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SUMMARY 

The cortex is a contractile cross-linked network of actin filaments and myosin motors lining the plasma 

membrane. It defines the shape of animal cells, and regulated changes in cortex mechanics drive many 

cellular processes, including cell migration and division. The molecular mechanisms controlling cortical 

contractility in space and time are therefore essential for cell physiology, but are still not well 

understood.  

During cell division, in cytokinesis, tightly controlled changes to cortical contractility separate the two 

daughter cells. When very large cells undergo cell divisions, they exhibit highly stereotypical patterns 

of cortical contractility, termed surface contraction waves (SCWs). These waves occur in cells of a wide 

variety of species and move across the cells immediately prior to the division. The molecular 

mechanisms underlying this striking phenomenon are not known. 

I set out to investigate SCWs in starfish oocytes, which display a prominent contraction wave during 

the meiotic division which can be imaged live using fluorescence microscopy. Combined with 

quantitative image analysis, this allowed me to correlate cell shape changes with the localization of 

key cortical and cell cycle proteins in untreated oocytes and following biochemical and physical 

manipulations.  

I find that morphologically the contraction wave is a band of flattening that forms at the vegetal pole 

and moves across the cell to the animal pole. The flattening is driven by increased cortical contractility 

induced by localisation of myosin II to the cortex. Myosin II recruitment is controlled by RhoA kinase 

and RhoA, which in turn is activated by release of its inhibition by the cell cycle kinase, cdk1-cyclin B. 

Importantly, I could show that cdk1-cyclin B activity forms a gradient along the animal-vegetal axis 

generated by the accumulation of cdk1-cyclin B in the nucleus which is located at the animal pole. 

Therefore, as cyclin B is degraded, the bottom threshold of cdk1 activity will be reached first opposite 

of the animal pole, marking the starting point of the contraction wave. The gradient of cdk1-cyclin B 

activity furthermore controls the progression of the contraction wave across the cell. Additionally, I 

show that feedback internal to the downstream signalling network contributes to defining the speed 

of the wave and determines the width of the band of activity. 

Overall, this data for the first time establishes the molecular mechanisms underlying SCWs, a 

phenomenon observed in oocytes of many species. I show that the contraction wave is driven by the 

highly conserved RhoA-Rok-Myosin II pathway, and is patterned in space and time by an activity 

gradient of cdk1 as well as feedbacks internal to the signalling pathway. My work thereby reveals how 

this biochemical signalling network can define a spatially and temporally complex cellular behaviour.   
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ZUSAMMENFASSUNG 

Unterhalb der Zellmembran liegt in allen tierischen Zellen der Zellkortex. Dieser ist ein dicht 

verknüpftes kontraktiles Netz aus Aktinfilamenten und Myosin- Motorproteinen. Der Kortex definiert 

die Form aller Zellen. Kontrollierte Veränderungen in der Kortexmechanik steuern viele zelluläre 

Vorgänge wie Zellmigration und Zellteilung. Auch wenn die molekularen Mechanismen, die die 

Kontraktilität des Kortexes lokal und temporal kontrollieren, für die Zellphysiologie essentiell sind, 

wissen wir noch wenig über sie. 

Während der Zellteilung führen straff kontrollierte Veränderungen in kortikalen Kontraktilität zur 

Spaltung der Zelle. Wenn sich sehr große Zellen teilen, zeigen sie in diesem Prozess stereotype Formen 

kortikaler Kontraktilität, die Oberflächenkontraktionswellen genannt werden. Diese 

Kontraktionswellen kommen in vielen verschiedenen Spezies vor und laufen kurz vor der Zellteilung 

über die gesamte Zelloberfläche. Die molekularen Mechanismen, die zu diesen eindrucksvollen 

Bewegungen führen, waren bisher nicht bekannt. 

Ich habe die Oberflächenkontraktionswellen in Seesterneizellen erforscht, da diese eine deutliche 

Kontraktionswelle während ihrer meiotischen Zellteilung zeigen, die mit Fluoreszenzmikroskopie live 

gut beobachtet werden kann. In Kombination mit quantitativer Bildanalyse konnte ich die 

Veränderungen der Zellform mit der Verteilung bedeutender Proteine des Zellkortex und des 

Zellzyklus jeweils in unbehandelten und biochemisch und physikalisch manipulierten Eizellen in 

Verbindung bringen.  

Ich fand heraus, dass die Kontraktionswelle entsteht, indem sich ein Band des abgeflachten Kortexes 

am vegetativen Pol der Zelle bildet und sich über die gesamte Zelle zum animalen Pol hin bewegt. 

Diese Abflachung wird durch die lokal steigende kortikale Kontraktilität ausgelöst, die durch eine 

Lokalisation von Myosin II Molekülen zum Kortex entsteht. Diese Ansammlung von Myosin II wird von 

der RhoA Kinase und RhoA gesteuert, welche wiederum selbst aktiviert werden, indem ihre Hemmung 

durch die wichtige Zellzykluskinase Cdk1-cyclin B aufgehoben wird. Ich konnte zeigen, dass die 

Aktivität von Cdk1-cyclin B einen Gradienten quer durch die Zelle entlang der animalen-vegetativen 

Achse bildet. Dieser entsteht durch die Ansammlung von Cdk1-cyclin B im am animalen Pol gelegenen 

Zellkern. Daher wird, während Cyclin B im Laufe des Zellzyklus abgebaut wird, der untere Grenzwert 

der Cdk1 Aktivität zuerst gegenüber des animalen Pols erreicht, wo sich der Startpunkt der 

Kontraktionswelle befindet. Des Weiteren kontrolliert der Gradient der Cdk1-cyclin B Aktivität die 

Ausbreitung der Welle über die gesamte Zelle hinweg. Außerdem konnte ich zeigen, dass ein Feedback 



viii 
 

auf dem Signalweg dazu beiträgt, die Geschwindigkeit mit der sich die Welle ausbreitet und die Breite 

des Aktivitätsbandes zu definieren. 

Die von mir hier vorgestellten Daten beschreiben zum ersten Mal die molekularen Mechanismen die 

den Oberflächenkontraktionswellen, einem weit verbreiteten Phänomen, welches in den Eizellen 

vieler Spezies vorkommt, zu Grunde liegen. Ich kann zeigen, dass die Kontraktionswellen von der hoch 

konservierten Signalkaskade RhoA-Rok-Myosin II kontrolliert werden und dass sie in ihrem räumlichen 

und zeitlichen Auftreten sowohl durch einen Gradienten von Cdk1 Aktivität als auch durch internes 

Feedback auf dem Signalweg bestimmt werden. Meine Arbeit zeigt daher, wie ein biochemisches 

Signalsystem solch ein räumlich und zeitlich komplexes Zellverhalten hervorrufen kann.  
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1.1 CORTICAL CONTRACTILITY 

1.1.1 Cortical contractility controls key cellular functions 

The cortex is a thin meshwork of actin filaments and many associated proteins which lies directly 

underneath the cell membrane in all animal cells. The plasticity and contractility of the cortex are key 

for most cellular processes. 

In the steady state the cortex protects cells against outside mechanical disruption (Bray & White 1988) 

and serves as a counterforce to the internal osmotic pressure (Stewart et al. 2011). In non-animal cells 

this function is fulfilled by the cell wall. As the cortex determines the cell shape, cortical contractility 

is key in shaping tissues during development (Figure 1a and b)(Levayer & Lecuit 2012). The ability to 

the cortex to contract is furthermore important during cell migration, both in normal cells (Cramer 

2010) as well as in metastasis of cancer cells (Figure 1d and e)(Sedzinski et al. 2011; Charras & Paluch 

2008). Cortical contractility is also the key driving force behind cell division, the process by which a 

single cell gives rise to two daughter cells (Figure 1c) (Stewart et al. 2011; Kunda et al. 2008).   

Figure 1: Cortical contractility drives diverse cellular functions. 
These range from changes in cell shape (a,b), to cytokinesis (c) and cell migration (d,e). The green area shows the parts of the 
cell cortex that is contracting. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews (Murrell et al. 2015), 
copyright 2015. 

Even though it is a key feature of cells and their behaviour, a lot of things remain unknown about the 

cortex and cortical contractility, such as cortical organisation on the filament level or how the cortex’s 

mechanical properties and responses are regulated. 

1.1.2 The cortex has a complex molecular architecture 

1.1.2.1 The cortex is an actin meshwork with many associated proteins 

As the cortex serves such varied and important functions its structure is understandably complex. The 

key component of the cortex is actin, organised in a highly crosslinked meshwork of filaments. In 

addition to the actin filaments, the cortex contains a large number of other proteins required for 

cortical integrity and function. Even though it is a complex assembly of many proteins, the cortex as a 
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whole is a relatively thin structure with a thickness of around 100 nm (Clark et al. 2013). This thickness 

seems to be well conserved between different cells, from Dictyostelium (Ogihara et al. 1988) to 

mammalian cells (Charras et al. 2006; Clark et al. 2013). The whole actin cortex turns over rapidly, in 

the range of 30 sec (Fritzsche et al. 2013). This allows for stress dissipation and quick responses to the 

changing environment. 

 

Figure 2: Actin forms a variety of structures in the cell. 
While all cells have an actin cortex (i), cells under certain conditions also form other complex actin structures, such as 
lamellipodia (a,b) and filopodia (v). As shown, the actin cortex consists of actin filaments along with myosin and ERM proteins. 
Figure form (Blanchoin et al. 2014), copyright Physiological Reviews, 2014. 

The cortex is one of many actin structures in the cell (Figure 2), in which actin filaments interact with 

a wide variety of proteins, allowing the cortex to fulfil its various functions. The proteins of the cortex 

fall into 4 categories: (1) actin nucleators, (2) actin crosslinkers, (3) cortex-membrane crosslinkers, and 

(4) motor proteins. 

(1) The key actin nucleators in the cortex are Arp2/3 and formins, which, at least in human cells, 

produce roughly half of the actin filaments each (Bovellan et al. 2014). These two actin nucleators give 
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rise to two different populations of actin filaments. Formins form long, straight actin filaments (Higgs 

2005) while Arp2/3 nucleated actin is highly branched (Mullins et al. 1998). These actin nucleators are 

in turn regulated by a variety of activators. In the cortex Arp2/3, for example, is regulated by the WASP 

and WAVE protein family (Takenawa & Miki 2001). This allows for the specific regulation of actin 

polymerisation in the cortex. 

(2) The actin filaments in the cortex are highly crosslinked to form a coherent strong network. The 

actin crosslinkers are a very diverse group, and most actin binding and crosslinking proteins have been 

shown to localise to the cortex. The key crosslinkers appear to be α-actinin, fimbrin and filamin 

(Falzone et al. 2012; Stossel et al. 2001). Crosslinkers are key for producing a coherent meshwork, and 

for allowing force generation between actin filaments. This is achieved by crosslinkers forming points 

against which forces can be applied, as a non-crosslinked network only undergoes translation of 

filaments relative to each other (Figure 3) (Schaller et al. 2013).  

Figure 3: Contraction of motors on actin filaments with and without crosslinkers.  
A) Motor action on actin filaments without crosslinkers leads to sliding of the filaments against each other. B) When motors 
work on crosslinked actin filaments internal stress is generated, which can lead to buckling of the actin filaments. Reprinted 
by permission from Macmillan Publishers Ltd: Nature Reviews (Murrell et al. 2015), copyright 2015. 

(3) The cortex is linked to the membrane via a well-conserved protein family called ERMs – Ezrin, 

Radixin, Moesin (Figure 4) (Fehon et al. 2010). Other anchor-proteins, such as ankyrin B, are also 
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involved (Charras et al. 2006). The ERMs are multi-domain proteins which can in their active 

conformation bind to both the plasma membrane and actin filaments and thereby tether the cortex 

to the membrane. They also play important roles in forming specific membrane domains, by locally 

increasing the concentration of certain anchored proteins, i.e. during signalling.   

Figure 4: ERM proteins link the cortex to the membrane. 
Ezrin, a member of the ERM family of proteins, links actin filaments of the cortex to the membrane via interaction with 
phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Reprinted by permission from Macmillan Publishers Ltd: Nature 
Reviews (Fehon et al. 2010), copyright 2010. 

(4) To generate cortical tension and contractility, motor proteins which generate force on the actin 

filaments are required. Even though a variety of motor proteins have been shown to localise to the 

cortex, such as myosin I, it is clear that the main driver of cortical contractility, as well as cortical 

tension, is a single protein complex called non-muscle myosin II (Salbreux et al. 2012).    

1.1.2.2 Myosin II is the key motor generating cortical contractility 

There are 20 known classes of myosins (Krendel & Mooseker 2005), of which myosin II is the most 

studied and best understood. Non-muscle myosin II, the myosin II isoform found in all cells except 

striated muscle cells, is a hexamer made up of 2 heavy chains (230 kDa each), 2 essential light chains 

(17 kDa each) and 2 regulatory light chains (20 kDa each) (Vicente-Manzanares et al. 2009). These six 

proteins form a structurally highly conserved protein complex, which is characterised by a head, neck, 

long coiled-coil rod and a short tail (Figure 5a). Myosin binds to its substrate F-actin through the head 

domain and translocates along the filament.  

The movement is achieved through the transfer of chemical energy into mechanical work via a 

conformational change in the neck region induced by ATP hydrolysis. This moves the myosin head 

along the actin filament. To achieve efficient contractility, non-muscle myosin II proteins assemble 

into bipolar filaments through their rod domains (Figure 5b)(Ricketson et al. 2010).  
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Figure 5: Non-muscle myosin II. 
(a) Myosin structure of the individual molecular complex in the active and inactive state, (b) as well as the formation of bipolar 
filaments and subsequent binding to actin. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews (Vicente-
Manzanares et al. 2009), copyright 2009. 

Myosin II driven contraction has mainly be studied in striated muscle cells, where myosin II and the 

actin filaments on which it contracts are organised in a very ordered manner. We owe a lot of our 

understanding of the workings of myosin II to this highly organised system. But in most other contexts, 

such as in the cortex, contractility arises on unorganised actin filaments in a process we understand 

much less about (Murrell et al. 2015).  

1.1.3 Cortical contractility is regulated on multiple levels 

1.1.3.1 Rho GTPases regulate cortical contractility via different pathways 

The cortical architecture is clearly highly complex with myosin II being one of the main components in 

addition to the actin filaments. Myosin II in this context drives cortical contractility. This contractility 

is important for cortical functions and is therefore highly regulated. One of the key regulatory 

mechanisms is mediated by the Rho family of GTPases.  

GTPases are molecular switches, which have an active GTP-bound and an inactive GDP-bound form 

(Figure 6)(Jaffe & Hall 2005). The GTP-bound active form of these lipid-modified proteins binds to the 

membrane. This membrane binding is obligatory for the interaction with its downstream effectors 

while the inactive form of the GTPase is localised in the cytoplasm. While the name suggests that 

GTPases are able to hydrolyse GTP, on its own this reaction is very slow (Haeusler et al. 2003) and in 

vivo only works with the assistance of a GTPase activating protein (GAPs) (Bernards 2003). GAPs are 

specific to the individual GTPase and promote the transition from the active to the inactive state 

(Figure 6). On the activatory side of the cycle, guanine nucleotide exchange factors (GEFs) serve to 
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activate the GTPases by exchanging GDP for GTP (Schmidt & Hall 2002). An additional layer of control 

is achieved through the function of guanine nucleotide dissociation inhibitors (GDIs). These proteins 

bind to the inactive cytoplasmic form and prevent spontaneous activation by inhibiting nucleotide 

disassociation as well as capping the membrane interacting domain (Figure 6)(Olofsson 1999).  

 

Figure 6: The regulatory cycle of Rho GTPases. 
Active GTP-bound Rho is localised to the membrane where it activates its effectors. The active Rho is converted into an inactive 
GDP-bound Rho by the activity of GAPs while the reverse reaction is driven by GEFs. GDIs maintain Rho in its inactive state 
while GDFs lift this inhibition. Reprinted with permission from John Wiley and Sons: BioEssays (Bement et al. 2006), copyright 
2006. 

Of the many classes of GTPases, the Rho family is the most important in regulating cortical 

contractility. It has 22 members in mammals, the most common of which are RhoA, Cdc42 and Rac 

(Jaffe & Hall 2005; Hall 1998). These 3 proteins alone have many downstream target proteins, affecting 

varied cellular processes (Figure 7) (Bishop & Hall 2000). 
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Figure 7: Downstream effectors of the key Rho GTPases family members. 
The three Rho GTPase family members RhoA, Cdc42 and Rac have many downstream effectors which regulate a wide variety 
of cellular process. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews (Iden & Collard 2008), copyright 
2008. 

The Rho GTPases regulate cortical contractility via multiple effectors. One is via a change in the actin 

polymerisation, either directly by activating actin nucleators like the formin mDia (Otomo et al. 2005), 

or by activating actin nucleation regulators, such as WASP and WAVE (Takenawa & Miki 2001). These 

factors, in turn, activate the actin nucleator Arp2/3. At the same time, both RhoA and Cdc42 can 

activate myosin II contractility via the kinases ROCK or MRCK (Leung et al. 1996), thereby controlling 

cortical contractility.  

1.1.3.2 Myosin-driven contractility is regulated via phosphorylation 

Myosin II activity is in the short term regulated by the phosphorylation by such kinases. The target of 

this phosphorylation is the regulatory light chain (MRLC). The main phosphorylation sites of MRLC are 

the amino acids Thr18 and Ser19 (Hirata et al. 2009; Ikebe et al. 1986). The phosphorylation of these 

sites does not result in an increase in actin binding affinity (Sellers et al. 1982), but rather in an increase 

in the ATPase activity (Somlyo & Somlyo 2003). This increases myosin movement speed and 

processivity, and it also increases myosin filament assembly (Scholey et al. 1980).  

The main kinases phosphorylating this site are myosin light chain kinase (MLCK), citron kinase and Rho 

kinase (Rok) (Somlyo & Somlyo 2003; Matsumura 2005; Tan et al. 2008). With multiple kinases 

phosphorylating the same site, the specificity of myosin activation in response to upstream signals is 

clearly controlled at the kinase level. This means that different kinases are dominant in different 

cellular contexts.  
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It is interesting to note that for MLCK the myosin light chain is the only target while both citron kinase 

and Rok have other phosphorylation targets. Rok can also activate myosin light chain through an 

interesting round-about way - by inhibiting myosin phosphatase. Myosin phosphatase would 

otherwise inhibit myosin activity by dephosphorylating MRLC (Matsumura & Hartshorne 2008). This 

inhibition is lifted by phosphorylation of myosin phosphatase by Rok.  

There is also an alternative phosphorylation site in MRLC, targeted by cyclin B related to cell cycle 

control of myosin activity  at Ser1 and Ser2 (Satterwhite et al. 1992). This site is also shared by PKC 

(Nishikawa et al. 1984). The significance of these phosphorylation sites has been less explored. 

From this, it is clear that cortical contractility is regulated on the molecular level by Rho GTPases and 

specifically myosin II activity is regulated via phosphorylation. 

1.1.3.3 Microtubules suppress cortical contractility 

In addition to these specific molecular regulations of cortical contractility, interesting evidence exists 

that cortical contractility in cells is broadly inhibited via microtubules. This was first concluded from 

observations of periodic contractility induced in spreading fibroblasts whose microtubules were 

removed via nocodazole treatment (Pletjushkina et al. 2001; Lyass 1988). In these experiments, the 

authors could show that these periodic contractions were driven by myosin II and were calcium-

dependent, and persisted for several hours until the cells attached firmly to their substrate.  

A similar phenomenon of periodic contraction based on myosin II activation was observed when cells 

whose microtubules were removed were prevented from attaching to any surface (Paluch et al. 2005). 

Interestingly, under these conditions the extent of contractility depended on the cell-cycle stage of 

the cells, suggesting cell cycle regulation further upstream of the contractility regulation. These 

periodic contractions could also be observed in cell fragments, indicating that this process can emerge 

from very simple components. The authors show that the cortical contraction arises from symmetry 

breaking in the spherical cells or cell fragments which results in the formation of blebs which travel 

across the cell (Figure 8).  
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Figure 8: Model for oscillations in cells without microtubules. 
A) Small inhomogeneity in the distribution of myosin II in the cortex lead to breakage and bleb formation (b,c). In a self-
enhancing process, more myosin accumulates at the break points, increasing the bleb size (d). The contractile myosin moves 
across the cell and new cortex forms in the bleb (e,f). Myosin in the mainly redistributed across the cell (g,h), until a small 
inhomogeneity lead to a repeat of the process (i). Reprinted from (Paluch et al. 2006) with permission from Elsevier. 

Although these observations have only been made in cultured cells under abnormal conditions, i.e. 

nocodazole treatment, the data suggests a negative regulation of contractility by microtubules which 

is consistent with data from cardiomyocytes. In these cells increase in microtubules density leads to a 

reduction in contractility which occurs in hypertrophied myocardia (Zile et al. 1999; Ishibashi & Tsutsui 

1996).  

While these datasets seem to converge to illustrate the importance of microtubules in regulating 

contractility, no data is yet available indicating the specific pathway by which this regulation is 

achieved.  

As the control of cortical contractility is a very varied process, including a large number of disparate 

signalling pathways, it is easiest to understand this regulation when looking at a specific example of 

this regulation. In the next section, I will therefore focus on cytokinesis, which is a process driven by 

strong differentiation of cortical contractility across the cell.   
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1.2 CYTOKINESIS IS A FORM OF HIGHLY REGULATED CORTICAL CONTRACTILITY 

1.2.1 Cytokinesis is spatially regulated by signals originating from the spindle 

Cytokinesis is the process by which a single cell is divided into two daughter cells at the end of mitosis. 

Cytokinesis happens after the chromosomes have been separated and it is a process that involves the 

whole cell, mainly focussed on and driven by the cell cortex.  

During cytokinesis, the cortex differentiates and forms a specialised structure, the contractile ring, in 

the middle of the cell. The contraction of this ring leads to the formation of the cytokinetic furrow 

which progressively constricts to separate the cytoplasm of the two cells.  

A key part of our mechanistic understanding of the process of cytokinesis was laid by Ray Rappaport, 

who from 1960 onwards used physical manipulations and simple, low-tech observations of the sand 

dollar egg to establish the cell cortex’ response to the division signal. What became clear from these 

experiments is that the main factor determining the formation of the cytokinetic furrow is the mitotic 

apparatus or spindle. In normal cases, the cytokinetic furrow forms directly over the middle of the 

spindle. Repositioning the spindle led to the formation of a furrow in the new place and disappears in 

the old (Rappaport 1985). The signal inducing this response responds therefore dynamically to the 

position of the spindle, due to a positive signal delivered by the microtubules to the cortex (Rappaport 

1964). 

The most famous of Rappaport’s experiment was to investigate which type of microtubule structure 

is required for the furrow signal (Rappaport 1961). In this experiments, he compressed sand dollar 

eggs into doughnut shapes (Figure 9A), which led at the first division to the formation of a single 

horseshoe shaped cells (Figure 9B). This configuration leads to the formation of a binucleated cell, 

where, in the next division, the asters of the spindle overlapped with no chromosomes between them 

(Figure 9C). Surprisingly, this overlap was sufficient to induce a furrow and subsequent division (Figure 

9D). This type of furrow, caused by the overlap of microtubules with no chromosomes between them, 

has been termed a Rappaport furrow. They have subsequently also been generated in other systems 

(Savoian et al. 1999). This indicates that an overlap of antiparallel microtubules is all that is required 

for furrow formation and chromosomes are not required. 
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Figure 9: Formation of a Rappaport furrow. 
A) An embryo is compressed with a glass bead (grey sphere), pushing the spindle to one side. B) This cell divides only on the 
side of the sphere where the spindle was located, forming a binucleated cell. C) This cell then in the next round of divisions 
forms 2 normal furrows as well as a so-called Rappaport furrow. D) This furrow fully constricts to form 4 individual cell, same 
as in the control embryo. Reprinted with permission from John Wiley and Sons: Journal of Experimental Zoology (Rappaport 
1961), copyright 1961, with additional labels for clarity.  

The molecular understanding of the contractile ring which forms the furrow lagged behind the physical 

understanding of the process provided by Rappaport for many years. But in recent years the molecular 

side has caught up and now a fairly complete view of the molecular components of cytokinesis has 

been established (Green et al. 2012; Eggert et al. 2006).  

As the contractile ring is essentially a differentiation of the cortex, it is not surprising that the two key 

components of the contractile ring are actin (Schroeder 1973) and myosin II (Mabuchi & Okuno 1977). 

This molecular composition suggests an intuitive mechanism for contractility, with actin acting as a 

scaffold on which myosin exerts its contraction force to progressively reduce the ring diameter 

(Murthy & Wadsworth 2005). But intriguingly it appears that myosin, at least under some 

circumstances, serves in the contractile ring only as a stabiliser or scaffold (Carvalho et al. 2009) and 

its force generation is not required for contractile ring closure (Beach & Egelhoff 2009). How 

widespread this function of myosin as a pure scaffold is, remains unclear, as in most circumstances 

myosin II contractility is in fact required for contractile ring closure (Murthy & Wadsworth 2005).  

Assembly and activity of actin and myosin II in the contractile ring are controlled by the GTPase RhoA 

via two key downstream effectors (Figure 10). Firstly RhoA activates formins, which are actin 

nucleators producing the straight unbranched actin filaments of the contractile ring (Severson et al. 

2002; Otomo et al. 2005; Rose et al. 2005). Secondly, RhoA activates RhoA kinase (Rok) which activates 

myosin II in the contractile ring, leading to the contraction (Amano et al. 1996; Kimura et al. 1993; 

Piekny & Mains 2002).  
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Figure 10: Function of RhoA in controlling the components of the contractile ring. 
RhoA is localised and activated at the furrow via centralspindlin and Ect2. RhoA then activates formin to nucleate actin 
filaments and activates Rok which in turn activates myosin II. The combination of these two processes leads to the formation 
of the contractile ring and its contraction. Reprinted from (Miller 2011) with permission from Elsevier. 

In accordance with the regulation of contractile ring formation by RhoA, recent work by Wagner and 

Glotzer showed that active RhoA alone is sufficient to induce contractile ring formation, independent 

of any signal from the spindle (Wagner & Glotzer 2016). They showed this by locally activating RhoA 

at various membrane sites via an optogenetic construct, leading to accumulation of actin and myosin II 

at these sites and the so formed contractile rings were functional as seen through partial ingression. 

This induction of ring formation was surprisingly independent of the cell cycle stage, allowing the 
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formation of contractile rings even in interphase cells (Figure 11). This shows that the formation of 

the contractile ring solely requires active RhoA at the cortex. 

 

Figure 11: RhoA signal alone is sufficient to drive contractile ring formation. 
Contractile ring formation in interphase cells was induced by optogenetic activation of RhoA at the cortex. Figure reprinted 
from (Wagner & Glotzer 2016) under creative commons CC-BY-NC-ND 4.0 international license. 

Due to RhoAs function as a master regulator of contractile ring formation, its activation and 

localisation obviously have to be finely controlled to allow for successful cytokinesis. This control is 

achieved through RhoA activating factors, termed GEFs.  

The main GEF which activates RhoA in the formation of the contractile ring is Ect2 (Yüce et al. 2005), 

although GEF-H1 is also involved in parallel to Ect2, at least in certain cells (Birkenfeld et al. 2007; 

Krendel et al. 2002). Ect2 is localised to the prospective contractile furrow overlying the spindle 

midzone where it activates RhoA (Figure 10). Ect2 is transported to the cortex along microtubules and 

comes from the central spindle region (Figure 12)(Bement et al. 2005; Bement & von Dassow 2014; 

Somers & Saint 2003).  

At the central spindle region, Ect2 colocalises and is activated by the heterotrimeric centralspindlin 

complex (Nishimura & Yonemura 2006). This complex is made up of MgcRacGAP and MKLP1 (Mishima 

et al. 2002; Pavicic-Kaltenbrunner 2007) and localises to the antiparallel microtubule overlap in the 

spindle midzone and midbody (Lekomtsev et al. 2012). The activation signal is then transmitted from 

the central spindle region to the cortex through the action of the MKLP1 subunit, which is a kinesin 

and can travel along the microtubules to the cortex. As this transport is microtubule-based, Ect2 is 

concentrated in regions with a lot of microtubules touching the cortex, i.e. the region where the 

microtubules of each aster meet at the cortex (Figure 12) (Lekomtsev et al. 2012; Miller 2011; Su et 

al. 2014). There it then activates RhoA, which leads to the formation of the contractile ring. 

 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 12: Ect2 is localised to the contractile furrow via microtubules. 
Sea urchin embryos showing Ect2 (gold) located to the tips of microtubules (blue), leading to its localisation at the furrow. 
Zooms in A’ and A’’ show overlaps of Ect2 and microtubules at different stages of furrow ingression. Republished with 
permission of American Society of Cell Biology, from (Su et al. 2014),  permission conveyed through Copyright Clearance 
Center, Inc. 

The GAPs, which in turn inactivate RhoA, are key for driving the flux of RhoA into the inactive form 

during cytokinesis. This flux through the active (GTP-bound) and inactive (GDP-bound) form is required 

for the success of cytokinesis (Miller & Bement 2009).  There are two RhoA GAPs which have been 

implicated in cytokinesis – p190RhoGAP and the centralspindlin component MgcRacGAP. 

p190RhoGAP localises to the cytokinetic furrow and overexpression causes division failure (Su et al. 

2009; Mikawa et al. 2008), and its role in cytokinesis in limiting RhoA activity is unambiguous. On the 

other hand, MgcRacGAP has been much more controversially discussed in the literature. This is 

partially due to the fact that, as the name suggests, MgcRacGAP functions (at least in vitro) specifically 

as a GAP against the GTPases Rac and Cdc42 and is inefficient as a GAP for RhoA (Touré et al. 1998). 

At the same time, MgcRacGAP is clearly a necessary component of the centralspindlin complex and 

artificial localisation to the cortex is sufficient to induce furrowing (D’Avino & Savoian 2006; Jantsch-
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Plunger & Gönczy 2000), while knock-out leads to a much broader RhoA zone and cytokinesis failure  

(Yoshizaki & Ohba 2004; Miller & Bement 2009). While these in vivo experiments suggest that 

MgcRacGAP inactivates RhoA in the required manner, it is possible that this function is indirect, either 

through Ect2 localisation or through the other GTPase family members.  

With this, the molecular toolbox which locally regulates the cortex to form the contractile ring during 

cytokinesis is fairly well established. 

1.2.2 Redundancy in the spatial regulation of cytokinesis ensures cytokinesis success 

In addition to the contraction of the contractile ring, it has long been proposed that to allow for 

cytokinesis, a relaxation of the polar regions of the cell is also necessary (Swann & Mitchison 1958). 

The original theory suggested that furrowing is achieved or at least allowed by a lessening of the 

membrane tension at the poles of the cells away from the cytokinetic furrow (Figure 13) (Gudejko et 

al. 2012) . 

Figure 13: Different populations of microtubules in cytokinesis.  
a) Cell in anaphase with chromatin mass in blue and microtubules in green. Astral microtubules (light green) and midzone 
microtubules (dark green) from two separate populations and contact the cortex at different points. b) Potential polar 
relaxation signal in red is delivered by astral microtubules, while equatorial stimulation signal in blue is delivered by midzone 
microtubules. Reprinted from (Eggert et al. 2006), copyright Annual Review of Biochemistry, 2006. 

A number of works indicates that microtubule density, the connected differential cortical contractility 

and the resulting polar relaxation are important for cytokinesis (Glotzer 2004; Foe & von Dassow 

2008), even though no molecular mechanism for this has been proposed. This is due to the fact that 

the molecular work has been focussed on the understanding of the cytokinetic ring and the cortical 

stimulation that induces furrowing.  

These two potentially different signals are most likely born out of two populations of microtubules. 

The astral microtubules and the central spindle microtubules are these two signalling centres, whose 

differential importance remains not fully understood. It is very likely that the cortex, once it has been 

put in its receptive state by the cell cycle incorporates signals from both of these. In normal cells, the 

cytokinetic furrow may be positioned by a number of parallel signals, and this redundancy is important 

as the correct localisation of the division furrow is key for forming functional and equal sized daughter 

cells after division. The cortex seems to respond first to signals from the astral microtubules to initial 
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furrowing while the signal from the spindle midzone microtubules is required for sustaining the furrow 

and allowing completion of cytokinesis (Bringmann & Hyman 2005; von Dassow 2009).  

To allow the cortex to flexibly react to these varied signals from the spindle, it as a whole has to be 

adapted to cytokinesis. 

1.2.3 The cortex behaves as an excitable medium during cytokinesis 

Therefore, the cortex of the whole cell undergoes drastic changes during C-phase, above and beyond 

those directly related to the formation of the cytokinetic ring. C-phase is the phase of the cell cycle in 

which cytokinesis takes place, and although it normally overlaps with late anaphase and telophase, it 

is designated as a separate phase of the cell cycle (Canman et al. 2000). This phase is defined by the 

cortex being in a division ready state in which it can respond to signals which induce furrowing. And 

while C-phase is normally a relatively short, it can be extended to last up to 1 hour by preventing 

completion of cell division using inhibitors (Straight et al. 2003; Martineau et al. 1995). 

During this time the altered cortex state gives rise to interesting phenomena. One of these are rapid 

fluctuations of RhoA activity and actin polymerisation in an activator-inhibitor coupling, inducing 

fascinating motile patterns (Bement et al. 2015). These RhoA and actin waves are cell-cycle dependent 

and move across the whole cell cortex in very large cells, such as the Xenopus and starfish eggs (Figure 

14). This indicated that the cell cortex in C-phase behaves as an excitable medium which shows local 

amplifications and fast reactivity (Newman 2009; Bement et al. 2015). This is likely beneficial for the 

cell by allowing quick adaptation to changing environmental circumstances and ensuring cytokinesis 

success.  

Figure 14: RhoA waves at the cortex during C-phase. 
Active RhoA forms spiral patterns in the cortex during the time of C-phase – the temporal development of the patterns and 
change in signal intensity can be seen at the different time points. These patterns of RhoA activity move across the cell (as 
seen in the zoom-ins 1 and 2). The patterns are strengthened to these striking levels using Ect2 overexpression. Reprinted by 
permission from Macmillan Publishers Ltd: Nature Cell Biology (Bement et al. 2015), copyright 2015. 
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1.2.4 Cytokinesis is temporally regulated by Cdk1-cyclin B 

Of course, cytokinesis has to be specifically regulated not only in a spatial dimension, with the 

determination of the position of the contractile ring, but it also has to be regulated in time. The 

temporal regulation of the cell division process is part of the cell cycle. 

After the cell duplicates its DNA in S-phase the actual cell division process happens in M-phase. During 

this, the cell organises and then divides both its DNA and cytoplasm into two daughter cells.  

M-phase consists of a number of well-defined subphases, termed prophase, metaphase, anaphase 

and telophase. During prophase, the chromosomes condense and cytoplasmic events prepare the cell 

for the cell cycle, by, among others, separating centrosomes. As prophase progresses into metaphase, 

the nuclear envelope breaks down, allowing access of the microtubules of the forming spindle to the 

chromosomes. Once all the chromosomes have assembled into the metaphase plate of the spindle, 

the cell passes into anaphase where the sister chromatids are separated towards the poles of the 

spindle. The two groups of chromosomes are enclosed in the forming daughter nuclei during 

telophase and the cells separate via cytokinesis. Cytokinesis normally overlaps with late anaphase and 

telophase (Cooper 2000).  

The key regulator of M-phase is a protein complex originally termed MPF (mitosis promoting factor)  

made up of a kinase Cdk1 (cyclin-dependent kinase 1) and a regulatory protein cyclin B (Smith & Ecker 

1971; Masui & Markert 1971). Cdk1-cyclin B controls all the changes that go along with mitosis and is, 

therefore, subject to a complex system of feedback loops to control its activation and inactivation 

(Lindqvist et al. 2009). 

Cdk1 is regulated by phosphorylation and is present at constant levels throughout the cell cycle while 

cyclin B levels vary periodically. Cyclin B protein levels are controlled transcriptionally (Katula et al. 

1997; Fung & Poon 2005) but once cyclin B is produced, it immediately binds to the Cdk1 protein. The 

complex is then held in an inactive state through two inhibitory phosphorylations at sites T14 and Y15. 

The activity state of the Cdk1-cyclin B complex is controlled through the balance between the kinase 

pair Wee1/Myt1, which inhibits the complex, and the phosphatase Cdc25, which lifts the inhibition 

(Figure 15)(Morgan 2007). Once Cdk1-cyclin B is activated to a sufficient level, it can, in turn, 

phosphorylate Wee1/Myt1, leading to their inactivation, resulting in the auto-amplification of Cdk1 

activity. The regulators themselves are controlled by a wide variety of inputs, such as the Plk1 and 

MAPK pathway (Lindqvist et al. 2009). But while the wider regulation is, of course, important for the 

precise timing of the cell cycle, for our purposes it is sufficient to focus on the inner feedback loop 

regulating Cdk1-cyclin B activity (Figure 15).  
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Figure 15: Regulation of Cdk1-cyclin B activity. 
The Cdk1-cyclin B activity state is controlled by the balance of activation by Cdc25 and inhibition by Wee1/Myt1. Once 
activated above a threshold, Cdk1-cyclin B activates its mitotic targets via phosphorylation. At anaphase Cdk1-cyclin B is 
inactivates by APC/C which is regulated in its activity by Cdk1-cyclin B. 

The activation of Cdk1/cyclin B is closely linked to its nuclear import in prophase which is important 

for the auto-amplification process (Hagting et al. 1999). Once levels of active Cdk1/cyclin B have 

reached a certain threshold, their many downstream effects become first visible with nuclear 

envelope breakdown (NEBD) mediated by phosphorylation of NE components (Macaulay et al. 1995; 

Peter et al. 1991). This is also commonly used as a marker for the start of metaphase.  

Cdk1-cyclin B also drives other hallmarks of metaphase – such as cell rounding (Ramanathan et al. 

2015), completion of chromosome condensation (Gavet & Pines 2010), spindle assembly (Wu et al. 

2013) and ER/Golgi fragmentation (Yeong 2013). 

The main cellular process in metaphase though is the formation of the spindle and alignment of the 

chromosomes at the metaphase plate. Once this process is completed and the spindle checkpoint is 

satisfied, the cell switches to anaphase. In this switch cyclin B levels again play the key role, although 

regulated in a different manner than during metaphase entry.  

While phosphorylation is a widely used form of activation that is key to cell cycle control, it is by nature 

a very transient and reversible modification. To commit to the next stage in the cell cycle then, the 

cell requires a more drastic regulation, in the form of protein degradation. Cyclin B is degraded at 

anaphase exit by the APC/C (anaphase-promoting complex or cyclosome), which is an E3 ubiquitin 

ligase, binding ubiquitin chains to its target protein. These proteins are then targeted for destruction 

by the proteasome. APC/C activity itself is controlled via phosphorylation by Cdk1/cyclin B and by the 

spindle assembly checkpoint and the APC/C itself has a number of different substrates (Figure 

15)(Pines 2006). The key substrates for the synchronicity of the events of anaphase are cyclin B and 

securin (Clute & Pines 1999; Hagting et al. 2002).  
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The degradation of securin allows the separation of the chromosomes while the degradation of 

cyclin B leads to the lifting of the cdk1-cyclin B imposed phosphorylations. The loss of these 

phosphorylations is responsible for the activation of the molecular cascade leading to cytokinesis and 

the changes in cortical contractility that go along with it. 
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1.3 SURFACE CONTRACTION WAVES  

1.3.1 Surface Contraction Waves are division-associated cortical contractility events 

In 1971, Koki Hara observed a curious phenomenon while studying dividing axolotl embryos, which 

continues to puzzle us to this day. Hara called what he observed surface contraction waves or SCWs 

(Hara 1971). These waves are observable as shifts in the pigmentation pattern of the embryo and 

changes in the cell shape. They precede each cell division in the early embryo and move across the 

whole cell in a circular pattern. Similar SCWs were observed in the embryos and eggs of a variety of 

other species, the most famous and well-studied example being in the Xenopus laevis embryo (Hara 

et al. 1980).  

It may seem surprising that such an obvious movement of the cell had not been discovered earlier and 

that so little remains understood of its molecular nature. Especially as the large and abundant eggs of 

amphibians and echinoderms where SCWs are common, were the workhorses of early cell biology 

since the 19th century.  The explanation lies within the duration of the waves, which last 5 to 10 

minutes. This is just slow enough to make the SCWs very hard to notice by observation with the naked 

eye. Therefore, a true exploration of SCWs only began with the advent of time-lapse imaging or 

cinematography, as Hara called it in 1971. 

1.3.2 Surface Contraction Waves are found in many species  

If one looks at the literature, there are very few papers reporting surface contraction waves in eggs or 

embryos in species other than the ones mentioned above as major findings. But when one careful 

reads old papers describing the behaviour of eggs and early embryos in a variety of species, mentions 

of shape changes, waves of surface stiffening and surface movements keep cropping up. These are 

indications for the presence of SCWs. 

This has allowed me to infer that contraction waves are found in a wide variety of species (Figure 16). 

Interestingly, these species are spread throughout the animal kingdom. SCWs are for example found 

in very simple multicellular organisms, in the phyla of ctenophore and cnidaria, that is comb jellies and 

jellyfish respectively (Houliston et al. 1993).  

In deuterostomes, SCWs are found in many species belonging to different phyla. SCWs are found in 

vertebrate species, many of the class of amphibia, including various species of frogs (Kubota 1967; 

Hara & Tydeman 1979), newts (Harvey & Fankhauser 1933; Selman & Waddington 1955; Sawai & 

Yoneda 1974) and axolotls (Hara 1971). A sister subphylum of the vertebrates, in the phylum of 

chordates, are the tunicates, were SCWs have been reported in a variety of species of sea squirts 

(Satoh & Deno 1984; Bell 1962; Sardet et al. 1989). The sister phylum of the chordates are the 



24 
 

echinoderms, were contraction waves are found in both sea urchins (Kojima 1962) and starfish 

(Hamaguchi & Hiramoto 1978).  

There is, of course, the large superphylum of protostomes, in which there is very little evidence for 

SCWs. The two examples I found come from the Lophotrochozoan phylum, in the annelid Tubifex 

(Shimizu 1983), and in the C. elegans nematode (Fabritius et al. 2012).   

Although evidence can be found for SCWs in these species, SCWs are surely not limited to these 

species. Given the wide evolutionary spread of SCWs exemplified above, it seems likely that upon 

investigation such waves could be found in many more species.  

 

 



25 
 

 Figure 16: Phylogenetic tree of SCWs.  
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A) General tree of animal phyla, highlighting those in which SCWs are found. Figure modified from (Telford et al. 2015), 
reprinted with permission from Elsevier. B) Detailed phylogenetic tree of all species with reported SCWs. Tree generated at 
http://phylot.biobyte.de/ (Letunic et al. 2012; Letunic & Bork 2007).  

1.3.3 Surface Contraction Waves share a number of common characteristics  

There are a few common characteristics that connect the SCWs in all these different species.  

(1) They are found exclusively in large cells, namely oocytes and early embryos. All these cells are 

significantly larger than normal somatic cells. The sizes of cells with reported contraction waves range 

from the sea urchin with a diameter of 90 µm (Kojima 1962) to newt eggs with a diameter of 2 mm 

(Selman & Waddington 1955).  

(2) Furthermore, SCWs always occur in the context of cell divisions. They have been reported to occur 

shortly before the cell division during both mitosis in the embryo and meiosis in the oocytes.  

(3) As the SCWs are clearly cortical events, it is not surprising that they go along with a rise in surface 

tension or stiffness (Hara et al. 1980). How this cortical contractility in the SCWs is regulated and what 

cytoskeletal components are involved remains unclear. Some evidence suggests an involvement of 

microtubules (Quaas & Wylie 2002; Houliston et al. 1993) while others show an independence from 

microtubules (Hara et al. 1980) and implicate actomyosin contractility (Pérez-Mongiovi et al. 1998; 

Prodon et al. 2008; Christensen & Merriam 1982). 

These factors make SCWs an interesting system to understand the regulation of cortical contractility 

by the cell cycle in large cells.  

1.3.4 A number of functions have been proposed for Surface Contraction Waves 

While SCWs have been described phenomenologically, their function remains unclear in most 

systems. Potential functions can arise from two characteristics of the waves. The first is the potential 

generation of force or pressure implied by the contractility and change in cell shape.  

This force generation hypothesis has been suggested to assist the cell division process in both meiosis 

in the starfish (Hamaguchi & Hiramoto 1978) and mitosis (Yoneda & Dan 1972; Sawai 1982), although 

this has never been conclusively shown in either system.  

Secondly, apart from the shape changes the SCWs go along with movements of the cytoplasm 

(Hamaguchi & Hiramoto 1978), although a causal link between the two processes is not clear. This 

cytoplasmic flow in the developmental context in which the SCWs occur, led to the hypothesis that 

SCWs serve to localise some developmental determinants. This has been indicated in the Xenopus 

embryo for the localisation of germplasm (Quaas & Wylie 2002) and for cER-mRNA domains in 

Ascidians (Figure 17) (Prodon et al. 2008; Prodon et al. 2005). As a specific inhibition of the 

http://phylot.biobyte.de/
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contractions has not been described, a proof of a link between the SCWs and the observed localisation 

defects has not been reported and their developmental consequences remain to be explored.  

Figure 17: The potential function of the SCWs in controlling embryonic polarisation.  
A) Mitochondria (green) are localised in a polarised manner across the ascidian eggs. B) Treatment with microtubule inhibitor 
Nocodazole did not affect the localisation, while manipulations of both actin (C) and myosin (D)  lead to a loss of polarisation, 
indicating a role of actomyosin contractility in the localisation. Republished from (Prodon et al. 2008), with permission from 
Elsevier. 

1.3.5 Surface Contraction Waves in the Xenopus embryo are driven by trigger waves 

The best-researched example of SCWs are the ones observed during the early embryonic division of 

the Xenopus laevis embryo. In this system two contraction waves, termed SCWa and SCWb, pass 

across the cell surface visible through a shift in the pigment pattern (Hara et al. 1980). Both of these 

waves start at the animal pole of the egg and spreads in a circular pattern across the cell, with a fixed 

time delay between the two and progress across the cell at a speed of 60 µm/min (Figure 18) (Hara et 

al. 1980; Chang & Ferrell 2013).  

Figure 18: SCWs in the Xenopus embryo. 
Kymograph of the surface pigmentation pattern of an artificially activated Xenopus egg. It shows three pairs of SCWs (1a&1b 
etc.), going along with 3 rounds of the cell cycle. Reprinted by permission from Macmillan Publishers Ltd: Nature (Chang & 
Ferrell 2013), copyright 2013. 
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These SCW reflect switching of the cytoplasm between different cell cycle states going along with each 

round of cell division (Hara et al. 1980; Pérez-Mongiovi et al. 1998). Specifically, the SCWa correlates 

with entry into mitosis, while SCWb is associated with mitotic exit (Rankin & Kirschner 1997). This 

explains why even though both waves were originally termed surface contraction waves, the SCWa is, 

in fact, a wave of relaxation with the cortex softening while the SCWb is a true contraction wave with 

an increase in surface tension (Yoneda et al. 1982). 

While SCWs were first observed right before the first embryonic division, they are independent of 

fertilisation and even the nuclear content of the egg, as they also occur in artificially activated (i.e. 

non-fertilised eggs) and de-nucleated eggs (Hara et al. 1980). This underscores the link between the 

cell cycle and the contraction waves, as the cell cycle oscillation run independently of these factors as 

well.  

The mechanism by which the cell cycle activation is spread across the very large Xenopus cell was long 

a mystery but recent reports  have provided a mechanistic explanation (Chang & Ferrell 2013; Ishihara 

et al. 2014). They showed that the signal transmission in Xenopus is driven by a phenomenon called a 

trigger wave. Diffusion, the classical mechanism for signal spreading, is distinctly too slow in such a 

large cell to allow efficient synchronisation of the cell cycle processes across the whole cell. The 

proposed trigger wave or chemical reaction waves can spread the activity across the cytoplasm much 

faster. This is achieved by local mixing of the cytoplasm by diffusion, which pushes the activity above 

a certain threshold leading to full activation of one area of cytoplasm. This activity then mixes into the 

closely neighbouring area, which in turn switches to an activated state. And thus, the activity is 

transmitted fast across large distances. To allow for such behaviour, the system in which it takes place 

has to be an excitable medium and locally amplify the active state of the system. The cell cycle 

regulation of Cdk1-cyclin B activity is exactly such as system. To visualise the trigger wave spreading 

over large distances Chang and Ferrell placed nuclei in Xenopus egg extract that goes through a 

number of cell cycles and observed the behaviour of the nuclei during these cycles. The nuclei break 

down at the start of mitosis and reform at its end, and both breakdown and reformation happen in a 

wave over large distances (Figure 19). 

The mechanism by which a trigger wave of cell cycle activity causes the cortical contractile behaviour 

remains an open question. 
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Figure 19: Trigger waves of the cell cycle. 
The cell cycle state is measured by the proxy of nuclear envelope breakdown and reformation in cycling Xenopus egg extract. 
b) The signal for nuclear envelope breakdown (red) and reformation (blue) spreads across long distance with constant speed, 
indicating trigger wave behaviour. Reprinted by permission from Macmillan Publishers Ltd: Nature (Chang & Ferrell 2013), 
copyright 2013. 

1.4 STARFISH OOCYTES SERVE AS A MODEL FOR THE STUDY OF SURFACE CONTRACTION WAVES 

1.4.1 Starfish oocytes in meiosis exhibit contraction waves 

Starfish oocytes are another system which exhibits striking contraction wave alongside their meiotic 

divisions. These were first described by Hamaguchi and Hiramoto in 1978 in the starfish Patiria 

pectinifera (Hamaguchi & Hiramoto 1978), where both the cell shape changes as well as the 

concomitant protoplasmic movements were observed (Figure 20). This resulted in the first detailed 

description of the SCW phenomenon for any organism. 

Figure 20: The SCW in the starfish oocyte 
An early description of the shape change and cytoplasmic movements occurring during the contraction wave in the starfish 
oocyte. Reprinted from (Hamaguchi & Hiramoto 1978), with permission from Elsevier. 

The contraction waves in the starfish oocyte occur immediately before each of the two meiotic 

divisions that the oocyte undergoes during the course of maturation. At the same time, the work by 

Hamaguchi and Hiramoto also proposed a function for the contraction wave, suggesting that they are 
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functionally linked to polar body formation, the specific form of asymmetric cell division occurring in 

meiosis. This link was proposed due to the close temporal link between the two events and intuitive 

appeal but has not been investigated.  

1.4.2 Starfish oocytes are highly specialised cells ideal for molecular imaging studies 

A number of the characteristics of the starfish oocyte make it ideal to use in investigating SCWs on a 

molecular level.  

The surface contraction wave at the first meiotic division is very pronounced. The system is 

experimentally easy to handle as meiosis is relatively quick in these cells, lasting only around 90 min 

in total and it can be induced by the experimenter via the addition of a hormone. 

Furthermore, its size and transparency make the oocyte ideal for fluorescence microscopy, which is a 

key methodology for identifying molecular players. The oocytes are also relatively non-sensitive to 

light exposure, allowing continuous imaging throughout the whole division process. Given their 

natural habitat in the open sea, the oocytes are additionally very sturdy which allows a variety of 

physical manipulations, such as centrifugation (Yoshikawa 1996; Nemoto et al. 1980) and mechanical 

constriction (Shoji et al. 1978), adding to the toolbox of biochemical manipulations.  

The starfish oocytes of the species Patiria miniata are the model system used for this study and I will 

in the following introduce these cells in a bit more detail.  

The oocytes are large cells, around 180 µm in diameter, with the nucleus localised at one point of the 

cortex (Figure 21) (Terasaki et al. 2001). This gives the oocytes an intrinsic polarity and the point where 

the nucleus is anchored is called the animal pole while the opposite point is called the vegetal pole. 

The nucleus is held at this position by microtubules nucleated from the centrosomes which are 

positioned at the animal pole (Miyazaki et al. 2000). 

The oocyte reaches its extraordinarily large size due to its large storage of both nutrients and pre-

synthesised proteins which are required for the development of the embryo. The nutrients are stored 

in the form of yolk platelets, roughly 1-2 µm in diameter (Terasaki 2006). The yolk is produced during 

the growth phase of the oocyte that precedes oocyte maturation (Takahashi & Kanatani 1981).  
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Figure 21: An immature starfish oocyte with important cellular structures labelled. 

The oocytes are arrested, tightly packed in the ovaries of the starfish, in prophase of meiosis I and can 

be easily isolated from there in large numbers. The oocytes begin their maturation upon stimulation 

by the hormone 1-Methyladenin (Kanatani et al. 1969). In the natural process where maturation is 

induced in the ovary, the oocytes exhibit the classical metaphase I arrest (Oita et al. 2004; Harada et 

al. 2003), that oocytes of many other animals share (Yamashita 1998). While in most other animals 

this arrest is lifted via fertilisation, in starfish it is lifted through spawning of the oocytes into seawater 

and the resulting pH change (Oita et al. 2004; Harada et al. 2003). When oocytes are artificially induced 

to undergo meiosis in sea water, there is no metaphase I arrest as the conditions are already fulfilled 

for the completion of meiosis (Kishimoto 1998). 

While starfish oocytes are naturally fertilised around metaphase I of meiosis (Nomura et al. 1991), 

they can complete the whole division process without fertilisation (Matsuura & Chiba 2004), so 

meiosis can be studied while disregarding the fertilisation process.  

1.4.3 Meiosis is a specialised form of cell division 

Meiosis is a very specific type of cell division that occurs only during the generation of the gametes for 

sexual reproduction. It is a reductive division, which produces both haploid sperm and oocytes. But 

the division process in these two cases is very different, given that a 4n spermatocyte gives rise to four 

1n sperm while the 4n oocyte gives rise to only one 1n mature egg. The rest of the genomic content 

of the oocyte is discarded into the polar bodies (see Figure 22). The main difference between mitosis 
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and meiosis is the lack of S-phase between meiosis I and meiosis II and extensive recombination with 

the connected suppression of sister chromatid separation during meiosis I. 

I will in the following focus on oocytes and their cell cycle adaptations while disregarding the 

mechanism of DNA recombination in meiosis and spermatogenesis. 

 

Figure 22: Meiotic cell cycle in the oocyte. 
A mature 4n oocytes forms a spindle and cell division takes place, giving rise to a 2n oocyte and a 2n polar body. The oocyte 
divides again, extruding a 1n polar body. This division cycle results in a mature haploid egg. Figure modified from (Borrego 
Pinto 2015).  

Oocytes are commonly arrested for long periods in prophase of meiosis I so the start of the cell division 

process is named meiotic resumption. Meiotic resumption is in the starfish oocyte very well 

understood on a molecular level (Figure 23) (Kishimoto 2011). It happens in response to an external 

hormone signal given by the tissue surrounding the oocytes. In the same manner as in mitosis, entry 

into meiosis requires activation of Cdk1-cyclin B. This is achieved following hormone stimulation 

through the Akt/PKB pathway, which inhibits the Cdk1 inhibitor Myt1 and activates the activator 

Cdc25 (Figure 23) (Okumura et al. 2002).   
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Figure 23: Meiotic resumption in the starfish oocyte. 
The 1-Methyladenin hormone signals through a G-protein receptor, leading to the activation of Akt/PKB. This, in turn, leads 
to the activation of Cdk1-cyclin B (here Cdc2-cyclin B) via inhibition of Myt1 and activation of Cdc25. The activation of Cdk1-
cyclin B leads to the start of meiosis and activates downstream targets, including Plk1, Aurora and Mos. Reprinted with 
permission from John Wiley and Sons: Molecular Reproduction & Development (Kishimoto 2011), copyright 2011.  

In comparison to meiosis I, meiosis II is a much quicker process which starts immediately after the 

completion of meiosis I without an intermediated S-phase, but the underlying molecular network is 

identical. The quick transition between meiosis I and meiosis two is controlled by Mos which 

prematurely upregulates Cdk1/cyclin B levels after metaphase I to prevent S-phase (Figure 24)  

(Furuno et al. 1994). In starfish, it was shown that Mos is the master regulator of meiosis and that 

expression of Mos in mitotic cells induces meiotic-style divisions (Tachibana et al. 2000). Furthermore, 

overexpression of Mos in oocytes leads to many rounds of meiosis (Figure 24)(Dumollard et al. 2011). 
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Figure 24: Mos is the master regulator of meiosis. 
Mos activity controls meiosis via the MAPK signalling pathway, which induces upregulation of Cdk1-cyclin B activity (here 
MPF – green) after meiosis I. When Mos is overexpressed (bottom panel) MAPK activity remains high and MPF activity cycles 
multiple times, resulting in multiple meiosis. Reprinted from (Dumollard et al. 2011), with permission from Company of 
Biologists: Development. 

1.4.4 Polar body formation is a specialised form of cytokinesis 

Oocyte meiosis goes along with a specialised form of cell division leading to the formation of the polar 

bodies. It is a hugely asymmetric form of division, even compared to other forms of asymmetric 

divisions, and has been a focus of research interest since it was first described by Carus in 1824 

(Schmerler & Wessel 2011). 

This highly asymmetric division is required to allow the oocyte to reduce its genomic content without 

losing too much of the cytoplasmic content containing precious nutrient. This is achieved by 

minimising the cytoplasm in one of the daughter cells. The size difference between oocyte and polar 

body is therefore especially pronounced in animals that undergo ex utero development, where the 

embryo relies solely on its maternal energy stores for early development (Liu 2012).  

In animals with in utreo development, the size difference is not a requirement. This was shown in the 

mouse system, where an oocyte with half its normal cytoplasmic volume, as would arise after a 
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symmetric division, can still develop normally (Wakayama & Yanagimachi 1998). At the same time, it 

has been suggested that the polar body’s small size is important to prevent the formation of an 

additional competing zygote as would result from fertilisation of a larger polar body (Otsuki et al. 

2011). This process has been known to happen in humans and result in unviable twins (Bieber et al. 

1981). It has also been suggested that asymmetry can assist in ensuring proper chromosome division 

and preventing aneuploidy (Cortes et al. 2015). 

The polar bodies that form during meiosis are usually not destined for much after their formation and 

in most organisms quickly apoptose. Although in some special cases, they have additional functions 

during development. They play an important role in parthenogenesis in insect species (Strand & Grbic 

1996), and form important nourishing and protective tissues in scale insects (Normark 2004; Ross et 

al. 2010) and parasitic wasps (Strand & Grbic 1996). On the other hand, modern screening technology 

often employs polar bodies for diagnosis in IVF treatments (Verlinsky & Rechitsky 1999).  

1.4.4.1 Polar body formation is distinct from standard asymmetric divisions 

Although polar body formation is commonly classified as a form of asymmetric cell divisions, I would 

argue that this categorisation is in fact neither strictly correct nor helpful for our understanding of 

either process.  

Standard asymmetric divisions are rare compared to symmetric divisions but play crucial roles during 

development (Betschinger & Knoblich 2004). The asymmetry in these cases is a size inequality but, 

more importantly, an inequality of their cytoplasmic content and developmental potential. The 

classical systems in which asymmetric cell divisions are studied are the Drosophila neuroblasts and the 

first embryonic division of the C. elegans embryo (Betschinger & Knoblich 2004). Surprisingly in these 

systems the spindle originally forms in the centre of the cell and only at the end of anaphase the 

posterior spindle pole is pulled off-centre (Albertson 1984; McCarthy Campbell et al. 2009). 

Alternatively, the asymmetric placement of the spindle can be achieved by forces generated by 

asymmetric cortical contractility which pushes the cell around the spindle (Ou et al. 2010). In 

Drosophila neuroblasts, the mechanism for driving asymmetry appears to be unequal microtubules 

elongation (Kaltschmidt et al. 2000; Yu 2003).   

In comparison to these standard asymmetric divisions, polar body formation is of course not less 

asymmetric – rather the opposite. In standard asymmetric divisions the daughter cells have only 

slightly different volumes, in C. elegans embryos, for example, a ratio of roughly 1/3 to 2/3 between 

the daughter cells is observed. In polar body formation, on the other hand, the daughter cells can be 

orders of magnitude different in volume. For example in the Xenopus oocyte, the polar body is roughly 

10 µm in diameter while the oocyte is 1 mm in size. In standard asymmetric divisions, the asymmetry 
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is much more on a functional level than on the size level, with the distribution of determinants being 

key. 

There is also a big mechanistic difference between the actual division processes in the two cases 

(Figure 25). In the normal asymmetric division, the spindle is positioned in the middle of the cell and 

is only at a late stage shifted slightly to one side. In the case of the polar body formation, the spindle 

is either formed already off-centre (in starfish, Xenopus etc.) (Lenart et al. 2005) or is transported 

there early in the division process (in mouse) (Chaigne et al. 2013).  

Furthermore, in standard asymmetric divisions, the contractile ring is still formed above the middle of 

the spindle without the cell undergoing any shape changes prior to constriction. In polar body 

formation, on the other hand, the cells first form the polar body by protruding a bulge into which the 

spindle subsequently moves, before the contractile ring forms above the spindle midzone at the base 

of the protrusion (Figure 25).  

 

Figure 25: Geometry of the cell division in symmetric and asymmetric divisions. 
A) In a symmetric cell division the contractile ring (red) forms in the middle of the cell above the spindle midzone. B) In the 
standard asymmetric division the spindle is positioned slightly off-centre and the contractile ring forms above the spindle 
midzone. C) In polar body formation, the spindle is located strongly off-centre and the cell protrudes the polar body before 
cytokinesis can take place. Cell sizes not to scale. 

1.4.4.2 Multiple mechanisms have been proposed for polar body protrusion 

Polar body formation is, therefore, a 2-step process, consisting of the formation of the protrusion and 

the cutting off of that protrusion.  

All data present is consistent with the hypothesis that the actual contractile ring in polar body is very 

similar, if not identical, to that formed in symmetric cell division (Maddox et al. 2012; Liu 2012). 

Therefore, the main mechanistic question concerns the formation of the protrusion.  
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The by far most widespread hypothesis concerning the mechanism of protrusion formation is the 

pressure model, which has a large intuitive appeal. It dates back almost all the way in polar body 

research, with the oldest proposal of this mechanism made by Conklin in his 1902 investigation of egg 

maturation in the sea snail Crepidula (Conklin 1902). He proposed that the polar body is pushed out 

by cytoplasmic pressure or flow at the site where the cortex is weakest.  

This idea has remained popular to this day (Satoh et al. 2013) and in the case of the starfish oocyte 

has been mechanistically linked to the surface contraction waves. When Hiramoto and Hamaguchi 

described the SCWs in starfish oocytes as preceding the polar body formation, they suggested that 

the waves built up the force necessary to push out the polar body (Hamaguchi & Hiramoto 1978).  

This pressure model was strongly argued against by a series of detailed experiments performed by Ray 

and Barbara Rappaport in the starfish oocyte (Rappaport & Rappaport 1985). They came to the 

conclusion that rather than the polar body forming at the weakest site of the cortex in a global 

pressure mechanism, the protrusion formed in a very local mechanism at a strong cortex site. This 

local stimulation hypothesis was based on a large number of physical perturbations of the oocyte. 

They showed that moving the spindle to a new cortical site lead to the formation of the polar body at 

the new site, showing that there was no predetermined weak site of the cortex. Furthermore neither 

flattening of the oocyte, osmotic swelling nor sucking on the forming polar body lead to increases in 

polar body size as would have been expected by the pressure hypothesis. And a release of potential 

pressure by injuring the oocyte close to the polar body did not block protrusion formation.  

Which of these two models – global pressure with local weakness or local stimulation – correctly 

described the mechanism behind polar body protrusion has remained unresolved to this day.  

The molecular mechanism that drives protrusion formation too remains a little-explored area, but 

recent work has strongly implicated the GTPase Cdc42 in this process, at least in Xenopus oocytes. 

Cdc42 is closely related to RhoA, which is the key GTPase in cytokinesis. Cdc42 is thought to bring 

about polar body protrusion by the activation of the Arp2/3 complex which nucleates branched actin 

(Ma et al. 2006). When Cdc42 is inhibited, the protrusion no longer forms and while the contractile 

ring still forms normally at the cortex, it contracts over nothing and polar body formation fails (Leblanc 

et al. 2011). So Cdc42 and RhoA in polar body formation form two concentric zones of activity around 

each other, leading to the assembly of different actin structures which result in protrusion and 

cytokinesis respectively (Figure 26) (Zhang et al. 2008).  
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Figure 26: Polar body protrusion. 
Protrusion formation is driven by Cdc42, activating Arp2/3-driven actin polymerisation, in the Xenopus oocyte. RhoA activity 
results in the formation of the contractile ring and activation of myosin II. Reprinted from (Leblanc et al. 2011) by permission 
of Oxford University Press. 

Evidence from a number of other systems also indicates an actin-rich protrusion overlying the future 

polar body, strengthening this hypothesis (Pielak et al. 2004; Dorn et al. 2010; Deng et al. 2007). This 

suggests that the cortex is not likely to be weaker at the site of polar body formation, but it is 

interesting to speculate that the cortex in this area might be less contractile. If actin here is indeed 

nucleated by Arp2/3, it is highly branched and highly dynamic, and thereby potentially a less efficient 

substrate for myosin II contractility, compared to the straight formin-nucleated actin of the contractile 

ring. This could give rise to potential mechanical differentiation of this small cortex regions leading to 

polar body protrusion. 
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Cell division is key for all life and it is a complex process in which spatially and temporally tightly 

coordinated changes to the actomyosin contractility of the cortex physically separate the two 

daughter cells. The regulation of the behaviour of the cortex during division is important for successful 

divisions as the cortex undergoes a series of complex changes to accommodate the changing cell 

shape and produce the required force. Apart from cytokinesis, the regulation of cortical contractility 

is a general feature of many cellular processes, including cell migration and shape changes.  

To explore the regulation of cortical contractility during cell division, I specifically studied a 

phenomenon termed surface contraction waves. These waves are striking changes in cortical 

contractility, which occur in very large cells, in close correlation with the cell division process. Surface 

contraction waves have been observed in diverse animal phyla, from one the most basic metazoan 

life forms of cnidarian to vertebrates, but their underlying mechanism is not known. They offer a 

chance to study the regulation of cortical contractility in general and the link between the cell cycle 

and contractility in particular. 

The general aim of my PhD project was to reveal the molecular regulatory pathways underlying 

surface contraction waves and understand how these signalling networks can spatially and 

temporally pattern this complex cellular behaviour. 

The model system I used to study the surface contraction waves were starfish oocytes, which exhibit 

dramatic contraction waves that can be imaged at high spatial and temporal resolution in the 

transparent oocytes. Indeed, surface contraction waves were first described in the starfish oocyte 

almost 40 years ago (Hamaguchi & Hiramoto 1978), and with the molecular tool and imaging 

technology now available they provide an exceptional opportunity to analyse this fundamental yet 

poorly understood phenomenon.   

Specifically, I focused on the following two main questions: 

1) What are the molecular mechanisms of contraction and its regulation underlying surface 

contraction waves? 

Although surface contraction waves have been described in several species, no molecular details had 

previously been identified. But of course, a detailed knowledge of the molecules that drive 

contractility and the upstream regulatory pathway is required for a broader understanding of the 

process. Therefore, as a necessary first step, I set out to characterise the molecular regulatory pathway 

driving the contraction wave. I took a candidate approach and used the literature to identify proteins 

involved in cortical contractility in other physiological contexts and tested their role in the regulation 

of the contraction wave. To this end, I used live-cell imaging of the starfish homologs of these 
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regulatory and contractile proteins to follow their localization to the contraction wave, and, where 

available, I used small molecule inhibitors against some of the candidate proteins. 

Additionally, the size of the cell and the dynamic motion of the contraction across the cell allowed me 

to explore the regulatory pathway that drives contractility from a different perspective compared to 

that commonly used in the literature and elucidates feedback mechanisms within the regulatory 

pathway. 

2) What is the link between the cell cycle processes and the contraction wave? 

Data from previous studies indicates a link between cell cycle progression and the contraction wave 

(Rankin & Kirschner 1997; Chang & Ferrell 2013; Hara et al. 1980). However, how these two processes 

are coupled in space and time and at the molecular level was not known. As a first step to answering 

this question, I visualised the spatial and temporal pattern of key cell cycle components in relation to 

the contraction wave. Additionally, I locally manipulated the activity of cell cycle kinases, and used 

other chemical and physical manipulations to observe the effects on the direction and speed of the 

contraction wave, to understand how the dynamic nature of the contraction wave arises from cell 

cycle regulation.  

 

In summary, I present here a comprehensive model for the molecular mechanism controlling surface 

contraction waves in space and time. My data provides an explanation for the widespread 

phenomenon of surface contraction waves in oocytes, and at the same time reveals novel internal 

feedback mechanisms within the conserved molecular network regulating cortical contractility. 
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3.1 STARFISH HANDLING  

3.1.1 Animals 

All the work presented herein was performed using the oocytes of the bat star Patiria miniata. These 

animals originate from the North American coastline of the Pacific Ocean. We receive shipments of 

Patiria miniata from Southern California Sea Urchin Co. (Corona del Mar, CA), Marinus Scientific LLC 

(Newport Beach, CA) and Monterey Abalone Company (Monterey, CA) who collect the animals directly 

from the ocean. In the lab, the animals are maintained in seawater tanks at 15 °C, salinity of 4 %, 

pH 7.8. The animals are fed with shrimp every 2-3 days. 

3.1.2 Oocyte and sperm collection and maintenance 

To collect the oocytes from the starfish a small hole is made laterally on the dorsal side of an arm of 

the animal using a surgical biopsy puncher (Miltex). Through this hole, a segment of the ovary can be 

extracted. The ovary is placed in calcium-free seawater with 50 mM L-Phenylalanine (Sigma) (pH 8) 

for 15 – 20 min. The treatment with calcium-free seawater leads to the shedding of the follicle cells, 

which surround the oocyte, while the L-Phenylalanine acts as a hormone homolog, blocking 

spontaneous maturation which can occur during collection. The ovary is subsequently transferred into 

filtered sea water (FSW) containing 100 µM Acetylcholine (Sigma-Aldrich). This leads to the 

contraction of the ovary and the subsequent extrusion of the oocytes into the sea water. The thus 

retrieved oocytes are transferred into pure FSW and maintained at 14 °C in plastic petri dishes.  

The oocytes were always used within at most 3 days after collection.  

Oocyte maturation was induced by adding the hormone 1-Methyladenin (1-MA) to the FSW at a 

concentration of 10 µM. 

Sperm is collected from the animal by similarly making a small hole and extracting some testis tissue 

using forceps and placing the tissue in an Eppendorf tube which is kept on ice or at 4 °C. The tissue is 

kept as dry as possible to avoid premature activation of the sperm. Before fertilisation, sperm is 

activated by mixing a small piece of testis with FSW at 1:8000. Sperm quality is visually accessed and 

sperm is added to mature oocytes at low concentration to avoid polyspermy. 
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Ca-free seawater 
437  mM  NaCl 
9  mM KCl 
22.9 mM MgCl2 x 6 H2O 
25.5 mM MgSO4 x 6 H2O 
2.1 mM NaHCO3 

3.2 CLONING AND MOLECULAR WORK 

3.2.1 Cloning and construct preparation 

To generate the constructs use for the experiments described here I used the following general 

strategy. Firstly, I identified the amino acid sequence of the human protein of interest from the NCBI 

database, which I then used to perform a BLAST search in the starfish transcriptome database 

(http://starblast.embl.de/). This transcriptome was generated by the EMBL Sequencing facility using 

Patiria miniata oocytes. If the proteins could not be directly found in the starfish transcriptome I used 

the sea urchin genome as an intermediate step (http://Echinobase.org)(Cameron et al. 2009) to find 

the homolog there and using the sea urchin sequence probe the starfish transcriptome again. Using 

the thus obtained sequence I either designed primers for PCR amplification in the 5’ and 3’ UTR of the 

respective gene or designed a construct for synthesis by Genewiz (GENEWIZ, South Plainfield).  

Using the primers I set up PCR reactions to amplify the protein sequence using cDNA as template. The 

cDNA was generated from all the mRNAs of mature eggs and embryos, isolated using the Invitrogen 

Dynabead® Oligo(dT)25 kit and reverse transcribed using the Invitrogen GeneRacer® kit. After PCR 

clean-up using the Qiagen kit (PCR purification #28104), I ligated the resulting DNA fragment into the 

pJet1.2 vector system using the corresponding kit (ThermoScientific #K1232). For a list of primers used 

in this project see Table 2.  

The so clones constructs as well as those synthesised were tagged using genetically encoded 

fluorescent proteins linked either N- or C-terminally to the protein sequence (see Table 1). The tags 

used were either EGFP or mCherry, either as single proteins or in triplicate. To achieve the tagging a 

conventional “copy-and-paste” approach was employed, wherein both the receiving vector as well as 

the construct and the fluorescent proteins were cut using restriction enzymes and then ligated 

together (see Figure 27). The restriction enzymes used were purchased from either NEB or 

ThermoScientific. The ligation was performed using the T4 ligase (NEB #M0202).   

The vector system into which the sequences were inserted is the pGEMHE vector, with an Ampicillin 

resistance and a T7 promoter for the RNA production. The constructs were validated using sequencing 

by GATC (GATC Biotech AG, Constance) and amplified using either Mini- or Midi-preps (Qiagen kit 

#27106). 

http://starblast.embl.de/
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Figure 27: Copy-and-paste cloning strategy employed to generate constructs.  
The receiving vector pGEMHE with a T7 promoter was cut with two restriction enzymes (RE I and RE III) while the pJet1.2 
vector containing the sequence of the protein of interest (POI) was cut with RE I and RE II. The fluorescent protein sequence 
was cut from its donor vector using RE II and RE III. All 3 fragments were ligated to generate the pGEMHE-POI-FP construct 
containing the protein of interest fused to the fluorescent tag. 

Table 1: List of constructs used in the project. 

Protein 
name 

Vector C-/N-
terminal 
tag 

Fluorescent 
protein 

Species of 
origin 

Generated by 

Utrophin pGEMHE N EGFP3, 
mCherry3 

 Originally (Burkel et al. 2007), 
subcloned by Lenart lab 

Lifeact pGEMHE N EGFP Mus 
musculus 

Originally (Riedl et al. 2008), 
subcloned by Lenart lab 

EB3 pGEMHE N EGFP3, 
mCherry3 

 Originally (Stepanova et al. 2003), 
subcloned by Lenart lab 

MRLC pGEMHE N EGFP, 
mCherry 

Patiria 
miniata 

Originally by Masashi Mori, 
Subcloned by me 

Myo-II HC pGEMHE C EGFP, 
mCherry 

Patiria 
miniata 

Originally by Sarah Thome and 
Kalman Somogyi, subcloned by me 

rGBD pCS2 C EGFP Mus 
musculus 

(Benink & Bement 2005) 

Ect2 pCS2 C EGFP, 
mCherry 

Xenopus 
laevis 

(Bement et al. 2015) 
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Cyclin B pGEMHE N EGFP3, 
mCherry3 

Patiria 
miniata 

Johanna Bischof 

MBS/ 
MYPT1 

pGEMHE N EGFP Patiria 
miniata 

Johanna Bischof 

MyoGEF pGEMHE C EGFP Patiria 
miniata 

Johanna Bischof 

GEF-H1 pGEMHE C EGFP Patiria 
miniata 

Johanna Bischof 

 

Table 2: List of primers used for cloning from cDNA or mutagenesis. 

Name Sequence Length 

cycB-f4 CCATGGCAGTACAAGCATTGCTAT 24 

cyclinB-r3 TCGAGATTTATCGAAGAAGAAGCTTG 26 

MLC-S1.2A_fwd ATCACAATGGCTGCTAGAAAGACG 24 

MLC-S1.2A_rev CGTCTTTCTAGCAGCCATTGTGAT 24 

MLC-S1.2E_fwd ATCACAATGGAAGAAAGAAAGACG 24 

MLC-S1.2E_rev CGTCTTTCTTTCTTCCATTGTGAT 24 

MRLC-TS17.18AA(2)_fwd GCTCAGCGTGCGGCTGCTAACGTGTTTGCG 30 

MRLC-TS17.18AA(2)_rev CGCAAACACGTTAGCAGCCGCACGCTGAGC 30 

MRLC-TS17.18EE-rev AAACACGTTTTCTTCCGCACGCTG 24 

MRLC-TS17.18EE_fwd     CAGCGTGCGGAAGAAAACGTGTTT 24 

MYPT1_I_fwd GCACTGCATCATGGGTAGGTGA 22 

MYPT1_II_rev2 ACACTACAGGACGCTAAGCGAG 22 
 

3.2.2 Mutagenesis 

I generated mutations of both MRLC (see results) as well as cyclin B on the basis of the existing 

constructs using the Clontech In-Fusion® HD Cloning Plus Mutagenesis kit. This was done by producing 

a primer (see Table 2) covering the intended mutation site facing outwards to generate via PCR an 

open vector containing at each end the desired mutation. These linear vectors were re-circularised 

using the In-Fusion HD Enzyme (Clontech), generating a full vector containing the mutation (see Figure 

28). The mutations were validated by sequencing.  

Figure 28: Mutagenesis strategy. 
Mutagenesis was performed by introducing the mutation via PCR with primers containing the mutation and ligation of the 
resulting PCR copies of the vector containing overlap sufficient for ligation. This was done using the Clontech In-Fusion 
Mutagenesis kit. 
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3.2.3 RNA preparation 

To visualise the localisation of the proteins in the oocyte I injected RNA of the respective constructs 

into the oocyte. The RNA was produced in vitro from the above constructs using CellScript AmpliCap-

Max™ T7 High Yield Message Maker Kit for the pGEMHE constructs and AmpliCap™ SP6 High Yield 

Message Maker Kit for the pCS2 constructs and the A-Plus™ Poly(A) Polymerase Tailing Kit for both. 

Briefly, the constructs are first linearized, in vitro transcription and subsequent addition of a polyA-

tail.  

Linearization is performed by digestion with a set of restriction enzymes, always a combination of 

SgrAI, AscI, and AflIII, depending on the specific construct sequence. The linearized DNA was purified 

using a phenol/chloroform extraction and subsequently dissolved in RNase-free water to a 

concentration of around 1 µg/µl. The linearization success, as well as DNA quality, was tested by 

running a sample on a gel.  

This linear DNA construct served as a starting point for the in vitro transcriptions and polyA-tailing 

using the CellScript kits. The instructions in the kits were followed with no modifications. The final RNA 

was purified via an isopropanol extraction, diluted in RNase-free water to a final concentration of 

5 µg/µl and the quality checked on a gel.  

3.3 INJECTION  

The microinjection system was pioneered in its current form and application to starfish oocytes by 

Mark Terasaki and Rindy Jaffe and is described in detail at http://mterasaki.us/panda/injection/. It 

was originally applied to the starfish by (Hiramoto 1962) and is based on the idea of allowing picolitre 

precise injections using a syringe system. The high precision of the injected volumes is achieved by 

using microneedles containing small amounts of mercury, which allows the conversion of millilitre 

changes in syringe volume to picolitre changes in the tip of the needle.  

The starfish oocytes are sensitive to contaminations of the glass coverslips, which therefore have to 

be specifically washed before use. To wash coverslips, they (Menzel Gläser #1) are heated and 

incubated in a detergent-water solution before overnight incubation in 1 M HCl. The coverslips were 

then washed stringently in ddH2O and kept in Ethanol until being dried before use.  

To allow for injection and subsequent imaging, the starfish oocytes are kept in a specially designed U-

shaped injection chamber (Figure 29B), in which the oocytes are positioned on a shelf-like structure 

atop a coverslip to hold in the correct position for injection (Figure 29A). The shelf is constructed using 

specifically washed coverslips, a combination of single-sided and double-sided tape and a small piece 

of glass (Figure 29A). A standard coverslip, as well as the shelf coverslip, are attached to the injection 

http://mterasaki.us/panda/injection/
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chambers using silicon grease (GE Bayer Silicones) which seals the sides of the chamber. It is then filled 

with FSW and the oocytes can be incubated in this chamber with regular washes for a number of days.  

Figure 29: Chamber setup for injection. 
A) Shelf coverslip holding the oocytes in position for injection. B) Complete microinjection chamber with oocytes in position. 
Figure from (Borrego Pinto 2015)  

To inject the oocytes, the following procedure is used: 

The solution that is to be injected is loaded into a loading capillary (Drummond) between portions of 

dimethylpolysiloxane silicone oil (20 cts viscosity, Sigma). The oocytes can be injected with a wide 

variety of liquids – e.g. RNA, proteins, drugs, marker molecules. The loading capillary is placed in the 

holding ridges of the injection chamber. 

Figure 30: Injection of the oocyte. 
The needle is filled with oil, mRNA and another layer of oil, as well as mercury and at the open end connected to the injection 
system. It is then positioned next to the oocyte which is to be injected (not to scale), held on the injection shelf. From (Borrego 
Pinto 2015).  

The microneedles are fabricated by pulling a capillary (Drummond) on the needle puller (Narishige 

PN-3 Glass Microelectrode Horizontal Needle Pipette Puller settings Heater 9, Magnet 8, Main Magnet 

8). The needle is filled from the back with a small volume of mercury (Sigma). The needle is then placed 

into the syringe injection system CellTram Oil manual injector, which is attached to a wide-field Nikon 

Eclipse Ti. The syringe system is filled with mineral oil (Sigma). The tip of the needle is broken via gentle 

tapping against the loading capillary and the mercury is pushed to the very tip of the needle and the 

needle is then filled with a buffer of oil from the loading capillary before sucking in the desired amount 

of liquid from the loading capillary. The needle filling is capped with a small amount of silicon oil to 

prevent mixing of RNA and sea water during the passage of the needle through the chamber (Figure 

30). The needle is then gently pushed into the oocyte and the liquid extruded together with a small 
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droplet of oil before the needle is removed.  The procedure is then repeated for all the oocytes in the 

chamber which have the correct orientation towards the cover slip, amenable for imaging. 

In the case of RNA injection, the cells are incubated overnight at 14 °C to allow for translation of the 

RNA, while for other injections imaging can proceed immediately.  

To calibrate the injected volume, I measured the diameter of oil droplets of units of injection volume 

(determined by scale in the microscope eyepiece) extruded into the water and calculated the 

conversion between arbitrary units of injection volume (IU) and volume as 𝑉[𝑝𝑙] = 3.033 ∗ 𝐼𝑈. 

3.4 IMAGING 

3.4.1 Confocal fluorescence microscopy 

The vast majority of the imaging for this project was performed on a Leica SP5 confocal microscope 

using the Leica LAS software, with a SuperZ Galvo stage, a 1.1 NA HC PL APO 40x water immersion 

objective (Leica), and two Hybrid detectors (Leica HyD).  

The oocytes were imaged directly in the injection chambers by placing these upside-down on the 

microscope stage in which case the oocytes rest directly on the cover slip above the objective. The 

standard imaging settings I used were 400-700 Hz scan speed, zoom 1.5-1.7, line average 2-3x, 

bidirectional scan on a single z-slice over time (xyt mode) on multiple positions. I selected oocytes for 

imaging which had a specific orientation with the AP-VP axis orthogonal to the objective and selected 

a single z-plane as close as possible to the AP-VP equator. This meant imaging relatively deep into the 

oocyte, which necessitated high fluorescence levels of my markers and the use of relative high laser 

power. I always attempted to minimise the used laser power to avoid photo-damage while achieving 

good signal levels. To allow for parallel imaging of a number of oocytes in a single chamber I selected 

a time resolution of 10 sec. Occasionally 15 sec frame intervals were also used. This time resolution 

allowed on average 5 to 7 oocytes to be imaged in parallel. 

In the case of acquiring z-stacks, I limited the number of z-slices to 5 per oocyte to minimise exposure 

and chose a z-spacing between 1.5 and 2 µm.  

3.4.2 Wide-field microscopy 

Some experiments were performed on the Zeiss Cellobserver at the EMBL Advance Light Microscopy 

Facility as this is a wide-field system, allowing for the observation of a larger number of cells 

simultaneously with very high time resolution. This system also contains a SuperZ Galvo stage and a 

high-power LED light source (Colibri LED illumination system), a CCD camera and a Zeiss 10x/ 0.30 Ph1 

air objective. Cells were imaged with 100 ms exposure and a time interval of at most 10 sec. 
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3.5 INHIBITOR TREATMENTS 

A list of all the chemicals used in this project can be found below with their specific solvents, 

concentrations, and delivery methods. All chemical stocks were kept at -20 °C in small aliquots and 

defrosted immediately prior to use. The chemical inhibitors which were applied to the cells were 

dissolved in FSW which was exchanged for the water covering the cells and incubated for the given 

times prior to hormone addition. Inhibitors which were injected were loaded into a loading capillary 

and injected as described above. Inhibitors were injected around 10 min after NEBD, roughly 20 min 

before the contraction wave as the direct delivery makes long incubation times unnecessary. Controls 

were performed using the respective solvent as the only treatment.  

For the local inhibitor treatments, cells were imaged in an adapted set-up to allow application of the 

drug on the microscope. To do this, the shelf coverslips containing the injected oocytes were sealed 

to the bottom of µ-Dish (Ibidi) which had their plastic bottom removed. The local inhibitor treatments 

were performed by adding the inhibitor directly on the open front of the shelf containing the oocytes 

using a small pipet. 
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Table 3: Used chemicals with function, concentration, solvent and incubation time. 

Name Supplier Function Stock 
conc. 

Final conc. Solvent Delivery 
method 

Incubation 
time/time 
to action 

Other comments 

Actinase E Sigma-
Aldrich 

Removal of jelly 
coat 

10 
mg/ml 

Dilution 
1:100 

Water Added to 
medium 

30 min Wash 3x with FSW after 
incubation 

EGTA Sigma-
Aldrich 

Chelate Ca2+ ions 0.2 M 5 mM – 100 
mM 

Water Added to 
medium 

20 min Added in Ca-free SW 

Roscovitine Merck 
Millipore 

Cdk1 inhibitor 50 mM n/a DMSO Local 
treatment 

5 min Added 2 µl of stock locally 

Flavopiridol Santa Cruz Cdk1 inhibitor 10 mM n/a DMSO Local 
treatment 

5 min Added 2 µl of stock locally 

RO-3306 Santa Cruz Cdk1 inhibitor 10 mM n/a DMSO Local 
treatment 

5 min Added 2 µl of stock locally 

Cytochalasin D Sigma Actin depolym. via 
filament capping 

10 mM 20 µM DMSO Added to 
medium 

40 min  

Latrunculin B Cayman 
Chemical 

Actin depolym. via 
monomer 
sequestering 

50 mM 5 µM DMSO Added to 
medium 

5 min  

Nocodazole Sigma MT 
depolymerisation 

20 mM 3.3 µM DMSO Added to 
medium 

5 min  

ML-7 Enzo MLCK inhibitor 20 mM 100 µM DMSO Added to 
medium 

40 min  

Peptide 18 Tocris MLCK inhibitor 1 mg/ml 30 µM in 
medium 
286 pg 
injected 

Water Added or 
injected 

20 min  

Y27632 Enzo Rok inhibitor 100 mM 3 mM – 12 
mM 

Water injected 20 min Effect from 3 mM , full 
inhibition >7 mM 

Phalloidin Invitrogen F-actin stabilising 
drug 

10 
mg/ml 

250 pg MeOH Inject 5 min 10 mg redissolved in 1 µl 
PBS before injection 
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C3 transferase Enzo RhoA inhibitor 1 µg/µl 35.5 pg – 
143 pg  

Water Inject 20 min  

Blebbistatin Abcam Myosin II inhibitor 100 mM 300 µM DMSO Added to 
medium 

1 h  At this concentration 
aggregates form in FSW 

Para-
Nitroblebbistatin 

Drugmotif Myosin II inhibitor 50 mM 300 µM DMSO Added to 
medium 

1 h  

10kDa-Dextran 
tagged with 
Alexa647 

Invitrogen Passive 
fluorescently 
labelled marker 

20 
mg/ml 

2 ng Water injected n/a 30 units were injected 

Ampicillin Sigma Antibiotic 100 
mg/ml 

1:1000 Water n/a n/a Added to LB for bacteria 
culture 

Kanamycin Sigma Antibiotic 50 
mg/ml 

1:1000 Water n/a n/a Added to LB for bacteria 
culture 

500kDa-Dextran 
tagged with Cy5 

Invitrogen Passive 
fluorescently 
labelled marker 

20 
mg/ml 

2 ng Water injected n/a Mixed 1:1 with Cdk1 

Paraformaldehyde EMS Fixative 16 % 1 % Fix 
buffer 

n/a n/a  

Glutaraldehyde  Fixative 25 % 0.1 % Fix 
buffer 

n/a n/a  
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3.6 PROTEIN INJECTION 

The method to purify active Cdk1/cyclin B complex from starfish oocytes was pioneered by the 

Kishimoto lab (Okumura 1996). I was kindly gifted some of the active protein by Eiichi Okumura, so 

did not perform the purification myself. In short it is done by generating high-speed extracts of 

maturing starfish oocytes, before incubating on a p13suc1-Sepharose column before elution by buffer 

A (80 mM Na-β-glycerophosphate, 20 mM EGTA, 15 mM MgCl2, 1 mM DTT, 10 % sucrose, 01 % Nonidet 

P-40). The procedure is described in detail in (Okumura 1996).  

I prepared aliquots of the active protein and froze in liquid nitrogen and kept the aliquots at -80 °C. To 

inject the protein was defrosted and loaded in a loading capillary and used immediately to maintain 

functionality. The capillary was kept on ice between the injections and refrozen in liquid nitrogen 

between experiments. As the protein is unlabelled, I co-injected it with large fluorescently-labelled 

Dextran to mark the site of injection.  

I also injected other fluorescently labelled proteins as an alternative to expression from mRNA. The 

proteins I used were H1 from calf thymus (Merck), Alexa647 labelled and tubulin from pig brain 

labelled with Cy3. The labelled tubulin was prepared by Kasia Tarnawska (Nedelec group, EMBL). 

These proteins were injected immediately prior to live imaging.  

When required for normalisation, I injected the oocytes with 10 kDa Dextran tagged with Alexa647, 

which serves as a passive marker to normalise optical effect brought on by imaging. This normalisation 

was performed for the quantifications of cyclin B and CalciumGreen. 

3.7 FIXATION AND IMMUNOHISTOCHEMISTRY 

To test for the presence of a gradient of Cdk1 activity in the oocytes, I fixed starfish oocytes and tested 

different antibodies on them. The antibodies tested were two versions of a rabbit antibody against 

starfish cyclin B – one generated by the Kishimoto lab and one generated by the Chiba lab – and an 

antibody against the active form of Cdk1, specifically the Tyr 15 phosphorylation site (Cell Signalling 

Phospho-cdc2 (Tyr15) Antibody #9111). This antibody has been reported to respond to a wide range 

of species from S. cerevisiae to Xenopus and human (Cell Signalling). I also fixed oocytes expressing 

injected cyclin B-EGFP RNA and staining using a GFP antibody (Rabbit anti-GFP #598 MBL Life Science).  

I tested both fixation protocols using aldehyde fixes as well as cold Methanol fixes. For the aldehyde 

fix I used a variation of the recipe developed by George von Dassow for echinoderm oocytes and 

embryos (Strickland et al. 2004), where a mixture of formaldehyde and glutaraldehyde in a specialised 

buffer (100 mM HEPES, 50 mM EGTA, 10 mM MgSO4, 0.5 % Triton, 1 % formaldehyde, 0.1 % 
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glutaraldehyde) is used to fix the oocytes for 1 h at room temperature. For the methanol fix I followed 

the protocol outlined in (Terasaki et al. 2003), where oocytes are incubated in -80 °C cold methanol 

for 1 h for fixation before rewarming to room temperature and washing in PBS. 

To perform both the fixation as well as the subsequent antibody staining I used both standard 

protocols with long incubation times at room temperature - primary AB overnight at 4 °C and 

secondary AB for 2 h, as well as 3x 5 min washes in PBS-T – as well as the specialised PELCO Biowave 

Pro microwave (Ted Pella, Inc.) which allows a much quicker procedure by increasing chemical 

penetration without heating the samples (see Table 4). 

Table 4: Microwave protocol for fixation. 
Originally developed by Joana Pinto and Natalia Wesolowska. 

 

All oocytes were stained using either an antibody against nuclear pore protein complexes (MAb414 

from Biolegend) or against tubulin (DM1A Sigma-Aldrich) and Draq5 (Biostatus) in addition to the 

antibody being tested, to ensure that the staining itself was successful. The secondary antibodies used 

were goat-anti-mouse IgG Alexa488 and goat-anti-rabbit IgG Alexa 546 from Invitrogen. Once the 

staining was complete oocytes were placed in a drop of ProLong® Gold Antifade (Life Technologies) 

between an objective slide with a spacer of double sided tape and a coverslip and imaged on the 

confocal as described above.  
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3.8 PHYSICAL MANIPULATIONS 

3.8.1 Surface tension measurements 

The technique to use pipet suction to measure surface tension has been well-established and has 

historically been applied to measure these in a number of marine animals including starfish. I 

performed surface tension measurements with the help of Jean-Leon Maitre from the Hiiragi lab at 

EMBL, using the set-up he established and which has previously been described for use in mouse 

embryos (Maître et al. 2015). Briefly, I forged the micropipettes for the measurements from capillaries 

(World Precision Instruments TW100-3) in a needle puller (Flaming Brown Sutter Instrument) and then 

cut them so that an opening of a diameter of ≈30 µm for measurements on mature oocytes and 

≈70 µm for measurements in immature oocytes was generated. The needles were then bent to an 

angle of roughly 45°. 

The thus produced micropipette was mounted in a Narishige micromanipulator connected to a liquid 

reservoir. The pressure in the system is controlled by a microfluidic pump which has a pressure 

resolution of 7 Pa, using the Labview software (National Instruments) (Maître et al. 2012).  

The jelly coat of the oocyte was removed previous to the measurements using Actinase E treatment 

for 30 min and subsequent washes. The cells were first measured either in the immature state as well 

as in the mature state after meiosis was completed. Secondly, two oocytes were measured during 

meiosis at roughly 5 min time intervals. 

To perform the actual measurements, the pipette is placed next to oocyte and the pressure is slowly 

increased until the protrusion into the pipette forms a half-sphere, i.e. it has the same radius as the 

pipette opening (Figure 31). In the immature oocyte, care was taken to measure not at the animal 

pole but laterally in the oocyte. The surface tension Tc was calculated from the size of the cell (RC), the 

size of the bulge (RP) and the required negative pressure (ΔP) using the following formula based on 

Young-Laplace’s law. 

∆𝑃 = 2𝑇𝑐 (
1

𝑅𝑝
−

1

𝑅𝑐
) 

𝑇𝑐 =  
∆𝑃

2 (
1

𝑅𝑝
−

1
𝑅𝑐

)
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Figure 31: Surface tension measurements.  
Picture of an immature oocyte on which the measurement is being performed with a hemisphere sucked into the pipette and 
showing the relevant measurements for calculating the tension. 

3.8.2 Centrifugation 

In the starfish oocyte, the nucleus can be moved from its original position at the animal pole to another 

site of the cortex by centrifugation (Miyazaki et al. 2000). To perform centrifugation oocytes are placed 

in the shelf chambers used for injection and these chambers are positioned in 50 ml Falcon tubes using 

custom-designed holders (Figure 32). The tubes are filled with FSW and centrifuged at 420 g (2400 

rpm Heraeus Multifuge) for 45 min at 4 °C.  

To determine the effect of the centrifugation I measured the relative angles between the axis of 

contraction and the old and new animal-vegetal axis respectively. I determined the old animal-vegetal 

axis using a marker for the centrosomes, EB3 or POC1, which sit at the animal pole and are not moved 

by centrifugation. While the new animal-vegetal axis is set by the point at which the nucleus connects 

to the cortex. The angle between the contraction wave and the two animal-vegetal axes was measured 

using the ImageJ Angle tool.  
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Figure 32: Set-up for centrifugation of starfish oocytes.  
Oocytes are placed on the coverslip shelves in random orientation and centrifuged in 50 ml Falcon tubes, resulting in all nuclei 
facing the top after centrifugation. Figure adapted from (Borrego Pinto 2015). 

3.8.3 Shape change wells 

To modify the geometry of the oocytes I used microfabricated chambers, which were originally 

developed by Nicolas Minc for application in sea urchin embryos (Minc et al. 2011). He helped me in 

the design and fabrication of the chambers which was performed by me in his lab at Institute Monod, 

Paris. 

To generate the chambers, I first designed the mask with a variety of shapes (Figure 33). To ensure 

that the cells move into the shapes, the shapes are designed for a height of 140 µm and the surface 

area of the desired shapes calculated accordingly. The mask was designed using the free Software 

QCAD and printed by Selba S.A.   

The chambers are produced using a photolithographic process. In this the wavers which form the 

substrate were first stringently cleaned using Acetone, Isopropanol, and ddH2O, and subsequently 

dehydrated by baking. The wavers were then pre-coated using the MicroChem OmniCoat. As the 

desired film thickness was at the highest limit possible with the used resin, the wavers were spin-

coated with SP8-50 at 750 rpm. Next, the wavers with the resin on them are soft baked to evaporate 

the solvent for 20 min at 65 °C and for 60 min at 98 °C. The mask with the designed shapes was placed 

on top of the thus prepared wavers and exposed to UV light for 22 sec, and then baked again to 

crosslink the just irradiated portions of the waver for 1 min at 65 °C and 12 min at 98°C. The wavers 
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were then placed in the SU-8 Developer for 18 min or until the run-off after isopropanol wash was 

clear. The finished chips were washed thoroughly with isopropanol and then cured at 130 °C, before 

slowly cooling down over 30 min to avoid cracking.   

 

Figure 33: Shape change wells.  
A) Mask design of the chosen shapes including control shapes in the last row. The final chip includes many repetitions of these 
blocks. B) Mechanism of introducing the cell into the shapes, republished from  (Minc et al. 2011), with permission by Elsevier.    

The PDMS chips were cast by pouring a mixture of PDMS and curing agent (10:1, Sigma) onto the 

positive and baking for at least 4 h at 65 °C. The hardened PDMS was then carefully cut with a scalpel 

and peeled away from the master. Immediately before each experiment, the PDMS chip was cleaned 

sequentially in acetone, isopropanol, and ddH2O. It was then attached to an objective slide with feet 

via double-sided tape and surface-activated by plasma cleaning (Zepto Plasma Cleaner from Diener). 

A drop of FSW was placed in the middle of the chip immediately after plasma treatment. 

As the immature oocytes are too stiff to enter into the shapes, I matured the cells in a dish before 

placing them onto the prepared and activated chip 40 min after hormone addition. At this stage, the 

cells are in the middle of metaphase and 10-15 minutes remain until the start of the contraction wave. 

A coverslip was then gently lowered onto the chip and the cells were pushed into the shapes by 

sucking out some of the water between chip and coverslip.  

The chip was then inverted and imaged on the confocal microscope as described above. After 

treatment, the chip was cleaned to remove the oocytes left in the moulds. The chips were reused 

multiple times.  
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3.9 IMAGE ANALYSIS AND PROCESSING 

3.9.1 General image processing 

I used ImageJ/Fiji for general viewing and processing of the imaging data (Schneider et al. 2012; 

Schindelin et al. 2012). For the images presented here, I adjusted the brightness and contrast settings 

to allow the important aspects to be seen as well as reversing the LUT for better visualisation in print. 

For multi-channel images, I overlaid the channels using the Image->Colour->Channel Tools and 

adjusting the relative intensities of each channel. In the cases of z-stacks, I applied the 

Image->Stacks->Z Project with maximum intensity projection. 

3.9.2 Curvature measurement 

To quantify the contraction wave I used an algorithm originally written for this specific problem by 

Imre Majer as an undergrad student in the Lenart lab. I used his code as the basis for my work with 

only a few modifications to improve functionality and usability.  

This analysis uses Matlab (MathWorks® Inc.) and Miji – a java package allowing interchange of image 

data between Matlab and ImageJ (Sage et al. 2012).  

The goal of the analysis is to automatically segment each image in a time series, calculate the curvature 

of the thus segmented cortex and for fluorescent images measure the fluorescence intensity along 

the cortex during the contraction process. To do this the workflow shown in Figure 34 was used. This 

analysis pipeline is designed to work with both brightfield and fluorescence images with varied 

fluorescence distributions. 

Firstly I want to allow ImageJ to automatically pick a rough outline of the cell. To do this I run a 

Laplacian filter and an averaging filter on the images which causes a sharpening of the edges and a 

reduction of any potential gaps in the signal respectively. Then a threshold is picked manually and the 

resulting mask (with any holes filled if necessary) is used as the starting point for the proper 

segmentation. This first mask already matched the rough shape of the cell but is not sufficient for 

detailed analysis. To perform a detailed segmentation a sparse-field Level Set algorithm is used with 

a lambda value of 2, which determines the sensitivity of the segmentation to small signal changes. The 

mask serves as a starting point for the algorithm which moves iteratively inwards. For the first image 

the algorithm running with 300,000 iterations, normally gives a good segmentation result, but this 

value can be adjusted based on the particular image quality. After the first image of the time series is 

segmented the user is consulted to check the quality of segmentation and potentially change the 

segmentation parameters. The following images in the time series are then automatically segmented 

using Level Set with the outline of the previous image serving as a starting point. 
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Figure 34: Image Analysis pipeline. 
This details the individual steps for a single example image as well as the different output types of the calculated data.   

Once the whole time series has been segmented, the curvature of the cortex is to be calculated. Before 

this can be done, the segmented outline needs to be smoothed as the Level Set algorithm gives a pixel-

fine outline and in this local curvature changes give high background noise level compared to the cell-

level curvature changes in which I am interested. To perform this smoothing the segmented outline is 

transposed into polar coordinates and smoothed by fitting a piecewise polynomial. The standard 
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settings I used for the smoothing were a 5th order polynomial with the cortex segmented into 200 

points. 

Furthermore, the axis of the cell is determined at this step, by detecting the movement of the centroid 

of the segmented object and plotting this point over time. The movement of the centroid has 

commonly two components – firstly the drift of the system which only leads to small displacements, 

and secondly the contraction wave which leads to a big shift in the centroid position between time 

points. The user can fit a line through the points representing the contraction wave and thereby set 

the animal-vegetal pole axis. When the contraction is not present, the axis is set based on the 

orientation of the oocyte in the images. 

The curvature that is calculated is specifically the radius of the first principal curvature in a small 

segment of the cortex (200 segments along the contour) and is calculated using finite differences by 

minimising the Chan-Vese energy function (Chan & Vese 2001; Lankton & Tannenbaum 2008). As the 

oocyte can have a non-circular starting shape due to compression by neighbouring oocytes the surface 

curvature relative to the first image is also calculated.  

The resulting curvature per point along cortex values can be plotted in two ways. Firstly the values can 

be plotted as a ring around an image of the oocytes for each time point generating a new time series 

which dynamically shows the changes in cortical curvature. Secondly, the values can be plotted in a 

static form as a kymograph, were the curvature values are plotted for each point along the cortex as 

a line for each time point. The kymographs are the main representation of the curvature used here as 

they allow the observation of time behaviour in a single plot. The curvature values are encoded using 

the jet LUT and to allow easy comparison between plots, all are scale to show values between 100 and 

500 µm. 

To measure the fluorescence intensity along the cortex the segmented mask for each image is used 

as a starting point. This mask is then eroded a number of pixels set by the user to contain part or the 

whole cortex area, and a subtraction of the two masks gives a ring overlying the cortex. This ring is 

segmented into small areas similar to those used for the curvature measurements and the 

fluorescence intensity in each of these areas is measured. The values are only plotted in the 

kymograph form as described above. 

3.9.3 Flow measurements via STICS 

To measure the flow of the cytoplasm during the contraction wave a version of spatiotemporal image 

correlation spectroscopy (STICS) was implemented in the Matlab code. STICS was originally developed 

by (Hebert et al. 2005) and relies on measuring the correlation of image intensities across selected 
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spatial and temporal windows. This technology allows us to measure both the directionality and 

velocity of the cytoplasmic flow. In the starfish oocytes, we can measure the flow on both brightfield 

images as well as fluorescent images as the yolk platelets in the cytoplasm form a high-contrast (black 

compared to grey values for cytoplasm both in bright-field as well as in fluorescence microscopy) 

substrate whose movement STICS can measure. The STICS measurements were performed by 

calculating the cross-correlation in an interrogation window with a size of 16 px without overlap in 

space and 6 frames with a time resolution of 50 ms in time. To avoid false result at the boundary the 

edges were avoided by picking a suitable offset and filled by extrapolation from the internal data. All 

these analyses were done on a single 2D plane which was chosen to optically bisect the oocyte at the 

equator along the animal-vegetal axis.  

3.10 DATA ANALYSIS AND PLOTTING 

To compare the measured curvature values between different oocytes and especially between 

treatments is key to allow quantification of the observed changes but it is not trivial. The interesting 

aspect is not so much the maximum or minimum curvature value reached during the contraction 

process. Nor is the average curvature value very informative as the contractile cortex is only a small 

part of the whole cortex and averaging obscures the true effect. 

After testing a wide variety of methods to condense this complex multidimensional data set of 

curvature values during contraction into a single reliable and relevant number, I chose to quantify the 

contraction strength using the variance of the radius of curvature values during the contraction wave. 

To do this I summed all cortex area segments having specific curvature values. As the oocyte has a 

certain intrinsic curvature, I quantified the curvature during the contraction wave and during 

metaphase when the curvature is not changing and subtract the background value (Figure 35A). The 

dataset with different strengths have different variance as more areas of the cortex have either a high 

or low radii of curvature (Figure 35B). These measurements were performed in Matlab or in Excel.  
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Figure 35: Quantifying strength of contraction wave. 
A) The oocytes have an intrinsic curvature which is subtracted from the measured curvature values, here for an oocyte treated 
with Blebbistatin which shows very low contraction, i.e. no large difference compared to the background. B) Surface curvature 
measurements for different treatments with different strengths, showing different spreads of values, which are measured in 
the variance.   

The duration of the contraction wave was determined either in the image series or additionally also 

in the kymographs, depending on data quality, and the speed was calculated based on the duration 

and distance along the oocyte cortex. 

All data was plotted in the software R using the ggplot2 package (R Core Team 2016; Wickham 2009). 

In the boxplots used, the top and bottom lines of the box mark the 25th and 75th percentile of the data, 

while the line in the middle marks the median. The whiskers mark the highest and lowest data points 

still within 1.5 interquartile range.   
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4.1 CHANGES IN CORTICAL CONTRACTILITY DURING MEIOSIS 

4.1.1 Changes to the cortex from immature to mature oocyte 

During the process of maturation, the immature oocyte is transformed into a fertilisable egg via 

meiosis. This division process goes along with changes in the cortical contractility, which manifest in 

the contraction waves passing across the cell. The first marker for changes to the cortex is the change 

in surface tension observed during meiosis. Measurements of surface tension have a long tradition in 

the study of eggs and embryos and have previously been performed on the starfish oocytes, using 

both pipet suction (Sawai & Yoneda 1974; Yoneda et al. 1982) and plate compression (Hiramoto 1976; 

Ikeda et al. 1976). Therefore, I first set out to confirm the published results in the particular starfish 

species I used, Patiria miniata.   

The measured surface tension in the immature oocytes is very large (Figure 36A) with values averaging 

around 10 000 pN/µm, which is identical after conversion to the value of 1 dyne/cm measured in 1976 

by Ikeda and colleagues for a related species (Ikeda et al. 1976). After meiosis is completed, the cells 

are an order of magnitude softer (Figure 36A), indicating the drastic change in the cortex. 

To determine the specific time point at which this drastic change in the surface tension takes place, I 

also measured the surface tension over the course of the whole division process (Figure 36B). From 

this, it becomes clear that the change in the surface tension occurs alongside nuclear envelope 

breakdown (NEBD) around 20 min after hormone addition, which signals the beginning of metaphase 

(Figure 36B). The surface tension that the oocyte reaches at metaphase is around 1000 pN/µm. This 

value is very similar to the surface tension measured both in other oocytes in metaphase (e.g. mouse 

(Larson et al. 2010)), as well as in mitotic cells in metaphase (Fischer-Friedrich et al. 2014). Interestingly 

though, while the target value for metaphase is very similar between these different systems, oocytes 

and mitotic cells reach it from two different directions: oocytes reduce their surface tension (Larson 

et al. 2010; Chaigne et al. 2013), while cells in mitosis increase their surface tension to reach the 

metaphase surface tension (Stewart et al. 2011). 

In the starfish oocyte, the surface tension stays relatively constant throughout metaphase and then 

sharply peaks at the transition into anaphase around 70 min after hormone addition. This is the point 

at which the surface contraction wave passes across the cell (Figure 36B). The surface tension levels 

then drop again as the cell enters into metaphase II, before spiking again at anaphase II as the second 

contraction wave crosses the cell. This repetitive behaviour is consistent with our knowledge of 

meiosis, in which two cell cycles immediately follow each other.  
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These changes in the surface tension affect the cell shape and these shape changes can be quantified 

by measuring the radius of the surface curvature. When these curvature values across the whole 

maturation process are plotted in a kymograph certain characteristic become apparent (Figure 36C). 

Both the softening at NEBD as well as the spikes in surface tension at anaphase I and anaphase II go 

along with waves of shape changes moving across the cell, although the extent of these differs.  

The observation that the shape change travels across the cell tells us that the changes to the surface 

tension do not happen everywhere at once but move progressively across the cell, which was not 

detected in the surface tension measurements in Figure 36B as they were performed only at one point 

of the cortex. Simultaneously it becomes clear that the waves are not equal, as the wave of softening 

at NEBD starts at the animal pole (AP) of the cell, where the nucleus is, and moves towards the vegetal 

pole (VP), while the two contraction waves at anaphase move in the opposite direction (Figure 36C). 

Of these two surface contraction waves (SCWs), the first one is much more pronounced and was the 

focus of the investigation described in the following.  

Figure 36: Cortical changes during the oocyte maturation.  
A) Surface tension in the immature and mature oocyte shows a significant difference (p<0.0005). B) Surface tension over the 
time course of meiosis for two example cells, showing the softening at NEBD and the spikes in tension at the two contraction 
waves. C) The radius of surface curvature of the oocyte plotted as kymograph showing the changes in curvature at NEBD, 
SCW I and SCW II. 
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4.1.2 Description of the first surface contraction wave 

If we look in more detail at the first surface contraction wave occurring at anaphase of meiosis I, the 

quantification shows that the contraction wave is, in fact, a band of flattening. This starts at the vegetal 

pole (VP) and moves across the oocyte towards the animal pole (AP) (Figure 37A and C). It arrives at 

the animal pole at the time of polar body formation, as visible in Figure 37A.  

Figure 37: Surface contraction wave.  
A) The radius of curvature plotted as a ring plot along the brightfield images of the oocyte. This shows the corresponding 
shape and the band of flattening moving from VP to AP. B) Cytoplasmic flow during the contraction wave measured by STICS, 
showing biphasic behaviour. C) Detailed view of the cortical flattening during the first SCW as kymograph along the cortex, 
measured as the radius of curvature. All times relative to NEBD. The asterisk marks the polar body.  

This change in the cell shape leads to cytoplasmic flow along with the contraction wave. The flow was 

measured using spatiotemporal image correlation spectroscopy (STICS) and revealed to be biphasic 

(Figure 37B). In the first phase, when the contraction starts and progresses across the vegetal 

hemisphere of the cell, the flow is relatively slow and is directed towards the animal pole. When the 

contraction reaches the equator halfway between animal and vegetal pole the flow stops and 

subsequently reverses as the contraction continues towards the animal pole. It reaches its peak 

velocity pointing away from the animal pole immediately prior to the protrusion of the polar body 

(Figure 37B). This flow behaviour is consistent with the cytoplasm behaving as a passive fluid which is 
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pushed around the cell by the contraction of the cortex. It is important to note that the observed flow 

in the oocyte takes place in the bulk of the cytoplasm and there is no or very little flow in the region 

close to the cortex. The flow we observe in response to the contraction wave is, therefore, distinct 

from the cortical streaming phenomenon observed in C. elegans embryos prior to cytokinesis which 

is mainly observed in the subcortical regions (Munro et al. 2004).  

The detailed analysis of the contraction using brightfield imaging with high time resolution allows me 

to link the shape changes and flow patterns to form a model of the physical process of the contraction 

wave (Figure 38). When we compare this model to the original model of contraction waves and 

cytoplasmic flow in starfish oocytes established by Hamaguchi and Hiramoto in 1971, we find that in 

the basic description of the shape change the models agree (Figure 38). At the same time, with the 

higher time resolution and sophisticated image analysis techniques, I can detect the more subtle early 

shape changes and can correctly assign the cell shape to the observed flow. This was not possible in 

the previous work and this explains why the correlation between shape change and flow pattern that 

I find is somewhat in opposition to the correlation established by Hamaguchi and Hiramoto. 

In summary, a simple observation of the contraction wave along with detailed image analysis revealed 

the contraction wave to be a band of flattening of the cortex that moves across the cell from the 

vegetal to the animal pole. The contraction results in a flow of the cytoplasm whose direction changes 

in accordance with the passing of the wave. 

Figure 38: Model of the shape changes of the contraction wave and the cytoplasmic flow.  
Upper panel shows the original model from (Hamaguchi & Hiramoto 1978) while the lower panel shows the model based on 
my data with the improved assignment of shape and flow stages. Reprinted with permission from Elsevier. 
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4.2 MOLECULAR PATHWAY LEADING TO CONTRACTION 

4.2.1 Role of myosin II in the contraction wave 

4.2.1.1 Myosin II is one of the most abundant molecules in the oocyte 

As the analysis above revealed the surface contraction wave to be a flattening of the cortex, this 

indicates a contractile event. It is therefore of great interest to identify the origin of the contractile 

force. As myosin II is the key motor protein in cells, it is an ideal candidate for driving the contraction 

wave.  

Indeed, myosin II is one of the most abundant proteins in the starfish oocyte. It is found among the 

top 10 proteins in a whole cell proteomics analysis along with key oocyte components such as the 

yolk-related proteins Vitellogenin and fertilisation envelope protein Proteoliaisin (Table 5).  

Table 5: Top 10 proteins in the starfish oocyte as determined by Mass-Spec sorted by counts. 

# Identified Proteins Molecular 
Weight 

average 
counts 

1 Sp-vitellogenin1 153 kDa 281.4167 

2 Sp-vitellogenin1 219 kDa 124.1667 

3 Sp-vitellogenin3 429 kDa 56.91667 

4 Sp-proteoliaisin 149 kDa 45.58333 

5 Sp-myosin-2 438 kDa 32 

6 Receptor-type tyrosine-protein phosphatase R 67 kDa 27 

7 Sp-Macf1-2, microtubule-actin crosslinking factor 1-2 922 kDa 27.08333 

8 Sp-vitellogenin3 138 kDa 25.75 

9 Sp-EMI-EGF  202 kDa 24 

10 Sp-heat shock protein 90 kDa 84 kDa 23 

4.2.1.2 Myosin II localises to the flattened cortex 

To investigate the involvement of myosin II in the contraction wave its localisation was to be 

determined. Commonly in the literature, the localisation of myosin II is investigated using a GFP fusion 

to either one of the myosin light chains (MRLC or MELC). I tested the GFP-tagged version of the starfish 

MRLC, but due to the large cytoplasmic pool, I could not observe any specific localisation of the protein 

during the contraction wave using this fluorescent protein (Figure 39 D). Therefore, I used a GFP-

tagged version of the myosin heavy chain of Patiria miniata1. Starfish oocytes expressing this protein 

allowed me to observe the localisation of myosin II, especially when the myosin heavy chain construct 

was co-expressed with MRLC.  

                                                           
1 The starfish Myosin II heavy chain-EGFP construct was cloned by Kalman Somogyi and Sarah Thome in the 
Lenart lab.  
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In the immature oocyte myosin II is localised to the cortex (Figure 39 A), from where it is lost at NEBD 

in accordance with the observed softening of the oocyte at this time (Figure 36 B). During the 

contraction, myosin II returns to the part of the cortex which is flattened at the time, and moves along 

the cortex as a band until it reaches the animal pole (Figure 39 A). The myosin signal and the cortical 

flattening overlap completely (Figure 39 B). If I quantify the myosin fluorescence intensity in a band of 

cytoplasm underlying the cortex (but not including the cortex), it becomes clear that myosin II is 

recruited from the cytoplasm to the abutting cortex (Figure 39 C). Some of the myosin II molecular 

may also travel along the cortex with the contraction wave. It is important to note that here I observed 

the localisation of myosin II molecules to the cortex going along with the contraction wave, 

independent of their activation via phosphorylation.  

In summary, myosin II is recruited from the cytoplasm to the cortex which is flattened during the 

contraction wave and forms a band moving across the cell. 
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Figure 39: Myosin II in the contraction wave.  
A) Localisation of myosin II heavy chain-EGFP construct in the immature oocyte (first image) and during the contraction wave, 
the arrows show the front of myosin II recruitment to the cortex. B) Quantification of the surface curvature (left panel) and 
the fluorescence intensity along the cortex (right panel) showing the overlap of the two (dashed line). C) Fluorescence intensity 
of myosin II heavy chain in the subcortical cytoplasm, showing depletion of the signal during the contraction wave. D) 
Localisation of the MRLC-EGFP3 construct in the immature oocyte (first image) and during the contraction wave. Dashed line 
indicates flattened cortex area. Scale bars 30 µm, all times relative to NEBD. 

4.2.1.3 Changing myosin II activity affects strength of contraction wave  

The above-observed colocalisation of myosin II molecules with the flattening of the cortex is a good 

indication that myosin II causes the flattening, but to prove a causal relation between the two I 

changed the levels of myosin II activity in the cell. Firstly, to reduce myosin II activity the oocytes were 

treated with the specific non-muscle myosin II inhibitor (-)-Blebbistatin. This inhibitor blocks the 

ATPase activity of the myosin head domain and thereby blocks the force generation of the molecule 

(Straight et al. 2003). 
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Inhibiting myosin II activity in the oocytes leads to a significant reduction of the contraction strength. 

This can be seen in both the stills and kymographs of curvature plots (Figure 40 A and C). Blebbistatin 

treatment on average reduced the contraction strength from a variance of the radius of curvature in 

the control of 417±170 µm2 to 70±35 µm2 (p<0.005) (Figure 40G). To allow for the comparison of the 

contraction strength I used the variance of the radius of curvature along the whole cortex measured 

for all time points of the contraction wave (for details see 3.9.2 Curvature measurement, page 65). 

At the same time Blebbistatin, while very specific in its inhibition, is in this system not a very efficient 

inhibitor and has several drawbacks. Firstly, it is converted to a cytotoxic form upon exposure to blue 

light, limiting the use of fluorescence microscopy, and at the high concentration necessary for 

successful inhibition it forms precipitates in the sea water in which the oocytes are maintained (Figure 

40 F). The high necessary concentration for inhibition is likely due to the large pool of myosin II in the 

oocyte, as described above. In hopes of alleviating these problems, I have tested a recently developed 

derivative of Blebbistatin called para-Nitroblebbistatin (Kepiró et al. 2014)2. I tested the efficiency of 

this drug compared to Blebbistatin in the context of cytokinesis in the embryo as this allowed for an 

easy large-scale comparison. In the embryo myosin II inhibition leads the failure of cytokinesis and 

lack of blastomere formation. It is clear that both para-Nitroblebbistatin and Blebbistatin strongly 

inhibit cytokinesis compared to control treatments, although the effect is stronger for Blebbistatin 

(Figure 40F). At the same time para-Nitroblebbistatin clearly forms much less severe aggregates. The 

lower inhibition of myosin II observed for para-Nitroblebbistatin in cytokinesis was also observed 

during the contraction wave, making it not a viable alternative to Blebbistatin in this context. 

Overall, it is clear that Blebbistatin inhibits the contraction wave, therefore proving that myosin II is 

driving the flattening of the cortex via its motor action.  

 

                                                           
2  I received an early sample of para-Nitroblebbistatin from András Málnási-Csizmadia, Department of 
Biochemistry, Eötvös Loránd University Budapest as a gift for which I am very grateful.  
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Figure 40: Changing myosin II activity.  
A) Oocyte treated with 300 µM Blebbistatin showing no changes in cell shape at the time of contraction wave. B) Oocyte 
overexpressing MRLC showing a stronger contraction wave. Dashed line indicates flattened cortex area. C) Kymograph 
showing the surface curvature change in a Blebbistatin treated oocyte. D) Kymograph showing the surface curvature change 
in a non-treated oocyte. E) Kymograph showing the surface curvature change in an MRLC overexpressing oocyte. F) Efficiency 
of para-Nitroblebbistatin and Blebbistatin in inhibition of cytokinesis in embryos as a measure of myosin II inhibition efficiency. 
G) Quantification of the contraction strength measured as variance of the surface curvature during the contraction resulting 
from the various myosin activity manipulations. Scale bar 30 µm, all times relative to NEBD.    
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To further probe the specific role of myosin II in the contraction process, I overexpressed the myosin 

regulatory light chain (MRLC) in the oocytes (Figure 40B). This overexpression has the effect of strongly 

increasing the contraction strength from a variance in the control of 417±170 µm2 to 3505±404 µm2 

(p<0.001). The shape change of the oocyte becomes much more striking, as visible in the still images 

as well as the curvature kymographs (Figure 40B and E).  

This observation suggests that the oocyte has an overabundance of myosin II heavy chain molecules 

that are not formed into complexes and the overexpression of MRLC allows the formation of more 

fully assembled functional complexes. It also suggests that in the untreated oocyte the strength of the 

contraction could be limited by the number of available myosin molecules.  

All in all, this data shows for the first time that the surface contraction wave is a truly contractile 

process driven by myosin II.  

4.2.2 Myosin II regulation 

4.2.2.1 Myosin II activity is regulated via the phosphorylation site TS17.18  

As myosin II drives the contraction, I next addressed the question of how myosin II is activated during 

the contraction wave. To answer this question, I first explored which phosphorylation sites in the 

myosin regulatory light chain (MRLC) needs to be phosphorylated for proper myosin II function in the 

contraction wave. There are two described phosphorylation sites - the key one at T17 and S18 

(TS17.18) phosphorylated by MLCK, Rok and citron kinase as well as the less common site S1 and S2 

(SS1.2), which has been proposed to be phosphorylated by Cdk1-cyclin B (Figure 41)(Satterwhite et al. 

1992).  

Figure 41: Phosphorylation sites of myosin regulatory light chain (MRLC). 

I generated phosphomutants of these specific sites by replacing the wildtype amino acids with 

glutamic acid or with alanine for phosphomimetic and non-phosphorylatable mutants respectively 

(Figure 42 A). These mutants were overexpressed in the oocytes on the background of the endogenous 

MRLC, which cannot be removed as the oocyte stores proteins in large amounts. This treatment, 

therefore, results only in partial phenotypes, which are nevertheless detectable in the quantification 

of the contraction strength.   
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In all cases of overexpression, the contraction wave is stronger than in the untreated cell as indicated 

by the MRLC overexpression described above (Figure 42 B). The mutants at the TS17.18 site show on 

average a contraction that is stronger compared to the overexpression of the non-mutant version, 

which is visible in the stills as well as the kymographs (Figure 42 D and E compared to C). The 

phosphomimetic TS17.18EE mutant contraction is stronger than that of the non-phosphorylatable 

TS17.18AA, which is the expected pattern (Figure 42 I and J) (4050±622 µm2 and 3024±555 µm2 vs 

2090±998 µm2 for the non-mutant version respectively, p<0.001).  

The mutants at the SS1.2 site show no difference between the phosphomimetic and the non-

phosphorylatable form, even though on average their contraction strength is slightly higher than the 

overexpression of the wildtype MRLC (2537±940 µm2 and 2528±904 µm2 compared to 2090±998 µm2 

respectively), but this difference is relatively small and not statistically significant (Figure 42 F and G).  

From the data present, it seems likely that the TS17.18 site, which is the target of MLCK, Rok and citron 

kinase, is the site by which myosin activity during the contraction wave is controlled. The observation 

that the SS1.2 mutants show no significant difference between each other as well as towards the 

control suggests that this potential phosphorylation site is not important in the context of the 

contraction wave. These results conform to findings in other contractile processes, were TS17.18 is 

also the main regulatory site while the evidence for SS1.2 is relatively weak.  

As the overexpression of a non-phosphorylatable form leads to an increase in contraction strength, it 

is clear that the non-phosphorylatable MRLC has some partial activity. This can be mediated by 

myosins with non-phosphorylatable MRLC assembling into mini-filaments with non-mutated myosins, 

as previously described in the literature (Watanabe et al. 2007). The same can also happen on the 

single-molecule level with non-phosphorylatable MRLC co-assembling into semi-functional myosin 

complexes with non-mutated MRLC present in the cell. 

The role of differential phosphorylation of the sites TS17.18 was not explored here even though it 

would be worth further study as the single and double-phosphorylated forms of MRLC can clearly play 

differential roles in regulating contractility (Watanabe et al. 2007).   

In summary, although the data is slightly obscured by the presence of the endogenous protein, it is 

clear that of the two potential myosin phosphorylation sites, the site which that is key for controlling 

myosin activity during the contraction wave is the site at TS17.18 rather than the SS1.2 site. 
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Figure 42: MRLC phosphomutants.  
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A) Beginning of the MRLC sequence in Patiria miniata, showing the two tested phosphorylation sites with the respective 
changed amino acids for phosphomimetic (EE) and non-phosphorylatable (AA). B) Quantification of the contraction strength 
resulting from the overexpression of the different MRLC mutants compared to overexpression of the non-mutant form and 
wildtype. C-G) Stills of oocyte overexpressing the various MRLC mutant forms as well as non-mutant control during the 
contraction wave. The dashed line indicates the flattened cortex H-L) Kymographs of the surface curvature of oocyte 
overexpressing the various MRLC mutant forms as well as non-mutant control during the contraction wave. Scale bar 30 µm, 
all times relative to NEBD. 

4.2.2.2 Myosin II is phosphorylated by Rok  

Given that above I find evidence suggesting that the most common phosphorylation site of MRLC 

TS17.18 is the site through which myosin activity in the contraction wave is controlled, the next 

question was which kinase is responsible for the phosphorylation at this site. The candidates are 

myosin light chain kinase (MLCK), RhoA-dependent kinase (Rok) and citron kinase, of which the first 

two are much better studied and chemical inhibitors are available against these. Therefore, I focussed 

on elucidating whether MLCK or Rok is responsible for phosphorylating myosin in the context of the 

contraction wave. 

Firstly I tested two inhibitors against MLCK, ML-7 and MLCK inhibitory peptide 18 (Lukas et al. 1999). 

The application of both inhibitors on the oocytes did not lead to any reduction in the strength of the 

contraction (Figure 43 A, B and C). While MLCK is present in the sequenced transcriptome of the 

starfish, the mass spectroscopy dataset of both mature and immature oocytes do not show the 

presence of MLCK. This indicates that likely MLCK is not present in the oocyte. Overall, the lack of 

effect of the inhibitors and the absence from the mass-spec data indicate that MLCK does not function 

in the contraction wave process.  

Rok can activate myosin II via two distinct mechanisms - either by directly phosphorylating MRLC or 

by inhibiting the myosin inhibitor myosin phosphatase. There is a specific small molecule inhibitor for 

Rok called Y27632 (Ishizaki et al. 2000). Application of this inhibitor to the oocytes or injection into the 

cytoplasm lead to the abolishment of the contraction (from a variance of curvature in the control of 

292±141 µm2 to 30±30 µm2, p<0.001) (Figure 43 D, E, F). This proves that in the context of the 

contraction wave myosin regulatory light chain is phosphorylated and thereby activated by the RhoA 

kinase (Rok). Whether this activation is achieved directly or through myosin phosphatase cannot be 

judged from this data. 

The involvement of Rok in activating myosin is consisting with previous knowledge, as Rok is also the 

driving factor of the activation of myosin in cytokinesis which is a similarly contractile process that 

happens in very close temporal correlation with the contraction wave (Kosako et al. 2000).  
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Figure 43: Kinases activating myosin II via phosphorylation. 
A) Stills of oocyte treated with MLCK inhibitor ML-7 and B) Inhibitory peptide 18 during the contraction wave, arrows indicate 
progression of the RhoA signal. C) Quantification of the contraction strength in oocytes treated with MLCK inhibitors showing 
no change in the strength compared to control. D) Quantification of the contraction strength in oocyte treated with Rok 
inhibitor Y27632 compared to control, showing abolishment of contraction. E) Stills of oocyte treated with Rok inhibitor 
Y27632 during the contraction wave. F) Kymograph showing the absence of surface curvature change in oocyte treated with 
Y27632. Scale bar 30 µm, all time relative to NEBD. 
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4.2.3 RhoA controls the contraction wave 

From the above-presented data, it is clear that Rok phosphorylates myosin II in the context of the 

contraction wave. This involvement of Rok suggests that RhoA could serve as the upstream regulator 

of the contraction wave, which was investigated next. While in higher vertebrates RhoA is present in 

cells together with the closely related RhoB and RhoC (Wheeler & Ridley 2004), in the starfish RhoA is 

the only homolog of these three isoforms present in the genome.  

RhoA can exist in an active GTP-bound and an inactive GDP-bound form, which makes a mere study 

of the localisation of RhoA as a protein insufficient. To visualise the localisation of the active form of 

RhoA there are a number of probes, most of which are based on the GTPase-binding domain (GBD) of 

downstream effectors which specifically bind to the RhoA-GTP form. I herein used a probe consisting 

of the GBD of rhotekin (rGBD)3 to visualise the active RhoA form (Figure 44A).  

The rGBD-GFP probe shows that active RhoA localises to the contractile cortex and moves as a band 

across the cell along with the contraction wave (Figure 44 B), similar to what is observed for myosin 

II. Active RhoA forms a sharp high-intensity band which goes along with the contraction wave but 

RhoA remains at the cortex at lower levels for some time after the wave has passed. It is then lost 

from the cortex very abruptly, simultaneously all over the cell (Figure 44 C). 

To prove the functional involvement of RhoA in the contraction wave oocytes were injected with C3 

transferase, an enzyme which ADP-ribosylates RhoA and keeps it terminally in its inactive form in the 

cytoplasm (Mohr et al. 1992; Vogelsgesang et al. 2007). Increasing the dose of the injected inhibitor 

progressively decreased the contraction strength (Figure 44D). Injection of high concentrations of this 

inhibitor fully blocks the recruitment of active RhoA to the cortex and blocks all downstream 

contractile activity (Figure 44 E and F, compared to control G and H) (from an average variance of 

curvature in the control of 695 ±150 µm2 to 10±11 µm2, p<0.001).  

Overall this data clearly shows that RhoA is the upstream control factor regulating the recruitment of 

myosin II to the oocyte cortex during the contraction wave.  

 

                                                           
3 This probe was originally developed by the Bement lab (Benink & Bement 2005) and we received the constructs 
as a kind gift from them.   
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Figure 44: RhoA activity during the contraction wave. 
A) Scheme illustrating the function of the rGBD-GFP probe used to detect RhoA activity. B) Stills of an oocyte expressing the 
probe for RhoA activity during the contraction wave showing signal travelling along the cortex with shape change, marked 
with arrow heads. C) Kymographs showing the surface curvature and cortical fluorescence intensity of RhoA during the 
contraction wave. D) Reducing strength of contraction with increasing amounts of injected RhoA inhibitor C3 transferase. E) 
Stills of an oocyte expressing probe for RhoA activity treated with RhoA inhibitor C3 transferase at the time when the control 
oocyte (G) undergoes contraction, showing a lack of shape change and RhoA activity. F) and H) Kymographs showing the 
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surface curvature and cortical fluorescence intensity of cells in E) and F) respectively. Arrows indicate progression of RhoA 
signal. Scale bar 30 µm, all times relative to NEBD, with time for injection estimated at 5 min.  

4.2.4 Activation of RhoA 

4.2.4.1 Contraction wave is independent of microtubules 

To understand what activates RhoA in this context we can look at the regulation of RhoA activity during 

cytokinesis, as this is a process that shares the above illustrated molecular pathway and occurs in close 

temporal correlation to the contraction wave. Cytokinesis can, therefore, serve to provide candidates 

as starting points for the investigation of the upstream control of RhoA activation. In cytokinesis, RhoA 

activity is spatially patterned by microtubules, via the RhoA activating GEF Ect2. 

To explore whether cytokinesis and the surface contraction wave share this activation pathway, I first 

tested the role of microtubules in the contraction wave. Treating the oocytes with Nocodazole very 

quickly and efficiently depolymerised the microtubules of the spindle (Figure 45D). This complete 

removal of microtubules did not affect the contraction wave in any way. It neither changes the 

orientation nor the strength of the contraction wave (Figure 45 A, B and C). The variance of the radius 

of curvature was 445±233 µm2 for the Nocodazole-treated cells compared to 463±206 µm2 for control. 

This indicates that the contraction wave is independent of microtubules. This is a very interesting 

observation which shows that while the downstream RhoA-Rok-Myosin II pathway is the same in the 

contraction wave and in cytokinesis, their upstream regulation shows differences. From this 

observation, we can essentially frame the contraction wave as the cortical response to cytokinetic 

signals in a large cell independent and unconstraint by the microtubules.  

The independence of the contraction wave from microtubules furthermore asks the question of how 

RhoA is then activated in this system.   
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Figure 45: Function of microtubules during the contraction wave.  
A) Stills of oocyte treated with microtubule depolymerising agent Nocodazole during the contraction wave. Time relative to 
NEBD. B) Kymograph of the surface curvature change of the cell in A). C) Quantification of the contraction strength in oocytes 
treated with Nocodazole relative to control treatment. D) Stills of an oocyte expressing microtubule (+)-end label EB3 showing 
the speed of microtubule depolymerisation after Nocodazole treatment at 0 sec. Scale bar 30 µm.  

4.2.4.2 Ect2 as a possible RhoA activator 

To transfer RhoA into its active GTP-bound state there are a number of activator proteins called GEFs, 

the most important and well-studied of which is Ect2. This protein is key in activating RhoA during 

cytokinesis and so was the first candidate for the activation of RhoA in the contraction wave that I 

tested.  

Ect2 shows a strong nuclear localisation in the immature oocyte but there is no visible localisation to 

the contractile cortex (Figure 46 A and E) 4. At the same time, Ect2 shows a clear localisation to the 

base of the polar body, prepatterning the contractile ring (Figure 46A). This localisation is expected 

from its function in cytokinesis and indicates that the construct localised functionally in this system. 

                                                           
4 I received the Patiria miniata Ect2 construct from the Bement lab.  
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This means that the lack of a signal during the contraction wave may be due either to too low signal 

levels or a lack of localisation to the contractile cortex. 

Figure 46: Ect2 in the contraction wave. 
A) Oocyte expressing Ect2 (in green) and the marker for F-actin Utrophin CH-domain (in red) in the immature stage (left 
panel), as well as during polar body formation (middle panel) and zoom on the polar body (right panel), showing Ect2 in the 
contractile ring at the base of the polar body. B) Quantification of the contraction strength in oocytes expressing Ect2 
compared to untreated cells. C) Stills of an oocyte expressing F-actin marker Utrophin as well as D) the probe for RhoA activity 
(rGBD), both on the background of Ect2 (channel not shown) during the contraction wave showing the rippling behaviour. 
The dashed line marks the flattened cortex while the arrows mark the front of the rGBD signal. Asterisks mark the ripples – 
note the even spacing. E-G) Kymographs of surface curvature and cortical fluorescence intensity of Ect2, F-actin marker 
Utrophin and the probe for RhoA activity (rGBD) respectively. Scale bar 30 µm, all times relative the NEBD. 
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The expression of the GFP-Ect2 construct has no significant effect on the strength of the contraction 

(Figure 46 B). In some cases, stronger contraction waves were observed but no significant difference 

was found (661 ± 437 µm2 for Ect2 compared to 417 ± 186 µm2 for control). 

At the same time, Ect2 overexpression has an interesting effect both on the actin cortex and RhoA 

behaviour. With Ect2 overexpression both RhoA and actin exhibit a strong rippling behaviour, starting 

immediately before the contraction and continuing for some time after the contraction wave has 

passed until RhoA activity is switched off (Figure 46 C, D and F, G). These ripples have a near constant 

wavelength and frequency and were recently described in detail (Bement et al. 2015). They are a sign 

that the cortex is in a division-ready, active state. But there seems to be no functional link to the 

contraction wave apart from the fact that they are both cortical phenomenon occurring at the same 

time. This is consistent with the data from (Bement et al. 2015), who showed no connection to the 

contraction waves. 

From the localisation to the contractile ring and the induction of cortical ripples it is clear that the Ect2 

construct I am using is functional and can induce effects on the level of RhoA signalling when 

overexpressed. The fact that I do not observe a localisation or a significant response to Ect2 

overexpression for the contraction wave can be due to the fact that either Ect2 is not involved in the 

process or that the strength of the contraction wave is limited at a point downstream of Ect2 and 

therefore an overactivation will not show a visible effect. The latter explanation is consistent with the 

MRLC overexpression data shown above, which indicate that myosin levels might limit the contraction 

strength. A further investigation of the involvement of Ect2 is limited by the fact that no specific 

chemical inhibitors for Ect2 are available.   

In summary, I can neither exclude the involvement of Ect2 in the contraction wave nor do I find any 

evidence supporting the idea that Ect2 activates RhoA in the context of the contraction wave.  

4.2.4.3 Alternative GEFs 

As the investigation of Ect2 in the contraction wave remained inconclusive, I investigated alternative 

GEFs which might act instead of Ect2 as RhoA activators. The two candidates I choose based on the 

literature were GEF-H1 and MyoGEF. Both of these have been implicated as alternatives to Ect2 in 

activating RhoA during cytokinesis and are present in the starfish transcriptome. GEF-H1 is inactivated 

via Cdk1-cyclin B phosphorylation and is bounds to microtubules in its inactive form, thereby linking 

cell-cycle, microtubules dynamics and RhoA activation, while a knockdown of GEF-H1 leads to 

cytokinesis defects (Birkenfeld et al. 2007; Krendel et al. 2002). MyoGEF, or myosin-interacting GEF, is 

a much less described GEF but is an exciting candidate in the context of the contraction wave as it 
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interacts with cortical myosin II and activates RhoA. The inhibition of MyoGEF in U2OS cells has been 

reported as causing cytokinesis defects (Wu et al. 2006). 

Expressing the GFP-tagged version of either GEF-H1 or MyoGEF showed no localisation to the 

contractile cortex as well as no effect on the strength of the contraction wave (Figure 47 E) (419 ± 233 

µm2 for MyoGEF, and 337 ± 102 µm2 for GEF-H1 compared to 417 ± 186 µm2 for non-treated cells). At 

the same time, expressing GEF-H1 had an interesting effect in the immature oocyte, causing the cells 

to become misshapen and bumpy, but this effect disappears with the cortex softening at NEBD (Figure 

47 A). Also, the GEF-H1 expressing cells show division defects in the embryos (Figure 47 B), indicating 

that GEF-H1 plays a role in maintaining both immature oocyte shape and in mitotic divisions in the 

embryo. Interestingly polar body formation – the cell division in the oocyte – was not affected by the 

expression of GEF-H1. These clear effects of an overexpression of GEF-H1 in other contexts are at least 

indications that even though a specific localisation cannot be observed with the GFP-tagged protein, 

the construct is functional.  

While GEF-H1 shows these interesting phenotypes, expressing MyoGEF in the oocytes had no effect 

on either contraction wave, immature cell shape or embryonic development which the embryos 

reaching the blastula stage without issues (Figure 47 C and D). From this, no conclusions can be drawn 

as to whether the MyoGEF construct is functional.  

From this brief exploration of the alternative GEFs in the activation of RhoA, I find no strong evidence 

implicating either GEF-H1 or MyoGEF in the contraction wave. At the same time as I only 

overexpressed the GFP-tagged construct and there are no chemical inhibitors available, I was not able 

to firmly exclude their function either.  

It is clear that a GEF must be involved in the activation of RhoA during the contraction wave. It is 

possible that a so far unidentified or uncharacterised GEF fulfils this function in the starfish oocyte. 

Perhaps more likely Ect2 as the highly conserved activator of RhoA might still be active in this system 

without me being able to detect its functionality with the current tools. Further investigations using 

mutant or truncated versions of Ect2 are required to settle the question of its involvement.  
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Figure 47: Alternative GEF candidates for RhoA activation. 
A) Two examples of immature oocytes expressing GEF-H1 showing the ‘bumpy’ surface phenotype. B) Early embryo from an 
oocyte expressing GEF-H1 compared to control embryo showing division defects. C) Two examples of immature oocytes 
expressing MyoGEF showing no abnormalities. D) Early blastula stage of the embryo arising from MyoGEF injected oocyte 
and control embryo. E) Quantification of the contraction strength in oocytes expressing either GEF-H1 or MyoGEF compared 
to wildtype.  

4.2.5 The actin cortex serves as a substrate for contraction 

In the contraction wave myosin II generates the force of contractility but so far I have only focussed 

on the pathway leading to the activation of myosin and have disregarded the substrate on which 

myosin contracts. This shall be rectified in the following section which focusses on the role of the actin 

cortex in the contraction wave. 
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The cortex is a fascinating complex system of actin and a number of interacting proteins. To visualise 

the behaviour of the cortex, oocytes expressing a marker for filamentous actin, Utrophin-CH domain, 

were used. This marker strongly labels the cortex (Figure 48A) but during the contraction wave the 

changes in actin levels at the cortex are relatively subtle (Figure 48A). A closer examination using the 

kymograph of cortical fluorescence intensity allows us to see an increase in the actin signal during the 

contraction (Figure 48B). This increase is however relatively small compared to either myosin II or 

RhoA-GTP, as the cortex shows a strong signal all the way through metaphase before the contraction 

wave. Interestingly, the ripples in the actin signal I already observed in the Ect2 overexpression (Figure 

46 D and F), are also visible when actin is observed on its own, although again they are more subtle 

(Figure 48B).  

Figure 48: Actin localization during the contraction wave 
A) Stills of an oocyte expressing F-actin marker Utrophin CH-domain during the contraction wave. The dashed lines indicate 
the flattened cortex. B) Kymograph of the surface curvature and cortical fluorescence intensity of the cell in A). Scale bar 30 
µm, times relative to NEBD. 

To investigate the feedback between the contractile behaviour, the signalling leading to myosin II 

activation and the actin cortex, I have chosen two methods to manipulate the actin cortex. The first is 

to inject the cells with Phalloidin, a fungal toxin which very efficiently stabilises actin filaments and 

thereby drives the equilibrium of actin assembly towards assembling all actin monomers into actin 

filaments (Wulf et al. 1979).  
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The Phalloidin injection has two effects – one is to stabilise and increase the size of the actin cortex 

while also generating a large number of filaments in the cytoplasm leading to a stiffening of the 

cytoplasm. There is no contraction wave taking place in cells injected with large doses of Phalloidin 

(Figure 49 A, B and F). The variance of the radius of surface curvature in Phalloidin injected oocytes 

was 13 ± 40 µm2 compared to 417 ± 186 µm2 in untreated cells (p<0.0005). Whether this is due to 

myosin II not being able to contract the crosslinked and thickened cortex or whether the force is not 

sufficient to contract against the stiffened cytoplasm cannot be determined from these experiments. 

But at the same time, the RhoA signal still travels along the cortex, although the background signal at 

the cortex is higher in these oocytes (compare Figure 48B and Figure 49B). 

The second and opposite manipulation is the depolymerisation of the actin cortex via the treatment 

with Cytochalasin D (Goddette & Frieden 1986). The effect of this drug treatment can be visualised in 

oocytes expressing Utrophin-GFP, which loose the actin signal from the cortex (Figure 49 E), although 

it is possible that small patches of actin remain at the cortex. The contraction wave does not move 

across the cell anymore if the cortex is removed (Figure 49 C) and no shape change takes place (Figure 

49 C, D and F). The variance of the radius of cortex curvature in Cytochalasin D treated oocytes was 

17 ± 20 µm2 compared to 417 ± 186 µm2 in untreated cells (p<0.0005). This is due to the fact that 

myosin II requires actin as a substrate for its activity. On the other hand, the upstream regulatory RhoA 

signal still travels the whole distance from vegetal pole to animal pole (Figure 49 C and D).  

It is clear when looking at the kymographs that RhoA levels at the cortex previous to the contraction 

wave are different in the cells were actin is manipulated either by Phalloidin or by Cytochalasin D 

compared to non-treated cells (Figure 49C and D, compared to Figure 44C). This is consistent with 

reports of a feedback system between RhoA and actin (Bement et al. 2015). At the same time, the 

distinct RhoA signal of the contraction wave is still visible in the kymographs. This suggests that while 

the reported actin-RhoA feedback system may be in effect, an additional regulatory system controls 

RhoA signalling leading to myosin II recruitment in the contraction wave, likely independent of actin.  
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Figure 49: Actin manipulations during the contraction wave. 
A) Stills of an oocyte expressing RhoA activity probe (rGBD) and injected with Phalloidin during the contraction wave. B) 
Kymograph of the surface curvature and cortical fluorescence intensity of the cells in A) treated with Phalloidin. C) Stills of an 
oocyte expressing RhoA activity probe (rGBD) treated with Cytochalasin D during the contraction wave. D) Kymograph of the 
surface curvature and cortical fluorescence intensity of the cells in C) treated with Cytochalasin D. E) Stills of an oocyte 
expressing F-actin marker Utrophin CH-domain after treatment with Cytochalasin D showing actin depolymerisation. F) 
Quantification of the contraction strength in oocyte injected with Phalloidin or treated with Cytochalasin D compared to 
untreated cells. Scale bar 30 µm, all times relative to NEBD. 
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4.2.6 Role of calcium in the contraction wave 

As calcium is a common regulator of myosin contractility I also wanted to explore whether calcium 

plays a role in the contraction wave process. 

To start investigating this, I injected oocytes with the reporter of calcium concentration 

CalciumGreen™, whose fluorescence scales with the amount of calcium in the cell (Rajdev & Reynolds 

1993). When I quantified the levels of CalciumGreen™ fluorescence across the whole cell over the 

course of the cell cycle, I observe a steady rise during metaphase and a small but consistent spike 

during the contraction wave (Figure 50 A and C). There is also a lesser peak in calcium levels at NEBD. 

At the same time, the rise of calcium observed during the contraction wave (and the whole of meiosis) 

is negligible compared to the spike in calcium levels which go along with fertilisation (Figure 50 B and 

C).  

To test whether the observed change in calcium levels during the contraction wave are functionally 

relevant, I observed oocytes undergoing maturation in calcium-free seawater with added EGTA. The 

contraction wave changes by the removal of Calcium from the cell, leading to a reduction in the 

contraction strength (Figure 50 F). Even though the contraction is lost, the upstream signalling of RhoA 

still progresses around the cell in a normal pattern (Figure 50 D and E).  

It is important to note though, that as the starfish oocytes natural environment is very calcium-rich, 

the perturbations of the calcium levels in the oocyte lead to obvious defects in many cells. The 

common defects I observe are a collapse of the animal pole (Figure 50 G) and a “granulation” of the 

cytoplasm (Figure 50 H). This granulation may signify a change in the viscoelastic properties of the 

cytoplasm which could explain the reduced contraction strength if the cytoplasm becomes stiffer. At 

the same time, the actin cortex could be changed by a reduction in calcium through a gelation effect, 

which may affect myosin’s ability to contract the cortex. Apart from a possible side-effect of the 

treatment, it is also possible that myosin is additionally regulated in the context of the contraction 

wave through the calmodulin-dependent light chain kinase or via a modulation of the actin cortex.  

Overall it is clear that calcium is an important component of the oocytes environment and removal 

impacts the contraction wave, although the mechanism by which this happens remains unclear. 
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Figure 50: Role of calcium in the contraction wave. 
A) Calcium levels during the contraction measured via CalciumGreen showing a spike at contraction wave. B) Calcium levels 
in the oocyte in response to fertilisation measured via CalciumGreen. C) Still of oocyte injected with CalciumGreen during 
contraction wave (upper panel) and during fertilisation (lower panel). D) Oocyte expressing RhoA activity probe (rGBD) 
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maintained in Calcium-free SW with 5 mM EGTA during the contraction wave. E) Kymograph of surface curvature and cortical 
fluorescence intensity of cell D) showing reduced contraction strength. F) Contraction strength with varying doses of EGTA 
added to the Calcium-free SW. G) ‘Animal pole collapse’ phenotype. H) ‘Cytoplasmic granulation’ phenotype. Scale bar 30 
µm, times relative to NEBD.  

4.2.7 Summary of the molecular pathway controlling contraction 

So far I have established the direct molecular control pathway of the contraction wave (Figure 51).  

In this pathway, RhoA is the most upstream control factor. It is activated by a GEF factor whose identity 

I have not be able to determine. RhoA activity than activates RhoA kinase, which in turn activates and 

drives myosin II localization to the cortex. The cortex serves as a substrate for myosin contractility and 

the localisation of myosin II leads to cortex flattening. The progression of this flattening across the cell 

gives rise to the contraction wave.  

This pathway is a highly conserved one that is active in many cellular contexts. One of the key 

processes that is also driven by this pathway is the formation of the contractile ring in cytokinesis 

(Miller 2011). In this context the GEF that activates RhoA is Ect2 and this signal is localised by the 

microtubules of the spindle. This is to be seen in contrast to the contraction wave, where microtubules 

are not involved, indicating that Ect2 is either localised by an alternative mechanism or another GEF 

activates RhoA. 

Figure 51: Molecular pathway regulating myosin II activity in the contraction wave. 

But this molecular pathway is intrinsically static and can only explain the recruitment and activation 

of myosin II at each individual cortical position. How the wave behaviour arises and how the signal is 

spread across the cell will be explored in the next section.  
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4.3 HOW TO FORM A WAVE 

4.3.1 Initiation of the contraction wave 

4.3.1.1 The contraction wave starts opposite of the nucleus 

To determine the mechanism by which a wave is formed, the first aspect to be explored is the setting 

of its starting point. There are two plausible hypothesis to explain the observation that the contraction 

wave always starts at the vegetal pole of the oocyte. Firstly, there could be a predetermined factor 

localised at the vegetal pole which in response to a certain signal sets off the contraction wave. On 

the other hand, the oocyte could respond to the specific cell layout, i.e. to have the wave always start 

opposite of the nucleus. In the wildtype these two possibilities are indistinguishable.  

To allow the differentiation between the two hypotheses, the oocytes can be centrifuged. This is a 

well-established technique which has been applied to the starfish oocytes (Miyazaki et al. 2000). 

Centrifugation allows the repositioning of the nucleus relative to the remainder of the cytoplasm and 

thereby the setting of a new animal-vegetal axis that is distinct from the old animal-vegetal axis (Figure 

52 A). When the oocytes are matured after centrifugation, it can be observed which of the two animal-

vegetal axes the wave follows.  

From the observation of a number of cells I can conclude that the contraction wave always follows the 

new animal-vegetal axis, that is, the wave is always oriented towards the nucleus, independent of 

where the nucleus previously was. This becomes obvious upon observation of a sample oocyte (Figure 

52 C), where the centrosomes (in green) mark the position of the nucleus previous to centrifugation 

(Figure 52 C white arrow) while the nucleus is positioned at the top of the oocyte after centrifugation. 

The contraction wave then moves towards the top. This can also be seen in the kymograph, where the 

flattening no longer starts at the old (pre-centrifugation) vegetal pole but rather at the new (post-

centrifugation) vegetal pole (Figure 52 D). 

The effect of the centrifugation can be quantified for a larger number of cells by measuring the angle 

α between the axis of contraction and the old and new animal-vegetal axis respectively (Figure 52 B). 

The angle between the contraction wave and the new animal-vegetal axis is always near 0, i.e. both 

go in parallel, while there is no pattern in the angle between the axis of contraction and the old animal-

vegetal axis (Figure 52 B).  

 



104 
 

Figure 52: Changing AP-VP axis via centrifugation. 
A) Scheme showing the set-up used for centrifugation, adapted from (Borrego Pinto 2015), which a random orientation of 
oocytes before centrifugation and all nuclei facing upwards after centrifugation. B) Quantification of the angle between the 
axis of contraction and the old and new animal-vegetal axis respectively. C) Oocyte expressing F-actin marker Utrophin CH-
domain and injected with fluorescently labelled tubulin and H1B protein. The first image shows immature oocyte after 
centrifugation with the arrow indicating the centrosomes marking the original animal pole (AP) and later images showing 
the contraction wave moving towards the new nuclear position. The dashed line marks the flattened cortex during the 
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contraction wave. D) Kymograph of the surface curvature of the cell in C), with marks indicating both the pre-centrifugation 
(pre-c.) and post-centrifugation (post-c.) poles. Scale bar 30 µm, all time relative to NEBD.   

These results indicate that the axis of the oocyte is not predetermined early in the development of 

the oocyte but is responsive to change. At the same time, the change induced by centrifugation is a 

very drastic perturbation, which will not occur in nature as there the nucleus is held in position by the 

microtubules at the animal pole against gravitational forces (Miyazaki et al. 2000). I can conclude from 

this data that the factor controlling the starting point of the contraction wave is the position of the 

nucleus and is therefore likely by a nuclear factor.    

4.3.1.2 A gradient of cell cycle activity is present in the oocyte 

In the search for a potential nuclear factor which controls the orientation of the contraction wave, a 

good candidate is the central metaphase regulator Cdk1-cyclin B. This is due to the fact that it is 

imported into the nucleus immediately before metaphase entry (Terasaki et al. 2003). Furthermore, 

Cdk1-cyclin B levels change drastically at the exit of metaphase, and given the tight temporal 

correlation between the contraction wave and metaphase exit, this suggests that Cdk1-cyclin B could 

play a role in controlling the contraction wave. 

As a first step to investigate whether Cdk1/Cyclin B plays a role in controlling the contraction wave, I 

generated a GFP-tagged form of the Patiria miniata Cyclin B. Cyclin B shows very interesting and 

temporally varied localisations throughout the cell cycle (Figure 53 A).  

In the immature oocyte cyclin B forms aggregates in the cytoplasm (Figure 53 A arrows), which had 

previously been reported (Terasaki et al. 2003), while the nucleus is devoid of cyclin B. As maturation 

starts, within the first 5 min after hormone addition the aggregates disappear, and 10 min later cyclin 

B begins to be imported into the nucleus. The import leads to a strong concentration of cyclin B in the 

nucleus immediately preceding NEBD, which then leads to a spread of concentrated cyclin B at the 

whole animal pole. Due to the localisation of the nucleus at the cortex, the import establishes a 

gradient of cyclin B across the whole of the oocyte. This means that the highest levels of cyclin B are 

located at the animal pole while the levels at the vegetal pole are lower (Figure 53 B). 

Over the time course of metaphase the levels of cyclin B drop progressively, as cyclin B is degraded by 

targeting of the protein to the proteasome by the APC/C (Oita et al. 2004). The degradation is equal 

all over the cell, meaning that the gradient is maintained throughout metaphase. This becomes clear 

when the cyclin B levels are quantified along the animal-vegetal axis (Figure 53 B). During the 

contraction wave, cyclin B levels are already very low, but higher levels at the animal pole still remain, 

and levels continue to fall as the wave progresses (Figure 53 A). 
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Figure 53: Cyclin B. 
A) Oocyte expressing cyclin B-EGFP at various time points before NEBD (upper panel) and contraction wave (lower panel). 
Arrows mark cytoplasmic cyclin B aggregates. The dashed line indicates the flattened cortexB) Quantification of fluorescence 
intensity of cyclin B normalised to background injected Dextran 10kD along the animal-vegetal axis at various time points. C) 
Virtual time series of cold MeOH-fixed oocytes, stained using cyclin B antibody (red), anti-tubulin (green) and DNA marker 
Draq5 (blue). Scale bar 30 µm, all times relative to NEBD.  

These results indicate that Cdk1-cyclin B could serve as a guide for the contraction wave as it forms a 

gradient based on the nuclear position, giving the cell a molecular marker for its animal-vegetal axis. 
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To observe the gradient via an alternative technique, I tested various antibodies against Cdk1 activity 

and cyclin B localisation. Antibodies against starfish cyclin B were generated by the Kishimoto-

Tachibana and Chiba labs and I received aliquots from both5. Testing multiple fixation and staining 

protocols for both the anti-cyclin B and the anti-Cdk1 Y15 antibodies led to very low and unspecific 

stainings (not shown). For the cyclin B antibody from the Chiba lab, I could observe changes in the 

intensity of staining over the time course, but the signal was too low to allow the visualisation of the 

gradient (Figure 53 C). The time course of the fixed oocytes was generated on the basis of spindle and 

chromosome morphology which were additionally stained.  

There are multiple possible reasons for why the immunostaining of cyclin B did not allow easy 

visualisation of the cyclin B gradient. Firstly the Cdk1 activity antibody is not specific against the 

starfish protein and likely did not recognise it sufficiently. Secondly, while the starfish cyclin B antibody 

clearly recognised the protein, it is difficult to observe a specific staining as cyclin B is spread 

throughout the cytoplasm and not localised to a specific structure. This makes it difficult to normalise 

the signal against the background staining. Furthermore, small cytoplasmic proteins are much easier 

lost during the fixation and permeabilisation step, which can contribute to the low signal. I can also 

not be sure of the quality of the antibody I received, and a preliminary testing of the antibody on 

western blot showed very low signal levels. To solve this problem, either a new antibody against the 

starfish cyclin B protein would have to be produced or a further optimisation of the fixation/staining 

protocols would be necessary. As I have other lines of evidence to prove the idea of a gradient of 

Cdk1-cyclin B activity across the cell, I did not pursue these options.  

4.3.1.3 The Cdk1 gradient controls the direction of the contraction wave  

Based on the observations above indicating a gradient of cyclin B across the cell which would go along 

with a gradient of Cdk1 activity, I hypothesise that this gradient inhibits the activation of myosin II 

downstream of RhoA in metaphase. As the Cdk1-cyclin B activity is progressively reduced over the 

course of metaphase the threshold at which the inhibition is no longer sufficient will be hit first at the 

lowest point of the gradient, i.e. at the vegetal pole.  

To test this hypothesis, I locally treated the oocytes at the animal pole with Cdk1 inhibitors at a time 

before the contraction wave would normally occur. There are a number of these inhibitors 

commercially available with varying inhibition efficiency. I used both the less efficient Roscovitine 

(Meijer et al. 1997), as well as the more efficient Flavopiridol (Kaur et al. 1992) and RO-3306 (Vassilev 

et al. 2006). I hypothesise that the local treatment with the Cdk1 inhibitor at the animal pole results 

                                                           
5 I am very grateful for the generous gifts of these antibodies from Prof. Chiba at Ochanomizu University, Japan 
and Profs. Kishimoto and Tachibana at the Tokyo Institute of Technology.  
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in the flipping of the gradient. This is due to the fact that the lowest point of Cdk1 activity is induced 

at the animal pole due to the treatment while some level of Cdk1 activity remains at the vegetal pole 

as the treatment was performed during metaphase. This flipping of the gradient results in a reversal 

of the direction of the contraction wave (Figure 54). In the treated oocytes I can observe both a 

reversal of the physical shape change as the contraction wave moves in the opposite direction (Figure 

54 B, D and F) as well as in the underlying signal at the level of RhoA (Figure 54 A, C and E).  

The same result can be reached with all three inhibitors (compare Figure 54 A, C and E). After 

treatment, the contraction wave starts at whatever point was treated with the inhibitor and 

progresses to the opposite end of the cell. I also applied the inhibitors in various geometries inducing 

contraction wave starts laterally in the cells as well as a full reversal in which the contraction wave 

runs from the animal pole to the vegetal pole (Figure 54 C compared to A and E).  

The ability to start the wave at the point of local Cdk1 inhibitor treatment supports the idea that the 

lowest point of the Cdk1 gradient normally marks the starting point of the contraction wave. As the 

same result is reached with a number of different inhibitors, it is unlikely that the observed effect is 

due to side-effects of the individual inhibitors. 

The local inhibitor treatment furthermore induces the wave at different times compared to when it 

normally occurs in the maturation process (compare timing in treatment Figure 54 A and control 

Figure 54 G). Treatment of cells with Cdk1 inhibitors is known to force metaphase exit in cells (Vassilev 

et al. 2006), and the fact that the contraction wave can be induced prematurely strongly indicates that 

the contraction wave itself is an effect of metaphase exit, connected to the Cdk1 activity levels. This 

becomes further clear when oocytes expressing cyclin B are treated with the inhibitor. In this case, 

the contraction wave starts while the cyclin B levels are still much higher than they would be in the 

wildtype case where the contraction wave is allowed to start naturally (Figure 54 C). This is due to the 

fact that the mechanism by which Cdk1 inhibitors act is based on blocking the kinase activity of Cdk1 

while cyclin B is in the normal case degraded by targeting to the proteasome. Therefore, Cdk1 

inhibitors can override the normal cell cycle regulation and force the starting of the contraction wave. 
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Figure 54: Local Cdk1 inhibitor treatment. 
A&B) Stills and kymographs of an oocyte expressing the RhoA activity probe (rGBD) treated locally at the animal pole (*) with 
Cdk1 inhibitor Roscovitine, showing the reversal of contraction wave and RhoA signal. C&D) Stills and kymograph of an oocyte 
expressing cyclin B-EGFP treated with Flavopiridol laterally (*) during induced contraction. E&F) Kymographs and stills of an 
oocyte expressing the RhoA activity probe (rGBD) treated locally (*) at the animal pole with Cdk1 inhibitor RO-3306, showing 
the reversal of contraction wave and RhoA signal. G&H) Stills and kymographs of an oocyte expressing the RhoA activity 
probe (rGBD) treated locally (*) with DMSO as control, showing no change in the pattern of contraction. Scale bar 30 µm, all 
times relative to NEBD. 
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From this I can conclude that the contraction wave starts at whatever point in the cell has the lowest 

level of Cdk1 activity, which is normally at the vegetal pole. This indicates that during metaphase Cdk1 

activity suppresses RhoA, while once it drops below a certain threshold during the transition to 

anaphase the contraction wave can start. 

4.3.1.4 The Cdk1 gradient controls the starting point of the contraction wave 

To further test the hypothesis of an inhibitory gradient of Cdk1-cyclin B, I injected active Cdk1-cyclin 

B protein into the oocyte. The active protein complex can be purified from starfish oocytes as 

established by (Okumura 1996)6. As the purified protein is unlabelled, it was co-injected with a 

fluorescently labelled 500 kDa Dextran to mark the site of injection. Oocytes expressing the marker 

for active RhoA were injected as close to the vegetal pole as possible without injuring the cell, to 

visualise the progression of both the contraction wave itself as well as the upstream signalling in 

response to the manipulation of the Cdk1 activity gradient (Figure 55 A).  

Oocyte injected with active Cdk1 protein showed abnormal contraction behaviour, with the 

contraction wave starting laterally in the cell, somewhere between vegetal and animal pole (Figure 55 

B and D). The wave then progresses around the oocyte from the starting point. The behaviour varies 

slightly even with relatively similar injection sites as in the two examples shown here (Figure 55 C and 

E), likely due to slight differences in injection position and volumes.  

At the same time injecting additional Cdk1/Cyclin B slightly delays the start of the contraction wave 

(timing of Figure 55 B and D), which is understandable as the degradation machinery of the APC/C has 

to degrade more substrate to reach the same threshold which increases the duration of metaphase. 

This behaviour of the contraction wave confirms that the low point of the gradient is the starting point 

of the contraction wave.  

 

                                                           
6 I received purified Cdk1/Cyclin B protein as a kind gift from Dr Okumura, Tokyo Institute of Technology. 
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Figure 55: Injection of Cdk1-cyclin B protein complex. 
A) Scheme of the oocyte with the hypothetical Cdk1 gradient (in blue) showing the injection position. B and D) Stills of two 
sample oocytes expressing the RhoA activity marker (rGBD in green), injected with Cdk1 protein and labelled Dextran (in red) 
during the contraction wave. Arrow marks the start site of the contraction wave. C and E) Kymographs of surface curvature 
and cortical fluorescence intensity of the cells in B) and D). Scale bar 30 µm, all times relative to NEBD. 

4.3.2 Propagation of the wave 

4.3.2.1 The Cdk1 gradient controls the progression of the contraction wave  

From the above experiments, it is clear that the point of lowest Cdk1 activity regulates the starting 

point of the contraction wave. There are two potential pathways by which the wave can then spread 

from this starting point. The proposed gradient suggest an intuitive explanation where contractility is 

induced at each site along the cortex in response the Cdk1 activity locally dropping below the 

threshold and inducing the activation of myosin II. Alternatively, it can be imagined that once the 
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contraction wave has started at the point of lowest Cdk1 activity it progresses across the cell via an 

independent contractile module. 

To test how the progression of the contraction wave across the cell is controlled I changed the shape 

of the oocyte by placing them in small microfabricated wells. This allowed me to change the length of 

the animal-vegetal axis and thereby affect the gradient and observe the resulting contraction wave. 

The first variants of the shape change which are interesting in answering this question are the ones in 

which the cells are compressed either along the AP-VP axis or perpendicular to it. In the examples 

shown in Figure 56, the animal pole is marked by the microtubules marker EB3 (in red), showing the 

different aspect ratios achieved by the shape change. In Figure 56A, the AP-VP axis is elongated by a 

factor of 1.4 compared to the control cell in Figure 56B in which the normal round shape is maintained 

while in the cell in Figure 56C the AP-VP distance is compressed to roughly half.  

Firstly from the round cell which is compressed but not changed in its shape, it is clear that the cells 

behave normally in these experimental conditions, with active RhoA being recruited normally to the 

cortex (rGBD in green) and a normal polar body forming. The duration of the contraction wave is also 

normal with 8 min.  

Of course, both other cells have a similar ellipse shape with a roughly comparable half-circumference 

(i.e. distance from AP to VP along the cortex on one side) with 266 µm and 255 µm respectively while 

the distance across the cytoplasm is drastically different with 213 µm versus 84 µm. Crucially the time 

that the contraction takes to cross the cell scales with the distance across the cytoplasm, taking much 

longer in the cell with the elongated AP-VP axis (Figure 56A vs C, Table 6).   

Table 6: Results of the shape change experiments 

 Elongated AP-VP axis 
(A) 

Normal AP-VP axis 
(B) 

Shortened AP-VP axis 
(C) 

Cytoplasmic distance AP-
VP 

216 µm 152 µm 85 µm 

Cortical distance AP-VP 
(half-circumference) 

266 µm 236 µm 255 µm 

Duration of contraction 
wave 

24 min 8 min 6 min 

Speed of wave along the 
cortex 

11 µm/min 29 µm/min 42 µm/min 
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Figure 56: Effect of shape change on the contraction wave.  
A) Stills of an oocyte with an elongated AP-VP axis. B) Stills of oocyte whose shape is not changed. C) Stills of an oocyte with 
a shortened AP-VP axis. D) Stills of an oocyte in a triangle shape with the two paths of the contraction wave marked by orange 
and blue arrows and white dashed line marking the AP-VP axis. E) Kymograph of the cortical fluorescence intensity of the cell 
in D), showing the blue and orange half and the varying speeds at which the wave progresses. All cells are expressing 
microtubule marker EB3 (red) and RhoA activity probe (rGBD in green), with the direct AP-VP distance as well as the half-
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circumference marked on the respective first frames and the white dashed line indicating the contracting cortex. Scale bar 30 
µm, time starts at the beginning of contraction wave as NEBD was induced outside of the shapes.  

This indicates that the speed of the contraction wave depends on the cytoplasmic distance, arguing 

that the wave progression is controlled in the cytoplasm, likely by the Cdk1 gradient. 

The gradient hypothesis is further strengthened when we look at different shapes that the cells can 

be turned into, such as the triangle in Figure 56D. In this case, we have two unequal sides of the cell 

in relation to the animal-vegetal axis and we can observe the contraction wave moving across them 

disparately. In the normal oocyte, the wave progresses equally on both halves of the cell and at a 

constant speed. In this case though, the two sides (marked in blue and orange) exhibit very different 

behaviours.  

Of most interest is the half of the cell which contains two sides of the triangle which are positioned at 

very different angles to the AP-VP axis (orange side). If we assume the Cdk1 gradient driving the 

contraction wave goes along the AP-VP axis, the different angles at which the sides of the triangle are 

oriented towards the gradient should result in a different speed at which the wave moves along these 

sides. This is exactly what I observe in the kymograph of RhoA activity moving along the cortex (Figure 

56E) where the orange half of the triangle clearly exhibits three separate phases of wave progression 

along the cortex. In the first phase the cortex is close to perpendicular to the AP-VP axis and the wave 

progresses relatively fast across it as the threshold value will be reached in very similar time frames 

for each position of this cortex. Then in the second phase the wave passes the corner and moves very 

fast, which may be in part due to geometric effects at the high cortex curvature. In the third phase the 

cortex is positioned at a roughly 45° angle to the AP-VP axis and the wave moves slower than in the 

previous phases, indicating that the thresholds are hit at higher time intervals between neighbouring 

points of the cortex as these are exposed to more of the gradient than points on the other side of the 

triangle.  

4.3.2.2 Feedback between contraction strength and wave speed 

While the gradient guides the progression of the contraction wave, it is not the sole controller. I find 

evidence for additional regulation of the wave speed when I manipulated myosin activity, which 

changes not only the contraction strength but also affects the speed of the contraction. When plotting 

the respective strength and speed values for these treatments it becomes apparent that there is an 

exponential correlation between these two variables (Figure 57 A). This correlation is only true for the 

direct manipulations of myosin – that is Blebbistatin treatment and MRLC overexpression. At the same 

time inhibition of the regulatory pathway above myosin, i.e. inhibition of Rok, does not affect the 

speed of the signalling wave while the contraction is inhibited (Figure 58A and B). This means that only 
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when changing myosin II activity itself a stronger wave progresses slower while a weaker wave 

progresses faster. This indicates a feedback from myosin II activity to the upstream control pathway. 

As this is a quite surprising observation I choose to explore this further using oocytes overexpressing 

MRLC with a slower wave. To determine at which point of the regulatory pathway this feedback 

enters, I probed the various steps in the cells overexpressing MRLC.  

It is clear that the curvature change that is the manifestation of the contraction wave is caused by 

myosin II localisations and we can, therefore, assume that the recruitment of myosin itself progresses 

slower around the cell when MRLC is overexpressed.  

When looking at the RhoA signal in the case of MRLC overexpression, it is clear that this signal also 

travels slower and there is no separation between the active RhoA signal and the flattening of the cell 

cortex (Figure 57 C and D). Therefore, the feedback from MRLC overexpression which leads to the 

slowing down affects the speed at which RhoA is recruited along the cortex. When I measured the 

rate at which cyclin B is degraded in the oocytes in which MRLC is overexpressed, I could find no 

difference to the wildtype degradation rates in untreated cells (Figure 57 B). This conforms to 

expectations, as a feedback from myosin II levels to the cell cycle machinery would be very surprising 

and lacking any precedent. 

That the feedback arises from myosin activity in this context is further underscored by the fact that 

the speed change is also observed in oocytes treated with Blebbistatin. Blebbistatin blocks the myosin 

power stroke while it does not affect the binding of myosin II to the cortex. The fact that the speed is 

affected by Blebbistatin, therefore, means that the actual myosin activity is what feeds back to the 

speed of wave progression not merely its localisation. Manipulations of the actin levels in the oocyte 

also change the speed at which the RhoA signal progresses across the cell (Figure 58), especially in 

Phalloidin injected cells which exhibited a slowing down of the wave. Although this slowing is non-

significant compared to wildtype and it is less pronounced than for the slowing down achieved by 

manipulation of myosin II. 
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Figure 57: Correlation of wave speed and contraction strength. 
A) The strength of contraction plotted against the speed of the contraction wave for various manipulations of myosin activity. 
B) Cyclin B degradation in the whole oocyte compared between non-treated cells and cells overexpression MRLC. C) 
Kymograph of the surface curvature and the cortical fluorescence intensity of the cell in D). D) Stills of an oocyte expressing 
RhoA activity probe (rGBD) and overexpressing MRLC (channel not shown) during the contraction wave. E) Scheme showing 
potential regulatory network in metaphase (left side) and in anaphase (right side) compared to that in the case of myosin 
overexpression. Scale bar 30 µm, all times relative to NEBD.  

I, therefore, conclude that the feedback from myosin activity targets the activation of RhoA. This can 

be explained as follows (Figure 57E): 
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RhoA exists in two states – an active and an inactive one – and it is held in the inactive form by Cdk1 

activity while once RhoA is activated there is both a positive autocatalytic feedback to RhoA itself, as 

has been reported in the literature (Bement et al. 2015) as well as a negative feedback from the 

downstream pathway. When I overexpress MRLC the negative feedback to RhoA is strengthened, 

therefore leading to an overall greater inhibition of RhoA. To achieve the same amount of RhoA 

activation under these conditions, Cdk1 inhibition needs to be lifted more compared to the non-

treated case. These different levels of Cdk1 required for the RhoA activation in the case of MRLC 

overexpression compared to untreated cells shifts the threshold at which the Cdk1 gradient starts the 

contraction at each point along the cortex and therefore slows down the progression of the wave. 

Figure 58: Speed of contraction wave with manipulations of RhoA, Rok and actin. 
A) The speed of the contraction wave with increasing doses of injected RhoA inhibitor C3 transferase. B) The speed of 
contraction wave in cells treated with the Rok inhibitor Y27632 compared to control. C) The speed of contraction wave 
compared to control for actin manipulations, i.e. injection with Phalloidin and treatment with Cytochalasin D.  

4.3.2.3 Feedback to regulate band width 

The above serves to explain the starting of the wave as well as the progression of the wave across the 

cell, but it does not touch on the process by which the contraction is limited to a band. This band 
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nature of the contraction wave is seen on all levels, from the flattening to the myosin II and active 

RhoA signals.  

However, when I perturb the RhoA effector Rok, which results in a block of the contraction but does 

not affect the recruitment of RhoA to the cortex (Figure 43E), the band is no longer formed. This means 

that blocking the pathway downstream of RhoA impacts the off-switch behaviour of RhoA after the 

contraction wave has passed. When the Rok inhibitor is applied to the cells active RhoA is no longer 

recruited only in a band but stays at constant high levels at the cortex during the whole time of 

contraction until it is switched off completely (Figure 59 A and B). With increasing concentrations of 

the Rok inhibitor, as can be achieved via injection, the pattern of the off-switching behaviour changes 

even further, with RhoA no longer disappearing from the cortex all over the cell simultaneously but 

rather in a drawn-out process (Figure 59C) until at higher concentrations there is no off-switching to 

be observed (Figure 59D). These observations of an aberrant off-switch behaviour of RhoA following 

Rok manipulation suggest a feedback regulating RhoA activity from further downstream in the 

signalling pathway.  

As what is regulated here is clearly a GAP factor which deactivates RhoA, this feedback is consistent 

with the feedback affecting the wave speed described above. From the Rok inhibition data, it is not 

clear at which step downstream of RhoA the feedback arises, i.e. whether it originates from Rok itself 

or from myosin.  

It is, however, clear that while the progression of the contraction wave is controlled by the Cdk1 

gradient, feedback within the pathway from myosin II activity regulates the progression in concert 

with Cdk1 while feedback from Rok regulates the deactivation of RhoA and thereby controls the width 

of the band of activity (Figure 60).  
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Figure 59: Regulation of RhoA inactivation. 
A) Stills of an oocyte expressing RhoA activity marker (rGBD) treated with Rok inhibitor Y27632 during the contraction wave. 
The arrows show the progression of the RhoA signal front. B) Kymographs of surface curvature and cortical fluorescence 
intensity of the cell in A). C and D) Kymograph of cortical fluorescence intensity of the RhoA activity probe (rGBD) in oocytes 
injected with increasing amounts of Rok inhibitor Y27632. Scale bar 30 µm, all times relative to NEBD.   

Figure 60: Complete molecular pathway regulation the contraction wave. 
In this system the core signalling pathway RhoA-Rok-Myosin II is regulated by Cdk1 and feedback from Myosin II and Rok, 
controlling the progression of the wave and the inactivation of RhoA respectively. 
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4.4 POTENTIAL FUNCTION OF THE CONTRACTION WAVE 

4.4.1 Polar Body Formation as a function of contraction wave 

It was originally proposed by Hamaguchi and Hiramoto in 1978 during the first description of the 

contraction wave in the starfish oocyte that there is a causative relationship between the contraction 

wave and polar body formation (Hamaguchi & Hiramoto 1978). This idea has a large intuitive appeal 

as the two processes are closely correlated and it is easy to imagine that the contraction wave 

generates the forces required to push out the polar body from the oocyte. But the idea of the polar 

body as a global pressure release was historically contradicted by the work of Rappaport who argued 

that the polar body extrusion was a local phenomenon, independent of the contraction wave and 

pressure (Rappaport & Rappaport 1985). The divergence between these two ideas has remained 

unresolved to this day. 

Given the variety of methods I have here established to manipulate the contraction wave, I can test 

these two proposed mechanisms. When I observe the formation of the polar body in oocytes where 

the contraction wave is manipulated, I find that the polar body still protrudes out of the cell normally 

(compare Figure 61 A and C to B). This is true for both the inhibited contraction with Blebbistatin 

(Figure 61A) as well as an increased contraction by the overexpression of MRLC (Figure 61 C). It has to 

be noted though that I can here only look at the protrusion of the polar body and not at the full polar 

body formation as the latter requires cytokinesis, which is inhibited by all inhibitors of the contraction 

wave. Therefore in the case of Blebbistatin (and all other inhibitors of the regulatory pathway), 

cytokinesis cannot be completed and the polar body is reabsorbed into the oocyte a few minutes after 

protrusion.  

However the protrusion process of the polar body is identical in the Blebbistatin treated oocyte 

compared to control when measuring the height of the protrusion (Figure 61 D), while obviously the 

width of the protrusion changes in the control case when the contractile ring starts ingressing, which 

does not happen in the case of the Blebbistatin treated oocyte. This similarity in the protrusion speed 

and height, as well as the identical area, indicates that the contraction wave and any potential 

resultant pressure is not required for the protrusion of the polar body (Figure 61E).  

The pressure hypothesis is further inconsistent with my measurements of the cytoplasmic flow and 

arises in the Hamaguchi and Hiramoto model from a wrong assignment of the specific shape change 

to the resulting flow (see Figure 38). When I observe the cytoplasmic flow at the moment when polar 

body protrusion starts it has peak values pointing away from the animal pole and comes to a still at 

later time points of the protrusion formation. This is inconsistent with the flow pushing out the polar 

body. 
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Furthermore when I reverse the contraction wave via the local application of a Cdk1 inhibitor at a late 

stage close to when the contraction wave would occur normally, the oocyte forms a normal polar body 

even when the direction of the contraction wave is reversed and any potential pressure should be 

directed away from the site of polar body formation (Figure 61F).  

Summarising all this evidence it is clear that polar body formation does not depend on the contraction 

wave but is a local process that is independent of the remainder of the oocyte.  

Figure 61: Polar body formation. 
A) Oocyte treated with Blebbistatin showing protruding polar body (arrow). B) Wildtype oocyte with protruding polar body 
(arrow). C) Oocyte overexpressing MRLC with protruding polar body (arrow). D) Width and height of polar body protrusion 
over time in DMSO treated control cells and Blebbistatin treated oocyte. E) Area of the polar body in optical sections for 
various treatments. F) Oocyte locally treated with a Cdk1 inhibitor (*) and subsequent contraction wave starting at the 
marked position, showing normally protruding polar body (arrow). Scale bar 30 µm.  



122 
 

 



123 
 

 

 

 

 

 

 

 

 

 

 

5 DISCUSSION 

  



124 
 



125 
 

5.1 CONTRACTION WAVES AS A CORTICAL PHENOMENON DURING CYTOKINESIS 

The cellular cortex is key for many cellular functions, including cell division and migration, and 

therefore regulation of cortical contractility is an important aspect controlling cellular behaviour. The 

cortex integrates a wide variety of signals, especially during cell division, as this is a process involving 

a large degree of cortical remodelling and is driven by the cortex.  

One effect of the cortical remodelling during cytokinesis observed in very large dividing cells are 

surface contraction waves (SCWs). These waves of contraction occur immediately prior to cell division, 

indicating a link to cell cycle regulation (Hara 1971). Therefore, surface contraction waves offer an 

exciting system to study the cell cycle regulation of cortical contractility. But while contraction waves 

are a striking phenomenon, they are not very well characterised in the literature. Few papers go above 

a description of the phenomenon (Hamaguchi & Hiramoto 1978), and those that do focus specifically 

on the cell cycle process with little regard to the regulation of the contractile process (Rankin & 

Kirschner 1997; Chang & Ferrell 2013; Hara et al. 1980). No molecular details of the contraction 

process were known, necessitating a lot of groundwork to establish the pathway regulating cortical 

contractility in the contraction waves, before questions of the overarching regulation by the cell cycle 

could be answered.   

Specifically, I studied the contraction wave which occurs in the starfish oocyte during meiosis as the 

cell transitions from metaphase to anaphase. In summary, I find that this contraction wave arises from 

a band of flattening that moves across the oocyte, caused by the accumulation of myosin II in a band 

along the cortex. The accumulation of myosin II is regulated by the RhoA-Rok-Myosin II pathway and 

the movement of the contraction across the cell depends on a gradient of Cdk1 activity. Cdk1-cyclin B 

is the central cell cycle controlling complex and forms a gradient across the oocyte, the lowest point 

of which sets the start point of the contraction wave while the progression of the wavefront is 

regulated by the gradient itself. At the same time, feedback within the RhoA-Rok-Myosin II signalling 

cascade interacts with the gradient in controlling the speed of the wave progression and the width of 

the band of activity.  

In the following I will discuss further implications of these findings in the context of other research 

and illustrate some of the open questions that remain.   

5.2 THE SPATIAL DIMENSION OF THE CELL CYCLE 

The key finding presented herein is that the cell cycle gradient regulates the progression of the 

contraction wave. 
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Classically the cell cycle is seen as a one-dimensional process through which the cell moves. This is a 

reasonable view, as most dividing cells are small enough that mixing of components is near enough 

instantaneous allowing us to disregard the spatial dimension. Furthermore, most divisions are 

symmetric with the division signal originating in the middle of the cell, leading to identical behaviour 

in both sides of the cell. But there are examples of cells that do not fit these stereotypes of dividing 

cells and these specialised systems allow us to study an additional dimension of the cell cycle. 

The starfish oocyte in meiosis is such a system due to two critical attributes. The first is its size. With 

a diameter of 180 µm the oocyte is large enough that diffusion cannot equilibrate things in a 

reasonable time frame compared to the time the cell cycle takes. Secondly, the meiotic division is a 

highly asymmetric division and this asymmetry is prepatterned by the nucleus which is positioned off-

centre. These two characteristics are key adaptations to the oocyte function, with the size being 

required for nutrient storage while the polarisation of the nuclear position is necessary to allow for 

easy asymmetric cell division. 

My work shows that the cell cycle gradient controls the contraction wave and this gradient arises from 

these two adaptations. The surface contraction wave is, therefore, an easily visible physical 

manifestation of the spatial dimension of the cell cycle. Essentially in the starfish oocyte the individual 

phases of the cell cycle do not happen simultaneously across the whole cell but rather start first at 

one end of the cell and move progressively across it (Figure 62). 

Figure 62: Cell cycle in space and time in starfish oocyte compared to a somatic cell in mitosis 
A) In a somatic cell, the cell cycle transitions happen in the whole cell simultaneously. B) The cell cycle gradient in the starfish 
oocyte is spread in space and time. Interphase in blue, metaphase in green, anaphase in red. Size of the cells not to scale. 

5.3 THE CELL CYCLE DEPENDENCE OF THE CONTRACTION WAVES IN STARFISH AND XENOPUS  

The previously best-described example of contraction waves are the ones in the Xenopus embryo. In 

this system, it was recently shown that the spatial dimension of the cell cycle drives the SCWs. Work 

by Chang and Ferrell showed that in the very large Xenopus egg the cell cycle signal is spread by a 

mechanism other than diffusion (Chang & Ferrell 2013). They showed that the signal leading the entry 

of the cell into metaphase - the rise in Cdk1 levels - travels across the cell as a trigger wave and that 
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this underlies the SCWa. It is interesting to speculate what the parallels are between the contraction 

wave in the starfish oocyte and in the Xenopus embryo and if they share the same trigger wave 

mechanism controlling them.  

If we compare the SCWs in these two systems, two key differences emerge (Figure 63). The first is that 

while both systems exhibit two contraction waves, one at metaphase entry and one at metaphase 

exit, the temporal spacing between the two waves is very different. In the Xenopus, the contraction 

waves occur within around 10 minutes from each other, while in the starfish oocyte around 40 minutes 

pass between them. Secondly, the directionality between the two waves is reversed. In the Xenopus 

system, both waves move in the same direction while in the starfish they travel in opposite directions. 

These difference indicate a likely functional difference and make the transfer of knowledge from one 

system to the other difficult, especially as in Xenopus mainly the wave at metaphase entry has been 

studied while I focussed on the wave at metaphase exit.   

My data show that in addition to forming a gradient, the degradation of cyclin B happens equally all 

across the cell maintaining the gradient with dropping levels. This suggests that it is likely not a trigger 

wave which controls the progression of the contraction wave but rather the gradient in the starfish 

system. Furthermore, it is likely that the regulatory network at metaphase exit is not able to give rise 

to the bistability needed to achieve a trigger wave. This is due to the fact that the metaphase exit 

network contains only a single feedback loop, while the metaphase entry network contains both a 

positive and a negative feedback loop (Figure 15). Whether the wave of relaxation at metaphase entry 

in this system is controlled by a trigger wave, or whether a gradient also acts there, remains to be 

explored in the future.  
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Figure 63: Comparison of contraction waves in Xenopus and starfish. 
SCWs in Xenopus artificially activated egg as seen by the change in surface pigmentation. There are three pairs of SCWs in 
this kymograph, each going along with one cell cycle. In comparison in the starfish oocyte, the SCWs in meiosis are visualised 
by the surface curvature measurements. This comparison shows the difference in timing and direction between the two SCWs 
in Xenopus and starfish. Xenopus data reprinted by permission from Macmillan Publishers Ltd: Nature (Chang & Ferrell 2013), 
copyright 2013. 

In summary, my data suggest the mechanism by which the cell cycle induces the contraction wave in 

the starfish is different from the one in Xenopus. But while the specific mechanism may differ, viewing 

the commonalities from both the starfish and the Xenopus system opens up a new view of the cell 

cycle, where its spatial dimension is a factor controlling cortical behaviour. This spatial dimension can 

only be studied in large cells or semi-in vitro systems like the Xenopus egg extract, making a case for 

the use of these models in addition to classical cell culture systems. This is especially important as the 

spatial dimension of the cell cycle opens up the view for new interactions between the cell cycle and 

its downstream targets, which can be investigated in the contraction waves, but may also occur 

elsewhere.  
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5.4 LINKING CDK1 ACTIVITY TO CONTRACTILITY 

5.4.1 The contraction wave is independent of microtubules 

The contraction wave offers an exciting system in which to study pure cortical responses to cell cycle 

signalling. In regular cell divisions, the cortical response is largely regulated by the microtubule spindle, 

which takes up a large part of the cellular volume. In a meiotic oocyte, however, the spindle is very 

small in comparison to the cell itself. This means that the vast majority of the cortex is exposed to the 

changing cell cycle signals directly without the intermediate regulation by the microtubules and the 

contraction wave can be interpreted as a direct consequence of this. 

Consistent with this framing, complete removal of the microtubules did not change the contraction 

wave in any way. This finding of microtubule independence of the contraction wave is very interesting 

in terms of the parallels to cytokinesis. The two processes share the same downstream regulatory 

pathway of RhoA-Rok-Myosin II, which induces the contraction wave and cytokinetic ring formation 

respectively. But while this pathway is identical in the two processes, in cytokinesis it is regulated 

spatially by the microtubules and temporally in response to the cell cycle. But my data clearly shows 

that in the contraction wave the RhoA-Rok-Myosin II pathway is regulated in both time and space by 

the cell cycle alone. This makes the contraction wave a response of the cortex to the metaphase to 

anaphase transition without constraint by the microtubules, as is the case in somatic cells.  

This is an interesting observation in light of evidence that is emerging for a general role of microtubules 

in regulating cortical contractility. In different cellular contexts, it appears that microtubules may 

consistently act to suppress local cortical contractility. The examples come mainly from cells during 

the adhesion process which have their microtubules removed (Pletjushkina et al. 2001; Paluch et al. 

2005), leading to cortical oscillations while contractility is suppressed by the stabilisation of 

microtubules (Danowski 1989). There is furthermore clinical data in cardiomyocytes supporting this 

idea (Ishibashi & Tsutsui 1996).  

This little-studied aspect of the regulation of cortical contractility certainly deserves further 

investigation as the molecular details by which microtubules could suppress cortical contractility are 

unknown. It is fascinating to speculate about the importance of this regulation in maintaining stable 

cellular shape and cortical cohesion by preventing hypercontractility and bleb formation. The 

contraction wave, as a contractile process unrestrained by microtubules, may serve as a system to 

understand what happens in the cortex in the absence of microtubule regulation.  
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5.4.2 GEFs regulating the contraction wave 

While I was able to directly show both the role of the cell cycle regulation as well as the downstream 

pathway regulating contractility, the molecular connection between these two aspects proved hard 

to find. It is clear that the downregulation of Cdk1 activity at the end of metaphase leads to the 

activation of RhoA, which subsequently activates myosin II, and that these two factors must be linked 

via a GEF.  

The GEFs in action in cytokinesis – Ect2 and GEF-H1 – are very well characterised in both their 

molecular function as well as in their response to the cell cycle, but both rely critically in their 

regulation on microtubules. As my data indicates a lack of microtubule-based regulation, it is perhaps 

not surprising that I cannot find evidence for the involvement of either Ect2 or GEF-H1 in the 

contraction wave. It has to be noted thought that the tools I have for exploring the involvement of 

various GEFs are much more limited than the tools used in other aspects of this research. This is to a 

large degree due to the fact that there are no commercially available small molecule inhibitors of Ect2 

as well as no efficient dominant negative mutants described in the literature. As the starfish oocyte is 

not amenable to genetic manipulation, this commonly used method for the study of various GEFs was 

not open to me. Due to these limitations, I cannot completely rule out the involvement of the classical 

cytokinetic GEFs in linking the cell cycle to the contraction wave. But given that I find effects based on 

the overexpression of either of these GEFs on other cellular contexts, it is quite possible that simply 

neither of them are involved in regulating the contraction wave.  

In this case, there must be a different GEF at work in the context of the contraction wave linking cell 

cycle progression to RhoA activation. There is certainly no paucity of candidates, as the Dbl family of 

GEFs, the largest of the GEF families, to which both Ect2 and GEF-H1 belong, alone as 69 members in 

humans, active in many different cellular contexts (Rossman et al. 2005). Many of these proteins have 

not been characterised in any detail, illustrating how little we know about GTPases above the core 

few proteins and making it likely that the GEF controlling the contraction wave may be found in future. 

It is possible that the thus identified GEF will also play a role in the regulation of cortical contractility 

during the cell cycle outside of the specific case of the contraction wave.  

5.5 MOLECULAR PATHWAY CONTROLLING THE CONTRACTION WAVE 

5.5.1 The highly conserved RhoA-Rok-Myosin II signalling axis 

While the GEF linking the cell cycle to cortical contractility remains a question for the future, I was 

able to identify the molecular pathway directly controlling the contraction wave. This is the first time 

the molecular basis of the contraction wave has been identified in any species.  
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The pathway itself is a highly conserved one, where RhoA activates its effector Rok, which in turns 

activates myosin II. This pathway is not only the one that drives cytokinesis (Miller 2011), but it also 

important in cell migration and adhesion (Vicente-Manzanares et al. 2009), maintaining the cellular 

contacts of stem cells (Harb et al. 2008) and formation of the immune synapse (Rougerie & Delon 

2012), to name just a few examples. It is therefore very well characterised, both in terms of the 

individual proteins as well as their interaction (Amano et al. 1996; Jordan & Canman 2012).  

The novelty my data adds is to consistently prove the activity of the whole RhoA-Rok-Myosin II 

pathway in the contraction wave, for which the molecular players had previously been unknown. With 

this, I add another example of a contractile process regulated by the RhoA-Rok-Myosin II signalling 

axis, which shares interesting parallels to cytokinesis in terms of its cell cycle dependence but with a 

divergent upstream spatial regulation as discussed above.  

5.5.2 Feedback in the RhoA-Rok-Myosin II pathway 

Due to its dynamic nature, the contraction wave offers a system where I could uncover additional 

characteristics of the RhoA-Rok-Myosin II pathway. Specifically, as the contraction wave always forms 

a sharp band where the signal pathway is active which moves across the cell and I have a number of 

specific inhibitors of the individual components, I can study regulatory feedback in this system. The 

feedback within the RhoA-Rok-Myosin II pathway is not well studied, particularly in cytokinesis. Some 

data on mechanical feedback exists in cell migration and polarisation (Bhadriraju et al. 2007; Petrie & 

Yamada 2012), but how general these feedback mechanisms are, remains an open question. My 

evidence supports the idea of extensive feedback within the pathway. 

The evidence I have for feedback within the pathway comes from two datasets. Firstly, I observe 

changes in the speed with which the wave progresses across the cell when I manipulate myosin II itself 

but not when the upstream pathway components are inhibited (Figure 57). Secondly, when Rok is 

inhibited, I observe abnormal off-switching behaviour for RhoA, which then no longer forms a band 

but rather remains active at the whole cortex after the wave has passed (Figure 59). These two 

feedbacks are independent, with the RhoA off-switching being normal in the case of the changed wave 

speed while the speed is normal when the abnormal off-switching behaviour is induced by Rok 

inhibition. But both feedbacks clearly impact the activity state of RhoA, although most likely via 

different pathways (Figure 64). The data suggests that myosin II negatively regulates the activation of 

RhoA in concert with Cdk1, likely targeting the GEF.  

The feedback regulating the off-switching behaviour of RhoA clearly targets a GAP which is responsible 

for the transition from active RhoA-GTP to inactive RhoA-GDP. I have not identified the specific GAP 



132 
 

in question as there are a large number of GAPs, most of which are poorly characterised (Bernards 

2003).  

Figure 64: Complete molecular pathway regulating the contraction wave.  

Overall it is clear that in the contraction wave the RhoA-Rok-Myosin II pathway exhibits two feedback 

loops (Figure 64). The first one controlling the speed of the wave progression originates from myosin 

II activity and therein interacts with the Cdk1 regulation in some manner, potentially by feeding back 

into the same GEF which is regulated by Cdk1 inhibition. The second feedback loop arises from Rok 

and activates a GAP, which is responsible for defining the width of the band of RhoA activity. There 

may very well be additional feedback systems at least partially in this pathway, such as the feedback 

between actin polymerisation and RhoA activation (Bement et al. 2015).     

5.6 THE OOCYTE CORTEX AND ITS DYNAMICS 

While I focussed my investigation of the contraction wave on understanding the regulation of 

myosin II activity, the cortex, which serves as the substrate for the contraction, is worth some 

considerations. 

Cortex dynamics are a very important aspect of the regulation of cortical behaviour. It is assumed that 

the actin cortex, in general, has a turn-over time of around 1 min, although there are distinct 

subpopulations of actin with faster turnover (Salbreux et al. 2012). Other proteins in the cortex, such 

as myosin II and the actin crosslinker actinin have been shown to turn over significantly quicker 

(Fritzsche et al. 2013). All these measurements come from somatic cells in cell culture, and although 
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these values are widely used and generally accepted, if we can apply them to the starfish oocyte cortex 

remains an open question. 

In general, we know very little about the organisation of the cortex in these cells and rely on 

assumptions from other systems. One fact which has been described in old papers, and which I re-

established for the specific oocytes I was working with, is that their surface tension is very high. For 

HeLa cells in interphase the tension is measured at around 0.2 mN/m, rising to 1.6 mN/m in metaphase 

(Fischer-Friedrich et al. 2014). The starfish oocyte, on the other hand, has in its immature state, which 

is prophase arrest, a surface tension of 10 mN/m, dropping to around 1 mN/m at metaphase entry. 

These values for the resting/non-division phase cortexes are surprisingly different and the mechanism 

by which the oocyte generate such higher pressure has so far not been investigated.  

It is clear that the oocytes have very large amounts of myosin II, most of which is located in the cortex 

of the immature oocyte. This very likely strongly contributes to this high tension. How this higher 

tension affects cortex turnover rates and if the myosin is perhaps more stably bound in the cortex of 

the immature starfish oocyte remains an open question. A convenient method to explore these 

questions would be FRAP to measure the lifetime of different proteins in the cortex or laser ablations 

as recently proposed by (Saha et al. 2016).  

It is also interesting to speculate why the starfish oocytes go to the effort of generating such very stiff 

cortexes. One would instinctively assume that this is due to the external fertilisation and ex utero 

development that the oocytes of the starfish undergo in the open sea and the resulting requirement 

for physical toughness. But normally the oocytes are only released into the water in the middle of 

metaphase when they have softened considerably. The resulting tension of around 1 mN/m seems 

sufficient to allow survival even in the harsh conditions of the open ocean. So why do the oocytes have 

such a high tension in the prophase-arrested state when they are in the ovary and reasonably 

protected? It is possible that the high tension allows for the tight packing of the oocytes observed in 

the ovaries without damaging cellular integrity. Ultimately this remains an open question that will be 

interesting to explore in the future, especially if comparative measurements can be made on other 

marine and non-marine animals undergoing external fertilisation, to determine if the tension is an 

adaptation specific to starfish, the marine environment, external fertilisation, or oocyte generally.  

5.7 SIMILARITY TO OTHER CONTRACTION WAVES 

5.7.1 Other contraction waves in the starfish oocyte 

While all experiments herein were performed with a focus on the main contraction wave associated 

with meiosis I, there are two other waves happening during the course of oocyte maturation. The first 
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wave is the one that occurs at NEBD and moves from the animal pole to the vegetal pole. And although 

this wave looks very similar to the contraction wave, it is in fact not a contractile wave at all. It is rather 

a wave of relaxation when the surface tension drops at the entry into metaphase, which is marked by 

NEBD. Along with this wave, I observe the loss of myosin from the cortex, causally explaining the 

underlying softening (Figure 65). This relaxation wave at NEBD is therefore very likely identical to the 

SCWa in the Xenopus eggs , which is also a wave of relaxation at metaphase entry and precedes the 

actually contractile SCWb (Sawai 1982; Rankin & Kirschner 1997).  

 

Figure 65: SCW at NEBD in the starfish oocyte.  
Kymograph of curvature (upper panel) and cortical myosin II intensity (lower) for complete meiosis I. This shows the relaxation 
wave at NEBD which goes along with the loss of myosin II from the cortex and later the contraction wave going along with 
myosin II recruitment to the cortex.   

How similar the mechanisms between the relaxation wave at NEBD and the contraction wave at 

anaphase are, remains to be answered in the future. The basic involvement of myosin II is clearly a 
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common factor and both waves are responses to changes in the activity levels of Cdk1, with relaxation 

occurring in response to a rise in Cdk1 activity while contraction occurs in response to a drop. These 

similarities suggest quite a high level of mechanistic conservation but to really compare the two wave 

consistently a detailed analysis of the relaxation wave is required.  

The second contraction wave that occurs during maturation in the starfish oocyte is associated with 

meiosis II. It occurs at exactly the same cell cycle stage as the first and main contraction wave, namely 

at the metaphase to anaphase transition alongside polar body formation. It is to be expected that 

these two processes are in every way molecularly equivalent. The only difference between them is 

the difference of their magnitude, with the second contraction wave being much more subtle than 

the first, inducing much less curvature change (Figure 36). 

This difference in the magnitude of the second contraction wave can be explained by the cell cycle 

gradient controlling the contraction wave. In the run-up to meiosis II, cyclin B is re-synthesised to 

lower levels than during meiosis I and the whole cell cycle is much quicker (Okano-Uchida et al. 1998). 

It takes only around 30 min, compared to the 60 min of meiosis I. Therefore we can speculate that the 

resulting gradient will have lower peak levels and be potentially shallower, leading to a less 

pronounced contraction wave. But a detailed quantification of the gradient during meiosis II would be 

necessary to definitely answer this question, which is not possible using the fluorescently tagged 

constructs used herein as they are not resynthesized fast and specifically enough. 

5.7.2 SCWs in other systems 

With the work presented herein, the starfish oocyte becomes the systems with the best understood 

SCW, as we now have a more detailed molecular understanding than even the classical Xenopus model 

system. On the other hand, this means that apart from these two systems we have preciously little 

data on SCWs, which makes a cross-species comparison very difficult. Although some level of evidence 

for surface contraction waves is present in a wide variety of species, most of the descriptions are very 

old and lack details and especially molecular data.  

It appears quite clear that a good case can be made for the comparable nature of the SCWs in starfish 

and in the Xenopus egg, especially with regards to the dependence of the contraction wave on cell 

cycle regulation and the progression of the cell cycle across a large cell as discussed above. It 

furthermore seems likely that the molecular details of the contractile pathway are comparable, as the 

RhoA-Rok-Myosin II pathway is so conserved across species and can be hypothesised to drive SCWs in 

many systems. Whether the upstream regulation is quite the same remains an open question until 

more molecular details are available in the other system. 
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In addition to the lack of available data on SCWs in other species, an evolutionary comparison is made 

difficult by the diversity of oocyte behaviour. These behaviours including arrests and fertilisation at 

different cell cycle stages, in response to which the contraction waves in many of these systems occur 

(Prodon et al. 2008; Shimizu 1984). But it is perhaps possible that for all cases, where the SCWs are 

true contractions, the basic molecular pathway will be similar and therefore this study can serve as a 

starting point for the exploration of upstream regulatory elements in the contraction waves in other 

systems. 

5.8 THE CONTRACTION WAVE AS A FUNCTION VS THE FUNCTION OF THE CONTRACTION WAVE 

5.8.1 The contraction wave is a result of oocyte adaptation 

As the contraction wave is such a striking phenomenon the early papers describing SCWs are full of 

speculations regarding their function. These functions have not been explored experimentally in any 

of the common systems.  

The findings I present herein indicate that the search for a function of the contraction wave might, in 

fact, be a wild goose chase. The contraction wave is driven by a cell cycle gradient established due to 

the off-centre position of the nucleus. Following this logic, the contraction wave is merely a result or 

side-effect of the adaptations of the oocyte to its function. And while this may seem counterintuitive 

due to the striking nature of the process, it is important to consider that as long as there are no 

negative side effects or the evolutionary cost is not too high, there might be no reason for the cells to 

develop a mechanism to suppress this side-effect. This presupposes that it would even be possible to 

suppress the contractile phenomenon during the contraction wave without negatively impacting the 

contraction of the cytokinetic ring which occurs using the same molecular pathway at the same time. 

The contraction wave can be fully explained as a result of oocyte adaptation, but of course, this does 

not rule out the possibility that the contraction wave has additional, potentially later acquired, 

functions.  

5.8.2 Polar body protrusion is independent of the contraction wave 

In the starfish system, the main proposed function is the generation of pressure to drive the protrusion 

of the polar body. This was originally proposed by Hamaguchi and Hiramoto when they first described 

the contraction wave in this system (Hamaguchi & Hiramoto 1978). This idea has been opposed by 

data from Rappaport who argued that polar body formation is independent of any global pressure 

built-up and is a locally induced phenomenon (Rappaport & Rappaport 1985). 
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The link to polar body formation is intuitively appealing due to its close temporal and spatial 

correlation. But the data I have gathered while investigating the contraction wave convincingly argues 

that polar body formation is independent of the contraction wave. Neither inhibiting nor 

strengthening the contraction wave made a difference to the size of the polar body protrusion. At the 

same time, it has to be noted that the full polar body formation cannot be observed when the 

contraction wave is inhibited as the molecules of the contraction wave and the contractile ring are 

identical, so the inhibitors block both. I, therefore, focussed on the formation of the protrusion of the 

polar body.   

To underscore the independence of the polar body formation and contraction wave we also have to 

take a closer look at the pattern of cytoplasmic flow immediately prior to polar body formation. At the 

time point of polar body formation, the contraction wave is in the upper half close to the animal pole 

and the cytoplasmic flow is pointing away from the animal pole. This strongly argues against the idea 

that there even is pressure pointing in the right direction to drive polar body protrusion. It is also in 

opposition to the flow pattern assigned in the original study, explaining their opposing conclusion 

(Figure 66).  

 

Figure 66: Curvature change and cytoplasmic flow in the oocyte. 
Upper panel shows the shapes and flow as originally proposed by Hamaguchi and Hiramoto, compared to my findings (lower 
panel). The early description showed some of the key shape changes, but the early ones were missed and the assignment of 
flow pattern to shape change has been updated by my detailed analysis.  Upper panel reprinted  from (Hamaguchi & Hiramoto 
1978) with permission from Elsevier. 

Due to the fact that inhibitor treatments that block the contraction wave also block the cytokinetic 

ring, with this data, I cannot rule out that the contraction wave plays a role in bringing the contractile 

machinery to the site of cytokinesis. This would be similar to the cortical flow which brings myosin II 

to the contractile furrow in dividing cells (Wang et al. 1994; Mandato et al. 2000). But we can rule out 

this potential function of the contraction wave in the experiments where I change the direction of the 

contraction wave. In this case, a full polar body forms even if the wave runs at an angle to it or against 
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it. Additionally in the cases of the reversed contraction wave I can detect strong recruitment of the 

upstream signalling factor RhoA at the animal pole even when the wave has passed across it. This 

signifies that the spindle is able to recruit the signals required for polar body formation independently 

of the contraction wave. 

In conclusion, I can rule out the involvement of the contraction wave in the formation of the polar 

body. But polar body formation remains none the less an interesting question and the mechanism that 

regulates polar body formation are open for investigation. On the molecular side, there is good data 

from Xenopus oocytes indicating that polar body formation is driven by the small GTPase Cdc42 

inducing Arp2/3 driven actin polymerisation (Zhang et al. 2008). In the starfish oocyte I also observe a 

strong accumulation of actin in the polar body, supporting this model on the base level (Figure 67). It 

could easily be further explored using Arp2/3 and Cdc42 inhibitors and reporters.  

Figure 67: First polar body.  
Oocyte expressing the actin marker Utrophin CH-domain EGFP with the newly formed polar body, showing the accumulation 
of actin at the polar body cortex. Time relative to NEBD.  

On the more upstream level, it is fascinating to speculate which factors drive the formation of the 

polar body. It is clear that the spindle alone is sufficient to cause polar body formation, as a 

translocation of the spindle along the cortex causes the polar body to form at the new site (Rappaport 

& Rappaport 1985). It would be interesting to know if the individual components of the spindle alone 

are sufficient to drive polar body formation, especially in light of data from mouse oocyte where DNA-

coated beads along can induce the cortical differentiations that predetermine the polar body cortex 

(Figure 68) (Deng et al. 2007). It would be interesting to see if the same is true in starfish and if the 

pathway that links chromatin signals to Cdc42 activation can be illuminated.     
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Figure 68: Cortical differentiation in response to chromatin signal. 
Both DNA beads (arrow) and MII spindle (arrowhead) cause cortical differentiation by accumulating actin (M) and myosin II 
(N) at the cortex in mouse oocytes in meiosis II. Reprinted from (Deng et al. 2007) with permission from Elsevier. 

5.8.3 Potential function of the contraction wave in development 

As the development of the oocyte sets the stage for embryonic development, many have suggested 

that the contraction waves may be required for localising some developmental determinants. The 

suggestions range from the localisation of broad cER-mRNA domains in ascidians (Figure 69) (Prodon 

et al. 2005) to the localisation of specific mRNAs in jellyfish (Houliston et al. 1993; Amiel & Houliston 

2009). In general, these factors are thought to be involved with setting the embryonic animal-vegetal 

axis and determining micromere and resulting germ cell formation. 

It is, however, unclear if there is a direct link between these localisations and the contraction wave or 

whether processes controlled by the same molecules are behind the localisation of these factors. 

Given that it is difficult to infer whether the contraction waves are evolutionarily similar between 

distally related species a speculation regarding a conserved function is even more difficult, especially 

in light of the paucity of evidence.  

 

Figure 69: Polarisation of developmental determinants. 
Localisation of Mitochondria in an embryo of the ascidian Halocynthia roretzi after treatment with various cytoskeletal 
inhibitors. C and D) Removal of both actin and myosin II shows a lack of normal AP-VP polarisation of mitochondria 
distribution, compared to control and microtubule removal (A and B). Reprinted from (Prodon et al. 2008) with permission 
from Elsevier. 

Sadly, none of the methods I have developed here to inhibit the contraction wave allow the formation 

of a fully mature oocyte. This is either due to polar body cytokinesis being inhibited (by the inhibitors 
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of the RhoA-Rok-Myosin II pathway) or the cell cycle being blocked (by Cdk1 inhibitors) for subsequent 

divisions. Therefore, I cannot generate fully mature and fertilisable oocyte which have never 

experienced a contraction wave, with which I could test the hypothesis of a developmental role of the 

contraction wave.  

This will be an important challenge for the future, as a developmental role of the contraction wave is 

an exciting possibility with potentially wide-reaching developmental consequences.  

It is well imaginable that the surface contraction waves developed originally only in response to the 

oocyte adaptations, but that they were later co-opted for the localisation of developmental 

determinants. The contraction waves are ideal candidates for this as they run along the animal-vegetal 

axis and thereby may help to communicate the cellular layout in these large cells. The cytoplasmic 

streaming taking place during the contraction wave would certainly give a plausible mechanism for 

how specific localisation could be achieved, especially in combination with specific binding sites, for 

example at the vegetal pole.  

The identification of polarity markers, whose positioning happens during oocyte maturation and 

which can be visualised during maturation, will be an important first step in testing this intriguing 

hypothesis. 
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Surface contraction waves are a prominent example of spatially and temporally tightly regulated 

cortical contractility. They are commonly observed in large dividing cells, such as oocytes and early 

embryos, in a wide variety of species (Hara 1971; Hamaguchi & Hiramoto 1978). Previous studies have 

indicated that the contraction waves are linked to cell cycle transitions (Rankin & Kirschner 1997; 

Chang & Ferrell 2013), but the molecular basis of the contraction, its regulation by the cell cycle and 

the mechanisms that pattern this process in space and time had not previously been explored. 

I studied surface contraction waves using starfish oocytes. They are a well-suited model system, 

exhibiting prominent contraction waves during meiosis, which can be imaged at high spatial and 

temporal resolution and are accessible to a variety of chemical and physical manipulations. 

I first carefully and quantitatively characterised the cell shape changes associated with the contraction 

wave. This revealed that they arise from a band of flattening of the cortex which forms first at the 

vegetal pole and then moves across the cell towards the animal pole. Co-localized with the flattened 

cortex, I observed an accumulation of non-muscle myosin II molecules, and consistently, inhibition of 

myosin II weakens the contraction wave, while upregulation of myosin II strengthens it. As revealed 

by specific small molecule inhibitors, recruitment of myosin II to the cortex during the contraction 

wave is controlled by the RhoA kinase (Rok) which in turn is controlled by the localisation of active 

RhoA to the cortex. I further showed that RhoA activation was independent of microtubules, but 

depended on cdk1-cyclinB activity.  Taken together, these data allow me to conclude that the pathway 

of RhoA-Rok-Myosin II drives the contraction wave. This offers the first molecular mechanism of 

surface contraction waves in any species. Indeed, the core signalling module composed of RhoA-Rok-

Myosin II is a highly conserved pathway that controls cortical contractility in diverse physiological 

contexts including cytokinesis (Miller & Bement 2009) and embryo morphogenesis (Vasquez et al. 

2014). The question that follows from this observation is how this pathway gives rise to the spatially 

and temporally complex pattern of contraction waves. 

Indeed, a striking feature of the contraction wave is that it moves across the cell from one pole to the 

other. By investigating this dynamic behaviour in correlation with cell cycle regulators, I could show 

that the key cell cycle kinase, cdk1-cyclin B forms a gradient across the animal-vegetal axis of the 

oocyte and that this gradient defines the orientation of the contraction wave. The gradient is 

established early in meiosis due to the accumulation of cdk1-cyclinB in the nucleus, which is located 

at the animal pole. As the cell cycle proceeds, the cyclin B subunit of cdk1-cyclinB is progressively 

degraded, inactivating the kinase subunit, cdk1. Importantly, I could show that degradation of cyclin 

B is spatially homogenous and therefore the animal-vegetal gradient of cdk1-cyclinB is maintained 

throughout meiosis. As a consequence, the bottom threshold of cdk1 activity will be reached first 
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opposite of the nucleus that is at the vegetal pole. In a series of experiments using local application of 

inhibitors of cdk1 as well as locally introducing additional cdk1-cyclinB protein, I could demonstrate 

that the contraction wave initiates at the location where cdk1 activity first hits the bottom threshold. 

Furthermore, by changing the shape of the oocytes using mirofabricated chambers, I could show that 

the gradient of cdk1-cyclin B across the oocyte regulates the progression of the wave.  

From these data, I conclude that the activity gradient of cdk1-cyclin B provides the initial spatial cue 

setting the starting point and direction of the contraction wave. Additionally, I could show that 

feedbacks internal to the downstream signalling network further shape the contraction wave 

determining its speed and the width of the band of activity. In particular, I could show that myosin II 

activity feeds back to control the speed of the wave, and that a negative feedback from Rok controls 

RhoA deactivation and thereby defines the width of the wave. 

In summary, based on the above experiments, I can propose the first comprehensive model for the 

molecular mechanism controlling surface contraction waves in space and time. My work reveals that 

while in small somatic cells the cell cycle machinery merely functions in temporal control and the 

microtubule spindle provides the spatial cues, in the large oocytes the cell cycle kinases form a spatial 

gradient that patterns contractile processes during cytokinesis. The spatial gradient arises from two 

specific features of the oocyte: the large size of the cell and the asymmetric nuclear position. In this 

sense, the contraction wave can be seen as a result of a cellular adaptation to the specific architecture 

of oocytes.  

While cdk1-cyclin B activity is clearly the master regulator, my work also revealed important feedback 

mechanisms internal to the conserved RhoA-Rok-Myosin II signalling module wherein Rok and 

myosin II activity feeds back into the regulation of the contraction wave. These feedbacks have 

previously not been characterised, and I could detect and quantify them here for the first time due to 

the large size the cell as well as the dynamic behaviour of the signalling cascade. As the pathway is 

highly conserved, this feedback is likely to be present and may have important functions in other 

systems.  

Overall, my work identified the molecular regulatory pathway controlling the surface contraction 

waves in the starfish oocytes revealing how a spatial gradient of cell cycle factors in combination with 

feedbacks internal to the highly conserved RhoA-Rok-Myosin II pathway can pattern this spatially and 

temporally highly complex cellular behaviour.   
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