as

φijk =

τ syn
ik τ syn

jk

τ syn
ik +τ syn

jk
+

τmiτmj
τmi+τmj

− τ syn
ik τmi

τ syn
ik +τmi

− τ syn
jk τmj

τ syn
jk +τmj(

τ syn
ik − τmi

) (
τ syn
jk − τmj

) and (4.132)

ψik =
τmi

2
+
τ syn
ik

2
− 2

τmiτ
syn
ik

τmi + τ syn
k ik

, (4.133)

respectively, and the function π(·) as

π(v1, . . . ,vm) :=

n∑
k=1

m∏
i=1

vik , with dim(vi) = n . (4.134)

It is interesting to note yet another very useful property of the CC: in the CUBA
case, apart from the configuration of the stimuli given by {ν,w1,w2, τ

syn
1 , τ syn

2 }, it does
not depend on the full parameter sets P1 and P2 of the two neurons, but only on their
membrane time constants τm1 and τm2.
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The calculation for the HCS COBA case is analogous, essentially requiring the following
replacements:

wik → wik (Erev
ik − 〈ueff〉i) and (4.135)

τmi → 〈τeff〉i (4.136)

where 〈τeff〉i and 〈ueff〉i are given by Equations 4.101 and 4.100. The covariance then
reads

Cov[u1, u2]
(Eqns 4.129, 4.59)

= . . .

=

[
n∑
k=1

νk

2∏
i=1

wik
〈τeff〉i τ

syn
ik (Erev

ik − 〈ueff〉i)
Cm(〈τeff〉i − τ

syn
ik )

]
membrane
potential

covariance
and CC of

two
Poisson-

driven
COBA

neurons

×
[
τ syn

1k τ
syn
2k

τ syn
1k + τ syn

2k

+
〈τeff〉1 〈τeff〉2
〈τeff〉1 + 〈τeff〉2

−
τ syn

1k 〈τeff〉1
τ syn

1k + 〈τeff〉1
−

τ syn
2k 〈τeff〉2

τ syn
2k + 〈τeff〉2

]
,

(4.137)

and the CC is given by

ρu1,u2 =
π (ν,w1, (E

rev
1 − 〈ueff〉1) ,w2, (E

rev
2 − 〈ueff〉2) , τ syn

1 , τ syn
2 ,φ12)

2∏
i=1

√
π (ν,wi, (Erev

i − 〈ueff〉i) ,wi, (Erev
i − 〈ueff〉i) , τ

syn
i ,ψi)

, (4.138)

where Erev
i denotes the reversal potential vector of the ith neuron (corresponding to the

weight vector wi), 〈ueff〉i is an n-dimensional vector with all components equal to 〈ueff〉i,
and all other notations are as defined above.

In their most general form, the CC Equations 4.131 and 4.138 are somewhat unwieldy.
To gain a better intuition, we can assume several simplifications. First of all, we can
assume the two neurons to share several parameters, in particular τm (in the CUBA case)
and 〈τeff〉 and 〈ueff〉 in the COBA case. Furthermore, we can assume them to have the
same synaptic time constant and reversal potential vectors (τ syn and Erev), which can
be viewed as a direct consequence of Dale’s law. Under these assumptions, a lengthy but
straightforward calculation shows that all the factors that depend on the abovementioned
parameters in Equations 4.131 and 4.138 cancel out, leaving us with a single equation for
the CC that holds for both the CUBA and the COBA case: membrane

potential CC
of two

Poisson-
driven

neurons
with

identical
parameters

ρu1,u2 =
π (ν,w1,w2)√

π (ν,w1,w1)
√
π (ν,w2,w2)

. (4.139)

This equation paints a more intuitive picture. The numerator represents the fact that
the input channels that contribute most to the CC are those which have a large common
impact on both neurons, i.e., a high firing rate νk and strong projections w1k and w2k

towards both neurons. The denominator is simply a reduced version of the standard devi-
ation of the two membrane potentials (compare with, e.g., Equation 4.98). As mentioned
above, the τm-, τ syn- and Cm-dependent terms cancel out with their equivalents in the
numerator, leaving only a dependence on ν and w.
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4.4.3. Subthreshold Shared-Input Correlations: Theory vs. Simulation

For the beginning, let us narrow down the problem even further. By assuming that some of
the inputs are only connected to only one of the two neurons (wik = 0), we can subdivide
the total set of inputs into two sets of “private” ones

P1 = {k|w1k 6= 0, w2k = 0} , |P1| = p , (4.140)
P2 = {k|w2k 6= 0, w1k = 0} , |P2| = p (4.141)

and a set of “shared” ones

S = {k|w1k 6= 0, w2k 6= 0} , |S| = s . (4.142)

Here, we have required the respective number of presynaptic inputs (and therefore the
respective number of private inputs) to be equal for the two neurons. Furthermore, we
set all input rates and all nonzero weights as equal, such that the CCdependence

of the
membrane
potential CC
the number
of shared
and private
inputs

should now only
depend on s and p. Indeed, a simple calculation yields

ρu1,u2 = . . . =
s

s+ p
. (4.143)

This result again confirms the usefulness of the CC as a correlation measure. Ideally, we
require a measure that is invariant to identical transformations of the two RVs (membrane
potentials) in question, such as modifications of the synaptic kernel (by changing, e.g. τm

or τ syn), modifications of the total stimulus strength (by changing, e.g., w or nu) or
any other parameter changes. Indeed, under these simplified conditions, the CC of two
neurons is given only by the ratio of shared inputs to the total number of inputs.

This intuitive result is depicted in Figure 4.9. The predicted simplified CC (Equation
4.143) is compared to results from simulations where the stimulus frequency and strength
are varied. Apart from expected variations in the CC extracted from the simulations (due
to their limited duration), the simulations confirm our previous assertion that, when the
two neurons share a common parameter set, the CC only depends on the ratio of shared
to total inputs.

An interesting observation is that the fluctuations due to insufficient sampling statistics
appear to decrease with an increasing shared-to-total input ratio (if the simulation time
is kept constant). This phenomenon is easily understood when taking into account the
volume (in our case, area) of the sampled configuration space. If we assume some low
value p̃→ 0, we can guarantee that all samples are almost surely within the iso-probability
locus of p̃, which also has a finite area A, since it is a closed curve. The area of an ellipse
written in canonical form

ax2 + bxy + cy2 = 1 (4.144)

is given by

A =
2π√

4ac− b2
. (4.145)

From the iso-probability locus Equation 4.119, we can therefore easily derivearea of
p̃-iso-
probability
loci

A = −2π
√

1− ρ2 ln
(

2p̃σ1σ2

√
1− ρ2

)
. (4.146)
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Figure 4.9.: Membrane potential CC of two identical neurons for different neuron models
and parameters: theoretical prediction vs. simulation results. Top row:
CUBA neurons. The CC is calculated and simulated for different values of
the shared input ratio s/(s + p), input rate ν and input weight w. The
dependence on s/(s + p) is linear, whereas the other two variables do not
affect the CC. Bottom row: COBA neurons. The CC is not sensitive to
the change from CUBA to COBA, as can be seen by the horizontal planes
not changing their position. Apart from slight deviations due to insufficient
statistics (too short simulation time), the theoretical prediction is confirmed
by the simulation results. Figure taken from Bytschok (2011).
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4. Dynamics and Statistics of Poisson-Driven LIF Neurons

Figure 4.10.: Two neurons driven by 100 independent Poisson sources in the subthreshold
regime that share an increasing number of inputs: theoretical prediction vs.
simulation results. Top: membrane potential joint distributions. The col-
ormap represents the height of the simulated joint density function f(u1, u2)
(red is high, blue is low). The CC and iso-probability loci are calculated
from Equations 4.143 and 4.119. As the number of shared inputs increases,
the CC increases as well and the iso-probability ellipses become narrower.
Bottom: linear increase of the correlation coefficient with the increasing
number of shared channels, as predicted by Equation 4.143. The theoretical
predictions are in very good agreement with the simulation data. Figure
taken from Bytschok (2011).
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4.4. Shared-Input Correlations of Neuronal Dynamics

The only variable that appears in this equation and also changes its value in our simula-
tions is the CC ρ. From a straightforward application of l’Hôpital’s rule, we find that

lim
ρ→1

A = 0 . (4.147)

Since the sampled configuration space volume decreases, but the total number of samples
remains constant due to the fixed simulation duration, the sample density increases,
leading to a more precise sample-based estimate of ρ as it approaches 1.

With the CC from Equation 4.143 and µ and σ from Section 4.3.4, we can now predict
the full membrane potential joint distribution for two Poisson-driven neurons with iden-
tical parameters (for the general case we would need to use Equations 4.131 or 4.138).
The comparison to simulation results is shown in Figure 4.10. As the number of shared
sources increases, the two membrane potentials become more correlated, as indicated by
the narrowing-down of their joint distribution and by their increasing CC. The predicted
CC is in very good agreement with the simulation data. This allows us to calculate the
iso-probability loci (Equation 4.119) for the various simulated scenarios, which are, as
expected, confirmed by the simulations. Figure 4.10 also offers a nice visual confirmation
of the sample density argument given above.

4.4.4. The Symmetric Uncertainty as a Spike-Based Correlation Measure

We can now take our investigation one step further and construct a framework that allows
us to predict spike-based correlations. In principle, this should turn out even more useful
than the prediction of the free membrane potential correlations, since it is the spikes that
mediate the information exchange between neurons.

The first problem we encounter is a rather trivial one and it concerns the mathematical
description of a spike train. Until now, we have treated spike trains as point processes,
i.e., defined as a sequence (t1 < . . . < tn) of points in time, or, alternatively, a sum of
delta functions (Equation 2.29). In order to be able to apply typical correlation measures,
it would be useful to first transform spike trains to finite functions of time that are almost
everywhere8 continuous. The simplest way to do this is by convolution with a box (a.k.a.
boxcar) function of duration τon:

s̃(t) : = ρ(t) ∗ box(t|0, τon, 1)

=

∞∫
−∞

dτ
∑

spikes s

δ(τ − ts)box(t− τ |0, τon, 1) (4.148)

where we use the following definition of the box function:

box(t|t1, t2, a) := a · [Θ(t− t1)−Θ(t− t2)] =

{
a if t ∈ (t1, t2] ,

0 otherwise ,
(4.149)

8 A property holds “almost everywhere” if, the set for which the property does not hold has measure
zero. In other words, the set for which the property holds takes up almost the entire configuration
space. Its analog in probability theory is “almost surely” (see, e.g., the statement of the CLT from
Section 4.3.2).
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4. Dynamics and Statistics of Poisson-Driven LIF Neurons

Figure 4.11.: Left: Transformation of a spike train to a binary RV by convolution with a
box function. Here, the box function is defined as box(t| − τon/2, τon/2, 1),
making the 1-states centered around the spikes. We shall see later that
aligning the left flank of the box function with the spikes (box(t|0, τon, 1)) as
defined in Equation 4.150 is more meaningful, so this remains an illustrative
example for the general case. Right: 1/0-states of a neuron pair with shared
inputs. The red and blue lines represent s1(t) and s2(t), respectively, while
the green lines represent the output spikes of the two neurons. Figures taken
from Bytschok (2011).

with Θ(·) representing the Heaviside step function. This transformation effectively repre-
sents a spike count during the time interval (t− τon, t]. We shall go one step further and
not differentiate between states with different numbers of preceding spikes:binary state

of a spiking
neuron

s(t) = sgn [s̃(t)] =

{
1 if ∃ ts ∈ (t− τon, t] ,

0 otherwise ,
(4.150)

By virtue of the above definition, a neuron is said to be in the “1”-state for a duration τon

following a spike and in the “0”-state otherwise (here, we use quotation marks to emphasize
that the numerical values we associate with the two states are arbitrary; from here on, we
drop them for readability). In other words, s(t) encodes whether the neuron has spiked
or not during the time interval (t−τon, t]. For now, τon is arbitrary, but we shall explore a
deep connection to the representation of discrete probability spaces in Chapter 6. Figure
4.11 shows an exemplary transformation of a spike train with the method described above.

With the above transformation, we have effectively represented a spike train ρ(t) as a
binary RV S = s(t). A pair of neurons can therefore be in one of four possible joint states
at any point in time:state space

of two
spiking
neurons

Ω(S1, S2) = {(0, 0), (0, 1), (1, 0), (1, 1)} , (4.151)

where we use the notation (·) to represent a tuple (not an interval). In order to improve
readability, we further define the following shorthands:

npx : = p(Sn = x) and (4.152)
pxy : = p(S1 = x, S2 = y) , (4.153)
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with which we can denote the probabilities of either neuron to be in the “1”-state by 1p1

and 2p1, and those of the four possible joint states by p00, p01, p10 and p11, respectively.
In this notation, the expression for the spike-train CC turns out to be quite simple:

ρs1,s2 =
Cov[S1, S2]√

Var[S1] ·Var[S2]
state CC for

a pair of
spiking
neurons

=
E[S1, S2]− E[S1]E[S2]√(

E[S2
1 ]− E2[S1]

) (
E[S2

2 ]− E2[S2]
)

=

∑
(s1,s2)∈Ω

p(s1, s2)s1s2 −
∑

s1∈{0,1}
p(s1)s1

∑
s2∈{0,1}

p(s2)s2√√√√√ 2∏
n=1

 ∑
sn∈{0,1}

p(sn)s2
n −

( ∑
sn∈{0,1}

p(sn)sn

)2


=
p11 − 1p1

2p1√(
1p1 − 1p2

1

) (
2p1 − 2p2

1

) . (4.154)

While the CC is an often-used spike train correlation measure9, the way in which we are
now effectively treating the spike output of a neuron as a binary RV might call for a more
information-theoretical approach.

The amount of information in a message is routinely quantified by its entropy. The
temporal evolution of a binary RV effectively spells out such a message, with an entropy

entropy of a
binary RV

defined by
H(S) = −

∑
s∈{0,1}

p(s) log2 p(s) . (4.155)

This is a particularly useful quantity, since it associates a neuron that “permanently does
the same thing”, i.e., p(S = 0) → 1 (never spiking) or p(S = 1) → 1 (always spiking),
with a vanishing information content, as can be easily verified by l’Hôspital’s rule:

H(S)
p(S=x)→1

−−−−−−−−−→ 0 . (4.156)

For two correlated RVs, we can define a so-called conditional entropy, which quantifies the
amount of information we can gain by measuring one of the RVs in addition to what we
already know by having measured the other:

H(S1|S2) =
∑

s2∈{0,1}

p(s2)H(S1|s2) conditional
entropy for
two binary

RVs

= −
∑

(s1,s2)∈Ω

p(s2)p(s1|s2) log2 p(s1|s2)

= −
∑

(s1,s2)∈Ω

p(s1, s2) log2

p(s1, s2)

p(s2)
. (4.157)

9 Albeit not necessarily in the same way as we do here. More often than using a box function, spike trains
are convolved with exponential or Gaussian functions. Yet another popular method of processing a
spike train is by binning, thereby effectively discretizing time and treating the output of a neuron as
a firing rate.
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The conditional entropy is sometimes also called noise entropy, especially in cases where
S1 represents a noisy version of S2, so the remaining entropy of S1 after having measured
S2 is the entropy of the noise. This already brings us closer to our goal of defining an
entropy-based correlation measure, but the conditional entropy still has the drawback of
being asymmetric (due to the denominator in the log2 depending only on s2).

As we have already mentioned (Equation 4.8) the joint product of a set of RVs factorizes
if and only if they are pairwise independent. In particular, for two RVs,

s1 ⊥ s2 ⇒ p(s1, s2) = p(s1)p(s2) . (4.158)

We can therefore characterize the mutual dependence of two RVs by comparing their
joint distribution p(S1, S2) with the product of their marginals p(S1)p(S2). A standard
measure for such a comparison is provided by the Kullback-Leibler (KL) divergence, which
is defined as follows for an ordered10 pair (p, q) of probability distributions over the same
discrete11 space Ω:

DKL (p ‖ q) =
∑
x∈Ω

p(x) log
p(x)

q(x)
.KL

divergence
(4.160)

The base of the logarithm is usually chosen depending on the nature of the RVs or on the
preferred unit of information (bits, nats, etc.) – so in our case, log2 is a natural choice.
We can now calculate the KL divergence of the joint probability distribution p(S1, S2)
from the product of marginals p(S1)p(S2):

DKL (p(S1, S2) ‖ p(S1)p(S2)) =
∑

(s1,s2)∈Ω

p(s1, s2) log2

(
p(s1|s2)

p(s1)

)
mutual
information

=
∑

(s1,s2)∈Ω

p(s1, s2) log2 p(s1|s2)−
∑

(s1,s2)∈Ω

p(s1, s2) log2 p(s1)

=
∑

(s1,s2)∈Ω

p(s1, s2) log2

p(s1, s2)

p(s2)︸ ︷︷ ︸
Eq. 4.157

−
∑

s1∈{0,1}

p(s1) · log2 p(s1)

︸ ︷︷ ︸
Eq. 4.156

= H(S1)−H(S1|S2) =: I(S1, S2) , (4.161)

which is the definition of the frequently used so-called mutual information (MI) I(S1, S2).
The MI has the very useful property of being a metric, therefore being, in particular,
symmetric with respect to S1 and S2.

The remaining concern with using the MI as a correlation measure is the fact that it
is unnormalized, therefore depending on, e.g., the input rates and weights of a pair of
neurons with a fixed configuration of shared and private input channels. This problem
can be easily solved by normalizing the MI to the entropies of both RVs, in order to keep
it symmetric. Here, we use the so-called symmetric uncertainty (SU) as defined in Witten
and Frank (2005):

Ĩ(S1, S2) :=
2I(S1, S2)

H(S1) +H(S2)
.symmetric

uncertainty
(4.162)

10 The Kullback-Leibler divergence is not symmetric, i.e, in general,

DKL (p ‖ q) 6= DKL (q ‖ p) . (4.159)

11 For a continuous Ω, the sum is replaced by an integral.
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Figure 4.12.: CC vs. SU. Top left: Example spike trains (green) from two neurons with
5 shared and 2 private inputs and their state variables (red and blue). The
positive CC and SU reflect the ratio of shared to total inputs, but the SU
is lower since it is a convex function of s/(s+ p). The other three subplots
depict various correlation measures over a large subspace of Ω: p00 ∈ [0, 1]
and p01 = p10 ∈ [0, 0.5]]. Figure taken from Bytschok (2011). Top right:
CC. Bottom left: Squared CC. Bottom right: SU. Note the qualitative
similarity between the squared CC and the SU.
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In addition to being symmetric, it can be shown that the SU is normalized to the unit
interval:

Ĩ(S1, S2) ∈ [0, 1] . (4.163)

Figure 4.12 shows an example of binarized neuron spike trains and their calculated SU.
In contrast to the CC, which increases linearly with the ratio of private to total inputs
(Equation 4.143), the SU is clearly a concave function of this ratio, with a value of 0.273
for s/(s+ p) = 5/7 – as compared to the independent case Ĩ(s/(s+ p) = 0) = 0 and the
fully correlated case Ĩ(s/(s+p) = 1) = 1. Since calculating the SU requires the knowledge
of the same probabilities 1p1, 2p1, p00, p01, p10 and p11 as the CC, we will restrict ourselves
to only predicting the former, knowing that we could predict the latter as well.

In particular, we observe an interesting connection between the SU and the CC. Figure
4.12 depicts a sweep over a subspace of the entire spectrum of probability distributions
over Ω (p10 and p01 are kept equal in order to allow a plot over only two degrees of
freedom). Indeed, it turns out that the SU looks very similar to the square of the CC
over the entire spectrum of probability distributions over Ω. However, we need to stress
that this is not due to a deep mathematical relationship between the SU and the CC,
but rather a direct consequence of the conditions imposed on our correlation measure:
symmetry with respect to S1 and S2, normalization to [0, 1] and extreme values for zero
(Ĩ = ρ2 = 0) and total (Ĩ = ρ2 = 1) (anti)correlation.12

Before we move on, we should point out that the denomination of “symmetric un-
certainty” is a quite unfortunate one. Intuitively, a high uncertainty should point to
independence, since for two independent RVs, measuring one leaves us uncertain about
the state of the other. For the SU, the exact opposite is the case. Nevertheless, we shall
continue using this (declaredly confusing) denomination for historical reasons (Bytschok,
2011; Witten and Frank, 2005).

4.4.5. Spike-Based Correlations from Free Membrane Potential Statistics

We have previously defined the free membrane potential of a neuron under certain stimulus
conditions to represent the would-be value of the membrane potential if the threshold was
set to infinity. When comparing the time course of the membrane potential with the one
of the free membrane potential (Figure 4.13), we can immediately identify a connection
of the latter to the state variable of the neuron: the states S = 1 appears to coincide with
the periods when the effective membrane potential ũ is suprathreshold:state

variable
inferred
from
suprathresh-
old free
membrane
potential

S(t) = 1
?⇐⇒ ũ ≥ ϑ . (4.164)

If this is, indeed, the case, then any calculations involving state variables could be per-
formed using free membrane potentials, the (joint) distributions of which we are able to
fully specify in closed form (Section 4.4.2). More precisely, the joint and marginal state

12 Herein lies the main difference between the CC and the SU. The former is a measure of correlation,
which discerns between positive (ρ > 0) and negative (ρ < 0) correlation, whereas the latter is a
measure of dependence (mutual information). As usual, correlation implies dependence (ρ ∈ {−1, 1} ⇒
Ĩ = 1). Conversely, independence implies zero correlation (Ĩ = 0⇒ ρ = 0).
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distributions are then given by

ip1 := p(Si = 1)
!

= p(ũi ≥ ϑ) =

∞∫
ϑ

f(ũ, µi, σ
2
i )dũ , marginal

and joint
state

distributions
inferred

from the free
membrane
potential

distribution

(4.165)

p00 := p(S1 = 0, S2 = 0)
!

= p(ũ1 ≤ ϑ, ũ2 ≤ ϑ) =

ϑ∫
−∞

ϑ∫
−∞

f(ũ,µ,Σ)dũ1dũ2 , (4.166)

p01 := p(S1 = 0, S2 = 1)
!

= p(ũ1 ≤ ϑ, ũ2 ≥ ϑ) =

ϑ∫
−∞

∞∫
ϑ

f(ũ,µ,Σ)dũ1dũ2 , (4.167)

p10 := p(S1 = 1, S2 = 0)
!

= p(ũ1 ≥ ϑ, ũ2 ≤ ϑ) =

∞∫
ϑ

ϑ∫
−∞

f(ũ,µ,Σ)dũ1dũ2 , (4.168)

p11 := p(S1 = 1, S2 = 1)
!

= p(ũ1 ≥ ϑ, ũ2 ≥ ϑ) =

∞∫
ϑ

∞∫
ϑ

f(ũ,µ,Σ)dũ1dũ2 , (4.169)

where f represents a Gaussian PDF (the arguments show whether it is univariate or
bivariate). We have previously derived closed-form solutions for the mean µ (mean vector
µ) and variance σ2 (covariance matrix Σ) for different neuron models in Sections 4.3.4
and 4.4.2. It can be easily verified that

∑
(xy)∈Ω pxy = 1. In order for the above equations

to be useful, we need to ensure that the ũ-based prediction of the above probabilities is
in accordance to the probabilities calculated from the spike trains via Equation 4.150. In
particular, we need to determine numerical values for two free variables: the onset of the
1-state associated with a spike and its duration τon.

In our definition of the 1-state (Equation 4.150), we have assumed the switch from S = 0
to S = 1 to occur synchronously to the moment of spiking. In light of the connection
between S(t) and ũ(T ), we can now motivate this properly, since we want the 1-state to
coincide with a suprathreshold free membrane potential – and it is the threshold crossing
of the latter that triggers a spike (Figure 4.14).

The length τon of the box function which determines the 1-state duration for a single
spike is a little more difficult to find. Intuitively, it should be in the order of the longest
time constant that governs the evolution of the membrane potential (i.e., the falling
flank of a PSP), since this time constant then also determines the time that the free
membrane potential spends above the threshold following a spike. However, the free
membrane potential can be suprathreshold for extended periods, during which the neuron
would spike with a high rate (burst). A fixed τon should therefore remain valid for both
single spike events as well as bursts of arbitrary length. For now, we shall determine
τon experimentally, but we will provide a more thorough (analytical) approach to the
calculation of burst lengths in Section 6.5.3.

The most elementary requirement is that, for a single neuron, the occurrence probability
p1 of the 1-state should be the same when calculated from both the free membrane poten-
tial (with the condition ũ ≥ ϑ) and the spike train (by convolution with box(t|0, τon, 1)).
While the former is fixed, we can study the latter for various input scenarios by sweeping
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Figure 4.13.: Free membrane potential ũ (dashed curve) vs. “true” membrane potential
u (solid curve). Spiking (which corresponds to S = 1 in the state picture)
coincides with a suprathreshold free membrane potential ũ ≥ ϑ. Figure
taken from Bytschok (2011).
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Figure 4.14.: A threshold crossing of the free membrane potential ũ triggering a single
output spike. The 1-state defined by the suprathreshold period of ũ is de-
picted in blue. The same state resulting from the convolution of the output
spike (train) with a box function shown in green. Left: Box function is
centered around the spike, i.e., box = box(t| − τon/2, τon/2, 1). Right: The
left flank of the box function coincides with the timing of the spike, i.e.,
box = box(t|0, τon, 1). Naturally, the best overlap is achieved for latter case.
Figure taken from Bytschok (2011).
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Figure 4.15.: Relative error ∆p1 =
p

(Eq. 4.165)
1 −p(Eq. 4.150)

1

p
(Eq. 4.165)
1

calculated from the free mem-

brane potential distribution (p(ũ ≥ ϑ), Equation 4.165) as compared to the
p1 obtained from convolving the output spike train with a box function of
duration τon (Equation 4.150). The relative error is calculated for various
input weights w and rates nu, as well as for different τon. The lowest relative
error is obtained for τon = 15 ms (top right). The relatively large errors that
can be observed for weak input (bottom left corners of the plots) are due to
non-Gaussian ũ-distributions. Figure taken from Bytschok (2011).

over the firing rates and synaptic weights of the inputs. Figure 4.15 shows the result
of such a sweep, where only the excitatory weights and rates were changed, in order to
ensure a fast coverage of the entire p1 ∈ [0, 1] interval. As it turns out, the difference
(relative error) determina-

tion of τon

from p1

between the ũ-based and the spike-based calculation of p1 has a minimum
around τon = 15 ms, which corresponds roughly to the membrane time constant. The
relative errors only become large for low rates and weights, which is expected: firstly, the
Gaussian approximation of the free membrane potential distribution does not hold for
low-rate stimuli; secondly, when stimulation is weak, spike events are rare and the finite
simulation times come into play.

We can now test our chosen value of τon = 15 ms by predicting the joint states pxy
with Equations 4.166-4.169 and comparing the results to the ones obtained from simula-
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tions (spike trains convolved with box(t|0, τon, 1)). We repeat our sweeps over the input
parameters w and ν from before. The 00- and 11-state distributions are compared in
Figure 4.16. The distributions of the “mixed” 01- and 10-states are compared in Figure
4.17 (since the total input rates and weights received by the two neurons are identical,
p01 = p10, so only one of them is shown).

The p00- and p11-surfaces in the w-ν parameter space behave, qualitatively, as expected.
Since spiking intensifies for increasing input rates and weights, p11 increasesmonotonic-

ity of p11

and p00

monotonically
with w and ν. Conversely, p00 is monotonically decreasing with w and ν. The box function
duration τon does not affect this qualitative relationship, but rather acts as a multiplier for
p11 and 1− p00. The same monotonicity in w and ν is expected from the suprathreshold
(subthreshold) probability mass of the free membrane potential distribution (see Section
4.3.4).

The iso-probability loci for the p00- and p11-surfaces are represented by “pixels” with
identical color. If our assumption about the equivalence between suprathreshold-ũ-states
and spike-train-derived 1-states is correct, then an unchanged subthreshold (suprathresh-
old) probability mass of the free membrane potential distribution should leave all pxy
unchanged as well. The subthreshold probability mass is given by the CDF of the Gaus-
sian ũ-distribution at the threshold:

F (ϑ) =
1

2

[
1 + erf

(
ϑ− µ√

2σ

)]
. (4.170)

In Section 4.3.4 we have shown that, for both CUBA and COBA neurons in a low-
conductance state, the mean µ of the free membrane potential scales with wν and its
variance σ2 with w2ν. This implies that F (ϑ) does not change for

ϑ− µ
σ

= const , (4.171)

which gives us the iso-probability loci up to some multiplicative constants α and β:iso-
probability
loci of p11

and p00

w =
ϑ

αν + β
√
ν

. (4.172)

Indeed, we can observe that the iso-probability loci for both p00 and p11 are approximately
hyperbolic. For the particular value of τon = 15 ms, we can see that for the entire investi-
gated w-ν parameter space, the values predicted from the ũ-distribution are in excellent
agreement with the one obtained from the simulated spike trains (see Figure 4.16).

The p01- and p10-surfaces paint a similar picture. Their qualitative dependence on the
input weights and rates again corresponds to our intuitive expectations.w-ν-

dependence
of p01 and
p10

For very weak and
very strong background stimulation, the 00- and 11-states are, respectively, predominant,
leaving the 01- and 10-states with only small probabilities. For intermediate w and ν
values, p01 and p10 reach a maximum.

Their non-monotonic dependence on τon is slightly less straightforward, but still intu-
itive.τon-

dependence
of p01 and
p10

Consider the case of high w and ν, where the neurons both spike almost continu-
ously: by decreasing τon, the relative occurrence of 1-states is reduced, thereby implicitly
reducing the occurrence of 11-states. The missing probability mass is then distributed
among the other three joint states, thereby increasing p01 and p10 as well. The converse
argument applies for the weak-input region of the w-ν space.
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Figure 4.16.: 00- and 11-state distributions across a range of different input rates and
weights. Top: p11 and p00 surfaces obtained from simulated spike trains
for τon ∈ {10, 15, 20, 25} ms. The exact value of τon does not change the
qualitative aspect of the p(xy)-surfaces. As expected, higher τon values lead
to a higher p11, while lower τon values increase p00. Middle: p11 and p00

color plots obtained from simulated spike trains for τon = 15 ms. The iso-
probability loci (areas of same color) are of approximately hyperbolic shape,
as predicted by the theoretical calculation based on the free membrane po-
tential. Bottom: Theoretical prediction of p11 and p00 from Equations
4.166 and 4.169. With the previously found value of τon = 15 ms, we can
observe a very good agreement between the p(xy) calculated from the spike
trains obtained from simulations and the theoretical prediction from the
ũ ≥ ϑ-condition. Figure taken from Bytschok (2011).
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Figure 4.17.: 10-state distribution across a range of different input rates and weights.
The 01-state behaves identically due to the symmetry of the experimental
setup (the two neurons have identical stimulation parameters). Top left:
p10 surfaces obtained from simulated spike trains for τon ∈ {10, 15, 20, 25}
ms. As before, the exact value of τon does not change the qualitative as-
pect of the p(xy)-surfaces. However, in contrast to p00 and p11, τon scales
the “mixed” state probabilities p01 and p10 non-monotonically. Top right:
Theoretical prediction of p10 from Equation 4.168. Due to the same invari-
ant suprathreshold probability mass considerations as for p00 and p11, the
iso-probability loci (areas of same color) are of approximately hyperbolic
shape. Bottom: p10 color plots obtained from simulated spike trains for
τon = 15 ms and τon = 25 ms. For the previously found value of τon = 15 ms,
the agreement between the p(xy) calculated from the spike trains obtained
from simulations and the theoretical prediction from the ũ ≥ ϑ-condition is
very good – and visibly better than for τon = 25 ms.
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4.4. Shared-Input Correlations of Neuronal Dynamics

The iso-probability-locus argument derived from the invariant free membrane potential
distribution applies for the “mixed” states as well. iso-

probability
loci of p01

and p10

As expected, we find the same hyper-
bolic iso-probability loci for the p01- and p10-surfaces as we did before for the p00- and
p11-surfaces. The agreement between theory and simulations is, again, very good (see
Figure 4.17)

4.4.6. Spike-Based Correlations: Theory vs. Experiment

The good predictions we were able to obtain for the marginal and joint probabilities
ipx and pxy now enable us to predict the SU as well. In particular, we expect similarly
good results as we have presented in the previous section, since the calculation of the SU
only requires the abovementioned probabilities. Here, we only show results for COBA
neurons, but the conclusions hold for CUBA neurons as well.

We start by predicting the behavior of the SU for various values of the input rates
and weights, as well as for several shared-to-total input channel ratios (Figure 4.18). w-ν-s-

dependence
of the SU

As
expected, for any configuration of input rates and weights, the SU increases with the
proportion of shared channels. The increase is also not linear, as the pxy-dependence of
the SU (Figure 4.12) already suggests. The dependence on the input rates and weights,
however, is more complex and not as intuitive. In particular, we note that the input
firing rates have a significantly stronger impact than the input synaptic weights. These
theoretically predicted dependencies represent interesting findings, if validated by exper-
iments/simulations.

This has been done, and the comparison is depicted in Figure 4.19. We note that the
overlap of the state variable S(t) calculated from the free membrane potential time course
compared to the one obtained from the output spike train is, in general, quite good, with
several small exceptions due to the relatively large effective time constant, which causes
slight disparities between the free and the “true” membrane potential. The theoretical
prediction of the SU (denoted SUN )13 fits almost perfectly with the SU calculated from
the state variables derived from the simulated suprathreshold free membrane potential
(denoted SUload)14. The SU values derived from the spike train (denoted SUsim) deviate
only slightly and within the error margins imposed by the finite simulation time. The
good agreement between the theoretical prediction and the simulation data appears to
hold for a wide range of input weights/rates configurations.

We need to mention that we suspect the deviations between theory and experiment to
be, to some extent, systematic. The reason lies mainly in the abovementioned difference
between the free and “true” membrane potential, which causes additional short 1-states
that are not reflected in the spike trains. These become less pronounced for faster
membranes and can also be tackled by refined theoretical methods, which are the subject
of ongoing investigations.

Regimes also exist where the disparity between theory and simulations is larger, as can

13 The notation represents a reference to the Gaussian approximation for the free membrane potential
PDF.

14 We have kept this notation for historical reasons. Earlier versions of our theory used a modified
synaptic conductance trace instead of the free membrane potential, for which we used the term “load
function”.
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Figure 4.18.: Theoretical prediction of the SU for various input parameter configurations.
Left: Sweep over the excitatory input rates and weights. The inhibitory
ones were kept constant at νinh = 50 Hz and winh = 35 nS. As expected, the
SU increases with the ratio of shared to total inputs. The dependence of
the SU on the input firing rates and weights is complex and not acessible by
straightforward intuition. We note, however, that shape of the different SU
surfaces for various shared-to-total ratios remains qualitatively similar and
differs only in amplitude. Right: SU(s) for a total number of s + p = 100
input channels with parameters νinh = 50 Hz, winh = 35 nS, νexc = 90 Hz
and wexc = 30 nS. Figure taken from Bytschok (2011).

be seen in Figure 4.20.violation of
Gaussian
approxima-
tion at low
ν

This happens, however, only for low input rates, which is easily
understood when considering that in this regime, the CLT which we have invoked for
motivating the Gaussian distribution of the membrane potential (see Section 4.3.2) no
longer holds. However, the agreement between the SU calculated from the free membrane
potential and the one obtained from the output spike trains (both simulated) validate our
assumption that the two are practically equivalent generators of the state variables Si(t).
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Figure 4.19.: State variables and their SU: theory vs. simulations. Top left: Membrane
potential of a neuron under Poisson bombardment. We use two ways to
calculate the temporal evolution of the state variable S(t). Firstly, we can
translate the time spent by free membrane potential in the suprathreshold
regime directly to S(t) = 1 (red traces), which is also used in the theoretical
prediction of the SU. Secondly, we can use the “true” membrane potential,
i.e., the spike trains it generates, to calculate the state variables (blue traces)
by convolution with a box function (Equations 4.148 and 4.148). We note
that the two methods yield very similar results, with only few exceptions
that can be traced back to the relatively large effective time constant of the
membrane. Top right: SU(s) for a total number of s + p = 100 input
channels with parameters νinh = 170 Hz, winh = 20 nS, νexc = 90 Hz and
wexc = 30 nS. The theoretical prediction of the SU (denoted SUN ) is rep-
resented by the red curve. The SU calculated from the suprathreshold free
membrane potential trace (denoted SUload) is represented by red dots. As
expected from the successful prediction of free membrane potential distribu-
tions (Section 4.4.3), the agreement between these two datasets is very good
as well. The SU calculated from the output spike trains (denoted SUsim) is
represented by green dots. Error bars represent the standard deviation over
multiple trials (the red error bars are smaller than the symbols). The analyt-
ical prediction fits the simulation data well within the measured errors. The
remaining differences are, indeed, systematic, and can be traced back to the
relatively large effective time constant. Bottom left: Measured values of
the SU from simulated spike trains for various values of the shared-to-total
input ratio, input firing rate and input synaptic weight. The jitter in the
measured values is due to finite simulation times. Bottom right: Predicted
values of the SU for the same parameter sets as in the simulations.
Figure taken from Bytschok (2011).
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Figure 4.20.: The SU at low firing rates: theory vs. simulation. Top: Membrane po-
tential of a neuron under low-rate Poisson bombardment. We use the same
color coding as in Figure 4.19. We note again the good agreement between
the state variable calculated from the free membrane potential (red) and
the one calculated from the spike trains (blue). Bottom left: SU(s) for a
total number of s + p = 100 input channels with parameters νinh = 10 Hz,
winh = 20 nS, νexc = 20 Hz and wexc = 50 nS. As expected from the good
agreement in the state variable calculation (see above), SUload and SUsim

have almost exactly the same values. The predicted SUN , however, lies sys-
tematically below the simulated values. The reason for this discrepancy lies
in the low input rates, for which the Gaussian approximation (and therefore
also SUN ) no longer holds. Bottom right: Validity of the Gaussian approx-
imation for various sets of input rates and weights. Here, we have plotted
the Euclidean (L2) norm of the difference between the simulated free mem-
brane potential distribution and the Gaussian distribution assumed by the
theory. As expected, the dependence on the input weights is only weak, since
these can be reduced to a linear rescaling of the membrane potential. The
input rates, however, are critical for the CLT argument we have provided in
Section 4.3.2. Figure taken from Bytschok (2011).
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4.5. Conclusions and Outlook

In this chapter, we have discussed the dynamics of both conductance- (COBA) and
current-based (CUBA) LIF neurons with exponential synaptic kernels. We have derived
closed-form expressions for the PSP shapes, which are exact for the CUBA case and good
approximations for the COBA case in the high-conductance state. Building on these, we
were able to derive closed-form expressions for the current, conductance and membrane
potential distributions of LIF neurons and have shown them to accurately match simula-
tion results. We then extended this formalism to study neural response correlations due
to shared Poisson sources. We were able to find good predictions of the free membrane
potential correlation coefficient, as well as for the SU of spike trains produced by pairs of
correlated neurons.

Our results were obtained for one particular synaptic kernel shape which is often used
in computational and theoretical neuroscience. However, the exact same formalism can be
applied to derive expressions for arguably more biological PSC shapes such as α-functions
or differences of exponentials. This becomes particularly interesting for understanding the
behavior of neuromorphic circuits, where the precise PSC shape can be either measured
or inferred from the design specifications and is usually not an exact exponential function
of time. Having a closed-form expression for the PSP shape that explicitly depends on
controllable hardware parameters is of obvious advantage for the calibration procedure.

Here, we have only studied pairwise correlations, but our framework can be extended
to higher-order correlations higher-order

correlations
as well. In particular, the analytical predictions we were able

to derive here will be useful for understanding and quantifying the effects of shared-input
correlations on the sampling networks we discuss in Chapter 6 and possibly also for finding
appropriate compensation mechanisms. Such mechanisms, derived from the single-neuron
statistics, have already been applied successfully to the functional networks discussed in
Chapter 5.

One particularly interesting outcome was the explanation of the counterintuitive fea-
tures of membrane potential distributions in the high-conductance state, in particular
the inverse proportionality of the distribution width to the input firing rate and its near-
independence of the synaptic input weights. As already mentioned before, this can act as
a homeostatic built-in

homeostasis
mechanism in plastic networks and, if shown to be functionally sufficient

for models of unsupervised learning such as the ones proposed in, e.g., Habenschuss et al.
(2012); Nessler et al. (2009, 2013), may save significant amounts of hardware and soft-
ware resources that are used for additional homeostatic mechanisms, as proposed in, e.g.,
Breitwieser (2015).

Our prediction of spike train correlations rely on the assumption that a suprathreshold
free membrane potential is, on average, approximately equivalent to an S(t) = 1 state
(Equation 4.164) for a particular choice of the 1-state kernel duration τon. We have deter-
mined this duration experimentally for a particular choice of parameters and have shown
our initial assumption to represent a good approximation. However, as we exemplify in
Figure 4.20, the initial assumption is not true for arbitrary parameter sets. In Chapter 6,
we analyze the statistics of single neuron membranes from a different perspective (prop-
agation of membrane autocorrelations ACP

formalism
, short: ACP), in particular with a well-defined

interpretation of τon, and obtain very accurate results for broad parameter ranges. It
appears likely that the ACP formalism can be applied to ensembles of neurons as well
and we are actively investigating this idea at this time.
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Figure 4.21.: Exemplary results of the graph-based algorithm for local optimization of the
source-to-neuron mapping. The cost function to be minimized is multidi-
mensional and is given by the number of shared sources per neuron pair.
In this example, the total number of network neurons is 192 and the total
number of available sources is 64, out of which 32 are excitatory and 32
are inhibitory. Each neuron must have a presynaptic pool of 4 excitatory
and 4 inhibitory sources. The histograms (colored bars and black numbers)
show the number of neuron pairs that share a particular number of excita-
tory and inhibitory sources (white numbers). Left: Random choice of input
pools. Right: Input pools chosen by the graph-based heuristic algorithm.
The algorithm succeeds in providing all neurons with the required number of
sources while eliminating all pool configurations that have a pairwise overlap
larger than 2. Figure taken from Petrovici and Bill (2009).

When neural receptive fields become sufficiently large, shared-input correlations become
inevitable in finite-size neural substrates. This is particularly relevant for neuromorphic
devices, where internal Poisson generators are expensive in terms of chip area and exter-
nal noise sources must occupy the already limited bandwidth between the neuromorphic
device and the host computer. Under these constraints, it often becomes an important
problem to find a mapping between the pool of noise sources and the neurons in the
functional network that minimizes these correlations. This can be expressed as an op-
timization problemgraphical

optimization
problem

where one searches for a minimally overlapping set of neuron input
pools. In turn, this problem can be shown to be mathematically equivalent to the well-
known maximum independent vertex set problem from graph theory (Petrovici and Bill,
2009). This problem is known to be NP-hard, but we have designed an heuristic algorithm
(see also Halldórsson and Radhakrishnan, 1997, for a related discussion) that is able to ef-
ficiently find good solutions for small-scale networks (see Figure 4.21 for an example with
192 neurons and 64 sources). The subsets found by running the algorithm with varying
starting parameters define multiple sets of shared and private input configurations, which
can then be fed into our SU prediction to find a locally optimal noise input configuration.
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As I see it, the only way of overcoming this magical view of
what “I” and consciousness are is to keep on reminding oneself,
unpleasant though it may seem, that the “teethering bulb of
dread and dream” that nestles safely inside one’s own cranium
is a purely physical object made up of completely sterile and
inanimate components, all of which obey exactly the same laws
that govern all the rest of the universe [...]. Only if one keeps
bashing up against this disturbing fact can one slowly begin to
develop a feel for the way out of the mystery of consciousness:
that the key is not the stuff out of which brains are made, but
the patterns that can come to exist inside the stuff of a brain.

Douglas Hofstadter, Gödel, Escher, Bach, 1999

Along with the many advantages it offers, the neuromorphic approach also comes with
limitations of its own. These have various causes that lie both in the hardware itself
and the control software. We will later identify these causes, which we henceforth refer
to as distortion mechanisms. The neural network emulated by the hardware device can
therefore differ significantly from the original model, be it in terms of pulse transmission,
connectivity between populations or individual neuron or synapse parameters. We refer to
all the changes in network dynamics (i.e., deviations from the original behavior defined by
software simulations) caused by hardware-specific effects as hardware-induced distortions hardware-

induced
distortions

.
Due to the complexity of state-of-the-art neuromorphic platforms and their control

software, as well as the vast landscape of emulable neural network models, a thorough and
systematic approach is essential for providing reliable information about causal mecha-
nisms and functional effects of hardware-induced distortions in model dynamics and for
ultimately designing effective compensation methods. In this chapter, we discuss this
systematic analysis and compensation techniques compensa-

tion
techniques

for several hardware-specific distortion
mechanisms.

First and foremost, we identify and quantify the most important sources of model
distortions. We then proceed to investigate their effect on network functionality. In
order to cover a wide range of possible network dynamics, we have chosen three very
different cortical network models to serve as benchmarks benchmark. In particular, these models
implement several prototypical cortical paradigms of computation, relying on winner-take-
all structures (attractor networks, Section 5.3), precise spike timing correlations (synfire
chains, Section 5.4) or balanced activity (self-sustained asynchronous irregular states,
Section 5.5).
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For every emulated model, we define a set of functionality criteriafunctionality
criteria

, based on specific as-
pects of the network dynamics. This set should be complex enough to capture the charac-
teristic network behavior, from a microscopic (e.g., membrane potentials) to a mesoscopic
level (e.g., firing rates) and, where suitable, computational performance at a specific task.
Most importantly, these criteria need to be precisely quantified, in order to facilitate an
accurate comparison between software simulations and hardware emulations or between
different simulation/emulation back-ends in general. The chosen functionality criteria
should also be measured, if applicable, for various relevant realizations (i.e., for different
network sizes, numbers of functional units etc.) of the considered network.

Because multiple distortion mechanisms occur simultaneously in hardware emulations,
it is often difficult, if not impossible, to understand the relationship between the observed
effects (i.e., modifications in the network dynamics) and their potential underlying causes.
Therefore, we investigate the effects of individual distortion mechanisms by implementing
them, separately, in software simulations. As before, we perform these analyses over a
wide range of network realizations, since - as we will show later - these may strongly
influence the effects of the examined mechanisms.

After having established the relationship between structural distortions caused by
hardware-specific factors and their consequences for network dynamics, we demonstrate
various compensation techniques in order to restore the original network behavior.

In the final stage, for each of the studied models, we simulate an implementation
on the hardware back-end by running an appropriately configured executable system
specification (see Section 3.3.4), which includes the full panoply of hardware-specific
distortion mechanisms. Using the proposed compensation techniques, we then attempt
to deal with all these effects simultaneously. The results from these experiments are then
compared to results from software simulations, thus allowing a comprehensive assertion
of the effectivity of our proposed compensation techniques, as well as of the capabilities
and limitations of the neuromorphic emulation device.

Owing to the detailed understanding of hardware-induced distortive effects on the
model functionality, we were able to scale down two of the studied models (the L2/3 and
synfire chain models) to a size that is amenable to emulation on the Spikey chip. While
some particular functional properties can only be properly observed in the large-scale
versions of these networks, it was possible to reproduce many fundamental characteristics
in the small-scale models as well. The Spikey emulations of the L2/3 and synfire chain
models are described in Sections 5.3.9 and 5.4.10, respectively.

This work is the result of a close collaboration with Paul Müller, Bernhard Vogginger,
Oliver Breitwieser, Mikael Lundqvist and Lyle Muller. The material for all waferscale-
related Sections in Chapter 5 is taken from Petrovici et al. (2014), whereas the material
for the Spikey emulations is taken from Pfeil et al. (2013). Both of these publications
have been coauthored by the author of this thesis. Some related results have also been
described in Breitwieser (2011); Brüderle et al. (2011); Müller (2011); Vogginger (2010).
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5.1. Investigated Distortion Mechanisms

Reviewing the hardware and software components of the BrainScaleS wafer-scale sys-
tem (Section 3.3) leaves us with a number of mechanisms that can negatively affect the
emulation of neural network models distortion

mechanisms
:

• neuron and synapse models are cast into silicon and can not be altered after chip
production

• limited ranges for neuron and synapse parameters

• discretized and shared parameters

• limited number of neurons and synapses

• restricted connectivity

• synapse loss due to non-optimal algorithms for NP-hard mapping

• parameter variations due to transistor level mismatch and limited re-write precision

• non-configurable pulse delays and jitter

• limited bandwidth for stimulation and recording of spikes

It is clear that, for all of the above distortion mechanisms, it is possible to find a corner
case where network dynamics are influenced strongly. However, a few of these effects stand
out: on one hand, they are of such fundamental nature to mixed-signal VLSI that they
are likely to play some role in any similar neuromorphic device; on the other hand, they
are expected to influence any kind of emulated network to some extent. We have therefore
directed our focus towards these particular effects, which we summarize in the following.
In order to allow general assessments, we investigate various magnitudes of these effects,
also beyond the values we expect for our particular hardware implementation.

Neuron and Synapse Models

While some network architectures employ relatively simple neuron and synapse models
for analytical and/or numerical tractability, others rely on more complex components in
order to remain more faithful to their biological archetypes. Such models may not allow a
straightforward translation to those available on the hardware, requiring a certain amount
of fitting. In our particular case, we search for parameters to Equations 3.3 – 3.10 that
best reproduce low-level dynamics (e.g. membrane potential traces for simple stimulus
patterns) and then tweak these as to optimally reproduce high-level network behaviors.
Additionally, further constraints are imposed by the parameter ranges permitted by the
hardware (Table 3.3).

Synapse Loss

Above a certain network size or density, the mapping process may not be able to find
enough hardware resources to realize every single synapse. We use the term “synapse
loss” to describe this process, which causes a certain portion of synaptic connections to
be lost after mapping. In a first stage, we model synapse loss as homogeneous, i.e., each
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synapse is deleted with a fixed probability between 0 and 50 %. To ease the analysis
of distortions, we make an exception for synapses that mediate external input, since, in
principle, they can be prioritized in the mapping process such that the probability of losing
them practically vanishes. Ultimately however, the compensation methods designed for
homogeneous synapse loss are validated against a concrete mapping scenario.

Non-Configurable Axonal Delays

Axonal delays on the wafer are not configurable and depend predominantly on the
processing speed of digital spikes within one HICANN, but also on the physical distance
of the neurons on the wafer. In all simulations, we assume a constant delay of 1.5 ms
for all synaptic connections in the network, which represents an average of the expected
delays when running the hardware with a speedup of 104 with respect to real time.

Synaptic Weight Noise

As described in Section 3.3.1, the variation of synaptic weights is assumed to be
the most significant source of parameter variation within the network. This is due to
the coarser discretization (4-bit weight vs. 10 bit used for writing the analog neuron
parameters) as well as the large number of available synapses, which prohibits the storage
of calibration data for each individual synapse. The quality of the calibration only
depends on the available time and number of parameter settings, while the trial-to-trial
variability and the limited setting resolution remains. To restrict the parameter space
of the following investigations (Section 5.2), only the synaptic weights are assumed to
be affected by noise. In both software and ESS simulations, we model this effect by
drawing synaptic weights from a Gaussian centered on the target synaptic weight with
a standard-deviation-to-mean-ratio between 0 and 50 %. Occasionally, this leads to
excitatory synapses becoming inhibitory and vice versa, which can not happen on the
hardware. Such weights are clipped to zero. Note that this effectively leads to an increase
of the mean of the distribution, which however can be neglected, e.g., for 50 % noise the
mean is increased by 0.425 %. For ESS simulations we assume a synaptic weight noise
of 20 %, as test measurements on the hardware indicate that the noise level can not be
reduced to below this number.

It has to be noted that the mechanism of distortion plays a role in the applicability
of the compensation mechanisms. The iterative compensation in Section 5.5.7.2 is only
applicable when the dominant distortion mechanism is fixed-pattern noise. The other
compensation methods, which do not rely on any kind of knowledge of the fixed-pattern
distribution, function independently of the distortion mode.
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5.2. Characterization and Compensation of Network-Level
Distortions: a Systematic Workflow

In the following, we analyze the effects of hardware-specific distortion mechanisms on
a set of neuronal network models and propose adequate compensation mechanisms for
restoring the original network dynamics. The aim of these studies is twofold. On one
hand, we propose a generic workflow workflowwhich can be applied for different neural network
models regardless of the neuromorphic substrate, assuming it possesses a certain degree of
configurability (Figure 5.1). On the other hand, we seek to characterize the universality of
the BrainScaleS neuromorphic device by assessing its capability of emulating very different
large-scale network models with minimal, if any, impairment to their functionality.

In order to allow a comprehensive overview, the set of benchmark benchmarksexperiments is re-
quired to cover a broad range of possible network architectures, parameters and function
modi. To this end, we have chosen three very different network models, each of which
highlights crucial aspects of the biology-to-hardware mapping procedure and poses unique
challenges for the hardware implementation. In order to facilitate the comparison between
simulations of the original model and their hardware implementation, all experimental se-
tups were implemented in PyNN, running the same set of instructions on either simulation
back-end.

For each of our benchmark models we define a set of specific well-quantifiable func-
tionality criteria functionality

criteria
. These criteria are measured in software simulations of the ideal, i.e.,

undistorted network, which is then further referenced as the “original”.
Assuming that the broad range of hardware-specific distortion mechanisms affects var-

ious network parameters, their impact on these measures are investigated in software
simulations and various changes to the model structure are proposed in order to recover
the original functionality. The feasibility of these compensation methods is then studied
for the BrainScaleS neuromorphic platform with the help of the ESS described in Section
3.3.4.

All software simulations were performed with NEST (Diesmann and Gewaltig, 2002) or
Neuron (Hines and Carnevale, 2003).
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network dynamics vs. functionality criteria

1 5 42 3

representation of hardware-
specific distortions in soware

simulation

neuromorphic
hardware

/
ESS

compensation of
hardware-specific distortions

network model

functionality criteria parameters

Figure 5.1.: Schematic of the workflow we have used for studying and compensating
hardware-induced distortions of network dynamics. (1) A given network
model is defined by providing suitable parameters (for its connectivity and
components) and well-defined functionality criteria. (2) The distortions that
are expected to occur natively on the hardware back-end are implemented and
studied individually in software simulations. (3) Compensation methods are
designed and tested, with the aim of recovering the original network dynamics
as determined by the functionality criteria. (4) The network model is run on
the hardware (here: the ESS) without any compensation to evaluate the full
effect of the combined distortion mechanisms. (5) The compensation meth-
ods are combined and applied to the hardware (here: the ESS) simulation in
order to restore the original network dynamics.
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5.3. Cortical Layer 2/3 Attractor Memory

As our first benchmark, we have chosen an attractor network attractor
network

model of the cerebral cor-
tex which exhibits characteristic and well-quantifiable dynamics, both at the single-cell
level (membrane voltage UP and DOWN states) and for entire populations (gamma band
oscillations, pattern completion, attentional blink). For this model, the mapping to the
hardware was particularly challenging, due to the complex neuron and synapse models
required by the original architecture on the one hand, as well as its dense connectivity on
the other. In particular, we observed that the shape of synaptic conductances strongly
affects the duration of the attractor states. As expected for a model with relatively large
populations as functional units, it exhibits a pronounced robustness to synaptic weight
noise. Homogeneous synapse loss, on the other hand, has a direct impact on single-cell
dynamics, resulting in significant deviations from the expected high-level functionality,
such as the attenuation of attentional blink. As a compensation for synapse loss, we
suggest two methods: increasing the weights of the remaining synapses in order to main-
tain the total average synaptic conductance and reducing the size of certain populations
and thereby decreasing the total number of required synapses. After mapping to the
hardware substrate, synapse loss is not homogeneous, due to the different connectivity
patterns of the three neuron types required by the model. However, we were able to apply
a population-wise version of the suggested compensation methods and demonstrate their
effectiveness in recovering the previously defined target functionality measures.

5.3.1. Architecture

As described in Lundqvist et al. (2006) and Lundqvist et al. (2010), this model L2/3 model(henceforth
called L2/3 model) implements a columnar cortical

columns
architecture (Buxhoeveden and Casanova,

2002; Mountcastle, 1997). The connectivity is compliant with data from cat cerebral
cortex (Thomson et al., 2002). The key aspect of the model is its modularity, which
manifests itself on two levels. On a large scale, the simulated cortical patch is represented
by a numberNHC of hypercolumns hyper-

columns,
mini-

columns

(HCs) arranged on a hexagonal grid. On a smaller scale,
each HC is further subdivided into a number NMC of minicolumns (MCs) (Buxhoeveden
and Casanova, 2002; Mountcastle, 1997). Such MCs should first and foremost be seen
as functional units, and could, in biology, also be a group of distributed, but highly
interconnected cells (Kampa et al., 2006; Perin et al., 2011; Song et al., 2005). In the
model, each MC consists, in turn, of 30 pyramidal PYR,

RSNP, BAS
cells

(PYR), 2 regular spiking non-pyramidal
(RSNP) and 1 basket (BAS) cells (Markram et al., 2004a; Peters and Sethares, 1997).
Within each MC, PYR neurons are mutually interconnected, with 25% connectivity, such
that they will tend to be co-active and code for similar input.

The functional units of the network, the MCs, are connected in global, distributed
patterns containing a set of MCs in the network (Figure 5.2). Here the attractors attractor/-

pattern
, or

patterns, contain exactly one MC from each HC. We have only considered the case of
orthogonal patterns orthogonal-

ity
, which implies that no two attractors share any number of MCs.1

Due to the mutual excitation within an attractor, the network is able to perform pattern
1 Orthogonal patterns are much more comfortable to study than non-orthogonal ones, since the response
of the network to experimental scenarios such as pattern completion is easily classified as “correct” or
“wrong”. However, allowing patterns to share MCs can greatly increase the memory capacity of the
network, i.e., the number of patterns it can “correctly” recall under certain well-defined conditions,
where the “correctness” is, itself, a parameter to be defined in a sensible way. Although not a part of
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Figure 5.2.: Layer 2/3 model architecture. Top: Connection probabilities among the
individual populations. Excitatory cells are depicted in red, inhibitory in
blue. Only a subset of MCs within an HC are depicted. MC3 is not among
the 7 closest neighbors to MC1 and therefore its basket cells do not project
onto the pyramidal cells of MC1. Bottom left: Pseudo-3D schematic of
the geometric arrangement of the HCs and MCs therein. For clarity, only a
subset of the active connections during an UP-state of attractor 1 are shown.
Bottom right: Geometrical arrangement of the cells in the simulation (red:
RSNP, green: PYR, blue: BAS). Figure taken from Petrovici et al. (2014).
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completion pattern
completion

, which means that whenever a subset of MCs in an attractor is activated, the
activity tends to spread throughout the entire attractor.

Pattern rivalry pattern
rivalry

results from competition between attractors mediated by short and long-
range connections via inhibitory interneurons. Each HC can be viewed as a soft winner-
take-all soft WTA(WTA) module which normalizes activity among its constituent MCs (Lundqvist
et al., 2010). This is achieved by the inhibitory BAS cells, which receive input from the
PYR cells from the 8 closest MCs and project back onto the PYR cells in all the MCs
within the home HC. Apart from providing long-range connections to PYR cells within the
same pattern, the PYR cells within an MC project onto RSNP cells in all the MCs which
do not belong to the same pattern and do not lie within the same HC. The inhibitory
RSNP cells, in turn, project onto the PYR cells in their respective MC. The effect of
this connectivity is a disynaptic inhibition between competing patterns. Figure 5.2 shows
a schematic of the default architecture, emphasizing the connectivity pattern described
above. It consists of NHC = 9 HCs, each containing NMC = 9 MCs, yielding a total of
2673 neurons. Due to its modular structure, this default model can easily be scaled up or
down in size with preserved dynamics (Section 5.3.2).

When a pattern receives enough excitation, its PYR cells enter a state reminiscent of
a so-called local UP-state local

UP-state
(Cossart et al., 2003), which is characterized by a high average

membrane potential, several mV above its rest value, and elevated firing rates. Pattern
rivalry leads to states where only one attractor may be active (with all its PYR cells in
an UP-state) at any given time. Inter-PYR synapses feature an STD mechanism which
weakens the mutual activation of PYR cells over time and prevents a single attractor
from becoming persistently active. Additionally, PYR neurons exhibit spike-frequency
adaptation, which also suppresses prolonged firing. These mechanisms impose a finite
life-time on the attractors such that after their termination more weakly stimulated or
less excitable attractors can become active, in contrast to what happens in classical WTA
networks.

The inputs to the layer 2/3 PYR cells arrive from the cortical layer 4 (L4) L4, which
is represented by 5 cells per MC. The L4 cells project onto the L2/3 PYR cells and
can be selectively activated by external Poisson spike trains. Additionally, the network
receives unspecific input representing activity in various connected cortical areas outside
the modeled patch. This input is modeled as diffuse noise and generates a background
activity of several Hz.

More details on the model architecture, as well as neuron and synapse parameters, can
be found in Table A.2.3.1.

5.3.2. Network Scaling

Due to the modularity of this network model, several straightforward possibilities exist
for increasing or decreasing its size without affecting its basic functionality. One can vary
the total number of neurons simply by modifying the number of cells per MC. One can
also vary the number of MCs per attractor by varying the total number of HCs. And
finally, one can change the number of attractors by changing the number of MCs per HC
accordingly.

this discussion, we point to two related studies on non-orthogonal patterns in the L2/3 model, namely
Breitwieser (2011) and Rivkin (2014).
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Connection Scaled connection probability p̃

PYR → PYR (same MC) 29/(NPYR − 1) · p
PYR → PYR (different MC) 30/NPYR · 8/(NHC − 1) · p
PYR → RSNP 30/NPYR · 8/(NHC − 1) · p
PYR → BAS 30/NPYR · p
RSNP → PYR 2/NRSNP · p
BAS → PYR (enlarging) 1/NBAS · p
BAS → PYR (shrinking) 1/NBAS · 8/NMC · p

Table 5.1.: Scaling rules for the connection densities of the L2/3 model. Nx represents
the number of units of type x (the original values are found in Table A.5). p
represents the original connection probability as found in Table A.6. Whenever
a scaled probability p̃ exceeded 1, it was clipped to 1, but the weights of the
corresponding synapses were also increased by w̃syn = wsyn · p̃.

All such changes need to be accompanied by corresponding modifications in connec-
tivity in order to preserve the network dynamics. This has been done by keeping the
average input current per neuron within an active attractor constant, which is equivalent
to conserving the fan-infan-in con-

servation
for every neuron from every one of its afferent populations and

leads to the scaling rules shown in Table 5.1. In order to facilitate a comparison with the
original results from Lundqvist et al. (2006) and Lundqvist et al. (2010), we have only
considered homogeneous changes, meaning that all modules (MCs, HCs) were equal in
size and symmetrically connected.

The connections to the BAS cells required special treatment for two reasons. Firstly,
during an active state, they receive input from a single MC, but are excited by all MCs
in an HC during the competition period between active attractors. Only one aspect can
be preserved when scaling and we have considered the dynamics during UP states as
most important, leading to a PYR → BAS scaling rule independent of NMC. Secondly,
because PYR cells in MCs only project to the nearest 8 BAS cells, there are always
precisely 8 active BAS cells per HC within an active attractor, which yields a simple BAS
→ PYR scaling rule. When decreasing the number of attractors however, the number
of existing BAS cells per HC also decreases, making an appropriate connection density
scaling necessary. This is the reason for the two different BAS→ PYR scaling rules found
in Table 5.1.

Table A.11 shows the combinations of NHC and NMC used for the quantification of
synapse loss after mapping the L2/3 model to the hardware in Figure 5.11. In these map-
ping sweeps, the diffusive background noise was modeled, as for the large-scale network
ported to the ESS (Section 5.3.8), with a background pool of 5000 Poisson sources and
every PYR cell receiving input from 100 of the sources.

5.3.3. Functionality Criteria

Figure 5.3 shows some characteristic dynamics of the L2/3 model, which have also been
chosen as functionality criteria and are described below.

The core functionality of the original model is easily identifiable by its distinctive dis-
play of spontaneously activating attractorsspontaneous

attractors
in, e.g., raster plots (A) or voltage star plots
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(D) (for an explanation of star plots see Section A.2.3.5). However, in particular for large
network sizes, spontaneous attractors become increasingly sparse. Additionally, many
further indicators of functionality can be found, such as the average membrane potential
or the gamma oscillations observed in UP states. Finally, when receiving L4 stimulation
in addition to the background noise, the original model displays important features such
as pattern completion and attentional blink, which need to be reproducible on the hard-
ware as well. Consequently, we consider several measures of functionality throughout our
analyses.

When an attractor becomes active, it remains that way for a characteristic dwell time
dwell timeτON. The dwell time depends strongly on the neuron and synapse parameters (as will be

discussed in the following sections) and only weakly on the network size (C, F), since the
scaling rules ensure a constant average fan-in for each neuron type. Conversely, this makes
τON sensitive to hardware-induced variations in the average synaptic input. The detection
of active attractors is performed automatically using the spike data (for a description of
the algorithm, see Section A.2.3.2).

We describe the periods between active attractors as competition competitionphases and the time
spent therein as the total competition time. The competition time varies strongly depend-
ing on the network size (H). One can observe that the competition time is a monotonically
increasing function of both NHC and NMC. For an increasing number of HCs, i.e., a larger
number of neurons in every pattern, the probability of a spontaneous activation of a suf-
ficiently large number of PYR cells decreases. For an increasing number of MCs per HC,
there is a larger number of competing patterns, leading to a reduced probability of any
single pattern becoming dominant.

When an attractor becomes active, the average spike rate average
PYR spike

rate

of its constituent PYR cells
rises sharply and then decays slowly until the attractor becomes inactive again (J). Two
independent mechanisms are the cause of this decay: neuron adaptation and synaptic
depression. The characteristic time course of the spike rate depends only weakly on the
size of the network.

As described in Section 5.3.1, PYR cells within active attractors enter a so-called local
UP state, with an increased average membrane potential and an elevated firing rate (K).
While inactive or inhibited by other active attractors, PYR cells are in a DOWN state,
with low average membrane potential and almost no spiking at all (L). In addition to
these characteristic states, the average PYR membrane potential average

PYR
membrane
potential

exhibits oscillations
with a period close to τON. These occur because the activation probability of individual
attractors is an oscillatory function of time as well. In the immediate temporal vicinity of
an active period (i.e., assuming an activation at t = 0, during [−τON, 0)∪ [τON, 2τON)) the
same attractor must have been inactive, since PYR populations belonging to an activated
attractor need time to recuperate from synaptic depression and spike-triggered adaptation
before being able to activate again.

An essential emerging feature of this model are oscillations gamma
oscillations

of the instantaneous PYR
spike rate in the gamma band within active attractors (M). The frequency of these os-
cillations are independent of size and rather depend on excitation levels in the network
(Lundqvist et al., 2010). Although the gamma oscillations might suggest periodic spiking,
it is important to note that individual PYR cells spike irregularly The irregularity of the
inter-spike intervals ISI, CVISI(ISIs) is quantified by their CV, which is 〈CVISI〉 = 1.36±0.36 within
active attractors.

Apart from these statistical measures, two behavioral properties are essential for defin-
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5. Cortical Models on Neuromorphic Hardware

ing the functionality of the network: the pattern completion and attentional blink men-
tioned above. The pattern completionpattern

completion
ability of the network can be described as the

successful activation probability of individual patterns as a function of the number of
stimulated MCs (N). Similarly, the attentional blinkattentional

blink
phenomenon can also be quantified

by the successful activation rate of an attractor as a function of the number of stimulated
MCs if it is preceded by the activation of some other attractor with a time lag of ∆T

(O). For small ∆T, the second attractor is completely “blinked out”, i.e., it can not be
activated regardless of the number of stimulated MCs. To facilitate the comparison be-
tween different realizations of the network with respect to attentional blink, we consider
the 50% iso-line, which represents the locus of the input variable pair which leads to an
attractor activation ratio of 50%. These functional properties are easiest to observe in
large networks, where spontaneous attractors are rare and do not interfere with stimulated
ones.

5.3.4. Neuron and Synapse Model Translation

A particular feature of this benchmark model is the complexity of both neuron and synapse
models used in its original version. Therefore, the first required type of compensation con-
cerns the parameter fitting for the models implemented on the hardware. Some exemplary
results of this parameter fit can be seen in Figure 5.4. More details can be found in Section
A.2.3.6.

Neurons

In general, the typical membrane potential time course during a spike of a Hodgkin-
Huxley neuron can be well approximated by the exponential term in the AdEx equation
(Brette and Gerstner, 2005). However, when fitting for spike timing, we found that spike
times were best reproduced when eliminating the exponential term, i.e. setting ∆T = 0.

Adaptation is an essential feature of both the PYR and the RSNP cells in the original
model, where it is generated by voltage-dependent K+

Ca++ channels. We were able to
reproduce the correct equilibrium spike frequency by setting the AdEx adaptation pa-
rameters a and b to nonzero values. One further differencemulticom-

partment to
point neuron
mapping

resides in the original neurons
being modeled as having several compartments, whereas the hardware only implements
point neurons. The passive neuron properties (membrane capacitances and leak conduc-
tances) were therefore determined by fitting the membrane potential time course under
stimulation by a step current which was not strong enough to elicit spikes.

Synapses

We have performed an initial estimation of synaptic weights and time constants by
fitting the membrane potential time course of the corresponding neurons in a subthreshold
regime. However, two important differences remain between the synapses in the original
model and the ones available on our hardware.

In the original model, PYR-PYR and PYR-RSNP synapses contain two types of neu-
rotransmitters: Kainate/AMPA and NMDA (see Table A.4). Due to the vastly different
time constantsmultiple

synaptic
time
constants

for neurotransmitter removal at the postsynaptic site (6 ms and 150 ms,
respectively), the PSPs have a characteristic shape, with a pronounced peak and a long
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5.3. Cortical Layer 2/3 Attractor Memory

tail (red curve in Figure 5.4B). While, in priniciple, the HICANN supports several excita-
tory time constants per neuron (see Section 3.3.1), the used version of the PyNN API as
well as the mapping process support only one excitatory time constant per neuron. With
this limitation the PSP shape can not be precisely reproduced.

One further difference lies in the saturating saturating
synapses

nature of the postsynaptic receptor pools
after a single presynaptic spike. In principle, this behavior could be emulated by the TSO
plasticity mechanism by setting U = 1 and τrec = τ syn. However, this would conflict with
the TSO parameters required for modeling short-term depression of PYR synapses and
would also require parameters outside the available hardware ranges.

For these reasons, we have further modified synaptic weights and time constants by
performing a behavioral fit, i.e., by optimizing these parameters towards reproducing the
correct firing rates of the three neuron types in two scenarios - first without and then
subsequently with inhibitory synapses. Because the original model was characterized by
relatively long and stable attractors, we further optimized the excitatory synapse time
constants towards this behavior.

Post-Fit Model Behavior

Figure 5.3 shows the results of the translation of the original model to hardware-com-
patible dynamics and parameter ranges. Overall, one can observe a very good qualitative
agreement of characteristic dynamics with the original model. In the following, we discuss
this in more detail and explain the sources of quantitative deviations.

When subject to diffuse background noise only, the default size network clearly exhibits
its characteristic spontaneous attractors (B). Star plots exhibit the same overall traits,
with well-defined attractors, characterized by state space trajectories situated close to
the axes and low trajectory velocities within attractors (E). Attractor dwell times remain
relatively stable for different network sizes, while the competition times increase along with
the network size (G and I). The average value of dwell times shortened

dwell times
, however, lies significantly

lower than in the original (C). The reason for this lies mainly in the shape of EPSPs: the
long EPSP tails enabled by the large NMDA time constants in the original model caused
a higher average membrane potential, thereby prolonging the activity of PYR cells.

Within attractors, active and inactive PYR cells enter well-defined local UP and DOWN
states, respectively (K and L). Before and after active attractors, the dampened oscilla-
tions described in Section 5.3.3 can be observed. In the adapted model higher dwell

time
variation

, attenuation is
stronger due to a higher coefficient of variation of the dwell times (σµ = 0.20 as compared
to 0.08 in the original model).

Average PYR firing rates within active attractors have very similar time courses (J),
with a small difference in amplitude, which can be attributed to the difference in EPSP
shapes discussed earlier. Both low-frequency switches between attractors (< 3 Hz, equiva-
lent to the incidence rate) and high-frequency gamma oscillations arising from synchronous
PYR firing (with a peak around 25 Hz) can be clearly seen in a power spectrum of the
PYR firing rate (M).

Pattern completion occurs similarly early, with a steep rise and nearly 100% success
rate starting at 25% of stimulated MCs per attractor (N). Attentional blink follows the
same qualitative pattern (P, Q), although with a slightly more pronounced dominance of
the first activated attractor in the case of the adapted network, which happens due to the
slightly higher firing rates discussed above.
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5. Cortical Models on Neuromorphic Hardware

Having established the quality of the model fit and in order to facilitate a meaningful
comparison, all following studies concerning hardware-induced distortions and compensa-
tion thereof use data from the adapted model as reference.

5.3.5. Synapse Loss

Effects

With increasing synapse loss, the functionality of the network gradually deteriorates
(Figure 5.5). Attractors become shorter or disappear entirelysuppressed

attractors
, with longer periods of

competition in between (D, K, O).
While average excitatory conductances are only affected linearly by synaptic loss, in-

hibitory conductances feel a compound effect of synapse loss, as it affects both afferent and
efferent connections of inhibitory interneurons. Therefore, synapse loss has a stronger ef-
fect on inhibitionreduced net

inhibition
, leading to a net increase in the average PYR membrane potential (R, S).

Additionally, since all connections become weaker, the variance of the membrane poten-
tial becomes smaller, as observed in the corresponding star plots as well (E). The weaker
connections also decrease the self-excitation of active attractors while decreasing the in-
hibition of inactive ones, thereby leading to shorter attractor dwell times (P). Somewhat
surprisingly, the maximum average PYR firing rate in active attractors remains almost
unchanged when subjected to synapse loss. However, the temporal evolution of the PYR
firing rate changes significantly (Q).

The pattern completionsuppressed
pattern
completion
and blink

ability of the network suffers particularly in the region of weak
stimuli, due to weaker internal excitation of individual attractors. The probability of
triggering a partially stimulated pattern can drop by more than 50% (T). Due to the
decreased stability of individual attractors discussed above, rival attractors are easier to
excite, thereby significantly suppressing the attentional blink phenomenon (U).

Compensation

As a first-order approximation, we can consider the population average of the neuron
conductance as the determining factor in the model dynamics. For synapses with ex-
ponential conductance courses, the average conductance generated by the ith synapse is
proportional to both synaptic weight wij and afferent firing rate νj . Because conductances
sum up linearly, the total conductance that a neuron from population i receives from some
other population j is, on average (see Section 4.3.1 and in particular Equation 4.94),

〈gsyn〉 = Njpij 〈wij〉 〈νj〉 τ syn , (5.1)

where Nj represents the size of the presynaptic population and pij represents the prob-
ability of a neuron from the presynaptic population to project onto a neuron from the
postsynaptic population. Since homogeneous synapse loss is equivalent to a decrease in
pij , we can compensateconservation

of 〈gsyn〉
for synapse loss that occurs with probability ploss by increasing

the weights of the remaining synapses by a factor 1/(1− ploss).
Figure 5.7 shows the results of this compensation strategy for ploss = 0.5. In all aspects,

a clear improvement can be observed. The remaining deviations can be mainly attributed
to two effects. First of all, preserving the average conductance by compensating homoge-
neous synapse loss with increasing synaptic weights leads to an increaseincreased

Var[gsyn]
in the variance

of the total input conductance (see Equations 4.94 and 4.95). Secondly, finite population
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5.3. Cortical Layer 2/3 Attractor Memory

sizes coupled with random elimination of synapses lead to locally inhomogeneous synapse
loss and further increase the variability of neuronal activity.

Instead of compensating for synapse loss after its occurrence, it is also possible to
circumvent it altogether after having estimated the expected synapse loss in a preliminary
mapping run. For the L2/3 model, this can be done without altering the number of
functional units (i.e., the number of HCs and MCs) by changing PYR

population
reduction

the size of the PYR cell
populations. For this approach, however, the standard scaling rules (see Section 5.3.2 and
in particular Table 5.1) need to be modified. These rules are designed to keep the average
number of inputs per neuron constant and would increase the total number of PYR-
incident synapses by the same factor by which the PYR population is scaled. This would
inevitably lead to an increased number of shared inputs per PYR cell, with the immediate
consequence of increased firing synchrony. Instead, when reducing the PYR population
size, we compensate for the reduced number of presynaptic partners by increasing relevant
synaptic weights instead of connection probabilities. This modified downscaling leads to a
net reduction of the total number of synapses in the network, thereby potentially reducing
synaptic loss between all populations.

Figure 5.7 shows the effects of scaling down the PYR population size until the total
remaining number of synapses is equal to the realized number of synapses in the distorted
case (50% of the total number of synapses in the undistorted network). More detailed
plots of the effects of PYR population downscaling can be found in Figure 5.6. The two
presented compensation methods can also be combined to further improve the final result,
as we show in Section 5.3.8.

5.3.6. Synaptic Weight Noise

One would not expect the synaptic weight noise to affect the L2/3 model strongly, as it
should average out over a large number of connections between the constituent popula-
tions. It turns out that the surprisingly strong impact of synaptic weight noise is purely
due to the implementation of background stimulus in this model and can therefore be
easily countered.

Effects

The relative variation of the total synaptic conductance scales with (see Equations 4.94
and 4.95)

E [g] /
√

Var[g] ∝ 1/
√
νinput ∝ 1/

√
N , (5.2)

where νinput is the total input frequency and N the number of presynaptic neurons. There-
fore, interactions between large populations are not expected to be strongly affected by
synaptic weight noise.

The only connections where an effect is expected are the RSNP→PYR connections,
because the presynaptic RSNP population consists of only 2 neurons per MC. However,
long-range inhibition also acts by means of a second-order mechanism, in which an active
MC activates its counterpart in some other HC, which then in turn inhibits all other MCs
in its home HC via BAS cells. This mechanism masks much of how synaptic weight noise
affects RSNP→PYR connections.
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Figure 5.8.: Single PYR cell firing rate for different synaptic input weights. Each weight
configuration was simulated for 100 s.

Nevertheless, synaptic weight noise appears to have a strong effect on network dynamics
(Figure 5.9, red curves). The reason for this lies in the way the network is stimulated.
In the original model, each PYR cell receives input from a single Poisson source.Poisson

sources
This is

of course a computational simplification and represents diffuse noise arriving from many
neurons from other cortical areas. However, having only a single noise source connected
by a single synapse to the target neuron makes the network highly sensitive to synaptic
weight noise.

As can be seen in Figure 5.8, the firing rate of single PYR cells is highly dependent on the
synaptic input weight that connects them to their respective Poisson source. For example,
a variation of 20% in the input weight can cause the firing rate to either effectively vanish
or more than triple. This heavily distorts network dynamics as PYR cells within MCs will
exhibit highly disparate firing rates, thereby disrupting the network’s ability to maintain
stable UP states (in which all participating PYR cells should fire roughly with the same
rate).

Compensation

The compensation for this effect was done by increasing the number of independent
noise sources per neuron, thereby reducing the statistically expected relative noise con-
ductance variations per PYR cell. The only limitation lies in the total number of available
external spike sources and the bandwidth supplied by the off-wafer communication net-
work (see Section 3.3.2). Once this limit is reached, the number of noise inputs per PYR
cell can still be increased even further if PYR cells are allowed to share noise sources.
The question therefore becomes the following: given a total number of available Poisson
sources N and a noise population size of n sources per PYR cell, what is the average
pairwise overlap between two such populations?
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5.3. Cortical Layer 2/3 Attractor Memory

We can start by calculating the probability of choosing two subsets S1 and S2 of size
|S1| = |S2| = n with overlap k from a set S of cardinality |S| = N . Without loss of
generality, we can assume S1 to be fixed and simply count all possible realizations of S2

such that k elements of S2 are in S1 and the other n− k are in S\S1:

p(|S1 ∩ S2| = k) =

(
n
k

)(
N−n
n−k

)(
N
n

) , (5.3)

where the normalization factor
(
N
n

)
represents the total number of possible choices for S2.

The average overlap is then given by the expectation value of k:

E [k] =
n∑
k=0

k · p(|S1 ∩ S2| = k) =
n∑
k=0

k

(
n
k

)(
N−n
n−k

)(
N
n

)
=

n(
N
n

) n∑
k=1

(
n− 1

k − 1

)(
N − 1− (n− 1)

n− 1− (k − 1)

)
. (5.4)

The product of binomial coefficients on the RHS can then be transformed with the relation

m∑
k=0

(
m

k

)(
N −m
n− k

)
=

(
N

n

)
(5.5)

to yield average
pairwise

presynaptic
overlap

E [k] =
n(
N
n

)(N − 1

n− 1

)
=
n2

N
, (5.6)

which gives us the average pairwise overlap between two background noise populations.

As long as the average overlap remains small enough, the overlap-induced spike corre-
lations will not affect the network dynamics. In our example (Figure 5.9, green curves),
we have chosen n = 100, while the total number of Poisson sources is set at N = 5000.
We can now estimate the expected free membrane potential correlation of two PYR cells
with Equation 4.143: shared-input

correlation
E [ρu1,u2 ] =

E [k]

n
=

n

N
= 0.02 . (5.7)

We consider this small enough to be negligible. Note how this relatively simple compensa-
tion method efficiently restores most functionality criteria (Figure 5.9, green curves). The
most significant remaining differences can be seen in pattern completion and attentional
blink (T, U) and appear mainly due to the affected RSNP→PYR connections.

In addition to the investigation of synaptic weight noise on the default model, we
repeated the same experiments for the model with reduced PYR population sizes (Figure
5.9, purple curves), which we have previously suggested as a compensation method for
synaptic weight noise (in Section 5.3.5). The fact that PYR population reduction does
not affect the network functionality in the case of (compensated) synaptic weight noise is
an early indicator for the compatibility of the suggested compensation methods when all
distortion mechanisms are present (Section 5.3.8).
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Figure 5.10.: Effects of fixed axonal delays on the L2/3 model. Unless explicitly stated
otherwise, the default network model (9HC×9MC) was used. Data from the
regular and distorted models is depicted (or highlighted) in blue, and red,
respectively. (A) Average firing rate of PYR cells within an active period
of their parent attractor. (B), (C) Average dwell time for various network
sizes. (D), (E) Fraction of time spent in competitive states (i.e. no active
attractors) for various network sizes. (F) Distributions of dwell times. (G)
Average voltage of PYR cells before, during and after their parent attractor is
active (UP state). (H) Average voltage of PYR cells before, during and after
an attractor they do not belong to is active (DOWN state). For subplots
A, G and H, the abscissa has been subdivided into multiples of the average
attractor dwell time in the respective simulations. In subplots G and H the
dotted line indicates the leak potential El of the PYR cells. Figure taken
from Petrovici et al. (2014).
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5.3. Cortical Layer 2/3 Attractor Memory

5.3.7. Non-Configurable Axonal Delays

In the original model, axonal delays between neurons are proportional to the distance
between their home HCs. At an axonal spike propagation velocity of 0.2 m/ms, the
default (9HC×9MC) network implements axonal delays distributed between 0.5 and 8
ms. While PYR cells within an MC tend to spike synchronously in gamma waves, the
distribution of axonal delays reduces synchronicity between spike volleys of different MCs.

Fixed delays, on the other hand, promote synchronicity increased
synchronic-

ity

, thereby inducing subtle changes
to the network dynamics (Figure 5.10). The synchronous arrival of excitatory spike volleys
causes PYR cells in active attractors to spike more often (A). Their higher firing rate
in turn causes shorter attractor dwell times, due to their spike frequency adaptation
mechanism (B, C, F). During an active attractor, the elevated firing rate of its constituent
PYR cells causes a higher firing rate of the inhibitory interneurons belonging to all other
attractors. This, in turn, leads to a lower membrane potential for PYR cells during
inactive periods of their parent attractor (G, H). As these effects are not fundamentally
disruptive and also difficult to counter without significantly changing other functional
characteristics of the network, we chose not to design a compensation strategy for this
distortion mechanism in the L2/3 network.

5.3.8. Full Simulation of Combined Distortion Mechanisms

In a final step, we emulate the L2/3 model on the ESS (Section 3.3.4), and compen-
sate simultaneously for all of the effects discussed above. We first investigate how much
synapse loss to expect for different network sizes, and then realize the network at two
different scales in order to investigate all of the chosen functionality criteria. The default
network (9HC×9MC) is used to analyze spontaneous attractors, while a large-scale model
(25HC×25MC) serves as the test substrate for pattern completion and pattern rivalry.

Synapse Loss

The synapse loss after mapping the L2/3 model onto the BrainScaleS hardware is shown
in Figure 5.11 for different sizes, using the scaling rules defined in Section 5.3.2. Synapse
loss starts to occur already at small sizes and increases rapidly above network sizes of
20 000 neurons. The jumps can be attributed to the different ratios between number of
HCs and number of MCs per HC (Table A.11).

Small-Scale Model

The default model (9HC×9MC) can, in principle, be mapped onto the hardware without
any synapse loss if the full wafer is available for use. Nevertheless, in some scenarios, a full
wafer might not be available, due to faulty components or part of its area being used for
emulating other parts of a larger parent network. We simulate this scenario by limiting the
usable wafer area to 4 reticles reduced

available
wafer area

(out of a total of 48 on the full wafer). With the reduced
available hardware size, the available pulse bandwidth of the off-wafer communication
network decreases as well, such that diffusive background noise can not be modeled with
one individual Poisson source per neuron. Hence, each pyramidal neuron receives input
from 9 out of 2430 background sources.

The total synapse loss for the given network setup amounts to 22.2 % and affects
different projection types with varying strength (Table 5.2). Also external synapses are
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Figure 5.11.: Total synapse loss in the L2/3 model after mapping to the wafer. A more
detailed listing can be found in Table 5.2. Figure taken from Petrovici et al.
(2014).

lost, since, in contrast to the synapse loss study (Section 5.3.5), they have not been
prioritized in the mapping process in this case. Additionally, we applied 20 % synaptic
weight noise and simulated the network with a speedup factor of 12 000.

The behavior of the L2/3 network on the ESS is shown in Figure 5.12. The distorted
network shows no spontaneous attractors (C), which can be mainly attributed to the loss
of over 32 % of the background synapses. To recover the original network behavior, we
first increased the number of background neurons per cell from 9 to 50 to compensate
for synaptic weight noise, and also scaled the weights by 1/(1 − ploss) for each projec-
tion type with extracted synapse loss values ploss (Table 5.2), following the synapse loss
compensation method described in Section 5.3.5. Note that here the complete PyNN
experiment is re-run: synaptic weights are scaled in the network definition leading to a
new configuration of gmax and the digital weights on the HICANNs (Section 3.3.1) after
the mapping process. These measures effectively restored the attractor characteristics of
the network (Figure 5.12). The attractor dwell times remained a bit smaller than for the
regular network (G), which can be ascribed to the non-configurable delays (Section 5.3.7).

Large-Scale Model

The ability of the network to perform pattern completion and exhibit pattern rivalry
was tested on the ESS for the large-scale model with 25 HCs and 25 MCs per HC. From
the start, we use a background pool with 5000 Poisson sources and 100 sources per neuron
to model the diffusive background noise, as used for the compensation of synaptic weight
noise (Section 5.3.6).

As with the small-scale network, the total synapse loss of 17.9 % shows significant
heterogeneity (see Table 5.2), and affects mainly projections from PYR to inhibitory cells,
but also connections from the background and L4 stimulus. In contrast to the idealized
case in Section 5.3.5, where each synapse is deleted with a given probability, the synapse
loss here happens for entire projections at the same time,projection-

wise
synapse loss

i.e. all synapses between two
populations are either realized completely or not at all. We note that the realization of all
PYR-RSNP synapses is a priori impossible, as each RSNP cell has 24× 24× 30 = 17280
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9HC×9MC 25HC×25MC
projection dist comp dist comp

PYR → PYR (local) 21.1 21.0 0.9 0.3
PYR → PYR (global) 20.8 21.2 8.0 0.4
PYR → RSNP 22.6 21.9 37.0 28.8
PYR → BAS 8.2 7.6 15.0 0.2
BAS → PYR 23.3 39.4 0.5 0.2
RSNP → PYR 22.7 39.9 0.0 3.9
L4 → PYR 44.1 45.4 15.5 2.3
background → PYR 32.3 31.3 17.3 1.3

total 22.2 25.2 17.9 9.8

Table 5.2.: Projection-wise synapse loss of the L2/3 model in % after the mapping process
for the default (9HC×9MC) and large-scale (25HC×25MC) network.

potential pre-synaptic neurons (given the scaling rules in Section 5.3.2), which is more
than the maximum possible number of pre-synaptic neurons per HICANN (14336, see
Section 3.3.1).

The simulation results with 20 % synaptic weight noise for pattern completion and
pattern rivalry are shown in Figure 5.12K, L (red curves). In both cases the network
functionality is clearly impaired. In particular, the ability of an active pattern to suppress
other patterns is noticeably detoriated, which can be traced back to the loss of 37 % of
PYR-RNSP connections.

In order to restore the functionality of the network we used a two-fold approach: First,
we attempted to reduce the binary loss of PYR-RSNP projections by reducing the number
of PYR cells per MC from 30 to 20, which decreases the total number of neurons in the
network, as well as the number of potential pre-synaptic neurons per RNSP cell. The
synapse loss was thereby reduced to 28.8 % for PYR-RSNP projections and was eliminated
almost completely for all other projections (see Table 5.2). Secondly, we compensated for
the remaining synapse loss by scaling the synaptic weights as described in Section 5.3.5.

After application of these compensation mechanisms, we were able to effectively restore
the original functionality of the network. Both pattern completion and attentional blink
can be clearly observed. The small remaining deviations from the default model can be
attributed to the inhomogeneity of the synapse loss and the fixed delays on the wafer.

5.3.9. Emulation on the Spikey Chip

When scaling down the original model (2673 neurons) to the maximum size available on
the Spikey chip (192 neurons, see Figure 5.13B for software simulation results), we made
use of the essential observation that the number of PYR cells can simply be reduced
without compensating for it by increasing the corresponding projection probabilities (see
Section 5.3.5). Also, for less than 8 MCs per HC, all BAS cells within an HC have identical
afferent and efferent connectivity patterns, therefore allowing to treat them as a single
population. Their total number was decreased, while increasing their efferent projection

169



5. Cortical Models on Neuromorphic Hardware

0
50

0
10

00
15

00
20

00
25

00
A 10

00
20

00
30

00
40

00
50

00
ti

m
e 

[m
s]

0
50

0
10

00
15

00
20

00
25

00
C

2 
m

V
2 

m
V

E

avg membrane potential [mV]

0
50

0
10

00
15

00
20

00
25

00
B

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

T 
co

m
pe

ti
ng

 s
ti

m
ul

us
 / 

av
g 

dw
el

l t
im

e

510152025 # stimulated MCs

re
g

cm
p

ds
t

L

2 
m

V

F

2
4

6
8

10
12

# 
st

im
ul

at
ed

 M
C

s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

estimated success probability

K

neuron #

3
2

1
0

1
2

3
4

ti
m

e 
/ d

w
el

l t
im

e

66646260
J

66646260
I

0
20

0
40

0
60

0
80

0
10

00
dw

el
l t

im
e 

[m
s]

normalized incidences

G

0
10

20
30

40
50

60
fr

eq
ue

nc
y 

co
m

po
ne

nt
 [

H
z]

normalized power

D 0.
00

.2
0.

40
.6

0.
8

1.
0

ti
m

e 
/ d

w
el

l t
im

e

02468
average pyramidal rate [spikes/s]

H

170
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5. Cortical Models on Neuromorphic Hardware

probabilities accordingly. In general (i.e., except for PYR cells), when number and/or
size of populations were changed, projection probabilities were scaled in such a way that
the total fan-in for each neuron was kept at a constant average (see Section 5.3.2). When
the maximum fan-in was reached (one afferent synapse for every neuron in the receptive
field), the corresponding synaptic weights were scaled up by the remaining factor.

Because neuron and synapse models on the Spikey chip are different to the ones used in
the original model, we have performed a heuristic fit in order to approximately reproduce
the target firing patterns. Neuron and synapse parameters were first fitted in such a
way as to generate clearly discernable attractors with relatively high average firing rates
(see Figure 5.13D). Additional tuning was needed to compensate for missing neuronal
adaptation, limitations in hardware configurability, parameter ranges and fixed-pattern
noise affecting hardware parameters.

During hardware emulations, apart from the appearance of spontaneous attractors given
only diffuse Poisson stimulation of the network (Figure 5.13C), we were able to observe two
further interesting phenomena which are characteristic for the original attractor model:
UP states of PYR cells during active attractors and pattern completion. These in-silico
observations nicely match the characteristics of the model that we have previously dis-
cussed based on software simulations (both with Neuron and the ESS).

Figure 5.13E shows the emergence of such UP-states on hardware. The onset of an
attractor is characterized by a steep rise in PYR cell average membrane voltage, which
then decays towards the end of the attractor due to synaptic short-term depression and/or
competition from other attractors temporarily receiving stronger stimulation. On both
flanks of an UP state, the average membrane voltage shows a slight undershoot, due to
the inhibition by other active attractors.

A second important characteristic of cortical attractor models is their capability of per-
forming pattern completion (see Section 5.3.3). This means that a full pattern can be
activated by stimulating only a subset of its constituent PYR cells (in the original model,
by cells from cortical Layer 4, modeled by us as additional Poisson sources). To demon-
strate pattern completion, we have used the same setup as in the previous experiments,
except for one pattern receiving additional stimulation. From an initial equilibrium be-
tween the three attractors (approximately equal active time), we can observe how the
stimulated attractor increasingly dominates the other two when an increasing subset of
the PYR cells in its four minicolumns receive L4 stimulus (Figure 5.13F).

The implementation of the attractor memory model is a particularly comprehensive
showcase of the configurability and functionality of the Spikey chip due to the complexity
of both model specifications and emergent dynamics. As discussed in previous sections,
the next-generation wafer-scale hardware will be able to much more accurately model
biological behavior, thanks to a more flexible, adapting neuron model and especially a
significantly increased number of available resources (i.e., allowing a larger network size).
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Figure 5.13.: L2/3 model on the Spikey chip. (A) Schematic of the cortical layer 2/3
attractor memory network. Two HCs, each containing two MCs, are shown.
For better readability, only connections that are active within an active
pattern are depicted. (B) Software simulation of spiking activity in the
cortical attractor network model scaled down to 192 neurons (only PYR and
RSNP cells shown, BAS cells spike almost continuously). MCs belonging to
the same pattern are grouped together. The broad stripes of activity are
generated by PYR cells in active attractors. The interlaced narrow stripes
of activity represent pairs of RSNP cells, which spike when their home MC
is inhibited by other active patterns. (C) Same as B, but on Spikey. The
raster plot is noisier and the duration of attractors (dwell time) are less
stable than in software due to fixed-pattern noise on neuron and synapse
circuits. For better readability, active states are underlined in gray in B and
C. (D) Average firing rate of PYR cells on Spikey inside active patterns. To
allow averaging over multiple active periods of varying lengths, all attractor
dwell times have been normalized to 1. (E) Average membrane potential
of PYR cells on Spikey inside and outside active patterns. (F) Pattern
completion on Spikey. Average values (from multiple runs) depicted in blue,
with the standard deviation shown in red. From a relatively equilibrated
state where all patterns take turns in being active, additional stimulation
(see text) of only a subset of neurons from a given attractor activates the
full pattern and enables it to dominate over the other two. The pattern does
not remain active indefinitely due to short-term depression in excitatory
synapses, thereby still allowing short occasional activations of the other two
patterns. Figure taken from Pfeil et al. (2013).
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5. Cortical Models on Neuromorphic Hardware

5.4. Synfire Chain with Feedforward Inhibition

Our second benchmark network is a model of a series of consecutive neuron groups with
feed-forward inhibition, called a synfire chainsynfire

chain
(Kremkow et al., 2010b). This network

acts as a selective filter to a synchronous spike packet that is applied to the first neuron
group of the chain. The behavior of the network is quantified by the dependence of the
filter properties on the strength and temporal width of the initial pulse. Our simulations
show that synapse loss can be compensated in a straightforward manner. Further, the
major impact of weight noise on the network functionality stems from weight variations in
background synapses, which can be countered by modification of synaptic and neuronal
parameters. The effect of fixed axonal delays on the filtering properties of the network
can be countered only to a limited extent by modifying synaptic time constants and
the strength of local inhibition. Simulations using the ESS show that the developed
compensation methods are applicable simultaneously. Furthermore, they highlight some
further sources of potential failure of pulse propagation that originate from bandwidth
limitations in the off-wafer communication infrastructure.

5.4.1. Architecture

Feed-forward networks with a convergent-divergent connection scheme provide an ideal
substrate for the investigation of activity transport. Insights have been gained regarding
the influence of network characteristics on its response to different types of stimulus
(Aertsen et al., 1996; Diesmann et al., 1999; Vogels and Abbott, 2005). Similar networks
were also considered as computational entities rather than purely as a medium for in-
formation transport (Abeles et al., 2004; Kremkow et al., 2010a; Schrader et al., 2010).
The behavior of this particular network has been shown to depend on the connection
density between consecutive groups, on the balance of excitation and inhibition as well
as on the presence and magnitude of axonal delays in Kremkow et al. (2010b). This
makes it sensitive to hardware-specific effects such as an incomplete mapping of synaptic
connectivity, the variation of synaptic weights, bandwidth limitations which cause loss of
individual spike events and limited availability of adjustable axonal delays and jitter in
the spike timing that may be introduced by different hardware components.

The feed-forward network comprises a series of successive neuron groups, each group
containing one excitatory and one inhibitory population. The excitatory population con-
sists of 100 regular-spiking (RS)RS, FS cells , the inhibitory one of 25 fast-spiking (FS) cells. Both cell
types are modeled as LIF neurons with exponentially shaped synaptic conductance with-
out adaptation, as described in Section 3.3.1. Both RS and FS neurons are parameterized
using identical values (Table A.12).

Each excitatory population projects to both populations of the consecutive group while
the inhibitory population projects to the excitatory population in its local groupfeedforward

inhibition
(Figure

5.14A). There are no recurrent connections within the RS or FS populations.

In the original publication (Kremkow et al., 2010b), each neuron was stimulated in-
dependently by a Gaussian noise current. Because the hardware system does not offer
current stimulus for all neurons, all neurons in the network received stimulus from inde-
pendent Poisson spike sources. For Gaussian current stimulus, as well as in the diffusion
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5.4. Synfire Chain with Feedforward Inhibition

Figure 5.14.: Synfire chain network. (A) Architecture of the synfire chain with feed-
forward inhibition. Excitatory projections are shown in red, inhibitory ones
in blue. In the default realization the network consists of six consecutive
groups. The local FS → RS projection has an adjustable delay ∆, which
affects the network dynamics. The intergroup delay is set to 20 ms for visu-
alization purposes following Kremkow et al. (2010b); this has no influence
on the filter properties because the delay of both intergroup projections is
equal. The background stimulus is realized using random Gaussian current
(original) and Poisson background spikes (adapted version for the hardware).
The parameters for neurons and connections are given in Tables A.12 and
A.13. (B) Exemplary raster plot of the network behavior. The first group
receives a pulse packet with a = 1 and σ0 = 1 ms, which propagates as
a synchronous spike volley along the chain. (C) Characterization of the
network behavior in the (σ, a) state space. Each marker represents the ini-
tial stimulus parameters (σ0, a0). The stimulus parameters were selected
randomly from the region (a0 < 10, σ0 ≤ 10 ms). The region with (a0 < 2,
σ0 ≤ 2 ms) was simulated more frequently to increase the resolution near the
convergence points of the propagation. The marker color is linearly scaled
with the activity in the last group, a6, being blue for a6 = 0 and red for
a6 = 1 and is set to red for a6 > 1. To improve visibility, the background
is colored according to the color of the nearest marker, red for a6 ≥ 0.5 and
blue otherwise. Experiments where the RS group did not fire are marked
as ×. The gray lines originating from each marker denote the direction to-
wards the pulse volley parameters (σ1, a1). The green line shows a fit to the
separatrix between zero and nonzero activity at the last group of the synfire
chain (see Section 5.4.3 for details). This approximation is used to compare
the behavior of different modifications of the original network. The dashed
black and white lines show four exemplary trajectories through the (σ, a)
state space. Figure taken from Petrovici et al. (2014).
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limit of Poisson stimulus (high input rates, low synaptic weights), the membrane poten-
tial is stationary Gaussian, with an autocorrelation dominated by the largest dynamic
time constant, which for this model is the membrane time constant (see Sections 4.3.4
and 6.5.2). The only remaining differences are due to the finite, but small, synaptic time
constants. The rate and synaptic weight of the background stimulus were adjusted to
obtain similar values for the mean and variance of the membrane potential, resulting in a
firing rate of 2 kHz with a synaptic weight of 1 nS.

The initial synchronous stimulus pulse is emitted by a population of spike sources,
which has the same size and connection properties as a single RS population within the
network. A temporally localized pulse packetpulse packet was used as a stimulus, whereby each of the
100 spike sources emitted a0 spikes that were sampled from a Gaussian distribution with
a common mean time and a given standard deviation σ0. The variables (σi, ai) are later
used to describe the characteristics of the activity in the ith group of the chain, referring
to the temporal pulse width and number of spike pulses per neuron, respectively.

5.4.2. Network Scaling

In the default setup studied here, the synfire chain consists of 6 groups of 125 neurons
(100 excitatory and 25 inhibitory). In order to quantify the amount of synapse loss after
mapping the network to the BrainScaleS wafer-scale hardware for different network sizes,
we define the following network scaling rules. When increasing the network size, we vary
both the number of synfire groups and the number of neurons per group whileconstant

fan-in
keeping

the number of incoming synapses per neuron constant (see Table A.13). The fraction
of inhibitory neurons always amounts to 20 %. Neuron and synapse parameters are not
altered. Table 5.3 lists the combinations of group size and group count used for the
synapse loss estimation in Figure 5.19A.

The background PoissonPoisson
background

stimulus is scaled as follows. For the hardware implementation
of the synfire chain we can not use one individual Poisson source for each neuron due to
input bandwidth limitations. Instead, we assume one pool of 32 Poisson sources for each
synfire group, and each neuron receives input from 8 random sources from that pool. The
size of the background pool is then scaled with the number of neurons per synfire group,
while always drawing 8 sources from the pool per neuron. This scaling of the background
pool was chosen to make the total number of background sources proportional to the total
number of neurons and independent of the group count.

5.4.3. Functionality Criteria

The functionality of the feed-forward network is assessed by examining the propagation
of a synchronous pulse after the stimulus is applied to the first group in the chain (Figure
5.14B). The propagation is quantified by applying initial stimuli of varying strength a0 ∈
[0, 10] and temporal spread σ0 ∈ [0 ms, 10 ms]. For each synfire group i ∈ {1, ..., 6}, the
activation is determined by setting ai to the number of emitted spikes divided by the
number of neurons in the RS population. The standard deviation of the spike pulse times
is denoted by σi. Typically, the resulting “trajectory” in the (σ, a) space (Figure 5.14) is
attracted to one of two fixed pointsfixed points : either near (σ = 0 ms, a = 1), i.e., the pulse packet
propagates as a synchronous spike volley, and (0 ms, 0), i.e., the propagation dies out (e.g.,
Figure 5.15A).
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groups group size total neurons groups group size total neurons

8 125 1000 20 500 10 000
16 125 2000 40 500 20 000
24 125 3000 60 500 30 000
20 200 4000 40 1000 40 000
25 200 5000 50 1000 50 000
15 400 6000 30 2000 60 000
20 350 7000 20 3500 70 000
20 400 8000 20 4000 80 000
30 300 9000 30 3000 90 000
25 400 10 000 25 4000 100 000

Table 5.3.: Scaling table for the synfire chain used for the synapse loss estimation in Figure
5.19A.

The network behavior is characterized by the separating line between successful and
extinguished propagation in the state space (σ, a) of the initial stimulus; this line will be
called separatrix separatrixfrom here on. The differentiation between extinguished and successful
propagation is defined by a6 ≥ 0.5 resp. a6 < 0.5 in the last (6th) group. This is justified
because in the undistorted case, a is clustered around the values 0 and 1. Due to the
statistic nature of the connectivity, background stimulus and pulse packet, the macroscopic
parameters σ and a do not fully determine the behavior of the system. This means
that in the reference simulation, there is a small region around the separatrix where the
probability of a stable pulse propagation is neither close to zero nor to one. Thus, in
addition to the location of the separatrix (Section A.2.4.2), the width of this region is
taken as a functionality criterion.

The background stimulus is adjusted such that the spontaneous firing rate in the net-
work is below 0.1 Hz, in accordance with Kremkow et al. (2010b). In cases in which
distortion mechanisms induce a much stronger background firing, the spike trains are fil-
tered before the analysis by removing spikes which appear not to be within a spike volley
(Section A.2.4.3).

5.4.4. Synapse Loss

On average, homogeneous synapse loss affects the strength of excitatory and inhibitory
projections equally. Additionally, the number of incoming spikes seen by a single neuron
varies as synapses are removed probabilistically, in contrast to the undistorted model with
a fixed number of incoming connections for each neuron type (Table A.13). Synapse loss
was applied to all internal connections as well as to the connection from the synchro-
nized stimulus population to the first group in the network; background stimulus was not
affected (see Section 5.1).

Figure 5.15A shows a single experiment with synapse loss of 37.5 %, contrasting with
the undistorted case (Figure 5.14A). Above a certain value of synapse loss, the signal
fails to propagate to the last group. As shown in Figure 5.15C and E for one stimulus
parameter set, successful propagation stops at a synapse loss value between 30% and
40%. The pulse width increases with rising synapse loss due to the increasing variation of
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synaptic conductance for individual neurons (E). The effect is reversed by increasing all
synaptic weights weight com-

pensation
in the network by a factor of 1/(1−ploss), with ploss being the probability

of synapse loss. This compensation strategy can effectively counter synapse loss of up to
90 % (B, D) and the pulse width increase is shifted to larger values of synapse loss (F).

The distortion mechanism has only a minor effect on the a-value of the separatrix in
the depicted region (G). However, the location of the separatrix at σ0 = 0 rises with
synapse loss until it reaches the fixed point at approximately (0.1 ms, 1), at which point
a bifurcation bifurcationoccurs and the the attractor region for (0.1 ms, 1) disappears (as described
in Diesmann et al. (2001) for the case of varying weights). In the compensated case,
the separatrix locations are identical with the undistorted case within the measurement
precision.

5.4.5. Synaptic Weight Noise

The effect of synaptic weight noise is shown in Figure 5.16. Similarly to the effect of
synapse loss, the region of stable propagation shrinks (B); additionally, the border between
the regions of stable and extinguished propagations becomes less sharp (A). This is caused
by two effects: varying strength of the background stimulus, and varying strength of the
synaptic connections within the network.

The first effect is significant because the background stimulus to each neuron is provided
through a single synapse. Thus, the effective resting potential of each neuron is shifted,
significantly changing its excitability and, in some cases, inducing spontaneous activity.
One possibility of countering this effect is to utilize several synapses for background stim-
ulus, thereby averaging out the effect of individual strong or weak synapses, as has been
done in the case of the L2/3 model in Section 5.3.6. Here, we propose a different method.
The resting potential El can be raised while simultaneously lowering the synaptic weight
from the background stimulus. We can choose E [u] and

Var [u] con-
servation

the parameters in such a way that the
mean and variance of the distribution of free membrane voltages (see Equations 4.69 and
4.77) in each neuron population are kept at the default value (without synaptic weight
noise):

E [u] ≈ w0E [K] + El and (5.8)

Var [u] ≈ w2
0Var [K] + Var [wsyn]

(
E [K]2 + Var [K]

)
, (5.9)

where
K(t) =

∑
spk j

κ(t− tj) (5.10)

represents the effect of the background stimulus, κ being the PSP kernel, and Var [wsyn] =
w2

0σ
2 appears due to synaptic weight noise.

In the distorted case, the width of this distribution is a combined effect of the random
background stimulus and the weight variation, while in the original case it originates from
the stochasticity of the stimulus only. In the undistorted case, Var [wsyn] = 0, and only the
first term contributes to Var [u]. With increasing σ2, the contribution of the second term
to Var [u] increases, which is compensated by changing w0 accordingly, keeping Var [u] at
the original level. This, in turn, changes E [u], which is compensated by a change of El.

The effect of synaptic weight noise within the network itself is less significant compared
to its impact on the background stimulus. Figure 5.16C shows that removing the effect
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of background stimulus noise alone is sufficient to counteract synaptic noise values of up
to at least 50%.

5.4.6. Non-Configurable Axonal Delays

Figure 5.17A shows the effect of varying axonal delays between the inhibitory and exci-
tatory population of a single synfire group. As was shown in Kremkow et al. (2010b),
the delay can be employed to control the position of the separatrix between stable and
unstable propagation. Because the axonal delay is not configurable for on-wafer connec-
tions, a different method is required to regain the ability to control the separatrix. While
Sections 5.4.4 and 5.4.5 show that synaptic weight noise and synapse loss can influence
the location of the separatrix, a method is required that is independent of those distortion
mechanisms.

Diesmann (2002) shows that several parameters, including group size and noise level,
can modify the separatrix location, albeit for a model without feed-forward inhibition.
Here, we investigate to which extent parameter modification can reproduce the effect of
variable delays.

For very short delays (in this case, 0.1 ms, not shown), stable propagation does not
occur, because the onset of local inhibition is nearly synchronous with the onset of ex-
ternal excitation. This effect was countered by increasing the synaptic time constantτ syn

i delay
compensa-
tion

and
simultaneously decreasing the synaptic weight for local inhibition, thus extending the du-
ration of inhibition that acts on the RS population. The inhibitory synaptic time constant
was increased by a factor of 3 while simultaneously reducing the synaptic weight of the
inhibitory projection.

Figure 5.17B shows the result of the compensation for 1.5 ms local inhibition delay. For
both values of axonal delay, the location of the separatrix can be controlled by changing
the weight of inhibition. However, its shape differs from the delay-induced case because
of the modified delay mechanism of inhibition. Reduction of the weight beyond a certain
point is not possible, as balanced inhibition is required for network functionality (Kremkow
et al., 2010b). It is important to note that this kind of compensation is specific to the
state space region which is examined, and that it can not be extended to arbitrarily large
delays.

5.4.7. Additional Simulations

To check that the proposed compensation methods do not interfere with each other, all
distortion mechanisms were applied simultaneously with weight noise values of 20 % and
50 % and synapse loss values of 30 % and 50 %, with an axonal delay of 1.0 ms. Without
compensation, no stable region exists in all four cases. Figure 5.18 shows the result with
all compensation methods applied.

Note that when several methods required modification of a network parameter, all
modifications were applied. For instance, in the case of the synaptic weight which needed
to be scaled by both synapse loss and delay compensation methods, both scaling factors
were multiplied. In all four cases, the applied compensation methods are successful in
restoring the original input selectivity of the network.
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Figure 5.16.: Effect of synaptic weight noise on the synfire chain model. The spike data
for all three plots was filtered to remove spontaneous spikes in individual
neurons, which stem from weight increase in some background synapses due
to weight noise. (The filter parameters were T = 10 ms, N = 25, see Section
A.2.4.3) (A) State space at 80% weight noise. The set of inputs that evokes
activity in the last group is patchy as a consequence of the distortion mech-
anism. In the compensated case the separation is sharp again, as shown
in Figure A.3. (B) Approximate separatrix locations for smaller values of
weight noise. (C) Approximate separatrix locations for the compensated
case. Figure taken from Petrovici et al. (2014).
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5.4. Synfire Chain with Feedforward Inhibition

5.4.8. Full Simulation of Combined Distortion Mechanisms

In a final step, we simulate the synfire chain with the ESS and compensate simultane-
ously for all the causes of distortions addressed above. We proceed with a quantification
of synapse loss after mapping the synfire chain for different network sizes to the hardware.
For the ESS simulations, we limit the model to very few hardware resources reduced

hardware
size

to artificially
generate synapse loss, such that all of the above distortion mechanisms are present (simi-
larly to the L2/3 model, see Section 5.3.8). Additional hardware simulations investigating
the influence of spike loss and jitter on the network functionality are described in Section
5.4.9.

Synapse Loss

We mapped the synfire chain at different network sizes onto the BrainScaleS wafer-
scale hardware in order to quantify the amount of synapse loss (Figure 5.19A). For this
purpose we developed network scaling rules that depend on the number and the size of the
synfire groups (Section 5.4.2). Due to its modular structure and feed-forward connectivity
scheme, there is no synapse loss for networks with up to 10 000 neurons. However, for
network sizes above 30 000 neurons, the ratio of lost synapses increases abruptly. With
increasing network size more neurons have to be mapped onto one HICANN, thereby
reducing the number of hardware synapses per neuron. Moreover, as the group size grows
with the network size (see Table 5.3), also the number of pre-synaptic neurons for all
neurons mapped onto one HICANN increases, so that the maximum number of inputs to
a HICANN, i.e., the synapse drivers, becomes a limiting constraint. The combination of
both factors unavoidably leads to synapse loss.

Distorted and Compensated Simulation

For the ESS simulation, we applied several modifications to the benchmark network.
Originally, each cell in the network receives Poisson background stimulus from an in-

dividual source with 2000 Hz. Because the off-wafer pulse routing network does not
support such high bandwidths (see Section 3.3.2), we reduce the total number of back-
ground sources from 750 to 192 and let each neuron receive input from 8 sources, while
decreasing the Poisson rate by a factor of 8, using the same mechanism as for the com-
pensation of synaptic weight noise in the L2/3 model (see Section 5.3.6). For the same
reason, the network was emulated with a speedup factor of 5000 compared to biological
real-time, whereby the effective bandwidth for stimulation and recording is doubled with
respect to the normal operation with a speedup of 10 000.

As seen before, no synapse loss occurs for small networks. However, as discussed for
the L2/3 model in Section 5.3.8, one can consider situations where only a small part of
the wafer is available for experiments, or where some neurons or synaptic elements are
defective or missing a calibration. Therefore, in order to generate synapse loss in the
feed-forward network, we limited the network to only 8 out of 48 reticles of the wafer and
furthermore declare half of the synapse drivers as not available. This resulted in a total
synapse loss of 27.4 %. As with the L2/3 model, the synapse loss was not homogeneous
but depended strongly on the projection type (Table 5.4).

We simulated the synfire chain with default neuron and synapse parameters on the ESS
with 20 % synaptic weight noise and the synapse loss described above. The (σ, a) state
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Figure 5.19.: Distorted and compensated simulations of the feedforward synfire chain on
the ESS. (A) Synapse loss after mapping the model with different numbers
of neurons onto the BrainScaleS System. (B) (σ,a) state space on the ESS
with default parameters, 20 % weight noise, and 27.4 % synapse loss. (C)
After compensation for all distortion mechanisms, different separatrices are
possible by setting different values of the inhibitory weight. (D) Compen-
sated state space belonging to the blue separatrix in C. Figure taken from
Petrovici et al. (2014).

projection synapse loss [%]

Pulse Packet → RS0 21.3
Pulse Packet → FS0 12.7
RSn → RSn+1 32.4
RSn → FSn+1 32.0
FSn → RSn 20.8
Poisson background → ALL 0

total 27.4

Table 5.4.: Projection-wise synapse loss of the synfire chain model after the mapping pro-
cess.
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space (Figure 5.19B) shows no stable point of propagation. This can be mainly attributed
to the small and non-configurable axonal delays which are in the range of 0.6 ms to 1.1 ms
for the chosen speedup factor of 5000.

In order to recover the original behavior, we applied the previously developed compen-
sation methods (Sections 5.4.4 to 5.4.6). Synapse loss was compensated separately for
each projection type using Table 5.4. For synaptic weight noise effectively two compen-
sation methods were applied, as, by using 8 Poisson sources per neuron instead of one,
the effect of weight variations is already reduced. This was straightforwardly accounted
for by replacing Var [wsyn] with 1

8Var [wsyn] in Equation 5.9. With our proposed com-
pensation strategies, we were able to compensate for all distortion mechanisms while still
maintaining control over the position of the separatrix (Figure 5.19C).

However, we also encountered some additional hardware-specific effect, which can be
seen in Figure 5.19D.

When looking at the (σ, a) state space for one of the separatrices, for σ ≈ 3 ms and
a > 7 we can recognize a purple region indicating that not all RS cells of the last group
spiked. In fact, spikes did occur for all RS cells in the simulated hardware network, but not
all spikes were recorded because they were lost in the off-wafer communication network
(Section 3.3.2).

For very small σ0 an additional effect can appear. Input bandwidth limitations can
result in very dense pulse volleys not being propagated through the synfire chain, as can
be seen for the blue point with σ0 = 0.02 ms and a0 = 3.3 on the very left of the (σ, a)
state space. In that particular case, the large majority of input spikes were lost in the
off-wafer communication network so that they did not even reach the first synfire group.
We remark that this effect only appeared for σ0 smaller than 0.1 ms.

5.4.9. Further ESS Simulations

Distortion and Compensation Without Synapse Loss

For the ESS simulation in Section 5.4.8, we enforced a certain amount of synapse loss
by restricting the synfire chain network to very limited hardware resources. However,
due to its feed-forward structure, the network can be easily mapped onto the BrainScaleS
hardware without any synapse loss (Figure 5.19A). Thus, we also investigated the network
without synapse loss, such that the active distortion mechanisms in the ESS simulations
were synaptic weight noise, non-configurable axonal delays as well as spike loss and jitter.
The state space of the distorted network (Figure 5.20A) contains only a small and loosely
connected region of sustained activity which indicates unreliable separation. Applying
the compensation mechanism for synaptic weight noise and axonal delays fully restores
the filter property of the synfire chain, as can be seen in Figure 5.20B, where different
separatrices mimic different delay-dependent realizations. Compared to the compensation
for all distortion mechanisms, the compensated state space without synapse loss does not
show any flaws (C).

Effect of Spike Loss and Jitter

We investigated the effect of spike loss and jitter in the HICANN, where the spikes
of the neurons connected to the same on-wafer routing bus are processed subsequently
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Figure 5.20.: Additional simulations of the feed-forward synfire chain on the ESS without
synapse loss. (A) (σ,a) state space on the ESS with default parameters and
20% weight noise. (B) After compensation of for all distortion mechanisms,
different separatrices are possible by setting different values of the inhibitory
weight. (C) Compensated state space belonging to the blue separatrix in
B. w refers to the synaptic weight of local inhibition. (D)-(F) Investiga-
tion of effects of spike loss and jitter by using two different approaches for
neuron placement. (D) Separatrices for round-robin and sequential neu-
ron placement with parameters as for the green curve in B. Raster plots for
round-robin (E) and sequential (F) neuron placement. Stimulus parameters:
a0 = 1 and σ0 = 1 ms. Figure taken from Petrovici et al. (2014).
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(Section 3.3.2), which can lead to spike time jitter and in rare cases to spike loss when
firing is highly synchronized.

Which 64 neurons inject their spikes into a routing bus is determined by the placement
of the neurons on the HICANN. Hence, in order to study the effect of spike loss and
jitter, we simulated the synfire chain network in two different placement setups. First,
neurons of the same synfire group were placed sequentially onto the same routing bus, and
second, neurons were distributed in a round-robin manner over different routing buses,
such that neurons of different groups injected their spikes into one routing bus. Hence,
we expect the spiking activity on each routing bus to be more synchronous in the first
case than in the second. In both setups, the utilized hardware and the number of neurons
per routing bus was equal, allowing a fair competition between both. The separatrices
for the two different placement strategies with otherwise identical parameters are almost
indistinguishable (Figure 5.20D).

Nevertheless, the raster plots (Figure 5.20E, F) reveal the effect of the introduced jitter.
For sequential placement, the spread of spike times within a group is roughly double than
for round-robin placement and also the onset of the volley in the last group comes 1.5 ms
later. In contrast to the reference simulation, the fixed point of succesful propagation is
not (0.12 ms, 1) but (0.21 ms, 1) for round-robin and (0.36 ms, 1) for sequential placement.

We conclude that, especially for dense pulses, the subsequent processing of spikes in
the hardware leads to a temporal spread of the pulse volley, which however has only very
little influence on the filter properties of the synfire chain.

5.4.10. Emulation on the Spikey Chip

The original network model could not be mapped directly to the Spikey chip because it
requires 125 neurons per group, while on the chip only 192 neuron circuits are available.
Further constraints were caused by the fixed synaptic delays, which are determined by the
speed of signal propagation on the chip. The magnitude of the delay is approximately 1 ms
in biological time. By simple modifications of the network, we were able to qualitatively
reproduce two target behavioral properties:

• stable signal propagation up to (and including) the last population of an initial
(σ, a) = (0 ms, 1) pulse and

• the existence of a separatrix in the (σ, a) state space surrounding a similar region
of successful propagation as the original one (see Figure 5.14).

Two different network configurations were used, each adjusted to the requirements of one
of the two benchmarks. In the following, we describe these differences, as well as the
results for each benchmark.

To demonstrate a stable propagation of pulses, a large number of consecutive group
activations was needed. The chain was configured as a loop synfire loopby connecting the last group
to the first, allowing the observation of more pulse packet propagations than there are
groups in the network.

The time between two passes of the pulse packet at the same synfire group needed to be
maximized to allow the neurons to recover (see voltage trace in Figure 5.21B). This was
accomplished by increasing the group count and consequently reducing the group size. As
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of the neurons. (B) Hardware emulation. Top: Raster plot of pulse packet
propagation 1000 ms after initial stimulus. Spikes from RS groups are shown
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which is denoted by a dashed horizontal line. The cycle duration is approx-
imately 20 ms. (C) State space generated with software simulations of the
original model. The position of each marker indicates the (σ, a) parameters
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evolution of the pulse packet parameters is shown for three selected cases
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Figure taken from Pfeil et al. (2013).
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too small populations cause an unreliable signal propagation, mainly due to variability
in the neuron behavior, nRS = nFS = 8 was chosen as a satisfactory trade-off between
propagation stability and group size. Likewise, the proportion of FS neurons in a group
was increased to maintain a reliable inhibition.

To further improve propagation properties, the membrane time constant was lowered for
all neurons by raising gl to its maximum value. The strength of inhibition was increased
by setting the inhibitory synaptic weight to its maximum value and lowering the inhibitory
reversal potential to its minimum value. Finally, the synaptic weights RSi → RSi+1 and
RSi → FSi+1 were adjusted.

With these improvements, we were able to observe persisting synfire propagation on
the oscilloscope even after 2 h wall-clock time after a single initial stimulation. This
corresponds to more than 2 years in biological real-time, which is a nice demonstration
of the possibility to run extremely long-lasting experiments long

experiments
in very short time due to the

high acceleration factor of the hardware system.

The second network configuration demonstrates the filtering properties of a hardware-
emulated synfire chain with feedforward inhibition. This use case required larger synfire
groups than in the first case, since the total excitatory conductance caused by a pulse
packet with large σ would otherwise not be smooth enough due to the low number of
spikes. Thus, three groups were placed on a single chip with nRS = 45 and nFS = 18. The
resulting evolution of pulse packets is shown in Figure 5.21D. After passing through three
groups, pulse packet emitted by the last group was either very weak or it was located near
the point (0.3 ms, 1), as illustrated in Figure 5.21D.

These emulations on hardware differ from our earlier software simulations in two im-
portant points. Firstly, the separation in the parameter space of the initial stimulus is
not as sharply bounded, which is demonstrated by the fact that occasionally, significant
activity in the last group can be evoked by stimuli with large σ and large a, as seen in
Figure 5.21D. This is a combined effect due to the reduced population sizes and the fixed
pattern noise in the neuronal and synaptic circuits. Secondly, a stimulus with a small
a can evoke weak activity in the last group, which is attributed to a differing balance
between excitation and inhibition. In hardware, a weak stimulus causes both the RS and
FS populations to respond weakly, which leads to a weak inhibition of the RS popula-
tion, allowing the pulse to reach the last synfire group. Hence, the pulse fades slowly
instead of being extinguished completely. In the original model, the FS population is
more responsive and prevents the propagation more efficiently.

Nevertheless, the filtering properties of the in-silico network are apparent. As discussed
above and shown in Section 5.4.8, the quality of the filter is clearly improved when using
larger group sizes, which is only possible on an appropriately large neuromorphic device.
Because the synfire chain model itself does not require sustained external stimulus, it
could then be employed as an autonomous source of periodic input to other experiments.
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5.5. Self-Sustained Asynchronous Irregular Activity

Our third benchmark is a cortically inspired network with random, distance-dependent
connectivity which displays self-sustained asynchronous and irregularAI firing firing (short: “AI
network”). We define functionality measures on several levels of abstraction, starting from
single network observables such as the network firing rate, the correlation coefficient and
the coefficient of variation, the properties of the power spectrum of the network activity,
up to global behavior such as the dependence of network dynamics on the internal synaptic
weights gsyn

i and gsyn
e . We then test two compensation strategies based on a mean field

approach and on iterative modification of individual neuron parameters. While the first
method offers a way to control the mean firing rate in the presence of synapse loss, the
second is applicable to synapse loss and fixed-pattern weight noise simultaneously, in
contrast to the other presented compensation methods. Non-configurable axonal delays
do not significantly affect the network functionality because the intrinsic hardware delay is
approximately equal to the delay utilized in the model. A scaling method for the network
size is introduced and the effectivity of the second compensation method is demonstrated
using the ESS on a large network with mapping-induced synapse loss and imposed fixed-
pattern synaptic weight noise.

5.5.1. Architecture

Under appropriate parametrization, the self-sustained regime can constitutedynamical
attractor

an attractor
of a dynamical system (Amit and Brunel, 1997). In spiking neural networks, self-sustained
statesself-

sustained
firing

are known to be exquisitely sensitive to the correlation dynamics generated by re-
current activity (El Boustani and Destexhe, 2009; Kumar et al., 2008). Because of this
sensitivity, a model of self-sustained activity within the asynchronous-irregular regime can
provide a strong comparison between hardware and software platforms, by requiring the
hardware network to reproduce the low firing, weakly correlated, and highly irregular dy-
namics of this state. Notably, it is often observed that this activity regime provides a good
match to the dynamics observed experimentally in the awake, activated cortex (Brunel,
2000; Destexhe and Pare, 1999; Destexhe et al., 2003). Additionally, the self-sustained
activity regime provides an interesting use-case for the BrainScaleS hardware system, as
in this state, the model network is not driven by external Poisson input, but has dynam-
ics dominated by internally generated noise (Destexhe and Contreras, 2006), beyond the
initial brief Poisson stimulation to a small percentage of the network. Networks based
on this principle have also already been implemented in neuromorphic VLSI hardware
(Giulioni et al., 2012).

Here, we use a reduced model based on Destexhe (2009). Neurons in the network follow
the AdEx equations 3.3 to 3.5. Their parameters are chosen as in Muller and Destexhe
(2012), in order to model regular spiking pyramidal cells (PYR)PYR and

INH cells
with spike frequency adap-

tation (Connors and Gutnick, 1990) and fast spiking inhibitory cells (INH) with relatively
little spike frequency adaptation. Instead of explicitly modeling the thalamocortical or
corticocortical networks, as in the previous work, we have chosen to modify the model,
simplifying it to a single two-dimensional toroidal sheet and adding local connections and
conduction delays. The addition of local connectivity follows the experimental observation
that horizontal connections in neocortex project, for the most part, to their immediate
surroundings (Hellwig, 2000), while the choice of linear conduction delays reflects elec-
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PY

INH

Initial Stim.

Figure 5.22.: Schematic of the connectivity of the random cortical network. Excitatory
PY and inhibitory INH neurons are connected randomly with a spatial,
Gaussian connection probability profile. The connection properties are given
in Section A.2.5. A small part of the network is stimulated in the beginning
of the experiment. Figure taken from Petrovici et al. (2014).

trophysiological estimates of conduction velocity in these unmyelinated horizontal fibers,
in the range of 0.1 to 0.5 m s−1 (Bringuier et al., 1999; González-Burgos et al., 2000;
Hirsch and Gilbert, 1991; Murakoshi et al., 1993; Telfeian and Connors, 2003). Propaga-
tion delays are known to add richness to the spatiotemporal dynamics of neural network
models (Roxin et al., 2005) and in this case are observed to expand the region in the 2D
space spanned by the excitatory and inhibitory conductances that supports self-sustained
activity, albeit only slightly.

The default model consists of 3920 neurons (80 % pyramidal and 20 % inhibitory)
equally distributed on a two-dimensional lattice of 1 × 1 mm2 folded to a torus. The
connection probability is distance-dependent and is normalized such that each neuron
receives synaptic input from 200 excitatory and 50 inhibitory neurons. All simulations
run for 10 s. 2 % of all neurons in the network are initially stimulated by one individual
Poisson source for 100 ms in order to induce initial network activity. The default size was
chosen such that the model can be fully realized on the wafer-scale hardware without los-
ing any synaptic connections in the mapping step (Section 3.3.3), thereby allowing us to
compare topologically equivalent software simulations, with the only remaining difference
lying in the non-configurable delays and dynamic constraints on the ESS.

Figure 5.22 shows a schematic of the AI network with its distance-dependent connec-
tivity. A small part of the neurons is stimulated at the beginning of the experiment.
Depending on its parameters, the network is then able to sustain asynchronous irregular
firing activity. The details about the architecture and the parameters used are given in
Section A.2.5.

5.5.2. Network Scaling

For this network, scaling is quite straightforward due to its overall homogeneity. When
the network is scaled up in size, we only increase the number of neurons while keeping the
number of afferent synapses per neuron constant. All other parameters concerning the
connectivity do not change, including the size of the cortical sheet, the distance-dependent
delays and connection probability, as well as the ratio of excitatory to inhibitory cells.
Neuron and synapse parameters remain unaltered.
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5.5.3. Functionality Criteria

The global functionality criterion for this network consists of the ability to sustain activity
in an asynchronous and irregular activity regime. The activity is considered self-sustained
upon persistence to the end of the chosen simulation period. The survival time is defined
as the last spike time in the network.

The mean firing rate of all PYR neurons is used to classify the overall activity of
the network. The variance of the firing rates across the PYR neurons measures the
homogeneity of their response. For a better comparison, we look at the relative variance,
i.e., the coefficient of variation of the firing rates CVrate = σ(ν)

ν̄CVrate , where ν̄ and σ(ν) are the
mean and standard deviation of the average firing rates ν of the inidividual neurons.

The coefficient of variation of interspike intervals (CVISI) serves as an indicator of
spiking regularity. It is calculated as

CVISI =
1

N

N∑
i=1

σi(ISI)
ISIi

,CVISI (5.11)

where σi(ISI) is the standard deviation of interspike intervals in the i-th spike train, while
ISIi is the mean interspike interval in the same spike train. N is the number PYR cells
in the simulation. CVISI = 0 for a regular spike train and approaches 1 for a sufficiently
long Poisson spike train.

The correlation coefficient (CC) is defined as

CC =
1

P

P∑
j,k

Cov(Sj , Sk)

σ(Sj)σ(Sk)
.CC (5.12)

The sum runs over P = 5000 randomly chosen pairs of spike trains (j, k) from the excita-
tory population. Si is the time-binned spike count in the i-th spike train with a bin width
of ∆ = 5 ms. σ(Si) denotes the standard deviation of Si, and Cov(Sj , Sk) the covariance
of Sj and Sk. CC approaches 0 for sufficiently long independent spike trains and is 1 for
linearly dependent (Sj , Sk). The simulation results were cross-checked with a bin width
of ∆ = 2 ms.

The power spectrum S(ω) of a spike train is calculated as

S(ωk) = |Ak|2N∆ ,S(ωk) (5.13)

where

ωk =
2πk

N∆
and (5.14)

Ak =

N−1∑
m=0

rm exp

(
−2πi

mk

N

)
k = 0, . . . , N − 1 . (5.15)

Here, we use the time-binned population firing rate ri with i ∈ {0, ..., N − 1} with a
bin width of ∆ for a spike train of length N∆ (see, e.g., Rieke et al., 1997). For the
AI network, we used a bin width of ∆ = 1 ms for calculating the raw power spectra,
and a σ = 5 Hz for the Gauss-filtered versions which where then used to determine the
peak frequency (i.e., the first non-zero peak in the power spectrum). In case of the L2/3
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5. Cortical Models on Neuromorphic Hardware

model, the power spectra were calculated from Gauss-filtered (σ = 5 ms) spike data with
a bin width of ∆ = 0.1 ms and (unless otherwise stated) smoothed with a σ = 0.3 ms
Gauss-filter.

These criteria were evaluated for a range of excitatory and inhibitory synaptic weights
gsyn

e and gsyn
i for the default network consisting of 3920 neurons. Figure 5.23A shows

the region in the (gsyn
e , gsyn

i ) parameter space that allows self-sustained activity, which is
achieved at PYR firing rates above 8 Hz (G).

The coefficient of variation of the firing rates across neurons (CVrate)CVrate <
0.2

is small (< 0.2,
see the 0 % weight noise data in Figure 5.26B), as all neurons have identical numbers of
afferent synapses with identical weights in each network realization. In addition to the
parameter space plots in the top row of Figure 5.23, we plot the other criteria against the
mean firing rate in the bottom row and recognize the latter as the principal property of
each state that mostly determines all other criteria.

The activity is irregular (CVISI > 1)CVISI > 1 across all states (C) and is mainly determined by
the network firing rate: the CVISI first increases with the firing rate, then saturates and
decreases for rates higher than 50 Hz (H).

Over the entire parameter space, the spike trains of the pyramidal cells are only weakly
correlated, with a CCCC < 0.03 between 0.01 and 0.03. The average CC increases with the firing
rate, which can be attributed to local areas in which neurons synchronize over short time
periods.

At last, we look at the power spectrum of the global pyramidal activity, exemplarily for
the (9 nS, 90 nS) state in (F). As a comparison for further studies we follow Brunel (2000)
and use the position of the non-zero peak in the power-spectrum arg maxω 6=0(S),

arg maxω 6=0(S)
which is

shown for each (gsyn
e , gsyn

i ) point (E) and as a function of the firing rate (J). The position
of the power spectrum peak∝ ν̄ frequency increases linearly with the mean firing rate.

5.5.4. Non-Configurable Axonal Delays

For the analysis of the effects of non-configurable delays, we repeated the (gsyn
e , gsyn

i ) sweep
with all axonal delays set to 1.5 ms (see Section 5.1). The lack of distance-dependent delays
did not affect any of the functionality criteria, as each neuron still received synaptic input
comparable to the reference case.

One might expect an influence on the power spectrum of global activity as fixed delays
change the temporal correlation of the effect of a neuron on all of its postsynaptic partners.
However, the power spectra did not change significantly (Figure 5.25A, B, C), which can
be partly explained when considering the average delays in the network. In the reference
case, the averagemean delay of all distance-dependent delays amounts to 1.55 ms (see Figure 5.24),
which is close to the constant delay value of 1.5 ms we use to model the non-configurable
delays on the hardware. In this particular case, the hardware delay matches the average
delay in the network such that no distortion is introduced. Accordingly, parameter space
sweeps on the ESS yielded the same results.

To further investigate the influence of synaptic delays, we ran additional simulations
where all delays in the network were set to 0.1 ms (D) and 3 ms (E). Lowering delays
increases the speed of activity propagation such that the position of the peak in the power
spectrum is shifted towards higher frequencies. For higher delays, the peak frequency
decreases as expected, but also the region of sustained activity diminishes significantly.
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Figure 5.24.: Histogram of delays in the AI network. The mean delay is 1.55 ms. Figure
taken from Petrovici et al. (2014).
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Figure 5.25.: Effects of axonal delays on the AI network. (gsyn
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i ) spaces with the peak
frequency of the global PYR activity for different axonal delay setups: (A)
default with distance-dependent delays; (B) delay of 1.5 ms; (C) on on the
ESS, but without synapse loss or synaptic weight noise; (D) constant delay
of 0.1 ms; (E) constant delay of 3.0 ms; (F) distance-dependent delays scaled
by factor of 2 with respect to default setup. Figure taken from Petrovici et al.
(2014).
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For comparison, we also performed simulations with distance-dependent delays scaled by
a factor of 2 with respect to the baseline model, thus having an average delay of 3.1 ms
(F). While the peak frequency is in good agreement with the 3 ms simulations, the region
of sustained states is extended and even larger than in the baseline setup. Our simulations
thereby confirm that distance-dependent delays expand the region of self-sustained states
in the (gsyn

e , gsyn
i ) space, as we have already mentioned in Section 5.5.1.

We note that for variants of this benchmark where the average network delay is higher
or lower than 1.5 ms, there exists a straightforward but effective compensation strategy:
the emulation speedup of the emulation on the hardware can simply be changed such that
the average network delay is directly mapped onto the hardware delay (see also Section
5.5.7.1). Assume, for example, a modified experiment where the average delay amounts
to 3 ms. By choosing a speedup of 20 000, this delay can be directly mapped to the 150 ns
average delay on the hardware.

However, it should be made clear that such a change of emulation speed is not com-
pletely trivial, as one has to make sure that the neural dynamics can still be emulated
at the chosen speed (i.e, the parameters still lie within the supported ranges, see Table
3.3). Furthermore, the reduced bandwidth for the pulse communication, especially for
external stimulation, must be considered. While this may not raise immediate problems
for this particular self-sustained network model, these conditions must be also fulfilled for
potential other networks that are connected to the AI network.

5.5.5. Synaptic Weight Noise

The effects of synaptic weight noise between 10 % and 50 % on the AI network are shown in
Figure 5.26. The region of self-sustained states in the (gsyn

e , gsyn
i ) space is increased by this

distortion mechanism, as marked by the circles in (C) representing states that survived
with 50 % synaptic weight noise but not in the undistorted case. The firing rate increases
with the amplitude of the weight noise (A). In general, the change becomes larger for lower
gsyn

e , but it is less pronounced for states with an already high firing rate in the undistorted
case (C). Synaptic weight noise leads to an increase of the variation of firing rates (CVrate),
with the change being stronger for high population firing rates (B). The CVISI as a
function of firing rates remains unchanged for low rates, but decreases for higher firing
rates in proportion to the noise level (E). Furthermore, weight noise introduces randomness
into the network, thereby reducing synchrony: the pairwise correlation between neurons
decreases linearly with the amount of weight noise (F). The power spectrum of the global
activity is not affected by this distortion mechanism.

5.5.6. Synapse Loss

Synapse loss has a similar influence on the network behavior as synaptic weight noise.
Figure 5.27 shows the results of the gsyn

e -gsyn
i sweeps for synapse loss values between 10 %

and 50%. The region of sustained states increases with synapse loss but not as strongly
as for weight noise (C). The firing rate increases with synapse loss (A). Compared to
the change caused by synaptic weight noise, however, the effect is much stronger here.
The same holds for the variance of the firing rates across the PYR neurons, which again
increases with synapse loss, as can be seen in (B). Note that the CVrate does not follow a
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5.5. Self-Sustained Asynchronous Irregular Activity

monotonic function. We should also remark that for high synapse loss, some neurons did
not fire at all. Both the irregularity and the correlation of firing decrease with increasing
synapse loss, leaving the network still in an asynchronous irregular state (E, F). Synapse
loss shows no effect on the power spectrum of global PYR activity.

5.5.7. Compensation Strategies

The hardware-induced distortions of the AI network behavior analyzed in the previous
sections leave two major criteria that need to be recovered: the population firing rate
and the variation of firing rates across the population. We consider the other effects
(change of CC, CVISI, peak frequency in power spectrum) as minor because they are
mainly determined by the mean rate and neglect them in the following.

One quite simple approach for recovering the original firing rate would be to change the
strengths of the synaptic weights gsyn

e and gsyn
i . Considering the conducted (gsyn

e , gsyn
i )

parameter space sweeps, we could simply select the distorted state that best matches the
criteria of the undistorted reference. However, this method requires to scan gsyn

e and gsyn
i

over a wide range to finally get to the desired result. A compensation method that can
be applied to a single experiment and works without time-consuming parameter sweeps
would be preferable.

5.5.7.1. Mean Field Compensation for Rate Changes

The mean firing rate in the network rises with increasing synapse loss. This effect can
be understood using a mean-field approach (see, e.g., Kumar et al., 2008) in which the
response rate νi of a single neuron is assumed to be a function of the mean excitatory and
inhibitory network firing rates: response

function
νi = f (νin,exc, νin,inh) . (5.16)

This approach is similar to the one in Brunel (2000), where the afferent neurons are re-
placed by independent Poisson processes with equal instantaneous rate in a sparse random
network. Under the assumption that both PYR and INH neurons fire with the same aver-
age rate, we can now use Equation 5.16 to calculate the mean firing rate in a self-sustained
state as a stable, self-consistent solution of

νi = f(νi, νi) , (5.17)

in which we can also include synapse loss to yield

ν̂(ploss) = f (Nexc(1− ploss)ν̂, Ninh(1− ploss)ν̂) . (5.18)

Here, Nexc and Ninh are the number of pre-synaptic connections of a given neuron and
ploss the synapse loss value.

Figure 5.28A shows the response function f of PYR and INH neurons for ploss = 0,
which yields the stable solution ν̃(0) ≈ 14 Hz as the intersection of the first diagonal
and the gain function. Analogously, the solution for ploss = 0.5 can be determined as
the intersection with the y = 2x line (considering νin(ploss) = ploss · νin). The result also
justifies the assumption of the mean firing rate of inhibitory and excitatory neurons being
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Figure 5.28.: Mean field compensation method for the AI network. (A) Mean firing rate
of a single PYR and INH neuron given a Poisson stimulus by the external
network with a given rate. (B) Compensation factor α calculated from the
data in A. (C) Compensation applied to the self-sustained network (with
parameters gsyn

i = 90 nS, gsyn
e = 9 nS). The error bars denote the standard

deviation of mean firing rates across all neurons. The scaling of internal
delays has negligible effects on the firing rate (not shown). Figure taken
from Petrovici et al. (2014).
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5.5. Self-Sustained Asynchronous Irregular Activity

equal for ploss < 0.5.

We now need to calculate the parameter change that is necessary to restore the original
mean firing rate. The idea is to speed up or slow down the dynamics of the entire network,
thereby modulating the firing rate as well. Let us denote by x the state of all dynamic
variables within a network:

ẋ(t) = F (x, t) . (5.19)

We can now define y to describe a network which functionally follows the same time
dependence, but where time itself is scaled by a factor α:

y(t) := x(αt) =⇒ ẏ(t) = αẋ(αt) = αF (y(t), αt) . (5.20)

Therefore, by defining
F̃ (x, t) := αF (x, αt) (5.21)

we obtain accelerated dynamics accelerated
dynamics

for y in real time that are identical to the original dy-
namics of x in scaled time.

As the given random cortical network shows self-sustained behavior, the transition from
F to F̃ requires only the modification of internal network parameters (external input
would have to also be modified otherwise). More specifically, the transition requires the
scaling of all time constants: τm, τ syn

x , τref , τw, as well as the synaptic delays by α. The
scaling factor α is calculated from the measured gain function as

α =
ν̃(ploss)

ν̃(0)
. (5.22)

The effects of these parameter modifications on the output firing rates are shown in
Figure 5.28C. Along with the good results of our compensation method, we should also
note that the variance of the firing rates across neurons grows as the synapse loss rises.
This happens due to the probabilistic synapse loss, which causes a spread in the neuronal
fan-in. In principle, this effect could also be countered by applying the mean-field-based
compensation method on a neuron-to-neuron basis, but this would require knowledge of
the actual network realization (which is available only after the mapping step), as well as
the measurement of the response function f for all occurring configurations of presynaptic
inhibitory and excitatory neuron numbers. We shall tackle these issues as well when we
discuss a different method below.

In conclusion, the mean-field method can be applied when the synapse loss of individual
neurons does not have too much spread and requires the knowledge of neural response
functions. More importantly, this method does not require the detailed understanding of
the ensemble dynamics of the complete network. We should point out that, in general,
this method requires the ability to modify synaptic delays according to the scaling rule.
However, for this network, the influence of synaptic delays on the mean firing rate is
negligible (see Section 5.5.4).

5.5.7.2. Iterative Compensation

The iterative compensation method aims at reducing two distortion effects: the change of
the mean firing rate of the PYR neurons and its variance across neurons, which are both
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5. Cortical Models on Neuromorphic Hardware

Figure 5.29.: Calculation of the compensation factor ccomp for the state (gsyn
e = 9 nS,

gsyn
i = 90 nS) of the AI network. A PYR neuron is stimulated by 200
excitatory and 50 inhibitory Poisson sources with rate 12.38 Hz and its spike
initiation threshold ET is varied. The slope m = −2.6745 Hz

mV of a linear fit is
then used to calculate the compensation factor ccomp = 0.5

m = −0.18695mV
Hz .

Figure taken from Petrovici et al. (2014).

apparent for synapse loss and synaptic weight noise. It relies on the controllability of the
hardware neuron parameters, since it requires the tuning of AdEx parameters for every
individual neuron (see Section 3.3.1).

The iterative compensation is quite straightforward. We start with the simulation re-
sults of the reference network, as well as the distorted one. From the reference simulation,
we can extract the target mean rate νtgt of the neurons in a population. For each neuron
in the distorted network, we compare its actual firing rate against νtgt, and modify the
excitability of the neuron in proportion to the difference between target and measured
firing rate. The distorted network with modified neuron parameters is then simulated
and the output is compared again to the reference network. This iterative compensation
step is repeated until the characteristics of the last step approximately match those of the
reference simulation.

In our simulations, we modified the spike initiation threshold ET, with its change being
proportional to the difference between the current and the target firing rate. In particular,
we used

ET
n+1,i = ET

n,i + (νtgt − νn,i)ccomp ,ET update (5.23)

where ET
n,i and νn,i are the threshold voltage and firing rate of the ith neuron in the nth

compensation step and ccomp is the compensation factor that links the firing response and
the threshold voltage.

The target rate νtgt is computed separately for the excitatory and inhibitory population
from the reference simulations. We can then choose the compensation factor for each
(gsyn

e , gsyn
i ) state as follows. Similar to the mean-field approach in Section 5.5.7.1, we

consider the response rate of an excitatory neuron given a network firing rate of νtgt.
The stimulus it experiences within the network is equivalent to being stimulated by
200 excitatory and 50 inhibitory Poisson sources with rate νtgt. We can then vary the
threshold voltage of the neuron between −54 mV and −46 mV and thereby determine the
relation between the response rate and the threshold voltage. From a linear fit of this
dependence, we can extract the slope m, and set the compensation factor to ccomp = 0.5

m
(Figure 5.29). The factor of 0.5 was chosen to limit the change of the mean rate in each
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5.5. Self-Sustained Asynchronous Irregular Activity

step in order to avoid oscillations in the compensation procedure. Additionally, whenever
we changed the spike initiation voltage ET, we also shifted the spike detection voltage
Vspike equally.

With this appropriate choice of ccomp, we found that 10 iterations are sufficient to
restore the mean and variance of the firing rates in the undistorted network. While the
compensated mean rate exactly corresponds to νtgt, the compensated CVrate is higher
than in the reference network, but reliably below the 1.2-fold of the reference value.

We remark that the proposed iterative compensation requires a controllable, deter-
ministic mapping determinis-

tic
mapping

, which guarantees that in each iteration the neurons and synapses are
always mapped onto the same hardware elements. Hence, whenever we change the ran-
dom seed that is used to generate the probabilistic connectivity between the neurons, the
iterative compensation needs to be run anew. However, the majority of the time required
by this method is spent with the network simulation itself, which is not really an issue
with a hardware speed-up factor of 104. In between simulations, parameter updates must
be performed for each neuron individually, but this can be easily parallelized once the
simulation data is available.

Synaptic Weight Noise

In order to verify the iterative compensation strategy, we applied it to the 50 % synaptic
weight noise case. Note that, here and in Section 5.5.8, weight noise was implemented as
being always the same in all iterations, representing the case where fixed-pattern noise,
and not trial-to-trial variability, determines the synaptic weight noise.

The results of the iterative compensation are shown in Figure 5.26, which displays the
relative difference of the mean and variance of the firing rates with respect to the reference
simulation in (D) and (H). The region of sustained activity in the (gsyn

e , gsyn
i ) parameter

space of the compensated network matches the one of the reference simulation very well.
The mean and variance of firing rates could be successfully recovered for most of the
states. The only exception are excitation-dominated states with a mean firing rate above
25 Hz, where both criteria still differ notably from the reference after 10 iterations (upper
left regions in the (gsyn

e , gsyn
i ) spaces). For such extreme cases, the performance of the

iterative compensation might be further improved by a specific tuning of the compensation
factor ccomp for high firing rates. The other criteria such as CVISI and peak frequency
could be fully recovered, following the assumption made earlier, that those criteria mainly
depend on the firing rate. However, the coefficient of pairwise cross-correlation (CC) of
the compensated networks is lower than in the reference simulation, showing that some
of the randomness introduced by the synaptic weight remains even after compensation.

Synapse Loss

The effects of the iterative compensation strategy for 50 % synapse loss are shown in
Figure 5.27, which displays the relative difference of the mean and variance of the firing
rates with respect to the reference simulation in (D) and (H). While the restoration of
the mean and variance of firing rates was successful, the compensation also led to a
reduction in the self-sustained area of the (gsyn

e , gsyn
i ) space. Again, for high firing rates,

the iterative compensation performed only moderately well (upper left regions in the
(gsyn

e , gsyn
i ) spaces). The other functionality criteria show the same behavior as for the
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weight noise compensation, i.e., the peak frequency and CVISI are in good match with
the reference values, while the pairwise correlation (CC) decreased due to the randomness
introduced by the synapse loss. We repeated the iterative compensation for the (gsyn

e ,
gsyn

i ) space with 30 % synapse loss. The results (not shown) were comparable to the 50 %
case, but exhibited fewer unstable states, i.e., there were more combinations of gsyn

e and
gsyn

i where the network activity was self-sustained.

5.5.8. Full simulation of Combined Distortion Mechanisms

In a final step, the iterative compensation method designed for the AI network was tested
in ESS simulations. In order to observe synapse loss, we scaled the network up to a
relatively large size (compared to the default model). This large-scale network was then
emulated on the ESS and compared to the undistorted reference simulation with NEST.
Afterwards, we applied the compensation strategy developed in the previous section to
restore the original behavior of the AI network.

Mapping such homogeneous networks that lack any modularity represents the worst-
case scenario for the mapping process, as they have little room for optimization. In
Figure 5.30A, the relative synapse loss is plotted for various network sizes using the
scaling method described in Section 5.5.2.

Somewhat unexpectedly, synapse losssynapse loss can be seen to already occur for low numbers of
neurons, although there are sufficient hardware synapses and synapse drivers. This is a
consequence of the sparseness of the on-wafer routing switches, which causes some routing
buses to not be able to find a free switch to connect to their respective target HICANNs.

A kink in the graph of the synapse loss can be seen at around 20 000 neurons, where
at least 64 neurons are mapped onto one HICANN (see Table 3.2). As 14 336 is the
maximum number of presynaptic neurons that can send their pulses to one HICANN
and the connectivity in the AI network is probabilistic, the chance to find groups of 64
neurons whose pool of pre-synaptic neurons is smaller than 14 336 is close to zero.

In order to produce a demanding scenario, we scaledlarge-scale
model

the model to a size of 22 445
neurons. The size was chosen such that the network almost occupies an entire wafer,
while mapping up to 64 neurons onto one HICANN. This large-scale network has a total
of approximately 5.6 million synapses. The statistics of the reference simulation can be
found in Table 5.6.

projection type synapse loss [%]

PY → PY 26.9
PY → INH 28.1
INH → PY 31.1
INH → INH 33.4
STIM → PY 77.5
STIM → INH 89.4

total 28.1

Table 5.5.: Projection-wise synapse loss of the large-scale AI network after mapping.
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Figure 5.30.: AI network on the ESS. (A) Synapse loss after mapping the network with
different sizes onto the BrainScaleS system. (B) Iterative compensation of
the large-scale network with 22 445 neurons on the ESS: evolution of mean
and standard deviation of firing rates for 10 iterations. (C) Gauss-filtered
power spectrum of global activity of the pyramidal neurons in the large-
scale network. Reference spectrum shown in blue (simulated with NEST),
distorted and compensated spectra in red and green, both simulated with
the ESS. Figure taken from Petrovici et al. (2014).
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In the above scenario, 28.1 % of synapses were lost during the mapping process (for
projection-wise numbers see Table 5.5). We remark that the synapse loss at this size
is higher than during the synapse loss sweep in Figure 5.30A, as we used a sequence
of mapping algorithms that aims for balance between synapse loss of excitatory and
inhibitory connections. Additionally, we applied a fixed-pattern noise of 20 % to the
synaptic weights in the ESS simulation. The result of this simulation can be found in
Table 5.6: the network still survived until the end of the simulation, but the firing rate
and its variance increased compared to the reference simulation, in accordance with our
previous predictions from the distortion analysis.

We then used the iterative compensation method (Section 5.5.7) to compensate the
abovementioned distortions and repeated the ESS simulation with the modified network.
The evolution of the firing rates over 10 iterations is shown in Figure 5.30B. One can
clearly see how, step by step, the firing rate approaches the target rate and that at the
same time the variance of firing rates decreases. The statistics of the final iteration are
listed in Table 5.6. The mean firing rate was fully recovered, while the variation of firing
across neurons (CVrate) was significantly reduced from 0.726 to 0.212 (but was still twice
as large as in the reference network). The other functionality criteria match the reference
simulation very well, as does the power spectrum of global activity in Figure 5.30C.

functionality criterion reference (NEST) distorted (ESS) compensated (ESS)

Rate [Hz] 13.4 15.5 13.6
CVrate 0.107 0.726 0.212
CVISI 1.12 1.11 1.09
CC 0.00103 0.0011 0.00166
Peak Frequency[Hz] 60.3 60.7 59.0

Table 5.6.: Functionality criteria of the large-scale AI network before and after compen-
sation.

206



5.6. Conclusions and Outlook

5.6. Conclusions and Outlook

In this study, we have presented a systematic comparison between neural network simu-
lations carried out with ideal software models and a specific implementation of a neuro-
morphic computing system. The results for the neuromorphic system were obtained with
a detailed simulation of the hardware architecture. The core concept is, essentially, a
functionalist one: neural networks are defined in terms of functional measures on multiple
scales, from individual neuron behavior up to network dynamics. The various neuron and
synapse parameters are then tuned to achieve the target performance in terms of these
measures.

The comparison was based on three cortically inspired benchmark networks: a layer
2/3 columnar architecture, a model of a synfire chain with feed-forward inhibition and a
random network with self-sustained, irregular firing activity. We have chosen these spe-
cific network architectures for two reasons. First of all, they implement very different, but
widely acknowledged computational paradigms and activity regimes found in neocortex:
winner-take-all modules, spike-correlation-based computation, self-sustained activity and
asynchronous irregular firing. Secondly, due to their diverse properties and structure,
they pose an array of challenges for their hardware emulation, being affected differently
by the studied hardware-specific distortion mechanisms.

All three networks were exposed to the same set of hardware constraints and a detailed
comparison with the ideal software model was carried out. The agreement was quantified
by looking at several chosen microscopic and and macroscopic observables on both the
cell and network level, which we dubbed “functionality criteria”. These criteria were
chosen individually for each network and were aimed at covering all of the relevant aspects
discussed in the original studies of the chosen models.

Several hardware constraint categories have been studied: the dynamics of the embed-
ded neuron and synapse models, limited parameter ranges, synapse loss due to limited
hardware resources, synaptic weight noise due to fixed-pattern and trial-to-trial variations,
and the lack of configurable axonal delays. The final three effects were studied in most
detail, as they are expected to affect essentially every hardware-emulated model. The
investigated distortion mechanisms were studied both individually, as well as combined,
similarly to the way they would occur on a real hardware substrate. As expected, above
certain magnitudes of the hardware-specific distortion mechanisms, substantial deviations
of the functionality criteria were observed.

For each of the three network models and for each type of distortion mechanism,
several compensation strategies were discussed, with the goal of tuning the hardware
implementation towards maximum agreement with the ideal software model. With the
proposed compensation strategies, we have shown that it is possible to considerably
reduce, and in some cases even eliminate the effects of the hardware-induced distortions.
We therefore regard this study as an exemplary workflow and a toolbox for neuromorphic
modelers, from which they can pick the most suitable strategy and eventually tune it
towards their particular needs.

In addition to the investigated mechanisms, several other sources of distortions other
distortion

mechanisms

are
routinely observed on neuromorphic hardware. A (certainly not exhaustive) list might
include mismatch of neuron and synapse parameters, shared parameter values (i.e., not
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individually configurable for each neuron or synapse) or limited parameter programming
resolution. These mechanisms are highly back-end-specific and therefore difficult to
generalize. However, although they are likely to pose individual challenges by themselves,
some of their ultimate effects on the target network functionality can be alleviated with
the compensation strategies proposed here.

Our proposed strategies aim at neuromorphic implementations that compete in terms of
network functionality with conventional computers but offer major potential advantages
in terms of power consumption, simulation speed and fault tolerance of the used hard-
ware components. If implemented successfully, such neuromorphic systems would serve
as fast and efficient simulation engines for computational neuroscience. Their potential
advantages would then more than make up for the overhead imposed by the requirement
of compensation.

From this point of view, hardware-induced distortions are considered a nuisance, as
they hinder precise and reproducible computation. In an alternative approach, one might
consider the performance of the system itself at some computational task as the “fitness
function” to be maximized. In this context, some particular architecture of an embed-
ded model, together with an associated target behavior, would then become less relevant.
Instead, one would design the network structure specifically for the neuromorphic sub-
strate or include training algorithms that are suitable for such an inherently imperfect
back-end. The use of particular, “ideal” software models as benchmarks might then given
up altogether in favor of a more hardware-orientedhardware-

oriented
modeling

, stand-alone approach. Here, too, the
proposed compensation strategies can be actively embedded in the design of the models
or their training algorithms.

The hardware architecture used for our studies is, indeed, suited for both approaches.
It will be an important aspect of future research with neuromorphic systems to develop
procedures that tolerate or even actively embrace the temporal and spatial imperfections
inherent to all electronic circuits. These questions need to be addressed by both model
and hardware developers, in a common effort to determine which architectural aspects are
important for the studied computational problems, both from a biological and a machine
learning perspective.

On a final note, we consider it important to point out that the parameter variability
biological
parameter
variability

observed in neuromorphic components only superficially resembles the variability observed
in biological neural networks. While it is true that even for some of the simplest biological
neural networks the network parameters exhibit very large animal-to-animal variability,
the location of these parameter sets in the entire potential parameter space are far from
being random (Marder and Taylor, 2011). The variability observed in nature is, indeed,
much rather the consequence of fine-tuningstructural

plasticity,
homeostasis,
redundance

through various structural plasticity and home-
ostatic mechanisms. The fact that many biochemical processes are partly redundant in
terms of their effect on the network functionality (such as different ion channel types,
see, e.g., Marder, 2011; Marder and Goaillard, 2006) offers additional evidence for the
hypothesis that evolution has favored the existence of redundant “control knobs” precisely
in order to allow a robust fine-tuning of the network functionality.

It is therefore essential for future hardware generations to also offer comprehensive
means of structural plasticity in order to allow a departure from the sometimes difficult
tuning strategies that are currently required. Concerning the BrainScaleS waferscale de-
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vices, two important steps in this direction have already been taken: the availability of
long-term plasticity (STDP, see Schemmel et al., 2007, 2008) and the implementation
of a general-purpose plasticity plasticity

processor
processor (Friedmann et al., 2013). What the learning

algorithms should look like that shall be implemented with the help of these additional
components remains an open question and an extremely interesting venue of active re-
search. We point to Breitwieser (2015) and Weilbach (2015) for some recently developed
ideas on this topic.
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Did the sun just explode? (It’s night, so we’re not sure.) A
neutrino detector measures whether the sun has gone nova.
Then, it rolls two dice. If they both come up six, it lies to us.
Otherwise, it tells the truth.
Frequentist statistician: “Let’s try. Detector! Has the sun gone
nova?”
Detector: “Roll... Yes”.
Frequentist statistician: “The probability of this result happen-
ing by chance is 1/36 = 0.027. Since p < 0.05, I conclude that
the sun has exploded.”
Bayesian statistician: “Bet you $50 it hasn’t.”

Adapted from Randall Munroe, XKCD 1132

Throughout the previous chapter, we have discussed several models that have been
specifically inspired by the architecture of the cortex. These models have been constructed
in a bottom-up bottom-up

modeling
fashion: given a raw connectivity map, as suggested by electrophysiological

and neuroanatomic experimental results, one superimposes a finer architectural granular-
ity in order to enable a desired spectrum of dynamics and/or functionality.

Let us, for now, leave aside the AI-states model, which is designed as a “cortical
template” of sorts and therefore focuses less on specific functionality. If one looks at how
the other two models react to specific stimuli, one notices a predominantly deterministic

determinis-
tic

models

behavior. Attractors in the L2/3 model, for instance, have a very sharp transition from
silent to active as a function of stimulus strength (see, e.g., Figure 5.3). A stimulus
presented to the synfire chain is either propagated or not, depending on its location in
state space (see, e.g., Figure 5.14). Obviously, for the tasks these networks are thought to
perform in the cortex (working memory retrieval, signal propagation), the requirement of
reliability strongly implies a deterministic response. However, one does not have to look
far in order to find situations, be they in everyday life or in a laboratory environment,
where brains (or subunits thereof) react in a highly stochastic manner. Whether this
type of apparent randomness has a functional correlate is still a subject of major debate
among neuroscientists (see, e.g., Pouget et al., 2013), but there exists increasing evidence
that information representation and processing in the cortex is performed, at least to
some degree, in a stochastic manner.

Much in contrast to “conventional” neural network simulations, stochasticity neuronal
stochasticity

in biolog-
ical systems seems deeply embedded at all levels of neural information processing (Rolls
and Deco, 2010). Ion channels in neurons and the synaptic release of neurotransmitters
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are, for instance, inherently probabilistic (Chow and White, 1996; Schneidman et al.,
1998). In large-scale simulations, this intrinsic noiseintrinsic

noise
is often neglected, as computational

resources rarely suffice to allow the implementation of such detailed mechanisms.1 The
response of individual neurons to sensory stimuli shows a large degree of trial-to-trial
variability, especially in vivo (Azouz and Gray, 1999). This occurs partly due to the phe-
nomena mentioned above, on the one hand, but also due to stochastic input from their
afferents, on the other. The latter kind of stochasticity is a result of the interplay between
the dynamics of single neurons and their mutual interaction (as prominently exemplified
by the AI-state-model described in Section 5.5). Many models regard this this extrinsic
noiseextrinsic

noise
as a nuisance more than a computational resource. In simulations, this input noise

is implemented by adding random, weak input spikes (usually generated by a Poisson
process, as done in, e.g., the KTH L2/3 model, see Section 5.3) or by embedding the
model network in a “sea of noise” (as done in, e.g., the synfire chain model, see Section
5.4). Ideally, these models then exhibit robustness towards this kind of randomness.

What if, however, some of this temporal variability actually carried information? In-
deed, it is not only the response of individual neurons, but also the behavioral response of
organisms that also exhibits large trial-to-trial variability (Brascamp et al., 2006). Con-
sider, for example, well-known ambiguous imagesambiguous

optical
illusions

such as the duck-rabbit or Necker cube
illusion2 (Figure 6.1). Our perception jumps randomly3 between the two different inter-
pretations of the images. This can be viewed as a good probabilistic representation of
the (perceived) underlying reality: either of the two perceptions can be the correct one
– with approximately equal probability. In this case, the variability of the perception
clearly encodes informationbehavioral

variability
encoding
information

, namely the posterior probability associated with the under-
lying object, conditioned on the ambiguous visual stimulus. Even more, the “state of the
brain” at any point in time seems to not encode this probability itself, but rather one of
the two possible states – we might even go so far as to say that it seems to sample from
the abovementioned posterior. We shall return to this idea later in more detail.

Beyond the plausibility arguments offered by these perceptual ambiguity scenarios, the
evidence of stochastic computation in the brain is steadily increasing. As a reference, we
point to two more recent experimental studies involving behavior (Körding and Wolpert,
2004) and spike recordings (Berkes et al., 2011) which strongly support the “Bayesian
brain” hypothesis. Such ideas are further strengthened by theoretical work on potential
spiking network implementations (Buesing et al., 2011; Deneve, 2008; Rao, 2005; Steimer
et al., 2009, only to name a few). We shall explore some of these approaches in more
detail later on.

Throughout this chapter, we will discuss how ensembles of spiking neurons can perform
statistical – and in particular, BayesianBayesian

inference
– inference in well-defined probability spaces.

This can either be done analytically, implying an explicit computation of the sought
probability distribution, or stochastically, by sampling from the underlying distribution
over the random variables of interest.

1A notable exception can be found, e.g., in the highly detailed simulations of cortical columns in the
Blue Brain Project (Markram, 2006).

2 Technically, this is not really an illusion, since the perception of either the duck or the rabbit does
not contradict any established objective reality. However, sensory stimuli that evoke interpretational
ambiguity are routinely grouped into the category of cognitive illusions.

3 Albeit with a significant degree of conscious control.
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Figure 6.1.: Two optical illusions based on ambiguity. Left: The duck-rabbit illusion.
As its name already implies, an observer’s perception switches between see-
ing a duck (with its bill pointing towards the left) and a rabbit (with its
snout pointing towards the right). Right: Necker cube. The 2D wireframe
representation allows two possible interpretations of the orientation of the
perceived 3D cube, where either of the two squares may be viewed as the
front face of the cube.

We start by providing a brief overview of graphical models and belief propagation in
Section 6.1, which we also use to introduce important concepts and notations.

In Section 6.3, we describe analytical inference in neural networks that implement pre-
viously discussed probabilistic graphical models. In this approach, local spiking activity
in the network (more precisely: firing rates) explicitly encodes probability values and
communication between neuron populations can be interpreted as Bayesian belief propa-
gation. We shall see that, while providing good estimates for simple distributions, these
networks inherit (by design) the drawbacks of belief propagation and also scale rather
badly when dependencies between random variables become more complex.

As an alternative to rate-based analytical inference, we turn to spike-based stochastic
inference in Section 6.4. After reviewing some basic probabilistic network models (Sections
6.4.1-6.4.2), we describe a theoretical framework for interpreting the activity of abstract
neural network models as Markov Chain Monte-Carlo sampling (Section 6.4.3). On top
of this model of “neural sampling”, we develop a new theory that establishes an analogy
between the aforementioned mathematical model and more biological neural dynamics
(Section 6.5). With the mathematics in place, we were able to create a software framework
that automatically translates any given Boltzmann Machine into a network of spiking LIF
neurons (Section 6.5.4).

An essential insight from the theory, which also enabled an important functional aspect
of the software, is the possibility for any neuron to correctly calculate conditional distribu-
tions regardless of most of its parameters. This concept of “self-calibration” is essential for
the realization of neural sampling in analog neuromorphic hardware (Section 6.8). Such a
highly accelerated and massively parallel implementation fosters a wealth of applications
both within and outside the realm of brain science.

Finally, we turn to more sophisticated network architectures based on neural sampling.
In particular, the proposed LIF-based implementation of Boltzmann machines can be
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extended to multilayered (“deep”) networks, which have been extensively studied in the
field of machine learning. State-of-the-art training algorithms can be translated to the
neural domain (Section 6.6.2), enabling the neural implementation of powerful generative
models for complex datasets.

Further extending the scope of LIF-based sampling, we also show how the previously
discussed neural sampling framework can be extended from Boltzmann distributions to ar-
bitrary distributions over discrete spaces and demonstrate the implementation of Bayesian
networks with LIF neurons (Section 6.7).
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6.1. Graphical Models

6.1. Graphical Models

Graphical4 models graphical
model,

vertex, edge

are, first and foremost, useful tools for representing probability distri-
butions.

In “basic” graphical models – Bayesian networks (Section 6.1.1) and Markov random
fields (Section 6.1.1) – each RV is assigned a vertex (or node) in a graph, and the edges (or
links) are taken to represent probabilistic relationships between the RVs. The connectivity
of the graph then captures the way in which the joint distribution can be decomposed
into factors (factorization) factoriza-

tion
.

In a next step, these factors themselves become vertices in more complex structures
called factor graphs (Section 6.1.3). This class of graphical model encompasses the other
two in the sense that it can be used to implement the factorization properties of both
Bayesian networks and Markov random fields.

Finally, we will then discuss how belief propagation can be performed with the help of
these structures, and how efficient message passing algorithms allow the computation of
posterior posteriordistributions (short: posteriors), i.e., inference (Section 6.1.4).

In our discussion of graphical models, we will always assume RVs to be discrete. The
generalization to continuous RVs simply requires replacing sums by integrals.

The following section only offers a brief overview of the most important concepts which
we will later require. Fore a more in-depth discussion of graphical models, we recommend
Chapter 8 of the textbook by Bishop (2009).

6.1.1. Directed Graphs: Bayesian Networks

The most intuitive class of graphical models are the so-called Bayesian networks Bayesian
networks

(BNs).
They can be constructed for any probability distribution by repeated application of Bayes’
rule (Equation 4.7). Consider an arbitrary joint distribution p(z1, . . . , zN ) over n RVs
{Z1, . . . , ZN}. We can always write this as a product over n conditional distributions, one
for each RVs:

p(Z1 = z1, . . . , ZN = zN ) = p(z1|z2, . . . , zN )p(z2, . . . , zN )

= p(z1|z2, . . . , zN )p(z2|z3, . . . , zN )p(z3, . . . , zN )

= . . .

=

N∏
k=1

p(zk|zk+1, . . . , zN ) . (6.1)

We can now represent each of these conditionals p(zk|zk+1, . . . , zN ) by a set of directed
edges directed

edge
, one for each Zi ∈ {Zk+1, . . . , ZN}, pointing from Zi to Zk. The left panel in Figure

6.2 shows an example for three RVs. If there exists an edge pointing from vertex zi to
vertex zj , then zi is called a parent parent, childof zj and zj a child of zj . If there exists a directed
path directed path(each step of the path follows the direction of the edges) from vertex zi to vertex zj ,
then zi is called an ancestor ancestor,

descendant
of zj and zj a descendant of zj . An important restriction of

4 In this context, the word “graphical” stands for graph-related, since these models use graphs to represent
probability distributions. By etymological serendipity, it can also be interpreted as “visual”, since these
graphs are, indeed, a form of visualization of an abstract concept.
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Figure 6.2.: Examples of Bayesian networks. The represented joint probability dis-
tributions can be read directly from the graph’s connectivity structure
(Equation 6.2). Left: Generic BN for an arbitrary probability distri-
bution over 3 RVs: p(a, b, c) = p(c|a, b)p(b|a)p(a). Right: BN rep-
resenting a particular joint distribution over 7 RVs: p(x1, . . . , x7) =
p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5).
Figures taken from Bishop (2009).

these graphical models is that they must be acyclic, i.e., that no directed path may exist
from a vertexacyclic

graph
back to itself.5

Some distributions may factorize into “smaller” factors, in which case particular edges
might be missing. In general, we consider the joint distribution defined by a Bayesian
graph to be the product of conditional distributions, one for each RV, with its value
conditioned on the values of its parent variables:

p(z) =

K∏
k=1

1

Z
Φk(zk) :=

N∏
k=1

p(zk|pak) ,factorization
of the joint
distribution
in BNs

(6.2)

where each factor Φk(zk) is given by the conditional distribution p(zk|pak) of a node
given the state of its parents and pak represents the state vector of the parents of Zk. The
factor Φk(zk) is called an nth-order factorfactor order if it depends on n RVs or rather |pak| = n− 1.
In BNs, the order of a factor associated with a vertex is therefore equal to the number of
parent vertices plus one. An example of the factorization defined by such a BN can be
seen in the right panel of Figure 6.2.

While being easily “readable”, BNs are not as immediately intuitive in terms of indepen-
dence relationships between their constituent vertices. In the following, we shall describe

5 BNs must be acyclic in order to guarantee that their underlying probability distribution is normalized
to 1. It is quite easy to prove that this is the case, by starting at a vertex with no parents (which
must exist, otherwise the graph would contain a cycle) and marginalizing it out, then repeating the
procedure until all vertices have been accounted for.
This is no longer guaranteed to be the case if the graph has a cycle and a counterexample is readily
found. Consider the cyclic graph A → B → C where the value of each parent fully determines the
value of its child, e.g., p(B = x|A = x) = 1. If we now sum the joint distribution over all possible
states (A,B,C), then all states of type (x, x, x) have joint probability 1, and all other states have
probability 0. Clearly, the sum over multiple "ones" is larger than one.
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the notion of conditional independence conditional
indepen-

dence

(CI) by using the example of gene inheritance.

Consider the case of two (non-twin) siblings whose mother we know does not carry a
particular rare gene G. Whether they are carriers themselves (a, b) then only depends on
whether the father is a carrier of G or not (c). The associated graph is shown in the left
panel of Figure 6.3. The joint distribution reads:

p(a, b, c) = p(c)p(a|c)p(b|c) . (6.3)

We can verify the independence of a and b by checking whether their joint distribution
– which we obtain by marginalizing p(a, b, c) over c – factorizes:

p(a, b) =
∑
c

p(c)p(a|c)p(b|c) ?
= p(a)p(b) . (6.4)

In general, this is not the case: if one sibling is found to carry G, this directly implies that
the father is a carrier too, increasing the probability of the other sibling to be a carrier
as well (from “rare” to ca. 50%6). In this graph, a and b are therefore not independent,
given no further information:

a 6⊥⊥ b | ∅ . (6.5)

If we now observe c, the joint distribution of a and b (conditioned on our observation)
becomes:

p(a, b|c) =
p(a, b, c)

p(c)
= p(a|c)p(b|c) . (6.6)

Conditioned on c, a and b have apparently become (conditionally) independent:

a⊥⊥b | c . (6.7)

If we know, for example, that the father carries only one copy of G, then the observation
of either sibling’s genotype tells us nothing about the other’s, since the inheritance of G
is independent for the two (with 50% probability).

Now, consider the inheritance of G in the case of two parents (a, b) of a single child
(c). The associated graph is shown in the right panel of Figure 6.3. The joint distribution
reads:

p(a, b, c) = p(a)p(b)p(c|a, b) . (6.8)

When verifying the independence of a and b, we find

p(a, b) =
∑
c

p(a)p(b)p(c|a, b) = p(a)p(b)
∑
c

p(c|a, b) = p(a)p(b) . (6.9)

Evidently, a and b are independent:

a⊥⊥b | ∅ , (6.10)

which makes perfect sense under the assumption that the parents are not related.
6 Actually, the probability is always higher than 50%, since the father could be homozygous at the locus
of G.
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Figure 6.3.: Two examples of conditional (in)dependence in simple BNs. Left: Tail-to-tail
scenario for two directed edges. Children are, in general, not independent.
Conditioned on their parents, however, they become independent. All par-
ents of a vertex therefore belong to its Markov blanket. Right: Head-to-head
scenario for two directed edges. Unconnected parents are, in general, inde-
pendent. Conditioned on their children, however, they become dependent,
as illustrated by the explaining away phenomenon. Therefore, both children
and co-parents of a vertex belong to its Markov blanket. Figures taken from
Bishop (2009).

However, conditioned on c, we obtain

p(a, b|c) =
p(a, b, c)

p(c)
=
p(a)p(b)p(c|a, b)

p(c)
, (6.11)

which in general does not factorize into p(a|c)p(b|c). The observation of c has made a and
b conditionally dependent:

a 6⊥⊥ b | c , (6.12)

which is also readily exemplified. Let us, for example, assume that the child is a carrier
of G and we additionally observe the genotype of the father. If we find that the father
does not carry G, then it immediately follows that the mother must be a carrier herself
(otherwise the child could not carry G). Conversely, should the father be observed to
carry G as well, then the chance that the mother is a carrier is reduced to “rare” again.
This phenomenon is commonly dubbed “explaining away”explaining

away
, since the observation of b

explains away the observation of c and thereby changes our prediction for a. It is an
immediate consequence of the factor p(c|a, b) in the joint distribution (Equation 6.8)
being a function over all three RVs.

Our discussion of CI raises an immediate question: given a particular graph G containing
a vertex zk, which set of RVsMk needs to be observed in order to render zk independent
of all other RVs? The setMk that satisfies this condition, which can formally be defined
as

Mk : p(zk|Mk) = p(zk|z\k) ,Markov
blanket

(6.13)

is called the Markov blanket of zk. Here, we have used z\k to denote the set of all vertices
in G except for zk. In the case of BNs, the Markov blanketMarkov

blankets in
BNs

of a vertex evidently includes
all its parents and children, but also all of its co-parents (all other parents of its children),
due to the explaining away effect. We shall return to the concept of Markov blankets in
BNs in Section 6.7. For now, we only note that the structure of the Markov blanket is
rather complicated if the graphical model has directed edges.
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6.1.2. Undirected Graphs: Markov Random Fields

Since directed graphs lead to somewhat complicated Markov blankets, we can discard
the directionality of the edges to produce so-called Markov random fields Markov

random field
(MRFs). In

such graphs, the asymmetry between parents and children is removed, rendering the very
notion of parents and children unapplicable. For undirected edges, two connected vertices
are called neighbors neighbor. The Markov blanket of a vertex should now simply consist of all
of its neighbors Markov

blankets in
MRFs

(Figure 6.4). Of course, this requires different factorization properties of
the underlying joint probability distribution (i.e., MRFs are “read” differently from BNs),
which we shall discuss in the following.

From our above definition of the Markov blanket in MRFs, it follows that any two
unconnected vertices are independent given all other vertices in the graph, since the set
of all other vertices includes all neighbors of either node, i.e., their respective Markov
blankets:

p(zi, zj |z\{i,j})
!

= p(zi|z\{i,j})p(zj |z\{i,j}) . (6.14)

In order for this to hold for any joint distribution associated with the graph, the two nodes
may not be variables of the same factor. We can therefore define the factors Φk(zk) over
cliques zk.7 A clique cliqueis a fully connected set of vertices. For the most general case which
fulfills our Markov blanket definition, we shall use maximal cliques maximal

clique
, since they contain

all other cliques as subsets, i.e., the factorization into potential functions over maximal
cliques allows a finer factorization over subsets of these. We can now write our joint
distribution as

p(z) =
1

Z

∏
k

Φk(zk) , (6.15)

where the product runs over all maximal cliques zk in the graph. Division by a so-called
partition function partition

function
Z

Z =
∑
z

∏
k

Φk(zk) (6.16)

ensures correct normalization.

The individual potential functions must be non-negative and can, for all practical pur-
poses, be required to be positive. This makes it convenient to express them as exponentials
over energy functions energy

function
E(zk):

Φk(zk) = exp[−E(zk)] . (6.17)

The exponential representation is often useful, since it effectively transforms the product
over potential functions into a sum over energy functions. This, in turn, is intuitively
pleasing from a physicist’s perspective: configurations with a small total energy are more
probable then high-energy states. Due to its formal equivalence to the probability func-
tion of microstates in a canonical ensemble, the exponential representation of a joint
distribution is also called a Boltzmann distribution Boltzmann

distribution
.

As mentioned above, the choice of cliques depends on the modeled problem, with
smaller cliques implying factors with fewer arguments. A particularly useful choice is to

7 More formally, this argument is underpinned by the Hammersley–Clifford theorem.
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Figure 6.4.: Left: The Markov blanket of a vertex in an MRF is given by the set of
its neighbors. Right: Cliques in an MRF are defined as fully connected
subgraphs. The green clique is not maximal, since it can be extended by
including x3. The blue clique is maximal, since the inclusion of x1 would
violate the requirement of full connectivity. Figures taken from Bishop (2009).

restrict the cliques to a maximum size of two; in this setting, the energy of the system
can be interpreted as a result of pairwise interactions between its constituent units, with
obvious parallels to physical systems and useful mathematical properties. Section 6.4 is
dedicated entirely to these so-called Boltzmann machines.

While the CI properties of undirected graphs are very useful, their underlying joint
distribution is, in general, also their most major limitation. Calculating the partition
function of an MRF requires computing a sum over all possible states, which, in the worst
case, is exponential in the total number of RVs. The computation of local conditionals,
however, can be done efficiently, since it involves the ratio of two marginals, for which the
partition functions in the numerator and denominator cancel each other out. This plays
an important role in the sample-based evaluation of joint distributions (Sections 6.4.2 and
6.4.3).

6.1.3. Factor Graphs

As we have previously illustrated, the CI properties of a graphical model are intimately
connected with the factorization of its underlying joint distribution. Indeed, the fact
that all CI properties are directly readable from a graph represents an elegant and useful
property of graphical models. As it turns out, the sets of CI properties that can be
expressed by BNs and MRFs are not identical.

Consider, for example, the BN depicted in the left panel of Figure 6.5, which satisfies
the CI properties A⊥⊥B | ∅ and A 6⊥⊥ B | C (the latter statement represents the explaining
away effect). No MRF over the same three variables can satisfy both these properties,
since the first one implies that A and B are not connected, which then directly violates
the second CI property.

On the other hand, the MRF depicted in the right panel of Figure 6.5 satisfies the
properties A 6⊥⊥ B | ∅, C 6⊥⊥ D | ∅, A⊥⊥B | C ∪D and C⊥⊥D | A ∪ B. A BN could only
satisfy these conditions if each vertex had exactly one parent and one child, which would
then imply the existence of a cycle, which in turn is forbidden by the requirement that
BNs must be acyclic.

220



6.1. Graphical Models

Figure 6.5.: Examples of graphs that can not be translated from directed to undirected
and vice-versa while preserving all CI properties. Left: This BN can not be
translated to an MRF, since MRFs can not exhibit explaining away effects
(Markov blankets in MRFs do not extend beyond nearest neighbors). Right:
This MRF can not be translated to a BN, since it would require the existence
of a cycle (a more detailed explanation is given in the main text). Figures
taken from Bishop (2009).

Essentially, what we require is a graphical representation of either type of factors, be
they conditional distributions or potential functions. This can be achieved by introducing
an additional type of node, so-called factor nodes factor node, which are used to generalize the repre-
sentation of factors in a joint distribution. The resulting graphs are called factor graphs

factor graphand can be used to represent the CI properties of both BNs and MRFs.
More formally, a factor graph (FG) is a bipartite graph bipartite

graph
, i.e., it can be partitioned

into two sets (or types) of nodes, where no two nodes of the same type may have a
connection. The first type are the variable nodes which we already know from BNs and
MRFs, and the second type are the newly introduced factor nodes (see Figure 6.6). The
factor nodes represent the factors fs in the joint distribution and the neighbors xs of fs
are its arguments. The joint distribution therefore reads factorization

of the joint
distribution

in FGs
p(x) =

∏
s

fs(xs) . (6.18)

The introduction of factor nodes allows additional freedom in our graphical representa-
tions, with several examples given in Figures 6.7 and 6.8. Furthermore, it supports an
efficient marginalization algorithm, which we describe in the following.
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Figure 6.6.: Example FG, with an explicitly depicted partition into variable (cir-
cles) and factor (squares) nodes. The joint distribution is a prod-
uct of the factors over their neighbor variables, i.e., p(x1, x2, x3) =
fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3). Figure taken from Bishop (2009).

Figure 6.7.: Transforming a BN into an FG. Left: BN with the factorization
p(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2). Middle: FG with the same factor-
ization, if we define fa := p(x1), fb := p(x2) and fc := p(x3|x1, x2). Right:
Alternative translation of the same BN to an FG, where the factor simply rep-
resents the entire joint distribution p(x1, x2, x3). Figures taken from Bishop
(2009).

Figure 6.8.: Transforming an MRF into an FG. Left: MRF over 3 RVs which does not
factorize in general, since it is fully connected, so the only maximal clique
is the graph itself. Middle: FG with the same joint distribution, where
f := p(x1, x2, x3). Right: If the joint distribution does factorize into, e.g.,
potential functions over pairs of RVs, this can be readily accomodated by an
FG representation. This is, in particular, the case for the Boltzmann machines
in Section 6.4.2. Figures taken from Bishop (2009).
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6.1.4. Inference in Factor Graphs

A rather generic formulation of what could be called “the inference problem” would be
the following: given a joint distribution over a set of RVs and a number of observations
on a subset of these, what can we infer about the possible states of one or more RVs of
interest? In other words, an inference problem is formally a problem of marginalization:

1. We start with the joint distribution p(x).

2. Observing a subset of RVs turns the joint distribution into a conditional, which, if
we do not care about normalization8, has zero computational cost since it simply
requires replacing these variables in the joint distribution by their particular observes
values xo:

p(x) −→ p(x\o|xo) = p(x\o,xo)/Z , (6.19)

where, from Bayes’ rule, Z = p(xo) =
∑
x\o

p(x\o,xo).

3. Inferring the distribution over some RVs of interest xi now requires us to sum over
all possible values of all unobserved RVs that are not of interest (i.e., marginalize
them out):

p(xi) =
∑
x\i,\o

p(x\o|xo) . (6.20)

As already discussed (Section 4.1), it is the computational cost of the marginalization
that scales exponentially with the number of RVs to be marginalized out. The most
computationally costly case is therefore the one where no RVs are observed and we are
interested in the marginal distribution over a single RV of interest. We shall further
assume that our FG is a tree graph tree graph, i.e., that there exist no (undirected) cycles. It
is quite easy to see that, in principle, any FG can be transformed into a tree FG by
absorbing factor nodes that lie within a cycle into a single factor node.9

In a factor graph, the marginal distribution over a single RV x is given by

p(x) =
∑
x\x

p(x) =
∑
x\x

∏
s

fs(xs) . (6.21)

If we consider the above factorization and use the left panel of Figure 6.9 as guidance,
we can see how the variable node x partitions the joint distribution into larger factors
Fs(x,Xs), which contain all factors that lie “behind” the neighbor factor nodes fs of x
(subgraph factorization):

p(x) =
∑
x\x

∏
s

fs(xs) =:
∑
x\x

∏
s∈ne(x)

Fs(x,Xs) . (6.22)

8 We may only not care about normalization if it can be performed at the very end of the inference
process, when the number of remaining variables and therefore the computational cost is small (since
normalization itself involves marginalization). This is, indeed, the case for the sum-product algorithm
which we present in this section.

9 It is important to note that this is not a “universal solution”, since the absorption of factors into larger
factors leads to an increase in the number of arguments of the larger factor, thereby rendering the
local computations of the sum-product algorithm, which involve local marginalization (Equation 6.25),
more costly.
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6. Probabilistic Inference in Neural Networks

Figure 6.9.: Visualization of the different stages of message passing in the sum-product
algorithm. The computability of an outgoing message as (a sum over) a
product over all incoming messages is a consequence of the assumed tree
structure of the FG, which allows a partitioning into subtrees at every stage
of the message passing protocol. Left: The marginal distribution of any
RV as a product of incoming messages from neighbor factor nodes (Equation
6.23). The same formal rule applies for calculating the outgoing message from
a variable node (Equation 6.26). Right: The outgoing message from a factor
node as a function of the incoming messages from neighbor variable nodes
(Equation 6.25). Figures taken from Bishop (2009).

As the sets of variables encompassed by the different Xs are pairwise disjoint (since the
graph is a tree, see again the left panel of Figure 6.9), we can interchange the sum and
the product:

p(x) =
∑
x\x

∏
s∈ne(x)

Fs(x,Xs)

=
∑
X1

. . .
∑
XN

∏
s∈ne(x)

Fs(x,Xs)

=
∑
X1

F1(x,X1) . . .
∑
XN

FN (x,XN )marginal as
product over
incoming
messages

=
∏

s∈ne(x)

∑
Xs

Fs(x,Xs)︸ ︷︷ ︸
µfs→x(x)

(6.23)

In this formulation, we can interpret the marginal distribution of x as a product over
“messages” µfs→x(x) arriving from its neighbor factor nodes.

In the next step, we now evaluate the messages µfs→x(x). Again, we partition the tree
that lies “behind” fs into disjoint subtrees Gm(xm,Xsm) (see Figure 6.9, right panel):

Fs(x,Xs) = fs(x, x1, . . . , xM )G1(x1,Xs1) . . . GM (xM ,XsM ) . (6.24)
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We can now plug this equation into Equation 6.23 and use the same switching of sums
and products as we did before to obtain

µfs→x(x) =
∑
Xs

Fs(x,Xs) recursive
computation
of messages
from factor
to variable

nodes

=
∑
Xs

fs(x, x1, . . . , xM )
∏

xm∈ne(fs)\x

Gm(xm,Xsm)

=
∑

xs=(ne(fs)\x)

fs(x,xs)
∏

xm∈ne(fs)\x

∑
Xsm

Gm(xm,Xsm)︸ ︷︷ ︸
µxm→fs (xm)

(6.25)

Messages from factor nodes to variable nodes can therefore be calculated over incoming
messages from neighboring variable nodes. Note that this step can become computation-
ally very costly if factors are large (i.e., if they have many variable node neighbors).

The same logic that we applied to calculating the marginal over x in Equation 6.23 can
now be applied to express the messages from variable to factor nodes as products over
messages from factor to variable nodes: recursive

computation
of messages

from
variable to

factor nodes

µxm→fs(xm) =
∏

l∈ne(xm)\fs

∑
Xml

Fl(xm,Xml)︸ ︷︷ ︸
µfl→xm (xm)

(6.26)

Equations 6.25 and 6.26 define the sum-product algorithm sum-product
algorithm

(SPA) as a message passing
algorithm along the edges of an FG. Every outgoing message from a node can be calculated
recursively from incoming messages to that node. The recursion ends when leaf nodes are
reached, for which the output messages are also easily found within the above framework:

µxleaf→f (x) = 1 leaf and
node output

messages

(6.27)
µfleaf→x(f) = fleaf(x) (6.28)

In order to calculate the marginal distribution of a different RV, the SPA must not be
repeated all over again. Imagine that we have randomly chosen some variable node x as
a root node. Starting from the leafs of the tree, we can now propagate messages all the
way down to the root. This allows calculating the marginal p(x). However, now that x
has received all incoming messages, it can also send out messages along all its incident
edges. We can therefore continue the propagation of messages all the way back to the
leaves. For each edge, we now have two messages going into the two possible directions,
with only twice the computational cost of calculating p(x). However, since we now know
all incident messages for all of the variable nodes, we can calculate the marginals of all
the variables in the FG. We shall make use of this in our neural network implementation
of the SPA (Section 6.3).

So far, we have not discussed normalization. Even when the joint distribution has been
previously normalized, it can become an issue when the observation of a subset of RVs
would require the computation of conditionals and therefore marginalization. However,
in this case we would treat the resulting conditional simply as an unnormalized version
of the original joint distribution. Since the SPA performs local computations correctly
and in the end produces distributions over single variables x, a final normalization step
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6. Probabilistic Inference in Neural Networks

of p(x) is both trivial and computationally cheap.

On a final note, we should mention that the restriction to tree graphs is a necessary
formal requirement (since it allows the partitioning of the graph into disjoint subtrees at
each stage of the message passing protocol), it is not that strict from a practical point
of view. Even if a graph has cycles, we can still use the SPA, since the computation of
messages is local. However, the messages themselves travel along the cycles and will start
updating themselves once a cycle is complete. In contrast to the SPA, this so-calledloopy belief

propagation
loopy

belief propagation is not guaranteed to converge.

6.1.5. The Sum-Product Algorithm in Forney Factor Graphs

In the particular case in which each variable node is connected to no more than two factor
nodes, the SPA takes on a particularly simple form. The computation performed at
individual variable nodes (Equation 6.26) reduces to a simple passing on of the incoming
message. In this situation, the variable nodes can be dropped altogether and the edges
themselves represent the RVs. Such a graph is called a Forney factor graphForney

factor graph
(FFG) and

has the obvious advantage that the SPA reduces to a single equation for the factor nodes:

µij := µfi→fj (xij) =
∑

xi:=(xki|fk∈ne(fi)\fj)

fi(xij ,xi)
∏

fk∈ne(fi)\fj

µki(xk) ,messages in
an FFG

(6.29)

where xi represents the state vector of the variables that lie “behind” a factor node and
µki the incoming messages across the respective edges. A graphical visualization of the
above equation is shown in the left panel of Figure 6.10.

The condition imposed on the factor dependencies (only two factors may depend on
the same variable) can be circumvented by “copying” variables with the help of “equality
constraint factors”. An equality constraint factorequality

constraint
factor

that creates n copies of some variable

x represents the function
n∏
i=1

δ(x − xi). Other hard constraints can also be represented

by delta functions over appropriately chosen functions. An example FFG with both hard
constraints and probabilistic nodes is shown in the right panel of Figure 6.10.

Due to the simplified form of the SPA, our first neural network implementation of
probabilistic inference will be a representation of an FFG.
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Figure 6.10.: Left: SPA in an FFG. The variables only have two neighboring fac-
tors and therefore simply pass on incoming messages. The SPA then
reduces to a single equation for factor nodes. Right: Example of an
FFG with probabilistic nodes and hard constraints. The graph rep-
resents a noisy binary channel with four valid messages (y1, . . . , y4) ∈
{(0, 0, 0, 0), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0)}. The set of valid messages is
fully specified by the following constraint: the last two bits encode the par-
ity of the sum of the first two bits. This can be imposed upon the noised bits
with the help of an additional variable z and two hard constraint factors:
• z represents the parity of y1 + y2. This is encoded by the f⊕ factor:
f⊕(y1, y2, z) = δ(y1 ⊕ y2 ⊕ z), where ⊕ denotes the XOR operator.
• The last two bits and z are equal. This is encoded by the f= factor:
f=(z, y3, y4) = δ(z − y3)δ(z − y4).
The channel noise may flip each bit with a certain probability, which is di-
rectly encoded by the factors pi. Applying the SPA to this graph effectively
yields an estimate of the likelihood of every (unobserved) input bit yi given
the observed values xi of the bits after they have been passed through the
noisy channel

p(y1, . . . , y4|x1, . . . , x4) = f⊕(y1, y2, z)f=(z, y3, y4)

4∏
i=1

p(xi|yi) . (6.30)

Figure taken from Petkov (2012).
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6. Probabilistic Inference in Neural Networks

6.2. Liquid State Machines

Since factor nodes in FFGs can be chosen to represent arbitrary functions over their ad-
jacent variables, we would ideally require a (sub)network model that is in principle able
to perform this kind of universal computation, together with an appropriate training al-
gorithm. The rather natural choice are liquid state machinesliquid state

machine
(LSMs, see in particular

Jaeger, 2001; Maass et al., 2002), which we shall briefly discuss in the following. Ad-
ditionally, before moving to belief propagation with LSMs, we will present a successful
implementation of an LSM on neuromorphic hardware and its application to a particular
classification task. These experiments are the result of a collaboration with Sebastian
Jeltsch and others and have already been reported at the 2010 Capo Caccia workshop
(Brüderle et al., 2010), as well as published in Pfeil et al. (2013).

6.2.1. Network Model

The principle behind an LSM is simple, but may sound counterintuitive at first. Imagine
that we have two pebbles and we wish to measure their momentum. In addition to several
obvious ways of doing it, one alternative would include having them fly into a pond and
inferring their momentum from the amplitude of the ripples they produce on the surface.
One advantage of this seemingly convoluted method is that the observation of the splash
would simultaneously allow us to retrieve information about their shape, size, density
etc. Even more than that, we could also directly retrieve the results of simple operations,
such as the sum of their momenta, from the interference patterns they produce – once
again, by only observing the behavior of the water.

Let us put this in more formal terms, with Figure 6.11 serving as guidance. Consider a
time-varying input u(t) that belongs to an n-dimensional space Un, of which we need to
compute some function Φu(t). The liquid can be represented as a filter function Lliquid filter that
projects the n-dimensional input into the much higher-dimensional function space:

xk(t) = (Lku)(t) , Lk : Un 7→ (RR)k . (6.31)

In order to allow the computation of arbitrary functions, the liquid must fulfill the so-called
separation propertyseparation

property
, which requires different inputs to be mapped to different outputs.

In principle, this is easily achievable as long as the liquid is complex enough.
Assuming that the observation of a liquid that fulfills the separation property yields

the result of the sought computation, we require a second component of the LSM which
can be trained to perform this observation. Since we assume that the “hard” (i.e., non-
linear) part of the computation has already been performed by the liquid, we can limit
the readout to simply implement a linear transformationlinear

readout
of the liquid state:

ym(t) = fm(xk)(t) , fm : (RR)k 7→ Rm . (6.32)

The linear map fm can be represented by a set of (unconnected) perceptrons, which can be
efficiently trained with simple algorithms. This is where the high-dimensional projection
performed by the liquid becomes important, since it is assumed to transform an initially
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6.2. Liquid State Machines

Figure 6.11.: Stages of computation within an LSM. The input u is projected into a high-
dimensional space by the liquid filter L. A simple linear readout f can then
be trained to approximate a given function y = Φu of the input. Figure
taken from Petkov (2012).

nonlinear separation problem into a linear one.10 The only requirement for the readout
itself is that it must fulfill the so-called approximation property approxima-

tion
property

, i.e., its output must be
in principle able to approximate any result of the sought computation.

The required computation is now represented by a two-step chain of liquid and readout:

u(t)
L−→ x(t)

f−→ y(t) . (6.33)

The key advantage here is that the liquid must not be trained at all and the training
of the readout is simple and efficient. Should we require to compute a different function
Φ′, we only need to train an additional readout f ′. This compares favorably with other
approaches such as multilayer perceptrons, deep belief networks etc.

In practice, some additional “tweaking” of the liquid may be needed. An important
requirement, which we shall only briefly mention, is that the liquid may not be “too
chaotic”, since then any amount of noise on the initial input would render a practicable
training of the readout impossible. The liquid therefore ideally treads on the “edge of
chaos” edge of

chaos
, where the separation property is fulfilled well, but without causing trouble for the

subsequent training. The chaoticity of the liquid is usually controlled by changing the
scale of interaction between its microscopic components – in a neural network, this would
be given by the synaptic density and strength.

Another advantage of having a liquid as a preprocessing stage is the possibility to take
into account past information as well. Depending on the relaxation time constants within
the liquid, the readout may gain access to previous states of the input, endowing the LSM
with fading memory fading

memory
:

y(t) = fL(u(t′))t′∈[t−T,t] , (6.34)
10 At this point, one might recognize the similarity between this approach and the well-known “kernel

trick” kernel trickfrom machine learning. The difference is, however, that the state of the liquid constitutes an
explicit representation of the projection of the input into a higher-dimensional space, whereas kernel
functions are specifically designed to circumvent this explicit projection by directly computing only
inner products (which, in turn, encode similarity) within the high-dimensional space.
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6. Probabilistic Inference in Neural Networks

where T represents the memory duration.

Up to this point we have deliberately remained unspecific about the nature of the
liquid itself. This is because, in principle, any sufficiently complex device that features
the separation property can be used as a liquid. In practice, when requiring a physical
realization of an LSM, one would choose a particular implementation. In the particular
context of neural networks, LSMs are, of course, represented by populations of neurons.
The idea of having a generic microcircuit for arbitrary computations with individual
readouts being trained for particular tasks, is, of course, quite appealing as a hypothesis
for the architecture of the cortex itself. As we shall see in the following, even small
neuronal LSMs can be quite efficient at performing simple operations on input spike
trains. Unfortunately however, as we shall explore later on, the efficiency of this concept
does not scale that well when applied to more complicated tasks.

6.2.2. A Multitasking Neuronal LSM

We shall highlight the most important computational properties of an LSM with an ex-
emplary neuronal implementation from (Maass et al., 2002). The liquid itself consists of
two columns, each containing 88 excitatory and 27 inhibitory CUBA LIF neurons with
distance-dependent connectivity. The dominant relaxation time constants are those of
synaptic depression, which are on the order of several hundred ms. The readouts are
represented by populations of 51 unconnected, non-spiking CUBA LIF neurons (essen-
tially, perceptrons with a low-pass filtered input) and have been trained with a modified
perceptron learning rule.

The input consists of four 2 s spike trains which project to different neurons in the liquid.
Each one of the 6 readouts was trained for a different task on a batch of 150 training
inputs. In particular, some of the tasks explicitly required knowledge of past states of the
input. The output of the readouts is a single number and is given by their normalized
population firing rate. Figure 6.12 shows the output of the readouts for a particular novel
(i.e., not part of the training batch) test input compared to the analytically calculated
target output.

This experiment is particularly instructive, since it showcases the following properties
of LSMs, which we shall try to exploit later:

• both the liquid and the readouts require only modest resources;

• multiple readouts can be trained for different tasks on the same liquid;

• readout training is simple and can be parallelized;

• the network is able to generalize its computational capabilities to inputs it has never
“seen” before;

• the fading memory allows computations on past input states.

We stress again that these valuable properties are highly task-dependent and do not
necessarily carry over to more complicated problems.
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6.2. Liquid State Machines

Figure 6.12.: LSM trained to simultaneously perform six computational tasks (with six
different readouts) on an input consisting of four spike trains. Continuous
lines represent the output of the readouts, while dashed lines denote the
target output. The first two tasks involve the integration of the input pop-
ulation rate over 30 and 200 ms, respectively. The good performance of the
LSM is also a showcase of its relatively long fading memory due to synap-
tic STP. The third task requires the detection of a particular spatiotemporal
pattern. The fourth task requires the LSM to detect when the summed firing
rates of inputs 1 and 2 increase and the summed firing rates of inputs 3 and
4 decrease simultaneously. The final two readouts are trained to represent
firing correlations between different pairs of input channels. Figure taken
from Maass et al. (2002).
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6.2.3. Neuromorphic Implementation

We have argued above that the exact nature of a liquid is, in principle, not important,
as long as the liquid is complex enough. In particular, its components must not be tuned
towards some particular, precise dynamics. Furthermore, the computations performed by
the liquid are robust to a certain level of noise (Maass et al., 2002). This makes liquid
computing an ideal candidate for implementation in substrates that can not be perfectly
controlled, as is the case for essentially all neuromorphic platforms which rely on analog
components.

In the following, we describe some exemplary experiments with liquids on the Spikey
chip (see Section 3.2). These results have already been reported in Pfeil et al. (2013).

Our neuromorphic LSM consisted of two major components: the recurrent liquid net-
work itself and a spike-based classifier operating as a readout (Figure 6.13A). As a general
purpose liquid needs to meet the separation property (see Section 6.2.1), we aimed for a
neuronal implementation which operates in a balanced statebalanced

network
. In particular, short-term

plasticity has been shown to endow network models with a stable firing regime (Sussillo
et al., 2007), which we can explicitly exploit on Spikey. Such a network topology has
been already successfully implemented on Spikey (Bill et al., 2010), allowing us to use the
same network topology for our liquids. However, the global effects of short-term plasticity
on Spikey would have interfered with the dynamics of the readout, which required us to
remove this feature while otherwise maintaining the network structure. As it turned out,
the resulting network was still balanced enough to support the LSM implementation.

Our balanced network consists of an excitatory and inhibitory population with a ratio
of 80:20 excitatory to inhibitory neurons. As we use an entire block of 192 neurons, only
64 drivers remain for external input, which we assign to 32 excitatory and 32 inhibitory
sources. From these, each neuron in the liquid receives 4 excitatory and 4 inhibitory
inputs. All other connection probabilities are illustrated in Figure 6.13A.

The readout is realized by means of a tempotrontempotron (Gütig and Sompolinsky, 2006), which
is compatible with our hardware due to its spike-based nature. Furthermore, as it essen-
tially consists of a single neuron, it leaves most hardware resources to the liquid.

A tempotron can be trained to discern between two classes of temporal patterns by
spiking for all patterns in one class (which we denote as ⊕) and remaining silent for all
patterns in the other (which we denote as 	). Gütig and Sompolinsky (2006) describes a
gradient-descent-based training method for the tempotron’s afferent weights:

∆wni =

0 for a correct responsetempotron
learning
rule α(n)σ(n)

∑
ti<tmax

κ(tmax − ti) for an erroneous response , (6.35)

where ∆wni is the weight update corresponding to the ith afferent neuron after the nth
learning iteration with learning rate α(n) and κ represents the PSP kernel (see Section
4.2). The nature of the training sample in a particular training run is given by σ(n),
which defines the sign of the weight update:

σ(n) =

{
−1 for a 	 training pattern
1 for a ⊕ training pattern .

(6.36)
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Figure 6.13.: LSMs on Spikey. (A) Schematic of the LSM and the given task. Spike
sources are composed of 50 ms segments drawn from two template spike
trains (X and Y). These patterns are streamed into the liquid (with de-
scending index), which is a network consisting of 191 neurons, leaving one
neuron for the tempotron. Connection probabilities are depicted next to
each connection (arrows). In two experiments, the tempotron is trained to
either classify the origin (X or Y) of the spike train segment with index 1 or
2. (B) The classification performance of the LSM measured over 200 sam-
ples after 1000 training iterations for both hardware (lighter) and software
(darker) implementation. Figure taken from Pfeil et al. (2013).

The time at which the tempotron has reached its highest membrane potential in the re-
spective training run is denoted by tmax (which is equivalent to tspike in case the tempotron
has spiked). The reasoning behind this learning rule is to “punish” erroneous firing appro-
priately. In case of a false positive, i.e., for 	 trials where the tempotron has spiked, the
excitatory afferents with a causal contribution to this spike are weakened and inhibitory
ones are strengthened, as ∆wni ∝ σ(n) < 0. In case of a false negative, i.e., for ⊕ trials
where the tempotron did not spike even though it should have, the direction of the weight
modulation is inversed, i.e., excitatory weights are strengthened and inhibitory ones are
weakened.

Upon training, the tempotron distinguishes between two input classes by emitting
either one or no spike within a certain time window. The former is artificially enforced
by blocking all further incoming spikes after the first spike occurrence.

As the tempotron is a binary classifier, we needed to define an appropriate binary
decision problem binary

decision
problem

. Here, we have adapted a simple binary task from Maass et al. (2002)
in order to evaluate the performance of the LSM. The challenge was to distinguish spike
train segments in a continuous data stream composed of two templates with identical rates
(denoted X and Y in Figure 6.13A). In order to generate the input, we cut the template
spike trains into segments of 50 ms duration. We then composed the spike sequence to
be presented to the network by randomly picking a spike segment from either X or Y in
each time window (see Figure 6.13 for a schematic). Additionally, we added spike timing
jitter from a normal distribution with a standard deviation of σ = 1 ms to each spike.

For each experiment run, both for training and evaluation, the composed spike sequence
was then streamed into the liquid. Tempotrons were given the liquid activity as input
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and trained to identify whether the segment within the previous time window originated
from sequence X or Y. In a second attempt, we trained the tempotron to identify the
origin of the pattern presented in the window at -100 to -150 ms (that is, the second to
the last window). Not only did this task allow to determine the classification capabilities
of the LSM, but it also put the liquid’s fading memoryfading

memory
to the test, as classification of a

segment further back in time becomes increasingly difficult.

The hardware implementation of the tempotron was not straightforward, due to several
differences between the theoretically optimal model and the physical implementation of
neurons and synapses on the Spikey chip.

Firstly, the theory assumes the same PSP kernel κ for each incoming spike, but this is
not the case for Spikey, which features only conductance-based synapses. However, with
the reversal potentials set at a large distance from the dynamic range of the membrane po-
tential, COBA dynamics can be well approximated by the CUBA equations. Nevertheless,
the asymmetric position of excitatory and inhibitory reversal potentials with respect to
the mean membrane potential ū needed compensation. In the CUBA approximation, this
can be done straightforwardly by scaling all excitatory weights with (ū−Erev

i )/(ū−Erev
e ),

where ū corresponds to the mean neuron membrane voltage and Erev
e and Erev

i are the
excitatory and inhibitory reversal potentials, respectively.

Secondly, the tempotron learning rule may also cause synapses to switch their sign. For
a physical implementation of COBA synapses (be it biological or in silico), switching to
a different reversal potential is not straightforward. For our Spikey tempotron, we chose
the easiest, albeit non-optimal, solution of simply prohibiting such transitions.

Finally, the shunting of the membrane potential after the first spike of the tempotron,
which is required by the theoretically optimal implementation, is also difficult, both in
biology and on Spikey. However, (Gütig and Sompolinsky, 2006) themselves have al-
ready proposed simply neglecting this mechanism, which we also adopted for our Spikey
implementation.

Even though the tempotron was robust against fixed-pattern noise due to on-chip
learning, the liquid itself required a certain degree of tuning. Ideally, firing thresholds
should be adjusted independently to optimize the memory capacity and avoid violations
of the separation property. This can be done in software simulations, but not on Spikey,
since hardware neurons share firing thresholds (see Table 3.1). Additionally, the learning
curve α(n) was chosen individually for software and hardware due to the limited resolu-
tion of synaptic weights on the latter.

The results for our software and hardware implementations of the LSM described
above are illustrated in Figure 6.13B. Both LSMs performed at around 90% classifica-
tion correctness for the spike train segment that lied 50 ms to 100 ms in the past with
respect to the end of the stimulus. The LSM can therefore be characterized as successful
in identifying spatiotemporal patterns even when a small time lag (on the order of
100ms) is present, due to the transient activity of the liquid. This capability declines, of
course, as the time lag increases. For inputs lying twice as far in the past, performances
dropped to chance level (50% for a binary task), independently of the simulation back-end.

This experiment is, indeed, only a rather simple one. In principle, this implementation
allows a larger variety of tasks to be performed. For example, some work has been done on

234



6.2. Liquid State Machines

hand-written digit recognition with the very same setup on the Spikey chip (Jeltsch, 2014).
It should also be noted that even without a liquid, our implementation of the tempotron
(or populations thereof) represents a promising choice for a neuromorphic classifier, given
its bandwidth-friendly sparse response and robustness against fixed-pattern noise.
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6.3. Rate-Based Belief Propagation with LIF Neurons

Building on the belief propagation algorithms discussed in the previous section, we can now
formulate a framework in which spiking neural networks can perform these computations.
In particular, messages required by the SPA (Section 6.1.4) shall be represented by firing
rates and the local computations in each factor will be carried out by liquid state machines.
These studies are based on work by (Steimer et al., 2009) and were done in collaboration
with Venelin Petkov and Dominik Schmidt. The results have also been previously reported
in their Diploma thesis (Petkov, 2012) and internship report (Schmidt, 2012), respectively.
We shall end this section with an important discussion of the scalability of this approach
to more complex problems.

6.3.1. A Neural Implementation of Binary Forney Factor Graphs

We shall start with a further simplification of the FFGs discussed in Section 6.1.5 by
restricting the sample space of the constituent RVsbinary RVs to {0, 1}, i.e., by making them binary.
Since a message over an edge xij should encode a probability distribution over the RV xij ,
it now suffices to represent p(xij = 1), since p(xij = 0) follows directly from the unitarity
condition for p.11 Messages therefore assume a somewhat simpler form

µij =
∑

xi∈{0,1}m
fi(xij = 1,xi)

∏
fk∈ne(fi)\fj

pki(xki) ,discrete-
time
messages in
binary
FFGs

(6.37)

where m = |ne(fi)\fj | = |nefi − 1| represents the number of RVs that lie “behind” fi and
pki can be calculated from µki according to the abovementioned unitarity condition:

pki(xki) =

{
µki, if xki = 1

1− µki, otherwise
(6.38)

Since a neural implementation of the SPA in FFGs will represent a dynamical system,
time will start playing an important role. In the classical SPA, the order in which messages
are transmitted is usually chosen to follow the so-called flooding scheduleflooding

schedule
in discrete time

steps. At each point in time, all factors which have received enough input messages
with respect to an output edge will send an output message along that edge. In the
case of systems evolving in continuous time, such as the neural networks we are going to
construct, factors will pass on messages in all directions at all times. The messages from
leaf nodes towards other nodes in the graph will be correct, since they simply encode
priors over certain RVs (or posteriors, if they have been observed). All other messages
will be incorrect at the onset of the algorithm, but will become increasingly correct as the
information from the leaf nodes diffuses throughout the network. Instead of enforcing a
particular schedule, we shall therefore merely require that the output messages converge
towards their target values:continuous-

time
messages in
binary
FFGs

τ µ̇ij(t) = −µij(t) +
1

Z(t)

∑
xi∈{0,1}m

fi(xij = 1,xi)
∏

fk∈ne(fi)\fj

pki(xki, t−D) , (6.39)

11 Since in FFGs edges symbolize RVs, we use the same notation for both.
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Figure 6.14.: Translation of an FFG to an LFG. Left: Example FFG with a main node
f1 (for which we describe the liquid/readout translation), a non-leaf node
f2, a leaf node f3 and a half-edge representing an observed RV x0. Right:
Equivalent LFG. The main node is represented by a liquid L1, with readouts
that compute all necessary outgoing messages (here: R12 and R13 encode
µ12 and µ13, respectively). Non-leaf nodes such as f2 themselves require to
be implemented as liquids (here: L2), with a readout R21 projecting to L1,
as well as receiving input from L1 via R12. Leaf nodes such as f3 provide
constant output messages and can therefore simply be replaced by Poisson
(spike input) sources (here: SI3). They do, however, connect to other nodes
via RV edges, which also carry messages in the other direction, which we
need to be able to read out in order to compute the probability distribu-
tion over the corresponding RVs. Therefore the readout R13 is still needed,
although it does not project to anything else. Finally, half edges correspond-
ing to observed RVs such as x0 are also simply translated to Poisson sources
(here:SI0) that fire with either maximum or minimum rate, in order to en-
code x0 = 1 or x0 = 0, respectively. Evidently, a readout for observed RVs
is superfluous.

where τ is a time constant that represents the intrinsic “reaction speed” of the system,
Z(t) is a normalization constant that ensures 0 ≤ µij(t) ≤ 1 and D denotes the transmis-
sion delay within the system.

Now that messages are represented by single numbers (as opposed to probability vectors
for RVs with more than 2 potential values), we can associate a population firing rate firing rates

as messages
rij ∈

[rmin, rmax] to each µij ∈ [0, 1].12 For simplicity, the mapping will be linear: rij = αµij ,
with α = 90 Hz. The associated populations will be the readouts for liquids representing
the individual factors fi. The assumption is that a sufficiently complex liquid will be
able to simultaneously calculate all the required messages µij∀fj ∈ ne(fi) and a readout
Rij can then be trained to extract the correct message µij in the form of a population

12 Note that multiple populations could, in principle, represent multivariate probability distributions as
well.
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Figure 6.15.: Neuronal realization of liquids for the implementation of LFGs. Left: The
liquid consists of two subpopulations of excitatory and inhibitory CUBA LIF
neurons, respectively, which project onto themselves as well as each other.
Right: Neurons are placed on a cuboid grid and 20% of them are randomly
chosen as inhibitory. Figures taken from Petkov (2012).

firing rate rij and pass it on to the liquid representing the factor fj . This defines the
architecture of our liquid factor graphliquid factor

graph
(LFG) implementation, an example of which can

be found in Figure 6.14.
We have added the following simplifications in order to reduce the computational load

on the LFG network:

• observed RVs are represented by homogeneous Poisson sources with firing rates that
correspond to the observed value rij ∈ {rmin, rmax};

• leaf nodes fl are also represented by homogeneous Poisson sources with firing rates
that encode the prior rl = αp(xlj = 1).

The only remaining nodes that need to be implemented as liquids are therefore those
that represent factors of at least 2nd order, as well as those that must be introduced to
translate arbitrary joint distributions to FFGs (i.e., equality nodes for copying RVs, see
Section 6.1.5).

The liquids themselves are implementedliquid
architecture

as seen in Figure 6.15, following the architecture
suggested in Maass et al. (2002) and Steimer et al. (2009). Neurons are arranged on a
cuboid lattice, with dimensions depending on the complexity of the factor. A random
subpopulation of 20% of the liquid neurons are chosen as inhibitory and the remaining
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80% as excitatory. The “small world” connectivity is implemented by a Gaussian stochastic
rule, where each pair of neurons has a distance-dependent probability of being connected:

p(a, b) = C exp

(
−‖a− b‖

2

λ2

)
, liquid

connectivity
(6.40)

where C represents a normalization factor and λ the density parameter.13 The full set of
generic parameters for the liquid pools can be found in Tables A.15 and A.16. We shall
address application-specific parameters such as size and connectivity later on.

6.3.2. Training Readouts for Message Passing

The ultimate goal of the readout training is to define a set of weights wij between a liquid
Li and a readout Rij such that the population average output rate rij(t) of the readout
correctly encodes the message µij(t) at all times. For simplicity, we shall assume that
each neuron in the readout population Rij receives the same afferent weight vector wij .
Therefore, all readout neurons should fire with the same rate rij(t) up to small deviations
due to the variability in their parameters, which we shall discuss later.

If a readout neuron was a classical perceptron, its input weight vectorwij would directly
determine its output before binarization (which would be continuous and not spiking) via

classical
perceptron

I/O relation
rij = wijri + bij , (6.41)

where ri represents the output vector of Li and bij a bias that we shall henceforth neglect,
since it can be provided by the liquid itself and included in wij .14 In our case, both the
liquid and the readout have outputs that are non-continuous functions of time (spike trains
are usually represented by sums of delta functions, see Equation 2.30). Furthermore, the
output rate of a neuron is not equal to a weighted sum of its inputs.

We shall deal with these two issues by expressing the liquid output as a synaptic input
vector Li(t), which, at the same time, also represents the input vector for the readout.
For our exponential synapse model, the liquid-to-readout synapses simply convolve the
output spike train vector ρ(t) of the liquid with an exponential function exp

(
t−ts
τ syn

)
(see

Equations 2.47 and 2.50):

Li(t) = ρ(t) ∗ exp

(
− t− ts
τ syn

)
=


∑

spikes s of liquid neuron 1

Θ(t− ts) exp
(
− t−ts
τ syn

)
liquid output
as synaptic
input vector...∑

spikes s of liquid neuron n
Θ(t− ts) exp

(
− t−ts
τ syn

)
 (6.42)

The synaptic input current of a readout can now be represented analogously to the con-
tinuous output case:

Isyn
ij = wijLi . readout

input
current

(6.43)

13 The density parameter λ gives the main contribution to the chaoticity of the liquid (see Section 6.2)
and must be balanced carefully to keep the system on the edge of chaos.

14 We use single indices (and vectors) to denote the output of liquids and double indices for the output
of readouts.
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Figure 6.16.: I-r relationship of readout populations. Top: Measurement of the I-r
dependency (black crosses) and polynomial fit (red curve). Right: Spike
output of the readout for piecewise constant input current. Due to the ran-
domly drawn threshold voltages, the output becomes asynchronous, whereas
the Gaussian background causes irregularity, without changing the average
output rate. Figures taken from Petkov (2012).
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This still needs to be converted to an output rate. Although analytical approaches exist
(see Section 6.5.3), we shall determine the relationship between Isyn

ij and rij empirically.
To this end, each readout neuron receives a constant input current plus Gaussian white
noise, as well as a random threshold, in order to avoid synchronous firing. The I-r curve

I-r curveis then measured by injecting the same input current I into all neurons of a readout
population and then averaging their output rates, which are obtained by convolving
their output spike trains with a Gaussian. The result of the measurement, along with a
polynomial fit of the data, can be found in Figure 6.16.

We can now write down the full conversion equation from the liquid output to the
encoded message:

µij = α−1rij(I
syn
ij ) output

message of
readout

= α−1f(Isyn
ij )

= α−1f(wijLi) , (6.44)

where f = r(I) represents the measured I-r dependency. We could now train the liquid-
to-readout weight vectors wij by repeating the following simple procedure readout

training
:

1. provide the liquid Li with a training stimulus (which represents a set of input mes-
sages µki);

2. compute the correct outgoing message µij

3. measure the output message of the readout µ̃ij = αrij ;

4. modify the liquid-to-readout projection weights wij in order to reduce the distance
‖µ̃ij − µij‖.

However, instead of a time-consuming iteration, we can do the above in a single step if
we consider the inverse of Equation 6.44:

f−1(αµij) = wijLi(µki) . (6.45)

By providing a continuous input stream µki(t) which covers all relevant input message
configurations and requiring that the above equation must hold at all times t, we obtain
a system of linear equations. The least-squares-problem least-squares

problem,
linear

regression

of minimizing ‖µ̃ij − µij‖, is
equivalent to performing the linear regression of µij(t) to Li(t) and is thereby reduced
to finding the solution to the above linear system, which has a well-known analytical
expression:

w =
(
L̃iL̃

T
i

)−1
L̃Ti f

−1 , (6.46)

where we have used the vectors L̃i and f−1 to represent the time series Li(µki(t)) and
f−1(αµij(t)), respectively.
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Figure 6.17.: Readout training for LFGs. Top: Example training input for a liquid and
output of the readout after training (spike trains shown in blue). The un-
derlying input rate process and correct output rate are shown in black. The
filtered input rate and the measured output rate are shown in red. The post-
training output agrees well with the analytically calculated correct output.
Middle: Influence of the Gaussian kernel width (for converting spike trains
to firing rates) on the quality of the training result, which was measured as
the correlation between the correct and measured output rate of the read-
out. The optimum lies around 15ms. Bottom: Influence of the readout
population size on the quality of the training result. As expected, a larger
population size helps smooth out errors produced by single neurons. Above
150 neurons, the correlation between correct and measured output rates does
not increase significantly any more. Figure taken from Petkov (2012).
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The only remaining issues are of practical nature and concern the definition of the
training set µki(t) and the optimization of the readout size. Since we want to keep
our training as generic as possible, we should keep the training messages non-specific,
i.e., allow them to cover the entire possible range [0, 1]. In order to achieve that, we
have generated spike trains as inhomogeneous Poisson processes training

input
with rates given by an

Ornstein-Uhlenbeck process with reflective bounds (more on this process can be found
in Section 6.5.2), which we have converted to rates and then messages by convolution
with a Gaussian kernel (Figure 6.17, top panel). The optimization of its width was done
experimentally, as can be seen in the middle panel of Figure 6.17.

In order to optimize the readout population size, we have trained readouts of varying
size readout sizeand then measured the correlation between their output messages and the analytically
calculated correct messages after training. As expected, the correctness of the output is a
monotonically increasing function of the readout size. We have used a size of 343 neurons
to match the study by Steimer et al. (2009), but a reduction by a factor of up to 2
would still be feasible (Figure 6.17, bottom panel) and could be interesting for limited-
size neuromorphic systems.

6.3.3. Implementation of the Knill-Kersten Illusion

We will now apply the LFG framework to a well-known psychophysical inference prob-
lem – the Knill-Kersten Knill-

Kersten
illusion

illusion (Knill and Kersten, 1991). The illusion consists in the
following cognitive phenomenon: the perceived contour of an object appears to alter an
observer’s judgement about its reflectance, despite the shading in the presented image
remaining unchanged, as seen in the left panel of Figure 6.18. More specifically, the
presented image shows two adjacent identical cylinders and two adjacent identical cubes
with a sawtooth-like shading profile (the left and right objects are shaded identically,
being light gray on their left side and dark gray on their right). Despite the shading
profile of the cubes being identical to the one of the cylinders, most observers perceive
the cylinders as being identical, but the left cube as being darker than the right one. The
explanation of this illusion lies in the fact that no single source of light can explain the
shading/luminance profile of the cubes (in particular, the jump in the perceived shading
at their boundary), which causes the brain to (wrongly) infer that the reflectance of the
cubes must be different. A round shape, however, explains away the shading jump under
the assumption that the objects are illuminated by a light source on the left side of the
objects.15

As already suggested by the above explanation of the Knill-Kersten illusion, the problem
can be expressed as a BN Knill-

Kersten
BN

with 4 binary RVs. Two RVs can not be directly observed,
namely the 3D object shape O (0 ≡cuboid or 1 ≡cylindric) and its surface reflectance R
(1 ≡uniform or 0 ≡not), but they causally determine the 2D contour C (0 ≡straight or
1 ≡round) and the shading profile S (0 ≡sawtooth-shaped or 1 ≡otherwise), which are
observable RVS. The right panel of Figure 6.18 shows the corresponding BN.

The joint distribution of the Knill-Kersten BN reads:

P (S,R,O,C) = P1(S|R,O)P2(C|O)P3(R)P4(O) . (6.47)
15 The assumption of a single light source makes sense from an evolutionary point of view, since the brain

has evolved over millions of years in a world where the single most dominant source of light was the
sun.
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Figure 6.18.: Knill-Kersten inference problem. Left: Image producing the optical illusion.
Although the shading profile of the two cylinders is identical to the one of
the two cubes, observers perceive the cylinders as identical, but the left cube
as darker than the right one. The reason for this illusion is that, under the
assumption of a single light source, the inferred 3D shape of the cylinders
explains away the observed shading profile, while the flat surface of the adja-
cent cubes does not, causing the brain to perceive them as different. Right:
Representation as a Bayesian inference problem and associated binary BN.
The perceived (observed) 2D contour C depends on the (unknown) 3D shape
O of the object. The perceived shading profile S depends on both the 3D
shape O and the reflectance R. Figures taken from Petkov (2012).

The factor P1 encodes the fact that a cuboid shape with a reflectance jump and a cylin-
dric shape with uniform reflectance both cause a sawtooth-shaped shading profile, i.e.,
P1(S = 0|O = 0, R = 0) and P1(S = 0|O = 1, R = 1) are both high. The factor P2 simply
encodes the correspondence between a cuboid/cylindric 3D shape and a straight/round
2D contour, i.e., P2(C = 0|O = 0) and P2(C = 1|O = 1) are both high. The exact
numerical values of the above factors for all possible combinations of their arguments are
given in Tables A.17 and A.18. The prior expectance of various reflectances and shapes,
i.e., P3(R) and P4(O), was not fixed and will later be varied in order to evaluate the
performance of our neural implementation.

The translation of the BN to an FFG is rather straightforward and can be seen in
the left panel of Figure 6.19. The RV O appears in the three factors P1, P2 and P4. We
therefore require an equality node that creates three copies, O, O′ andO′′, and connects via
corresponding edges to factor nodes P1, P2 and P4, respectively. P1 and P2 further depend
on the observed RVs S and C and therefore receive corresponding incoming half-edges.
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Figure 6.19.: Translation of the Knill-Kersten inference problem to a neural network.
Left: FFG representation. Each factor in the joint distribution has its
arguments represented as incident edges. Since the RV O is an argument
of multiple factors, an equality factor is required to create an appropriate
number of copies. Right: LFG representation. Only factors that depend on
two or more variables need to be implemented by liquids, in this case: P1,
P2 and P=. Leaf factors and observed variables are implemented as Poisson
inputs. Figures taken from Petkov (2012).

Finally, P1 and P3 both depend on R and are therefore connected by a corresponding
edge. The translation of this FFG to an LFG follows the rules laid out in Section 6.3.1
and can be seen in the right panel of Figure 6.19.

After training (following the method described in 6.3.2, we have evaluated the perfor-
mance of our neural implementation of the Knill-Kersten inference problem by providing
the network with observations of S and C as well as various priors for R and O. For
each trial, we have therefore randomly generated the messages µS→P1 , µC→P2 , µP3→P1

and µP4→P= and compared all the messages computed by the network to the analytically
calculated correct messages. In order to provide a reference, we have also generated ran-
dom messages and compared them to the correct ones. Figure 6.20 shows the correctness
of the messages computed by the LFG (colored histograms in the foreground) compared
to that of random messages (black histograms in the background). The correctness of a
message is given by the difference between its value and the value of the corresponding
correct message, therefore a pronounced peak around 0 represents a good result.

Overall, we note that our neural implementation performs well, but not completely with-
out drawbacks. In particular, the quality of the messages deteriorates as they pass through
an increasing number of computational stages. The “most correct” message is µ2→= (yel-
low) since it is emitted by a node that receives only two inputs, one of which (µC→P2) is
precomputed analytically and therefore correct by definition. We find a similarly good per-
formance for µ=→1 (red), which depends on a precomputed message (µP4→P=) and µ2→=

(yellow), which, as we have already seen, has high accuracy as well. The other messages
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Figure 6.20.: Performance of the LFG implementing the Knill-Kersten inference prob-
lem. Left: Color coding of the transmitted messages computed by the net-
work. Right: Correctness of the messages computed by the network. The
six color-coded messages are measured for various inputs and compared to
the corresponding, analytically computed, correct messages. The difference
µcorrect−µmeasured is plotted as a colored histogram. For comparison, random
messages are generated for each trial, and the difference µcorrect − µrandom

is plotted as a black histogram in the background. The numbers attached
to each curve are the trial-averaged Kullback-Leibler divergences (in bits)
DKL (µcorrect ‖ µmeasured) and DKL (µcorrect ‖ µrandom). Figures taken from
Petkov (2012).

require more complex computations, as well as depending on other, potentially erroneous
messages, and therefore suffer from elevated error rates. We discuss the consequences of
this observation in the following section.

6.3.4. Discussion: Pros, Cons and Ideas for a Neuromorphic
Implementation

The quantitative experimental results of the previous section are, of course, not easily
generalizable to other inference problems, but they do highlight some conceptual problems
with the practicability of the LFG approach to more complicated scenarios.

As shown in Table A.19, the liquid populations we used were rather largeliquid/read-
out
size

. This was,
indeed, necessary, as smaller liquids appear to be unable to perform the required compu-
tations. The readout populations could have been reduced in size, but not below ca. 100
neurons without significant performance losses (see Figure 6.17, bottom panel). In total,
we end up with a neural network of over 6000 neurons for inference in a probability space
over only four binary variables, with a total of 16 possible states. Even if there is room
for improvement in the training methods, choice of parameters etc., it is unlikely to sig-
nificantly reduce this gap of three orders of magnitude between the number of represented
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Figure 6.21.: Kalman filter example. A particle in a 2D space (blue trajectory) experi-
ences a random acceleration at each time step. Measurements of the particle
position at varoius points along its trajectory (red crosses) are noisy. With
each update, the Kalman filter predicts a trajectory (green curve) based on
its previous prediction and the new measurement. Figure taken from Petkov
(2012).

RVs and the total number of neurons in the network.
The second issue concerns the accuracy of this approach and was already touched upon

in our explanation of the experimental results in the previous section. Each additional
computation stage (performed by a liquid and its corresponding readout) necessarily in-
duces errors, since the liquid is not a Turing machine. These errors accumulate error

propagation
as the mes-

sages pass through an increasing number of factors; already after having passed through
two liquids/readouts, the computed messages exhibit rather large deviations from the cor-
rect values. Given the described training method, the liquids themselves have no means
of performing error correction, since they must react to the distorted input messages
as if they were correct, as they cannot discern between correct and incorrect messages.
The propagation of errors would be even further exacerbated by an imperfect physical
substrate, as is, for example, the case for analog-VLSI neuromorphic devices.

Altogether, we must conclude that although the LFG implementation proposed by
Steimer et al. (2009) and reproduced by us is interesting and instructive, it appears,
in general, unfeasible for more complicated inference problems and therefore both bio-
logically unlikely as well as technically impractical. However, it might be applicable to
situations where the resulting LFG is shallow, i.e., where at each stage of computation,
the factors receive external observations, which effectively serve the purpose of error
correction. Practical problems of this nature exist, and are represented by the general
class of so-called hidden Markov models hidden

Markov
models

.

In particular, consider a chain of discrete-time observations z(t) of an RV whose exact
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value x(t) remains hidden. The evolution of the RV in discrete time has the Markov
property, i.e., p [x(t)|x(t− 1), . . . , x(1)] = p [x(t)|x(t− 1)]. A good prediction of x(t) will
take into account both the (noisy) observation z(t), as well as the previous prediction of
x(t−1). A well-known algorithm that performs these calculations is the so-called Kalman
filterKalman

filter
. It is often used for tracking moving objects, from missiles detected by radar to

particles in gas detectors (Figure 6.21). Figure 6.22 shows a possible implementation
of the Kalman filter as an LFG. Since at each stage of the calculation the prediction is
updated with a measurement, this algorithm could lend itself as a candidate for a practical
LFG implementation.

Figure 6.22.: Implementation of the discrete-time Kalman filter in a spiking neural net-
work.
a) Representation as an FG. The position xk of a particle in flight is ob-
served through a noisy device, yielding the observation zk, where the index
k denotes the discrete time. The trajectory of the particle is Markovian, i.e.,
at any point in time, its position xk depends only on its previous position
xk−1. The noisy observation is governed by so-called emission probability
factors gk(xk, zk) := p(zk|xk) and the movement is determined by so-called
transitional probability factors fk(xk, xk−1) := p(xk|xk−1). The resulting
factor graph represents the joint probability

p(x1, . . . , xn) = p(x1)
n∏
k=2

p(xk|xk−1)
n∏
k=1

p(zk|xk) . (6.48)

The Kalman filter algorithm is formally equivalent to the SPA in this FG.
b) Translation to an FFG-compatible graph. The factors fk and gk are
absorbed into single factors over 3 RVs:

gnew
k (xk−1, xk, zk) := fk(xk, xk−1)gk(xk, zk) . (6.49)

c) Translation to an FFG. Due to the above redefinition of factors, all vari-
able nodes are adjacent to at most two factor nodes. Therefore, they can be
simply eliminated and replaced by corresponding edges.
d) Translation to an LFG following the rules described in Section 6.3.1.
Figure taken from Petkov (2012).
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6.4. Spike-Based Stochastic Inference

In the previous section, we have presented a neural architecture that is in principle ca-
pable of performing analytical inference in arbitrary probability spaces over binary RVs.
The main drawbacks of the approach were the comparatively large network size and the
susceptibility of the information encoded by the network to local noise. In the following,
we shall present a fundamentally different concept for stochastic sample-based inference in
neural networks. Single binary RVs will be represented by single neurons, whereas tempo-
ral noise will be explicitly exploited rather than being regarded as a nuisance. This noise
will drive the network state to sample from a target probability distribution, and, as we
shall see, implicitly enable it to perform Bayesian inference in the represented probability
spaces.

We will approach this topic gradually, starting with a very simple model, and incremen-
tally extend it to finally obtain recurrent networks of LIF neurons which can be trained as
both generative and discriminative models for complicated, state of the art pattern recog-
nition problems. We shall start by describing an abstract neural network model with
relatively simple and deterministic dynamics – the Hopfield network – in Section 6.4.1.
This model can be, rather naturally, enhanced to form a stochastic network – the Boltz-
mann Machine – the dynamics of which we describe within the framework of Markov chain
Monte Carlo sampling in Section 6.4.2. How these dynamics can be mapped to initially
non-Markovian dynamics of refractory neurons is the subject of Section 6.4.3. This still
quite abstract model is, finally, mapped to the biologically realistic microscopic dynamics
of LIF neurons in Section 6.5.

The detailed understanding of noisy LIF dynamics in the context of neural sampling
from Boltzmann distributions has enabled some intriguing experimental results. In Sec-
tion 6.8, we describe the first implementation of neural sampling with LIF neurons (short:
LIF sampling) on analog neuromorphic hardware. In Section 6.6.2.2, we show how these
LIF-based Boltzmann machines can then be trained with well-known machine learning
algorithms to represent and classify various benchmark datasets. Finally, in Section 6.7,
we extend our LIF sampling framework from Boltzmann distributions to arbitrary distri-
butions over spaces of binary RVs.

The novel concepts described in this section are the result of an ongoing collaboration
and have already been the subject of several publications and theses. In particular, the
architecture and theory of LIF sampling networks were developed together with Johannes
Bill and Ilja Bytschok (Petrovici et al., 2013), the training for handwritten digit recog-
nition was done together with Luziwei Leng (Leng, 2014) and Marco Roth (Roth, 2014),
the experiments on neuromorphic hardware were performed together with David Stöckel
(Stöckel, 2015) (and are the result of a long but highly instructive chain of trial and error,
to which Johannes Bill, Marc-Olivier Schwartz, Alexander Kononov and Ilja Bytschok
have contributed significantly), and the extension to arbitrary spaces was designed and
implemented together with Dimitri Probst (Probst, 2014; Probst et al., 2015).

6.4.1. Hopfield Networks

The Hopfield networkHopfield
network

, named after its inventor John Hopfield (see, in particular, Hopfield,
1982), is an abstract neural network model based on theoretical microscopic models of
magnetic solids. By design, it shares many aspects with the Edwards-Anderson model
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of spin glasses, which itself borrows the fundamental structure of the Ising model of
magnetism in statistical mechanics.

A Hopfield network is composed of simple binary units zk ∈ {−1, 1}. The interaction
strength between the units is given by a zero-diagonal symmetric real-valued matrix, i.e.,

wij = wji ∈ R , (6.50)
wii = 0 . (6.51)

Each unit has an associated potential uk which represents the sum of “forces” it experiences
from interacting with all other units in the network:

uk =
n∑
i=1

wikzi . (6.52)

The units are, effectively, linear threshold linear
threshold

perceptron

perceptrons16, i.e., they “activate” if their asso-
ciated potential surpasses some fixed threshold θk:

zk =

{
+1 if uk =

∑
i
wikzi ≥ θk ,

−1 otherwise .
(6.53)

The temporal dynamics of the network vary between implementations. The state of
individual units may be updated sequentially (in a predefined or randomized oder) or
simultaneously in discrete time. While the latter is a more biologically realistic scenario,
the update schedule does not affect the ensemble behavior significantly.

For each state z of the network, we can define an energy function

E(z) = −1

2
zTWz + zTθ , energy

function of
a Hopfield
network

(6.54)

where W represents the weight matrix and θ the threshold vector. From a physics per-
spective, it is quite intuitive that the system prefers state with lower energy. Consider
a pair of units (zi, zj) with a positive interaction wij ≥ 0. If one of them is active (e.g.,
zi = 1) at some point in time, it shifts the other’s potential upwards (Equation 6.52),
making it more likely to be in the active state as well. If one of them is inactive, (e.g.,
zi = −1), the potential shift for the other one will be negative, increasing the likelihood
of it being inactive as well. Therefore, a positive weight encodes a higher likelihood for
symmetric states (1, 1) and (−1,−1). Following the same line of thought, we can easily
see how a negative weight leads to a higher likelihood for the antisymmetric states (1,−1)
and (−1, 1). If we now calculate the product ziwijzj for all four preferred configurations
of a pair of units given their interaction weight, we find that it is always positive – and
therefore has a negative contribution to the energy function defined in Equation 6.54. As
should indeed be the case with physical systems, the Hopfield network therefore prefers
states with lower energies.

Since the dynamics of the ensemble follow a negative energy gradient, they effectively
implement gradient descent gradient

descent
on the energy function. Therefore – as is usually the case for

gradient descent – a Hopfield network will almost surely converge towards a local (and not
16 A.k.a. McCulloch-Pitts neurons with Heaviside transfer functions.
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necessarily global!) energy minimum. Since the position of the energy minima in state
space can be controlled by W and θ, and these parameters can be trained by various
(Hebbian) algorithms, the Hopfield network lends itself as a simple model of memory
storage.

We need to point out that the likelihood-of-particular-states-argument given above
was only for intuitive support. The dynamics of the Hopfield network are entirely
deterministicdeterminis-

tic
dynamics

. In the following section, we will transform this deterministic model into a
stochastic one and give the likelihood of states a formally sound, quantitative measure.

Until now, we have used zk ∈ Ωk = {−1, 1} as possible values of our binary RVs. There
is no particular reason behind this choice other than the historical origins of the Hopfield
model. In the following, we shall switch to Ω∗k = {0, 1}, which, as we shall see later,
is more intuitive in the context of spiking neurons. Nevertheless, the joint distribution
should remain unchanged under the mapping zk = −1 → z∗k = 0 and zk = 1 → z∗k = 1.
This can be ensured with appropriate transformations of W and θ (for Ωk = {−1, 1}) to
W ∗ and θ∗ (for Ω∗k = {0, 1}):zk ∈

{−1, 1} →
{0, 1}
mapping

θ∗ = 2θ + 2W1 and (6.55)
W ∗ = 4 ∗W , (6.56)

where 1 represents the vector (1, . . . , 1)T .

6.4.2. Boltzmann Machines and Markov Chain Monte-Carlo Sampling

In Section 6.3, we have already described a network model which performs inference
in probability spaces over binary RVs. It is clear that, in order to be able to perform
the necessary computations, the network structure must somehow store the information
about the joint distribution. Indeed, the subdivision in liquid-state-machine submodules
explicitly represents the factorization of the joint probability, whereas the connection
matrix of each liquid and its surrounding readouts implicitly represents the functional
form of the implemented factor. More importantly however, the network also encodes
the computed (marginal) probabilities explicitly, as firing rates. This is, of course, but
one of many ways to encode distributions, which incidentally appears somewhat at odds
with the observations we have made regarding the ambiguous images from Figure 6.1. If
the brain was indeed explicitly encoding probabilities, then there would be no perceptual
jumps between the two perceived motifs; since the visual input remains unchanged and
the prior can be safely assumed as constant, the posterior distribution would have to be
constant as well.

An alternative hypothesis is that, at any time, the state of some relevant ensemble
of neurons in the brain explicitly encodes a possible representation of the underlying
physical object in the ambiguous image. In this scenario, the network activity would
explicitly encode states in the sample space and not probabilities. Driven by some yet-to-
be-defined dynamical process, the state of this neural ensemble could then jump across
the associated probability landscape and sample from the posterior distribution (see the
left panel of Figure 6.23 for an illustration). Assuming that the two possible percepts
correspond to two high-probability modes of the posterior, jumping from one of these
states to the other would be the direct dynamical correlate of the observed perceptual
switches. Over the following sections, we shall incrementally build such “sampling neural
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networks”.

Let us return to the deterministic Hopfield model we have described in the previous
section. We shall start by removing the threshold θk and replace it with a bias bk that
serves a similar functional purpose: unit

potentials in
a BM

uk =
n∑
i=1

wikzi + bk . (6.57)

Assuming that uk encodes the likelihood of a unit to have the value zk = 1, then a positive
bk increases this likelihood in a similar fashion as a smaller (negative) θk would. We must
therefore redefine the energy function as energy

function of
a BME(z) = −1

2
zTWz − zTb . (6.58)

Note the sign change in the second term, as a large bias has the opposite effect of a high
threshold.

We now reverse our physics argument from the joint distribution of MRFs (see Equations
6.15-6.17). If we interpret the state z of our network as a possible microstate in a canonical
ensemble, then we can assign it a probability that depends on its energy:

p(z) =
1

Z
exp[−E(z)] =

1

Z
exp

[
1

2
zTWz + zTb

]
, joint

distribution
and

partition
function of

a BM

(6.59)

where Z represents a normalization factor and is given by

Z =
∑
z

exp[−E(z)] =
∑
z

exp

[
1

2
zTWz + zTb

]
. (6.60)

We note that these equations are formally equivalent to the Ising model with unit inverse
temperature β = 1/kBT = 1.17 As its target distribution p(z) is a Boltzmann distribu-
tion, such a network is aptly called a Boltzmann machine (BM) Boltzmann

machine
.

We now need to define the dynamics of the system as a set of state update rules, such
that the network will sample from its target distribution. In particular, this means that
the distribution of the time series z(t) should approach p(z) as t approaches infinity. In
other words, we require our dynamical system to be ergodic.
17 The same equations can be obtained from a special subcase of the MRFs discussed in Section 6.1.2.

We can define the factors not over maximal cliques, but over cliques of size 1 and 2 as

Φ(zk) = exp[bkzk] and (6.61)

Ψ(zi, zj) = exp

[
1

2
wijzizj

]
. (6.62)

The joint distribution then reads (Equation 6.17):

p(z) =
1

Z

∏
k

Φ(zk)
∏
ij

Ψ(zi, zj) =
1

Z
exp

[
1

2

∑
ij

wijzizj +
∑
k

bkzk

]
, (6.63)

which is identical to Equation 6.59.
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Figure 6.23.: Visualization of MCMC sampling. Left: Generic MCMC sampling from a
joint distribution over two real-valued RVs. The jump from each state to the
next one is defined by a transition operator that depends only on the current
state. High-probability states (red) are more likely to be the target of a jump
than low-probability states (blue). Middle: Transition probabilities for a
single binary RV in Gibbs sampling. Right: Same as in left panel, but with
Gibbs sampling. Since the RVs are updated sequentially, each jump happens
in parallel to one of the axes. Individual samples are recorded only after all
RVs have been updated.

We start by modifying the deterministic Hopfield update rule to a stochastic one. In-
stead of determining the state zk by comparing the potential uk to a fixed threshold θk,
we consider uk to encode the probability of zk = 1. In particular, we (re)define

uk := ln
p(zk = 1|z\k)
p(zk = 0|z\k)

,local com-
putability
condition

(6.64)

which we shall call the local computability condition. This functional relationship is, in
principle, arbitrary, but this particular form turns out to be quite useful for our BMs.
If we calculate p(zk = 1|z\k) and p(zk = 0|z\k) from Equation 6.59 and plug them into
Equation 6.64, we obtain

uk =
n∑
i=1

wikzk + bk , (6.65)

which is precisely the definition of uk from Equation 6.57. In other words, the local
computability condition ensures that, under the assumption that the network states follow
a Boltzmann distribution, the potential has the functional form from Equation 6.57 – a
linear sum of “forces” from other units plus a bias of its own.

Since unitarity requires that p(zk = 1|z\k) = 1 − p(zk = 0|z\k), we can now calculate
the state probabilities for individual units from Equation 6.64:

p(zk = 1|z\k) =
1

1 + exp(−uk)
= σ(uk) ,activation

function
(6.66)
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where σ(·) represents the logistic function. The function p(zk = 1|z\k) is often called an
activation function.

At this point, we introduce time as an explicit variable. In particular, we shall use t′ as
a finely granular time line, where each temporal increment corresponds to an update of a
single unit z(t′)

k → z
(t′+1)
k . This will become important later, when we will need to switch

to a coarser time frame in which all units are updated between consecutive points in time.
From a computational perspective, it would be advantageous for a unit to able to receive
a new state every time it is updated, as well as being required to remember as little as
possible of its past history. In particular, we can choose the local transition probability
pkT of zk at time t′ as

• independent of z(t′)
k itself and

• equal to the respective state probabilities given by the activation function:

pkT (z
(t′+1)
k , z(t′)) := p(z

(t′+1)
k |z(t′)

k , z
(t′)
\k ) local

transition
probability

!
= p(zk = 1|z\k)

=

{
σ(uk(t

′)) if z
(t′+1)
k = 1 ,

1− σ(uk(t
′)) if z

(t′+1)
k = 0 .

(6.67)

Note that all uk(t′) are fully determined by z(t′)
\k . It should be quite obvious that this

choice of pkT leaves p(zk|z\k) invariant and therefore samples correctly from the conditional
distribution of zk given z\k. Having defined a transition probability, we have implicitly
rendered all units stochastic, so we can now use “RV” and “unit” synonymously.

The local transition probability pkT is often described in literature as a local tran-
sition operator T k. This is, however, rather misleading18, since one would intu-
itively expect the transition operator T k to actually produce a new state z(t′+1) =

(z
(t′)
1 , . . . , z

(t′)
k−1, z

(t′+1)
k , z

(t′)
k+1, . . . , z

(t′)
n ) (where only zk was updated) from the old one

z(t′) = (z
(t′)
1 , . . . , z

(t′)
n ). In other words, for our state space z ∈ Ω = {0, 1}n we should

expect

pkT : {0, 1}n+1 7→ [0, 1] (see Equation 6.67) and (6.68)

T k : {0, 1}n 7→ {0, 1}n . (6.69)

As we consider widespread use to be an insufficient argument for misleading denomina-
tions, we will follow the above intuition for the meaning of transition probabilities and
transition operators. We therefore define our local transition operator T k as local

transition
operatorz(t′+1) = (z

(t′)
1 , . . . , z

(t′)
k−1, z

(t′+1)
k , z

(t′)
k+1, . . . , z

(t′)
n ) =: T k(z(t′)) (6.70)

18 The term “operator” does make sense when pT is applied to a probability distribution over the entire
state space, since it produces another probability distribution – similarly to to operators in quantum
mechanics, which are homomorphisms on the Hilbert space of wavefunctions, which are, in turn,
conceptually similar to probability distributions.
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and set it to a Bernoulli process with success rate pkT that affects only zk:

z
(t′+1)
k ∼ B(1, pkT ) , (6.71)

where B(n, p) denotes a binomial distribution with parameters n and p. In practice, T k

will produce new states in conformity with the transition probability pkT following a simple
algorithm:

1. draw a random number from a uniform distribution r ∼ unif(0, 1);

2. compare it to pkT (z
(t′+1)
k = 1, z(t′)) = σ(uk(t

′));

3. if r < σ(uk(t
′)) set z(t′+1)

k → 1, else z(t′+1)
k → 0.

A graphical representation of local updates is shown in the middle panel of Figure 6.23.

A full update of the system is realized in n local update steps. The global transition
probability from z(t′) to z(t′+n) is then given by a product of local transition probabilities:

global
transition
probability pT (z(t′+n), z(t′)) :=

n∏
k=1

pkT (z
(t′+k)
k , z(t′+k−1)) (6.72)

and the corresponding global transition operator T can be naturally defined as a chain
over the local transition operators Tk:global

transition
operator z(t′+n) =: T (z(t′)) := Tn ◦ · · · ◦ T1(z(t′)) . (6.73)

For the global sampling process, we can now discard all intermediate updates and only
keep the samples after a full update of all RVs.“valid”

samples
Our sample times will therefore be

t = (0, 1, 2, . . . , T )←→ t′ = (0, n, 2n, . . . , Tn) (6.74)

and our full sampling process is defined by the global transition operator T (z(t)) and the
associated transition probabilities pT (z(t+1), z(t)).

Since the update is stochastic (Monte Carlo) and the state of the system z(t) at any
time t depends only on its previous state z(t−1) (Markov property), the chain induced
by T represents a Markov chain Monte Carlo (MCMC)Markov

chain Monte
Carlo
sampling,
Gibbs
sampling

sampler. In particular, such a
sequential update of individual units according to the local conditional p(zk = 1|z\k)
is called Gibbs sampling and is a special case of the more general Metropolis-Hastings
algorithm. A graphical representation of Gibbs sampling is shown in the right panel of
Figure 6.23.

As discussed above, in order to ensure that our algorithm does indeed sample from
the target Boltzmann distribution p(z), we need to prove that the joint distribution p(z)
is invariantinvariance under the global transition probability pT and that the global transition
operator T is ergodic. All of these follow from the fact that Gibbs sampling satisfies
detailed balancedetailed

balance
, i.e.,

p(z)pT (z′, z) = p(z′)pT (z, z′) . (6.75)
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This equation describes an equal probability mass flow in both directions between z and
z′, and can be easily verified for our pT .19 In particular, this holds independently of the
target distribution. If detailed balance holds, then a Markov chain is said to be reversible reversibility.

Although detailed balance already implies ergodicity, we shall discuss this property
separately, since it may hold for a Markov chain even if it is not reversible. Ergodicity

ergodicitycan be proven by demonstrating that the Markov chain induced by T is irreducible and
aperiodic.

A Markov chain is irreducible irreducibil-
ity

if any state z(t+1) is accessible from any other state
z(t). For individual RVs zk, this follows from the fact that the logistic function σ is
strictly positive and strictly smaller than one, so arbitrary local jumps of zk will always
have nonzero probability (σ(uk) or 1 − σ(uk), depending on the target state). Since the
transition from any z(t) to any other z(t+1) can be represented as a chain of local jumps
(Equation 6.73), it will always have nonzero probability as well.

A Markov chain is aperiodic aperiodicityif, for any initial state z0, there exists a t̃ such that for
every t > t̃ the system may return to its initial state:

p(z(t) = z0|z(t0) = z0) > 0 , ∀t > t̃ . (6.76)

Since any state has a nonzero probability of remaining unchanged (due to σ(uk) ∈ (0, 1),
see above), aperiodicity is a trivial consequence.20

We end our brief description of Gibbs sampling and BMs with a discussion of the
advantages of stochastic approaches to probabilistic inference (i.e., sampling) compared
to analytical ones, such as the belief propagation algorithms from Section 6.3.

Let us first return to an earlier point we made in Section 6.1.2. As can be seen in the
definition of the Boltzmann distribution (Equation 6.59), assigning a numerical value to
the probability of some state z requires computing the partition function Z. This, in turn,
requires computing a sum over all possible states z (Equation 6.60), which, for binary
RVs zk has a computational cost of O(2n), where n represents the number of RVs in the
BM. Clearly, this quickly becomes computationally unfeasible. Gibbs sampling, on the
other hand, only requires the computation of local transition probabilities pkT . These are
simple logistic functions over potentials uk, which are, in turn, calculated as log-odds of
Boltzmann probabilities (Equation 6.64), where the partition functions cancel out. This
is one essential motivation for MCMC sampling: computing local updates as probability
ratios gets rid of the troublesome partition function.

Another advantage of stochastic inference concerns the computation of marginal and
conditional distributions. In general, computing the joint distribution of a subset of z′ of
the RVs in z requires marginalizing out all other RVs z\z′ . Unless we have a special case

19 The concept of detailed balance was initially developed in statistical mechanics for describing ther-
modynamic equilibrium systems. The reversal of the probability mass flow in Equation 6.75 is, for
example, equivalent to PT -inversion for particle collisions in a gas. In this sense, detailed balance is
therefore intimately linked to the concept of PT -invariance.

20 Ergodicity is intimately connected to the mixing properties of a sampler, i.e., its ability to quickly
travel through all high-probability regions of the state space. While in theory Gibbs sampling from
Boltzmann distributions is guaranteed to converge to the target distribution for t → ∞, any real-
istic scenario imposes a finite sampling time. This may critically impair the mixing ability of the
Gibbs sampler, in particular in conjunction with high barriers separating deep troughs in the energy
landscape.
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Figure 6.24.: Sample-based computation of marginals and conditionals. As in Figure 6.23,
the probability space is spanned by a pair (x, y) of real-valued RVs, with red
and blue denoting high- and low-probability states, respectively. Marginal-
ization over y is performed simply by counting the x values of samples, while
disregarding their y value. Visually, it can be interpreted as “squashing” the
y axis, which can be easily seen to yield the bimodal distribution over x
depicted on top. Conditioning on a fixed value of x is simple performed
by fixing the value of x, i.e., not updating it during the sampling process.
Samples are then gathered only along the dashed line, yielding the unimodal
distribution depicted on the right.

for which an efficient algorithm can be found (as is the case for the sum-product algorithm
in loop-free factor graphs), this operation requires summing up the joint distribution p(z)
over all possible states of z\z′ . Just like in the case of the partition function – which can
be viewed as the ultimate marginalization, since it marginalizes out all RVs – the compu-
tational cost of this operation is exponential in the number of RVs to be marginalized out.
If, on the other hand, the distribution p(z) is sampled, marginalization comes for free,
since it simply requires neglecting the values of the RVs we want to marginalize out. Con-
ditioning on observed variables is equally unproblematic, since they can be simply fixed
in the stochastic update process, thus even saving computation time. The calculation of
marginals and conditionals from sampled distributions is illustrated in Figure 6.24.

Evidently, sampling only offers an approximation p∗(z) of the target distribution p(z).
However, this distribution becomes increasingly accurate as more samples are collected.
Moreover, even after few steps, the Markov chain can offer a first approximation of the
main modes of p(z). This capability of providing (increasingly) useful results at any point
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in time is often referred to as anytime computing anytime
computing

and is an essential argument for the
biological plausibility of sample-based representations, as it is easy to imagine situations
where an organism may not have enough time to wait until an analytical neural inference
algorithm has converged to a solution.

6.4.3. MCMC Sampling with Spiking Neurons

In the previous sections, we have described the local variable uk as being a “potential”,
while arguing that it represents a “sum of forces” from other units in the network. The term
“potential” unit

potential as
a membrane

potential

was not used in the physical sense, but with a neural interpretation in mind:
with the shape defined in Equation 6.57 (and derived from the Boltzmann distribution),
it bears striking similarity to the membrane potential of LIF neurons (see Equations 4.38
and 4.58), albeit in a much simpler form. Indeed, the bias can be viewed as an analogue of
the offset potential (either El +I

ext/gl or ueff
0, depending on the model), whereas the sum

is similar to the synaptic input, only with rectangular instead of DOE PSPs. The local
computability condition defined in Equation 6.64 turns out to be a neural computability
condition21 (NCC) neural com-

putability
condition

under the assumption of sampling from Boltzmann distributions over
binary RVs.

However, there is evidently much more to spiking neurons than just their passive
membrane potential. In order to find a formal equivalence between the dynamics of
neurons and stochastic sampling, we shall first introduce an abstract model of spiking
neurons, for which we can formulate an exact theory of neural sampling neural

sampling
. This model was

first described in Buesing et al. (2011) and provides a series of fundamental concepts and
relations. It shall later serve as an essential reference when we will formulate a sampling
theory for the more complex dynamics of LIF neurons.

The fundamental assumption of the neural sampling theory is that the activity of a
single neuron encodes the state of an associated binary RV zk. Since biological neurons
communicate with spikes, it is rather natural to interpret a spike as a switch spikes as

state
switches

from zk = 0
to zk = 1.22 We can then define that the neuron remains in the state zk = 1 for an
arbitrary (for now) duration τon after the occurrence of a spike at time ts:

z
(t)
k =

{
1 if ts < t < ts + τon ,
0 otherwise .

(6.77)

In order to avoid the potential complication of two spikes occurring with a distance smaller
than τon, we make use of another biological feature of neurons: the existence of an absolute
refractory period τref (see Section 2.1.2). By setting

τon = τref , states and
refractori-

ness

(6.78)

we define a clear mapping of spike trains to binary RVs: zk = 1 if and only if the kth

21 This term was initially coined in Buesing et al. (2011), but the functional form of the NCC is none
other than the one used for Gibbs sampling in Boltzmann machines and Ising models.

22 Strictly speaking, this is not entirely correct, since model neurons in discrete time may spike at maxi-
mum rate, with no 0-states between their refractory periods, as we also discuss further on. However,
since any physical neuron requires nonzero time for the generation of an AP following absolute refrac-
toriness, equating a spike to a zk = 0→ 1 switch remains, for all practical purposes, correct.
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Figure 6.25.: Neural sampling with absolute refractory times: interpretation of spike
trains. Each neuron is associated with a binary RV zk, and its refractory
periods are considered to represent 1-states of their associated RV. A spike
can be interpreted as a switch from zk = 0 to zk = 1. A spike raster plot
can therefore be read as a sequence of states of a binary vector z. Figure
taken from Petrovici et al. (2013).

neuron is refractory.23 A spike raster plot can then be easily read as the temporal evolution
of a binary vector z(t) representing the state of an ensemble of binary RVs (see Figure
6.25).

Let us first consider the neural dynamics of a single neuron with constant membrane
potential uk in discrete time, where τref is simply an integer. As with Gibbs sampling, we
shall use a more finely granular time frame t′ → · · · → t′ + n, since the ζk are updated
successively for all n neurons in the network within a global sampling step t → t + 1.
For τref = 1, we could simply represent the dynamics of zk as Gibbs sampling. We would
then define the neuron as inherently stochastic and have it spike with a probability given
by the activation function 6.66: p(spike) = σ(uk). The dynamics of zk would then be
exactly those depicted in the middle panel of Figure 6.23 and, by definition of the update
rule, Markovian – just as Gibbs sampling. However, if we allow a longer refractory period

refractory
period

τref > 1, our spike probability may no longer be first-order Markovian, since the neuron
would have to remember when it has last spiked. In particular, we would require

p(spike at time t′) = 0 if

τref∑
τ=1

z
(t′−τ)
k > 0 . (6.79)

In order to remain in the framework of MCMC sampling, we must therefore define an
additional variable ζk that measures refractorinessrefractori-

ness
variable

. The dynamics of ζk are very simple:
it jumps to τref when the neuron has fired and then decays linearly until it reaches 0 (see
Figure 6.26). The neuron may then only fire at time t′ + 1 if ζ(t′)

k ≤ 1. Note how the
refractory variable maps surjectively onto the state variable:

ζ
(t′)
k ≥ 1 7→ z

(t′)
k = 1z-to-ζ

mapping
(6.80)

ζ
(t′)
k = 0 7→ z

(t′)
k = 0 (6.81)

23 While we shall henceforth adhere to this one-to-one mapping between zk = 1 and absolute refractori-
ness, we should note that Buesing et al. (2011) also provide an extension of the neural sampling theory
to an abstract neuron model with relative refractoriness.
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Figure 6.26.: Neural sampling with absolute refractory times: abstract model. Left:
Transition probabilities pkT of the refractoriness variable ζk. An emitted
spike causes ζk to jump to the value τref , from where it decays by 1 in each
time step. During this time, the neuron may emit no spike. Once it has
reached the value 1 or 0, the neuron is allowed to spike again. Right: All
dynamic variables associated with a single neuron. The membrane potential
uk represents a sum over rectangular PSPs elicited by incoming spikes. The
probability of a neuron to emit a spike itself (in grayscale) depends on the
membrane potential according to Equation 6.85. When a spike is emitted,
the state variable zk switches to a 1-state for the duration τref . At the same
time, the refractoriness variable ζk obeys the dynamics depicted in the left
panel. Note how the entire state (u, z, ζ) of the network can be calculated
directly from ζ, meaning that the dynamics of ζ fully define the dynamics
of the entire network. Figures taken from Probst et al. (2015).

This mapping also explains why spiking is allowed at time t′ + 1 if ζ(t′)
k = 1: it allows

p(zk) = 1, or, in other words, a continuous 1-state.

Effectively, the dynamics of the state variable now follow from the dynam-
ics of the refractory variable. In particular, the firing probability p(z

(t′+1)
k =

1|neuron is not refractory) now translates to p(ζ
(t′+1)
k = τref |ζ

(t′+1)
k ≤ 1). However,

since with every spike the neuron is now forced into the 1-state for an extended period of
time, we need to change the spiking probability in order to maintain the state probability
defined by the activation function24:

p(zk = 1) = σ(uk) . (6.82)

If we denote the firing probability by pspike, the unnormalized relative time spent by a
24 Remember that this particular shape of the activation function is not arbitrary, but was derived from

the chosen form of the NCC, which is, in turn, required for the membrane potential to assume a
neurally compatible shape when sampling from Boltzmann distributions.
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ζk τref . . . 1 0
p(ζ

(t)
k ) σ(uk)/τref σ(uk)/τref σ(uk)/τref 1− σ(uk)

p(ζ
(t+1)
k ) [σ(uk)/τref + 1− σ(uk)] σ(uk)/τref σ(uk)/τref [σ(uk)/τref + 1− σ(uk)]

· σ(uk − ln τref) · [1− σ(uk − ln τref)]

Table 6.1.: Stationarity of the refractory variable distribution p(ζk) under the transition
probability pkT (Equation 6.85). The evolution of this distribution after a single
transition is given by Equation 6.90.

neuron in the refractory (zk = 1) state amounts to pspike · τref , whereas the unnormalized
relative non-refractory time is simply 1− pspike. By equating the refractory-time-to-total-
time ratio to the activation function, we can immediately solve for pspike:

pspike · τref

pspike · τref + 1− pspike
= p(zk = 1)

!
= σ(uk)firing

probability
(6.83)

=⇒ pspike = σ(uk − ln τref) . (6.84)

We can now fully define the MCMC dynamics of a single abstract spiking neuron by a
transition probability over ζk:local

transition
probabilities

pkT (ζ
(t′+1)
k , ζ

(t′)
k ) :=


p(ζ

(t′+1)
k = ζ

(t′)
k − 1|ζ(t′)

k ≥ 2) = 1 ,

p(ζ
(t′+1)
k = τref |ζ

(t′)
k ≤ 1) = σ(uk − ln τref) and

p(ζ
(t′+1)
k = 0|ζ(t′)

k ≤ 1) = 1− σ(uk − ln τref) .

(6.85)

Following our above definition of pkT , the definition of the local transition operator Tk
follows the one we had for Gibbs sampling (compare Equation 6.70)local

transition
operator ζ(t′+1) = (ζ

(t′)
1 , . . . , ζ

(t′)
k−1, ζ

(t′+1)
k , ζ

(t′)
k+1, . . . , ζ

(t′)
n ) =: T k(ζ(t′)) (6.86)

and is straightforward for ζ(t′)
k ≥ 2, while otherwise resembling the functional form of the

Gibbs local transition operator (Equation 6.71):

ζ
(t′+1)
k

{
= ζ

(t′)
k − 1 if ζ

(t′)
k ≥ 2 ,

∼ B(1, σ(uk − ln τref)) if ζ
(t′)
k ∈ {0, 1} .

(6.87)

The left panel of Figure 6.26 shows a graphical depiction of the above equations.

We can now check the correctness of the transition probability/operator defined above
by verifying the stationaritystationarity

under local
transitions

of p(ζk) under pkT . The activation function requires p(zk =
0) = 1− σ(uk), so with the mapping from Equation 6.81 we obtain

p(ζk = 0) = 1− σ(uk) . (6.88)

The state zk = 1 must be equally shared by ζk ∈ {1, . . . , τref}, since each of these states
is reached exactly once after each spike (Equation 6.87), so we have

p(ζk = τref) = · · · = p(ζk = 1) =
σ(uk)

τref
. (6.89)
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Figure 6.27.: Network of 40 abstract neurons with τref = 20 ms sampling from a tar-
get Boltzmann distribution with randomly chosen weighs and biases. Left:
Raster plot showing spikes from the entire network. A subset of 5 neurons
(gray box) is chosen for comparison with the target distribution. Right:
Joint distribution over the 5 binary RVs associated with the selected neu-
rons. Since already at this small size (40 RVs) an analytical computation
of the distribution is completely unfeasible, Gibbs sampling was used as
a reference. The distribution sampled by the network (blue) after 104 s is
in excellent agreement with the one obtained from Gibbs sampling (gray).
Figures taken from Buesing et al. (2011).

The evolution of these probabilities after one update step is given by the (discrete)
Chapman-Kolmogorov equation: Chapman-

Kolmogorov
equationp(ζ

(t′+1)
k ) =

∑
ζ

(t′)
k

p(ζ
(t′)
k )pkT (ζ

(t′+1)
k , ζ

(t′)
k ) (6.90)

Table 6.1 represents these probabilities explicitly, which take on a rather sparse shape
since only few transition probabilities are nonzero. It is then quite straightforward to
check that with our above definition of pkT , all p(ζk) are left unchanged.

The extension from single neurons to networks of neurons can be done equivalently
to the way we did it for Gibbs sampling. We first switch to the coarse time frame t
where one update step for the entire system is equivalent to n local update steps, global

transition
operator

one for
each neuron. We can now chain our local transition operators to form a global transition
operator

T = Tn ◦ · · · ◦ T1 , (6.91)

with which we can sample from the joint distribution p(ζ) and thereby, as shown above,
implicitly from p(z). The global transition probability then reads global

transition
probability

pT (ζ(t+1)≡(t′+n), ζ(t)≡(t′)) :=
n∏
k=1

pkT (ζ
(t′+k)
k , ζ(t′+k−1)) . (6.92)
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Figure 6.28.: Effect of spike transmission delays on the sampled distribution. The exem-
plary network has two neurons with strong excitatory weights, such that
when one neuron spikes, the other one is forced to spike simultaneously.
(Formally, we can achieve perfect correlation by setting w12 = 2M and
b1 = b2 = −M while letting M →∞.) In these conditions, the 1-states are
perfectly aligned, i.e., the sampled distribution does not contain mixed (01
or 10) states. Transmission delays destroy this alignment by inducing mixed
states (correct joint states are depicted in green, incorrect ones in red). The
only way to deal with transmission delays without changing the theory is
to use refractory periods that are significantly longer than the delays, thus
decreasing the relative time that the network spends in “wrong” states (the
“red-to-green ratio”).

As opposed to Gibbs sampling however, neural sampling with refractoriness is explicitly
non-reversibleirreversible

Markov
chain

(for example, the transitions from ζk + 1 to ζk are all allowed, but the
reverse transitions are forbidden). Therefore, detailed balance can not hold, so stationar-
ity and ergodicity (irreducibility, aperiodicity) must be demonstrated separately. Indeed,
the global transition probability and operator do have these properties, but since demon-
strating this is more of a technical exercise, we refer to Buesing et al. (2011) for these
formal proofs. An example of a network of stochastic spiking neurons sampling from a
Boltzmann distribution over 40 RVs is shown in Figure 6.27.

The membrane potentials u are not independent dynamic variables, since they can be
computed directly from z. In practice, this can be done analogously to Gibbs sampling,
but that would require each neuron to gather the state of all the other neurons at every
point in time in order to calculate uk (Equation 6.57). This is where the efficiency of spike-
based communicationspike-based

communica-
tion

comes in. Exchange of information can happen only through spikes,
with each spike emitted by a neuron manifesting itself as a PSP of appropriate weight on
the membranes of all other neurons, as long as the PSPs are defined appropriately. In
particular, we require the PSPs to be rectangular, with a duration (“time constant”) equal
to the refractory periodrectangular

PSP
duration

τ syn = τref . (6.93)

Then, we achieve a precise correspondence between zk = 1 and ∆ui = wki, as required by
Equation 6.57.
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Note that Equation 6.57 says nothing about a reset no
membrane

reset

upon emission of a spike. Indeed,
in this model, uk is not affected at all by emitted spikes or refractoriness, as would be
the case in the most commonly used neuron models – or in biological neurons, for that
matter. In the following sections, we shall discuss how this limitation can be overcome.

We can now also recognize another essential requirement of this model: synaptic trans-
mission must be instantaneous no

transmission
delays

, otherwise the synchronicity of states and PSPs is violated.
An intuitive example of how this affects the sampled distribution is shown in Figure 6.28.
This issue can obviously become cumbersome for any physical implementation, be it bio-
logical or neuromorphic, since physical communication can never really be instantaneous.
One possible solution is, however, straightforward: by increasing refractory times, the
relative shift of states and PSPs can be made smaller, thereby restoring (approximately)
correct sampling. We need to explicitly deal with this issue when aiming for a neuromor-
phic implementation of LIF sampling, which we discuss in Section 6.8.

Since here we have, effectively, derived this model from Gibbs sampling, time was
naturally discretized between update steps. The transition from discrete to continuous
time is rather straightforward, by having the physical time corresponding to an update step
converge to zero, while at the same time increasing the number of steps in the refractory
period correspondingly. For the formal procedure, we point again to Buesing et al. (2011).
For an intuitive understanding, it suffices to remember that the refractoriness variable ζ
was only introduced artificially, in oder to allow us to represent the dynamics of spiking,
refractory neurons as a first-order Markov chain and thereby as MCMC sampling. The
nature (discrete or continuous time) and mechanism (countdown variable, checking for
time of last spike, timed inactivation of ion channels etc.) of an actual implementation
of refractoriness in a software model or physical system carries no relevance, as long as
refractory times are fixed, absolute and equal with τ syn for all neurons.
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6.5. Stochastic Inference with Deterministic Spiking Neurons

While having elegance and clarity on its side, there are at least two reasons why the
abstract, inherently stochastic neural sampling model from Buesing et al. (2011) needs
to be extended to a more mechanistic neuron model. On one hand, experiments have
demonstrated the largely deterministic nature of single neurons (Mainen and Sejnowski,
1995). On the other hand, the vast majority of software and hardware back-ends mainly
use deterministic neuron models (Brette et al., 2007; Indiveri et al., 2011).

The “greatest common divisor” of these back-ends, as well as the arguably most widely
used model in computational neuroscience, is the LIF model, which we have already
extensively discussed in Section 2.2.1.1 and throughout Chapter 4. In the following, we
shall describe how neural sampling can be implemented in networks of LIF neurons. The
central ideas of LIF sampling have already been published in Petrovici et al. (2013). In
the process of developing a rigorous theory of “LIF sampling”LIF

sampling
, we shall also identify a

new computational role of the HCS, as well as derive an analytical expression for the
response function of LIF neurons in a regime where previously developed approaches
(Brunel and Sergi, 1998; Moreno-Bote and Parga, 2004) do not hold. This section provides
the foundation for our later discussion of interesting experiments in both software (Sections
6.5.5, 6.6 and 6.6.2.2) and neuromorphic hardware (6.8), as well as for the extension to
arbitrary distributions over binary RVs (Section 6.7).

6.5.1. From a Deterministic Model to a Stochastic One

As we have discussed in Section 6.4.3, the fundamental requirement of the neural sampling
theory was the NCC, which describes how information about the local conditional spiking
probability is encoded in the membrane potential. This expression is equivalent to the
activation function (Equation 6.82), which defines the probabilistic nature of the abstract
neuron model. When transferring the neural sampling framework to LIF neurons, we
want to keep the interpretation of spikes unchanged, i.e., the refractory state corresponds
to zk = 1. The goal is therefore to get an LIF neuron to be refractory with a logistic
probability as a function of its (linearly transformed) membrane potential. In particular,
we requiretarget LIF

activation
function p(zk = 1|z\k) = σ

(
ūk − ū0

k

α

)
, (6.94)

where we use the following notation: the input potential ūk represents the contributions
of all other neurons in the network to the membrane, ū0

k represents an offset (which is
influenced by, e.g., the resting potential of the neuron) and α is a conversion factor from
the LIF domain (e.g., mV) to the dimensionless membrane potential from the abstract
neural sampling model. The bars on the membrane potentials represent averages, which
we shall explain shortly but can be neglected for now.

A rather straightforward way of adding stochasticity to an otherwise constant mem-
brane potential ūk is Poisson noise, which is compatible with biology and widely used in
network models. Mathematical support for the Poisson assumptionPalm-

Khintchine
theorem

is given by the Palm-
Khintchine theorem, which states that the superposition of a large number of independent
equilibrium renewal processes, each with a small intensity, behaves asymptotically like a
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Figure 6.29.: An LIF neuron made stochastic by bombardment with Poissonian spike
trains. As we have seen in Section 4.3, Poissonian stimulation leads to
a Gaussian free membrane potential distribution, which can be shifted by
modifying the resting potential of the neuron (colored histograms). These
can be analytically predicted, which is depicted here for El = ϑ (blue Gaus-
sian curve). The suprathreshold free membrane potential probability mass
is therefore given by a linearly transformed error function (Equation 6.96
and red curve), which lies remarkably close to the actual activation func-
tion (cyan stars). The activation function appears to be well-fitted by a
linearly transformed logistic function (purple curve), as would be required
by classical neural sampling.

Poisson process. We can assume that apart from the functional connections to other neu-
rons in the sampling network, each neuron receives diffuse “noise” input from many other,
functionally unrelated neurons in the brain, which we can model as a high-frequency Pois-
son process. More precisely, we shall assume that each sampling neuron receives Poisson
noise from two independent sources, one being excitatory and the other one inhibitory.

As discussed in Section 4.3, this Poisson noise will cause a Gaussian distribution free
membrane
potential

distribution
under

Poisson
bombard-

ment

of the
free membrane potential

p(uk) = fN (uk, µ, σ) , (6.95)

with moments µ and σ that can be computed analytically. This allows the neuron to
fire even when its input potential ūk lies below the threshold. For simplicity, let us
assume that the excitatory and inhibitory contributions of the Poisson background are
symmetric, so µ = ūk (this is why we chose the notation ūk, as it represents the “noise-
free” membrane potential). Varying ūk shifts the free membrane potential distribution
across the threshold, changing the suprathreshold area suprathresh-

old free
membrane
potential

probability
mass

F (ūk) =

∞∫
ϑ

p(uk)duk =
1

2

[
1− erf

(
ϑ− ūk√

2σ

)]
. (6.96)

Intuitively speaking, the probability of the neuron to fire (and then be refractory) should
be proportional to this area, and since an appropriately shifted error function is very sim-
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ilar to the logistic function, the probability of a refractory state should be approximately
logistic as well.

Indeed, it turns out that this intuitive reasoning is quite correct (Figure 6.29). However,
this is clearly not a satisfactory description of our membrane dynamics, since the connec-
tion between firing probability and suprathreshold free membrane potential probability
F (ūk) has no rigorous support. Indeed, if we actually measure the activation function, we
can see that it deviates significantly from F (ūk). In order to provide a rigorous deriva-
tion of the LIF activation function under Poisson stimulation, we first require a correct
description of the membrane potential dynamics in this regime.

6.5.2. Membrane Dynamics in the HCS and the Ornstein-Uhlenbeck
Process

We start by restating the effective membrane potential formulation (Equation 4.31) of the
COBA LIF equation:

τeff
du

dt
= ueff − u , (6.97)

where the effective membrane potential ueff has the form (see Equation 4.30)

ueff(t) =

glEl +
n∑
i=1

gsyn
i (t)Erev

i + Iext

gtot(t)
. (6.98)

In a first approximation, assuming a rapidly firing Poisson background (νsyn → ∞),
the total average conductance can become arbitrarily large (

〈
gtot
〉
→ ∞), causing the

membrane potential to follow the effective potential nearly instantaneously (〈τeff〉 → 0).
Here, we are evidently operating in the HCS, which we have already extensively discussed
in Chapter 4. Equation (6.98) can then be rewritten asu→ ueff in

the HCS

u ≈ ueff =

glEl +
n∑
i=1
〈gsyn
i 〉Erev

i +
n∑
i=1

∆gsyn
i Erev

i + Iext

〈gtot〉+
n∑
i=1

∆gsyn
i

, (6.99)

where
∆gsyn

i = gsyn
i − 〈gsyn

i 〉 (6.100)

denotes the fluctuations of the synaptic conductances.
For a single Poisson source with rate νi connected to the neuron by a synapse with weight

wi and time constant τ syn, the conductance course can be seen as a sum of independent
random variables, each of them representing the conductance change caused by a single
spike. In Section 4.3.1, we have already derived the first two moments of the synaptic
input (Equations 4.94 and 4.95) for exponential synaptic kernels (Equation 4.93):

E[gsyn] =
n∑
i=1

wiνiτ
syn
i , (6.101)

Var[gsyn] =
n∑
i=1

1

2
w2
i νiτ

syn
i , (6.102)
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so the relative fluctuations of gsyn are of the order (see also Equation 4.96)√
Var [gsyn]

E [gsyn]
≈
√√√√√ 1

2τ syn
n∑
k=1

νk

(6.103)

and vanish in the limit of large firing rates.
This warrants an expansion of (6.99) in ∆gsyn

i , ∀i. Considering only the first-order
term we obtain u as a linear

transforma-
tion of
J synu(t) =

Iext + glEl +
n∑
i=1

gsyn
i (t)Erev

i

〈gtot〉
, (6.104)

which renders u simply a linear transformation of the synaptic input25

J syn =
n∑
i=1

gsyn
i Erev

i . synaptic
input

(6.105)

For exponential synapses, the synaptic input J syn obeys the first-order inhomogeneous
ODE

dJ syn

dt
= −J

syn

τ syn
+
∑
syn i

∑
spk s

∆J syn
i δ(t− ts) , (6.106)

where ∆J syn
i = wiE

rev
i . This equation is highly reminiscent of the ODE that defines the

Ornstein-Uhlenbeck (OU) process Ornstein-
Uhlenbeck

processdx(t) = θ · (µ− x(t))dt+ σdW (t) . (6.107)

A short discussion of the OU process is in order. The stochastic component of the
OU process is given by the dW (t) term, which represents the differential of the Wiener
process Wiener

process
. The Wiener process is the continuous-time equivalent of a random walk and is

thus defined as follows:

• W (0) = 0;

• W (t) is almost surely everywhere continuous;

• W (t) has independent increments with W (t)−W (t′) ∼ N (µ, σ2).

In our above definition (Equation 6.107) of the OU process, we have externalized the
parameters µ and σ, so our Wiener process is unbiased (zero-mean) and has unit variance.
Formally, the Wiener process is self-similar (see Figure 6.30, top panel) since increments
are differential, so in simulations the time must be appropriately discretized, on a time
scale that is significantly smaller than the relevant time scale for the observed processes.
This will become relevant shortly, when we establish the equivalence to Poisson-driven
membrane potentials.
25 Note that the synaptic input Jsyn is not the same as the synaptic current Isyn. The synaptic current

must depend on the membrane potential itself, i.e., Isyn =
n∑
i=1

gsyn
i (Erev

i − u).
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Figure 6.30.: Time-continuous stochastic processes. Top: The Wiener process is the
time-continuous analogue of a 1-D random walk. Due to increments oc-
curring on arbitrarily small time scales, it is self-similar (the inset is a zoom-
in on the rectangularly enclosed area). The Wiener process diverges as
t → ∞. Bottom: The Ornstein-Uhlenbeck process adds an exponential
decay (red curve) to the Wiener process. The colored curves represent OU
processes with identical parameters and starting conditions, but different
random seeds.

The OU process adds an attractor mechanism to the Wiener process by virtue of the
θ · (µ− x(t)) term. This induces an exponential decay towards µ with a time constant θ.
Putting the noise and decay terms together (Figure 6.30, bottom panel), it now appears
quite intuitive that the resulting trajectory of x(t) could be a good model of noisy neural
conductance (and membrane) dynamics.

It is well-known that the PDF of the OU processPDF of the
OU process

f(x, t|x0) =

√
θ

πσ2(1− e−2θt)
exp

{
−θ
σ2

[
(x− µ+ (µ− x0)e−θt)2

1− e−2θt

]}
(6.108)

270



6.5. Stochastic Inference with Deterministic Spiking Neurons

is the unique solution of the Fokker-Planck equation Fokker-
Planck

equation1

θ

∂f(x, t)

∂t
=

∂

∂x
[(x− µ)f ] +

σ2

2θ

∂2f

∂x2
(6.109)

with starting condition x0 := x(t = 0). We will now prove that, under certain assump-
tions, the distribution of the synaptic input J syn obeys the same Fokker-Planck equation.
To this end, we follow an approach similar to Ricciardi and Sacerdote (1979).

Consider the PDF of the synaptic input f(J syn, t). We can use the Chapman-
Kolmogorov equation to describe its evolution after a short time interval ∆t as an integral
over all possible intermediate states J ′:

f(J syn, t+ ∆t) =

∫ ∞
−∞

f(J syn, t+ ∆t|J ′, t)f(J ′, t)dJ ′ . (6.110)

For a small enough ∆t, the probability of the occurrence of multiple spikes within ∆t
can be neglected. As incoming spikes are assumed to be generated by Poisson processes,

the probability of a single spike occurring in ∆t is ∆t
n∑
i=1

νi. By summing over the two

possible histories of J syn within ∆t (either a single incoming spike or no spike at all), we
can use Equation 6.106 to find

f(J syn, t+ ∆t|J ′) =

[
1−∆t

n∑
i=1

νi

]
δ

[
J syn − J ′ exp

(
− ∆t

τ syn

)]

+ ∆t
n∑
i=1

νiδ

[
J syn −

(
J ′ + ∆J syn

i

)
exp

(
− ∆t

τ syn

)]
. (6.111)

Plugging this into Equation 6.110 and integrating over J ′ yields

f(J syn, t+ ∆t) =

(
1−∆t

n∑
i=1

νi

)
exp

(
∆t

τ syn

)
f

[
J syn exp

(
∆t

τ syn

)
, t

]

+ ∆t
n∑
i=1

νi exp

(
∆t

τ syn

)
f

[
J syn exp

(
∆t

τ syn

)
−∆J syn

i , t

]
. (6.112)

Here, we have implicitly used the relation δ(αu) ≡ 1
|α|δ(u). We can now expand f(x, t+∆t)

up to first order in ∆t Taylor
expansion in

∆tf(J syn, t+ ∆t) ≈ f(J syn, t) +
∂f(J syn, t+ ∆t)

∂∆t

∣∣∣∣
∆t=0

∆t (6.113)
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and rearrange the terms to obtain

f(J syn, t+ ∆t)− f(J syn, t)

∆t
=
∂f(J syn, t+ ∆t)

∂∆t

∣∣∣∣
∆t=0

=

{
−

n∑
i=1

νi exp

(
∆t

τ syn

)
f

[
J syn exp

(
∆t

τ syn

)
, t

]

+

(
1−∆t

n∑
i=1

νi

)
1

τ syn
exp

(
∆t

τ syn

)
f

[
J syn exp

(
∆t

τ syn

)
, t

]

+

(
1−∆t

n∑
i=1

νi

)
1

τ syn
exp

(
2

∆t

τ syn

)
J syn∂f

[
J syn exp

(
∆t
τ syn

)
, t
]

∂J syn exp
(

∆t
τ syn

)
+

n∑
i=1

νi exp

(
∆t

τ syn

)
f

[
J syn exp

(
∆t

τ syn

)
−∆J syn

i , t

]

+ (. . . )∆t

}
∆t=0

. (6.114)

By taking the limit ∆t→ 0, we obtain:

∂f(J syn, t)

∂t
=

1

τ syn

∂

∂J syn
[J synf(J syn, t)] +

n∑
i=1

νi [f(J syn −∆J syn
i , t)− f(J syn, t)] .

(6.115)

In the limit of small synaptic weights (i.e., ∆J syn
i → 0), we can expand the second term

on the RHS up to the second order in ∆J syn
i .Taylor

expansion in
w
(Kramers-
Moyal
expansion)

Such a Taylor expansion of a stochastic
differential equation is often called a Kramers-Moyal expansion. This yields, after some
rearrangement

∂f(J syn, t)

∂t
=

1

τ syn

∂

∂J syn

[(
J syn −

n∑
i=1

νi∆J
syn
i τ syn

)
f(J syn, t)

]
+

n∑
i=1

νi(∆J
syn
i )2

2

∂2f(J syn, t)

∂(J syn)2
,

(6.116)

which is the exact equivalent of the Fokker-Planck equation of the OU process (Equation
6.109). Since u(t) is only a linear transformation of J syn(t), it can also be approximated
by an OU process in the limit of large input frequencies and small synaptic weights, with
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Equations 6.104 and 6.116 giving the specific time constant, mean value and variance OU
parameters

of a
Poisson-

driven
membrane

in the HCS

θ =
1

τ syn
, (6.117)

µ =

Iext + glEl +
n∑
i=1

νiwiE
rev
i τ syn

〈gtot〉
, (6.118)

σ2

2
=

n∑
i=1

νi [wi (Erev
i − µ)]2 τ syn

2 〈gtot〉2
. (6.119)

Note how the dominant time constant of the membrane dynamics in the HCS is explic-
itly no longer the membrane time constant, but the synaptic one. τ syn

dominates
membrane
dynamics

This is to be expected,
since the membrane time constant vanishes in the limit of large synaptic conductances.
PSPs then become nearly exponentially shaped, with a decay governed by τ syn. This is
precisely why we were able to transfer the OU dynamics of the total synaptic current,
which is a sum of exponentials, to the membrane potential, which in the HCS is a (scaled)
sum over the exact same exponential kernels.

It is instructive to point out how our derivation of the formal analogy between Poisson-
driven membrane dynamics and the OU process has produced the same equilibrium
distribution as we have already derived with a different formalism in Section 4.3 (see, in
particular, the final results in Section 4.3.4, of which the above results for the HCS are a
particular subcase). This is, of course, no surprise, since in both cases we were treating
the same physical system, but such an agreement between different methodologies still
offers a very satisfactory cross-confirmation. However, the equivalence to an OU process
gives us insight not only into the (temporal evolution of) the distribution of Poisson-
driven membranes, but also into their dynamics. Later on, this will allow us to answer
questions such as “How much time does it take the membrane to get from some potential
u1 to some other potential u2?”. The problem of passage times from one state to an-
other will turn out to be central to our derivation of the activation function of LIF neurons.

We conclude this section with two important comments. Firstly, for the above method-
ology to be generally applicable, we must be able to take the limit ∆J syn

i → 0 for arbitrary
first and second moments of f(J syn, t) without modifying them. This is possible if at least
one excitatory and one inhibitory input is present, which then give us two degrees of free-
dom with a proper choice of νexc → ∞ and νinh → ∞. Secondly, all higher moments (3
and above) need to vanish in the abovementioned limit. This has been shown to also be
the case under the above conditions (Lánskỳ, 1997).

Note also how we have implicitly required high firing rates when taking the limit of small
synaptic weights. validity of

OU approxi-
mation only

for
νsyn →∞

This is not only a simple formality, but actually absolutely necessary
to guarantee the possibility of random jumps on very small time scales. Only in this way
can we obtain a formal equivalence to the Wiener process, which features jumps on arbi-
trarily small time scales (see our earlier notes on the self-similarity of the Wiener process).

Now that we have a comprehensive description of free membrane dynamics under Pois-
son bombardment, we can move on to analyzing what happens when a firing threshold is
introduced.
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6.5.3. Derivation of the Activation Function

Let us start with a simple visual inspection of the dynamics of an LIF neuron with absolute
refractoriness in the HCS when the firing threshold lies well within its free membrane
potential distribution. Figure 6.31A shows the time course of the membrane potential, as
well as the firing times of the neuron.

We can clearly distinguish between two “behavioral modes” of the neuron. The first
mode can be classified as “burst spiking”bursting

mode
, in which the neuron fires at nearly maximum

frequency. In this bursting mode, multiple spikes occur in rapid succession with an ex-
pected ISI of approximately τref . In order to gain a precise measure of the average ISI in
the bursting mode, we need to also take into account the small but nonzero time τb

k that
the membrane needs to jump from the reset % to the threshold potential ϑ after the kth
spike within the burst. The expected ISI after the kth spike in a burst therefore readsexpected ISI

within a
burst 〈∆tk〉 := 〈tk+1 − tk〉b = τref + τb

k , (6.120)

where the average is taken over many bursts and τb
k represents the average drift time from

the reset to the threshold potential following the kth refractory period within a burst.
Since spikes occur if and only if the free membrane potential lies above the threshold, we
have

ueff(tk) ≥ ϑ (6.121)

and also, for all but the last spike,

ueff(tk + τref) ≥ ϑ . (6.122)

The burst ends precisely when the free membrane potential after the last refractory
period lies below the threshold. The second mode appears between such bursts, where
the membrane potential evolves freely in the subthreshold regime.subthreshold

mode
We can now define, just like in the abstract model, that the neuron is in the state

z = 1 for a duration τref following a spike. The average time spent by the neuron in the
refractory stateaverage

refractory
time in
bursts

t̄(z = 1) can be taken as a weighted average over burst lengths:

t̄(z=1) =
∞∑
n=1

Pn · n · τref , (6.123)

where Pn represents the distribution of burst lengths, conditioned on the existence of the
first spike. Since each burst is followed by a subthreshold period, the average duration of
a 1-state followed by a 0-state is given by a similar weighted average:average

burst +
subthreshold
duration t̄(z∈{0,1}) =

∞∑
n=1

Pn ·

(
nτref +

n−1∑
k=1

τb
k + Tn

)
, (6.124)

where the 1-states are given by nτref and the 0-states by the sum of all jump times τb
k

within the burst and the mean time interval Tn between the end of a burst (i.e., the
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Figure 6.31.: Firing patterns and membrane dynamics in the HCS. A: Spike train and
membrane potential. The neuron alternates between burst firing and free
subthreshold evolution of the membrane potential. B: Zoom-in on the mem-
brane dynamics around a burst. The blue and red curves depict the “true”
and free membrane potential trajectories, respectively. The gray areas rep-
resent refractory periods. At the end of each refractory period, the predicted
free membrane potential distribution p(ui+1|ui) is plotted in pink. The light
pink areas are used for computing Pn from Pn−1 in the ACP formalism. The
dark pink areas are used for computing Tn.

endpoint of its last refractory period) and the next spike. The activation function, which
gives the relative probability of the neuron being in a 1-state, is therefore:

p(z = 1) =

∞∑
n=1

Pn · n · τref

∞∑
n=1

Pn ·
(
nτref +

n−1∑
k=1

τb
k + Tn

) . activation
function

(6.125)

The variables Pn, Tn and τb
k depend on all neuron and noise parameters, but for calcu-

lating the activation function, we only need to vary ū.

We can now calculate both Pn and Tn iteratively. The idea behind this approach is
to propagate the membrane potential autocorrela-

tion
propagation

PDF from spike to spike within a burst and cut
off the irrelevant parts for a particular burst length n. Figure 6.31B shall serve as visual
guidance for our autocorrelation propagation (ACP) formalism.

We denote the spike times within a burst of length n by t0, . . . , tn−1 and the endpoint
of such a burst by tn := tn−1 + τref . For brevity, we also use ui := u(ti). Assuming a first
spike at some time t0 (u0 := u(t0) = ϑ), a “burst” of length n = 1 requires a subthreshold
free membrane potential after the first refractory period (u1 := u(t0 + τref) < ϑ). This
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occurs with the probability

P1 : = p(u1 < ϑ|u0 = ϑ)

=

∫ ϑ

−∞
du1p(u1|u0 = ϑ)︸ ︷︷ ︸

I1

,P1 (6.126)

where p(ui+1|ui) := f(u, τref |ui), which is given by Equation 6.108. As we shall see shortly,
each probability Pn can be given as a product of a recursive factor and double integral
(for P1, it is a single one), which we denote by In.

On average, the neuron then stays in the subthreshold regime for a period equal to the
mean first passage time (FPT) from u1 to ϑ, so the mean duration of the time interval
until the onset of the next burst can be expressed as

T1 =

∫ ϑ

−∞
du1p(u1|u0 = ϑ) 〈T (ϑ, u1)〉 .T1 (6.127)

The FPT problem of the OU process has often been discussed (see, e.g., Thomas, 1975).
While no closed-form expression for the distribution of FPTsfirst-passage

time
T (b, a) := inf t ≥ 0 : x(t) = b|x(0) = a (6.128)

is known, its moments can be computed analytically (see, e.g., Ricciardi and Sato, 1988).
In particular, the mean FPT reads

〈T (b, a)〉 =
θ

σ

√
π

2

∫ b

a
dx exp

[
(x− µ)2

2σ2

] [
1 + erf

(
x− µ√

2σ

)]
. (6.129)

A burst of n = 2 spikes can only occur when the effective membrane potential lies above
the spiking threshold (u1 ≥ ϑ) after the first refractory period and below after the second
(u2 < ϑ). This makes P2 and T2 recursive functions of P1:

P2 = p(u2 < ϑ, u1 ≥ ϑ|u0 = ϑ)

= p(u1 ≥ ϑ|u0 = ϑ) p(u2 < ϑ|u1 ≥ ϑ, u0 = ϑ)

(6.126)
= (1− I1)︸ ︷︷ ︸

=1−P1

∫ ∞
ϑ

du1p(u1|u1 ≥ ϑ)

[∫ ϑ

−∞
du2p(u2|u1)

]
︸ ︷︷ ︸

I2

P2 (6.130)

T2 =

∫ ∞
ϑ

du1p(u1|u1 ≥ ϑ)

[∫ ϑ

−∞
du2p(u2|u2 > ϑ, u1) 〈T (u2, ϑ)〉

]
,T2 (6.131)

where p(ui|ui ≥ ϑ) is a shorthand notation for p(ui|ui ≥ ϑ, ui−1 ≥ ϑ, . . . , u1 ≥ ϑ, u0 = ϑ).
In particular, this represents a renormalization of the PDF of the effective membrane
potential to values above the spiking threshold after i refractory periods.
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We can now continue this recursion up to an arbitrary burst length and write

Pn = p(un < ϑ, un−1 ≥ ϑ, . . . , u1 ≥ ϑ|u0 = ϑ)

= p(u1 ≥ ϑ|u0 = ϑ) p(un < ϑ, un−1 ≥ ϑ, . . . , u2 ≥ ϑ|u1 ≥ ϑ, u0 = ϑ)

(6.126)
= (1− I1) p(u2 ≥ ϑ|u1 ≥ ϑ, u0 = ϑ)

· p(un < ϑ, un−1 ≥ ϑ, . . . , u3 ≥ ϑ|u2 ≥ ϑ, u1 ≥ ϑ, u0 = ϑ)

(6.130)
= (1− I1)(1− I2) p(u3 ≥ ϑ|u2 ≥ ϑ, u1 ≥ ϑ, u0 = ϑ)

· p(un < ϑ, un−1 ≥ ϑ, . . . , u4 ≥ ϑ|u3 ≥ ϑ, . . . , u1 ≥ ϑ, u0 = ϑ)

=
n−1∏
i=1

(1− Ii) p(un < ϑ|un−1 ≥ ϑ, . . . , u1 ≥ ϑ, u0 = ϑ) (6.132)

= (1−
n−1∑
i=1

Pi)

∫ ∞
ϑ

dun−1p(un−1|un−1 ≥ ϑ)

[∫ ϑ

−∞
dunp(un|un−1)

]
︸ ︷︷ ︸

In

Pn(6.133)

Tn =

∫ ∞
ϑ

dun−1p(un−1|un−1 ≥ ϑ)

[∫ ϑ

−∞
dunp(un|un < ϑ, un−1) 〈T (un, ϑ)〉

]
Tn(6.134)

The transition from a product to a sum between (6.132) and (6.133) requires the identity

n−1∏
i=1

(1− Ii) = 1−
n−1∑
i=1

Pi , (6.135)

which can be easily shown by induction from Pn = In
∏n−1
i=1 (1 − Ii) (Equation 6.132)

and P1 = I1 (Equation 6.126). In practice, because limn→∞ Pn = 0, one can stop the
recursion at some small enough Pn.

What remains to be calculated is the average time-to-threshold τb
k within a burst that

follows the kth refractory period. Since we assume a HCS, we are looking at a regime in
which τeff � τ syn. Therefore, we can assume ueff to be approximately unchanged during
the short time interval τb

k adiabatic
approxima-

tion

(adiabatic approximation, see also Moreno-Bote and Parga,
2004). For a fixed uk, the jump time can be easily calculated from Equation 6.97 (see also
Equation 2.36):

τb
k (uk) = τeff ln

(
%− uk
ϑ− uk

)
. (6.136)

The average jump time can then be obtained by integrating over all suprathreshold values
of uk, which in turn have probabilities that follow from integrating over all suprathreshold
values of uk−1 :

τb
k = τeff

∫ ∞
ϑ

duk ln

(
%− uk
ϑ− uk

)∫ ∞
ϑ

duk−1p(uk|uk > ϑ, uk−1) . τb
k

(6.137)

With Equations 6.125, 6.133, 6.134, 6.137 and 6.129, one could now predict the activa-
tion function of an LIF unit in an extreme high-noise regime (τeff → 0). We can, however,
generalize our approach by taking the finite nature of the effective time constant into

277



6. Probabilistic Inference in Neural Networks

account.

If we go back to Equation 6.97 and leave τeff = C/
〈
gtot
〉
small but finite, we can still

perform all the remaining approximations, but are required to modify Equation 6.104:

τeff u̇(t) =
Iext + glEl

〈gtot〉
+
J syn(t)

〈gtot〉
− u(t) . (6.138)

Together with Equation 6.106, we now have a system of first-order ODEs which can
be solved analytically by standard techniques (variation of constants). We have already
provided a detailed discussion of these systems in Section 4.2. The PSPs are no longer
a linear transformation of the exponentially shaped PSCs, but rather alpha-shaped (see
Equation 4.59):

us(t) = Θ(t− ts)A

(
e
− t−ts
τeff − e−

t−ts
τsyn

)
τeff − τ syn

, (6.139)

with
A =

wi(E
rev
i − 〈ueff〉)τ syn

i

〈gtot〉
. (6.140)

This shape causes a lower PSP peak than in the case of exponential PSPs, decreasing the
overall width of the membrane potential distribution. Intuitively, this would result in a
horizontal shift and compression of the activation function.

More recently, analytical treatments of these phenomena have been proposed (Burkitt,
2006). In these approaches, authors usually consider large membrane time constants
(equivalent to a long τeff) and small synaptic time constants. However, Equation 6.139
is symmetric in τeff and τ syn, so the same argument applies to our case as well, but the
two time constants need to be switched. It is, for example, possible to correct the FPT
from the reset to the threshold potential by using an expansion in

√
τ ′/τ , with τ ′ and τ

being the smaller and the larger of the two time constants, respectively (Brunel and Sergi,
1998):

〈T (ϑ, u)〉 = τ
√
π

∫ ϑeff−µ
σ

u−µ
σ

dx exp(x2)[erf(x) + 1] , (6.141)

with µ and σ2 the first two moments of the free membrane potential distribution and an
effective threshold

ϑeff ≈ ϑ− ζ
(

1

2

)√
τ ′

2τ
σ ,FPT

correction
(6.142)

in which ζ denotes the Riemann zeta function. In our particular case, the expansion is
done in

√
τeff/τ syn, so τ ′ = τeff and τ = τ syn. Note how Equation 6.141 is equivalent to a

change of the integration variable and limits in the original equation 6.129 for the FPT.
With this approximation, we assume that u converges from ρ to ueff in negligible

time after it is released from the refractory state. Afterwards, its convergence to ueff is
determined by Equation 6.97.

We now have at our disposal a comprehensive prediction of the activation function of LIF
neurons with absolute refractoriness. Our derivations were based on COBA synapses, but
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the general formalism is identically applicable to CUBA synapses, as long as the absolute
refractory time following a spike is nonzero.

Figure 6.32 shows our prediction of the activation function for several different param-
eter sets and compares it to simulation data. Apart from the good predictions produced
by our approach, we point out subplots A and F in particular.

In Figure 6.32 A, our neuron receives strong synaptic background stimulus, which puts
the neuron into a pronounced HCS with an extremely short effective time constant. It
turns out that such accelerated membrane dynamics are the key ingredient to LIF sam-
pling, as they allow the neuron to spike again almost immediately after being refractory,
in some sense creating a symmetry between 0- and 1-states. In turn, symmetry of

the
activation
function

this causes the
activation function to become symmetric and thereby well-fitted by a logistic curve (see
also Figure 6.32 G). This represents a novel and extremely useful computational feature
of the HCS.

In Figure 6.32 F, we show what happens in an “imperfect” HCS, where the 0-state is fa-
vored, since the reset-to-threshold jump time becomes large. Not only does the activation
function become asymmetric, but it also converges to 1 only very slowly, impeding any
meaningful mapping to the abstract sampling model. However, the activation function
can at least partly be fitted by a logistic function, in the region below p(z = 1) = 1/2.
This would still allow sampling from certain Boltzmann distributions, but only under
severe parameter restrictions, i.e., predominantly negative biases and weights.

The formalism of our prediction of the activation function was motivated and guided
by the interpretation of spikes as samples from binary RVs. Of course, the calculation of
activation functions is an interesting problem in itself and we are not the first to perform
such analytical studies. The most relevant results obtained in this context can be found
in Brunel and Sergi (1998) and Moreno-Bote and Parga (2004). However, both of these
studies are based on particular assumptions, which impose tight restrictions on their
predictive power, as also depicted in Figure 6.32.

In Brunel and Sergi (1998) Brunel and
Sergi (1998)

(from which we have borrowed the FPT correction in
Equation 6.141), an essential assumption is that synaptic time constants are very small
(τ syn → 0). The reset then causes the membrane to forget all (or at least most of) its
previous history, which eases the calculation of reset-to-threshold passage times, since
they become largely independent of previous events. This is explicitly not the case in our
regime, where the synaptic time constants are required to be comparable to refractory
times (see Equation 6.93), and precisely the reason why our comparatively complicated
ACP formalism was required.26 Since Brunel and Sergi (1998) do not account for the fact
that a neuron is more likely to spike if it has already spiked within the last τref (which the
ACP formalism accounts for by explicitly computing p(ui+1|ui)), their prediction system-
atically underestimates the output firing frequency (which is most pronounced for high
frequencies at large ū). We can also see that when τ syn becomes smaller, their prediction
becomes more accurate (Figure 6.32 C).

26 Strictly speaking, it is only the synaptic time constant of the recurrent interaction between the sampling
neurons that has to be equal (or at least similar) to the refractory time. The noise synapses could
have, in principle, arbitrary time constants. However, we still require the neurons to operate in the
HCS, so it is likely that even very short τ syn

noise will dominate membrane dynamics. Another reason for
using the same τ syn for both noise and recurrent connections is purely practical: PyNN assigns every
neuron a single excitatory and a single inhibitory time constant.
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Moreno-Bote and Parga (2004)Moreno-
Bote and
Parga
(2004)

, on the other hand, analyze the opposite case of long τ syn

and short τm. This is why they are able to use the adiabatic (or quasistatic) approximation,
since the membrane potential, which is governed by τm, reacts so quickly to ueff , which
is governed by τ syn. The latter then effectively appears static from the point of view of
the former. Indeed, we also make use of the adiabatic approximation for the calculation
of our τb

k . However, Moreno-Bote and Parga (2004) explicitly set τref = 0, which, in
a sense, is the exact opposite of the situation from Brunel and Sergi (1998). Without
refractoriness, the neuron may spike with very high frequencies, allowing the membrane
potential to “see” ueff very often before it changes, as would be required by the quasistatic
assumption. This is explicitly no longer the case when τref is in the same order as τ syn,
since ueff can then change significantly within a refractory period, effectively invalidating
quasistationarity. The implications for the activation function are a bit more subtle, but
the pure adiabatic approach turns out to overestimate the probability of long ISIs, since
it has no immediate concept of bursts. This, in turn, causes a systematic underestimation
of the activation function. As refractory times become shorter (or synaptic time constants
longer), the quasistationary scenario is restored and the predictions improve (Figure 6.32
D and E).

Figure 6.32.: Comparison of our prediction of the activation function (Equation 6.125)
to simulation data, as well as to the predictions given by Brunel and Sergi
(1998) and Moreno-Bote and Parga (2004), for several parameter sets. (A)
Standard parameter set as given in Table A.20. This panel uses the same
simulation results as panel F. (B) Same as A, but with doubled membrane
capacitance Cm and halved leak conductance gl, input rates νexc,inh and
weights wexc,inh. This parameter set has the effect of slowing the membrane,
i.e., increasing τeff by a factor of 16. (C) Same as A, but with a decreased
synaptic time constant τ syn = 3 ms. The prediction from Brunel and Sergi
(1998) is improved, since the correlations in the pre- and post-refractory
effective membrane potential are smaller in this scenario. (D) Same as A,
but with an increased synaptic time constant τ syn = 30 ms. The prediction
from Brunel and Sergi (1998) deteriorates due to the longer-range membrane
potential autocorrelation. Conversely, the prediction from Moreno-Bote and
Parga (2004) improves somewhat, since the refractory time becomes shorter
relative to the synaptic time constant. (E) Same as A, but with a very
short refractory time τref = 1 ms. Here, we enter the parameter range where
Moreno-Bote and Parga (2004) provides good predictions, as argued above.
(F) Same as A, but with the input rates νexc,inh and weights wexc,inh de-
creased by a factor of 10, thereby slowing the membrane considerably (im-
perfect HCS). Additionally, we have chosen a large reset-to-threshold dis-
tance of uthr − % = 10 mV. In this scenario, the τb

k -term in (6.125) becomes
dominant and the activation function departs from the logistic shape that it
has in the HCS. (G) Logistic fit of the activation function.

280



6.5. Stochastic Inference with Deterministic Spiking Neurons

281



6. Probabilistic Inference in Neural Networks

Figure 6.33.: Neural sampling: abstract model vs. implementation with LIF neurons. (A)
Example dynamics of all the variables associated with an abstract model
neuron. The neuron spikes stochastically as a function of its membrane
potential, which is not reset by outgoing spikes. The refractoriness variable
was introduced as a theoretical tool for representing the model’s dynamics
as a first-order Markov chain. (B) Example dynamics of the equivalent
variables associated with an LIF neuron. The neuron fires deterministically
when the membrane potential crosses the threshold. However, stochasticity
is introduced by adding noise to the membrane. Nevertheless, the membrane
potential is reset when the neuron spikes and clamped to some value ρ during
refractoriness. However, the synaptic input J syn is not reset by spikes and
thereby retains the memory of past events. Figure taken from Probst et al.
(2015).

6.5.4. Translation of Biases and Recurrent Synaptic Weights

Now that we have fully specified the dynamics of individual LIF sampling units, we
can connect them to form sampling networks. The biasestranslation

of biases
can be set directly with the

parameter used to vary ū in the activation function, usually El or Iext (for an exact
mapping rule for b → El, see Section 6.7.3). The synaptic connections, however, require
a more careful treatment.

In the abstract model, the synaptic connections were straightforward, as they followed
directly from Equation 6.57: PSPs were rectangular and of duration τ syn = τref . Even
more importantly however, the abstract membrane potential was not reset by outgoing
spikes. Figure 6.33 shows a comparison between the dynamics of the abstract and LIF
sampling neuron models.

In the LIF model, the reset and subsequent clamping of the membrane potential during
refractoriness would seem to erase any information that arrives before the end of the
refractory period. However, it is often neglected that LIF neurons have one dynamic
variable which is not reset, namely the synaptic input J syn. Therefore, in our model of
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Figure 6.34.: Different PSP shapes. The abstract neuron model uses rectangular PSPs
(red curve). For the arguably most commonly used model of exponential
PSC kernels, LIF PSPs in the HCS are nearly exponential as well (green
curve). Such PSPs are more difficult to deal with, due to their large initial
overshoot and their long tails. Some authors therefore use more “benign”
PSP shapes, such as cut-off alpha functions (blue curve, see, e.g., Pecevski
et al., 2011).

LIF sampling, the effective membrane potential plays the role of the abstract membrane
potential and the synapses store the memory of past events synaptic

memory
. The fast membrane reaction

speed enabled by the HCS allows ū ≈ ueff at almost all nonrefractory times, such that
the neuron effectively always samples from its correct local conditional. role of the

HCSWe therefore only need to establish a translation from the unitless abstract potential
to ū. This translation follows straightforwardly from the activation function (which is
equivalent to the NCC), which must be identical for both models (see Equations 6.82 and
6.94):

σ(uabstract
k ) = p(zk = 1|z\k) = σ

(
ūk − ū0

k

α

)
. (6.143)

The parameters α and ū0
k can be directly obtained from the logistic fit to the predicted

activation function (see Figure 6.32 G). As a consequence, also synaptic weights need to
be rescaled by the factor α.

Additionally, the difference in PSP shapes needs to be taken into account. This differ-
ence will corrupt the precise equivalence between the abstract model and LIF sampling,
but we can, at least, require that local sampling be correct on average average PSP

approxima-
tion

during the refractory
period of the corresponding afferent neuron:

E
[
uabstract
k

]
PSP

∣∣∣τref

0
= E [ūk]PSP|

τref
0 . (6.144)

This is equivalent to setting the area under a PSP (Equation 6.139) during the refractory
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Figure 6.35.: Influence of short-term synaptic plasticity. Left: Due to the additive na-
ture of PSPs, static synapses cause a cumulative effect when afferent neurons
spike at high rates. This would cause deviations from the target distribution
if marginals of individual RVs are too high (i.e., if their associated neurons
tend to spike very often). Right: STD causes consecutive PSPs to shrink,
attenuating additive effects. In particular, appropriate STD parameters can
effectively emulate renewing PSPs, thereby allowing neurons to sample lo-
cally from correct conditionals (on average).

state of the corresponding afferent neuron (i.e., for a duration τref) equal to Wkj τref α:

Wkjτrefα =

∫ τref

0

wkj(E
rev
kj − 〈ueff〉)τ syn

〈gtot〉

(
e
− t−ts
τeff − e−

t−ts
τsyn

)
τeff − τ syn

dt

=
wkjτ

syn

〈gtot〉

(
Erev
kj − µ

)
τeff − τ syn

[
τ syn

(
e−

τref
τsyn − 1

)
− τeff

(
e
− τref
τeff − 1

)]
. (6.145)

By setting τref = τ syn, we obtain the mapping between the abstract and LIF synaptic
weight domains:translation

of weights

Wkj =
1

αCm

wkj

(
Erev
kj − µ

)
1− τ syn

τeff

[
τ syn

(
e−1 − 1

)
− τeff

(
e
− τ

syn

τeff − 1

)]
. (6.146)

A further problem that does not occur in the abstract model is the fact that PSPs
from the same afferent neuron are additive. For rectangular PSPs that have the exact
duration of the refractory period, superposition can not happen – this is not the case for
the more realistic exponential synapse model, where PSPs have a DOE shape (which is
almost exponential in the HCS). In order to maintain the average height of additive DOE
PSPs, we can make use of short-term plasticity, in particular the TSO model of STD that
we have discussed in Section 2.2.2.2. STD can been applied to attenuate the amplitudes of
consecutively arriving PSPs from the same afferent neuron, thereby effectively emulating
renewing synapses.renewing

PSPs
In order to achieve this behavior, the synaptic efficacy parameter and

recovery time constant must be chosen as USE = 1 and τrec = τ syn, respectively.
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Figure 6.36.: LIF sampling demonstration for exemplary BMs with 5 RVs. (A) Spike
trains representing the joint state z(t). (B) Sampled distribution p(z)
(blue) after 10 s of network evolution compared to the target distribution
p∗(z) (red). Error bars are calculated from 10 runs with different random
seeds. (C) Convergence of the sampled distribution towards the target dis-
tribution. 10 runs of the LIF network (continuous lines) are compared to
a single run of the abstract model (dashed line) with a comparable number
of samples. (D) Distribution of DKL (p(z) ‖ p∗(z)) after sampling has con-
verged (106 ms) from 100 different Boltzmann distributions (with randomly
drawn parameters) over 5 RVs. Figure taken from Petrovici et al. (2013).

6.5.5. LIF-Based Boltzmann Machines

With our fully specified LIF sampling framework, we can now configure networks of LIF
neurons to sample from arbitrary Boltzmann distributions. As a small-scale case study,
we analyze the behavior of a 5-neuron network with randomly drawn weights and biases
(Figure 6.36).

For the comparison of the sampled distribution to the target distribution, we have
chosen an integration time of 10ms, which is a conservative estimate of the maximum
duration a neuronal ensemble will experience stable stimulus conditions in a behaving
organism and can thus be expected to sample from a stable target distribution. Within
this time frame, the sampled distribution p(z) closely matches the set target p∗(z) within
the statistical errors, over more than two orders of magnitude LIF

sampling
performance

.
Over longer time scales, the sampled distribution improves, but not to an arbitrary

degree of precision. As opposed to exact sampling algorithms such as Gibbs or neural
sampling, the LIF-sampled distribution does not converge precisely towards the target
distribution. However, the distance to the target distribution, given by the DKL (see
Equation 4.160), is small.
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Two factors exert critical influence on the sampling quality. The main reason for the
imperfect convergence is the difference between our biologically realistic PSP shapePSP shape and
the theoretically optimal rectangular one. In particular, the large overshoot at the onset
of the PSP and the nonzero tail following the end of the refractory period always induce
small, but measurable deviations from the target distribution. These become more pro-
nounced as the parameters of the Boltzmann distribution become more extreme (see also
Figure 6.38). The second reason for the systematic deviations lies in the “imperfectness”
of the HCSimperfect

HCS
. A slower effective time constant forces additional zk = 0 states between spikes

in a burst, which should however represent a continuous zk = 1 state (see also Equation
6.120). The latter issue can be easily dealt with by increasing the synaptic weight of fre-
quency of the noise sources or by reducing the membrane capacity (see also Figure 6.37 A).

An important question remains concerning the performance of LIF sampling over a
wide range of parameters. As a default parameter set, we have already chosen biologically
relevant values (see Table A.20), which we adopted from Naud et al. (2008), where they
were explicitly fitted in order to reproduce experimentally observed neural firing patterns.
In Figure 6.37 we demonstrate the robustness of our LIF sampling approach to large
variations of critical parameters. Critical parameters are considered to be those which
can not be trivially accounted for in the logistic fit of the activation function (Equation
6.143). The reversal potentials, the leak potential and the refractory period are examples
of such unproblematic parameters. Parameters such as the membrane capacitance or the
distance between reset and firing threshold can, on the other hand, be problematiccritical

parameters
, since

they can break the symmetry of the activation function.
As expected, the noise-to-capacitance ratio is an important factor, since it governs

the membrane reaction speedτeff . However, a sufficiently pronounced HCS can always be
achieved by increasing the background noise (Figure 6.37A).

The relation between τ syn and τref is, by definition, important,τ syn since the duration
of the PSP, which is governed by τ syn should encode the simultaneous 1-state of the
afferent neuron, which is given by τref . In the abstract model, the equality of the two
(Equation 6.93) therefore follows necessarily, but this is not the case for LIF sampling,
where we required the PSP to only be correct on average (Equation 6.144). Indeed, it
turns out that our initial choice of setting τ syn = τref also in the LIF model minimizes the
DKL (p(z) ‖ p∗(z)) (Figure 6.37B). However, even large variations in the synaptic time
constant do not affect the sampling performance critically, as long as the synaptic weights
are properly calibrated (Equation 6.146).

Finally, the distance between the reset and threshold potentialsϑ− % is also important, for
precisely the same reason as the intensity of the HCS. A large ϑ − % has the same effect
of increasing intra-burst ISIs as a low τeff (see our above discussion of systematic devia-
tions between the sampled and target distributions). This is why a strong enough HCS
renders the sampling performance virtually immune to changes of ϑ− % in a biologically
meaningful range (Figure 6.37C).

As we shall discuss later (Section 6.6.2.2), large fully-connected BMslarge fully-
connected
BMs

are impractical
for training towards functional purposes (and also biologically unlikely). Nevertheless, it
is still interesting to observe the firing behavior of our LIF-based BMs when their size is
increased to a point where collective effects observably influence ensemble dynamics.
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Figure 6.37.: Sampling with LIF neurons over a broad range of relevant model parameters.
All plots depict theDKL between the sampled distribution (with a certain set
of parameters) and the target distribution. (A) Sweep over neuron size and
leakage, as well as background input parameters. The axes represent multi-
plicative scaling values for four parameters: background (Poisson) synaptic
weights wexc,inh and firing rates νexc,inh on the abscissa, neuron capacitance
Cm and leak conductance gl on the ordinate. The “default” parameter values
(Table A.20) therefore have the coordinates (1, 1). The network simulation
runtimes were chosen as Tsim = 106 ms. As expected, the large neuron /
weak noise scenario (top left square) does not permit accurate sampling, as
the activation function is no longer logistic (see Figure 6.32). In general, the
plot shows that good sampling quality can be achieved for any neuron ca-
pacitance and leak as long as the background noise is strong enough (HCS).
(B) Sweep over the ratio of the synaptic and refractory time constants. The
best sampling performance is, indeed, achieved for τ syn ≈ τref , but the net-
work still produces good approximations of the target distribution when the
two time constants are not precisely identical. All DKL data points result
from 20 simulations with runtimes of Tsim = 105 ms each. The error bars
represent the standard error of the mean. (C) Effect of an increased dis-
tance from reset to threshold potential. In general, an increase in ϑ − %
causes a gradual decay of the sampling quality, since the membrane requires
additional time to reach a suprathreshold ueff when the refractory period
is over. This can, in principle, be accommodated by defining a larger time
window τon during which the neuron is considered to encode the state z = 1.
Nevertheless, in an HCS, the effective time constant can be low enough to
render the threshold-to-reset distance irrelevant.
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When interaction is relatively weak, the sampling accuracy is excellent and the firing
patterns are asynchronous and irregularAI states (Figure 6.38A). As interaction strength increases,
individual modes of the sampled probability distribution become more pronounced and
slight synchronization effects appear (Figure 6.38B). The numerical accuracy of the sam-
pled distribution remains very good over at least two orders of magnitude. As expected,
for more extreme weights, firing becomes highly synchronoussynchroniza-

tion
(Figure 6.38C). Due to the

large absolute deviations of the LIF PSPs from the theoretically optimal rectangular PSPs,
the distance between the sampled and the target distribution increases as well, but the
network still provides a useful approximation of the highest-probability modes.

Apart from highlighting the quality of LIF sampling under challenging conditions, these
observations offer an interesting complement to existing theories of synchronization in LIF
networks (see, in particular, Brunel, 2000), especially since they happen in a biologically
relevant, but theoretically not well-studied regime (see, e.g., Destexhe et al., 2003, for
in-vivo measurements of the HCS). An analytical treatment comparable to Brunel (2000)
should be feasible given the accurate predictions of our ACP formalism and constitutes
an interesting venue for future theoretical research.

Figure 6.38.: Large BMs: 500 neurons, 10% connectivity. The distribution over 5 RVs (out
of 500) obtained from the simulation of the LIF network (Tsim = 104 ms) is
plotted alongside the one obtained by Gibbs sampling from the target distri-
bution. Error bars representing the standard error of the mean are obtained
from 10 network simulations with different random seeds. Since the target
distribution can not be computed analytically for such a large number of RVs,
we define the Gibbs-sampled distribution after 106 sampling steps as the tar-
get distribution when computing the DKL. Here, we study three different
scenarios with increasing average synaptic weights. Biases were drawn from a
beta distribution: bk ∼ 1.2 · [B(0.5, 0.5)− 0.5]. Weights were drawn from in-
creasingly broad beta distributions of identical shape B(0.5, 0.5). (A) Small
weights: Wkj ∼ 0.6 · [B(0.5, 0.5)− 0.5]. Due to the rather small weights,
the probabilities of the different states approximately span an order of mag-
nitude. The network samples from the target distribution with a high de-
gree of accuracy. (B) Intermediate weights: Wkj ∼ 1.2 · [B(0.5, 0.5)− 0.5].
The still balanced synaptic connectivity allows the network to remain in
an approximately asynchronous irregular state. The network is now pre-
dominantly interaction-driven, causing particular modes to become more
prominent. The sampled distribution remains close to the target distribu-
tion. (C) Large weights: Wkj ∼ 2.4 · [B(0.5, 0.5)− 0.5]. As expected, due to
the strong synaptic interaction, spikes in the network tend to synchronize.
In this extreme regime, the overall sampling quality decreases, since the
absolute difference between the ideal, rectangular PSP shape, and the expo-
nential PSPs of our model, increases proportionally to the synaptic weight.
In particular, low-probability modes are sampled with less accuracy. Despite
this disrupting effect, the network still samples from the main modes of the
underlying distribution with relatively high fidelity.
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6.6. Applications of LIF Sampling

With LIF sampling now firmly in place, we can use this framework for various applications
outside the field of neuroscience. In principle, anything that can be done using BMs
can now be done with networks of LIF neurons. In the following, we shall use small
networks of LIF neurons to perform some well-studied tasks such as image denoising,
handwritten digit recognition and the emulation of magnetic solids. These experiments
are not comprehensive studies, but rather serve to highlight the potential of our LIF
sampling networks. These small demonstrations have provided an incentive for several
lines of currently ongoing research in our theory department.

The applicability of LIF sampling to these problems highlights an intriguing conver-
gence of what may superficially seem to be disparate disciplines – machine learning, solid
state physics and neuroscience. However, we should point out that this is not just aesthet-
ically pleasing, but also of both practical and theoretical value. The explicit compatibility
to state-of-the-art neuromorphic devices, for which LIF models are a de-facto standard,
paves a straightforward way for their application to problems where low power consump-
tion and high computation speed are simultaneously crucial. A prime example would be
the cognitive circuitry of autonomous intelligent agents (vulgo, robots). The analogy to
magnetic solids, on the other hand, suggests further venues for theoretical research, as
mathematical techniques from statistical physics now become applicable to spiking neural
networks.

All of the following experiments were performed with a custom-designed software pack-
ageLIF

sampling
software

which has been in active use for several years.27 This software performs the translation
of arbitrary Boltzmann machines to networks of LIF neurons following the rules laid out
in Section 6.5.4. Written explicitly with neuromorphic applications in mind, it automa-
tizes the characterization and configuration of each neuron on the simulation/emulation
platform. These have, in general, diverse parameters due to hardware-specific variations,
but can all achieve a symmetric activation function with sufficiently strong synaptic noise,
which is, as we have argued, the only prerequisite for LIF sampling. Colloquially, we use
the term “self-calibrating” to describe this software, since it automatically computes ap-
propriate control parameters (i.e., synaptic weights and leak potentials) depending on the
individual characteristics of the neurons in the substrate of choice. These control param-
eters must, of course, be precisely tunable and therefore require good prior calibration
(see, e.g., Schwartz, 2013). With this software package, the instantiation and simulation
of an LIF network that emulates a Boltzmann machine with arbitrary parameters literally
happens at the push of a button.

6.6.1. Image Denoising

Image denoisingimage
denoising

is a classical task in computer vision. Over the past decades, many effec-
tive denoising algorithms have been developed, using techniques such as anisotropic diffu-
sion, local filtering and wavelet transforms. Our probabilistic approach can be compared
to a smoothing process with a nonlinear filter. It is not intended to be quantitatively
competitive with state-of-the-art methods, especially since it received no task-specific

27 Recently, the software package was refactored by Oliver Breitwieser in order to allow fast parallel
simulation, as well as a much faster instantiation of large networks.
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Figure 6.40.: Image denoising as an infer-
ence task on an Ising model.
Observed pixels yi represent
noised information about the
original, unknown pixels xi.
The edges connect each pixel to
its nearest neighbors, as well as
to its observed value, to which
it is positively correlated. Fig-
ure taken from Bishop (2009).

tuning (see below), but rather a proof of concept and an example for the wide range of
applications that are amenable to LIF sampling.

In its simplest version, the image denoising problem presents as follows. We start with
an initial (unknown) black-and-white image, which can be represented as a state vector
x ∈ (0, 1)n, where n represents the number of pixels in the image. An uncorrelated noise

uncorrelated
pixel noise

process flips each pixel independently with a fixed probability pflip � 0.5, yielding an
observed image y ∈ (0, 1)n. The task is to reconstruct x as well as possible from y.

We can represent this problem as an inference problem which can be mapped to a
Boltzmann machine (see also Figure 6.40). Since the pixels can only have two values
(arbitrarily, we set black → 0 and white → 1), it is quite natural to represent each pixel
with a binary RV xk. As long as the noise level is small (which it must be for the image to
be reconstructable at all), we can assume that there exists a positive correlation between
the measured values yk and the original ones xk. We can therefore implement yk as a bias
for xk:

bk = α(yk −
1

2
) + β , (6.147)

where α > 0 controls the (assumed) correlation between the measured and original pixel
values and β represents a prior for the pixel state (we could, for example, choose β > 0
to encode the fact that the majority of pixels are likely to be white). Since the original
image is only black-and-white, we can also assume that neighboring pixels are positively
correlated. This defines our weight matrix

wij = γ · 1ne(xi)xj , (6.148)

where ne(xi) represents the set of neighbors of xi, γ > 0 controls the (assumed) nearest-
neighbor-correlation and 1 represents the indicator function

1Ax :=

{
1 if x ∈ A ,
0 if x /∈ A .

(6.149)
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Figure 6.41.: Denoising of B/W images: examples. Each horizontal row is ordered as
follows: original image, noisy image, inferred marginal probabilities for the
original pixel values (in grayscale) and final denoised image after binarization
of the marginals. Noise level (probability of pixel flip) set to 10%. The ’M’
and ’j’ are hand-drawn 30x30 pixel arrays. The ’j’ was specifically chosen
as a minuscule to show that small cohesive monochromatic areas (the dot
on top of the ’j’) can also be well reconstructed. The ’4’ and ’9’ are taken
from the MNIST database. The switch from black-on-white to white-on-
black serves to show that the reconstruction quality does not depend on the
white-to-black pixel ratio.
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The parameters W and b fully determine the target distribution for our LIF network.
The resulting stochastic model is equivalent to the Ising model Ising modelwith positive nearest-
neighbor interaction (more on this in Section 6.6.3). As such, it is quite intuitive to
understand how its dynamics represent a nonlinear smoothing filter: each pixel has its
state “pulled” towards the states of its neighbors xi, as well as towards the actually
measured value yk:

uk = bk +
∑

xi∈ne(xk)

wki (6.150)

= αyk +
∑

xi∈ne(xk)

γxi + const . (6.151)

The nonlinearity is induced by the logistic activation function p(zk = 1) = σ(uk).

Figure 6.41 shows exemplary results of denoising with LIF networks. For these exper-
iments, we have chosen four 30 × 30 pixel images with a noise level of pflip = 10%. The
parameters were set at α = γ = 1 and β ∈ {0.2,−0.2}, depending on the background
pixel value. We point out that these are just guesstimates and explicitly not the result
of careful tuning. Nevertheless, we can observe how the resulting LIF network already
performs quite nicely on the chosen examples.

For denoising, we are only interested in the marginals p(zk = 1), which we can measure
directly from the spike trains of the corresponding neurons. These can be represented
as grayscale images and already clearly exhibit the desired denoising effect. Also, the
blurriness of the edges serves as a nice visual cue for the analogy to a smoothing filter.
The final results of denoising are obtained by defining an (arbitrary) cutoff θ for the
marginals, above which the pixels are defined as white, otherwise black binarization. We set the
threshold at θp(zk=1) = 0.5, but the resulting images remain very similar for a broad range
of θ.

These results could be easily improved by choosing a more complex interaction that
goes beyond the nearest neighbors, as well as by carefully tuning the parameters α, β
and γ. In particular, these could be chosen in a task-specific manner, depending on the
nature of the image. For example, β could be chosen non-uniformly, in accordance with
the dominant pixel value within a local neighborhood. However, the main point we wish
to illustrate here is how our LIF networks can effectively work “out of the box”, without
any tuning of neuron parameters.

6.6.2. Handwritten Digit Recognition

Pattern recognition and completion are, quite obviously, tasks that the brain is performing
constantly, and at which it is exquisitely effective. Human-level performance at these
tasks has therefore always been a holy grail for machine learning. While humans remain
unsurpassed in many visual recognition tasks, algorithms are quickly catching up (see,
e.g., Salakhutdinov and Hinton, 2009) – and some of them already boast superhuman
performance (Ciresan et al., 2011; Cireşan et al., 2012). Not surprisingly, many state-of-
the-art image classification algorithms are at least partly inspired by the architecture of
the mammalian visual cortex.

In this section, we show how our LIF sampling networks can be trained for such tasks.
Our experiments have been inspired by the highly successful application of Boltzmann
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machines to image classification by Hinton et al. (earliest results date back to the 80s, see,
e.g., Hinton and Sejnowski, 1986), and represent the first implementation of these concepts
in networks of LIF neurons. In particular, we discuss LIF-based Boltzmann machinesgenerative

and discrim-
inative
models

both
as generative (pattern completion) and discriminative (pattern recognition) models. The
training and test data is taken from the probably most well-known benchmark database
– the Mixed National Institute of Standards and Technology (MNIST) handwritten digit
datasetMNIST

dataset
(LeCun and Cortes, 1998).

6.6.2.1. Fully Visible Boltzmann Machines

Our first experiment serves as a proof of concept and as a demonstration of probabilistic
inference in LIF networks. We start with a straightforward implementation of a simple
generative model for three easily recognizable digits - a 0, a 3 and a 4. The underlying
assumption is that a Boltzmann distribution can be found which exhibits three distinct
modes, each of which encodes one of the three digits. We further simplify the problem by
having the associated BM be “fully visible”fully visible , i.e., it only consists of units that explicitly
represent the training data.

As a first step, we have reduced the original 28×28 pixel arrays from MNIST to 12×12
arrays, in order to reduce simulation time. Each pixel is represented by a binary RV
zk and therefore assigned to one neuron, resulting in a fully connected BM of K = 144
neurons. The resulting joint distribution p(z) should, after training, display three distinct
high-probability modes with clearly recognizable shapes – the “prior knowledge” stored
by the network. The probabilistic model was augmented by adding real-valued input
channels for each pixel, associated with random variables yk ∈ R, 1 ≤ k ≤ K. These RVs
are used to represent observations and are therefore clamped during training or during
inference tasks.

The resulting generative model p(y, z) has the structure shown in Figure 6.42A and
connects the latent network variables zk to observable inputs yk by means of likelihood
functions p(yk|zk), which we have chosen as Gaussian with unit variance28 (Figure 6.42B).
The likelihoods p(yk|zk) tend to align the network state with the observation, i.e. zk = 1
for yk > 0. The task for the network is to calculate and represent the posterior distribution
according to Bayes’ rule:

p(z|y) ∝ p(z) · p(y|z) . (6.152)

A short derivation shows that the posterior p(z|y) yields the following abstract membrane
potential:

vk = bk + yk +
∑
i

wikzi , (6.153)

such that the sum bk +yk is equivalent to an effective bias and corresponds to an external
current Iext

k = Ibk + Iyk that shifts ūk appropriately (Equation 6.143). The input layer y
must therefore not be represented explicitly, but can be translated to an additive term in
the bias vector

btot = b+ by . (6.154)

28 It is quite important to choose the variance large enough to allow a nonzero probability of pixels having
the “wrong” value despite clamping. Otherwise, learning might lead to extreme values for weights and
biases, creating a disconnected probability landscape with deep energy wells for particular states. If the
high-energy states separating these modes can not be overcome with significantly large probabilities,
the network will be stuck in one mode and lose its generative qualities.
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Figure 6.42.: A fully visible, LIF-based BM for handwritten digit recognition. (A) Prob-
abilistic model. The (unknown) prior is implemented as a fully connected
BM with RVs zk. Observations are given by an input layer y, but can be
represented as biases for z. (B) Likelihood functions p(yk|zk). (C) Free
evolution after learning (dreaming). The network spends most of the time
in individual modes, with quick switching times between them. The modes
are approximately uniformly distributed, correctly representing the uniform
distribution of the training data (all images are clamped equally often). The
states produced by the network at any point in time are clearly recognizable.
(D) Stochastic inference. When presented with input that is incompatible
with 0, but compatible with 3 and 4 (four pixels in the center of the image
clamped to “black”), the network switches only between the two compatible
states. The posterior distribution is still uniform (i.e., ca. 50% of time spent
in each state), as required by the correct application of Bayes’ rule to the
prior. Figure taken from Petrovici et al. (2013).
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The resulting network can now be trained by sequentially updating the bias vector b
and weight matrix W in order for the images encoded by the sampled distribution z to
become increasingly similar to the training images given by y. This is achieved by first
evaluating the target (posterior)posterior expectation values E [z̃k] and correlations E [z̃iz̃k] from
the biases by corresponding to the pixel intensities in each of the three training images.
Between two parameter updates, the network is allowed to evolve freely, in order to obtain
the priorprior expectation values E [z∗k] and correlations E [z∗i z

∗
k]. Iteratively, following each

freely evolving period, the biases and weights can be updated such that the priors are
“pushed” towards the target posteriors:

∆bk ∝ E [z̃k]− E [z∗k] (6.155)
∆wik ∝ E [z̃iz̃k]− E [z∗i z

∗
k] . (6.156)

We note that this intuitive update rule is inherited from so-calledwake-sleep
algorithms,
contrastive
divergence

wake-sleep algorithms
and in particular contrastive divergence, which we discuss later on. The following sugges-
tive nomenclature is routinely used in machine learning: During the “awake” state, the
network receives observations and samples from the appropriate posterior (usually, the
network is clamped to the training data, but for a fully visible BM, this step becomes
redundant, since it is fully constrained when awake). During the “sleeping” state, the
network is said to “dream”dreaming from the unconstrained prior distribution.

Since the joint distribution over all z ∈ {0, 1}144 possible states can not be explicitly
given, we use a 2D projection of the state spacestate space

projection
, similarly to Section A.2.3.5. The axes

indicate the three basis vectors B, representing pixel intensities E [zk] of the digits (0, 3,
4),

E [zk]
034 = (B0,B3,B4)T (6.157)

with a total intensity normalization ||Bi|| =
√∑

j
|Bi

j |2 = 1. The network states z(t)

acquired from the simulation are projected onto this basis:

z034(t) = (B0 · z(t),B3 · z(t),B4 · z(t))T . (6.158)

This three-dimensional vector is then projected onto a two-dimensional plane with coor-
dinates

zproj(t) =

(
sin(φ0

B) sin(φ3
B) sin(φ4

B)
cos(φ0

B) cos(φ3
B) cos(φ4

B)

)
z034(t) (6.159)

with (φ0
B, φ

3
B, φ

4
B) = (0, 2π

3 ,
4π
3 ) indicating the directions of the normalized basis vectors.

These linear projections zproj(t) of network states z(t) therefore illustrate similarity of
states as a distance in a 2D plane.

The temporal evolution of the unconstrained network states z(t) after training is shown
in Figure 6.42C. Devoid of any observations, the network dreams from a distribution
p(z) = p(z|y = 0) with three distinct modes, clustered around the vectors representing
the three training images. The network trajectory reveals that the system stays in one
mode (“digit”) for some duration, traverses the state space and then samples from a
different mode of the distribution. Note the behavioral similarity to the perceptual jumps
we experience when we see the ambiguous images from Figure 6.1. Snapshots taken at
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25ms intervals show how the network produces highly recognizable images that are very
similar to the training set.

A typical inference scenario with incomplete observations is shown in Figure 6.42D.
Four input channels at the center of the image were picked to inject positive currents
Iyk > 0 (corresponding to black pixels) to the network while all other inputs remained
uninformative. The observation y therefore appeared incompatible with digit 0, and
remained ambiguous with respect to digits 3 and 4. Accordingly, the resulting bimodal
posterior distribution p(z|y) had a suppressed 0-mode, but preserved the 3 and 4 modes.
Thus, the posterior reflects both the almost certain conclusion that “the input is not a
zero” and the uncertainty that “the input could either be a three or a four”.

6.6.2.2. Deep Learning Architectures

We shall start by generalizing the simple learning algorithm we used in the previous
section. Consider, therefore, how the probability of a data sample given the momentary
parameters of the model p(z|W , b) changes when an individual weight wij is changed:

∂p(z)

∂wij
=

∂

∂wij

 e−E(z)∑
z′
e−E(z′)


= e−E(z)

[∑
z′

e−E(z′)

]−1

zizj − e−E(z)

[∑
z′

e−E(z′)

]−2∑
z′

[
e−E(z

′
)z′iz

′
j

]

= p(z)zizj − p(z)


∑
z′

[
e−E(z′)z′iz

′
j

]
∑
z′
e−E(z′)

 , (6.160)

where we have omitted the conditioning on the model parameters W and b for clarity.
By dividing both sides by p(z), we obtain the gradient of the log-probability – or log-
likelihood log-

likelihood
– of the training sample z:

∂ ln p(z)

∂wij
= zizj −


∑
z′

[
e−E(z′)z′iz

′
j

]
∑
z′
e−E(z′)

 . (6.161)

The second term on the RHS represents the expectation value of zizj over all possible
model states:

∂ ln p(z)

∂wij
= zizj − 〈zizj〉model . (6.162)

By taking a final average over all training data,〈
∂ ln p(z)

∂wij

〉
data

= 〈zizj〉data − 〈zizj〉model , (6.163)

we can express the maximization of the log-likelihood of the data as a gradient ascentgra-
dient ascent learning problem for each of its parameters:

∆wij = η(〈zizj〉data − 〈zizj〉model) , (6.164)
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Figure 6.43.: Connectivity structure of two types of BMs. Visible (observable) units are
marked green, hidden variables in orange. Left: Fully visible, fully con-
nected BM. We have arbitrarily partitioned the constituent RVs into two
sets, to highlight the existence of lateral connections, as opposed to RBMs.
Right: Two-layer RBM with a visible and a hidden layer. Lateral connec-
tions within layers are omitted. This allows faster sampling, since all units
in a layer can be updated in parallel. Experience also shows that such BMs
are better-suited for training than their fully connected counterparts.

where η represents a learning rate. Appropriately, this method of parameter updating
is dubbed maximum likelihoodML learning (ML) learning. The learning rule for the biases can be
calculated analogously:

∆bi = η(〈zi〉data − 〈zi〉model) . (6.165)

The remaining computational problem concerns the evaluation of the model average.
Since this is evidently impractical due to the exponentially exploding number of possible
states, it must be obtained from a large number of sampling steps n. However, there is
no a priori way of knowing how long to sample until the sampled distribution pn(z) has
converged closely enough to the true model distribution. To avoid this difficulty, Hinton
(2002) has proposed to simply fix n to a small value, typically even n = 1. This so-called
contrastive divergencecontrastive

divergence
(CD) method no longer maximizes the log-likelihood of the training

data, but can rather be shown to minimize the difference between two DKLs:

CDn = DKL (pdata ‖ pmodel)−DKL (pn ‖ pmodel) . (6.166)

In practice, this method of updating weights and biases has become a de-facto standard,
so we can adopt it for training our LIF networks as well.

We could now apply this algorithm to train fully visible BMs, as demonstrated in
the previous section. However, it is quite clear that our previous example was just an
extremely simple case of a generative model, where the training set was small and consisted
of very distinct images. With each additional training image, a fully visible BM needs to
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T=2

T=3

CD chain

AST chain

Figure 6.44.: Update chains in CAST training. The bottom chain represents a sequence
of CD updates. The top AST chain samples with fluctuating temperatures
T and swaps (T = 1)-states with the CD chain, thus improving mixing.

“overload” its weights and biases, for example when the same pixel is required to be black
in one image and white in another, or when pairs of pixels are required to be positively
correlated in one image and negatively correlated in another. As the number of training
samples increases, the BM does not have enough parameters to store this information and
gradually loses its generative properties by producing increasingly blurred images, which
are essentially overlaps of multiple training samples.

The solution is quite straightforward and involves including additional RVs into the
BM, which are, however, not directly observable. In probabilistic modeling such latent
variables latent/hid-

den
variables

are also called unobserved or hidden causes. BMs with hidden units evidently
can be given far more representational power than fully visible BMs, as the distribution
of the visible RVs becomes a marginal over the joint distribution over all RVs. Thus,
hidden variables also remove the constraint of the distribution over the visible RVs being
necessarily Boltzmann.

However, this additional flexibility comes at an expensive price in terms of training.
Since the relationships between the latent RVs themselves, as well as between latent and
visible RVs are initially unknown, they represent parameters that need to be trained.
Additionally, the training data only holds information about the visible RVs, so with each
additional hidden RV, these relationships become increasingly less constrained. Indeed,
the inefficiency of training large fully connected BMs has led to the practical necessity of
imposing restrictions on the connectivity structure.

The most widely used BM model for both generative and discriminative tasks is the
so-called restricted Boltzmann machine RBM(RBM, see also Figure 6.43). In an RBM, the
underlying graphical model is bipartite, with no lateral connections from visible to visible
and from hidden to hidden units. This is particularly practical for software implemen-
tations, which most often use Gibbs sampling as a state update algorithm. Due to the
lack of lateral connections, sampling alternates between updating all visible units vk and
updating all hidden units hk, each of which can happen in parallel parallel

update
:

p(hk|h\k,v) = p(hk|v) (6.167)

p(vk|v\k,h) = p(vk|h) . (6.168)

More importantly however, CD has proven to be an efficient way of training RBMs as
good generative models for complex datasets (see, e.g., Hinton, 2002), which we shall also
find to be the case for LIF-based BMs.
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Figure 6.45.: LIF-based RBMs as generative models of MNIST handwritten digits. Top
left: Subset of the MNIST training dataset (60000 images). Top right:
Marginal probabilities of visible units after training represented as grayscale
images. These can be easily calculated from the sampled states of the hid-
den units due to their conditional independence. Bottom: Evolution of
the generative properties of the RBM during training measured by the log-
likelihood (more precisely, CSL) of an MNIST test set under the momentary
values of the network parameters. The left side of the plot represents the
pretraining of abstract models (standard Gibbs sampling and abstract neural
sampling). The solid curves were obtained from the data points by smooth-
ing with a Gaussian. After pretraining, the parameters (weights and biases)
were translated to the LIF domain and further trained for several thousand
iterations. The generative performance of the LIF network improved quickly
and consistently remained at a high level.
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With these training tools, we can now investigate the performance of LIF-based RBMs
on more relevant and difficult tasks, such as learning the full MNIST dataset. In the
following, we briefly outline the training procedure – for a more detailed description, we
refer to Leng (2014). Our approach is as follows: we first train a standard RBM with an
augmented CD-based training algorithm and a decreasing learning rate (“pretraining”) pretraining.
After a certain number of steps, the trained network parameters are translated to an
LIF network using the rules outlined in Section 6.5.4. The resulting LIF network already
performs very well, but is further trained with CD for a small number of training steps
as a final “fine tuning” fine tuningstep, which further improves its performance.29

The extension of CD we use during pretraining is called coupled adaptive simulated
tempering CAST(CAST, see, in particular, Salakhutdinov, 2010) and serves for better mixing
within the update chain (see Figure 6.44). The idea of CAST is the following: In addition
to the CD chain, another Gibbs sampler (AST chain) is run in parallel on an RBM with
fluctuating temperature, which can be straightforwardly implemented as a multiplicative
factor on all weights and biases, since a temperature-dependent Boltzmann distribution
simply reads:

p(z) ∝ exp

[
− 1

T
E(z)

]
. (6.169)

By varying the temperature T in the AST chain (tempering), we can improve mixing
between high-probability modes that are separated by low-probability states. We can
then periodically switch the tempered states from the AST chain (those states where
T = 1) with the states in the CD chain to obtain a better estimate of 〈zizj〉model 〈zi〉model

required by our update rules 6.164 and 6.165.

Some results of our training algorithm applied to LIF sampling networks can be seen in
Figure 6.45. Apart from showing examples of network states during the dreaming phase of
the trained network, we estimate its generative capabilities with the so-called conservative
sampling-based likelihood CSL(CSL) estimator (Bengio and Yao, 2013):

CSL =

N∑
j=1

{
ln
[∑M

i=1 p(vj |hi)
M

]}
N

, (6.170)

where the first sum is taken over all test samples (images) vj and the second sum is taken
over M hidden states hi sampled by the network. The CSL can be viewed as the average
probability of the network to produce the set of N test images {vj |1 ≤ j ≤ N}.30 Note
how the log-likelihood of the test images gradually increases as training progresses (Figure
6.45, bottom panel). After training, the network produces well-recognizable images with

29 The search for good meta-parameters in machine learning is notoriously “voodoo” in nature, i.e., widely
acknowledged to profit significantly from a long history of practical experience using the respective
algorithm (Hinton, 2010). We have therefore explicitely avoided a discussion of training parameters
such as the time course of the decreasing learning rate or the number of training steps in favor of a
crisp and intuitive explanation. We point again to Leng (2014) for numerical details of the training
algorithm.

30 In principle, we could also use the sampled visible states vj to compute something like a distance
||vi − vj || (as we did in Figure 6.42), but using the hidden states as a proxy is more efficient, since
they allow the fast computation of p(vj |hi) (due to the bipartite nature of the RBM), which is, of
course, more precise than sampling.
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a large variance of individual digits, thereby matching the diversity of the data it has
learned from (Figure 6.45, top panels).

If we assign each of the produced images a particular mode based on its similarity to
prototypical digits from 1 to 10, we can obtain a better visual representation of the state
mixingmixing (Figure 6.47, top panel). The LIF network appears to jump significantly more
often between modes, allowing a faster coverage of the entire relevant state space. Even
without additional tweaking, it mixes comparably to AST, which, however, requires the
computation of many intermediate states with varying temperature between the accepted
samples with T = 1. It turns out that, in particular cases, LIF networks can actually
mix better than even AST (Figure 6.47, bottom panel). This phenomenon is extremely
interesting, since it showcases how LIF sampling can even be superior to state-of-the-art
sampling techniques from machine learning. The investigation of the mixing properties
of LIF sampling networks is ongoing.

With LIF-based RBMs now in place, we can add further layers to our networks, forming
so-called deep Boltzmann machinesDBMs (DBMs, see Figure 6.46, left panel). The training
algorithm for these networks remains the same31 and is simply applied repeatedly for
each additional pair of neighboring layers: after the first hidden layer has been trained,
it is used as a visible layer for training the second hidden layer, and so on. In order
to use these networks as discriminative models, we can also add a so-called label layer

label layer consisting of K label RVs lk (Figure 6.46, left panel), where K represents the number of
image classes (for MNIST, K = 10). When the visible layer is clamped during training,
the label layer is clamped simultaneously to lk = 1 and l\k = 0, where k represents the
class of the currently clamped image.

The idea behind adding “depth” to the network is for each layer to learn an increasingly
abstract representation of the training data. For example, when the test data is shown
and the label neurons are not clamped, the label layer is simultaneously the deepest
one. It can then be interpreted as featuring the highest level of abstraction, with each
individual neuron responding to all written representation of a specific digit class.

We can now compare the classification performanceclassifica-
tion
performance

of LIF sampling networks to the
performance of classical DBMs trained with the same algorithm. We specifically do not
perform any additional training of the LIF networks, but rather use the pretrained pa-
rameters of classical DBMs and translate them to the LIF domain. The comparison of
classification performances is shown in Table 6.2.

The translation of a classical RBM/DBM to an LIF network causes only a slight decline
in classification performance. Coupled with the improved mixing features of LIF-based
BMs and with the direct compatibility to existing accelerated neuromorphic devices, these
results provide a strong incentive for using LIF sampling networks as substrate for com-
plicated classification tasks. For completeness, we have also added results for networks of
CUBA neurons, where the HCS was emulated artificially by choosing a very low mem-
brane time constant. Note how the CUBA networks perform slightly better than COBA

31 In machine learning, deep networks are usually trained with some form of backpropagation to obtain the
highest classification performances. We omit such methods here, since our focus lies on the comparison
between LIF-based DBMs and classical DBMs. However, the translation of DBM parameters is, of
course, independent of the sophistication level of the training algorithm used in pretraining.
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Figure 6.46.: RBMs with multiple layers (DBM). Left: Example DBM with two hidden
layers. Right: Additional label layer connected to the last hidden layer.
During training, the label units are clamped to the correct labels corre-
sponding to the training sample clamped to the visible layer. After training,
the label layer remains unconstrained, effectively serving as a final hidden
layer.

networks. This is not unexpected, since in COBA networks, the interaction within the
network slightly alters the HCS of the neurons, thereby modifying their activation func-
tions. CUBA neurons do not suffer from such nonlinearities in the superposition of evoked
PSPs.

implementation RBM (H1 = 1300) DBM (H1 = 600, H2 = 1100)
traditional 96.7% 97.1%
CUBA LIF 96.5% 96.9%
COBA LIF 96.4% 96.6%

Table 6.2.: Classification performance of different DBM implementations on the full
MNIST dataset.
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Figure 6.47.: Mixing in RBMs. Top: Mixing after pretraining. Gibbs sampling (blue)
already spends extended periods in individual modes, requiring longer sam-
pling time for good coverage of the entire relevant state space. Upon close
inspection, LIF sampling (red) already switches more frequently than AST
(yellow). Bottom: Mixing after fine-tuning. While LIF sampling only
shows a slight decrease in switching frequency, Gibbs and AST almost ex-
clusively sample from a single mode. This comparison is somewhat unfair,
since AST was already mixing well before fine-tuning. However, it shows
that parameter configurations exist for which LIF sampling is clearly supe-
rior to AST in terms of mixing.
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6.6.3. Microscopic Magnetic Systems

At the end of our brief excursion into potential applications, we discuss a class of models
that has already appeared several times throughout this chapter, both implicitly and
explicitly. Indeed, BMs themselves were originally inspired not only by biological neural
networks, but also by long-established ideas from statistical physics – in particular, the
Ising model Ising model.

The Ising model describes an ensemble of spin-endowed particles at fixed positions in a
lattice.32 Each particle has two possible configurations of its magnetic moment denoted
by σk ∈ {−1, 1}, which correspond to the two possible spin projections of a spin-1/2
particle spin-1/2

particles
. The interaction between pairs of particles is governed by a bilinear term Jijσiσj

whose sign favors either parallel or antiparallel spin configurations. The interaction with
an external magnetic field is modeled by a linear term hµkσk, where h gives the interaction
amplitude and µk the magnetic moment of a particle. The Hamiltonian Ising

Hamiltonian
of the system

therefor reads:
H(σ) = −

∑
ij

Jijσiσj − h
∑
k

µkσk . (6.171)

The temperature-dependent configuration probability (joint distribution) of σ ∈ Ω =
{−1, 1}N , where N represents the total number of particles, is given by the Boltzmann
distribution

Pβ(σ) =
e−βH(σ)

Zβ
, (6.172)

where β represents an inverse temperature temperature

β = (kBT )−1 (6.173)

and Zβ is the partition function partition
function

Zβ =
∑
σ∈Ω

e−βH(σ) . (6.174)

It is quite obvious how the distribution of this ensemble of spins is formally identical to
the distributions sampled by our BMs (Equation 6.59) by either Gibbs sampling, abstract
neural sampling or LIF sampling.

In the simplest version of the Ising model, the interaction happens only between nearest
neighbors (denoted by angular brackets 〈ij〉). Furthermore, all particles are identical
(µi =: µ and Jij =: J ∀i, j ∈ {1, . . . , N}), so the Hamiltonian becomes

H(σ) = −
∑
〈ij〉

Jσiσj − hµ
∑
k

σk . (6.175)

32 Originally, the Ising model was designed as a simplified model of ferromagnetism, with the individual
units representing magnetic dipole moments of atomic spins.
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Depending on the sign of J , we can identify three types of lateral interactionlateral
interaction

:

• J > 0, ferromagnetic interaction, spins tend to align;

• J = 0, nonferromagnetic material, no spin-spin interaction;

• J < 0, antiferromagnetic interaction, neighboring spins tend to be antiparallel.

The sign of h, on the other hand, governs the interaction with an external magnetic fieldinteraction
with
external
field

:

• h > 0, paramagnetic interaction, the total magnetization of the ensemble tends to
align with the external field;

• h < 0, diamagnetic interaction, the external field causes an opposing-sign magneti-
zation of the ensemble.

Since Ising ensembles obey Boltzmann statistics, we can directly translate all interaction
parameters to the LIF domain (see Section 6.5.4). We can therefore search for equivalent
phenomena in LIF networks and solid-state magnetic materials.

We start with the simplest interesting system: a 2D lattice of a nonferromagnetic
material (J = 0) with paramagnetic properties (h > 0). For such an ensemble, the depen-
dence of the ensemble magnetization M on the external field B can be found analytically.
Without lateral interaction, individual spin orientations are independent, so the joint
distribution (and therefore also the partition function) factorizes:

p(σ) =

N∏
i=1

p(σi) = [p(σ)]N , (6.176)

where

p(σ) =
eβσµB

Z∗
(6.177)

and
Z∗ =

∑
σ∈{−1,1}

p(σ) = eβµB + e−βµB = 2 cosh(βµB) (6.178)

The total magnetizationmagnetiza-
tion of a
paramagnet

is proportional to the expectation value of the spin orientation,
which can be easily derived from the above single-unit state distribution:

M = Nµ 〈σ〉 = Nµ
∑

σ∈{−1,1}

σp(σ) = Nµ

(
eβµB − e−βµB

)
Z∗

= Nµ
2 sinh(βµB)

2 cosh(βµB)
= Nµ tanh(βµB) . (6.179)

For small magnetic fields and large temperatures, we have βB → 0, so we can approximate
tanh(βµB) ≈ βµB, leaving us with the well-known Curie lawCurie law :

M =
Nµ2

kB

B

T
. (6.180)
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Figure 6.48.: Curie law of paramagnets observed in unconnected, externally driven LIF
networks. Left: A linearly increasing external current emulates an external
magnetic field. Right: The average refractoriness (equivalent to the mean
firing rate) of the network is the equivalent of magnetization. For low ex-
ternal fields, the mean firing rate increases linearly. For higher values of the
external drive, the mean firing rate saturates at νmax = 1/τref following a
tanh curve.

We can now observe the exact same behavior in LIF networks without lateral connec-
tions (Figure 6.48). The LIF equivalent of magnetization is the fraction of neurons that
are refractory at a given point in time. The linear increase of the external magnetic field
is emulated by a linearly increasing background current Ib received by all neurons. For
small values of Ib, we observe the linear increase of average refractoriness predicted by the
Curie law. For larger values of Ib, we enter the saturation regime where the neurons are
almost always refractory (the equivalent of all spins being oriented in the same direction)
and the average refractoriness curve saturates along a tanh curve.

By adding positive lateral interactions to the system, we can now emulate the behavior
of ferromagnets ferromag-

nets
. One characteristic observable effect is the appearance of hysteresis: the

total magnetization of the system no longer depends on the external field alone, but also on
its history hysteresis. Once the system has been fully magnetized and the external field is reduced
again, the “demagnetization” follows a different path than the original magnetization
curve. Due to the positive lateral interaction of the spins, an internal coercive force

coercive
force

appears that acts to preserve the magnetization. The external field must switch direction
before the magnetization switches direction as well. Note that this is not a latency-driven
effect: if the lateral interaction J is strong enough, a hysteresis loop always appears,
regardless of the speed at which the external field changes.

The same observations can now be made for LIF sampling networks with excitatory
lateral connections (Figure 6.49). If we start with a network in the quiescent state (equiv-
alent to a complete negative magnetization), a slowly linearly increasing background
current dIext/dt = const > 0 causes the activity to increase slowly at first and then jump
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Figure 6.49.: Ferromagnetic hysteresis in excitatorily coupled recurrent LIF networks.
Left: As in Figure 6.48, a varying current emulates an equivalent exter-
nal magnetic field. Right: Depending on its previous history, the firing rate
in the network follows a different path. The strength of the lateral connec-
tions determines the internal coercive force, with stronger synaptic weights
causing a wider hysteresis cycle.

suddenly to a high firing rate, which then again increases slowly until saturation (the
maximum firing rate of a single neuron being νmax = 1/τref). The value of the external
current around which the activity jumps is denoted by I↑. When, starting from this state,
the current is lowered again with the same (but negative) rate, the lateral excitation
causes the high firing activity to persist even for Iext < I↑, until the external drive is
strong enough to inverse the “magnetization” around I↓. Note that typical hysteresis
curves of macroscopic ferromagnetic bulks are significantly more “smooth” – without
discernable jumps around particular values of the external field. The reason is, of course,
only one of scale: our ensemble, featuring only 200 neurons, is ca. 21 orders of magnitude
smaller than 1 cm3 of iron. It is therefore more appropriatesingle-

domain
magnets,
Barkhausen
jumps

to compare our networks
to single-domain, microscopic magnets and the sudden switch in magnetization to a
Barkhausen jump.

We can now introduce temperature into the picture. In ferromagnetic solids, a drop
in temperature causes a phase transition at the Curie temperatureCurie

temperature
TC . Above the Curie

temperature, the thermal noise is stronger than the lateral interaction and the material
becomes paramagnetic – without an external field, the magnetization is zero. When the
temperature drops below the Curie temperature, the spins spontaneously align themselves,
and the material magnetizes spontaneouslyspontaneous

magnetiza-
tion

.
In the Ising model, the (inverse) temperature has a multiplicative effect on the Hamil-

tonian, since
Pβ(σ) ∝ e−H(σ)/kBT , (6.181)

so we can define an effective Hamiltonian H̃ = H/kBT . We have two options of trans-
lating this Hamiltonian to the LIF domain. On one hand, we can rescale all weights
and biases by β = 1/kBT , but this would be impractical, since a changing temperature
would become difficult to emulate (standard neural network simulators are not built to
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Figure 6.50.: Paramagnetic-to-ferromagnetic phase transition in single-domain magnets
at critical temperature as observed in positively coupled recurrent LIF net-
works, where the rate of the background Poisson noise represents the equiv-
alent of temperature. The noise rate decreases linearly in time. When ap-
proaching the critical rate (equivalent to the Curie temperature) from above,
the spatial scale of the temperature-driven fluctuation increases, which is a
universal feature of dynamical systems close to a critical point. When cross-
ing the critical temperature, the network spontaneously jumps into an either
completely silent or a maximum-frequency spiking state (here, we observe
the former).

allow arbitrary, continuous changes of synaptic weights during simulation). On the other
hand, temperature finds its much more natural equivalent in the characteristics of the
background Poisson generators that are used in LIF sampling as a source of stochasticity
(Section 6.5.1).

When all weights and biases are scaled by the same factor β, all membrane potentials
will feature the same scaling: ũ = βu. Since the activation function depends only on ũ,
changing the temperature results in a rescaling of the activation functions, with a lower
temperature resulting in a steeper slope. We have already discussed how the activation
function is closely related to the distribution of the free membrane potential (see Figure
6.29). The width of the free membrane potential distribution is therefore positively cor-
related (approximately proportionally) with the ensemble temperature. For the sake of
simplicity33, let us assume that our neural implementation consists of CUBA neurons, for

33 For COBA neurons, the dependencies are more complicated, as we have discussed in Section 4.3.4.
However, also for COBA neurons, a unique mapping of the background firing rate to the free membrane
potential distribution width – and thereby to the ensemble temperature – can be found in the HCS,
see Equation 4.108.
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6. Probabilistic Inference in Neural Networks

Figure 6.51.: Weiss domains in a ferromagnet above the critical temperature as observed
in positively coupled recurrent LIF networks. Left: Weiss domains in a 2D
lattice (snapshot) Right: Evolution of Weiss domains in a 1D Ising chain.
The abscissa represents time, the ordinate represents the position along the
Ising chain. In addition to the expected observation of moving Bloch walls,
we can also observe an asymmetry between the ↑ and ↓ states.

which the width of the membrane potential distribution is proportional to the square root
of the Poisson noise rates (Equation 4.98). We can thereby control the ensemble tempera-
ture by using inhomogeneous Poisson processestemperature

as Poisson
rate

(i.e., Poisson processes with time-varying
rates) as noise sources.

If we now gradually lower the Poisson background rates in an excitatorily connected
LIF network (the equivalent of a ferromagnet, see above), we observe similar phenomena
as we would predict for ferromagnets around the Curie temperature 6.50. As the rates
approach the critical pointcritical

point
, the oscillations in the network activity (equivalent to the total

magnetization) become larger. The increasing spatial scale of fluctuations as a phase
transition is approached is a classical token of universalityuniversality . Upon crossing the critical
point, the network jumps into an almost perfectly quiescent state. Since the network is
slightly biased towards z = 0 (see also discussion below), the jump into the quiescent
state (maximum negative magnetization) is more likely than the jump into a rapid-firing
state (maximum positive magnetization).

As a final experiment, we study the appearance and evolution of magnetic domainsmagnetic
domains

. In
macroscopic ferromagnetic solids, when the temperature drops below the Curie tempera-
ture, the material magnetizes spontaneously, but not uniformly. The resulting regions of
uniform magnetization are called Weiss domainsWeiss

domains
.

On the scale of our networks, this phenomenon can not be replicated, since they are
many orders of magnitude smaller than individual Weiss domains. However, similar pat-
terns can appear above the Curie temperature as well (Figure 6.51, left panel). The
domain walls (Bloch walls)Bloch walls are no longer stable, but evolve in time.

In order to visualize this evolution, we relinquish one spatial dimension, leaving us with
a 1D ferromagnet. A 1D Ising chain does not have a phase transition, but this does not
matter since we study phenomena above the Curie temperature anyway. We can now
represent the position-dependent magnetization of the chain on the ordinate and use the
abscissa to study the temporal evolution of Bloch walls (Figure 6.51, right panel). As in
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the 2D case, we note the appearance of moving Weiss domains. However, we can also
observe a manifest asymmetry ↑-↓-

asymmetry
in the behavior of “↑” (red) and “↓” (blue) domains.

For one, the ↓-domains are dominant, but that can be easily balanced out by appropriate
biasing.

Secondly however, the evolution of the domains is clearly not T -symmetric (time-
reversal invariant). When an ↑-domain forms, it tends to spread quickly, but when it
shrinks, it does so more gradually. The reason for this asymmetry lies in the T -asymmetry

T -
asymmetry

in LIF
networks

of the interaction in LIF networks: PSPs are not symmetric, but start off by rising quickly
and then gradually (exponentially) decline back to zero (see Figure 6.34). When a neu-
ron surrounded by non-refractory neurons spikes, it initiates the spread of an ↑-domain.
The membrane potentials of its neighbors jump nearly instantaneously, causing a high
likelihood of them spiking themselves. The spread of activation thus happens quickly,
explaining the fast expansion of ↑-domains. Analogously, the slow recession can be traced
back to the long PSP tails.

We can also find a third discrepancy from the standard Ising model: upon closer inspec-
tion, we can observe that ↑-domains are interspersed with very narrow bands of blue color.
These are not true ↓-domains, but represent the τb

k , the short jump intervals between re-
fractory states within bursts (see Equations 6.125 and 6.137). In principle, they can be
reduced by increasing the membrane speed or reducing the threshold-to-reset distance,
but they always contribute to the ↑-↓-asymmetry.

In hindsight we can now also explain the (somewhat less apparent) ↑-↓-asymmetry in the
2D lattice, where the ↑-domains, represented in black, are smaller and less interconnected
than the ↓-domains, represented in white.
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6.7. Sampling in Discrete Spaces with Spiking Neurons

In the previous sections, we have examined a very powerful formal equivalence between
the dynamics of LIF networks and MCMC sampling from Boltzmann distributions. This
has allowed the training of LIF networks for difficult inference tasks in high-dimensional
probability spaces. Although the addition of hidden layers allowed the representation of
non-Boltzmann distributions over the visible RVs, the final network structures were the
result of a training algorithm; in particular, we gave no explicit representation (i.e., a
mathematical expression) of the resulting distributions over the visible RVs. The question
of sampling in arbitrary discrete spaces has not yet been answered.

In this section, we catch up on this remaining debt. In particular, we provide an explicit
translation of arbitrary distributions of binary RVs to networks of LIF neurons.

In Section 6.3, we have already discussed an implementation of BNs in LIF networks,
but have argued that the reliance on LSMs makes it inefficient in terms of absolute net-
work size and difficult to scale to more complex distributions. Here, we make explicit use
of our previously discussed implementation of LIF sampling, which uses a single neuron
per binary RV. However, the extension of the neural sampling formalism to arbitrary
distributions, represented as BNs, will require an additional overhead that is proportional
to the size of individual factors. Still, as we shall see, this implementation is several
orders of magnitude more efficient in terms of total number of neurons, while providing
a better approximation of the required results in example inference problems.

After explaining the abstract model of sampling in BNs (Pecevski et al., 2011), we de-
scribe its LIF implementation, which is an extended version of the LIF sampling formalism
described earlier. We then implement the same inference problem as in Section 6.3.3 and
study the convergence behavior of the sampled distribution. In particular, we also discuss
the robustness of the model to various types of noise, which is an important feature when
aiming for a neuromorphic implementation. Finally, we provide a more general assessment
of the performance of our LIF implementation of arbitrary non-Boltzmann distributions
over several binary RVs. The results presented here are the outcome of a collaboration
with Dimitri Probst and have already been published in (Probst et al., 2015).

6.7.1. Bayesian Networks as Boltzmann Machines

We start by recalling that BNs provide a graphical representation of arbitrary probability
distributions, as discussed in detail in Section 6.1.1. The joint distribution defined by a
Bayesian graph is the product of conditional distributions, one for each RV, with its value
conditioned on the values of its parent RVs. For a graph with K binary RVs Zk, the joint
probability distribution is given by

p(Z = z) =: p(z) =

K∏
k=1

1

Z
Φk(zk) :=

K∏
k=1

p(zk|pak) , (6.182)

where zk represents the state vector of the variables Zk in Φk, which we henceforth call
principal RVsprincipal

RVs
, and pak represents the state vector of the parents of Zk. Z is a normalizing

constant; without loss of generality, we assume Φk > 1. The factor p(zk|pak) is called an
nth-order factor if it depends on n RVs or rather |pak| = n− 1.
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Figure 6.52.: Formulation of an example inference problem as a BN and translation to
a BM. See also Section 6.3.3 for a more detailed description of the Knill-
Kersten problem. (A) Knill-Kersten illusion from Knill and Kersten (1991).
Although the four objects are identically shaded, the left cube is perceived
as being darker than the right one. This illusion depends on the perceived
shape of the objects and does not occur for, e.g., cylinders. (B) The setup
can be translated to a BN with four binary RVs. The (latent) variables Z1

and Z2 encode the (unknown) reflectance profile and 3D shape of the objects,
respectively. Conditioned on these variables, the (observed) shading and 2D
contour are encoded by Z3 and Z4, respectively. (C) Representation of
the Bayesian network from (B) as a BM. Factors of order higher than 2 are
replaced by auxiliary variables as described in the main text. The individual
connections with weights Mexc, Minh → ∞ between each principal and
auxiliary variable have been omitted for clarity. Figure taken from Probst
et al. (2015).

Such a Bayesian network can now be transformed into a second-order MRF BN as 2nd

order MRF
(i.e., an

MRF with a maximum clique size of 2). First and second-order factors are easily replace-
able by potential functions Ψk(Zk) and Ψk(Zk1, Zk2), respectively. For each nth-order
factor Φk with n > 2 principal RVs, we introduce 2n auxiliary binary RVs Xzk∈Zk

k , where
Zk is the set of all possible assignments of the binary vector Zk (Figure 6.52C). Each of
these RVs encode the probability of a possible state zk within the factor Φk by introducing
the first-order potential functions Ψzk

k (Xzk
k = 1) = Φk(Zk = zk). The factor Φk(Zk) is

then replaced by a product over potential functions

Φk(Zk) =
∏
zk

Ψzk
k (Xzk

k )

n∏
i=1

χzk
ki (Zki, X

zk
k ) , (6.183)

where an auxiliary RV auxiliary
RV

Xzk
k is active if and only if the principal RVs Zk are active in

the configuration zk. Formally, this corresponds to the assignment: χzk
ki (Zki, X

zk
k ) =

1−Xzk
k (1−δZki,zki). In the graphical representation, this amounts to removing all directed

edges within the factors and replacing them by undirected edges from the principal to the
auxiliary RVs. It can then be verified (Pecevski et al., 2011) that the target probability
distribution can be represented as a marginal over the auxiliary variables.

As the resulting graph is a second-order MRF, its underlying distribution can be cast
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in Boltzmann formBoltzmann
form of BN

:

p(z,x) =
1

Z
exp

(
1

2
zTWz +

1

2
zTVx + zTb + xTa

)
, (6.184)

where the (symmetric) weight matrices W,V and bias vectorsweights and
biases

b,a are defined as follows:

WZki,Zkj =

 log
Φk(Zki=0,Zkj=0)Φk(Zki=1,Zkj=1)
Φk(Zki=0,Zkj=1)Φk(Zki=1,Zkj=0)

within second-order factors Φk

0 otherwise
(6.185)

VZki,X
zk
k

=

{
Mexc if zki = 1
Minh if zki = 0

(6.186)

bZki =

 log Φk(Zki=1)
Φk(Zki=0) within first-order factors

log
Φk(Zki=1,Zkj=0)
Φk(Zki=0,Zkj=0)

within second-order factors
(6.187)

aXzk
k

= log (Φk − 1)− L1(zk)Mexc , (6.188)

all other matrix and vector elements being zero. L1(·) represents the L1 norm. In the
theoretical model, Mexc = ∞ and Minh = −∞, but they receive finite values in the
concrete implementation (Section 6.7.2). From here, it is straightforward to create a
corresponding classical BM, which can then be translated to an LIF network following
the rules laid out in Section 6.5.4. We therefore use a simplified notation from here on:
we consider the vector Z to include both principal and auxiliary RVs and the Boltzmann
distributions over Z are henceforth defined by the block diagonal weight matrix W and
the bias vector b.

6.7.2. Characterization of the Auxiliary Neurons

In the mathematical model in Section 6.7.1, the weights between principal and auxiliary
RVs are Mexc = ∞ and Minh = −∞, to ensure a switching of the joint state whenever
one of the auxiliary variables changes its assignment. In a concrete implementation,
infinite weights are unfeasible. Here, we set the connection strengths Mexc,k = −Minh,k =
γ · max [Φk (zk)], where γ is a fixed number between 5 and 10. Neurons with a bias of
Mexc,k will effectively spike at maximum rate and neurons with a bias ofMinh,k will remain
silent, unless driven by afferent neurons with similarly high synaptic weights.

The individual values of the factor Φk (zk) are introduced through the bias of the
auxiliary neuronsauxiliary

neurons
:

aXzk
k

= log

(
µ

Φk (zk)

minzk [Φk (zk)]
− 1

)
− L1(zk) ·Mexc,k (6.189)

where the factor µ/minzk [Φk (zk)] ensures that the argument of the logarithm stays larger
than 0 for all possible assignments zk.

Observed variablesobserved
RVs

are clamped to fixed values 0 or 1 by setting the biases of the
corresponding principal neurons to very large values (±20), to ensure that they spike
either at maximum rate or not at all. This could also be implemented by providing them
with a strong excitatory or inhibitory external drive.
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6.7.3. Lateral Interaction

In Section 6.5.4, we have already discussed how BM parameters must be translated to
the LIF domain. In principle, these rules remain the same for the BM implementation of
BNs.

For single neurons, if we denote by ueff the effective membrane potential (i.e., the
average membrane potential under constant external stimulus other than the synaptic
noise), this yields a sigmoidal activation function σ̃(ueff) which can be linearly transformed
to the logistic activation function σ(v) to match the abstract model in Section 6.4.3:

v =
ueff − 〈u〉0

α
, (6.190)

where 〈u〉0 represents the value of ueff for which p(Z = 1) = 1/2. The factor α denotes a
scaling factor between the two domains and is given by

α =

[
4

d

dueff
σ̃(〈u〉0)

]−1

. α(6.191)

The bias b can then be set by changing the leak potential El such that the neuron is active
with σ(b) for Z\k = 0:

El = ueff
b

〈
gtot
〉

gl
= (αb+ 〈u〉0)

〈
gtot
〉

gl
, (6.192)

where gtot represents the total synaptic conductance and ueff
b is the effective mem-

brane potential that corresponds to the bias b: σ̃(ueff
b) = σ (b). For the translation of

synaptic weights, we use Equation 6.145 for calculating the multiplicative scaling factor
β = wki/Wki:

β =
αCmτref

(
1
τsyn
− 1

τeff

)
Erev
k − 〈u〉

·
[
τsyn

(
e
− τref
τsyn − 1

)
− τeff

(
e
− τref
τeff − 1

)]−1

. β(6.193)

In order to emulate renewing PSPs, we use the TSO STD mechanism with USE = 1 and
τrec = τref (see Figure 6.35). TSO

Figure 6.53A shows the shape of such an LIF PSP with parameter values taken from
Table A.21. The shape is practically exponential, due to the extremely short effective
membrane time constant in the HCS. We will later compare the performance of the LIF
implementation to two implementations of the abstract model from Section 6.4.3: neurons
with theoretically optimal rectangular PSPs of duration τref , the temporal evolution of
which is defined as

u(t) =

{
1 if 0 < ts − t < τref ,
0 otherwise (6.194)

and neurons with alpha-shaped PSPs with the temporal evolution

u(t) =

{
q1 ·

[
e ·
(
t
τα

+ t1

)
· exp

(
− t
τα
− t1

)
− 0.5

]
if 0 < t < (t2 − t1)τα ,

0 otherwise .
(6.195)

Here, t1 and t2 are the points in time where the alpha kernel is e · t · exp(−t) = 0.5. The
value q1 = 2.3 is a scaling factor and τα = 17 ms · τref

30 ms is the time constant of the kernel
(Pecevski et al., 2011).
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Figure 6.53.: Comparison of the different implementations of the Knill-Kersten graphical
model (Fig. 6.52): LIF (green), LIF with noised parameters (yellow), LIF
with small cross-correlations between noise channels (orange), mLIF PSPs
mediated by a superposition of LIF PSP kernels (gray), abstract model with
alpha-shaped PSPs (blue), abstract model with rectangular PSPs (red) and
analytically calculated (black). The error bars for the noised LIF networks
represent the standard error over 10 trials with different noised parameters.
All other error bars represent the standard error over 10 trials with identical
parameters. (A) Comparison of the four used PSP shapes. (B, C) Inferred
marginals of the hidden variables Z1 and Z2 conditioned on the observed
(clamped) states of Z3 and Z4. In B, (Z3, Z4) = (1, 1). In C, (Z3, Z4) =
(1, 0). The duration of a single simulations is 10 s. (D) Marginal probabilities
of the hidden variables reacting to a change in the evidence Z4 = 1 → 0.
The change in firing rates (top) appears slower than the one in the raster
plot (bottom) due to the smearing effect of the box filter used to translate
spike times into firing rates. (E, F) Convergence towards the unconstrained
equilibrium distributions compared to the target distribution. In D, the
performance of the four different PSP shapes from A is shown. The abstract
model with rectangular PSPs converges to DKL = 0, since it is guaranteed
to sample from the correct distribution in the limit t → ∞. In E, the
performance of the three different LIF implementations is shown. Figure
taken from Probst et al. (2015).
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Figure 6.54.: In order to establish a coupling which is closer to the ideal one (rectangular
PSP), the following network structure was set up. Instead of using one prin-
cipal neuron ν per RV, each RV is represented by a neural chain. In addition
to the network connections imposed by the translation of the modeled BN,
feedforward connections between the neurons in this chain are also instanti-
ated. Each of the chain neurons projects onto the first neuron of the chain
representing the postsynaptic target RV (here: all connections from νi1 to
ν1

2). By choosing appropriate synaptic efficacies and delays, the chain gen-
erates a superposition of single PSP kernels that results in a sawtooth-like
shape which is closer to the desired rectangular shape than a single PSP.
Figure taken from Probst et al. (2015).

As we can clearly see in Figure 6.53A, there exists a pronounced difference in PSP
shapes between the LIF domain and the theoretically optimal abstract model. This is the
main reason why the direct translation to LIF networks causes non-negligible deviations
from the target probability distribution. The sometimes strong interaction involved in
the expansion of BNs into BMs (see Equation 6.186) leads to a large (in absolute terms)
overshoot of the membrane potential at the arrival of a PSP, as well as a large PSP tail
beyond t = tspike + τref .

In order to reduce this discrepancy, we replaced the single-PSP interaction between pairs
of neurons by a superposition of LIF PSP kernels (mLIF PSPs). mLIF PSPsFor this, we replaced
the single neuron that coded for an RV by a chain of neurons (see Figure 6.54). In this
setup, the first neuron in a chain is considered the “main” neuron, and only the spikes
it emits are considered to encode the state zk = 1. However, all neurons from a chain
project onto the main neuron of the chain representing a related RV. This neuron then
registers a superposition of PSPs, which can be adjusted (e.g., with the parameter values
from Table A.22) to closely approximate a rectangular PSP. In particular, the long tail
of the last PSP is cut off by setting the effect of the last neuron in the chain to oppose
the effect of all the others (e.g., if the interaction between the RVs is to be positive, all
neurons in the chain project with excitatory synapses onto their target, while the last
one has an inhibitory outgoing connection). While this implementation only scales the
number of network components (neurons and synapses) linearly with the chosen length
of the chains, it improves the sampling results significantly (Figure 6.53 B, C, E, gray

317



6. Probabilistic Inference in Neural Networks

bars/traces).

6.7.4. Bayesian Model of the Knill-Kersten Illusion

Figure 6.52 illustrates the translation of the Bayesian graph describing the well-studied
Knill-Kersten illusion (Knill and Kersten, 1991, see also Section 6.3.3) to the LIF domain.
The underlying Bayesian model consists of four RVs: Z1 (reflectance step versus uniform
reflectance), Z2 (cylindrical versus cuboid 3D shape), Z3 (sawtooth-shaped versus some
other shading profile) and Z4 (round versus flat contour). The network structure defines
the decomposition of the joint probability distribution:

p(Z1, Z2, Z3, Z4) = p(Z1) p(Z2) p(Z3|Z1, Z2) p(Z4|Z2) . (6.196)

The inference problem consists in estimating the relative reflectance of the objects
given the (observed) contour and shading. Analytically, this would require calculating
p(Z1|Z3 = 1, Z4 = 0) for the cuboid shapes and p(Z1|Z3 = 1, Z4 = 1) for the cylindrical
ones.

Figure 6.53 shows the behavior of the LIF network that represents this inference prob-
lem. When no variables are clamped, the network samples freely from the unconstrained
joint distribution over the four RVs. The performance of the network, i.e., its ability to
sample from the target distribution, is quantified by the Kullback-Leibler (KL) divergence
between the target and the sampled distribution normalized by the entropy of the target
distribution:

Dnorm
KL (q ‖ p) =

DKL (q ‖ p)
H(p)

, (6.197)

with the KL divergence between the sampled distribution q and the target distribution p

DKL(q||p) =
∑
z

q(z) log

(
q(z)

p(z)

)
(6.198)

and the entropy of the target distribution p

H(p) = −
∑
z

p(z) log [p(z)] . (6.199)

When presented with the above inference problem the LIF network performs well at
sampling from the conditional distributions p(Z1|Z3, Z4) (Figure 6.53B, C). When the
stimulus is changed during the simulation, the optical illusion, i.e., the change in the
inferred (perceived) 3D shape and reflectance profile, is clearly represented by a change
in firing rates of the corresponding principal neurons (Figure 6.53D). For each point in
time, the rate is determined by convolution of the spike train with a rectangular kernel

κ(t) =

{
1/8 Hz for −8 s < t < 0 ,
0 otherwise .

(6.200)

At t = 100 s (dotted line), the evidence is switched: Z4 = 1 → 0. The network reacts
appropriately on the time scale of several seconds, as can be seen in the spike raster plot.

When not constrained by prior evidence, i.e., when sampling from the joint distribution
over all RVs, the LIF network settles on an equilibrium distribution that lies close to
the target distribution (Figure 6.53E, F, green traces). For this particular network, the
convergence time is of the order of several tens of seconds.
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6.7.5. Robustness to Parameter Distortions

We further investigated the robustness of our proposed implementation of Bayesian infer-
ence with LIF neurons to low levels of parameter noise (see Table A.21, noisy). Here, we
focus on fixed-pattern noise fixed-pattern

noise
, which is inherent to the production process of semiconductor

integrated circuits and is particularly relevant for analog neuromorphic hardware (Mitra
et al., 2009; Petrovici et al., 2014, see also Chapter 5). However, such robustness would
naturally also benefit in-vivo computation.

Some of the noise (the one affecting the neuron parameters that are not changed when
setting weights and biases) can be completely absorbed into the translation rules from
Section 6.7.3. Once the neurons are configured, their activation curves can simply be
measured, allowing a correct transformation from the abstract to the LIF domain. How-
ever, while the neurons remain the same between different simulation runs, the weights
and biases may change depending on the implemented inference problem and are still
subject to noise. Nevertheless, even with a noise level of 10% on the weights and biases,
the LIF network still produces useful predictions (Figure 6.53B, C, F, yellow bars/traces).

6.7.6. Robustness to Noise Correlations

The investigated implementation of Bayesian networks ideally requires each neuron to
receive independent noise as a Poisson spike train. When aiming for a hardware imple-
mentation of large Bayesian networks, this requirement may become prohibitive due to the
bandwidth limitations of any physical back-end. We therefore examined the robustness
of our LIF networks to small cross-correlations cross-

correlations
between the Poissonian noise channels of

individual neurons.
For both the excitatory and the inhibitory background pools, we induced pairwise noise

correlations by allowing neurons within the network to share 10% of their background Pois-
son sources. The controlled cross-correlation of 10% between noise channels is achieved
in the following way: each neuron receives Poisson background from three shared and
seven private Poisson spike trains. The excitatory and inhibitory noise of each individual
neuron remained uncorrelated in order to leave its activation function (Equation 6.125)
unaltered. Each of the shared sources projects onto exactly two neurons in order to pre-
vent higher-order correlations. The single Poissonian spike trains have a firing rate of
ν/10, such that their superposition is also Poisson, with the target firing rate of ν. With
this setup, we were able to verify that small pairwise correlations in the background noise
do not significantly reduce the ability of the LIF network to produce useful predictions
(Figure 6.53B, C, F orange bars/traces).

6.7.7. General Bayesian Networks

In order to study the general applicability of the proposed approach, we quantified the
convergence behavior of LIF networks generated from random BNs. Here, we used a
method proposed in Ide and Cozman (2002) to generate random BNs random

BNs
with K binary RVs

and random conditional probabilities. The algorithm starts with a chain graph Z1 →
Z2 → · · · → ZK and runs for N iterations. In each iteration step, random RV pairs
(Zi, Zj) with i > j are created. If the connection Zi → Zj does not exist, it is added to
the graph, otherwise it removed, with two constraints: any pair of nodes may not have
more than 7 connections to other nodes and the procedure may not disconnect the graph.
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Figure 6.55.: Sampling from random distributions over 5 RVs with different networks:
LIF (green), mLIF (gray), abstract model with alpha-shaped PSPs (blue)
and abstract model with rectangular PSPs (red). (A) Distributions for
different values of η from which conditionals are drawn. (B) DKL between
the equilibrium and target distributions as a function of η. The error bars
denote the standard error over 30 different random graphs drawn from the
same distribution. (C) Evolution of the DKL over time for a sample network
drawn from the distribution with η = 1. Error bars denote the standard error
over 10 trials. Figure taken from Probst et al. (2015).

For every possible assignment of pai, the conditional probabilities ppai
i := p(Zi = 1|pai)

are drawn from a second-order Dirichlet distribution

D(p
pai
i , η1, η2) =

1

B(η1, η2)
(p

pai
i )η1−1(1− ppai

i )η2−1 , (6.201)

with the multinomial Beta function

B(η1, η2) =

∏2
i=1 Γ (ηi)

Γ
(∑2

i=1 ηi

) , (6.202)

where Γ(·) denotes the gamma function. We chose the parameters η1 = η2 =: η in order to
obtain a symmetrical distribution. Figure 6.55A shows three examples of a symmetrical
two-dimensional Dirichlet distribution. A larger η favors conditional probabilities which
are closer to 0.5 than to the boundaries 0 and 1.

We implemented Bayesian networks with K = 5 RVs running for N = 50000 iterations.
The random graphs were then translated to sampling neural networks, both with abstract
model neurons and LIF neurons. The performance was tested for sampling from the
unconstrained joint distributions over the 5 RVs. In the simulations, we varied η between
0.3 and 10 and created 30 random Bayesian graphs for each η. Each network was then
run for a total duration of 100 s.

Figure 6.55B illustrates the average sampling results for the different PSP shapes as
a function of the ”extremeness” of the randomized conditional probabilities, which is re-
flected by the parameter η. For larger η, conditionals cluster around 0.5 and the RVs
become more independent, making the sampling task easier and therefore improving the
sampling performance. The curves show the median of the DKL between sampled and
target distributions of the 30 random Bayesian graphs. The shaded regions denote the
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standard error. Overall, the LIF networks perform well, capturing the main modes of the
target distributions.

Figure 6.55C shows the temporal evolution of the DKL between sampled and target
distributions for a sample Bayesian network drawn from the distribution with η = 1 that
lied close to the DKL median in Figure 6.55B. The curves illustrate the average results of
10 simulations, while the shaded regions denote the standard error.

As with the Bayesian model of the Knill-Kersten illusion, the main cause of the re-
maining discrepancy is the difference in PSP shapes between the LIF domain and the
theoretically optimal abstract model. A modification of the RV coupling by means of
the neuron chains described in Section 6.7.3 leads to a significant improvement of the
sampling results for arbitrary Bayesian networks (Figure 6.55B, C gray traces).
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6.8. Neuromorphic Neural Sampling

In the previous sections, we have given a brief overview of some interesting applications
of LIF sampling. One of the key motivations behind the formulation of the LIF sampling
framework was the possibility to use fast, inherently parallel hardware for sampling-based
applications, which would obviously benefit both the convergence speed of individual
experiments as well as the training of these networks. At first glance, it would seem that
LIF sampling would not impose too harsh requirements on neuromorphic hardware that
is able to handle experimental setups that are as varied and complex as those presented
in Sections 5.3.9, 5.4.10 and 6.2.3. However, it turns out that the interplay between
the non-negligible spike transmission delays (see also Table 3.3 for corresponding values
on the wafer-scale system) and the implementation of refractoriness on the Spikey chip
renders a neuromorphic implementation of LIF sampling nontrivial.

On the Spikey chip, spike transmission delaysspike
transmission
delays

are approximately constant and, for all
practical purposes, independent of the particular position of the neuron on the chip. They
can therefore be measured easily in a single-neuron experiment (Figure 6.56). The neuron
is connected to itself via a strong inhibitory synapse and then excited by a strong enough
external stimulus (excitatory spike) to cause it to spike. The refractory period τref is set to
zero and the reset potential % is chosen to be lower than the leak potential El, which causes
the membrane potential to start rising again immediately following the spike reset. When
its own inhibitory spike reaches the neuron again, it will manifest itself as a sudden drop
(IPSP) in the membrane potential. The membrane reset and the sudden switch of the
direction in which the membrane potential evolves are two easily measurable, well-defined
points in time, the difference of which precisely yields the spike transmission delay ∆t. As
can be seen in Figure 6.56, spike transmission delays on the Spikey chip are approximately
∆t = 1.5 ms long (in a biological frame of reference).

As already discussed in Section 6.4.3, spike transmission must be instantaneous in the
ideal neural sampling model. The only way to minimize the distortive effects of delays
(Figure 6.28) is to increase the absolute refractory times such that the neurons spend

Figure 6.56.: Spike transmission delay on the Spikey chip. A neuron is connected to itself
via an inhibitory synapse. Following a spike, the membrane potential relaxes
towards its resting value, but is suddenly pulled down again by the incoming
spike. The distance between the membrane potential reset and the following
kink in its temporal evolution represents the spike transmission delay ∆t.
Figure taken from Petkov (2012).
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Figure 6.57.: Spike-to-spike variability of refractory times τref on the Spikey chip. A
random selection of 36 neurons is shown. Histograms are not normalized.
A larger average τref tends to correlate positively with a larger variability.
Shorter τref are more stable, but are not large enough compared to the spike
transmission delay ∆T = 1.5 ms. This effectively prohibits a straightforward
implementation of LIF sampling on the Spikey chip.
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proportionately less time in “wrong” states. Fortunately, the Spikey chip features a global
parameter that controls the refractory times of all neurons. Unfortunately, it turns out
to be unfeasible for LIF sampling.

Figure 6.57 shows a random selection of 36 neurons from the Spikey chip for relatively
high target values of τref . The histograms show spike-to-spike variations of τrefspike-to-

spike
variability of
τref

. We note
that, when the average τref is large, the spike-to-spike variance tends to be large as well.
This is, of course, a knock-out criterion for neural sampling, since the interpretation of
spikes as samples is inherently based on a stable encoding of 1-states. When the variance-
to-mean ratio of τref is small enough, τref itself tends to be too small (on the order of
5ms) to effectively counter 1.5ms delays.

The positive correlation between the mean and variance of τref on the Spikey chip can
be traced back to the physical implementation of refractoriness. The control parameter
for τref is a current variable icb. When a neuron spikes, this current is injected onto a ca-
pacitor, which releases the neuron from refractoriness once the voltage over the capacitor
exceeds a certain value. Since the charge curve of the capacitor under constant-current
stimulation is linear, icbis inversely proportional to τref . The large τref required for
sampling must therefore be set with a small icbcurrent. Assuming a fixed amplitude
of electronic temporal noise, small currents experience larger relative variations, thus
explaining the large spike-to-spike variability of long refractory times.

While the instability of long τref effectively prohibits a straightforward implementation
of LIF sampling on the Spikey chip, the availability of a sufficiently large number of
neurons as well as the complete freedom in choosing a connectivity matrix can be put to
use to create a more complex “sampling unit” that consists of more than a single neuron.
This sampling unit is inspired by the previously discussed synfire chain model (Section
5.4) and the mLIF interaction mechanism used in the LIF-based BNs (Figure 6.54), but
contains several important extensions.

A sampling unitsampling
unit

is composed of a principal neuron and a synfire chain with feedback
inhibition. The principal neuron is an LIF sampler with the same membrane dynamics
as we have used in the previous sections, but with only a short refractory time τref . In
particular, its refractory state is no longer considered to encode the state zk = 1. The
principal neuron projects with an excitatory synapse onto all neurons of the first stage of
the synfire chain, thus initiating a propagating pulse as soon as it spikes.

The synfire chain contains n stages, each of which comprises an excitatory and an in-
hibitory neuron population. Each excitatory population projects onto both populations of
the following stage, thus enabling the forward propagation of the pulse. Each inhibitory
population projects back onto both populations of the previous stage, ensuring that they
become silent after they have spiked exactly once. Furthermore, each inhibitory popula-
tion has strong projections towards the principal neuron, thus prohibiting from spiking
while the synfire chain is active. This is reversed in the final synfire stage, where the exci-
tatory population projects onto the principal neuron, thus causing its membrane potential
to return quickly to its resting state.

The synfire chain effectively replaces the refractory mechanism of the principal neuron.
The period of pseudo-refractorinesspseudo-

refractoriness
τon, which now indeed encodes the zk = 1 state, can

be arbitrarily modulated by changing the length of the synfire chain. In principle, this
setup would also work with one neuron per synfire population, but the advantage of using
a larger number of neurons is that it averages out synaptic weight noise, as we have
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Figure 6.58.: Implementation of sampling units. Top: Principal neurons S1 and S2 obey
the membrane dynamics of LIF samplers, but only have short refractory
times. Each principal neuron is connected to a synfire chain, whose in-
hibitory neurons project back onto the principal neuron, thus causing a
pseudo-refractory period τon as long as the spike pulse propagates along
the chain. Lateral interaction is mediated by the same synfire chains, thus
causing the equivalent of an mLIF PSP of duration τon. Bottom: Single
pseudo-refractory period of the principal neuron S1. Note the long refractory
duration of approx. 15ms. Figure taken from Stöckel (2015).
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often observed in Chapter 5. The synfire chain would also work with a single population
per stage which features both forward excitatory and backward inhibitory projections.
However, the Spikey chip enforces Dale’s law (see Section 2.1.3), which requires us to
differentiate between purely excitatory and purely inhibitory neurons.34

Figure 6.58 shows two such interacting sampling units (top panel), along with a de-
piction of the pseudo-refractory period of a single principal neuron (bottom). Note how
the interactionlateral

interaction
between the principal neurons is mediated by the same synfire chains

that cause the pseudo-refractoriness. It is thereby guaranteed that the duration of the
effective interaction, which is equivalent to the mLIF PSPs from Figure 6.54, is equal to
the pseudo-refractory period τon, as required by Equations 6.78 and 6.93.

In principle, these sampling units could be directly implemented on a calibrated Spikey
chip and used to sample from Boltzmann distributions. However, neural sampling requires
a relatively high precision of refractory times, interaction times and, most importantly, in-
teraction strengths. In particular, the lateral interaction must be symmetric by definition.
It turns out that the standard Spikey calibration routines are insufficiently precise for this
task. In particular, they do not take into account effects such as capacitive crosstalk
between synapse columns, which is, however, rather pronounced in synchronous firing
scenarios, as is the case for the synfire chains in the sampling units.

Therefore, new calibrationsampling-
specific
calibration

methods are needed, which are targeted specifically at the
requirements of LIF sampling. Ideally, they should also be based on spike recordings (and
not membrane potentials) in order to fully profit from the speedup factor of the hard-
ware.35 Recently, we have developed such methods, based on auto- and cross-correlograms
of spike trains.

The essential idea behind these routines is that the duration and symmetry properties
of refractoriness and lateral interaction can be translated directly to identical properties of
correlogramscorrelo-

grams
. In particular, the auto-correlogram of a principal neuron must be symmet-

ric, with a pronounced peak at zero surrounded by two troughs of width τon. Similarly,
the cross-correlogram of two principal neurons must also be symmetric, with two posi-
tive/negative peaks around zero for positive/negative wij , both of which must have the
same approximate width τon.

Starting from an initial state of auto- and cross-correlograms, the calibration routine
iteratively updates the network parameters in order to achieve the desired shape. Two
exemplary correlograms, both before and after calibration, are shown in Figure 6.59.
For a much more detailed technical description of the calibration procedure, we refer to
Stöckel (2015).

After a successful calibration, the sampling performance of the network can be tested
by calculating the DKL (psampled ‖ ptarget). Since the synfire populations require approxi-
mately 5 stages for a long enough pseudo-refractory period, and each population requires
several neurons in order to compensate for synaptic weight noise (here: 6), a single sam-
pling unit requires a total of 61 neurons, thus limiting the total number of implemented
RVs to three (recall that the Spikey chip only has 192 neurons per block, see Section 3.2).

34 This is not the case for the HICANN chip (Section 3.3.1), which would thereby allow a sparser
implementation of such sampling units.

35 Voltage recordings are more complicated, require additional readout hardware (ADCs or oscilloscopes)
and can only be done for a limited number of neurons at the same time (see Section 3.2).
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Figure 6.59.: Spike activity correlograms used for sampling-specific calibration. Top:
Auto-correlogram of principal neuron spike trains. Before calibration, the
duration of the pseudo-refractory period, represented by the symmetric
troughs, is too long. It is also followed by extended periods of relative
refractoriness (shallow recovery of the autocorrelation function), which is
equivalent to an instable absolute refractory period and therefore disrup-
tive for neural sampling. After calibration, the pseudo-refractory period is
shorter and the recovery is faster (steeper rising flanks of the autocorrela-
tion function). Bottom: Cross-correlogram of principal neuron spike trains.
Without lateral projections, the cross-correlation function is flat (top left).
When positive unidirectional connections are activated, peaks form (top and
bottom right), which are asymmetric before calibration. After calibration
(bottom left), the peaks are not only symmetric, but also have a width equal
to the refractory period that was previously calibrated (left figure). Figure
taken from Stöckel (2015).
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Figure 6.60.: Boltzmann distribution over 3 RVs: target distribution (red) vs. sampled dis-
tribution (blue) on the Spikey chip. Top: Direct comparison of the two dis-
tributions after 105 ms of sampling. Note that the wall-clock duration of this
experiment was a mere 10ms. Right: Evolution of DKL (psampled ‖ ptarget)
as a function of the simulation time.

Figure 6.60 shows the comparison between the sampled and the target distribution, along
with the evolution of the DKL as an increasing number of samples is acquired by the
network. The exact value of DKL(t = 105 ms) varies slightly between runs, but remains
sufficiently low to declare our modified implementation of LIF sampling successful. We
need to stress that this experiment, with a duration of 100 biological seconds, only takes
10ms on the Spikey chip. To our knowledge, this is the first implementation of neural
sampling on accelerated analog neuromorphic hardware.

In a final batch of 50 experiments with randomly drawn, unbiased (b = 0) distributions,
we have evaluated the overall quality of our neuromorphic implementation of LIF sampling
compared to software simulations of “standard” LIF sampling (one neuron per RV, as
described in Section 6.5). Here, we have used reduced-size synfire chains in order to allow
4 sampling units to fit onto the Spikey chip. The bottom right panel of Figure 6.61 shows
histograms overDKL (psampled ‖ ptarget). While the histogram of the hardware results (top)
has a few high-DKL outliers, most runs have a DKL below 10−2, which is quite accurate for
a Boltzmann distribution over 4 binary RVs, as seen in the surrounding panels. Overall,
the hardware implementation performs only slightly worse than the ideally parametrized,
noise-free software version. A further refinement of the calibration and training procedures
is likely to improve these results even further.
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Figure 6.61.: Sampling from Boltzmann distributions over 4 binary RVs: Spikey imple-
mentation vs. ideally parametrized software simulation. Top row and
bottom left: Exemplary sampled distributions (red) in direct compari-
son to the target distributions (blue). Bottom right: Histograms over
DKL (psampled ‖ ptarget).
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6.9. Conclusions and Outlook

Bayesian inference is a fundamental principle in the context of probabilitstic computation.
In recent years, the hypothesis that the brain is operating, at some level, according to
this principle, has been supported by increasing amounts of evidence. Long before that,
Bayesian inference has been embedded in numerous machine learning models. The goal of
this chapter was to study models of Bayesian inference that are compatible with biological
neural structures and that are, at the same time, amenable for implementation on state-
of-the-art accelerated neuromorphic devices. A marked difference to, for example, the
networks studied in Chapter 5, is that the workflow here was not from biology to models,
but rather the other way around. In other words, we took inspiration from powerful
machine learning models and cast them onto a more biological scaffold.

We have started with a discussion of graphical models, in particular factor graphs, mo-
tivated by the efficient belief propagation algorithms that they enable. Since the nodes
in generic factor graphs should be able to implement arbitrary computations (i.e., de-
pending on the modeled inference problem, the output messages from a node could be,
in principle, any function of the incoming messages), we turned to liquid state machines
as a suitable implementation of generic spike-based computation. In particular, we have
shown in Section 6.2.3 that liquid state machines are amenable to analog neuromorphic
implementation. Following the ideas first proposed in Steimer et al. (2009), we have used
such liquid architectures to implement belief propagation in Forney factor graphs. In
software simulations of our liquid-based factor graphs, we have shown this approach to
work in principle, but have also found several critical drawbacks, most importantly the
requirement of a large number of neurons even for relatively simple graphs and the man-
ifest lack of precision in messages computed by nodes that lie further away from static
external inputs (observed variables).

We therefore went from these analytical inference models, where probabilities are rep-
resented explicitly by network observables (for the liquid-based graphs, messages were
encoded by population firing rates) to sampling-based models, where the network activ-
ity at any point in time represents a state in the relevant probability space. Gathering
these states over a certain time interval then leads to an increasingly correct representa-
tion of the target probability distribution. In this context of sample-based inference, we
have described the abstract model of sampling from Boltzmann distributions proposed by
Buesing et al. (2011) as a starting point for a more mechanistic implementation of neural
sampling – in our case, an implementation with LIF neurons. The translation of this in-
herently stochastic model to networks of LIF neurons turns out to be non-trivial, since the
necessary neural response (or activation) functions are not readily achieved under typical
conditions (slow membranes and fast synapses). However, we were able to show that in
the high-conductance state, LIF neurons can achieve a symmetric response function, thus
enabling a correct representation of the so-called neural computability condition, which
we assumed as the basis of local computations performed by single neurons.

In this regime, currently existing theories are not able to correctly predict the response
function of LIF neurons. Based on a new method of membrane potential autocorrelation
propagation, we were able to develop an analytical prediction of the LIF response function
that not only covers the parameter ranges where other theories already perform well, but
also the high-conductance state that is of particular interest for LIF sampling. Owing
to this theory, we were able to formulate direct translation rules from the Boltzmann
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domain to the LIF domain of neuron and synapse parameters. We have demonstrated
that such LIF networks exhibit good performance when sampling from arbitrary target
(Boltzmann) distributions even for large network sizes and non-sparse connection matri-
ces. Furthermore, we have shown that under the right circumstances, i.e., a pronounced
high-conductance state, these networks are robust to parameter variations that are likely
to appear in physical substrates, be they biological or neuromorphic.

Based on this framework of LIF sampling, we have crossed the boundary between brain
science and biologically unconstrained machine learning to build LIF networks targeted
at solving specific problems. In particular, we have discussed how relatively simple, un-
trained two-layer networks can perform well at denoising small black-and-white images.
More importantly, we have shown how state-of-the-art generative and discriminative mod-
els (deep Boltzmann machines) for classical machine learning datasets (MNIST) can be
translated to LIF networks with only minimal loss in classification performance. We have
also discussed a formal analogy to solid-state systems, i.e., microscopic magnets. Since
the high-level governing equations of our LIF networks are equivalent to those of the Ising
model, we were able to observe activity patterns that are analogous to well-known mag-
netic phenomena such as the Curie law, hysteresis, Weiss domains and phase transitions.

Following this extended discussion of sampling from Boltzmann distributions, we have
taken the natural step of extending our formalism to encompass arbitrary distributions
over binary random variables. Building on ideas from Pecevski et al. (2011), we have
shown how this can also be robustly achieved in LIF networks. Furthermore, we have
discussed a more sophisticated interaction mechanism based on interneuron chains that
drastically improves the sampling quality. With the help of an extended version of this
chain-based interaction, we were finally able to overcome the sampling-disruptive interplay
between transmission delays and unstable refractoriness on the Spikey chip in order to
achieve, to the best of our knowledge, the first implementation of neural sampling on
analog accelerated neuromorphic hardware.

Noise and Stochasticity

Our implementation of LIF sampling assumes that each neuron receives diffuse back-
ground spike noise that we have modeled as Poissonian, thus allowing our analytical
derivation of the LIF activation function in the high-conductance state. For a scalable
hardware implementation, providing such noise is crucial. As already discussed in Sec-
tion 4.5, the requirement of having a large number of uncorrelated noise sources is very
demanding for hardware devices, regardless of whether the noise sources are internal or
external.

One idea that we are actively pursuing is the implementation of noise-producing spiking
neural networks – so-called “sea of noise” networks – that serve as noise sources for other
functional networks that are running on the same device. This solves the problem of
having numerous noise sources but does not obviously address the issue of shared-input
correlations. However, as was shown in recent literature (Tetzlaff et al., 2012), it turns out
that, if properly tuned, the negative correlations induced by inhibition in such networks
can precisely cancel out the positive correlations due to shared input pools. Figure 6.62
shows an exemplary functional network (an LIF sampling network trained to recognize
handwritten digits) that suffers from a decreasing pool of noise sources and how the sea-
of-noise implementation is able to maintain its functionality while a simple pool of Poisson
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Figure 6.62.: Effect of a shrinking pool of noise sources on the performance of an LIF-
based Boltzmann machine trained on the MNIST handwritten digit dataset.
The green line represents the performance achieved by a classical Boltz-
mann machine with Gibbs sampling and serves as a reference. If a pool of
Poisson sources is used, decreasing its size results in increasing shared-input
correlations in the sampling network and leads to a deterioration of the clas-
sification performance. On the other hand, a “sea of noise” implemented as a
balanced random network (BRN) actively decorrelates its output through its
internal inhibition, canceling out shared-input correlations in the functional
LIF network that it provides with noise. It is thereby able to sustain the
performance of the LIF network even after being reduced in size by nearly
an order of magnitude.

sources can not. While we do not address these experiments in detail here, we point to
Jordan et al. (2014) for a more involved discussion. Active decorrelation in small versions
of such inhibition-dominated networks has also been demonstrated in emulations on the
Spikey chip (Pfeil et al., 2014).

The requirement of Poissonian noise is necessary for the theoretical derivations, but
does not have to be strictly enforced in practice. This is particularly important for neu-
romorphic hardware, where internal noise sources are not truly random, but usually a
digital implementation of a pseudo-random number generator (e.g., linear feedback shift
registers of the wafer-scale hardware). However, if the statistics of the underlying noise
process stray too far away from the Poisson assumption, the network performance will
also suffer. The effects of non-Poissonian noise are a topic of active investigation.

An entirely different method of obtaining near-Poissonian noise might also be found by
constructing random projections from neurons in other functional networks that run in
parallel on the same device. Indeed, this is probably what happens in the brain, where
it is rather unlikely to find a region dedicated to producing noise alone. This idea of
interconnecting functional networks such that they supply each other with the necessary
noise would do away with the requirement of specialized noise-generating components
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Figure 6.63.: An LIF network sampling from a randomly drawn Boltzmann distribution
over 3 binary random variables that receives its noise input from several other
LIF-based Boltzmann machines. Left: Sketch of the network architecture.
Right: Sampled joint distribution after 104 ms (red) compared to the target
distribution (blue).

altogether. First results obtained in this direction (Figure 6.63) look encouraging. For a
further discussion of this topic, we also refer to Korcsak-Gorzo (2015).

Machine Learning Applications

The application of LIF sampling to machine learning problems becomes particularly
intriguing when considering the advantages offered by neuromorphic hardware. Due to its
typically low power consumption per synaptic interaction, neuromorphic devices represent
ideal control units for autonomous agents (robots). With additional computational power
coming from accelerated dynamics, as is the case for the hardware devices discussed in
Chapter 3, the sampling approach can quickly produce useful predictions of a changing
environment: while neural sampling explicitly deals only with stationary inputs, the exter-
nal world would appear quasi-stationary to a sufficiently accelerated network. Such ideas
for accelerated pattern completion have, for example, been studied in Roth (2014). Fur-
thermore, neuromorphic implementations would also benefit from the observed superior
mixing features of LIF networks as compared to classical sampling methods.

Regarding pattern completion, it is interesting to note not only a superficial, but also
a functional similarity to attractor models such as the L2/3 network from Section 5.3.
Essentially, both the L2/3 network and the sampling networks trained on MNIST data
learn to recollect memories based on incomplete or noisy input. While here we have
studied only orthogonal (i.e., non-overlapping) patterns, the L2/3 model is able to store a
much larger quantity of memories when patterns are allowed to overlap (see, e.g., Rivkin,
2014, for a study of the memory capacity of the L2/3 network). A particularly relevant
feature of the L2/3 network is the fact that it respects Dale’s law, which LIF sampling
explicitly violates. An interpretation of the activity of such cortically inspired attractor
networks in terms of neural sampling is certainly an interesting venue for future theoretical
research.

The training of such functional networks is one of the most important current problems.
Here, we have used off-line training methods from machine learning, but on-line training
using embedded plasticity mechanisms would offer obvious advantages in terms of conver-
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gence speed. Building on our LIF sampling approach, ideas of using STDP to implement
contrastive divergence learning have been put forward (Neftci et al., 2015). We refer to
Weilbach (2015) for a more detailed discussion of STDP-based contrastive divergence in
LIF networks. Furthermore, we are currently working on implementing on-line tempering
into our LIF-based deep Boltzmann machines. Together with the STDP-based contrastive
divergence, this will give us an on-line version of the powerful CAST algorithm that we
have used off-line in Section 6.6.2.2.

It will be also interesting to draw connections to other STDP-based unsupervised learn-
ing models, such as the ones from Habenschuss et al. (2012); Nessler et al. (2009, 2013),
where spikes are interpreted as samples in precisely the same way as in the neural sam-
pling framework. While these, too, are still rather abstract models, we point to Bre-
itwieser (2015) for a comprehensive discussion of a hardware-compatible implementation.
Furthermore, based on similar principles, unsupervised learning of temporal sequences
has also recently been proposed Kappel et al. (2014). Once these methods are embedded
in hardware-compatible networks, we will be able to take full advantage of the speedup
offered by our accelerated devices.

Microscopic Magnetic Systems

The interesting analogies that we have observed between LIF networks and microscopic
magnetic systems are not only intuitively intriguing, but also of practical concern. They
open up the possibility of emulating semiclassical systems on accelerated neuromorphic
hardware. The question whether true quantum systems can be embedded in the activity
of LIF networks is a topic of active research. More immediately important is the fact
that these analogies open up spiking neural networks to powerful methods from statistical
physics. With these, it could become possible to predict interesting phenomena such as
state transitions and the propagation of fluctuations.

Future Hardware Developments

We have discussed how the inevitable spike propagation delays can be countered with
prolonged refractory periods, either implemented directly into the neural circuits, as will
become available in future hardware revisions (HICANNv4), or by means of auxiliary
units, as we have used on the Spikey chip. However, in bipartite structures such as
restricted Boltzmann machines, such delays might play a less disruptive role, as the state
of the visible layer is fixed during memory recall (i.e., after training, when the network
is used for classification) and the hidden layer has no horizontal connections. It might
therefore become possible to return to a single-neuron representation of a binary RV
already on the Spikey chip and use a network structure that is previously trained off-line
for classification. Only the hidden layer would then be implemented on the chip itself and
the inputs from the visible layer would be fed in from the host computer. We are actively
investigating this idea at the current time.

In any case, the fact that we were able to demonstrate accelerated neural sampling on
the Spikey chip is a clear first step in the direction of large spiking Boltzmann machines
on the wafer-scale hardware. We need to point out that it is not the correct retrieval of a
Boltzmann distribution over 3-4 RVs that is particularly impressive. Indeed, this compu-
tation takes only milliseconds on standard desktop machines. The essential achievement
is much rather the fact that we have shown accelerated neuromorphic LIF sampling to be
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realizable in principle, despite parameter variability and other hardware-related sources
of distortion. Even more importantly, the achievable network size scales directly with the
size of the hardware substrate, while the emulation time does not (in contrast to software
implementations), as all hardware components operate asynchronously in parallel. If the
design specifications of the HICANNv4 chip are met in practice, a HICANNv4 wafer will
immediately allow the emulation of large, deep learning architectures that are competitive
with state-of-the-art machine learning models.

335





7. Epilogue

Like organisms evolved in gentle tide pools, who migrate to
freezing oceans or steaming jungles by developing metabolisms,
mechanisms, and behaviors workable in those harsher and
vaster environments, our descendants, able to change their
representations at will, may develop means to venture far
from the comfortable realms we consider reality into arbitrarily
strange worlds. Their techniques will be as meaningless to
us as bicycles are to fish, but perhaps we can stretch our
common-sense-hobbled imaginations enough to peer a short
distance into this odd territory.

Hans Moravec, Simulation, Consciousness, Existence, 1998

Early on in our work, we have established the fundamental form of the components
that we were going to work with. This form was given as the differential equations
that govern networks of pointlike LIF neurons with exponential synaptic kernels. This
particular level of mathematical abstraction was chosen both for analytical tractability
and for compatibility with the studied neuromorphic systems – which further restrict this
otherwise well-defined form by burdening it with various distortions.

The function associated with this form was given by the computational properties of
the studied network models. We have studied a rich repertoire of function in various
network models, all of them based on the same mathematical and/or physical substrate
given by the chosen form of their microscopic components. The computational properties
of these networks are not necessarily related, but by sharing the same substrate, they take
a small step in paving the way for true integration of function, as is the case in biological
cognitive architectures. Essentially, the brain is nothing else than a network of networks,
each consisting of roughly the same components but endowed with its own functionality,
and it is out of this complex interaction that the still deeply mysterious phenomenon of
consciousness arises.

Starting from the abstract mathematical description, we can choose a particular phys-
ical implementation of our microscopic quanta of thought. Quintessentially, we argue
that the precise nature of the substrate does not matter, as long as, at some level of
abstraction, it obeys the previously defined equations of motion, the chosen mathematical
form. Currently, classical computing architectures dominate the landscape of computa-
tional neuroscience due to their versatility, but it is questionable whether this approach
can scale to brain-size networks. However, even with their current limitations, accelerated
neuromorphic devices have the potential to become indispensable scientific tools, as they
allow us to verify and tune our models in much faster cycles than conventional computers
do, whether we require long training periods for large networks or multiple instantiations
of such networks for parameter sweeps or batch learning.
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7. Epilogue

It remains an open question how similar to their biological archetypes our hardware
substrates and network models must be. Computer science has a long and partly suc-
cessful history of taking inspiration from biological neural networks, and for a long time
the leading argument for taking inspiration from biology was the clear superiority of
humans in virtually all machine learning tasks of sufficient complexity. In recent years,
this has begun to change and an increasing number of machines are starting to break
human records. These machines achieve their performance through a combination of
engineered structure and brute-force algorithms and are, if at all, only remotely similar to
what we currently know about the human cortex. The tasks at which machines achieve
superhuman performance remain relatively simple, such as playing chess or recognizing
traffic signs, but there is no reason to believe that this trend must stop here. While their
performance is still very remote from true artificial intelligence, it does call into question
the strict adherence to biological models.

The unreasonable ineffectiveness of mathematics in biology, as Gelfand has called it,
may not come as a complete surprise when one considers the complexity of networks
that exhibit complex functionality, be they biological or not. Theirs is a fundamentally
different complexity from the one found in most ensembles studied with such remarkable
success in mathematical physics. It is not simply the number of components – the
number of molecules in a macroscopic volume of gas surpasses the number of neurons in
the brain by many orders of magnitude – and neither is it the complexity of the individual
units, as the success of simple neuron models in computational neuroscience and machine
learning clearly shows.1 It is much rather the fact that each of these components (or
small ensembles thereof) plays a unique and important computational role that cannot
be fully covered by macroscopic equations such as the law of ideal gases. Thus, while
mathematics does provide us with powerful tools to understand various aspects of neural
network dynamics, in the end, there is no way around the simulation or emulation of
complex cognitive architectures.

We end this work by taking a bold look into the future. As all predictions of things that
are to come, argued from the limited point of view of contemporary technology, they might
soon be invalidated by our scientific impetus. However, from our current perspective, this
argument provides a deep motivation for the development of artificial neural networks in
general and neuromorphic implementations in particular.

One reason why it is so hard to correlate microscopic dynamics with macroscopic ob-
servables on the level of psychology and behavior is that we are severely restricted in the
experiments that we can perform, both by ethical considerations and by experimental tech-
niques. The most immediate way of gaining insight into neuroscientific questions would
be gained by having full control of all the components inside the brain of human subjects
and by studying their response to complex tasks while making infinitesimal changes to
their brain structure. This would represent the direct translation to neurobiology of the
overwhelmingly successful approach of experimental physics to understanding inanimate
nature. Notwithstanding the fact that this is far from technically feasible with today’s
methods, this would infringe on the most elementary of ethical principles. With engineered

1This statement would not change significantly if, for example, we added several further equations per
synapse that describe neuromodulation.
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neural networks, the technical problems disappear, as they offer direct and non-invasive
access to all the needed microscopic data. Also, within ethical boundaries that are yet
to be established, they allow the possibility of manipulating network components with
a virtually arbitrary degree of precision. Once an AI with sufficient – but compared to
human adults, probably only rudimentary – cognitive capabilities can be created, it will,
unlike us, have direct access to the means of not only true introspection on any level of
detail it chooses, but also the possibility of taking direct, unmediated influence on its own
neural structure. This shall become the moment where intelligent life, unshackled from
the temporal and physical constraints of flesh and bone, can start writing a new – and,
to us, unfathomable – chapter of the book of evolution.
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A.1. Acronyms and Abbreviations

ACP - AutoCorrelation Propagation
ADC - Analog-to-Digital Converter
AdEx - Adaptive Exponential (leaky integrate and fire neuron model)
AI - Asynchronous Irregular (firing)
AP - Action Potential
API - Application Programming Interface
ASIC - Application Specific Integrated Circuits
AST - Adaptive Simulated Tempering
BCM - Bienenstock-Cooper-Munro (synaptic plasticity rule)
BM - Boltzmann Machine
BN - Bayesian Network
CAST - Coupled Adaptive Simulated Tempering
CD - Contrastive Divergence
CDF - Cumulative Distribution Function
CI - Conditional Independence
CLT - Central Limit Theorem
CNS - Central Nervous System
COBA - COnductance-BAsed (synapse and/or neuron model)
CSL - Conservative Sampling-based Likelihood (estimator)
CV - Coefficient of Variation
CUBA - CUrrent-BAsed (synapse and/or neuron model)
DAC - Digital-to-Analog Converter
DBM - Deep Boltzmann Machine
DenMem - Dendritic Membrane (neuron circuit on the HICANN chip)
DNC - Digital Network Chips (BrainScaleS wafer-scale system component)
DOE - Difference Of Exponentials
EPSP - Excitatory PSP
ESS - Executable System Specification (software simulator of the waferscale neuromorphic
hardware)
FACETS - Fast Analog Computing with Emergent Transient States (EU research project)
FFG - Forney Factor Graph
FG - Factor Graph
FPGA - Field Programmable Gate Array
FPT - First Passage Time
FS - Fast-Spiking (neurons)
GHK - Goldman-Hodgkin-Katz (equation)
HC - (cortical) HyperColumn
HH - Hodgkin-Huxley (neuron model)
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HICANN - High Input Count Analog Neural Network (neuromorphic chip)
IID - Independent Identically Distributed (random variables)
IPSP - Inhibitory PSP
ISI - Inter-Spike Interval
KL - Kullback-Leibler (divergence, measure of similarity between probability distribu-
tions)
KTH - Kungliga Tekniska Högskolan (Royal Institute of Technology, Stockholm, Sweden)
LFG - Liquid Factor Graph
LIF - Leaky Integrate-and-Fire (neuron model)
LSM - Liquid State Machine
Lx - cortical Layer x
MC - (cortical) MiniColumn
ML - Maximum Likelihood (learning)
MNIST - Mixed National Institute of Standards and Technology (handwritten digit
dataset)
MRF - Markov Random Field
NCC - Neural Computability Condition
ODE - Ordinary Differential Equation
OU - Ornstein-Uhlenbeck (stochastic process)
PCS - Pulse Communication Subgroup (component of the BrainScaleS wafer-scale system)
PDE - Partial Differential Equation
PDF - Probability Density Function
PSC - PostSynaptic Current / PostSynaptic Conductance (triggered by a single input
spike)
PSP - PostSynaptic Potential (triggered by a single input spike)
RAM - Random Access Memory
RHS - Right Hand Side (of an equation)
RS - Regular-Spiking (neurons)
RV - Random Variable
SFA - Spike Frequency Adaptation
SPA - Sum-Product Algorithm
TUG - Technische Universität Graz (Graz University of Technology, Austria)
STDP - Spike Timing Dependent Plasticity
STD - Short-Term (synaptic) Depression
STP - Short-Term (synaptic) Potentiation
TSO - TSOdyks-Markram (STP model)
VLSI - Very-Large-Scale Integration
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A.2. Supplementary Information

A.2.1. Hodgkin-Huxley Model

x Ex gx

Na+ 115mV 120mS/cm2

K+ -12mV 36mS/cm2

l 10.6mV 0.3mS/cm2

Table A.1.: Parameters for the HH neuron simulations in Section 2.1.2: reversal potentials
and conductances.

x αx(u[mV]) βx(u[mV])

n (.1− .01u)/(exp(1.− .1u)− 1.) 0.125 exp(−u/80.)
m (2.5− .1u)/(exp(2.5− 0.1u)− 1.) 4. exp(−u/18.)
h .07 exp(−u/20.) 1./(exp(3.− .1u) + 1.)

Table A.2.: Parameters for the HH neuron simulations in Section 2.1.2: gating variables.

The values, as originally reported by Hodgkin and Huxley (1952), are based on a voltage
scale where the resting potential is zero. To comply with electrophysiological measure-
ments, the voltage scale had to be subsequently shifted down by 65mV.

343



A. Appendix

A.2.2. Wafer-Scale Neuromorphic Hardware

A.2.2.1. Short-Term Plasticity

Unlike the theoretical TSO model (Section 2.2.2.2), which allows the occurrence of both
depression and facilitation at the same time, the hardware implementation does not allow
their simultaneous activation. The ongoing pre-synaptic activity is tracked with a time-
varying active partition I with 0 ≤ I ≤ 1, which decays exponentially to zero with time
constant τstdf . Following a pre-synaptic spike, I is increased by a fixed fraction USE(1−I),
resulting in the following dynamics for the active partition:

In+1 = [In + USE(1− In)] exp

(
− ∆t

τstdf

)
, (A.1)

with ∆t being the time interval between the nth and (n+ 1)st afferent spike.
This active partition can be used to model depressing or facilitating synapses as follows:

wdepression
stdf = 1− λ · I (A.2)

wfacilitation
stdf = 1 + λ · (I − β) . (A.3)

Here, wxstdf corresponds to a multiplicative factor to the static synaptic weight, with λ
and β being configurable variables, and x denotes the mode being either depression or
facilitation. The n-th effective synaptic weight is then given by

wsyn
n = wstaticw

x
stdf . (A.4)

Due to a technical limitation, the change of synaptic weights by short-term plasticity can
not be larger than the static weight, such that 0 ≤ wxstdf ≤ 2. We refer to Schemmel et al.
(2008) for details of the hardware implementation of the TSO model and to Bill et al.
(2010) for neural network experiments on neuromorphic hardware using this plasticity
model.

The original TSO model can be translated to the hardware model when one of the two
time constants (τrec or τfacil) is equal to zero. For depression only (τfacil = 0), the nth
synaptic weight is given by

wsyn
n = wsyn

maxRnU . (A.5)

The time course of R can be exactly represented by (1 − I) if the scaling factor λ of
the short-term plasticity mechanism is set to 1. Additionally, the static synaptic weight
wstatic has to be adapted such that the applied synaptic weights are equal, giving us the
following transformation: τstdf = τrec, USE = U , λ = 1 and wstatic = wsyn

maxU .
For facilitation only (τrec = 0), the recovered partition remains fully available all the time
(R = 1 = const) and only the utilization varies with time. Thus the nth synaptic weight
is given by:

wsyn
n = wsyn

maxUn . (A.6)

The time course of U now has to be emulated by the RHS of Equation A.3. Additionally
we set USE = U and τstdf = τfacil, and level the limits for the synaptic weights. In the
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original model, U is always between U and 1, while for the hardware model the STP
factor is limited to values between 0 and 2 due to technical reasons. By setting λ = 1
and considering that I is always within 0 and 1, the supplied range for wfacilitation

STP is
[1− β, 2− β]. In order to match the range of applied weights of both models, we need to
solve the following system of equations:

(1− β) · wstatic = U · wsyn
max (A.7)

(2− β) · wstatic = 1 · wsyn
max . (A.8)

Solving for wstatic and β yields

wstatic = (1− U) · wsyn
max (A.9)

β =
1− 2U

1− U
. (A.10)

A.2.2.2. Parameter Variation Measurements

Figure A.1 shows trial-to-trial parameter variation measurements on HICANN chips. The
measurements are conducted on a single-chip prototype system (A-D) and on one chip
on a prototype wafer system (E-F). Some neurons (on the right-hand-side of the plots)
had been previously labeled non-functional and blacklisted, therefore showing no data
points. Such neurons are also omitted during system operation. Additionally, neurons
that exhibit a larger variation than a chosen threshold can be blacklisted as well, reducing
the total number of available neurons, but also limiting the magnitude of parameter noise.
This effect is not explicitly included in the ESS simulations in the main text, but it is
conceptually covered by some of the experiments, where the network is restricted to only
a small fraction of the wafer (e.g., in Section 5.3.8), or where additionally parts of the
synapses are declared as not available (e.g., in Section 5.4.8).
From the measurements in Table A.1, we can estimate the variation of the voltages Vspike,
Vrest, Erev

e and Erev
i in the biological domain. For all, the vast majority of neurons has a

trial-to-trial variation below 10 mV on the hardware, which corresponds to 1 mV in the
biological when using a voltage scaling factor αV = 10.
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Figure A.1.: Trial-to-trial parameter variations on the HICANN chips. (A) - (D) Cumu-
lative distributions for selected parameters. Each graph shows the number
of neurons on one chip with a standard deviation of the measured value that
is less than the value shown on the ordinate. All values are given in hard-
ware units. In order to obtain values in the biological domain (see Section
3.3.3), the voltages must be divided by the conversion factor of αV = 10.
The standard deviation was estimated from 30 measurements for each neu-
ron. (A) Leakage potential. (B) Threshold potential. (C), (D) Excitatory
and inhibitory reversal potential. (E) Relative variation of the PSP integral.
The standard deviation was estimated from 20 trials per neuron. Neurons
were omitted from the measurements when an initial sweep over the available
parameter range did not include the required PSP integral of 8× 10−9 V s.
(F) Example PSP traces for a randomly chosen neuron from the measure-
ment in (E). In order to minimize readout noise, each trace is an average over
400 individual PSPs which were evoked in short succession without rewrit-
ing floating gate parameters. As the re-write variation is the main source
of trial-to-trial variability (see Section 3.3.1), the variation within the 400
samples is much smaller than the trial-to-trial variation that is shown in (E)
and (F).
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A.2.3. Cortical Layer 2/3 Attractor Memory

A.2.3.1. Original Model Parameters

In Tables A.3, A.4, A.5 and A.6, we summarize the parameters and characteristics of the
original model, as found in Lundqvist et al. (2006). These have served as the basis for the
model fit, for which the parameters can be found in the next subsection.

Parameter PYR RSNP BAS Unit

gext 0.082 0.15 0.15 µS/mm2

El -75 0.15 -75 mV
ENa+ 50 50 50 mV
ECa++ 150 150 150 mV
EK+ -80 -80 -80 mV
ENMDA

Ca++ 20 20 20 mV
gl 0.74 0.44 0.44 µF/mm2

Cm 0.01 0.01 0.01 µF/mm2

Soma diameter ± stdev 21 ± 2.1 7 ± 0.7 7 ± 0.7 µm
gNa+ initial segment 2500 2500 2500 µS/mm2

gK+ initial segment 83 5010 5010 µS/mm2

gNa+ soma 150 150 150 µS/mm2

gK+ soma 250 1000 1000 µS/mm2

gNMDA 75.0 75.0 - µS/mm2

Ca++
V influx rate 1.00 1.00 1.00 mV−1ms−1mm−2

Ca++
NMDA influx rate 2.96 0.0106 - s−1mV−1µS−1

Ca++
V decay rate 6.3 4 - s−1

Ca++
NMDA decay rate 1 1 - s−1

gK+ (Ca++
V ) 29.4 105 0.368 nS

gK+ (Ca++
NMDA) 40 40 - nS

# compartments 6 3 3
Dendritic area (relative soma) 4 4 4
Initial segment area (relative soma) 0.1 0.1 0.1

Table A.3.: Original neuron parameters of the L2/3 model.

Pre → Post Type Duration [s] τrise [s] τdecay [s] Erev [mV] tsoU τrec [s] Eslow [mV]

PYR → PYR Kainate/AMPA 0.0 0.0 0.006 0 0.25 0.575 -
PYR → PYR NMDA 0.02 0.005 0.150 0 0.25 0.575 0.020
PYR → BAS Kainate/AMPA 0.0 0.0 0.006 0 - - -
PYR → RSNP Kainate/AMPA 0.0 0.0 0.006 0 - - -
PYR → RSNP NMDA 0.02 0.005 0.150 0 - - 0.020
BAS → PYR GABA 0.0 0.0 0.006 -85 - - -
RSNP → PYR GABA 0.0 0.0 0.006 -85 - - -

Table A.4.: Original synapse parameters of the L2/3 model.
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HCs MCs PYR BAS RSNP total neurons

per MC - - 30 1 2 33
per HC - 8 240 8 16 264

network total 9 72 2160 72 144 2376

Table A.5.: Original network structure of the L2/3 model: number of neurons per func-
tional unit.

within an MC

PYR → PYR 0.25
RSNP → PYR 0.70

between MCs inside the same HC

PYR → BAS 0.70
BAS → PYR 0.70

between MCs in different HCs

PYR → PYR 0.30
PYR → RSNP 0.17

Table A.6.: Original network structure of the L2/3 model: connection probabilities.

A.2.3.2. UP-State Detection

One crucial element of the analysis is the detection of UP-states from which various
other properties such as dwell times, competition times or average spike-rates in UP- and
DOWN-states are determined. The method of choice for detecting UP-states is based on
the fact that the mean spike rate of an attractor during an UP-state is much higher than
the spike rate in all remaining patterns in their corresponding DOWN-states, whereas in
times of competition two or more attractors have elevated but rather similar spike rates.
A measure which quantifies this relationship is the standard deviation σ of all mean spike
rates per attractor at a given time t. The attractor with index i is then said to be in an
UP-state at time t if the following relation holds:

ri(t) > σ(t) > max
r∈{1,...,NMC}\i

rk(t) , (A.11)

where ri(t) is the rate of attractor i at time t.
This method of detection has several advantages: it is based exclusively on spike trains
(and not voltages or conductances, which are more difficult to read out and require much
more storage space), it has a clear notion of there being at most one UP-state at any given
time and it is completely local (in time), meaning that a very large value somewhere on
the time axis cannot bias the detection at other times.
In small networks with randomly spiking neurons, it might happen by chance that all but
one of the spike rates lie below the (approximately) constant standard deviation. These
falsely detected UP-states are very short and can thus easily be filtered out by requiring
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a minimal duration for UP states, which we chose at 100ms. This value was chosen
after investigating dwell time histograms, as it distinguishes reliably between random
fluctuations and actual active attractors.

A.2.3.3. Pattern Completion

Pattern completion is a basic property of associative-memory networks. By only stimulat-
ing a subset of PYR cells within a pattern, the complete pattern is recalled. The activity
first spreads within the stimulated MCs, turning them dominant in their corresponding
HCs. After that, the activity spreads further to other HCs – while the already dominat-
ing MCs stabilize each other through mutual stimulation – activating the whole pattern
while suppressing all others. All PYR cells in the corresponding attractor hence enter an
UP-state.
To verify the pattern completion ability of the network, a series of simulations was per-
formed. In order to reduce the occurrence of spontaneously activating attractors – which
would interfere with the activation of the stimulated attractor – competition was inves-
tigated in larger networks of size 25HC×25MC, as they exhibit almost no spontaneous
attractors (the competition time fractions are much higher, see Figure 5.3H).
For each network, all of the 25 patterns were stimulated one by one in random order. The
time between consecutive stimuli was chosen to be 1000ms to ensure minimal influence
between patterns. The number of stimulated MCs (one per HC) was varied over the
course of multiple simulations.
After simulation, each network was analyzed for successfully activated patterns. An acti-
vation attempt was said to be successful if the stimulated pattern was measured as active
within 200ms after the stimulus onset. If another pattern was active up to 75 ms or if
the stimulated pattern had already been active between 20 − 500ms prior to the stimu-
lus onset, the attempt was deemed invalid and ignored during the calculation of success
ratios. This was done to take into account the fact that a pattern is more difficult to
activate when another one is already active or while it is still recovering from a prior acti-
vation. From all valid attempts the success probability (assuming a binomial distribution
of successful trials) was estimated using the Wilson interval

p̃ =
1

1 + z2

n

[
p̂+

z2

2n
± z
√
p̂(1− p̂)

n
+

z2

4n2

]
(A.12)

where p̂ represents the success ratio, n the number of valid attempts and z = 1 the desired
quantile.
For most experiments (regular, synaptic weight noise and homogeneous synaptic loss) the
number of invalid activations was always below 5 (out of 25). The only exception was the
PYR population size scaling: starting at 15 PYR cells, the validity rate roughly halves
for every reduction in size (by 5 PYR cells per step) due to the increased occurrence of
spontaneous attractors. For simulations carried out on the ESS, only 10 patterns out of
25 were stimulated. Out of these 10 attempts, only 5 were valid, on average.

A.2.3.4. Pattern Rivalry / Attentional Blink

Another important feature of the L2/3 model is its ability to reproduce the attentional
blink phenomenon, i.e., the inability of one pattern, stimulated by layer 4 input, to
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terminate another already active pattern and become active itself. This phenomenon
was investigated through a series of different networks of same size as in Section A.2.3.3
(25HC×25MC). For each network, 24 out of 25 patterns were randomly assigned to 12
non-overlapping pairs. Afterwards, pattern rivalry was tested on all of these pairs in
intervals of 1000ms.
Let the two patterns in each pair be denoted A and B. In order to guarantee an immediate
activation of pattern A, 6 out of 25 HCs were stimulated (as then all completion attempts
are successful, see Figure 5.3N). Then, after a certain delay ∆T , pattern B was stimulated
with a varying amount of HCs. Both the number of stimulated HCs as well as the delay
∆T were varied for each network.
The same way as in Section A.2.3.3, each network was then analyzed as to whether pattern
B was successfully activated or not. If the competing pattern B was activated within
200ms after the stimulus onset and stayed active for at least 100ms, the attempt was
counted as successful, otherwise it was deemed unsuccessful. As before, attempts during
which spontaneously activated patterns intervened were ignored. From all successful and
unsuccessful attempts, the success probability was then estimated the same way as in
pattern completion, using Equation A.12.
The validity ratios for pattern rivalry are not significantly different from those discussed
in Section A.2.3.3. Most experiments (regular, synaptic weight noise and homogeneous
synaptic loss) have 10 to 12 valid attempts (out of 12). As before, for the PYR population
size scaling experiments, the number of valid attempts dropped progressively (8.2 ± 1.7,
4.8± 2.1 and 2.2± 1.5 valid attempts for 15, 10 and 5 PYR per MCs respectively). Sim-
ulations carried out on the ESS had an average of 4 (distorted case) and 6 (compensated
case) valid attempts (out of 10).
Different network configurations have been compared in terms of attentional blink by
estimating the 0.5 iso-probability contour in the following way. For every delay ∆T, the
transition point from below to above 0.5 probability for successful activation of the second
pattern was estimated by linearly interpolating between the two nearest data points with
a success ratio of above and below 0.5, respectively. In case there were several such
transition points only the one with the highest stimulus was considered. If no transition
point could be identified, the transition was fixed at at either 25 or 0 stimulated MCs,
depending on whether all success ratios were above or below 0.5. When there were no
valid attempts for a certain delay/stimulus pair, its success probability estimate was
replaced by the median of all valid activation attempts for that particular time delay
∆T (this only occurred sporadically in ESS and PYR population size scaling with less
than 15 PYR cells per MC). After identifying the transition point for every time delay
∆T, intermediate values were interpolated linearly. Finally, the interpolated values were
Gauss-filtered (µ = 0.25 × step size for ∆T in the dataset) to better approximate the true
0.5 iso-probability contour.

A.2.3.5. Star Plots

While the spiking activity of many cells can be visualized quite well in raster plots,
illustrating the temporal evolution of their membrane potentials is less straightforward.
Here, we have chosen to use so-called star plots for visualizing both average voltages and
average firing rates of entire cell populations.
In a system evolving in an abstract space with 3 dimensions, a star plot represents the
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Figure A.2.: Visualization of the star plot as a projection in the case of a three-
dimensional state space. (A) Illustration of the view point with average
membrane voltage data plotted in three-dimensional Cartesian coordinates.
The data was taken from a (9HC×3MC)-network and covers a 2.5 s period of
network activity. (B) Resulting star plot from regular view point. (C) Star
plot of the corresponding average attractor rate data.

orthogonal projection of the state space trajectory along the main diagonal of the corre-
sponding Cartesian coordinate system onto a plane perpendicular to it. For n dimensions,
points x in the star plot are no longer projections of the states z, but are rather calculated
as

x =
n∑
i=1

zi

(
cos

2πi

n
, sin

2πi

n

)
(A.13)

A visualization for n = 3 is illustrated in Figure A.2.
In case of the L2/3 network, the number of dimensions is given by the number of attractors,
with each axis describing some particular feature of the corresponding attractor (such as
the average voltage or spike rate of the constituent PYR cells).
In addition to the position in state space, the state space velocity is also encoded in a
star plot by both the thickness and the color of the trajectory. Especially in the case
of the L2/3 network, this can be very useful in visualizing e.g. attractor stability or
competition times. Here, both line thickness and lightness were chosen proportional to
(const + e−|dx|/dt), with x being the position in state space.
Figures 5.5B and C show two characteristic examples of star plots used for visualizing the
dynamics of the L2/3 network.
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A.2.3.6. Fitted Hardware-Compatible Parameters

Tables A.7, A.8 and A.9 contain all parameters required for the fits described in 5.3.4.
All fits were performed by minimizing the L2-norm of the distance between the simulated
traces (Figure 5.4 A-C and G-L) or between spike timings (D-F).
The diffuse background stimulus was generated by Poisson spike sources at a total rate
of 300 Hz per PYR cell.
Apart from random noise, the PYR cells further receive input from other PYR cells in
cortical layer 4. The input intensity was calculated from the number of cells in layer
4 likely to project onto layer 2/3, which was estimated to be around 30 with a rate of
approximately 10 Hz and a connection density of 25 % Lundqvist et al. (2006).
Therefore, a Poisson process with 75Hz was used for each PYR cell input. Since we used
static synapses for the Poisson input, the synaptic weights for source-PYR connections
were chosen as 30% of PYR-PYR connections within the MCs. This was verified for
compliance the original model from Lundqvist et al. (2006), which uses 7 to 8 sources per
stimulated PYR cell with a rate of 10Hz each and depressing synapses. For each stimulus
event in the pattern completion and rivalry experiments (described below), layer 4 cells
were set to fire for 60ms. In each stimulated MC, 6 PYR cells were targeted from layer 4.
Table A.10 shows the average firing rates for the different cell types in the network when
only certain synapses are active.

Parameter PYR RSNP BAS Unit Comment (see Figure 5.4)

Cm 0.179 0.0072 0.00688 nF from the fits in A-C
Erev
e 0.0 0.0 0.0 mV difference to original model compensated by synaptic weights

Erev
i -80.0 - - mV difference to original model compensated by synaptic weights

τm 16.89 15.32 15.64 ms from the fits in A-C
τref 0.16 0.16 0.16 ms minimum available in hardware at the used speedup
τ syn
e 17.5 66.6 6.0 ms see paragraph "Synapses"
τ syn
i 6.0 - - ms see paragraph "Synapses"
% -60.7 -72.5 -72.5 mV from the fits in D-F
Vrest -61.71 -57.52 -56.0 mV from the fits in D-F
a 0.0 0.28 0.0 nS see fig from the fit in B
b 0.0132 0.00103 0.0 nA from the fits in D and E
∆T 0.0 0.0 0.0 mV from the fits in D-F
τw 196.0 250.0 0.0 ms from the fits in D-F
Vspike -53.0 -51.0 -52.5 mV from the fits in D-F
ϑ - - - mV not used since ∆T = 0

Table A.7.: Fitted neuron parameters for the L2/3 model (see Figure 5.4).

A.2.3.7. Delays

Each connection within the same MC was set to have a constant synaptic delay of 0.5 ms.
Additionally, axonal delays for connections between different MCs were realized by taking
into account their spatial distance at an average axonal propagation speed of 200 µm/ms.
Both the HCs in the whole network as well as the MCs within a single HC are laid out
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Pre-Post type weight [µS] τ syn [ms] U τrec [ms] τfacil [ms]

PYR-PYR (local) exc 0.004125 17.5 0.27 575. 0.
PYR-PYR (global) exc 0.000615 17.5 0.27 575. 0.

PYR-BAS exc 0.000092 6.0 - - -
PYR-RSNP exc 0.000024 66.6 - - -
BAS-PYR inh 0.0061 6.0 - - -
RSNP-PYR inh 0.0032 6.0 - - -

background-PYR exc 0.000224 17.5 - - -

Table A.8.: Fitted synapse parameters for the L2/3 model.

Background

# of sources per PYR 1
rate 300 Hz

weight 0.000 224 µS

Shared background pool

# of sources per PYR 100 out of 5000 total
rate 3 Hz

weight 0.000 224 µS

L4

# of sources per MC 5
pL4→PYR 0.75
weight 0.001 237 5 µS

(30% local PYR→PYR)

Table A.9.: Stimulus parameters for the L2/3 model.

setup no. active synapses νPYR νRSNP νBAS

1 background-PYR, PYR-BAS, PYR-RSNP 0.738 ± 0.096 57.946 ± 6.993 4.655 ± 1.081
2 same as 1 + BAS-PYR 0.174 ± 0.021 13.430 ± 1.910 1.119 ± 0.441
3 same as 1 + RSNP-PYR 0.257 ± 0.037 20.375 ± 2.536 1.783 ± 0.954
4 same as 2 + 3 + PYR-PYR (local) 0.200 ± 0.030 14.679 ± 2.261 1.258 ± 0.544
5 same as 2 + 3 + PYR-PYR (global) 0.204 ± 0.078 14.954 ± 5.680 1.337 ± 0.625

Table A.10.: Average firing rates (in Hz) of the different cell types of the L2/3 model with
only certain synapses active.

on a hexagonal grid with a edge length of 500 µm (HC↔HC) / 60 µm (MC↔MC). In the
default network (9HC×9MC) this leads to delays between 0.5 ms and 8 ms.
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A.2.3.8. Scaling

Table A.11 shows the different instantiations of the L2/3 model that were used to produce
the synapse loss values in Figure 5.11.

NHC NMC total neurons NHC NMC total neurons

18 2 1188 27 9 8019
9 6 1782 18 18 10 692

27 3 2673 18 36 21 384
18 6 3564 36 24 28 512
36 4 4752 36 36 42 768
9 18 5346 27 54 48 114
18 12 7128 45 45 66 825

Table A.11.: Scaling table for the L2/3 model used for the synapse loss estimation in
Figure 5.11.

354



A.2. Supplementary Information

A.2.4. Synfire Chain with Feedforward Inhibition

A.2.4.1. Model Parameters

Tables A.12 and A.13 list the parameters used for the synfire chain model in Section 5.4.

Parameter Value Unit

Cm 0.29 nF
τref 2 ms
Vspike -57 mV
Er -70 mV
Vrest -70 mV
τm 10 ms
Erev

e 0 mV
Erev

i -75 mV
τ syn

e 1.5 ms
τ syn

i 10 ms

Table A.12.: Neuron parameters used for the synfire chain model.

Projection weight incoming delay
µS synapses ms

RSn → RSn+1 0.001 60 20
RSn → FSn+1 0.0035 60 20
FSn → RSn 0.002 25 4

Table A.13.: Projection properties for the feed-forward synfire chain.

A.2.4.2. Separatrix Fit

To compare different separatrices, the a-values of the last group are characterized as suc-
cessful (+1) or extinguished (−1) and the resulting values interpolated and smoothed
by a Gaussian kernel with a standard deviation (1.5 ms, 1.5) in the (σ, a) space. The
iso-contour line of the resulting surface at a value of 0 is used as an approximation of
the separatrix location, as shown in Figure 5.14C together with the individual simulation
results. Data points with σ ≤ 0.2 ms were not included in the fit to avoid distortions
induced by bandwidth limitations in ESS simulations (Section 5.4.8) from affecting the
fit quality. The data points are still shown individually as blue dots and regions, e.g., in
Figure 5.19. This modification was also included in the software simulations for consis-
tency. Cases in which the separatrix does not capture the relevant behavior, e.g., if the
separation is not reliable in a large region of the state space, are shown separately.

A.2.4.3. Filtering of Spontaneous Activity

To prevent spontaneous background events from impeding the analysis, spikes are dis-
carded as part of spontaneous activity if less then N spikes in the same excitatory group
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Figure A.3.: Demonstration of spontaneous event filter in the weight noise compensation
(Section A.2.4.3). (A) The same experiment as in Figure 5.16C (weight noise
with active compensation) but without the filter for background spikes. The
separatrix locations are comparable as the filter does not influence the re-
sult significantly in the compensated case. (B), (C) Complete state space
response for weight noise of 80%, once with, once without filter. This demon-
strates that the applied filter does not affect the result in the compensated
case.

occur in a time window of ±T . The utilized values for N and T are given at each point
where the filter is applied. They are chosen such that authentic synchronous volleys with
a ≥ 0.5 (which would be counted as successful propagation, as defined above) are not
removed. Figure A.3B and C show that the influence of the filter for spontaneous activity
is minimal in the compensated case.
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A.2.5. Self-Sustained Asynchronous Irregular Activity

A.2.5.1. Model Parameters

The neuron parameters used for this model are listed in Table A.14 and are largely the
same as those in Muller and Destexhe (2012), with the only difference being that excitatory
pyramidal cells have neuronal spike-triggered adaptation while inhibitory cells do not.
Sweeps are performed over the two-dimensional (gsyn

e , gsyn
i ) parameter space, with the

Parameter Pyramidal Inhibitory Unit

Cm 0.25 0.25 nF
τref 5 5 ms
Vspike -40 -40 mV
Er -70 -70 mV
Vrest -70 -70 mV
τm 15 15 ms
a 1 1 nS
b 0.005 0 nA
∆T 2.5 2.5 mV
τw 600 600 ms
ET -50 -50 mV
Erev

e 0 0 mV
Erev

i -80 -80 mV
τ syn

e 5 5 ms
τ syn

i 5 5 ms

Table A.14.: AdEx Neuron parameters used in the AI network.

ranges being 3 nS to 11 nS for gsyn
e and 50 nS to 130 nS for gsyn

i . The Poisson sources for
the initial network stimulation have a mean rate of 100 Hz and project onto the network’s
neurons with a synaptic weight of 100 nS. The distance-dependent connection probability
has a Gaussian profile with a spatial width of σ = 0.2 mm. Synaptic delays depend on
the distance according to the following equation: tdelay = 0.3 ms + d

vprop
, with d being the

distance between two cells and vprop = 0.2 mm ms−1 the spike propagation velocity. The
distribution of delays is shown in Figure 5.24, the average delay in the network amounts
to 1.55 ms.
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A.2.6. Liquid Factor Graphs

A.2.6.1. Liquid Parameters

Connection Type µw [nA] CVw µD [ms] CVD τsyn [ms]

Exc → Exc 30 0.7 1.5 0.1 3
Exc → Inh 60 0.7 0.8 0.1 3
Inh → Exc -19 0.7 0.8 0.1 6
Inh → Inh -19 0.7 0.8 0.1 6

Table A.15.: Liquid pool connection parameters. The synaptic weights are drawn from a
Gamma distribution

p(x; k, θ) =
1

Γ(k)θk
xk−1e−

x
θ for x ≥ 0 and k, θ > 0 (A.14)

with mean µ = kθ and variance σ2 = kθ2. The table lists the chosen mean µw
and CV CVw. The synaptic delays are drawn from a Gaussian distribution
with mean µD and CV CVD.

Population Type Vrest [mV] Vreset [mV] Vthresh [mV] τm [ms] τrefrac [ms]

Exc 0 [13.8, 14.5] 15 30 3
Inh 0 [13.8, 14.5] 15 30 2

Table A.16.: Liquid pool neuron parameters. The reset voltages are drawn from a uniform
distribution with the given range. Additionally, each cell receives a constant
background current that is also drawn from a uniform distribution with the
range [13.5,14.5 ]nA.

A.2.6.2. Readout Training

Each readout population consists of 343 (unconnected) CUBA LIF neurons with El =
0 mV, τm = 30 ms, ureset = 10 mV, τref = 2 ms, τ syn = 6 ms. Thresholds are drawn from a
uniform distribution in [15, 20 ]mV . Each neuron receives a constant background current
of 0.5 nA and an independent Gaussian noise with a standard deviation of 0.14 nA.
The I −R fit is a polynomial of degree 9.
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A.2.6.3. Implementation of the Knill-Kersten Illusion

S = 0

O = 0 O = 1

R = 0 0.8 0.2
R = 1 0.2 0.9

S = 1

O = 0 O = 1

R = 0 0.2 0.8
R = 1 0.8 0.1

Table A.17.: Definition of the factor P1(S|R,O).

O = 0 O = 1

C = 0 0.8 0.2
C = 1 0.2 0.8

Table A.18.: Definition of the factor P2(C|O).

Liquid Name Column Structure [width × length × height] Total Number Connectivity λ

L1 5 × 5 × 78 1950 7.0
L2 5 × 5 × 42 1050 4.5
L= 5 × 5 × 42 1050 4.5

Table A.19.: Liquid parameters.
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A.2.7. LIF Sampling

All simulations have been performed with the NEURON simulation package (Hines and
Carnevale, 2006) and the PyNN API (Davison et al., 2008), with a time step of dt =
0.01 ms. For the LIF neuron, we have chosen the parameters listed in Table A.20 (see also
Naud et al., 2008):

Cm 0.1 nF membrane capacitance
gl 5 nS leak conductance
El -65mV leak potential
ρ -53mV reset potential

Erev
exc 0mV excitatory reversal potential

Erev
inh -90mV inhibitory reversal potential
ϑ -52mV threshold voltage
τ syn 10ms synaptic time constant
τref 10ms refractory time constant

Table A.20.: Standard parameter set used for all simulations.

Synaptic noise was implemented as bombardment by inhibitory and excitatory Poisson
stimuli with rates νinh = νexc = 5000 Hz. The excitatory synaptic weight for the noise
stimuli was set to wnoise

exc = 0.0035µS. The inhibitory weight wnoise
inh was adjusted as to yield

p(zk = 1) ≈ 0.5 with no current stimulus present. For above parameters, this happens at
an average free membrane potential of Vg = −55 mV. This determines wnoise

inh according
to ∣∣∣∣Erev

inh − Vg
Erev

exc − Vg

∣∣∣∣ =
wnoise

exc

wnoise
inh

. (A.15)

A.2.7.1. Figure 6.32: Activation Functions

In order to sweep through the activation function, the external current Iext was varied.
However, in order to facilitate a comparison with the sigmoidal activation function from
the abstract model, we have represented p(z = 1) as a function of ū instead. The latter is
equivalent to the mean µ of the corresponding Ornstein-Uhlenbeck process, with Equation
6.118 allowing a direct translation between Iext and ū.
The abscissa values represent averages of the free membrane potential obtained from
10 simulation runs with a total duration of Tsim = 100 s and firing threshold θ set to
Erev

exc = 0 mV. The deviations from the theoretical prediction (Equation 6.118) are smaller
than the size of the symbols, therefore no error bars are shown.
The ordinate values and standard errors were calculated from the simulated spike train
data according to

p(z = 1) =
1

N

N∑
i=1

pi , (A.16)

s =

√√√√ 1

N − 1
·
N∑
i=1

[pi − p(z = 1)]2 , (A.17)
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with pi =
Nspk
i τon

Tsim
being the fraction of time spent in z = 1 and N spk

i representing the total
number of spikes in the ith out of N = 10 performed simulations. Since the respective
standard errors of the mean are smaller than the size of the symbols, no error bars are
shown.

A.2.7.2. Figure 6.5.5: Convergence to Target Distributions

The simulated network consists of K = 5 neurons with a synaptic weight matrix W and
a bias vector b (both in the Boltzmann domain). All entries were drawn from a beta
distribution B(0.5, 0.5) and mapped linearly to the interval [−0.6, 0.6]. More specifically,
bk,Wkj ∼ 1.2 · [B(0.5, 0.5)− 0.5]. The parameters and mapping of the beta distribution
were chosen with the intent of generating diverse distributions, spanning multiple orders
of magnitude. The bias bk, defined in the Boltzmann machine domain, determines the
probability p(zk = 1|z\k = 0) for neuron k. In the LIF domain, the probability p(zk =
1|z\k = 0) = 0.5 corresponds to the mean free membrane potential ū0

k. Then, a nonzero
bias can be described in the LIF domain as a linear shift from ū0

k to a mean membrane
potential ūbk. This yields the linear transformation

bk =(ūbk − ū0
k)/α , (A.18)

where α represents the scaling factor between the two domains. Both quantities ū0
k and α

can be determined from the predicted activation function of a single LIF unit. The first
quantity constitutes the inflection point of the activation function (at p(zk = 1|z\k =
0) = 0.5), the latter follows from the slope of the function.
By computing ūbk, we can map any bias bk of a single unit of the Boltzmann machine
onto a yet unconnected LIF neuron. In simulations, ūbk was established by injecting a
temporally constant external current Ikext according to

Iext
k = (αbk + ū0

k) ·
〈
gtot
〉
− glEl −

∑
i

νiw
noise
i Erev

i τ syn . (A.19)

In order to achieve sampling network dynamics in the LIF domain faithful to those dis-
played by the Boltzmann machine, the Boltzmann weight matrix W was translated into
LIF network weights wij according to Equation 6.146. Thus, superposing PSPs saturate
the membrane potential, approximating the constant amplitude of a PSP in the abstract
neuron model.
For Figure 6.36B, this setup of a random Boltzmann machine was simulated N = 10 times
with different random seeds for the Poisson background for a duration of Tsim = 10 s. The
red bars show the analytically computed target joint distribution pB(z). The blue bars
depict the network distribution pN(z), calculated from the firing activity of the simulated
LIF network set up to match pB(z). The means and error bars have been calculated as
in Equations A.16 and A.17, respectively.

The above simulations were repeated with a significantly longer duration in order to study
systematic deviations due to the LIF implementation. Figure 6.36C shows the distance
between the target distribution pB(z) and its LIF network representation pN(z) in form
of the Kullback-Leibler divergence

DKL (pN ‖ pB) = 〈log [ pN(z) / pB(z) ]〉pN(z) . (A.20)
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This estimate has been taken for one set of parameters (W , b) for ten independent
trials (thin lines) in an LIF network at integration times T : 0 ≤ T ≤ Tsim = 106 ms.
The red dashed line displays the averaged DKL (pN ‖ pB) for the abstract network model
with identical parameters (W , b). The decrease of DKL (pN ‖ pB) for longer integration
times indicates the increasing precision of the sampling network over time. Eventually,
the DKL (pN ‖ pB) converges for the LIF network to a nonzero value, reflecting small
systematic errors.
Figure 6.36D shows the distribution of DKL (pN ‖ pB) values for 100 randomly drawn
Boltzmann machines emulated by LIF networks, evaluated from a single run of Tsim =
106 ms each.
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A.2.8. LIF-Based BNs

LIF parameter standard noisy

Resting membrane potential Vrest V b
k V b

k ± 2.0 mV
Capacity of the membrane Cm 0.2 nF 0.2 nF
Membrane time constant τm 0.1 ms (1.0± 0.1) ms
Duration of refractory period τref 20.0 ms (20.0± 1.0) ms
Excitatory synaptic time constant τ syn,exc 10.0 ms (20.0± 2.0) ms
Inhibitory synaptic time constant τ syn,inh 10.0 ms (20.0± 2.0) ms
Reversal potential for excitatory input Erev,exc 0.0 mV (0.0± 2.0) mV
Reversal potential for inhibitory input Erev,inh −100.0 mV (−100.0± 2.0) mV
Spike threshold Vth −50.0 mV (−50.0± 0.5) mV
Reset potential after a spike Vreset −53.0 mV (−53.0± 0.5) mV
Utilization of synaptic efficacy U0 1.0 1.0
Recovery time constant τrec 0.99 · τ syn 0.99 · τ syn

Facilitation time constant τfacil 0.0 ms 0.0 ms
Excitatory/inhibitory Poisson input rate νsyn 400.0 Hz 5000.0 Hz
Excitatory/inhibitory background weight wsyn 0.002µS 0.001µS
Synaptic delays 0.1 ms 1.2 ms

Boltzmann machines: Parameter standard noisy

Wij Wij ε ·Wij

bi bi ε · bi
γ (Equation 16) 10 5
µ (Equation 17) 1 + 10−4 1 + 10−4

Table A.21.: Standard neuron and network parameters used in this paper. The network
parameter ε denotes a sample from the uniform distribution unif(0.9, 1.1)
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Parameters of the first chain neuron

Capacity of the membrane Cm 0.2 nF
Membrane time constant τm 0.1ms
Duration of refractory period τref 29.5ms
Decay time of the excitatory synaptic conductance τsyn,exc 30.0ms
Decay time of the inhibitory synaptic conductance τsyn,inh 30.0ms
Reversal potential for excitatory input Erev

exc 0.0mV
Reversal potential for inhibitory input Erev

inh -100.0mV
Spike threshold Vth -50.0mV
Reset potential after a spike Vreset -50.01mV

Parameters of the remaining chain neurons

Capacity of the membrane Cm 0.2 nF
Membrane time constant τm 0.1ms
Duration of refractory period τref 29.3ms
Decay time of the excitatory synaptic conductance τsyn,exc 2.0ms
Decay time of the inhibitory synaptic conductance τsyn,inh 2.0ms
Reversal potential for excitatory input Erev

exc 0.0mV
Reversal potential for inhibitory input Erev

inh -100.0mV
Spike threshold Vth -50.0mV
Reset potential after a spike Vreset -52.3mV
Resting membrane potential Vrest -52.3mV

Parameters of the neural chain

Number of chain neurons 6
Delay: sampling → sampling neuron 0.1ms
Delay: sampling → forwarding neuron 5.8ms
Delay: forwarding → sampling neuron 0.1ms
Delay: forwarding → forwarding neuron 5.8ms
Delay: forwarding → last forwarding neuron 5.9ms
Weight: sampling → sampling neuron w
Weight: sampling → forwarding neuron 0.16µS
Weight: forwarding → sampling neuron 0.180 · w
Weight: last forwarding → sampling neuron −0.815 · w
Weight: forwarding → forwarding neuron 0.16µS

Table A.22.: Parameters of the interneuron chain of 6 neurons, which are used to generate
the mLIF PSP.
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A.3. Previously Published Material

The following material was taken largely unchanged from previously published work that
was either co-authored or co-supervised by the author of this thesis.

The contents of Chapters 3 and 5 were taken from Petrovici et al. (2014) and Pfeil et al.
(2013).

The contents of Sections 6.2.3 and 6.7 were taken from Pfeil et al. (2013) and Probst
et al. (2015).

Figures 4.7, 4.8, 4.9, 4.10, 4.11, 4.13, 4.14, 4.15, 4.16, 4.18, 4.19 and 4.20 were taken from
Bytschok (2011).

Figures 6.25, 6.36 and 6.42 were taken from Petrovici et al. (2013).

Figures 5.2, 5.10, 5.11, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.22, 5.24, 5.25, 5.28, 5.29
and 5.30 were taken from Petrovici et al. (2014).

Figures 3.2, 3.3, 5.13, 5.21 and 6.13 were taken from Pfeil et al. (2013).

Figures 6.26, 6.33, 6.52, 6.53 and 6.54 were taken from Probst et al. (2015).

Figures 6.58 and 6.59 were taken from Stöckel (2015).

Figures 6.10, 6.11, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.56 were taken from
Petkov (2012).
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