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Zusammenfassung

Ziel der Arbeit ist es, verschiedene Aspekte von Abhängigkeitsstrukturen stochas-
tischer Prozesse zu untersuchen. Zu diesem Zweck werden neue Abhängigkeits-
maße für räumliche stochastische Prozesse eingeführt, sowie verschiedene analy-
tische Eigenschaften von Korrelationsfunktionen untersucht und mit Merkmalen
der Realisierungen der zugehörigen Prozesse verknüpft.

Die neu eingeführten Abhängigkeitsmaße basieren auf der Distanzkorrelation
und sind dadurch für größere Klassen von Zufallsfeldern definiert als die bekannte
Korrelationsfunktion nach Pearson. Zusätzlich ermöglichen sie das Quantifizieren
von nicht-linearen Abhängigkeiten, sowie von Abhängigkeiten in multivariaten
stochastischen Prozessen.

Die Untersuchung von analytischen Eigenschaften von Korrelationsfunktionen
beschäftigt sich zum Einen mit isotropen, positiv definiten Funktionen auf Sphären
verschiedener Dimensionen. Diese werden charakterisiert durch Reihen von Gegen-
bauerpolynomen mit sogenannten Schönbergkoeffizienten. Der konkrete Zusam-
menhang zwischen diesen Schönbergkoeffizienten wird hier angegeben.

Zum Anderen beschäftigt sich die Analyse mit der Charakterisierung von Korrela-
tionsfunktionen von zufälligen Vektorfeldern auf der Sphäre, deren Realisierungen
wirbel- und quellfrei sind.

Des Weiteren wird die Grübchen-Eigenschaft von räumlich-zeitlichen Zufalls-
feldern studiert. Das Grübchen entspricht einem nicht-monotonen Verhalten der
Korrelationsfunktion in der Zeit, welches durch sogenannte Transportfelder erzeugt
werden kann. Diese Transportfelder und ihre Verbindung zu der Grübchen-Eigen-
schaft werden genauer analysiert.
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Abstract

The aim of this thesis is to analyze several aspects of dependence structures for
stochastic processes. To this end, new dependence measures for spatial stochastic
processes will be introduced. Further, different analytical properties of correlation
functions and their relation to properties of the realizations of the corresponding
stochastic processes will be studied.

The newly introduced dependence measures are based on the distance correla-
tion. Thus, they are defined for larger classes of processes than the well-known
Pearson correlation function. In addition, the new dependence measures allow to
quantify non-linear dependencies, as well as dependencies in multivariate stochas-
tic processes.

On the one hand, the investigation of analytical properties of correlation func-
tions considers isotropic positive definite functions on spheres of different dimen-
sions. These functions are characterized by Gegenbauer expansions involving so-
called Schoenberg coefficients. Relationships between those Schoenberg coeffi-
cients will be given.

On the other hand, characterizations of correlation functions of random vec-
tor fields with almost surely divergence-free and irrotational realizations will be
considered.

Further, the dimple property of spatio-temporal random fields will be analyzed.
This dimple corresponds to a non-monotonic temporal behaviour of the correlation
function, which can be generated by so-called transport fields. These transport
fields and their relation to the dimple property will be investigated.
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1 Introduction

Spatial and spatio-temporal random processes play important roles in many re-
search fields, such as meteorology, geology, econometrics, environmetrics, and so-
ciology [16, 18, 33, 111, 24, 36]. These areas deal with phenomena that naturally
possess spatial or spatio-temporal dimensions, like temperature or the distribution
of ore in soil. Modelling such quantities as stochastic processes often helps for
inference or prediction tasks. A crucial property that has to be taken into account
is the geometry of the spatial domain of the processes, as this domain might be, for
example, a Euclidean space or a curved subset of a sphere.

In order to understand stochastic processes in time and space it is crucial to
have meaningful descriptions of their dependence structures. Such a description is
attained by associating a dependence measure with every pair of random vectors
corresponding to any two points in space or space-time. Then it is important to
use a dependence measure which is applicable in the specific situation, and which
admits a meaningful interpretation. On the one hand, not all dependence measures
are defined for all types of processes. A dependence measure might require the
process to possess specific properties, like the existence of second moments. On
the other hand, a dependence measure might fail to measure the predominant type
of dependence, which could be, for example, highly non-linear. Consequently, the
choice of the dependence measure is determined by the nature of the considered
process and the particular research question.

In the statistics literature, many concepts of dependence between random vari-
ables have been developed, like the well-known Pearson correlation coefficient,
Kendall’s τ or Spearman’s ρ [81, 57, 102]. A particularly important role plays
the Pearson correlation coefficient, which is a measure of linear dependencies, cf.
[112]. In many applications, researchers assume that the data generating process is
Gaussian, and the dependence structure of Gaussian processes is characterized by
the Pearson correlation function. The Pearson correlation function is the function
that assigns, to any two points in time and space, the Pearson correlation coefficient
between the corresponding random variables.

As positive definite functions correspond to Pearson correlation functions, the
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Chapter 1. Introduction

study of positive definite functions on domains such as Euclidean spaces or spheres
is an important part of spatial statistics. Knowing the properties of classes of
positive definite functions helps modelling the properties of realizations of random
fields. For example, it is well-known that a Gaussian stochastic process with sample
paths of a particular roughness corresponds to classes of positive definite functions
with certain smoothness properties, cf. [44, 93, 116]. A more complex case can
be found in Scheuerer and Schlather [94], who showed that random vector fields
in Euclidean spaces with curl- or divergence-free realizations can be characterized
by certain classes of covariance functions. Another example can be given for
spatio-temporal random processes: Kent, Mohammadzadeh, and Mosammam [58]
showed that the Gneiting class of nonseparable covariance functions [39] possesses
a certain non-monotonic behaviour, which they call the dimple property.

This work contributes to the spatial statistics literature in several ways. Motivated
by the work of Zhou [117], Chapter 2 introduces the distance correlation function
and the distance variogram as dependence measures for spatial processes. Both
dependence measures are based on the concept of distance correlation between
random vectors developed by Székely, Rizzo, and Bakirov [108]. The distance cor-
relation has the advantage that it is defined in cases where the Pearson correlation
coefficient is not, and that it is able to measure non-linear dependence. It is demon-
strated that the distance correlation function is a suitable dependence measure for
large classes of processes. In particular, stable processes are considered, which
constitute a generalization of Gaussian processes. Stable non-Gaussian processes
have no finite second moments, so that the Pearson correlation function is not
defined. It is shown that the distance variogram for stable processes with finite first
moments is a natural generalization of the usual variogram for Gaussian processes.
Furthermore, it is proved that the distance correlation function and the distance
variogram can be consistently estimated. The finite sample performance of these
estimators is analyzed in a simulation study.

Chapter 3 concerns the properties of isotropic positive-definite functions on d-
dimensional spheres, where for each dimension there exists a unique Gegenbauer
expansion. The relations between the Gegenbauer expansions are studied, and the
connection coefficients determining these relations are explicitly given.

In Chapter 4 the work of Scheuerer and Schlather [94] is extended to the spher-
ical domain. Specifically, it is analyzed how curl- and divergence-free Gaussian
random vector fields can be characterized by properties of their Pearson cross-
covariance functions. It is shown that univariate covariance functions can be
used to construct bivariate random processes that correspond to random vector
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processes without curls or divergences. To this end, the concept of stochastic
differential forms is applied.

The final Chapter 5 deals with the dimple property of certain spatio-temporal
correlation functions. This property was first described by Kent, Mohammadzadeh,
and Mosammam [58] who considered it to be counterintuitive, as the correlation
might be increasing with the time lag. However, there are natural processes with
transport effects that possess this behaviour.
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2 Distance correlation for random fields

The Pearson correlation coefficient – or the corresponding covariance – is undoubt-
edly the most frequently used dependence measure in spatial statistics, because of
the following reasons:

• The Pearson correlation coefficient has a clear interpretation in the context of
assessing a linear relationship between two random variables. That is, the more
linear the relationship between the variables, the higher is the absolute value
of their Pearson correlation coefficient. This property is widely used for linear
interpolation or extrapolation of spatial data to unobserved locations, which is
called kriging in the geostatistical context (cf., [61, 110]).

• It is well-known that the class of Pearson covariance functions is the same as
the class of positive definite functions, as every covariance matrix is symmetric
and positive semi-definite. Positive definite functions initially were analyzed
by Schoenberg [99], and, since then, they have been studied extensively by
researchers from several different areas. As a consequence, there are numerous
parametric models available for use as correlation functions, and this provides
researchers with much flexibility in modelling.

• In many cases, the random field (RF) generating the observed spatial data can
be assumed to be a centered Gaussian process.1 Such a process is completely
characterized by its Pearson covariance function, because it determines all finite-
dimensional distributions.

Despite its advantages, the Pearson correlation coefficient has properties that limit
its applicability, interpretability, and validity.

1A stochastic process {Z(t) : t ∈ T} on an index set T is called Gaussian if all of its finite-
dimensional distributions are Gaussian. In other words, for all integers n ≥ 1 and t1, . . . , tn ∈ T
the distribution of the random vector (Z(t1), . . . ,Z(tn))

t is n-variate Gaussian. In addition,
a Gaussian process {Z(t) : t ∈ T} is centered, if its mean function is constantly zero, i.e.,
E(Z(t)) = 0 for all t ∈ T .
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Chapter 2. Distance correlation for random fields

• It is not defined for random variables with heavy-tailed behaviour, i.e., random
variables without finite second moments.2

• It only measures linear dependence.

• It cannot be used to investigate the strength of the linear dependence between
random vectors with more than one component.

Concerning the first point, it is necessary in many cases to assume that the
data-generating process has heavy tails. Examples are applications in modeling
anomalous diffusion (e.g. [10]), hydrology, where Benson, Wheatcraft, and Meer-
schaert [8] modeled concentration profiles for tracer plumes in groundwater, or
finance, where Mandelbrot [70] found that certain daily price changes seemed
to have infinite variance. Further examples can be found in Adler, Feldmann,
and Taqqu [3], Uchaikin and Zolotarev [109] or Resnick [85], who investigated
heavy-tailed phenomena appearing in physics, finance, computer science, or signal
processing.

It is evident that the usual Central Limit Theorem cannot be applied to sums
of independent random variables with heavy tails. In other words, if (Yn)n∈N is a
sequence of independent and identically distributded (i.i.d.) random variables with
infinite variance, there are no sequences dn ∈ (0,∞) and an ∈ R such that

Sn :=
1

dn

n∑
i=1

Yi + an

converges in distribution to a Gaussian random variable. However, if there are
dn > 0, an ∈ R and a random variable X such that Sn converges in distribution to
X, then X necessarily follows a stable distribution, whose definition and properties
will be given in the following section.

The above convergence property emphasizes the importance of stable distribu-
tions as they can be interpreted as generalizations of Gaussian distributions. Fur-
ther, stable distributions are the fundamental solutions to fractional-order forms
of advection-dispersion equations [8] and they have been used to model spatial
risks in insurance [103]. Since stable distributions arise as limiting distributions of
appropriately normalized sums of random variables with possibly infinite variances,

2Note that this is not the most general definition used in the literature. Resnick [84] defined a
random variable X to be heavy-tailed if there exists some α > 0 such that P (X > x) = x−αL(x)

for x > 0, where L is a slowly varying function, i.e., limt→∞ L(tx)/L(t) = 1 for all x > 0. This
definition implies that X has infinite variance if α < 2.

6



they also have infinite variance in general. This implies that it is never justified
to use the Pearson correlation coefficient to investigate the dependence structure
between stable non-Gaussian random variables. Moreover, using the empirical
Pearson correlation for statistical inference might be misleading, as illustrated in
Subsection 2.1.3.

For these reasons, several different approaches were developed to define depen-
dence measures for stable processes. Examples are covariance-like functions (e.g.
[6]) or the covariation and the codifference (see [91] or [98, Section 11.2.4]). We
will describe in Subsection 2.1.1 the latter two in greater detail.

The aim of this chapter is to introduce the distance correlation function (DCF) as
a dependence measure for spatial stochastic processes. We show that the DCF has
interesting properties for statistical inference for many random fields, in particular,
for stable random fields. Distance correlation was introduced by Székely, Rizzo,
and Bakirov [108] as a dependence measure between random vectors and, since
then, has attracted much interest (cf., [27, 26, 117, 72, 88]). Its key features are:

• The applicability to random vectors with finite first but possibly infinite second
moments.

• It equals zero if and only if the random vectors are stochastically independent,
implying that it is able to measure non-linear dependencies.

• It is defined for random vectors with arbitrary dimensions. This allows us to
study the dependence between random vectors of different dimensions.

• The empirical distance correlation is simple to calculate and provides in many
cases a weakly consistent estimator of the population distance correlation.

Consequently, the distance correlation can be applied to random variables which
are heavy-tailed, in particular to stable distributions. In generalizing the approach
of Zhou [117], we will define and use the DCF to analyze the dependence structure
of stationary random fields. Further, we will introduce the distance variogram as a
natural generalization of the usual variogram in the case of stable random fields.
We will prove the consistency of the empirical distance correlation function as an
estimator for the DCF and illustrate its applicability in a simulation study.
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Chapter 2. Distance correlation for random fields

2.1 Stable processes and some limitations of the Pearson
correlation function

That the Pearson correlation coefficient yields no plausible dependence measure
for random processes without finite second moments is a well-known problem
in the statistical community. This problem has led to lots of research activity
with the aim of developing suitable dependence measures for such processes. A
particularly large and flexible class of heavy-tailed processes occurring naturally
in many situations is the class of stable processes. For this reason, we will use
members of this class in examples and simulations in the following sections. The
current section serves as preparation, as it contains definitions and results from the
theory of stable processes, and it ends with examples of simulated random fields
(RFs) where the use of the empirical Pearson correlation function leads to false
conclusions.

2.1.1 Stable distributions

The usual Central Limit Theorem shows that Gaussian distributions can be char-
acterized as the limiting distributions of appropriately normalized sums of i.i.d.
random vectors with finite second moments. If the second moments do not exist
then the limiting distributions are no longer Gaussian; instead, they are stable.

Many results and definitions of this subsection are drawn from the comprehen-
sive work of Samorodnitsky and Taqqu [91], which provides an in-depth treatment
of stable distributions and processes.

Here and in the remainder, we will use the notation U d∼ V to indicate that the
random vectors U and V have the same distribution.

Definition 2.1. Let X be a random vector with values in Rd and let the random
vectors X1, . . . ,Xn be independent copies of X. Then X is called stable, if for all
integers n ≥ 2 there exist bn > 0 and an ∈ Rd such that

n∑
i=1

Xi
d∼ bnX + an.

If in addition −X d∼ X, then the random vector X is called symmetric stable.

Corollary 2.1.3 in [91] shows that for every stable random vectorX the sequence
(bn)n∈N appearing in the definition above can always be chosen such that there
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2.1. Stable processes and some limitations of the Pearson correlation function

exists a unique 0 < α ≤ 2 with bn = n1/α. Hence, a (symmetric) stable random
vector is called (symmetric) α-stable. Here and in the sequel, the abbreviation SαS
refers to symmetric α-stable.

The probability density and distribution functions of α-stable random vectors are
only in few cases expressible in closed analytic forms. For example, if α = 2 then
the distribution is Gaussian; if α = 1 then it belongs to the Cauchy class. In most
other cases, the density and distribution functions are expressible only as series
expansions, cf. [109, Chapter 4].

By contrast, the characteristic functions of stable random vectors are always ex-
pressible in closed analytic form [91, Theorem 2.3.1], which we now state below in
Theorem 2.2. This characterization is particularly important for us because, as we
will see in Section 2.2, the distance correlation is defined in terms of characteristic
functions.

Here and in the following, we denote by 〈·, ·〉 the standard scalar product on the
corresponding Euclidean space.

Theorem 2.2. Let 0 < α ≤ 2. A random vector X with values in Rd is α-stable
if and only if there exists a finite measure Λ on the unit sphere Sd and a vector
µ ∈ Rd such that the characteristic function ϕX(t) = E exp (i〈t,X〉) , t ∈ Rd, takes
the following form:

(a) If α = 1 then

ϕX(t) = exp

[
−
∫
Sd
|〈t,u〉|

(
1 + i

2

π
( sign〈t,u〉) log |〈t,u〉|

)
Λ(du) + i〈t,µ〉

]
.

(b) If α 6= 1 then

ϕX(t) = exp

[
−
∫
Sd
|〈t,u〉|α

(
1− i ( sign〈t,u〉) tan(πα/2)

)
Λ(du) + i〈t,µ〉

]
.

The spectral representation (Λ,µ) is unique.

If we are given jointly α-stable distributed random variables3 X1, . . . ,Xd – mean-
ing that the random vector (X1, . . . ,Xd)

t is α-stable – the theorem above states

3Here and in the remainder of this thesis, the term random variable refers solely to univariate
quantities, i.e., if X is a random variable then it takes values in R. If a quantity is possibly
multivariate, we call it a random vector.
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Chapter 2. Distance correlation for random fields

that the dependence structure between these random variables is completely de-
termined by the index α, the spectral measure Λ, and µ. We will sometimes write
X ∼ Sα(Λ,µ) to indicate that a random vector X is α-stable with spectral repre-
sentation (Λ,µ).

Remark 2.3. For the case in which X is an SαS random vector, Theorem 2.4.3 in
[91] shows that the characteristic function of X takes the simpler form

ϕX(t) = exp

[
−
∫
Sd
|〈t,u〉|α Λ(du)

]
,

for all 0 < α ≤ 2.

Now let X be a α-stable random variable with spectral measure Λ. Since X is
univariate, Λ is concentrated on S1 = {−1, 1} and it directly follows from Theorem
2.2 that the characteristic function of X equals, for α 6= 1,

ϕX(t) = exp
[
−σα|t|α

(
1− iβ sign(t) tan

πα

2

)
+ iµt

]
and, for α = 1,

ϕX(t) = exp

[
−σα|t|α

(
1 + iβ

2

π
sign(t) log |t|

)
+ iµt

]
,

where

σ =
(
Λ({1}) + Λ({−1})

)1/α and β =
Λ({1})− Λ({−1})
Λ({1}) + Λ({−1})

.

Consequently, in this case the spectral measure Λ is characterized by the following
three parameters: the scale parameter σ ≥ 0, the skewness parameter β ∈ [−1, 1],
and the shift parameter µ ∈ R. If X is additionally symmetric then β = 0.

Similar to the multivariate case, we sometimes will write X ∼ Sα(σ,β,µ) to
indicate that a univariate random variable X is α-stable with scale σ, skewness β
and shift µ. If the univariate α-stable random variable X is additionally symmetric,
then Λ({1}) = Λ({−1}), implying β = 0, and the characteristic function takes for
all 0 < α ≤ 2 the form

ϕX(t) = exp(−σα|t|α).

Note that this representation yields immediately that X is Gaussian, resp. Cauchy

10



2.1. Stable processes and some limitations of the Pearson correlation function

distributed in the case α = 2, resp. α = 1.

Remark 2.4. Property 1.2.16 in [91] shows that stable random variables with
α < 2 are heavy-tailed. Specifically, let 0 < α < 2 and X ∼ Sα(σ,β,µ). Then

(1) E|X|p <∞ for all 0 < p < α, and

(2) E|X|p =∞ for p ≥ α.

Using characteristic functions, it is straightforward to show that linear combina-
tions of independen stable random variables are again stable [91, Properties 1.2.1
and 1.2.3]. Specifically, let Xi ∼ Sα(σi,βi,µi) for i = 1, 2 be independent. Then
X1 +X2 ∼ Sα(σ,β,µ) with

σ = (σα1 + σα2 )1/α, β =
β1σ

α
1 + β2σ

α
2

σα1 + σα2
, µ = µ1 + µ2, (2.1)

and

aX1 ∼ Sα(|a|σ1, sign(a)β1, aµ1), if α 6= 1,

aX1 ∼ S1(|a|σ1, sign(a)β1, aµ1 −
2

π
a log |a|σ1β1), if α = 1,

(2.2)

where a ∈ R.
Given several jointly α-stable distributed random variables, it is natural to seek

to define a meaningful dependence measure between them – a problem tackled by
several researchers. Press [83] introduced the association parameter, and this was
extended by Paulauskas [80] to the generalized association parameter. Miller [74]
developed the covariation for two jointly SαS random variables with 1 < α ≤ 2;
this was used by Samorodnitsky and Taqqu [91] to introduce the codifference, which
itself was generalized to the signed symmetric covariation coefficient by Garel and
Kodia [35].

Here we are interested in the codifference and the covariation. We note that
the codifference for α-stable processes is closely related to the distance variogram,
which will be introduced in Section 2.4.

Definition 2.5. Let X,Y be jointly distributed SαS random variables, where 1 <

α ≤ 2.

11



Chapter 2. Distance correlation for random fields

(a) The covariation of X and Y is defined as

[X,Y ]α =

∫
S2

u1 sign (u2)|u2|α Λ(du),

where Λ is the spectral measure of the stable random vector (X,Y )t.

(b) The covariation norm of X is defined as

|||X|||α = ([X,X]α)1/α.

Remark 2.6. (1) For α > 1, the covariation norm indeed is a seminorm on
certain vector spaces of jointly SαS random variables, cf. [91, Section 2.8].
Specifically, on these spaces the covariation norm is absolutely homogeneous,
i.e., |||λX|||α = |λ| |||X|||α for λ ∈ R; satisfies the triangle inequality, i.e.,
|||X + Y |||α ≤ |||X|||α + |||Y |||α; and |||X|||α = 0 if and only if X = 0 almost
surely.

(2) We also use the notation |||X|||α to denote the scale parameter of an SαS

random variable X with 0 < α ≤ 2. Corollary 2.7.6 in [91] shows that this
yields no conflict, because the covariation norm of an SαS random variable
X with 1 < α ≤ 2 equals its scale parameter σ.

Samorodnitsky and Taqqu [91] introduced the codifference as a dependence
measure between two jointly SαS random variables. Since it is based on the scale
parameter, it has the advantage over the covariation that α is allowed to be less
than one.

Definition 2.7. Let X,Y be jointly distributed SαS random variables, with 0 <

α ≤ 2. Then the codifference between X and Y is defined as

τ(X,Y ) = |||X|||αα + |||Y |||αα − |||X − Y |||
α
α.

Remark 2.8. Here we summarize some properties of the covariation and the co-
difference, cf. Theorems 11.1 and 11.2 in [98].

(1) Let X,Y ,Z be jointly α-stable random variables with 1 < α ≤ 2. Then the
following holds.

(i) For a, b ∈ R
[aX + bY ,Z]α = a[X,Z]α + b[Y ,Z]α,

12



2.1. Stable processes and some limitations of the Pearson correlation function

i.e., the covariation is linear in the first argument.

(ii) If X and Y are independent, then [X,Y ]α = 0.

(iii) If X and Y are Gaussian, i.e., α = 2, we have 2[X,Y ]α = Cov(X,Y ).

(2) Let X,Y be jointly α-stable with 0 < α ≤ 2. Then the following holds.

(i) The codifference is symmetric, τ(X,Y ) = τ(Y ,X).

(ii) If X and Y are independent, then τ(X,Y ) = 0. The converse statement
holds true if and only if 0 < α < 1 or α = 2.

(iii) If X and Y are Gaussian, then τ(X,Y ) = Cov(X,Y ).

(iv) Let (X,Y )t and (U ,V )t be SαS random vectors withX,Y ,U ,V ∼ Sα(σ, 0, 0)

for some σ > 0. If τ(X,Y ) ≤ τ(U ,V ) then for any c > 0

P (|X − Y | > c) ≥ P (|U − V | > c).

In other words, pairs of random variables with a higher codifference possess
a greater probability to have similar values.

2.1.2 Stable random processes

Bearing in mind the definition of stable random vectors, the concept of a stable
random process can be defined in a straightforward manner, see [91, Chapter 3],
[98, Chapter 11] or [104, Chapter 9].

Definition 2.9. Let {Z(t) : t ∈ T} be a univariate stochastic process with an
arbitrary index set T . The process is called α-stable, if for every integer d ≥ 1 the
random vector

Z = (Z(t1), . . . ,Z(td))
t

is α-stable distributed for each choice of t1, . . . , td ∈ T . If the distribution of Z is
symmetric also, then the process is called symmetric α-stable (SαS).

An important method for constructing and characterizing certain classes of stable
processes is via stable integrals of measurable functions f , which are constructed
as follows, cf. Section 11.2.3.2 in [98] and Section 3.4 in [91].

Here and in the remainder of this subsection, we refer to (E, E ,m) as a measure
space with a σ-finite measure m, and we define E0 := {A ∈ E : m(A) <∞}.
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Chapter 2. Distance correlation for random fields

An independently scattered random measure M is defined as a function on E0 such
that:

(i) M(A) is a random variable for all A ∈ E0;

(ii) for any integer n > 0 and pairwise disjoint A1, . . . ,An ∈ E0, the random
variables M(A1), . . . ,M(An) are independent;

(iii) for any sequence of pairwise disjoint sets A1,A2, . . . ∈ E0 with
⋃∞
i=1Ai ∈ E0,

there holds M(
⋃∞
i=1Ai) =

∑∞
i=1M(Ai) almost surely.

An independently scattered random measure M is called α-stable, if there exists a
measurable function β : E → [−1, 1], such that

M(A) ∼ Sα

(
m(A)1/α,

∫
A β(x)m(dx)

m(A)
, 0

)
(2.3)

for all A ∈ E0. The measure m is called the control measure of M and β is called its
skewness function. If the skewness function is identically zero, then M is SαS.

Now let f : E → R be a simple function, i.e., f(x) =
∑n

i=1 ai1Ai(x) with
A1, . . . ,An ∈ E0 being a collection of pairwise disjoint sets, 1Ai the indicator func-
tion on Ai, and a1, . . . , an ∈ R. Then the stable integral of f with respect to an
α-stable random measure M is defined as

I(f) =

∫
E
f(x)M(dx) =

n∑
i=1

aiM(Ai).

For a general function f contained in

Lα(E,m) :=

{
f : E → R such that

∫
E
|f(x)|αm(dx) <∞

}
, (2.4)

consider a sequence (fn)n∈N of simple functions with fn(x)→ f(x) for n→∞ and
all x ∈ E. Then the integral of f with respect to an α-stable random measure M
is defined as the stochastic limit of the sequence (I(fn))n∈N, which is also denoted
by I(f). This construction is well-defined, cf. [91, Section 3.4].

A consequence of this construction is the linearity of the stable integral [91,
Property 3.2.3].

14



2.1. Stable processes and some limitations of the Pearson correlation function

Proposition 2.10. Let 0 < α ≤ 2, (E, E ,m) be a measure space with σ-finite
measure m, and M an α-stable random measure with control measure m. Then
the stable integral with respect to M is linear, i.e., if f1, f2 ∈ Lα(E,m) then

λ1I(f1) + λ2I(f2) = I(λ1f1 + λ2f2), almost surely,

for all λ1,λ2 ∈ R.

Example 2.11. We derive the distribution of a stable integral of a simple function
f . Thus, let f(x) =

∑n
j=1 aj1Aj (x) with A1, . . . ,An ∈ E0 being a collection of

pairwise disjoint sets and non-zero a1, . . . , an ∈ R. Further, let M be an SαS-stable
random measure with control measure m. We assume α 6= 1, as this simplifies the
necessary calculations.

From the construction of the stable integral it follows that I(f) =
∑n

j=1 ajM(Aj),
which is a linear combination of independent α-stable random variables. Then
(2.3) together with (2.1) and (2.2) yields I(f) ∼ Sα(σ,β, 0) with scale parameter

σ =

 n∑
j=1

|aj |αm(Aj)

1/α

=

[∫
E
|f(x)|αm(dx)

]1/α

and skewness parameter

β =

∑n
j=1 βj sign(aj)|aj |αm(Aj)∑n

j=1 |aj |αm(Aj)

=

∑n
j=1 sign(aj)|aj |αm(Aj)m(Aj)

−1
∫
Aj
β(x)m(dx)∑n

j=1 |aj |αm(Aj)

=

∫
E β(x) sign(f(x))|f(x)|αm(dx)∫

E |f(x)|αm(dx)
.

In the following proposition we will see that it is not only possible to transfer
the above example to general integrable functions [91, Property 3.2.2], but also
that it is possible to construct multivariate random vectors via stable integrals [91,
Proposition 3.4.2].

Proposition 2.12. Let 0 < α ≤ 2 and (E, E ,m) be a measure space with σ-finite
measure m. Further, let M be an α-stable random measure with control measure

15



Chapter 2. Distance correlation for random fields

m and skewness function β.

(1) If f ∈ Lα(E,m) then for α 6= 1

I(f) ∼ Sα(σf ,βf , 0)

with

σf =

(∫
E
|f(x)|αm(dx)

)1/α

and

βf =

∫
E sign(f(x))|f(x)|αβ(x)m(dx)∫

E |f(x)|αm(dx)
.

Now let α = 1. If it is additionally assumed that∫
E

∣∣f(x)β(x) log |f(x)|
∣∣m(dx) <∞, (2.5)

then
I(f) ∼ S1(σf ,βf ,µf ).

where σf and βf are given as above and

µf = − 2

π

∫
E
f(x)β(x) log |f(x)|m(dx).

In the case in which M additionally is symmetric the stable integral I(f) is
an SαS random variable, for any 0 < α ≤ 2.

Note that condition (2.5) is automatically fulfilled if M is an SαS random
measure, as this implies β ≡ 0.

(2) Let n ≥ 1 be an integer and f1, . . . , fn ∈ Lα(E,m). If α = 1 we addi-
tionally assume that each function individually fulfills (2.5). Then the ran-
dom vector X = (I(f1), . . . , I(fn))t follows an α-stable distribution, where
I(f1), . . . , I(fn) are stable integrals with respect to M . In particular, the
characteristic function of X for α 6= 1 equals

ϕX(t1, . . . , tn)

= exp

[
−
∫
E

∣∣∣∣ n∑
j=1

tjfj(x)

∣∣∣∣α(1−iβ(x) sign

( n∑
j=1

tjfj(x)

)
tan

πα

2

)
m(dx)

]
,

16



2.1. Stable processes and some limitations of the Pearson correlation function

and for α = 1

ϕX(t1, . . . , tn)

= exp

[
−
∫
E

∣∣∣∣ n∑
j=1

tjfj(x)

∣∣∣∣(1+i
2

π
β(x) sign

( n∑
j=1

tjfj(x)

)
log

∣∣∣∣ n∑
j=1

tjfj(x)

∣∣∣∣)m(dx)

]
.

Again, the distribution of X is symmetric if M is symmetric.

The second part of this proposition implies immediately that it is possible to
construct stable random processes via stable integrals, as follows. Let T be an
index set and {ft : t ∈ T} a collection of functions in Lα(E,m), where 0 < α ≤ 2.
In the case α = 1 we also assume that (2.5) holds for each ft. If M is an α-stable
random measure with control measure m then

Z(t) := I(ft) =

∫
E
ft(x)M(dx), t ∈ T , (2.6)

is an α-stable stochastic process.

The representation of stable processes via stable integrals was studied extensively
by several researchers, for example by Kuelbs [62], Rosiński [90], Kanter [55],
Schilder [95], and Hardin [48]. A natural problem is to determine which α-stable
processes can be represented as stable integrals of the form (2.6). Samorodnitsky
and Taqqu [91] found several conditions for this to be true; here, we state only
their Proposition 3.11.3 (i) as this covers many situations appearing in spatial
statistics.

Proposition 2.13. Let {Z(t) : t ∈ T} be an SαS stochastic process on a separable
metric space T . If there is a countable subset T ′ ⊂ T such that {Z(t) : t ∈ T\T ′} is
continuous in probability then Z can be represented as (2.6).

Remark 2.14. (1) In the sequel, we will consider SαS moving average (MA)
processes Z defined as follows. Let f ∈ Lα(Rd,λ), where λ is the Lebesgue
measure on Rd. If M is an SαS random measure with control measure λ
then

Z(x) =

∫
Rd
f(x− y)M(dy), x ∈ Rd. (2.7)
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Chapter 2. Distance correlation for random fields

Note that SαS MA processes are strictly stationary4 and that their depen-
dence structure is completely determined by the kernel function f and the
stable measure M . For these reasons, we will use SαS MA processes in our
simulation studies in Section 2.6 to illustrate features of the DCF.

(2) From the construction of the stable integral via simple functions it follows that
a stable integral can be approximated with arbitrary precision by a weighted
sum of stable random variables. Hence, it is possible to use the integral
representation to simulate stable random variables and also to simulate real-
izations of stable processes.

Based on the covariation and the codifference given in Definitions 2.5 and 2.7, it
is possible to define the following dependence measures for stable random fields,
cf. [98, Section 11.2.4] and [91, Section 4.7].

Definition 2.15. Consider the strictly stationary SαS process {Z(x) : x ∈ Rd}.

(a) Let 1 < α ≤ 2. The covariation function of Z is defined as [Z(h),Z(0)]α for
h ∈ Rd.

(b) Let 0 < α ≤ 2. Then the codifference function of Z is defined as

τ(h) = 2|||Z(0)|||αα − |||Z(h)− Z(0)|||αα, h ∈ Rd.

2.1.3 Motivating examples

Resnick, Davis and Samorodnitsky, among others, demonstrated in several papers
how unreliable empirical estimates for the Pearson correlation function can be
in measuring the dependence structure of time series [22, 21, 14, 87, 86]. They
found two basic reasons for this. First, for certain ARCH (autoregressive conditional
heteroscedastic) or ARMA (autoregressive moving average) processes, the Pearson
sample correlation function is not able to measure non-linear dependencies in a
meaningful way. Second, the Pearson sample correlation function may converge to
a random limit for some processes with heavy tails.

4Let V be a vector space. A random field {Z(x) : x ∈ V } is defined to be strictly stationary
if for any integer n ≥ 1 and h,x1, . . . ,xn ∈ V the random vectors (Z(x1), . . . ,Z(xn))

t and
(Z(x1 + h), . . . ,Z(xn + h))t are identically distributed. In other words, the finite dimensional
distributions of Z are invariant with respect to shifts in V .
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2.1. Stable processes and some limitations of the Pearson correlation function

In the following we illustrate these phenomena in a similar manner for spatial
processes and also for certain time series. The aim is to motivate the usefulness
in data analysis of the empirical distance correlation function (EDCF), which will
be defined later in Subsection 2.2.2. In our examples, we will see that the EDCF
yields results matching our intuition and the visible properties of data sets much
better than the Pearson sample correlation function.

Remark 2.16. Recall the definition of the Pearson sample correlation function pρ for
a zero mean, second-order stationary5 stochastic process {Z(x) : x ∈ Zd}, which
is observed on the grid Γ = {1, . . . ,n}d. Let h ∈ Γ be the lag vector of interest and
define NΓ(h) = {x ∈ Γ : x+ h ∈ Γ}. Then

pρ(h) =

∑
x∈NΓ(h) Z(x)Z(x+ h)∑

x∈NΓ(h) Z(x)2
. (2.8)

Example 2.17. Consider the following one-dimensional ARCH(1) process, taken
from Section 3.2 in [14]. Let (εn)n≥1 be a sequence of i.i.d. standard normally
distributed random variables. Given a random variable Z0, we define the time
series Zn recursively as

Zn = εn(1 + 0.99Z2
n−1)1/2, n ≥ 1.

As Cohen, Resnick, and Samorodnitsky [14] pointed out, only a particular choice
of the initial distribution of Z0 makes this process strictly stationary. In this case,
de Haan, et al. [23] proved that the process Zn exhibits heavy-tailed behaviour,
as there exists a constant c > 0 such that P (Zn > z) ∼ cz−1.014. Cohen, Resnick,
and Samorodnitsky [14] dealt with the stationarity issue in their simulations by
setting Z0 = 0 and discarding the first 1 000 observations, which eliminates the
initial transient in the system. We use a similar approach in our simulations: we
set Z0 = 0, simulate 11 000 observations of Z and discard the first 1 000.

Figure 2.1 (a) shows the values of the sample correlation function (2.8) for 25

different realizations of Z. For lags greater than one the values are oscillating
randomly around zero. This shows that the Pearson sample correlation function
alone cannot explain the dependence structure of the process.

5Let V be a vector space. A stochastic process {Z(x) : x ∈ V } is called second-order stationary if its
mean function is constant, and if Cov(Z(x1),Z(x2)) depends only on the lag vector x1−x2, for all
x1,x2 ∈ V . Note that every strictly stationary process with finite second moments is also second-
order stationary. Further, every second-order stationary Gaussian process is also strictly stationary.
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(b)

Figure 2.1: (a) Values of the empirical Pearson correlation function and (b) the
EDCF for 25 different realizations of an ARCH(1) process.

By contrast, Figure 2.1 (b) shows the values of the EDCF for the same realiza-
tions, where the EDCF was calculated as in [117]. Its values are oscillating around
a rapidly decreasing function, satisfying our expectations on the dependence struc-
ture much better than the Pearson sample correlation function. This implies that
using the EDCF might lead to a more accurate understanding of the underlying
dependence structure than using the empirical Pearson correlation function.

Example 2.18. The example above can be generalized to RFs on N2 = {1, 2, . . . }2
by using results of Doukhan and Truquet [25]. They gave conditions on a measur-
able function g, such that

Z(j) = g
(
ε(j − s)s∈Zd

)
, (2.9)

is a strictly stationary autoregressive RF.6 In particular, it follows from their results

6We consider general RFs of type (2.9) in Section 2.5, where we call them transformation fields.
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2.1. Stable processes and some limitations of the Pearson correlation function

that the RF

Z(j) = ε(j)

[
1 + Z(j − e1)/5− Z(j − e2)/5 + Z(j − e1 − e2)/2

]
, j ∈ N2,

(2.10)

is strictly stationary. Here ε(j), j ∈ Z2, is a collection of i.i.d. random variables,
and e1 = (1, 0)t, e2 = (0, 1)t. For our simulations, we set Z(0) = Z(e1) =

Z(e2) = 0, simulate Z on the grid {1, . . . , 1050}2 and use the simulated values
on {1001, . . . , 1050}2 as the observation of Z. In what follows, we consider two
different distributions for the innovations ε(j).

(1) Let ε(j) ∼ N (0, 1). Figure 2.2 shows a simulated realization of model (2.10)
on the grid {1, . . . , 50}2. We analyze the dependence structure only for the
diagonal lag vectors (0, 0)t, (1, 1)t, . . . , (19, 19)t by using the Pearson sample
correlation function and the EDCF (see Subsection 2.2.2). Panel (a) in Figure
2.3 shows the Pearson sample correlation function for these lag vectors for
25 different realizations. We see no dependence at all, as the values of the
Pearson sample correlation function are very close to zero for all lag vectors
different from (0, 0)t.

By contrast, the EDCF for the same realizations and lag vectors is significantly
greater than zero for the lag vector (1, 1)t, as can be seen in panel (b). This
indicates strongly that the EDCF is a better tool for detecting dependencies
in this case.

(2) Now let ε(j) be an SαS random variable with α = 1.5. Figure 2.2, panel
(b) suggests that this model admits stronger dependence for diagonal lag
vectors. Again, the Pearson sample correlation function is not able to cap-
ture this behaviour, as shown in panel (c) of Figure 2.3. It is clearly visible
that the Pearson sample correlation function for the 20 diagonal lag vectors
(0, 0)t, (1, 1)t, . . . , (19, 19)t and for 25 different realizations is oscillating ran-
domly around zero.

As opposed to this, the EDCF for the same realizations and lag vectors reflects
far better our observations of diagonal dependencies. This can be seen in
Figure 2.3 panel (d), where the values for the EDCF decrease to zero for
increasing lag vectors.
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Chapter 2. Distance correlation for random fields
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Figure 2.2: Realizations of model (2.10) for two different types of innovations. In
panel (a), the innovations are standard normally distributed, in panel
(b), they are SαS with α = 1.5.

2.2 Basic concepts and definitions

The aim of this section is to give a formal definition of the DCF for multivariate
stochastic processes and to introduce its empirical version. To this end, we recall
in Subsection 2.2.1 the definition of the distance correlation between two random
vectors, given in [108], and use it in Subsection 2.2.2 to generalize this concept to
distance correlation functions for multivariate RFs. The latter is analogous to the
approach of Zhou [117] for multivariate time series.

2.2.1 Distance correlation for random vectors

Throughout this subsection, let X and Y be random vectors with finite mean
vectors, such that X takes values in Rp and Y values in Rq, where p, q are positive
integers. The characteristic functions for X and Y are given by

ϕX(t) = E exp(i〈t,X〉), resp. ϕY (s) = E exp(i〈s,Y 〉), t ∈ Rp, s ∈ Rq,

respectively, and
ϕX,Y (t, s) = E exp [i(〈t,X〉+ 〈s,Y 〉)] ,
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Figure 2.3: The Pearson sample correlation function and the EDCF for 25 different
realizations of the process (2.10) with two different innovations. Panels
(a) and (b) show the Pearson sample correlation function and EDCF for
normal innovations, while panels (c) and (d) show the Pearson sample
correlation function and EDCF for stable innovations. An integer i on
the x-axis corresponds to the diagonal lag vector (i, i)t.
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Chapter 2. Distance correlation for random fields

is the characteristic function of the random vector (X,Y )t.
The following definitions are taken from [108].

Definition 2.19. The distance covariance dCov(X,Y ) between X and Y is defined
via

dCov(X,Y )2 =
1

cpcq

∫
Rp

∫
Rq

∣∣ϕX,Y (t, s) − ϕX(t)ϕY (s)
∣∣2 dt ds

‖t‖p+1‖s‖q+1
, (2.11)

where cn = π(n+1)/2/Γ((n + 1)/2) is a normalizing constant for integers n ≥ 1.
Analogously to the case of the usual covariance, the distance variance of the random
vector X is defined as

dVar(X) = dCov(X,X). (2.12)

Further, the distance correlation between X and Y is defined as

dCorr(X,Y ) =
dCov(X,Y )√

dVar(X)dVar(Y )
, (2.13)

if dVar(X)dVar(Y ) 6= 0, and dCorr(X,Y ) = 0 otherwise.

As it is evident from the definition (2.11), the distance covariance measures, in
some sense, how strongly the characteristic function ϕX,Y differs from the prod-
uct of the marginal characteristic functions ϕXϕY . This can be used as a depen-
dence measure, because X and Y are stochastically independent if and only if
ϕX,Y = ϕXϕY . However, the distance covariance is not normalized and, hence,
not comparable for different pairs of random vectors. By contrast, the distance
correlation is appropriately normalized such that 0 ≤ dCorr(X,Y ) ≤ 1, with
dCorr(X,Y ) = 0 if and only if X and Y are stochastically independent [108, The-
orem 3]. This indicates that the distance correlation represents a meaningful way
to quantitatively assess the dependence between random vectors.

Empirical distance correlation

Suppose we have observed a sample (X,Y ) = {(X(1),Y (1)), . . . , (X(n),Y (n))} of
size n from the random vectors X and Y . We want to approximate empirically
the distance covariance. A natural way to define an empirical version of the dis-

24



2.2. Basic concepts and definitions

tance covariance would be to use (2.11) and substitute the involved characteristic
functions by their sample versions

pϕnX(t) =
1

n

n∑
k=1

exp
(
i〈t,X(k)〉

)
, pϕnY (s) =

1

n

n∑
k=1

exp
(
i〈s,Y (k)〉

)
and

pϕnX,Y (t, s) =
1

n

n∑
k=1

exp
(
i〈t,X(k)〉+ i〈s,Y (k)〉

)
.

The corresponding estimator is denoted as zdCovn(X,Y ). This estimator may seem
to have the disadvantage that it requires the calculation of an integral, which is only
numerically possible in many cases and, hence, makes the estimator unattractive.
Interestingly, Theorem 1 in [108] provides the surprising and beautiful result below,
showing that zdCovn(X,Y ) equals Vn(X,Y ), defined as follows.

Definition 2.20. Let (X,Y )t be a sample of size n from (X,Y )t. For 1 ≤ k, l ≤ n
define

akl = ‖X(k) −X(l)‖, a.l =
1

n

n∑
k=1

akl, ak. =
1

n

n∑
l=1

akl,

and

a.. =
1

n2

n∑
k,l=1

akl and Akl = akl − a.l − ak. + a..,

where ‖ · ‖ denotes the Euclidean norm on the corresponding Euclidean space. The
quantity Bkl is analogously defined using bkl = ‖Y (k) − Y (l)‖.

Then the estimator Vn(X,Y ) is determined via

Vn(X,Y )2 =
1

n2

n∑
k,l=1

AklBkl. (2.14)

Based on this estimator, an empirical version of the distance variance is obtained
as

Vn(X)2 = Vn(X,X)2 =
1

n2

n∑
k,l=1

A2
kl,
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Chapter 2. Distance correlation for random fields

and an empirical version of the distance correlation as

Rn(X,Y ) =
Vn(X,Y )√
Vn(X)Vn(Y )

,

whenever Vn(X)Vn(Y ) 6= 0 – otherwise Rn(X,Y ) = 0.7

Theorem 2.21. Let (X,Y ) be an i.i.d. sample of size n of the random vectors X
and Y . Then zdCovn(X,Y ) = Vn(X,Y ).

Remark 2.22. The following properties of the estimators Vn and Rn were shown
in [108].

• The empirical distance correlation satisfies 0 ≤ Rn(X,Y ) ≤ 1.

• If Rn(X,Y ) = 1, then Y is an orthogonal affine version of X. In other
words, there exist a vector a ∈ Rp, a real number b 6= 0 and an orthogonal
matrix C ∈ Rp×p, such that Y = a+ bXC.

• Let X and Y be random vectors with finite first moments8; and let (X,Y ) be
an i.i.d. sample of X and Y . Then the estimators Vn(X,Y ) and Rn(X,Y )

are strongly consistent, i.e., it holds almost surely that

lim
n→∞

Vn(X,Y ) = dCov(X,Y ) and lim
n→∞

Rn(X,Y ) = dCorr(X,Y ).

Remark 2.23. In performing computations, we will use a somewhat simpler form
of the empirical distance covariance. With Akl and Bkl from Definition 2.20, we
have

AklBkl =aklbkl − aklb.l − aklbk. + aklb..

− a.lbkl + a.lb.l + a.lbk. − a.lb..

− ak.bkl + ak.b.l + ak.bk. − ak.b..

+ a..bkl − a..b.l − a..bk. + a..b...

7Remark 2 in [108] shows that Vn(X)Vn(Y ) = 0 implies that X(1) = . . . = X(n) or Y (1) = . . . =

Y (n).
8We say that an m-variate stochastic process Z,m ≥ 1, has finite first moments, if for all x ∈ Rd all

the components of the mean vector E(Z(x)) are finite.
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2.2. Basic concepts and definitions

Summation over k and l leads to

n∑
k,l=1

AklBkl =
n∑

k,l=1

aklbkl − 2n
n∑
l=1

a.lb.l + n2a..b..,

where we have used the symmetry of akl and bkl.

2.2.2 Distance correlation function

We have seen in the preceding subsection that the distance correlation is a mea-
sure of the dependence between two random vectors, and which admits a simple
consistent estimator. In the next step, we use the distance correlation to define the
distance correlation function for univariate and multivariate RFs by generalizing
the definition for time series given in [117].

Definition 2.24. Let {Z(x) : x ∈ Rd} be a univariate, strictly stationary RF with
finite first moments. Then the distance covariance function of the process Z is

Cds(h) = dCov(Z(x),Z(x+ h)), h ∈ Rd, (2.15)

and the distance correlation function (DCF) of Z is

Rds(h) = dCorr(Z(x),Z(x+ h)), h ∈ Rd. (2.16)

Definition 2.25. Let {Z(x) : x ∈ Rd} be an m-variate, strictly stationary RF with fi-
nite first moments. For non-empty subsets P ,Q ⊆ {1, . . . ,m} with P = {i1, . . . , ip}
and Q = {j1, . . . , jq} define the random processes

{ZP (x) : x ∈ Rd} = {(Zi1(x), . . . ,Zip(x))t : x ∈ Rd}

and
{ZQ(x) : x ∈ Rd} = {(Zj1(x), . . . ,Zjq(x))t : x ∈ Rd}.

Then the cross-distance covariance function between ZP and ZQ is defined as

Cds
P ,Q(h) = dCov(ZP (x),ZQ(x+ h)), h ∈ Rd, (2.17)

and the cross-distance correlation function between ZP and ZQ is defined as

Rds
P ,Q(h) = dCorr(ZP (x),ZQ(x+ h)), h ∈ Rd.
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Chapter 2. Distance correlation for random fields

Note that these definitions do not depend on x ∈ Rd, as Z is strictly stationary.

Remark 2.26. One advantage of using the DCF as a dependence measure for RFs
is its wide applicability. The DCF is defined for general processes with finite first
moments on Rd, including non-Gaussian processes and processes with heavy tails,
as well as processes taking continuous or discrete values.

The cross-distance correlation function makes it possible even to analyze the
dependence structure of multivariate processes with differing numbers of compo-
nents. For example, if we have a forecast error field for several weather quantities,
we can calculate the cross-distance correlation between the univariate field of pre-
cipitation forecast errors with the bivariate field of temperature and wind speed
forecast errors.

Given the definition of the DCF, it is interesting to analyze how statistical esti-
mation can be done, because it is clear that finding consistent estimators is more
complicated than in the case of i.i.d. samples of pairs of random vectors. Recently,
Zhou [117] found consistent estimators for the DCF in the time series case and
we will use his approach in the following. Therefore, we restrict ourselves to the
estimation of Cds(h) in the case where the corresponding process Z is observed on
a regular grid Γ ⊂ Rd. For all h ∈ Rd, define NΓ(h) = {x ∈ Γ : x+h ∈ Γ} to be the
set of all points in Γ that remain in Γ after being shifted by h.

Definition 2.27. Let P ,Q ⊆ {1, . . . ,m} be non-empty and

(ZP ,Z ′Q) =
{(
ZP (x),ZQ(x+ h)

)t
: x ∈ NΓ(h)

}
,

where ZP ,ZQ are given as in Definition 2.25. Here we make a slight abuse of
notation, as ZP (x) refers to the observed value at the point x, and similarly for ZQ.

Then the empirical cross-distance covariance function and the empirical cross-
distance correlation function are defined as

VΓ
P ,Q(h) = Vn(ZP ,Z ′Q) and RΓ

P ,Q(h) = Rn(ZP ,Z ′Q), (2.18)

where n = |NΓ(h)|. If P = Q = {1, . . . ,m}, we drop the subscripts and write VΓ(h)

and RΓ(h) and call them the empirical distance covariance function and empirical
distance correlation function (EDCF) , respectively.

Remark 2.28. Using Definition 2.20, we see that the explicit form of the empirical
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cross-distance covariance function equals

VΓ
P ,Q(h)2 =

1

|NΓ(h)|2
∑

r,l∈NΓ(h)

ArlBrl.

Here we have

Arl = arl −
1

|NΓ(h)|
∑

l∈NΓ(h)

arl −
1

|NΓ(h)|
∑

r∈NΓ(h)

arl +
1

|NΓ(h)|2
∑

l,r∈NΓ(h)

arl,

where arl = ‖ZP (r) − ZP (l)‖. The quantity Brl is defined analogously with brl =

‖Z ′Q(r)−Z ′Q(l)‖, where the process Z ′Q(j) is the shifted process Z ′Q(x) = ZQ(x+h),
for x ∈ NΓ(h).

As mentioned earlier, Theorem 1 in [108] shows that we can also write

VΓ
P ,Q(h)2 =

1

cpcq

∫
Rp

∫
Rq

|pϕΓ
h(t, s)− pϕΓ(t) pϕΓ

h(s)|2

‖t‖p+1‖s‖q+1
dtds,

with the empirical characteristic functions

pϕΓ(t) =
1

|NΓ(h)|
∑

x∈NΓ(h)

exp(i〈t,Z(x)〉),

pϕΓ
h(s) =

1

|NΓ(h)|
∑

x∈NΓ(h)

exp(i〈s,Z(x+ h)〉), and

pϕΓ
h(t, s) =

1

|NΓ(h)|
∑

x∈NΓ(h)

exp
(
i〈t,Z(x)〉+ i〈s,Z(x+ h)〉

)
.

(2.19)

Example 2.29. In this example we consider the DCF for stable MA processes. We
will use the DCF in Section 2.6.3 to analyze the finite sample performance of the
EDCF.

Let Bd be the Borel-σ-algebra of Rd and λ the d-dimensional Lebesgue measure.
Assume that

Z(x) =

∫
Rd
f(x− y)M(dy), x ∈ Rd,

is an SαS MA process with respect to an SαS random measure M with control
measure λ. Here f ∈ Lα(Rd,λ) and 0 < α ≤ 2.

The process Z is strictly stationary, so the DCF is completely determined by
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Chapter 2. Distance correlation for random fields

ϕZ(0)(t) and ϕZ(0),Z(h)(t, s). By Proposition 2.12, these characteristic functions are
calculated as ϕZ(0)(s) = exp(−σα|s|α), where σ = (

∫
Rd |f(x)|α dx)1/α,

ϕZ(h),Z(0)(t, s) = exp

(
−
∫
Rd
|t f(h+ x) + s f(x)|α dx

)
, (2.20)

for α 6= 1, and

ϕZ(h),Z(0)(t, s) = exp

(
−
∫
Rd
|t f(h+ x) + s f(x)| log |t f(h+ x) + s f(x)| dx

)
,

for α = 1. These integrals can be evaluated numerically or analytically, depending
on the kernel f . The calculation of the EDCF then involves one further numerical
integration, which might be non-trivial. In particular, if α > 1 is close to one, the
convergence of this numerical integration becomes very slow, as we will illustrate
in Section 2.6.3.

2.3 Properties of the distance correlation function

One property of the Pearson correlation function which makes it a powerful tool in
many applications is its characterization as a positive definite function. Finding a
similar characterization for DCFs is a very deep problem, as general properties of
the integral in (2.11) are difficult to obtain. This task may become simpler when
we restrict the problem to certain classes of distributions (such as the Gaussian
distributions, see subsection 2.3.3), but as the involved integral is analytically
solvable only in some cases, the problem remains difficult. Moreover, known
analytical expressions are also complicated, see the work of Dueck, et al. [27]
for the multivariate Gaussian case and Dueck, Edelmann, and Richards [26] for
the case of random vectors with Lancaster distributions. Unfortunately, in our
particular case of interest, the α-stable distributions, no analytical expressions are
known for the distance correlation.

This illustrates the problem of deriving theoretical characterizations or properties
of the DCF. Nevertheless, we derive in this section results which can be obtained
without the need to characterize or find closed-form expressions for the DCF.

2.3.1 Evenness of the distance correlation function

As in the case of the Pearson correlation function, the DCF is even if the underlying
RF is strictly stationary.
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2.3. Properties of the distance correlation function

Theorem 2.30. Let {Z(x) : x ∈ Rd} be an m-variate, strictly stationary centered
RF and P ⊆ {1, . . . ,m} non-empty. Then

Rds
P ,P (h) = Rds

P ,P (−h),

for all h ∈ Rd.

Proof. Let P = {i1, . . . , ip} and ZP (x) = (Zi1(x), . . . ,Zip(x))t, for all x ∈ Rd. Using
(2.15) and (2.11) yields for h ∈ Rd,[

Cds(−h)
]2

=
1

c2
p

∫
Rp

∫
Rp

∣∣ϕZP (−h),ZP (0)(t, s)− ϕZP (−h)(t)ϕZP (0)(s)
∣∣2 dt ds

‖t‖p+1‖s‖p+1
. (2.21)

The strict stationarity of Z implies ϕZP (−h)(t) = ϕZP (0)(t) as well as ϕZP (0)(s) =

ϕZP (h)(s). This, together with

(ZP (−h),ZP (0))t
d∼ (ZP (0),ZP (h))t,

implies that

ϕZP (−h),ZP (0)(t, s) = ϕZP (0),ZP (h)(t, s) = ϕZP (h),ZP (0)(s, t),

where the last equality is a consequence from the definition of the characteristic
function. Substituting these results into (2.21) yields the evenness of the distance
covariance function and, hence, of the DCF.

Remark 2.31. Under the assumptions of the foregoing theorem, if P ,Q ⊆ {1, . . . ,m}
with P 6= Q then Cds

P ,Q is in general not even, which is illustrated by the following
example.

Let {Y (x) : x ∈ R} be a bivariate, second-order stationary, centered Gaussian
process with cross-covariance function

CY (h) := E
(
Y (h)t · Y (0)

)
=

(
C11(h) C12(h)

C21(h) C22(h)

)
, h ∈ R,

where C follows a parsimonious bivariate Matérn model introduced by Gneiting,
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Kleiber, and Schlather [43]. In particular, let

C11(h) = C22(h) =
1

8
|h|3K3(|h|),

and
C12(h) = C21(h) =

1

16
|h|3K3(|h|),

where K3 is a modified Bessel function of the second kind with parameter 3, cf.
[79, Section 10.25]. Theorem 3 in [43] shows that C is a valid cross-correlation
function. We define the bivariate process Z as

Z(x) = (Z1(x),Z2(x))t = (Y1(x),Y2(x− 1))t, x ∈ R,

which is a Gaussian process, too. Following Li and Zhang [65], Z is second-order
stationary and its cross-correlation function equals

CZ(h) =

(
C11(h) C12(h− 1)

C21(h+ 1) C22(h)

)
, h ∈ R.

Now let P = {1} and Q = {2}. Székely, Rizzo, and Bakirov [108] showed that
the distance correlation of two jointly Gaussian random variables is determined by
their Pearson correlation coefficient, see also Lemma 2.34 in Section 2.3.3 below.
Part (ii) of that lemma implies that two different non-negative Pearson correlation
coefficients yield two different distance correlation values. Then 1/2 = C12(0) 6=
C12(−2) ≈ 0.32 implies Cds

P ,Q(1) 6= Cds
P ,Q(−1), as Cds

P ,Q(1) is determined by C12(0)

and Cds
P ,Q(−1) by C12(−2).

2.3.2 Isotropy of the distance correlation function

An RF {Z(x) : x ∈ Rd} is called strictly isotropic if its finite-dimensional distribu-
tions are rotation invariant, i.e., if for all rotation matrices O ∈ SO(d)9 and all
x1, . . . ,xn ∈ Rd we have

(Z(x1), . . . ,Z(xn))t
d∼ (Z(Ox1), . . . ,Z(Oxn))t.

In the context of covariance functions, a weaker concept of isotropy is often used,
which is called isotropy in the wide sense or isotropy in second order: an RF {Z(x) :

9SO(d) denotes the special orthogonal group of Rd, i.e., the group of all orthogonal matrices in Rd×d

with determinant equal to one.
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2.3. Properties of the distance correlation function

x ∈ Rd} is called isotropic in the wide sense, if for all pairs x1,x2 ∈ Rd and rotation
matrices O ∈ SO(d) we have

E(Z(x1)) = E(Z(Ox1)) and Cov(Z(x1),Z(x2)) = Cov(Z(Ox1),Z(Ox2)).

It is clear that every strictly isotropic RF is also isotropic in the wide sense.
A slightly modified concept of wide-sense isotropy can be defined in the context

of DCFs.

Definition 2.32. A RF {Z(x) : x ∈ Rd} is called pairwise isotropic, if

(Z(x1),Z(x2))t
d∼ (Z(Ox1),Z(Ox2))t

for all pairs of points x1,x2 ∈ Rd and all rotation matrices O ∈ SO(d).

Obviously, every strictly isotropic field is pairwise isotropic and every pairwise
isotropic field is isotropic in the wide sense. Further, in the case of Gaussian RFs,
every wide-sense isotropic field is also strictly isotropic.

It is evident that pairwise isotropy is the weakest type of isotropy which implies
the DCF to be isotropic.

Remark 2.33. Let {Z(x) : x ∈ Rd} be a strictly stationary centered RF. If Z is
pairwise isotropic then its distance covariance function is isotropic, i.e.,

Cds(h) = Cds(Oh)

for all O ∈ SO(d) and h ∈ Rd.

2.3.3 Positive definiteness in the Gaussian case

As mentioned at the beginning of this section, it is difficult to find a useful charac-
terization of the class of admissible distance correlation functions for general RFs.
However, in the case of Gaussian RFs, it is possible to find such a characterization,
which relies on the following connection between the Pearson correlation coeffi-
cient and distance correlation for the case of bivariate Gaussian random vectors,
given in [108].

Lemma 2.34. Let (X,Y )t be a bivariate, centered, normally distributed random
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vector with Pearson correlation coefficient ρ = ρ(X,Y ) and variances Var(X) =

Var(Y ) = 1. Then the distance correlation dCorr(X,Y ) satisfies

(i) |dCorr(X,Y )| ≤ |ρ|, and

(ii) dCorr2(X,Y ) = ξ2(ρ), where

ξ2(ρ) =
ρ arcsin ρ− ρ arcsin(ρ/2) +

√
1− ρ2 −

√
4− ρ2 + 1

1 + π/3−
√

3
.

We claim that ξ2 is a positive definite function on [−1, 1]. To this end, we use the
following series expansion, proven in [26] (Proposition 5.1)

ζ2(ρ) := dCov(X,Y )2 =
4

π

∞∑
k=1

((2k − 3)!!)2

(2k)!

(
1− 2−(2k−1)

)
ρ2k,

where

n!! =


n(n− 2)(n− 4) · · · 2, if n ∈ N is even,

n(n− 2)(n− 4) · · · 1, if n ∈ N is odd,

1, if n = −1, or n = 0,

(2.22)

is the double factorial.
Now all coefficients in the series expansion of ζ2 – and, hence, in the series

expansion of ξ2 – are non-negative, implying that ξ2 is the pointwise limit of a
sequence of positive definite functions (compare [9, Section 3.1]). Consequently,
in the case of a Gaussian RF, the square of the DCF can be characterized as the
positive definite function ξ2 ◦ C, where C is positive definite.

2.3.4 Smoothness of the distance correlation function

The association between smoothness of the Pearson correlation function and the
mean-square smoothness of a RF {Z(x) : x ∈ Rd} with finite second moments is
well understood. This motivates us to examine if there is a similar relation between
smoothness properties of the DCF and the RF in question.

To this end, we recall the definition of mean-square continuity of a process (see
Section 1.4 in [116]).
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Definition 2.35. Let {Z(x) : x ∈ Rd} be an m-variate, centered stochastic pro-
cess, that is not necessarily strictly stationary. For r > 0, the process Z is called
continuous in r-th mean at x0 ∈ Rd if

lim
x→x0

E‖Z(x0)− Z(x)‖r = 0.

If this holds for all x0 ∈ Rd, the process Z is called continuous in mean of order r.
In particular, Z is called mean continuous, resp. mean-square continuous if r = 1,

resp. r = 2.

Remark 2.36. Let {Z(x) : x ∈ Rd} be a univariate, centered RF with finite second
moments. Then the continuity of

C(x, y) = Cov(Z(x),Z(y)), x, y ∈ Rd,

on the diagonal of Rd × Rd is sufficient and necessary for Z to be mean-square
continuous, cf. [1, Theorem 2.1].

Now let Z be a strictly stationary centered process. In the following, we will
show that mean continuity of Z and continuity of the DCF are indeed related, but
the relation is weaker than in the case of the Pearson correlation function.

Theorem 2.37. Let {Z(x) : x ∈ Rd} be an m-variate, strictly stationary centered
process. If Z is mean continuous then the distance covariance function Cds(h) is
continuous in zero.

Proof. Define
dw(t, s) = (c2

m‖t‖m+1‖s‖m+1)−1 dt ds

and the function f : R2m × Rd → R via

f(t, s,h) =
∣∣ϕZ(h),Z(0)(t, s)− ϕZ(h)(t)ϕZ(0)(s)

∣∣2.

Then, Cds(h) =
∫
R2m f(t, s,h) dw(t, s). First, we claim that

lim
h→0

∫
R2m

f(t, s,h) dw(t, s) =

∫
R2m

lim
h→0

f(t, s,h) dw(t, s), (2.23)

i.e., it is admissible to interchange the limit and the integral. For this, it is sufficient
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to show that

(i) the function (t, s) 7→ suph∈Rd |f(t, s,h)| is integrable with respect to dw(t, s),
and

(ii) the function h 7→ f(t, s,h) is continuous in h = 0, for almost all (t, s) ∈ R2m.

(Compare for example Theorem 6.27 in [60]). For item (i), we have

f(t, s,h) ≤
(

1− |ϕZ(h)(t)|2
)(

1− |ϕZ(0)(0)|2
)

,

which follows from the Cauchy inequality, cf. [108]. As Z is strictly stationary, the
above inequality implies

f(t, s,h) ≤
(

1− |ϕZ(0)(t)|2
)(

1− |ϕZ(0)(s)|2
)

and, hence,

sup
h∈Rd

|f(t, s,h)| ≤
(

1− |ϕZ(0)(t)|2
)(

1− |ϕZ(0)(s)|2
)

.

The right-hand side of this inequality is integrable with respect to dw(t, s), which
is a consequence of Lemma 1 in [108], Fubini’s Theorem and the existence of the
first moments of Z (cf. [108, (2.5)]). Therefore, (i) holds.

As Z is strictly stationary, we have ϕZ(h)(t) = ϕZ(0)(t). To show (ii), it remains
to prove that

lim
h→0

ϕZ(h),Z(0)(t, s) = ϕZ(0),Z(0)(t, s). (2.24)

But this holds true for all t, s ∈ Rm, because of the continuity theorem (for example,
Theorem 3 (e) in [31]) and the fact that

(Z(h),Z(0))t
d−→ (Z(0),Z(0))t, ‖h‖ → 0,

since Z is mean continuous.

Remark 2.38. Note that the mean continuity of Z in the above theorem is not a
necessary assumption. It suffices if Z is continuous in distribution, i.e.,

(Z(h),Z(0))t
d−→ (Z(0),Z(0))t, ‖h‖ → 0,
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which does not imply mean continuity in general. As continuity in distribution is
a weak type of continuity for RFs, it is unclear whether there are cases in which
continuity of the DCF implies a.s. continuity of the sample paths of Z. Such a
connection would be interesting, as the continuity of sample paths might represent
important physical properties in applications.

Remark 2.39. For univariate, second-order stationary Gaussian RFs Z on Rd with
covariance function C we have

Rds(h) = ξ(C(h)), h ∈ Rd,

where ξ is the function defined in Lemma 2.34. As ξ is continuous, the continuity
of Rds(h) is equivalent to the continuity of C(h). This underlines again that in
the case of Gaussian processes, the distance correlation provides almost the same
information about the process as the Pearson correlation. Note that it cannot
provide exactly the same information, as the DCF is always non-negative.

2.4 Distance variogram

In addition to the dependence measures mentioned in Subsection 2.1.1, there is
another interesting one for stable processes, introduced by Astrauskas, Lévy, and
Taqqu [6]. Their aim was to quantify dependence for certain univariate stable time
series {Z(x) : x ∈ R} with strictly stationary increments (so-called linear fractional
Lévy motions). To that end, they considered the increment process

Y (x) = Z(x+ 1)− Z(x), x ∈ R, (2.25)

and studied the behaviour of the function

r(t, s,x) = E [exp(itY (x) + isY (0))]− E[exp(itY (x))]E[exp(isY (0))],

for t, s ∈ R. Note that this function corresponds to the kernel of the distance
covariance between the random variables Y (x) and Y (0). Unlike the time series
case, there is no distinguished lag vector for spatial processes {Z(x) : x ∈ Rd} with
strictly stationary increments. Hence, we cannot define canonically an increment
process that corresponds to Y given in (2.25), nor can we study its DCF in the
spatial case.

Nevertheless, to circumvent this problem we consider the general spatial incre-
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ment process Y (x,h) = Z(x + h) − Z(x) for lags h ∈ Rd, and study its distance
variance. This approach is similar to the construction of the usual variogram γ,
which is defined as one-half of the usual variance of the increment process Y (x,h),
i.e.,

γ(h) =
1

2
Var(Y (x,h)), x,h ∈ Rd,

provided that Z is intrinsically stationary, i.e., E(Y (x,h)) = 0 for all x,h ∈ Rd and
Var(Y (x,h)) is independent of x ∈ Rd, for all h ∈ Rd.10 We shall call the new
dependence measure the distance variogram.

2.4.1 Definition

As with the usual variogram, the distance variogram can be defined with a weaker
assumption than strict stationarity of the process because the definition requires
only that the increment process is strictly stationary.

Definition 2.40. Let {Z(x) : x ∈ Rd} be an m-variate RF with constant mean and
let h ∈ Rd. Then Z is called intrinsically strictly stationary if the distribution of the
increment process

Y (x,h) = Z(h+ x)− Z(x), h ∈ Rd,

is independent of x.

If {Z(x) : x ∈ Rd} is an intrinsically strictly stationary RF, we omit the depen-
dence on x and write Y (h) for Y (x,h) whenever this causes no confusion.

Remark 2.41. It is evident that every strictly stationary process is also intrinsically
strictly stationary, but the opposite is not true. For example, consider the (Lévy)
fractional isotropic Brownian motion {B(x) : x ∈ Rd} [16, Section 5.4], with
covariance function

Cov(B(x),B(y)) = ‖x‖+ ‖y‖ − ‖x− y‖, x, y ∈ Rd.

This implies directly that B is not strictly stationary. Its variogram γ is given by
γ(h) = ‖h‖ for each h ∈ Rd, showing that the process is an intrinsically stationary

10Note that an intrinsically stationary process need not be strictly stationary, but every strictly
stationary process is intrinsically stationary.
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process. Moreover, as B is Gaussian, it is also intrinsically strictly stationary.

Definition 2.42. Let {Z(x) : x ∈ Rd} be a univariate, intrinsically strictly station-
ary RF and let {Y (h) : h ∈ Rd} be the corresponding increment process. Then the
distance variogram is defined as

Vds(h) = dVar(Y (h)), h ∈ Rd,

whenever this distance variance exists.

Analogous to the cross-distance correlation function, it is possible to generalize
the distance variogram to multivariate processes.

Definition 2.43. Let {Z(x) : x ∈ Rd} be an m-variate, intrinsically strictly sta-
tionary RF and let P ,Q ⊆ {1, . . . ,m} be non-empty, with P = {i1, . . . , ip} and
Q = {j1, . . . , jq}. For processes ZP and ZQ given as in Definition 2.25, we consider
the increment processes

YP (h) = ZP (h)− ZP (0) and YQ(h) = ZQ(h)− ZQ(0), h ∈ Rd.

Then the cross-distance variogram between ZP and ZQ is defined as

Vds
P ,Q(h) = dCov(YP (h),YQ(h)), h ∈ Rd,

provided it exists.

A sufficient condition for the existence of the (cross-) distance variogram is the
finiteness of the first moments of Z, which certainly is not a necessary condition: If
Z(x) ≡ Z for some random variable Z with infinite or undefined first moments,11

then Z(x) − Z(y) = 0 for all x, y ∈ Rd, implying the existence of the distance
variogram.

In the case of random processes with infinite first moments, the finiteness of the
distance variogram is not guaranteed. However, in cases of strictly stationary SαS
processes, it is possible to define a normalized distance variogram which exists for
all 0 < α ≤ 2, see the following subsection.

11An example for a distribution with infinite mean is any Pareto distribution with shape parameter
α ≤ 1; an example for a distribution with undefined mean is the Cauchy distribution.
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Remark 2.44. Consider a univariate, centered and second-order stationary Gaus-
sian RF {Z(x) : x ∈ Rd} with covariance function C(h) and C(0) = 1. Its increment
process fulfills

Y (h) = Z(h)− Z(0)
d∼ N (0, 2γ(h)),

where γ(h) = 1 − C(h) denotes the usual variogram for intrinsically stationary
processes [38]. With this we can calculate the distance variogram via

Vds(h)2 =
1

π2

∫
R

∫
R

(
e−2(t+s)2γ(h)2 − e−2t2γ(h)2

e−2s2γ(h)2
)2 dt

t2
ds

s2
,

which equals zero if γ(h) = 0. Otherwise, if γ(h) 6= 0 then we replace (t, s) by
(
√

2γ(h)t,
√

2γ(h)s) and obtain

Vds(h)2 = κ2γ(h)2,

with
κ2 =

2

π2

∫
R

∫
R

(
e−(t+s)2/2 − e−t2/2e−s2/2

)2 dt

t2
ds

s2

being a positive constant. Hence, the distance variogram is proportional to the
usual variogram.

Note that κ2 can be calculated explicitly: It is straightforward to show that

κ2 = 4 dVar(X)2,

where X is a standard normal random variable. The proof of Theorem 7 (ii) in
[108] implies

dVar(X)2 =
4

π

(
1 +

π

3
−
√

3
)

,

such that κ2 ≈ 1.605.

2.4.2 The distance variogram for SαS-processes

The Gaussian case in Remark 2.44 indicates that the distance variogram might
be a generalization of the usual variogram. Indeed, our investigations of the
distance variogram for intrinsically strictly stationary SαS processes will confirm
this assumption. Additionally, we will show that the distance variogram for this
class of processes possesses further interesting properties which are similar to the
properties of the usual variogram.
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Theorem 2.45. Let Z be a univariate, intrinsically strictly stationary SαS RF on
Rd with 1 < α ≤ 2. Then the distance variogram exists and equals

Vds(h) = κ(α)|||Z(h)− Z(0)|||α,

where

κ(α) =
1

π

(∫
R

∫
R

{
exp

[
− |t+ s|α

]
− exp

[
− (|t|α + |s|α)

]}2 dt

t2
ds

s2

)1/2

,

and |||·|||α denotes the covariation norm, cf. Definition 2.5.

Proof. Since (Z(h),Z(0))t is a bivariate SαS random vector, Theorem 2.2 yields
the characteristic function

E exp[itZ(h)− itZ(0)] = exp

[
−
∫
S2

|tu1 − tu2|α Λh(du)

]
= exp

[
−|t|α

∫
S2

|u1 − u2|α Λh(du)

]
,

where Λh is the spectral measure of the random vector (Z(h),Z(0))t. The last
equality implies immediately that the scale parameter of Z(h)− Z(0) is given by

|||Z(h)− Z(0)|||αα =

∫
S2

|u1 − u2|α Λh(du).

Consequently, we have

Vds(h)2 =
1

π2

∫
R

∫
R

{
exp

[
− |t+ s|α|||Z(h)− Z(0)|||αα

]
− exp

[
− (|t|α + |s|α)|||Z(h)− Z(0)|||αα

]}2 dt

t2
ds

s2
.

The change of variables

t t|||Z(h)− Z(0)|||α and s s|||Z(h)− Z(0)|||α

finally gives
Vds(h)2 = κ(α)2|||Z(h)− Z(0)|||2α,
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with

κ(α)2 =
1

π2

∫
R

∫
R

{
exp

[
− |t+ s|α

]
− exp

[
− (|t|α + |s|α)

]}2 dt

t2
ds

s2
. (2.26)

Remark 2.46. If α = 2, the number κ(2) given by (2.26) equals the constant κ
from Remark 2.44. This demonstrates that the distance variogram is a natural
generalization of the usual variogram in the case of SαS RFs.

A strength of the result above lies in the fact that κ(α) does not depend on
h but on α only. This implies that the result might be useful for investigating
connections between properties of the covariation norm and properties of the
empirical distance variogram. Moreover, it allows us to remove the dependence on
κ(α) by introducing the normalized distance variogram. Normalizing the distance
variogram by γds(0) yields

Vds(h)

Cds(0)
=

[
|||Z(h)− Z(0)|||α
|||Z(0)|||α

]1/α

, h ∈ Rd,

for RFs Z that satisfy the assumptions of the theorem above. In other words,
the constant κ(α) cancels and hence it is possible to extend the definition of the
normalized distance variogram to SαS RFs with α ≤ 1, i.e., cases where (2.26)
might be infinite and the distance variogram does not exist.

Definition 2.47. The normalized distance variogram for a univariate, strictly sta-
tionary SαS RF {Z(x) : x ∈ Rd} is defined as

γds(h) =

[
|||Z(h)− Z(0)|||α
|||Z(0)|||α

]1/α

, h ∈ Rd,

provided it exists.

The following relationship between the codifference and γds for SαS RFs with
0 < α ≤ 2 illustrates that γds is a meaningful dependence measure of these RFs.
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Remark 2.48. By Definitions 2.15 and 2.47 it follows

γds(h)2 =

(
2− τ(h)

|||Z(0)|||αα

)2/α

, h ∈ Rd, (2.27)

for strictly stationary, univariate SαS RFs Z with 0 < α ≤ 2.

Using the above remark, we can derive an asymptotic result for the normalized
distance variogram in the case of univariate, strictly stationary SαS MA processes
as defined in Section 2.1.2.

Theorem 2.49. Let {Z(x) : x ∈ Rd} be a univariate, strictly stationary SαS MA
process. Then

γds(h)→ 21/α, ‖h‖ → ∞.

Proof. For one-dimensional processes, this result was stated as Theorem 4.7.3 in
[91]. After making straightforward modifications, the proof there also applies to
the higher-dimensional case d > 1, as follows.

First, assume the function f , corresponding to the MA process Z, to be compactly
supported. For h ∈ Rd, we define the function fh(x) := f(x+ h),x ∈ Rd. If ‖h‖ is
sufficiently large then the functions f and fh have disjoint supports, which implies

|||Z(x)− Z(0)|||αα =

∫
Rd
|fh(x)− f(x)|α dx

=

∫
Rd
|fh(x)|α dx+

∫
Rd
|f(x)|α dx

= 2|||Z(0)|||αα.

Thus, for ‖h‖ → ∞ we obtain τ(h)→ 0 and, by (2.27), γds(h)→ 21/α.

Suppose that f does not have compact support. Let ε > 0 and choose a closed ball
Bε ⊂ Rd such that

∫
Rd |f(x)|α1Bcε(x) dx < ε, where 1Bcε is the indicator function

of the complement of Bε. For h ∈ Rd, we define the function (f1Bε)h(x) :=

f(x + h)1Bε(x + h),x ∈ Rd. As f1Bε has compact support, the first part of the
proof shows τε(h) = 0, for ‖h‖ sufficiently large, where τε is obtained from τ by
replacing f by f1Bε . Now Lemma 4.7.2 in [91] shows in our case that there is a
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finite C > 0 such that∫
Rd

∣∣|a(x)|α − |b(x)|α
∣∣dx ≤ C (∫

Rd
|a(x)− b(x)|α dx

)min{1,1/α}
,

for functions a, b ∈ Lα(Rd,λ); cf. (2.4). With this inequality, together with straight-
forward calculations, we obtain

|τ(h)| = |τ(h)− τε(h)| ≤ 2ε+ (4Cε)min{1,1/α}.

Consequently, τ(h)→ 0, respectively γds(h)→ 21/α, for ‖h‖ → ∞.

Remark 2.50. Let {Z(x) : x ∈ Rd} be a univariate, strictly stationary SαS process
with 0 < α < 1. Then the theorem above together with Remark 2.8 implies that if
γds(h) = 21/α for h ∈ Rd then Z(0) and Z(h) are independent.

It is well-known that the usual variogram is a conditionally negative definite
function.12 The next result shows that a similar statement holds for the distance
variogram for SαS processes if 1 ≤ α ≤ 2.

Theorem 2.51. For 1 ≤ α ≤ 2, let {Z(x) : x ∈ Rd} be a univariate, intrinsically
strictly stationary SαS RF. Then the normalized distance variogram is a condition-
ally negative definite function.

Proof. Let n ≥ 2 be an integer. Property 2.10.7 in [91] states that if (X1, . . . ,Xn)t

is an SαS-random vector, then the matrix T ∈ Rn×n with entries

Tij = |||Xi|||αα +
∣∣∣∣∣∣Xj

∣∣∣∣∣∣α
α
−
∣∣∣∣∣∣Xi −Xj

∣∣∣∣∣∣α
α

is positive definite. Consequently, the codifference function

τ(h) = |||Z(0)|||αα + |||Z(h)|||αα − |||Z(0)− Z(h)|||αα

is positive definite, which implies immediately that 2− τ(h)/|||Z(0)|||αα is condition-
ally negative definite. Now Corollary 2.10 in [9] shows that if ψ : R→ [0,∞) is a
conditionally negative definite function with ψ(0) ≥ 0, then ψβ is again condition-
12Let n ≥ 1 be an integer. A function f : Rd → R is called conditionally negative def-

inite if, for all x1, . . . ,xn ∈ Rd and a1, . . . , an ∈ R with
∑n
i=1 ai = 0, it holds that∑n

i=1

∑n
j=1 aiajf(xi − xj) ≤ 0.
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ally negative definite for β ∈ [0, 1]. Hence, it follows that

Vds(h)

Cds(0)
=

(
2− τ(h)

‖Z(0)‖αα

)1/α

is conditionally negative definite.

Evidently, the proof is not applicable in the case 0 < α < 1, indicating that we
only know that the normalized distance variogram is a power of a conditionally
negative definite function in that case.

Remark 2.52. Theorem 2.51 implies that under the assumption that the data
follows an SαS process with 1 ≤ α ≤ 2, the choice of fitting a parametric curve to
the empirical distance variogram is restricted to the case of conditionally negative
definite functions. This narrows the potential functions for fitting and establishes
further possibilities to check if the data fulfills the assumptions.

Unfortunately, we do not know if every member of the class of non-negative con-
ditionally negative definite functions yields a valid normalized distance variogram
for SαS processes with 1 ≤ α < 2. All we know is that for every conditionally
negative definite function γ there is some intrinsically stationary Gaussian process
with variogram γ (a consequence of Theorem 6.1.9 in [92]) and, hence, every
conditionally negative definite function is a valid normalized distance variogram
of an SαS process with α = 2. However, we expect that the class of admissible
positive definite functions shrinks with decreasing α.

We conclude this subsection by investigating the calculation of the normalized
distance variogram in the case of univariate SαS MA RFs. Remark 2.48 shows that
the computation of the normalized distance variogram only involves the calculation
of |||Z(h)− Z(0)|||α and |||Z(0)|||α. If {Z(x) : x ∈ Rd} is a univariate SαS MA RF,
then

Z(x) =

∫
Rd
f(x− y)M(dy)

for some admissible kernel f : Rd → R. By the linearity of the stable integral
(Proposition 2.10),

Z(h)− Z(0) =

∫
Rd

(f(h− y)− f(y))M(dy), almost surely,

which again is an SαS random variable for each h ∈ Rd. In the sequel, we assume
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the control measure of M to be the Lebesgue measure. Then Proposition 2.12
implies that

|||Z(0)|||αα =

∫
Rd
|f(y)|α dy, h ∈ Rd,

and analogously it follows that

|||Z(h)− Z(0)|||αα =

∫
Rd
|f(h− y)− f(y)|α dy, h ∈ Rd.

Lemma 2.53. Let {Z(x) : x ∈ Rd} be a univariate SαS MA process with kernel
function f . Assume the control measure of M to be the Lebesgue measure. Then

γds(h) =

[∫
Rd |f(h− y)− f(y)|α dy∫

Rd |f(y)|α dy

]1/α

, h ∈ Rd.

Note that the calculation of the normalized distance variogram of a univariate
SαS MA process involves the integration of expressions depending only on the
kernel function of the process. This is, in practice, often simpler as the calculation of
the distance correlation, as the evaluation of the latter might require the integration
of a function with a singularity at the origin. It might even be possible to find
analytical expressions for γds for certain kernel functions, which might provide
more insight into the structure of the class of distance variograms. However, this is
beyond the scope of this work, although it may be interesting for future research.

2.5 Consistency of the empirical distance correlation
function

We have provided, so far, only the definitions of the EDCF and the empirical dis-
tance variogram, but we have written nothing about their reliability as estimators.
This will be dealt with in the current section, where we show that these estimators
are consistent under certain assumptions. Here, we are guided by the work of
Zhou [117] who proved the consistency of the EDCF in the case of multivariate
time series. Throughout this section, Z denotes an m-variate, strictly stationary RF
on Zd, which is called a transformation field if it is representable as

Z(j) = g
(
ε(j − s) : s ∈ Zd

)
, j ∈ Zd, (2.28)
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where g : RZd → Rm is a measurable function and (ε(j))j∈Zd are i.i.d. real-valued
random variables.

Remark 2.54. We will analyze consistency in the remainder of this section only
for transformation fields. Thus, one might wonder how strong is this restriction.
For SαS RFs, we can provide at least a qualitative answer. Each realization of an
SαS RF on Rd can be approximated with arbitrary precision by a realization of a
certain SαS RF {Z(j) : j ∈ Zd}. Now Remark 2.14 (2) indicates that realizations
of Z can be approximated by sums of independent SαS random variables, i.e., by
realizations of SαS transformation fields. Consequently, it is not overly restrictive
to consider transformation fields in practical applications.

It is well-known that proofs of the consistency of estimators based on observing
a single realization of some RF always require assumptions on the RF, ensuring
that it provides a mixing structure or short-range dependence. In our case, we
will assume a short-range dependence assumption based on the so-called physical
dependence measure. This concept was introduced by Wu [114] for time series of
the form (2.28) (i.e., d = 1) and it was generalized recently by Machkouri, Volný,
and Wu [68] to transformation fields with d > 1. The basic idea is to measure the
influence of the input variable ε(0) on the transformation field.

Definition 2.55. Let the RF {Z(j) : j ∈ Zd} be a transformation field, i.e., it meets
(2.28) for a collection of i.i.d. random variables (ε(j))j∈Zd and some measurable
function g. Further, let (ε∗(j))j∈Zd be another collection of i.i.d. random variables
defined via

ε∗(j) =

{
ε(j), j 6= 0,

ε′(0), j = 0,

where ε′(0) is an independent copy of ε(0). Then, for r > 0 and each j ∈ Zd, the
physical dependence measure δj,r is defined as

δj,r = ‖Z(j)− Z∗(j)‖r =
[
E
(
|Z(j)− Z∗(j)|r

)]1/r
, (2.29)

with Z∗(j) = g
(
ε∗(j − s) : s ∈ Zd

)
.

Based on this, we say that a transformation field {Z(j) : j ∈ Zd} fulfills the
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q-short-range criterion,13 if there is a q > 0 such that∑
j∈Zd

δj,q <∞. (2.30)

This means, roughly speaking, that the effect of a single input variable on a point
of the transformation field vanishes at infinite distances and the cumulated effects
are bounded.

The statement and the proof of the consistency of the EDCF use the following
notation. First, similar to Zhou [117], the functions α and βk are defined as

α(t, j) = exp(itZ(j)) and βk(s, j) = exp(isZ(j + k)),

for j, k ∈ Zd and t, s ∈ Rm. Second, referring to Machkouri, Volný, and Wu [68],
the projection operator Pi is defined as follows: Let τ : N→ Zd be a bijection and
i ∈ Z and j ∈ Zd. Then

PiZ(j) = E(Z(j)|Fi)− E(Z(j)|Fi−1),

where Fi = σ(ε(τ(l)) : l ≤ i) is the σ-algebra generated by the set of random
variables {ε(τ(l)) : l ≤ i}. 14,15

Theorem 2.56. Let {Z(x) : x ∈ Rd} be a univariate, strictly stationary transfor-
mation field, such that Z fulfills the q-short-range criterion (2.30) and ‖Z(x)‖q =

(E|Z(x)‖q)1/q <∞ for some q > 1. Further, assume that we have samples of Z on
the lattice

Γ = {−n,−n+ 1, . . . ,n− 1,n}d, n ∈ N.

Then
VΓ(k)

p−→ Cds(k), n→∞,

for all k ∈ Zd. In other words, the empirical distance covariance function is a
weakly consistent estimator for the distance covariance function.

In the proof we will use the following Lemma.

13Machkouri, Volný, and Wu [68] called RFs fulfilling this criterion q-stable. As this notation could
be confused with the term ‘α-stable’, we use a different term.

14With the properties of the conditional expectation and Fi−1 ⊂ Fi it is straightforward to check
that Pi(Pi(Z(j))) = Pi(Z(j)), showing that Pi is indeed a projection operator.

15Note that Fi = σ{∅} is the trivial σ-algebra for any integer i < 0.
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2.5. Consistency of the empirical distance correlation function

Lemma 2.57. Let τ : N → Zd be bijective. For all j ∈ Zd, l ∈ Z, η ∈ (0, 1] and
q ≥ 1, the following inequalities hold.

‖Plα(t, j)‖q ≤ 22−η|t|η[δ(j − τ(l), ηq)]η

‖Plα(t, j)βk(s, j)‖q ≤ 22−η (|t|η[δ(j − τ(l), ηq)]η + |s|η[δ(j + k − τ(l), ηq)]η)

Proof of Lemma 2.57: Note that Lemma 1 in [68] implies

‖Plα(t, j)‖q ≤ ‖α(t, j)− α∗(t, j)‖q,

where α∗(t, j) = exp(itZ∗(j)). With this the proof is completely analogous to the
proof of Lemma 1 in [117].

Proof of Theorem 2.56. The proof follows the lines of the proofs of Theorem 1 in
[117] and Theorem 2 in [108]. Note that k ∈ Zd is fixed but arbitrary and Γ is
assumed to be ‘big’ enough, such that k ∈ Γ. Further, we assume without restriction
that 1 < q ≤ 2. In the following, we use the notations dw = (c2

1|t|2|s|2)−1 dt ds,
and

pζΓ(t, s) = pϕΓ
k (t, s)− pϕΓ

k (t) pϕΓ(s),

ζ(t, s) = ϕZ(k+j),Z(j)(t, s)− ϕZ(k+j)(t)ϕZ(j)(s),

with the empirical characteristic functions given as in (2.19). For ∆ > 0 the set
D(∆) is defined to be

D(∆) = {(t, s) ∈ R× R : ∆ ≤ |t|, |s| ≤ 1/∆},

and the empirical and theoretical distance covariances ‘restricted’ to D(∆) are
defined as

VΓ
∆(k) =

∫
D(∆)

|pζΓ(t, s)|2 dw and Cds
∆ (k) =

∫
D(∆)

|ζ(t, s)|2 dw.

For all t, s ∈ R we have∣∣∣|pζΓ(t, s)|2 − |ζ(t, s)|2
∣∣∣ =

∣∣∣(|pζΓ(t, s)|+ |ζ(t, s)|
)(
|pζΓ(t, s)|+ |ζ(t, s)|

)∣∣∣
≤ 4

∣∣∣pζΓ(t, s)− ζ(t, s)
∣∣∣

= 4

[
pϕΓ
k (t, s)− ϕZ(k+j),Z(j)(t, s) + ϕZ(k+j)(t)ϕZ(j)(s)
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Chapter 2. Distance correlation for random fields

+ pϕΓ(s)ϕZ(k+j)(t)− pϕΓ(s)ϕZ(k+j)(t)− pϕΓ
k (t) pϕΓ(s)

]
≤ 4 [T1 + T2 + T3],

where

T1 =
∣∣∣pϕΓ
k (t, s)− ϕZ(k+j),Z(j)(t, s)

∣∣∣
T2 =

∣∣∣pϕΓ(s)
(

pϕΓ
k (t)− ϕZ(k+j)(t)

)∣∣∣
T3 =

∣∣∣ϕZ(k+j)(t)
(

pϕΓ(s)− ϕZ(j)(s)
)∣∣∣ .

Note that the first inequality above is a consequence of the reverse triangle inequal-
ity and the fact that |pϕΓ

k (t, s)| ≤ 2 and |ζ(t, s)| ≤ 2, for all t, s ∈ R and all integers
n > 0.

In a first step, we show that |VΓ
∆(k) − Cds

∆ (k)| p−→ 0 and, to this end, it suffices
to show that ‖VΓ

∆(k)− Cds
∆ (k)‖q → 0.

Let τ : N→ Zd be a bijection and define

ΨΓ,l(t, s) :=
∑

j∈NΓ(k)

Pτ−1(j+k−l) (α(t, j)βk(s, j)) .

We show that the summands of ΨΓ,l(t, s) form a martingale difference sequence
for each l ∈ Zd. Consider the sequence{

Pτ−1(j+k−l) (α(t, j)βk(s, j)) ,Fτ−1(j+k−l)

}
τ−1(j+k−l)

. (2.31)

Since τ is bijective, it is possible to arrange the indices τ−1(j + k − l) for all
j ∈ NΓ(k) := {j ∈ Γ : j + k ∈ Γ} in increasing order and rename them by the
following indices

ι1 < ι2 < · · · < ιnk ,

where nk := |NΓ(k)|. With this ordering, sequence (2.31) becomes adapted, mean-
ing that Pι is Fι-measurable for every ι1 ≤ ι ≤ ιnk . Furthermore, from the defini-
tion of Pι and the Law of Total Expectation it follows that

E
(
Pιr (α(t, ιr)βk(s, ιr)) |Fιr−1

)
= 0, r ∈ {2, . . . ,nk},

and hence the summands of ΨΓ,l(t, s) form a martingale difference sequence. Ap-
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2.5. Consistency of the empirical distance correlation function

plying Burkholder’s inequality (cf. equation (1.1) in [89]) yields the existence of a
finite positive constant Aq depending only on q, such that

‖ΨΓ,l(t, s)‖qq ≤ AqE

(
nk∑
i=1

∣∣Pιi(α(t, ιi)βk(s, ιi))
∣∣2)q/2 .

This in concert with q ≤ 2 yields

‖ΨΓ,l(t, s)‖qq
Aq

≤ E

(
nk∑
i=1

∣∣Pιi(α(t, ιi)βk(s, ιi))
∣∣2)q/2

≤ E
nk∑
i=1

∣∣Pιi(α(t, ιi)βk(s, ιi))
∣∣q,

which, by Lemma 2.57, is less than or equal to(
2

∆

)q
nk
[
δ(l − k, q) + δ(l, q)

]q
.

Consequently, the assumption that Z satisfies the q-short range criterion together
with the Minkowski inequality imply that the series

∣∣∑
l∈Zd ΨΓ,l(t, s)

∣∣ converges
absolutely in q-th mean. Moreover, the limit is nkT1, which can be seen as follows.
We have

E
(
α(t, j)βk(s, j)|F−1

)
= E

(
α(t, j)βk(s, j)

)
= ϕZ(k+j),Z(j)(t, s),

since F−1 is the trivial σ-algebra, and

E
(
α(t, j)βk(s, j)|F∞

)
= pϕΓ

k (t, s).

Thus, a reordering of the series shows∑
l∈Zd

ΨΓ,l(t, s)
q
= nkE

(
α(t, j)βk(s, j)|F∞

)
− nkE

(
α(t, j)βk(s, j)|F−1

)
,

meaning equality of both sides in the q-th mean sense. Therefore, we find that

nk‖T1‖q ≤ κn1/q
k ,
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Chapter 2. Distance correlation for random fields

that is,
‖T1‖q ≤ κn1/q−1

k .

Here and in the remainder of the proof, κ denotes a positive constant with possibly
different values in different contexts.

It follows in a similar manner that

‖T2‖q ≤ κn1/q−1
k and ‖T3‖q ≤ κn1/q−1

k ,

which results in

‖VΓ
∆(k)− Cds

∆ (k)‖q ≤ 4

∫
D(∆)

(
‖T1‖q + ‖T2‖q + ‖T3‖q

)
dw ≤ κn1/q−1

k , (2.32)

yielding |VΓ
∆(k)− Cds

∆ (k)| p−→ 0 for all k.
Since |Cds

∆ (k)− Cds(k)| → 0 for ∆→ 0, it suffices to show that in probability

lim sup
∆→0

lim sup
nk→∞

|VΓ(k)− VΓ
∆(k)| = 0, k ∈ Zd,

i.e., the restricted empirical distance covariance uniformly converges in probability
to the unrestricted one. For ∆ > 0,

|VΓ
∆(k)− VΓ(k)| =

∣∣∣∣∣
∫
D(∆)

|pζΓ(t, s)|2 dw −
∫
R2

|pζΓ(t, s)|2 dw

∣∣∣∣∣
≤
∫
|t|<∆

|pζΓ(t, s)|2 dw +

∫
|t|>1/∆

|pζΓ(t, s)|2 dw

+

∫
|s|<∆

|pζΓ(t, s)|2 dw +

∫
|s|>1/∆

|pζΓ(t, s)|2 dw.

Consider the first summand on the right-hand side. By using exactly the same
arguments as in the proofs of Theorem 2 in [108] and Theorem 1 in [117] it can
be shown that there is a constant κ > 0 such that

∫
|t|<∆

|pζΓ(t, s)|2 dw ≤ κ∆r/2 2

nk

 ∑
j∈NΓ(k)

(
|Z(j + k)|+ E|Z(0)|

)
× 2

nk

 ∑
j∈NΓ(k)

(
|Z(j + k)|1+r/2 + E|Z(0)|1+r/2

) (2.33)
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2.5. Consistency of the empirical distance correlation function

with r = q − 1. Similar arguments as in the proof of (2.32) lead to

2

nk

∑
j∈NΓ(k)

|Z(j + k)| p−→ E|Z(0)|

and
2

nk

∑
j∈NΓ(k)

|Z(j + k)|1+r/2 p−→ E|Z(0)|1+r/2,

implying together with (2.33) that there is a constant κ > 0 such that in probability

lim sup
nk→∞

∫
|t|<∆

|pζΓ(t, s)|2 dw ≤ κ∆r/2E|Z(0)|E|Z(0)|1+r/2.

Consequently, in probability

lim sup
∆→0

lim sup
nk→∞

∫
|t|<∆

|pζΓ(t, s)|2 dw = 0.

Now consider
∫
|t|>1/∆ |pζ

Γ(t, s)|2 dw. The proof of Theorem 2 in [108] shows that
this can be bounded by

16∆
2

nk

∑
j∈NΓ(k)

(
|Z(j + k)|+ E|Z(0)|

)
,

which yields in probability

lim sup
∆→0

lim sup
nk→∞

∫
|t|>1/∆

|pζΓ(t, s)|2 dw = 0,

by using the same arguments as above.

The uniform convergence of the other two summands in (2.33) can be shown in
the same way. Therefore, the proof is complete.

Corollary 2.58. Under the assumptions of Theorem 2.56, the empirical distance
correlation is a consistent estimator.

Remark 2.59. (1) Making appropriate adjustments in the proof of Theorem 2.56
implies that the empirical cross-distance covariance function is a consistent
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estimator.

(2) Note that we have proved the consistency of the EDCF for a certain case of
increasing domain asymptotics. That is, we assumed that the observed area
increases with the number of observed points, while the distances between
those points remained the same. However, the proof of Theorem 2.56 does
not imply the consistency of the EDCF under infill asymptotics, where the
observed area remains the same but the number of observed points within
this area increases. The results of Section 2.6.2 will show that the EDCF
indeed is not consistent under infill asymptotics.

Consistency of the empirical distance variogram

If {Z(j) : j ∈ Zd} is a transformation field, i.e., it satisfies (2.28), then the in-
crement process Y (j) = Z(k + j) − Z(k), j ∈ Zd, also is a transformation field.
Although the normalized distance variogram may be defined for RFs with infinite
or undefined first moments, Theorem 2.56 implies the consistency of the empirical
distance variogram only for RFs with q-short-range increment process and finite
central moments of order q for some q > 1.

Corollary 2.60. Let q > 1. The empirical distance variogram is a consistent esti-
mator for univariate, strictly stationary transformation fields {Z(j) : j ∈ Zd} with
q-short-range increment process Y satisfying ‖Y (0)‖q <∞.

2.6 Finite sample performance

The applicability of the DCF to RFs without finite second moments or with a highly
non-linear dependence structure is appealing for several research areas, such as
hydrology or climate sciences [59]. In fact, the DCF can reveal structural dependen-
cies that might be overlooked if one uses other dependence measures, as we have
illustrated in Section 2.1.3. A crucial measure of the usefulness of the distance
correlation function and the distance variogram is the finite sample performance of
their estimators. For this reason, we apply the empirical distance correlation func-
tion (EDCF) and the empirical distance variogram to simulated data from white
noise, Gaussian, SαS, and max-stable fields, and we analyze the dependence of
their performance on the sample sizes. In particular, a goal of this section is to find
heuristic rules to determine when the EDCF approximates the population DCF.
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2.6.1 White noise processes

A spatial white noise process {Z(x) : x ∈ Rd} possesses a very simple dependence
structure. This process consists of a collection of independent and identically
distributed random variables, which implies that Z(x) is independent of Z(y) for
each x 6= y, and that Z is strictly stationary. In other words, the DCF is given by

Rds(h) =

{
1, h = 0,

0, h 6= 0.

Although it is relatively straightforward to analyze white noise processes via the
EDCF, it helps understand its finite sample performance.

In the following example, we simulate Gaussian white noise processes Z on
grids Γ = {1, . . . ,n}2 for different integers n > 1 and calculate the EDCF. Note
that it makes no difference for white noise processes if we use increasing domain
or infill asymptotics: both types are equivalent in this case because there is no
stochastic dependence between different points. Hence, although we formally use
infill asymptotics, we expect the estimates to get more reliable for increasing n.

As a spatial white noise process is strictly stationary and isotropic, we display
in Figure 2.4 the EDCF as a function of the distance. To obtain a single value for
each distance, we calculate the mean of all values of the EDCF corresponding to
lag vectors with the same length.16 It can be seen that, for all grids, the empirical
distance correlation:

(i) equals one for distance zero;

(ii) is close to zero for sufficiently small non-zero distances;

(iii) and increases with increasing distance.

Point (i) holds by construction and Point (ii) can be explained as follows. The
EDCF is always non-negative, and, for a given lag vector, equals zero only if all
observations separated by this lag vector are equal, cf. Subsection 2.2.1. Conse-
quently, we expect the EDCF for samples of white noise processes to have a certain
level greater than zero for non-zero distances. In our observations, the level of the
EDCF for small non-zero distances depends on n and decreases for increasing n.
For n = 10 it is approximately 0.2, which differs strongly from the theoretical value
zero, showing the poor finite sample performance in this case. For n = 30,n = 50

16We will use this procedure in the remainder of this section for all isotropic processes.

55



●

●
● ●

●

●

●

● ●

●

●

●

●
●
●

●

●

●

●●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

distance

em
pi

ric
al

 d
is

ta
nc

e 
co

rr
el

at
io

n

(a) n = 10

●

●●
●
●●●●●

●
●●●

●●●●●
●
●●
●●

●
●
●●●●●

●●
●
●●●●●

●
●
●

●
●●●●
●●
●●●●
●●●●●●●●●●●●

●
●

●
●
●●●●
●
●●●●●●●●●

●●
●
●●
●●●

●

●

●
●●

●

●
●

●●

●●
●
●
●●

●
●

●●●●
●
●●

●

●
●●●●
●●
●●●●●
●●●●
●
●●●●
●●
●●
●
●
●
●
●
●●●●
●●●●●●●●●●

●
●

●

●

●●●

●

●

●

●●●

●●●●
●
●●
●
●●●●
●●●●●●
●

●●

●
●
●
●

●

●●
●
●
●
●
●●
●●
●●
●

●

●
●●●●

●
●●
●

●

●
●

●

●

●

●
●
●

●
●●

●●●

●

●●

●

●

●
●

●
●

●

●●
●
●
●●●●●

●

●●
●

●
●
●

●●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●
●●

●

●

●

●
●●

●

●
●
●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

distance

em
pi

ric
al

 d
is

ta
nc

e 
co

rr
el

at
io

n

(b) n = 30
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Figure 2.4: Empirical isotropic distance correlation, plotted against the Euclidean
distance, ‖h‖, for Gaussian white noise processes simulated on four
different grids {1, . . . ,n}2.
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2.6. Finite sample performance

and n = 100 the level equals approximately 0.07, 0.04, and 0.02, which is in all
cases sufficiently close to zero.

Point (iii) seems to be a contradiction, as we do not expect the EDCF to increase
with increasing distance. However, the behaviour can be explained by the fact that
for increasing distances the number of data points used to calculate the empirical
distance correlation decreases. Hence, the EDCF for large distances is calculated
by using only few sample points, making the EDCF an unreliable estimator for
large distances. For distances greater than zero and smaller than n/2 the empirical
distance correlation remains roughly the same. As a consequence, we consider the
EDCF an unreliable estimator for distances greater than n/2, if we have samples of
isotropic fields on the grid {1, . . . ,n}2.

2.6.2 Gaussian fields

As mentioned in Subsection 2.3.3, the DCF for Gaussian RFs can be expressed in
closed analytical form. This implies that Gaussian RFs constitute a large class of
RFs with non-trivial dependence structure and explicitly given DCF – a fact we will
use to investigate the finite sample performance of the EDCF in cases of increasing
domain and infill asymptotics. These two types are compared, as we wish to obtain
deeper insight into the behaviour of the EDCF. We expect that the EDCF converges
to the true DCF in the case of increasing domain asymptotics, as stated in Theorem
2.56. In the case of infill asymptotics, we do not expect convergence, analogously
to the case of the usual variogram.

By investigating these asymptotics, we obtain an understanding of how the
behaviour of the EDCF depends on the ratio of the length scale of the underlying
process to the size of the observed area. We believe that this behaviour may be
useful for judging the accuracy of an estimate of the DCF in a given application.

Increasing domain asymptotics

For the proposed investigation, we calculate the EDCF for a simulated centered
Gaussian process possessing the Matérn correlation function with the parameteri-
zation introduced in Handcock and Wallis [46],

C(h) = ‖
√

2h‖K1(‖
√

2h‖), h ∈ R2,

where K1 is the modified Bessel function of the second kind with parameter 1. The
corresponding simulation takes place on the regular grid Γb, with fixed grid spacing
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(a) b = 1 (b) b = 2

(c) b = 3 (d) b = 4

Figure 2.5: Empirical distance correlation as a function of the Euclidean distance,
‖h‖, for Gaussian RFs with Matérn correlation function C, simulated
on grids Γb = {−b,−b+ 0.05, . . . , b− 0.05, b}2. The red curves display
the true DCFs.
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2.6. Finite sample performance

0.05× 0.05 but increasing area. Specifically, we choose

Γb = {−b,−b+ 0.05,−b+ 0.1, . . . , b− 0.1, b− 0.05, b}2.

The results are plotted in Figure 2.5. Note that the range of the x-axis increases
from [0, 1] in panel (a) to [0, 2.5] in panel (d). Bearing this in mind, we see that the
estimates become more reliable with increasing domains. Panels (c) and (d) show
particularly good estimates for |Γ3| = 1212, resp. |Γ4| = 1612, observed points.

Infill asymptotics

In this case, we consider realizations of a centered Gaussian process Z with the
exponential covariance function

C(h) = exp(−‖h‖/a), h ∈ R2,

where a > 0 is the scale parameter. This process is simulated on regular grids
Γ ⊂ [−1, 1]2 with grid spacing 2/(n − 1) × 2/(n − 1), depending on a variable
integer n ≥ 2. Figure 2.6 shows plots of the EDCF against distance, calculated
for simulations of Z using different grid spacings and scale parameters. We see
that the EDCF resembles the true DCF in a similar acceptable manner for both grid
spacings in the case a = 0.15.

If a = 0.5 then the situation changes. In the case n = 75, we see an unacceptable
estimate of the ECDF. If n = 150, the estimate looks slightly better, but the estimate
differs significantly from the true DCF also for small distances. This indicates that
the EDCF should be handled with care if the range of the dependence of the process
is large in comparison with the range of the observed region. However, this is not
surprising, as the estimator for the Pearson sample correlation function also lacks
consistency in this case. We illustrate this in Figure 2.7, where we use (2.8) to
calculate the Pearson sample correlation function, for the realization depicted in
Figure 2.6 (d). It can be seen that the Pearson sample correlation function differs
significantly from the theoretical correlation function exp(−2‖h‖).

2.6.3 Stable random fields

In the following, we study the applicability of the EDCF and the empirical distance
variogram to simulated SαS RFs. The simulation of general SαS RFs is not trivial
and only approximate simulation algorithms are known. One algorithm focusing
on the simulation of SαS MA processes will be investigated in more detail below.
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Figure 2.6: Empirical distance correlation as a function of the Euclidean distance,
‖h‖. The underlying random processes are Gaussian RFs with exponen-
tial correlation function, and are simulated for different length scales a
on grids with different sizes n. The true distance correlation functions
are displayed as red curves.
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2.6. Finite sample performance
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Figure 2.7: Empirical Pearson correlation function as a function of the Euclidean
distance, ‖h‖, for the simulated realization used in Figure 2.6 (d). The
theoretical correlation function is displayed as the red curve.

In particular, we separate the class of SαS MA processes into discrete and general
MA SαS RFs, because realizations of the latter can be approximated by realizations
of the first.

The subsection closes with a treatment of sub-Gaussian processes, which are
simple types of stable, but not necessarily MA, processes.

Linearly transformed SαS fields on a grid

By Theorem 2.56, the EDCF is a consistent estimators for the DCF for realizations
of SαS processes that are q-short-range transformation fields. The simplest way of
simulating such q-short-range transformation fields is to directly construct discrete
moving average SαS processes with suitable weights on subsets of Zd. This case
is of particular interest, because realizations of general MA SαS processes can be
approximated by discrete sums of independent SαS random variables, which is a
consequence of the construction of the stable integral.

Let (ε(j))j∈Zd be a collection of i.i.d. random variables, such that ε(j) is SαS for
some α > 1. In other words, ε(j) has characteristic function

ϕε(j)(t) = exp(−σα|t|α), t ∈ R,
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for some σ > 0. Consequently, the discrete MA process {Z(j) : j ∈ Zd} defined as

Z(j) =
∑
s∈Zd

asε(j − s), as ∈ R, (2.34)

is a strictly stationary transformation field, if
∑

j∈Zd |aj |α = c <∞, i.e., if it fulfills
(2.28). Now the characteristic function of the random variable Z(j) is under the
previous assumptions given by

ϕZ(j)(t) = exp(−cσα|t|α) for j ∈ Zd, (2.35)

implying that the process Z additionally is SαS. In this case, the physical depen-
dence measure δj,q for j ∈ Zd and 1 < q < α equals

|aj | ‖ε0 − ε′0‖q,

where ε′0 is an i.i.d. copy of ε0. Thus, Z meets the q-short-range criterion (2.30)
for any 1 < q < α if the aj are absolutely summable:∑

j∈Zd
|aj | <∞.

We summarize these findings in the following remark.

Remark 2.61. Let {Z(j) : j ∈ Zd} be a RF of the form (2.34) for 1 < α ≤ 2 and
let 1 < q < α. Then Z is a strictly stationary SαS RF satisfying the q-short-range
criterion if ∑

j∈Zd
|aj | <∞.

Comparing the EDCF with the DCF is difficult for general SαS processes Z of the
form (2.34), as illustrated in the following. In order to calculate the distance cor-
relation, we need the characteristic functions (2.35) of the single random variable
Z(0), and the characteristic functions of the bivariate random vector (Z(0),Z(k))t.
Here, the latter can be expressed as

exp (itZ(0) + irZ(k)) = exp

it∑
s∈Zd

asε(−s) + ir
∑
s∈Zd

asε(k − s)
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= exp

it∑
s∈Zd

asε(−s) + ir
∑
s∈Zd

as+kε(−s)


= exp

i∑
s∈Zd

(tas + ras+k)ε(−s)

 .

Because of the independence of the ε(j), the characteristic function factorizes, i.e.,

ϕZ(0),Z(k)(t, r) =
∏
s∈Zd

ϕε(−s)(tas + ras+k)

=
∏
s∈Zd

exp (−|tas + ras+k|α)

= exp

−∑
s∈Zd
|tas + ras+k|α

 .

Therefore, the square of the distance covariance function is proportional to

∫
R

∫
R

exp

(
−
∑
s∈Zd
|tas + ras+k|α

)
− exp

(
−
∑
s∈Zd
|as|α(|t|α + |r|α)

)2

dtdr

t2r2
.

In some circumstances, by truncation of the involved infinite sums, it might be
possible to simulate RFs of the form (2.34) with suitable accuracy. However, a
precise numerical evaluation of the above integral could be infeasible in these
cases, as the finite sums in the involved exponentials could still contain too many
summands for fast computation.

To circumvent this problem, we consider more general SαS MA processes in
the following subsection. Although these RFs can be approximated with arbitrary
precision by linearly transformed fields on a grid, it is simpler to numerically
evaluate their theoretical DCF, as compared to the theoretical DCF in the case of
general linearly transformed fields. Nevertheless, we will see that such a numerical
evaluation might still be a difficult problem.

General SαS moving average processes

For the analysis of the finite sample performance of the EDCF for general SαS MA
processes we consider in the following two different compactly supported kernels.
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The evaluation is based on a comparison to the numerically calculated DCF based
on our considerations in Example 2.29. Assume in the following that the kernel
function f is compactly supported. Considering compactly supported kernels has
two advantages: first, realizations of SαS MA processes determined by them are
easier to simulate and, secondly, we can theoretically identify the distance where
the stochastic dependence becomes zero.

First, we turn to the simulation of SαS processes. Karcher, Scheffler, and Spo-
darev [56] showed that realizations of SαS RFs that are representable as stable
integrals can be approximated as realizations of linearly transformed fields. We
illustrate their approach with the example of an SαS MA RF {Z(x) : x ∈ Rd},
determined by some compactly supported kernel function f as in (2.7).17 Suppose
we wish to simulate a realization of Z on the cube [−T ,T ]d ⊂ Rd,T > 0. Let A > 0,
such that ⋃

y∈[−T ,T ]d

supp(fy) ⊂ [−A,A]d,

where fy(x) = f(x−y) and supp(fy) = {x ∈ Rd : fy(x) 6= 0} is its support. Further,
define for each integer n ≥ 1 and k = (k1, . . . , kd)

t ∈ Zd with −n ≤ k1, . . . , kd < n

the vector
ξk =

A

n
· k,

and the set

∆k =

[
k1
A

n
, (k1 + 1)

A

n

)
× · · · ×

[
kd
A

n
, (kd + 1)

A

n

)
.

Then with the help of

pf (n)
y (x) =

∑
−n≤k1,...,kd<n

fy(ξk)1∆k
(x),

a realization of Z(x) can be approximated by

pZ(n)(x) :=

∫
[−A,A]d

pf (n)
y (x)M(dx) =

∑
−n≤k1,...,kd<n

fy(ξk)M(∆k).

From the properties of M and the fact that ∆k ∩ ∆j = ∅ for k 6= j it follows

17Karcher, Scheffler, and Spodarev [56] provided slightly modified algorithms that also work for
kernel functions without compact support.
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that M(∆k) are independent SαS random variables for −n ≤ k1, . . . , kd < n.
Consequently, the field pZ(n) is a linearly transformed SαS RF, whose simulation
only requires the simulation of independent SαS random variables and evaluations
of the kernel f .

Naturally, it is interesting to investigate the goodness of such an approximate
realization. To this end, Karcher, Scheffler, and Spodarev [56] provided error
bounds for kernels fy that are Hölder continuous,

|fy(x)− fy(x0)| ≤ C‖x− x0‖δ, x,x0 ∈ [−T ,T ]d,

for some C > 0 and 0 < δ ≤ 1. They showed in this case that the error in p-th
mean (0 < p < α) is for 0 < α < 1 bounded via

(
E|Z(x)− pZ(n)(x)|p

)1/p
≤ C2d/α

(
d

1 + αδ

)1/α

Aδ+d/αn−δy , x ∈ [−T ,T ]d,

and for 1 < α ≤ 2 via

(
E|Z(x)− pZ(n)(x)|p

)1/p
≤ C2d

(
d

1 + αδ

)1/α

Aδ+d/αnd−d/α−δ, x ∈ [−T ,T ]d.

As one can see, the error bound for 0 < α < 1 converges to zero for n→∞, while
the error bound for the case 1 < α ≤ 2 converges only to zero if

δα

α− 1
> d. (2.36)

This has the following practical implications. Assume that 1 < α ≤ 2 and suppose
that we want to simulate a realization of an SαS MA RF Z on a domain D. If
the error in the p-th mean converges to zero then also the mean absolute error
E|Z(x) − pZ(n)(x)| for each x ∈ D. Hence, by using an n large enough, we can
assume that the errors coming from the approximate simulation can be neglected.

Concerning the second advantage mentioned above, we have the following re-
mark.

Remark 2.62. Let f ∈ Lα be a kernel function whose support is contained in the
Ball Br(0) = {x ∈ R2 : ‖x‖ ≤ r} and let {Z(x) : x ∈ R2} be an SαS MA RF
generated by f . Then Z(x) and Z(x + h) are stochastically independent for all
x ∈ R2 if ‖h‖ > 2r.
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This is evident from (2.20), because |t f(h+ x) + s f(x)| = |t f(h+ x)|+ |s f(x)|
for all x ∈ R2 if ‖h‖ > 2r.

After these considerations, we now turn our attention towards actual examples
of simulations and the application of the EDCF as well as the empirical distance
variogram.

Example 2.63. In this example, {Z(x) : x ∈ R2} is always an SαS MA RF gener-
ated by the isotropic Epanechnikov kernel

f(x) =

{
b(a2 − ‖x‖2), ‖x‖ ≤ a,

0, ‖x‖ > a,

whose support is the ball Ba(0). Hence, the preceding remark yields Cds(h) =

0 if ‖h‖ > 2a. Another feature that makes the Epanechnikov kernel suitable
for simulation purposes is its Hölder-continuity. As noted in [56], it is Hölder-
continuous with parameter C = 2ab and δ = 1, implying via (2.36) that the error
in the p-th mean converges to zero in the case d = 2 and 1 < α < 2.

(1) Assume a = 0.15, b = 1, and α = 1.1. To compare the theoretical values for
the DCF with the empirical values, we simulate a realization of Z by using
the approximate simulation algorithm described above. The simulated values
are located on the grid

Γ = {−1,−1 + ∆,−1 + 2∆, . . . , 1− 2∆, 1−∆, 1}2, ∆ =
2

99
.

Figure 2.8 panel (a) shows a realization for Z. There one can see circular
structures, caused by the isotropic nature of the Epanechnikov kernel. It is
striking that the realization admits values with very high absolute values.
Evidently, this is due to the heavy-tail property of the underlying stable distri-
bution. The corresponding EDCF is displayed in Figure 2.9. In panel (a) it is
shown as a function of the lag vectors. It shows the expected behaviour: the
empirical distance correlation equals one at the origin, is radially symmetric
(due to the isotropy of the field) and decreases towards zero for increasing
distances. In panel (b), the values of the EDCF are plotted against Euclidean
distances. The solid line shows the theoretical DCF, which was numerically
evaluated using Matlab. We see that the empirical values match the theo-
retical ones with a satisfying accuracy. The fluctuations in the theoretical
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Figure 2.8: Two realizations of an SαS MA RF Z with (a) index α = 1.1 and (b)
index α = 1.3.

DCF for larger distances are due to the fact that numerical evaluation of the
theoretical DCF is difficult for the case α = 1.1 because the integrator admits
a singularity at the point (t, s)t = (0, 0)t. To make the numerical integration
precise in this case, the algorithm needs to explore the singularity carefully,
which is not trivial and requires lengthy computation time.

(2) After comparing the theoretical DCF with the EDCF in part (1), we study
more closely in this part the distance variogram. We want to determine
whether it is possible to derive some properties of the underlying process if
we assume only that it is an SαS MA process with index 1 < α ≤ 2. To this
end, we simulate a realization of Z using parameters the same parameters
a = 0.15 and b = 1 as in the previous part, but now we take the slightly
higher index α = 1.3. Further, the simulated values are located on the denser
grid

Γ = {−1,−1 + ∆,−1 + 2∆, . . . , 1− 2∆, 1−∆, 1}2, ∆ =
2

149
.

Note that the empirical distance variogram is a consistent estimator in this
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Figure 2.9: Empirical distance correlation function depending on (a) the lag vector
and (b) the Euclidean distance for the realization shown in Figure 2.8
(a).

case since the kernel function has a finite support.

Panel (b) in Figure 2.8 displays the realization. It shows structures similar
to the realization in panel (a), but with smaller amplitudes caused by the
higher index.

Now we assume only that the underlying process is an SαS MA process.
We calculate its normalized empirical distance variogram, which is depicted
in Figure 2.10. In panel (a), the empirical normalized distance variogram
is displayed for different lag vectors and from this it is plausible that the
underlying increment process is pairwise isotropic. Panel (b) shows the
empirical normalized distance variogram plotted against Euclidean distance.
In addition, in panel (b) we fitted a powered exponential variogram model

σ
(

1− exp
(
−‖h/a‖θ

))
, h ∈ R2,

by using least squares estimation. Note that this is a conditionally negative
definite function for σ > 0, a > 0, and θ ∈ (0, 2] and, thus, fitting this model
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Figure 2.10: Empirical distance variogram depending on (a) the lag vector and (b)
the Euclidean distance, ‖h‖, for the stable RF in Figure 2.8. The red
curve in panel (b) shows the fitted powered exponential model.

is in accordance with Theorem 2.51. The fitted parameters are σ = 1.81, a =

0.11, and θ = 1.42. Using Theorem 2.49 it is possible to estimate the index of
the underlying process, yielding in this case 1.17. This is smaller than the real
index 1.3 but not very far off. Furthermore, the estimated scale parameter
is close to the true parameter a = 0.15. However, the estimated power θ is
difficult to interpret and we do not know of any satisfying interpretation.

It must be noted that the procedure in this example is not fully theoretically
justified, but it also does not contradict our theoretical results. A compari-
son with the true normalized distance variogram in panel (b) of Figure 2.10
shows that the fitted distance variogram differs from the true one only slightly
for small distances, but it overestimates the limiting value significantly. Never-
theless, given enough data, it is possible to infer properties of the underlying
process if one assumes that it is an SαS MA process.

In the following example we consider an anisotropic kernel function.

Example 2.64. Let {Z(x) : x ∈ R2} be an SαS MA RF with index α = 1.6 and
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kernel g : R2 → R given by

g(x) =

{
(0.15− |x1|)(0.15− |x2|), |x1| ≤ 0.15, |x2| ≤ 0.15,

0, else.

Karcher, Scheffler, and Spodarev [56] noted that g is Hölder-continuous with
parameters C =

√
0.6 and δ = 1. Thus, the error in p-th mean of the simulated

values of Z converges to zero in the case d = 2 and 1 < α < 2, analogously
to the previous example. A simulated realization of Z is depicted in panel (a)
of Figure 2.11. The anisotropy of the RF can be seen from the angular-shaped
structures, caused by the anisotropy of the kernel g. Panel (b) shows the empirical
normalized distance variogram depending on the lag vectors. Panels (c) and (d)
show the true normalized distance variogram and the difference between the true
and the empirical normalized distance variogram, respectively. The true normalized
distance variogram was calculated using Lemma 2.53 and the R package cubature.
It can be seen that the anisotropy makes the estimation less precise, compared to
the isotropic case. The estimation is best for small distances and there it is also
possible to recognize the anisotropy of the process.

Sub-Gaussian RFs

Sub-Gaussian RFs are simple types of α-stable RFs and have been studied by several
researchers, see for example [91, Section 3.7] or [98, Chapter 11]. These processes
are defined in the following way. Let A be a stable random variable with index
α/2, scale parameter cos(πα/4)2/α, skewness parameter 1 and shift parameter 0. If
{G(x) : x ∈ Rd} is a Gaussian RF independent of A, then the RF

Z(x) = A1/2G(x), x ∈ Rd,

is called sub-Gaussian. The definition implies that for every x1, . . . ,xm ∈ Rd the
random vector (Z(x1), . . . ,Z(xm))t has an SαS distribution.

Assume that the underlying Gaussian field G is strictly stationary with zero mean,
covariance function C and correlation function ρ, such that ρ(h) = C(h)/C(0) =

C(h)/σ2 for some σ > 0. Then Proposition 2.5.2 in [91] shows that the character-
istic functions equal

ϕZ(x),Z(x+h)(t, s) = exp

(
−1

2
σα|t2 + 2ρ(h)ts+ s2|α/2

)
,
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Figure 2.11: Realization of an anisotropic SαS MA RF in panel (a) and its corre-
sponding empirical normalized distance variogram in panel (b). Pan-
els (c) and (d) show the theoretical normalized distance variogram
and the absolute value of the difference between theoretical and em-
pirical normalized distance variogram.
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ϕZ(x)(t) = exp

(
−1

2
(σ|t|)α

)
,

and

ϕZ(x+h)(s) = exp

(
−1

2
(σ|s|)α

)
.

Consequently, the distance covariance function equals

V(h)2 =
1

cm

∫
R

∫
R

∣∣∣∣ exp

(
− 1

2α/2
σα|t2 + 2ρ(h)ts+ s2|α/2

)
− exp

(
− 1

2α/2
((σ|t|)α + (σ|s|)α)

) ∣∣∣∣2 dt

t2
ds

s2

=
σ2

cm

∫
R

∫
R

∣∣∣∣ exp

(
− 1

2α/2
|t2 + 2ρ(h)ts+ s2|α/2

)
− exp

(
− 1

2α/2
(|t|α + |s|α)

) ∣∣∣∣2 dt

t2
ds

s2
.

Dividing by

V(0)2 =
σ2

cm

∫
R

∫
R

∣∣∣∣ exp

(
− 1

2α/2
|t2 + 2ts+ s2|α/2

)
− exp

(
− 1

2α/2
(|t|α + |s|α)

) ∣∣∣∣2 dt

t2
ds

s2

=
σ2

cm

∫
R

∫
R

∣∣∣∣exp

(
− 1

2α/2
|t+ s|α

)
− exp

(
− 1

2α/2
(|t|α + |s|α)

)∣∣∣∣2 dt

t2
ds

s2
,

yields the DCF, which depends on α. This implies that we cannot consistently
estimate the distance correlation by using a single realization of the sub-Gaussian
field. This holds true because a single realization of a sub-Gaussian field cannot be
distinguished from a realization of a Gaussian field and, therefore, any statistics
depending on α cannot be consistently estimated based on a single realization of a
sub-Gaussian field.

As a conclusion, the statement of Theorem 2.56 cannot be true in this case, which
can be explained by the fact that a sub-Gaussian field is not q-short-range, i.e., it
does not fulfill (2.30).
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2.6.4 Max-stable fields

After investigating the distance variogram for SαS processes, it is interesting to
ask if the empirical distance variogram can be used to analyze the dependence
structure of max-stable processes. Unfortunately, Corollary 2.60 is not applicable
in this case, as it is not clear that the theoretical distance variogram is defined for
max-stable processes. This is due to the fact that max-stable processes have no
finite first moments and we have no analogous result to Theorem 2.45, because
the characteristic functions for increment processes of max-stable processes is not
known to us. Nevertheless, we apply experimentally the empirical distance vari-
ogram to realizations of max-stable fields and then consider whether the behaviour
seems plausible.

In the following we use a max-stable process given by a certain Schlather model
[96] defined as follows. Let {Y (x) : x ∈ Rd} be a second-order stationary Gaussian
RF with correlation function ρ, with E [max{0,Y (0)}] = µ > 0. Furthermore, let Π

be a Poisson process on (0,∞) with intensity measure dΛ(s) = µ−1s−2 ds and let
the processes Ys, s ∈ Π, be independent replications of Y . Then Theorem 2 in [96]
implies that

Z(x) = sup
s∈Π

sYs(x), x ∈ Rd,

is a strictly stationary max-stable RF, such that the distribution of Z(0) is a Fréchet
distribution with parameter 1, i.e.,

FZ(0)(t) = exp(−t−1).

Now we take the extreme value index µ = 1 and simulate a realization on the
regular grid Γ ⊂ [0, 10]2 with 150× 150 points. The underlying Gaussian RF Y has
the isotropic damped cosine correlation function

ρ(h) = exp(−‖h‖) cos(‖h‖), h ∈ R2.

Figure 2.12 shows a realization of the max-stable RF and the corresponding empiri-
cal distance variogram. This nicely illustrates the expected dependence structure: it
increases isotropically from zero to a certain limiting value. Figure 2.13 shows the
empirical distance variogram as a function of the Euclidean distance. Interestingly,
the empirical distance variogram displays a fluctuating behavior for distances ‖h‖
where ρ(h) < 0, i.e., 1 − ρ(h) > 1. This might be explained as follows. Without
loss of generality we assume that Y (0) > 0. If the random variables Y (0) and Y (h)
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Figure 2.12: The left panel shows a realization of a max-stable random field fol-
lowing a Schlather model. The right panel shows the corresponding
empirical distance variogram.

are negatively correlated then there is a positive probability that Ys(h) < 0 for all
s ∈ Π. If this is the case then Z(h) is determined by small values of s ∈ Π. If many
Ys(h) are positive (which has also positive probability), the behaviour of Z(h) is
determined by high values of s ∈ Π, hence, points Z(x) with the same distance
to the origin might behave differently, and this phenomenon is reflected in the
distance variogram.

2.7 Conclusion and outlook

In this chapter, we introduced the distance correlation function and the distance
variogram for spatial processes and investigated their properties. We illustrated
that these dependence measures can be applied to a wide range of processes and
that they yield valid information about the underlying dependence structure, even
when it is highly non-linear or the underlying process possesses heavy tails. This, in
combination with the consistency of the empirical estimators, makes these depen-
dence measures attractive for conducting inference with spatial data sampled on
regularly spaced grids, where the data generating processes are unknown. In such
cases, these dependence measures can help detect many aspects of the dependence
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Figure 2.13: The circles show the empirical distance variogram as a function of Eu-
clidean distance. The red curve shows 1−ρ, where ρ is the correlation
function of the underlying Gaussian field.

structure that might be overlooked by the Pearson correlation function.
In a simulation study, we showed that the empirical versions of these dependence

measures work well on spatial data sets with at least 10 000 points, if the length
scale of the spatial dependence is significantly smaller than one-half the width
of the observed area. To extend the applicability of the estimators, it would be
desirable to generalize them to irregularly spaced spatial data. This can be done
by binning the data, analogously to the case of the usual variogram. However, it
remains to be shown that the resulting estimators are consistent.

Another interesting aspect for future research might be the classification of ad-
missible DCFs or distance variograms. If one knows classes of such functions, it
would be possible to fit members of them to empirical versions and this would
provide further insight into the underlying process. To this end, it would be ad-
vantageous to derive analytical expressions for the DCF or distance variogram for
processes other than Gaussian processes. This is in general a difficult problem, but
it might be feasible, for example, for classes of SαS MA processes.
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A more difficult task would be the investigation of other heavy-tailed processes.
For example, does the DCF or the distance variogram exist for certain max-stable
processes? If they exist, are the empirical estimators consistent, and do they provide
new information in comparison to established dependence measures, such as the
extremogram [20] or the tail correlation function [106]?

In addition, the dependence measures might be helpful not only for inference,
but also for extrapolation tasks. Spodarev and co-authors investigated the extrapo-
lation of stable RFs in [98, Section 11.4]. It might be possible to connect aspects of
their work with the concept of the DCF or distance variogram and to apply them
in problems on extrapolations.

One should be aware that the distance correlation function does not provide a
comparable power for modelling and extrapolation for heavy-tailed processes, as
the Pearson correlation function for Gaussian processes. This lies in the nature of
these processes: Gaussian processes are completely determined by the mean and
the correlation function, while an analogous result does not hold true in general
for heavy-tailed processes and the distance correlation function.

Most of the simulations and estimations in this chapter were performed by using
R. As there are no packages available providing functions for the simulation of
stable processes or for the calculation of the EDCF,18 we wrote our own functions
for simulation and estimation. It is planned to make this code available within an
R package, for example the package RandomFields.

18The energy package provides functions for calculating the distance correlation. However, these
functions are much too slow for our purposes.
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3 Relating Schoenberg coefficients in
Gegenbauer expansions on spheres

Every continuous real-valued function on the interval [−1, 1] can be represented
as an infinite series in Gegenbauer polynomials Cλn (cf. Szegö [107, Chapter 3]).
Thus any continuous function ξ : [0,π] → R satisfying ξ(0) = 1 admits for every
integer d ≥ 1 the d-Gegenbauer expansion

∞∑
n=0

bn,d
C

(d−1)/2
n (cos(θ))

C
(d−1)/2
n (1)

, θ ∈ [0,π]. (3.1)

Referring to Daley and Porcu [19] and Ziegel [118] we call the coefficients bn,d the
d-dimensional Schoenberg coefficients of ξ.

For λ ≥ 0, the Gegenbauer polynomials Cλn , also called ultraspherical polynomi-
als, are defined as polynomials of degree n, orthogonal on the interval [−1, 1] with
respect to the weight function (1 − x2)λ−1/2, see [2, equation (22.2.3)]. In other
words, ∫ 1

−1
Cλn(x)Cλm(x)(1− x2)λ−1/2 dx = δnm

π21−2λΓ(n+ 2λ)

n!(n+ λ)Γ(λ)2
,

where δnm is the Kronecker-delta. If λ > 0 then the Gegenbauer polynomials can
also be expressed as

Cλn(x) =

bn/2c∑
k=0

(−1)k
Γ(n− k + λ)

Γ(λ)k!(n− 2k)!
(2x)n−2k,

cf. [2, equation (22.3.4)]. In the case λ = 0 we follow Schoenberg [100] and set
C0
n(cos θ) = cos(nθ) for θ ∈ [0,π].
Our motivation for studying d-Gegenbauer expansions and their d-dimensional

Schoenberg coefficients arises from the theory of isotropic positive definite func-
tions on spheres, as we will explain in the following.

For an integer d ≥ 1, we write Sd := {x ∈ Rd+1 : ‖x‖ = 1} to denote the unit
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sphere in Euclidean space Rd+1 equipped with the usual Euclidean norm. Consider
a kernel h : Sd × Sd → R. The kernel h is called

• isotropic, if there exists a function ξ : [0,π]→ R such that

h(x, y) = ξ(θ(x, y)), x, y ∈ Sd,

where, θ(x, y) = arccos(〈x, y〉) denotes the great circle distance between x

and y and 〈·, ·〉 the standard scalar product in Rd+1;

• positive definite, if

n∑
i=1

n∑
j=1

aiajh(xi,xj) ≥ 0, (3.2)

for all integers n ≥ 1 and for every choice of constants a1, . . . , an ∈ R and
every choice of pairwise distinct points x1, . . . ,xn ∈ Sd. If the inequality (3.2)
is strict, except for the case a1 = · · · = an = 0, the kernel is called strictly
positive definite.

We refer to Ψd (respectively Ψ+
d ), d = 1, 2, . . . , as the class of continuous functions

ψ : [0,π] → R with ψ(0) = 1 for which the associated isotropic kernel h(x, y) =

ψ(θ(x, y)) is positive definite (respectively strictly positive definite).
Isotropic positive definite functions on spheres have attracted interest in several

areas. They occur as correlation functions for stationary and isotropic RFs on
the sphere [52] and, hence, have been studied in spatial statistics [7, 50, 47].
Furthermore, they are radial basis functions for interpolating scattered data on
spherical domains, see for example [115, 30, 76, 113, 11]. Recently, Gneiting
[40, 41] reviewed conditions for functions to belong to Ψd or Ψ+

d , and used them
to study parametric families of isotropic and stationary correlation functions on
spheres. In Gneiting’s work, he stated several problems for future research, one of
which was solved by Ziegel [118], and the solution to another is given here.

Schoenberg [100], Chen, Menegatto, and Sun [12], and Menegatto [73] showed
that the members of Ψd and Ψ+

d are characterized by their d-Gegenbauer expan-
sions. In particular, the class Ψd, d ≥ 1, consists of the functions of the form (3.1)
with bn,d ≥ 0 and

∑∞
n=0 bn,d = 1. For d ≥ 2, the class Ψ+

d consists of those functions
in Ψd for which bn,d > 0 for infinitely many even and infinitely many odd integers
n. Consequently, it is possible to study properties of the members of Ψd or Ψ+

d via
the coefficients bn,d of their d-Gegenbauer expansions (3.1). As an example, for
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the cases d = 1 and d = 2 it was shown by Lorentz [66] and Lang and Schwab
[63], respectively, that Hölder continuity and differentiability of a function in Ψd

are related to the decay rate of bn,d, as n→∞.
Since S1 ⊂ S2 ⊂ S3 . . . , it is evident that

Ψ1 ⊇ Ψ2 ⊇ Ψ3 ⊇ · · · . (3.3)

This, in concert with C0
n(cos θ) = cos(nθ) for every integer n ≥ 0 and θ ∈ [0,π],

shows that every function in Ψd, d ≥ 1, possesses a 1-Gegenbauer expansion,
which is a well-known Fourier cosine expansion. A similar statement holds true for
d ≥ 2: because C1/2

n = Pn is a Legendre polynomial, every function ψ ∈ Ψd satisfies
an expansion in terms of Legendre polynomials. This raises the issue of how to
express higher-dimensional Schoenberg coefficients in terms of Fourier or Legen-
dre coefficients. In other words, given a particular Gegenbauer expansion (3.1),
we wish to determine whether there exist so-called connection coefficients ai(n, k),
respectively ui(n, k), for the Schoenberg coefficients bn,d in odd, respectively even,
dimension d, such that

bn,2k+1 =

k∑
i=0

ai(n, k)bn+2i,1, and bn,2k+2 =

k∑
i=0

ui(n, k)bn+2i,2.

Connection coefficients have been investigated in the study of orthogonal polyno-
mials, as exemplified by Maroni and Rocha [71]. Their aim was to express a monic
polynomial Pn of degree n as a linear combination of monic polynomials P̃m of
degree m ≤ n, i.e., to find connection coefficients αmn such that

Pn(x) =
n∑

m=0

αmnP̃m(x).

Gneiting [40] used the following connection between Gegenbauer polynomials,
stated as equation (3.42) of Askey and Fitch [5],

Cλn(x) =
Γ(ν)

Γ(λ)Γ(λ− ν)

[n/2]∑
k=0

(n− 2k + ν)Γ(k + λ− ν)Γ(n− k + λ)

k!Γ(n− k + ν + 1)
Cνn−2k(x)

to show that the inclusions in (3.3) are strict.
The study of connection coefficients for Schoenberg coefficients can be helpful

to decide for a certain dimension d whether or not a function ψ belongs to Ψd or
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Ψ+
d . Given a function ψ ∈ Ψ1 with Schoenberg coefficients bn,1, knowing the con-

nection coefficients ai(n, k) allows us to find higher odd-dimensional Schoenberg
coefficients bn,2k+1. A similar procedure has been used in [45] for d = 2, 3 to show
positive definiteness of certain functions.

The problem of expressing even- and odd-dimensional Schoenberg coefficients
in terms of Fourier and Legendre coefficients can be answered using the following
recursive identities, stated as Corollary 3 in [40].1 For all integers n ≥ 1 it is true
that

b0,3 = b0,1 −
1

2
b2,1 and bn,3 =

1

2
(n+ 1)(bn,1 − bn+2,1). (3.4)

Furthermore, if d ≥ 2, then for all integers n ≥ 0

bn,d+2 =
(n+ d− 1)(n+ d)

d(2n+ d− 1)
bn,d −

(n+ 1)(n+ 2)

d(2n+ d+ 3)
bn+2,d. (3.5)

These recursive relationships show that it is possible to express bn,2k+1, k ≥ 1,
as a linear combination of Fourier coefficients bn,1, bn+2,1, . . . , bn+2k,1. Similarly,
we can express bn,2k+2, k ≥ 1, as a linear combination of Legendre coefficients
bn,2, bn+2,2, . . . , bn+2k,2. If a continuous function ξ : [0,π]→ R with ξ(0) = 1 admits
a d-Gegenbauer expansion, (3.4) and (3.5) show that ξ can also be expanded as a
Fourier cosine series if d > 1 is odd, or a series in Legendre polynomials, if d > 2 is
even.

The aim of this work is to provide closed form expressions for the coefficients
appearing in these linear combinations, which was stated as Problem 1 in Gneiting
[41].

3.1 Explicit relations between Schoenberg coefficients

In this section we provide explicit expressions for Schoenberg coefficients in terms
of Fourier cosine and Legendre coefficients. The proofs are given in Section 3.3.

Here and in the following, (x)m = x(x + 1) · · · (x + m − 1) denotes the raising
factorial.

1Note that the proof does not require the Schoenberg coefficients to belong to the d-Gegenbauer ex-
pansion of a positive definite kernel. Hence, the recursive identities hold also true if a continuous
function ξ : [0,π]→ R admits a d-Gegenbauer expansion.
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3.1. Explicit relations between Schoenberg coefficients

Theorem 3.1. Let k ≥ 1 be an integer and ξ : [0,π]→ R continuous with ξ(0) = 1.
Further, assume that ξ(θ) is given by the (2k + 1)-Gegenbauer expansion (3.1) for
every θ ∈ [0,π]. Then for every integer n ≥ 0, the (2k + 1)-Schoenberg coefficient
bn,2k+1 and the Fourier cosine coefficients bn,1, bn+2,1, . . . , bn+2k,1 are connected by

bn,2k+1 =
k∑
i=0

ai(n, k) bn+2i,1,

with

ai(n, k) =
(−1)i

2k

(
k

i

)
(n+ k)(n+ 2i)

(2k − 1)!!

(n+ 1)2k−1

(n+ i)k+1
, (3.6)

for (i,n) 6= (0, 0), and a0(0, k) = 1.

The theorem shows that a0(n, k) and ak(n, k) can be expressed in simpler forms:
for general k ≥ 0, equation (3.6) reduces for i = 0 and i = k to

a0(n, k) =
1

2k(2k − 1)!!
(n+ k)k

and

ak(n, k) =

(
−1

2

)k 1

(2k − 1)!!
(n+ 1)k,

respectively.
It is interesting to note that the value of

∑k
i=0 ai(n, k) is either 0 or 1/2, as

follows.

Proposition 3.2. For all integers k ≥ 1 it is true that

k∑
i=0

ai(n, k) =

{
0, n > 0,
1
2 , n = 0.

Now let us turn to the analogous problem of finding an expression for bn,2k+2, k ≥
1, in terms of the Legendre coefficients bn,2, . . . , bn+2k,2.
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Theorem 3.3. Let k ≥ 1 be an integer and ξ : [0,π]→ R continuous with ξ(0) = 1.
Further, assume that ξ(θ) is given by the (2k + 2)-Gegenbauer expansion (3.1) for
every θ ∈ [0,π]. Then for all integers n ≥ 0 we have

bn,2k+2 =

k∑
i=0

ui(n, k) bn+2i,2, (3.7)

where

ui(n, k) = (−1)i
(2k − 1)!!

2k

(
k

i

)(
2k + n

n

)
1

(n+ i+ 1/2)k−i(n+ k + 3/2)i
. (3.8)

3.2 An application of the connection results

As shown in the following example, our results can be used to decide whether a
function ψ ∈ Ψ1 is a member of Ψ+

∞.

Example 3.4. Let

bn,1 =
3

π2n2
, n ≥ 1, (3.9)

and b0,1 = 1/2, implying that the corresponding function ψ is in Ψ1. Let B(x, y)

denote the Euler Beta function and 4F3 be a generalized hypergeometric function
[101]. As shown in Section 3.3, an application of Theorem 3.1 yields

bn,2k+1 =

k∑
i=0

ai(n, k)bn+2i,1 =
3k(n+ k) [B(n/2, k)]2

2nπ2(n+ 2k)2B(n, 2k)
, (3.10)

for n, k ≥ 1, and

b0,2k+1 =
1

2
− 3k 4F3(1, 1, 1, 1− k; 2, 2, 2 + k; 1)

4(1 + k)π2
, (3.11)

for k ≥ 1. Evidently, bn,2k+1 > 0 for all n, k ≥ 1. By the definition of the generalized
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hypergeometric function [101, equation (2.1.1.1)],

4F3(1, 1, 1, 1− k; 2, 2, 2 + k; 1) =
∞∑
i=0

(1)i(1)i(1)i(1− k)i
(2)i(2)i(2 + k)i

1

i!

=
k−1∑
i=0

1

(1 + i)2

(1− k)i
(2 + k)i

,

(3.12)

because (1 − k)i/(2 + k)i = 0 for i ≥ k. As (1 − k)i/(2 + k)i ≤ 1 for all integers
i, k ≥ 0, we have

k−1∑
i=0

1

(1 + i)2

(1− k)i
(2 + k)i

≤
k−1∑
i=0

1

(1 + i)2
≤
∞∑
i=0

1

(1 + i)2
=
π2

6
.

Putting this together yields

b0,2k+1 =
2(k + 1)π2 − 3k 4F3(1, 1, 1, 1− k; 2, 2, 2 + k; 1)

4(1 + k)π2

≥ 2(k + 1)π2 − kπ2/2

4(1 + k)π2
=

3k + 4

8(1 + k)
> 0,

for all k ≥ 1. This in combination with b0,1 > 0 and the uniqueness of the Gegen-
bauer expansions finally gives ψ ∈ Ψ+

∞.

It is interesting to note that bn,2k+1 = O(n−2) for all k ≥ 1. Thus, the Schoenberg
coefficients show the same asymptotic behaviour in every odd dimension, which
can be seen as follows. Stirling’s formula for the Gamma function [2, eq. (6.1.37)]
yields, for fixed y,

B(x, y) = Γ(y)ey
(

1 +
y

x

)1/2−y−x
x−y

1 +O(x−1)

1 +O((x+ y)−1)
.

Because
(
1 + y

x

)1/2−y−x → e−y > 0 as x→∞, it follows that

B(x, y) = Γ(y)x−yO(1)
1 +O(x−1)

1 +O((x+ y)−1)
.

This yields immediately
B(n/2, k)2

B(n, 2k)
= O(1)
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and, hence, bn,2k+1 = O(n−2).

3.3 Proofs

Proof of Theorem 3.1: First, consider the case n ≥ 1. We proceed by two-dimensional
induction over k,n ≥ 1.

Let k = 1. For all n ≥ 1 we have

bn,3 =
1

2
(n+ 1)(bn,1 − bn+2,1),

yielding a0(n, 1) = 1
2(n + 1) and a1(n, 1) = −1

2(n + 1). Inserting i = 0 and k = 1

into formula (3.6) yields the same, proving the claim for k = 1 and every n ≥ 1.
Assume that Equation (3.6) is true for an arbitrary k ≥ 1 and all n ≥ 1. It

suffices to show that this implies (3.6) for k + 1. Using (3.5) and comparing the
coefficients shows

bn,2(k+1)+1 =
(n+ 2k)2

2(2k + 1)(n+ k)
bn,2k+1 −

(n+ 1)2

2(2k + 1)(n+ k + 2)
bn+2,2k+1

=
(n+ 2k)2

2(2k + 1)(n+ k)

k∑
i=0

ai(n, k)bn+2i,1−
(n+ 1)2

2(2k + 1)(n+ k + 2)

k∑
i=0

ai(n+2, k)bn+2+2i,1

=
(n+ 2k)2

2(2k + 1)(n+ k)
a0(n, k)bn,1 −

(n+ 1)2

2(2k + 1)(n+ k + 2)
ak(n+ 2, k)bn+2(k+1),1

+
1

2(2k + 1)

k∑
i=1

[
(n+ 2k)2

n+ k
ai(n, k)− (n+ 1)2

n+ k + 2
ai−1(n+ 2, k)

]
bn+2i,1.

The induction hypothesis together with the identity

(x)k(x+ k)l = (x)k+l, (3.13)

for integers k, l ≥ 0, implies

(n+ 2k)2

2(2k + 1)(n+ k)
a0(n, k) =

(n+ 2k)2

2(2k + 1)(n+ k)

1

2k
(n+ k)n(n+ 1)2k−1

(2k − 1)!!(n)k+1

=
1

2k+1

n(n+ k + 1)(n+ 1)2k+1

(2k + 1)!!(n)k+2
,
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and

− (n+ 1)2

2(2k + 1)(n+ k + 2)
ak(n+ 2, k)

= − (n+ 1)2

2(2k + 1)(n+ k + 2)

(−1)k

2k
(n+ 2 + k)(n+ 2 + 2k)(n+ 2 + 1)2k−1

(2k − 1)!!(n+ 2 + k)k+1

=
(−1)k+1

2k+1

(n+ 2 + 2k)(n+ 1)2k+1

(2k + 1)!!(n+ 2 + k)k+1

=
(−1)k+1

2k+1

(n+ k + 1)(n+ 2k + 2)(n+ 1)2k+1

(2k + 1)!!(n+ 1 + k)k+2
.

These two calculations show the validity of (3.6) for i = 0 and i = k + 1, respec-
tively.

It remains to show for 1 ≤ i ≤ k that

(−1)i

2k+1

(
k + 1

i

)
(n+ k + 1)(n+ 2i)(n+ 1)2k+1

(2k + 1)!!(n+ i)k+2

=
1

2(2k + 1)

[
(n+ 2k)2

n+ k
ai(n, k)− (n+ 1)2

n+ k + 2
ai−1(n+ 2, k)

]
,

(3.14)

where ai(n, k) and ai−1(n+ 2, k) can be expressed as in (3.6). After plugging the
induction hypothesis into the right-hand side of (3.14) and reformulating it, (3.14)
becomes

(−1)i

2k+1

(
k + 1

i

)
(n+ k + 1)(n+ 2i)(n+ 1)2k+1

(2k + 1)!!(n+ i)k+2

=
(−1)i

2k+1

(n+ 2k)2

n+ k

(
k

i

)
(n+ k)(n+ 2i)(n+ 1)2k−1

(2k + 1)!!(n+ i)k+1

− (−1)i−1

2k+1

(n+ 1)2

n+ k + 2

(
k

i− 1

)
(n+ 2 + k)(n+ 2i)(n+ 3)2k−1

(2k + 1)!!(n+ 1 + i)k+1
.

Simplifying the equation above with the help of (3.13) shows that we have to
deduce(

k + 1

i

)
(n+ k + 1) =

(
k

i

)
(n+ i+ k + 1) +

(
k

i− 1

)
(n+ i). (3.15)
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But the right-hand side of (3.15) equals

k!

(k − i)!(i− 1)!

(
n+ i+ k + 1

i
+

n+ i

k − i+ 1

)
=

k!

(k + 1− i)!i!
[
(k − i+ 1)(n+ i+ k + 1) + i(n+ i)

]
=

k!

(k + 1− i)!i!
(k + 1)(n+ k + 1) =

(
k + 1

i

)
(n+ k + 1),

which shows that (3.15) holds true.

Now we turn to the case n = 0. Equations (3.4) and (3.5) show that ai(0, k) is
given by (3.6) for all i > 0. To find a0(0, k), note that equation (3.5) together with
(3.4) yields for n = 0 and d ≥ 1

b0,d+2 = b0,d −
2

d(d+ 3)
b2,d.

Using both equations recursively for b2,d and b0,d, we see that

b0,d+2 = b0,1 −R,

where the remainder term R does not depend on b0,1. This shows that a0(0, k) = 1

for all k ≥ 1.

Proof of Proposition 3.2: Let n ≥ 1. The identity (n + i)k+1 =
(
n+i+k
k+1

)
(k + 1)!

together with Theorem 3.1 implies

k∑
i=0

ai(n, k) =
(n+ k)(n+ 1)2k−1

2k(2k − 1)!!

k∑
i=0

(−1)i
(
k

i

)
n+ 2i

(n+ i)k+1

=
(n+ k)(n+ 1)2k−1

2k(k + 1)!(2k − 1)!!

k∑
i=0

(−1)i
(
k

i

)
n+ 2i(
n+i+k
k+1

) .

Hence, it suffices to prove that

k∑
i=0

(−1)i
(
k

i

)
n+ 2i(
n+i+k
k+1

) = 0.

86



3.3. Proofs

This statement is equivalent to

k∑
i=0

(−1)i
(
k

i

)
n(

n+i+k
k+1

) = −2
k∑
i=0

(−1)i
(
k

i

)
i(

n+i+k
k+1

) , (3.16)

where the left-hand side equals

k∑
i=0

(−1)i
(
k

i

)
n(

n+i+k
k+1

) = n
k + 1

2k + 1

1(
2k+n
n−1

) =
k + 1(
2k+n
n

) .

Here, the first equality is a consequence of the following result of R. Frisch (cf.
Note 21 in [78]), in that

k∑
i=0

(−1)i
(
k

i

)
1(
b+i
c

) =
c

k + c

1(
k+b
b−c
) , (3.17)

where b ≥ c are positive integers.

For the right-hand side of (3.16) we deduce in a similar way

−2

k∑
i=0

(−1)i
(
k

i

)
i(

n+i+k
k+1

) = −2

k∑
i=0

(−1)i
k!

(k − i)!(i− 1)!

1(
n+i+k
k+1

)
= −2k

k∑
i=1

(−1)i
(
k − 1

i− 1

)
1(

n+i+k
k+1

)
= 2k

k−1∑
i=0

(−1)i
(
k − 1

i

)
1(

n+i+1+k
k+1

)
= 2k

k + 1

2k

1(
2k+n
n

) =
k + 1(
2k+n
n

) .

Again, we applied (3.17) for the third equality, thereby proving (3.16).

Now consider the case n = 0. For i > 0 equation (3.6) simplifies to

ai(0, k) = (−1)i
(
k

i

)
1(
k+i
k

) ,

which is also valid for i = 0, because in this case the right-hand side equals 1.
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Applying (3.17) with b = c = k we obtain

k∑
i=0

ai(0, k) =
k∑
i=0

(−1)i
(
k

i

)
1(
k+i
k

) =
1

2
.

Proof of Theorem 3.3. Similarly to the proof of Theorem 3.1, we proceed by two-
dimensional induction over k ≥ 1 and n ≥ 0. Let k = 1. In this case, equation
(3.5) yields for all n ≥ 0

bn,4 =
1

2
(n+ 1)2

[
1

2n+ 1
bn,2 −

1

2n+ 5
bn+2,2

]
,

implying u0(n, 1) = 1
2(2n+1)(n + 1)2 and u1(n, 1) = − 1

2(2n+5)(n + 1)2. Inserting
k = 1 and i = 0 – respectively i = 1 – in equation (3.8) proves the claim for k = 1

and all n ≥ 0.
Suppose we have proven (3.8) for an arbitrary but fixed k ≥ 1 and all n ≥ 0.

Again, it suffices to show the validity of (3.8) for k + 1. With equations (3.4) and
(3.5) and the induction hypothesis we find that

bn,2(k+1)+2 =
(n+ 2k + 1)2

2(k + 1)(2n+ 2k + 1)
bn,2k+2 −

(n+ 1)2

2(k + 1)(2n+ 2k + 5)
bn+2,2k+2

=
(n+ 2k + 1)2

2(k + 1)(2n+ 2k + 1)

k∑
i=0

ui(n, k)bn+2i,2−
(n+ 1)2

2(k + 1)(2n+ 2k + 5)

k∑
i=0

ui(n+2, k)bn+2+2i,2

=
(n+ 2k + 1)2

2(k + 1)(2n+ 2k + 1)
u0(n, k)bn,2−

(n+ 1)2

2(k + 1)(2n+ 2k + 5)
uk(n+2, k)bn+2(k+1),2

+
k∑
i=1

[
(n+ 2k + 1)2

2(k + 1)(2n+ 2k + 1)
ui(n, k)− (n+ 1)2

2(k + 1)(2n+ 2k + 5)
ui−1(n+ 2, k)

]
bn+2i,2.

Equation (3.13) together with the identity

(2k − 1)!! =
(2k)!

2kk!

yields

(n+ 2k + 1)2

2(k + 1)(2n+ 2k + 1)
u0(n, k) =

(n+ 2k + 1)2(2k − 1)!!

2k+1(k + 1)(2n+ 2k + 1)

(
2k + n

n

)
1

(n+ 1/2)k
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where the right-hand side is equal to

(2k + 1)!!

2k+1

(
2k + 2 + n

n

)
1

(n+ 1/2)k+1
,

proving the claim for i = 0. Analogously, we confirm the claim for i = k + 1 by
computing

− (n+ 1)2

2(k + 1)(2n+ 2k + 5)
uk(n+ 2, k)

= (−1)k+1 (n+ 1)2(2k − 1)!!

2k+1(k + 1)(2n+ 2k + 5)

(
2k + n+ 2

n+ 2

)
1

(n+ k + 7/2)k

= (−1)k+1 1

2k+12k+1

(2k + 2 + n)!

(k + 1)!n!

1

(n+ k + 5/2)k+1

= (−1)k+1 (2k + 1)!!

2k+1

(
2k + 2 + n

n

)
1

(n+ k + 5/2)k+1
.

Now let 1 ≤ i ≤ k. We need to show that

ui(n, k + 1) = (−1)i
(2k + 1)!!

2k+1

(
k + 1

i

)(
2k + 2 + n

n

)
1

(n+ i+ 1/2)k+1−i(n+ k + 1 + 3/2)i

=
(n+ 2k + 1)2

2(k + 1)(2n+ 2k + 1)
ui(n, k)− (n+ 1)2

2(k + 1)(2n+ 2k + 5)
ui−1(n+ 2, k),

which is equivalent to

(−1)i
(2k + 1)!!

2k+1

(
k + 1

i

)(
2k + 2 + n

n

)
1

(n+ i+ 1/2)k+1−i(n+ k + 1 + 3/2)i

=
(−1)i(n+ 2k + 1)2(2k − 1)!!

2k+1(k + 1)(2n+ 2k + 1)

(
k

i

)(
2k + n

n

)
1

(n+ i+ 1/2)k−i(n+ k + 3/2)i

− (−1)i−1(n+ 1)2(2k − 1)!!

2k+1(k + 1)(2n+ 2k + 5)

(
k

i− 1

)
×
(

2k + n+ 2

n+ 2

)
1

(n+ i+ 1 + 1/2)k−i+1(n+ 2 + k + 3/2)i−1
.

(3.18)

With (3.13) and similar arguments as in the cases i = 0 and i = k + 1 we see that
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(3.18) is equivalent to(
k + 1

i

)
1

(n+ i+ 1/2)k+1−i(n+ k + 5/2)i

=

(
k

i

)
1

(n+ i+ 1/2)k+1−i(n+ k + 3/2)i

+

(
k

i− 1

)
1

(n+ i+ 3/2)k+1−i(n+ k + 5/2)i
.

Multiplying by (n+ i+ 1/2)k+1−i(n+ k + 5/2)i illustrates that we need to show(
k + 1

i

)
=

(
k

i

)
n+ k + i+ 3/2

n+ k + 3/2
+

(
k

i− 1

)
n+ i+ 1/2

n+ k + 3/2
.

Eventually, a simplification of the right-hand side yields(
k

i

)
(n+ k + i+ 3/2)(k − i+ 1) + i(n+ i+ 1/2)

(n+ k + 3/2)(k − i+ 1)

=

(
k

i

)
(k + 1)(n+ k + 3/2)

(n+ k + 3/2)(k − i+ 1)
=

(
k + 1

i

)
,

and the proof is complete.

Proof for Example 3.4. First, we prove equation (3.10). As in the preceding
proofs, we use two-dimensional induction over k,n ≥ 1. Let k = 1 and n ≥ 1.
Equation (3.4) leads to

bn,3 =
1

2
(n+ 1)

(
bn,1 − bn+2,1

)
=

3(n+ 1)

2π2

(
1

n2
− 1

(n+ 2)2

)
=

6(n+ 1)2

π2n2(n+ 2)2
.

On the other hand, inserting k = 1 in the right-hand side of (3.10) and using the
functional equation for the Gamma function yields

3(n+ 1)Γ(n/2)2Γ(n+ 2)

2nπ2(n+ 2)2Γ(n)Γ(n/2 + 1)2
=

3(n+ 1)2n

2nπ2(n+ 2)2(n/2)2
=

6(n+ 1)2

π2n2(n+ 2)2
.

Now assume we have proven (3.10) for a certain k ≥ 1 and all n ≥ 1. It suffices

90



3.3. Proofs

to show that this implies (3.10) for k + 1. Equation (3.5) in combination with the
induction hypothesis proves the claim, as

bn,2k+3 =
(n+ 2k)(n+ 2k + 1)

(2k + 1)(2n+ 2k)

3k(n+ k)B(n/2, k)2

2nπ2(n+ 2k)2B(n, 2k)

− (n+ 1)(n+ 2)

(2k + 1)(2n+ 2k + 4)

3k(n+ 2 + k)B(n/2 + 1, k)2

2(n+ 2)π2(n+ 2 + 2k)2B(n+ 2, 2k)

=
3kΓ(k)2

4π2(2k + 1)Γ(2k)

[
(n+ 2k + 1)Γ(n/2)2Γ(n+ 2k)

n(n+ 2k)Γ(n)Γ(n/2 + k)2

− (n+ 1)Γ(n/2 + 1)2Γ(n+ 2 + 2k)

(n+ 2 + 2k)2Γ(n+ 2)Γ(n/2 + 1 + k)2

]
=

3kΓ(k)2Γ(n/2 + 1)2Γ(n+ 2k + 2)

4π2(2k + 1)Γ(2k)Γ(n+ 1)Γ(n/2 + 1 + k)2

[
(n+ 2k + 1)(n/2 + k)2

(n+ 2k)(n/2)2(n+ 2k)(n+ 2k + 1)

− 1

(n+ 2 + 2k)2

]
=

3kΓ(k)2Γ(n/2 + 1)2Γ(n+ 2k + 2)

4π2(2k + 1)Γ(2k)Γ(n+ 1)Γ(n/2 + 1 + k)2

[
1

n2
− 1

(n+ 2 + 2k)2

]
=

24k2Γ(k)2Γ(n/2)2(n/2)2Γ(n+ 2k + 2)(k + 1)(k + 1 + n)

4π2(2k + 1)(2k)Γ(2k)Γ(n)nΓ(n/2 + 1 + k)2n2(n+ 2 + 2k)2
,

which equals
3(k + 1)(k + 1 + n)B(n/2, k + 1)2

2π2n(n+ 2 + 2k)2B(n, 2k + 2)
.

For the proof of equation (3.11), assume n = 0. Theorem 3.1 implies

bn,2k+1 =

k∑
i=0

ai(0, k)b2i,1 =
1

2
+

k∑
i=1

(−1)i

2k

(
k

i

)
2ki(2k − 1)!

(2k − 1)!!(i)k+1

3

4π2i2

=
1

2
+

6k(2k − 1)!(k!)22k

4π22k(2k)!

k∑
i=1

(−1)i
1

i!(k − i)!
1

i(i)k+1

=
1

2
− 3(k!)2

4π2

k−1∑
i=0

(−1)i
1

(i+ 1)2(k − i− 1)!(i+ k + 1)!
. (3.19)

91



Chapter 3. Relating Schoenberg coefficients in Gegenbauer expansions on spheres

But this equals

1

2
− 3k

4π2(k + 1)

k−1∑
i=0

1

(i+ 1)2

(1− k)i
(2 + k)i

=
1

2
− 3k

4π2(k + 1)
4F3(1, 1, 1, 1−k; 2, 2, 2+k; 1),

which is a consequence of the identities

(k + 1)!

(k − i− 1)!
=

1

(2 + k)i
and (−1)i

(k − 1)!

(k − i− 1)!
= (1− k)i

together with the definition of the generalized hypergeometric function (3.12).
This shows our claim.
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4 Curl- and divergence-free stochastic
vector processes on the sphere

Many phenomena in nature can be described by vector fields, where a vector-valued
physical quantity is assigned to each point in space-time. Prominent examples are
vector fields describing the behaviour of fluids or wind; other examples are electric
or magnetic fields, cf. [49, 32]. For some of these fields we have knowledge about
certain physical characteristics, such as the curl or the divergence. E.g., for vector
fields describing fluids, these characteristics can be interpreted in the following
way [32]. The curl is a measure of the vorticity of the field describing its eddies.
The divergence is a local mass balance describing how much flows into or out of a
given point. If the vector field is divergence-free, it possesses no sources or sinks
– like static magnetic fields – and if it is curl-free, it is irrotational – like static
electric fields.

In what follows we focus on the case of purely spatial processes, since this means
no severe restriction. We will discuss this point at the end of this chapter.

Narcowich and Ward [75] and Fuselier [34] analyzed interpolation of divergence-
free vector fields based on radial basis functions. They gave conditions on the radial
basis functions, ensuring that the interpolated vector fields are still divergence-free.

Recently, Scheuerer and Schlather [94] generalized their approach to random
vector fields on subsets U ⊂ Rd with dimension d = 2 or d = 3. Technically, they
considered d-variate Gaussian random vector fields on U of the form

Z(x) = Z1(x) e1 + · · ·+ Zd(x) ed, x ∈ U ,

where ei is the i-th unit vector in Rd. Specifically, they characterized random vector
fields with almost surely (a.s.) curl- and divergence-free sample paths in terms of
the matrix-valued cross-covariance function C : U × U → Rd×d,

Cij(x, y) = Cov(Zi(x),Zj(y)), x, y ∈ U , i, j = 1, . . . , d.

Based on this characterization, they gave explicit principles for constructing cross-
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covariance functions corresponding to random vector fields with a.s. curl- and
divergence-free sample paths based on univariate covariance functions.

The natural domain of vector fields is not always a plane. In particular, most
vector fields arising in meteorology are defined on the Earth’s surface, which is
approximately a sphere. Vector fields on spheres are also considered in astrophysics,
see for example Mandelbaum, et al. [69], who examine cosmological shear fields.
These shear fields consist almost exclusively of so-called E-mode signals, which are
curl-free. Since curl- or divergence-free vector fields in R3 might lose this property
when restricted to a sphere, it is natural to ask how to interpolate and model on
curved surfaces. Narcowich, Ward, and Wright [77] considered this problem for
divergence-free fields on surfaces in R3 by studying divergence-free radial basis
functions on them.

The goal of the present chapter is to develop cross-covariance models for random
vector fields with a.s. divergence- and curl-free sample paths. We are interested
primarily in cross-covariance models in spherical coordinates, as we have applica-
tions in mind where the sphere is considered to be the Earth. In such applications,
coordinates are mostly given in longitude and latitude. We show that characteriza-
tions similar to those of Scheuerer and Schlather [94] can be applied to random
vector fields with domain S2 = {x ∈ R3 : ‖x‖ = 1}, and that the methods of
constructing random vector fields with a.s. curl- and divergence-free sample paths
can be transferred from Euclidean spaces to the sphere. Further, we give principles
for constructing the cross-covariance functions of such fields in terms of univariate
covariance functions on the sphere.

4.1 Random vector fields on the sphere

We are interested in random vector fields (RVFs) on the sphere S2 with a spherical
coordinate system with fixed radius one. Thus, every x ∈ S2 can be parameterized
as

x = (cosϕx cos θx, sinϕx cos θx, sin θx)t, (4.1)

with (ϕx, θx) ∈ [0, 2π) × [−π/2,π/2]. This representation is unique for every x ∈
S̃2 = S2 \ {N ,S}, where N = (0, 0, 1)t is the North and S = (0, 0,−1)t is the South
Pole. We make this representation unique on the whole sphere by setting ϕx = 0
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for x ∈ {N ,S}. Hence, for a random field (RF) {Z(x) : x ∈ S2} we identify

Z(x) = Z(ϕx, θx), (ϕx, θx) ∈ [0, 2π)× [−π/2,π/2].

for every x ∈ S2. For the sake of readability, we drop the subscript and write (ϕ, θ)

if it is clear to which point we refer.

The tangent space TxS2 attached to a point x ∈ S2 is isomorphic to R2: there
are two unit vectors in R3 such that TxS2 is the linear span of those two vectors.
Obviously, for every x there are infinitely many possibilities for choosing these two
tangent vectors but for the given coordinate system (4.1) there is a canonical choice:
if (ϕ, θ) are the spherical coordinates of x ∈ S2 then eϕ ∈ TxS2 denotes the unit
tangent vector in the longitudinal direction and eθ ∈ TxS2 denotes the unit tangent
vector in the latitudinal direction. Given x ∈ S̃2 with corresponding (ϕ, θ), these
tangent vectors can be expressed in Cartesian coordinates as

eϕ = (− sinϕ, cosϕ, 0)t and eθ = (− cosϕ sin θ,− sinϕ sin θ, cos θ)t,

which are orthogonal (see, for example, Chapter 3, Example 14 in Agricola and
Friedrich [4]). This is unique only for x ∈ S̃2, because in the poles there is no
canonical longitudinal or latitudinal direction. For the poles we set eϕ = (0, 1, 0)t

and eθ = (1, 0, 0)t for x = N and eϕ = (0,−1, 0)t and eθ = (−1, 0, 0)t for x = S,
which yields a right-handed orthonormal frame for TNS2 and TSS2.

Definition 4.1. A random vector field (RVF) on S2 is a bivariate stochastic process
Z indexed by x ∈ S2 with values in the tangent space TxS2. Using the above
parameterization we may write

Z(x) ≡ Z(ϕ, θ) = Z1(ϕ, θ) eϕ + Z2(ϕ, θ) eθ,

with real-valued RFs Z1, Z2.

The concept of mean-square differentiability for RFs from Scheuerer and Schlather
[94] allows us to define the notion of a derivative for a RF on S2.

Definition 4.2. Let {Z(x) : x ∈ S2} be a univariate RF. The RF is mean-square
partial differentiable in the direction eϕ in the point x ∈ S2 (corresponding to
ϕx, θx) if there is a random variable Z(ϕ)(ϕx, θx) with finite second moments such
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that

E
(
Z(ϕx + h, θx)− Z(ϕx, θx)

h
− Z(ϕ)(ϕx, θx)

)2

−→ 0 for h −→ 0.

The partial derivative Z(θ) is defined analogously. Furthermore, Z(θ,ϕ), resp. Z(ϕ,θ),
denotes the partial derivative of Z(ϕ) in the direction θ, resp. the partial derivative
of Z(θ) in the direction ϕ.

As the sphere – treated as a manifold – needs two charts to be covered, we
consider RVFs on S̃2, as this can be bijectively mapped to [0, 2π)×(−π/2,π/2) ⊂ R2

via (4.1). This choice of coordinates implies that the usual formulas for divergence
or curl also take different forms.

Definition 4.3. Let
{
Z(ϕ, θ) : (ϕ, θ) ∈ (0, 2π]× (−π/2,π/2)

}
be a RVF on S̃2 with

a.s. differentiable sample paths. We define the divergence and the curl of Z as

div(Z(ϕ, θ)) :=
1

cos(θ)
Z(ϕ)

1 (ϕ, θ) + Z(θ)
2 (ϕ, θ)− tan(θ) Z2(ϕ, θ), (4.2)

curl(Z(ϕ, θ)) :=

(
Z(θ)

1 (ϕ, θ)− tan(θ) Z1(ϕ, θ)− 1

cos(θ)
Z(ϕ)

2 (ϕ, θ)

)
er. (4.3)

Here, er is the outward-pointing unit normal vector. In practice, we are only
interested in the coefficient of the vector curl(Z(ϕ, θ)). Hence, we will omit er in
the following and identify curl(Z(ϕ, θ)) with its real-valued vector component in
direction er.

Although the curl operator can be defined for vector fields on R2, we are inter-
ested in applying it only to vector fields in R3 as it loses its physical interpretation
in the two-dimensional case. Hence, we consider the RVF Z on S2 as a RVF Z̃ on R3

by writing

Z(ϕ, θ) = Z̃(ϕ, θ, r = 1) = Z̃1(ϕ, θ, r = 1)eϕ + Z̃2(ϕ, θ, r = 1) eθ + 0 er=1,

where we set r = 1 to one to eliminate the dependency of r; specifically, this yields
er=1 = (cosϕ cos θ, sinϕ cos θ, sin θ)t.

Remark 4.4. Assume that all sample paths of Z are a.s. continuously differentiable.
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It follows from the proof of Theorem 1 in Scheuerer and Schlather [94] that if
E(div(Z)2) = 0, resp. E(curl(Z)2) = 0, then almost every sample path of Z is
divergence-free, resp. curl-free, which can be seen as follows. Let E(div(Z)2) = 0

and denote by Ω the sample space of Z. By Fubini’s Theorem,

E
(∫

S2

[div(Z(x))]2 dx

)
=

∫
S2

E
[
div(Z(x))2

]
dx = 0,

which implies the existence of a set N ⊂ Ω with measure zero, such that I(ω) :=∫
S2 [div(Z(x))]2 dx = 0 for all ω ∈ Ω\N . In other words, for those ω the divergence

of Z(x)(ω),x ∈ S2, can be non-zero only on a set with measure zero. Then, by the
continuity of the partial derivatives of Z, the divergence vanishes everywhere on
S2 for all ω ∈ Ω\N . In the case where E(curl(Z)2) = 0, the proof is analogous.

Consequently, we can transfer the property of being curl- or divergence-free in
the mean square sense to the corresponding property of the sample paths.

4.2 Main results

In this section we present the main results for covariance functions corresponding
to curl- and divergence-free RVFs on S̃2. In the following, C(n,m)(S2, S2) denotes the
space of functions C : S2 × S2 → R that are n-times continuously differentiable in
the first argument and m-times continuously differentiable in the second argument.
The Nabla operator in spherical coordinates equals

∇ =

(
1

cos θ
∂ϕ, ∂θ

)t
.

Given a function on S2 × S2, the operators ∇1 and ∇2 denote the Nabla operators
operating on the first and second argument of the function, respectively.

The following result states a construction principle of cross-covariance functions
corresponding to curl- and divergence-free RVFs. The result is similar to Theorem 2
in Scheuerer and Schlather [94]. There and in the following, we use matrix notation
for the composition of operators. For example, ∇2∇t1 denotes the operator(

1
cos θ2 cos θ1

∂ϕ2∂ϕ1
1

cos θ2
∂ϕ2∂θ1

1
cos θ1

∂θ2∂ϕ1 ∂θ2∂θ1

)
,

acting on a function C : S2× S2 → R, with (θi,ϕi), i = 1, 2, parameterizing the i-th
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argument of C. Analogously, with 12 being the 2× 2 identity matrix, the operator
(∇t2∇1)12 stands for(

1
cos θ2 cos θ1

∂ϕ2∂ϕ1 + ∂θ2∂θ1 0

0 1
cos θ2 cos θ1

∂ϕ2∂ϕ1 + ∂θ2∂θ1

)
.

Theorem 4.5. Let C ∈ C(1,1)(S̃2, S̃2) be a covariance function. Consider the matrix-
valued functions Cdiv, Ccurl : S̃2 × S̃2 → R2×2 defined by

Cdiv :=
[
−∇2∇t1 + (∇t2∇1)12

]
C and Ccurl := (∇1∇t2)C. (4.4)

(a) Then, there exist bivariate processes on S̃2 with cross-covariance functions
Cdiv and Ccurl, which we denote by Zdiv and Zcurl.

(b) If a sample path of the process Zdiv, resp. Zcurl, is a.s. continuously differen-
tiable, then it also is divergence-free, resp. curl-free.

Part (a) of the theorem together with (b) provide a construction method for
bivariate processes with almost surely divergence- or curl-free sample paths. An
analogous construction principle for processes on the sphere was given in [29,
77] in terms of Cartesian coordinates. The usage of Cartesian coordinates has the
advantage that it is feasible on the whole sphere. However, the construction given
in the above theorem has the advantage that it can be used directly for data given
in spherical coordinates. Further, the so constructed models might admit a better
interpretation of their properties, as the usage of Cartesian coordinates does not
respect the geometry of the sphere, cf. Banerjee [7].

Remark 4.6. (1) The restriction to processes without poles is no limitation for
applications as the probability for curls or divergences occurring at a single
prespecified point is zero.

(2) We show in Section 4.3 that the constructions provided in the above theorem
are unique. In other words, every curl- and divergence-free RVF on S̃2 has
matrix-valued covariance functions of the forms (4.4).

Proof of Theorem 4.5. (a) By Kolmogorov’s Existence Theorem, there exists a uni-
variate centred Gaussian process Z on S̃2 with covariance function C. The mean-
square partial derivatives Z(ϕ)(ϕ, θ) and Z(θ)(ϕ, θ) exist at every point of S̃2, by the
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assumption on C. Define the bivariate process Z via

Zcurl(ϕ, θ) :=
1

cos(θ)
Z(ϕ)(ϕ, θ)eϕ + Z(θ)(ϕ, θ)eθ.

Straightforward calculations show that Zcurl has cross-covariance function Ccurl.
Similarly, consider

Zdiv(ϕ, θ) := Z(θ)(ϕ, θ)eϕ −
1

cos(θ)
Z(ϕ)(ϕ, θ)eθ.

Again, a straightforward calculation yields that Cdiv is the cross-covariance function
of Zdiv.

(b) The statement is shown by direct calculation. First, consider Zcurl. Starting
with (4.3), we deduce that

curl(Zcurl(ϕ, θ))

=
sin(θ)

cos2(θ)
Z(ϕ)(ϕ, θ)+

1

cos(θ)
Z(θ,ϕ)(ϕ, θ)− 1

cos(θ)
Z(ϕ,θ)(ϕ, θ)− tan(θ)

cos(θ)
Z(ϕ)(ϕ, θ),

which equals zero, as Z(θ,ϕ) = Z(ϕ,θ) due to the continuity of the partial derivatives
of C.

The calculation for Zdiv is analogous. We use (4.2) and get

div(Zdiv(ϕ, θ))

=
1

cos θ
Z(ϕ,θ)(ϕ, θ)− tan θ

cos θ
Z(ϕ)(ϕ, θ)− 1

cos θ
Z(θ,ϕ)(ϕ, θ) +

tan θ

cos θ
Z(ϕ)(ϕ, θ),

which equals zero, with the same argument as above. Applying Remark 4.4 yields
the result.

The cross-covariance functions Ccurl and Cdiv are constructed in exactly the same
way as in the case for RVFs on Euclidean spaces; see Theorem 2 in Scheuerer and
Schlather [94]. This is not surprising, as the connection between both cases is
given by a coordinate transformation which is implicitly contained in the Nabla
operators on the sphere. The idea behind this construction is the well-known fact
that a divergence field is curl-free and a curl field is divergence-free.

The Helmholtz-Hodge decomposition (cf. [4, Chapter 9.3, Theorem 3]) yields
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that every smooth vector field V on S2 can be uniquely decomposed as

V(x) = Vcurl(x) + Vdiv(x), x ∈ S2,

where Vcurl and Vdiv are curl- and divergence-free vector fields on S2, respectively.
Consequently, every RVF on S̃2 with a.s. differentiable sample paths can be decom-
posed similarly as

Z(x) = Zcurl(x) + Zdiv(x), x ∈ S̃2,

where Zcurl and Zdiv can be generated as in the proof of the theorem above. Fan and
Matsuo [29] used this composition to construct covariance functions for general
RVFs on S2.

Remark 4.7. Note that a mean-square differentiable RF need not have a.s. differ-
entiable sample paths and vice versa. This implies that the assumption of differ-
entiability of Zdiv and Zcurl in part (b) of the theorem is essential. Scheuerer [93]
gives a concise treatment of sample path properties for second-order RFs.

Example 4.8. Consider the function C : S̃2 × S̃2 → R, given by

C(ϕ1, θ1,ϕ2, θ2) = cos θ1 cos θ2 cos(ϕ1 − ϕ2).

This is a valid covariance function, as follows. The cosine function is positive def-
inite on R and f(x)f(y) is a positive definite kernel on R × R for any function
f : R → R. Now Corollary 3.1.13 in [9] directly implies that the tensor prod-
uct cos(x1 − x2)f(y1)f(y2) is positive definite on R2 × R2, implying the positive
definiteness of C. Applying formulas (4.4) yields

Cdiv(ϕ1, θ1,ϕ2, θ2) =

(
∂θ1∂θ2 − 1

cos θ2
∂ϕ2∂θ1

− 1
cos θ1

∂θ2∂ϕ1
1

cos θ1 cos θ2
∂ϕ2∂ϕ1

)
C(ϕ1, θ1,ϕ2, θ2)

=

(
sin θ1 sin θ2 cos(ϕ1 − ϕ2) sin θ1 sin(ϕ1 − ϕ2)

− sin θ2 sin(ϕ1 − ϕ2) cos(ϕ1 − ϕ2)

)

and

Ccurl(ϕ1, θ1,ϕ2, θ2) =

(
1

cos θ1 cos θ2
∂ϕ1∂ϕ2

1
cos θ1

∂ϕ1∂θ2
1

cos θ2
∂θ1∂ϕ2 ∂θ1∂θ2

)
C(ϕ1, θ1,ϕ2, θ2)
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=

(
cos(ϕ1 − ϕ2) sin θ2 sin(ϕ1 − ϕ2)

− sin θ1 sin(ϕ1 − ϕ2) sin θ1 sin θ2 cos(ϕ1 − ϕ2)

)
.

Figures 4.1, resp. 4.2, show realizations for the RVF Zdiv corresponding to Cdiv,
resp. for the RVF Zcurl corresponding to Ccurl. In these plots, it is not easy to
see that the realizations have the desired properties. Therefore, we also plot the
realizations depending only on longitude and latitude; see Figures 4.3 and 4.4.
In Figure 4.3, we clearly see two curls, one near the point (1.7, 0) and the other
one near (3, 0), but no divergences. Figure 4.4 shows a vector field with two
divergences, one near (0, 0) and the other one near (−2.8, 0), but with no curls, as
expected.

Example 4.9. Jun [53] introduced nonstationary, multivariate covariance models
on the sphere based on partial derivatives of univariate processes. Using univariate
processes Yk on the sphere, she defined the bivariate process Z via

Zi(ϕ, θ) =
n∑
k=1

(
ai,k(θ)Y

(θ)
k (ϕ, θ) + bi,k(θ)Y

(ϕ)
k (ϕ, θ)

)
+ gi(θ)Y0(ϕ, θ), (4.5)

for i = 1, 2, where ai,k, bi,k, and gi are functions of the latitude, and Yk are inde-
pendent, mean-square differentiable, univariate processes. We can obtain Zdiv and
Zcurl as special cases of (4.5). Let n ≥ 1 and gi ≡ 0 for i = 1, 2. Then setting

a1,k(θ) ≡ 1, b2,k(θ) = − 1

cos(θ)
,

and
b1,k(θ) ≡ 0 ≡ a2,k(θ),

for all 1 ≤ k ≤ n yields immediately Zdiv. On the other hand, setting

b1,k(θ) =
1

cos(θ)
, a2,k(θ) ≡ 1,

and
b2,k(θ) ≡ 0 ≡ a1,k(θ)

for 1 ≤ k ≤ n yields Zcurl, as differentials are linear operators.

In the following we consider a specific example taken from [53]. Let n = 1 and
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Y1 be a stochastic process on S2 with Matérn covariance function

C(ϕ, θ) =Mν(d) =

(
d

a

)ν
Kν

(
d

a

)
,

where

d = 2

[
sin2

(
θ1 − θ2

2

)
+ cos(θ1) cos(θ2) sin2

(
ϕ1 − ϕ2

2

)]1/2

denotes the chordal distance between two points on the sphere; ν > 0, resp. a > 0,
denote the smoothness, resp. scale, of the Matérn covariance function; and Kν is
the modified Bessel function of the second kind with parameter ν. Following the
calculations in Jun [53] and Jun and Stein [54] we obtain

∂ϕ1∂ϕ2C = −1

4
h2

3Mν−2

(
d

a

)
+

1

2
h33Mν−1

(
d

a

)
,

∂ϕ1∂θ2C =
1

4
h2h3Mν−2

(
d

a

)
− 1

2
h23Mν−1

(
d

a

)
,

∂θ1∂ϕ2C = −1

4
h1h3Mν−2

(
d

a

)
+

1

2
h13Mν−1

(
d

a

)
,

∂θ1∂θ2C =
1

4
h1h2Mν−2

(
d

a

)
− 1

2
h12Mν−1

(
d

a

)
,

where the functions hi,hij , 1 ≤ i, j ≤ 3, are given explicitly in [54, Appendix A].
These identities in combination with formulas (4.4) yield matrix-valued covariance
functions for Zcurl and Zdiv. Note that for the application of Theorem 4.5 we have
to choose ν > 2, otherwise C would not be in C(1,1).

Figure 4.5 shows a realization of a RVF corresponding to a curl-free Matérn
covariance model Ccurl with smoothness ν = 5 and scale a = 1. We see a very
smooth RVF with several divergences but no curls, as expected.

By contrast, we see in Figure 4.6 a realization of a divergence-free Matérn co-
variance model Cdiv with smoothness ν = 3 and scale a = 0.5. The RVF looks less
smooth and shows some curls but no divergences.

This illustrates that the bivariate Matérn model provides a flexible way of mod-
elling curl- or divergence-free RVFs on the sphere as the smoothness and scale
parameters govern the size and smoothness of the structures in the realization.
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Figure 4.1: A realization of the divergence-free RVF Zdiv given by Cdiv from Exam-
ple 4.8.
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Figure 4.2: A realization of the curl-free RVF Zdiv given by Cdiv from Example 4.8.

104



Fi
gu

re
4.

3:
T

he
re

al
iz

at
io

n
of

a
di

ve
rg

en
ce

-f
re

e
RV

F
fr

om
Fi

gu
re

4.
1

pl
ot

te
d

in
de

pe
nd

en
ce

of
lo

ng
it

ud
e

an
d

la
ti

tu
de

.

105



Figure
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curl-free
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F
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Figure
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4.3. Stochastic differential forms on embedded submanifolds of R3

4.3 Stochastic differential forms on embedded
submanifolds of R3

We have shown in the foregoing section how to construct cross-covariance functions
of curl- and divergence-free RVFs based on univariate covariance functions. Now
the issue arises as to whether this construction principle is unique under certain
circumstances, or whether there are further possibilities for constructing such cross-
covariance functions. Theorem 4 of Scheuerer and Schlather [94] establishes the
uniqueness for Ccurl of RVFs on R2 and R3 and we show a similar result for Ccurl
of RVFs on the sphere.

To state and prove this result we introduce the concept of stochastic differential
forms. The advantage of this approach lies in its generality: stochastic differential
forms can be defined on any two- or three-dimensional submanifold of R3. Hence,
they can be used whenever random flows have to be modelled on certain surfaces
in R3. Another advantage is that many results of the rich theory of differential
forms can be used, such as the Poincaré Lemma.

Throughout this section, M denotes a smooth submanifold of R3 with dimension
d = 2 or 3 that can be covered by a single chart. By TpM we denote the tangent
space of M of point p ∈M . All RFs and RVFs are assumed to be centered.

First, we define mean-square derivatives for RFs on M .

Definition 4.10. The RF {Z(p) : p ∈ M} is mean-square differentiable in p along
v ∈ TpM if there exists a RF Z(v) on M and, for some ε > 0, a C1-curve γ :

[−ε, ε]→M with γ(0) = p and γ′(0) = v, such that

E
(
Z(γ(δ))− Z(p)

δ
− Z(v)(p)

)2

−→ 0, δ −→ 0.

Example 4.11. We illustrate how this definition generalizes the mean-square dif-
ferentiability for RFs on spheres, given in Definition 4.2. As mentioned before, for
each p ∈ M the tangent space TpM is isomorphic to R2 for every p ∈ M , which
we denote by TpM ∼= R2. Defining the curve γϕ via its coordinate representa-
tion γ̃ϕ(t) = (ϕ + t, θ) we obtain eϕ = γ′ϕ(0)/‖γ′ϕ(0)‖ and correspondingly Z(eϕ),
which coincides with Z(ϕ) from Definition 4.2. In a similar manner we obtain
Z(eθ) = Z(θ).

Remark 4.12. If the univariate RF Z on M is mean-square differentiable in p ∈M
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in the direction v ∈ TpM we deduce for the covariance function

C : M ×M → R, (p, q) 7→ Cov(Z(p),Z(q)),

that

Cov(Z(v)(p),Z(q)) = D1
vC(p, q) and Cov(Z(p),Z(v)(q)) = D2

vC(p, q),

where Di
v denotes the derivative of C with respect to the i-th variable in direction

v ∈ TpM .

In the remainder of this section we analyze how the sample path properties of
RVFs on M are related to properties of the corresponding covariance function. In
our analysis, we use the language of differential forms (Lee [64, Chapter 12]), as the
study of vector fields on manifolds is closely connected to the study of differential
forms on manifolds and there are many well-known results on differential forms
on manifolds. Hence, we define stochastic differential forms on M .

Definition 4.13. (a) Let (M ,h−1) be the smooth chart on the n-dimensional
manifold M , where h−1 : M → h−1(M) is a diffeomorphism. A stochastic
k-form is defined as

ζ =
∑
I

ζI dxi1 ∧ · · · ∧ dxik ,

where I = (i1 < · · · < ik) are ordered index-tuples with 1 ≤ i1, . . . , ik ≤
n; x1, . . . ,xk are the corresponding coordinates and ∧ denotes the outer
product (for details we refer to [64, Chapter 12]). The coefficients ζI are
univariate RFs on M , with a common probability space (Ω,A,P ) and with
a.s. continuous sample paths.

The set of stochastic k-forms with coefficients ζI whose sample paths are
almost surely l-times differentiable will be denoted by Akl (M).

(b) Let ζ ∈ Akl (M), l ≥ 1, be given as above. The exterior derivative of ζ is defined
as

dζ =
∑
I

n∑
α=1

ζ
(xα)
I dxα ∧ dxi1 ∧ · · · ∧ dxik .

Further, the k-form ζ is called closed if dζ(ω) = 0 for almost all ω ∈ Ω. A
stochastic k-form ζ ∈ Ak0, k ≥ 1, is called exact if there exists µ ∈ Ak−1

1 (M)
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4.3. Stochastic differential forms on embedded submanifolds of R3

with dµ(ω) = ζ(ω) for almost all ω ∈ Ω.

Remark 4.14. For every vector field V on M there exists a dual differential form
ζV , which is defined via

∗ζV = V ¬ dM ,

where ∗ denotes the Hodge operator, dM the volume form on M , and ¬ denotes
the inner product, see Agricola and Friedrich [4] for a detailed definition.

Given a RVF on M , the dual stochastic k-form can be found analogously.

Example 4.15. (1) Consider a RVF Z on M = R3, given as

Z(x) = Z1(x) e1 + Z2(x) e2 + Z3(x) e3.

The volume form equals dR3 = dx1 ∧ dx2 ∧ dx3 (see Example 25 in [4,
Chapter 3]). Constructing the inner product yields

Z(x) ¬ dR3 = Z1(x) dx2 ∧ dx3 − Z2(x) dx1 ∧ dx3 + Z3(x) dx1 ∧ dx2.

Using the fact that the Hodge operator is self-inverse in this case (Chapter 1,
Theorem 5 (1) in [4]) we obtain

ζZ = Z1 dx1 + Z2 dx2 + Z3 dx3

as the dual stochastic 1-form of Z.

(2) Now let Z = Z1eϕ + Z2eθ be a RVF on S̃2. The corresponding volume form is
dS̃2 = cos θ dϕ∧ dθ (Example 27, Chapter 3 in [4]). Taking the inner product
and applying the inverse of the Hodge operator yields

Z(x) ¬ dS̃2 = Z1(x) dϕ+ cos θ Z2(x) dθ.

(3) Consider spherical coordinates in R3 given by the transformation

x = r cos θ cosϕ, y = r cos θ sinϕ, z = r sin θ,

with ≥ 0,ϕ ∈ [0, 2π) and θ ∈ [−π/2,π/2]. A RVF Z in these coordinates is
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given as

Z(r,ϕ, θ) = Z1(r,ϕ, θ)er + Z2(r,ϕ, θ)eϕ + Z3(r,ϕ, θ)eθ,

where the unit vectors are

er = (cos θ, cosϕ, sin θ)t,

eϕ = (− sinϕ, cosϕ, 0)t,

eθ = (− sin θ cosϕ,− sin θ cosϕ, cos θ)t.

A similar procedure as in the cases (1) and (2) above yields the dual stochas-
tic 1-form

ζZ = Z1 dr + r cos θ Z2 dϕ+ r Z3 dθ.

Remark 4.16. We can express elegantly the curl and the divergence of a RVF Z on
M in terms of its dual stochastic 1-form. With Definition 13 and Theorem 17 as
found in [4, Chapters 2 and 3] we obtain

dζZ = ∗ζcurl(Z)

and
d(∗ζZ) = div(Z) dM .

The remark shows that a RVF Z on M has a.s. curl-free sample paths if and
only if its dual stochastic 1-form is closed. This shows that characterizing RVFs
with curl-free sample paths on M is equivalent to characterizing closed stochastic
1-forms on M . This is done in the following result, which is a generalization of
Theorem 4 in Scheuerer and Schlather [94].

Theorem 4.17. Let M be simply connected with dimension d = 2 or 3 and Z be
a RVF on M . Further, assume ζ to be the corresponding stochastic 1-form and
assume it is closed. Then ζ is exact, meaning that there is a univariate RF Y on
M with dY = ζ. Furthermore, given v ∈ TpM ∼= Rd, the RF Y is mean-square
differentiable along v with Y (v) = v ¬ ζ, i.e., v ¬ ζ = ζ(v).

Proof. Let (Ω,A,P ) be the probability space belonging to ζ. We define Ω0 to be
the set of all ω ∈ Ω such that dζ is not defined or the paths of the index RFs ζI are
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not differentiable. If ω ∈ Ω0 we set Y (·,ω) ≡ 0, and for all other ω ∈ Ω̃ := Ω\Ω0

we define

Y (p,ω) =

∫ 1

0
γ∗ζ(ω), p ∈M .

Here, γ : [0, 1] → M is a piecewise smooth curve segment with γ(1) = p and
γ(0) = p0, with p0 ∈ M an arbitrary point and f∗g = g ◦ f denotes the pullback
of the function g by the function f . Now Y is again a RF on M and it does not
depend on the particular choice of γ since ζ is closed. Furthermore, for each ω ∈ Ω̃

we have
dY (·,ω) = ζ(ω).

Now we show that Y is mean-square partially differentiable along v ∈ Rd. First
note that for any piecewise differentiable curve pγ : [a, b] → M joining p1, p2 ∈ M
we have

Y (p1)− Y (p2) =

∫ b

a
pγ∗ζ,

since we can reparametrize curves and the integral over closed curves is 0 and
ζ is a closed stochastic form. For any fixed p ∈ M we choose a chart (M ,h−1),
with coordinate functions x1, . . . ,xd corresponding to the standard basis in Rd,
and consider the differentiable curve γ : [−ε, ε] → M , which we define via its
coordinate representation γ̃ as

γ̃(t) = (γ̃1(t), . . . , γ̃d(t)) = (h−1(p)1 + tv1, . . . ,h−1(p)d + tvd),

where we have used the fact that h−1(M) ⊂ Rd ∼= TpM . This can be done if we
choose ε > 0 sufficiently small. Note that γ(0) = p and γ′(0) = v.

The stochastic 1-form h∗Y on V = h−1(M) is given by (h∗Y )(x) =
∫ 1

0 (h ◦ γ̃)∗ζ,
where x = h−1(p). Now γ̃ is a curve joining x and x + εv. Hence, we have for
ε ≥ δ > 0

(h∗Y )(v,δ)(x) :=
1

δ

∫ δ

0
(h ◦ γ̃)∗ζ =

1

δ

∫ δ

0
γ̃∗(h∗ζ),

and (h∗ζ)(x) =
∑d

j=1 ζj(x) dxj on V . As can be seen in [64], Proposition 6.19, we
can write ∫ δ

0
γ̃∗(h∗ζ) =

∫ δ

0

d∑
j=1

ζj(γ̃(t),ω)(γ̃j)
′(t) dt
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=

∫ δ

0

d∑
j=1

ζj(γ̃(t),ω)vj dt =

∫ δ

0
h∗(v ¬ ζ)(γ̃(t)) dt.

This results in

E
(

(h∗Y )(v,δ)(x)− h∗(v ¬ ζ)(x)
)2

= E

(
1

δ

∫ δ

0
h∗(v ¬ ζ)(x+ tv)− h∗(v ¬ ζ)(x) dt

)2

and this integral can be approximated using the same arguments as in the proof of
Theorem 4 in [94]. This yields the claim.

Remark 4.18. (1) Let M = S̃2, Z be a RVF on M with a.s. curl-free sample paths,
and ζZ be its dual stochastic 1-form. Then dζZ = 0 and the theorem above
yields the existence of a RF Y on S̃2 with Y (v) = v ¬ ζ for every v ∈ TpM and
covariance function C.

For the usual coordinates on S̃2 we have Z(ϕ, θ) = 1
cos θY

(eϕ)eϕ + Y (eθ)eθ.
Then it follows that

Cov(Z(ϕ1, θ1), Z(ϕ2, θ2)) = ∇1∇t2C(ϕ1, θ1,ϕ2, θ2),

where ∇i is the Nabla operator on the sphere, as defined in the previous
section. This is exactly the form of Ccurl of Theorem 4.5, and proves the
uniqueness of the construction.

(b) Following [94], we can show in an analogous way that every divergence-free
RVF on S̃2 has a matrix-valued covariance function Cdiv of the form (4.4).

Let Z = Z1eϕ+Zeθ be a divergence-free RVF on S̃2. Then, by (4.2) and (4.3),
it follows that the curl of the RVF

X := Z2eϕ − Z1eθ

equals zero. Now Theorem 4.17 implies that the matrix-valued covariance
function of X is of the form (∇1∇t2)C for some univariate covariance function
C. From this it follows readily that the matrix-valued covariance function of
Z equals [

−∇2∇t1 + (∇t2∇1)12

]
C.

Consequently, the constructions given in Theorem 4.5 are unique.
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4.4 Discussion

In this chapter, we provided criteria for random vector fields on the sphere to
have almost surely curl- or divergence-free sample paths. We gave construction
principles for matrix-valued covariance functions corresponding to the random
vector fields possessing the respective sample path properties. These construction
principles use univariate covariance functions in spherical coordinates, which are
widely used in many applications, like meteorology. This allows a researcher to
directly use our results to model processes with a desired physical property.

In practice, many processes are not static. Scheuerer and Schlather [94] pointed
out that it is possible to use their results also for space-time processes: as the
construction principle of the corresponding matrix-valued covariance functions is
based on differential operators acting only on the spatial coordinates, an additional
temporal variable can be safely ignored. Analogously, this also holds true in our
case. Let C(x, t, y, τ) be a univariate, spatio-temporal covariance function on (S̃2×
R) × (S̃2 × R) that is sufficiently smooth. Plugging C into (4.4) yields matrix-
valued, spatio-temporal covariance functions corresponding to space-time random
vector fields with almost surely curl- or divergence-free sample paths. This holds
true, as the proof of Theorem 4.5 can be applied similarly in the spatio-temporal
case: replacing the purely spatial processes by spatio-temporal processes and the
purely spatial covariance functions by spatio-temporal covariance functions yields
the claim.
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5 On the dimple in spatio-temporal
covariance functions

In recent years, there has been considerable interest in the construction of flexible
spatio-temporal covariance models, as exemplified by the work of Cressie and
Huang [17], Gneiting [37], Ma [67], Stein [105], Porcu, Mateu, and Christakos
[82], Gneiting, Genton, and Guttorp [42], and Schlather [97]. Spatio-temporal
covariance functions play key roles in the characterization of random processes
{Z(s, t) : (s, t) ∈ Rd×R}, where s represents a location in d-dimensional Euclidean
space and t represents time. We generally assume second-order stationarity, i.e.,
that the covariance between Z(s1, t1) and Z(s2, t2) depends only on the lag vector
(s1 − s2, t1 − t2). Hence, the corresponding covariance function can be denoted by

C(h,u) = Cov{Z(s, t),Z(s+ h, t+ u)}, (h,u) ∈ Rd × R,

where h ∈ Rd and u ∈ R are spatial and temporal lags, respectively.
The space-time covariance function is said to be spatially isotropic if C(h1,u) =

C(h2,u) whenever ‖h1‖ = ‖h2‖, and it is said to be fully symmetric if

C(h,u) = C(−h,u) = C(h,−u) = C(−h,−u)

for all h ∈ Rd and u ∈ R. Kent, Mohammadzadeh, and Mosammam [58] showed
that the family of fully symmetric covariance models introduced by Gneiting [37]
includes members with a dimple, in the sense that the correlation between the ran-
dom variables Z(shere, tnow) and Z(sthere, tthen) might be higher than the correlation
between Z(shere, tnow) and Z(sthere, tnow). Moreover, Kent, et al. argued that this
property is counterintuitive, since it prevents C(h,u) from being a monotonically
decreasing function in u for every fixed h.

However, the dimple property arises naturally in environmental and geophysical
applications, when quantities such as precipitation, wind speed, or air pollutants
are affected by transport effects. Specifically, as observed by Gneiting, Genton,
and Guttorp [42], in the presence of prevailing winds transport fields show spatio-
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Figure 5.1: Empirical pairwise correlation for precipitation in three German cities.

temporal covariances with non-monotone behavior in certain directions. An ex-
ample is shown in Figure 5.1, where hourly precipitation data are displayed for
three German cities for the period December 1, 2003 through December 31, 2012.
The empirical cross-correlation functions exhibit dimple-like behavior as a result
of transport effects caused by predominantly westerly winds. Perhaps surprisingly,
similar effects occur in situations in which the wind is uniform in all directions and
the corresponding covariance function is spatially isotropic. Recent work of Huser
and Davison [51, Fig. 3] suggests that dimples can also occur in empirical extremal
coefficient functions.

To model transport effects we consider transport fields that give rise to covariance
functions of the form

C(h,u) = E {C0(h− V u)} , (h,u) ∈ Rd × R, (5.1)

where the initial covariance C0 is purely spatial and stationary on Rd, and the
random vector V ∈ Rd represents the velocity. Uniform transport fields occur when
C0 is isotropic and V has a uniform distribution on a sphere with center at the
origin, and these transport fields can give rise to spatially isotropic, fully symmetric
covariance functions with the dimple property. Transport covariance functions of
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(a) (b)

Figure 5.2: The transport covariance function (5.2) with initial covariance C0(h) =
(1+h2)−1. The dimple starts forming at |h| = 1/

√
3, the inflection point

of C0.

this and related forms have been studied by Cox and Isham [15], Ma [67], Gneiting,
Genton, and Guttorp [42], and Schlather [97], among others. In Figure 5.2, we
illustrate the dimple generated in one spatial dimension under a Cauchy initial
covariance C0.

We next introduce our key definition.

Definition 5.1. Suppose that C(h,u), (h,u) ∈ Rd×R is a spatially isotropic covari-
ance function. Then C(h,u) generates a dimple with onset at κ ≥ 0 if there is an
ε > 0 such that C(h,u) has a strict local maximum at u = 0 for |h| ≤ κ and a strict
local minimum at u = 0 for κ < ‖h‖ < κ+ ε. The dimple is strong if the onset is at
κ = 0 and regular otherwise.

Remark 5.2. When introducing the concept of dimples, Kent, Mohammadzadeh,
and Mosammam [58] used the following, slightly different definition of a dimple.
They define a spatially isotropic and fully symmetric spatio-temporal covariance
function C to have a dimple if there exists κ > 0 such that

(i) C(h,u) is strictly decreasing in u ≥ 0 for fixed ‖h‖ ≤ κ, and

(ii) there exists u∗ depending on ‖h‖ with C(h,u) strictly increasing on (0,u∗)

and strictly decreasing on (u∗,∞) for fixed ‖h‖ > κ.

Consequently, Definition 5.1 generalizes their definition, as spatially isotropic
spatio-temporal covariance functions are also fully symmetric and (i) implies a
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strict local maximum in u = 0 for ‖h‖ ≤ κ, while (ii) implies a strict local mini-
mum in u = 0 for ‖h‖ > κ.

In the next section, we investigate the formation of dimples in one spatial dimen-
sion and analyze them in statistical applications with the help of a simulation study
in Section 5.2. Afterwards, we generalize the concept of a dimple to any spatial
dimension in Section 5.3. We identify classes of initial covariance functions C0

for which the transport covariance function (5.1) generates a dimple, characterise
its onset, and illustrate our results using the powered exponential, Cauchy, and
Matèrn initial covariances.

5.1 Dimples in one spatial dimension

In one spatial dimension, the transport covariance function (5.1) takes the form

C(h,u) =
1

2
{C0(h− u) + C0(h+ u)} , (h,u) ∈ R× R, (5.2)

where C0 is a stationary covariance function on R. This can be associated with
the superposition of two independent processes with covariance C0/2 moving in
opposite directions. Such processes are usually referred to as frozen fields [42, 18].

For now, we restrict attention to initial covariance functions C0 with bell-shaped
geometry, which we formalize as follows.

Definition 5.3. An even function f : R→ R is weakly bell-shaped if

• f is continuous on R;

• f decays to zero on (0,∞);

• f is twice differentiable on (0,∞);

• there is c ≥ 0 such that f is strictly concave on (0, c) and strictly convex on
(c,∞).

We call the constant c in the above definition the inflection point of f , which is
a slight abuse of convention when c = 0. In the latter case f has a cusp at the
origin. See panel (a) of Figure 5.2 for an illustration of this effect on the shape of
the dimple. Also note that the case c = 0 allows f to be convex on (0,∞).
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Theorem 5.4. If C0 is weakly bell-shaped, the transport covariance function (5.2)
generates a dimple with onset at its inflection point.

Proof. Given h ∈ R, consider fh(u) = C(h,u) for u ∈ R, and let c denote the
inflection point of C0. If ‖h‖ < c then fh has a strict local maximum, and if
‖h‖ > c a strict local minimum, at u = 0, because f ′h(0) = 0 and f ′′h (0) = C ′′0 (h) for
h 6= 0.

As the conditions of our results are invariant under transformations of the form
f(h) 7→ σ f(ah) for a,σ > 0, there is no need to include scale and variance param-
eters in examples.

Example 5.5. Consider the Cauchy family

C0(h) = (1 + |h|α)−β , h ∈ R,

with smoothness parameter 0 < α ≤ 2 and long-memory parameter β > 0 [44]. For
all parameter values, the conditions of Theorem 5.4 are satisfied. When 0 < α ≤ 1,
C0 is convex and the space-time covariance function (5.2) generates a strong
dimple. When 1 < α ≤ 2, the dimple is regular with onset at the inflection point

c =

(
α− 1

αβ + 1

)1/α

,

as illustrated in Figure 5.2 for α = 2 and β = 1.

If the random vector V in (5.1) is not symmetrically distributed there is a pre-
vailing transport direction, which might cause a moving dimple. We illustrate
this in the following with a simple example. Let V be uniformly distributed on
{−3/2, 1/2}. We can decompose V = Vu + vp, where Vu is a random velocity uni-
formly distributed on {−1, 1}, and vp = −1/2 is a deterministic term. Evidently, Vu
corresponds to local random transport effects while vp yields a prevailing transport
effect. This explains the term moving dimple: if we move our inertial system with
velocity vp, i.e., if we make a Galilean transformation h̃ = h + vpu, we have a
uniform transport field in this transformed system, which causes a dimple there.

In Figure 5.3 we illustrate a moving dimple with the above transport effects,
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Figure 5.3: A moving dimple generated by model (5.3)

where we choose C0 = (1 + h2)−1, which results in the covariance function

C(h,u) =
2

4 + (3u− 2h)2
+

2

4 + (u+ 2h)2
. (5.3)

This demonstrates that covariance models that admit the dimple property can
also be applied when a prevailing transport effect occurs.

5.2 Simulation study

Before considering dimples in higher spatial dimensions, we investigate the rele-
vance of the dimple phenomenon in statistical practice. To this end, we perform
a simulation study considering the three spatio-temporal centered Gaussian RFs
Zdimple, Ztransp, and Zsep on R× R. These fields are determined by the following
covariance functions:

Cdimple(h,u) =
1

2

[
exp(−a|h− vu|) + exp(−a|h+ vu|)

]
, (h,u) ∈ R× R,
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Simulated Fitted â v̂

dimple dimple 0.47 1.00
dimple transport 0.53 0.91
dimple separable 0.20 0.45

transport dimple 0.57 0.99
transport transport 0.56 1.00
transport separable 0.26 0.56

separable dimple 0.49 −10.0
separable transport 0.51 −12.5
separable separable 0.52 1.02

Table 5.1: The first and second column specify the type of process that was simu-
lated and fitted, respectively. The third and the fourth column contain
the corresponding estimates of the parameters a and v. Note that the
true values of these parameters are a = 1/2 and v = 1.

which admits a dimple,

Ctransp(h,u) = exp(−a|h− vu|), (h,u) ∈ R× R,

admitting a unidirectional transport effect, and the separable covariance function

Csep(h,u) = exp(−a|h| − v|u|), (h,u) ∈ R× R,

respectively, where a, v > 0 are scale parameters. After setting v = 1 and a = 1/2,
each RF is simulated once on the spatio-temporal grid {0, 1, 3, 6} × {1, . . . , 3650}.
These simulations are then separated into a training set consisting of the simu-
lated values on {0, 1, 3, 6} × {1, . . . , 1825}, and a test set consisting of the simu-
lated values on {0, 1, 3, 6} × {1829, . . . , 3650}. For every combination i, j ∈ I =

{dimple, transp, sep} the covariance function Cj is fitted to the empirical covari-
ance function calculated from the training set of the realization Zi. The fitting is
done by non-weighted least square estimation, where we consider the temporal
lags −6,−5, . . . , 5, 6. The thus-obtained estimates of the parameters a and v are
denoted by â and v̂, respectively, and are shown in Table 5.2.

Afterwards, these estimates are used for making one-time-step-ahead simple
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kriging predictions1 at all four sites and each pair of covariance model and real-
ization, where we use the realizations on the last three time points as predictors.
Specifically, on each point (s0, t0) of the corresponding test set the simple kriging
point predictor for Zi(s0, t0), i ∈ I, is given by

Ẑi(s0, t0) = c′i,0C
−1
i zi,0.

Here the covariance function Ci, i ∈ I, with the estimated parameters is used to
calculate the covariance matrix

Ci =
[
Ci(xk − xl)

]
1≤k,l≤12

,

and the vector
ci,0 = (Ci(x0 − x1), . . . ,Ci(x0 − x12))t ,

where xk ∈ Γp = {0, 1, 3, 6} × {t0 − 3, t0 − 2, t0 − 1} for all 1 ≤ k ≤ 12. Further,

zi,0 = (Zi(x1), . . . ,Zi(x12))t , x1, . . . ,x12 ∈ Γp,

is the vector consisting of the predictor variables. To judge the goodness of these
predictions, we evaluate the predictive performance with the help of Murphy dia-
grams, which were very recently introduced by Ehm, et al. [28]. In particular, we
use Murphy diagrams for the mean functional, which are defined as follows. Con-
sider the point forecasts x1, . . . ,xn and their corresponding realizations y1, . . . , yn.
Then a Murphy diagram for the mean functional is a plot of the function

s(θ) =
1

n

n∑
i=1

Sθ(xi, yi), (5.4)

where

Sθ(x, y) =

{
|y − θ|, min(x, y) ≤ θ < max(x, y)

0, otherwise,

and θ ∈ R. These diagrams can be used to compare pairs of forecasters graphically
by their individual point forecasts, as follows. Let s1, s2 be calculated by (5.4) for
each forecaster. If s1(θ) ≤ s2(θ) for all θ ∈ R, then forecaster 1 dominates forecaster
2, in a theoretically well-defined sense [28].

Figure 5.4 provides Murphy diagrams for the realizations for the dimple, unidi-

1See [13, Section 3.3] for an introduction into kriging.
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Simulated Fitted MSE

dimple dimple 0.32
dimple transport 0.62
dimple separable 0.67

transport dimple 0.30
transport transport 0.15
transport separable 0.60

separable dimple 1.01
separable transport 1.01
separable separable 0.88

Table 5.2: The first two columns specify the type of process that was simulated and
fitted, respectively. The third column contains the mean squared error
of the corresponding fit.

rectional transport, and separable process. Each forecaster uses one of the three
different covariance functions for his predictions. We see that the forecaster using
the correct model always outperforms the other forecasters, as her forecasts domi-
nate the other forecasts. Panel (b) further shows that the dimple model performs
significantly better than the separable model when the simulated data possesses a
transport effect. In panels (a) and (c), the forecasters using the incorrect covari-
ance models perform similarly. On the one hand, this indicates that using a model
with dimples is more reasonable than using a model without any transport effect if
the data were generated by a transport field. On the other hand, if the underlying
field is not a transport field then models with transport effects do not appear to be
good choices. These findings are confirmed if we compare the forecasters on the
basis of the corresponding mean squared errors (MSE), which are shown in Table
5.2. The actual values of the MSE are in very good accordance with the Murphy
diagrams for the mean functional. Ehm, et al. [28] proved that the area under
the Murphy diagram for the mean functional equals the corresponding MSE of the
forecast, which can be confirmed by numerical integration.
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(a) Dimple field (b) Transport field

(c) Separable field

Figure 5.4: Murphy diagrams for the mean functional. The caption of each panel
gives the type of the simulated field, and the color of the plot corre-
sponds to the type of the fitted covariance function.
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5.3 Dimples in higher dimensions

Clearly, spatio-temporal covariance functions in one spatial dimension are of lim-
ited interest, as most applications take place in two or three spatial dimensions.
Therefore, this section addresses the analysis of dimples in higher spatial dimen-
sions.

Let

ν =


cosϕ1

sinϕ1 cosϕ2
...

sinϕ1 · · · sinϕd−2 cosϕd−1

sinϕ1 · · · sinϕd−2 sinϕd−1


be the unit vector normal to the surface of Sd−1;

dσd−1 = sinϕd−2 sin2ϕd−3 · · · sind−2ϕ1 dϕd−1 . . . dϕ1

be the surface element of Sd−1; and ϕ1, . . . ,ϕd−1 be spherical coordinates, with
ϕd−1 ranging over [0, 2π), while all other angles range over [0,π]. Further, let γd−1

denote the surface area of Sd−1. Then, for uniform transport fields in d ≥ 1 spatial
dimensions, equation (5.1) can be written as

C(h,u) =
1

γd−1

∫
Sd−1

C0(h− uν) dσd−1, (h,u) ∈ Rd × R. (5.5)

In the following, we study some parametric classes of initial covariance functions
and the behaviour of the induced transport covariances.

Example 5.6. Consider the powered exponential family

C0(h) = exp(−‖h‖α), h ∈ Rd

with smoothness parameter 0 < α ≤ 2. When d = 1 and 0 < α ≤ 1 Theorem 5.4
implies the existence of a strong dimple, which is illustrated in panel (a) of Figure
5.5. Panel (b) shows a regular dimple with onset κ = 1 in the case d = 2.

Example 5.7. In the case of the Cauchy initial covariance C0(h) = (1 + ‖h‖2)−1,
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(a) (b)

Figure 5.5: The transport covariance function (5.5) with initial covariance function
C0(h) = exp(−‖h‖) in dimension (a) d = 1, and (b) d = 2.

the resulting transport covariance (5.1) admits a closed-form expression in spatial
dimension d = 2. Specifically,

C(h,u) =
1

2π

∫ 2π

0

(
1 +

∥∥h− uνϕ∥∥2
)−1

dϕ

=
1

2π

∫ 2π

0

(
1 + u2 + ‖h‖2 − 2u‖h‖ sinϕ

)−1
dϕ

=
(
u4 − 2u2‖h‖2 + 2u2 + ‖h‖4 + 2‖h‖2 + 1

)−1/2
, (h,u) ∈ R2 × R,

where νϕ is the normal to the unit circle, and where we have used identity (4.3.131)
in Abramowitz and Stegun [2]. The zeroes of

∂C(h,u)

∂u
= −2u

u2 − ‖h‖2 + 1

(u4 − 2u2‖h‖2 + 2u2 + ‖h‖4 + 2‖h‖2 + 1)3/2

are at u1 = 0 and u2,3 = ±(‖h‖2−1)1/2. Hence, C(h,u) has a strict local maximum
at u = 0 for ‖h‖ < 1 and a strict local minimum at u = 0 for ‖h‖ > 1. This implies
that the dimple is regular with onset at κ = 1.
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