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Abstract	
	

Cancer	is	a	complex	genomic	disease	characterized	by	accumulation	of	somatic	
mutations	over	the	lifetime	of	a	patient.	Identification	of	somatic	driver	
mutations	that	contribute	to	tumorigenesis	is	a	major	goal	of	cancer	genomics.	
With	the	recent	advances	in	the	sequencing	technologies	it	became	possible	to	
study	somatic	mutations	on	the	whole-genome	scale	in	multiple	cancers.	While	
most	of	the	cancer	genomics	studies	were	previously	focused	on	identification	of	
driver	mutations	affecting	exons,	several	examples	of	driver	events	within	the	
non-protein-coding	regions	of	the	genome	were	identified,	including	the	
recurrent	TERT	promoter	mutations.	Such	findings	have	spurred	searches	for	
similar	examples	of	recurrent	non-coding	mutations	using	computational	cancer	
genomics.	In	my	PhD	thesis,	I	present	several	computational	approaches	aimed	
to	identify	somatic	driver	mutations	with	a	specific	focus	on	intergenic	regions	of	
the	genome.	
The	first	part	of	this	thesis	focuses	on	the	somatic	mutational	patterns	along	the	
cancer	genome	and	addresses	a	fundamental	problem	of	computational	
identification	of	recurrently	mutated	regions	–	regional	mutational	
heterogeneity.	Here	I	studied	the	correlation	of	specific	genomic	features	with	
background	somatic	mutation	rates	and	devised	a	background	model	that	
accounts	for	regional	mutational	heterogeneity.		

The	second	part	of	this	thesis	describes	three	different	computational	
approaches	designed	to	identify	somatic	driver	events	of	functional	relevance	in	
cancer.	The	first	approach	integrates	somatic	mutation	calls	with	gene	
expression	data	to	identify	variants	associated	with	altered	mRNA	levels.	The	
second	approach	is	designed	to	predict	changes	in	transcription	factor	binding	
sites	in	presence	of	recurrent	somatic	mutations.	The	third	approach	uses	cross-
validation	scheme	to	enable	parameter	tuning	in	screens	for	recurrently	
somatically	mutated	regions	in	cancer	genomes	in	an	unbiased	genome-wide	
manner.	Using	this	approach,	we	identify	several	known	cancer-relevant	targets,	
both	exonic	(e.g.,	the	TP53,	MYC,	and	SMARCA4	genes)	as	well	as	non-coding	
regulatory	regions	(e.g.,	the	TERT	promoter)	and	uncover	novel	candidate	
regulatory	driver	regions.	Among	those,	a	cluster	of	recurrent	intergenic	
mutations,	occurring	in	an	enhancer	element	near	the	FADS2	gene,	which	
encodes	a	critical	enzyme	in	the	biosynthesis	of	long	chain	polyunsaturated	fatty	
acids	and	has	been	previously	implicated	in	cancer.	
Collectively,	the	computational	approaches	presented	here	helped	in	uncovering	
novel	somatic	candidate	events	of	relevance	in	cancer	and	can	be	further	used	
for	various	applications	in	cancer	genomics. 	
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Zusammenfassung	
	
Krebs	ist	eine	komplexe	genomische	Erkrankung,	die	v.a.	durch	somatische	Mutationen	
charakterisiert	ist,	die	sich	im	Laufe	des	Lebens	im	Patienten	anhäufen.	Einer	der	
wesentlichen	Ziele	in	der	Krebsforschung/genomik	ist	somit	die	Identifikation	der	
somatischen	Mutationen,	die	zur	Tumorbildung	beitragen-	sogenannte	„somatic	driver	
mutations“.	Neueste	Fortschritte	in	Sequencing-Technologien	ermöglichen	die	Suche	
nach	diesen	Mutationen	im	gesamten	Genom	in	verschiedenen	Krebstypen.	Während	
die	meisten	Genomstudien	in	der	Krebsforschung	sich	hauptsächlich	auf	„driver“	
Mutationen,	die	Exone	betreffen,	fokussieren,	gibt	es	bereits	einige	Evidenzen	für	driver	
mutations,	die	in	nicht-kodierenden	Regionen	des	Genoms	auftreten,	wie	z.B.	
wiederkehrende	TERT	Promoter	Mutationen.	Solcherlei	Beobachtungen	führten	
dementsprechend	zu	Studien	von	weiteren	Mutationen	unter	Anwendungen	von	
bioinformatischen	Methoden.	In	meiner	hier	vorgelegten	PhD-Arbeit	präsentiere	ich	
mehrere	bioinformatische	Angehensweisen	zur	Identifizierung	von	somatischen	driver	
mutations	mit	Fokus	auf	jene,	die	außerhalb	von	protein-kodierenden	Bereichen	des	
Genoms	liegen.	

Der	erste	Teil	dieser	Arbeit	behandelt	das	Auftreten	von	somatischen	Mutationen	im	
Krebsgenom	und	adressiert	das	fundamentale	Probleme	bei	der	Identifizierung	von	
wiederkehrenden	Mutationen,	nämlich	regionale	Mutationsheterogenität.	Ich	
untersuche	in	diesem	Zusammenhang	die	Korrelation	von	spezifischen	genomischen	
Merkmalen	mit	im	Hintergrund	auftretenden	Mutationsraten	und	entwickle	eine	Modell,	
das	Nulleffekte	sowie	Heterogenität	von	Mutationen	in	spezifischen	Regionen,	
berücksichtigt.	

Der	zweite	Teil	meiner	Arbeit	beschreibt	drei	verschiedene	bioinformatische	Ansätze	
zur	Identifikation	von	somatischen	Mutationsereignissen	mit	funktioneller	Relevanz	zur	
Krebsentwicklung.	Der	erste	Ansatz	verbindet	signifikante	Mutationsereignisse	mit	
Genexpression	um	eine	genomische	Variante	zu	detektieren,	die	zu	veränderten	mRNA-
Levels	führt.	Der	zweite	Ansatz,	hingegen,	versucht	Veränderungen	an	Bindungstellen	
von	Transkriptionsfaktoren	aufzuzeigen,	die	aufgrund	von	wiederkehrenden	
somatischen	Mutationen	auftreten	können.	Schließlich	stelle	ich	das	dritte	Konzept	vor,	
das	eine	Kreuzvalidierung	umfasst,	die	einen	Parameterabgleich	in	der	Suche	nach	
relevanten	Mutationen	im	Krebsgenom	auf	eine	objektive	Art	und	Weise	ermöglicht.	
Unter	Anwendung	dieser	Methode	identifizieren	wir	etliche	krebs-relevante	Targets,	ob	
in	Exon	angesiedelte	Gene	(wie	z.B.	TP53,	MYC,	und	SMARCA4),	oder	in	nicht-
kodierenden	Bereichen	(wie	z.B.	der	TERT	promoter).	Allerdings	detektieren	wir	auch	
neue	Kandidat-Regionen,	die	als	driver	Mutations	in	Frage	kommen,	u.a.	ein	Cluster	an	
Mutationen	im	Enhancer-Bereich	in	der	Nähe	des	FADS2-Gens.	Interessanterweise	ist	
dieses	Gen,	das	ein	kritisches	Enzym	für	die	Biosynthese	von	langkettigen	nicht-
saturierten	Fettsäuren	kodiert,	bereits	in	anderen	Studien	mit	Krebs	in	Verbindung	
gebracht	worden.	

Zusammenfassend	sind	die	vorgestellten	bioinformatischen	Methoden-	die	sicherlich	
auch	Anwendung	in	anderen	Bereichen	der	Krebsforschung	finden	könnten-	ein	Beitrag	
zur	Identifikation	von	neuen	somatischen	Mutationsereignissen,	die	für	die	
Krebsentwicklung	von	Relevanz	sind.		
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1.	 Introduction	

Cancer	is	a	complex	disease	widely	spread	in	the	world.	According	to	the	Cancer	

Research	UK,	14.1	million	of	new	cancer	cases	occurred	worldwide	in	2012	and	

an	estimated	8.2	million	people	died	from	the	disease	that	year.	

According	to	the	classical	model	of	tumorigenesis,	cancer	is	a	genetic	disease	

characterized	by	accumulation	of	somatic	alterations	during	the	lifetime	of	an	

individual.	The	most	common	type	of	somatic	alterations	known	in	cancer	is	

single	nucleotide	variants	(SNVs)	also	referred	to	as	point	mutations.	It	is	

estimated	that	most	of	cancers	carry	1,000	to	20,000	somatic	mutations	and	only	

few	to	hundreds	of	other	types	of	somatic	genomic	alterations	(Martincorena	

and	Campbell,	2015).	Most	somatic	mutations	in	cancer	occur	in	the	non-coding	

regions	due	to	generally	weaker	purifying	selection	of	these	regions	when	

compared	to	exons	and	other	types	of	genomic	elements	(Khurana,	Fu,	Colonna,	

Mu,	Kang,	T.	Lappalainen,	et	al.,	2013).	Despite	that,	the	absolute	majority	of	the	

known	cancer	driver	events	known	to-date	occur	within	the	coding	genome	

(Forbes	et	al.,	2015).	Various	reasons	have	prevented	researches	from	studying	

the	non-coding	mutation	in	cancer	and	its	potential	consequences	for	

tumorigenesis.	Among	them,	financial	reasons	such	as	high	sequencing	costs;	

technical	reasons,	for	example,	the	regional	mutations	heterogeneity;	as	well	

various	methodological	reasons	such	as	the	lack	of	computational	approaches	

specially	designed	to	detect	somatic	drivers	outside	of	protein-coding	regions.		

However,	with	the	recent	decrease	in	whole-genome	sequencing	costs	the	

situations	in	the	cancer	genomics	field	is	rapidly	changing.	For	example,	a	driver	

event	occurring	the	promoter	regions	of	a	cancer	gene,	TERT,	was	identified	at	

first	in	melanoma	(Horn	et	al.,	2013;	Huang	et	al.,	2013)	and	later	in	other	

malignancies	(Vinagre	et	al.,	2013).	This	example	has	motivated	researchers	to	

shift	their	focus	to	the	non-coding	genome.	Recent	attempts	on	identification	of	

novel	intergenic	drivers	using	both	computational	and	experimental	approaches	

have	extended	the	list	of	known	driver	events	within	the	non-coding	genome	as	

well	as	broadened	our	knowledge	on	how	such	events	might	contribute	to	

tumorigenesis.	With	regards	to	the	methodological	advances	in	the	non-coding	

driver	detection	using	computational	approaches,	several	recent	studies	aimed	
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to	identify	somatic	drivers	that	may	play	a	role	in	cancer	development.	However,	

despite	the	significant	overlap	between	the	datasets	and	generally	similar	

methodology	used,	the	overlap	between	the	findings	was	relatively	limited	with	

the	TERT	promoter	being	a	remarkable	exception.		

1.1	Motivation	and	outline	of	this	thesis	

The	aim	of	my	PhD	work	was	to	develop	computational	approaches	to	identify	

novel	examples	of	driver	events	in	cancer	with	the	primary	focus	on	the	non-

coding	genomic	regions.		

In	the	remainder	of	this	Chapter,	I	introduce	some	background	concepts	related	

to	the	non-coding	somatic	mutation	in	cancer.	First,	I	describe	the	types	of	

genomic	alterations	that	are	known	in	cancer	and	provide	examples	of	how	such	

alterations,	within	the	intergenic	regions,	may	contribute	to	cancer.	Next,	I	focus	

on	mutational	processes	in	cancer	and	I	discuss	the	challenges	they	provide	for	

computational	cancer	genomics.	And	lastly,	I	review	the	existing	computational	

approaches	to	identify	somatic	driver	events	in	cancer.	

In	Chapter	2,	I	address	the	major	problem	for	computational	identification	of	

recurrently	mutated	regions	in	cancer	–	the	regional	mutational	heterogeneity.	

To	overcome	this	problem,	I	first	studied	the	mutational	patterns	in	cancer	and	

their	correlation	with	various	genetic	and	epigenetic	features,	and	then	I	

identified	the	best	correlate	with	somatic	mutation	rates.	Finally,	I	stratified	the	

entire	genome	into	groups	of	regions	with	comparable	genetic	and	epigenetic	

background	that	were	later	used	to	control	for	the	background	mutation	rates	in	

the	following	analyses.		

Chapter	3	describes	three	different	computational	approaches	that	I	designed	to	

identify	somatic	driver	events	of	functional	relevance	in	cancer,	with	a	specific	

focus	on	non-coding	genomic	regions.	In	the	first	approach,	I	integrated	mutation	

calls	with	gene	expression	data	to	identify	somatic	mutations	associated	with	

altered	mRNA	levels.	The	second	approach	was	developed	to	predict	changes	in	

transcription	factor	binding	sites	in	presence	of	recurrent	somatic	mutations.	

The	third	approach	was	mainly	focused	on	identification	of	recurrently	mutated	

regions	by	implementing	the	background	model	for	somatic	mutations	across	
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multiple	cancer	types	established	in	Chapter	2.	In	the	end	of	the	Chapter	I	

discuss	some	statistical	aspects	of	identification	of	recurrently	mutated	regions	

and	propose	and	approach	based	on	cross-validations	to	identify	optimal	

parameters	for	such	computational	genomics	studies.		

Please	note,	that	for	all	of	the	approaches,	I	here	describe	my	work	and	clearly	

indicate	other	people’s	contributions	in	the	text	when	necessary.	

Finally,	in	the	last	Chapter	of	this	thesis	I	summarize	my	main	results	and	

conclusions,	and	give	future	perspectives	on	potential	development	of	the	

computational	approaches.	Supplementary	Information	is	provided	in	the	

Appendix	A.	All	computational	methods	used	in	this	work	are	described	in	

Appendix	B.	A	list	of	publications	in	which	I	was	involved	during	my	PhD	is	

included	in	Appendix	C.	 	
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1.2	Genomic	alterations	in	cancer	

According	to	the	classical	model,	tumorigenesis	is	driven	by	somatic	alterations,	

which	accumulate	during	the	lifetime	of	an	individual	(Cavenee	&	White,	1995).	

Somatic	alterations	are	the	genomic	alterations	that	are	acquired	by	the	tumor	

during	its	development	and	progression	and	are	usually	defined	in	the	context	of	

cancer	sequencing	studies	as	those	observed	in	the	tumor	samples	of	an	

individual	but	in	the	matching	control	sample.	The	alterations	observed	in	both,	

the	control	and	the	tumor	samples,	are	usually	referred	as	germline.	

Somatic	alterations	vary	in	size	and	based	on	this	can	be	divided	into	two	groups.	

By	definition,	large-scale	structural	variants	(SVs)	represent	a	class	of	genomic	

alterations	of	larger	than	50	bp	size,	that	includes	duplications,	deletions,	

insertions,	inversions	and	translocations.	In	contrast,	small-scale	variants	are	

defined	as	alterations	smaller	than	50	bp	in	size	and	consist	of	two	types	of	

events:	indels	(small	insertions	or	deletions)	and	single	nucleotide	variants	

(SNVs).	SNVs,	commonly	referred	as	point	mutations,	are	single	base	pair	

exchanges.	Germline	SNVs	observed	in	a	given	populations	with	a	frequency	

higher	than	1%,	are	usually	considered	polymorphisms	and	therefore	termed	

single	nucleotide	polymorphisms	(SNPs).		

1.2.1	Large-scale	variants	

Large-scale	structural	variants	(SVs)	can	involve	both	microscopic	and	

submicroscopic	events,	ranging	in	size	from	several	kilobases	up	to	a	few	

megabases	(Baker,	2012;	Feuk	and	Carson,	2006).	Some	SVs	can	be	balanced	in	

terms	of	copy	number	(inversions	and	translocations),	while	others	are	

unbalanced	(deletions,	duplications,	and	insertions).	SVs	tend	to	occur	more	

frequently	in	some	regions	of	the	genome	compared	to	the	others	creating	

hotspots	of	recurrent	variation	(Mills	et	al.,	2011).	Among	the	factors	that	

contribute	to	such	clustering	are	sequence	context	and	local	genomic	

architecture	(Stankiewicz	and	Lupski,	2002;	Shaw,	2004).	

Since	SVs	affect	a	larger	fraction	of	the	genome	in	comparison	to	SNVs,	their	

consequent	phenotypic	impact	is	larger	than	that	of	SNVs.	Unsurprisingly,	SVs	



	 21	

were	associated	with	both	disease	and	normal	traits	variation	(Onishi-Seebacher	

and	Korbel,	2011;	Weischenfeldt	et	al.,	2013).		

The	generation	of	some	forms	of	SVs	can	be	physiological.	For	example,	

structural	variation	is	a	necessary	part	of	maturation	at	the	IG	locus	of	cells	of	

the	immune	system.	However,	the	same	machinery	when	misregulated	might	

also	drive	tumorigenesis.	For	example,	RAG	proteins	are	required	for	structural	

rearrangements	between	the	IGH	locus	and	the	B-cell	CLL/lymphoma	2	(BCL2),	a	

driver	event	in	follicular	lymphoma;	AID	protein	promotes	C-MYC–IGH	

chromosomal	translocations	that	drive	Burkitt’s	lymphoma.	(Helleday	et	al.,	

2014)		

In	cancer,	one	of	the	first	SVs	discovered	was	a	translocation	between	the	

chromosomes	9	and	22,	known	as	the	Philadelphia	chromosome,	which	is	the	

major	driver	event	in	chronic	myeloid	leukemia	(CML)	(Nowell	and	Hungerford,	

1960).	More	recently,	SVs	have	been	implicated	in	the	development	of	different	

types	of	tumors	(Pleasance	et	al.,	2010;	Rausch	et	al.,	2012).	For	example,	

structural	rearrangements	may	affect	the	coding	regions	of	genes,	either	by	

removing	part	of	the	coding	sequence	or	by	creating	gene	fusions	(e.g.	the	fusion	

of	TMPRSS2	and	ETS	transcription	factors,	ERG	or	ETV1,	in	prostate	cancer	

(Tomlins,	2005));	duplications	may	lead	to	the	gene	dosage	changes.	High	level	

amplifications	are	also	characteristic	for	specific	cancers	and	can	lead	to	

overexpression	of	oncogenes,	for	example,	amplification	of	TERT	and	MYC	genes	

in	medulloblastoma	(Northcott	et	al.,	2012).	Furthermore,	SVs	can	also	affect	the	

expression	of	a	gene	without	directly	damaging	the	coding	region,	e.g.	occurring	

within	the	non-coding	regions.	The	mechanism	they	act	upon	in	these	cases	may	

involve	changes	in	location	of	regulatory	elements,	such	as	enhancers	and	

isolators.	This	leads	to	misregulation	of	genes	that	were	otherwise	not	regulated	

by	these	elements.	An	example	of	such	driver	event	termed	as	“enhancer	

hijacking”	was	recently	identified	in	medulloblastoma.	In	this	scenario,	an	

enhancer	element	is	brought	to	the	proximity	of	proto-oncogenes	GFI1	and	

GFI1B	resulting	in	their	activation	(Northcott	et	al.,	2014).	
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1.2.2	Small-scale	variants	

Small-scale	variants	include	indels	and	SNVs.	SNVs	or	mutations	can	originate	

from	replication	errors	during	DNA	synthesis	by	the	DNA	polymerase	or	from	

DNA	damage	that	is	either	repaired	incorrectly	or	left	unrepaired	(Martincorena	

and	Campbell,	2015).	DNA	damage	can	be	caused	by	exogenous	factors	(e.g.	UV	

light),	by	endogenous	factors	(e.g.	reactive	oxygen	species	(ROS))	or	by	enzymes	

involved	in	DNA	repair	or	genome	editing.		

The	distribution	of	SNVs	along	the	genome	is	not	homogeneous.	Variants	in	

coding	regions	are	less	frequent	than	in	non-coding	ones,	which	is	explained	by	

the	purifying	selection	acting	against	mutations	with	a	negative	effect	on	the	

phenotype	(Khurana,	Fu,	Colonna,	Mu,	Kang,	Tuuli	Lappalainen,	et	al.,	2013).	

Interestingly,	many	regions	of	the	genome	experience	patterns	of	purifying	

selection	that	are	human-specific,	whereas	other	regions	conserved	across	

mammals	do	not	show	functional	activity	and	selection	in	humans	(Ward	and	

Kellis,	2012).	

�SNVs	within	coding	regions	are	called	synonymous	if	they	do	not	change	the	

sequence	of	the	protein	encoded	by	the	gene,	or	non-synonymous	if	they	do.	Non-

synonymous	variants	occurring	within	the	protein-coding	regions	of	the	genes	

can	be	further	classified	into	two	types	based	on	their	effects	on	amino	acids.	The	

missense	variants	lead	to	a	change	of	amino	acid,	whereas	the	nonsense	variants	

produce	a	premature	stop	codon	at	the	variant	site.	Depending	on	the	base	

change	caused	by	an	SNV,	it	can	be	referred	to	as	a	transition	or	a	transversion.	If	

a	purine	is	replaced	by	another	purine,	or	if	a	pyrimidine	is	replaced	by	a	

pyrimidine,	such	variant	will	be	a	transition.	In	contrast,	if	a	purine	is	substituted	

by	a	pyrimidine,	or	the	vise	versa,	the	variant	will	be	called	a	transversion.	In	

general,	transitions	occur	more	often	than	transversions	(Zhang	and	Gerstein,	

2003).	The	most	frequent	type	of	transition	accounting	for	almost	half	of	human	

SNVs	is	C→T,	which	is	caused	by	spontaneous	deamination	of	5-methylcytosine	

(Shen	et	al.,	1994).	

Indels	are	a	less	abundant	form	of	genomic	variations	which	is	observed	in	

humans	with	an	average	frequency	of	one	every	eight	kb	per	individual	

(Montgomery	et	al.,	2013).	Similarly	to	SNVs,	indels	are	usually	depleted	from	
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protein-coding	regions	with	a	tendency	to	cluster	within	repetitive	sequences,	

forming	hotspots	of	variation	with	increased	indel	occurrence	compared	to	the	

chromosomal	average	(Mills	et	al.,	2006).	One	of	the	possible	explanations	how	

these	unusual	regions	of	high	genetic	variation	occur,	is	that	DNA	segments	with	

a	longer	evolutionary	history	have	more	time	to	accumulate	structural	variants.	

Among	other	contributing	factors,	are	higher	rates	of	homologous	recombination	

in	some	genomic	regions	and	a	lack	of	selective	pressure	on	the	variants	that	

have	little	impact	on	the	fitness	of	the	individual	(Montgomery	et	al.,	2013).	The	

most	common	mechanism	of	indel	formation	is	the	slippage	of	the	DNA	

polymerase	during	replication,	which	is	especially	prevalent	in	regions	of	highly	

repetitive	sequences.	This	mechanism	accounts	for	almost	75%	of	indels	in	the	

human	genome	including	the	ones	that	occur	in	hotspots	(Montgomery	et	al.,	

2013).	Indels	can	alter	the	protein	sequence	in	similar	ways	to	SNVs	and	with	

analogous	phenotypic	consequences.	Therefore	indels	can	be	associated	with	

increased	risks	for	several	diseases,	including	cancer	(Frazer	et	al.,	2009;	Yang	et	

al.,	2010).	

	

Figure	1.	The	classical	model	of	tumorigenesis.	Accumulation	of	somatic	

mutations	within	the	cell	lineage	during	the	lifetime	of	an	individual	starting	

from	the	early	development	until	the	relapsed	tumor.	Figure	adapted	from	

Stratton	M	et	al.,	2009.	

	

In	the	context	of	cancer,	somatic	mutation	plays	an	important	role.	For	example,	

it	was	estimated	that	around	90%	of	recurrently	mutated	cancer	genes	are	

altered	by	somatic	mutation	and	only	about	20%	of	the	genes	are	associated	

mitochondrial genomes have been reported in many human cancers,
although their role in the development of the disease is not clear14.

Acquisition of somatic mutations in cancer genomes
The mutations found in a cancer cell genome have accumulated over
the lifetime of the cancer patient. Some were acquired when ancestors
of the cancer cell were biologically normal, showing no phenotypic
characteristics of a cancer cell (Fig. 1). DNA in normal cells is con-
tinuously damaged by mutagens of both internal and external origins.
Most of this damage is repaired. However, a small fraction may be
converted into fixed mutations and DNA replication itself has a low
intrinsic error rate. Our understanding of somatic mutation rates in
normal human cells is still relatively rudimentary. However, it is likely
that the mutation rates of each of the various structural classes of
somatic mutation differ and that there are differences among cell types
too. Mutation rates increase in the presence of substantial exogenous
mutagenic exposures, for example tobacco smoke carcinogens,

naturally occurring chemicals such as aflatoxins, which are produced
by fungi, or various forms of radiation including ultraviolet light.
These exposures are associated with increased rates of lung, liver
and skin cancer, respectively, and somatic mutations within such
cancers often exhibit the distinctive mutational signatures known to
be associated with the mutagen15. The rates of the different classes of
somatic mutation are also increased in several rare inherited diseases,
for example Fanconi anaemia, ataxia telangiectasia, mosaic variegated
aneuploidy and xeroderma pigmentosum, each of which is also assoc-
iated with increased risks of cancer16,17.

The rest of the somatic mutations in a cancer cell genome have been
acquired during the segment of the cell lineage in which predecessors
of the cancer cell already show phenotypic evidence of neoplastic
change (Fig. 1). Whether the somatic mutation rate is always higher
during this part of the lineage is controversial18,19. For some cancers
this is clearly the case. For example, colorectal and endometrial
cancers with defective DNA mismatch repair due to abnormalities
in genes such as MLH1 and MSH2, exhibit increased rates of acquisi-
tion of single nucleotide changes and small insertions/deletions at
polynucleotide tracts20. Other classes of such ‘mutator phenotypes’
may exist, for example leading to abnormalities in chromosome num-
ber or increased rates of genomic rearrangement, although these are
generally less well characterized20. The merit of an increased somatic
mutation rate with respect to the development of cancer is that it
increases the DNA sequence diversity on which selection can act.
However, it has been suggested that the mutation rates of normal cells
may be sufficient to account for the development of some cancers,
without the requirement for a mutator phenotype18,19.

The course of mutation acquisition need not be smooth and pre-
decessors of the cancer cell may suddenly acquire a large number of
mutations. This is sometimes termed ‘crisis’21, and can occur after
attrition of the telomeres that normally cap the ends of chromosomes,
with the cell having to substantially reorganize its genome to survive.

Although complex and potentially cryptic to decipher, the catalogue
of somatic mutations present in a cancer cell therefore represents a
cumulative archaeological record of all the mutational processes the
cancer cell has experienced throughout the lifetime of the patient. It
provides a rich, and predominantly unmined, source of information
for cancer epidemiologists and biologists with which to interrogate the
development of individual tumours.

Driver and passenger mutations
Each somatic mutation in a cancer cell genome, whatever its structural
nature, may be classified according to its consequences for cancer
development. ‘Driver’ mutations confer growth advantage on the cells
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Figure 1 | The lineage of mitotic cell divisions from the fertilized egg to a
single cell within a cancer showing the timing of the somatic mutations
acquired by the cancer cell and the processes that contribute to them.
Mutations may be acquired while the cell lineage is phenotypically normal,
reflecting both the intrinsic mutations acquired during normal cell division
and the effects of exogenous mutagens. During the development of the

cancer other processes, for example DNA repair defects, may contribute to
the mutational burden. Passenger mutations do not have any effect on the
cancer cell, but driver mutations will cause a clonal expansion. Relapse after
chemotherapy can be associated with resistance mutations that often
predate the initiation of treatment.
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with	germline	mutations	that	predispose	to	cancer	(Martincorena	and	Campbell,	

2015).	Most	cancer	genomes	harbor	between	1,000	to	20,000	somatic	point	

mutations.	However,	the	vast	majority	of	mutations	make	no	contribution	to	the	

tumor	development	and	are	commonly	referred	as	passenger	mutations.	In	

contrast,	a	small	fraction	of	mutations	does	provide	a	tumor	with	a	selective	

advantage;	such	mutations	are	usually	termed	driver	mutations	(Figure	1).	Since	

the	driver	mutations	are	advantageous	for	tumor	they	are	under	positive	

selection	during	the	tumor	progression	and	growth.	Therefore,	such	mutations	

are	observed	in	the	tumor	samples	with	higher	frequency	compared	to	

passenger	mutations.	Most	of	the	known	examples	are	affecting	the	gene-coding	

regions	of	known	oncogenes.	The	three	most	frequently	mutated	cancer	genes	

across	multiple	cancer	entities	are	TP53,	PIK3CA	and	BRAF	with	the	

corresponding	mutational	frequencies	of	36.1%,	14.3%	and	10%,	respectively.		

The	COSMIC	database	provides	a	list	of	all	known	genes	that	are	recurrently	

mutated	in	cancer	(Forbes	et	al.,	2015).	

According	to	the	most	recent	estimations,	around	98%	of	the	human	genome	

does	not	encode	for	protein	sequences,	but	rather	contains	nearly	all	regulatory	

regions,	such	as	promoters,	enhancers	and	insulators.	The	entire	cancer	

genomics	field	for	many	years	was	focused	almost	exclusively	at	the	protein-

coding	regions.	In	this	review	I	am	addressing	a	question	to	which	extend	non-

coding	somatic	mutations	may	be	involved	in	cancer.		

Non-coding	somatic	mutations	in	cancer	

A	number	of	recent	studies	have	provided	multiple	lines	of	evidences	suggesting	

that	SNVs	within	the	non-coding	genomic	regions	can	also	be	of	relevance	in	

cancer.	For	example,	driver	mutations	in	the	promoter	region	of	the	TERT	gene	

were	identified	at	high	frequency	in	human	melanoma	(Huang	et	al.,	2013;	Horn	

et	al.,	2013)	and	other	malignancies	(Vinagre	et	al.,	2013).	The	mutations	occur	

recurrently	at	two	nucleotide	positions	located	only	22	bp	away	from	each	other.	

All	of	the	observed	mutations	encode	for	C>T	substitutions.	According	to	the	

proposed	mechanism,	these	mutations	create	an	ETS	binding	site	in	the	

promoter	region	of	the	TERT	gene,	which	leads	to	overexpression	of	the	gene.		
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Two	additional	recurrent	non-coding	drivers	were	recently	identified	in	a	study	

performed	on	chronic	lymphocytic	leukaemia	(CLL)	(Puente	et	al.,	2015).	A	

single	mutation	in	the	3’	UTR	of	NOTCH1	gene	was	found	in	up	to	6.7%	of	CLL	

cases	harboring	wild-type	IGHV	(Puente	et	al.,	2015).	This	mutation	causes	a	

novel	splicing	event	within	the	last	exon	of	NOTCH1,	leading	to	removal	of	a	

PEST	domain	of	NOTCH1	and	increased	protein	stability.	The	second	driver	

region	is	located	on	chromosome	9p13	and	contains	an	active	enhancer.	Somatic	

mutations	in	this	enhancer	lead	to	reduced	PAX5	gene	expression	levels	(Puente	

et	al.,	2015).	Somatic	mutations	in	this	region	are	found	also	in	other	types	of	

lymphoma,	and	account	for	up	to	13%	of	IGHV-mutant	CLLs	(Puente	et	al.,	2015).	

Additional	evidence	for	the	relevance	of	intergenic	mutations	comes	from	a	

recent	study	reporting	mutations	recurrently	observed	in	the	bidirectional	

promoter	of	the	DPH3	and	OXNAD1	genes	in	multiple	skin	cancers	(Denisova	et	

al.,	2015),	although	the	functionality	of	these	mutations	has	to	date	remained	

undetermined.		

A	different	mechanism	by	which	somatic	mutations	can	drive	tumorigenesis	was	

discovered	in	T-cell	acute	lymphoblastic	leukaemia	(T-ALL).	In	this	example,	

heterozygous	mutations	form	a	super-enhancer	upstream	of	TAL1	oncogene	that	

binds	MYB	transcription	factor	and	therefore	leads	to	mono-allelic	

overexpression	of	TAL1	(Mansour	et	al.,	2014;	Poulos	et	al.,	2015).	

These	recent	findings	provide	multiple	lines	of	evidence	of	important	roles	that	

intergenic	somatic	mutations	may	have	in	cancer.	This	motivated	researchers	to	

shift	their	focus	from	exomes	to	the	non-coding	regions	and	encouraged	them	to	

search	for	similar	examples	of	recurrent	non-coding	mutations	also	using	

computational	approaches.	In	the	following	section	of	this	Chapter	some	of	the	

challenges	for	such	computational	approaches	will	be	discussed.	

1.3	 Mutational	processes	in	cancer	genomes	

Cancer	arises	as	a	result	of	accumulation	of	somatic	mutations	over	the	lifetime	

of	a	patient.	Somatic	mutations	are	the	outcomes	of	multiple	mutational	

processes	that	can	be	caused	by	various	exogenous	and	endogenous	factors	

(Martincorena	and	Campbell,	2015).	While	each	cancer	carries	only	a	handful	of	
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driver	mutations,	most	of	the	variants	observed	in	a	tumor	sample	represent	

passenger	mutations	that	are	the	product	of	the	mutational	processes	that	

occurred	through	the	development	of	cancer	(Helleday	et	al.,	2014).		

Some	processes	generate	mutations	throughout	life	at	a	constant	rate	and	are	

referred	as	the	clock-like	mutational	processes,	while	others	act	in	an	episodic	

manner	producing	mutations	in	bursts	over	short	time	periods	(Alexandrov	et	

al.,	2015).	The	final	mutational	portrait	observed	in	the	tumor	is	determined	by	

the	strength	and	duration	of	exposure	of	each	mutational	process	(Alexandrov	et	

al.,	2013).	Thus,	the	passenger	mutations	can	be	accumulated	at	different	rates	

due	to	various	processes	and	can	hence	create	problems	for	the	computational	

identification	of	driver	mutations	based	on	the	observed	recurrence	by	masking	

the	biological	signal.	Subclonal	populations	in	cancer	can	be	exposed	to	different	

mutational	processes	leading	to	an	even	higher	complexity	of	the	final	landscape	

of	somatic	mutations	(Helleday	et	al.,	2014).Therefore	it	is	important	to	

systematically	to	account	for	the	mutational	heterogeneity	when	performing	

cancer	genomics	studies.	

1.3.1	 Somatic	mutational	heterogeneity		

Lawrence	et	al.,	2013	in	their	study	performed	on	over	3,000	tumour	samples	

across	27	cancer	types	produced	by	The	Cancer	Genome	Atlas	(TCGA)	and	the	

International	Cancer	Genome	Consortium,	described	three	major	types	of	

mutational	heterogeneity	in	cancer:	1)	heterogeneity	across	patients	with	a	

given	cancer	type;	2)	regional	mutational	heterogeneity	and	3)	heterogeneity	in	

the	mutational	spectrum	of	the	tumor.	

The	first	type	of	mutational	heterogeneity,	heterogeneity	across	patients	with	a	

given	cancer	type,	resulted	in	more	than	1,000-fold	differences	in	the	median	

frequencies	of	non-synonymous	mutations	between	individual	tumors.	Such	

variation	in	the	mutational	counts	was	associated	with	the	tissue	type	the	tumor	

originated	from.	For	instance,	pediatric	cancers	showed	the	lowest	somatic	

mutation	frequencies	while	lung	cancers	and	melanoma	harbored	the	highest	

number	of	mutations	per	megabase.	Such	difference	can	be	explained	by	the	

exposure	to	exogenous	factors	such	as	ultraviolet	light	or	tobacco	smoke.	More	

surprisingly,	there	were	also	remarkable	differences	in	mutational	frequencies	
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between	patients	of	the	same	cancer	type,	which	could	be	explained	by	the	

mutational	processes	specific	to	the	individuals.		In	a	conclusion,	it	is	important	

to	take	into	account	such	effects	while	performing	computational	analysis,	for	

example,	by	normalizing	the	observed	number	of	SNVs	by	the	average	number	of	

mutations	in	the	given	cancer	type	or/and	the	total	number	of	mutations	that	the	

given	individual	genome	harbors.	

The	second	type	of	the	heterogeneity	described	by	Lawrence	et	al.,	2013	is	the	

regional	mutational	heterogeneity,	which	is	the	main	challenge	for	computational	

identification	of	recurrent	somatic	variants.		

Tumorigenesis	is	often	seen	as	an	evolutionary	process,	in	which	the	driver	

mutations	are	being	under	positive	selection	and	are	therefore	observed	at	

higher	frequencies	in	tumor	samples.		Computational	approaches	therefore	

typically	aim	at	identification	of	individual	point	mutations	or	regions	of	the	

genome	that	experience	recurrent	somatic	point	mutation.	As	was	already	

mentioned,	somatic	mutations	in	cancer	are	not	evenly	distributed	across	the	

human	genome.	In	other	words,	there	are	regions	within	the	human	genome	that	

tend	to	accumulate	higher	somatic	mutation	load	than	others.	For	example,	a	

mutational	pattern	of	localized	somatic	hypermutation	called	kataegis,	that	was	

first	described	in	breast	cancer	(Nik-Zainal	et	al.,	2012)	and	later	observed	in	

many	other	cancer	entities	(Alexandrov	et	al.,	2013).	The	word	“kataegis”	is	

derived	from	an	ancient	Greek	word	for	“thunder”	(καταιγίς)	because,	when	

visualized	in	a	plot,	kataegis	looks	like	a	cluster	of	multiple	somatic	mutations	

that	occur	within	a	small	genomic	window.	Such	localized	hypermutation	is	

commonly	observed	near	regions	of	somatic	genome	rearrangements	in	cancer.	

Recent	studies	have	identified	a	link	between	kataegis	and	the	activity	of	

enzymes	of	the	APOBEC	family	(Lada	et	al.,	2012;	Burns	et	al.,	2013).		

Another	example	of	regions	with	higher	mutational	load	than	the	averaged	rates	

along	the	genome	is	localized	hypermutation	near	the	human	immunoglobulin	

heavy-chain	locus	(IGH)	on	chromosome	14	in	B	cells	(Richter	et	al.,	2012),	

which	takes	place	also	in	healthy	individuals	as	a	necessary	part	of	maturation	of	

the	immune	system.		
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In	contrast,	other	genomic	regions	such	as	closed	chromatin	appear	largely	

depleted	of	somatic	mutations	(Martincorena	and	Campbell,	2015).		

Various	genetic	and	epigenetic	features	are	known	to	correlate	with	somatic	

mutational	rates	in	cancer.	For	example,	Schuster-Boekler	et	al.,	2012	compared	

correlation	between	mutational	rates	and	46	various	genetic	and	epigenetic	

features	at	different	resolution,	ranging	between	1	kb	and	100	Mb;	and	identified	

a	feature	–	H3K9me3	–	that	most	strongly	correlated	with	cancer	SNV	density	

(Figure	1a).	Additionally,	they	observed	that	many	of	the	tested	features	were	

correlated	and	studied	this	further	by	principle	component	analysis.	They	found	

that	up	to	60%	of	the	variance	between	the	features	was	explained	by	the	first	

principle	component,	at	1-Mb	resolution.	

Lawrence	et	al.,	2013	studied	the	same	phenomenon	on	a	larger	cohort	of	

samples	and	identified	two	factors	that	explained	mutational	heterogeneity	at	

100-kb-resolution	best:	gene	expression	levels	and	replication	timing	of	a	DNA	

region	during	the	cell	cycle	(Figure	1b).	Other	features	that	correlated	with	

mutational	rates	were	chromatin	state	estimated	from	Hi-C	data	and	GC	content,	

at	1-Mb-resolution.	
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Figure	1.	Correlations	between	SNV	density	from	individual	cancers	at	1-Mb	(a)	

and	100-kb	(b)	resolution	with	diverse	genetic	and	epigenetic	features.	Figure	

adapted	from	Lawrence	M	et	al,	2013.	

	

	Based	on	these	results,	Lawrence	et	al.,	2013	proposed	to	use	replication	timing	

as	a	covariate	to	control	for	background	mutation	rates	and	implemented	it	in	

their	method	MutSigCV.	Similarly,	other	computational	studies	used	DNA	

replication	timing	(Weinhold	et	al.,	2014)	or	a	combination	of	replication	timing,	

base-pair	type	and	transcript	region	(Melton	et	al.,	2015)	for	the	background	

mutation	rates	estimation.		

The	last	type	of	the	mutational	heterogeneity	addressed	by	Lawrence	et	al.,	2013	

was	the	heterogeneity	in	the	mutational	spectrum	of	the	tumor.	Using	non-

negative	matrix	factorization	method	the	authors	stratified	all	possible	

mutations	into	mutational	spectra	and	represented	them	in	a	circular	plot	to	

identify	clusters	of	tumor	samples	characterized	by	the	prevalent	mutational	

processes	in	the	tumors.	One	their	observations	was,	for	example,	that	lung	
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cancers	shared	a	mutational	spectrum	of	C>A	mutations,	that	are	associated	with	

exposure	to	the	polycyclic	aromatic	hydrocarbons	in	tobacco.	In	brief,	the	

observed	clustering	of	the	cancer	samples	was	associated	with	the	predominant	

mutational	signatures	in	the	tumors.	

1.3.2	 Mutational	signatures	in	cancer		

Mutational	processes	leave	on	each	cancer	genome	their	characteristic	imprints	

that	are	called	mutational	signatures.	The	number	of	mutations	contributing	to	

each	signature	is	a	proxy	for	the	amount	of	exposure	to	each	mutational	process.	

Some	of	these	processes	have	happened	in	the	past	and	are	therefore	can	be	

termed	historical.	They	encode	information	on	the	previous	exposures	and	can	

therefore	be	important	in	the	context	of	cancer	prevention.	In	contrast,	the	

ongoing	processes	can	be	used	for	prognostic	predictions,	since	they	correspond	

to	current	factors	associated	with	cancer	(Helleday	et	al.,	2014).	

Alexandrov	et	al.,	2013	identified	21	different	mutational	signatures	across	30	

various	cancer	types.	One	of	them,	the	signature	1,	correlated	with	age	of	

diagnosis	in	some	cancer	types.	Others	were	associated	with	known	exogenous	

and	endogenous	factors.	For	example,	C>T	mutations	at	CpC	or	TpC	

dinucleotides	induced	by	UV	light	were	characteristic	for	signature	7	mainly	

found	in	malignant	melanoma	samples.	Additionally,	signature	4	showed	

transcriptional	strand	bias	for	C>A	mutations	associated	with	tobacco	smoking	

in	lung	cancer.	

Some	of	the	mutational	processes	cause	only	one	type	of	somatic	mutation.	For	

example,	the	carcinogen	aristolochic	acid	causes	almost	exclusively	A>T	base	

substitutions.	In	contrast,	the	loss	of	the	BRCA1	or	BRCA2	genes	in	breast,	

ovarian,	and	pancreatic	cancers	is	associated	with	a	combinations	of	mutations,	

indels,	as	well	as	duplications	and	deletions	occurring	at	a	distinctive	pattern	

(Martincorena	and	Campbell,	2015).		

One	of	the	most	common	mutational	signatures	in	human	cancers	is	represented	

by	C>T	or	C>G	substitutions	at	sites	preceded	by	a	thymine	nucleobase	and	is	

caused	by	off-target	modification	of	DNA	by	the	APOBEC	family	of	proteins	

(Martincorena	and	Campbell,	2015)	
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In	conclusion,	studying	mutational	signatures	cancer	can	improve	our	

understanding	of	the	underlying	biology	of	the	tumors	and	some	of	their	

predisposing	factors.	Moreover,	it	can	provide	useful	biomedical	applications.		

1.4	Detection	of	somatic	mutations	in	cancer	genomes	using	next-

generation	sequencing	

Recent	technological	advances	in	DNA	sequencing	allow	simultaneous	

sequencing	of	millions	of	short	DNA	fragments.	These	high-throughput	methods	

are	mainly	referred	to	in	the	literature	as	next-generation	sequencing	(NGS)	

methods.		

NGS	is	a	powerful	method	to	study	structural	alterations	(Mills	et	al.,	2011)	and	

have	been	successfully	applied	to	cancer	research,	for	example,	to	prostate	

cancer	(Weischenfeldt	et	al.,	2013)	and	medulloblastoma	(Northcott	et	al.,	2014).	

The	most	relevant	application	of	NGS	in	context	of	my	research	is	identification	

of	somatic	SNV	in	cancer.	The	most	common	experimental	setup	used	in	cancer	

genomics	studies	involves	sequencing	of	tumor	and	matching	control	material	

for	every	patient.		

1.4.1	SNV	calling	

A	typical	pipeline	for	somatic	SNV	calling	in	cancer	from	the	next-generation	

sequencing	experiments	includes	the	following	steps:		

1)	raw	data	preprocessing	and	quality	control;		

2)	alignment	of	the	reads	to	a	reference	genome;		

3)	SNV	calling	for	tumor	and	control	samples;		

4)	quality-base	filtering	of	resulting	SNVs;		

5)	identification	of	somatic	SNVs	as	the	variants	that	are	present	in	the	tumor	

but	not	in	the	matching	control	sample.	

Various	computational	tools	are	available	for	performing	each	of	the	steps.	For	

example,	the	most	commonly	used	tools	for	identification	of	SNVs	and	small	

indels	based	on	mapped	sequencing	data	are	Samtools	mpileup	(Li,	2011;	Li	et	
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al.,	2009),	GATK	UnifiedGenotyper	(DePristo	et	al.,	2011),	and	Freebayes	

(Garrison	and	Marth,	2012).		

Nevertheless,	it	is	important	to	consider	possible	sources	of	errors	and	biases	

when	performing	such	analyses.	Depending	on	the	sequencing	platform	used,	

various	biases	may	occur.	For	example,	the	strand	bias,	when	the	distribution	of	

forward	versus	reverse	directions	in	the	aligned	reads	is	highly	unequal.	

Additionally,	the	PCR	bias	may	lead	to	high	duplication	of	certain	reads.		

Another	important	consideration	when	performing	SNV	calling	is	that	the	

sequencing	coverage	is	the	crucial	parameter	(i.e.	to	have	a	larger	number	of	

reads	supporting	a	variant).	It	is	estimated	that	an	average	coverage	of	30×	is	

sufficient	to	call	SNVs	reliably	in	about	90%	of	the	genome	(Ajay	et	al.,	2011).	

1.4.2	Computational	methods	to	identify	driver	somatic	mutations:	focus	

on	intergenic	mutations		

A	typical	property	of	somatic	driver	mutations	is	that	they	can	be	observed	

recurrently	across	cancer	samples,	a	characteristic	making	their	identification	

amendable	to	cancer	genomics.	Exome	sequencing	based	cancer	genomics	

studies,	for	example,	have	recently	provided	numerous	insights	into	somatic	

driver	mutations	in	protein-coding	regions	in	numerous	cancer	types	(Meyerson	

et	al.,	2010).	With	the	recent	findings	supporting	important	roles	of	somatic	

mutations	within	the	non-coding	regions	of	human	genome,	developing	

computational	that	would	allow	identification	of	novel	candidate	drivers	became	

an	important	task,	especially	given	the	rapidly	growing	amount	of	large-scale	

omics	data	on	cancer	produced	by	large	consortia	such	as	the	Pan-Cancer	

Analysis	of	Whole	Genomes	(PCAWG)	project	(https://dcc.icgc.org/pcawg)	

(Stein	et	al.,	2015).	

Three	recent	studies	in	particular	have	aimed	at	identifying	functionally	relevant	

intergenic	mutations	in	large-scale	cancer	genomic	datasets	consisting	of	more	

than	400	whole-genome	sequenced	tumors	(Weinhold	et	al.,	2014;	Melton	et	al.,	

2015;	Fredriksson	et	al.,	2014).	The	brief	summaries	of	their	study	design	and	

obtained	results	are	listed	below.	
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Weinhold	et	al.,	2014	in	their	study	on	863	tumors	focused	on	the	mutations	that	

are	most	likely	to	affect	regulatory	elements.	One	of	their	approaches,	for	

example,	focused	only	on	promoter	and	enhancer	regions.	To	identify	

recurrently	mutated	regions	the	authors	compared	the	observed	mutational	

frequency	with	the	frequencies	in	the	background	set	of	regions,	which	they	

constructed	from	the	regions	of	the	same	category	(for	example,	promoters)	and	

with	similar	DNA	replication	timing.	Binomial	test	was	used	to	compute	

statistics.	Their	top	identified	candidate	was	the	TERT	promoter	region	with	the	

mutational	recurrence	of	56	out	of	863	samples.	Other	top	candidates	included	

PLEKHS1	and	WDR74	regions	mutated	in	20	and	36	samples	respectively.		

Fredriksson	et	al.	in	their	analysis	of	505	tumors	investigated	associations	

between	somatic	mutations	in	regulatory	regions	and	altered	mRNA	levels.	In	

their	analysis,	the	authors	considered	only	somatic	mutations	within	0.5-100kb	

distance	from	transcription	start	sites	of	445	COSMIC	cancer-associated	genes.	

Additionally	they	required	for	the	mutations	to	be	in	DNAse	I	hypersensitivity	

sites	and	either	create	or	disrupt	ETS	factor	consensus	binding	sequence.	They	

used	a	windows-based	approach	with	partially	overlapping	genomic	windows	of	

100	bp	size	and	and	identified	TERT	promoter	region	as	a	candidate	and	

concluded	that	it	might	be	an	extreme	example	showing	a	strong	association	

with	the	gene	expression	levels.	

Melton	et	al.,	2015	performed	their	study	on	436	cancer	genomes,	restricting	

their	search	space	to	all	regulatory	regions	according	to	RegulomeDB	(Boyle	et	

al.,	2012)	annotations.	Sample-specific	and	covariate-corrected	background	

mutation	probabilities	with	Poisson	binomial	model	were	used	to	calculate	

statistics.	For	the	estimation	of	the	background	mutation	rates,	a	combination	of	

replication	timing,	base-pair	type	and	transcript	region	were	employed.	The	

authors	identified	the	following	candidates:	TERT	promoter	region,	a	list	of	

selected	coding	mutations	in	know	cancer	genes	(TP53,	AKT1,	PIK3CA,	PTEN,	

EGFR,	CDKN2A	and	KRAS),	as	well	as	eight	new	candidate	regions	potentially	

regulating	known	cancer-associated	genes	such	as	GNAS,	INPP4B,	MAP2K2,	

BCL11B,	NEDD4L,	ANKRD11,	TRPM2	and	P2RY8.		
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As	a	common	ground,	all	three	studies	used	window-based	approaches	to	scan	

the	genome	and	controlled	for	covariates	–	mostly	replication	timing	–	to	

estimate	the	recurrence	of	events	in	comparison	to	the	background	mutation	

rates.	None	of	the	studies,	however,	run	their	analysis	in	a	fully	unbiased	(e.g.	

genome-wide)	manner,	without	restricting	their	search	space	to	a	particular	

class	of	annotations.	Moreover,	the	limited	overlap	that	we	observed	in	the	

findings	of	the	studies,	especially	considering	the	similarities	in	the	methodology	

used,	raises	a	question	to	which	extend	the	choice	of	parameters	(e.g.	statistical	

test	or	window	size)	can	influence	the	outcomes	of	such	computational	

approaches.	We	designed	a	study	to	address	these	questions	and	developed	a	

computational	approach	to	identify	intergenic	regions	that	are	recurrently	

mutated	across	multiple	cancer	samples	in	an	unbiased,	genome-wide	manner.			

.	 	



	 35	

2.	 Towards	developing	a	background	model	for	

mutational	propensities	in	cancer	

2.1	Motivation	and	background	

Somatic	mutations	in	cancer	are	not	distributed	evenly	across	the	genome;	

certain	regions	are	prone	to	undergo	hypermutation	while	other	regions	may	

accumulate	very	few	mutations.	This	phenomenon	makes	it	difficult	for	

computational	biologists	to	identify	genomic	regions	that	are	often	mutated	

across	multiple	cancer	patients,	that	is,	recurrently	mutated	regions.		

If	we	consider	a	dataset	of	genome-wide	somatic	mutations	across	various	

cancer	types.	We	can	bin	the	entire	human	genome	into	non-overlapping	

windows	of	a	particular	size.	For	any	given	window	we	can	calculate	the	

observed	number	of	mutations	among	all	patients.	This	will	give	us	some	

estimate	of	the	total	mutation	load	in	the	given	region.	Another	value	that	we	can	

calculate	from	the	same	data	is	mutational	recurrence,	which	is,	how	many	

samples	have	at	least	one	mutation	within	the	window	or,	in	other	words,	how	

many	patients	have	this	region	mutated.	Next,	if	we	want	to	identify	where	the	

driver	mutations	are,	we	will	likely	be	more	interested	in	the	regions	that	are	

more	frequently	mutated	than	others,	because	of	the	assumption	that	driver	

mutations	give	an	evolutionary	advantage	to	the	tumor	and	are	therefore	under	

positive	selection	in	cancer.	However,	it	is	important	to	distinguish	the	regions	

with	high	total	mutation	load	and	the	regions	with	high	mutational	recurrence.	

To	better	illustrate	this,	let’s	discuss	how	N	mutations	might	be	distributed	

within	one	genomic	window.	If	all	mutations	mostly	come	from	only	one	or	few	

samples,	this	will	likely	indicate	that	these	samples	are	outliers.	The	possible	

reasons	for	this	could	be	both	technical	(due	to	batch	effects	or	technical	errors	

in	sample	preparation,	sequencing,	alignment	or	mutation	calling)	and	biological	

(for	example,	the	high	number	of	somatic	mutations	in	IGH	locus	in	lymphomas).	

Therefore	such	scenario	will	not	be	interesting	for	us	if	we	aim	to	identify	

potential	driver	mutations.	In	contrast,	if	the	mutations	come	mostly	from	

different	samples	and,	especially,	if	they	show	a	tendency	to	cluster	within	a	

small	locus,	this	may	indeed	indicate	a	driver	event.	Therefore,	we	should	be	
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looking	for	windows	that	are	mutated	in	many	patients	rather	than	containing	

many	mutations	in	general.	In	other	words,	we	should	focus	on	identification	of	

windows	with	higher	mutational	recurrence.		

The	main	idea	behind	the	identification	of	recurrently	mutated	regions	is	to	

compare	the	observed	recurrence	of	the	region	to	some	estimate	of	the	

background	mutational	recurrence	for	a	window	of	the	same	size.	Since	the	

mutational	densities	are	not	evenly	distributed	across	the	genome,	we	will	

naturally	expect	to	observe	high	mutational	recurrence	in	some	regions	and	very	

low	in	others.	Therefore,	if	our	window	of	interest	is	among	the	rarely	mutated	

ones,	comparing	its	recurrence	to,	say,	the	average	value	across	the	entire	

genome	will	result	in	masking	of	the	real	signal.	In	contrast,	the	regions	that	are	

prone	to	hypermutation	will	likely	always	appear	significant	in	such	analysis.		

Therefore,	it	is	very	important	to	establish	an	appropriate	background	model	to	

correctly	estimate	expected	mutation	rates	for	different	types	of	genomic	

regions.	The	main	steps	in	order	to	do	this	are	1)	to	understand	the	mutational	

patterns	in	cancer	and	2)	to	identify	features	that	correlate	with	mutation	rates	

in	cancer.	

2.1.1	Contribution	

In	this	part	of	my	PhD	project	my	aim	was	to	devise	a	mutational	background	

model	that	accounts	for	regional	mutational	heterogeneity	in	multiple	cancer	

samples	and	was	suitable	for	the	dataset	I	used.	For	this	I	studied	correlations	

between	various	genetic	and	epigenetic	features	with	background	somatic	

mutation	rates	calculated	from	the	dataset	of	interest.	

The	results	described	in	this	Chapter	were	included	in	the	submitted	manuscript	

Rudneva	V	et	al.,	2016.	I	contributed	all	analysis	described	in	this	manuscript	

and	I	wrote	the	first	and	the	principal	version	of	this	manuscript.	Simon	Anders	

and	Wolfgang	Huber	provided	additional	mentorship	and	numerous	useful	

suggestions	on	the	design	of	my	analysis	approach.	
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2.2	Regional	mutational	heterogeneity	across	multiple	cancer	types	

Dataset	of	somatic	mutations	

We	obtained	a	dataset	of	genome-wide	somatic	mutations	in	various	cancer	

types	from	previously	published	studies	(Table	1).	For	each	patient,	a	tumor-

normal	tissue	pair	of	samples	was	whole-genome	sequenced	and	somatic	SNVs	

were	called.	The	median	number	of	somatic	mutations	per	sample	varies	greatly	

between	different	cancer	types	which	is	consistent	with	the	observations	made	

by	Alexandrov	et	al.,	2013	(Table	1).	

For	the	analysis	described	in	this	Chapter,	we	considered	only	those	cancer	types	

that	were	represented	by	at	least	20	patients,	which	resulted	in	698	cancer	

samples	in	total,	while	for	the	analyses	described	in	the	Chapters	3.2.1	and	3.2.2	

we	used	the	entire	dataset.		

	

Cancer	type	 Number	of	

samples	

Median	number	of	somatic	

mutations	per	sample	

ALL	 1	 	

AML	 7	 	

Breast	 1191	 3,579	

CLL	 281	 1,920	

Liver	 881	 9,021	

Lung	

Adenocarcinoma	

241	 46,634	
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Lymphoma	 761	 2,651	

Medulloblastoma	 2091,2	 1,064	

Pancreas	 15	 	

Prostate	 301	 2,206	

Pilocytic	

Astrocytoma	

1011	 100	

Table	1.	Overview	of	the	datasets	used.	The	VCF	files	with	somatic	SNV	calls	

were	produced	in	the	following	studies:	1.	(Alexandrov	et	al.,	2013);	2.	(Northcott	

et	al.,	2014;	Kool	et	al.,	2014;	Jones	et	al.,	2012;	Jager	et	al.,	2013).	

	

Correlation	between	features		

Previous	attempts	to	understand	the	patterns	of	mutational	heterogeneity	in	

cancer	were	performed	by	Schuster-Böckler	and	Lehner,	2012	and	Lawrence	et	

al.,	2013.	They	identified	various	genetic	and	epigenetic	features	that	correlated	

with	somatic	mutational	rates	in	cancer	at	100-kb	to	1-Mb	resolution.	These	

features	included	H3K9me3	(Schuster	Boeckler	et	al),	gene	expression	level,	

DNA	replication	timing,	open	vs.	closed	chromatin	states,	and	GC	content	

(Lawrence	et	al).	They	also	observed,	that	some	of	the	features	tend	to	be	

correlated.	For	example,	as	was	found	using	principle	component	analysis,	up	to	

60%	of	the	variance	between	the	features	at	the	1-Mb-resolution	can	be	

explained	by	the	first	principle	component,	this	is	believed	to	reflect	chromatin	

organization	(Schuster-Böckler	and	Lehner,	2012).		Since	this	correlation	was	

not	systematically	tested	at	different	resolution	and	for	large	sets	(>400	

samples)	of	cancer	genomes,	we	assessed	which	of	the	features	above	have	the	

strongest	correlation	with	somatic	mutation	densities	in	cancer,	and	whether	
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combined	contributions	of	features	correlate	with	the	mutational	densities	more	

strongly	than	the	individual	features	alone.		

	

Feature	 Reference	

Replication	Time	 Lawrence	M.	et	al.,	Nature	2013	

Averaged	gene	expression	levels	(CCLE)	 Lawrence	M.	et	al.,	Nature	2013	

GC	content	 UCSC	Genome	Browser	

H3K9me3	 Barski	A.	et	al.,	Cell	2007	

Chromatin	state	(Hi-C	data)	 Lieberman-Aiden	et	al.,	Science	2009	

Table	2.	Genetic	and	epigenetic	features	used	for	Principal	Component	Analysis.	

	

To	study	the	correlation	between	individual	features	we	performed	principal	

component	analysis	(PCA)	on	five	features:	replication	timing,	gene	expression	

level,	GC	content,	H3K9me3	and	open	vs.	closed	chromatin	conformation.	In	

order	to	obtain	results	that	could	be	compared	to	previous	studies,	we	used	data	

from	the	same	sources	that	were	used	in	work	by	Schuster-Böckler	and	Lehner,	

2012	and	Lawrence	et	al.,	2013	(see	Table	2	for	the	details).	We	binned	the	

entire	human	genome	(hg	19	build,	with	no	masking	of	the	regions)	into	100	kb	

windows	resulting	into	28,800	windows	in	total.	For	every	window	we	obtained	

values	for	each	of	the	features	by	either	taking	the	values	directly	from	the	

source	or	averaging	the	value	for	the	window	if	the	window	corresponded	to	

multiple	feature	annotations.	This	way	we	obtained	a	28,800	by	5	matrix,	in	

which	rows	represented	genomic	windows	and	columns	represented	the	five	

features	tested.		We	performed	PCA	on	this	matrix	and	observed	that	the	first	

principal	component	alone	explained	60%	of	variance	between	the	features	

(Figure	2a),	while	the	second	principal	component	explained	only	14%	of	the	

variance.	This	observation	is	similar	with	what	Schuster-Böckler	and	Lehner,	

2012	have	observed	in	their	study	assessing	a	less	extensive	set	of	cancer	

genomes.	The	fact	that	we	identified	one	feature	explaining	most	of	the	variance	

indicates	that	there	is	a	strong	correlation	between	several	features.	In	other	
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words,	various	genetic	and	epigenetic	features	reflect	a	higher-level	organization	

of	the	genome.		

	

Figure	2.	Principal	component	analysis	on	five	features.	(a)	Proportion	of	

variance	explained	by	the	principal	components.	(b)	Correlation	between	

somatic	mutational	densities	and	individual	features	as	well	as	with	1st	and	2nd	

principal	components	(PCs)	of	the	five	features	for	different	window	sizes.	

	

Best	correlate	with	mutation	rates		

In	order	to	be	able	to	estimate	background	mutation	rates	for	any	given	region	in	

the	human	genome,	one	should	first	find	a	way	to	stratify	the	genome	into	

regions	with	comparable	genetic	and	epigenetic	properties.	For	this,	one	first	

needs	to	identify	the	best	correlate	with	the	mutation	rates	in	the	existing	data.	

We	therefore	addressed	the	following	questions	in	this	part	of	the	analysis:	1)	

which	of	the	individual	features	alone	correlate	best	with	the	mutation	rates	in	

cancer?	2)	Does	the	combined	contribution	of	the	features	captured	by	the	PCA	

loading	vectors	show	a	higher	correlation	with	the	mutation	rates	than	the	

individual	features	alone?		

Since	it	is	expected	that	the	correlations	will	highly	depend	on	the	window	size	

(smaller	window	sizes	will	have	smaller	mutation	counts	and	this	will	lower	the	

correlations),	we	studied	the	above-mentioned	effects	on	eleven	window	sizes	

ranging	between	50bp	and	10Mb.	
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To	perform	the	analysis	we	first	constructed	a	matrix	for	each	window	size	(11	

matrices	in	total).	In	each	matrix:	

• rows	corresponded	to	genomic	windows;	

• columns	1-5	corresponded	to	the	individual	features;		

• columns	6	&	7	corresponded	to	the	1st	and	2nd	PC	loading	vectors	

obtained	from	the	PCA	as	described	above;	

• column	8	contained	the	total	number	of	mutations	across	698	cancer	

samples	(Table	1).	

For	each	window	size,	we	calculated	Pearson	correlation	coefficient	between	the	

mutation	rates	(8th	column)	and	each	of	the	other	7	columns	from	the	matrix.	

Since	some	features	are	known	to	correlate	positively	with	the	mutational	rates	

(replication	timing),	while	others	have	a	negative	correlation	with	the	mutation	

rates	(gene	expression	level),	we	considered	the	modus	value	of	the	Pearson	

correlation	coefficient	in	our	analysis.		

The	results	of	our	analysis	are	shown	in	Figure	2b.	As	was	expected,	all	of	the	

tested	correlations	improved	with	increased	window	sizes,	which	is	likely	due	to	

the	fact	that	the	higher	number	of	observed	mutations	per	window,	when	using	

larger	window	sizes,	allows	for	more	precise	estimates	of	the	actual	mutation	

rate.	Replication	timing	had	the	strongest	correlation	with	mutation	rates	as	an	

individual	feature	at	all	window	sizes;	this	supports	the	selection	of	this	feature	

in	previous	studies	to	control	for	local	and	global	background	mutation	rates.	

However,	when	comparing	the	correlation	between	mutation	rates	and	

replication	timing	with	the	1st	PC	loading	vector	we	observed	a	slightly	better	

correlation	for	the	first	principal	component	for	window	sizes	of	50bp-1Mbp.	

This	observation	motivated	us	to	propose	to	use	the	1st	PC	loading	vector	to	

estimate	the	expected	regional	mutation	rate	for	the	window-based	approaches	

where	window	sizes	range	between	50bp	and	1Mbp.		

2.5	Discussion	

Based	on	the	results	of	our	analysis	we	concluded,	that	the	replication	timing	is	

the	best	correlate	with	somatic	mutation	rates	when	compared	to	individual	

features.	Nevertheless,	the	combined	contribution	of	the	five	features	captured	
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by	the	1st	PC	loading	vector	outperforms	replication	timing	at	window	sizes	

between	50bp	and	1Mbp.	We	therefore	propose	to	use	the	1st	PC	loading	vector	

to	stratify	the	human	genome	into	groups	of	regions	with	comparable	genetic	

and	epigenetic	properties	and	thus	to	estimate	the	background	mutation	rate	for	

the	any	given	region	of	interest.	However,	it	is	important	to	keep	in	mind,	that	

due	to	our	still	limited	knowledge	about	mutational	patterns	in	cancer,	even	a	

combined	contribution	of	the	five	different	features	is	likely	to	be	only	a	useful	

approximation	of	the	true	background	mutation	rates	and	likely	does	not	

represent	a	complete	estimate	for	all	of	the	mutational	heterogeneity	existing	in	

cancer	genomes.	
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3.	Identification	of	intergenic	somatic	driver	mutations	

in	cancer	

3.1	Motivation	and	background	

Examples	of	somatic	driver	mutations	within	the	exonic	regions	of	oncogenes	

such	as	HER2	and	MYC	have	been	known	to	cancer	biologists	for	a	long	time.	The	

mechanisms	by	which	they	act	are	mostly	well	described	and	studied.	Multiple	

previous	studies	aimed	to	identify	novel	harmful	exonic	mutations	and	

succeeded	in	this	with	multiple	computational	tools	and	pipelines	now	available	

for	this	purpose	(Wang	et	al.,	2010;	Aleman	et	al.,	2014).	The	recent	decrease	in	

whole-genome	sequencing	costs	over	the	last	years	has	made	it	possible	to	

search	for	somatic	driver	mutations	also	within	the	intergenic	regions	of	the	

genome.	There	are	large	datasets	on	whole-genome	sequencing	in	cancer	

available	to-date,	including	TCGA	and	ICGC	projects.	The	computational	methods	

and	pipelines	for	this	area	are	however	still	in	the	beginning	of	development	and	

there	is	no	golden	standard	approach	existing	for	the	identification	of	somatic	

driver	mutations	within	intergenic	regions.	

Driver	mutations	are	by	definition	advantageous	for	the	tumor	evolution.	

Therefore	they	are	recurrently	observed	in	the	tumor	samples	and	have	a	

functional	relevance	for	the	tumor.		As	described	in	Chapter	2,	the	mutational	

recurrence	of	an	event	needs	to	be	compared	to	the	background	mutation	rate.	

Several	mechanisms	by	which	intergenic	mutations	play	a	role	in	tumorigenesis	

have	been	proposed.	We	used	the	TERT	promoter	mutations	case	as	an	example	

of	functional	impact.	Driver	mutations	within	the	TERT	promoter	region	create	a	

transcription	factor	binding	site	for	an	ETS	factor	that	leads	to	overexpression	of	

the	TERT	oncogene.	We	took	two	approaches	in	our	search	for	novel	somatic	

driver	events	within	intergenic	regions	in	the	cancer	genome.	

1)	Identification	of	intergenic	mutations	that	have	functional	consequences	for	

the	tumor.		

• In	the	first	project,	we	focused	on	identification	of	mutations	that	are	

associated	with	changes	in	gene	expression.	This	study	was	performed	on	
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a	dataset	that	consisted	of	23	lymphoma	samples	for	which	both	somatic	

mutation	and	gene	expression	data	were	available.		

• In	the	second	project,	we	focused	on	the	somatic	mutations	within	

intergenic	regions	that	changed	transcription	factor	binding	sites	(TFBS).	

This	study	was	performed	on	a	dataset	that	consisted	of	745	samples	

from	eleven	cancer	types,	for	which	somatic	SNV	calls	were	available.		

2)	Identification	of	intergenic	somatic	driver	events	based	on	the	mutational	

recurrence.	The	study	was	performed	on	698	samples	from	the	dataset	

mentioned	above.	Results	described	in	this	section	were	included	in	the	

submitted	manuscript	Rudneva	V	et	al.,	2016.	All	analysis	included	in	this	

manuscript	was	performed	by	me.	I	also	wrote	the	initial	draft	of	the	manuscript.	

Simon	Anders	and	Wolfgang	Huber	contributed	to	this	work	by	providing	

additional	mentorship	and	useful	comments	on	the	study	design	and	the	text	of	

the	manuscript.		

3.2.1	 Identification	of	intergenic	somatic	mutations	associated	with	gene	

expression	changes	in	lymphoma	

	In	this	approach	we	aimed	to	estimate	the	functional	impact	of	intergenic	

mutations	on	the	gene	expression.	For	this	we	aimed	to	identify	SNVs	that	are	

located	upstream	of	a	gene	(ideally,	in	its	promoter	region)	and	are	associated	

with	the	expression	changes	of	the	gene	(Figure	3).	

	

Figure	3.	Overview	of	the	approach	for	identification	of	intergenic	somatic	

mutations	that	correlate	with	expression	changes	in	close	by	genes	
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We	combined	this	principle	with	a	straightforward	annotation	and	filtering	

pipeline	(Figure	4)	and	performed	our	analysis	on	23	lymphoma	samples	for	

which	both	somatic	SNVs	and	gene	expression	data	were	available	(Richter	et	al.,	

2012).		

In	brief,	we	obtained	a	list	of	somatic	mutations	that	were	present	at	the	exact	

same	position	in	at	least	two	samples;	we	filtered	out	mutations	in	“unreliable”	

regions	and	extended	the	resulting	high-confidence	mutations	to	genomic	

regions	of	500bp	upstream	and	downstream	of	the	mutation.	We	merged	the	

neighboring	regions	if	they	overlapped,	but	kept	the	window	size	the	same	for	all	

windows.	We	annotated	the	resulting	genomic	regions	using	various	sources,	

such	as	ENCODE	and	COSMIC	(Forbes	et	al.,	2015).	As	the	last	step,	we	identified	

genes	that	had	statistically	significant	changes	in	the	expression	values	between	

the	samples	with	and	without	mutations	within	the	regions	of	interest.	

	

Figure	4.	Overview	of	the	SNVs	annotation	and	filtering	pipeline	combined	with	

transcriptomic	data	integration.		
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Somatic	SNV	calling	was	performed	by	Tobias	Rausch.	By	considering	only	the	

mutations	that	were	present	in	at	least	two	individuals,	we	obtained	a	list	of	121	

recurrent	somatic	mutations.	In	order	to	identify	only	the	high	confidence	

somatic	variants,	we	filtered	this	list	based	on	the	following	criteria:	

1)	all	mutations	occurring	within	the	DAC	Blacklisted	Regions	produced	by	the	

ENCODE	project	were	excluded	from	the	analysis.	The	DAC	Blacklisted	Regions	

consist	of	anomalous,	unstructured	regions	of	the	genome,	as	well	as	the	regions	

with	high	signal/read	counts	in	next	generation	sequencing	experiments	

independent	of	cell	line	and	type	of	experiment.	There	regions	were	initially	

obtained	using	80	open	chromatin	tracks	(DNase	and	FAIRE	datasets)	and	20	

ChIP-seq	input/control	tracks	spanning	~60	human	tissue	types/cell	lines	in	

total.		

2)	mutations	that	overlapped	with	regions	of	low	mappability	were	filtered	out.	

Mappability	is	a	metric	that	represents	the	regions	in	the	genome	that	cannot	be	

uniquely	mapped	given	the	read	length	and	therefore	SNVs	that	were	called	in	

such	regions	cannot	be	considered	high-confidence.	

3)	mutations	within	the	highly	repetitive	regions	according	to	the	RepeatMasker	

(http://www.repeatmasker.org/)	were	also	not	considered.	

4)	mutations	that	are	present	in	the	dbSNP132	database	or	identified	by	the	

1000	Genomes	Project	as	known	polymorphisms.	Such	mutations	are	very	likely	

to	be	germline	variants	that	were	mistakenly	called	as	somatic	(mainly	because	

of	the	lack	of	coverage	at	that	locus	in	the	control	sample).	

	After	applying	the	abovementioned	filtering,	we	identified	42	high	confidence	

SNVs.	We	extended	each	of	the	point	mutations	to	1000	bp	regions	(500	bp	

upstream	and	500	bp	downstream	of	the	mutation).	We	merged	the	overlapping	

regions	and	centered	the	mutations	so	that	each	region	was	of	1000	bp	size.	This	

way	we	ended	up	with	21	regions	of	interest	(Table	3).	

Genomic	region	 Total	number	of	somatic	mutations	

chr14:	106326613	-	106327613	 117	

chr14:	106329616	-	106330616	 80	
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chr14:	106328615-106329615	 62	

chr2:	89158984-89159984	 51	

chr14:	106327614-106328614	 46	

chr2:	89160096-89161096	 39	

chr18:	60985882-60986882	 35	

chr18:	60984597-60985597	 33	

chr3:	187462336-187463336	 32	

chr8:	128748603-128749603	 32	

chr22:	23222891-23223891	 29	

chr14:	106330617-106331617	 15	

chr3:	187660483-187661483	 9	

chr14:	106732659-106733659	 7	

chr18:	60805818-60806818	 5	

chr3:	4941250949413509	 4	

chr19:	11133752-11134752	 3	

chr8:	4042874-4043874	 2	

chr3:	50293195-50294195	 2	

chr21:	45381115-45382115	 2	

chr14:	37874607-37875607	 2	

Table	3.	List	of	candidate	1	kb	genomic	regions	containing	high	confidence	

somatic	mutations.		

	

Integration	with	gene	expression	data	

To	identify	among	the	genomic	regions	of	interest	those	that	contain	driver	

events	with	potential	cis-effects	on	the	gene	expression	we	applied	a	simple	

burden	test.		For	each	of	the	21	regions	of	interest	we	calculated	Pearson	



	 48	

correlation	coefficients	between	genotypes	and	expression	values	of	ten	closest	

genes.	In	our	analysis,	we	called	a	“genotype”	the	state	of	1kb	region:		0	if	there	

were	no	mutations	within	the	region	in	the	given	patient	and	1	if	the	patient	had	

at	least	one	mutation	in	the	1kb	region.	This	way	we	constructed	a	23	by	21	

matrix,	in	which	rows	represented	individual	patients	and	columns	represented	

the	regions	of	interest;	each	value	corresponded	to	a	genotype	(0	or	1).			

The	main	assumption	for	performing	such	correlation	analysis	using	a	burden	

test	is	that	somatic	SNVs	have	a	strong	effect	on	the	expression	of	the	genes.	

However,	some	effect	on	the	gene	expression	levels	may	come	from	the	genetic	

variability	between	the	individuals.	Indeed,	consider	two	individuals	coming	

from	two	different	populations	in	which	one	has	a	polymorphism	in	the	gene	of	

interest	that	determines	it’s	higher	expression	level	in	comparison	to	the	

individual	from	the	other	population.	Then,	assuming	that	there	is	an	effect	of	

the	somatic	variant	on	the	gene	expression	but	it	is	smaller	than	the	effect	of	a	

SNP,	the	fact	that	the	two	individuals	are	coming	from	two	different	populations	

will	mask	the	effect	of	the	somatic	SNV.	It	is	therefore	very	important	to	control	

for	population	structure	of	the	patient	samples	while	performing	phenotype-

genotype	correlation	analysis.	If	patients	in	the	dataset	are	coming	from	distinct	

populations,	the	common	SNPs	present	in	the	data	(and	that	could	eventually	be	

still	present	among	the	somatic	mutations)	may	influence	the	results	of	the	

analysis	by	driving	the	correlation.	We	therefore	performed	principal	component	

analysis	(PCA)	on	the	lymphoma	dataset	combined	with	dataset	from	the	

HapMap	project	(the	reference	on	variation	between	distinct	human	

populations)	to	make	sure	that	there	was	no	significant	population	structure	

between	individuals.	The	full	list	of	HapMap	populations	used	in	this	analysis	

and	the	descriptors	are	listed	in	the	Table	4.	

We	observed	that	most	of	our	lymphoma	samples	(Figure	5,	red	dots	cluster)	

were	coming	from	the	same	population,	so	there	was	no	need	to	account	for	

population	stratification	before	performing	the	correlation	analysis.	
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Descriptor	 Population	

ASW	 African	ancestry	in	Southwest	USA	

CEU	 Utah	residents	with	Northern	and	Western	European	ancestry	

from	the	CEPH	collection	

CHB	 Han	Chinese	in	Beijing,	China	

CHD	 Chinese	in	Metropolitan	Denver,	Colorado	

GIH	 Gujarati	Indians	in	Houston,	Texas	

JPT	 Japanese	in	Tokyo,	Japan	

LWK	 Luhya	in	Webuye,	Kenya	

MXL	 Mexican	ancestry	in	Los	Angeles,	California	

MKK	 Maasai	in	Kinyawa,	Kenya	

TSI	 Toscani	in	Italia	

YRI	 Yoruba	in	Ibadan,	Nigeria	

Table	4.	List	of	HapMap	populations	used	for	the	population	structure	analysis.		
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Figure	5.	Principle	Component	Analysis	on	23	lymphoma	samples	and	HapMap	

individuals	showing	the	population	structure.	The	lymphoma	samples	used	in	

this	analysis	are	shown	in	red.		

	

The	RNA-Seq	data	preprocessing,	quality	control	assessment	from	raw	reads	and	

alignment	were	performed	using	a	custom	pipeline	and	various	publically	

available	tools	(see	Methods	for	more	details).	As	the	result	of	this	analysis,	gene	

expression	values	were	represented	in	reads	per	kilobase	per	million	(RPKM)	

values.	As	we	considered	only	the	cis-effects	of	the	regions	on	gene	expression	in	

this	analysis,	we	identified	ten	top	closest	genes	for	every	candidate	genomic	

region	and	calculated	Pearson	correlation	coefficients	between	their	expression	

values	and	the	regions’	genotypes.	We	used	FDR	for	multiple	testing	correction	

and	a	significance	threshold	of	0.05	for	the	resulting	q-values.		
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We	identified	four	genomic	regions	that	significantly	correlated	with	expression	

levels	of	three	genes:	BCL2,	CBS	and	MIPOL1	(Figure	6).		

BCL2	is	a	gene	known	to	drive	follicular	lymphoma.	The	regions	of	interest	that	

we	identified	to	be	associated	with	its	expression	changes	in	the	presence	of	

mutations	were	both	located	in	a	close	proximity	on	the	chromosome	18.	The	

first	region	was	mutated	in	eight	samples,	while	the	other	one	was	mutated	in	

seven	samples.	Even	though	the	correlations	between	the	gene	expression	and	

the	regions	genotypes	were	statistically	significant,	the	genomic	locus	containing	

BCL2	gene	is	known	to	undergo	structural	rearrangements	during	the	lymphoma	

development	and	therefore	does	not	provide	any	novel	drivers.	

Two	more	genes,	CBS	and	MIPOL1,	were	not	previously	associated	with	

lymphoma	and	therefore	could	serve	as	interesting	candidate	mutations	for	the	

follow-up	studies.	Unfortunately,	we	did	not	observe	that	the	regions	were	

frequently	mutated	among	our	samples:	both	genomic	loci	were	mutated	only	in	

two	out	of	23	samples	each.	This	is	likely	the	reason	why	the	statistical	

significance	values	were	borderline	for	both	cases	(Figure	6).		
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Figure	6.	Differences	in	gene	expression	between	samples	harboring	mutations	

within	the	regions	of	interest	and	samples	with	no	mutations	within	the	regions.	

Only	significantly	differentially	expressed	genes	are	shown	(FDR	corrected	p-

value	<	0.05,	shown	on	plots).	

	

Discussion	

Note	that	even	though	association	with	gene	expression	is	an	indication	that	the	

region	might	contain	driver	mutations,	high	mutational	recurrence	of	the	event	

(how	many	samples	are	mutated)	is	required	to	score	a	potential	candidate	high.	
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artifacts.		Moreover,	even	if	the	event	is	indeed	present	in	the	samples	with	such	

a	low	frequency,	it	will	be	very	difficult	to	experimentally	validate	and	study	the	

mechanisms	of	action	if	the	event	we	study	is	very	rare.	Lastly,	even	if	the	event	

is	a	true	driver	and	has	indeed	a	functional	role	that	could	be	confirmed	

experimentally	in	the	lab,	this	might	still	be	a	unique	case	and	not	represent	the	

common	process	of	tumorigenesis	in	humans	and,	therefore,	will	likely	not	make	

its	way	into	medical	practice	due	to	the	high	costs	of	clinical	trials	for	rare	

diseases.		

Taken	into	account	all	of	the	above	points,	here	we	did	not	propose	any	new	

candidate	drivers	and	concluded	that	we	don’t	have	enough	statistical	power	to	

identify	new	drivers	in	this	setup.	We	however	proposed	three	solutions	that	

could	help	improving	the	analysis:	1)	obtaining	a	larger	dataset,	consisting	of	

somatic	variant	calls	and	gene	expression	data	matched	for	all	samples;	2)	

focusing	the	analysis	on	other	functional	consequences	of	the	driver	mutations	

presence	(for	instance,	transcription	factor	binding	changing	by	somatic	

mutations);	3)	focusing	the	entire	analysis	on	identification	of	genomic	regions	

that	are	recurrently	mutated	across	multiple	cancer	samples.	

Since	in	our	case	we	could	not	obtain	a	significantly	larger	dataset	as	described	

in	(1)	during	the	time	of	this	PhD	work,	we	focused	on	performing	the	(2)	and	

(3),	as	will	be	presented	in	the	following	sections	of	this	Chapter.	

3.2.2	 Identification	of	intergenic	somatic	mutations	associated	with	

predicted	TFBS	changes	in	multiple	cancer	types		

As	was	mentioned	in	the	previous	section,	for	most	of	the	cancer	samples	with	

somatic	mutation	calls	the	matching	gene	expression	data	were	unfortunately	

not	available.	We	therefore	could	not	estimate	the	functional	impact	of	somatic	

mutations	by	directly	comparing	gene	expression	values	to	the	genotypes.	

However,	we	could	still	estimate	the	effect	of	the	SNVs	indirectly,	by	inferring	the	

changes	in	transcription	factor	binding	sites	(TFBS)	sequences	introduced	by	the	

mutations.	This	analysis	setup	was	motivated	by	the	TERT	promoter	example,	in	

which	two	somatic	mutations	create	a	TFBS	for	the	ETS	transcription	factor	

leading	to	the	overexpression	of	the	TERT	gene.		



	 54	

Since	the	TERT	promoter	is	not	a	cancer-type-specific	driver	but	is	rather	known	

to	be	involved	in	various	cancer	types	(Vinagre	et	al.,	2013),	we	employed	this	

idea	to	identify	similarly	acting	driver	mutations	across	different	cancer	types.		

For	this	purpose	we	used	a	dataset	of	745	cancer	samples	of	11	different	cancer	

types	(1	ALL,	7	AMLs,	76	lymphomas,	119	breast	cancers,	28	CLLs,	88	liver	

cancers,	24	lung	adenocarcinomas,	256	medulloblastomas,	15	pancreas	cancers,	

30	prostate	cancers,	101	pilocytic	astrocytomas;	see	Table	1).	Cancer	types	

varied	greatly	in	amounts	of	somatic	mutations	observed	per	sample	both	in	

total	and	for	intergenic	regions	only	(Figure	8).	Median	number	of	somatic	

mutations	per	sample	was	in	a	range	between	102	to	105,	which	is	consistent	

with	previous	reports	(Martincorena	and	P.	J.	Campbell,	2015).	As	expected,	the	

highest	mutational	load	was	observed	in	lung	cancers,	while	the	least	number	of	

somatic	mutations	were	identified	in	pediatric	samples	(e.g.	pilocytic	

astrocytoma).	In	addition,	similarly	to	Lawrence	et	al.,	2013,	we	observed	

variability	in	mutational	densities	between	the	patients	with	the	same	cancer	

type.	Our	observations	are	particularly	interesting	because	here	we	studied	the	

mutational	heterogeneity	on	the	largest	dataset	of	whole-genome	sequenced	

tumors	available	to-date.	

	

Figure	8.	Distribution	of	somatic	mutational	counts	across	different	cancer	types	

for	(a)	all	mutations	and	(b)	intergenic	mutations	only.	
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Similarly	to	the	analysis	performed	on	lymphoma	samples,	we	first	collected	a	

list	of	all	somatic	mutations	across	multiple	tumors	and	then	selected	SNVs	that	

were	present	at	the	exact	same	nucleotide	position	in	at	least	two	individuals	

and	annotated	them	as	recurrent.	We	filtered	out	the	resulting	list	of	recurrent	

SNVs	using	the	following	criteria:	

1)	for	each	recurrent	mutation	of	interest,	there	must	be	another	recurrent	SNV	

within	100	bp	to	make	sure	that	the	mutations	occur	within	the	same	regulatory	

region	of	the	genome.	

2)	the	two	recurrently	mutated	positions	must	not	be	present	in	the	same	

patient.	This	comes	from	an	assumption	that	if	there	is	already	one	driver	

mutation	that	has	an	affect	on	the	gene	expression,	there	will	be	no	selective	

pressure	for	the	other	position	to	be	mutated	in	this	patient	(e.g.	mutually	

exclusive	mutations	within	the	TERT	promoter).	We	called	this	an	anti-

correlation	principle.	

3)	each	of	the	mutations	must	be	motif	changing.	As	shown	schematically	in	

Figure	5,	mutations	might	create	a	new	TFBS	sequence,	like	in	the	case	of	TERT,	

or	they	might	disrupt	an	already	existing	one	by	introducing	a	mismatch.		

	

Figure	9.	Possible	scenarios	of	motif	changing	caused	by	driver	somatic	

mutations.	Sequences	with	somatic	mutations	(stars)	are	compared	to	the	

reference	sequence.	(a)	a	TFBS	motif	(green	rectangle)	is	being	created	by	

introducing	a	mutation	at	any	of	the	positions;	(b)	mutations	at	any	of	the	

nucleotide	positions	disturb	an	existing	TFBS	motif.		

	

Before	the	filtering	steps,	we	had	a	list	consisting	of	159,584	SNVs	mutated	at	the	

exact	same	position	in	at	least	two	out	of	745	cancer	samples.	Following	the	first	
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two	positions	were	recurrently	mutated.	Among	them	2,230	loci	satisfied	our	

anti-correlation	criterion	(neighboring	recurrent	SNVs	are	never	present	in	the	

same	patient).	When	considering	non-coding	loci	only,	we	ended	up	with	2,211	

loci	of	interest	for	which	we	computationally	tested	if	they	were	motif	changing	

based	on	the	scheme	shown	in	the	Figure	9.	This	resulted	in	identification	of	157	

genomic	regions	of	interest.		

It	is	important	to	note,	that	the	last	filtering	step	is	a	very	strict	bottleneck	in	our	

analysis	pipeline.	Because	of	a	large	number	of	candidate	loci	coming	from	the	

previous	analysis	step,	we	had	to	rely	on	computational	tools	to	predict	if	the	

presence	of	a	mutation	could	create/disrupt	a	motif.	Given	the	limited	

knowledge	of	motif	binding	patterns	in	the	genome	and	the	still	early	state	of	

computational	motif	binding	prediction,	one	should	be	aware	though	that	this	

last	step	may	not	be	highly	reliable	at	the	moment.	We	therefore	performed	a	

more	detailed	analysis	of	the	157	candidates.	Among	them,	66	were	intergenic.	

Regions,	overlapping	with	known	copy-number	variation	and	commonly	

repeated	regions	are	a	source	of	possible	false	positives	and	we	therefore	further	

filtered	out	such	loci	where	the	mutations	of	interest	overlapped.	We	ended	up	

with	nine	regions	that	we	could	call	high	confidence.	Further	investigation	

showed	that	among	the	nine	candidate	regions,	four	overlapped	with	DNase	I	

hypersensitive	sites	according	to	the	ENCODE	project	annotations	and	two	

overlapped	known	transcription	starts	site	enhancers	according	to	the	

FANTOM5	project	data.		

We	continued	with	the	visual	investigation	of	all	highly	confident	regions	in	the	

genome	browser.	We	observed	that	all	the	individual	cases	of	mutations	that	

were	predicted	to	be	motif	changing	in	our	computational	analysis	had	very	low	

recurrence.	Similarly	to	conclusions	made	in	the	previous	section	of	the	Chapter,	

we	could	not	gain	any	mechanistic	insights	into	cancer	biology	for	such	low	

recurrent	events.	We	therefore	focus	our	final	analysis	on	identification	of	

recurrently	mutated	intergenic	regions.		
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3.2.3	 Identification	of	intergenic	regions	recurrently	mutated	across	

multiple	cancer	types	

In	this	section,	I	will	first	present	results	of	a	naïve	approach	to	identify	

recurrently	mutated	intergenic	regions,	followed	by	some	statistical	issues	that	

we	identified	to	be	associated	with	the	approach.	Lastly,	I	will	present	the	results	

of	our	refined	approach	that	we	developed	to	overcome	those	issues.	This	

approach	was	presented	in	the	submitted	manuscript	Rudneva	V	et	al.,	2016.	

Naïve	approach	for	identification	of	recurrently	mutated	regions		

As	discussed	in	detail	in	Chapter	2,	regional	mutational	heterogeneity	is	a	

confounding	factor	for	computational	identification	of	recurrently	mutated	

regions.	Clearly,	finding	an	approach	for	correcting	differences	in	regional	

mutational	propensities	will	allow	the	reduction	of	mutational	biases	and	

increase	the	statistical	power	for	identifying	mutations	in	intergenic	regions	of	

relevance	in	cancer.	

To	address	this	issue	we	first	used	a	naïve	approach	that	operated	as	follows	

(Figure	10).	First,	we	binned	the	human	genome	into	non-overlapping	genomic	

windows	of	100	kb	size	and	employed	a	list	of	covariates	(both	genetic	and	

epigenetic)	to	select	regions	with	a	comparable	environment.	In	brief,	we	

performed	principal	component	analysis	on	five	genetic	and	epigenetic	features	

that	were	previously	reported	to	correlate	with	somatic	mutational	densities	in	

cancer	(see	Chapter	2	for	the	details	and	Table	2	for	the	complete	list	of	

features).	We	used	the	1st	principal	component	loading	vector	to	stratify	the	

entire	genome	into	25	groups	of	genomic	regions	with	comparable	genomic	

background	(each	group	contained	973	or	972	genomic	regions).	We	then	

ranked	genomic	regions	within	each	group	and	identified	regions	that	were	

mutated	more	frequently	in	comparison	to	other	regions	with	similar	

background	mutational	rates	(e.g.	the	regions	that	were	>0.99	quantile	outliers	

within	the	group).	To	assess	the	mutational	patterns	for	each	cancer	type	

individually,	we	selected	100	kb	genomic	regions	that	were	frequently	mutated	

in	the	given	cancer	type	but	not	in	other	cancers.	We	assumed	those	across-all-

cancer-types	frequently	mutated	regions	do	not	harbor	biologically	relevant	
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somatic	drivers	but	rather	represent	loci	of	somatic	hypermutation.	Latter	would	

likely	be	a	consequence	of	tumorigenesis	rather	than	its	cause.		

Using	the	TERT	promoter	as	an	example,	we	expected	to	identify	candidate	loci	

of	a	relatively	small	size	of	around	50	bp.	We	hence	searched	for	regions	of	50	bp	

in	size	that	contained	multiple	SNVs	within	the	initial	windows	of	100	kb	that	we	

used	in	the	first	steps	of	the	analysis.	Finally,	the	resulting	regions	were	

manually	screened	to	identify	high-confidence	candidate	loci.		

We	started	the	analysis	with	100	kb	regions	for	the	genome	stratification	step	

and	only	at	the	latest	stage	focused	on	smaller	window	sizes	that	were	more	

biologically	relevant.	We	designed	our	approach	this	way	in	order	to	avoid	

statistical	issues	that	are	known	to	arise	due	to	low	mutation	counts	in	small	

windows.	To	be	able	to	select	frequently	mutated	regions	in	a	cancer-type-

specific	manner	(step	3	in	the	scheme	from	Figure	10),	we	required	each	cancer	

type	to	be	represented	by	at	least	20	samples	(Table	1),	which	resulted	in	a	

dataset	of	698	samples.		

	

Figure	10.	Naïve	approach	overview.	Detailed	description	is	in	the	main	text.	
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To	computationally	validate	that	our	pipeline	could	indeed	identify	potential	

candidate	somatic	drivers,	we	investigated	the	functional	impact	of	the	mutated	

regions	on	expression	of	the	corresponding	genes,	using	the	same	assumption	as	

in	3.2.1	section	of	this	Thesis.	We	chose	a	cancer	type	that	was	represented	by	a	

large	number	of	samples	(Table	1)	and	for	which	we	had	matching	expression	

data	available	in	the	lab.	Medulloblastoma	dataset	consisted	of	209	samples	in	

total	with	expression	data	available	for	128	of	them.	Additionally,	our	lab	had	

access	to	the	subgroup	information,	copy-number	variants	calls	and	enhancers	

data	for	most	of	the	samples.		

We	ran	our	pipeline	on	the	dataset	of	698	samples	from	eight	cancer	types	and	

identified	50	candidate	regions	of	100	kb	size	that	were	frequently	mutated	in	

medulloblastoma	in	comparison	to	other	cancer	types.	39	out	of	the	50	candidate	

regions	overlapped	with	the	list	of	medulloblastoma-specific	enhancers	that	was	

provided	by	Serap	Erkek.	To	further	study	the	candidate	regions,	we	identified	

loci	of	50	bp	that	contained	multiple	mutations	closely	located	within	the	100	kb	

candidate	regions.	For	some	of	100	kb	candidate	regions	we	identified	more	than	

one	50	bp	locus	with	clustered	mutations.	We	identified	in	total	83	such	loci	and	

studied	them	closely.	

A	detailed	study	of	the	candidate	loci	allowed	us	to	identify	frequent	exonic	

mutations	in	known	WNT	signaling	pathway	genes	(CTNNB1,	SMARCA4,	PTCH1).	

Notably,	only	the	samples	with	medulloblastoma	WNT	subtype	had	mutations	in	

those	regions.	In	addition	to	these	known	exonic	drivers	our	pipeline	also	

identified	TERT	promoter	mutations	as	candidates.	To	confirm	that	identified	

mutations	affected	TERT	gene	expression	we	compared	expression	values	

between	samples	with	and	without	TERT	promoter	mutations.	We	used	Mann-

Whitney	U	test	to	assess	statistical	significance	of	the	difference	in	gene	

expression	between	the	two	groups	of	samples.	Indeed	the	mutated	samples	

showed	significantly	higher	expression	values	(Figure	11a).	However,	a	number	

of	outliers	in	the	non-mutated	group	had	extremely	high	expression	values.		

TERT	high-level	copy-number	amplifications	are	commonly	observed	in	

medulloblastoma	and	are	known	to	lead	to	extreme	outlier	expression	of	the	

gene	(Northcott	et	al.,	2012).	Therefore,	it	is	sensible	to	not	consider	samples	



	 60	

with	high-level	TERT	copy-number	amplification	in	our	gene	expression	

analysis.	Being	aware	of	that,	we	removed	two	samples	with	known	TERT	

amplifications.	Notably,	those	samples	had	the	highest	expression	values	among	

all	medulloblastoma	samples.	Excluding	those	samples	from	the	comparison	

slightly	influenced	the	expression	analysis	results	(Figure	11,	a	vs.	b;	0.0146	vs	

0.0133	Mann-Whitney	U	test	p-values).	This	let	us	hypothesize	that	the	

remaining	outliers	could	also	be	due	to	genomic	alterations	involving	the	TERT	

gene	region.	For	example,	they	may	be	explained	by	the	fact	that	TERT	mutations	

occur	in	the	context	of	a	highly	repetitive	promoter	sequence,	which	may	have	

resulted	in	under-called	mutations	in	the	TERT	promoter.	Alternatively,	this	

effect	could	be	caused	by	distal	somatic	structural	alterations	affecting	

enhancers	of	TERT	(Peifer	et	al.,	2015).		

	
Figure	11.	Differences	in	the	TERT	gene	expression	in	medulloblastoma	samples	

with	mutated	promoter	region	and	the	samples	that	do	not	harbor	mutations	in	

the	region	of	interest.	Gene	expression	levels	are	normalized.	(a)	Expression	

values	for	all	medulloblastoma	samples	were	used:	samples	with	promoter	

mutations	(n	=	6;	red)	vs.	samples	with	wild-type	(WT)	TERT	(n	=	122;	blue).	(b)	

Two	samples	with	known	TERT	amplification	status	were	excluded	from	

analysis.	
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In	summary,	using	our	pipeline	we	identified	a	list	of	known	exonic	somatic	

drivers	in	medulloblastoma	and	a	known	intergenic	driver	event	in	the	promoter	

region	of	TERT	that	was	associated	with	expression	changes	of	the	gene.	The	

focus	of	our	study	was	to	identify	novel	intergenic	driver	events.	We	hence	

annotated	our	list	of	candidate	50	bp	regions	by	their	genomic	location	(coding	

or	intergenic)	and	additionally	filtered	out	all	the	regions	that	had	no	overlap	

with	medulloblastoma-specific	enhancers.	The	resulting	list	of	37	intergenic	

candidate	regions	is	listed	in	Table	5.	

Genomic	region	 Mutational	recurrence	

chr5:1295201-1295251	 11	

chr12:66463226-66463276	 9	

chr12:66463226-66463276	 9	

chr12:66463201-66463251	 6	

chr16:34210301-34210351	 4	

chr13:25606376-25663301	 4	

chr16:34210276-34210326	 3	

chr11:32554601-32554651	 2	

chr11:39773551-39773601	 2	

chr12:94499151-94499201	 2	

chr13:25606376-25606426	 2	

chr13:25663251-25663301	 2	

chr13:28526051-28526101	 2	

chr16:34664551-34664601	 2	

chr16:34757351-34757401	 2	

chr17:21987526-21987576	 2	

chr17:41558651-41558701	 2	

chr19:15015551-15015601	 2	
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chr19:40281601-40281651	 2	

chr2:14656651-14656701	 2	

chr2:14683551-14683601	 2	

chr2:130330251-130330301	 2	

chr2:130339076-130339126	 2	

chr22:22745476-22745526	 2	

chr22:22799851-22799901	 2	

chr3:82966026-82966076	 2	

chr3:82966051-82966101	 2	

chr3:87353076-87353126	 2	

chr3:103405101-103405151	 2	

chr4:122457426-122457476	 2	

chr4:122487626-122487676	 2	

chr5:50707701-50707751	 2	

chr5:101646001-101646051	 2	

chr6:17013126-17013176	 2	

chr6:107130801-107130851	 2	

chr7:36131951-36132001	 2	

chr7:49810751-49810801	 2	

	Table	5.	Candidate	50	bp	intergenic	regions	ranked	by	mutational	recurrence.	

The	genomic	region	containing	TERT	promoter	mutations	is	shown	in	bold.		

	

The	majority	of	the	candidate	regions	we	identified	had	a	very	low	recurrence,	

which	made	them	difficult	to	validate	even	using	computational	approaches.	The	

top	most	recurrently	mutated	region	was	above-mentioned	TERT	promoter.	

Other	regions	with	high	mutational	recurrence	did	not	show	any	significant	

correlation	with	the	expression	changes	of	the	closest	genes.	Since	the	regions	
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overlap	with	medulloblastoma-specific	enhancers,	we	still	expect	the	mutations	

to	be	functionally	relevant.	This,	however,	might	mean	that	the	mutations	act	as	

trans-regulators	rather	than	cis-	and	this	would	require	additional	level	of	data	

(e.g.	Hi-C)	to	uncover	such	mechanisms.	

Statistical	aspects	of	recurrently	mutated	regions	identification	

The	results	of	the	naïve	approach	described	in	this	section	raised	a	list	of	

questions.	First	of	all,	how	to	prioritize	the	candidate	regions	identified	using	a	

windows-based	approach?	As	using	simple	mutational	recurrence	did	not	yield	

many	novel	candidates,	the	most	intuitive	approach	would	be	to	perform	

statistical	tests	and	calculate	p-values.	The	p-values	would	then	be	corrected	for	

multiple	testing	and	by	choosing	a	significance	threshold	one	would	therefore	

obtain	a	list	of	statistically	significant	recurrently	mutated	genomic	regions.	

However,	if	we	consider	such	small	window	sizes	as	50	bp,	as	were	used	here	for	

this	naïve	approach,	without	performing	any	prior	filtering	of	the	genome,	we	

will	have	a	very	large	number	of	genomic	regions	(~107)	to	start	with	and	

consequently,	a	large	number	statistical	tests	performed.	This	will	lead	to	

difficulties	in	obtaining	many	(if	any)	regions	that	would	satisfy	the	significance	

threshold	after	multiple	testing	correction.		

In	addition,	the	data	we	are	dealing	with	in	this	analysis	is	sparse.	If	we	construct	

a	matrix	of	observed	number	of	somatic	mutations,	in	which	rows	correspond	to	

genomic	windows	and	columns	correspond	to	individual	patients,	most	of	the	

values	of	this	matrix	will	be	zeros	given	the	estimated	rates	of	somatic	mutations	

in	human	of	2	to	10	mutations	per	diploid	genome	per	cell	division	

(Martincorena	and	Campbell,	2015).	One	of	the	obvious	consequences	will	be	

that	errors	in	somatic	mutation	calling,	especially	the	false	positives,	will	greatly	

influence	the	outcome	of	the	statistical	analysis.		

The	last	important	point	that	should	be	taken	into	account	in	the	recurrence	

analysis	is	the	above-mentioned	regional	mutational	heterogeneity.	One	should	

consider	it	when	comparing	the	observed	recurrence	of	a	region	with	the	

estimated	background	mutation	rates.		
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Taking	these	described	issues	into	consideration,	we	attempt	to	optimize	for	a	

number	of	statistical	parameters,	including	p-value	cut-offs	and	statistics	choice,	

in	the	upcoming	section	of	this	Chapter.	We	will	also	discuss	the	choice	of	

appropriate	window	size	that	will	allow	detecting	correlations	and	at	the	same	

time	will	not	dilute	the	biological	signal.	

The	results	described	in	the	following	section	were	included	in	the	submitted	

manuscripts	Rudneva	V.	et	al.,	2016.	

Parameter	optimization	using	cross-validations.		

A	typical	workflow	to	identify	recurrently	mutated	genomic	regions	using	

window-based	approach	operates	as	follows.	Somatic	mutational	data	from	

multiple	whole-genome	sequenced	cancer	samples	are	obtained	through	

alignment	and	SNV	calling	pipelines.	Then,	the	lists	of	somatic	variants	are	

merged	and	mutational	counts	for	each	of	the	regions	of	interest,	usually	

between	50	and	200	bp	in	size,	are	calculated.	For	each	of	the	genomic	regions,	

p-values	are	calculated	based	on	the	null	hypothesis	that	the	number	of	observed	

mutations	in	the	region	is	not	different	from	the	background	mutation	rates.	To	

estimate	background	mutation	rates	either	regions	with	similar	DNA	replication	

timing	(Weinhold	et	al.,	2014;	Lawrence	et	al.,	2013)	or	a	combination	of	

replication	timing,	base-pair	type	and	transcript	region	(Melton	et	al.,	2015)	are	

employed.	P-values	are	then	computed	using	Binomial	test	statistics	(Weinhold	

et	al.,	2014)	or	a	Poisson	binomial	model	(Melton	et	al.,	2015),	and	a	p-value	cut-

off	is	employed	to	identify	regions	that	are	recurrently	mutated.	Despite	the	use	

of	fairly	similar	approaches	and	largely	or	partially	overlapping	datasets,	there	

was	no	overlap	in	the	intergenic	candidate	driver	identified	in	previous	studies	

besides	the	TERT	promoter	region.	To	address	the	question	to	which	extent	the	

statistical	parameters	choice	may	drive	the	findings	of	such	studies,	we	devised	

the	following	approach	based	on	cross-validation	scheme	(Figure	12).		
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Figure	12.	Overview	of	the	cross-validation	based	workflow	for	identification	of	

recurrently	mutated	genomic	regions.		

	

We	first	binned	the	entire	human	genome	into	non-overlapping	windows.	We	

tested	different	window	sizes	in	our	analysis,	four	in	total	(50bp,	100bp,	200bp,	

and	500bp).	For	every	genomic	window	of	a	given	size	we	computed	its	

mutational	recurrence	(the	number	of	samples	that	have	at	least	one	somatic	

mutation	in	the	given	window)	and	compared	it	to	the	average	mutational	

recurrence	of	the	genome-wide	set	of	regions	with	comparable	genetic	and	

epigenetic	background	(background	mutation	rate).	To	obtain	a	background	set	

of	genomic	regions	for	every	region	of	the	genome	we	used	the	methodology	

described	in	previous	sections	(see	3.2.3).	To	study	how	the	choice	of	window	

size	influences	the	result	and	which	statistics	are	most	suitable	for	the	data	we	

performed	cross-validations.	In	detail,	we	randomly	divided	our	dataset	into	two	

sets	of	samples,	S1	and	S2.	We	constructed	these	sets	in	such	a	manner	that	each	

contained	a	similar	number	of	samples	of	each	cancer	type.	We	performed	the	

analysis	independently	on	sets	S1	and	S2	computing	a	separate	set	of	test	

statistics	for	each	(enrichment	score,	mutational	recurrence,	Binomial	test	p-

value,	Gamma-Poisson	test	p-value).	We	calculated	an	enrichment	score	as	a	

ratio	of	observed	mutations	to	the	background	mutation	rate.	To	compute	

Binomial	test	p-values	and	Gamma-Poisson	test	p-values	we	used	background	

mutation	rates	estimated	from	the	1st	principal	component	loading	vector.	We	
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repeated	the	same	analysis	for	each	of	the	four	window	sizes:	50bp,	100bp,	

200bp,	and	500bp.	We	compared	the	results	obtained	in	individual	runs	of	the	

analysis	and	identified	an	optimal	combination	of	window	size	and	test	statistics	

that	allowed	for	robust	and	reproducible	results.	The	optimal	combination	was	

defined	as	the	one	that	gave	the	highest	precision	and	recall	values	on	a	

precision-recall	curve.	To	construct	precision-recall	curves	we	scanned	through	

cut-off	values	and	calculated	the	number	of	cross-validated	hits	in	both	sets	

(intersection	or	recall)	as	well	as	the	fraction	that	the	recall	represent	of	the	total	

hits	surpassing	the	threshold	in	at	least	one	set	(intersection/union	or	precision).	

Finally,	we	employed	our	approach	with	the	chosen	window	size,	cut-off	and	test	

statistics	on	the	entire	dataset	(S1	U	S2).	As	a	result,	we	obtained	a	list	of	

candidate	genomic	regions	that	we	subsequently	studied	in	more	detail.	

Similarly	to	the	previous	section,	we	performed	our	analysis	on	a	dataset	

consisting	of	698	cancer	genomes	from	eight	different	cancer	types	for	which	

each	cancer	entity	was	represented	by	at	least	20	samples	(Table	1).		

Using	cross-validations,	we	compared	performance	of	various	statistics	and	

observed	that	the	enrichment	score	as	such	does	not	provide	reproducible	

results	for	any	of	the	window	sizes	ranging	between	50bp	and	1Mbp.	This	

statement	can	be	illustrated	by	scatter	plots,	where	dots	corresponding	to	

individual	genomic	windows	form	a	sparse	cloud	indicating	there	is	little	

agreement	between	the	results	obtained	on	the	dataset	S1	and	S2	in	individual	

runs	of	cross-validation	(Figure	13a).	Mutational	recurrence	that	was	used	as	

statistics	in	the	naïve	approach	described	in	the	previous	section	also	showed	

low	robustness,	especially	when	used	with	smaller	window	sizes	such	as	50	bp	

(Figure	13b).	The	most	interesting	observations	came	from	genomic	regions	

with	mutational	recurrence	values	between	two	and	six	out	of	698	samples	–	the	

exact	range	of	mutational	recurrence	we	previously	identified	most	of	our	

candidates	using	the	naïve	approach.	For	these	mutational	recurrence	values	

obtained	on	the	dataset	S2,	we	observed	that	the	same	genomic	regions	could	

reach	all	possible	values	between	as	low	as	zero	or	as	high	as	14	when	the	

analysis	was	performed	on	the	dataset	S1.	This	indicates	that	the	mutational	

recurrence	as	such,	especially	in	a	combination	with	50	bp	window	sizes	is	not	a	
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robust	statistic	for	such	analysis.	Moreover,	these	results	illustrate	how	relying	

on	such	statistic	could	lead	to	identification	of	false	candidate	regions.			

	

Figure	13.	Cross-validation	results	for	various	statistics	at	different	window	

sizes.	(a)	Enrichment	score	(b)	Mutational	recurrence	(c)	Gamma-Poisson	test	p-

value	(d)	Binomial	test	p-value.	

	

Using	cross-validation	scheme	we	also	assessed	how	robust	were	two	statistical	

tests	more	commonly	used	in	cancer	genomics	studies:	Binomial	and	Gamma-

Poisson	tests.	For	every	genomic	window	we	compute	p-values	given	the	null	

hypothesis	that	the	expected	mutational	recurrence	of	the	window	is	not	

different	from	the	background	mutation	rate	(BMR).	The	BMR	for	a	given	region	

was	estimated	from	its	background	set	of	genome-wide	regions	defined	using	

the	1st	PC	loading	vector.	It	is	important	to	mention,	that	for	the	purpose	of	this	
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study	we	interpreted	both	test	p-values	as	test	statistics	–	i.e.	not	as	literal	p	

values,	but	as	scores	decreasing	monotonously	with	significance.	Both,	the	

Binomial	test	and	the	Gamma-Poisson	test,	showed	higher	robustness	in	

comparison	to	mutational	recurrence	and	enrichment	score	(Figure	13).	As	a	

general	note,	the	p-values	range	for	Binomial	test	and	Gamma-Poisson	test	is,	as	

expected,	quite	different.	In	this	study,	the	lowest	p-values	for	the	Binomial	test	

reached	10-50	while	for	the	Gamma-Poisson	test	p-values	they	reached	10-20.	This	

means	that	if	one	were	to	use	the	same	standard	p-value	cut-off	for	both	tests	

and	on	the	same	dataset,	choosing	the	Gamma-Poisson	test	would	generally	

result	in	lower	number	of	candidates	identified	as	significant.	Since	we	rather	

preferred	having	a	larger	list	of	candidates	that	we	could	manually	study	in	

detail,	we	choose	the	Binomial	test	for	our	analysis.		

By	comparing	the	performance	of	the	Binomial	test	at	different	resolution,	we	

observed	that	it	had	higher	reproducibility	at	larger	window	sizes,	starting	from	

100	bp	(Figure	13d).	We	used	the	precision-recall	curves	to	identify	the	optimal	

combination	of	the	Binomial	test	cut-off	and	window	size	for	our	data.		

Typical	precision-recall	curves	for	each	window	sizes	are	shown	in	Figure	15.	

Every	dot	corresponds	to	one	p-value	cut-off;	for	the	given	p-value	cut-off,	

precision	was	calculated	as	a	number	of	regions	(dots	on	cross-validation	plots	

in	Figure	13)	that	scored	higher	than	the	cut-off	in	both	attempts	of	cross-

validation	(e.g.	according	to	the	results	obtained	on	S1	and	S2	datasets	

independently).	The	recall	was	calculated	as	a	fraction	of	the	recall	over	the	total	

number	of	dots	above	the	cut-off	in	each	of	the	datasets.	We	performed	the	

random	splitting	of	the	entire	dataset	into	two	halves	(S1	and	S2)	ten	times	in	

order	to	compute	confidence	intervals	for	precision.	The	results	of	this	for	all	

window	sizes	are	shown	in	a	compact	way	in	a	precision-recall	plot	in	Figure	

14a.		

We	defined	the	optimal	combination	of	the	parameters	as	the	one	that	allowed	

reaching	at	the	same	time	the	highest	precision	and	recall	values	on	the	

precision-recall	curve.	We	observed	that	the	highest	recall	and	precision	values	

were	reached	when	using	200bp	window	size	(Figure	14a).	We	assumed	here	

that	somatic	driver	mutations	when	they	occur	within	the	intergenic	regions	

should	overlap	with	certain	regulatory	elements.	Given	the	typical	size	of	cis-
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DNA	regulatory	elements	of	6-12bp	for	transcription	factor-binding	sites	and	

~500bp	for	enhancers	(Loots,	2008),	we	considered	200	bp	window	size	as	

plausible,	because	it	is	large	enough	to	encompass	whole	regulatory	elements,	

and	small	enough	to	not	contain	much	more	than	the	regulatory	element	(i.e.	as	

few	“uninteresting”	bases	as	possible,	as	this	may	dilute	the	signal).		

The	highest	recall	value	for	200	bp	window	size	was	reached	using	10-12	p-value	

cut-off	(Figure	15)	and	lied	within	the	102	range;	at	the	same	time	the	highest	

precision	value	was	0.58	(95%	CI:	0.54-0.64).	It	is	important	to	note	here,	that	

given	our	definition,	the	precision	value	we	calculated	here	is	a	very	

conservative,	downwards-biased	estimation	of	the	true	precision	of	the	method	

and	is	probably	underestimated.	Indeed,	we	considered	the	number	of	hits	found	

in	both	attempts	of	cross-validation	as	“true	positives”	(i.e.,	as	numerator)	and	

the	hits	found	in	at	least	one	as	all	discoveries	(denominator).	We	therefore	

calculated	precision	as	if	all	the	hits	found	only	in	one	set	and	not	in	the	other	

were	false	positives.	Based	on	this,	we	concluded	that	the	precision	of	0.58	was	a	

sensible	result	given	the	definition.	

In	a	conclusion,	we	choose	the	following	parameters	for	the	further	analysis	on	

our	data:	200	bp	window	size	and	Binomial	p-value	threshold	of	10-12.	

	

Figure	14.	 Parameter	optimization	for	the	windows-based	approach.	(a)	

Precision-recall	curves	for	different	Binomial	p-value	cut-offs.	Minimal	and	

maximal	precision	values	over	10	random	splits	of	the	data	set	into	halves	are	

shown	in	color,	mean	precision	is	shown	as	dotted	line.	Colors	indicate	different	
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window	sizes.	(b)	Cross-validation	results	for	recurrently	mutated	regions	for	

different	window	sizes.	P-values	were	calculated	using	a	Binomial	test	statistic,	

and	scales	are	logarithmic	(-log10).	Test	statistics	were	computed	independently	

for	the	S1	set	(x	axis)	and	S2	set	(y	axis).		

	

Figure	15.	Precision-recall	curves	for	different	window	sizes.	Points	correspond	

to	different	Binomial	p-value	cut-offs;	the	x	axis	is	logarithmic	(log10).		

	

Recurrently	mutated	genomic	regions	within	the	regulatory	elements	of	the	

genome	

Recent	studies	aimed	on	identification	of	recurrently	mutated	somatic	mutations	

focused	on	subsets	of	genomic	regions,	rather	than	performing	their	searches	in	
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an	unbiased	genome-wide	manner.	This	strategy	offers	obvious	advantages	in	

terms	of	statistical	power	and	computational	performance	because	of	smaller	

numbers	of	statistical	tests	that	are	required.	Limiting	the	search	space,	

however,	may	also	result	in	promising	candidates	being	overlooked.	To	compare	

our	approach	to	the	previous	studies	performed	on	restricted	search	space	

(Fredriksson	et	al.,	2014;	Melton	et	al.,	2015;	Weinhold	et	al.,	2014)	we	applied	

our	method	to	a	comparable	subset	of	genomic	windows.	To	do	so	we	restricted	

the	complete	list	of	genomic	windows	that	we	used	in	the	previous	section	by	

overlapping	it	with:		

1)	a	list	of	promoters	and	enhancers	that	we	obtained	following	the	procedure	

described	in	Weinhold	et	al.,	2014;	

2)	a	list	of	regulatory	genomic	regions	according	to	the	RegulomeDB	database	

annotations	as	described	in	Melton	et	al.,	2015.	

Since	in	most	of	the	cases,	there	was	no	complete	overlap	between	the	above-

listed	regulatory	regions	and	the	genome-wide	list	of	windows,	we	considered	

two	different	scenarios	for	our	analysis:	1)	genomic	windows	exhibiting	more	

than	one	base-pair	overlap	with	the	regulatory	elements;	2)	regulatory	elements	

overlapping	with	the	windows	for	at	least	half	of	the	selected	window	size.	

Note	that	when	we	applied	the	second	scenario	to	the	list	of	RegulomeDB	

regulatory	regions,	the	number	of	resulting	windows	was	not	large	enough	to	

perform	cross-validations	and	construct	precision-recall	curves	for	window	sizes	

larger	than	100	bp.	Therefore,	we	will	not	be	discussing	this	case	here.	

Subsequently	we	performed	the	same	cross-validations	analysis	as	described	in	

the	previous	section	(Figure	12)	but	this	time	on	the	restricted	list	of	windows.	

To	compute	test	statistics	on	the	restricted	list	of	genomic	windows,	we	used	the	

same	restricted	search	space	for	estimation	of	background	mutation	rates.	

The	results	that	we	obtained	for	the	restricted	analysis	setup	looked	generally	

similar	to	the	outcomes	of	the	aforementioned	whole-genome	analysis	(Figure	

16).	Using	small	window	sizes,	such	as	50	bp,	resulted	in	relatively	low	precision	

regardless	of	the	type	of	regulatory	regions	used	for	restricting	the	search	space.	

This	indicated	low	robustness	of	the	approach	with	this	window	size.	As	

observed	previously,	using	larger	window	sizes	improved	the	precision.	

Similarly	to	the	genome-wide	analysis	setup,	the	use	of	200	bp	windows	allowed	
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reaching	the	highest	combination	of	precision	and	recall	values	in	all	cases.	Using	

even	larger	window	sizes	led	to	a	decrease	in	recall	while	not	significantly	

improving	the	precision.	This	made	us	conclude	that	200	bp	was	an	optimal	

choice	of	window	size	for	the	restricted	analysis	as	well	as	for	the	genome-wide	

analysis	setup.	
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Figure	16.	 Parameter	optimization	for	the	analysis	restricted	sets	of	genomic	

windows.	Left	panel:	Precision-recall	curves	for	different	Binomial	p-value	cut-

offs.	Minimal	and	maximal	precision	values	over	10	random	splits	of	the	data	set	
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into	halves	are	shown	in	color,	mean	precision	is	shown	as	dotted	line.	Colors	

indicate	different	window	sizes.	Right	panel:	Cross-validations	results	for	

recurrently	mutated	regions	for	different	window	sizes.	P-values	were	calculated	

using	a	Binomial	test	statistic,	and	scales	are	logarithmic	(-log10).	Test	statistics	

were	computed	independently	for	the	S1	set	(x	axis)	and	S2	set	(y	axis).	(a,b)	

Restricted	analysis	performed	on	the	list	of	regions	overlapping	for	at	least	1bp	

with	enhancers,	promoters	or	UTRs.	(c,d)	Restricted	analysis	performed	on	the	

list	of	regions	overlapping	for	at	least	1	bp	with	regulatory	regions	according	to	

RegulomeDB	annotations.	(e,f)	Precision-recall	curves	and	cross-validations	

results	for	genomic	regions	restricted	to	at	least	50%	overlap	with	promoters,	

enhancers	or	UTRs.		

Overall,	we	observed	that	restricting	the	search	space	by	considering	only	

particular	classes	of	regulatory	regions	did	not	bring	a	marked	advantage	in	

terms	of	robustness	when	compared	to	an	unbiased	genome-wide	analysis.	

Since	restricting	the	search	space	also	potentially	limits	the	findings,	we	choose	

to	apply	the	unbiased	genome-wide	setup	to	the	dataset	of	698	cancer	samples	

in	order	to	search	for	recurrently	mutated	regions.	We	ran	the	final	analysis	with	

the	parameters	that	we	identified	in	the	previous	section:	200bp	window	size,	

Binomial	p-value	test	statistic	cut-off	10-12.	

Prioritizing	candidate	regions	

Using	our	unbiased	genome-wide	approach	we	identified	153	recurrently	

mutated	candidate	regions	of	200	bp	size.	Since	our	approach	operated	on	the	

genomic	windows	without	any	prior	filtering,	among	the	candidates	we	

identified	were	both	coding	and	non-coding	regions.	We	first	aimed	at	filtering	

out	those	regions	that	were	unlikely	to	harbor	driver	events.	After	annotating	the	

list	of	candidates	we	excluded:	

1)	35	regions	overlapping	with	the	human	immunoglobulin	heavy-chain	locus	

(IGH)	on	chromosome	14.	This	region	is	known	to	be	prone	to	somatic	

hypermutation	in	B	cells,	a	process	that	takes	place	even	in	healthy	individuals.	

As	a	confirmation,	we	observed	that	the	majority	of	the	samples	harboring	

mutations	in	these	regions	corresponded	to	CLL	and	lymphoma	cases.		
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2)	27	regions	harboring	mutations	close	to	the	BCL2	and	the	IGLL5	loci	in	the	B-

cell	lymphoma	samples.	Similarly	to	the	previous	example,	these	mutations	likely	

arose	from	somatic	hypermutation	and	are	therefore	unlikely	to	represent	driver	

events.		

After	performing	the	filtering	step,	we	ended	up	with	91	candidate	regions.		

The	regions	varied	in	mutational	recurrence,	ranging	from	seven	to	twenty-

seven	out	of	698	samples	(Supplementary	Table	1).	It	is	important	to	note,	that	

the	mutational	recurrence	of	driver	events	is	a	potential	limitation	of	the	

approach,	especially	in	case	of	cancer-type	specific	drivers.	Indeed,	if	the	tumor	

type	of	interest	is	represented	by	only	a	few	samples	and	the	driver	event	is	

infrequent,	while	performing	cross-validation	all	of	the	mutated	samples	might	

by	chance	appear	in	only	one	half	of	the	dataset	(or	in	both,	but	with	a	very	low	

recurrence)	and	the	driver	event	will	hence	not	be	detected.	

As	was	mentioned	previously,	cancer	driver	events,	by	definition,	convey	an	

advantage	to	the	tumor	and	are	therefore	expected	to	overlap	with	functionally	

relevant	regions	of	the	genome,	such	as	exons,	promoters	or	enhancers.	To	

prioritize	our	high	confidence	candidate	regions	we	annotated	them	using	the	

abovementioned	categories	(Supplementary	Table	1).	We	observed	that	the	

majority	of	candidate	regions	(71	out	of	91)	overlapped	with	exons	of	protein-

coding	genes.	A	detailed	investigation	of	these	genes	showed	that	all	were	well-

known	cancer	genes	such	as	TP53,	BCL2,	BCL6,	CTNNB1,	KRAS,	MYC	and	

SMARCA4	(Supplementary	Table	1).	This	further	supported	the	accuracy	of	our	

method	to	detect	genomic	regions	with	somatic	cancer	drivers.	

Since	the	main	goal	of	our	analysis	was	to	identify	novel	driver	regions	within	

the	intergenic	regions,	we	further	focused	our	attention	on	the	remaining	20	

candidates	that	were	not	intersecting	exons	of	protein-coding	genes	(Table	6).	

Among	these,	three	overlapped	with	promoters	and	eight	with	enhancers,	while	

one	of	the	regions	overlapped	with	both,	a	promoter	and	an	enhancer;	ten	more	

regions	did	not	overlap	with	any	of	the	known	annotations	and	were	therefore	

omitted	from	the	remainder	of	the	study.	
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Figure	17.	High	confidence	recurrently	mutated	intergenic	regions	identified	by	

the	approach.	Candidate	regions	are	colored	by	category	of	regulatory	elements	

(enhancer,	promoter)	they	overlap	with.	Candidates	that	do	not	overlap	any	

functionally	annotated	genomic	regions	are	shown	in	grey.	The	labels	indicate	

the	gene	closest	to	the	region.		
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chr5:1295201-1295400	 16	 TERT	(18)	 10-29	 Liver(5),		
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chr2:133018801-133019000	 12	 ANKRD30B	(3260)	 10-15	 Prostate(12)	

chr15:89096601-89096800	 9	 DET1	(6696)	 10-15	 Breast(4),	LungAdeno(5)	

chr5:2145601-2145800	 9	 IRX4	(258252)	 10-14	 LungAdeno(9)	

chr11:61635601-61635800	 8	 FADS2	(776)	 10-13	 LungAdeno(8)	

chr11:51570001-51570200	 11	 OR4C46	(53791)	 10-13	 Prostate(11)	

chr11:51580401-51580600	 11	 OR4C46	(64191)	 10-13	 Prostate(10),		

Medulloblastoma(1)	

chr1:235692001-235692200	 8	 GNG4	(18788)	 10-13	 Liver(1),	LungAdeno(7)	

chr4:49316401-49316600	 10	 CWH43	(252304)	 10-13	 Prostate(8),	LungAdeno(1),		

Medulloblastoma(1)	

chr8:129131001-129131200	 8	 PVT1	(17503)	 10-13	 Breast(1),	LungAdeno(7)	

chr13:23151201-23151400	 10	 BASP1P1	(320081)	 10-12	 LungAdeno(10)	

chr2:88791201-88791400	 8	 TEX37	(32770)	 10-12	 Lymphoma(7),		

Medulloblastoma(1)	

chr3:197825801-197826000	 8	 ANKRD18D	(18211)	 10-12	 Breast(3),	LungAdeno(5)	

chr7:64574001-64574200	 8	 CCT6P3	(38911)	 10-12	 Prostate(1),	Breast(2),		

LungAdeno(5)	

chr2:107016201-107016400	 8	 RGPD3	(5047)	 10-12	 Breast(1),	Liver(1),		

LungAdeno(6)	

chr16:46412201-46412400	 10	 ANKRD26P1	(90854)	 10-12	 Prostate(7),	LungAdeno(3)	

chr2:133019401-133019600	 10	 ANKRD30BL	(3860)	 10-12	 Prostate(9),	LungAdeno(1)	

chr19:46151601-46151800	

	

7	 EML2	(2715)	 10-12	 LungAdeno(7)	

Table 6. High confidence non-coding candidates regions ranked by the statistics 

values (full list of recurrently mutated regions in Supplementary Table 1). 

	

The	highest	scoring	intergenic	candidate	region,	with	a	mutational	recurrence	of	

16,	was	the	region	harboring	the	well-characterized	TERT	promoter	mutations	

(Figure	17).	This	region	was	found	to	be	mutated	in	5	liver	cancer	and	11	

medulloblastoma	samples.		

We	aimed	to	identify	other	interesting	examples	among	the	recurrently	mutated	

regions.	We	observed	that	most	of	the	candidates	identified	were	located	from	7	

Mb	to	200	Mb	away	from	any	genes,	with	the	closest	ones	encoding	lncRNAs	or	

pseudogenes	(Table	6).	The	lack	of	knowledge	in	the	existing	literature	on	

functional	roles	of	these	genes	in	cancer	made	it	difficult	for	us	to	propose	any	
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mechanism	upon	which	the	mutations	could	act	in	tumorigenesis.	In	addition,	

the	regions	were	located	relatively	far	from	their	gene	“targets”,	that	were	

identified	based	on	their	location	as	the	closest	genes.	We	assumed	that	these	

candidate	regions	might	be	involved	in	tumorigenesis	through	more	complex	

mechanisms	than	in	the	case	of	TERT	mutations.	For	example,	these	could	be	

mechanisms	involving	distal	cis-effects,	trans-effect	or	even	secondary	targets.	In	

order	to	study	these	mechanisms	data	on	higher-order	organization	of	the	

genome,	such	as	Hi-C	data,	may	be	necessary.	Unfortunately,	such	data	was	not	

available	for	the	samples	that	were	used	in	this	study.	

	

Figure	18.	FADS2	candidate	region	from	the	Integrative	Genomics	Viewer.	

	

By	ranking	the	candidate	intergenic	regions	by	the	distance	to	the	closest	gene,	

we	identified	one	region	with	the	closest	distance	from	its	“target”,	after	the	

TERT	region.	This	was	a	region	on	chromosome	11	located	approximately	700bp	

upstream	of	the	FADS2	gene	(Figure	17,	highlighted).	The	region	intersected	with	

an	enhancer	and	had	a	mutational	recurrence	of	eight	out	of	698.	Notably,	all	of	

the	mutated	samples	corresponded	to	the	same	cancer	type	–	lung	

adenocarcinoma.	The	mutations	in	the	corresponding	samples	all	occurred	

within	a	very	narrow	region	of	only	98	bp	size	(Figure	18).	FADS2	encodes	for	

Δ6-desaturase,	which	is	a	critical	enzyme	in	the	biosynthesis	of	long-chain	



	 79	

polyunsaturated	fatty	acids.	It	has	been	shown	that	in	several	cancer	entities	

desaturation	of	fatty	acids	catalyzed	by	the	enzyme	does	not	occur	(Park	et	al.,	

2011).	For	example,	in	MCF7	breast	cancer	cells	molecular	defects	in	FADS2	were	

found	to	cause	loss	of	the	enzyme	activity	(Park	et	al.,	2011).	Compensation	for	

FADS2	loss	of	function	by	FADS1	is	known	to	lead	to	the	production	of	two	

independent	fatty	acid	products	that	likely	act	as	competitive	inhibitors	of	the	

eicosanoid	cascade.	This	leads	to	depletion	and	alteration	of	the	normal	

eicosanoid	and	docosanoid	cell	signaling	milieu,	with	presumed	consequences	

for	cellular	communication	that	to	date	are	poorly	understood.	It	is	tempting	to	

speculate	that	the	mutated	region	close	to	FADS2	may	be	involved	in	

deactivation	of	the	FADS2	gene	and	therefore	in	the	loss	of	the	Δ6-desaturase	

activity	in	the	mutated	cancer	cells.	Since,	unfortunately,	no	gene	expression	data	

were	available	for	these	lung	cancer	dataset,	we	could	not	test	this	hypothesis	

using	the	correlation	analysis.		

Discussion	

We	designed	a	workflow	for	cancer	genomic	studies	that	uses	a	window-based	

approach	to	screen	for	recurrently	mutated	intergenic	regions	with	an	additional	

cross-validation	step	to	assess	robustness	and	allow	for	identification	of	optimal	

parameters.	Our	approach	uncovered	intergenic	regions	with	a	mutation	

recurrence	as	low	as	1%	(7/698	samples).			

Using	our	approach,	we	detected	known	cancer-relevant	targets,	both	exonic	

(TP53,	MYC,	SMARCA4	etc)	and	intergenic,	including	the	previously	identified	

recurrent	mutations	in	the	TERT	promoter,	in	an	unbiased	genome-wide	

manner.	The	recurrent	TERT	promoter	mutations	is	the	only	recurrent	non-

coding	event	identified	in	common	between	previous	studies	that	aimed	to	

uncover	regulatory	mutations	in	cancer	(Fredriksson	et	al.,	2014;	Melton	et	al.,	

2015;	Weinhold	et	al.,	2014).	We	believe	that	this	is	because	this	event	is	

exceptional	in	terms	of	its	frequency	of	recurrence,	close	distance	to	the	target	

gene	and	mutation	clustering.		

We	identified	a	novel	intergenic	region	upstream	of	the	FADS2	gene	as	a	source	

of	candidate	driver	mutations	in	lung	cancer.		
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In	conclusion,	cross-validation	enables	parameter	selection	and	robustness	

assessments	in	the	context	of	challenging	searches	for	intergenic	somatic	point	

mutation	recurrence	in	cancer	genomes.	
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4.	Summary,	conclusions	and	future	directions	

In	summary,	in	this	work	we	studied	patterns	of	accumulation	of	somatic	

mutations	along	the	genome	in	cancer	in	order	to	establish	an	appropriate	

background	model	to	correct	for	the	regional	mutational	heterogeneity	(chapter	

2).	We	identified	a	genetic	feature	that	showed	the	highest	correlation	with	

somatic	mutation	rates	alone	at	different	resolution	ranging	between	50	bp	and	

10	Mb.	Additionally	we	identified	an	even	better	correlate	with	the	somatic	

mutation	rate	–	the	1st	PC	loading	vector	based	on	five	individual	features	–	and	

proposed	to	use	it	as	a	covariate	to	control	for	the	background	mutation	rates	in	

cancer	genomics	studies	aimed	to	identify	frequently	mutated	regions.		

As	a	scope	for	the	future	improvement,	the	use	of	tissue-specific	genetic	and	

epigenetic	features	for	modeling	of	the	background	mutation	rates	should	be	

preferred.	Recently,	epigenetic	features	derived	from	the	most	likely	cancer	cell	

type	of	origin	of	the	corresponding	tumor	were	shown	to	be	the	best	predictors	

of	local	somatic	mutational	density,	even	when	compared	to	features	derived	

from	the	matched	cancer	cell	lines	(Paz	Polak,	Rosa	Karlic,	Amnon	Koren,	Robert	

Thurman,	Richard	Sandstrom,	Michael	S.	Lawrence	and	Eric	Rynes,	Kristian	

Vlahovicˇek,	2015).	A	study	performed	on	173	cancer	genomes	from	eight	

different	cancer	types	and	a	list	of	424	epigenetic	features	derived	from	45	

different	tissue	types	(Kundaje	et	al.,	2015),	demonstrated	that	chromatin	

accessibility	and	modifications	together	with	replication	timing,	explained	up	to	

86%	of	the	variance	in	mutation	rates	along	the	cancer	genome.	The	highest	

correlation	values	between	the	observed	mutation	densities	and	the	densities	

predicted	using	Random	Forest	regression	were	reached	at	1-Mb	resolution.	

Even	though	it	is	difficult	to	compare	these	results	with	our	observations	

(Pearson	correlation	coefficient	of	max	0.8	between	the	observed	mutational	

densities	and	the	1st	PC	loading	vector	at	1-Mb	resolution,	Figure	2b),	we	

conclude	that	using	features	obtained	from	the	corresponding	cell-of-origin	

tissues	might	indeed	improve	the	mutational	model	we	established	here	even	

further.	Hence,	allowing	correcting	for	the	background	mutation	rates	even	more	

effectively	in	the	following	analysis	steps	and	uncover	additional	candidates.			
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Similarly,	implementing	data	on	sample-specific	mutational	processes	could	be	

used	to	acquire	more	accurate	estimates	of	the	background	mutation	rates.	

Indeed,	passenger	mutations	accumulate	as	the	outcome	of	mutational	processes	

that	occurred	thought	the	development	of	tumor	(Helleday	et	al.,	2014).	

Therefore,	accounting	for	them	within	a	computational	approach	could	help	to	

distinguish	passenger	from	driver	mutations.			

Motivated	by	several	recent	studies	that	identified	TERT	promoter	driver	

mutations	as	a	driver	event	in	several	cancer	types,	we	tested	different	

computational	approaches	in	order	to	identify	other	potential	intergenic	drivers	

with	similar	properties.	Among	the	approaches	we	developed	here	were	gene-

expression	correlation	analysis	(chapter	3.2.1),	TFBS	changes	prediction	analysis	

(chapter	3.2.2)	and	two	approaches	focusing	on	the	mutational	recurrence	of	the	

candidate	regions	(chapter	3.2.3);	we	applied	our	methods	to	one	of	the	largest	

appropriate	cancer	dataset	available	at	the	time	this	work	was	performed.	

By	systematically	addressing	the	problem	of	computational	detection	of	driver	

events	within	the	intergenic	regions	in	cancer,	we	concluded	that	the	most	

successful	approach	was	to	focus	on	mutational	recurrence.	By	combining	the	

abovementioned	background	model	to	correct	for	the	regional	mutational	

heterogeneity	(chapter	2.2)	together	with	the	cross-validation-based	scheme	

aimed	to	identify	the	optimal	statistical	parameters	(chapter	3.2.3).	We	

established	a	pipeline	for	genome-wide,	unbiased	identification	and	

prioritization	of	intergenic	regions	recurrently	mutated	across	multiple	cancer	

entities.	

	We	believe,	that	our	pipeline	can	be	successfully	used	for	various	applications,	

including	the	studied	in	pan-cancer	setup	or	with	large	datasets	on	the	same	

cancer	type;	but	not	limited	to	the	cancer	genomics	field.	Potential	wider	

applications	of	our	pipeline	outside	of	the	field	could	include,	for	example,	

identification	of	actively	acting	enhancers	relevant	in	disease	from	the	ChIP-Seq	

experiments.	In	a	cancer	setup,	the	pipeline	could	be	applied	to	a	dataset	

consisting	of	multiple	cancer	entities	or	a	dataset	of	different	subtypes	of	the	

same	cancer,	given	that	the	dataset	is	large	enough	to	perform	cross-validations.	
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Coming	back	to	the	original	application	of	our	pipeline,	the	potential	future	

improvements	could	include	integration	of	the	pipeline’s	output	(list	of	

recurrently	mutated	intergenic	regions)	with	matching	gene	expression	data,	as	

described	in	section	3.2.1	of	this	thesis	(Figure	18).		

An	additional	level	of	information	can	be	obtained	from	the	germline	SNV	calls	if	

such	data	are	available.	First	of	all,	these	calls	can	be	used	to	control	for	

population	structure	prior	to	the	correlation	with	gene	expression	analysis	as	

described	in	section	3.2.1.	Moreover,	in	some	cases,	germline	variants	may	

account	for	the	genetic	predisposition	to	cancer.	For	instance,	about	20%	of	all	

known	oncogenes	are	altered	by	the	germline	mutations	(Martincorena	and	

Campbell,	2015).	Given	the	important	role	of	the	non-coding	regions	in	gene	

regulations,	it	is	tempting	to	speculate,	that	some	of	the	intergenic	germline	

mutations	recurrent	among	cancer	patient,	while	observed	at	low	frequencies	

within	the	general	population,	may	play	important	role	in	determining	the	

genetic	predisposition	of	the	affected	individuals	to	cancer.	It	is	also	important	to	

mention,	that	being	able	to	identify	such	predisposing	germline	drivers	will	be	

beneficial	for	cancer	screening;	and	could	also	find	wide	application	in	the	

emerging	field	of	personalized	medicine.		

Therefore,	as	a	potential	improvement	of	our	approach,	it	would	be	possible	to	

run	our	pipeline	from	section	3.2.3	on	the	list	of	germline	SNVs	to	detect	genomic	

regions	that	are	recurrently	mutated	in	the	germline	of	cancer	patients.	Next,	by	

contrasting	the	identified	candidate	mutations	with	the	common	SPNs	identified	

in	the	1000	Genomes	Project,	similarly	to	the	idea	used	in	Khurana,	Fu,	Colonna,	

Mu,	Kang,	T.	Lappalainen,	et	al.,	2013,	one	could	identify	mutations	that	

experience	selective	constrains	and	are	likely	to	be	predisposing	to	cancer.	One	

the	could	add	these	mutations	to	the	list	of	high	confidence	recurrently	mutated	

regions	identified	in	the	previous	step	(Figure	18).	

The	candidate	regions	identified	in	the	previous	steps	could	be	computationally	

followed-up	in	order	to	identify	transcription	factor	binding	sites	changes	using	

the	approach	that	we	designed	in	section	3.2.2.	The	combined	output	of	the	

different	strategies	could	provide	the	researcher	with	insight	into	the	biological	

mechanisms	of	the	newly	identified	intergenic	candidates.		
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Figure	19.	A	combined	approach	for	identification	of	intergenic	somatic	driver	

events	in	cancer	based	on	the	integration	of	the	methods	designed	in	previous	

chapters	of	this	thesis.	
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Appendix	

A	Supplementary	information	

A.1	Supplementary	tables	for	Chapter	3	

	

Genomic	region	 Mutational	

recurrence	

Closets	Gene	

(Distance	in	bp)	

Test	

statistic	

Category	

chr3_41266001_41266200	 27	 CTNNB1(0)	 4,34E-52	 5_UTR,Exon	

chr8_128748801_128749000	 26	 MYC(0)	 2,71E-50	 Enhancer,5_UTR,Exon	

chr17_7578201_7578400	 23	 TP53(0)	 1,22E-43	 Enhancer,Exon	

chr17_7578401_7578600	 22	 TP53(0)	 1,85E-41	 Enhancer,5_UTR,Exon	

chr3_187462801_187463000	 22	 BCL6(0)	 2,62E-40	 Enhancer,Exon	

chr17_7577401_7577600	 21	 TP53(0)	 2,69E-39	 Enhancer,Exon	

chr2_89160201_89160400	 21	 MIR4436A(48234)	 5,73E-37	 Promoter,Exon	

chr8_128749201_128749400	 19	 MYC(0)	 4,94E-35	 Enhancer,Exon	

chr8_128749001_128749200	 19	 MYC(0)	 4,94E-35	 Enhancer,Exon	

chr2_89159401_89159600	 19	 MIR4436A(47434)	 6,44E-33	 Promoter,Exon	

chr3_187462601_187462800	 18	 BCL6(0)	 5,54E-32	 Enhancer,Exon	

chr12_25398201_25398400	 18	 KRAS(0)	 3,51E-31	 Enhancer,5_UTR,Exon	

chr2_89160401_89160600	 17	 MIR4436A(48434)	 5,92E-29	 Promoter,Exon	

chr5_1295201_1295400	 16	 TERT(18)	 8,38E-29	 Enhancer,Promoter	

chr17_7577001_7577200	 16	 TP53(0)	 8,38E-29	 Enhancer,Exon	

chr3_187463001_187463200	 16	 BCL6(0)	 5,92E-28	 Enhancer,5_UTR,Exon	

chr2_89159601_89159800	 16	 MIR4436A(47634)	 5,23E-27	 Promoter,Exon	

chr8_128749401_128749600	 15	 MYC(0)	 8,92E-27	 Enhancer,Exon	

chr8_128749601_128749800	 15	 MYC(0)	 8,92E-27	 Enhancer,Exon	

chr6_91005401_91005600	 15	 BACH2(0)	 2,65E-25	 Enhancer,Exon	

chr2_89159801_89160000	 15	 MIR4436A(47834)	 4,36E-25	 Promoter,Exon	

chr8_128750401_128750600	 14	 MYC(0)	 8,93E-25	 Enhancer,5_UTR,Exon	

chr14_69259201_69259400	 13	 ZFP36L1(0)	 8,37E-23	 Enhancer,Exon	

chr1_23885601_23885800	 13	 ID3(0)	 8,37E-23	 Enhancer,Exon	
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chr3_187462401_187462600	 13	 BCL6(0)	 4,18E-22	 Enhancer,Exon	

chr8_128748601_128748800	 12	 MYC(0)	 7,32E-21	 Enhancer,5_UTR,Exon	

chr14_96180001_96180200	 12	 TCL1A(0)	 4,90E-20	 Enhancer,Exon	

chr16_3786601_3786800	 11	 CREBBP(0)	 3,49E-19	 Enhancer,Exon	

chr8_128750601_128750800	 11	 MYC(0)	 5,93E-19	 Enhancer,Exon	

chr11_102188401_102188600	 11	 BIRC3(0)	 1,78E-18	 Enhancer,Exon	

chr14_96179801_96180000	 11	 TCL1A(0)	 3,42E-18	 Enhancer,Exon	

chr2_89160801_89161000	 11	 MIR4436A(48834)	 1,08E-17	 Promoter,Exon	

chr6_31549601_31549800	 10	 LTB(0)	 2,73E-17	 Enhancer,Exon	

chr12_122458801_122459000	 10	 BCL7A(0)	 4,43E-17	 Enhancer,5_UTR,Exon	

chr17_1021001_1021200	 10	 ABR(0)	 4,43E-17	 Enhancer,Exon	

chr3_187461801_187462000	 10	 BCL6(0)	 1,56E-16	 Enhancer,Exon	

chr16_33953201_33953400	 13	 LINC00273(7653)	 2,18E-16	 Enhancer	

chr2_89159201_89159400	 10	 MIR4436A(47234)	 6,34E-16	 Promoter,Exon	

chr21_15554801_15555000	 12	 LIPI(0)	 1,27E-15	 Exon	

chr19_11134201_11134400	 9	 SMARCA4(0)	 1,95E-15	 Enhancer,Exon	

chr6_41903601_41903800	 9	 CCND3(0)	 3,03E-15	 Enhancer,5_UTR,Exon	

chr2_133018801_133019000	 12	 ANKRD30BL(3260)	 6,50E-15	 Promoter	

chr16_33953001_33953200	 12	 LINC00273(7853)	 6,50E-15	 Enhancer	

chr1_246395801_246396000	 10	 SMYD3(0)	 6,70E-15	 Enhancer,Exon	

chr11_102188601_102188800	 9	 BIRC3(0)	 7,55E-15	 Enhancer,Exon	

chr3_187463201_187463400	 9	 BCL6(0)	 9,49E-15	 Enhancer,Promoter,5_UTR,Exon	

chr15_89096601_89096800	 9	 DET1(6696)	 9,49E-15	 NA	

chr2_89160001_89160200	 9	 MIR4436A(48034)	 3,39E-14	 Promoter,Exon	

chr2_89160601_89160800	 9	 MIR4436A(48634)	 3,39E-14	 Promoter,Exon	

chr2_89165401_89165600	 9	 MIR4436A(53434)	 3,39E-14	 Exon	

chr2_89165201_89165400	 9	 MIR4436A(53234)	 3,39E-14	 Exon	

chr21_15555001_15555200	 11	 LIPI(0)	 3,99E-14	 Exon	

chr5_2145601_2145800	 9	 IRX4(258252)	 8,96E-14	 NA	

chr3_18830001_18830200	 10	 SATB1(342922)	 1,13E-13	 Enhancer,Exon	

chr11_61635601_61635800	 8	 FADS2(776)	 1,27E-13	 Enhancer	

chr16_503001_503200	 8	 RAB11FIP3(0)	 1,27E-13	 Enhancer,Exon	

chr22_27169001_27169200	 9	 MIAT(96564)	 1,30E-13	 Exon	

chr6_119558601_119558800	 9	 MAN1A1(0)	 1,30E-13	 Enhancer,Exon	
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chr11_51570001_51570200	 11	 OR4C46(53791)	 1,80E-13	 NA	

chr11_51580401_51580600	 11	 OR4C46(64191)	 1,80E-13	 NA	

chr12_122459201_122459400	 8	 BCL7A(0)	 1,88E-13	 Enhancer,5_UTR,Exon	

chr8_128748401_128748600	 8	 MYC(0)	 1,88E-13	 Enhancer,5_UTR,Exon	

chr12_122463001_122463200	 8	 BCL7A(0)	 1,88E-13	 Enhancer,Exon	

chr3_49413001_49413200	 8	 RHOA(0)	 1,88E-13	 Enhancer,5_UTR,Exon	

chr8_128750801_128751000	 8	 MYC(0)	 1,88E-13	 Enhancer,Exon	

chr16_10973001_10973200	 8	 CIITA(0)	 2,95E-13	 Enhancer,Exon	

chr1_235692001_235692200	 8	 GNG4(18788)	 2,95E-13	 Enhancer	

chr2_112595201_112595400	 8	 ANAPC1(0)	 5,25E-13	 Enhancer,Exon	

chr16_10746601_10746800	 8	 TEKT5(0)	 5,25E-13	 Enhancer,Exon	

chr3_187462201_187462400	 8	 BCL6(0)	 5,25E-13	 Enhancer,Exon	

chr4_49316401_49316600	 10	 CWH43(252304)	 5,56E-13	 NA	

chr6_27792201_27792400	 8	 HIST1H4J(0)	 6,96E-13	 Enhancer,Promoter,3_UTR,Exon	

chr3_187660801_187661000	 8	 BCL6(197287)	 6,96E-13	 Enhancer,Exon	

chr8_129131001_129131200	 8	 PVT1(17503)	 6,96E-13	 NA	

chr13_23151201_23151400	 10	 BASP1P1(320081)	 1,16E-12	 NA	

chr2_89163401_89163600	 8	 MIR4436A(51434)	 1,65E-12	 Exon	

chr2_89157601_89157800	 8	 MIR4436A(45634)	 1,65E-12	 Exon	

chr2_89164401_89164600	 8	 MIR4436A(52434)	 1,65E-12	 Exon	

chr2_89164801_89165000	 8	 MIR4436A(52834)	 1,65E-12	 Exon	

chr2_88791201_88791400	 8	 TEX37(32770)	 2,50E-12	 Enhancer	

chr3_197825801_197826000	 8	 ANKRD18DP(18211)	 2,50E-12	 Enhancer	

chr7_64574001_64574200	 8	 CCT6P3(38911)	 3,94E-12	 NA	

chr2_107016201_107016400	 8	 RGPD3(5047)	 3,94E-12	 NA	

chr16_46412201_46412400	 10	 ANKRD26P1(90854)	 4,59E-12	 NA	

chr2_133019401_133019600	 10	 ANKRD30BL(3860)	 4,59E-12	 Promoter	

chr7_298201_298400	 8	 FAM20C(0)	 5,52E-12	 Exon	

chr19_46151601_46151800	 7	 EML2(2715)	 7,38E-12	 Enhancer	

chr7_75616801_75617000	 7	 TMEM120A(0)	 7,38E-12	 Enhancer,Exon	

chr19_11144001_11144200	 7	 SMARCA4(0)	 7,38E-12	 Enhancer,Exon	

chr7_982001_982200	 7	 COX19(0)	 7,38E-12	 Enhancer,Exon	

chr8_69933401_69933600	 9	 C8orf34(202145)	 8,06E-12	 Exon	
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Supplementary	Table	1.	High	confidence	recurrently	mutated	regions	

identified	in	an	unbiased,	genome-wide	analysis	setup.	 	
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B	Details	on	the	methods	used	in	the	Thesis	

B.1	Methods	for	Chapter	2	

B.1.1	 Somatic	mutations	dataset	

The	somatic	SNV	calling	for	the	dataset	were	performed	by	authors	of	the	

original	studies	(Table	1).	We	downloaded	whole-genome	lists	of	somatic	

mutations	in	VCF	format.		

B.1.2	 Principal	component	analysis	

Lists	of	genetic	and	epigenetic	features	used	for	principal	component	analysis	

were	obtained	from	the	following	sources:	replication	timing	and	expression	

levels	for	each	region	of	the	genome	at	100-kb-resolution	were	taken	from	the	

supplementary	data	of	Lawrence	et	al.,	2013;	GC	content	dataset	was	

downloaded	from	the	UCSC	genome	browser,	H3K9me3	data	was	used	from	

Barski	et	al.,	2007	dataset	similarly	to	the	work	by	Schuster-Böckler	and	Lehner,	

2012;	HiC	compartment	data	for	lymphoblastoid	cell	line	GM06990	at	100-

kilobase	resolution	was	obtained	from	Lieberman-Aiden	et	al.,	2009,	only	the	

first	eigenvector	was	used.	All	features	were	averaged	to	compute	their	values	

for	different	window	sizes.	

To	perform	principal	component	analysis	we	constructed	a	matrix,	in	which	

rows	corresponded	to	genomic	and	columns	corresponded	to	five	features	

(Table	2).	Rows	with	missing	values	for	any	of	the	features	were	omitted;	then	

the	matrix	was	scaled	and	centered.	The	principal	component	analysis	was	

performed	in	the	R	statistical	environment	using	the	prcomp	function	and	the	

corresponding	PC	loading	vectors	for	the	1st	and	2nd	PCs	were	obtained.		

We	studied	correlation	between	five	individual	features,	as	well	as	the	1st	and	the	

2nd	PC	loading	vectors	and	somatic	mutation	rates	in	our	cancer	dataset	at	

different	resolution	i.e.	window	sizes	ranging	from	50	kb	to	10	Mb	using	Pearson	

correlation	coefficients.	Somatic	mutation	rates	were	calculated	for	every	

window	size	as	the	total	number	of	mutations	observed	within	a	genomic	

window.	Pearson	correlation	coefficients	were	computed	using	the	cor	function	

from	the	R	statistical	environment.	
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B.2	Methods	for	Chapter	3	

B.2.1	 Lymphoma	dataset	

The	lists	of	somatic	mutations	for	23	lymphoma	samples	were	provided	by	

Tobias	Rausch.	The	list	of	somatic	and	germline	SNVs	in	VCF	format	as	well	as	

raw	RNA-Seq	data	in	FASTQ	format	were	available	in	the	lab.		

B.2.2	 Somatic	SNV	filtering	and	annotation	of	lymphoma	samples	

To	obtain	a	list	of	high	confidence	somatic	SNVs,	we	filtered	out	all	SNVs	that	

occurred	in	so-called	“unreliable”	regions.	This	definition	included:	1)	DAC	

Blacklisted	Regions	created	by	the	ENCODE	project	

(https://genome.ucsc.edu/ENCODE/);	2)	low	mappability	regions;	3)	highly	

repetitive	regions	according	to	the	RepatMasker(	

http://www.repeatmasker.org/).	

	All	data	were	downloaded	from	the	UCSC	Genome	browser	website	

https://genome.ucsc.edu/.	

Additionally,	we	filtered	out	mutations	that	were	listed	in	the	dbSNP132	

database	(ftp://ftp.ncbi.nlm.nih.gov/snp/)	as	well	as	common	polymorphisms	

identified	by	the	1000	Genomes	Project	(http://www.1000genomes.org/).		

B.2.3	 RNA-Seq	data	analysis	

Raw	RNA-Seq	data	in	FASTQ	format	were	provided	by	the	GeneCore.	FASTQC	

tool	(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)	was	used	for	

the	quality	assessment	and	Trimmomatic	was	used	to	trim	sequences	based	on	

their	quality	(Bolger	et	al.,	2014).	The	resulting	sequences	were	then	mapped	to	

the	reference	genome	hg19	annotated	using	the	Gencode_v14.	Mapping	was	

performed	using	the	STAR	aligner	(Dobin	et	al.,	2013)	The	resulting	BAM	files	

were	processed	using	the	RSeQC	tool	(Wang	et	al.,	2012)	.	

B.2.4	 Population	structure	analysis	

For	this	analysis	germline	SNV	calls	for	23	samples	were	combined	with	

germline	variants	from	11	HapMap	populations	(Supplementray	Table	2),	only	

common	SNPs	were	used.	Pairwise	identity-by-state	(IBS)	and	identity-by-
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descent	(IBD)	values	for	every	sample	were	calculated	using	PLINK	tool	(Purcell	

et	al.,	2007)	with	default	settings.	The	general	guidelines	on	how	to	perform	this	

analysis	are	described	in	this	online	tutorial:	

http://www.cureffi.org/2012/10/15/population-covariates-using-1000-

genomes/	

B.2.5	 Genotype-phenotype	correlations	analysis	

Gene	expression	correlation	analysis	with	genotypes	was	performed	using	the	

modified	version	of	a	pipeline	developed	by	Andreas	Schlattl.	The	pipeline	

originally	performs	GC	corrections	and	normalization	by	the	read	depth	on	BAM	

files	and	later	integrates	the	expression	values	with	copy-number	state	data.	It	

was	customized	so	that	it	could	utilize	the	genotype	(state	of	1	kb	region	as	

described	in	the	main	text)	and	a	burden	test.	It	calculates	Pearson	correlation	

coefficients	between	the	genotype	and	observed	gene	expression	levels	

represented	as	RPKMs,	followed	by	a	multiple	testing	correction.	

B.2.6	 Transcription	factor	binding	site	changes		

The	somatic	mutation	data	obtained	from	a	dataset	on	eleven	cancer	types	

(Table	1)	was	filtered	to	prior	to	the	analysis.	First,	somatic	SNVs	that	were	

mutated	at	the	exact	same	position	in	two	individuals	were	selected	and	called	

recurrent.	Then	among	the	recurrent	mutations	were	selected	those	that	had	

another	neighboring	recurrent	mutation	within	100	bp	window.	Next,	anti-

correlation	principle	was	applied	(two	recurrent	mutations	can	not	be	present	in	

the	same	individual).	And	finally	on	the	remaining	list	of	candidate	regions	the	

computational	prediction	of	TFBS	changes	was	performed.			

Motif	data	for	this	analysis	were	obtained	from	the	two	sources:	experimentally	

obtained	data	from	the	ENCODE	project	and	a	wide	collection	of	TF	motifs	from	

various	sources	provided	by	HOCOMOCO	(Kulakovskiy	et	al.,	2013).		

PWMs	for	the	analysis	were	first	converted	into	the	MEME	format	(Bailey	et	al.,	

2009).	Mutated	sequences	of	100	bp	length	for	each	individual	were	constructed	

by	computationally	introducing	the	mutations	observed	the	samples	into	the	

reference	sequence.	For	every	sample	we	considered	three	sequences:	a	

reference	sequence,	a	mutated	sequence	and	a	reverse	complimented	version	of	
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the	mutated	sequence.	Then	using	FIMO	tool	(Grant	et	al.,	2011)	we	

computationally	predicted	all	TFBS	in	the	given	sequences.	Using	the	custom	

script	we	compared	FIMO	outputs	between	the	sequences	for	each	of	the	

patients	first	and	among	all	samples	harboring	mutations	with	an	assumption	

that	the	observed	somatic	mutations	should	change	in	the	same	direction	(e.g.	

either	create	a	TFBS	or	disrupt	it).	As	a	result	we	identified	genomic	regions	in	

which	somatic	mutations	lead	to	changes	in	TFBS.	

B.2.7	 Windows-based	approach	

To	identify	genomic	regions	with	single	recurrent	mutations	or	clusters	of	

recurrent	mutations	we	used	a	windows-based	approach	and	binned	the	human	

genome	in	non-overlapping	windows	of	various	sizes	ranging	between	50	bp	to	

10	Mb.	For	each	window	we	calculated	the	number	of	patients	having	at	least	

one	mutation	in	the	given	window	and	called	this	the	mutational	recurrence	of	

the	region.	

For	the	restricted	analysis	we	considered	only	those	regions	that	had	an	overlap	

of	more	than	1	bp	or	50%	with	the	regions	of	interest	(i.e.	promoters	and	

enhancers;	regions	with	RegulomeDB	score	values	1-5),	while	for	the	genome-

wide	setup	of	the	analysis	we	used	all	genomic	windows	without	any	filtering.	

B.2.8	 Annotations	of	recurrently	mutated	regions			

We	used	gene	annotations	from	Ensembl	(v75)	for	the	transcripts	of	all	protein-

coding	genes.	5’	UTRs	and	3’	UTRs	were	used	as	defined	by	Ensembl.		

For	restricted	analysis	promoter	regions	were	defined	as	in	the	work	by	

Weinhold	et	al.,	2014:	the	genomic	intervals	ranging	from	2,000	bp	upstream	to	

200	bp	downstream	of	all	transcription	start	sites;	27,493	enhancer	regions	

(7,550	merged	unique	regions)	were	downloaded	from	the	FANTOM5	website	

(Lizio	et	al.,	2015).	Using	bedtools	we	identified	regions	having	more	than	1	bp	

or	50%	overlap	with	the	combined	list	of	promoters	and	enhancers.	Likewise,	we	

selected	regions	that	had	more	than	1	bp	or	50%	overlap	with	regulatory	

genomic	regions	according	to	the	RegulomeDB	classification.	RegulomeDB	is	a	

resource	that	provides	functional	annotation	for	any	region	in	human	genome	

based	on	multiple	levels	of	evidence	and	classifies	genomic	regions	based	on	the	
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evidence	into	7	categories,	where	1-5	categories	correspond	to	regulatory	

regions	(Boyle	et	al.,	2012).	Similar	to	work	by	Melton	et	al.,	2015	we	required	

for	genomic	windows	to	overlap	with	regions	of	1-5	RegulomeDB	categories	in	

this	study.		

Unfortunately,	the	number	of	genomic	windows	overlapping	with	at	least	50%	of	

their	size	with	RegulomeDB	annotated	regulatory	elements	was	not	sufficient	for	

further	analysis	including	cross-validations.	

B.2.9	 Identification	of	recurrently	mutated	regions	

To	identify	which	of	the	genomic	windows	are	recurrently	mutated	while	

controlling	for	the	regional	mutational	heterogeneity	we	used	the	following	

strategy.	

Let	n	be	the	total	number	of	samples.	For	a	given	region	i,	ki	is	the	number	of	

individuals	that	have	at	least	one	mutation	in	the	region.		To	estimate	the	

background	mutational	rate	μi	we	used	a	“global”	model:	we	stratified	the	

genome	into	25	equally-sized	groups	of	genomic	windows	with	similar	genetic	

and	epigenetic	background	based	on	the	1st	PC	loading	vector	values	for	each	

window.	This	way	for	each	region	i	we	could	identify	a	list	of	m	genome-wide	

regions	and	therefore	estimate	its	background	mutational	rate	μi	from	the	list	of	

regions	as	an	average	number	of	individuals	with	mutations,	average(k1,..,km),	as	

well	as	its	variance	vi.		

For	each	region	i	we	computed	its	Enrichment	Score	as	ki/μi	;	one-tailed	Binomial	

p-values	using	ki	and	μi	;	Negative	Binomial	test	p-values	using	ki,	μi	and	a	

dispersion	parameter	calculated	as	 !!
!

!!!!!
.	

B.2.10	Cross-validations	

To	choose	the	significance	cut-off	that	would	give	us	reproducible	results	we	

performed	cross-validations.	Samples	were	segregated	by	cancer	type	and	one	

half	of	samples	of	each	cancer	type	were	selected	as	set	S1,	while	the	other	half	

was	referred	to	as	set	S2.		
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We	performed	the	identification	of	recurrently	mutated	regions	independently	

for	S1	and	S2	sets	and	then	compared	how	reproducible	the	results	were	in	terms	

of	p-values	and	enrichment	scores.		

Based	on	the	results	of	cross-validations,	we	chose	a	combination	of	the	window	

size,	test	statistic	and	a	cut-off	value	that	ensured	high	precision	and	recall	

values	based	on	the	precision-recall	analysis.	We	then	use	the	chosen	

parameters	to	run	the	pipeline	on	the	complete	(S1⋃S2)	dataset.	

B.2.11	Precision-recall	analysis	

For	each	window	size	and	cut-off	combination	precision	and	recall	values	were	

computed	as	follows.	Recall	was	calculated	as	a	number	of	regions	that	satisfy	

the	cut-off	in	both	S1	and	S2	sets	results.	Precision	was	calculated	as	a	fraction	of	

the	recalled	regions	to	the	total	number	of	regions	satisfying	the	cut-off	in	both	

datasets.			

The	combination	of	the	window	size	with	the	p-value	cut-off	that	allows	for	the	

highest	precision	given	large	recall	was	selected	as	the	optimal	choice	of	the	

parameters	for	the	data.		

B.2.12	Gene	expression	analysis	

We	used	gene	expression	data	obtained	using	RNA-seq	technology	for	128	

medulloblastoma	samples	(Jones	et	al.,	2012).	TERT	gene	expression	values	were	

compared	for	samples	wsith	and	without	mutations	in	the	region	of	interest,	6	

and	122	samples	respectively.	Samples	with	high-level	TERT	amplification	were	

excluded.	RPKM	values	were	used.	 	
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