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q � �� Standard large sample theory does not explain this phenomenon well� Plausi�

ble bootstrap estimators for the risk of ��S do not converge correctly at the shrinkage

point as sample size n increases� By analyzing a submodel exactly� with the help of

results from directional statistics� and then letting dimension q��� we 	nd
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�� Introduction�

For the mean vector � of a q�variate N��� I� distribution� the sample mean is not

an admissible estimator� under squared�error loss� when dimension q � �� First proved

by C� Stein ����
� and subsequently sharpened in James and Stein ���
��� this re�

markable result came as a surprise to the statistical community� Notable contributions

to our understanding of the Stein phenomenon include Stein ���
��� Brown ���

��

Baranchik ������� Strawderman ������� Efron and Morris ������� Stein ������� Berger

and Wolpert ������� A valuable survey article is Brandwein and Strawderman �������

Large sample theory has di�culty in explaining what Stein estimation is about�

Suppose Y�� Y�� � � � � Yn are i�i�d� random q�vectors� each having a N��� I� distribution

with � unknown and q � �� Let j � j denote euclidean norm on Rq and let �Yn denote

the sample mean vector� The basic Stein estimator

����� ��S �

�
� �

q � �

nj�Ynj�

�
�Yn

has risk

����� Rq�n���S� �� � q��nE�j��S � �j� � �� E�

�
�q � ����q

nj�Ynj�

�
�

which is strictly less than the risk of �Yn at every � and equals ��q at the shrinkage

point � � � �James and Stein ��
���

Standard large sample theory tells us that� as n�� with q 	xed


�a� Both ��S and �Yn are locally asymptotically minimax estimators at every �� in the

sense of H�ajek ������ and LeCam �������

�b� Both ��S and �Yn are H�ajek regular at every � �� � and are asymptotically least dis�

persed among such regular estimators of �� by virtue of H�ajek�s ������ convolution

theorem�

�c� At the shrinkage point � � �� �Yn is still H�ajek regular but ��S is not �van der Vaart

������

�d� At every � �� �� the risk of ��S improves upon the risk of �Yn by O�n��� �Ibragimov

and Has�minskii ������

None of these results explain the form of ��S or whether signi	cant improvement on
��S is possible�

Related to the lack of H�ajek regularity in point �c� is the inconsistency at the

shrinkage point� as n��� of plausible bootstrap estimators for the risk Rq�n���S � ���

Writing Rn��� for this risk� two natural parametric bootstrap estimators are Rn���S�

and Rn� �Yn�� These correspond to resampling from the N���S � I� and N� �Yn� I� distribu�

tions respectively� Consider an arbitrary sequence f�n � Rqg such that n�����n��� �

h� a 	xed 	nite q�vector� Let Z denote a standard normal random q�vector� Then

����� lim
n��

Rn��n� �

�
� if � �� �

w�h� if � � �

�



where

����� w�h� � � � E

�
�q � ����q

jZ � hj�

�

Thus� when � � � and q is 	xed as n��� the bootstrap risk estimator Rn���S�

converges in distribution to the non�degenerate random variable w�����q����jZj��Z��

rather than to the correct risk w���� Similarly� the alternative bootstrap risk estimator

Rn� �Yn� converges in distribution to the non�degenerate random variable w�Z��

This paper pursues the theme that dimensional asymptotics� in which q � ��

help to clarify the Stein phenomenon� The basis for this approach is in Stein ����
�

and ���
��� Asymptotics in q have received little attention in the subsequent literature

on Stein estimation� but are common in the logically related nonparametric regression

literature� where �i is assumed to depend smoothly upon i�

Our results are organized as follows� Section � studies the best orthogonally

equivariant estimator ��E���� of � in the N��� I� submodel where �� � j�j is 	xed�

The orthogonal group is transitive on the parameter space of the submodel� We 	nd

an explicit analytical formula for ��E���� by using theory from directional statistics for

the Langevin �or Fisher�von Mises� distribution on the unit sphere� A mathematically

simpler equivariant estimator�

����� ��AE���� � �����j�Ynj
�� �Yn

is shown to approximate ��E���� well in high dimensions� It was the perception of this

approximation that guided the treatment in Stein ����
� and ���
���

Section � develops good estimates �� of j�j in the full N��� I� model and then

analyzes the adaptive estimators ��E���� and ��AE���� of �� In particular� Section ���

establishes that the estimators

���
� ��� � j�Ynj
� � �q � d��n� ��� � �j�Ynj

� � �q � d��n���

d being any constant� are locally asymptotically minimax for j�j� as q � �� Here

�x�� is the positive�part function� equal to the larger of x and �� When ��� is taken to

be j�Ynj�� �q� ���n� then ��AE���� is the Stein estimator ��S � On the other hand� when

��� is �j�Ynj� � �q � ���n��� then ��AE���� becomes the positive�part Stein estimator

����� ��PS �

�
� �

�q � ��

nj�Ynj�

�
�

�Yn�

Section ��� develops asymptotic optimality results concerning the estimation of

�� We prove that as q � �� with �� given by ���
�� the estimators ��E���� and ��AE����

are asymptotically minimax and asymptotically ��admissible on large compact balls

about the origin� The estimator �Yn has neither optimality property� The best choice

of the constant d in the estimator ��E���� is not entirely clear� However� a numerical

experiment strongly suggests that� for every q� there exist values of d such that the

estimator ��E���� dominates the positive�part Stein estimator ��PS �

�



Section ��� returns to the question of bootstrapping orthogonally equivariant es�

timators such as Stein�s� We prove that resampling from the N���� I� distribution�

where j��j� is an asymptotically e�cient estimator of j�j� in the sense of Section ����

yields consistent risk estimators as q �� for regular orthogonally equivariant esti�

mators of �� The argument also shows why resampling from the N���S � I� or N���PS � I�

or N� �Y � I� distributions fails� A simple adjustment reduces the bias of the proposed

risk estimators�

�� The Fixed�Length Submodel�

Without any loss of generality� we 	x the sample size n at �� Observed is the

random q�vector X � �X�� � � � �Xq�� whose distribution is N��� I�� the vector � � Rq

being unknown� The risk of an estimator �� � ���X� is

����� Rq���� �� � q��E�j�� � �j��

Of special interest in this paper are estimators �� that are equivariant under the

orthogonal group
 ���OX� � O���X� for every q	 q orthogonal matrix O� Every such

estimator can be written in the form

����� ���X� � h�jXj�X

for some real�valued function h �Stein ���
� Section ���

���� Exact theory� Consider the estimation of � when j�j is 	xed at a known

value �� and only the direction vector � � ��j�j is unknown� In this submodel� we

derive the minimum risk equivariant estimator of � and the minimum risk equivariant

estimator of � among estimators whose length is ���

The conditional risk� given jXj� of any equivariant estimator ����� is

����� q���h��jXj�jXj� � �h�jXj�E���
�XjjXj� � �����

Let �� � X�jXj denote the direction vector of X� The choice of h that minimizes

����� is

����� h��jXj� � jXj��E���
�XjjXj� � ��jXj

��E���
���jjXj��

The conditional expectation in ����� may be evaluated as follows� When q � ��

the conditional distribution of �� given jXj is Langevin on the unit sphere in Rq� with

mean direction � � ��j�j and dispersion parameter � � ��jXj �cf� Watson ���
�� The

density of this distribution� relative to spherical surface measure� is aq��� exp����x��

where

����� aq��� � ��	��q���q����I��q�������

and I���� is the modi	ed Bessel function of the 	rst kind and order 
 �cf� Schou

������ When q � �� the conditional distribution of �� is discrete� supported on the

two points 
� with

���
�
P���� � �jjXj� � �exp��jXj� � exp���jXj���� exp��jXj�

P���� � ��jjXj� � �exp��jXj� � exp���jXj���� exp���jXj��

�



From the analysis in Appendix A of Watson ����
�� it follows that for every

integer q � ��

����� E���
���jjXj� � Aq���jXj��

where

����� Aq�z� � Iq���z��Iq����� �z�� z � ��

For q � �� the conditional distribution ���
� yields

����� E���
���jjXj� � tanh���jXj��

This calculation agrees conveniently with formula ����� for q � �� Thus� by ������

����� and ������ the minimum risk orthogonally equivariant estimator of � in the 	xed

length submodel is

������ ��E���� � ��Aq���jXj���� q � ��

If we restrict attention to equivariant estimators �� such that j��j � ��� the only

possibilities� according to ������ are �� � 
����� The positive sign minimizes the con�

ditional risk ������ Consequently� the best constrained length equivariant estimator

of � is

������ ��CE���� � �����

in agreement with intuition�

These considerations� the compactness of the orthogonal group on Rq� and the

Hunt�Stein theorem prove the following result�

THEOREM ���� In the �xed length submodel where j�j � ��� the minimum risk

orthogonally equivariant estimator of � is ��E����� de�ned in �����	� This estimator

is minimax and admissible among all estimators of �� Among estimators of � whose

length is constrained to be ��� the minimum risk orthogonally equivariant estimator

is ��CE����� de�ned in �����	� This alternative estimator is minimax and admissible

among all estimators whose length is ���

It is of interest to compare ��E with ��CE and with two other orthogonally equiv�

ariant estimators
 X and

������ ��AE���� � �����jXj����

The latter estimator will be seen to approximate ��E���� for large values of q �Theorem

����� While ��E���� strictly dominates every orthogonally equivariant estimator in the

	xed length submodel� the improvement is large in the case of X and is much smaller

in the case of ��AE���� or ��CE����� These points will be clari	ed through the next two

theorems�

�



From ����� and ������ the risk of the general orthogonally equivariant estimator
�� � h�jXj�X is

������ Rq���� �� � q��E��h
��jXj�jXj� � ���h�jXj�jXjAq���jXj� � �����

Substituting the appropriate values of h�jXj� into ������ yields

THEOREM ���� In the �xed length submodel where j�j � ���

������ Rq���E����� �� � q��E���
�
� � ���A

�
q���jXj��

������ Rq���AE����� �� � q��E���
�
� � ����jXj

��Aq���jXj� � ���jXj
���

����
� Rq���CE����� �� � q��E����
�
� � ����Aq���jXj���

The risks of the three estimators in Theorem ��� can also be computed by Stein�s

������ method for estimators of the form �� � X � g�X�


������ Rq���� �� � � � q��E��jg�X�j� � �

qX
i��

�gi�Xi���Xi�

where gi is the ith component of g� This approach yields strikingly di�erent� though

necessarily equivalent� expressions for the risks of the three estimators� For example�

Stein�s formula gives

������ Rq���E����� �� � q��E��fjXj � ��Aq���jXj�g
� � ����f��A�

q���jXj�g�� �

From ������ and ������� we see that the su�cient statistic X is not complete in the

	xed length submodel�

���� Properties of Aq�z�� Further developments and the calculation of ��E���� rely

on the following results� The function Aq satis	es the recursion

������ Aq�z� � ��Aq���z�� �q � ���z� q � �

by Schou ������ Appendix A�� In particular�

������
A��z� � tanh�z�

A��z� � coth�z�� ��z

and so forth for odd orders q� The function Aq also satis	es the di�erential equation

������ A�
q�z� � � � �q � ��Aq�z��z �A�

q�z�

as in Schou ������ Section ��� For every integer q � �� Aq�z� is strictly monotone

increasing and concave on z � �� with A��
q�z� � ��

������
Aq��� � �� lim

z��
Aq�z� � �

A�
q��� � ��q� lim

z��
A�
q�z� � �

�



by Watson ����
� Appendix A�� Finally� for every z � ��

������ lim
q��

zAq�qz� � �z� � ������� � ����

To verify ������� let Bq�z� � zAq�qz� and write B�z� for the limit of a convergent

subsequence in fBq�z� 
 q � �g� Equation ������ and the second line in ������ give

������ � � z� �B�z��B��z��

The positive root of ������ is B�z� � �z� � ������� � ���� implying �������

��
� Asymptotic risks� For t � �� let

������ rE�t� � t��� � t�

and

����
� rCE�t� � �� � f�� � t���� � t���g��t��� � t��

Evidently rCE�t� � rE�t� whenever t � �� The maximum di�erence between rCE�t�

and rE�t� is only ����� As the next theorem shows� this 	gure is the maximum

di�erence between the asymptotic risk of ��CE���� and the asymptotic risk of the best

orthogonally equivariant estimator ��E�����

THEOREM ���� In the �xed length submodel where j�j � ��� the following uniform

risk approximations hold for every �nite c � ��

������ lim
q��

sup
��
�
�qc

jRq���E����� �� � rE��
�
��q�j � �

and likewise for Rq���AE����� �� while

������ lim
q��

sup
��
�
�qc

jRq���CE����� �� � rCE��
�
��q�j � �

Moreover� the estimators ��E���� and ��AE���� are asymptotically equivalent in the sense

that

������ lim
q��

sup
��
�
�qc

q��E�j��E����� ��AE����j
� � ��

PROOF� Let f�q 
 q � �g be any sequence of positive numbers such that ��q�q � a�

where a is 	nite� Let f�q � Rqg be any sequence such that j�qj � �q� To prove ������

it su�ces to show that

������ lim
q��

Rq���E��q�� �q� � rE�a��

�



Let Xq be a random q�vector with N��q� I� distribution� As q���

������ jXqj
��q� � � a in probability

and therefore� by �������

������ q���qjXqjAq��qjXqj�� a in probability�

Limit ������ now follows from ������ in Theorem ����

Similar reasoning handles the risks of ��AE���� and ��CE�����

Let

������ Cq � q�����E � �q�
����AE � �q�

and observe that

������ q��E�q j��E � ��AEj
� � Rq���E� �q� �Rq���AE � �q�� �E�q�Cq��

From ������ and ������� Cq � a��� � a� in probability� Hence

������ lim inf
q��

E�q�Cq� � rE�a��

On the other hand� by Cauchy�Schwarz and ������ and its counterpart for ��AE�����

����
� lim sup
q��

Eq�Cq� � rE�a��

Conclusion ������ now follows from ������ and these considerations�

���� Geometry of the asymptotics� Figure �� which is suggested by the 	gures

in Stein ���
�� and Brandwein and Strawderman ������� exhibits the geometry of

the limits in Theorem ���� Under the triangular array asymptotics used to prove

the theorem� the following relations are very nearly true with high probability when

dimension q is large


������ jq�����qj
� � a� jq����X � q�����qj

� � �� jq����Xj� � � � a�

Consequently� the large triangle in Figure � is nearly right�angled� with

������ cos��
� � a��� � a��

The circle in Figure � represents the parameter space of the 	xed�length submodel in

which jq�����qj� � a�

As was noted in ������ orthogonally equivariant estimators lie along the vector X�

The scaled equivariant estimator q������ that minimizes the loss jq�������q�����j� is the

orthogonal projection of q����� onto X� For large q� the minimizing �� approximately

satis	es

������ q������ � jq�����qj cos�
��� � �a��� � a��q����X

�



with high probability� Algebraically� q������ coincides asymptotically with q������AE�

On the other hand� since minimizing loss also minimizes risk� q������ coincides asymp�

totically with q������E�

Thus� from the geometry�

������ q��j��E � �j� � q��j��AE � �j� � a sin��
� � rE�a�

is very nearly true with high probability for large q� This conclusion agrees with limit

������ in Theorem ���� Applying Pythagoras� theorem to the smallest right�angled

triangle in Figure � yields the asymptotic approximation

������ q��j��CE � �j� � rE�a� � �a���� a��� cos�
��� � rCE�a�

in agreement with limit �������

�Figure � goes here�

�� The Full Model�

In the full N��� I� model� with � � Rq� we can pursue an adaptive strategy for

estimating �
 	rst devise a good estimator �� of j�j and then form

�����

��E���� � ��Aq���jXj���

��AE���� � �����jXj���

��CE���� � �����

When ��� is taken to be jXj�� q�� or �jXj�� q����� then �AE���� becomes the Stein

estimator ��S or the positive�part Stein estimator ��PS � respectively� The proper choice

of �� and the performance of the estimators ����� for � are the main themes of this

section�


��� Estimation of j�j�� The following triangular array central limit theorem

suggests good estimators for j�j�


LEMMA ���� Let f�q � Rqg be any sequence such that j�qj��q � a �� as q ���

Then

����� L�q�����jXj� � q � j�qj
��j�q�� N��� � � �a��

The weak convergence in ����� is implied by the algebraic representation

����� jXj� � q � j�qj
� � fjX � �qj

� � qg� ���q�X � �q�

and the Lindeberg�Feller theorem� To apply the latter� note that L�jXjj�qg depends

on �q only through j�qj� Hence� there is no loss of generality in taking each component

of �q to be q����j�qj�

	



The next theorem gives a local asymptotic minimax bound on the mean squared

error of estimators of j�j� in high dimension� The proof is in Section ��

THEOREM ���� In the full N��� I� model� for every �nite a � ��

����� lim
c��

lim inf
q��

inf
��

sup
jj�j��q�aj�q����c

q��E����
� � j�j��� � � � �a�

the in�mum being taken over all estimators ���

The lower bound ����� is sharp in the following sense
 if ��� � jXj� � q � d or

�jXj� � q � d��� where d is a constant� then

����� lim
q��

sup
jj�j��q�aj�q����c

q��E����
� � j�j��� � � � �a

for every 	nite c � �� This assertion is immediate from Lemma ���� In particular�

the uniformly minimum variance unbiased estimator of j�j�� which is ��� � jXj�� q� is

locally asymptotically minimax among all estimators of j�j� as dimension q increases�

The UMVU has the unfortunate property of being negative with positive probability�

An analogous lower bound for estimators of j�j is

���
� lim
c��

lim inf
q��

inf
��

sup
jj�j��q�aj�q����c

E����� j�j�
� � �� � �a����a��

It is attained asymptotically by the estimator

����� �� � �jXj� � q � d�
���
� �

where d is any constant�


��� Estimation of �� We begin by computing the risks of the adaptive estimators

����� when �� is given by ������ Since these adaptive estimators are orthogonally

equivariant� it follows from ����� that

����� Rq���E����� �� � q��E����
�A�

q���jXj� � �j�jAq�j�jjXj���Aq���jXj� � j�j��

����� Rq���AE����� �� � q��E����
�jXj�� � ����j�jjXj��Aq�j�jjXj� � j�j��

������ Rq���CE����� �� � q��E����
� � ���j�jAq�j�jjXj� � j�j���

Formula ����� is also valid for ��� � jXj� � q � d� Thus� it applies to both the Stein

estimator and the positive�part Stein estimator� which arise when d � �� This choice

of d is known to minimize the risk of ��AE�����

The selection of d to minimize the risk of ��E���� is less clear� A numerical study

based on ������ Monte Carlo samples and double�precision arithmetic suggests that�

when q � � and d � ���� or when q � � and d � ���� the estimator ��E���� dominates

�




the positive�part Stein estimator� Figure � exhibits the risk function di�erence com�

puted in the experiment for q � �� We conjecture that� for every q� there exist choices

of d� depending on q� such that ��E���� dominates the positive�part Stein estimator�

Any such improvement in risk must tend to zero as q � �� because of the next

result�

�Figure � goes here�

THEOREM ���� In the full N��� I� model with ��� � �jXj� � q � d��� the following

risk approximations hold for every �nite c � ��

������ lim
q��

sup
j�j��qc

jRq���E����� �� � rE�j�j
��q�j � �

and likewise for Rq���AE����� ��� while

������ lim
q��

sup
j�j��qc

jRq���CE����� ��� rCE��
�
��q�j � ��

Moreover� the adaptive estimators ��E���� and ��AE���� are asymptotically equivalent in

the sense that

������ lim
q��

sup
j�j��qc

q��E�j��E����� ��AE����j
� � ��

The proof of this theorem is similar to that for Theorem ���� relying on an asymp�

totic analysis of the exact risks given in ����� to ������� Equations ������ and ������

indicate that the exact risks are better plotted against j�j��q rather than j�j�� Figure

� displays in this fashion the risk functions of the positive�part Stein estimator when

q � �� �� �� �� �solid curves�� computed from ������ Monte Carlo samples� The dotted

curve in Figure � is the limiting risk function as q � �� given by ������ and �������

The rate of convergence seems quick�

�Figure � goes here�

We turn now to the main result of this section�the asymptotic optimality of
��E���� and ��AE���� as dimension q increases� An estimator �� is said to be ��admissible

on Bq�c� � f� � Rq 
 j�j� � qcg if there does not exist another estimator  � such that

������ Rq� �� �� � Rq���� �� � �

for every � � Bq�c��

THEOREM ���� In the full N��� I� model� for every �nite c � ��

������ lim inf
q��

inf
��

sup
j�j��qc

Rq���� �� � rE�c�

��



the in�mum being taken over all estimators ��� If ��� � �jXj� � q � d�� then for every

�nite c � ��

����
� lim
q��

sup
j�j��qc

Rq���E����� �� � rE�c�

and ��E���� is �
admissible on Bq�c� for all su�ciently large q� The same assertions

hold for ��AE����� in which case ��� � jXj� � q � d also works�

The theorem is proved in Section �� It entails that both the positive�part Stein

estimator and the Stein estimator� as well as the new estimator ��E����� are asymp�

totically minimax and asymptotically ��admissible on large compact balls about the

origin� The estimator X has neither property� because

������ lim
q��

sup
j�j��qc

Rq�X� �� � �

in contrast to ����
�� Similarly� ��CE���� lacks both asymptotic optimality properties�


�
� Estimation of risk� Stein�s formula ������ generates unbiased estimators for

the risks of ��E���� and ��AE���� that are consistent as q � �� Because this approach

requires considerable algebra� at least in the case of ��E����� it seems worth looking

for simpler bootstrap or asymptotic risk estimators� Three such risk estimators are

discussed in what follows�

Let ��I be any orthogonally equivariant estimator of �� with risk

������ Rq���I � �� � rq�j�j
���

We say that ��I is regular if� for every sequence f�q � Rqg such that j�qj��q � a as q

increases� we have

������ lim
q��

rq�j�qj
�� � r�a�

for some function r that does not depend on the sequence f�qg� By Theorem ����

the estimators ��CE����� ��E���� and ��AE���� are each regular in this sense� the function

r being respectively rCE� rE and rE�

The estimator ��CE����� de	ned by ������ and ����� is just

������ ��CE���� � ��� �q � d��jXj��
���
� X�

As estimators of the risk Rq���I � ��� let us consider the parametric bootstrap estimator

������ �RB � rq�j��CE����j
��

and the asymptotic estimator

������ �RA � r�j��CE����j
��q��

��



Both �RB and �RA are always non�negative� a property not intrinsic to Stein�s unbiased

estimator of risk�

THEOREM ���� Suppose that ��I is a regular orthogonally equivariant estimator of ��

Then

������ lim
q��

sup
j�j��qc

P��j �RB �Rq���I � ��j � �� � �

for every � � � and every �nite c � �� If r is a continuous function� then the same

limit also holds for �RA�

PROOF� The argument by contradiction for ������ rests on the following fact
 the

convergence j�qj��q � a implies that

������ j��CE����j
��q � ����q � a

in probability� because of Lemma ���� Consequently� by the regularity of ��I �

������ �RB � r�a�

in probability� If r is continuous� then also

����
� �RA � r�a�

in probability� Since Rq���I � �q�� r�a� by regularity� the theorem follows�

The calculation of �RB and �RA is straightforward in the case of the estimators
��E���� and ��AE����� On the one hand� it follows from ������ and Theorem ��� that

������ �RA � j��CEj
���q � j��CEj

��

for ��E���� or ��AE����� On the other hand� letX� be a random q�vector whose conditional

distribution given X is N���CE����� I�� Let E� denote conditional expectation with

respect to this distribution and let ��I stand for the bootstrap recalculation ��I�X���

Then

������ �RB � q��E�j��I �
��I j

�

for the regular orthogonally equivariant estimator ��I � In the case of ��E���� or ��AE�����

representation ������ provides the basis for a simple Monte Carlo approximation to
�RB�

The proof of Theorem ��� makes it clear why resampling from the N���E����� I� or

N���AE����� I� or N�X� I� distribution does not give consistent bootstrap estimators of

the risk Rq���I � ��� The di�culty is that j�qj��q� a implies that

������

j��E����j
��q� a���� � a�

j��AE����j
��q� a���� � a�

jXj��q� � � a

��



in probability� None of these limits has the value a that is required for consistency

of the corresponding bootstrap risks� As is illustrated in Figure �� both ��E���� and
��AE���� are too short while X is too long� The length of ��CE is just right�

A possible drawback to the risk estimator �RA and �RB is non�negligible bias when

q is small� To address the question of reducing bias� let

������ bq�j�j
�� � E�

�RA �Rq���I � ��

and de	ne the bias
adjusted risk estimator to be

������ �RBA � �RA � bq�j��CE����j
���

The second term on the right�side of ������ is a bootstrap estimator for the bias of
�RA� Let

������ R�
A � r�j��I j

��q�

denote the asymptotic risk estimate recalculated on the bootstrap sample X�� Then

������ �RBA � �RB � �RA � E� �R�
A�

Thus� �RBA can be viewed as a modi	cation of either �RA or of �RB� A Monte Carlo

algorithm for approximating �RBA follows immediately from the representation �������

The e�ectiveness of the bias adjustment may be assessed by considering a special

case
 estimating the risk of the Stein estimator ��S � In this instance�

������

�RA � j��CE j
���q � j��CEj

��

�RB � � �E�

�
�q � ����q

jX�j�

�
�RBA � �RB � �RA � E��j��CEj

���q � j��CE j
����

On the other hand� Stein�s unbiased estimator for the risk of ��S is just

������ �RU � ��
�q � ����q

jXj�
�

Taylor expansions based on ����� show that the biases of �RA and �RB are O�q��� while

the bias of �RBA is O�q���� All four estimators are consistent for the risk of ��S and

di�er only by terms of order Op�q����

More precisely� suppose that j�qj��q � a as q increases� Then� by ������ ����� and

Taylor expansion�

����
� Rq���S � �q� � rE�j�qj
��q� � q��rE���j�qj

��q� �O�q����

where rE is given by ������ and

������ rE���t� � �� � t������� � t�� � �t���

��



The function rE���t� is positive for every non�negative t� in agreement with Figure ��

Moreover�

������ �RB � rE�j��CE j
��q� � q��rE���j��CEj

��q� �Op�q
����

From ������ and ������

������ E�q
�RA � rE�j�qj

��q�� q��rE���j�qj
��q� �O�q����

where

������ rE���t� � �� � t������ d� �� � d�t��

When d � �� rE�� is positive for every positive t� On the other hand� from �������

����
� and ������

������ E�q
�RB � Rq���S � �q�� q��rE���j�qj

��q� �O�q����

Thus

������
Bias� �RA� �q� � �q���rE���j�qj

��q� � rE���j�qj
��q�� �O�q���

Bias� �RB� �q� � �q��rE���j�qj
��q� �O�q���

The extra term in the bias of �RA re!ects the amount by which the asymptotic risk

rE�j�qj��q� understates the actual risk�

From �������

������ E�� �R�
A� � �RA � q��rE���j��CEj

��q� �Op�q
����

Combining ������ and ������ with expression ������ for �RBA establishes

������ Bias� �RBA� �q� � O�q����

A numerical example� Measurements of thickness were made on four samples of

green "one�inch# redwood boards produced at a lumber mill in northern California�

Each sample of boards was the outcome of a di�erent sequence of sawing operations�

The data was gathered as part of a study on how resawing errors accumulate in the

cutting of a log into boards� The measured average thicknesses for the four samples

were� in inches�

������ X � ������ ����� ����� ������

Previous data indicated that the components of X could be treated as realizations of

independent normal random variables having di�erent means but a common variance

� � � �������� The target thickness for the boards in the four samples was ���� inch�

Taking this target thickness as shrinkage point and rescaling appropriately for

the variance yields the estimated mean thicknesses

����
� ��S � ������� ������ ������ �������

��



Set d � � in the de	nition ������ of ��CE and consider the normalized risk ���Rq���S � ���

The asymptotic and bootstrap risk estimates associated with ����
� are then

������ �RA � �������� �RB � �������� �RBA � �������

while Stein�s unbiased risk estimate is

������ �RU � ��������

These numbers agree qualitatively with the preceding asymptotic theory in ������

and ������� As expected� �RA shows a substantial downward bias� �RB shows a smaller

downward bias� and the adjusted bootstrap estimator �RBA is the closest in value to

the unbiased risk estimate �RU �

�� Proofs�

PROOF OF THEOREM ���� To simplify notation� let

����� Sq���� �� � q��Eq���
� � j�j���� �� � � � �a�

Suppose that the theorem is false� Then there exists � � � such that

����� lim inf
q��

inf
��

sup
jj�j��q�aj�q����c

Sq���� �� � �� � �

for every c � �� Fix c� By going to a subsequence� we may assume without loss of

generality that

����� inf
��

sup
jj�j��q�aj�q����c

Sq���� �� � �� � ���

for every q� Hence� there exists an estimator sequence f��qg such that

����� Sq���q� �q� � �� � ���� q � ��

for every �q such that jj�qj��q � aj � q����c�

For each q� the estimation problem in ����� is invariant under the orthogonal group

on Rq� The induced group on the decision space consists solely of the identity map�

By the Hunt�Stein theorem and ������ there exist orthogonally equivariant estimators

f��I�qg such that

����� Sq���I�q� �q� � �� � ���� q � ��

for every �q such that jj�qj��q � aj � q����c� Moreover

���
� ���I�q � qgq�jXj
��

for some function gq� that is� ��I�q depends on X only through jXj��

��



For any jhj � c� take �q such that j�qj��q � a� q����h� Let

����� Wq � q��������jXj� � q � j�qj
���

Then

�����
Sq���I�q� �q� � E�qfq

����gq�jXj
��� a�� hg�

�

Z
fq���� gq�u�� a�� hg�����q��u� h����du

where �q is the density of Wq and

�����  gq�u� � gq�q
���u� qa� a��

Let w�x� � x� 
 A� where A � � is 	nite� By Lemma ���� the local central limit

theorem� and ������

������
Sq���I�q� �q� �

Z
wfq���� gq�u�� a�� hg����q��u� h����du

� Efw�Vq � h�������U � h�������U���g� o���

where U has the standard normal distribution with density � and Vq � q���� gq�U��a��

By going to a subsequence� we may assume that the f�Vq� U�g converge weakly� as

random elements of �Rq 	R� to �V�U�� Hence� by Fatou�s lemma�

������

lim inf
q��

Sq���I�q� �q� � Efw�V � h�������U � h�������U���g

�

Z
E�w�V � h�jU � u�������u� h����du

�

Z Z
w�v � h�K�dv� u�������u� h����du

where K�dv� u� is the probability element of the conditional distribution of V given

U � u�

Let the constant A in the de	nition of u tend to in	nity� Inequalities ����� and

������ then yield

������

Z Z
jv � hj�K�dv� u�������u� h����du � �� � ���

for every jhj � c� Since the choice of c � � was arbitrary� ������ contradicts the

classical minimax bound for randomized estimators of h in the N�h� ��I� model under

squared error loss�

PROOF OF THEOREM ���� The estimation problem is invariant under the

orthogonal group� By the Hunt�Stein theorem�

������ inf
��

sup
j�j��qc

Rq���� �� � inf
��I

sup
j�j��qc

Rq���I � ��

��



the in	mum on the right side being taken only over orthogonally equivariant estima�

tors ��I � By Theorem ����

������ inf
��I

sup
j�j��qc

Rq���I � �� � inf
��I

sup
j�j��qc

Rq���I � �� � sup
j�j��qc

Rq���E�q
���c����� ���

In view of Theorem ���� equation ������� the right side of ������ converges to rE�c�

as q��� proving �������

Conclusion ����
� is immediate from Theorem ����

Suppose ��E���� is not ��admissible on Bq�c� for all su�ciently large q� Then there

exists a sequence fqjg tending to in	nity and estimators f �qjg such that

������ Rqj� �qj � �� � Rqj���E����� �� � �� j � �

for every � � Bqj�c�� In view of ����
��

����
� lim inf
q��

sup
��Bqj	c


Rqj�
 �qj � �� � rE�c�� �

contradicting �������

The last claim in Theorem ��� now follows from Theorem ����

��
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