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Abstract. Let P be a probability distribution on R?. A detailed study of the breakdown
properties of two M-functionals of scatter, P+ X(P) and P — X(P & P), is given. Here
Y(+) denotes Tyler’s (1987) M-functional of scatter, taking values in the set of symmetric,
positive definite ¢ X ¢ matrices. It assumes zero as a given center of the underlying distri-
butions. The second functional avoids this assumption by operating on the symmetrized
distribution P & P := L(x — y) with independent random vectors x,y ~ P. Let P be

smooth in the sense of assigning probability zero to hyperplanes. Then:

(1) The (contamination) breakdown point of P — X(P) equals 1/q.

(2) The breakdown point of P — X(P & P) equals 1 — /1 —1/q € 11/(2¢), 1/¢][.

(3) If we restrict attention to “tight contamination”, then the breakdown point of P
S(P O P) equals \/1/q > 1/q.

In all three cases the sources of breakdown are investigated. It turns out that breakdown
is only caused by rather special contaminating distributions that are concentrated near

low-dimensional subspaces.
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functional, scatter matrix, symmetrization
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1 Introduction

Let P, be nondegenerate probability distributions on R?. The covariance matrix of P,

[ (@ = n(P)) @ = w(P) T Plda) with u(P) = [ @ Pida),

is known to be very sensitive to small perturbations in P. Various robust surrogates for
the covariance functional have been proposed. In the present paper we investigate the

breakdown properties of two particular M-functionals of scatter.

The first one is Tyler’s (1987) M-functional ¥(P), which is defined as follows: Let M
be the set of symmetric matrices in R?%?, and let M be the set of all positive definite

M € M. For M € Mt let

T p—— M P T2
0T PRIN{0}) Jraoy 2 TM

P(dz),

which is a nonnegative definite matrix in M with trace ¢. If there is a unique matrix
M € MT with
G(P,M) = I and trace(M) = g,

then we define X (P) := M. Otherwise we define arbitrarily ¥(P) := 0. In what follows we

utilize the following two properties of ¥; see Kent and Tyler (1988) and Duembgen (1996).

Proposition 1.1 Let V be the set of linear subspaces V of R? with 1 < dim(V) < g¢.
Suppose that P{0} = 0. Then X(P) € M if, and only if,

dim (V)

(1.1) P(V) < .

forall V €V.

If G(P,M) = I for some matrix M € M™T but P(V) > dim(V)/q for some space V € V,
then there is a second space W € V such that VW = {0} and P(V UW) = 1.

Proposition 1.2 Suppose that P{0} = 0 and X(P) € M*. Then

(1.2) Q) = S(P) asQ — P.



Here and throughout the sequel the space of probability measures on R? is equipped

with the topology of weak convergence.

The definition of ¥(P) assumes zero as a given and known “center” of P. The second

M-functional investigated here is ¥(P & P), where generally
Po @ = L(x—y) withindependent random vectors x ~ Py ~ ().

This modified functional, proposed in Duembgen (1996), avoids assumptions on or esti-

mation of location parameters.

A quantity describing the robustness of the functional P — X(P) is its contamination
breakdown point (cf. Huber 1981). This is defined to be the supremum e,(P) of all
€ € 10, 1[ such that

M (E(Q))
Y(Q) € MT forall Q € U(P,e) and QESLI{I(%E) 2(Z(Q)) < o

Here U (P, ¢) denotes the contamination neighborhood
U(Pe) = {(1 —¢)P + ¢H : H some distribution on Rq}

of P, and Ay (M) > Ag(M) > --- > X, (M) denote the ordered eigenvalues of M € M. If

P is “smooth” in the sense that
(1.3) P(H) = 0 for any hyperplane H C RY,

then it turns out that

This result is known to several people, though it never appeared in a journal. Our purpose
is not only to give a general expression for €, (P) and a precise proof but also to investigate
the case € = €,(P) in more detail. Namely, in this case it turns out that for any sequence
of distributions Qr = (1 — €) P + €Hy, € U(P, €) with 3(Q%) € MT, the condition numbers
(A1/2q)(E(Qg)) tend to infinity if, and only if, the distributions Hy are concentrated near
suitable linear subspaces of R?. In accordance with Tyler (1986) we call this “coplanar

contamination”.



Analogous considerations are made for P — X(P & P). The breakdown point €3(P)
of this functional is defined as €,(P) with ¥(Q & Q) in place of ¥(Q). In case of smooth
distributions P,

1 11
P = 1-1-= € |- -|.
q 29 ¢
In case of € = €2(P), the conditions on a sequence of distributions Q; = (1 —€) P+ ¢Hy, €

U(P, ¢) in order to achieve unbounded condition numbers (A1/A;)(X(Qr © Qk)) are even

more restrictive. In particular, a necessary condition is that
lye| —p oo (k—o00) if yr~ Hy.

This observation is important, because coplanar contamination “at infinity” is easier to
detect than arbitrary coplanar contamination. This leads to the question about breakdown

caused by “tight” contamination. That means, we replace the neighborhood U (P, €) with

UPe|A) = {(1 —¢)P + ¢H : H some distribution on R?

such that H{z : |z| > r} < A(r) for all r > 0}7

where A is some continuous function from [0, oo] into [0, 1] with A(0) = 1 and A(oo) = 0.
In case of P — X(P) replacing U (P, ¢) with U (P, €| A) does not alter the breakdown point.
However, let ¢ (P | A) be defined as ¢ (P) with (P, ¢| A) in place of (P, ¢). Then it turns
out that for smooth P,

e(PIA) = /-
All proofs are deferred to Section 4.

2 The breakdown properties of P — X(P)

Condition (1.1) is equivalent to §(P) > 0, where

_|_

o (dim(V) /g = P(V) 1
pap) = rv“é%( = PV) ) e |o.2]

with 0/0 := 0. That this minimum is well-defined follows from Lemma 4.1 in Section 4.

The set of all V' € V such that [dim(V)/q — P(V)]T/(1 — P(V)) equals 3(P) is denoted



by V(P). Another useful abbreviation is
_ 1 ~1 ~1 .
P = §(£(|x| x(x # 0) —|—,C(—|x| x‘x # 0)) with x ~ P.
This is a symmetric distribution on the unit sphere S7~1 of R?. Note that G(P,-) =

G(I1P, ) and thus X(P) = X(IIP).

Theorem 2.1 Suppose that X(P) € M*t. Let P = P{0}dy + (1 — P{0})P,, where &,

denotes Dirac measure in ¢ € R? and P, is a distribution on R?\ {0}. Then

(1 = P{0})5(F)

in general,
= P{O}A(P,)
e(P) = sP) Py =o,
1 . . .
- if P is smooth in the sense of (1.3).
q

Suppose that ¢ = ¢,(P). For any Q = (1 — )P 4 ¢H in U(P,¢), one has X(Q) = 0
if, and only if, H{0} = 0 and H(V) = 1 for some V € V(F,). Moreover, for k > 1 let
Qr = (1—€)P+eHy € U(P,¢€) such that X(Qr) € M. Then limy_,o (A1/Ay)(2(Qr)) = 00

if, and only if, the following two conditions are satisfied:

(2.1) lim Hi{0} = 0;
k—oo
(2.2) any cluster point H of (I1Hy)y is supported by some V € V(F,).

An interesting fact is that the M-estimators introduced by Maronna (1976) have break-
down point at most 1/(¢+ 1); cf. Stahel (1981) or Tyler (1986).



3 The breakdown properties of P — X (P < P)

Theorem 3.1 Suppose that (P & P) € M*. Then

1- L - BUI(P S P)) in general
1-Ps P{O}p(II(Pe P)) ’
e(P) = 1—\/1— (P& P)) if P has no atoms,
1 . . .
1—4/1—- if P is smooth in the sense of (1.3).
q

Suppose that € = ¢5(P). Then %(Q & Q) € MT for any Q in U(P,¢€). Moreover, for
k>1let Qp = (1 —€¢) P+ cHy € U(P,¢). Then limg(A1/A)(E(Qr & Qr)) = oo if, and

only if, the following three conditions are satisfied:

(3.1) lim max Hp{z} = 0;

k—oco z€RY
(3.2) lye| —p oo (k—o00) whereyy ~ Hg;

for any cluster point (ﬁl, ﬁz) of ((HHk7 (Hp & Hk ))) thereis

(3.3) F
a space V € V(II(P & P)) such that Hl( )= Hy(V) =

This theorem shows that symmetrization lowers the breakdown point of the M-func-
tional. However, the type of contamination required in order to cause breakdown of the
functional P +— X (P & P) is far more special than in case of P +— X(P). The quantity
B(II(P & P)) difficult to compute. However, for V' € V,

PO P(V)— PO P{0}

HrPerv) = 1—- P& P{o}
< PoP(V)
< max P(z+V),
so that N
dim(V)/q¢— P(z+ V)
BIPESP)) 2 B7(F) = xefr{%i,%ev ( 1—qP(ac—|—V) )

Here is the result on tight contamination mentioned in the introduction.



Theorem 3.2 Suppose that (P © P) € M*. Then

> G5(P) in general,
e2(P|A)
* 1
= - if P is smooth in the sense of (1.3).
q

Suppose that P satisfies (1.3). Then X(Q5Q) = 0forQ) = (1—¢)P+ecH € U(P,¢|A) if,
and only if, H has no atoms and H is supported by some one-dimensional affine subspace
of RY. Similarly, for k > 1 let Q) = (1—¢)P+eHy, € U(P, ¢) such that (Qr & Q) € MT.
Then limpg_yoo (A1/Ag) (E(Qr © Qr)) = oo if, and only if, the following two conditions are

satisfied:
A4 li H = 0;
4 A g ther = 0
(3.5) any cluster point of (II(Hy & Hy)) is supported

by some V € V with dim(V) = 1.

One can easily show that Condition (3.5) implies that any cluster point of (Hy)y is

supported by some one-dimensional affine subspace of R?.

4 Proofs

Lemma 4.1 For 0 < d < ¢ let V(d) be the set of all d-dimensional linear subspaces of
RY. Then both

Jogx QV) and - max QE+V)

are well-defined and upper semicontinuous in ().

Proof of Lemma 4.1. Let (Qx)x be any sequence of distributions converging weakly

to some Q. Let V; € V(d) and 2z, € R such that either

(4.1) zp, = 0 and Qr(Vi) > sup Qp(V) -k
Vev(d)

or

(4.2) zp € Vit and  Qp(xr+ Vi) > sup Qrlz+ V) — kL

zeR4,VEV(d)



Let M} € M describe the orthogonal projection from R? onto Vj. After replacing (Qr)
with a subsequence if necessary, one may assume that (My); converges to some projection

matrix M, and we define V := MR?. Further one may assume that
lim |zg] = oo or lim z; = 2 € R%.
k—oo k—o0

Since z 4+ Vi C {y : |y| > |zk|} one easily deduces from limy Q; = @ and limy |z = oo
that limg Qg (2 + Vi) = 0. If limy, 2 = @, then for any R > 0,

: : +
limsup Qyzx + Vi) < lim. /(1 — Rly = Myy — ai[) " Qu(dy)

k—oo
= /(1—R|y—My—wl)+Q(dy)
= Q+V) (R— o).

These considerations show that supyey g Q(V) and sup,cravey) @z + V) are upper
semicontinuous in (). In the special case (Qr)r = @ one realizes that both suprema are

attained. O

Propositions 1.1 and 1.2 entail the following two facts:

Lemma 4.2 (a) Let Q be a familiy of nondegenerate distributions on R? such that
Y(Q) € MT for all Q@ € Q and let {11Q) : Q € Q} be closed. Then

A
sup /\—I(E(Q)) < o0.
QeEQ g

(b) Let (Qk)r be a sequence of nondegenerate distributions on R? such that ¥(Qy) €
M for all k and

If p = oo, then Q(V) > dim(V)/q for some V € V. If p < oo but Q(V) > dim(V)/q
for some space V € V, then there is a second space W € V such that V N W = {0} and

QVUW)=1.



Proof of Lemma 4.2. As for part (a), Prohorov’s Theorem implies that {I1Q) : Q) €
Q} is even compact. Since X(Q) = (I1Q) € M™ for all Q € Q, Proposition 1.2 yields

In part (b) suppose first that Q(V) < dim(V)/q for all V € V. Then %(Q) € M* by

Proposition 1.1, and X(Q) = limj X(Qy) by Proposition 1.2, whence p = (A;1/A;)(2(Q)) <

Q.

Now suppose that p < co. After replacing (Qx)r with a subsequence if necessary, one

may assume that limj X(Qz) = M € M*. But then
I = lim G(IQwX(QK) = G(Q M),

because G-, (Qy)) converges uniformly to G(-, M) as k — co. Thus if Q(V) > dim(V)/q
for some V € V, then the second part of Proposition 1.1 says that V. NW = {0} and

QVUW) =1 for some W € V. 0

Proof of Theorem 2.1. Note first that {HQ :Q € U(P, e)} is equal to the closed
set
{(1 —6)lIP 4+ e, H : H any symmetric distribution on Sq_l}7

where
€

1—(1—-¢P{0}
Forif Q = (1 —€)P+cH € U(P,¢), then

€ =

(1-6)(1— P{OPIIP + (1 — H{O})IIH
(1= e)(1 — P{0}) + e(1 — H{0})

nQ = = (1-)IP+{H

for some symmetric distribution H on S?7! and

/ (1 - H{0})

€ = < €.

(1 =€) (1 = P{0}) +¢(1 - H{0})

Further,
HQV) < (1—-e)IIP(V)+e, = (1—€)P(V)+e,



with equality if, and only if, H{0} = 0 and H(V) = 1. This is strictly smaller than

dim(V')/q if, and only if,
dim (V) /q = Po(V)
1—-P,(V)
Hence we can concude the following: If ¢, < 3(P,) then X(-) € M™T on U(P,¢), and
Lemma 4.2 (a) yields that (A;/A;)(2(:)) is bounded on U(P,¢). If ¢, = p(F,), then

Y(Q)=0for Q= (1—-€¢)P+ el € U(P,¢) if, and only if, H{0} = 0 and H (V) = 1 for

€o

some V € V(P,). Since ¢, is strictly increasing in ¢, inverting the equation ¢, = 3(F,)

yields
(1 - P{0})B(1)
1= P{0}B(F)

Let € = ¢, and Qp = (1 —¢)P+eHy, € U(P, ¢) as stated in the theorem. After replacing

e(P) =

(Qr)r with a subsequence if necessary, one may assume that limy Hx{0} = « € [0,1],
limy, [TH), = H (where 11§, may be defined arbitrarily) and limg(Ay/A)(2(Q)) = p €
[1,00]. This implies that

(1-—¢)(1—P{OHIIP+¢(l-a)H
(1—¢)(1 = P{0})+¢(l-a)
Since 3(P) € MT, IP(VUW) < 1 for arbitrary V,W € V with VN W = {0}. The limit

k—oc0

distribution @ inherits this property. Thus one can apply Lemma 4.2 (b) and conclude
that p = oo if, and only if| @(V) > dim(V')/q for some V € V. But for any V € V,

~ (1—e)(1 = P{OHP,(V)+e(l—a)H(V)
@) (1—¢)(1— P{0})+¢(1 —a)
(1—e)(1—=P{O}HP,(V)+e(l—a)
- (1—¢)(1— P{0})+¢(1 —a)
(1—€e)(1 = P{O}H)P,(V)+¢
- (1—¢)(1—P{0})+¢
= (I1-e)P,(V)+e
dim(V)/q = B(F)
1- ﬁ(Po)

S (1 - 60)

+ €
= dim(V)/q

with equality if, and only if, H(V) =1, a =0 and V € V(P,). O

The following preliminary result for the proof of Theorems 3.1 and 3.2 describes the

possible limits of a sequence (II(P & Hg))g.

10



Proposition 4.3 Let (H})r>1 be a sequence of distributions on RY. A pair (a,B) is
cluster point for the sequence ((P o Hi {0}, 1I(P o Hk)))k>1 if, and only if, it can be

represented as follows:

a = Z P{z}a,

reRY
and
B+ 3 PLe}((L—mH{x) — ;) Be + (1 n)(1 — P& H{ODI(P S )
E _ r€RY
1- Z P{z}a,
re€R4
with
n = rli_}n(r)lo lilggf Hi{z :|z| > r},

some distribution H on RY,
numbers a,, € [0, (1 — n)H{x}] and

symmetric distributions Eoo and Ex on 8?71,

Proof of Proposition 4.3. We compactify R? via the mapping
o @) = (142 e € U,1),

where U(y,d) and B(y,d) denote, respectively, the open and closed ball around y € R

with radius 4 > 0. Without loss of generality one may assume that
Jlim Hj 0 v~ = D and 5 = D(STH.
—+00

Even if D is concentrated on U(0, 1) the Continuous Mapping Theorem is not applicable
to TI(P © Hy), because the points in X := {w € R? : D{y(x)} > 0} require special
attention. Since
D = lim liminf H §) = lim i HpB(z,§
{0(2)} = lim liminf HU(2,0) = lim im sup Hy (z,0)

for any 2 € X and

n = lim liminf Hy(R?\ B(0,r)) = lim limsup Hp(R?\ U(0,r)),
—+00

rdoo  k rdoo  kyeo

11



one can find numbers 6, 5 > 0 and r; > 0 such that with U, ; := U(z, 6, 1) and Uy, ==

R?\ B(0, r) the following requirements are met:

lim 6,5 = 0 and lim HpU,; = D{¢(2)} forzeX,
k—oo k—o0

lim rp, = oo and lim HyUsyr = 7,

k—oo k—o0

Ups NUy i = 0 for different 2,y € X U {oo}.

After replacing (Hy)r with a suitable subsequence if necessary, one may assume further

that for any z € X,

Jim Hi{e} = a; € [0, D{v(x)}],

lim T1£(x -y \ yi € Ui\ {o}) = By iy~ Hy.

k—oc0

Since limy Hi{z} = 0 whenever D{«(z)} = 0, this implies that

(4.3) Jim. P& H {0} = Y P{z}a,.
reX

Further we write D = nBy, + (1 — n)H o+~ with distributions Beo on S?"! and H on

R?. Now let

_ ] ogllz[l2) if a0,
Jw) = { 0  ife=0,

for some even, continuous function ¢ on S77!, and let x ~ P, y; ~ Hj and y ~ H be

independent. Then, as & — oo,

Ef(x-yr) = EWyr€Usptf(x—yr) +ENyr & Usr} f(X—yi)
= n/gdﬁoo +E1{yr ¢ Us i} f(x—y&) +o(1)

= 0 [9aBe+ Y PEYE Uy € Uni\ ()} (z - y)

reX

+ > Pla} Eyg & Upp UUso i} f(z — y1)
reX

+ EHx ¢ Xyt & Uso s}/ (x = yi) + o(1)
= 0 [gdBe+ 3 P} (D{e@) ) [ gdb,

reX
+(1-n)Y Ple}Ey #2}f(z —y)

reX

12



+ (1= BLx ¢ X} f(x—¥) + o)
= 0 [gaB.+ 3 Pa}(D{v@)} - ) [gdB,

reX
(== Pe (o)) [ganpe i),

Together with (4.3) this shows that (II(P & Hy)) converges weakly to a distribution B

as stated in the proposition. a

Proof of Theorem 3.1. The clue to the proof is a detailed study of the closure of
the set {H(Q@Q) 1Q eU(P, e)} For k > 1let Qr = (1 —¢)P + eHy € U(P, ¢) such that

lim (Qr&Qk) = Q.
k—oo
By compactness arguments one may assume without loss of generality that
lim P& Hk{()} = apH,
k—oo
lim (P& H,) = Bpy,
k—oo
lim Hp &S Hk{()} = agH,
k—oo
lim H(Hk S Hk) = EHH
k—oo

With app := P © P{0} and Bpp := II(P & P) one obtains the representation

@ B (1 — 62)(1 — app)gpp + 26(1 — 6)(1 — apH)EpH + 62(1 — aHH)EHH
N (1—e)(1—app)+2e(1 —€)(1 —apy) + (1 — agp) '

Note first that Q = (1 — ¢/)Bpp + ¢'H for some symmetric distribution H on S~ and

2¢(1 —€)(1 — apy) + (1 — agp)
(1—e)(1—app)+2e(1 —¢)(1 —apy) + (1 —agm)

2¢ — 2 o 1-(1-¢?
(1—e2)(1—app)+2e—€¢2  1—(1—¢€)2app

= €.

€ =

<

Thus {H(Q oQ):QelU(P, e)} is contained in the closed set

{(1 — ¢,)II(P & P) 4 ¢,H : H any symmetric distribution on Sq_l}.

13



Consequently, ¥(Q © Q) € M™ for all Q € U(P,€) with supgey(p,(A1/A) (E(Q © Q))
being finite, provided that €, < S(II(P & P)), which is equivalent to

o 1— B(I(P S P))
¢ < (P)=1- % — PS5 P{O}B(I(P & P))’

Now suppose that e = €2, (P), that means, ¢, = 3(Bpp). Then Q(V) > dim(V)/q for
some V € V if, and only if, apg = agyg = 0, EPH(V) = EHH(V) =1land Ve V(II(P&
P)). These equations cannot hold if Q = I1(Q & Q) for some Q = (1 —¢)P+¢H € U(P,¢).
For then

Bpy(V) = Po H(V) < max Pz +V) < 1,
because otherwise P(z+V) = 1 for some 2 € RY, so that P& P(V) = 1 and (PS5 P) = 0.

The equation aypy = 0 is equivalent to Condition (3.1) and entails that apy = 0 as
well. Moreover, Proposition 4.3 implies that

Bup = B+ (= n) Y PloyH{a)Ba+ (1= n)(1— PO H{ODI(PE H)
reRY

for some distribution H on RY, some number n € [0,1] and symmetric distributions
Ey, y € R7U {oc}, on S?9=1. This representation shows that EPH(V) = 1 for some
V e V(II(P & P)) if, and only if, n =1 and B.., = Bpy = limy [1H}, is concentrated on
V. Together with the requirement By (V) = 1 we end up with Conditions (3.2, 3.3)
about the sequence (Hy). All requirements (3.1, 3.2, 3.3) are satisfied, for instance, by

Hy = L(ky), where y is some random vector whose distribution is concentrated on V' but

has no atoms. Thus €, (P) = €2(P). O

Proof of Theorem 3.2. Let Q; = (1 —€)P+eH, € U(P,¢e| A), and let Q, app, api,
agg, Epp7 EPH, EHH be as in the proof of Theorem 3.1. Since the sequence (Hy)y is
tight by definition of (P, €| A), Proposition 4.3 yields that apy = >, crs P{7}a, and

B Teera PL}(H{z} — a0)Bo + (- P& H{OHI(P S H)
e 1= Y ens Pla}as

for some distribution H on RY, numbers a, € [0, H{z}] and symmetric distributions B,,

y € R7U {00}, on S771. Thus for any V € V,

(= ar)Brn(V) < Y Ple}(H{z} —a) + (1 - P& HODI(PE H)(V)
re€R4

14



= PSS H(V) — apH,

< _

< max Pz +V)—apny,
(1—-app)Bpp(V) = PO P(V)-app,

< —
< max P(z+V)—app,

whence
~ (1 — ) maxzers P(x + V) + e — (1 - €)%app — 2¢(1 — €)apy — appy

Q(V) 1— (1—g)zaPP—QG(l—G)aPH_€2aHH

< (1-é*)max P(z+ V) + .
rz€RY

This shows that
e2(PIA) < £/B3(P).

In case of P being smooth,

~ B 62(1—aHH)§HH(V)
Q) = 1— e+ e&(1—apn) < &

with equality if, and only if, agg = 0 and EHH(V) =1. O
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