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Abstract

The efficient and reliable estimation of model parameters is important for the simula-
tion and optimization of physical processes. Most models contain variables that have
to be adjusted, e.g. in the form of material properties, and the uncertainty of state
estimates and predictions is directly linked to the uncertainty of these parameters.
Therefore, efficient methods for parameter estimation and uncertainty quantification
are required. If the physical system is spatially highly heterogeneous, then the num-
ber of model parameters can be very large. At the same time, imaging techniques
and time series can provide a large number of measurements for model calibration.
Many of the available methods become inefficient or outright unfeasible if both the
number of model parameters and the number of state observations are large.

This thesis is concerned with the development of methods that remain efficient when
a large number of measurements is used to estimate an even larger number of model
parameters. The main result is a special preconditioned Conjugate Gradients method
that can achieve both quasilinear complexity in the number of parameters and pseudo-
constant complexity in the number of measurements. The thesis also provides ran-
domized methods that allow linearized uncertainty quantification for large systems,
taking redundancy in the measurements into account if applicable.

Zusammenfassung

Die effiziente und zuverlässige Schätzung von Modellparametern ist wichtig für die
Simulation und Optimierung physikalischer Prozesse. Die meisten Modelle enthalten
unbekannte Größen, z.B. Materialkonstanten, und die Unsicherheit von Zustands-
schätzungen und Vorhersagen wird maßgeblich durch die Unsicherheit dieser Para-
meter beeinflusst. Daher werden effiziente Methoden für Parameterschätzung und
Unsicherheitsschätzung benötigt. Falls das physikalische System starke räumliche
Heterogenität aufweist, kann die Anzahl der Modellparameter sehr groß sein. Gleich-
zeitig können bildgebende Verfahren und Zeitreihen große Mengen an Messungen für
die Modellkalibrierung bereit stellen. Viele der zur Verfügung stehenden Methoden
werden ineffizient oder völlig unbrauchbar, wenn sowohl die Anzahl an Parametern
als auch die Anzahl an Zustandsbeobachtungen groß sind.

Diese Arbeit befasst sich mit der Entwicklung von Methoden, die effizient bleiben,
wenn eine große Zahl Messungen genutzt wird um eine noch größere Zahl Modellpa-
rameter zu schätzen. Das Hauptresultat ist eine spezielle vorkonditionierte Variante
des CG-Verfahrens, die quasilineare Komplexität in der Anzahl der Parameter und
pseudo-konstante Komplexität in der Anzahl der Messungen erreichen kann. Die Ar-
beit stellt außerdem randomisierte Methoden zur Verfügung, die eine linearisierte
Unsicherheitsschätzung für große Systeme ermöglichen und dabei eine eventuell vor-
handene Redundanz in den Messungen berücksichtigen.
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1 Introduction

This thesis is concerned with the estimation of model parameters from observations
of dependent quantities, specifically the efficient estimation of spatially distributed
parameter fields from relatively sparse observational data in the presence of noise.
The task of estimating model parameters from a given model and its output is called
inversion, and parameter estimation problems of this type naturally arise in various
scientific areas, among them the earth sciences, material sciences and life sciences.
In these fields, inversion is used to create reliable models of highly complex but only
indirectly observable systems [54]. While inverse problems appear in a variety of
disciplines, from image processing to weather forecasts to tomography, we focus on the
type of inverse problem typically encountered in the field of subsurface hydrology.

Subsurface hydrology is concerned with the distribution and flow of water through the
pore network of the soil matrix, where the flow patterns are governed by partial dif-
ferential equations with highly heterogeneous parameters [68]. The large variability
of parameters can only be expressed using high-resolution parameter fields, but the
number of observations of the system state is typically limited, since most measure-
ment techniques require the installation of observation wells or expensive equipment.
Logistic and financial constraints therefore lead to sparse data. In addition, the
measurement data typically contains noise from a variety of sources. Inverse mod-
eling can be seen as the attempt to extract as much information about the system
parameters as possible under these conditions.

Most inverse modeling approaches are designed for a small number of parameters, a
small number of state observations, or both. Such methods typically fail when high-
resolution parameter estimates based on the inversion of comparatively large data
sets are needed [54, 84]. Some of the methods have superlinear complexity in the
number of parameters, e.g. because they have to simulate the model once for each of
the parameters, or because the chosen formulation becomes ill-conditioned on finer
meshes. Other approaches are linear in the number of state observations, since they
have to simulate an adjoint model once for each measurement.

This thesis introduces several methods for the inversion of large data sets, focusing on
scenarios where a large number of state observations is used to estimate an even larger
number of parameters. Under these conditions the inverse problem is inherently ill-
posed and requires regularization, and the considered methods provide regularization
at comparatively low cost. Their memory requirements and associated computational
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1 Introduction

cost are low, quasilinear in the number of parameters and sublinear or even pseudo-
constant in the number of observations. Therefore, they are suited for the inversion
of large data sets using high-resolution parameter fields.

We operate under the following two assumptions:

• The model is an adequate representation of the physical process under consider-
ation, and the model equations are regular enough to allow differentiation with
regard to the model parameters. Based on this assumption, gradient-based
methods can be used.

• While the model parameters themselves are unknown, a limited amount of
information is available a priori. This may be the typical order of magnitude
of the parameters combined with the implicit assumption that the parameters
are independent from each other, a description of the autocorrelation structure
that governs the parameters, or possibly knowledge about characteristic spatial
patterns and internal dependencies. This information can be used as a form of
regularization and ensures the well-posedness of the considered problems.

1.1 Modeling and Inverse Modeling

We begin by defining an abstract framework of parameters, parameterized functions,
system states, state observations and their interactions. This will allow us to give
a precise description of the forward problem and inverse problem as we understand
them in the given context, i.e. using a given model to make predictions and estimating
parameters for a given model from observations. This framework is a formalization
and generalization of common practice in the considered field of research [72, 52], and
an example of a concrete application is discussed in section 1.2.

Let P := (p1, . . . ,pnP) ,pi ∈ Rnpi , be a tuple of parameter vectors, and let Z :=
(z1, . . . , znZ) , zj ∈ Rnzj , be a tuple of measurements of dependent quantities. nP and
nZ are the number of parameter fields and the number of state variables, and npi

and nzj are the number of components of the corresponding vectors. Let Ω ⊂ Rd, d ∈
{2, 3}, denote the physical domain, in the following assumed to be a convex polytope
for simplicity, Eh a triangulation of Ω with mesh width h, and E ∈ Eh an element of
the triangulation.

We assume that each parameter vector pi is divided into a spatial part yi and a trend
part βi,

pi =
(

yi
βi

)
, y ∈ RnΩ , βi ∈ Rnβi , npi = nΩ + nβi

, (1.1)

where nΩ is the number of elements in Eh. Each component (yi)k of yi is associated
with a subdomain Ek ∈ Eh of the domain, while βi consists of non-localized parame-
ters. Furthermore, we assume a relationship of the following form exists between the

2



1.1 Modeling and Inverse Modeling

Figure 1.1: Left: Example of a parameter vector y with spatial interpretation. Each compo-
nent yk is assigned to one of the elements Ek ∈ Eh, and neighboring parameters
are highly correlated. Right: Parameter field s resulting from the combination of
y with a trend parameter vector β that consists of one coefficient for the spatial
mean and two coefficients associated with a linear slope.

parameter vector pi and its interpretation as a physical quantity si:

si := yi + Xi(βi), (1.2)

where Xi maps the trend coefficients to corresponding values in the discretization
elements E ∈ Eh. See figure 1.1 for an example of such a parameter vector together
with its spatial interpretation. Given this definition of si, we can evaluate it as a
function on Ω:

si(x) := (si)k if x ∈ Ek (1.3)

The functions si are the real physical quantities governing the system, averaged
over the triangulation Eh, and the values (si)k their mean over the element Ek.
This process can be formalized through the definition of an interpretation operator
Ii : Rnpi → L2 (Ω) that maps pi to the function si.

For each component zj of Z we denote the full system state of the observed quantity
with uj , the space of all possible states with Vj , and assume an observation operator
Oj : Vj → Rnzj mapping uj to zj exists. In the most basic case, this operator Oj

simply evaluates the function uj at a specific location x or its mean over a given
element E to determine a component (zi)k of the measurement vector. More complex
operators may take the measurement characteristic of the equipment into account.

3



1 Introduction

Note that in contrast to the interpretation operator Ii only a small subset of the
triangulation Eh is typically involved in the definition of Oj .

The parameter fields si and state functions uj are linked through models Fj that
relate the physical quantities:

F1 (S;u1) = 0 (1.4)
F2 (S, u1;u2) = 0

...
Fj (S, u1, . . . , uj−1;uj) = 0

...

or in a more concise notation:

∀uj : Fj (S,U<j ;uj) = 0 (1.5)

with the tuple U<j := (u1, . . . , uj−1). In this notation the semicolon is used to
distinguish between the quantities placed on the left and assumed to be known,
and the quantity on the right that is determined through the other variables and
the implicit function Fj . Typically Fj is given in the form of a partial differential
equation (PDE) and uj is the solution of the equation.

Remark 1 The system states uj are typically elements of Sobolev spaces, not
classical continuous and differentiable functions, and their regularity depends on
the model PDEs at hand and the regularity of boundary conditions and righthand
sides of the equations. Therefore, the models Fj define mappings between Sobolev
spaces, and the PDEs have to be formulated in a weak sense. Nevertheless, we will
use the more familiar and succinct classical formulation of PDEs in the following,
keeping in mind that it is a shorthand for the weak formulation. Constructs and
situations that require special care or interpretation will be pointed out, and we
will fully discuss the weak formulations in the introduction of the example model
equations in chapter 4.

A model Fj may be a trivial postprocessing step if uj is a byproduct of the compu-
tation of a previous uk, k < j, and it may be independent of one or more parameter
fields si. In this sense, equation (1.4) is a very general formulation that may represent
various physical processes. The different functions and operators and their effect are
visualized in figure 1.2. Note that the most appropriate structure would actually be
a tree, since there may be independent subsets of observations that are not linked
through model equations, or measurements that depend on the same model in differ-
ent ways. However, we focus on structures that are linear in the sense of figure 1.2,
since more complex tree structures can be flattened to fit this representation, and
modifying the presented methods for the more general case is straightforward.
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1.1 Modeling and Inverse Modeling

∀ i ∈ {1, . . . , nP} : pi si

z1 z2 znZ

S = (s1, . . . , snP) u1 u2 . . . unZ

Ii

F1 F2 F3 FnZ

O1 O2 OnZ

Figure 1.2: Detailed structure of the model of a physical process and its observation. Given
parameter vectors pi are interpreted as parameterized functions si and used to
compute the state variables uj .

S U

P Z

I

F

O
G

Figure 1.3: Diagram of the forward problem. The parameter-to-measurement map G is the
concatenation of I, F and O.

Given the above definitions, one may subsume the individual operators Ii, Fj and Oj ,
with 1 ≤ i ≤ nP and 1 ≤ j ≤ nZ, into a combined interpolation operator I mapping
the parameter vector tuple P to the tuple of parameter fields S := (s1, . . . , snP) ∈(
L2 (Ω)

)nP , a full model F mapping S to the system state U := (u1, . . . , unZ) ∈∏nZ
j=1 Vj and a general observation operator O mapping U to the measurement vector

tuple Z. Figure 1.3 gives a visualization of this more abstract representation of the
physical process and its observation: The discrete parameters P are mapped to the
discrete observations Z via I, F and O, with the tuples of parameter functions S
and state variables U being intermediate stages. This results in a parameter-to-
measurement map G := O ◦ F ◦ I.

The forward problem of modeling may now be expressed in the following way:

Problem 1 (Forward Problem)
Given a tuple of parameters P, a model F and operators I and O as above, deter-
mine the tuple of measurements Z.

In other words, the forward problem is equivalent to the evaluation of G(P) and typ-
ically consists of solving nZ partial differential equations, one for each state variable
in U . The corresponding inverse problem may then be expressed as:
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1 Introduction

Problem 2 (Ill-posed Inverse Problem)
Given a tuple of measurements Z, a model F and operators I and O as above,
determine the tuple of parameters P.

The inverse problem as stated here is almost always ill-posed, mainly due to the
observation operator O. Often several different system states lead to the same mea-
surement tuple Z, since the number of observations is comparatively small and the
operators Oj act as filters. Furthermore the model F may be over-parameterized,
resulting in several different parameter fields that are associated with the same sys-
tem state. And finally, the operator I need not be invertible. In all these cases the
preimage G−1(Z) contains more than one element and the inverse problem as given
above doesn’t have a unique solution. For these reasons the inverse problem requires
regularization to become solvable, which will be described in detail in chapter 2.

1.2 Application: Flow and Transport in Porous Media

In the context of subsurface hydrology, a model that illustrates all relevant features
of the structure defined above is groundwater flow combined with advective transport
of solutes. The groundwater flow equation, introduced in more detail in section 4.1,
is

Fφ(Y, Zs;φ) := Ss(Zs)∂tφ+∇ · jθw(Y, φ)− qθw = 0 (1.6)

with the flux
jθw(Y, φ) := −K(Y )∇φ = − exp(Y )∇φ, (1.7)

where K > 0 is the hydraulic conductivity of the soil, Y := ln(K) the log-conductivity,
Ss > 0 the specific storativity of the soil, Zs := ln(Ss) the log-storativity, φ the
hydraulic head and qθw a source term. The conductivity is spatially highly heteroge-
neous, with K varying over several orders of magnitude. The behavior of the storage
term Ss is less pronounced, but it typically has a spatial dependency as well. To-
gether with corresponding initial and boundary conditions, this equation constitutes
a mapping from the spatially distributed parameter fields Y and Zs to the system
state φ. The advection-dispersion equation, or transport equation for short, discussed
in section 4.3, is

Fc(Y, Zs, φ; c) := θ∂tc+∇ · jC(Y, φ, c)− qC = 0 (1.8)

with
jC(Y, φ, c) := −

[
D(φ)∇c+ cjθw

]
, (1.9)

where θ is the porosity of the soil matrix, c the concentration of a conservative tracer
or solute, D its dispersion tensor and qC again a source term. Combined with suitable
initial and boundary conditions, this is a mapping from the fields Y and Zs and the
state φ to the second state c. The above equation does not include the influence
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1.2 Application: Flow and Transport in Porous Media

of φ on the water content, since this contribution is negligible for confined aquifers,
which means that the state c only has an indirect dependence on Zs through φ. See
section 4.3 for the full formulation.

Remark 2 Like many other state equations that describe physical systems, the
groundwater flow equation and the transport equation can be interpreted as state-
ments about the conservation of a physical quantity, combined with a flux law. They
are based on the general continuity equation

∂tρ+∇ · jρ − qρ = 0, (1.10)

with the flux laws given above. Here ρ is a quantity governed by a law of conserva-
tion, e.g. mass, energy or momentum, and jρ is its flux. The conserved quantity
of the groundwater flow equation is the water content of the soil, while in the case
of the transport equation the total amount of solute θc is conserved. Note that the
conserved quantities differ from the state variables in the case of the two PDEs
above.

It may be assumed that there exists a well-defined mean value for both Y and Zs
in the modeled domain, and that both parameter fields display large structures that
are adequately modeled with just a few parameters. These parameters may then
be combined into vectors βY and βZs

with corresponding trend models XY and XZs .
But both parameter fields, and especially the log-conductivity Y , may be expected to
also show features on vastly different length scales due to the complicated processes
that are involved in the creation of soil [68]. Since these features can’t be explained
by the trend models, they are expressed by assigning a single parameter value to each
element of the discretization using parameter vectors yY and yZs . Appending the
trend parameters to the spatial parts results in

pY =

(
yY
βY

)
, pZs =

(
yZs

βZs

)
, (1.11)

and these parameters may then be interpreted as spatially distributed physical quan-
tities Y (x) and Zs(x) using equations (1.2) and (1.3).

Remark 3 There is a discrepancy between the classical formulation used in the
equations (1.6) and (1.8) and the way the parameter fields Y and Zs are defined
above, since the fields are piecewise constant on the domain Ω, and not at all
defined on the intersections between elements E ∈ Eh. They are therefore in L2 (Ω),
and the differential equations have to be formulated in a weak sense to constitute a
well-posed problem, as already mentioned in remark 1. See chapter 4 for the weak
formulation of the models.

Now assume wells have been drilled that allow for groundwater monitoring. Pumping
water into or out of the ground will subject the groundwater to external stresses, and
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1 Introduction

these will lead to a system response that may be observed in the wells. This results in
data about the flow process in the form of measurement values of the hydraulic head
φ in the direct vicinity of the measurement equipment. While physically restricted to
the wells, these data points may be acquired at several locations and points in time,
leading to a measurement vector zφ defined by

(zφ)k = Oφ(φ,xk, tk), xk ∈ Ω, tk ∈ T := [0, tmax]. (1.12)

Here xk is the location of the measurement, tk the moment when it is taken, and Oφ

is the observation operator for head measurements evaluating φ in the vicinity of xk
at time tk.

Further assume that a conservative tracer component is introduced upstream and
traverses the groundwater network. With suitable equipment the subsequent rise in
tracer concentration in the measurement wells can be detected and recorded, resulting
in additional information about the groundwater flow. This data may be collected
in another measurement vector zc through setting

(zc)k = Oc(c,xk, tk), xk ∈ Ω, tk ∈ T, (1.13)

with Oc as above. In (1.12) and (1.13) the same locations xk and times tk have been
used for simplicity, but it is of course possible to use a higher sampling frequency for
the concentration, and in reality it may be necessary to use different measurement
locations due to the size of the equipment.

Under these conditions the groundwater flow equation Fφ, equation (1.6), and the
advection-dispersion equation Fc, equation (1.8), constitute a model F that maps the
fields Y and Zs to the state variables φ and c, and this in turn results in a discrete
model G that maps the parameter vectors pY and pZs to the measurement vectors
zφ and zc. In this situation, the inverse problem 2 takes the following form:

Problem 3 (Concrete Example of Inverse Problem)
Given observations zφ and zc of the system states φ and c in a domain Ω and a
time interval T , and assuming the validity of the groundwater flow equation and
transport equation as models of the observed process, determine the underlying
parameters pY and pZs.

There is a simple configuration that directly shows that this inverse problem can’t in
general be well-posed: assume that there are two wells for injection and extraction of
water, and that all observation points are placed on the direct line between these two
wells. This situation is displayed in figure 1.4. Further assume that the parameter
fields Y and Zs are not symmetrical around the mentioned line. Under these condi-
tions, it isn’t possible to distinguish between the parameter fields and their mirror
images based on information gained from the state observations alone, and therefore
the inverse problem doesn’t have a unique solution.

8



1.2 Application: Flow and Transport in Porous Media

Injection Measurement locations Extraction

Figure 1.4: Measurement setup that will lead to ambiguity regardless of the equations that
are used to model the system. Each set of parameters that is not completely
symmetric with regard to the axis defined by the measurement locations will
result in observations that have more than one preimage, since the mirror image
of the parameters leads to the same observations.

A more general example is a flawed experimental setup where the tracer plume is
transported away from the observation wells by the ambient flow instead of towards
them. If no hydraulic head data is available, the information content of the mea-
surements is effectively zero, and any number of parameter fields is a solution to
the inverse problem. The opposite occurs when measurement errors produce obser-
vations that are physically impossible. In the case of steady-state flow with Dirichlet
boundary conditions and without sources or sinks, i.e. qθw = 0 in Ω, the maximum
principle [26] states that the values of φ inside the domain are bounded by those
on the boundary of Ω. If one of the head observations violates this principle due to
measurement errors, there is no consistent and conforming state φ and therefore also
no inverse solution.

The above examples demonstrate that the inverse problem may be ill-posed in terms
of the existence and uniqueness of the inverse solution, with the limiting cases being
the complete absence of a solution on the one hand and every possible tuple of
parameter vectors being a valid solution on the other hand. However, the most
important aspect is typically the missing stability of the inverse solution. Classical
examples in this regard are the backwards heat equation, i.e. the task of determining
the initial condition of the heat equation from measurements taken at later times, and
the sideways heat equation, i.e. the task of determining the boundary condition on
one part of the domain boundary from information about the other parts. As is shown
in [25], both problems are unstable in the sense that arbitrarily small changes in the
given information lead to arbitrarily large changes in the solutions. Since the heat
equation is just a specific interpretation of the diffusion equation, these findings also
apply in the larger context of the inversion of diffusive models, e.g. the groundwater
flow equation or the Richards equation. In this situation, regularization can be

9



1 Introduction

interpreted as the introduction of smoothness constraints to stabilize the inherently
anti-diffusive process of inversion. An example of a more detailed discussion from
the perspective of groundwater modeling can be found in [74], while [3] describes
ill-posed inverse problems from seismology and discusses regularization and solution
techniques.

1.3 Major Contributions

This work discusses several numerical methods and algorithms that are, to the best
of our knowledge, new developments or significant extensions of existing methods.
Furthermore, a number of well-established numerical and mathematical techniques
are applied in novel contexts. In this section we collect all such contributions for ease
of reference.

Prior Information as Preconditioner In section 2.3, we use the inverse of the prior
covariance matrix as a preconditioner to drastically improve the convergence
rate of the Conjugate Gradients method. While prior information has already
been used for preconditioning before, e.g. by Bui-Thanh et al. [15], it has to
the best of our knowledge neither been applied for the kind of prior information
we use, nor directly to the Conjugate Gradients scheme. Preconditioning with
prior information not only provides a drastic reduction in the number of iter-
ations, the implicit removal of spurious modes can lead to mesh-independent
convergence rates.

Elimination of Inverse Prior Covariance Matrix Choosing the inverse of the prior
covariance matrix as preconditioner allows us to eliminate it completely from
the algorithm, as detailed in section 2.3.5. As a result, the preconditioned
scheme not only requires less iterations, the eliminated matrix multiplication
reduces the effort needed for an iteration of the method, i.e. the preconditioner
has “negative cost”.

Randomized Uncertainty Quantification While the presented PCG method is suit-
able for large-scale transient applications for which the assembly of Hessian
information is too costly, it does not provide information about the uncer-
tainty of the estimate. In section 2.5, we present two randomized algorithms
for the calculation of the posterior covariance matrix under such conditions, one
using a partial spectral decomposition and one using a partial singular value
decomposition (SVD). Both are applications of the theory developed by Halko
et al. [36], and the spectral decomposition has been adapted from Bui-Thanh
et al. [15]. The randomized SVD is a new development that additionally pro-
vides information for statistical a posteriori analysis of the inversion results, see
section 2.6.

10



1.4 Document Outline

Hessian Information as Preconditioner In section 2.7, we combine the results of the
previous sections, using an estimate of the inverse of the posterior covariance
matrix as preconditioner to further improve the convergence rate of the PCG
method. The estimate is created by applying the uncertainty quantification
algorithms of section 2.5 to the initial guess instead of the inversion result.
Consequently, the method has high initialization costs, but the inclusion of
model information in the preconditioner may improve convergence, especially in
cases where the regularization is relatively weak. This second PCG scheme also
allows eliminating the inverse of the prior covariance matrix from the algorithm,
which again leads to “negative cost” of the preconditioner apart from the setup
phase.

Randomized Gauss-Newton and Levenberg-Marquardt The two partial decompo-
sitions can also be used in other algorithms that rely on estimates of the poste-
rior covariance matrix, e.g. the Gauss-Newton (GN) method. In section 3.3.2,
we present a randomized variant of this scheme. This method is conceptu-
ally related to the Principal Component Geostatistical Approach (PCGA) by
Lee and Kitanidis [49, 46]. The decomposition that is chosen here is typically
more expensive than that of PCGA, but additionally includes information from
the forward model and is self-calibrating in the number of singular values that
are obtained. Furthermore, interpolating between this randomized method and
PCG produces a variant of the Levenberg-Marquardt method similar to the one
presented by Nowak and Cirpka [62]. This scheme is also given in section 3.3.2.

Inversion of Large Data Sets The prior preconditioned CG method has memory re-
quirements that are independent of the number of observations and compu-
tational costs that are largely independent of that number, see section 6.1.1,
while the randomized methods are based on spectral decompositions that au-
tomatically filter measurement noise that can’t be reconciled with the forward
model. This may make these methods useful for the inversion of large data
sets, e.g. high-resolution time series or the results of imaging techniques, since
it is no longer necessary to smoothen or filter the data to reduce its dimension
before it is used as input for parameter estimation.

1.4 Document Outline

The remaining chapters of this document are structured in the following way:

Chapter 2 (Method Description) develops a method for the regularization of the ill-
posed inverse problem 2. It gives a short introduction into Bayesian statistics
from the viewpoint of geostatistical inversion, and provides both the stochas-
tic and the Maximum A Posteriori (MAP) formulation of the inverse problem.
The preconditioned Conjugate Gradients (PCG) method is introduced to solve
the resulting minimization problem, and randomized algorithms for uncertainty
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quantification are presented. The chapter concludes with a summary that high-
lights the most important aspects of the discussed methods.

Chapter 3 (Alternative Approaches) discusses possible alternatives to the approach
described in chapter 2. Different methods may be chosen to regularize the ill-
posed inverse problem 2, to reduce the complexity of the resulting formulations,
or to solve the underlying optimization problems. An overview of popular
approaches is given and their relation with the methods described in chapter 2
is discussed. Based on the decompositions of the previous chapter, randomized
variants of the Gauss-Newton (GN) method are introduced.

Chapter 4 (Governing Equations) presents governing equations for flow and trans-
port processes in porous media, which are examples of the models Fi relating
parameters and observations above. It also derives adjoint equations, which
may be used in the methods discussed in chapters 2 and 3.

Chapter 5 (Implementation Details) gives detailed information about the numeri-
cal reference implementation of the methods described in chapter 2. Included
are the used spatial discretizations, time stepping schemes and flux reconstruc-
tion.

Chapter 6 (Applications) presents results obtained with the reference implementa-
tion of chapter 5. The properties of the method, as described in chapter 2, are
demonstrated with the help of synthetic test cases, and both the advantages
and limitations of the method are discussed.

Chapter 7 (Conclusions) summarizes the central results of the previous chapters,
draws conclusions about the applicability of the method and mentions areas
that require further research.

12



2 Method Description

In order to arrive at a well-posed problem definition, the ill-posed inverse problem 2
needs to be regularized. Several different approaches to achieve this exist, each with
its own benefits, drawbacks and reasoning. The main properties such a regularization
should have are the following:

• The resulting reformulation of the problem should be general enough to be
applicable in a wide range of situations.

• For each admissible set of state observations there should be exactly one corre-
sponding configuration of parameters.

• The inversion should be robust, i.e. a small perturbation in the observations
should not result in a large deviation in the estimated parameters.

• The regularized problem should be “close” to the original ill-posed problem in
a quantifiable way.

The first three properties correspond to Hadamard’s definition of well-posedness [34,
25], while the fourth ensures that the well-posed problem is as similar as possible
to the original. The different approaches typically differ in the way they achieve
uniqueness of the solution, or at least a drastic reduction in the number of solutions,
and in what mathematical terms the “distance” between the two problems is defined.
In the field of geoscience, several different approaches have been developed in the
last decades. Most of these amount to regularization through a drastic reduction in
the number of parameters, often through explicit or implicit assumptions about the
concrete layout of the examined area.

Among the first who used statistical information for parameter estimation in the
geosciences was D.G. Krige, who estimated average gold rates in South Africa using
probes from boreholes [47]. This approach was formalized by Georges Matheron [53]
and is known as Kriging. While Kriging itself only estimates the spatial distribution
of a variable based on direct measurements, later developments also allowed the in-
corporation of other quantities, provided information about the correlation structure
was available. These methods typically are applications of the Bayesian method of
inference. In contrast to the zonation methods mentioned above, they neither im-
pose a fixed spatial structure on the parameters nor do they restrict the number of
parameters. Instead, both the parameters and the state observations are treated as
multi-dimensional random variables. Several closely related variants of this approach
exist [84], of which we mention the Quasi-Linear Geostatistical Approach (QLGA)
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by Kitanidis [45] and the Successive Linear Estimator (SLE) by Yeh et al. [83] as
examples. As shown in [54], most of these methods may be interpreted as Maximum
A Posteriori (MAP) estimation, often using variants of the Gauss-Newton algorithm
or the Conjugate Gradients method for optimization.

The goal of this chapter is the development of an extension of the above approach that
remains efficient when applied to scenarios that require the solution of computation-
ally demanding models and the inversion of large data sets. In sections 2.1 and 2.2
the background of the proposed method is presented to provide context. Then the
method is developed incrementally in the subsequent sections, and afterwards sec-
tion 2.8 provides a summary and discussion of the introduced algorithms and their
applicability.

2.1 Random Variables and Covariance Matrices

As a preparation for the discussion of Bayesian inference, we first provide a short
recapitulation of random variables and their properties as they are defined in the
literature, e.g. in [33]. Such a random variable Y is, in principle, the assignment of
real values Y(ω) to a given set of events ω. This set of events, called the sample space,
models the outcome of an experiment or some other process with distinguishable
states and associated probabilities. Since each of the events has a given probability
to occur, the value of the random variable Y is in general uncertain as well. In many
applications the concrete sample space and the assigned probabilities are ignored,
and instead the random variable is simply characterized by its distribution, i.e. a
map that assigns each possible value of Y the probability of obtaining that value.

For continuous random variables the probability of any given value is strictly speaking
zero, and consequently it is more appropriate to use a probability density function
(PDF) fY to describe such a Y. For any interval A ⊂ R, the probability of Y taking
a value in A can then be expressed as

P [Y ∈ A] =

∫
A

fY(xY), (2.1)

which is an integral over the probability density of all possible values xY ∈ A. Such
a value xY is called a realization or sample of Y, and we will often simply use the
name of the random variable itself to designate such samples if the meaning is clear
from context.

As long as the associated integral is well-defined, random variables allow the compu-
tation of their probability-weighted average, known as the expected value or mean
and given by

Y∗ := E [Y] :=

∫
R

xY · fY(xY). (2.2)
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2.1 Random Variables and Covariance Matrices

The spread around this mean is typically characterized by the variance

σ2Y := Var [Y] := E
[
[Y − E [Y]]2

]
=

∫
R

[xY − Y∗]2 · fY(xY) (2.3)

or its root, the standard deviation

σY := [Var [Y]]1/2 . (2.4)

These three quantities are the most used measures for the description of random
variables. While we will mostly focus on the mean and variance, we also provide the
definitions for the higher-order moments skewness and kurtosis, which are given by

Skew [Y] := Var [Y]−3/2 · E
[
[Y − E [Y]]3

]
(2.5)

and
Kurt [Y] := Var [Y]−2 · E

[
[Y − E [Y]]4

]
(2.6)

respectively. These moments are useful for the a posteriori analysis in section 2.6.

2.1.1 Gaussian Random Vectors and Random Fields

In many applications random processes must be modeled based on limited knowledge
about the true PDF fY, and often a Gaussian distribution with a prescribed mean µ
and variance σ2 is used instead. This distribution is also known as normal distribution
and is defined by its PDF

fN (xY;µ, σ2) :=
[
τσ2

]−1/2 exp
(
−1

2
σ−2 [xY − µ]2

)
, (2.7)

where τ := 2π ≈ 6.283 . . . is the circumference of the unit circle. The notation

Y ∼ N
(
σ2Y,Y∗) (2.8)

is used to express that Y is modeled using a Gaussian distribution, i.e. assuming
equation (2.7) holds with σ2 := σ2Y and µ := Y∗.

It is straightforward to generalize this definition to random vectors, i.e. vectors that
have random variables as components. Such a vector Y = (Y1,Y2, . . . ,Yk) is said
to be multivariate Gaussian distributed, or simply normally distributed, if each of its
components Yk follows equation (2.7). It can then be described by the multidimen-
sional Gaussian PDF

fN (xY;µ,Q) := [τ |Q|]−k/2 exp
(
−1

2
[xY − µ]T Q−1 [xY − µ]

)
, (2.9)
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where k is the number of components of Y, µ a k-dimensional vector that is the
mean of the distribution and Q a symmetric positive definite matrix of dimension
k × k known as covariance matrix. As above,

Y ∼ N (QYY,Y∗) (2.10)

expresses that Y is normally distributed with mean µ := Y∗ and covariance matrix
Q := QYY.

Remark 4 There are Gaussian distributions where Q does not have full rank and
is only positive semidefinite, and in this situation the above PDF is not defined.
While such distributions certainly have important applications, in the given context
a rank-deficient matrix Q would imply that one of the parameters is a function of
the others or one of the observations is completely determined through the others,
including any measurement noise. In the following we assume that these redundant
entries have been removed, i.e. the covariance matrix Q is always assumed to be
positive definite so that a PDF as in equation (2.9) exists.

A Gaussian random field on the domain Ω is a Gaussian random vector Y with
associated spatial information. Each of its components Yk is assigned to a location
in Ω, e.g. through association with a subdomain Ek ∈ Eh in analogy to the spatial
parts yi of the parameter vectors pi on page 2. This spatial information may be
used to construct physically reasonable covariance matrices based on a small number
of underlying assumptions and variables [61]. One such assumption that is often
employed is second-order stationarity of the random field, i.e. the assumption that the
mean and the covariance structure are invariant under translation. As a consequence,
all components have the same mean µ, and the covariance between two components
Yi and Yj is given by

(QYY)ij := E [[Yi − µ] [Yj − µ]] = r(xi − xj), (2.11)

where xi and xj are the spatial coordinates associated with Yi and Yj respectively,
e.g. the centers of the subdomains Ei, Ej ∈ Eh, and r is a covariance function that
provides the covariance between two components as a function of their distance.

Two of the most often used choices for r are

rexp(x) := exp
(
−λ−1 ‖x‖2

)
, (2.12)

known as exponential covariance, and

rGauss(x) := exp
(
−
[
λ−1 ‖x‖2

]2)
, (2.13)

known as Gaussian covariance. In both definitions, λ is a scale parameter that is
called correlation length and defines the scale of dominant features in realizations
of the random field. While this hyperparameter may in principle be treated as an
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Figure 2.1: Examples of different second-order stationary covariance structures. Left: Ex-
ponential covariance function similar to equation (2.12), but with two different
correlation lengths λ1 6= λ2. The horizontal correlation length λ1 is three times
larger than the vertical correlation length λ2. Middle: Gaussian covariance func-
tion as in equation (2.13). Right: Separable exponential covariance function
r(x) := exp

(
−
[
λ−1
1 |x1|+ λ−1

2 |x2|
])

. The vertical correlation length λ2 is four
times the horizontal correlation length λ1.

unknown and estimated just as the other parameters, see e.g. Michalak and Kitani-
dis [56], we assume that it is known for simplicity. Anisotropic variants of these
functions may be defined through a scale vector (λ1, . . . , λd) ∈ Rd that scales each
dimension individually, or in the most general case through a symmetric positive
definite transformation matrix applied to the distance x [22]. Examples of random
fields with stationary covariance can be found in figure 2.1.

While many more covariance functions exist, we restrict ourselves to rexp and rGauss
for simplicity. The methods discussed in the following are also applicable when using
other covariance functions, or a different covariance structure altogether. The only
requirement is the availability of fast algorithms for the application of QYY to vectors
and for decompositions of the form

QYY = LLT , (2.14)

as we describe them in the next section. If only multiplication with QYY is fast, then
the parameters may still be estimated, but their uncertainty can’t be quantified with
the presented methods, since their application requires the above decomposition.

2.1.2 Covariance Matrix Calculus

The reformulation of the ill-posed inverse problem 2 that will be discussed in the
next section requires matrix operations based on the covariance matrix QYY. If the
Gaussian random field is second-order stationary, as we will always assume in the
following, then this multiplication with QYY can be carried out efficiently using the
Fast Fourier Transform (FFT) [22]. For stationary random fields Y associated with
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a structured grid Eh on Ω, the covariance matrix QYY is block Toeplitz with blocks
that are themselves Toeplitz, if the elements of Eh are ordered lexicographically. Em-
bedding Ω in a larger domain Ωext that is large enough, the covariance matrix QYY
can then be extended to a symmetric positive semidefinite block circulant matrix
Qext

YY with blocks that are themselves circulant. Such matrices are diagonalized by
the multidimensional discrete Fourier transform. As a result, the multiplication with
QYY can be written as

QYYY = ETF−1ΛYFEY, (2.15)

where ΛY is a diagonal matrix containing the eigenvalues of Qext
YY, F is the discrete

Fourier transform, F−1 is the inverse transform, E extends Y to the larger domain
Ωext by padding it with zeros, and ET restricts the result to Ω again. Using this
approach, the multiplication with QYY can be performed at the cost of two multi-
dimensional discrete Fourier transforms and an amount of memory that is a small
multiple of that for storing a realization of Y.

The multiplication with Q−1
YY is typically much more expensive. The inverse of

the extended matrix Qext
YY is not an extension of the matrix Q−1

YY onto the larger
domain Ωext, since the finite extent of Ω leads to boundary effects in the inverse
matrix [61]. As a consequence, the direct application of the circulant embedding
technique described above to Q−1

YY isn’t possible. Due to the large size of Y in
realistic applications, one usually resorts to iterative methods, and in this context the
matrix

[
Qext

YY
]−1 can be used as an efficient preconditioner. However, multiplication

with Q−1
YY remains an expensive operation and may be inherently unstable for certain

covariance structures, as discussed by Nowak [61]. While the reformulation of the
inverse problem and the methods will initially contain multiplications with such an
inverse, we will show in sections 2.3.5 and 2.7 how the algorithms can be restructured
to avoid this expensive operation.

Apart from multiplication with QYY and its inverse Q−1
YY, a third operation is typi-

cally needed. If a decomposition of the covariance matrix QYY of the form

QYY = LLT (2.16)

with an invertible matrix L is known, then equation (2.9) implies that

Y ∼ N (QYY,Y∗) ⇐⇒ L−1 [Y − Y∗] ∼ N (I,0) (2.17)

holds, where I is the identity matrix. This allows the generation of realizations of Y
from samples of N (I,0) [22]. These latter samples, also known as white noise, are
simple to produce due to the missing correlation, and applying the matrix L to the
result and then adding the mean Y∗ produces samples of Y. For reference purposes
we collect these steps in algorithm 1 (SG). The inverse process, i.e. subtracting the
mean and multiplying with L−1, produces a realization of N (I,0) from samples of
N (QYY,Y∗), which is a convenient statistical check that we will apply in the a
posteriori analysis of section 2.6.

18
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Algorithm 1: Generation of Samples from Prior Distribution (SG)
Input: Mean Y∗, decomposition of covariance matrix QYY = LLT
Output: Sample of distribution Y
W := N (I,0) [generate white noise];
Y := Y∗ + LW [transform to correct covariance structure];
return Y;

Due to these two applications and others that will be discussed in the next sections,
decompositions as in equation (2.16) are important. A well-known decomposition
that can be used is the Cholesky decomposition, where L is a lower triangular ma-
trix, i.e. all entries of L above the main diagonal are zero. While the Cholesky
decomposition may theoretically be computed for all covariance matrices, its cost
may be a limiting factor in practice [52].

Another possibility for equation (2.16) is the spectral decomposition of QYY,

QYY = VΛVT , (2.18)

where V is an orthogonal matrix containing the eigenvectors of QYY and Λ is a
diagonal matrix containing its eigenvalues. Since QYY is positive definite, all its
eigenvalues are positive, and we may therefore define L := VΛ1/2 to obtain a suitable
decomposition. In realistic applications a full decomposition can’t be stored due to
the large number of eigenvectors, and an approximate decomposition of QYY as
detailed in [49] or section 2.5 may prove useful.

A third possibility is choosing L := Q1/2
YY, the positive root of QYY. This matrix is

again symmetric positive definite, and therefore

QYY = Q1/2
YYQ1/2

YY = Q1/2
YY

[
Q1/2

YY

]T
(2.19)

is a decomposition that has the desired properties. For general covariance matrices,
this root is even more expensive to compute than the Cholesky decomposition, but
in the case of a stationary random field the circulant embedding technique can be
applied. We have

Q1/2
YYY ≈ ETF−1Λ

1/2
Y FEY, (2.20)

where the matrices ΛY, F and E are the same as in equation (2.15), since

QYY = ETF−1ΛYFE (2.21)

= ETF−1Λ
1/2
Y FF−1Λ

1/2
Y FE

≈ ETF−1Λ
1/2
Y FEETF−1Λ

1/2
Y FE.

Including the projection matrix EET introduces a systematic error in the last line.
This error is similar to the one discussed above for the multiplication with Q−1

YY, but
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typically much more benign, since multiplication with Q1/2
YY is normally a smoothing

operation in contrast to multiplication with Q−1
YY. If Q1/2

YYY is needed for a Y that is
zero in a layer of several correlation lengths around the boundary, then this error will
be negligible for the standard covariance functions due to their locality, and we may
use equation (2.20) to perform multiplication with Q1/2

YY. This property can often
be guaranteed by choosing a domain Ω that is large enough. Note that this doesn’t
necessarily increase the cost for simulations if a third domain Ω′ with Ω ⊂ Ω′ ⊂ Ωext

is introduced, where Ω and Ωext are again the physical domain and its extension, and
the random field Y is defined on Ω′ instead of Ω. For convenience, we assume that
choosing Ω′ = Ω is sufficient.

Remark 5 If the error that is incurred by using equation (2.20) can’t be neglected,
e.g. because the covariance function doesn’t decay fast enough and the domain can’t
be chosen large enough for external reasons, then the matrix Q1/2

YY has to be replaced
by its spectral decomposition

Q1/2
YY = VΛ1/2VT , (2.22)

where the matrices V and Λ are the same as in equation (2.18). This spectral
decomposition can be constructed from the one of QYY, which in turn can be
obtained through variants of the randomized algorithms that will be discussed in
section 2.5.

2.2 Bayesian Inference

We may use the definitions of the previous chapter to formulate a well-posed version
of the inverse problem. Assume that the parameter tuple P is normally distributed,
i.e. follows a multivariate Gaussian distribution:

P ∼ N (QPP,P∗) , (2.23)

with a given covariance matrix QPP, assumed to be symmetric positive definite
in the following, and mean P∗. This expresses prior knowledge about the system,
since a high probability of a given parameter tuple P indicates that it is a good
representative of the assumed spatial structure of the domain. A more detailed
formulation of equation (2.23) is

p1

p2
...

pnP

 ∼ N




Qp1p1 Qp1p2 · · · Qp1pnP
Qp2p1 Qp2p2 · · · Qp2pnP...

...
...

QpnP p1 QpnP p2 · · · QpnP pnP

 ,


p∗
1

p∗
2
...

p∗
nP


 , (2.24)

where Qpipi is the covariance matrix associated with pi, p∗
i is its mean, and Qpipj is

the cross-covariance matrix between pi and pj . It should be noted that for simplicity
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we will always assume Qpipj = 0, i 6= j, in the applications of chapter 6. In this
situation QPP = diag

(
Qp1p1 ,Qp2p2 , . . . ,QpnP pnP

)
is a block diagonal matrix. Each

of the covariance matrices Qpipi is itself a block diagonal matrix, since it consists of
the covariance matrices Qyiyi and Qβiβi

of the spatial part yi and trend part βi.

Remark 6 If the parameter vectors pi can’t be assumed independent and cross-
covariance information has to be taken into account, then the proposed method re-
mains applicable under mild assumptions on the cross-covariance structure. Often
the off-diagonal blocks of QPP have the same structure as the covariance matrices
Qpipi, e.g. they are invariant under translation as well, and the matrix multiplica-
tion methods of section 2.1.2 may be applied to each block of QPP individually. As
a consequence, methods that only require multiplication with QPP like the central
result of section 2.3 can still be applied. However, methods that rely on the multi-
plication with Q−1

PP may become unfeasible, since this is a global operation in the
sense that it mixes contributions from all the matrix blocks.

Also note that the approach proposed for the linearized uncertainty quantification
and a posteriori analysis, sections 2.5 and 2.6, is no longer applicable under these
conditions, since the same reasoning applies to Q1/2

PP. These two issues may po-
tentially be handled by ignoring the block structure and performing a spectral de-
composition of QPP, see e.g. remark 5, but then the applicability of the methods
depends on the number of eigenvectors that are needed to adequately represent the
cross-covariance structure.

Furthermore, we assume that the state observations are also random variables. While
the result of the measurements is fixed in theory due to Z = G(P), in reality the values
of the measurements will fluctuate due to measurement errors. The measurement
process will therefore yield Z = G(P) + ε with some noise ε. A general formulation
for the measurement error ε isn’t available, since its distribution depends on the
specifics of the accuracy and biasedness of the measurement process. The most
basic approach neglects potential bias and models the measurement error as another
Gaussian random variable:

ε = [Z − G(P)] ∼ N (QZZ,0) , (2.25)

where QZZ is the covariance matrix of the measurement errors, again assumed to
be symmetric positive definite. Although individual measurement errors may be
correlated, the matrix QZZ is typically a diagonal matrix in practice, unless more
detailed information about the correlation structure is available [17, 56]. The diagonal
entries of the matrix contain the variance of the observations and therefore quantify
the measurement uncertainty. Equation (2.25) states that, given a fixed instance of
parameters P, the observed quantities are normally distributed around the model
outcome:

Z|P ∼ N (QZZ,G(P)) . (2.26)
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2 Method Description

2.2.1 Bayesian Inverse Problem

Under the assumptions of the previous section we may invoke Bayes’ Theorem, which
states:

fZ · fP|Z = fP · fZ|P. (2.27)

For a given tuple of measurements Z used for parameter estimation the expression
fZ is a constant, and equation (2.27) states that

fP|Z ∝ fP · fZ|P, (2.28)

i.e. the posterior probability is proportional to both the prior probability fP and the
likelihood fZ|P.

Since the terms on the righthand side have been defined in equations (2.23) and (2.26),
we have

fP ∝ exp
(
−1

2
‖P − P∗‖2Q−1

PP

)
(2.29)

and
fZ|P ∝ exp

(
−1

2
‖Z − G(P)‖2Q−1

ZZ

)
, (2.30)

with
‖v‖A :=

[
vTAv

]1/2 (2.31)

being the notation for the norm induced by the weighted scalar product defined for
any symmetric positive definite matrix A, and therefore

fP|Z ∝ exp
(
−1

2

[
‖P − P∗‖2Q−1

PP
+ ‖Z − G(P)‖2Q−1

ZZ

])
. (2.32)

This is an expression that describes, at least up to an unknown constant, the posterior
distribution of P given Z. As such, it assigns a trust value to each possible parameter
tuple P, since the above function is a measure for the plausibility of a specific P
causing the observation of a specific Z. Using equation (2.32), we can formulate the
following inverse problem to replace problem 2:

Problem 4 (Bayesian Inverse Problem)
Given a tuple of measurements Z, a model F and operators I and O as before,
and in addition a prior probability distribution for P and a conditional distribu-
tion Z|P, determine the posterior probability distribution of P. To do that, apply
equation (2.32) and renormalize the result to arrive at a function with integral one.

This inverse problem fulfills the well-posedness criteria on page 13 in the following
sense:
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2.2 Bayesian Inference

• Apart from assumptions about the stochastic structure no artificial restrictions
are introduced. The given distributions may be replaced by more appropriate
choices, and the problem formulation is therefore rather general.

• Since the objective of the inverse problem has been redefined as assigning a
function value to each P instead of returning a single P, a unique solution
exists for every Z as long as the posterior distribution is defined.

• Small perturbations in the observations only lead to small changes in the as-
signed values, and therefore the inversion process is stable.

• The original ill-posed problem 2 can be seen as the limit case of uniform prior
distribution of P and infinitesimally small measurement errors. The reformu-
lated inverse problem is therefore a direct extension of the original one.

It should be noted that the inverse problem may remain ill-posed even after refor-
mulation if the function defined in equation (2.32) does not have a finite integral.
Such technicalities aside, problem 4 may be solved to obtain the mentioned prob-
ability distribution, with the inversion result being those parameter tuples P with
a comparatively large PDF value, and the uncertainty of the parameter estimate
corresponding to the size of that area.

Remark 7 At this point we may revisit the groundwater flow examples from page 8.
The first setup, while not allowing a solution in the sense of problem 2, will result
in a posterior distribution that is symmetric around the line formed by the mea-
surement wells, reflecting the symmetry in the problem statement. In the case of
noninformative tracer measurements, the likelihood will always be zero, since the
model outcome does not depend on the parameters. The posterior distribution is
then equal to the prior distribution, reflecting that no additional information was
gained through the measurements. Inconsistent or physically impossible measure-
ment values, as in the third example, will simply assign a higher probability to those
parameter tuples that result in measurement values that are close to the given ones,
even though they can’t be reproduced exactly.

Solving the inverse problem in the strict sense is not possible, since the PDF typically
doesn’t allow for a closed formulation and has to be evaluated in an uncountable
number of points, but finite approximations known as surrogate models may be
generated. The task of assembling the full PDF may also be reduced to computing
or estimating some of the moments of the random variable P|Z, as described in the
next section.

2.2.2 Maximum A Posteriori

There are several possible candidates for a point parameter estimate based on the
posterior PDF, the two most important being the mean of the distribution and the
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2 Method Description

mode of the PDF, i.e. the point where the PDF has its maximum value. Higher order
moments, like the variance, may also be estimated to arrive at a better representation
of the PDF and also acquire information about the uncertainty of the point estimate.
One may sample from the distribution to compute its mean and variance, but this
may again be too expensive if the cost for evaluations of equation (2.32) is too high,
see chapter 3. Computing the mode, also called the Maximum A Posteriori point
(MAP), can be significantly cheaper. MAP estimation searches for the maximizer
Pmap of fP|Z, which is equivalent to the minimizer arg minP L(P) of the objective
function

L(P) :=
1

2
‖P − P∗‖2Q−1

PP
+

1

2
‖Z − G(P)‖2Q−1

ZZ
, (2.33)

compare equation (2.32). With this objective function, the inverse problem in the
context of MAP estimation can be defined in the following way:

Problem 5 (Maximum A Posteriori Inverse Problem)
Given a tuple of measurements Z, a model F and operators I and O as before,
and in addition a prior probability distribution for P and a conditional distribution
Z|P, determine the parameter tuple Pmap that maximizes the posterior PDF of P
given Z, i.e. find the minimizer arg minP L(P) of the objective function given in
equation (2.33).

The MAP estimate may be compared to the Maximum Likelihood (ML) estimate [69],
which tries to maximize the likelihood fZ|P and therefore minimize the norm

L̃(P) :=
1

2
‖Z − G(P)‖Q−1

ZZ
. (2.34)

In contrast to ML, MAP estimation also incorporates a priori information about the
parameters through the term ‖P − P∗‖Q−1

PP
, and in this sense it can be seen as a

regularization of the Maximum Likelihood approach [69]. The differences between
MAP and ML estimation are considered in more detail in chapter 3.

Problem 5 has the structure of a Least Squares problem [48]. Such problems are easy
to solve if G is linear, since this implies a convex minimization problem [11], with a
unique global minimum that may be found using standard techniques. Unfortunately,
the model G is almost never linear, even if it consists of linear PDEs [25]. Since almost
all optimization schemes are local searches, they may stagnate in local minima far
away from the global minimum if the initial guess is not close enough to the solution.

Remark 8 While the MAP estimate is often significantly easier to determine, the
posterior mean may be a better representative for the posterior PDF [9]. The MAP
point is only determined through the maximum value of the PDF and not through
an integration process like the mean, and can therefore be influenced more easily
by outliers of the distribution. In the case of multimodal distributions, the MAP
estimate may be non-unique and also uncharacteristic for the distribution as a
whole. In the case of the first example on page 8 there are at least two extremal
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2.3 Preconditioned Conjugate Gradients

points, and iterative schemes may arbitrarily converge to one of them or even
stagnate due to the symmetry of the objective function. In the case of the second
example, the MAP estimate is equal to the mean, since the prior distribution is
unimodal and symmetric. See section 2.6 for techniques that may help in detecting
MAP estimates that are of poor quality.

2.3 Preconditioned Conjugate Gradients

One of the numerical schemes that may be used to solve nonlinear Least Squares
problems such as problem 5 is the Conjugate Gradients (CG) method, an extension
of the method of Steepest Descent [73, 40]. Steepest Descent uses the negative of the
gradient of the objective function as a step direction for optimization, in the case of
L(P) from equation (2.33) therefore

−∇L = −Q−1
PP [P − P∗] + HT

ZPQ−1
ZZ [Z − G(P)] , (2.35)

where HZP is called the sensitivity matrix and contains the derivatives of the mea-
surements with regard to the parameters, i.e.

(HZP)i,j := Hzipj (2.36)
(Hzipj )k,l := ∂(pj)l(zi)k.

A more detailed formulation in analogy to equation (2.24) is

HZP =


Hz1p1 Hz1p2 · · · Hz1pnP
Hz2p1 Hz2p2 · · · Hz2pnP...

...
...

HznZ p1 HznZ p2 · · · HznZ pnP

 (2.37)

together with

Hzipj =


∂(pj)1(zi)1 ∂(pj)2(zi)1 · · · ∂(pj)npj

(zi)1
∂(pj)1(zi)2 ∂(pj)2(zi)2 · · · ∂(pj)npj

(zi)1
...

...
...

∂(pj)1(zi)nzi
∂(pj)2(zi)nz · · · ∂(pj)npj

(zi)nzi

 (2.38)

for each possible combination of parameter vector pi and measurement vector zj ,
where again (·)k denotes the kth component of a given vector. By construction HZP
is the linearization of the discrete model G(P) around the point where the gradient
∇L is computed.
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2 Method Description

Algorithm 2: Nonlinear Steepest Descent (SD)
Input: initial value P0, stopping criterion
Output: estimate of MAP point Pmap
i := 0 [set index];
repeat

i→ i+ 1 [shift index];
Ri := −∇L|Pi−1 [compute residual];
Di := Ri [set direction];
αi := linesearch(Pi−1,Di) [compute step width];
Pi := Pi−1 + αiDi [define i-th iteration];

until converged;
Pmap := Pi [accept final iteration];
return Pmap;

2.3.1 Steepest Descent

Starting from an initial guess P0, the method of Steepest Descent generates a series
of iterations Pi, step directions Di and step widths αi using algorithm 2 (SD). The
stopping criterion is usually a certain reduction of the norm of the gradient, e.g. by
a factor of 103 or 104, combined with a maximum number of steps that should be
taken if this reduction can’t be reached. The algorithm may also be stopped if it
stagnates and the low reduction of L from step to step suggests a bad initial guess
P0.

If the model G were linear, the residual could be updated using the previous iteration
instead of being recomputed, and the optimal step width would be known. The
objective function would be of the form

L(P) =
1

2
PTAP − BTP, (2.39)

with a symmetric positive definite matrix A and a vector B, and the optimal step
width would be defined by

αi,opt :=
RT
i Ri

DT
i ADi

. (2.40)

Since, as mentioned above, the model must be assumed to be nonlinear, the residual
has to be assembled in each iteration, and some sort of line search is necessary to find
the optimal step width. Due to the structure of the objective function (2.33), it is
natural to approximate it locally with a quadratic polynomial, and doing this along
the search direction to optimize the step width is known as Quadratic Line Search:

L(Pi−1 + αEi) ≈ a · α2 + b · α+ L(Pi−1), (2.41)

where Ei is the unit vector in direction Di and a and b are constants that need to
be determined. Given the function values Li;0 := L(Pi−1) and Li;1 := L(Pi−1 + εEi)
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2.3 Preconditioned Conjugate Gradients

for a potential step width ε, we may either evaluate the additional value Li;1/2 :=
L(Pi−1 +

ε
2Ei) and set

a := 2
[
Li;1 − 2Li;1/2 + Li;0

]
· ε−2 (2.42)

b := −
[
Li;1 − 4Li;1/2 + 3Li;0

]
· ε−1,

or use the fact that − [Ri · Ei] is the directional derivative of L in search direction
and set

a := [Li;1 − Li;0 − b · ε] · ε−2 (2.43)
b := − [Ri · Ei] .

The first of the two options is more robust, while the second reuses the gradient and as
a result requires one function evaluation less. Both approaches allow the calculation
of the new step width and an estimate of the new objective function value through
the coordinates of the vertex of the parabola defined by (2.41), namely(

− b

2a
, Li;0 −

b2

4a

)
. (2.44)

If necessary, the line search may be repeated by setting ε to − b
2a and recalculating a

and b to improve the results. Note that the resulting step width is in terms of the
unit direction Ei and must be multiplied by ‖Di‖−1

2 if it is needed in terms of Di.
Initial guesses ε may be generated through linear extrapolation combined with a trust
region approach to keep the parameters within a few standard deviations around the
current estimate. After the first step the previous step width may be used as an
initial guess.

2.3.2 Conjugate Gradients

The method of Steepest Descent produces locally optimal step directions, but the
scheme may display oscillatory behavior and slow convergence [73]. The Conjugate
Gradients (CG) method augments the direction given in equation (2.35) with a cor-
rection term designed to speed up the convergence. Using the additional initial values
R0 := 0 and D0 := 0, the CG method is given in algorithm 3 (CG).

In the linear case, the optimal step width is again given by equation (2.40), and the
conjugation factor βi is

βi :=
RT
i Ri

RT
i−1Ri−1

. (2.45)

It can be shown that this results in a Krylov subspace method, and that all directions
Di are pairwise A-orthogonal, i.e.

∀ i ∀ j 6= i : DT
i ADj = 0. (2.46)
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Algorithm 3: Nonlinear Conjugate Gradients (CG)
Input: initial value P0, R0 = 0, D0 = 0, stopping criterion
Output: estimate of MAP point Pmap
i := 0 [set index];
repeat

i→ i+ 1 [shift index];
Ri := −∇L|Pi−1 [compute residual];
βi := orthogonalize(Ri−1,Ri,Di−1) [compute conjugation factor];
Di := Ri + βiDi−1 [set direction];
αi := linesearch(Pi−1,Di) [compute step width];
Pi := Pi−1 + αiDi [define i-th iteration];

until converged;
Pmap := Pi [accept final iteration];
return Pmap;

This distinguishes the CG method from Steepest Descent, as the latter produces
directions that are only orthogonal with respect to the standard coordinate system,
not to one tailored to the bilinear form of the objective function, and only subsequent
directions are guaranteed to be orthogonal. These two points are the theoretical
foundation for the increased rate of convergence of algorithm 3 (CG) when compared
with algorithm 2 (SD). One can show that the rate of convergence of Steepest Descent
in the energy norm is bounded by

kSD(A) :=
κ(A)− 1

κ(A) + 1
, (2.47)

where
κ(A) :=

λmax(A)

λmin(A)
(2.48)

is the spectral condition number of A, the quotient of its largest and its smallest
eigenvalue, while the rate of convergence of the CG method is bounded by

kCG(A) :=
κ(A)1/2 − 1

κ(A)1/2 + 1
. (2.49)

These bounds are comparatively sharp, and for large κ(A) the CG method can be
orders of magnitude faster.

Since G is nonlinear, the above is not directly applicable in the given situation, and
equation (2.45) is only one possible choice for the conjugation factor. Popular choices
for βi from the literature [35], all reducing to equation (2.45) in the linear case, are
the Fletcher-Reeves formula [29]

βFR
i :=

RT
i Ri

RT
i−1Ri−1

, (2.50)
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the Polak-Ribière formula [64]

βPR
i :=

RT
i [Ri − Ri−1]

RT
i−1Ri−1

(2.51)

and the Hestenes-Stiefel formula [40]

βHS
i := − RT

i [Ri − Ri−1]

DT
i−1 [Ri − Ri−1]

. (2.52)

In the following, we will default to using βPR
i from equation (2.51).

2.3.3 Preconditioning

The Conjugate Gradients method is a significant improvement over the simple Steep-
est Descent, and the top row of figure 2.2 gives an example of the improvement in
convergence speed that may be achieved. Unfortunately the scheme still has a strong
dependence on the spectral condition and often slows down when the resolution is
increased, see the upper right corner of figure 2.2 for example. This form of the
algorithm may therefore quickly become unfeasible if the number of discretization
cells nΩ becomes too large.

Preconditioning can be used to transform the spectrum of the involved operators and
further increase the convergence rate. This technique is based on a transformation of
the underlying space of the objective function L(P). Let E be an invertible matrix,
then L may also be written as a function of P̃ := EP, which leads to

L̃(P̃) =
∥∥∥P̃ − P̃∗

∥∥∥2
[E−1]T Q−1

PPE−1
+
∥∥∥Z − G(E−1P̃)

∥∥∥2
Q−1

ZZ
, (2.53)

where P̃∗ := EP∗. The correct choice of E can have drastic consequences for the
convergence behavior of the method. Returning again to the linear case, the trans-
formation of (2.39) is

L̃(P̃) =
1

2
P̃T
[[

E−1
]T AE−1

]
P̃ −

[
E−1b

]T P̃. (2.54)

Since A is symmetric positive definite, we can choose E to be the positive root A1/2,
and the equation simplifies to

L̃(P̃) =

[
1

2
P̃ − A−1/2B

]T
P̃ (2.55)

with the obvious minimum Pmap = 2A−1/2B. Both the Steepest Descent method and
the Conjugate Gradients method converge in one step for this transformed system,
but in practice the construction of a matrix E with the right properties is as expensive
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Figure 2.2: Convergence behavior of the described methods for parameters with exponential
covariance function, left: Steepest Descent variants, right: Conjugate Gradients
variants, top: original versions, bottom: preconditioned versions with Q−1

PP as
preconditioner. Test case is a two dimensional groundwater problem similar to
that discussed in section 6.1.1, with nΩ = 64× 64 ( ), 128× 128 ( ), 256×
256 ( ) and 512 × 512 ( ). Conjugate Gradients consistently converges
faster than Steepest Descent. Without preconditioner the convergence behavior
is erratic and alternates between stagnation and sudden jumps, while the descent
of the preconditioned versions is significantly smoother. The unpreconditioned
versions become slower with decreasing mesh width, while the preconditioned
versions retain efficiency or even become slightly faster. Not shown: Additionally,
iterations of the preconditioned versions are cheaper and may be significantly
faster than those of the original versions, compare section 2.3.5.
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2.3 Preconditioned Conjugate Gradients

Algorithm 4: Preconditioned Nonlinear Conjugate Gradients (PCG)
Input: initial value P0, R0 = 0, T0 = 0, D0 = 0, matrix M−1, stopping criterion
Output: estimate of MAP point Pmap
i := 0 [set index];
repeat

i→ i+ 1; [shift index]
Ri := −∇L|Pi−1 ; [compute residual]
Ti := M−1Ri [compute preconditioned residual];
βi := orthogonalize(Ri−1,Ti−1,Ri,Ti,Di−1) [compute conjugation factor];
Di := Ti + βiDi−1 [set direction];
αi := linesearch(Pi−1,Di) [compute step width];
Pi := Pi−1 + αiDi [define i-th iteration];

until converged;
Pmap := Pi [accept final iteration];
return Pmap;

as optimizing (2.39) directly. Preconditioning therefore consists of finding a matrix
E that is as close as possible to A1/2 but still cheap to compute, or equivalently a
matrix M−1 := E−1

[
E−1

]T that is as close as possible to A−1 while having low cost
of assembly and application to vectors.

Applying the Conjugate Gradients method, algorithm 3 (CG), to the modified objec-
tive function (2.53) and transforming the result back to the original representation
results in algorithm 4 (PCG). The conjugation factor formulas have to be modified
to provide orthogonality in the transformed space and take the form

βFR
i :=

RT
i Ti

RT
i−1Ti−1

(2.56)

for the Fletcher-Reeves formula,

βPR
i :=

RT
i [Ti − Ti−1]

RT
i−1Ti−1

(2.57)

for the Polak-Ribière formula and

βHS
i := − RT

i [Ti − Ti−1]

DT
i−1 [Ti − Ti−1]

(2.58)

for the Hestenes-Stiefel formula. These more general definitions reduce to the ones
given above for the special choice M−1 = I, where I is again the identity matrix,
since this implies Ti = Ri. For completeness we also introduce the preconditioned
Steepest Descent method in the form of algorithm 5 (PSD), which is the result of
performing the above steps for algorithm 2 (SD) instead of algorithm 3 (CG).
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Algorithm 5: Preconditioned Nonlinear Steepest Descent (PSD)
Input: initial value P0, matrix M−1, stopping criterion
Output: estimate of MAP point Pmap
i := 0 [set index];
repeat

i→ i+ 1 [shift index];
Ri := −∇L|Pi−1 [compute residual];
Ti := M−1Ri [compute preconditioned residual];
Di := Ti [set direction];
αi := linesearch(Pi−1,Di) [compute step width];
Pi := Pi−1 + αiDi [define i-th iteration];

until converged;
Pmap := Pi [accept final iteration];
return Pmap;

As a preconditioner we propose the inverse of the prior covariance matrix M := Q−1
PP,

which leads to E = Q−1/2
PP , M−1 = QPP and the preconditioned residual

Ti = −QPP∇L|Pi−1 (2.59)
= − [Pi−1 − P∗] + QPPHT

ZPQ−1
ZZ [Z − G(P)]

in the above algorithms. There are several related reasons for this choice of precon-
ditioner:

• The locally optimal preconditioner is the Hessian of the objective function, since
this is the matrix of the linearized objective function:

Hess(L) ≈ Q−1
PP + HT

ZPQ−1
ZZHZP, (2.60)

where we have neglected second order effects, i.e. the dependency of HZP on P.
The matrix Q−1

PP is the part of the Hessian that is independent of the current
iteration and therefore the part that is suitable as a traditional preconditioner
matrix.

• The convergence properties of the CG method are strongly influenced by the
spectrum of the linearized operator and especially the clustering of its eigenval-
ues [78]. Since the rank of the second term of equation (2.60) is bounded by
that of Q−1

ZZ, the linearization of the preconditioned system corresponds to a
low-rank perturbation of the identity matrix [15], and the scheme may achieve
mesh-independent convergence rates.

• The transformation with E = Q−1/2
PP decorrelates the random variable P, i.e. the

components of P̃ = Q−1/2
PP P are identically distributed and uncorrelated. Since
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the coupling between the different components is removed, the scheme is re-
stricted to the modes introduced by the measurement part of the precondi-
tioned residual. As a result, spurious high-frequency modes are removed from
the iterations, and the reduced set of active eigenvalues improves convergence.

• The step directions of the preconditioned schemes are, at least up to the con-
jugation terms, identical to that of the Gauss-Newton scheme when neglecting
contributions that are quadratic in HZP, see equation (3.12). Since these con-
tributions have a very low rank compared to the rest of the appearing terms, the
step directions are relatively close to each other. The Gauss-Newton scheme is
known for its good convergence, and closeness of the step directions may there-
fore positively influence the convergence of the Conjugate Gradients method.

• The step directions are also similar to the Kalman Filter update formula for
the same reasons, see equation (3.8). The Kalman Filter update is known to be
optimal for the case of linear models that link parameters and measurements
that are both normally distributed. While the models are typically nonlinear in
the given context, see page 24, this suggests improved convergence properties
in cases where the nonlinearities are not too strong.

2.3.4 Convergence Behavior

Figure 2.2 shows the performance of the four algorithms introduced so far when
applied to a stationary two-dimensional groundwater flow problem. P consists of a
single parameter field representing the log-conductivity of the soil, with nΩ spatial
parameters and one trend parameter for the mean value of the parameter field. The
number of discretization cells nΩ varies in steps of four between 642 ≈ 4.1 · 103
and 5122 ≈ 2.6 · 105. The log-conductivity is assumed to be normally distributed
with exponential covariance, see equation (2.12), and all four algorithms start with
a homogeneous representation for the parameter field.

The graphs display the value of the objective function as a function of the number
of iterations performed, divided by the value at the start of the algorithm, for all
chosen values of nΩ. As can be seen in the upper left corner, the Steepest Descent
method requires several hundred iterations even for small nΩ and stagnates far from
the minimum value for larger nΩ. The Conjugate Gradients method, seen in the
top right corner, fares better and achieves satisfactory results for small nΩ, but also
becomes significantly slower when the resolution of the numerical grid increases. The
preconditioned versions, shown in the bottom left and bottom right corner, converge
significantly faster than the unpreconditioned ones and have a smoother convergence
process. Most importantly, for these two methods the convergence behavior is in-
dependent of the number of cells nΩ used to discretize the parameter estimation
problem.
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Figure 2.3: Left: Excerpt of the data presented in figure 2.2 for fixed numerical grid of size
nΩ = 512 × 512. Right: Corresponding experimental order of convergence in
the objective function L with respect to its minimum value. : Steepest De-
scent, : Preconditioned Steepest Descent, : Conjugate Gradients, :
Preconditioned Conjugate Gradients.

Under the assumption that the result Pmap of the preconditioned Conjugate Gradi-
ents method is indeed arg minP L(P), i.e. the method has converged to the global
minimum, we may compute the experimental order of convergence (EOC) in the
objective function values through

EOC(i) :=
1

log(i+ 1)
log
(
L(Pi)− L(Pmap)

L(P0)− L(Pmap)

)
. (2.61)

Figure 2.3 gives a direct comparison of the convergence behavior of the four algo-
rithms for a fixed grid of size nΩ = 512 × 512, on the left through the evolution of
the values of the objective function, which is a different view on the data already
presented in figure 2.2, and on the right through the results of the EOC computation.
Only the preconditioned versions achieve convergence in an acceptable number of
iterations, and the preconditioned Conjugate Gradient method outperforms all other
variants by a wide margin.

Figure 2.4 shows the synthetic random field that was used and the results of the
algorithms 3 (CG) and 4 (PCG). The unpreconditioned scheme stagnates far away
from the optimum, since the sensitivity matrix HZP introduces information about
necessary changes mainly in the direct vicinity of the measurement locations and the
locations of external forcing. Preconditioning explicitly couples parameters that are
correlated, and significantly increases the speed with which the information from the
observations propagates into the domain. As a result, the method converges within
a comparatively small number of iterations.
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Synthetic Reference

Estimate using CG Estimate using PCG

Figure 2.4: Upper row: Synthetic reference parameter field P̂ with exponential covariance
structure. Lower left: Approximate inversion result returned by the CG algorithm
after 100 steps. Changes in the parameters are introduced locally at the injection
well, extraction well and observation sites through the sensitivity of the system
and then propagated into the rest of the domain through the covariance structure.
Since this process is mainly restricted to the direct neighbors of the discretization
elements, it becomes slower with increasing resolution. Lower right: Inversion
result Pmap of the PCG algorithm. Preconditioning transforms the spatially
local step direction into a global one, significantly speeding up the convergence.
Note that the inversion result is a smooth function and that the discrete stepping
is only introduced to improve the contrast and ease visual interpretation.
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Algorithm 6: Caching Prior Preconditioned Conjugate Gradients (PCGc)
Input: initial value P0, auxiliary variable V0, R0 = 0, T0 = 0, D0 = 0, W0 = 0,

stopping criterion
Output: estimate of MAP point Pmap
i := 0 [set index];
repeat

i→ i+ 1 [shift index];
(Ri,Ti) :=

(
−∇L|Pi−1 ,−QPP∇L|Pi−1

)
[compute residuals];

βi := orthogonalize(Ri−1,Ti−1,Ri,Ti,Di−1) [compute conjugation factor];
(Di,Wi) := (Ti,Ri) + βi (Di−1,Wi−1) [set directions];
αi := linesearch(Pi−1,Vi−1,Di,Wi) [compute step width];
(Pi,Vi) := (Pi−1,Vi−1) + αi (Di,Wi) [define i-th iterations];

until converged;
Pmap := Pi [accept final iteration];
return Pmap;

2.3.5 Caching PCG Version

In addition to the drastic reduction in the number of iterations needed for conver-
gence, the particular choice M = Q−1

PP has consequences for the computational cost
per iteration and the applicability of the method. Introducing the auxiliary variables
Vi := Q−1

PPPi and Wi := Q−1
PPDi and observing that Ri = Q−1

PPTi, we may rewrite
algorithm 3 (CG) to create two closely linked sequences, one consisting of Pi, Ti

and Di and one consisting of Vi, Ri and Wi, as given in algorithm 6 (PCGc).

The second sequence is in theory redundant, since its elements can be computed
from those of the original sequence through multiplication with Q−1

PP, but this mul-
tiplication may be very expensive or numerically unstable, see section 2.1.2 and the
discussion below. Storing this additional sequence allows the reformulation

Ri = −∇L|Pi−1 = − [Vi−1 − V∗] + HZPQ−1
ZZ [Z − G(Pi−1)] (2.62)

with V∗ := Q−1
PPP∗ and

‖Pi−1 + αDi − P∗‖Q−1
PP

= [Pi−1 + αDi − P∗]T [Vi−1 + αWi − V∗] (2.63)

= PT
i−1Vi−1 + α2DT

i Wi + [P∗]T V∗

+ 2αWT
i [Pi−1 − P∗]− 2VT

i−1P∗,

where V∗ can be precomputed as in the case of V0 or dropped altogether if P∗ = 0.
This allows the computation of the gradient and the evaluation of the objective
function for the line search without application of Q−1

PP. Since this also holds for
the different formulas for the conjugation factors βi, algorithm 6 (PCGc) can be
executed without a single multiplication with Q−1

PP, as long as V∗ and V0 are known.
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2.3 Preconditioned Conjugate Gradients

This is automatically the case if all spatial parameters in P0 respectively P∗ are zero
and the trend parameters are not correlated with the spatial parameters. Otherwise,
a single multiplication with Q−1

PP is necessary to generate the second initial value V0

respectively V∗ for the algorithm.

Storing the entries of Vi and Wi requires additional memory, but there are at least
three reasons for doing so:

• The covariance matrix QPP is an nP × nP block matrix with large and often
dense submatrices. If there is only a single parameter vector or the param-
eter vectors pi are uncorrelated, i.e. QPP is a block diagonal matrix, then
relatively efficient algorithms are available for the multiplication with Q−1

PP,
see section 2.1.2. Nevertheless, multiplication with Q−1

PP remains significantly
more expensive than multiplication with QPP. This has the peculiar effect
that the preconditioner has negative cost, since the multiplication with Q−1

PP
for the line search is replaced by one with QPP for the computation of the
search direction.

• In reality the parameter vectors will most likely be correlated, and such infor-
mation should be included in the prior covariance matrix QPP if it is known.
For nP > 1 the matrix may therefore contain nonzero off-diagonal blocks
Qpipj , i 6= j. The multiplication with QPP may be performed as an itera-
tive process consisting of multiplication with its constituent blocks, which can
be achieved with the methods from section 2.1.2, but the multiplication with
Q−1

PP is significantly more challenging and may become unfeasible even for a
moderate number of discretization cells nΩ.

• The matrix QPP is symmetric positive definite and therefore guaranteed to
be invertible in exact arithmetic. But if its spectrum decays to zero too fast,
the multiplication with its inverse may be numerically unstable. While the
prior covariance matrix should regularize the inverse problem, it introduces
a secondary ill-posed inverse problem instead if multiplication with Q−1

PP is
required. Preconditioning with QPP and storing the auxiliary values removes
this ill-conditioned operation. See below for such a situation.

Remark 9 Note that this storage strategy is only possible for the preconditioned
scheme with M = Q−1

PP. Neither the variant without preconditioner nor a version
with a different preconditioner is compatible with this optimization. In both cases at
least one multiplication with Q−1

PP is necessary for the line search. In principle, the
transformation with Q−1/2

PP could be used instead and would also avoid multiplication
with Q−1

PP, but then two multiplications with Q1/2
PP would be required instead of one

multiplication with QPP. We refer to remark 6 and section 2.7 in this regard.

Figure 2.5 displays the convergence results for the same test case as figure 2.2, but
with a Gaussian covariance function, equation (2.13), instead of exponential covari-
ance. The parameter fields that follow this distribution are significantly smoother,
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Figure 2.5: Convergence behavior of the described methods for parameters with Gaussian
covariance function, left: Preconditioned Steepest Descent, right: Preconditioned
Conjugate Gradients. Test case is the same as for figure 2.2 except for the covari-
ance function. Unpreconditioned versions are missing, since they cannot perform
due to the severely ill-conditioned multiplication with the inverse of the covariance
matrix QPP.

compare figures 2.4 and 2.6, which reflects the fact that the spectrum of the covari-
ance matrix quickly decays to zero. As a result, the covariance matrix is effectively
singular, and evaluating the objective function fails because the multiplication with
Q−1

PP can’t be carried out. Preconditioning with QPP removes exactly the high-
frequency modes that are amplified by Q−1

PP, restricting the iterations to the correct
subspace of the parameter space, and the methods remain applicable.

2.4 Calculation of Sensitivities

One of the most expensive operations in the optimization schemes presented in the
last section is typically the assembly of the sensitivity matrix HZP. If the full matrix
is assembled using the most basic algorithm, i.e. difference quotients created through
the perturbation of single parameter values, then the cost for matrix assembly, and
therefore also that for the term

HT
ZPQ−1

ZZ [Z − G(P)] (2.64)

in equations (2.35) and (2.59), is asymptotically

T (nP, nZ, nΩ, nT , nβ, nz) = O ([nP · [nΩ + nβ] · [nΩ · nT ] + nz] · nZ) , (2.65)

where
nβ := max

1≤i≤nP
nβi

and nz := max
1≤j≤nZ

nzj , (2.66)
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2.4 Calculation of Sensitivities

Synthetic Reference Estimate using PCG

Figure 2.6: Left: Synthetic reference parameter field P̂ with Gaussian covariance structure.
In this case the eigenvalues of QPP corresponding to high-frequency modes are
exceedingly small, and multiplication with Q−1

PP is ill-conditioned. The unpre-
conditioned versions of the algorithms are therefore no longer applicable. Right:
Preconditioning removes the ill-conditioned operation from the algorithms, and
the methods are able to converge.

nT is the number of time steps if the model formulation is transient and nT = 1
else, and the rest of the numbers are defined as on page 2. The derivatives with
regard to approximately nP · [nΩ + nβ] parameters are needed, and each of these
requires the solution of nZ model equations, which can be obtained in O (nΩ · nT ) if
a PDE solver of optimal complexity is available. After these solutions are computed,
approximately nZ · nz changes in the observations have to be evaluated to calculate
the derivatives.

Remark 10 Here we have assumed that a solver of optimal complexity, i.e. lin-
ear in nΩ, is available, for example a Multigrid or Algebraic Multigrid (AMG)
solver [13]. If such a solver can’t be used for the given model equations, then the
common factor nΩ · nT · nZ representing the effort of solving the forward problem
has to be replaced by an appropriate expression in equation (2.65) and all following
similar equations. This does not influence the validity of the argumentation. We
also have assumed that the different models Fj are comparable in terms of effort
that is needed to solve the forward problem. If this is not the case, then nZ may
be replaced by the number of states that are expensive to compute, again with no
substantial consequences to the argumentation that follows. Also note that we have
assumed that the computational cost of the observation operator O is independent
of the mesh width.
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Equation (2.65) may be simplified using nβ � nΩ · nT , nz � nΩ · nT and the fact
that extracting measurements from the system state is typically significantly cheaper
than solving the model equations. This results in the asymptotic complexity

T (nP, nZ, nΩ, nT , nβ, nz) = O
(
nP · nZ · n2Ω · nT

)
. (2.67)

Since this expression is quadratic in the number of elements nΩ even under the
assumption of an optimal solution strategy for the models, this approach is unfeasible
for any realistic mesh width h. This section introduces adjoint states as a means of
calculating the required derivatives in a more efficient way, reducing the complexity
of assembling the gradient of the objective function L(P) to O (nZ · nΩ · nT ), i.e. the
complexity of solving the forward problem 1.

2.4.1 Lagrangian Formalism

We assume Fj ∈ L2 (Ω) if the models are stationary and Fj ∈ L2 (Ω× T ) if they are
transient, and define the Lagrangian of the objective function L(P) as

L (P, U,Ψ) = L (P, U) +

nZ∑
j=1

〈ψj ,Fj (S(P), U<j ;uj)〉 , (2.68)

where Ψ := (ψ1, . . . , ψnZ). The ψj are known as Lagrange multipliers and are in L2 (Ω)
for stationary models and in L2 (Ω× T ) for transient models, with 〈·, ·〉 denoting the
corresponding scalar product. Note that by definition the Lagrangian L (P, U,Ψ)
coincides with the objective function L(P) for pairs (P, U) that are consistent.

Now consider a single parameter p, i.e. a component of one of the parameter vectors
pi. The gradient of L(P) consists of the derivatives of L(P) with respect to all such
parameters p. Assuming sufficient regularity of all appearing functions and operators,
by the definition of the Lagrangian we have [63]

dpL = dpL =

nZ∑
k=1

〈∂ukL,dpuk〉+ ∂pL (2.69)

+

nZ∑
j=1

〈dpψj ,Fj (S(P), U<j ;uj)〉+
nZ∑
j=1

〈
ψj ,

j∑
k=1

∂ukFjdpuk + ∂pFj

〉
,

for states U that are consistent with the parameter fields S(P), since the added terms
are zero in this case. Here ∂ukFj is the linearization of the model Fj with respect to
uk. Again using the fact that Fj (S(P), U<j ;uj) = 0, the third term of the righthand
side cancels out, and we arrive at

dpL =

nZ∑
k=1

〈∂ukL,dpuk〉+ ∂pL+

nZ∑
j=1

j∑
k=1

〈ψj , ∂ukFjdpuk〉+
nZ∑
j=1

〈ψj , ∂pFj〉 . (2.70)
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Reordering the summation results in

dpL =

nZ∑
k=1

〈∂ukL,dpuk〉+ ∂pL+

nZ∑
k=1

nZ∑
j=k

〈ψj , ∂ukFjdpuk〉+
nZ∑
j=1

〈ψj , ∂pFj〉 , (2.71)

with both expressions summing over all pairs (j, k) with 1 ≤ j ≤ nZ and 1 ≤ k ≤ j.
Using the adjoint (∂ukFj)

† of the linear operator ∂ukFj , this can be written as

dpL =

nZ∑
k=1

〈∂ukL,dpuk〉+∂pL+

nZ∑
k=1

nZ∑
j=k

〈
(∂ukFj)

† ψj ,dpuk
〉
+

nZ∑
j=1

〈ψj , ∂pFj〉 , (2.72)

which finally results in

dpL =

nZ∑
k=1

〈
∂ukL+

nZ∑
j=k

(∂ukFj)
† ψj ,dpuk

〉
+ ∂pL+

nZ∑
j=1

〈ψj , ∂pFj〉 . (2.73)

2.4.2 Adjoint Model and Problem

Let the adjoint model function F†
j with regard to the model Fj and the functional L

be defined through

F†
j (S,U,Ψ>j ;ψj) :=

(
∂ujFj

)†
ψj +

∑
k>j

(∂ukFj)
† ψk + ∂ujL, (2.74)

where Ψ>j := (ψj+1, . . . , ψnZ). Under the assumption that the adjoint states Ψ solve
the equations

F†
nZ (S,U ;ψnZ) = 0 (2.75)

F†
nZ−1 (S,U, ψnZ ;ψnZ−1) = 0

...
F†
j (S,U,Ψ>j ;ψj) = 0

...

where again the semicolon separates known and unknown quantities in the implicit
function definition, or in analogy to equation (1.5)

∀ψj : F†
j (S,U,Ψ>j ;ψj) = 0, (2.76)

equation (2.73) reduces to

dpL = ∂pL+

nZ∑
j=1

〈ψj , ∂pFj〉 . (2.77)
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This approach is called the Adjoint State Method [75, 63], since it uses adjoint states
ψj to compute the required derivatives, and its main advantage is the fact that
the adjoint models defined in equation (2.74) do not depend on the choice of the
parameter p. This means it is possible to solve the system in equation (2.75) once
and use the resulting adjoint states ψj to compute all derivatives required for the
gradient of the objective function in equations (2.35) and (2.59). The process consists
of the computation of

∂ujL = O†
j∂zjL =

(
O†Q−1

ZZ(Z − G(P))
)
j

(2.78)

where O†
j is the adjoint of the linearization of the observation operator Oj and O†

that of the combined operator O.

We may again formalize this by introducing a full adjoint model F† that maps S and
U to Ψ through (2.75), and define the following adjoint problem:

Problem 6 (Adjoint Problem)
Given a tuple of parameters P, a tuple of measurements Z, a model F , operators I
and O, and a conditional distribution Z|P, determine the adjoint states Ψ through
the adjoint model F† with the righthand side given in equation (2.78). Use these
adjoint states and equation (2.77) to compute the gradient of L at P.

The term
nZ∑
j=1

〈ψj , ∂pFj〉 (2.79)

in equation (2.77) is a componentwise representation of the one in equation (2.64),
but in contrast to equation (2.65), the asymptotic complexity for computing this part
of the gradient is

T (nP, nZ, nΩ, nT , nβ, nz) = O ([nP · [nΩ + nβ] + [nΩ · nT ] + nz] · nZ) , (2.80)

where the subtle but important difference is a plus sign that appears instead of
a multiplication sign in equation (2.65). The evaluation requires the assembly of
approximately nz ·nZ contributions to the adjoint source terms ∂ujL, the solution of
a system of adjoint PDEs, which is in O (nΩ · nT · nZ) like the solution of the forward
problem, and approximately nP · [nΩ + nβ] · nZ scalar products in equation (2.77).

If p is a localized parameter, i.e. refers to a component (yi)k of a spatial part yi,
then the support of ∂pFj is contained in the associated element Ek, see page 2.
Consequently, the evaluation of the scalar product is a local operation that can be
neglected in comparison to the solution of the adjoint model. Using nβ � nΩ · nT
and nz � nΩ · nT , and assuming an observation operator O with comparatively low
cost, equation (2.80) may be simplified, which results in the asymptotic complexity

T (nP, nZ, nΩ, nT , nβ, nz) = O (nZ · nΩ · nT ) . (2.81)
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2.5 Uncertainty Quantification

This is the same complexity as solving the forward problem and significantly cheaper
than using simple difference quotients, compare equation (2.67). In practice, the
effort for solving the adjoint problem is often the same or at least in the same order of
magnitude as that of solving the forward problem, and under these circumstances the
adjoint state method is a very efficient technique for the calculation of the gradient.

2.5 Uncertainty Quantification

The result of the MAP approach is a single point estimate Pmap = arg minP L(P),
which may be computed with the PCG method discussed in section 2.3. However,
such estimates without some sort of error quantification are largely meaningless, since
it is unclear to which extent they can be trusted. Furthermore, parameters are
normally estimated to create a parameterized model for simulations and predictions,
and both the generation of samples and the interpretation of the results require
uncertainty estimates. We therefore provide a method for the estimation of the
uncertainty of the MAP inversion result Pmap. The first half of this section follows
Bui-Thanh et al. [15].

If the model F were linear, normally distributed parameter vectors pi and measure-
ment vectors zj would result in a posterior distribution that is normally distributed
as well [69]. Therefore, if the nonlinearity of the model equations is not too strong,
and if Pmap is sufficiently close to the mean, the posterior distribution can be ap-
proximated by

P|Z approx.∼ N
(

Qpost
PP ,Pmap

)
, (2.82)

where Qpost
PP is the posterior covariance matrix.

Remark 11 It should be stressed that such an approximation is only valid if the
underlying assumptions are fulfilled. If the model is too nonlinear, the variance
of the posterior may be significantly overestimated or underestimated, especially if
the distribution can’t be adequately represented by its first and second moments,
e.g. when the posterior distribution is multimodal. In principle, the same restric-
tions as for the application of MAP estimation apply. Just as the MAP point Pmap
can only be interpreted as a rough estimate in such a situation, the linearized poste-
rior covariance should be seen as a qualitative statement at most, not an accurate
estimate of uncertainty. See section 2.6 for a discussion of statistical tests that
may help in assessing the quality of the approximation.

The linearization of the posterior PDF uses the approximate Hessian of the objective
function

Hess(L) ≈ Q−1
PP + HT

ZPQ−1
ZZHZP (2.83)
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and defines the posterior covariance matrix as

Qpost
PP :=

[
Q−1

PP + HT
ZPQ−1

ZZHZP
]−1

. (2.84)

Factoring out the matrix Q1/2
PP on both sides, just as in the transformation for the

PCG method on page 29, results in

Qpost
PP = Q1/2

PP [I + Mlike]
−1 Q1/2

PP (2.85)

with
Mlike := Q1/2

PPHT
ZPQ−1

ZZHZPQ1/2
PP. (2.86)

To transform this equation, we apply the Sherman-Morrison-Woodbury formula [81],
also known as the Woodbury matrix identity, which states that[

A−1 + BC−1BT
]−1

= A − AB
[
C + BTAB

]−1 BTA (2.87)

holds for matrices A, B and C if both A and C are invertible and B has the correct
dimensions. For the special case with A the identity matrix, B an orthogonal matrix
and C−1 = diag(ci) a diagonal matrix, we have[

I + BC−1BT
]−1

= I − B
[
C + BTB

]−1 BT (2.88)
= I − B [C + I]−1 BT

= I − B
[
diag(c−1

i ) + I
]−1 BT

= I − B diag
(
1 + ci
ci

)−1

BT

= I − B diag
(

ci
1 + ci

)
BT ,

which relates the spectral decomposition of an update to the identity matrix to
the spectral decomposition needed for the inverse update. Since Q−1

ZZ is symmetric
positive definite, Mlike is symmetric positive semidefinite, compare equation (2.86),
and we have the spectral decomposition

Mlike = VΛVT , (2.89)

where Λ = diag(λi) contains the eigenvalues of Mlike and V is an orthogonal ma-
trix containing the corresponding eigenvectors. Inserting this decomposition into
equation (2.85) and applying the identity above leads to

Qpost
PP = Q1/2

PP
[
I + VΛVT

]−1 Q1/2
PP (2.90)

= Q1/2
PP
[
I − VΥVT

]
Q1/2

PP

= QPP − Q1/2
PPVΥVTQ1/2

PP,
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where

Υ := diag
(

λi
1 + λi

)
(2.91)

contains the eigenvalues for the inverse update according to equation (2.88).

Since Mlike contains the matrix Q−1
ZZ as a factor, its rank is at most that of QZZ.

Therefore, almost all eigenvalues of Mlike will be zero if nZ ·nz � nP · [nΩ + nβ], with
nz and nβ defined as on page 38. We may then replace the decompositions above
with approximate versions that only contain the r ≤ [nZ · nz] largest eigenvalues,
i.e. for descending eigenvalues λ1 ≥ λ2 ≥ λ3 . . . we use

VΛVT ≈ VrΛrVT
r +O

(∑
i>r

λi

)
(2.92)

VΥVT ≈ VrΥrVT
r +O

(∑
i>r

λi
1 + λi

)
,

where the matrices

Λr := diag(λi)i≤r (2.93)

Υr := diag
(

λi
1 + λi

)
i≤r

are r × r matrices containing the r largest eigenvalues of Λ and Υ respectively, and
Vr contains the eigenvectors of these r largest eigenvalues. Note that the induced
order of the eigenvectors is the same for Λ and Υ, since the function

f(λ) =
λ

1 + λ
(2.94)

is strictly monotonically increasing in λ ≥ 0, and Vr is therefore well-defined.

Remark 12 It is clear that the choice r = nZ · nz results in a good approximate
spectral decomposition, since in this case all nonzero eigenvalues are recovered, but
depending on the concrete application a significantly smaller r may suffice. If, for
example, the observations in Z are a high-resolution time series of measurements,
many of the observations will be redundant, i.e. they will contribute little or no
information that is not already contained in one of the other observations. To a
lesser degree this may also happen if the spatial resolution of the observations is
high. In both situations, the numerical rank of Mlike may be significantly smaller
than nZ ·nz, which means that a truncation index r � (nZ ·nz) may already result
in a good approximation of Mlike.
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2.5.1 Randomized Spectral Decomposition

Such an approximate spectral decomposition of Mlike can be constructed using the
Lanczos algorithm [28]. Alternatively, it may be computed using the randomized
method presented in [15], which in contrast to the Lanczos algorithm is not an itera-
tive procedure and therefore more readily parallelizable. This algorithm generates r
independent normally distributed parameter tuples Ri with

Ri ∼ N
(
diag(σ2r ),0

)
, (2.95)

where the variance σ2r is small compared to the variability of Pmap. These tuples may
be interpreted as random deviations from Pmap, and we examine the range space of
Mlike by computing

Ti := MlikeRi = Q1/2
PP

[
HT

ZPQ−1
ZZ

[
HZPQ1/2

PPRi

]]
(2.96)

for each of the Ri. This can be accomplished by evaluating the forward model for
Pmap and for Pmap+Q1/2

PPRi, 1 ≤ i ≤ r. If the variance σ2r is chosen sufficiently small,
the change in the model outcome may be assumed to be linear in the perturbations,
which yields

HZPQ1/2
PPRi = G

(
Pmap + Q1/2

PPRi

)
− G (Pmap) , (2.97)

where G is again the discrete model mapping P to Z. The second matrix-vector
multiplication in equation (2.96) is structurally the same as in the computation of
the gradient of the objective function L, see equation (2.35), with the expression
in equation (2.97) taking the role of the measurement residual, and may therefore
be computed using the techniques described in section 2.4. The result can then be
multiplied by Q1/2

PP to obtain Ti.

Using a stabilized Gram-Schmidt algorithm or Householder transformations, a set of
orthonormal vectors Ci spanning the same space as Ti can be constructed. With
such an orthonormal basis Ci we may define a condensed representation of the matrix
Mlike. Following Halko et al. [36], let the matrices R, T and C be the accumulation
of the vectors defined above. Equation (2.96) may then also be expressed as

T = MlikeR, (2.98)

and a surrogate
B := CTMlikeC (2.99)

for the full matrix Mlike has to comply with this relation restricted to the examined
subspace, i.e.

CTT ≈ B
[
CTR

]
. (2.100)

If the Ti are linearly independent the matrix CTT will have full rank, which means
CTR is invertible, and we arrive at

B ≈
[
CTT

] [
CTR

]−1
= SΛrST ≈ CTMlikeC. (2.101)
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Algorithm 7: Randomized Eigenvalue Decomposition (EDr)
Input: MAP estimate Pmap, perturbation scale σ2r , tolerance tol � 1
Output: matrix of eigenvectors Vr and matrix of eigenvalues Λr

i := 0 [set index];
Zmap := G (Pmap) [compute model outcome];
create empty matrices R for preimages and T for images;
repeat

i→ i+ 1 [shift index];
Ri ∼ N

(
diag(σ2r ),0

)
[generate uncorrelated perturbation and append to R];

T(0)
i := Q1/2

PPRi [transform into correlated perturbation];
Zi := G

(
Pmap + T(0)

i

)
[compute model outcome];

T(1)
i := HT

ZPQ−1
ZZ [Zi − Zmap] [apply adjoint state method];

Ti := Q1/2
PPT(1)

i [calculate image of perturbation and append to T];
construct orthonormal matrix C spanning the same space as T;
B :=

[
CTT

] [
CTR

]−1 [compute condensed operator];
determine spectral decomposition B = SiΛiSTi ;

until smallest eigenvalue in Λi < tol;
set number of eigenvectors r := i;
set matrix of eigenvectors Vr := CSr;
return Vr and Λr;

Note that B and all matrices used in its construction are of size r × r. As a conse-
quence, we may apply standard algorithms for dense matrices to compute the inverse
of CTR, the eigenvalues in Λr and the condensed eigenvectors in S. Setting

Vr := CS (2.102)

then transforms the eigenvectors of the condensed representation into those of the
original matrix Mlike. With these matrices we may approximate Qpost

PP through

Qpost
PP ≈ QPP − Q1/2

PPVrΥrVT
r Q1/2

PP. (2.103)

The steps above result in algorithm 7 (EDr). The eigenvectors and eigenvalues that
are returned may then be used to evaluate entries of Qpost

PP or use it in operations, as
will be discussed in section 2.6. Depending on the application, it may be beneficial
to multiply the acquired eigenvectors with Q1/2

PP, see equation (2.103).

Remark 13 While this randomized partial spectral decomposition may be signifi-
cantly cheaper than a full construction, it is important to mention that the algorithm
may introduce approximation errors. If the matrix CTR is ill-conditioned, its in-
version can make the algorithm unstable [36]. In this situation it may be safer to
first construct the orthonormal basis C through sampling and then perform steps
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similar to those above with the images of C instead of those of R. This allows
directly using B = CT [MlikeC] as the condensed representation and thereby avoids
the matrix inversion. Note, however, that this requires approximately twice the
effort of the approach presented above. The special structure of Mlike allows us to
use an alternative algorithm that we will describe next.

2.5.2 Randomized Singular Value Decomposition

We may also rewrite equation (2.85) in the form

Qpost
PP = Q1/2

PP
[
I + LlikeLTlike

]−1 Q1/2
PP, (2.104)

where
Llike := Q1/2

PPHZPQ−1/2
ZZ (2.105)

provides a decomposition of the matrix Mlike as discussed in section 2.1.2. If we
compute the singular value decomposition (SVD) of Llike, i.e.

Llike = VPΛ
1/2VT

Z, (2.106)

where VP are the left-singular vectors and VZ are the right-singular vectors, then
we can write

Qpost
PP = Q1/2

PP

[
I + VPΛ

1/2VT
ZVZΛ

1/2VT
P

]−1
Q1/2

PP (2.107)

= Q1/2
PP
[
I + VPΛVT

P
]−1 Q1/2

PP

= Q1/2
PP
[
I − VPΥVT

P
]

Q1/2
PP

= QPP − Q1/2
PPVPΥVT

PQ1/2
PP

in analogy to equation (2.90). This means that the left-singular vectors VP of Llike
are in fact the eigenvectors V of Mlike, and the approach using equation (2.106) leads
to the same decomposition as before. But in contrast to the spectral decomposition
the singular value decomposition also provides the right-singular vectors VZ, which
is relevant in the context of the statistical analysis presented in the next section.

An approximate singular value decomposition

Llike ≈ VP,rΛ
1/2
r VZ,r (2.108)

of the matrix Llike may be obtained through steps that are similar to those for the
approximate spectral decomposition in equation (2.92). In contrast to Mlike the
matrix Llike is not a symmetric square matrix, and this has to be taken into account
in the algorithm. Starting with random tuples Pi results in a condensed matrix with
a size in the order of [nP · np] × r, while starting with random tuples Zj leads to a
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2.5 Uncertainty Quantification

matrix of size [nZ · nz]× r. We therefore employ the latter to arrive at a matrix size
that allows the application of standard algorithms.

The algorithm for the approximate singular value decomposition generates r indepen-
dent normally distributed measurement tuples

Rj ∼ N (I,0) (2.109)

which are interpreted as random changes in the state observations. We again sample
the range space, this time of Llike, to obtain

Tj := LlikeRj = Q1/2
PPHT

ZPQ−1/2
ZZ Rj , (2.110)

and collect the vectors Rj and Tj in the matrices R and T, so that

T = LlikeR (2.111)

holds. As before, an orthonormal basis Cj of the sampled subspace may be con-
structed and subsumed in a matrix C. For each of these basis vectors we evaluate

Bj := LTlikeCj = Q−1/2
ZZ HZPQ1/2

PPCj , (2.112)

again using equation (2.97) for the linearization of the forward model. This can be
accomplished by scaling down Q1/2

PPCj by an appropriate factor and reestablishing
the correct scale after the application of the forward model.

By construction, the resulting matrix B containing the images Bj is a representation
of LTlike acting on the range space of Llike. Due to the small size of B we can construct
its singular value decomposition

B = VZ,rΛ
1/2
r ST , (2.113)

where S contains the right singular vectors of B. Note that B is a representation
of LTlike, not Llike, and that the right-singular vectors VZ,r therefore appear on the
left of Λr in the above equation. The left-singular vectors VP,r of Llike may then be
obtained through setting

VP,r := CS (2.114)

as in the randomized spectral decomposition.

This second approach is given in algorithm 8 (SVDr). Note that it is in principle
the same as the two-pass approach mentioned in remark 13, but applied to Llike
instead of Mlike. The singular value decomposition typically has the same cost as the
spectral decomposition, since the number of forward model runs, adjoint model runs
and matrix multiplications per eigenvalue respectively singular value is the same for
the two algorithms. In a general setting the SVD is therefore the preferred algorithm,
since it provides additional information at approximately the same cost.
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Algorithm 8: Randomized Singular Value Decomposition (SVDr)
Input: MAP estimate Pmap, perturbation scale σ2r , tolerance tol � 1

Output: matrices of singular vectors VP,r and VZ,r, matrix of singular values Λ
1/2
r

i := 0 [set index];
Zmap := G (Pmap) [compute model outcome];
create empty matrices V (preimages), W (images), C (basis vectors) and B
(representation);
repeat

i→ i+ 1 [shift index];
Rj ∼ N (I,0) [generate uncorrelated perturbation and append to R];
Tj := Q1/2

PPHT
ZPQ−1/2

ZZ Rj [apply adjoint state method and append to T];
construct orthonormal matrix C spanning the same space as T;
Zj := G

(
Pmap + σrQ1/2

PPCj

)
[compute model outcome];

Bj := σ−1
r Q−1/2

ZZ [Zj − Zmap] [calculate result and append to B];
determine singular value decomposition B = VZ,iΛ

1/2
i STi ;

until smallest singular value in Λ
1/2
i < tol1/2;

set number of singular vectors r := i;
set second matrix of singular vectors VP,r := CSr;
return VP,r, VZ,r and Λ

1/2
r ;

See figure 2.7 for an example of the spectra produced by algorithm 8 (SVDr). The
exact shape of the spectrum depends on the forward model F , the chosen prior dis-
tribution and the observations. The amount of correlation between the measurement
locations affects the width of the spectrum, while the ratio of assumed measurement
errors and prior uncertainty determines its height. The height and shape of the
spectrum influence the performance of the optimization schemes, see the discussion
concerning the spectral condition number in section 2.3.2. Its width determines the
cost of the linearized uncertainty quantification. Figures 2.8 and 2.9 show examples
of the pairs of singular vectors that are obtained.

2.6 A Posteriori Analysis and Sample Generation

The results of the parameter estimation, Pmap, and the uncertainty quantification,
Qpost

PP , are often used to generate samples from the posterior distribution, which may
in turn be used in simulations and subsequent analysis. This section describes a
method to obtain such samples based on the approximate spectral decomposition
that was constructed in section 2.5. It also discusses statistical tests that may be
performed to assess the quality of the inversion results.

The constituents of the posterior covariance matrix Qpost
PP , computed as described in
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Figure 2.7: Left: Approximate spectra of Llike obtained with algorithm 8 (SVDr) for r = 5
( ), 10 ( ), 20 ( ), 40 ( ), 80 ( ) and 108 ( ) for a synthetic
example setup. The algorithm is stopped when the first singular value below
10−2 is encountered. Forward model is the transient groundwater flow equation
with nΩ = 1.64 · 104, nT = 100, nφ = 2.53 · 103. Right: The resulting spectrum
of Mlike. Since each eigenvalue requires the solution of a forward problem and
an adjoint problem, the cost for the spectral decomposition is about an order of
magnitude lower than the full assembly of the sensitivity matrix HZP.

Figure 2.8: From left to right: The first three left-singular vectors of Llike for the steady-
state dipole experiments of section 6.1.1, computed with algorithm 8 (SVDr).
The underlying synthetic reference field is homogeneous, and the symmetry of
the experimental setup is reflected in the symmetry of the singular vectors. The
corresponding right-singular vectors can be found in figure 2.9.
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Figure 2.9: From left to right: The first three right-singular vectors of Llike, interpreted as
functions on a subdomain of Ω by plotting the mean of the observations in the four
corners on each of the quadratic subdomains. See figure 2.8 for the corresponding
left-singular vectors.

the previous section, may be used to give an upper bound for the posterior variance.
The algorithms 7 (EDr) and 8 (SVDr) both produce a matrix of eigenvectors Vr =
VP,r and a diagonal matrix of eigenvalues Λr that can be used to evaluate entries of
Qpost

PP through equation (2.103). The diagonal entries of Qpost
PP contain the posterior

variance of the individual parameters, and their evaluation provides a first indication
of the quality of the inversion result in terms of reduced uncertainty of the parameters.
Setting

Wr := Q1/2
PPVr, (2.115)

and denoting the k-th vector in the matrix Wr with (Wr)k, the entries of Qpost
PP can

be written as(
Qpost

PP

)
ij
= ET

i Qpost
PP Ej (2.116)

= ET
i QPPEj − ET

i Q1/2
PPVrΛrVT

r Q1/2
PPEj

= (QPP)ij − ET
i WrΛrWT

r Ej

= (QPP)ij −
r∑

k=1

[
ET
i (Wr)k

] λk
1 + λk

[
[(Wr)k]

T Ej

]
,

where Ei and Ej are unit vectors selecting the row and column of Qpost
PP . For the

diagonal entries this implies

σ2post,i :=
(

Qpost
PP

)
ii
= (QPP)ii −

r∑
k=1

λk
1 + λk

[
[(Wr)k]

T Ei

]2
, (2.117)

i.e. the information gained from the observations reduces the variance of the individ-
ual parameters. If we stop algorithm 7 (EDr) or algorithm 8 (SVDr) prematurely,
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2.6 A Posteriori Analysis and Sample Generation

e.g. due to time constraints, and only compute an approximation

σ̃2post,i := (QPP)ii −
r̃∑

k=1

λk
1 + λk

[
[(Wr)k]

T Ei

]2
, (2.118)

where r̃ < r is the number of eigenvalues that have been computed, and if the
resulting spectrum is accurate enough, then the error incurred in the computation of
the posterior variance is

σ2post,i − σ̃2post,i = −
r∑

k=r̃+1

λk
1 + λk

[
[(Wr)k]

T Ei

]2
≤ 0. (2.119)

Consequently, a partially computed spectrum of r̃ < r eigenvalues at most leads to
an overestimation of the linearized posterior variance, never an underestimation, and
partial results can be used to compute upper bounds. Note that this argument is
only valid for the two algorithms if the chosen number of computed eigenvalues is
large enough, since the partial spectrum is not truncated but rather approximated.
However, the eigenvalues tend to converge to their final values from below, as shown in
figure 2.7, which suggests that this bound may also hold for coarser approximations.

2.6.1 Realizations of the Posterior Distribution

If we extend the system of orthonormal vectors contained in Vr to a full orthonormal
basis of the parameter space and denote the resulting augmented matrix with V+

r ,
then equation (2.90) may also be written as

Qpost
PP = Q1/2

PP

[
I − V+

r Υ
+
r

[
V+
r

]T ]Q1/2
PP, (2.120)

where Υ+ denotes the matrix Υ padded with zeros. This may in turn be written
as

Qpost
PP = Q1/2

PPV+
r

[
I −Υ+

r

] [
V+
r

]T Q1/2
PP, (2.121)

since by construction V+
r [V+

r ]
T
= I. A decomposition

Qpost
PP = LpostLTpost (2.122)

for the generation of samples according to section 2.1.2 could therefore be obtained
by setting

Lpost := Q1/2
PPV+

r

[
I −Υ+

r

]1/2
. (2.123)

However, this decomposition would depend on the particular choice of V+
r and be

relatively unwieldy. Instead, we again use that V+
r is an orthogonal matrix, and

therefore [V+
r ]
T V+

r = I, and define Lpost as

Lpost := Q1/2
PPV+

r

[
I −Υ+

r

]1/2 [V+
r

]T
. (2.124)
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Algorithm 9: Generation of Samples from Posterior Distribution (SGpost)
Input: MAP estimate Pmap, matrix of eigenvectors Vr, matrix of eigenvalues Λr

Output: Sample of posterior distribution P
W := N (I,0) [generate white noise];
for 1 ≤ i ≤ r do

Wi := (Vr)i [(Vr)i]
T W [project W onto eigenspaces];

end
Wrem := W −

∑r
i=1 Wi [compute remainder that is not in span of eigenvectors];

R := Wrem +
∑r

i=1 [1 + λi]
−1/2 Wi [scale projections by appropriate factor];

P := Pmap + Q1/2
PPR [transform result and add posterior mean];

return P;

This second definition is particularly convenient for the production of samples from
the posterior distribution. Since the eigenvectors of

[
I −Υ+

r

]
are also the eigen-

vectors of
[
I −Υ+

r

]1/2, the matrix V+
r

[
I −Υ+

r

]
[V+

r ]
T simply scales the individual

eigenspaces of Mlike. Note that there is no need to explicitly construct the orthog-
onal basis in V+

r , which would be computationally demanding. Instead, we may
decompose a given P into the contributions from the individual eigenspaces,

P =
r∑
i=1

(Vr)i [(Vr)i]
T P + Prem, (2.125)

where Prem is the part of P that is not in the span of Vr, and write the action of
Lpost on P as

LpostP = Lpost

[
r∑
i=1

(Vr)i [(Vr)i]
T P + Prem

]
(2.126)

= Q1/2
PPV+

r

[
I −Υ+

r

]1/2 [V+
r

]T [ r∑
i=1

(Vr)i [(Vr)i]
T P + Prem

]

= Q1/2
PP

[
r∑
i=1

[1 + λi]
−1/2 (Vr)i [(Vr)i]

T P + Prem

]
.

The cost for the generation of samples of the posterior distribution is therefore the
same as for samples of the prior distribution, except for a few scalar products and
vector additions. Algorithm 9 (SGpost) summarizes the steps for the generation of
realizations of the posterior distribution, while figure 2.10 shows examples of the
output of this algorithm.

Remark 14 The decomposition constructed above is of the form

Qpost
PP = LpostLTpost (2.127)
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2.6 A Posteriori Analysis and Sample Generation

Figure 2.10: Three different realizations of the posterior distribution from section 6.3. The
uncertainty of the parameters is very low in the top third of the domain and
most of its right half, which leads to samples that show many similarities in
that part of the domain. The parameters in the lower left of the domain remain
uncertain, and this is also reflected in the realizations.

that was used in section 2.1.2. While this has been employed to generate samples
of the posterior distribution, it also means that the MAP estimate Pmap and the
posterior covariance matrix Qpost

PP may themselves be used as prior mean and prior
covariance matrix for another inversion if new data becomes available. All steps
of the previous sections carry through when all occurrences of Q1/2

PP are replaced
by Lpost and LTpost, with the correct choice being clear from context. This property
enables the application of the discussed methods in situations where inversion during
the course of data acquisition is useful for planing purposes or where additional data
becomes available after the inversion process.

The new prior covariance matrix Qpost
PP ensures consistency with the previous data

in the vicinity of the new prior mean Pmap, but this consistency may deteriorate in
the case of nonlinear models. Consequently, any previous data needs to be included
in subsequent inversions to keep the parameter estimate in the correct subspace.
This requires an update of the measurement covariance matrix, which is given in
section 2.6.3 as Qpost

ZZ .

2.6.2 Normalized Errors

While the matrix Lpost of the previous section may be used to generate samples, its
inverse

L−1
post =

[
Q1/2

PPV+
r

[
I −Υ+

r

]1/2 [V+
r

]T ]−1
(2.128)

= V+
r

[
I −Υ+

r

]−1/2 [V+
r

]T Q−1/2
PP

= V+
r

[
I +Λ+

r

]1/2 [V+
r

]T Q−1/2
PP ,
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with the matrix of eigenvalues Λr extended to Λ+
r in the same fashion, can be used to

check if a given parameter vector tuple P is a realization of the posterior distribution.
If the posterior distribution is close enough to being Gaussian and Pmap and Qpost

PP
can be used as its mean and covariance matrix, then equation (2.17) gives

P ∼ N
(

Qpost
YY ,Pmap

)
⇐⇒ L−1

post [P − Pmap] ∼ N (I,0) . (2.129)

Any synthetic reference P̂ that is used to generate observations for subsequent inver-
sion is by definition both a realization of the prior distribution and a realization of
the posterior distribution, and therefore

∆P := L−1
post

[
P̂ − Pmap

]
∼ N (I,0) (2.130)

has to hold for the decorrelated error ∆P, also known as normalized error [52]. This
means the individual components (∆P)i of ∆P should be independent realizations
of a random variable Y ∼ N (1, 0), which can be checked by computing the sample
mean

Y? :=
1

N

N∑
i=1

(∆P)i, (2.131)

the sample variance
s2Y :=

N

N − 1

[
m2 −m2

1

]
, (2.132)

the sample skewness

bY
1 :=

[
N

N − 1
m−1

2

]3/2
m3, (2.133)

and the sample kurtosis

bY
2 :=

[
N

N − 1
m−1

2

]2
m4, (2.134)

where N is the number of components and

mk :=
1

N

N∑
i=1

[(∆P)i − Y?]k (2.135)

is the definition of the sample moments mk [41]. The expected values are Y? = 0,
s2Y = 1, bY

1 = 0, and bY
2 = 3 respectively, since these are the results for the standard

normal distribution N (1, 0). If Pmap and Qpost
PP pass the test, i.e. the sample moments

are reasonably close to their expected values, then the results may be accepted as
a lower-order representation of the posterior distribution. If the statistics of the
components of ∆P deviate significantly from these values, then the inversion result
should not be interpreted as the mean of the posterior distribution. The primary
reasons for failures of this test are the following:
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• The forward model F is too nonlinear and the resulting posterior distribution
can’t be approximated by a Gaussian distribution. If it is multimodal or heavily
skewed, then the modus Pmap is either non-unique or a poor estimate for the
mean, as discussed in remark 8, and the posterior covariance matrix Qpost

PP
may fail to capture the covariance structure due to the linearization used in its
definition. In such a case the Maximum A Posteriori approach is inadequate and
a more sophisticated alternative should be applied instead, see the discussion
in section 3.2.

• The optimization algorithm didn’t converge to the global optimum, either be-
cause it broke down or because it converged to a local optimum that is not
the global optimum. Then a different starting point or some form of relaxation
should be used, and if this fails as well a different choice of optimization scheme
is required.

• For data from real-world applications, an inadequate choice of forward model
F is a third possibility. If the model isn’t able to reproduce the state obser-
vations within the prescribed bounds, then the result will be biased or follow
different statistics. This includes the case of measurement errors that are sig-
nificantly larger or smaller than assumed, or assumptions about the parameter
distribution that don’t match the ground truth.

Remark 15 The application of L−1
post as presented above requires multiplication

with Q−1/2
PP , which is in most cases prohibitively expensive. Note, however, that the

caching PCG method, algorithm 6 (PCGc), provides

Vmap := QPPPmap, (2.136)

the limit of the auxiliary second sequence. Since

Q−1/2
PP Pmap = Q1/2

PPQ−1
PPPmap = Q1/2

PPVmap (2.137)

holds, the multiplication with Q−1/2
PP can be replaced by one with Q1/2

PP. This lat-
ter multiplication can often be carried out efficiently, see the discussion in sec-
tion 2.1.2. This also holds for the caching variants of the Gauss-Newton and
Levenberg-Marquardt methods that are briefly discussed in section 3.3.2, since both
methods directly provide Q−1/2

PP Pmap.

The transformed synthetic reference Q−1/2
PP P̂ can be computed using

Q−1/2
PP P̂ = Q−1/2

PP

[
P∗ + Q1/2

PPW
]
= Q−1/2

PP P∗ + W, (2.138)

where Q−1/2
PP P∗ is provided by the caching algorithms as described above and W is

the white noise used in the generation of P̂, compare algorithm 1 (SG). Here the
discussion in section 2.1.2 has to be taken into account.
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Algorithm 10: Randomized Test of Unbiasedness (Parameter Version; TUP
r )

Input: MAP estimate Pmap, synthetic reference P̂, matrix of eigenvectors Vr,
matrix of eigenvalues Λr

Output: Normalized error ∆P
E := P̂ − Pmap [compute error of estimate];
W := Q−1/2

PP E [unnecessary if using cached data, see remark 15 for details];
for 1 ≤ i ≤ r do

Wi := (Vr)i [(Vr)i]
T W [project W onto eigenspaces];

end
Wrem := W −

∑r
i=1 Wi [compute remainder that is not in span of eigenvectors];

∆P := Wrem +
∑r

i=1 [1 + λi]
1/2 Wi [scale projections by appropriate factor];

return ∆P;

2.6.3 Normalized Residuals

While algorithm 10 (TUP
r ) may be used to assess the quality of the inversion result,

it relies on the synthetic reference P̂. In realistic scenarios this information is not
available, and it is therefore not possible to decorrelate the error P̂−Pmap. However,
the measurement residual Z−G(Pmap) may also be used for a posteriori analysis [44].
Just as the posterior covariance matrix Qpost

PP describes the posterior distribution
given the observations, we may define a posterior covariance matrix Qpost

ZZ that de-
scribes the distribution of the measurement residuals given the inversion result. In
addition to the measurement errors in QZZ, this has to take the correlation due to
the inversion process into account.

In the context of the linearized posterior distribution, Nowak [61] derives the expres-
sion

Qpost
ZZ = QZZ

[
HZPQPPHT

ZP + QZZ
]−1 QZZ (2.139)

for the covariance matrix of the measurement residuals after inversion. Applying
the Sherman-Morrison-Woodbury formula, equation (2.87), transforms this identity
into

Qpost
ZZ = QZZ

[
Q−1

ZZ − Q−1
ZZHZP

[
Q−1

PP + HT
ZPQ−1

ZZHZP
]−1 HT

ZPQ−1
ZZ

]
QZZ (2.140)

= QZZ − HZP
[
Q−1

PP + HT
ZPQ−1

ZZHZP
]−1 HT

ZP

= QZZ − HZPQpost
PP HT

ZP,

i.e. just as the additional information from the measurements reduces the uncertainty
of the parameters, compare equation (2.90), the updated parameters reduce the vari-
ability of the measurement residuals. Unfortunately, the above formula is not directly
applicable to compute Qpost

ZZ , since the matrix HZP would have to be assembled. We

58



2.6 A Posteriori Analysis and Sample Generation

therefore return to equation (2.139) and instead use the root Q1/2
ZZ to reformulate it

as

Qpost
ZZ = Q1/2

ZZ

[
I + Q−1/2

ZZ HZPQPPHT
ZPQ−1/2

ZZ

]−1
Q1/2

ZZ (2.141)

= Q1/2
ZZ
[
I + LTlikeLlike

]
Q1/2

ZZ ,

with
Llike = Q1/2

PPHZPQ−1/2
ZZ (2.142)

as in section 2.5.2. In analogy to equation (2.107), this is equivalent to

Qpost
ZZ = Q1/2

ZZ

[
I + VZΛ

1/2VT
PVPΛ

1/2VT
Z

]−1
Q1/2

ZZ (2.143)

= Q1/2
ZZ
[
I + VZΛVT

Z
]−1 Q1/2

ZZ

= Q1/2
ZZ
[
I − VZΥVT

Z
]

Q1/2
ZZ

= QZZ − Q1/2
ZZVZΥVT

ZQ1/2
ZZ

with the matrices VZ and Λ1/2 from equation (2.106) and the matrices Λ and Υ
from equation (2.90).

While the spectral decomposition of algorithm 7 (EDr) can’t be used in this con-
text, the randomized singular value decomposition of algorithm 8 (SVDr) provides
matrices VZ,r and Λr that are replacements for VZ and Λ, possibly of smaller size.
If VZ,r has full rank, then it contains an orthogonal basis of the observation space.
If this is not the case, we extend it to contain such a basis and denote the resulting
matrix with V+

Z,r. In analogy to equation (2.121), we may then write Qpost
ZZ as

Qpost
ZZ = Q1/2

ZZV+
Z,r
[
I −Υ+

r

]
VT

Z,rQ
1/2
ZZ , (2.144)

where Υ+
r is again the matrix Υr padded with zeros, and we may again define a

matrix
Lpost := Q1/2

ZZV+
Z,r
[
I −Υ+

r

]1/2 [V+
Z,r

]T
(2.145)

to obtain a decomposition of the form

Qpost
ZZ = LpostLTpost. (2.146)

The inverse of Lpost is

L−1
post =

[
Q1/2

ZZV+
Z,r
[
I −Υ+

r

]1/2 [V+
Z,r

]T]−1

(2.147)

= V+
Z,r
[
I −Υ+

r

]−1/2
[
V+

Z,r

]T
Q−1/2

ZZ

= V+
Z,r
[
I +Λ+

r

]1/2 [V+
Z,r

]T
Q−1/2

ZZ ,
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Algorithm 11: Randomized Test of Unbiasedness (Measurement Version; TUZ
r )

Input: MAP estimate Pmap, Observations Z, matrix of eigenvectors Vr, matrix of
eigenvalues Λr

Output: Normalized residual ∆Z
Zmap := G (Pmap) [compute model outcome];
R := Z − Zmap [compute residual of estimate];
W := Q−1/2

ZZ R [multiply residual with Q−1/2
ZZ ];

for 1 ≤ i ≤ r do
Wi := (Vr)i [(Vr)i]

T R [project W onto eigenspaces];
end
Wrem := W −

∑r
i=1 Wi [compute remainder that is not in span of eigenvectors];

∆Z := Wrem +
∑r

i=1 [1 + λi]
1/2 Wi [scale projections by appropriate factor];

return ∆Z;

and
∆Z := L−1

post [Z − G(Pmap)] ∼ N (I,0) (2.148)
has to hold for the decorrelated or normalized residual ∆Z. This means the equa-
tions (2.131) to (2.134) may also be applied to ∆Z instead of ∆P, and the components
of the normalized residual should also have mean zero, variance one, skewness zero
and a kurtosis of three.

Remark 16 The optimization is restricted to the subspace of the parameter space
that is spanned by the eigenvectors of Mlike. Since this is often only a small fraction
of the full parameter space, most components of the normalized error ∆P from the
previous section are solely determined by the reference P̂ and therefore insensitive
to the result Pmap, in particular those corresponding to high-frequency modes not
present in the solution. As a consequence, the normalized error may fail to be an
adequate measure of goodness-of-fit. See the applications in section 6.1.1 for an
example.

The normalized residual ∆Z has a much smaller size, however, and by construction
almost all of its components can be expected to be sensitive to the solution Pmap.
Additionally, ∆Z is also available for real-world applications that don’t rely on
synthetic data, and therefore is a more appropriate choice for a measure of goodness-
of-fit.

2.7 Revisiting the Preconditioner

The decomposition of the posterior covariance matrix

Qpost
PP = Q1/2

PP
[
I − VΥVT

]
Q1/2

PP, (2.149)
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as it was derived in equation (2.90), may also be computed for parameter vector
tuples other than Pmap. The result is

Q(Pi)
PP :=

[
Q−1

PP + [HZP(Pi)]
T Q−1

ZZHZP(Pi)
]−1

(2.150)

= Q1/2
PP

[
I − V(Pi)Υ(Pi) [V(Pi)]

T
]

Q1/2
PP,

where Pi is one of the iterations. We have temporally included Pi as an argument
of HZP and the matrices of the decomposition to emphasize the dependence.

The matrix Q(Pi)
PP is an estimate of Qpost

PP at the location Pi, generated through
linearization of the objective function L around Pi. As such, it is used to generate
the step direction of the Gauss-Newton scheme, compare section 3.3.1. Under the
assumption that the Hessian of L doesn’t change too drastically in the course of the
optimization, the matrix

M :=
[
Q(P0)

PP

]−1
(2.151)

may be used as a preconditioner just as Q−1
PP has been used in sections 2.3 and 2.3.5.

In contrast to equation (2.59), the resulting preconditioned residual for the i-th iter-
ation becomes

Ti = −Q(P0)
PP ∇L|Pi−1 (2.152)

= −Q(P0)
PP

[
Q−1

PP [Pi−1 − P∗] + HT
ZPQ−1

ZZ [Z − G(Pi−1)]
]

= −Q1/2
PP
[
I − VΥVT

] [
Q−1/2

PP [Pi−1 − P∗] + Q1/2
PPHT

ZPQ−1
ZZ [Z − G(Pi−1)]

]
.

In section 2.3.5, multiplications with Q−1
PP were avoided by caching and reusing the

relevant matrix-vector products, and a similar approach is also possible for this pre-
conditioner. Setting Vi := Q−1/2

PP Pi and V∗ := Q−1/2
PP P∗, we can define

Ai := Q1/2
PPRi (2.153)

= Q1/2
PP
[
−Q−1

PP [Pi−1 − P∗] + HT
ZPQ−1

ZZ [Z − G(Pi−1)]
]

= −Q−1/2
PP [Pi−1 − P∗] + Q1/2

PPHT
ZPQ−1

ZZ [Z − G(Pi−1)]

= − [Vi−1 − V∗] + Q1/2
PPHT

ZPQ−1
ZZ [Z − G(Pi−1)] .

If both Vi−1 and V∗ are known, Ai can be computed using a multiplication with Q1/2
PP,

and a multiplication with Q−1
PP or Q−1/2

PP is unnecessary. Defining Bi := Q−1/2
PP Ti

leads to
Bi =

[
I − VΥVT

]
Ai (2.154)

and
Ti = Q1/2

PP
[
I − VΥVT

]
Ai = Q1/2

PPBi,
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i.e. the preconditioned residual Ti can be computed from Ai through a second mul-
tiplication with Q1/2

PP.

The definitions of Ai and Bi imply

AT
i Bi = RT

i Ti, (2.155)

and
AT
i Bi−1 = RT

i Ti−1, (2.156)

which means that the conjugation factors can be evaluated through the formulas

βFR
i =

AT
i Bi

AT
i−1Bi−1

(2.157)

βPR
i =

AT
i [Bi − Bi−1]

AT
i−1Bi−1

βHS
i = − AT

i [Bi − Bi−1]

DT
i−1 [Ti − Ti−1]

,

avoiding the assembly of Ri. If further Wi−1 := Q−1/2
PP Di−1 is known for the previous

step direction Di−1, then both the new step direction Di and Wi := Q−1/2
PP Di can

be computed through

Di = Ti + βiDi−1 (2.158)
Wi = Bi + βiDi−1,

where βi is one of the conjugation factors given above. Finally, evaluation of the
objective function for the line search is possible through the identity

‖Pi−1 + αDi − P∗‖Q−1
PP

= ‖Vi−1 + αWi − V∗‖I , (2.159)

again without application of Q−1
PP or Q−1/2

PP .

Consequently, the described method requires neither the assembly of the sensitivity
matrix HZP nor multiplication with Q−1

PP, just as the PCG scheme using Q−1
PP as

preconditioner, and most arguments given in sections 2.3 and 2.3.5 also hold for this
second scheme. Algorithm 12 (PCGpost

c ) details the computational steps of this
method.

Remark 17 Compared to the prior preconditioned CG method given by algorithm 6
(PCGc), this second method has considerable initial costs, since Q(P0)

PP , the estimate
of the posterior covariance matrix at P0, has to be decomposed before the first
iteration. Subsequent iterations then again profit from the “negative cost” of the
preconditioner. Whether it is advantageous to perform this initial decomposition
depends on the relative convergence rates of the two methods and the number of
eigenvalues that have to be retrieved.
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Algorithm 12: Caching Posterior Preconditioned Conjugate Gradients (PCGpost
c )

Input: initial value P0, auxiliary variable V0, R0 = 0, T0 = 0, D0 = 0, W0 = 0,
stopping criterion

Output: estimate of MAP point Pmap

compute decomposition Q(P0)
PP = Q1/2

PP
[
I − VrΥrVT

r

]
Q1/2

PP, e.g. using algorithm 8;
i := 0 [set index];
repeat

i→ i+ 1 [shift index];
Ai := − [Vi−1 − V∗] + Q1/2

PPHT
ZPQ−1

ZZ [Z − G(Pi−1)] [compute Q1/2
PPRi];

Bi :=
[
I − VrΥrVT

r

]
Ai [store partial preconditioned residual];

Ti := Q1/2
PPBi [calculate preconditioned residual];

βi := orthogonalize(Ai−1,Bi−1,Ai,Bi,Di−1) [compute conjugation factor];
(Di,Wi) := (Ti,Bi) + βi (Di−1,Wi−1) [set directions];
αi := linesearch(Vi−1,Wi) [compute step width];
(Pi,Vi) := (Pi−1,Vi−1) + αi (Di,Wi) [define i-th iterations];

until converged;
Pmap := Pi [accept final iteration];
return Pmap;

The estimate Q(P0)
PP is the linearization of the Hessian, and therefore the first step of

the method solves the linearization of the Least Squares problem. If the problem is
linear or only weakly nonlinear, then this is equivalent to the solution of the normal
equations with subsequent iterative refinement. If the problem is moderately or
strongly nonlinear, then it is likely that the Hessian information has to be updated
at some point, and in this case the method has to be restarted. In our experience the
improved convergence rate in comparison with algorithm 6 (PCGc) is often not worth
the additional cost of several matrix decompositions. We therefore only consider the
limiting case of restarting the method in each iteration, which turns the posterior
preconditioned CG method into the randomized Gauss-Newton scheme as it will be
discussed in section 3.3.2.

2.8 Summary and Discussion

To summarize the content of the previous sections, the proposed method consists in
performing the following steps:

Acquisition of Data In real-world applications, the measurement vector tuple Z is
the result of field experiments or other observations of a physical system. These
observations have to be accompanied by assumptions about the measurement
error in the form of QZZ, the structure of the examined domain in the form
of P∗ and QPP, and the physical process in the form of the forward model F .
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2 Method Description

If the method is applied to synthetic test cases as in chapter 6, the artificial
measurements have to follow the correct distribution. This can be guaranteed
by using algorithm 1 to construct a synthetic reference P̂, computing the model
outcome G(P̂), and adding noise with distribution N (QZZ,0) to the result.

Preconditioned Conjugate Gradients The observations Z define the value of the
objective function L, equation (2.33), for any given parameter vector tuple
P. One of the methods of section 2.3 may then be used to minimize L and
obtain the Maximum A Posteriori estimate Pmap. Of the presented methods
the caching PCG method of section 2.3.5 is consistently the fastest, since it
has both the highest experimental order of convergence (EOC) and the lowest
computational cost per iteration.

Randomized Methods Alternatively, the posterior preconditioned scheme of sec-
tion 2.7 may be used to compute Pmap. As discussed in remark 17, this is only
useful if the improvement of the convergence rate is large enough to amortize
the decomposition that is required during the initial setup. Another possible
choice are the randomized Gauss-Newton and Levenberg-Marquardt schemes
that will be discussed in section 3.3.2.

Uncertainty Quantification The PCG method doesn’t provide information about
the uncertainty of the estimate Pmap. In the context of Bayesian inference, a
natural measure of uncertainty is the posterior covariance matrix Qpost

PP , and
the two randomized algorithms in section 2.5 can be used to obtain a spectral
decomposition of this matrix. This decomposition can be less expensive than a
classical full assembly of HZP if there is sufficient autocorrelation between the
state observations, e.g. in time series or imaging methods.

A Posteriori Analysis If the inversion is based on synthetic data, then the spectral
decomposition of Qpost

PP can be used to decorrelate the difference between the
estimate Pmap and the synthetic reference P̂, compare section 2.6.2. This
decorrelated error can then be used in statistical tests to check the quality of
the inversion result. As shown in section 2.6.3, the same steps can be applied to
the measurement residual, and this second statistical analysis is also available
in the case of real-world data.

Sample Generation for Posterior Distribution If the statistical tests didn’t reject
the estimate Pmap and the posterior covariance matrix Qpost

PP , then they can be
used to draw samples form the posterior distribution as detailed in section 2.6.1.
The resulting realizations of the posterior distribution can then be used in sim-
ulations, which in turn provide information about the probability distribution
of the system states.
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2.8 Summary and Discussion

2.8.1 Computational Costs

One step of the Conjugate Gradients method, algorithm 3 (CG), requires three runs
of the forward model F , one for evaluating the objective function for the current
estimate and two for the quadratic line search if the gradient isn’t reused for the
directional derivative. For the same reason three multiplications with Q−1

PP are re-
quired if intermediate results aren’t cached. The adjoint problem 6 is solved once to
compute the search direction.

The caching PCG method, algorithm 6 (PCGc), eliminates all multiplications with
Q−1

PP and uses one multiplication with QPP instead. This reduces the cost per it-
eration significantly, since the effort required for multiplying with Q−1

PP is usually
higher than that for multiplication with QPP, often by more than one order of mag-
nitude [61]. As a result, the preconditioner has “negative cost”. This is also true when
comparing with a caching variant of the unpreconditioned scheme, since at least one
multiplication with Q−1

PP per step remains.

The PCG scheme using an estimate of the posterior covariance matrix, algorithm 12
(PCGpost

c ), additionally requires a spectral decomposition of Q(Pi)
PP every time the

method is restarted. The fraction of iterations where this happens is a number
0 < η < 1, with the exact value of η depending on the chosen strategy for restarting
the method. On average, one step of the method therefore requires an additional ηr
runs of the forward model F , ηr runs of the adjoint model F† and 2ηr multiplications
with Q1/2

PP. Furthermore, the multiplication with QPP has to be replaced by two
multiplications with Q1/2

PP, leading to 2 + 2ηr multiplications with Q1/2
PP in total.

Table 2.1 serves as a structured summary for this analysis. The next chapter will
introduce three variants of the Gauss-Newton method, algorithms 14 (GN) and 15
(GNCE) in section 3.3.1 and algorithm 16 (GNr) in section 3.3.2. We include the
computational cost of these methods in table 2.1 to make comparison easier, but refer
to these later sections for details about the methods.

The classical Gauss-Newton method, algorithm 14 (GN), assembles the full sensi-
tivity matrix HZP, which requires the solution of N :=

∏nZ
j=1 nzj adjoint problems.

The computation of the step direction consists in multiplication with a matrix that
is too large to be inverted, and therefore an inner iterative method is required. As
a result, a very larger number of multiplications with Q−1

PP is needed, which makes
the method unfeasible for parameter fields with high resolution.

The modified Gauss-Newton method, algorithm 15 (GNCE), is based on a reformu-
lation that drastically reduces the size of the matrix that has to be inverted. The
assembly of this smaller matrix requires N multiplications with QPP, and an ad-
ditional multiplication is required to obtain Di. The randomized Gauss-Newton
scheme, algorithm 16 (GNr), is a special case of the posterior preconditioned CG
method with the choice η = 1, i.e. restarting the method after each iteration, and
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F F† Q−1
PP QPP Q1/2

PP

CG 3 1 3 0 0
PCGc 3 1 0 1 0
PCGpost

c 3 + ηr 1 + ηr 0 0 2 + 2ηr
GN 3 N � 1 0 0
GNCE 3 N 0 1 +N 0
GNr 3 + r 1 + r 0 0 2 + 2r

Table 2.1: Simulations of the forward model F , simulations of the adjoint model F† and mul-
tiplications with Q−1

PP, QPP or Q1/2
PP needed for one step of each of the discussed

methods. The three Gauss-Newton methods in the lower half of the table can be
found in sections 3.3.1 and 3.3.2. N :=

∏nZ
j=1 nzj is the total number of observa-

tions in Z, while r ≤ N is the rank of the approximate spectral decomposition of
Mlike. η is the fraction of steps in which algorithm 12 (PCGpost

c ) is restarted.

therefore it needs the solution of r forward problems, the solution of r adjoint prob-
lems and 2 + 2r multiplications with Q1/2

PP for each iteration.

The cost of other operations can usually be neglected, with the possible exception of
performing the spectral decomposition of the condensed matrix. Which of the dis-
cussed methods is fastest depends on several factors. While the prior preconditioned
CG method has the lowest cost per iteration by a wide margin, the total number of
iterations needed for convergence is equally important. The applications of chapter 6
demonstrate that the required number of iterations of this method can be sublinear
or even pseudo-constant in the number of observations N , which means that the
prior preconditioned CG method will be the most efficient when the number of ob-
servations N is large enough. A more detailed analysis has to take the specifics of
the forward model F into account, i.e. the width, height and shape of the spectrum
of Mlike as discussed in section 2.5.2.

2.8.2 Memory Requirements

The Conjugate Gradients method, algorithm 3 (CG), requires storage for the iter-
ation Pi, the step direction Di and the residuals Ri−1 and Ri, i.e. a total of four
stored parameter vector tuples. The previous iteration Pi−1 and previous direction
Di−1 can use the same memory location as Pi and Di respectively, since the old
values are no longer needed once their replacement has been computed. The pa-
rameter tuple for the line search can also be stored in the location of Pi for similar
reasons. The caching PCG method, algorithm 6 (PCGc), additionally stores the
second sequence, i.e. the tuples Vi, Wi, Ti−1, and Ti. This doubles the number
of parameter tuples that have to be kept in memory. The posterior preconditioned
scheme, algorithm 12 (PCGpost

c ), has to store the iteration Pi, the step direction Di,
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CG PCGc PCGpost
c GN GNCE GNr

Stored P 4 8 9 + r 5 +N 2 +N 9 + r

Table 2.2: The number of parameter vector tuples that have to be kept in memory for each
of the discussed methods. This includes iterations Pi, step directions Di and
any auxiliary tuples that are required by the method. N :=

∏nZ
j=1 nzj is the

total number of observations in Z, while r ≤ N is the rank of the approximate
spectral decomposition of Mlike. Note that each of the methods has to store one
full solution of the forward problem for the Adjoint State method, and that these
memory requirements may be more important than those of the parameter tuples
if the models are transient.

the preconditioned residual Ti, the auxiliary tuples Vi, Wi, Ai−1, Ai, Bi−1 and Bi,
and the r eigenvectors of

Mlike ≈ VrΛrVT
r , (2.160)

the spectral decomposition that is used to compute the step direction. This raises
the number of parameter tuples that have to be kept in memory to 9+r. The storage
requirements for each of the methods are also listed in table 2.2.

The Gauss-Newton method, algorithm 14 (GN), has to store the iteration Pi, the
step direction Di and the N :=

∏nZ
j=1 nzj columns of the sensitivity matrix HZP. The

matrix appearing in the definition of the step direction is too large to be inverted, as
discussed in the previous section. If we assume that a Conjugate Gradients method
is used to compute the step direction, then at least three additional parameter tuples
have to be kept in memory, i.e. 5 + N tuples in total. The modified Gauss-Newton
method, algorithm 15 (GNCE), uses a reformulation that avoids this expensive op-
eration. In this case the computation of the step direction Di can be carried out
without additional memory, i.e. 2 + N tuples have to be stored. The randomized
Gauss-Newton method, algorithm 16 (GNr), is a special case of the posterior pre-
conditioned CG method and requires the same amount of storage.

Only the Conjugate Gradients method and the caching PCG method have memory
requirements that are low and constant, since the other methods store either the
full sensitivity matrix HZP or a low-rank representation of Qpost

PP . Only the caching
PCG method, algorithm 6 (PCGc), combines these low memory requirements with
mesh-independent convergence rates, compare section 2.3.4.

Remark 18 In addition to the parameter vector tuples, each of the methods needs
to store the complete results of a simulation of the model F , since this information
is required by the adjoint state method, compare section 4.4. If F is stationary, then
such a simulation result will require the same memory as one parameter tuple or a
small number of them, depending on the concrete choice of discretization. In this
situation the caching PCG method, algorithm 6 (PCGc), will usually be able to use
significantly higher grid resolutions than the Hessian-based methods. If the model
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F is transient, then the difference in storage requirements is smaller, since each
individual parameter field needs significantly less memory than the whole transient
evolution of the system states. However, this is almost automatically a situation
where memory becomes scarce, and therefore the lower memory requirements of the
caching PCG method may become relevant.
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As with any solution to a complex problem, several alternatives to the approach
described in the previous chapter exist [3]. The ill-posed inverse problem 2 may be
regularized in different ways, e.g. through a drastic reduction of the dimension of the
parameter space, or by using another form of penalty term. The well-posed stochastic
formulation of the inverse problem 4 may be treated in another way, for example
arriving at other point estimates and variance estimates of the posterior distribution.
And last but not least, a large number of optimization schemes that are applicable for
the minimization problem 5 are available. The following sections provide examples of
such alternative approaches, discussing their potential advantages and disadvantages.
This presentation is not exhaustive, and additional approaches can be found in the
cited literature.

3.1 Regularization Techniques

The Bayesian framework introduced in section 2.2 is not the only technique that may
be used to regularize the ill-posed inverse problem 2. One of the classic regularization
methods is Tikhonov regularization [77], which formulates the inverse problem as a
minimization problem and stabilizes it through a penalty term:

L̃(P) =
γ

2
‖P‖M +

1

2
‖Z − G(P)‖2 (3.1)

Here M is a matrix of the right size and γ is a factor that has to be large enough to
regularize the inverse problem. In most applications M is the identity matrix, which
is known as L2 regularization.

A generalization of the classical Tikhonov regularization is

L̃(P) =
γ

2
‖P − P0‖M +

1

2
‖Z − G(P)‖N (3.2)

with an additional matrix N and a tuple of parameter vectors P0. Comparison
with equation (2.33) shows that the objective function acquired from the posterior
probability distribution is equivalent to choosing P0 := P∗, M := Q−1

PP, N := Q−1
ZZ

and γ := 1. The main difference between the Bayesian approach and other variants of
Tikhonov regularization is the fact that the norms are chosen based on the stochastic
formulation of the forward problem and not imposed from the outside. Also note

69



3 Alternative Approaches

that this specific choice does not require an educated guess for the scaling parameter
γ, since it naturally arises from the formulation.

Two other classic regularization techniques are the Landweber iteration [37]

Pi := Pi−1 + γHT
ZP [Z − G(Pi)] , (3.3)

with γ being a damping parameter, and Conjugate Gradients on the Normal Equa-
tions (CGNE) [25]. These methods are equivalent to applying Steepest Descent and
Conjugate Gradients respectively to the Maximum Likelihood (ML) objective func-
tion

L̃(P) =
γ

2
‖Z − G(P)‖2 (3.4)

instead of the MAP objective function. Here the damping term

γ := σ−2
z (3.5)

is based on the standard deviation σz of the measurement error. This approach
relies on the self-regularization properties of the iterative procedures instead of an
explicit regularization term. Since Maximum Likelihood is the limiting case of MAP
with uninformative prior, the methods described in chapter 2 can also be seen as an
extension of this approach to nonlinear models with prior information.

Switching from MAP estimation to ML estimation consists in simply leaving out half
of the objective function, compare equations (2.33) and (3.4), and therefore it is easy
to present convergence results similar to those in figure 2.2 using the same implemen-
tation. Figure 3.1 shows the convergence behavior of the Landweber iteration and
the CGNE method. In contrast to the MAP objective function, the ML objective
function typically has a minimum that is exactly known a priori, since it has to be
zero if at least one viable set of parameters P exists for the given observations Z.
While the methods converge to well-defined estimates, they are not physically plau-
sible due to the lack of prior information. Figure 3.2 shows that the CGNE method
tends to correct the parameter field in the direct vicinity of the observations while
leaving almost all other parameters at the initial guess. This overfitting can be pre-
vented by preconditioning with Q−1

PP, effectively introducing the prior information
by indirect means. The results are very similar to those of the PCG method, but
the latter additionally provides a statistical interpretation for the estimate. Since
both methods require approximately the same effort, there is no reason to drop the
regularization term from the objective function.

Other regularization techniques that we can only mention in passing are maximum
entropy regularization and total variation regularization. They differ from Tikhonov
regularization in the choice of the penalty term that is added.

Another approach that may be used to regularize the inverse problem is a drastic
reduction in the total number of parameters. If this number is sufficiently small, the
solution of the inverse problem becomes over-determined instead of under-determined,
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Figure 3.1: Convergence behavior of the methods from section 2.3 when applied to the Maxi-
mum Likelihood objective function, equation (3.4), left: Steepest Descent variants,
right: Conjugate Gradients variants, top: original versions, bottom: precondi-
tioned versions, with Q−1

PP as preconditioner. Number of discretization elements
is nΩ = 64 × 64 ( ), 128 × 128 ( ) and 256 × 256 ( ). Convergence
behavior is similar to that in figure 2.2, but the objective function converges to
zero, which simplifies the analysis. The methods create sequences of iterations
that may be seen as a solution to the inverse problem, but neither do the methods
converge to the same set of parameters, compare figure 3.2, nor are the result-
ing parameter fields embedded in a context that allows interpretation as in the
Bayesian framework.
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CGNE Preconditioned CGNE

Figure 3.2: Left: The CGNE approach converges to a well-defined set of parameters, but due
to the missing connection between individual parameters it modifies the parame-
ter field only in the direct vicinity of the locations that have a strong influence on
the observed values, which are the injection and extraction wells and the monitor-
ing sites. Right: In the preconditioned version the prior information is introduced
indirectly through the preconditioner Q−1

PP. The resulting field strongly resem-
bles the one attained through MAP estimation, compare figure 2.4, but doesn’t
provide error estimates.

and regularization techniques like the ones mentioned above are no longer necessary.
Such a reduction of the number of parameters is always based on further assumptions
about the parameter space or other simplifications.

There are several possibilities for such a reduction, and the simplest is modeling each
parameter field si as homogeneous, i.e. with a single corresponding parameter value.
There are applications of such parameterizations, but such a coarse representation
will be highly inadequate if the spatial variability of the system is of relevance. A
similar but more complex approach is the division of the domain Ω into a set of
predetermined zones, with si being assumed piecewise constant in each of these zones.
While this allows for more flexibility in the characterization of the parameter fields,
the central issue of missing heterogeneity remains on the level of the individual zones.
Another aspect that requires attention is the zonation process, since the quality of
the inversion results can be highly sensitive to the subjective choice of zones.

A technique that leads to a similar reduction of the dimension of the parameter space
is the introduction of pilot points [65, 23, 1]. At these locations, virtual observations
of the parameter fields are introduced, and the parameters themselves are determined
through interpolation of these virtual observations. This reduces the inverse prob-
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lem to the estimation of virtual parameter observations from actual measurements.
In contrast to the zonation method described above, the resulting parameter fields
contain heterogeneity. Nevertheless, the parameter space is artificially restricted to
a low dimension, with the interpolation polynomials of the pilot points as basis func-
tions instead of the characteristic functions of the zones. Therefore, the placement of
the virtual observations again introduces subjectivity and may influence the quality
of the results.

A method that does not rely on the correct choice of zones or points and instead
derives a low-dimensional parameter space from prior information is the Karhunen-
Loève expansion, also known as principal component analysis (PCA) [51, 50]. The
Principal Component Geostatistical Approach (PCGA) by Lee and Kitanidis [49, 46]
is an example of this method. It uses the techniques described in section 2.5, but
applied to the prior covariance matrix QPP instead of Mlike, to construct a low-
dimensional representation of QPP. As a result, the method requires half as many
model solves as the methods described in section 2.5 for spectral decompositions, but
it relies on the assumption that all relevant information about the forward model
F is contained in its action on the first few eigenspaces of QPP. Whether or not
this approach is more efficient therefore depends on how many additional dimensions
have to be considered to compensate for the fact that the decomposition doesn’t take
the characteristics of the model into account.

The main purpose of such low-dimensional parameterizations, apart from the result-
ing regularization, is the reduction of the computational cost of the inversion process
through simplification of the prior. While such a reduction may be beneficial and
indeed necessary for the rapid convergence of iterative methods, see the top row of
figure 2.2, and the smaller number of parameters may make multiplication with Q−1

PP
or its analogon feasible, this does not concern the PCG method as introduced in
section 2.3. Synthetic tests show dimension-independent convergence of the method,
see for example the bottom row of figure 2.2, and the computational cost for multi-
plication with QPP is negligible in comparison to the cost of the forward model even
for the two-dimensional steady-state flow problems of section 6.1.1.

3.2 Treatment of the Inverse Problem

Several alternatives to MAP estimation exist for the handling of the stochastic inverse
problem 4, and except for the Maximum Likelihood estimation from the last section
these tend to be both more accurate and significantly more expensive.

The determination of the mean and higher moments of the posterior distribution
can be interpreted as numerical integration, or quadrature, in the probability space.
In this context MAP estimation may be compared to a low-order quadrature rule.
Among the approaches that deliver more accurate results is stochastic collocation,
which uses interpolation that, in contrast to the pilot point approach above, is applied
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Algorithm 13: Metropolis-Hastings Markov Chain Monte Carlo (MCMC)
Input: initial value P0

Output: samples Pk,Pk+1,Pk+2, . . . , k � 0, from the posterior distribution
i := 0 [set index];
repeat

i→ i+ 1 [shift index];
generate proposal P̃ from q(P̃|Pi−1);
calculate acceptance probability r0 := α(P̃|Pi−1);
draw sample r from uniform distribution on [0, 1];
if r < r0 then

Pi := P̃ [accept proposal];
else

Pi := Pi−1 [keep old iteration];
end

until enough samples;

to the probability space instead of the physical domain Ω. This results in a surrogate
for the posterior PDF, and information about the posterior distribution, like its
mean or variance, may then be approximated by integrals involving this surrogate.
Other approaches discretize the random variable in both the physical domain and
the probability space, like stochastic Galerkin methods [4], or expand the random
variable in a series, like generalized Polynomial Chaos (gPC) [82]. A large variety of
methods based on similar or complementing ideas exists, but mentioning them all is
beyond the scope of this work and we may only refer to the literature.

Apart from these deterministic methods, approaches based on the Monte Carlo
method may be used to produce samples of the posterior distribution and analyze
it through statistical information gathered from the samples. Since direct sam-
pling from the posterior distribution would require a closed formulation for the
posterior PDF, these methods are typically variants of the Markov-Chain Monte
Carlo (MCMC) method. As a representative of these methods we may consider the
Metropolis-Hastings MCMC [55, 38], see algorithm 13 (MCMC).

Here q(P̃|Pi−1) is a proposal distribution that is used to generate a random walk,
while the acceptance probability

α(P̃|Pi−1) := min
(
1,

exp(−2L(P̃))q(Pi−1|P̃)

exp(−2L(Pi−1))q(P̃|Pi−1)

)
(3.6)

guarantees that the Markov chain converges to the desired equilibrium distribution,
since exp(−2L(P)) is proportional to the posterior PDF as a function of P. The
generated sequence Pi follows the posterior distribution only after an initial phase
known as burn-in period, and consecutive samples tend to be highly correlated [60].
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3.2 Treatment of the Inverse Problem

Therefore, the generation of independent samples of the posterior distribution re-
quires large parts of the above sequence to be discarded. Since each iteration of
the algorithm requires the evaluation of the objective function L, and therefore the
solution of the forward model F , the Metropolis-Hastings MCMC is prohibitively
expensive if uncorrelated samples are required.

While the high cost of MCMC methods may be significantly reduced, e.g. through
multilevel techniques [43], the computational cost for both the deterministic and the
nondeterministic methods mentioned tends to be several orders higher than that for
the conceptually simpler MAP estimation. Consequently, Maximum A Posteriori
parameter estimation may be viable in situations where the more accurate methods
are too expensive.

Instead of determining a consistent set of parameters that can be used to parameterize
the forward model, as it is the case with the inversion methods discussed so far, one
may relax the requirements and only ask for the parameters that are most likely or
most fitting at any given moment. The resulting parameter vectors are then functions
of time that are updated each time new information becomes available, which is
known as data assimilation [27]. While inversion methods are used to parameterize
models and predict the behavior of modeled systems under different circumstances,
data assimilation techniques are applied when predictions are needed for an ongoing
process that is itself the source of the acquired data, e.g. in weather forecasts.

Remark 19 In the Bayesian framework, the assimilation of new data may be
interpreted as a case of parameter estimation with prior information based on the
previous state of the parameters, and in this context data assimilation is also known
as recursive Bayesian estimation for this reason [69]. Conversely, the inversion
techniques can be seen as the application of data assimilation to all available data
at once, also known as batch Bayesian estimation, and consequently Bayesian
inversion methods and Bayesian data assimilation methods are closely linked.

Data assimilation and inversion complement one another, and their advantages and
disadvantages depend on the context in which they are applied. A fixed parame-
terization may allow a larger variety of applications, but the much larger number
of constraints that have to be satisfied makes the inverse problem harder to solve.
Choosing between data assimilation and inversion therefore involves considerations
about the purpose of the parameter estimation, the requirements of the applications,
and the extent of trust in the correctness of the forward model F .

The most basic data assimilation method with widespread use is the Kalman Fil-
ter [42]. Expressed in the notation of the previous chapter, it updates the estimate
of the mean of the posterior distribution by setting

Pmap := P∗ + QPPHT
ZP
[
HZPQPPHT

ZP + QZZ
]−1

[Z − G(P)] , (3.7)
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where P is the previous estimate for the mean, QPP is the previous estimate for
the covariance matrix, Z is new data, and HZP is the linearized model. Afterwards,
it updates the estimate of the covariance matrix according to equation (2.84). The
Kalman Filter is known to be exact if the prior distribution is Gaussian and the
model is linear, while a nonlinear model F would require linearization and an iterative
approach of the form

Pi := Pi−1 − [Pi−1 − P∗] + QPPHT
ZP
[
HZPQPPHT

ZP + QZZ
]−1

[Z − G(Pi−1)] .
(3.8)

Note that this iterative version is only mentioned to highlight the similarities be-
tween the Kalman update formula and the preconditioned CG scheme, compare equa-
tion (2.59). In practice, specialized filters suitable for models with nonlinearities and
low regularity are preferred, e.g. the Ensemble Kalman Filter (EnKF) [27, 71].

3.3 Optimization Schemes

Possible solvers of the optimization problem of the MAP approach may be divided
into two broad groups, those that restrict the system to feasible states, i.e. solve the
forward problem in each iteration, and those that treat the model constraints as part
of the optimization. The latter type of solver is often based on an augmented objective
function, similar to the Lagrangian we have used for the derivative calculation in
section 2.4, and may therefore also benefit from the preconditioner and randomized
methods introduced in chapter 2. Nevertheless, we focus on methods that explicitly
resolve the constraints, since these are the schemes that are typically employed in
subsurface hydrology [54, 31, 72].

3.3.1 Gauss-Newton and Cokriging Equations

The Gauss-Newton method linearizes the objective function around a given parameter
vector tuple Pi−1,

L(Pi−1 + δP) ≈
1

2
‖Pi−1 + δP − P∗‖2Q−1

PP
+

1

2
‖Z − [G(Pi−1] + HZPδP)‖2Q−1

ZZ
, (3.9)

and computes the gradient with respect to δP,

∇δPL ≈ Q−1
PP [Pi−1 + δP − P∗]− HT

ZPQ−1
ZZ [Z − [G(Pi−1) + HZPδP]] (3.10)

=
[
Q−1

PP + HT
ZPQ−1

ZZHZP
]
δP + Q−1

PP [Pi−1 − P∗]− HT
ZPQ−1

ZZ [Z − G(P)] .

The equation ∇δPL = 0 has to hold for the optimum of the linearized objective
function, which leads to

δP = −
[
Q−1

PP + HT
ZPQ−1

ZZHZP
]−1 [Q−1

PP [P − P∗]− HT
ZPQ−1

ZZ [Z − G(P)]
]

(3.11)

= −Q(Pi−1)
PP

[
Q−1

PP [P − P∗]− HT
ZPQ−1

ZZ [Z − G(P)]
]
,
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Algorithm 14: Gauss-Newton (GN)
Input: initial value P0, stopping criterion
Output: estimate of MAP point Pmap
i := 0 [set index];
repeat

i→ i+ 1 [shift index];
calculate HZP [apply adjoint state method

∏nZ
j=1 nzj times];

Q(Pi−1)
PP :=

[
Q−1

PP + HT
ZPQ−1

ZZHZP
]−1 [calculate estimate of Qpost

PP ];
Di := −Q(Pi−1)

PP ∇L|Pi−1 [compute direction];
αi := linesearch(Pi−1,Di) [compute step width];
Pi := Pi−1 + αiDi [define i-th iteration];

until converged;
Pmap := Pi [accept final iteration];
return Pmap;

where we have used the notation Q(Pi−1)
PP for the estimate of Qpost

PP at Pi−1, as intro-
duced in section 2.7. The scheme then sets

Pi := Pi−1 − Q(Pi−1)
PP

[
Q−1

PP [Pi−1 − P∗]− HT
ZPQ−1

ZZ [Z − G(Pi−1)]
]

(3.12)

as the next iteration, and repeats this process until a convergence criterion is met.
Note that the PCG scheme we have discussed in section 2.3.5, algorithm 6 (PCGc),
may also be interpreted as a variant of the Gauss-Newton algorithm using QPP, the
simplest estimate of Qpost

PP , instead of the local estimate Q(Pi−1)
PP . Algorithm 14 (GN)

summarizes the steps of the Gauss-Newton method. It is important to note that this
formulation of the scheme requires the full assembly and subsequent inversion of a
very large and dense matrix and therefore can’t be used if the number of discretization
elements nΩ is large.

Alternatively, the method may be formulated as a fixpoint iteration:

Pi := Q(Pi−1)
PP

[
Q−1

PPP∗ + HT
ZPQ−1

ZZ [Z − G(Pi−1) + HZPPi−1]
]

(3.13)

If the parameters have zero mean, P∗ = 0, this simplifies to

Pi = Q(Pi−1)
PP HT

ZPQ−1
ZZ [Z − G(Pi−1) + HZPPi−1] . (3.14)

The application of the Sherman-Morrison-Woodbury formula[
A−1 + BTC−1B

]−1 BTC−1 = ABT
[
C + BABT

]−1
, (3.15)

which is a special case of the formulas from [39] for symmetric invertible matrices A
and B, yields

Pi := QPPHT
ZP
[
QZZ + HZPQPPHT

ZP
]−1

[Z − G(Pi−1) + HZPPi−1] . (3.16)
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Algorithm 15: Modified Gauss-Newton (Cokriging Equations) (GNCE)
Input: initial value P0, stopping criterion
Output: estimate of MAP point Pmap
i := 0 [set index];
repeat

i→ i+ 1 [shift index];
calculate HZP [apply adjoint state method

∏nZ
j=1 nzj times];

Bi := QPPHT
ZP
[
QZZ + HZPQPPHT

ZP
]−1 [calculate matrix for step direction];

Di := −Pi−1 + Bi [Z − G(Pi−1) + HZPPi−1] [compute direction];
αi := linesearch(Pi−1,Di) [compute step width];
Pi := Pi−1 + αiDi [define i-th iteration];

until converged;
Pmap := Pi [accept final iteration];
return Pmap;

This version of the Gauss-Newton scheme is also known as the Cokriging Equa-
tions [61], and its mayor advantage is the drastically reduced size of the matrix that
has to be inverted in each step of the method. A comparison with equation (2.139)
shows that this transformation is equivalent to switching from an estimate of Qpost

PP
to a formulation based on Qpost

ZZ , the posterior covariance matrix of the measure-
ments. Reformulated as an iterative scheme with line search, this transformation of
the underlying equation leads to algorithm 15 (GNCE).

3.3.2 Randomized Gauss-Newton and Levenberg-Marquardt

The randomized algorithms for uncertainty quantification presented in section 2.5
may also be applied to the matrix Q(Pi−1)

PP that appears in the Gauss-Newton method,
algorithm 14 (GN), as done in section 2.7. This is equivalent to reformulating the
objective function in terms of P̃ := Q−1/2

PP P and P̃∗ := Q−1/2
PP P∗ and deriving the

Gauss-Newton method for this new objective function. The linearization around P̃
reads

L̃(P̃ + δP̃) ≈
1

2

∥∥∥P̃ + δP̃ − P̃∗
∥∥∥2

I
+

1

2

∥∥∥Z −
[
G(Q1/2

PPP̃) + HZPQ1/2
PPδP̃

]∥∥∥2
Q−1

ZZ
, (3.17)

and the gradient with respect to the change in parameters becomes

∇δP̃
L̃ ≈ P̃ + δP̃ − P̃∗ − Q1/2

PPHT
ZPQ−1

ZZ

[
Z −

[
G(Q1/2

PPP̃) + HZPQ1/2
PPδP̃

]]
(3.18)

=
[
I + Q1/2

PPHT
ZPQ−1

ZZHZPQ1/2
PP

]
δP̃ + P̃ − P̃∗

− Q1/2
PPHT

ZPQ−1
ZZ

[
Z − G(Q1/2

PPP̃)
]
.
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Algorithm 16: Randomized Gauss-Newton (GNr)
Input: initial value P0, stopping criterion
Output: estimate of MAP point Pmap
i := 0 [set index];
repeat

i→ i+ 1 [shift index];
decompose Q(Pi−1)

PP = Q1/2
PP
[
I − VrΥrVT

r

]
Q1/2

PP, e.g. using algorithm 8;
Ri := −∇L|Pi−1 [calculate residual];
Di := Q1/2

PP
[
I − VrΥrVT

r

]
Q1/2

PPRi [compute step direction];
αi := linesearch(Pi−1,Di) [compute step width];
Pi := Pi−1 + αiDi [define i-th iteration];

until converged;
Pmap := Pi [accept final iteration];
return Pmap;

The matrix that appears is the same as in section 2.5, and consequently the new step
direction is

δP̃ = − [I + Mlike]
−1
[
P̃ − P̃∗ − Q1/2

PPHT
ZPQ−1

ZZ

[
Z − G(Q1/2

PPP̃)
]]

≈ −
[
I − VrΥrVT

r

] [
P̃ − P̃∗ − Q1/2

PPHT
ZPQ−1

ZZ

[
Z − G(Q1/2

PPP̃)
]]
,

(3.19)

where
Mlike ≈ VrΥrVT

r (3.20)
is again an approximate spectral decomposition, e.g. computed with algorithm 7
(EDr) or algorithm 8 (SVDr). A reformulation of δP̃ in terms of P then yields

δP = −Q1/2
PP
[
I − VrΥrVT

r

]
Q1/2

PP
[
Q−1

PP [P − P∗]− HT
ZPQ−1

ZZ [Z − G(P)]
]
, (3.21)

and therefore the iterative procedure

Pi := Pi−1 − Q1/2
PP
[
I − VrΥrVT

r

]
Q1/2

PP

·
[
Q−1

PP [Pi−1 − P∗]− HT
ZPQ−1

ZZ [Z − G(Pi−1)]
]
, (3.22)

as detailed in algorithm 16. This scheme is used in the synthetic test cases of sec-
tion 6.1.1.

We may also introduce a scaling parameter η to interpolate between the precondi-
tioned PCG method of section 2.3 and the randomized Gauss-Newton method. This
leads to

Pi := Pi−1 − Q1/2
PP
[
I − ηVrΥrVT

r

]
Q1/2

PP

·
[
Q−1

PP [Pi−1 − P∗]− HT
ZPQ−1

ZZ [Z − G(Pi−1)]
]
, (3.23)
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which can be interpreted as a randomized variant of the modified Levenberg-Mar-
quardt scheme presented by Nowak and Cirpka [62], with the randomized Gauss-
Newton method used instead of the Cokriging Equations.

Both the randomized Gauss-Newton method and the randomized Levenberg-Mar-
quardt method may be reformulated to avoid multiplications with Q−1

PP and Q−1/2
PP ,

in analogy to the caching PCG schemes of sections 2.3.5 and 2.7. This leads to a more
efficient variant of the algorithms. Since the cost per iteration is typically dominated
by the matrix decomposition, this cached variant is not as essential as in the case of
the PCG method and is left out for the sake of brevity.
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4 Governing Equations

While the formulation of the inverse problem in chapter 1 and the description and
derivation of the numerical methods in chapter 2 can be carried out in a rather
abstract fashion and in broad generality, the actual application of the method in
test cases and real-world scenarios requires the specification of the forward model F
describing the physical processes that are considered. In the following we describe
several standard models of subsurface hydrology, namely the groundwater flow equa-
tion, the Richards equation and the convection-diffusion equation, closely following
the presentation given by Roth [68]. We also derive adjoint models that may be used
in the context of calculating the gradient of the objective function as described in
section 2.4.

Note that the following models are formulated as general as possible with regard
to the parameter fields. Some of the parameter fields may be assumed known for
various reasons, e.g. because the model is simplified by setting one of the parameters
to a constant value, or because the system can be brought into a well-defined initial
state. In such a situation and the ones of chapter 6, the affected model has to be
understood as the restriction of the more general model to the reduced parameter
space. Also note that the straightforward extension of the presented methods for the
inclusion of boundary values in the parameters requires the introduction of different
types of parameter fields, those for the discretization of the domain and those for the
boundary, and therefore has been left out for the sake of brevity.

4.1 Groundwater Flow Equation

The flow of water in soil and unconsolidated rock is governed by the interaction of
gravity and capillary forces. Due to the complex topological arrangement of the
pores and their small volume, the pore space and the water flow within can’t be
modeled in all details [68]. Therefore the models that are employed tend to be for-
mulated in terms of spatially averaged quantities and effective parameters combined
with material properties that are derived from theoretical considerations or scientific
experiments. In this representation of the system, gravity and capillary forces define
potential fields, the gravitational potential ψg and the matric potential ψm, and their
sum, called the soil water potential

ψw := ψg + ψm, (4.1)
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Figure 4.1: Left: Absolute value of the potential φ for a setup with an injection well in the
upper half of the domain and an extraction well in the lower half of the domain.
Values are larger than average in the vicinity of the injection well and lower than
average near the extraction well, the absolute value is chosen to increase the
range of representable values. Right: Flow patterns resulting from the underlying
conductivity field and the distribution of the potential. Color represents norm of
water flux, values inside the wells aren’t represented by the scale.

governs the spatially averaged flow. Often the hydraulic head

φ := [ρg]−1 ψw (4.2)

is used instead of ψw in the formulations, since it has a direct interpretation as the
height of a water column. This only changes the units used but does not influence
the structure of the PDEs in any other way.

The law of conservation of mass is represented by the conservation of the volumetric
water content θw, i.e. the volume fraction that contains water, based on the fact that
water has very low compressibility. Assuming the spatially averaged water content
to be sufficiently smooth and applying the continuity equation yields

∂tθw(φ) +∇ · jθw(φ)− qθw = 0, (4.3)

where jθw is the water content flux and qθw is a source term that describes water
being added to or removed from the system, e.g. through injection and extraction
wells. See figure 4.1 for an example of the relation between the potential φ and the
resulting flow patterns.

Remark 20 Equation (4.3) includes the assumption that the water content θw is a
unique function of the hydraulic head φ, and therefore of the soil water potential ψw,
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called the soil water characteristic or pressure-saturation relation. In reality, the
water content exhibits hysteretic behavior, with the amount of hysteresis depending,
among other things, on the pore size distribution. The water content is therefore
not just a function of the current water potential, but also of its history and the path
leading to its current state. In the case of the groundwater flow equation this is not
of concern, since the effects of hysteresis are negligible under saturated conditions,
but it becomes relevant when considering the Richards equation.

The two functions θw(φ) and jθw(φ) in equation (4.3) relating the hydraulic head φ
with the water content θw and its flux are material properties that depend on the
given hydrological system. In the case of groundwater the system is under saturated
conditions, i.e. all available space is filled with water and the water content may be
identified with the porosity θ of the medium. In this situation an increase in water
content can only occur through compression of the soil matrix, and the change in
water content is assumed to be proportional to the change in potential, i.e. δθw = Ssδφ,
where the proportionality constant Ss is known as a storage term. The temporal
derivative in equation (4.3) may therefore be replaced using

∂tθw(φ) = Ss∂tφ = exp(Zs)∂tφ, (4.4)

with Zs = ln(Ss) being an unknown scalar parameter field. The relation between
φ and jθw is known as Darcy’s Law [20], an empirical flux law that was formulated
based on scientific experiments with sand filters. It states that the macroscopic flux
is driven by the gradient of the potential,

jθw = −K∇φ, (4.5)

where K is a symmetric second rank tensor, called the conductivity of the porous
medium. In addition to validation in experiments Darcy’s Law may also be derived
from formulations of the flow dynamics on the pore scale [80]. The law is only valid
for stationary flow, but is in extension also used under transient flow conditions if the
external forcing is slow enough. While the conductivity K is a tensor, it is almost
always assumed to be isotropic and replaced by a scalar in practice [68]. The hydraulic
conductivity is highly heterogeneous and can vary by several orders of magnitude in
the same material, therefore formulations typically use the log-conductivity Y =
ln(K) instead. This leads to Y being a second unknown scalar parameter field.

Combining the continuity equation (4.3) with the two constitutive equations (4.4)
and (4.5) results in the groundwater flow equation:

Model 1 (Groundwater Flow Equation, Classical Formulation)
Given a domain Ω, a time interval T = [0, tmax] and parameter fields S := (Zs, Y, φ0)
on Ω, the groundwater flow equation in classical formulation is the transient PDE

Fφ(S;φ) := exp(Zs)∂tφ+∇ · jθw(Y, φ)− qθw = 0 (4.6)
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on Ω× T with the flux
jθw(Y, φ) := − exp(Y )∇φ (4.7)

and initial and boundary conditions

φ = φ0 for t = 0, φ = bDφ on ΓDφ , jθw · n = bNφ on ΓNφ . (4.8)

Here ΓDφ designates the Dirichlet part of the boundary where φ is prescribed, and
ΓNφ = ∂Ω \ ΓDφ the Neumann part of the boundary where the normal component
of the flux jθw is prescribed. The notation Fφ(S;φ) is used for both the PDE in
equation (4.6) and the full model, with the implication that suitable boundary and
initial conditions as above are defined in the given context.

As was already mentioned in remark 1, the groundwater flow equation as defined
above is neither suitable for most of the real-world scenarios nor for the piecewise
constant parameterization, since a solution φ of equation (4.6) would need to be twice
continuously differentiable in Ω. Instead, a weak formulation of the groundwater flow
equation has to be used.

The weak formulation uses the Sobolev spacesH1 (Ω) andH1/2(ΓDφ ). Due to the trace
theorem [12] every u ∈ H1 (Ω) has a restriction %(u) ∈ H1/2(ΓDφ ) to the Dirichlet
boundary part and every v ∈ H1/2(ΓDφ ) has an extension ε(v) ∈ H1 (Ω) to the whole
domain Ω. We use these mappings to define the space

H1
ΓD
φ
(Ω) :=

{
u ∈ H1 (Ω)

∣∣∣ %(u) = 0 ∈ H1/2
(
ΓDφ
)}

, (4.9)

the subspace of functions with homogeneous Dirichlet boundary conditions, and in
turn the Bochner space

L2
(
T ;H1

ΓD
φ
(Ω)
)
:=
{
u ∈ L2 (Ω× T )

∣∣∣∀ t ∈ T : u(t) ∈ H1
ΓD
φ
(Ω)

}
, (4.10)

the subspace of L2 (Ω× T ) of functions with weak spatial derivatives and homoge-
neous Dirichlet boundary conditions [26]. For the Dirichlet and Neumann boundary
parts we define the corresponding spaces

L2
(
T ;H1/2

(
ΓDφ
))

:=
{
u ∈ L2

(
ΓDφ × T

) ∣∣∣ ∀ t ∈ T : u(t) ∈ H1/2
(
ΓDφ
)}

(4.11)

and

L2
(
T ;H1/2

(
ΓNφ
))

:=
{
u ∈ L2

(
ΓNφ × T

) ∣∣∣ ∀ t ∈ T : u(t) ∈ H1/2
(
ΓNφ
)}

, (4.12)

assume the Dirichlet boundary values bDφ are in L2(T ;H1/2(ΓDφ )), assume the Neu-
mann boundary values bNφ are in L2(T ;H1/2(ΓNφ )), and denote with ε(bDφ ) an exten-
sion of the Dirichlet boundary values onto L2(T ;H1

ΓD
φ
(Ω)).
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Let the expression 〈·, ·〉 denote the scalar product of L2 (Ω× T ) and 〈·, ·〉V that of
L2 (V ) for all other spaces V mentioned above, i.e. ΓDφ × T , ΓNφ × T and Ω. The
strong variational formulation of equation (4.6) is

∀ψφ ∈ L2 (Ω× T ) : 〈ψφ,Fφ(S;φ)〉 = 0 (4.13)

with

∀ψφ ∈ L2 (Ω): 〈ψφ, φ(0)− φ0〉Ω = 0, (4.14)
∀ψφ ∈ L2

(
ΓDφ × T

)
:
〈
ψφ, %(φ)− bDφ

〉
ΓD
φ ×T = 0,

∀ψφ ∈ L2
(
ΓNφ × T

)
:
〈
ψφ, jθw · n − bNφ

〉
ΓN
φ ×T = 0,

which requires φ ∈ H2 (Ω) for all times t ∈ T and has the same mathematical
structure as the Lagrange multipliers that appear in the Lagrangian, equation (2.68).
Using integration by parts and shifting the spatial derivative over to ψφ results in an
equivalent but more general equation:

∀ψφ ∈ L2
(
T ;H1

ΓD
φ
(Ω)
)
: 〈ψφ, exp(Zs)∂tφ〉 −

〈
∇ψφ, jθw(Y, φ)

〉
− 〈ψφ, qθw〉 +

〈
ψφ, jθw · n

〉
Γ×T = 0, (4.15)

with Γ := ∂Ω being the boundary of Ω and jθw defined as in equation (4.7). Since ψφ
is zero on ΓDφ and jθw · n = bNφ holds weakly on ΓNφ , this leads to the following weak
formulation:

Model 2 (Groundwater Flow Equation, Weak Formulation)
Let Ω be a given domain, T := [0, tmax] a time interval, S := (Zs, Y, φ0) a tuple of
parameter fields on Ω and (φ, ∂tφ) a pair of states for which

φ ∈ ε(bDφ ) + L2
(
T ;H1

ΓD
φ
(Ω)
)
, ∂tφ ∈ L2

(
T ;H−1 (Ω)

)
, (4.16)

with ∂tφ the weak temporal derivative of φ. The pair (φ, ∂tφ) is the weak solution
of the groundwater flow equation if the condition

∀ψφ ∈ L2 (Ω) : 〈ψφ, φ(0)− φ0〉Ω = 0 (4.17)

holds for φ, and both functions together solve the equation

∀ψφ ∈ L2
(
T ;H1

ΓD
φ
(Ω)
)
: 〈ψφ, exp(Zs)∂tφ〉 + aφ (φ, ψφ) + bφ (ψφ) = 0 (4.18)

with the bilinear form

aφ (φ, ψφ) := −
〈
∇ψφ, jθw(Y, φ)

〉
(4.19)

and the linear form

bφ (ψφ) := −〈ψφ, qθw〉 +
〈
ψφ, b

N
φ

〉
ΓN
φ ×T . (4.20)

This equation, together with consistent initial and boundary conditions, gives a
second definition of φ as a function of S. We again denote it with Fφ(S;φ), since
it is clear from context which of the definitions is meant.
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We may also define the stationary limit of the above equation. If the head φ does not
change with time, both the log-storage term Zs and the initial state φ0 vanish from
the formulation, and the resulting model only depends on the log-conductivity Y :

Model 3 (Stationary Groundwater Flow Equation)
Let Ω be a given domain, Y a parameter field on Ω and

φ ∈ ε(bDφ ) +H1
ΓD
φ
(Ω) . (4.21)

The function φ is the weak solution of the stationary groundwater flow equation if
it solves the equation

∀ψφ ∈ H1
ΓD
φ
(Ω) : aφ (φ, ψφ) + bφ (ψφ) = 0, (4.22)

where aφ (·, ·) and bφ (·) result from equations (4.19) and (4.20) by replacing the
scalar product of L2 (Ω× T ) with that of L2 (Ω). As above, we denote this mapping
from S to φ with Fφ(S;φ).

4.2 Richards Equation

The Richards equation [66] extends the groundwater flow equation from the previous
section to regimes that are not fully saturated. Its central assumption is a connected
air phase, since this allows for the multiphase regime to be reduced to the dynamics
of a single phase, and consequently it is only to a certain extent applicable in the
capillary fringe, the transitional area that separates the groundwater from the vadose
zone. The Richards equation applies Darcy’s Law (4.5) to the water phase of the
partially saturated porous medium, i.e.

∂tθw(φm) +∇ · jθw(φm)− qθw = 0, (4.23)

with the flux
jθw(φm) = −Kκ(φm) [∇φm − eg] , (4.24)

where eg is the unit vector in the direction of gravity.

In contrast to the groundwater flow equation, the water content θw varies across
a wide range and can’t be linearized in the temporal derivative in Darcy’s Law.
Additionally, the conductivity is highly dependent on the water content and consists
of the parameter field K = exp(Y ) for saturated conditions together with a factor
κ(φm) that reflects the reduction in conductivity under partially saturated conditions.
The relative conductivity κ is typically expressed as a function of the saturation

Θ :=
θw(φm)− θr
θs − θr

, (4.25)
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where θr is the residual water content after complete drainage of the medium and
θs is the water content under fully saturated conditions, bounded from above by the
porosity θ of the medium. The full specification of the flux (4.24) therefore requires
two functions κ(Θ) and Θ(φm) that define material properties.

The relation Θ(φm) is the strongly hysteretic soil water characteristic that was already
mentioned in remark 20. It therefore can’t be expected to be a unique function,
which implies that parameterizations of Θ(φm) are only valid on a single hysteresis
branch and have to be subject to local switching conditions in areas where the flow
dynamics violate this assumption. The two most popular parameterizations are the
one by Brooks and Corey [14] and the one by van Genuchten [79]. In numerical codes
the van Genuchten parameterization is often preferred, since the resulting functions
are differentiable everywhere. This parameterization has the form

Θ(φm) = [1 + [α |φm|]n]−m , (4.26)

which is often used in the simpler form

Θ(φm) = [1 + [α |φm|]n]
1−n
n (4.27)

by setting m := 1− 1
n . Here α and n are two parameters that characterize the porous

medium.

The parameterizations of the relation κ(Θ) are often of the form

κ(Θ) = ΘaI(Θ)b, (4.28)

where I(Θ) is an antiderivative of some function in φm that is renormalized, i.e. I(1) =
1, and a is an exponent that accounts for the tortuosity of the porous medium, which
is a measure for the increase in average travel length along flow paths due to curvature.
A popular parameterization is the one by Mualem [58], which is a modification of the
equation above and has the form

κ(Θ) = Θa

[∫ Θ
0 φ−1

m∫ 1
0 φ

−1
m

]2
, (4.29)

where φm as a function of the saturation has to be calculated using the inverse of one
of the parameterizations Θ(φm) and a is a free parameter. Other parameterizations of
the above type are the one by Burdine [16] and the one by Mualem and Dagan [59].

Combining the van Genuchten parameterization of Θ(φm) and the Mualem parame-
terization of κ(Θ) results in the Mualem-van Genuchten parameterization

κ(Θ) = Θa

[
1−

[
1−Θ

n
n−1

] 1−n
n

]2
(4.30)

κ(φm) = [1 + [α |φm|]n]a·
1−n
n ·

[
1− [α |φm|]n−1 [1 + [α |φm|]n]

1−n
n

]2
.
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For the water content the parameterization results from equation (4.25) and is

θw(Θ) = θr +Θ · [θs − θr] (4.31)

θw(φm) = θr + [1 + [α |φm|]n]
1−n
n · [θs − θr] .

Choosing constant values for these parameters leads to homogeneous media. If we
instead assume that the soil is a Miller-similar porous medium, which means that
the pore-space geometry is the same in each location but the average pore size may
vary in space [57], then reference values Ŷ and α̂ exist with

K · [exp(χ)]2 = K̂, α · exp(χ) = α̂, (4.32)

where χ is the logarithm of the Miller similarity scale parameter [67]. The other
parameters n = n̂ and a = â are assumed to be scale invariant and therefore constant
in Ω. Miller similarity can be included in the model by replacing equations (4.30)
and (4.31) with

κ(φm) = [exp(χ)]−2

[
1 +

[
[exp(χ)]−1 α̂ |φm|

]n̂]a· 1−n̂
n̂

·

[
1−

[
[exp(χ)]−1 α̂ |φm|

]n̂−1
[
1 +

[
[exp(χ)]−1 α̂ |φm|

]n̂] 1−n̂
n̂

]2
(4.33)

and
θw(φm) = θr +

[
1 +

[
[exp(χ)]−1 α̂ |φm|

]n] 1−n
n · [θs − θr] . (4.34)

Under this assumption the spatial variability of the average pore diameter is the
sole cause for heterogeneity of the effective hydraulic parameters, and Y and α are
perfectly correlated.

For simplicity we assume that a fixed tuple (α, n, a) for each location x ∈ Ω is enough
to parameterize the unsaturated flow, e.g. because the simulation is restricted to pure
infiltration or pure drainage of the pore space. This leaves three possible choices for
the parameterization of the domain:

• Assume that the medium is Miller-similar and equation (4.32) holds. Then χ
is the only relevant parameter field and all other parameters are constant in
Ω, which can be modeled by setting the covariance matrices of their spatial
parts to zero and dropping the corresponding contributions from the objective
function.

• Assume that the medium doesn’t exhibit Miller similarity, and all parameters
have to be treated individually. Then each of them is a spatially distributed
parameter field in the sense of chapter 1, which raises the question of correlation
of the different parameter fields and how it is incorporated in the inversion.
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• Assume that the medium is almost Miller-similar but allow for imperfections,
i.e. treat the reference values themselves as spatially heterogeneous. If the vari-
ance of these reference value distributions is small, then the effective parameters
will be highly correlated. Note that it isn’t necessary to include cross-covariance
information in the sense of remark 6, since the deviations from Miller similarity
can be assumed to be independent.

From these options we choose the third one, and we refer to the reference param-
eters using the names of the local parameters to simplify notation. The reference
parameters may then be treated as parameter fields as we have introduced them, and
we denote the two constitutive functions with θw(α, n, χ, φm) and κ(α, n, a, χ, φm) to
reflect this dependency. Inserting the Mualem-van Genuchten parameterization with
Miller scaling, equation (4.33) and (4.34), into the flux definition (4.24) leads to the
following form of the Richards equation:

Model 4 (Richards Equation, Classical Formulation)
Given a domain Ω, a time interval T = [0, tmax] and the tuple of parameter fields

S := (Y, α, n, a, χ, φm,0) (4.35)

on Ω, the Richards equation in classical formulation is the transient PDE

Fφm(S;φm) := ∂tθw(α, n, χ, φm) +∇ · jθw(Y, α, n, a, χ, φm)− qθw = 0 (4.36)

with the flux

jθw(Y, α, n, a, χ, φm) := − exp(Y )κ(α, n, a, χ, φm) [∇φm − eg] (4.37)

and initial and boundary conditions

φm = φm,0 for t = 0, φm = bDφm on ΓDφm , jθw · n = bNφm on ΓNφm . (4.38)

Here ΓDφm
and ΓNφm

again refer to the Dirichlet and Neumann parts of the boundary,
and we use the notation Fφm to refer to both the PDE and the full model including
initial and boundary conditions.

Using the definitions and steps of the previous section, the Richards equation may
also be reformulated in a weak sense:

Model 5 (Richards Equation, Weak Formulation)
Let Ω be a given domain, T := [0, tmax] a time interval,

S := (Y, α, n, a, χ, φm,0) (4.39)

a tuple of parameter fields on Ω and (φm, ∂tφm) a pair of states for which

φm ∈ ε(bDφm) + L2
(
T ;H1

ΓD
φm

(Ω)
)
, ∂tφ ∈ L2

(
T ;H−1 (Ω)

)
, (4.40)
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with ∂tφm the weak temporal derivative of φm. The pair (φm, ∂tφm) is the weak
solution of the Richards equation if the condition

∀ψφm ∈ L2 (Ω) : 〈ψφm , φm(0)− φm,0〉Ω = 0 (4.41)

holds for φm, and both functions together solve the equation

∀ψφm ∈ L2
(
T ;H1

ΓD
φm

(Ω)
)
:

〈ψφm , ∂tθw(α, n, χ, φm)〉 + aφm (φm, ψφm) + bφm (ψφm) = 0 (4.42)

with the form

aφm (φm, ψφm) := −
〈
∇ψφm , jθw(Y, α, n, a, χ, φm)

〉
, (4.43)

the linear form

bφm (ψφm) := −〈ψφm , qθw〉 +
〈
ψφm , b

N
φm

〉
ΓN
φm×T , (4.44)

and jθw defined as in equation (4.37). Note that aφm
(·, ·) uses the same notation

as in model 2 but is no longer a bilinear form, since the relative conductivity κ in
the definition of jθw depends on the solution φm.

In analogy to the groundwater flow equation, we may again give an equation for the
stationary limit where φm and θw no longer change with time:

Model 6 (Stationary Richards Equation)
Let Ω be a given domain,

S := (Y, α, n, a, χ) (4.45)

a tuple of parameter fields on Ω and

φm ∈ ε(bDφm) +H1
ΓD
φm

(Ω) . (4.46)

The function φm is the weak solution of the stationary Richards equation if it solves
the equation

∀ψφm ∈ H1
ΓD
φm

(Ω) : aφm (φm, ψφm) + bφm (ψφm) = 0, (4.47)

where aφm
(·, ·) and bφm

(·) result from equations (4.43) and (4.44) by replacing the
scalar product of L2 (Ω× T ) with that of L2 (Ω).
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4.3 Transport Equation

The convection-diffusion equation is the generic model for solute transport. It is
based on the assumption that the solute concentration is low enough to neglect its in-
fluence on the water flow dynamics, and further implies that the process is limited to
convection and hydrodynamic dispersion. In this context convection refers to solute
migration with the water flow on the macroscopic level, while the hydrodynamic dis-
persion consists of the effects of both molecular diffusion and microscopic convective
transport.

Similar to the groundwater flow equation and the Richards equation, the transport
equation for conservative tracers is based on the conservation of mass. The total
amount of solute in a given volume is represented by the total concentration

C := θwc, (4.48)

where θw is again the percentage of volume filled with water, and c is the concentration
of solute in the water phase. Since the total solute mass is conserved, the continuity
equation states

∂tC(φ) +∇ · jC(φ)− qC(φ, c) = 0, (4.49)

where, in analogy to equation (4.3), jC is the flux of total concentration and qC
is a term that represents concentration being added or removed from the system.
Here φ as a function argument refers to the complete state, not a local evaluation,
and therefore also represents gradients and fluxes as appropriate. In contrast to
equation (4.3), qC is a reaction term that explicitly depends on the concentration
c for sinks, since solute mass can only be extracted if it is present. Assuming that
solute mass is only introduced into the system where water is injected, it has the
form

qC(c) =

{
qθwcin for qθw ≥ 0

qθwc for qθw < 0,
(4.50)

where cin is the solute concentration in the injected water and qθw is the source term
for the water phase from the previous two sections. See figure 4.2 for an example of
simulated solute transport in a heterogeneous medium.

Remark 21 While we are using the state variable φ of the groundwater flow equa-
tion in these equations, it can readily be replaced by the matric head φm that we
have used in the formulation of the Richards equation. The conversion of one repre-
sentation to the other simply consists in adding respectively subtracting the gravity
potential. While we restrict ourselves to the hydraulic head φ, the transport equation
may also be used in conjunction with the Richards equation, either by reformulat-
ing the above equations in terms of φm, or reformulating the Richards equation in
terms of φ, or implicitly converting between the two potentials. This only changes
the parameter fields that implicitly parameterize the transport equation.
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4 Governing Equations

Figure 4.2: Left: Transport of a conservative tracer, with values denoting deviation from the
mean concentration. Initial condition was a Gaussian random field with exponen-
tial covariance structure, water traverses the domain from the top boundary to
the bottom boundary, tracer entering the domain at the top has homogeneous
concentration. Right: Log-conductivity field underlying the groundwater flow
equation that was used to simulate the transient solute transport.

The flux law for the comparatively simple model of solute transport described above
is

jC(φ, c) := −D(φ)∇c+ cjθw , (4.51)
where D is the Bear-Scheidegger tensor for hydrodynamic dispersion [70], given by

(D(φ))ij := [λl − λt]
(jθw)i(jθw)j∥∥jθw∥∥2 + λt

[∥∥jθw∥∥2 + θwDm

]
δij . (4.52)

Here the tensor is reformulated as a function of the flux jθw instead of the velocity
to simplify notation, and D has to be divided by θw to arrive at the tensor from
the literature. The scale parameters λl and λt are the longitudinal and transversal
dispersion coefficients respectively, and Dm is the molecular diffusion tensor.

Inserting this flux law in equation (4.49) leads to the convection-diffusion equation:
Model 7 (Transport Equation, Classical Formulation)
Given a domain Ω, a time interval T := [0, tmax], the tuple of parameter fields

S := (Zs, Y, φ0, λl, λt, c0) (4.53)

and the resulting system state of the groundwater flow equation φ, the transport
equation in classical formulation is the transient PDE

Fc(S, φ; c) := ∂t [θw(Zs, φ)c] +∇ · jC(Zs, Y, λl, λt, φ, c)− qC(c) = 0 (4.54)
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with the flux

jC(Zs, Y, λl, λt, φ, c) := −
[
D(Zs, Y, λl, λt, φ)∇c+ cjθw(Y, φ)

]
, (4.55)

the dispersion tensor

(D(Zs, Y, λl, λt, φ))ij := [λl − λt]
(jθw)i(jθw)j∥∥jθw∥∥2 + λt

[∥∥jθw∥∥2 + θwDm

]
δij , (4.56)

and initial and boundary conditions

c = c0 for t = 0, c = bDc on ΓDc , jC · n = bNc on ΓNc . (4.57)

In contrast to the groundwater flow equation and the Richards equation, which only
use Dirichlet and Neumann boundary conditions, we allow an outflow boundary
part ΓOc = Γ \

[
ΓDc ∪ ΓNc

]
. We assume that jθw ·n ≤ 0 holds for ΓDc and jθw ·n ≥ 0

holds for ΓOc , which means that the flux transports the Dirichlet values into the
domain and implicitly defines the values of c on the outflow boundary part ΓOc . The
outflow boundary condition is

jC · n = cjθw on ΓOc , (4.58)

i.e. the diffusive flux vanishes on the outflow boundary part. If instead of the
groundwater flow equation the Richards equation is used to define jθw , the definition
of S above has to be replaced by

S := (Y, α, n, a, φm,0, λl, λt, c0) , (4.59)

and φ has to be replaced by φm. Note that in both cases some parameter fields in S
don’t appear in the formulation of the PDE. They are included in S to emphasize
that the state c implicitly depends on them through the flux jθw .

The same procedure as for the groundwater flow equation and the Richards equation
again leads to a weak formulation:

Model 8 (Transport Equation, Weak Formulation)
Let Ω be a given domain, T := [0, tmax] a time interval,

S := (Zs, Y, φ0, λl, λt, c0) (4.60)

a tuple of parameter fields on Ω, (φ, ∂tφ) the pair of states from the groundwater
flow equation, model 2, and (c, ∂tc) a pair of states for which

c ∈ ε(bDc ) + L2
(
T ;H1

ΓD
c
(Ω)
)
, ∂tc ∈ L2

(
T ;H−1 (Ω)

)
, (4.61)

with ∂tc the weak temporal derivative of c. The pair (c, ∂tc) is the weak solution of
the convection-diffusion equation if the condition

∀ψc ∈ L2 (Ω) : 〈ψc, c(0)− c0〉Ω = 0 (4.62)
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holds for c, and both functions together solve the equation

∀ψc ∈ L2
(
T ;H1

ΓD
c
(Ω)
)
: 〈ψc, ∂t [θw(Zs, φ)c]〉 + ac (c, ψc) + bc (ψc) = 0 (4.63)

with the bilinear form

ac (c, ψc) := −〈∇ψc, jC(Zs, Y, λl, λt, φ, c)〉−
〈
ψc, q

out
C (c)

〉
+
〈
ψc, cjθw(Y, φ) · n

〉
ΓO
c ×T ,

(4.64)
the linear form

bc (ψc) := −
〈
ψc, q

in
C

〉
+
〈
ψc, b

N
c

〉
ΓN
c ×T , (4.65)

and jC defined as in equation (4.55). Here qin
C denotes the positive part of qC

according to equation (4.50), and qout
C denotes the negative part. If the Richards

equation is used, the parameter fields have to be replaced by

S := (Y, α, n, a, φm,0, λl, λt, c0) (4.66)

and the pair of states (φ, ∂tφ) by (φm, ∂tφm). As before, Fc denotes both the
different formulations of the PDE and the model as a whole, i.e. including initial
and boundary conditions.

4.4 Adjoint Equations

The abstract formulation of the adjoint state method in section 2.4 assumed high
regularity of the model equations for ease of presentation. We now derive the adjoint
equations for the concrete model equations given in sections 4.1 to 4.3 under more
realistic assumptions on the regularity of the equations and their solutions. The fol-
lowing approach is very similar to the one chosen in section 2.4, but uses a variational
formulation and perturbation theory.

4.4.1 Groundwater Flow

As seen in sections 4.1 and 4.3, the groundwater flow equation Fφ and the convection-
diffusion equation Fc can be written in the form

∀ψφ ∈ L2
(
T ;H1

ΓD
φ
(Ω)
)
:

〈ψφ, exp(Zs)∂tφ〉 −
〈
∇ψφ, jθw(Y, φ)

〉
− 〈ψφ, qθw〉 +

〈
ψφ, b

N
φ

〉
ΓN
φ ×T

= 0 (4.67)
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and

∀ψc ∈ L2
(
T ;H1

ΓD
c
(Ω)
)
:

〈ψc, exp(Zs)∂tφc+ θw∂tc〉 − 〈∇ψc, jC(Zs, Y, λl, λt, φ, c)〉
−
〈
ψc, q

out
C (c)

〉
+
〈
ψc, cjθw(Y, φ) · n

〉
ΓO
c ×T −

〈
ψc, q

in
C

〉
+
〈
ψc, b

N
c

〉
ΓN
c ×T

= 0, (4.68)

where we have replaced the temporal derivative in the transport equation using the
chain rule. Note that we assume that derivatives only act on the operand that follows
directly and don’t implicitly extend to the whole remaining expression. Furthermore,
the initial conditions of φ and c are given by

∀ψφ ∈ L2 (Ω): 〈ψφ, φ(0)− φ0〉Ω = 0 (4.69)
∀ψc ∈ L2 (Ω): 〈ψc, c(0)− c0〉Ω = 0.

If the parameter fields are changed by adding a small perturbation δS ,

S = (Zs, Y, φ0, λl, λt, c0) → S̃ (4.70)
δS := S̃ − S = (δZs , δY , δφ0 , δλl , δλt , δc0) ,

then the states also change,

U = (φ, c) → Ũ (4.71)
δU := Ũ − U = (δφ, δc) ,

and since the forward problem is well-posed the corresponding changes δU are also
small. Since the PDEs also hold for the perturbed pair (S̃, Ũ), the changes in the
individual terms of the equations have to cancel each other out. The linear forms
bφ (·) and bc (·), equations (4.20) and (4.65), contain neither parameters nor state
variables, which means that only the bilinear forms aφ (·, ·) and ac (·, ·) and the terms
of the temporal derivatives have to be considered. An expansion of equations (4.67)
and (4.68) up to first order in the changes δS and δU shows that

∀ψφ ∈ L2
(
T ;H1

ΓD
φ
(Ω)
)
:

〈ψφ, exp(Zs)δZs∂tφ+ exp(Zs)∂tδφ〉 −
〈
∇ψφ, ∂Y jθwδY + δjθw

(φ, δφ)
〉

= 0 (4.72)
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and

∀ψc ∈ L2
(
T ;H1

ΓD
c
(Ω)
)
:

〈ψc, exp(Zs)δZs∂tφc+ exp(Zs)∂tδφc+ exp(Zs)∂tφδc〉
+ 〈ψc, exp(Zs)δZsφ∂tc+ exp(Zs)δφ∂tc+ θw∂tδc〉
−
〈
∇ψc, ∂ZsjCδZs + ∂Y jCδY + ∂λljCδλl + ∂λtjCδλt + δjC (φ, δφ) + δjC (c, δc)

〉
−
〈
ψc, ∂cq

out
C δc

〉
+
〈
ψc,
[
c∂Y jθwδY + cδjθw

(φ, δφ) + δcjθw

]
· n
〉
ΓO
c ×T

= 0. (4.73)

While most induced changes can be calculated directly through partial differentiation,
the variations in jθw and jC caused by the changes in φ and c lack locality due to the
involved gradients and are given by

δjθw
(φ, δφ) := − exp(Y )∇δφ (4.74)

δjC (φ, δφ) := δD(φ, δφ)∇c
δjC (c, δc) := D∇δc + δcjθw

and

δD(φ, δφ) := [λl − λt]

[
1

2
exp(Y ) ‖∇φ‖−1

2

[
∇δφ [∇φ]T +∇φ [∇δφ]T

]
− exp(Y ) ‖∇φ‖−3

2 [∇φ · ∇δφ]∇φ [∇φ]T
] (4.75)

+ λt

[
exp(Y ) ‖∇φ‖−1

2 [∇φ · ∇δφ] + exp(Zs)Dmδφ

]
I,

where the arguments of the functions specify the cause of the perturbation. These
equations can be obtained through linearization of the definitions from model 2 and
model 8. Equation (4.75) and the partial derivatives of D can be obtained more
easily when D is reformulated using

D(φ) = [λl − λt]
∥∥jθw∥∥−1

2
jθw
[
jθw
]T

+ λt
[∥∥jθw∥∥2 + θwDm

]
I (4.76)

= [λl − λt] exp(Y ) ‖∇φ‖−1
2 ∇φ [∇φ]T + λt [exp(Y ) ‖∇φ‖2 + θwDm] I

instead of the componentwise formula in equation (4.52).

Summing the two equations (4.72) and (4.73), inserting the expressions from equa-
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tion (4.74), and sorting all terms depending on δS to the front, we therefore have

∀ψφ ∈ L2
(
T ;H1

ΓD
φ
(Ω)
)
, ∀ψc ∈ L2

(
T ;H1

ΓD
c
(Ω)
)
:

〈exp(Zs)ψφ∂tφ+ exp(Zs)ψc∂t [φc] +∇ψc · ∂ZsD∇c, δZs〉
+
〈
∇ψφ ·

[
−jθw

]
+∇ψc ·

[
∂YD∇c− cjθw

]
, δY
〉

+ 〈∇ψc · ∂λlD∇c, δλl〉 + 〈∇ψc · ∂λtD∇c, δλt〉 +
〈
ψc, cδY jθw · n

〉
ΓO
c ×T

+ 〈ψφ, exp(Zs)∂tδφ〉 + 〈∇ψφ, exp(Y )∇δφ〉
+ 〈ψc, exp(Zs)∂tδφc+ exp(Zs)∂tφδc + exp(Zs)δφ∂tc+ θw∂tδc〉
+
〈
∇ψc, δD(φ, δφ)∇c+ c exp(Y )∇δφ +D∇δc − δcjθw

〉
+
〈
ψc,−qout

θw δc
〉
+
〈
ψc,
[
−c exp(Y )∇δφ + δcjθw

]
· n
〉
ΓO
c ×T

= 0, (4.77)
where qout

θw
is the part of qθw that is negative, compare equation (4.50).

Let R(δφ, δc) be a linear functional of δZ, i.e. a function that can be written as
R(δφ, δc) = 〈Rφ, δφ〉 + 〈Rc, δc〉, (4.78)

where Rφ and Rc are suitable functions in L2 (Ω× T ). Note that
R(δφ, δc) := 〈∂φL, δφ〉 + 〈∂cL, δc〉 (4.79)

defines such a functional, with Rφ = ∂φL and Rc = ∂cL. Adding R(δφ, δc) to both
sides of equation (4.77) results in

∀ψφ ∈ L2
(
T ;H1

ΓD
φ
(Ω)
)
, ∀ψc ∈ L2

(
T ;H1

ΓD
c
(Ω)
)
:

〈exp(Zs)ψφ∂tφ+ exp(Zs)ψc∂t [φc] +∇ψc · ∂ZsD∇c, δZs〉
+
〈
∇ψφ ·

[
−jθw

]
+∇ψc ·

[
∂YD∇c− cjθw

]
, δY
〉

+ 〈∇ψc · ∂λlD∇c, δλl〉 + 〈∇ψc · ∂λtD∇c, δλt〉 +
〈
ψc, δY jθw · n

〉
ΓO
c ×T

+ 〈ψφ, exp(Zs)∂tδφ〉 + 〈∇ψφ, exp(Y )∇δφ〉
+ 〈ψc, exp(Zs)∂tδφc+ exp(Zs)∂tφδc + exp(Zs)δφ∂tc+ θw∂tδc〉
+
〈
∇ψc, δD(φ, δφ)∇c+ c exp(Y )∇δφ +D∇δc − δcjθw

〉
+
〈
ψc,−qout

θw δc
〉

+
〈
ψc,
[
−c exp(Y )∇δφ + δcjθw

]
· n
〉
ΓO
c ×T + 〈Rφ, δφ〉 + 〈Rc, δc〉

= R(δφ, δc). (4.80)

To simplify this equation, we group structurally similar terms together through the
definition of
rS(ψφ, ψc, δS) := 〈exp(Zs)ψφ∂tφ+ exp(Zs)ψc∂t [φc] +∇ψc · ∂ZsD∇c, δZs〉 (4.81)

+
〈
∇ψφ ·

[
−jθw

]
+∇ψc ·

[
∂YD∇c− cjθw

]
, δY
〉

+ 〈∇ψc · ∂λlD∇c, δλl〉 + 〈∇ψc · ∂λtD∇c, δλt〉
+ 〈− exp(Zs) [ψφ(0) + ψc(0)c0] , δφ0〉Ω + 〈−θw(0)ψc(0), δc0〉Ω
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for the parameter changes,

rφ(ψφ, ψc, δφ) := 〈ψφ, exp(Zs)∂tδφ〉 + 〈∇ψφ, exp(Y )∇δφ〉 (4.82)
+ 〈ψc, exp(Zs)∂tδφc+ exp(Zs)δφ∂tc〉
+ 〈∇ψc, δD(φ, δφ)∇c+ c exp(Y )∇δφ〉
+ 〈Rφ, δφ〉 + 〈exp(Zs) [ψφ(0) + ψc(0)c0] , δφ(0)〉Ω

for the hydraulic head change,

rc(ψc, δc) := 〈ψc, exp(Zs)∂tφδc + θw∂tδc〉 +
〈
∇ψc, D∇δc − δcjθw

〉
(4.83)

+
〈
ψc,−qout

θw δc
〉
+ 〈Rc, δc〉 + 〈θw(0)ψc(0), δc(0)〉Ω

for the change in concentration, and

rΓ(ψc, δS , δφ, δc) :=
〈
ψc,
[
δY jθw − c exp(Y )∇δφ + δcjθw

]
· n
〉
ΓO
c ×T (4.84)

for the boundary integrals. Taking equation (4.69) into account for the terms that
contain initial conditions, equation (4.80) then reads

∀ψφ ∈ L2
(
T ;H1

ΓD
φ
(Ω)
)
, ∀ψc ∈ L2

(
T ;H1

ΓD
c
(Ω)
)
:

rS(ψφ, ψc, δS) + rφ(ψφ, ψc, δφ) + rc(ψc, δc) + rΓ(ψc, δS , δφ, δc)

= R(δφ, δc). (4.85)

The next step is the elimination of rφ, rc and rΓ through careful choice of the functions
ψφ and ψc, which can be achieved by solving the adjoint equations. Integrating the
terms containing temporal derivatives by parts, using equation(4.75), and noting that
the multiplication with tensors consisting of dyadic products can be reformulated as
a product of scalar products, e.g.

[∇ψc]T
[
∇δφ [∇φ]T

]
∇c =

[
[∇ψc]T ∇δφ

] [
[∇φ]T ∇c

]
= [∇ψc · ∇δφ] [∇φ · ∇c] ,

(4.86)
we arrive at

rφ(ψφ, ψc, δφ) = 〈− exp(Zs)∂tψφ, δφ〉 + 〈exp(Y )∇ψφ,∇δφ〉 (4.87)
+ 〈− exp(Zs)c∂tψc, δφ〉 + 〈c exp(Y )∇ψc,∇δφ〉

+

〈
1

2
[λl − λt] exp(Y ) ‖∇φ‖−1

2 [∇φ · ∇c]∇ψc,∇δφ
〉

+

〈
1

2
[λl − λt] exp(Y ) ‖∇φ‖−1

2 [∇ψc · ∇φ]∇c,∇δφ
〉

+
〈
− [λl − λt] exp(Y ) ‖∇φ‖−3

2 [∇ψc · ∇φ] [∇φ · ∇c]∇φ,∇δφ
〉

+
〈
λt exp(Y ) ‖∇φ‖−1

2 [∇ψc · ∇c]∇φ,∇δφ
〉

+ 〈λt exp(Zs)Dm [∇ψc · ∇c] , δφ〉
+ 〈Rφ, δφ〉 + 〈exp(Zs) [ψφ(tmax) + ψc(tmax)c(tmax)] , δφ(tmax)〉Ω
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and

rc(ψc, δc) = 〈exp(Zs)∂tφψc, δc〉 + 〈−∂t [θwψc] , δc〉 + 〈D∇ψc,∇δc〉 (4.88)
+
〈
∇ψc ·

[
−jθw

]
, δc
〉
+
〈
−qout

θw ψc, δc
〉

+ 〈Rc, δc〉 + 〈θw(tmax)ψc(tmax), δc(tmax)〉Ω.

If we choose ψc to be zero at tmax, the end of the time interval, then the last term in
the above equation vanishes, and if we choose ψc = 0 on ΓOc , then the same happens
with the boundary integral rΓ, equation (4.84). Since δc = 0 holds weakly on ΓDc , the
above equations also hold for general ψc ∈ L2 (Ω× T ) that don’t necessarily vanish
on ΓDc . Together with the homogeneous boundary conditions we have just introduced,
this turns equation (4.85) into

∀ψφ ∈ L2
(
T ;H1

ΓD
φ
(Ω)
)
, ∀ψc ∈ L2

(
T ;H1

ΓO
c
(Ω)
)
:

rS(ψφ, ψc, δS) + rφ(ψφ, ψc, δφ) + rc(ψc, δc)

= R(δφ, δc). (4.89)

Enforcing rc = 0 for all possible choices of δc then gives a PDE that defines the
behavior of ψc as a function of space and time, starting at t = tmax and moving
backwards in time.

We may formalize these observations by defining the adjoint equation of the convec-
tion-diffusion equation:

Model 9 (Adjoint Transport Equation)
Let Ω be a given domain, T := [0, tmax] a time interval,

S := (Zs, Y, φ0, λl, λt, c0) (4.90)

a tuple of parameter fields on Ω, (φ, ∂tφ) the pair of states from the groundwater flow
equation, model 2, (c, ∂tc) the pair of states from the transport equation, model 8,
and (ψc, ∂tψc) a pair of states for which

ψc ∈ L2
(
T ;H1

ΓO
c
(Ω)
)
, ∂tψc ∈ L2

(
T ;H−1 (Ω)

)
, (4.91)

with ∂tψc the weak temporal derivative of ψc. The pair (ψc, ∂tψc) is the weak
solution of the adjoint convection-diffusion equation for the righthand side Rc, if
the condition

∀ δc ∈ L2 (Ω) : 〈δc, ψc(tmax)〉 = 0 (4.92)

holds for ψc, and both functions together solve the equation

∀ δc ∈ L2
(
T ;H1

ΓO
c
(Ω)
)
: 〈δc,−∂t [θwψc]〉 + aψc

(ψc, δc) + bψc
(δc) = 0 (4.93)
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with the bilinear form

aψc
(ψc, δc) := 〈∇δc, D∇ψc〉 +

〈
δc,∇ψc ·

[
−jθw

]〉
+
〈
δc,
[
exp(Zs)∂tφ− qout

θw

]
ψc
〉

(4.94)
and the linear form

bψc
(δc) := 〈δc, Rc〉. (4.95)

Here qin
C denotes the positive part of qC according to equation (4.50), and qout

C

denotes the negative part. If the Richards equation is used, the parameter fields
have to be replaced by

S := (Y, α, n, a, χ, φm,0, λl, λt, c0) , (4.96)

the pair of states (φ, ∂tφ) by (φm, ∂tφm), and exp(Zs)∂tφ has to be replaced with
∂tθw in equation (4.94). We denote the adjoint model and its solution with F†

c .

Note that the adjoint convection-diffusion equation is very similar to the original
equation. The main differences between the two equations are the inverted time di-
rection, the exchange of inflow and outflow parts of the boundary, the switch from
the conservative formulation of the equation to the nonconservative formulation, and
the modified source and reaction terms. Also note that the formulation above in-
cludes an implicit no-flow boundary condition on ΓNc for ψc, since this is the natural
boundary condition of the variational formulation.

Remark 22 We can gain further insight into the relevance and interpretation of
the adjoint equation if we assume for a moment that all states are regular enough to
use the classical formulation of the PDEs. Removing the integrals and multiplying
the result by −1, equation (4.93) becomes

∂t [θwψc] +∇ · [D∇ψc] +∇ψc · jθw − exp(Zs)∂tφψc + qout
θw ψc −Rc = 0. (4.97)

Using the identity

∇ψc · jθw = ∇ ·
[
ψcjθw

]
−
[
∇ · jθw

]
ψc (4.98)

and the fact that φ and jθw are coupled through the groundwater flow equation

∇ · jθw = qθw − exp(Zs)∂tφ, (4.99)

this equation can also be written in the form

∂t [θwψc] +∇ · [D∇ψc] +∇ ·
[
ψcjθw

]
− qin

θwψc −Rc = 0. (4.100)

We may compare this with the original transport equation, which states

∂t [θwc]−∇ · [D∇c] +∇ ·
[
cjθw

]
− qin

θwcin − qout
θw c = 0. (4.101)
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In a convection-dominated setting, the two states c and ψc are transported by the
same water flux jθw and therefore move along the same trajectories, but while c
experiences diffusive spreading along its trajectory, the profile of ψc is actually
sharpened. Both states are introduced into the system via the source term qin

θw
, but

while the value of c is fixed, that of ψc is determined implicitly through the PDE.
This may be compared with the backwards heat equation on page 9, where the same
anti-diffusive sharpening occurs. In essence, the adjoint state ψc is a measure for
how sensitive the functional Rc is to changes of the state c at a given point in space
and time, and therefore follows the same paths through the domain.

Applying the same considerations to the function rφ, i.e. setting ψφ to zero for tmax,
introducing homogeneous Neumann conditions for ψφ on ΓNφ and requiring rφ = 0
for all possible choices of δφ, leads to the adjoint equation of the groundwater flow
equation:

Model 10 (Adjoint Groundwater Flow Equation)
Let Ω be a given domain, T := [0, tmax] a time interval,

S := (Zs, Y, φ0, λl, λt, c0) (4.102)

a tuple of parameter fields on Ω, (φ, ∂tφ), (c, ∂tc) and (ψc, ∂tψc) the solutions of
model 2, model 8 and model 9 respectively, and (ψφ, ∂tψφ) a pair of states for which

ψφ ∈ L2
(
T ;H1

ΓD
φ
(Ω)
)
, ∂tψφ ∈ L2

(
T ;H−1 (Ω)

)
, (4.103)

with ∂tψφ the weak temporal derivative of ψφ. The pair (ψφ, ∂tψφ) is the weak
solution of the adjoint groundwater flow equation for the righthand side Rφ, if the
condition

∀ δφ ∈ L2 (Ω) : 〈δφ, ψφ(tmax)〉 = 0 (4.104)

holds for ψφ, and both functions together solve the equation

∀ δφ ∈ L2
(
T ;H1

ΓD
φ
(Ω)
)
: 〈δφ,− exp(Zs)∂tψφ〉+aψφ

(ψφ, δφ)+bψφ
(δφ) = 0 (4.105)

with the bilinear form

aψφ
(ψφ, δφ) := 〈∇δφ, exp(Y )∇ψφ〉 (4.106)
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and the linear form

bψφ
(δφ) := 〈∇δφ, c exp(Y )∇ψc〉 (4.107)

+

〈
∇δφ,

1

2
[λl − λt] exp(Y ) ‖∇φ‖−1

2 [∇φ · ∇c]∇ψc
〉

+

〈
∇δφ,

1

2
[λl − λt] exp(Y ) ‖∇φ‖−1

2 [∇ψc · ∇φ]∇c
〉

+
〈
∇δφ,− [λl − λt] exp(Y ) ‖∇φ‖−3

2 [∇ψc · ∇φ] [∇φ · ∇c]∇φ
〉

+
〈
∇δφ, λt exp(Y ) ‖∇φ‖−1

2 [∇ψc · ∇c]∇φ
〉

+ 〈δφ, λt exp(Zs)Dm [∇ψc · ∇c]− exp(Zs)c∂tψc +Rφ〉.

If the groundwater flow equation is considered without solute transport, it is enough
to set both ψc and ∂tψc to zero in the above equations. This only changes the source
term, which takes the form

bψφ
(δφ) := 〈δφ, Rφ〉. (4.108)

The adjoint model and its solution are denoted by F†
φ.

Again note that the adjoint equation is very similar to the original one. Apart
from the inverted time direction, the only difference is the modified source term. In
addition to Rφ, it contains contributions from the adjoint transport equation that
reflect the dependency of the adjoint solution ψφ on ψc, which is an inversion of the
dependency of c on φ. As in the case of the transport equation, the above formulation
includes an implicit no-flow boundary condition on ΓNφ .

Solving both the adjoint transport equation F†
c (S,U ;ψc) and the adjoint groundwa-

ter flow equation F†
φ(S,U, ψc;ψφ) and inserting the solutions ψc and ψφ into equa-

tion (4.89) yields
rS(ψφ, ψc, δS) = R(δφ, δc), (4.109)

i.e. R as a function of δS can be evaluated through rS .

If we are interested in dpR, i.e. the derivative of R with respect to a single component
p of one of the parameter vectors pi, we can compute this derivative by introducing a
small change δp in p and keeping all other components of pi and all other parameter
vectors fixed. This defines a small change δpi and through the linearization of equa-
tion (1.2) and equation (1.3) a corresponding change δsi , which is zero everywhere
except for a single discretization cell if p is a localized parameter, and a scaled-down
linearized trend function otherwise. We may extend δsi to a full change of parameters
δS by setting all other entries to zero and use equation (4.109) to get

dpR ≈ δ−1
p rS(ψφ, ψc, δS). (4.110)
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A small change δp is only necessary if the trend model Xi, see page 3, is nonlinear.
If this is not the case, all involved equations are linear, and δp may be set to one to
directly compute the desired derivative.

Remark 23 In the notation of equations (2.73) and (2.77), R is the linearization
of the objective function L with regard to the states U = (φ, c), and Rφ and Rc
are the derivatives ∂φL and ∂cL. The adjoint operators (∂φFφ)† and (∂φFc)† are
contained in rφ, (∂cFc)† can be found in rc, and ∂pFφ and ∂pFc may be computed
through rS as given above. The main differences between the approach in section 2.4
and the one given here are the model regularity requirements and the formulation
in terms of perturbations instead of partial derivatives.

Since the adjoint equations and their solutions ψφ and ψc do not depend on the
parameter change δS in any way, we may solve the adjoint equations once and reuse
their solutions to compute the derivatives with regard to any number of parameters
through simple postprocessing. If we are for example interested in the derivative with
respect to a parameter p that belongs to the log-conductivity Y , equation (4.110)
becomes

dpR ≈
〈
∇ψφ ·

[
−jθw

]
+∇ψc ·

[
∂YD∇c− cjθw

]
, δ−1
p δY

〉
, (4.111)

where δY is the change in Y that is introduced by a small change δp in p, and if
we are instead interested in a parameter p belonging to the initial condition φ0, it
becomes

dpR ≈
〈
− exp(Zs) [ψφ(0) + ψc(0)c0] , δ

−1
p δφ0

〉
Ω
, (4.112)

where δφ0 is the change in φ0 that is introduced by δp.

4.4.2 Richards Regime

Replacing the groundwater flow equation with the Richards equation only changes
the underlying parameters and leads to more terms that have to be taken into account.
We have

∀ψφm ∈ L2
(
T ;H1

ΓD
φm

(Ω)
)
: 〈ψφm , ∂tθw(α, n, χ, φm)〉

−
〈
∇ψφm , jθw(Y, α, n, a, χ, φm)

〉
− 〈ψφm , qθw〉 +

〈
ψφm , b

N
φm

〉
ΓN
φm×T = 0 (4.113)

instead of equation (4.67), and the parameter and state perturbations are given by

S = (Y, α, n, a, χ, φm,0, λl, λt, c0) → S̃ (4.114)
δS := S̃ − S =

(
δY , δα, δn, δa, δχ, δφm,0 , δλl , δλt , δc0

)
,

and

U = (φm, c) → Ũ (4.115)
δU := Ũ − U = (δφm , δc) .
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While the model equation is different, the central steps remain the same, starting
with a linearized equilibrium condition for the perturbations. A Taylor expansion of
the Richards equation yields

∀ψφm ∈ L2
(
T ;H1

ΓD
φm

(Ω)
)
:

〈ψφm , ∂t [∂αθw] δα + ∂t [∂nθw] δn + ∂t [∂χθw] δχ + ∂t [∂φmθw] δφm + ∂φmθw∂tδφm〉
−
〈
∇ψφm , δY jθw + δα∂αjθw + δn∂njθw + δχ∂χjθw

〉
− 〈∇ψφm , exp(Y )∂φmκ∇φm − exp(Y )κ∇δφm〉

= 0, (4.116)

and an expansion of the transport equation gives

∀ψc ∈ L2
(
T ;H1

ΓD
c
(Ω)
)
:

〈ψc, ∂t [∂αθwc] δα + ∂t [∂nθwc] δn + ∂t [∂χθwc] δχ〉
+ 〈ψc, ∂t [∂φmθwc] δφm + ∂φmθwc∂tδφm + ∂tθwδc + θw∂tδc〉
+
〈
∇ψc, δY

[
∂YD∇c− cjθw

]
+ δα

[
∂αD∇c− c∂αjθw

]〉
+
〈
∇ψc, δn

[
∂nD∇c− c∂njθw + ∂aD∇c− c∂ajθw

]〉
+
〈
∇ψc, δa

[
δχ
[
∂χD∇c− c∂χjθw

]
+ δλl∂λlD∇c+ δλt∂λtD∇c

]〉
+
〈
∇ψc, δφm∂φmD∇c+ c exp(Y )∂φmκ∇φm + c exp(Y )κ∇δφm +D∇δc − δcjθw

〉
+
〈
ψc,−qout

θw δc
〉
+
〈
ψc, c

[
δY jθw + δα∂αjθw + δn∂njθw + δχ∂χjθw

]
· n
〉
ΓO
c ×T

+
〈
ψc,
[
−c exp(Y )∂φmκδφm∇φm − c exp(Y )κ∇δφm + δcjθw

]
· n
〉
ΓO
c ×T

= 0. (4.117)

Since these sums are zero, this also holds for the combined sum of all terms, which
may again be divided into groups of similar contributions by defining

rS(ψφm , ψc, δS) :=
〈
∇ψφm ·

[
−jθw

]
+∇ψc ·

[
∂YD∇c− cjθw

]
, δY
〉

(4.118)
+ 〈∂t [∂αθw]ψφm + ∂t [∂αθwc]ψc, δα〉
+
〈
∇ψφm ·

[
−∂αjθw

]
+∇ψc ·

[
∂αD∇c− c∂αjθw

]
, δα
〉

+ 〈∂t [∂nθw]ψφm + ∂t [∂nθwc]ψc, δn〉
+
〈
∇ψφm ·

[
−∂njθw

]
+∇ψc ·

[
∂nD∇c− c∂njθw

]
, δn
〉

+ 〈∂t [∂χθw]ψφm + ∂t [∂χθwc]ψc, δχ〉
+
〈
∇ψφm ·

[
−∂χjθw

]
+∇ψc ·

[
∂χD∇c− c∂χjθw

]
, δχ
〉

+
〈
∇ψφm ·

[
−∂ajθw

]
+∇ψc ·

[
∂aD∇c− c∂ajθw

]
, δa
〉

+ 〈∇ψc · ∂λlD∇c, δλl〉 + 〈∇ψc · ∂λtD∇c, δλt〉
+
〈
−∂φmθw [ψφm(0) + ψc(0)c0] , δφm,0

〉
Ω
+ 〈−θw(0)ψc(0), δc0〉Ω
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for the parameter changes,

rφm(ψφm , ψc, δφm) := 〈ψφm , ∂t [∂φmθw] δφm + ∂φmθw∂tδφm〉 (4.119)
+ 〈∇ψφm , exp(Y )∂φmκδφm∇φm + exp(Y )κ∇δφm〉
+ 〈ψc, ∂t [∂φmθwc] δφm + ∂φmθwc∂tδφm〉
+ 〈∇ψc, δφm∂φmD∇c+ c exp(Y )∂φmκδφm∇φm + c exp(Y )κ∇δφm〉
+ 〈Rφm , δφm〉 + 〈∂φmθw [ψφm(0) + ψc(0)c0] , δφm(0)〉Ω

for the matric head change, with Rφm defined as Rφ and Rc above,

rc(ψc, δc) := 〈ψc, ∂tθwδc + θw∂tδc〉 +
〈
∇ψc, D∇δc − δcjθw

〉
(4.120)

+
〈
ψc,−qout

θw δc
〉
+ 〈Rc, δc〉 + 〈θwψc(0), δc(0)〉Ω

for the change in concentration, and

rΓ(ψc, δS , δφm , δc) :=
〈
ψc, c

[
δY jθw + δα∂αjθw + δn∂njθw + δχ∂χjθw

]
· n
〉
ΓO
c ×T

+ 〈ψc, [−c exp(Y )∂φmκδφm∇φm] · n〉ΓO
c ×T (4.121)

+
〈
ψc,
[
−c exp(Y )κ∇δφm + δcjθw

]
· n
〉
ΓO
c ×T

for the boundary integrals. In analogy to equation (4.85),

∀ψφm ∈ L2
(
T ;H1

ΓD
φm

(Ω)
)
, ∀ψc ∈ L2

(
T ;H1

ΓD
c
(Ω)
)
:

rS(ψφm , ψc, δS) + rφm(ψφm , ψc, δφm) + rc(ψc, δc) + rΓ(ψc, δS , δφm , δc)

= R(δφm , δc) (4.122)

holds with these definitions, and we again try to remove the parts of the lefthand side
that depend on the perturbations of the system states. Integration by parts results
in

rφm(ψφm , ψc, δφm) = 〈∂t [∂φmθw]ψφm , δφm〉 + 〈−∂t [∂φmθwψφm ] , δφm〉 (4.123)
+ 〈∂t [∂φmθwc]ψc, δφm〉 + 〈−∂t [∂φmθwcψc] , δφm〉
+ 〈exp(Y )κ∇ψφm ,∇δφm〉 + 〈∇ψφm · [exp(Y )∂φmκ∇φm] , δφm〉
+ 〈c exp(Y )κ∇ψc,∇δφm〉 + 〈∇φm · [c exp(Y )∂φmκ∇ψc] , δφm〉
+ 〈∇ψc · ∂φmD∇c, δφm〉 + 〈Rφm , δφm〉
+ 〈∂φmθw [ψφm(tmax) + ψc(tmax)c(tmax)] , δφm(tmax)〉Ω

and

rc(ψc, δc) = 〈∂tθwψc, δc〉 + 〈−∂t [θwψc] , δc〉 + 〈D∇ψc,∇δc〉 (4.124)
+
〈
∇ψc ·

[
−jθw

]
, δc
〉
+
〈
−qout

θw ψc, δc
〉
+ 〈Rc, δc〉

+ 〈θw(tmax)ψc(tmax), δc(tmax)〉Ω,
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4 Governing Equations

which leads to the definition of the adjoint equations.

Since the adjoint transport equation is the same as before, except for minimal changes
in notation that are necessary to accommodate the chosen formulation of the Richards
equation, see model 9, it is enough to define the adjoint Richards equation:

Model 11 (Adjoint Richards Equation)
Let Ω be a given domain, T := [0, tmax] a time interval,

S := (Y, α, n, a, χ, φm,0, λl, λt, c0) (4.125)

a tuple of parameter fields on Ω, (φm, ∂tφm), (c, ∂tc) and (ψc, ∂tψc) the solutions
of model 5, model 8 and model 9 respectively, and (ψφm , ∂tψφm) a pair of states for
which

ψφm ∈ L2
(
T ;H1

ΓD
φm

(Ω)
)
, ∂tψφm ∈ L2

(
T ;H−1 (Ω)

)
, (4.126)

with ∂tψφm the weak temporal derivative of ψφm. The pair (ψφm , ∂tψφm) is the
weak solution of the adjoint Richards equation for the righthand side Rφm, if the
condition

∀ δφm ∈ L2 (Ω) : 〈δφm , ψφm(tmax)〉 = 0 (4.127)

holds for ψφm, and both functions together solve the equation

∀ δφm ∈ L2
(
T ;H1

ΓD
φm

(Ω)
)
:

〈δφm ,−∂t [∂φmθwψφm ]〉 + aψφm
(ψφm , δφm) + bψφm

(δφm) = 0 (4.128)

with the bilinear form

aψφm
(ψφm , δφm) := 〈∇δφm , exp(Y )κ∇ψφm〉 (4.129)

+ 〈δφm ,∇ψφm · [exp(Y )∂φmκ∇φm]〉
+ 〈δφm , ∂t [∂φmθw]ψφm〉

and the linear form

bψφm
(δφm) := 〈∇δφm , c exp(Y )κ∇ψc〉 + 〈δφm ,∇φm · [c exp(Y )∂φmκ∇ψc]〉 (4.130)

+ 〈δφm ,−∂φmθwc∂tψc +∇ψc · ∂φmD∇c+Rφm〉.

If ψφm and ψc are the solutions of the adjoint Richards equation and adjoint convec-
tion-diffusion equation respectively, equation (4.122) turns into

rS(ψφm , ψc, δS) = R(δφm , δc), (4.131)

which may again be used to compute derivatives of R via

dpR ≈ δ−1
p rS(ψφm , ψc, δS). (4.132)
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4.4 Adjoint Equations

Remark 24 While the Richards equation contains neither convection nor reaction
terms, only a nonlinear diffusion term, the adjoint Richards equation as given
above has convective and reactive components. The convection term originates in
the nonlinearity of the diffusion term of the Richards equation, as can be seen in
the Taylor expansion in equation (4.116). The reaction term appears due to the
integration by parts of the temporal derivatives and may be eliminated using the
equation

∂φmθw∂tψφm = ∂t [∂φmθwψφm ]− ∂t [∂φmθw]ψφm . (4.133)

The resulting PDE is structurally simpler, since the reaction term vanishes and the
temporal derivative is only applied to the solution ψφm . We nevertheless keep the
adjoint Richards equation in the form given above, since it is beneficial to have the
temporal derivative isolated when discretizing the PDE, see section 5.1.

To complement the transient adjoint equations that were derived above, we also pro-
vide their stationary counterparts. The adjoint stationary groundwater flow equation
is obtained by leaving out all temporal derivatives in the derivation:

Model 12 (Adjoint Stationary Groundwater Flow Equation)
Let Ω be a given domain, Y a parameter field on Ω, φ the solution of model 3 and

ψφ ∈ H1
ΓD
φ
(Ω) . (4.134)

The function ψφ is the weak solution of the adjoint stationary groundwater flow
equation for the righthand side Rφ, if it solves the equation

∀ δφ ∈ H1
ΓD
φ
(Ω) : aψφ

(ψφ, δφ) + bψφ
(δφ) = 0 (4.135)

with the bilinear form

aψφ
(ψφ, δφ) := 〈∇δφ, exp(Y )∇ψφ〉Ω (4.136)

and the linear form
bψφ

(δφ) := 〈δφ, Rφ〉Ω. (4.137)

The adjoint stationary Richards equation can be derived the same way:

Model 13 (Adjoint Stationary Richards Equation)
Let Ω be a given domain,

S := (Y, α, n, a, χ) (4.138)

a tuple of parameter fields on Ω, φm the solution of model 6, and

ψφm ∈ H1
ΓD
φm

(Ω) . (4.139)
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4 Governing Equations

The function ψφm is the weak solution of the adjoint stationary Richards equation
for the righthand side Rφm, if it solves the equation

∀ δφm ∈ H1
ΓD
φm

(Ω) : aψφm
(ψφm , δφm) + bψφm

(δφm) = 0 (4.140)

with the bilinear form

aψφm
(ψφm , δφm) := 〈∇δφm , exp(Y )κ∇ψφm〉 + 〈δφm ,∇ψφm · [exp(Y )∂φmκ∇φm]〉

and the linear form

bψφm
(δφm) := 〈δφm , Rφm〉.
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5 Implementation Details

For the computer-assisted inversion of real or synthetic experimental data the govern-
ing equations, sections 4.1 to 4.3, and their adjoint counterparts, section 4.4, have to
be discretized. Several discretization strategies for PDEs exist, with the Finite Vol-
ume and Finite Element Methods and their varieties being among the most popular.
In most cases the spatial and temporal discretization are separated, since comput-
ing timestep after timestep both mimics the natural flow of information and reduces
the number of unknowns that have to be handled at any given time. This chapter
presents the implemented discretization schemes as used for the examples in chapter
6 and discusses further implementation details.

The temporal and spatial discretization we use is an application of the Runge Kutta
Discontinuous Galerkin (RKDG) method developed by Cockburn and Shu [18]. Sec-
tion 5.1 introduces a variant of the Runge Kutta methods, and section 5.2 discusses
the spatial discretization of PDEs using the discontinuous Galerkin method. The
third section presents further details of the implementation and mentions the soft-
ware libraries that were used.

5.1 Time Discretization

All of the considered model equations and adjoint equations are of the same type,
namely stationary or transient convection-diffusion-reaction equations. With the
exception of the Richards equation the considered equations are linear. It therefore
makes sense to discuss the discretization of a generic convection-diffusion-reaction
equation, which can be adapted for each of the individual model equations.

For a generic system state u, we consider a transient PDE of the form

∀ψu ∈ L2
(
T ;H1

ΓD
u
(Ω)
)
: 〈ψu, ∂tgu (u)〉 + au (u, ψu) + bu (ψu) = 0 (5.1)

on a domain Ω ⊂ Rd, where gu (·) depends only on the value of u itself and not its
spatial derivatives. This (d+1)-dimensional variational formulation could in principle
be discretized directly, i.e. a finite element scheme or finite volume scheme could be
applied on the domain Ω×T . However, this would lead to very large discrete systems,
and in practice a separation of the discretization in time and the discretization in
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space is often preferred [18]. Assuming that the solution is regular enough to allow
a pointwise evaluation in time, the above equation can be restated as

∀ τ ∈ T, ∀ψu ∈ H1
ΓD
u
(Ω) : 〈ψu, [∂tgu (u)] (τ)〉Ω+a(τ)u (u(τ), ψu)+ b

(τ)
u (ψu) = 0, (5.2)

where the stationary counterparts a(τ)u (·, ·) and b
(τ)
u (·) of au (·, ·) and bu (·) are ob-

tained by fixing t = τ in their definitions and replacing the scalar product of
L2 (Ω× T ) with that of L2 (Ω). Since ψu no longer depends on t in this formula-
tion, we may pull the temporal derivative out of the scalar product and get

∀ τ ∈ T, ∀ψu ∈ H1
ΓD
u
(Ω) : dt

〈
ψu, g

(τ)
u (u(τ))

〉
Ω
+a(τ)u (u(τ), ψu)+b

(τ)
u (ψu) = 0, (5.3)

where g(τ)u (·) again refers to setting t = τ in the time-dependent functions in gu (·).
The temporal derivative and the spatial parts may now be discretized separately.
Following the method of lines, we first discretize space. This yields

∀ψh ∈ Vh :〈
ψh, g

(tk+1)
h (uh(tk+1))

〉
Ω
−
〈
ψh, g

(tk)
h (uh(tk))

〉
Ω
+

tk+1∫
tk

[
a
(τ)
h (uh(τ), ψh) + b

(τ)
h (ψh)

]
dτ

= 0 (5.4)

for a sequence of discrete times tk with

0 = t0 < · · · < tk < tk+1 < · · · ≤ tmax, (5.5)

where Vh is a discrete replacement for H1
ΓD
u
(Ω), ukh ∈ Vh for all k ∈ N, and gh (·),

a
(tk)
h (·, ·) and b

(tk)
h (·) are suitable discretizations of gu (·), a

(tk)
u (·, ·) and b

(tk)
u (·) that

operate on Vh. The boundary conditions are no longer present in this discrete formu-
lation and its space Vh, since they will be incorporated in the discretizations of the
spatial operators in section 5.2.

5.1.1 Runge-Kutta Methods

The Runge-Kutta methods approximate the above time integral with quadrature for-
mulas, with the concrete choice of quadrature formula deciding about the properties
of the method, e.g. its speed or stability. The simplest variant is the explicit Euler
method, which creates a sequence ukh through iteratively solving

∀ψh ∈ Vh :
〈
ψh, g

(tk+1)
h

(
uk+1
h

)〉
Ω
−
〈
ψh, g

(tk)
h

(
ukh

)〉
Ω

+ δk

[
a
(tk)
h

(
ukh, ψh

)
+ b

(tk)
h (ψh)

]
= 0, (5.6)
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where δk := tk+1 − tk, starting with the initial condition

∀ψh ∈ Vh :
〈
ψh, u

0
h − u0

〉
Ω
= 0, (5.7)

where u0 is the initial value of u, and discretizing the boundary conditions in the
same fashion. The implicit Euler method works the same way, but solves

∀ψh ∈ Vh :
〈
ψh, g

(tk+1)
h

(
uk+1
h

)〉
Ω
−
〈
ψh, g

(tk)
h

(
ukh

)〉
Ω

+ δk

[
a
(tk+1)
h

(
uk+1
h , ψh

)
+ b

(tk+1)
h (ψh)

]
= 0 (5.8)

instead. Both methods compute a sequence ukh of discrete states that are an approx-
imation of u(tk). Note that the equations (5.6) and (5.8) can both be interpreted as
discretized stationary PDEs, and that therefore techniques for the solution of such
systems can directly be applied to the two iterative schemes above.

Runge-Kutta methods of higher order are usually specified with the help of Butcher
tableaux, tables that are used to recursively compute increments for the discrete
state ukh to calculate uk+1

h . Following Di Pietro and Ern [21], we choose a different
formulation based on intermediate system states:

Discretization 1 (Semi-Implicit Runge-Kutta Method)
Let s be a number of stages, d ∈ Rs+1 a vector of step widths with d1 = 0 and
ds = 1,

α =


−1 1 0 · · · 0

α21 a22 1
. . . ...

...
... . . . . . . 0

αs1 αs2 · · · αss 1

 (5.9)

an s× (s+ 1) matrix in which the sum of each row is zero, and

β =


β11 β12 0 · · · 0

β21 β22 β23
. . . ...

...
... . . . . . . 0

βs1 βs2 · · · βss βs(s+1)

 (5.10)

another s× (s+1) matrix. Given a previous iteration ukh at time tk and a time step
δk, the semi-implicit Runge-Kutta scheme for the parameters (d,α,β) produces an
iteration uk+1

h for the time tk+1 := δk by setting

∀ 0 ≤ i ≤ s : tk,i := tk + di+1δk, (5.11)

and
uk,0h := ukh, (5.12)
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solving the system of equations

∀ 1 ≤ i ≤ s, ∀ψh ∈ Vh :

i∑
j=0

αi(j+1)

〈
ψh, g

(tk,i)
h

(
uk,ih

)〉
Ω
+

i∑
j=0

δkβi(j+1)

[
a
(tk,j)
h

(
uk,jh , ψh

)
+ b

(tk,j)
h (ψh)

]
= 0 (5.13)

for the intermediate states uk,ih , 1 ≤ i ≤ s, with the boundary conditions evaluated
in the same fashion, and finally setting

uk+1
h := uk,sh . (5.14)

Equation (5.13) is a system of s equations for the s unknowns uk,ih . Since the equation
for a uk,ih depends only on the previous uk,jh , j < i, and possibly uk,ih itself if βi(i+1) 6= 0,
this system can be solved iteratively from uk,0h to uk,sh . Note that the equations
in (5.13) can again be seen as discretized stationary PDEs, which means that the
task of solving a transient PDE has been reduced to repeatedly solving stationary
PDEs. If βi(i+1) 6= 0 for at least one 1 ≤ i ≤ s, then the time discretization is implicit
and the PDE to be solved in that stage is the stationary limit of the original PDE with
additional reaction terms and source terms stemming from the time discretization. If
βi(i+1) = 0 for all 1 ≤ i ≤ s, then the scheme is explicit and the resulting stationary
PDEs have a significantly simpler structure, since the spatial derivatives only operate
on iterations and intermediate stages that have already been computed.

The explicit Euler method is the simplest example of such a method:

Discretization 2 (Explicit Euler Method)
The explicit Euler method is a Runge-Kutta method as in discretization 1, with the
choice

d :=

(
0
1

)
, α :=

(
−1 1

)
, β :=

(
1 0

)
. (5.15)

It is an explicit time discretization scheme of first order.

The definition of the implicit Euler method is almost identical:

Discretization 3 (Implicit Euler Method)
The implicit Euler method is a Runge-Kutta method as in discretization 1, with the
choice

d :=

(
0
1

)
, α :=

(
−1 1

)
, β :=

(
0 1

)
. (5.16)

It is an implicit time discretization scheme of first order.
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The implicit Euler method is highly diffusive and should therefore only be applied
where this numerical diffusion adds stability and does not negatively impact the
quality of the solution. The explicit Euler method is unsuitable for stiff problems
and additionally can fail when combined with higher-order spatial discretizations [21].
We therefore require higher-order temporal discretization schemes. Normally, the
benefits of such methods are limited due to the low regularity of the formulation of
the PDE and its solution, and the cost per time step becomes prohibitive when the
number of stages is too large. We therefore focus on methods that are of second
order. One of them is a reformulation of Heun’s Method:

Discretization 4 (Heun Scheme)
The Heun scheme is a Runge-Kutta method as in discretization 1, with the choice

d :=

0
1
1

 , α :=

(
−1 1 0

−1/2 −1/2 1

)
, β :=

(
1 0 0
0 1/2 0

)
. (5.17)

It is an explicit time discretization scheme of second order.

This method is identical to Heun’s Method in the case of linear models and is an
example of strong stability-preserving (SSP) Runge-Kutta methods [32]. We accom-
pany this definition with that of a second-order implicit method, a reformulation of
the strongly S-stable method by Alexander [2]:

Discretization 5 (Alexander Scheme)
The Alexander scheme is a Runge-Kutta method as in discretization 1, with the
choice

d :=

0
γ
1

 , α :=

(
−1 1 0
−1 0 1

)
, β :=

(
0 γ 0
0 1− γ γ

)
(5.18)

with γ := 1 − 2−1/2. This method performs an implicit Euler step of smaller step
width γδk and uses the result to modify a second implicit Euler step with full step
width δk. It is an implicit time discretization scheme of second order.

5.1.2 Adaptive Timestepping

An important aspect of time stepping schemes is the control of the step width δk.
If the step width is chosen too large the simulation may become unstable or fail to
provide accurate results due to the accumulation of discretization errors, while a very
small step width will lead to significantly increased computational costs. Additionally,
the dynamic adjustment of δk based on criteria derived from the discrete solution and
its evolution may further improve the accuracy of the method.
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Explicit schemes like the explicit Euler method or the Heun scheme are limited by
the Courant-Friedrichs-Lewy (CFL) condition, which states that the step width δk
has to fulfill

δk ≤
C

v
h, (5.19)

where v is the characteristic propagation speed of the physical process and C is a
constant that depends on the discretization. In the case of convection-dominated
transport processes as described in section 4.3 the propagation speed is

v :=

∣∣jθw ∣∣
θw

. (5.20)

For the space discretizations we discuss in the next section, the constant is given by

C :=
1

2l + 1
, (5.21)

where l is the degree of the polynomials used in the spatial discretization and the
Runge-Kutta method is assumed to have s = l + 1 stages [19].

To provide a simple control mechanism for the Alexander scheme, we define the
following additional method:

Discretization 6 (Scheme for Adaptive Step Control)
The method used in the control of discretization 5 is defined by the choice

d :=

0
γ
1

 , α :=

(
−1 1 0
0 −1 1

)
, β :=

(
0 γ 0
0 0 1− γ

)
(5.22)

with γ := 1− 2−1/2. It is an implicit time discretization scheme of first order.

This scheme performs two implicit Euler steps, one with a step width of γδk and one
with a step width of [1− γ] δk. Due to the intermediate stage the discretization 6 has
a lower error constant than the implicit Euler method, and since the intermediate
stage of discretization 5 can be reused, only one of the implicit Euler steps has to be
performed.

Since the two discretizations 5 and 6 have different order, the difference of their
solutions is an estimate of the error of the method with lower order if the time step
δk is large enough. As a simple heuristic, we assume that this is always the case
and use the difference of the solutions to control the step width. As in the case of
embedded Runge-Kutta methods [24], we control the error of the lower-order method,
discretization 6, but use the results of the higher-order method, discretization 5.
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5.2 Space Discretization

Due to the results of the previous section, the spatial discretization can be handled in
the same way for both the stationary and the transient models. All model equations
consist of one or more operators acting on the solution u, i.e. diffusion terms of the
form

adiff
u (u, ψu) = 〈∇ψu,Kκ(u)∇u〉Ω (5.23)

with a solution-independent diffusion tensor K and possibly a solution-dependent
contribution κ(u), convection terms in either conservative formulation

acon
u (u, ψu) = 〈∇ψu, ujcon〉Ω (5.24)

or non-conservative formulation

acon
u (u, ψu) = 〈ψu,∇u · jcon〉Ω (5.25)

with a convective flux jcon, or reaction terms of the form

area
u (u, ψu) = 〈ψu, ruu〉Ω. (5.26)

Additionally, all the equations contain a source term of the form

bu (ψu) = 〈ψu, qu〉Ω. (5.27)

In this regard, each of the considered equations can be written as

∀ψu ∈ V : adiff
u (u, ψu) + acon

u (u, ψu) + area
u (u, ψu) + bu (ψu) = 0, (5.28)

where area
u (·, ·) and bu (·) potentially contain contributions of the discretized temporal

derivative, see section 5.1. The goal of this section is the construction of finite-
dimensional approximations for the individual terms. Setting

∀ψh ∈ Vh : a
diff
u,h (u, ψu) + acon

u,h (u, ψu) + area
u,h (u, ψu) + bu,h (ψu) = 0 (5.29)

for these approximations, the resulting finite-dimensional system may be solved for
an approximate solution uh of (5.28), which is either the solution of the discretized
model or one of the stages of the Runge-Kutta schemes from the previous section.

5.2.1 Discontinuous Galerkin

We discretize these terms using an Internal Penalty discontinuous Galerkin (IPdG)
approach [21]. For simplicity, we assume that the triangulation Eh used for the dis-
cretization of the model equations is identical to that of the parameter fields, page 2.
There is typically no reason to use a coarser structured grid for the parameters, since
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the only global operation on the parameters in algorithm 6 (PCGc) is the multipli-
cation with QPP, which often has negligible cost in comparison to solving the model
equations. If unstructured grids are required, e.g. for local refinement or complicated
domains, then transfer operators have to be defined between the grids.

The trial space Vh of the discontinuous Galerkin method is usually a broken polyno-
mial space, i.e. a space of functions that are polynomials when restricted to individual
elements. We define the finite element space

V
(k)
h (Eh) :=

{
v ∈ L2 (Ω)

∣∣∣∀E ∈ Eh : v|E ∈ Qkd

}
, (5.30)

where Qkd is the set of polynomials in d dimensions with maximum degree k per
dimension. These functions may be discontinuous across the interfaces between ele-
ments, as the name of the method implies, and we therefore need notation to handle
these discontinuities.

We refer to the (d− 1)-dimensional intersections of the elements Ei with each other
and the boundary Γ as faces Fj and group all such faces in a set Fh. Interior faces,
i.e. those faces that belong to two different elements E+ and E−, are collected in
F i
h. We denote the unit normal vector on such a face F in the direction from E− to

E+ with nF . Here and in the following, the orientation of the face is arbitrary but
has to be kept fixed. Functions vh from broken polynomial spaces are two-valued on
internal faces F ∈ F i

h, and we use v−h for the value from E− and v+h for that from
E+. For points on the interface, x ∈ F , we use these two function values to define
the jump of vh across F ,

JvhK (x) := v−h (x)− v+h (x), (5.31)

and the weighted average of vh,

{vh}ω (x) := ω−v−h (x) + ω+v+h (x), (5.32)

where ω− ∈ [0, 1] and ω+ := 1− ω−. For boundary faces F ∈ F b
h := Fh \ F i

h we use
the unit normal vector pointing outside of the domain as nF and set

JvhK (x) := {vh}ω (x) := v−h (x), (5.33)

where v−h is the function value from the single element that F belongs to. We also
introduce the broken gradient ∇hvh for functions in V (k)

h , which is defined elementwise
by setting

∀E ∈ Eh : [∇hvh] |E := ∇ [vh|E ] . (5.34)

On the interfaces, the average {∇hvh}ω and jump J∇hvhK of the broken gradient are
defined through the averages and jumps of its components respectively, just as for
other vector-valued discrete functions.
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5.2.2 Diffusion Terms

The simplest form of discretization for diffusion terms adiff
u (·, ·) as in equation (5.23)

consists in inserting discrete functions uh and ψh for u and ψu and replacing the
gradient with the broken gradient:

a
(0)
h (uh, ψh) := 〈∇hψh,Kκ(uh)∇huh〉Ω =

∑
E∈Eh

〈∇hψh,Kκ(uh)∇huh〉E (5.35)

However, a(0)h (·, ·) does not produce a consistent discretization. Following [21], it is
modified by adding a consistency term, which leads to

a
(1)
h (uh, ψh) := a

(0)
h (uh, ψh)−

∑
F∈Fi

h

〈
κ(uupw

h ) {K∇huh}ω · nF , JψhK〉F , (5.36)

where the weights for the average are given by

ω± :=
[
K(E+) +K(E−)

]−1
K(E±) (5.37)

and the upwind value uupw
h on a face F is

uupw
h :=

{
u−h if {K∇huh}ω · nF > 0

u+h else.
(5.38)

Here and in the following we ignore contributions of the boundary faces F ∈ Fb
h,

since these will be discussed in section 5.2.4.

Adding an additional term reestablishes the symmetry of the expression, which results
in

acs
h (uh, ψh) := a

(1)
h (uh, ψh)−

∑
F∈F i

h

〈JuhK , κ(uupw
h ) {K∇hψh}ω · nF

〉
F
. (5.39)

Finally, discrete coercivity on V
(k)
h is required, which motivates the addition of a

stability term and leads to

asip
h (uh, ψh) := acs

h (uh, ψh) +
∑
F∈F i

h

η
γK,F
hF

κ(uupw
h )〈JuhK , JψhK〉F , (5.40)

where the local mesh width is defined as

hF :=
1

2
|F |−1

d−1

[∣∣E+
∣∣
d
+
∣∣E−∣∣

d

]
(5.41)

and is identical to the global mesh width h for the structured grids we are using,

γK,F := ω−K(E+) + ω+K(E−) = 2
[
K(E+) +K(E−)

]−1
K(E+)K(E−) (5.42)
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is the harmonic mean of the diffusion coefficient K on the interface used as a local
weight for the stabilization, and η is a user-supplied penalty parameter.

The discretized diffusion term asip
h (·, ·) is based on the numerical flux

Jdiff
uh

(F ) := −κ(uupw
h )

[
{K∇huh}ω · nF − η

γK,F
hF

JuhK] (5.43)

as a discrete approximation of the normal component of the diffusive flux

jdiff
u := −Kκ(u)∇u (5.44)

on the face F , and with this flux the discretization takes the form

asip
h (uh, ψh) =

∑
E∈Eh

〈∇hψh,Kκ(uh)∇huh〉E +
∑
F∈F i

h

〈
Jdiff
uh

(F ), JψhK〉
F

−
∑
F∈F i

h

〈JuhK , κ(uupw
h ) {K∇hψh}ω · nF

〉
F
. (5.45)

5.2.3 Convection Terms

The convection terms acon
u (·, ·) as in equation (5.24) and equation (5.25) can be

treated in a similar fashion. Starting point is again a simple discretization that
inserts discrete functions uh and ψh for u and ψu and replaces the gradient with
the broken gradient. For the conservative formulation, equation (5.24), the steps are
identical to those for diffusion terms. The result is

aupw
h (uh, ψh) :=

∑
E∈Eh

〈∇hψh, uhjcon〉E +
∑
F∈F i

h

〈
Jcon
uh

(F ), JψhK〉F
−
∑
F∈F i

h

〈JuhK , {ψh}ω jcon · nF 〉F , (5.46)

where
Jcon
uh

(F ) := {uh}ω jcon · nF +
η

2
|jcon · nF | JuhK (5.47)

is again a discrete approximation of the normal component of the convective flux

jcon
u := ujcon (5.48)

on the face F , and ω− := ω+ := 1/2. In principle, the penalty parameter η could be
user-supplied again, but choosing η := 1 leads to the usual upwind fluxes of Finite
Volume schemes [21].

The discretization of the non-conservative formulation, equation (5.25), starts with

a
(0)
h (uh, ψh) := 〈ψh,∇huh · jcon〉Ω =

∑
E∈Eh

〈ψh,∇huh · jcon〉E (5.49)
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and adds a consistency term in analogy to equation (5.36), which yields

acf
h (uh, ψh) := a

(0)
h (uh, ψh)−

∑
F∈F i

h

〈JuhK , {ψh}ω jcon · nF 〉F (5.50)

with ω− = ω+ = 1/2 as above. Then a stabilization term is added as before, which
leads to

aupw
h (uh, ψh) := acf

h (uh, ψh)−
∑
F∈F i

h

〈JuhK , {ψh}ω jcon · nF 〉F (5.51)

=
∑
E∈Eh

〈ψh,∇huh · jcon〉E +
∑
F∈F i

h

〈
Jcon
uh

(F ), JψhK〉F
−
∑
F∈F i

h

〈JuhK , {ψh}ω jcon · nF 〉F ,

(5.52)

with Jcon
uh

(F ), η and the weights defined as for the conservative formulation. Note
that the two discretizations only differ in the volume terms of the elements.

5.2.4 Remaining Terms and Boundary Conditions

The reaction terms and source terms are simple to discretize, since they are local
processes and therefore interactions between different elements don’t have to be con-
sidered. Instead, the integral over the domain Ω can be replaced with a sum over the
integrals of the individual elements, which are defined for the discrete functions uh
and ψh. The discretized reaction terms have the form

area
h (uh, ψh) =

∑
E∈Eh

〈ψh, ruuh〉E , (5.53)

and the discretized source terms are of the form

bh (ψh) =
∑
E∈Eh

〈ψh, qu〉E . (5.54)

Noting that the discretizations consist of volume terms evaluated on the individual
elements E ∈ Eh and flux terms based on the numerical flux Juh evaluated on the
interior faces F ∈ F i

h, boundary conditions can be incorporated by specifying Juh on
the boundary faces F ∈ F b

h. Setting

Juh(F ) := bNu for F ⊂ ΓNu (5.55)

defines the flux on the Neumann part of the boundary, while the flux on the Dirichlet
part is given by the equations (5.43) and (5.47) with the jump JuhK and average
{uh}ω replaced by JuKD := u−h − bDu (5.56)
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respectively
{u}ω,D := ω−u−h + ω+bDu . (5.57)

In principle, these two functions could be used as the definition of the jump and
average of uh on the boundary, replacing equation (5.33). This would simplify the
notation and the incorporation of the boundary contributions into the discrete forms
of the previous sections. However, it would also make the definition dependent upon
the concrete problem at hand and the specific choice of boundary values. Note that
the accompanying terms that were added to achieve consistency and symmetry of
the discretization are also required for the boundary face contributions.

5.2.5 Slope Limiter and Flux Reconstruction

After discretizing the PDEs in space and time, the resulting finite-dimensional sys-
tems may be solved to get an approximate solution of the forward respectively adjoint
problems. If the PDE is linear, its discretization is linear as well and may be formu-
lated as a linear equation system for the unknowns. If the PDE is nonlinear, then
Newton’s method can be employed to arrive at a sequence of linear equation systems.
As mentioned by Cockburn and Shu [19], the RKDG scheme needs to be stabilized
when using an explicit timestepping scheme, and this can be achieved by applying a
slope limiter to the individual stages. We refer to the work of the original authors
for the discussion of slope limiters and the specifics of their implementation.

Combining the previous sections with a specific choice of trial space results in a
discontinuous Galerkin method:

Discretization 7 (Discontinuous Galerkin)
The discontinuous Galerkin method uses the trial space V (k)

h (Eh) as defined in equa-
tion (5.30), where k ≥ 1 is the polynomial degree on the elements of Eh. We will
always use k = 1 in the applications of chapter 6. The space V

(k)
h is used for

both the discrete solution uh and the test functions ψh in the relevant discretized
terms, e.g. the discretized diffusion term from equation (5.45) or one of the dis-
cretized convection terms from equations (5.46) and (5.51). Reaction terms as in
equation (5.53) and source terms as in equation (5.54) are also included, if ap-
plicable. Boundary conditions are incorporated by choosing the correct fluxes on
the boundary faces, as discussed in the previous section. The user-supplied penalty
parameter η should be chosen as small as possible for diffusion terms, just large
enough to guarantee the stability of the discretization, while we use the upwind flux
for the convection terms. As mentioned above, a slope limiter is required to further
stabilize the method if it is employed in an explicit timestepping scheme.

Choosing k = 0 leads to a Cell-Centered Finite Volume scheme (CCFV). Most contri-
butions of the discretized terms vanish, since the broken gradients ∇huh and ∇hψh
are by definition zero on each of the elements. The only remaining contributions are
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based on jumps across faces or cell averages. This leads to a conceptually simpler
method:

Discretization 8 (Cell-Centered Finite Volume)
The Cell-Centered Finite Volume scheme uses the trial space V (0)

h (Eh), i.e. piecewise
constant functions. This method uses the same discretized terms as the discontin-
uous Galerkin method, discretization 7, but most contributions vanish due to the
broken gradients being zero. The numerical flux of the discontinuous Galerkin
method becomes dominated by the broken gradients for small mesh widths h, which
allows choosing the penalty parameter η to stabilize the method. This isn’t possible
in the case of Cell-Centered Finite Volume, since the numerical flux on the faces
consists solely of jump terms. For this reason we set η = 1 for both the diffusion
and the convection terms to arrive at a consistent formulation. This method is
diffusive enough to be stable without additional penalty terms or slope limiters.

Up to now, the numerical flux Juh is only defined on faces, and only in the normal
direction of the faces. This is problematic when the flux has to be evaluated at
other locations, e.g. the transport equation depending on values of jθw inside of
elements, compare equations (5.46) and (5.51), or sensitivity integrals like that in
equation (4.111) requiring gradients and fluxes on the whole domain. We therefore
need an extension of Juh onto the domain Ω that is consistent with the numerical
flux across the faces. The flux reconstruction should produce a global function

Juh ∈ H (div; Ω) :=
{

J ∈
[
L2 (Ω)

]d ∣∣∣∇ · J ∈ L2 (Ω)
}
, (5.58)

which then can be used in integrals on the whole domain Ω or individual elements
E ∈ Eh.

Such a reconstruction can be accomplished using the notion of discrete gradient, as
described for general meshes by Di Pietro and Ern [21]. On the structured grids we
are using this construction can be simplified and carried out dimension by dimension.
For each element E ∈ Eh and each of the dimensions 1 ≤ i ≤ d, we have two faces F1

and F2 and corresponding jumps

JuhK (Fj) ∈ L2 (Fj) , j ∈ {1, 2}. (5.59)

These jumps can be extended to a function

(JuhK (E))i ∈ L2 (E) (5.60)

through linear interpolation between the two jumps JuhK (F1) and JuhK (F2) on the
faces. This interpolation has to take the orientation of the jumps into account, i.e. if
one of the normal vectors nFj , j ∈ {1, 2}, doesn’t point in the same direction as the
dimension i, then the sign of JuhK on that face has to be switched. This provides the
components of a vector-valued function

JuhK (E) ∈
[
L2 (E)

]d
, (5.61)
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which defines a lifting of the jumps onto the element E. This function can be com-
bined with the broken gradient ∇huh to define a discrete gradient

Guh(E) := ∇huh − JuhK (E) (5.62)

on each element E ∈ Eh.

The same steps can be applied to functions of the form ηγh JuhK, where η is the
penalty parameter and γh a weight function appearing in the numerical flux definition,
compare equations (5.43) and (5.47). The same linear interpolation as above lifts
ηγh JuhK onto the element E, leading to a function

ηγh JuhK (E) ∈
[
L2 (E)

]d
. (5.63)

Note that this simple extension introduces an error, as the original construction
is a local projection that takes the spatially varying parameters into account [21].
However, this approximation is accurate enough for our intents and purposes. The
numerical flux Juh can then be defined on E by leaving out the weighted average of
the definition for faces F ∈ F i

h and using the lifted version of the jumps, e.g.

Jdiff
uh

(E) := −κ(uh)
[
K∇huh − η

γK,F
hF

JuhK (E)

]
(5.64)

for the diffusive flux of equation (5.43).

However, these versions of the discrete gradient Guh and the numerical flux Juh
aren’t in H (div; Ω), since the normal component of the broken gradient ∇huh isn’t
continuous across faces. We therefore project the two functions onto the H (div; Ω)-
conforming space

W
(k)
h (Eh) :=

{
v ∈ H (div; Ω)

∣∣∣ ∀E ∈ Eh : v|E ∈ RTNk
d

}
, (5.65)

where
RTNk

d :=
[
Qkd

]d
+ xQkd (5.66)

is the Raviart-Thomas-Nédélec space of degree k. This space can also be written as

RTNk
d =

{
Qk+1,k
d ×Qk,k+1

d for d = 2

Qk+1,k,k
d ×Qk,k+1,k

d ×Qk,k,k+1
d for d = 3,

(5.67)

where Ql,md and Ql,m,nd are generalizations of Qkd with l, m and n being the maximum
degree in each of the two or three dimensions. The projection onto W (k)

h (Eh) provides
a flux reconstruction for the discontinuous Galerkin method, discretization 7, with
the same choice for k:
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Discretization 9 (Higher Order Flux Reconstruction)
The function Jproj

uh ∈W
(k)
h (Eh), k ≥ 1, is a H (div; Ω)-conforming reconstruction of

the flux of uh if

∀F ∈ Fh, ψF ∈ Qkd−1 :
〈[

Jproj
uh

− Juh
]
· nF , ψF

〉
F
= 0 (5.68)

using the definition of Juh for faces F ∈ Fh and

∀E ∈ Eh, ψE ∈W † :
〈
Jproj
uh

− Juh , ψE
〉
E
= 0 (5.69)

using the extension of Juh onto elements, where

W † :=

{
Qk−1,k
d ×Qk,k−1

d for d = 2

Qk−1,k,k
d ×Qk,k−1,k

d ×Qk,k,k−1
d for d = 3

(5.70)

is the local test space for the flux on elements E ∈ Eh.

This flux reconstruction can also be used for a H (div; Ω)-conforming reconstruction
Gproj
uh of the gradient of uh by replacing the numerical flux Juh with the discrete

gradient Guh from equation (5.62). For the Cell-Centered Finite Volume scheme,
discretization 8, the flux reconstruction is simpler:

Discretization 10 (First Order Flux Reconstruction)
The function Jproj

uh ∈W
(0)
h (Eh) is a H (div; Ω)-conforming reconstruction of the flux

of uh if
∀F ∈ Fh, ψF ∈ Q0

d−1 :
〈[

Jproj
uh

− Juh
]
· nF , ψF

〉
F
= 0 (5.71)

using the definition of Juh for faces F ∈ h. The space Q0
d−1 is the space of constant

functions, so this is equivalent to

∀F ∈ Fh :
∫
F

[
Jproj
uh

− Juh
]
· nF = 0. (5.72)

In this case, the function Jproj
uh is completely determined by its face integrals and has

no internal degrees of freedom on the elements. Therefore the flux reconstruction
can be computed without any intermediate liftings.

5.3 Libraries and Software Packages

The numerical methods of the previous sections have been implemented in DUNE, the
Distributed and Unified Numerics Environment, a modular toolbox for the grid-based
solution of PDEs [7, 6, 5]. DUNE uses abstract interfaces and generic programming
techniques, which makes the implementation of very general and flexible methods
comparatively easy. The discretization module PDELab builds on the interfaces
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of DUNE to provide representations of higher-level mathematical constructs, like
function spaces and operators [8]. This makes it possible to produce an implemen-
tation that more closely resembles the original mathematical notation, and enables
the reuse of standard components. Software based on DUNE and PDELab has ac-
cess to ISTL, the Iterative Solver Template Library, which contains several parallel
solvers based on domain decomposition and a parallel Algebraic Multigrid (AMG)
solver [10]. Furthermore, the intricacies of high-performance parallel computing are
handled transparently by DUNE and PDELab, and therefore the implementation
used in chapter 6 is automatically suited for parallel computation.

While the implementation is for the most part based on DUNE, a number of external
libraries are used. This includes FFTW, the Fastest Fourier Transform in the West,
a subroutine library that provides functions for parallel computation of the discrete
Fourier transform [30], and HDF5, a library for efficient parallel I/O [76], which is
used by the implementation for reading and writing parameter fields. All libraries
and software frameworks that were used for this thesis are free software and freely
available from their respective open-source projects. At the time of writing, a release
of the implementation in the form of a DUNE module is planned.
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In this chapter we consider several applications of the methods that were developed
in chapter 2. In each of the test cases, a synthetic reference P̂ is generated using algo-
rithm 1 (SG). The forward problem 1 is solved using this reference parameter tuple,
with the result being a set of observations Ẑ. To simulate the measurement process,
noise ε ∼ N (QZZ,0) is generated and added to Ẑ to obtain synthetic observations

Z := Ẑ + ε. (6.1)

These observations are then used as input to define the inverse problem and solve it
for Pmap.

Due to the large number of possible experimental setups, boundary conditions, model
assumptions and solver choices, it isn’t possible to examine every single combination
in detail. For this reason, we restrict ourselves to the following subset:

• While the methods have also been tested for other covariance structures, the
exponential covariance function, equation (2.12), is used in each of the exam-
ples. The covariance structure is in most cases chosen to be isotropic, and
all parameter fields use the same correlation length if several are considered at
once. The only trend parameter that is considered is the mean of the parameter
field.

• All examples use the caching prior preconditioned CG method, algorithm 6
(PCGc), to compute the estimate Pmap, since this method has the lowest
memory requirements and lowest computational cost per iteration among the
methods that are suitable for high-resolution parameter fields. Occasionally the
randomized Gauss-Newton scheme, algorithm 16 (GNr), is used for comparison
purposes.

• We prioritize simplicity of the setup and reproducibility of the numerical results.
For this reason all boundary conditions are constant and explicitly known, and
the domain is rectangular so that the spectral methods of section 2.1.2 are
applicable without interpolation or transformation. All of the test cases are
discretized using the discontinuous Galerkin method, discretization 7, with k =
1 and second order explicit and implicit time discretization if applicable.
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Injection

Measurement Locations

Extraction

Figure 6.1: The experimental setup used in sections 6.1.1, 6.1.2 and 6.1.3. An array of mea-
surement locations is installed between a pair of wells. Water is injected into
one of the wells and extracted from the other, which induces flow patterns in the
aquifer and a potential gradient at the measurement locations. The hydraulic
potential is assumed to be constant on the boundary of the domain. In the three-
dimensional test case this is a view from above, with no-flow boundary conditions
imposed at the top and bottom of the domain.

6.1 Dipole Experiments

As a first application we consider synthetic dipole experiments. Water is injected
into a confined aquifer at one location and extracted at another, see figure 6.1. This
induces a dipole in the hydraulic potential, compare figure 4.1, and the resulting
changes in potential can be monitored at locations between the injection and extrac-
tion wells. These observations then allow estimation of the parameters that govern
the groundwater flow. We begin by considering stationary two-dimensional flow,
followed by extensions to three-dimensional and transient scenarios.

6.1.1 Inversion of Stationary Flow in 2D

We consider a two-dimensional square domain Ω of size 100 m×100 m. The injection
and extraction well are located at (50, 75) and (50, 25) respectively. The measurement
locations form an equidistant square grid with the lower left corner at (37.5, 37.5) and
the upper right corner at (62.5, 62.5), compare figure 6.1. The placement of individual
observations depends on the total number of measurements nφ, which varies between
5 × 5 and 30 × 30. Assumptions about the distribution of the log-conductivity Y
and the measurement error of the head measurements can be found in table 6.1. For
simplicity we assume that the head φ is constant on the boundary Γ. The exact value
is irrelevant, since the groundwater flow equation, model 3, is only concerned with
relative changes of potential. We further choose a constant injection rate respectively
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6.1 Dipole Experiments

Property Description Value
Log-conductivity Y :

Covariance model exponential
(λx, λy, λz) Correlation lengths (5 m, 5 m, 1 m)
σ2 Prior variance 1
β∗ Prior mean -5.8
σ2β Uncertainty of prior mean 0.1

Error of head observations φ:
Covariance model uncorrelated

σ2 Prior variance 1 × 10−4 m2

Table 6.1: Assumptions about the parameter distribution and measurement errors for the two-
dimensional and three-dimensional stationary dipole experiments. The correlation
length λz describes vertical correlation and is only relevant in the three-dimensional
case. The logarithm Y = ln(K) has to be interpreted with K measured in ms−1.

extraction rate of qθw := ±7.5 × 10−3 s−1, in each case evenly distributed over the
area of the well.

A synthetic reference parameter field P̂ representing the log-conductivity Y is gener-
ated, see the upper row of figure 6.2, and the spatial distribution of the head φ is com-
puted using model 3 together with the given boundary conditions and source terms.
We use a structured equidistant grid of size nΩ = 256×256 = 6.55 × 104 and V (1)

h (Eh)
as ansatz space, i.e. locally bilinear discontinuous finite elements. The resulting dis-
cretized state space for φ has a dimension of 6.55 × 104 · 4 = 2.62 × 105. Synthetic
measurements are taken at m×m locations, where m ∈ {5, 6, 7, 8, 9, 10, 15, 20, 25, 30},
and noise is added to these measurements to simulate measurement error. This pro-
duces ten sets of data with varying size, from 25 observations for m = 5 to 900
observations for m = 30.

Each of the generated data sets can be used as input for inversion. We consider the
following three choices for the optimization algorithm:

• The caching prior preconditioned CG method, algorithm 6 (PCGc), with a
reduction of the norm of the directional derivative by a factor of 104 as stopping
criterion

• Again the caching PCG method, algorithm 6 (PCGc), but with a reduction by
a factor of 105 as stopping criterion

• The randomized Gauss-Newton method, algorithm 16 (GNr), using the caching
variant mentioned in section 3.3.2 with a reduction by a factor of 104 as stopping
criterion

127



6 Applications

This produces 30 different inversion results, which can be compared regarding the
number of simulation runs that are required, the time it takes to compute the esti-
mate, and the quality of the result.

The lower row of figure 6.2 shows two of the inversion results, the estimates for
nφ = 25 and nφ = 900. Both estimates were obtained using the caching PCG method
with tolerance 10−5 for the reduction of the directional derivative. The additional
observations clearly increase the resolution of the estimate, as significantly more
details appear in the estimate that is based on the higher number of measurements.
This is confirmed by the uncertainty quantification, which produces the estimates for
the posterior variance shown in figure 6.3. The posterior variance of the parameters
in the direct vicinity of the measurement locations is significantly lower for the result
based on the larger number of observations.

Figure 6.4 shows the effort that is needed to produce the estimates. The left image
contains the total number of simulation runs that are required, while the right image
shows the computational cost in terms of seconds of computing time on a parallel
machine (Intel Xeon, 64 cores, 2800 MHz). Comparing the two different strategies
for algorithm 6 (PCGc), reducing the norm of the derivative by an additional order
of magnitude approximately triples the computational costs.

The randomized Gauss-Newton scheme, algorithm 16 (GNr), isn’t suited for the
considered setup. The number of eigenvalues that have to be recovered ranges from
r = nφ for small values of nφ to r = 2

3nφ for the largest values. This means that both
algorithms described in section 2.5 are more expensive than directly computing the
columns of HZP, and consequently algorithm 15 (GNCE) would be more efficient.

For small values of nφ the variants of the Gauss-Newton method are faster than the
versions of the PCG scheme, but for values around nφ = 100 the preconditioned CG
method starts to be more efficient. The computational cost of the Gauss-Newton
method is linear in the number of observations, while that of the PCG scheme grows
significantly slower and is almost constant ignoring the values at nφ = 25 and nφ = 36.
As a result, the preconditioned Conjugate Gradients method is an order of magnitude
faster than the Gauss-Newton scheme for large values of nφ.

As discussed by Nowak [61], twice the minimum L(Pmap) of the objective function L
should follow the χ2 distribution with nφ degrees of freedom. This distribution has
an expected value of nφ and a variance of 2nφ. Therefore

L(Pmap) =
1

2

[
nφ ± [2nφ]

1/2
]

(6.2)

is an estimate of L(Pmap) in the form of its expected value and standard confidence
interval. Figure 6.5 shows the expected value of the minimum as a solid line, the
confidence interval bounded by two dashed lines, and the final value of each of the
30 inversions. The PCG method with tolerance 10−4 deviates from the confidence
interval for large values of nφ. The Gauss-Newton method and the PCG method

128



6.1 Dipole Experiments

Synthetic Reference

Estimate for nφ = 25 Estimate for nφ = 900

Figure 6.2: Upper row: Synthetic reference parameter field P̂ with exponential covariance
structure, representing the log-conductivity of the aquifer, nΩ = 256×256. Lower
left: Estimate Pmap for nφ = 25 head measurements. Lower right: Estimate
Pmap for nφ = 900 head measurements. Both estimates are able to reproduce
the spatial mean of the reference field in the direct vicinity of the observations
but provide little information about the conductivity further away. Including
additional measurements significantly improves the quality of the result, while
incurring only a moderate increase in effort needed for the inversion, compare
figure 6.4.
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Uncertainty for nφ = 25 Uncertainty for nφ = 900

Figure 6.3: Left: Uncertainty of the estimate for nφ = 25 head measurements (lower left in
figure 6.2). Right: Uncertainty of the estimate for nφ = 900 head measurements
(lower right in figure 6.2). The values are the sum of local variance and trend
variance. The posterior variance allows assessment of the reliability of the esti-
mates, and a comparison confirms that the estimate using more observations is
significantly more accurate.
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Figure 6.4: Left: Number of forward and adjoint model runs required by the prior precondi-
tioned CG method (PCGc) with tolerance 10−4 for the reduction of the direc-
tional derivative ( ), the prior preconditioned CG method with tolerance 10−5 ( )
and the randomized Gauss-Newton scheme (GNr, ), together with estimates for
one of the classical Gauss-Newton methods (GNCE, ). Right: Time required for
inversion. The Gauss-Newton methods are the best choice for small nφ, but for
large nφ the prior preconditioned CG scheme is significantly more efficient.
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Figure 6.5: Left: Final values of the objective function L for the prior preconditioned CG
method (PCGc) with tolerance 10−4 for the reduction of the directional deriva-
tive ( ), the prior preconditioned CG method with tolerance 10−5 ( ), and the
randomized Gauss-Newton scheme (GNr, ). The black line represents the ex-
pected value of the minimum of L, while the dashed lines mark the confidence
interval. Right: Quotient of the final values and expected values as a more ap-
propriate visualization for large values of nφ. The CG method with tolerance
10−4 deviates from the confidence interval, while the other two schemes are in
compliance.

with tolerance 10−5 are both in compliance. With respect to this measure the PCG
method is as accurate as the Gauss-Newton method and significantly more efficient.

Comparing the final value of L to its expected value is cheap and a quick indica-
tor of the quality of the inversion result, but the test is based on a single number.
This means the test is able to assess the quality, but can’t communicate additional
information about underlying connections and reasons for poor results. The statis-
tical tests derived in section 2.6.2 and section 2.6.3 are based on high-dimensional
parameter errors and measurement residuals. As such, they produce several statis-
tical indicators in the form of estimates of stochastic moments, and the normalized
errors and residuals themselves may contain useful information in the form of spatial
patterns.

Figure 6.6 contains the histograms of the normalized errors ∆P and normalized resid-
uals ∆Z for the three largest data sets, nφ = 400, nφ = 625 and nφ = 900, computed
with algorithm 8 (SVDr). The histograms of ∆P are virtually the same for each
combination of the three data sets and the three optimization approaches. However,
the histograms of ∆Z are highly sensitive. The histograms of the PCG method with
tolerance 10−5 and the Gauss-Newton method generally have the correct mean value,
spread and general shape, with one outlier in the case of the Gauss-Newton method.
The histograms of the PCG method with tolerance 10−4 have the wrong mean, have
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Mean Variance Skewness Kurtosis

P̂ 2.697 1.845 × 102 0.5978 2.571
P∗ 101.5 1.192 × 108 0.0503 2.031
Prand 2461 1.135 × 109 0.3934 2.187

Table 6.2: Example a posteriori statistics of the normalized residual ∆Z in the case of nφ =

100 for the reference parameter tuple P̂, the prior mean P∗ and a random sample
Prand drawn from the prior distribution. The reference P̂ is itself an approximation
of Pmap, with deviations of the state observations that are by construction in the
order of the measurement errors. The values of the mean and variance of ∆Z for
P̂ can therefore be seen as the maximum values that may be tolerated for the
inversion result.

a spread that is much too large and are skewed, which indicates that the scheme
wasn’t able to achieve full convergence. This is consistent with L(Pmap) being far
outside of the confidence interval in the previous test.

These findings suggest that the normalized residual ∆Z is a better measure for
goodness-of-fit than the normalized error ∆P, as was already mentioned in remark 16.
For this reason we concentrate on the evaluation of the moments of ∆Z, which can
be found in figure 6.7 and may be compared with the values of table 6.2 as reference.
Two values for the variance are off the chart but can be deduced from figure 6.6.
The detailed analysis confirms that the sample mean, variance and skewness devi-
ate from their expected values in the case of the PCG scheme with tolerance 10−4

for larger values of nφ. The sample moments for the PCG method with tolerance
10−5 and the Gauss-Newton scheme are in good agreement with the expected val-
ues, with the PCG method being slightly better in several instances. This confirms
that the prior preconditioned Conjugate Gradients method can be as accurate as the
well-established Gauss-Newton method at significantly lower computational cost and
memory requirements.

6.1.2 Inversion of Stationary Flow in 3D

We extend the scenario to a full three-dimensional representation of a confined aquifer
in the form of a rectangular domain Ω of size 50 m × 50 m × 5 m. The properties of
the log-conductivity parameter field and the measurement errors are the same as
in the two-dimensional case and can be found in table 6.1. The top and bottom
of the domain are assumed to be impermeable, which leads to no-flow boundary
conditions, while the remaining faces of the domain have a fixed potential as in
the two-dimensional case. The injection well is represented by a straight line from
(25, 12.5, 1) to (25, 12.5, 4), while the extraction well is a straight line from (25, 37.5, 1)
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Figure 6.6: Histograms for the normalized residuals and errors for nφ = 400 ( ), nφ =
625 ( ) and nφ = 900 ( ), showing that the statistics of the residuals are
a much more sensitive indicator for the quality of the estimate than those of the
errors. Histograms for other values of nφ look similar. Note the different scale
for the normalized residuals of PCG with tolerance 10−4.
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Figure 6.7: A posteriori statistics of the normalized residual ∆Z for the prior preconditioned
CG method (PCGc) with tolerance 10−4 for the reduction of the directional
derivative of L ( ), the prior preconditioned CG method with tolerance 10−5 ( ),
and the randomized Gauss-Newton scheme (GNr, ). The Gauss-Newton method
is generally close to the expected values, indicating successful convergence and
applicability of the linearization of the posterior distribution. A small number
of outliers exists, suggesting an additional iteration of the algorithm would be
required for full convergence in these cases. While the statistics of the CG method
with tolerance 10−4 deviate from the expected values and indicate that further
iterations are required, those of the CG method with tolerance 10−5 are as good
as or better than those of the Gauss-Newton method.
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Model Runs L(Pmap) Mean Variance Skewness Kurtosis
PCGc 2614 101.5 −0.1945 0.9604 0.0294 2.992
GNr 2653 103.4 0.4032 5.5102 −0.1251 2.353

Table 6.3: Number of forward and adjoint model runs, final value of the objective function and
first four sample moments for the normalized residual ∆Z for the three-dimensional
test case solved with the PCG method with tolerance 10−5 and the randomized
Gauss-Newton method. In the case of the PCG method all four moments are
in good agreement with their expected values. The values for the Gauss-Newton
scheme suggest that one or two additional iterations would be required for full
convergence.

to (25, 37.5, 4). The placement of the wells can be seen in figure 6.1 interpreted as a
view from above.

The domain is discretized using a structured grid of size nΩ = 128 × 128 × 16 =

2.62 × 105, equidistant in each of the dimensions. The ansatz space is again V (1)
h (Eh),

which has a dimension of 2.62 × 105 · 8 = 2.10 × 106 in this case. The measurements
of φ are located at the coordinates

xi,j,k :=
(
50 ·

[
3

8
+ i · 1

16

]
, 50 ·

[
3

8
+ j · 1

16

]
, 5 ·

[
1

8
+ k · 3

4

])
(6.3)

for i, j ∈ {0, 1, . . . , 4} and k ∈ {0, 1, . . . , 8}, which forms a grid with mesh width
3.125 m in the horizontal and 0.468 75 m in the vertical direction. The measurement
locations represent 25 observation wells of 9 measurements each, and their horizontal
position is shown in figure 6.1. This setup results in an observation space of dimension
nφ = 225.

A synthetic reference P̂ is generated, see the upper row of figure 6.8, then syn-
thetic measurements are obtained by simulating the stationary groundwater equa-
tion, model 3, and adding noise to the state observations. The resulting data is used
as input for inversion, once with the PCG method with tolerance 10−5 and once with
the randomized Gauss-Newton method.

The bottom row of figure 6.8 shows the inversion result Pmap of the PCG scheme. The
estimate is able to reproduce the coarse structure of the reference field, while smaller
features are missing in the estimate due to the limited amount of data. Table 6.3
lists the number of model runs that were needed for the inversion, the final value
of L and the a posteriori statistics of ∆Z for both algorithms. The caching prior
preconditioned CG scheme achieved a significantly better result for approximately
the same computational effort. This is consistent with the findings for the two-
dimensional test case of the previous section.
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Synthetic Reference (Interior)

Estimate for nφ = 225 (Interior)

Figure 6.8: Upper row: Synthetic reference parameter field P̂ with exponential covariance
structure, representing the log-conductivity of a three-dimensional aquifer, nΩ =
128 × 128 × 16. Both images show the same domain, once from above and once
from below. Lower row: Estimate Pmap for nφ = 225 head measurements, same
orientation. All images show the inner part of the domain where the parameters
are sensitive, compare figure 6.2, with approximately 20% cut away in the vertical
and 50% cut away in the other two dimensions. The estimate is able to reproduce
the coarse features and general structure of the reference field, while smaller
features can’t be recovered from the data. This includes a small number of layers
that are not represented in the estimate. Not shown: The posterior variance of
the parameter field has the same structure as in the two-dimensional case, with
low values around the measurement columns and intermediate values between the
measurement locations.
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Property Description Value
Log-conductivity Y :

Covariance model exponential
λ Correlation length 5 m
σ2 Prior variance 1.6
β∗ Prior mean -5.8
σ2β Uncertainty of prior mean 0.1

Log-storativity Zs:
Covariance model exponential

λ Correlation length 5 m
σ2 Prior variance 1.6
β∗ Prior mean -9.2
σ2β Uncertainty of prior mean 0.1

Error of head observations φ:
Covariance model uncorrelated

σ2 Prior variance 1 × 10−4 m2

Table 6.4: Assumptions about the parameter distribution and measurement errors for the
transient dipole experiment, largely identical to those listed in table 6.1 for the
stationary test cases. The logarithm Y = ln(K) has to be interpreted with K
measured in ms−1, and the logarithm Zs = ln(Ss) with Ss measured in m−1.

6.1.3 Inversion under Transient Conditions

To complement the test cases of the previous two sections, we simulate transient
groundwater flow in a confined aquifer. The setup is identical to that of section 6.1.1,
but we simulate the behavior of the system from the moment the pumps are started
instead of assuming established stationary conditions. This requires additional as-
sumptions about the log-storativity Zs and its distribution, which can be found in
table 6.4.

The domain Ω is again a square of size 100 m × 100 m, and the considered time
interval is T := [0 s, 50 s]. While not completely realistic, we assume that the pumps
are able to produce the required water flow instantaneously and keep it constant,
since otherwise the fluctuating source and sink terms would have to be taken into
account. We use a structured equidistant grid of size nΩ = 512 × 512 = 2.62 × 105

and V
(1)
h (Eh) as ansatz space, while the time interval is divided into nT = 50 steps

using the second-order implicit Alexander scheme, discretization 5. This leads to a
discrete state space for φ of dimension nΩ ·4·nT = 5.24 × 107. Two parameter vectors
are required for the transient groundwater flow equation, model 2, and therefore the
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Model Runs L(Pmap) Mean Variance Skewness Kurtosis
2082 151.8 −0.0232 1.314 −0.0551 3.007

Table 6.5: Number of forward and adjoint model runs, final value of the objective function
and first four sample moments for the normalized residual ∆Z for the transient
dipole experiment. The number of model runs required for convergence and the
a posteriori statistics are similar to those obtained for the stationary test cases,
compare table 6.3.

parameter space has dimension 2.62 × 105 · 2 = 5.24 × 105. The hydraulic head is
monitored at 5×5 measurement locations, and 11 observations are recorded for each
location at times ti = 5 s + i · 4 s, 0 ≤ i ≤ 10. The resulting observation space has
dimension nφ = 5 · 5 · 11 = 275.

Two synthetic reference fields are generated, one for Y and one for Zs. Then the
transient groundwater flow equation is simulated with the boundary conditions from
section 6.1.1 and the assumption that the hydraulic head is constant in Ω for t =
0 s. The resulting head observations are combined with Gaussian noise to simulate
measurement errors and then used as input for the PCG method with tolerance
10−5.

The two reference fields and their estimates are shown in figure 6.9. The estimate
of Y is comparable to those from the previous sections both in terms of variability
and spatial resolution, see figure 6.2. The estimate of Zs is significantly less detailed,
and its upper left corner is an example of aliasing as described by Li et al. [52]. The
synthetic reference isn’t representative for the posterior distribution in this case, and
the high values of Y in the affected area translate to an increase in the posterior
mean of Zs.

Both parameter estimates are accompanied by estimates of their uncertainty, see
figure 6.10. These estimates of the posterior variance are computed using algorithm 8
(SVDr) as in the stationary case. The areas with the lowest uncertainty are also
those with comparatively high spatial resolution and large variations of the posterior
mean. The estimate of Zs is significantly more uncertain than that of Y , indicating
that the chosen setup is less suited for an estimation of Zs. Table 6.5 contains
the qualitative assessment of the inversion result. The required number of model
simulations is similar to those of the stationary test cases, and the final value of the
objective function L(Pmap) is one standard deviation away from its expected value.
The moments of ∆Z are all very close to their expected values, as in the stationary
case, indicating that the estimate Pmap and the posterior covariance matrix Qpost

PP
are an adequate representation of the posterior distribution.
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Reference for Y Estimate for Y

Reference for Zs Estimate for Zs

Figure 6.9: Upper row: Synthetic reference parameter field and estimate for the log-
conductivity Y , nΩ = 512 × 512. Lower row: Synthetic reference parameter
field and estimate for the log-storativity Zs. The estimate of Y has a similar
structure and resolution as the estimate for nφ = 5 × 5 in the stationary test
case, compare figure 6.2, implying that the data gained from the first part of
the drawdown curves contained approximately the same amount of information
as the data taken from the stationary limit. The estimate of Zs has less spatial
resolution and displays aliasing in the upper left corner, caused by the synthetic
reference having large values of Y in that area.
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Uncertainty of Estimate for Y Uncertainty of Estimate for Zs

Figure 6.10: Left: Uncertainty for the estimate of Y . Right: Uncertainty for the estimate of
Zs. The posterior variance of Y is very similar to that seen in the stationary
test cases. The posterior variance of Zs is significantly higher. This is consistent
with the lower spatial resolution of the estimate and the aliasing effects shown
in figure 6.9.

6.2 Inversion of Solute Transport

As a second application we consider the joint inversion of head measurements and
tracer concentration data. A solute is transported across a two-dimensional square
domain of size 100 m×100 m, see figure 6.11, with the water flow driven by a constant
potential difference of ∆φ = 3 m between the top and bottom boundaries. Both
the hydraulic head φ and the tracer concentration c are monitored at an array of
measurement locations that is spread across the lower part of the domain.

The transport equation and its adjoint are linear and the state c isn’t used in any
other context, which means that the unit of the state variable may be chosen freely.
It is convenient to measure c in terms of an arbitrary but fixed reference concen-
tration ĉ, since this turns it into a unitless quantity. We also interpret c as the
deviation from some given mean concentration c∗. These assumptions enable us to
treat the initial condition c0 as a unitless Gaussian random field with mean zero.
The prior distribution of c0 is described in table 6.6, as are the distributions of the
log-conductivity Y and the measurements of φ and c. The parameters of the Bear-
Scheidegger tensor are assumed to be constant for simplicity, and have the values
λl = 1 × 10−3 m, λt = 1 × 10−5 m and Dm = 2 × 10−9 ms−1.

We discretize the domain with an equidistant structured grid of size nΩ = 256× 256,
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Inflow Boundary

Flow Direction

Measurement Locations

Outflow Boundary

Figure 6.11: The experimental setup for the test case of section 6.2. The groundwater is
driven by a constant potential difference of ∆φ = 3 m between the top and bot-
tom boundaries. A no-flow boundary condition is placed on the left and right
boundaries. The resulting flow field transports a heterogeneously distributed
tracer concentration across the domain, and the breakthrough curves are moni-
tored at an array of measurement locations spread across the lower part of the
domain.

Property Description Value
Initial condition c0:

Covariance model exponential
λ Correlation length 5 m
σ2 Prior variance 0.4
β∗ Prior mean 0
σ2β Uncertainty of prior mean 0
Error of concentration measurements c:

Covariance model uncorrelated
σ2 Prior variance 2.5 × 10−3

Table 6.6: Assumptions about the parameter distribution and measurement errors for the
tracer experiment. The prior distributions for the log-conductivity Y and the
measurement error of φ are the same as for the transient groundwater flow test
case, see table 6.4. Both the tracer concentration c and its initial condition are
relative values based on an arbitrary but fixed reference concentration ĉ. The
initial condition c0 uses a fixed mean c∗0 = 0 instead of a trend parameter.
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Mean Variance Skewness Kurtosis
∆P 0.202 9.396 1.439 8.287
∆Z −0.827 192.5 2.229 34.63

Table 6.7: A posteriori statistics for the normalized error ∆P and the normalized residual
∆Z for the joint inversion of head measurements and tracer data. The high values
of the sample variances indicate that the method didn’t achieve full convergence
for this test case.

leading to a parameter space of dimension 6.55 × 104 · 2 = 1.31 × 105. The time
interval T := [0, 5 × 105 s] is divided into nT = 50 steps of uniform size, with substeps
as required by the CFL condition, equation (5.19). We use the ansatz space V (1)

h (Eh)
for both model equations, and therefore the discretized state space has dimension
nΩ ·4·nT ·2 = 2.62 × 107. The array of measurement locations consists of 33×5 points
and the system state is monitored at each of the nT + 1 discrete times ti = is, 0 ≤
i ≤ 50, which means the observation space has dimension 33 · 5 · 51 · 2 = 1.68 × 104.

The PCG method stops after 276 iterations based on a total of 1180 simulations,
producing the estimates shown in figure 6.12. The final value of the objective function
is 1.23 × 104, while its expected value is L(Pmap) = 8415 ± 92, i.e. the final value
is too large by a factor of 1.5 and deviates significantly from its expected value.
This is confirmed by the statistical evaluation of the normalized error ∆P and the
normalized residual ∆Z, see table 6.7. In both cases the variance is significantly
larger than one, indicating that the scheme didn’t achieve full convergence. The
directional derivative has become zero, although its theoretical value computed using
the gradient, compare equation (2.43), would indicate a descent direction. This
suggests that the discretization error is too large and causes inaccuracies in the
adjoint state method. Possible solutions are switching to a finer resolution or using
an adjoint equation that is derived directly from the discretized forward equation.

The PCG method was able to reduce the norm of the directional derivative by three
orders of magnitude. This isn’t enough to accept the result as an estimate of the
mean of the posterior distribution, but it still allows the interpretation of the inversion
result as an estimate of the synthetic reference. Figure 6.12 and figure 6.13 show that
the estimate is able to predict the general structure and main features of the synthetic
reference field, including the spatial mean in most parts of the domain. The inclusion
of tracer data clearly improves the estimation of the log-conductivity Y , providing
information about Y in parts of the domain not covered by the measurement array,
despite the fact that the concentration c is itself unknown as well. The uncertainty
quantification shown in figure 6.13 is based on an approximate SVD using r = 250
singular values.
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Reference for Y Estimate for Y

Reference for c0 Estimate for c0

Figure 6.12: Upper row: Synthetic reference parameter field and estimate for the log-
conductivity Y of the tracer experiment. Lower row: Synthetic reference param-
eter field and estimate for the initial value c0. The estimate of Y is significantly
more accurate in the vicinity of the measurement array than in the rest of the
domain. The estimate of c0 isn’t as localized, but gradually loses accuracy when
moving away from the array. The inclusion of tracer information improves the
estimate of Y in comparison to those from the previous sections, especially in
parts of the domain that are far away from the measurements.
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Uncertainty of Estimate for Y Uncertainty of Estimate for c0

Figure 6.13: Left: Result of an approximate uncertainty quantification with r = 250 for the
estimate of Y in figure 6.12. Right: Result of the same uncertainty quantification
for the estimate of c0. While the sensitivity of the log-conductivity Y is for the
most part restricted to the direct vicinity of the measurement array, the initial
value c0 is sensitive in most parts of the domain.

6.3 Inversion of the Transient Richards Equation

The last application we consider is the inversion of the Richards equation. We assume
that the domain Ω is filled with a Miller-similar medium with properties as listed in
table 6.8. The parameter tuples represent the uncertain reference parameters used
for Miller scaling. Their small but nonzero variance is based on the assumption that
there isn’t a perfect set of reference parameters describing the whole medium, i.e. im-
perfections and deviations in the parameterization exist and are spatially correlated.
Equation (4.32) allows the definitions

Yeff := Y − 2 · χ, αeff := α [exp(χ)]−1 , ln(αeff) = ln(α)− χ, (6.4)

where in a change of notation Y and α now refer to the reference values and Yeff
and αeff to the actual local parameters. The other parameters are assumed to be
scale-invariant, i.e. neff := n and aeff := a. A parameter estimate should first and
foremost be able to reproduce these effective parameters, since they are the basis of
the model. While the inversion may include measurements of both matric head and
saturation, we restrict ourselves to direct measurements of φm for simplicity.

We consider transient unsaturated flow in a two-dimensional square domain Ω of size
2 m × 2 m, see figure 6.14. The bottom of the domain is kept at a constant potential
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Property Description Value
Covariance structure for all parameters:

Covariance model exponential
λ Correlation length 0.2 m

Log-Miller scaling parameter χ:
σ2 Prior variance 1
β∗ Prior mean 0.37
σ2β Uncertainty of prior mean 0

Saturated log-conductivity Y :
σ2 Prior variance 0.1
β∗ Prior mean -5.8
σ2β Uncertainty of prior mean 0.01

Van Genuchten parameter α:
σ2 Prior variance 0.01 m−2

β∗ Prior mean 2 m−1

σ2β Uncertainty of prior mean 0.1 m−2

Van Genuchten parameter n:
σ2 Prior variance 0.01
β∗ Prior mean 1.6
σ2β Uncertainty of prior mean 1 × 10−3

Mualem tortuosity parameter a:
σ2 Prior variance 0.01
β∗ Prior mean 0.5
σ2β Uncertainty of prior mean 1 × 10−3

Error of matric head observations φm:
Covariance model uncorrelated

σ2 Prior variance 1 × 10−4 m2

Table 6.8: Assumptions about the parameter distribution and measurement errors for the
Richards equation. All parameters except χ are defined on the reference scale.
They represent the reference parameters of the Miller-similar medium and therefore
have relatively low spatial variability. The log-Miller scaling parameter uses a fixed
mean χ∗ that essentially defines the reference scale, with the value 0.37 only chosen
to show that the method can handle fixed means that aren’t zero. The logarithm
Y = ln(K) has to be interpreted with K measured in ms−1.
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Figure 6.14: The experimental setup for the transient Richards equation. The potential at
the bottom of the domain is held at a constant value of φm = 0. In a field
experiment this describes the groundwater table, and in a laboratory setting
it is a controlled boundary condition. At the top of the domain a limited flux
condition is applied, which lets water propagate into the domain, while the water
flux across the two sides of the domain is zero.

of φm = 0 m, and at t = 0 s the forces are assumed to be in equilibrium, i.e. φm(0)
is proportional to the distance from the bottom boundary, reaching its lowest value
φm = −2 m at the top of the domain. The heterogeneity of the parameters implies
that the actual equilibrium will deviate from this idealized initial condition, but
we assume that the resulting fluxes can be neglected. A constant flux of jθw =

min(exp(Y ), 3 × 10−4 ms−1) enters the domain at the top, and water starts flowing
down through the domain. We limit the flux at the top of the domain to avoid
boundary conditions that don’t allow a solution. The dependence on Y doesn’t
influence the formulation of the adjoint model, since Y is treated as constant every
time an adjoint equation is solved. No-flow boundary conditions are applied on the
two remaining boundaries. We choose θs = 0.32 and θr = 0.03 for the saturated and
the residual water content, and all other parameters of the Richards equation can be
found in table 6.8.

The domain is discretized using a structured equidistant grid of size nΩ = 128× 128.
The parameter field tuple is

S := (χ, Y, α, n, a) , (6.5)
producing a parameter space of dimension nΩ · 5 = 8.19 × 104. We simulate the
flow dynamics in the time interval T := [0 s, 300 s], using the Alexander scheme,
discretization 5, and adaptive timestepping through discretization 6. The solution
of the forward model is stored with a resolution of 3 s, so that it is available for
the adjoint model and the evaluation of state observations. Since the ansatz space
is again V

(1)
h (Eh), the resulting discretized state space has dimension nΩ · 4 · nT =
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1.97 × 107. Synthetic measurements of the system state φm are generated using a
grid of measurement locations of size 25 × 25, compare figure 6.14, and a sampling
frequency of one measurement per three seconds. This produces an observation space
of dimension 225 · 25 · 25 = 1.41 × 105, since we exclude a boundary layer of relative
width 1/8, i.e. 0.25 m respectively 37.5 s, when taking measurements. In this case the
observation space is larger than the parameter space, but the inverse problem still
requires regularization due to the high autocorrelation of the state observations.

The PCG method is started with synthetic parameter fields and corresponding mea-
surements as input, with Gaussian noise added to the observations to simulate mea-
surement error. It stops after reaching the maximum number of iterations, which
was set to 450 in this case. The synthetic reference fields and the resulting estimates
can be seen in figures 6.15, 6.16 and 6.17. The large number of measurements has
made it possible to reconstruct the log-Miller scale parameter χ in the part of the
domain that was reached by the infiltrating water, apart from high-frequency fluc-
tuations. The estimate of χ has a slightly larger mean than the reference, which is
compensated by a corresponding rise in the mean of the estimates of Y and α. Due
to the vastly different variances of the three prior distributions this is much more
noticeable in the latter two estimates. This also explains the correlation between the
estimates of Y and α, as it can be interpreted as an exchange between the correlated
and uncorrelated parts of the effective parameters Yeff and αeff. This form of aliasing
is expected, since the triple (χ, Y, α) is an overparameterization of the model. Fig-
ure 6.19 shows that the effective local parameters Yeff and αeff are indeed estimated
correctly.

While the correlated deviations in Y and α can be attributed to interaction with the
estimation of χ, this does not explain the large shift in the mean of α or the strong
bias in the estimates of n and a. It is likely that these poor estimates are caused by
the strongly nonlinear interdependence of the parameters, compare equations (4.30)
and (4.31). The system stays relatively close to saturation, and therefore only a
small part of the range [θr, θs] of possible values for the water content θw is actually
encountered during the simulation. This means completely different parameteriza-
tions (αeff, n, a) are able to explain the measurements. The system is insensitive with
regard to these parameters under the chosen initial and boundary conditions.

The discussed issues are also apparent in the linearized uncertainty quantification
shown in figure 6.18, which was computed using algorithm 8 (SVDr) with r = 200
singular values. It shows a drastic reduction in the uncertainty of χ, but only a
moderate reduction in the uncertainty of the other parameters and almost none for
the Mualem parameter a. This confirms that the method was able to reproduce the
synthetic reference of χ with high accuracy and produced a relatively good estimate
of Y , but couldn’t constrain the other parameters to any significant degree.

The final value of the objective function is 73510, which is a significant deviation
from the expected value L(Pmap) = 70630 ± 270. This indicates that the method
wasn’t able to converge as desired, most likely due to the low sensitivity of some
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Reference for χ Estimate for χ

Reference for Y Estimate for Y

Figure 6.15: Upper row: Synthetic reference parameter field and estimate for the log-Miller
scale parameter χ. Lower row: Synthetic reference parameter field and estimate
for the log-conductivity Y . The large number of measurements makes it possible
to almost completely recover χ in the areas that are reached by the infiltrating
water. Due to the overparameterization of the model, a part of the effective
log-conductivity Yeff originating from χ is attributed to Y instead, leading to a
biased estimate. Apart from the resulting shift in its mean, the estimate of Y is
able to capture the coarse structure of the synthetic reference field.
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Reference for α Estimate for α

Reference for n Estimate for n

Figure 6.16: Upper row: Synthetic reference parameter field and estimate for the van
Genuchten parameter α. Lower row: Synthetic reference parameter field and
estimate for the van Genuchten parameter n. The estimate of α is unable to
recover any information about the synthetic reference, with its spatial structure
originating from the estimate of Y and its mean likely being an interaction with
the estimation of n and a. The estimate of n recovers some information in the
right part of the domain, but this is overshadowed by large deviations that occur
on the left.
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Reference for a Estimate for a

Figure 6.17: Synthetic reference parameter field and estimate for the Mualem tortuosity pa-
rameter a. The estimate is unable to recover any information about the synthetic
reference, similar to the estimate of α in figure 6.16.

Uncertainty of Estimate for χ Uncertainty of Estimate for a

Figure 6.18: Two examples of the uncertainty quantification with r = 200 for the estimated
parameter fields, left: uncertainty of the estimate of χ, right: uncertainty of
the estimate of a. The estimate of χ has the highest reduction of uncertainty
among the parameter fields, while the estimate of a has by far the lowest. The
uncertainty estimates of the remaining parameter fields are structurally similar
to that of χ, but do not achieve the same reduction of uncertainty.
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Reference for Yeff Estimate for Yeff

Reference for ln(αeff) Estimate for ln(αeff)

Figure 6.19: Upper row: Synthetic reference parameter field and estimate for the effective
local log-conductivity Yeff. Lower row: Synthetic reference parameter field and
estimate for the effective local van Genuchten parameter αeff. The construction
based on equation (6.4) and the large variance of the log-Miller scale parameter
χ yield two reference fields that are highly correlated. The two estimates cap-
ture all relevant features of the reference fields, suggesting that the bias in the
underlying estimated parameters is caused by overparameterization and has no
real impact on the system state.

151



6 Applications

Observations Model Runs L(Pmap) Mean Variance Skewness Kurtosis
141250 2070 73510 3.928 133.9 1.778 16.56

Table 6.9: A posteriori statistics for the inversion of the transient Richards equation. The
method would have required further iterations to achieve full convergence, as in-
dicated by the final value of the objective function and the mean and variance of
the normalized residual ∆Z.

of the parameters. The same holds for the statistics of the normalized residual ∆Z,
compare table 6.9. An inspection of the evolution of the objective function and the
directional derivative during optimization suggests that the iterative method may be
converging to a local minimum of the objective function. If this is the case, then a
different initial guess may lead to better results.

The result of the optimization isn’t suitable as an estimate of the mean of the posterior
distribution, but the test case demonstrates that the caching PCG method remains
applicable when both the number of parameters and the number of observations
are large and classical Hessian-based methods are no longer feasible. The parameter
estimation could be improved through the inclusion of measurements of water content,
possibly combined with modified boundary conditions, since this would put additional
constraints on the Mualem-van Genuchten parameterization.
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7 Conclusions

This thesis has presented several methods for the estimation of spatially resolved
parameter fields, a caching prior preconditioned Conjugate Gradients method, al-
gorithm 6 (PCGc), a randomized PCG method, algorithm 12 (PCGpost

c ), and a
randomized Gauss-Newton method, algorithm 16 (GNr). All three methods are
designed for the inversion of large data sets using high-resolution parameter fields.

The main idea behind the caching prior preconditioned CG method is the application
of Q−1

PP, the inverse of the covariance matrix of the parameters, as a preconditioner
for the Conjugate Gradients method. This choice of preconditioner leads to mesh-
independent convergence behavior, and at the same time it reduces the computational
cost per iteration, since one of the most expensive operations can be removed from
the algorithm. The other methods are based on a partial spectral decomposition or
singular value decomposition of the Hessian of the preconditioned objective function,
and avoid multiplication with Q−1

PP in a similar fashion.

The randomized partial spectral decomposition, algorithm 7 (EDr), and the ran-
domized partial singular value decomposition, algorithm 8 (SVDr), are also used
to provide linearized uncertainty quantification for the parameter estimates. The
singular value decomposition can be used to normalize both estimation errors and
measurement residuals, see algorithms 10 (TUP

r ) and 11 (TUZ
r ). These normalized

errors and residuals provide information that makes it possible to check the inversion
results for consistency and plausibility.

7.1 Summary

The caching prior preconditioned CG method, algorithm 6 (PCGc), is the main result
of the previous chapters, as it has several important properties that are beneficial
when considering high-dimensional inverse problems:

• It has the lowest cost per iteration of the considered methods, requiring three
simulations of the forward model F , one simulation of the adjoint model F† and
a single multiplication with QPP per step. The other methods require either
significantly more expensive matrix operations or a larger number of model
runs, compare section 2.8.1.
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• It has the lowest memory requirements among the methods that remain efficient
on meshes with high resolution, as discussed in section 2.8.2, storing eight
parameter vector tuples and one discretized system state of the model F . The
only scheme with lower requirements is the CG method without preconditioner,
algorithm 3 (CG), and this method becomes inefficient on finer meshes since
its convergence rate is mesh-dependent, see section 2.3.4.

• The test cases of sections 6.1.1 and 6.1.2 show that the number of measurements
doesn’t have much influence on the required number of iterations, with the effort
for inversion clearly sublinear in the number of observations. For the considered
test cases the efficiency of the caching PCG method is comparable to the well-
established Gauss-Newton method, with the Gauss-Newton scheme being faster
if the number of measurements is small and the caching PCG method being
more efficient for larger data sets.

Therefore the method remains applicable when other methods are no longer feasi-
ble due to memory constraints, and it is potentially orders of magnitude faster in
situations where these other methods can still be applied.

We may conclude that the classical Gauss-Newton method in its compact formulation,
algorithm 15 (GNCE), remains the best choice if the number of state observations
NZ :=

∏nZ
j=1 nzj is comparatively small, while the caching PCG method, algorithm 6

(PCGc), can become more efficient after a certain critical value of NZ. Furthermore,
there is a critical value for NP :=

∏nP
i=1 npi that marks the point after which the

caching PCG method is the only applicable method among the ones that have been
discussed. These two values will depend on the forward model F and the number
and location of the measurements, but the test cases of chapter 6 suggest that they
are in ranges that are realistic for applications, especially if the observations originate
from a transient model or imaging techniques.

The randomized methods rely on partial spectral decompositions, which can be ob-
tained with algorithm 7 (EDr) or algorithm 8 (SVDr). Both approaches require
one run of the forward model F and one run of the adjoint model F† per eigenvalue.
This means the number of essential eigenvalues r has to be smaller than 1

2NZ, else
the direct computation of HZP of the classical methods would be computationally
more efficient. The test cases of section 6.1 demonstrate that this isn’t necessarily the
case even if comparatively large values for NZ are chosen. Therefore, the efficiency
of these randomized methods depends on the shape of the spectrum of Mlike and
ultimately on the amount of autocorrelation between the state observations.

The linearized uncertainty quantification and the two statistical tests that were in-
troduced in section 2.6, algorithm 10 (TUP

r ) and algorithm 11 (TUZ
r ), also rely on

these partial spectral decompositions, and therefore their efficiency also depends on
the number of eigenvalues that have to be calculated. In these cases the results of the
spectral decomposition aren’t used to generate a search direction, they only provide
a linearization of the model F in the direct vicinity of the parameter estimate Pmap.
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This means a smaller number of eigenvalues may already suffice if the resulting local
linearization is accurate enough for the concrete application. The uncertainty esti-
mates of sections 6.2 and 6.3 show that a very small number of recovered eigenvectors
and eigenvalues may be enough to provide accurate results.

7.2 Outlook

While the efficiency of the proposed method has been demonstrated through the
applications of chapter 6, all of the considered test cases are based on synthetic
data. It is well known that good performance on artificial data doesn’t automatically
guarantee the same behavior for real-world applications, as real data is typically much
more irregular. Therefore, the caching prior preconditioned Conjugate Gradients
method, algorithm 6 (PCGc), needs to be tested with data from real experiments.

The randomized Gauss-Newton method, algorithm 16 (GNr), has only been applied
to a small number of test cases in section 6.1, and in all of these tests it was less
efficient than the classical Gauss-Newton method in the formulation of algorithm 15
(GNCE). Its stabilized variants, the posterior preconditioned CG method of sec-
tion 2.7, algorithm 12 (PCGpost

c ), and the randomized Levenberg-Marquardt method
mentioned in section 3.3.2, haven’t been applied at all. These methods should be
examined through synthetic test cases that are designed for their particular strengths,
i.e. high-dimensional data sets with low effective dimension in terms of information
content, e.g. unfiltered high-resolution time series.

The techniques that have been presented in this thesis, namely preconditioning with
the inverse of the prior covariance matrix and calculating an approximate spectral
decomposition for the Hessian of the preconditioned objective function, are quite
general and may potentially be applied in other methods for Bayesian inversion or
Bayesian data assimilation. Similarly, the potential of the presented methods as
building blocks or preconditioners in more sophisticated parameter estimation meth-
ods may be of interest.
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Notation

The lists of this chapter contain the symbols and acronyms used throughout the doc-
ument. The symbols are grouped into three different categories for ease of reference,
being Roman letters, Greek letters and remaining symbols. Any symbol that doesn’t
appear in the following lists, e.g. R, T or W, serves as an auxiliary variable and may
have different meanings in different contexts.

With few exceptions, the following typographic conventions hold:

Bold discrete vectors and matrices
Calligraphic abstract operators
Normal weight continuous functions and scalar quantities
(. . .) Parentheses function arguments and tuples
[. . .] Brackets grouping of mathematical terms

A small number of symbols is used to represent more than one mathematical object,
and these symbols are therefore listed several times. Care has been taken to make the
intended meaning clear from context. The lists also contain the section of the first
appearance for any symbol to help in the case of ambiguity or if further information
is needed.

Roman Letters

Name Dimension Description Section

a [−] parameter of Mualem parameterization 4.2
byx boundary value for state x and condition y

(D: Dirichlet, N : Neumann)
4.1

C [−] total solute concentration 1.2
c [−] solute concentration in water 1.2
D [L2T−1] dispersion tensor 1.2
Dm [LT−1] molecular diffusion tensor 4.3
d dimension of domain 1.1
Eh set of elements of discretized domain 1.1
E element of discretized domain 1.1
eg [−] unit vector in direction of gravity 4.2
F discrete Fourier transform 2.1.2
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Roman Letters

Name Dimension Description Section

F forward model 1.1
Fh set of faces of discretized domain 5.2.1
F face in discretized domain 5.2.1
fx probability density function of x 2.1
Gx reconstructed discrete gradient of x 5.2.5
G discrete forward model 1.1
g [LT−2] gravitational acceleration 4.1
Hxy sensitivity matrix of x with respect to y 2.3
h mesh width of discretization 1.1
I identity matrix 2.1.2
I interpretation operator 1.1
Jx numerical flux of x, flux reconstruction 5.2.2
jx flux of quantity x or for state x 1.2
K [LT−1] hydraulic conductivity 1.2
L matrix decomposition of type M = LLT 2.1.1
L Lagrangian of objective function 2.4.1
L objective function 2.2.2
Mlike likelihood part of preconditioned Hessian 2.5
nx unit normal vector on x, or of boundary Γ 4.1
N (x, y) normal distribution with covariance matrix x

and mean y
2.1.1

n [−] second van Genuchten parameter 4.2
nx number of entries or components of x 1.1
O observation operator 1.1
O (x) Landau symbol, complexity class of x 2.4
P tuple of parameter vectors 1.1
Pmap MAP point of the objective function 2.2.2
p parameter vector 1.1
p component of a parameter vector 2.4.1
Qxx covariance matrix of x 2.1.1
Qpost
xx posterior covariance matrix of x 2.5

Qxy cross-covariance matrix of x and y 2.2
Qyx set of polynomials in x dimensions with maxi-

mum degree y per dimension
5.2.1

qx source term for quantity x or state x 1.2
rx reaction term for quantity x or state x 5.2
s parameter field, consisting of trend contribu-

tions and localized parameters
1.1

S tuple of parameter functions 1.1
Ss [L−1] specific storativity 1.2
s parameter function on domain Ω 1.1
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Greek Letters

Name Dimension Description Section

T finite time interval [0, tmax] 1.2
T (x) complexity of given expression in terms of x 2.4
t [T ] time 1.2
U tuple of system states 1.1
u system state, state function 1.1
uh discretized system state 5.1
V space of system states 1.1
x physical coordinate in domain Ω 1.1
xx realization of random variable x 2.1
X map from trend parameters to spatial interp. 1.1
Y random variable 2.1
y spatially localized part of parameter vector 1.1
Y log-conductivity, K = exp(Y ) 1.2
Z tuple of measurement vectors 1.1
z measurement vector, vector of observations 1.1
Zs log-storativity, Ss = exp(Zs) 1.2

Greek Letters

Name Dimension Description Section

α [L−1] first van Genuchten parameter 4.2
β coefficient vector for trend parameters 1.1
Γ domain boundary, Γ = ∂Ω 4.1
Γyx boundary part for state x and condition y

(D: Dirichlet, N : Neumann, O: Outflow)
4.1

∆P normalized estimation error 2.6.2
∆Z normalized measurement residual 2.6.3
δk k-th time step width 5.1.1
δx small change in x, perturbation 3.3.1
ε measurement noise 2.2
ε extension of boundary trace onto domain Ω 4.1
Θ [−] saturation 4.2
θ [−] porosity 1.2
θr [−] residual water content 4.2
θs [−] water content at saturation 4.2
θw [−] water content 1.2
κ [−] relative conductivity 4.2
Λ diagonal matrix of eigenvalues 2.1.2
λl [L] longitudinal dispersion coefficient 4.3
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Symbols

Name Dimension Description Section

λt [L] transversal dispersion coefficient 4.3
ρ [ML−3] density of water 4.1
% restriction to trace on boundary Γ 4.1
Υ diagonal matrix of reciprocal eigenvalues 2.5
φ [L] hydraulic head 1.2
φm [L] matric head 4.2
χ logarithm of Miller similarity scale parameter 4.2
Ψ tuple of adjoint states 2.4.1
ψ adjoint system state 2.4.1
ψg [ML−1T−2] gravity potential 4.1
ψm [ML−1T−2] matric potential 4.1
ψw [ML−1T−2] water potential 4.1
ψx test function for state x 4.1
Ω physical domain, compact subset of R2 or R3 1.1
ω weight for averaging on faces 5.2.1

Symbols

Name Dimension Description Section

x0 initial value of state x 4.1
x∗ mean of x 2.1
xT transposed of matrix or vector x 2.1.1
x† adjoint of operator or function x 2.4.1
x̂ reference value for x 2.3.4
x̃ object of same type as x, “another” x 2.2.2
|x| absolute value of x 2.1.1
‖x‖2 Euklidean norm of x 2.1.1
‖x‖y norm of x induced by s.p.d. matrix y 2.2.1JxK jump of x across face 5.2.1
{x}ω weighted average of x on face 5.2.1
〈x, y〉z L2 scalar product of functions x and y on z 2.4.1
dyx derivative of x with respect to y 2.4.1
∂yx partial derivative of x with respect to y 1.2
∇yx gradient of x with regard to y 1.2
∇hx broken gradient on elements E ∈ Eh 5.2.1
∇ · x divergence of x 1.2
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Acronyms

Acronyms

AMG Algebraic Multigrid
CCFV Cell-Centered Finite Volume
CFL Courant-Friedrichs-Lewy condition
CG Conjugate Gradients
CGNE Conjugate Gradients on the Normal Equations
DUNE Distributed and Unified Numerics Environment
EnKF Ensemble Kalman Filter
EOC experimental order of convergence
FFT Fast Fourier Transform
GN Gauss-Newton
IPdG Interior Penalty discontinuous Galerkin
MAP Maximum A Posteriori
MCMC Markov-Chain Monte Carlo
ML Maximum Likelihood
PCA principal component analysis
PCG preconditioned Conjugate Gradients
PCGA Principal Component Geostatistical Approach
PDE partial differential equation
PDF probability density function
PSD preconditioned Steepest Descent
QLGA Quasi-Linear Geostatistical Approach
RKDG Runge-Kutta discontinuous Galerkin
SD Steepest Descent
SLE Successive Linear Estimator
SSP strong stability-preserving
SVD singular value decomposition
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