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Likelihood Ratio Tests for Principal Components
Lutz DUMBGEN*

Universitat Heidelberg, Heidelberg, Germany

A particular class of tests for the principal components of a scatter matrix 2 is
proposed. In the simplest case one wants to test whether a given vector is an eigen-
vector of 2 corresponding to its largest eigenvalue. The test statistics are likelihood
ratio statistics for the classical Wishart model, and critical values are obtained
parametrically as well as nonparametrically without making any assumptions on
the eigenvalues of Z. Still, the tests have asymptolic properties similar to those of
classical procedures and are asymptotically admissible and optimal in some sense.
€1 1995 Academic Press, Inc

1. INTRODUCTION

Many multivariate procedures are based on eigenvalues and eigenvectors
of random matrices. A major mathematical problem is that these functions
are not everywhere differentiable, so that usual delta methods can fail. In
the present paper it is shown how one can deal with this problem for a
particular classical testing problem in principal component analysis.

Let 2 e X, be an unknown scatter matrix, where X is the set of all sym-
metric matrices in R?*¢ and X, is the subset of positive definite X e X.
Further, let Se X, be an estimator for 2. Before stating general conditions
on 2, S let us us assume for the moment that

&(nS) is a Wishart distribution #7 (X, n) (1)

for some fixed n = d. Now consider a spectral representation of 2,

o
£=Y (),
i=1
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where 4,(£)= 4,(2) = .- 2 A,(2) are its eigenvalues, and t,, 1,, ..., T, are
the corresponding orthonormal eigenvectors. (4’ denotes the transpose
of a matrix A4.) Sometimes theoretical considerations suggest certain
candidates for the unknown principal vectors 7, or one wants to replace the
observed eigenvectors of S with vectors having a simpler form and which
are easier to interpret. Then it is important to test whether these candidates
are plausible. For instance, given orthonormal vectors e,, ¢, ..., ¢, € RY,
one might want to test whether

span(t,, T, ..., T, ) =span(e,, €;, ..., €;) (2)
(where span(-) denotes the linear span) or whether
1,= te, Vi=1,2, ..k (3)

The special case k=1 has been treated by Anderson [1]. Tyler [13, 14]
modified and extended Anderson’s method to test (2) for arbitrary k (as
well as more general hypotheses). These tests are asymptotically valid if
n'? (A /2, .~ 1){Z) tends to infinity. Schott [9] demonstrated by Monte
Carlo simulations that these tests can be very inaccurate. Using higher
order Taylor expansions for eigenvalues and eigenvectors, he derived a
Bartlett adjustment, which improves the validity substantially, but still the
actual level can be noticably higher than the nominal one.

The present paper is organized as follows: In Section 2 the special
hypotheses (2, 3) are generalized, and the likelihood ratio (LR) test
statistic under the Wishart model (1) is derived. This test statistic is used
to construct a valid test, where the critical value is obtained by considering
the degenerate case 2=/ only; [ stands for the identity matrix in R¢*¥,
This test is biased in the sense that its level is not constant for the
hypothesis. The bias is the price to pay for not making any assumptions on
the eigenvalues of 2.

In Section 3 we consider the asymptotic behavior of our test if both
2=2, and S=S, depend on an additional index rn>d such that
2, '8,2, " =1+0,(n '*). (Generally X'* denotes the symmetric,
positive definite square root of Xe X, , and X ~'2=(X"?) ') Within this
asymptotic framework one can replace parametric assumptions such as (1)
by a more realistic asymptotic condition and obtain an asymptotically
valid test. Letting 2 vary with » allows critical quantities such as
n'2(Agfie s — INZ,) to be arbitrarily large but bounded as n tends to
infinity. On the other hand, in many applications the ratio (4,/4,)(S) is
rather large, and therefore it is desirable to allow (4,/4,)(Z,) to diverge.
It turns out that our test has the same consistency properties as classical
procedures, and in a local asymptotic framework, where 2, = I+ O(n %),
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it is asymptotically admissible and optimal in some sense. Section 4
provides analytical tools that are needed in Section 3.

The last section contains some concluding remarks and references to
related work.

2. DEFINITION AND BASIC PROPERTIES OF THE TEST

Let us first introduce some notation: For any real, symmetric matrix 4
let A(A4) be the vector of its ordered eigenvalues A,(4)=A,(4)=
A3(A)= ---. The set of all orthonormal matrices in R“*¢ is denoted by T.
For XeX let T(X) be the set of all TeT such that T'XT = diag(A(X)),
where diag(v) stands for (1{i=j}v,), <, <q-

Let 0=(Q,, 05, ... Q;) be a partition of {1, 2, .., d} into a> 1 sets such
that max(Q,)<min(Q,, ) for 1 <a<a We write i~ if i,j belong to
the same atom of Q, and i +,/ otherwise. The same letter Q is used to
define the projection

QM) :=({i~pj} My)icij<a
on R“*“. We want to test the hypothesis that X belongs to the set
K={XeX:T(X)n QR # JF} = Q(X).

The two hypotheses (2, 3) mentioned in the Introduction correspond to the
partitions

L2, kL k+ L k+2,...d})
and ({1}, {2}, .., {k}, {k+ L k+2,.,4d}),

respectively, where we assume without loss of generality that e, e,, ..., e,
are the first k& standard basis vectors of R%

In the classical model (1) the LR test of a simple hypothesis 2= H is
based on the test statistic

(S, H) :=trace(H ~'S) —d —log(det(H ~'S)) >0,
see Anderson [2]. Thereore the LR test of the hypothesis 2 e K uses

t(S):= inf «S, H).

HeKnXy
Let S be the unobserved random matrix

S:=x-125y 12
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so that =8 if =1 Under (1) the matrix nS has a standard Wishart dis-
tribution with »n degrees of freedom, and in fact the only assumption needed
here is that

#(8) is known. (4)
Now the hypothesis T eK is rejected at level ae JO, 1f if 1,(S)>c(a),

where c(x) is the (1 —a)-quantile of L(1x(S5)). The following theorem
implies validity and other properties of this test.

THEOREM 1. The test statistic t¢(S) can be written as
1k (S)=1(S, Q(S))+ 1x (Q(S5)).
Suppose that 2 e K. Then
1 (5)= 1x ()2 (S5, Q(3)),
where the latter inequality is an equality if
(/2 A NZ) = (A /A NS) whenever i+, i+ 1.

If in addition £(T'ST)= L(8) for arbitrary TeT, then the distribution of
1« (S) is a decreasing function of the ratios (A;/4;, (N}, | <i<d

As for the decomposition of 7 (S), it can be shown that (S, Q(S)) is
equivalent to the LR test statistic for the hypothesis X e Q(X), while
1 (G(S)) is equivalent to the LR statistic for testing X e K versus X' € Q(X).
The two inequalities for 1, (S) imply that

1= Pl (S)> )} =P8 0(8)>c(x)) If Zek
The lower bound is attained asymptotically if
(Ai/Ai v i N&) = oo whenever i, i+ 1.
Therefore the proposed test is valid, but its power is not constant on
KnX,, in general.
The degenerate case 2 =/ is admittedly rather extreme. With the help of
the last part of Theorem | one could utilize moderate prior assumptions on

A(Z2). Precisely, suppose that

(A A W)= v /vy for 1<i<d
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for some vextor veA(X, ), and let ¢(a, v) be the (1 —o)-quantile of the
distribution of 7y (diag(v)'? § diag(v)'/?). Then

P{tg(S)>c(a, v)} <a,

provided that £ eK and #(S) is invariant as stated in Theorem 1.
The test statistic 1 (S) can be computed explicitly as follows. For X e X
let

Ao{X) = (A(X}); e o) MX )i jepiz)'s o MUXy) i e 01a) )
Ty (X):={TeT:Q(T)=Tand T'Q(X) T=diag(4,(X))}.

Note that A5(-)=40(Q(-N)ZAMQ(-)) and Ty(-)=Tu(Q(-)) £T(Q(+)).
For any matrix A define ||A|| :=/trace(4'4).

THEOREM 2. Let T be any point in T ,(S), and define

pr=arg min |lv— i, (S)I°
ve A(X)

Then
IS — T diag(p) 7"l = dist(S, K) := inf | S—X]|,
d
(5. T diag(u) T') = 1x(S) = ¥ log <ﬁ)

For the exact computation of u see Section 1.2 of Robertson er al. [8].
Theorem 2 shows that the statistics f (S) and dist(S, K) are closely related
(though not equivalent), which is discussed in more detail in Section 4.

Proof of Theorem 1. In what follows we frequently use the fact that
O(LM)=Q(L)M and Q(ML)= MQ(L) for arbitrary LeR**? and Me
Q(R¥*4), In particular,

trace(H ~'S) = trace(Q(H 'S))=trace(H 'Q(S)) VHeQ(X. ). (5)
Therefore
(x(S)=inf (trace(H 'Q(S))—d+log(det(H))) ~ log(det(S))
=1, (Q(S)) —log(det(Q(S) ™' §))
=1x(Q(S)) +1(S, Q(S)),
because trace(Q(S) ' S)=d.
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For 1 <a<a let U, denote the set of all unit vectors e R? such that
u; =0 whenever i ¢ Q,. Then one can write

K={XeQX): v Xuzv'XvforueU,,velU,,  and 1 <a<aj.

This representation shows that K is a closed, convex cone in X. Another
useful implication is that

ZI2HY e K VHeKnX,, (6)

where X is assumed to be in K. £'2HX'? is easily seen to be in Q(X, ).
Moreover, if h(u) 1= | Z'2u|| ' Z"2u, then #(U,)=U, for all a. Hence

WEVITHI 2y = 0 Zub(u) Hh(u) 2 v'Zvh(v) Hh(v)=v' ZV2HE 0
forueU,, veU,,,, and | <a<a But (., -)is invariant in that

HX, Y)=t(M'XM, M'YM) for nonsingular MeR“*“and X, YeX, .
(7)

Consequently, (6) and (7) together imply that
t(S)y=inf #S, Z'"2HZ"?)= 1, (S).

HeKnX,

Since tg(-) is nonnegative, the first part of Theorem 1 implies that
tx (S) = (S, O(S)), and (7} yields

(S, QSN =18, 2 Q)T )=S0z 175z 7)) =48, ().
Note that
AAS)<v'SvwZv< A (S)  VYeeRN{0). (8)
In particular, for ueU,, veU,,,, and 1 €a<a,

wWOSYu=wSuz i (SywZuz iy (S)i ()

max{Q,)

and
U/Q(S) v < ;'l (g) "{'min(Q‘,H )(Z)

Consequently, Q(S)eK if (4/4,,, E)=(4,/4,)S) whenever itgi+1,
which entails 7, (Q(S5})=0.

One casily verifies that T'(Kn X, ) T=Kn X, for all Te T Q(R*¥).
Thus it follows from (7) and the invariance assumption on .#(S) that the
(hypothetical) distribution of 1, (S) depends only on A(X). Now let
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2 =diag(4(2,)) and X, =diag(4(2,)) be two matrices in Kn X, such
that

(AifAi o NZ0) 2 (AifA 4 N 22) for 1<i<d
Then [:=3;'2,eKnX,, and
Ik (E:«“Zgziﬂ ) —_ tK(rh’Z(Z;/‘ZSZ;Q ) rl/2)< 1k (2‘12/2325,/2 ) I

Proof of Theorem 2. Two well-known inequalities, due to Hoffman and
Wielandt [5] and von Neumann [7], respectively, are

|AD)—MEN*<|ID—E|? VD, EeX; 9
trace(E ~'D) > trace(diag(A(E)) ' diag(A(D))) vD,EeX,. (10)

One can apply (9) to the @ main subblocks of Q(S) and X eK separately
to show that

IS=XI?= 1S = QN>+ 12(S) - XI*
> IS — QS+ 1Q(S) — T diag(u) T"|I
= |S — T diag(u) T'|I".

Hence ||.S — T diag(u) T') = dist(S, K). Analogously one can apply (10) to
the @ main subblocks of Q(S) and He K n X, separately for showing that

trace(H ~'Q(S)) = trace((T diag(A(H)) T') ' Q(S))
= trace(diag(A(H)) ! diag(4,(S))).
Therefore

tx(S)= inf (trace(H 'Q(S))—d+log(det(H)))—log(det(S))

HeKnX.

= inf i(v,."ﬂ,Q,-(S)+log(v,-)—log(}t,-(S))—d.

ve AlX, i,-:1

It follows from Theorem 1.5.1 in Robertson et al. [8] with &(r) := —log(r)
that the latter infimum is attained in u, whence 1, (S)=«(S, T diag(p) T').
Finally, since rpe A(X . ) for all r>0,

d d d
= Z (("#i)m] )~Qi(S)+IOg("ﬂi))=d‘ Z /liil}‘Qi(S)-

dri,. -,/ 2 i=1

Thus fK(S):Z;Izl log(u;/4,(S)). 1
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3. ASYMPTOTIC PROPERTIES OF THE TEST

Unless stated otherwise, all results in this section follow from analytical
properties of the functions #( -, -) and ¢ (-), which are derived in Section 4.
It is assumed that =2, and S=S, for n > d such that

Ww,:=n"*(S,—I)~»W  in distribution (11)

{as n — ), where WeX is a random matrix with a centered, nonsingular
Gaussian distribution. Then S, is a consistent estimator for X, in the sense
that
RS =14+0,(n""7) (12)

It is well-known that in the classical model (1) assumption (11) is satisfied
with a random matrix WeX having independent components W, =
Wi~ (0, 1+1{i=j}) for I<i<j<d

Within this asymptotic framework we weaken the parametric assumption
(4) of Section 2 and require only that there is an estimator D, for the
distribution of §, such that

L _pn"AS,— 1)) > £(W)  weakly in probability. (13)

Now the (unknown) quantile c(a)=c,(x) is estimated by the (1 —a)-
quantile [',,(1) Of "(!)S',,~ [j,,(’l( (Sn ))'

PROPOSITION 1. Both % (ntx(S,)) and Sf?gny,;n(nt,((g,, )) converge
weakly to the continuous distribution % (dist(W, K)?/2) in probability.

Theorem 1 and Proposition 1 together imply that the test
1{1g(S,)> ¢, (2)} is asymptotically valid; ie.,

lim sup P{x (S, )>¢é,(2)} <x if X, eK Vnxd

Hno o

It is shown in Section 4 that the quantity 1, (X, ) is a natural measure of
“distance” from X, to the hypothesis X, n K. In terms of eigenvalues and
eigenvectors one can say that nsg (X, ) is bounded if, and only if,

o s . 2
max % M(Z,I)(U'V)f,=0(n . (14)

UeT(Z,) FeTolE,) 12 A,,}.,-

The test 1{rg(S,)>¢,(x)} is consistent in that it detects large values of
ntg (2, ) with high probability.
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PROPOSITION 2.

P{1k(S,)>é, ()} = P{dist(W, K) < /2n1x (X)) — ()} + 0o(1),
where y(a) is the (1 — a)-quantile of &£ (dist(W, K)).
More precise information about the asymptotic behavior of our test can

be obtained in a local asymptotic framework.

PROPOSITION 3.  Suppose that

S,=I+n 24,  suchthat 4,- AeX. (15)
Then
ntg () - dist(4, K)2/2,
ntg(S,) > dist(4 + W,K)?/2  in distribution,

P{tx(S,)> ¢, ()} - P{dist(4 + W, K) > y(a) }.

In other words, (15) leads to a simple shift model, where one observes
Z =4+ W with unknown 4eX and unobserved Gaussian error WeX,
whose distribution is known. Then the hypothesis 4eK is rejected if
dist(Z, K) > y(a). It follows from a general theorem of Stein [12] that this
test is admissible among all tests of A €K versus 4 X\K at level a. In
addition, suppose that Var(trace(XB))/|X|? is constant in XeX\{0}
(which is true under (1) with constant 2). Then a variation of Stein’s [12]
arguments shows that

V= infyia, k)5 E(@(4 + W))

. 5
1~ inlynes 1,25 PLdist(4 + W, K) > 7(2) ) as o=@

for any test ¢:X—[0,1] such that E(@(W))<a and H(W)#
1{dist(W, K) > y(x)} with positive probability; see Diimbgen [4]. Thus the
test 1{rg(S,)> ¢,(x)} is locally asymptotically admissible and minimax in
a vague sense.

A Nonparametric Example for Conditions (11) and (13). Let S, be the
sample covariance matrix of independent, identically distributed random
vectors Yo, Youis - ¥un € RY 1€,

S,,:=n ! Z (yin_yn)(yin_yn)l’ Y. = (n+1)7 ! Z ym'
i=0 i=0
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It is assumed that the distribution of y,, is completely unknown but has
finite fourth moments and nonsingular covariance matrix 2,. Here S, is
just the sample covariance matrix of the standardized vectors

yin:=E;”2(yin_E(y0n))’ Oglsn

This motivates the following bootstrap estimator for (5, ): Let S, be the
sample covariance matrix of the random vectors

. 12 < .
yi’! '—Sn (ylli),n_'yn)a OSISH,

where 1(0), I(1), ..., I(7), You» ¥ins - Yan are independent, and each /(i) is
uniformly distributed on {0, 1, .., n}. Then define

Dll = ”y)(S‘n | Yorns Yins o Yun )

Under mild regularity conditions on #(¥,,), assumptions (11} and (13)
are satisfied regardless of the sequence (Z2,),. .. Suppose that for some
random vector ¥ € R,

L(Fo,) > L(§) weakly,  E(|Fo. ")~ E(IF)*) < o0 (16)

Then W, converges in distribution to a centered Gaussian random matrix
W e X with covariances

Cov( Wy, W)= Cov( yiyj, ¥i¥: )

see Beran and Srivastava [3]. In particular, S,eX, with probability
tending to one. Moreover, the distribution of W is nonsingular, unless
§ X§ is constant almost surely for some fixed X e X\ {0}. The consistency
of D, can be verified as follows: In view of (16) it suffices to show that

g( yOn ‘ y()n’ yln’ RRRE) ynn ) - 3}(5’) Weakly in PfObabim)’,
IE( ” 5’0», “4 l Yorus Yins s Yo ) - [E( Il 5’”4 ) in prObablllty

Since S, '"?X)?=1+0,(n "?) and X, "*(§,— E(¥0,))=0,(n '?), one
may replace §,, in (17) with the resampling variable §,., ,. But then (17)
follows via standard arguments.

4. ANALYTICAL TOOLS

THEOREM 3. For X, YeX, let

B=B(X,Y):=Y Xy 2|
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Then
—y2y 12 _ g2 —12yy2 g2 _@2_
Y —=x 5 x =7y 1] <1+ld(3)’ (18)
I8l IBiI*
21X, Y)E[l + max{4,(B),0}’ 1 +min{id(B),0}]' (19)

Since W, in Section 3 equals n'?B(S,, X,), the consistency of S,,
Eq. (12), follows directly from (18). An interesting fact in connection
with (18) is that B(X, ¥Y)— 0 does not imply ¥ 'X — I. One can easily
construct a counterexample for d=2.

Theorem 3 implies that ,/¢(-, -) behaves almost like a metric on X, .
Precisely, it follows from (18) that

B(Y,X)=X ""(Y-X)X '~
=X '2Y'V2B(X, Y)Y X2
= —B(X, Y)+ O(|B(X, Y)|?),
B(X,Z)=Z "?Y'*B(X,Y)Y'?Z '+ B(Y, Z)
=B(X, Y)+ B(Y, Z)+ O(| B(X, )|’ + | B(Y, Z)|I*)

as B(X, Y), B(Y, Z)—> 0. Combined with (19) this yields

JUY, X)=J1(X, Y)+0(1(X, Y)),
JUX, Z) < JUX, YY)+ /1Y, Z)+ 0(1(X, Y) + 1(Y, Z))

as #(X, Y)+ (Y, Z)— 0.

THEOREM 4. For Ye X, let

- 4 (A~ i)
i (Y):=  max M4 (YYVIU) 2
VeT(Y).VeToir), 52, Ay v
Then
V) 10) s min{eg (V) i(Y)} >0, (20)
1x(Y)

For XeX, and B=B(X, Y),

S2tx (T+ By =dist(B, K) + O(| B)|?) (21)
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and

V2 (X) < /2t (Y) + dist(B, K) + O(1x (Y) + | B ?) (22)

as 1y (Y)+ | Bl*— 0.

The first part of Theorem 4 yields the equivalence of (14) and the
boundedness of nrg (X, ). Equation (21) implies Propositions 1 and 3. The
continuity of the distribution of dist(W, K) follows from the nonsingularity
of #(W) together with the fact that each set {XeX:dist(X,K)=r} is
contained in the boundary of a convex set in X. As for Proposition 2, one
may assume without loss of generality that \/anK(Z,,)—>5e [0, «c 1.
Since B(S,,2,)=n '*W,=-B(X,,S,)+0,(n""), one can apply the

”no

inequality (22) to (X, Y)=(S,,2,) and (X, Y}=(2,, S,) to show that

=, X if 6=cc,
2"1"(5”){25—dist(—W,,,K)+0p(1) if < o0.

Since é,(a) =, y(2) and — W, — Win distribution, this yields Proposition 2.

Proof of Theorem 3. Let L :=diag(A(X)), M :=diag(A(Y)), and Te
T(X), Ue T(Y). Then

Y XL = Uy X T

ZHM 1“2u/TL1‘2_U/T“2

l/
Y (XY V)~ 1P (U T

ij=1

o
Y (AAXVA(Y )= JA(Y V(X)) (U'T)

Lji=1

= H Y l“‘ZXlx‘Z _ Yl‘w‘ZX - 1,2 ”2

A

=trace(Y XY '"?4(y '2xy 7)) '-2I)

o
=), L(BY/(1+2,(B))

i=1
€ LIBIP/(1+ 2, (B)), I BI*/(1 4+ 4,(B))].
Since ||Y '"?X'"?—Y'2x '?| is symmetric in X and Y, one can inter-
change them and obtain (18).

Elementary calculations show that

r/(1 +max{r,0})<2(r—log(1 +r))<r?*/(1 4+ min{r,0})
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for all r> —1, and thus (19) follows from the identity

d

(X, Y)= ) (4,(B)—log(l+4,(B)). 1

i=1

Proof of Theorem 4. For M :=diag(A(Y)) and suitable Ve T,(Y) one
can write

T (Y)Y=2""2(YMV") "2 Y2 (VMV")'2 Y 172
= JIY, VMV") (1 +0(1))
> /1c(Y) (14 0(1))

asmin{#(Y, VMV'), iy (Y)} — 0; see the proof of Theorem 3. On the other
hand, tx(Y)=1t(Y,Z) for some ZeKnX, such that VeT(Z), by
Theorem 2. Then inequality (10) implies that

HY,Z)Zt(VMV', Z).

Consequently,

VY, VMV )< JUY, Z)+ VMV, Z)+ O(((Y, Z) + VMV, Z))
<2/t (Y)+ 001 (Y))

as 1x(Y)—0, and (20) follows.

It follows from Theorem 2 that t¢ (/+ B)=#({+ B, I + C), where CeK
such that ||B— C|| =dist(B, K). Moreover, | C| < | B +dist(B, K) <2|B|,
so that

B(I+B,1+C)=B—-C+O(||{B|*)

as B-0, and (21) follows from (19).
If p:=||B|*+ tx(Y)—0, then
V2 (X) =2 (2" (1 + B(X, Z)) Z'?)
<2t (I + B(X, Z))
= /2tx(I+ B+ B(Y, Z)+ O(p))
=dist(B+ B(Y, Z), K)+ O(p)
<dist(B, K)+ [|B(Y, Z)| + O(p)

=dist(B, K) + /2tx (Y )+ O(p),

where the first inequality follows from Theorem 1. |

683/52/2-6



258 LUTZ DUMBGEN

5. CONCLUDING REMARKS

The test hypothesis discussed here can be viewed as a special case of the
more general hypothesis X e 7+ K, where K is any closed, convex cone
in X. The hypothesis H#, of Kuriki [6] is of this type, where K is the cone
of nonnegative definite matrices in X. Similarly to Sections 2 and 3 of the
present paper, one could extend Kuriki's [6] tests and some of his results
to situations where (4) or only (11, 13) hold.

An interesting open question is whether the present approach of looking
for a least favorable parameter &' can be applied to other testing problems.
It is conjectured that the general hypothesis in Tyler [13, 14] or Schott
[10, 117 can be treated similarly.
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