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1
Introduction

1.1 Nitric oxide and vascular homeostasis

A functional endothelium is required for a healthy cardiovascular system. The endothe-

lium plays a key role in vascular homeostasis both as a sensor of mechanical and biochem-

ical stimuli as well as a source of pleiotropic vasoactive autacoids. In non-inflamed tissue,

the endothelium maintains blood fluidity, regulates vascular tone by coordinating the

balance between vasoconstriction and vasodilation, controls vascular permeability and

preserves the anti-inflammatory environment within the vessel wall. Among the variety

of messengers released by the endothelium, nitric oxide (NO) has been recognized as

the principal mediator of these regulatory properties, thereby maintaining vessel wall

homeostasis.

NO is the primary physiological vasodilator, released by endothelial cells (ECs) in re-

sponse to mechanostimulation and biochemical stimuli to regulate blood flow, blood

pressure and tissue oxygen supply (for review, see Pober and Sessa (2007); Förstermann

and Sessa (2012)). From ECs NO di↵uses to the underlying smooth muscle cells (SMCs)

where it acts in various ways to promote smooth muscle relaxation. In SMCs, NO

binds to soluble guanylyl cyclase causing a rapid rise in cyclic guanosine monophosphate

(cGMP) levels. This activates protein kinase G, which in turn causes sequestration of

intracellular calcium (Ca2+) as well as activation of potassium channels leading to mem-

brane hyperpolarization, hence closure of voltage-dependent Ca2+ channels, and thus

relaxation.

Endothelial NO is not only a potent vasodilator but also an e↵ective anti-thrombotic

and anti-inflammatory agent (for review, see Förstermann and Sessa (2012)). Through

cGMP-dependent inhibition of Ca2+ influx and release from intracellular stores, en-

dogenous NO can also inhibit platelet adhesion and aggregation, thus maintaining an

1



CHAPTER 1. Introduction

anti-coagulant surface of blood vessels (reviewed by Pober and Sessa (2007)). In addi-

tion, NO controls the expression of genes involved in the development of atherosclerosis

and by that contributes to quiescence of the resting endothelium. NO inhibits the

expression of chemoattractant protein MCP-1 and various surface adhesion molecules,

thereby preventing leukocyte adhesion to the endothelium and transmigration into the

arterial vessel wall. This preserves the anti-inflammatory state of the blood vessel and

confers protection against early phases of atherogenesis. Endothelium-derived NO pre-

vents oxidative modification of low-density lipoprotein cholesterol in the arterial vessel

wall, further contributing to its atheroprotective properties. Finally, endogenous NO

has also been documented to exert anti-proliferative and anti-migratory e↵ects on vas-

cular SMCs, thereby protecting the vessel wall against vascular lesion formation and

neointimal hyperplasia (Jeremy et al. (1999)).

1.1.1 The NO synthases

NO is generated in a vast number of cell types by the three mammalian isoforms of

the enzyme NO synthase (NOS), i.e., constitutive neuronal NOS (nNOS/NOS-1), in-

ducible NOS (iNOS/NOS-2) and endothelial NOS (eNOS/NOS-3). Under physiologic

conditions, however, NOS-3 is the primary source of EC-derived NO. All three isozymes

utilize the amino acid L-arginine as a substrate, and molecular oxygen and reduced

nicotinamid adenine dinucleotide phosphate (NADPH) as co-substrates. NOS-3 is a ho-

modimeric protein with each monomer consisting of an N-terminal oxygenase domain,

which contains binding sites for heme, L-arginine and the co-factor, tetrahydrobiopterin

(BH4), and a reductase domain with binding sites for NADPH, flavin mononucleotide

(FMN), flavin adenine-dinucleotide (FAD) and calmodulin (for review, see Fleming

(2010); Förstermann and Sessa (2012)).

NO is enzymatically synthesised through the sequential oxidation of L-arginine to yield

equimolar amounts of NO and L-citrulline. During NO synthesis, NADPH-derived elec-

trons are transferred via the flavins (FAD and FMN) in the reductase domain to the heme

located in the oxygenase domain. At the heme center, the electrons are used to reduce

and activate molecular oxygen, which subsequently oxidizes L-arginine to L-citrulline

and NO. Binding of calmodulin is generally accepted to activate the stepwise synthe-

sis of NO by facilitating electron transfer directed from the reductase to the oxygenase

domain (reviewed by Fleming (2010); Förstermann and Sessa (2012)).

1.1.2 Regulation of NOS-3 activity

The dynamic adaptation of both NOS-3 activity and expression to the demand is pivotal

for the maintenance of vascular tone and the anti-inflammatory state of the endothelium.

Although NOS-3 is constitutively expressed, basal synthesis of NO is greatly enhanced
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by receptor-dependent agonists such as bradykinin or histamine, as well as in response

to hypoxia, an acute increase in shear stress, and other receptor-independent stimuli.

An increase in the intracellular concentration of Ca2+ is the common denominator for

endothelial NO production as NOS-3 activity is strongly dependent on Ca2+-activated

calmodulin. Elevated intracellular Ca2+ and its subsequent activation of calmodulin

bound to the NOS-3 enzyme (Hemmens and Mayer (1998)) in response to receptor-

dependent agonist stimulation disrupts an auto-inhibitory loop (Rafikov et al. (2011))

and facilitates the electron transfer from NADPH in the reductase domain to the heme

in the oxygenase domain, hence driving the synthesis of NO.

However, NOS-3 can also be activated by stimuli that do not produce a sustained in-

crease in intracellular Ca2+, the best characterized of which is fluid shear stress (FSS)

that is generated by the viscous drag of blood flowing over the EC surface. The FSS-

driven phosphorylation of multiple serine residues augments the catalytic e�ciency and

the sensitivity of NOS-3 to Ca2+ leading to sustained activity of the enzyme and NO

formation at resting Ca2+ levels (reviewed by Fleming (2010); Förstermann and Sessa

(2012)).

1.1.3 Shear stress-dependent transcriptional regulation of NOS-3 ex-

pression

Besides regulating the activity of NOS-3, blood flow-generated FSS and in particular

unidirectional FSS acts as the principal physiologic determinant of NOS3 gene expression

in ECs. In this context, it is noteworthy to emphasize that unidirectional shear stress

maintains rather than up-regulates NOS3 expression while NOS-3 activity is rapidly

altered in response to, e.g. an acute increase in unidirectional shear stress.

The signaling pathways involved in the regulation of NOS-3 expression are relatively

complex, but important roles have been ascribed to the transcription factors (TFs) nu-

clear factor-kappa B (NF-B) and Krüppel-like factor-2 (KLF-2) in mediating the shear

stress-driven increase in NOS3 transcription (for review, see Balligand et al. (2009)).

Nonetheless, the precise temporal and spatial transcriptional mechanism(s) by which

unidirectional shear stress regulates NOS3 expression is still largely unknown. In fact,

NF-B has been demonstrated to up-regulate NOS3 gene transcription only upon acute

short-term exposure to FSS (i.e., an experimental setting in which ECs cultured under

static conditions are suddenly exposed to FSS for seconds to min, generally for <24

hours), which mimics the in vivo response of injured or activated endothelium to FSS

rather than the e↵ects of physiological shear stress on the endothelium. In addition, in

vitro experiments done with short-term shear stress stimulation have led to the histor-

ical misinterpretation of the ”shear-stress-responsive element” found in the promoters

of genes induced during the acute response to shear stress (e.g., mostly genes encoding

pro-inflammatory proteins such as MCP-1 and ICAM-1), which turned out to be the
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NF-B binding site (Boon and Horrevoets (2009)). Moreover, although KLF-2 has been

postulated as the shear-stress-responsive TF eliciting NOS3 gene expression under con-

ditions of prolonged laminar flow, to date, there has been no direct demonstration of

such a KLF-2-mediated transcriptional mechanism. On the other hand, there is some

evidence for a long-term epigenetic regulation of the NOS3 gene (reviewed by Dunn

et al. (2015); Jiang et al. (2015)). It still remains elusive, however, how such a mecha-

nism could contribute to the adaptation of NOS-3 expression to transient alterations in

shear stress.

1.2 Hallmark of endothelial dysfunction is the impaired

bioavailability of NO

Disturbances in the expression and/or activity of NOS-3 may lead to inadequate NO for-

mation and endothelial dysfunction, a key event in the pathogenesis of vascular diseases

such as atherosclerosis. In this regard, atherosclerosis preferentially develops at sites

of disturbed blood flow such as bifurcations or curvatures of large conduit arteries. At

these atherosclerosis-predilection sites hemodynamics is altered in such a way that unidi-

rectional shear stress largely declines becoming oscillatory because of the disturbed flow

pattern at these sites (for review, see Cattaruzza et al. (2012); chapter 3). Consequently,

endothelial NO production is strongly diminished as both the expression and activity of

NOS-3 are chiefly dependent on the presence of a su�ciently large unidirectional shear

stress.

In addition, rhythmic distensions of the vessel wall due to augmented reflections of

the arterial pulse wave, e.g., from the protrusion of the bifurcation into the opposite

vessel wall, result in elevated cyclic stretching of the cells within the arterial vessel

wall. This in turn up-regulates the expression and activity of NADPH oxidases leading

to an increased formation of superoxide anions (O2
-) both in endothelial and smooth

muscle cells. Enhanced levels of O2
- accelerate neutralization of endothelium-derived

NO to peroxynitrite (ONOO-) and thus further reduce the bioavailability of NO in

atherosclerosis-prone regions. As a consequence, failure of the endothelium to fulfill its

homeostatic functions at areas of diminished NO bioavailability can cause permanent

pro-inflammatory alterations in the EC phenotype, collectively referred to as endothelial

dysfunction, characterized by increased expression of pro-inflammatory gene products

and an elevated permeability for leukocytes (Förstermann (2010)).

This inadequate endothelial activation promotes the accumulation of chemokines (e.g.,

monocyte chemoattractant protein-1 (MCP-1), also known as CCL-2, and CCL-5), cell

adhesion molecules (e.g., vascular cell adhesion molecule-1 (VCAM-1) and intercellular

cell adhesion molecule-1 (ICAM-1), selectins (e.g., E- and P-selectin) (for review, see
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Galkina and Ley (2007)) and pro-inflammatory cytokines (e.g., tumor necrosis factor-

alpha (TNF-↵) and interleukin-1� (IL-1�)) in ECs, facilitating the recruitment and

activation of pro-inflammatory leukocytes. Because of the marked deceleration of blood

flow velocity near arterial branch points, circulating leukocytes, mainly granulocytes,

monocytes and T cells, are able to adhere and roll over the EC surface and eventu-

ally to transmigrate into the sub-endothelial space where they initiate or exacerbate

atherosclerotic lesion formation (for review, see Cattaruzza et al. (2012), chapter 3).

1.3 Atherosclerosis

Inflammation is a hallmark of atherosclerosis and a key driving force at each stage

of disease development. Both innate and adaptive cellular components of immunity

participate in the onset and progression of atherosclerosis.

1.3.1 Role of monocytes/macrophages in atherosclerosis

Atherosclerosis results from a maladaptive inflammatory response driven by the ac-

cumulation of lipid-laden macrophages in the arterial wall (for reviews, see Moore

and Tabas (2011); Moore et al. (2013); Libby et al. (2013)). Endothelial dysfunc-

tion in atherosclerosis-prone regions confers an increased permeability to cholesterol-

rich lipoproteins, particularly low-density lipoprotein (LDL), and accumulation of ex-

tracellular matrix (ECM) proteins that facilitate the retention of these atherogenic

particles in the vessel intima (Figure 1.1). Once infiltrated into the arterial wall,

cholesterol-containing lipoproteins undergo various modifications, including oxidation,

enzymatic/non-enzymatic cleavage and aggregation, which renders them pro-inflamma-

tory and which triggers local vascular and immune cell responses. The sequestration

of lipids in the arterial wall enhances endothelial activation and further promotes the

recruitment of circulating monocytes to the vessel wall where they di↵erentiate into

macrophages (reviewed by Moore et al. (2013)). The accumulated mononuclear phago-

cytes ingest oxidized LDL and transform into cholesterol-laden foam cells that play a

central role in the formation of early plaques (i.e., fatty streaks).

Lesion macrophages have a diminished capacity to migrate and therefore fail to exit from

the inflamed plaque and resolve the ongoing inflammation in the vessel wall. Monocytes

continue to enter plaques and di↵erentiate into macrophages, thereby promoting progres-

sion of the disease from early lesions to more advanced plaques wherein other immune

cell subsets and vascular SMCs become involved in the inflammatory process. In these

advanced plaques, activated macrophages perpetuate and amplify the ongoing inflamma-

tory response through secretion of pro-inflammatory mediators (including chemokines,

cytokines and reactive oxygen/nitrogen species) and ECM-degrading matrix metallopro-

teinases (MMPs) in the arterial intima. Many of these foam cells eventually die causing
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the accumulation of apoptotic bodies and necrotic debris in the lesion. The impaired

phagocytic clearance (i.e., e↵erocytosis) of apoptotic macrophage debris triggers the

formation of a “necrotic” core in evolving plaques. The lipid content and tissue factor

released from dying macrophages are pro-thrombotic and may thus contribute to the

rupture of the plaque. The rupture site of advanced plaques is usually found in close

vicinity to the necrotic core and it is associated with thinning of the protective scar (i.e.,

fibrous cap) covering the inflamed lesion. Macrophages inhibit collagen synthesis and

proliferation of lesion SMCs, which together with macrophage-derived MMPs promote

thinning of the fibrous cap and thus the formation of a “vulnerable” (i.e., rupture-prone)

plaque.

Figure 1.1: Development of an atherosclerotic plaque. A simplified illustration of the
processes of atherogenesis: from pre-lesional endothelial dysfunction (left) through monocyte re-
cruitment to thrombotic complication of the advanced plaque (right). Endothelial dysfunction is
characterized by reduced production of NO, which promotes the up-regulation of endothelial cell
adhesion molecules. Plasma lipoproteins such as LDL and oxLDL accumulate in the subendothe-
lial space. Several types of immune and inflammatory cells are recruited to the atherosclerotic
plaque, including monocytes di↵erentiating into macrophages, which take up oxLDL particles
resulting in intracellular cholesterol accumulation and subsequent formation of foam cells. An
atherosclerotic lesion has a cholesterol crystal-rich necrotic core consisting of living and apoptotic
cells covered with a fibrous cap made of smooth muscle cells and collagen. Inflammatory cell
infiltration, smooth muscle cell apoptosis and matrix degradation through proteolysis generate
vulnerable plaque. Plaque disruption leads to thrombosis, which may cause vessel occlusion
(Watkins and Farrall (2006)).

Fissure of the atherosclerotic plaque exposes components of the underlying ECM, namely

collagen, to the flowing blood, thus favoring platelet adhesion and activation. Local

platelet activation stimulates the further recruitment of platelets to eventually form a
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thrombus, which may lead to myocardial infarction (acute coronary syndrome), periph-

eral occlusion in peripheral arterial occlusive disease, and in some cases to ischemic

stroke (for review, see Badimon et al. (2012); Bentzon et al. (2014)).

1.3.2 Role of neutrophils in atherosclerosis

Macrophages, however, are not alone in contributing to atherosclerotic lesion forma-

tion. Other crucial players in the initiation and progression of atherosclerosis are the

neutrophilic polymorphonuclear leukocytes (i.e., neutrophils) (for review, see Noels and

Weber (2011)). A disturbed lipid balance increases the number of circulating neutrophils

and facilitates their recruitment to early atherosclerotic lesions (Drechsler et al. (2010)).

Upon extravasation, neutrophils release granule proteins (e.g., azurocidin, cathepsin G

and LL-37) that trigger monocyte recruitment and extravasation directly or indirectly

through up-regulation of endothelial cell adhesion molecules. In addition, apoptotic

neutrophils maintain monocyte recruitment by various “find-me” and “eat-me” signals

(i.e., signals released (“find-me”) or exposed (“eat-me”) by apoptotic cells that attract

phagocytes, such as scavenging macrophages). Activated neutrophils can release nuclear

content (i.e., chromatin) that forms a web-like structure containing anti-microbial pro-

teases (e.g., elastase, proteinase-3) referring to as neutrophil extracellular traps (NETs).

NETs can be harmful in the context of atherosclerosis. NET formation and proteolysis

of the tissue factor pathway inhibitor by neutrophil-derived proteases (Massberg et al.

(2010)) could promote atheroprogression and thrombus formation. Furthermore, ex-

tracellular cholesterol crystals interact with neutrophils to trigger the release of NETs,

which prime macrophages for inflammasome activation and IL-1� production (the in-

flammasome is a multi-protein cytoplasmic complex which mediates the maturation and

release of pro-inflammatory cytokines such as IL-1� and IL-18), hence propagating in-

flammation in murine atherosclerosis (Warnatsch et al. (2015)).

1.3.3 Role of T cells in atherosclerosis

As the fatty streaks evolve into mature atherosclerotic plaques, additional inflammatory

and immune cell types such as eosinophils, B cells or mast cells get recruited and con-

tribute to the atherogenic process. In addition, CD4+ T cells tra�c to the atherosclerotic

lesions and there they become the dominant force in enhancing the ongoing inflamma-

tory process. Although most of the cells in the fatty streak are macrophage-derived

foam cells, T cells are also present in early lesions and maintain a prominent role at all

stages of the disease. Once in the arterial intima, CD4+ T cells undergo activation (upon

local autoantigens such as oxLDL and HSP60) and di↵erentiate into e↵ector T subsets

of the T helper1 (Th1), T helper2 (Th2), T helper17 (Th17) and other lineages, in re-

sponse to the local milieu of cytokines. Major mediators of the lymphocytic influence

on atherogenesis are T cells from the Th1-cell subtype, which di↵erentiate due to IL-12
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and IL-18 released by macrophages and SMCs in the plaque. Th1 cells produce high

levels of pro-inflammatory cytokines, such as interferon-� (IFN-�) and TNF-↵, which

fuel the inflammatory process by recruiting more monocytes/macrophages and further

drive lesion macrophage foam cells to produce more pro-inflammatory mediators and

MMPs. Moreover, IFN-� inhibits vascular SMC proliferation and collagen production,

reducing the cell and collagen content of the fibrous cap and thus stability of the plaque.

The interaction between activated T cells and macrophages through the co-stimulatory

CD40-CD40 ligand dyad, in addition, results in expression of pro-coagulant tissue factor

and MMPs contributing to the thinning of the plaque fibrous cap and subsequent plaque

rupture (for review, see Galkina and Ley (2009); Noels and Weber (2011); Tse et al.

(2013); Ketelhuth and Hansson (2016)).

Similar to Th1 cells, an unusual subset of T cells that lack CD28 and elaborate high

levels of IFN-� and TNF-↵ has been suggested to modulate atherosclerosis in humans.

Nonetheless, their involvement in the cause of the disease remains speculative (for review,

see Libby et al. (2013); Tse et al. (2013); Ketelhuth and Hansson (2016)). Additionally,

the contribution of Th17 cells and their cytokines to atherosclerosis has been extensively

studied. Th17 cells have been proposed to modulate lesion formation and composition.

However, various attempts to deplete the expression of IL-17A, the signature Th17

cytokine, and its receptor IL-17RA, yielded conflicting results, obscuring their role in

disease development (reviewed by Tse et al. (2013); Ketelhuth and Hansson (2016)).

The heterogeneous role of adaptive T cell immunity in atherogenesis is further demon-

strated by the participation of Th2 cells, which seem to have atheroprotective e↵ects

(reviewed by Libby et al. (2013); Tse et al. (2013); Ketelhuth and Hansson (2016)).

Through secretion of IL-4, IL-5, IL-13 and particularly IL-10, Th2 cells can antagonize

the pro-atherogenic immune responses of Th1 cells and thereby confer atheroprotec-

tion. Besides opposing Th1 e↵ects and lineage commitment, Th2 cytokines (e.g., IL-4

and IL-5) also influence other cell types implicated in atherogenesis such as mast cells

and eosinophils, making their role in atherosclerosis challenging to elucidate. Targeted

deletion of Th2 cytokines, IL-5 and IL-13, in mice, accelerates disease progression, sug-

gesting that Th2 cells are atheroprotective (Ketelhuth and Hansson (2016)). On the

other hand, studies have shown that IL-4 production exacerbates atherosclerosis through

up-regulation of MMPs, cell adhesion molecules and chemokines by vascular cells (Tse

et al. (2013)). IL-4 deficiency in hypercholesterolemic mice, conversely, alleviated disease

severity (Tse et al. (2013); Ketelhuth and Hansson (2016)), implying a controversial role

of Th2 cells in atherosclerosis.

The balance between Th1 and Th2 cells is controlled by other T-lymphocyte subtypes

- regulatory T cells (Tregs) (Ait-Oufella et al. (2006)). Tregs are generally defined as T

cells that suppress the activation or e↵ector function of other T cells, thus limiting exces-

sive immune responses to maintain immune homeostasis and prevent immunopathology.

Tregs carry out their immunosuppressive functions via several mechanisms, including
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cell-contact inhibition and/or secretion of anti-inflammatory cytokines such as IL-10

and transforming growth factor (TGF)-� (reviewed in Gotsman et al. (2008)). Studies

have reported that IL-10 and TGF-� have atheroprotective properties (Mallat et al.

(1999); Caligiuri et al. (2003); Robertson et al. (2003)).

1.4 Endothelial dysfunction in chronic inflammatory dis-

eases

Chronic inflammatory diseases correlate with increased risk of premature cardiovascular

mortality due to accelerated atherosclerosis. Increased cardiovascular mortality in pa-

tients with rheumatoid arthritis (RA), for example, has been attributed to the greater

risk of coronary heart disease (CHD) and myocardial infarction secondary to coronary

atherosclerosis in these populations (reviewed by Full et al. (2009); Steyers and Miller

(2014); Mason and Libby (2015)). As chronic inflammation plays a central role in the

pathogenesis of atherosclerosis, chronic inflammatory diseases and atherosclerosis may

share a common pathophysiologic basis that is relevant for their development. In this

respect, characterization of shared pathologic features between atherogenesis and sys-

temic inflammatory diseases such as RA, systemic lupus erythematosus (SLE), psoriasis,

chronic inflammatory bowel disease, and others, has fuelled intense basic and clinical

research. Similar to an atherosclerotic plaque, the pannus tissue in the synovium of

an RA joint is characterized by the enhanced expression of cell adhesion molecules and

chemokines by locally activated endothelium, which promotes the extravasation of blood-

borne pro-inflammatory leukocytes. The up-regulation of cytokines and ECM-degrading

proteases, underlying the erosion of cartilage and bone in the RA joint, is also funda-

mental to the pathogenesis of atherosclerosis. Furthermore, in both diseases, recruited

immune cells alter the phenotype of resident cell types, which then become involved into

the inflammatory process and tissue destruction (Figure 1.2) (Full et al. (2009)).

Endothelial dysfunction largely contributes to the pathogenesis of both atherosclerosis

and rheumatic diseases. Besides, patients with chronic inflammatory diseases (e.g., RA

and SLE) manifest endothelial dysfunction rather early in the course of the disease, sug-

gesting that endothelial dysfunction may be the common denominator. Therefore, the

mechanisms underlying the development of the two types of diseases may be integrated

at the level of the endothelium.

Multiple factors, produced during local vascular and systemic inflammation, includ-

ing circulating pro-inflammatory cytokines, such as TNF-↵ and IL-1�, reactive oxygen

species (ROS), oxLDL, autoantibodies, as well as the traditional cardiovascular risk

factors – hypertension, diabetes mellitus, dyslipidaemia, and smoking – are strongly

linked to endothelial activation and subsequent endothelial dysfunction. Nonetheless,
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Figure 1.2: The atherosclerotic plaque (a) shares many common features with
rheumatoid arthritic synovium (b). Endothelial dysfunction is a hallmark of both
atherosclerosis and RA. Persistent endothelial activation associated with chronic systemic inflam-
mation is characterized by reduced production of NO and enhanced expression of cell adhesion
molecules and chemokines, resulting in the recruitment of blood-borne mononuclear cells such
as monocytes and T lymphocytes. Elevated levels of inflammatory cytokines and MMPs con-
tribute to inflammation and tissue destruction in both atherosclerotic and RA synovitis lesions.
Deregulated immune responses against endogenous vascular and synovial cell types underlie both
diseases (Full et al. (2009)).

the traditional risk factors alone have proved insu�cient to explain the occurrence of car-

diovascular morbidity and mortality in patients with rheumatic diseases. It appears that

presence of systemic chronic inflammation is the major cause of accelerated endothelial

dysfunction in a↵ected individuals.

Cytokine up-regulation is a general characteristic of inflammatory diseases and could

be a potential mechanism that links the increased incidence of endothelial dysfunction

in patients with chronic inflammatory diseases, including SLE and RA. Several pro-

inflammatory cytokines could contribute to the pathogenesis of atherosclerosis (reviewed

by Steyers and Miller (2014)). Prolonged exposure of vascular endothelium to circulating

TNF-↵, a cytokine that plays a primary role in the pathogenesis of RA, for example,

leads to impaired endothelium-dependent vasodilation, both in mice and humans. In

addition, multiple studies have demonstrated that TNF-↵ attenuates the expression of

NOS-3 and thus reduces the bioavailability of NO in ECs, a critical step linking TNF-↵

and endothelial dysfunction. Moreover, TNF-↵ contributes via multiple mechanisms to

the increased cell adhesion molecule expression and thus endothelial adhesiveness for

pro-inflammatory leukocytes.
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Chronic inflammatory diseases are associated with increased oxidative stress. Pro-

inflammatory cytokines, in particular TNF-↵, are largely responsible for the increased

production of ROS in these diseases. As mentioned above, the levels of ROS largely mod-

ulate the bioavailability of NO. ROS contribute to the “uncoupling” of NOS-3 activity

resulting in an enhanced generation of O2
- and reduced production of NO, thus caus-

ing a shift in cellular redox state towards a pro-oxidant, pro-atherogenic environment.

Chronic inflammation has also been shown to structurally alter lipoproteins and mod-

ify the levels of plasma LDL and high-density lipoprotein (HDL) cholesterol. Elevated

ROS production, in addition, promotes the oxidative modification of LDL, which in turn

suppresses further the activity of NOS-3, augments the expression of endothelial cell ad-

hesion molecules and intensifies the ongoing inflammation owing to an increased release

of TNF-↵. In addition, failure of regulatory feedback mechanisms, such as the produc-

tion of the anti-inflammatory cytokines IL-10 and TGF-� by Tregs, may contribute to

the increased cardiovascular burden in patients with rheumatic diseases. Nadkarni et

al. demonstrated that in RA patients, CD4+CD25+ Tregs display defective suppres-

sive functions, which were overcome during an anti-TNF-↵ therapy. Treatment with

anti-TNF-↵ antibody gave rise to a CD4+CD25+FoxP3+ Treg cell population, which

restored the suppression of pro-inflammatory cytokine production via TGF-� and IL-10

(Nadkarni et al. (2007)).

1.5 Genetic susceptibility to atherosclerosis

Atherosclerosis and its main life-threatening manifestations, myocardial infarction, is-

chemic stroke and heart failure, have become the most frequent cause of death worldwide

(Murray et al. (2012); Libby et al. (2013)). Globally, a total number of 17.3 million peo-

ple die from cardiovascular disease every year, representing 30% of all deaths. Until

the manifestation of a full-blown disease, atherosclerosis is clinically silent, hampering

its early detection. Scientists must, therefore, identify targets for prevention and early

treatment in apparently healthy individuals harboring the disease.

The risk of developing atherosclerosis is shaped by the complex interplay between en-

vironmental factors and factors with a genetic component. Although epidemiological

studies over the last 60 years have revealed a number of risk factors for atherosclerosis,

the primary (and most significant) of which comprise arterial hypertension, cigarette

smoking, type 2 diabetes, dyslipidaemia, and systemic chronic inflammation, a causal

role has been proven only for some of them (i.e., dyslipidaemia and hypertension). In ad-

dition, even though environmental factors such as diet, smoking and sedentary lifestyle

play an important role in atherosclerosis development, genetic factors significantly in-

fluence susceptibility to the disease. Studies with identical twins and families have doc-

umented the importance of genetics in determining the risk of atherosclerosis, revealing

that the heritability of atherosclerosis (i.e., the fraction of disease explained by genetics)
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exceeds 50%. Technical advances have permitted the unbiased identification of genetic

polymorphisms (i.e., single nucleotide polymorphisms or SNPs), candidate genes and

susceptibility loci associated with atherosclerosis/cardiovascular disease most recently

by using genome-wide association studies (GWAS) (for review, see Lusis (2012)). To

date, GWAS has reported a total of 48 loci associated with atherosclerosis and CHD at

genome-wide significance, and their number is rapidly increasing (The CARDIoGRAM-

plusC4D Consortium, Deloukas et al. (2012) - 45 loci identified; The CARDIoGRAM-

plusC4D Consortium, Nikpay et al. (2015) - 48 loci identified). However, genetic variants

at these loci explain only a small fraction (i.e., ⇠10%) of the heritability of atherosclero-

sis/cardiovascular disease. Likely reason for this may be the polygenic nature of genetic

determinants, i.e., multiple major genes contributing to manifestation of the disease, and

the relatively small observed e↵ect sizes of the identified susceptibility loci. It is therefore

possible that many genuinely disease-associated loci do not reach genome-wide signifi-

cance and are thus not detected because of their very small e↵ect size. Indeed, there

has been increasing evidence that multiple causative small-e↵ect loci underlie the large

e↵ect of complex traits (i.e., traits derived from the interaction of multiple genes) (Yang

et al. (2011)). An additional level of complexity is added by the linkage disequilibrium

(LD) existing between disease-associated polymorphisms, i.e., linked inheritance and

association between alleles at separate loci. A genetic variant may therefore be linked

to a disease, not because it has any e↵ect, but because it is genetically linked with a

polymorphism that does. The LD between variants with opposing or additive e↵ects,

as well as the di↵erent degree of LD between SNPs in di↵erent ethnic populations, may

further obscure the identification of true e↵ects of disease-associated polymorphisms by

GWASs.

The genetic risk of atherosclerosis is partially conferred though the traditional risk fac-

tors, including elevated blood pressure, dyslipidaemia, diabetes and obesity, systemic in-

flammation, etc. (i.e., risk factors with a strong genetic component), however, these fac-

tors alone do not account for the entire contribution to the risk of developing atheroscle-

rosis and CHD. Interactions between risk factors could play a decisive role in determining

individual’s global cardiovascular risk as well (Kovacic and Bakran (2012); Lusis (2012)).

For example, the e↵ects of hypertension on CHD progression are markedly augmented

if the levels of pro-atherogenic lipoproteins are elevated. Epigenetic changes such as

aberrant DNA methylation and histone modification patterns have also proven to be

contributing factors in the pathogenesis of atherosclerosis (for review, see Baccarelli

et al. (2010); Wierda et al. (2010); Xiong et al. (2015)). As a matter of fact, epigenetics

has provided an explanation of how diet, lifestyle and environment may contribute to

the development of atherosclerosis and cardiovascular disease.
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1.5.1 The T-786C SNP of the NOS3 gene as a genetic determinant of

endothelial dysfunction

Apart from environmental factors influencing endothelial function, intrinsic impairment

of the expression or activity of NOS-3 may predispose to or accelerate atherosclerosis

and thus CHD, as well as other chronic inflammatory disorders. Accordingly, charac-

terization of genetic alterations and common genetic polymorphisms in the NOS3 gene

may help define genetic risk factors for these diseases. Several polymorphic sites have

been described in the human NOS3 gene, including SNPs, variable number of tan-

dem repeats, microsatellites and insertions/deletions (reviewed by Oliveira-Paula et al.

(2016)). Amongst these, the frequent (up to 13% of the Caucasian population) SNP at

position -786 (-786 T/C variance; rs2070744) in the NOS3 gene promoter, which does

not occur in other mammals, plays a decisive role (Cattaruzza et al. (2004); Melchers

et al. (2006)). This thymine-to-cytosine transition leads to a remarkable decrease in

NOS3 promoter activity, resulting in a reduced NOS-3 expression and endothelial ca-

pacity to generate NO (Cattaruzza et al. (2004), Asif et al. (2009a)). Homozygosity

for the C-type promoter variant renders the gene largely insensitive to diverse stimuli

such as shear stress or IL-10, an anti-Th1 cytokine known to maintain NOS-3 expression

in ECs under pro-inflammatory conditions (Cattaruzza et al. (2003); Cattaruzza et al.

(2004)). Consequently, individuals homozygous for the C-variant develop endothelial

dysfunction and have an increased risk of contracting cardiovascular (Nakayama et al.

(1999); Nakayama et al. (2000); Miyamoto et al. (2000); Colombo et al. (2003); Rossi

et al. (2003), Cattaruzza et al. (2004)) and rheumatic diseases (Melchers et al. (2006);

An et al. (2012); Lö↵ers et al. (2015)). In particular, the promoter polymorphism

is an independent predictor for chronic vascular inflammation such as e.g., CHD or

hypertension-induced arterial remodeling as well as chronic inflammation of the joints

with secondary involvement of vasculature like e.g., RA, polymyalgia rheumatica, sys-

temic sclerosis; or systemic diseases with primary manifestation in the skin such as,

e.g., psoriasis. Association with these diseases, however, holds true for Caucasians only,

presumably because of the interethnic di↵erences in the prevalence of the SNP. Thus,

the T-786C SNP is much more prevalent in the Caucasian population as compared to

Asians and Africans (Tanus-Santos et al. (2001)).

Increased NOS-3 expression is one mechanism through which IL-10 (i.e., a cytokine

which is generally elevated in patients with RA) exerts its anti-inflammatory e↵ects in

chronic inflammatory diseases (Cattaruzza et al. (2003)). Exposure to IL-10 up-regulates

endothelial NOS-3 expression through binding of the TF signal transducer and activator

of transcription-3 (STAT-3) to a STAT consensus motif at position -856 to -830 in the

NOS3 promoter, which is less than 50 nucleotides upstream of the T-786C SNP. In the C-

type promoter this STAT-3 binding site, although not directly altered, has proven to be

insensitive to IL-10 (Melchers et al. (2006)). As a functional consequence, CC-genotype

ECs do not provide su�cient NO-mediated protection against pro-inflammatory stimuli
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in response to IL-10. Accordingly, the inability of CC-genotype endothelium to main-

tain su�cient NO production under pro-inflammatory conditions promotes endothelial

dysfunction, thereby increasing the risk of contracting RA (Melchers et al. (2006)) and

other rheumatic diseases (Lö↵ers et al. (2015)) by individuals homozygous for the -786C

allele.

Interestingly, even though homozygosity for the -786C allele associates with chronic

inflammatory disorders, manifestation of these diseases does not seem to occur prema-

turely nor is the course of the diseases more severe as compared to patients without

this genetic defect (Cattaruzza et al. (2004); Colombo et al. (2003); Rossi et al. (2003);

Melchers et al. (2006)). Moreover, GWASs have failed to associate the T-786C SNP

with any of the aforementioned diseases, pointing to the existence of a mechanism(s) in

CC-genotype carriers to compensate for the inadequate endothelial NO synthesis.

In fact, exclusively in ECs from CC-genotype individuals our group discovered that

FSS up-regulates expression of manganese-containing superoxide dismutase (SOD-2),

a mitochondrial enzyme, which scavenges superoxide anions (Asif et al. (2009a); Asif

et al. (2009b)). This genotype-dependent increase in SOD-2 levels was brought about

by the increased activity of the NO-sensitive TF Egr1, the expression of which was up-

regulated only in CC-genotype ECs challenged with FSS. Such an increase in cellular

SOD-2 content may account for the greater resistance of CC-genotype ECs to oxidative

stress, substantiated by the significantly higher superoxide anion-quenching capacity of

these cells upon exposure to FSS than that of cells derived from TT-genotype indi-

viduals (Asif et al. (2009a)). Up-regulation of NO-protective anti-oxidant enzymes can

therefore constitute a common compensatory mechanism in dysfunctional CC-genotype

ECs by which the smaller amounts of NO synthesized by these cells are better protected

against neutralization by superoxide anions, and as a result maintain a critical level of

bioavailable NO.

Furthermore, in endothelial cells homozygous for the -786C allele of the NOS3 gene,

our group recently uncovered an enhanced FSS-dependent formation and release of the

anti-inflammatory prostanoid, 15-deoxy-�12,14-prostaglandin J2 (15d-PGJ2), which po-

tentially underlies a second mechanism compensating for the reduced bioavailability of

NO and its atheroprotective properties in these cells.

1.6 Prostanoids

Prostaglandins (PGs) and thromboxane A2 (TXA2), collectively referred to as prostanoids,

comprise a large group of structurally related lipid autacoids produced by cells in re-

sponse to various extrinsic stimuli to sustain homeostatic functions as well as to mod-

ulate pathologic processes (for review, see Ricciotti and FitzGerald (2011); Surh et al.

(2011)). Prostanoids derive from the 20-carbon poly-unsaturated fatty acid, arachidonic

14



1.6. Prostanoids

acid (AA), released from membrane phospholipids by phospholipase A2 (PLA2). The

rate-limiting step in prostaglandin biosynthesis is the conversion of AA to the unsta-

ble endoperoxide intermediate, prostaglandin H2 (PGH2), by cyclooxygenases 1 and 2

(COXs). COXs are bifunctional enzymes that comprise both a cyclooxygenase and a

peroxidase activity and exist in two isoforms, constitutive COX-1 and inducible COX-2.

Although COX-1 has initially been postulated to fulfil mainly housekeeping functions,

and COX-2 to be the primary source of prostanoid formation during inflammation, today

both enzymes are known to contribute to the generation of homeostatic prostanoids but

also to prostanoid release upon inflammatory signals. PGH2 is subsequently metabolised

to a series of bioactive prostanoids, including prostaglandin D2 (PGD2), PGE2, PGF2↵,

prostacyclin (PGI2), and thromboxane A2, through the action of specific isomerases

referred to as PG synthases (Figure 1.3).

Phospholipids 

Arachidonic acid 

PLA2 

LOX 

Leukotrienes 

COX1 
COX2 

PGH2 

PGI2 PGE2 PGF2α TXA2 

PGD2 
L/H-PGDS 

-H2O PGJ2 

15d-PGJ2 ∆12-PGJ2 

-H2O 
Serum  
albumin 

*"

*"

Figure 1.3: Biosynthesis of 15d-PGJ2. Phospholipase A2 catalyzes the hydrolysis of mem-
brane phospholipids to produce arachidonic acid (AA). Cyclooxygenases (COX-1 and COX-2)
or lipoxygenases (LOX) convert AA to prostanoids or leukotrienes, respectively. PGD2 is non-
enzymatically converted into prostaglandins of the J2 series in a serum albumin-dependent or
independent manner. PGJ2 undergoes spontaneous dehydration to yield 15d-PGJ2. Asterisks
indicate positions of the reactive carbon centers in the 15d-PGJ2 molecule.

Prostanoids are ubiquitously produced and act as autocrine or paracrine lipid media-

tors to maintain local homeostasis in the body. Each cell type generates usually one

or two dominant prostanoid products exerting e↵ects on various biological processes,

including regulation of vascular and non-vascular SMC tone, platelet aggregation, me-

diating inflammation and allergic reactions, modulation of nerve cell functions, etc.

Furthermore, both the levels and the spectrum of prostanoids change profoundly during

inflammation. PG production is generally kept very low in uninflamed tissues but rises

dramatically upon acute inflammation prior to the recruitment of immune cells. The
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profile of prostanoid production is determined by the di↵erential expression of PG syn-

thases within cells present at the site of inflammation or, in general, within cell types of

a particular tissue. Alterations in the profile of prostanoid synthesis occur also during

cellular activation. For example, upon exposure to bacterial lipopolysaccharide, PGE2

becomes the predominant prostanoid over TXA2 in activated macrophages, whereas the

production of TXA2 prevails in resting cells (Tilley et al. (2001)).

PGs exert their e↵ects by activating the prostanoid G protein-coupled heptahelical

membrane receptors (GPCRs) consisting of eight members, i.e., the EP1, EP2, EP3

and EP4 subtypes of the PGE2 receptor (E prostanoid receptor), the PGD2 receptor

DP1, the PGF2↵ receptor (FP), the PGI2 receptor (IP), and the TXA2 receptor (TP)

(reviewed by Alfranca et al. (2006); Ricciotti and FitzGerald (2011)). In addition, a

ninth receptor, the DP2 receptor, also known as chemoattractant receptor-homologous

molecule expressed on T helper 2 cells (CRTH2) receptor, also responds to PGD2 but

belongs to the large family of chemokine receptors. Prostanoid receptors elicit a broad

range of intracellular signalling pathways depending on what type of G protein they are

coupled to. For example, EP2 receptor signalling can be coupled to adenylyl cyclase

activation through Gs, thereby elevating intracellular cyclic adenosine monophosphate

(cAMP). EP1 receptor ligation can trigger activation of phospholipase C through Gq

and activation of protein kinase C and mobilization of intracellular Ca2+ as a result of

phosphatidylinositol-4,5-bisphosphate metabolism. Several prostanoids could also stim-

ulate activation of small Rho GTPase signalling, for example by binding to the TP, EP3

or FP receptors. Generally, the same prostanoid receptor can induce di↵erent signalling

pathways based on the G protein they act through. On the other hand, di↵erent iso-

forms of the same receptor can exert opposing e↵ects by activating or inhibiting the

same signalling pathway. Finally, some prostanoids are capable of binding to di↵erent

receptors with distinct a�nity (e.g., PGD2, as well as its dehydration derivative, 15d-

PGJ2, bind to both DP1 and DP2). Hence, depending on which of its cognate receptors

are locally expressed, one prostanoid can activate multiple signalling pathways and thus

exert di↵erent biological e↵ects.

1.7 Aims of the thesis

The shear stress-dependent expression of endothelial NO synthase (NOS-3) is central

to vascular homeostasis. Disturbances in the expression and/or activity of this enzyme

may therefore lead to insu�cient NO formation and endothelial dysfunction, a key event

in the pathogenesis of vascular diseases such as atherosclerosis. Endothelial dysfunction

has been recognized as the common denominator of cardiovascular and rheumatic dis-

eases that is relevant to the pathogenesis of both types of inflammatory disorders. In

this context, a common genetic variant of the NOS3 gene, i.e. a T to C transition at

position -786 of the promoter of the gene, predisposes to endothelial dysfunction and
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has proven to be an independent and strong predictor for both coronary heart disease

and rheumatoid arthritis in conventional association studies. However, compensatory

mechanisms minimizing the e↵ects of this single nucleotide polymorphism (SNP) have

limited the early onset of these diseases and could therefore constitute a general strategy

to prevent endothelial dysfunction. One such mechanism involves the increased expres-

sion of the superoxide anion-scavenging enzyme, SOD-2, in homozygous carriers of the

T-786C SNP, thereby better protecting the low amounts of NO produced by endothelial

cells of these individuals. Furthermore, a striking increase in the release of the anti-

inflammatory prostanoid 15d-PGJ2 by ECs derived from individuals homozygous for

the -786C-allele in response to fluid shear stress was noted, which provided the starting

point for this thesis. Its main aims can be summarized as follows:

1. To characterize the function of the anti-inflammatory 15d-PGJ2 in clonally ex-

panded endothelial cells from individuals homozygous for the T-786C SNP of the

NOS3 gene.

2. To establish an in vitro transmigration assay to study the interactions between

atherosclerosis-related leukocytes (monocytes and T cells) and TT or CC-genotype

ECs.

3. To investigate the molecular mechanisms underlying the anti-inflammatory activity

of endothelial cell-derived 15d-PGJ2 in monocytes.

4. To evaluate the clinical relevance of 15d-PGJ2 in patients with coronary heart

disease.
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2
Materials

2.1 Chemicals and reagents

Table 2.1: Chemicals and reagents

Chemical/reagent Supplier

Agar Roth

Agarose Sigma-Aldrich

Ampicillin Sigma-Aldrich

Ammoniumpersulfate Roth

Bacto-tryptone BD

Boric acid Sigma-Aldrich

Bovine Serum Albumin Sigma

Chemiluminescence substrate LuminataTM Forte Merck Millipore

Deoxyribonuclease I Worthington

DNA from herring sperm Sigma-Aldrich

DNA ladders Thermo Scientific

D-PBS Gibco, Life Technologies

Disodium hydrogen phosphate Roth

Dispase Gibco, Life Technologies

Dithiothreitol (DTT) Roth

EDTA AppliChem

EGTA Roth

Ethidium bromide Roth

Fixable Viability Dye eFluor R� 780 eBioscience

Fungizone Gibco, Life Technologies

Gelatin Merck

Glucose Merck
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Glycine Sigma Aldrich

Heat-inactivated fetal bovine serum (FCS) Gibco, Life Technologies

HEPES Sigma

KCl AppliChem

Leupeptin A Sigma

L-glutamine Life technologies

Magnesium chloride AppliChem

Magnesium sulfate AppliChem

Methanol Sigma-Aldrich

M-MLV reverse transcriptase Promega

Nonidet-P-40 Fluka

N-Z-Amine R� A Sigma

Oligo dT Promega

Paraformaldehyde Sigma

Penicillin Gibco, Life Technologies

Pefabloc Fluka

Pepstatin A Sigma

Polyacrylamide Roth

Potassium dihydrogen phosphate Riedel-de Haën

Precision Plus Protein Dual Color StandardTM BioRad

Para�n Paraplast R� PlusTM Leica

Sodium dodecyl sulfate (SDS) Serva

Sodium chloride Sigma Aldrich

Sodium hydrogen carbonate J.T.Baker

Streptomycin Gibco, Life Technologies

Sodium hydroxide Sigma Aldrich

Sodium orthovanadate Sigma

TEMED Roth

Trypsin Gibco, Life Technologies

Tween 20 Roth

Tris Roth

Triton-X 100 Sigma

Taq polymerase Bioron

Yeast extract Roth
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2.2 Kits

Table 2.2: Kits

Kit Cat. No. Supplier

NucleoSpin R� Plasmid extraction kit 740588 Macherey-Nagel

NucleoBond Xtra Maxi EF kit 740424 Macherey-Nagel

NucleoSpin R� RNA extraction kit 740955 Macherey-Nagel

QuikChange II XL Site-directed mutagene-

sis kit

200521 Stratagene, Agilent Tech-

nologies

QuantiTect SYBR Green R� PCR kit 204143 Qiagen

Näıve CD4+ T Cell Isolation kit II 130-094-131 Miltenyi Biotec

Dead Cell Removal kit 130-090-101 Miltenyi Biotec

PierceTM Gaussia Luciferase Glow Assay kit 16160 Thermo Fisher Scientific

Viromer R� GREEN, transfection kit VG-01LB-00 Lipocalyx GmbH

Lipofectamine R� 3000, transfection reagent L3000008 Thermo Fisher Scientific

MATra-si, transfection reagent 7-2021-020 IBA-Life Sciences

15d-PGJ2 ELISA kit ADI-900-023 Enzo Life Sciences

2.3 Consumables

Table 2.3: Consumables

Material Supplier

Bacterial culture round-bottom tubes Sarstedt

Cell culture dishes TPP

Cell culture flasks (T-25, T-75) Sarstedt

Cell culture plates Sarstedt, Greiner

Filter papers Munktell

PCR tubes Sarstedt

Pipette tips Sarstedt

Serologic pipettes Sarstedt

PVDF transfer membranes Immobilon R�-P Merck Millipore

SafeSeal Micro tubes Sarstedt

Sterile filters GE Healthcare
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2.4 Equipment

Table 2.4: Equipment

Equipment Model Supplier

Universal power supply PowerPack P25 Biometra

Bacterial incubator Innova 4230 New Brunswick Scientific

CO2 incubator Innova CO-170 New Brunswick Scientific

CO2 incubator BB-16 Heraeus Instruments

Laminar flow hood HS18 Hera safe Heraeus Instruments

Real-Time PCR system LightCycler 1.5 Roche

Digital Imaging System ImageQuant LAS 4000

mini

GE Healthcare

NanoDrop Spectrophotometer ND-1000 Thermo Fisher Scientific

PCR cycler Thermocycler Biometra

Microplate spectrophotometer PowerWave XS BIO-TEK

Power supply for electrophoresis

and blotting

PowerPacTMHC BioRad

SDS-PAGE system Mini-Protean R� Tetra

Cell

BioRad

Sonicator UP50H Dr. Hielscher GmbH

Mini Trans-blot R� Cell Mini-Protean BioRad

Agarose gel imager Gel DocTM XR System BioRad

Luminescence plate reader MicroLumat LB 96P Berthold Technologies

Orbital shaker PSU-10i Biosan, SIA

Plate-and-cone viscometer Martin-Luther University

Halle-Wittenberg

Refrigerated centrifuge Z323K HERMLE

Centrifuge Universal 32 Hettich Zentrifugen

Mini centrifuge SPROUTTM Biozym

Table top centrifuge Pico 21 Heraeus

Table top refrigerated centrifuge Mikro22R Hettich Zentrifugen

Light microscope Axiovert 25 (inverted) Carl Zeiss

Light microscope CKX41 (inverted) Olympus
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2.5 Oligonucleotides

Table 2.5: RT-PCR primers

Gene product Primer sequence TAnnealing

Human HO-1
For 5’-CAGTCAGGCAGAGGGTGATA-3’

58�C
Rev 5’-GCTCTGGTCCTTGGTGTCAT-3’

Table 2.6: qRT-PCR primers

Gene product Primer sequence TAnnealing

Human IL-1�
For 5’-TGGAGCAACAAGTGGTGT-3’

60�C
Rev 5’-TGGGATCTACACTCTCCAGC-3’

Human RPL32
For 5’-AGGCATTGACAACAGGGTTC-3’

56�C
Rev 5’-GTTGCACATCAGCAGCACTT-3’

Human HPRT-1
For 5’-CAAGCTTGCTGGTGAAAAGGAC-3’

60�C
Rev 5’-GTCAAGGGCATATCCTACAACAAA-3’

Human Bach-1
For 5’-TGCGATGTCACCATCTTTGT-3’

60�C
Rev 5’-CCTGGCCTACGATTCTTGAG-3’

Human IL-8
For 5’-TGTAAAGCTTTCTGATGGA-3’

58�C
Rev 5’-CTCTTCAAAAACTTCTCC-3’

Human IL-6
Proprietary (Hs IL6 1 SG-QiantiTect

55�C
Primer assay #QT00083720) (Qiagen)

Human Keap-1
For 5’-GGAGTGTTACGACCCAGATA-3’

60�C
Rev 5’-AGAAACAAAAGTGCCTCAAC-3’

Human L-PGDS
For 5’-GCTTCACAGAGGATACCATT-3’

60�C
Rev 5’-GAAGGAACAGAGCAGAGACA-3’

Human GAPDH
For 5’-CCACTCCTCCACCTTTGAC-3’

60�C
Rev 5’-ACCCTGTTGCTGTAGCCA-3’

Human Nrf-2
For 5’-AAACCAGTGGATCTGCCAAC-3’

56�C
Rev 5’-GACCGGGAATATCAGGAACA-3’

Human CD40
For 5’-GCATGCAGAGAAAAACAGTACCT-3’

60�C
Rev 5’-GTGCAGTCACTCACCAGTTTCT-3’

Table 2.7: Genotyping primers

Gene Primer sequence TAnnealing

T-786C For 5’-GAGTCTGGCCAACACAAATCC-3’
60�C

NOS3 SNP Rev 5’-GACCTCTAGGGTCATGCAGGT-3’
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Table 2.8: ChIP primers

Gene Primer sequence TAnnealing

Human IL-1B For 5’-GAGTCTGGCCAACACAAATCC-3’
55�C

ChIP Rev 5’-GACCTCTAGGGTCATGCAGGT-3’

Table 2.9: Mutagenesis primers

Gene Primer sequence TAnnealing

�ARE1 Sense 5’-GGAAAACAATGCATATTTGCATGT

ACATTTGCAAAATGTGTCATAG -3’
60�C

(7831–7834) Anti-sense 5’-CTATGACACATTTTGCAAATGTA

CATGCAAATATGCATTGTTTTCC -3’

�ARE2 Sense 5’-CCATGAACCAGAGAATTATGTTTA

TTAGTCCCCTCCCC -3’
60�C

(7896–7899) Anti-sense 5’-GGGGAGGGGACTAATAAACATA

ATTCTCTGGTTCATGG-3’

�ARE3 Sense 5’-GAAATCAGGTATTCAACAGAGAAA

TTTGCCTCCTACTTCTG-3’
60�C

(7995–7998) Anti-sense 5’-CAGAAGTAGGAGGCAAATTTCT

CTGTTGAATACCTGATTTC-3’

Table 2.10: Decoy oligodeoxynucleotides - *indicate phosphorothioate groups

Gene Primer sequence

Egr1 dODN
5’- A*C*ATGTGGGGGCGTGAT*G*T-3’

5’- A*C*ATCACGCCCCCACAT*G*T-3’

Egr1 mutODN
5’- A*C*ATGTGTAGTAGTGAT*G*T-3’

5’- A*C*ATCACTACTACACAT*G*T-3’

Table 2.11: EMSA oligodeoxynucleotides

Gene Primer sequence Supplier

NF-E1 5’- TGGGGAACCTGTGCTGAGTCACTGGAG-3’ Santa Cruz

consensus 3’-ACCCCTTGGACACGACTCAGTGACCTC-5’ (sc-2527)

NF-E2 5’- TGGGGAACCTGTGCTAGGTCACTGGAG-3’ Santa Cruz

mutant 3’-ACCCCTTGGACACGATCCAGTGACCTC-5’ (sc-2528)
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Table 2.12: Small interfering RNAs

Gene Target sequence Supplier

Bach-1 siRNA 5’-CCCGACAACATTTGTTATGCA-3’ Qiagen

(human) Hs BACH1 2

SI00309876

Nrf-2 5’-GAGAAAGAAUUGCCUGUAA-3’

siGenomeTM 5’-CCAAAGAGCAGUUCAAUGA-3’ DharmaconTM

SMART Pool 5’-UAAAGUGGCUGCUCAGAAU-3’ M-003755-02

(human) 5’-UGACAGAAGUUGACAAUUA-3’

siGenomeTM 5’-UAAGGCUAUGAAGAGAUAC-3’

Control 5’-AUGUAUUGGCCUGUAUUAG-3’ DharmaconTM

Non-targeting 5’-AUGAACGUGAAUUGCUCAA-3’ D-001206-14-05

Pool #2 5’-UGGUUUACAUGUCGACUAA-3’

Keap-1 Stealth Sense strand 5’-UGGCUGUCCUCAAUCGUC Invitrogen

RNAiTM duplex UCCUUUA-3’

siRNA (human) Anti-sense strand 5’-UAAAGGAGACGAUUGA

GGACAGCCA-3’

KEAP1

HSS190639

L-PGDS siRNA Sense strand 5’-CACAAUAAACUCCGGAAGC Thermo Scientific

(human) AAUU-3’

Anti-sense strand 5’-UUGCUUCCGGAGUUUA

UUGUGUU-3’

AKDA-000009

scambled Sense strand 5’-GACACUGACAACAACCAUA Thermo Scientific

L-PGDS siRNA GAUU-3’

Anti-sense strand 5’-UUCUAUGGUUGUUGUC

AGUGUCUU-3’

AKDA-000011

AllStar Negative

Control siRNA

Proprietary Qiagen

SI03650318
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2.6 Antibodies

Table 2.13: Primary antibodies

Antibody Supplier Reference Dilution

Rabbit monoclonal ↵-Nrf-2

[EP1808Y]

Abcam ab62352 1:2000 WB1

Rabbit polyclonal ↵-Nrf-2 Santa Cruz sc-722X 1:500 ChIP2

Mouse monoclonal ↵-HO-1 BD #610712 1:1000 WB

Rabbit polyclonal ↵-Keap-1 ProteinTech #10503-2-AP 1:2000 WB

Rabbit polyclonal ↵-↵-tubulin Cell signaling # 2144 1:3000 WB

Rabbit polyclonal ↵-histone H3 Abcam ab1791 1:3000 WB

PE-conjugated mouse ↵-CD3

Human

BD Pharmingen #561803 Clone:

HIT3a

10 µl/test FC3

FITC-conjugated mouse ↵-CD4 BD Pharmingen #561005 Clone:

RPA-T4

10 µl/test FC

APC-conjugated mouse BD Pharmingen #561884 Clone: 10 µl/test FC

↵-CD45RA HI100

APC/Cy7-conjugated mouse BioLegend #304813 Clone: 5 µl/test FC

↵-CD62L DREG-56

APC-conjugated mouse ↵-IL-4 BD Pharmingen #561223 Clone: 5 µl/test FC

APC-conjugated mouse IgG1 

isotype control

BD Pharmingen #550854 Clone:

MOPC-21

20 µl/test FC

PE/Cy7-conjugated mouse eBioscience #25-7319 Clone: 5 µl/test FC

↵-IFN gamma 4S.B3

PE/Cy7-conjugated mouse IgG1

 isotype control

eBioscience #25-4714 Clone:

P3.6.2.8.1

5 µl/test FC

Purified NA/LE rat ↵-IL-4 BD Pharmingen #554481 Clone:

MP4-25D2

5 µg/ml Neu-

tralization

Table 2.14: Secondary antibodies

Antibody Supplier Reference Dilution

Goat ↵-rabbit peroxidase Sigma A6154 1:5000–1:10.000 WB

Goat ↵-mouse peroxidase Sigma A4416 1:5000 WB

1WB: Western blot
2ChIP: Chromatin Immunoprecipitation
3FC: Flow cytometry
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2.7 Stimulants and inhibitors

Table 2.15: Stimulants and inhibitors

Product Concen-

tration

Reference Supplier

BWA868C, DP-1 antagonist 0.2 µM 12060 Cayman Chemicals

CAY10471, DP-2 antagonist 1 µM 10006735 Cayman Chemicals

GW9662, PPAR-� antagonist 10 µM M6191 Sigma-Aldrich

SC-514, IKK� inhibitor 50 µM SML-0557 Sigma-Aldrich

C646, p300/CBP inhibitor 10 µM SML-0002 Sigma-Aldrich

Trichostatin A, HDAC inhibitor 1 µM T8552 Sigma-Aldrich

Bardoxolone-methyl (CDDO me-

thyl ester)

50 nM 11883 Cayman Chemicals

15d-PGJ2 10 µM BML-

PG050-0001

Enzo Life Bio-

sciences

D,L-Sulforaphane 0.5-1 µM S4441 Sigma-Aldrich

Interleukin-2 50 U/ml 202-IL-010 R&D Systems

Interleukin-12 2.5 ng/ml 219-IL-005 R&D Systems

TNF-↵ 1000 U/ml 50435 Biomol GmbH

Anti-CD3/CD28 T cell activator

Dynabeads R�
1:1 cell-to-

bead ratio

11161D Gibco, Life Tech-

nologies

CCL5/RANTES 100 ng/ml 278-RN-010 R&D Systems

CCL-2/MCP-1 30 ng/ml 279-MC-010 R&D Systems

Protein transport inhibitor cocktail

(500X)

BrefeldinA

10.6 µM

00-4980 eBioscience

Monensin

2 µM
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2.8 Growth media, bu↵ers and solutions

Table 2.16: List of growth media used for mammalian/bacterial cell growth and transfection

Media Purpose Composition

Growth medium Propagation of HUVECs Endothelial cell basal medium

(PromoCell)

+ 5% FCS

+ Penicillin/Streptomycin/Fun-

gizone

+ supplement (without hydrocor-

tisone)

Growth medium Propagation of THP-1 cells RPMI 1640 (1x)

and primary T cells + GlutaMAXTM

+ Penicillin/Streptomycin/Fun-

gizone

+ HEPES

+ 10% FCS

LB agar Propagation of bacteria 1.5% (w/v) Agar in LB medium

+ 100 µg/ml ampicillin

LB medium Propagation of bacteria 1.0% BactoTM Trypton

+ 0.5% (w/v) Yeast extract

+ 1.0% (w/v) NaCl

NZY+ broth Propagation of XL10-Gold ul-

tracompetent bacteria

10 g NY amine (casein hydroly-

sate)

+ 5 g Yeast extract

+ 5 g NaCl

H2O to 1 l

Supplement freshly with:

12.5 ml MgCl2·6H2O

12.5 ml MgSO4·7H2O

20 ml of 20% (w/v) glucose

Opti-MEM R�

Reduced Serum

Media

Cationic lipid transfection Gibco, Life Technologies
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Table 2.17: List of bu↵ers and solutions

Bu↵er Composition

Agarose gel electrophoresis 10 mM Tris HCl, pH=7.5

loading bu↵er 10 mM EDTA, pH=8.0

30% Glycerol

0.01% Bromophenol blue

0.01% Xylene green

Blocking bu↵er for WB 4-5% milk powder or Blotto R� in TBST

DNase I solution 0.5% (w/v) solution in PBS

dODN hybridization bu↵er 10 mM Tris-HCl, pH=7.0

1 mM EDTA

150 mM NaCl

FACS bu↵er PBS supplemented with:

5% FCS

0.5% BSA

0.05% Na3N

IC Fixation bu↵er eBioscience, # 00-8222

MACS bu↵er PBS supplemented with:

0.5% (w/v) BSA

2 mM EDTA

Lysis bu↵er (whole cell lysates) 10 mM HEPES, pH=7.9

10 mM KCl

0.1 mM EDTA

0.1 mM EGTA

1 mM DTT

1 mg/ml Pefabloc

12 µl/ml Protease inhibitor mix

20 mM Na3VO4

15 mM NaF

Lysis bu↵er I for nuclear 10 mM HEPES, pH=7.9

extraction 10 mM KCl

0.1 mM EDTA

0.1 mM EGTA

0.15% Nonidet-P-40

Supplement freshly with:

20 mM Na3VO4

15 mM NaF

1 mM DTT

1 mg/ml Pefabloc

12 µg/ml Protease inhibitor mix
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Lysis bu↵er II for nuclear 20 mM HEPES, pH=7.9

extraction 400 mM NaCl

1 mM EDTA

1 mM EGTA

0.5% Nonidet-P-40

Supplement freshly with:

20 mM Na3VO4

15 mM NaF

1 mM DTT

1 mg/ml Pefabloc

12 µg/ml Protease inhibitor mix

Pefabloc 15 mM HEPES Pu↵er, pH=7.4

4% Pefabloc-SC

Permeabilization bu↵er (10⇥) eBioscience, # 00-8333

Phosphate-bu↵ered saline (PBS) 8.0 g NaCl

0.2 g KCl

1.44 g Na2HPO4

0.2 g KH2PO4

Protease inhibitor mix (PIM) 1% Pepstatin A in 20% DMSO und 80% 15 mM

HEPES, pH=7.4

1% Leupeptin in 20% DMSO und 80% 15 mM

HEPES, pH=7.4

SDS-PAGE running bu↵er 25 mM Tris HCl, pH=8.3

192 mM Glycine

0.1% SDS

5⇥ TBE bu↵er 450 mM Tris

450 mM Boric acid

20 mM EDTA, pH=8.0

TBST 0.05% Tween 20 in TBS

Tris-bu↵ered saline (TBS) 6.1 g Tris (0.5 M)

8.75 g NaCl (1.5 M) to 1 liter H2O

Wet Blotting bu↵er (Towbin 25 mM Tris

bu↵er) 192 mM Glycine, pH 8.3

20% Methanol
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Methods

3.1 Cell biology methods

3.1.1 Cell isolation and culture

3.1.1.1 Isolation and culture of human umbilical vein endothelial cells (HU-

VECs)

The isolation and culture of ECs from fresh human umbilical cords were approved by the

local ethics committee. In brief, the two ends of the umbilical vein were cannulated and

blood was flushed out with 20 ml of D-PBS bu↵er. The endothelial cells were dislodged

using Dispase solution (3.1 g/l) by filling the cords through the cannula and tying up

the two ends. The cords filled with the Dispase solution were incubated at 37�C for 30

min. Finally, the contents were emptied into a 50 ml Falcon tube. The vein was flushed

with D-PBS bu↵er to collect the remaining cells. The tube was centrifuged for 5 min at

1000 rpm (160⇥g). The cell pellet was re-suspended in endothelial cell growth medium.

The cells were routinely grown on 2% (w/v) gelatin-coated 60-mm polystyrene dishes or

Collagen I-coated Transwell R� inserts at 37�C in a 5% CO2 atmosphere. Cells passaged

once (P1) were used in all experiments.

3.1.1.2 Isolation of human näıve CD4+ T cells

Bu↵y coat preparations from whole blood supplemented with anti-coagulants (citrate-

phosphate dextrose, citrate and/or ACD-A) were obtained from the DRK-Blutspende-

dienst Baden-Württemberg-Hessen in Mannheim, Germany. Peripheral blood mononu-

clear cells (PBMCs) were isolated by gradient-density centrifugation using the T cell

separation medium Pancoll human (density 1.077 g/ml, PAN-Biotech) at 500⇥g for
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30 min at 20�C in a swinging-bucket rotor without brake. For platelets depletion,

PBMCs were washed four times in 50 ml D-PBS supplemented with 2 mM EDTA at

low-speed centrifugation (200⇥g for 10 min at 20�C with brake). Näıve T cells were

isolated by depletion of magnetically labeled non–T helper cells and memory CD4+

T cells from the purified PBMC fraction using the Näıve CD4+ T Cell Isolation Kit

II (Miltenyi Biotec) according to the manufacturer’s instructions. The purity of iso-

lated cell populations was assessed by flow cytometry using FITC-conjugated anti-CD4

(BD PharmingenTM), PE-conjugated anti-CD3 (BD PharmingenTM), APC-conjugated

anti-CD45RA (BD PharmingenTM) and APC-Cy7-conjugated anti-CD62L antibodies

(BioLegend) (for antibody concentrations, see Table 2.13). Samples were analyzed on

a BD FACSCantoTM II Cell Analyzer system (BD Biosciences) (flow cytometric data

acquisition and analysis were performed by Philipp Rößner, DKFZ, Heidelberg).

3.1.1.3 In vitro clonal expansion and di↵erentiation of CD4+ T cells

Purified näıve T cells (seeding density of 1⇥106 cells/ml) were cultured in RPMI 1640

GlutaMAXTM medium (Gibco, Life Technologies) supplemented with 10% heat-inactiva-

ted fetal bovine serum and 1% of penicillin/streptomycin (Life Technologies) at 37�C

in a 5% CO2 atmosphere. Cells were activated and clonally expanded in the presence

of rIL-2 (50 U/ml; R&D Systems) and anti-CD3/CD28 T cell activator Dynabeads R�

(bead-to-cell ratio of 1:1; Gibco, Life Technologies). To direct Th1 di↵erentiation,

rIL-12 (2.5 ng/ml; R&D Systems) and anti-IL-4 neutralizing antibody (5 µg/ml; BD

PharmingenTM) were added to the expansion medium (Cousins et al. (2002)). After 3

days cells were sub-cultured at a density of 1⇥106 cells/ml and expanded under the same

conditions in the absence of activator Dynabeads for additional 4 days. The magnetic

activator beads were removed prior to downstream experiments.

3.1.1.4 THP-1 cell suspension culture

THP-1 human monocytic cell line was cultured in RPMI 1640 GlutaMAX R� medium

supplemented with 10% heat-inactivated fetal bovine serum and 1% of penicillin/strep-

tomycin at 37�C in a 5% CO2 atmosphere. Cultures were maintained either by the

addition of fresh medium or replacement of medium with subsequent re-suspension at

2–4⇥105 viable cells/ml. Cells were sub-cultured upon reaching a concentration of 8⇥105

cells/ml, usually every 2 to 3 days. Cell concentration was not allowed to exceed 1⇥106

cells/ml.

3.1.1.5 HEK293 and HeLa adherent cell culture

Cell lines HEK293 (human embryonic kidney) and HeLa (human cervical carcinoma)

were maintained in DMEM-Low glucose GlutaMAX R� medium, supplemented with
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10% heat-inactivated fetal bovine serum and 1% penicillin/streptomycin at 37�C in a

5% CO2 atmosphere. Cell monolayers were routinely sub-cultured at 80% confluence.

Briefly, cells were rinsed with D-PBS and dislodged with Trypsin-EDTA (0.05%) so-

lution, followed by reaction quenching with complete medium. Cell suspensions were

seeded into new cell culture-treated plastic flasks (T-25; T-75) (Sarstedt, Germany) at

1:5–1:10 split ratios (seeding density 50,000-100,000 cells/cm2). Culture medium was

renewed every 2 to 3 days.

3.1.2 Intracellular cytokine staining to monitor Th1 cell di↵erentiation

Resting T cells were stimulated with human anti-CD3/CD28 activator Dynabeads R� in

the presence of 1⇥ protein transport inhibitor cocktail (eBioscience) for 5 hours. Cells

were harvested and stained with fixable viability dye eFluor R� 780 (eBioscience) (diluted

1:1000 in D-PBS) for 30 min at 4�C in the dark. 5⇥105 cells were stained per condition.

The cells were thereafter washed twice with ice-cold FACS bu↵er (centrifugation at

1500 rpm (270⇥g) for 5 min at 4�C ) and fixed for 30 min at room temperature using

the IC Fixation bu↵er (eBioscience). Next, the cells were permeabilized for 5 min

with 1⇥ Permeabilization bu↵er (eBioscience) followed by a 30 min incubation with

PE-Cy7-conjugated anti-IFN-� (eBioscience) and APC-conjugated anti-IL-4 antibodies

(BD PharmingenTM), diluted in permeabilization bu↵er at room temperature in the

dark (for antibody concentrations, see Table 2.13). Finally, stained permeabilized cells

were washed and re-suspended in FACS bu↵er (staining protocol was established with

the help of Philipp Rößner, DKFZ, Heidelberg). Viable cells were analyzed for cytokine

expression on a BD FACSCantoTM II Cell Analyzer system (BD Biosciences). Dead

cells were excluded by gating o↵ the eFluor R� 780 fluorescence-positive cells. At least

20,000 viable cells were assessed for cytokine expression per sample. Background staining

was subtracted using fluorophore- and concentration-matched isotype control antibodies

from the respective host species. Resting, non-activated cells served as a reference for the

basal expression of cytokines in di↵erentiated (i.e., Th1)/non-di↵erentiated (i.e., Th0)

activated T cells.

3.1.3 Monitoring CD4+ T cell proliferation with CFSE

Activation-induced CD4+ T cell proliferation (see section clonal expansion and di↵eren-

tiation of CD4+ T cells) was monitored with the intracellular fluorescent dye carboxyflu-

orescein diacetate succinimidyl ester (CFSE). CFSE labeling was performed according

to the protocol published by Quah et al. (2007) (Nature Protocols; also available as a

video article). Briefly, T cells were re-suspended in 1ml PBS containing 5% (v/v) FCS at

a concentration of 2⇥106 cells/ml. The tube was laid horizontally to prevent pre-mixing

of the cell suspension with the CFSE labeling solution. 110 µl of PBS were added to the

non-wetted portion of the tube (i.e., at the top of the tube), and in this droplet, 1.1 µl
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of 5 mM CFSE were re-suspended (final concentration of CFSE in the cell suspension:

5 µM). After an immediate mixing (i.e., by inverting the tube and pulse-vortex), cells

were incubated with the dye for 5 min at room temperature followed by three wash-

ing steps with PBS/5% FCS (i.e., the labeled cell suspension was first washed with

10 volumes of PBS/5% FCS, followed by two washings of the cell pellet with 10ml of

PBS/5% FCS). Thereafter, labeled T cells were stimulated or not with anti-CD3/CD28

T cell activator Dynabeads R� and rIL-2 (50 U/ml) and cultured for 3 days at 37�C in

a 5% CO2 atmosphere. Division-dependent reduction in CFSE fluorescence intensity

was detected by flow cytometry. Unlabeled, non-activated and labeled, non-activated

cell controls were included as references for minimum and maximum CFSE fluorescence,

respectively.

3.1.4 Flow Cytometry

Freshly isolated näıve CD4+ T cells were washed once with ice-cold FACS bu↵er and

stained with the respective fluorochrome-conjugated antibodies (see section 3.1.1.2) in a

100 µl staining volume for 30 min at 4�C in the dark. Cells were thereafter fixed with 1%

paraformaldehyde for 15 min at room temperature in the dark and washed three times

with 200 µl FACS bu↵er (centrifugation at 1500 rpm (270⇥g) for 5 min). For each donor,

1⇥105 cells were used to determine the percentage of näıve CD45RA+ CD62L+ cells

within the isolated CD4+ T-cell population (gated on CD3+CD4+), referred to as purity

of isolation. All samples were analyzed on a BD FACSCantoTM II Cell Analyzer system

(BD Biosciences), and fluorescence data were processed using the BD FACSDivaTM

v8.0.1 software (flow cytometric data acquisition was performed by Philipp Rößner,

DKFZ, Heidelberg).

3.1.5 Application of unidirectional shear stress

Cells were subjected to unidirectional shear stress upon reaching confluence in a cone-

and-plate viscometer (Martin-Luther University, Halle-Wittenberg) (Sdougos and Bus-

solari (1984)). Briefly, this viscometer consists of a cone with an angle of 0.5 degrees

rotating on top of a 60 mm cell culture dish. Unidirectional shear stress of ⇠30 dyn/cm2

(arterial levels of shear stress) was applied by a constant angular velocity in a humidified

environment with 5% CO2 at 37�C. Three percent of polymer poly(vinyl pyrrolidone)

(PVP) (average molecular weight 360,000 g/mol) was added to the HUVEC growth

medium to increase its viscosity. In all experiments each cell culture dish was accompa-

nied by a control from the same HUVEC preparation incubated with cell culture medium

supplemented with 3% PVP for 24 hours in the absence of shear stress.
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3.1.6 Orbital shear stress in vitro transmigration system

In order to mimic the process of leukocyte extravasation in vivo, we have established a

model in which leukocytes transmigrate through endothelial cell monolayers in the pres-

ence of fluid shear stress. Unlike the traditional cell migration assays where leukocytes

transmigrate under static conditions, our model system provides an in vitro hydrody-

namic shear stress environment, combining both chemical and mechanical stimuli, that

makes it a more relevant representation of the physiological process of leukocyte dia-

pedesis.

For this purpose, a modified Boyden multi-well transmigration system is used. The

chamber consists of upper and lower compartments, separated by a micro-porous filter

membrane constituting a physical barrier that prevents the passive movement of cells

through the pores. The pore size of the filter membrane is selected according to the size

of the cells to be investigated (for transmigration of monocytes and Th1 cells, a 8 µm

pore-size filters were used). To obtain tight endothelial cell monolayers, HUVECs are

plated on collagen-I-coated 6-well Transwell R� filter inserts and subsequently cultured for

48 hours before application of di↵erent experimental conditions. Among others tested,

fibrillar collagen coating proved to be the only one able to withstand the application of

shear stress, and at the same time, to ensure the stability of the HUVEC monolayers

under hydrodynamic shear conditions. After forming a confluent monolayer, HUVECs

are primed by exposure to shear stress for 24 hours. To generate shear stress in this

system, the entire 6-well transmigration setup (i.e., Transwell R� inserts in a companion

6-well plate) was placed on an orbital shaker (PSU-10i, Biosan, SIA., Riga, Latvia). The

magnitude of shear stress exerted onto the cells within the Transwell inserts is regulated

by adjusting the agitation speed of the shaker platform (usually 100 rpm). Next, leuko-

cytes isolated from freshly drawn human blood/bu↵y coats, such as monocytes or T

lymphocytes, are allowed to transmigrate through the already pre-conditioned HUVEC

monolayers, in the presence of shear flow and various stimuli. Finally, the transmigrated

cells are quantitated and characterized for phenotypic changes.

Within blood vessels, the flow pattern and magnitude of shear stress varies with the

architecture of the vessel. Regions of endothelium exposed to low and irregular blood

flow, such as at vessel bifurcations, are predisposed to atherosclerosis (see section 1.2).

The orbital shaker technique creates a waveform of shear, which represents a good

approximation of the disturbed, non-unidirectional flow at atherosclerotic-prone areas

of the vasculature. A wave of culture medium swirls around the Transwell R� as a result

of the rotation of the shaker platform, which creates di↵erent patterns of shear stress

at di↵erent locations within the wells. Figure 3.1 depicts the pattern of shear stress at

di↵erent shaking speeds.

Hence, the orbital shear stress model of transmigration could provide an invaluable tool

to study EC-leukocytes interactions in the context of atherosclerosis and beyond.
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Figure 3.1: Snapshots of the direction and distribution of shear stress within single
well of a 6-well Transwell R� plate on an orbital shaker at di↵erent speed settings.
The color code corresponds to the magnitude of shear stress throughout the Transwells R� .
Images, as well as calculations of the orbital shear stress, were generated in collaboration with
Prof. Dr. Thomas Richter from the Numerical Methods Group at the Heidelberg University,
now University of Erlangen-Nürnberg.

3.1.7 In vitro Transmigration assay

This assay has been used to study interactions between endothelial cells and THP-1

monocytes or T helper1 cells (Figure 3.2). In brief, Transwell R� inserts (8 µm pore size;

PET; 6-well format; Corning, NY, USA) were coated with rat-tail collagen-I (10 µg/cm2,

i.e., 100 µg/ml; 500 µl per Transwell) for 1 hour at 37�C in a 5% CO2 atmosphere and

placed in a 6-well companion plate (Corning, NY, USA). Coated Transwells were there-

after washed three times with D-PBS and equilibrated in an endothelial cell growth

medium (see Media, Table 2.16) for 30 min. Trypsinized HUVECs were seeded at a

density of ⇠150,000/cm2, i.e., 700,000 cells per insert and allowed to form tight mono-

layers for 72 hours (medium volume in the upper chamber: 2 ml; lower chamber: 3 ml).

Within the last 24 hours of culture, the HUVECmonolayers were exposed to orbital shear
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stress (shaking speed 100 rpm (i.e., 3–4 dyn/cm2); medium volume in upper chamber:

1 ml; lower chamber: 1.5 ml) to mimic the endothelial cell phenotype at atherosclero-

sis predilection sites of disturbed blood flow. After shear stress pre-conditioning of the

monolayers, leukocytes were pretreated with 10 µM 15d-PGJ2 or DMSO for 1 hour in

endothelial cell growth medium in a separate culture vessel. Cells were then washed

once with pre-warmed D-PBS (i.e., pulsed treatment) and loaded onto the HUVEC

monolayers for a transmigration assay. Lower chamber was supplemented with MCP-1,

30 ng/ml (for THP-1 cells) or CCL-5, 100 ng/ml (for Th1 cells) to generate a chemo-

tactic gradient directing the migration of the cells. Subsequently, cells were allowed to

transmigrate across the HUVEC monolayers for 6 hours at 37�C in a 5% CO2 atmo-

sphere. The number of transmigrated cells was determined by using a hemocytometer

or a handheld automated cell counter (ScepterTM 2.0, Millipore). Activation-induced

dead/dying Th1 cells were removed prior to the transmigration assay using the Dead

Cell Removal kit of Miltenyi Biotec.

30 dyn/cm² 

HUVEC 

Fluid shear stress (FSS)!

Collec&ng)cells)

Ac&va&on)markers)expression)profiling)
)

RT7qPCR)
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Figure 3.2: Schematic representation of in vitro transmigration assay. HUVEC mono-
layers seeded onto porous membrane filters are primed with unidirectional or orbital shear stresses
of various magnitudes. Monocytic (THP-1) cells or primary Th1 cells (not shown on the scheme)
are allowed to transmigrate along a chemotactic gradient composed of MCP-1 (or CCL-5 in the
case of Th1 cells) added to the lower chamber. The number of transmigrated cells is quantitated
6 hours post-transmigration. The degree of activation of transmigrated cells is determined by
analyzing the expression of prototypic marker genes using qRT-PCR.
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3.1.8 Transfection

Three separate methods were used for the transient transfection of nucleic acids in

monocytic THP-1, HEK293 and HeLa cells.

3.1.8.1 Viromer GREEN

As electroporation and standard lipofection of THP-1 cells yielded a poor transfection

e�ciency and high cytotoxicity, the Viromer R� technology was chosen as a tool for the

transient transfection of Keap-1-targeting siRNAs (Stealth RNAiTM siRNA, Invitrogen)

in these cells. Viromer R� are polymeric transfection reagents which mimic viral mem-

brane fusion mechanism. The cationic polyamine backbone of Viromer binds to nucleic

acids resulting in a neutral polymer-nucleic acid particle. When endocytosed, Viromer R�

becomes exposed to an acidic environment rendering the fatty acid moieties of the poly-

mer uncharged and hydrophobic. This facilitates the so-called ”active endosome escape”

of the transfected nucleic acids. We used the specifically optimized manufacturer’s pro-

tocol for the forward transfection of THP-1 cells. Cells were seeded 24 hours before

transfection at a density of 125,000 cells/ml in a 6-well culture plate. At first, Keap1-

targeting as well as scrambled control siRNAs were diluted down to 11 µM in Bu↵er

F. In the second step, the Viromer R� GREEN transfection reagent was diluted in the

Bu↵er F by adding 90⇥ the volume of transfection reagent. Both working solutions

were combined and incubated for 15 min at room temperature. To reach a final siRNA

concentration of 100 nM and 50 µM Viromer GREEN, 200 µl of complexes were trans-

ferred per well. Culture medium was exchanged 6 hours post-transfection. Cell viability

was routinely monitored by Live/dead viability/cytotoxicity kit for mammalian cells

(Molecular Probes
TM

, Invitrogen).

3.1.8.2 Magnet-assisted transfection (MATra) of siRNAs

The MATra technology (IBA) was employed to knock down endogenous human Nrf-2 in

HEK293 cells. For each well of a 6-well plate, 3 µg of human Nrf-2 siGenomeTM SMART-

pool siRNAs (GE Dharmacon) or siGenomeTM Control Non-targeting siRNA pool #2

(GE Dharmacon) were diluted in a serum-reduced Opti-MEM medium to yield a final

volume of 200 µl (100 nM). Thereafter, 4 µl of MATra-si reagent, containing magnetic

beads, was added to the diluted siRNAs and allowed to complexate the nucleic acids

at room temperature for 20 min. The siRNA-magnetic beads mixture was added drop-

wise to the cells and the plate was immediately placed on a powerful magnet (Universal

Magnet Plate, IBA) for 30 min to allow the delivery of siRNAs into the cells. As the

MATra transfection technology is compatible with serum-containing culture media and

transfection e�ciency proved to be unaltered by the presence of serum and antibiotics,

the cells were left untouched before the addition of the bead-siRNA complexes. Culture
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medium was replaced 6 hours post-transfection. The e�ciency of gene knockdown was

assessed at the mRNA and protein levels using real-time qPCR and/or Immunoblotting,

24 to 72 hours post-transfection (depending on the half-life of the protein of interest).

3.1.8.3 Lipofectamine 3000-mediated transfection of DNA plasmids

Given that suspension THP-1 monocytic cells are hard to transfect, the transfection of

large overexpression or reporter DNA constructs was performed in the cell lines HEK293

and/or HeLa. Delivery of DNA plasmids was carried out using the Lipofectamine 3000

transfection reagent according to the manufacturer’s protocol. Lipofecatmine 3000 is

an improved cationic-lipid transfection reagent which forms liposomes in an aqueous

environment and complexes negatively charged nucleic acid molecules to assist their

cellular internalization. 24 hours prior transfection, each cell line was seeded at a den-

sity of ⇠1⇥105 cells/cm2 for HEK293 and 0.3-0.5⇥105 cells/cm2 for HeLa cells (⇠70%

confluence at the time of transfection). For transfection in a 6-well format, 2.5 µg of

Nrf-2 overexpression or luciferase reporter constructs were mixed with the transfection

reagent and allowed to complexate for 5 min at room temperature. Thereafter, the

lipid-DNA complexes were added dropwise to the respective cell line and transfectants

were cultured for 24-48 hours prior to analysis. Culture medium was replaced 6 hours

post-transfection. Transfection e�ciency and non-specific e↵ects were monitored using

a GFP-expressing control construct.

3.1.9 Decoy oligodeoxynuclotides (dODNs)

The activity of the transcription factor Egr-1 was blocked by using double-stranded

dODNs (see Table 2.10 for sequence) mimicking the Egr-1-binding DNA sequence motifs

in the human PTGDS gene promoter. In the cell, dODNs modify target gene expression

by mimicking TF binding sites in the promoter of these genes. Decoy ODNs can readily

enter cells without the aid of transfection reagents (Morishita et al. (1998)), therefore,

no auxiliary means were used to introduce these DNA oligos. To prevent binding of

Egr-1 to the PTGDS gene promoter, HUVECs of both TT and CC genotypes were

pre-incubated with dODNs for 4 hours (at a Cfinal=10 µM) prior to their exposure to

unidirectional shear stress (⇠30 dyn/cm2) for another 12 hours. In addition, a scrambled

ODN with similar base content was used as a specificity control. The expression of the

PTGDS gene was subsequently analyzed by real-time qRT-PCR.

3.1.10 Treatments

THP-1 cells were pre-treated with 10 µM 15d-PGJ2 or 50 nM Bardoxolone-methyl for 1

hour, followed by stimulation with 1000 U/ml TNF-↵ for 6 hours, unless stated other-

wise. Treatment with HDACs (TSA, 0.5–1 µM) and p300/CBP HAT (C646, 10–15 µM)
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inhibitors was performed prior to the addition of 15d-PGJ2. Inhibition of signaling path-

ways modulated by 15d-PGJ2 was carried out 1 hour before the addition of 15d-PGJ2

and subsequent stimulation with TNF-↵. For Nrf-2 nuclear translocation studies, THP-

1 cells were treated with 10 µM 15d-PGJ2 or 50 nM Bardoxolone-methyl or 0.5-1 µM

sulforaphane for 4 hour prior to nuclear extraction. Small interfering RNA-mediated

knockdown of the respective proteins was carried out 48 hours before the exposure to

inhibitors and/or stimulants.

For transmigration assays with in vitro di↵erentiated Th1 cells, cells were pulse-treated

with 10–20 µM 15d-PGJ2 for 1 hours, followed by a washing step and exposure to the

chemoattractant, 100 ng/ml CCL-5/RANTES.

HUVEC monolayers were pre-conditioned with unidirectional (⇠30 dyn/cm2) or orbital

fluid shear stress (100 rpm shaking speed) for 24 hours before their use in the leukocyte

transmigration assay.

Reporter gene construct-transfected HEK293 cells were pre-treated with 10 µM 15d-

PGJ2 or 50 nM Bardoxolone-methyl for 1 hour, followed by stimulation with 1000 U/ml

TNF-↵ for 18 hours to allow the secretion of the reporter Gaussia luciferase. Treat-

ment with HDACs (TSA, 0.5-1 µM) and p300/CBP HATs (C646, 10-15 µM) inhibitors

was performed prior to the addition of 15d-PGJ2. Small interference RNA-mediated

knockdown of the respective proteins was carried out 24-48 hours before the exposure

to inhibitors and/or stimulants.

HeLa cells were stimulated with 1000 U/ml TNF-↵ for 6 hours after transfection with

Nrf-2 or control GFP overexpression vectors.

3.2 Molecular biology methods

3.2.1 Isolation of human genomic DNA from blood

Genomic DNA was isolated from fresh or frozen EDTA-treated whole human blood using

the QIAamp R� DNA Blood Mini Kit (Qiagen) according to the manufacturer’s protocol.

DNA binds specifically to the QIAamp silica-gel membrane inside the spin columns while

contaminants and PCR inhibitors such as divalent cations and proteins pass through.

Pure genomic DNA was eluted in 50–100 µl elution bu↵er provided with the kit and

used as a template for RFLP-PCR analysis of the T-786C NOS3 SNP genotype.

3.2.2 Isolation of RNA from cultured cells

Adherent cells were rinsed with ice-cold D-PBS and lysed with 350 µl RA1 (Macherey-

Nagel) lysis bu↵er containing 1% �-mercaptoethanol. Suspension cells were pelleted
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and washed once with ice-cold D-PBS prior to lysis with 350 µl of the same bu↵er.

Total RNA was isolated using the NucleoSpin R� spin column-based RNA extraction kit

(Macherey-Nagel) according to the manufacturer’s instructions. In brief, homogenized

lysates were mixed with 70% ethanol to create binding conditions favoring the adsorp-

tion of RNA to the column silica membrane. DNA was removed by on-column digestion

with recombinant DNase. A series of washing steps remove salts, metabolites and macro-

molecular cellular components. Total pure RNA was eluted in 30–60 µl of RNase-free

water under low ionic strength conditions. Elution volumes were selected depending on

the amount of starting material. Concentration and purity of the extracted total RNA

was determined using a spectrophotometer (NanoDrop ND-1000).

3.2.3 Reverse transcription (RT)

1 µg of the total RNA template (volume of 13 µl) was mixed with 1 µl of oligo dT primer

(0.5 µg/µl) and heated to 70�C for 10 min to melt secondary structure within the tem-

plate. The mixture was immediately cooled on ice to prevent reformation of secondary

structures and briefly centrifuged. An RT master mix containing 4 µl of 5⇥ first strand

reaction bu↵er (250 mM Tris-HCl pH=8.3, 375 mM KCl, 15 mM MgCl2, 50 mM DTT),

1 µl of 10 mM dNTPs (0.5 mM) and 1 µl of 200 U/µl Moloney Murine Leukemia

Virus Reverse Transcriptase (M-MLV RT) was prepared. The resultant mixture was

incubated at 42�C for 1 hour for a first-strand cDNA synthesis. The RT reaction was

terminated by incubation at 70�C for 10 min and the reaction batch was cooled on ice.

The synthesized cDNA (20 µl) was diluted 1:10 with DNA/DNase-free water and used

as a template in conventional semi-quantitative and/or real-time quantitative PCR.

3.2.4 Real-time quantitative reverse transcription polymerase chain

reaction (Real-time qRT-PCR)

Real-time qRT-PCR was performed using the LightCycler 1.5 instrument (Roche Diag-

nostics, Germany) and the QuantiTect SYBR Green R� kit (Qiagen, Hilden, Germany).

Briefly, 5 µl cDNA (⇠25 ng), 1 µl each of forward and reverse primer (10 µM), 3 µl

of RNase-free water, and 10 µl of SYBR Green Master mix were added to obtain a

final PCR reaction volume of 20 µl. The annealing temperatures used for the respective

primer pairs are tabulated in Table 2.6. Changes in gene expression were analyzed by

using either absolute (i.e., based on number of copies of the gene product) or relative

quantification (i.e., based on the comparative ��Ct method; Ct or threshold cycle value

is the cycle number at which the fluorescence generated within the PCR reaction crosses

the fluorescence threshold). The real-time qRT-PCR data were standardized using at

least one stably expressed reference gene and by corrections for PCR e�ciency and in-

terrun variations (e.g., by using a calibrator sample) (Pfa✏ (2001); Vandesompele et al.
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(2002); Willems et al. (2008)). The standard deviation of quantification Ct values be-

tween technical replicates was typically less than 0.3 cycles (Hellemans et al. (2007)).

All replicates with a standard deviation over 0.3 cycles were excluded. GAPDH, the

60S ribosomal protein L32 (RPL32) and HPRT-1 were used as reference genes to cor-

rect for variations in the qRT-PCR workflow, e.g., to normalize for di↵erences in RT

e�ciency, di↵erences in the amount of PCR template used, etc. For absolute quantifi-

cation, a standard curve was generated based on serial dilutions of plasmid DNA (of

known concentration) encoding the amplified gene sequence. DNA plasmid standards

were constructed by amplification of the desired sequence using conventional RT-PCR

and cloning it into a vector for bacterial expression. For relative quantification, fold-

change in gene expression was calculated as follows:

�Ct = Cttarget� Ctreference (3.1)

��Ct = �Cttreated� �Ctuntreated (3.2)

(untreated, i.e., calibrator sample; treated, i.e., test sample)

Fold change = 2���Ct (3.3)

PCR amplification e�ciency (E) was calculated as follows:

E(%) = (10�1/�slope–1)⇥ 100 (3.4)

3.2.5 Conventional PCR

In this study, conventional, semi-quantitative RT-PCR was used to analyze the ex-

pression of the HO-1 gene in THP-1 and HEK293 cells upon di↵erent treatments or

siRNA-mediated gene silencing. Conventional PCR was used to amplify the immuno-

precipitated DNA in ChIP assays and for genotyping of the T-786C SNP of the NOS3

gene. The PCR reaction mixtures (see Tables 3.1–3.3) were loaded on an automated

PCR thermocycler (Biometra, Göttingen, Germany) programmed with the following

cycling parameters (see Tables 3.4–3.6).

Table 3.1: PCR Master mix HO-1

Complete PCR bu↵er (10⇥) 5 µl
dNTPs (10 mM) 1 µl

Fwd primer (10 µM) 2 µl
Rev primer (10 µM) 2 µl

cDNA 3 µl (⇠15 ng)
Taq polymerase (Boiron) 0.2 µl

ddH2O to 50 µl
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Table 3.2: PCR Master mix IL-1B ARE-2 (ChIP assay)

Complete PCR bu↵er (10⇥) 5 µl
dNTPs (10 mM) 1 µl

Fwd primer (10 µM) 1 µl
Rev primer (10 µM) 1 µl

immunoprecipitated DNA 5 µl
Taq polymerase (Boiron) 0.2 µl

ddH2O to 50 µl

Table 3.3: PCR Master mix T-786C SNP NOS3 genotyping

Complete PCR bu↵er (10⇥) 2.5 µl

dNTPs (10 mM) 0.5 µl

Fwd primer (10 µM) 1 µl

Rev primer (10 µM) 1 µl

genomic DNA 1 µl (⇠25–50 ng)

Taq polymerase (Boiron) 0.2 µl

ddH2O to 25 µl

Table 3.4: PCR program HO-1

94�C 5 min
94�C 30 s
58�C 30 s
72�C 1 min

9
=

; 31⇥

72�C 5 min

Table 3.5: PCR program IL-1B ARE-2 (ChIP assay)

94�C 5 min
94�C 45 s
55�C 45 s
72�C 45 s

9
=

; 35⇥

72�C 5 min

Table 3.6: PCR program T-786C NOS3 SNP genotyping

94�C 5 min
94�C 30 s
60�C 30 s
72�C 1 min

9
=

; 40⇥

72�C 5 min
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3.2.6 Agarose gel electrophoresis

Agarose gel electrophoresis was used for the separation of DNA fragments according to

their size in an agarose gel matrix. This method was employed to confirm the specificity

of amplified PCR products as well as for restriction analysis of expression and reporter

DNA constructs. Agarose gels of di↵erent density (1-2% agarose) were used depending

on the size of the DNA fragment to be resolved. Briefly, agarose was melted in 100 ml of

TBE bu↵er followed by addition of 5 µl (Cfinal=0.5 µg/ml) of ethidium bromide to stain

the DNA fragments. The resultant solution was poured in an electrophoresis chamber.

Samples (PCR products or restriction digests) were mixed with 6⇥ loading bu↵er and

loaded into the gel pockets. Electrophoresis was carried out at 100 V for approximately 1

hour. The GeneRulerTM DNA ladders of varying range (Thermo Scientific) were used to

verify the size of the separated DNA fragments. DNA samples were visualized using the

GelDoc XRTM imaging system and data were acquired and analyzed using the Quantity

One R� 1-D Analysis software package, version 4.6.9 (BioRad Laboratories, Germany).

3.2.7 Genotyping

Genotyping was performed by PCR-based restriction fragment length polymorphism

(RFLP) analysis. Genomic DNA isolated from umbilical artery specimens or human

patient blood was used for genotyping of the T-786C NOS3 SNP. A 657 bp fragment

of the promoter region (GenBank accession No. D26607; -1113 to -456) comprising the

SNP was amplified by PCR (for Master mix composition and PCR program see Tables

3.3 & 3.6). The resulting PCR product was digested using restriction endonuclease HpaII

yielding a specific RFLP pattern (Figure 3.3) depending on the presence or absence of

the C allele.

Figure 3.3: Restriction fragment length polymorphism (RFLP) analysis of the T-
786C SNP of the NOS3 gene.
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3.2.8 DNA plasmid amplification

The Nrf-2 mammalian expression plasmid (Gene accession No.: NM 006461.2; vector

pJ603:137670-AmpR), as well as the corresponding GFP-encoding control construct

(vector pJ603:149883-AmpR), were purchased from DNA 2.0, Inc. (Menlo Park, CA,

USA) The human IL-1B promoter-reporter construct was purchased from GeneCopoeia,

Inc. (Rockville, MD, USA) (Catalog No.: HPRM14646-PG04; Gene accession No.:

NM 000576; vector pEZX-PG04-Gaussia luciferase (GLuc)-KanR; GLuc-ON promoter

reporter clone series). The promoter clone comprises a ⇠1.6 kb-fragment of the human

IL-1B promoter (-1367bp to +212bp relative to the transcription start site). The full-

length IL-1B promoter clone (⇠4.0 kb-fragment of the human IL-1B promoter; -3880bp

to +212bp relative to the transcription start site) was synthesized and inserted into the

pEZX-PG04-GLuc-reporter vector by GenScript USA, Inc. (Piscataway, NJ, USA).

All DNA plasmids were amplified in a competent E. coli bacterial strain, DH5-↵. 20–

50 ng of purchased plasmid was transformed into 100 µl of competent cells, followed

by incubation for 30 min on ice. The cells were thereafter exposed to heat shock at

42�C for 2 min and immediately placed on ice for another 30 sec. Thereafter, 900 µl of

LB broth (with no antibiotics) was added to the cells and the resulting suspension was

incubated at 37�C for 1 hour with continuous shaking at 250 rpm. Sterile LB-agar plates

containing ampicillin (100 µg/ml) or kanamycin (50 µg/ml) were pre-equilibrated to

37�C. Fifty microliters, 100 µl and 200 µl of transformed bacterial cell suspension

were streaked out onto three separate LB-agar plates using a sterile Drigalski spatula.

Bacterial colonies were allowed to grow overnight at 37�C in an incubator. Transformed

single colonies were randomly picked with a sterile pipette tip and a starter culture was

set up as follows: 3–5 ml of LB broth with appropriate antibiotics were inoculated with

a single bacterial colony and cultured at 37�C for 8 hours with continuous shaking at

250 rpm. Large-scale overnight culture was inoculated by diluting the starter culture

1:1000 into 100 ml of LB broth containing the appropriate selective antibiotic. Culture

was grown at 37�C with continuous agitation at 125 rpm for ⇠16 hours. For long-term

storage, a glycerol stock of each DNA plasmid was prepared and kept at -80�C. Plasmid

DNA was purified using a maxi prep endotoxin-free kit (NucleoBond Xtra Maxi prep

EF kit, Macherey-Nagel) and all vector inserts (i.e., Nrf-2 and GFP coding sequences,

as well as all IL-1B promoter clones) were sequenced prior to downstream applications.

3.2.9 Introduction of deletion mutations in the IL-1B gene promoter

using site-directed mutagenesis

The core sequences of the identified three Nrf-2-like binding sites were deleted in the

experimental IL-1B promoter-reporter gene construct using the PCR-based QuikChange

II XL Site-directed mutagenesis kit (Stratagene, Agilent Technologies) according to the

manufacturer’s protocol. In brief, complementary mutagenic primers were designed
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using the QuikChange R� Primer Design Program (for sequences, see Table 2.9). The

mutagenic reaction is divided into three steps: 1) mutant strand synthesis reaction;

2) Dpn I digestion of the amplification products; 3) transformation of mutated plasmid

molecules into competent bacterial cells (XL10-Gold ultracompetent cells). Transformed

bacteria were streaked onto LB/kanamycin (50 µg/ml) agar plates and grown overnight

at 37�C. Ten transformed bacterial colonies were randomly selected and plasmid DNA

was extracted. The IL-1B promoter insert was sequenced to verify that the selected

clones contain the desired deletion mutation. Large-scale cultures (grown in 100 ml

LB broth containing 50 µg/ml of kanamycin at 37�C overnight) were set up from the

deletion mutation-positive clones, and mutant plasmid DNA was purified using a maxi

prep endotoxin-free kit (NucleoBond Xtra Maxi prep EF kit, Macherey-Nagel).

3.2.10 Luciferase reporter gene assay

HEK293 cells were transiently transfected in a 6-well plate at 70% confluence (1⇥106

cells seeded 24 hours prior to the transfection) with 2.5 µg or 0.25 µg of wild type or

ARE-mutated IL-1B promoter-Gaussia luciferase reporter gene constructs using Lipo-

fectamine 3000 according to manufacturer’s protocol. After 6 hours, the transfected cells

were trypsinized and equal numbers were transferred in 24-well plate (⇠125,000 cell-

s/well, i.e., 1 well of a 6-well plate was split into 8 wells of a 24-well plate). Because the

transfectants were split into equal portions, normalization for transfection e�ciency was

not necessary. Twenty-four hours post-transfection, cell culture medium was replaced to

eliminate any background secreted Gaussia luciferase prior to cell treatment. The pas-

saged cells were thereafter subjected to a 1-hour pre-treatment with 10–20 µM 15d-PGJ2

or 50 nM Bardoxolone-methyl, followed by a stimulation with TNF-↵ (1000 U/ml) for

18 hours to induce activity of the experimental IL-1B promoter. Promoter activation

leads to the expression of secreted luciferase protein into the medium. Stimulation was

performed for 18 hours to allow secretion of the reporter Gaussia luciferase protein. Cul-

ture supernatants were harvested at the end-point of the experiment and were assayed

for extracellular luciferase activity. In brief, 10 µl of supernatant and substrate reaction

bu↵er were added to a white opaque microtiter 96-well plate, and after a 10 min incu-

bation (to allow signal stabilization) the luminescence light output was recorded from

an average of 15 counts at 1 sec exposure time, using the MicroLumat LB 96P lumi-

nometer (Berthold Technologies, Bad Wildbad, Germany). Raw bioluminescence values

(expressed in relative light units, RLUs) were background-subtracted using supernatants

of mock-transfected cells.

To analyze the e↵ect of Nrf-2 or Bach-1 protein knockdowns, siRNAs were introduced

into the cells before or after the transfection of the IL-1B promoter-reporter construct

(depending on the half-life of the depleted protein), i.e., Nrf-2 siRNAs were introduced

24 hours after the reporter construct transfection, whereas the siRNAs against Bach1

were transfected 24 hours before the delivery of the reporter construct into the cells.
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Pretreatment with HDACs and p300/CBP HATs inhibitors was performed before the

addition of 15d-PGJ2 and TNF-↵.

3.3 Biochemical methods

3.3.1 Total protein extraction

For isolation of total cellular protein, adherent cells were washed with ice-cold D-PBS

and scraped o↵ in 50–100 µl of hypotonic swelling bu↵er supplemented with protease

and phosphatase inhibitors, and transferred into 1.5 ml Eppendorf tubes. Alternatively,

suspension cells were first pelleted and washed once with ice-cold D-PBS, followed by

re-suspension in 50–100 µl of hypotonic swelling bu↵er supplemented with protease and

phosphatase inhibitors. After incubation on ice for 30 min, Triton X-100 to a Cfinal=0.5%

was added to the cell homogenates, which were incubated on ice for another 10 min.

A complete cell lysis as well as DNA shearing to reduce the lysates viscosity was as-

sured by an ultrasonication step (3⇥5 sec at 50% sonication amplitude with cooling on

ice in between; UP50H sonicator). The resulting cell lysates were cleared from cellular

debris/unlysed cells by a high-speed centrifugation (13,000 rpm (20,000⇥g) for 15 min

at 4�C . The lysate was either snap frozen and stored at -80�C or used for downstream

analyses. Total protein concentration and yield was determined by a colorimetric Brad-

ford protein assay. Light absorbance at 595 nm wavelength, which is proportional to

the protein concentration, was recorded on a Microplate spectrophotometer (PowerWave

XS, BIO-TEK).

3.3.2 Nuclear extraction

Cell lysates were fractionated into cytosolic and nuclear (including membranes) portions

to monitor subcellular localization of proteins. Suspension THP-1 cells were harvested by

centrifugation and washed once with ice-cold D-PBS. Cells were re-suspended vigorously

in 100 µl of Lysis bu↵er I supplemented with protease and phosphatase inhibitors (see

Materials) and incubated for 10 min on ice (samples were vortexed 5⇥10 sec to break

open the cells). Alternatively, adherent cells were washed once with ice-cold D-PBS and

harvested by scraping in 100 µl of Lysis bu↵er I. Lysates were homogenized by passing

them through a 26-gauge needle three times and transferred into 1.5 ml Eppendorf

tubes. Nuclei (including the membrane fraction) were pelleted at 12,000⇥g at 4�C

for 15 min and the supernatants (cytosolic fraction) were transferred to new tubes.

Cytosolic extracts were either snap frozen and stored at -80�C or used for downstream

analyses. The nuclear pellets were washed once very carefully with ice-cold D-PBS and

re-suspended in 50 µl Lysis bu↵er II (supplemented with protease and phosphatase

inhibitors). Nuclear lysates were incubated for 15 min on ice and sonicated 3⇥5 seconds
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at 50% sonication amplitude with cooling on ice in between to shear chromatin (UP50H

sonicator). After centrifugation (12,000⇥g at 4�C for 15 min), supernatants containing

the nuclear fraction were transferred to new tubes and were either snap frozen and stored

at -80�C or used for downstream analyses. The protein concentration was determined

in both cellular fractions (see section 3.3.1), and fractions were subsequently used for

Western blot analyses.

3.3.3 Immunoblotting (Western blotting)

Protein samples were separated by 10% denaturing sodium dodecylsulfate polyacry-

lamide gel electrophoresis (SDS-PAGE). Samples were boiled in 1⇥ reducing sample-

loading bu↵er for 5 min at 95�C , and equal amounts of total protein (40 µg/lane) were

resolved by 10% denaturing sodium dodecylsulfate polyacrylamide gel electrophoresis

(SDS-PAGE). Gels (thickness = 1.5 mm) were run for 20 min at 80 V to allow protein

stacking followed by an increase in voltage to 120 V to finish the run in about 1.5 hours.

Dual color protein marker from BioRad was used to estimate the approximate molecular

mass of the separated proteins. Proteins were blotted onto methanol-activated Immo-

bilon PVDF membranes (Millipore Corp., Belford, MA, USA; pore size: 0.45 µm) using

a wet transfer system (Biorad, Germany). Gels and membranes were equilibrated in 1⇥
Towbin transfer bu↵er (20% methanol), and proteins were transferred at a constant cur-

rent of 350 mA for 1.5 hours. After blocking with 4% (w/v) nonfat dried Blotto R� milk

dissolved in TBS-Tween 20 0.05% (v/v) (TBST) for 30 min -1 hour (blocking time de-

pends on the amount of loaded protein), membranes were incubated with the respective

primary antibodies overnight at 4�C. Thereafter, blotted proteins were washed 4 times

with TBST for 5 min each and incubated with species-specific horseradish peroxidase-

conjugated secondary antibodies for 1 hour at room temperature. Finally, the membrane

was washed 4 times with TBST and once with TBS and visualized using enhanced chemi-

luminescence (LuminataTM Forte substrate, Millipore). Images were acquired using the

ImageQuant LAS 4000 mini imaging system, and quantification of the protein bands

intensity was performed using the ImageJ software.

3.3.4 Electrophoretic mobility shift analysis (EMSA)

EMSAs were performed by PD Dr. Andreas Wagner, Institute of Physiology and Patho-

physiology, Heidelberg University. Nuclear extracts from 15d-PGJ2/DMSO or TNF-↵-

treated THP-1 monocytic cells were prepared as described by Schreiber et al. (1989).

The double-stranded gel shift oligodeoxynucleotides (Biomers.net, Ulm, Germany) for

the anti-oxidant response element (ARE) were end-labelled with [�-32P]ATP by using

the 5’-end labelling kit from GE Healthcare, formerly Amersham Biosciences (Wagner

et al. (2002)). The specificity of the binding reaction was monitored by performing

the assay in parallel with the same samples in the presence of a 100-fold excess of
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the non-labelled oligonucleotide. Aliquots of nuclear protein (10 µg) were incubated

with 10—20,000 counts per minute of the radiolabeled oligonucleotides in binding bu↵er

containing 1.33 mmol/l DTT and 1 µg poly(d(I-C)) in a total volume of 15 µl at am-

bient temperature for 30 min. The resulting protein-DNA complexes were analyzed by

non-denaturing polyacrylamide gel (4%) electrophoresis and autoradiography by expos-

ing the dried gels to Kodak X-OMAT AR X-ray film (Sigma-Aldrich). Specificity of

the ARE-protein interaction was ascertained by incubation with scrambled radiolabeled

ARE oligonucleotides.

3.3.5 Chromatin Immunoprecipitation (ChIP)

To detect binding of Nrf-2 to the human proximal IL-1B promoter, a ChIP assay was

performed. THP-1 cells were treated with DMSO or 15d-PGJ2 for 4 hours at a concen-

tration of 3.5⇥105 cells/ml. DNA-protein crosslinking in living cells was carried out at

room temperature using 1% formaldehyde for 15 min. After cell lysis, chromatin was

sheared by sonication (UP50H sonicator; 4 pulses of 15 seconds at 50% of maximum

output with cooling on ice in between) resulting in DNA fragments in the range of 500

to 800 bp. Ten per cent of the total sonicated chromatin was kept as the input mate-

rial. Sheared chromatin was immunoprecipitated with 4 µg of anti-Nrf-2 antibody (C20:

SC-722X, Santa Cruz Biotechnology, Inc., TX, CA) at 4�C overnight and protein-DNA

complexes were pulled down with herring sperm DNA-blocked Dynabeads R� Protein

G (Life Technologies). As a negative control a no-antibody immunoprecipition was

performed in parallel (NAC, no-antibody control). Immunoprecipitated chromatin was

reverse cross-linked with 0.2 M NaCl and deproteinated with 40 µl/ml Proteinase K at

65�C for 4 hours. DNA was extracted with phenol/chloroform/isoamyl alcohol (25:24:1)

and amplified by conventional PCR. The optimal number of PCR cycles was adjusted

to avoid amplification saturation. Nrf-2 binding was detected with specific primers (see

Table 2.8) spanning the identified ARE-2 region of the IL-1B promoter (PCR product

size: 136 bp). The ARE-2 region was amplified from 5 µl of purified soluble chro-

matin before immunoprecipitation to show input DNA. The PCR cycling parameters

used to amplify immunoprecipitated DNA were as follows: 35 cycles of a denaturing

step at 94�C for 45 sec, an annealing step at 55�C for 45 sec, and an extension step at

72�C for 45 sec. PCR products were separated on a 2% agarose gel containing ethidium

bromide and imaged using the GelDoc XRTM imaging system (BioRad Laboratories,

Germany). Data were acquired and analyzed using the Quantity One R� 1-D Analysis

software package, version 4.6.9 (BioRad Laboratories, Germany). Data were normalized

to input control.
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3.3.6 15d-PGJ2 enzyme immunoassay

Quantitative determination of 15d-PGJ2 in culture supernatants was performed using

the 15d-PGJ2 ELISA kit according to the manufacturer’s instructions (Enzo Life Sci-

ences, Lausen, Switzerland). The 15d-PGJ2 ELISA kit is a colorimetric competitive

enzyme immunoassay designed to measure 15d-PGJ2 in biological fluids. In brief, alka-

line phosphatase (AP)-labeled 15d-PGJ2 competes with the unlabeled 15d-PGJ2 from

the analyzed sample for binding sites on polyclonal anti-15d-PGJ2 antibodies. After

incubation with an AP chromogenic substrate, the enzymatic reaction is stopped and

light absorbance is read at 405 nm wavelength using a microplate reader. The level of

color development is inversely proportional to the concentration of 15d-PGJ2 in the an-

alyzed samples. The absolute 15d-PGJ2 concentrations were calculated by interpolation

from a standard curve based on dilution series of a 15d-PGJ2 standard supplied by the

manufacturer.

3.4 Sample collection and diagnosis of CHD

Blood samples were collected in a blinded fashion from randomly selected patients under-

going elective coronary catheterization (samples were collected by Dr. Florian Leuschner,

University Hospital Heidelberg, Antragsnummer: S-390/2011). Inclusion criteria for pa-

tients were: 1) patients were considered CHD-positive when the luminal diameter in at

least one coronary artery was reduced by 50% as confirmed by coronary angiography; 2)

lack of acute myocardial infarction or unstable angina; 3) lack of chronic inflammatory

diseases known to influence the plasma prostanoid spectrum, e.g., rheumatic diseases,

inflammatory bowel disease, etc. Average age of the CHD study group was 71.3±12.7

years; range 44 to 91 years; n=32; 28% female/72% male subjects. CHD-free age-

matched patients were included as a control group (samples were kindly provided by Prof.

Peter Bugert, Medical Faculty Mannheim, Heidelberg University and Dr. Maik Brune,

University Hospital Heidelberg). Average age of the CHD-free control study group was

64±3 years; range 60 to 69 years; n=108; 50% female/50% male subjects. Primary risk

factors were defined as follows: hypertension, current treatment with antihypertensive

agents; hypercholesterolemia, total plasma cholesterol >4.8 mmol/l; diabetes, fasting

glucose >5.5 mmol/l or current treatment with insulin or oral hypoglycemic agents, and

smoking.

Blood was drawn from the brachial or femoral arteries in EDTA-blood collection tubes

prior to heparin injection. Plasma was separated from the whole blood specimens within

4 hours after blood drawing by centrifugation at 2500⇥g for 10 min. Plasma was

aliquoted (500 µl aliquots), snap frozen in liquid nitrogen and stored at -80�C until

mass spectrometric (MS) quantification analysis. The stability of 15d-PGJ2 under these

conditions was confirmed using liquid chromatography-MS/MS (for MS quantification
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of 15d-PGJ2, see section quantification of 15d-PGJ2 concentration in CHD patients

plasma).

All specimens were collected after obtaining informed consent from the patients. All

procedures were approved by the local ethics committee.

3.5 Quantification of 15d-PGJ2 concentration in CHD pa-

tients plasma

All plasma 15d-PGJ2 quantification analyses were performed by Jacob Morgenstern,

University Hospital Heidelberg.

3.5.1 Chemicals

High-purity acetonitrile, ammonium acetate, ethyl acetate, methanol and water pur-

chased from Sigma-Aldrich (Steinheim, Germany). Formic acid was purchased from Bio-

solve (Valkenswaard, Netherlands). Unlabeled 15-Deoxy-�12,14-prostaglandin J2 (15d-

PGJ2) (2-4 mg), and 15-Deoxy-�12,14-prostaglandin J2-d4 (15d-PGJ2-d4, i.e., deuter-

ated 15d-PGJ2) (50 µg), were used as internal standards for the qunatification of 15d-

PGJ2 by liquid chromatography tandem mass specrometry (LS-MS/MS) (purity>98%;

standards were purchased from Cayman chemicals - QuantPAK; local distributor: Biomol;

Hamburg, Germany).

3.5.2 Preparation of internal standard stock and working solutions

Internal standard solvents were evaporated under a stream of nitrogen, reconstituted in

methanol and stored at -80�C at a concentration of 1.5 mg/ml (unlabeled 15d-PGJ2) and

250 µg/ml (deuterated 15d-PGJ2). Working solutions were prepared in methanol and

kept at -80�C at all times. For better precision, the deuterated 15d-PGJ2-d4 standard

was quantified against the more precisely weighed unlabeled 15d-PGJ2 standard by

generating a standard curve of MS peak intensity ratios (deuterated vs. unlabeled).The

calibration range of 15d-PGJ2 was as follows: unlabeled 15d-PGJ2 standard at 100, 250,

500, 1000, 2500, 5000 pg/ml plus 1 ng of 15d-PGJ2-d4 for each calibrator.

3.5.3 Lipid extraction from blood plasma

Lipids were extracted from plasma by liquid-liquid-extraction (LLE). In brief, 50 µl of

internal standard (1 ng 15d-PGJ2-d4) was added to 300 µl of plasma followed by an

acidification of the mixture with formic acid to pH=2. Lipids were extracted thrice with
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2 volumes of ethylacetate, and the total organic phase was evaporated in a speed vacuum

pump for 15 min at room temperature. The lipid extracts were thereafter reconstituted

in a mixture of acetonitrile:water (25:75) with 0.1% ammonium acetate (mobile phase)

and were separated by ultra performance liquid chromatography (UPLC).

3.5.4 Chromatography

All chromatographic analyses were performed on a Waters R� ACQUITY UPLC-I Class

system (Waters, Eschborn, Germany) equipped with a binary-based solvent delivery

system and an online degasser. Prostaglandins were separated on a reversed-phase

Waters R� ACQUITY UPLC BEH C18 column (1.7 µm, 2.1 mm ⇥ 50 mm) at a flow

rate of 0.3 ml/min and a column temperature of 40�C . All samples were stored during

analyses in the UPLC autosampler at 4�C and the sample injection volumes were varied

between 1 to 5 µl. Solvent A consisted of 0.1% ammonium acetate in water and solvent

B was 0.1% ammonium acetate in a mixture of acetonitrile:water (95:5). For each run

a gradient elution was performed and no pre-equilibration was needed: 0 ! 2 min, 75

! 70% solvent A; 2 ! 2.5 min, 70 ! 5% solvent A; 2.5 ! 8 min, 5 ! 70% solvent A;

8 ! 10 min, 70 ! 75%. The column eluent was directed into a mass spectrometer for

analysis. Data were processed using the Waters R� MassLynxTMXS software.

3.5.5 Tandem mass spectrometry

The detection of 15d-PGJ2 was carried out on a XEVO TQ-S tandem quadrupole mass

spectrometer (Waters R�) equipped with an electrospray ionization source (ESI) oper-

ated in negative ion mode. Analyte detection was performed using multiple reaction

monitoring (MRM). Source parameters were set as follows: capillary voltage - 3.8 kV;

desolvation temperature - 300�C ; desolvation gas flow - 850 l/h; source temperature

- 150�C ; cone gas flow - 250 l/h; collision gas flow - 0.15 ml/min; nebuliser gas flow

- 5 bar. Cone and collision voltage were optimized for each compound separately and

are summarized in table 3. Data was acquired using the Waters R� MassLynx 4.1 soft-

ware and quantitative analyses were performed using the TargetLynxTM 2.7 Application

Manager. Rt - retention time; CV - cone voltage; CE - collision energy.

analyte Rt [min] MRM – quantifier (m/z) MRM – qualifier (m/z) CV [V] CE [V]

15d-PGJ2 3.91 315.1 > 271.1 315.1 > 203.1 35 15

15d-PGJ2-d4 3.90 319.1 > 275.2 319.1 > 203.1 33 14
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3.6 Statistical analysis

All data represent mean ± standard error of the mean (SEM) of ”n” independent obser-

vations, unless stated otherwise. Tests for statistical significance were computed using

the GraphPad Prism 6 software. When comparing two groups, the unpaired Student’s

t-test was performed; in case of multiple comparisons, a one-way ANOVA followed by

Tukey’s multiple comparisons test was performed to determine statistically significant

di↵erences between the means. A probability value of p<0.05 was considered significant.
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4
Results

4.1 Characterization of a 15d-PGJ2-mediated mechanism

compensating for the relative lack of NO formation in

endothelial cells (ECs) of individuals homozygous for

the T-786C SNP of the NOS3 gene

Given that NO is an essential endogenous modulator of leukocyte adhesion and transendo-

thelial migration, we investigated the impact of the T-786C NOS3 SNP on interactions

between dysfunctional CC-genotype ECs and human leukocytes. At first, to analyze the

transmigration of leukocytes through endothelial cells of di↵erent genotype, we devel-

oped an in vitro leukocyte extravasation model using monolayers of CC or TT-genotype

human umbilical vein endothelial cells (HUVECs) and the human monocyte-like cell line,

THP-1. Exposure to unidirectional shear stress for 24 hours at 30 dyn/cm2 was used

to restore physiological levels of NOS-3 expression in the HUVEC monolayers, thereby

mimicking the atheroprotective phenotype of healthy ECs in vivo.

4.1.1 CC-genotype ECs impede monocyte activation and transendothe-

lial migration independent of NO

Surprisingly, prior exposure of HUVECs to physiological levels of FSS e↵ectively reduced

THP-1 cell migration, not only through TT, but also through NO-deficient CC-genotype

ECs (Figure 4.1A). Moreover, the relative number of THP-1 cells transmigrating through

the CC-genotype HUVEC monolayer was even lower as compared to the TT-genotype

monolayer. This e↵ect was more pronounced when THP-1 cells were allowed to trans-

migrate along a gradient of monocyte chemotactic protein-1 (MCP-1), indicating a de-

creased chemokine responsiveness of these cells upon interaction with dysfunctional CC-

genotype HUVECs. Even more surprisingly, expression of interleukin-8 (IL-8), a marker
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for their pro-inflammatory activation, was greatly suppressed in the THP-1 cells that

had transmigrated through FSS-exposed CC-genotype HUVECs (Figure 4.1B).

Pharmacological manipulation of NO levels in genotyped ECs failed to demonstrate a

relationship between the capacity of ECs to synthesize NO and the observed pheno-

typic quiescence of THP-1 monocytes that had transmigrated through CC-genotype EC

monolayers. Neither exposure of CC-genotype EC monolayers to the NO donor DETA

NONO-ate nor the acute inhibition of NOS-3 in TT monolayers, altered the migratory

capacity and pro-inflammatory gene expression of transmigrated THP-1 cells (data not

shown). The fact that both these e↵ects were independent of NO suggests that dysfunc-

tional CC-genotype HUVECs have devised (an) alternative mechanism(s) to compensate

for the relative lack of NOS-3-derived NO and its anti-inflammatory properties in ho-

mozygous carriers of the T-786C SNP of the NOS3 gene.

4.1.2 COX-2 and L-PGDS are up-regulated in CC-genotype ECs upon

FSS

Because NO levels are known to modulate the biosynthesis of prostanoids, and, prostanoids

play pivotal roles in vascular biology and inflammation, we considered these bioactive

lipid mediators as potential candidates to mediate the presumed compensatory mecha-

nism. In Table 4.1 , the relative transcript expression of AA-metabolizing enzymes is

compared between HUVECs isolated from donors with both NOS3 genotypes after ex-

posure to unidirectional FSS. Among the nine AA-metabolizing enzymes present in ECs,

Figure 4.1 (facing page): Characterization of the 15d-PGJ2-mediated compensatory
mechanism in CC-genotype HUVECs. (A, B) CC-genotype HUVECs impede monocyte
activation and migratory capacity. (A) Unidirectional FSS (⇠30 dyn/cm2) reduces the relative
transmigration of THP-1 monocytic cells through both TT and CC-genotype HUVEC mono-
layers; n=3-6 ± SEM; *p<0.05 vs. TT control; #p<0.05 vs. TT/MCP-1/FSS. (B) Real-time
qRT-PCR analysis of relative IL-8 mRNA expression in THP-1 cells that had transmigrated
through monolayers of TT and CC-genotype HUVECs; n=4 ± SEM; *p<0.05 vs. TT or CC
control; #p<0.05 vs. TT/FSS; data acquired with the help of Dr. Sviatlana Gehrmann. (C, D)
COX-2 and L-PGDS are up-regulated in CC but not in TT-genotype HUVECs upon exposure
to FSS. (C) Real-time qRT-PCR and Western blot analyses (loading control: �-actin) of COX2
expression in TT and CC-genotype HUVECs 24 hours after exposure to FSS; n=4-5; *p<0.05
vs. control. (D) Real-time qRT-PCR analysis of L-PGDS mRNA expression in TT and CC-
genotype endothelial cells 24 hours after exposure to FSS; n=5-7 ± SEM; *p<0.05 vs. control;
#p<0.05 vs. TT/FSS; data acquired with the help of Dr. Sviatlana Gehrmann. (E) Enhanced
release of 15d-PGJ2 by CC-genotype HUVECs in response to FSS. 15d-PGJ2 concentration in
the culture supernatant was determined using an enzyme-immunoassay 24 hours after exposure
to FSS; n=3 (CC); n=4 (TT); *p<0.02 vs. control; data acquired with the help of Dr. Sviatlana
Gehrmann. (F) SiRNA-based L-PGDS knockdown boosts the transmigration of THP-1 cells
through CC-genotype HUVECs. Twenty-four hours post transfection HUVECs were exposed to
FSS for another 24 hours and re-seeded on PET porous membranes. THP-1 cell transmigration
was tested 24 hours later with THP-1 cells transmigrating through the HUVEC monolayers in
the presence of MCP-1 (30 ng/ml) for 6 hours; n=3 ± SEM; *p<0.05 vs. control; #p<0.05 vs.
TT control; data acquired with the help of Dr. Sviatlana Gehrmann.
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CHAPTER 4. Results

only COX-2 (Figure 4.1C), converting arachidonic acid to prostaglandin H2 (PGH2), and

the lipocalin-type PGDS (L-PGDS), catalyzing the isomerization of PGH2 to PGD2,

were markedly up-regulated by FSS solely in the CC-genotype HUVECs (Figure 4.1D).

Furthermore, siRNA-mediated down-regulation of L-PGDS significantly boosted THP-1

cell transmigration through CC-genotype EC monolayers (Figure 4.1E), suggesting that

PGD2 or one of its metabolites may constitute the presumed mechanism compensating

for the low availability of NO in these cells.

Table 4.1: Di↵erences in arachidonic acid-metabolizing enzymes transcript levels in TT and
CC-genotype ECs following exposure to FSS for 24 hours.

Arachidonic Acid-metabolizing enzyme TT CC

phospholipase A2 PLA2 ! "
cyclooxygenase-1 COX-1 " "
cyclooxygenase-2 COX-2 " """
microsomal prostaglandin E synthase mPGES " !
cytosolic prostaglandin E synthase cPGES ! !
prostaglandin F synthase PGFS "" "
prostaglandin I synthase PGIS " "
hematopoietic prostaglandin D synthase H-PGDS ! !
lipocalin-type prostaglandin D synthase L-PGDS " """
prostaglandin I synthase PGIS " "

In comparison to control ”!” represents no or insignificant di↵erence in mRNA levels, ”"""”
represents a very strong increase in mRNA expression.

4.1.3 CC-genotype HUVECs produce increased levels of 15d-PGJ2,

which has potent anti-migratory and anti-inflammatory activi-

ties in vitro

While many COX-2-derived prostanoids are generally pro-inflammatory mediators, cy-

clopentenone prostaglandins (CyPGs) by contrast have demonstrated pronounced anti-

inflammatory activities. Interestingly, the terminal stable degradation product of PGD2,

the cyclopentenone 15d-PGJ2, is known to act as an anti-inflammatory mediator in var-

ious cell types, including vascular and immune cells (for review, see Surh et al. (2011)),

making it a promising candidate to maintain the quiescent phenotype of CC-genotype

endothelial cells. In fact, we could further show that following exposure to FSS only

CC-genotype HUVECs reveal an approximately 3-fold higher release of 15d-PGJ2 into

the supernatant as compared to the static control level, which was indistinguishable

between both HUVEC genotypes (Figure 4.1E). Exogenously added 15d-PGJ2 signifi-

cantly attenuated the transmigration of THP-1 monocytes through TT-genotype HU-

VEC monolayers in a concentration–dependent manner (Figure 4.2A). Furthermore,

15d-PGJ2 potently blocked the pro-inflammatory activation of THP-1 monocytes, as

evidenced by its profound inhibitory e↵ect on TNF-↵-induced expression of IL-1� and

the co-stimulatory molecule, CD40, in these cells (Figure 4.2B, C).
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Figure 4.2: 15d-PGJ2 inhibits the transmigration and pro-inflammatory activation
of THP-1 monocytic cells. (A) Relative transmigration of THP-1 cells pulse-treated with
1 to 10 µM 15d-PGJ2 or DMSO across TT-genotype HUVEC monolayers in the presence of
30 ng/ml MCP-1 for 6 hours; n=4; *p<0.05 vs. DMSO (set to 1.0); unpaired Student’s t-test.
(B) Real-time qPCR analysis of relative CD40 (left) and IL-1� (right) mRNA expression in
THP-1 cells pre-treated for 1 hour with 10 µM 15d-PGJ2 and subsequently stimulated for 6
hours with 1000 U/ml TNF-↵; n=3-4 ± SEM; *p<0.05 vs. TNF-↵-stimulation.

4.1.4 L-PGDS up-regulation in CC-genotype HUVECs is driven by

the relative lack of NO

In order to examine whether the observed up-regulation of L-PGDS in CC-genotype

HUVECs, challenged with FSS, is driven by the relative lack of NO, we treated both EC

genotypes with the NOS-3 inhibitor, N!-nitro-L-arginine, prior to a 24-hour exposure

to FSS. This in fact resulted in a FSS-dependent increase in L-PGDS gene expression in

TT-genotype ECs that was no longer discernible from that in CC-genotype ECs (Figure

4.3A), suggesting that the reduced availability of NO in these cells facilitates the FSS-

dependent up-regulation of L-PGDS.

Analogous to the Egr1-dependent induction of NO-protecting SOD-2 expression in CC-

genotype HUVECs (see section 1.5.1), the role of this TF in endothelial cell L-PGDS

expression was investigated further. Initially, we performed an in silico analysis of the

promoter of the human PTGDS gene and identified multiple binding motifs, closely re-

sembling the consensus sequence for Egr1 binding. Egr1 is a shear stress-inducible TF

whose expression and activity are highly dependent on endogenous NO levels (Chiu et al.

(1999); for review, see Pagel and Deindl (2011)), making it an eligible candidate for me-

diating the observed genotype-dependent e↵ect. To test this hypothesis we employed the

decoy oligonucleotide (dODN) technique, in which short double-stranded DNA oligonu-

cleotides, mimicking the putative Egr1 binding sites in the L-PGDS promoter, were used

to neutralize Egr1 functionally.

59



CHAPTER 4. Results

In contrast to the scrambled control ODN (i.e., the scrambled version of the decoy

sequence used as a control), pretreatment of CC-genotype HUVECs with the specific

Egr1-neutralizing dODNs resulted in a clear reduction in L-PGDS transcript levels (Fig-

ure 4.3B), suggesting that Egr1, at least partially, accounts for the FSS-induced up-

regulation of L-PGDS expression in NO-deficient ECs. The e↵ects of the Egr1 dODNs

on TT-genotype ECs were statistically insignificant.
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Figure 4.3: Relative lack of NO facilitates genotype-dependent di↵erential L-PGDS
expression.(A) NOS-3 inhibition in TT-genotype endothelial cells leads to increased L-PGDS
mRNA expression. TT and CC-genotype HUVECs were treated for 3 hours with 100 µM of
N!-nitro-L-arginine (N-Arg), prior to FSS application, or remained untreated. Real-time qRT-
PCR analysis of relative L-PGDS mRNA expression was performed after 24-hour exposure to
FSS; values represent the means ± SEM of 3 independent experiments, each performed with
cells derived from a di↵erent donor; *p<0.05 vs. control or control+N-Arg, respectively. (B)
Decoy ODN-mediated inhibition of Egr1 attenuates FSS-induced expression of L-PGDS mRNA
in CC-genotype HUVECs. Real-time qRT-PCR analysis of L-PGDS mRNA levels in cultured
CC or TT-genotype HUVECs. The decoy (Egr1) and scrambled control (Scr) oligonucleotides
(3 µM) were added 4 hours before exposure to unidirectional FSS. Values represent the means
± SEM, n=3; *p<0.05 vs. FSS control; n.s., not significant.

4.2 Investigation of molecular mechanisms underlying the

anti-inflammatory activity of 15d-PGJ2 in human mono-

cytes

In order to determine how 15d-PGJ2 may exert these anti-inflammatory e↵ects in the

THP-1 cells, we looked at various signaling pathways modulated by this prostanoid. 15d-

PGJ2 may confer anti-inflammatory e↵ects by three main mechanisms: (1) by activating

the intranuclear receptor peroxisome proliferator-activated receptor-� (PPAR-�), (2) by

suppressing inflammatory signaling and pro-inflammatory TF transactivation, and (3)

by facilitating activation of the anti-oxidant TF Nrf2 (Figure 4.4A).
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Figure 4.4: Inhibition of 15d-PGJ2 e↵ector signaling pathways in THP-1 monocytes.
(A) Schematic representation of the anti-inflammatory e↵ects mediated by 15d-PGJ2. (B)
Real-time qRT-PCR analysis of relative IL-1� mRNA expression in THP-1 cells pre-treated for
1 hour with PPAR-� antagonist GW9662 (10 µM), DP-1 antagonist BWA969C (0.2 µM), DP-2
antagonist CAY10471 (1 µM) or IKK� inhibitor (50 µM) followed by 2-hour incubation with
10 µM 15d-PGJ2 and stimulation with 100 U/ml TNF-↵ for 4 hours; data represent mean ±
SEM; n=3-5; *p<0.001 vs. TNF↵-stimulated control; #p<0.05 vs. TNF↵-stimulated control
(data acquired with the help of Dr. Sviatlana Gehrmann).

15d-PGJ2 is one of the most extensively studied cyclopentenone prostaglandins because

of its unique spectrum of biological activities. It is the first identified endogenous ligand

for the orphan nuclear receptor PPAR-�, a ligand-activated TF with pleiotropic e↵ects

on glucose homeostasis, adipocyte di↵erentiation and lipid metabolism. Like all CyPGs,

15d-PGJ2 possesses a ↵,�-unsaturated carbonyl moiety within the cyclopentenone ring

that can participate in the Michael addition reaction with cellular nucleophils such as
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free sulfhydryl (SH) groups of glutathione (GSH) and specific cysteine (Cys) residues of

proteins (i.e., serving as redox-sensors), thus modulating their function.

15d-PGJ2 suppresses the production of inflammatory mediators (i.e., cytokines and

chemokines) and pro-inflammatory genes in numerous primary cell types and cell lines,

including immune (dendritic cells, T cells, murine splenocytes) and inflammatory cells

(activated monocytes/macrophages), vascular (ECs and SMCs) and mesenchymal cells

(chondrocytes, fibroblast-like synoviocytes), both in a PPAR-�-dependent and indepen-

dent manner (for review, see Scher and Pillinger (2005); Scher and Pillinger (2009);

Surh et al. (2011)). Ligation of PPAR-� by 15d-PGJ2 has been demonstrated to down-

regulate pro-inflammatory responses in activated macrophages by preventing the ex-

pression of pro-inflammatory genes as well as the release of pro-inflammatory cytokines

such as TNF-↵, IL-1� or IL-6 (Scher and Pillinger (2005); Scher and Pillinger (2009)).

Mechanistically, 15d-PGJ2 is thought to trigger PPAR-�-dependent transrepression, i.e.

interference with TF activation. 15d-PGJ2 induces the interaction of PPAR-� with co-

activator complexes such as cAMP response element binding protein (CBP/p300, Varga

and Nagy (2008)), which is indispensable for activation of pro-inflammatory TFs like

NF-B, activator protein-1 (AP-1) or STAT-1. Co-activator deprivation consequently

hampers expression of pro-inflammatory genes directed by these TFs (for review see

Schmidt et al. (2010)).

Moreover, 15d-PGJ2 has been shown to exert potent anti-inflammatory e↵ects through

inhibition of the NF-B pathway induced in response to pro-inflammatory cytokines,

mitogens and viral infection. The principle mechanism through which 15d-PGJ2 an-

tagonizes this pathway involves a direct covalent modification and inactivation of the

�-subunit of the IKK complex (Straus et al. (2000); Rossi et al. (2000); Castrillo et al.

(2000)), as well as blockade of nuclear translocation and DNA binding of the NF-B

p65/p50 heterodimer (Straus et al. (2000); Cernuda-Morollon et al. (2001)), thus abro-

gating expression of its target genes.

Likewise, 15d-PGJ2 negatively regulates activity of the TF AP-1 (Perez-Sala et al.

(2003)). Through alkylation of a conserved cystein residue in the c-Jun DNA binding

domain, 15d-PGJ2 interferes directly with the transactivation by AP-1, thereby reduc-

ing the expression of various pro-inflammatory and proteolytic enzymes. In addition,

phosphorylation of mitogen activated protein kinases (MAPK), such as p38 MAPK and

JNK, essential for the activation of NF-B and AP-1 upon stress and various cytokines,

is reduced in 15d-PGJ2-pretreated human astrocytes (Zhao et al. (2004)).

Besides regulating the expression of genes involved in cell growth and survival, the Janus

kinase (JAK)-STAT cascade is an essential pathway that mediates immune responses and

inflammatory signaling. Suppressor of cytokine signaling (SOCS) proteins are negative

feedback regulators of JAK-STAT signaling, the concomitant induction of expression of

which appears to be an adaptive defensive response in a number of experimental models

of chronic inflammation. Several studies have demonstrated reduced phosphorylation of
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STAT1 and STAT3 as well as JAK1 and JAK2 upon exposure to 15d-PGJ2, resulting in

suppression of JAK-STAT-dependent pro-inflammatory responses (Park et al. (2003)).

In various cell types, 15d-PGJ2 has also been shown to rapidly induce expression of

SOCS1 and SOCS3, thereby inhibiting the activity of JAKs (reviewed by Surh et al.

(2011)).

Using a combination of specific pharmacological inhibitors, RNA interference and elec-

trophoretic mobility shift assays we could e↵ectively rule out a contribution by PPAR-�,

the TFs NF-B, AP-1 and STAT-1 (data for AP-1 and STAT-1 are not shown), as well

as the cell surface receptors for PGD2 and 15d-PGJ2, DP1 and DP2, as the downstream

e↵ectors of 15d-PGJ2 in human monocytic cells (Figure 4.4B). This essentially left the

TF Nrf2 as the only feasible target of 15d-PGJ2 to mediate its e↵ects on inflammatory

gene expression.

4.2.1 15d-PGJ2 and Bardoxolone induce Nrf2 signaling in human

THP-1 monocytes

15d-PGJ2 exerts cytoprotective and anti-inflammatory activities though induction of the

anti-oxidant response orchestrated by the Nrf2-Keap1 pathway. Nrf2 (NF-E2-related

factor 2) is the master regulator of redox homeostasis, and as such it constitutes the ma-

jor defensive mechanism of eukaryotic cells to counteract oxidative and environmental

stresses (reviewed by Taguchi et al. (2011); Suzuki et al. (2013)). Nrf2 up-regulates the

expression of a large number of cytoprotective enzymes, which in turn detoxify reactive

chemical species and restore cellular redox homeostasis. It is noteworthy that many Nrf2-

regulated cytoprotective genes, and in particular their anti-oxidant and detoxifying pro-

tein products (e.g., heme oxygenase1 (HO-1), peroxiredoxin I (PrxI), NADPH:quinone

oxidoreducatse 1 (NQO-1), etc.), have prominent anti-inflammatory e↵ects themselves

(for review, see Wakabayashi et al. (2010); Paine et al. (2010); Surh et al. (2011)), and

have therefore been implicated in the regulation of inflammatory responses (Kisucka

et al. (2008); Morse et al. (2009)).

Under physiologic conditions, Nrf2 is normally sequestered in the cytoplasm as an inac-

tive complex with the repressor Kelch-like ECH-associated protein-1 (Keap-1), which

targets it for proteasomal degradation to keep the cytosolic level of Nrf2 low. In

the presence of oxidative or electrophilic stresses, Keap-1 is inactivated, enabling the

translocation of Nrf2 to the nucleus. In the nucleus, Nrf2 dimerizes with small Maf pro-

teins and activates the transcription of target genes encoding for various anti-oxidant

and phase-2 detoxifying enzymes through binding to antioxidant response elements

(ARE)/electrophile response elements (EpRE) in their promoters (Taguchi et al. (2011)).

Because of its highly electrophilic ↵,�-carbonyl moiety within the cyclopentenone ring,

15d-PGJ2 forms covalent adducts with critical redox-sensitive cysteine residues in the
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Keap-1 molecule (Kobayashi et al. (2009)). Electrophile modification of Keap-1 ab-

rogates its ability to degrade Nrf2 (i.e., inhibits the Keap-1-mediated conjugation of

ubiquitin to Nrf2), thereby provoking the opening of the Keap-1 “gate” and resulting

in Nrf2 stabilization (for review, see Kansanen et al. (2009)). Western blot analysis of

nuclear extracts from 15d-PGJ2-treated THP-1 cells demonstrated that 15d-PGJ2 actu-

ally induces the nuclear accumulation and thus activation of Nrf2 in these cells (Figure

4.6A). Similar results have been obtained when nuclear extracts of THP-1 cells were

analyzed by electrophoretic mobility shift assay using an oligonucleotide probe specific

for Nrf2 (Figure 4.5). Moreover, 15d-PGJ2 strongly induced the expression of HO-1 and

PrxI, both well-known Nrf2-target genes (Figure 4.6B, F).

15d-PGJ2 
 

– – – – + + + 

TNF-α 
2 h 

 

TNF-α 
4 h 

 

TNF-α 
4 h 

 

ARE 
 

scrARE 
 

+ 

Figure 4.5: 15d-PGJ2 induces Nrf2 DNA-binding activity in THP-1 monocytes.
Electrophoretic mobility shift assay using ARE (Nrf2-binding) consensus sequence oligonu-
cleotide (first six lines). THP-1 cells were pre-treated with 10 µM 15d-PGJ2 or not for 2 hours
followed by stimulation with 100 U/ml TNF-↵ for the indicated times. Specificity was assured by
scrambled ARE sequence oligonucleotide (last two lines). Representative assay of three experi-
ments is shown (the assays were performed by PD Dr. Andreas Wagner, Institute of Physiology
and Pathophysiology, Heidelberg University).

Given that 15d-PGJ2 simultaneously targets multiple signaling pathways, and does not

exert its biological e↵ects merely by facilitating the nuclear translocation of Nrf2, we de-

cided to use an alternative inducer of the Nrf2-Keap1 pathway, the synthetic triterpenoid

Bardoxolone, which specifically activates Nrf2 without acting as a pro- or antioxidant

in addition. Similar to 15d-PGJ2, Bardoxolone induced a prominent nuclear translo-

cation of Nrf2 in the THP-1 cells (Figure 4.6C). Moreover, it strongly up-regulated

the expression of HO-1 mRNA and protein (Figure 4.6D, F), and at the same time

repressed TNF-↵–induced expression of IL-1� in these cells (Figure 4.6E). Collectively,

these data support the assumption that 15d-PGJ2 confers its anti-inflammatory e↵ect on

monocytes through a mechanism that at least in part involves Nrf2 and its downstream

target genes.
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Figure 4.6: 15d-PGJ2 and Nrf2 activator, Bardoxolone, induce nuclear accumulation
and activation of Nrf2 in THP-1 cells. (A) Representative Western blot analysis of nuclear
extracts from THP-1 cells stimulated with the indicated concentrations of either 15d-PGJ2, or
another Nrf2 activator, sulforaphane (SFN), for the indicated times. SFN was used as a positive
control to activate the Nrf2-Keap1 pathway. Histone 3 served as a loading control. The West-
ern blot shown is representative for 3 individual experiments performed. (B) Real-time qPCR
analysis of relative Nrf2-dependent mRNA expression of HO-1 (left) and PrxI (right) in THP-1
cells pre-treated for 1 hour with 10 µM 15d-PGJ2 and subsequently stimulated for 6 hours with
1000 U/ml TNF-↵; n=4 ± SEM; *p<0.05 vs. TNF-↵-stimulation. (C) Representative Western
blot analysis (n=2) of nuclear extracts from THP-1 cells stimulated or not with the indicated
concentrations of Bardoxolone-methyl (BARD) and SFN (positive control) for 4 hours. (D)
Representative (n=4) semi-quantitative RT-PCR analysis of HO-1 mRNA expression in THP-1
cells pretreated or not for 1 hour with 10 µM 15d-PGJ2 or 50 nM BARD followed by activation
with 1000 U/ml TNF-↵ for 6 hours. GAPDH was used as a reference gene to normalize HO-1
mRNA levels. (E) Real-time qRT-PCR analysis of relative IL-1� mRNA expression in THP-1
cells pre-treated for 1 hour with either 10 µM 15d-PGJ2 or 50 nM BARD and subsequently
stimulated for 6 hours with 1000 U/ml TNF-↵; n=3 ± SEM; *p<0.05, ***p<0.001 as indicated,
one-way ANOVA with post-hoc Tukey’s multiple comparison test. (F) Representative (n=2)
Western blot analysis of HO-1 protein abundance in THP-1 whole cell lysates. Cells were stim-
ulated or not with 10 µM 15d-PGJ2 or 50 nM BARD for 4 hours, washed, placed in fresh media
and harvested 4 hours later; ↵-tubulin served as a loading control.
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4.2.2 15d-PGJ2 and Bardoxolone cause the nuclear accumulation of

de novo synthesized Nrf2

While it is well established that the nuclear abundance and activity of Nrf2 increases

in response to oxidative and electrophilic stress, the exact mechanism leading to its

accumulation in the nucleus is still incompletely understood. Previous research has re-

vealed an alternative mechanism of Nrf2 activation involving nuclear translocation of

newly synthesized Nrf2 rather than its liberation from Keap1 (Kobayashi et al. (2006)).

Accordingly, we examined the e↵ect of transcription and translation inhibitors, acti-

nomycin D (ActD) and cycloheximide (CHX), on Nrf2 translocation to the nucleus of

THP-1 monocytic cells. Pre-treatment with either ActD (Figure 4.7A, left) or CHX

(Figure 4.7A, right) almost completely abrogated the ability of Nrf2 to translocate to

the nucleus in response to 15d-PGJ2, indicating that the de novo synthesis of both

mRNA and protein is a prerequisite for Nrf2 to shuttle to the nucleus under conditions

of electrophilic stress. The expression of inducible genes such as HO-1 naturally was

blocked upon inhibition of transcription or translation. Bardoxolone-induced nuclear

transport and activation of Nrf2 was sensitive to both inhibitors as well (Figure 4.7B).

4.2.3 Constitutive Nrf2 activation attenuates expression of IL-1�

To prove the involvement of Nrf2 in the mechanism by which 15d-PGJ2 confers its

e↵ects in monocytes, we began to use a siRNA-based loss-of-function approach. Because

silencing of Nrf2 in THP-1 monocytes led to their apoptosis, this strategy turned out

to be virtually impossible. Alternatively, we went on to manipulate the expression of

Nrf2 in an indirect manner, by depleting its negative regulator, Keap-1. Using RNA

interference we could achieve a significant (⇠80%) reduction in Keap-1 mRNA (Figure

4.8A) and a decrease in Keap-1 protein expression to less than 10% of control (Figure

4.8B). Compared to control cells transfected with non-silencing siRNAs, knockdown of

Keap-1 in THP-1 monocytes substantially boosted basal expression of Nrf2 and enhanced

its accumulation in the nucleus (Figure 4.8D). Consistent with constitutive stabilization

of Nrf2, silencing of Keap-1 alone triggered the up-regulation of Nrf2-dependent genes,

such as the inducible HO-1 (Figure 4.8C, D). In addition, similar to 15d-PGJ2 and

Bardoxolone, up-regulation of Nrf2 activity in Keap-1-depleted THP-1 cells attenuated

the TNF-↵-induced expression of IL-1� (Figure 4.8E), further supporting the notion that

Nrf2 is required to mediate the anti-inflammatory activity of 15d-PGJ2 in monocytes,

at least for this gene product.
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Figure 4.7: 15d-PGJ2 and Bardoxolone induce accumulation of de novo synthesized
Nrf2 in the nucleus. (A) THP-1 monocytes were pre-treated or not for 1 hour with tran-
scription (left) or translation (right) inhibitors, actinomycin D (ActD; 0.3 µM) or cycloheximide
(CHX; 1 µg/ml). Cells were subsequently incubated with 10 µM 15d-PGJ2 or DMSO (solvent
control) for 4 hours. Nuclear extracts were prepared and subjected to Western blot analysis using
anti-Nrf2 and anti-histone-3 antibodies. HO-1 was used as a read-out for inhibitory potential of
ActD and CHX, respectively. Images are representative of five independent experiments. (B)
THP-1 monocytes were pre-treated or not for 1 hour with CHX, and subsequently exposed to
10 µM 15d-PGJ2, 50 nM BARD or DMSO for another 4 hours. The image is representative of
five independent experiments.

4.2.4 HO-1 is not a direct mediator of the anti-inflammatory activity

of 15d-PGJ2 in THP-1 monocytes

Because of its potent anti-inflammatory properties, 15d-PGJ2 has been proposed as a

promising therapeutic compound for treatment of inflammatory disorders. Understand-

ing the molecular mechanism through which 15d-PGJ2 exerts its protective action could

therefore contribute to the development of anti-inflammatory therapies and further clar-

ify the biological role of this prostaglandin. However, little is known regarding the molec-

ular machinery that governs the anti-inflammatory activity of 15d-PGJ2. Prompted by

the intriguing finding that Nrf2 acts as a down-stream mediator of 15d-PGJ2 signal-

ing, we sought to elucidate the molecular mechanism through which 15d-PGJ2-induced
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Figure 4.8: Knockdown of the negative Nrf2 regulator Keap-1 attenuates IL-1�
expression. (A) The relative expression levels of Keap-1 transcript were determined using
real-time qRT-PCR 48 hours post transfection with either a non-silencing control siRNA or a
Keap1-targeting siRNA; n=3, mean ± SEM, ***p<0.001 vs. control siRNA; unpaired Student’s
t-test. (B) Representative (n=3) Western blot analysis of Keap-1 expression 48 hours post-
transfection with the siRNAs. (C) Basal mRNA levels of HO-1 were examined using semi-
quantitative RT-PCR 48 hours post transfection; n=3, mean ± SEM, ***p<0.001 vs. control
siRNA; unpaired Student’s t-test. (D) Nuclear and cytoplasmic extracts from THP-1 cells with
Keap1 knockdown were analyzed by Western blot for Nrf2 and HO-1; two blots representative
for 3 individual experiments each are shown. (E) Real-time qRT-PCR analysis of IL-1� mRNA
abundance 48 hours post-transfection with Keap-1-targeting but not control siRNA, followed by
a 6-hour stimulation with 1000 U/ml TNF-↵, reveals a significant down-regulation; n=3, mean
± SEM, *p<0.05 vs. TNF-↵-stimulated control siRNA; unpaired Student’s t-test.

Nrf2 represses the expression of IL-1B and possibly other pro-inflammatory genes in

monocytes.

Whether Nrf2 inhibits the expression of IL-1� by directly binding to an ARE response

element in the IL-1B promoter, or indirectly, through an up-regulation of HO-1 and/or

other Nrf2-dependent genes, remains unclear. In addition to its cytoprotective role, HO-1
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and its reaction products, have been recently recognized to have major immunomodula-

tory and anti-inflammatory properties (for a review, see Paine et al. (2010)). Given that

the suppressive activity of 15d-PGJ2, as well as Bardoxolone, coincided with the induc-

tion of HO-1 expression in THP-1 cells, it is tempting to speculate that Nrf2 may inhibit

IL-1� expression indirectly through increasing abundance of this anti-oxidant enzyme

(see model, Figure 4.9). Nonetheless, the time course of HO-1 induction upon exposure

to 15d-PGJ2 did not correlate with the time course of inhibition of IL-1B transactiva-

tion. A significant rise in HO-1 protein was first detected at 2 hours after the addition of

15d-PGJ2 (i.e., 60 min post-stimulation with TNF-↵), whereas the diminution in IL-1�

mRNA levels occurred earlier than that (i.e., within 30 min after TNF-↵ stimulation or

90 min after treatment with 15d-PGJ2) (Figure 4.10A, left panel). Moreover, pharmaco-

logical blockade of HO-1 activity in THP-1 monocytes showed that the latter hypothesis

may probably be incorrect (Figure 4.10C).
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Nrf2 

SH SH 

monocyte 

endothelial 
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PrxI 
HO-1 

CO 
BR 
Fe2+ 

Figure 4.9: A model for compensatory anti-inflammatory mechanism in endothelial
cells (ECs) with insu�cient NO synthesis. In CC-genotype ECs, FSS causes a weak up-
regulation of NOS-3 expression, resulting in a reduced NO synthesis capacity. To compensate for
inadequate NO production, CC-genotype ECs up-regulate expression of COX-2 and L-PGDS in
response to FSS, leading to an increased release of the anti-inflammatory prostanoid 15d-PGJ2,
which acts on circulating monocytes to prevent their endothelial adhesion and transmigration.
EC-derived 15d-PGJ2 maintains monocytes in an anti-inflammatory state by facilitating the
nuclear accumulation and activation of the cytoprotective TF Nrf2. 15d-PGJ2-Nrf2-mediated
expression of anti-oxidant enzymes (e.g., HO-1 and its products carbon monoxide (CO), iron
(II) (Fe2+), and bilirubin (BR)) promotes the quiescent phenotype and thus may be an adaptive
mechanism to reinforce the anti-inflammatory capacity of ECs with compromised NO synthesis
and protects against endothelial dysfunction.

Conversely, the time course of CD40 mRNA expression in TNF-↵-stimulated THP-1

monocytes was very di↵erent from that of IL-1� (Figure 4.10A, right panel). While

stimulation with TNF-↵ caused a rapid induction of the IL-1B gene peaking at 1 hour,

it induced a near linear increase in CD40 mRNA levels (R2=0.98) over 6 hours. This
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gradual increase in CD40 transcripts was similarly reduced by pretreatment with 15d-

PGJ2. In this context it was interesting to note that the rapid down-regulation of the

CD40 gene by 15d-PGJ2 coincided with the onset of HO-1 protein expression (Fig-

ure 4.10B). Therefore, activity of HO-1 could potentially contribute to the reduced

expression of this co-stimulatory molecule in 15d-PGJ2-treated THP-1 cells. The spe-

cific Nrf2 inducer Bardoxolone however did not exhibit an e↵ect on CD40 transcript

expression (Figure 4.10D), ruling out a major role of the Nrf2-Keap1 pathway in the

inhibitory e↵ect of 15d-PGJ2 on transcription of the CD40 gene. Collectively, these

data point to distinct mechanisms through which 15d-PGJ2 modulates the expression

of pro-inflammatory genes.

The fact that the inhibitory e↵ect of 15d-PGJ2 on IL-1� expression commenced imme-

diately after its addition points to the existence of a direct, rapid mechanism hampering

up-regulation of transcription of the IL-1B gene in response to pro-inflammatory stimuli.

Moreover, 15d-PGJ2-activated Nrf2 had already begun to accumulate in the nucleus at

the time when repression of the IL-1B gene became apparent. Hence, a direct 15d-PGJ2-

induced interplay between Nrf2 and pro-inflammatory TFs (such as AP-1 or NF-B) to

prevent transcription of the IL-1B gene cannot be excluded at this point.
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Figure 4.10: HO-1 inhibition does not abrogate the suppressor e↵ect of 15d-PGJ2

on IL-1B gene transcription. (A) Time course of changes in IL-1� (left) and CD40 (right)
mRNA levels in THP-1 monocytes following 1 hour pre-incubation with 15d-PGJ2 (10 µM,
green) or DMSO (red), and subsequent addition of TNF-↵ (1000 U/ml) for the indicated times.
(B) Representative Western blot analysis (n=2) of the time course of HO-1 expression, as well
as the time course of accumulation of Nrf2 in the nucleus of THP-1 cells pre-incubated for 1 hour
with DMSO or 15d-PGJ2 and stimulated with TNF-↵ for the indicated times. “C” designates
a non-treated control. (C) Relative mRNA expression of IL-1� in THP-1 cells treated with
the HO-1 inhibitor zinc protoporphyrin IX (ZnPP) at 5 and 10 µM, respectively, for 1 hour
followed by a 1-hour incubation with solvent or 15d-PGJ2 (10 µM) and 4-hour stimulation with
TNF-↵ (1000 U/ml) (data acquired with the help of Dr. Sviatlana Gehrmann). (D) Real-
time qRT-PCR analysis of relative CD40 mRNA expression in THP-1 cells pre-treated for 1
hour with either 10 µM 15d-PGJ2 or 50 nM BARD and subsequently stimulated for 6 hours
with 1000 U/ml TNF-↵; n=3 ± SEM; ***p<0.001 TNF-↵-stimulation vs. 15d-PGJ2 + TNF-↵,
one-way ANOVA with post-hoc Tukey’s multiple comparison test; n.s., non-significant.
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4.2.5 15d-PGJ2 inhibits IL-1B gene expression at the transcriptional

level

On the other hand, we identified three ARE-like sequence motifs (i.e., Nrf2-like binding

sites) in the IL-1B gene promoter region (Figure 4.11B), suggesting that Nrf2 may act

through an as yet unknown mechanism by which it directly interacts with the IL-1B

promoter to repress transcription of the IL-1B gene (see model, Figure 4.11A). In fact,

using chromatin immunoprecipitation (ChIP) we could demonstrate a 15d-PGJ2-induced

binding of Nrf2 to the region of the IL-1B gene promoter that harbors the three putative

ARE-like sites (Figure 4.11C).

To assess the functional relevance of the detected Nrf2-IL-1B promoter interaction, we

employed a luciferase reporter gene assay. For this purpose, we established a reporter

assay system utilizing the easily transfectable HEK293 cell line and a DNA construct

containing a 1.6-kb fragment of the human IL-1B gene promoter cloned in front of a

luciferase reporter gene. Activity of the reporter gene construct was induced by stim-

ulation with TNF-↵. However, we observed a rather modest, though reproducible and

statistically significant up-regulation of reporter gene expression in response to TNF-↵,

which we suspected is due to the absence of an essential enhancer region from the IL-1B

promoter fragment inserted into the construct. At the same time, the reporter gene

construct reproducibly revealed a rather high basal luciferase expression. In this exper-

imental setting, exogenously added 15d-PGJ2 completely abolished TNF-↵-induced re-

porter gene expression (Figure 4.11D), demonstrating that the inhibitory Nrf2-mediated

e↵ect of this prostanoid on the IL-1B gene occurs on the level of transcription.

To verify the contribution of the identified ARE-like motifs to the observed inhibition

of IL-1B promoter activity in response to 15d-PGJ2, we deleted the core sequences of

each of these DNA elements (Figure 4.12A), and subsequently analyzed the e↵ect of

15d-PGJ2 on the activity of the wild-type and mutant IL-1B promoter-reporter gene

constructs. However, none of the deletion mutants was capable of attenuating the potent

suppressor activity of 15d-PGJ2 on the IL-1B promoter (Figure 4.12B).

Similarly, the specific Nrf2 inducer, Bardoxolone, e↵ectively suppressed the IL-1B pro-

moter activity both in the presence and absence of the intact ARE motifs (Figure 4.12C).
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Figure 4.11: 15d-PGJ2 inhibits the expression of the IL-1B gene at the transcrip-
tional level. (A) 15d-PGJ2-Nrf2-mediated direct transcriptional repression could be a potential
mechanism to inhibit IL-1� expression. (B) Putative Nrf2 consensus binding sites (AREs) in the
proximal promoter of the human IL-1B gene were identified using the MatInspector software
(in collaboration with PD Dr. Andreas Wagner; Institute of Physiology and Pathophysiolgy,
Heidelberg University). The ARE-like motifs are highlighted in red with their core sequences in
blue. The strand positions, similarity scores and sequences of each binding site are indicated.
(C) 15d-PGJ2 induces binding of Nrf2 to the human IL-1B promoter. Chromatin from THP-1
cells, treated with 10 µM 15d-PGJ2 for 4 hours, was immunoprecipitated or not (no antibody
control, NAC) with an anti-Nrf2 antibody, and Nrf2 binding analyzed by PCR with specific
primers for the ARE-2 region of the IL-1B promoter (product size: 136 bp). The ARE-2 re-
gion was amplified from 5 µl of purified soluble chromatin before immunoprecipitation to show
input DNA; representative PCR analysis of 3 independent experiments (D) HEK293 cells were
transfected with human IL-1B promoter–luciferase reporter gene construct. Twenty-four hours
following transfection, cells were pre-treated with 10 µM 15d-PGJ2 for 1 hour prior to induction
of reporter gene expression with 1000 U/ml TNF-↵. Eighteen hours post stimulation, activ-
ity of the secreted Gaussia luciferase was assessed in the cell culture supernatant; n=4; error
bars represent means ± SEM; one-way ANOVA with post-hoc Tukey’s multiple comparison test;
*p<0.05, **p<0.01.

73



CHAPTER 4. ResultsFigure'11)2'

0.0 0.5 1.0 1.5

DMSO

BARD-Me

TNF-α

BARD-Me+TNF-α

Relative GLuc activity (fold change)

WT
ΔARE1
ΔARE2
ΔARE3

A B 

C 

0.0 0.5 1.0 1.5

DMSO

15d-PGJ2

TNF-α

15d-PGJ2+TNF-α

Relative GLuc activity (fold change)

WT
ΔARE1
ΔARE2
ΔARE3

*

Figure 4.12: Deletion of ARE-like Nrf2-binding sites in the IL-1B promoter does not
alter the transcriptional repressor activity of 15d-PGJ2. (A) Schematic representation
of the wild type and deletion IL-1B promoter-reporter constructs. The core sequences of each
of the 3 ARE-like motifs were disrupted using site-directed mutagenesis. One ARE was targeted
per construct (the deleted sequences are shown on the right), whereas the other 2 were left
intact. (B) Twenty-four hours following transfection with wild-type or deletion mutant reporter
gene constructs, cells were pre-treated with 10 µM 15d-PGJ2 for 1 hour prior to an induction
of the promoter-reporter activity with 1000 U/ml TNF-↵. Eighteen hours post stimulation,
activity of the secreted Gaussia luciferase was assessed in cell supernatants. Luciferase activity
was calculated relative to the DMSO control of each of the respective types of reporter gene
constructs; n=3; mean ± SEM; one-way ANOVA with post-hoc Tukey’s multiple comparisons
test; *p<0.05 vs. TNF-↵ stimulation. (C) Twenty-four hours post-transfection, cells were pre-
treated with 50 nM BARD-Me for 1 hour prior to an induction of the promoter-reporter activity
with 1000 U/ml TNF-↵. Luciferase activity was assessed eighteen hours post stimulation as
described before.

4.2.6 Silencing of Nrf2 does not abrogate the transcriptional repressor

activity of 15d-PGJ2

To exclude a contribution of the non-mutated ARE motif as well as the potential coop-

erative interaction of Nrf2 with other TFs, which may obscure the e↵ect of deleting only

a single ARE motif on IL-1B promoter-reporter gene activity, we went on to transiently

silence expression of Nrf2 in the HEK293 cells. Unlike in THP-1 monocytes, siRNA-

mediated depletion of Nrf2 in these cells turned out to be feasible. We could successfully

knockdown Nrf2 on the mRNA level (Figure 4.13A), and inhibit its activity, as evidenced

by the reduced expression of Nrf2-dependent genes such as HO-1 as well as the inability of

Nrf2 to translocate to the nucleus in response to Bardoxolone treatment (Figure 4.13B).

This pronounced drop in nuclear Nrf2 protein following siRNA-based knockdown further
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corroborates our finding that it is primarily the newly synthesized Nrf2, which translo-

cates to the nucleus upon induction of the Keap1-Nrf2 pathway. Using this approach,

we next re-examined the e↵ects of 15d-PGJ2 on transactivation of the non-mutated

IL-1B promoter in the absence of Nrf2. Down-regulation of Nrf2 expression (80± 2%

reduction in Nrf2 mRNA expression; Figure 4.13C) attenuated the relative induction of

the IL-1B promoter-reporter gene construct in response to TNF-↵, so that there was

no longer a significant di↵erence between stimulated and basal promoter-reporter gene

activity (Figure 4.13D). Nonetheless, even when Nrf2 was nearly completely silenced,

15d-PGJ2 was still able to significantly down-regulate TNF-↵-induced expression of the

IL-1B promoter-reporter gene construct (Figure 4.13D).

4.2.7 Deletion of ARE-like motifs 2 and 3 in the IL-1B promoter may

attenuate the transcriptional repressor activity of 15d-PGJ2

Given that the high basal activity of the promoter-reporter gene construct in the HEK293

cells might mask weak stimulatory or inhibitory e↵ects on the IL-1B promoter, and thus

obscure the impact of Nrf2 silencing, we aimed at increasing the signal-to-noise ratio of

the reporter gene assay. For this purpose, we cloned the full-length IL-1B promoter into

the luciferase reporter vector comprising all cis-regulatory sequences necessary to direct

expression of the IL-1B gene. Contrary to our assumption, the full-length promoter did

not potentiate TNF-↵-stimulated reporter gene activity, but much like the truncated

promoter, maintained a high basal and low inducible promoter activity (Figure 4.14A, B

left panels), pointing towards a purely vector-driven unspecific expression of the reporter

gene. To improve specific TNF-↵-dependent expression of the reporter gene, we reduced

the amount of reporter gene construct transfected per cell, and thus minimize cellular

saturation by too high concentrations of the vector. Indeed, lowering activity (i.e.,

bioluminescence) of the reporter gene product down to levels just above background

bioluminescence led to an approximately 2-fold increase over baseline in expression of

the reporter gene construct (Figure 4.14A, B right panels).

Using this improved reporter gene assay, we re-evaluated the impact of 15d-PGJ2 on

expression of the wild-type and mutant IL-1B promoter-reporter gene constructs in the

HEK293 cells. As compared with the wild-type promoter, deletion of the ARE2 or ARE3

but not the ARE1 motif reduced the stimulatory potency of TNF-↵ and concomitantly

weakened the inhibitory e↵ect of 15d-PGJ2, which was no longer significantly di↵erent

(Figure 4.15). This experiment was done four times so that its outcome has to be

interpreted with some caution. Nonetheless, it suggests that the Nrf2-binding ARE-

like motifs 2 and 3 in the human IL-1B promoter are associated with the transcriptional

repressor activity of 15d-PGJ2, and therefore may be interpreted as evidence for a direct

repression of transcription of the IL-1B gene by Nrf2.
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Figure 4.13: Knockdown of Nrf2 does not abrogate the transcriptional repressor
activity of 15d-PGJ2 on the IL-1B promoter-reporter gene construct. (A) The ex-
pression levels of Nrf2 transcript in HEK293 cells were determined using real-time qRT-PCR,
24 and 48 hours post transfection with either a non-silencing control siRNA pool or an Nrf2-
targeting siRNA pool. Data is representative of 2 experiments. (B) Representative (n=3)
Western blot analysis of nuclear extracts from control siRNA or Nrf2 siRNA-transfected cells.
Thirty hours post-transfection with the respective siRNAs, cells were treated with DMSO or
BARD 50 nM for additional 8 hours and subjected to cellular fractionation. Nuclear extracts
were assessed for Nrf2 and HO-1 protein abundance. (C) Real-time qRT-PCR analysis of Nrf2
mRNA levels in HEK293 cells transfected with the wild-type IL-1B promoter-luciferase gene
construct and subsequently subjected to siRNA-mediated Nrf2 knockdown (for transfection and
treatment conditions, see sections 3.1.10 and 3.2.10); n=5, mean ± SEM; ***p<0.001 vs. con-
trol siRNA-transfected cells; unpaired Student’s t-test. (D) HEK293 cells were transfected with
Nrf2-targeting siRNAs 24 hours after transfection with the wild-type IL-1B promoter-luciferase
gene construct. After an additional 24 hours, cells were pre-treated with 10 µM 15d-PGJ2 for
1 hour prior to up-regulation of promoter-reporter gene construct expression with 1000 U/ml
TNF-↵ and subsequent assessment of secreted luciferase activity; n=5, mean ± SEM; *p<0.05
as indicated; n.s., not significant.
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Figure 4.14: Length of the IL-1B promoter insert does not influence the basal and
TNF-↵-induced expression of the luciferase reporter construct. HEK293 cells were
transfected with luciferase reporter constructs comprising di↵erent length of the human IL-
1B promoter: (A) “truncated” and (B) “full-length” (see section 3.2.8). Induction of the two
promoters was compared at two di↵erent concentrations of the respective reporter gene construct
per cell, i.e., 2.5 µg vs. 0.25 µg per 1⇥106 cells. Twenty-four hours following transfection, the
promoters were induced with 1000 U/ml of TNF-↵ and the activity of the secreted luciferase
was subsequently determined as described before. Absolute (RLUs: A, B left) and relative (fold-
change over basal expression: A, B right) numbers of Gaussia luciferase activity are presented
as the mean of two technical replicates from 1 exemplary experiment. Dashed lines designate
the background bioluminescence levels of mock-transfected cells.
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Figure 4.15: Disruption of DNA sequence motifs ARE2 and ARE3 attenuates the
inhibitory e↵ect of 15d-PGJ2 in an improved IL-1B promoter-reporter gene assay.
Cells were transfected with wild-type IL-1B or ARE-deletion mutant IL-1B promoter-luciferase
constructs (0.25 µg instead of 2.5 µg from each construct per 1⇥106 HEK293 cells). Twenty-four
hours post transfection, cells were pre-treated with 10 µM 15d-PGJ2 for 1 hour prior to exposure
to 1000 U/ml TNF-↵ for 18 hours, followed by determination of activity of the secreted Gaussia
luciferase in cell supernatants as described before; n=4; mean ± SEM; one-way ANOVA with
post-hoc Tukey’s multiple comparison test; *p<0.05 as indicated; n.s., not significant.

4.2.8 Bach1 knockdown does not a↵ect the suppressive activity of 15d-

PGJ2 on the IL-1B gene

It is known that Nrf2 requires small Maf proteins (sMaf) as obligatory dimerization

partners for their function as transcriptional regulators (for review see Kannan et al.

(2012)). The ARE enhancer motif is one form of the Maf response element (MARE),

harboring a consensus sequence closely resembling the MARE and a conserved GC

flanking element that mediates the specificity of Nrf2 recognition. It is, therefore, critical

for the induction of genes by Nrf2 in response to oxidative stimuli. Some variations

of the ARE motif can be recognized by other regulatory factors, in addition to Nrf2,

including other members of the Cap ‘n’ Collar (CNC) TF family such as Nrf1 (Venugopal

and Jaiswal (1996)), Nrf3 (Sankaranarayanan and Jaiswal (2004)) and Bach1 (BTB

and CNC homolog 1) (Oyake et al. (1996)). Variation of ARE motif sequences may

therefore contribute to overlapping DNA binding by factors that compete with Nrf2

for the ARE. Such interplay of DNA-binding proteins exists between Nrf2 and Bach1

(Dhakshinamoorthy et al. (2005)).

Bach1 is a transcriptional repressor with poorly characterized function in gene regula-

tion. Like Nrf2, Bach1 forms a heterodimer with sMaf proteins in order to bind DNA. As

a repressive TF, Bach1 allows gene induction upon its dissociation from ARE enhancer
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motifs (Sun et al. (2004)). In this regard, the nuclear export of this protein in response

to stimuli precedes its inactivation and proteasomal degradation in the cytoplasm.

The e↵ects of 15d-PGJ2 on Bach1 activity and function have not yet been elucidated.

Due to the lack of a specific anti-Bach1 antibody, we were unable to assess the sub-

cellular localization of Bach1 protein after treatment with 15d-PGJ2, which similar to

Nrf2 reflects its activity. Hence, elimination of Bach1 from our genetic reporter system

turned out to be the best alternative to study its impact on IL-1B gene expression.

We could achieve a 60% reduction of Bach1 mRNA expression (Figure 4.16A) in tran-

siently siRNA-transfected HEK293 cells. Because antibody-based confirmation of the

knockdown was impossible, we analyzed the expression of HO-1, a gene also regulated

by Bach1, as a functional readout for the diminished function of this transcriptional

repressor. Consistent with previous reports, silencing of Bach1 triggered induction of

the HO-1 gene (Figure 4.16B). Finally, we analyzed the e↵ect of Bach1 knockdown on

the expression of the wild-type and mutant IL-1B promoter-reporter gene constructs.

Despite reduced function of Bach1, the potent inhibitory e↵ect of 15d-PGJ2 on the wild-

type and all ARE-mutated constructs remained unaltered (Figure 4.16C), thus excluding

Bach1 as a potential repressor of the IL-1B gene downstream of 15d-PGJ2.
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Figure 4.16: Bach1 knockdown does not a↵ect the repressor activity of 15d-PGJ2

on the IL-1B gene. (A) Bach1 transcript (mRNA) levels were determined using real-time
qRT-PCR 48 and 72 hours post transfection with either a non-silencing control siRNA or a
Bach1-targeting siRNA. Relative mRNA expression was expressed as fold-change over control
siRNA-transfected cells; n=2. (B) Representative RT-PCR analysis (n=2) of basal HO-1 mRNA
expression in HEK293 cells transfected with either a non-silencing control siRNA or Bach1-
targeting a siRNA. HO-1 transcript levels were determined 48 and 72 hours post-transfection.
Band intensities were quantified using ImageJ densitometry software. (C) An exemplary ex-
periment showing the e↵ect of Bach1 silencing on the IL-1B promoter-reporter gene construct
expression. Twenty-four hours after transfection with either a non-silencing control siRNA or a
Bach1-targeting siRNA, HEK293 cells were transfected with wild-type IL-1B or ARE-deletion
mutant IL-1B promoter-reporter gene constructs. After an additional 24 hours, cells were pre-
treated with 10 µM 15d-PGJ2 for 1 hour prior to up-regulation of promoter-reporter gene ex-
pression with 1000 U/ml TNF-↵ for 18 hours, followed by determining activity of the secreted
Gaussia luciferase in cell supernatants as described before.
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4.2.9 Inhibition of histone deacetylase and p300/CBP histone acetyl-

transferase activities does not reverse the repressor e↵ect of 15d-

PGJ2 on the IL-1B promoter transcriptional activity

Histone acetylation is an epigenetic mechanism considered to be of great relevance for

gene regulation. Acetylation of histone-3 (H3), e.g. at lysyl residue 27, and 4 (H4),

in particular, relaxes the chromatin structure (unwinds 146 bp of DNA from the his-

tones) and allows access of gene regulatory proteins such as TFs and components of

the general transcriptional machinery to target this stretch of the promoter of a gene,

which is commonly referred to as nucleosome. Conversely, histone deacetylation leads

to transcriptional repression through localized chromatin compaction whereby the nu-

cleosome is wrapped around the core histones. The dynamic state of histone acetylation

and deacetylation is maintained through the physical and functional interplay between

co-activators and histone acetyltransferases (HATs) or histone deacetylases (HDACs)

(for review, see Haberland et al. (2009); Dancy and Cole (2015)). Transcriptional acti-

vation of a number of pro-inflammatory genes has been found to depend on the increase

in acetylation of H3 and H4 (Park et al. (2004); Miao et al. (2004)), whereas repres-

sion correlates with deacetylation of these histones (Ito et al. (2000); Ito et al. (2002)).

15d-PGJ2 has been shown to suppress genes encoding pro-inflammatory cytokines by

modulating the activity and/or interfering with the recruitment of histone-modifying

enzymes such as the HATs p300/CBP or HDACs (Farrajota et al. (2005); Engdahl et al.

(2007)). Therefore we investigated the ability of 15d-PGJ2 to a↵ect expression of the

IL-1B gene through mechanisms involving HDACs or p300/CBP.

The e↵ect of 15d-PGJ2 on histone acetylation at the IL-1B gene promoter was explored

using Trichostatin A (TSA), a broad spectrum HDAC inhibitor acting on class I and

II HDACs, and the p300/CBP HAT-specific inhibitor, C646. TSA pre-treatment sig-

nificantly up-regulated basal expression of the full-length IL-1B promoter-reporter gene

construct in the HEK293 cells and, in addition, markedly potentiated the stimulatory

e↵ect of TNF-↵ on expression of the reporter gene (Figure 4.17A, left and right), imply-

ing the existence of a HDAC-dependent inhibitory element in our reporter gene assay.

Conversely, inhibition of p300/CBP HATs albeit not significantly reduced basal but not

TNF-↵-induced expression of the reporter gene construct (Figure 4.17B, left and right

panel). While TSA clearly failed to overcome the inhibitory e↵ect of 15d-PGJ2 on IL-1B

reporter gene activity (Figure 4.17A, left panel) and IL-1� expression in THP-1 cells

(Figure 4.17A right panel), C646 at first seemed to somewhat attenuate the inhibitory

e↵ect of 15d-PGJ2 in the reporter gene assay (Figure 4.17B, left panel) but was then

attributed to dilution of the inhibitory capacity 15d-PGJ2 in the modified reporter gene

assay (Figure 4.17B, right panel).
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Figure 4.17: Inhibition of HDACs and p300/CBP HATs does not reverse the re-
pressor activity of 15d-PGJ2 on the IL-1B gene. (A, left panel) Twenty-four hours
following transfection with wild-type IL-1B promoter–luciferase reporter gene construct HEK293
cells were pre-treated with 0.5 µM TSA for 1 hour, followed by 1-hour pre-incubation with 10 µM
15d-PGJ2 and exposure to 1000 U/ml TNF-↵ for another 18 hours after which activity of the se-
creted Gaussia luciferase was assessed in the cell supernatants as described before; n=3, means
± SEM; *p<0.05 as indicated; n.s., not significant. (A, right panel) Real-time qRT-PCR
analysis of relative IL-1� mRNA expression in THP-1 cells pre-treated for 1 hour with either
0.5 µM or 1 µM TSA, followed by 1 hour pre-incubation with 10 µM 15d-PGJ2 and 4 hours
exposure to 1000 U/ml TNF-↵; n=2-3 ± SEM (when n=3); *p<0.05, ***p<0.001 as indicated.
(B) HEK293 cells were transfected with the wild-type IL-1B promoter-luciferase reporter gene
construct as described above. Pre-treatment with 10 µM (left panel) or 15 µM (right panel)
C646 for 1 hour was followed by an incubation with 10 µM (left panel) or 20 µM (right panel)
15d-PGJ2 for an additional 1 hour and subsequent exposure to 1000 U/ml TNF-↵ for 18 hours.
Luciferase activities were assayed as described before; n=3 (left panel), n=1 (right panel); n.s.,
not significant; PGJ2 - 15d-PGJ2; T - TNF-↵; P - 15d-PGJ2.
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4.3 Increased 15d-PGJ2 plasma levels in patients su↵ering

from coronary heart disease

Given its immune-modulatory properties, 15d-PGJ2 may exert potent anti-inflammatory

activities that modulate vascular inflammation as well as atherogenesis in a↵ected indi-

viduals. To evaluate its relevance as a (prognostic) marker and possibly also as a maker,

we compared 15d-PGJ2 plasma levels, in patients with coronary heart disease (CHD)

and age-matched controls (in collaboration with Dres. Florian Leuschner, Maik Brune

and Thomas Fleming, all University Hospital Heidelberg).

After genotyping patients and controls for the T-786C SNP of the NOS3 gene, we

observed comparable allele frequencies as previously published (Cattaruzza et al. (2004))

with a slightly higher percentage of CC-genotype carriers in the CHD patient group who

all su↵ered from severe, i.e., multivessel CHD (Figure 4.18).
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Figure 4.18: Prevalence of the –786C-allele is greater in patients su↵ering from
CHD. T-786C NOS3 SNP genotype frequencies were analyzed in the control (n=108) and the
CHD group (n=32), respectively. Odd ratios (OR) of CHD patients vs. control (CHD-negative)
patients: CC, OR = 2.17, p<0.140; CT, OR = 1.63, p<0.317; TT, OR = 0.46, p<0.140

We found that the levels of 15d-PGJ2 were markedly increased in the CHD group (about

6-fold) as compared to the age-matched controls (Figure 4.19A), suggesting that 15d-

PGJ2 may constitute a general defence mechanism to counteract the ongoing chronic

inflammatory process even in patients that are not a↵ected by the T-786C SNP of the

NOS3 gene. Therefore, we next compared the plasma levels of 15d-PGJ2 among CHD

patients who were homozygous for T- or C-allele or heterozygous (Figure 4.19B). In

fact, there were no appreciable di↵erences in plasma concentrations of 15d-PGJ2 among

CHD patients with the three NOS3 SNP genotypes, however, at present the cohort sizes

must be considered too small to perform an unambiguous subgroup analysis and detect

a genuine relationship between 15d-PGJ2 plasma levels and presence of the 3 di↵erent
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allele combinations. We are therefore continuously acquiring additional samples from

patients with CHD and age-matched “healthy” controls.
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Figure 4.19: Increased 15d-PGJ2 plasma levels in patients su↵ering from CHD. (A)
Plasma 15d-PGJ2 concentration was quantified in patients with CHD and in age-matched con-
trols using ultra performance liquid chromatography-tandem mass spectrometry; n=32 (CHD);
n=108 (controls); mean ± SD; unpaired Student’s t-test; ***p<0.001. (B) Plasma 15d-PGJ2
concentrations in the CHD patient group according to distribution of the genotype for the T-
786C SNP of the NOS3 gene.

4.4 Implications of the T-786C NOS3 SNP for T helper

cell-endothelial cell interactions

4.4.1 Isolation and expansion of human T helper cells

Given the detrimental contribution of T helper 1 cell–driven responses to the process of

atherosclerotic as well as all kinds of chronic inflammatory disorders, we have begun to

analyze the e↵ect of the T-786C SNP of the NOS3 gene on the interaction between ECs

and Th1 cells in vitro. As mentioned before, ECs isolated from individuals homozygous

for either the T- or C-allele provide us with a pathophysiologically relevant model for

endothelial dysfunction in humans, as well as a well-characterized experimental system

to study interactions between dysfunctional endothelial cells and components of the im-

mune system in vitro. Using this system, we were able to address for the first time the

possible impact of a genetically imprinted endothelial dysfunction on EC-Th1 cell inter-

actions in atherosclerosis. For this purpose, we have begun to isolate and expand näıve

CD4+ T cells from human blood samples (bu↵y coats) using commercially available cell

isolation kits. Human CD4+ T cells can be divided into two subsets based on the ex-

pression of di↵erent isoforms of CD45 on their surface. CD4+ CD45RA+ cells represent
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the näıve cell population, whereas CD4+ CD45RO+ cells represent the e↵ector/memory

population (Michie et al. (1992)). Näıve CD4+ CD45RA+ T cells were isolated from

peripheral blood mononuclear cells by depleting non-T helper and memory CD45RO+

T cells, and subsequently subjected to a phenotypic characterization. Flow cytometric

analyses of suitable cell surface markers within the enriched cell population consistently

revealed 80-85% pure näıve Th cells (Figure 4.20A).

Next, to drive their expansion, isolated näıve cells were activated through the T cell

receptor-CD3 complex and simultaneously exposed to exogenous IL-2. Clonal expansion

in vitro was monitored using the intracellular fluorescent dye, CFSE. Generally, CFSE

has the ability to stably label molecules within cells and thereby it allows to detect

cell division and determine the number of divisions a cell has undergone under the

given experimental conditions. Using this approach, 3 days after exposure to activating

stimuli, we could detect an active cell proliferation represented by the reduction of CFSE

fluorescence with each cell division (Figure 4.20B).

4.4.2 15d-PGJ2 inhibits the transmigration of Th1 lymphocytes

Activated Th cells were further di↵erentiated in vitro to Th1 cells in the presence of IL-12

and anti-IL-4 antibodies (Figure 4.21A). We have established an intracellular cytokine

staining protocol to monitor cell di↵erentiation status under Th1-skewing conditions

characterized by the expression of specific signature cytokines, i.e. IFN-� (Th1) and

IL-4 (Th2) (in collaboration with Philipp Rößner, DKFZ, Heidelberg). Furthermore, we

evaluated the impact of 15d-PGJ2 on the transendothelial migration of di↵erentiated

Th1 cells in vitro. The e↵ect of 15d-PGJ2 on the migratory capacity of the Th1 cells

was assessed in a Transwell R� transmigration assay (see section 3.1.7), wherein Th1-

skewed cells were allowed to transmigrate across monolayers of orbital shear stress-pre-

conditioned HUVECs (TT-genotype) in the presence of chemoattractant gradients, i.e.

CCL-5 or MCP-1.

Similar to THP-1 monocytes, pre-treatment with 15d-PGJ2 potently impeded the ca-

pacity of the Th1 cells to migrate along the chemotactic gradient irrespective of the

chemoattractant used (Figure 4.21B). In addition, 15d-PGJ2 reduced the mean size

(i.e., 10.7 µm mean cell size distribution in the presence of DMSO vs. 9.5 µm in the

presence of 15d-PGJ2) and volume (i.e., mean cell volume distribution of 0.650 pl in the

presence DMSO vs. 0.450 pl in the presence of 15d-PGJ2; both cell size and volume

values represent means of two measurements from one exemplary experiment) of the

transmigrated Th1 cells, indicating an alteration in cellular morphology in the presence

of this prostanoid.

85



CHAPTER 4. Results

CD4$CD4+%T%cells%

CD4$CD4+%CD45RA+%CD62L+%T%cells%

A%

IL22%+%Ac3vator%CD3/CD28%%beads%%Non2s3mulated%%

B%

Figure 4.20: Isolation and expansion of human T helper cells. (A) Surface markers of
näıve T helper cells were assessed by flow cytometry. The figure depicts a representative flow
cytometric analysis of the purity of isolated cell populations (flow cytometric data acquisition
and analysis were performed with the help of Philipp Rößner). The purity of the isolated cell
population was determined by the relative abundance of the näıve T cell markers CD4, CD45RA
and CD62L. The percentage of each cell subset is indicated in the statistical analysis displayed in
the table below. (B) Histogram plots of CFSE fluorescence of näıve (left) or activated with anti-
CD3/CD28 T cell activator Dynabeads R� and IL-2 (right) T helper cells, 4 days post-stimulation.
The 4 CFSE peaks in the right panel indicate that the cells have undergone up to 3 divisions
upon activation.
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Figure 4.21: 15d-PGJ2 impedes the transendothelial migration of in vitro di↵er-
entiated Th1 cells. (A) Polarization of näıve human CD4+ T helper cells towards the Th1
phenotype. Nave CD4+ CD45RA+ T cells were either stimulated with anti-CD3/CD28 T cell
activator Dynabeads R� and IL-2 (Th0) or stimulated and cultured in the presence of IL-12 and
IL-4 neutralizing antibodies (Th1) to di↵erentiate them into Th1 cells. After 4 days the cells
were expanded and cultured under the same conditions in the absence of anti-CD3/CD28 T
cell activator beads. At day 7, cells were assessed for their ability to express prototypic Th1
(IFN-�) and Th2 (IL-4) phenotype markers by intracellular cytokine staining. Resting cells were
either left untreated (basal) or activated for 5 hours with anti-CD3/CD28 T cell activator beads
(stimulated) prior incubation with PE-Cy7-conjugated anti-IFN-� and APC-conjugated anti-IL-
4 antibodies. Dead cells were excluded from the analyses using fixable viability dye eFluor R�

780. Numbers represent the IFN-�+ cell population frequencies (%). The data shown are repre-
sentative of 3 experiments from di↵erent donors (flow cytometric data acquisition and analysis
were performed with the help of Philipp Rößner). (B) Seven days post-exposure to Th1 skewing
stimuli, IFN-�-expressing Th1 cells were pulse-treated for 1 hour with either solvent or 10 µM
15d-PGJ2, washed and loaded (1⇥106/ml) on PET Transwell R� inserts (8 µm-pore size), which
had been pre-seeded with TT-genotype HUVECs. HUVECs were pre-conditioned with orbital
shear stress (shaking speed 100 rpm) for 24 hours prior to the transmigration assay. Th1 cells
were allowed to transmigrate across the HUVEC monolayers for 6 hours in the presence of either
CCL-5 (100 ng/ml) or MCP-1 (100 ng/ml) added to the bottom chamber. Absolute (left) and
relative (right) numbers of transmigrated Th1 cells are presented as the mean of 2 independent
experiments.
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5
Discussion

Atherosclerosis is caused by the complex interaction between genes and environment.

Genetic susceptibility to atherosclerosis and CHD is largely determined by the presence

of common inherited genetic variants (i.e., polymorphisms or SNPs) present in di↵erent

genes, usually acting additively to shape the individual’s risk of developing the disease.

The Human Genome Project and the International HapMap project led to identification

of many of the common SNPs in the world populations (Lusis (2012)). These consor-

tia, together with the development of advanced array technologies, made possible the

realisation of genome-wide association studies of common and rare genetic variants for

complex traits, diseases and disease risk factors. GWAS from the last several years have

provided the first unbiased knowledge on genetic variants associated with the risk for

atherosclerosis (and CHD) and have largely contributed to explaining the heritability of

this frequent disease. Despite a reasonable number of common and rare genetic variants

covered by the latest GWAS (48 genomic loci by The CARDIoGRAMplusC4D Consor-

tium in 2015; Nikpay et al. (2015)), most genetic determinants of atherosclerosis still

remain undiscovered. Moreover, for most of the genetic variants identified thus far it is

not clear what their functional impact in the context of atherosclerosis actually is.

Several SNPs in the human NOS3 gene have demonstrated such functional consequences

(i.e., to a↵ect NOS-3 expression and/or activity) and therefore may have clinical impli-

cations. Amongst these, the T>C variance at position -786 in the NOS3 promoter has

been proven by us and others to be an independent predictor for CHD and rheumatic

diseases in conventional association studies. This and other clinically relevant NOS3

polymorphisms, however, have long failed to reach a genome-wide significance in GWAS

for CHD, likely because of their relatively modest e↵ects and interethnic di↵erences in

linkage disequilibrium with other genetic variants. In fact, a genetic variant that is asso-

ciated with a disease in one population may be only weakly associated with the disease

in other ethnic groups. Therefore, mixing people with di↵erent ancestries, e.g. in a

meta-analysis for a certain disease entity may confound or even invalidate identification
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of such causative genetic variants. On the other hand, the e↵ect of any polymorphism

may be minimized by compensatory mechanisms that keep the a↵ected pathway, cell or

organ function balanced.

This concept is exemplified by the compensatory shear stress-dependent up-regulation of

the anti-oxidant enzyme, SOD-2, which we found in homozygous carriers of the C allele

of the T-786C SNP of the NOS3 gene (Asif et al. (2009a)). We have demonstrated that

enhanced SOD-2-mediated anti-oxidant capacity is an adaptive mechanism in response

to the reduced bioavailability of endothelial NO present in these individuals, aiming at

its better protection from neutralization by excess superoxide anions. In the present

work, we investigated a second compensatory mechanism, which stabilizes the anti-

inflammatory phenotype of CC-genotype endothelial cells and thus may reduce the risk

for premature atherosclerosis and CHD associated with this genetic defect in a↵ected

individuals. In these cells, we found an enhanced shear stress-dependent formation and

release of the anti-inflammatory prostanoid, 15d-PGJ2, compensating for the insu�cient

production of NO and its leukocyte-inhibiting properties.

In this context, the modulatory e↵ects of 15d-PGJ2 on diapedesis and activity of dif-

ferent leukocyte subsets were examined in detail. Although considerable e↵ort has been

devoted to elucidate the various biological roles of this autacoid, a general mechanism

for its anti-inflammatory activity has not yet been identified. Using a combination of

in vitro tools, we explored the molecular mechanisms underlying the anti-inflammatory

action of 15d-PGJ2 in monocytes. Additionally, this work addressed for the first time

the relevance of 15d-PGJ2 as a prognostic biomarker in patients with CHD.

5.1 Characterization of the 15d-PGJ2-mediated compen-

satory mechanism in CC-genotype carriers

Insu�cient shear stress-dependent maintenance of NOS-3 expression in vivo is a decisive

factor in the development of endothelial dysfunction and cardiovascular complications

(Cattaruzza et al. (2004)). The resulting enhanced basal production of NO is known

to maintain quiescence of the resting endothelium under through several mechanisms,

including inhibition of endothelial pro-inflammatory gene expression - NO contributes

to supressing the expression cell adhesion molecules such as VCAM-1, ICAM-1 and E-

selectin - inhibition of Weibel-Palade body fusion and release of pro-inflammatory and

pro-thrombotic mediators such as angiopoietin-2, IL-8, von Willebrand factor and P-

selectin as well as inhibition of leukocyte recruitment and activation (Pober and Sessa

(2007)). The impaired expression of NOS-3 and hence endothelial NO production in

individuals homozygous for the C-allele of the T-786C SNP may therefore compromise

these anti-inflammatory activities and thus promote endothelial dysfunction and athero-

genesis.

90



5.1. Characterization of the 15d-PGJ2-mediated compensatory mechanism in
CC-genotype carriers

To address this hypothesis, we used clonally expanded ECs from individuals with CC-

genotype, which herein served as a unique in vitro model for a genetically determined

endothelial dysfunction without the necessity to use confounding stimuli such as, e.g.

pro-inflammatory cytokines. The prolonged exposure of ECs to unidirectional FSS (�
24 hours) closely approximates the in vivo flow conditions. Pre-conditioning of isolated

ECs with physiological levels of unidirectional FSS (⇠30 dyn/cm2 for 24 hours) therefore

aimed at restoring shear stress-responsive gene expression, including that of NOS-3, in

the cultured ECs, thereby eliciting a mostly atheroprotective phenotype. In this exper-

imental setting we could discern the impact of the di↵erent genotypes the phenotype of

the ECs in a physiological environment reproducing the regions of undisturbed uniform

blood flow (i.e., in a straight artery).

To mimic in vitro the diapedesis (i.e., extravasation) of leukocytes recruited to the ves-

sel wall, we used the human monocytic cell line, THP-1, that resembles many features

of primary monocytes/macrophages (for a review, see Qin (2012)). In our setup, the

THP-1 cells transmigrated through a monolayer of TT- or CC-genotype human ECs

along a chemotactic gradient composed of MCP-1 (CCL-2). Contrary to expectation

not only transmigration of the THP-1 cells through the CC-genotype EC monolayer was

strongly impeded as compared to the TT-genotype EC monolayer, but also expression of

the pro-inflammatory chemokine IL-8, which is known to promote subsequent extrava-

sation of polymorphonuclear leukocytes and lymphocytes (Takahashi et al. (1997)), was

virtually abrogated in the THP-1 cells that had migrated through the CC-genotype EC

monolayer. Using NOS-3 inhibitors and NO donors, both of these phenomena seemed

to occur independently of the NO-synthesizing capacity of the ECs, arguing for the

existence of (an) alternative mediator(s) capable of restraining the transmigration and

pro-inflammatory activation of leukocytes and thus reinforcing the anti-inflammatory

capacity of ECs under conditions of insu�cient NO synthesis.

NO inter alia modulates intracellular calcium homeostasis in ECs and thus the synthe-

sis and release of arachidonic acid (AA) metabolites in response to various agonists.

For the liberation of AA from membrane phospholipids activation of phospholipase A2

(PLA2) enzymes is required, the majority of which is active only following an increase in

intracellular calcium (Jain and Berg (1989)). NO through secondary cGMP formation

and activation of protein kinase G suppresses the influx of extracellular calcium and en-

hances its sequestration into intracellular stores hence causing a decrease in intracellular

calcium and in turn a decline in PLA2 activity. Therefore an alteration in prostanoid

levels and profile in NO-deficient CC-genotype ECs seemed conceivable.

Analysing the expression of all major enzymes contributing to prostaglandin biosynthe-

sis in fact revealed a pronounced shear stress-dependent up-regulation of COX-2 and

the lipocalin-type PGDS (L-PGDS), solely in CC-genotype ECs. COX-2 has long been

regarded as the cyclooxygenase isoform the expression of which is induced exclusively
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by pro-inflammatory mediators such as, e.g. cytokines. Now, it is known that COX-

2 is not only an inducible enzyme but can also be constitutively expressed in several

organs (e.g., kidney, gastrointestinal tract) where it participates in maintaining local

homeostasis (Laufer et al. (2003)). On the other hand, L-PGDS is constitutively ex-

pressed in the vascular endothelium and its expression is maintained by unidirectional

shear stress (Taba et al. (2000)). In fact, L-PGDS and its downstream products (i.e.,

PGD2 and J2 series of prostaglandins) have been proposed to contribute to the shear

stress-mediated prevention of atherosclerosis, by facilitating the anti-inflammatory and

thus atheroprotective phenotype of the vessel wall (Tanaka et al. (2009)).

Herein, we found that di↵erential expression of L-PGDS in TT- and CC-genotype ECs

is associated with their relative to synthesize NO. Acute inhibition of NOS-3 activity

in TT-genotype ECs markedly up-regulated shear stress-dependent L-PGDS, suggesting

that it is the relative lack of NO that facilitates up-regulation of this enzyme in CC-

genotype ECs. In addition, siRNA-mediated knockdown of L-PGDS significantly po-

tentiated THP-1 cell transmigration through CC-genotype EC monolayers, suggesting

that one of its products must constitute the compensatory mechanism, which maintains

the anti-inflammatory phenotype of these ECs. In fact, as compared to TT-genotype

ECs exposure of these cells to unidirectional FSS increased the concentration of the

anti-inflammatory prostanoid 15d-PGJ2 in the cell supernatant.

15d-PGJ2 has in fact been proposed to act as an atheroprotective autacoid released by

the endothelium in response to shear stress to restrain vascular inflammation and pro-

tect arterial blood vessels from harmful stimuli (Taba et al. (2000); Sasaguri and Miwa

(2004)). Consistently, intraperitoneal administration of 15d-PGJ2 inhibited the expres-

sion of MCP-1, TNF-↵ and MMP-9, and significantly reduced the number of infiltrated

monocytes/macrophages in aortic root plaques in atherosclerosis-prone ApoE-deficient

mice (Seno et al. (2011)). Moreover, 15d-PGJ2 has been implicated in the resolution

of inflammation in vivo. By controlling the balance of cytokines and chemokines, 15d-

PGJ2 as well as its precursor PGD2 regulate the tra�cking of leukocytes during acute

inflammation as well as the e✏ux of macrophages to draining lymphatics, promoting

resolution of the acute inflammatory response (Rajakariar et al. (2007)).

A key step in inflammation is the recruitment of pro-inflammatory leukocytes from the

circulation to the site of inflammation or injury. Herein, we demonstrate that exoge-

nous 15d-PGJ2 at micromolar concentrations exerts a potent anti-migratory e↵ect on

activated THP-1 monocytes in an in vitro transmigration assay. In our assay system,

EC monolayers are pre-conditioned with orbital shear stress closely mimicking the non-

uniform flow conditions encountered at predilection sites of atherosclerosis. 15d-PGJ2,

therefore, has the capacity to suppress transendothelial migration of monocytic cells

in a pathophysiologically relevant setting. In a mouse model of peritonitis 15d-PGJ2

has been shown to attenuate carrageenan-induced neutrophil migration to mesenteric

tissues by inhibiting actin dynamics in the neutrophils during chemotaxis (Napimoga
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et al. (2008)). In addition, attenuation of EC adhesion molecule expression in response

to inflammatory stimuli may contribute to the anti-inflammatory e↵ect of 15d-PGJ2.

For example, in the aforementioned peritonitis model ICAM-1 expression in the en-

dothelium of mesenteric microvessels was significantly decreased by pretreating the mice

with 15d-PGJ2 (Napimoga et al. (2008)). Further investigations are required to show

that these mechanisms are also involved in the observed inhibitory e↵ect of 15d-PGJ2

on THP-1 cell, i.e. monocyte extravasation.

Apart from its anti-migratory capacity, 15d-PGJ2 also exhibited a strong inhibitory

e↵ect on TNF-↵-stimulated expression of IL-1� and CD40 in the THP-1 cells. Similarly,

15d-PGJ2 has been shown to inhibit the release of a wide range of pro-inflammatory

cytokines (e.g., IL-1�, IL-6, IL-12 and TNF-↵) from activated macrophages and to down-

regulate expression of multiple pro-inflammatory genes (e.g., iNOS, VCAM1, MMP9

and MMP13 ) in both vascular and inflammatory cells (reviewed by Scher and Pillinger

(2009); Surh et al. (2011)). Recent data suggest that 15d-PGJ2 inhibits the NLR family

leucine-rich repeat protein (NLRP)1 and NLRP3 inflammasomes, i.e. cytosolic protein

complexes that detect stress and pathogen-associated molecular patterns, and hence the

maturation and release of IL-1� both in vitro and in vivo (Maier et al. (2015)). Inhibition

of inflammasome components may in fact constitute a novel mechanism underlying the

anti-inflammatory properties of this prostanoid and one of its modes of action to inhibit

the expression of IL-1� (see below).

CD40 is a co-stimulatory molecule expressed by antigen-presenting cells as well as various

non-immune cells the ligation of which is crucial for both adaptive and innate immunity.

In our hands, pre-incubation of THP-1 cells with 15d-PGJ2 strongly attenuated the de

novo expression of CD40 in response to TNF-↵ stimulation. In line with this finding,

15d-PGJ2 has been shown to abrogate expression of CD40 as well as CD40-mediated

production of the chemokine CCL-5 (also known as RANTES) in cultured renal tubular

epithelial cells upon concomitant exposure to IFN-� and TNF-↵ (Zhang et al. (2006)).

In addition, 15d-PGJ2 inhibits expression of CD40 on rodent microglial cells and by that

it has been demonstrated to modulate the di↵erentiation of CD4+ encephalitogenic T

cells as a part of the e↵ector pathways in experimental autoimmune encephalomyelitis,

i.e., a murine model of human multiple sclerosis (Diab et al. (2002)).

Collectively, these data corroborate 15d-PGJ2 as an anti-inflammatory mediator capable

of compensating for the anti-inflammatory properties of NO and thus balancing the

insu�cient endothelial NO synthesis associated with homozygosity for the C-allele of

the T-786C SNP of the NOS3 gene.
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5.2 Investigation of molecular mechanisms underlying the

anti-inflammatory activity of 15d-PGJ2

A growing body of research has been devoted to elucidating the mechanisms underlying

the immunomodulatory activities of 15d-PGJ2. The pleiotropic roles of this bioactive

lipid, however, have hampered the clarification of its functions. The ability of this

highly electrophilic prostanoid to covalently modify cellular proteins is considered to be

the major mechanism for most of its biological e↵ects. By modulating the activity of

redox-sensitive TFs as well as co-factors required for transcriptional activation by these

TFs, 15d-PGJ2 has been shown to directly influence the stability of DNA regulatory

complexes and thus to control transcription of multiple genes. Given that 15d-PGJ2 is

able to regulate the course of inflammatory responses, suppression of pro-inflammatory

gene expression as one mode of its anti-inflammatory action has been proposed. Herein,

we showed that 15d-PGJ2 represses transcription of the IL-1B gene in TNF-↵-stimulated

THP-1 cells. This finding is in accordance with the inhibitory e↵ects that 15d-PGJ2 has

on the promoters of multiple pro-inflammatory genes. For example, in T cells 15d-PGJ2

inhibits transactivation of the FASL gene encoding Fas ligand by interfering with the

expression and/or transcriptional activity of several transcription factors such as Egr1,

NF-B or AP-1 (Cippitelli et al. (2003)). Given that the Fas/Fas-L dyad is deregulated

in diseases a↵ecting lymphocyte homeostasis (Takahashi et al. (1994)), modulation of

FASL gene expression by 15d-PGJ2 in T cells may thus spur to the development of

therapies for immune disorders.

Moreover, 15d-PGJ2 has been shown to inhibit c-Myc, Sp1 or the estrogen receptor,

which results in repression of the human telomerase reverse transcriptase gene (hTERT)

in colon cancer cells (Moriai et al. (2009)). In fact, the pro-apoptotic properties of 15d-

PGJ2 in cancer cells of various origins have been attributed to its transcriptional repres-

sion of the hTERT gene, substantiating its anti-tumour potential (Kondoh et al. (2007);

Toaldo et al. (2009)). Furthermore, 15d-PGJ2 inhibits transactivation of the COX2 pro-

moter (Farrajota et al. (2005)) as well as COX-2 expression (Tsubouchi et al. (2001))

in human synovial fibroblasts. Hence, 15d-PGJ2 has been implicated in a negative feed-

back loop controlling COX-2-dependent formation of pro-inflammatory prostaglandins

such as PGE2, thereby protecting against chronic inflammation in rheumatoid arthritis

(Tsubouchi et al. (2001); Farrajota et al. (2005)). Based on these findings, it is plausible

that transcriptional modulation of gene expression, and in particular, transcriptional re-

pression, is a general mechanism underlying the anti-inflammatory actions of 15d-PGJ2.
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5.2.1 The Nrf2-Keap-1 pathway as a mediator of the anti-inflammatory

activities of 15d-PGJ2

Apart from direct inhibition of pro-inflammatory gene transcription, 15d-PGJ2 can at-

tenuate inflammation by modulating up-stream signaling as well as activating and/or

inducing the expression of proteins with anti-inflammatory e↵ects. For example, 15d-

PGJ2 interacts with a broad but specific set of signaling proteins, thereby modulating

cellular functions. Based on the fact that 15d-PGJ2 acts as a ligand for the TF PPAR-�,

which is known to have potent anti-inflammatory properties, we have explored the pos-

sibility that activation of this nuclear receptor mediates the observed anti-inflammatory

activity of 15d-PGJ2 in THP-1 monocytes. In fact, many of the protective e↵ects of

15d-PGJ2 in both cellular and animal models of inflammation have been attributed to

the ligation of PPAR-� (for a review, see Scher and Pillinger (2005); Scher and Pillinger

(2009)). In our in vitro model, pharmacological inhibition of PPAR-� failed to abrogate

the inhibitory e↵ect of 15d-PGJ2 on pro-inflammatory gene expression, in particular,

TNF-↵-induced expression of the IL-1B gene.

Inhibition of pro-inflammatory gene expression by 15d-PGJ2, e.g., in activated mono-

cytes/macrophages and other cell types, has primarily been ascribed to the suppres-

sion of pro-inflammatory TFs such as NF-B or AP-1 both in a PPAR-�-dependent

and independent manner (reviewed, by Scher and Pillinger (2009); Surh et al. (2011)).

Nonetheless, in our hands the DNA-binding activity of these and other gene regulatory

proteins (e.g., STAT-1, GATA) remained unaltered in THP-1 monocytes exposed to

15d-PGJ2. Another signaling mechanism involving 15d-PGJ2 concerns activation of the

PGD2 receptors DP1 and DP2/CRTH2 for both of which 15d-PGJ2 is a weak agonist

(Wright et al. (1998); Vaidya et al. (1999)). While interaction with the DP1 receptor

causes a rise in intracellular cAMP and subsequent activation of PKA, and therefore has

been implicated in the anti-inflammatory activities of PGD2 and 15d-PGJ2, the e↵ects

of 15d-PGJ2 mediated via DP2 remain incompletely understood but may involve induc-

tion of apoptosis in pro-inflammatory leukocytes. However, pharmacological blockade

of both of these PGD2 receptors did not a↵ect the inhibitory e↵ect of 15d-PGJ2 on

pro-inflammatory gene expression in the human monocytic cells. This left us with the

Nrf2-Keap-1 pathway as the most promising transcriptional e↵ector pathway activated

by 15d-PGJ2.

Upon exposure to oxidative or electrophilic stresses, the Nrf2-Keap-1 cellular defense

pathway, also known as the Nrf2 antioxidant stress response, is activated by releasing

the TF Nrf2 from its repressor Keap-1 in the cytoplasm. The de-repressed Nrf2 in turn

shuttles to the nucleus where it transactivates the transcription of a number of detox-

ifying/antioxidant genes to protect cells from intrinsically and extrinsically generated

stress factors (Taguchi et al. (2011); Suzuki et al. (2013)). 15d-PGJ2 is a potent inducer

of Nrf2 signaling owing to its highly electrophilic cyclopentenone moiety (Kobayashi

et al. (2009)). Accordingly, 15d-PGJ2 has been shown to induce nuclear translocation of
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Nrf2 in a vast number of cell types including vascular cells, activated macrophages and

lymphocytes where it elicits cytoprotection (reviewed by Surh et al. (2011)). In a similar

manner, micromolar concentrations of 15d-PGJ2 used in this work caused a pronounced

nuclear accumulation of Nrf2, binding to the ARE and expression of Nrf2-dependent

genes in THP-1 monocytes.

Because numerous studies have documented beneficial e↵ects of Nrf2 activation in var-

ious diseases, including cardiovascular, neurodegenerative, autoimmune and inflamma-

tory disorders, compounds that manipulate the Nrf2-Keap-1 pathway – both naturally

occurring and synthetic ones – have become of therapeutic interest (reviewed by Suzuki

et al. (2013)). As an alternative inducer of the pathway, we employed one such synthetic

compound, Bardoxolone methyl (originally developed as the first disease-modifying

treatment for chronic kidney disease), which specifically activates Nrf2 and unlike 15d-

PGJ2 does not alter the intracellular redox state. The fact that specific activation of Nrf2

with Bardoxolone significantly reduced TNF-↵-induced IL-1� expression in the THP-1

cells confirmed involvement of the Nrf2-Keap-1 pathway downstream of 15d-PGJ2.

Kobayashi et al. showed for the first time that oxidative/electrophilic stress, which was

induced with the Nrf2-activating chemical, tert-butylhydroquinone, provokes the nuclear

accumulation of de novo synthesized Nrf2 and not, as initially thought, of Nrf2 freed

from the cytoplasmic Keap-1 repressor complex (Kobayashi et al. (2006). Using tran-

scription and translation inhibitors, we could demonstrate herein that the mechanism

of Nrf2 translocation to the nucleus of the THP-1 cells, induced by both 15d-PGJ2 and

Bardoxolone, likewise relies on bypassing the Keap-1 ”trap” in the cytoplasm by the

newly synthesized protein, which in turn accumulates in the nucleus (Figure 5.1.)

5.2.2 Verifying a role for the Nrf2-Keap-1 pathway in THP-1 mono-

cytes

To confirm our hypothesis that Nrf2 mediates the anti-inflammatory e↵ects of 15d-PGJ2

in the THP-1 cells, we used a combination of in vitro tools to mimic either a loss or

a gain of function of the Nrf2-Keap-1 pathway. Deficiency/silencing of Nrf2 has been

shown to enhance pro-inflammatory responses in human (Rushworth et al. (2008)) and

murine monocytes/macrophages (Lin et al. (2008)), as well as in in vivo mouse models

of inflammation (Thimmulappa et al. (2006)) and injury (Jin et al. (2008)). Conversely,

overexpression of Nrf2 (Narasimhan et al. (2011)) or Nrf2-dependent cytoprotective,

namely antioxidant enzymes (Lee et al. (2009b)), has been shown to confer protection

against experimentally induced cellular injury and inflammation. At first, we undertook

a siRNA-mediated approach to down-regulate Nrf2 in the THP-1 cells, thereby aiming

at exploring its involvement downstream of 15d-PGJ2 that primarily acts on Keap-1.

E↵ective knockdown of Nrf2 in the THP-1 cells caused them to undergo apoptosis,
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Mitsuishi et al., 2012, Mol. Cell. Oncol. 
 

15d$PGJ2)

Figure 5.1: 15d-PGJ2 is an activator of the Nrf2-Keap-1 pathway. Under normal
conditions, Nrf2 is constantly ubiquitinated through Keap-1 and degraded in the proteasome.
Following exposure to electrophiles or oxidative stress, Keap-1 is inactivated. Stabilized Nrf2 ac-
cumulates in the nucleus and activates many cytoprotective genes. 15d-PGJ2 is an electrophilic
lipid, which alkylates Keap-1 and inactivates it. As a result, de novo synthesized Nrf2 translo-
cates to the nucleus where it activates the transcription of ARE-dependent genes. Ub, ubiquitin;
(adapted from Mitsuishi et al. (2012)).

presumably through activation of e↵ector caspases such as caspase-3 and up-regulation

of pro-apoptotic proteins like Bax (Lee et al. (2015)), hence impeding our goal.

Next, we aimed at depleting Keap-1 in the THP-1 cells, also by using a siRNA-based

approach. This led to enhanced accumulation of Nrf2 in the nucleus and constitutive

expression of cytoprotecitve Nrf2-target genes such as, e.g., HO-1. Under normal home-

ostatic conditions, Keap-1 serves as a sca↵old for substrate proteins of a Cullin3/RBX1-

dependent E3 ubiquitin ligase complex, which apart from Nrf2 also targets other proteins

for degradation like IB kinase � (IKK�), the major upstream activator of the NF-B

pathway (Lee et al. (2009a); Kim et al. (2010)). As an integrator of both pathways, loss

of Keap-1 function has been shown to augment activation, i.e., nuclear translocation of

both Nrf2 and NF-B and to simultaneously up-regulate expression of target genes of

both TFs. However, Keap-1 deficiency may have di↵erential e↵ects on pro-inflammatory

gene expression, depending on the TF that is mostly a↵ected. Thus, it up-regulates ex-

pression of IL-6 (Lv et al. (2013)) and IL-8 (Lee et al. (2009a)) in murine macrophages,

whereas expression of IL-1↵ is down-regulated in several human breast cancer cell lines
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(Lee et al. (2009a)). These e↵ects were primarily ascribed to the activation of NF-B

though (Lv et al. (2013)). Our results show that knockdown of Keap-1, which led to

the constitutive activation of Nrf2, significantly attenuated expression of the IL-1B gene

in TNF-↵-stimulated THP-1 cells, corroborating a role of Nrf2 signaling downstream of

15d-PGJ2 in the transcriptional control of this pro-inflammatory gene. It is likely there-

fore that constitutive activation of Nrf2 or up-regulation of Nrf2-dependent genes upon

loss of Keap-1 markedly alters the cellular redox/antioxidant status (e.g., alteration in

GSH levels, expression of antioxidant proteins such as Prx, glutathione peroxidases,

etc.) and may thus counteract activation of redox-sensitive TFs (other than NF-B)

and signaling proteins involved in transactivation of the IL-1B gene (e.g., JNK and p38

MAPK).

5.2.3 Investigating the mechanism of action of Nrf2 in THP-1 cells

Based on the data obtained herein, we proposed a model (cf. Figure 4.9) summarizing

the mechanism by which the relative loss of the NO-dependent anti-inflammatory capac-

ity of the endothelium in homozygous carriers of the T-786C SNP of the NOS3 gene is

counterbalanced. CC-genotype ECs respond to their reduced capacity to synthesize NO

with an adaptive up-regulation of the synthesis of 15d-PGJ2 whereby he shear stress-

dependent up-regulation of 15d-PGJ2-producing enzymes, COX-2 and L-PGDS, in the

CC-genotype ECs is driven by the reduced bioavailability of NO in these cells. The in-

triguing finding that it is the Nrf2-Keap-1 pathway that mediates the anti-inflammatory

e↵ects of this prostanoid in monocytes, prompted us to investigate the precise molecular

mechanism(s) involved therein.

Because the anti-inflammatory e↵ects of 15d-PGJ2 in the monocytes coincided with

a profound accumulation of Nrf2 in the nucleus, we considered two possibilities for a

potential molecular mechanism: i) 15d-PGJ2-induced nuclear Nrf2 drives the expression

of antioxidant enzymes and proteins, such as HO-1 and PrxI, which in turn contribute

to the overall repression of pro-inflammatory gene expression; ii) Nrf2 directly interferes

with the expression of pro-inflammatory genes at the transcriptional level, e.g., IL-1B

gene (cf. Figure 4.10A). The first option is not unprecedented. For example, the anti-

inflammatory activity of Nrf2-controlled antioxidant proteins, including HO-1, is well

described in the literature. In fact, amongst all of the cytorprotective enzymes induced

by Nrf2, HO-1 probably plays the most prominent role in the cellular defense against

inflammation. HO-1 has been demonstrated to mediate the anti-inflammatory e↵ects

of 15d-PGJ2 (Lee et al. (2003)), as well as of other anti-inflammatory mediators such

as IL-10, e.g., in murine macrophages in vitro as well as in in vivo mouse models of

inflammation (Lee and Chau (2002)). Many of these anti-inflammatory functions have

primarily been attributed to products derived from the degradation of heme by HO-1,

namely carbon monoxide (CO) and biliverdin that is rapidly converted to bilirubin.
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CO, for example, has been shown to di↵erentially a↵ect cytokine expression in LPS-

stimulated murine macrophages (Otterbein et al. (2000)) by blocking the release of

pro-inflammatory cytokines such as TNF-↵ and IL-1� but augmenting that of the anti-

inflammatory cytokine IL-10. Moreover, CO has been demonstrated to alter the plasma

levels of pro- and anti-inflammatory cytokines also in vivo, e.g. in mice subjected to a

sublethal dose of LPS (Otterbein et al. (2000); Otterbein et al. (2003)). Furthermore,

inhibition of HO-1 activity in LPS-challenged murine macrophages as well as scavenging

of CO abolished the inhibitory e↵ect of 15d-PGJ2 on NF-B-mediated pro-inflammatory

gene expression in these cells (Lee et al. (2003)). In this work, neither blockade of HO-1

activity nor scavenging of CO (data not shown) lessened the inhibitory potency of 15d-

PGJ2 in terms of TNF-↵-stimulated IL-1B gene expression in the THP-1 monocytes,

hence arguing against this hypothesis. However, given that Nrf2 controls the expression

of over 250 cytoprotective genes, many of which have demonstrated anti-inflammatory

activities themselves, a functional redundancy between HO-1 and other Nrf2-dependent

antioxidant enzymes cannot be ruled out.

The in silico identification of three high-scoring Nrf2-like binding sites, i.e. ARE-like

motifs at positions -225 (ARE1), -162 (ARE2) and -63 (ARE3) relative to the transcrip-

tion start site (cf. Figure 4.10B) in the human proximal IL-1B promoter substantiated

our second hypothesis of a potential direct interaction between Nrf2 and the IL-1B pro-

moter. Upon translocation to the nucleus, Nrf2 normally recruits the transcriptional

machinery to induce cytoprotective genes. In particular, Nrf2 increases the rate of tran-

scription of these genes by binding to (an) ARE site(s) present in their promoter regions.

The concept that Nrf2 might act as a repressor of gene transcription therefore is rather

unusual. To date, only few studies have demonstrated Nrf2 as a negative regulator of

gene expression. By directly inhibiting promoter activity of the RON gene, which en-

codes a tyrosine kinase receptor overexpressed in various cancers with epithelial origin,

Nrf2 has been identified as a direct repressor of gene expression, mediating the anti-

tumour e↵ects of sulforaphane, a natural Nrf2 inducer (Thangasamy et al. (2011)). In

addition, Nrf2-small Maf protein heterodimers have been proposed not only to activate

ARE-mediated gene expression, but also to negatively regulate the inducible expression

of ARE-dependent genes encoding detoxifying enzymes such as glutathione S-transferase

and NQO-1 in the rat, presumably in the context of a late response to electrophilic/xeno-

biotic stress (Dhakshinamoorthy and Jaiswal (2000); Nguyen (2000)).

In our hands, ChIP analysis confirmed the validity of the “direct repressor” hypothesis,

as it demonstrated a potential binding of Nrf2 to the IL-1B promoter region comprising

the putative ARE-like motifs in 15d-PGJ2-treated THP-1 cells. Moreover, deletion of

the core sequences of two of the three identified ARE motifs (i.e., ARE2 and ARE3)

attenuated the repressor e↵ect of 15d-PGJ2 on IL-1B promoter activity in a reporter

gene assay, indicating that Nrf2 may in fact be capable of acting as a direct transcrip-

tional repressor of the IL-1B gene. On the other hand, deletion of either motif yielded
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relatively weak e↵ects, implying a possible functional redundancy between these cis-

regulatory elements, i.e., disruption of one ARE motif at a time has a little or no e↵ect

because the other ARE motif can compensate for the loss of function of the other. As

a consequence, deletion of single motifs may not be su�cient to completely abrogate

the repressor e↵ect of 15d-PGJ2. Conversely, the three Nrf2-binding sites might be

non-redundant but functional only when bound simultaneously by Nrf2. Hence, they

will have to be disrupted all at once in order to clarify whether only one or in fact all

three ARE-like motif are critical for the inhibitory e↵ect of Nrf2 on IL-1� expression.

Moreover, because two of the three identified ARE-like motifs (i.e., ARE1 and ARE2;

cf. Figure 4.10B) are spaced only 64 bp apart from each other, it is likely that they

are located within the same nucleosome. Therefore, synergistic action of both motifs to

drive the repression of the IL-1B gene cannot be ruled out. Further studies are required

to verify these hypotheses.

Given that 15d-PGJ2 is a prostaglandin exerting pleiotropic e↵ects on gene expression

and regulation, there may be other ARE-interacting proteins with regulatory function

except Nrf2 acting together to mediate the repressor activity of 15d-PGJ2 on the IL-1B

gene. It is also plausible that ARE motifs may be regulated by the synergistic action

of multiple proteins that can bind adjacent or ARE-overlapping cis-regulatory elements

(both positive and negative) and thereby influence gene expression. Thus, it has been

described that variations in the ARE motif result in an overlapping DNA binding of

other ARE-recognizing factors, besides Nrf2, thereby antagonizing or synergistically

enhancing its e↵ects on gene expression. It is therefore also possible that another ARE-

interacting factor conferring transcriptional repression binds to any of the three ARE

motifs of interest, irrespective of the absence of intact motif cores, and by that obscures

the e↵ect of the deletion mutations. As shown herein, Bach1, a competitor of Nrf2 with

transcriptional repressor function (cf. section 4.2.8), is not one of these TFs.

The dimerization partners of Nrf2, small Maf proteins (sMafs), further illustrate the

complex interplay between proteins interacting with the ARE cis-regulatory element.

In fact, sMafs can work both as transcriptional activators and repressors depending

on their dimerization partners. Generally, sMafs act as co-activators of ARE-mediated

gene expression when heterodimerized with Nrf2 or with some of the other CNC TF

family members, or as repressors when they bind to the ARE in the form of a homod-

imer (Dhakshinamoorthy and Jaiswal (2000); Nguyen (2000)). Deletion of each of the

three ARE core motifs in the IL-1B promoter could therefore trigger dissociation of

Nrf2, hence disassembly of the Nrf2-sMaf transactivating complex. Small Mafs, which

associate with a GC-flanking element outside of the ARE core sequence, may in turn

homodimerize and thus repress the activity of the IL-1B promoter, masking the e↵ect

of the deletion mutations.

As a third option for a potential molecular mechanism, we considered the 15d-PGJ2-

driven negative crosstalk of Nrf2 with pro-inflammatory TFs to impede transactivation
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of the IL-1B gene. A time course analysis for activation of the Nrf2-Keap-1 pathway in

THP-1 cells pre-treated with 15d-PGJ2 for 1 hour revealed that Nrf2 already accumu-

lates in the nucleus at the time of exposure to the pro-inflammatory stimulus TNF-↵.

Moreover, the inhibitory e↵ect of 15d-PGJ2 on IL-1B gene expression became discernible

immediately after the onset of the TNF-↵-induced rise in IL-1� mRNA abundance. Fur-

thermore, pre-treatment with 15d-PGJ2 did not completely block expression of the IL-1B

transcript but rather restrained the ability of TNF-↵ to fully activate the IL-1B gene,

indicating a potential negative crosstalk between Nrf2 and a pro-inflammatory TF acti-

vated by TNF-↵. In this context, the p65 subunit of NF-B has been shown to repress

Nrf2-dependent gene expression by competing with Nrf2 for its principal co-activator

CBP, a co-activator with intrinsic HAT activity (Liu et al. (2008)). In addition, p65

recruits the co-repressor, HDAC-3 (Liu et al. (2008)), leading to deacetylation of the

small MafK protein and deacetylation of histone H4, thereby promoting disassembly of

the Nrf2-sMaf transactivating complex (Figure 5.3). The reverse mechanism, wherein

Nrf2 counteracts NF-B-dependent pro-inflammatory gene expression is likely to exist as

well, and could therefore constitute yet another mode of action of 15d-PGJ2 underlying

the anti-inflammatory e↵ects of this prostanoid in the THP-1 cells.

Figure 5.2: Repression of Nrf2-mediated gene transactivation by the p65 subunit of
NF-B. p65 competes with Nrf2 for co-activator binding proteins (e.g., CBP) or recruits HDACs
to the ARE, thereby altering chromatin dynamics and promoting repression of Nrf2-dependent
gene transcription (Wakabayashi et al. (2010)).

15d-PGJ2 on the other hand has been shown to exert direct e↵ects on chromatin-

modifying factors such as histone acetyl transferases and histone deacetylases. For

example, 15d-PGJ2 represses activity of the TNFA (TNF-↵ gene) promoter in human

THP-1 and mouse RAW 264.7 cell lines, an e↵ect which was claimed to correlate with

the recruitment of HDACs (Engdahl et al. (2007)) that would increase chromatin con-

densation and thus render the enhancer DNA sequence inaccessible for TFs. Moreover,

15d-PGJ2 antagonizes activity of the COX2 promoter in human synovial fibroblasts

by preventing IL-1�-induced recruitment and activation of p300/CBP, which by way of

histone H3 hyperacetylation relaxes the chromatin structure and/or recruits the basal

transcriptional machinery to enhancer elements (Farrajota et al. (2005)). In this work,
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we demonstrated that a generic HDAC inhibitor, TSA, is not capable of reversing the

15d-PGJ2-mediated repression of the IL-1B promoter in THP-1 cells, which to some

extent is at variance with Engdahl et al. (2007). These authors did not consider the

e↵ect of TSA alone on LPS-induced TNFA gene promoter activity. However, TSA typ-

ically causes global histone hyperacetylation and thus enhances the (basal) activity of

gene promoters. Accordingly, in our reporter gene assay, the IL-1B promoter-driven

basal and inducible expression of the luciferase reporter was strongly potentiated by

pre-treatment with TSA. Nonetheless, 15d-PGJ2 was able to overcome the impact not

only of TSA but also that of the CBP inhibitor C646 on both the endogenous and

the experimental IL-1B promoter, thereby arguing against the claim that inhibition of

HDACs or HATs alike abrogates the repressor e↵ect of 15d-PGJ2 on pro-inflammatory

gene expression in the THP-1 monocytes.

5.3 Clinical relevance of 15d-PGJ2 in patients with chronic

inflammatory diseases such as CHD

Although inflammation is an intrinsic protective mechanism of the body to neutralize for-

eign pathogens or facilitate wound healing, failure of endogenous inhibitory mechanisms

to terminate such inflammatory responses may result in chronic inflammatory diseases.

Co-existing with pro-inflammatory processes is an anti-inflammatory state characterized

by increased levels of anti-inflammatory mediators, which terminate the inflammatory

program (Haworth and Buckley (2007)). Arachidonic acid (AA) metabolites play a piv-

otal role in the establishment of pro-inflammatory responses. However, AA-derived lipid

mediators not only exert pro-inflammatory e↵ects in the course of an acute inflammation

(e.g., PGE2 or leukotrienes), but they may also function as anti-inflammatory mediators

to promote resolution of the pro-inflammatory response and re-establish tissue home-

ostasis (e.g., lipoxins, resolvins or 15d-PGJ2). For example, in the carrageenan-induced

acute inflammation model of pleurisy in the rat, COX-2 expression and activity exhibits

two peaks: initially at 2 hours after the onset of inflammation, correlating with the

maximal synthesis of pro-inflammatory PGE2; and a second rise in COX-2 expression

observed at the late phase of inflammation (48 hours), associated with minimal produc-

tion of PGE2, but with markedly elevated levels of PGD2 and 15d-PGJ2. Accordingly,

selective COX-2 and dual COX-1/COX-2 inhibition attenuated the early phase of in-

flammation but significantly exacerbated inflammation at 48 hours, which was reversed

by the administration of PGD2 and 15d-PGJ2 (Gilroy et al. (1999)). Therefore, COX-

2 might be pro-inflammatory at the onset and early phases of inflammation but may

likewise contribute to the resolution of inflammation by generating anti-inflammatory

prostanoids including 15d-PGJ2.

In fact, formation of 15d-PGJ2 has been detected in vivo in a mouse model of self-

resolving peritonitis, wherein H-PGDS-derived prostanoids, i.e., PGD2 and 15d-PGJ2
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have been proposed to mediate resolution of the inflammation. By orchestrating the

tra�cking of leukocytes to the site of inflammation and the e✏ux of macrophages

(e.g., monocyte-derived macrophages engulfing apoptotic polymorphonuclear leukocytes

during the termination of peritonitis) from the inflamed peritoneal cavity to draining

lymph nodes, these two prostanoids have been shown to switch o↵ acute inflamma-

tion (Rajakariar et al. (2007)). Consequently, exogenous administration of 15d-PGJ2

in animal models of acute and chronic inflammation has demonstrated to be e↵ective

in alleviating several features of the experimentally induced inflammatory processes.

Amongst these, 15d-PGJ2 has been found to limit excessive neuroinflammation upon

stress-induced cerebrospinal injury in diverse rodent models of CNS inflammation. It

ameliorates di↵erent forms of experimentally-induced pulmonary and gastrointestinal

injury, and it has demonstrated pronounced cardioprotective e↵ects when administered

at the site of myocardial ischemia/reperfusion injury induced in rats (Wayman et al.

(2002)). A potent anti-inflammatory activity of 15d-PGJ2 has been described also in

the murine cyclophosphamide-induced model of bladder inflammation (Masuda et al.

(2006)), the murine carrageenan-induced acute model of pleurisy (Itoh et al. (2004))

and the murine zymosan-induced non-septic shock (Marzocco et al. (2005)).

In humans, 15d-PGJ2 has been suggested to exert neuroprotecitve e↵ects by attenuating

the inflammatory cascade triggered by ischemic stroke. The plasma levels of 15d-PGJ2,

for example, were significantly higher in acute ischemic stroke patients with vascular risk

factors (such as history of hypertension and diabetes), as compared to patients without

such risk factors and healthy controls. In addition, elevated 15d-PGJ2 plasma concentra-

tions exclusively correlated with the presence of atherothrombotic infarct and not with

other infarct subtypes in these patients (Blanco et al. (2005)). Therefore, atherosclerosis,

hypertension and diabetes may be driving stimuli for the synthesis of this prostanoid.

As a consequence, high plasma levels of 15d-PGJ2 in patients with acute ischemic stroke

significantly associated with a favorable early and late neurological outcome and reduced

infarct volume. Although the authors found no association between the increased release

of 15d-PGJ2 and the acute phase response or cerebral ischemia elicited within the first

24 hours of acute ischemic stroke, these findings were not confirmed with a prospective

follow-up study. Blanco et al. speculated that high levels of plasma 15d-PGJ2 detected

in the stroke study group reflect a previous inflammatory event underlying vascular dis-

eases, wherein formation and release of this anti-inflammatory lipid mediator has been

triggered by activation of COX-2.

On the other hand, the concentration of plasma 15d-PGJ2 was found to be unaltered in

patients with multiple sclerosis (Comabella et al. (2009)), or even decreased in patients

with chronic schizophrenia (Mart́ınez-Gras et al. (2011)), thus somewhat obscuring a

protective role of 15d-PGJ2 in neuroinflammation. In this regard, variation in human

plasma levels of 15d-PGJ2 and their correlation with a disease strongly depends on the

pathophysiological conditions. Moreover, variation among studies due to di↵erences in
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study designs such as, e.g. patient selection criteria or patient baseline clinical charac-

teristics, as well as specificity of the methods employed to quantify the plasma levels of

15d-PGJ2 could limit generalization of the findings from such studies.

Given its powerful immunomodulatory properties, 15d-PGJ2 has also been proposed

to have anti-atherogenic potential. As an important inflammation-resolving and anti-

inflammatory mediator, 15d-PGJ2 is likely to modulate the degree of plaque inflamma-

tion and thus vulnerability in individuals with atherosclerosis (Shibata et al. (2002);

Seno et al. (2011)). We therefore, analyzed the plasma levels of 15d-PGJ2 in human

subjects su↵ering from CHD (i.e., at least one coronary artery with a 50% stenosis ob-

jectified by coronary angiography) and compared them to plasma 15d-PGJ2 levels of

age-matched CHD-free “healthy” controls. Interestingly, we found a positive association

between plasma 15d-PGJ2 concentrations and the presence of CHD, which was elevated

6-fold in the diseased group. No patient received any COX-2 inhibitors. In addition, the

regular anti-thrombogenic low-dose aspirin therapy in patients with CHD would not have

a major impact on 15d-PGJ2 plasma levels because aspirin primarily blocks the COX-

1-dependent synthesis of pro-thrombotic/pro-aggregatory TXA2 in platelets, without

a↵ecting the endothelial cell synthesis of COX-1 or COX-2-derived anti-inflammatory as

we all as anti-aggregatory prostanoids such as e.g., prostacyclin (Laufer et al. (2003)).

Hence, our finding is valid and corroborates a possible clinical relevance of this bioactive

lipid as a biomarker.

Based on our hypothesis that 15d-PGJ2 constitutes a compensatory mechanism which

stabilizes the anti-atherosclerotic EC phenotype in individuals homozygous for the C-

variant of the NOS3 promoter, which predisposes them to endothelial dysfunction and

hence CHD, we investigated the potential association between 15d-PGJ2 plasma levels

and homozygosity for the C-allele within the CHD cohort. The lack of a significant di↵er-

ence among the three NOS3 genotype cohorts might be, on the one hand, attributed to

the as yet relatively small sample size. On the other hand, endogenous 15d-PGJ2 could

represent a general defense mechanism to antagonize the ongoing chronic inflammatory

process in a↵ected individuals, independent of their genotype, and as such its plasma

level is rather associated with the severity of the disease. And, all patients analyzed in

the CHD group clearly had a multi-vessel disease. In this context, 15d-PGJ2 may be

acting as a feedback regulator of inflammatory responses, for example, by modulating

the biosynthesis of other prostanoids involved in inflammation as well as its own produc-

tion. 15d-PGJ2 could thus redirect arachidonic acid metabolism towards inflammation-

resolving lipid mediators, thereby controlling the degree of inflammation in a developing

atherosclerotic plaque. In line with this, 15d-PGJ2 has been demonstrated to modulate

expression of both PLA2 and COX-2 (Tsubouchi et al. (2001)), indicating the capability

of this prostanoid to induce a lipid-mediator class switching during inflammation. By

controlling the balance between pro- and anti-inflammatory AA-derived lipid mediators

that regulate leukocyte tra�cking and di↵erentiation (Itoh et al. (2004); Rajakariar et al.

(2007)), the relative abundance of 15d-PGJ2 may influence the stability of atherosclerotic
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lesions and thus alter the progression of coronary/systemic atherosclerosis altogether.

Furthermore, 15d-PGJ2 has been shown to inhibit oxLDL-induced macrophage prolif-

eration and survival by suppressing the production of granulocyte/macrophage-colony

stimulating factor, which has been implicated in the pathogenesis of atherosclerosis and

other chronic inflammatory diseases (Matsuo et al. (2004)). Finally, 15d-PGJ2 can trig-

ger apoptosis of human IFN-�/TNF-↵-stimulated macrophages in vitro (Chinetti et al.

(1998)). Therefore, given its modulatory activity on the macrophage phenotype, 15d-

PGJ2 could potentially influence myeloid cell-driven processes and thus the degree of

inflammation in the lesion, plaque progression and vulnerability.

Because 15d-PGJ2 inhibits the expression of a number of proteins involved in the patho-

genesis of rheumatoid arthritis, it has been proposed to be a physiological mediator re-

leased to restrain chronic inflammation. For example, 15d-PGJ2 suppressed the growth

of arthritis-associated synoviocytes in vitro and in a dose-dependent manner attenuated

chronic inflammation and pannus formation in an adjuvant-induced arthritis model in

rats (Kawahito et al. (2000); Tsubouchi et al. (2001)). Furthermore, 15d-PGJ2 has been

reported to interfere with the IL-1�-driven synthesis of PGE2, a key mediator of synovial

inflammation, in arthritis-associated synovial fibroblasts by inhibiting the expression of

COX-2 and cytosolic PLA2, corroborating its therapeutic potential in inflammatory

diseases (Tsubouchi et al. (2001)).

In this context, we will not only expand our analysis of the plasma concentrations of

15d-PGJ2 in patients with CHD (and the three di↵erent T-786C SNP genotypes) but

also include patients with rheumatoid arthritis to elucidate whether presence of the 15d-

PGJ2-mediated compensatory mechanism is a general indicator for chronic inflammatory

diseases that resemble each other with regard to the underlying pathogenesis and thus

also evaluate its potential as a prognostic marker for the severity of the disease.

5.4 Implications of the T-786C NOS3 SNP for T helper

cell-endothelial cell interactions

CD4+ T helper cells play a central role throughout all stages of atherogenesis. In fact,

they are the most abundant T cells in atherosclerotic plaques. CD4+ T cells from the

Th1 phenotype, in particular, represent 10-20% (Hansson et al. (2002)) of the cells in

advanced human atherosclerotic lesions. Th1 cells release various cytokines such as

IFN-�, IL-2 and TNF-↵, which exert autocrine and paracrine e↵ects on other lesional

cell types, thereby modulating the inflammatory process in the plaque. Accumulation

of IFN-�-producing Th1 cells in atherosclerotic lesions directly accelerates the disease

through their e↵ects on macrophages and vascular cells. Consequently, inhibition of
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di↵erentiation to the Th1 phenotype (Laurat et al. (2001); Buono et al. (2005)) or defi-

ciency of the IFN-� receptor (Gupta et al. (1997)) substantially reduced atherosclerosis

in hypercholesterolemic mice.

Besides atherosclerosis, e↵ector CD4+ T cells have been postulated to drive the patho-

genesis of chronic inflammatory disorders and autoimmune conditions such as rheuma-

toid arthritis, multiple sclerosis, psoriasis and inflammatory bowel diseases such as

Crohn’s disease to mention a few. Although IFN-�-producing Th1 cells have long been

considered as the causative agents in the pathogenesis of autoimmunity, targeting IL-

17 and Th17 cell-related cytokines (e.g., IL-23) led to the notion that Th17 cells (i.e.,

cells from the IL-17-producing CD4+ e↵ector cell lineage) are the chief contributors

to autoimmune inflammation. Therefore, Th1 and Th17 cells, as well as their inflam-

matory products, are potential therapeutic targets to inhibit inflammation in chronic

inflammatory diseases.

15d-PGJ2 has the capacity to modify the production of T cell cytokines and thus to

modulate the di↵erentiation and e↵ector function of distinct T lymphocyte subsets.

15d-PGJ2 has been demonstrated, for example, to regulate Th1/Th17 responses in the

EAE rodent model of human multiple sclerosis by suppressing the secretion of IFN-�

and IL-17 both in the central nervous system and in lymphoid organs (Kanakasabai

et al. (2012)). Moreover, treatment with 15d-PGJ2, both in vitro and ex vivo, inhib-

ited neural antigen-induced release of IFN-�, IL-17, IL-12 and IL-23, whereas it aug-

mented IL-4, IL-10 and PPAR-� in the lymphoid organs of the mice su↵ering from EAE.

Moreover, 15d-PGJ2 impairs the activation and maturation of human monocyte-derived

dendritic cells (DCs) in response to Toll-like receptor (TLR)-mediated stimulation and

through this mechanism reduces their capacity to induce T-cell proliferation (Appel

(2005); Farnesi-de Assunção et al. (2014)). In addition, by down-regulating the expres-

sion of co-stimulatory and adhesion molecules on activated DCs as well as the secretion

of cytokines/chemokines involved in T-cell activation and recruitment by these cells,

15d-PGJ2 has been shown to attenuate the immunogenicity of DCs and could thus me-

diate the resolution of immune responses. At the molecular level, 15d-PGJ2 has been

demonstrated to negatively regulate DNA binding and transcriptional activity of nuclear

factor of activated T cells (NFAT) in a PPAR-�-dependent manner, thereby suppress-

ing the production of IL-2, which governs T cell activation and clonal expansion upon

antigen priming, as well as the antigen-driven proliferation of human peripheral blood

T lymphocytes (Yang et al. (2000)).

In this study, we highlighted 15d-PGJ2 as an anti-inflammatory prostanoid implicated

in a compensatory mechanism counteracting the early development of chronic vascular

inflammation in individuals genetically predisposed to endothelial dysfunction. Since

15d-PGJ2 is a potent modulator of T lymphocyte di↵erentiation and e↵ector function,

it may play an important role in the outcome of immune responses. Given that Th1-

and Th17-cell-driven responses are detrimental to atherogenesis and autoimmune tissue
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inflammation alike, we intend to investigate the impact of the 15d-PGJ2-mediated com-

pensatory mechanism on the di↵erentiation, e↵ector functions and migratory capacity

of Th1 and Th17 lymphocytes. The significance of the T-786C SNP of the human NOS3

gene for the interactions between ECs and T cells of both Th1 and Th17 phenotypes will

be addressed in addition. For this purpose, we have established an in vitro transmigra-

tion model mimicking the disturbed flow pattern at arterial bifurcation or curvatures,

to study transmigration of leukocytes in a setting closely approximating the flow con-

ditions at atherosclerosis predilection sites (for detailed description of the model, see

section 3.1.6). In this pathophysiologically relevant experimental setup, 15d-PGJ2 po-

tently reduced the transmigration of in vitro di↵erentiated Th1 cells across monolayers

of human ECs, indicating that this prostanoid could potentially modulate the migratory

capacity of this cell type as well, and possibly also in vivo. Because 15d-PGJ2 a↵ects the

expression of adhesion molecules, both on leukocytes and ECs (cf. section 5.1), as well

as the release of chemokines under pro-inflammatory conditions, it may thus impede

the recruitment and infiltration of Th1 cells into atherosclerotic lesions and inflamed

synovial tissue, thereby counteracting the progression of diseases such as CHD or RA.

The e↵ects of 15d-PGJ2 on cytoskeletal organization might also be attributed to its

anti-migratory activity (Napimoga et al. (2008)).

T-cell anergy can arise when a T-cell does not receive appropriate co-stimulation during

antigen recognition. From here, the ability of 15d-PGJ2 to modulate the expression of

co-stimulatory molecules on the surface of antigen-presenting cells (e.g., DCs) might be

implicated in the balance between T-cell priming and anergy in vivo. If 15d-PGJ2 is

in fact capable of eliciting tolerance to self-antigens through the anergy of auto-reactive

e↵ector CD4+ T cells, its e↵ects could be harnessed in therapies for autoimmune/chronic

inflammatory diseases such as RA.

In conclusion, the compensatory shear stress-dependent up-regulation of 15d-PGJ2 syn-

thesis e↵ectively stabilizes the anti-atherosclerotic phenotype of CC-genotype ECs and

may explain the comparatively slow onset of endothelial dysfunction and chronic inflam-

mation in homozygous carriers of the C-variant of the NOS3 promoter. By counteracting

inflammation on several levels, 15d-PGJ2 has the potential to avert the development of

chronic inflammatory diseases. Strategies to improve the in vivo e�cacy and pharma-

cokinetics of 15d-PGJ2 as well as its tissue targeting specificity are essential for the

therapeutic application of this anti-inflammatory prostanoid and are already under way

(Alves et al. (2011)). Besides that, 15d-PGJ2 may turn out as an important novel

biomarker the plasma level of which is associated with the severity of a chronic inflam-

matory disease such as CHD and hence the risk for, e.g., myocardial infarction.
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Figure 5.3: 15d-PGJ2 balances for the anti-inflammatory properties of NO in ECs
with genetically determined NO deficit. TT-genotype ECs produce normal levels of NO
su�cient to maintain vascular homeostasis and health. Reduced bioavailability of NO in ECs
homozygous for the C-variant of the NOS3 promoter lifts the brake on pro-inflammatory gene
expression resulting in endothelial dysfunction and increased risk of contracting chronic inflam-
matory diseases, such as CHD. However, a compensatory up-regulation of 15d-PGJ2 synthesis
stabilizes the anti-inflammatory phenotype of dysfunctional CC-genotype ECs, hence preventing
the early onset of chronic inflammation in individuals homozygous for this genetic defect. 15d-
PGJ2 may turn out as a general indicator for chronic inflammation and a biomarker associated
with the severity of chronic inflammatory diseases.
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Blood flow-generated shear stress (FSS) is the major determinant of endothelial nitric

oxide synthase (NOS-3) expression. In humans, a promoter variant of the NOS3 gene,

the C-variant of the T-786C single nucleotide polymorphism, renders the gene insensitive

to shear stress, resulting in a reduced endothelial cell (EC) capacity to generate nitric

oxide (NO). Endothelial dysfunction, commonly associated with decreased NO bioavail-

ability, may facilitate vascular inflammation. Consequently, individuals homozygous for

the C-variant have an increased risk of developing cardiovascular (e.g., coronary heart

disease (CHD)) and rheumatic diseases (e.g., rheumatoid arthritis (RA)).

However, there are at least two mechanisms by which insu�cient NO production can be

counterbalanced in CC-genotype endothelial cells (ECs), one of which involves a multi-

component pathway leading to the increased release of the anti-inflammatory prostanoid

15-deoxy-�12,14-prostaglandin J2 (15d-PGJ2).

Exposure of human ECs to physiological levels of FSS e↵ectively reduced monocyte

migration, not only through monolayers of TT- but most notably also of NO-deficient

CC-genotype ECs. FSS up-regulated the expression of COX-2 and L-PGDS, the rate-

limiting enzymes for 15d-PGJ2 synthesis, solely in CC-genotype ECs, and only these cells

revealed an increased release of 15d-PGJ2 in response to FSS. Exogenously added 15d-

PGJ2 significantly reduced the transmigration of monocytes through EC monolayers. In

addition, pre-treatment with 15d-PGJ2 or exposure to FSS-pretreated CC-genotype ECs

exerted a pronounced anti-inflammatory e↵ect on the (transmigrated) monocytes, as

demonstrated e.g. by an inhibitory e↵ect on interleukin-1 � (IL-1�) expression, a marker

for monocyte pro-inflammatory activation. This inhibition occurs at the transcriptional

level, as 15d-PGJ2 repressed tumor necrosis factor-↵-induced IL-1� promoter activity

in transiently transfected HEK293 cells.

The anti-inflammatory activity of 15d-PGJ2 in monocytes involves the Nrf2-antioxidant

response element (ARE) pathway. Similar to 15d-PGJ2, constitutive activation of Nrf2

reduced the expression of IL-1�. Bioinformatic analysis revealed three putative Nrf2-

responsive elements (i.e., AREs) in the human IL-1B promoter, suggesting that Nrf2

may act through an as yet unknown mechanism to repress transcription of the IL-1B

gene. Chromatin immunoprecipitation showed a 15d-PGJ2-induced binding of Nrf2 to

the promoter of the IL-1B gene. Deletion of two of the identified ARE motifs attenuated

the inhibitory potency of 15d-PGJ2 toward IL-1B promoter activity, thereby corrobo-

rating Nrf2 as a downstream e↵ector of this prostanoid’s transcriptional e↵ects.
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Given its powerful immunomodulatory properties, 15d-PGJ2 has been proposed to have

anti-atherogenic potential. To evaluate its prognostic relevance, the relationship be-

tween plasma 15d-PGJ2 levels and disease severity and outcome in patients su↵ering

from CHD, RA or both was investigated. The levels of 15d-PGJ2 were found to be

significantly increased in the CHD group compared to age-matched controls, suggest-

ing that 15d-PGJ2 may constitute a general defense mechanism to counteract the on-

going chronic inflammatory process in a↵ected individuals. Moreover, pre-treatment

with 15d-PGJ2 potently inhibited the in vitro transendothelial migration of interferon-

�-producing human T helper type 1 cells, major players in atherosclerosis as well as

various other chronic inflammatory disorders.

Despite an inadequate capacity to form NO, CC-genotype ECs maintain a robust anti-

inflammatory phenotype by enhancing the shear stress-dependent synthesis of 15d-PGJ2.

Its anti-inflammatory activity on human monocytes may ascribe a novel role to Nrf2 as

a direct repressor of pro-inflammatory gene expression.
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Zusammenfassung

Die durch den Blutfluss generierte Schubspannung (fluid shear stress, FSS) ist der

wichtigste bestimmende Faktor für die Expression der endothelialen NO-Synthase (NOS-

3). Beim Menschen macht eine Promotorvariante des NOS3 Gens, die C-Variante des T-

786C Einzelnukleotid-Polymorphismus, das Gen unempfindlich gegen Schubspannung,

wodurch die Fähigkeit endothelialer Zellen (endothelial cells, EC) Sticksto↵monoxid

(NO) zu erzeugen vermindert wird. Eine endotheliale Dysfunktion, die gewöhnlich mit

einer verminderten NO-Bioverfügbarkeit assoziiert ist, kann Entzündungsreaktionen in

den Gefäßen fördern. Infolgedessen haben Individuen, die homozygot für die C-Variante

sind, ein erhöhtes Risiko, Herz-Kreislauf-Erkrankungen (z. B. koronare Herzkrankheit

(coronary heart disease, CHD)) und rheumatische Erkrankungen (z. B. rheumatoide

Arthritis (RA)) zu entwickeln.

Es gibt aber mindestens zwei Mechanismen, durch die eine unzureichende NO-Produktion

in Endothelzellen (ECs) mit dem CC-Genotyp kompensiert werden kann. Einer davon

basiert auf einem Mehrkomponenten-Sto↵wechselweg, der zu einer erhöhten Freiset-

zung des entzündungshemmenden Prostanoids 15-Desoxy-�12,14-Prostaglandin J2 (15d-

PGJ2) führt.

Die Exposition menschlicher ECs gegenüber physiologischen FFS-Werten vermindert ef-

fektiv die Migration von Monozyten nicht nur durch Monolayer von ECs vom TT- son-

dern vor allem auch vom NO-defizienten CC-Genotyp. Nur in CC-Genotyp ECs reguliert

FSS die Expression von COX-2 und L-PGDS, den geschwindigkeitsbestimmenden Enzy-

men bei der 15d-PGJ2-Synthese, hoch, und nur diese Zellen zeigten eine erhöhte Freiset-

zung von 15d-PGJ2 als Reaktion auf FSS. Exogen zugegebenes 15d-PGJ2 reduzierte sig-

nifikant die Transmigration von Monozyten durch EC-Monolayer. Darüber hinaus übte

die Vorbehandlung mit 15d-PGJ2 oder die Exposition gegenüber FSS-vorbehandelten

CC-Genotyp ECs eine ausgeprägte entzündungshemmende Wirkung auf die (transmi-

grierten) Monozyten aus, wie z. B. der hemmende Einfluss auf die Expression von

Interleukin-1 � (IL-1�), einem Marker für die pro-inflammatorische Aktivierung von

Monozyten, zeigte. Diese Hemmung erfolgt auf der Transkriptionsebene, da 15d-PGJ2

die durch Tumornekrosefaktor-↵ induzierte IL-1�-Promotoraktivität in transient trans-

fizierten HEK 293-Zellen hemmte.

Die entzündungshemmende Aktivität von 15d-PGJ2 in Monozyten wird über den Nrf2-

Antioxidans-Response-Element (ARE)-Signalweg ausgeübt. Ähnlich wie bei 15d-PGJ2

reduziert eine konstitutive Aktivierung von Nrf2 die Expression von IL-1�. Eine bioin-

formatische Analyse zeigte drei putative Nrf2-responsive Elemente (d. h. AREs) im
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humanen IL-1B -Promotor, was darauf hindeutet, dass Nrf2 durch einen noch unbekan-

nten Mechanismus die Transkription des IL-1B -Gens reprimiert. Eine Chromatin-

Immunopräzipitation ergab, dass 15d-PGJ2 die Bindung von Nrf2 an den Promotor des

IL-1B -Gens induziert. Die Deletion von zwei der identifizierten ARE-Motive schwächte

die hemmende Wirkung von 15d-PGJ2 auf die IL-1B -Promotoraktivität ab, was Nrf2

als nachgeschalteten E↵ektor bei der die Transkription beeinflussenden Wirkung des

Prostanoids bestätigte.

Aufgrund seiner starken immunmodulatorischen Eigenschaften geht man davon aus, dass

15d-PGJ2 antiatherogen wirken kann. Um seine prognostische Relevanz zu bewerten,

wurde der Zusammenhang zwischen dem 15d-PGJ2-Plasmaspiegel und der Schwere bzw.

dem Ausgang der Erkrankung bei Patienten, die an CHD, rheumatoider Arthritis oder

beiden leiden, untersucht. Verglichen mit altersangepassten Kontrollen war der 15d-

PGJ2-Spiegel in der CHD-Gruppe signifikant erhöht, was darauf hindeutet, dass 15d-

PGJ2 einen allgemeine Abwehrmechanismus darstellen könnte, um bei den betro↵enen

Personen dem laufenden chronischen Entzündungsprozess entgegenzuwirken. Außerdem

hemmte die Vorbehandlung mit 15d-PGJ2 in vitro stark die transendotheliale Migra-

tion von Interferon-�-produzierenden humanen T-Helfer-Typ-1-Zellen, Hauptakteuren

bei der Arteriosklerose sowie verschiedenen anderen chronisch entzündlichen Erkrankun-

gen.

Trotz einer unzureichenden Fähigkeit zur Bildung von NO halten CC-Genotyp ECs

durch die schubspannungsabhängige Synthese von 15d-PGJ2 einen stabilen anti-inflam-

matorischen Phänotyp aufrecht. Seine entzündungshemmende Wirkung auf menschliche

Monozyten könnte Nrf2 eine neue Rolle als direkter Repressor einer pro-inflammatorischen

Genexpression zuschreiben.
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