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Abstract 

Alcohol consumption is a broadly accepted part of many cultures around the world. While for 

some people it is not a problem to control their intake and use alcohol recreationally, others 

escalate their drinking until it becomes compulsive. Through cycles of excessive drinking and 

abstinence, alcohol dependence develops. This process is accompanied and supported by 

adaptations in the brain, including neurotransmitter and hormone systems as well as ion 

channels. Many of these systems are also altered in nicotine dependence, schizophrenia and 

depression, in part explaining the high comorbidity between these disorders and alcohol 

dependence. 

For the development of new drug therapies, an endeavor necessitated by the lack of efficient 

medications, it is imperative to understand the underlying mechanisms of each of these 

disorders. One possible target are the L-type calcium channels (LTCCs), which are influenced 

by both alcohol and nicotine, and have also been implicated in the risk to develop 

schizophrenia and depression. However, the two central LTCC subtypes CaV1.2 (Cacna1c) 

and CaV1.3 (Cacna1d) may play different roles, which have not yet been defined. 

This thesis aims to identify the individual involvement of CaV1.2 and CaV1.3 in alcohol 

dependence, and determine whether similar contributions of these subtypes can be found in 

comorbid disorders.  

 

In Study I, Cacna1c mRNA levels are found to be dynamically regulated during intoxication, 

withdrawal, and protracted abstinence, with a strong increase in the amygdala and 

hippocampus after 21 days of abstinence. While Cacna1d mRNA remains unchanged at this 

time, CaV1.2 protein levels and currents are also increased. Furthermore, antagonism of 

central LTCCs prevents cue-induced reinstatement of alcohol seeking. Other genetic and 

functional models of alcohol dependence do not show a clear distinction between Cacna1c 

and Cacna1d mRNA expression (Study II). Transgenic mice with a CaV1.2 knockout (KO) in 

Ca
2+

/calmodulin-dependent protein kinase II (CaMKII)-positive neurons did not show a 

dependence-induced increase of alcohol intake, which their control littermates displayed 

clearly (Study III). Similarly to alcohol dependence, Study IV shows increased Cacna1c 

mRNA after chronic administration of nicotine and subsequent abstinence, while Cacna1d 

mRNA is increased one day after a single nicotine injection. An augmented nicotine 

sensitization after abstinence from chronic nicotine was prevented by nifedipine 

administration during abstinence. Additionally, CaV1.2 KO in CaMKII-positive neurons 

prevented nicotine self-administration behavior. Study V investigated CACNA1C and 

CACNA1D mRNA expression in postmortem samples of schizophrenia patients, alcoholics, 

and suicide completers. In schizophrenia, both subtypes were decreased in the prefrontal and 

temporal cortex. No changes caused by alcohol dependence or depression were found. 

 

In conclusion, this thesis provides evidence for a crucial role of CaV1.2 in prolonged 

abstinence from chronic alcohol and nicotine, with effects on drug seeking and craving. It 

further underlines the importance of central LTCCs in some aspects of schizophrenia. 

Altogether, it highlights CaV1.2 as promising target for the development of new therapies for 

drug dependence and comorbid mental disorders.   



Zusammenfassung 

Alkoholkonsum ist ein weltweit akzeptierter Teil vieler Kulturen. Während manche 

Menschen ihren Konsum problemlos kontrollieren können und Alkohol ausschließlich zum 

Vergnügen in ihrer Freizeit trinken, eskaliert bei anderen das Trinken bis ins Zwanghafte. 

Durch mehrere Zyklen aus Trunkenheit und Verzicht entwickelt sich eine Abhängigkeit. Dies 

wird von Veränderungen von Neurotransmittern und Hormonsystemen sowie von 

Ionenkanälen im Gehirn begleitet. Viele dieser Veränderungen treten ebenso bei 

Nikotinabhängigkeit, Schizophrenie, und Depressionen auf, welche häufig gemeinsam mit 

Alkoholabhängigkeit auftreten. 

Für die Entwicklung neuer Medikamente ist es notwendig die Mechanismen zu verstehen, die 

den Erkrankungen zugrunde liegen. Ein möglicher Angriffspunkt sind L-Typ Kalziumkanäle 

(LTCCs), die sowohl von Alkohol als auch von Nikotin beeinflusst werden, und die auch mit 

Schizophrenie oder Depressionen in Verbindung gebracht wurden. Die beiden zentralen 

LTCC Subtypen CaV1.2 (Cacna1c) und CaV1.3 (Cacna1d) spielen jedoch möglicherweise 

unterschiedliche Rollen, welche bisher nicht bestimmt wurden.  

In dieser Arbeit soll die individuelle Beteiligung von CaV1.2 und CaV1.3 an 

Alkoholabhängigkeit und psychiatrischen Begleiterkrankungen identifiziert werden. 

In Studie I wird eine dynamische Regulierung der Cacna1c mRNA-Level während 

Trunkenheit, Entzug, und langfristiger Abstinenz ermittelt, wobei die Expression nach 21 

Tagen der Abstinenz in der Amygdala und dem Hippocampus deutlich erhöht ist. Während 

Cacna1d mRNA unverändert ist, sind das CaV1.2 Protein sowie der Ionenfluss durch CaV1.2 

ebenfalls erhöht. Die Blockade von zentralen LTCCs verhindert auch den Reiz-induzierten 

Rückfall. Keine deutlichen Unterschiede zwischen Cacna1c und Cacna1d mRNA Expression 

konnten in anderen genetischen und funktionalen Mausmodellen für Alkoholabhängigkeit 

gefunden werden (Studie II). Transgene Mäuse mit CaV1.2 Knockout (KO) in 

Ca
2+

/calmodulin-abhängige Proteinkinase II (CaMKII)-positiven Neuronen zeigen außerdem 

keine, durch Abhängigkeit verursachte, Eskalation des Alkoholkonsums, welche in 

Kontrollmäusen deutlich zu sehen ist (Studie III). In Studie II führt chronische Verabreichung 

und anschließende Abstinenz zu vermehrter Cacna1c mRNA, während Cacna1d mRNA 

einen Tag nach einmaliger Nikotinverabreichung ansteigt. Eine stärkere Sensibilisierung 

durch Nikotin aufgrund einer längeren Abstinenzperiode wird durch Nifedipin verhindert. 

Außerdem blockiert ein CaV1.2 KO in CaMKII-positiven Neuronen die Selbstverabreichung 

von Nikotin in Mäusen. Studie V untersucht die CACNA1C und CACNA1D mRNA 

Expression in postmortem Gewebe von Schizophrenie- und Alkohol-Patienten, sowie 

Suizidopfern. In Schizophrenie-Patienten sind beide Subtpyen im präfrontalen und 

temporalen Kortex verringert. Keine Veränderungen wurden bei Alkoholabhängigkeit und 

Depressionen festgestellt. 

Diese Arbeit liefert Hinweise auf eine wichtige Rolle von CaV1.2 bei langfristiger Abstinenz 

von Alkohol und Nikotin, mit Einfluss auf das Drogen-Suchverhalten und -Verlangen. Die 

Wichtigkeit der zentralen LTCCs in einigen Aspekten der Schizophrenie wird außerdem 

unterstützt. Im Ganzen wird CaV1.2 als vielversprechender Angriffspunkt für die Entwicklung 

neuer Therapien für Drogenabhängigkeit und begleitende psychische Erkrankungen 

hervorgehoben.  
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I. Introduction 

1. Alcohol dependence 

Although known as a psychoactive, dependence-inducing substance, alcohol has been and 

still is consumed in many cultures world-wide. As such, its dangers are often underestimated, 

when in fact 5.9 % of all deaths can be directly or indirectly attributed to harmful use of 

alcohol (World Health Organization, 2014).  Over 200 diseases, such as mental and 

behavioral disorders, and injury conditions are caused by excessive alcohol consumption, 

adding up to 5.1 % of the global burden of disease and injury (World Health Organization, 

2014). These numbers are hardly surprising when considering the high number of people who 

regularly indulge in heavy drinking: worldwide, this applies to 16 % of drinkers over 15 years 

of age (World Health Organization, 2014). In 2010, individuals over 15 years consumed an 

average of 13.5 grams of pure alcohol per day, summing up to 6.2 liters of pure alcohol per 

year (World Health Organization, 2014). In the EU the amount was even higher, with 10.2 

liters of pure alcohol per person per year, which does not include unrecorded consumption of 

self-made alcoholic beverages (World Health Organization, 2013a). 

1.1. Development of the disorder 

Alcohol dependence constitutes the physical part of the disorder ‘alcoholism’, i.e. the 

appearance of withdrawal symptom when alcohol consumption is discontinued, whereas 

addiction describes the psychological and behavioral part (Le Moal and Koob, 2007).  

 

Figure 1. Development of alcohol dependence. Controlled use transits into compulsive alcohol consumption 

over time through multiple cycles of intoxication and abstinence. The motivation for alcohol consumption 

changes from pleasurable effects to the relief from a negative emotional state as neuroadaptations are taking 

place and dependence develops. Adapted from (Koob, 2009). 
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The combination of both leads to a person’s inability to control their alcohol intake, and 

repeated cycles of binge drinking, abstinence, craving and relapse, or as Koob (Koob, 2009) 

described it, preoccupation/anticipation, binge/intoxication and withdrawal/negative affect. 

The compulsivity of alcohol intake increases and replaces the initial impulsivity with every 

repetition of the cycle (Koob, 2009), as neuroadaptations such as changes in neurotransmitter 

systems, hormones and ion channels are taking place (Spanagel, 2009; Vengeliene et al, 

2008).   

During the different stages, several neurotransmitter and hormone systems are altered. For the 

rewarding properties, or pleasurable effects, of alcohol, the mesolimbic dopamine system 

appears to play a key role (Hirth et al, 2016b; Koob and Volkow, 2010). Additionally, 

glutamatergic projections from the prefrontal cortex (PFC), hippocampus, and amygdala to 

the nucleus accubmens (Acb), and  projections of inhibitory γ-aminobutyric acid (GABA) 

neurons from the Acb to the ventral tegmental area (VTA) help to mediate reward (Russo and 

Nestler, 2013) (Figure 2). GABAergic neurons in the central amygdala (CeA) (Hyytia and 

Koob, 1995) are involved, as well, while the dorsal striatum seems to exert its influence 

during the compulsive, rather than the impulsive stage (Everitt et al, 2008). At this later point, 

alcohol consumption is motivated by relief from negative affect instead of the initial 

pleasurable effects. This negative affect, caused by the abstinence from compulsive alcohol 

consumption, is mediated largely by the amygdala and the bed nucleus of the stria terminalis 

(BNST), regions which have previously been associated with fear conditioning (LeDoux, 

2000). During the transition from impulsive to compulsive alcohol consumption, it appears 

that neurotransmitter system mediating pleasurable effects, such as dopamine, are decreased 

in function. At the same time, brain stress systems, such as the corticotropin-releasing 

hormone (CRH) system in the amygdala (Hansson et al, 2006a; Sommer et al, 2008), are 

activated. The increased anxiety-like behavior during withdrawal from alcohol is also 

mediated by the activation of the CRH system (Hansson et al, 2007; Hansson et al, 2006a; 

Sommer et al, 2008). 

Craving, whether for reward or relief from negative affect, is often associated with the relapse 

to drug taking, even though it is difficult to even take clinical measures (Tiffany et al, 2000). 

None withstanding the fact that in several studies no correlation between the reported craving 

and relapse was found, this stage is the focus of treatment development (Koob et al, 2010). 

Therefore, the mechanisms underlying the anticipation, or craving, of alcohol consumption, 

have to be investigated thoroughly. Here, too, the amygdala appears to play a major role. The 
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basolateral amygdala (BLA) was shown to mediate cue-induced reinstatement (Everitt and 

Wolf, 2002; Weiss et al, 2001), and is also involved in the association of previously neutral 

cues to drug withdrawal (Schulteis et al, 2000). As for the reward circuitry, glutamatergic, 

GABAergic, and dopaminergic projections are also involved in the mediation of cue-induced 

reinstatement of drug seeking (Kalivas and O'Brien, 2008). During extended abstinence, 

which often fosters relief craving, the CRH and glutamate systems in the amygdala likely 

show an increased activity (De Witte et al, 2005; Valdez et al, 2002), further underlining the 

importance of this region for the development and maintenance of drug dependence. 

Next to neurotransmitter and hormone systems, several ion channels undergo changes 

throughout the process of becoming drug dependent. L-type calcium channels (LTCCs) seem 

to be of particular interest for the effects of alcohol (Vengeliene et al, 2008; Wang et al, 

1994). They are also expressed in brain regions crucial for the mediation of reward (Figure 2). 

Although the highest expression is found in the hippocampus, LTCCs are also expressed in 

the amygdala, and to a lesser extent in the PFC, Acb and VTA (Brimblecombe et al, 2015; 

Busquet et al, 2010; Cardozo and Bean, 1995; Hell et al, 1993; Lee et al, 2012; Liebmann et 

al, 2008).  

 

Figure 2. The brain reward circuitry including important neurotransmitter systems and LTCC 

expression. LTCCs are expressed in several brain regions relevant to the mediation of reward (indicated as 

purple areas). The neurotransmitters dopamine (DA, red), glutamate (Glu, green) and γ-aminobutyric acid 

(GABA, blue) play crucial roles in the communication between these brain regions. PFC, prefrontal cortex; 

Hippo, hippocampus; Acb, nucleus accumbens; Amy, amygdala; SN, substantia nigra; VTA, ventral tegmental 

area. 
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There are still many unanswered questions about the involvement of LTCCs and the 

individual subtypes, as well as other ion channels, neurotransmitters, and hormone systems, 

during the different stages of alcohol dependence. However, even if new treatments can be 

developed using information on these molecular changes, the first step in helping addicts 

recover is to diagnose them with the disorder. 

1.2. Guidelines for diagnosis 

As with mental disorders in general, the diagnosis of alcoholism is challenging. The 

symptoms vary greatly in their nature and severity among afflicted individuals and it is often 

difficult to determine when normal drinking behavior has developed into dependence and 

addiction. The Diagnostic and Statistical Manual of Mental Disorders (DSM) has been used 

as a guide for the diagnosis of mental disorders since 1952, evolving over time to 

accommodate new scientific and medical insights (NIH Publication No. 13-7999, July 2015). 

The latest edition, DSM-5 (American Psychiatric Association, 2014), was issued in 2013, and 

differs in several key points from the previous version DSM-IV. As such, the terminology of 

the disorder has been changed: what had been defined as two distinct disorders, alcohol abuse 

and alcohol dependence, in DSM-IV, has now been integrated to describe a single disorder, 

the alcohol use disorder (AUD). The division into three sub-classifications (mild, moderate, 

and severe) nevertheless ensures a subtle categorization. 

The symptoms include 

1) Alcohol is often taken in larger amounts or over a longer period than was intended. 

2) Persistent desire or unsuccessful efforts to cut down or control alcohol use. 

3) A great deal of time is spent in activities necessary to obtain alcohol, use alcohol, or 

recover from it effects. 

4) Craving, or a strong desire or urge to use alcohol. 

5) Recurrent alcohol use resulting in a failure to fulfill major role obligations at work, 

school, or home. 

6) Continued alcohol use despite having persistent or recurrent social or interpersonal 

problems caused or exacerbated by the effects of alcohol. 

7) Important social, occupational, or recreational activities are given up or reduced 

because of alcohol use. 

8) Recurrent alcohol use in situations in which it is physically hazardous 
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9) Alcohol use is continued despite knowledge of having a persistent or recurrent 

physical or psychological problem that is likely to have been caused or exacerbated by 

alcohol. 

10) Tolerance, as defined by either of the following: 

a) A need for markedly increased amounts of alcohol to achieve intoxication or 

desired effect 

b) A markedly diminished effect with continued use of the same amount of alcohol 

11) Withdrawal, as manifested by either of the following: 

a) The characteristic withdrawal syndrome for alcohol (refer to criteria A and B of 

the criteria set for alcohol withdrawal) 

b) Alcohol (or a closely related substance, such as a benzodiazepine) is taken to 

relieve or avoid withdrawal symptoms 

The World Health Organization (WHO) also introduced another diagnostic manual called 

“International Statistical Classification of Disease and Related Health Problems” (ICD-10) in 

1992, which defines six criteria for drug dependence (World Health Organization, 1992). 

Although some differences exist between DSM-5 and ICD-10, both manuals are comparable 

and widely used. Following the positive diagnosis, efforts can be made to treat the disorder 

and prevent relapse. 

1.3. Available pharmacological treatments 

To date, four pharmacological treatments are available for the use in alcohol dependence. 

However, the efficacy of each treatment is somewhat limited, and improvements would be 

highly warranted.  

The most widely used anti-relapse drug in the USA is acamprosate (Campral®) (Mark et al, 

2009), which does not show an effect on craving (Umhau et al, 2011). Interestingly, 

acamprosate has been shown to act via calcium (Spanagel et al, 2014b).  

Disulfiram (Antabus®) works through a completely different mechanism. It inhibits alcohol 

dehydrogenase, thereby eliciting very unpleasant effects of accumulated acetaldehyde in the 

body (Crowley, 2015). Unfortunately, it has shown little effect when it had to be taken 

without supervision, a scenario more closely related to reality than supervised administration, 

which has often been used in previous studies (Fuller and Gordis, 2004; Johnson, 2008). 

A third treatment option is naltrexone (ReVia®, Vivitrol®), a mu opioid receptor antagonist. 

Although it has been shown to decrease relapse and to reduce heavy drinking in alcoholic 



20 
 

patients (Pettinati et al, 2006; Srisurapanont and Jarusuraisin, 2005), a meta-analysis found it 

only moderately effective on a subset of patients (Bouza et al, 2004; Heilig et al, 2010). 

In 2013, nalmefene (Selincro®) was approved as medication for the reduction of alcohol 

consumption. Unlike naltrexone, it displays partial agonistic effects on one opioid receptor, 

next to its antagonistic activities on other opioid receptors (Bart et al, 2005). Animal studies 

suggest that nalmefene might help to decrease alcohol consumption more effectively in 

alcohol dependent than in non-dependent rats (Nealey et al, 2011; Walker and Koob, 2008), 

but human trials have yet to prove its efficacy (Stafford, 2014). 

Given the insufficient efficacy of the available treatments, it is of great importance to 

investigate other possible intervention targets, such as the LTCCs, concerning their 

involvement in the development of alcohol dependence. A method of choice for preclinical 

analysis is the use of animal models for alcohol dependence. 

1.4. Animal models for alcohol dependence 

Modeling mental disorders in general using laboratory animals such as rats and mice is a 

necessary yet challenging task.  

The eligibility of each model for the scientific investigation of a mental disorder is measured 

using three criteria, the face validity, predictive validity, and construct validity (Belzung and 

Lemoine, 2011; Willner, 1984). Several authors have given definitions of each validity 

criterion since the 1960’s (Geyer and Markou, 1995; Koob et al, 1998; McKinney and 

Bunney, 1969; Willner, 1984), each emphasizing slightly different aspects. However, 

ultimately face validity can be seen as the similarity between the symptoms of the animal 

model and those of the human disorder. Predictive validity concerns the question whether 

human patients and animal models will react similarly to a treatment approach, 

pharmacological or otherwise. Construct validity may be the criterion with the most diverse 

and vague definitions. It describes the theoretical accuracy of the model concerning the 

underlying mechanisms.  

Considering that psychological disorders manifest with multiple versatile symptoms, an 

animal model can always represent only certain aspects of the disorder. Accordingly, the 

model has to be carefully considered for each scientific question. 

In alcoholism, two types of patients have been defined. In type I alcoholics, the onset of 

dependence happens during adulthood after prolonged excessive drinking. Here, genetic and 

environmental factors are involved, and the patients demonstrate anxious personality traits. 
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Loss of control and development of dependence are caused by the initial anxiety-relieving 

effects of alcohol. The severity and symptomology can also vary strongly. In contrast, type 2 

alcoholism is almost exclusively determined by genetic factors, and sets in already during 

adolescence or early adulthood, with patients displaying antisocial personality traits 

(Cloninger et al, 1988). Here, we focus on type I alcoholics, as the animal models discussed 

and analyzed in this thesis display an increased sensitivity to stress, and in functional models 

alcohol exposure takes place during adulthood (Bjork et al, 2010; Ciccocioppo et al, 2006; 

Meinhardt and Sommer, 2015). 

There are several animal models for the investigation of specific aspects of alcohol 

dependence. A genetic predisposition to increased alcohol consumption, for example, can be 

examined using selectively bred rat lines such as the marchegian Sardinian Preferring (msP), 

which show an intrinsic high alcohol consumption and preference, as well as increased innate 

anxiety and depressive-like behavior (Ciccocioppo et al, 2006). A similar approach, although 

with differences in the selection criteria, has been used as early as the 1960s to breed the AA 

(alko, alcohol) and ANA (alko, non-alcohol) rat lines (Eriksson, 1981; Sommer et al, 2006), 

and not long after that the P (preferring) and NP (non-preferring) rats (Lumeng et al, 1977; 

Murphy et al, 2002), amongst others. In humans, AUD is defined by environmental factors, 

but also by a genetic predisposition. This is reflected by the existence of single nucleotide 

polymorphisms (SNPs) known to indicate an increased risk of becoming alcohol dependent 

(Bach et al, 2015; Spanagel et al, 2010; Spanagel et al, 2013). 

A different kind of animal model relies on the exposure to alcohol, with a broad variety of 

exposure time, means of exposure and environmental conditions. Depending on these factors, 

different aspects can be investigated (Spanagel, 2003). For example, relapse to drug-seeking 

after a period of abstinence can be examined using the reinstatement model, while the alcohol 

deprivation effect (ADE) model takes a look at compulsive alcohol intake (“binge drinking”) 

and loss of control, as well as relapse behavior (Sinclair and Senter, 1967; Vengeliene et al, 

2014; Vengeliene et al, 2009).  

The model of choice for the study of dependence-induced neuroadaptations and medication 

development, however, is the postdependent state model (Meinhardt et al, 2015; Rimondini et 

al, 2002). Here, rodents are subjected to chronic intermittent cycles of alcohol exposure via 

inhalation of alcohol vapor, followed by a period of abstinence. After alcohol vapor exposure 

is discontinued, withdrawal symptoms comparable to the human condition can be observed. 

Furthermore, the postdependent animals show an increase in voluntary alcohol consumption 
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as well as heightened anxiety. Long-lasting neuroadaptations have been found after a three-

week abstinence period, such as an increase in CRH receptor 1 (Crhr1) mRNA in the 

amygdala (Sommer et al, 2008). 

 

 

Figure 3. Animal models are used to investigate different aspects at different levels, from casual use to 

addiction. Initially, the pleasurable effects (positive reinforcement) of alcohol motivate consumption, but as 

alcohol intake becomes persistent and chronic, the focus shifts toward the amelioration of a negative emotional 

state (negative reinforcement. Several animal models are suitable to investigate the acute effects of alcohol or 

even the changes developing through prolonged alcohol consumption. To study addiction similar to the human 

condition chronic intermittent cycles of alcohol exposure are necessary, as rodents do not voluntarily consume 

intoxicating amounts of alcohol leading to withdrawal symptoms. Adapted from (Meinhardt et al, 2015). 

Although dependence does not develop through voluntary alcohol consumption, rather than 

forced inhalation, the postdependent state model still shows face validity in terms of the 

similarities of symptoms to the human condition. Importantly, a high predictive validity can 

be attributed to the postdependent state model. One example is acamprosate, a modulator of 

the glutamatergic system which is used in human alcoholic patients to reduce the risk of 

relapse (Rosner et al, 2010). Acamprosate decreases the voluntary alcohol intake in 

postdependent rats (Rimondini et al, 2002). There also are several other pharmaceuticals 

(clinical or experimental) acting on a variety of neurotransmitter systems such as glutamate, 

GABA, dopamine and opioids, or on stress, which notably decrease alcohol intake in 

postdependent rats (for review, see (Meinhardt et al, 2015)). 

The construct validity of the postdependent animal model is also well established, for 

example in studies combining human postmortem samples of alcoholics and controls with the 
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postdependent rat model to investigate brain glutamate levels (Hermann et al, 2012) and the 

dopamine system (Hirth et al, 2016b). 

In summary, the postdependent animal model can be very effectively used to study 

neuroadaptations after chronic alcohol abuse, during the withdrawal period and abstinence, 

and has therefore been used for several studies in this thesis. 

1.5. Comorbidity with other mental disorders 

Comorbidity is the occurrence of at least one disorder or disease in addition to the primary 

disorder/disease. However, this definition is very broad and therefore unsuitable to effectively 

study and measure the phenomenon (Fortin et al, 2007). Nevertheless there are several studies 

investigating the comorbidity of mental disorders, in particular alcohol dependence, or AUD, 

with nicotine dependence, schizophrenia and depression.  

The comorbidity of AUD with other mental disorders can partly be explained by the 

pronounced genetic influence in all of these disorders. The heritability is estimated at 50% or 

more in alcohol dependence (Heath et al, 1997; Prescott and Kendler, 1999; Sullivan et al, 

2012), nicotine dependence (Li, 2006), schizophrenia (Fullard et al, 2016), and depression 

(Chaudhury et al, 2015). Genetic facts combined with environmental factors may act on the 

same neurotransmitter or hormone systems, or even the same ion channels, in drug 

dependence, schizophrenia, and depression. Through the investigation of the underlying cause 

of the disorders, the connections between them will be better understood. 

1.5.1. Nicotine dependence 

Nicotine is the main component in tobacco providing its reinforcing effects. As a legal drug, 

tobacco is consumed worldwide as part of many cultures, even though it is a well-known fact 

that it has often deadly consequences when used as intended by the manufacturer. According 

to the WHO, about six million lives are lost per year because of tobacco use. Not only would 

these often premature deaths be easily avoidable if people ceased smoking, a tenth of these 

deaths are the effects of second-hand smoke (World Health Organization, 2015).  

Decreasing these deaths due to tobacco use is not easy, especially considering that nicotine 

has highly addictive properties. Once an individual becomes nicotine dependent, a relapse 

even after long periods of abstinence is very likely. In fact, only 3-6% of people who quit 

smoking manage to stay abstinent for six to twelve months. The majority relapses within the 

first eight days (Hughes et al, 2004).  
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The DSM-5 classification of Tobacco Use Disorder (TUD) (American Psychiatric 

Association, 2014) includes three main criteria: the consumption of larger quantities than 

intended over a longer period, the development of tolerance, and the appearance of 

withdrawal symptoms. Each criterion is divided into sub-features for a more comprehensive 

classification.  

Neuroadaptations present in nicotine dependence can be studied in animal models of repeated 

nicotine exposure and are assessed according to tolerance development, sensitization, and 

withdrawal symptoms (Stolerman, 1999). In sensitization experiments, which were also 

performed in this thesis, the increase in locomotor activity as a result of repeated nicotine 

administration is measured. This effect can already be seen after few nicotine injections, 

depending on the dose, and appears shortly after the injection, lasting for over 90 min (Ksir et 

al, 1987). 

Next to place conditioning and intracranial self-stimulation, nicotine self-administration (SA) 

is the paradigm of choice to study the rewarding effects of nicotine (O'Dell and Khroyan, 

2009). Here, nicotine is used as a reinforcer of a behavioral task, most often the pressing of a 

lever. The voluntary administration of nicotine reflects a high degree of face validity. 

Furthermore, the SA model displays a strong predictive validity, as pharmacotherapies 

already in use for tobacco abuse have reportedly decreased nicotine SA in rodents (DeNoble 

and Mele, 2006; Lerman et al, 2007). There is also a strong construct validity, considering 

that smoking, just like nicotine SA, is influenced by drug-associated cues, stress, and a 

number of other factors (O'Dell et al, 2009). 

 

 

Figure 4. Alcohol and nicotine dependence show a high comorbidity. Alcohol dependence is shown in 

turquoise. 



25 
 

Studies on human subjects, rather than animal models, have shown a high comorbidity of 

nicotine dependence with alcohol dependence. In fact, alcohol dependent or abusing subjects 

are more likely to smoke than non-drinkers (Dawson, 2000). In 2004, a study showed that 

about 50% of alcohol dependent subjects were also dependent on nicotine, while almost every 

fifth smoker displayed signs of alcohol dependence (Grant et al, 2004). The severity of 

tobacco use and nicotine dependence rises in a dose-dependent manner with increasing 

alcohol consumption (Falk et al, 2006). It has been suggested that this relationship may in 

part be due to an interaction of the pharmacological effects of alcohol and nicotine, with 

cross-reinforcement and cross-tolerance as promotors of the development and maintenance of 

the use of and dependence to both substances (Oliver et al, 2013). Furthermore, brain regions 

controlling salience responses are activated by both alcohol and nicotine cues (Liu et al, 

2014a), and the nicotinic acetylcholine system is modulated by repeated alcohol consumption, 

suggesting an influence of alcohol on nicotine-related neuroadaptations (Hillmer et al, 2014).  

Apart from its comorbidity with and similarities to alcohol dependence, nicotine dependence 

also shows a high comorbidity with other mental disorders such as schizophrenia and 

depression (Tidey and Miller, 2015).  

1.5.2. Schizophrenia 

Schizophrenia is a chronic neuropsychiatric disorder with heterogeneous symptoms. In a 

study across ten countries, the WHO determined that about 1% of the word population are 

afflicted by schizophrenia (Jablensky et al, 1992). However, given the high diversity of 

manifestations, it is difficult to accurately estimate the incidence of schizophrenia. 

There are three categories of symptoms of schizophrenia. Positive symptoms are generally an 

addition of traits which are not displayed by a healthy person. Amongst others, they entail 

alterations of perception, such as hallucinations or delusions. Negative symptoms describe the 

decrease in normal behavioral characteristics, for example the lack of motivation or pleasure, 

often leading to social isolation (Feifel et al, 2015). The third category are cognitive deficits, 

including visual and verbal learning and memory, attention/vigilance, working memory, 

reasoning and problem solving information processing speed, and social cognition. For each 

category, different or overlapping neurotransmitter and hormone systems are involved. For 

example, positive symptoms are due partly to a dysregulation of the dopamine system, while 

monoamine oxidases play a role in the appearance of negative symptoms, and the CRH 
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system is in part responsible for cognitive dysfunctions. Other neurotransmitters and 

hormones are involved in two or three symptom categories (Rich and Caldwell, 2015).  

Although the three symptom categories are quite comprehensive, the manifestation is very 

diverse amongst schizophrenic patients. The definition of schizophrenia in the DSM-5 

(American Psychiatric Association, 2014) accounts for that by differentiating between 

essential (delusions, hallucinations, and disorganized speech) and non-essential (grossly 

disorganized or catatonic behavior, and negative symptoms, i.e. diminished emotional 

expression or avolition) symptoms. The ICD-10 (World Health Organization, 1992) even 

distinguishes between different types of schizophrenia, such as paranoid, hebephrenic, or 

catatonic schizophrenia. 

There are several antipsychotic drugs which can be used to treat the symptoms of 

schizophrenia, and new drugs are approved by the U. S. Food and Drug Administration 

(FDA) every year. At least 10 different drugs have been approved since the year 2000. 

However, existing antipsychotic drugs are mainly focused on reducing positive symptoms, 

whereas the treatment of the equally disabling negative symptoms and cognitive deficits is 

much less effective (Carpenter and Koenig, 2008; Feifel et al, 2015; Kirkpatrick et al, 2006). 

 

Figure 5. Accounts of schizophrenia patients with comorbid alcohol dependence varies across studies. 

Alcohol dependence in schizophrenia patients is shown in turquoise. 

A problem in the treatment of schizophrenia is its high comorbidity with AUD. Adverse 

effects on adherence to the treatment, as well as an increase in negative disease outcomes 

have been attributed to the co-occurrence of schizophrenia and AUD (McLean et al, 2012; 

Murthy and Chand, 2012). In addition, comorbidity between AUD and schizophrenia has 

been linked to a significantly higher mortality (Hjorthoj et al, 2015). The exact percentage of 
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schizophrenia patients with AUD varies strongly throughout systematic reviews, ranging from 

5% to 55% (Cantor-Graae et al, 2001; Koskinen et al, 2009; Mueser et al, 1990; Nesvag et al, 

2015) due to the diversity of symptoms and differences in definitions. Regardless of these 

statistical values, the treatment of schizophrenia patients with comorbid AUD has to consider 

the impact of alcohol dependence on the treatment for schizophrenia itself. Fortunately, the 

administration of naltrexone and disulfiram in addition to antipsychotic medication has 

proven safe (Azorin et al, 2016).   

1.5.3. Depression    

Major depressive disorder (MDD) is a mood disorder with complex underlying causes and a 

~40 % heritability (Kendler et al, 2006). With a lifetime prevalence of about 16.2% (Kessler 

et al, 2005) and a high suicide rate amongst affected subjects (Fairweather-Schmidt et al, 

2009), MDD has devastating consequences on the life of patients and their families. 

Although “depression” is a widely used term and easily self-diagnosed, there are actually very 

specific criteria laid out by the DSM-5 (American Psychiatric Association, 2014). Symptoms 

of MDD include a depressed mood for most of the day, diminished interest or pleasure, 

weight loss, fatigue or loss of energy, suicidal thoughts, and others. To classify for an MDD 

diagnosis, the symptoms have to be persistent for at least two weeks.  

There are a variety of possible underlying causes of MDD. Next to a decrease in neurogenesis 

evidenced by reduced levels of the brain-derived neurotrophic factor (BDNF) (Brunoni et al, 

2008), MDD patients often show signs of oxidative stress (Lopresti et al, 2014) and 

inflammation (Valkanova et al, 2013). In addition, there are anatomical and functional 

changes of the brain, such as a reduction in cerebellar volume (Soares and Mann, 1997) and 

decreased dorsolateral prefrontal cortex activation during tasks of emotional control 

(Hamilton et al, 2012). 

Stress during early life or adulthood is often the cause of MDD (Darcet et al, 2016). Animal 

models of depression are therefore often anxiety or stress models, with stress occurring at 

various times and length (Blanchard et al, 2001; Chourbaji et al, 2005; David et al, 2009; 

Nishi et al, 2014). These studies have found severe cognitive impairments in stressed rodents, 

with a decrease in attention and executive function, as well as different types of memory 

dysfunctions (Darcet et al, 2016).  
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As with schizophrenia, there is a high comorbidity between AUD and MDD. About 27% of 

alcohol dependent patients are also affected by depression, while about 16% of MDD patients 

are affected by AUD (Regier et al, 1990). MDD also has an influence on the success of 

staying abstinent to alcohol: it was shown that male, severely depressed patients have a 20% 

higher likelihood of relapse (Beck et al, 1961). 

 

Figure 6. About 16% of depressive patients are also dependent on alcohol. Alcohol dependence is shown in 

turquoise. 

There are several neurotransmitter and hormone systems which are dysregulated in both 

alcohol dependence and MDD. Considering the role of stress in the development of 

depression, alterations in the CRH system might at least in part explain the high comorbidity 

rates. In addition, LTCCs, which are both affected by alcohol and involved in the mediation 

of its effects, are regulated by the CRH system, which is to say by stress (Joels and Karst, 

2012). They might therefore be a promising target for the development of a treatment 

targeting both comorbid disorders. 
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2. L-type calcium channels  

The balance of intra- and extracellular calcium concentrations is crucial for many functions 

within and the survival of a cell, with intracellular calcium ranging between 10
-7

 to 10
-5

 M, 

and a higher extracellular concentration of 2 mM. Among a multitude of calcium channels 

regulating calcium concentrations and modulating cell functions through calcium signaling 

are high-voltage activated L-type calcium channels (LTCCs). Other types, namely N-, P-/Q-, 

and R-type, are also classified as high-voltage activated, while T-type calcium channels are 

considered to be low-voltage activated (Catterall et al, 2005; Moosmang et al, 2005b). 

2.1. L-type calcium channels 

Within the LTCC family, also named CaV1, four subtypes (CaV1.1 – CaV1.4) have been 

identified by their sensitivity to dihydropyridines (DHPs) (Moosmang et al, 2005b). In 

addition, they all show relatively slow activation kinetics, a large single-channel conductance 

and a long-lasting calcium-dependent inactivation (Lipscombe et al, 2004). The subtypes 

differ in their α1 subunit (α1S, α1C, α1D, and α1F), a 2000 amino acid protein consisting of 

four repeated domains with six transmembrane segments (Catterall, 2000; Ertel et al, 2000; 

Tanabe et al, 1987).  

Next to this pore-forming subunit (Catterall, 2000; Tanabe et al, 1987), LTCCs consist of α2δ 

and β subunits (Catterall, 2000; Curtis and Catterall, 1984; Striessnig et al, 1987) which 

enhance expression level of the LTCCs and regulate gating properties (Lacerda et al, 1991; 

Singer et al, 1991), and, depending on their location, γ subunits (Ahlijanian et al, 1990; 

Chang and Hosey, 1988; Curtis et al, 1984; Kuniyasu et al, 1992; Schneider and Hofmann, 

1988) which seem especially involved in voltage-dependent inactivation (Singer et al, 1991). 

LTCCs are widely expressed throughout the body. CaV1.1 is found in skeletal muscle cells 

(Burge and Hanna, 2012; Jorquera et al, 2013; Moosmang et al, 2005b; Striessnig et al, 

2010), and CaV1.4 in the retina (Baumann et al, 2004; Doering et al, 2007; Moosmang et al, 

2005b; Striessnig et al, 2010). CaV1.2 and CaV1.3 show a much more extensive expression 

pattern and are often expressed within the same tissues, such as ventricular cardiac muscle, 

smooth muscle, pancreatic cells and neurons (Bohn et al, 2000; Lipscombe et al, 2004; 

Moosmang et al, 2005b; Moosmang et al, 2003; Striessnig et al, 2010). On a subcellular 

level, in neurons LTCCs are localized mostly at the soma and proximal dendrites (Hell et al, 

1993; Simon et al, 2003). Although CaV1.2 and CaV1.3 are found in the same compartments 

of the neurons, they still show a differential distribution within these general areas (Hell et al, 
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1993; Westenbroek et al, 1998), with CaV1.2 being organized in clusters and CaV1.3 showing 

an even distribution with decreasing density toward more distal parts of the dendrites (Hell et 

al, 1993).  

 

  

Figure 7. Structure of LTCC subunits found in all subtypes. The pore-forming α1 subunit consists of 4 

homologous repeated motifs with 6 transmembrane segments each, containing interaction sites, voltage sensors, 

phosphorylation sites and other essential sites. The α2δ subunit is linked to the α1 domain through a 

transmembrane segment, while the β subunit interacts with the α1 subunit via a cytoplasmic linker. Adapted 

from (Bodi et al, 2005). 

 

2.2. Subtypes CaV1.2 and CaV1.3 in neurons 

As the only two LTCC subtypes expressed in neurons, CaV1.2 and CaV1.3 play important 

roles in processes such as gene expression (Bading et al, 1993; Deisseroth et al, 1998; 

Dolmetsch et al, 2001; Finkbeiner and Greenberg, 1998) and mRNA stability (Schorge et al, 

1999), the release of neurotransmitters (Bean, 1989), synaptic efficacy (Christie et al, 1997) 

and the regulation of other ion channels (De Koninck and Cooper, 1995; Marrion and Tavalin, 

1998). The signaling from LTCCs to the nucleus is mediated via different routes.  
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Figure 8. LTCC signaling pathways act alone or together in phosphorylating the transcription factor 

CREB. ERK is translocated to the nucleus, while the MAPK pathway and CaMKK both activate CaMKII, 

which then propagates the signal into the nucleus to change transcription of various genes. 

The Ras/mitogen-activated protein kinase (MAPK) pathway and the extracellular signal-

related protein kinase (ERK) pathway are activated through Ras and Raf (Ebert and 

Greenberg, 2013; West et al, 2002). Binding of Ca
2+

-calmodulin (CaM) to the LTCCs is 

crucial for this signaling cascade (Dolmetsch et al, 2001). In the MAPK pathway, activation 

of CaM Kinase II (CaMKII) propagates the signal towards the nucleus (Jenkins et al, 2010; 

Lee et al, 2009; Wheeler et al, 2008), where phosphorylation of the cAMP response element-

binding protein (CREB) regulates the transcription of various genes (Wheeler et al, 2008; 

Zhang et al, 2006). ERK is translocated to the nucleus with the help of the protein kinase A 

(PKA) and activates CREB (Impey et al, 1998). The PKA itself is activated by a calcium-

dependent adenylate cyclase (AC) (Ebert et al, 2013). Another route is the activation of the 

CAMK kinase (CAMKK) by calcium influx through LTCCs. CaMKK in turn activates 
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CaMKII (Ebert et al, 2013). Transcription of many genes is influenced by a combination of 

these LTCC pathways, in addition to a multitude of other neurotransmitter and ion channel 

pathways. One example for transcription activation via CREB is the immediate early gene c-

fos (Rubil et al, 2016). 

Transcription of LTCCs themselves, in particular CaV1.2, is auto-regulated by a C-terminal 

cleavage product, which is formed at post-translational processing of the channel (Gao et al, 

2001; Schroder et al, 2009). Additionally, CaMKII also regulates CaV1.2 expression 

(Ronkainen et al, 2011), and CaV1.2 activity is increased by the protein kinase A (PKA) 

(Fuller et al, 2014). The regulation of CaV1.3 has not been investigated in detail, although 

functional regulation of both LTCC subtypes is achieved through alternative splicing (Huang 

et al, 2013; Tang et al, 2004). 

The individual contributions of CaV1.2 and CaV1.3 to their different functions are not well 

defined, which is mostly due to the fact that the differentiation between the subtypes is a 

challenging task. Although the two subtypes are not equally well inhibited by DHP 

antagonists (Koschak et al, 2001; Lipscombe et al, 2004; Xu and Lipscombe, 2001), there are 

no agonists or antagonists available which act only on one of the subtypes but not the other. 

Furthermore, the use of DHPs in vivo is complicated by the fact that cardiac and smooth 

muscle LTCCs are also affected in case of i.p. injection (Moosmang et al, 2005b).  For an 

exclusive insight into the function of central LTCCs, i.c.v. injections are therefore necessary. 

There are some differences between CaV1.2 and CaV1.3, however, which allow the distinction 

between these subtypes in certain experimental approaches. On a transcriptional level, in situ 

hybridization using subtype-specific probes can be used to map the mRNA expression of 

either CaV1.2 or CaV1.3 (Liebmann et al, 2008). Considering electrophysiological properties, 

although all LTCCs have been classified as high-voltage activated channels, CaV1.3 appears 

to differ from the other LTCC subtypes. 

While CaV1.2 opens at a membrane potential of about -30 mV (Lipscombe et al, 2004), the 

CaV1.3 subtype starts to activate at a much lower voltage of -55 mV (Koschak et al, 2001; 

Lipscombe et al, 2004; Xu et al, 2001), thereby resembling rather the low-voltage activated 

T-type channels in this respect.  

Especially in recent years, these properties and approaches have been used to identify specific 

roles of each subtype under normal conditions and in several disorders, mental or otherwise.  
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Figure 9. Activation of LTCC subtypes CaV1.2 and CaV1.3. Normalized peak current-voltage relationships 

differ between the subtypes, with an activation midpoint (V1/2) of -5 mV for CaV1.2 and a much lower V1/2 of -30 

mV for CaV1.3. Adapted from (Lipscombe, 2002). 

 

2.3. Pharmacology of LTCCs 

LTCCs can be modulated by DHPs (nifedipine, amlodipine, isradipine, and others), 

phenylalkylamines, such as verapamil, or benzothiazepines, such as diltiazem (Moosmang et 

al, 2005b; Zamponi et al, 2015). The binding sites for all three classes are close to the pore-

forming segments of the α1 subunit and overlap each other on many amino acid residues 

(Dilmac et al, 2003; Hockerman et al, 1997; Schuster et al, 1996). However, the mechanism 

by which they inhibit or activate the LTCC differs. DHPs can function as either activators or 

inhibitors (de Beun et al, 1996b) which leads to the conclusion that they do not block the pore 

but shift the channel toward the open or closed state (Moosmang et al, 2005b). 

Phenylalkylamines on the other hand occlude the pore from the cytoplasmic side (Triggle, 

1991a, b), while benzothiazepines bind to the extracellular part of the pore (Hering et al, 

1993; Seydl et al, 1993). 

In our studies, we used the LTCC antagonists verapamil and nifedipine. 

Verapamil 

Verapamil is a phenylalkylamine which has been approved as an antiarrhythmic by the U. S. 

FDA in March 1982. In the WHO Model List of Essential Medicines from 2013, it is listed as 

antianginal and antiarrhythmic medicine (World Health Organization, 2013b). It has also been 

suggested as a treatment for cluster headaches (Leone et al, 2000). 
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Figure 10. Chemical structure of verapamil. 

Verapamil has been used in scientific studies as an LTCC antagonist (Nayler and Poole-

Wilson, 1981), to investigate the role of LTCCs under healthy conditions and in mental 

disorders, e.g (Abe et al, 2009; Budzynska et al, 2012; Seoane et al, 2009). In many studies 

verapamil has been administered i.p., however this LTCC antagonist displays a low 

permeability for the blood-brain barrier (Bhat et al, 2012). For the investigation of central 

LTCCs, verapamil should therefore be administered either locally within specific brain 

regions, or i.c.v. for a more general brain-wide approach. 

Nifedipine 

The usage of nifedipine, a DHP, as antihypertensive medication has been approved by the U. 

S. FDA in December 1999. It is also listed in the WHO Model List of Essential Medicines 

from 2013, however here its use is described as antioxytocic (World Health Organization, 

2013b). 

 

Figure 11. Chemical structure of nifedipine. 

In scientific research, nifedipine has been used as a calcium channel antagonist as early as the 

1980s (Nowicki et al, 1982) and is still used widely used today, e.g. (Bernardi et al, 2014; 

Daschil and Humpel, 2014; Daschil et al, 2015; Kouvaros et al, 2015). In addition, it is 

discussed as possible treatment for other disorders such as Parkinson’s Disease and 

neuropsychiatric disorders (Striessnig et al, 2015). However, these hypotheses have not yet 

surpassed the stage of preclinical investigations.  
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2.4. Animal models to investigate CaV1.2 and CaV1.3  

Unlike pharmacological manipulation the use of animal models allows for the explicit 

differentiation between CaV1.2 and CaV1.3. While conventional knockouts (KO) of CaV1.2 

are not viable (Seisenberger et al, 2000), conventional KO of CaV1.3 experience deafness and 

sinoatrial node dysfunction (Platzer et al, 2000), both of which prohibit the useful 

interpretation of behavioral experiments. However, there are animal models which can be 

used to shed light on the different functions of both LTCC subtypes. 

One such model is the CaV1.2DHP-/- mice, in which CaV1.2 has been rendered insensitive to 

the modulation by DHPs (Sinnegger-Brauns et al, 2004). Agonism or antagonism by DHPs 

therefore only affects CaV1.3, while CaV1.2 function remains intact. However, this requires 

the administration of a DHP agonist or antagonist, which adds more factors (for example dose 

and time of administration) to be considered. 

Another way is to create conditional KOs. Here, the KO of either CaV1.2 or CaV1.3 can be 

switched on in a time- and cell type-specific manner. The Cre/loxP system is often used for 

the creation of conditional KOs. In this system, loxP (“locus of C-over of P1”)-sites, 34-bp 

sequences, are introduced into a rodent so that they flank the gene of interest, or a functionally 

crucial part of the gene. When this rodent is mated with an animal expressing the Cre 

recombinase, the offspring will possess both the enzyme and the loxP sites. The Cre 

recombinase recognizes the loxP sites and excises the sequence in between, thus creating a 

functional KO (Jaisser, 2000).  

The time- and cell type-specific manner of the KO depends on the expression and localization 

of the Cre recombinase. One system to achieve a time-specific KO is the Cre
ERT2

 system, 

based on tamoxifen-dependent cre recombinases (Branda and Dymecki, 2004). In this system, 

the Cre recombinase is coupled to the estrogen receptor, which is retained in the cytosol by 

the heat shock protein 90 (Hsp90). When tamoxifen, a specific antagonist of the estrogen 

receptor, is introduced, it displaces Hsp90 and thereby exposes a nuclear localization 

sequence on the estrogen receptor. The receptor, together with the Cre recombinase, is 

translocated to the nucleus, where the recombinase is free to excise the fragment flanked by 

loxP sites (Garcia and Mills, 2002). 
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Figure 12. The CreERT2/loxP system enables a time- and cell type-specific conditional KO. Heat shock 

protein 90, Hsp90; nuclear localization sequence, NLS; tamoxifen, Tam. 

For the cell type-specific KO, it is imperative to carefully choose the promotor under which 

the Cre recombinase is expressed. Two existing mouse lines are CaMKII-Cre
ERT2

 and Nestin-

Cre mice. Both lines have been used for conditional KO of CaV1.2 and CaV1.3 in our lab. 

However, as nestin is expressed in neural progenitor cells and neural stem cells (Liang et al, 

2012), the KO of the respective LTCC subtype early during development has led to motor 

impairment (Dr. Dusan Bartsch, personal communication). The CaMKII-Cre
ERT2

 line, on the 

other hand, allows for activation of the KO during adulthood, through the systemic injection 

of tamoxifen. Additionally, it is highly expressed throughout the brain, making up as much as 

1% of total protein in the forebrain, and even 2% in the hippocampus (Erondu and Kennedy, 

1985). Until recently, CaMKII was regarded as a marker for excitatory transmission (Benson 

et al, 1992; Jones et al, 1994). However, it has recently been shown that CaMKII may also be 

involved in inhibitory transmission of GABAergic interneurons to the basolateral amygdala 

(BLA) (Huang et al, 2014). Given its high expression and wide distribution within different 
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neurons, a conditional KO based on CaMKII expression is a promising tool for the analysis of 

individual CaV1.2 and CaV1.3 functions. 

2.5. Single nucleotide polymorphisms as risk variants 

SNPs, alterations of a single nucleotide, are found throughout the entire genome, often 

without any consequence. There are, however, SNPs which have been associated with the risk 

of developing diseases or disorders. One such SNP within the CACNA1C gene is rs1006737, 

located in the intron region 3 (Fiorentino et al, 2014), where a guanosine (G) has been 

replaced by adenosine (A). The ancestral homozygous GG does not confer any risk, while AA 

and AG carriers are at a higher risk to develop mental disorders (Nieratschker et al, 2015). 

The mechanism behind the SNP function is unknown, but an increase of CACNA1C 

expression has been found in the amygdala and hippocampus of risk allele carriers (Bigos et 

al, 2010). 

2.6. LTCCs in mental disorders: state of knowledge 

LTCCs have been implicated in several mental disorders, amongst them drug dependence, 

schizophrenia, depression (Backes et al, 2014), bipolar disorder (Uemura et al, 2015) and 

autism (Lu et al, 2012). 

2.6.1. Alcohol dependence 

The inhibitory effect of alcohol on central calcium channels has been discovered as early as 

1980 (Harris and Hood, 1980). Three years later, voltage-gated calcium channels were 

proposed as one of the principal mediators of the effects of alcohol (Lynch and Littleton, 

1983). Of the different types of voltage-gated calcium channels, only the expression of 

LTCCs is changed in alcohol dependent rodents (Dolin et al, 1987; Katsura et al, 2006; 

Katsura et al, 2005b) However, in these studies the rats and mice were only exposed to 

alcohol vapor for 7 and 8 days, respectively, and were intoxicated at the time of sacrifice. The 

increase of LTCC expression therefore is most likely due to the acute influences of alcohol, 

not dependence, which only sets in after several cycles of alcohol vapor intoxication and 

abstinence.  

LTCCs also play an important part in the consumption of alcohol. It has been shown that 

systemic antagonism of LTCCs decreases the preference for alcohol in a free-choice paradigm 

(Engel et al, 1988). Interestingly, the preference and the consumption of alcohol is reduced in 

rats with a genetic disposition to alcohol drinking (AA rats, see 1.4) by systemic 

administration of the LTCC agonist BayK8644 (de Beun et al, 1996b) as well as several 
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LTCC antagonists, including verapamil and nifedipine (De Beun et al, 1996a). In alcohol-

preferring (P) and “Sardinian ethanol-preferring” (sP) rats, alcohol consumption was 

decreased by verapamil and other LTCC antagonists (Fadda et al, 1992; Rezvani and 

Janowsky, 1990), with no effect on the non-preferring (NP) line (Rezvani et al, 1990). 

Furthermore, alcohol withdrawal symptoms can be decreased in alcohol dependent rodents 

through the antagonism of LTCCs (Bone et al, 1989; Colombo et al, 1995; Little et al, 1986). 

So far, investigations of alcohol consumption and preference have been conducted mostly 

using free-choice paradigms, either in wild-type rodents or in rats with a genetic 

predisposition to increased alcohol intake. There is, however, a lack of studies on the impact 

of LTCCs in alcohol dependent rats, especially considering the increased LTCC expression in 

alcohol dependent rodents. In our own lab, expression data from Affymetrix GeneChip arrays 

from the medial prefrontal cortex of 3 weeks abstinent alcohol dependent and non-dependent 

rats (Meinhardt et al, 2013) showed a gradual decrease of Cacna1d gene expression during 

the development of alcohol dependence (unpublished data), suggesting the LTCC subtypes as 

an interesting target for further research. 

 

Figure 13. Transcriptome analysis from the medial prefrontal cortex of alcohol dependent and non-

dependent rats suggests Cacna1d mRNA decrease over the course of dependence development. Rats were 

exposed to intermittent cycles of alcohol vapor for 4 weeks or 7 weeks and sacrificed 3 weeks after last vapor 

cycle. 

Furthermore, attributable to the lack of subtype-specific LTCC modulators, little is known 

about the individual roles of CaV1.2 and CaV1.3 in alcohol dependence.  

2.6.2. Nicotine-related behavior 

Similar to alcohol dependence, LTCC expression is increased after chronic nicotine treatment 

(Hayashida et al, 2005; Katsura and Ohkuma, 2005a). Furthermore, nicotine-induced 

hyperlocomotion may be mediated by LTCCs, as it could be prevented by pretreatment with 

nimodipine (Hart et al, 1996). In an elevated plus maze paradigm, anxiety-related responses 

to an acute nicotine injection were decreased by LTCC antagonists (Biala and Budzynska, 
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2006). The development of tolerance after chronic nicotine administration was attenuated as 

well, with the antagonists being administered prior to every nicotine injection (Biala et al, 

2006). LTCC antagonists were able to prevent nicotine sensitization as well as place 

preference, if injected prior to nicotine administration (Biala, 2003). There is also evidence 

for the involvement of LTCCs in the reinstatement of nicotine-induced place preference 

(Biala and Budzynska, 2008), and in nicotine withdrawal (Jackson and Damaj, 2009). 

As in alcohol dependence, there is a substantial lack of studies investigating the potentially 

different functions of CaV1.2 and CaV1.3. 

2.6.3. Schizophrenia  

In schizophrenia, studies have mainly focused on CaV1.2, or rather CACNA1C, as several 

single nucleotide polymorphisms (SNPs) have been proposed as risk variants in human 

schizophrenics. There is one risk variant, rs1006737, which appears to be particularly relevant 

in schizophrenia (Jiang et al, 2015; Lancaster et al, 2015; Porcelli et al, 2015). An association 

with the improvement in the Positive and Negative Symptom Scale (PANSS), which is used 

to determine the severity of schizophrenic symptoms, has been determined for other, less 

commonly investigated SNPs (Porcelli et al, 2015).  

Although the importance of CACNA1C SNPs suggests a role for this LTCC in schizophrenia, 

the extent to which the expression of these channels may be altered, or which role they might 

play in the development or expression of schizophrenic symptoms, is yet unknown. 

2.6.4. Depression 

LTCCs have been associated with MDD in both human and animal studies. As in 

schizophrenia, SNPs in CACNA1C are known as susceptibility markers for depression (Bhat 

et al, 2012). The polymorphism rs1006737, which is particularly relevant for schizophrenia as 

well, has been implicated in changes of functional connectivity of prefrontal brain regions and 

the cerebellum (Backes et al, 2014). The importance of CaV1.2 in depression is supported by 

a study in mice, where Cacna1c haploinsufficiency decreased exploratory behavior, response 

to amphetamine and antidepressant-like behavior (Dao et al, 2010). In addition, activation or 

blockage of LTCCs by DHPs has mood-modifying consequences (Sinnegger-Brauns et al, 

2004). However, as noted earlier, MDD is a very diverse disorder with multiple underlying 

causes and a certain amount of heritability. There is much that has yet to be understood, 

including how external and internal challenges might interact with the CACNA1C 

polymorphisms, altering the risk to develop depression.  
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II. Aims of the thesis 

Knowledge about neuroadaptations underlying alcohol dependence is crucial for the 

development and improvement of treatments and therapies, for example the lasting prevention 

of relapse. Studies on the LTCCs have suggested them as promising candidates. However, 

alcohol dependence, as all mental disorders, is complex and studies can only focus on certain 

aspects of the disorder, leaving many questions yet unanswered. Therefore, further research 

with respect to the involvement of the LTCCs, especially considering the individual subtypes, 

in alcohol dependence is needed to strengthen previous findings and investigate aspects which 

have so far not been sufficiently studied. 

In addition, alcohol dependence shows high comorbidity with other mental disorders such as 

nicotine dependence, schizophrenia, and major depression, and LTCCs have been connected 

with each of these disorders, as well. Discerning the contributions of the LTCC subtypes 

CaV1.2 and CaV1.3 to the development and/or maintenance of these disorders may help to 

better understand the involvement of LTCCs in mental disorders in general. 

 

 

The aims of this thesis are: 

1. To determine differential roles of LTCC subtypes CaV1.2 and CaV1.3 in alcoholism 

 

2. To define the involvement of CaV1.2 and CaV1.3 in nicotine-related behavior 

 

3. To investigate LTCC subtype expression in schizophrenia and depression  
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The following studies were performed to achieve these aims: 

Study I:  Differential roles for L-type calcium channel subtypes in alcohol dependence 

(Aim 1) 

Study II: Characterization of L-type calcium channel subtype expression in animal 

models of alcoholism (Aim 1) 

Study III: L-type calcium channel subtype CaV1.2 mediates dependence-induced increase  

in alcohol self-administration (Aim 1) 

Study IV:  Functions of L-type calcium channel subtypes CaV1.2 and CaV1.3 in nicotine-

related behavior (Aim 2) 

Study V: Analysis of L-type calcium channel subtype expression in human postmortem 

samples of patients with mental disorders (Aim 3) 
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III. Materials and methods 

1. Animal studies – alcohol dependence 

1.1. Experimental animals 

Wistar rats (Study I and II) 

Male Wistar rats weighing 210 – 300 g at the beginning of the experiment were provided by 

Charles River (Germany). They were housed in standard cages at four rats per cage, if not 

indicated otherwise, under a 12 h light/dark cycle (lights off at 5 am or 2 am, depending on 

the experiment) with ad libitum access to food and water. Behavioral testing was performed 

during the dark phase. All experiments were conducted in accordance with the ethical 

guidelines for the care and use of laboratory animals, and were approved by the local animal 

care committee (Regierungspraesidium Karlsruhe, Germany, Aktenzeichen 35-9185.81/G-

163/13).  

Marchigian Sardinian alcohol-preferring (msP) rats (Study II) 

msP rats were selectively bred from Wistar rats for high voluntary alcohol consumption 

(Bjork et al, 2010; Ciccocioppo et al, 2006) and brain samples were kindly provided by Dr. 

Roberto Ciccocioppo, University of Camerino, Italy.  

AA (alko, alcohol) and ANA (alko, non-alcohol) rats (Study II) 

Brain samples of AA and ANA rats were kindly provided by Dr. P. Hyytiä, University of 

Helsinki, Finland. They were selectively bred for high and low voluntary alcohol 

consumption, using Wistar rats as initial rat strain (Bjork et al, 2010; Eriksson, 1968).  

CaV1.2flox x CaMKII-Cre
ERT2

  mice (Study III and IV) 

These mice were breed at the breeding area of the Central Institute, by cross-breeding two 

lines: the CaV1.2flox (kindly provided by Prof. Dusan Bartsch, Mannheim) and the CaMKII-

Cre
ERT2

 line (kindly provided by Prof. Günther Schütz and colleagues of the DKFZ, 

Heidelberg), both with C57Bl/6N background. 

CaV1.2flox: In this mouse line, the exons 14 and 15 of the Cacna1c gene (coding for the 

transmembrane segments IIS5 and IIS6, as well as the pore loop in domain II) were flanked 

by two loxP sites. These 34 bp sequences were oriented in a way that in the presence of the 

Cre recombinase, exons 14 and 15 would be removed (Figure 28). In addition, there would be 
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a premature stop codon in exon 16, leading to a loss of function of CaV1.2 (Moosmang et al, 

2005a; Seisenberger et al, 2000).  

CaMKII-Cre
ERT2

: Here, the gene for the Cre recombinase is expressed under the promotor for 

the CaMKII, which is mainly expressed in glutamatergic forebrain neurons. Import of the Cre 

recombinase into the nucleus can be activated by  

Breeding of homozygous CaV1.2flox with heterozygous CaMKII-Cre
ERT2

 mice yielded Cre 

recombinase-expressing mutants and non-expressing controls.  

10-12 week old male mice (mutants and controls) were group-housed in a reversed dark-light 

cycle (lights on at 7 pm). Food and water were available ad libitum. All experiments were 

conducted during the dark phase and were approved by the Regierungspräsidium Karlsruhe 

(Aktenzeichen 35-9185.81/G-301/14). The knockout (KO) was induced through one week of 

tamoxifen injections. All mice were treated with tamoxifen, to avoid any interference of the 

treatment (Vogt et al, 2008). 1 mg/100 µl tamoxifen in neutral oil was i.p. injected every 12 h 

for 5 days. Animals were then allowed 6 weeks of recovery. 

1.2. Genotyping of CaV1.2flox x CaMKII-Cre
ERT2

 mice  

Knockout (KO) of CaV1.2 in CaMKII-positive neurons of mutant mice was verified by PCR 

using cDNA and genomic DNA.  

Taq DNA-Polymerase (5 U/µl, Sigma-Aldrich) was used as thermostable DNA-Polymerase, 

and 10 ng cDNA or 10-20 ng Plasmid DNA was added to each mix. The mix also included 

Primer A (10 pmol/µl), Primer B (10 pmol/µl), and 10x PCR-Buffer. Water was added for a 

reaction volume of 30 µl. After an initial denaturation at 94°C for 3 min, there were 28 cycles 

of denaturation (94°C, 30 s), primer annealing (60°C, 1 min), and polymerization (72°C, 1 

min), followed by a final extension of the elongation (72°C, 10 min). 

Two different primer pairs were used: The VL8/VL10 primer pair amplifies a sequence 

between exon 13 and 16, yielding either a larger fragment with the entire sequence, or in case 

of a deletion of exons 14 and 15 a 281 bp fragment (VL8: AGGGGTGTTCAGAGCAA; 

VL10: CCCCAGCCAATAGAATGCCAA). The primers VS11 (5′-CTG GAA TTC CTT 

GAG CAA CCT TGT-3′) and VS16 (5′-AAT TTC CAC AGA TGA AGA GG- ATG-3′) are 

located within exons 14 and 15, respectively. Genomic PCR yields a fragment of 1096 bp for 

primer pair VS11/VS16, which includes only DNA from exons 14 and 15. A complete KO 
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would not show any PCR product for these primers, while in a partial KO less PCR product 

than in WT mice is found.  

1.3. Locomotor activity in mice: Open Field 

Mice were acclimatized to the room for at least 30 min before the start of the test session. A 

50x50 cm
2
 white Open Field surrounded by dark walls was illuminated from above by 25 lux. 

Mice were placed individually into the center of the arena, and the activity was monitored for 

10 min by a Video camera (Sony CCD IRIS). The image processing system EthoVision X8 

(Noldus Information Technology, Wageninen, Netherlands) was used to analyze the total 

distance moved, velocity, and time spent in the center (10 cm distant from the walls).  

1.4. Induction of alcohol dependence 

1.4.1. Rats 

Rats were exposed to daily intermittent cycles of alcohol vapor intoxication and withdrawal, 

and established paradigm to induce alcohol dependence on a molecular and behavioral level 

(Hansson et al, 2008; Rimondini et al, 2002; Sommer et al, 2008). Rats were exposed to 

alcohol vapor or normal air using a rodent alcohol inhalation system as described previously 

(Rimondini et al, 2002). Briefly, alcohol was delivered into glass/steel chambers (1x1x1m) 

through electrically heated stainless steel coils (60°C) by high-performance liquid 

chromatography (HPLC) pumps with an air flow of 18L/min. The conditions for each 

chamber can be individually adjusted with separate pressure gauges. 

After 1 week of habituation rats were exposed to five cycles of 14hr alcohol vapor per week 

(0:00 a.m. – 2:00 p.m.), separated by 10hr periods of withdrawal and an additional 58hr 

withdrawal at the end of each weekly cycle. Blood alcohol concentrations (BACs) were 

determined twice per week by analyzing blood (~20µl) sampled from the lateral tail vein with 

an AM1 Analox system (Analox Instruments Ltd, London, UK), attaining BACs of 266.2 ± 

12.6 mg/dl. After seven weeks of alcohol exposure rats were subjected to three weeks of 

abstinence. 

1.4.2. Mice 

The alcohol vapor exposure in mice differed from the procedure in rats in several aspects. 

Mice were housed in their home cages during withdrawal periods and were transferred into 

vapor chambers for 16 h/day. Vapor chambers were divided into compartments by wire mesh 

fence, each housing 2-3 mice, to limit mutual injury while still maintaining an atmosphere of 
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group housing. Alcohol vapor delivery into the chambers was achieved by vaporization of 

alcohol. A pressure gauge supplied an air flow of ~6 l/min, leading to alcohol concentrations 

of 15-20 mg/l air within the chamber. Prior to each vapor exposure cycle, mice were injected 

with either 1 mmol/kg pyrazole (air exposed controls) or 1 mmol/kg pyrazole + 1.6 g/kg 

ethanol (alcohol vapor exposed mice). 

The animals were vapor exposed for 5 days/week, followed by an extended withdrawal of two 

days. During the first two weeks, the alcohol concentration in the chamber was gradually 

increased to achieve the appropriate BACs of 150 – 300 mg/dl. When the BACs were at the 

desired level, the mice were vapor exposed for 4 more weeks to induce dependence. After the 

last exposure, withdrawal severity was measured at different time points: immediately after 

exposure, 4 h, 8 h, and 12 h after exposure (Mutschler et al, 2010). Each mouse was 

monitored for up to 5 min to assess tremor, tail rigidity, piloerection, vocalization, wet dog 

shake, and teeth chattering. Severity of each withdrawal sign was ranked as 0 (non-existant), 

1 (mild), and 2 (severe), added up and expressed as the % of total withdrawal. 

1.5. Alcohol self-administration with repeated deprivation phases  

Wistar rats (Charles River, Germany) were allowed to habituate to the animal room for two 

weeks. They were then given ad libitum access to alcohol solutions (5%, 10%, and 20% v/v) 

and water. The position of the bottles was changed weekly to avoid location preference. After 

8 weeks of alcohol access, rats were deprived of alcohol for two weeks, during which they 

had free access to water. This was followed by four cycles of 5-week alcohol access and 2-

week deprivation. At the beginning of each cycle (access to alcohol), rats showed binge-

drinking behavior, which increased with each cycle (Alcohol Deprivation Effect, ADE) 

(Vengeliene et al, 2014). This procedure was conducted by Dr. Valentina Vengeliene. All 

experiments were approved by the Regierungspräsidium Karlsruhe (Germany, Aktenzeichen 

35-9185.81/G-209/11). 

1.6. Chronic treatment with haloperidol or clozapine 

Male Sprague Dawley rats (Taconic, Denmark), were fed haloperidol (Haloneurol®, Hexal, 

Germany; 1 mg/kg/day) or clozapine (Leponex®, Novartis, Germany; 20 mg/kg/day) from 

postnatal day 85 for 12 weeks. A control group did not receive any antipsychotic treatment. 

Animals were anaesthetized by pentobarbital (Narcoren®, Merial, Germany) on postnatal day 

169, twelve hours after food removal. Brains were removed and frozen immediately by liquid 

nitrogen-cooled 2-methylbutane. They were stored at -80°C before cryosectioning. The 
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animal experiments were approved by the local animal care committee (Landesamt für Natur-, 

Umwelt- und Verbraucherschutz Nordrhein-Westfalen, Germany AZ 9.93.2.10.34.07.227). 

1.7. In situ hybridization 

1.7.1. Preparation of brain sections 

After seven weeks of alcohol vapor exposure and varying times of abstinence (0, 1, 3, 7, 21 

days, with BACs of 273 ± 52 mg/dl on day 0), rats were decapitated, their brains removed and 

snap-frozen in -40°C isopentane. They were then stored at -80°C until 12 µm coronal 

cryosections were taken at Bregma levels (i) +3.2 mm, (ii) +1.2 mm, (iii) -0.26 mm, (iv) -1.8 

mm, (v) -2.3 mm, and (vi) -5.2 mm according to The Rat Brain in Stereotaxic Coordinates 

(Paxinos and Watson, 1998). Mouse brains were equally extracted and cryosections taken at 

Bregma level -1.34 mm according to The Mouse Brain in Stereotaxic Coordinates (Paxinos 

and Franklin, 2001). 

The sections were then mounted on SuperFrost slides and stored at -80°C. 

1.7.2. RNA probe generation 

Riboprobes (Cav1.2 (cacna1c: position 51 bp to 328 bp on rat cDNA, gene reference 

sequence: NM_012517, 90% homology to mouse cDNA sequence) and Cav1.3 (cacna1d: 

position 51 bp to 576 bp on rat cDNA, gene reference sequence: NM_017298.1, 96 % 

homology to mouse cDNA sequence)) were designed using the PubMed database 

(http://www.ncbi.nlm.nih.gov/Entrez) gene reference sequences. Riboprobes were kindly 

provided by Prof. M. Knipper. To synthesize antisense and sense probes, 200 ng DNA were 

incubated in transcription buffer (Ambion
®
 Applied Biosystems, Darmstadt, Germany), 12.5 

nmol ATP, CTP, GTP, 50pmol UTP and 125pmol [α-
35

S]UTP (1250 Ci/mmol, Perkin Elmer, 

Rodgau, Germany), 1 U RNase inhibitor and 1 U RNA polymerase (Roche Molecular 

Biochemicals, Mannheim, Germany) at 37°C for 90 min. RNase-free DNase I was used to 

subsequently digest the DNA templates via incubation for 20 min at 37°C, and the transcripts 

purified in microspin columns (illustraTM MicrospinTM S-200 HR Colums, GE Healthcare, 

Munich, Germany). As quantification, the counts per minute (cpm) were measured with a 

Liquid Scintillation Analyzer (1600 TR). 

1.7.3. Hybridization 

Brain sections were fixed in 4% formaldehyde in PBS pH 7.0 for 15 min after reaching room 

temperature (RT). They were then washed in PBS pH 7.4 for 10 min and twice in sterilized 

http://www.ncbi.nlm.nih.gov/Entrez
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water for 5 min. For deproteination, the tissue was treated with 0.1 M HCl for 10 min, and 

washed again twice in PBS pH 7.4 for 5 min. Triethanolamine pH 8.0 with 0.25% acetic 

anhydride was used to acetylate positively-charged amino groups, by incubating for 20 min, 

followed by two additional washing steps in PBS pH 7.4 for 5 min. Subsequently, the sections 

were dehydrated in graded alcohol and air dried, before pre-hybridization with pre-

hybridization buffer (50 % deionized formamide, 50 mM Tris-HCl pH7.6, 25 mM EDTA 

pH8.0, 20 mM NaCl, 0.25 mg/ml yeast tRNA, 2.5 x Denhardt’s solution (Invitrogen, 

Darmstadt, Germany)), in a humidified chamber at 37°C for 2-4 hours. The pre-hybridization 

buffer was removed and 100 µl hybridization buffer (50% deionized formamide, 20 mM Tris-

HCl pH 7.6, 10x Denhardt’s solution, 5 mg/ml yeast tRNA, 1 mg/ml polyadenylic acid, 10 

mM EDTA pH 8.0, 150 mM DTT, 330 mM NaCl, 10% dextransulphate) containing 1 x 10
6
 

cpm of either the labeled antisense RNA or sense RNA) was applied to each slide. For 

incubation at 55°C in a humidified chamber overnight, the sections were covered with 

siliconized coverslips, which were removed by washing with 1x standard saline citrate (SCC) 

at 42°C for 40 min on the following day. After two additional washing steps (1x SSC, 42°C, 

30 min), sections were incubated in 0.5x SSC/50 % formamide for 1 h at 42°C, then washed 

twice again in SSC for 30 min. Unbound RNA was removed via treatment with 1 µg/ml 

RNase A in RNase buffer (0.5 M NaCl, 10 mM Tris pH 8.0, 1 mM EDTA pH 7.5) for 1 h at 

37°C, followed again by two washing steps in SSC (55°C, 30 min) and a brief rinsing in SSC 

at RT, before dehydration in graded alcohol. The sections were then air-dried, and BAS-SR 

2025 imaging plates were exposed to the sections for 7 d and scanned by the phosphorimager 

(Fuji phosphorimager Typhoon FLA 700, GE Healthcare Life Sciences, Pittsburgh, USA). 

Densitometric analysis of the brain regions was performed with MCID Image Analysis 

Software (Imaging Research Inc., UK). Depending on the study, following regions were 

analyzed: prefrontal cortex (PFC)[cingulate cortex (Cing), prelimbic cortex (PreL), 

infralimbic region (IL), and orbitofrontal cortex (OFC)], motor cortex M1, nucleus 

accumbens [core (AcbC) and shell (AcbS)], caudate putamen (CPu), extended amygdala [bed 

nucleus of the stria terminalis (BNST), central amygdala (CeA), medial amygdala (MeA), and 

basolateral amygdala (BLA)], and the hippocampal formation [dentate gyrus (DG) and 

Cornus Ammon (CA) regions CA1, CA3, and CA4] (see Figure 14). Mean density values 

were determined as minimal detectable change (MDC) units per mm
2
, and transformed into 

nCi/g by comparison with standard curves generated with [
14

C]-Microscales.  
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1.8. Western blot analysis 

Punched samples from the CA1 region of 3-weeks abstinent alcohol dependent and non-

dependent rats were lysed in RIBA buffer containing protease inhibitors (Roche, Mannheim, 

Germany), followed by heating to 95°C for 10 min. 6% SDS-PAGE was used to separate 

protein samples, which were then transferred to 0.45 µm polyvinylidene difluoride 

membranes (Millipore, Darmstadt, Germany). A CaV1.2-specific (Moosmang et al, 2005a) 

and a heat shock cognate protein 70 (HSC70)-specific antibody (Santa Cruz, Heidelberg, 

Germany) were used for probing over night at 4°C. Blots were then washed and incubated 

with the respective secondary horseradish peroxidase-conjugated antibodies for 1 h at RT. 

Visualization of immune-reactive bands was done in a ChemiDoc station and the results 

analyzed with Image Lab (Bio-Rad, Munich, Germany). The CaV1.2 protein data was 

normalized to HSC70. 

1.9. Electrophysiology 

1.9.1. Preparation of acutely dissociated neurons 

After seven weeks of intermittent alcohol vapor/air exposure and three weeks of abstinence, 

rats were anaesthetized with halothane gas, decapitated, and the brains quickly removed. 250 

µm transverse hippocampal slices were dissected and kept in ice-cold cutting solution (2.5 

mM KCl, 1.25 mM NaH2PO4, 10 mM MgSO4, 0.5 mM CaCl2, 26 mM NaHCO3, 234 mM 

Sucrose, and 11 mM Glucose (saturated with 95% O2 and 5% CO2, pH= 7.10)). Slices were 

then transferred to oxygenated artificial Cerebro-Spinal Fluid (aCSF) (119 mM NaCl, 2.5 mM 

KCl, 1.25 mM NaH2PO4, 1.3 mM MgSO4, 2.5 mM CaCl2, 26 mM NaHCO3, and 11 mM 

Glucose) at RT, followed by aCSF solution with 0.2 mg/ml proteinase K (Sigma-Aldrich, 

Milan, Italy) at 37°C for 5 min. After wash-out of proteinase K, 1 mg/ml trypsin (Sigma-

Aldrich, Milan, Italy) was added for 30 min. Trypsin was washed out and the slices 

transferred into oxygenated aCSF solution at RT.  

Viability was given for all slices throughout the experiments. Isolation of neurons was 

achieved by mechanical dissociation with a fire-polished Pasteur pipette in a Tyrode’s 

standard solution (130 mM NaCl, 4 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 10 mM HEPES 

and 10 mM glucose; pH 7.4) with 0.5 mg/ml bovine serum albumin (BSA). 

1.9.2. Electrophysiological recordings 

Prior to electrophysiological recordings, dissociated neurons of the CA1/CA3 regions of the 

hippocampus were given time to adhere to poly-L-lysine coated petri dishes for 10 min. 
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Intracellular solution contained 20 mM Cs-MeSO3, 90 mM CsCl, 2 mM MgCl2, 5 mM 

EGTA, 4 mM ATP, 15 mM phosphocreatine, and 10 mM HEPES, pH 7,4 (with CsOH, 

Sigma-Aldrich, Milan, Italy). Extracellular solution consisted of 135 mM TEA, 2 mM CaCl, 2 

mM MgCl2, 10 mM HEPES, and 10 mM glucose, pH 7.4 (with TEA-OH; Sigma-Aldrich, 

Milan, Italy). 300 nM of tetrodotoxin (TTX) were present during calcium current 

measurements. To isolate the L-type component, saturating concentrations (3 µM) of 

nifedipine were added. Voltage-clamp recordings were performed at RT, using a multiclamp 

700-B amplifier and pClamp 10.0 software (Molecular Devices, Sunnyvale, CA, USA) 

(Marcantoni et al, 2010b; Vandael et al, 2012). Traces were sampled at 10 KHz using a 

digidata 1440 A acquisition interface (Molecular Devices, Sunnyvale, CA, USA) and filtered 

using a low-pass Bessel filter set at 1-2 KHz. Borosilicate glass pipettes (Kimble Chase life 

science, Vineland, NJ, USA) with a resistance of 5-7 MΩ were dipped in an eppendorf tube 

containing intracellular solution, before being back filled with the same solution. Experiments 

with a series resistance above 20 mΩ were excluded and Rs was compensated by 80% and 

monitored throughout the experiment. Fast capacitive transients during step-wise 

depolarisations (in voltage-clamp mode) were minimized online by the use of the patch clamp 

analogue compensation. Uncompensated capacitive currents were further reduced by 

subtracting the averaged currents in response to P/4 hyperpolarising pulses. 

1.10. Operant alcohol self-administration experiments in rats (Study I) 

1.10.1. Drugs 

Alcohol (10% v/v ethanol) was prepared using 96%-97% ethyl alcohol (Sigma-Aldrich®) and 

tap water. 

Verapamil (R&D Systems, Wiesbaden-Nordenstadt, Germany) was dissolved in aCSF for 

intracerebroventricular (i.c.v) injection (120 µg/5 µl). 

1.10.2. Training sessions 

All training and test sessions took place during the dark phase of the light cycle. 

Rats were trained to self-administer 10% (v/v) alcohol in operant chambers (MED 

Associates), placed in ventilated sound-attenuating cubicles. The chambers were equipped 

with two retractable response levers, located on opposing sides of the chamber. Upon lever 

activation of the left lever, 30 µl of fluid was delivered into a liquid receptacle next to the 

lever via a syringe pump. A light stimulus (house light) was located above the right response 

lever of the self-administration chamber and was activated at fluid delivery (3 s blink light, 
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conditioned stimulus, CS), simultaneously indicating a “time-out” period during which 

additional lever pressing did not result in fluid delivery. Activation of the right lever did not 

result in either alcohol delivery or CS. An IBM-compatible computer controlled the delivery 

of fluids, presentation of stimuli, and data recording.  

During the first 3 d of training, rats were water-deprived in their home cages for 16 h/d, after 

that food and water were available ad libitum. Each session was 30 min long, and during that 

time an orange odor (drops of orange extract on the bedding) was present as an additional 

environmental cue for the availability of alcohol. 

Rats were trained until a steady baseline was reached, at which point they were divided into 

two groups, one of which was then exposed to alcohol vapor for 7 weeks (alcohol dependent), 

while the control group breathed normal air. 

1.10.3. Stereotaxic placement of intracerebroventricular (i.c.v.) guide cannulas 

Guide cannula placement took place during the two weeks of abstinence following alcohol 

vapor exposure. The animals were anaesthetized with isoflurane and the head fixed in a Kopf 

stereotaxic instrument. The skull was carefully exposed and a unilateral guide cannula 

(Bilaney Consultants GmbH, Düsseldorf, Germany) inserted into the lateral ventricle (AP =  

-0.8; ML = +/-1.4; DV = -2.0 relative to Bregma; the ML side was chosen randomly). It was 

fixed with dental cement and the rats were single-housed to minimize injuries. Before re-

training of the operant self-administration procedure, rats were allowed a recovery time of at 

least five days. 

1.10.4. I.c.v. injections 

For i.c.v. injections, stainless-steel injectors fitting the 2.5 mm guide cannula with a 1.6 mm 

projection were attached to a 25 µl Hamilton syringe via 40 cm tubing (connector cannula, 

Bilaney Consultants GmbH, PlasticsOne®). A volume of 5 µl was administered at a flow rate 

of 2.5 µl/min using an infusion pump (PHD 2000 Infusion, Harvard Apparatus). To avoid 

backflow, the injector was left in place for 30 s after the injection. 

1.10.5. Alcohol self-administration test  

Rats were re-trained to self-administer alcohol after recover from surgery until they again 

reached a stable baseline. In the subsequent self-administration test, all conditions were 

exactly as during training sessions, with the exception that immediately before the start of the 

session they received an i.c.v. injection. Alcohol-dependent and non-dependent were each 

divided into groups: aCSF (5 µl), and Verapamil (120 µg/5 µl). 
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1.10.6. Extinction of alcohol self-administration behavior 

Following the alcohol self-administration test, there were extinction sessions. During these 

sessions, lever pressing did not result in either alcohol delivery or CS, and no orange odor was 

present. Daily extinction sessions were performed until the rats had reached the extinction 

criterion, which was an active lever response of <10% of the baseline for three consecutive 

days. 

1.10.7. Cue-induced reinstatement 

As for the alcohol self-administration test, i.c.v. injections took place immediately before the 

start of the cue reinstatement session. The orange odor was again presented and upon active 

lever pressing, the CS was activated, however no alcohol was delivered. 

1.11. Operant alcohol self-administration experiments in mice (Study II) 

Mice were trained to self-administer alcohol by lever pressing in operant chambers (TSE 

Systems). On two opposing sides of each chamber were ultrasensitive levers. The left lever 

was defined as the active lever, where pressing resulted in the delivery of 10 µl of a solution 

(saccharine, alcohol, or a combination, see below) in a receptacle next to the lever, as well as 

the activation of a house light (only in sessions where 10% alcohol was delivered). Pressing 

of the right, inactive lever did not have any programmed consequences.  

1.11.1. Saccharine fading procedure 

During the first sessions, pressing of the left lever resulted in the delivery of 0.2% saccharine. 

After 12 sessions a stable baseline was achieved. The following sessions, 5% alcohol was 

added to the saccharine, again until the lever pressing activity was stable, then followed by 

only 5% alcohol, saccharine + 8% alcohol, 8% alcohol, saccharine + 10% alcohol, and finally 

10% alcohol. As soon as the mice received exclusively 10% alcohol, the house light was 

added as a conditioned cue. 

1.11.2. Self-administration 

 After self-administration training, the mice were alcohol vapor/air exposed. Following this 

procedure, 5 self-administration sessions were conducted, during which pressing of the left 

lever resulted in the delivery of 10% alcohol and activation of the house light. For the 

evaluation of self-administration behavior, the mean of all five sessions was calculated. 
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1.12. Statistical analysis 

The Statistica software (StatSoft, Hamburg, Germany) was used for statistical evaluation. A 

region-wise one-way ANOVA (followed by Bonferroni’s correction) was applied to analyze 

in situ hybridization of 3-week abstinent rats, for time course experiment, a two-way ANOVA 

for time and treatment, followed by Fisher’s LSD post-hoc test was used. Western blot 

analysis was done by t test. For evaluation of alcohol self-administration behavior, a repeated 

measures two-way ANOVA (genotype*treatment, considering active and inactive lever) was 

used, followed by Newman Keuls post-hoc test. Cue-induced reinstatement of alcohol-

seeking was evaluated by repeated measures two-way ANOVA including extinction values, 

followed by Newman-Keuls post-hoc test. 

Statistical analysis of locomotor behavior in mice was performed using the statistic program 

SPSS 23 for Windows. One-way ANOVA was used to calculate changes in total distance 

moved (m), velocity (cm/s), and center time (%).  

2. Animal studies – nicotine dependence 

2.1. Experimental animals 

C57Bl/6N mice 

Male C57Bl/6N mice (Charles River, aged 10-12 weeks at the start of experiment) were 

single-housed at a temperature of 21°C and with a 12 h light-dark cycle (lights on at 7 am). 

The experiments were conducted during the light phase, and food and water were available ad 

libitum. All experiments were conducted in adherence with the European Communities 

Council Directive (8676097EEC) on the care and use of laboratory animals and were 

approved by the Regierungspräsidium Karlsruhe (Germany)(Aktenzeichen 35-9185.81/G-

244/12 and Aktenzeichen 35-9185.81/G-301/14). 

CaV1.2flox x CaMKII-Cre
ERT2

 mice 

The same mouse line as in “2. Animal studies – alcohol dependence” was used. The decrease 

in functional CaV1.2 was equally induced through tamoxifen injections (see Study III; Figure 

28.)  
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2.2. Drugs 

Nicotine hydrogen tartrate salt (Sigma-Aldrich) was dissolved in physiological saline (0.9% 

NaCl) and the final solution adjusted to an approximate pH 7 using NaOH. It was either i.p. 

administered at a dose of 0.175 mg/kg or infused intravenously (i.v.) at 0.01 mg/kg/35 µl. 

The non-selective L-type calcium channel antagonist Nifedipine (Sigma-Aldrich) was 

sonicated in 100% Cremophor EL (Sigma-Aldrich) at 16 mg/ml. For a final concentration of 

10 mg/kg Nifedipine, PBS was added (5% Cremophor EL/95% PBS). 

2.3. In situ hybridization 

For in situ hybridization, mice received 14 daily nicotine (0.175 mg/kg) or vehicle (0.9% 

saline) i.p. injections and were sacrificed either 24 h or 7 d after the last injection. Another 

group of mice was injected with vehicle for 13 d, followed by a single injection of nicotine on 

day 14. They were sacrificed 24 h after the nicotine injection.  

In situ hybridization was carried out as previously described (see 2.4). 

2.4. Locomotor activity measurements 

Seven TruScan activity monitors (Coulbourn Instruments) were used for the measurement of 

locomotor activity. The monitoring unit consisted of infrared photocell emitter/detector pairs 

which were evenly spread along the clear acrylic plastic cage (22x22x40 cm). Ambulatory 

beam interruptions were measured by a connected computer. 

2.4.1. Nifedipine dose response 

A dose response using vehicle (10 ml/kg) or doses of 10 or 25 mg/kg nifedipine was applied 

to determine the best dosage for the locomotor sensitization experiment. Mice were i.p. 

injected 30 min before a 60 min locomotor activity measurement. 24 h after the injection there 

was another locomotor activity session. Mice were again injected with vehicle or nifedipine 6 

d after the second test and their locomotor activity was measured 12 h after the injection. 

2.4.2. Locomotor sensitization 

After three daily habituation sessions (60 min), during which mice were injected with saline 

(10 ml/kg) and placed in the activity monitors, chronic nicotine administration was performed 

as for in situ hybridization experiments. On day 1 and 14, locomotor activity was measured. 

During the subsequent abstinence period, control and nicotine-treated mice were each divided 

into two groups, which were then injected approximately every 12 h with either vehicle (10 
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ml/kg, i.p.) or nifedipine (10 mg/kg, i.p.), resulting in four treatment groups (sal/veh, sal/nif, 

nic/veh, nic/nif). Based on the results of the dose response experiment, the final injection 12 h 

before testing on day 21 was omitted. On day 21, locomotor activity was assessed again for 

60 min after an i.p. injection of either nicotine or saline (according to their groups from 

previous nicotine injections). Distance traveled (cm) was recorded in each locomotor activity 

test session. 

2.5. Nicotine self-administration 

12 operant chambers (24.1 x 20.3 x 18.4 cm; Med Associates, USA) in light- and sound-

attenuating cubicles were used for nicotine self-administration experiments. Each chamber 

contained a left and a right lever, a food dispenser, and a drug delivery system connected via 

infusion pump (PHM-100, Med Associates, USA). Operant chambers were controlled using 

Med-OC IV (Med Associates, USA) software.  

For initial lever training, mice received 14 mg sweetened food pellets (TestDiet, USA) under 

a fixed ratio 1 (FR1) schedule as previously described (Bernardi and Spanagel, 2013). Mice 

were trained for 60 min per session. The active lever alternated between left and right daily, 

and changed after 1 cycle defined as the receipt of 10 food reinforcers. Lever training was 

considered complete when the mice achieved 2 cycles per lever on at least 2 separate days. 

After successful lever training, an indwelling intravenous catheter was implanted into the 

jugular vein. 0.15 ml heparinized saline (100 i.u./ml) containing Baytril (0.7 mg/ml) were 

administered daily throughout the experiment to maintain catheter patency. Mice were 

allowed 3 d of recovery from the surgery, followed by 8 consecutive days of nicotine self-

administration sessions, 2 h each. Pressing of the active lever resulted in the delivery of 

nicotine under an FR2 schedule (two presses results in one reinforcer). A 20 s blinking light 

stimulus was presented during each nicotine delivery as a CS, and indicated a timeout period, 

during which additional lever presses did not lead to the additional delivery of nicotine. 

Inactive lever presses were recorded but had no programmed consequences. All behavioral 

testing was performed during the light phase.  

2.6. Statistical analysis 

The Statistical software (StatSoft) was used for statistical analysis. For in situ hybridization, 

expression was evaluated by region-wise one-way ANOVA. A Bonferroni correction (p value 

multiplied by the number of analyzed brain regions) was applied. 
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Nifedipine dose-response data were evaluated by one-way ANOVA, and two-way ANOVA 

was used to assess locomotor sensitization data (day [repeated measures] x treatment [saline 

vs. nicotine or vehicle vs. nifedipine]), followed by post-hoc analysis if applicable. 

Significance was set at p < 0.05. For nicotine self-administration, a three-way ANOVA (lever 

[active vs. inactive] x day [repeated measures] x genotype) was performed, followed by post-

hoc t-test, and the number of nicotine reinforcers was evaluated by two-way ANOVA (day 

[repeated measures] x genotype). 

3. Human studies 

3.1. Postmortem tissue samples  

3.1.1. Alcoholic patients 

Human brain tissue samples were obtained from the New South Wales Tissue Resource 

Centre at the University of Sydney, Australia 

(http://sydney.edu.au/medicine/pathology/trc/index.php). Macrodissected tissue pieces of the 

nucleus caudatus (NC) and ventral striatum (VS) used for this study were obtained from 25 

male subjects of European descent consisting of 43 chronic and heavy alcoholic and 43 

control subjects (Table 1).  The Diagnostic Instrument for Brain Studies – Revised (DIBS-R), 

which is consistent with the criteria of the Diagnostic and Statistical Manual for Mental 

Disorders, 4th edition (DSM-IV) (American Psychiatric Association, 1994) was used for 

postmortem confirmation of subject affiliation to the alcoholic or control group. All 

alcoholics had consumed 50g to >80g of alcohol per day, but had no measurable BAC at the 

time of death, while the daily consumption of the control subjects had an average of <20g. 

Demographic details are listed in Suppl. Table 1. 

3.1.2. Schizophrenic patients 

Postmortem brain tissue from inpatients with DSM-IV residual schizophrenia and matched 

control subjects were provided by the Department of Neuropathology, Mental Hospital 

Wiesloch, Germany. Experienced psychiatrists at the Mental Hospital Wiesloch obtained a 

complete clinical history and diagnosis for all patients, including the medication within the 

last ten years of the patients’ lives. Information on patients and control subjects are given in 

Suppl. Table 2. Permission for autopsy was given by the donor or a family member, and all 

assessments and postmortem evaluations were approved by the Ethics Committee of the 

Faculty of Medicine, University of Heidelberg, Germany.  
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The Brodmann area 10 and 21, as well as the nucleus caudatus (NC) and the vermis of the 

cerebellum, according to a brain atlas (Nieuwenhuys et al, 2007), were used for quantitative 

real-time PCR. Demographic data is listed in Suppl. Table 2. 

3.1.3. Depressive patients  

Postmortem brain tissue of 28 suicide completers (19 males and 9 females) with established 

major depression as defined by DSM-IV criteria (American Psychiatric Association, 1994), 

and 79 controls (48 males and 31 females) with no history of mental illness were obtained 

from the Human Brain Tissue Bank, Budapest. The autopsy was performed at the Department 

of Forensic Medicine of the Semmelweis University Medical School (Budapest, Hungary). 

The procedures were approved by the ethics committee of the Semmelweis University. 

Control subjects had no history of depression, alcohol or drug abuse. The anterior cingulate 

cortex (ACC) and the Brodmann Area 9 (BA9) were dissected and used for qRT-PCR 

experiments. Details on patient history and characterization of the tissue are found in Suppl. 

Table 3. 

3.2. Genotyping for the CACNA1C single nucleotide polymorphism rs1006737 

Genomic DNA was isolated from tissue samples using the QIAam DNA micro kit (Qiagen, 

USA) and the CACNA1C SNP rs1006737 was detected by TaqMan® SNP Genotyping Assay 

(C_2584015_10; Applied Biosystems, Carlsbad, USA) on an ABI 7900 HT RT-PCR system 

with SDS 2.2.2 software (10 µl reaction volume containing 10 ng genomic DNA, 40 cycles of 

95 °C for 15 sec and 60 °C for 1 min). 

3.3. Quantitative real-time PCR (qRT-PCR) 

RNA extraction and analysis was previously described (Meinhardt et al, 2013; Sommer et al, 

2010). Briefly, total RNA was extracted using trizol reagent (Life technologies) and cleaned 

up via RNeasy (Quiagen) columns according to the manufacturer’s instructions. RNA 

integrity (RIN) values were determined for all samples, and absorption ratios (A260/280) 

were between 1.9 and 2.1 RNA analysis was done on triplicates of each sample in a total 

reaction volume of 20 µl using Power SYBR®Green PCR Master Mix (ABI) on an ABI 7900 

HT RT-PCR System (40 cycles of 95°C for 15 sec and 60°C for 1 min), with a melting profile 

being recorded after each PCR. Melting curves showed single fluorescence change peaks at 

the appropriate melting temperatures for all primers, which were designed to gain amplicons 

of 95 – 110 bp with a melting temperature >75 °C. The National Center for Biotechnology 
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Information (NCBI) reference sequence database was used to design primers toward the 3’ 

end of the coding sequence, factoring in exon-exon junctions. Primers are listed in Table 1. 

ABI’s SDS 2.2.2 software was used for analysis of SYBR Green fluorescence intensity and 

Ct-values (theoretical cycle number when a defined threshold was passed), applying GAPDH 

as an internal normalizer to calculate the ΔCT. All statistical analyses were performed on 

ΔCT values. 

Table 1. Primers for qRT-PCR on human postmortem samples. 

mRNA Accession No Forward primer Reverse primer 

CACNA1C NM_199460 5’-GCAGGAGTACAAGAACTGTGAGC-3’ 5’-CGAAGTAGGTGGAGTTGACCAC-3’ 

CACNA1D NM_000720.3 5’-CTTCGACAACGTCCTCTCTGCT-3’ 5’-GCCGATGTTCTCTCCATTCGAG-3’ 

GAPDH NM_002046.4 5’- ATGAGAAGTATGACAACAGCCT-3’ 5’- AGTCCTTCCACGATACCAAAGT-3‘ 

 

3.4. Statistical analysis  

The Statistica software (StatSoft, Hamburg, Germany) was used for evaluation of the data. 

Significance was determined by region-wise one-way ANOVA. An analysis of covariants was 

performed for alcoholic patients and suicide completers. 
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IV. Results 

1. Study I: Differential roles for L-type calcium channel subtypes in alcohol 

dependence 

LTCC-mediated currents, as well as LTCC expression, are altered by alcohol. This type of 

voltage-gated calcium channel has also been implicated in several aspects of alcohol-related 

behavior. However, there are few studies investigating the changes in LTCCs in alcohol 

dependence, and their influence on the development and maintenance of this mental disorder. 

The importance of the subtypes CaV1.2 and CaV1.3 has, so far, not been discovered either. 

In this study, the changes in subtype-specific channel expression and calcium currents in 

alcohol dependence were analyzed by in situ hybridization, Western Blot analysis and 

electrophysiological current measurements. The effects of i.c.v. verapamil administration on 

alcohol self-administration and cue-induced reinstatement were measured in operant 

chambers. 

1.1. Increased Cacna1c mRNA in the hippocampus and amygdala of alcohol 

dependent rats 

Cacna1c and Cacna1d mRNA levels were measured in several brain regions of alcohol 

dependent and control rats after 3 weeks of abstinence using subtype-specific rat riboprobes, 

to examine long-term neuroadaptations.  

There was a significant increase of Cacna1c mRNA in the hippocampus (CA1: 76% increase; 

CA3: 24% increase; CA4: 33% increase) and in the amygdala (CeA: 40% increase; BLA: 

70% increase) of alcohol dependent rats. No differences between alcohol dependent and non-

dependent rats were observed in the PFC (Cing, PreL, IL, OFC), the motor cortex M1, the 

striatum (AcbC, AcbS, CPu), the DG, BNST, MeA, or the PVN. 

No difference in Cacna1d expression was observed in any regions. Absolute values and 

statistics are summarized in Suppl. Table 4. 

.  
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Figure 14. Cacna1c mRNA is increased in the hippocampus and amygdala of 3 weeks alcohol abstinent 

rats. A. Schematic representation of measured areas and mRNA expression pattern of Cacna1c and Cacna1d at 

Bregma 2.3 mm. CeA, central amygdala; MeA, medial amygdala; BLA, basolateral amygdala; and hippocampal 

formation [dentate gyrus (DG) and Cornus Ammon (CA) regions CA1, CA3, CA4]. Scale bar: 2.5 mm B. 

Changes of Cacna1c and Cacna1d mRNA expression in alcohol dependent rats measured by in situ 

hybridization using subtype-specific riboprobes. Bar graphs show Cacna1c and Cacna1d in situ hybridization 

values relative to control rats (Control = 0% regulation) and are expressed as mean ± SEM. Statistical analysis 

was performed by region-wise one-way ANOVA followed by Bonferroni’s correction, n=6-7/group, p values: 

*p<0.05, **p<0.01, ***p<0.001. Absolute values of all measured regions are listed in Suppl. Table 4. 
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1.2. CaV1.2 protein increase in the CA1 matches observations on mRNA level 

An increase in mRNA does not necessarily translate to protein level. Therefore we performed 

a Western Blot analysis on samples from the CA1 of alcohol dependent and non-dependent 

rats. The rats were alcohol vapor exposed by myself and brain samples were sent to Dr. Nina 

Dedic and Dr. Jan Deussing, who performed the Western Blot analysis.  

 

Figure 15. CaV1.2 protein level matches increase in mRNA in the CA1 in 3 weeks alcohol abstinent rats. 

Bar graphs of western blot analysis are expressed as mean ± SEM. Statistical analysis was performed by 

student’s t test, n=8/group, p values: *p<0.05. Representative western blot is shown on the right. The data was 

produced by Dr. Nina Dedic and Dr. Jan Deussing. 

CaV1.2 protein was increased by 26% in the CA1 of alcohol dependent rats compared to non-

dependent controls (p<0.05), thereby confirming our mRNA data on the protein level.  

1.3. Cacna1c expression levels show dynamic regulation from acute intoxication to 

prolonged abstinence 

To better understand the changes in Cacna1c transcription, the mRNA was examined over a 

period of time, starting with acute intoxication, over withdrawal, to prolonged abstinence (0, 

1, 3, 7, or 21 d of abstinence). The regions with most pronounced effects in 3 week abstinent 

rats (CA1, CeA, and BLA) were chosen for this investigation. 

Two-way ANOVA revealed significant main effects of treatment (CA1: F[1,75]=49.48, 

p<0.001; CeA: F[1,73]=137.4, p<0.001; BLA: F[1,77]=46.94, p<0.001) and time (CA1: 

F[5,75]=13.46, p<0.001; CeA: F[5,73]=43.3, p<0.001; BLA: F[5,77]=19.29, p<0.001), as 

well as a significant interaction of treatment*time (CA1: F[5,75]=13.46, p<0.001; CeA: 

F[5,73]=43.3, p<0.001; BLA: F[5,77]=19.29, p<0.001). 
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Figure 16. Dynamic changes in Cacna1c mRNA expression during abstinence. A. Schematic showing 

established anatomical connections between CA1, BLA and CeA (Kelley, 2004; LeDoux, 2003; Mandyam, 

2013). B. – D. Cacna1c mRNA levels during acute intoxication, withdrawal, and prolonged abstinence in the 

CA1 (B.), BLA (C.), and CeA (D) of previously 7 weeks alcohol vapor exposed rats. Bar graphs are normalized 

to control levels (changes in regulation: control = 0%). Statistical analysis was performed by region-wise two-

way ANOVA (time, treatment) followed by Fisher’s LDS post-hoc test and Bonferroni’s correction, n=6-

8/group, p values: *p<0.05, **p<0.01, ***p<0.001.   

Fisher’s LSD post-hoc test followed by Bonferroni’s correction showed an increase of 

Cacna1c mRNA in the CA1 of alcohol dependent rats during acute intoxication (0 d, p<0.05). 

This was followed by a non-significant decrease after 1 d, before Cacna1c transcription levels 

normalized on day 3 (=n.s.). On day 7 there was again an increase in mRNA which did not 

reach significance, and day 21 matched the previous experiment with a strongly significant 

increase in Cacna1c transcripts (p<0.001).  

Similar observations could be made in the amygdala, where Cacna1c transcripts were 

increased in both the CeA (p<0.001) and the BLA (p<0.001) during acute intoxication. A 

decrease on day 1 (CeA: p<0.01; BLA: p<0.01) was followed by a return to control values on 

day 3 (CeA: p=n.s.; BLA: p=n.s.). On day 7, Cacna1c mRNA levels were increased slightly 

compared to controls in the CeA (trend towards significance, p=0.06), while no difference 

was observed in the BLA (p=n.s.). However, on day 21 both regions showed a strong increase 
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(CeA: p<0.001; BLA: p<0.001), which is again in line with the findings in the previous 

experiment. Absolute values are listed in Suppl. Table 5. 

1.4. Alcohol-dependent rats display increased CaV1.2 currents in the hippocampus 

Quantitative measurements of CaV1 channel currents were performed in acutely dissociated 

CA1 neurons to functionally validate our in situ findings. The rats were exposed to alcohol 

vapor by myself and sent to Dr. David Vandael, Dr. Andrea Marcantoni, and Dr. Emilio 

Carbone, who performed the current measurements.  

Although no significant difference between total whole-cell calcium currents in neurons of 

alcohol dependent and non-dependent rats could be found, there was a trend toward increased 

calcium currents in the dependent animals. There was also no difference in the normalized 

conductance (Gnorm(V)) of calcium currents. Half maximal activation was -15.2 mV, which 

coincides with typical high-voltage activated calcium channels (Mahapatra et al, 2011; 

Marcantoni et al, 2010a). 

 

Figure 17. Functional LTCCs are increased in 3-weeks abstinent alcohol dependent rats. A. Representative 

traces of whole cell calcium currents from alcohol dependent (dark blue) and control (light blue) rats. B. Current-

voltage relationship of calcium currents measured in high extracellular (135 mM) Tetraethylammonium and 300 

nM TTX. C. Normalized conductance (G = I/V-ECa) of whole cell calcium currents. Reversal potential of 
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calcium currents is 50 mV, data were fit by Boltzman equations. D. Representative traces of the block by the 

selective LTCC antagonist nifedipine (3 µM), summary as bar graph. p value: *p<0.05. The data was produced 

by Dr. David Vandael, Dr. Andrea Marcantoni, and Dr. Emilio Carbone. 

Nifedipine, added to block the L-type component was significantly more effective in alcohol 

dependent than in control rats (p=0.05) at 0 mV, revealing a contribution of LTCCs of 22.4 ± 

3.1 % in controls and 36.6 ± 3.6 % in alcohol dependent rats (p<0.05, t test). Given the 

relatively high half maximal activation value, it can be assumed that almost all LTCC current 

is mediated by CaV1.2, with little or no contribution of CaV1.3.  

1.5. Alcohol self-administration is not susceptible to LTCC antagonism 

As a means to determine the influence of central LTCCs on voluntary alcohol consumption, a 

self-administration paradigm was employed. Animals were trained to press a lever to receive 

a drop of alcohol, were then alcohol vapor or air exposed, and re-trained, before alcohol self-

administration under the influence of i.c.v. verapamil was tested. 

Although two-way ANOVA revealed a significant effect of alcohol vapor exposure (alcohol 

vs. air exposure; F[1,23]=5.35, p<0.05), there was no significant main effect for treatment 

(verapamil vs. vehicle) and or the interaction of alcohol vapor exposure*treatment. Newman 

Keuls post-hoc test showed no difference between groups. 

1.6. Cue-induced reinstatement of alcohol-seeking is blocked by verapamil in alcohol 

dependent rats 

Cue-induced reinstatement is used to investigate relapse-like behavior in drug dependence. 

Here, the association between lever pressing and the receipt of alcohol was extinguished after 

the self-administration test until the lever pressing behavior was decreased to <10 % of the 

baseline. During the reinstatement session, the conditioned as well as environmental cue were 

presented, which should lead to an increase in lever pressing behavior without the 

reinforcement of alcohol.  

 

Figure 18. Timeline of cue-induced reinstatement experiment. 
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Repeated measures two-way ANOVA showed significant main effects for lever (active vs. 

inactive; F[1,23]=186.93, p<0.01), lever*group (F[3,23]=6.21, p<0.01), session (extinction 

vs. reinstatement; F[1,23]=105.08, p<0.001), session*group (F[3,23]=4.52, p<0.05), the 

interaction between lever*session (F[1,23]=92.71, p<0.001) and lever*session*group 

(F[3,23]=7.09, p<0.01).  

 

Figure 19. Central verapamil administration prevents cue-induced reinstatement of alcohol-seeking in 

alcohol abstinent rats. A. Graph shows lever presses during 6 weeks of self-administration training with active 

lever (AL) presses steadily increasing and inactive lever (IL) at an expected low level. B. Reinforcers received 

during sessions vary from AL presses because of the timeout period, but also steadily increase. C. Alcohol self-

administration was not significantly altered by verapamil administration. D. Active lever presses during 

extinction and cue reinstatement. Verapamil prevents cue-induced reinstatement in alcohol dependent rats. n=5-

8/group. Statistical analysis was performed by repeated measures ANOVA, followed by Newman-Keuls post-

hoc test when applicable. P values: **p<0.01, ***p<0.001 alc.-dep. vs. control; ###p<0.001 verapamil vs. CSF. 

Newman Keuls post-hoc test revealed that in alcohol-dependent rats, verapamil was effective 

in preventing cue-induced reinstatement (p=n.s.). All other groups showed cue-induced 

reinstatement (extinction vs. reinstatement: Non-dependent + CSF: p<0.001; Non-dependent 

+ Verapamil: p<0.001; Alcohol-dependent + CSF: p<0.001). Alcohol dependent rats also 

showed significantly less active lever pressing than control rats when treated with verapamil 
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(p<0.001). Furthermore, there was a significant difference between verapamil-treated and 

CSF-treated alcohol dependent rats (p<0.001), and between alcohol dependent and non-

dependent CSF-treated rats (p<0.01). 

1.7. Summary of Study I 

In this study, we found increased Cacna1c mRNA in the amygdala and hippocampus, and 

CaV1.2 protein and current in the hippocampus, of 3 weeks abstinent rats. Furthermore, we 

observed a dynamic regulation of Cacna1c mRNA from alcohol intoxication, over 

withdrawal, to prolonged abstinence. Although verapamil had no effect on alcohol self-

administration, central verapamil application completely blocked cue-induced reinstatement 

of alcohol-seeking. The data suggests that central LTCCs, most likely CaV1.2, play a role in 

relapse-related behavior. 
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2. Study II: Characterization of L-type calcium channel subtype expression in 

animal models of alcoholism 

As Cacna1c and Cacna1d showed distinct expression changes in 3 weeks abstinent rats 

(Study I), this study was aimed at characterizing the expression of these LTCC subtypes in 

several animal models of alcohol dependence. The models shed light on different aspects of 

alcohol dependence, therefore determining the LTCC subtype expression will help to define 

the specific role of CaV1.2 and CaV1.3. In addition, it will give an overview of which models 

are suitable to study LTCCs in alcoholism in the future. 

In my Master Thesis (Uhrig, 2012), I already measured Cacna1c and Cacna1d mRNA 

expression in Marchigian Sardinian alcohol-preferring (msP) rats (which were kindly 

provided by Dr. Roberto Ciccocioppo, University of Camerino, Italy) (Ciccocioppo et al, 

2006; Hansson et al, 2006a). In the amygdala and hippocampus, we found an increase of 

Cacna1c and Cacna1d mRNA.  

The expression pattern differs from the expression found in 3 weeks alcohol abstinent rats 

(Study I), especially since there are no changes of Cacna1d mRNA expression in the 3 weeks 

alcohol abstinent rats. These findings encourage the characterization of further animal models 

for a comprehensive interpretation of the role of both subtypes in alcohol dependence. 

2.1. Differential Cacna1c and Cacna1d mRNA in the amygdala and hippocampus of 

alcohol preferring AA and non-preferring ANA rats 

Alcohol preferring AA and non-preferring ANA rats were selectively bred for high or low 

voluntary alcohol consumption, respectively. These rat lines were originally derived from a 

foundation stock that included Wistar and Sprague-Dawley strains, and later crossed with F1 

hybrids from Lewis and Brown Norwegian rats (Sommer et al, 2006).  

AA and ANA rats were compared to each other and to Wistar rats, which were used as non-

selected controls. Although AA and ANA rats were derived from many different strains, 

Wistar rats have been used as controls in other studies in this thesis, as well as other studies 

on AA/ANA rats (Caberlotto et al, 2001; Sommer et al, 2001). One-way ANOVA followed 

by Fisher’s PLSD test and Bonferroni’s correction found an increase of Cacna1c mRNA in 

the BLA for both AA and ANA lines (18% and 16% increase, respectively), while Cacna1d 

mRNA is decreased in the MeA of ANA rats (22% decrease). In the hippocampus, Cacna1c 

mRNA is increased in AA rats (CA1: 27%, CA4: 14%, DG: 22%). In the ANA rats, Cacna1c 

mRNA is only decreased in the CA4 (10% decrease), with no changes in the other 
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hippocampal regions. A similar pattern is found for Cacna1d mRNA, as it is increased in the 

CA4 (10% increase) and DG (27% increase) of AA rats, and decreased in the CA1 (13% 

decrease) and CA4 (16% decrease) of ANA rats. Interestingly, the changes in AA and ANA 

rats for each subtype sometimes coincide (e.g. Cacna1c in the BLA) and sometimes are 

opposed (e.g. Cacna1c and Cacna1d in the CA4). In the interpretation of the results, the 

specific characteristics of the lines and the functions of each region therefore have to be 

especially considered. Absolute values and statistics are listed in Suppl. Table 6. 

 

Figure 20. Expression changes of Cacna1c and Cacna1d mRNA in AA and ANA rats compared to Wistar 

rats. In situ hybridization shows distinct expression pattern for each subtype in the amygdala (central amygdala, 

CeA; medial amygdala, MeA; basolateral amygdala, BLA) and hippocampus (Cornus Ammon (CA) regions 1, 

2, and 4; dentate gyrus, DG). Bar graphs represent changes in expression with Wistar rats defined as 0%. Data 

are expressed as mean ± SEM. Statistical analysis was performed by region-wise one-way ANOVA followed by 

Fisher’s PLDS test and Bonferroni’s correction, n=5-6/group, p-values: *p<0.05; **p<0.01; ***p<0.001 vs. 

Wistar; #p<0.05; ##p<0.01; ###p<0.001 AA vs. ANA. Absolute values and statistics are listed in Suppl. Table 6. 

 

2.2. Induction of the alcohol deprivation effect (ADE) does not influence central 

LTCC expression in the amygdala and hippocampus 

Next to genetic models of alcoholism, functional models are of great importance for the 

investigation of neuroadaptations. The ADE model is based on prolonged periods of free 
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access to alcoholic solutions with intermittent periods of abstinence. As soon as alcohol is 

available again after abstinence, rats increase their alcohol intake in a manner similar to the 

binge drinking in humans. This model therefore is aimed at the loss of control over drinking 

habits. 

However, LTCCs in the amygdala and hippocampus do not appear to have an important role 

in this process, as no changes in mRNA expression was found for either Cacna1c or 

Cacna1d. On the other hand, the results have to be considered as preliminary, because of the 

small sample size (N=3-5/group). Data and statistics are listed in Suppl. Table 7.  

 

2.3. 4 weeks of alcohol vapor inhalation is sufficient to increase Cacna1c mRNA 

levels  

It was previously shown that 7 weeks of intermittent alcohol vapor exposure followed by 3 

weeks of abstinence increases alcohol self-administration and preference in rats, while after 

only 4 weeks of alcohol exposure and 3 weeks of abstinence, no such increased alcohol-

seeking was found (Rimondini et al, 2003). In Study I, we showed increased Cacna1c mRNA 

levels after 7 weeks of alcohol vapor exposure and 3 weeks of abstinence.  

Here, we investigated the changes in Cacna1c mRNA expression after 4 weeks of vapor 

exposure followed by 3 weeks of abstinence, in order to determine whether this LTCC 

subtype is already altered by a shorter period of alcohol exposure. As all animals arrived at 

the institute simultaneously and all groups were sacrificed on the same day, controls for 4 and 

7 weeks were the same.  

We found a strong increase in Cacna1c mRNA in the amygdala (CeA: 66%, MeA: 62%, 

BLA: 47% increase) and hippocampus (CA1: 86%, CA3: 45%, DG: 29% increase) after 4 

weeks of alcohol vapor exposure and 3 weeks of abstinence. This is an even stronger increase 

than after 7 weeks exposure and 3 weeks of abstinence, except in the CA1, where there is an 

equally strong increase for both time periods. Raw data is listed in Suppl. Table 10. 
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Figure 21. Cacna1c mRNA expression is increased in 3 weeks abstinent rats, both after 4 weeks and 7 

weeks of alcohol vapor exposure. Cacna1c mRNA levels in A. the amygdala, and B. the hippocampus. Rats 

were exposed to alcohol vapor for 4 weeks or 7 weeks, each followed by 3 weeks of abstinence. All animals 

were sacrificed on the same day, therefore controls were the same for 4 weeks and 7 weeks exposure. Bar graphs 

are normalized to control levels (changes in regulation: control 4 weeks = 0%). Statistical analysis was 

performed by region-wise two-way ANOVA (time, treatment) followed by Fisher’sP LDS post-hoc test and 

Bonferroni’s correction, n=6-8/group, p values: ***p<0.001 vs controls; #p<0.05, ###p<0.001 4 vs. 7 weeks.  

In a previous study it was shown that the CRH receptor 1 (Crhr1) is increased in the amygdala 

of alcohol dependent rats after 7 weeks of alcohol vapor exposed 3 weeks of abstinence. The 

CRH system is crucial for anxiety-like behavior, which is also increased at this point during 

alcohol dependence (Hansson et al, 2006a; Meinhardt et al, 2015; Sommer et al, 2008). It 

would be interesting whether the CRH system is already activated after 4 weeks of alcohol 

vapor exposure and 3 weeks of abstinence, or the activation takes place after the temporal 

threshold described in (Rimondini et al, 2003).  Therefore we investigated Crhr1 and Crh 

mRNA expression in another group of rats which had been exposed for 4 or 7 weeks to 

alcohol vapor, each followed by 3 weeks of abstinence. Here, animals were not exposed 

simultaneously for practical reasons, which necessitated separate control groups for 4 and 7 

weeks. 

After 4 weeks of alcohol vapor exposure and 3 weeks of abstinence, no significant difference 

of Crhr1 or Crh mRNA expression was found between alcohol dependent rats and controls 

(Crh mRNA: Control 4 weeks: 14.85 ± 3.5 nCi/g, Alc. dep. 4 weeks: 11.57 ± 1.2 nCi/g). 

Animals which had been exposed for 7 weeks, on the other hand, showed strongly increased 

Crhr1 mRNA expression in the CeA (52% increase compared to “Control 7 weeks”) and 

BLA (69% increase compared to “Control 7 weeks”). At this time, Crh mRNA was 

significantly increased in the CeA (50% increase compared to “Control 7 weeks”; Control 7 

weeks: 12.67 ± 1.7 nCi/g, Alc. dep. 7 weeks: 20.16 ± 2.2 nCi/g, p<0.05), as well. For Crhr1, 

there was also a highly significant increase in 7 weeks-exposed rats compared to 4 weeks-
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exposed rats in the CeA, MeA, and BLA, although these increases have to be considered in 

the context that “Control 4 weeks” also differs from “Control 7 weeks”. Absolute values for 

Crhr1 mRNA are listed in Suppl. Table 11. 

 

Figure 22. Crhr1 and Crh mRNA levels are increased in the amygdala of rats exposed to alcohol vapor for 

7 weeks, but not 4 weeks. Animals were exposed to alcohol vapor or normal air for 4 weeks or 7 weeks, each 

followed by 3 weeks of abstinence. Bar graphs are normalized to Control 4 weeks (changes in regulation: 

Control 4 weeks = 0%). Statistical analysis was performed by region-wise two-way ANOVA (time, treatment) 

followed by Fisher’s PLSD post-hoc test and Bonferroni’s correction, n=3-7/group, p values: **p<0.01, 

***p<0.001 vs. respective controls; #p<0.05, ###p<0.001 4 vs. 7 weeks. Central amygdala, CeA; medial 

amygdala, MeA; basolateral amygdala, BLA; Cornus ammon (CA) regions of the hippocampus 1, and 3;dentate 

gyrus, DG. 

.  

2.4. Voluntary alcohol consumption decreases Cacna1c mRNA expression and 

differentially regulates Cacna1d mRNA levels 

Alcohol dependence induced through intermittent cycles of alcohol vapor intoxication and 

abstinence has been shown valuable in the search for potential anti-relapse medication 

(Meinhardt et al, 2015). Although alcohol consumption is not voluntary, the model offers 

good face, predictive, and construct validity (see 1.4). However, this raises the question how 

voluntary alcohol consumption influences Cacna1c and Cacna1d mRNA expression.  

To address this, we performed in situ hybridization on alcohol dependent and non-dependent 

rats which had been allowed free access to an alcohol solution for 3 weeks. Brain tissue was 

kindly provided by Dr. Roberto Rimondini (Bologna University, Italy). 
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Figure 23. Free access to alcohol affects Cacna1c and Cacna1d mRNA expression differentially. Groups of 

alcohol dependent or control rats (n=5-7) were given ad libitum access to a 10% alcohol solution. Water was 

present in the other bottle. A. Alcohol intake over 23 days of free access. During the first days, alcohol was 

presented at a concentration of 2% and 4%, After the measurement on day 8, a 10% alcohol solution was 

presented. B. Cacna1c and Cacna1d mRNA measurements in the amygdala and hippocampus. p values: 

*p<0.05; **p<0.01; ***p<0.001 vs. respective control group; #p<0.05; ##p<0.01; ###p<0.001 respective Alc. 

dep. vs. Control groups; +p<0.05; +++p<0.001 Alc. dep. + Drinking v.s. Control. Central amygdala, CeA; 

medial amygdala, MeA; basolateral amygdala, BLA; cornus ammon (CA) regions 1 and 2; dentate gyrus (DG). 
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As shown previously in Study I, alcohol dependent rats showed strongly increased Cacna1c 

mRNA expression in the amygdala and hippocampus. However, in alcohol dependent rats 

which additionally consumed alcohol voluntarily Cacna1c mRNA was significantly 

decreased compared to alcohol dependent rats without voluntary alcohol consumption. The 

decrease compared to controls without voluntary drinking experience reached significance 

only in the MeA (26% decrease) and the DG (30% decrease). In the amygdala, Cacna1c 

mRNA was also decreased in drinking alcohol dependent rats compared to drinking controls, 

but it did not reach significance (CeA: p=0.057; MeA: p=0.06; BLA: p=0.052; not shown in 

Figure 23). 

Cacna1d is only altered in animals with voluntary alcohol consumption. The changes are not 

as consistent as for Cacna1c, differing across regions. In the CeA and DG, Cacna1d mRNA is 

increased in alcohol dependent rats with voluntary alcohol consumption compared to alcohol 

dependent rats. In the MeA and CA1, there is an increase in drinking controls compared to 

non-drinking controls, and in the BLA, Cacna1d mRNA is strongly decreased in alcohol 

dependent drinking rats compared to control rats with alcohol consumption. Considering that 

all p values were corrected for multiple analyses, the results are nevertheless robust, and 

indicate a differentiated role for CaV1.3 in the effects of alcohol consumption which warrants 

further investigation. Absolute values and statistics are listed in Suppl. Table 8 and Suppl. 

Table 9.  

2.5. Stress increases Cacna1d mRNA expression in the hippocampus 

In alcohol dependence, stress is of great importance. Animal models of alcoholism such as the 

the functional model of alcohol vapor intoxication and the msP rats, a genetic model 

considered to be the phenocopy of the alcohol vapor model, are characterized by an increased 

sensitivity to stress (Bjork et al, 2010; Ciccocioppo et al, 2006; Meinhardt et al, 2015). Here, 

we investigated to which extent Cacna1c and Cacna1d are regulated by exposure to restraint 

stress.  

4 h after a 1 h restraint period, the rats showed a significant decrease of Cacna1c mRNA in 

the MeA (F[1,10]=15.08, p=0.021), with no further changes in the amygdala or hippocampus. 

Cacna1d, on the other hand, was increased in the hippocampus (CA1: F[1,10]=18.48. 

p=0.011; DG: F[1,10]=17.8, p=0.006). In the CeA, BLA, CA3, and CA4, Cacna1d mRNA 

increase did not reach significance. Mirroring Cacna1c expression, Cacna1d mRNA is 
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decreased in the MeA, although not significantly. For mean values and statistical evaluation 

see Suppl. Table 12. 

 

Figure 24. Cacna1d mRNA is significantly increased in the hippocampus of Wistar rats 4 hours after 

restraint stress. Bar graphs show mean ± SEM, values are normalized to non-stressed controls (Non-stressed = 

0% change). *p<0.05 after Bonferroni’s correction, n=4-6/group. Central amygdala, CeA; medial amygdala, 

MeA; basolateral amygdala, BLA; Cornus ammon (CA) regions of the hippocampus 1, 3, and 4;dentate gyrus, 

DG. 

2.6. Summary of Study II 

Here, we analyzed Cacna1c and Cacna1d mRNA expression in genetic and functional animal 

models of alcohol dependence. In animal models of alcoholism, both LTCC subtypes are 

generally increased in the amygdala and hippocampus. In non-preferring rats, Cacna1c and 

Cacna1d mRNA are mostly decreased. The functional model for binge drinking and craving 

does not show any changes in LTCC expression. However, alcohol vapor intoxication 

strongly increases Cacna1c, but not Cacna1d, mRNA expression, whereby a shorter alcohol 

exposure of 4 weeks leads to a stronger increase than the often used 7 weeks of exposure. 

After 7 weeks of exposure the CRH system, which is strongly involved in stress and anxiety-

related behavior, is also activated. Voluntary alcohol consumption on its own increases 

Cacna1d mRNA expression, while Cacna1c mRNA is strongly decreased in alcohol 

dependent rats which also had free access to alcohol. Restraint stress also increases Cacna1d 
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expression. Together with the findings from Study I, Study II shows that the alcohol vapor 

exposure appears to be the best animal model to study the role of central LTCC subtypes in 

alcohol dependence. 
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Table 2. Summary of Cacna1c and Cacna1d mRNA changes in animal models of alcoholism. ↑/↓p<0.05; ↑↑/↓↓p<0.01; ↑↑↑/↓↓↓p<0.001 

increase/decrease compared to Wistar rats after Bonferroni’s correction; (↑)/(↓)p<0.08 (trend); ↔ no changes; ↔ Study I; N/A: not measured. *(Uhrig, 2012) 

Animal model mRNA Cing PreL IL CPu AcbC AcbS CeA MeA BLA CA1 CA3 DG 

msP* 1c ↑↑↑ ↑↑↑ ↔ ↑↑↑ N/A N/A ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↔  ↑               ↑      

1d ↑↑↑ ↔ ↑ ↑↑↑ N/A N/A ↑↑↑ ↑↑↑ ↑↑↑ ↔ ↑ ↔ 

AA 1c ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↑↑↑ ↑ ↔ ↑↑↑ 

1d ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↑↑↑ 

ANA 1c ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↑↑ ↔ ↔ ↔ 

1d ↔ ↔ ↔ ↓↓ ↔ ↔ ↔ ↓↓↓ ↔ ↓ ↔ ↔ 

ADE 1c N/A N/A N/A N/A N/A N/A ↔ ↔ ↔ ↔ ↔ ↔ 

1d N/A N/A N/A N/A N/A N/A ↔ ↔ ↔ ↔ ↔ ↔ 

Alc. 

dep. 

4 wk 1c N/A N/A N/A N/A N/A N/A ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ 

7 wk 1c ↔ ↔ ↔ ↔ ↔ ↔ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑ 

Drinking 

Control 

1c ↓↓↓ ↓↓↓ ↓↓ ↔ ↓ ↓ ↔ ↔ ↔ ↔ ↑ ↔ 

1d ↑ ↔ ↔ ↔ ↔ ↔ ↔ ↑ ↔ ↑ ↔ ↔ 

Drinking Alc. 

Dep. 

1c ↓↓↓ ↓↓↓ (↓) ↔ ↔ ↓ ↓↓↓ ↓↓↓ ↓↓↓ ↔ ↓↓↓ ↓↓↓ 

1d ↔ ↑ ↑↑↑ (↑) ↑↑↑ ↑↑ ↑ ↔ ↓↓↓ ↔ ↔ ↑ 

Stress 1c ↔ ↔ ↔ ↔ ↓↓↓ ↓ ↔ ↓ ↔ ↔ ↔ ↔ 

1d ↔ ↓↓ ↔ ↑↑ ↔ ↔ ↔ ↔ ↔ ↑ ↔ ↑↑ 
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3. Study III: L-type calcium channel subtype CaV1.2 mediates dependence-

induced increase in alcohol self-administration 

In Study I, we indirectly examined the involvement of CaV1.2 in alcohol dependence. 

Although the i.c.v. injection of verapamil could not distinguish between CaV1.2 and CaV1.3, 

the Cacna1c mRNA expression data and electrophysiological readings strongly suggest a role 

for CaV1.2, rather than CaV1.3, after prolonged abstinence. 

In this study, we aimed to further investigate this hypothesis using transgenic mice with a KO 

of CaV1.2 in CaMKII-positive neurons, thus clearly distinguishing between the two central 

LTCC subtypes. 

3.1. Locomotor activity does not differ between mutants and wildtypes 

Before taking a closer look at the behavior in alcohol self-administration, the Open Field test 

was used to determine any changes in locomotor activity, which could also influence lever 

pressing in operant chambers. These experiments were performed  jointly with Dr. Miriam 

Vogt.  

Open Field measurements of distance travelled and velocity did not show a difference 

between CaV1.2 mutant mice and their littermate controls. Time spent in the center was 

equally comparable between the two groups. 

 

Figure 25. No change in locomotor activity in mice with a decrease in CaV1.2 was found. Total distance 

moved (A.), velocity (B.) and time spent in the center (C.) were equal to littermate controls. Bars show mean ± 

SEM, One-way ANOVA did not reveal any differences between groups, n= 20-22/group. 
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3.2. Lack of CaV1.2 blocks alcohol dependence-induced increase in self-

administration 

Mice were trained to press a lever for a drop of alcohol. Subsequently, they were either 

alcohol vapor or air exposed before their self-administration behavior was measured again. 

This experiment was designed to determine the motivation to perform a task to receive 

alcohol, and was performed jointly with Merle Kochan, and Dr. Ainhoa Bilbao. 

During training sessions, including the saccharine fading procedure, there was no significant 

difference between the genotypes and the (putative) treatment groups. Successful induction of 

alcohol dependence was verified by measuring Withdrawal Scores after the last alcohol vapor 

exposure. Blood alcohol concentrations (BACs) were also determined, and alcohol exposed 

showed intoxicating BACs directly after the end of vapor exposure. 

 

Figure 26. Alcohol dependent mice show strong withdrawal signs and high BACs after the last alcohol 

vapor exposure. A. After alcohol self-administration training alcohol dependence was induced through repeated 

cycles of vapor inhalation and abstinence. After 6 cycles, alcohol self-administration was measured. B. Left 

graph: Withdrawal signs are strongly increased after 4, 8 and 12 h of abstinence. ***p<0.001, **p<0.01 

compared to respective non-dependent group. Right graph: Blood alcohol concentrations (BACs) of ~150 mg/dl 

(0 h) are comparable to alcohol intoxication in humans. BACs rapidly decrease during abstinence. 
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Alcohol self-administration after alcohol vapor/air exposure showed no main effect for 

genotype, but a trend toward a significant genotype*treatment interaction (F[1,17]=4.38, 

p=0.05) and a significant main effect for treatment (F[1,17]=8.02, p<0.05).  

Newman Keuls post-hoc test revealed a strongly increased lever pressing of alcohol 

dependent control mice compared to air exposed controls (p<0.001), while alcohol dependent 

mutant mice did not differ from air exposed mutants. There was also no significant difference 

between air exposed controls and mutants, while alcohol dependent controls had a significant 

increase in lever pressing compared to alcohol dependent CaV1.2 mutant mice (p<0.05). 

 

Figure 27. Alcohol dependence does not induce an increase in alcohol self-administration in CaV1.2 

mutant mice. Control mice show a significant increase in alcohol self-administration after chronic intermittent 

alcohol vapor exposure, which is not observed in mutants. Bars indicate mean ± SEM of lever presses. Active 

(left side) and inactive (right side) lever presses were considered for repeated measures two-way ANOVA 

(lever*genotype*treatment). *p<0.05, ***p<0.001 comparison of active lever presses as indicated; #p<0.05; 

###p<0.001 inactive lever vs. respective active lever; n=4-6/group. The data was produced jointly with Merle 

Kochan and Dr. Ainhoa Bilbao. 

3.3. Demonstration of the CaV1.2 knockout 

We performed PCRs on genomic DNA and cDNA (RNA) as well as in situ hybridization for 

Cacna1c and Cacna1d to verify the KO of CaV1.2 in CaMKII-positive neurons. The 

hippocampus was chosen as region of interest for both PCR and in situ hybridization because 

of its strong LTCC expression. CaMKII plays an important role in the hippocampus, such as 

the mediation of long-term potentiation (LTP) (Stanton and Gage, 1996) and hippocampus-

dependent memory and learning functions (Tan and Liang, 1996). Hence, it is expressed in 
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many, but not all, hippocampal neurons, which allows for a partial CaV1.2 KO in the 

hippocampus. 

 

Figure 28. Demonstration of CaV1.2 KO in CaMKII-positive neurons. A. Schematic representation of exons 

13 to 16 of Cacna1c. loxP sites are indicated by orange arrows. Cre recombinase cuts out DNA between loxP 

sites. Primers for validation of Cacna1c mRNA decrease are indicated in blue and red. B. PCR on genomic 

hippocampal DNA of Cacna1c (exons 14 and 15) shows an empirical decrease in mutant mice compared to 

controls (VS11/VS16) and a smaller fragment of 281 bp (VL8/VL10). Genomic PCR data was produced by Dr. 

Kai Schönig (CIMH, Mannheim). The smaller fragment was also found by PCR on cDNA of the same samples; 

n=3/group. C. Representative in situ hybridization of CaMKII (left), and regions of interest (ROI), and 
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comparisons of control and mutant mice by in situ hybridization for Cacna1c (middle) and Cacna1d (right). 

Subtype-specific riboprobes were kindly provided by Prof. M. Knipper (University of Tübingen). D. 

Quantitative evaluation of in situ hybridization of Cacna1c (left) and Cacna1d (right). Bars represent data as 

mean ± SEM, values are normalized to controls (controls = 0% change). **p<0.01; ***p<0.0001, n=5-6/group. 

For PCR, two different sets of primers were used (Figure 28). Primer pair VL8/VL10 spans a 

fragment between exons 13 and 16, and excision of exons 14 and 15 would yield a shorter, 

281 bp fragment. Primer pair VS11/VS16 is located within exons 14 and 15, so that in a 

complete KO no fragment should be found.  

PCR on both genomic DNA and cDNA (RNA) showed the 281 bp fragment in mutant mice 

(Cre
+
) using primers VL8/VL10, in addition to the larger fragment of control mice (Cre

-
). The 

appearance of the larger fragment is due to Cacna1c DNA and mRNA expression in neurons 

without CaMKII. Additionally, PCR using primers VS11/VS16 on genomic DNA yielded less 

PCR product in mutant than in control mice. Although this is an empirical estimation rather 

than a quantitative measurement, it provides evidence for decreased Cacna1c expression in 

mutants.  

In situ hybridization revealed a decrease in Cacna1c mRNA, but not Cacna1d mRNA, in the 

hippocampus of mutant mice. In the CA1, Cacna1c mRNA was decreased by 16% 

(F[1,9]=13.18, p<0.01; mutants: 18.4±0.2 nCi/g, controls: 21.9±0.9 nCi/g), in the CA3 by 

22% (F[1,9]=64.58, p<0.001; mutants: 46.4±1.6 nCi/g, controls: 59.9±0.7 nCi/g), and in the 

DG by 14% (F[1,9]=13.02, p<0.01; mutants: 48.6±1.1 nCi/g, controls: 56.7±1.8 nCi/g).  

 

3.4. Summary of Study III 

CaV1.2flox x CaMKIICre
ERT2

 mice showed a decrease in Cacna1c mRNA in the 

hippocampus, with no changes in locomotor activity. While alcohol dependent control mice 

increased their in alcohol self-administration compared to non-dependent controls, the 

decrease in CaV1.2 completely abolished this effect, as no difference between alcohol 

dependent and non-dependent mutant mice was observed.  

Our results give further insights into the role of CaV1.2 in alcohol dependence, indicating an 

influence of this particular LTCC subtype on alcohol self-administration.  
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4. Study IV: Functions of L-type calcium channel subtypes CaV1.2 and CaV1.3 in 

nicotine-related behavior 

L-type calcium channels have been implicated in the effects of nicotine exposure, 

development of tolerance, nicotine-induced reinstatement of conditioned place preference, 

and withdrawal symptoms. However, just as in alcohol dependence, the function of each 

subtype has yet to be determined. 

In this study, in situ hybridization experiments after acute and chronic nicotine exposure, as 

well as during abstinence after chronic nicotine, were used to determine changes in Cacna1c 

and Cacna1d mRNA levels. On a behavioral level, locomotor activity was measured in 

response to nicotine sensitization. Furthermore, a preliminary nicotine self-administration 

study was performed. 

4.1.  Cacna1c and Cacna1d mRNA levels change during acute and chronic nicotine 

exposure and abstinence 

mRNA levels of Cacna1c and Cacna1d were determined by in situ hybridization with 

subtype-specific riboprobes in mice after a single or chronic nicotine exposure and 24 h or 7 d 

of abstinence. 

We found a downregulation of Cacna1c transcripts in the IL and CA1 (14% and 26%, 

respectively) after a single nicotine injection and 24 h of abstinence. In all other measured 

regions there was no difference between nicotine- and saline-injected animals. Cacna1d on 

the other hand was strongly upregulated in the PFC (Cing and OFC: 46% - 50%), CPu (27%), 

and AcbS (45%). No differences of Cacna1d mRNA levels were observed in the PreL, IL, 

AcbC, and hippocampus. 

After chronic (14 d) nicotine exposure and 24 h of abstinence, Cacna1c mRNA levels were 

downregulated in the Cing (14%), PreL (17%), CPu (9%), VTA (16%), and CA3 (17%). 

There were no changes of Cacna1d transcription in any region except for the DG, where the 

expression was upregulated by 12%. 

During abstinence (7 d after chronic nicotine exposure), we found a strong upregulation of 

Cacna1c transcripts in almost all regions (11% - 30%), excluding the Cing, AcbC, and VTA. 

In the CPu there was also an increase of 13% of Cacna1d mRNA, but in all other regions 

Cacna1d transcription was unaltered. Absolute values and statistical evaluation are listed in 

Suppl. Table 13 and Suppl. Table 14, respectively. 
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Figure 29. Cacna1c and Cacna1d mRNA expression is differentially regulated by nicotine exposure and 

abstinence. Experimental outline is shown above the respective graphs, with nicotine injected at 0.175 mg/kg, 

i.p., and saline at 0.9%, i.p. Bar graphs show in situ hybridization data of Cacna1c (blue) and Cacna1d (green) 

normalized to respective saline control group (mean ± SEM). Region-wise one-was ANOVA was used for 

statistical evaluation, followed by Bonferroni’s correction, n=4-8/group, corrected p-values: *p<0.05, **p<0.01, 

***p<0.001. For abbreviations see Materials and Methods. nCi/g values are summarized in Suppl. Table 13. 
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4.2. Nifedipine attenuates locomotor activity after 12, but not 24 h 

Two doses of the non-selective LTCC antagonist nifedipine were tested concerning their 

effect on locomotor activity to determine the best dose for sensitization experiments. These 

experiments were performed jointly with Dr. Rick E. Bernardi. 

30 min and 12 h after injection of 10 and 25 mg/kg nifedipine, there was a significant 

locomotor depression for both doses, while neither dose had an effect 24 h after injection. 

Significant effects were revealed by one-way ANOVA for 30 min (F[2,19]=7.8, p<0.005) and 

12 h (F[2,19]=4.1, p<0.05), while there was no effect at 24 h (F[2,19]=1.8, p=n.s.). Fisher’s 

PLSD test detected a decrease in locomotor activity at 30 min for both 10 mg/kg (p<0.01) and 

25 mg/kg (p<0.005), as well as at the 12 h interval (both p<0.05) in comparison to vehicle 

injections. 

 

Figure 30. Nifedipine decreases locomotor activity 30 min and 12 h, but not 24 h, after i.p. injection 

compared to vehicle. The effects were observed for both 10 mg/kg and 25 mg/kg. Data are expressed as means 

± SEM. *p<0.05 vs. vehicle. The data was produced jointly with Dr. Rick E. Bernardi. 

The usage of 10 mg/kg nifedipine in the following nicotine sensitization experiment was 

determined by these findings, in addition to the consideration of the half-lives of nifedipine 

doses (Waltereit et al, 2008).  

4.3. Nicotine-treated mice show increased locomotion 

Locomotor responses were measured on day 1 and day 14 of chronic nicotine or saline 

treatment. These experiments were performed jointly with Dr. Rick E. Bernardi. 
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A two-way ANOVA (drug treatment x day) showed significant main effects of drug treatment 

(F[1,31]=5.6, p<0.05), day (F[1,31]=50.4, p<0.001), and drug treatment x day interaction 

(F[1,31]=10.1, p<0.005). Both nicotine-treated and saline-treated mice displayed increased 

locomotor activity on day 14 compared to day 1 in a paired t test (t(16)=8.7, p<0,001; and 

(t(15)=2.4. p<0.05, respectively). However, on day 1 there was no significant difference 

between nicotine- and saline-treated mice (t(31)=0.7, p=n.s.), while on day 14 nicotine-treated 

mice displayed a significantly higher locomotor response compared to saline-treated controls 

(t(31)=3.6, p<0.005). 

 

Figure 31. Locomotor activity increase in saline- and nicotine-treated mice after 14 d of repeated i.p. 

injection. After locomotor activity measurement on day 1, animals were injected with either saline or nicotine 

(0.175 mg/kg, i.p.) daily. The increase in locomotion was stronger in nicotine-treated than in saline-treated mice. 

*p<0.05, ***p<0.001 vs. day 1. The data was produced jointly with Dr. Rick E. Bernardi. 

4.4. Nifedipine prevents increased nicotine sensitization after abstinence 

14 d of chronic nicotine or saline treatment were followed by a 6 d abstinence period, during 

which nifedipine was administered every 12 h. Nicotine sensitization was then again 

measured on day 21. These experiments were performed jointly with Dr. Rick E. Bernardi. 

The groups (vehicle and nifedipine, each in nicotine- and saline-treated mice) were chosen so 

that vehicle- and nifedipine-treated mice did not differ in their locomotion on day 14 (Fs<1). 

In saline-treated mice, nifedipine did not show any effect on locomotion. Two-way ANOVA 

(treatment [vehicle vs. nifedipine] x day [day 14 vs. day 21]) revealed neither significant main 

effects nor a significant interaction (Fs<1), indicating that nifedipine did not result in any 

unspecific changes in locomotion. 

Nicotine-treated mice which had received vehicle injections during the abstinence period 

displayed a sensitized response to the nicotine challenge on day 21, which was blocked in the 
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nifedipine-treated group. A two-way ANOVA (treatment [vehicle vs. nifedipine] x day [day 

14 vs. day 21]) revealed a significant treatment x day interaction (F[1,15]=5.2, p<0.05). There 

was also a main effect of day (F[1,15]=27.7, p<0.001), but no main effect of nifedipine vs. 

vehicle treatment (F[1,15]=1.1, p=n.s.). Further analysis by paired t test confirmed that in 

nicotine-treated vehicle mice, there was a significant sensitization effect from day 14 to day 

21 (t(7)=5.0, p<0.005). Treatment with nifedipine during abstinence prevented this increase 

(t(8)=2.3, p=n.s.). 

 

Figure 32. Increased nicotine-sensitization after 7 d abstinence is prevented by nifedipine. Saline-treated 

(A.) and nicotine-treated (B.) mice were each divided into two groups for either vehicle or nifedipine (10 mg/kg, 

i.p.) injections on day 15 – 20. Locomotor activity measurement on day 21 revealed nicotine-sensitization in 

vehicle-treated mice. This sensitization effect was not observed in nifedipine-treated mice. Nifedipine did not 

show an effect in mice which had received saline on day 1 - 14. *p<0.05 vs. day 14. The data was produced 

jointly with Dr. Rick E. Bernardi. 

4.5. Decreased CaV1.2 attenuates nicotine self-administration 

Nicotine self-administration (SA) behavior was assessed in a preliminary study using 

CaV1.2flox x CaMKIICre
ERT2

 mice with a decrease of CaV1.2 in CaMKII-positive forebrain 

neurons. Mice were first trained with food pallets, and an i.v. catheter was implanted into the 

jugular vein. Self-administration testing was performed on 8 consecutive days for 2 h each, on 

a FR2 ratio. This experiment was performed by Dr. Rick E. Bernardi and the data were 

included to support the interpretation of our data. 

Mutants and control mice differed in the acquisition of nicotine SA, as revealed by three-way 

ANOVA (lever [active vs. inactive] x day [repeated measures] x genotype). There were 

significant main effects of lever (F[1,16]=6.58, p<0.05) and day (F[2.2,34.5]=7.63, p<0.005). 

The interaction of lever x genotype almost reached significance (F[1,16]=4.32, p=0.054), but 
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no other effects were found (lever x day: F<1; genotype: F[1,16]=3.61, p=0.076; day x 

genotype: F[2.2,34.5]=1.56, p=0.22). Post-hoc t-tests showed a decrease in active lever 

presses in mutants compared to controls (t(16)=2.42, p<0.05), while there was no difference 

in the responses to the inactive lever (t(16)=0.86, p=0,4). 

The number of nicotine reinforcers acquired during the SA sessions was also decreased in 

mutant mice compared to controls, with a significant day x genotype interaction 

(F[3.2,50.4]=3.56, p<0.05) and significant main effects of day (F[3.2,50.4=7.7, p<0.0001] and 

genotype (F[1,16]=5.1, p<0.05). 

 

Figure 33. Nicotine self-administration is decreased in CaV1.2 mutants. Active (AL) and inactive (IL) lever 

presses (A.) and number of reinforcers (B.) during 8 consecutive days of 2h self-administration sessions. Data 

are expressed as mean ± SEM. N=8-10. The data was produced by Dr. Rick E. Bernardi. 
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4.6. Summary of Study IV 

We found a differential regulation of Cacna1c and Cacna1d mRNA in response to nicotine. 

Cacna1d mRNA was strongly upregulated in several brain regions after acute nicotine, with 

little changes in Cacna1c mRNA levels. After chronic nicotine, Cacna1c was down-regulated 

in some regions, but after an additional period of prolonged abstinence, there was a strong 

upregulation of Cacna1c mRNA in almost all regions. Both after chronic nicotine 

administration and prolonged abstinence, Cacna1d mRNA was mostly at control levels. On a 

behavioral level, nicotine-induced increase in locomotor activity was inhibited by nifedipine. 

A decrease of Cacna1c mRNA in CAMKII-positive neurons of transgenic mice furthermore 

reduced nicotine SA behavior compared to controls, implicating CaV1.2 as the influential 

LTCC in nicotine-related behavior. 
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5. Study V: Analysis of L-type calcium channel subtype expression in human 

postmortem samples of patients with mental disorders 

Several single nucleotide polymorphisms (SNPs) in CACNA1C have been identified as risk 

indicators for psychiatric disorders such as schizophrenia, major depressive disorder (MDD) 

and bipolar disorder. However, the changes in CACNA1C expression taking place in these 

disorders are not well understood. In CACNA1D, so far no SNPs have been detected which 

indicate a risk of developing mental disorders, although it may still be of importance. 

Considering our findings in Study I, II and III, changes of CACNA1C mRNA might also be 

found in alcohol dependent subjects. 

To address the changes in CACNA1C and CACNA1D expression, we measured the mRNA in 

postmortem samples of alcoholic patients, schizophrenia patients, and suicide completers with 

major depression, compared to their respective age-matched controls by qRT-PCR, also 

considering their genotype in the SNP rs1006737. 

5.1. No changes in CACNA1C mRNA expression in the striatum of human alcoholics 

CACNA1C and CACNA1D mRNA were measured in the nucleus caudatus (NC) and ventral 

striatum (VS) in postmortem brain tissue of human alcoholics and control subjects from the 

New South Wales Tissue Resource Centre at the University of Sydney, Australia, by qRT-

PCR. As alcoholic samples included some patients with blood alcohol at the time of death, 

three conditions were considered: non-intoxicated alcoholics, intoxicated alcoholics, and 

controls. 

No significant changes for either LTCC subtype were found for condition, and there was no 

correlation with the appearance of the risk alleles AA or AG of the CACNA1C SNP 

rs1006737. dCt values are given in Suppl. Table 15.  

Confounding factors such as age or the use of nicotine could influence the analysis. Therefore 

we performed an analysis of covariants. After corrections for multiple analyses, the only 

significant confounding factor was the PMI in the analysis of CACNA1D mRNA in the NC 

(p=0.032). 
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Table 3. Clinical characteristics of alcoholic patients and control subjects. 

 Control Alcoholic Intoxicated alcoholic 

VS  

(n = 49) 

NC  

(n = 45) 

VS  

(n = 28) 

NC  

(n = 32) 

VS  

(n = 14) 

NC  

(n = 15) 

Genotype 

(GG/AG/AA) 

27/16/6 24/15/6 15/9/4 16/11/5 5/9/0 5/10/0 

Gender 

(female/male) 

11/38 11/34 9/19 9/23 2/12 3/12 

Age (years) 56.4 ± 1.6 56.2 ± 1.7 60.2 ± 2.0 58.3 ± 2.0 54.1 ± 4.2 55.0 ± 3.8 

RIN values 8.5 ± 0.1 8.6 ± 0.1 8.2 ± 0.1 8.2 ± 0.1 8.6 ± 0.2 8.5 ± 0.1 

Brain pH 6.6 ± 0.04 6.6 ± 0.04 6.4 ± 0.1 6.4 ± 0.1 6.6 ± 0.1 6.5 ± 0.1 

PMI 29.3 ± 2.1 29.1 ± 2.3 34.1 ± 3.1 34.8 ± 3.0 28.4 ± 3.3 28.4 ± 2.9 

Current 

smokers 

15 14 19 24 6 6 

 

5.2. Decreased CACNA1C and CACNA1D mRNA in forebrain regions of 

schizophrenia patients 

A small set of postmortem samples of schizophrenia patients (n=7) and control subjects (n=6) 

from the Department of Neuropathology, Mental Hospital Wiesloch, Germany, was used for 

qRT-PCR with LTCC subtype-specific primers to determine CACNA1C and CACNA1D 

mRNA levels.  

Table 4. Clinical characteristics of alcoholic patients and control subjects. 

 Controls Schizophrenia patients  

Gender (female/male) 1/5 4/5 

Age (years) 61.8 ± 6.8 68.2 ± 5.0 

PMI (hours) 15.7 ± 2.3 20.6 ± 3.6 

Brain pH 6.8 ± 0.1 6.7 ± 0.1 

RIN values BA10 7.32 ± 0.2 7.86 ± 0.3 

RIN values BA21 7.18 ± 0.4 6.8 ± 0.2 

RIN values NC 7.76 ± 0.2 8.46 ± 0.2 

RIN values vermis 6.48 ± 1.1 7.84 ± 0.3 
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Two forebrain regions, the anterior prefrontal cortex Brodmann Area 10 (BA) and the medial 

temporal gyrus BA21, as well as the NC and vermis of the cerebellum were analyzed.  

Schizophrenia patients exhibited decreased CACNA1C mRNA expression in both the BA10 

(8.1% decrease) and BA21 (21.8% decrease). CACNA1D mRNA was equally decreased in the 

BA10 (12.2%) and the BA21 (17.1% decrease). No changes in mRNA expression for either 

CACNA1C or CACNA1D were found in the NC and the vermis. dCt values, ddCt values, F 

and p values are listed in Suppl. Table 16. 

Due to the limited sample numbers it was not possible to perform an analysis of covariants. 

The results therefore have to be considered with caution.  

 

Figure 34. qRT-PCR revealed decreased CACNA1C and CACNA1D mRNA expression in forebrain 

regions of schizophrenia patients compared to control subjects. A. Schematic representation of measured 

areas. B. Bars show ddCt values, with GAPDH as internal normalizer, as mean ± SEM. Brodmann Area, BA; 

*p<0.05, **p<0.01, ***p<0.001, n=5-7. 
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5.3. No effect of haloperidol and clozapine on Cacna1c and Cacna1d mRNA 

expression 

Schizophrenia patients are often treated with medication that might itself alter the expression 

of CACNA1C and CACNA1D mRNA. We therefore treated rats with two commonly used 

antipsychotics, haloperidol and clozapine, for 12 weeks, and analyzed Cacna1c and Cacna1d 

mRNA levels in several brain regions, to determine whether these medications are a 

confounding factor in our human postmortem analysis. 

 

Figure 35. 12 week-treatment with haloperidol or clozapine does not affect Cacna1c and Cacna1d mRNA 

expression. A. Schematic representation of analyzed regions. B. Bars show ddCt values, with Gapdh as internal 

normalizer, as mean ± SEM. Region-wise one-way ANOVA did not reveal significant differences, n=6-9. 
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However, we did not find any significant differences between Cacna1c and Cacna1d mRNA 

expression in rats treated with an antipsychotic compared to controls. dCt values of Cacna1c 

and Cacna1d, and Ct values of Gapdh are shown in Suppl. Table 17. 

5.4. mRNA expression of LTCC subtypes is not altered in the dorsolateral prefrontal 

cortex of suicide completers with major depression 

For interpretation of qRT-PCR data on postmortem samples of the dorsolateral prefrontal 

cortex (BA9) of suicide completers with a diagnosis of major depression and controls from 

the Human Brain Tissue Bank, Budapest, an analysis of covariance was conducted for 

diagnosis and gender, also considering the possible influences of age and postmortem 

interval. 

No significant main effects were found for diagnosis, gender, or the interaction between these 

factors. Analysis of covariance did not reveal any potential confounding factors. 

Table 5. Clinical characteristics of suicide completers with major depression and control 

subjects. 

 Female control  Male control  Female suicide  Male suicide  

Genotype 

(GG/AG/AA) 

10/20/1 21/15/7 3/7/0 6/6/2 

Age (years) 70.3 ± 3.5 60.2 ± 2.1 50.8 ± 5.4 46.0 ± 3.2 

PMI (hours) 3.8 ± 0.4 3.1 ± 0.3 5.4 ± 0.8 5.4 ± 1.0 

 

5.5. Summary of Study V 

CACNA1C and CACNA1D mRNA were analyzed in postmortem samples of alcoholic 

patients compared to controls, but no changes were detected for either subtype. However, 

both CACNA1C and CACNA1D mRNA are decreased in forebrain regions of schizophrenia 

patients. Analysis of rats treated with the antipsychotics haloperidol and clozapine did not 

show a difference in LTCC mRNA expression, excluding these medications as confounding 

factors in the analysis of human postmortem samples.  

In addition, we investigated CACNA1C and CACNA1D mRNA levels in postmortem samples 

of depressive patients and controls, but did not find a significant difference in the BA9. 
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V. Discussion 

1. Study I: Differential roles for L-type calcium channel subtypes in alcohol 

dependence 

In the effort to improve treatments for alcohol dependence, new targets have to be considered. 

As manipulation of LTCCs has been shown to influence alcohol consumption in rodents, we 

investigated the changes in the expression of central LTCC subtypes as well as the impact of 

antagonism of central LTCCs in alcohol dependence. 

The most salient message from the present study is the strong upregulation of CaV1.2 in the 

alcoholic brain during long-term abstinence and the important role CaV1.2 appears to play in 

relapse behavior. These findings encourage the efforts to implicate CaV1.2 as a potential 

target for drug development. 

In our study, we demonstrate the dynamic regulation of Cacna1c mRNA in the rat brain 

during abstinence from alcohol dependence. After 21 d of abstinence, Cacna1c mRNA was 

strongly increased in the amygdala and hippocampus, with no changes in Cacna1d mRNA. 

This was accompanied by elevated CaV1.2 protein levels in the hippocampal CA1 subregion 

of alcohol dependent rats. These findings were functionally validated by an increase in CaV1.2 

currents in hippocampal CA1 neurons. Importantly, blocking central LTCCs prevented cue-

induced alcohol-seeking in dependent, but not control rats. Together, our findings suggest an 

involvement of CaV1.2 in relapse behavior, with substantial neuroadaptations taking place 

during abstinence. 

Until recently, little effort has been made to distinguish between LTCC subtypes in the 

investigation of addictive behaviors. Many studies on alcohol drinking behavior used 

systemic administration routes for administering LTCC ligands, affecting not only neuronal 

subtypes but LTCCs in many organs (De Beun et al, 1996a; de Beun et al, 1996b; Fadda et al, 

1992; Rezvani et al, 1990). These studies suffered from substantial side effects, having been 

performed at high doses to compensate for the low brain penetrance of most calcium channel 

blockers. For example, i.p. administration of nifedipine decreases locomotor activity for up to 

12 h (Bernardi et al, 2014), also increasing plasma corticosterone levels (Waltereit et al, 

2008), while systemic verapamil administration appears to augment stress-induced 

impairment of memory retrieval (Rashidy-Pour et al, 2009). This effect is of particular 

importance as alcohol dependent rats display an increased sensitivity to stress (Sommer et al, 

2008).  
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To our knowledge no studies have yet been published investigating the involvement of central 

LTCCs on alcohol-related behavior. There have been efforts, however, to determine the 

individual roles of CaV1.2 and CaV1.3 in the abuse of other psychostimulants such as nicotine 

(Bernardi et al, 2014), morphine (Shibasaki et al, 2011), or cocaine and amphetamine 

(Giordano et al, 2010; Schierberl et al, 2012; Schierberl et al, 2011). The findings in these 

studies are in line with our results on alcohol-seeking, showing different contributions of the 

two subtypes to distinct stages within the use and abuse of psychostimulants. It appears that 

CaV1.2 is especially involved in the effects of long-term exposure to psychostimulants and 

prolonged abstinence, as our current data, our study (Study IV) on nicotine sensitization 

(Bernardi et al, 2014), and the findings of (Giordano et al, 2010) on long-term amphetamine 

and cocaine exposure suggest.  

To further establish the involvement of CaV1.2 in different stages of the development of 

alcohol dependence, we performed a time course analysis of Cacna1c mRNA levels over time 

in the CA1, BLA and CeA. Not only did these regions show the most pronounced effects after 

21 days of abstinence, they are also strongly interconnected (Kelley, 2004; LeDoux, 2003; 

Mandyam, 2013) and involved in the reconsolidation or retrieval of stimulus-associated 

memory (Otis et al, 2014; Shi et al, 2015). As such, these regions appear to play important 

roles in the relapse to drug intake. All three regions showed a consistent pattern of Cacna1c 

mRNA increase during acute intoxication, decrease during early withdrawal (1 day of 

abstinence), and then again increase during the following extended abstinence. These dynamic 

changes underline the possibility of different roles of this subunit over time. This pattern of 

dynamic changes is reminiscent of neuroadaptations in dopaminergic and glutaminergic 

systems during abstinence (Hermann et al, 2012; Hirth et al, 2016a), indicating also an 

interaction with neurotransmitters.  

Because of the lack of subtype-specific pharmacological tools, we used patch clamp 

recordings from isolated neurons to validate the expression data. This method provides 

sufficient sensitivity and specificity to distinguish CaV1.2- from CaV1.3-mediated currents, 

compensating for the lack of selectivity of LTCC antagonists through the differential 

electrophysiological properties of the two subtypes. CaV1.2 channels open at membrane 

potentials of about -30 mV and reach their half maximal activation point at -5 mV, whereas 

CaV1.3 has been shown to open at a much lower membrane potential (approximately -55 

mV), with a half maximal activation point at -30 mV (Lipscombe, 2002). 
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We measured CaV1.2/CaV1.3 currents in the CA1 region of the hippocampus in alcohol 

dependent and control rats, since we found a strong increase of Cacna1c mRNA in this region 

after 21 days of abstinence. The CA1 region of adult rats also express high densities of 

CaV1.2 channels (Clark et al, 2003; Hell et al, 1993), and possess four times more Cacna1c 

mRNA compared to Cacna1d (Nunez-Santana et al, 2014). Together with the Gnorm(V) 

curves, which match the CaV1.2 activation range, this suggests that most of the measured L-

type currents in neurons of control and alcohol dependent rats are carried by CaV1.2. Our 

electrophysiological data are in very good agreement with the findings on mRNA and protein 

level, as nifedipine has a stronger blocking effect on calcium currents in neurons of alcohol 

dependent than control rats. Considering that the overall currents are not altered in alcohol 

dependent rats, it is possible that other calcium channel currents are decreased as a 

compensatory mechanism. N- and P/Q-type calcium channels are also regulated by ethanol 

and may be altered after long-term alcohol exposure (Newton and Messing, 2009; Simasko et 

al, 1999; Solem et al, 1997), although this has not been investigated thoroughly. Analysis of 

changes of other calcium channel types during alcohol dependence would be necessary to 

determine potential compensatory actions or interactions between the channel types. 

Pharmacological validation was provided in alcohol dependent and control rats trained to self-

administer alcohol in an operant conditioning experiment. The non-specific antagonist 

verapamil was injected into the lateral ventricle, thus inhibiting only central LTCCs. Most 

interestingly, verapamil had no effect on alcohol self-administration in either group, but 

prevented cue-induced reinstatement of alcohol-seeking specifically in alcohol dependent rats. 

One explanation for the lack of efficacy on alcohol self-administration might be the 

simultaneous block of CaV1.3 by verapamil. Although Cacna1d mRNA expression is not 

altered after 3 weeks of abstinence and may not be specifically involved in this behavior, a 

decrease from normal activation levels by the antagonist may still have measurable 

consequences. 

The most encouraging finding in terms of treatment development is the fact that verapamil did 

not alter cue-induced reinstatement in control rats, while completely blocking it in alcohol 

dependent animals. We have previously noted, based on the reviewed literature, that many 

compounds lack distinctive effects on alcohol behaviors between alcohol dependent and non-

dependent rats, or in other words, may not specifically target the excessive component of 

alcohol responding added during the development of dependence (for review, see (Meinhardt 

et al, 2015)). Only a few neurochemical systems have been identified so far that seem 
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additionally recruited in the control of alcohol behaviors in alcohol dependent animals in a 

“between-systems” adaptation mode as proposed by (Koob and Le Moal, 2008). The best 

studied in this respect is the amygdala CRH system (Hansson et al, 2007; Hansson et al, 

2006a; Sommer et al, 2008), but similar dependence specific adaptations have been observed 

in other brain stress systems, such as dynorphin (Walker et al, 2011), or vasopressin (Edwards 

et al, 2012). Whether or not CaV1.2 mediates the actions of these stress systems and provides 

a distinct pharmacological access point into peptide systems that have proven to be difficult to 

target directly warrants further investigation. Such a prospect would justify the development 

of LTCC ligands with brain specific pharmacodynamic properties, e.g. acting via CaV1.2. 

In conclusion, we provide consistent evidence for increased CaV1.2 function in protracted 

abstinence, leading to an increase in alcohol-seeking during abstinence. Further studies to 

distinctively determine the function of CaV1.2 in alcohol-seeking behavior are warranted, for 

example using transgenic mice. However, considering the evidence presented here, CaV1.2 

might already be considered a new target for relapse prevention. As existing antagonists, 

when administered systemically, have multiple unfavorable side effects, efforts in medicinal 

chemistry to develop centrally acting LTCC compounds are required to further explore the 

utility of this target for the treatment of alcohol use disorders.  
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2. Study II: Characterization of L-type calcium channel subtype expression in 

animal models of alcoholism 

Animal models, although imperative parts of research, can only model aspects of complex 

disorders such as alcohol dependence. It is therefore of great importance to choose the most 

suitable animal model for each question. In Study I, the alcohol vapor intoxication model was 

used to investigate the contributions of central LTCCs in long-term abstinence from alcohol. 

Differential alterations of gene expression of Cacna1c and Cacna1d helped to distinguish 

between these subtypes, and behavioral experiments provided a basis for the hypothesis that 

CaV1.2, rather than CaV1.3, plays an important role in long-term abstinence and relapse-like 

behavior. However, there are other animal models of alcohol dependence, both genetic and 

functional, which might prove equally valuable. 

In this study, we determined changes in Cacna1c and Cacna1d mRNA expression in several 

animal models of alcoholism. An increase of both LTCC subtypes in the amygdala and 

hippocampus of msP rats with a genetic preference for alcohol consumption has been shown 

previously (Uhrig, 2012). Comparison of alcohol preferring AA to Wistar rats also showed 

increased Cacna1c mRNA in the amygdala and both Cacna1c and Cacna1d mRNA are 

increased in the hippocampus. However, measurements of Cacna1c mRNA in non-preferring 

ANA rats compared to the Wistar controls did not yield such a clear picture, as mRNA levels 

were increased in the BLA, but decreased in the CA4. Cacna1d mRNA was decreased in the 

amygdala and hippocampus of ANA rats. Unlike msP and AA/ANA rats, the functional ADE 

model did not show any changes in Cacna1c or Cacna1d mRNA expression. Although the 

vapor intoxication model proved valuable in Study I and other studies, e.g. (Hansson et al, 

2008; Hirth et al, 2016b; Meinhardt et al, 2015; Pfarr et al, 2015), dependence is induced 

involuntarily. Analysis of alcohol dependent and non-dependent rats with additional voluntary 

alcohol consumption revealed decreased Cacna1c mRNA in the amygdala and hippocampus 

of dependent rats, while Cacna1d mRNA was increased by voluntary alcohol consumption in 

many regions. The value of alcohol vapor intoxication itself was underlined by comparing a 

shorter (4 week) exposure followed by 3 weeks of abstinence with the usual 7 week exposure 

and 3 weeks of abstinence. Although previous studies have determined the neuroadaptations 

to take place at some point between week 4 and week 7 of exposure (“temporal threshold”) 

(Rimondini et al, 2003), there was an even stronger Cacna1c mRNA increase in the amygdala 

and hippocampus of 3 weeks abstinent 4 weeks exposed rats than after 7 weeks of exposure. 

Crhr1 and Crh mRNA, which are crucial for the “postdependent phenotype” with its 
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heightened sensitivity to stress (Sommer et al, 2008), were increased only after 7 weeks of 

vapor intoxication.  

To interpret the different findings, the animal models have to be carefully considered. msP 

rats have shown an increased voluntary alcohol consumption and preference compared to 

Wistar rats, but they also exhibit a higher sensitivity to stress (Ciccocioppo et al, 2006). The 

increase of Cacna1c mRNA might therefore be a component of the alcohol consumption 

behavior, while our own data showing the regulation of Cacna1d by stress might explain the 

alterations in its expressions in msP rats. 

Changes in AA rats resemble the findings in msP rats, although Cacna1d is increased in the 

hippocampus, rather than the amygdala. It was shown that AA rats, in contrast to other 

models of alcoholism, do not display increased anxiety-like behavior (Sommer et al, 2006), in 

some tests they even showed anxiolytic-like properties (Moller et al, 1997). If CaV1.3 is 

increased in the amygdala of msP rats to mediate anxiety-like behavior, the anxiolytic-like 

behavior of AA rats may explain the unchanged Cacna1d mRNA expression in the amygdala 

of AA rats. On the other hands, ANA rats display increased anxiety (Sommer et al, 2006), and 

here we find a decrease in Cacna1d mRNA in the MeA and hippocampal regions. The 

explanation might therefore be more complex. Overall, it appears that in most regions the 

regulation of both LTCC subtypes is opposite in AA and ANA rats. However, direct 

comparisons between AA and ANA rats have to be considered with care. Selective breeding 

for a specific trait, in this case preference for alcohol, leads to pronounced changes not only in 

neurotransmission but also metabolic activity, and thereby may affect the entire animal, even 

with regard to health and memory functions (Sommer et al, 2006). Comparison to a control 

strain, such as Wistar, is already complicated by this, but in comparing two selectively bred 

strains to each other, the unwanted differences might be even more pronounced. For example, 

ANA rats show an increased anxiety-like behavior compared to AA or Wistar rats (Moller et 

al, 1997), which in itself may compromise data on drug dependence. Additionally, AA and 

ANA rats were derived from a foundation stock including Wistar and Sprague-Dawley rats, 

and were later crossed with F1 hybrids from Lewis and Brown Norwegian rats. Choosing one 

strain as a control therefore does not reflect an accurate picture, which is also true for msP 

rats. However, the drinking behavior of Wistar rats is described well, and this strain has been 

used as controls in other studies in this thesis, as well as in other studies investigating 

genetically selected rat models (Caberlotto et al, 2001; Hansson et al, 2006a; Sommer et al, 

2001; Sommer et al, 2006). 
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Genetic models can provide good insights, especially considering the CACNA1C SNP 

rs1006737 which indicates as a genetic component the increased risk to develop 

schizophrenia or depression. However, functional models are more suited to investigate 

changes caused by the consumption of, or exposure to, alcohol. As we did not find any 

alterations in the expression of either LTCC subtype in the ADE rat model, these channels 

may not be involved in binge drinking behavior or the craving of alcohol, which is the focus 

of this model (Vengeliene et al, 2014). Although the ADE is also aimed at modelling relapse 

behavior, the dependence in this model differs from the dependence after intermittent cycles 

of alcohol vapor exposure. Rodents do not voluntarily consume intoxicating amounts of 

alcohol. Through repeated cycles of access to alcohol and abstinence, some rat strains may be 

persuaded to consume enough alcohol to significantly increase their blood alcohol levels, but 

in mice this has not yet been successful (Vengeliene et al, 2014). During alcohol vapor 

exposure, on the other hand, alcohol is not taken up voluntarily, but is controlled by the 

experimenter and can therefore be kept at a constant high level throughout vapor exposure, 

leading to withdrawal signs after the end of exposure (Hansson et al, 2008; Rimondini et al, 

2002; Sommer et al, 2008). 

For the analysis of LTCC subtypes, alcohol vapor intoxication appears to be the most suitable 

model, as mainly Cacna1c mRNA expression is altered (Study I) and the contributions of 

CaV1.2 and CaV1.3 can therefore be better distinguished than in the genetic animal models of 

alcohol dependence. It also allows for a detailed timeline, since LTCC subtype expression can 

be measured at any time during abstinence (Study I). Alternatively, the number cycles of 

exposure to alcohol vapor can be varied. The CRH system, which is a key neuropeptide 

system in alcohol dependence to the increased sensitivity to stress (Sommer et al, 2008), has 

already been shown to activate only 3 weeks after a 7 week vapor exposure time. Four weeks 

of vapor exposure are not enough to alter Crhr1 expression, indicating that this system is 

recruited at some point between the 4 and 7 weeks of exposure. Cacna1c, however, is even 

more strongly increased after only 4 weeks of exposure than it is after 7 weeks. This suggests 

that CaV1.2 may be involved in the recruitment of other systems, such as the CRH system and 

the dopamine system, which is also crucial after 7 weeks of exposure and during varying 

times of abstinence (Hirth et al, 2016b; Liu et al, 2014b). As our findings only describe 

changes on the expression level, the recruitment of the CRH system by CaV1.2 remains 

speculative, and validation would only be possible through functional studies. 
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In the comparison of the Crhr1 mRNA expression after 4 and 7 weeks of alcohol vapor 

exposure and 3 weeks of abstinence, there is also a significant difference between the two 

control groups. This may be due to the fact that 4 weeks- and 7-weeks-groups were sacrificed 

3 weeks apart. The CRH system is highly sensitive to external stimuli, therefore minor 

changes in the environment and the daily routine might already cause the differences observed 

between control groups. However, in this study the comparison between the alcohol 

dependent rats and their respective control groups is the main concern, and these groups were 

treated equally, housed in the same room, and sacrificed on the same day, to prevent any 

mRNA differences caused by these external stimuli. 

It appears that CaV1.3 might play a role in the voluntary consumption of alcohol. After 3 

weeks of free access an alcoholic solution, rats showed increased Cacna1d mRNA in the 

MeA and the CA1. In other regions, the increase did not reach significance, which might be 

due to the limited number of rats per group. In voluntary alcohol consumption, a larger 

variation amongst animals has to be expected, as some rats drink more alcohol than others. In 

alcohol dependent rats, the effect of subsequent access to alcohol was varied across regions. 

As alcohol dependence itself does not appear to alter Cacna1d mRNA expression, the 

differences may be caused by the interaction with other systems regulated by dependence. 

Therefore, the interplay of CaV1.3 with neurotransmitter or hormone systems should be 

investigated more thoroughly. 

LTCCs are regulated by chronic stress (Maigaard et al, 2012), but the effects of acute stress 

are more relevant for the interpretation of experiments on alcohol or nicotine dependence. We 

therefore measured Cacna1c and Cacna1d mRNA expression in rats 4 h after they had been 

subjected to restraint stress for 1 h. This time point was chosen because it appears to be the 

most crucial time for the stress reaction, with corticosteroid receptors and neurotrophic factors 

(e.g. glucocorticoid receptor, mineralcorticoid receptor, BDNF) altered most strongly 4 h after 

restraint stress (Hansson and Fuxe, 2002; Hansson et al, 2001; Hansson et al, 2003; Hansson 

et al, 2006b). However, both LTCC subtypes showed only little changes as a response to 

restraint stress, with Cacna1c mRNA downregulated mostly in the striatum and Cacna1d 

mRNA upregulated in the hippocampus. As Cacna1c mRNA expression is also altered after 4 

weeks of alcohol vapor exposure, a time point where Crhr1 and Crh mRNA are still 

comparable to control levels, the 4 h time point might not be the best to measure LTCC 

subtype expression. LTCC expression might always be changed at a time point before the 

CRH system is recruited. In this case, an earlier time might yield more pronounced effects 
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throughout investigated regions, which could also support the hypothesis of a recruitment of 

the CRH system by LTCCs. 

LTCCs are regulated mostly through alternative splicing, calcium-dependent inactivation, and 

C-terminal auto-regulation (Hulme et al, 2006; Tang et al, 2004; Zhang and Shaw, 2013). The 

often contrary regulation of Cacna1c and Cacna1d mRNA expression might be caused by the 

calcium-induced inactivation, setting in earlier or later for one channel, depending on the 

actions of the other. However, other mechanisms such as receptor-mediated second 

messenger cascades, involving protein kinase A or G (Mahapatra et al, 2012), may also play a 

role, and detailed experiments would be necessary to fully determine the molecular 

mechanisms behind the differential regulation of the LTCC subtypes. 

In summary, Cacna1c and Cacna1d mRNA expression is altered in genetic rat models of 

alcohol dependence, but the differentiation of their individual roles in these models is 

challenging. The ADE model of binge drinking, craving, and relapse behavior may not be 

suited to investigate the role of LTCC subtypes in alcohol dependence, as no changes in 

Cacna1c and Cacna1d mRNA were found. As a functional model, which can be adapted to fit 

the specific questions, the alcohol vapor intoxication model already used in Study I was 

confirmed as the most prudent animal model to study the contributions of the LTCC subtypes 

to alcohol dependence. The increased Cacna1c mRNA after only 4 weeks of alcohol vapor 

exposure hints at the possibility that CaV1.2 may be responsible for the recruitment of other 

important neurotransmitter or hormone systems such as the CRH system. 
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3. Study III: L-type calcium channel subtype CaV1.2 mediates dependence-

induced increase in alcohol self-administration 

In Study I we provided indirect evidence for a role of the subtype CaV1.2 in relapse-like 

behavior, a finding based on the increase of Cacna1c mRNA, as well as CaV1.2 protein and 

current, in 3 weeks abstinent rats, and on the prevention of cue-induced reinstatement of 

alcohol-seeking by the unspecific LTCC antagonist verapamil. The alcohol vapor exposure 

model was also confirmed as the most interesting animal model to study LTCCs in alcohol 

dependence, with pronounced changes in Cacna1c mRNA expression after 4 and 7 weeks of 

vapor exposure followed by 3 weeks of abstinence, and a clear differentiation between 

Cacna1c and Cacna1d mRNA expression. 

Here, we used a transgenic mouse line with a conditional knockout of CaV1.2 in CaMKII-

positive neurons (CaV1.2flox x CaMKII
CreERT2

) to directly determine the function of CaV1.2 in 

alcohol dependence. The knockout was demonstrated by PCR on genomic DNA and cDNA, 

as well as region-specific by in situ hybridization. Mutant mice exhibited normal locomotor 

activity comparable to controls. The mice were trained to self-administer alcohol, then alcohol 

dependence was induced in half of the controls and mutants, respectively, through cycles of 

alcohol vapor intoxication. Withdrawal signs and elevated BACs confirmed the alcohol 

dependence in exposed mice. Control mice showed an increase in alcohol self-administration 

as a response to the induction of alcohol dependence. This increase was completely blocked 

in mutants, suggesting a critical role for CaV1.2 in dependence-induced alcohol-seeking. 

Several studies have investigated the effects of systemic LTCC antagonism on alcohol 

consumption (De Beun et al, 1996a; de Beun et al, 1996b; Fadda et al, 1992; Rezvani et al, 

1990). Other studies determined differential functions for the LTCC subtypes CaV1.2 and 

CaV1.3 in the effects and use of other stimulants (Bernardi et al, 2014; Giordano et al, 2010; 

Schierberl et al, 2012; Schierberl et al, 2011; Shibasaki et al, 2011). However, Study I was 

the first to show the specific involvement of central LTCCs in alcohol dependence in rats. As 

there are no subtype-specific LTCC antagonists, the use of a transgenic mouse line was now 

warranted to determine the specific role of the LTCC subtype CaV1.2. We chose an inducible 

CaV1.2 KO in CaMKII-positive neurons, through the expression of the Cre recombinase 

under the CaMKII promotor in homozygous CaV1.2flox mice. The KO was induced before 

the start of the experiment by injection of tamoxifen, with an additional six weeks of recovery 

time to account for the unfavorable effects of the tamoxifen itself. This was done to exclude 

developmental effects of the change in CaV1.2 expression and to avoid neuroadaptations in 
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other calcium channels or neurotransmitter systems. The CaMKII promotor was chosen for 

this study for several reasons. The CaMKII is an important part of the LTCC signaling 

pathway (Ebert et al, 2013; Jenkins et al, 2010; Lee et al, 2009; Wheeler et al, 2008), and has 

itself been implicated in the mediation of the reinforcing effects of alcohol (Salling et al, 

2014). It also interacts with a number of other molecules which in turn regulate alcohol-

related behaviors (Menard et al, 2015; Pandey, 2004; Schroeder et al, 2008), and therefore 

appears to be crucial for many neuroadaptations in alcohol dependence. In addition, CaMKII 

is highly expressed in the hippocampus (Erondu et al, 1985), a region in which CaV1.2 is 

strongly increased in alcohol dependence, as demonstrated in Study I, and which shows the 

highest expression of both LTCC subtypes (Liebmann et al, 2008). CaMKII-dependent 

CaV1.2 KO in mice has also successfully been used in other studies (Lee et al, 2012; 

McKinney et al, 2008). 

Validation of the KO was provided by PCR using genomic DNA and cDNA, yielding results 

comparable to the original study on these CaV1.2flox mice (Seisenberger et al, 2000). In 

addition, we could show a significant decrease in Cacna1c mRNA in the hippocampus of 

mutants compared to control mice via in situ hybridization. Cacna1c mRNA is only knocked 

out in cells expressing CaMKII. Therefore in situ hybridization measurements can only show 

a decrease instead of a complete KO, since other cells in the same brain region still express 

Cacna1c mRNA, and it is not possible to distinguish between cell types. 

We next measured locomotor activity in mutants and controls, as a change in locomotion 

would have implications for other behavioral experiments, and has been observed in other 

genetic mouse models such as the CaV1.2 KO in Nestin-Cre mice (Dr. Dusan Bartsch, 

personal communication). However, there was no difference between the locomotor activity 

of mutants and controls, excluding altered locomotion as confounding factor. 

Our main focus was the impact of CaV1.2 on alcohol self-administration. Alcohol dependence 

was induced in half of the control and mutant mice, and alcohol self-administration was 

tested. Dependence was shown by measurement of Withdrawal Scores, which were 

pronounced in alcohol dependent mice 4-12 hours after the last vapor exposure. At this time, 

BACs had dropped below intoxicating levels. During subsequent alcohol self-administration 

sessions, we found a strong increase of lever pressing in alcohol dependent control mice 

compared to their non-dependent littermates. This increased alcohol self-administration is 

often seen after induction of alcohol dependence by chronic intermittent alcohol vapor 

exposure (Meinhardt et al, 2015; Rimondini et al, 2002). Here, the dependence-induced 
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increase of self-administration in control mice is indeed very notable, with a 2.5fold enhanced 

lever pressing activity in alcohol dependent mice. Most interestingly, mutant alcohol 

dependent did not increase their lever pressing compared to mutant non-dependent mice. Both 

groups exhibited almost identical lever pressing activity. This strongly indicates that CaV1.2 

function is crucial for the dependence-induced increase of alcohol self-administration. In rats 

(Study I) self-administration was not influenced by LTCC antagonism via central verapamil 

injection. However, as noted earlier, verapamil acts on CaV1.2 as well as CaV1.3, and the 

effects of decreased CaV1.2 function might be masked by the blockage of CaV1.3. It would 

now be interesting to analyze the impact of a conditional CaV1.2 KO on cue-induced 

reinstatement of alcohol-seeking. Unfortunately, our attempt to measure cue-induced 

reinstatement in these mice was unsuccessful, as the alcohol dependent control mice did not 

extinguish the alcohol seeking behavior even in the absence of reward. Nevertheless, the 

involvement of CaV1.2 in alcohol self-administration in itself is an indication that this 

particular LTCC subtype is critically involved in alcohol-related behavior. 

In summary, we have provided evidence of a CaV1.2 KO in CaMKII-positive neurons, which 

did not impair normal locomotor activity. Alcohol dependence, induced through repeated 

cycles of alcohol vapor intoxication and withdrawal, leads to increased alcohol-seeking 

behavior in control, but not mutant mice. These data suggest a role for CaV1.2 in alcohol-

related behavior, confirming this LTCC subtype as interesting target for anti-relapse/craving 

medication development. 
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4. Study IV: Functions of L-type calcium channel subtypes CaV1.2 and CaV1.3 in 

nicotine-related behavior 

Nicotine and alcohol dependence are highly comorbid substance abuse disorders (Dawson, 

2000; Grant et al, 2004). Both substances act on the reward system, and the development of 

dependence engages the same neurotransmitter and hormone systems. It stands to reason that 

LTCCs are involved in nicotine-related behavior, considering their role in the development of 

alcohol dependence (Studies I, II, and III).  

After investigation of Cacna1c and Cacna1d transcription following acute and repeated 

nicotine exposure, we report a differential regulation of the two subtypes, indicating a distinct 

role in nicotine-related behavior. 24 h after an acute nicotine injection, Cacna1d was 

increased in a number of brain areas, with no significant changes in Cacna1c transcription. 

Cacna1d mRNA did not differ from saline-injected mice at 24 h and 7 d after repeated 

nicotine injections. Cacna1c, on the other hand, was decreased at 24 h after repeated nicotine. 

After 7 d without nicotine administration, Cacna1c transcript levels were strongly increased 

in brain areas involved in nicotine dependence-related regions. In addition, the non-selective 

LTCC antagonist nifedipine impaired nicotine-induced locomotor sensitization, and a CaV1.2 

KO in CaMKII-positive neurons blocked nicotine self-administration. 

Our findings on the differential regulation of Cacna1c and Cacna1d transcription as a 

response to acute and repeated exposure to nicotine are in line with a study on cocaine and 

amphetamine. There, a molecular switch from CaV1.3 to CaV1.2 during the development of 

neuroadaptations was reported (Giordano et al, 2010). Together with our study I and III, 

implicating CaV1.2, rather than CaV1.3 in the mediation of long-term effects of alcohol 

dependence, these data suggest a common mechanism for the actions of alcohol, nicotine, and 

other psychostimulants.  

A specific trait of nicotine is the binding of nicotinic acetylcholine receptors (nAChRs). These 

receptors, amongst other functions, mediate calcium influx through LTCCs (Chang and Berg, 

2001; Dickinson et al, 2007; Stevens et al, 2003). Research into this interaction revealed that 

nifedipine impairs a nicotine-induced increase in calcium influx over an extended period of 

exposure to nicotine in cultured mouse cerebral neurons (Katsura et al, 2002). In addition, 72 

h of nicotine exposure led to increased α1C (CaV1.2) and α1D (CaV1.3) subunits, and α1C and 

α1D protein levels were increased in cerebral cortical tissue after 7 d of repeated high-dose 

nicotine administration (Hayashida et al, 2005; Katsura et al, 2002). Our results on Cacna1c 
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and Cacna1d mRNA expression during withdrawal from acute and chronic nicotine 

complement these data by differentiating in more detail the individual contributions of the 

two subtypes. 

To evaluate the effect of the changes in LTCC subtype expression on a behavioral level we 

measured locomotor sensitization, which occurs after repeated drug administration and is 

mediated by neuroadaptations taking place during chronic drug intake (Biala and Budzynska, 

2010; Biala and Staniak, 2010). Here, locomotor activity was measured after the first acute 

nicotine administration (Day 1), after 14 d of repeated nicotine or saline administration (Day 

14) and after 7 d of abstinence, during which either nifedipine or vehicle were injected (Day 

21). While vehicle-treated mice exhibited a clear locomotor sensitization to the nicotine which 

was given prior to the test, nifedipine blocked this sensitization effect. As there was no effect 

of nifedipine on saline-treated mice, we can assume that the findings are specific to nicotine-

induced neuroadaptations. Our results are also in line with findings on cocaine and 

amphetamine sensitization (Giordano et al, 2010; Schierberl et al, 2011), as well as morphine 

sensitization (Zhang et al, 2003). The effect appears to be robust, as (Biala, 2003) reached 

similar conclusions using a different protocol.  

Previous studies have analyzed changes in locomotor sensitization by nifedipine, when the 

LTCC antagonist was administered in parallel to nicotine. In our paradigm, however, 

nifedipine was given during the abstinence phase, in the absence of nicotine. This enabled 

sensitization to nicotine during the 14 d of repeated nicotine injections, but blocked further 

neuroadaptations induced during abstinence. The enhanced locomotor sensitization in mice 

which had received vehicle during the 7 d of abstinence is in line with previous studies on 

cocaine showing an increased sensitization effect after a period of abstinence (Hammer and 

Cooke, 1996; Todtenkopf et al, 2002). The neuroadaptations occurring during abstinence 

from repeated nicotine may reflect those changes in the brain of human smokers that induce 

the longing (craving) for nicotine (Kalivas et al, 1998; Robinson and Berridge, 1993, 2001). 

The attenuation of increased locomotor sensitization after abstinence by nifedipine suggests 

LTCC antagonists as a possible treatment to prevent craving and relapse. These findings, 

although using a very different approach than in Study I, support the data obtained in analyses 

during alcohol dependence. Given the high comorbidity of alcohol and nicotine dependence 

and the involvement of similar neurotransmitter and hormone systems, it is not surprising that 

the findings coincide. For example, the dopamine system, which, as an essential part of the 

reward system in the brain, is crucial for alcohol dependence ((Hirth et al, 2016a), see 
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Discussion of Study I) is also altered during the development of sensitization (Anderson and 

Pierce, 2005). 

Nifedipine, as a non-selective LTCC antagonist, blocked both CaV1.2 and CaV1.3 during 

nicotine sensitization. The individual contributions of the subtypes could be to an extent 

inferred from the mRNA expression data obtained at different time points, as mentioned 

before. However, it is not certain that the changes in expression are also reflected in the 

amount of functional calcium channels. Conclusive evidence of the functions of CaV1.2 and 

CaV1.3 could therefore only be obtained using transgenic mouse lines. As in Study III, we 

used a mouse line with an inducible KO in CaV1.2 in CaMKII-positive neurons. Although 

alcohol self-administration (SA) and nicotine SA cannot be directly compared due to the 

difference in protocols and strength of the effects of the psychostimulants, we performed 

nicotine SA experiments with this mouse line. The results, a complete lack of SA in mutant 

mice, indicate a crucial role for CaV1.2 in the rewarding effects of nicotine which would 

motivate the animals to self-administer the psychostimulant. However, our findings can only 

be considered with caution. For more conclusive evidence, a group of mice receiving saline 

instead of nicotine would have to be directly compared to a nicotine self-administering group. 

Nevertheless, the results encourage further investigation of the role CaV1.2 in nicotine 

sensitization and dependence. 

In this study, we have comprehensively shown a differential regulation of Cacna1c and 

Cacna1d mRNA by acute and repeated nicotine as well as abstinence. Cacna1d was mainly 

altered by a single nicotine injection, while Cacna1c transcription was increased most 

significantly after a period of abstinence from repeated nicotine exposure. The non-selective 

LTCC antagonist nifedipine, when administered during said abstinence phase, abolished the 

increase in locomotor sensitization on Day 21. Together with data implicating CaV1.2 as the 

primary LTCC subtype involved in the rewarding effects of nicotine during self-

administration, our findings suggest CaV1.2 in particular as an interesting target for relapse-

prevention. 
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5. Study V: Analysis of L-type calcium channel subtype expression in human 

postmortem samples of patients with mental disorders 

In Studies I – IV, central LTCCs, and especially CaV1.2, have been consistently linked to drug 

dependence. Additionally, CaV1.2 seems to be implicated in other mental disorders. Genetic 

studies have associated variation in the CACNA1C gene locus with risk for schizophrenia, 

bipolar disorder, major depression, and autism (Berger and Bartsch, 2014; Casamassima et al, 

2010; Erk et al, 2014; Strohmaier et al, 2013), in particular the SNP rs1006737. Considering 

that there is a strong comorbidity between alcohol and other mental disorders, it seems 

plausible that CaV1.2, rather than CaV1.3, should play a role in the relapse to alcohol drinking. 

CACNA1C has therefore been the focus of several studies in this context, but there are 

ambiguous reports on the alterations in the expression of the LTCC subtype in schizophrenia 

or depression (Bigos et al, 2010; Gershon et al, 2014; Roussos et al, 2014; Yoshimizu et al, 

2015), and expression changes of both subtypes in human alcoholics are also unknown.  

In our study we investigated CACNA1C and CACNA1D mRNA expression in postmortem 

samples of alcoholic and schizophrenia patients, as well as suicide completers with a history 

of major depression.  

Analysis of human postmortem samples of alcoholic patients and control subjects did not 

reveal any changes of CACNA1C or CACNA1D mRNA expression in the striatum, and there 

was no effect of the genotype concerning the SNP rs1006737. In Study I, alcohol dependent 

rats did not show any changes of Cacna1c or Cacna1d mRNA in this brain region either. 

Although the striatum is extensively involved in alcohol dependence (Hirth et al, 2016b), 

LTCC expression is very limited in this region (Liebmann et al, 2008).  Our findings in 

human postmortem samples are in line with the results of Study I. It would be interesting to 

analyze CACNA1C and CACNA1D mRNA expression in the amygdala and hippocampus of 

human alcoholic patients and controls, as Cacna1c was strongly increased in these regions in 

alcohol dependent rats.  

Analysis of covariants did also not reveal any influence of smoking on the results. As nicotine 

alters Cacna1c and Cacna1d mRNA expression (Study IV), an effect of the smoking status of 

the patients and controls might have been expected. On the other hand, these patients and 

controls were selected for their alcohol drinking behavior, and information on their smoking 

habits are limited. It is unknown how many cigarettes per day current smokers consumed, and 

for how long they have done so. For subjects who have quit smoking, it is equally unclear for 
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how long and how many cigarettes they had consumed, and since when they quit smoking. 

Additionally, for some subjects the smoking habits are completely unknown. Therefore, the 

evaluation of the effects of smoking on CACNA1C and CACNA1D mRNA expression is not 

very reliable in this sample set. 

In schizophrenia patients, both CACNA1C and CACNA1D mRNA levels were decreased in 

the prefrontal cortex, Brodmann area 10 (BA10), and the anterior temporal cortex, BA21. No 

changes were found in the nucleus caudatus and in the vermis of the cerebellum.  

Schizophrenia is a very complex disorder, and involves the dysfunction of many brain 

regions. Neuroadaptations also depend on the manifestation of positive, negative or cognitive 

symptoms, and their relative severity. For this study we chose four brain regions which are 

structurally altered in schizophrenia: The BA10, a region with a role in cognitive functioning, 

shows a reduced connectivity with the anterior limb of the internal capsule that is associated 

with increased symptom severity in schizotypal personality disorder (Hazlett et al, 2012). The 

temporal cortex with BA21 is important for language and auditory processing, which may be 

important for positive symptoms (e.g. auditory hallucinations) and negative symptoms (e.g. 

incoherent speech). Structural changes in the temporal lobe are also associated with suicide in 

schizophrenia patients (Lee et al, 2016). As for the nucleus caudatus, white matter is reduced 

in schizophrenia (Takase et al, 2004), which has also been linked to an impairment of 

working memory (Levitt et al, 2002). Lastly, the cerebellum with its importance for cognition 

has been studied to understand its role in symptoms of schizophrenia, e.g. (Bernard and 

Mittal, 2015; Guo et al, 2015; Parker, 2015). The vermis especially appears to be altered, as a 

study found a decrease in vermis volume, with unchanged cerebellar hemispheres and total 

volume (Ichimiya et al, 2001; Okugawa et al, 2003). Although it would be interesting to also 

analyze CACNA1C and CACNA1D expression in other brain regions associated with 

schizophrenia symptoms, our results already provide evidence for changes in LTCC 

expression in schizophrenia symptoms, warranting further research into this topic. 

As mentioned above, previous studies have provided opposing findings on the expression 

regulation of CACNA1C in schizophrenia. Some have found an increase (Bigos et al, 2010), 

others a decrease (Gershon et al, 2014; Yoshimizu et al, 2015) in CACNA1C expression 

associated with the risk SNP rs1006737. This ambiguity in findings can be explained by the 

analysis of different regions, the different cell types found in the respective areas, and the 

broad spectrum of schizophrenia disorders and symptoms. Accordingly, any potential 
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medication targeted at LTCCs must be carefully chosen depending on the symptoms 

presented in each patient. 

In contrast to our findings of decreased CACNA1C and CACNA1D mRNA in schizophrenia, 

our animal models of alcoholism show an increase in LTCC subtype expression. This might 

be surprising considering the strong comorbidity between alcohol dependence and 

schizophrenia. However, the above mentioned different findings across human studies again 

stress the importance of careful consideration of the regions which are investigated. 

Unfortunately, we do not have a direct comparison of brain regions between alcoholic 

patients, where the striatum did not reveal any significant changes in LTCC subtype 

expression, and schizophrenia patients. Furthermore, no data is available on the alcohol 

consumption behavior of our schizophrenia patients and controls. 

Depression, as drug addiction and schizophrenia, is a highly diverse disorder for which the 

CACNA1C SNP rs1006737 indicates an increased risk. Postmortem samples of suicide 

completers with major depression and controls have been successfully used to study a SNP of 

the human neuropeptide Y gene (Sommer et al, 2010). However, in the BA9 region of these 

samples we could not find significant differences for either CACNA1C or CACNA1D. This 

might be due to the limited number of samples per group (n=10-43, see Table 5), but the more 

likely explanation is that central LTCCs are not altered in this particular region, which is 

relevant mostly for cognitive functions (MacLeod et al, 1998). Analysis of brain regions 

involved in the emotional components of depression, such as the amygdala, could therefore 

yield promising results, especially as SNPs of CACNA1C interact with adverse life events to 

increase the risk of developing psychiatric disorders (personal communication from Dr. Jan 

Deussing).  

In conclusion, CACNA1C and CACNA1D mRNA expression were not altered in the striatum 

of alcoholic patients. In postmortem samples of schizophrenia patients, we showed decreased 

CACNA1C and CACNA1D expression in the BA10 and BA21, while no changes were found 

in the nucleus caudatus and the cerebellar vermis. These findings underline a role for the 

LTCC subtypes CaV1.2 and CaV1.3 in schizophrenia, and stress the fact that these channels 

may be important for some symptoms, while having no impact on others. Further studies are 

necessary to distinctly define the involvement of the LTCCs in positive, negative and 

cognitive symptoms, also considering the different types of schizophrenia. No alterations of 

LTCC subtype expression in the BA9 of suicide completers with major depression could be 

found, but other brain regions might yield different results. Nonewithstanding the negative 
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findings in postmortem samples of alcoholic patients and suicide completers, and considering 

the findings in human schizophrenia patients, CaV1.2 and CaV1.3 remain promising targets for 

medication development. 
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6. General discussion: LTCC involvement in mental disorders  

The involvement of CaV1.2 and CaV1.3 was investigated in alcohol dependence (Studies I, II 

and III), acute and chronic nicotine administration and abstinence (Study IV) and in human 

postmortem samples of alcoholic and schizophrenia patients, and suicide completers with 

major depression (Study V). Our results suggest that increased CaV1.2 is found in abstinent 

alcohol dependent rats and during abstinence from chronic nicotine. CaMKII-specific KO of 

CaV1.2 ameliorates dependence-induced increase of alcohol self-administration as well as on 

nicotine self-administration. In schizophrenia, the expression of CACNA1C and CACNA1D is 

decreased at least in some brain regions.  

It appears that the functions of CaV1.2 and CaV1.3 may be consistent across different 

psychostimulants. In this thesis, we found increased Cacna1d mRNA after voluntary alcohol 

consumption and after a single nicotine injection, while Cacna1c mRNA was increased 

during abstinence from alcohol dependence and from chronic nicotine. A previous study on 

cocaine and amphetamine sensitization also found a switch from CaV1.3 during the acute 

effects of the psychostimulant to CaV1.2 during abstinence from chronic administration 

(Giordano et al, 2010). Although different psychostimulants act on the brain in different ways 

and on different receptors, similarities between the mechanisms during acute and chronic drug 

administration and abstinence are not surprising.  

 

Figure 36. Hypothesis of a switch from CaV1.3 to CaV1.2 involvement during the development of drug 

dependence: CaV1.3 appears to play a role during drug use and excessive consumption. As dependence 

develops, the relevance of CaV1.3 decreases, while CaV1.2 expression and activity increase (switch). Total 

calcium current remains stable over time, indicating compensatory regulation of the other subtype.  
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For example, the reward system and the stress circuitry are affected by any psychostimulant, 

albeit to a different extent, and play a significant role in addiction in general (Rimondini et al, 

2002; Spanagel et al, 2014a; Spanagel and Weiss, 1999; Vengeliene et al, 2008). The LTCC 

subtypes have been implicated in both the reward and stress systems, regulating the firing of 

dopamine and corticotropin-releasing hormone neurons (Krishnan et al, 2010; Liu et al, 

2014b). The findings of this thesis, together with the role of CaV1.2 and CaV1.3 in the effects 

of acute and chronic cocaine and amphetamine (Giordano et al, 2010), lead to the hypothesis 

of a switch from CaV1.3 to CaV1.2 during the development of drug dependence. 

In alcohol dependence, the alcohol vapor exposure model appears to be the most relevant for 

changes in LTCC subtype expression, as it clearly shows the differential regulation of 

Cacna1c and Cacna1d. The increase in Cacna1c mRNA in this rat model during abstinence 

was restricted to the amygdala and hippocampus. In Study IV, however, we found increased 

Cacna1c expression during the abstinence from chronic nicotine in several brain regions, 

including the prefrontal cortex, striatum and hippocampus. This disparity might be explained 

by the different methods of psychostimulant administration. While in Study I, II and III, 

alcohol dependence was induced through repeated cycles of alcohol vapor intoxication and 

withdrawal, nicotine was only administered once a day for 14 days. This reliably induces 

nicotine sensitization behavior during locomotor experiments, but the animals may not be 

considered to be dependent, as evidenced by the lack of withdrawal symptoms. 

Mice with a conditional KO of CaV1.2 in CaMKII-positive neurons were used both to 

evaluate alcohol self-administration behavior in dependent and non-dependent animals and 

nicotine self-administration behavior. Here again, the methodological processes are very 

different. In addition, nicotine is a stronger reinforcer than alcohol, which can be seen for 

example in the amount of time needed to encourage nicotine and alcohol self-administration. 

This might explain why the conditional CaV1.2 KO completely blocks nicotine self-

administration, while there is no significant difference between non-dependent controls and 

mutants in alcohol self-administration. Here, differences are only evident in alcohol 

dependent mice, where mutants do not increase their alcohol intake compared to non-

dependent mice. Most likely, alcohol dependence increases the value of alcohol as a 

reinforcer almost to a level which nicotine already provides on its own, without dependence. 

It is not easy to compare the results of our psychostimulant studies with the postmortem 

samples of human patients. We did not find any differences between human alcoholics and 

control subjects, probably due to the areas which were investigated. However, we have 
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consistently shown an important role for CaV1.2 in alcohol dependence, and in abstinence 

from chronic nicotine, in rodents, encouraging further analysis of human subjects. 

Alcohol dependence shows a strong comorbidity with nicotine dependence (Dawson, 2000; 

Falk et al, 2006; Grant et al, 2004) as well as schizophrenia (Cantor-Graae et al, 2001; 

Koskinen et al, 2009; Mueser et al, 1990; Nesvag et al, 2015) and depression (Regier et al, 

1990). As mentioned earlier, there are strong similarities between the mechanisms of the 

abuse of different psychoactive substances. People with a susceptibility to one drug therefore 

are likely to be easily influenced by other substances, as well. With schizophrenia, there are 

more differences in the regions involved and the kind of dysfunction. However, there are also 

similarities, for example the involvement of the amygdala. Many schizophrenia patients show 

flattened affect (Lindner et al, 2016) and there are structural changes in the amygdala 

(Williams et al, 2016), which is also dysregulated in alcohol dependence (Hansson et al, 

2007; Hansson et al, 2006a). It would be interesting to compare the expression of CACNA1C 

in the amygdala and hippocampus of schizophrenia patients and control subjects, as well as of 

alcoholics and controls, to have a more direct comparison to our measurements in alcohol 

dependent rats, and to more comprehensively determine the contribution of CaV1.2 to the 

comorbidity of alcohol dependence and schizophrenia.  

Considering the results we obtained, it is obvious that CaV1.2 function is involved in alcohol 

dependence, as well as abstinence from chronic nicotine, and in some aspects of 

schizophrenia, and should therefore be studied in more detail, to possibly warrant the 

development of centrally acting LTCC antagonists as a medication for any of these disorders. 
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VI. Summary and Outlook 

This thesis was aimed to disentangle the role of CaV1.2 and CaV1.3 in alcohol dependence, as 

well as comorbid disorders.  

Indeed, the two central LTCC subtypes are differentially involved in alcohol dependence, 

with an increase of Cacna1c mRNA in the amygdala and hippocampus, as well as CaV1.2 

protein and current during protracted abstinence. In Study I we also show that CaV1.2 is likely 

responsible for cue-induced reinstatement of alcohol seeking in alcohol dependent rats. Study 

II attempts to determine which animal model of alcohol dependence, genetic or functional, is 

the most appropriate for the investigation of LTCC subtype contributions to alcohol 

dependence. In Study III, mice with a KO of CaV1.2 in CaMKII-positive neurons lack the 

dependence-induced increase in alcohol seeking found in their control littermates. Our results 

on Cacna1c and Cacna1d expression changes due to nicotine (Study IV) show a similar 

pattern as in alcohol dependence, as Cacna1d was mainly increased by a single nicotine 

injection, while an increase in Cacna1c mRNA was found after chronic nicotine 

administration and subsequent 7 d abstinence. Abstinence from chronic nicotine augments 

nicotine sensitization in mice, but the administration of nifedipine during the abstinence 

period completely blocks this effect. Additionally, a KO of CaV1.2 in CaMKII-positive 

neurons completely blocked nicotine self-administration. In Study V, we investigated 

postmortem samples of alcoholic and schizophrenia patients, as well as suicide completers 

with major depression, and found a decrease of CACNA1C and CACNA1D mRNA in 

schizophrenia patients compared to control subjects in the BA10 and BA21. Although there 

was no difference in alcoholic or depressive patients and their respective control subjects, this 

may be due to the investigated regions.  

On the expression level, different regions should now be analyzed for a better comparison 

between rat and human experiments. Another interesting aspect would be the downstream 

effect of CaV1.2 increase. As LTCCs activate gene transcription via the transcription factor 

CREB (Wheeler et al, 2008; Zhang et al, 2006), the induction of the CREB-regulated 

immediate early gene c-fos (Gruol et al, 2005) by foot shock stress in alcohol dependent and 

non-dependent mice with a conditional CaV1.2 KO could be analyzed by in situ hybridization. 

C-fos has already been linked to alcohol dependence (Hansson et al, 2008), and it would be 

expected that mutant mice show a decrease in c-fos mRNA after acute stimulation, while 

alcohol dependent controls display increased c-fos expression. 
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At the same time, the regulation of Cacna1c and Cacna1d themselves might be equally 

interesting. Similar mechanisms such as calcium-dependent inactivation, C-terminal auto-

regulation, and alternative splicing have been determined as regulators of both LTCC 

subtypes (Hulme et al, 2006; Tang et al, 2004; Zhang et al, 2013). With respect to mental 

disorders it would be interesting to investigate at which point the differences in Cacna1c and 

Cacna1d mRNA expression are defined. This might help to disentangle the mechanisms 

behind the proposed switch from CaV1.3 to CaV1.2 during the development on drug 

dependence. 

Expression analysis, even when translated into protein level (Study I), can only provide a 

basis for functional experiments. In alcohol dependence, we have indirectly shown the 

importance of CaV1.2 for relapse behavior, and using transgenic mice provided direct 

evidence of the involvement of CaV1.2 in craving in alcohol dependence. As the prevention of 

relapse is the most crucial goal in the search for new treatments for alcohol dependence, the 

role of CaV1.2 in relapse behavior should be further investigated, before clinical studies may 

be warranted. The increased Cacna1d mRNA after voluntary alcohol consumption and a 

single nicotine injection suggests the use of another mouse model with conditional CaV1.3 

KO, to further differentiate between CaV1.2 and CaV1.3 and to elaborate on the role of CaV1.3 

after short-term psychostimulant exposure or voluntary consumption.  

In order to investigate the role of the CACNA1C SNP rs1006737, a mouse line with the 

human CACNA1C gene could also be created. Studies on the alcohol- and nicotine-related 

behavior in these animals could give further insight into the impact of the AA and AG risk 

alleles. 

In schizophrenia, it would be interesting to investigate the contributions of the LTCC 

subtypes to the individual symptoms, for example using animal models of specific aspects of 

the schizophrenia spectrum.  

Considering the difficulties of blocking only central LTCCs, or even one specific subtype, the 

pathways through which LTCCs exert their effects should be further investigated. Possibly, 

another target along the pathways may be better accessible for manipulations or yield fewer 

side effects. Additionally, the interactions of LTCCs with other systems such as the dopamine 

and the CRH system should be examined more closely in the context of drug dependence and 

schizophrenia. 
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In summary, this thesis provides insight into the involvement of LTCCs in mental disorders. 

The results give a comprehensive foundation for further studies into this topic, and support 

the hypothesis of a switch from an involvement of CaV1.3 during acute and short-term drug 

consumption to CaV1.2 in drug dependence and abstinence. Moreover, it implicates central 

LTCCs as viable targets for the development of new and improved treatments for drug 

dependence and schizophrenia, to prevent relapse into drug use and counteract specific 

positive, negative or cognitive symptoms of schizophrenia.  
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IX. Appendix 

1. Supplementary Tables 
 

Suppl. Table 1. Demographic data and tissue characteristics of postmortem samples of 

human alcoholics and controls subjects.  

DSMIV  

Alcohol class 

Geno-

type 

Gender Age PMI Brain 

pH 

COD Toxicology Smo-

king 

Control AG Female 56 23,0 6,65 Pulmonary thromboembolus  - Ex 

Control GG Female 33 24,0 6,77 Cardiac arrythmia; myocardial 

fibrosis 

- No 

Control GG Female 71 16,0 6,20 Adenocarcinoma of the pancreas - Ex 

Control AG Female 78 11,0 6,30 Respiratory Failure due to 

pulmonary fibrosis 

- No 

Control AG Female 49 15,0 6,93 Cardiac Tamponade, acute 

myocardial infarction 

chloride ion 118 

mmol/L 

? 

Control GG Female 52 11,0 6,21 Ischaemic Heart Disease, 

coronary atherosclerosis 

- Yes 

Control GG Female 72 25,0 7,00 Cardiac - No 

Control GG Female 51 37,5 6,92 acute myocardial infarction - No 

Control AA Female 63 42,0 7,02 a)Coronary artery thrombosis 

b)Coronary artery atheroscleros. 

- Yes 

Control AG Female 52 43,0 6,33 Cardiac Amiodarone 1.9 mg/L 

Paracetamol <3 mg/L 

Yes 

Control GG Female 63 50,0 6,46 Cardiac Codeine: <0.05mg/L No 

Control AA Male 38 13,5 6,26 Atherosclerotic cardiovascular 

disease 

 - Yes 

Control AG Male 55 7,5 6,90 Atherosclerotic cardiovascular 

disease 

Amphetamines 

positive 

THC positive 

? 

Control AG Male 37 21,0 6,64 Ischaemic Heart Disease - ? 

Control AG Male 50 29,0 6,68 Ischaemic Heart Disease - No 

Control AA Male 59 20,0 6,56 Coronary Thrombosis - Yes 

Control AG Male 43 13,0 6,43 Thrombotic Coronary Artery 

Occlusion 

- Ex 

Control GG Male 51 20,0 5,88 Cardiac tamponade - ? 

Control AG Male 46 25,0 6,65 Mitral valve prolapse - ? 

Control GG Male 58 12,0 6,46 Ischaemic Heart Disease - Yes 

Control GG Male 50 19,0 6,26 Ischaemic heart disease - Ex 

Control AA Male 53 16,0 6,84 Dilated cardiomyopathy  

Lignocaine: 0.9 mg/L 

Sotalol: 3.8 umol/L 

No 

Control GG Male 48 24,0 6,73 Ischaemic heart disease - Yes 

Control GG Male 44 50,0 6,60 Ischaemic heart disease - Ex 

Control GG Male 56 37,0 6,76 Left ventricular scarring , 

hypertension, and cardiomegaly 

- Yes 

Control GG Male 63 72,0 6,90 Severe coronary artery 

atherosclerosis 

- Ex 

Control GG Male 69 16,0 6,60 Atherosclerotic cardiovascular 

disease 

paracetamol 23 mg/L 

1% blood saturation of 

CO (low) 

Yes 

Control GG Male 57 18,0 6,60 Ischaemic Heart Disease - Ex 

Control GG Male 24 43,0 6,27 Idiopathic cardiac arrhythmia - Yes 

Control GG Male 60 28,0 6,80 Ischaemic Heart Disease 

Coronary Artery Atherosclerosis 

- No 
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Suppl. Table 1 (continued) 

DSMIV  

Alcohol class 

Geno-

type 

Gender Age PMI Brain 

pH 

COD Toxicology Smo-

king 

Control GG Male 60 25,0 6,70 Bacterial Peritonitis, ascites, 

carcinomatosis, gastrointestinal 

stomach tumor 

- No 

Control AG Male 63 24,0 6,94 Atherosclerotic coronary heart 

disease 

Atenolol: <1mg/L 

Irbesartan: 0.8mg/L 

Lignocaine: 1.7mg/L 

Yes 

Control AG Male 73 48,0 6,80 Dilated cardiomyopathy, 

ischaemic heart disease. 

- Yes 

Control GG Male 64 9,5 6,94 Ischaemic heart disease - Yes 

Control GG Male 73 51,0 6,82 congestive cardiac failure, atrial 

fibrillation, ischaemic heart 

disease 

- Yes 

Control AG Male 53 27,0 6,64 acute myocardial infarct of the 

anterolateral wall of the left 

ventricle, atherosclerotic 

coronary artery disease with 90% 

stenosis of the left marginal 

artery. 

- ? 

Control AG Male 55 39,0 6,89 Coronary artery atherosclerosis Irbesartan 0.4mg/L. No 

Control GG Male 64 39,5 6,68 Coronary artery thrombosis - No 

Control AG Male 59 43,0 6,69 atherosclerotic cardiovascular 

disease 

- Yes 

Control AG Male 68 45,5 6,12 Ischaemic Heart Disease Amiodarone 0.7 mg/L 

Paracetamol 3 mg /L 

No 

Control GG Male 69 40,0 6,53 Ischaemic Heart Disease.  

Coronary athersclerosis 

Amiodarone 1.9 mg/L 

 

Ex 

Control GG Male 56 19,0 6,90 Atherosclerotic coronary artery 

disease. 

- No 

Control AA Male 55 12,0 6,39 Hypertensive heart disease - No 

Control AG Male 73 38,5 6,28   -  Ex 

Control GG Male 66 63,0 6,91   - No 

Control AA Male 62 46,0 6,95   -  Ex 

Control GG Male 36 34,0 6,67   -  Ex 

Control GG Male 54 28,0   Cardiac Arrest TBC -  Ex 

Control GG Male 60 21,5 6,66 Ischaemic heart disease - No 

C. Substance 

Abuse (alcohol) 

GG Female 73 60,0 6,68 Cardiomyopathy paroxetine 0.3mg/L 

zolpidem <0.1mg/L 

paracetamol <3mg/L 

 

C. Substance 

Abuse (alcohol) 

AG Female 75 9,0 6,00 hepatic encephalopathy, 

spontaneous bacterial peritonitis, 

liver failure, liver cirrhosis, renal 

impairment, diabetis mellitis 

- No 

B: Substance 

Dependence 

(alcohol) 

AG Female 47 16,0 6,19 Lobar Pneumonia; Right Lung Alcohol: not detected 

codeine: 0.48 mg/L 

Diazepam: 0.34 mg/L 

Morphine: <0.05 mg/L 

Nordiazepam: 0.29 

mg/L 

Oxazepam: 0.02 mg/L 

Paracetamol: 5 mg/L 

Quinine: 1 mg/L 

Temazepam: 0.07 

mg/L  

Yes 

B: Substance 

Dependence 

(alcohol) 

AG Female 67 18,0 5,89 Hepatic Lignocaine: 0.1mg/l 

Metoclopramide: <0.1 

mg/ll 

Midazolam: <0.1mg/l 

Yes 

B: Substance 

Dependence 

(alcohol) 

GG Female 45 41,5 6,8 Cardiac Metoclopramide: <0.1 

mg/L 

Yes 
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Suppl. Table 1 (continued) 

DSMIV  

Alcohol class 

Geno-

type 

Gender Age PMI Brain 

pH 

COD Toxicology Smo-

king 

B: Substance 

Dependence 

(alcohol) 

GG Female 62 39,0 6,78  - Yes 

B: Substance 

Dependence 

(alcohol) 

AA Female 61 49,0 6,75 Respiratory - Yes 

C. Substance 

Abuse (alcohol) 

GG Female 85 23,0 6,44 Pulmonary Thromboembolus Codeine (free) 0.20 

mg/L; Diazepam 0.5 

mg/L; Ibuprofen 9.0 

mg/L;Irbesartan 0.6 

mg/L; Morphine 

(free) <0.05 

mg/L;Nordiazepam 

1.2 mg/L; Oxazepam 

0.2 mg/L;Temazepam 

0.1 mg/L; 

Yes 

B: Substance 

Dependence 

(alcohol) 

GG Female 48 49,0 6,57 Hepatic/Blood loss - No 

C. Substance 

Abuse (alcohol) 

GG Male 66 11,5 6,14 Pneumonia - Yes 

C. Substance 

Abuse (alcohol) 

GG Male 70 32,0 6,05 Sepsis, alcoholic Liver Disease - ? 

C. Substance 

Abuse (alcohol) 

GG Male 65 32,0 5,66 Complications of Chronic 

Alcoholism 

Moclobemide: 

17mg/L 

Codeine: 0.07mg/L 

Phenytoin: 6mg/L# 

Paracetamol: 7mg/L# 

Quinine: 0.4mg/L 

? 

 GG Male 39 24 6,56 Aortic stenosis - Yes 

C. Substance 

Abuse (alcohol) 

GG Male 56 15,0 6,66 Ischaemic heart disease and 

emphysema 

Nordiazepam 

<0.1mg/L 

? 

C. Substance 

Abuse (alcohol) 

GG Male 50 17,0 6,30 Ischaemic heart disease  ? 

C. Substance 

Abuse (alcohol) 

AG Male 67 48,0 6,40 Acute Bronchopneumonia due to 

Chronic Airways Disease Other-

Morphine toxicity 

Morphine: 3mg/L 

Nordiazepam: 0.2 

mg/L 

Paracetamol: 5mg/L 

Yes 

C. Substance 

Abuse (alcohol) 

AG Male 52 45,5 6,78 Lobar pneumonia and chronic 

alcoholism 

- Yes 

C. Substance 

Abuse (alcohol) 

AG Male 53 57,0 6,75 Chronic airflow limitation - 

Pending 

- Yes 

C. Substance 

Abuse (alcohol) 

GG Male 41 54 6,7 Epilepsy and chronic alcoholism - Yes 

C. Substance 

Abuse (alcohol) 

AA Male 60 51,0 6,70 hepatic cirrhosis and its 

consequences, clinical history of 

alcoholism 

paracetamol 22 mg/L 

 

No 

C. Substance 

Abuse (alcohol) 

GG Male 58 20,0 6,64 Ischaemic heart disease, 

cirrhosis 

guaiphenesis 8.5 

mg/L, ibuprofen 3.5 

mg/L and 

paracetamol 16 mg/L 

Yes 

C. Substance 

Abuse (alcohol) 

GG Male 43 29,0 6,29 Intra-abdominal haemorrhage, 

complications of sepsis and 

multiple abdominal surgeries, 

massive hepatic necrosis, chronic 

hepatitis, chronic cholecystitis 

- Yes 

C. Substance 

Abuse (alcohol) 

AA Male 73 43,5 6,59 Coronary artery atheroma -  No 

C. Substance 

Abuse (alcohol) 

AG Male 58 21,5 6,65 focal acute and chronic 

pancreatitis 

- Yes 

C. Substance 

Abuse (alcohol) 

AA Male 63 25,5 6,21 Combined effects of ischaemic 

heart disease and chronic lung 

disease 

- Yes 
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Suppl. Table 1 (continued) 

DSMIV  

Alcohol class 

Geno-

type 

Gender Age PMI Brain 

pH 

COD Toxicology Smo-

king 

C. Substance 

Abuse (alcohol) 

GG Male 73 19,0 6,84 Ischaemic bowel. 

Atherrosclerotic cardiovascular 

disease 

- Yes 

B: Substance 

Dependence 

(alcohol) 

AA Male 61 27,5 5,87 Combination of liver failure and 

Ischaemic heart disease 

Metoclopramide <0.1 

mg/L 

Morphine <0.05 mg/L 

Yes 

C. Substance 

Abuse (alcohol) 

AG Male 56 67 6.47  - Yes 

B: Substance 

Dependence 

(alcohol) 

AG Male 45 18,5 6,57  - Yes 

C. Substance 

Abuse (alcohol) 

GG Male 54 27,0 6,16 Ischaemic heart disease delta-9-THC acid 

0.01mg/L; amiodarone 

5.0 umol/L; marijuana 

breakdown product 

Yes 

C. Substance 

Abuse (alcohol) 

GG Male 58 44,5 6,47  - Yes 

B: Substance 

Dependence 

(alcohol) 

AG Male 65 72,0 6,88 Acute Inteacerebral 

haemorrhage; Cerebral vascular 

malformation 

- Yes 

C. Substance 

Abuse (alcohol) 

AG Male 41 38.5 6.55 Alcohol related - Yes 

C. Substance 

Abuse (alcohol) 

GG Female 27 36,0 6,31 Combined effects of 

Moclobemide,Dothiepin and 

Alcohol intoxication 

Blood alcohol: 

0.132g/100ml 

Moclobemide 2.9mg/L 

Dothiepin 1mg/L 

? 

C. Substance 

Abuse (alcohol) 

AG Female 59 22,0 6,63 Ischaemic Heart Disease Blood alcohol: 

0.362g/100ml  

Cialopram: 0.2mg/L 

Ex 

C. Substance 

Abuse (alcohol) 

AG Female 49 48 6,11 Chronic alcoholism  - No 

C. Substance 

Abuse (alcohol) 

AG Male 54 17,0 6,41 Chest and Abdominal injury, 

IHD, Chronic alcoholism 

Blood alcohol 

0.016g/100ml 

Yes 

C. Substance 

Abuse (alcohol) 

AG Male 46 24,0 6,51 Alcohol Toxicity Blood alcohol: 

0.315g/100mL 

Nordiazepam 0.2mg/L 

? 

C. Substance 

Abuse (alcohol) 

AG Male 50 24,0 6,59 Upper gastrointestinal 

haemorrhage/ alcoholic liver 

disease/cirrhosis 

Blood alcohol 

0.241g/100mL 

Yes 

C. Substance 

Abuse (alcohol) 

AG Male 73 24,0 6,30 Consequences of Cirrhosis blood alcohol 

0.118g/100mL 

No 

C. Substance 

Abuse (alcohol) 

AG Male 56 45,0 6,51 Bleeding Oesophageal varices Blood alcohol 

0.283g/100mL 

? 

C. Substance 

Abuse (alcohol) 

AG Male 37 17,0 6,33 Acute Alcohol poisoning blood 

alc.0.479g/100mL 

Carbamazepine 1mg/L 

No 

C. Substance 

Abuse (alcohol) 

GG Male 61 21,0 6,93 Combined effect of hypertensive 

heart disease and chronic 

alcoholism 

Blood Alcohol: 

0.020g/100ml 

Metoprolol 0.5mg/L 

Yes 

C. Substance 

Abuse (alcohol) 

GG Male 41 54,0 6,70 Epilepsy and chronic alcoholism Delta-9-THC acid: 

0.016mg/l 

Delta-9-THC: 0.005 

mg/l 

Phenytoin: 0.1 mg/l 

Yes 

C. Substance 

Abuse (alcohol) 

GG Male 42 41,0 6,50 Combined bromoxynil and 

alcohol toxicity 

CNS Drugs 

DL:01mg/l); Alcohol: 

0.174g per 100ml; 

Bromoxynil:1.5mg/l 

No 
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Suppl. Table 1 (continued) 

DSMIV  

Alcohol class 

Geno-

type 

Gender Age PMI Brain 

pH 

COD Toxicology Smo-

king 

C. Substance 

Abuse (alcohol) 

GG Male 60 16,5 6,48 Alcoholic liver cirrhosis and 

drug toxicity 

Blood alcohol: 

(0.017g/100mL), 

Codeine (0.31 mg/L), 

Ibuprofen 14mg/L, 

Morphine 0.10 mg/L; 

Bile: Codeine 3mg/L, 

Morphine 4mg/L. 

Yes 

B: Substance 

Dependence 

(alcohol) 

AG Male 64 39,0 6,76 Acute alcohol toxicity Alcohol 0.293 g/100ml Yes 

C. Substance 

Abuse (alcohol) 

AG Male 88 17,0 6,85 Asphyxia due to choking with 

food 

BAL: 0.206 g/100ml; 

Amiodarone 1.2 mg/L; 

Nordiazepam0.1 mg/L; 

Paracetamol 4 mg/L; 

Valproic acid <10 

mg/L; 

No 

A: Harmful Use 

(Alcohol) 

GG Male 59 35 6,57 Coronary artery thrombosis. 

Antecedent cause Coronary 

artery thrombosis. 

- Yes 
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Suppl. Table 2. Description of schizophrenic patients and control subjects. Schizophrenia (SCZ), Postmortem Interval (PMI), Electroconvulsive 

shock (ECS), chlorpromazine equivalents (CPE).  

Diagnosis Gender Age (y) PMI 

(h) 

Brain 

pH 

COD Last medication Alcohol ECT Age at onset 

(y) 

Hospitalization 

(y) 

Duration of 

medication (y) 

CPE last 

dose (g) 

CPE last 

10 years 

(kg) 

Control Male 41 7 7.2 Heart infarction  No       

Control Female 91 16 6.8 Cardio-pulmonary 

insufficiency 

 No       

Control Male 57 24 6.5 Heart infarction  No       

Control Male 53 18 7.1 Heart infarction  No       

Control Male 63 13 6.9 Heart infarction  No       

Control Male 66 16 6.5 Heart infarction  No       

SCZ Female 64 23 6.6 Heart infarction Zotepine 150 mg, 

Olanzapine 10 mg 

No Yes 24 5 40 54.4 4.6 

SCZ Male 73 20 6.9 Heart infarction Perphenazine 32 mg, 

Promethazine 150 mg 

No No 30 33 40 507.4 1.7 

SCZ Male 43 18 6.4 Heart infarction Zuclopethixol 40 mg, 

Valproate 1200 mg, 

Tiapride 300 mg 

No No 20 13 20 464 2.6 

SCZ Female 76 17 7.1 Cardio-pulmonary 

insufficiency 

Perazine 300 mg No Yes 27 30 47 300 4.9 

SCZ Female 63 31 6.3 Heart infarction Olanzapine 15 mg No Yes 24 30 30 75 1.8 

SCZ Male 51 7 6.7 Heart infarction Flupenthixol 15 mg No Yes 19 20 25 174 0.6 

SCZ Male 81 4 6.8 Corpulmonale, 

heart insufficiency 

Haloperidol 4 mg, 

Prothipendyl 80 mg 

No No 19 48 50 92.8 1.4 

SCZ Male 92 37 6.6 Heart infarction Prothipendyl 160 mg, 

Perazine 100 mg 

No No 41 51 48 100 3.4 

SCZ Male 71 28 6.5 Heart infarction Haloperidol 32 mg, 

Pipamperone 40 mg 

No No 30 12 35 782.4 10 
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Suppl. Table 3 Demographic data, genotype, and tissue characteristics of postmortem 

samples of suicide completers and controls subjects. Postmortem interval, PMI. 

Diagnosis Genotype Gender Age (y) PMI (h) Cause of death 

Control AG Female 71 6,5 stroke - cardiovascular-pulmonary insufficiency 

Control GG Female 93 6,5 Alzheimer’s disease, cardiovascular-respiratory insufficiency 

Control AG Female 38 2 acute cardiac and respiratory insufficiency, chronic 

myocardial infarction, chronic heart failure 

Control GG Female 58 1 acute myocardial infarction, arterosclerosis 

Control AG Female 86 4,5 Alzheimer’s disease, cardiovascular-respiratory insufficiency 

Control AG Female 78 5,5 brain hemorrhage 

Control AA Female 79 4,5 cardiac and respiratory insufficiency 

Control AG Female 68 3 pneumonia, respiratory insufficiency 

Control GG Female 76 2,5 traffic accident 

Control AG Female 76 6 heart failure 

Control GG Female 81 5 dementia vasculosa globalis 

Control AG Female 8 5,5 diffuse Lewy disease 

Control AG Female 93 5,5 cardio-respiratory insufficiency, pulmonary embolism 

Control AG Female 94 6 dementia 

Control GG Female 89 1,5 cardiac insufficiency, coronary arteriosclerosis 

Control GG Female 56 6 cardiac and respiratory insufficiency 

Control GG Female 60 3 acute cardiac insufficiency 

Control GG Female 33 0,5 acute myocardial infarction 

Control AG Female 64 1,5 heart failure 

Control AG Female 80 1 acute respiratory insufficiency, senile, hypertensive 

arteriosclerosis 

Control GG Female 44 5 myocardial infarction 

Control AG Female 74 6 cardio-respiratory insufficiency 

Control GG Female 78 1,5 chronic myocardial infarction, pulmonary embolism 

Control AG Female 87 6 dementia, myocardial insufficiency 

Control AG Female 63 0,5 heart failure, cardiac and respiratory insufficiency, chronic 

myocardial infarction 

Control AG Female 89 1,5 atherosclerosis cerebri, dementia 

Control AG Female 62 6 schizophrenia chronica, Parkinson syndrome, 

bronchopneumonia 

Control AG Female 72 3,5 acute myocardial infarction, earlier heart failure, 

arterosclerosis 

Control AG Female 86 4 dementia, myocardial insufficiency 

Control AG Female 56 5 myocardial infarction 

Control AG Female 88 2,5 cardiac insufficiency, heart failure 

Control AG Male 40 3,5 toxication of smoke 

Control AG Male 83 0,5 acute cardiac and acute respiratory insufficiency, chronic heart 

failure, coronary stenosis 

Control GG Male 73 6 acute cardiac failure 

Control AG Male 59 1 acute cardiac insufficiency, coronary stenosis, acute 

myocardial infarction 

Control GG Male 80 5,5 stroke 

Control AG Male 55 3 cardiac insufficiency, coronary stenosis 

Control AG Male 58 2 myocardial infarction, earlier chronic myocardial infarction, 

coronary sclerosis 

Control AA Male 74 3 acute myocardial infarction 
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Suppl. Table 3 (continued) 

Diagnosis Genotype Gender Age (y) PMI (h) Cause of death 

Control GG Male 71 2 acute heart failure, arterosclerosis 

Control GG Male 68 2 
chronic heart failure, coronary sclerosis 

Control AG Male 68 2,5 

acute myocardial infarction; senile, hypertensive 

arteriosclerosis 

Control AG Male 63 2 

cardiac insufficiency, coronary sclerosis, earlier myocardial 

infarction 

Control GG Male 57 1 

acute cardiac insufficiency, coronary stenosis, fatty 

(Laënnec's) cirrhosis 

Control AA Male 81 5 heart failure, cardiogen shock 

Control GG Male 55 1 acute myocardial infarction, earlier myocardial infarction 

Control AG Male 35 6 suicide (hanging - acute respiratory insufficiency) 

Control GG Male 47 2 

acute cardiac insufficiency, chronic myocardial infarction, 

chronic heart failure, coronary sclerosis 

Control GG Male 62 5,5 respiratory and cardiac insufficiency 

Control AG Male 83 6 respiratory and cardiac insufficiency 

Control GG Male 56 2 acute heart failure, acute myocardial infarction 

Control GG Male 64 4 pneumonia 

Control GG Male 83 5 Alzheimer-like dementia 

Control AA Male 50 0,5 

peritonitis, cardiac and respiratory insufficiency, atrophic 

cirrhosis 

Control GG Male 50 4 
acute heart failure, senile, hypertensive arteriosclerosis 

Control AG Male 64 6 myocardial infarction 

Control GG Male 42 2,5 suicide (hanging - asphyxia, acute paralytic stroke) 

Control AG Male 52 4,5 myocardial infarction 

Control GG Male 47 2 

cardiac insufficiency, pneumonia, respiratory insufficiency, 

earlier myocardial infarction, fatty (Laënnec's) cirrhosis 

Control GG Male 37 8 electric shock 

Control AA Male 52 3,5 acute myocardial infarction 

Control AG Male 67 1 

respiratory and cardiac insufficiency, pneumonia, senile, 

hypertensive arteriosclerosis, multilobular cirrhosis 

Control AG Male 42 3,5 acute respiratory insufficiency 

Control AG Male 45 3 

respiratory insufficiency, acute myocardial infarction, 

coronary stenosis 

Control GG Male 53 5 pulmonary embolism 

Control GG Male 64 1 

acute heart failure, acute cardiac insufficiency, coronary 

stenosis 

Control AG Male 74 1 acute cardiac insufficiency, chronic heart failure 

Control AA Male 47 1 heart failure, coronary sclerosis 

Control GG Male 50 2 myocardial infarction 

Control AA Male 65 1 heart failure, cardiac and respiratory insufficiency 

Control GG Male 75 5 bipolar affective psychosis 

Control AA Male 85 3 heart failure 

Control GG Male 46 4 

senile, hypertensive arteriosclerosis; acute myocardial 

infarction 

Control GG Male 65 1 pulmonary embolism, arterosclerosis, heart failure 

Suicide AG Female 42 3 suicide (hanging - asphyxia) 

Suicide GG Female 42 11 suicide (drug overdose) 

Suicide AG Female 83 6 suicide (hanging - asphyxia) 

Suicide AG Female 28 6 suicide (drug overdose + alcohol, acute heart failure) 
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Suppl. Table 3 (continued)  

Diagnosis Genotype Gender Age (y) PMI (h) Cause of death 

Suicide GG Female 36 2 suicide (drug overdose - aspiration pneumonia, asphyxia) 

Suicide AG Female 48 6,5 suicide (drug overdose) 

Suicide GG Female 65 5 suicide (hanging - asphyxia) 

Suicide AG Female 72 3,5 suicide (drug overdose) 

Suicide AG Female 49 6 suicide (drug overdose) 

Suicide AG Female 43 4,5 suicide (hanging - asphyxia) 

Suicide AG Male 71 1 suicide (jumping from a height) 

Suicide GG Male 36 6 suicide (hanging - asphyxia) 

Suicide AG Male 48 6 suicide (hanging - asphyxia) 

Suicide AG Male 66 6 suicide (hanging - asphyxia) 

Suicide AA Male 47 6 suicide (hanging - asphyxia, acute paralytic stroke) 

Suicide GG Male 43 3 suicide (hanging - asphyxia) 

Suicide GG Male 48 3 suicide (drug overdose + alcohol) 

Suicide AA Male 45 4 suicide (drug overdose) 

Suicide GG Male 42 4 

suicide (hanging –acute paralytic stroke, acute respiratory 

insufficiency) 

Suicide AG Male 31 8 suicide (hanging - asphyxia) 

Suicide AG Male 43 4 suicide (hanging) 

Suicide AG Male 57 16 suicide (hanging - asphyxia) 

Suicide GG Male 32 6 suicide (hanging - asphyxia) 

Suicide GG Male 35 2 suicide (drug overdose) 
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Suppl. Table 4. Cacna1c and Cacna1d mRNA expression in alcohol-dependent and non-

dependent rats after 3 weeks of abstinence. Statistical analysis was performed by region-

wise one-way ANOVA followed by Bonferroni’s correction; n.s. = not significant; p values: 

*p<0.05; **p<0.01; ***p<0.001vs non-dependent rats, n=5-7/group. Cingulate cortex (Cing), 

prelimbic cortex (PreL), infralimbic region (IL), and orbitofrontal cortex (OFC), motor cortex 

M1, nucleus accumbens [core (AcbC) and shell (AcbS)], caudate putamen (CPu), extended 

amygdala [bed nucleus of the stria terminalis (BNST), central amygdala (CeA), medial 

amygdala (MeA), and basolateral amygdala (BLA)], paraventricular nucleus (PVN), and 

hippocampal formation [dentate gyrus (DG) and Cornus Ammon (CA) regions CA1 and 

CA3]. 

mRNA Region Control  

(nCi/g; mean ± 

SEM) 

Alc. dep.  

(nCi/g; mean ± 

SEM) 

F p 

Cacna1c Cing 2.01 ± 0.3 1.96 ± 0.1 [1,10]0.03 n.s. 

PreL 2.77 ± 0.3 3.54 ± 0.2 [1,11]4.15 n.s. 

IL 4.41 ± 0.3 3.84 ± 0.2 [1,10]2.51 n.s. 

OFC 2.71 ± 0.2 2.66 ± 0.1 [1,12]0.05 n.s. 

AcbC 1.62 ± 0.2 1.34 ± 0.2 [1,11]0.98 n.s. 

AcbS 6.03 ± 0.8 6.18 ± 0.2 [1,12]0.03 n.s. 

CPu 0.93 ± 0.2 0.87 ± 0.1 [1,11]0.07 n.s. 

BNST 0.76 ± 0.1 1.33 ± 0.2 [1,11]11.13 n.s. 

CeA 3.56 ± 0.1 4.97 ± 0.3 [1,11]23.91 0.008143** 

MeA 4.82 ± 0.4 6.15 ± 0.3 [1,11]6.85 n.s. 

BLA 2.96 ± 0.2 5.04 ± 0.3 [1,12]34.72 0.001241** 

CA1 1.68 ± 0.1 2.95 ± 0.2 [1,12]27.27 0.003638** 

CA3 15.65 ± 0.5 19.44 ± 0.8 [1,12]16.93 0.024395* 

CA4 13.26 ± 0.1 17.68 ± 0.4 [1,11]151.98 0.000000*** 

DG 16.39 ± 0.6 18.29 ± 0.6 [1,12]4.73 n.s. 

M1 1.63 ± 0.1 1.51 ± 0.1 [1,10]0.64 n.s. 

PVN 6.56 ± 0.5 6.73 ± 0.4 [1,11]0.06 n.s. 
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Suppl. Table 4. (continued) 

mRNA Region Control  

(nCi/g; mean ± 

SEM) 

Alc. dep.  

(nCi/g; mean ± 

SEM) 

F p 

Cacna1d Cing 7.89 ± 0.5 8.36 ± 0.3 [1,12]0.70 n.s. 

PreL 10.26 ± 0.5 9.68 ± 0.2 [1,11]1.23 n.s. 

IL 10.65 ± 0.2 10.49 ± 0.5 [1,12]0.10 n.s. 

OFC 9.27 ± 0.3 8.81 ± 0.2 [1,12]1.87 n.s. 

AcbC 5.14 ± 0.2 5.23 ± 0.1 [1,12]0.13 n.s. 

AcbS 7.84 ± 0.3 7.85 ± 0.2 [1,12]0.001 n.s. 

CPu 3.87 ± 0.3 3.77 ± 0.1 [1,12]0.11 n.s. 

BNST 7.29 ± 0.3 6.76 ± 0.2 [1,12]1.76 n.s. 

CeA 10.06 ± 0.7 8.17 ± 0.3 [1,10]6.77 n.s. 

MeA 7.98 ± 0.4 8.15 ± 0.2 [1,11]0.11 n.s. 

BLA 8.93 ± 0.2 8.72 ± 0.2 [1,11]0.45 n.s. 

CA1 11.71 ± 0.2 12.03 ± 0.7 [1,10]0.18 n.s. 

CA3 11.82 ± 0.3 13.27 ± 0.2 [1,10]12.116 n.s. 

CA4 12.96 ± 0.6 14.58 ± 0.8 [1,11]2.72 n.s. 

DG 40.61 ± 2.7 39.67 ± 3.3 [1,11]0.05 n.s. 

M1 8.28 ± 0.4 8.21 ± 0.2 [1,11]0.03 n.s. 

PVN 14.73 ± 0.6 15.23 ± 0.9 [1,11]0.24 n.s. 
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Suppl. Table 5. Cacna1c mRNA expression in alcohol-dependent and non-dependent 

rats after 0, 1, 3, 7, and 21 d of abstinence. Central amygdala (CeA), basolateral amygdala 

(BLA), Cornus Ammon (CA) regions CA1. N=6-8/group 

Region Days of 

abstinence 

Control  

(nCi/g; mean ± 

SEM) 

Alc.-dep.  

(nCi/g; mean ± 

SEM) 

CA1 0 11.28 ± 1.2 13.75 ± 1.0 

1 13.69 ± 0.7 10.38 ± 0.9 

3 10.66 ± 0.5 11.04 ± 1.0 

7 10.63 ± 0.6 13.05 ± 1.5 

21 7.54 ± 0.1 13.33 ± 1.0 

CeA 0 15.62 ± 0.7 21.45 ± 0.5 

1 18.17 ± 0.9 13.70 ± 0.4 

3 18.70 ± 0.6 16.78 ± 0.7 

7 13.57 ± 0.6 16.71 ± 1.4 

21 12.44 ± 0.4 15.99 ± 0.6 

BLA 0 13.33 ± 0.66 17.65 ± 0.3 

1 15.47 ± 0.6 12.88 ± 0.3 

3 15.76 ± 0.6 15.47 ± 0.8 

7 15.12 ± 0.5 16.73 ± 1.6 

21 11.86 ± 0.4 13.76 ± 0.6 
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Suppl. Table 6. Cacna1c and Cacna1d mRNA expression in AA, ANA, and Wistar rats. 

Statistical analysis was performed by region-wise one-way ANOVA followed by 

Bonferroni’s correction; n.s. = not significant; p values: *p<0.05; **p<0.01; ***p<0.001 

overall effect, n=5-7/group. Cingulate cortex, Cing; Prelimbic cortex, PreL; Infralimbic 

cortex, IL; caudate putamen, CPu; nucleus accumbens core, AcbC; nucleus accumbens shell, 

AcbS; Central amygdala, CeA; medial amygdala, MeA; basolateral amygdala, BLA; 

hippocampal formation [dentate gyrus, DG;and Cornus Ammon (CA) regions CA1, CA3, and 

CA4]. 

mRNA Region ANA  

(nCi/g; 

mean ± 

SEM) 

Wistar 

(nCi/g; 

mean ± 

SEM) 

AA  

(nCi/g; 

mean ± 

SEM) 

F p 

Cacna1c Cing 12.77 ± 0.5 11.75 ± 0.3 11.83 ± 0.7 [2,13]1.19 n.s. 

PreL 18.67 ± 0.7  17.56 ± 0.4 18.47 ± 0.7 [2,13]1.19 n.s. 

IL 24.35 ± 1.2 21.00 ± 0.4 22.67 ± 0.7 [2,11]5.27 n.s. 

CPu 17.65 ± 0.4 16.98 ± 0.5 16.96 ± 0.1 [2,15]0.96 n.s. 

AcbC 20.62 ± 1.0 20.04 ± 0.3 19.49 ± 0.4 [2,13]0.85 n.s. 

AcbS 23.10 ± 1.0 21.84 ± 0.5 23.27 ± 0.5 [2,15]1.28 n.s. 

CeA 15.61 ± 0.4 15.46 ± 0.3 16.09 ± 0.2 [2,12]1.16 n.s. 

MeA 17.64 ± 0.3 18.00 ± 0.3 18.95 ± 0.4 [2,15]4.32 n.s. 

BLA 15.66 ± 0.4 13.48 ± 0.2 15.86 ± 0.3 [2,15]17.38 0.00087*** 

CA1 11.12 ± 0.2 9.92 ± 0.6 12.62 ± 0.5 [2,11]8.47 0.041601* 

CA3 74.29 ± 2.2 78.55 ± 1.6 79.65 ± 1.4 [2,15]2.49 n.s. 

CA4 53.72 ± 1.0 59.84 ± 1.8 68.28 ± 0.4 [2,15]37.19 0.00001*** 

DG 68.13 ± 2.1 66.01 ± 1.4 80.65 ± 1.3 [2,13]20.16 0.00073*** 
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Suppl. Table 6. (continued) 

mRNA Region ANA  

(nCi/g; 

mean ± 

SEM) 

Wistar 

(nCi/g; 

mean ± 

SEM) 

AA  

(nCi/g; 

mean ± 

SEM) 

F p 

Cacna1d Cing 32.86 ± 1.3 34.95 ± 0.8 34.35 ± 1.4 [2,13]0.87 n.s. 

PreL 37.39 ± 1.0 40.87 ± 0.8 41.82 ± 0.6 [2,12]7.63 n.s. 

IL 42.98 ± 2.5 42.09 ± 1.0 44.40 ± 0.8 [2,13]0.58 n.s. 

CPu 12.07 ± 0.2 13.53 ± 0.3 13.83 ± 0.2 [2,15]14.99 0.00265** 

AcbC 21.44 ± 1.1 21.69 ± 0.9 22.95 ± 0.4 [2,14]0.96 n.s. 

AcbS 29.18 ± 1.6 27.96 ± 0.7 31.31 ± 0.6 [2,15]2.44 n.s. 

CeA 31.31 ± 0.4 32.79 ± 0.7 34.43 ± 0.6 [2,15]7.42 0.040362* 

MeA 27.77 ± 0.5 35.57 ± 1.1 33.58 ± 0.3 [2,15]32.97 0.00002*** 

BLA 29.56 ± 0.4 30.09 ± 0.2 31.26 ± 0.7 [2,15]3.26 n.s. 

CA1 36.73 ± 0.4 42.23 ± 0.7 45.20 ± 1.7 [2,15]15.32 0.001666** 

CA3 49.33 ± 0.6 51.49 ± 0.4 50.03 ± 0.5 [2,15]4.55 n.s. 

CA4 44.05 ± 0.6 52.19 ± 1.3 57.53 ± 0.9 [2,15]46.90 0.00000*** 

DG 130.54 ± 

2.3 

136.28 ± 

2.6 

174.33 ± 

5.7 

[2,15]38.43 0.00001*** 
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Suppl. Table 7. Cacna1c and Cacna1d mRNA expression in ADE and control rats. 
Statistical analysis was performed by region-wise one-way ANOVA followed by 

Bonferroni’s correction; n.s. = not significant; p values: *p<0.05; **p<0.01; ***p<0.001 

overall effect, n=5-7/group. Central amygdala (CeA), medial amygdala (MeA), basolateral 

amygdala (BLA), hippocampal formation [dentate gyrus (DG) and Cornus Ammon (CA) 

regions CA1 and CA3]. 

mRNA Region Control 

(nCi/g; mean ± 

SEM) 

ADE 

(nCi/g; mean ± 

SEM) 

F p 

Cacna1c CeA 14.48 ± 0.8 14.66 ± 0.6 [1,8]0.03 n.s. 

MeA 15.54 ± 1.0 14.77 ± 0.7 [1,8]0.39 n.s. 

BLA 15.64 ± 1.2 13.52 ± 0.5 [1,8]2.77 n.s. 

CA1 12.21 ± 0.7 14.29 ± 1.0 [1,8]2.89 n.s. 

CA3 57.5 ± 0.8 56.92 ± 0.4 [1,8]0.49 n.s. 

DG 52.24 ± 1.9 59.49 ± 3.7 [1,8]3.04 n.s. 

Cacna1d CeA 14.74 ± 0.2 13.73 ± 0.6 [1,5]3.17 n.s. 

MeA 10.79 ± 0.7 12.24 ± 0.7 [1,5]1.89 n.s. 

BLA 12.74 ± 0.4 12.47 ± 0.2 [1,6]0.20 n.s. 

CA1 18.60 ± 1.2 15.68 ± 0.8 [1,6]2.84 n.s. 

CA3 18.66 ± 0.5 18.51 ± 1.0 [1,6]0.02 n.s. 

DG 64.52 ± 1.4 59.78 ± 0.2 [1,6]6.04 n.s. 
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Suppl. Table 8. Cacna1c and Cacna1d mRNA in alcohol dependent and non-dependent 

rats with or without 3 weeks of free access to alcohol. Data are expressed as nCi/g, n=5-

7/group. Cingulate cortex, Cing; Prelimbic cortex, PreL; Infralimbic cortex, IL; caudate 

putamen, CPu; nucleus accumbens core, AcbC; nucleus accumbens shell, AcbS; Central 

amygdala, CeA; medial amygdala, MeA; basolateral amygdala, BLA; hippocampal formation 

[dentate gyrus, DG;and Cornus Ammon (CA) regions CA1, CA3, and CA4]. 

mRNA Region Control 

(nCi/g; mean ± 

SEM) 

Control + 

Drinking 

(nCi/g; mean ± 

SEM) 

Alc. dep. 

(nCi/g; mean ± 

SEM) 

Alc. dep. + 

Drinking 

(nCi/g; mean ± 

SEM) 

Cacna1c Cing 2.01 ± 0.3 0.58 ± 0.1 1.96 ± 0.1 0.66 ± 0.1 

PreL 2.77 ± 0.3 1.06 ± 0.1 3.54 ± 0.2 1.56 ± 0.2 

IL 4.41 ± 0.3 2.61 ± 0.3 3.84 ± 0.2 2.74 ± 0.2 

CPu 0.93 ± 0.2 0.88 ± 0.1 0.88 ± 0.1 1.30 ± 0.1 

AcbC 1.62 ± 0.2 0.82 ± 0.1 1.34 ± 0.2 0.92 ± 0.1 

AcbS 6.03 ± 0.8 3.77 ± 0.2 6.18 ± 0.2 3.88 ± 0.3 

CeA 3.56 ± 0.1 3.81 ± 0.4 4.97 ± 0.3 2.76 ± 0.2 

MeA 4.82 ± 0.4 4.78 ± 0.2 6.15 ± 0.3 3.55 ± 0.2 

BLA 2.96 ± 0.2 3.76 ± 0.2 5.04 ± 0.3 2.61 ± 0.4 

CA1 1.68 ± 0.1 2.38 ± 0.3 2.95 ± 0.2 2.27 ± 0.2 

CA3 15.65 ± 0.5 18.68 ± 0.8 19.44 ± 0.8 13.83 ± 0.8 

DG 16.39 ± 0.6 15.64 ± 0.4 18.29 ± 0.6 11.40 ± 1.0 

 

  



167 
 

Suppl. Table 8. (continued) 

mRNA Region Control 

(nCi/g; mean ± 

SEM) 

Control + 

Drinking 

(nCi/g; mean ± 

SEM) 

Alc. dep. 

(nCi/g; mean ± 

SEM) 

Alc. dep. + 

Drinking 

(nCi/g; mean ± 

SEM) 

Cacna1d Cing 7.89 ± 0.5 9.61 ± 0.4 8.36 ± 0.3 9.82 ± 0.2 

PreL 10.26 ± 0.5 11.29 ± 0.6 9.68 ± 0.2 11.81 ± 0.5 

IL 10.65 ± 0.2 12.21 ± 0.5 10.49 ± 0.5 14.19 ± 0.6 

CPu 3.87 ± 0.3 4.52 ± 0.2 3.77 ± 0.1 4.63 ± 0.2 

AcbC 5.14 ± 0.2 5.64 ± 0.3 5.23 ± 0.1 6.96 ± 0.1 

AcbS 7.84 ± 0.3 8.67 ± 0.4 7.85 ± 0.2 10.57 ± 0.8 

CeA 9.62 ± 0.7 10.99 ± 0.7 8.17 ± 0.3 10.51 ± 0.3 

MeA 7.98 ± 0.4 9.87 ± 0.3 8.15 ± 0.2 8.75 ± 0.5 

BLA 8.93 ± 0.2 10.23 ± 0.7 8.72 ± 0.2 6.92 ± 0.4 

CA1 11.71 ± 0.2 14.75 ± 0.8 12.03 ± 0.7 14.11 ± 0.9 

CA3 11.82 ± 0.3 13.44 ± 0.5 13.27 ± 0.2 13.64 ± 0.8 

DG 40.61 ± 2.7 50.61 ± 4.5 39.67 ± 3.3 55.68 ± 4.6 
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Suppl. Table 9. Cacna1c and Cacna1d mRNA in alcohol dependent and non-dependent 

rats with or without 3 weeks of free access to alcohol. Statistical analysis was performed as 

two-way ANOVA for Treatment (alcohol vapor exposure vs. air exposure) and Access to 

alcohol (3 weeks of freely available alcohol v.s no access) followed by Bonferroni’s 

correction; n=5-7/group. p values: *p<0.05; **p<0.01; ***p<0.001. Central amygdala (CeA), 

medial amygdala (MeA), basolateral amygdala (BLA), hippocampal formation [dentate gyrus 

(DG) and Cornus Ammon (CA) regions CA1 and CA3]. 

mRNA Region Treatment Access to alcohol Treatment*Access 

  F p F p F p 

Cacna1c Cing [1,21]0.01 n.s. [1,21]90.57 0.0000*** [1,21]0.21 n.s. 

PreL [1,22]8.52 n.s. [1,22]72.35 0.0000*** [1,22]0.41 n.s. 

IL [1,18]0.78 n.s. [1,18]32.39 0.0002*** [1,18]1.92 n.s. 

CPu [1,22]1.95 n.s. [1,22]2.00 n.s. [1,22]3.26 n.s. 

AcbC [1,22]0.27 n.s. [1,22]13.26 0.0144* [1,22]1.29 n.s. 

AcbS [1,23]0.08 n.s. [1,23]24.80 0.0005*** [1,23]0.00 n.s. 

CeA [1,23]0.46 n.s. [1,23]13,51 0.0075** [1,23]21.11 0.0008*** 

MeA [1,21]0.03 n.s. [1,21]19.16 0.0016** [1,21]18.05 0.0022** 

BLA [1,23]2.82 n.s. [1,23]8.62 0.0445* [1,23]33.90 0.0000*** 

CA1 [1,21]7.86 n.s. [1,21]0.01 n.s. [1,21]11.28 0.0179* 

CA3 [1,22]0.56 n.s. [1,22]3.39 n.s. [1,22]37.99 0.0000*** 

DG [1,22]2.92 n.s. [1,22]31.17 0.0001 *** [1,22]20.15 0.0011** 
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Suppl. Table 9. (continued) 

mRNA Region Treatment Access to alcohol Treatment*Access 

  F p F p F p 

Cacna1d Cing [1,23]0.77 n.s. [1,23]16.84 0.00434** [1,23]0.11 n.s. 

PreL [1,22]0.01 n.s. [1,22]11.89 0.02294* [1,22]1.45 n.s. 

IL [1,22]3.87 n.s. [1,22]32.52 0.0001*** [1,22]5.44 n.s. 

CPu [1,24]0.00 n.s. [1,24]13.12 0.01359* [1,24]0.25 n.s. 

AcbC [1,23]11.83 0.02238* [1,23]29.58 0.0002*** [1,23]8.95 n.s. 

AcbS [1,24]0.07 n.s. [1,24]12.35 0.01776* [1,24]3.50 n.s. 

CeA [1,23]2.95 n.s. [1,23]10.96 0.0183* [1,23]0.74 n.s. 

MeA [1,23]1.38 n.s. [1,23]9.39 0.0329* [1,23]2.51 n.s. 

BLA [1,22]14.3 0.0062** [1,22]0.30 n.s. [1,22]11.07 0.0184* 

CA1 [1,21]0.05 n.s. [1,21]13.16 0.0095** [1,21]0.45 n.s. 

CA3 [1,20]2.16 n.s. [1,20]3.16 n.s. [1,20]1.22 n.s. 

DG [1,22]0.28 n.s. [1,22]11.13 0.0180* [1,22]0.60 n.s. 
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Suppl. Table 10. Cacna1c mRNA expression in alcohol dependent rats after 4 weeks or 7 

weeks of alcohol vapor exposure and 3 weeks of abstinence. Values are expressed in nCi/g, 

n=5-8/group. Central amygdala (CeA), medial amygdala (MeA), basolateral amygdala 

(BLA), hippocampal formation [dentate gyrus (DG) and Cornus Ammon (CA) regions CA1 

and CA3]. 

 

mRNA Region Control 

(nCi/g; mean ± 

SEM) 

4 weeks exposed 

(nCi/g; mean ± 

SEM) 

7 weeks exposed 

(nCi/g; mean ± 

SEM) 

Cacna1c CeA 12.45 ± 0.4 23.03 ± 1.4 16.00 ± 0.6 

MeA 11.66 ± 0.4 23.24 ± 1.4 14.59 ± 1.1 

BLA 11.86 ± 0.4 18.99 ± 0.6 13.76 ± 0.6 

CA1 7.54 ± 0.1 15.56 ± 1.9 13.34 ± 1.0 

CA3 49.60 ± 1.7 70.91 ± 1.6 62.52 ± 2.5 

DG 49.64 ± 0.5 63.83 ± 1.7 54.83 ± 3.1 

 

 

Suppl. Table 11. Crhr1 mRNA expression in alcohol dependent rats after 4 weeks or 7 

weeks of alcohol vapor exposure and 3 weeks of abstinence. Values are expressed in nCi/g, 

n=3-7/group. Central amygdala (CeA), medial amygdala (MeA), basolateral amygdala 

(BLA). 

mRNA Region Control 4 

weeks 

(nCi/g; mean ± 

SEM) 

4 weeks 

exposed 

(nCi/g; mean ± 

SEM) 

Controls 7 

weeks  

(nCi/g; mean ± 

SEM) 

7 weeks 

exposed  

(nCi/g; mean 

± SEM) 

Crhr1 CeA 2.29 ±0.2 2.59 ± 0.3 3.47 ± 0.2 4.22 ± 0.3 

MeA 2.31 ± 0.1 3.05 ± 0.2 3.44 ± 0.2 5.02 ± 0.3 

BLA 4.28 ± 0.3 5.22 ± 0.4 6.23 ± 0.3 8.45 ± 0.6 
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Suppl. Table 12. Cacna1c and Cacna1d mRNA expression in Wistar rats exposed to 1 h 

of restraint stress. Statistical analysis was performed by region-wise one-way ANOVA 

followed by Bonferroni’s correction; n.s. = not significant; *p<0.05; overall effect, n=4-

6/group. Central amygdala (CeA), medial amygdala (MeA), basolateral amygdala (BLA), 

hippocampal formation [dentate gyrus (DG) and Cornus Ammon (CA) regions CA1 and 

CA3]. 

mRNA Region Non-stressed 

(nCi/g; mean ± 

SEM) 

Stressed 

(nCi/g; mean ± 

SEM) 

F p 

Cacna1c Cing 11.75 ± 0.3 11.70 ± 1.1 [1,8]0.00 n.s. 

PreL 17.56 ± 0.4 18.84 ± 0.7 [1,8]3.31 n.s. 

IL 21.00 ± 0.4 23.19 ± 0.8 [1,7]7.90 n.s. 

CPu 16.98 ± 0.5 18.12 ± 0.5 [1,10]2.31 n.s. 

AcbC 20.04 ± 0.3 15.92 ± 0.5 [1,10]45.09 0.00053*** 

AcbS 21.84 ± 0.5 19.40 ± 0.3 [1,10]15.52 0.02775* 

CeA 15.46 ± 0.3 14.79 ± 0.4 [1,10]2.05 n.s. 

MeA 17.99 ± 0.3 15.64 ± 0.5 [1,10]15.08 0.03238* 

BLA 13.48 ± 0.2 13.94 ± 0.2 [1,10]2.85 n.s. 

CA1 9.92 ± 0.6 11.18 ± 0.5 [1,4]2.34 n.s. 

CA3 78.55 ± 1.6 74.45 ± 2.05 [1,10]2.47 n.s. 

CA4 59.84 ± 1.8 58.18 ± 1.5 [1,10]0.52 n.s. 

DG 66.01 ± 1.4 67.1 ± 1.7 [1,9]0.24 n.s. 
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Suppl. Table 12. (continued) 

mRNA Region Non-stressed 

(nCi/g; mean ± 

SEM) 

Stressed 

(nCi/g; mean ± 

SEM) 

F p 

Cacna1d Cing 34.95 ± 0.8 31.80 ± 0.7 [1,10]8.88 n.s. 

PreL 40.87 ± 0.8 36.21 ± 0.5 [1,10]24.68 0.00563** 

IL 42.09 ± 1.0 39.53 ± 0.1 [1,8]4.36 n.s. 

CPu 13.53 ± 0.3 16.30 ± 0.4 [1,10]31.03 0.00237** 

AcbC 21.69 ± 0.9 20.66 ± 0.4 [1,10]0.98 n.s. 

AcbS 27.96 ± 0.7 226.40 ± 0.9 [1,10]1.77 n.s. 

CeA 32.79 ± 0.7 36.19 ± 0.8 [1,10]9.9 n.s. 

MeA 35.57 ± 1.1 32.18 ± 0.3 [1,10]9.32 n.s. 

BLA 30.09 ± 0.2 31.86 ± 0.6 [1,10]7.34 n.s. 

CA1 42.23 ± 0.7 45.86 ± 0.5 [1,10]18.48 0.01099* 

CA3 51.5 ± 0.4 56.86 ± 2.1 [1,9]7.72 n.s. 

CA4 52.19 ± 1.3 53.96 ± 2.0 [1,10]0.54 n.s. 

DG 136.28 ± 2.6 151.69 ± 2.5 [1,10]17.8 0.01239* 
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Suppl. Table 13. Cacna1c and Cacna1d mRNA expression levels at different time points in 

forebrain regions of C57/BL6 mice. Nicotine treatment: 0.175 mg/kg, IP; Saline treatment: 

0.9% saline IP. Data are expressed as nCi/g (means ± SEM), n = 4-8/group. 

 

  

  1d after a single injection 1d after chronic 

treatment 

7d after chronic 

treatment 

mRNA Region Saline 

(nCi/g; 

mean ± 

SEM) 

Nicotine 

(nCi/g; 

mean ± 

SEM) 

Saline 

(nCi/g; 

mean ± 

SEM) 

Nicotine 

(nCi/g; 

mean ± 

SEM) 

Saline 

(nCi/g; 

mean ± 

SEM) 

Nicotine 

(nCi/g; 

mean ± 

SEM) 

Cacna1c Cing 7.3 ± 0.2 5.7 ± 0.6 9.6 ± 0.1 8.4 ± 0.2 8.5 ± 0.2 8.4 ± 0.2 

PreL 11.4 ± 0.4 11.0 ± 0.2 15.7 ± 0.4 13.1 ± 0.4 11.7 ± 0.3 14.9 ± 0.2 

IL 8.9 ± 0.3 6.6 ± 0.3 12.6 ± 0.1 12.4 ± 0.3 9.8 ± 0.2 11.6 ± 0.3 

OFC 8.7 ± 0.3 8.8 ± 0.1 11.2 ± 0.2 10.2 ± 0.3 9.1 ± 0.1 11.2 ± 0.3 

CPu 11.3 ± 0.2 9.6 ± 0.2 12.8 ± 0.2 11.7 ± 0.1 10.9 ± 0.1 12.6 ± 0.2 

AcbC 10.7 ± 0.2 9.7 ± 0.4 13.7 ± 0.2 13.8 ± 0.4 10.3 ± 0.3 11.5 ± 0.1 

AcbS 11.7 ± 0.5 13.4 ± 0.2 18.9 ± 0.2 19.4 ± 0.5 13.7 ± 0.5 17.8 ± 0.2 

VTA 10.1 ± 0.2 8.9 ± 0.3 11.2 ±0.3 9.5 ± 0.2 9.5 ± 0.2 10.7 ± 0.4 

CA1 14.5 ± 0.3 12.6 ± 0.4 17.4 ± 0.6 17.7 ± 0.3 13.4 ± 0.2 16.7 ± 0.4 

CA3 59.3 ± 1.0 63.8 ± 0.7 68.3 ± 1.0 56.6 ± 0.6 59.6 ± 0.4 68.0 ± 1.0 

DG 46.0 ± 0.8 43.8 ± 0.6 54.6 ± 0.3 51.7 ± 0.5 41.3 ± 1.3 52.5 ± 0.8 

Cacna1d Cing 9.0 ± 0.8 13.7 ± 0.1 12.5 ± 0.2 13.3 ± 0.7 16.5 ± 0.3 16.4 ± 0.3 

PreL 13.6 ± 1.2 16.6 ± 0.3 17.2 ± 0.6 16.5 ± 0.8 18.1 ± 0.2 19.4 ± 0.1 

IL 8.8 ± 0.5 10.7 ± 0.2 11.7 ± 0.3 12.0 ± 0.4 14.2 ± 0.1 12.7 ± 0.4 

OFC 9.3 ± 0.3 14.8 ± 0.3 15.6 ± 0.6 14.0 ± 0.5 16.4 ± 0.5 17.1 ± 0.4 

CPu 7.7 ± 0.4 9.0 ± 0.2 9.4 ± 0.1 8.5 ± 0.3 9.4 ± 0.3 10.7 ± 0.2 

AcbC 10.3 ± 0.2 10.8 ± 0.1 10.9 ± 0.2 11.2 ± 0.3 11.6 ± 0.2 12.2 ± 0.3 

AcbS 11.8 ± 0.5 17.1 ± 0.2 16.6 ± 0.4 15.0 ± 0.5 16.9 ± 0.2 17.3 ± 0.2 

VTA 11.1 ± 0.9 11.8 ± 0.4 11.2 ± 0.5 11.1 ± 0.4 12.7 ± 0.2 13.1 ± 0.4 

CA1 24.1 ± 1.3 27.5 ± 0.4 26.4 ± 0.3 25.6 ± 0.3 31.7 ± 0.3 33.5 ± 0.5 

CA3 33.2 ± 2.1 36.2 ± 0.3 33.4 ± 0.2 32.2 ± 0.3 36.4 ± 0.2 36.8 ± 0.3 

DG 48.9 ± 3.7 52.9 ± 0.4 48.9 ± 0.8 53.9 ± 1.0 55.7 ± 0.4 55.9 ± 0.3 



174 
 

Suppl. Table 14. Regions with statistically significant effects on Cacna1c and Cacna1d 

mRNA expression 1d after a single nicotine injection (0.175 mg/kg, IP), or 1d and 7d after 

chronic nicotine treatment (14 daily injections of 0.175 mg/kg, IP). Control mice received 14 

daily vehicle (0.9% saline IP) injections followed by a 1d or 7d abstinence period. Statistical 

analysis was performed by region-wise one-way ANOVA in brain regions associated with the 

reward circuitry. Bonferroni’s corrected p-values: *p<0.05; **p<0.01; ***p<0.001; n.s. = not 

significant; n=4-8/group. 

 

  

  1d after a single injection 1d after chronic 

treatment 

7d after chronic 

treatment 

mRNA Region F P F P F P 

Cacna1c Cing [1,13]7.0 0.020236 [1,14]13.0 0.002834* [1,13]1.4 n.s. 

PreL [1,11]1.8 n.s. [1,14]18.3 0.000766** [1,13]43.1 0.000018*** 

IL [1,11]34.3 0.000110** [1,14]0.1 n.s. [1,13]20.5 0.000563** 

OFC [1,10]0.3 n.s. [1,14]6.2 0.026205 [1,12]38.4 0.000046*** 

CPu [1,12]5.2 0.041982 [1,14]17.5 0.000927* [1,13]50.2 0.000008*** 

AcbC [1,12]3.8 n.s. [1,11]0.0 n.s. [1,13]10.2 0.006983 

AcbS [1,9]10.9 0.009238 [1,12]0.2 n.s. [1,10]39.0 0.000096** 

VTA [1,10]5.1 0.047360 [1,11]21.6 0.000704** [1,13]5.5 0.035111 

CA1 [1,10]15.7 0.002667* [1,9]0.2 n.s. [1,12]32.6 0.000098** 

CA3 [1,10]13.1 0.004719 [1,12]87.4 0.000001*** [1,11]63.8 0.000007*** 

DG [1,6]5.1 n.s. [1,10]6.7 0.026866 [1,10]58.9 0.000017*** 

Cacna1d Cing [1,11]52.4 0.000017*** [1,11]0.2 n.s. [1,14]0.1 n.s. 

PreL [1,13]4.8 0.047064 [1,13]0.4 n.s. [1,14]5.2 0.039285 

IL [1,13]6.2 0.026685 [1,12]0.4 n.s. [1,12]1.9 n.s. 

OFC [1,12]37.1 0.000054*** [1,13]0.5 n.s. [1,14]0.2 n.s. 

CPu [1,14]12.1 0.003644* [1,13]5.4 0.037387 [1,13]12.4 0.003725* 

AcbC [1,12]6.2 0.028847 [1,12]0.7 n.s. [1,13]2.9 n.s. 

AcbS [1,10]154.8 0.000000*** [1,11]9.0 0.012195 [1,14]0.7 n.s. 

VTA [1,9]1.3 n.s. [1,10]0.0 n.s. [1,12]3.2 n.s. 

CA1 [1,9]10.9 0.009204 [1,11]3.5 n.s. [1,14]5.1 0.041224 

CA3 [1,12]1.5 n.s. [1,11]12.4 0.004820 [1,14]0.6 n.s. 

DG [1,13]1.9 n.s. [1,12]17.9 0.001168* [1,14]0.0 n.s. 
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Suppl. Table 15. CACNA1C and CACNA1D mRNA levels in postmortem samples of 

alcoholic patients and control subjects were determined by qRT-PCR. dCt values 

(CtCACNA1C/D – CtGAPDH) and CtGAPDH values are shown as means ± SEM. CtGAPDH values do 

not differ significantly between groups. 

mRNA Region Genotype Control  

(dCt; mean ± 

SEM) (n) 

Alcoholic  

(dCt; mean ± 

SEM) (n) 

Intoxicated 

alcoholic  

(dCt; mean ± 

SEM) (n) 

CACNA1C VS GG 6.71 ± 0.1 (27) 6.62 ± 0.2 (15) 6.75 ± 0.3 (5) 

AG 6.77 ± 0.1 (16) 7.02 ± 0.3 (9) 7.01 ± 0.1 (9) 

AA 6.20 ± 0.2 (6) 5.18 ± 1.5 (4) -  

NC GG 6.75 ± 0.2 (24) 6.71 ± 0.3 (16) 7.44 ± 0.2 (5) 

AG 7.20 ± 0.2 (15) 7.80 ± 0.4 (11) 7.51 ± 0.2 (10) 

AA 6.87 ± 0.3 (6) 7.62 ± 0.3 (5) - 

CACNA1D VS GG 5.25 ± 0.1 (27) 5.24 ± 0.2 (15) 5.71 ± 0.2 (5) 

AG 5.52 ± 0.1 (16) 5.63 ± 0.2 (9) 5.86 ± 0.1 (9) 

AA 5.06 ± 0.1 (6) 3.81 ± 1.6 (4) - 

NC GG 5.66 ± 0.2 (24) 5.50 ± 0.3 (16) 5.98 ± 0.2 (5) 

AG 6.01 ± 0.1 (15) 6.12 ± 0.3 (11) 6.11 ± 0.1 (10) 

AA 5.72 ± 0.2 (6) 6.05 ± 0.1 (5) - 

mRNA Region Genotype Control  

(Ct; mean ± 

SEM) (n) 

Alcoholic  

(Ct; mean ± 

SEM) (n) 

Intoxicated 

alcoholic  

(Ct; mean ± 

SEM) (n) 

GAPDH VS GG 19.37 ± 0.5 (27) 19.86 ± 0.7 (15) 19.01 ± 0.4 (5) 

AG 18.72 ± 0.2 (16) 19.72 ± 0.7 (9) 18.52 ± 0.1 (9) 

AA 20.90 ± 1.3 (6) 20.22 ± 1.7 (4) - 

NC GG 19.70 ± 0.5 (24) 20.35 ± 1.0 (16) 18.95 ± 0.3 (5) 

AG 18.50 ± 0.2 (15) 20.09 ± 0.9 (11) 18.61 ± 0.2 (10) 

AA 19.60 ± 0.8 (6) 18.87 ± 0.5 (5) - 
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Suppl. Table 16. Quantitative RT-PCR for CACNA1C and CACNA1D in postmortem 

brain samples of schizophrenia patients and controls. GAPDH was used as normalizer to 

determine dCt values, statistical analysis was performed by region-wise one-way ANOVA. 

*p<0.05, **p<0.01, ***p<0.001; n.s. = not significant; n=5-7/group. 

 

  

 

 

mRNA 

 

 

Region 

Controls 

(dCt; mean ± 

SEM) 

Schizophrenia 

patients (dCt; 

mean ± SEM) 

 

 

ddCt 

 

 

F 

 

 

p 

CACNA1C BA10 6.000 ± 0.09 6.485 ± 0.12 -0.485 [1,10]8.518 0.015337* 

BA21 6.684 ± 0.26 8.143 ± 0.18 -1.459 [1,10]22.661 0.000768*** 

NC 8.105 ± 0.31 8.147 ± 0.18 -0.042 [1,10]0.016 n.s. 

Vermis 6.801 ± 0.11 6.803 ± 0.21 -0.002 [1,9]0.000 n.s. 

CACNA1D BA10 5.257 ± 0.12 5.900 ± 0.14 -0.643 [1,10]10.780 0.008242** 

BA21 4.354 ± 0.16 5.155 ± 0.18 -0.800 [1,10]10.181 0.009641** 

NC 6.104 ± 0.04 5.979 ± 0.11 0.125 [1,10]0.837 n.s. 

Vermis 4.554 ± 0.16 4.527 ± 0.14 0.027 [1,9]0.014 n.s. 
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Suppl. Table 17. Cacna1c and Cacna1d mRNA were measured in rats treated with 

haloperidol or clozapine to determine whether treatment in human postmortem samples 

could confound the results. dCt values of Cacna1c and Cacna1d mRNA are given as mean ± 

SEM. Gapdh was used as internal normalizer, Ct values are given below. N=8-9/group. 

 

mRNA 

 

Region 

Controls  

(dCt; mean ± SEM) 

Haloperidol  

(dCt; mean ± SEM) 

Clozapine  

(dCt; mean ± SEM) 

Cacna1c Cing 7.67 ± 0.2 7.34 ± 0.1 7.27 ± 0.1 

PreL 7.51 ± 0.1 7.46 ± 0.1 7.54 ± 0.1 

CPu 7.89 ± 0.1 8.10 ± 0.1 8.23 ± 0.1 

CA1 8.01 ± 0.1 8.33 ± 0.2 8.05 ± 0.1 

CA3 6.83 ± 0.1 6.97 ± 0.1 6.97 ± 0.1 

DG 7.68 ± 0.1 7.61 ± 0.2 7.46 ± 0.1 

Cacna1d Cing 11.84 ± 0.2 12.06 ± 0.2 11.88 ± 0.4 

PreL 11.90 ± 0.1 12.05 ± 0.1 11.57 ± 0.2 

CPu 12.23 ± 0.2 12.10 ± 0.1 12.04 ± 0.1 

CA1 11.96 ± 0.2 12.40 ± 0.1 11.59 ± 0.2 

CA3 12.43 ± 0.2 12.83 ± 0.2 12.91 ± 0.2 

DG 10.96 ± 0.1 11.17 ± 0.3 10.88 ± 0.3 

  

Region 

Controls  

(Ct; mean ± SEM) 

Haloperidol  

(Ct; mean ± SEM) 

Clozapine  

(Ct; mean ± SEM) 

Gapdh Cing 19.85 ± 0.2 20.82 ± 0.9 20.16 ± 0.2 

PreL 19.81 ± 0.2 21.90 ± 2.3 20.62 ± 0.9 

CPu 19.69 ± 0.2 19.35 ± 0.2 19.65 ± 0.1 

CA1 19.73 ± 0.3 19.78 ± 0.2 20.01 ± 0.1 

CA3 19.82 ± 0.2 19.88 ± 0.3 19.67 ± 0.2 

DG 20.07 ± 0.1 19.71 ± 0.3 20.15 ± 0.2 
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Suppl. Table 18. CACNA1C and CACNA1D mRNA levels in human postmortem samples 

of suicide completers and controls were determined by qRT-PCR. dCt values (CtCACNA1C/D 

– CtGAPDH) and CtGAPDH values are shown as means ± SEM. CtGAPDH do not differ significantly 

between groups and are listed below. 

mRNA Genotype Female 

control (dCt; 

mean ± SEM) 

Male control 

(dCt; mean ± 

SEM) 

Female 

suicide (dCt; 

mean ± SEM) 

Male suicide 

(dCt; 

mean ± 

SEM) 

CACNA1C GG 6.34 ± 0.2 

(10) 

5.97 ± 0.1 

(17) 

6.02 ± 0.3 (3) 5.67 ± 0.1 

(4) 

AG 6.11 ± 0.2 

(12) 

5.77 ± 0.2 

(14) 

6.27 ± 0.2 (5) 5.91 ± 0.1 

(6) 

AA 5.56 (1) 5.85 ± 0.3 (3) - 5.64 ± 0.4 

(2) 

CACNA1D GG 5.44 ± 0.2 (4) 4.64 ± 0.1 

(17) 

5.31 ± 0.4 (3) 4.28 ± 0.3 

(5) 

AG 4.51 ± 0.2 

(17) 

4.43 ± 0.2 

(10) 

5.03 ± 0.3 (3) 5.12 ± 0.3 

(2) 

AA 4.14 (1) 4.33 ± 0.3 (4) - 4.55 ± 0.8 

(2) 

 Genotype Female 

control (Ct; 

mean ± SEM) 

Male control 

(Ct; mean ± 

SEM) 

Female 

suicide (Ct; 

mean ± SEM) 

Male suicide 

(Ct; 

mean ± 

SEM) 

GAPDH GG 18.90 ± 0.4 

(10) 

19.27 ± 0.2 

(20) 

20.04 ± 0.4 

(3) 

19.60 ± 0.6 

(6) 

AG 19.64 ± 0.2 

(20) 

19.31 ± 0.3 

(15) 

19.34 ± 0.4 

(7) 

18.43 ± 0.3 

(6) 

AA 20.01 (1) 19.81 ± 0.8 

(6) 

- 18.88 ± 0.5 

(2) 

 

  



179 
 

Corrigendum 

 

Figure 8 on page 31 is not entirely correct and should be replaced by the following figure: 

 

Figure 37. LTCC signaling regulates gene expression. The RAS-ERK-RSK/MSK pathway is activated 

upon LTCC stimulation. Calcium influx through the LTCCs additionally triggers signaling cascades. 

CaMKK activates CaMKII and CaMKIV, which then propagates the signal into the nucleus to change 

transcription of various genes. The calcium dependent phosphatase calcineurin and the calcium-sensitive 

adenylate cyclase (AC), which acts via protein kinase A (PKA) are also activated by calcium influx to modulate 

gene expression. CaMK, Ca
2+

/calmodulin-dependent protein kinase; CBP, CREB-binding protein; CREB, cAMP 

regulatory element-binding protein; MEK, mitogen-activated protein kinase kinase; MSK, mitogen and stress 

activated kinase; RSK, ribosomal S6 kinase. Adapted from (Ebert et al, 2013). 

 


