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Summary 
Cerebral malaria (CM) is one of the most severe manifestations of Plasmodium falciparum 

infections, characterised by seizures, coma and death within a short time period. The 

aetiology of the disease remains poorly understood and is limited by ethical constraints. 

A large body of research dedicated to CM has therefore focussed on delineating the 

mechanisms involved using the rodent model of malaria. Infection of mice with 

sporozoites or infected red blood cells (iRBCs) of PbANKA parasites recapitulates 

several features of CM including haemorrhaging, oedema and blood-brain barrier 

breakdown and is termed experimental CM (ECM).  

 
The development of ECM relies on a complex series of interactions between the parasite 

and host. Although regarded as an immune-mediated pathology, sequestration of iRBCs 

is considered a central event for ECM to ensue, thus supporting the notion that ECM is 

purely the outcome of host-parasite interactions at the pathological blood stage. 

However, previous studies have shown that both surface antigens of iRBCs and the 

host’s immune response differ between naturally transmitted (sporozoites) and blood-

passaged parasites. This thesis aims at describing the role of a novel Plasmodium antigen in 

the development of ECM and outlining differences in ECM progression between 

naturally transmitted and blood-passaged parasites.   

 
The antigen, PbmaLS_05 is expressed in both liver-stage- and blood-stage schizonts and 

localises to the apicoplast of individual merozoites. Deletion of the endogenous 

PbmaLS_05 gene had no effect on parasite viability, but abrogated the development of 

ECM in mice, after both sporozoite and iRBC infections. PbmaLS_05 (-) parasites 

displayed retarded growth rates in the blood and enhanced clearance by the spleen, both 

of which were more pronounced on the days when PbANKA wild type infected mice 

showed signs of ECM. The absence of ECM in PbmaLS_05 (-) infected mice was 

accompanied by reduced infiltration of activated CD8+ T cells within the brain and 

reduced cross-presentation of a known parasite antigen (GAP50) by the brain 

endothelium, after iRBC but not sporozoite infection. Further investigations into 

sporozoite infections revealed an important role for PbmaLS_05 in the priming of CD8+ 

T cells responsible for causing ECM. These data thus highlight the existence of multiple 

mechanisms leading up to the development of ECM relevant to sporozoite or iRBC 
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infections, with potential implications for vaccines or therapeutics designed to alleviate 

CM.  
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Zusammenfassung 
Die zerebrale Malaria (CM) ist eine der schwerwiegendsten Auswirkungen einer 

Plasmodium falciparum-Infektion – klinisch auffällig durch das Auftreten von Krämpfen, 

Koma und Tod innerhalb einer kurzen Zeitspanne. Die Ursache der Erkrankung ist 

bislang immer noch wenig verstanden – limitiert durch ethische Einschränkungen 

bezüglich der Verfügbarkeit von humanem Patientenmaterial. Ein Großteil der 

Forschung auf dem Gebiet der CM konzentriert sich deshalb auf die Beschreibung der 

relevanten Mechanismen im Nagetiermodell der Malaria. Die Infektion von Mäusen mit 

Sporozoiten oder infizierten roten Blutkörperchen (iRBC) des Nagetier-Malaria-

Parasitenstammes PbANKA rekapituliert einige Charakteristika der CM wie z.B. 

Einblutungen, Ödeme sowie den Zusammenbruch der Blut-Hirn-Schranke und wird 

daher als experimentelle zerebrale Malaria bezeichnet (ECM).  

 
Die Entwicklung von ECM beruht auf einer komplexen Abfolge von Interaktionen 

zwischen Parasit und Wirt. Obwohl, als eine durch das Immunsystem vermittelte 

Pathologie angesehen, wird der Sequestrierung von iRBCs eine zentrale Rolle bei der 

Entwicklung von ECM zugeschrieben.  Die Auffassung dadurch unterstützt, dass ECM 

alleinig das Ergebnis von Wirt-Parasit-Interaktionen ist, welche während des 

pathologischen Zyklus im Blut stattfinden. Allerdings konnte in Studien gezeigt werden, 

dass sich nach Injektion von Sporozoiten, welche in einer natürlichen Infektion 

übertragen werden bzw. von Blut-passagierten Parasiten sowohl die Oberflächenantigene 

auf iRBCs als auch die Immunantwort des Wirtes unterscheiden. Das Ziel dieser Arbeit 

war daher die Rolle eines neuartigen Plasmodium-Antigens im Bezug auf die Entwicklung 

von ECM zu beschreiben und zudem Unterschiede in der Progression von ECM nach 

Infektion mit (natürlich, übertragenen) Sporozoiten bzw. im Blut passagierten Parasiten 

aufzuzeigen.  

 
Das Antigen PbmaLS_05 ist sowohl in Leberstadien- als auch Blutstadien-Schizonten 

exprimiert und lokalisiert im Apikoplasten in individuellen Merozoiten. Die Deletion des 

endogenen PbmaLS_05 Lokus (PbmaLS_05 (-)) hatte keinen Effekt auf die 

Lebensfähigkeit der Parasiten. Allerdings ist die Entwicklung von ECM in Nagetieren, 

sowohl nach Sporozoiten als auch nach iRBC Infektion, unterbunden. PbmaLS_05 (-) 

Parasiten zeigten verlangsamte Wachstumsraten im Blut und eine erhöhte Eliminierung 
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durch die Milz. Dies war besonders ausgeprägt an Tagen, an denen Mäuse, welche mit 

PbANKA WT Parasiten infiziert waren, Anzeichen von ECM gezeigt haben. Der Schutz 

vor ECM in PbmaLS_05 (-) infizierten Tieren ist assoziiert mit einer reduzierten 

Infiltration von aktivierten CD8+ T-Zellen in das Gehirn und einer reduzierten cross-

Präsentation eines bekannten Parasitenantigens (GAP50) durch Endothelzellen des 

Gehirns nach iRBC aber nicht nach Sporozoiten Infektion. Weitere Untersuchungen 

zum Mechanismus nach Sporozoiten-Infektion zeigten eine wichtige Rolle für 

PbmaLS_05 im Priming von CD8+ T-Zellen, welche für die Entwicklung von ECM 

verantwortlich sind. Die Daten dieser Arbeit unterstreichen somit die Existenz von 

mehreren Mechanismen, welche zur Ausbildung von ECM führen, in Abhängigkeit von 

der Infektion von Sporozoiten oder iRBCs. Diese Erkenntnisse haben mögliche 

Auswirkungen auf die Entwicklung von Impfstoffen oder Medikamenten zur 

Behandlung der CM. 
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Chapter 1 

Introduction 
1.1 Cerebral malaria 

Cerebral malaria is a term that is often associated with infections caused by Plasmodium 

falciparum parasites. In clinical terms, it is one of the most common non-traumatic 

encephalopathies, affecting about 2-3 million people annually, especially those living in 

tropical countries (1). Until the 1980s, any disorder of the central nervous system 

observed during infections with any Plasmodia species was widely regarded as CM by 

clinicians. However, the loose association of the term CM with CNS disorders was 

inaccurate, since it did not distinguish between other causes such as meningitis and 

mixed infections with P.falciparum. The definition of CM was therefore amended to ‘‘a 

state of persistent coma accompanied by the presence of Plasmodium infected erythrocytes 

in peripheral circulation, after other causes of encephalopathy such as viral or bacterial 

meningitis have been excluded and hypoglycaemia has been accounted for’’ (1, 2). 

 
Both Plasmodium falciparum and Plasmodium vivax are responsible for the majority of 

malaria-related deaths in sub-Saharan Africa, Southern and South-east Asia. However, 

from all malaria infections, Plasmodium falciparum alone accounts for 80% mortality, 

mainly in children and travellers from malaria-naïve countries (3). Mortality is influenced 

by a number of factors such as age, endemic exposures, access to intensive medical care 

and transmission intensities, all of which are linked to differences in clinical presentation 

and pathology. For example, clinical features such as seizures, retinopathy, metabolic 

acidosis, hypoglycaemia and brain swelling are frequently observed in both children and 

adults (4, 5). However, incidences of neurological sequelae are less common in South 

Asian adults compared to African children, even though recovery from a coma is lower 

in these adults (6). In adults, CM is part of a severe systemic disease involving multiple 

organs, a feature that frequently accounts for increased mortality (7). CM in Southeast 

Asian adults alone accounted for 50% mortality when accompanied by renal failure and 

metabolic acidosis but averaged to 8% in the absence of organ dysfunction (1). Other 

symptoms like retinal haemorrhaging, pulmonary oedema or respiratory distress also 

develops in a fraction of patients (1, 8). In malaria-endemic areas however, children 
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gradually acquire mechanisms to limit severe disease and control parasite replication, due 

to which incidences of CM are rare in adults (9).  

 
In contrast, children living in Sub-Saharan Africa, especially those below the age of five 

are more susceptible to developing CM. Younger children rarely develop renal failure or 

pulmonary oedema but typically present with fever, multiple and prolonged seizures, 

different patterns of neurological sequelae and other features of brain death (10, 11). 

Symptomatic features commonly include abnormal respiratory patterns, posture, motor 

dysfunction and retinopathy, all of which are believed to result from increased intra-

cranial pressure and brain swelling observed with MRI (Figure 1.1) (12). Most deaths 

occur within the first 48 hours after admission to a hospital; however a sizeable 

proportion of children that survive develop neurological deficits such as cognitive 

impairment, paralysis, epilepsy, blindness and speech disorders (13, 14). It is therefore 

not surprising that cerebral malaria is regarded as one of the leading causes of 

neurodisability in children living in malaria endemic areas (15). Incidences of CM in older 

children are usually lower and the clinical pathophysiology is more comparable to that of 

adults.  

                       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1 MRI imaging of cerebral malaria (12). Comparative MRI images of a child with a 
normal brain (A) and a child with cerebral malaria (B) show a severe increase in brain volume and 
loss of structural integrity in the latter.   
 
Due to inconsistencies in clinical presentation and neuropathological manifestations 

between patients, the prognosis and treatment of CM remains a complex task. The 

management of clinical complications moreover depends on a thorough understanding 

of the disease, the mechanistic basis of which is lacking.  

 

B	



Introduction 

 3	

1.2 The pathogenesis of cerebral malaria 

CM is part of a spectrum of complications caused by infection with parasites of the 

genus Plasmodia. There are five known species of Plasmodium that afflict humans, though 

the clinical manifestations of CM can exclusively be attributed to infections with P. 

falciparum parasites. Rare cases of cerebral symptoms arising from an infection with P. 

vivax have been reported (16-19), however mixed infections with P. falciparum cannot be 

excluded (20). The life cycle of Plasmodium falciparum parasites is complex and involves 

several different life cycle stages that are adapted to several different tissues.  

 
1.2.1 The pre-erythrocytic stage 

Though the manifestations of cerebral malaria are primarily caused by intra-erythrocytic 

stages of P. falciparum parasites, the initiation and spread of infection occurs through the 

bite of a female Anopheles mosquito. The phase between the bite of an infected mosquito 

and the intra-erythrocytic cycle constitutes the pre-erythrocytic stage of malaria infection, 

which is both clinically silent and represents an ideal target for vaccination strategies due 

to low parasite densities (21). An overwhelming part of information about the pre-

erythrocytic phase of the parasite life cycle comes from studies using rodent parasite 

strains; although the notion that conserved mechanisms exist between both rodent and 

human malaria parasite strains, is generally accepted.   

 
Gravid female mosquitoes rely on an occasional blood meal for the development of their 

eggs and in the process inoculate an average of ~50-100 Plasmodium sporozoites into the 

dermis of the host (22-24). Plasmodium sporozoites are motile in the skin and move in 

random trajectories (25, 26) traversing an array of dermal tissue before locating and 

invading blood vessels (25, 27). Even though motility serves to evade engulfment by 

phagocytic cells in the dermis (28) only about 50% of sporozoites deposited into the skin 

enter the blood stream, while a significant proportion end up in the lymphatic system or 

remain at the inoculation site (Figure 1.2) (29, 30). Sporozoites that enter the lymphatic 

system are cleared by immune cells while a proportion those left behind in the skin 

invade and mature into exo-erythrocytic forms within skin cells (31-33). It was shown 

that an immune response is elicited in both cases (34) that could partially contribute to 

cell-mediated immunity against subsequent infections.  

 
Sporozoites that successfully enter the blood circulation are passively carried to the liver, 

where they sequester due to interactions between sporozoite surface proteins like CSP 
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and TRAP (35, 36), and HSPGs expressed as fenestrated protrusions by hepatocytes, 

stellate and Kupffer cells (Figure 1.2) (37, 38). 

 
Figure 1.2 The pre-erythrocytic phase of the Plasmodium  life cycle (28). The pre-
erythrocytic stage involves several steps and barrier crossings. A fraction of sporozoites 
deposited into the dermis enter the blood stream and journey to the liver. An arrest within the 
sinudoidal lumen of the liver is mediated by several interactions between sporozoites and cells of 
the liver parenchyma. Sporozoites traverse through several hepatocytes before finally invading 
one within which they differentiate into merozoites that are then packaged into merosomes and 
released into the blood stream.  
 
Due to these interactions, sporozoites glide along the endothelium, until they encounter 

a Kupffer cell that they use as a ‘gateway’ to hepatocytes (27, 39). Sporozoites traverse 

through Kupffer cells by employing several different proteins such as SPECT (40), 

CelTOS (41) and PL (42) which also play an important role in exiting the skin (43). 
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However, intravital imaging of wild-type sporozoites moreover has suggested that 

sporozoites use multiple pathways to cross the sinusoidal space (39), thus questioning the 

need for passage through Kupffer cells (43). Those that go through the sinusoidal barrier 

and across the space of Disse, trans-migrate through several hepatocytes, in a process 

termed as ‘cell wounding’, before finally invading and developing within a hepatocyte 

(44). Recent evidence has suggested that sporozoites use independent pathways for 

transmigration and productive invasion of hepatocytes, with the former requiring the 

formation of a transient vacuole while the latter employing a parasitophorous vacuole 

(45). Several key players in hepatocyte invasion have been identified over the years, 

including host receptors like tetraspanin CD81 (46), SRB1 (47) and EphA2 (48) along 

with parasite molecules such as AMA-1, CSP and TRAP (38, 49-51). However, evidence 

for direct interaction between host receptors and their corresponding parasite molecule is 

missing (52).  

 
Sporozoites that actively invade hepatocytes through receptor-ligand interactions recruit 

host-cell actin to the site of invasion (53, 54). Commitment to invasion is followed by the 

formation of a parasitophorous vacuole that occurs through invagination of the host-cell 

plasma membrane (27, 30), aided by discharge of sporozoite rhoptry proteins (46, 55). 

The association of the host-cell cytoskeleton with the parasitophorous vacuole 

membrane results in passive translocation of the parasite to the peri-nuclear region of the 

host hepatocyte, though the exact reason for this event remains unclear (30). In order to 

prevent degradation by host cell lysosomes, parasites remodel the PV and stay hidden 

(53) whilst hijacking a plethora of host pathways to support their development, including 

the host apoptotic machinery (56-58). Within the protected enclosures of the PVM, 

parasites undergo several rounds of nuclear division paralleled with branching and 

division of the parasite apicoplast and mitochondria (59). To accommodate the growing 

parasite, the PVM expands by incorporation of host cell lipids like phosphatidylcholine 

(60). Insertion of different parasitic proteins such as ETRAMPS (61) and EXP-1 (62) 

into the PVM further supports its structure and fuels parasite growth through 

interactions with and incorporation of liver-fatty acid binding protein (63), ApoH (64) 

and other host cell lipids. Nuclear division terminates with the formation of thousands of 

merozoites, each containing a single apicoplast and mitochondrium, that are released into 

the host cell cytosol upon PVM rupture (65). Merozoites packaged into vesicles called 

merosomes bud off into the sinusoidal lumen (66) wrapped in a host cell-derived 

membrane that protects them from phagocytosis (Figure 1.2) (67, 68). After reaching 
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the pulmonary capillaries, these merosomes eventually disintegrate and release free 

merozoites into the blood stream (69).  

 
1.2.2 The intra-erythrocytic stage  

The intra-erythrocytic stage is perhaps the only stage in the entire parasite life cycle that 

has been extensively investigated. Free merozoites released into the bloodstream upon 

merosome rupture drift passively until they randomly collide with a red blood cell (70). P. 

falciparum parasites infect RBCs of all ages in circulation (71) by exploiting multiple 

ligand-receptor interactions to achieve successful invasion (72, 73). RBC invasion is an 

active process and occurs through a tight junction that causes an invagination of the 

host-cell plasma membrane that further envelops the invading merozoite to form the PV 

(74). Within the PV, Plasmodium parasites undergo extensive morphological changes while 

developing from ring to trophozite followed by schizogony to form new merozoites 

(Figure 1.3) (75).  

 
Intra-erythrocytic parasites rely heavily on host cell haemoglobin and serum amino acids, 

proteins and lipids (76) to sustain growth and multiplication (77). Acquisition of serum 

components is achieved by the introduction of transporters in the RBC membrane (77) 

that help the parasite tap into the extracellular milieu. Parasites also export proteins 

coded by antigenically variable families like the var genes RIFINs and STEVORs to the 

RBC surface, that function to mask the infected RBC from immune surveillance (78). 

RIFINS additionally mediate a process of spontaneous adhesion to uninfected RBCs, 

called ‘rosetting’ which enhances the infection of new RBCs (79).  

 
Such modifications to the RBC membrane reduce the deformability of an infected cell 

and mark it for destruction and removal by the spleen (80, 81). In order to circumvent 

splenic clearance, parasites additionally express polymorphic adhesins such as PfEMP-1 

on the RBC surface in electron dense structures termed ‘knobs’, which mediate 

cytoadherence to endothelial cells and sequestration within different organs (78). Knobs 

are also expressed on the surface of other Plasmodium strains like P. vivax, P. malariae and 

P. brasilianum but do not always play a role in sequestration (82, 83). In contrast, certain 

rodent strains of Plasmodium sequester in spite of the absence of knobs (84). Typically, 

trophozoite and schizont stages of the parasite sequester away from circulation until 

differentiation is complete and new merozoites are released into the blood stream, which 

initiate the next round of replication.   
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Figure 1.3 Stages of the Plasmodium intra-erythrocytic cycle (85). Invasion of an erythocyte 
is a chance event that occurs in a matter of minutes after the release of merozoites. Attachment is 
followed by re-orientation and invasion. Invaded merozoites form rings (0-24 hrs),which 
progress to trophozoites (24-36 hrs) and schizonts (36-48 hrs), which upon rupture release more 
merozoites that continue the cycle. Remodelling of the RBC involves several changes to the RBC 
membrane and cytoplasm including the insertion of PfEMP-1 and other adhesins into knob like 
structures.   
 
While the majority of merozoites re-enter the asexual cell cycle, a small fraction enter the 

sexual cycle and terminally differentiate into male and female gametocytes (86). In 

contrast to trophozoites and schizonts, immature stages of P.falciparum gametocytes 

sequester away from peripheral circulation in different organs like the brain, spleen and 

gut and in particular within the bone marrow (87, 88). An Anopheles mosquito while 

feeding on an infected host eventually takes up the circulating mature gametocytes that 

mate to form a zygote within its midgut (89, 90). Zygotes differentiate into motile 

ookinetes that traverse the midgut epithelium and form oocysts between the basal lamina 

and midgut epithelium (91). Sporozoites are formed within the oocyst and then upon 



Introduction 

 8	

oocyst rupture passively transported by the haemolymph to the salivary gland, where 

they invade and are ready to be transmitted during the next infectious bite (Figure 1.4).  

 
These sequential events pertaining to intra-erythrocytic development and sequestration 

are primarily responsible for the severe disease pathology associated with malaria, the 

most striking one of which is Human Cerebal Malaria.  

 

 
Figure 1.4 Transmission stages from host to mosquito (92). A fraction of intra-erythrocytic 
parasites terminally differentiate into male and female gametocytes and are taken up by a feeding 
mosquito. Within the mosquito midgut, these gameocytes mate to form a zygote that 
differentiates into a motile ookinete. Ookinetes traverse the midgut barrier to form an oocyst on 
the basal part of midgut epithelium. Sporozoites formed within the oocyst are released into the 
haemolymph upon rupture of the oocyst wall and transported to the salivary gland where they 
accumulate; ready to be transmitted during the next blood meal.  
 
1.2.2.1 Human Cerebral Malaria (HCM)  

Human Cerebral Malaria is a severe pathology that accounts for about 1% of all 

P.falciparum related deaths and is linked to the sequestration of late stages of P.falciparum 

parasites within the microvasculatures of the brain. It is widely regarded as a multi-

faceted process that is influenced by both parasites and immune status of the host. 
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Several hypotheses regarding the pathogenesis of HCM have been proposed, with little 

or no consensus.   

 
One of the complications of HCM is the heterogeneity in pathology that precludes 

comparisons between different populations. Incidences of HCM in endemic areas are 

uncommon in children experiencing their first clinical episode of malaria, but instead 

higher in those experiencing their second or third round of infection and who have 

developed some level of semi-immunity (93, 94). In contrast, adult travellers from 

malaria-naïve countries are more susceptible to developing CM compared to children, 

even though immunity develops much faster in adults (95).  The cause for this variation 

in susceptibilities between children and adults is not well understood, but immuno-

epidemiological evidences suggest that a concert of innate and adaptive immune 

responses might be responsible for initiation or protection from cerebral symptoms (96).  

 
Several lines of evidence have suggested that the outcome of severe pathology relies on 

an individual’s ability to regulate the inflammatory response to infection. High levels of 

circulating pro-inflammatory cytokines like IFN-γ, TNF-α and IL-6 are linked to CM in 

both children and adults (97, 98), while insufficient levels prevent parasite clearance and 

cause hyperparasitaemia-induced complications (96). Cytokines are however considered a 

poor predictor of disease severity in African children since TNF-α levels do not always 

correlate with disease severity (99, 100). Another line of reasoning proposes the 

involvement of anti-parasitic immunity and cross-reactive T cells that are primed in 

response to antigens from other pathogens which are mimicked by Plasmodium (101). It is 

hypothesised that children from malaria-endemic areas, are at a higher risk of developing 

CM only after the second or third round of infection due to an overriding pro-

inflammatory response that is triggered by T cells primed during the first exposure. 

However, with each subsequent infection, anti-parasitic immunity is developed that 

contributes to protection and lowers the risk of CM, as seen in older children and adults. 

In contrast, adults from non-immune or malaria-free areas are more susceptible to CM 

because of the accumulation of cross-reactive T cells primed by exposures to other 

pathogens. Non-immune children experiencing their first infection on the other hand 

have a smaller pool of cross-reactive T cells and are thus less prone to developing CM 

(101) (Figure 1.5). Ironically, any immunity acquired to severe pathology is short-lived 

and lost in the absence of exposure (102, 103), thereby complicating efforts to determine 

the exact correlates of protection.  



Introduction 

 10	

 
 
Figure 1.5 A hypothetical model describing the development of clinical immunity to 
P.fa l c iparum malaria, depending upon the age at first exposure (9). The proposed model 
describes the development of clinical immunity with respect to age and exposure. It is 
hypothesised that children living in malaria-endemic areas are less prone to developing severe 
cerebral pathology due to the subdued pro-inflammatory response and lack of parasite-specific T 
cells that are primed in response to a malarial infection. Upon re-infection, these T cells secrete 
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high levels of pro-inflammatory cytokines that trigger the development of CM. With each 
subsequent infection, anti-parasitic immunity is developed that helps curb the pro-inflammatory 
response and prevents the development of cerebral symptoms, thus contributing to protection as 
seen in older children and malaria-endemic adults. In contrast, non-immune adults from malaria-
free regions lack protective immunity and are therefore more susceptible. These adults 
additionally accrue a pool of cross-reactive T cells primed by non-malaria pathogens that are 
capable of contributing to the development of CM. Non-immune children however, have a 
smaller pool of cross-reactive T cells and are hence at a lower risk of developing CM.       
 
Most of what is known about HCM has been gathered from post-mortem studies, which 

provide a restricted view about the syndrome. One common finding in most autopsy 

reports is occlusion of brain capillaries caused by sequestered parasites which are 

considered the underlying cause of localised inflammation, haemorrhaging, hypoxia and 

neuronal death (104). One of the hallmarks of CM is in fact the engorgement of 

capillaries and venules due to plugging of microvessels by both infected and uninfected 

erythrocytes (Figure 1.6) (87, 105).  However, post-mortem studies on Malawian 

children showed evidence of leucocytes and platelets instead of parasites within the 

brains (106, 107). Although anti-malarial treatment was thought to account for the 

absence of parasites in the brains of these children, studies from India and Thailand 

reported similar findings (108-111) thereby suggesting that other factors responsible for 

CM exist. 

 

 
Figure 1.6 Histological sections of brain tissue of patients infected with malaria (105). 
Brain tissue sections of patients infected with P.falciparum malaria stained with glycophorin A and 
haematoxylin, show blood vessels (indicated by arrows) that are not plugged by erythrocytes (A) 
versus vessels that are congested due to sequestration of infected and uninfected erythrocytes (B).   
 
Parasites modify the iRBC membrane in multiple ways at the cost of reducing its 

flexibility during circulation, which favours binding to the endothelium (112). Infected 

erythrocytes can bind a number of endothelial cell receptors like CD36, CSA and ICAM-

1 (113) with varying specificities (114), though the exact reason for this differential 
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preference is unknown. One plausible explanation could be to enhance the probability of 

binding ECs in different regions of the body and thus the requirement of binding to 

different receptors. This is in agreement with the observation that variation of surface 

adhesins on iRBCs promotes binding to ECs in different organs and thus contributes to 

organ-specific sequestration (115). Indeed parasites isolated from the placenta of 

pregnant women bound CSA, which is abundantly expressed in the placenta, with higher 

affinity compared to CD36 (116-118). iRBCs predominantly bind CD36 in peripheral 

organs, but the lack of up-regulation of CD36 expression on brain ECs during a malaria 

infection (119) has questioned its validity. Instead, it is suggested that platelets and 

microparticles in the brain might express CD36 and indirectly facilitate binding of iRBCs 

to the endothelium (120, 121), though this has not yet been demonstrated. On the 

contrary, ICAM-1 is significantly up regulated on brain-endothelial cells (122) and 

expression levels were shown to correlate with the risk of CM (119). In fact, post 

mortem sections of CM patients have often correlated ICAM-1 expression to 

sequestered parasites within the brain (122). 

 
iRBCs bind to ICAM-1 and trigger a signalling cascade involving the MAPK pathway, 

cytokine production, expression of proteins like P-selectin, oxidative stress and ROS 

production which subsequently contribute to the loosening of tight junctions (123-125). 

Alternatively, iRBC adhesion could directly induce endothelial cell apoptosis and permit 

an influx of fluids and plasma proteins into the perivascular space of the brain 

parenchyma leading to cerebral oedema (126, 127). In post-mortem studies from 

Vietnam and Malawi, direct adhesion of iRBCs to ECs was shown to compromise the 

integrity of the blood-brain-barrier through loss of tight junction proteins occludin and 

vinculin (128, 129). However, localised occlusions and loosening of the tight junction are 

not always sufficient to cause brain swelling and coma seen in CM (130, 131).  

 
Numerous studies argue that both inflammation and cytoadherence contribute to BBB 

breakdown, albeit with varying contributions. Components of the immune system like 

platelets (108), leucocytes (132), neutrophils (133) also play a role through secretion of 

chemokines and cytokines. Indeed, expression levels of pro-inflammatory cytokines such 

as TNF-α, IFN-γ and IL-1β are higher in HCM patients and were shown to activate 

ECs, resulting in vascular permeability (134, 135). Cytokines such as TNF-α increase 

ICAM-1 expression on endothelial cells, thereby inducing an activation loop that further 

enhances sequestration of parasites (136-138). Other factors including the endothelial 
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protein C pathway receptors (139), histidine rich protein II (140), parasite 

glycosylphosphatidylinositol (141) and haemozoin were also shown to play a role in BBB 

permeabilisation (142). However, the exact contribution of different leucocyte subsets in 

HCM cannot be determined in vivo.  

 
Although parasite sequestration in the brain is considered an important event in HCM, 

there is emerging data supporting a role for the spleen in HCM pathogenesis. However, 

any direct evidence linking the spleen to pathological changes in the brain is missing. The 

spleen plays a vital role in the clearance of damaged RBCs from circulation and retention 

of iRBCs during a malaria infection and during anti-malarial therapy (143). These 

functions are however is reduced in splectomised individuals (144, 145) compared to 

those with an intact spleen. In the absence of the spleen, iRBC clearance is partially taken 

over by other organs like the liver, kidneys and intestines, but this is insufficient to 

reduce the circulating parasite burden. The spleen was also suggested to influence 

sequestration and antigen expression on the surface of iRBCs, in addition to clearance. 

This conclusion was derived due to observation that the peripheral blood of 

splenectomised individuals almost always contained mature forms of iRBCs, Moreover, 

the data was also consistent with experiments on squirrel monkeys infected with P. 

falciparum where differences in surface antigen expression were observed between 

splenectomised and spleen intact hosts (146, 147). Although these results would imply 

that the spleen directly modifies sequestration through an influence on surface antigen 

presentation, a study from naïve individuals splenectomised before infection, found that 

surface antigen expression of iRBCs was similar to those from spleen-intact individuals 

and incidences of CM were unchanged (148, 149). Ironically, parasites sequester to avoid 

splenic clearance, by varying their surface adhesins, which is the primary cause of chronic 

infections and organ dysfunction. Sequestration within the spleen also leads to 

remodelling of the splenic architecture (150) thus fostering retention of uninfected RBCs, 

splenomegaly and consequently anaemia. The exact role of the spleen in malaria is 

therefore uncertain; however these data indicate that the spleen plays a dual role in 

protection and pathology, consequently either exacerbating or mitigating instances of 

cerebral malaria.  

 
In summary, numerous in vitro investigations have examined multiple host and parasite 

molecules involved in the pathogenesis of CM. However, few have actually studied the 

interplay of these factors and the mechanisms leading to BBB disruption.  
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1.2.2.2 Experimental Cerebral Malaria (ECM)  

Studies delineating the factors involved in HCM are restricted to post-mortem samples 

and in vitro experiments. Due to apparent limitations and ethical constraints of studying 

CM in humans, re-construction of the series of events and mechanisms responsible for 

CM is preferentially done through experimental animal models.  

 
Both primate and rodent models of HCM reproduce certain aspects of CM (151), though 

primate models are the preferred choice in terms of sequestration pathology, which is 

closest to the human situation. However, limitations in terms of cost-effectiveness have 

restricted the use of primates to study CM. In spite of the long-standing debate 

questioning the validity of the mouse model, infection of C57BL/6 mice with P.berghei 

ANKA (152) is widely accepted as the best available tool to study CM (153). Other 

models of CM such as infection with P.berghei K173 are also available, though the use of 

PbK173 is limited due to the dose-dependent occurrence of CM in susceptible mice (151). 

 
Infection of B6 mice with PbA recapitulates several features of HCM like paralysis, 

convulsions, haemorrhaging (154, 155), brain swelling (156), retinopathy (157), and coma 

in a relatively short period of time (7-10 days) and is termed as experimental cerebral 

malaria (ECM) (158). Experimental evidence has shown that both iRBCs (154, 159-161) 

and leucocytes (162, 163) accumulate within the brains of ECM mice, in higher 

proportions compared to those without ECM. While parasite sequestration is less 

prominent in the case of ECM, studies have proven that drug treatment of infected mice 

just prior to the onset of neurological symptoms, abrogates ECM (160, 164). Moreover, 

differences in sequestration patterns between HCM and ECM can be attributed to the 

method used for tissue preparation; i.e. perfusion of mice is a rather routine procedure, 

however individuals that have succumbed to HCM are never perfused before organ 

isolation. 

 
As with humans, genetic variability between mice can alter susceptibility to ECM, evident 

from differences between the Th1 biased-ECM susceptible (C57Bl/6J, CBA) and Th2 

biased-ECM resistant (Balb/c, A/J) mice. In fact, Th1 or pro-inflammatory cytokines are 

of paramount importance to ECM pathology. Indeed, ECM development can be 

accelerated in the Th1-biased mouse through treatment with phenylhydrazine that 

increases the production of cytokines like IFN-γ and TNF-α (165), or restored in Balb/c 

mice, which are Th2-biased, through the induction of pro-inflammatory cytokines (166, 
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167). ECM outcome is also influenced by factors such as dosage (168), parasite clone 

(169) and stage of parasite used for infection (sporozoites versus iRBCs) (170, 171). 

Susceptibility also changes according to age with older mice being more resistant to 

developing cerebral symptoms compared to younger ones (161).  

 
Accumulating evidences supporting the similarities between HCM and ECM, have thus 

justified the use of the murine model to study the complex process of CM. Moreover, 

the availability of new tools and genetically manipulated mice has advanced our 

understanding of the steps involved in the development of cerebral pathology. Based on 

the current available literature about ECM, the following series of events are thought to 

occur (Figure 1.7) and likely conserved in both ECM and HCM.  

 
(1) Priming in the spleen. The spleen is central to ECM pathogenesis and plays a key 

role in priming immune cells that are responsible for BBB damage. Indeed, 

splenectomised mice are protected from ECM and have lower levels of CD4+ (172) and 

CD8+ (173) T cell infiltrates within the brain (174). During the early stages of infection, 

CD11chigh dendritic cells in the spleen efficiently present parasite material from dead or 

dying parasites to resident CD4+ and CD8+ T cells (175). Although several DC 

populations are involved, specific depletion of the CD8α+ Clec9A+ DC subset was 

found to abrogate the development of ECM (173). DCs differentiate in response to the 

cytokine Flt3L (176, 177) that is also responsible for increasing the number of splenic 

CD11chigh CD8+ DCs and phagocytosis of iRBCs (176).  

 
(2) Parasite sequestration. Late blood stages of PbA parasites sequester in an organ-

specific manner, through antigenic variation of surface receptors and by immune-

mediated mechanisms (174). Like the var genes in humans, bir genes code for variant 

surface proteins in PbA parasites and might therefore play a role in both sequestration 

and cytoadherence (178). A recent study highlighted similarities in the virulence 

machinery between P.falciparum and P.berghei ANKA parasites, thus postulating conserved 

mechanisms of endothelial cell activation in both (180). Sequestered parasites release 

inflammatory ligands such as GPI and haemozoin, which activate DCs through Toll-like 

receptors 2 and 9 respectively (181, 182).  
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Figure 1.7. Schematic of the sequential steps in the development of ECM pathology (179). 
The development of ECM begins with the priming of CD4+ and CD8+ T cells within the spleen 
by CD8α+ Clec9A+ DCs that have phagocytosed parasite material from sequestered or dead 
parasites. Parasite sequestration together with inflammatory parasite ligands like GPI and 
haemozoin activate the endothelium. ECs up-regulate receptors like ICAM-1, MHC class I and 
class II in response and secrete chemokines and cytokines. Leucocytes and platelets that are 
recruited to the site of inflammation become activated and secrete pro-inflammatory cytokines, 
which further triggers the upregulation of receptors on ECs. The triad of sequestration, EC 
activation and cytokine secretion by leucocytes induces a positive feedback loop that triggers a 
state of systemic inflammation in the host. Both inflammation and IFN-γ produced by NK cells 
trigger T cells that are primed within the spleen to express chemokine receptors like CXCR3 and 
CCR5 and migrate towards the brain and other sites of inflammation, where they adhere to ECs 
via ICAM-1. Upon recognition of parasite antigens cross-presented by the brain endothelium via 
MHC class I molecules, CD8+ T cells release perforin and granzyme B, which induces apoptosis 
of the EC and consequently permeabilisation of the BBB. (This legend has been adapted from 
Howland, S.W. et. al. (179)) 

 
 
(3) Activation of the endothelium  

EC activation is a gradual process that appears to be conserved between ECM and HCM. 

The combination of sequestered parasites, GPI and haemozoin activate ECs, which 

secrete chemokines like CXCL10 (183), which then up-regulate ICAM-1, MHC class I 

and class II molecules (184). Resident macrophages respond by secreting chemokines 

like MIP-1α and CCL5 that up-regulates the expression of chemokine receptors such as 

CCR2, CCR5 and CXCR3 (179) on monocytes and T cells, triggering their migration to 

the site of EC activation. Leucocyte subsets like monocytes (185), macrophages (163), 

NK (186) cells, T cells (186, 187) or DCs (173) and platelets (188, 189) were all reported 

to accumulate in higher numbers in the brains of ECM mice compared to those without 
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ECM symptoms. In contrast to the depletion of T cells, depletion of monocytes, 

neutrophils and platelets just before the onset of cerebral pathology does not prevent 

ECM (190, 191), suggesting they might rather play a role during the early stages of 

infection through cytokine and chemokine production (191-193). Recruited leucocytes 

and platelets secrete pro-inflammatory cytokines like IFN-γ and TNF-α which induce a 

positive feedback loop that further up-regulates adhesion receptors on ECs and 

promotes the sequestration of iRBCs and leucocytes (194, 195). Interestingly, IFN-γ in 

conjunction with CD8+ T cells was shown to mediate sequestration of iRBCs within 

different tissues, in a time-dependent manner (196). 

 
Endothelial activation is followed by the release of VWF multimers that recruit platelets, 

iRBCs and monocytes (197), of which platelets were shown to directly cause EC damage 

(198). Sequestered macrophages potentially undergo a respiratory burst to release nitric 

oxide that could damage the endothelial barrier, though by unclear mechanisms (199-

201).  

 
(4) Systemic inflammation. 

Monocytes that infiltrate the brain adhere to endothelial cells via CD40L (202) and 

engender the secretion of pro-inflammatory cytokines like IFN-γ (168, 203, 204), TNF-

α (162) and lymphotoxin-α (184, 205) that are central to the ECM pathology. Though 

the exact source of IFN-γ is unclear, studies have demonstrated that NK cells infiltrating 

the brain tissue during the early stages of infection are the primary producers of IFN-γ 

and this role is later taken over by CD4+ T cells (186). Recent studies highlighted that IL-

12Rß2 but not IL-12 exerts an indirect effect on IFN-γ, TNF-α and lymphotoxin-α 

(206), thereby influencing ECM. Conversely, anti-inflammatory cytokines like IL-10 were 

shown to deter ECM immunopathogenesis (207), thus suggesting that the progression of 

ECM hinges upon a delicate balance of pro- and anti-inflammatory cytokines maintained 

by regulatory T cells (Tregs) (208).  

 
The cyclical events of sequestration followed by endothelial activation and cytokine-

chemokine secretion within different organs eventually contribute to an overall state of 

systemic inflammation in the host.  

 
(5) Migration to the brain  

The migration of T cells to the brain is a key event in ECM immunopathogenesis. Upon 
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stimulation with IFN-γ, splenic CD8+ T cells express CD69, CD11a and CD54 in 

addition to chemokine receptors like CXCR3 and CCR5, and migrate out of the spleen 

towards the brain and other organs via chemotaxis (209, 210). Indeed CCR5 and CXCR3 

deficient mice feature reduced CD8+ T cells in the brain and are partially protected from 

ECM (211, 212). Migration of CD8+ T cells to the brain microvasculature mainly relies 

on IFN-γ secreted by both NK cells (213) and CD4+ T cells (186) and relies on CXCL9 

and CXCL10 expression. The antigen-specificity of brain infiltrating CD8+ T cells was 

recently determined by sequencing of the Vβ8 segment of CD8+ T cells, which also 

resulted in the identification of dominant immunogenic epitopes contributing to ECM 

development (209, 210).  

	
(6) Cross-presentaion of parasite antigens  

ECs can also act as antigen presenting cells and cross-present antigens to CD8+ T cells 

within the brain microvasculature (214, 215). Indeed, two studies identified parasite-

specific epitopes that were cross-presented by the brain endothelium in ECM susceptible 

mice (209, 210). In contrast, brain microvessels from mice infected with non-ECM 

causing parasite strains such as PbNK65 were incapable of efficient cross-presentation 

both in vitro (209) and in vivo (216). Cross-presentation of parasite antigens in particular 

was deemed responsible for the arrest of pathogenic CD8+ T cells within the brain, an 

event that was again unique to ECM causing parasite strains (216).  

 
(7) Blood-brain-barrier permeabilisation 

CD8+ T cells adhere to ICAM-1 on activated ECs via LFA-1 (217). Upon recognition of 

cross-presented antigens, these CD8+ T cells exert their cytotoxic effect by secreting 

molecules like IFN-γ, Granzyme B (218) and perforin (219), all of which are a primary 

requirement for ECM pathogenesis since mice deficient for either component are 

protected from ECM. The release of these cytotoxic molecules together contributes to 

cytolysis, apoptosis, permeabilisation of the endothelial cell barrier and subsequently 

coma and death. 

 
1.3 Mechanisms of protection against cerebral malaria 

Although the advancement of cerebral symptoms relies on the spatio-temporal interplay 

of numerous host and parasite molecules, several genetic polymorphisms and 

environmental factors are know to perturb this process and thus disrupt the progression 

of CM.  
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1.3.1 Protection against human cerebral malaria 

Variations in susceptibility to HCM are common for P. falciparum infections, but the 

underlying mechanisms are not well described. Evolutionary studies often align with the 

view that malaria parasites co-evolved with the human race, which is not surprising given 

that most metabolic disorders and genetic polymorphisms of red blood cells including 

thalassemias and haemoglobinopathies are frequently found in malaria endemic regions 

and confer protection against CM (220, 221). Erythrocyte polymorphisms interfering 

with remodelling of the red blood cytoskeleton were found to reduce transport of 

adhesins like PfEMP-1 to the red blood cell surface and subsequently abolish rosetting 

and cytoadherence (222-224). Likewise, individuals deficient for glucose-6 phosphate 

dehydrogenase or pyruvate kinase feature reduced parasitaemias and are protected from 

severe disease (225).  

 
In addition to erythrocyte polymorphisms, mutations within EC receptors such as 

ICAM-1 and CD36, including allelic variations of cytokines like TNF-α and IL-10 are all 

known to contribute towards protection from CM (226). However, not all 

polymorphisms contribute to protection, as observed by a lack of association between 

EPCR variants and protection from severe disease in a cohort of Tanzanian children 

(227). Moreover, ample variations observed within populations suggest that protection 

may rather depend upon a combination of factors (228).  

 
In addition to genetic polymorphisms, naturally acquired immunity also offers protection 

against CM. Older children and adults from malaria endemic areas gradually accrue 

antibodies to blood stage antigens after years of repeated exposure. These antibodies 

protect from clinical disease, but do not confer sterile immunity. Antibodies to different 

variants of PfEMP-1 for example (229) are thought to interfere with rosetting and 

parasite sequestration and thus indirectly contribute to protection (230, 231).  Antibodies 

specific to other parasite antigens such as MSP-1 were instead shown to contribute to 

protection through opsonisation of merozoites and stimulation of ROS production (232) 

or simply through enhanced clearance of iRBCs by phagocytic cells (233). In other 

studies with African children, high levels of erythropoietin (120) (120) and VEGF were 

found to correlate with reduced risk of neurological sequelae (234). EPO has a 

neuroprotective effect and was therefore proposed as an adjunct therapy for CM (235). 

However, a recent study showed that increased levels of plasma EPO correlated with 

increased mortality of African children, thus disproving the therapeutic use of EPO (236).  
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Interventions such as the RTS,S malaria vaccine designed to prevent Plasmodium parasites 

from entering and multiplying within the liver, does not confer sterile protection in 

vaccinated individuals but instead conferred partial protection against cerebral symptoms. 

In spite of a lack of understanding about the mechanism of protection, studies have 

hypothesised that antibodies against CSP (237) reduce the number of sporozoites 

entering and developing within the liver, leading to a delayed release of merozoites, 

giving rise to sub-microscopic parasitaemias and an opportunity for the host to gradually 

acquire immunity to blood stage infection (238-240). A similar mechanism of protection 

was also proposed to occur in Tanzanian children given preventive treatment with anti-

malarials like sulfadoxine-pyrimethamine (241, 242). While these data would suggest that 

a delay in the initial blood stage growth increases the odds of developing an immune 

response against CM, the mechanisms by which this might occur remain undetermined. 

 
While the above data indicates plausible mechanisms of protection, it does not explain 

why some individuals are more susceptible than others. Moreover, addressing 

intervention strategies that prevent CM requires a proper understanding about the 

correlates of protection.  

 
1.3.2 Protection against experimental cerebral malaria 

Studies about the disruption of CM immunopathogenesis are replete with examples from 

rodent models of ECM and several mechanisms of protection have been proposed with 

reference to interventions against HCM.  

 
Although similar genetic polymorphisms linked to protection in HCM cannot be found 

in mice, mice deficient for critical genes such as CCR5, IFN-γ and TNF-α or depleted 

of CD4+ T cells, CD8+ T cells, etc. are all protected from ECM (243). Loss of TLR7 

signalling also confers partial protection against ECM through alterations in the cytokine 

profile resulting in a shift towards anti-inflammatory cytokines (244). Treatment of mice 

with anti-malarials like chloroquine also produces the same effect, though by inhibition 

of TLR-9 and MHC-II expression on DCs, which leads to a severe decline in Th1 

cytokines like IFN-γ and TNF-α (245). Similarly, administration of IL-33 (246), EPO 

(247, 248), iron (249), Agaricus blazei (250), Cyclosporin A(251) and even activated 

charcoal (252) prevented the development of ECM through downregulation of the Th1 

response by different mechanisms. Both IL-33 (246) and EPO (247, 248) trigger the 

expansion of regulatory T cells that are responsible for protection against ECM. In 
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contrast, administration of iron dextran protected mice from ECM, by reducing CXCR3 

expression on T cells, thus curbing their migration to the brain. Moreover, the 

accumulation of T cell within the spleen was associated with a decrease in both NK cells 

and Tregs (249). A study by Haque et al. demonstrated that artificial expansion of T regs 

in vivo protected mice against ECM by mediating a reduction in both parasite 

sequestration frequencies of CD4+ and CD8+ T cells in the brains of infected mice. 

Protection was moreover found to rely on CTLA-4 and IL-2, instead of IL-10 (253). 

Another study however showed that depletion of Tregs through administration of anti-

CD25 monoclonal antibody prevents the development of ECM (254), thus suggesting a 

paradoxical role for Tregs in ECM immunopathogenesis (255, 256). Interestingly, a study 

by Liu, Y. et. al. proposed a role for IL-10 producing B regulatory cells in protection 

against cerebral pathology in mice (257). Therefore, further investigations are required to 

dissect the exact role of regulatory cells in preventing immune-mediated cerebral 

pathology.  

 
Co-infection of mice with PbA and PbXAT (151, 258), Filaria (259) or Schistosoma 

japonicum (260) also confers protection against ECM through an early induction of IL-10. 

Protection in case of the latter was found to associate with increased levels of Th2 

cytokines like IL-4, IL-5, TGF-β and reduced numbers of CD4 and CD8 T cells, both 

within the spleen and brains of infected mice (260). In contrast, co-infection of mice 

with PbK173 or treatment of infected mice with soluble Toxoplasma gondii antigens (261) 

triggers an early peak of IFN-γ instead of IL-10, but also protects against ECM (151, 

258). It is likely that an early IFN-γ peak triggers the secretion of IL-12 that could 

potentially reduce parasitaemia and sequestration, thereby mediating protection against 

ECM (261).  

 
In addition to modulating the host response, interventions specifically targeting the 

parasite have also been shown to confer protection against cerebral symptoms. For 

example, the administration of chloroquine just before the onset of cerebral symptoms 

ablates ECM by reducing the parasitaemia rather than through immunmodulatory 

mechanisms (160). Interestingly, interventions targeting the parasite within the liver have 

also been shown to delay blood-stage growth kinetics, which eventually translates into 

protection from cerebral symptoms. Infection of mice with sporozoites deficient for 

Plasmodium-specific protein that plays a role in liver merozoite formation (79) features a 

delay in merozoite egress from the liver thus reproducing an ‘RTS, S’ like effect that 
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abrogates the development of ECM (262). Similarly, immunisation of mice with a single 

dose of irradiated sporozoites (Pfeil, J. et al. unpublished) or partial attenuation of intra-

hepatic parasite stages via treatment with isopentaquine (263) contributes to protection 

against ECM and is associated with early T cell activation and IL-10 production within 

the liver and spleen and in the latter (263). The effect of delayed blood stage growth on 

ECM outcome was also shown for parasites lacking plasmepsin-4 that were all protected 

from ECM (264).   

 
In summary, one could conclude from the examples above that both timing of pro-

inflammatory cytokine secretion and blood stage growth kinetics of the parasite are 

critical to the development of ECM. Thus delaying blood stage growth could prevent the 

development of a robust pro-inflammatory response leading to blood-brain-barrier 

breakdown, while permitting the development of antibody responses that contribute to 

protection against ECM. Similarly, an early IFN-γ driven environment could help 

control infection (265) and promote the proliferation of Tregs that secrete IL-10 and 

other Th2 cytokines (260), which steers the immune system into a Th2-biased state. 

Alternatively, Th2 cytokines could reduce the activation of antigen-specific T cells within 

the spleen and subsequently their migration to the brain and other organs, thus affecting 

ECM progression. These results therefore highlight the potential of therapeutic measures 

targeting the window of transition from ‘liver to blood-stage of development’ that could 

offer protection against CM.  

 
1.4 The aim of this study 

Vaccination strategies against malaria rarely focus on the alleviation of cerebral 

symptoms, but rather target the clinically silent pre-erythrocytic stage to achieve sterile 

protective immunity. Pitfalls from the RTS,S story have highlighted the importance of 

vaccines targeting multiple stages of the parasite life cycle and more specifically those 

antigens that are shared by pre-erythrocytic and intra-erythrocytic stages. This concept is 

supported by the success of immunisation with sporozoites under CQ cover (CPS) 

which is by far considered the best method of conferring sterile protection against re-

infection (266, 267). CQ specifically targets intra-erythrocytic stages of the parasite, 

whilst permitting complete intra-hepatic development (268) to confer sterile protection. 

Moreover, a study in 1997 suggested that vaccination strategies that curtail exposure to 

blood stages might inadvertently prevent the boosting of protective blood-stage 

immunity and thereby contribute to an increase in morbidity (269). Current vaccination 
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strategies are therefore adapted to incorporate antigens expressed in multiple stages of 

the parasite life cycle, or rather antigens that are shared among different life cycle stages 

of the parasite (270) in an attempt to induce both innate and adaptive immune responses. 

 
The focus of this study was thus the characterisation of a Plasmodium-specific antigen, 

maLS_05 (malaria attenuated liver stage antigen 5) that was identified in liver stages of 

P.falciparum RAS and hypothesised to play a role in sterile protection (Frank, R. et al., 

unpublished). Preliminary results from the rodent model however, suggested that 

PbmaLS_05 is critical to the development of ECM. The aim of this study was thus 

amended to functional characterisation of Plasmodium berghei maLS_05 (PbmaLS_05) in 

the development of ECM. 

 
In addition to functional characterisation, this study aims at delineating the mechanisms 

of ECM development between the different modes of infection; i.e. sporozoites versus 

iRBC infections. More importantly, this study intends to highlight critical differences in 

ECM progression between the two modes of infection, which potentially has profound 

implications for vaccination or therapeutic strategies designed to alleviate cerebral 

malaria.  
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Chapter 2 

Materials & Methods 
2.1 Materials 

2.1.1 Computer Software 

ABI 7500 Software v2.0.5  Applied Biosystems 

AutoQuant X  Media Cybernetics 

CellQuest 6.0 Pro  BD Biosciences 

EndNote X4.0.2  Thomson Reuters 

ImageJ 2.0   Open sourceware 

ImageStudio 4.0  Li-Cor 

Microsoft Office for Mac 2008  Microsoft Corporation 

Prism 5.0 for Mac OS X  GraphPad Software, Inc 

Serial Cloner 2.6.1  Franck Perez, SerialBasics 

Volocity 6.3  Perkin Elmer 

 
2.1.2 Laboratory equipment 

ABI 7500 Real-Time PCR Cycler  Applied Biosystems 

Analytical scales BL510  Sartorius 

Autoclave Systec   GmbH, Wettenberg 

BD FACS Canto I    BD Biosciences 

Blot Scanner   Li-Cor 

Centrifuge 5415 R  Eppendorf 

Eclipse Ti-E Inverted Microscope  Nikon 

Electrophoresis System Horizon 11.14   Whatman Inc. 

ELISpot/Fluoro Spot Reader   AID GmbH 

Freezer -200 C  Liebherr 

Freezer -800 C  Thermo Scientific 

Fridges  Liebherr 

GeneAmp PCR System 9700  Applied Biosystems 

Haemocytometer (Neubauer)    Labotec, Labor-Technik 

Heat block thermomixer comfort   Eppendorf 
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Hera Cell Incubator  Heraeus Instruments 

Ice machine  ZIEGRA Isernhagen 

ImagEM X2 EM-CCD camera  Hamamatsu Photonics 

Innova 4300 Incubator Shaker  Eppendorf 

Intenslight C-HGFIE Fibre illuminator  Nikon 

Light optical microscope Axioskop  Zeiss 

Light optical microscope, Axiostar plus  Zeiss 

Light optical microscope, Axiovert 25  Zeiss 

Liquid nitrogen tank  CBS 

MasterCycler Gradient  Eppendorf 

Megafuge 1.0R   Heraeus Instruments 

Microwave oven   Sharp 

Mosquito cages   BioQuip Products Inc 

NanoDrop ND-1000  Thermo Fischer Scientific 

pH-meter 7110  Inolab 

Photometer   Eppendorf 

Pipettes (Single and multi-channel)  Abimed 

Sterile work bench Gelaire X  Flow Laboratories 

XCell SureLock Mini-Cell Electrophoresis System  Invitrogen 

UltraVIEW VoX 3D live cell imaging system  Perkin Elmer 

Vortex Genie 2  Scientific Industries Roth 

Water Bath   GFL 

 
2.1.3 Disposables 

96-well cell culture plate  Sarstedt 

96-well round bottom plates  Greiner Bio-one 

96-well Multi-Screen Filter plates  Merck, Millipore  

14 ml polystyrene round bottom tubes   Greiner Bio-one 

8-well chamber slides   Nunc Corporation 

Aluminum foil  Roth 

Cell strainer (70 µm nylon)  Falcon, Corning 

Falcon tubes (15 ml, 50 ml)  Sarstedt 

Glass bottom culture dishes  Mattek Corporation 

Gloves (Latex)  Semper Guard 
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Immersion oil  Waldeck 

Eppendorf tubes (0.5ml, 1.5 ml)  Eppendorf 

Object slides  Marienfeld 

Microscope cover slips  Marienfeld 

Needles BD Discardit II (0.4 mm x 19 mm; 0.6 

mm x 30 mm; 0.9 mm x 40 mm) 

 BD 

NuPAGE Novex 4-12% Bis-Tris Pre-cast Gels  Invitrogen 

Nunc Lab-Tek II Chamber Slide System  Thermo Scientific 

Parafilm  Pechiney Plastic Packaging 

Petri dishes (145 x 20mm; 94 x 16mm)  Sarstedt 

Pipettes (1 ml, 5 ml, 10 ml, 25 ml)  Sarstedt 

Syringe BD Discardit II (U-100 Insulin, 1 ml, 5 

ml, 20 ml) 

 Sarstedt 

Sterile filter Millipore bottle  Starstedt 

Thermo-Fast 96 PCR Detection Plate  Thermo Scientific 

WesternSure Pen  Li-Cor 

 
2.1.4 Chemicals 

All chemicals were purchased from Applichem, Gibco, Merck, Roth, and Sigma, unless 

specified otherwise.  

Bacto Agar  Difco, BD 

Bacto Tryptone  Difco, BD 

Bacto Peptone  Difco, BD 

Collagenase Type 4  Worthington  

DNase I  Roche 

Complete Protease Inhibitor  Roche 

Easycoll Density 1.124 g/ml  Biochrom AG 

Fetal Bovine Serum (FBS)  Invitrogen 

Giemsa (0,4%, w/v)  Roth 

Heparin  Rathiopharm 

Ketamine (10 %)  Bremer Pharma GmbH 

MEM NEAA 100x solution  Gibco Invitrogen,  

NuPAGE MOPS SDS Running Buffer (20 X)  Invitrogen 

Nuclease Free Water  Ambion 
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Nycodenz  Axis Shield 

Sea salt   Alnatura 

Sodium pyruvate 100 mM solution  Gibco Invitrogen 

Streptavidin-ALP  Mabtech 

QIAzol Lysis Reagent  Qiagen 

Xylazine (Xylariem®)  Ecuphar GmbH 

 
2.1.5 Kits 

5’ RACE and 3’ RACE Systems for Rapid 

Amplification of cDNA ends 

 Invitrogen 

Amaxa Human T Cell Nucleofector Kit  Lonza 

First Strand cDNA synthesis Kit  Thermo Scientific 

ECL Plus Western Lightning  Perkin Elmer 

Power SYBR Green PCR Master Mix  Applied Biosystems 

QIAquick Gel Extraction Kit  QIAGEN 

QIAprep Spin Miniprep Kit   QIAGEN 

QIAquick PCR Purification Kit  QIAGEN 

QIAamp DNA Mini Blood Kit  QIAGEN 

RNeasy Mini Kit  Qiagen 

TURBO DNA-free Kit   Ambion  

 
2.1.6 Antibodies 

Name Dilution/ 
Concentration Clone Application Manufacturer 

α-CD4-
PerCpCy5.5 

1:100 
(0.2 mg/ml) RM4/5 FACS eBioscience 

α-CD8 PE-Cy7 
1:100 

(0.2 mg/ml) 53-6.7 FACS eBioscience 

α-CD16/CD32 
1:100 

(1.0 mg/ml) 93 FACS eBioscience 

α-IFN-γ APC-
Cy7 

1:100 
(0.2 mg/ml) XMG1.2 FACS BD 

Pharmingen 
α-Pb HSP70 
(Mouse) 

1:300 Hybridoma 
supernatant IFA/WB  Pesce et al, 

2008 (271) 
Alexa Fluor 488 
(Goat α-Mouse) 

1:300 - IFA Invitrogen 

Alexa Fluor 546 
(Goat α-Mouse) 

1:300 - IFA Invitrogen 

Mitotracker Red 
CMX-Ros 1:500 - IFA Invitrogen 
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Hoechst  1:10000 33342 IFA Invitrogen 
α-GFP (Rabbit 
anti-Mouse) 

1:1000 - WB Roche 

Rabbit anti-mouse 
POD 1:10000 - WB Dianova 

α-CD3 mAb 1:1000 CD3-2 ELISpot Mabtech 

α-mouse IFN-γ 1:100 
(10 µg/ml) rat/XMG1.2 ELISpot eBioscience 

α-IFN-γ, 
biotinylated 

1:100 
(5 µg/ml) rat/R4-GA2 ELISpot eBioscience 

 
2.1.7 Peptides 

Predicted CD8 T cell epitopes for PbmaLS_05 and the Pb1 epitope of GAP50 (209) 

were synthesized as peptides by JPT Peptide Technologies GmbH. The peptides were 

dissolved in DMSO to a final stock concentration of 20 mM, aliquoted and stored at - 

80 °C. 

Name Sequence Concentration 

Pb 1 (PbGAP50) SQLLNAKYL 1 µM 

PbmaLS_05_K8L KLDYYEKL 1 µM 

PbmaLS_05_I8I ILYFYNKI 1 µM 

PbmaLS_05_E8L ENIEFEYL 1 µM 

maLSA_1568 (Db) TSLENLKPM 1 µM 

maLSA_395 (Kb) SIFLYWIKL 1 µM 

maLSA_64 (Kb) VVYFFYTNV 1 µM 

maLS05_827_8mer LTYVFNTI 1 µM 

maLS05_147_9mer SVIKNDENL 1 µM 

maLS05_1562_9mer ASNENKTSL 1 µM 

 
2.1.8 Antibiotics 

Name Concentration Manufacturer 

Ampicillin 100 mg/ml in ddH2O Carl Roth 

Azithromycin 25 mg/ml in ddH2O Azi-TEVA (Apotheke) 

Gentamicin 50 mg/ml Gibco 

Tetracyclin 5 mg/ml in 70 % EtOH Carl Roth 

Penicillin 100 mg/ml in ddH2O Sigma-Aldrich 

Antibiotic-Antimycotic (100X) 1:100 Gibco 
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2.1.9 Enzymes and molecular ladders 

All restriction enzymes and ladders were purchased from New England Biolabs.  
 
2.1.10 Biologicals 

2.1.10.1 Bacterial strain 

Escherichia coli XL1 blue  Stratagene, Agilent Technologies Sales 

 
2.1.10.2 Parasite strain 

Plasmodium berghei ANKA cl15cy1   Hall et al., 2005 (272)  

 
2.1.10.3 Mosquito strain 

Anopheles stephensi   Max Planck Institute for Infection 

Biology, Berlin 

 
2.1.10.4 Cell lines 

HuH-7 human hepatoma cell line 

 

 Nakabayashi et al., 1982 (273) 

Kindly provided by AG Bartenschlager 

(University Hospital Heidelberg) 

 
2.1.10.5 Mice strains 

Naval Medical Research Institute (NMRI), 

outbred mice 

 

  Janvier, France 

C57BL6/J Rj, inbred mice   Janvier, Paris, France 

 
2.1.10.6 Anaesthetic  

Ketamine/ Xylazine (K/X)  

 

 1 ml Ketamine  

150 µl Xylazine  

2.85 ml 1x PBS  

 
2.1.11 Buffers 

2.1.11.1 Immunological experiments 

 
10x PBS, pH 7.0  50 tablets in 1L ddH2O 

CBA buffer  100 ml 1x PBS 
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0.05 % Tween 20 

2 tablets of complete protease inhibitor 

cocktail (Roche)  
   

MACS buffer  1x PBS 

1% FCS 

2mM EDTA 
   

Permeabilisation buffer (intra-cellular 

staining) 

 0.1% BSA 

0.3% Saponin 

1x PBS 
   

Red cell lysis buffer  1L ddH2O 

8.26 g NH4Cl 

1 g KHCO3 

0.037 g EDTA 

 
2.1.11.2 Immunofluorescence Assays 

Wash buffer  1% FCS 

1x PBS 
   

Blocking buffer  10% FCS 

1x PBS 

 
2.1.11.3 SDS-PAGE 

RIPA buffer  50 mM Tris HCl (pH 7.5) 

150 mM NaCl 

5 mM EDTA 

50 mM NaF 

0.5 % Sodium deoxycholate 

0.1 % SDS 

1% Triton X-100 

Store at 4 0C.  

Add 0.25 µl 2mM DTT and 20 µl 

Protease Inhibitor cocktail to 500 µl 

RIPA buffer, just before use.    
   

Novex Transfer buffer (25x)  300mM Tris Base 
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2.4 M Glycine 

20% Methanol 

ddH2O 
   

TBS, pH 7.4  50mM Tris 

150mM NaCl 

1x PBS 
   

TBST  TBS 

0.1% Tween 20 
   

Stripping buffer  62.5mM Tris, pH 6.8 

2% SDS 

100mM 2-Mercaptoethanol 
   

Blocking buffer   5% Milk Powder 

1x PBS 

 
2.1.12 Media and solutions 

2.1.12.1 Gradients 

Easycoll gradient (Working stock)   9 ml Easycoll 

1 ml 10x PBS (Sterile) 
   

30% Easycoll (Brain)  3% Working stock 

7% RPMI 
   

Nycodenz   110.4 g Nycodenz powder 

5 mM Tris/HCl, pH 7.5 

3 mM KCl 

0.3 mM EDTA, pH 8.0 

Filled up to 400 ml with ddH2O 

Autoclaved, stored at 4 °C 
   

55 % Nycodenz  5.5 ml Nycodenz 

4.5 ml 1x PBS 

 
2.1.12.2 Bacterial culture 

LB Medium  10 g/L trypton 

5 g/Lyeast extract 
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10 g/L NaCl 

Autoclaved 
   

LB Agar  15 g agar 

1L LB medium  
   

Freezing solution  500 µl bacterial culture  

500 µl 30 % glycerol  

Stored at -80 0C 

 
2.1.12.3 Parasite culture  

Transfection medium (Schizonts)  160 ml RPMI  

40 ml FCS (US certified), heat-

inactivated (56 °C /30 min.) 

40 µl gentamicin 

Sterile filtered and prepared fresh 

before use 
   

Freezing solution (P. berghei) 

 

 10 % w/v glycerine in Alsever’s 

solution (Sigma) 

Stored at 4°C 
   

Pyrimethamine   7 mg/ml in DMSO 

Stored at 4°C 

 
2.1.12.4 Cell culture 

Cell culture medium  DMEM (Gibco)  

10% FCS 

1% Anti-Anti  
   

Cell culture medium (Imaging)  DMEM High Glucose (without 

sodium pyruvate and phenol red) 

25mM HEPES 

10% FCS 

1% Antibiotic-Antimycotic 
   

Freezing solution  100 µl FCS 

100 µl DMSO 

800 µl cell suspension 
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2.1.12.5 Immunological experiments 

Complete Culture Medium   RPMI (Life Technologies) 

10 % FCS 

5 ml 100x MEM NEAA (Gibco) 

5 ml 100mM sodium pyruvate (Gibco)  

5 ml penicillin / streptomycin 

10 µl heparin 
   

Brain infiltrating lymphocyte medium  0.5mg/ml Collagenase  

10µg/ml DNAse I  

1x PBS 

Sterile filtered 

 
2.1.13 Vectors 

Name Use 

PB300mycmCherry-CT (274) PbmaLS_05 (-)  (Knockout vector) 

b3D+ (275) PbmaLS_05 CT EGFP (C-terminal tagging) 

b3D (provided by Andrew 

Waters, Glasgow University) 

PbmaLS_05 NT mCherry (N-terminal tagging) 

 
2.1.14 Oligonucleotides 

All primers were ordered as custom DNA oligonucleotides from Invitrogen and 

dissolved in ddH2O to a final concentration of 100µM, aliquoted and stored at -200C.  

 
2.1.14.1 PbmaLS_05 (-) vector primers 
 
PbAgA_5’UTR  

Forward (Sac II) 5’-ATC CGC GGG GCA TTA TTA GAT GTC ATA GGA 

GCG-3’ 

Reverse (Nde I) 5’-ATA CAT ATG GGA TTA AAT ATA CAC ACG CAC  

AAC G-3’ 

PbAgA_3’UTR  

Forward (Hind III) 5’- ATT AAG CTT CGA GTA TTG CTT ACG TTT AAA 

TTG ATA GAG-3’ 

Reverse (Xho I) 5’- ATC TCG AGG CCC TAA ATA GGA ATA ATA ATG 
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CAA AAT GC-3’ 

PbAgA_Seq_5’UTR With mCherry_tag_rev as the reverse primer 

Forward 5’-CGG AAA GCA GCA ATA ACA CTA CTA C-3’ 

Reverse 5’-GAT CCT TAC TTG TAC AGC-3’ 

PbAgA_Seq_3’ UTR With TgDHFR/TS_rev as the reverse primer 

Forward 5’- CGG CGA AAT TAT ATT GCT ACC GT-3’ 

Reverse 5’-GCA GTT GAT TTG TTT GAA AGA ATG TC-3’ 

PbAgA_RT  

Forward 5’-GCA AAG GCG GAG AAA TAC C-3’ 

Reverse 5’-CAC CCG TAG TAG CAT CTT CC-3’ 

  
2.1.14.2 PbmaLS_05 CT EGFP tagging vector 
 
PbAgA_3’UTR  

Forward (Hind III)  5’-ATA AGC TTC GAG TAT TGC TTA CGT TTA AAT 

TGA TAG AG-3’ 

Reverse (Kpn I) 5’-ATG GTA CCG CCC TAA ATA GGA ATA ATA ATG 

CAA AAT GC-3’ 

CT_EGFP_5' end With 5’ UTR big tag rev as the reverse primer 

Forward (Sac II) 5’-ATC CGC GGC GCA ATT GCA AGA AAT TGC TAT 

GT-3’ 

Reverse (Xba I) 5’-ATA TCT AGA ATA GTG TTT CGT TTT TTT TAA 

AAT CAT ATT GGC C-3’ 

EGFP  

Forward (Spe I) 5’-GCA CTA GTG CCG CCG CCG TGA GCA AGG GCG 

AGG AGC TG-3’ 

Reverse (Bam HI) 5’-GCG GAT CCT TAC TTG TAC AGC TCG TCC ATG 

CCG AG-3’ 

5’ tag_sequencing With b3D+ rev as the reverse primer 

Forward 5’-GCA AAA GAT TCT TTA TGG ATA ATA GGG G-3’ 

Reverse 5’-CCT TGC TCA TTT ACC TGC TAA TAC GAT TGC-3’ 

3’ sequencing With TgDHFR/TS rev as the reverse primer 

Forward 5’-CGG CGA AAT TAT ATT GCT ACC GT-3’ 
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Reverse 5’-GCA GTT GAT TTG TTT GAA AGA ATG TC-3’ 

  
2.1.14.3 PbmaLS_05 NT mCherry tagging vector 
 
PbAgA_NT Prom PI  

Forward (Kpn I) 5’-GCG GTA CCC CAC GTG CAC ATC AAT TTA TTC 

GTT CAT TAAC-3’ 

Reverse (Hind III) 5’-GCA AGC TTG CGT ACA CTT TAT AAT CTC ACA 

CTA TAC TTC-3’ 

PbAgA_NT Prom 

PII 

 

Forward (BamHI) 5’-GCG GAT CCG AAG TAT AGT GTG AGA TTA TAA 

AGT GTA CGC-3’ 

Reverse (Spe I) 5’-GCA CTA GTT TAA ACA CGC ACT TTA TAT CGA 
TAT ATT TTA CTC-3’ 

NT_mCherry  

Forward (Spe I) 5’-GCA CTA GTA AAA TGG TGA GCA AGG GCG AGG-

3’ 

Reverse (Xba I) 5’-GCT CTA GAT GCT GCT GCC TTG TAC AGC TCG 

TCC ATG CC-3’ 

maLS_05_ORF  

Forward (Xba I) 5’- GCT CTA GAG ATA ATA ATG CAG ATG GGA AAT 

CAA AAG G-3’ 

Reverse (Sac II) 5’-GCC CGC GGC GTA ATA TAC CAT TAA GCA TTT 

TTG ACA GTT C-3’ 

5’ integration With TgDHFR/TS as the reverse primer 

Forward 5’-GGG CTA GAT TAT ATA GCG GAA AAT TTG-3’ 

Reverse 5’-GCA GTT GAT TTG TTT GAA AGA ATG TC-3’ 

3’ integration With NT_mCherry as the forward primer 

Forward (Spe I) 5’-GCA CTA GTA AAA TGG TGA GCA AGG GCG AGG-

3’ 

Reverse 5’-GAA ATA TTT TCG ACC CAT TTA GCA TTA GTT C-

3’ 
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2.1.14.4 Transcriptional analysis  
 
Exon 1 (P1)  

1003_forward 5’-GCG GTG GAA GAC GGA ATC AAG AAG G-3’ 

1864_reverse 5’-GAG GGG AAA GGG AAT ATA TAG C-3’ 

Exon 1-2 (P2)  

maLS_05_p1_ 

forward 

5’-GCT ATA TAT TCC CTT TCC CCT CTT ATT TAT 

AGC-3’ 

2455_reverse 5’-CAA TTG GTA ATA CTT GTT CAA CTC-3’ 

Exon 2-3 (P3)  

maLS_05_qRT-

p2_forward 

5’-GCA ACT TCC ACA ATG TGC TCA TG-3’ 

maLS_05_p3_reverse 5’-CGT AAA AGT CCC ATT CTA GAA ACT CCT GC-3’ 

Exon 3-4 (P4)  

Circ_forward 5’-CAA CAC GCT TTA GAA ATG AGG ACG-3’ 

5299_reverse 5’-CGT AAA CTA TCA CTA CCA CCT TC-3’ 

Exon 4 (P5)  

maLS_05_qRT-

p4_forward 

5’-CTG GTA GTG CAT CGC CAA TTT TAG-3’ 

maLS_05_p4_reverse 5’-GCA CTT GAG ATT GGT ATG GGC AAA TAA TAC 

C-3’ 

  
2.1.14.5 Quantitative Reverse Transcriptase Real Time analysis (qRRT-PCR) 
 
Mouse GAPDH  

Forward 5’-TTG ATG GCA ACA ATC TCC AC-3’ 

Reverse 5’-CGT CCC GTA GAC AAA ATG GT-3’ 

Pb 18S rRNA  

Forward 5’-AAG CAT TAA ATA AAG CGA ATA CAT CCT TAC-3’ 

Reverse 5’-GGA GAT TGG TTT TGA CGT TTA TGT G-3’ 

 
2.1.14.6 Rapid Amplification of cDNA ends  
 
5’ RACE  

GSP_reverse 5’-CCA TTA AGC ATT TTT GAC AGT TCT C-3’ 

Nested_GSP_reverse 5’-GCG TCA TCA TCA AGA ATG GAA ACG AG-3’ 
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Nested_2GSP_reverse 5’- GAA ATT CGT GTT TTT CAC CAA TTA CAT TTG-3’ 

New_GSP_reverse 5’-GCT TAA TGG TAT ATT ACG TTC TTC-3’ 

3’ RACE  

GSP_forward 5’-CGC AAT TGC AAG AAA TTG CTA TGT-3’ 

Nested_GSP_ 

forward 

5’-GAA GCA CCA AAG ATG AAA ACA TCG-3’ 

 

2.2 Methods 

2.2.1 Molecular biology methods 

2.2.1.1 Isolation of RNA 

Total RNA was isolated from mixed blood stages, blood stage schizonts, mid-gut and 

salivary gland sporozoites and in vitro pre-erythrocytic stages harvested at 24, 48 and 63 

hours post infection, using the RNAeasy kit according to the manufacturer’s instructions 

(Qiagen). All samples were lysed in 350 µl RLT buffer containing 3.5 µl β-

mercaptoethanol. Following extraction, the RNA was dissolved in nuclease-free water 

and subjected to treatment with the TURBO DNAse Kit, to remove any contaminating 

DNA. The DNAse treated RNA was then stored at -80 °C.  

 
Organs of experimental mice infected with either PbANKA WT or PbmaLS_05 (-) 

parasites were harvested after intra-cardial perfusion with 1x PBS. Isolated spleens and 

brains were homogenized in 2 and 3 ml of TRIZOL respectively and RNA extracted 

according to the manufacturer’s instructions. The isolated RNA was DNAse treated as 

previously described, and stored at -80 °C.  

 
The purity of RNA samples was measured on a photometer and integrity ascertained by 

260/280 values.  

 
2.2.1.2 Reverse Transcriptase PCR 

cDNA was synthesized from total RNA using a mixture of random and oligo dT primers 

and MMulV reverse transcriptase enzyme according to instructions provided in the First 

Strand cDNA synthesis kit (Thermo Scientific). Reverse transcribed cDNA was 

aliquoted and stored at -20 °C. Transcriptional analysis for all stages of the parasite life 

cycle was performed using different primers designed to bind at 55 °C. A minus RT 

reaction was also performed in parallel to detect any presence of contaminating DNA. 
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2.2.1.3 Quantitative Real-time PCR 

Quantification of parasite load in the spleen and brain was done as previously described 

(276). WT and KO infected mice were sacrificed around day 8 after injection of 

sporozoites, and day 5 p.i. with iRBC when WT mice developed clinical signs of ECM. 

RNA isolated from individual organs was reverse transcribed into cDNA. Equal amounts 

of cDNA were mixed with Power SYBR green PCR mastermix and transcript levels were 

measured on the ABI 7500 thermocycler. Parasite transcripts were measured using P. 

berghei 18S rRNA and mouse GAPDH primers (2.1.14.5). All samples were analysed in 

duplicate wells in a total volume of 13 µl using the standard program of initial 

denaturation at 95 °C for 10 minutes, denaturation at 95 °C for 15 s, annealing at 55 °C 

for 15 s and extension at 60 °C for 45 s for 40 cycles. The data acquired was analysed on 

the program accompanying the ABI 7500 cycle. All transcript levels were normalized to 

mouse GAPDH and relative copy numbers were determined via the 2 -ΔΔCT method.  

 
2.2.1.4 5’ and 3’ RACE 

The 5’ RACE and 3’ RACE system for Rapid Amplification of cDNA ends was used to 

determine the transcription initiation site and transcription end site, respectively. 1µg of 

RNA from blood stage schizonts and sporozoites was used to perform the RACE with 

gene-specific primers (2.1.14.5) according to the manufacturer’s instructions. The results 

were confirmed by a nested PCR and the product sequenced.  

 
2.2.1.5 SDS PAGE and Western Blotting  

Western blot analysis was performed as previously described (16). Purified parasites were 

lysed in RIPA buffer (containing 4% Protease Inhibitor Cocktail and 0.05% 2M DTT) 

and stored at -800C. Parasitic stages were lysed in RIPA and stored at -20 °C. Blood 

stages were lysed in saponin buffer, washed once with 1x PBS and resuspended in RIPA, 

to avoid contamination with haemoglobin. Protein quantification was done using 

Bradfords assay after which 10µg of parasite protein was mixed with 1x sample buffer 

and boiled for 5 minutes at 95 °C. The sample was cooled on ice for 3-5 minutes and 

centrifuged briefly at maximum speed for 30 seconds. Parasite proteins were separated 

on a pre-cast 4-12% gradient gel, in MOPS buffer for 1 hour at 200V. On completion of 

the run, the proteins were blotted onto a PVDF membrane, in transfer buffer without 

methanol for 3 hours at 30V. Residual proteins on the gel were detected with Coomassie 

staining for 10 minutes on a shaker, followed by de-staining with tap water. The 
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membrane was then blocked for 1 hour at RT with 5% milk powder prepared in TBST 

buffer, and then kept in blocking buffer containing primary antibody, overnight at 4 °C.  

After washing, the membrane was incubated for 1 hour at RT with the secondary 

antibody prepared in blocking buffer. Following three washes with TBST, the membrane 

was air dried briefly to enable marking of the ladder with a chemiluminescent marker. 

The membrane was then incubated with the Perkin Elmer substrate kit according to the 

manufacturer’s instructions, for 5 minutes on a rotor. Signals were visualized using the 

Li-Cor Blot Scanner and images analysed with ImageStudio 4.0.   

 
2.2.1.6 Cloning of PbmaLS_05 knockout construct 

Targeted replacement of the PbmaLS_05 genomic locus was done by double 

homologous recombination. A 546 bp fragment from the 5’ UTR and a 509 bp fragment 

from the 3’ UTR of the PBANKA_140100 gene were amplified from P.berghei ANKA 

genomic DNA (gDNA) and both fragments cloned into a Pb300 myc-mCherry vector. 

The resulting plasmid was linearised with enzymes Sac II & Xho I, gel extracted and used 

for targeted replacement of the endogenous PbmaLS_05 with a selection cassette 

(Appendix Fig.6.1A). Blood stage schizonts purified from a density gradient were 

transfected with the linearised construct by electroporation using the Amaxa 

nucleofactor kit (Lonza), and then intravenously injected into NMRI mice. Transfected 

parasites were selected by addition of pyrimethamine to the drinking water (277). Primer 

pairs flanking the integration sites as shown in the diagram below (Fig. 2.1) were used to 

confirm stable integration into the parasite genome. Clonal populations of PbmaLS_05 

(-) parasites were generated by limiting dilution and injection into mice. Absence of a 

wild type population was verified by genotyping of gDNA and RT-PCRs amplifying 

different fragments of the PBANKA_140100 wild type locus.   

 
2.2.1.7 Cloning of PbmaLS_05 CT EGFP tagging construct 

The tagging construct was designed to introduce an EGFP tag at the C-terminal of 

PbmaLS_05 using the double homologous crossover strategy. A 523 bp fragment 

corresponding to the 3’ end of the PbmaLS_05 open reading frame (ORF) without the 

stop codon and a 509 bp fragment from the 3’ UTR region were amplified from P.berghei 

ANKA genomic DNA, using primers listed in (2.1.14.2). Both PCR fragments were then 

cloned into a b3D+ EGFP vector upstream of the EGFP (Appendix Fig. 6.1B).  
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Figure 2.1 PbmaLS_05 (-) targeting construct with primer pairs to determine integration.   

 
Figure 2.2 PbmaLS_05 CT EGFP tagging construct with primer pairs to determine integration.  
 

 
Figure 2.3 PbmaLS_05 NT mCherry tagging construct with primer pairs to determine 
integration.  
 
The resulting plasmid was linearised by an overnight digest with enzymes Sac II & Kpn I, 

gel extracted and transfected into purified blood stage schizonts. The selection and 

cloning procedures were carried out as previously described (2.2.1.6). Stable integration 
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was confirmed using primers that bound upstream of the integration site and 

downstream of the stop codon (Fig. 2.2). Expression of EGFP was analysed by live 

fluorescence microscopy (Fig. 3.4). 

 
2.2.1.8 Cloning of PbmaLS_05 NT mCherry tagging construct 

The NT tagging construct was designed to introduce an mCherry tag at the N-terminal 

end of PbmaLS_05 by the double homologous crossover strategy. A 656 bp fragment 

corresponding to one half of the promoter region of PbmaLS_05, a 1184 bp fragment 

corresponding to the second half of the PbmaLS_05 promoter, the 404 bp of the 

PbmaLS_05 ORF excluding the ATG along with an mCherry tag were amplified using 

the primers listed in (2.1.14.3) and cloned into a b3D vector as shown in the diagram 

(Appendix Fig. 6.1C). The resulting plasmid was linearised by an overnight digest with 

enzymes Sac II & Kpn I and transfected into purified blood stage schizonts. The selection 

and cloning procedures were carried out as previously described (2.2.1.6). Stable 

integration was confirmed using primers flanking the integration sites (Fig. 2.3). 

Expression of mCherry was analysed by live fluorescence microscopy (Appendix Fig. 

6.5C).  

 
2.2.1.9 Cloning into a pGEM-T easy Vector for Sequencing 

PCR fragments were cloned into the multiple cloning site of a pGEM-T easy vector 

according to the manufacturers’ instructions (Promega). The vector was transformed into 

E.coli bacteria, cultured overnight and purified using the Plasmid mini-prep kit (Qiagen). 

The plasmid was sequenced using the T7 and SP6 primers (GATC).  

 
2.2.2 Mosquito methods 

2.2.2.1 Anopheles  breeding 

Anopheles mosquitoes were bred at 28 °C with 80% humidity. The eggs deposited on a 

filter paper by gravid female Anopheles stephensi mosquitoes were collected, washed once 

with 70% ethanol, twice with 0.1% salt solution and transferred to trays filled with 3-4 L 

of 0.1% salt solution. After 2-3 days, the hatched larvae were split into 15 trays 

containing fresh salt water and cat food pellets (brekkies), and left to develop into pupae 

for 7 days. Adults emerging from trays containing pupae were collected 2 days later, 

transferred to cages and fed on cotton pads soaked in 0.1% salt solution and 10% 

sucrose solution supplemented with 20 µg PABA. After an infectious blood meal 

(described below), the mosquitoes were transferred to an incubator maintained at 21 °C, 
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80% humidity and a 12-hour light/dark cycle. Fresh eggs were collected 3-4 days after 

the blood meal, to maintain the mosquito cycle.  

 
2.2.2.2 Anopheles  infection 

Mice infected with P. berghei parasites were examined for presence of exflagellating 

gametocytes (section 2.2.2.3), then anaesthetized and fed upon by naïve mosquitoes. 

Feeding was permitted for 12-15 minutes and twice within a 48-hour period. Infected 

mosquitoes were then kept at 21 °C and 80 % humidity.  

 
2.2.2.3 Determination of prevalence 

5-10 female mosquitoes were dissected 10 days post blood meal and their mid-guts 

isolated in RPMI/3% BSA. The mid-guts were placed on a glass slide, cover with a cover 

slip and examined under a 40x objective of a light field microscope with phase contrast, 

for the presence of oocysts. Prevalence was determined from the number of infected 

mid-guts, i.e. mid-guts positive for oocysts.  

 
2.2.2.4 Sporozoite isolation and quantification 

Sporozoites were isolated from mid-guts and salivary glands of infected mosquitoes on 

day 14 and 17 respectively. Mid-guts or salivary glands were crushed using a pestle in a 

1.5 ml eppendorf tube containing RPMI/ 3% BSA and centrifuged for 3 minutes at 1000 

rpm at 4 °C. After 3 repetitions, the supernatant from each step was pooled and 

sporozoites counted in the four large squares of a Neubauer haemocytometer. The total 

number of sporozoites per ml was estimated by the following formula:  

 
Total number of sporozoites counted in 4 large squares / 4 x dilution factor x 10000.  

 
2.2.3 Cell biological methods 

2.2.3.1 Culture of human hepatocarcinoma cell line 

Human hepatocarcinoma (HuH7) cells were maintained at 37 °C and 5% CO2 in DMEM 

culture medium supplemented with 10% FCS and 1% antibiotic cocktail.  Cells were 

cultured in 25 cm2 gas-permeable culture flasks until confluent and split twice a week, 

depending on requirement. Splitting was done by aspiration of medium, washing with 

HBSS and incubation with 1-3 ml trypsin-EDTA for 10 minutes at 37 °C. Trypsinisation 

was stopped by the addition of 7-10 ml pre-warmed culture medium and the cell 

suspension transferred to a 15 ml falcon tube. After pelleting the cells by centrifugation 
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at 1000 rpm for 2 minutes, the supernatant was discarded and cells re-suspended in 

complete medium. An aliquot of the suspension was then transferred to a new flask and 

maintained at 37 °C. Frozen stocks were prepared by resuspending the cells in freezing 

solution (80% cell suspension, 10% DMSO, 10% FCS) and storage at -80 °C.  

 
Viability was determined by mixing 1 part cell suspension with 10 parts trypan blue (10% 

solution). Live cells were counted in the four large squares of a Neubauer’s chamber and 

calculated using the formula: Viable cells counted/4 x dilution factor x 10000 per ml.   

 
2.2.3.2 Preparation of pre-erythrocytic stages for RNA isolation 

25000 HuH7 cells were plated in an 8-well Lab-Tek and allowed to differentiate into a 

monolayer for 24 hours. Pre-erythrocytic stages were obtained by infecting adherent cells 

with sporozoites isolated from salivary glands of infected mosquitoes. After 90 minutes 

of invasion time, the excess sporozoites were aspirated and the wells replaced with fresh 

medium. The cells were harvested at 24, 48 and 63 hours post inoculation, lysed in RLT 

buffer and stored at -80 °C until RNA isolation.  

 
2.2.4 Microscopy methods 

2.2.4.1 Determination of parasitaemia and exflagellation 

A drop of blood obtained after pricking the tip of the tail of mice was smeared on to a 

glass slide; air-dried, fixed with 100 % methanol and stained with 10 % Giemsa solution. 

Stained smears were observed under an oil immersion objective (100x) of a light 

microscope and the total number of parasites and red blood cells counted. Parasitaemia 

was expressed as % parasitized red blood cells.  

 
To check for exflagellation, a drop of tail vein blood was placed on a glass slide, covered 

with a glass cover slip and incubated at room temperature for 10 minutes. Exflagellation 

of microgametocytes occurs upon drop in temperature, change in pH or upon simulation 

with xantheneuric acid. The slide was then observed under a 40x objective of a light 

microscope with phase contrast, and checked for exflagellating centres.  

 
2.2.4.2 Sporozoite motility 

Gliding motility patterns of salivary gland sporozoites were assessed by addition of 

sporozoites to a glass bottom 96-well plate pre-coated with 3% BSA-RPMI and 

incubation at 37 °C. The sporozoites were allowed to adhere for 10 minutes and an 
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image was recorded every 3 seconds thereafter for 5 minutes, using a light microscope 

with phase contrast. Several movies were recorded over different sections of the well and 

later analysed using the ImageJ software.  

 
In order to visualize trails of CSP, the sporozoites were allowed to glide on a slide pre-

coated with 3% BSA at 37 °C and then fixed with 4% PFA for 20 minutes at room 

temperature followed by blocking with 10% FCS in PBS for 30 minutes. The wells were 

incubated with 1:300 α-CSP antibody for 45 minutes at 37 °C, followed by three washes 

with 1% FCS in PBS, after which the wells were incubated with 1:300 Goat anti-mouse 

secondary antibody coupled to Alexa Fluor 488, for 45 minutes a 37 °C. The nucleus was 

stained with 1:10000 Hoechst during the last 5 minutes of incubation with the secondary 

antibody. After 3-5 washes, the wells were mounted in 30 % glycerol, covered with a 

cover slip and sealed with nail polish.  

 
2.2.4.3 Pre-erythrocytic stages 

8000 HuH7 cells were plated in a Matek lab dish for 24 hours and infected with 105 

PbmaLS_05 CT EGFP sporozoites for 2 hours at 37 °C. After aspiration of excess 

sporozoites, fresh medium was added to the wells and the infected cells placed in an 

incubator. Intra-hepatic stages were visualized live at 24, 48 and 58 hours post infection, 

using a spinning disc confocal microscope.  

 
For the azithromycin treatment, 250 mg tablets were dissolved in ddH2O and then pre-

diluted 1:100 in complete DMEM. 6 µl of the pre-diluted solution was then added to 1.5 

ml to achieve a final concentration of 1 µM. Liver stages were treated 24 hours post 

infection to minimize apoptosis of parasitic stages and the medium with antibiotic 

refreshed once daily until imaging.  

 
Merosomes were carefully aspirated 72 hours post infection from wells containing 

infected hepatocytes, spun down at 1200 rpm for 5 minutes in an eppendorf tube and 

then re-suspended in plain DMEM (without FCS) containing Hoechst and Mito-tracker, 

for 20 minutes at 37 °C. After an additional spin, the merosomes were re-suspended in 

complete DMEM for imaging. Care was taken to leave a small volume of solution in the 

eppendorf tube, both times after the spin, so as to avoid rupturing of the merosomes.  

 
An hour before imaging, the medium in the wells was replaced with imaging medium 

containing 1:10000 Hoechst and 50nM Mitotracker. The parasites were imaged live in a 
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pre-incubated chamber at 37 °C with 5 % CO2 over an oil immersion objective of a 

Spinning disc confocal microscope. Stacked images with a z spacing of 0.5 µm were 

recorded using the Volocity software. The images were analysed using ImageJ and 

deconvolved using AutoQuant X software. Deconvolution was done using a calculated 

point spread function, with 35 iterations and noise reduction. The contrast was enhanced 

for some images using ImageJ.   

 
In order to assess parasite growth at 24, 48 and 63 hours p.i., intra-hepatic development 

was stopped and fixed by the addition of ice-cold methanol for 10 minutes, at room 

temperature. The cells were then washed twice with 1% FCS in PBS and blocked with 

10% FCS in PBS. Liver stages were visualized using 1:100 of hybridoma cell culture 

supernatant containing anti-Hsp70 antibody, followed by three washes and the addition 

of 1:300 Alexa Fluor 488 goat anti-mouse secondary antibody. The nucleus was stained 

using 1:10000 Hoechst that was added to the secondary antibody solution. The cells were 

washed thrice and then mounted in 30% glycerol, sealed with a coverslip and nail polish 

and imaged using a fluorescence microscope (Zeiss).  Images were analysed using ImageJ. 

 
2.2.5 Rodent methods 

2.2.5.1 Ethics statement 

All experimental animal procedures were performed in accordance with standard 

guidelines as set by regulations concerning FELASA category B and GV-SOLAS. Animal 

experiments were approved by the German authorities (Regierungspräsidium Karlsruhe, 

Germany), 1 8 Abs. 1 Tierschutzgesetz (TierSchG) under the license G-260/12 and G-

258/12. 

 
2.2.5.2 Mice & Parasites 

6-8 week old female C57BL/6 and NMRI mice were purchased from Janvier, France and 

kept under specific pathogen free (SPF) conditions at the animal facility (IBF) of the 

University of Heidelberg.  

 
Blood stage parasites of PbANKA (clone 15Cy1) and PbmaLS_05 (-) were passaged in 

NMRI mice by the injection of cryopreserved stabilates prepared in Alsever’s solution. 

C57BL/6 mice were either inoculated intravenously with 104 salivary gland sporozoites 

or through bites of infectious mosquitoes. Alternatively, 106 iRBCs were injected 

intravenously into the tail vein of mice. Pre-patency was determined by the first 
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appearance of parasites in the blood and parasitaemia monitored daily by Giemsa-stained 

blood smears. 

 
2.2.5.3 Anaesthesia 

Mice infected with parasites for the blood meal were injected intraperitoneally with 80 µl 

of Ketamine/Xylazine for the first blood meal and 100 µl for the second blood meal.  All 

experimental mice were sacrificed after the second blood meal.  

 
2.2.5.4 Evans Blue staining and RMCBS 

Mice were monitored for signs of ECM every day using the rapid murine coma and 

behaviour scale (RMCBS) as previously described (278) (Appendix Fig. 6.2), and 

euthanized when signs of cerebral pathology were evident. The extent of 

permeabilisation of the blood-brain barrier was determined by the injection of Evans 

Blue, a non-toxic dye that is widely used to study endothelial and cellular membrane 

permeability (279). Mice were sacrificed 1 hour after an intravenous injection of 150 µl 

2% Evans blue, then perfused intra-cardially with 20 ml PBS and the brains isolated. 

 
2.2.6 MRI 

The baseline scan for infected mice was performed on day 2-post injection with 

sporozoites and day 0 post injection with iRBCs. MRI was performed on a 9.4 T small 

animal scanner (BioSpec 94/20 USR, Bruker Biospin GbmH, Ettlingen, Germany) using 

a volume resonator for transmission and a 4-channel-phased-array surface receiver coil. 

Anaesthesia was induced per inhalation using 2 % and maintained with 1-1.5 % 

isoflurane. Mice were placed prone in a fixed position to monitor body temperature and 

respiration. MRI scans were performed on day 5 p.i. for iRBC infected mice (WT n=6, 

KO n=7), and day 7 for sporozoite infected mice (WT n=6, KO n=7). The MR imaging 

protocol included 3D T1-weighted imaging (TR/TE=5/1.9ms, FA=8.5°, 156µm 

isotropic resolution), T2*-weighted flow compensated gradient echo imaging 

(TR/TE=50/18ms, FA=12°, 80µm isotropic resolution) and 2D T2-weighted imaging 

covering the rostral part of the brain from the olfactory bulb to the lateral ventricles 

(TR/TE=2000/22ms, slices=12, slice thickness=0.7mm).  

 
Image processing was undertaken in Amira 5.4 (FEI, Visualization Sciences Group). 

Brain volume was assessed semi-automatically on 3D T1-w datasets. Microhemorrhages 

were analyzed on T2*w images, edema on T2-w images and T2*w images. Grading of 
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disease severity into mild (=1), moderate (=2) and severe (=3) was performed as 

previously published. Faint oedema or less than 5 micro-haemorrhages were given a 

score of 0.5 

 
2.2.7 Histology 

Spleens were carefully harvested after perfusion and placed in 4% PFA. All organs were 

cut into 10 µm thick coronal sections using a cryotome (Leica Microsystems, Vienna, 

Austria) and then directly mounted onto SuperFrost/Plus slides (Microm International, 

Walldorf, Germany). After staining with H&E (Thermo Fisher Scientific, Waltham, MA) 

and Giemsa (Thermo Fisher Scientific), the slides were blinded and three randomly 

selected sections per coronal plane were subjected to histological analysis. Examinations 

were done on an Olympus BX45 research microscope (Olympus, Tokyo, Japan).  

 
2.2.8 Immunological methods 

2.2.8.1 Isolation of Splenocytes 

Experimental mice were sacrificed and perfused intracardially with 20 ml 1x PBS. The 

spleens were removed and homogenized in 3 ml complete medium, over a 70 µm cell 

strainer using a plunger from a 5 ml syringe. An additional 7 ml of medium was used to 

flush out the residual cells and the entire suspension transferred to a 15 ml falcon. The 

cell pellet obtained after centrifugation for 5 minutes at 1500 rpm, 4 °C, was treated with 

3 ml RBC lysis buffer, for 6 minutes on ice. Cell lysis was stopped by the addition of 7 

ml of fresh medium and the suspension centrifuged again. The resulting cell pellet was 

resuspended in 2-4 ml volume of fresh medium. The cells were diluted 1:400 in trypan 

blue and viable cells counted using a haemocytometer. 100 µl of the cell suspension was 

used for flow cytometry or pipetted into a 96-well plate and stimulated ex vivo with 

peptides (2.2.8.3).  

 
2.2.8.2 Isolation of brain infiltrating lymphocytes  

After intracardial perfusion with 1x PBS, the brains were isolated from sacrificed mice 

and digested in 10 ml PBS containing 0.05% collagenase IV and 0.001% DNAse I, for 45 

minutes at room temperature. After incubation, the brains were homogenised through a 

70 µm cell strainer using the plunger from a 5 ml syringe. The cell suspension obtained 

was transferred to a 15 ml falcon along with the residual cells that were flushed with 2 ml 

of MACS buffer, and centrifuged at 500 rpm for 30 seconds to pellet the large debris.  

The supernatant was carefully layered over 10 ml of 30% percoll solution and centrifuged 
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for 10 minutes at 1900 x g, without brake. The pellet fraction consisting of brain 

infiltrating lymphocytes and erythrocytes was then treated with 500 µl of RBC lysis 

buffer for 6 minutes on ice. Lysis was terminated by addition of 1 ml of fresh medium 

and the entire suspension centrifuged at 1500 rpm for 8 minutes. The cell pellet obtained 

was resuspended in 250 µl of complete medium and viable cells quantified by the trypan 

blue exclusion method. After assessing viability, 100 µl of the cell suspension was 

processed for flow cytometry or plated for ex vivo stimulation with peptides (2.2.8.3). 

Cell counts were determined using a Neubauer’s chamber.  

 
2.2.8.3 Ex vivo  stimulation with GAP50 peptide 

Isolated lymphocytes from brains, spleens and livers were resuspended in complete 

medium and stimulated ex vivo with 1 µM GAP50 peptide (Pb1 epitope, (209)). Briefly, 

100 µl of cell suspension was plated in duplicate sets of stimulated and un-stimulated 

wells, in a round-bottom 96 well plate. 100 µl of stimulus containing 2µM GAP50 

peptide, prepared in complete medium was added to the stimulated wells, to achieve a 

final concentration of 1 µM. Both stimulated and un-stimulated cells were cultured in the 

presence of 10 µg/ml Brefeldin A for 5 hours, at 37 °C, 5% CO2 and 95% humidity.  

After incubation, stimulation was stopped and cells stained for flow cytometry (2.2.8.4). 

  
2.2.8.4 Flow cytometry 

Lymphocyte populations from spleens and brains of infected and naïve mice were 

isolated and plated in a 96-well plate and stimulated with 1 µM GAP50, for 5 hours at 

37 °C. After 5 hours of incubation, the cells were pelleted, washed once with 100 µl 1x 

PBS to discard any traces of stimulus and then stained with α-CD8-PE Cy7 and α-CD4-

PerCp Cy5.5 antibodies on ice, for 20 minutes in the dark. The cells were then fixed with 

2% PFA for 15 minutes and stained for intra-cellular markers with α-IFN-γ APC-Cy7 in 

permeabilisation buffer.  After 20 minutes incubation on ice, the cells were washed once 

with 1x PBS, fixed with 1% PFA, washed again and re-suspended in 100 µl PBS for 

FACS measurements (FACS Canto I). The data was analysed using FlowJo (Version 10). 

The gating strategy for lymphocytes, T cells and IFN-γ+ CD8+ T cells are described in 

Appendix Fig. 6.7.   
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2.2.8.5 ELISpot assay 

All steps till the addition of secondary antibody were performed under sterile conditions. 

Multi-Screen Filter plates were briefly pre-wetted with sterile 35% ethanol in PBS and 

washed thrice with 1X PBS. The plates were then coated with 50 µl purified IFN- γ (10 

µg/ml in 1X PBS), sealed and incubated overnight at 4 °C. After 24 hours, the plates 

were washed 3-4 times with 150 µl 1X PBS and then blocked with 200 µl RPMI 

complete medium for at least 2 hours at 37 °C.   

 
Splenocytes isolated from naïve mice were used as donor APCs in the range of 105 per 

well. One set of splenocytes were pulsed with a pool of maLS_05 peptides (final 

concentration 10 µM), or GAP50 (10 µM) or un-pulsed (DMSO control), for 1 hour at 

37 °C, with intermittent shaking. After 1 hour, the cells were washed once with 8 ml of 

RMPI complete medium, centrifuged at 1500 rpm for 5 mins and re-suspended in 2 ml 

medium. After re-counting, the volume was adjusted to obtain 105 cells per 50 µl 

suspension. Splenocytes and brain infiltrating lymphocytes were isolated and quantified 

from naïve, PbANKA and PbmaLS_05 (-) infected mice, as described in sections 2.2.8.1 

and 2.2.8.2. 0.2 x 106 effector cells (brain and spleen lymphocytes) were added to each 

well in a total volume of 100 µl, together with 50 µl of pulsed or un-pulsed APCs. An 

additional set of wells stimulated with α-CD3 antibody and un-pulsed APCs, served as 

positive controls. After incubation for 22-24 hours at 37 °C, the plates were washed 8-10 

times with 150 µl PBS/0.05% tween 20 and then incubated with 50 µl of biotinylated 

anti-IFN-γ antibody (5 µg/ml in PBS/0.2% BSA) for 2 hours at room temperature. The 

plates were then washed 6 times with PBS/0.05% tween 20 and twice with PBS, 

followed by incubation with 50 µl streptavidin-ALP (1:1000 in PBS) for 1 hour at room 

temperature. The plates were washed thrice with PBS/0.05% tween 20 followed by 3 

washes with PBS. Spots were visualized subsequently by the addition of substrate 

solution (AP Conjugate Substrate Kit, Biorad) according to the manufacturer’s 

instructions. After incubation for 15 minutes at room temperature, the reaction was 

terminated by 10 washes under running ddH2O. The plates were allowed to dry 

overnight at room temperature and spots counted using an ELISpot plate reader.  

 
2.2.8.6 Statistical analyses  

Statistical significance was determined using the GraphPad Prism software (GraphPad 

Software V 5.0, La Jolla, CA). Differences were analysed by mean of nonparametric tests 
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(One way ANOVA followed by either Kruskal-Wallis or Bonferonni post-hoc 

adjustment) or Student’s t test. Asterisks indicate significance; where *** is p<0.0001, ** 

is p<0.001 and * is p<0.01. 
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Chapter 3 

Results 
3.1 PfmaLS_05 (PF3D7_1302500) is an up-regulated transcript in in-v i tro liver 

stages of P. fa l c iparum RAS 

PF3D7_1302500 (PfmaLS_05) was identified as an enriched transcript in liver stages of P. 

falciparum radiation attenuated sporozoites (PfRAS-LS). It was selected after a suppression 

subtractive hybridisation screen (SSH) that compared PfRAS-LS to liver stages of wild 

type P. falciparum (PfWT-LS) (280). PfmaLS_05 is highly conserved in all Plasmodium 

species and was hypothesised to play a role in protective immunity that has been 

observed with RAS immunisations (281, 282).  

 
3.2 PfmaLS_05 is conserved in all Plasmodium species both at the genomic and 

proteomic level  

PfmaLS_05 is a Plasmodium specific gene with an unknown function. A sequence 

alignment (ClustalW, EBI) of P. falciparum (PF3D7_1302500) with P. knowlesii 

(PKH_140100), P. berghei (PBANKA_140100), P. yoelii yoelii 17XL (PY17X_1402600) 

and P. yoelii yoelii XNL (PY02854 and PY02855) showed that the gene was well 

conserved in all Plasmodium species (Appendix Fig. 6.3). The genomic sequences of 

PfmaLS_05 and PbmaLS_05 are about 70.05 % identical to one other (Fig. 3.1A) while 

their protein sequences are about 49 % similar (IP of PfmaLS_05 is 8.46 versus IP of 

PbmaLS_05 which is 9.16) (Fig. 3.1B).  In P. yoelii yoelii 17XNL the PfmaLS_05 gene is 

split into two open reading frames with each corresponding to one half of the 

PfmaLS_05 gene. The function of all the orthologues of PfmaLS_05 is unknown except 

for PY02854, which has been annotated as a SEN-1 related protein (PlasmoDB). To 

determine the function of maLS_05 in the complete parasite life cycle, I functionally 

characterised the rodent orthologue, PBANKA_140100 (PbmaLS_05). 
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Figure 3.1 PfmaLS_05 is well conserved in all Plasmodium species. (A) Alignments for gene 
sequences of P. falciparum (PF3D7_1302500), P. knowlesi (PKH_140100), P. berghei 
(PBANKA_140100), P. yoelii yoelii 17X (PY17X_1402600), P. yoelii yoelii 17XNL (PY02854 and 
PY02855) was done using the ClustalW tool from EMBL-EBI. (B) Alignments for protein 
sequences of PF3D7_1302500, PKH_140100, PBANKA_140100, PY17X_1402600, PY02855 
and PY02854 are as shown together with % sequence similarity in brackets. All orthologues of 
PfmaLS_05 contain conserved predicted domains (transmembrane domains are shown in purple 
and the P loop containing nucleoside triphosphate hydrolase is shown in green). 
 

3.3 Spliced variants of PbmaLS_05 are present in different stages of the parasite 

life cycle  

I first performed a transcriptional analysis for PbmaLS_05 using cDNA prepared from all 

developmental stages of the parasite life cycle. PbmaLS_05 has a predicted mRNA size of 

7800 bp, which precluded amplification of the full-length transcript. I therefore designed 

RT-PCR primers that spanned across the full gene and amplified fragments of about 

500-800 bp in size (Fig 3.2A). I could detect transcripts for all primer pairs in all stages 

of the parasite life cycle, except mid-gut sporozoites and liver stages at 24 h.p.i. (Fig. 

3.2B).  The transcript from liver stages harvested 24 h.p.i. was the shortest consisting of 

fragments from exon 1 and exon 2 alone. In contrast, I did not detect any transcripts for 

primers amplifying the region over exon 2 and exon 3 in mid-gut sporozoites, indicating 

a splicing event within either exon (Fig. 3.2B). These results indicated differential 

splicing of the full-length PbmaLS_05 mRNA in different stages of the parasite life cycle. 

For convenience, I termed the full-length transcript ORF a, the transcript isolated from 
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mid-gut sporozoites ORF b and the transcript isolated from liver stages 24 h.p.i ORF c 

(Fig. 3.2C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
Figure 3.2. PbmaLS_05 is alternatively spliced in different stages of the parasite life cycle. 
(A) RT-PCR primers were designed to amplify 500-800 bp fragments from different regions of 
the full length PbmaLS_05 gene. (B) PCR analysis for sporozoites (salivary gland; SG and mid-
gut; MG), liver stages (24, 48 and 63 h.p.i.) and blood stages (mixed, schizonts; Schz and 
gametocytes; Gameto) of the parasite life cycle, revealed the presence of distinct alternatively 
spliced variants in mid-gut sporozoites and early liver stages (24 h.p.i.). A housekeeper, PbHOP 
was used to exclude genomic DNA contamination and test the integrity of the isolated RNA. (C) 
Schematics of the three isoforms observed for PbmaLS_05 are shown.  
 
I used the 5’ and 3’ RACE method to verify the results of the RT-PCR and determine 

the exact length of the alternatively spliced isoforms. However attempts to identify the 

transcriptional initiation and termination sites were unsuccessful due to the length of the 

cDNA and presence of multiple polyadenine stretches (Fig. 3.2D).  
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Figure 3.2. PbmaLS_05 is alternatively spliced in different stages of the parasite life cycle. 
(D) Amplification of the 3’ and 5’ ends of the PbmaLS_05 gene from different life cycle stages 
(schizonts; schz, midgut sporozoites; MG spz and salivary gland sporozoites; SG spz) was done 
using the kit protocol, according to the manufacturers instructions. Gene-specific primer pairs 
were designed to bind up-stream of the universal adaptor primer (UAP, 3’ RACE) (D.1) or 
downstream of the adaptor primer (AP, 5’ RACE) (D.2) and amplify fragments of about 500-
1000 bp. In-spite of repeated attempts, the transcriptional start and termination sites could not 
be determined for either of the isoforms.  
 
3.4 The full length PbmaLS_05 localises to the apicoplast in blood- and liver- 

stage schizonts 

I decided to mainly focus on characterisation the full-length transcript, ORF a, since it 

was present in most stages of the parasitic life cycle. To investigate if the full-length 

PbmaLS_05 was translated into a functional protein, I introduced a single C-terminal 
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EGFP parasites were isolated (Fig. 3.3) and then passaged throughout the life cycle, to 

determine sub-cellular localisation and expression patterns.  

 
Figure 3.3 C-terminal tagging 
strategy and cloning of 
PbmaLS_05 EGFP parasites. 
PbmaLS_05 EGFP parasites were 
generated by a double homologous 
crossover strategy that introduced a 
single EGFP tag at the C-terminal 
end of PbmaLS_05. PbmaLS_05 

EGFP transfected parasites were cloned out using limiting dilution. Stable integration of the 
tagging construct was confirmed by PCR using primers flanking the integration sites and live 
microscopy. Clonal populations of PbmaLS_05 EGFP parasites were passaged through the life 
cycle and analysed for PbmaLS_05 expression.  
 
In accordance with the transcriptional data, I observed expression of the full-length 

PbmaLS_05 only in late liver stages (48 and 63 h.p.i) and blood stages (rings, gametocytes 

and schizonts) respectively (Fig. 3.4). There was no observable expression in salivary 

gland sporozoites, mid-gut sporozoites and early liver stages (24 h.p.i.) (Fig. 3.4) which 

could either be attributed to an alternative splicing event or absence of translation of 

PbmaLS_05 in these stages. Unfortunately, neither the full-length protein nor the 

truncated versions were detectable via Western Blot using a GFP antibody (Appendix 

Fig. 6.4). The localisation and expression pattern of PbmaLS_05 in late liver stages, 

observed through live imaging, was branched-like during the cytomere stage but 

distinctly more punctuate in liver stage- and blood stage schizonts, reminiscent to what 

has previously been observed for parasite apicoplast and mitochondria (59) (Fig. 3.4). I 

therefore co-stained liver stage schizonts, merosomes and blood stage schizonts with a 

mitochondrial marker but only observed partial co-localisation of the PbmaLS_05 

protein with the mitochondria (Fig. 3.5).  

 
To determine if PbmaLS_05 localised to the apicoplast or mitochondria, I treated 

PbmaLS_05 EGFP liver stage parasites with azithromycin, a drug that specifically inhibits 

biogenesis of the apicoplast (283, 284). The branched pattern previously observed for 

PbmaLS_05 in late liver stages was not visible after azithromycin treatment, even though 

the mitochondrial structure was retained (Fig. 3.5). These data suggested that 

PbmaLS_05 localises to the apicoplast. 
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Figure 3.4 Expression analysis of PbmaLS_05 in the complete parasite life cycle. 
PbmaLS_05 is expressed in blood stages and late liver stages as observed by live imaging of 
PbmaLS_05 EGFP parasites using a spinning disc confocal microscope. The nuclei were stained 
with Hoechst. Expression of PbmaLS_05 was exclusively observed in blood stages and late liver 
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stages (48, 58 and 63 h.p.i.). No expression above background was detected in sporozoites and 
early liver stages (24 h.p.i), at least through live imaging. Scale bar = 10 µm. 

 
Figure 3.5 PbmaLS_05 localises to the apicoplast of liver and blood stage schizonts. The 
expression pattern of PbmaLS_05 was distinctly more punctuate in blood stage schizonts and 
merosomes. Co-staining of these parasitic stages with Mitotracker suggested partial or no co-
localisation with the mitochondria. To check if PbmaLS_05 localised to the apicoplast, I treated 
PbmaLS_05 EGFP liver stages with 1 µM azithromycin. The treament abolished the branched 
structure previously observed in untreated liver stage schizonts, thus confirming that PbmaLS_05 
indeed localises to the apicoplast. Scale bar = 10 µm; for merosomes scale bar = 80 µm.  
 
In an attempt to visualise the expression of the alternatively spliced isoforms, I 

additionally generated a transgenic parasite line where I tagged PbmaLS_05 N-terminally 

with an mCherry tag (Fig. 2.3). Clonal PbmaLS_05 NT mCherry parasites were isolated 

after transfection and limiting dilution (Appendix Fig. 6.5A). However, I could not 

observe any detectable level of expression in both sporozoites and early liver stages (24 

h.p.i.). Moreover, the branching pattern previously observed with the CT EGFP tag was 

lost in liver-stage and blood stage schizonts and was replaced by a distinct punctuate 
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pattern, probably suggesting mis-folding or mis-localisation of the PbmaLS_05 protein 

(Appendix Fig. 6.5B). 

 
3.5 PbmaLS_05 influences sporozoite motility in v i tro but has no effect on pre-

patency in v ivo  

To characterise the role of PbmaLS_05 in parasite development in the entire life cycle, I 

replaced the full-length PbmaLS_05 with a selectable marker by a double homologous 

crossover strategy (Fig. 2.1). Clonal lines of PbmaLS_05 (-) (KO) parasites were 

obtained from independent transfections (Fig. 3.6A). RT-PCR primers amplifying 

different fragments of the full-length ORF were used to verify the absence of any 

residual WT transcript (Fig. 3.6B). Since deletion of the endogenous PbmaLS_05 did 

not affect parasite viability of the clones, I concluded that the gene was dispensable for 

blood stage development.  

 

 

 

 

 

 

 
Figure 3.6 Deletion of the endogenous PbmaLS_05 and generation of clonal PbmaLS_05 
(-) parasites. The endogenous PbmaLS_05 locus was targeted by homologous recombination 
with a linearised plasmid consisting of 500 bp fragments from both the 5’ and 3’ UTR, flanking a 
Toxoplasma gondii DHFR/TS cassette. (A) PCR primers flanking the integration sites for both 5’ 
and 3’ ends were used to confirm stable integration of the PbmaLS_05 (-) construct. Absence of a 
WT signal in the PCR amplifying a 500 bp fragment of the WT genomic locus verified the 
presence of clonal populations of PbmaLS_05 (-) parasites. (B) Absence of any residual WT 
transcript was verified by RT-PCR on blood stage schizont cDNA.  
 
To investigate if deletion of PbmaLS_05 influenced sporozoite development in the 

mosquito, I infected mosquitoes with WT or KO parasites and then quantified 

sporozoite numbers from mid-guts and salivary glands on days 14 and 17 p.i. respectively. 

Although mid-gut sporozoite numbers were comparable between WT and KO infected 

mosquitoes (WT, 74289±30328 and KO, 54631±22303), the number of salivary gland 

sporozoites isolated from KO infected mosquitoes was significantly reduced when 
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compared to those infected with WT (KO, 10609±1421 and WT, 21079±2723, Student’s 

t test, **p<0.001) (Fig. 3.7A). Similar results were obtained with a second independent 

clone of PbmaLS_05 (-) (WT, 49622±9907 and KO, 32463±6512 midgut sporozoite 

numbers); (WT, 13066±2427 and KO, 4518±1267 salivary gland sporozoite numbers) 

(Fig. 3.7A).  

 

 

 

 
 

 
Figure 3.7 Deletion of PbmaLS_05 has an influence on salivary gland invasion and 
gliding motility.  (A) Mosquitoes fed with KO parasites have significantly lower numbers of 
salivary gland sporozoites in comparison to WT, in spite of comparable infectivity in the mid-gut. 
Sporozoites were quantified from midguts (day 14 p.i.) and isolated salivary glands (17-21 days 
p.i) and numbers represented as mean (+/- SEM) of (n) independent experiments [n=5 for KO 
Clone 1 and n=3 for KO Clone 2]. Statistical significance was determined by the Student’s t test 
(**p<0.001; ns, not significant). (B) Quantification of CSP trails by an immunofluorescence 
assay showed that a higher percentage of PbmaLS_05 (-) sporozoites do not glide.  
 
Isolated salivary gland sporozoites glide in concentric circles on a BSA-coated surface in 

vitro, an ability that is used to characterise and investigate defects in motility. I therefore 

decided to test if the KO sporozoites that successfully invaded the salivary glands were 

capable of normal motility. To this end, I isolated sporozoites from salivary glands of 

WT and KO infected mosquitoes and added them to slides coated with 3% BSA in 

RPMI. After 30 minutes of gliding, I visualised and counted motile and non-motile 

sporozoites by staining of their CSP trails using immunofluorescent methods. 
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Quantification of CSP trails revealed a significant reduction in the percentage of gliders 

(sporozoites with a trail) for the KO in comparison to WT (Fig. 3.7B).  However, I 

never observed any expression of PbmaLS_05 in salivary gland sporozoites, based on live 

imaging of PbmaLS_05 EGFP parasites, thus questioning a direct role for PbmaLS_05 in 

salivary gland sporozoite motility.  

 
I then looked at the behaviour of these isolated sporozoites on a BSA-coated slide. Live 

imaging for 30 minutes suggested that the majority of KO sporozoites were incapable of 

adhering and gliding, unlike WT sporozoites (Fig. 3.8A). This phenotype was consistent 

even after 30 minutes of gliding, in contrast to WT sporozoites, which adhered within 10 

minutes of addition to BSA-coated slides. Interestingly, the few KO sporozoites that 

were motile had comparable speeds to those of WT sporozoites (Fig. 3.8B).  

 

 

 

 

 

 
Figure 3.8 The majority of PbmaLS_05 (-) sporozoites 
display an adhesion defect in  v i t ro , but the minority 
that can glide have comparable speeds to wild type 
sporozoites.  (A) Sporozoites isolated from salivary glands 
of WT and KO infected mosquitoes were added to wells 
coated with RPMI/3% BSA and allowed to settle for 10 
minutes. After 10 minutes, the sporozoites were observed 
live under a microscope and images recorded every 3 
seconds for 5 minutes. While the majority of KO 
sporozoites did not adhere and glide even after 30 minutes, 
a majority of WT sporozoites were attached and gliding 
after the first 10 minutes. Asterisks highlight the few KO 
sporozoites that managed to adhere and glide. The images 

represented are Z projections of 20 frames from each time point. Scale bar = 10µm. (B) 
Recording of live images of WT and KO sporozoite motility in vitro and quantification of the 
total distance covered by the sporozoites in 3 minutes suggested that the reduced numbers of 
KO sporozoites that can attach and glide have comparable speeds to WT sporozoites. The 
Student’s t test was used to determine statistical significance (ns, not significant).  
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In the next step, I decided to investigate if the in vitro motility defect of KO sporozoites 

also affected their ability to infect hepatocytes. I therefore added sporozoites isolated 

from salivary glands of infected mosquitoes to an in vitro confluent layer of cultured 

hepatoma cells. After 90 minutes of invasion time, I aspirated the excess sporozoites and 

fixed the cells at various time points after invasion for immunofluorescent staining of 

parasitic HSP70. Successful invasion was quantified through the number of liver stages, 

while measurement of size was used to compare intra-hepatic development between WT 

and KO parasites. Surprisingly, neither invasion nor development within hepatocytes was 

affected since both numbers and sizes of liver stages were comparable between WT and 

KO parasites (Fig. 3.9A &B).  

 

 

 

 

 

 

 

Figure 3.9 PbmaLS_05 (-) parasites develop normally within hepatocytes, in spite of the 
in  v i t ro  defect in gliding motility. (A) HuH7 cells were cultured in an 8-well labtek for 24 
hours and infected with 104 WT or KO sporozoites. The cells were fixed, 24, 48 and 63 hours 
post invasion respectively, and stained with α-Hsp70 (green) and hoechst (blue) to visualise and 
quantify the intra-hepatic stages, by fluorescence microscopy. There was no difference in liver 
stage numbers between WT and KO parasites, suggesting no defect in invasion of hepatocytes. 
(B) Liver stage sizes were measured using the ImageJ plugin. There was also no difference in 
liver stage sizes thus suggesting comparable intra-hepatic development between WT and KO 
parasites. The Student’s t test was used to determine statistical significance (*p<0.01; ns, not 
significant). Scale bar = 10 µm.   
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The motility of salivary gland sporozoites is important for salivary gland invasion and 

within the skin where sporozoites traverse tissues to find a blood vessel. To examine if 

the observed in vitro defect in motility translated into a complete block in infectivity in vivo, 

I inoculated mice with sporozoites of either WT or KO by subcutaneous or intravenous 

injections, or through natural transmission, i.e. by bites of infectious mosquitoes. 

Interestingly, all KO infected mice became pre-patent on the same day as those infected 

with WT sporozoites, regardless of the route of infection used (Table 1). The data 

suggested that PbmaLS_05 is not essential for infectivity in vivo. Moreover, the absence of 

any difference in pre-patency supported previous in vitro observations where comparable 

intra-hepatic development was observed between WT and KO parasites. I therefore 

concluded that deletion of PbmaLS_05 influences salivary gland invasion but had no 

effect on sporozoite motility and infectivity.  

 

Route of infection 

WT 

Pre-patency d.p.i 

(n= no. of mice) 

KO clone 1 

Pre-patency d.p.i 

(n= no. of mice) 

KO clone 2 

Pre-patency d.p.i 

(n= no. of mice) 

Intravenous 
3-4 

(n=17) 

3-4 

(n=15) 

3-4 

(n=6) 

Natural transmission 

(Mosquito bite) 

3 

(n=14) 

3 

(n=7) 

3 

(n=7) 

Sub-cutaneous 
4-5 

(n=14) 

5 

(n=7) 

4-5 

(n=7) 

 
Table 1. Mice infected through various routes with PbmaLS_05 (-) sporozoites showed 
the same pre-patency as PbANKA WT infected ones. C57Bl/6 mice were infected with 
10,000 sporozoites of WT or KO either intravenously, subcutaneously or the natural route of 
transmission, i.e. infectious bites of 10 mosquitoes. The mice were monitored for blood stage 
parasites from 3 days on post infection (d.p.i.) by microscopic examination of blood smears and 
pre-patency calculated as the number of days until the mice became blood stage positive. 
Experiments performed with PbmaLS_05 (-) clones from independent transfections showed the 
same result. 
 
3.6 PbmaLS_05 (-) infected mice do not develop experimental cerebral malaria 

after sporozoite infection 

C57BL/6 mice infected with P. berghei ANKA develop a severe cerebral pathology 

known as experimental cerebral malaria (ECM) that is characterised by disease symptoms 

like convulsions, paralysis, coma and eventually death (158). The cumulative mortality is 

about 90% and typically occurs between day 6 and 14 post infection, with low 
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parasitaemias. Mice that do not succumb to ECM eventually develop hyperparasitaemia 

and anaemia, and die around the third or fourth week after infection (162). Therefore, it 

was interesting to observe that even though deletion of the endogenous PbmaLS_05 had 

no effect on parasite viability, none of the mice infected with KO sporozoites developed 

severe cerebral symptoms unlike WT infected mice that succumbed to ECM between 

day 7-10 post-injection (Table 2).  

 

Route of infection 

WT KO clone1 KO clone 2 

No. of 

mice 

ECM 

(%) 

No. of 

mice 

ECM 

(%) 

No. of 

mice 

ECM 

(%) 

Intravenous 17 100 15 0 6 0 

Natural transmission 

(Mosquito bite) 
14 85.58 7 0 7 0 

Sub-cutaneous 14 78.57 7 0 7 0 

 
Table 2. Mice infected with PbmaLS_05 (-) sporozoites do not develop ECM. C57BL/6 
mice were infected with KO sporozoites failed to develop cerebral symptoms of ECM compared 
to mice infected with WT sporozoites, which succumbed to ECM between day 7-10 post-
infection. This phenotype was consistent regardless of the route of infection used.  
 
Moreover, there was no difference in pre-patency, and all KO infected mice eventually 

developed hyper-parasitaemia and succumbed to anaemia 23-24 days post-injection (Fig. 

3.10A). Apart from clinical signs of ECM, all WT infected mice received an RMCBS 

score of 8 or below, with reduced body weight (Fig. 3.10B) and blue brains (Fig. 3.10C), 

thus confirming permeabilisation of the blood brain barrier (BBB). In contrast, all KO 

infected mice received a minimum score of 15 (Fig. 3.10B) and had brains comparable 

to naïve mice thus confirming the presence of an intact BBB (Fig. 3.10C). 

 
The development of ECM relies upon an intact host immune response and the ability of 

parasites to grow and sequester in different organs. I therefore first looked at the growth 

kinetics of both parasite lines in the blood. There was no significant difference in the 

parasitaemia for both KO and WT infected mice during the initial days of infection (Fig. 

3.11). However, over the course of infection, the growth rate of KO parasites in the 

blood reduced gradually, reaching significantly lower levels on those days when WT mice 

displayed signs of ECM (Fig. 3.11). 
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Figure 3.10. PbmaLS_05 (-) infected mice have an intact blood brain barrier and do not 
succumb to ECM in spite of no difference in prepatency compared to WT infected mice. 
(A) C57BL/6 mice infected with KO sporozoites die from hyperparasitaemia induced anaemia 
around day 22-24 post infection, in contrast to mice infected with WT sporozoites that succumb 
to ECM around day 7-10 post infection. (B) The extent of ECM pathology was assessed by the 
RMCBS scale based on the clinical signs displayed by WT and KO infected mice. In contrast to 
the KO infected mice, all WT infected mice received a score of 8 or less. (C) The integrity of the 
blood brain barrier was checked by injection of Evans Blue. While WT infected mice displayed 
blue brains signifying vascular leakage, all KO infected mice has intact blood brain barriers, 
comparable to naïve mice, consistent with the non-ECM phenotype. 
 
3.7 Parasite load is higher in the spleens of PbmaLS_05 (-) infected mice, but is 

comparable to PbANKA WT in the brain, after sporozoite infection 

Parasitaemia, both in blood and peripheral tissues has been shown to influence the 

outcome of ECM (160). To investigate the reason for reduction in parasite numbers in 

the blood of KO infected mice on day 8 p.i., I measured parasite load in the brains and 

spleens of mice injected with either WT or KO sporozoites, by qRRT-PCR. Both groups 

of mice were sacrificed when WT mice showed ECM symptoms and their organs 
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harvested after perfusion. Relative quantification of parasite 18S rRNA transcripts from 

the spleen revealed significantly higher levels of parasite transcripts in KO infected mice. 

However, there was no difference in transcript numbers between the brains of KO and 

WT infected mice, in spite of the difference in ECM outcome (Fig. 3.12A). Histological 

sections of the spleen confirmed the presence of higher parasite load within the spleens 

of KO infected mice compared to WT (Fig. 3.12B).  

 
 
Figure 3.11. The difference in peripheral 
parasitaemias between PbANKA WT 
and PbmaLS_05 (-) infected mice is 
significant on the days when WT mice 
show symptoms of ECM. Parasite growth 
kinetics in the blood of infected mice was 
tracked by daily blood smears. A comparison 
between WT and KO infected mice showed 
similar starting parasitaemias (3 d.p.i.), 
consistent with no delay in pre-patency. 
However, on days when WT mice displayed 
signs of ECM (8 d.p.i.), the KO infected 

mice had significantly lower levels of parasites in the blood. The Student’s t test was used to 
determine statistical significance, followed by post hoc Man Whitney U test or Welch correction 
depending on the distribution characteristics of the data (**p<.001; ns, not significant). Normal 
distribution was determined using the Shapiro-Wilk test.    
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.12. Parasite load for KO and WT infected mice are comparable in the brain but 
differ significantly in the spleen. (A) Groups of 5 C57BL/6 mice were intravenously injected 
with 104 WT or KO sporozoites and sacrificed on days when WT mice developed ECM. Brains 
and spleens were harvested and homogenised in trizol for RNA isolation. Parasite 18S rRNA 
transcripts were quantified by qRRT-PCR and normalised to mouse GAPDH. Based on relative 
expression, KO infected mice had comparable parasite 18S rRNA transcript numbers in the 
brain, but significantly higher numbers of parasite transcripts in the spleen, when compared to 
WT infected mice. (Student’s t test, **p<0.001; ns, not significant)  
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Figure 3.12. Parasite load for KO and WT infected mice are comparable in the brain but 
differ significantly in the spleen. (B) Histological analysis of the spleens of WT and KO 
infected mice showed significant amounts of RBC (stained red and indicated by arrowheads) and 
WBC (stained blue) infiltrates for the KO spleens.  
 
3.8 Modified host-parasite interactions at the blood stage abrogate ECM in 

PbmaLS_05 (-) infected mice 

Though widely regarded as a blood stage response, modulations in parasite development 

in the liver have been shown to alter the outcome of ECM (263).  I therefore decided to 

investigate if the abrogation of ECM was because of an immune response developed at 

the liver stage. To do so, I bypassed the liver phase and injected mice with infected red 

blood cells (iRBCs), a routinely used method to induce ECM in mice (186, 190, 285). 

Strikingly, none of the KO infected mice developed severe cerebral symptoms like WT 

infected mice that succumbed to ECM around day 5 p.i. (Fig. 3.13A, Table 3).  

Group 
Intravenous 

injection 

Number of 

mice 
ECM % Survival 

WT Sporozoites 22 21 4.54 

 iRBC 18 17 5.55 

KO Clone 1 Sporozoites 20 0 100 

 iRBC 11 0 100 

KO Clone 2 Sporozoites 8 0 100 

 iRBC 6 0 100 

 
Table 3. PbmaLS_05 (-) infected mice do not develop ECM even after injection of 
infected red blood cells. C57BL/6 mice were intravenously injected with 106 infected 
red blood cells (iRBC) of either WT or KO parasites. Consistent with the phenotype 
observed after sporozoite injection, all mice infected with KO iRBCs did not develop 
ECM unlike WT infected mice.  
 
Moreover, the peripheral parasitaemia in the KO infected mice was again significantly 

lower compared to those infected with WT iRBCs, especially on the days when WT mice 

succumbed to ECM (Fig. 3.13B). This was paralleled with reduced RMCBS scores for 
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WT infected mice, even though no difference in body weight was observed between WT 

and KO infected mice (Fig. 3.13C).  

 

 

 

 

 

 
 

 
Figure 3.13 PbmaLS_05 (-) infected mice do not succumb to ECM even after injection of 
infected red blood cells.  (A) C57BL/6 mice were infected with 106 iRBCs of either WT or 
KO parasites and observed for clinical signs of ECM. In contrast to WT mice which developed 
severe cerebral signs of ECM and died around day 5 p.i., all KO infected mice survived and died 
from hyperparasitaemia associated anaemia between day 19-22 p.i.  (B) A comparison of the 
parasitaemias of WT and KO infected mice again showed similar starting parasitaemias, but 
significantly lower levels of parasites in the blood of KO infected mice, when WT infected mice 
developed ECM. The Student’s t test was used to determine statistical significance, followed by 
post hoc Man Whitney U test or Welch correction depending on the distribution characteristics 
of the data (**p<0.001; ns, not significant). Normal distribution was determined using the 
Shapiro-Wilk test. (C) All infected mice were scored daily according to RMCBS parameters, 
including body weight. While the RMCBS scores practically remained unchanged for the KO 
infected mice, no differences in body weight were observed between WT and KO infected mice, 
even on the days when WT mice developed ECM.   
 
Interestingly, the number of parasite 18S rRNA transcripts were significantly lower in the 

brains of KO infected mice compared to mice infected with WT iRBCs (Fig. 3.14), 

while the number of parasite transcripts in the spleen were comparable for both groups 

of infected mice. These results further supported the conclusion that the observed non-

ECM phenotype in KO infected mice was due to a modification in host-parasite 

interactions at the blood stage rather than a liver-mediated immune response. More 

importantly, these results highlighted differences between sporozoite and iRBC induced 

infections. 
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Figure 3.14. Measurement of parasite load in brains and spleens after iRBC 
injection shows no difference between PbmaLS_05 (-) and PbANKA WT infected 
mice. Groups of 5 C57BL/6 mice were intravenously injected with 106 iRBCs of WT or 
KO and sacrificed around day 5 p.i. when WT mice displayed signs of ECM. Relative 
quantification of parasite 18S rRNA transcripts by qRRT-PCR suggested comparable 
parasite loads in the spleens of KO and WT infected mice but lower parasite load in the 
brains of KO infected mice (Student’s t test, *p<0.01; ns, not significant). 
 

3.9 The immune response in mice infected with KO parasites is comparable to a 

WT infection after sporozoite injection but differs significantly after an iRBCs 

infection 

ECM is an immune pathology that mainly originates in the spleen due to phagocytosis of 

both sequestered and dying parasites by DCs that prime pathogenic CD4+ and CD8+ T 

cells involved in blood-brain-barrier disruption (173). Due to increased clearance of a 

significant proportion of KO parasites after sporozoite infection, I hypothesised that 

altered priming/activation status of T cells within the spleens of KO mice might account 

for a different T cell response and difference in ECM outcome. To investigate T cell 

activity, I quantified CD4+ and CD8+ T cells isolated from spleens and brains of mice 

infected with either WT or KO sporozoites and found no difference between both 

groups (Fig. 3.15A). I then evaluated the ability of these isolated T cells to recognise the 

Pb1 epitope of GAP50, by measurement of IFN-γ expression in response to ex vivo 

stimulation with a parasite specific peptide (Pb 1 epitope of GAP50) (209). In spite of 

the difference in disease outcome, I did not observe any significant difference in either 

numbers or activation status of CD4+ and CD8+ T cells isolated from WT and KO 

infected mice (Fig. 3.15B). In contrast, both CD4+ and CD8+ T cell numbers were 

significantly lower in the brains and spleens of KO infected mice after iRBC injection 

(Fig. 3.16A). Moreover, the number of GAP50 specific IFN-γ+ CD8+ T cells within the 

brains of KO infected mice was also significantly reduced, an observation that is 
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consistent with several other studies involving other non-ECM causing parasite strains 

(Fig. 3.16B).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.15. Activation of CD8+ T cells is comparable between PbANKA WT and 
PbmaLS_05 (-) infected mice post-injection of sporozoites. (A) Groups of 5 mice were 
infected with either PbANKA WT or PbmaLS_05 (-) sporozoites and sacrificed on day 8 p.i. 
along with 5 naïve mice (uninfected controls). After harvesting the brains and spleens, 
lymphocytes were isolated, stimulated ex vivo with the Pb1 epitope of GAP50 and then stained 
for CD8, CD4, CCR5 and IFN-γ. Quantification and phenotypic characterisation of T cells was 
done by flow cytometry. The percentages of CD8+ and CD4+ T cells were comparable between 
WT and KO infected mice in both organs. Statistical significance was determined by One-way 
Anova with Bonferonni’s adjustment (***p<0.0001, ** p<0.001, * p<0.01; ns, not significant). 
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Figure 3.15. Activation of CD8+ T cells is comparable between PbANKA WT and 
PbmaLS_05 (-) infected mice post-injection of sporozoites. (B) The number of Pb1 
(GAP50) specific IFN- γ+ CD8+ T cells is comparable in both brains and spleens of WT and KO 
infected mice, thus suggesting no difference in antigen recognition and T cell cytotoxity between 
both groups of mice. Represented results are from two independent experiments. Statistical 
significance was determined by One-way Anova with Bonferonni’s adjustment (***p<0.0001, ** 
p<0.001, * p<0.01; ns, not significant).  
 
3.10 Deletion of PbmaLS_05 reduces cross-presentation by brain endothelial cells, 

after iRBC infection, thereby abrogating the development of ECM 

In spite of the discrepancies in the immune response between sporozoite and iRBC 

infections, none of the mice displayed any signs of ECM. Moreover, the immune 

response in the sporozoite-infected mice was comparable between WT and KO infected 

groups. I then proceeded to test for differences in cross-presentation by the brain 

endothelium after infection with either WT or KO parasites. Since the differences in 

immune response to WT or KO parasites in the brain differed after iRBC but not 

sporozoite infection, I hypothesised that activation of the endothelium and possibly 

cross-presentation of parasite antigens influencing the development of ECM might be 

different between the two modes of infection. In collaboration with Shanshan W. 

Howland and Laurent Renia (A*Star, Singapore) we measured differences in cross-

presentation of Pb1 (GAP50) by the brain endothelial cells (209) after iRBC infection. In 

good agreement with the immunological data post iRBCs, the level of cross-presentation 
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of the GAP50 epitope was significantly lower in the KO infected mice, thus confirming a 

direct involvement of PbmaLS_05 in ECM progression (Fig. 3.17).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.16. Mice infected with PbmaLS_05 (-) iRBCs have reduced infiltration of CD8+, 
CD4+ and IFN-γ+ CD8+ T cells in the brain, consistent with the non-ECM phenotype. 
(A) Groups of 5 mice were infected with 106 WT or KO iRBCs and sacrificed on day 5 p.i. along 
with 5 naïve mice (uninfected controls). Lymphocytes isolated from brains and spleens were 
stained with CD8, CD4 and IFN-γ antibodies for quantification and phenotypic analysis by flow 
cytometry. We observed a significant reduction in the percentage of CD4+ and CD8+ cells in the 
brains of KO infected mice, which is consistent with the non-ECM phenotype. Statistical 
significance was determined by One-way Anova with Bonferonni’s adjustment (***p<0.0001, ** 
p<0.001, * p<0.01; ns, not significant). 
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Figure 3.16. Mice infected with PbmaLS_05 (-) iRBCs have reduced infiltration of CD8+, 
CD4+ and IFN-γ+ CD8+ T cells in the brain, consistent with the non-ECM phenotype. 
(B) Interestingly, the number of Pb1 (GAP50) specific IFN- γ+ CD8+ T cells was also 
significantly lower in the brains of KO infected mice, thus suggesting inherent differences in 
priming or antigen recognition of CD8+ T cells in these mice. A One-way Anova with 
Bonferonni’s adjustment was used to determine statistical significance (***p<0.0001, ** p<0.001, 
* p<0.01; ns, not significant).  
 

Figure 3.17. The cross-presentation of Pb1 
(GAP50) is lower in the brains of 
PbmaLS_05(-) infected mice after iRBC 
injection (Performed by Shanshan W. 
Howland, A*Star, Singapore). C57BL/6 mice 
were infected intraperitoneally with 106 WT or 
KO iRBCs and harvested when the WT-infected 
mice exhibited neurological signs, along with 
naïve mice. Brain microvessel fragments were 
isolated and co-incubated with reporter cells that 
express lacZ upon detection of a parasite-derived 
peptide-MHC complex (PbGAP50; 

SQLLNAKYL). Blue spots representing activated reporter cells were quantified following X-gal 
staining. **** p <0.0001, *** p <0.001,    ** p<0.01, One-way ANOVA with Bonferroni’s post-
test on spot counts. 
 
In order to determine if brain-infiltrating lymphocytes from WT infected mice could 

recognise and respond to PbmaLS_05, CD8 T cell epitopes were predicted for the full-

length PbmaLS_05 protein, synthesised as peptides and used to pulse donor splenocytes 

from naïve mice. Both pulsed and unpulsed splenocytes were then used as antigen 

presenting cells and cultured with lymphocytes isolated from the brains of WT and KO 

sporozoite infected mice. The output of the experiment was the total number of IFN-γ 
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producing CD8+ T cells, that were identified by the ELISpot assay as described in 2.2.8.5. 

Brain-infiltrating lymphocytes from WT infected mice recognised PbmaLS_05 epitopes 

in contrast to those isolated from PbmaLS_05 (-) sporozoite infected mice, thus 

confirming the PbmaLS_05 is indeed presented during a sporozoite infection (Appendix 

Fig. 6.8). 

  
3.11 MRI of the brains of infected mice support the existence of different 

mechanisms of ECM development between sporozoite and iRBC injections 

In order to confirm the non-ECM phenotype through non-invasive methods, I infected 

mice with either WT or KO sporozoites or WT or KO iRBCs and imaged them via MRI, 

on the day when WT mice displayed signs of ECM (in collaboration with Dr. Angelika 

Hoffmann, Neuroradiology Unit, University Hospital Heidelberg). Previous research has 

shown that ECM initiates in the olfactory bulb (OB) (286) and spreads along the rostral 

migratory stream to the remaining parts of the brain (156). Moreover, activated 

perivascular CD8+ T cells were shown to interact with brain endothelial cells cross-

presenting parasite antigen, within the OB (215). Based on this information, we imaged 

the mice via an MRI scanner and typically looked at the OB of these mice. Interestingly, 

none of the KO infected mice showed a significant increase in brain volume, consistent 

with the non-ECM phenotype, when compared to the WT infected groups (Fig. 3.18A). 

This observation was in agreement with the lack of haemorrhages and oedema within the 

OB of the KO iRBC mice in contrast to those infected with WT iRBC (Fig. 3.18B). 

However, KO sporozoite infected mice still displayed haemorrhaging and oedema, 

though reduced in comparison to WT sporozoite infected mice (Fig. 3.18B). These 

results conclude that while PbmaLS_05 could indeed play a crucial part in the induction 

of ECM in mice, at least two different mechanisms of ECM development exist, pertinent 

to sporozoites and iRBCs.  
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Figure 3.18 MRI of WT and KO infected mice. (Imaging performed by Angelika 
Hoffmann, Neuroradiology Unit, University Hospital Heidelberg) (A) Mice infected with 
sporozoites or iRBCs of WT or KO parasites were imaged when WT mice displayed signs of 
ECM (7 d.p.i for sporozoites and 5 d.p.i. for iRBCs). All mice were anaesthetised and placed 
prone in an MRI scanner. A significant increase in the brain volumes of WT infected mice 
correlated with the ECM symptoms observed on the day of imaging. In contrast both KO 
sporozoite and KO iRBC infected mice showed no increase in the brain volume, which were in 

Groups Oedema Haemorrhages 
p.i. sporozoites p.i. iRBCs p.i. sporozoites p.i. iRBCs 

Naïve 0 0 0 0 
WT 2.7±0.5 2.8±0.4 2.7±0.5 2.8±0.4 
KO 1.1±0.6 0.7±0.3 1.2±0.6 0.5±0.4 
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fact comparable to the control (uninfected group). Statistical significance was determined using a 
One-Way ANOVA with Bonferroni’s multiple comparison as a post-hoc test (***p<0.0001, 
**p<0.001, *p<0.01; ns, not significant).  (B) Haemorrhages and Oedema were detected using 
the T2 and T2* protocol. The images displayed are representative of each group. Extensive 
haemorrhaging and oedema preceded signs of ECM in the WT infected mice and was more 
pronounced after iRBC infection compared to infection with sporozoites. In contrast, KO 
sporozoite infected mice showed minor oedema and haemorrhaging in the OB, both of which 
were absent after KO iRBC infection, thus further supporting the existence of two different 
mechanisms of ECM development. All images were analysed using the Amira 5.4 software.  
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Chapter 4 

Discussion 
Studies pertaining to sterile protection or protection from cerebral malaria have often 

stressed the importance of a broad antigenic repertoire in the induction of protective 

immunity (269, 270). Lessons learnt from the success of whole organism vaccines like 

CPS, RAS and GAP and failure of the RTS,S subunit vaccine, have moreover supported 

the view that ‘the development of a successful vaccine against malaria is contingent upon 

the incorporation of multiple targets of protective immunity’ (287). However, the 

identification of these targets is still under investigation.  

 
Previous work identified a selection of Plasmodium transcripts, including PfmaLS_05, that 

were upregulated in intra-hepatic stages of RAS and hypothesised to contribute to 

protective immunity conferred by attenuated whole organism vaccines (280). The 

characterisation of PbmaLS_05 was thus initiated with the intention of determining its 

role in the parasite life cycle and its contribution to sterile protection.   

 
4.1 Functional characterisation of PbmaLS_05 in the parasite life cycle. 

PbmaLS_05 is relatively well conserved on both genomic and proteomic levels in all 

Plasmodium species. The orthologue in P.yoelii is comprised of two genes and each one 

aligns to one half of the orthologue in P.falciparum, thus suggesting the presence of 

spliced variants of the gene (Fig. 3.1). The function of most of the orthologues of 

PbmaLS_05 is unknown, except for PY02854, where it is annotated as a SEN-1 related 

protein (PlasmoDB). Based on that PbmaLS_05 could be considered to function as an 

ATP-dependent helicase that is required for maturation of non-coding RNAs. However, 

this function seems unlikely since PbmaLS_05 localises to the apicoplast instead of the 

nucleus. A previous report hypothesised PfmaLS_05 to cluster with ABC transporters 

owing to the presence of the predicted P loop containing nucleoside domain (288). 

These data however, are solely based on sequence alignments and therefore necessitate 

further investigation.  

 
PbmaLS_05 was first identified in pre-erythrocytic stages of PfRAS, even though is 

transcribed throughout the parasite life cycle and alternatively spliced in two different 
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stages (Fig. 3.2). Alternative splicing has often been observed for large multi-gene 

families of Plasmodium and hypothesised to play a role in evasion of host immunity (289). 

Interestingly, studies have shown that proteins encoded by var and rif genes are also 

expressed in sporozoites and gametocytes (290, 291), contrary to the assumption that 

multi-gene families are exclusively expressed during intra-erythrocytic stages of 

development, thus suggesting different roles in different stages of the life cycle (289). 

Similar studies from rodent Plasmodium strains have also proposed that the alternatively 

spliced forms play more diverse roles than previously thought in different stages of the 

parasite life cycle (272, 292). Indeed, splicing of Plasmodium genes like MAEBL, GRASP, 

CDPK6 and adenyl cyclase α (293-297) was shown to modify both their expression and 

localisation in the parasite life cycle. However, in contrast to MAEBL and GRASP where 

splicing exclusively modified the localisation of the protein from membrane to cytoplasm, 

isoforms of adenyl cyclase were suggested to perform different functions (293-297). It is 

thus likely that the alternatively spliced forms of PbmaLS_05 also fulfil ‘‘stage-specific’’ 

roles during the parasite life cycle.  

 
Depletion of PbmaLS_05 in mid-gut sporozoites had no effect on sporogony, but 

significantly impacted the numbers of salivary gland sporozoites in KO infected 

mosquitoes (Fig. 3.7). The reduction in salivary gland sporozoite numbers combined 

with the in vitro defect in motility (Fig.3.7) points to a function of PbmaLS_05 in salivary 

gland invasion (298, 299). This is based on the fact that sporozoite proteins CSP and 

TRAP also play dual roles in motility (300) and salivary gland invasion (301), indicating 

that both invasion and motility rely on a well conserved motor machinery (302, 303). The 

impairment in motility of PbmaLS_05 (-) sporozoites though striking in vitro was not 

reflected in vivo (Fig. 3.8 & Table 1). This disparity could be explained by the spatial 

differences in a BSA-coated glass slide (2D) and the skin (3D), but has similarly been 

reported for other parasites lacking the transmembrane protein SSP3 (304) or the actin 

bundling protein coronin (305). However, undetectable expression levels of PbmaLS_05 

in sporozoites by both C-terminal EGFP and N-terminal mCherry tagging strategies 

(Fig. 3.4 & Appendix Fig. 6.5B) together make it very unlikely, that PbmaLS_05 plays 

a role in motility in the skin.  

 
Similarly, the transcription of a spliced isoform of PbmaLS_05 in parallel with delayed 

development of early liver stage KO parasites could suggest a role for PbmaLS_05 in 

intra-hepatic development (Fig. 3.2 & 3.9). However, the function of PbmaLS_05 in 
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both mid-gut sporozoites and early liver stages can rather be considered descriptive due 

to undetectable protein levels or problems with tagging of the isoforms. A modest 

reduction in both sporozoite burden in salivary glands and sizes of early liver stages of 

KO parasites, indicate redundant roles for PbmaLS_05 in salivary gland invasion and 

early liver stage development.  

 
One of the initial theories surrounding the transcriptional abundance of maLS_05 in 

PfRAS liver stages, was its potential role in intra-hepatic development which was based 

on a previous study which suggested that hepatocyte invasion might trigger changes in 

transcription (306). However, deletion of PbmaLS_05 had no effect on intra-hepatic 

development, both in vitro and in vivo. While the data does not entirely exclude the use of 

PfmaLS_05 as a liver-stage antigen, it is plausible that transcriptional upregulation of 

maLS_05 in early liver stages might be induced in response to irradiation-induced stress 

(280).  

 
In contrast to sporozoites and early liver stages, the full-length isoform of PbmaLS_05 is 

expressed in both later liver and blood stage parasites and localises to the apicoplast of 

both stages (Fig. 3.4). The importance of the apicoplast in parasite growth and 

development has been highlighted through several studies (307-309), which makes it an 

attractive target for antimalarials. Parasites rely on the apicoplast for heme, isoprenoid 

and lipid synthesis (309), but the extent of reliance on the acquisition of these 

components is uncertain (310) and differs for liver- and blood stages (308). The process 

of replication and segregation of the apicoplast in Plasmodium parasites parallels with 

nuclear division and is completed before the formation of daughter merozoites, thus 

ensuring that every daughter cell inherits one apicoplast (311, 312). The expression of 

PbmaLS_05 exclusively during nuclear division in both liver and blood stages would thus 

imply an involvement of PbmaLS_05 in apicoplast division. Transfection of Toxoplasma 

gondii parasites with an ACP-GFP-mRON1 plasmid, disrupted apicoplast segregation 

resulting in parasites containing a single large apicoplast or parasites devoid of one. 

Parasites containing a single large apicoplast displayed reduced growth rates in 

comparison to those devoid of an apicoplast that survived for a short-term. This 

phenomenon is strikingly similar to the "delayed death" phenotype seen with antibiotics 

like azithromycin, clindamycin and doxycycline that affect biogenesis of the apicoplast 

(283, 313). It is thus conceivable that parasites lacking PbmaLS_05 have abnormal or 

inaccurately divided apicoplasts between daughter cells, consequently resulting in death 
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and elimination of parasites devoid of a functional apicoplast. This is supported by 

retarded growth rates of KO parasites in the blood and enhanced clearance by the spleen 

(Fig. 3.11 & 3.12). Although abnormal apicoplast segregation sounds like a probable 

cause for the observed defect in blood stage growth, it warrants further confirmation 

with antibodies that stain the apicoplast. In contrast to blood stages, the timing of 

PbmaLS_05 expression in late liver stages would rather propose a role in transition of 

parasites from the liver to blood or the initiation of blood stage infection (Fig. 3.4). The 

influence of these events on the disease progression and development of ECM is 

discussed below.  

 
4.2 Characterisation of the role of PbmaLS_05 in the development of 

ECM. 

Descriptions about ECM are mainly restricted to the intra-erythrocytic stages of the 

parasite life cycle. However, numerous studies in the past few years have provided 

evidence of a role for pre-erythrocytic immunity in modulating the development of ECM 

(section 1.3.2). The common theme between the different models of protection seems to 

be a modification in the immune response towards the initial inoculum of blood stage 

parasites that subsequently influences the outcome of ECM.  

 
It is conceivable that an innate immune response developed during the liver or blood 

stages of infection, interferes with the priming of host immune responses that culminate 

in ECM. Indeed, hepatocytes recognise PAMPs such as parasite RNA, which activates 

the type 1 IFN response (314) and recruits NK and NKT cells that subsequently mediate 

control of parasite replication via IFN-γ secretion (315). An impaired release of 

merosomes could ideally prolong the time required for innate immunity against intra-

erythrocytic stages of infection, to develop. The development of innate immune 

responses directed towards iRBCs was in fact demonstrated by immunisation of mice 

with a single dose of irradiated iRBCs. Protection against ECM was associated with 

antibody responses and reduced IFN-γ but intriguingly had no effect on the 

accumulation of CD8+ T cells within the brains of infected mice (316). Indeed, infection 

of RBCs induces the up-regulation of TLRs and pro-inflammatory cytokine genes that 

are regulated by NF-κB. The activation of DCs through parasite DNA stimulation of 

TLR 9 promotes the secretion of cytokines that help control infection. For example, 

production of IL-12 by DCs in a MyD88 dependent fashion stimulates NK cells to 
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secrete IFN-γ that facilitates the activation of CD4+ helper T cells (Th1). Th1 cells in 

turn promote the switch in class to IgG2a and IgG2b antibodies that are protective (317). 

The role of innate immunity in conferring protection therefore cannot be undermined.  

 
Nevertheless, the immunopathological differences between WT and KO in relation to 

different experimental modes of infection (sporozoites versus iRBCs) that were 

investigated are discussed below.  

 
A) Parasite sequestration and multiplication in the blood 

The absence of ECM in mice infected with KO sporozoites could result from a ‘trickling 

effect’ or an impaired release of merozoites that initiate the first round of blood stage 

infection (240). However, the absence of any delay in intra-hepatic development or pre-

patency after an infection with KO sporozoites, argues against the existence of a trickling 

effect (Table 1). Moreover, infection of mice with KO iRBCs also reproduces the same 

phenotype, despite bypassing the pre-erythrocytic stage (Table 3).  

 
A common observation between KO sporozoites and iRBC infections was the retarded 

growth rates of intra-erythrocytic stages, which were more pronounced when WT 

infected mice display signs of ECM (Fig. 3.11& 3.13). Moreover, the drop in peripheral 

parasitaemia of KO sporozoite infected mice correlated with increased amounts of 

parasite material in the spleen. Based on this observation, one could easily hypothesise 

that deletion of PbmaLS_05 weakens or reduces parasite sequestration by altering surface 

adhesion expression, thus leading to enhance clearance/accumulation of parasites by/in 

the spleen and a reduction in circulating parasites. This was indeed observed in a recent 

study by De Niz et. al. where virulence attenuated parasites displayed a reduction in 

sequestration and peripheral parasitaemias (180).  

 
Intriguingly, the parasite load in the brains of KO infected mice was comparable to mice 

infected with WT sporozoites (Fig. 3.12). To say that PbmaLS_05 influences surface 

adhesion expression is misleading because it is targeted to the apicoplast and therefore 

cannot regulate the transcription of var genes in the nucleus. Moreover, it is well known 

that the apicoplast imports several nuclear-encoded proteins (318, 319), but there is no 

evidence whatsoever to support the reverse. Still, it cannot be dismissed that the 

influence of the spleen on surface adhesion expression and subsequently sequestration 

differs between KO and WT infections, but this needs to be investigated further. 
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While these observations partially complement the importance of parasite fitness on the 

development of cerebral symptoms, the lack of any difference in parasite load in the 

brains of WT and KO sporozoite infected mice contradicts previous findings that organ-

specific sequestration is critical for ECM immunopathogenesis (Fig. 3.12) (320). 

Moreover, in-depth analysis of endothelial activation in rodents has shown that 

sequestration alone is inadequate to cause localised inflammation and blood-brain barrier 

breakdown (209, 216).  

 
B) T cell priming and activation in the spleen 

In addition to parasitaemia, activated T cells play an important role in the development 

of ECM. Parasite sequestration in the spleen contributes to changes in splenic physiology 

and primes the immune response that is responsible for blood-brain barrier 

permeabilisation (discussed in 1.2.2.3). Priming of T cells within the spleen occurs in an 

antigen specific manner, in response to sequestration and phagocytosis of parasite 

material by splenic APCs. Studies have shown that both antigen availability and duration 

of antigen presentation affect the polarisation and switch between Th1- or Th2- T cell 

subsets (321). Moreover, excess antigen availability could either trigger apoptosis of T 

cells or make them unresponsive, thus creating either an anergic or tolerogenic 

environment (322). It is thus plausible that the excess parasite material within the spleen 

after injection with KO sporozoites triggers a hyporesponsive state in T cells, thereby 

reducing their antigen-specific activation and migration from the spleen. However, a 

comparable number of CD4+ and CD8+ T cells were isolated from the brains of KO and 

WT sporozoite infected mice even when WT infected mice succumbed to ECM (Fig. 

3.15A), thus suggesting that the priming of T cells per se was similar for both groups of 

infected mice.  

 
In contrast to infection with sporozoites, KO iRBC infected mice displayed reduced 

parasite loads and reduced accumulation of CD4+ and CD8+ T cells in the brain, in spite 

of no difference in the spleen when compared to mice inoculated with WT iRBCs (Fig. 

3.16A). Although these results represent a more classical presentation of the non-ECM 

phenotype, they contradict observations made after sporozoite infections. 

 
C) Antigen recognition 

One could easily argue that sheer numbers of T cells do not contribute to ECM, but that 

the ability of CD8+ T cells to produce cytotoxic molecules like IFN-γ upon recognition 
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of parasite antigens is of prime importance. This was indeed shown by two independent 

studies whereby equal numbers of CD8+ T cells were isolated from the brains of ECM 

and non-ECM causing parasite strains (209, 216). It was therefore interesting to test if 

the CD8+ T cells isolated from the brains and spleens of KO infected mice were capable 

of recognizing parasite antigens such as the Pb1 epitope of GAP50. Pb1 was classified as 

a dominant antigen that was recognised by a majority of CD8+ T cells in the brains of 

ECM mice (209), and was therefore selected for this study. Interestingly, T cells isolated 

from the brains and spleens of both WT and KO sporozoite infected mice produced 

IFN-γ in response to Pb1 (Fig. 3.15B). In contrast, the number of Pb1 specific IFN-γ+ 

CD8+ T cells isolated from the brains of KO iRBC infected mice was significantly lower 

compared to WT iRBC infected mice, thus indicating a reduction in activation of T cells 

after a KO iRBC infection (Fig. 3.16B). These results, though contradictory to one 

another, emphasize that inherent differences in the recognition of parasite antigens by T 

cells exist between sporozoite and iRBC infections. In addition, it is possible that 

circumventing the liver leads to a change in the epitopes presented to T cells, thereby 

altering their specificities. 

 
D) Cross-presentation and blood-brain barrier permeabilisation 

Antigens recognised by cytotoxic T cells (CTLs) are mainly cross-presented during a 

malarial infection. CD8α+ DCs in the skin and spleen cross-present parasite antigen to 

naïve CD8+ T cells, while CD103+ DCs residing in non-lymphoid organs were shown to 

efficiently cross-present antigens to CTLs (323). In the context of ECM, phagocytosis of 

merozoites and cross-presentation of antigens by brain ECs critically facilitates an arrest 

of CTLs within the brain microvasculature (209, 216). In fact, cross-presentation of 

parasite antigens by APCs plays a very important part in ECM immunopathogenesis and 

is the key factor that distinguishes ECM from non-ECM parasite strains (209, 216). The 

intention of the cross-presentation assay was thus to dissect differences in cross-

presentation of parasite antigens between WT and KO infected groups. The assay was 

performed (in collaboration with Shanshan W. Howland and Laurent Renia, A* Star, 

Singapore) with brain microvessel fragments isolated from mice, only after iRBC 

infections. Interestingly, endothelial cells of KO iRBC infected mice were less efficient at 

cross-presenting Pb1, which was in good agreement with the reduced numbers of IFN-

γ+ CD8+ T cells in the brain and absence of ECM in these mice (Fig. 3.17). Based on 
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this observation, the following hypothesis can be made to explain the non-ECM 

phenotype after infection with KO sporozoites.  

 
1. It is plausible that cross-presentation by the activated endothelium is also impaired or 

reduced during an infection with KO sporozoites, which would explain why these mice 

do not develop ECM, despite the presence of a sufficient number of CD8+ T cells in the 

brain that were capable of recognizing Pb1. However, priming of CD8+ T cells first 

occurs in the spleen and is responsible for their activation and migration to other organs.  

Given that an equal number of CD8+ T cells isolated from the brains of WT and KO 

sporozoite infected mice responded to Pb1 in vitro, it is quite unlikely that cross-

presentation by endothelial cells in the brain is also impaired after sporozoite infection. 

Nevertheless, this has yet to be confirmed.  

  
2. Alternatively, one could presume that the dominant role of Pb1 in inducing ECM as 

seen with iRBC infections, might not be reflected during a sporozoite infection. A study 

in 2013 showed that damage to the blood-brain barrier requires the synergistic effect of 

T cells with different antigen specificities (210). Based on the fact that mice do not 

develop ECM after a sporozoite infection, despite the presence of a comparable number 

of activated T cells to mice infected with WT sporozoites, it is tempting to speculate that 

PbmaLS_05 and not Pb1 might in fact be the dominant antigen that is cross-presented 

during a sporozoite infection.   

 
The assumption that PbmaLS_05 could be cross-presented by endothelial cells in the 

brain is quite reasonable given that several differences exist between sporozoite and 

iRBC induced infections. In fact, studies have shown that variant surface antigens 

expressed by mosquito transmitted and blood-passaged parasites are significantly 

different (324). Inferences drawn from the study in rodents suggested that vector 

transmission favours a broader antigenic repertoire over a select subset of virulent genes, 

as seen for blood-passaged parasites (325). Hence, it is highly probable that the antigens 

expressed and presented by the immune system, may also vary between sporozoite 

induced and iRBC-induced infections. The disparity in the host immune response seen 

for KO sporozoite and KO iRBC infections are a testament to this difference. Indeed 

studies comparing immune responses between sporozoite and iRBC initiated infections, 

have demonstrated that both T cell activation and parasite dynamics in the blood vary 

between both groups (170, 171). Sporozoite infected mice were found to develop lower 
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parasitaemias apart from reduced frequencies and lower activation levels of CD8+ T cells 

in the brain, compared to iRBC infections. The most interesting aspect however, is that 

both sporozoites and iRBCs are capable of inducing ECM in mice, thus suggesting that 

the priming of CD8+ T cells is more efficient during a sporozoite-induced infection. It is 

thus very likely that mechanism of ECM development differs between sporozoite and 

iRBC infections.  

 
It is interesting to note that Pb1 (GAP50) was identified during a screen for antigens 

cross-presented during an iRBC-initiated and not sporozoite induced infection (209, 210). 

PbmaLS_05 was not on the list of identified targets, most likely due to the presence of 

other dominant antigens. With that thought in mind, it was imperative to test if 

PbmaLS_05 was actually presented during a sporozoite infection. Predicted CD8+ T cell 

epitopes for PbmaLS_05 were synthesised and used to stimulate brain-derived 

lymphocytes isolated from sporozoite infected mice, in vitro. Preliminary results indicated 

that CD8+ T cells from WT sporozoite infected mice were indeed capable of recognising 

PbmaLS_05. More importantly, PbmaLS_05 was not recognised by brain-derived 

lymphocytes of KO sporozoite infected mice, judging by the absence of an IFN-γ+ 

response (Appendix Fig. 6.9), thus confirming significant differences in ECM 

pathogenesis, between sporozoites and blood-stage infections.  

 
The data are thus supportive of an essential role of PbmaLS_05 in the development of 

ECM, particularly after a sporozoite infection and postulate the existence of at least two 

mechanisms of ECM development unique to sporozoites and iRBCs.  

 
A summary of the key aspects and mechanisms of protection observed with KO 

parasites in contrast to a WT infection is depicted below (Fig. 4.1 & Fig. 4.2). The 

following figures have been adapted from Howland, S. et. al.,2015 (179) to incorporate 

the role of PbmaLS_05 in the development of ECM. 
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4.3 A model to describe the process of ECM development after a 

sporozoite infection. 

While the data implicates different mechanisms pertaining to ECM development after 

sporozoite and iRBC infections, it is still insufficient to describe the exact course of 

infection that occurs when parasites are transmitted via the natural route, i.e. transmitted 

by a mosquito during a blood meal. Nevertheless, based on the data described in this 

thesis and available literature, I herein propose a hypothetical model of ECM 

development after a sporozoite infection with modifications to the steps described in 

1.2.2.2.  

 
(1) Priming of the immune system in both skin and spleen 

A proportion of sporozoites deposited in the skin during an infectious bite, enter the 

lymph nodes where they are captured by CD8α+ DCs and presented to resident CD8+ T 

cells (314). Priming of CD8+ T cells first occurs in the skin followed by the spleen (33) 

and thus alerts the immune system before parasites reach the blood. The contribution of 

skin derived CD8+ T cells in promoting ECM is however controversial, since bypassing 

the skin stage through intravenous injection of sporozoites also induces ECM in 

susceptible mice. Nevertheless, a proportion of sporozoites that fail to invade 

hepatocytes are cleared by the spleen, which primes both T cells and stimulates the 

production of antibodies against sporozoite proteins (326).  

 
(2) Intra-hepatic development and initiation of blood stage infection  

 The exact role of the liver in influencing the development of ECM is practically 

unknown. Sporozoites traverse hepatocytes and leave a trail of CSP, which by unknown 

mechanisms lead to an influx of CD8+ T cells and DCs that sample antigens expressed 

on MHC I. These T cells do not contribute to organ-associated pathology (327), possibly 

due to the fact that the liver is an immuno-privileged organ that might suppress any pro-

inflammatory response. Nevertheless, it is possible that DCs, which have sampled 

antigenic material, migrate to the liver draining lymph nodes where they further prime T 

cells.  

 
Parasite gradually egress from the liver, which leads to an increase in pro-inflammatory 

cytokines like IFN-γ and TNF-α. The number of merosomes released into the blood 

stream depends upon the number of sporozoites that successfully invaded hepatocytes, 

which might vary and thus modulate the outcome of infection. This initial inoculum 
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plays a critical role in the development of ECM based on the fact that both sporozoite 

and iRBC infections can cause ECM, even though iRBC infected mice develop 

significantly higher parasitaemias compared to mice infected with sporozoites (170).  

 
The gradual release of merozoites into the blood stream permits the induction of innate 

immune mechanisms that involves NK cells that contribute to parasite clearance (96). 

Moreover, exposure to blood stages boosts the immune response towards antigens like 

GAP50 that are shared between sporozoites and blood stages. This in turn promotes 

DCs and other cells within the spleen phagocytose and clear a large proportion of 

parasites, thus preventing parasite growth from spiralling out of control and thereby 

reducing severe pathology.  

 
(3) Sequestration and activation of immune effector cells 

The steady increase in blood stage infection coupled to an increase in pro-inflammatory 

cytokines upregulates the expression of receptors on ECs in different organs. Parasites 

bind to these receptors by expressing variant surface ligands, which leads to 

sequestration. Because vector (mosquito) transmission attenuates virulence, iRBCs 

released from hepatocytes after a sporozoite infection express a broad range of virulent 

proteins, which affects the number of parasites sequestering within the spleen and other 

organs. The expression of more diverse ligands facilitates more efficient binding to 

endothelial cells, while evading immune responses. T cells within the spleen are primed 

against a broader antigenic repertoire with varying potencies. However, the low 

availability of antigen during the initial phase of infection might result in inefficient 

priming of T cells, thus reducing their activation.   

 
(4) T cell migration to the brain and cross-presentation of parasite antigens  

T cells of different specificities exit out of the spleen and migrate to different tissues via 

chemotaxis. Due to differences in activation levels, a lower proportion of T cells 

infiltrate the brain (170). ECs act as APCs and cross-present a broad range of parasite 

antigens that are recognised by T cells expressing the cognate receptor. The synergistic 

effects of T cells with varying specificities for their cognate antigens triggers the release 

of cytotoxic molecules and collectively leads to blood brain-barrier permeabilisation. The 

lower proportion of dominant antigens cross-presented however leads to localised BBB 

breakdown, as confirmed by the MRI images (Fig. 3.18).  
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4.4 Implications of this study with relevance to HCM 

Data about HCM is mainly gathered from clinical samples and post-mortem tissues. An 

overwhelming body of data related to P.falciparum infections however, has been acquired 

from in vitro cultured parasites, which do not always reflect the behaviour of the parasite 

as seen in endemic infections. The data presented herein adopts a similar view and 

challenges the pre-existing notion that HCM is exclusively a phenomenon that begins 

with the blood stage of the parasites. In addition to underlining the importance of 

studying CM in the context of sporozoite infections, which is the sole route of human 

malaria, this thesis proposes a new model of ECM development that can be used to 

further improve vaccination strategies against HCM and malaria in general.  

 
Clinical studies on HCM have garnered a wealth of information from endemic and non-

endemic regions of malaria and highlight three main findings pertaining to the HCM 

syndrome in individuals:  

a) Younger children in malaria endemic areas, below the age group of 5, are particularly 

susceptible to developing HCM with high mortality rates, while older children and adults 

gradually acquire immune mechanisms to limit severe disease, but rarely achieve sterile 

immunity (328). 

b) In contrast, individuals with no previous exposure to malaria are highly susceptible to 

developing severe disease symptoms, including CM, regardless of the age group.  

c) Children rapidly acquire immunity to cerebral malaria after a single infection (329, 330), 

while immunity to febrile malaria is slow to develop (331) and quickly wanes in the 

absence of ongoing exposure (332, 333). 

One of the confounding problems about HCM is the inconsistency in clinical 

presentation and pathology between individuals and typically between children and adults 

(described in 1.1). Even though factors influencing susceptibility to HCM are not 

completely known, the common consensus is that naturally acquired immunity to malaria 

affords the best level of protection against HCM. Naturally acquired immunity is rarely 

sterile and predominantly consists of antibody responses against intra-erythrocytic 

parasites (333, 334) with little or no involvement of responses to pre-erythrocytic stages 

(335). Individuals living in endemic regions gradually acquire antibodies that limit severe 

disease symptoms including CM and are classified as asymptomatic (336). Interestingly, 

protection in asymptomatic individuals relies on the acquisition of antibodies to a 

broader range of antigens in comparison to those found in symptomatic or more 
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susceptible individuals (337, 338). Vaccination approaches against malaria are therefore 

considering the incorporation of multiple antigens into vaccine design (339). A step 

further would be the inclusion of epitopes that are shared by multiple stages of the 

parasite life cycle, which could elicit cross-stage immunity (270).  

 
PbmaLS_05 is one such antigen that is shared between late liver and blood stages and 

most likely expressed in sporozoites. Given the prominent role of PbmaLS_05 in ECM 

development and its conserved nature throughout the Plasmodium species, it was 

imperative to investigate if PfmaLS_05 also played similar roles. A study conducted by 

Kirsten Heiss, et.al. compared humoral immune responses to PfmaLS_05, between 

asymptomatic and symptomatic individuals and between children and adults. It was 

pleasing to see that asymptomatic children and adults had higher titres of antibodies to 

PfmaLS_05 compared to symptomatic children (Kirsten Heiss, et al, unpublished data), 

thus confirming an important role of PfmaLS_05 in CM.  

 
While cross-presentation of PbmaLS_05 by brain endothelial cells awaits confirmation, 

there is no doubt that PbmaLS_05 epitopes are recognised by T cells. While the data are 

striking, there is paucity in the identification of CD8+ T cell epitopes in humans. 

Moreover, pinpointing the exact role of CD8+ T cells in the development of cerebral 

symptoms remains a distant possibility. In light of this reality, it would be tempting in to 

investigate peripheral CD8+ T cells responses to PfmaLS_05 in both adults and children 

living in endemic regions.  

 
In summary the overall data, though subject to reservations, are supportive of the use of 

the rodent model for HCM studies and propose a critical role for maLS_05 in severe 

disease progression. This study in general has greater implications for HCM, particularly 

in terms of translational aspects and vaccine design, especially in the context of antigens 

that are presented across the Plasmodium life cycle.  
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Chapter 6 

Appendices 
6.1 Vector maps 
The vectors used to generate the constructs for gene deletion (PbmaLS_05 (-)), C-
terminal tagging (PbmaLS_05 CT EGFP) and N-terminal tagging (PbmaLS_05 NT 
mCherry) are listed below. All vectors contain a gene (TgDHFR/TS) coding for 
pyrimethamine resistance and an ampicillin resistance cassette. The b3D+ (275) vector 
contains an additional 3’UTR for C-terminal tagging. All vector maps were prepared 
using the Ape Plasmid Editor v2.0.49 software. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
Figure 6.1A PbmaLS_05 (-) targeting vector. The PbmaLS_05 (-) targeting construct 
was prepared as described in 2.2.1.6, by insertion of 5’UTR and 3’UTR fragments 
(amplified using primers listed in 2.1.14.1) into the Pb300mycmCherry-CT vector.  
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Figure 6.1B PbmaLS_05 CT EGFP tagging vector. The PbmaLS_05 CT EGFP 
construct was prepared as described in 2.2.1.7, by insertion of 3’UTR, CTEGFP 5’end 
and EGFP PCR fragments (amplified using primers listed in 2.1.14.2) into the b3D+ 
vector.  
 

 

 

 

 

 

 

 
 
Figure 6.1C PbmaLS_05 NT mCherry tagging vector. The PbmaLS_05 NT mCherry 
construct was prepared as described in 2.2.1.8, by insertion of Prom PI, Prom PII, 
maLS_05 ORF and mCherry PCR fragments (amplified using primers listed in 2.1.14.3) 
into the b3D vector.  
 

31 HindIII (1)
10 XhoI (2)

3045 XhoI (2)
TgDHFR/TS 2312..4152

5862 SacII (1)
5840 SpeI (1)

5834 BamHI (1)

AmpR 6851..7510

ColE1 origin 7608..8290
8725 KpnI (1)

b3D+

8730 bp

PbDHFR/TS 3'UTR extended 4833..5807

3010 XhoI (1)
TgDHFR/TS 2277..41177063 SacII (1)

CT eGFP 5'end 6542..7064
6531 SpeI (1)

eGFP 5804..6531
5799 BamHI (1)

PbDHFR/TS 3'UTR extended 4798..5772

AmpR 8052..8711

ColE1 origin 8809..9491

9926 KpnI (1)
3'UTR 9931..10439

PbmaLS_05 CTeGFP

10443 bp

10439 HindIII (1)

4666 SacII (1)
4650 XbaI (1)
4644 SpeI (1)

4638 BamHI (1)

AmpR 5655..6314

ColE1 origin 6412..7094
7529 KpnI (1)

b3D

7534 bp

31 HindIII (1)

TgDHFR/TS 2312..4152

TgDHFR/TS 2277..4117

4603 BamHI (1)
Prom PII 4608..5793

6929 SacII (1)
maLS_05 ORF 6525..6930

6520 XbaI (1)
mCherry 5806..6510

5794 SpeI (1)

AmpR 7918..8577

ColE1 origin 8675..9357

PbmaLS_05 NTmCherry

10458 bp

10454 HindIII (1)
Prom PI 9797..10454

9792 KpnI (1)
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6.2 The Rapid Murine Coma and Behaviour Scale (RMCBS) 

Label Score Description 

Coordination 

Gait 0-2 Non-ataxic-normal 

Balance 0-2 
Non body extension-extends front feet on wall-

entire body life 

Exploratory Behaviour 

Motor Performance 0-2 
None-2-3 corners explored in 90 seconds-

explores 4 corners in 15 seconds 

Strength and Tone 

Body Position 0-2 On side-hunched-full extension 

Limb Strength 0-2 

Hypotonic, no grasp-weak pull-back (front paw 

grasp only)-strong pull-back (active pull away, 

jerk away) 

Reflexes and Self-Preservation 

Touch Escape 0-2 None-unilateral-instant and bilateral; 3 attempts 

Pinna Reflex 0-2 None-unilateral-instant and bilateral; 3 attempts 

Toe Pinch 0-2 None-unilateral-instant and bilateral; 3 attempts 

Aggression 0-2 
None-bite attempt with tail cut-bite attempt prior 

to tail cut, in 5 seconds 

Hygiene-Related Behaviour 

Grooming 0-2 
Ruffled, with swaths of hair out of place-

dusty/piloerection-normal/clean with sheen 

 
Figure 6.2. Rapid Murine Coma and Behavioural Scale (RMCBS). The RMCBS 
consists of 10 different parameters (each with a score of 0-2) and is used to grade mice, 
with 0 being the lowest and 2 being the highest. A mouse can receive a minimum score 
of 0 and a maximum score of 20 depending on the severity of disease symptoms. 
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6.3 Sequence alignment of maLS_05 in all Apicomplexan parasites 

 

 
 
Figure 6.3 Sequence alignment of maLS_05 in all Apicomplexan parasites. The 
sequence alignment of protein sequences of maLS_05 in all species of Apicomplexa, was 
done using the online tool MUSCLE, from EMBL-EBI. The clustering of maLS_05 
sequences from all Plasmodium species (highlighted by a box) suggests that it well 
conserved in Plasmodium.  
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6.4 Detection of the full-length PbmaLS_05 protein by Western 

Blotting. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4. PbmaLS_05 could be detected via  Western Blotting. Anti-GFP 
antibodies were used to detect and determine the size of the full length PbmaLS_05 
protein. Protein extracts from all stages of the parasite life cycle were loaded onto a 
gradient gel along with a protein ladder and positive controls (extracts from PbANKA 
GFPcon blood stage parasites and sporozoites with CSP tagged GFP). Although free 
GFP was detected in the positive controls, no band corresponding to the predicted size 
of 303 kDa, was visible. 
 
6.5 Cloning and transfection of PbmaLS_05 NT mCherry parasites 

and visualisation of PbmaLS_05 expression by live microscopy 

 
 
 
 
 
 
 
 
 
Figure 6.5A Cloning of PbmaLS_05 NT mCherry transfected parasites. Clonal 
populations of PbmaLS_05 NT mCherry parasites were isolated by limiting dilution of 
transfected parasites. Purity of the clones was established by PCR amplification of the 
WT genomic locus, i.e. primers binding to the genomic regions flanking the mCherry tag. 
Thus absence of a tag as seen in WT parasites results in a smaller fragment compared to 
that observed for NT1 and NT2 clones.   
 
 
 

3 kb 

1 kb 

0.5 kb 

WT NT1 NT2 WT NT1 NT2 WT NT1 NT2 

5’ int 3’ int WT 
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Figure 6.5B Live imaging of PbmaLS_05 NT mCherry parasites. Live imaging of 
PbmaLS_05 NT mCherry parasites showed a different expression and localisation pattern 
compared to PbmaLS_05 CT EGFP parasites. Although expression of PbmaLS_05 was 
again detected in liver and blood stage schizonts, the localisation was more punctuate as 
opposed to branched in the liver, and more cytoplasmic as opposed to organelle-specific 
in the blood. No expression was detected in sporozoites, early and mid-liver stages (24 
and 48 h.p.i respectively). Scale bar = 10 µm. 
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6.6 Effect of azithromycin treatment on intra-hepatic stages of 

PbANKA WT parasites 

PbmaLS_05 EGFP liver stage parasites treated with azithromycin displayed incomplete, 
abnormal nuclear division, unlike untreated controls. Based on previous studies, 
treatment of parasites with azithromycin specifically affects apicoplast inheritance and 
biogenesis (283). In order to validate my observation and exclude any effect of the of a 
C-terminal EGFP tag on nuclear division, PbANKA WT liver stages were treated with 
azithromycin. However, the nuclei were similar to that observed for PbmaLS_05 EGFP 
parasites, thus confirming that azithromycin does indeed have an effect on nuclear 
division.  
 

Figure 6.6 Live imaging of azithromycin 
treated PbANKA WT parasites. Liver 
stages of PbANKA WT parasites were 
treated with azithromycin for 52 hours and 
then imaged live. Hoechst was used for 
visualization of the nuclei. Azithromycin 
treated liver stage parasites display abnormal 
nuclear division in contrast to untreated 

parasites, thus suggesting an effect of azithromycin treatment on nuclear division. Scale 
bar = 10 µm. 
 

6.7 Control experiments to test if tagging PbmaLS_05 has an effect on 

ECM outcome 

As additional control experiments, mice were injected with 104 sporozoites of 
PbmaLS_05 CT myc, PbmaLS_05 CT EGFP or PbmaLS_05 NT mCherry tagged 
parasites, in order to verify if the absence of ECM was exclusively due to deletion of 
PbmaLS_05. Moreover, the experiment validated the integrity of the transfection 
procedure and verified if tagging interfered with parasite growth. Interestingly, all 
infected mice except those injected with PbmaLS_05 NT mCherry parasites developed 
ECM, on days similar to WT infected mice thus excluding any effect of the C-terminal 
tag on parasite viability. However, the effect of the N-terminal tag on ECM outcome 
coupled to miss-targeting of the PbmaLS_05 protein in blood stages, further implicated a 
role for PbmaLS_05 in the development of ECM.  
 

Parasite line injected No. of sporozoites 

injected i.v. 

No. of 

mice 

ECM (%) 

PbmaLS_05 CT myc 104 6 5/6 (83 %) 

PbmaLS_05 CT EGFP 104 4 2/4 (50 %) 

PbmaLS_05 NT mCherry 104 3 0/3 (0%) 
 

 

DIC Hoechst 
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6.8 Gating strategy for lymphocytes, CD4+ T cells, CD8+ T cells and 

IFN-γ+ CD8+ T cells.   

	
	
	
	
	
	
	
	
	

Brain	
	
 

 

 

 

 

 

Spleen 

Figure 6.7 Gating strategies for lymphocytes and T cell subsets. Lymphocytes from 
the brains and spleens of infected mice were isolated and stained for CD4, CD8 and 
IFN-γ. FSC versus SSC was used to first gate on the lymphocyte population. 
Lymphocytes were sub-gated for T cells by plotting FSC with either CD4 or CD8. In 
order to determine the percentage of IFN-γ+ CD8+ T cells, total CD8 T cells were 
plotted against IFN-γ. The FACS analysis was performed using FlowJo v10. 
 
6.9 ELISpot with predicted CD8 T cell epitopes of PbmaLS_05.   

Figure 6.8. PbmaLS_05 is 
presented during a sporozoite 
infection. Naïve splenocytes were 
pulsed with PbmaLS_05 peptides or 
unpulsed and cultured ex vivo with 
brain-infiltrating lymphocytes of WT 
and KO sporozoite infected mice. 
Brain derived lymphocytes of WT 
infected mice responded to 
PbmaLS_05 epitopes by producing 
IFN- γ + and were identified by the 
assay. Each blue spot represents one 

IFN-γ+ producing cell. In contrast to WT, lymphocytes isolated from KO sporozoite 
infected mice did not respond to stimulation with PbmaLS_05 epitopes.  
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