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Abstract

This work provides a contribution to the numerical problem of electromagnetic wave diffrac-
tion. For this purpose the widely used rigorous coupled-ave analysis (RCWA) is extended to
an efficient treatment of incident light beyond the mere plane-wave input. This is essential
for modern optical systems with laser or LED sources, which emit finite beams with var-
ious profiles. It thereby enables the rigorous analysis of focused light in structured media
like in optical storage technology or in optical waveguide coupling. The new extension also
dissolves the RCWA’s restriction of handling purely linear polarized light sources. Due to a
superior truncation scheme the new method inherently conserves energy during the modal
propagation even within absorbing grating structures and despite the necessary numerical
truncation.

Another part of this work addresses the exact calculation of electromagnetic near fields and
local absorption. The results are used to develop a photodetector that is fully compatible
with the SOI-CMOS process and does not depend on typical optically active III-V materials.
This enables the direct integration of an active, optical component in the manufacturing pro-
cess of conventional electronic chips and might allow the development of new cost-effective
optoelectronic hybrid components in the future, which combine the benefits of both tech-
nologies.

Diese Arbeit leistet einen Beitrag zur numerischen Berechnung von Beugungsproblemen. Zu
diesem Zweck wird die weit verbreitete Rigorous Coupled Wave Analysis (RCWA) um die
Moéglichkeit einer effizienten Behandlung von Anregungslicht erweitert, das von der typis-
cherweise angenommenen ebenen Welle abweicht. Dies spielt insbesondere fiir moderne op-
tische Systeme eine wichtige Rolle, bei denen als Lichtquellen Laser und LEDs zum Einsatz
kommen, die Wellenfelder mit endlicher Ausdehnung und unterschiedlichen Strahlprofilen
aussenden. Auf diese Weise wird unter anderem die rigorose Behandlung von fokussierten
Lichtfeldern in strukturierten Medien erméglicht, was Anwendungen der RCWA im Bere-
ich der optischer Speichertechnik oder der Wellenleiterkoppelung erlaubt. Durch die neue
Erweiterung wird auflerdem die Beschréankung der RCWA auf eine rein lineare Polarisation
aufgehoben. Indem das Verfahren eine Inkonsistenz in der Trunkierung der numerischen
Berechnung auflost, ist es dem Standardverfahren in Bezug auf die Energieerhaltung in ab-
sorbierenden Medien sogar Uberlegen.

Ein weiterer Teil der Arbeit beschéftigt sich mit der exakten Berechnung von Nahfeldern,
sowie der lokalen Absorption. Die Ergebnisse flielen in die Entwicklung eines Photodetektors
ein, der vollstdndig kompatibel zum SOI-CMOS Prozess ist, also auf den Einsatz der typ-
ischen optisch aktiven III-V-Materialien verzichtet. Dies ermdglicht die direkte Integration
eines aktiven optischen Elementes in den Herstellungsprozess konventioneller elektronischer
Chips und koénnte somit zur Entwicklung kostengiinstiger, optoelektronischer Hybridkompo-
nenten fithren, welche die Vorteile beider Technologien vereinen.
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Motivation

Computer simulations have become an essential tool in both science and engineering. They
not only provide a time-saving and cost-efficient alternative for many laboratory experiments,
but can itself enable scientific discoveries and complex technical developments. In this con-
text, today’s simulation techniques assume the function of an experimental setup as well as
any measurement instrument in one virtual environment. This allows a significant increase
in flexibility, development speed and cost-efficiency. Real experiments are still indispensable,
but can be preceded by many virtual iterations. Over the last decades this has changed the
way science works, from physics to medicine and even biology. It has also shaped the techno-
logical development on all scales from construction via machine engineering through to the
rise of the chip technology itself, whose high level of integration would be unthinkable with-
out the constantly evolving performance of computer systems and simulations. Especially
with the advances in nanoscience and nanotechnology physical experiments have become
significantly more sophisticated and expensive.

This is also true for nanooptics. However, with a deep understanding and the rigorous
modeling of the underlying principles of electrodynamics, computer simulation can provide
accurate analyses in apparently continuous measurement series. They even allow the vi-
sualization of parameters that are difficult and in some cases impossible to measure in a
real experiment, like complex field amplitudes or local absorption. In this field, the RCWA
has established itself as one of the most important numerical methods to solve the rigorous
diffraction problem. The method is known for its high reliability and can be applied to a
wide variety of problems. The scope of applications has in fact been successively extended
over the years from one-dimensional optical gratings in plane incidence to conical incidence,
three-dimensional structures, anisotropic media, non-periodic structures and more. And
with every new development the capabilities of computer simulations increase together with
the opportunities of nanooptics itself. This has already enabled many developments based
on optimized diffractive structures from simple one-dimensional optical gratings[79] used as
dispersive elements to complex three-dimensional photonic crystals for sophisticated wave
guidance in next-generation signal-processing devices[54].

A typical, although not fundamental, restriction of the RCWA, so far, is the consideration
of pure plane wave illumination for the diffraction problem. However, real light sources like
lasers and LEDs usually emit finite beams with various profiles. Most optical setups make
use of focused light and even plane waves are often distorted in real experiments. So, there
is an apparent potential for another improvement of the method, which is the extension
to arbitrarily shaped input fields. An efficient implementation of this idea is developed in
chapter 3.



Nanooptics is also a rapidly growing market, but despite its great potential it still struggles to
establish itself in the consumer sector unlike modern electronics, which appear omnipresent.
One important reason is the difficulty to integrate optical technology into the manufactur-
ing process of standard electronics. A solution to this problem would significantly reduce
development and fabrication costs, since a large part of the existing infrastructure could be
reused, and would accelerate the advent of optical nanotechnology. Chapter 4 and 5 inves-
tigate techniques to calculate the exact near fields and local absorption to finally develop a
photodetector as an active optical element that is fully compatible to the SOI-CMOS process
in chapter 6.



Chapter 1

Fundamentals

Maxwell’s equations together with the constitutive equations and the Lorentz force law form
the basis of classical, non-quantum, electrodynamics. They describe the interplay between
electric and magnetic waves and their interaction with charges and currents. They also pro-
vide the mathematical foundation for phenomena of higher abstraction like wave propagation
and the interaction with structured matter. In fact, these fundamental principles can be used
not only to understand, but also to predict all classical electrodynamic phenomena, ranging
from free propagation, reflection and absorption to refraction and diffraction.

However, the descriptive character of these equations is very fundamental. Their solution
for a specific situation is the purpose of diffraction theory and also of the rigorous coupled
wave analysis (RCWA), which is one of several numerical solution approaches and who’s
closer study (cf. Chap. 2) and extension (cf. Chap. 3) is an important part of this
work. The present chapter summarizes the basics of electrodynamics, which are necessary
for the understanding of this work, and introduces some concepts of diffraction theory, which
are used by the RCWA and related methods. The presented derivations are based on the
descriptions by Brenner[14], Born and Wolf[11] and further references, which are provided
in the text. This chapter also provides the basis for the calculation of local absorption (cf.
Chap. 5), which is used in the review of the RCWA'’s conservation of energy and the design
and optimization of a silicon based photodetector (cf. Chap. 6). At the end of this chapter
some alternative approaches for the diffraction problem are given in a brief review.

1.1 Electrodynamic principles

1.1.1 Maxwell’s equations

Initially in 1961, Maxwell[81] published a set of twenty equations, which summarized the
knowledge about electricity and magnetism at that time. He was thereby able to prove the
interconnection between both domains and proposed that light was combination of electric
and magnetic waves influencing each other. Later, Heaviside[46] and concurrently Gibbs[39]
and Hertz[49, 50] condensed the equations into today’s form of only four using vector nota-
tion.
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Their differential form is

1. Ampere’s circuital law VxH=J+ gtD (1.1a)
2. Maxwell-Faraday equation VXxE= —gtB (1.1b)
3. Gauss’s law V-D=p (1.1c)
4. Gauss’s law for magnetism V-B=0 (1.1d)

All of these quantities are functions of position r = (z y z)” in space and time ¢.

The Ampere’s circuital law states that a magnetic field H(r,t) is either generated by an
electric current or by the change of an electric field. In this relationship J denotes the
electric current density and D(r,t) is the electric displacement field'. According to the
Maxwell-Faraday’s law an electric field E(r, ) is induced by a time varying magnetic field
(magnetic induction B(r,t)). The Gauss’s law describes electric charges to be the source
of static electric fields. Here, p is a charge density. Finally, the Gauss’s law for magnetism
states that magnetic fields are source-free, or in other words, there are no magnetic charges,
but dipoles only.

One important property of all Maxwell’s equations is their linearity. Due to the superposition
principle any linear combination of a given solution will lead to another valid solution for
these equations.

1.1.2 Material properties

While electric and magnetic field amplitudes (E and H) are describing external fields, electric
displacement and magnetic induction (D and B) describe the interplay between an exter-
nal field with polarisable and magnetizable matter. The constitutive equations express the
relationship between these quantities:

D = ¢yeE (1.2a)
B = popH (1.2b)

€0 and pg are called electric and magnetic constants or the permittivity and the permeability
of the vacuum. € and p are their correspondent material properties in any other arbitrary
medium. They describe how much the creation of an electric or magnetic field is affected by
the medium.

IThe electric displacement field D, also known as Maxwell’s displacement current, was not part of the
original formulation of the Ampere’s circuital law. It was first added by Maxwell to obtain a form of the law
that is consistent with the continuity equation.
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For linearly responding materials the constitutive equations can also be written as

D =¢ (1—|—X6)E:€0E—|—P (13&)
B = o (1+ xm)H = po(H+M), (1.3b)

where the electric susceptibility x. indicates the degree of polarization to an electric field
and the magnetic susceptibility x,, the magnetization to a magnetic field. The aggregated
quantities on the right hand side are called polarization density P and magnetization M.
The frequency dependency of these quantities is called dispersion.

On the subatomic level, an external electromagnetic field separates negative electrons from
positive atom nuclei, inducing an electric dipole moment p. N dipoles in a unit volume then
form the electric polarization P = Np. However, polarization is not an instantaneous effect,
but obeys causality. Thus, the atomic and molecular processes, which are involved in the
medium’s response to an external electric field, cause damping forces, which lead to a delay
between the electric field E and the polarization P and also to a loss of electromagnetic
energy as absorption. Consequently dispersion is closely related to absorption as described
by the Kramers-Kronig relation[55].

On a macroscopic scale the phase-shift between P and E and therefore between D and E
can be expressed by a complex permittivity ¢, where the imaginary part ¢; represents the
absorptive property of the material:

€ = € + i€ (1.4)

Generally, corresponding processes in magnetic and conducting media can also cause phase
shifts between E and J or B and H, leading to a complex permeability pu.

Another material property is the conductivity o. In all considered cases the external electric
field and the current density obey a linear relationship that can be expressed by the Ohm’s
law

J =oE. (1.5)

However, in Sec. 1.1.3 it is shown, that the electric current density can usually be neglected
for optical frequencies and thus all materials can be fully described by the complex and
position dependent quantities permittivity € (x,y, z) and permeabilities pu (z,y, 2).

Remark: In anisotropic media the material properties €, p and o are potentially direction
dependent, which can be expressed by a tensor notation. However, this work concentrates
on isotropic media only and hence a scalar description is sufficient.
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1.1.3 Harmonic fields

Monochromatic fields with a sinusoidally time dependency are called harmonic. They arise
from harmoniously oscillating sources and form in linear media once they have reached a
steady state. Mathematically this temporal dependency can be described by a single angular
frequency w using the complex exponential notation based on Euler’s formula:

E(r,t) = E(r)e ™ (1.6)

Throughout this work electromagnetic fields are all considered monochromatic and harmonic,
assuming a steady state in a linear medium. However, by applying the inverse Fourier
transform a general solution of Maxwell’s equations can be built by a (coherent) superposition
of multiple single-frequency solutions using the inverse Fourier transform:

1 oo .
E(r,t) = o /_ £ (r, w) e du (1.7)

Harmonic fields considerably simplify Maxwell’s equation since the time derivative 9/0t can
simply be replaced by —iw, leading to

V xH=0E —iwD (1.8a)
V x E = iwB (1.8b)
V-D=p (1.8¢)
V.B=0. (1.8d)

Thus, without loss of generality a fixed time like ¢ = 0 can be chosen to remove any time
dependencies for all following considerations.



1.1. ELECTRODYNAMIC PRINCIPLES

1.1.4 Wave equations

The combination of the first two Maxwell equations 1.8a and 1.8b and a substitution of
the D- and B-fields according to the constitutive equations 1.2a and 1.2b results in the
inhomogeneous wave equations. For harmonic electric and magnetic fields in charge-free
media (p = 0) they can be written as

V2E + ppuoeow? <e + iejw) E+V(In(p)x(VXE)+V(EVIn(e) =0 (1.9a)
and
V2H + eeopuow’H +V(n(e)) x (VxH) +V(HVIn(u)) = 0. (1.9b)

These two differential equations represent a general formulation for the propagation of light
in any linear and charge-free medium.

With Maxwell’s addition the Ampere’s circuital law (cf. Eqgs. 1.1a and 1.8a) predicts two
sources of the magnetic field: the electric current and the displacement current. Since the
displacement current density 0D /0t = eegOE/Ot is proportional to the time derivative of
the electric field, they are always out of phase. This can again be expressed by a complex
permittivity € + zeoiw However, since even for metals the conductivity ¢ is only in the order
of magnitude of 106, its influence can usually be neglected for optical frequencies.
Inhomogeneities in the medium manifest in the gradient terms of Egs. 1.9a and 1.9b and
cause a coupling of the different field components. This makes an analytical solution difficult
and practically impossible in the general case and gave rise to a large number of numerical
approaches. A further discussion on this topic is given in Secs. 1.2.2 and 1.2.3.

Assuming constant material properties € and p will let the gradient terms in Eqgs. 1.9a and
1.9b disappear. Together with the following associations

1
Speed of light in vacuum: co = 1.10a
g = e (1.10a)
Refractive index (Maxwell relation): n = ./ep (1.10b)
1
= Speed of light in a medium: c = (1.10c)

EQMOEH
the homogeneous form of the harmonic wave equation for the electric field can be derived as
w2
V’E+ —E =0, (1.11)

c

where different the field components appear uncoupled. A corresponding equation can
equally be deduced for the magnetic field.
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1.1.5 Plane waves

The concept of a plane wave describes a three-dimensional harmonic wave with a single
spatial frequency v and wavefronts, which are indefinitely extended perpendicular to a single
direction of propagation. It is defined as

E(r,t) = EgEqe!kr—t), (1.12)

with Ejy as a constant field amplitude and E; as the normalized polarization vector.

k = (ks ky k:Z)T is called the wave vector and defines the direction of propagation. It is
related to the frequency v and the wavelength A through the wave number k = |k| = 27v =
2w /. Tt can easily be verified, that the plane wave definition 1.12 is also a solution of the
wave equation (cf. Eq. 1.11), but only if the dispersion relation

w

Wave number in vacuum: ko= — (1.13a)
o
Wave number in a medium: &k =nko =n— = 2 (1.13b)
Co C
holds. Thus, the wave vector can also be expressed as
k = nkos (114)

with s defined in spherical coordinates (cf. App. A.1) as the unit vector of k.

Finally, the dispersion relation can also be used to derive the Helmholtz equation, which is
the scalar correspondent to the homogeneous wave equation (cf. Eq. 1.11)

V2Ey+ k*Ey =0 (1.15)

However, such a scalar description is only valid in those cases where the coupling between
the electric and magnetic field vector components can be neglected like in a homogeneous
medium.
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1.1.6 Angular spectrum method

Since plane waves satisfy the wave equation, so does any linear combination of them. This
fact can be used to propagate any electric field in a homogeneous medium. The idea is
to decompose the field into plane waves using Fourier transform, then propagate the plane
waves individually and finally superpose the results through inverse Fourier transform to
obtain the propagated electric field.

The definition of an ideal plane wave describes the electric field at any position of space.
Substituting the z-component of the wave vector k as

ko = £\/k2 — k2 — k2 (1.16)

with k = w/c according to Eq. 1.13b, the definition of the plane wave can be rewritten as

E(ry,z) = BBy et rietizyi—ki—kj (1.17a)
= E(r,,0) eF=VF -k (1.17b)
= E(r,,0) PE(ky, 2). (1.17c)

Eq. 1.17c¢ describes the propagation of plane wave from the plane of origin (the x/y-plane
at z = 0) along the z-axis using the definitions r;, = (z y)” and k; = (k; k).

PE(ky,z) =exp (:l:izﬂk:2 — k:i) can be identified as a propagator term. A positive sign
of z indicates wave propagation in forward direction (positive z-direction) and a negative
sign stands for propagation in backward direction. However, position and orientation of the
coordinate system is arbitrary and without loss of generality only the forward propagation
is considered here.

Nonetheless, for k, = /k2 — ki three cases need to be distinguished:

k2 < (nko)? =k, € ® = propagating planar wave (1.18a)
k3 = (nkg)? =k, =0 = cut-off frequency (1.18b)
k3 > (nko)? =k, €Y = evanencent wave (1.18¢)

Equation 1.18a describes spatial frequencies with only a small lateral component. They lead
to propagative waves in the far field. Frequencies beyond the cut-off frequency, on the other
hand, can only propagate in the plane at z = 0 (cf. Eq. 1.18¢c). Along the z-axis, they are
exponentially damped and do not carry energy.
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The angular spectrum method now uses the two-dimensional Fourier transform
E(k,,0) = ﬂ E(r.,0) e &rig?r, (1.19)

to decompose the electric field in the plane of origin into plane waves and appends the plane
wave propagator (cf. Eq. 1.17¢) to the inverse Fourier transform:

- ) ) d%k
E(r.,z) = H E(ky,0) ¢2VF-H elkﬂLW. (1.20)
P+(ki_vz)

This way, any field distribution, which is known in the plane of origin, can be propagated
by the principles of plane wave decomposition and superposition, while the propagation is
performed on the individual plane waves in Fourier space. With k| = 27, the tangential
wave vector k| can be identified as a coordinate in the angular spectrum. This fact also
gave rise to the name angular spectrum method (ASM).

1.1.7 Maxwell’s boundary conditions

medium 1 medium 1

Aw
>
A

(a) Closed path C through two (b) A volume V separated by
homogeneous media a material interface

Figure 1.1: Illustration of the integration paths of Maxwell’s equations
across a material interface

Maxwell’s equations can also be expressed in an integral form. Its equivalence to the differ-
ential form is given by the Kelvin—Stokes theorem for the Ampere’s circuital law (cf. Eq.
1.1a) and the Maxwell-Faraday equation (cf. Eq. 1.1b) and given by the divergence theorem
for the Gauss’s law (cf. Eq. 1.1c¢) and the Gauss’s law for magnetism (cf. Eq. 1.1d).

10
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The first two Maxwell equations describe the relation between a path integral over a path C
and a surface integral over a surface A:

]{CHdl:ijdA+—ijdA (1.21a)

fEdl deA (1.21b)

if the path C'is considered in a way that it encloses the boundary between two homogeneous
media, as illustrated in Fig. 1.1a, then in the limit as Ah tends to zero the area A disappears
and for finite arguments the surface integrals on the right sides of Eqs. 1.21a and 1.21b tend
to zero. On the left side, however, only the normal components disappear while the tangential
components F | with F € {E, H} remain:

j{ F, .dl=0 (1.22a)
C
b d

/ Fq..dl - / Fy  dl=0 (1.22b)

Fi. i Aw—Fg  Aw=0 (1.22¢)

= Fl;J_ = F2;J_ (122d)

This leads to the conclusion that

The tangential components of the electric and the mag-
netic field E and H are continuous.

The integral form of Maxwell’s third and fourth equation reads as:

{fpaa=[[[pav (1.23a)
S \%

{fBda=o. (1.23b)

Here, S is a closed surface of a volume V', which in case of Eq. 1.23a encloses an electric
charge. Considering a similar case like before, in which the integration volume encloses the
material interface as depicted in Fig. 1.1b, another continuity condition can be derived: In
the limit as Ah — 0 the volume V tends to zero, the electric charge disappears on the right
side of Eq. 1.23a and the electric and magnetic flux can only pass through the remaining
surfaces dA = +A - n. Hence, in analogy to the previous case, one can conclude:

The normal components of the electric displacement field
and magnetic induction D and B are continuous.

2]

11
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1.2 Diffraction theory

Diffraction describes the phenomenon of non-geometric propagation of light in the encounter
of structures of a size similar to the wavelength. These structures can be edges of apertures,
but also complex near-wavelength geometries as well as media with inhomogeneous material
properties. The interaction causes disturbances in the wavefronts, which propagate equally
in all radial directions (as described by the Huygens-Fresnel principle) and result in interfer-
ence patterns and light propagation in geometric shadow areas.

However, the influence of diffraction effects decreases with a growing size of the structure,
since the diffractive features of the object represent a smaller proportion of the overall struc-
ture. Thus, for macroscopic structures, the effects can usually be neglected and the interac-
tion between light and objects can be described by geometrical optics.

For objects with features sizes of only few wavelengths light shows its electromagnetic wave
character and diffraction effects become significant. This requires the solution of the Maxwell
equations in every position of space including some finite or infinite boundaries. However,
for many applications the description can be limited to the propagation of the field in a
homogeneous medium outside the diffractive structure. Since the wave vector components
do not couple there, the vector character of the wave equation can be neglected and a scalar
description of the fields is sufficient. In this case the interaction with the diffractive structure
can be reduced to the direct influence on the phase and amplitude of the light outside the
structure while ignoring the complex behavior in the inside.

If the size of the diffractive structures approaches the size of the wavelength, Maxwell’s
equations need to be solved in a rigorous way with respect to its full vector nature. At
material boundaries or in inhomogeneous media the gradients in the material properties lead
to a coupling of the vector field components and directly influence the field distribution in
the near surrounding - the so called near field. However, the interaction on this scale can
also influence the far field in larger distance to the object, especially due to resonant effects
and periodic structures. Although this domain requires the most complex methods, it also
enables many interesting and valuable applications (cf. Sec. 1.2.1). Since evanescent waves
(with P(ky1,z) = exp (ik.2), k, € S, cf. Eq. 1.18¢c) decay exponentially with distance they
are primarily a near field phenomenon, and due to the periodicity of most diffractive struc-
tures in technical applications, also the far field can in fact be a well-structured. This even
allow predictions about the far field that do not even rely on a solution of the wave equation.
One example is the grating equation (cf. Sec. 1.2.1) that can be used in geometric optics as
a replacement of Snell’s law for refraction.

Finally, structures with feature sizes significantly smaller than the wavelength do not show
diffraction effects anymore as they appear invisible to the light. They can be approximated
with effective medium approximations (EMA)[2], which assumes an averaged refractive index
of the sub-lambda structure.

12
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1.2.1 Diffraction at Gratings

Optical gratings are a systematic way to utilize diffraction effects for various applications.
They are characterized by a periodic structure or medium and thereby also give structure to
the far field. This is especially, but not only, true for collimated and coherent incident light.
For applications the most important diffraction phenomenon is the appearance of discrete
diffraction orders, which were first discovered by Rittenhause[108] in 1786 and further elab-
orated by Young[137]. Another important fact is that the deflection angle of the diffracted
light outside the specular order (zero-order mode) is wavelength depended.

As outlined by Popov[106, p. 7], this makes a diffraction grating a dispersive optical compo-
nent with several advantages over a prism: First, the grating can be a plane device, while the
prism is a bulk one that requires larger volumes of optically pure glass (to add the difficul-
ties of weight and temperature expansion constraints. Secondly, provided a suitable reflecting
material, the grating can work in spectral regions, where there is no transparent ‘glass’ with
sufficient dispersion. And thirdly, grating dispersion can be varied, as it depends on the
groove period, while prism dispersion depends on the material choice and groove angle, which
gives quite limited choices.

binary reflectiion transmission
gratings gratings gratings

pllsivigl [ S SE SR F Y FTYFTY
prese | Nananan Pl

other
geometries

different
dimensions

Figure 1.2: Different types of diffraction gratings

There are various types of diffraction grating: A distinction is made between reflective and
transmissive diffraction gratings. There are gratings that influence phase and amplitude
exclusively or jointly. They also come in various geometries, which range from binary gratings
over multi-level gratings, triangular shaped - so called blazed - grating to continuous surface
profiles and even gradient index gratings. And finally diffraction gratings can be one-, two-
and three-dimensional. Figure 1.2 shows an overview.
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CHAPTER 1. FUNDAMENTALS

Applications

The number of applications for diffraction gratings is in fact vast. It includes spectral anal-
yses[79, Chap. 1], beam splitting [70], simple wavelength blocking filters (cf. Sec. 6.4) or
guided-mode resonance filters[130], coupling in integrated optics[122], subwavelength grat-
ings for enhanced local absorption in solar cells|[7, 47] or photodetectors (cf. Secs. 6.2 and
6.3), excitation of surface plasmon polaritons[51] and not to mention the potential of pho-
tonic crystals as the optical counterpart to semiconductor crystals for electrons in terms of
band gap structures[99, 129]. A good overview is given by Loewen and Popov[79, 106].

Polarization

Polarization of an electromagnetic wave is defined as the orientation of its electric and mag-
netic field vector. In free space electromagnetic waves are transversal, meaning that both,
the electric field vector E and the magnetic field vector H oscillate linearly or circularly
in a plane perpendicular to the propagation vector k. For plane waves, this can easily be
shown by substituting the definition of the plane wave (cf. Eq. 1.12) into the first or second
Maxwell’s equations (cf. Egs. 1.8a and 1.8b).

Example:

kxE=wuuH = k1ELH (1.24)

This implies that the different vector components are not independent and each one can be
expressed by the other, e.g.:

kB + kyE,

E. =
k.

for k., # 0. (1.25)

Usually polarization becomes relevant not before any kind of interaction with an anisotrop-
ic medium or with the surface of a geometric object. If in the latter case the object is a
one-dimensional diffraction grating and the incident light lies in a plane perpendicular to
the grating grooves - a configuration known as classical mounting, then it is convenient to
distinguish between two types of polarization: At TE polarization, the electric field vector
is tangential to the grating grooves, while at TM polarization, the magnetic field vector is
(cf. Fig. 1.3a). With the typical convention, that the grating grooves are aligned to the x-axis
and the grating’s normal vector is pointing in the direction of z, the partial derivations with
respect to y disappear in Maxwell’s equations. This leads to two disjunct sets of equations,
which can be solved separately for each type of polarization[97, Chap. 1.2.2].
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1.2. DIFFRACTION THEORY

A general polarization vector E; of the incident plane wave E = EgE1e’®", can be defined
by an angle ¢ in a local coordinate system that is spanned by two unit vectors er and ey,

tangential and normal to the plane of incidence:

E; = sin(¢)en + cos(¢)er. (1.26)

(a) Classical mounting (b) Conical mounting

Figure 1.3: Figures (a) and (b) show the polarization basis vectors for classical and conical
mounting. In classical mounting the electromagnetic field is called TE polarized if the
electric field vector E is aligned with ey (or ¢ = 0 deg). If one the other hand the electric
field vector is aligned with er (or ¢ = 90 deg), which leads to an alignment between the
magnetic field and ey, then the field is called TM polarized.

However, if either the grating becomes two-dimensional (with an additional y-dependency of
the material properties) or the incident light does not lie in the described plane perpendicular
to the grating grooves, then the distinction of the two types of polarization is no longer
justified. If the the plane of incidence is rotated around the z-axis and the grating is one-
dimensional (cf. Fig. 1.3b), the diffraction orders are aligned on the surface of a cone and
thus the setup is referred to as conical mounting.

Nevertheless, relation 1.26 is still applicable in the general case, if the two polarization base
vectors ey and er are also defined for non-classical mounting. Such definition can easily be
derived from the assumptions k 1 e, 1 ey and k 1 ex L er respectively:

e, xs 1 ("%
ey = — =— sg (1.27a)
le, x s S1
0
Sz
ey X s I
ep = 2 — SySz | - (1.27b)
ley xs|  so g2
1

Again, s is the unit vector of the wavevector k. For normal incidence, where s; = 0 the
definition must be set to ey = e, and er = e, to be compatible with classical mounting.

Besides the here described forms of linear polarization, more complex forms become available,
when deviating from the simple plane wave illumination. Those are discussed in Sec. 3.9.2.
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Diffracted fields of optical gratings

The periodic structure of the grating concept also helps to describe diffraction in a mathe-
matical sense. The following section gives a short formal justification for the intuitive fact,
that the diffracted field of an optical grating should reflect the grating’s periodic nature.
It basically describes how so called pseudo-periodic fields arise from the periodic boundary
conditions in case of a tilted illumination. This allows the separation of space variables us-
ing a special form of a Fourier series as predicted by the Floquet theorem. The following
derivation can also described in similar form by Petit[103] and Neviere[97, Chap. 1.2.3-5],
Trauter[126] and Hench et al.[48] on which the following description is based on.

In the considered case the interface between two media is described by a one-dimensional
periodic function f(x) = f(z + P;). The light falls through a transparent medium I onto
the surface of an ideally conducting medium II. The result is a perfect reflective grating
with no electromagnetic field in medium II. This example can easily be extended to more
general cases[103]. The incident plane wave is TE polarized in the classical sense (cf. Sec.
1.2.1) with a wave vector k; laying in the 2/z-plane (= k;;,, = 0). Thus the electric field only
consists of a scalar y-component and can be written as

E; (z,2) = By ¢i? glhia® (1.28)
P(z) eid(®)

with a constant amplitude Ejy, a propagator P (z) and a phase term exp (i¢ (x)) to account for
a tilt of the incident wave®. The total fields in medium I can be described as the superposition
of the incident and the diffracted field F; and E;:

Er=FE;,+ E,. (1.29)

Due to the linearity of the Helmholtz equation both constituent fields F; and FE; must obey
the Helmholtz equation. Since there is no field in medium I, the boundary condition at
the reflective grating surface requires the field to disappear. The goal is now to identify a
periodic part ), in the diffracted field. This can be achieved with the following approach:

Ey(x,2) = Eq(z, 2) e~ Fia® gikiat (1.30)
——
Ep(z,2) et ()

where the position-depended phase term ¢(*) can be recognized as the influence of the tilted
incident light.

2Note that the letter ¢ is never used as an index in this work! Depending on the context it can easily be
identified as the imaginary number or as a subscript, which indicates the affiliation with the incident field.
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1.2. DIFFRACTION THEORY

In order to show, that £, is truly periodic in x, the following equations must hold:

E,(x+ Py, 2) = E, (z,2) (1.31)
Eq(z + Py, 2) e ki @tP) L B (3 2) e ikin® (1.32)
= Ey(x + Py, 2) e *iebe L By (2, 2) (1.33)

However, the final statement is only true if the solution of the diffraction problem is unique.
This is in fact a quite difficult task to prove, but can be reviewed in [19]. Now, one must
only show, that the left side of Eq. 1.33 is also a solution of the diffraction problem and both
sides of the equation must be equal. The diffraction problem is satisfied, if the left side is a
solution of the Helmholtz equation and also obeys the boundary condition. Obviously, the
Helmholtz equation is satisfied by its linear nature, since Fy is a solution. The boundary
condition can be derived from the periodicity of the the incident plane wave:

E;i (z + Py, 2) = Ege'Fie@tPo)bhizz) — B (g ) ethiale (1.34)

which allows the following substitutions at the boundary (z = f (x)),
where F; + F; = 0:

Eq(x+ Py, f (x)) e *iele = —F; (x, f ()) eFinlrethinls (1.35a)
= Eq(x,f (). (1.35h)

Therewith, the initial statement, that the diffracted field E; consists of a periodic function
E, and an additional position-depended phase term exp (ik;; (x)), which stems from the
tilted incident field, is proven. The diffracted field is therefore called quasi-periodic and can
also easily be generalized for two-dimensional gratings using the descriptive surface function

f($,y):f($+Px,y+Py)

The lateral coordinates x and y can now be separated using the Fourier approach and expand-
ing the periodic part E, of the diffracted field into plane waves along its periodic directions:

Ed (ma Y, Z) = Ep ($, Y, Z) ei(ki;mx+ki;yy) (136&)
_ [Z Sp;m’n (Z) eQWi(g$+%y>] ei(ki;szrki;yy) (136b)
m,n
= Spimn (2) /rmzthuny) (1.36¢)
m,n

Here, Sp.m.n is the still z-dependent Fourier coefficients of the electric field E, and the
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directions of the discrete diffraction orders are defined as

2

kgom = Kisw + m% and (1.37a)
2

kyin = ki) + e (1.37b)
Py

with mode indices m and n ranging from —oo to +00. Equations 1.37a and 1.37b can also

be identified as grating equations®. (For example, canceling n[%’r transforms Eq. 1.37a to

Sy = Sig + nTléz with n; as the refractive index of the incident medium. Also see Eq. 1.14.)

Substituting F,; into the Helmholtz equation V2E (r) + k3E (r) = 0 gives

92 -
> [(’“2 = K = Kjin) Spmn (2) + 5 3 tsamn (2) | €/ thunt) =, (1.38)

m,n

Due to orthogonality of the complex Fourier series[58] this must be true for every value of m
and n. Using Pythagoras’ theorem (cf. Eq. 1.16) this results in the second-order differential
equation

62
agﬁmmﬁﬁ+kimﬁ%mm@)=0- (1.39)
Equation 1.39 meets the characteristics of an eigenvalue problem: g(S,) = A- .S, where X is
the eigenvalue and S, is the eigenfunction of the linear operator g. This is a second-order
differential equation with constant coefficients, which can be solved through its characteristic
equation:

= A=0 (1.40)
The characteristic equation 1.40 has two simple zeros at v; = +v/A and vo = —V/\, and due
to the derivative nature of the exponential function, {exp(v;z) | | = 1,2} forms a basis of

the solution space for the differential equation. Thus, the general solution to Eq. 1.39 can
be written as a linear combination of these independent solutions:

Spﬂ”lan(z) - Cl;’m,neJr V Amn? + co;mpne )\m’nz~ (141)

c1 and co are complex coefficients that are only determined by the exact boundary conditions
and Sommerfeld’s radiation condition even requires ¢; = 0, since a positive real number of

3The grating equation s, = i,z + nm}% also shows that for larger structures (larger values of P;) the higher

diffraction order move closer together until they are indistinguishable from the Oth order for macroscopic
structures and can be described by geometrical optics.
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1.2. DIFFRACTION THEORY

A would result in an unphysical growth of the first term as z — oco. The remaining second
term shows the exponential characteristic of a plane waves. And by substituting it into the
differential equation 1.39 one can in fact identify the eigenvalues with the z-component of
the wavevector:

M = =k 0 =/ Amn = Tikomon (1.42)

zZym,mn

Since the initial grating was assumed to be a perfect reflector, the diffracted field must be
equal to the reflected field. Thus, the Fourier coefficients Sy, , can be identified as reflective
coefficients R,, , and the field in medium I can be expressed as

By (z,y,2) = Epe™® + Y Ry, e Fomathymythemnz), (1.43)

m,n

This is the so called Rayleigh expansion, where the field is composed of a set of discrete plane
waves, also known as modes with different directions of propagation. For tilted incidence,
the result is a pseudo-periodic field and the modes of the diffracted field are called Floquet
harmonics.

For real, non-perfectly conducting gratings, which allows light transmission, the Rayleigh
expansion also holds for the field in the transmission region behind the grating[1]. Inside the
grating region, however, the eigenvalue problem can not be resolved as easily (cf. Eq. 1.42),
since the complex permittivity is a function of x and y. In fact, this limitation goes even
further and restricts the validity of the Rayleigh expansion to smooth gratings with small
modulation depth?. The reason lies in the fact that the diffracted outside fields are always
described by plane waves of only one direction (meaning either forward or backward)[131].
And it is plausible, that this is not sufficient to describe the scattering at deep grooves and
exotic grating profiles.

The rigorous coupled-wave analysis basically uses the same approach as described here.
However, it circumvents its limitations by partitioning the grating region into a stack of
inhomogeneous layers. And while the fields in the homogeneous outside regions are actually
described by Rayleigh expansion, the eigenvalue problem in the inhomogeneous layers of
the grating region is solved numerically. In addition the general diffraction problem cannot
be separated into the two distinct forms of polarization (cf. Sec. 1.2.1) and therefore, the
numerical approach also needs to account for the coupling between the electric and magnetic
components in a larger system of differential equations.

“Petit and Cadilhac[52] and Millar[86] were able to prove that the Rayleigh expansion is invalid for h -
27 /Py > 0.448, where h is the groove depth of the grating
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1.2.2 Scalar methods of diffraction theory

The angular spectrum method (ASM), which was described in Sec. 1.1.6, is an important
method to solve the diffraction problem in homogeneous media. The required knowledge
about the field amplitude at z = 0 is also the characteristic of the so called Dirichlet bound-
ary condition. If, on the other hand, only the first derivative of the field %E(r 1,0) is known,
Eq. 1.20 transforms into the angular spectrum method under Neumann boundary conditions.
Both forms of the ASM equally satisfy not only the vector form of the wave equations, but
also the scalar Helmholtz equation (cf. Sec. 1.15). And in fact they are used as such in clas-
sical diffraction theory, which considers any electromagnetic field to be scalar. Moreover, the
representation of the fields is not limited to plane waves and spherical waves according to
the Huygens—Fresnel principle were even considered first. If the decomposition of the ASM
is performed with Weyl’s definition of spherical waves (E (r) = e’/ |r|>, the two described
boundary conditions lead to Sommerfeld’s diffraction integrals of the first and second kind
respectively - and to the diffraction integral of Kirchhoff, which is the arithmetic average of
the two. Other important approaches of classical diffraction theory are the far field approxi-
mation by Frauenhofer, the paraxial approximation by Fresnel (cf. Eq. 3.31) and the Debye
integral for the representation of focused fields. A detailed description of these methods can
be found in almost any standard text book, which covers diffraction theory (e.g. Born and
Wolf[11, Chap. 8, 13]). Common scalar methods that describe structure light interaction are
the thin element approximation (TEA)[71], the beam propagation method (BPM)[35] and
wave propagation method (WPM)[17].

According to Pommet et. al[104] scalar diffraction theory is valid (with deviations below 5%)
for the analysis of single-level diffractive phase elements down to a minimum feature size of
14 wavelengths, while the accuracy declines as the index of refraction is lowered and as the
fill factor deviates from 0.5. A distinct limit, however, cannot be drawn, since it depends on
the geometry and composition of the diffractive elements.

Since the rigorous coupled-wave analysis, as a numerical approach to solve the full, vector-
based diffraction problem, is elaborated (cf. Chap. 2), extended (cf. Chap. 3) and imple-
mented in this work, further discussions on classical diffraction theory are spared here, even
though the topic is by all means relevant both historically and practically. The reader is
instead referred to the literature cited above.

1.2.3 Rigorous methods of diffraction theory

On the scale, where the diffractive structure size is of the same order of magnitude as the
wavelength, the vector nature of the electromagnetic fields plays an important role and
an appropriate model needs to obey the close interdependence between the electric and
magnetic field components, which follow from Maxwell’s equations. This is the regime of the
rigorous methods. And they are characterized by the obedience of exactly these two aspects.
Despite the difficulty of a general solution of the rigorous diffraction problem this regime
is particularly interesting, since optimized geometries in the near field can lead to valuable
properties like high dispersion or light concentration in a single diffraction order. It is also
very significant for this work due to strong resonances, which can be induced. Utilized in
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1.2. DIFFRACTION THEORY

the right way these can lead to high local absorption and thereby improve the performance
of photo detecting devices (cf. Chap. 6).

The term rigorous only refers to the full vectorial description of the field and Maxwell’s
equations. Despite the promising name, there are in fact several constraining assumptions,
that can be considered as approximations like an indefinite periodicity of the diffractive
structures, steady state behavior, linearity and isotropy of the optical material, smooth
surfaces’ and the absence of all effects that can only be explained by quantum eletrodynamics
(QED). Furthermore, most practical diffraction problems can only be solved by numerical
methods, which often struggle with bad convergence and instabilities and may thereby further
reduce the accuracy of the results.

As mentioned before, the vector character of the wave equation becomes particularly im-
portant in the presence of inhomogeneities of the material properties, since it leads to an
interdependence of the vector field components (cf. Sec. 1.1.4). This prevents a direct solu-
tion of the wave equations and its decoupling is therefore the main challenge of the rigorous
diffraction problem. Analytical solutions to Maxwell’s equations are only known for few
cases. For one there are perfect conductors like Sommerfeld’s diffraction at the perfectly
conducting half-plane[117], but most solutions are obtained by the method of separation of
variables. In many cases, the inhomogeneities in permittivity and permeability are confined
to boundaries between homogeneous materials. However, these jump discontinuity in the
material properties are problematic, because the partial derivatives in Maxwell’s equations
are not defined here. The method of separation of variables is a way to circumvent this issue.
The idea is to transform Maxwell’s equations into a coordinate system, which follows the
geometry of the diffractive object, expand the electromagnetic fields into orthogonal funda-
mental modes and solve the expansion coefficients at the object’s boundary by separately
applying Maxwell’s continuity conditions[60, p. 31].

Unfortunately, the wave equation is only known to separate in eleven coordinate systems in-
cluding euclidean 3-space and spherical. Here, two important theories should be mentioned:
The first one is the multilayer matrix theory[14, 21], which in fact does not solve a diffrac-
tion problem, but still provides an analytical and rigorous solution to Maxwell’s equations for
the interaction with a stack of different homogeneous layers. Applications include selective
wavelength filters and anti-reflective coatings. The second one is the Mie theory[85], which
addresses spherical diffractive objects and is used for the study of nanoparticles.

Since the number of numerical methods is vast, this discussion does not try to provide a
complete list, but only addresses the most common ones. It also does not try to compare the
methods in terms of overall performance. Since each of the methods was initially designed
for a specific problem all methods have different strength and drawbacks depending on the
application. However, there are some comparing studies, where domains are overlapping.
A performance comparison between various methods for a basic, non-periodic scatterer was
done by Lalanne et al.[69]. Some other references can be found in the text. Very detailed
overviews over different numerical methods for the rigorous diffraction problem can also be
found in Kleemann’s work[64] and also in the books of Neviere and Popov[97, Chap. 1.1.3]
and Loewen and Popov[Chap. 10.5-10.10][79].

*Imperfections due to manufacturing are assumed to be invisible to the light.
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Due to the difficulties that arise in the description of the fields at the material boundaries, the
following overview will distinguish between those methods whose elementary solutions cross
material interfaces and those who manage to avoid it (cf. Fig. 1.4). They will be referred to
as intersecting and non-intersecting methods respectively.

RCWA
“—

L L iy

Figure 1.4: Example of an intersecting and a non-intersecting method: The schematic
representation shows the way the RCWA and C method remove the z dependency. In case
of the RCWA the lateral dependencies remain and both fields and material properties are

expanded into Fourier base function across material boundaries.

Source: N.P. van der Aa. “Diffraction grating theory with RCWA or the C method”,

Progress in Industrial Mathematics at ECMI 2004. Springer, 2006, pp. 102

Intersecting methods

The differential method and the rigorous coupled-wave analysis both separate the z-
dependence® of the material properties by a segmentation of space into plane layers along
z (cf. Fig. 1.4). Thus, in each layer the permittivity (and also the permeability if consid-
ered) is constant in z, but may vary periodically along the lateral directions of the grating.
The material properties as well as the electromagnetic fields inside the grating are Fourier
expanded in lateral direction and across potential jump discontinuities. At these boundaries
the approximated material properties and the fields exhibit complementary jumps, which
lead to numerical artifacts and instabilities of the methods (cf. Sec. 2.5). The accepted so-
lution is the appropriate usage of the so called inverse rule depending on the orientation of
the boundary and the polarization in compliance with Maxwell’s boundary conditions (cf.
Sec. 1.1.7). The Fourier expansion of the Maxwell equations in lateral direction leads to
a coupled system of second order partial differential equations, which is numerically inte-
grated by the differential method. The method was first presented in 1974 by Neviere[98].
A detailed description of the method is given by Maystre[82, Chap. 4], [105]. Interestingly,
the differental method is not confined to Fourier base function and can thereby be adjusted
to the diffraction problem. Examples are cylindrical Bessel functions[10] for diffraction by a
single aperture or spherical functions[119] for arbitrarily shaped single objects.

The rigorous coupled-wave analysis (RCWA) starts with the same steps as the differ-
ential method, but solves the coupled system of second order partial differential equations
through an eigenvalue approach and thereby transforms the coupled Fourier modes into a

57 is the preferred propagation direction of the incident light, normal to the grating surface (cf. Fig. 1.3)
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set of uncoupled eigenmodes. In the RCWA and in the differential method, the fields in the
outside region are described by a Rayleigh expansion and the expansion coefficients can be
solved by applying Maxwell’s continuity conditions at the boundaries. Due to a continuous
development over the years the RCWA is able to provides stable solutions for a wide range of
diffraction problems and thus has become one of the most common methods to solve grating
diffraction problems. Noteworthy, are the use of perturbation theory to speed up the solution
of the eigenvalue problem by Edee et al.[32] and the replacement of the Fourier basis func-
tions by Legendre polynomials(Khavasi et al.[62]) or by Chebyshev polynomials(Yeh et al.
[135]) in order to improve the approximation of steep gratings grooves and thereby avoid the
inherent numerical instabilities of the RCWA. A detailed discussion and further extension of
the RCWA method is given in Chap. 2 and 3, respectively.

The finite element method (FEM) was initially developed around 1960 to solve partial
differential equations for structural engineering, but since has been applied in a wide range
of fields[57]. The first implementations for diffraction gratings was published by Delort et
al.[27]. The FEM samples Maxwell’s equations in real coordinate space on a mesh of triangles
or tetrahedrons of dynamic size. Associated with the mesh are locally defined trial functions
on each sampling point, which approximate the field. The continuity conditions according to
Maxwell’s equations are applied wherever material boundaries coincide with a discretization
point. The weights of every trial function is then determined by a linear system of equations.
The region in between the discretization points is interpolated. Since the method is applied in
real space, problems with high spatial frequencies, which might occur at steep grating sloped,
do not occur. The FEM is also able to model non-periodic structures and is a straightforward
approach even for sophisticated grating geometries. However, highly conducting gratings
require very high density discretization meshes, which leads to long computation times.

The finite difference time domain method (FDTD) was first published by Yee[134] and
extended to infinite gratings by Ichikawal[53]. The method discretized both real space and
time and replaces the partial derivatives of Maxwell’s equations by finite differences. Since
also time is discretized, the method is especially interesting for non-harmonic processes, like
light pulses. Due to the four-dimensional discretization and since Maxwell’s equations are
solved for both electric and magnetic fields, the method can require a significant amount of
computation time memory storage and might therefore be less adequate for typical harmonic
grating problem.
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Non-intersecting methods

The Rayleigh expansion was discussed in Sec. 1.2.1 as simple way of describing pseudo-
periodic fields by set of plane waves. Although the approach is only strictly valid in the out-
side region of a grating, it has a significant value as an integral part of other theories like the
RCWA. The method is also described in great detail by Petit[103], Neviere[97, Chap. 1.2.3-5]
and Hench et al.[48]. A discussion about the validity for gratings (also known as Rayleigh
hypothesis) can be found in the works of Petit and Cadilhac[52], Millar[86], Wauer et al.[131]
and in the book of Loewen and Popov|[Chap. 10.5-10.10][79].

The C-method of Chandezon[20] is based on the idea that the Rayleigh expansion would be
valid everywhere, except at the grating interface, if the interface were flat[1]. Hence, it uses
a coordinate transformation to straighten the grating modulation to a flat surface. This way
the differential Maxwell’s equations can be integrated separately in each medium. However,
the algorithms leads to an eigenvalue problem due to varying coefficients in the differential
equation, which needs to be solved numerically. Furthermore, Maxwell’s equations cannot be
separated into independent cases for TE and TM polarization. An advantage compared to
the RCWA is that the C-method does not rely on a staircase approximation for continuous
grating profiles. A comparison between the C-method and the RCWA is given by Vallius[127]
and Van der Aa[l].

The classical modal method separates space into rectangular regions of homogeneous ma-
terial properties and consider each of these regions as lateral waveguides[26]. The containing
fields are described by a set of harmonic waveguide modes, whose expansion coefficients are
solved by applying Maxwell’s continuity conditions at the boundaries. The classical modal
method can also be seen as a special case of the RCWA, which also allows a continuous
modulation of the material properties in lateral direction.

The integral method was one of the first approaches to provide a solution to the rigorous
diffraction problem. The method was first developed for perfectly conducting gratings by
Petit[102] in 1965. Later works by Kleemann et al.[65][64] allowed the study of more general
surface profiles with vertical walls and undercuts by using the boundary integral equation
system method with parametrization(IESMP). The method also avoids the crossing of the
material boundaries. Instead it considers a surface current on both sides of the boundary,
which is induced by the incident wave. Every point along the boundary above and below
the surface is thereby considered a secondary source and the total current is obtained by an
integral, which can be solved by distribution theory. Green’s theorem is then used to derive
the field inside the boundaries from the field and its normal derivative on the boundary
curve. The method is able to handle highly conducting gratings even with deep gratings
and arbitrary profile, but the advantage comes at the cost of complex mathematics and also
high computational resources both in time and memory storage[79, Chap. 10.7]. A detailed
description of the integral method is given by Maystre and Popov[82, Chap. 3], [83].
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The multiple multipole method (MMM) was first suggested by Singer[115]. The method
divides space into contiguous domains of homogeneous material properties. In each domain
the field is expanded into a linear combination of analytical solutions of the Maxwell equa-
tions. Since the introduction of the generalized multipole technique[44], the method is flex-
ible in the choice of these basis function and can be adjusted to the problem. However,
the most common ones are still multipolar functions, which can be found by applying the
appropriate differential operators to a solution of the scalar Helmholtz equation, separated in
spherical coordinates[94]. These solutions represent point sources, which are placed inside
the diffracting structure and close to the domain interface in order to radiate in all directions
and especially beyond the interface. The method is therefore also referred to as ficticious
sources method[124]. The total field is then generated by the exciting source and all ficti-
cious sources. The weights of the analytical basis functions are determined by minimizing
the errors with regard to the boundary condition. This also leads to a special feature of the
approach, which is the ability to estimate the quality of the method. Since Maxwell’s conti-
nuity conditions are only satisfied on a discretized boundaries, whereas the basic functions
are analytical solution, the method is also called a semi-analytical approach[43]. The biggest
problem of the method is the difficulty of a proper placement of the ficticious sources, which
is not intuitive and requires high expertise of the user. However, attempts for automatic
placements[94] do exist. It is evident that the method is not limited to periodic gratings.

The discrete dipole approximation (DDA) also known as coupled dipole method was first
developed by DeVoe[28, 29] in 1964 to study the optical properties of molecular aggregates.
The method approximates the substance of a diffractive object with polarizable points. Each
such point acquires its dipole moment in response to the incident field and interacts with
every other one through its electric field. For a finite number of oscillating point dipole
moments in monochromatic excitation the self-consistent solution to the scattering problem
can be found analytically. Thus the only approximation in the DDA is the discretization
of the object into a finite number point dipoles. Absorption and scattering throughout the
simulation domain and across the material bounds can finally be derived from the polarization
of the point dipoles[30]. The method is applicable[125] but clearly not limited to periodic
gratings and can be extended to anisotropic materials and materials with nonzero magnetic
susceptibility. The method lately draw some attention due to a fast implementation of its
field calculations[38]. The code is public domain[31].

The inevitable but significant increase in computation time and memory usage of the rigorous
methods has also led to the development of semi-rigorous methods like the vectorial beam
propagation method (VWPM)[36] and the vectorial thin element approximation (VTEA)[61],
which try to close the gap between classical and rigorous methods by extending the scalar
methods to vector fields.
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Chapter 2

The standard RCWA algorithm

The rigorous coupled-wave analysis (RCWA) is a well-established method for the simulation
of diffraction and near field effects and is also the basis of this work. As such it serves as the
main simulation method and is further developed in chapter 3. After a historical review, a
detailed description and discussion of the RCWA algorithm is the purpose of this chapter.

2.1 Historical review

As already mentioned, even rigorous methods are not without physical approximations and
even less without unlimited validity. In fact the rigorous coupled-wave theory was first devel-
oped under many restrictive assumptions, some of which have been overcome over the years,
while others still remain. Without claiming completeness, some important developments are
listed in the following:

In 1914 Darwin[25], who studied the diffraction of X-rays in crystals, first came up with
the idea to treat Bragg diffraction with the concept of coupled-waves. This was adopted by
Burckhardt[18] in 1966, who analyzed diffraction of single plane waves in holographic gratings
inside thick photographic emulsions. It was observed in experiments, that in those setups
diffraction behaves similar to Bragg diffraction as diffracted beams reach their maximum
intensity at the Bragg angle. Hence, thick films could not be treated with the Fresnel-
Kirchhoff integral and thin element approximation. Instead, Burckardt used a coupled-wave
method based on Floquet theorem to study gratings with a sinusoidal modulations of the
refractive index. In 1969 also Kogelnik[66] developed a coupled-wave theory for sinusoidal
gratings. However his theory was restricted to the two first diffraction orders only. In
1973 Kasper[59] extended Burckardt’s theory to general periodic one-dimensional gratings.
He also introduced the complex dielectric constant! (cf. Sec. 1.1.4) for the treatment of
absorbing gratings.

Since rigorous treatments of the diffraction problem showed steadily growing importance, in
1981 Moharam and Gaylord[88] published a condensed and more transparent formulation
with the ability to numerically analyze a wide variety of one-dimensional grating problems.
Their approach also allowed the calculation of oblique incidence in a plane normal to the
grating grooves. It was also this paper, which established the name rigorous coupled-wave
analysis (RCWA) for the method. Shortly after, Moharam and Gaylord extended the the-

!Today the dielectric constant is commonly referred to as relative permittivity (cf. Sec. 1.1.2).
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2.1. HISTORICAL REVIEW

ory to surface-relief gratings[87] by introducing a multi-layer staircase approximation (cf.
Sec. 2.8) and also to conical mounting[89] (cf. Fig. 1.3b). Two-dimensional grating struc-
tures were first studied by Brauer and Bryngdahl in 1993[12]. 1995, Moharam and Gaylord
presented a revised formulation of the RCWA[91] (cf. Sec. 2.2). In it, former numerical
instabilities, which caused the appearance of unphysical, exponentially growing fields (also
called anti-evanescent waves), had been eliminated by appropriate normalization and sub-
stitution. In the same year, 1995, Moharam and Gaylord presented yet another significant
work[92] introducing a numerically stable treatment of surface-reliefs and multi-level gratings,
which again faced the problem of exponentially growing fields with an elegant normalization
scheme (cf. Sec. 2.8.3). This method, which they called the enhanced transmission ma-
trix approach (ETMA) was later shown[123] to be more efficient than previous approaches
like the S-matrix, the R-matrix approach[72, 73] or the straight forward T-matrix approach
(cf. Sec. 2.8.1 - 2.8.3).

The subsequent developments particularly concerned a convergence problem, which is still
topic of discussion today. Due to the Fourier expansion of the electromagnetic fields and the
permittivity function, the representation of binary grating steps provoke the occurrence of a
Gibbs phenomenon. In one-dimensional grating configurations this concerns the x component
of the electric field, if the incident light is TM polarized, and causes a significant drop in
convergence performance. In 1996, independently of each other, Lalanne and Morris[68] as
well as Granet and Guizal[41] empirically discovered a way to overcome this problem for
the one-dimensional case. Today, the method is known as the Li’s factorization rules (cf.
Sec. 2.5.2), whose author provided a detailed description[77] on their use and also added a
formalism for the treatment of two-dimensional crossed gratings[76]. In 2009 Schuster[113]
introduced the concept of normal vector fields to the RCWA (cf. Sec. 2.5.5), based on
the idea of Popov and Neviere[107]. This work can also be seen as a generalization of Li’s
rules for two-dimensional gratings: While previously slanted grating contours had to be
approximated by a zigzag contour in order to apply Li’s rule, this restriction was overcome
here. However, the new approach requires the continuation of the normal vector fields in the
complete simulation area, which is not trivial for complex geometries. Another important
extension of the RCWA is the concept of perfectly matched layers (PML) by Silberstein and
Lalanne in 2001[114], which even enables the simulation of non-periodic structures. Again
inspired by the work of Popov and Neviere[107], 2003 Li included anisotropic media and
locally dependent permeability to the scope of the RCWA[74].

While all above studies only consider diffraction for plane wave incidence, the present work
aims to extend the RCWA to a natural treatment of localized input fields (cf. LIFRCWA
in Chap. 3) like Gaussian beams. This, for example, allows the rigorous analysis of waveguide
coupling. Besides, near fields (cf. Chap. 4) and local absorption (cf. Chap. 5), which derives
from the rigorous calculation, is investigated for the use of component optimization.
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CHAPTER 2. THE STANDARD RCWA ALGORITHM

2.2 Definition

In this work, the term standard RCWA refers to the formulation of Moharam and Gaylord in
1995[91] for gratings with periodicity in two dimensions. Therein, all media are assumed to be
linear, isotropic, non-conducting and having a permeability equal to that of the vacuum. The
incident wave is assumed to be a monochromatic plane wave with harmonic time dependence.
In contrast to previous works, however, the following formulation is slightly improved in some
points to enhance clarity: For one, the diffraction coefficients are obtained using only a single
global Cartesian coordinate system instead of a local coordinate system for every diffraction
order. Besides, the eigenvalue problem is applied to the electric field components rather than
the magnetic ones and the notation is slightly adjusted to be naturally compatible with the
LIF extension of chapter 3. As such the standard RCWA will later serve as a reference for
further extensions and discussions.

2.3 Geometry

The following section describes the geometry of a typical three-dimensional diffraction prob-
lem for the RCWA.

%

kr;m,n

en

region [

region IT d X

region [IT

P, \

Figure 2.1: Geometry of the three-dimensional diffraction problem
at oblique incidence

2.3.1 Simulation area

The simulation area is defined in Cartesian space and divided into three regions along z with
planar interfaces in between. Region I and region III are also known as superstrate and
substrate. They are assumed to be homogeneous with constant refractive index n; and nyy
respectively. Consequently, diffraction only takes place in the inhomogeneous region II in
between.
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2.3. GEOMETRY

2.3.2 Diffractive structure

A diffractive layer in region II is characterized by its thickness d and a function ny(z,y)
of its refractive index. The latter may vary with constant periodicity P, and P, in lateral
directions, but remains constant in the direction of z. The result can be a two-dimensional
binary grating, as illustrated in Fig 2.1, but also gradient index structures are allowed. In the
standard RCWA region II contains only one such diffractive layer. Extensions to multilayer
gratings are discussed in Sec. 2.8.

Since in most optical applications the permeability of the structure can be neglected (refrac-
tive index n = /e with relative permeability 4 = 1), the isotropic refractive index of the
grating can be fully described by a local permittivity function ey (z,y). Due to its periodic
definition ey (x,y) can be expressed by a Fourier expansion as it is used in the following
RCWA algorithm:

e(z,y) =) em,nem(’%”’%y) (2.1)
m,n

To improve readability here and in the following, e will be referenced without further
mention of the index II.

When using Fourier expansion in numerical simulations, a truncation of the infinite series to a
finite sum of terms is always inevitable. The limits of the resulting symmetrically truncated
partial sums are defined by the mode count M = 2My + 1 and N = 2Ny + 1 for each
dimension respectively. Thus, the individual mode indices m and n range in symmetrical
intervals {—My . + Mo} and {—Np ... + No}. The Fourier coefficients €, ,, are determined by
the inverse Fourier transform and can either be obtained analytically or numerically. In case
of an analytic approach, the solution to the Fourier integral

1 —2mi | g4
7//6(%9)6 i +Pyy>dw dy (2.2)

needs to be known and thus the computational effort almost dissolves. Moreover, the coef-
ficients can be parameterized and then controlled directly in the Fourier domain. For any
other arbitrary periodic and discrete (or discretized) space function, for which the Fourier in-
tegral is either unknown or not available, the coefficients can still be calculated using discrete
Fourier transform:

o = S (e (). (2.3)
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CHAPTER 2. THE STANDARD RCWA ALGORITHM

2.3.3 Incident field

For now, the setup is illuminated by a single plane wave in region I. The angle of incidence 6
is defined with respect to the surface normal and the azimuth angle of the plane of incidence
is ¢ (cf. Fig. 2.1). A local coordinate system spanned by the vectors e and ey (tangential
and normal to the plane of incidence) is used to describe the field’s polarization state®. Here,
1 is defined as the angle between the polarization vector of the electric field E; and the
polarization basis vector ep in the plane of incidence. k; = nykgs; is the wave vector of the
electromagnetic incident field and points in the propagation direction of the wave.

Recalling the definition of the vectorial plane wave (cf. Eq. 1.12), the incident field can be
described by?

Ei (I‘) = EO . E1 . €ikir. (24)

FEjy is a scalar amplitude an usually set to one in simulations. Substituting E; according to
the definition given in 1.26 and the normalized wave vector s according to Eq. A.1 leads to a
full description of the incidence field with the three defining angles 6, ¢ and ¥ for propagation
and polarization:

| ((cos(¥)siusis — sin(®)siy
E; (r) = o8 (1)) 8izySize + SIN(1) iy | R0 St tsiytsi2) for g £ 0 (2.5a)
sl “cos(i)s,
cos(y)cos(0)cos(¢p) — sin(y)sin(¢p)
_ COS(LZJ)COS(@)SZW(QZ)) + SZ'TL(T,Z))COS(QZS) eikonI(sin(9)cos(¢)a:+sin(9)5in(¢>)y+cos(6)z)
—cos(1)sin(0)

(2.5b)

2.4 Diffracted fields

Since the diffracted fields of a periodic grating structure are also assumed to follow the same
periodicity (cf. Sec. 1.2.1), a key idea of the RCWA algorithm is the use of a Fourier ex-
pansion approach for the entire electromagnetic field inside and outside the grating region
in order to dissolve the spatial derivatives in Maxwell’s equations (cf. Egs. 1.1a and 1.1b).
In general, however, the electromagnetic fields do not show strict periodic form along the

2The standard RCWA only provides for a single incident plane wave and thus only allows linear (and
circular) polarization of the incident light. An extension of the RCWA algorithm to localized input fields,
which provides more flexibility in the polarization is introduced in Chap. 3.

3Note again that the letter 4 is never used as an index in this work. Depending on the context it can easily
be identified as the imaginary number or as a subscript, which indicates the affiliation with the incident field.
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grating surface. In fact, according to the Floquet-Bloch theorem, the general solution of
the grating diffraction problem involves pseudo-periodic fields as shown in Sec. 1.2.1. This
particularly applies to tilted incidence and is described by an additional phase term, when
expanding the fields into so-called pseudo-Fourier series. In the limit of normal incidence,
the phase term disappears and the field becomes strictly periodic.

The (Pseudo-)Fourier expansion of the electromagnetic field provides an equivalent rep-
resentation by superposition of plane waves and marks the transition from a continuous
(pseudo-)periodic spatial field to a discrete representation in Fourier space, in which the
RCWA algorithm operates.

2.4.1 Diffracted field outside the grating

Outside the grating, the Pseudo-Fourier expansion of the electric field is carried out along
the lateral coordinates (x and y), whereas the normal dependence (z) is realized as a simple
wave propagation term. The result is a Rayleigh expansion of the field (cf. Sec. 1.2.1).

In region I the electric field E;(r) is formed by the superposition of the incident wave
(forwards propagating) and the reflected waves (backwards propagating), while in region IIT
the electric field Epy (r) only consists of transmitted waves (forwards propagating):

EIU (I') = Ei;j (I‘) + Z ]%j;m,neikr;m’nr (26&)
m,n

— EOEl.jei(ki;aclH'ki;yy"Fki;zz) + Z ij nei(kz;mx‘i’ky;ny‘i")/l;m,nz) (26b)
m,n

B (r) = > TjammeStmn® (2.6¢)
m,n

= Z Tj;mmei(kZ;mI'f‘ky;ny"F'YHI;m,nz) (26d)
m,n

with j = z,y, z and

kg = kix + 2%%, kiw = konySie = konrsin(0)cos(¢), (2.7a)
kym = kiy + 277%, iy = konrsiy = konysin(6)sin(¢). (2.7b)
Y

In Eq. 2.6 Rj.nn and T}y, can be identified as the reflection and transmission coefficients
of the (m,n)-th grating’s diffraction order. k., , with p = 7t defines the corresponding
wave vector (cf. Fig. 2.1). Their lateral components in Eq. 2.7 consist of a harmonic part
and an additional lateral shift k;,;, in k-space with j; = x,y. According to Snell’s law they
are equal throughout all regions. The normal components k..., on the other hand, are
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CHAPTER 2. THE STANDARD RCWA ALGORITHM

generally varying depending on the local refractive index according to the dispersion relation
(k = nkog = n2xw /A, cf. Eq. 1.13b). Due to their special position, they are referred to with
the symbol ~. For the outer regions the refractive index is assumed to be known and they
can are defined as:

V= —/(konr)® — k2, — k2, and (2.8a)

YII;mn = \/(k;OnIH)2 - k%,m - kzz,,,n (28b)

2.4.2 Diffracted field inside the grating

Inside the grating the electromagnetic field is again expressed by a Pseudo-Fourier expansion
along the lateral coordinates. However, since the grating is constant, but not periodic, the z-
dependency remains unknown and thus the fields are only partially transformed into Fourier
space:

Enj(r) = Y Sjmn(z)eFemthvny) (2.9a)

m,n

1 ,

Hyj(r) = — Z Uj;myn(Z)e’b(kac;mai-i-kymy) (2.9b)

ZO m,n
Eq,; and Hjp.; describe the electric and the magnetic spacial vector fields inside the grating,
respectively. Sj.,n and Uj.y,, are the corresponding Fourier coefficients with a remaining
z-dependency. Zy = +/po/€o is the impedance of the vacuum and its inverse is chosen as a

prefactor of the magnetic field to cancel out different scaling factors of E- and H-fields in the
following calculations.

Substituting Maxwell’s equations

Assuming harmonic fields (cf. Eq. 1.8a and 1.8b) and a complex permittivity (cf. Eq. 1.9a),
the first two Maxwell equations simplify to

V x H = —iwepeE (2.10a)
VXxE = iwpuH. (2.10b)

For the later solution of the system of equations, the tangential components are most relevant
due to their continuous nature at material boundaries (cf. Sec. 1.1.7). The z-components
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2.4. DIFFRACTED FIELDS

can be eliminated without the loss of any information. Substituting the Fourier approaches
of the permittivity and the fields leads to a differential vector equation, in which the lateral
components of the electric and the magnetic field appear coupled:

S, 0 0 K.l 'K, K.l ] 'K;+1I\ [Sz
9 | Sy . 0 K[ 'Ky -1 K[ 'K, Sy
o |u | T kk, K2-[d 0 0 U,
U, K2+ KK, 0 0 U,
M
(2.11)

Here, K; is a M N x M N diagonal matrix of the scaled wave vector components k;.m,.»/ko.
[€] is a Block-Toeplitz-Toeplitz-Block (BTTB) matrix of the permittivity coefficients €, .
A BTTB-matrix is basically a second order Toeplitz matrix that holds a four-dimensional
dataset [€]mn,qr = €m—nq—r i a conventional (2D) matrix form as depicted in Fig. 2.2.

n=0 1 . N-1 r=0 1 e N-1

m=0 =0 :
" ! mn

—_

M ’ ! M

(a) Toeplitz matrix [€] (b) BTTB matrix [€]

Figure 2.2: Hllustration of a (a) Toeplitz matrix with [e],, , = €m—n
and (b) a BTTB matrix with [€]mn.qr = [€]lm N+tgn-M4+r = Em—n,g—r

In Fourier space, the product of any two periodic space functions, such as E (z,y) and € (z, y)
can be expressed as a convolution of all its discrete Fourier coefficients. Depending on the
dimension of the two functions, a sum notation given by the Laurent factorization allows a
simple matrix-vector form by the use of a Toeplitz or BTTB matrix:

e(z,y) - E(z,y) = D(z,y)/€0 (2.12a)

i €m,n * Sm,n = Z 6q—m,’r—nSm,n (212b)
q,r

=[e]-s (2.12¢)

Since sums and matrices need to be finite in numerical calculations, mode truncation is
inevitable but can lead to approximations for signals with high bandwidth.
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CHAPTER 2. THE STANDARD RCWA ALGORITHM

For the sake of better readability the z-dependence in Eq. 2.12 and in the following equations
is not written out until the solution of the eigenvalue problem provides a concrete dependency.
Also, as mentioned earlier, the material parameters of the grating are all assumed to be of
pure isotropic nature. Anisotropic behavior would be treated with an additional tensor
degree[74], which would cause an unnecessary complexity here.

Relation 2.11 can also be written in a short form as

0 (S S
(o) = (@)

with S; and U each denoting a stacked, 2M N-sized vector of the Fourier coefficients and
an anti-diagonal block matrix M.

By identifying the block elements M and Ms of matrix M as

0 (S 0 My S
HE-oE) e

with

M, := ik KE”;HJE;’ _Ezgi]ﬂ_i%) + (0 I)] (2.15a)

-K;K K2
M2 = iko Y v
K K2 KK,

a relation between S| and the second order derivative of S| with respect to z can be found*:

8SL/8z:M1-UL
08, /02> =My -9U | 0z = MM, -S|

= 0°8,/02> —Qp-S,. =0  withQpg:= MM, (2.16)

Equation 2.16 shows a system of second order ordinary differential equations with constant
coefficients that has the same form of the Helmholtz equation (cf. Eq. 1.39) and can similarly

4 An equivalent relation for the magnetic field is derived in Sec. A.5
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be transformed into an eigenvalue problem: if V is the matrix of eigenvectors of Qg and if
A is the vector of eigenvalues, then the Fourier coefficients of the electric field can be written
as

S, =VA (2.17)

while using the exponential approach (cf. 1.41)

Aqg(z) = tJ_;qe_kO\/Ez + m_;qek“\/g(z_d). (2.18)

Thus, in Eq. 2.17 an expression is found that describes the electric field inside the grating
region without the dependence of a magnetic field and without derivatives of any order.

In Eq. 2.18 ¢ is an index ranging from 0 to 2M N —1. Each coefficient ¢,., and r .4,
which is yet to be determined, can be identified as the amplitude of a fundamental mode or
a plane wave, which solves the diffraction problem and propagates undisturbed in the grating
region in forward or backward direction while experiencing an effective index ng = iy/Ag/52.
(cf. Fig. 2.3). For positive real values of \/A, the opposing plane waves become evanescent
and thus decay in distance to the borders (cf. red curves in Fig. 2.3).

I 17 111
1 N, fi

Rmn

b)

\

Y
Y

T'q

A

<
3

N

Figure 2.3: Forward and backward propagating plane waves in different
regions of the simulation area including evanescent waves in red

The exponential approach in Eq. 2.18 can easily be shown to be a solution of the eigenvalue
problem[126]:

9%S, /02 —Qp - S, = 9*VA/92* — Qp (VA)
=Vo*A /0> — QpVA

= VAA — QzVA
= (VA-QpV)A
=0
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With the following three definitions made

Tyi= /A (2.19a)

W = M;'VT (2.19D)
By(z) := —tL;qe_kO\/Ez + Ti;qeko\/g(z_d), (2.19¢)

the Fourier coefficients of the magnetic field can be derived from Eq. 2.20, which saves the
effort of solving a second eigenvalue problem:

U, =M;'9S, /0=
= M;'VIB
= WB (2.20)

Together, the Fourier coefficients of the electric and magnetic field components inside the
grating can now be described as two separated equations

S| =VA (2.21a)
U, =WB (2.21b)
or as a one joint equation
S, _ VP* VP~ t,
(6) = (e o) () 22

with Pq+ = e*ko\/gz7 Pq— = eko\/g(zfd)‘

Rewritten, this equation shows the relation between two different representations of the field
inside the grating.

S1(z) vV VvV Pt(z) 0 t
(Uj(@) - <w —W) < 0 P—(z)> (ri) (2.23)
—— ~——

F(z) Q P(z) v
Fourier modes Conversion + Coupling Propagation Fundamental
modes

On the left side of the equation F(z) holds the coefficients of the lateral Fourier expansion
of the electric and the magnetic field. On the right side ¥ contains the coefficients of the
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field’s eigenmodes in the grating. The propagation matrix P(z) propagates plane waves
with amplitude t; ;, and r| , in forward and backward direction along z. And the matrix
of eigenvectors Q transforms the eigenmodes into Fourier modes and thus describes their
coupling in the grating region.

Boundary conditions

The remaining unknown quantities are the expansion coefficients inside the grating (t | and r |,
cf. Eq. 2.23) and outside (T, and R, cf. Eq. 2.6). They can be determined by taking into
account Maxwell’s boundary conditions of the tangential field components at the interfaces
(cf. chapter 1.1.7) or more precisely by matching the fields using the Fourier coefficients as
a common basis.

Eq. 2.23, which gives an expression for the complete electromagnetic field in the grating
region, can in fact also be defined for the outer regions. With index [ = I, II, III indicating
a particular region, Eq. 2.24 describes the relation between Fourier- and eigenmodes and
holds in the entire simulation domain:

Fi(z) = Qi Pi(2) - ¥ (2.24)

Since in the homogeneous outer regions I and III the Fourier expansion of the field already
provides the fundamental modes, the expansion coefficients in these regions can be identified
by some partially known quantities of Eq. 2.6:

t; =L (2.25a)
r; =R (2.25b)
=T (2.25¢)
rpr = 0. (2.25d)

Eq. 2.25a shows a vector L := (L, Ly L.)T of size 2N M x 1, which holds the incident field
vector. It is defined by the components of the only (0th order) Fourier mode of the incident
plane wave from Eq. 2.6b:

Lj;m,n = El;j 5m,m06n,n0 (226&)
[cos()cos(B)cos(d) — sin()sin()) Smmamno
= L = | [cos(w)cos(@)sin(0) + sin(1)cos(d)] Smmamne (2.26)

—cos(¢)sin(0 ) M, mosm,no
0q,b is the Kronecker delta, which is zero for all integer values of a except for the value a=b,

where it defined as 1. The special notation 5m7m0 in Eq. 2.26b indicates a vector of length
N M with a single non-zero entry at the exact center index mg = (2My + 1) - Nog + M.
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According to Eq. 2.24 the tangential Fourier coefficients of the electric and the magnetic
field at the outer boundaries can then be described as

Fi (z1 =-0)=Q; -P; - ¥, :<(Ij _IC> <(I) 2) G“{j) (2.27a)
I

I I I 0 T
Fur(zm = 40) = Qur - Pur - ¥y = <C —C) (0 I) ( OL (2.27b)
117
I 17 117
Fr(zr) + Fr(zm) *=  Fu(zm)
=21 =0{zp =0 > zp =d|zp =0 >

Figure 2.4: Electromagnetic fields with locally defined
z-positions and matching boundary conditions at both grating
interfaces

With the definition of a local z position according to Fig. 2.4, no propagation is needed at
the interfaces and thus it is P; = Py = I with I as the identity matrix. In the homogeneous
medium of region I and III the field is already formed by Fourier modes, which are equal
to the eigenmodes. Therefore, the coupling and conversion matrix Q simplifies to a matrix
that only describes the conversion between electric and magnetic coefficients.

The exact definition of the 2 x 2 block matrix C follows from the requirement U, = C -S|
(cf. Appendix A.4) and leads to

, k.. . k2. + k2,
1 dlagq 59™VYiq _dlagq y7qk z3tq
= > ziba : (2.28)
1tko Zo dia. kg kg dia kaighyq
zliq zliq

The operator diag, (vy) converts all elements v, with ¢ = 0.. count(v) — 1 of a vector v into
a diagonal matrix with count(v) - count(v) elements®. For the matrix C the index [ refers to
one of the outer regions [ = I or | = III.

®The operator count (v) gives the number of elements of the vector v.

38



2.4. DIFFRACTED FIELDS

The Fourier coefficients at the surface boundaries can also be defined from the inside of the

grating by

Fy(0) = QuPy(0)¥y  and
Fr(d) = QuPn(d)¥y;.

(2.29a)
(2.29b)

Thus, by following Maxwell’s continuity conditions as depicted in Fig. 2.4, the tangential

field components at the interface boundaries can now be set equal, leading to

with X, 4 = e kov/Aad,

(2.30a)
(2.30D)

(2.31a)

(2.31b)

Eq. 2.31 shows a system of four matrix equations with four unknown vectors T |, R, t|
and r;. In order to determine the reflection and transmission coefficients, the system can

now be solved by first eliminating T |, R and then substituting t,, r;:

t.\ [ Cov+w  [c,Vv-w]X\ ' (2C/L,
r;)] \—[CuV-WIX —[CuyV+W]| 0

R, =Vt, +VXr, — L
T, =VXt, +Vr;

These diffraction coefficients are the result of the standard RCWA algorithm.

(2.32)

(2.33a)
(2.33b)
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Remark: The submatrix C in Eq. 2.28 is defined in a global Cartesian coordinate system
with the base vectors ;, , and .. This results in diffraction coefficients R and T being
also defined in a global Cartesian coordinate system rather than local TE-/TM-systems of
the individual diffraction order with base vectors en.m n, eéﬂ;m’n, eé{lm’n (cf. App. A.6).
This spares the need for local rotation matrices that are usually used to solve the conical
problem[91]. As a result the concept of the conversion matrix Q is adopted to the outside
region (cf. Egs. 2.27), so that Maxwell’s continuity condition at the grating interfaces (cf.
Eqgs. 2.31) can be satisfied in a way that is as straight forward and simple as in the classical
(non-conical) diffraction problem[91]. This approach was also published in [6]. A conversion
to the local TE-/TM-coordinate systems can also be reviewed in App. A.6.

2.5 Convergence problems

The convergence of a numerical algorithm describes how the error between the numerical
solution and the exact solution changes over the number of iterations. By definition an
algorithm has a good convergence behavior if the error is shrinking below a given limit in
only a few iterations. If a lot of iterations are necessary to reach this limit, the convergence
behavior is bad. And if the error is not shrinking at all, the algorithm is called divergent.
A necessary, even though not sufficient condition for the convergence to an exact solution,
is any convergence at all. Since in most scenarios, in which the RCWA is used, the exact
solution is unknown, the algorithm is repeated with increasing truncation order until the
difference of two subsequent solution shrinks below a given limit.

As a Fourier modal method the RCWA has a fundamental issue in dealing high frequencies
as they appear at the steep slopes of binary grating. This is because of the necessity of
truncating the Fourier series to a finite limit in numerical calculations. Especially jump dis-
continuities, as they occur in a rectangular function, contain an infinite number of frequencies
and a truncated Fourier approximation results in the appearance of over- and undershoots -
well known as the Gibbs phenomenon. Even with an increasing number of modes to model
the signal, the effect cannot be eliminated. However, the use of suitable window functions, as
they are broadly used in signal processing[45], can - at the cost of spatial resolution - reduce
the effect. In optics this is technique is known as apodization and discussed in Sec. 2.6.

In certain cases, though, the effect of those over- and undershoots can also cause oscillations in
field components that are supposed to be continuous and should not contain high frequencies.
This lead to a significant decrease of the convergence speed.
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2.5.1 One-dimensional gratings, the origin of the problem and its acknowl-
edged solution

After the first publication of the RCWA for one-dimensional gratings by Moharam and
Gaylord, it became evident, that the algorithm suffered bad convergence behavior in case
of TM polarized incident light (¢» = 0 deg, cf. Sec. 2.3.3). This was caused by unphysical
oscillations of the displacement field: In the TM case the electric field vector E(x) always
points normal to the one-dimensional binary gratings grooves (cf. Fig. 2.5a) and develops
a pairwise-concurrent jump discontinuity with the spacial permittivity e(x). As a result of
the truncated Fourier series expansion, the electric displacement field® D, (x) = epe(x) E,(x),
which should be continuous in normal direction (cf. 1.1.7), show over- and undershoots
due to the Gibbs phenomena of the constructing functions. This leads to bad convergence
behavior.

( ) TM polarization ) TE polarization

Figure 2.5: Difference between TM and TE polarization at a one-dimensional grating
(modulation along x): (a) TM polarization causes unphysical oscillations at the grating
slopes resulting in a bad convergence behavior.
(b) TE polarization is harmless since no jump discontinuities occur.

A solution was first found empirically: In 1996, Lalanne and Morris[68] and also Granet and
Guizal[41], independently demonstrated significantly improved convergence for the TM case
by replacing the Toeplitz matrices [¢] by [1/¢] " in the product with the electric field compo-
nents S, normal to grating slopes. Shortly thereafter, this idea was given a theoretical basis
by Li[77] and therein referred to as the inverse rule. Li also embedded the rule into a greater
set of rules (later referred to as Li’s factorization rules), which give guidance to the correct
use of the inverse rule in different situations. A year later he extended the factorization rules
to the special case of two-dimensional crossed gratings[76]. A more general approach to apply
the inverse rule in two-dimensional gratings uses a normal vector field. It was first proposed
for the differential method by Popov and Neviere[107] and later reformulated for the RCWA
by Schuster[112, 113] (cf. Sec. 2.5.5). The latter approach is not pursued further in this
work. However, it is worthwhile mentioning as it shows considerably improved performance
in the case of curved grating structures compared to Li’s formulation that relies on a zigzag
approximation for such case.

5The following discussion focuses on normal incidence, TM polarization and one-dimensional gratings with
grating slopes aligned to the y-axis. Thus only an x-component of the electric field exists and the subscript
is left out.
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2.5.2 Li’s rules

In order to preserve the smoothness of the field across discontinuities of the permittivity,
Li concluded three factorization rules[77], later known as the Li’s rules, which define the
appropriate usage of the inverse rule:

1. A product of two piecewise-smooth, bounded, periodic functions that have no concurrent
Jump discontinuities can be Fourier factorized by Laurent’s rule.

Example: D(z) = epe(x)E(x) 2, D=gq [€] S (2.34)

2. A product of two piecewise-smooth, bounded, periodic functions that have only pairwise-
complementary jump discontinuities cannot be Fourier factorized by Laurent’s rule, but in
most cases it can be Fourier factorized by the inverse rule.

Example: D(z) = epe(x)E(x) 2, D=gq [1/e7'S (2.35)

3. A product of two piecewise-smooth, bounded, periodic function that have concurrent but
not complementary jump discontinuities can be Fourier factorized by neither Laurent’s rule
nor the inverse rule.

In his first rule, Li claims that for non-concurrent jump discontinuities, the Laurent’s factor-
ization rule applies as usual. However, it should be noted that the Gibbs phenomenon that
occurs at sharp edges, still remains present as a fundamental problem of Fourier expansion.

In case the two functions €(z) and E(x) do have pairwise-concurrent jump discontinuities, Li
first derives the Fourier coefficients of D(x) := epe(x) E(z) from the convolution of .Z {epe(x)-
E(z)} = €g€m * Sy, according to Laurent’s rule (cf. Eq. 2.36a). Then, he defines the Fourier
expansion of D(z) with truncated Fourier coefficients DM and the same summation limits
(cf. Eq. 2.36b). And finally he defines another Fourier expansion of D(x) with exact Fourier

coefficients D,, (cf. Eq. 2.36¢):

Moy
DM) i=¢y > €rmSm (2.36a)
m=—Mj
Mo
DM)(z) .= 3 DMo) gine (2.36b)
=—M
MO .
Dup(z):= Y Dye™ (2.36¢)
n=—Mp
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2.5. CONVERGENCE PROBLEMS

Subscript M or superscript M enclosed in parentheses denote the symmetrically truncated
partial sums. Although a reader would expect DMo)(z) = Dy, (2) as My is tending to
infinity, Li showed that in general for concurrent jumps, the difference between the two does
not vanish everywhere, but tends to a fixed limit of 72/4 at the position of the jump[77].
However, by replacing the Toeplitz matrix according to the inverse rule

Mo
DMo) .— ¢, Z [1/6]7;171 S, (2.37)
m=—Mp

the over- and undershoots of the concurrent jump discontinuities compensate for each other
and disappear in the course of the convolution operation. This is illustrated in Figs. 2.6a to
2.6d.

2.4 T T T T T T T
22 A .
2 — —
R 18 . .
S = . X
S 16 S .
T 14 . 2
1.2 T 6
1 nvl\ _ 5
0.8 | | | | | | | 4 | | | | | | |
04 06 08 1 1.2 14 16 04 06 0.8 1 1.2 14 1.6
X in um X in um
(a) €(x) in blue, ¢(Mo)(z) in red with (b) E(x) in blue, EM0)(z) in red with
Gibbs phenomenon Gibbs phenomenon
16 - T T T T T T T ]
15 b
14 R
13 b
— ’>'<\ L B
5 5 1
11 s
10 b
9 |- —
8 ! ! ! ! ! L 8L | ! ! ! ! ! [
04 06 038 1 1.2 14 16 04 06 0.8 1 1.2 14 1.6
Xinum X in um
(¢) D(z) in blue, Do) (1) in red with (d) D(z) in blue, Do) () in red with
unphysical oscillations by Laurent’s rule restored smoothness by the inverse rule

Figure 2.6: Exemplary comparison between Laurent’s rule and the inverse rule for the use
of concurrent jump discontinuities in Fourier reconstruction
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Consistency of the inverse rule can easily be derived:

D(z) = eoe(z)E(zx) —Z D = ¢ [e]S (2.38a)
= 1/el/e(z)D(z) = E(z) 25 1/e[l/eD =S (2.38b)
= D=¢ll/g 'S (2.38¢c)

This shows the difference between an untruncated calculation on paper and a truncated
numerical calculation. In the first case all vectors and matrices in Eqgs. 2.38a - 2.38c have
infinite size and the above transformations are exact, but also irrelevant, because the two
replacing matrices are identical. In the second case, the truncation selects frequencies in the
same interval but of the two different spectra of e(x) and 1/¢(x). Apparently this leads to a
slight difference of [¢] and [1/¢] ™" that grows with decreasing truncation order. However, as
mentioned above, while [¢] and S have concurrent over- and undershoots, which add up and
cause the unphysical oscillations of D(z) in the first place, [1/¢]"* and S have compensating
over- and undershoots and thus resolve the convergence problem of the overall algorithm for
one-dimensional gratings.

2.5.3 Example

2.00

1.50]

1.00;

Position.x in um

0.50]

0.00 ; :
-1.00 0.00 1.00 2.00

Position.z in um

Figure 2.7: Sketch of a Ronchi metal grating

In order to demonstrate the influence of the inverse rule on the convergence behavior of the
RCWA, a metal grating as depicted in Fig. 2.7 is analyzed, since those are known to cause
bad convergence in the standard approach if illuminated with TM polarized light[76]. The
grating is excited by only a single plane wave with wavelength A = 1 um at an incidence angle
of # = 30 deg. Superstrate and substrate are chosen to have a refractive index of ny = 1 and
nyr = 1.5 respectively, while the grating is a Ronchi grating with a duty cycle of f = 0.5
at a period of P, = 2\. This causes the grating to alternate its refractive index along the
x-axis between ey, = 1 and €j7, = 0 + 5¢. The grating’s thickness is d = A.
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2.5. CONVERGENCE PROBLEMS

Fig. 2.8a clearly shows the superior convergence of the RCWA in case of TM polarized light
when the inverse rule is applied. The results specifically refer to a one-dimensional grating
that is periodic in the direction of x. Since the same grating is constant is the direction of y,
there is no need for the inverse rule in the TE case and the modified RCWA naturally shows
its unaltered good convergence behavior in Fig. 2.8b.
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Figure 2.8: Convergence speed of the standard RCWA and the RCWA with inverse rule
applied, when analyzing a one-dimensional grating with periodicity in the direction of x.
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2.5.4 Two-dimensional gratings

For two-dimensional gratings the situation is more complex, because the field component
normal to structural boundaries can vary dependent on the position inside a layer. Therefore,
the convergence problem is not confined to the TM case anymore.

In 1996 Li proposed a reformulation of his factorization rules for two-dimensional gratings[76].
It refers to the special case of crossed grating boundaries that are aligned along two inde-
pendent basis vectors in the x-y-plane. Although curved geometries can also be treated with
this approach, they first need to be approximated with zigzag patterns.

For his approach Li introduces a new notation for partly Fourier transformed coefficients:

Py e
) = 3 [ elag)e ™5 (2.39)
Py i
bmn(e) = 3 [ el e ay (2.39)
and

1 ! 1 Py -1 —2mii Ly
Ure—Um,n;q,r = \"76—‘ J = Py/O {(1/61 }m,q(y)e Py dy (240&)

-1 ' P, g
L€l bnsar = HH w - fl’/o {11/e] Ymgl@)e™ ™ "da (2.40b)

)

First, in Eq. 2.39, a Fourier expansion is applied for only one dimension and the resulting
coefficients are assembled in Toeplitz form along the same direction. In 2.40 Li applies the
inverse rule. A second Fourier expansion is applied to the complementing dimension along
with another Toeplitz reordering, which finally leads to a BTTB matrix.

This way, €(z, y) is fully transformed into Fourier space, but the inverse rule is only applied to
one dimension. Thereby, discontinuities can be treated separately according to their orienta-
tion. To give a more specific example: The product |[€]|S, would treat pair-wise concurrent
jump discontinuities along the x-axis with the inverse rule to ensure smooth continuity of
the displacement field while using Laurent’s factorization rule for the transformation in y-
direction.
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2.5. CONVERGENCE PROBLEMS

In summary, for two-dimensional crossed gratings, Li’s second factorization rule can be re-
formulated to the following:

If e(x,y) and E(x,y) are two piecewise-smooth, bounded functions with periodicity in x and
Y, that have only concurrent jump discontinuities along a single dimension, then their product
can be Fourier factorized by applying the inverse rule to the discontinuous and Laurent’s rule
to the continuous dimension.

Examples: Dy(z,y) = eoe(z,y) Ex(z,y) 2, D,=¢ [[€]]Sz (2.41a)
D, = e[l€]]Sy (2.41Db)

Applying Li’s rule to the standard RCWA, which was described at the beginning of this
chapter, requires the replacement of those BTTB matrices, which form a product with the
normal field components, according to the inverse rule. That way, in the context of equation

0 (S 0 My S
o (8) = %) (@) =

matrix M; and M transforms into

. K. [ 'K, —K.[e] 'K, 0 I
M, = ’Lk() [(Kyﬂfﬂ_le _KyIIGH_IKa:> + <_I 0)] (243&)

M, = i’foK_f{&I;{y KK;) - <H2U _%eﬂ)]- (2.43b)

Li’s (factorization) rules are widely used, but require all lateral grating slopes to be aligned
to two independent base vectors. Curved structures or other geometries always have to be
approximated by zigzag patterns as shown in Fig. 2.9.

Figure 2.9: Zigzag approximation of a curved grating slope
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2.5.5 Normal vector fields

A more general approach was first suggested 2001 by Popov und Neviere[107] for the integral
method and adapted to the RCWA by Schuster[112, 113] in 2007. The idea is to separate
the local electric field into its normal and tangential components with respect to the grating
boundaries at every position in the layer.

If E is the electric field inside a grating and N is a vector field normal to the grating
boundaries, then the electric field can be projected on to the respective normal and tangential
vectors by

Ey=N(N-E)= (N@N)E (2.44a)
E;r=E—-Ey. (2.44D)

The symbol ® denotes the outer product of two vectors. After separation, the field compo-
nents are Fourier transformed and the appropriate factorisation rules are applied individually
for the normal and tangential components.

Dy = H " NeNE (2.45a)

Dy = []E — [m] T INeN]E. (2.45b)

This way, the inverse rule can always be applied correctly for any arbitrary geometry through-
out the grating region. However, the boundaries’ normal vectors are only well defined at the
boundaries themselves. An extrapolation to a complete normal vector field is generally not
unique (cf. Fig. 2.10) and requires sophisticated methods, which are still topic of ongoing
research[40].
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Figure 2.10: Normal vector field of a circular structure calculated with three different
algorithms by Schuster. Source: T. Schuster. “Simulation von Lichtbeugung an
Kreuzgitter-Strukturen und deren Anwendung in der Scatterometrie”. PhD thesis. Institut
fiir Technische Optik der Universitaet Stuttgart, 2010.
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2.6 Apodization

In signal processing, the use of window functions, also known as apodization functions, are
a common technique[45] to reduce the over- and undershoots of the Gibb’s phenomena that
occur when non-bandwidth limited functions are Fourier expanded. Thus, it seems reasonable
to apply apodization to diffraction gratings, since it would target the root of the convergence
problem in the RCWA. The idea is to multiply a window function with the signal (in this
case the permittivity function) in the frequency domain and thereby fade out higher orders.
In position space this corresponds with the smoothing of any sharp edges in the grating’s
structure.

A suitable apodization function is given by the folloing Gaussian function

L (m)2
Ay = € MO ,

m

(2.46)

where m is the mode index. Figs. 2.11b and 2.11d show the smoothing effect of the apodiza-
tion function for two different truncation orders: My = 4 = M = 2My+ 1 = 9 and
My =80= M =161
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Figure 2.11: Example for apodization at different truncation orders
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Since the Gibbs phenomenon only occurs for the field components, which are oriented normal
to the grating grooves, the convergence speeds should not deviate a lot, when applying an
apodization function to the permittivity function under TE polarized light. This can indeed
be observed in Fig. 2.12bh.
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Figure 2.12: Comparison of the convergence speeds of the standard RCWA, the standard
approach with inverse rule applied and with apodization.
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Figure 2.13: Reconstructed electric field (in orange), permittivity (in red) and electric
displacement field (in blue) with (b) and without (a) apodization. In either case, the
unphysical oscillations caused by the Laurent’s rule remain.

Unfortunately though, apodization does also not improve the convergence speed for TM po-
larization either. Fig. 2.12b shows the convergence of the transmission efficiency of the Oth
diffraction order for the same metallic grating that was analyzed before in the example of
Sec. 2.5.3. The reason for the inferior convergence speed lies in the fact that the apodization
changes the form of the design grating and with that also the target function of the Fourier
expansion. Since the coefficients of the original Fourier expansion already corresponded to a
reconstructed grating with the smallest square error based on the Fourier base functions[22],
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a change in the grating form leads to new Fourier coefficients, which now correspond to a
reconstructed grating with a greater square deviation from the original design. This is re-
flected in the convergence speed of the diffraction coefficients and can even be observed in the
TE case (cf. Fig. 2.12b). Fig. 2.13D illustrates that the apodization also does not cure the
critical situation at the concurrent jump discontinuities, but in fact increases the erroneous
discontinuity in the displacement field.

It also does not seem promising to use a different apodization function, since the presented
Gaussian apodization function in Eq. 2.46 already removes the over- and undershoots con-
vincingly, while maintaining the steepness of the original grating slopes.

2.7 Local permeability

Most optical materials only have a very weak magnetic coupling component. Their perme-
ability p is assumed to be close to the one of the vacuum. Hence, their refractive index
n = /ep is only determined by the permittivity e. However, in 1967 Veselago published
his theoretical work about materials with negative permittivity and permeability[128], which
laid the foundation of today’s research about so called metamaterials. Metamaterials are
artificial materials with subwavelength structures that act as simple electric components like
nanowires or split ring resonators[78]. Excited by an electromagnetic field they can show
custom electric and magnetic responses and that way emulate material properties that do
not even exist in nature. Most popular are materials with negative values of the permeabil-
ity and permittivity. They exhibit various counterintuitive properties like a negative index
of refraction and a propagation vector of the electromagnetic field that points in opposite
direction of the Poynting Vector, resulting in an antiparallel phase velocity. In 2000 Pendry
proposed the use of a negative index material for the construction of a perfect lens[100]. By
compensating for the exponential decay of evanescent waves with a negative index such a
lens could reconstruct an image beyond the diffraction limit. The concept was first realized
and confirmed by Melville and Blaikie[84] in 2005. Despite the promising perspective, major
difficulties in a practical design and manufacturing process remain. Building the small struc-
tures that are needed for an artificial negative index material to work in the visible range is
still a challenge. An even greater issue of all current realizations is the high dispersion and
absorption that comes along with the negative index property. These facts will hopefully
not prevent people from finding new materials and studying their nature. Thus, an RCWA
algorithm that also covers non-trivial (u # 1), locally varying permeability is evidently ad-
vantageous and was also implemented in this work. It should, however, be noted that a
similar suggestion was already made by Li[74] in 2003.

Since the underlying structure of metamaterials remain hidden to the incident light, they
can be described in good approximation only by their macroscopic permittivity and per-
meability. Hence, in order to analyze dielectric and magnetic diffraction gratings also the
permeability has to be modeled with a Fourier expansion (analogous to the permittivity in
Eq. 2.1). The key difference in the algorithm again concerns the matrices M; and My in
the partial differential equation 2.14. And so, an equal treatment of the permittivity e(z,y)
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and permeability u(x,y) leads to a very symmetric form:

Kyle] ' Ky —Ky[e] 'Ky

M, ikoK_K"[[M]]_le Kx[[u]]‘le> +< 0 —Bkﬂ

M, = ik K Kuld™ Ky _K"[[E]]_lKX> - ( ! HM)] (2.47a)
“Ky[u] 'Ky Ky[u] 'K )

2.8 Surface reliefs and multilayer gratings

Three-dimensional diffraction structures are not treated natively by the RCWA algorithm.
Instead the z dependence of the grating’s permittivity is always assumed to be constant and
a Fourier expansion is only carried out in lateral direction (cf. Eq. 2.1). In order to analyze
two-dimensional surface-relief gratings in the xz-plane, Kim et al.[63] published an approach
called pseudo-Fourier model analysis (PFMA) that performs an additional Pseudo-Fourier
expansion perpendicular to the grating. However, this approach leads to a considerable larger
eigenvalue problem and thus significantly raise the computational effort.

The by far most common way to treat z structured gratings is the multilayer approximation,
which was first suggested by Peng et al.[101] in 1975. The idea is to approximate the z
dependence of the grating by a stack of IV thin, planar-grating layers, each with averaged
constant permittivity values along z.

Figure 2.14: Multilayer approximation of a thick volume grating

The diffraction problem is then solved for each layer in terms of its eigenmodes and with
the boundary conditions at each layer interface. This concept was first adopted to the
RCWA by Moharam and Gaylord[87] in 1982. From the outer and all intermediate boundary
conditions they derived a single big system of linear equations in order to calculated the
diffraction coefficients R, T and also the remaining unknowns of each layer [ by Gaussian
elimination. The T-matrix” approach is a more compact and efficient method. However, it

"T-Matrix Approach is an abbreviation for the term transfer matrix approach.

52



2.8. SURFACE RELIEFS AND MULTILAYER GRATINGS

suffers from significant instability due to the inversion of very small values of the occurring
exponentially damped evanescent waves. After first attempts to treat the problem by an
artificial clipping of the exponential growth[120], further development led to intrinsic stable
solutions like the R-matrix® approach[75], the S-matrix” approach[72, 73] and the enhanced
transmission matrix approach (ETMA)[92] that avoid the problem of exponential growth by
proper normalization.

2.8.1 T-Matrix Approach
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Fr(zr) =+ Fi(z1) = += Fn(zn) = Fir(zmr)
21202120 ledl ZNZO ZN:dNZ[[[:O

Figure 2.15: Electromagnetic fields with locally defined z-positions and matching
boundary conditions at each layer interface

From Eq. 2.29 and Fj(d) = F+1(0) (cf. Fig. 2.15) the recursion formula

Fi1(0) = |QiPi(d)P,(0)'Q; ! | -Fi(0) (2.48)

Transfer Matrix t;

can be derived, in which a transfer matrix t; describes the propagation of the electromagnetic
field across a single grating layer [ = 1..N. The fields on both sides of a multilayer-grating
can then be linked together by a transfer matrix Ty with the following definitions:

T =Ti—1-t;, To =1 (2.49a)
1
=Ty =[]t (2.49b)
I=N
= Fu(0) = Ty - Fr(0) (2.49¢)

Although in this form the T-matrix approach appears very intuitive and elegant, the method
suffers severe numerical instabilities. They become apparent not until

8The R-matrix describes the ratio of the tangential components to the electric field and the tangential
components of the magnetic field between different interfaces[73].
9S-matrix approach is an abbreviation for scattering matrix approach.
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a full substitution of the variables in Eq. 2.50:

(e ()], [ MEH)E ) e D),

——
Qur W Q P, Q;l Qs \J4
Fm(0) Transfer Matrix t; F1(0)
(2.50)

Remark: Before analyzing the shortcomings of this approach, it should be noted that
Eq. 2.50 reveals some insights to the RCWA algorithm and should therefore be reviewed
briefly. Given is a detailed description of how the external fields on both sides of a single
grating layer are connected through a transfer matrix t; with |¢;| = 1 that describes the wave
coupling inside the grating (from right to left): The right site shows the tangential compo-
nents of the Fourier coefficients of the electric field in the incident region. Matrix Q; appends
the magnetic counterparts. Describing a full electromagnetic field, the equation transcends
the entrance interface to the structured layer obeying the continuity conditions. Here, the
Fourier modes couple. By applying the matrix Ql_1 the Fourier modes are transformed into
uncoupled electric eigenmodes. Matrix P describes their undisturbed propagation through
the grating to the exit interface, where they are finally transformed back into electric and
magnetic Fourier modes by the matrix Q;. The resulting modes again match the Fourier
modes on the outside.

The problem of this straight forward approach occurs in the process of inverting the diagonal
matrix X (cf. Xy, = e*ko\/gd), which describes the “propagation” of not only propagative,
but also evanescent waves in the grating region. Since evanescent waves decay exponentially
in distance to the boundaries, the entries in X may reach very small values and consequently
can lead to arithmetic overflow, when inverting the matrix.

2.8.2 R- and S-matrix approach

The R- and the S-matrix approach are two similar but stable recursive algorithms. They
solve Eq. 2.49c by using clever rearrangement schemes to avoid the potentially dangerous
inversion of the matrix X;. The starting point is the T-matrix approach, which can be
expressed either in terms of two orthogonally polarized eigenmodes S| and U |

Fi11(0) = [QP(d)P1(0)7' Q] - (0) (2.51a)

t;

Si+1 S; Sit1 So
—t , —T 2.51b
(Uz+1> : <Uz> <U1+1> : (U()) ( )
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or by forwards and backwards propagating waves t; and r; (cf. 2.29)

U, = [Q;;IQ,Pl(d)Pl(O)—l} o, (2.52a)

t
() = (8). (50) == (1) -
ry41 r; ry41 ro

Rearranging the equations in 2.51b and 2.52b leads directly to the R- and the S-matrix
approaches:

: C(Si+1) (U Sit1) Ui
R-Matrix Approach: < s, ) =1 ( u s, )= R; U, (2.53a)

S-Matrix Approach: Tit1 =8 i ) Tl =5 ro (2.53b)
t; ti1 to ti41

Their superior numerical stability is revealed in the corresponding recursion formulas

-1 -1
1112 (22 pil 21 12 [22 it 12
r;- —r” vt —R r r;°|ri* — R R
R=|["' ! N HL : S = and (2.54a)
Y I R I
-1 -1
11 12 21 11 12 11gl2 21q12 22
5 — 8 [I—Sl_1$l } Sl_il 87+ %, 52, [I—$l Slfl} $; (254D)
21 22 21 12 21 11 22 21g12 22
Sty + S8 [I_Sl—1$l } Sty Si% [I—$z S1—1} %)

in which each two-digit upper number indicates a block matrix element. All matrices in Eq.
2.54a and Eq. 2.54b that might be ill conditioned and are going to be inverted are subtracted
off a less critical matrix and are thereby normalized. For example, if the product Sl1_218121

in Slll contained values of very small magnitude, the inversion of the matrix [I — Sllflsl?l}

would be harmless. However, since the R-matrix is not normalized with a unit matrix, cases
might occur, where the R-matrix approach is still unstable. The complete derivation and
comparison of the R- and S-matrix approach was published by Li[73].
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2.8.3 Enhanced Transmission Matrix Approach

The enhanced transmission matrix approach (ETMA) is another efficient and numerically
stable approach to simulate multi layer gratings. It was first introduced by Moharam and
Gaylord as a partial solution[92] and later completed by Tan[123]. Due to its superior
stability and relatively simple usage, it is also used in all following simulations of this work.

The continuity condition in Eq. 2.30 and 2.31 can be generalized to connect every two

adjacent fields:
1\/Il11 lvll12 tr) _ Mll—i2-1 Mll—il-l i1 (2 55)
Mt M7 )\ M7 —Mp )\t '

Therein, the matrix elements are defined depending on the specific region they refer to. Thus,
in region II (1 <[ < N)itis

M} = VX (2.56a)
M2 = (2.56b)
M7= WX (2.56¢)
M7 .= (2.56d)
and in region I (I =0) and III (I=N +1) it is
Mt =1 (2.57a)
M}? =1 (2.57b)
M7 = C (2.57¢)
M7 .= C;. (2.57d)

With the ansatz a;t; = r; Eq. 2.55 can be rearranged to

-1
r; M2 £ Mt a;
= t; =: t;, 2.58
(tlH) <—M%2 g1 M) b ) (259

in which a;, b; and f;, g; are related by the recursion formula

a\ Mll2 fl+1 - _Mlll (2 59&)
b)) \-M? g —M? '
fl —Mll2 — Mlllal
= . 2.59b
(gl> < Ml22 _ Ml21al ( )
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For region I (1 <1 < N), this results in the explicit form

—1
aj Vl fl+1 —VXZ
_ 2.60
(bz> (—Wz gz+1> (—WXZ (2.608)

f; . -V, [I + Xa]
(gl> - ( i Xa]) | (2.60)

The recursion formula starts with defined quantities in the transmitting region (I = N + 1):

()= (am) 261)

and ends with the results for the reflection coefficients in the incident region (I = 0) through

R I 1) (1
DI TR

The transmission coefficients can then be obtained by following the recursion formula of b
derived from Eq. 2.58:

tl+1 = bltl (2.63&)
tN+1 = (bNbel...bel)tg (2.63b)

T:(ﬁbOL (2.63¢)
=N

The reason for the superior numerical stability of the ETMA over the T-matrix approach lies
in the construction of the block matrix (f; gl)T in Eq. 2.60b. In it the diagonal propagation
matrix X (with X, , = e o \/Ed), which can reach very small values for damped exponential
fields, is not inverted directly. Instead it is first normalized by adding a unit matrix and then
inverted in Eq. 2.60b. Thus any numerically unstable inversion is avoided even for thick
layers.
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CHAPTER 2. THE STANDARD RCWA ALGORITHM

2.9 Diffraction order efficiencies

The diffraction order efficiency is an important quantity when studying diffraction gratings.
It describes the amount of power that is carried in each diffraction order averaged over time.
Gratings are often optimized for high or low efficiency values in certain orders. Blaze gratings
for example, which are used in many monochromators, are designed to channel most of the
incident energy in a single diffraction order, while other orders are suppressed.

Calculating the order-specific efficiencies of a grating requires an energy analysis. If the
surface of a diffraction grating is illuminated, the amount of energy dW that flows through
a small area element dA in one time unit dt can be determined by Poynting theorem:

AW =S -dt - dA (2.64a)
= (dW) = (S) - dA. (2.64b)

Since the RCWA only considers steady state systems, the quantity of interest is the time
averaged energy. It is defined by the time averaged Poynting vector (S) (cf. A.3), which
describes the directional energy flux, times the surface vector element dA of the irradiated
area. Since the total energy must always be positive, both vectors shall have the same
orientation. The surface vector element can be expressed by the product of the area dA and
the surface normal of this area element:

dA = ndA (2.65)

Due to the law of energy conservation, all power that flows into a non-absorbing optical
element must either be reflected or transmitted (cf. Fig. 2.16). This can be expressed by

(Si)dA; = [(S;)dA,],,,, + > [(St)dAd,, ., (2.66a)
Y USHdAL L, Y (SH)dA,,,
=" gyaa, T (s)da (2.66b)

where [(S,)dA,] . with p = r,t describes the power flow of a single mode in the far field
with index (m,n). The reflected and transmitted power per mode in relation to the power
input can then be defined by the diffraction order efficiencies nﬁ,n and nzw respectively:

S,)dA,

i, = [(8r)dA ), <5>5¢) . A]m" (2.672)
S)dA,, .

T = (A, <S>i>dA]i : (2.67b)
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The time averaged Poynting vector can be expressed'’ by

1
S)=——|E|?Re {k}, 2.68
(S) = 7 Bl Re (k) (2:68)
where E describes the electric field and k is the wavevector, which, for a positive refractive

index, points in the same direction as the Poynting vector. Identifying the (m,n)-th discrete
diffraction orders, the transmission efficiency, as an example, can then be written as

1
—|Ey. 2Re {k;.
T QZOkOMIH’ tnn| R {Kimn} 1y 9 Kimni | 1
mn T 1 9 = |Tm,n’ Re ﬁ r (269)
m‘EZ‘ R€ {kz} n; Ll 1

The permeability p; of the outer regions [ = I, III is considered to be a constant, real value.
And since the surface normals were defined to point in the same direction along z as the
power flow and the wave vector, it is kin; = k;.., k,n, = k,.. = 77 and kiny = k.. = v,
and the area elements dA cancel out.

The diffraction efficiencies can now be specified for the individual transmission and reflection
orders as

N = | Tonnl*Re {WH imyn } KL (2.70a)

iz 123113

052

777}721,71 = |Rm,n|2Re {F)/Zm,n } . (2.70b)

And finally, the global amount of transmitted and reflected power is the sum over all diffrac-
tion orders:

Global Transmission : 7 := Z 1777;771 (2.71a)
m,n

Global Reflection: R := Z nﬁm, (2.71Db)

According to Moharam and Gaylord[88] energy conservation is always ensured for non-
absorbing gratings and can be verified by the following relation:

1=T+R. (2.72)

10Tn the interest of clarity the exact derivation of the averaged Poynting vector is avoided here, but can be
reviewed in Sec. 5.2.2; Eq. 5.19f.
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Figure 2.16: Schematic representation of an optical grating, which shows the power flow of
the incident (red) and the diffracted light (yellow) in multiple diffraction orders.
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Chapter 3

Localized input field approach

3.1 DMotivation

Typically, when studying diffraction effects with rigorous methods, the incident light is as-
sumed to be an infinite plane wave. This is true in many standard theories like Mie scattering,
multilayer theory and also in the standard RCWA. However, in a practical application the
light source might as well have a Gaussian profile. Other optical setups require focused beams
and even plane waves are often distorted due to imperfections of the optical components. So
there is an apparent need for an additional extension of the rigorous coupled-wave analysis
(RCWA) to localized incident fields.

3.1.1 Previous works

Most previous theories are not able to describe the rigorous diffraction grating problem for a
three-dimensional converging-diverging Gaussian beam at oblique, non-classical' incidence.
As pointed out in Sec. 1.2.3, only few analytical solutions are known for special diffraction
problems and none for arbitrary three-dimensional dielectric gratings. Finite incident fields
like Gaussian beams or even arbitrarily shaped beams would only further increase the math-
ematical difficulty. Numerical approaches, on the other hand, may aim for a decomposition
of the incident field into plane waves and superpose the results. However, this drastically
increases the computational effort, since multiple rigorous calculations would have to be per-
formed separately for every plane wave. Nevertheless, there have been multiple attempts to
approach this problem in the rigorous regime.

1976 Chu and Tamir[23] used the plane wave decomposition to apply a cylindric Gaussian
beam to Bragg diffraction theory. This way, they were the first to analyze the progression of
a Gaussian beam inside a periodically modulated medium as well as the distortion effects on
the profiles of the transmitted and diffracted beam. In 1980 Moharam and Gaylord[90] also
applied a two-dimensional (cylindric) Gaussian beam to the theory of Bragg diffraction using
Solymar’s[116] two-dimensional extension of Kogelnik’s famous coupled-wave method[66].
The analyses therefore also only considered the transmitted beam and a single diffracted
beam as the only two diffraction orders and neglected the second partial derivatives in the
wave equation. The study investigates diffraction efficiencies as a function of different system
parameters. A very detailed overview of further studies is given by Wu and Gaylord[133],

'For one-dimensional gratings this is referred to as conical incidence (cf. Sec. 1.2.1).

61



CHAPTER 3. LOCALIZED INPUT FIELD APPROACH

including approaches for homogeneous multilayer structures and the scalar regime.
However, all these methods are restricted to the Bragg-diffraction regime, where higher
diffraction orders are neglected. And it was not before 2005, when Wu and Gaylord[133]
presented a method called finite-beam RCWA (FB-RCWA), which was able to rigorously
analyze three-dimensional converging—diverging Gaussian beam diffraction by a volume grat-
ing. In order to model the Gaussian beam, they applied the plane wave decomposition (in
this work referred to as Angular Spectrum Decomposition (ASD)), successively calculated
the full RCWA for every incident plane wave and superposed the results. Due to the nature
of the ASD, this method is not restricted to Gaussian beams, but can generally be applied
to any arbitrary wave front. But as mentioned earlier, the downside of this rather straight
forward approach is that the ASD acts like a multiplicator of the computational effort, since
every decomposed plane wave requires the full calculation of the standard RCWA. This
significantly limits the practical use of the Finite Beam method.

3.1.2 Novel approach: the LIF-RCWA

In this work, a new method is presented that can handle finite beams and arbitrary wavefronts
for the three-dimensional diffraction grating problem. This method is called localized input
field RCWA (LIF-RCWA) and enables the rigorous simulation of focusing problems, while
supporting extended flexibility in polarization as it is not limited to pure linear and circular
polarization anymore. The method uses the angular spectrum decomposition (ASD) (cf. Sec.
1.1.6) to model the incident field and an adjusted version of the standard RCWA algorithm
to calculate the diffraction coefficients. In contrast to previous methods the computing effort
of the LIF-RCWA remains equal to the standard RCWA algorithm for one plane wave. A
substantial part of this concept was recently published in [6].

3.2 The idea

In the standard form of the rigorous coupled-wave analysis (RCWA), the propagating light
inside a diffractive structure as well as the reflected and the transmitted light is already
modeled as a superposition of plane waves. The incident light, however, is always only a
single plane wave. The main idea of the LIF-RCWA is to dissolve this asymmetry and to
natively excite multiple plane waves in the incident light.

Eq. 3.1 shows the standard representation of the incident light as a sparse vector L (cf.
Eq. 2.26a)

0 0 0
L,=|Ew.|.L,=|Ey| . L.= | B (3.1)
0 0 0

It is only populated with the zeroth mode for excitation, where E1 is the normalized electric
field amplitude.
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The goal of the new approach is to modify the standard RCWA in a way that it can propagate
multiple input modes in a single calculation. This way, the incident vector could be filled
with additional higher modes of the ASD of an arbitrary input light field in order to natively
simulate a broad variety of light sources.

3.3 Preparation and preliminary considerations

In accordance to the definition of the reflected and the transmitted field in Eqgs. 2.6, now
also the electric incident field shall be expressed as a superposition of plane waves with a
general vector L = (L, L, LZ)T:

E] (;U’ Y, z) = Z Lj;m’nei(kz;mw+ky;ny+'ﬂ;m,nz)’ ] = ,y,2 (32)

m,n

This definition offers great flexibility in modeling various input fields. And their rigorous
propagation as a superposition of plane waves should be fundamentally valid due to the
linear nature of the RCWA. However, as demonstrated in the following, the definition is still
ambiguous and thereby raises the requirement for consistency.

An incident plane wave, for example, which is tilted in the x/z plane, can either be described
by the selection of a certain non-zero mode mg by

Lm,n = 5m,mq5n,noa (33&)
ki = konrsin(f)cos(¢) =0, = kym =27 m/P, (3.3b)
ki, = konrsin(0)sin(¢) =0, = kyn, =21 n/P, (3.3¢)

or with an additional angular displacement k;., to the zeroth mode:

Lm,n = 5m,m05n,n07 (34&)
kiw =2mmg/Py, = kgm =21 (m~+my) /Py (3.4Db)
ki, =0, = kyn =21n/P, (3.4c)

Eqgs. 3.3a-3.3c describe a shift in k-space, whereas Eqs. 3.4a-3.4c describe a shift of the k-
space coordinate system itself. Both definitions represent the same physical situation. And
they both would in fact result in the same grating response in an untruncated calculation.
However, in a numerical simulation with finite truncation limits, usually chosen symmetri-
cally around the zeroth order, k-space is finite and the equality between the two approaches
is not given naturally.
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-
0./, -
-
2. -
-
(¢) Lmgme =1,mg=1 (d) Lmgme =1,mg=1
ki = konrsint, = 2mm, /P, ki = konrsint, = 2mm, /Py,
(in non-cyclic k) (in cyclic k)

Figure 3.1: Two different ways to model a single tilted
plane wave as an input field for the LIF-RCWA.

Fig. 3.1 depicts the different situations. The straight lines that point from the border of
a half circle to the center of the grating represent the discrete k-space (or pupil) and all
possible directional vectors of incident plane waves. The bold red lines indicate the wave
vector of the only excited plane wave. The two blue lines at +2th order indicate the highest
untruncated modes in this example.
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Fig. 3.1a shows the excitation of the zeroth mode (mg, ng) at normal incidence. In Fig. 3.1ba
tilted incidence is achieved by exciting the plus first order mode (mq,ng) and Fig. 3.1c shows
the same tilt achieved by a global shift of k-space itself. In fact, the two latter situations
are the same for the incident light. However, if the propagation through the grating is
performed in shifted k-space the resulting diffraction coefficients will differ, because of the
different harmonics being involved.

The solution is a cyclic shift that wraps the modes from one end of the spectrum to the other.
This is shown in Fig. 3.1c, where the remaining difference to Fig. 3.1b is only a matter of
indexing.

3.4 Mode truncation of the EM-fields

In order to allow a global angular shift to all frequencies while obeying the cyclic wrap
depicted in Fig. 3.1d, the tangential components of the wave vector need to be slightly
redefined as

Cyclic definition:

kg := wrap(kg.m, —m M /Py, +m M/P,) and (3.5a)
kymn = wrap(ky.,, ,—m N/P, ,+7 N/P,) (3.5b)

with the length of vector k equal to N x M and

wrap(v, a,b) = v — (a_b)“;:ZJ. (3.6)

The lower square bracket notation indicates the floor function. Its value is the largest integer
number not greater than the input value inside the brackets. As previously shown in Eq. 2.8,
k., the normal z component of the wave vector, is derived from the dispersion relation.

Discussion

The cyclic wrapping of the k-vectors introduces a periodicity in k-space, which corresponds
to a discrete (or discretized) input field in position space. The consequences of this shall be
discussed briefly, before continuing with further details of the method.

First of all, a discretized position space implies that the electromagnetic field is only known
at discrete points. Thus the RCWA will only solve the diffraction problem on a discrete space
grid. However, the Fourier coefficients of the grating permittivity are usually also obtained
by a discrete Fourier transform (DFT), which assumes a periodic and discrete nature of the
signal in both space and frequency domain. This is in fact a common procedure in digital
signal processing. The necessary condition for an exact discrete representation of the original
(continuous) signal is given by the Nyquist—Shannon sampling theorem. It states that if a
bandlimited periodic signal is sampled at a rate more than twice its highest frequency over one
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fundamental period, it can be exactly reconstructed from the samples. This also provides the
proper cut off frequency for a mode truncation in the RCWA. For non-bandwidth limited
signals though, the inevitable truncation of the infinite Fourier series otherwise act as a
bandpass filtering operation that is applied to any grating structure and electromagnetic
field analyzed by the RCWA.

The periodic frequency domain has yet another implications: The new definition of the wave
vectors in Eq. 3.5a ensures formal consistency in the definition of a tilted incident wave.
However, it should be avoided to actually occupy frequencies in the incident field above
the given truncation limit, since this would violate Nyquist—Shannon sampling theorem and
would result in aliasing effects: As a consequence of the periodic frequency domain, a single
excited frequency above the cut-off frequency would appear on the opposite side of the
spectrum as an incident plane wave, which is mirrored at the perpendicular of the grating
interface at (z =0). And this is most likely not intended. Also a localized input field,
which consists of a multiple of frequencies will split into two parts of different directions, if
the overall k-shift moves the field beyond the truncation limit. Thus, it should always be
ensured, that the localized input field has still some extra distance to the truncation limits
in k-space. This aspect is especially crucial since the convolution of the structure with the
input field results in a broadening of the output spectrum.

3.5 Mode truncation of the grating permittivity

The next question concerns the form of the Toeplitz matrix in the RCWA, which appears in
the convolution of the electric field and the permittivity in the frequency domain. In order
to simplify matters, these considerations will be conducted for one-dimensional gratings.
However, they are equally applicable to two-dimensional structures.

Starting point is the constitutive equation for the electric displacement field(cf. Eq. 1.2a):

D(z) = e(z)E(x) (3.7a)
= io (6 * S)m eikm?mm (37b)
400

+00
= Z Z Emn Sy et Fzm® (3.7¢)

m=—0o0 N=—00

The product of permittivity e(x) and the electric field E(x) translates into a convolution of
the Fourier coefficients ¢, and S,,.
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€0 €_1 €_9 I
€1 €0 (Ifla )
€19 €11 €0 €_1 €_9 S+2
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NS -~ 7 \/-/
[] S

Figure 3.2: Exemplary matrix-vector notation of a discrete convolution between the
permittivity e and the electric field S in Fourier space. Against proper bandwidth limiting,
the standard RCWA partially considers additional higher modes in the segments III, while

ignoring necessary frequencies in the segments Ila.

As described in Eq. 2.12 and Fig. 2.2 such discrete convolution can also be written as a
matrix-vector product, in which the matrix has Toeplitz form:

exS = [e]S (3.8)

In an exact calculation the number of discrete frequencies might not be limited and thereby
Eq. 3.8 would assume quantities of infinite size. However, the proper execution of the
necessary truncation is not obvious.

The right-hand side of Eq. 3.8 is visualized in Fig. 3.2, where the convolution matrix [e] is
divided into different segments of class I —III.

It is important to notice, that even a symmetric truncation of the infinite sums in Eq. 3.7¢
is not equal to a band limitation of e(x). Such truncation reduces the infinite convolution
matrix [e] to a square Toeplitz matrix of size M x M and the vector S to size M = 2Mj+ 1.
This approach is used by the standard RCWA algorithm, but leads to some coefficients in
[e] (cf. segments of class IIT), which are of higher order than the truncation limit, while
neglecting lower order modes in the segments of class IIa. A proper band limitation of €(x)
on the other hand results in a different form, which is an infinite parallelogram around the
main diagonal as indicated in gray in Fig. 3.2. All other entries in the matrix (cf. segments
of class IIT) would be considered zero as they refer to higher modes, which are supposed to be
neglected. Since the electric field vector S is assumed to be periodic in the LIF-approach (cf.
Sec. 3.4), the matrix vector product [[¢]S on the side of Eq. 3.8 can be written as an infinitely
repeating vector of only M different terms. Thus, the truncation of the first sum over m in
Eq. 3.7c now only discards redundancy. This is equal to setting all entries in the segments
of class I to zero and leads to a non-square matrix of size (2My + 1) x (4My + 1). However,
this form does not fit to the (2My + 1) entries of a truncated vector S. If, on the other hand,
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not only S is assumed periodic, but also the spectrum of € (x), then writing out the full
matrix-vector multiplication reveals that the protruding elements in the segments of class
1Ib re-emerge in the segments of class Il - matching just the same coefficients of a periodic
vector S. Thus, by mapping the entries of the segments of class IIb to the segments of class
1T the complete set of coefficients of the bandlimited permittivity function is condensed into
a square matrix of size (2My + 1) x (2My + 1). This new matrix is called a circulant Toeplitz
matrix and can be defined for either one- or two-dimensional gratings:

Cyclic definition for 1D-gratings:

[Oeo]m,n = €wrap(m—n,0,M) (39&)

Example:

€0 €1 €-2 €42 €41
€+1 € €1 €-2 €492
[Oeo] = €10 €41 € €_1 €_9
€2 €12 €41 € €1
€1 €-2 €42 €41 €

Cyclic definition for 2D-gratings:

oo
[[ € ]]m~M+q,n~M+r = €wrap(m—n, 0, M), (39b)
wrap(qg—r,0,N)

Discussion

Without any bandlimiting, the permittivity and the electric field is described by continuous,
periodic functions, which have an unbound, non-periodic spectrum as illustrated in Figs.
3.3a and 3.3b for a rect-like grating structure. Due to the infinite length of vector S, also
the convolution matrix [¢] would be of infinite size (cf. Fig. 3.2). The latter would even
be true when only the permittivity function was bandlimited as shown in Fig. 3.3d. The
corresponding reconstructed permittivity for the exemplary grating is depicted in Fig. 3.3c.
In the standard RCWA there are two common ways to obtain the Fourier coefficients of the
permittivity. They can either be calculated by solving the Fourier integral (cf. Eq. 2.2) or
by numerically calculating the discrete Fourier transform (cf. Eq. 2.3) with a preferably high
number of sampling points - resulting in a large or even unbound spectrum. In both cases
the convolution matrix [e] is usually constructed by only a truncated subset of the spectrum
in order to obtain a square matrix with manageable size. However, as illustrated in Fig.
3.3f, this truncation scheme leads to a convolution matrix in which all coeflicients except
the zero frequency are either underrepresented, as in the regions of the spectrum below the
cutoff frequency (cf. segments of class IIa), or falsely accounted for as in the regions above
the cutoff frequency (cf. segments of class III). Due to this inconsistency, it is not possible
to derive any reasonable grating structure from the convolution matrix that is used in the
standard approach. Thus its physical meaning can be called into question even though in
the limit of a high truncation order the RCWA results are known to converge to the correct
solutions.
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Figure 3.3: Comparison of different bandwidth limiting schemes in position space
(left-hand column) and Fourier spectrum (right-hand column).
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Ideally, a bandlimiting scheme should set all frequencies above a given cutoff frequency
to zero. And this should also be reflected in the convolution matrix. The LIF approach
calculates the Fourier coefficients of the permittivity with a discrete Fourier transform using
the same number of sampling points that is later chosen for the truncation of the fields.
This provides a periodic Fourier spectrum with the cyclic definitions for the electric field
vector S and the convolution matrix [Oeo] of the permittivity as defined in Egs. 3.9a and
3.9b. Thus, the bandwidth limiting step is already carried out before the truncation of the
sums in Eq. 3.7c and all remaining spectral information are preserved without of any further
approximations (cf. Fig. 3.3g). As such, a reasonable grating structure can be reconstructed
from the convolution matrix (cf. Fig. 3.3h). This is not true for the standard RCWA
approach.

On the other hand, if a grating structure has a bandwidth that is too large to practically obey
the Nyquist—Shannon sampling theorem, cross talking between different spectral periods will
occur, which causes aliasing effects. This issue becomes bigger in the presented LIF-approach,
since the method requires the same number of sampling points in the spatial domain as it
does in the frequency domain, while the latter defines the complexity of the RCWA algorithm
and is therefore limited by computing resources. It is obvious, though, that for an increasing
mode count the results of the two approaches equalize, since all discussed shortcomings arise
from the demand of bandwidth limitation and mode truncation.

3.6 Properties of the circulant Toeplitz matrix

As discussed in Sec. 2.5, the accepted way to face the convergence problem of the RCWA
in the TM case is the use of the inverse rule (cf. Eqs. 2.38a-2.38¢), or more precisely the re-
placement of the Toeplitz matrix [e] of the Fourier coefficients of € (x) by the inverse Toeplitz
matrix [1/€] 7! of the Fourier coefficients of 1/e (z). The two matrices only match in approx-
imation. This is because the convolution matrix of the standard approach only contains a
subset of the permittivity’s Fourier spectrum and therefore only approach each other for in-
creasing truncation order. In the LIF-approach, on the other hand, the spectrum is periodic
and the convolution matrix [Oeo] and its inverse contain a complete period and thus each hold
the information of the entire discrete Fourier spectrum. As a consequence, the inverse rule
is an exact operation, letting [€] and [1076]*1 be two identical matrices (cf. Sec. 3.6.2). This
fact, however, also makes the inverse rule obsolete for the LIF-approach. Another way of
looking at this is revealed by the absence of any Gibbs phenomenon in the reconstructed
permittivity in the LIF-RCWA (cf. Fig. 3.3g), which consequently spares the need for
any sophisticated treatment. Of course, this is owed to the fact that the reconstruction is
only performed at discrete positions. Nevertheless, it not only leads to a Gibbs-free recon-
structed permittivity function, but also to an electric field without overshoots. Hence, the
Gibbs phenomenon should not be the root of instability problems anymore, which led to the
introduction of the inverse rule in the first place.
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3.6.1 Example

In order to demonstrate the actual influence on the convergence behavior, the same metal
grating as in Sec. 2.5.3 is analyzed (cf. Fig. 2.7) by the standard RCWA, the inverse-rule
improved RCWA as well as the LIF-RCWA for TE- and TM-polarization.
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] standard RCWA —— Sy J standard RCWA ——
geg 0l RCWA with inverse rule i gg 04 RCWA with inverse rule 1
(] - —— (] | R ——
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Truncation order, Mg Truncation order, Mg
(a) TM-Polaization (b) TE-Polaization

Figure 3.4: Comparison of the convergence speeds of the standard RCWA (solid red dots),
the LIF-approach (solid blue dots) and the standard approach with inverse rule applied
(orange squares).

To begin with, in Figs. 3.4a and 3.4b it can be observed that the convergence speed of
the standard approach (solid red dots) is considerably slower for TM-polarized light than
for TE-polarized light. If the standard approach is, however, improved by the inverse rule
(hollow red squares), the two convergence speeds suddenly match. For the LIF-approach,
the convergence speeds for both polarization states are already similar. Compared with the
standard approach, however, the LIF-approach (solid blue dots) clearly outperforms the un-
altered standard approach in the TM case, while at the same time falls short compared to
the TE- and the inverse-rule improved TM case.

This behavior can be attributed to the intrinsic weak convergence speed of the DFT approxi-
mation for functions with steep edges and thereby high frequencies. Since in the LIF-RCWA
the number of spatial sampling points is linked to the number of modes, the Fourier approx-
imation of the grating is usually weaker than in the standard RCWA. It also explains the
higher amplitude oscillations of the LIF-RCWA, since a low sampling of the grating causes
the reconstructed structures to be alternately either considerably smaller or larger than the
original structures. This effect causes an inferior convergence speed of the LIF-approach
in the TE case (cf. Fig. 3.4b). In case of TM-polarization (cf. Fig. 3.4a), on the other
hand, the influence of the Gibbs phenomenon dominates, causing the LIF-RCWA to perform
superior compared to the standard approach, since it does not suffer these instabilities.
Finally, the standard approach with the inverse rule applied even outperforms the LIF-
RCWA in the TM case, because it not only eliminates the instabilities by the approximation
of the inverse rule, but at the same time maintains the finer sampling of the standard ap-
proach. Nonetheless, the inverse rule does not fix the inconsistent bandwidth limitation,
which prevents a reasonable grating reconstruction.
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3.6.2 Proof of the inverse rule in the LIF-RCWA

For the mathematical proof the inverse rule in the LIF-RCWA a particular relation between
circulant Toeplitz matrices and the DFT is used.

Any square M x M matrix A with M linearly independent eigenvectors E ()\,,) and the
correspondent eigenvalues \,,, m = 0.. M —1 can be diagonalized and thus written as

A =SDS™ 1. (3.10)

In this equation the diagonal matrix D and the transformation matrix S are defined as
D= diag ()\m) and S = {E ()\0) ,E (Al) g ooy E ()\M—l)}

In the special case of a circulant Toeplitz matrix [oco} with [Oco] ik = Curap(j—k,0,M) and j, k =
0.. M —1 the eigenvalues and eigenvectors are determined[42] by

N-1 )
Am = Y cjwy) (3.11a)
j=0
1 T
and E\,) =— (1,w1 ,w? ,...,wal) (3.11b)
\/M m m m
with Wy, = €273 (3.11c)

Using the definition of the Vandermonde matrix Fjz., ; = exp (—27m'mﬁj), Egs. 3.11a and
3.11b can also be expressed in a more compact matrix-vector notation.

N—-1 )
A = cje 5 = A =Fye (3.12a)
§=0
1 o 1 *
Spj = —€e™i = S=_——_F% (3.12b)

VM VM

Here, the interesting point is, that Fj; can be identified as the transformation matrix of
the discrete Fourier transform with F7}, as its complex conjugate. Thus, considering c as a
vector of real-space sampling points, Fj; converts all entries into Fourier coefficients:

¢ =DFT (c) = —Fc (3.13)
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S is the matrix of eigenvectors and it is so of all circulant Toeplitz matrices. Furthermore,
S is a unitary matrix with S*S” =T and therefore

S* = \/%FM (3.14a)
S =(S*)"' = VMF; . (3.14b)

Now, diagonalizing a circulant Toeplitz matrix leads to

[€] =SDs™! (3.15a)
=S diag (\,) S* (3.15b)
1
= VMF,} diag (Fyc) ——F 3.15¢
= F,;} diag (Fasc) Fay. (3.15d)
And respectively the inverse of a circulant Toeplitz matrix can be diagonalized as

[€]71 = (S diag (A\n) S*) (3.16a)
= (S*) ' diag (Fpc) 'S} (3.16b)

= S diag (Fjc) ' S* (3.16¢)

1
= VMF,} diag (Fyc) ' ——=F 3.16d
= F}/ diag ((Fare) ") Fas. (3.16¢)

Replacing ¢ by the Fourier coefficients ¢, obtained by the discrete Fourier transformation,
finally leads to the identity of the inverse rule:

(2] = F;} diag ((Fae) ™) Fiu (3.17a)
1 10 1 !

=F,, diag (MFMFMC) Fur (3.17b)

=F,; diag (]\ZFMFMc*) Fir (3.17c)

= F;} diag (FM(TV/C)) Fur (3.17d)

= [1/¢] (3.17e)

The term 1./c in Eq. 3.17d indicates an elementwise inversion of the vector elements in c.
The step from Eq. 3.17b to Eq. 3.17c¢ is valid since ﬁF mF s is an anti-diagonal unit matrix.

1 1 -1 1 -1 1 -1
Hence, 5;FyFp = (MFMFM) and therefore also (MFMFMC) = 7 FuFyc .
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The above derivation proves the exactness of the inverse rule for the Toeplitz matrix [¢], if
the Fourier coefficients ¢ are calculated with discrete Fourier transform and [¢] is circular.
In fact, the same considerations also apply, if the Fourier coefficients are calculated by a
Fourier integral. However, in this case, the corresponding transformation matrix Fj; would
be of infinite size, which is consistent to the untruncated (but numerically impractical)
scenario, where the inverse rule is already known to be exact - also for the standard RCWA.
Furthermore, it should be noted, that the inverse rule does not hold for the truncated scenario
in the standard RCWA, even if higher frequencies in the regions of class III (cf. Fig. 3.3f)
are artificially set to zero and the coefficients of the electric field are truncated and not
periodically repeated - although this would fix the truncation scheme of the standard RCWA.

3.7 Complexity analysis

In this section the complexity of the computation time and memory consumption of three
different RCWA variants is compared using the big O notation. The comparison considers
the calculation of the diffraction coefficients of a two-dimensional diffraction problem, which
refers to the diffraction at a one-dimensional, single-layered grating in classical mounting,
and a three-dimensional diffraction problem, which refers to a two-dimensional, single-layered
grating at arbitrary incidence. The first method is the standard RCWA (Std-RCWA) as it
was published by Moharam and Gaylord[91], the second one is the localized input field RCWA
of this work (LIF-RCWA)[6] and the third one is the finite-beam RCWA (FB-RCWA) of Wu
and Gaylord[133].

3.7.1 Time complexity comparison

The runtime of each algorithm is described by T'(Mp), which is a function of the truncation
order My. Its complexity for the standard RCWA is primarily determined by the eigen-
value problem (EV), which needs to be solved for the matrix €; (cf. Eq. 2.16). For a
one-dimensional grating the dimension of the matrix is (2My + 1)[88], for a two-dimensional
grating it is 2(2Mg + 1) (cf. Eq. 2.16) (assuming an equal sampling in both lateral dimen-
sions). This leads to the following time complexity:

Tgv(Mo) € O(Mg) = Tédrowa(Mo) € O(MG), (3.18a)
TEv(Mo) € O(Mg) = T rowa(Mo) € O(Mp). (3.18D)

The additional computation effort in the LIF-RCWA is confined to the ASD, which is basi-
cally a fast Fourier transform:

TiRr (M) € O(Mplog(My)) = TiBp(My) € O(Mylog(My)) (3.19a)
Tepr(Mo) € O(2Mg log(Mg)) = Tiep(Mo) € O(2M§ log(Mg)) (3.19Db)
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With the simplification rules of the big O notation, the complexity of the LIF-RCWA can
easily be determined. However, an additional constant, say c, needs to be considered, since
the LIF-RCWA shows a slower convergence rate due to the lower sampling of the permittivity:

TEir-rowa (Mo) = TaSp (Mo) + T3 rowa (¢Mo) € O(M) (3.20a)
Titr-rowa (Mo) = Tagp (Mo) + T3Rrowa (¢Mo) € O(MY) (3.20b)

Suggesting that the FB-RCWA uses the same truncation order for the ASD as for the cal-
culation of the permittivity coefficients like the LIF-RCWA does, the FB-RCWA shows a
considerably higher complexity as it calculates a full standard RCWA for every decomposed
plane wave:

Ten.rowa (Mo) = TASH (Mo) + Mo - T8 rewa (Mo) € O(Mg) (3.21a)
Teb-rowa (Mo) = TS (Mo) + Mg - Téia rowa (Mo) € O(MP) (3.21b)

In summary, the complexity analysis reveals that the LIF-RCWA has the same time complex-
ity as the standard RCWA, but a significantly lower time complexity than the FB-RCWA,
which is also able to simulate the diffraction of localized beams.

3.7.2 Space complexity comparison

The storage requirements of the different algorithms shall be described by S(My) and its
complexity can be derived similarly to the time complexity in the previous section. The
space complexity depends on the data structure with the largest size in terms of magnitude,
which is again the matrix €2;. For a two-dimensional grating problem Eq. 2.16 shows that
the calculation of €21 requires two additional matrices M and My of the same size, which
each consists of four submatrices due to the two expansion dimensions. Each submatrix has
the size of (2My + 1)? x (2Mj + 1)? elements - again assuming an equal sampling in both
dimensions. For a one-dimensional grating problem in classical mounting the size of matrix
Q; reduces to (2My + 1) x (2My + 1) elements, since Fourier expansion is only performed in
one dimension and due to the separation in two different types of polarization, which only
requires a single lateral component to be considered at the same time. This leads to a space
complexity of

S& (Mo) € O(MZ) = S&rewa(Mo) € O(MS), (3.22a)
ng?(MO) € O(Mé) = Sggi-RCWA(MU) € O(Mél). (3.22b)

If the Angular Spectrum Method uses a discrete Fourier transform, the incident field is
described by K and K? sampling points for the one- and two-dimensional description re-
spectively. The discretized incident field is then transformed into 2Mg + 1 and (2Mp + 1)?
Fourier modes.
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Since the LIF-RCWA uses the same sampling rate in the spatial and frequency domain, the
number of sampling points is also 2Mg + 1 and (2Mg + 1)2. Usually K is chosen to be larger
than 2Mjy + 1. The complexity of the ASD can then be derived as

S}LL%D,FBfRCWA(K) O(K), (3.23a)
S%%p,rp-rewa(K ) O(K?), (3.23b)
Sk3p,1r—rowa(Mo) € O(My), (3.23¢c)
S33p,1r—rowa(Mg) € O(Mg). (3.23d)

The LIF-RCWA only performs one ASD and one RCWA calculation to obtain the 2My+1 or
(2Mg +1)? reflection and transmission coefficients. The FB-RCWA on the other hand needs
to store at least these 2 - 2My + 1 or 2 - (2Mg + 1)? coefficients of K or K? separate RCWA
calculations in order to superpose the results at the end. The intermediate €2; matrices
however can be dropped. This, finally, results in space complexities of

SEB_rowa(K) € O(Mg + MoK), (3.24a)
SEE_rewa(K?) € O(Mg + M{K?), (3.24b)
StPr_rewa(Mo) € O(Mg), (3.24¢)
Strr—rowa(Mg) € O(Mg). (3.24d)

As a result, the space complexity of the LIF-RCWA is equal to that of the standard RCWA.
The space complexity of the FB-RCWA strongly depends on the sampling of the incident
field and might in practice be higher but with the advantage of a higher resolution.

3.8 Diffraction order efficiencies

Similar to the efficiency considerations of the standard RCWA (cf. Sec. 2.9), the relative
power per diffraction order needs to be set in relation to the total power of the incident field.
In the LIF-approach, this refers to the total power of multiple input modes rather than a

single one:
Si)dA
Std-RCWA:  nf :ZW (3.25a)
S:)dA
LIF-RCWA: gL ::M (3.25b)

Y S dA,,

As described in Eq. 2.64b (S)dA denotes the average power as a product of the time averaged
energy flux (Poynting vector S) and a surface vector dA of the irradiated area.
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With few simple steps of calculation, analog to those performed in Sec. 2.9, the diffraction
order efficiencies 17;‘2771 and 175;771 for transmission and reflection in the LIF-approach can be
derived. In addition, an expression for the relative power n,ﬁw of an input mode can also be
obtained:

1
Ly=— Z | Linn|*Re (Vemon) » (3.26a)
HI
1 |Thnl?
'rjr;,n = 7MR6 ('YHI;m,n) 5 (32612))
par - Lo
1 |Rpnnl®
R m,n
= ——F—Re(vr 3.26
m,n L1 LO € (’YI,m,n) ; ( C)
1 |L 2
TIn,n = 7MR6 (_PYI;m,n) (326d)
pr Lo

For non-absorbing gratings, consistency with the law of energy conservation should still
preserved by 1 =Yk, =Sl =1-R-T =0.

3.9 Modeling of a localized input fields

The most important novelty of the LIF-approach is the ability to natively solve the diffraction
problem not only for a single, infinite plane wave, but also for a localized incident field.
Furthermore, it also allows various forms of polarization. Both properties are achieved by
individually defining the amplitudes of the discrete function that describes the incident light
field in the pupil. They are given in the vector L of Eq. 3.2, which can be broken down to a
scalar amplitude term A} and a polarization term W (1) independently for each mode (m,n):

LJ_;m,n = Am,n‘I’J_;m,n (¢) (3'27)

3.9.1 Angular spectrum decomposition

The angular spectrum decomposition (ASD) was already introduced as an integral part of the
Angular Spectrum Method in Sec. 1.1.6 for the propagation of plane waves in a homogeneous
medium. Although the main focus of the RCWA are the propagation through inhomogeneous
media, the decomposition into plane waves can also be used to create a suitable input field
for the LIF-approach. This is possible since in the LIF-RCWA just like in the standard
RCWA the incident region is assumed to be homogeneous. As proposed at the beginning of
this chapter, a localized incident field can be modeled by a superposition of multiple plane
waves, which is described by the Fourier series in Eq. 3.2. In fact this is analogous to the
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modeling of the grating permittivity in Eq. 2.1. Likewise, the Fourier coefficients of an
incident field can either be calculated by solving the correspondent Fourier integral (cf. Eq.
2.2) or by calculating the discrete Fourier transform. However, since the earlier discussion
in Sec. 3.4 about the prerequisites of the LIF-RCWA resulted in the demand for a discrete
electric fields with a bandwidth limitation equal to the grating, only the discrete Fourier
transform, or in this case also called Angular Spectrum Decomposition, is the suited method
for the LIF-approach and is given by

A = 2295~ 4 (g 0y Fr ) (3.28)

A (zp,yq,0) describes the scalar amplitude of the electric field distribution at a single sam-
pling point (z,y,,0) in the z/y plane at the grating interface at z = 0. In the following,
this plane is referred to as the plane of origin. Due to the enforced periodicity and the
sampling of position space, the ASD in Eq. 3.28 is adjusted to match the overall number of
sampling points M x N as well as the discrete frequencies (v, = m/P, and v, =n/P,) of
the discrete Fourier decomposition of the grating. As a consequence, also the light source
is now periodic and the desired locality of the input field always refers to a position in
every period. Hence, simulating the focusing of a light beam onto a grating structure re-
quires the definition of a grating superperiod, which itself may contain finer substructures
(cf. Fig. 3.10). and might require a higher truncation limit. In order to distinguish between
the two periods in the following, they are referred to as P’ for the period of substructures
and P to denote the period of the superstructure that also determines the frequencies of
the discrete Fourier transform (dv = 1/P). In order to avoid crosstalk between neighboring
superperiods, absorbing boundaries or the concept of perfectly matched layers[114] can be
used.

Finally, Ag in Eq. 3.28 is a normalization factor to assure that the incident power over one
grating period is always one:

S Amal’ = 1. (3.29)

Thus, with definition 3.28 any sufficiently sampled light field can be used as an input for the
rigorous analysis in the LIF-RCWA - if only its distribution in the plane of origin is known.
Example: paraxial Gaussian beam model

For a paraxial Gaussian beam at normal incidence and with a beam waist at z = 0 (cf. Fig. 3.5a),
the field distribution in the plane of origin can be described by the Gaussian function

2 2
AP (2,y,0) = exp <—2$ ;y ) . (3.30)
0

Here, 0¢ denotes the size of the beam’s waist.
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According to the ASD (cf. Eq. 3.28) Eq. 3.30 already provides sufficient information for the
LIF-RCWA to rigorously propagate a Gaussian beam. It should be noted, however, that the
described Gaussian beam model does not rigorously satisfy the wave equation but only its
paraxial approximation[138].

(a) Normal Gaussian beam (b) Tilted Gaussian beam

Figure 3.5: Determination of the field distribution
of a Gaussian beam in the plane of origin

In order to propagate a tilted Gaussian beam, the ASD requires a different slice of the
beam’s field distribution (cf. Fig. 3.5b). Therefore, the beam must also be known in the
near surrounding of its center. This can be approximated by paraxial propagation. Therefore,
the Fresnel-transformation

A(r,,z) = ——¢iznko [ A@L,0) i3 (e =r)” 2y (3.31)

E@

which is a paraxial approximation of the Frauenhofer diffraction integral, can be solved with
the definition of A%’ (cf. Eq. 3.30) leading to[15]

3D o (2)\? e
AP @.2) = (2 (z)) p(z)e (3.32a)
222
with o(z) =001+ ==, (3.32b)
2o
A
w(z) =ylo(z)+i—z and (3.32¢)
T
p(z) = ™oz, (3.32d)

Now, choosing an arbitrary tilted or shifted plane in A?éD (z,y, z) as the field distribution in
the plane of origin - or more precisely as AZGD (x,y,0) - allows its rigorous propagation and
therewith the simulation of a tilted or shifted Gaussian beam in the LIF-RCWA.
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3.9.2 Polarization

Single mode polarization
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(a) ¥ (1) =90 deg) (b) ¥, (¢ =0 deg) (c) W1 (¢ =45 deg)
= TE Polarization = TM Polarization

Figure 3.6: Illustration of the electric field polarization of a single mode input at different
polarization angles 1. The arrows indicate the tangential direction of the electric field in
the x/y-plane.

In the standard RCWA, the input field is characterized by only a single mode and its polar-
ization can be fully described by the polarization angle ¢ between the electric field vector
and the plane of incidence (cf. Fig. 2.1 and Eq. 1.26):

W (1) = sin (¢) ey + cos () er (3.33a)
1 — Sy 1 SzSz

=sin(¢) |— | sz +cos (¢) | — | sys2 (3.33b)
S1 S1 2
0 —57

With the unit vectors ey and er normal and tangential to the incident plane as defined
in Egs. 1.27a and 1.27b, W () describes a superposed polarization state for a single plane
wave. In classical mounting (cf. Fig. 1.3a) the basic polarization states at ¢» = 90 deg and
1 = 0 deg correspond to TE- and TM-polarization respectively (cf. Fig. 3.6a and 3.6b). An
intermediate state at ¥ = 45 deg is shown in Fig. 3.6c¢.

Multi mode polarization

Definition 3.33b can easily be generalized for a multi mode field:

1 —Sy;m 1 SzymSzym,n
W (V) | .y =sin (¢) Sz + cos () Sy:nSzmn (3.34)
Y S1mn 0 S1mmn _52
1im,n
€N;m,n €T:m,n
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However, as illustrated in Figs. 3.7a - 3.7c, this does not lead to linear polarization, as one
might expect. Instead, the angles ¥ = 90 deg and ¥ = 0 deg correspond to azimuthal and
radial polarization. An intermediate state at ¢ = 45 deg is again shown in Fig 3.7c.

15 F T T T T T O

m m m
(a) ¥, (v =90 deg) (b) ¥, (¢p =0 deg) (c) O (¢ =45 deg)
= azimuthal = radial polarization = mixed polarization
polarization

Figure 3.7: Examples of the electric field polarization of a multi-mode input at different
polarization angles 1. For every discrete point (m,n) in k-space an arrow indicates the
direction of the tangential polarization in the x/y-plane. Shorter arrows refer to a larger
normal(z)-component.

Linear polarization

True linear polarization was derived by Mansuripur[80] for ¢» = 0 deg and generalized by
Fragello[37]. A more compact and intuitive form is given by Brenner[16] and therefore also
utilized in the present approach.

The intuitive way of defining linear polarization would be in a two-dimensional Cartesian
coordinate system like

v’ (V) = sin (¥) ey + cos (¥) e, (3.35)

or equally in cylindric coordinates like

W' (¢) = (W' () el) el + (V' (V) er) e (3.36)
Ty T

with

1 [=sy
e — ( m) (3:372)

S1m,mn Szin
1 Sop
er = N (3.37b)
S1:mn \ Syin

81



CHAPTER 3. LOCALIZED INPUT FIELD APPROACH

However, this is only true for a plane wave with normal incidence (sj.,, = e;) like the
0th mode of the ASD, because the electric field vector Ly, ,, of every (m,n)th plane wave is
required to be normal to its corresponding wave vector K;.m, n = nrkoSi;m.n-

Figure 3.8: Transformation of the polarization from input plane to pupil sphere in a
two-dimensional view

In fact, k-space alias the pupil of an optical system is filled with wave vectors pointing from
all directions in the left hemisphere to the point of origin (cf. Fig. 3.8 and Sec. 3.10.3).
Hence, the polarization vectors need to be mapped on to the surface of the pupil sphere.
This can be achieved by a simple replacement of the cylindric coordinates €ly.,, , and er.,,
by the spherical coordinates ey, , and er., , for every polarization vector:

U ()0 = ONeNmn + Crermn (3.38)
528y (52 — 1) 1 s2s, + 55
=sin(¢) |5 | sis.+ 52 +cos (V) | =5 | 525y (5. — 1)
o1 — 5,82 it —5,8
YL m,n o | m,n

The result can can be verified in Figs. 3.9a - 3.9c¢.
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Figure 3.9: Illustration of linear electric field polarization of a multi-mode input at different

polarization angles .
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3.10 Examples

In the following section different examples demonstrate the potential of the LIF-RCWA.

3.10.1 Phase Ronchi

In the first example, the response of a grating structure is analyzed, which is illuminated by a
localized beam. The grating is a phase Ronchi with a (sub-)period of P, = 4 um and consists
of two refractive indices ny, = 1.5 and njr, = 1 at a duty cycle of 0.4 (cf. Fig. 3.10).

Figure 3.10: Sketch of a Ronchi grating

The thickness of the grating is d = 1 um and the refractive index of the surrounding super-
strate and the substrate is n; = nyy = 1. The grating is illuminated by a Gaussian beam
with a waist of og = 8 um (cf. Eq. 3.30) at a wavelength of A = 1 um and with linear polar-
ization at ¥ = 0 deg. In order to allow the localized beam to cover multiple periods of the
grating, a superperiod of P, = 16 x P, is chosen. The Fourier coefficients of the permittivity
and the Gaussian beam are calculated with discrete Fourier transform and M = 2My + 1
sampling points. Hence, higher harmonics greater than My = 122 are neglected.

Fig. 3.11 shows the intensity distribution of the electric near field along the propagation
direction (z): As the Gaussian beam hits the grating it divides into two distinct diffraction
orders with a diffraction angle of 6,, = arcsin (mA/ (n;Py)) < 90 deg = 041 = £14.478 deg.
Higher orders are not visible. The correctness of the diffraction angles can be verified more
easily in Fig. 3.12a, which shows a larger section of the simulation area and in particular the
crossing of two diffraction orders of neighboring superperiods. It also reminds of the fact, that
the light source is always periodic in the LIF-RCWA. Fig. 3.12b shows the attempt to emulate
the same setup with the standard RCWA in combination with an aperture. Here, a plane
wave is masked by implanting an imaginary epsilon of Im(€sr mqsx) = 4 inside the grating
layer, leaving only a slit per superperiod for the light to pass. The slit was 0.2P, = 12.8 um
in size. Again, the correct diffraction angles can be verified by reading off the z-position of
the beams’ crossing. In both figures also the overall reflection and transmission efficiencies
are presented. While in the LIF-RCWA they sum up to 100 % according to the law of energy
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Position.x in um

Position.z in um

Figure 3.11: Electric near field intensity of a linearly polarized Gaussian beam with a waist
size of o9 = 8 um and wavelength of A = 1 um, which is illuminating a Ronchi ruling
(highlighted) with a period of P, = 4 um, a duty cycle of 0.4, refractive indices ny, = 1.5,
nip =1, ny =npy =1 and a thickness of d = 1 um.

conservation, they do not in the standard approach. The difference marks the amount of
dissipative loss at the mask, also known as absorption. The two results show great analogy
in respect of the diffraction angles. However, due to the different natures of their beam
profiles, there are considerable differences in the pattern of the near field and especially more
scattering artifacts in the standard approach.

Following the definition for a tilted Gaussian beam in Sec. 3.9.1, the LIF-RCWA can also
simulate beams of slanted incident. Fig. 3.13 shows the same setup with an incidence angle
of 10 deg.

For Fig. 3.14 the same grating is illuminated with a Gaussian beam of increasing beam
waist. The two graphs show the corresponding transmission efficiencies for the Oth (hollow
red squares) and +1st (solid blue circles) diffraction order. On the left end of the x-axis,
one can observe that two grating periods are already more than sufficient to produce distinct
diffraction orders. With increasing beam size, the two graphs converge towards the plane
wave solutions (dashed lines), which were obtained by the standard RCWA. The limit of the
transmission efficiency of the zeroth diffraction order is 2.7639 %, whereas it is 38.8703 %
for the transmission efficiency of the +1th diffraction order. With P, /A < 10 and d/\ = 1,
a rigorous analysis, which respects the full vectorial nature of light, is required for the
calculation of the efficiencies. And hence, the use of simplified scalar diffraction theories is
not legitimate anymore[56].
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(a) LIF-RCWA simulation: Gaussian beam  (b) Standard RCWA simulation: Masked plane
illumination with o9 = 8 um wave illumination with an
aperture of 12.8 ym
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Figure 3.12: Comparison between localized beams in the LIF-RCWA (a) and the
standard RCWA (b).
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Figure 3.13: Slanted Gaussian beam with an incident angle of 6 = 10 deg
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Figure 3.14: Transmission efficiency of the Oth (hollow red squares) and £1st (solid blue
circles) diffraction order of a Gaussian beam illumination with increasing waist size og. The
transmission efficiencies of the plane wave illumination (dashed lines) are marking the
convergence limit
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3.10.2 Focusing into an inhomogeneous medium

In the previous example one could have used the stan-
dard RCWA with a masked plane wave to roughly
emulate a localized beam as done in Fig. 3.12b.
However, if the optical setup requires a focused,
converging-diverging Gaussian beam, masking alone
is not sufficient anymore. In the following setup a
converging Gaussian beam is moved over the edge of
a structure. This is a scenario typically occurring in 0 a0
the reading process of optical media, like CDs, DVDs (a)

and Blu-rays.

In the example, the waist of the Gaussian beam has a
size of 09 = 1 um and is positioned at z = +2 um. Its
wavelength is A = 1 um. The illuminated object has a
refractive index of ng,;; = 1.5, while the surrounding
medium has an index of n; = ny. gy = ngr = 1. The
simulation was performed with a total of M = 285
modes. Figs. 3.15a - 3.15¢ show the passing of - o
the light beam through the structure for various x- Postion 2 in
positions of the beam. While the Gaussian beam (b)

seems undisturbed in Fig. 3.15a as it only experi-
ences a homogeneous medium, the beam splits at the
corner of the structure (cf. Fig. 3.15b) resulting in a
significant decrease in transmission efficiency (cf. Fig.
3.16). Inside the denser medium the beam’s waist
appears compressed (cf. Fig. 3.15¢). The striped
patterns in Fig. 3.15b and 3.15¢ arise from the inter-

ference with the reflected beam at the front and rear om0
interface of the structure. (c)

Fig. 3.16 shows the transmission efficiency as a func-

tion of the spot position.

Position.x in um

1.

Position.x in um

Position.x in um

0.95
0.9
0.85
0.8
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0.7 ! ! ! ! ! ! !

Transmission efficiency

X in gm

Figure 3.16: Transmission efficiency as a function of the spot position in x
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3.10.3 Ideal focusing

In Sec. 3.9.1 the ASD was described as a way to express an input field as a superposition of
multiple plane waves. The spectrum of these plane waves is also called k-space or directional
space, in which every discrete plane wave is represented by a distinct point (kim, kim) =
(2m m/ Py, 2w n/P,) with k;.,, and k;,, related to the incident angles by Eq. 2.7. While
usually it is the ASD that determines the scalar amplitude of every point in k-space in order
to model an arbitrary input field in the LIF-approach, another interesting case is the full and
equal occupation of k-space. In this scenario every mode or plane wave of the input field is
equally excited, forming an ideal focus in superposition.

In a numerical simulation the size of the focus is limited by the truncation order. Figs.
3.17a and 3.17b show a x/z-slice of the focus with My = 40 (M = 2My + 1), which is half
the number of propagative modes and refers to a numerical aperture of NA ~ 0.5. The
evanescent limit is reached at mprop-max = £ Pr/A| = £80, as in this example the following
parameters were chosen: P, = 125 ym,ny = 1,A = 1 um. Fig. 3.17c and 3.17d show the
focus spot with all propagative modes (My = 80 = NA =~ 1). Allowing also evanescent waves
for the construction of the focus, the size of the focus can be further decreased. However,
this comes with some physical problems as illustrated in Fig. 3.17e and 3.17f, where the
truncation order is My = 120 (= NA ~ 1.5). Due to Eq. 3.2 (= E(2) ~ exp(ivyrz)) the

Position.x in um
Position.x in um

Position.z in um Position.z in um

(a) NA=~ 05 (b) NA=0.5

Position.x in um
Position.x in um

Position.z in um Position.z in um

(¢c) NA=1.0 (d) NA=1.0

80 65.

ot
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60

Position.x in um
Position.x in um
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g
-
o

D
D
60. >
>

-50 0 -10 -5 0 5 10
Position.z in um Position.z in um

(e) NA=~ 1.5 (f) NA=~1.5

Figure 3.17: LIF-RCWA simulation of linear polarized focus spots with different numerical
apertures and two color palettes for different zoom factors.
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evanescent waves (with Im (y7) > 0) will increase exponentially in negative z-distance from
the focus leading to an unphysical light source model. Thus, for most simulations those
evanescent modes in the input field should be neglected in order to use the benefits of high
mode truncation in the analysis and at the same time to avoid the need for an unphysical
light source.

Independently of the scalar amplitudes in the plane wave spectrum, the LIF-RCWA also
allows various forms of polarization (cf. Sec. 3.9.2). While Figs. 3.17a-3.17f showed different
cases of linear polarized light, focus spots with radially and azimuthally polarized light are
shown in Figs. 3.18a and 3.18c.

Position.x in um
Position.x in um

0
Position.z in um Position.z in um

(a) Radial polarization (b) Radial polarization

Position.x in um
Position.x in um

0
Position.z in um Position.z in um

(¢) Azimuthal polarization (d) Azimuthal polarization

Figure 3.18: LIF-RCWA simulation of radial and azimuthal polarized focus spots with full
numerical apertures and two color palettes for different zoom factors.

Perfect focusing can also be used to create a virtual point light source. In Fig. 3.19 a
homogeneous spacing layer with refractive index of ny o = 1 and thickness dy = 15 pm is
added in front of the Ronchi grating that was discussed in Sec. 3.10.1. The result is a
multitude of diffraction orders that appear in the far field due to the curved wavefront of the
virtual point light source.

8.5
60.0.

40.0.

Position.x in um

20.0.

250 50.0 75.0 100.0
Position.z in um

Figure 3.19: Intensity distribution of a Ronchi grating under point light illumination.
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3.10.4 Waveguide coupling and propagation as another application of the
LIF-RCWA

An analytical description of the propagation of light in a waveguide is not a trivial task,
since it requires a new model for every new geometry. Here, the LIF-RCWA offers a powerful
numerical alternative that can handle arbitrary waveguides and even describe the coupling
process as well as potential coupling and leakage losses.

Planar dielectric waveguide

o
v\z\‘\‘\-“\% I(\‘ > >

core

Y

Figure 3.20: Illustration of the coupling of a Gaussian beam into a planar single-mode
waveguide and propagation of a waveguide mode

In order to demonstrate the potential of the LIF-RCWA for waveguide applications, a sym-
metric planar dielectric waveguide as depicted in Fig. 3.20 serves as an example. It consists
of a dielectric core with ny, = 1.47 and diameter d and a cladding material on top and
below with a lower refractive index of nsj, = 1.46.

The following analytical model is described in detail by Saleh and Teich[110]. With Snell’s
law and simple ray optics a critical angle 6. can be derived below which light is guided
through the core material via total internal reflection, defining a numerical aperture for the
waveguide as

NA - \/”%1'701 - n%’b. (3.39)

However, only discrete incident angles are actually propagative, a fact that can only be ex-
plained when considering the wave nature of light. Due to the interference of the waves inside
the waveguide, only those waves remain which are in phase with their internally reflected
counterparts after one round trip - since only those happen to interfere constructively.
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For TE-polarized light, this leads to the following self-consistency condition:

cos? (6,)
sin? (0)

tan <7rdn[[7a sin (0) — m7r> =

-1
A 2 ’

which has only N discrete solutions for the incident angle 6 with

(3.40)

(3.41)

For a core diameter of d = 12 um the analytical model thus predicts N = 3 distinct so-
called TE-modes at a wavelength of A = 1.55um, each which is composed of two plane waves
traveling through the waveguide at the angle 6,,, and —6,,. In superposition they form the

electric field

Ey(xz,z) = Z VlimUm () exp (tkzm2)

m

(3.42)

where 7),,, is a constant amplitude and w,, describes the field distribution of the individual
modes in lateral direction. Inside the waveguide’s core (—d/2 < z < d/2) the field turns out

to be

2T

cos (kg;mx) = cos ()\ sin (6,,) x) , m=0,2,4,..

2

U, () =
sin (kgyme) = sin (/\ sin (0,,) x) , m=13,5,..

whereas it declines exponentially in the cladding:

i (1) = {exp (—Ymz), x>d/2
" exp (ymz), x<—d/2

: (3.43)

(3.44)
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All three modes (m = 0,1,2) of this setup at 60y = £2.024deg, £60; = +4.006 deg and
+60, = £5.852deg are depicted in Fig. 3.21.
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-0.4 | | | | |

-15 -10 -5 0 5 10 15

X in gm
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Figure 3.21: First fundamental modes of a planar dielectric waveguide:
m = 0 in blue, m = 41 in green and red and m = 2 in yellow

Their propagation along z reveals a distinct pattern in the field distribution, which can be
observed in Fig. 3.22a.

The model for the numerical approach includes an incident region as well as a transmission
region, in which a linearly TE-polarized Gaussian beam (cf. 3.9.1) with a waist size of
oo = 3.5um is coupled into the waveguide and transmits at the end. In order to avoid internal
reflection on both sides of the waveguide and additional interference as a consequence, the
refractive indices of the surroundings are matched to the core: ny = nygr = ny, = 1.47.
In order to avoid crosstalk between different periods - since in the RCWA every diffraction
problem ultimately repeats itself in lateral direction - the period is chosen sufficiently big with
P, = 125 ym and complemented with an additional weak absorbing boundaries at a distance
of 25 pm around the center of the core (= dcladding = 50 um,n'ILb = 1.46 + 8.56 - 10~43,
cf. Fig. 3.20).

The numerical calculation was performed with the LIF-RCWA and the result can be observed
in Fig. 3.22b. Between z = Oum and z = 1400 ym it shows the electric field inside the
waveguide matching the pattern of the analytical model. In addition it shows the coupling
of the Gaussian beam into the waveguide at z < Oum as well as the transmission into
region I1I.
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(a) Field distribution according to an anaytical model
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(b) Field distribution according to the LIF-RCWA

Figure 3.22: Propagation of the three fundamental modes of a planar dielectric multi-mode
waveguide with a core diameter 12 um, calculated with an analytical model (a) and the
LIF-RCWA (b)
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Finally, also the coupling losses due to a mismatch between the Gaussian incident beam and
the propagative waveguide modes are visualized. The degree of matching between the two
can be determined by an overlap integral

2

B2 o WM [, \*
[ B o) BN ()" dx
—Py/2

n(00) = —57 P (3.45)

/PI/Q ’E;}B (9@‘,(7())‘2dx/PI/2 ‘E;’VTI,\L“ (g;)’z

dx

where EE’B describes the profile of the Gaussian beam at the plane in the origin, whereas
E;anfb/[ denotes the m-th propagative waveguide mode.
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Figure 3.23: Field distribution in a planar dielectric single-mode waveguide with core
diameter 3.72 um, calculated by the LIF-RCWA

In the numerical calculation only the propagative modes account for the transmitted light
in region III since all leaky modes should be absorbed by the additionally inserted bound-
aries. In a single-mode setup with core diameter d = 3.72 um as depicted in Fig. 3.23
and with no reflections in play, the overlap integral of the incident Gaussian beam and the
only analytically derived propagative waveguide mode should be comparable to the trans-
mission efficiency of th LIF-RCWA. And in fact they match perfectly for various values of
the Gaussian beam waist size o (cf. Eq. 3.30). These results have been published in [4].

In conclusion, both, the coupling as well as the formation and propagation of distinct waveg-
uide modes, have been demonstrated to be in good agreement with standard theories for a
single- and a multi-mode waveguide. This demonstrates the validity of the LIF-RCWA as a
method to rigorously analyze optical waveguides.
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Figure 3.24: Comparison
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Multi-mode interference optical splitter

Macroscopic waveguides can be utilized to work as interference optical splitter. Fig. 3.25
shows (in anisotropic resolution) the coupling of a Gaussian beam with a waist size of o9 =
10 pm and a wavelength of A = 0.85 yum under an angle of # = 5 deg in such a macroscopic
multi-mode waveguide. The refractive indices are equal to the single-mode waveguide in the
previous example, but this time the core has a diameter of d¢ore = 100 um and the simulation
period is P, = 1mm. After several occasions of internal reflections at the waveguide cladding
a fan out into multiple discrete modes can be observed. In a real application those outputs
can be further routed to distribute a broadcast signal.
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Figure 3.25: Intensity distribution of a linear polarized Gaussian beam with a beam waist
of o9 = 10 um and wavelength of A = 0.85 um coupling into a multi-mode interference
optical splitter with a core width of dcore = 100 pm under an incidence angle of 8 =5 deg
(anisotropic resolution), M = 402 modes
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3.11 Conclusion

In this chapter a novel approach has been presented that enables the rigorous coupled-wave
analysis (RCWA) to study diffraction problems with localized input fields, while maintaining
its computational complexity. The detailed description covers the modeling of coherent light
sources, like the Gaussian beam, an ideal focus as well as a point light source and finally
the angular spectrum decomposition (ASD) as a recipe to convert an arbitrary electromag-
netic field into a suitable form for the localized input field approach (LIF-RCWA) that was
presented here. In order to unfold the full potential of the rigorous vector theory, different
types of polarization like azimuthal and radial polarization have also been discussed, which
are not available in the standard RCWA.

In various examples, the potential of the method and new possible fields of applications for
the RCWA like the rigorous analysis of waveguide coupling or the simulation of the read-out
process of optical medias have been demonstrated. At the same time the correctness of the
new method has been verified against the standard RCWA algorithm and other theories.

Furthermore, a close look at the truncation scheme, which is used in the standard RCWA re-
vealed an inconsistent bandwidth limitation that has been overcome in the presented method.
In a comparison of convergence speeds for a non-bandlimited grating in TE-polarization, the
new approach was shown to fall behind the standard RCWA. In TM-polarization, however,
the new method showed superior performance - without the need and use of the inverse
rule” - as it manages to avoid the numerical instabilities caused by the Gibbs phenomenon.
Both results are founded in the consistent use of a discrete Fourier transformation with an
equal number of sampling points in both space and frequency domain. However, it should
be mentioned, that at the cost of the newly gained consistency in the bandlimiting, the in-
verse rule can also be effectively applied to the LIF-RCWA when using a different number
of sampling points in real space and Fourier space. In this case the convergence speed of
the LIF-RCWA, with its ability to treat non-plane wave incident light, exactly matches the
standard approach for all states of polarization.

Although the simulations presented in this chapter only considered two-dimensional grating
structures, this is by no means a limitation of the method. In fact, all its considerations
address the analysis of the full three-dimensional diffraction problem, even though some
discussions sticked to the two-dimensional case to avoid unnecessary complexity. The only
reason why tree-dimensional problems have been excluded from the examples, lies in the
sheer magnitude of the computational effort of those calculations. And thus the simulations
could not be performed with a sufficient order of truncation on a standard desktop computer
to reveal valuable insights.

2 Avoiding the need for the inverse rule especially reduces complexity when studying two-dimensional
grating structures, where the formulation becomes somewhat cumbersome (cf. Sec. 2.5.4).
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Chapter 4

Near field calculation

Typically, gratings are optimized for high diffraction efficiencies in the far field as they
serve as wavelength separator devices in monochromators, spectrometers and in the field of
optical data processing. However, in some applications near-field patterns are the relevant
quantities. Their visualization can give valuable insights in the underlying physics, e.g.
when optimizing resonant structures. Electromagnetic near-fields also directly influence local
absorption, which is discussed and utilized in Chap. 5 and 6. Therefore an exact calculation
of the near-fields is inevitable.

In the current chapter, different methods for the calculation of near-fields in one- and two-
dimensional gratings are compared. Since the diffraction coefficients of all RCWA variants
presented so far were shown to have congruent convergent limits, it can be assumed, that for
a sufficiently high number of Fourier modes, the electromagnetic fields are unambiguous. For
smaller mode counts, however, the question remains how the electromagnetic fields of the
different RCWA variants differ and how well they withstand physical consistency validation.
The answer to this question is indeed important, since, due to its Fourier nature, the RCWA
has intrinsic difficulties modeling lateral jump discontinuities in the material properties as
they leads to high frequencies and require high truncation limits. Furthermore, runtime and
memory constraints often prevent the analysis of fully converged fields. This is especially
true for the three-dimensional RCWA as shown in Sec. 3.7.

4.1 Mathematical derivation

The first part of this chapter concentrates on the derivation of an efficient calculation method
for the electromagnetic fields as they follow from the diffraction coefficients that are provided
by the RCWA.

All following considerations apply for volume gratings with locally varying permeability and
make use of the inverse rule (cf. Sec. 2.5.2). Thus, simpler forms of the method, like for
one-dimensional gratings, neutral relative permeability (u = 1) or without the use of the
inverse rule can easily be derived.
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CHAPTER 4. NEAR FIELD CALCULATION

4.1.1 Electric and magnetic field in the outside regions

According to the Egs. 2.6a to 2.6d, the electric field in the incident region [ is defined as

E[;j (r) — El;jei(ki;zm+ki;yy+ki;ZZ) _|_ Z Rj;mynei(kw;7nx+ky;ny_71;m,nz) (41)

m,n

for every field component j = x,y, 2. Using the following abbreviations
Op (z,y) := exp (i (kipx + kiyy)) and Pffo (2) == exp (iki,»2) as well as
O (z,y) := diag (exp (i (kz;mx + ky:ny))) and P (2) := exp (—ivrmnz) Eq. 4.1 reads as

Er; () = 00 (,y) Py (2) ey + O () diag (P7 (2)) Ry. (4.2)

Due to Snell’s law, k., and k., remain unchanged in the entire simulation area. Thus, for
a given set of lateral coordinates x4 = xg..xn,—1 and ¥y, = Yo--yn,—1 the Fourier matrix

[z,y] _ 'L(k'z,mx +k ;nyr)
OT'Nx+Q§7L'Mx+m =e o (43)

must only be calculated once and can then be reused in order to save calculation time. (Here,
M, x M, is the number of sampling points in Fourier space and N, x N, is the number of
sampling points in position space respectively.) This way the electric field in a slice of discrete
points in space at position z can be calculated at once by

E"" (2) = O (diag (P} () Loy + diag (P () Ry), (4.4)

with the incident vector Ly as defined according to definition 2.26b.

In the LIF-approach the corresponding electric field in region I takes a very similar but even
more symmetric form:

E[ij] (z) = Ol=vl (diag (P}r (z)) L; + diag (PI_ (z)) Rj) (4.5)

Remark: It should be noted here, that in a computer algorithm, it is of course sufficient to
store a vector instead of a diagonal matrix with a square number of values. As a consequence,
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also the matrix-vector product of a diagonal matrix and a vector can be implemented very
efficiently.

While the tangential diffraction coefficients are directly provided by the RCWA-algorithm,
the z-components in R, derive from the orthogonality of every diffracted mode and its wave
vector Kr.p, n Ry = 0 leading to

R. =K;.(K.R. +K,R,).! (4.6)

The very same considerations also apply to the electric field in the transmitting region (III):

Ej (2) = O diag (P, (2)) T (47)

with

T, = K;I},Z (K, T, +K,T,). (4.8)

And after transforming the tangential diffraction coefficients of the electric field into its
magnetic counterparts by using the conversion matrix C (cf. 2.28):

L7 =cCL, (4.9a)
RY =CR, (4.9b)
T =CT, (4.9¢)

Eqgs. 4.4 to 4.8 also apply equally to the magnetic fields.

! As introduced in Chap. 2, K; is the diagonal matrix of kj.m n-
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4.1.2 Electric and magnetic field in the grating region

In any layer [ in the grating region (II') the electric and the magnetic field are defined by the

partial Fourier series according to Eqgs. 2.9a and 2.9b:

El;j (I‘) = Z Sl;j;m,n(Z)ei(kr;m$+ky?7by)
m,n
1 .
Hig (r) = Zo Z Ul;j;m,n(z)ez(km?merky;ny)
0 mn

Using again the O-matrix notation of Eq. 4.3 leads to

EY (2) = oSy, (2)

H"Y (2) = Zio[wlUl;j (2)
0

with the S;.| and Uy, | defined according to Egs. 2.21a and 2.21b:

Spi(2) =Vi (P (2) tt + P (2) 1)
Ul;J_ (Z) =W, (P;r (Z) t; _Pl_ (Z) I‘l) .

(4.10a)

(4.10D)

(4.11a)

(4.11Db)

(4.12a)
(4.12b)

In Chap. 2 Maxwell’s equations were solved by forward and backward propagating eigen-
modes for the grating region rather than by Fourier modes of the electric and magnetic
field. As a consequence, the z-components of the wave vectors, one might extract from
P/ (z) = exp (—ko/Ag2) = kg = iko\/Ay), are not compatible with the wave vector’s
tangential components of the Fourier modes, and so they cannot be used to derive the z-
components of the fields in region II as in Eq. 4.6 and 4.8. However, using Maxwell’s
equations, the z-component of the electric field can be expressed by the tangential compo-

nents of the magnetic field and vice versa:
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4.2. VALIDATION OF THE ELECTROMAGNETIC FIELDS

Substituting the Fourier ansatz for the permittivity and the fields (cf. Eqgs. 2.1, 2.9a and
2.9b) and again using the O matrix notation leads to

O[x,y]sl;z (z) = Zk;ZOO olzyl <H€lﬂ szlgUl;y (2) — [[e]] KyzloUl;x (z)) (4.14a)
Z0BIU, (2) = 00 ([ f]Ks Sy () — /K, S () (114v)
0 040

and finally to an expression for the z-components of the Fourier ansatz in the grating
region (II):

s = s (L ) (i) .

Uy (2) = klo <—UOMJ H;ézﬂ) (EQ Si.. (2) (4.15b)

Now, every component of the electric and the magnetic near field can be calculated in any
arbitrary simulation area.

Example and discussion

Fig. 4.1a shows the sketch of a GaAs-Ronchi grating with a duty cycle of f = 0.5 P and a
period of P = 0.5 um. The permittivity of GaAs is assumed to be ¢ = 13.3 4+ 0.0257 and
the illumination light has a wavelength of A = 1um. In Figs. 4.1b to 4.1d the different
non-zero components of the electric near field are calculated for TE and TM polarization.
A high mode count (M = 301) was chosen in order to obtain a reference solution for later
comparisons.

4.2 Validation of the electromagnetic fields

It assumed that for a sufficiently high mode count as it is shown in Fig. 4.1 the electro-
magnetic fields of all discussed RCWA variants are converged equally to the same correct
physical near fields. It is also obvious that the electromagnetic fields of the RCWA variants
will differ for smaller mode counts. However, especially complex diffraction problems in the
three-dimensional regime, often require a very high number of modes to achieve reasonable
results and may exceed the available computational resources. This leads to the question if
the electromagnetic fields converge with the same speed as their diffraction coefficients. They
can clearly not converge faster but possibly slower, if the error in the diffraction coefficients
multiplies in the calculation of the fields. Another question is how to validate the correctness
of the fields.
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Figure 4.1: Near field calculation with My = 150 = M = 301 Fourier modes

To begin with, Fig. 4.2 shows the electric near fields as they are calculated according to
the derivation in the previous section but on the base of the diffraction coefficients of (1)
the standard RCWA, (2) the RCWA with inverse rule applied (cf. Li’s rules in Sec. 2.5.2),
(3) the RCWA with apodization and (4) with the LIF-RCWA, all at a very low mode count
of only Mg =4 = M =9. Only Fig. 4.2a shows the y-component of the electric field in TE
polarization, since it is obviously already converged at this low mode count and is therefore
not the focus of the following discussion.

As expected, the fields of all RCWA variants slightly differ, but they all show the difficulty in
the Fourier expanded x-component of the electric field to describe steep slopes at low mode
counts. The field calculated with an additional apodization (cf. Figs. 4.2f) appears even
smoother due to the suppressed higher frequencies. Since N = 512 sampling points were
used in all these simulations for the discrete Fourier transformation of the permittivity, also
the electric fields are reconstructed on a discrete grid with 512 pixels per grating period. By
contrast, the LIF-RCWA, uses the same number of sampling points in Fourier and position
space (= N = M =9). But, in order to obtain comparable results, in this example the fields
of the LIF-RCWA are equally reconstructed on N = 512 discrete positions in z-direction (cf.
Figs. 4.2h and 4.2i).

It is obviously not possible to decide, which of the methods in Fig. 4.2 provides the best
solution for the electromagnetic near fields based on the visual impression. So there is an
apparent need for some substantial criteria.
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Figure 4.2: FElectric near fields with different RCWA variants at low Fourier mode count of

103



CHAPTER 4. NEAR FIELD CALCULATION

4.2.1 Maxwell’s boundary conditions

As indicated before, one important requirement that every near field solution is expected
to meet is its agreement with Maxwell’s boundary conditions (cf. Sec. 1.1.7). According to
this, the components of the electric and the magnetic fields (F and H), which are tangential
to the grating boundaries and the components of the electric displacement field and mag-
netic induction (D and B), which are normal to the grating boundaries, are supposed to
be continuous. The remaining components, however, might be discontinuous and in case of
material jump discontinuities, they are expected to be so. This follows straight from the
constitutive equations (e.g. D = eegF, cf. Egs. 1.2a and 1.2a).

The conditions for the individual electric field components are shown in Tab. 4.1 for a
one-dimensional grating with periodicity in x-direction in non-conical mounting. At TE po-
larization, F, is the only non-zero component of the electric field and it is tangential to any
boundary, which is encountered in x- and z-direction. The resulting continuity requirement
in the same directions are indicated by the letter “c”. Since Fig. 4.2a shows both continuities,
the corresponding cells are marked in green. The y-component would be discontinuous at
any boundary encountered in y-direction, which is indicated by the letter “d”. But only a
one-dimensional grating is considered here, and thus, the continuity of the field in y-direction
does not violate Maxwell’s conditions.

In the TM case, the conditions only require the continuity of E, in y- and z-direction and
due to the material discontinuity in x-direction FE, is in fact expected to follow these dis-
continuities. But because in x-direction the electric field is described by a Fourier series
with a finite number of Fourier modes, the calculated field of any of the methods (cf. Fig.
4.2b to 4.2i) and especially of the methods, which use apodization and the inverse rule, is
continuous. This is a violation of discontinuity condition and indicated by a red cell color.
The z-component of the electric field only allows a discontinuity in z-direction, which can
be observed in all the results (cf. Fig 4.2¢, 4.2e and 4.2i) on the right interface, where the
GaAs-grating faces region Il with a refractive index of n = 1.

TE polarization TM polarization
BNE ALIE

E,=0 E,|d|clec

E,lcld]c E, =0

E,=0 FE, ‘ c ‘ c ‘ d

Table 4.1: Maxwell’s boundary conditions

There are different solutions to this problem: Since all Fourier methods lack the ability to
model steep slopes at finite mode counts, one could think of using different base functions.
In fact, Khavasi et al.[62], for example, rewrote the RCWA using a Legendre polynomial
expansion instead of the common Fourier expansions - also with the goal to avoid the Gibbs
phenomenon in the TM case and its negative effects the numerical stability. An approach
based on Fourier expansion was proposed by Lalanne and Jurek[67], who introduced a non-
bandwidth limited quantity to the calculation of the fields. Finally, apodization (cf. Sec. 2.6)
aims at avoiding the problem completely by changing the design properties of the grating to
obtain a structure with smoother material transitions and a smaller bandwidth. Thus,
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the critical boundary condition is met not by making the x-component of the electric field
discontinuous in x-direction, but by changing the conditions.

The method of Lalanne and Jurek

TM polarization

x|y |z x|y |z
D,lc|d]|d E,|d|d|d
D, =0 E,=0
Dz‘d‘d‘c Ez‘c‘c‘d

Table 4.2: Maxwell’s boundary conditions

Lalanne and Jurek[67] faced the discontinuity violation by only calculating the x-continuous
fields with a Fourier expansion and deriving all x-discontinuous fields by multiplication with
the non-bandwidth limited permittivity in position space. More precisely, they suggested to
calculate the x-continuous quantities Ey, and £, as usual by the Fourier series

Ej =3 Sim(2) et for j=y,z, (4.16)

but obtain the discontinuous x-component of the E-field from the continuous x-component
of the D-field (cf. Tab. 4.2) and the discontinuous permittivity e(z):

E,=1/e(z) - D, (4.17)

with
D, = Z G (2) eFom®, (4.18)

This is possible, since in the two-dimensional RCWA the D-field is directly accessible via the
magnetic field: When solving 52Uy /622 = Qf U, with an eigenvalue ansatz for the magnetic
field” then it is U, = W (PT (2)t + P~ (2)r) and the Ampere’s circuital law (cf. Eq. 1.1a)
leads to

o ik

w

WQ(-P*t+Pr). (4.19)

2Note, that in Sec. 2.4.2 the eigenvalue ansatz was applied to the electric field (cf. Eq. 2.16). Both cases
are compared in Sec. A.5, where also this two-dimensional, non-conical mounting is considered.
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The result is shown in Fig. 4.3a and 4.3b for 4 and 150 Fourier modes. Here, the x-component
of the electric field shows a sharp discontinuity in x-direction even at the small mode count,
but in return suffers from strong oscillations, which disappear again at a higher mode count.
More serious, however, are high amplitude peaks, which appear near the boundaries as it can
be observed in Figs. 4.3c and 4.3d. These become narrower but also higher for increasing
mode counts. The amplitudes in Figs. 4.3a and 4.3b are therefore clipped so they can be
compared with the other results.

Another downside of this approach is that the method cannot be applied to two-dimensional
structures, since in the general case the D-field is not continuous in both tangential directions
(cf. Tab. 4.2). So the E-field cannot be derived.
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Figure 4.3: For a one-dimensional grating, the electric fields calculated with the method of
Lalanne and Jurek[67] (with inverse rule applied) show the expected jump discontinuity in
normal direction to the grating slopes but singularities at the grating boundaries.

In summary, there are different methods for the calculation of the electromagnetic fields,
which all lead to different solutions for small mode counts. Since the expected discontinuity
of the fields components in normal direction to the grating slopes cannot be represented by
a finite mode count, Lalanne and Jurek[67] suggested to achieve the discontinuity by intro-
ducing a non-bandwidth limited permittivity to the calculation. This cures the continuity
problem, but the resulting fields still seem to deviate visually from the standard high-mode
calculation due to singularities that arise near the surface boundaries. Thus, it turns out
that Maxwell’s continuity conditions are not a sufficient criterion to decide, which method
is the most accurate.
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4.2.2 Root mean square deviation

Another approach is to quantize the convergence of the fields themselves. This can be
achieved by simply calculating the root mean square deviation (RMSD) between the fields
of a low and a high mode calculation by

1 N.;—1Nz—1

N SN (wik — k) (4.20)

k=0 j=0

RMSD =

where N, x N, is the number of sampling points of the field, w;; is the calculated value
at a position (z;, 2;) in the field and w;, is the reference value of a fairly converged result
(cf. Figs. 4.1c and 4.1d). In order to take all field components into account, the RMSD is

calculated from intensity distributions (:> wjr = |Eq (x5, zk)]2).
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(b) Convergence of the diffraction coefficients

Figure 4.4: Comparison between the convergence speed of (a) the electromagnetic near
fields and (b) the diffraction coefficients. (a) shows the root mean square deviation between
a high mode count (M = 301) field calculation with the standard RCWA and different field
calculation methods with increasing mode count. (b) shows the corresponding convergence
of the transmission efficiency of the Oth diffraction order. (The field calculation method of

Lalanne and Jurek[67] is based on the RCWA with the inverse rule applied.)
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Fig. 4.4a shows the RMSD between a high mode count calculation (M = 301) with
the standard RCWA and different field calculation methods at lower but increasing mode
counts. The fields were reconstructed in a region between z = —0.45 ym and z = 0.75 um
and z = 0pum and z = P, = 0.6 um on a discrete grid with 1024 x 512 pixels.

The results are compared with the absolute deviation of the transmission efficiencies of the
Oth diffraction order between an increasing mode count and the reference calculation with
M = 301 modes in Fig. 4.4b.

4.2.3 Conclusion

Figs. 4.4a and 4.4b show that the convergence behavior of the fields is consistent with the
convergence of the diffraction coefficients. This was expected, since the diffraction coeffi-
cients are calculated by using the continuous boundary conditions of the fields.
Apodization again shows the slowest convergence speed for the fields as well as for the
diffraction coefficients. The convergence speed of the LIF-RCWA falls in between the stan-
dard RCWA and the RCWA with the inverse rule applied. The method does not rely on the
inverse rule, but experiences oscillations in the convergence due to the lower sampling of the
grating. The use of the inverse rule clearly achieves the fastest convergence rate for both the
electromagnetic fields and the diffraction coefficients. Applying the method of Lalanne and
Jurek[67] is even able to further improve the convergence speed of the fields. However, the
method is only applicable to one-dimensional gratings and a study of the energy conservation
in Sec. 5.3 will expose that the superior convergence of the inverse rule and the method by
Lalanne and Jurek[67] does not come without a price.
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Chapter 5

Absorption

When photodetectors, photovoltaic elements or photolithographic setups are designed, the
main focus usually lies on the optimization of intensity distributions. They are simulated
by scalar and rigorous diffraction theories in the time or modal domain, and although,
these theories are sufficiently exact to predict intensities, they actually do not provide the
relevant quantity that describes the performance of such devices. As a matter of fact, the
true measurand is the amount of power that is absorbed in a given volume as it directly
influences the electron generation in a detectors depletion region or the resist exposure of a
lithographic setup. However, this requires a precise knowledge of the local absorption, which
is not provided natively by most common diffraction theories.

This chapter will first discuss some simplified techniques to describe light absorption in
classical optics and later proceed with a more general way to calculate the local absorption
inside complex two- and three-dimensional structures using the standard RCWA according
to Brenner[13] including an extension for the LIF-approach.

The ability to combine local absorption theory and the LIF-RCWA is indeed very powerful
and expands the scope of rigorous design tools e.g. to optical storage technology, where
focused beams in absorbing structures are used. Furthermore, at the end of this chapter, the
theory of local absorption is used to test the different variants of the rigorous coupled-wave
analysis with regard to their ability to conserve energy.

5.1 Lambert-Beer’s law

A simple and often used method to calculate light absorption is described by the Lambert-
Beer’s law. It derives absorption in a homogeneous medium from a complex refractive index,

which is irradiated by a monochromatic plane wave (cf. Figs. 5.1a and 5.1b).
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According to Eq. 1.12, such plane wave, which propagates along z-axis (s = €;) in an
absorbing medium (7 = n + ix, k # 0)', can be described as

E(r) = EyEq exp(ikr) (5.1)
= EpEq exp(i(kofisr))
= EoE1 exp(i(kofnz))
= EyE1 exp(
= EyE1 exp(

p(i(konz + ikokz))
p(ikonz) exp(—kokz).

Local intensity I(z) is then determined by

I(z) == |E[* exp(—2kkoz)
= Jpe =, (5.2)

which shows an exponential decay along the penetration depth z. « is called the absorption coefficient
and is wavelength dependent:

4
a = 2kky = % (5.3)

Comparing the intensity at a position z with the initial intensity at the position of the light
source (at z = 0) results in the transmission magnitude at position z:

Alz) =1-T(2), (5.5)

since the scope of this method is limited to media without any borders, where reflection must
be accounted for. Finally, local absorption is simply the derivative along the penetration
depth:

a(z) = ;ZA(Z) (5.6)

!The relation between a complex refractive index 7 and € is # = \/€fi. More details on this topic can be
found in App. A.2.
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Example and discussion
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Figure 5.1: Example of the use of Lambert-Beer’s law for the calculation of local
absorption in a homogeneous medium

Fig. 5.1b shows the local absorption of light at a wavelength of A = 1 um inside a homo-
geneous medium with n = 1 and k£ = 0.0125 according to Lambert-Beer’s law and Eq. 5.5.
The results are in fact pretty accurate for this specific example. Nevertheless, the theory is
very limited, because homogeneity must not only be ensured inside a considered object: As-
suming this object is still homogeneous, but the real-part of its refractive index differs from
the surrounding, then reflection would occur at all interfaces, which would not be considered
by Lambert-Beer’s law.

5.2 General theory of local absorption

In order to calculate local absorption for practical applications and scenarios, which are
relevant for this work, like in the domain of diffraction gratings, a general absorption theory
must also respect angular incidence and reflection and include multi layer systems and even
structured layers.
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5.2.1 Simple approach for layerwise absorption

In classical multi layer theory [21] as well as in modal methods (cf. Sec. 2.8), larger diffrac-
tive systems are often partitioned into layers with constant permittivity in the propagation
direction of the light. Therefore, it is sometimes sufficient to know the amount of light, that
is absorbed in a single layer [, like, for example, in the photoactive layer of a solar cell. A
simple approach to obtain this information assumes, that the absorption in that specific layer
l does not influence the absorbance of any other layer. In other words, changing only the
absorption property in one layer, should not quantitatively change the absorbance of another
layer.

A= A; (5.7a)

J
Ao =1 RE —The  with Kk A£0= A #0 (5.7b)
A =1 -Rbe —Th  with Kk =0=4,=0 (5.7¢)
Ay = Abs — gbe (5.7d)

Eq. 5.7a simply illustrates the fact, that the overall absorption (A) of a grating is the sum
of the absorption values A; of all composing layers j. In order to obtain the absorption
A; of a single layer [, global transmission (7)) (cf. Eq. 2.71a) and global reflection (R)
(cf. Eq. 2.71b) of the entire structure is calculated twice, with (I;e) and without (/;0) the
absorption coefficients of the specific layer {. Each time a global absorption value is derived
from the energy conservation law, similar to Eq. 5.5 in Lambert Beer’s law, but this time
taking reflection into account (4 = 1 — R — T, cf. Egs. 5.7b and 5.7¢). Finally, the
difference between both global absorption values (A%® and A%°, cf. Eq. 5.7d) serves as an
approximation for the absorption in layer [.

Example and discussion
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Figure 5.2: Example setup of a GaAs diffraction grating for testing the method of layerwise
absorption
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The diffraction grating depicted in Fig. 5.2a has a complex refractive index with n = 3.65
and k = 0.0034 (= GaAs) and consists of two layers with a thickness of 0.3 ym each. The
first layer has a duty cycle of f = 0.5P, whereas the second layer is homogeneous (f = 1P).
The setup is illuminated with a TM polarized plane wave at a wavelength of A = 1 um. Using
the standard RCWA to obtain the diffraction efficiencies and the law of energy conservation
to obtain a global absorption, one obtains a value of 9.20408 %. On the other hand, using
the method of layerwise absorption one obtains the two separate absorption values 2.25681 %
and 7.11633 % for the two individual layers, which sum up to a total of 9.37314 %. Thus,
they do show a deviation of 1.83679 % from the expected global absorption.

Figs. 5.3a to 5.3d show, that the error primarily correlates with an increasing value of the
imaginary part of the refractive index and the summed up layerwise absorption can even
reach meaningless values of more the 100 %, whereas other parameters show only little and
no systematic error.
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Figure 5.3: Influence of different parameters on the accuracy of the
layerwise absorption method

The example shows that the method of layerwise disabling the absorption property can be
used for a rough estimation of the absorption per layer. However, it’s basic assumption, that
the absorption property of the individual layers doesn’t influence each other, is not correct.
And besides the increasing inaccuracy for higher absorption coefficients, the method only
provides absorption results for entire layers.
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5.2.2 General local absorption in the standard RCWA

A more general approach was suggested by Brenner[13] and is derived here in detail as a
supplement to the standard RCWA and the LIF-approach and extended to locally varying
permeability. It is later used to demonstrate the potential of the LIF-RCWA and to test the
different RCWA variants with regard on their ability to conserve energy.

For the exact calculation of the absorbed power in an arbitrary volume element, one has to
go back to the fundamentals of electrodynamics. The conservation of energy states that the
total energy of an isolated system is conserved over time. Thus all power that flows into the
system is either reflected, transmitted or absorbed.

-Pin = Fout + Pabs (58)
= Pabs = Pl — Iout (5-9)

Figure 5.4: Tllustration of the power flow through an absorbing structure

The Poynting vector S = E x H describes the energy flux density of the steady state elec-
tromagnetic field measured in watt per square meter. Thus, the actual power can be derived
by the divergence of the Poynting vector:

Py = / VSim BBV = — 7{ SindA (5.10a)
1% A

Py = — / VSout @V — 7{ SoutdA (5.10b)
1% A

Pops = —/ VSdv = —]f SdA (5.10¢)
1% A

Since the origin of the incident light is a source of energy and of the electromagnetic field, the
divergence of the Poynting vector of the incident is positive (cf. Eq. 5.10a). An absorbing
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element or its infinite surrounding appears as an energy sink and thus the divergence of the
corresponding Poynting vector is negative (cf. Egs. 5.10b and 5.10c). According to Gauss’s
divergence theorem, the volume integral over the divergence of an energy flux can equally
be described by a surface integral over the region’s boundary as shown on the right in Eqgs.
5.10a-5.10c. However, the theorem states, that the surface normals must always point outside
the enclosed volume, which leads to a negative sign in Eq. 5.10a and 5.10c, where the flux is
oriented towards the center of the enclosed volume. Thus positive energy is always ensured.

The consistency of the above definitions can be verified by substituting them back into
Eq. 5.9:

Pos = Pn — Pout (5.11&)
<_% SdAnear) - (_% SindAfar> _j{ SoutdAfar (511b)
A A A
f SdA near = 75 SindAgar + 75 SoutdAfar (5.11¢)
A A A
fsmmmzf&mm. (5.11d)
A A

The result shows that energy conservation holds regardless of whether the surface area is
considered in the near or in far field. A similar consistency check can also be performed for
the volume integrals.

In order to calculate the absorbed power, the divergence of the Poynting vector in Eq. 5.10¢
finally needs to be dissolved into electric and magnetic fields that are accessible by the
RCWA.:

VS = V(E x H) (5.12)

Since only steady state systems are considered here, the time averaged Poynting vector is
the essential quantity, and the physical monochromatic and harmonic field can be expressed
by complex quantities (cf. A.3):

V(S) = %V Re (E x H") (5.13a)
:%m«vaHw—%mﬂvXme (5.13b)
=5 Re (<M'u08tH) H" + (J +e eoatE ) E) (5.13c)

1 oH.. . . OFF
=3 Re (/,LuoatH + J'E+ "¢ 5 E) (5.13d)

Here, J denotes the electric current density, which is neglectable for optical frequencies
(cf. Sec. 1.1.4).
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With the Ampeére’s circuital law (cf. Eq. 1.1a) and Maxwell-Faraday’s equation (cf. Eq. 1.1b)
applied one obtains

V(S) = —=Re (6 608;3 E +,uuoaH > . (5.14)

Treating the permittivity as a complex quantity (¢ = €, + i¢;) and the relative permeability
as neutral (4 = 1) and also resolving the real part operator by Re(z) = 1/2 (z + z*), the
equation transforms to

1 OE* OE _, oH__, 8H* . OE _, B OE*
V(S)=—- (ereo ( 5 E + EE ) ~+ uo ( 5 H T H) + i€;€9 (&E o E)) ,
(5.15)

in which the first two terms cancel out after the time derivation of the electric and magnetic
fields as they are assumed to be monochromatic and harmonic
(~exp(—iwt) = F (t) = Fe~™"). This leads to

€i€0

V(S) = -3

w|E(r)[%. (5.16)

Substituting Eq. 5.16 back into Eq. 5.10c and replacing egw by ko/Zp provides a first result
for the absorbed power in a volume V:

Pas = — /v S) BBV — 220/1 E(r)[2 &V (5.17)

The electric field E(r) can now be separated into a product of constant amplitude Ey and
the system’s response E1(r) to an incident field with amplitude E = 1 (= E(r) = EyE1(r)),
leading to

P = |E0|2/ Im (e (r)) |Eq1(r)|? d®V. (5.18)
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The incident power P, on the other hand can be derived from the surface integral in
Eq. 5.10a:

P = — f (Sin)dA (5.19a)
A

= U % Re (E x H*) dA (5.19b)
_ 2
= ﬂ sz B Re () dA (5.19¢)
_ 2 .
— g 220k0|E°| Re (k;ny) dA (5.19d)
_ 1 . 2
= 57 Re (ki) [ Bl Lf dA (5.19)
N (ki.o) | Eol? (5.19f)
N 2Z0/{70 © Wiz 0 '

Because in the present setup (cf. Fig. 5.4) the incident light is pointing from negative z on
to the grating and the grating itself is periodically infinite in x- and y-direction, the closed
integral can be replaced by a surface integral over the area A = P,FP,, which lays in the
x/y-plane somewhere in region I at z < 0. nao = —e, is its normal unit vector pointing back
in region I, whereas k; is the wave vector in the direction of the field propagation and points
in positive z-direction. Thus, its product is —k;,,. The real part operator Re (-) indicates
that only a propagative incident wave carries energy.

Integrated absorption

The relation between the absorbed power and the incident power finally leads to an equation
for the relative absorbed power in a volume V', independent of the unknown constant Fjy:

Pabs: ]. ko

Abs =
*T Pu

) [Ex(r)? &V (5.20)

This shall be referred to as the integrated absorption.

With &®V = dedydz, A = P,P, and dq = P;/N, for ¢ = z,y, Eq. 5.20 can be expressed in
a discretized form as

1
dz

Abs =

Nz—1Ny—
3RS

N.—1
> T (e(rj ) [Ba(rien) . (5.21)
l
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Example and discussion
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(c) Local absorption from (d) Local absorption from
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Figure 5.5: Calculation of local absorption in a GaAs-grating on a 1024 x 512-sized grid
with M = 161 Fourier modes.

The method of layerwise absorption in Sec. 5.2.1 only allows a rough estimation of the total
absorption per layer. By contrast, the theory of local absorption is able to provide local
absorption with arbitrary spatial resolution®. Fig. 5.5a shows the same setup as in the last
example. Local absorption is now calculated on a grid with 1024 x 512 discrete spatial points
and M = 161 Fourier modes (Std-RCWA) in two different ways: In Fig. 5.5¢ the imaginary
part of the permittivity is taken straight from € (z), exactly as it was designed and defined
in Fig. 5.5a. In this case the permittivity is not mode-limited and as such further referred
to as design epsilon. In Fig. 5.5d the mode-limited permittivity ™) (z) is used, further
referred to as reconstructed epsilon (cf. Eq. 2.37). Since the RCWA is a modal method
and already processes the permittivity as a mode-limited quantity, the latter approach is the
more consistent one and used as such in all subsequent local absorption calculations. Never-
theless, the integrated absorption of both method provides very similar results and compared
to the layerwise absorption approach they both show superior consistency with the global
absorption reference that is derived from the diffraction efficiencies (cf. Eq. 5.7b). This
is true even though the reconstructed epsilon absorption shows smoother edges in lateral
direction and additional over- and undershoots due to the mode limitation (cf. Fig. 5.5d).
Tab. 5.1 shows the comparison between the global absorption and the absorption results of
the different methods for the example in Fig. 5.5a.

20f course, if the chosen spatial resolution lies above the modal resolution used in the calculation, the
electric field is only Fourier interpolated and so the calculated local absorption is only an approximation.
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Figs. 5.6a to 5.6d also illustrates a high agreement between the integrated local absorption
and the global absorption for a diversity of parameter variations including an increasing ab-
sorption property. In fact the result match to such degree, that it appears safe to assume,
that the remaining errors solely originate from the sampling of the electric field. Unfortu-
nately, this intuition is misguided, even though the problem doesn’t lie in the theory of local

absorption. The topic is further discussed in Sec. 5.3.

Table 5.1: Comparison between different methods to calculate absorption for the example

Absorption in %

method | abs. in layer 1 | abs. layer 2 > deviation
2.25681% 7.11633% 9.37314% | 1.83679%
2.18357% 7.03371% 9.21728% | 0.14341%
2.18215% 7.03371% 9.21586% | 0.12799%
9.20408%

grating in Fig. 5.5a and their deviation from the global absorption.
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Figure 5.6: Influence of different parameters on the accuracy of the
local absorption theory. Calculations were performed on a 1024 x 512-sized grid with
M = 81 Fourier modes.

119



CHAPTER 5. ABSORPTION

5.2.3 Complex local permeability

If also the permeability u is considered to be a complex and locally varying material property
of the grating, the same approach as described in the previous section lead to an even more
general expression for absolute local absorption that is

ko 1
Paw =3 [ (7 1 (e ) [B@P + ZoTn (u () [HG)P ) V. (52
However, complex permeability at optical frequencies are usually only expected for photonic
metamaterial. In the surrounding medium, the permeability is, therefore, assumed to be a
constant, real number p; and thus the irradiated power is now defined as

A

Pp=
" 2Z0kopr

Re (ki..) | Eol|*. (5.23)

5.2.4 General local absorption in the LIF-RCWA

For the LIF-RCWA, local absorption is calculated very similar. Only the incoming power

1
PLF — _ 7{4 5 Re (B x H") dA, (5.24)

is now composed of a superposition of multiple electric and magnetic plane waves Lﬁyn and
Lg’n. Again, with A as the rectangular incidence area of size P, P, and the z-axis as it’s
surface normal ny = —e, the closed integral can be replaced by a double integral over the
two grating periods and the vector product of electric and the magnetic field only needs to
be evaluated for the z-component:

1
LIF # X
Py™ = %4 92 Re (EzHy - Eny) dA (5.25a)
1 (P Py
=3 / Re (F) dzdy (5.25b)
2Jo Jo
with
5 *: 271 m—m’ _A,_Ln/ .
= Z Z (Lgm»nLy;gb’,n’ B Lim,an;g/m/) € TFZ( Pr OBy y) e Vmn? (5.26)

m,nm/ n’
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The z coordinate can be chosen arbitrarily in region I. Hence, choosing z = 0 will let the
last term in Eq. 5.25b disappear. The integrals can now be solved as

Lo o )
PP lg (Z S (LE Lyt = Ll L n)) Poboy Py (5.27a)
m,nm/ n’
1
T2

SPuPy Y Re (LY, Lyl — LI, Lot ) (5.27b)

ymny;m,n yym,nHx;m,n
m,n

Finally the magnetic components can be expressed by electric components through the con-
version matrix C (cf. Eq. 2.28) with

L7 =cLf = (gf;z gz) (Eag) (5.28)
leading to
PLIF — Z Re (L2, (CommnLE i + Copomn L) (5.29a)
L (Commn L+ Cayimn L)) (5.29b)
- gRe ([CLET [JLED with J = <(I) _OI> (5.29¢)

2D-Case simplification

In case of only one-dimensional gratings in classical mounting (cf. Fig. 1.3a), k, disappears
and the diffraction problem can be separated into two cases of polarization, namely TE and
TM, which allows the following simplifications of Eq. 5.29b:

TE polarization

Ex: Hy_0:>Lxmn7LzEmn7L5[mn:O
2
LIF __
= pL 2ZOI%MZRe o ’Lymn‘ (5.30)
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TM polarization:

E,=H,=H,=0= L), =L =LI =0
A 2
= PLIF Re (kzmn) | L : 5.31
in 2ZOkOMI o € ( z,m,n) x,m,n‘ ( )
Both cases show a similar form as the derived incident power in the
standard case (cf. Eq. 5.19f).
The normalized integrated absorption is again given by
AbsHIF (r) = Lobs ey 5.32
s (r) = pIE Wi (5.32a)
k
Pibs = —0/ Im (e (r)) |E(r)]? d*V. (5.32b)
270 Jv

Example and discussion

The following example consists of a simple setup with two absorbing layers of GaAs, which are
separated by a gap of air (distance = 1 um). The goal was to optimize the setup parameters
in order maximize the absorbed power in layer 1. The first column of Fig. 5.7 shows the setup
illuminated by a TM polarized plane wave with wavelength A = 1 um. With a thickness of
dy = A\/n = 0.2742 pm and do = 0.3 um the two layers only absorb 1.18741 % and 1.35813 %
of the light respectively. In setup 2 (cf. second column of Fig. 5.7) the plane wave is replaced
by a focused beam (as described in Sec. 3.10.3) with a numerical aperture of NA = 1. This
causes layer 1 to absorb twice the power, while layer 2 remains unchanged. Finally, in setup
3 (cf. third column of Fig. 5.7), the first layer is interrupted by a small slit of s = 0.23881 um
and the absorption in this layer suddenly reaches 53.80354 %, while at the same time the
absorption in layer 2 drops down to 0.60943 %. This indicates that, although the slit is not
even a third of the wavelength in size it now collects most of the light and channels it into
layer 1, where it remains contained due to total reflection at both of its interfaces. Just by
moving both, slit and focal spot, to a different position, it is also easily possible to optimize
for maximum absorption in a hidden layer, like layer 2 in this case.

The example shows, that in combination the LIF-RCWA and the theory of local absorption
can be used to improve the performance of devices, where high absorptions in confined
locations are the critical parameter, for example in the active regions of a solar cell or
a photodetector. The theory can in fact also be used to optimize for absorption in even
smaller regions inside a layer.
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Figure 5.7: Comparison of three configurations with regard to their absorption performance
in layer 1. All calculations were performed with M = 201 Fourier modes.

gl. trans. gl. refl. | abs. in layer 1 | abs. in layer 2 gl. abs.
setup 1 | 50.89931% | 46.56045% 1.18741% 1.35813% | 2.54024%
setup 2 | 62.96804% | 33.17753% 2.39485% 1.43589% | 3.85443%
setup 3 | 25.67581% | 20.24959% 53.45612% 0.60617% | 54.07461%

Table 5.2: Transmission, reflection and absorption value for the three example
configurations in Fig. 5.7
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5.3 Energy conservation in the RCWA

5.3.1 Energy conservation in absorbing gratings

The theory of local absorption can not only be used for the optimization of optical gratings,
but also to verify the RCWA itself.

Moharam and Gaylord claim that conservation of energy for a lossless grating [...] should
be achieved to an accuracy of at least 1 part in 11, regardless of the number of terms in the
field-expansion series that are retained in the formulation[91]. And in fact, this statement is
widely accepted. So again, for a lossless grating the power deficit is defined as the difference
between the irradiated power and the sum of reflected and transmitted power (cf. Eq. 2.71)

power deficit ;=1 —-R — T (5.33)

should effectively be zero. For an absorbing grating on the other hand, it seems natural
to simply address the power deficit to the absorption in the grating as done in Sec. 5.2.2
(cf. Example and Discussion). However, the situation is not so clear. In fact, Russel[109]
already criticized the RCWA'’s truncation scheme to be the cause of a violation of the law
of energy conservation even for lossless gratings. So, for an absorbing grating the question
of energy conservation becomes even more significant, since there is no way to distinguish
between a numerically induced power deficit (cf. Eq. 5.33) and the actually absorbed power
in the grating. At this point the concept of local absorption offers a way for clarification, as
it provides a different way of calculating the absorbed power (cf. Eq. 5.21):

d
integrated absorption := NNk 0 Z Z Z Im (e(7jx,1)) \El(rj,k,l)IQ (5.34)
x iVy Nz j & 1

Since the two definitions for the power deficit (cf. Eq. 5.33) and the integrated absorption
(cf. Eq. 5.34) are normalized in terms of the irradiated power, they can be directly com-
pared and any deviation will indicate a violation of energy conservation either in the RCWA
algorithm itself or in the calculation of the electromagnetic fields. In other words, if energy
is fully conserved, the following equation should always hold:

integrated absorption < power deficit (5.35)

So the following goal is primarily to look for consistency or discrepancies of Eq. 5.35 for the
different RCWA variants and field calculation methods, which have been discussed so far.
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For this purpose the same two-layered GaAs grating is analyzed as in the previous examples
(cf. Fig. 5.5a). In order to minimize the influence of sampling errors, the electric fields,
which are needed for the calculation of the local absorption (cf. Eq. 5.34), are reconstructed
on N, grid points in lateral direction from * = Oum to x = P, = 0.6 um. N, is the
number of sampling points, which was already used for the discrete Fourier expansion of the
permittivity. In case of the LIF-RCWA N, is predetermined by the fixed relation between
the sampling points in real space and in the Fourier domain: N, = 2My+ 1 = M. For every
other RCWA-variant there is no single number of Fourier coefficients that can be associated
with the expansion of the permittivity (cf. Sec. 3.5), and the common understanding is that
a larger number of sampling points leads to less reconstruction artifacts. So, for all methods
except the LIF-RCWA, N, was chosen to be 512. Since the RCWA does not use a Fourier
expansion in the direction of z, there is also no ideal number of reconstruction points N, in
any of the methods and again a larger number is assumed to lead to a higher accuracy of the
fields. The absorption of the grating is determined by the discretized integral in Eq. 5.34,
where every point 7 ; marks the center of a dx X dy x dz cubic volume element. While the
lateral displacement of the cubic elements is arbitrary due to the periodicity of the grating,
one has to ensure a perfect alignment of the cubic integration elements in the grating region
in the direction of z (cf. Fig. 5.8) in order to minimize sampling errors. With a sampling
of N, = 1024 over the distance z = —0.01 ym to z = 0.61 um, in which the grating reaches
from z = 0pum to z = d = 0.6 um the correct alignment is ensured.

dx = P, /N,

i Id:v dz=D./ (N, —1)
| D, =0.62um
integration value

| integration region D, ,

——— grating region d —]

—0.01 pum z=0pm d=06pm  0.61um
Figure 5.8: Schematic of a simple integration scheme
Figs. 5.9a to 5.9f show the converging values for the power deficit and the integrated ab-
sorption of the different RCWA variants. And in fact, deviations, which indicate a violation

of the energy conservation, can be found in almost every method, especially at a low order
of truncation.
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Interestingly, this phenomenon is already noticeable for the standard RCWA (cf. Fig. 5.9a).
It becomes even more apparent, if the inverse rule (cf. Fig. 5.9b) is applied and further
amplifies, if the field calculation method of Lalanne and Jurek[67] (cf. Figs. 5.9c and 5.9d)
is used. By contrast, applying apodization on the permittivity function seems to eliminate
almost any difference (cf. Fig. 5.9¢). Finally, the LIF-RCWA shows no deviation between
power deficit and integrated absorption up to five decimal places (cf. Fig. 5.9f). The raw
deviations are again depicted in Fig. 5.10 and can be reviewed individually for the first five
orders of truncation in Tab. 5.3.
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Figure 5.9: Comparison between the power deficit and the integrated absorption for
different RCWA variants.
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Figure 5.10: Absolute deviation between the power deficit and the integrated absorption
for all presented methods

Method / My 1 2 3 4 5 6

0.00000 0.06103 | —0.004214 0.01617 0.00450 0.01552
—0.69631 | —0.15221 | —0.15335 | —0.10187 | —0.08173 | —0.06511
—2.06141 | —1.41332 | —0.74358 | —0.46371 | —0.31362 | —0.24104
—0.95983 | —0.36502 | —0.30170 | —0.20918 | —0.16815 | —0.13335
—0.00000 0.00100 | —0.00001 | —0.00016 | —0.00002 | —0.00013
—0.00000 0.00001 0.00000 0.00000 0.00000 0.00000

Table 5.3: Absolute deviation between the power deficit and the integrated absorption for
different RCWA variants at My = 0 to 5 Fourier modes: (a) Std-RCWA,
(b) RCWA with inverse rule, (¢) Std-RCWA + Lalanne and Jurek[67],
(d) RCWA with inverse rule + Lalanne and Jurek[67], (¢) Std-RCWA with apodization
and (f) LIF-RCWA
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Interpretation of the results

There are several factors that may influence either the power deficit, the integrated absorption
or both:

Incorrect sampling

The correct sampling of the absorption integral in Eq. 5.34 is in fact crucial and an
obvious reason for a discrepancy in Eq. 5.35. Fig. 5.11 illustrates how the sampling
influences the power deviation. A finer sampling in the direction of z reduces the
deviation for both the standard RCWA and the LIF-RCWA (cf. Fig. 5.11b and
5.11d). But in case of the standard RCWA, the deviation does not seem to converge
towards zero, but maintains a residual value. In lateral direction the LIF-RCWA
reveals an optimum sampling as predicted at N, = 9 (sampling of the permittivity:
N, = 2My+1 = M, here My = 4 = N, = 9), where the deviation effectively
disappears (cf. Fig. 5.11c). In the standard RCWA, however, the deviation remains
for any sampling (cf. Fig. 5.11a).

Non-cyclic Toeplitz matrix

In Sec. 3.5 it was already pointed out, that the standard RCWA uses an inconsistent
truncation scheme in the bandwidth limiting process of the grating permittivity. This
is substantiated by the fact, that the LIF-RCWA has an optimum lateral sampling at
N, = 2My + 1 = M, whereas no single number of Fourier modes can be associated
with the permittivity matrix [e]. Since the truncation inconsistency especially concerns
the higher Fourier modes in the outer diagonals of the Toeplitz matrix [e], it appears
reasonable that a suppression of such higher modes by a suitable apodization function
will reduce its symptoms. And in fact this exact phenomenon can be observed in Fig.
5.9e and Tab. 5.3, where the deviation almost disappears, when using apodization.
Moreover, it was demonstrated in Sec. 2.6 that apodization does not fully cure the
Gibbs phenomenon as the irregularity of the displacement field at the concurrent jump
discontinuity remains. This in fact indicates that the violation of energy conservation
is not related to this phenomenon, but can be attributed to the erroneous truncation
scheme.

Inverse rule

It is known that the inverse rule is only an approximation when finite, non-cyclic
Toeplitz matrices are used and that again the approximation becomes better with
an increasing order of truncation. Since the inverse matrix [1/e]~! uses the same
inconsistent truncation scheme as the standard RCWA, there is a strong indication,
that energy is also not conserved as the deviation increases significantly - despite the
fact that the rule improves the convergence of the RCWA algorithms. The distinction
between the algorithms of the LIF-RCWA and the standard RCWA, when applied on
a single plane incident wave is exactly the use of a consistent truncation scheme in the
LIF-RCWA, which leads to a disappearance of the deviation.
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Mixing band-limited and non-band-limited quantities
The usage of a non-band-limited permittivity function in an otherwise bandwidth-
limited calculation, like it is proposed in the field calculation method of Lalanne and
Jurek[67], obviously affects the energy balance. The reason is that the non-bandwidth-
limited permittivity redistributes the power of the incident wave over infinite frequen-

cies.

analysis, energy is lost.

But since only a finite subset of the frequencies is considered in the further

By avoiding all the sources of errors of the above and especially by reducing the number of
lateral reconstruction points N, to the number of untruncated modes M, the LIF-RCWA
shows no violation of the law of energy conservation.
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Figure 5.11: Influence of the sampling on the energy conservation behavior of the standard
RCWA and the LIF-RCWA. In both cases the permittivity and the fields were represented
by Moy =4 = M = 9 Fourier modes.
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5.3.2 Energy conservation in lossless gratings

The question remains why energy conservation seems always be ensured for a lossless gratings
even if an inconsistent truncation scheme is used in the standard RCWA. In fact, the value
of 1 = R — T strongly depends on the properties of the convolution matrix [¢] in Eq. 3.8.
The following listing summarizes some intuitive and empirical facts:

1. € € R (non-absorbing grating) A [e] is Toeplitz = [e] is hermitian =1 —-R -7 =0
2. e e RA [e] is not Toeplitz (no physical grating) A [€] is hermitian = 1 —R — T = 0!
3. € € C (absorbing grating) = [e] is Toeplitz A [e] is not hermitian =1 —-R —T #0
3.1. [e] is cyclic = 1 — R — T = integrated absorption
3.2. [e] is not cyclic = 1 — R — T # integrated absorption

Statement 2 is backed by empirical evidence: It was found that in at least some, if not
all, cases it is sufficient if [e] is an arbitrary hermitian matrix and the condition for energy
conservation 1 — R —7 = 0 will be met as a consequence - even if [e] is not a Toeplitz
matrix and thus does not correspond to a meaningful grating. This is similar to the case of
inconsistent truncation of [¢] in the standard RCWA, which also always leads to 1-R—T = 0.
Hence, it can be concluded that the verification of 1 —R —7T = 0 is not a sufficient condition
to decide, whether the calculation is correct or not. However, statement 3.1 and 3.2 indicate
that the cyclic approach provides the correct truncation scheme as the energy deficit can
fully be explained by absorption in a lossy medium.

5.3.3 Conclusion

The above studies show that there is a discrepancy in the standard RCWA between the net
power loss at an absorbing grating and the amount of power that can be addressed to the
process of absorption. This is a violation of the law of energy conservation and evidence
indicate that the reason is the inconsistent mode truncation in the Toeplitz matrices of the
grating’s permittivity (and permeability). If in contrast the Toeplitz matrices are defined
in a cyclic manner as introduced in Chap. 3 the deviation between the two quantities only
dependent on the sampling of the electromagnetic fields and converge towards zero if the
sampling is increased.

Furthermore, even for non-absorbing gratings the findings indicate that the use of non-cyclic
Toeplitz matrices may cause some inaccuracies that usually go undetected, since the criterion
for energy conservation 1 — R — 7 = 0 does not ensure a correct calculation.
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Chapter 6

Design concepts and realization

6.1 Motivation and idea

The integration of optical components in standard semiconductor technologies is still a chal-
lenge of today’s chip industry. Although optics can offer superior speed and data throughput
without the problems of conventional electronics like crosstalk and high damping rates in
wires, and although some professional applications like telecommunication backbones and
high performance networks already benefit from the various advantages of optical data trans-
mission, up to the present day the industry still struggles in applying optical components
to consumer products and chip level applications[118]. A successful integration would allow
cheap mass production and advanced applications like optical chip-to-chip communication
or optical clock distribution networks. One of the biggest obstacles, though, is an impending
change of technology. It is feared that the optical integration might require large investments
by the industry, since new technologies and processes might be required, while established
equipment and knowhow could become obsolete. These days a similar development can be
observed in the challenging transition from UV-lithography towards EUV-lithography, which
requires a new generation of entirely redesigned exposure units[9].

In very-large-scale integration (VLSI) chips the complementary metal-oxide-semiconductor
(CMOS) technology is by far the most common one[33]. By using complementary pairs of
positive- and negative channel field effect transistors for logic functions (pFETs and nFETS),
from which one is always turned off, the significant amount of power is only drawn during
switching states. This saves a lot of energy compared to other technologies and also reduces
heat generation and noise dependence[34]. For these reasons, it would be most desirable
to be able to integrate optical devices like emitters, detectors, optical modulators and also
passive structures like waveguides into CMOS technology. The focus of this chapter is the
development of a compatible photodetector.

A special extension of the CMOS technology is called silicon-on-insulator (SOI), which uses
an insulating layer (e.g. silicon dioxide) inside the silicon substrate in order to reduce parasitic
capacitance. It thereby lowers device switching times, power consumption as well as leakage
currents. On the optical side, the crystalline silicon layer, which lies on top of the insulator
can be used for optical waveguiding or other passive devices for integrated optics[95]. Both
facts make SOI an interesting support technology for this approach.

However, active optical components primarily rely on materials or compounds with high ab-
sorption or emission coefficients, which are usually those that have a direct band gap between
the valence band and the conduction band. Typical representatives are II1I-V semiconductors
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like Boron-, Aluminium-, Gallium- and Indium-based nitrides, phosphides or arsenides. At
a direct band gap a photon with an energy larger than the band gap energy can either be
emitted or absorbed directly. Silicon, on the other hand, being the standard material for
semiconductor substrates of almost all chip designs today, has an indirect band gap'. This
means that an extra crystal momentum, which manifests as a quantized quasiparticle called
a phonon, is required in order for the absorption or emission process of a photon to hap-
pen[96]. This involves the absorption of a phonon in the emission process of a photon. And
since the presence of an additional phonon is less likely to occur, the emission efficiency of
silicon is significantly decreased compared to a direct semiconductor.

It is also not straighforward to integrate direct III-V semiconductors on silicon substrates.
Since the band gap energy of a semiconductor is directly linked to its lattice constant[24]
and since the lattice constants of III-V semiconductors differ from that of silicon, their direct
contact can cause piezoelectrical charges, dangling bonds and actual damage in the mate-
rial. Therefore, III-V semiconductors are not part of a standard CMOS process and require
additional post-processing steps?.

The absorption process of a photon in silicon, on the other hand, does not depend on the
accidental appearance of a phonon. Instead the conservation of momentum, which holds in
electrodynamics as well as in quantum mechanics, always predicts the emission of a phonon
when an electron from the conduction band recombines with a hole in the valence band[96].
As a consequence, the photon absorption efficiency of silicon is not decreased and is even
superior to that of some direct semiconductors (cf. Fig. 6.1).

In order to generate a measurable photocurrent, the illuminated silicon area must also provide
the depletion region of a p-n junction with an electric field separating the charge particles.
Luckily, p-n junctions can be found in plenty in CMOS technology and thus silicon CMOS
technology can - in principle - be used to build an effective photodetector.

However, CMOS design only provides layer thicknesses on the scale of nanometers, which
almost prevents any absorption. Therefore, the basic idea of this chapter is to utilize ex-
isting structures of the CMOS-technology as diffraction gratings in order to locally increase
absorption and thereby develop a resonant photodetector concept as well as a first prototype
that is fully compatible with the standard SOI CMOS process without the need of any post-
processing steps. The chapter starts with a preliminary theoretical concept and discusses
the challenges and potentials of the project. In a second part a first prototype is presented,
which was developed in collaboration with IBM, followed by some experimental results. At
the end of the chapter, a low-cost monochromatic light source with variable wavelength is
shown, which is considered as an in-house alternative to the expensive tunable laser for
photodetector characterization.

!Silicon has in fact also a direct bandgap at 4.10 eV. However, this corresponds to a wavelength of 0.30 um
in the ultraviolet, which has low transmittance in common fiber optics.
2Some experimental processes actually do exist as published recently by IBM[111]
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Figure 6.1: Responsivity curves for Si, Ge, and InGaAs. Source: Agrawal, G.P.,
Fiber-Optic Communication Systems, John Wiley & Sons, New York, (1997)

6.2 Concept for a CMOS compatible photodetector

6.2.1 First considerations, challenges and potentials

An effective photodetector primarily needs to provide a strong electric response to the inci-
dent light and thus requires a high photon-electron conversion rate. This rate is described
by the external quantum efficiency 7. as the average ratio between the number of electrons
N, which contribute to the photocurrent, to the number of photons NV, which illuminate
the photodetector at a specific energy - at a steady flow:

Z

Ne
- h (6.1)

=Ny

Taking into account only the absorbed photons leads to the internal quantum efficiency 7;:

N, Nabs.oh Non
—= = i PR = Uinabsip (62&)
t t t
= Ne = Nabs"i; (62b)

where 7455 is the absorption efficiency P,/ Py, (cf. Eq. 5.20) inside the illuminated region
of the photodetector.
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Considering the flow of electric particles (photocurrent I) and photon energy (radient flux
Pin)>

Neq

t
Npphv

t

I=

(6.3a)

Py = (6.3b)

where ¢ is the electric charge of an electron, A is the Planck constant and v is the frequency
of the incident light, the photocurrent of a detector can be described as

[=P,R with R= nabsmhi (6.4a)
C
q
o = PpmrL 6.4b
bsThiA S (6.4b)

with R known as the responsivity of the photodetector. Hence, a strong signal depends on
the optical incident power P;,, the wavelength A, the internal quantum efficiency 7); of the
photodetector material as well as its absorption efficiency 74ps-

In a working application the optical incident power is usually supposed to be small in order
to avoid heating problems and to reduce overall energy consumption. Since, silicon has an
indirect band gap of 1.12 eV [121], which means that photons with higher energy or with a
wavelength below the long wavelength cutoff of about 1100 nm are actually able to excite
electrons across the material’s band gap. Due to absorption bands in optical fibers, typical
wavelengths for telecommunication systems and other long distance network connections
are 850 nm, 1310 nm and 1550 nm[8]. The corresponding light sources are therefore easily
available and a reasonable choice for a silicon detector would be 850 nm. Finally, the internal
quantum efficiency of the detector is usually below one, since even the energy of an absorbed
photon can convert into a phonon or reradiate thermally. However, silicon has a long minority
carrier lifetime in the range of milliseconds compared to other semiconductors like Gallium
Arsenide (GaAs) of only few nanoseconds[121]. This increases the probability of an electron
to account for an effective photocurrent and also explains the superior responsivity of a
silicon based detector in Fig. 6.1.

Besides that, the internal quantum efficiency also depends on the distribution of incident
photons in the photosensitive area and the diffusion length of the free charge carriers: On
either side of the junction of a positively (p-) doped and a negatively (n-) doped silicon
semiconductor a depletion region forms due to the recombination of excessive free electrons
and holes (minority charge carriers). Inside this depletion region, the remaining atoms of the
crystalline solid (majority charge carriers) create an electric field, which separates the newly
generated electron hole pairs by pulling any free electron to the n-site and any hole to the
p-site (also known as drift) contributing to a displacement current in the external circuit.
Since the electric field primarily extends over the depletion region and charge carriers in
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the outside are only moved by the slow diffusion process, their probability of spontaneous
recombination is considerably increased, lowering the overall internal quantum efficiency.
Thus, one way of increasing the efficiency is to increase the relative size of the depletion
region in comparison to the overall extend of the photodetector. This is the concept of a pin-
diode, which hosts an additional weakly or undoped region (also called intrinsic region) with
no charge carriers between its two highly doped p- and n-regions. It thereby also increases
the detector’s response time, since the charge carriers are moving faster in the electric field
than in the outside. Moreover, the increased distance between p- and n-region leads to a
lower capacitance (C' = eegA/W, with A as the junction profile and W as the width of the
depletion region) and therefore improves isolation and minimizes reverse leakage current.
So finally, the absorption efficiency is the only parameter left to effectively improve the
performance of the considered concept. Usually, however, absorption is only determined
by the detector’s raw material, the wavelength of the incident light and the penetration
depth. But as mentioned before, this only leads to very weak absorption in the thin CMOS
silicon layers. To put it in numbers: At a wavelength of 850nm only 2% of the incident
light would be absorbed in a 80 nm thin layer of polycrystalline silicon as visualized in Fig.
6.2. An increase in the thickness of the active layers is also not an option, since most design
parameters including very small layer heights are fixed by constraints of the considered 45 nm
CMOS technology.
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Figure 6.2: Illustration of the absorbed power in a polysilicon layer
against the penetration depth of the incident photons

6.2.2 Design and simulations

Fig. 6.3 shows a simplified SOI CMOS layout provided by IBM, the partner of this project.
It illustrates from the bottom up a layer of polysilicon as the substrate with a permittivity of
e = 13.81, followed by a 145 nm thin layer of silicon oxide (called buried oxide or BOX) with
e = 2.11 to electrically isolate against parasitic leakage currents, an 80 nm thin polysilicon
layer with ¢ = 13.81 4 0.145¢, which can be variously doped and potentially be used as a
photoactive layer, and an 85 nm thin grating structure, which is formed by the polysilicon
transistor gates of the MOSFETs of CMOS technology. Finally, the entire layout is covered
by silicon nitride with € = 3.971.
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These small dimensions combined with the weak absorption property of silicon seem to
contradict the goal of maximizing the overall absorption in the photoactive layer. In fact,
the formula for local absorption (cf. Eq. 5.18, 6.5) suggests to aim for high absorption
property Im (e (r)) and large volume V:

Pas () = 5 o [ 1 (e (1) B2 ) 2V (6.5)

However, the introduction of the diffractive structure (cf. Fig. 6.3) can significantly improve
the relative intensity |E1(r)|? in the junction! Using the transistor gates as a diffraction
grating on top of the photodiodes the incident light can be concentrated and thereby (rel-
atively) enhanced in the depletion region resulting in more photons being absorbed and a
higher photocurrent being generated (cf. Eq. 6.4b). Therefore, the goal is to determine
those values of the additional design parameters (gate width (w) and grating period (P), cf.
Fig. 6.3), which lead to maximal light absorption in the active channel and preferably in the
depletion region.

gate width (w) grating period (P)
— e ——]

diffraction grating 85 nm
active channel A 80 nm
Sio -Di
buried oxide (BOX) PIN-Diode J 145 nm

depletion zone

substrate | Poly-Si

Figure 6.3: Layout of a CMOS compatible photodiode with transistor gates
utilized as a diffractive grating structure

The first simulation results shown in Figs. 6.4a and 6.4b illustrate the global absorption in
the layer stack for TE and TM polarization in two-dimensional parameter scans over grating
period and gate width.

The results are indicating two things: For one, the diffraction grating is capable of increasing
the total absorption from 2% up to 86 % for TE polarization and from 2% to 83 % for TM
polarization. However, it is not clear from this simulation how much light is actually being
absorbed in the active layer.

On the other hand, the absorption maxima for TE and TM polarization do not match
and high gains for either polarization type even exclude one another. This is unfortunate,
since it divides the absorption efficiency for unpolarized incident light in half. Nevertheless,
application designs can be specified for one polarization type only.
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Figure 6.6: Simulation of the local absorption in the grating structure and the photoactive
layer

Figs. 6.5a-6.5d show the same parameter scans as before, but this time for the accumulated
local absorption in each of the first two absorbing layers. The simulations reveal, that
those parameter combinations, which show the highest values of global absorption (at P =
0.275 ym and w = 0.82 P for TE polarization and P = 0.298 ym and w = 0.858 P for
TM polarization) do in fact not match with the parameters for maximal absorption in the
active layer (P = 0.295 um and w = 0.113 P for TE polarization and P = 0.390 um and
w = 0.225 P for TM polarization) - for neither type of polarization.

A closer look at the energy distribution inside the detector is shown in Figs. 6.6a - 6.6d for
all discussed parameter configurations with absorption maxima. In either case, the results,
which have been optimized for TE polarized light, seem to be better suited for a photodetect-
ing application, since the light absorption concentrates right under the gates in the middle
of the depletion zone, maximizing the charge carrier generation.
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6.2.3 Summary

The here presented layout was actually fabricated using IBM’s 45 nm SOI CMOS technology
by Moll et al.[93] in advance of this work. Only the rigorous simulations of the layerwise
local absorption were not available at the time, as the appropriate tools were first developed
during this work and later published in [5].

The results are again summarized in Tabs. 6.1 and 6.2. They show that a simple comparison
of global absorption values can in fact be misleading and the efficiency of a photodetector
design can be further improved by calculating the local absorption in the photoactive region.
Nevertheless, in this scenario the maximum achieved absorption values in the active channel
do not differ significantly.

with grating
TE polarization | TM polarization
grating absorption 0% 30.3% 41.6 %
channel absorption 2% 59.6 % 41.6 %

without grating

Table 6.1: Overview over the absorption values in the grating and
the active channel, if only global absorption is optimized

with grating
TE polarization | TM polarization
grating absorption 0% 7.07% 13.03 %
channel absorption 2% 62.28 % 43.6 %

without grating

Table 6.2: Overview over the absorption values in the grating and
the active channel, if local absorption is optimized

The study shows that the precise knowledge about the local absorption rather than a global
absorption can be very useful. Detailed insight in the absorption process enables the develop-
ment of better optical components. In this case a grating structure on top of the photodiode
was optimized for maximal absorption in the depletion region.

Another conclusion of this analysis is the difficulty to use a one dimensional grating structure
for the development of an enhanced photodetector that performs comparably well for both
types of polarization (TE and TM). Nevertheless, it was shown that intrinsic features of the
CMOS technology can be utilized to significantly improve the performance of a fully CMOS
compatible photodetector.
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6.3 Realization of a CMOS compatible photodetector

6.3.1 Motivaton and idea

Due to a design change in IBM’s SOI CMOS technology, which involved the replacement of
the transistor gate material from polysilicon (Poly-Si) to titanium nitride (TiN), the former
approach (cf. Sec. 6.2) could not be pursued any further. Since the new metal gates
would be very strong absorbers itself, they would significantly decrease the photodetector’s
performance when put on top of the active layer.

Hence, the new approach utilizes the shallow trench isolation (STI)? as an in-place resonance
grating inside the photoactive layer (cf. Figs. 6.7a) and replaces the role of the transistor
gates, which served as an on-top diffraction grating in the previous design (cf. Fig. 6.7b).
A secondary bulk diode can be used for maximal photon collection, increased overall charge
carrier generation and high signal strength.

active layer — active layer

(a) in-place resonant grating (b) on-top grating on a wave guide resonator

Figure 6.7: Two types of grating structures

This project was planned and carried out in cooperation with M. Fertig from IBM Research &
Development Boblingen and N. Moll, T. Morf, T. Stoferle and J. Hofrichter from IBM
Research Laboratory Zurich. While IBM provided the manufacturing technology and the
expertise in chip design, all simulations regarding the optical properties of the photodiode,
such as the design of the resonance grating and the calculation of local absorption, were part
of the present research work.

6.3.2 Design

Fig. 6.8a shows a cross section of the full layout. M5 to M1 indicate the different metalization
layers, which are used for routing and for connecting the vertical contacts (at a distance from
the photoactive aperture). Under a cover layer of silicon nitrogen (SigNy) lies the STI grating,
which is formed by the shallow trench isolations (STI) inside a polysilicon (Poly-Si) layer.
The shallow trenches are made of silicon dioxide (SiO2) and are usually used to electrically
isolate the transistors against each other. The polysilicon serves as the photoactive material
and can be doped variously within IBM’s SOI technology constraints in order to create
multiple p-n junctions (cf. Fig. 6.8b). The layer’s height, however, is limited to only 75 nm

3Shallow trench isolation is also part of IBM’s SOI CMOS technology.
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Figure 6.8: Different views of the photodetector layout

due to the underlying 145nm thick oxide (BOX), which isolates the transistors against a

141



CHAPTER 6. DESIGN CONCEPTS AND REALIZATION

joint substrate to avoid latch-ups. This fact, together with another technology constraint
that requires the silicon dioxide trenches to be larger than 75nm, minimizes the available
volume in the p-n regions for the purpose of light absorption and emphasize the necessity for
a maximum light-sensitive depletion volume. The slightly p-doped polysilicon substrate and
the highly n-doped n-channel FETs form another layer of buried bulk diodes (cf. Fig. 6.8a).
Due to a maximal distance of 3.18 ym between the vertical contacts, repeating stripes of
1.58 pum in width are available for the STI grating. One stripe is shown in Fig. 6.8c including
its electric contacts. Anodes and cathodes are placed in an alternating pattern between the
stripes, so that electrodes and metal wiring is shared by neighboring diodes in order to
maximize the active region of the detector. The implant of the bulk diode contact has a
width of 1.028 um leading to a depletion region of approximately 1 um.

6.3.3 Preliminary simulations

The photodetector design is again intended to work for a wavelength of 850 nm, which is a
standard in optical communication (cf. Sec 6.1). Hence, simulations were conducted assum-
ing the following optical material properties: € = 4.08 for the non-absorbing silicon nitride
superstrate, e = 13.36 + 0.025¢ for the photoactive silicon, € = 2.1 for the non-absorbing sil-
icon, which form the shallow trenches as well as the buried oxide and ¢ = 13.41 4+ 0.07¢ for
the absorbing p-doped silicon substrate.

1.00 0.41 1.00 0.29

0.75 0.32 0.24
o o
C C
= 0.50 023 2030 0.18
ke kS
< <
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(a) TE polarization (b) TM polarization

Figure 6.9: Global absorption depicted for two-dimensional parameter scans of grating
period versus oxide section width at TE and TM polarization. A minimal oxide section
width due to CMOS technology constraint of 75nm is indicated in white.
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Figs. 6.9a and 6.9b show the calculated global absorption in the design for a variation of the
two crucial parameters: the period P of the STI grating and the relative width of the silicon
oxide sections w. The optimal parameters are determined by the technology constraint for
a minimal oxide section width of 75nm. In case of TE polarized light this leads to a grating
period of P = 377nm and an oxide section width of w = 0.199 P = 75nm (Fig. 6.10
shows a closer view). In case of TM polarized light the optimal values are P = 425nm
and w = 0.176 P = 75nm. In these particular configurations the corresponding absorption
rates are 39.5% (for TE polarization) and 28.5% (for TM polarization). Since, again, no
parameter configuration provides high absorption values for both types of polarization, the
further investigation concentrated on pure TE polarization, which reaches higher overall
absorption values.

Fig. 6.11 shows the distribution of absorbed power in the photodetector with a high con-
centration in the p-n junction, which is desirable for a high responsivity. The accumulated
absorption in the resonant STI grating and the bulk diode are 23.92% and 15.61 %, respec-
tively. However, since all the absorbing structures in the design are either part of the top
diode or the bulk diode, the present approach aims for high overall absorption. Hence, there
is no purpose for another parameter scan to optimize one of the diodes separately, because
it would always decrease the efficiency of the other one.

Nevertheless, further simulations were performed in order to estimate the influence of differ-
ent parameter deviations, which might occur during the fabrication process. Figs. 6.12a and
6.12b illustrate that a variation of the thickness or permittivity of the grating slightly shifts
the wavelength dependency away from 850 nm, but does not affect the maximum absorption.
A variation of the grating period and especially of the duty cycle on the other hand, causes
a considerably stronger wavelength shift and also influences the efficiency of the detector
(Figs. 6.12c and 6.12d).
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Figure 6.12: Impact of different design parameter variations
on the detector’s wavelength dependency

6.3.4 Fabrication

The TE-design of the photodetector (cf. Fig. 6.11) was manufactured as a unit of 25 x 25 ym?
in size on a silicon wafer using a standard 32nm STI CMOS process, which involved acti-
vation annealing and an advanced immersion lithography for precise channel length control.
Doping levels were approximately 107 in the p~ doped regions and 10'° in the nt doped
regions. Fig. 6.13 shows the side view of the manufactured STI grating taken by a Scanning
Electron Microscope (SEM). It reveals multiple parameter deviations from the design.
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Figure 6.13: SEM image of the STI grating (side view)
with measured dimensions

In order to simulate the effects of these deviations, it was assumed that the average grating
period was realized as 377 nm according to the design specification. Since the grating period
depends on the very precise lithographic process rather than on the development chemistry
this assumption is reasonable. The average width of the oxide sections was therefore esti-
mated to be gw = 0.2078 P = 78.36 nm, which, together with a measured grating thickness
of 76.63 nm and a buried oxide height of 152.46 nm, results in a shift of the maximal absorp-
tion towards smaller wavelengths as shown in Fig. 6.14.

Absorption in %

0 | | | | | |
780 800 820 840 860 880 900

Lambda in pm

Figure 6.14: Wavelength shift of the photodetector absorption peak due to parameter
deviations in the manufacturing process. Absorption for design parameters (blue) versus
absorption for measured parameters (red)
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6.3.5 Measurement and Results

The photodetector was characterized using a 80-fs-pulse, linearly polarized laser with a rep-
etition rate of 80 MHz. The light source contained an optical parametric oscillator (OPO),
which was pumped by a mode-locked Ti:sapphire laser, in order to allow for a wavelength
tuning between 770 nm and 900 nm. The emitted light was then guided by an optical fiber
and collimated in free space through an attenuator and onto the detector device using a lens
with a long focal length (125 mm) to avoid a wide angular spectrum. At the position of the
sample the output power was measured to be about 30 uWW. In order to receive the electric
response of the detector, broadband (DC-50 GHz) ground-signal-ground probes from GGB
Industries were used, which contacted the wafers pads.

The short duration of the laser pulse of only 80-fs leads to a spectral broadening. Assuming a
Gaussian shaped pulse, the time-bandwidth product AtFWVHMA fEWHM ig known to be greater
than 0.441[132]. Thus, a spectrum broadening of at least ANWIM > 0.441)\2/ (AtFWIM )
= 13.285nm can be assumed for a center wavelength of A\, = 850nm. Fig. 6.15 shows
the expected change in wavelength dependency based on the convolution with an intensity
distribution of a normalized Gaussian shaped spectrum with a full width at half maximum
(FWHM) of 13.285 nm.

Normalized absorption

780 800 820 840 860 880 900

Lambda in nm

Figure 6.15: Transformation of the photodetector absorption behavior due to the frequency
broadening of the pulsed laser source. Absorption at a monochromatic light source (blue)
versus absorption at a broadened spectrum (red)

The result of the actual measurement is shown in Fig. 6.16, where the peak responsivity
of 0.26 A/W was observed at a wavelength of 830 nm (red line with dots). The blue solid
line depicts the expected absorption behavior with the considered broadening effect and a
maximum value at 850 nm. The blue dotted line shows the shifted wavelength dependence
due to the measured deviations to the design parameters. The remaining displacement to the
solid green curve with a maximum value at 830 nm can in fact have various causes as demon-
strated in the simulations shown in Figs. 6.12a-6.12d. In this particular case, the match
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was achieved with a relative oxide width of w = 0.23 P = 86.71nm. This is significantly
larger than the SEM measurements of w = 73.93 nm and w = 82.78 nm. However, the SEM
measurements of the two oxide sections already spread by almost 12%. Another source of
uncertainties are the higher layers above the silicon nitride superstrate (cf. Fig. 6.8a), whose
compositions were not accessible to this work.

The overall incline in responsivity towards shorter wavelengths aligns with the increasing
absorption efficiency and can be primarily ascribed to the bulk diode.
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Figure 6.16: Responsivity of the manufactured photodiode (red line-points),
calculated absorption with design parameters [w = 75 nm](solid blue),
calculated absorption with measured parameters [w = 78.36 nm/|(dotted blue),
calculated absorption with fitted parameters [w = 86.71 nm|(solid green)

The theoretical maximum for responsivity can be calculated using the previously deduced
Eq. 6.4a with A = 830 nm, 14s = 0.395 and n; = 1:

R= nabsm)\% = 0.264 A/W

This result shows in fact a very good agreement with the measured responsivity of 0.26 A/W
and thus indicates a high internal quantum efficiency 7; as well as an accurate calculation of
the absorbed power.

6.3.6 Alternative 2D-grating designs

In Sec. 6.3.3 it was shown that a polarization independent design could not be realized with
a one-dimensional grating structure. Since light at surface boundaries behaves differently
depending on the orientation of the surface as well as the polarization (cf. Sec. 1.1.7), this
does not come as a surprise. However, polarization independence can be achieved using a
two-dimensional grating design, in which the light encounters the same boundary conditions
for both types of polarization (TE and TM).
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Figure 6.17: Three examples of polarization independent STI-gratings
first column: 3 x 3 periods of a grating design
second column: parameter scan of grating period versus oxide section width
third column: top view of distribution of local absorption for an optimal parameter
configuration

Figs. 6.17a-6.171 show three examples of two-dimensional designs, which achieve absorp-
tion results that are similar to those of the one-dimensional design, which was studied in
Sec. 6.3.3 (absorption = 39.5%). But since the two-dimensional designs are all polarization
independent, their actual efficiency could even double in combination with an unpolarized
light source.
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6.4 Tunable lightsource

6.4.1 Motivation and idea

Without direct access to the high priced, tunable laser source, which was used for the mea-
surements in Sec. 6.3.5, our chair at the University of Heidelberg depended on the stationary
equipment of our project colleagues at the IBM Research Laboratory in Zurich. So, in order
to achieve the ability of in-house measurements in the long term, we hoped to come up with
an affordable alternative light source, which is also tunable over a wide range of wavelengths
with an output power in the order of 30 uW (similar to illumination power used for the
measurements in Sec. 6.3.5) and a small spectral width.

Since an old monochromator was available, an attractive idea was to use a high power broad-
band light source like a thermal radiator and cut out a narrow window in the spectrum at
the desired central wavelength. This approach is investigated in the present section.

6.4.2 Setup

Figure 6.18: Setup with tungsten halogen lamp (a), a first lens (b) to image the source to
the entrance slit (c) of a double monochromator (d), and a second lens (f) to image the exit
slit (e) again to the sample grating (g). (h) is a calibration camera.

The experimental setup is depicted in Fig. 6.18. A tungsten halogen lamp (a) serves as
the broadband light source. It is demagnified and imaged on to the entrance slit (c¢) of
a monochromator (d) using a first achromat (b). The light is then bandpass filtered by
the monochromator (SPEX 1680 Double Spectrometer) and leaves the device through the
exit slit (e). Here, a second achromat (f) magnifies the image back and thereby reduces the
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angular spectrum at the sample. The light finally illuminates a transmissive or reflective
diffraction grating (g), which is installed in a rotatable mounting. For calibration purposes,
different parts of the setup, like the light source, the grating or its mounting can be replaced
by other light sources and measurement devices like

e a helium-neon (HeNe) gas laser with a wavelength of 632.816 nm and a spectral width

of <0.5nm,

an edge emitting laser diode with a center wavelength of 636.5 nm and spectral width
of 2.2nm with a collimation lens,

an optical power meter from Newport, Model 1830-C with a sensitivity ranging from
400 nm to 1100 nm (RS-232 serial connection),

(The wavelength dependency of the internal silicon detector can be corrected semi-
automatically by entering the wavelength of the measured input light.)

a spectrometer from mut, Model Tristan USB with a sensitivity ranging from 350 nm
to 1100 nm (USB connection),

a CMOS camera from Allied Vision Technologies, Model Guppy F-503 with 2592 x
1944 pixels of 2.2 um in size and 12 bits for gray shades (firewire connection).

(The camera can be used to confirm the correct spot position on the sampling grating
and also to collect diffracted light from different angles.)

The three sensor devices were plugged into a laptop and fully controlled via custom build
software.
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Figure 6.19: Sketch of the inner workings of the SPEX 1680 Double Spectrometer
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The particular monochromator as it is shown in Fig. 6.18d and Fig. 6.19 is a so called
double monochromator, which works in additive dispersion mode. It basically consists of two
series-connected monochromators with coupled diffraction gratings and two slits to increase
spectral resolution and to minimize stray light of unwanted wavelengths.

Since the monochromator significantly restricts the spectrum and the radiation angle of the
light source, it is important to ensure high efficiency of the system. The limiting factors
for the system throughput are the power of the light source, the etendue (also known as
geometrical or optical extend, cf. App. A.7), the spectral bandwidth and the general system
loss due to a lack of efficiency of the optical components such as lenses, mirrors and gratings.

6.4.3 Calibration

The setup was calibrated with two different lasers: A helium-neon (HeNe) gas laser with a
known wavelength of precisely 632.816 nm was used to calibrate position and orientation of
the mirrors and gratings inside the monochromator to ensure precise wavelength selection.
The laser beam also served as the optical axis, to which all other optical components were
aligned. Another edge emitting laser diode with a measured center wavelength of 636.5nm
and spectral width of 2.2nm was collimated with a lens of 160 mm focal length and the
help of a shear plate (cf. Fig. 6.20). Its purpose was to test the focusing and collimation
properties of the monochromator and also to determine the instrumental broadening.

MELLES GRIOT

Figure 6.20: Picture of the collimated(b) edge emitting laser diode (a)
during the calibration process with a shear plate (c)

6.4.4 Calculation and Dimensioning

The bandwidth and throughput of the setup can be estimated using some simplifying as-
sumptions. Considering the light source to be a Lambertian radiator with an equal radiance
in every direction, the system’s output power can be defined as

Pyi=L-E, (6.6)

where L is the radiance and F is the etendue of the system. The following section aims to
derive these quantities and to describe the relevant factors that influence the overall system
performance. Finally, the calculated output power is compared with an actual measurement
result.
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Radiance

The radiance L (in Wmm™2sr~!) is defined as the output power per solid angle and per
projected area. For thermal radiators the spectral radiance, which is defined as the radiance
per wavelength, can be obtained by Planck’s law via the body temperature T of the radiator.
For the tungsten halogen lamp the color temperature was specified to be T' = 3300 K. This
value can be verified by evaluating the following three equations for the three unknown
properties of the light source: the total radiant power P, the effective surface area Acff
and the color temperature 7.

114
Ppp =T'0Agp with 0 =5.67-10"°— (6.7a)
Py, = 27 Aegf Linag (T) (6.7b)
Pph = ePy, (6.7C)

Eq. 6.7a describes the Stefan-Boltzmann’s law. Eq. 6.7b describes the total radiant power
over the full hemisphere and the entire spectrum according to Planck’s law (cf. Eq. 6.10).
And Eq. 6.7c connects the electric power and the radiant power by assuming the light
source to be a gray radiator with a typical emissivity of € = 0.425 for a tungsten halogen
lamp[136]. P, is the actual electric power consumption of the lamp and was measured with
a multimeter. It led to a voltage of U = 12.05V, a current of I = 7.55 A and finally a power
consumption of P,y =U - I = 90.978 W.

The three Eqgs. 6.7a-6.7c are solved by the following values:

Py, = 38.665 W (6.8a)
Acfp = 13531 mm? (6.8b)

T = 3300 K (6.8¢)

= Lpaz = 0.452 Wmm  2sr~! (6.8d)

The radiant power L,,q, refers to the full spectrum and is further reduced by the monochro-
mator before it reaches the final sample grating. The targeted spectral resolution of the
monochromator is chosen equal to the spectral width of the calibration laser diode (A =
636.5nm, AN = 2.2nm). This determines the size of the exit slit S3 as derived in the
following:

The mirrors (M1 and M4) of the monochromator with a focal length of fy; = 220mm
collimate the light onto the diffraction gratings. With a grating period of A = 833.3nm
(lattice constant: 1mm/1200) the gratings then diffracts light into the first diffraction order
(m = 1) under an angle of § = asin (mA/A) (cf. grating equation 1.37a).
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Differentiating the grating equation with respect to the diffraction angle leads to

dx A
reciprocal angular dispersion: g = a5 C(;Z(m (6.9a)
d\ 1d
reciprocal linear dispersion: Yo = ar ~ fdf (6.9b)
M
slit width (for m = 1) Ag — 2Q' (6.9¢)
for a double monochromator: Yz

The factor 2 in Eq. 6.9c accounts for the doubled dispersion due to the monochromators
additive configuration. Thus, in the present case, the targeted spectral width of A\ = 2.2nm
leads to a slit width of Ax = 1.8 mm.
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Figure 6.21: Tllustration of the spectral radiance of Black-bodies and output radiance of the
monochromator

Assuming a Gaussian shaped output spectrum of the monochromator as illustrated in Fig.
6.21b, the output radiance is defined by the integral over the product of Planck’s gray body
spectrum and the Gaussian intensity function:

1 2rhe? 1 )2
-t =37 ax 6.10
277/ [ X e%_lel [e ] (010
—_——
Planck’s law Gaussian function

Here, h denotes Planck’s constant, k£ is Boltzmann’s constant, c is the speed of light in air

and o is derived from the spectral target width by o = A\/ (2\/111 (2)) Again putting in

uW
mm?2sr’

the numbers leads to a total output radiance of the system of L = 425.541
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Etendue

The etendue (in mm?sr) characterizes the ability of an optical system to accept light and is

defined by its illuminated surface area and the solid angle of the incident light. It is invariant
as the light passes a loss-less system and is determined by the least optimized component. It
can only be increased by diffusion, but never decreased without loss. Keeping this in mind,
the proper imaging lenses and their positions can be derived from the fixed monochromator
parameters matching the numerical aperture (NA) of the components.

Figure 6.22: Sketch of the entrance optics

With a focal length of fi;1 = 220mm and a diameter of dy;; = 60 mm the first collimating
mirror (M1, cf. Fig. 6.22) of the monochromator defines the numeric aperture of the device
as NA 1 = sin (atan (da1/2fam1)) = 0.135. It also determines the properties of the entrance
optics, which consists of a Linos microbank achromat L1 with a diameter of d;, = 30 mm that
is placed b = dr./ (2tan (asin (NAyp))) = 110mm in distance to the entrance slit S1. The
thin lens formula 1/g+1/b = 1/ f, further determines a distance of g = 293.33 mm between
the achromat and the light source at a chosen focal length of fr, = 80mm. The same optics
(cf. Fig. 6.18f) is used in reverse order on the other side of the monochromator to restore the
image of the source at the grating plane (cf. Fig. 6.18g). The corresponding magnification is
m =b/g = B/G = 0.375, demagnifying the coiled tungsten filament of the halogen lamp on
to the entrance slit S1. The filament size is specified with A = A, x Ay = 2.3mm x4.2mm =
9.66 mm?. However, due to the long legs of the coiled filament, the effective size is increased
in vertical dimension to A = A%, x Ay = 3.222mm x 4.2mm = 13.532mm? in accordance
to Eq. 6.8b.

According to Eq. A.52 the maximal etendue of a flat surface A,y radiating in the full
hemisphere in air is given by

Emaz = 27 Aggy. (6.11)

The etendue is reduced by the aperture of the circular achromat L1 but should be equal on
both sides of the entrance slit S1 due to the performed mode matching - and the fact that the
slit size matches the size of the demagnified source image. Using the definitions in App. A.7
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the reduced etendue between the circular achromat L1 and the rectangular entrance slit S1
can be expressed by

AL, miy Az
2 2m M= 2 9
0
Ea:// p(COS(LLSI)> dz dy d¢ dp. (6.12)
lL1-s1
00 iy 4%
2 mg

On the right side of the rectangular entrance slit (inside the monochromator) and before the
circular mirror M1, the etendue reads as

mA mAr Ao )
B, — / / //;;(COS(G“M”) do dp dz dy. (6.13)
Is1-a1
ity a0
2

Putting in numbers, Egs. 6.12 and 6.13 gives E, = 0.109123 mm? and Ej, = 0.109127 mm?,
which is effectively equal and thereby verifies the correct theoretical NA matching. Since
also the monochromator preserves the etendue and the output optics mimics the entrance
optic in reverse order, no significant additional loss of the geometric extend is expected after
the first aperture of L1. Consequently etendue should be preserved over the entire residual
system.

6.5 Measurement and conclusion

Only two more factors have to be taken into account, which are the gain in radiance power
due to the rear reflector of the lamp and the losses due to absorption, reflection and diffusion
at the different optical elements. The influence of the rear reflector was simply measured
with the Newport powermeter at the position of the sampling grating. 14 uW of as the ra-
diant output power were measured with the rear reflector in place. Without it, only 11 uW
was measured, leading to a gain of 27.27% (np = 1.2727).

In order to estimate the system losses, the collimated laser diode (at wavelength A =
636.5nm) was used and measured in the focus of L1 before the entrance slit S1 and again
behind the exit slit S3. Thereby the influences of the two achromats L1 and L2 were ig-
nored. 47 uW were measured before the monochromator and 11 W were measured behind
it leading to a system efficiency of ng =~ 23.4 %. Putting all calculated results together as

Pout = ELanS (614)

gives an estimated output power of 13.83 uW for the calibration wavelength of A = 636.5nm
compared to 14 uW output power, which was actually measured with the Newport power-
meter.
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The FWHM of the output spectrum was measured with the mut Spectrometer leading to
2.6 nm (cf. Fig. 6.23) compared to a calculated FWHM of 2.2 nm by Eq. 6.9c. The difference
can be addressed to an instrumental spectral broadening.
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Figure 6.23: Measured spectrum of the tungsten halogen lamp filtered by the
monochromator

So in conclusion the monochromator setup is able to reach an output power of 14 uWW at a
wavelength of A\ = 636.5nm and a spectral width of 2.6 nm. This is well within the order
of magnitude of the tunable laser with 30 W, which was used in the measurements in Sec.
6.3 - especially considering the smaller spectral width compared to 13.29 nm of the tunable
laser. The setup also allows for variable spectral width by adjusting the exit slit width and
trading spectral resolution for higher output power. A further increase of the output power
could be reached by using larger achromats for the entrance and exit optics. This, however,
would also require a revision of the mounting. Finally, the monochromator is even easier to
handle than the delicate tunable laser, where frequent mode hopping was another reoccurring
problem in the previous measurements.

Despite several minor assumptions and simplifications, the calculation shows very high accu-
racy, which indicates that the main influencing parameters of the system are under control.
Thus, the system should be useful for future resonant measurements. The results of this
project were published at an earlier stage in [3].
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In this thesis a new and efficient way was developed to analyze the rigorous diffraction grating
problem for incident waves beyond the mere plane wave input. The method extends the rig-
orous coupled-wave analysis (RCWA) but does not increase the complexity of the algorithm.
As long as the incident field can be described by a finite number of plane waves, which corre-
sponds to the number of Fourier modes used in the RCWA algorithm, the input field can be
chosen arbitrarily. The new method is named localized input field RCWA (LIF-RCWA) and
can be applied to various diffraction problems, which depend on finite incident beams and
specially shaped wave fronts. This was demonstrated in multiple examples. The discussion
included the modeling of a Gaussian beam and its influence on the diffraction grating prob-
lem. It also included the emulation of the readout process of an optical storage medium and
the rigorous analysis of single- and multi-mode waveguides. Both the coupling as well as the
formation and propagation of distinct waveguide modes have been demonstrated, showing
excellent agreement with the analytical model. Furthermore, the modeling of a point light
source was presented together with the new ability to model various forms of polarization
like azimuthal and radial polarization.

From the beginning, the method was intended for the three-dimensional grating problem,
which includes gratings that are periodically structured in two directions and illuminated
in oblique incidence. In this general case a distinction in the two typical polarization types
TE and TM is unprofitable, since Maxwell’s equations do not separate as they would do in
classical mounting of a one-dimensional grating. Therefore, the RCWA is slightly reformu-
lated in Chap. 2 to work in a global Cartesian coordinate system instead of the usually used
and less convenient local coordinate TE-/TM-systems of the individual diffraction orders.
This not only simplifies the use of the LIF extension, but also improves clarity for the three-
dimensional RCWA algorithm.

The development of the LIF-RCWA also revealed an inconsistent truncation scheme for the
grating permittivity in the standard RCWA. In numerical calculations a truncation of infinite
Fourier series expansions is inevitable and is usually associated with a bandwidth limitation.
In the truncation process of the standard RCWA, however, some frequencies of the permit-
tivity are underrepresented, while other frequencies beyond the given bandwidth limit are
falsely accounted for. As a result, the Fourier coefficients of the permittivity do not repre-
sent a proper bandwidth limited grating. The LIF-RCWA resolves this issue by the use of a
cyclic definition of the convolution matrix, which corresponds to a discrete Fourier transfor-
mation (or Fast Fourier Transform) with the same number of sampling points in space and
frequency domain. It was demonstrated that this approach does not show the critical Gibbs
phenomenon (on its discrete grid) and that the inverse rule, which is usually used to cure
the bad convergence behavior due to this phenomenon, is in fact a neutral and redundant
operation for the LIF-RCWA. This way, the convergence speed of the LIF-RCWA is faster
in the case of classical TM polarization compared to the standard RCWA, but slower in the
TE case - due to the decreased spatial sampling in the LIF-RCWA. Applying the inverse rule
to the standard RCWA also leads to a superior convergence speed in the TM case. However,
for the costs of the novel introduced consistent truncation scheme, the inverse rule can also
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be applied effectively to the LIF-approach, achieving the same improved convergence speed,
while maintaining the ability to treat non-plane wave input fields.

In Chap. 4 the exact calculation of the near-fields in the RCWA was investigated and veri-
fied against its compliance with Maxwell’s continuity conditions as well as its similarity to a
converged near-field of the standard method. Since the finite Fourier expansion struggles to
properly follow the jump discontinuity of a binary grating, Lalanne and Jurek[67] suggested
to derive the discontinuous field components from the continuous ones and factor in the
non-bandlimited permittivity in position space. However, this involves the intermixture of
bandlimited and non-bandlimited quantities, which leads to high peaks of the field amplitudes
at the grating boundaries. A least square comparison between the different field-calculation
methods demonstrate consistency between the convergence speeds of the near-fields and their
corresponding diffraction coefficients, which also indicates a consistent calculation of the near
fields. At this point, however, the influence of an inconsistent truncation scheme still remains
unclear.

Chap. 5 compares different methods for the calculation of absorption in grating structures
and especially investigates the method of local absorption by Brenner[13]. The latter method
is also used to verify the conservation of energy of the RCWA in lossy media. While the

simple relation 1 - R—T L 0is usually used to confirm energy conservation in non-absorbing
structures, for absorbing structures, the same relation can only be used to derive a power
deficit. However, until now it remained unclear how much of this power deficit could be ad-
dressed to the actual absorbed power in the structure. Using the theory of local absorption,
the electromagnetic near-fields, which were derived in the previous chapter, can be used to
actually calculate the absorption. A comparison between the integrated local absorption and
the power deficit finally allows a verification of the conservation of energy in lossy media. The
result is that the standard RCWA does in fact not fully conserve energy for low mode counts.
The LIF-RCWA, on the other hand, shows accurate agreement between absorption and the
power deficit for any order of truncation. In fact, the integrated local absorption, which
depends on the sampling of the field, converges towards the power deficit for an increasing
z-sampling, while an optimal sampling in tangential direction is even predetermined. Both
is not true for the standard RCWA and any other variant that uses the non-cyclic Toeplitz
matrix to model the material parameters. The deviation between absorption and power
deficit becomes even larger, when applying the inverse rule. On the other hand, the use of
an appropriate apodization function, which does not cure the Gibbs problem but suppresses
higher frequencies in the grating permittivity, decreases the deviation. All these facts indi-
cate that the inconsistent truncation scheme in the non-cyclic Toeplitz matrix of the material
properties is the reason for the observed discrepancies. It was even shown that the conser-
vation of energy in the non-absorbing case is not sufficient indicator for the correctness of
the calculation. The erroneous truncation is used twice when the inverse rule is applied, is
reduced with apodization and corrected by the LIF approach. Using the field calculation
method of Lalanne and Jurek[67] also negatively affects the energy balance. By applying a
non-band-limited permittivity function to an otherwise bandwidth-limited calculation, the
energy of the incident wave is redistributed over infinite frequencies, while only a finite subset
is considered in the further calculation. This leads to an energy loss that is not accounted
for in the analysis.

In Chap. 6 the RCWA and the theory of local absorption were used to develop a photodetec-
tor as an active optical element, which is fully compatible with the SOI-CMOS process. This
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Summary

means that the detector can be built using the same materials, structure sizes and processes
as any electronic device in the technology and does not require any post-processing steps for
the integration into a standard chip design. The SOI-CMOS process is a standard process for
electronic chips and was even shown to support some passive optical functions. It is therefore
particularly suitable for this attempt. The small thickness of the photoactive silicon layer
has been compensated by utilizing existing structures of the SOI-CMOS-process as a grating
structure to locally enhance the intensity and especially local absorption in the photoactive
layer, which finally generates a measurable photocurrent. This way, the absorption in the
photoactive layer was increased from 2% to 43 % and 86 % in simulations depending on the
design - for one type of polarization. The fabricated detector was measured and the sensi-
tivity as well as the wavelength dependency was verified in experiment. However, different
deviations of the design parameters during the fabrication process led to a shift of the sen-
sitivity maximum from 850 nm to 830 nm, which could only partially be explained.

With a higher degree of freedom to structure the silicon trenches in the CMOS-process, also
two-dimensional designs would have been possible. In simulation, those were shown to reach
full polarization independence and thereby achieve an increase of efficiency by another 100 %
in case of unpolarized incident light.

A final study investigated the suitability of a monochromator as a wavelength-tunable light
source to illuminate and test diffractive structures. Using an off-the-shelf tungsten halogen
lamp with a power rating of 100 W, 14 uWW of output power could be reached using a spectral
width of only 2.2nm at a wavelength of 636.5nm. This is within the order of magnitude
of the illumination power (30 uW) from the tunable laser source, which was used for the
measurements of the CMOS-detector - especially considering that the spectral width of a
monochromator was significantly smaller (2.2nm compared to 13.29nm) and can be easily
adjusted in the monochromator setup for higher power output. Thus, the power is shown to
be sufficient for following tests of diffractive structures.

Within the context of this work also a simulation software was developed, which was used to
simulate all RCWA-related simulations presented in this thesis. Some details are discussed
in the appendix B.

In conclusion, this work contributes to the fields of rigorous electromagnetic simulation and
micro-optics integration. Both have significant relevance in todays research and industry
and will probably continue to grow further at an enormous speed.

Even though the time complexity of the RCWA is a limiting factor, the method has become
one of the most important instruments for rigorous simulation due to its wide generality.
Thus, as in the previous decades, further improvements of the method and the easy access
to massive parallel computing power will allow the analysis of significantly more complex
problems especially in the three-dimensional regime. This will certainly open the door to
new discoveries and applications in the near future. The integration of optically active com-
ponents like a photodetector into the SOI CMOS process will hopefully enable a cheap pro-
duction of opto-electronic hybrids that enrich conventional electronic mass market products
with the advances of modern photoncis.
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Appendix A

Formulae and definitions

A.1 The normalized wave vector

The normalized wave vector s is defined in spherical coordinated (radius = 1) as

sin (6) sin (¢)
s = | sin () cos (9) | , (A1)
cos (6)

where 6 denotes the angle of incidence and ¢ denotes the azimuth. Together they describe
the only propagation direction of a plane wave towards the point of origin. The angles are
depicted in Fig. 2.1 for a plane incident wave of a typical diffraction grating problem in
conical mounting. The length of the wave vector k is defined by the wavelength A and the
surrounding refractive index n (cf. Eq. 1.14).

A.2 The complex permittivity and the refractive index

The diacritic hat will indicate the complex nature of a quantity in the following. n and e,
are the real parts of the refractive index and the permittivity, x and ¢; are the corresponding
imaginary parts. Thus, their definitions read as

i = \/efi. (A.4)



A.3. PHYSICAL FIELDS AND TIME AVERAGING

For © = 1, the complex refractive index can be expressed as a function of the complex
permittivity

and visa versa

7 (6) = \/7”;@ +i\/r_26ngn (e1) (A.6)

with

r=/€2+ €. (A7)

A.3 Physical fields and time averaging

Between a complex field F with harmonic time dependence and a physical field Fppys the
following equations holds:

1 —iUJ * iw
Fohys = Re(F) = B (F(r)e P L F*(r)et t) . (A.8)
Besides, time averaging is defined as
1 T
(G) = lim — G(t) dt (A.9)
T—00 0

Example

Both relations can be used to derive the physical and temporal averaged Poynting vector
from its complex mathematical description:

Sphys = Ephys X Hphys (A.10)
Sphys = Re (E) x Re (H) (A.11)
= % (E(r)eﬂ“t + E*(r)eJri“’t) X % (H(r)e*’m + H*(r)eJrM) (A.12)
= %Re (E(r) x H*(r)) + %Re (E(r) x H(r)e ") (A.13)
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T .
(Sphys) = 5 Re (B(r) x H'(r)) + lim 0 S Re (B(r) < Hme ) d (A14)
=0
— %Re (E(r) x H*(r)) (A.15)
= %Re (E(r)e_w X H*(r)e+w) (A.16)
= %Re (E x HY) (A.17)

A.4 The C matrix

The rigorous coupled-wave analysis solves the diffraction problem by matching the tangential
field components of the electric and magnetic fields. In this work the C matrix is used to
convert the tangential components of the Fourier harmonics of an electric field to those of the
corresponding magnetic field. The C matrix can easily be derived from the second Maxwell
equation for harmonic fields (cf. Eq. 1.8b):

V x E =iwB (A.18)
=V x E =iwppuH (A.19)

For the tangential field components of the magnetic field, this leads to

kyE. —k.Ey\ H,
(k‘ZEm . kxEZ = k’o,LLZQ Hy . (A21)
The normal (z-)component of the electric field can be substituted according to transversal

property of the field (cf. Eq. 1.25):

for k, #0 (A.22)

H, 1 —kyk, — (k2 + kQ) E,
(Hy> ko Zo <k2 2 ok ) \B, (4.23)
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A.5. THE © MATRIX

Finally, in order to convert the vectors of Fourier harmonics (U] = C-S) ), field components
and wave vectors become vector quantities and the C matrix can be defined as:

kx;qky;q : k;;q + kg;l;q
— dlagq (kz-l-q
™ for k:z;l;q £ 0. (A.24)

l = 2 ; .2
koZ kz.,+ k2, ky.gky:
HFEo 40 diag, z3q zliq diag, 39 %y5q
kzﬂ%‘l kz;l;q

The operator diag, (vy) converts all elements v, with ¢ = 0.. count'(v) — 1 of a vector v
into a diagonal matrix with count(v) - count(v) elements. The index [ only refers to one
of the homogeneous outer regions [ = I or [ = I11. For the special case of k.j.; = 0 (cf.
cut-off frequency, Eq. 1.18b) the matrix C is not defined, since H, and H, depends on E,
exclusively, which cannot be derived from the tangential components of the electric field.
From an implementation standpoint, the identity k2 + k2 = k% — kz is not useful in an
inhomogeneous medium, since there is no single refractive index n, from which & = nkg can
quickly be calculated. The individual wave vector components on the other side need to be
available anyway.

A.5 The 2 matrix

In the RCWA algorithm, the 2 matrix describes the relation between the electric or the mag-
netic field and its second derivative in a second-order differential equation 9*F | /922 = QF | .
As shown in Sec. 2.4.2, only one of the fields needs to be solved with an eigenvalue ansatz,
while the other can then be derived. Hence, depending on the choice of the field, the €
matrix can have two different definitions, which both shall be deduced in this section for the
three- and the two-dimensional case.

In the first order differential equation 2.14, the electric and the magnetic field still appear

coupled:
2 S, _ 0 M, S| (A.25)
0z \U_L M, 0 U,/ '

while another derivative reveals the definition of the two variants of the Q matrix (cf. Eq. 2.16)
in uncoupled equations:

= 0°S,/02* - QES, =0  with Qp := M;M, (A.26)
= 0°U /02> —QxU; =0  with Qg := MyM; (A.27)

!The operator count (v) gives the number of elements of the vetor v.
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A.5.1 The Q2 matrix for the electric field

I (A.28)
T e i e o

| l_K;[[Ijﬂc MIH(_;I&LMJ K, [[Ilé]i&;ﬁ{—ﬁ I—{ggﬂﬁﬂ] (A.30)
() (A31)

with

ap = K, [l 'K [[el) + 1K, 1] K, — Nuf][]e] (A.32)
B = K[ 'K, el - [ul1K, [1] 'K, (A.33)
7 = K, [ K, €] — [pK. [l 'K, (A.34)
55 = K, [ K, el + [al Kol 'K, — [l e (A.35)

Considering only one-dimensional gratings in non-conical mounting (referred to as the 2D
case) K, disappears and the diffraction problem is usually separated into two cases of po-
larization, namely TE and TM.

For TE polarization S, and U, are equal to zero and the {2 matrix simplifies to

03 = K31/ (Kalu] 'K, — [d) (A.36)

and for TM polarization with S, = U, = 0 to

Qs = K (Kold Ko = [1]) [1/e ! (A.37)
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A.6. CONVERSION OF REFLECTION AND TRANSMISSION COEFFICIENTS
INTO LOCAL TE/TM COORDINATE SYSTEMS

A.5.2 The (2 matrix for the magnetic field

In order to calculate the magnetic counterpart of the €2 matrix used in Sec. 2.16, only the
order of the matrices M; and My has to be reversed. This example may serve as a reference,
as it is used in many implementations [88, 91| especially for one-dimensional gratings.

Q3P = MM, (A.38)
2| KWK, K. [1] 'Kz — [le]]
= ko [_Kyﬂﬂﬂ_le + UE—H Ky[[,UJ]]_le ] (A39)
| l K []'K, K[ 'K, + HMH]
Ky[e] 'Ky — [l ~Ky[e] 'K,
_ ag B
= k2 ('YH 5H> (A.40)
with
it = Ko [ " Ko [1]) + 1K, [ 'K, — (el ] (A.41)
B = Ko [p] 'Ky [Lu]] = 1Ky [] 'K, (A.42)
v = Ky[u] T K [[1]] = [l K] (A.43)
O = Ky[u] Ky [Lu]) + [l Kale] ™ le — el fLe] (A.44)
And again, in the two-dimensional, non-conical case, the 2 matrix simplifies to
Qprp =k (Kalpl Ko — [d) [1/u)™" and (A.15)
Q3P = K[/ (Kol 'K, — [u]) - (A.46)

A.6 Conversion of reflection and transmission coefficients
into local TE/TM coordinate systems

In Ch. 2 the formulation of the modified standard RCWA yields reflection and transmission
coefficients in a global Cartesian coordinate system. The classical standard RCWA according
to Moharam and Gaylord[91], however, aims for a description in local TE/TM coordinate
systems of the individual diffraction orders. The definition of the corresponding base vectors
ey and er for the local coordinate system was given in Eqs. 1.27a and 1.27a. However, this
time one must distinguish between reflected and transmitted diffraction orders, which point
in opposite z direction.
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The single diffraction coefficients can then be expressed by the local base vectors as

Rm,n - RN;m,neN;m,n + RT§m7ne§1;m,n and (A47a)
Tm,n = TN;m,neN;m,n + TT;m,neg;Im’n (A47b)
with
X
ey = =22 (A.48a)
les x s
1
I €N;mmn X km n
epr., ., = : and A.48b
T e X Ky (AR
N X kI
P = " (A.48¢)

where kg%n and kfgn are the wave vectors of the reflected and transmitted diffraction orders
with opposite orientation in z (cf. Eq. 2.8). Therewith, the coefficients can be described in
local coordinate systems:

RN;”%” kJ_ (Ry;m,nkx;m,n - Rx;m,nky;m,n) (A.49a)
;m,n
k‘I
RT;m7n I k (Ry;m,nky;m,n + Rl‘;m,nkaj;m,n) (A49b)
m,nvLym,n
1
IN:mn kL (Ty;m,nkm;m,n — Taeymunkymn) (A.49c¢)
sm,n
k‘IH
Trongn = —gr 77— Tymmkymn + Tommkamn) (A.49d)
7m7nkJ_;m,n

For the special case, where the (m,n)th diffraction order is exactly normal to the grating
and k., =0, the base vectors have been defined as ey = e, and er = e, (cf. Sec.
1.2:polarization). Substituting those into Eqs. A.47a and A.47b simply leads to

RN;m,n = Ry;m,n (A5()a)
RT;m,n = Rx;m,n (A50b)
TN;m,n =T, sm,n (A5OC)

)

TT;m,n = Tz;m,n (A50d
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A.7. ETENDUE

A.7 Etendue

The etendue of a light emitting source is defined as the product of its area and the solid
angle into which it radiates. Between a source S and a target T' it can be described by

dEg = n%dAg cos (As) dQr, (A.51)

where n is the refractive index of the surrounding medium, dAg is a surface element of the
emitting source and d€)r is the solid angle, which holds the radiating beams. g is the angle
between the normal vector of the surface element and the direction to the target T from
where the etendue is measured. For a solid angle, which spans a full hemisphere (Qpr = 27)
at g = 0, the maximum etendue is simply given by

Eae = 210> A. (A.52)

The solid angle can be defined as the area of the segment of a unit sphere divided by the
square of its radius r. For an infinitesimal area dA7, which is tilted by 6 relative to the
origin of the sphere, a solid angle element df)7 can be expressed as

dQr = dAr cos (1) /1. (A.53)

This leads to a differential etendue of

_ 208 (0s) cos (07)

dEg = 5 dAgd A (A.54)

where [ is the distance between the two surface elements and fg and 07 are the angles
between the normal vectors of these surface elements to their connecting line. If source and
target surface are in parallel mounting, the angles g and 07 are equal and the two cosine
expression reduce to cos? ().
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As s w

Yyl & source S target T

z

Figure A.1: Illustration of the etendue between a light emitting rectangular source and a

circular target screen

If, furthermore, the source surface is defined in Cartesian coordinates and the target surface
is defined in cylindric coordinates as depicted in Fig. A.1 (or the way around), then the

distance lg_,7 between dAg at (z,y,0)” and
dAr at (pcos(¢),psin (o), 2)T is

lS_>T =V 22 + U2

with

v=1/z?+y?+p* —2p(xcos(¢) +ysin(¢)).

And the etendue is

m‘g-\-
ol

lSaT

&
|
o\wm

2

0 2
/p(ncos(@) dé dp dz dy
0

w2
[
v

with

A=A, - Ay,
Ap = (d/2)?

and

s = atan (Z> .
v
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Appendix B

Simulation Software

All RCWA and LIF-RCWA simulations were performed with a custom software that was
developed within the scope of this work. The source code was written in Object Pascal,
which is the standard programming language at the chair of optoelectronic under Prof.
Brenner. This enabled the reuse of optimized math and data visualization libraries, which
are in continuous development at the chair. Object Pascal is a high level, object-oriented
programming language. And despite its low popularity it is a very efficient language for the
development of Windows desktop applications. Its special features include a well structured
syntax and a fast one-pass compiler, which produces efficient native machine code.

The following section provides a short overview over the software architecture and a selection
of the most important features and design considerations. However, it does not aim for a
detailed documentation.

The goals of the simulation software were

1. ...a graphical user interface.

2. ...high flexibility in the description of the diffraction problem.

3. ...high flexibility and efficiency in the execution of parameter scans.
4. ...high flexibility in the choice of output parameters.

5. ...intelligent use of resources'.

The goals were achieved in the same order by

1. ...the use of the Embarcadero Delphi Development Environment for rapid application
development.
2. ...the implementation of interchangeable models for different light sources and gratings

including one that allows a description in simple mathematical syntax.

3. ...the use of the Runtime-Type-Information (RTTI) concept, which allows access to
class type information of generic objects during runtime. This way, properties of an
otherwise unknown object can be read and modified.

4. ...the implementation of various output quantities (cf. list 5)
5. ...the reuse and archiving of intermediate results and the parallel execution of param-
eter scans.

!Note: The standard RCWA algorithm has a runtime complexity of O (nﬁ) (cf. Sec. 3.18Db).
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B.0.1 Structure

The software’s architecture follows the model-view-controller pattern in order to separate
data structures from program logic and the user interface. The main components and their
interplay are depicted in the data flow diagram in Fig. B.1. A user has only access to the
view components, which are the PupilEditor (1), the GratingEditor (2), the Simulator
(3) and the Viewer (4). The PupilEditor (1) and the GratingEditor (2) allow the user
to define the incident light as well as the diffraction grating with several structured layers.
Both editors are implemented using the concept of Runtime-Type-Information (RTTI). The
result is a graphical user interface component (also referred to as ObjectInspector (cf. Figs.
B.2, B.3 and B.4: list structure on the left side)) that can list and modify properties of
a generic object. This allows a very flexible design, since the underlying models can be
exchanged during runtime without any changes in the main program. And this is even true
if the various models depend on different design parameters. As an example, a Gaussian beam
model would need an extra parameter o to describe the beam waist. The only requirement is
that different models of the same kind produce the same standardized intermediate results for
further processing. These include the Toeplitz matrix of the permittivity and the incident
field vector as used in the RCWA. A complete overview is given in list 1, 2 and 3. All
parameters together fully describe the diffraction problem and are summarized in a Setup
object (cf. Fig. B.1).

PupilEditor

The PupilEditor provides a graphical user interface for the definition of the incident field
and therefore enables the parameterization of one of the following pupil models, which were
implemented:

e a PlaneWaveModel for standard RCWA calculations

e a GaussianBeamModel for finite beams

e an AllModesModel for perfect foci

GratingEditor

The GratingEditor allows a similar access to the grating representation and to the layer
stack, which forms the grating. Each layer can again be defined by a different layer model.
The implemented layer models include one analytical model and two FFT models. The
LayerModels describe the x- and y-dependent permittivity function as well as the permeabil-
ity function in one fundamental period of the grating layer and calculate the corresponding
Fourier coefficients. The following models were implemented:

e the AnalyticalModel uses parametrized Fourier-pairs

e the FFTFormulaModel allows a basic mathematical description of a very general layer
geometry.

e The FFTBitmapModel is able to translates a monochrome bitmap into a binary grating
layer.
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Figure B.1: Workflow diagram of the simulation program. Square boxes indicate essential
modules and data structures of the architecture. Round boxes stand for messages with
calculation instructions. Solid arrows show the direction of data processing and the dotted
arrow lines indicate notifications.

Simulator

The main component of the Simulator is an editable task list (cf. Fig. B.3: list in the
middle). A task defines the desired output quantity. Lists 5 and 6 show all implemented
outputs ranging from the electric and magnetic field via single diffraction coefficients to local
absorption. However, a task can also specify one or two Setup parameters, which are later
varied over a certain range in order to plot their influence on a specific output quantity. An
important feature of the software is a separation of these two types of tasks in OutputTasks
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and ScanTasks. This allows the reuse of the time consuming intermediate results of a
ScanTask by multiple OutputTasks. These intermediate results are called TransientData
and can also be archived on a local hard drive together with the Setup data for a fast
analysis with any OutputTask at a later time. Since not only a ScanTask can produce a
two-dimensional output, but also an OutputTask could request a two-dimensional slice of say
the electric field, certain combinations of ScanTasks and OutputTasks would lead to four-
dimensional outputs. However, by convention the output is always limited to two dimensions:
A scanning task can for example vary the wavelength and the grating’s period over a certain
range, so that an associated output task could visualize the corresponding transmission
efficiencies of the setup. Alternatively, a zero-dimensional ScanTask could calculate a single
diffraction problem, and an associated output task could then visualize a two-dimensional
slice of the electromagnetic near-field in a given region. If only a single numeric value is
requested, the simulator also offers a diagnosis tool, which saves the effort for the user to
define two tasks.

Controller

The Controller has a permanent accesses to the Setup object and is notified about any
changes by an implemented observer pattern. If a calculation is triggered in the Simulator
interface, the Controller receives a ScanTask and an associated OutputTask. In order
to speed up the calculation and to make use of the multiple cores of a modern com-
puter, CalculationTasks and OutputTasks with a dimension higher than zero are pro-
cessed by multiple threads in parallel. For this purpose, the Controller dublicates the
CalculationTask and the Setup data for several RCWAWorker threads (cf. Fig. B.1). It may
also change the order of a scan parameters in the two-dimensional calculation in order to move
time-consuming calculations in the outer of two nested loops. Finally, additional information
is added to the tasks so that every thread can work on its own local Setup at a different
parameter configuration. Local copies are required, since the Setup data primarly contain
the internal representation of the incident field and the grating (e.g. Toepitz matrices), which
needs to be updated as soon as system parameters change. The RCWAWorkers provide the
diffraction coefficients and the results of the eigenvalue problem. Together, the results are
stored for each diffraction problem as so called TransientData in a global TransientSet.
After completion, every RCWAWorker thread notifies the Controller, which then activates
an Outputworker to further process its chunk of TransientData. Every OutputWorker re-
ceives a copy of the OutputTask and calculates the requested output quantity accordingly.
The results (ResultData) are again stored in a global ResultSet. The Controller waits
for the last OutputWorker to finish its calculation and then merges and rearranges partial
results of all OQutputworkers into a form that can be displayed by the Viewer (cf. Final-
Data in Fig. B.1). As mentioned above, instead of forwarding the TransientData to the
Outputorkers, the Controller can also store the results on a local hard drive for a later
analysis.
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Viewer

The purpose of the Viewer is simply to visualize the FinalData, which is basically a zero-,
one- or two-dimensional array of double-precision floating-point numbers, depending on the
requested output. The data can be visualized as an array of numbers or as a one- or two-
dimensional graphical plot.

Mathparser

The MathParser was developed to allow a mathematical description of the permittivity func-
tion € (x,y) and permeability function u (x,y) in simple syntax. The parser can be accessed
via the FFTFormulaModel, which provides a text input field for the user (cf. Fig. B.2: bottom
region above the log window). The parser receives a description in infix notation, internally
translates it into reverse polish notation (RPN) and then evaluates the mathematical expres-
sion on a discrete grid for a fundamental period of a grating layer. A typical valid description
reads as

infix notation (user input)

1.1& rect (0,0, f - Px, Py) - (1.5 ~ 2) (B.1)

reverse polish notation

& 1.1 -rect 00 - Pz f Py~ 1.5 2 (B.2)

The example describes a one-dimensional rect function in the center of the fundamental
grating period Pz with a duty cycle of f and an amplitude of ¢, = 2.25 in a surrounding
medium with ¢, = 1.1. Thus, the parsers can process rudimentary math operations like
+, —, -, / and 7. It understands nested parentheses, has access to some setup properties
like the grating periods Pz and Py, allows the definition of user defined variables (such as
f) (see also Fig. B.2: bottom left of the ObjectInspector) and finally can process predefined
functions like a rect function with multiple arguments (here: left-shift, top-shift, width and
height). The special & operator always returns its right hand argument if it is different to
zero and its left hand argument otherwise. The rect function is defined in a way that it
returns the value 1 if the processed grip point falls within its defined borders and the value 0
otherwise. So, if the parser evaluates the current example of Eq. B.1, it will return the value
1.1 if the grid point falls outside the borders of the rect and 1-1.5 = 2 = 2.25, if the processed
grid point falls withing the borders. (The translation from the infix notation in Eq. B.1 to
the RPN in Eq. B.2 is only possible, because the number of parameters of the rect-function
is made available to the parser during its definition.) Other implemented functions are for
example sin, cos, sqrt, exp.

173



APPENDIX B. SIMULATION SOFTWARE

B.0.2 Setup properties

The following listing shows all parameters, which define a diffraction grating problem in the
RCWA (cf. Chap. 2) and furthermore all Setup properties that are accessible either directly
or indirectly by the user in order to define the problem using the described software.

All parameters with the exception of the <internal data> are directly accessible by the
user via the PupilEditor or the GratingEditor. The <internal data> are generated by
the individual model. All blue properties are required by the RCWA. The red color indicates
additinal parameters, which are provided by a specific model to support the description of
the grating problem.

incident field properties [1]

A (wavelength)

0, ¢, ¥ (incident, azimuth and polarization angle)

My, Ny (truncation order)
e <additional model data> (e.g. o, x-shift, y-shift, z-shift)

e <internal data>

e L. (incident electric field vector)

grating properties [2]
e nr, nyy (surrounding refractive indices)
e P, P, (grating periods)
e <layer list>
layer properties [3]
e d (layer thickness)
e <user defined variables> (they may help to define e(x,y) and u(z,y))
e <additional model data> (e.g. sampling N,, N, for FFT models)
e <internal data>
o [c]l, [le]l, |[€]] (Toeplitz matrix of the permittivity ...
o [u], [le]ls [[w]] C..., permeability and inverse Li matrices)

All configuration parameters of the software including the description of the diffraction prob-
lem (blue properties, see below) and the task list is stored in a human readable ini-file, which
can even be passed to the software as a command line argument for batch processing.

B.0.3 Transient data

transient data [1]

e L, R, T
e r;, t; per layer [
e V;, W;, Q; per layer I
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B.0.4 Output parameter

output parameters [4]

e permittivity / permeability
e design / reconstruction
e real part / imaginary part
e E-field / H-field
oz /y/ z
e real part / imaginary part / absolute value / phase
o |E|, B
e coefficients
e reflection / transmission
ex /y/ 2z

e all modes m / specific mode m = my

e all modes n / specific mode n = ng
o [E], |EP
e diffraction order efficiencies
e reflection / transmission
e all modes m / specific mode m = my
e all modes n / specific mode n = ny
e global efficiency (summed value)
e reflection / transmission
e local absorption
e design / reconstruction
e x="7.7 N, ="
o y="7.7N,="

e z=7.7N,=7

output field scan parameters [5]

e x=7.7 N, ="
o y=".7N,=7
e z=7.7N,="7
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APPENDIX B. SIMULATION SOFTWARE
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Figure B.4: Screenshot of the Viewer, showing the result of a field calculation and the
corresponding task at the bottom

B.0.5 Outlook

This section provided a brief description of the simulation software that was developed during
the time of this work and used to perform all RCWA related simulations presented here. The
software already features multithreading for parameter scans and OutputTasks. However,
there are also algorithms for the parallel calculation of the eigenvalue problem, which is the
most time-critical element of a single RCWA calculation. This would improve the simulation
speed for high truncation limits. Besides, the multithreading capabilities could also be
extended to GPUs and distributed computer networks in the future.
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