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Abstract

Plasma cell dyscrasias are characterised by accumulation of malignant plasma cells in
the bone marrow. Asymptomatic multiple myeloma (AMM) evolves from monoclonal
gammopathy of unknown significance (MGUS) and progresses to symptomatic
myeloma involving end organ damage. Three main questions are addressed by mathe-
matical modelling. Firstly, how is growth of malignant plasma cells characterised?
Secondly, how fast does progression from early asymptomatic stages (MGUS, AMM)
to symptomatic myeloma happen? Thirdly, how many malignant plasma cells initially
arrive at the bone marrow?

New mathematical models consisting of piecewise-smooth ordinary differential
equations are formulated describing the dynamics of healthy and malignant plasma
cells in the bone marrow and its niche. Model analysis refers to existence and
uniqueness of solutions, characterisation of solutions within invariant sets, and
existence and stability properties of equilibria. Partial equilibria are identified
extending the classical notion of equilibria. The models are validated using clinical
data consisting of serum and urine samples (n = 8398) of patients with AMM and
MGUS (n = 322 and n = 196, respectively).

Model analysis and parameter estimation imply that accumulation of malignant
plasma cells can be quantified by the doubling time. A faster doubling time relates
to a higher probability of progression to symptomatic myeloma and correlates with a
small initial number of malignant plasma cells. Instead of one single initial malignant
plasma cell, initiation of myeloma can rather be explained by a „malignant wave“
comprised of a population of malignant plasma cells arriving at the bone marrow
and perturbing healthy homoeostasis.
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Zusammenfassung

Plasmazelldyskrasien sind gekennzeichnet durch Akkumulation maligner Plasma-
zellen im Knochenmark. Das asymptomatische Multiple Myelom (AMM) entwickelt
sich aus einer Monoklonalen Gammopathie Unklarer Signifikanz (MGUS) und pro-
grediert zum symptomatischen Myelom, welches mit Endorganschäden assoziiert ist.
Drei grundsätzliche Fragen werden durch mathematische Modellierung thematisiert.
Erstens, wie ist das Wachstum maligner Plasmazellen charakterisiert? Zweitens, wie
schnell verläuft die Progression von asymptomatischen Stadien (MGUS, AMM) zum
symptomatischen Myelom? Drittens, wie viele maligne Plasmazellen erreichen initial
das Knochenmark?
Neue mathematische Modelle bestehend aus stückweise glatten gewöhnlichen

Differentialgleichungen werden formuliert, welche die Dynamik gesunder und maligner
Plasmazellen im Knochenmark und in seiner Nische beschreiben. Die Analyse der
Modelle behandelt Existenz- und Eindeutigkeit von Lösungen, die Charakterisierung
von Lösungen innerhalb invarianter Mengen und Existenz und Stabilitätseigenschaften
von Gleichgewichtslösungen. Partielle Gleichgewichtslösungen, welche das klassische
Konzept der Gleichgewichtslösungen erweitern, werden bestimmt. Die Modelle werden
validiert durch klinische Daten bestehend aus Serum- und Urinproben (n = 8398)
von Patienten mit AMM und MGUS (n = 322 bzw. n = 196).

Modellanalyse und Parameterschätzung implizieren, dass die Akkumulation ma-
ligner Plasmazellen durch die Verdopplungszeit quantifiziert werden kann. Eine
schnellere Verdopplungszeit kann mit einer höheren Wahrscheinlichkeit der Progres-
sion zum symptomatischen Myelom in Beziehung gesetzt werden und korreliert mit
einer kleineren initialen Anzahl maligner Plasmazellen. Anstatt durch eine einzige
maligne Plasmazelle kann der Beginn der Myelomerkrankung vielmehr durch eine
„maligne Welle“ bestehend aus einer Population maligner Plasmazellen erklärt wer-
den, welche im Knochenmark ankommt und die gesunde Homöostase stört.
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1 Introduction

1.1 Healthy plasma cell biology and function

1.1.1 Healthy plasma cell function

Antibody molecules or immunoglobulins (Ig) are an essential part of the adaptive
immune response. These are synthesised by specialised white blood cells known as
plasma cells (PCs) [101].

Production of antibodies

The role of antibodies within the immune system is to recognise and bind to foreign
proteins derived from microorganisms. Any protein that can be bound by an antibody
is known as an antigen. The interaction between an antibody and an antigen is a key
principle in immunology. When an antigen enters the body, it binds to specific B cell
receptors. B cells whose receptors have bound the antigen receive a triggering signal
which induces a prolific generation of PCs. These PCs massively produce specific
antibodies reflecting an integral part of the humoral immune response [101, 131].
Antibody molecules are composed of two identical heavy chains and two light

chains. This results in each antibody molecule possessing two antigen binding sites,
see Figure 1.1. Antibodies can be classified into five broad types based on the
characteristics of their heavy chain constant regions. These fives classes are known
as antibody isotypes and include IgM, IgD, IgG, IgA and IgE [131, Chapter 3].

Longevity of immunity

PCs are mostly located in the bone marrow where they represent 0.25% of bone
marrow cells [60]. They interact with the bone marrow and its local environment,
termed the niche, providing growth and survival factors. Being resident in the niche,
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2 1 Introduction

Figure 1.1: Structure of an antibody molecule of type IgA or IgG. Antibodies
are composed of two light and two heavy chains linked together by
disulphide bonds and divided into variable and constant regions. The
variable region is responsible for the antigen-binding capacity of anti-
bodies. Figure adapted from Williams [131, Chapter 3]. For details,
see text.

PC survival is not limited owing to survival signals that are derived from the niche
[94]. This yields a long-term immunity of 10− 30 years [84, 117]. Interaction with
the niche is essential since otherwise PCs are prone to die [9, 57, 94].

1.1.2 Healthy plasma cell development

Before PCs can exert their effector functions, they undergo a highly controlled
series of developmental stages. The bone marrow is essential for this process. It is
located within the long bones in the human body and consists of a fatty substance
surrounding a stroma of dividing stem cells [131, Chapter 1].

B cells are derived from the bone marrow. They leave the bone marrow to mature
in the spleen, lymph nodes and secondary lymphoid organs. Each B cell produces
antibodies that selectively bind to a particular antigen. Within secondary lymphoid
tissues, only those B cells that produce antibodies with the highest affinity to the
exposed antigen are selected [131, Chapter 2]. Mature B cells further differentiate
into plasma blasts being the direct precursors of PCs. Plasma blasts are proliferative
with doubling times in the range of days [57]. The migratory phase of plasma blasts
lasts one week [94]. Further differentiation yields non-proliferating PCs that enter
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Figure 1.2: Development and maintenance of plasma cells (PCs). Antigen encounter
induces B cell differentiation and clonal expansion. Non-proliferative
PCs enter the bone marrow and reside in the niche for long term
survival. Figure adapted from Radbruch et al. [94]. For details, see
text.

the bone marrow through the peripheral blood and produce significant amounts of
antibodies. For a visualisation, see Figure 1.2.

Clonal expansion

A primary immune response is triggered if the body encounters a new antigen the
first time. It takes 10 − 14 days for B cells to produce a significant amount of
antibodies that can be detected in the bloodstream. The reason for this timespan
is that the B cell population requires sufficient time to recognise the antigen and
start proliferating in order to produce sufficient numbers of antigen-specific clones
[131, Chapter 3]. This clonal expansion of PC precursors (such as plasma blasts)
generates a population of non-proliferating PCs arriving at the bone marrow.

Antibody diversity

During B cell development, a number of changes in the genetic locus of the B
cell receptor takes place. Two heavy chains and two light chains form the major
components of the B cell receptor. The antibody repertoire in any given individual
is vast, so that many different kinds of antigen are able to be bound (about 107

different antigen specificities). Since the genome is unable to accommodate so many
individual Ig genes, immunological diversity is created by a mechanism known as
genetic recombination. This allows individual genetic components to be stitched
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Figure 1.3: Competition of plasma cells (PCs) for occupancy of niches. Antigen
encounter induces the production of plasma blasts. Clonal expansion
creates a wave of PCs arriving at the bone marrow through the periphe-
ral blood. They may dislocate resident PCs from the niche being able
to survive for decades. PCs not being in contact with a niche are prone
to die. Figure adapted from Radbruch et al. [94]. For details, see text.

together, enabling the recombination of many different genetic components in order
to generate diversity.
The largest element of combinatorial diversity arises from the random recombi-

nation of three different gene segments, which occurs in the bone marrow during
early B cell development. The heavy chains of B cell receptor genes are comprised of
a variable region (V), diversity region (D) and joining region (J), while light chain
genes are comprised of a V and J region. Three separate gene segments recombine to
form heavy chains, while two gene segments recombine to form light chains. Each Ig
heavy and light chain locus has several V, (D) and J gene segments. The combination
of V-(D)-J gene segments is a vital and tightly regulated process in generating
immunological diversity and is referred to as V(D)J recombination [131, Chapter 3].

Vaccination-induced immune response

Vaccination denotes the exposure of antigens to induce an immune response in order
to generate specific antibodies. It can thus be seen as model for physiological antigen
encounter (for example by microorganisms). About one week after vaccination, a
wave of migrating plasma blasts specific for the vaccinated antigen is found in the
blood, whereby PCs are mobilised into the blood being specific for antigens that were
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Figure 1.4: Sketch of the time-dependent inflow of plasma cells (PCs) into the bone
marrow. It is estimated that about 30 antigenic adoptions to humoral
immunity per year occur, each inducing clonal expansion of B cells
and the concomitant generation of a wave consisting of a population of
about 107 PCs arriving at the bone marrow [94]. For details, see text.

encountered previously [94]. This observation fosters the mechanism of competitive
dislocation of PCs residing in the niche caused by a population of vaccination-induced
PCs arriving at the bone marrow, i.e. „old“ PCs are replaced by vaccination-induced
PCs. Being dislocated from the niche, PCs are prone to die. As a result of clonal
expansion of PC precursors, the number of arriving vaccination-induced PCs is
estimated to be in the magnitude of 107 cells [94]. After the immune response, the
recruited PCs comprise 0.1− 1% of the resident PC pool [9, 94]. For a visualisation,
see Figure 1.3.

As for vaccination-induced antigen encounter, this mechanism of humoral immunity
likewise applies to the case of a natural antigen encounter induced by a pathogen
with an extrapolated frequency of antigenic adoptions to humoral immunity of 30
per year. This translates into 30 waves of PCs per year (see Figure 1.4) arriving at
the bone marrow and inducing competitive dislocation of PCs resident in the niche.
This changes the PC content in the bone marrow leading to long-term immunity
with about 1000 populations of PCs comprising 106 cells, respectively [94].
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1.1.3 Surrogates and measurements

Antibodies are present in the blood serum. The concentration ranges of the five major
human Ig classes are summarised in Table 1.1 with considerable inter-individual
variety. With a proportional relationship between the number of PCs in the bone
marrow and the level of Ig in the serum, the latter can be used as surrogate for the
number of PCs (or for the tumour mass in case of PC dyscrasias) in an individual.
Levels of Ig are fairly constant in an individual healthy adult. In particular, a
constant level of Ig implies a constant number of PCs [101, Chapter 3].

1.2 Malignant plasma cell biology and pathogenesis

1.2.1 Plasma cell dyscrasias

PC dyscrasias are characterised by accumulation of malignant PCs in the bone
marrow [108]. As their healthy counterpart, malignant PCs depend for survival on
interactions with the bone marrow niche. They produce one type of Ig referred
to as monoclonal protein. Malignant PCs harbour a high median number of chro-
mosomal aberrations [28, 89] and multiple changes in gene expression compared to
healthy PCs [48–50, 110]. In contrast to healthy PCs, malignant PCs proliferate [107].

Table 1.1: Concentration ranges of major human immunoglobulin classes in healthy
serum [101, Chapter 3].

Immunoglobulin Concentration range (g/l)

IgG 8− 16

IgA 1.4− 4

IgM 0.5− 2

IgD 0− 0.4

IgE 17 · 10−6 − 450 · 10−6



1.2 Malignant plasma cell biology and pathogenesis 7

Multiple myeloma (MM) is characterised by accumulation of malignant PCs in
the bone marrow, causing clinical signs and symptoms related to bone disease
(including hypercalcaemia), production of monoclonal protein (renal impairment),
and displacement of normal haematopoiesis (anaemia, proneness to infection) [47,
109]. Before progression to these end organ damages (abbreviated with CRAB-
criteria) [51], the disease is termed „asymptomatic“ myeloma (AMM). Traditionally
synonymously used with „smoldering“ myeloma [70, 72], the latter designation is now
restricted to asymptomatic patients without imminent risk of progression [72, 74, 95].
Asymptomatic myeloma evolves in all patients from a monoclonal gammopathy of
unknown significance (MGUS) [76]. According to criteria defined by the International
Myeloma Working Group (IMWG) [51, 95], the two disease stages are delineated
solely by surrogates of tumour mass, i.e. serum monoclonal protein ≥ 30 g/l or urinary
monoclonal protein ≥0.5 g/die and/or bone marrow PC infiltration of ≥ 10%.
The type of myeloma is determined by the type of the monoclonal protein aber-

rantly produced by malignant PCs. It comprises the major human Ig classes. In
about 20% of the patients, malignant PCs only produce parts of the Ig, i.e. light
chains (predominant light chain myeloma). If they are found in the urine, the disease
is termed Bence-Jones myeloma [68, 71, 95]. Light chains are only occasionally
liberated by healthy PCs.

Standard procedures for the diagnostic evaluation are imaging techniques to assess
involvement of bone, laboratory assessment in combination with bone marrow
investigation to evaluate the extent of PC infiltration and the influence on the
haematopoietic system as well as renal function analysis [7, 44]. In laboratory
assessment, the overproduction of a specific antibody due to the presence of malignant
PCs is visible by a spike in the normal distribution of a serum protein electrophoresis.
This spike is referred to as the M-gradient, which reflects the „malignant portion“ of
the monoclonal Ig [44].

1.2.2 Pathogenesis of myeloma

Pathogenesis of myeloma involves molecular alterations in precursors of bone marrow
PCs. Malignant PCs appear in the bone marrow. Their capabilities are to a large
degree explainable by physiological functions of their healthy counterpart, i.e. healthy
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PCs in the bone marrow [110]. They interact with the bone marrow microenvironment
being dependent on growth and survival factors provided by the niche, which they
share with healthy PCs [61]. Malignant PCs not being resident in the niche are
prone to die. Competition for the niche yields displacement of healthy PCs. Further
accumulation as a result of proliferation leads to MGUS and AMM. Malignant PCs
induce the transformation of the bone marrow microenvironment which influences
bone remodelling and generates bone disease. Ongoing accumulation of malignant
PCs leads to therapy-requiring MM [47, 60, 110]. For details, see Klein et al. [60].

1.2.3 Surrogates and measurements

Changes in the levels of IgG (IgA, light chain) can be used as surrogates for changes
in the number of malignant PCs for patients classified as IgG-myeloma (IgA-myeloma,
predominant light chain myeloma), assuming that the categorisation of each patient
according to the type of the monoclonal protein is distinct. This is not satisfied in
case of patients with a biclonal gammopathy or a light chain escape. The former refers
to the uncommon event of myeloma characterised by the presence of two monoclonal
proteins [69, 73]. The latter is characterised by a change in the production of complete
Ig molecules (IgA, IgG) to only remaining parts thereof (for example, light chain).
In contrast to IgG, the M-gradient for IgA is technically more error-prone. This
makes it impractical as a surrogate in case of IgA-myeloma.

1.3 Previous modelling approaches in multiple
myeloma

1.3.1 Models of population dynamics of malignant plasma cells

Different mathematical approaches for modelling the growth of malignant PCs have
been undertaken since 1969.
Hobbs [46] investigates the time course of the number of malignant PCs using

serial measurements of monoclonal protein. Starting from one malignant PC, he
assumes constant exponential growth. His findings suggest that it takes over as much
as 15− 20 years for the clinical emergence of myeloma. Salmon and Smith [102, 103]
observe that the number malignant PCs appears to be at least 0.5 · 1012 at time
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of clinical diagnosis, indicating that there is an enormous bulk of malignant PCs
with prolonged proliferation occurring asymptomatically before the disease becomes
clinically apparent. In contrast to Hobbs, the authors argue that constant exponential
growth may not be the optimal assumption. They propose a Gompertzian growth
model [75] in which growth is initially exponential but slows progressively before
diagnosis or early in the period of clinical observation, see also Sullivan and Salmon
[115] and Durie and Salmon [24]. Starting from one malignant PC, the model
captures the dynamics of malignant PCs at the time of clinical presentation of a
patient (doubling times of 4− 6 months). Back calculation implies short doubling
times of the initial malignant PC (doubling times of 1− 3 days), suggesting about 5
years for the clinical emergence of myeloma. The retardation effect in the growth
of malignant PCs induced by the Gompertzian model is thought to be due to a
shift in the proportion of malignant PCs in the proliferative cycle [115]. A potential
criticism could be seen that no biological reasoning for the severe retardation in
the growth kinetics of malignant PCs could be identified. However, such a growth
behaviour could be explained if the initial event of pathogenesis of myeloma would
either appear before or during the clonal expansion of plasma blasts (i.e. proliferation
with doubling times in the range of days versus observed doubling times of PCs in
the range of months [57]).
In comparison to the exponential and the Gompertzian growth models, Jákó [53,

Chapter 8] proposes a model, where another rapidly growing population of „induced“
malignant PCs is assumed, generating a bulk of 1012 cells, see Figure 1.5. Yet the
author owes the biological justification for his assumption.

1.3.2 Further models

Zabalo [133] investigates the influence of the immune system on early development
of myeloma by means of a model capturing the interaction between healthy and
malignant PCs, stromal and immune cells. Growth of malignant PCs follows a
logistic model. However, a decrease in the growth is not clinically observed [47].
Jonsson et al. [56] present a tumour growth inhibition model which uses ordinary
differential equations (ODEs) for describing the dynamics of the monoclonal protein
and its shrinkage rate due to treatment. The model is restricted to the population of
malignant PCs and applies solely for refractory or relapsed myeloma. Tang et al. [116]
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„Induced“ myeloma

Gompertzian growth

Exponential growth

Figure 1.5: Models of the growth dynamics of malignant plasma cells (PCs).
Starting from one malignant PC, exponential growth, Gompertzian
growth and growth induced by a rapidly growing population of malig-
nant PCs („induced“ myeloma) are sketched on a common logarithmic
scale reaching the level of 1012 cells for clinical diagnosis. Figure adapted
from Jákó [53, Chapter 8]. For details, see text.
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propose a hierarchical and a clonal evolution model for malignant PCs tailored to
investigate response after treatment. Incorporated rates are density-dependent.
Beside existing models capturing the mechanisms involved in long-term persistence of
humoral immunity after natural infections or vaccinations (see for example [3, 122]),
further models for myeloma focus on the dynamics of bone interactions in myeloma
bone disease, where signalling between cells responsible for bone resorption and
formation and their interactions with malignant PCs is considered [5, 54, 63, 64, 93,
128]. Such models are not in the scope of this thesis.

1.4 Aims of the thesis

The primary aims of this thesis are to investigate and provide answers to the following
open questions in myeloma biology addressable by modelling:

1. Characterisation of the growth of malignant plasma cells

The aim is to provide biologically plausible models of the growth of malignant PCs
allowing investigating whether growth is continuous (such as in an exponential model)
or associated with a change in the growth pattern (such as in a Gompertzian growth
model).

2. Characterisation of progression to symptomatic myeloma

The analysis addresses the question of how fast progression from early asymptomatic
stages (MGUS, AMM) to therapy-requiring myeloma (MM) happens.

3. Quantification of the initial number of malignant plasma cells

Associated with myeloma growth, the study investigates how many malignant PCs
initiate myeloma. Hypothesising that initiation of myeloma is due to a population of
malignant PCs arriving at the bone marrow similar to the dynamics occurring within
a natural immune response (see Figure 1.6), the analysis addresses the question
whether one malignant PC is (or can be) able to induce accumulation in the bone
marrow as it is assumed by the existing model, see Section 1.3.
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Figure 1.6: Hypothesised model of pathogenesis of myeloma. Molecular alterations
in precursors of bone marrow plasma cells (PCs) induce the generation
of malignant PCs arriving at the bone marrow and dislocating resident
healthy PCs from the niche. PCs not being in contact with a niche are
prone to die. Figure adapted from Radbruch et al. [94]. For details, see
text.

1.5 Outline of the thesis

This thesis is structured in three parts. The first part (Chapter 2 - Chapter 5) focuses
on the derivation of mathematical models capturing the dynamics of healthy and
malignant PC accumulation in the bone marrow. The derived models are based on
the current understanding of the mechanisms responsible for the development and
maintenance of healthy PCs, and accumulation of malignant PCs in myeloma. The
second part of the thesis (Chapter 6 - Chapter 8) is devoted to mathematical analysis
of the models. Results of the analysis enable further understanding of the underlying
mechanisms described by the systems of piecewise-smooth equations. The last part
(Chapter 9 - Chapter 11) addresses a quantitative application of the mathematical
models using clinical data. Data consist of serum and urine samples (n = 8398)
of patients with AMM and MGUS (n = 322 and n = 196, respectively) being
the largest worldwide available cohort of myeloma patient samples. A parameter
estimation procedure is defined which allows extracting information about the growth
of malignant PC population and identifying the initial number of malignant PCs
arriving at the bone marrow at the beginning of myeloma.
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Chapter 12 provides an integrated discussion and indicates directions for future
research. The work is summarised in Chapter 13. Mathematical methods and
contributions are stated in the Appendix.

This thesis is the result of an interdisciplinary doctorate and the joint work with
Prof. Dr. Anna Marciniak-Czochra from the Institute of Applied Mathematics at
Heidelberg University as well as with PD Dr. Dr. Dirk Hose and Dr. Anja Seckinger
from the Multiple Myeloma Research Laboratory at Heidelberg University Hospital.





Part I

Mathematical models of healthy and
malignant plasma cell dynamics
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2 Simple model of exponential
growth

At first, the dynamics of the growth of malignant PCs in the bone marrow are
considered, neglecting the population of healthy PCs and the bone marrow niche. A
simplistic exponential model is proposed, where the following assumptions are made:

Assumption 2.1 (Assumptions for the exponential model).

(1) There is only one population of malignant PCs in the bone marrow.

(2) The rate of change of the number of malignant PCs is constant.

(3) Growth of the number of malignant PCs is independent of the number of
healthy PCs.

Let m(t) be the number of malignant PCs in the bone marrow at time t, and

m(t) = beat, a ∈ R, b > 0 for t ≥ 0. (2.0.1)

The model captures exponential growth of m(t) (if a > 0) as well as exponential
decay of m(t) (if a < 0).

Definition 2.2 (Doubling time (DT)). Consider the exponential model (2.0.1). For
a 6= 0, let

τ = ln(2)
|a|

. (2.0.2)

If a > 0, then τ is the doubling time (DT) of m(t), i.e. the period of time needed for
the number of malignant PCs m(t) to double in value. For a < 0, τ is the half-value
time of m(t), i.e. the period of time needed for m(t) to halve in value.
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3 Basic model of healthy plasma cell
dynamics

In this chapter, the dynamics of healthy PCs in the bone marrow are considered.
Based on healthy PC biology (see Section 1.1), PCs being located outside the niche are
distinguished from those being located inside the niche. The following assumptions
are made:

Assumption 3.1 (Assumptions for healthy PCs).

(1) There is a constant inflow of healthy PCs per unit of time coming from the
peripheral blood and arriving at the bone marrow.

(2) Healthy PCs outside the niche die at a constant rate.

(3) Healthy PCs inside the niche do not die.

(4) At healthy PC homoeostasis, there is a constant distribution between healthy
PCs inside and outside the niche where there are more PCs inside than outside
the niche.

(5) Transitions into and out of the niche depend on the distribution of healthy
PCs within the bone marrow: If there are more PCs outside than inside the
niche relative to homoeostasis, then PCs go into the niche at a constant rate.
By contrast, if there are more PCs inside than outside the niche relative to
homoeostasis, then PCs exit the niche at a constant rate. Rates can be different
allowing PCs „sticking“ within the niche.

(6) The niche possesses an unbounded capacity.

19
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Remark 3.2 (Comments on assumptions).

(i) Vaccination exemplifies what happens physiologically if an infection takes place.
A wave of a population of vaccination-induced PCs arrives at the bone marrow
inducing competitive dislocation of PCs residing in the niche. The number
of these antigen encounters can be estimated to be 30 per year [94]. As a
simplification, the wave-like inflow of healthy PCs into the bone marrow is
approximated by a constant inflow per unit of time, see Figure 3.1.

Figure 3.1: Approximation of the time-dependent inflow of healthy plasma cells
(PCs) into the bone marrow by a constant inflow, i.e. 30 waves of healthy
PCs arriving at the bone marrow per year (dashed) are approximated
by a constant inflow of PCs per year (bold). For details, see text.

(ii) Healthy PCs not being resident in the niche are prone to die [9, 57, 94]. As a
simplification, the death rate is assumed to be constant.

(iii) The lifespan of healthy PCs inside the niche (decades) is significantly longer
than the lifespan of healthy PCs outside the niche (a few weeks) [9, 57, 94]. As
a simplification, healthy PCs inside the niche are assumed not to die.

(iv) The total number of healthy PCs remains fairly constant in adulthood as
determined by the constant level of immunoglobulin, see Section 1.1.

(v) At homoeostasis, the fraction of healthy PCs inside (outside) the niche is
constant, where an increase in the number of PCs outside the niche yields an
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increase in the number of PCs inside the niche. Vice versa, an increase in
the number of PCs inside the niche yields an increase in the number of PCs
outside the niche. For simplification, transition rates are constant. Biologically,
the former may be due to antigen encounter and the concomitant arrival of a
population of PCs in the bone marrow (outside of the niche). The latter can
biologically be justified by death of PCs inside the niche (at a low rate) or PCs
leaving the niche and then die.

(vi) Imposing a constant or dynamical carrying capacity [37, 88] for the bone
marrow microenvironment is not justified by biological evidence. In case of
myeloma, the growth of malignant PCs is unlimited as clinical data reflect, see
Chapter 9.

Figure 3.2: Illustration of the basic model of plasma cell (PC) dynamics in the
bone marrow. Purple cells represent healthy PCs entering the bone
marrow through the peripheral blood. PCs in the bone marrow are
either located outside or inside the niche. Transitions between both
compartments are possible. The light purple cell represents a dying
healthy PC. For details, see text.

Table 3.1 on page 26 lists the variables and parameters used for modelling. Figure
3.2 gives a graphical representation of the basic model of PC dynamics in the bone
marrow. A constant number f > 0 of healthy PCs, represented by purple cells, enters
the bone marrow via the peripheral blood per unit of time. PCs are either located
outside or inside the bone marrow niche, i.e. belonging to the xh-compartment or
to the yh-compartment, respectively. In the former case, PCs die at a constant rate
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(a) Transition into the niche. (b) Transition out of the niche.

Figure 3.3: Transitions of healthy plasma cells (PCs) described by the basic model.
If there is a surplus of PCs outside the niche (z > 0), then PCs enter
the niche at rate bh, see (a). If there is a surplus of PCs inside the niche
(z < 0), then PCs leave the niche at rate ch, see (b). For details, see
text.

d > 0, indicated by a light purple cell. Furthermore, cells migrate between the two
bone marrow compartments at rates bh or ch.

In the following, the dynamic equations for the variables xh(t) and yh(t) are
formulated in terms of an ODE system corresponding to the illustration given by
Figure 3.2. At first, it is clarified how transitions of PCs between the two bone
marrow compartments are modelled. Define the function

z(t) : = # PCs outside the niche − # PCs inside the niche + n

= xh(t)− yh(t) + n,

that is to say, the (positive or negative) surplus of PCs relative to the niche
balance, where n > 0. If z(t) = 0, the niche is referred to as being in balance. If
the latter holds for all times t, then this accounts for the constant distribution of PC
numbers at homoeostasis where there are n more PCs inside than outside the niche.
In this case, no transitions occur. If z(t) > 0, there are z(t) more PCs outside than
inside the niche relative to the niche balance. This surplus of PCs outside the niche
migrates into the niche at a constant rate bh > 0, see Figure 3.3 (a). Vice versa,
if z(t) < 0, there are −z(t) more PCs inside than outside the niche relative to the
niche balance. This surplus of PCs inside the niche migrates out of the niche at a
constant rate ch > 0, see Figure 3.3 (b).
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Remark 3.3. The capacity of the niche is not limited due to Assumption 3.1 (6).
It varies with time in the following sense: If z(t) > 0, the surplus of PCs relative to
the niche balance, which enters the niche, causes a simultaneous stretching of the
niche. Consequently, the capacity of the niche increases. If z(t) < 0, the surplus of
PCs inside the niche, which leaves the niche, causes a simultaneous shrinking of the
niche. This results in a decrease of the capacity of the niche.

The previous analysis leads to the following definition of the transition rates for
the surplus of healthy PCs z(t), which are given by the function

βh(z(t)) :=

bh if z(t) ≥ 0

ch if z(t) < 0.

Having characterised the number of healthy PCs which either enter or exit the niche
per unit of time depending on the sign of z(t), the dynamic equations for xh(t) and
yh(t) are formulated:

• The change in the number of healthy PCs in the bone marrow outside the
niche per unit of time, x′h(t), is given by the number of PCs entering via
the peripheral blood, f , minus PCs which die, dxh, plus or minus those PCs
which either enter or leave the compartment due to transitions, βh(z)z. The
mathematical equation reads

x′h(t) = f − βh(z(t))z(t)− dxh(t).

For an illustration, see Figure 3.4 (a).

• The change in the number of healthy PCs in the bone marrow inside the niche
per unit of time, y′h(t), is given by those PCs which either enter or leave the
compartment due to transitions, βh(z)z. The mathematical equation reads

y′h(t) = βh(z(t))z(t).

For an illustration, see Figure 3.4 (b).

All things considered, the complete mathematical model of healthy PC dynamics in
the bone marrow is resumed:
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(a) Dynamics within the bone marrow
compartment outside of the niche.

(b) Dynamics within the bone marrow
compartment inside of the niche.

Figure 3.4: Dynamics of healthy plasma cells within the bone marrow compartments
described by the basic model. For details, see text.

The basic model of healthy PC dynamics in the bone marrow (abbre-
viation: basic model) is given by the following system of ODEs for times
t ≥ t0 ≥ 0:

x′h(t) = f − βh(z(t))z(t)− dxh(t)

y′h(t) = βh(z(t))z(t)
(3.0.1)

with surplus of PCs relative to the niche balance z(t) given by

z(t) = xh(t)− yh(t) + n, (3.0.2)

transition rates βh(z(t)) given by

βh(z(t)) =

bh if z(t) ≥ 0

ch if z(t) < 0
(3.0.3)

and non-negative initial conditions

xh(t0) = x0
h ≥ 0

yh(t0) = y0
h ≥ 0.

(3.0.4)

Variables and parameters are listed in Table 3.1 on page 26.
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Remark 3.4. The basic model (3.0.1) (or system (3.0.1)) possesses exactly one
equilibrium: Solving the system of equations

0 = f − βh(z)z − dxh
0 = βh(z)z

for xh and yh yields z = 0 and therefore xh = f
d
. It follows that yh = f

d
+ n

due to (3.0.2). This implies that the niche is in balance for all times, and PC
homoeostasis is characterised by the equilibrium of system (3.0.1). The occurrence
of such an equilibrium is in accordance with the observation that the total number
of healthy PCs remains constant in adulthood, see Section 1.1. This finding backs
up Assumption 3.1 (4).

Definition 3.5 (Healthy equilibrium). Consider the basic model (3.0.1). Let

Eh :=
(
xEh
h , yEh

h

)T
:=
(
f

d
,
f

d
+ n

)T

be referred to as healthy equilibrium.
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Table 3.1: Description of variables and parameters of the basic model of healthy
plasma cell (PC) dynamics (3.0.1). All parameters are real and positive
unless it is stated differently.

Symbol Description Unit

xh(t) Number of healthy PCs outside the niche at time t # PCs

yh(t) Number of healthy PCs inside the niche at time t # PCs

f
Number of healthy PCs entering the compartment
outside of the niche via the blood per unit of time # PCs · time−1

d Death rate of healthy PC outside the niche time−1

bh
Transition rate of healthy PCs outside the niche
into the niche time−1

ch
Transition rate of healthy PCs inside the niche
out of the niche time−1

n
Difference in number of PCs between PCs inside and
outside the niche at healthy homoeostasis # PCs



4 Extended model of healthy plasma
cell dynamics

In this chapter, the model equations (3.0.1) of the basic model are extended in
order to capture the dynamics of two distinct populations of healthy PCs in the
bone marrow. Using a vaccination scenario, a regular antigen encounter induced
by a pathogen and the concomitant production of a population of healthy PCs is
exemplified. Vaccination can be interpreted as inducing one of the waves arriving at
the bone marrow due to natural antigen encounter and causing dislocation of resident
healthy PCs, see Chapter 1. Along these lines, vaccination-induced healthy PCs
are distinguished from pathogen-induced healthy PCs within the total population
of healthy PCs.

Assumption 4.1 (Assumptions for vaccination-induced healthy PCs).

(1) There is a time T ≥ 0 at which a certain number of vaccination-induced healthy
PCs is added to the compartment of healthy PCs outside of the niche. In
particular, there is no constant inflow of vaccination-induced healthy PCs.

(2) Vaccination-induced healthy PCs possess the same properties as pathogen-
induced healthy PCs (because they are healthy PCs).

Remark 4.2 (Comment on assumptions). Inflow of vaccination-induced PCs is
described by one of the estimated 30 waves arriving at the bone marrow per year
[94]. For simplification, it is approximated by a discrete-in-time event.

27
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(a) Healthy equilibrium of pathogen-
induced healthy PCs.

(b) Perturbation of the healthy equilibri-
um by vaccination-induced healthy PCs.

(c) Onset of the dynamics.

Figure 4.1: Perturbation of the healthy equilibrium due to vaccination. Purple
cells represent pathogen-induced healthy plasma cells (PCs), whereas
blue cells represent vaccination-induced healthy PCs. Homoeostasis is
perturbed by a population of vaccination-induced healthy PCs arriving
at the bone marrow in a discrete-in-time event (depicted as blue cells
appearing outside the niche). For details, see text.

Figure 4.1 illustrates the scenario of a vaccination-induced perturbation of the
healthy equilibrium: At time T , a certain number of vaccination-induced healthy
PCs arrives at the bone marrow and is therefore added to the compartment of healthy
PCs outside the niche. This discontinuous perturbation of the healthy equilibrium
causes the onset of dynamical interactions.

The basic model is extended by two additional equations describing the number of
vaccination-induced healthy PCs in the bone marrow outside and inside the niche,
respectively. In order to distinguish between pathogen-induced and vaccination-
induced healthy PCs, new notations for the model variables are introduced, see
Table 4.1 on page 34. Note that there is no need to introduce further parameters
since biologically both populations are the same as depicted in Assumption 4.1. Yet
transitions need to be modified.
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Figure 4.2: Transition of plasma cells (PCs) into the niche at time t is due to a
surplus of PCs outside the niche at time t, i.e. z(t) > 0. This surplus
of PCs composed of pathogen-induced and vaccination-induced healthy
PCs enters the niche at rate bh. For details, see Example 4.3.

At first, the surplus of PCs relative to the niche balance (3.0.2) is refined, i.e.

z(t) = xh,0(t) + xh,v(t)︸ ︷︷ ︸
# PCs outside the niche

− (yh,0(t) + yh,v(t))︸ ︷︷ ︸
# PCs inside the niche

+ n, n > 0.

Since z(t) describes the surplus of the total healthy PCs relative to the niche balance,
the proportion of each PC type (pathogen-induced or vaccination-induced) within
each compartment has to be taken into account. This results in an additional factor
in the transition term βh(z)z reflecting the proportionality.

Example 4.3 (Dynamics for z(t) > 0). To give an illustration, consider the situation
immediately after the perturbation of the healthy equilibrium. Since the number
of PCs outside the niche abruptly increases at time T , it follows that z(t) > 0 for
at least t ∈ [T, T + ε), ε > 0. Thus, there is a surplus of PCs outside the niche
relative to the niche balance, which migrates into the niche at constant rate bh,
see Figure 4.2. Assuming that the portion of each PC type (pathogen-induced or
vaccination-induced) within the surplus z(t) is the same as the portion of each PC
type (pathogen-induced or vaccination-induced) within the compartment of PCs
outside the niche, it follows that

xh,0(t)
xh,0(t) + xh,v(t)

z(t) and xh,v(t)
xh,0(t) + xh,v(t)

z(t)

describe the numbers of pathogen-induced healthy, respectively of vaccination-induced
healthy PCs outside the niche migrating into the niche at rate bh.
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The rate function βh is extended as follows:

βh,j(z(t)) :=


bh

xh,j(t)
xh,0(t)+xh,v(t) if z(t) ≥ 0

ch
yh,j(t)

yh,0(t)+yh,v(t) if z(t) < 0,

where j ∈ {0, v}. This allows formulating the dynamic equations for xh,0(t), xh,v(t)
and yh,0(t), yh,v(t) based on the previous discussion:

• The change in the number of pathogen-induced and vaccination-induced healthy
PCs in the bone marrow outside the niche per unit of time, x′h,0(t) and x′h,v(t),
respectively, is given by

x′h,0(t) = f − βh,0(z(t))z(t)− dxh,0(t)

x′h,v(t) = −βh,v(z(t))z(t)− dxh,v(t).

• The change in the number of pathogen-induced and vaccination-induced healthy
PCs in the bone marrow inside the niche per unit of time, y′h,0(t) and y′h,v(t),
respectively, is given by

y′h,0(t) = βh,0(z(t))z(t)

y′h,v(t) = βh,v(z(t))z(t).

All things considered, the extended mathematical model of healthy PC dynamics in
the bone marrow is resumed:
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The extended model of healthy PC dynamics in the bone marrow (ab-
breviation: extended model) is given by the following system of ODEs for
times t ≥ t0 ≥ 0:

x′h,0(t) = f − βh,0(z(t))z(t)− dxh,0(t)

x′h,v(t) = −βh,v(z(t))z(t)− dxh,v(t)

y′h,0(t) = βh,0(z(t))z(t)

y′h,v(t) = βh,v(z(t))z(t)

(4.0.1)

with surplus of PCs relative to the niche balance z(t) given by

z(t) = xh,0(t) + xh,v(t)− (yh,0(t) + yh,v(t)) + n, (4.0.2)

transition rates βh,j(z(t)), j ∈ {0, v}, given by

βh,j(z(t)) =


bh

xh,j(t)
xh,0(t)+xh,v(t) if z(t) ≥ 0

ch
yh,j(t)

yh,0(t)+yh,v(t) if z(t) < 0
(4.0.3)

and non-negative initial conditions

xh,0(t0) = x0
h,0 ≥ 0

xh,v(t0) = x0
h,v ≥ 0

yh,0(t0) = y0
h,0 ≥ 0

yh,v(t0) = y0
h,v ≥ 0.

(4.0.4)

Variables and parameters are listed in Table 4.1 on page 34.

Observe that the healthy equilibrium of the basic model stated in Definition 3.5 can
be formulated as an equilibrium of the extended model (4.0.1) (or system (4.0.1)),
i.e.

Eh =
(
xEh
h , 0, yEh

h , 0
)T
.
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Definition 4.4 (Vaccination-induced perturbation of the healthy equilibrium). Con-
sider the extended model (4.0.1) and its healthy equilibrium Eh. Let T ≥ 0. For
0 ≤ t < T , let (4.0.1) be at the healthy equilibrium Eh, i.e.

(xh,0(t), xh,v(t), yh,0(t), yh,v(t))T = Eh.

Then, at t = T ,

(xh,0(T ), xh,v(T ), yh,0(T ), yh,v(T ))T =
(
xEh
h , x0

h,v, y
Eh
h , 0

)T
with x0

h,v > 0 (4.0.5)

defines a vaccination-induced perturbation of the healthy equilibrium at time T
as described in Assumption 4.1, which can be interpreted as initial condition for
system (4.0.1) with t0 = T .

Remark 4.5. The extended model (4.0.1) is a refinement of the basic model (3.0.1)
in the following sense: It is

(xh,0 + xh,v)′ (t) = x′h,0(t) + x′h,v(t)

= f − βh,0(z(t))z(t)− dxh,0(t)− βh,v(z(t))z(t)− dxh,v(t)

= f − (βh,0(z(t)) + βh,v(z(t))) z(t)− d (xh,0(t) + xh,v(t))

= f − βh(z(t))z(t)− d (xh,0(t) + xh,v(t))

and

(yh,0 + yh,v)′ (t) = y′h,0(t) + y′h,v(t)

= βh,0(z(t))z(t) + βh,v(z(t))z(t)

= βh(z(t))z(t)

with βh(z) given by (3.0.3). By xh(t) = xh,0(t)+xh,v(t) and yh(t) = yh,0(t)+yh,v(t), the
dynamics of xh(t) and yh(t) are adequately characterised by the basic model (3.0.1).

Remark 4.6. After the vaccination-induced perturbation of the healthy equilibrium,
the dynamics of system (4.0.1) re-establishes the healthy equilibrium with the same
total number of healthy PCs outside and inside the niche as before. However,
the composition of healthy PCs within the niche is different, see Figure 4.3. In
Section 8.1, it is investigated that system (4.0.1) possesses, in addition to the healthy
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(a) Healthy equilibrium before vaccina-
tion.

(b) Healthy equilibrium after vaccina-
tion.

Figure 4.3: Healthy equilibrium of plasma cells (PCs) before and after vaccination.
Vaccination-induced healthy PCs (blue) partially replace pathogen-
induced healthy PCs (purple), yielding a new composition of the healthy
equilibrium. The total number of PCs out- and inside the niche is
unchanged compared to the previous equilibrium. For details, see
Remark 4.6.

equilibrium Eh, a one-dimensional manifold of non-isolated equilibria, justifying
that the extended model is able to explain qualitatively the long-term persistence of
an additional immunity characteristic. In Section 10.2, a verification in terms of a
quantification of this dynamical process is provided.
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Table 4.1: Description of variables and parameters of the extended model of healthy
plasma cell (PC) dynamics (4.0.1). All parameters are real and positive
unless it is stated differently.

Symbol Description Unit

xh,0(t) Number of pathogen-induced healthy PCs outside
the niche at time t # PCs

yh,0(t) Number of pathogen-induced healthy PCs inside
the niche at time t # PCs

xh,v(t)
Number of vaccination-induced healthy PCs outside
the niche at time t # PCs

yh,v(t)
Number of vaccination-induced healthy PCs inside
the niche at time t # PCs

f
Number of healthy PCs entering the compartment
outside of the niche via the blood per unit of time # PCs · time−1

d Death rate of healthy PC outside the niche time−1

bh
Transition rate of healthy PCs outside the niche
into the niche time−1

ch
Transition rate of healthy PCs inside the niche
out of the niche time−1

n
Difference in number of PCs between PCs inside and
outside the niche at healthy homoeostasis # PCs



5 Model of healthy and malignant
plasma cell dynamics

In this chapter, a mathematical model is derived which describes the dynamics of
healthy and malignant PCs in the bone marrow. Derivation is based on the extended
model, where malignant PCs are considered as a population of “vaccination-induced“
PCs with the difference of being able to proliferate. They further may possess
different properties compared with healthy PCs. Along these lines, healthy PCs are
distinguished from malignant PCs within the total population of PCs.

Assumption 5.1 (Assumptions for malignant PCs).

(1) There is a time T ≥ 0 at which a certain number of malignant PCs is added to
the bone marrow compartment outside of the niche. In particular, there is no
constant inflow of malignant PCs.

(2) Malignant PCs are able to grow within both compartments, where the growth
can be positive (i.e. accumulation by proliferation) or negative (i.e. death),

(3) Malignant PCs possess the same transition properties as healthy PCs, possibly
at other rates.

Figure 5.1 illustrates the scenario of a malignancy-induced perturbation of the
healthy equilibrium: At time T , a certain number of malignant PCs arrives at the
bone marrow and is therefore added to the compartment of PCs outside the niche.
Consequently, the healthy equilibrium is perturbed. Proliferation of malignant PCs
is illustrated by a „dividing“ cell.
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(a) Healthy equilibrium. (b) Perturbation of the healthy equili-
brium by malignant PCs.

(c) Onset of malignant growth.

Figure 5.1: Perturbation of the healthy equilibrium due to malignancy. Purple
cells represent healthy plasma cells (PCs), whereas red cells represent
malignant PCs. Homoeostasis is perturbed by a population of malignant
PCs arriving at the bone marrow in a discrete-in-time event (depicted
as red cells appearing outside the niche). For details, see text.

The basic model is extended by two additional equations describing the number of
malignant PCs in the bone marrow outside and inside the niche, respectively. Since
parameter values of malignant PCs may differ from those of healthy PCs due to
Assumption 5.1, new parameters for malignant PCs are introduced. Notations for
the model variables and parameters are stated in Table 5.1 on page 40.
At first, the surplus of PCs relative to the niche balance (3.0.2) is refined, i.e.

z(t) = xh(t) + xm(t)︸ ︷︷ ︸
# PCs outside the niche

− (yh(t) + ym(t))︸ ︷︷ ︸
# PCs inside the niche

+ n, n > 0.

We not only have to take into account that the transition rates differ between
healthy and malignant PCs but also the proportion of each type of PCs within
each compartment. Similar to (4.0.3) in the extended model, the function for the
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transition rates is defined as

βj(z(t)) :=

bj
xj(t)

xh(t)+xm(t) if z(t) ≥ 0

cj
yj(t)

yh(t)+ym(t) if z(t) < 0,

where j ∈ {h,m}. This allows formulating dynamic equations for xh, xm and yh, ym
based on the previous discussion:

• The change in the number of healthy and malignant PCs in the bone marrow
outside the niche per unit of time, x′h(t) and x′m(t), respectively, is given by

x′h(t) = f − βh(z(t))z(t)− dxh(t)

x′m(t) = p1xm(t)− βm(z(t))z(t).

• The change in the number of healthy and malignant PCs in the bone marrow
inside the niche per unit of time, y′h(t) and y′m(t), respectively, is given by

y′h(t) = βh(z(t))z(t)

y′m(t) = p2ym(t) + βm(z(t))z(t).

Parameters p1 and p2 are net growth rates, i.e. they include both proliferation and
death of cells:

pi = proliferation rate − death rate, i ∈ {1, 2}.

The sign of p1 and p2, respectively, gives information about the predominance of
either proliferation or death. If p1 > 0 (respectively, p2 > 0), cells accumulate, i.e.
the proliferation rate exceeds the death rate, whereas if p1 < 0 (respectively, p2 < 0),
cells rather die than proliferate. In particular, no advantage for malignant PCs being
inside the niche is postulated as it has been done for healthy PCs. That is to say,
the model allows malignant PCs to die both outside and inside the niche.
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Thereby, the model of healthy and malignant PC dynamics in the bone marrow is
resumed:

The model of healthy and malignant PC dynamics in the bone marrow
(abbreviation: myeloma model) is given by the following system of ODEs for
times t ≥ t0 ≥ 0:

x′h(t) = f − βh(z(t))z(t)− dxh(t)

x′m(t) = p1xm(t)− βm(z(t))z(t)

y′h(t) = βh(z(t))z(t)

y′m(t) = p2ym(t) + βm(z(t))z(t)

(5.0.1)

with surplus of PCs relative to the niche balance z(t) given by

z(t) = xh(t) + xm(t)− (yh(t) + ym(t)) + n, (5.0.2)

transition rates βj(z(t)), j ∈ {h,m}, given by

βj(z(t)) =

bj
xj(t)

xh(t)+xm(t) if z(t) ≥ 0

cj
yj(t)

yh(t)+ym(t) if z(t) < 0,
(5.0.3)

and non-negative initial conditions

xh(t0) = x0
h ≥ 0

xm(t0) = x0
m ≥ 0

yh(t0) = y0
h ≥ 0

ym(t0) = y0
m ≥ 0.

(5.0.4)

Variables and parameters are listed in Table 5.1 on page 40.

The healthy equilibrium of the basic model as stated in Definition 3.5 can be
formulated as an equilibrium of the myeloma model (5.0.1) (or system (5.0.1)), i.e.

Eh =
(
xEh
h , 0, yEh

h , 0
)T
.
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Definition 5.2 (Malignancy-induced perturbation of the healthy equilibrium). Con-
sider the myeloma model (5.0.1) and its healthy equilibrium Eh. Let T ≥ 0. For
0 ≤ t < T , let (5.0.1) be at the healthy equilibrium Eh, i.e.

(xh(t), xm(t), yh(t), ym(t))T = Eh.

Then, at t = T ,

(xh(T ), xm(T ), yh(T ), ym(T ))T =
(
xEh
h , x0

m, y
Eh
h , 0

)T
with x0

m > 0 (5.0.5)

defines a malignancy-induced perturbation of the healthy equilibrium at time T as
described in Assumption 5.1, which can be interpreted as initial condition for system
(5.0.1) with t0 = T .

The perturbation of the healthy equilibrium by a population of malignant PCs of
a number to be determined (see Chapter 11) can be seen as recapitulation of the
30 episodes of inflow by physiological antigen exposure per year [94] with the main
difference that malignant PCs continue to proliferate, whereas healthy PCs do not.

Remark 5.3 (Myeloma model related to previous models). Unlike the extended
model (4.0.1), the myeloma model (5.0.1) is not a refinement of the basic model.
No closed system of differential equations describing the dynamics of xh(t) + xm(t)
and yh(t) + ym(t) can be deduced. This is due to the additional growth terms and
different transition rates in the equations for malignant PCs. Observe that the
myeloma model generalises the extended model (4.0.1): Setting p1 = −d, p2 = 0 and
bm = bh, cm = ch yields the extended model, where the model variables have to be
renamed appropriately.
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Table 5.1: Description of variables and parameters of the model of healthy and
malignant plasma cell (PC) dynamics (5.0.1). All parameters are real
and positive unless it is stated differently.

Symbol Description Unit

xh(t) Number of healthy PCs outside the niche at time t # PCs

yh(t) Number of healthy PCs inside the niche at time t # PCs

xm(t) Number of malignant PCs outside the niche at time t # PCs

ym(t) Number of malignant PCs inside the niche at time t # PCs

f
Number of healthy PCs entering the compartment
outside of the niche via the blood per unit of time # PCs · time−1

d Death rate of healthy PCs outside the niche time−1

p1 ∈ R Net growth rate of malignant PCs outside the niche time−1

p2 ∈ R Net growth rate of malignant PCs inside the niche time−1

bh
Transition rate of healthy PCs outside the niche
into the niche time−1

bm
Transition rate of malignant PCs outside the niche
into the niche time−1

ch
Transition rate of healthy PCs inside the niche
out of the niche time−1

cm
Transition rate of malignant PCs inside the niche
out of the niche time−1

n
Difference in number of PCs between PCs inside and
outside the niche at healthy homoeostasis # PCs
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6 Analysis of the basic model

The basic model of healthy PC dynamics in the bone marrow is recapitulated, see
Chapter 3. For all t ≥ t0, the system of ODEs is given by

x′h(t) = f − βh(z(t))z(t)− dxh(t)

y′h(t) = βh(z(t))z(t)
(3.0.1)

with surplus of PCs relative to the niche balance z(t) given by

z(t) = xh(t)− yh(t) + n, (3.0.2)

transition rates βh(z(t)) given by

βh(z(t)) =

bh if z(t) ≥ 0

ch if z(t) < 0
(3.0.3)

and non-negative initial conditions

xh(t0) = x0
h ≥ 0

yh(t0) = y0
h ≥ 0.

(3.0.4)

In general, the function βh(z) is not continuous in z, whereas the term βh(z)z in the
dynamic equations is continuous, yet not differentiable in z = 0. Since the vector field
of system (3.0.1) is smooth for z > 0 and z < 0, respectively, the associated dynamical
system is of piecewise-smooth continuous conformation. The basic model (3.0.1) is
reformulated using the framework of piecewise-smooth continuous dynamical systems.
For details, see Appendix A.1 providing a compendium of relevant theoretical results.
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For that, let

S1 : = {(xh, yh)T ∈ R2 : z ≥ 0}

S2 : = {(xh, yh)T ∈ R2 : z < 0},

which yields a single switching manifold given by

Σ := {(xh, yh)T ∈ R2 : z = 0}.

With the initial conditions (3.0.4), the reformulated system for t ≥ t0 reads
x
′
h(t)

y′h(t)

 = g(xh(t), yh(t)) =

g1(xh(t), yh(t)) if (xh(t), yh(t))T ∈ S1

g2(xh(t), yh(t)) if (xh(t), yh(t))T ∈ S2

: =



f − bhz(t)− dxh(t)

bhz(t)

 if (xh(t), yh(t))T ∈ S1

f − chz(t)− dxh(t)

chz(t)

 if (xh(t), yh(t))T ∈ S2.

(6.0.1)

Remark 6.1. Since g1(xh, yh) = g2(xh, yh) for all (xh, yh)T ∈ Σ, the assignment of
Σ belonging to S1 (instead of S2) is arbitrary but in accordance with the definition
of the transition rate function βh(z) in (3.0.3).

For sake of simplicity, the index h is skipped in all model variables and parameters
in the sequel of this chapter.

6.1 Existence and uniqueness of solutions

In the following, existence and uniqueness of solutions of the basic model are
investigated. Referring to system (6.0.1), the right-hand side g is continuous. Thus,
Theorem A.6 (i) immediately implies the following result about local existence of
solutions:
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Theorem 6.2 (Local existence of solutions). Consider the basic model (3.0.1) with
initial conditions (3.0.4). There exist solutions x(t) and y(t) which are defined for
all t on an open maximal interval of existence Imax ⊆ R with t0 ∈ Imax.

Knowing that solutions x(t) and y(t) exist for all t ∈ Imax for given initial condition,
sufficient conditions for their non-negativity are evaluated. This is important since
solutions describe cell counts. For approaching the problem, the concept of invariant
sets is applied [130].

Proposition 6.3 (Non-negativity of solutions for f ≥ bn). Consider the basic
model (3.0.1). Let f ≥ bn. Then, it follows that x(t), y(t) ≥ 0 for all t ∈ Imax.

Proof. Define hj : R2 → R, j = 1, 2, by

h1(x, y) = f − β(z)z − dx

h2(x, y) = β(z)z,
(6.1.1)

which represent the (non-smooth) right-hand sides of the ODEs for x and y within
system (3.0.1), respectively. Positive invariance of the set R2

+ = {(x, y)T ∈ R2 | x, y ≥
0} under the vector field of system (3.0.1) is proven. It is

h1(0, y) ≥ 0 ⇔

f − b(−y + n) ≥ 0 if n ≥ y

f − c(−y + n) ≥ 0 if n < y.
(6.1.2)

For n ≥ y, equation (6.1.2) is true due to f ≥ bn. For n < y, it is f − c(n− y) > 0.
Since h2(x, 0) = b(x+ n) > 0, the proof is complete.

If f < bn, the previous result does not guarantee non-negativity of solutions. However,
the set R2

+ can be restricted such that non-negativity of solutions holds true also in
this case.

Proposition 6.4 (Non-negativity of solutions for f ≤ bn). The set

A =
{

(x, y)T ∈ R2 : x ≥ 0, y ≥ n− f

b

}

is (positively) invariant under the vector field of the basic model (3.0.1). In particular,
if f ≤ bn, then A ⊆ R2

+.
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Proof. Consider h1, h2 which were defined in the previous proof, see (6.1.1). First,
consider (6.1.2). For n ≥ y, it is f − bn + by ≥ f − bn + b(n − f

b
) = 0. If n < y,

it is f − c(−y + n) > 0. Since h2(x, n − f
b
) = b(x + f

b
) > 0, this shows (positive)

invariance of A. Observe that f ≤ bn implies y ≥ 0. This completes the proof.

Remark 6.5. Due to the strict positivity of h2(x, ·), x ≥ 0, evaluated at the
boundary of the corresponding invariant set of both Proposition 6.3 and 6.4, it
follows that y(t0) ≥ 0 implies y(t) > 0 for all t ∈ Imax, t 6= t0.

Propositions 6.3 and 6.4 state sufficient conditions under which the solutions of
the basic model are expected to stay non-negative. Therefore, non-negativity of
solutions can be assumed in the remaining part of this section. In the forthcoming
investigation, the result about local existence stated in Theorem 6.2 are extended.

Theorem 6.6 (Global existence of solutions). Consider the basic model (3.0.1) with
initial conditions (3.0.4). Assume that either f ≥ bn and (x0, y0)T ∈ R2

+, or f ≤ bn

and (x0, y0)T ∈ A. Then, there exist non-negative solutions x(t) and y(t) which are
defined for all t ≥ t0.

Proof. By Theorem 6.2 and Propositions 6.3 and 6.4 it follows that x(t), y(t) ≥ 0 for
all t ∈ Imax, where Imax is the maximal interval of existence. Then x′(t) + y′(t) =
f − dx(t) ≤ f , which implies that x(t) + y(t) ≤ ft+ c̃ with c̃ ∈ R being a constant.
Therefore, x(t) + y(t) is bounded for each finite time point t ∈ Imax. Similarly, due
to the non-negativity of each x(t) and y(t), boundedness holds also for each solution.
Hence, the solutions can be extended globally in time, i.e. for all t ≥ t0.

In the remaining part of this section, results on uniqueness of solutions are deduced.
For further investigation of Lipschitz continuity (see Definition A.5) of the right-hand
side of the basic model, observe the following: To check if a function g : U → Rn with
U ⊆ R × Rn and g : (t, x) 7→ g(t, x) is Lipschitz continuous in x, uniformly in t, it
suffices to check that the component functions gi : U → R, i = 1, . . . , n, are Lipschitz
continuous. Using the 1-norm ‖ · ‖1, this is true because

|gi(t, x)− gi(t, y)| ≤ Li‖x− y‖1 for (t, x), (t, y) ∈ V
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for any closed bounded set V ⊆ U and Li > 0, i = 1, . . . , n, implies

‖g(t, x)− g(t, y)‖1 =
n∑
i=1
|gi(t, x)− gi(t, y)| ≤

n∑
i=1

Li‖x− y‖1 =: L‖x− y‖1 (6.1.3)

for (t, x), (t, y) ∈ V .

Lemma 6.7. Let a, b be real numbers such that a ≤ 0 ≤ b. Then, |a− b| = |a|+ |b|.

Proof. Let a ≤ 0 ≤ b. Then, |a − b| = −(a − b) = −a + b = |a| + |b|. This proves
the claim.

Theorem 6.8 (Global existence and uniqueness). Consider the basic model (3.0.1)
with initial conditions (3.0.4). Then, there exist unique solutions x(t) and y(t) which
are defined for all t ≥ t0.

Proof. Consider the functions h1 and h2 defined by (6.1.1) and proof Lipschitz
continuity in (x, y)T ∈ R2, respectively. That is to say, global Lipschitz continuity.
Let (x1, y1)T , (x2, y2)T ∈ R2, and z1 = x1 − y1 + n, z2 = x2 − y2 + n. It follows that

|h1(x1, y1)− h1(x2, y2)| = |f − β(z1)z1 − dx1 − (f − β(z2)z2 − dx2)|

= |d(x2 − x1) + β(z2)z2 − β(z1)z1|

≤ d|x1 − x2|+ |β(z1)z1 − β(z2)z2|.

For further analysis of the term |β(z1)z1−β(z2)z2|, three cases for (x1, y1)T , (x2, y2)T ∈
R2 are considered:

(1) z1, z2 ≥ 0, that is to say, (x1, y1)T , (x2, y2)T ∈ S1

(2) z1, z2 < 0, that is to say, (x1, y1)T , (x2, y2)T ∈ S2

(3) z2 < 0 ≤ z1 or z1 < 0 ≤ z2, that is to say, (x1, y1)T ∈ S1 and (x2, y2)T ∈ S2, or
vice versa, respectively. Without loss of generality, assume that z2 < 0 ≤ z1.

In case (1), it is β(z1) = β(z2) = b, thus |β(z1)z1 − β(z2)z2| = b|z1 − z2|. This yields

|h1(x1, y1)− h1(x2, y2)| ≤ d|x1 − x2|+ b|z1 − z2|.
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In case (2), it is β(z1) = β(z2) = c. Thus |β(z1)z1− β(z2)z2| = c|z1− z2|. This yields

|h1(x1, y1)− h1(x2, y2)| ≤ d|x1 − x2|+ c|z1 − z2|.

In case (3), it is β(z1) = b and β(z2) = c. Using Lemma 6.7 implies that

|β(z1)z1 − β(z2)z2| = |β(z1)z1|+ |β(z2)z2|

≤ max{b, c} (|z1|+ |z2|)

= max{b, c}|z1 − z2|.

This yields

|h1(x1, y1)− h1(x2, y2)| ≤ d|x1 − x2|+ max{b, c}|z1 − z2|.

Thus, the following estimate is true for all (x1, y1)T , (x2, y2)T ∈ R2:

|h1(x1, y1)− h1(x2, y2)| ≤ d|x1 − x2|+ max{b, c}|z1 − z2|

≤ d|x1 − x2|+ max{b, c}
(
|x1 − x2|+ |y1 − y2|

)
≤
(
d+ max{b, c}

)
‖(x1, y1)T − (x2, y2)T‖1.

Let L1 = d+ max{b, c}. For h2 it follows in the same fashion that

|h2(x1, y1)− h2(x2, y2)| = |β(z1)z1 − β(z2)z2|

≤ max{b, c}|z1 − z2|

≤ max{b, c}
(
|x1 − x2|+ |y1 − y2|

)
= max{b, c}‖(x1, y1)T − (x2, y2)T‖1.

Let L2 = max{b, c}. With L = L1 + L2 = 2 max{b, c} + d and (6.1.3), it follows
that

‖(h1(x1, y1), h2(x1, y1))T − (h1(x2, y2), h2(x2, y2))T‖1 ≤ L‖(x1, y1)T − (x2, y2)T‖1.

This implies global Lipschitz continuity of the right-hand side of system (3.0.1).
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By Theorem A.6 and Remark A.7, this yields global existence and uniqueness of
solutions.

6.2 Stability of the healthy equilibrium

Remark 3.4 shows that there exists exactly one equilibrium of system (3.0.1), which
is referred to as healthy equilibrium (see Definition 3.5),

Eh =
(
xEh , yEh

)T
=
(
f

d
,
f

d
+ n

)T
.

Further, Eh ∈ Σ, where a solution (x(t), y(t))T of system (3.0.1) attains the healthy
equilibrium, i.e. (x(t), y(t))T = Eh, if (x(t), y(t))T ∈ Σ for all t. Moreover, the
following result holds:

Proposition 6.9 (Transversal intersection of Σ). Consider the basic model (3.0.1).
Every solution (x(t), y(t))T which reaches Σ \ Eh intersects Σ transversally.

Proof. To prove this statement, consider (x, y)T ∈ Σ \Eh and n(x, y), the normal to
Σ at (x, y)T . It holds that

n(x, y) = 1√
2

(1,−1)T ,

which yields the projections of g1(x, y) and g2(x, y) (see (6.0.1)) onto the normal to
the switching manifold Σ,

n(x, y)Tg1(x, y) = 1√
2

(f − dx) = n(x, y)Tg2(x, y).

It follows that

[
n(x, y)Tg1(x, y)

]
·
[
n(x, y)Tg2(x, y)

]
= 1

2 (f − dx)2 > 0,

which implies that a trajectory leaves Σ \ Eh. In particular, it enters S1 when
n(x, y)Tg1(x, y) > 0, and it enters S2 when n(x, y)Tg1(x, y) < 0. This completes the
proof.
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In more general problems of discontinuous dynamical systems, the above analysis is
embedded in the so-called Filippov first order theory [23]. Depending on the chosen
initial conditions, there may exist a finite time at which the solution (x(t), y(t))T

reaches the switching manifold Σ \Eh. In the forthcoming section, it is deduced that
there exists at most one such time.
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Figure 6.1: Contour plot showing level sets of the Lyapunov function V (black) given
by (6.2.1). The flow of the basic model (light gray) and the healthy
equilibrium Eh (red) are also shown, implying that all trajectories
eventually reach Eh. Chosen parameter values are listed in Table 6.1
on page 65. For details, see text.

Next, global stability of the healthy equilibrium Eh ∈ Σ is analysed. As exemplified
in Appendix A.1.2, deducing stability properties of Eh from stability properties of
Eh within each S1 and S2 can be misleading. Instead, proving the existence of a
common strict Lyapunov function for both sub-systems guarantees global asymptotic
stability.



6.2 Stability of the healthy equilibrium 51

Theorem 6.10 (Global asymptotic stability of Eh). Consider the basic model (3.0.1).
The healthy equilibrium Eh is globally asymptotically stable.

Proof. In order to apply Theorem A.14, consider the function V : R2 7→ R defined
by

V (x, y) := 1
2d

(
x+ y − 2f

d
− n

)2

+ 1
2 max{b, c}

(
y − f

d
− n

)2

. (6.2.1)

V is shown to be a strict Lyapunov function of system (3.0.1) satisfying the con-
ditions stated in Theorem A.14 (ii). Note that V is continuously differentiable. A
straightforward calculation yields

V (xEh , yEh) = 0 and V (x, y) > 0 for all (x, y)T 6= (xEh , yEh)T .

Calculating the Lie derivative of V along the vector field of system (3.0.1) yields

V̇ (x, y) = 1
d

(
x+ y − 2f

d
− n

)
(f − β(z)z − dx) + β(z)

max{b, c}

(
y − f

d
− n

)
z

+ β(z)
d

(
x+ y − 2f

d
− n

)
z

= 1
d

(
x+ y − 2f

d
− n

)
(f − dx) + β(z)

max{b, c}︸ ︷︷ ︸
≤1

(
y − f

d
− n

)
(x− y + n)

≤
(
x+ y − 2f

d
− n

)(
f

d
− x

)
+
(
y − f

d
− n

)
(x− y + n)

= −
(x− f

d

)2

+
(
y − f

d
− n

)2


< 0

for all (x, y)T 6= (xEh , yEh)T . Thus, Eh is globally asymptotically stable.

Figure 6.1 illustrates the level sets of the Lyapunov function V for an arbitrary choice
of parameter values given by Table 6.1 on page 65, which guarantees non-negativity
of solutions according to Proposition 6.3.
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6.3 Invariant sets

The previous analysis revealed that solutions of the basic model may intersect the
switching manifold transversally if they reach Σ \ Eh, see Proposition 6.9. It was
shown that Eh is globally asymptotically stable, see Theorem 6.10. In particular, that
is limt→∞(x(t), y(t))T = (xEh , yEh)T . In this section, further analysis investigates
how often a trajectory may cross the switching manifold at most, i.e. the maximal
number of possible switches in the sign of the function z(t) is examined.

Definition 6.11 (Sign switch). A change in the sign of the value of z(t) during time
evolution, either from strictly positive to strictly negative, or vice versa, is denoted
as sign switch of z(t).

6.3.1 Two invariant sets of no sign switch of z

Regarding formulation (6.0.1), the basic model is a piecewise-linear inhomogeneous
system with constant coefficient matrices within each S1 and S2, respectively. A
straightforward calculation yields related eigenvectors

(
±
√

4b2 + d2 − d
2b , 1

)T
and

(
±
√

4c2 + d2 − d
2c , 1

)T
,

respectively. Since eigenspaces are invariant under the corresponding linear (homoge-
neous) vector field [127], this motivates the following definition.

Definition 6.12 (Sets R1 and R2). Let Ri : R2 → R, i = 1, 2, 3, 4, be given by

R1(x, y) := y +
√

4b2 + d2 − d
2b x−

(
1 +
√

4b2 + d2 − d
2b

)
f

d
− n

R2(x, y) := y − x− n

R3(x, y) := −y −
√

4c2 + d2 − d
2c x+

(
1 +
√

4c2 + d2 − d
2c

)
f

d
+ n

R4(x, y) := −R2(x, y).
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Then, define

R1 :=
2⋂
i=1
{(x, y)T ∈ R2 : Ri(x, y) ≤ 0} ⊂ S1

R2 :=
4⋂
i=3
{(x, y)T ∈ R2 : Ri(x, y) ≤ 0} ⊂ S2 ∪ Σ.

The boundary of the respective set is denoted as ∂Rj, j = 1, 2. That is to say,

∂R1 = {(x, y)T ∈ R1 : R1(x, y) = 0} ∪ {(x, y)T ∈ R1 : R2(x, y) = 0}

∂R2 = {(x, y)T ∈ R2 : R3(x, y) = 0} ∪ {(x, y)T ∈ R2 : R4(x, y) = 0}.

Observe that Eh ∈ ∂Rj for j = 1, 2, and

4⋂
i=1
{Ri(x, y) = 0} = {Eh}.

Since Eh is an equilibrium of the basic model, it follows that the Lie derivatives
Ṙi(Eh) = 0 for all i = 1, 2, 3, 4. Further it holds:

Theorem 6.13 (Invariant sets R1 and R2). The sets R1 and R2 are (positively)
invariant under the vector field of the basic model (3.0.1).

Proof. First, consider the set R1. Let (x, y)T ∈ ∂R1 \ Eh. Sketching Ri(x, y) = 0
for i = 1, 2 in the phase plane (see Figure 6.2) shows that the boundary
of R1 splits up into two parts, i.e.

(1) R1(x, y) = 0 with x > f
d
, and

(2) R2(x, y) = 0 with x < f
d
.

Note that if x = f
d
, then y = f

d
+ n, and thus (x, y)T = Eh. For the first part,

straightforward calculation shows that

Ṙ1(x, y) = b(x− y + n) +
√

4b2 + d2 − d
2b

(
f − b(x− y + n)− dx

)
(R1=0)= 0,
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Figure 6.2: Sketch of relative positions of boundary lines in the phase plane of the
basic model. The healthy equilibrium Eh (red), the sets R2(x, y) =
0 = R4(x, y) (bold) and R1(x, y) = 0 and R3(x, y) = 0 (dashed) are
visualised. For details, see proof of Theorem 6.13.

and for the second part, it is

Ṙ2(x, y) = b(x− y + n)−
(
f − b(x− y + n)− dx

)
(R2=0)= dx− f

< 0.

This implies (positive) invariance of the set R1.

Next, consider the set R2. Let (x, y)T ∈ ∂R2 \ Eh. Again, sketching Ri(x, y) = 0
for i = 3, 4 in the phase plane (see Figure 6.2) shows that the boundary of R2 splits
up into two parts, i.e.

(1) R3(x, y) = 0 with x < f
d
, and

(2) R4(x, y) = 0 with x > f
d
.

Note that if x = f
d
, then y = f

d
+ n, and thus (x, y)T = Eh. For the first part, an
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immediate calculation gives

Ṙ3(x, y) = −c(x− y + n)−
√

4c2 + d2 − d
2c

(
f − c(x− y + n)− dx

)
(R3=0)= 0,

and for the second part, it is

Ṙ4(x, y) = −c(x− y + n) + f − c(x− y + n)− dx
(R4=0)= f − dx

< 0.

This implies (positive) invariance of the set R2.

Remark 6.14. In fact, the proof of Theorem 6.13 shows that the sets

{(x, y)T ∈ R2 : R1(x, y) = 0}

{(x, y)T ∈ R2 : R3(x, y) = 0}

are (positively) invariant.

Figure 6.3 illustrates the invariant sets R1 and R2 in the phase plane. Parameter
values are stated in Table 6.1 on page 65.

Assuming non-negativity of solutions using Proposition 6.3 or 6.4 guarantees
(positive) invariance of R1 ∩ R2

+ and R2 ∩ R2
+. Since R1 ⊂ S1, the dynamics of

a trajectory (x(t), y(t))T starting in R1 are thoroughly determined by the flow of
system (3.0.1) within S1. Likewise, since R2 ⊂ S2 ∪ Σ, the dynamics of a trajectory
(x(t), y(t))T starting in R2 are thoroughly determined by the flow of system (3.0.1)
within S2 ∪ Σ. In both cases, there does not occur any switch in the sign of z(t).
The following implication holds:

Corollary 6.15. The function z(t) may switch its sign at most once.

Proof. As a consequence of the definitions of R1 and R2, a switch in the sign of
z(t) is only possible for a solution starting in R2 \ (R1 ∪R2), see also Figure 6.3.
Let (x0, y0)T ∈ R2 \ (R1 ∪R2). Then, the corresponding trajectory (x(t), y(t))T
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(a) Separation of the phase plane by Σ.
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(b) Invariant sets R1 and R2.

Figure 6.3: Phase plane of the basic model visualising the corresponding vector
field (light gray), the healthy equilibrium Eh (red) and the switching
manifold Σ (black). The latter separates the set S1 from the set S2.
Yellow regions mark invariant sets R1 and R2 given by Definition 6.12.
Parameter values are stated in Table 6.1 on page 65. For details, see
text.

eventually enters R1 ∪R2 as t→∞. This is due to global asymptotic stability of
Eh ∈ R1 ∪ R2, see Theorem 6.10. If (x(t), y(t))T enters R1 ∪ R2 at a finite time
T > t0, then (x(t), y(t))T enters either R1 \ Eh or R2 \ Eh. Note that Eh cannot
be reached in finite time due to uniqueness of solutions, see Theorem 6.8. If this is
attended by crossing Σ, Proposition 6.9 implies a sign switch in z(t). Theorem 6.13
yields that (x(t), y(t))T ∈ R1 ∪R2 for all times t ≥ T , and no further switch in the
sign of z(t) occurs. This proves the claim.

6.3.2 Two invariant sets of monotonicity of z

Having identified invariant sets of no sign switch of z(t), further analysis investigates
the dynamics of z(t). By setting x′(t) = y′(t), we search for solutions (x(t), y(t))T of
the basic model where x(t) and y(t) possess equal growth behaviour. This condition
immediately implies z′(t) = 0, which translates into f − 2β(z(t))z(t)− dx(t) = 0. If
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(x(t), y(t))T ∈ S1, then it follows that

f − 2b (x(t)− y(t) + n)− dx(t) = 0 ⇔ y(t) =
(

1 + d

2b

)
x(t) + n− f

2b,

and if (x(t), y(t))T ∈ S2, it is

f − 2c (x(t)− y(t) + n)− dx(t) = 0 ⇔ y(t) =
(

1 + d

2c

)
x(t) + n− f

2c.

This motivates the following definition.

Definition 6.16 (SetsM1 andM2). Let Mi : R2 → R, i = 1, 2, be given by

M1(x, y) := y −
(

1 + d

2b

)
x− n+ f

2b

M2(x, y) := −y +
(

1 + d

2c

)
x+ n− f

2c.

Then, define

M1 := {(x, y)T ∈ R2 : R1(x, y) ≤ 0} ∩ {(x, y)T ∈ R2 : M1(x, y) ≤ 0}

M2 := {(x, y)T ∈ R2 : R3(x, y) ≤ 0} ∩ {(x, y)T ∈ R2 : M2(x, y) ≤ 0}.

Observe that

M1 = R1 ∩ {(x, y)T ∈ R2 : M1(x, y) ≤ 0} ⊂ R1 ⊂ S1

M2 = R2 ∩ {(x, y)T ∈ R2 : M2(x, y) ≤ 0} ⊂ R2 ⊂ S2 ∪ Σ.

By this definition, the next result is obtained:

Theorem 6.17 (Invariant setsM1 andM2).

(i) The setM1 is (positively) invariant under the vector field of the basic model (3.0.1).
In particular, the function z(t) is monotonically decreasing withinM1.

(ii) The setM2 is (positively) invariant under the vector field of the basic model (3.0.1).
In particular, the function z(t) is monotonically increasing withinM2.

Proof. First, consider the set M1. Let (x, y)T ∈ M1 such that M1(x, y) = 0.
Sketching M1(x, y) = 0 in the phase plane (see Figure 6.4) shows that x ≤ f

d
. If
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Figure 6.4: Sketch of relative positions of boundary lines in the phase plane of the
basic model. The healthy equilibrium Eh (red), the sets Ri(x, y) =
0, i = 1, 2, 3, 4 (bold) and M1(x, y) = 0 and M2(x, y) = 0 (dashed) are
visualised. For details, see proof of Theorem 6.17.

x = f
d
, then it follows that (x, y)T = Eh. Thus, consider x < f

d
. It is

Ṁ1(x, y) = b(x− y + n)− (2b+ d)
2b

(
f − b(x− y + n)− dx

)
(M1=0)= d

4b

(
dx− f

)
< 0.

(6.3.1)

Using the result of Theorem 6.13 implies (positive) invariance ofM1. Next, z(t) is
shown to be monotonically decreasing. For that, let (x0, y0)T ∈M1. It follows that
M1(x(t), y(t)) ≤ 0 for all t ≥ t0. Therefore, it is

z′(t) = f − 2bz(t)− dx(t)

= f − 2bx(t) + 2by(t)− 2bn− dx(t)

≤ f − 2bx(t) + 2b
((

1 + d

2b

)
x(t) + n− f

2b

)
− 2bn− dx(t)

= 0.

This shows that z′(t) ≤ 0 for all t ≥ t0 inM1. Observe that if M1(x0, y0) < 0, then
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M1(x(t), y(t)) < 0 for all t ≥ t0 by the strict inequality in (6.3.1). Consequently,
z′(t) < 0 for all t ≥ t0 inM1.
Next, consider the setM2. Let (x, y)T ∈M2 such that M2(x, y) = 0. Sketching

M2(x, y) = 0 in the phase plane (see Figure 6.4) shows that x ≥ f
d
. If x = f

d
, then it

follows that (x, y)T = Eh. Thus, consider x > f
d
. It is

Ṁ2(x, y) = −c(x− y + n) + 2c+ d

2c

(
f − c(x− y + n)− dx

)
(M2=0)= d

4c

(
f − dx

)
< 0.

(6.3.2)

Using the result of Theorem 6.13 implies (positive) invariance ofM2. Next, z(t) is
shown to be monotonically increasing. For that, let (x0, y0)T ∈M2. It follows that
M2(x(t), y(t)) ≤ 0 for all t ≥ t0. Therefore, it is

z′(t) = f − 2cz(t)− dx(t)

= f − 2cx(t) + 2cy(t)− 2cn− dx(t)

≥ f − 2bx(t) + 2b
((

1 + d

2c

)
x(t) + n− f

2c

)
− 2bn− dx(t)

= 0.

This shows that z′(t) ≥ 0 for all t ≥ t0 inM2. Observe that if M2(x0, y0) < 0, then
M2(x(t), y(t)) < 0 for all t ≥ t0 by the strict inequality in (6.3.2). Consequently,
z′(t) > 0 for all t ≥ t0 inM2.

Corollary 6.18. The function z(t) possesses at most one maximum or minimum,
respectively.

Proof. As a consequence of the definitions ofM1 andM2, the function z(t) possesses
an optimum at time T ≥ t0, i.e. z′(T ) = 0, if and only if M1(x(T ), y(T )) = 0 or
M2(x(T ), y(T )) = 0, respectively. By the proof of Theorem 6.17, the sets

{(x, y)T ∈ R2 : M1(x, y) = 0} \ Eh
{(x, y)T ∈ R2 : M2(x, y) = 0} \ Eh



60 6 Analysis of the basic model

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x

y

R1

R2

(a) Invariant sets of no sign switch of z(t).

0 50 100 150 200 250 300
0

50

100

150

200

250

300

x

y

M1

M2

(b) Invariant sets of monotonicity of z(t).

Figure 6.5: Phase plane of the basic model visualising the corresponding vector
field (light gray), the healthy equilibrium Eh (red) and the switching
manifold Σ (black). Yellow regions mark invariant sets R1 and R2
given by Definition 6.12. Green regions mark invariant setsM1 and
M2 given by Definition 6.16. Parameter values are stated in Table 6.1
on page 65. For details, see text.

are repelling for the vector field of system (3.0.1) due to strict negativity of the
respective Lie derivatives (6.3.1) and (6.3.2). More precisely, a trajectory reaching
either of these sets crosses the respective set transversally such thatM1(x(t), y(t)) < 0
or M2(x(t), y(t)) < 0 for all t > T , respectively. In particular, z′(t) 6= 0 for all t > T .
This proves the claim.

Figure 6.5 illustrates the invariant setsM1 andM2 along with the invariant sets R1

and R2 in the phase plane. Parameter values are stated in Table 6.1 on page 65.

6.4 Qualitative simulations

This chapter closes with simulations providing an illustration of previously derived
results. The qualitative behaviour of solutions (x(t), y(t))T of the basic model
(3.0.1) with different initial conditions (x0, y0)T is analysed in the phase plane. Used
parameter values are stated in Table 6.1 on page 65. In the following, Figure 6.6 is
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considered. By Theorem 6.10 and Theorem 6.13 a trajectory (x(t), y(t))T starting in
one of the invariant sets R1 or R2 asymptotically approaches (xEh , yEh)T without
leaving R1 or R2, respectively. In particular, if a trajectory (x(t), y(t))T starts in
one of the invariant setsM1 ⊂ R1 orM2 ⊂ R2, the function z(t) is monotone, see
Theorem 6.17.

(a) The depicted trajectory starts at (0, 50)T ∈ R1 \ M1 and converges to Eh,
where z(t) ≥ 0 for all t. The dynamics of the solutions x(t) and y(t) reveal
convergence to Eh. Observe that z(t) is not monotone and possesses one
maximum.

(b) The depicted trajectory starts at (150, 0)T ∈M1 and converges to Eh, where
z(t) ≥ 0 for all t. The dynamics of the solutions x(t) and y(t) reveal convergence
to Eh. Observe that z(t) is strictly monotonically decreasing.

(c) The depicted trajectory starts at (150, 300)T ∈ R2 \ M2 and converges to
Eh, where z(t) ≤ 0 for all t. The dynamics of the solutions x(t) and y(t)
reveal convergence to Eh. Observe that z(t) is not monotone and possesses one
minimum.

(d) The depicted trajectory starts at (0, 250)T ∈M2 and converges to Eh, where
z(t) ≤ 0 for all t. The dynamics of the solutions x(t) and y(t) reveal convergence
to Eh. Observe that z(t) is strictly monotonically increasing.

(e) The depicted trajectory starts at (300, 200)T ∈ S1 \ R1 and converges to Eh,
where z(t) changes its sign one time. The dynamics of the solutions x(t) and
y(t) reveal convergence to Eh. Observe that z(t) is not monotone and possesses
one minimum. z(t) has exactly one root.

(f) The depicted trajectory starts at (0, 100)T ∈ S2 \ R2 and converges to Eh,
where z(t) changes its sign one time. The dynamics of the solutions x(t) and
y(t) reveal convergence to Eh. Observe that z(t) is not monotone and possesses
one maximum. z(t) has exactly one root.
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(a) Initial value (x0, y0)T = (0, 50)T .
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(b) Initial value (x0, y0)T = (150, 0)T .
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(c) Initial value (x0, y0)T = (150, 300)T .
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(d) Initial value (x0, y0)T = (0, 250)T .
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(e) Initial value (x0, y0)T = (300, 200)T .
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(f) Initial value (x0, y0)T = (0, 100)T .

Figure 6.6: Simulations of a trajectory in the phase plane and solutions of the basic
model. Left: A trajectory (blue) in the phase plane of the basic model
converging to Eh (red). The vector field (light gray) of the basic model
is visualised. Yellow regions mark invariant sets R1 and R2 given by
Definition 6.12. Green regions mark invariant setsM1 andM2 given
by Definition 6.16. Right: Solutions x(t) + y(t) (blue), y(t) (dashed
blue), and z(t) (black). Parameter values are stated in Table 6.1. For
details, see text.
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Table 6.1: Parameter values for simulations in Chapter 6.

Parameter Value

f 50

n 60

b 0.5

c 0.05

d 0.5





7 Analysis of the myeloma model

The model of healthy and malignant PC dynamics in the bone marrow, or myeloma
model, is recapitulated, see Chapter 5. For all t ≥ t0, the system of ODEs is given by

x′h(t) = f − βh(z(t))z(t)− dxh(t)

x′m(t) = p1xm(t)− βm(z(t))z(t)

y′h(t) = βh(z(t))z(t)

y′m(t) = p2ym(t) + βm(z(t))z(t)

(5.0.1)

with surplus of PCs relative to the niche balance z(t) given by

z(t) = xh(t) + xm(t)− (yh(t) + ym(t)) + n, (5.0.2)

transition rates βj(z(t)), j ∈ {h,m}, given by

βj(z(t)) =

bj
xj(t)

xh(t)+xm(t) if z(t) ≥ 0

cj
yj(t)

yh(t)+ym(t) if z(t) < 0
(5.0.3)

and non-negative initial conditions

xh(t0) = x0
h ≥ 0

xm(t0) = x0
m ≥ 0

yh(t0) = y0
h ≥ 0

ym(t0) = y0
m ≥ 0.

(5.0.4)

Observe that the functions βj(z), j ∈ {h,m}, given by (5.0.3) are undefined in
case of xh + xm = 0 or yh + ym = 0, respectively. Assuming xh(t) + xm(t) 6= 0
and yh(t) + ym(t) 6= 0 for all t ≥ t0, they are continuous for all z ∈ R, z 6= 0. It

67
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follows that the functions βj(z)z, j ∈ {h,m}, are continuous, but in general not
differentiable in z = 0. Since the vector field of system (5.0.1) is smooth for z > 0
and z < 0, respectively, the associated dynamical system is of piecewise-smooth
conformation. For a reformulation of the myeloma model into the framework of
piecewise-smooth continuous dynamical systems (see Appendix A.1), let

S1 := {(xh, xm, yh, ym)T ∈ R4 : z ≥ 0}

S2 := {(xh, xm, yh, ym)T ∈ R4 : z < 0}

with a single switching manifold given by

Σ := {(xh, xm, yh, ym)T ∈ R4 : z = 0}.

With the initial conditions (5.0.4), the reformulated system for t ≥ t0 reads



x′h(t)

x′m(t)

y′h(t)

y′m(t)


= g(xh(t), xm(t), yh(t), ym(t))

=

g1(xh(t), xm(t), yh(t), ym(t)) if (xh(t), xm(t), yh(t), ym(t))T ∈ S1

g2(xh(t), xm(t), yh(t), ym(t)) if (xh(t), xm(t), yh(t), ym(t))T ∈ S2

: =





f − bh xh(t)
xh(t)+xm(t)z(t)− dxh(t)

p1xm(t)− bm xm(t)
xh(t)+xm(t)z(t)

bh
xh(t)

xh(t)+xm(t)z(t)

p2ym(t) + bm
xm(t)

xh(t)+xm(t)z(t)


if (xh(t), xm(t), yh(t), ym(t))T ∈ S1



f − ch yh(t)
yh(t)+ym(t)z(t)− dxh(t)

p1xm(t)− cm ym(t)
yh(t)+ym(t)z(t)

ch
yh(t)

yh(t)+ym(t)z(t)

p2ym(t) + cm
ym(t)

yh(t)+ym(t)z(t)


if (xh(t), xm(t), yh(t), ym(t))T ∈ S2.

(7.0.1)



7.1 Domain of definition and non-negativity of solutions 69

7.1 Domain of definition and non-negativity of
solutions

In this section, a domain for the right-hand side g of the myeloma model (7.0.1)
is introduced such that the non-linearities appearing in the transition rate func-
tions βj(z(t)), j ∈ {h,m} given by (5.0.3) are defined for all t ≥ t0. That is
xh(t) + xm(t) 6= 0 in S1 and yh(t) + ym(t) 6= 0 in S2 for all t ≥ t0, respectively. Since
the fractions in (5.0.3) reflect proportions of PCs (see Chapter 5), their non-negativity
needs to be ensured. This involves non-negativity of solutions.

Let R4
+ denote the set of vectors in R4 with non-negative components.

Definition 7.1 (Set W). Let Wi : R4
+ → R, i = 1, 2, are given by

W1(xh, xm, yh, ym) := −xh − xm
W2(xh, xm, yh, ym) := n− yh − ym.

Then, define

W :=
2⋂
i=1
{(xh, xm, yh, ym)T ∈ R4

+ : Wi(xh, xm, yh, ym) ≤ 0}. (7.1.1)

Assuming existence of solutions, the following result holds true:

Theorem 7.2 (Domain of definition and non-negativity of solutions). Consider the
myeloma model (5.0.1) and assume that solutions exist. Then, the setW is (positively)
invariant under the vector field of the myeloma model. In particular, if the initial
conditions (5.0.4) satisfy x0

h + x0
m > 0 and y0

h + y0
m ≥ n, then the functions (5.0.3)

are defined for all t ≥ t0. Moreover, it follows that xh(t), xm(t), yh(t), ym(t) ≥ 0 for
all t ≥ t0.
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Proof. At first, non-negativity of solutions xh(t), xm(t), yh(t), ym(t) is proved. For
that, let hj : R4 → R, j = 1, 2, 3, 4, by

h1(xh, xm, yh, ym) = f − βh(z)z − dxh
h2(xh, xm, yh, ym) = p1xm − βm(z)z

h3(xh, xm, yh, ym) = βh(z)z

h4(xh, xm, yh, ym) = p2ym + βm(z)z.

(7.1.2)

These functions are the component functions of g representing the right-hand side of
system (7.0.1). It follows that

h1(0, xm, yh, ym) = f − βh(z) =

f if z ≥ 0

f − ch yh

yh+ym
z if z < 0

 > 0

h2(xh, 0, yh, ym) = −βm(z)z =

0 if z ≥ 0

−cm ym

yh+ym
z if z < 0

 ≥ 0

h3(xh, xm, 0, ym) = βh(z)z =

bh
xh

xh+xm
z if z ≥ 0

0 if z < 0

 ≥ 0

h4(xh, xm, yh, 0) = βm(z)z =

bm
xh

xh+xm
z if z ≥ 0

0 if z < 0

 ≥ 0.

Consequently, since x0
h, x

0
m, y

0
h, y

0
m ≥ 0, it follows that xh(t), xm(t), yh(t), ym(t) ≥ 0

for all t ≥ t0. In other words, the set R4
+ is (positively) invariant under the vector

field of system (5.0.1).

Next, the set W given by (7.1.1) is shown to be (positively) invariant under the
vector field of system (5.0.1). At first, choose (xh, xm, yh, ym)T ∈ W such that
W2(xh, xm, yh, ym) = 0. It follows that z = xh + xm − yh − ym + n = xh + xm ≥ 0.
Consequently,

Ẇ2(xh, xm, yh, ym) = −h3(xh, xm, yh, ym)− h4(xh, xm, yh, ym)

= −βh(z)z − p2ym − βm(z)z

≤ 0.
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Next, let (xh, xm, yh, ym)T ∈ W such that W1(xh, xm, yh, ym) = 0. It follows that
z = xh + xm − yh − ym + n = −yh − ym + n ≤ 0. Consequently,

Ẇ1(xh, xm, yh, ym) = −h1(xh, xm, yh, ym)− h2(xh, xm, yh, ym)

= −f + βh(z)z + dxh − p1xm + βm(z)z

≤ −f + dxh − p1xm

≤

−f + d (xh + xm) if p1 ≥ 0

−f + max{d, |p1|} (xh + xm) if p1 < 0
(W1=0)= −f

< 0.

(7.1.3)

Since R4
+ is (positively) invariant, it follows that the set W is (positively) invariant.

The strict negativity of the Lie derivative Ẇ1 in (7.1.3) implies that choosing initial
conditions

(x0
h, x

0
m, y

0
h, y

0
m)T ∈ W ∩ {(xh, xm, yh, ym)T ∈ R4

+ : W1(xh, xm, yh, ym) < 0}

yields xh(t) + xm(t) > 0 for all t ≥ t0. This completes the proof.

Remark 7.3 (Perturbations of the healthy equilibrium). With Remark 5.3, an ana-
logue statement of Theorem 7.2 holds true for the extended model (4.0.1). Choosing
a malignancy-induced perturbation of the healthy equilibrium as initial condition
for the myeloma model (see Definition 5.2), it holds that x0

h + x0
m = xEh

h + x0
m > 0

and y0
h + y0

m = yEh
h = f

d
+ n ≥ n. Thus, the requirements of Theorem 7.2 are not

restrictive from a biological point of view but suited for the setting of investigation.
The same holds true for the case of the vaccination-induced perturbation of the
healthy equilibrium in the framework of the extended model (4.0.1) as introduced
by Definition 4.4. The extended model (4.0.1) will be discussed in Chapter 8.

Consequently, in the subsequent considerations, the myeloma model is considered
to be defined on the (positively) invariant set W. That is to say, we only consider
solutions of the myeloma model with initial conditions (5.0.4) located in W .
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7.2 Existence and uniqueness of solutions

Existence results for solutions of the myeloma model in W can be inferred from
continuity of the right-hand side g in system (7.0.1) yielding a local statement,
compare Theorem 6.2. By boundedness of a linear combination of non-negative
solutions for all finite times t ≥ t0, existence extends for a global statement, compare
Theorem 6.6. The latter holds true due to

x′h(t) + y′h(t) = f − dxh(t) ≤ f

x′m(t) + y′m(t) = p1xm(t) + p2ym(t) ≤ max{p1, p2} (xm(t) + ym(t)) .

Next, the main result about global existence and uniqueness of solutions of the
myeloma model is formulated and proven.

Theorem 7.4 (Global existence and uniqueness). Consider the myeloma model (5.0.1)
defined on W, i.e. let (x0

h, x
0
m, y

0
h, y

0
m)T ∈ W. Then, there exists a unique solution

(xh(t), xm(t), yh(t), ym(t))T ∈ W for all t ≥ t0.

Proof. The aim is to show Lipschitz continuity of the right-hand side g of the system
(7.0.1). Therefore, consider the functions h1, h2, h3 and h3 defined by (7.1.2) and
restrict them to the set W. Moreover, let X = (xh, xm, yh, ym)T ∈ W. Choose
X1 = (xh,1, xm,1, yh,1, ym,1)T ∈ W and X2 = (xh,2, xm,2, yh,2, ym,2)T ∈ W and set
z1 = xh,1 + xm,1 − yh,1 − ym,1 + n and z2 = xh,2 + xm,2 − yh,2 − ym,2 + n. For further
analysis, three cases for X1, X2 ∈ W are considered:

(1) z1, z2 > 0, that is to say, X1, X2 ∈ W ∩ (S1 \ Σ)

(2) z1, z2 < 0, that is to say, X1, X2 ∈ W ∩ S2

(3) z2 ≤ 0 ≤ z1 or z1 ≤ 0 ≤ z2, that is to say, X1 ∈ W∩S1 and X2 ∈ W∩(S2 ∪ Σ),
or vice versa, respectively. Without loss of generality, consider z2 ≤ 0 ≤ z1.

In cases (1) and (2), it follows that hj(X) ∈ C1 (Ω,R) , j = 1, 2, 3, 4, where Ω =
W ∩ (S1 \ Σ) or Ω =W ∩S2, respectively. Thus, showing that the gradients ∇hj(X)
are bounded for all X ∈ Ω implies Lipschitz continuity of hj(X) in X ∈ Ω [91, 119].
In case (3), Lipschitz continuity is directly proven. It will be useful to observe that
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for X ∈ W , it is

0 ≤ xj
xh + xm

≤ 1, j ∈ {h,m}, and 0 ≤ yj
yh + ym

≤ 1, j ∈ {h,m}.

Moreover, if z ≥ 0, then

0 ≤ z

xh + xm
= xh + xm − yh − ym + n

xh + xm
= 1 + n− yh − ym

xh + xm
≤ 1

due to n− yh − ym ≤ 0. In case of z ≤ 0, it follows that

0 ≤ −z
yh + ym

= −(xh + xm − yh − ym + n)
yh + ym

= 1− xh + xm + n

yh + ym
< 1

due to

0 < xh + xm + n

yh + ym
≤ 1.

Lipschitz continuity of h1: For case (1), let X ∈ W ∩ (S1 \ Σ). With

∇h1(X) =



−bh xh

xh+xm
+ bh

xhz
(xh+xm)2 − bh z

xh+xm
− d

bh
xh

xh+xm

−bh xh

xh+xm
+ bh

xhz
(xh+xm)2

bh
xh

xh+xm


,

it follows that

‖∇h1(X)‖1 ≤ 4bh
xh

xh + xm
+ 2bh

xhz

(xh + xm)2 + bh
z

xh + xm
+ d ≤ 7bh + d.

This implies Lipschitz continuity of h1(X) in X ∈ W ∩ (S1 \ Σ) with Lipschitz
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constant L1,1 = 7bh + d. For case (2), let X ∈ W ∩ S2. With

∇h1(X) =



−ch yh

yh+ym
− d

ch
yh

yh+ym
+ ch

yhz
(yh+ym)2 − ch z

yh+ym

−ch yh

yh+ym

ch
yh

yh+ym
+ ch

yhz
(yh+ym)2


,

it follows that

‖∇h1(X)‖1 ≤ 4ch
yh

yh + ym
+ 2ch

yh(−z)
(yh + ym)2 + ch

−z
yh + ym

+ d < 7ch + d.

This implies Lipschitz continuity of h1(X) in X ∈ W ∩ S2 with Lipschitz constant
L1,2 = 7ch + d. For case (3), choose X1 ∈ W ∩S1 and X2 ∈ W ∩ (S2 ∪ Σ). It follows
that

|h1(X1)− h1(X2)| = |f − βh(X1)z1 − dxh,1 − f + βh(X2)z2 + dhxh,2|

≤ |βh(X1)z1 − βh(X2)z2|+ d|xh,1 − xh,2|

≤ max{bh, ch}|z1 − z2|+ d|xh,1 − xh,2|

≤ (max{bh, ch}+ d) ‖X1 −X2‖1

due to Lemma 6.7, i.e.

|βh(X1)z1 − βh(X2)z2| =
∣∣∣∣∣bh xh,1
xh,1 + xm,1

z1

∣∣∣∣∣+
∣∣∣∣∣ch yh,2
yh,2 + ym,2

z2

∣∣∣∣∣
≤ bh|z1|+ ch|z2|

≤ max{bh, ch}|z1 − z2|

≤ max{bh, ch}‖X1 −X2‖1.

(7.2.1)

We define L1,3 = max{bh, ch}+ d and conclude that

|h1(X1)− h1(X2)| ≤ L1‖X1 −X2‖1 with L1 = max{L1,1, L1,2, L1,3}

= 7 max{bh, ch}+ d
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is true for all X1, X2 ∈ W . Thus, h1(X) is (globally) Lipschitz continuous in X ∈ W .

Lipschitz continuity of h2: For case (1), let X ∈ W ∩ (S1 \ Σ). With

∇h2(X) =



−bm xm

xh+xm
+ bm

xmz
(xh+xm)2

bm
xm

xh+xm

p1 − bm xm

xh+xm
+ bm

xmz
(xh+xm)2 − bm z

xh+xm

bm
xm

xh+xm


,

it follows that

‖∇h2(X)‖1 ≤ 4bm
xm

xh + xm
+ 2bm

xmz

(xh + xm)2 + bm
z

xh + xm
+ |p1| ≤ 7bm + |p1|.

This implies Lipschitz continuity of h2(X) in X ∈ W ∩ (S1 \ Σ) with Lipschitz
constant L2,1 = 7bm + |p1|. For case (2), let X ∈ W ∩ S2. With

∇h2(X) =



−cm ym

yh+ym

cm
ymz

(yh+ym)2 + cm
ym

yh+ym

p1 − cm ym

yh+ym

cm
ymz

(yh+ym)2 − cm z
yh+ym

+ cm
ym

yh+ym


,

it follows that

‖∇h2(X)‖1 ≤ 4cm
ym

yh + ym
+ 2cm

ym(−z)
(yh + ym)2 + cm

−z
yh + ym

+ |p1| < 7cm + |p1|.

This implies Lipschitz continuity of h2(X) in X ∈ W ∩ S2 with Lipschitz constant
L2,2 = 7cm + |p1|. For case (3), choose X1 ∈ W ∩ S1 and X2 ∈ W ∩ (S2 ∪ Σ). It
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follows that

|h2(X1)− h2(X2)| = |p1xm,1 − βm(X1)z1 − p1xm,2 + βm(X2)z2|

≤ |p1||xm,1 − xm,2|+ |βm(X1)z1 − βm(X2)z2|

≤ |p1||xm,1 − xm,2|+ max{bm, cm}|z1 − z2|

≤ (|p1|+ max{bm, cm}) ‖X1 −X2‖1

due to Lemma 6.7, i.e.

|βm(X1)z1 − βm(X2)z2| =
∣∣∣∣∣bm xm,1

xh,1 + xm,1
z1

∣∣∣∣∣+
∣∣∣∣∣cm ym,2

yh,2 + ym,2
z2

∣∣∣∣∣
≤ bm|z1|+ cm|z2|

≤ max{bm, cm}|z1 − z2|

≤ max{bm, cm}‖X1 −X2‖1.

(7.2.2)

We define L2,3 = |p1|+ max{bm, cm} and conclude that

|h2(X1)− h2(X2)| ≤ L2‖X1 −X2‖1 with L2 = max{L2,1, L2,2, L2,3}

= 7 max{bm, cm}+ |p1|

is true for all X1, X2 ∈ W . Thus, h2(X) is (globally) Lipschitz continuous in X ∈ W .

Lipschitz continuity of h3: For case (1), let X ∈ W ∩ (S1 \ Σ). With

∇h3(X) =



bh
xh

xh+xm
− bh xhz

(xh+xm)2 + bh
z

xh+xm

−bh xh

xh+xm

bh
xh

xh+xm
− bh xhz

(xh+xm)2

−bh xh

xh+xm


,

it follows that

‖∇h3(X)‖1 ≤ 4bh
xh

xh + xm
+ 2bh

xhz

(xh + xm)2 + bh
z

xh + xm
≤ 7bh.
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This implies Lipschitz continuity of h3(X) in X ∈ W ∩ (S1 \ Σ) with Lipschitz
constant L3,1 = 7bh. For case (2), let X ∈ W ∩ S2. With

∇h3(X) =



ch
yh

yh+ym

−ch yh

yh+ym
− ch yhz

(yh+ym)2 + ch
z

yh+ym

ch
yh

yh+ym

−ch yh

yh+ym
− ch yhz

(yh+ym)2


,

it follows that

‖∇h3(X)‖1 ≤ 4ch
yh

yh + ym
+ 2ch

yh(−z)
(yh + ym)2 + ch

−z
yh + ym

< 7ch.

This implies Lipschitz continuity of h3(X) in X ∈ W ∩ S2 with Lipschitz constant
L3,2 = 7ch. For case (3), choose X1 ∈ W ∩S1 and X2 ∈ W ∩ (S2 ∪ Σ). By (7.2.1), it
follows that

|h3(X1)− h3(X2)| = |βh(X1)z1 − βh(X2)z2| ≤ max{bh, ch}‖X1 −X2‖1.

We define L3,3 = max{bh, ch} and conclude that

|h3(X1)− h3(X2)| ≤ L3‖X1 −X2‖1 with L3 = max{L3,1, L3,2, L3,3}

= 7 max{bh, ch}

is true for all X1, X2 ∈ W . Thus, h3(X) is (globally) Lipschitz continuous in X ∈ W .

Lipschitz continuity of h4: For case (1), let X ∈ W ∩ (S1 \ Σ). With

∇h4(X) =



bm
xm

xh+xm
− bm xmz

(xh+xm)2

−bm xm

xh+xm

bm
xm

xh+xm
− bm xmz

(xh+xm)2 + bm
z

xh+xm

p2 − bm xm

xh+xm


,
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it follows that

‖∇h4(X)‖1 ≤ 4bm
xm

xh + xm
+ 2bm

xmz

(xh + xm)2 + bm
z

xh + xm
+ |p2| ≤ 7bm + |p2|.

This implies Lipschitz continuity of h4(X) in X ∈ W ∩ (S1 \ Σ) with Lipschitz
constant L4,1 = 7bm + |p2|. For case (2), let X ∈ W ∩ S2. With

∇h4(X) =



cm
ym

yh+ym

−cm ymz
(yh+ym)2 − cm ym

yh+ym

cm
ym

yh+ym

p2 − cm ymz
(yh+ym)2 + cm

z
yh+ym

− cm ym

yh+ym


,

it follows that

‖∇h4(X)‖1 ≤ 4cm
ym

yh + ym
+ 2cm

ym(−z)
(yh + ym)2 + cm

−z
yh + ym

+ |p2| < 7cm + |p2|.

This implies Lipschitz continuity of h4(X) in X ∈ W ∩ S2 with Lipschitz constant
L4,2 = 7cm + |p2|. For case (3), choose X1 ∈ W ∩ S1 and X2 ∈ W ∩ (S2 ∪ Σ). By
(7.2.2), it follows that

|h4(X1)− h4(X2)| = |p2ym,1 + βm(X1)z1 − p2ym,2 − βm(X2)z2|

≤ |p2||ym,1 − ym,2|+ |βm(X1)z1 − βm(X2)z2|

≤ (|p2|+ max{bm, cm}) ‖X1 −X2‖1.

We define L4,3 = |p2|+ max{bm, cm} and conclude that

|h4(X1)− h4(X2)| ≤ L4‖X1 −X2‖1 with L4 = max{L4,1, L4,2, L4,3}

= 7 max{bm, cm}+ |p2|

is true for all X1, X2 ∈ W . Thus, h4(X) is (globally) Lipschitz continuous in X ∈ W .
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Lipschitz continuity of g: In a final step, let

L := L1 + L2 + L3 + L4 = 14 (max{bh, ch}+ max{bm, cm}) + |p1|+ |p2|+ d

and conclude that

‖g(X1)− g(X2)‖1 =
4∑
j=1
|hj(X1)− hj(X2)| ≤ L‖X1 −X2‖1

for all X1, X2 ∈ W , which implies (global) Lipschitz continuity of the right-hand side
g(X) of system (7.0.1) in X ∈ W. By Theorem A.6 and Remark A.7, this yields
global existence and uniqueness of solutions.

Remark 7.5. With Remark 5.3, an analogue statement of Theorem 7.4 holds true
for the extended model (4.0.1).

7.3 Equilibria
The following analysis distinguishes between isolated and non-isolated equilibria.

Definition 7.6 (Isolated and non-isolated equilibrium, adapted from Chapter 1
in [20]). If an equilibrium is contained in an open subset of the phase space in
which there is no other equilibrium, then it is referred to as an isolated equilibrium.
Otherwise, it is a non-isolated equilibrium.

For investigation of equilibria of the myeloma model, set g(xh, xm, yh, ym) = 0 in
system (7.0.1), and solve for (constant) xh, xm, yh and ym. In particular, consider
g1(xh, xm, yh, ym) = 0 in W ∩ S1 and g2(xh, xm, yh, ym) = 0 in W ∩ S2.

Theorem 7.7 (Equilibria). Consider the myeloma model (5.0.1) defined on W.

(i) If p1 6= 0 and p2 6= 0, then there exists the healthy equilibrium

Eh =
(
xEh
h , 0, yEh

h , 0
)T
∈ W ∩ Σ.

Additionally, a further well-defined isolated equilibrium

Em :=
(
xEm
h , xEm

m , 0, yEm
m

)T
∈ W ∩ S2
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exists if and only if p1 < 0 and 0 < p2 <
cmp1
p1−cm

, where

xEm
h = f

d

xEm
m = cmp2

p1p2 − cmp2 − cmp1

(
f

d
+ n

)

yEm
m = −cmp1

p1p2 − cmp2 − cmp1

(
f

d
+ n

)
.

No further equilibria exist.

(ii) If p1 = 0 and p2 6= 0, then there exists a one-dimensional manifold of non-
isolated equilibria given by

E1 =





xE1
h

xE1
m

yE1
h

yE1
m


∈ W :



f
d

0

f
d

+ n

0


+ xE1

m



0

1

1

0




⊂ W ∩ Σ.

No further equilibria exist.

(iii) If p1 6= 0 and p2 = 0, then there exists a one-dimensional manifold of non-
isolated equilibria given by

E2 =





xE2
h

xE2
m

yE2
h

yE2
m


∈ W :



f
d

0

f
d

+ n

0


+ yE2

m



0

0

−1

1




⊂ W ∩ Σ.

No further equilibria exist.

(iv) If p1 = 0 and p2 = 0, then there exists a two-dimensional manifold of non-
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isolated equilibria given by

E3 =





xE3
h

xE3
m

yE3
h

yE3
m


∈ W :



f
d

0

f
d

+ n

0


+ xE3

m



0

1

1

0


+ yE3

m



0

0

−1

1




⊂ W ∩ Σ.

No further equilibria exist.

Proof. At first, observe that solving g1(xh, xm, yh, ym) = 0 immediately implies
xh = f

d
and z = 0, whereas solving g2(xh, xm, yh, ym) = 0 implies xh = f

d
, and either

yh = 0 or z = 0. In the following, each case (i) - (iv) is investigated:

Case (i): Let p1 6= 0 and p2 6= 0. Solving g1(xh, xm, yh, ym) = 0 in S1 yields the
healthy equilibrium Eh as the only equilibrium. For g2(xh, xm, yh, ym) = 0, it follows
that xh = f

d
, and either yh = 0 or z = 0. In the latter case, Eh is obtained. For

yh = 0, it follows that

p1xm − cm
(
f

d
+ n+ xm − ym

)
= 0

p2ym + cm

(
f

d
+ n+ xm − ym

)
= 0.

Significantly, this system obtains a unique solution if and only if p1 6= 0 and p2 6= 0.
Solving this system yields

xEm
m = cmp2

p1p2 − cmp2 − cmp1

(
f

d
+ n

)

yEm
m = −cmp1

p1p2 − cmp2 − cmp1

(
f

d
+ n

)
.

We need to show that xEm
m and yEm

m are well-defined (i.e. the denominators are
non-zero) and non-negative.

(1) If p2 > 0, then it must hold that p1p2 − cmp2 − cmp1 > 0 and p1 < 0. This is
true if and only if p1 < 0 and 0 < p2 <

cmp1
p1−cm

.
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(2) If p2 < 0, then it must hold that p1p2 − cmp2 − cmp1 < 0 and p1 > 0. This is
true if and only if 0 < p1 < cm and cmp1

p1−cm
< p2 < 0.

Furthermore, it must hold that Em ∈ S2. A straightforward calculation gives

z =
(
f

d
+ n

)
p1p2

p1p2 − cmp2 − cmp1

at Em, which is negative only in case (1). Consequently, case (2) can be excluded.
At last, it must hold that Em ∈ W . Clearly, W1(xEm

h , xEm
m , yEm

h , yEm
m ) ≤ 0. Moreover,

it is

W2(xEm
h , xEm

m , yEm
h , yEm

m ) =
(p1p2 − cmp2)n+ f

d
cmp1

p1p2 − cmp2 − cmp1
≤ 0

⇔ f

d
cmp1 ≤ (cm − p1)p2n,

which is true due to p1 < 0 and p2 > 0.

Case (ii): Let p1 = 0 and p2 6= 0. This implies ym = 0. Let (xh, xm, yh, ym) ∈ S2.
If g2(xh, xm, yh, ym) = 0 and z 6= 0, it follows that yh = 0, which implies z =
f
d

+ n + xm > 0 for xm ≥ 0 and consequently (xh, xm, yh, ym) /∈ S2. It follows that
z = 0. This implies yh = f

d
+ n+ xm. Choosing xm ≥ 0 yields a uniquely determined

yh ≥ f
d

+ n. Thus, E ∈ E1 ⊂ W ∩ Σ is an equilibrium.

Case (iii): Let p1 6= 0 and p2 = 0. This implies xm = 0. Let (xh, xm, yh, ym) ∈ S2. If
g2(xh, xm, yh, ym) = 0 and z 6= 0, then yh = 0 = ym, which implies z = f

d
+n > 0 and

consequently (xh, xm, yh, ym) /∈ S2. It follows that z = 0. This implies yh = f
d

+n−ym.
Choosing yh ∈ [0, f

d
+n] yields a uniquely determined yh ≥ 0. Thus, E ∈ E2 ⊂ W∩Σ

is an equilibrium.

Case (iv): Let p1 = 0 and p2 = 0. Let (xh, xm, yh, ym) ∈ S2. If g2(xh, xm, yh, ym) = 0
and z 6= 0, then yh = 0 = ym, which implies z = f

d
+ n > 0 and consequently

(xh, xm, yh, ym) /∈ S2. It follows that z = 0. This implies yh = f
d

+ n + xm − ym.
Choosing appropriate xm and ym (i.e. such that (xh, xm, yh, ym) ∈ W) yields a
uniquely determined yh. Thus, E ∈ E3 ⊂ W ∩ Σ is an equilibrium.
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Observe that Eh ∈ E1 ∩ E2 ∩ E3. By contrast to smooth dynamical systems for which
the theory of manifolds of equilibria can be extended to non-isolated equilibria [4], a
deduction of stability for E ∈ E1 ∪ E2 ∪ E3 ⊂ Σ from that within S1 and S2 might be
misleading. Classical theory of smooth dynamical systems [36] can be applied for
analysing the stability of Em ∈ W ∩ S2.

Theorem 7.8 (Stability of Em). Consider the myeloma model (5.0.1) defined on
W. The equilibrium Em is locally asymptotically stable whenever it exists.

Proof. Since Em ∈ S2, consider the vector field with right-hand side g2 of sys-
tem (7.0.1). Linearisation of g2 = g2(xh, xm, yh, ym) about Em yields the Jacobian
matrix 

−d ch

cm
p2 0 0

0 − ch

cm
p2 0 0

−cm cm − p2 p1 − cm cm

cm −cm + p2 cm p2 − cm


.

Due to the block form, its eigenvalues are λ1 = −d < 0, λ2 = − ch

cm
p2 < 0 (by

Theorem 7.7), and the solutions of
∣∣∣∣∣∣∣∣∣
p1 − cm − λ3,4 cm

cm p2 − cm − λ3,4

∣∣∣∣∣∣∣∣∣ = 0, (7.3.1)

which are given by

λ3,4 = p1 + p2 − 2cm
2 ±

√
(p1 + p2 − 2cm)2

4 −
(
p1p2 − p1cm − cmp2

)
.

A straightforward calculation shows that the radicand is always non-negative. More-
over, it is <(λ3,4) < 0 if and only if 2cm − p1 − p2 > 0 and p1p2 − p1cm − cmp2 > 0.
The latter is fulfilled by definition of Em ∈ W (see Theorem 7.7), and it implies the
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former condition due to

2cm − p1 − p2 > 2cm −
p1p2

cm
> 0.

Since <(λi) < 0 for all i = 1, 2, 3, 4, the theorem of Hartman and Grobman [36,
Theorem 1.4.1] implies the claim.

7.4 Partial equilibria
Using (5.0.1), the time evolution of the total number of malignant PCs xm(t) + ym(t)
satisfies

x′m(t) + y′m(t) = p1xm(t) + p2ym(t). (7.4.1)

Observe that the growth of the total number of malignant PCs does not directly
depend on the healthy PC population. If p1, p2 > 0, it follows by equation (7.4.1)
that

x′m(t) + y′m(t) ≥ min{p1, p2} (xm(t) + ym(t)) .

This implies

xm(t) + ym(t) ≥
(
x0
m + y0

m

)
emin{p1,p2}(t−t0) with x0

m, y
0
m ≥ 0.

Therefore, limt→∞ (xm(t) + ym(t)) =∞.

Remark 7.9 (Declining total number of malignant PCs). If p1, p2 < 0, equa-
tion (7.4.1) implies

xm(t) + ym(t) ≤
(
x0
m + y0

m

)
emax{p1,p2}(t−t0).

With x0
m, y

0
m ≥ 0, it follows that limt→∞ (xm(t) + ym(t)) = 0.

This describes that if p1, p2 > 0 the total number of malignant PCs grows in time
rather than converging to an equilibrium (such as Em). In contrast, the total number
of healthy PCs is supposed to decline during the development of myeloma [60],
potentially approaching a (rather low) equilibrium state. This observation motivates
the subsequent investigation of so-called partial equilibria [124].
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Definition 7.10 (Partial equilibrium). Consider a dynamical system generated by
the flow

x′(t) = f(x(t), y(t))

y′(t) = g(x(t), y(t)).
(7.4.2)

Assume f, g such that solutions (x(t), y(t))T ∈ U × V ⊆ Rm × Rn exist and are
unique for all t ≥ t0. If f(x, y(t)) = 0 with x(t) = x is constant for all t ≥ t0, then
Ep(t) = (x, y(t))T is called partial equilibrium of the system (7.4.2).

Observe that a partial equilibrium Ep(t) = (x, y(t))T of the system (7.4.2) according
to Definition 7.10 extends the notion of an equilibrium: If y(t) = y is constant for
all t ≥ t0, then the partial equilibrium is an equilibrium in the classical sense, i.e.
Ep(t) = Ep = (x, y)T , delineated as total equilibrium [124]. Distinguish partial
equilibria from quasi-steady states. Latter arise in mathematical modelling due
to different time scales of the involved processes [120]. At a quasi-steady state, it
holds x′(t) = 0 for all t ≥ t0. This is likewise the case at a partial equilibrium Ep(t).
Both concepts differ in that x(t) = x is constant at a partial equilibrium.

In the following investigation, let the healthy components of system (5.0.1) satisfy
the partial equilibrium condition

x′h(t) = 0, xh(t) = xh for all t ≥ t0

y′h(t) = 0, yh(t) = yh for all t ≥ t0.
(7.4.3)

The following two lemmas prepare the main result about existence and characteri-
sation of partial equilibria of the myeloma model, which satisfy the partial equilibrium
conditions (7.4.3). Firstly, the equations (7.4.3) are characterised in terms of the
sign of the function z(t).

Lemma 7.11. Consider the myeloma model (5.0.1) defined on W. The partial
equilibrium condition (7.4.3) holds true if and only if either

(i) xh = f
d
with z(t) = 0 for all t ≥ t0, or

(ii) xh = f
d
and yh = 0 with z(t) ≤ 0 for all t ≥ t0.
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Proof. Assume that equations (7.4.3) hold true. From y′h(t) = 0, it follows that

0 =

bh
xh

xh+xm(t)z(t) if z(t) ≥ 0

ch
yh

yh+ym(t)z(t) if z(t) < 0
(7.4.4)

for all t ≥ t0. From x′h(t) = 0, it follows that xh = f
d
. Observe that equation (7.4.4)

cannot be true if z(t) > 0 for any time t ≥ t0. Consequently, z(t) ≤ 0 for all t ≥ t0.
There are two cases: Firstly, if z(t) = 0 for all t ≥ t0, then equation (7.4.4) is satisfied
for all t ≥ t0 regardless of the exact value of yh. Secondly, if there exists at least
one time t ≥ t0 such that z(t) < 0, then yh = 0. The back-implication follows by
insertion. This proves the claim.

Secondly, the solutions xm(t) and ym(t) are characterised if equations (7.4.3) hold
true. The forthcoming result implies that there do not exist partial equilibria at
which additionally either x′m(t) = 0, xm(t) = xm is constant for all t ≥ t0, or
y′m(t) = 0, ym(t) = ym is constant for all t ≥ t0.

Lemma 7.12. Consider the myeloma model (5.0.1) defined on W. Let the partial
equilibrium condition (7.4.3) hold true. It follows that either xm(t) = xm and
ym(t) = ym are constant for all t ≥ t0 (i.e. a total equilibrium is attained), or xm(t)
and ym(t) are non-constant for all t ≥ t0.

Proof. The partial equilibrium condition (7.4.3) and Lemma 7.11 imply xh = f
d

and yh is constant. Moreover, z(t) ≤ 0 for all t ≥ t0. Consequently, the flow of
system (5.0.1) is restricted to S2 ∪ Σ, where the dynamics of xm(t) and ym(t) are
described by a planar linear system of ODEs,

x′m(t) = p1xm(t)− cm
(
xm(t)− ym(t) + f

d
+ n− yh

)

y′m(t) = p2ym(t) + cm

(
xm(t)− ym(t) + f

d
+ n− yh

)
.

(7.4.5)

Observe that solutions of system (7.4.5) exist and are unique. Furthermore, if
x′m(t) = 0 and xm(t) = xm is constant for all t ≥ t0, it follows from the first equation
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of (7.4.5) that

ym(t) =
(

1− p1

cm

)
xm + f

d
+ n− yh

is constant for all t ≥ t0. Similarly, if y′m(t) = 0 and ym(t) = ym is constant for all
t ≥ t0, it follows that xm(t) = xm is constant for all t ≥ t0. Thus, the only partial
equilibrium of system (7.4.5) is a total equilibrium. Due to uniqueness of solutions,
this cannot be reached at a finite time. This proves the claim.

Theorem 7.7 characterises the complete set of possible total equilibria of the myeloma
model. The next theorem states necessary and sufficient conditions for existence of
partial equilibria satisfying (7.4.3) in terms of the net growth rates p1 and p2 and
the initial conditions x0

m and y0
m. Further, it delineates total equilibria from the set

of partial equilibria. By Lemma 7.12, this guarantees existence of partial equilibria
with non-constant malignant components xm(t) and ym(t).

Theorem 7.13 (Partial equilibria). Consider the myeloma model (5.0.1) defined on
W. There exist exactly two partial equilibria of the form Ep(t) = (xh, xm(t), yh, ym(t))T

∈ W with initial conditions xm(t0) = x0
m and ym(t0) = y0

m, which are given by

Ep,1(t) =



f
d

x0
me

p1(t−t0)

f
d

+ n

y0
me

p2(t−t0)


∈ W ∩ Σ and Ep,2(t) =



f
d

xm(t)

0

ym(t)


∈ W ∩ (S2 ∪ Σ)

for all t ≥ t0. They expand the set of total equilibria by possessing non-constant
malignant components xm(t) and ym(t) for all t ≥ t0:

(i) Ep,1(t) has non-constant xm(t) and ym(t) for all t ≥ t0 if and only if p1 = p2 6= 0
and x0

m = y0
m > 0.

(ii) Ep,2(t) has non-constant xm(t) and ym(t) for all t ≥ t0 if and only if p1 ≤ p2,
p2 ≥ 0 and Ep,2(t0) ∈ W ∩ (S2 ∪ Σ), where

– Ep,2(t0) /∈ E2 in case of p1 6= 0 and p2 = 0,
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– Ep,2(t0) /∈ E3 in case of p1 = 0 = p2,

– Ep,2(t0) 6= Em in case of p1 < 0 and 0 < p2 <
cmp1
p1−cm

.

Proof. In order to obtain partial equilibria of the form Ep(t) = (xh, xm(t), yh, ym(t))T ,
assume that the partial equilibrium condition (7.4.3) holds true. By Lemma 7.11
this is equivalent to either

(i) xh = f
d
with z(t) = 0 for all t ≥ t0, or

(ii) xh = f
d
and yh = 0 with z(t) ≤ 0 for all t ≥ t0.

In the following, the conditions for the function z(t) stated in each case (i) and
(ii), respectively, are translated into equivalent conditions for the model parameters
p1 and p2 and for the initial conditions x0

m and y0
m. Distinguishing total equilibria

from those with non-constant malignant components xm(t) and ym(t) completely
characterises the respective set of partial equilibria Ep(t) in each case, see Lemma 7.12.

Case (i): Let xh = f
d
. It is shown that z(t) = 0 for all t ≥ t0 if and only if the solution

of the myeloma model (5.0.1) is a total equilibrium satisfying Ep,1(t0) ∈ E1 ∪ E2 ∪ E3,
or it is a partial equilibrium Ep,1(t) characterised by p1 = p2 6= 0 with x0

m = y0
m 6= 0

(i.e. with non-constant xm(t) and ym(t) for all t ≥ t0).

Consider Ep,1(t). Assuming Ep,1(t0) ∈ E1 ∪ E2 ∪ E3 immediately implies z(t) = 0 for
all t ≥ t0 due to Theorem 7.7. If p1 = p2 6= 0 with x0

m = y0
m 6= 0, a straightforward

calculation shows that z(t) = 0 for all t ≥ t0.

Let z(t) = 0 for all t ≥ t0. This is equivalent to 0 = z′(t) = x′m(t) − y′m(t) with
yh = f

d
+n+xm(t)−ym(t) for all t ≥ t0. Further, x′m(t) = p1xm(t) and y′m(t) = p2ym(t)

for all t ≥ t0. This implies xm(t) = x0
me

p1(t−t0) and ym(t) = y0
me

p2(t−t0). Moreover, it
is

x′m(t) = y′m(t) ⇔ p1xm(t) = p2ym(t) ⇔ p1x
0
me

p1(t−t0) = p2y
0
me

p2(t−t0).

On the one hand, the following total equilibria are found:

• If p1 = 0 and p2 6= 0, it follows that xm(t) = x0
m and ym(t) = 0 for all t ≥ t0,
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where yh = f
d

+ n+ x0
m. Thus, we obtain Ep,1(t) ∈ E1 for all t ≥ t0, which is a

total equilibrium.

• If p1 6= 0 and p2 = 0, it follows that xm(t) = 0 and ym(t) = y0
m for all t ≥ t0,

where yh = f
d

+ n− y0
m. Thus, we obtain Ep,1(t) ∈ E2 for all t ≥ t0, which is a

total equilibrium.

• If p1 = 0 = p2, it follows that xm(t) = x0
m and ym(t) = y0

m for all t ≥ t0, where
yh = f

d
+ n+ x0

m − y0
m. Thus, we obtain Ep,1(t) ∈ E3 for all t ≥ t0, which is a

total equilibrium.

On the other hand, assume that p1 6= 0 6= p2. If x0
m = 0 (y0

m = 0), then xm(t) = 0
(ym(t) = 0) for all t ≥ t0 and therefore ym(t) = 0 (xm(t) = 0) for all t ≥ t0. Thus, we
obtain Ep,1(t) = Eh for all t ≥ t0, which is the healthy equilibrium. As a consequence,
assume x0

m 6= 0 6= y0
m. It follows that

p1x
0
me

p1(t−t0) = p2y
0
me

p2(t−t0) ⇔ x0
m = p2

p1
y0
me

(p2−p1)(t−t0),

which holds true for all t ≥ t0 if and only if p1 = p2 and x0
m = y0

m. Since solutions are
considered to be in the (positively) invariant setW , it is x0

m = y0
m > 0. Consequently,

xm(t) = x0
me

p1(t−t0) = ym(t) for all t ≥ t0, and therefore yh = f
d

+ n. Observe that
xm(t) and ym(t) are non-constant for all t ≥ t0.

Case (ii): Let xh = f
d
and yh = 0. That is to say, consider Ep,2(t). First, it is shown

that W ∩ (S2 ∪ Σ) is (positively) invariant under the vector field of the myeloma
model (5.0.1) if and only if p1 ≤ p2 and p2 ≥ 0.

Let W ∩ (S2 ∪ Σ) be (positively) invariant under the vector field of system (5.0.1),
and let Ep,2(t0) ∈ W∩(S2 ∪ Σ). Thus, let z(t) ≤ 0 for all t ≥ t0. This is equivalent to
x′m(t) ≥ p1xm(t) and y′m(t) ≤ p2ym(t) for all t ≥ t0, implying xm(t) ≥ x0

me
p1(t−t0) and

ym(t) ≤ y0
me

p2(t−t0). Observe that xm(t), ym(t) ≥ 0 for all t ≥ t0 due to Ep,2(t) ∈ W .
It follows that

0 ≥ z(t) = f

d
+ n+ xm(t)− ym(t) ≥ f

d
+ n+ x0

me
p1(t−t0) − y0

me
p2(t−t0)
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for all t ≥ t0, which implies

y0
m ≥

(
f

d
+ n

)
e−p2(t−t0) + x0

me
(p1−p2)(t−t0). (7.4.6)

This holds true if and only if it holds true at t = t0 and both terms of the right-hand
side of the inequality are non-increasing in t. Otherwise, there exists a finite time
such that the inequality is no longer satisfied due to (positive) exponential growth
of either terms. In other words, (7.4.6) holds true for all t ≥ t0 if and only if
f
d

+ n+ x0
m − y0

m ≤ 0 and p1 ≤ p2, p2 ≥ 0.

Next, assume that p1 ≤ p2 and p2 ≥ 0. It is shown that W ∩ (S2 ∪ Σ) is (positively)
invariant under the vector field of system (5.0.1). Since W is (positively) invariant
(see Theorem 7.2), it suffices to show that S2 ∪ Σ is (positively) invariant. Let

U : R2
+ → R, U(xm, ym) := f

d
+ n+ xm − ym. (7.4.7)

Choosing (f
d
, xm, 0, ym)T ∈ W ∩ (S2 ∪ Σ) such that U(xm, ym) = 0 implies

U̇(xm, ym) = h2(xh, xm, yh, ym)− h4(xh, xm, yh, ym)
(U=0)= p1xm − p2ym

(U=0)= (p1 − p2)xm − p2

(
f

d
+ n

)
≤ 0

(7.4.8)

due to the assumption.
It follows that Ep,2(t) ∈ W ∩ (S2 ∪ Σ) for all t ≥ t0 if and only if p1 ≤ p2, p2 ≥ 0
and Ep,2(t0) ∈ W∩(S2 ∪ Σ). By differentiating total equilibria from the set of partial
equilibria, Lemma 7.12 yields that xm(t) and ym(t) are non-constant for all t ≥ t0.
Observe that contemplable total equilibria are given by

• Ep,2(t0) = (f
d
, 0, 0, f

d
+ n)T ∈ E2 in case of p1 6= 0 and p2 = 0,

• Ep,2(t0) = (f
d
, x0

m, 0, y0
m)T ∈ E3 with y0

m = f
d

+ n+ x0
m in case of p1 = 0 = p2,

• Ep,2(t0) = Em in case of p1 < 0 and 0 < p2 <
cmp1
p1−cm

.

This proves the theorem.
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Observe that the inequality (7.4.8) in the proof of Theorem 7.13 (ii) is strict in case
of p2 6= 0. This implies the following result:

Corollary 7.14. Consider the myeloma model (5.0.1) defined on W. Let p1 ≤ p2

and p2 > 0. If Ep,2(t0) ∈ W ∩ (S2 ∪ Σ), then Ep,2(t) ∈ W ∩ S2 for all t > t0.

As for total equilibria, the aim is to characterise partial equilibria with respect
to their stability. In the following, an adequate definition of stability for partial
equilibria is provided.

Definition 7.15 (Stability of a partial equilibrium). Consider a dynamical system
generated by the flow

x′(t) = f(x(t), y(t))

y′(t) = g(x(t), y(t)).
(7.4.2)

Assume f, g such that solutions (x(t), y(t))T ∈ U × V ⊆ Rm × Rn exist and are
unique for all t ≥ t0. Let Ep(t) = (x, y(t))T be a partial equilibrium of the system
(7.4.2). Then, Ep(t) is (asymptotically) stable within the system (7.4.2) if x(t) = x

is (asymptotically) stable within the system x′(t) = f(x(t), y0) for all y0 ∈ V .

Note that since Ep,1(t) ∈ Σ for all t ≥ t0, the deduction of stability properties
of Ep,1(t) from those within both sub-systems S1 and S2 is not straightforward.
However, the following stability result for Ep,2(t) with Ep,2(t0) ∈ S2 can be deduced:

Theorem 7.16 (Stability of Ep,2(t)). Consider the myeloma model (5.0.1) defined
on W. Let p1 ≤ p2 and p2 > 0. If Ep,2(t0) ∈ W ∩ S2, then the partial equilibrium
Ep,2(t) is locally asymptotically stable.

Proof. By assumption, it is z(t) < 0 for all t ≥ t0, see Corollary 7.14. The dynamics
of the equilibrium components of Ep,2(t) within S2 are described by the system

x′h(t) = f − ch
yh(t)

yh(t) + ym(t)z(t)− dxh(t)

y′h(t) = ch
yh(t)

yh(t) + ym(t)z(t).
(7.4.9)

Since solutions of the myeloma model (5.0.1) are considered within W, it follows
that xm(t) ≥ 0 and ym(t) > f

d
+ n for all t ≥ t0. Note that (xh, yh)T =

(
f
d
, 0
)T

is an
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equilibrium of system (7.4.9). Since

∂

∂yh

(
yh

yh + ym
z

)
= ∂

∂yh

(
yh

yh + ym
(xh + xm − yh − ym + n)

)

= yh + ym − yh
(yh + ym)2 (xh + xm − yh − ym + n) + yh

yh + ym
(−1)

= ym
(yh + ym)2 z −

yh
yh + ym

,

it follows that the Jacobian matrix of the right-hand side of system (7.4.9) evaluated
at (xh, yh)T =

(
f
d
, 0
)T

−d −ch
z(t)
ym(t)

0 ch
z(t)
ym(t)

 .

Therefore, the well-defined (time-dependent) eigenvalues of the Jacobian matrix are
given by

λ1 = −d < 0 and λ2 = ch
z(t)
ym(t) < 0 for all t ≥ t0.

In particular, λ1, λ2 < 0 for all fixed xm(t) = xm,0 ≥ 0 and ym(t) = ym,0 >
f
d

+ n

for all t ≥ t0. Consequently, the theorem of Hartman and Grobman [36, Theorem
1.4.1] implies local asymptotic stability of (xh, yh)T =

(
f
d
, 0
)T

within the system
(7.4.9) with xm(t) = xm,0 and ym(t) = ym,0. By Definition 7.15, this implies local
asymptotic stability of Ep,2(t) within the myeloma model (5.0.1).

Remark 7.17. The assumptions of Theorem 7.16 include the case where Ep,2(t) =
Em. Observe that the stability result is in accordance with Theorem 7.8.

Beside stating conditions on the net growth parameters and on initial conditions to
guarantee existence of partial equilibria, Theorem 7.13 explicitly characterises the
shape of the malignant components xm(t) and ym(t) in case of the partial equilibrium
Ep,1(t) for all t ≥ t0. That is to say,

xm(t) = x0
me

p1(t−t0) = ym(t).
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Observe that this arises from the knowledge about the dynamics of the function
z(t), i.e. z′(t) = 0 for all t ≥ t0. Yet less is known about the dynamics of z(t) and
consequently about the malignant components at the partial equilibrium Ep,2(t).

The following investigation focuses on the asymptotic behaviour of xm(t) and ym(t)
at the partial equilibrium Ep,2(t).

Theorem 7.18 (Asymptotics of xm(t) and ym(t) at Ep,2(t)). Consider the myeloma
model (5.0.1) defined on W. Let p1 ≤ p2, p2 ≥ 0 and Ep,2(t0) ∈ W ∩ (S2 ∪ Σ).

(i) If p1 < 0 and 0 < p2 <
cmp1
p1−cm

, then limt→∞Ep,2(t) = Em.

(ii) If p1 ≤ 0 and p2 = 0, then xm(t) + ym(t) ≤ x0
m + y0

m for all t ≥ t0.

(iii) Otherwise, i.e. if p1 < 0 and p2 ≥ cmp1
p1−cm

, or p1 = 0 and p2 > 0, or p1 > 0 and
p2 ≥ p1, then limt→∞ xm(t) =∞ and limt→∞ ym(t) =∞.

Proof. Theorem 7.13 (ii) implies that Ep,2(t) ∈ W ∩ (S2 ∪ Σ) for all t ≥ t0 if p1 ≤ p2

and p2 ≥ 0. Observe that if Ep,2(t) is a total equilibrium, the claim is trivially
satisfied. Further, since xh = f

d
and yh = 0 for all t ≥ t0, the dynamics for the

non-constant malignant components xm(t) and ym(t) are given by the planar linear
system (7.4.5) with yh = 0, that is to say,

x′m(t) = (p1 − cm)xm(t) + cmym(t)− cm
(
f

d
+ n

)
=: k1(xm(t), ym(t))

y′m(t) = (p2 − cm)ym(t) + cmxm(t) + cm

(
f

d
+ n

)
=: k2(xm(t), ym(t)).

(7.4.10)

For p1 ≤ p2 and p2 ≥ 0, a straightforward calculation yields the following case
analysis for total equilibria E = (xm, ym)T of system (7.4.10):
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Case (i): If p1 < 0 and 0 < p2 <
cmp1
p1−cm

, then xm = xEm
m and ym = yEm

m , see also

Theorem 7.7. This implies
(
f
d
, xm, 0, ym

)T
= Em ∈ W ∩ S2. The coefficient matrix

of the linear system (7.4.10) reads
p1 − cm cm

cm p2 − cm

 .

By means of (7.3.1) within the proof of Theorem 7.8, the real parts of its eigen-
values are strictly negative. Consequently, E is globally asymptotically stable
within system (7.4.10). This implies limt→∞(xm(t), ym(t))T = E and as a result
limt→∞Ep,2(t) = Em.

Case (ii): If p1 < 0 and p2 = 0, then xm = 0 and ym = f
d

+ n. This implies(
f
d
, xm, 0, ym

)T
∈ E2 ⊂ W ∩ Σ. If p1 = 0 and p2 = 0, then ym = f

d
+ n + xm. This

implies
(
f
d
, xm, 0, ym

)T
∈ E3 ⊂ W ∩ Σ. Thus, stability analysis of E within system

(7.4.10) could be misleading. However, since x′m(t) + y′m(t) = p1xm(t) + p2ym(t) ≤ 0
for p1 ≤ 0 and p2 = 0, it follows that xm(t) + ym(t) ≤ x0

m + y0
m for all t ≥ t0, where

x0
m, y

0
m ∈ W ∩ (S2 ∪ Σ).

Case (iii): Otherwise (i.e. if p1 < 0 and p2 ≥ cmp1
p1−cm

, or p1 = 0 and p2 > 0, or p1 > 0
and p2 ≥ p1), no equilibrium exists in W ∩ (S2 ∪ Σ). Since

∂

∂ym
k1(xm, ym) = cm > 0

∂

∂xm
k2(xm, ym) = cm > 0

for all
(
f
d
, xm, 0, ym

)T
∈ W ∩ (S2 ∪ Σ), system (7.4.10) is strictly cooperative, i.e.

the growth of xm(t) increases the growth rate of ym(t) and vice versa. Then, all
trajectories (xm(t), ym(t))T of system (7.4.10) converge either to an equilibrium or
to boundary points of W ∩ (S2 ∪ Σ), including infinity [119, Theorem 7.4]. In the
remaining part of the proof, it is shown that the boundary ofW∩(S2 ∪ Σ) is repelling
for the vector field of system (7.4.10). This implies convergence of xm(t) and ym(t)
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to infinity. Observe that

(xm, ym)T ∈ W ∩ (S2 ∪ Σ) ⇔ f

d
+ n+ xm − ym ≤ 0 and xm ≥ 0.

With (7.4.7), it follows that

U̇(xm, ym) = (p1 − cm)xm(t) + cmym(t)− cm
(
f

d
+ n

)

−
(

(p2 − cm)ym(t) + cmxm(t) + cm

(
f

d
+ n

))
(U=0)= p1xm − p2ym

(U=0)= (p1 − p2)xm − p2

(
f

d
+ n

)
< 0

(7.4.11)

due to p1 ≤ p2 and p2 > 0. Note that if U(xm(t0), ym(t0)) = 0, then the strict
inequality in (7.4.11) implies that U(xm(t), ym(t)) < 0 for all t > t0, i.e. fd +n+xm−
ym < 0 for all t > t0. By this result, it follows that

k1(0, ym) = cmym − cm
(
f

d
+ n

)
= −cm

(
f

d
+ n− ym

)
> 0

for all t > t0. This implies that the boundary of W ∩ (S2 ∪ Σ) is repelling for
the vector field of system (7.4.10). As a consequence, it is limt→∞ xm(t) =∞ and
limt→∞ ym(t) =∞.

7.5 Qualitative simulations
In this section, simulations are provided which qualitatively illustrate previously
derived results on existence and stability of partial equilibria satisfying (7.4.3) in
the framework of the myeloma model (5.0.1). Chosen parameter values are listed in
Table 7.1 on page 98. In the following, Figure 7.1 is considered visualising partial
equilibria Ep,1(t) and Ep,2(t):

(a) It is Ep,1(t) with p1 = 0.5, p2 = 0.5, and x0
m = 1 = y0

m at t0 = 0. It follows that
xm(t) = x0

me
p1t = ym(t) by Theorem 7.13 (i).
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(b) It is Ep,2(t) with p1 = −0.1, p2 = 0.05, and x0
m = 0, y0

m = f
d

+n+1 at t0 = 0. It
follows that limt→∞ xm(t) = xEm

m and limt→∞ ym(t) = yEm
m by Theorem 7.18 (i).

(c) It is Ep,2(t) with p1 = 0.1, p2 = 1, and x0
m = 0, y0

m = f
d

+ n + 1 at t0 = 0. It
follows that limt→∞ xm(t) =∞ and limt→∞ ym(t) =∞ by Theorem 7.18 (iii).
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(a) Partial equilibrium Ep,1(t).
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(b) Partial equilibrium Ep,2(t), where xm(t) and
ym(t) converge.

xh+yh

yh

xm+ym

ym

0 20 40 60 80 100
0

100

200

300

400

500

Time

(c) Partial equilibrium Ep,2(t), where xm(t) and
ym(t) increase to infinity.

Figure 7.1: Simulations of partial equilibria of the myeloma model. Solutions
xh(t) + yh(t) (blue), yh(t) (dashed blue), xm(t) + ym(t) (red), ym(t)
(dashed red) are visualised. Existence and characterisation of partial
equilibria are due to Theorem 7.13. Parameter values are stated in
Table 7.1 and in the text.
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Next, different scenarios for a malignancy-induced perturbation of the healthy
equilibrium as introduced by Definition 5.2 are considered, i.e. choosing initial
conditions (x0

h, x
0
m, y

0
h, y

0
m)T =

(
xEh
h , x0

m, y
Eh
h , 0

)T
with x0

m > 0. In the following,
Figure 7.3 on page 99 is considered:

(a) It is p1 = −0.1 < 0 and p2 = −0.1 < 0 with x0
m = 500. This implies

absent (positive) growth xm(t) + ym(t). The solution converges to the healthy
equilibrium Eh.

(b) It is p1 = −1 < 0 and p2 = 0.55 with x0
m = 1. Observe that p2 <

cmp1
p1−cm

= 0.5.
The solution converges to the total equilibrium Em, which exists and is locally
asymptotically stable, see Theorems 7.7 and 7.8.

(c) It is p1 = −1 < 0 and p2 = 0.55 with x0
m = 1. Observe that p2 >

cmp1
p1−cm

= 0.5
The solution approaches the partial equilibrium Ep,2(t), which exists and is
locally asymptotically stable, see Theorems 7.13 and 7.16. Figure 7.4 visualises
the corresponding dynamics of z(t). Observe that z(t) possesses one zero and
eventually strictly decreases.

(d) It is p1 = 0.2 and p2 = 0.1 < p1 with x0
m = 1. The solution increases.

The scaling of the time axes is chosen to represent realistic timespans, i.e. age of a
patient in years. Solutions of the myeloma model can be interpreted as reflecting
numbers of healthy and malignant PCs, see part three of this thesis.
Numerical simulations imply that growth of xm(t) + ym(t) depends on the pa-

rameters p1 and p2. If p1 ≤ p2 and p2 > 0, then xm(t) + ym(t) increases, whereas
xh(t) +yh(t) decreases. In particular, if p1 < 0 and p2 ≤ cmp1

p1−cm
, it follows that growth

of xm(t) + ym(t) is retarded approaching Em. For a visualisation in the plane of net
growth rates, see Figure 7.2.
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Figure 7.2: Plane of net growth rates visualising regions (gray) where xm(t) + ym(t)
representing the total number of malignant plasma cells (PCs) in the
bone marrow increases and xh(t) + yh(t) representing the total number
of healthy PCs in the bone marrow decreases. Increase of xm(t) + ym(t)
is either retarded (dark) implying convergence of the solution of the
myeloma model to the total equilibrium Em, or unbounded (light)
implying that a partial equilibrium is reached. For details, see text.

Table 7.1: Parameter values for simulations in Section 7.5.

Parameter Value

f 25

n 25

bh 1

bm 1

ch 1

cm 1

d 1
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(a) Solution converges to Eh.
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(b) Solution converges to Em.
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(c) Solution converges to Ep,2.
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(d) Solution increases.

Figure 7.3: Dynamics of solutions of the myeloma model due to malignancy-induced
perturbations of the healthy equilibrium. xh(t) + yh(t) (blue), yh(t)
(dashed blue), xm(t) + ym(t) (red), ym(t) (dashed red). Depending
on the choice of the malignancy-induced perturbation of the healthy
equilibrium x0

m and net growth rates p1 and p2, different dynamic
behaviour of solutions is observed. Parameter values are stated in
Table 7.1 and in the text.
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Figure 7.4: Dynamics of the function z(t) due to a malignancy-induced perturbation
of the healthy equilibrium corresponding to Figure 7.3 (c). z(t) is
positive at the beginning. The snapshot visualises z(t) = 0 and shows
that z(t) switches the sign once, being negative and strictly decreasing.
For details, see text.
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The extended model of healthy PC dynamics in the bone marrow is recapitulated,
see Chapter 4. For t ≥ t0, the system of ODEs is given by

x′h,0(t) = f − βh,0(z(t))z(t)− dxh,0(t)

x′h,v(t) = −βh,v(z(t))z(t)− dxh,v(t)

y′h,0(t) = βh,0(z(t))z(t)

y′h,v(t) = βh,v(z(t))z(t)

(4.0.1)

with surplus of PCs relative to the niche balance z(t) given by

z(t) = xh,0(t) + xh,v(t)− (yh,0(t) + yh,v(t)) + n, (4.0.2)

transition rates βh,j(z(t)), j ∈ {0, v}, given by

βh,j(z(t)) =


bh

xh,j(t)
xh,0(t)+xh,v(t) if z(t) ≥ 0

ch
yh,j(t)

yh,0(t)+yh,v(t) if z(t) < 0
(4.0.3)

and non-negative initial conditions

xh,0(t0) = x0
h,0 ≥ 0

xh,v(t0) = x0
h,v ≥ 0

yh,0(t0) = y0
h,0 ≥ 0

yh,v(t0) = y0
h,v ≥ 0.

(4.0.4)

Similar to the myeloma model, the functions βh,j(z), j ∈ {0, v}, given by (4.0.3)
are undefined in case of xh,0 + xh,v = 0 or yh,0 + yh,v = 0, respectively. Assuming
xh,0(t) + xh,v(t) 6= 0 and yh,0(t) + yh,v(t) 6= 0 for all t ≥ t0, they are continuous for all

101
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z ∈ R, z 6= 0. It follows that the functions βh,j(z)z, j ∈ {0, v}, are continuous, but
in general not differentiable in z = 0. Observe that the reformulated system for the
extended model (4.0.1) is similar to (7.0.1), where

S1 := {(xh,0, xh,v, yh,0, yh,v)T ∈ R4 : z ≥ 0}

S2 := {(xh,0, xh,v, yh,0, yh,v)T ∈ R4 : z < 0}

yielding a single switching manifold given by

Σ := {(xh,0, xh,v, yh,0, yh,v)T ∈ R4 : z = 0}.

By Remark 5.3, previously derived results for the myeloma model (5.0.1) about a
suitable domain of definition and non-negativity of solutions (see Theorem 7.2) as
well as existence and uniqueness of solutions (see Theorem 7.4) likewise hold true in
case of the extended model (4.0.1). In the following, the set W (see Definition 7.1)
is interpreted in the setting of the variables of the extended model (4.0.1), i.e.

W :=
2⋂
i=1
{(xh,0, xh,v, yh,0, yh,v)T ∈ R4

+ : Wi(xh,0, xh,v, yh,0, yh,v) ≤ 0}.

The following results can be deduced:

Theorem 8.1 (Domain of definition and non-negativity of solutions). Consider the
extended model (4.0.1) and assume that solutions exist. Then, the setW is (positively)
invariant under the vector field of the extended model. In particular, if the initial
conditions (4.0.4) satisfy x0

h,0 +x0
h,v > 0 and y0

h,0 +y0
h,v ≥ n, then the functions (4.0.3)

are defined for all t ≥ t0. Moreover, it follows that xh,0(t), xh,v(t), yh,0(t), yh,v(t) ≥ 0
for all t ≥ t0.

Consequently, in the subsequent considerations, the extended model is considered
to be defined on the (positively) invariant set W. That is to say, we only consider
solutions of the extended model with initial conditions (4.0.4) located in W .

Theorem 8.2 (Global existence and uniqueness). Consider the extended model (4.0.1)
defined onW, i.e. let (x0

h,0, x
0
h,v, y

0
h,0, y

0
h,v)T ∈ W. Then, there exists a unique solution

(xh,0(t), xh,v(t), yh,0(t), yh,v(t))T ∈ W for all t ≥ t0.
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8.1 Non-isolated equilibria

In this section, equilibria of system (4.0.1) are investigated. Beside the healthy
equilibrium Eh =

(
xEh
h , 0, yEh

h , 0
)T

, there exists a manifold of non-isolated equilibria.

Theorem 8.3 (Non-isolated equilibria). Consider the extended model (4.0.1) defined
on W. There exists a one-dimensional manifold of non-isolated equilibria given by

E =





xEh,0

xEh,v

yEh,0

yEh,v


∈ W :



f
d

0

f
d

+ n

0


+ yEh,v



0

0

−1

1




⊂ W ∩ Σ.

No further equilibria exist.

Proof. With Remark 5.3, this follows by Theorem 7.7 (iii).

Remark 8.4. Observe that choosing yEh,v = 0 yields the healthy equilibrium. Thus,
Eh ∈ E .

Next, stability properties of the one-dimensional manifold of non-isolated equilibria
E are analysed. By contrast to the myeloma model, the observation is used that the
extended model is a refinement of the basic model in the sense of Remark 4.5. This
enables an appropriate deduction of stability despite the fact that E ⊂ W ∩ Σ.

Theorem 8.5 (Stability of E). Consider the extended model (4.0.1) defined on W.
The one-dimensional manifold of non-isolated equilibria E is globally asymptotically
stable. That is solutions of system (4.0.1) asymptotically approach E.

Proof. By Remark 4.5, it holds that

xh(t) = xh,0(t) + xh,v(t)

yh(t) = yh,0(t) + yh,v(t),

where xh(t) and yh(t) are solutions of the basic model (3.0.1). Due to Theorem 6.10,
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Eh = (xEh
h , yEh

h )T is globally asymptotically stable within system (3.0.1). This implies

lim
t→∞

(xh,0(t) + xh,v(t)) = xEh
h = f

d

lim
t→∞

(yh,0(t) + yh,v(t)) = yEh
h = f

d
+ n

and in particular

lim
t→∞

z(t) = 0.

It remains to show that limt→∞ xh,v(t) = 0. Then, every solution of the extended
model (4.0.1) asymptotically approaches E = (xEh,0, xEh,v, yEh,0, yEh,v)T ∈ E due to

xEh,0 + xEh,v = 0 + f

d

yEh,0 + yEh,v =
(
f

d
+ n− yEh,v

)
+ yEh,v = f

d
+ n.

Let ε > 0 arbitrary but fixed. Since limt→∞ z(t) = 0, it follows that for

0 < ε̃ <
εd

2 max{bh, ch}

there exists a T̃ > t0 such that |z(t)| < ε̃ for all t ≥ T̃ . Thus, for all t ≥ T̃ , it is

x′h,v(t) = −βh,v(z(t))z(t)− dxh,v(t) < max{bh, ch}ε̃− dxh,v(t).

Next, consider the following ODE with initial condition,

w′(t) = max{bh, ch}ε̃− dw(t)

w(T̃ ) ≥ x0
h,v and w(T̃ ) > max{bh, ch}ε̃

d

for all t ≥ T̃ . It follows that

w(t) = max{bh, ch}ε̃
d︸ ︷︷ ︸

<ε/2

+e−d(t−T̃ )
(
w(T̃ )− max{bh, ch}ε̃

d

)
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for all t ≥ T̃ . Using the comparison principle for ODEs [42, Chapter 3], this implies

xh,v(t) < w(t) < ε

2 + ε

2 = ε.

Observe that the first inequality is true for all t ≥ T̃ , whereas the second holds for
all t ≥ T , where T > T̃ is chosen such that the second term in w(t),

e−d(t−T̃ )
(
w(T̃ )− max{bh, ch}ε̃

d

)
, (8.1.1)

is smaller than ε
2 . This can be achieved since (8.1.1) is positive and exponentially

decreasing in time. Due to non-negativity of xh,v(t) for all t ≥ t0, it follows that
limt→∞ xh,v(t) = 0. This proves the claim.

In the remaining part of this section, the influence of a vaccination-induced pertur-
bation of the healthy equilibrium as introduced by Definition 4.4 on the composition
of the re-established healthy equilibrium is investigated, see Chapter 4. Theorem 8.5
provides the mathematical confirmation of this biological observation. That is to say,
every solution of the extended model eventually reaches the manifold E again after
such a perturbation. However, it does not provide a characterisation of the exact
composition of the equilibrium, i.e. of the value of yEh,v, at the limit. For further
analysis, recapitulate the definition of the vaccination-induced perturbation of the
healthy equilibrium at time T > 0,

(xh,0(T ), xh,v(T ), yh,0(T ), yh,v(T ))T =
(
xEh
h , x0

h,v, y
Eh
h , 0

)T
with x0

h,v > 0. (4.0.5)

As stated in Definition 4.4, (4.0.5) is interpreted as initial condition for the extended
model (4.0.1), i.e. t0 = T . Without loss of generality, set T = 0. Observe that the
corresponding solution is located inW due to Remark 7.3. In the following, an upper
estimate for the solution yh,v(t) for all t ≥ 0 is derived, and consequently for its limit
limt→∞ yh,v(t) = yEh,v.

Theorem 8.6 (Upper bound for vaccination-induced healthy PCs inside the niche).
Consider the extended model (4.0.1) defined on W. Let initial conditions be given by



106 8 Analysis of the extended model

(4.0.5) for T = 0. Then, it is 0 ≤ yh,v(t) ≤ yupperh,v (t̄) for all t ≥ 0, where

yupperh,v (t) := (1− e−2bht)1
2x

0
h,v

t̄ := 1√
4b2
h + d2

ln
4b2

h + 2bhd+ d2 + (2bh + d)
√

4b2
h + d2

2bhd

 . (8.1.2)

Proof. By Remark 4.5, it is

xh(0) = xh,0(0) + xh,v(0) = xEh
h + x0

h,v = f

d
+ x0

h,v

yh(0) = yh,0(0) + yh,v(0) = yEh
h = f

d
+ n,

which implies z(0) > 0. Observe that (xh(0), yh(0))T /∈ R1 ∪R2. Consequently, z(t)
is zero if either the solution has reached the equilibrium (which can only happen at
infinite time due to the uniqueness of solutions, see Theorem 8.2), or the function is
to switch its sign (in finite time). In any case, there is at most one (finite or infinite)
time t̄ > 0 with z(t̄) = 0 due to Corollary 6.15.

The proof consists of two steps: In the first step, it is used that the flow induced
by system (4.0.1) is located within S1 for 0 ≤ t ≤ t̄. This enables the derivation
of upper estimates for the solutions yh,0(t) and yh,v(t) of system (4.0.1) within S1,
respectively. In the second step, evaluation of these estimates at the switching time
t = t̄ yields upper estimates for yh,0(t) and yh,v(t) for all t ≥ 0, respectively, due to
the following reasoning: On the one hand, it is z(t) ≥ 0 for all 0 ≤ t ≤ t̄ implying
y′h,0(t) ≥ 0 and y′h,v(t) ≥ 0 for all 0 ≤ t ≤ t̄. On the other hand, it is z(t) ≤ 0 for all
t ≥ t̄, and consequently y′h,0(t) ≤ 0 and y′h,v(t) ≤ 0 for all t ≥ t̄.

Step 1: Consider system (4.0.1) within S1. Since

x′h,0(t) = f − βh,0(z(t))z(t)− dxh,0(t) ≤ f − dxh,0(t)

x′h,v(t) = −βh,v(z(t))z(t)− dxh,v(t) ≤ −dxh,v(t)

with xh,0(0) = xEh
h = f

d
and xh,v(0) = x0

h,v > 0, it follows that

xh,0(t) ≤ f

d
, xh,v(t) ≤ x0

h,v.
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Consequently, the following estimates hold true:

y′h,0(t) = βh,0(z(t))z(t) ≤ bhz(t) ≤ u(yh,0(t), yh,v(t))

y′h,v(t) = βh,v(z(t))z(t) ≤ bhz(t) ≤ u(yh,0(t), yh,v(t)),

where

u(yh,0(t), yh,v(t)) := bh

(
f

d
+ x0

h,v − yh,0(t)− yh,v(t) + n

)
.

Due to the comparison principle for systems of ODEs (see for instance [59, Proposition 1.4],
it follows that

yh,0(t) ≤ yupperh,0 (t)

yh,v(t) ≤ yupperh,v (t),

where yupperh,0 (t) and yupperh,v (t) are solutions of the system of ODEs

d

dt
yupperh,0 (t) = u(yupperh,0 (t), yupperh,v (t)), yupperh,0 (0) = yh,0(0) = f

d
+ n

d

dt
yupperh,v (t) = u(yupperh,0 (t), yupperh,v (t)), yupperh,v (0) = yh,v(0) = 0.

(8.1.3)

Solving system (8.1.3) gives

yupperh,0 (t) = f

d
+ n+ 1

2x
0
h,v

(
1− e−2bht

)
yupperh,v (t) = (1− e−2bht)1

2x
0
h,v.

Observe that the solutions are strictly positive for t > 0.

Step 2: The switching time t̄ is calculated using explicit solution formulae for solutions
xh(t) and yh(t) of the basic model (3.0.1) within S1,

xh(t) = 1
2dse

− 1
2 (2bh+d+s)t

(
2se 1

2 (2bh+d+s)tf + d(d+ s)x0
h,v + d(−d+ s)estx0

h,v

)
yh(t) = f

d
+
bhx

0
h,v

s

(
est − 1

)
e−

1
2 (2bh+d+s)t + n,

(8.1.4)
where s =

√
4b2
h + d2 with initial conditions xh(0) = f

d
+ x0

h,v and yh(0) = f
d

+ n.
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They are derived via elementary calculation. Using (8.1.4) implies that

z(t) = 0 ⇔ t = t̄ with t̄ = 1
s

ln
(

4b2
h + 2bhd+ d2 + (2bh + d)s

2bhd

)

Note that t̄ > 0 is well-defined. In particular, t̄ only depends on the parameters bh
and d. As a consequence, a switch in the sign of z(t) occurs at t = t̄.

By the remark at the beginning of the proof, combining steps 1 and 2 yields that
yupperh,v (t̄) provides an upper estimate for yh,v(t) for all t ≥ 0. This proves the claim.

Remark 8.7. Note that the proof of Theorem 8.6 additionally implies

0 ≤ yh,0(t) ≤ yupperh,0 (t̄) = yupperh,v (t̄) + f

d
+ n,

i.e. an upper bound for the number of healthy PCs inside the niche after vaccination.
Yet it does not provide new information since yupperh,0 (t̄) > yEh

h .

Theorem 8.6 shows the existence of one sign switch of the function z(t) by stating
the time point at which this switch occurs. In this regard, it extends the previously
derived result of Corollary 6.15 for a particular set of initial conditions for the basic
model, i.e.

{(x0
h, y

0
h)T ∈ R2 : x0

h >
f

d
, y0

h = f

d
+ n} /∈ R1 ∪R2.

8.2 Qualitative simulations

Concluding this chapter, simulations are provided to visualise the qualitative dyna-
mics of the re-establishment of the healthy equilibrium after a vaccination-induced
perturbation at time T > 0 (see Definition 4.4) within the framework of the extended
model (4.0.1). Values of chosen parameters are stated in Table 8.1 on page 109. In
the following, Figure 8.1 is considered:

• For 0 ≤ t < 200, the system is at healthy equilibrium Eh, where xEh
h,0 = 10 and

yEh
h,0 = 90. In particular, it is z(t) = 0 for all 0 ≤ t < 200.
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• At t = 200, the system is perturbed by x0
h,v = 84. This is attended by an

increase of z(t). In particular, it is z(t) > 0 for all 200 ≤ t < t̄ ≈ 202.65, and
z(t̄) = 0, see Theorem 8.6.

• For all t > t̄, it is z(t) < 0. This results in a decrease of both yh,0(t) and
yh,v(t). Theorem 8.5 implies that the solution asymptotically approaches
E ∈ E . Observe that E 6= Eh but xEh,0 + xEh,v = 10 (xEh,0 = 10, xEh,v = 0) and
yEh,0 + yEh,v = 90 (yEh,0 = 65, yEh,v = 25). Theorem 8.6 implies that yEh,v can be
estimated from above by yupperh,v (t̄) ≈ 41.8.

The scaling of the axes is due to reasons of visualisation. In Chapter 10, a realistic
quantification is presented, where time can be interpreted as lifetime of a patient,
and solutions represent numbers of PCs.

Remark 8.8. By (8.1.2) in Theorem 8.6 it follows that yupperh,v (t̄) ≤ 1
2x

0
h,v. Observe

that the right-hand side of the latter inequality provides an upper estimate for yEh,v
independently from the switching time t̄. By comparison, for yupperh,v (t̄) � 1

2x
0
h,v,

significantly more information on the composition of the re-established healthy
equilibrium can be extracted, since the set of possible values for yEh,v gets smaller.
Here it holds that yupperh,v (t̄) ≈ 41.8 < 42 = 1

2x
0
h,v. Along these lines, yupperh,v (t̄) is an

upper estimate of rather minor value.

Table 8.1: Parameter values for simulations in Section 8.2.

Parameter Value

f 0.2

n 80

bh 1

ch 1

d 0.02

x0
h,v 84

T 200
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(a) Dynamics of solution of the extended model.

z
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(b) Dynamics of z(t).

Figure 8.1: Vaccination-induced perturbation of the healthy equilibrium. (a) The
qualitative dynamics of a vaccination-induced perturbation of the
healthy equilibrium at t = 200 and the concomitant re-establishment
of a newly composed healthy equilibrium are depicted. xh,0(t) + yh,0(t)
(purple) represents the total number of pathogen-induced healthy PCs
in the bone marrow, yh,0(t) (dashed purple) is the number of pathogen-
induced healthy PCs inside the niche, xh,v(t) + yh,v(t) (blue) represents
the total number of vaccination-induced healthy PCs in the bone mar-
row, and yh,v(t) (dashed blue) is the number of vaccination-induced
healthy PCs inside the niche. yupperh,v (t̄) (dotted blue) is the upper esti-
mate derived in Theorem 8.6. (b) Dynamics of the function z(t). The
vaccination-induced perturbation of the healthy equilibrium causes a
sudden increase of z(t) and a concomitant decrease. The snapshot visu-
alises z(t) changing the sign from positive to negative at t = t̄ ≈ 202.65.
Then, z(t) approaches zero. Parameter values are stated in Table 8.1.
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9 Data analysis

9.1 Doubling time of malignant plasma cells
Two sets of patient data have been provided by the Multiple Myeloma Research
Laboratory at Heidelberg University Hospital. These consist of consecutive serum
and/or urine samples from 338 AMM-patients and 305 MGUS-patients. Relevant
attributes of each patient data set consist of

• an anonymised identification number,

• the class of myeloma (IgA, IgG, light chain or asecretory)

• the timespan (in days) between birth and PC purification at bone marrow
aspiration,

• the date of progression to symptomatic disease according to the IMWG criteria
[51, 95], or last follow-up without progression,

• time series of concentrations of IgA, IgG, IgM and M-gradient in the serum (in
g/l) and of light chains in the urine (LCU, in mg/die).

Not each of these concentrations is available for each patient because measurements
were only performed for clinical follow-up. Patients received treatment only after
disease progression to symptomatic MM.

Time series serve as surrogates for the malignant growth dynamics, where a linear
dependence of the Ig and light chain concentration on the number of malignant PCs
is assumed, see Chapter 1. IgG measurements for patients classified as IgG-myeloma,
IgA measurements for patients classified as IgA-myeloma, and LCU for patients
classified as light chain myeloma are used. With few exceptions, categorisation of each
patient according to the type of the monoclonal protein is distinct, see Section 1.2.

113
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The exponential model (2.0.1) is used to describe the growth of malignant PCs.
Observe that the growth of the malignant PC population is thereby considered
autonomous, i.e. without being impacted by healthy PCs, see Chapter 2.

Remark 9.1 (Limitations of the exponential model). Growth of malignant PCs is
quantified by parameter a, whereas parameter b represents the initial value of the
respective surrogate. A limitation in the accuracy of estimation of the initial number
of malignant PCs is given by the fact that IgG and IgA are also produced by healthy
PCs. For IgG-myeloma, the potential error is higher, since normal values of IgG
(IgA) are between 8− 16 g/l (1.4− 4 g/l), see Chapter 1. The error is smallest in
the M-gradient as it reflects the portion of monoclonal protein. However, it is less
often measured. A further limitation is given due to the sensitivity of turbidostatic
measurements of IgG and IgA and determination of the M-gradient, as a value of
zero for the latter does not imply absence of malignant PCs [108].

For fitting the model (2.0.1) to data, at least three measurements of the respec-
tive surrogate are required to reduce the influence of fluctuations of serum and
urine measurements by chance. Not to falsely exclude patients with fast progres-
sion, two measurements are allowed if additionally time interval between these two
measurements is long enough, or the surrogate increases significantly:

Definition 9.2 (Inclusion criteria for the exponential model). Consider data sets of
AMM- and MGUS-patients with time series consisting of at least two measurements
of either serum (for IgA- or IgG-myeloma) and/or urine (for Bence-Jones and
predominant light chain myeloma) with a time interval between the first and the
last measurement of one month. Furthermore, one of the following criteria has to be
fulfilled:

(i) At least three measurements are available.

(ii) If only two measurements are available, then the time interval between the
measurements is at least three months.

(iii) If only two measurements are available and the time interval between the
measurements is shorter than three months, then the increase of involved
IgA/IgG/M-gradient is > 5 g/l or 24-hour light chain excretion > 200mg/die.
These are the progress criteria for AMM according to the IMWG [51, 95].
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With such criteria the trade-off between minimising the uncertainty of the estimates
for a and b and preventing the exclusion of patients with fast growing malignant
PCs is balanced.

To proceed with parameter estimation for model (2.0.1), a logarithmic transforma-
tion of the time series of measurements which represent the surrogate of malignant
PCs is performed. Then, the linear model

ỹ = b̃+ at, ỹ = ln(y), b̃ = ln(b)

is fitted to the transformed data using least squares methods [105]. The quality
of the fit regarding the data is evaluated using the coefficient of determination R2

[105]. Calculations and simulations are performed using the computation software
programme Mathematica, Version 9 by Wolfram Research. For further information
on parameter estimation, see Appendix A.3.

Results

Data sets of 518 patients (196 MGUS- and 322 AMM-patients) fulfil the inclusion
criteria stated in Definition 9.2. The total analysis comprises 4674 serum and 3724
urine samples. Mean follow-up is 4.8 years for MGUS- and 3.8 years for AMM-
patients, respectively. Having obtained the estimates for each patient within the data
sets allows calculating the DT (in years) according to (2.0.2). Median DT in patients
with MGUS is 64.9 years compared to 10.4 years in patients with AMM (P < 0.001),
see Figure 9.1 (a). Progressing patients show an even faster DT (P < 0.001), see
Figure 9.1 (b). Statistical evaluation was performed using a Wilcoxon rank-sum
test [16].

Next, patients are grouped in terms of their DTs. To avoid data-adapted thresholds,
a geometric row as cut-offs is applied.

Definition 9.3 (DT-groups). By means of the DT τ (in years), the following groups
of malignant PC accumulation are delineated: very fast (0 < τ < 2), fast (2 ≤ τ < 4),
intermediate (4 ≤ τ < 16), and almost no (or not visible) accumulation (τ ≥ 16 or
τ ≤ 0).
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Figure 9.1: Box-Whisker plot of doubling times (DTs) of patients with MGUS
versus AMM. The ordinate axis shows the natural logarithm of DTs.
Negative DTs are set to 1000. Significant difference between the groups
is depicted by two asterisks for a level of P < 0.01 and three asterisks
for a level of P < 0.001. Red asterisks mark significant differences
between respective groups of MGUS and AMM. Significance testing was
performed using a Wilcoxon rank-sum test [16]. For details, see [109].
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(a) 0 < τ < 2 (66/322).
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(b) 2 ≤ τ < 4 (36/322).

20 30 40 50 60 70 80 90
0

20

40

60

80

age @years D

Ig
@gêl
D

AHligh tL,GHdarkL,LHmed ium L, n=84 , 4<DT£16

0

2

4

6

8

10
LC
_U
@gêd
D

AHligh tL,GHdarkL,LHmed ium L, n=84 , 4<DT£16

(c) 4 ≤ τ < 16 (84/322).
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(d) τ ≥ 16 (71/322).
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(e) 0 < τ < 2 (6/196).
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(f) 2 ≤ τ < 4 (10/196).
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(g) 4 ≤ τ < 16 (39/196).
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(h) τ ≥ 16 (68/196).

Figure 9.2: Patterns of malignant plasma cell accumulation according to Defini-
tion 9.3 for 322 AMM- and 196 MGUS-patients, see (a)-(d) and (e)-(h),
respectively. Patients with τ ≤ 0 (65/322 AMM, 73/196 MGUS) are
not shown. IgA: Light gray. IgG: Dark gray. Light chains (LCU):
Medium gray.
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Results

Three main accumulation patterns of malignant PCs can be observed: a fast increase
in patients within the DT-groups satisfying 0 < τ < 2 or 2 ≤ τ < 4 (102/322
AMM-patients, 16/196 MGUS-patients), an intermediate increase when 4 ≤ τ < 16
(84/322 AMM-patients, 39/196 MGUS-patients), and an infinitesimal increase in
patients with τ ≥ 16 or τ ≤ 0 (136/322 AMM-patients, 141/196 MGUS-patients).
Figure 9.2 illustrates the three patterns for AMM- and MGUS-patients by means
of plotting the malignant surrogate for patients within each of the four DT-groups
0 < τ < 2, 2 ≤ τ < 4, 4 ≤ τ < 16 and τ ≥ 16.

Next, it is investigated how many patients in each DT-group progress to MM. In order
to use the DT to infer a prognostic value for the time to progression, measurements
which were taken at time of progression are excluded, and accordingly patients who
do not fulfil the inclusion criteria according to Definition 9.2. This enables the
calculation of a DT on which a clinical decision would have been drawn.

Results

For the AMM-cohort, 302 patient data sets fulfil the inclusion criteria given by
Definition 9.2. Within this cohort, significantly different numbers of progressing
patients are delineated with P < 0.001, P = 0.003, and P < 0.001 for the subsequent
comparisons between the four DT-groups of patients with very fast (0 < τ < 2),
fast (2 ≤ τ < 4), intermediate (4 ≤ τ < 16), and almost no (τ ≥ 16 or τ ≤ 0)
accumulation of malignant PCs, respectively, using a Log-rank test [40]. In particular,
progression rates of 73%, 36%, 26% and 7% at 2 years, and 97%, 76%, 57% and 18%
at 5 years, respectively, are observed. The corresponding Kaplan-Meier survival plot
[27] is given by Figure 9.3. For details, see [109].

Remark 9.4. One caveat regarding the association of progression with the accu-
mulation rate of malignant PCs is that the latter is linked to disease progression.
Performing a landmark analysis [123] by defining alternative starting points (instead
of the date of bone marrow aspiration) still delineates the prognostic impact of the
DT. For details, see [109].
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Figure 9.3: Association of progression since bone marrow (BM) assessment with the
accumulation rate of malignant plasma cells. Doubling times in years,
very fast (red), fast (blue), intermediate (black), and almost no (green)
accumulation, respectively, as assessed by exponentially modelling the
increase in tumour mass in subsequent serum and urine samples for 302
AMM-patients. Computation of survival curves and median time to
progression are based on non-parametric survival estimates for censored
data using Kaplan-Meier estimation [27]. Differences between the curves
were tested using a Log-rank test [40]. For details, see [109].

Discussion

In clinical practice, the DT allows delineation of patients with very different time to
progression. Once (at least two) measurements of the monoclonal protein have been
taken, calculation of the DT at each presentation of the patient is readily obtainable.
Figure 9.4 shows a screen shot of the interface of a user-friendly tool (executable
in Microsoft Excel and Apache Open Office) for the calculation of the DT given
the measurements. The program also calculates the standard error of the DT by
using the error propagation formula for a transformed estimate [10]. This enables
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further evaluation of uncertainties regarding the categorisation into one of the defined
DT-groups. Thus, the DT turns out to be a strong prognostic parameter correlated
to progression. Its prediction is dynamic and can vary after each presentation of the
patient, possibly inferring a modified prediction.

Further, it was shown that tumour mass and molecular characteristics determine
progression to symptomatic disease (see [109]):

• High-risk groups in gene expression-based risk stratifications and presence of
any progression-associated chromosomal aberration are associated with shorter
DT. Tumour mass surrogates are in turn significantly associated with higher
DT.

• Light chain asymptomatic myeloma shows a significantly faster progression to
symptomatic myeloma compared to IgG- and IgA-myelomas. This is consistent
with the observation that more than half of the patients with light chain
myeloma appear in the group of very fast accumulation of malignant PCs.

• On the basis of additional (sequencing) data being beyond the scope of this
thesis, it was shown that progression is driven by the initial set of aberrations,
not their de novo appearance.

DTs are incompatible with common de novo appearance of progression-driving
aberrations in evolution and progression of AMM. In fact, unlike the previous concept
that a gain of progression-associated chromosomal aberrations between the stages of
MGUS, AMM and MM drives progression [81], evolution and progression of AMM
can be explained by accumulation rate, tumour mass and molecular characteristics
without necessity of de novo appearance of genetic alterations [109].
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Doubling)Time)Calculation

#)Patient Date)(MM/DD/YY) Measurement Time%Points Fit%Parameter DT)(y)
1 0
2 0 Fit%SE SE)(y)
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0

Example:

#)Patient Date)(MM/DD/YY) Measurement Time%Points Fit%Parameter DT)(y)
1 08.20.08 35,32 0 1,000397017 4,784202144
2 05.20.09 42,53 273 Fit%SE SE)(y)
3 07.22.09 44,75 336 3,69646E<05 0,445525749
4 04.14.10 47,62 602
5 09.29.10 52,21 770
6 06.08.11 57,07 1022
7 03.07.12 60,13 1295

Insert%at%least%2%measurements%in%the%columns%„Date“%and%„Measurement“.%Guarantee%that%the%units%of%the%values%in%
„Measurement“%are%the%same.%The%tool%calculates%the%Doubling%Time%(DT)%and%its%Standard%Error%(SE)%based%on%the%given%data%
and%the%fitting%results.%

1.%DT:%Click%on%the%green%cell%(Fit%Parameter)%and%follow%the%commented%instruction.%The%DT%(years)%is%listed%in%the%green%cell%
„DT%(y)“.%A%negative%value%has%to%be%interpreted%as%half<value%time.%

2.%SE:%Click%on%the%orange%cell%(Fit%SE)%and%follow%the%commented%instruction.%The%SE%(years)%of%the%DT%is%listed%in%the%orange%cell%
„SE%(y)“.%

Figure 9.4: Excel tool for the calculation of the doubling time (DT) as a quantitative
assessment of malignant plasma cell accumulation. For details, see [109].
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9.2 Data transformation

In this section, a transformation of the data is defined in order to match them with
the observable variables of the myeloma model (5.0.1). Identifying a relation between
the measurements and PC counts allows drawing conclusions on the initial number
of malignant PCs at the onset of myeloma.
In the following, IgA-myeloma and IgG-myeloma patients are considered. The

exclusion of light chain myeloma patients is motivated by the amount of light chain
excretion in the 24 h urine being dependent also on other parameters, including
renal function. Light chains are only excreted once the renal resorption capacity
is saturated. Thus, LCU measurements need to be taken as error-prone. Further,
they cannot be taken as surrogate for the number of healthy PCs since they are only
occasionally liberated by healthy PCs, see Section 1.2.

Assumption 9.5 (Ig as surrogate). The level of normal Ig and monoclonal protein
(i.e. Ig produced by malignant PCs) can be taken as surrogate for the number of
healthy and malignant PCs in the bone marrow, respectively.

Remark 9.6. The assumption requires that the production of Ig in other sites
except the bone marrow is unaffected by accumulation of PCs in the bone marrow
and the vast majority of Ig is produced by PCs [8].

9.2.1 Average number of healthy plasma cells

From estimates based on large cohorts of adult normal-weighted healthy individuals
[55] it can be deduced that about 95% of the Ig concentrations per litre of blood
lie within the interval (7.65, 20.13) (in g/l). The average Ig concentration can be
estimated to comprise approximately 13 g/l (10 g/l IgG, 2 g/l IgA, 1 g/l IgM) [32, 55].
Ig types with marginal incidence, for instance IgD, are neglected. Assuming an
average volume of 5 litres of blood [18] yields an average total amount of 65 g Ig
(50 g IgG, 10 g IgA, 5 g IgM).

Estimates for the average total number of PCs in the bone marrow are deduced
from two different approaches:

(1) Proposed estimates: Firstly, Radbruch et al. [94] estimate the total number
of PCs in the human bone marrow to be about 109 cells. Secondly, the bone
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marrow cellularity is estimated to comprise about 1012 cells [41]. Assuming a
fraction of PCs of about 0.25− 1% [94, 118], the total number of PCs can be
calculated to be in the range of 2.5 · 109 − 1010 cells. A comparable result can
be obtained starting from data by Sandkühler et al. [104] reporting that the
number of PCs in the bone marrow comprises about 7.5 · 109 cells per litre of
bone marrow. With a total bone marrow volume of 1.6− 4.0 litres [129], this
implies an estimate of PC counts in the range of 1.2− 3 · 1010 cells.

Summarising reported values yields that the average total number of PCs in
the human bone marrow lies in the order of 2.5 · 109 − 3 · 1010 cells.

(2) Estimates based on Ig synthesis rates of PCs: The total amount of IgG at
healthy homoeostasis is assumed to be 50 g. The half-life time of IgG molecules
can be estimated to be 20 days [14, 83, 86] and IgG synthesis rate is about
5 pg - 34 pg per PC per day [103]. In order to relate IgG synthesis to the total
number of PCs, define G(t) as the amount of IgG molecules (in gramme) at
time t (in days). Taking into account Assumption 9.5, the production and
degradation of IgG is modelled as follows:

G′(t) = sC(t)− dgG(t),

where C(t) is the total number of IgG-producing PCs at time t, s is the
synthesis rate, and dg is the death rate of IgG molecules (which is given by the
reciprocal of the half-life time multiplied by ln(2)). At homoeostasis, it holds

sC = dgG,

where C and G are the total amount of IgG at equilibrium (which is known), and
the total number of IgG-producing PCs at equilibrium, respectively. Inserting
the extreme values for IgG synthesis rate and solving the equation for C yields
two possibilities:

(a) If s = 5 · 10−12 g
PC (i.e. taking the lower bound of the synthesis rate), then

C = dgG

s
= ln(2)

5 · 20 · 50 · 1012 PCs

≈ 3.5 · 1011 PCs.
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(b) If s = 34 · 10−12 g
PCs (i.e. taking the upper bound of the synthesis rate),

then

C = dgG

s
= ln(2)

34 · 20 · 50 · 1012 PCs

≈ 5 · 1010 PCs.

Taking into account that C is about 80% (more precisely, 10/13 · 100%) of the
total number of PCs, the total number of PCs in the human bone marrow can
be estimated to range between 6 · 1010 − 4.5 · 1011 cells.

The estimate for the IgG synthesis rate, i.e. 5 pg - 34 pg per PC per day, varies
between different individuals. At the same time, inter-individual physiological
variation is observed in the level of Ig in healthy serum (see Chapter 1) implying
inter-individual variation in the number of healthy PCs at healthy equilibrium.
Being derived from malignant PCs with an average of 12 pg per PC per day
[102, 103], this estimate for the IgG synthesis rate is lower compared to healthy
PCs. Based on cultured PCs phenotypically resembling peripheral blood PCs,
Jourdan et al. [57] report an IgG synthesis rate in a range of about 20 pg -
35 pg per PC per day with mean of 26 pg per PC per day. Using this mean
synthesis rate implies

C = dgG

s
= ln(2)

26 · 20 · 50 · 1012 PCs

≈ 6.7 · 1010 PCs.

Further, the half-life time of disappearance of IgG in myeloma patients is
shorter compared to healthy patients, likewise suggesting the IgG synthesis
rate of malignant PCs to be lower compared to healthy PCs (if catabolic rates
of normal and monoclonal IgG are the same) [103].

Combining both ways of estimation, a span of 2.5 ·109−6.7 ·1010 cells results. Taking
the mean value motivates the following assumption:
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Assumption 9.7 (Total amount of Ig and total number of PCs at healthy equili-
brium).

(1) The average total amount of Ig is 13 g per litre of blood (10 g/l IgG, 2 g/l IgA,
1 g/l IgM).

(2) The average total number of PCs in the human bone marrow comprises
1010 cells.

Assumptions 9.5 and 9.7 yield the following relation between Ig concentration in the
blood and the total number of PCs in the bone marrow:

Consequence 9.8 (Transformation to PC number). Let Assumptions 9.5 and 9.7
be true. The following equivalence relation holds:

1 g/l Ig =̂ 1
13 · 1010 PCs.

This relation is to be interpreted as the transformation of a measurement of 1 g/l Ig
to 1/13 · 1010 PCs.

Remark 9.9. Using this transformation for both healthy and malignant PCs implies
an underestimation of the number of malignant PCs relative to the number of healthy
PCs due to lower Ig secretion rate of the former [57, 103].

9.2.2 Surrogates for the number of plasma cells

In the following, plausible surrogates for the number of healthy and malignant PCs
are discussed, distinguishing between IgA- and IgG-myeloma patients.

IgA-myeloma patients

In case of IgA-myeloma, malignant PCs secrete IgA and IgA concentration is used
as surrogate for the number of malignant PCs. For the number of healthy PCs, IgG
concentration is used as surrogate. Note that the measured IgG levels correspond to
10/13 · 100% of the total number of healthy PCs.
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Figure 9.5: Example for the transformation of immunoglobulin (Ig) measurements
to plasma cell (PC) counts in case of an IgA-myeloma patient using
Consequence 9.10. For details, see text.

Consequence 9.10 (Surrogates for IgA-myeloma patients). Consider an IgA-
myeloma patient. Let Assumptions 9.5 and 9.7 be true. Using IgA concentration as
surrogate for the number of malignant PCs and IgG concentration as surrogate for
the number of healthy PCs, the following equivalence relations hold:

1 g/l IgA =̂ 1
13 · 1010 malignant PCs

1 g/l IgG =̂ 10
13 ·

1
13 · 1010 healthy PCs.

These relations are to be interpreted as the transformation of a measurement of 1 g/l
IgA or IgG to the corresponding number of PCs.

The transformation of Ig measurements to PC number is exemplified by means
of an arbitrarily chosen patient data set. Figure 9.5 (a) shows Ig concentration
measurements dependent on the age of the patient. The transformed data using
Consequence 9.10 are visualised in Figure 9.5 (b).

Remark 9.11 (IgA as surrogate). The healthy base level of IgA is low (range given
by 1.4−4 g/l, see Chapter 1). By using IgA concentration as surrogate for the number
of malignant PCs, the production of IgA by healthy PCs is neglected, implying an
overestimation of the number of malignant PCs relative to the number of healthy
PCs, especially for low initial levels of IgA. Vice versa, the error is low in case of a
high level of IgA.
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IgG-myeloma patients

In case of IgG-myeloma, malignant PCs secrete IgG. Thus, IgG concentration is
used as surrogate for the number of malignant PCs. In contrast to the usage of IgA
for IgA-myeloma patients, the portion of IgG produced by healthy PCs cannot be
neglected since the healthy base level of IgG reflects about 80% of the total number
of healthy PCs, see Assumption 9.7. Alternatively, the M-gradient can be used as
surrogate since it reflects the „malignant portion“ of the total IgG.

In the following, several options describing plausible surrogates for the numbers of
healthy and malignant PCs are identified:

(1) The M-gradient is used as surrogate for the number of malignant PCs [51, 95].
Thus, applying Consequence 9.8 yields

1 g/l M-gradient =̂ 1
13 · 1010 malignant PCs.

This relation is to be interpreted as the transformation of a measurement of
1 g/l M-gradient to 1/13·1010 malignant PCs. The following possible surrogates
for the number of healthy PCs are considered:

(1a) As surrogate for the number of healthy PCs, the difference of the IgG and
the M-gradient concentrations (i.e. IgG value minus M-gradient value)
is used. The latter allows isolating the „healthy portion“ of the total
IgG. Since IgG constitutes 10/13 · 100% of the total Ig concentration (see
Assumption 9.7), multiplication of the resulting concentration by 13/10 is
necessary to represent 100% of healthy PCs. Hence

1 g/l (IgG−M-gradient) =̂ 13
10 ·

1
13 · 1010 healthy PCs.

(1b) As surrogate for the number of healthy PCs, the sum of the difference of
IgG and M-gradient concentrations (see Option 1 (a)) and the IgA and
IgM concentrations is used. According to Assumption 9.7, this reflects
the total Ig concentration. Hence

1 g/l (IgG−M-gradient + IgA + IgM) =̂ 1
13 · 1010 healthy PCs.
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(1c) As surrogate for the number of healthy PCs, the sum of IgA and IgM
concentrations is used. Since IgA and IgM constitute 3/13 · 100% of
the total Ig concentration (see Assumption 9.7), multiplication of the
resulting concentration by 13/3 is necessary to represent 100% of healthy
PCs. Hence

1 g/l (IgA + IgM) =̂ 13
3 ·

1
13 · 1010 healthy PCs.

(1d) As surrogate for the number of healthy PCs, the IgA concentration is
used. Since IgA constitutes 2/13 · 100% of the total Ig concentration (see
Assumption 9.7), multiplication of the concentration by 13/2 is necessary
to represent the total number of healthy PCs. Hence

1 g/l IgA =̂ 13
2 ·

1
13 · 1010 healthy PCs.

(2) Instead of using the M-gradient as surrogate for the number of malignant
PCs, IgG concentration is chosen in the following approaches. For the number
of healthy PCs, IgA concentration is used. As in option (1d), the following
equivalence relation holds:

1 g/l IgA =̂ 13
2 ·

1
13 · 1010 healthy PCs.

The following possible surrogates for the number of malignant PCs are con-
sidered:

(2a) As surrogate for the number of malignant PCs, IgG concentration minus 10
is used, where 10 is the average concentration of IgG in healthy individuals,
see Assumption 9.7. Hence

1 g/l (IgG− 10) =̂ 1
13 · 1010 malignant PCs.

(2b) To avoid subtraction of an average value, IgA concentration is used to
derive an individual healthy level of IgG. For that, the IgA concentration
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is multiplied by 13/2 and extrapolated to the value of IgG using that the
portion of IgG in total Ig is 10/13, see Assumption 9.7. As surrogate for
the number of malignant PCs, IgG concentration minus the extrapolated
individual healthy IgG concentration is used. Hence

1 g/l
(
IgG− 10

13 ·
13
2 IgA

)
=̂ 1

13 · 1010 malignant PCs.

Applying the above transformations by means of three randomly chosen patient data
sets yields the following observations, see Patients A, B and C in Figure 9.6:
Regarding Patient C, an increase in the number of healthy PCs is observed as

suggested by the transformed data using option (1a) and (1b), which is biologically
implausible but still could be explained by normal fluctuations either in the data
or in the population of healthy PCs. Having a closer look on the results of option
(1), observe that M-gradient measurements are not available for all IgG-myeloma
patients at all measurement time points. This can be seen by a reduced number of
transformed data points for the number of malignant PCs, see Patient A. Applying
options (1) yields three transformed data points for the number of malignant PCs,
whereas a transformation of the data using option (2a) or (2b) results in noticeably
more data points. Yet a transformation based on option (2) implies drawbacks.
Firstly, a constant IgG level due to secretion by healthy PCs as proposed by variant
(2a) is not justified biologically. Secondly, variant (2b) uses an artificial derivation
for the transformation. Lastly, negative values for the number of malignant PCs may
occur, as for Patient A. The same holds true for options (1a) and (1b), see Patient B.

Consequently, either option (1c) or (1d) is chosen. Comparing options (1c) and
(1d), observe that more information is included in (1c) compared to (1d), because
concomitant to IgG measurements, those of IgM are available at all time points.
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Figure 9.6: Variants for transforming data. Number of healthy (blue) and ma-
lignant (red) plasma cells (PCs) after application of different data
transformation options (rows) for three selected Patients A, B and C
(columns). For a discussion, see text.
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Combining Assumptions 9.5, 9.7 and Consequence 9.8 yields

Consequence 9.12 (Surrogates for IgG-myeloma patients). Consider an IgG-
myeloma patient. Let Assumptions 9.5 and 9.7 be true. Using M-gradient con-
centration as surrogate for the number of malignant PCs and the sum of IgA and IgM
concentrations as surrogate for the number of healthy PCs, the following equivalence
relations hold:

1 g/l M-gradient =̂ 1
13 · 1010 malignant PCs

1 g/l IgA + IgM =̂ 13
3 ·

1
13 · 1010 healthy PCs.

These relations are to be interpreted as the transformation of a measurement of 1 g/l
M-gradient or IgA plus IgM to the corresponding number of PCs.

Remark 9.13 (M-gradient as surrogate). As the M-gradient is the concentration of
monoclonal protein, a change in its value reflects a change in the number of malignant
PCs if the secretion rate of an individual malignant PC is constant. In contrast,
the value of IgG includes the protein expressed by healthy PCs, see Chapter 1.
Comparison of DTs based on IgG and M-gradient for those AMM-patients where
both measurements are available yields that the DT based on IgG measurements is
slower (56/105) than or within a 20% range (38/105) of the DT based on M-gradient
measurements.
In contrast to IgG-myeloma, the M-gradient is less appropriate as surrogate for

the number of malignant PCs in case of IgA-myeloma due to relative error-proneness
in calculation, see Section 1.2.

By application of the transformations stated in Consequence 9.10 for IgA-myeloma
patients, and in Consequence 9.12 for IgG-myeloma patients, respectively, the time
series of each patient data set can be transformed into a time series of the form

D = {(t1, h1,m1), . . . , (tj, hj,mj)}

where (tk, hk,mk), k = 1, . . . , j, is the triple of data points reflecting the number
of healthy PCs, hk, and the number of malignant PCs, mk, at the age tk (in years)
of the corresponding patient possessing measurements at j time points. Neglecting
leap years one years is defined to comprise 365 days. Note that either hk or mk may



132 9 Data analysis

be empty due to a missing respective measurement at time tk. This justifies the
following reformulation of D:

Definition 9.14 (Transformed time series of patient data sets). The transformed
time series of the data set of a patient is given by

D = {(t1h
, h1), . . . , (tuh

, hu)} ∪ {(t1m ,m1), . . . , (tvm ,mv)} (9.2.1)

where u and v are the numbers of data points representing the numbers of healthy and
malignant PCs, respectively. Moreover, {1h, . . . , uh} ⊆ {1, . . . , j} and {1m, . . . , vm} ⊆
{1, . . . , j} represent the index sets of time points at which numbers of healthy
and malignant PCs are available, respectively. These time points are arranged as
t1h
≤ t2h

≤ · · · ≤ tuh
and t1m ≤ t2m ≤ · · · ≤ tvm .

The transformed data do not differentiate between cells out- and inside the niche
but give the total number of healthy and malignant PCs, respectively. Along these
lines, the myeloma model (5.0.1) is only partially observed, see Appendix A.3.2.
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10.1 Calibration of the healthy equilibrium
Before the population of malignant PCs arrives at the bone marrow and begins
to accumulate, healthy PCs are at homoeostasis. Since PCs outside the niche are
distinguished in the myeloma model from those inside the niche, an assumption on
the fraction of PCs outside the niche at healthy equilibrium is required.

Referring Section 1.1, approximately 30 waves of about 107 PCs arrive at the bone
marrow per year. Assuming that these waves are equally distributed over one year,
such a wave arrives at the bone marrow after 12 days. It is known that PCs in the
bone marrow may survive for month, whereas plasma blasts die within few days
[57]. Taking a half-life time of PCs outside the niche of 40 days [2, 9, 94] implies an
average number of PCs outside the niche being in the magnitude of at least 107 cells,
which is 1% of 109 cells. The latter is the estimated total number of PCs in the bone
marrow by Radbruch et al. [94]. This is in accordance with further observations
reporting that that at least 90% of all PCs are located inside the niche [15, 121].

Assumption 10.1 (Healthy PCs outside the niche at healthy equilibrium). At
healthy equilibrium, it is assumed that

(1) the fraction of PCs outside the niche comprises 1% of the total number of
healthy PCs in the bone marrow.

(2) the half-live time of PCs outside the niche is 40 days [2, 9, 94].

In Chapter 9, it was deduced that the total number of healthy PCs at healthy
equilibrium is in the magnitude of 1010 cells, see Assumption 9.7. Due to inter-
individual variability in the level of Ig and thus in the number of healthy PCs at
equilibrium (see Section 1.1), taking this value for each individual patient may lead
to large deviations between the model responses and the data. The patient-specific

133
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number varies in a range around 1010 cells just as the total concentration of Ig varies
in a range around 13 g/l, see Assumption 9.7.

Example 10.2. From Jolliff et al. [55] it can be deduced that about 95% of the
Ig concentrations for adult normal-weighted healthy patients lie within the interval
(7.65, 20.13) (in g/l). Consequence 9.8 implies an (approximate) 95% interval for the
total number of healthy PCs at healthy equilibrium given by (3/5 · 1010, 8/5 · 1010).
Similar results can be deduced from [32].

Assumption 10.3 (Total number of healthy PCs at healthy equilibrium). For each
patient data set, there exists a k = 1, . . . , 12 such that the number of healthy PCs at
healthy equilibrium can be approximated by k/5 · 1010 PCs.

Observe that Assumption 10.3 expands the interval described in Example 10.2 and
implies a discretisation. Thereby, the value of k is chosen such that the resulting
solutions of the myeloma model fit the data best for each patient data set. The exact
procedure is explained in Section 10.5.

Considering the myeloma model at healthy equilibrium Eh (see Chapter 5), Assump-
tions 9.7, 10.1 and 10.3 imply the following model calibration at the healthy equili-
brium Eh.

Consequence 10.4 (Calibration of the healthy equilibrium). Consider the myeloma
model (5.0.1) at healthy equilibrium Eh. Let Assumption 9.7, 10.1 and 10.3 hold.
Then, the following parametrisation holds true:

xEh
h = 1

100 ·
k

5 · 1010 PCs

yEh
h = 99

100 ·
k

5 · 1010 PCs

n = 98
100 ·

k

5 · 1010 PCs

d = ln(2)
40 day−1

f = 1
100 ·

k

5 ·
ln(2)

40 · 1010 PCs · day−1,

where k = 1, . . . , 12.
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Remark 10.5. Observe that f is in the magnitude of 108 cells, whereas waves of
healthy PCs arriving at the bone marrow are estimated to comprise about 107 cells
[94]. The difference in the magnitudes arises from different assumptions on the total
number of healthy PCs in the bone marrow (i.e. 109 cells in [94] versus 1010 cells in
this work, see Section 9.2).

Calibration of the healthy equilibrium allows the values of the parameters d, f , and
n in the myeloma model to be identified. However, this leaves the transition rates
bh, bm, ch and cm to be determined.
The migratory phase of plasma blasts lasts one week [94]. Thus, once arrived at

the bone marrow, the phase of PC transition into the niche may be estimated to
take place on the time scale of a fraction of one week. The rates of transitions are
assumed to be equal for healthy and malignant PCs. Transition into the niche is
assumed to happen at the same rate as transition out of the niche. This leads to the
following assumption.

Assumption 10.6 (Fixation of transition rates). The transitions rates are assumed
to be equal. In particular, bh = bm = ch = cm = 1 day−1.

Remark 10.7. Assumption 10.6 implies no a priori advantage of PCs inside the
niche compared to PCs outside the niche due to their adhesion to the niche. The
influence of fixed transition rates on model solutions is investigated in Section 10.4.

10.2 Vaccination-induced dynamics as plausibility
check

In this section it is tested whether the models are able to reproduce biological
observations assuming that the calibration given by Consequence 10.4 and Assump-
tion 10.6 holds true. For that, the extended model (4.0.1) with vaccination-induced
perturbation of the healthy equilibrium (4.0.5) is considered, see Chapter 4. Without
loss of generality, assume that T = 0. Further, let k = 5. Below, this setting is
referred to as calibrated extended model.
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At first, the number of vaccination-induced healthy PCs entering the bone marrow,
x0
h,v > 0, is varied and chosen to be 107, 108 and 109. In the following, Figure 10.1 is

considered:

(a) 107 vaccination-induced healthy PCs arrive at the bone marrow and perturb
the healthy equilibrium. The fraction of vaccination-induced healthy PCs at
the re-established healthy equilibrium is 0.004%.

(b) 108 vaccination-induced healthy PCs arrive at the bone marrow and perturb
the healthy equilibrium. The fraction of vaccination-induced healthy PCs at
the re-established healthy equilibrium is 0.241%.

(c) 109 vaccination-induced healthy PCs arrive at the bone marrow and perturb
the healthy equilibrium. The fraction of vaccination-induced healthy PCs at
the re-established healthy equilibrium is 4.21%.

By Theorem 8.6 it is z(t) > 0 for all 0 ≤ t < t̄ and z(t) ≤ 0 for all t ≥ t̄, where
t̄ = 2.73. Thus, inflow of PCs into the niche happens until 3 days after the arrival
of vaccination-induced PCs at the bone marrow. Observe that approaching the
re-established healthy equilibrium takes longer time in case of a larger number of
vaccination-induced PCs entering the bone marrow, compare Figure 10.1 (a) and (c).

Results and discussion

Radbruch et al. report that 0.1− 1% of the „old“ PC population is replaced by PCs
created due to an antigen encounter [94]. Simulations indicate that the calibrated
extended model is able to reproduce this observation assuming that the number
of vaccination-induced PCs entering the bone marrow is between 107 and 109 cells.
Further, knowing that about 10% of the vaccination-induced PCs entering the bone
marrow persist in the niche providing humoral immunity for decades [65, 94], the
calibrated extended model reproduces this observation choosing x0

h,v in the range of
2− 3 · 107 (see Table 10.1) whereby yEh,v = 33/100 · 107 PCs eventually reside inside
the niche.
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Figure 10.1: Vaccination-induced perturbation of the healthy equilibrium for x0
h,v ∈

{107, 108, 109}. Left: Dynamics of the number of pathogen-induced
healthy plasma cells (PCs) in total (purple) and inside the niche
(dashed purple). Right: Dynamics of the number of vaccination-
induced healthy PCs in total (blue) and inside the niche (dashed blue).
Ranges of axes are adjusted for optimised visualisation of results. For
details, see text.
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Further investigation focuses on the question of how many vaccinations of a second
antigen would be needed to decrease the newly established immunity characteristic
yEh,v = 33/100 · 107 PCs to 50%. For that, a simulation experiment is performed
using the calibrated extended model. Having obtained the re-established healthy
equilibrium E ∈ E with components xEh,0, xEh,v and yEh,0, y

E
h,v, initial conditions

x0
h,0 = xEh,0 + 3 · 107, x0

h,v = xEh,v and y0
h,0 = yEh,0, y

0
h,v = yEh,v are used to simulate a

perturbation of E induced by a vaccination of an antigen different to the prior. This
generates the next re-established healthy equilibrium E1 ∈ E , see Theorem 8.5. This
procedure is repeated n times (n ∈ N) until yEn

h,v ≤ yEh,v = 1/2 · 33/100 · 107 PCs holds
true for the first time.

Table 10.1: Portion of persisting vaccination-induced healthy plasma cells (PCs)
after vaccination.

Initial condition x0
h,v Persisting PCs

104 < 0.05%

105 0.05%

106 0.48%

107 4.39%

2 · 107 8.04%

3 · 107 11.13%

4 · 107 13.78%

5 · 107 16.08%

6 · 107 18.08%

7 · 107 19.85%

8 · 107 21.42%

9 · 107 22.82%

108 24.08%

109 42.10%
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Results and discussion

About 480 antigen encounters would be necessary to cause the desired reduction.
Assuming that 30 waves of PCs arrive at the bone marrow due to natural antigenic
adoptions to humoral immunity [94], this translates into 16 years for the Ig production
for a defined antigen to decrease by half on the assumption that no further exposure
occurred. This time scale is in accordance with the observation of Radbruch et al.
[94] stating that the serum concentration of an antibody specificity would decrease
to 50% of the original equilibrium concentration within 23 years.
The observed dynamics are qualitatively in accordance with biological measure-

ments of Bernasconi et al. [9], who report the time course of PCs secreting antibodies
to tetanus toxoid after vaccination. Similarly, the results qualitatively match observa-
tions of Radbruch et at. [94] describing the kinetics of humoral immune response in
mice and are in accordance with the (biological) stability of humoral immunity [94].

10.3 Selection of patient data sets

In order to define a suitable parameter estimation procedure which allows fitting the
myeloma model to a transformed time series D of a corresponding patient given by
(9.2.1), data is grouped according to the DT, see Section 9.1. Its calculation is based
on the exponential model (2.0.1) which is fitted to data representing the number of
malignant PCs.

Definition 10.8 (Associated DT). Consider a patient data set with transformed time
series D given by (9.2.1). The associated DT is the DT τ based on an exponential
model (2.0.1) for the data {(t1m ,m1), . . . , (tvm ,mv)}, see Section 9.1.

Remark 10.9 (Negative DT). If τ > 0, data indicate malignant growth. Biologically,
one expects at the same time a decrease in the number of healthy PCs [60]. If τ < 0,
data indicates malignant decline. The a priori grouping of the patient data sets
assists parameter estimation in two ways: Firstly, one may think of excluding patient
data sets with a negative associated DT because it seems unlikely for the malignant
PC population to decline, and consequently, the indication of an accumulation drop
would only be due to normal fluctuations in the data or few data points. Secondly, if
one aims to keep those patients with a negative associated DT, the information of a
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decline in the data translates into an advantage in terms of a more efficient fitting
procedure, see Remark 10.17.
The observation of τ < 0 (or τ ≈ ∞) would be in agreement with almost all

malignant PCs arriving at the bone marrow in the initial wave. Progression to
symptomatic disease would still be possible if driven not by an increase in tumour mass
but for example by the development of bone disease. Yet the investigated populations
represent early stages of myeloma (AMM and MGUS) being less aggressive. A
decrease in the number of malignant PCs could also be explained by competitive
dislocation due to normal waves consisting of healthy PCs, possibly more likely to
appear within early stages of myeloma. In contrast, such a growth behaviour would
not be expected for therapy-requiring myeloma. In order to choose an unbiased
approach, patients with τ < 0 are included in the study.

Specifying inclusion criteria of patient data sets which are suitable for parameter
estimation in the framework of the myeloma model (see also Definition 9.2), each
data set is required at least three data points for both the number of healthy and
malignant PCs in the time series D. This is due to the higher complexity of the
model and assures the estimation to be more reliable. Data sets with a data range
shorter than one year are excluded as long as the growth of the malignant population
mirrored by the data is not significantly fast. Referred to the DT-groups stated in
Definition 9.3, the absolute value of the associated DT is required to be smaller than
four years. To summarise,

Definition 10.10 (Inclusion criteria for the myeloma model). Consider a patient
data set with transformed time series D given by (9.2.1) and with associated DT
τ given by Definition 10.8. The patient is included in the parameter estimation
procedure of the myeloma model (5.0.1) if the following is satisfied:

(i) u, v ≥ 3.

(ii) If tvm − t1m ≤ 1, then |τ | ≤ 4.
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10.4 Average healthy equilibrium
Before performing parameter estimation, the myeloma model with malignancy-
induced perturbation of the healthy equilibrium is recalled, where the time t ≥ 0
represents the age of a corresponding patients in years. The system of ODEs is given
by

x′h(t) = f − βh(z(t))z(t)− dxh(t)

x′m(t) = p1xm(t)− βm(z(t))z(t)

y′h(t) = βh(z(t))z(t)

y′m(t) = p2ym(t) + βm(z(t))z(t)

(5.0.1)

with surplus of PCs relative to the niche balance z(t) given by

z(t) = xh(t) + xm(t)− (yh(t) + ym(t)) + n, (5.0.2)

transition rates βj(z(t)), j ∈ {h,m}, given by

βj(z(t)) =

bj
xj(t)

xh(t)+xm(t) if z(t) ≥ 0

cj
yj(t)

yh(t)+ym(t) if z(t) < 0,
(5.0.3)

and with malignancy-induced perturbation of the healthy equilibrium at age T , i.e.

(xh(t), xm(t), yh(t), ym(t))T =
(
xEh
h , 0, yEh

h , 0
)T

for 0 ≤ t < T , and

(xh(T ), xm(T ), yh(T ), ym(T ))T =
(
xEh
h , x0

m, y
Eh
h , 0

)T
with x0

m > 0. (5.0.5)

In the following, (5.0.5) is interpreted as initial condition for system (5.0.1) with
t0 = T . Recall that a corresponding solution is located in W due to Remark 7.3.
The remaining freely selectable parameters are the total number of healthy PCs
at equilibrium described by k (see Consequence 10.4), the age T of the patient at
which the healthy equilibrium is perturbed by a certain number of malignant PCs
x0
m arriving at the bone marrow, and the malignant growth parameters p1 and p2.



142 10 Parameter estimation approach

Remark 10.11. Observe that the myeloma model (5.0.1) with arbitrary parameters
p1, p2 and arbitrary initial conditions k, x0

m, T is not identifiable. In particular, this
is constituted by spot tests revealing large confidence intervals for the estimates
(results not shown). Details about identifiability can be found in Appendix A.4.2.

The prior observation suggests to fix the initial conditions k, x0
m, T and estimate the

parameters p1 and p2. Yet values for the initial conditions are unknown and cannot
be deduced from literature or measurements. In particular, this is the case for the
patient-specific malignancy-induced perturbation of the healthy equilibrium, i.e. x0

m,
which may differ greatly within the patient cohort.

At a first attempt, the number of healthy PCs at healthy equilibrium is fixed as
the average value, i.e. k = 5. By this assumption, the following fitting procedure is
defined:

Definition 10.12 (Fitting procedure for average healthy equilibrium). Consider
the myeloma model (5.0.1) with malignancy-induced perturbation of the healthy
equilibrium (5.0.5) and a patient data set with transformed time series D given by
(9.2.1). Let Consequence 10.4 and Assumption 10.6 hold. Let k = 5. This implies
that the only freely selectable parameters are given by x0

m, T and p1, p2. The values
of the fixed parameters are shown in Table 10.2. Define the following algorithm
based on a discretisation of x0

m and T :

1: let x0
m = 10q with q = 0, 1, 2, . . . , 11

2: let T = 5r with r = 0, 1, 2, . . . , b t̃5c, where t̃ = min{t1h
, t1m}

3: for each q do
4: for each r do
5: estimate p1 and p2 and evaluate the goodness of the fit
6: end for
7: end for

The output consists of combinations of {x0
m, T, p1, p2}.

The chosen values for the number of malignant PCs arriving at the bone marrow, x0
m =

10q with q = 0, 1, 2, . . . , 11, represent orders of magnitudes which are biologically
plausible and of interest. In particular, the discretisation covers one malignant PC,
107 PCs as observed after antigen encounter [94], and an upper limit of 1011 PC. For
the discretisation in the age T , time steps of five years are chosen up to the maximal
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Table 10.2: Fixed parameter values and units for parameter estimation with k = 5.

Parameter Value Unit

xEh
h 108 # PCs

yEh
h 99 · 108 # PCs

f 365 · ln(2)
40 · 108 # PCs · year−1

d 365 · ln(2)
40 year−1

bh 365 year−1

bm 365 year−1

ch 365 year−1

cm 365 year−1

n 98 · 108 # PCs

possible year limited by the age of the corresponding patient at the first measurement
(as myeloma is initiated before MGUS and AMM are diagnosed). Note that there is
a trade-off: A higher refinement implies higher precision in finding the best fit for a
chosen initial number of malignant PCs. However, it enlarges the workload of the
algorithm due to an increased amount of executions.

Estimation of the model parameters p1 and p2 is performed using least squares
formulation [106] to minimise the errors between the data and the model output.
The least squares cost functional S(x0

m, T, p1, p2) is given by

S(x0
m, T, p1, p2) =

u∑
j=1
|xh(tjh) + yh(tjh)− hj|2 +

v∑
j=1
|xm(tjm) + ym(tjm)−mj|2.

Note that the myeloma model is partially observed, see Appendix A.3.2, i.e. the
total number of healthy (xh(t) + yh(t)) and malignant (xm(t) + ym(t)) PCs in the
bone marrow has to be taken into account, respectively. Optimisation is performed
using the method of Nelder and Mead [90]. The estimated variance s2 is used as
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goodness-of-fit measure [106], i.e.

s2 = s2(x0
m, T, p1, p2) = S(x0

m, T, p1, p2)
N − 2 ,

where N is the total number of data points in D, i.e. N = |D|. The best fit for the
time series D is obtained by choosing

(x̄0
m, T̄ , p̄1, p̄2) = argmin s2(x0

m, T, p1, p2).

s2 measures the average of the squares of the deviations. The smaller its value, the
better the model fits the data. For more details on non-linear parameter estimation,
see Appendix A.3.2.

Due to the discretisation in time (T ) and initial number of malignant PCs (x0
m),

a variation of 10% in the estimated variance is permitted. This was proven to be
adequate for simultaneously minimising the set of best fits and „smoothing“ the
discretisation.

Definition 10.13 (Best-fit solutions). Consider the output of the fitting procedure
stated in Definition 10.12. Let the best fit for the time series D be obtained by
(x̄0

m, T̄ , p̄1, p̄2), and let s̄2 = s2(x̄0
m, T̄ , p̄1, p̄2) be the corresponding smallest estimated

variance. Best-fit solutions are defined as those solutions with corresponding outputs
of the fitting procedure satisfying

s2(x0
m, T, p1, p2) ∈ [s̄2, s̄2 + 1

10 · s̄
2].

10.4.1 Results and discussion

The output of the algorithm stated in Definition 10.12 is discussed for three exemplary
AMM-patients. Results are shown in Figures 10.2, 10.3 and 10.4. For each figure,
the table in part (a) lists the values of s2 in a matrix, where each element (or box)
stands for one parameter estimation problem of finding the best values of p1 and
p2. Each column represents an initial number of malignant PCs x0

m ranging from
100 (E0) to 1011 (E11), whereas each row represents the age of the patient at which
the initial number of malignant PCs appears in the bone marrow, i.e. age 0 up to
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age 45 and 50, respectively. The yellow elements in the matrices mark elements
corresponding to best-fit solutions according to Definition 10.13. Part (b) visualises
best fits including statistical evaluations.

Figure 10.2 (IgA-myeloma Patient 1): The data set contains N = 17 data points
for the number of healthy and malignant PCs, respectively. Best fits (related to green
numbers) are obtained for three malignancy-induced perturbations of the healthy
equilibrium of (from left to right) 105 malignant PCs arriving at the bone marrow at
age 0, 106 malignant PCs arriving at the bone marrow at age 15, and 107 malignant
PCs arriving at the bone marrow at age 30.

Figure 10.3 (IgG-myeloma Patient 2): The data set contains N = 5 data points for
the number of healthy and malignant PCs, respectively. Best fits (related to green
numbers) are obtained for two malignancy-induced perturbations of the healthy
equilibrium of (from left to right) 109 malignant PCs arriving at the bone marrow at
age 0, and 1010 malignant PCs arriving at the bone marrow at age 35.

Figure 10.4 (IgG-myeloma Patient 3): The data set contains N = 3 data points
for the number of healthy and malignant PCs, respectively. Best fits (related to
green numbers) are obtained for five malignancy-induced perturbations of the healthy
equilibrium of (from left to right) 100 malignant PCs arriving at the bone marrow
at age 30, 101 malignant PCs arriving at the bone marrow at age 35, 104 malig-
nant PCs arriving at the bone marrow at age 45, 105 malignant PCs arriving at the
bone marrow at age 50, and 106 malignant PCs arriving at the bone marrow at age 55.

Observe that the best-fit estimates for the net proliferation rates p1 and p2 are
located within biologically plausible ranges. It is p1 ∈ (−0.01, 0.55) per year and
p2 ∈ (0.07, 0.92) per year. In particular, p1 can be negative while p2 is always positive.
Indeed, this is the case for all patients with a positive associated DT within the
AMM- and MGUS-cohort. Confidence intervals of the estimated parameters p1 and
p2 are narrow (magnitudes of the standard errors range from 10−5 to 10−2) suggest-
ing well-posedness of the parameter estimation problem in matters of parameter
identifiability. For details, see Appendix A.4.2.
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Tabelle1

Seite 1

 T  \  xm0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

0 454 274 112 61 148 373

5 363 173 65 109 313

10 269 91 78 250

15 390 128 62 187 499

20 179 72 128 418

25 245 117 80 326

30 329 183 62 228

35 439 278 102 133

40 409 199 69 405

45 362 109 225

50 316 81

55 359

(a)
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p1 = 0.1205
p2 = 0.2937

:

     Estimate                Standard Error   Confidence Interval

                                              0.120414
p1   0.1205315273727493434   0.0000576357     0.120649

                                              0.292844
p2   0.2937168467988612880   0.000428284      0.294589
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p1 = 0.1165
p2 = 0.2966

:

     Estimate                Standard Error   Confidence Interval

                                              0.115899
p1   0.1164525409825483864   0.000271783      0.117006

                                              0.2964
p2   0.2966325499977927613   0.000113993      0.296865
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p1 = 0.1081
p2 = 0.3121

:

     Estimate                Standard Error   Confidence Interval

                                              0.107186
p1   0.1081445446766075508   0.000470588      0.109103

                                              0.311319
p2   0.3121174481835264158   0.000392008      0.312916

(b)

Figure 10.2: Analysis of the fitting procedure for Patient 1 according to Defini-
tion 10.12. (a) Matrix of values of s2. All values are rounded to natural
numbers. Green numbers mark smallest value within a column. Light
gray elements mark values bigger than 500. Yellow elements mark best-
fit solutions according to Definition 10.13, where s̄2 = 61. (b) Best
fits (related to green numbers) of the data (points) are obtained for
x0
m = 105 at T = 0, x0

m = 106 at T = 15, and x0
m = 107 at T = 30

(red arrows). The dynamics of the total number of healthy (blue) and
malignant (red) plasma cells (PCs) in the bone marrow are shown.
Estimated values of p1 and p2 are reported in the box and confidence
intervals of the estimates are stated.
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Tabelle1

Seite 1

 T  \  xm0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

0 761 424 250 205 256 396

5 931 506 276 205 251 406

10 623 315 208 246 419

15 796 378 216 240 436

20 479 233 233 460

25 649 269 225 493

30 953 344 216 543

35 512 207 627

40 941 208 792

45 274

50

(a)
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p1 = 0.0351
p2 = 0.0772

:

     Estimate    Standard Error   Confidence Interval

                                  0.0201636
p1   0.0350536   0.00645703       0.0499435

                                  0.0706734
p2   0.0771841   0.00282338       0.0836948
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p1 = -0.0089
p2 = 0.0960

:

     Estimate      Standard Error   Confidence Interval

                                    -0.0325961
p1   -0.00887186   0.010288         0.0148524

                                    0.0821231
p2   0.0960435     0.00603661       0.109964

(b)

Figure 10.3: Analysis of the fitting procedure for Patient 2 according to Defi-
nition 10.12. (a) Matrix of values of s2. All values are rounded
to natural numbers. Green numbers mark smallest value within a
column. Light gray elements mark values bigger than 1000. Yellow
elements mark best-fit solutions according to Definition 10.13, where
s̄2 = 205. (b) Best fits (related to green numbers) of the data (points)
are obtained for x0

m = 109 at T = 0, and x0
m = 1010 at T = 35 (red

arrows). The dynamics of the total number of healthy (blue) and
malignant (red) plasma cells (PCs) in the bone marrow are shown.
Estimated values of p1 and p2 are reported in the box and confidence
intervals of the estimates are stated.
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Tabelle1

Seite 1

 T  \  xm0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

0 698 717 895

5 494 612 785

10 426 505 668 884

15 290 391 545 756

20 190 282 417 618 869

25 120 185 292 472 715

30 93 112 180 325 547 842

35 138 100 103 191 373 649

40 315 199 109 101 208 438 787

45 719 519 286 127 99 230 529 973

50 842 436 187 95 259 654

55 766 273 91 289 818

60 604 104 295

65 904 378 195

(a)
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p1 = 0.5246
p2 = 0.8892

:
     Estimate   Standard Error   Confidence Interval

                                 0.482112
p1   0.52461    0.0153064        0.567107

                                 0.752565
p2   0.889222   0.0492203        1.02588
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p1 = 0.5438
p2 = 0.9134

:

     Estimate   Standard Error   Confidence Interval

                                 0.495422
p1   0.543825   0.0174335        0.592229

                                 0.764987
p2   0.913355   0.0534381        1.06172
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p1 = 0.4802
p2 = 0.8335

:

     Estimate   Standard Error   Confidence Interval

                                 0.401558
p1   0.480196   0.0283233        0.558834

                                 0.718517
p2   0.833479   0.0414062        0.948441
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p1 = 0.4876
p2 = 0.8461

:

     Estimate   Standard Error   Confidence Interval

                                 0.396186
p1   0.487556   0.0329089        0.578926

                                 0.745664
p2   0.846134   0.0361868        0.946605

(b)
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p1 = 0.5001
p2 = 0.8751

:

     Estimate   Standard Error   Confidence Interval

                                 0.463381
p1   0.500099   0.0132248        0.536817

                                 0.834838
p2   0.875135   0.0145139        0.915432

(b continued)

Figure 10.4: Analysis of the fitting procedure for Patient 3 according to Defini-
tion 10.12. (a) Matrix of values of s2. All values are rounded to natural
numbers. Green numbers mark smallest value within a column. Light
gray elements mark values bigger than 1000. Yellow elements mark
best-fit solutions according to Definition 10.13, where s̄2 = 91. (b) Best
fits (related to green numbers) of the data (points) are obtained for
x0
m = 1 at T = 30, x0

m = 10 at T = 35, x0
m = 104 at T = 45, x0

m = 105

at T = 50, and x0
m = 106 at T = 55 (red arrows). The dynamics of

the total number of healthy (blue) and malignant (red) plasma cells
(PCs) in the bone marrow are shown. Estimated values of p1 and p2
are reported in the box and confidence intervals of the estimates are
stated.



150 10 Parameter estimation approach

As indicated by the yellow elements in the matrices in Figures 10.2, 10.3 and 10.4, a
set of best-fit solutions is generated (see Definition 10.13) where the best-fit solutions
differ marginally with respect to the goodness-of-fit measure s2. In the following,
the appearance of such sets of best-fit solutions is investigated using IgA-myeloma
Patient 1 from the AMM-cohort as exemplary patient. Figure 10.5 is considered:

(a) Without loss of generality, a best-fit solution is given by x0
m = 106 at T = 15

and estimates p1 = 0.1165 and p2 = 0.2966. The gray-shaded area marks the
time range of available data.

(b) Increasing x0
m = 107 while letting the other parameters fixed implies that the

number of malignant PCs grows more rapidly, leading to an earlier decrease of
the healthy PC population. Therefore, the solution is far away from being a
good fit, i.e. approximating the bold curves.

(c) Increasing T = 30 while letting the other parameters fixed the solution ap-
proaches the best-fit solution. Yet improvement is possible.

(d) A decrease of p1 combined with an increase of p2 yields another best-fit solution.
Both best-fit solutions coincide well in the gray-shaded area of the given data.
There are marginal differences at the boundaries of the area. These deviations
vanish in the sense that the solution still leads to a minimal estimate of the
variance s2, see Figure 10.2 (a). Deviations between both best-fit solutions
slightly enlarge left and right aside of the gray-shaded area.

A change in the initial condition for the number of malignant PCs can be compen-
sated by variation of the estimates in order to derive a best-fit solution to given
data. Along these lines, the myeloma model comprises adequate variability to cope
with such perturbations. The difference between two best-fit estimates for different
initial conditions is marginal, see p1 = 0.1165 (0.1081) and p2 = 0.2966 (0.3121).
This observation is in accordance with non-identifiability of the myeloma model with
arbitrary parameters p1, p2 and T, x0

m, see also Remark 10.11.

The previous examples demonstrated the output of the algorithm stated in Definition
10.12. In view of these findings, plausible estimates and best-fit solutions for patient
data sets can be derived. However, in more than one third of the data sets the fitting
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(a) Best fit for x0
m = 106 at T = 15 and

p1 = 0.1165, p2 = 0.2966.
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(b) x0
m is increased to 107.
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(c) T is increased to 30.
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(d) Best fit for x0
m = 107 at T = 30 and

p1 = 0.1081, p2 = 0.3121.

Figure 10.5: Relationship between two best-for solutions for IgA-myeloma Patient 1.
Gray-shaded areas mark time range of given data. Dotted curves
illustrate the perturbed solutions for the number of healthy (blue)
and malignant (red) plasma cells (PCs) after a change of parameters
described in the respective caption. For details, see text.

procedure yields apparently improvable (in the sense of a lower value for s2) or even
implausible fitting results. Figure 10.6 (a) shows an example suggesting a higher
initial value for the healthy equilibrium. In contrast, the example in Figure 10.6 (b)
suggests a lower healthy equilibrium in order to obtain better fits for the number of
healthy PCs. Figure 10.6 (c) exemplifies that taking the average healthy equilibrium
as initial condition leads to biologically implausible results. The population of healthy
PCs grows, which contradicts clinical observations [60]. Observe that these findings
are a consequence of the inter-individual biological variation of healthy Ig levels, see
Chapter 1. In Section 10.5, an adequate adaptation of the presented algorithm is
provided to deal with these observations.
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(a) Improvement of fitting results with a
higher number of healthy PCs at healthy
equilibrium.
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(b) Improvement of fitting results with a
lower number of healthy PCs at healthy equi-
librium.
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(c) Biologically implausible fitting results due
to a low number of healthy PCs at healthy
equilibrium.

Figure 10.6: Examples of improvable or implausible best-fit solutions for IgG-
myeloma patients. The dynamics of the total number of healthy (blue)
and malignant (red) plasma cells (PCs) are shown. For details, see
text.

There are deviations which could suggest an increase instead of a decrease in the num-
ber of healthy PCs. To comply with clinical observations, the following assumption
is used as a further criterion for best-fit solutions.

Assumption 10.14 (Malignant increase excludes healthy increase). The number
of healthy PCs does not increase above the healthy equilibrium if the number of
malignant PCs increases.
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10.4.2 Sensitivity of solutions to changes in the transition rates

The values of the estimates for p1 and p2 depend on the values of the fixed para-
meters listed in Table 10.2 on page 143, deduced from biological observations. It
was assumed that transitions are all equal, i.e. bh = bm = ch = cm = 1 day−1,
see Assumption 10.6. To avoid arbitrary assumptions, parameter sensitivity of the
best-fit solution to alterations in the transition rates are investigated. Details on
sensitivity analysis can be found in Appendix A.4.1. Observe that the myeloma model
is not continuously differentiable with respect to the parameters. As a consequence,
methods of sensitivity analysis cannot directly be applied. However, the system may
be approximated by a smooth version. Details are described in Appendix A.2.

20 40 60 80 100
0

50

100

150

200

Age @yearsD

PC
@108
D

Patient S1531

Figure 10.7: Approximated best-fit solution for the data set of Patient 1 with
x0
m = 106 at T = 15, and estimates p1 = 0.1205 and p2 = 0.2937.

The dynamics of the total number of healthy (blue) and malignant
(red) plasma cells (PCs) are shown. For approximation, the smoothed
model with ε = 1012 is used. Details can be found in Appendix A.2.

In the following, it is shown how a best-fit solution changes if the values of the
parameters bh, bm, ch, cm vary. Consider IgA-myeloma Patient 1 and a corresponding
best-fit solution with malignancy-induced perturbation given by x0

m = 106 at T = 15.
Only relevant time intervals are considered, i.e. starting from the onset of the
malignancy at age T = 15, see Figure 10.7. The gray-shaded area marks the time
range of given data. This area is of particular interest since large variations in
the observations within this range affect the estimates, whereas marginal variations
hardly have an influence.
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Let p1, p2 and x0, T be fixed, and investigate the deviation of the observations
xh(t) + yh(t) and xm(t) + ym(t) from the best-fit solutions for different scenarios for
the values of bh, bm, ch, cm. In the following, Figure 10.8 is considered:

(a) It is investigated how small simultaneous changes of the values of bh, bm, ch, cm
influence the best-fit solutions xh(t) +yh(t) and xm(t) +ym(t). The sensitivities
are normalised relative to the best-fit solutions.

(b) It is investigated how small simultaneous changes in the values of bh, bm or ch, cm
influence the best-fit solutions xh(t)+yh(t) and xm(t)+ym(t), respectively, while
keeping the other parameters fixed at their nominal value. The sensitivities
are normalised relative to the best-fit solutions.

(c) It is investigate how small changes in the values of bh or bm or ch or cm
influence the best-fit solutions xh(t)+yh(t) and xm(t)+ym(t), respectively, while
keeping the other parameters fixed at their nominal value. The sensitivities
are normalised relative to the best-fit solutions.

The graphs in Figure 10.8 indicate that the number of healthy and malignant PCs,
xh(t) + yh(t) and xm(t) + ym(t), respectively, shows negligible sensitivity to small
alterations in the parameters bh, bm, ch, cm. The highest sensitivities are observed in
case (c), although relative sensitivity values are still far below 1%. In case of small
changes of ch or cm, the number of healthy PCs shows a larger sensitivity compared
to the number of malignant PCs. Sensitivity within the range of the data is low,
indicating non-identifiability of the respective parameter. Reliable estimation of
these parameters on the basis of the given data set would not have been possible.
By contrast, sensitivities of the best-fit solutions on small changes in the values of
the parameters p1 and p2 illustrate their identifiability, see Figure 10.10 on page 158.
This is also indicated by narrow confidence intervals of the estimates.
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(a) Sensitivity to a simultaneous perturbation of bh, bm, ch, cm.
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(b) Sensitivity to a simultaneous perturbation of bh, bm or ch, cm.
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(c) Sensitivity to a perturbation of bh, bm, ch or cm.

Figure 10.8: Local sensitivity analysis of a best-fit solution of Patient 1: The
parameter under investigation is infinitesimally perturbed. The gray
area represents the range of the data. Blue dotted: Sensitivity of the
total number of healthy plasma cells (PCs) relative to the best-fit
solution. Red dotted: Sensitivity of the total number of malignant
PCs relative to the best-fit solution.



156 10 Parameter estimation approach

In view of these findings, small deviations of the values of the transition rates
bh, bm, ch, cm from their nominal value (i.e. bh = bm = ch = cm =1day−1) are in
accordance with the best-fit solutions. To investigate the influence of larger changes
in the parameters, the error in the observations is considered. In general, if θ is the
parameter under consideration, the difference between the reference solution (i.e. the
solution obtained with the nominal value of θ, typically the best-fit value) and the
solution obtained with θ altered by ∆(θ) needs to be analysed, see Appendix A.4.1.
Again, different scenarios for the values of bh, bm, ch, cm are investigated. In the
following, Figure 10.9 is considered:

(a) It is investigated how a simultaneous multiplication by either 10 or 1/10 of
the value of bh, bm, ch, cm influence the best-fit solutions xh(t) + yh(t) and
xm(t) + ym(t). The errors are normalised relative to the best-fit solutions.

(b) It is investigated how a simultaneous multiplication by either 10 or 1/10 of
the value of bh, bm or ch, cm influence the best-fit solutions xh(t) + yh(t) and
xm(t) + ym(t), respectively, while keeping the other parameters fixed at their
nominal value. The errors are normalised relative to the best-fit solutions.

(c) It is investigated how a multiplication by either 10 or 1/10 of the value of bh or
bm or ch or cm influence the best-fit solutions xh(t) + yh(t) and xm(t) + ym(t),
respectively, while keeping the other parameters fixed at their nominal value.
The errors are normalised relative to the best-fit solutions.

The graphs in Figure 10.9 indicate that larger changes of the parameter bh, bm, ch
or cm cause a larger relative error in the model output up to 2500%, see case (c)
(ranges not completely shown), compared to simultaneous changes of parameters
as stated in cases (a) and (b). If bh, bm or ch, cm are simultaneously changed, the
deviations are still small, i.e. the relative sensitivities are less than 0.4% for the
number of healthy PCs and less than 0.5% for malignant PCs. If bh, bm, ch, cm are
simultaneously changed, the deviations are less than 0.5%. Similar sensitivity analysis
yields qualitatively similar results for Patients 2 and 3 (results not shown).
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(a) Sensitivity to a simultaneous perturbation of bh, bm, ch, cm.
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(b) Sensitivity to a simultaneous perturbation of bh, bm or ch, cm.
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(c) Sensitivity to a perturbation of bh, bm, ch or cm.

Figure 10.9: Sensitivity analysis of a best-fit solution of Patient 1: The parameter
under investigation is multiplied by 10 (dashed) or by 1/10 (dotted),
respectively. The gray area represents the range of the data. Blue:
Normalised error of the total number of healthy plasma cells (PCs)
relative to the best-fit solution. Red: Normalised error of the total
number of malignant PCs relative to the best-fit solution.



158 10 Parameter estimation approach

20 40 60 80 100
-5

0

5

10

15

20

25

30

Age @yearsD

¶

¶ p1

� best fit

20 40 60 80 100

-20

-10

0

10

20

30

40

50

Age @yearsD

¶

¶ p2

� best fit

Figure 10.10: Local sensitivity analysis of a best-fit solution of Patient 1: The
parameter under investigation is infinitesimally perturbed. The gray
area represents the range of the data. Blue dotted: Sensitivity
of the total number of healthy plasma cells (PCs) relative to the
best-fit solution. Red dotted: Sensitivity of the total number of
malignant PCs relative to the best-fit solution. Left: Sensitivity to a
perturbation of p1. Right: Sensitivity to a perturbation of p2.

Dependent on the precision of the measurements or biological deviations in the
measurements, the best-fit estimates still lead to a (biologically and mathematically)
plausible fit for the given set of data using perturbations as in cases (a) or (b). Since
it was assumed that bh = bm = ch = cm, this assumption can reasonably be loosened
by letting bh = bm and ch = cm, and vary either bh = bm and/or ch = cm. Biologically,
this implies that transition into and out of the niche may be different. Rates are
assumed to be equal for healthy and malignant PCs. For example, bh = bm = 1day−1

can be kept but ch = cm =0.5 day−1. Biologically, this could be due to an increase of
PC adhesion to the niche, which would imply a reduced transition rate out of the
niche.
The results of the sensitivity analysis confirm that the best-fit solution obtained

with bh = bm = ch = cm = 1day−1 is still an excellent fit and a best-fit solution for
the new parameter setting. Parameter estimation with altered transition rates as
stated above yields best-fit solutions with marginal differences in s2 and the estimates.
This was confirmed for a spot test of patient data sets (results not shown). Along
these lines, the best-fit solutions are characterised to be robust.

Remark 10.15. Instead of fixing the death rate d of healthy PCs, it could be
estimated in addition to the net growth parameters p1 and p2. However, spot tests
reveal non-identifiability in terms of large estimation errors (results not shown).



10.5 Individual healthy equilibrium 159

10.5 Individual healthy equilibrium

Next, an optimised fitting procedure is presented with an individualised choice of
the parameter k. To exemplify the procedure, consider IgA-myeloma Patient 1.
The fitting algorithm stated in Definition 10.12 is applied for different values of k.
The results in form of the matrices of values of s2 along with a best-fit solution for
k = 3, . . . , 8 are shown in Figure 10.12 on page 164. In case of k = 1, 2, the fits are
biologically implausible (see Assumption 10.14) and for k = 9, 10, 11, 12, the values
of s2 exceed 500, implying comparably bad fits.

As observed in case of k = 5, there are set of best-fit solutions, see Definition 10.13.
For k = 4, the estimated variances s2 exhibit the smallest values compared to all
best-fit solutions, see Figure 10.12 (b). Consequently, the optimised choice for k is
related to k = 4.

This observation enables a structured approach to optimise the fitting procedure
stated in Definition 10.12 without the necessity to execute all parameter estimation
procedures for each single scenario on the discrete grid {k, x0

m, T}, where k = 1, . . . , 12
and x0

m, T . Instead, with the results for k = 5, it suffices to identify those columns
of the matrix of values of s2 which possess the smallest values (i.e. where the green
elements are the smallest). For this initial number of malignant PCs, the value for k
is varied. The individual healthy equilibrium relates to the value of k which leads to
the smallest value of s2 within the chosen columns. For the exemplary Patient 1,
column E6 may be chosen to investigate the values of s2 for different values of k, see
Figure 10.11 on page 161.

The adapted fitting algorithm is summarised:

Definition 10.16 (Fitting procedure for individual healthy equilibrium). Consider
the myeloma model (5.0.1) with malignancy-induced perturbation of the healthy
equilibrium (5.0.5) and a patient data set with transformed time series D given by
(9.2.1). Let Consequence 10.4 and Assumption 10.6 hold. For each k = 1, . . . , 12,
the only freely selectable parameters are given by x0

m, T and p1, p2. The values of the
fixed parameters are shown in Table 10.2. Define the following algorithm based on a
discretisation of x0

m and T :
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1: let x0
m = 10q with q = 0, 1, 2, . . . , 11

2: let T = 5r with r = 0, 1, 2, . . . , b t̃5c, where t̃ = min{t1h
, t1m}

3: fix k arbitrarily and execute algorithm stated in Definition 10.12
4: identify at least one value of q associated with a best fit; fix q
5: for each k do
6: for each r do
7: estimate p1 and p2 and evaluate the goodness of the fit
8: end for
9: end for

10: choose k associated with the best fit such that Assumption 10.14 is satisfied; fix
k

11: execute algorithm stated in Definition 10.12

The value of k associated with the best fits is referred to as individual healthy
equilibrium.

Observe that k is chosen as to the smallest estimated variance and regarding As-
sumption 10.14. Figure 10.13 on page 166 illustrates the output of the algorithm
stated in Definition 10.16 by means of the three data sets of Patients 1, 2 and 3,
each showing the matrix of values of s2 for the individual healthy equilibrium and a
best-fit solution. As selection criterion for the best-fit solutions, those scenarios are
incorporated which deviate by at most 10% from the smallest s2 (see Definition 10.13)
indicated by the yellow elements.
The optimised fitting procedure given by Definition 10.16 remarkably improves

the fits in Figure 10.14. Thus, the myeloma model (5.0.1) is able to reproduce data
adequately.

Remark 10.17 (Practical procedure). The fitting procedure consists of an indivi-
dualised approach. Data-specific properties allow optimising the procedure and avoid
long run-times or the occurrence of errors, for example, due to an inappropriate
initial guess within the optimisation algorithm. Beside the range of the data, the
growth behaviour of the population of malignant PCs is used to select which fitting
scenarios on the grid {k, x0

m, T} can be neglected. For instance, if the associated DT
is positive, a growing tendency of the malignant PC population in the myeloma model
is expected. Thus, 1011 malignant PCs can be excluded to constitute the malignancy-
induced perturbation if the corresponding data in D is located within the range 109
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cells to 1010 cells. If the associated DT is negative, relevant malignancy-induced
perturbations consist of 1010 or 1011 malignant PCs.

Tabelle1

Seite 1

E5 E6 E7

112 236 438

81 184 377

60 134 311

57 91 243

82 62 173

150 59 109

104 64

64

164

470

(a) k = 3.

Tabelle1

Seite 1

E5 E6 E7

73 187 401

56 140 341

54 97 276

76 66 209

133 53 144

244 74 87

433 155 54

335 76

212

(b) k = 4.
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(c) k = 5.
Tabelle1

Seite 1

E5 E6 E7

114 189 404

110 155 347

117 129 288

137 113 229

175 112 175

235 132 132

325 182 111
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(d) k = 6.
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(e) k = 7.
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(f) k = 8.

Figure 10.11: Visualisation of the parameter estimation approach given by Defi-
nition 10.16 for Patient 1. Column E6 (i.e. q = 6) is considered for
different values of k. The smallest value within a column is obtained
for k = 4. For details, see text.
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Tabelle1
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(a) k = 3.
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(b) k = 4.
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Tabelle1
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(a) k = 5.
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(b) k = 6.
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Tabelle1
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(a) k = 7.
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Figure 10.12: Results of parameter estimation for Patient 1 for different values of
k. Top: Matrix of values of s2. All values are rounded to natural
numbers. Green numbers mark smallest value within a column. Light
gray elements either mark values higher than 500, or invalid results
according to Assumption 10.14. Bottom: An arbitrarily chosen best-
fit solution showing the dynamics of the total number of healthy
(blue) and malignant (red) plasma cells (PCs). For details, see text.
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Tabelle1

Seite 1

 T  \  xm0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

0 360 223 114 57 73 187 401
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(a) Patient 1: k = 4.
Tabelle1

Seite 1

 T  \  xm0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

0 987 721 421 244 205 254 388

5 824 498 268 205 249 398

10 942 596 304 207 244 410

15 718 361 215 238 425

20 871 451 231 231 446

25 596 264 223 476

30 813 335 214 520

35 493 206 595

40 883 210 740

45 290

50

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Age @yearsD

PC
@108
D

Patient S2301

p1 = 0.0211
p2 = 0.0906

(b) Patient 2: k = 6.
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Tabelle1

Seite 1
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(a) Patient 3: k = 6.

Figure 10.13: Analysis of the fitting procedure according to Definition 10.16 yields
the individual healthy equilibrium k and the respective matrix of
values of s2 (left) for Patients 1, 2 and 3. All values are rounded
to natural numbers. Green numbers mark smallest value within a
column. Light gray elements mark values higher than 500 (1000)
for case (a) (for cases (b) and (c)). Yellow elements mark best-fit
solutions according to Definition 10.13. Right: An arbitrarily chosen
best-fit solution showing the dynamics of the total number of healthy
(blue) and malignant (red) plasma cells (PCs). For details, see text.
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(a) k = 12 leads to an improvement of best-fit solutions.
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(b) k = 3 leads to an improvement of best-fit solutions.
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(c) k = 10 leads to an improvement of best-fit solutions.

Figure 10.14: Examples of improved best-fit solutions for IgG-myeloma patients
due to the choice of an individual healthy equilibrium. The dynamics
of the total number of healthy (blue) and malignant (red) plasma
cells (PCs) are shown. Left: A best-fit solution for k = 5, see
Figure 10.6. Right: A best-fit solution for the individual k. For
details, see text.





11 Evaluation of parameter
estimation

11.1 Statistical evaluation
Referring to Chapter 9, data sets of 254 AMM-patients (67 IgA-myeloma, 187 IgG-
myeloma) and 156 MGUS-patients (31 IgA-myeloma, 125 IgG-myeloma) are qualified
for parameter estimation. Applying the inclusion criteria given by Definition 10.10
results in 187 eligible AMM-patients (52 IgA-myeloma, 135 IgG-myeloma) and
104 MGUS-patients (27 IgA-myeloma, 77 IgG-myeloma). In about 80% of the
187 AMM-patients (43/52 IgA-myeloma, 110/135 IgG-myeloma) and in about 65%
of the 104 MGUS-patients (18/27 IgA-myeloma, 52/77 IgG-myeloma), the surrogate
for the number of malignant PCs indicates a growth of the malignant PC population
with respect to a positive associated DT, see Definition 10.8.

In the following, the outcomes from parameter estimation are evaluated. Since
inference should only be based on adequate fitting results, a further selection criterion
is added for a data set being included into the evaluation process.

Definition 11.1 (Selection criterion for evaluation). Consider a patient data set with
transformed time series D given by (9.2.1) which was included into the parameter
estimation procedure stated in Definition 10.16. Let s̄2 be the smallest estimated
variance for the chosen individual healthy equilibrium. Then, this patient is included
into the evaluation process if s̄2 < 1000, and denoted as eligible patient.

The additional selection criterion is chosen to exclude fits obtaining outliers or
severe variations in the data, yielding 185 AMM-patients (52 IgA-myeloma, 133 IgG-
myeloma) and 101 MGUS-patients (26 IgA-myeloma, 75 IgG-myeloma) considered
appropriate for evaluation. Table 11.1 provides an overview of eligible AMM- and

169
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MGUS-patients separated into IgA- and IgG-myeloma and positive/negative associ-
ated DT τ .

Table 11.1: Eligible patients within the AMM- and MGUS-cohort.

AMM MGUS

IgA IgG IgA IgG

Total 52 133 26 75

τ > 0 43 108 (82%) 18 51 (68%)

τ < 0 9 25 (18%) 8 24 (32%)
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Figure 11.1: Frequencies of individual healthy equilibria within the AMM- and
MGUS-cohort of eligible patients. N is the total number of patients
within the respective cohort. Mean values are given by 5.1 for the
AMM-cohort (left) and 5.5 for the MGUS-cohort (right).

Remark 11.2. In total, there are 2071 data points representing the number of
healthy PCs, and 1753 data points representing the number of malignant PCs. In
average, a time series is composed of 11 data points representing the number of
healthy PCs for both IgA- and IgG-myeloma, and 11 and 9 data points representing
the number of malignant PCs for IgA- and IgG-myeloma, respectively.
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Figure 11.1 depicts the frequencies of the individual healthy equilibria as part of
best-fit solutions of eligible patients, see fitting procedure stated in Definition 10.16
and Definition 10.13. These data-driven findings are in accordance with the Assump-
tions 9.5, 9.7 and 10.3 in regard to the average value given by k = 5 (mean values
are 5.1 for the AMM-cohort and 5.5 for the MGUS-cohort).

In the remaining part of this chapter, best-fit solutions within the AMM- and MGUS-
cohort are investigated. Firstly, evaluation of the estimates p1 and p2 is focused
allowing characterising malignant growth. Secondly, information on the malignancy-
induced perturbation of the healthy equilibrium (x0

m and T ) corresponding to best-fit
solutions is exploited. Thereby, the initial number of malignant PCs in myeloma
is analysed. Histograms were generated using the software package Mathematica,
Version 10 by Wolfram Research.

11.2 Characterisation of malignant growth

Observe that for each patient there exists a set of best-fit solutions (see Defini-
tion 10.13) involving estimates for the net growth parameters of malignant PCs, i.e.
p1 for the growth of malignant PCs outside the niche, and p2 for the growth of those
inside the niche.

11.2.1 Growth patterns

Referring to the results of Section 7.5, the estimates p1 and p2 determine how the
growth of the populations of healthy and malignant PCs is characterised expecting
the solutions either to approach an equilibrium (i.e. Em), a partial equilibrium (i.e.
Ep,2(t)) or to decline. By means of six representative patients, Figure 11.2 visualises
solutions types of the myeloma model which are identified as best-fit solutions within
the AMM- and MGUS-cohort, respectively. For their frequencies, see Table 11.2.

Remark 11.3. To calculate the statistics in Table 11.2, a best-fit solution for each
eligible patient was chosen. All best-fit solutions for one patient imply the same
growth pattern as verified for a spot test of patients (results not shown).
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Table 11.2: Frequencies of solution types of the myeloma model within the AMM-
and MGUS-cohort of eligible patients.

AMM MGUS

IgA IgG IgA IgG

Solution type A 35 79 (62%) 13 43 (55%)

Solution type B 8 35 (23%) 7 16 (23%)

Solution type C 9 19 (15%) 6 16 (22%)

Solution type A: Figure 11.2 (a) shows the most common solution type, which
is observed in the set of best-fit solutions for 62% and 55% of the patients within
the AMM- and MGUS-cohort, respectively. Mathematically, the model solution
approaches a partial equilibrium (see Chapter 7), i.e. the population of malignant
PCs increases whereas the population of healthy PCs decreases not becoming entirely
extinct (due to the constant inflow of healthy PCs into the bone marrow by model
assumption). Note that unbounded growth of the total population of malignant
PCs can be achieved even if p1 < 0, i.e. malignant PCs outside the niche die. The
estimates lie in a biologically plausible range. Regarding Patient A1, the estimates
imply that the number of malignant PCs outside and inside the niche grows by about
19% or 29% per year, respectively.

Solution type B: Figure 11.2 (b) depicts a solution type which is observed in 23%
of the patients within each cohort. Mathematically, the model solution approaches
the total equilibrium Em (see Chapter 7), i.e. the population of malignant PCs
increases and approaches an equilibrium state whereas the population of healthy
PCs decreases not becoming entirely extinct. The dynamics are due to relatively
dominant negative growth of malignant PCs outside the niche, whereby proliferation
inside the niche cannot compensate for growth inhibition, i.e. p2 <

cmp1
p1−cm

. In con-
trast to Patient B2, the equilibrium is approached relatively fast in case of Patient B1.
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(a) Solution type A: Increase in the number of malignant PCs. Left: Patient A1. Right: Patient A2.
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(b) Solution type B: Retarded increase in the number of malignant PCs. Left: Patient B1. Right:
Patient B2.
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(c) Solution type C: Decrease in the number of malignant PCs. Left: Patient C1. Right: Patient C2.

Figure 11.2: Solution types of the myeloma model observed as best-fit solutions
within the AMM- and MGUS-cohort of eligible patients. Different
growth behaviour for the total number of healthy (blue) and malignant
(red) plasma cells (PCs) is observed. For details, see text.
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Solution type C: Figure 11.2 (c) exemplifies a solution type which is observed
in 15% and 22% of the patients within the AMM- and MGUS-cohort, respectively.
Mathematically, the model solution approaches the healthy equilibrium Eh (see
Chapter 7), i.e. the population of malignant PCs decreases indicated by negative net
growth rates p1, p2 < 0. This implies an increase in the number of healthy PCs to
the level of healthy homoeostasis, see Patient C2.

Discussion

Relating the results to biology of myeloma, a solution of type A is the most plausible
pattern describing the dynamics of the number of healthy and malignant PCs in
the bone marrow, see also Figure 9.2. By the observations in Chapter 7, such a
growth pattern implies a positive net growth of malignant PCs inside the niche (i.e.
p2 > 0), whereas the net growth of malignant PCs outside the niche is always smaller
(i.e. p1 ≤ p2) and can be negative. In that sense, residing in the niche is beneficial.
Further, the model implies that PCs leave the niche due to faster accumulation inside
the niche from advanced stages of the disease onwards (due to z(t) < 0 for t large
enough), meaning that malignant PCs spill out of the niche.
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Figure 11.3: Another best-fit solution for Patient B1 out of the set of best-fit
solutions, where the dynamics of the total number of healthy (blue)
and malignant (red) plasma cells (PCs) are shown. The depicted
solution reflects a more realistic biological scenario of retarded growth
in the number of malignant PCs compared to Figure 11.2 (b). For
details, see text.

A solution of type B is characterised by approaching the equilibrium Em, see Chapter 7.
In case of Patient B2, approaching the plateau takes a long time exceeding the lifetime
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of the patient. This characterises a slow growth of the population of malignant
PCs being in accordance with slow DTs, see Figure 9.2. A solution as observed for
Patient B1 is not supported by any data which would justify the occurrence of a
plateau [47], i.e. there is no single measurement in favour of such behaviour. The
presented solution is chosen as one representative out of the set of best-fit solutions,
see Definition 10.13. Choosing another best-fit solution gives a more realistic growth
pattern as no plateau is reached within the patient’s lifetime, see Figure 11.3.
A solution of type C is predominantly correlated with negative associated DTs.

The decline in the malignant PC population would imply that myeloma would never
manifest. Observe that this scenario depicts an unlikely high number of malignant
PCs arriving at the bone marrow (1011 cells). Since the parameter estimation
procedure considers orders of magnitudes for the initial number of malignant PCs (in
particular 1010 and 1011 cells) and is based on a discretisation of time, a more realistic
growth pattern is exemplified by Figure 11.4, where the number of malignant PCs
initially arriving at the bone marrow is chosen to comprise 3 · 1010 cells and 2 · 1010

cells, respectively. Regarding Patient C2, the graph visualises how the myeloma
model captures the replacement process of vanishing malignant PCs by healthy ones
in analogy to the dynamics induced after vaccination, see Chapter 4. This implies
an increase of the healthy PC population up to its healthy equilibrium.
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Figure 11.4: Another best-fit solution for Patients C1 (left) and C2 (right), respec-
tively, where the dynamics of the total number of healthy (blue) and
malignant (red) plasma cells (PCs) are shown. The initial number
of malignant PCs arriving at the bone marrow is adapted to reflect
a more realistic value compared to Figure 11.2 (c), respectively. For
details, see text.
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11.2.2 Dynamic doubling time

Chapter 2 introduced an exponential model

m(t) = beat, a ∈ R, b > 0 for t ≥ 0 (2.0.1)

to explain growth of the malignant PC population. The constant growth rate was
applied for defining the DT. By means of (7.4.1) it can be observed for the myeloma
model that

x′m(t) + y′m(t) =
(
p1

xm(t)
xm(t) + ym(t) + p2

ym(t)
xm(t) + ym(t)

)
︸ ︷︷ ︸

=:α(t)

(xm(t) + ym(t)) .

(11.2.1)
This motivates the forthcoming definition of the time-varying equivalent to the DT.

Definition 11.4 (Dynamic DT). Consider the myeloma model (5.0.1) defined on
W . Let α(t) be given by (11.2.1). The dynamic doubling time (dynamic DT) of the
population of malignant PCs is defined by

τ(t) = ln(2)
α(t) if α(t) 6= 0.

Observe that a change in the sign of α(t) yields a singularity in τ(t). The dynamic DT
allows characterising the growth of the total malignant PC population captured by
the myeloma model. It enables to quantify the time-varying accumulation capacity of
myeloma and offers means to compare the myeloma model with the exponential model.

Results

Figure 11.5 depicts the associated (constant) DT and the dynamic DT for the best-fit
solutions of Patient A1 (left) and Patient A2 (right). Both graphs imply that the
dynamic DT approaches a vicinity of the constant DT for large times. In case of
Patient A1, the dynamic DT is always slower than the constant DT, whereas it can
be faster than the constant DT in case of the right graph. Here, the dynamic DT
is negative at the beginning. The singularity due to a change in the sign of τ(t) is
illustrated by a vertical line.
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Figure 11.5: Comparison of the constant (dashed) and the dynamic (bold) doubling
time (DT) for Patients A1 (left) and A2 (right). The dynamic DT
is defined starting from the age of the patient at which the initial
number of malignant plasma cells arrives at the bone marrow (red
arrow). For details, see text.

Discussion

Biologically, a negative dynamic DT of the population of malignant PCs could be due
to a large fraction of malignant PCs outside the niche (due to the initial population
arriving at the bone marrow), implying predominant death of the total population.
An increase of the fraction of malignant PCs inside the niche leads to predominant
accumulation due to proliferation.

The dynamic DT allows explaining the occurrence of solution type B. Considering
Patient B1, Figure 11.6 visualises a drastic change in the dynamic DT. This can be
explained by a shift in the composition of the total number of malignant PCs in the
bone marrow. Inflow of the initial population arriving at the bone marrow implies
predominant death of the total population due to negative net growth of malignant
PCs outside the niche. Residing in the niche is advantageous and malignant PCs
accumulate comparably fast (due to positive net growth inside the niche) implying
a fast DT of the total population. This yields malignant PCs spilling out of inside
the niche, where a comparably large negative net growth of malignant PCs outside
the niche implies cell death leading to a slow DT and retarded growth for the total
population.
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Figure 11.6: Dynamic doubling time (DT) for a best-fit solution of Patient B1
given by Figure 11.3. The dynamic DT is defined starting from the
age of the patient at which the initial number of malignant plasma
cells arrives at the bone marrow (red arrow). For details, see text.

11.2.3 Niche-dependence

Biologically plausible growth patterns are related to net growth rates satisfying
p1 ≤ p2 characterising the niche as a beneficial microenvironment.

Definition 11.5 (Niche-dependence). Consider best-fit solutions of an eligible pa-
tient.

(i) If all estimates satisfy p1 < 0 < p2, the growth of the patient’s population of
malignant PCs is referred to as as niche-dependent.

(ii) If all estimates satisfy p1, p2 > 0, the growth of the patient’s population of
malignant PCs is referred to as niche-independent.

In case of p1 < 0 < p2, malignant PCs outside the niche die whereas those inside the
niche grow. In this case, the niche is essential for the growth of the total population
of malignant PCs. If p1, p2 > 0, the absence of malignant PCs inside the niche would
not hinder the total population to increase.

Results

Investigation of niche-dependence for eligible patients within the AMM-cohort reveals
that 36% of the patients (53 IgG-myeloma, 13 IgA-myeloma) are categorised as
niche-dependent, and 35% of the patients (39 IgG-myeloma, 25 IgA-myeloma) as
niche-independent. It is p1 < p2 true even in cases of niche-independence being
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Figure 11.7: Box-Whisker plot of doubling times (DTs) of niche-dependent versus
niche-independent populations of malignant plasma cells for patients
within the AMM-cohort. The ordinate axis shows the natural loga-
rithm of DTs. N is the total number of patients within the respective
group. Significant difference between the groups is depicted by one
asterisk for a level of P < 0.05. Significance testing was performed
using a Wilcoxon rank-sum test [16]. For details, see text.

in agreement with the notion that the niche is a favourable microenvironment for
healthy PCs as for malignant PCs. This is a result of the modelling and not an
a priori assumption, see Chapter 5. Investigation of the relation between niche-
dependence and the speed of growth of the malignant PC population yields that the
median DT in patients with niche-dependent populations of malignant PCs is 9 years
compared to 3.4 years in patients with niche-independent populations (P < 0.05), see
Figure 11.7. Statistical analysis was performed using a Wilcoxon rank-sum test [16].

In view of Definition 11.5, further analysis was performed to relate niche-dependence
to biological traits of malignant PCs. However, investigations do not imply significant
evidence heretofore that niche-dependence is associated with any myeloma-related
molecular aberration or gene expression. Likewise, this is the result for any tested
predictor for progression of asymptomatic to therapy-requiring myeloma [49]. Ac-
cording to this, growth of malignant PCs could appear in- and outside the niche in
all molecular entities of myeloma.
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11.3 Initial number of malignant plasma cells

The question of how many malignant PCs initially arrive at the bone marrow and
induce the growth of myeloma is of great interest for the understanding of myeloma
dynamics but cannot be addressed by experimental methods. Unlike the more
intuitive hypothesis that cancer arises from one mutated cell or a small group of cells,
initial results regarding the DT suggest that that there is a population of initiating
malignant PCs which proliferate in the bone marrow giving rise to myeloma. An
explanation for this could be a malignant event occurring in or before the clonal
expansion of plasma blasts (with DTs in the range of days) during the generation of
healthy PCs (see Chapter 1) which could also appear as Gompertzian growth.

11.3.1 Equiprobable weighting

To exemplify the first approach, consider the three chosen AMM-patients from
Chapter 10, i.e. Patients 1, 2 and 3. In Figure 11.9 on page 182, the selection of
initial numbers of malignant PCs corresponding to best-fit solutions are visualised,
where investigated initial numbers are marked with orange colour. For example, both
a number of 109 or 1010 malignant PCs initially arriving at the bone marrow lead
to best-fit solutions in case of Patient 2, see Figure 11.9 (b). Along these lines, the
model does not differentiate between both scenarios. Observe that one malignant PC
does not lead to a best-fit solution. With this in mind, one malignant PC initially
arriving at the bone marrow is not able to explain the observed growth patterns on
basis of the myeloma model, and is consequently ineligible as initial number. Similar
holds for Patient 1, see Figure 11.9 (a). One initial malignant PC possibly explains
the growth patterns in case of Patient 3, see Figure 11.9 (c), but this is only one of
eight scenarios.

Assumption 11.6 (Equiprobable weighting). Consider an eligible patient. The
initial numbers of malignant PCs x0

m of best-fit solutions are equiprobable, i.e. a
weight of 1 is equally distributed over all x0

m of all best-fit solutions.
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(a) Equiprobable weighting of initial numbers of malignant PCs corresponding to best-fit solutions.
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(b) Age-related weighting of initial numbers of malignant PCs corresponding to best-fit solutions.

Figure 11.8: Frequencies of initial numbers of malignant plasma cells (PCs) evalu-
ated for the AMM- and MGUS-cohort of eligible patients, respectively.
N is the total number of patients within the respective cohort. For
details, see text.

In case of Patient 2, Assumption 11.6 implies that the probabilities of the occurrence
of either 109 or 1010 malignant PCs initially arriving at the bone marrow are equal.
Henceforth, both scenarios obtain the weighting factor 1/2. Likewise, each initial
number corresponding to a best-fit solution acquires the weighting factors 1/4 and
1/8 in case of Patient 1 and 3, respectively.

This evaluation procedure is carried out for all eligible patients within the AMM-
cohort and MGUS-cohort, see Table 11.1. Histograms visualise frequencies of the ini-
tial numbers of malignant PCs corresponding to best-fit solutions, see Figure 11.8 (a).
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Results

In more than 90% of all eligible patients within the AMM-cohort and MGUS-cohort,
the initial number of malignant PCs is in the magnitude of 103-1011 cells and 107-
1011 cells, respectively. The most frequent initial number is 1010 cells for both the
AMM-cohort (about 22%) and the MGUS-cohort (about 29%). In particular, an
initial number of malignant PCs consisting of only one cell can explain the observed
growth patterns in less than 2% and less than 1% of all eligible patients within the
AMM-cohort and MGUS-cohort, respectively.

Tabelle1

Seite 1

 T  \  xm0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

0 360 223 114 57 73 187 401

5 483 314 172 77 56 140 341

10 440 260 121 54 97 276

15 386 198 76 66 209

20 322 133 53 144 422

25 244 74 87 330

30 433 155 54 230

35 335 76 131

40 212 60 413

45 95 228

50 452 66

55 324

(a) Patient 1.
Tabelle1

Seite 1

 T  \  xm0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

0 987 721 421 244 205 254 388

5 824 498 268 205 249 398

10 942 596 304 207 244 410

15 718 361 215 238 425

20 871 451 231 231 446

25 596 264 223 476

30 813 335 214 520

35 493 206 595

40 883 210 740

45 290

50

(b) Patient 2.
Tabelle1

Seite 1

 T  \  xm0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

0 451 617 802

5 357 514 693 918

10 265 408 578 800

15 181 311 458 673 935

20 115 224 338 537 795

25 82 150 223 397 642 954

30 86 97 128 259 478 782

35 153 85 80 141 310 590 971

40 441 125 107 80 160 384 747

45 513 259 121 80 188 491 962

50 720 560 172 79 229 642

55 609 196 79 279 835

60 681 521 305 86 308

65 844 595 223 203

(c) Patient 3.

Figure 11.9: Selection of initial numbers of malignant plasma cells (orange) cor-
responding to best-fit solutions (yellow) for Patients 1,2 and 3. For
details, see text.
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11.3.2 Age-related weighting

Assumption 11.6 can be further developed taking into account the patient’s age
at which the initial population of malignant PCs arrives at the bone marrow. As
generation of healthy PCs is an error-prone process (see Section 1.1), a person at
advanced age has been susceptible for such processes leading to malignant transfor-
mations much longer than a younger person. The probability that one wave of PCs
arriving at the bone marrow each year [94] is comprised by a population of malignant
PCs accumulates with ongoing time.

Assumption 11.7 (Probability of occurrence of a malignant PC population). The
probability of a malignant PC population arriving at the bone marrow given by γ > 0
is constant and small for each patient at any time, i.e. γ � 1. It is conservatively
estimated as not to change as the patient ages.

The previous assumption justifies the usage of the cumulative exponential distribu-
tion [62] for a description of the probability of failure, i.e. the arrival of a malignant
PC population at the bone marrow, up to an age t,

F : R+ 7→ [0, 1], F (t) = 1− e−γt.

This function captures the fact that a longer follow-up implies a greater probability
that a mutation occurs. Note that since γ � 1, it follows that

F (t) ≈ 1− (1− γt) = γt. (11.3.1)

The expression on the right-hand side of (11.3.1) is often referred to as cumulative
hazard function [61].

Equation (11.3.1) allows defining an age-dependent weight. Considering Patient 1 (see
Figure 11.9 (a)), for each initial number of malignant PCs x0

m belonging to a best-fit
solution, there is available information on the corresponding age of appearance T , see
ages corresponding to yellow boxes. For example, x0

m = 105 corresponds to a best-fit
solution if T = 10. Using the approximated cumulative exponential distribution
(11.3.1) allows assigning the weight F (10) = 10γ. This can equally be done for all
remaining initial numbers associated with best-fit solutions, i.e. x0

m ∈ {104, 106, 107}.
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Normalisation yields that x0
m = 105 is weighted by

F (10)
F (0) + F (10) + F (20) + F (30) = 10γ

(0 + 10 + 20 + 30)γ = 1
6 .

The mutation rate γ cancels out, implying no need for further assumptions on the
exact value of γ. Observe that x0

m = 104 is rejected since F (0) = 0, i.e. the occurrence
of a mutation at age zero is highly improbable.
For Patient 2, x0

m = 1010 yields best-fit solutions if T ∈ {25, 30, 35, 40}. Hence,
the malignancy-induced perturbation of the healthy equilibrium leading to a best-fit
solution is not uniquely determined. Bearing in mind that F (t) gives the probability
that a mutation occurs up to time t, selecting the largest age T , i.e. T = 40, still
leads to a best-fit solution.

The evaluation procedure is carried out for all eligible patients within the AMM-cohort
and MGUS-cohort (see Table 11.1). Histograms visualise frequencies of the initial
numbers of malignant PCs corresponding to best-fit solutions, see Figure 11.8 (b).

Results

In more than 90% of all eligible patients within the AMM-cohort and MGUS-cohort,
the initial number of malignant PCs is in the magnitude of 104 − 1011 cells and
108 − 1011 cells, respectively. The most frequent initial number is 1010 cells for the
AMM-cohort (about 28%), and 109 cells for the MGUS-cohort (about 35%). In
particular, an initial number of malignant PCs consisting of only one cell can explain
the observed growth patterns in less than 1% and less than 0.5% of all patients
within the AMM-cohort and MGUS-cohort, respectively. Weighting by means of
the corresponding age compared to equiprobable scenarios implies a shift of the
distribution to the right. This is due to the fact that higher initial numbers of
malignant PCs correspond to older ages of the patients as it is pointed out by the
yellow boxes in the matrices for s2, see Figure 11.9 on page 182.

11.3.3 Analysis of groups

In the following, it is investigated whether there are differences in the distribu-
tions of the initial numbers of malignant PCs between the AMM-cohort and the
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MGUS-cohort. In particular, groups of both the AMM- and the MGUS-cohort are
analysed. Grouping according to the type of myeloma, i.e. IgA- and IgG-myeloma is
considered. Moreover, sub-groups of both cohorts with respect to the associated DT
are investigated. The latter grouping is of particular interest since it allows analysing
the correlation between the malignant growth kinetics (determined by an exponential
model) and the initial number of malignant PCs (determined by the myeloma model).
Recall the classification in four DT-groups, see Definition 9.3. Further, grouping
according to niche-dependence is investigated, see Section 11.2.

For each analysis, patients are divided into the respective groups and the distributions
of the initial numbers of malignant PCs are deduced using age-related weighting, see
Sub-section 11.3.2.

Results for grouping according to AMM and MGUS

In order to investigate whether the histograms in Figure 11.8 (b) are identical
across the two populations of AMM- and MGUS-patients, a chi-square test for
homogeneity of categorical data was performed [33]. The null hypothesis stating that
each population has the same proportion of observations is rejected (P = 0.009).

Results for grouping according to IgA- and IgG-myeloma

Part (a) and (b) of Figure 11.10 on page 187 show the fractions of each Ig type
(yellow) within the total cohorts (green). In Figure 11.11 (a), the distributions of the
initial numbers of malignant PCs is visualised for each group of the AMM-cohort
separately. Performing a chi-square test for homogeneity of categorical data [33]
yields that there is no significant difference in the frequencies of the initial numbers
of malignant PCs between the group of IgA- and IgG-myeloma patients (P > 0.99).
Figure 11.11 (b) shows the distributions of the initial numbers of malignant PCs for
each group of the MGUS-cohort separately. The histograms significantly differ from
each other (chi-square test for homogeneity of categorical data [33], P = 0.0006),
bearing in mind that due to few numbers of patients in the IgA-myeloma group the
result should be interpreted cautiously.
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Results for grouping according to doubling times

For patients with a fast associated DT, small initial numbers of malignant PCs
are more likely to explain the observed growth patterns than large numbers, see
Figure 11.12 (a) and (b) on page 190. Vice versa, for a patient with a slow asso-
ciated DT implying intermediate or infinitesimal increase of malignant PCs, large
initial numbers of malignant PCs are preferably in line with best-fit solutions, see
Figure 11.12 (c) and (d). Initial numbers of malignant PCs in the magnitude of
1010 − 1011 cells are almost exclusively determined by patients with a negative
associated DT, see Figure 11.12 (e). Moreover, it is evident from Figure 11.13 on
page 191 that the distributions are not identical across the DT-groups in case of the
AMM-cohort approved by a chi-square test for homogeneity of categorical data [33]
(P < 0.001). Similar holds true in case of the MGUS-cohort, see Figure 11.14 on
page 192.

Results for grouping according to niche-dependence

Figure 11.15 on page 193 visualises the frequency of initial numbers of malignant PCs
for AMM-patients analysed for niche-dependent and -independent patients according
to Definition 11.5. By means of a chi-square test for homogeneity of categorical
data [33], the distributions show a tendency to differ (P = 0.08).
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(a) Fraction of IgA-myeloma within each cohort.
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(b) Fraction of IgG-myeloma within each cohort.

Figure 11.10: Frequencies of initial numbers of malignant plasma cells (PCs) within
the AMM- and MGUS-cohort of eligible patients (green) grouped
according to IgA- and IgG-myeloma (yellow), respectively. N is the
total number of patients within the respective cohort, whereas n is
the number of patients within the respective group. Evaluation is
based on age-related weighting of initial numbers of malignant PCs
corresponding to best-fit solutions. For details, see text.
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(a) Separate evaluation for each group within the AMM-cohort.
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(b) Separate evaluation for each group within the MGUS-cohort.

Figure 11.11: Frequencies of initial numbers of malignant plasma cells (PCs) within
the AMM- and MGUS-cohort of eligible patients evaluated for each
IgA- and IgG-myeloma, respectively. N is the total number of
patients within the respective group. Evaluation is based on age-
related weighting of initial numbers of malignant PCs corresponding
to best-fit solutions. For details, see text.
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(a) Fraction of 0 < τ < 2 within each cohort.
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(b) Fraction of 2 ≤ τ < 4 within each cohort.
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(c) Fraction of 4 ≤ τ < 16 within each cohort.
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(d) Fraction of τ ≥ 16 within each cohort.
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(e) Fraction of τ ≤ 0 within each cohort.

Figure 11.12: Frequencies of initial numbers of malignant plasma cells (PCs) within
the AMM- and MGUS-cohort of eligible patients (green) grouped
according to the associated doubling times (DTs) τ (yellow), respec-
tively. N is the total number of patients within the respective cohort,
whereas n is the number of patients within the respective group.
Evaluation is based on age-related weighting of initial numbers of
malignant PCs corresponding to best-fit solutions. For details, see
text.
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Figure 11.13: Frequencies of initial numbers of malignant plasma cells (PCs) within
the AMM-cohort of eligible patients evaluated for each group of
associated doubling times (DTs) τ . N is the total number of patients
within the respective group. Evaluation is based on age-related
weighting of initial numbers of malignant PCs corresponding to
best-fit solutions. For details, see text.



192 11 Evaluation of parameter estimation

100 101 102 103 104 105 106 107 108 109 1010 1011
0

10

20

30

40

50

60

Initial number [PC]

F
re
qu
en
cy

[%
]

MGUS-patients with 0 < τ < 2 (N=3)

100 101 102 103 104 105 106 107 108 109 1010 1011
0

10

20

30

40

50

60

Initial number [PC]

F
re
qu
en
cy

[%
]

MGUS-patients with 2 ≤ τ < 4 (N=7)

100 101 102 103 104 105 106 107 108 109 1010 1011
0

10

20

30

40

50

60

Initial number [PC]

F
re
qu
en
cy

[%
]

MGUS-patients with 4 ≤ τ < 16 (N=36)

100 101 102 103 104 105 106 107 108 109 1010 1011
0

10

20

30

40

50

60

Initial number [PC]

F
re
qu
en
cy

[%
]

MGUS-patients with τ ≥ 16 (N=23)

100 101 102 103 104 105 106 107 108 109 1010 1011
0

10

20

30

40

50

60

Initial number [PC]

F
re
qu
en
cy

[%
]

MGUS-patients with τ ≤ 0 (N=32)

Figure 11.14: Frequencies of initial numbers of malignant plasma cells (PCs) within
the MGUS-cohort of eligible patients evaluated for each group of
associated doubling times (DTs) τ . N is the total number of patients
within the respective group. Evaluation is based on age-related
weighting of initial numbers of malignant PCs corresponding to
best-fit solutions. For details, see text.
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Figure 11.15: Frequencies of initial numbers of malignant plasma cells (PCs) within
the AMM-cohort of eligible patients evaluated for niche-dependent
and niche-independent populations of malignant PCs, see Section
11.2. N is the total number of patients within the respective group.
Evaluation is based on age-related weighting of initial numbers of
malignant PCs corresponding to best-fit solutions. For details, see
text.





12 Integrating discussion and
conclusions

Whereas many aspects have been discussed throughout the thesis, this chapter
provides a comprehensive level of discussion and integration.

12.1 Discussion of aims

In this thesis, the following questions were addressed by mathematical modelling:

1. Characterisation of the growth of malignant plasma cells

The aim was to provide biologically plausible models of the growth of malignant
PCs allowing investigating whether growth is continuous (such as in an exponential
model) or associated with a change in the growth pattern (such as in a Gompertzian
growth model). The following results were obtained:

• The dynamics of healthy PCs can be described by the basic model. The model
is based on simplifications. Firstly, it is assumed that the inflow of healthy
PCs is constant approximating the pathogen-induced waves of PCs arriving at
the bone marrow per year [94]. Secondly, the niche is considered as separate
compartment within the bone marrow. This is justified by healthy PCs being
dependent on the niche for survival [60]. It is assumed that PCs outside the
niche die at a constant rate [57]. Thirdly, transitions into and out of the niche
are modelled depending on the surplus of PCs relative to the niche balance
present at homoeostasis at which no transitions take place. This formalism
allows describing the key elements impacting on PC dynamics in the bone
marrow, whereby being adequate in terms of biological plausibility.
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• The dynamics induced by antigen encounter and the concomitant production
of healthy PCs can be described by the extended model as exemplified by a
vaccination scenario. Inflow of vaccination-induced healthy PCs is modelled
by a discrete-in-time event representing one of the extrapolated 30 waves of
healthy PCs arriving at the bone marrow per year [94]. Being calibrated, the
model is able to capture biologically plausible dynamics [9, 94].

• Growth of malignant PCs can be described by the myeloma model. Hypothe-
sised to be similar to a vaccination-induced perturbation, malignancy-induced
perturbation of homoeostasis is modelled by a discrete-in-time event represent-
ing one of approximately 30 waves of PCs arriving at the bone marrow per year
[94]. The model allows for proliferation of the population of malignant PCs.

• Compared to the exponential growth model, the myeloma model describes
more precisely the dynamics of malignant PC accumulation taking into account
the bone marrow niche and the population of healthy PCs. The model is
adequate in terms of biological plausibility, self-consistency, and well fitting
data consisting of serum and urine samples (n = 8398) of patients with AMM
and MGUS (n = 322 and n = 196, respectively).

• In case of PC dyscrasias, growth is characterised by an increase in the number
of malignant PCs and a concomitant decrease in the number of healthy PCs.
This results from both analytical results, numerical simulations and parameter
estimation using clinical data. Increase in the number of malignant PCs is
either unbounded (AMM: 62%, MGUS: 55%), retarded at late stages (23%
each) or negative (AMM: 15%, MGUS: 22%). The latter is associated with a
negative DT. This can imply either a decrease in the number of malignant PCs,
i.e. myeloma never manifests, or a fairly constant number of malignant PCs,
where progression is not driven by an increasing tumour mass (but for example
by bone destruction). In contrast to a non-mechanistic Gompertzian model,
retardation of the growth of the total population of malignant PCs can here be
quantified by the dynamic DT and explained by a shift in the composition of
the total number of malignant PCs in the bone marrow implying a time-varying
accumulation speed. Malignant PCs spill out of the niche due to comparably
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fast accumulation inside the niche. A comparably large negative net growth of
malignant PCs outside the niche implies cell death.

• Positive growth of the population of malignant PCs is associated with faster
proliferation of malignant PCs inside the niche compared to those outside
the niche. In that sense, residing in the niche is beneficial for malignant
PCs, which is not a model assumption. Net growth outside the niche can be
negative (i.e. malignant PCs die) implying that the niche would not only be
advantageous but also essential for survival of malignant PCs (i.e. malignant
PCs are niche-dependent). Whereas it is traditionally assumed that the ability
of malignant PCs to be niche-independent is obtained during disease progression
[60], the definition at hand suggests that it can already exist at the beginning
whereby its characteristic depends on the fraction of cells outside and inside
the niche. Niche-dependence is seemingly independent of molecular aberrations
or clinical variables. Niche-independent populations of malignant PCs possess
a significantly faster DT compared to niche-dependent populations.

2. Characterisation of progression to symptomatic myeloma

Related to growth, the analysis addressed the question of how fast progression from
early asymptomatic stages (MGUS, AMM) to therapy-requiring myeloma (MM)
happens. The following results were obtained:

• The exponential growth model leads to the definition of the DT quantifying the
rate of accumulation of malignant PCs. The identification of four DT-groups
of patients with very fast, fast, intermediate and almost no accumulation
delineates significantly different probabilities of progression from AMM to
symptomatic myeloma [109].

3. Quantification of the initial number of malignant plasma cells

Further analysis investigated how many malignant PCs initiate myeloma. Hypothe-
sising that initiation of myeloma is due to a population of malignant PCs arriving
at the bone marrow similar to the dynamics occurring within a natural immune
response [94], the analysis addressed the question whether one malignant PC is able
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to induce accumulation in the bone marrow as it is assumed by the existing model,
see Section 1.3. The following results were obtained:

• Results indicate that in more than 90% of the AMM- and MGUS-patients,
there is a population of malignant PCs arriving at the bone marrow consisting
of 104 − 1011 cells and 108 − 1011 cells, respectively. The most frequent initial
number is 1010 cells for the AMM-cohort (28%), and 109 cells for the MGUS-
cohort (35%). In less than 1% of the patients one initial malignant PC
describes data best. A large initial number of malignant PCs could explain
the occurrence of malignant PCs at different locations within the bone marrow
from the beginning [43, 45, 58].

• The Gompertzian growth model of Salmon et al. [24, 103, 115] assumes that
myeloma is initiated by one malignant plasma cell. The same is true for the
exponential model of Hobbs [46] and the induced myeloma model of Jákó [53,
Chapter 8]. Lacking biological plausibility for the severe retardation in the
growth kinetics of malignant PCs as a consequence of this assumption has
been criticised. In the light of our findings, the Gompertzian model could be
interpreted in that the initial fast increase with DTs of 1− 3 days mirrors the
clonal expansion analogue to the generation of plasma blasts (see Chapter 1),
and the subsequent slow growth with DTs of 4 − 6 months is given by the
accumulation of plasma cells in the bone marrow. In the myeloma model,
the initial fast increase in the number of plasma blasts is introduced by the
number of malignant PCs arriving at the bone marrow. Similar to the dynamics
induced by an antigen, where a wave consisting of a population of healthy PCs
arrives at the bone marrow [94], the initial number of malignant PCs can be
characterised as one „malignant wave“, which arrives at the bone marrow and
perturbs healthy homoeostasis.

• Frequencies of initial numbers of malignant PCs belonging to best-fit solutions
significantly differ between the DT-groups. A fast (slow or negative) associated
DT correlates with a small (large) initial number of malignant PCs. These
findings are coherent from a biological perspective, since a small initial number
of malignant PCs would need to grow fast to reach the critical cell number
for AMM or MGUS within the patient’s lifetime. An initially high number
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of malignant PCs has a chance of becoming clinically apparent also in case
of a lower growth capacity. Frequencies of initial numbers of malignant PCs
belonging to best-fit solutions significantly differ between the AMM- and MGUS-
cohort. Biologically, this implies that a patient presenting at MGUS-stage is
more likely to have a higher number of initial malignant PCs compared to a
patient presenting at AMM-stage (where patients with low numbers of initial
malignant PCs are less likely diagnosed). The former is associated with slower
growth of malignant PCs and in turn in agreement with a lower progression
rate, i.e. 1% per year in MGUS versus 10% per year in AMM [72].

12.2 Discussion of assumptions and resulting
limitations

This section provides a discussion of assumptions and resulting limitations of the work
presented in this thesis. Limitations are related to three areas: Firstly, mathematical
modelling including assumptions and simplifications, and analysis. Secondly, the
quantitative application of the models and defining a parameter estimation procedure.
Thirdly, evaluation and biological interpretation of the parameter estimation results.

• One criticism of the models derived in this thesis comprises the simplification
of a constant inflow of healthy PCs into the bone marrow, although knowing
that it is rather periodic and given by waves consisting of populations of
PCs arriving at the bone marrow [94]. The number and the shape of these
waves may vary and depend on the ecosystem and the prevalences of infectious
diseases an individual is exposed to. This is exemplified by seasonal infections
(such as influenza), in which waves are not equally distributed over one year.
Thus, variations in the number of healthy PCs at healthy equilibrium can take
place. Since characteristics and serial dynamics of waves are not described
biologically, a constant inflow of healthy PCs is assumed.

• Transition of PCs into the niche are assumed to take place if there is a surplus of
PCs located outside the niche, pushing cells into the niche. Vice versa, transition
of PCs out of the niche happens if there is a surplus of PCs inside the niche.
This leads to piecewise-smooth continuous systems of equations, being shown
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to reflect competitive dislocation of PCs out of the niche [94]. In case of the
extended model, this implies existence of a manifold of equilibria representing
re-established healthy equilibria after immune response, in agreement with
long-term immunity [84, 94, 117]. In contrast, assuming constant transitions of
PCs would yield a decreasing vaccination-induced PC population, and a stable
immune characteristic would never manifest.

• From a mathematical point of view, the analysis lacks results for stability of
equilibria of the myeloma model located on the switching manifold. Since
the extension of established concepts for smooth dynamical systems to the
case of non-smooth dynamical systems is an open research area [21], further
investigation is necessary to provide an adequate theoretical framework, possibly
similar to the theorem of Hartman and Grobman [36, Theorem 1.4.1].

• The presented models comprise interpretable and measurable parameters.
Their values are derived from literature or evaluated by estimation using data.
Information for the transition rates cannot be derived experimentally. Their
values are fixed by assuming a biologically plausible range. As addressed
by sensitivity analysis a certain level of uncertainty remains regarding their
absolute value, but not regarding their order of magnitude.

• The parameter estimation procedure is based on discretisations of the malignancy-
induced perturbation of the healthy equilibrium minimising the amount of
executions. This can be criticised as being a too general approximation which
might not be suited for each individual patient data set to identify the best fit.
To overcome this issue, a selection criterion for the best-fit solutions is chosen to
antagonise errors due to discretisation. Further, a fixed value for the individual
healthy equilibrium might not be optimal for each patient data set. Individual
weakness of the chosen algorithm can be compensated by the large number of
patients (n = 322 for AMM and n = 196 for MGUS). Instead of fixing k and
minimising the error variance with respect to T and x0

m, optimisation could
also be performed for T, x0

m and k simultaneously. However, this would imply
an impractical amount of executions.

• Growth patterns of malignant PCs approaching an equilibrium are not sup-
ported by data [47]. Apart from the discussion depicted in this thesis, optimi-
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sation could include constraints on the parameters p1 and p2 to avoid these
patterns. However, such an approach could be criticised as being biased. Thus,
estimation is performed using unconstrained optimisation methods.

• In about 30% of the patients within the AMM-cohort, the growth of the popula-
tion of malignant PCs could not be attributed to being either niche-dependent
or niche-independent. Klein et al. [60] propose malignant PCs to become
partially independent of the niche due to self-reliant production of survival and
growth factors. This could be seen as a potential description of the behaviour
of malignant PCs. To account for the grade of dependence, an extension of
the myeloma model including a continuous structure in terms of structured
population equations [92] could be introduced. Since the dependences of the
involved parameters, for example, death, proliferation and transitions, on the
structural variable cannot be identified experimentally, further assumptions
would be necessary, increasing the complexity of the model.

• The derived models consisting of ODEs are suited for describing the dynamics
of large populations of PCs being well-mixed and spatially homogeneous.
Although the investigation of the initial number of malignant PCs arriving at
the bone marrow involves few cells located within transient regions between
the peripheral blood and the bone marrow, results are still reliable since
quantification does not address the absolute value of the initial number of
malignant PCs but their order of magnitude.

12.3 Further directions

The work presented in this thesis could be continued in the following directions:

• Considering myeloma growth dynamics, further investigation could identify
and, at the best, quantify the grade of niche-dependence of malignant PCs.
The dynamic DT might be useful as a clinical parameter quantifying the time-
varying accumulation capacity of myeloma. This is not only of theoretical
interest but might also serve as foundation for improved treatment strategies,
which might potentially be testable by means of the model framework.
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• Considering myeloma bone disease, future research could elaborate a deeper
investigation of the relationship between the cell and the bone remodelling
dynamics. The myeloma model could be extended in order to capture the
mutual interference of bone formation and degradation processes and malignant
cell dynamics within the niche, which leads to bone destructions in MM [60].
This appears promising since existing models lack the explicit consideration of
cells resident in the niche, see Section 1.3.

• Considering further research, the derived mathematical models might serve
as frameworks for niche mechanisms in the bone marrow being present in
other populations of healthy and malignant cell dynamics, as for example in
general stem cell competitions [79, 114], healthy haematopoiesis and leukaemia
[111, 134]. These would allow capturing the niche as a compartmental ingredient
instead of a non-linear feedback, which has heretofore been suggested by a
range of models, see for example [30, 82, 85, 113].

12.4 Conclusions

The new mathematical models describe the key elements impacting on the dynamics
of healthy and malignant PC accumulation in the bone marrow, and are adequate in
terms of biological plausibility, self-consistency, and well fitting data allowing exposing
previously unknown mechanisms not being able to be investigated experimentally.
Modelling was achieved by tight collaboration between the Institute of Applied

Mathematics at Heidelberg University and the Multiple Myeloma Research Labo-
ratory at University Clinic Heidelberg, whereby biomedical hypothesis, advanced
modelling approaches and subsequent validation of the model outputs were iteratively
combined. Mathematical analysis reveals underlying mechanism responsible for ob-
served dynamics. Evaluation of parameter estimation using clinical data consisting of
serum and urine samples (n = 8398) of patients with AMM and MGUS (n = 322 and
n = 196, respectively) allows characterising growth of malignant PCs and initiation
of myeloma.

As for healthy PCs, modelling suggests the niche to be beneficial for survival and
growth of malignant PCs. Accumulation of malignant PCs can be quantified by
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the DT. A faster DT (significantly more frequent in niche-independent than in
niche-dependent populations of malignant PCs) relates to a higher probability of
progression to symptomatic myeloma, and correlates with a small initial number
of malignant PCs. One initial malignant PC can rarely explain observed growth
patterns, and initiation of myeloma can be characterised by a „malignant wave“
comprised of a population of malignant PCs arriving at the bone marrow and
perturbing healthy homoeostasis.





13 Summary

Background

Plasma cell (PC) dyscrasias are characterised by accumulation of malignant PCs
in the bone marrow. Asymptomatic multiple myeloma (AMM) evolves from mono-
clonal gammopathy of unknown significance (MGUS) and progresses to symptomatic
myeloma involving end organ damage. Three main questions are addressed by math-
ematical modelling. Firstly, how is growth of malignant plasma cells characterised?
Secondly, how fast does progression from early asymptomatic stages (MGUS, AMM)
to symptomatic myeloma happen? Thirdly, how many malignant plasma cells initially
arrive at the bone marrow?

Mathematical models

New mathematical models are formulated to analyse the dynamics of malignant PC
accumulation in the bone marrow and its niche. Growth of healthy PCs can be
described by the basic model. Healthy PCs are assumed to be constantly produced
and enter the bone marrow through the peripheral blood where PCs outside the
niche are distinguished from those inside the niche. Cell transitions between those
two compartments are regulated by the function z(t) representing the surplus of
PCs outside (if z(t) > 0) or inside (if z(t) < 0) the niche relative to the niche
balance (if z(t) = 0). The healthy equilibrium is identified as representative for
healthy homoeostasis. As a refinement of the basic model, the extended model allows
capturing the dynamics induced by a perturbation of the healthy equilibrium due to
vaccination as example for a natural pathogen-induced production of healthy PCs.
Derivation of the myeloma model is based on the extended model, where malignant
PCs are considered as a population of „vaccination-induced“ PCs with the difference
of being able to proliferate at net growth rates p1 and p2 for malignant PCs outside
and inside the niche, respectively.
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Analysis of the mathematical models

The mathematical models generate piecewise-smooth continuous dynamical systems.
For the basic model, results about existence and uniqueness of non-negative solutions
are provided. By means of a Lyapunov function, global asymptotic stability of the
healthy equilibrium is shown. Invariant sets within the state space are identified
which allow deducing that the function z(t) may switch its sign at most once, and that
z(t) has at most one maximum or minimum. Results are visualised by qualitative
simulations.
In case of the myeloma model, a domain of definition is identified assuring that

the model equations are defined and solutions stay non-negative. Existence and
uniqueness of solutions is proven and the set of equilibria is characterised. Two
partial equilibria are shown to exist in dependence on the values p1 and p2, and on the
choice of the initial conditions for malignant PCs. They extend the classical notion
of equilibria. Further analysis focuses on their stability and the characterisation of
their non-constant components. Results are visualised by qualitative simulations.
Existence and uniqueness of non-negative solutions of the extended model are

deduced by previous results. Further analysis reveals global attractiveness of the
one-dimensional manifold of non-isolated equilibria. Estimates for model solutions
with initial conditions representing a vaccination-induced perturbation of the healthy
equilibrium are provided, and results are visualised by qualitative simulation.

Quantitative application using clinical data

In a first step towards quantitative application of the mathematical models, clinical
data consisting of serum and urine samples (n = 8398) of patients with AMM and
MGUS (n = 322 and n = 196, respectively) are used to characterise growth of
malignant PCs by means of an exponential model leading to the doubling time (DT).
Having discussed surrogates for cell numbers, the parameter estimation procedure is
carried forward addressing fixation of deducible parameter values, defining suitable
fitting procedures, and selecting eligible patient data sets. The calibrated model is
shown to reproduce biological observations. Model identifiability and sensitivity are
addressed, indicating that certain variations in the transition rates of PCs still imply
the validity of the obtained best-fit solutions. Parameter estimation of p1 and p2
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results in adequate fittings, which on the one hand validate the models, and on the
other hand are used to expose previously unknown biological mechanisms.

Biological results

The mathematical models are adequate in terms of biological plausibility, self-
consistency, and well fitting data. Healthy PC dynamics induced by antigen encounter
and the concomitant production of healthy PCs can be described by the extended
model as exemplified by a vaccination scenario. The model is able to reproduce
biological observations. Growth of malignant PCs can be described by an exponential
model. More realistic dynamics involving healthy PCs and the bone marrow niche
are captured by the myeloma model.

The DT quantifies the rate of accumulation of malignant PCs. The identification
of four DT-groups of patients with very fast, fast, intermediate and almost no
accumulation delineates significantly different probabilities of progression from AMM
to symptomatic myeloma [109].

Growth of malignant PCs is associated with faster proliferation of malignant PCs
inside the niche compared to those outside the niche. The median DT in patients with
niche-independent populations of malignant PCs is significantly faster compared to
patients with niche-dependent populations. In more than 90% of all eligible patients
within the AMM-cohort and MGUS-cohort, the initial number of malignant PCs
is in the magnitude of 104 − 1011 cells and 108 − 1011 cells, respectively. An initial
number of malignant PCs consisting of only one cell can explain the observed growth
patterns in less than 1% and less than 0.5% of all patients within the AMM-cohort
and MGUS-cohort, respectively. A fast (slow or negative) associated DT correlates
with a small (large) initial number of malignant PCs

Conclusions

As for healthy PCs, modelling suggests the niche to be beneficial for survival and
growth of malignant PCs. Accumulation of malignant PCs can be quantified by
the DT. A faster DT (significantly more frequent in niche-independent than in
niche-dependent populations of malignant PCs) relates to a higher probability of
progression to symptomatic myeloma, and correlates with a small initial number
of malignant PCs. One initial malignant PC can rarely explain observed growth
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patterns, and initiation of myeloma can be characterised by a „malignant wave“
comprised of a population of malignant PCs arriving at the bone marrow and
perturbing healthy homoeostasis.
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List of symbols

A non-exclusive list of abbreviations and mathematical symbols is provided.

Abbreviations

Ig Immunoglobulin

IgA Immunoglobulin A

IgG Immunoglobulin G

IgM Immunoglobulin M

MM Multiple myeloma

PC Plasma cell

ODE Ordinary differential equation

AMM Asymptomatic multiple myeloma

MGUS Monoclonal gammopathy of unknown significance

IMWG International Myeloma Working Group

Basic model Basic model of healthy PC dynamics in the bone marrow,
see Chapter 3

Extended model Extended model of healthy PC dynamics in the bone
marrow, see Chapter 4

Myeloma model Model of healthy and malignant PC dynamics in the bone
marrow, see Chapter 5
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Mathematical symbols

N Set of natural numbers

R Set of real numbers

R+ Set of non-negative real numbers, i.e. {x ∈ R : x ≥ 0}

C Set of complex numbers

Rn Set of n-dimensional vectors over R, n ∈ N

Rn×n Set of n× n-matrices over R, n ∈ N

0n×n n× n-zero matrix, n ∈ N

1n×n n× n-identity matrix, n ∈ N

C(U ,V) Set of continuous functions U 7→ V . Abbreviation: C

Cr(U ,V) Set of r-times continuously differentiable functions U 7→ V .
Abbreviation: Cr

C∞(U ,V) Set of smooth functions U 7→ V . Abbreviation: C∞

∇ Gradient

V̇ Lie derivative of V along a vector field, i.e. V̇ (x) =
∇V (x) · g(x) with x′(t) = g(x(t))

xT Transposition of vector x

AT Transposition of matrix A

|A| Determinant of matrix A

exp(x) = ex Exponential function of x

ln(x) Natural logarithm of x

<(x) Real part of x ∈ C

‖ · ‖1 1-norm, i.e. ‖x‖1 = ∑n
i=1 |xi| for x = (x1, . . . , xn)T ∈ Rn
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t Time variable

x′(t), d
dt
x(t) Derivative of x with respect to t

∂f
∂xi

(x1, . . . , xn) Partial derivative of f with respect to xi, i = 1, . . . , n

max, min Maximum or minimum of a function or set

argmin f(x) Value of x such that f is minimal

id Identity map

U Closure of a set U

∂U Boundary of a set U

O(g) Landau symbol, where f ∈ O(g) if
∣∣∣f(x)
g(x)

∣∣∣ <∞ for large x

∆ Change of a parameter θ, i.e ∆(θ), or difference/error of a
function x, i.e. ∆(x)
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A Mathematical methods

A.1 Piecewise-smooth continuous dynamical systems

A.1.1 Basic definitions

While the theory of smooth dynamical systems is well understood [36, 67, 130],
much less in known about non-smooth continuous vector fields. Piecewise-smooth
systems exhibit a wide range of non-linear phenomena including bifurcations and
chaos [22, 77]. For review, see di Bernardo et al. [21] or Leine and Nijmeijer [78].

Definition A.1 (Time-continuous dynamical system, adapted from Definition 2.1
in [21]). A state space X ⊆ Rn, an index set T ⊆ R and an evolution operator
Φ : T × X → X, (t, x) 7→ Φ(t, x), i.e. a flow, define a time-continuous dynamical
system if

(i) Φ(0, x) = x for all x ∈ X

(ii) Φ(t+ s, x) = Φ (s,Φ(t, x)) for all x ∈ X, s, t ∈ T .

Definition A.2 (Piecewise-smooth flow, adapted from Definition 2.20 in [21]). A
piecewise-smooth flow is given by a finite set of autonomous ODEs

x′(t) = fi(x(t)) for x(t) ∈ Si,

where ⋃i Si = D ⊆ Rn and each Si has a non-empty interior. The intersection
Σij := S̄i ∩ S̄j is either an (n− 1)-dimensional manifold included in the boundaries
∂Si and ∂Sj, or is the empty set. In the first case, Σij is called a switching
manifold. Each vector field fi is smooth in the state x, and defines a smooth flow
Φi(t, x) within any open set U ⊆ Si.
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Definition A.3 (Degree of smoothness, adapted from Definition 2.21 in [21]). The
degree of smoothness at a point x0 on a switching manifold Σij of a piecewise-smooth
flow is the highest order r such that the Taylor series expansions of Φi(t, x0) and
Φj(t, x0) with respect to t, evaluated at t = 0, agree up to terms of O(tr−1). That
is to say, the first non-zero partial derivative with respect to t of the difference
(Φi(t, x0)− Φj(t, x0)) |t=0 is of order r.

By Definition A.3, a piecewise-smooth flow with degree of smoothness r is Cr−1.
Thus, the respective vector field is one degree less smooth, i.e. Cr−2 [21]. Systems
with degree of smoothness one are called Filippov systems [21, 26].

The following consideration focuses on an ODE local to a single switching manifold
Σ := Σ12 given by

x′(t) = f(x(t)) =

f1(x(t)) if x(t) ∈ S1

f2(x(t)) if x(t) ∈ S2,
(A.1.1)

where f1 generates a flow Φ1 and f2 generates a flow Φ2. As shown by di Bernardo
et al. [21], if f1 and f2 differ in an m-th partial derivative with respect to the state
x, the flows Φ1 and Φ2 differ in their (m+ 1)-st partial derivative with respect to
t. Observe that if f1(x(t)) = f2(x(t)) for x(t) ∈ Σ and there is a difference in the
Jacobian derivatives ∂

∂x
f1 6= ∂

∂x
f2 at x, then the degree of smoothness is two.

Definition A.4 (Piecewise-smooth continuous dynamical system, see Section 2.2.2
in [21]). A dynamical system generated by a piecewise-smooth flow of the form (A.1.1)
having degree of smoothness two or higher is called piecewise-smooth continuous
dynamical system.

To summarise, a piecewise-smooth continuous dynamical system is continuous across
the phase space boundaries but the Jacobian of the flow is discontinuous across the
switching manifold. Note that system (A.1.1) does not specify the flow within the
switching manifold in case of Σ /∈ S1∪S2. Continuity allows assigning Σ as belonging
to the region S1 or S2.

Using classical theory of ODEs [34, 39], (local) Lipschitz continuity of the vector
field implies existence and uniqueness of solutions of the respective system.
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Definition A.5 (Lipschitz continuity). Let g : U → Rn, U ⊆ R × Rn, be a (not
necessarily autonomous) continuous vector field with g : (t, x) 7→ g(t, x). Then, g is
locally Lipschitz continuous in x, uniformly in t, if for any closed bounded set V ⊆ U
there exists a constant L > 0 such that

‖g(t, x)− g(t, y)‖ ≤ L‖x− y‖ for all (t, x), (t, y) ∈ V .

Theorem A.6 (Existence and uniqueness of solutions of piecewise-smooth continuous
systems). Consider the piecewise-smooth continuous system (A.1.1) with initial
condition x(t0) = x0. Then, the following holds true:

(i) There exists a solution x(t) of (A.1.1) satisfying x(t0) = x0 which is defined
for all t on an open maximal interval of existence Imax ⊆ R with t0 ∈ Imax.

(ii) In addition, if f is (locally) Lipschitz continuous with respect to the state x,
then there exists a unique solution x(t) of (A.1.1) satisfying x(t0) = x0 which
is defined for all t on an open maximal interval of existence Imax ⊆ R with
t0 ∈ Imax.

Proof. Observe that f is continuous. Thus, the first statement follows by Peano’s
theorem [39, Theorem 1.1] and continuation of solutions [39, Theorem 2.1]. The
latter follows by the theorem of Picard and Lindelöf [39, Theorem 3.1]. See also
[34, Theorem 3.6].

Remark A.7 (Global existence and uniqueness of solutions). If Lipschitz continuity
holds on the entire domain, then Imax = R, implying global existence and uniqueness
of solutions. In general, the only obstruction to the solution propagating across the
entire domain is unboundedness. That is if a blow-up of the solution x(t) at a finite
time t1 > t0 can be excluded, i.e. limt→t1 x(t) =∞, then x(t) exists globally.

Remark A.8 (Continuous dependence of solutions on initial conditions and pa-
rameters). The unique solution x(t) of (A.1.1) satisfying x(t0) = x0 is continuously
dependent on the initial data x0 and t0 [119, Theorem 2.9]. If in addition to
the hypotheses in Theorem A.6 (ii) the vector field f depends on a parameter
λ ∈ G, G ⊆ Rk, i.e. f = f(x, λ), which is continuous for λ in G, then the unique
solution x(t) satisfying x(t0) = x0 is continuously dependent on the parameter λ [66,
Theorem 14.1.1].
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Remark A.9 (Smooth dependence of solutions on initial conditions and parameters).
It is well known that if the right-hand side of an ODE has continuous first derivatives
with respect to the state space and parameters, then the solution is continuously
differentiable with respect to the initial conditions and parameters [39, Theorem 3.3].
Yet, since the vector field f(x) is only piecewise-smooth, it cannot be deduced
that the solutions of (A.1.1) are smoothly dependent on initial conditions and
parameters. Piecewise-smooth systems may be approximated by smooth vector fields
(see Appendix A.2), which in turn gives rise to approximate solutions. These depend
smoothly on initial conditions and parameters.

A.1.2 Stability of equilibria

The extension of well-established concepts for smooth dynamical systems to the case
of non-smooth dynamical systems is an open research area [21]. Linearised stability
theory and the theorem of Hartman and Grobman [36, Theorem 1.4.1] cannot be
applied to non-smooth vector fields. The following definitions are adapted from [119,
Chapter 6].

Definition A.10 (Stability of an equilibrium). Consider the piecewise-smooth
system (A.1.1).

(i) An equilibrium x̄ is said to be stable if for every ε > 0, there exists a δ > 0
such that for every solution x(t) satisfying ‖x(t0) − x̄‖ < δ it follows that
‖x(t)− x̄‖ < ε for all t ≥ t0.

(ii) An equilibrium x̄ is said to be (locally) asymptotically stable if it is stable and
if there is a neighbourhood V of x̄ such that limt→∞ x(t) = x̄ for all x(t0) ∈ V .

Definition A.11 (Invariant set). Consider the piecewise-smooth system (A.1.1).
Let I ⊆ D be a set. Then, I is said to be (positively) invariant under the vector
field of the piecewise-smooth system (A.1.1) if for any initial value x(t0) = x0 ∈ I
the solution satisfies x(t) ∈ I for all t > t0.

If an invariant set is located in either S1 or S2, the theory of smooth vector fields may
be applied to analyse the stability of an equilibrium. However, if the invariant set
straddles the boundary Σ between S1 and S2, the derivation of necessary and sufficient
conditions that guarantee asymptotic stability are not definite. The application of
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the theory for smooth dynamical systems may lead to incorrect conclusions as the
following example illustrates.

Example A.12 (Unstable piecewise-linear system, adapted from Example 2.11
in [21], see also [19]). We consider the following piecewise-linear system in R3 with
x(t) = (x1(t), x2(t), x3(t))T given by

x′(t) =

A
+x(t) if x1(t) ≥ 0

A−x(t) if x1(t) < 0,

where

A+ =


−3.2 −1 0

25.61 0 −1

−75.03 0 0

 , A− =


−1 −1 0

1.28 0 −1

−0.624 0 0

 .

Since

A+x(t) = A−x(t) with x1(t) = 0,

the system is continuous across the switching manifold Σ = {x(t) ∈ R3 : x1(t) = 0}.
A straightforward calculation yields that the eigenvalues of A+ are −0.1± 0.5i and
−3, whereas the eigenvalues of A− are −0.2± i and −0.6. For each linear system
separately, this would imply stability of the origin (0, 0)T due to the negative real
parts of the eigenvalues [36]. Trajectories of the piecewise-linear system starting in
the neighbourhood of the origin tend to infinity, as indicated by Figure A.1.
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Figure A.1: A trajectory of the piecewise-linear system in Example A.12, which
starts in the neighbourhood of the trivial equilibrium (blue), tends to
infinity.

The previous example shows that stability properties of equilibria located on the
switching manifold Σ cannot be deduced from the sub-system dynamics in S1 and
S2. As proposed in [80], one way of proving stability of an equilibrium located on Σ
is to find a common Lyapunov function, i.e. a function that is Lyapunov for each of
the vector fields defining the systems dynamics in each of the phase space regions S1

and S2. The definition of a Lyapunov function and its application for determination
of the stability of an equilibrium originating from the classical theory of smooth
dynamical systems are provided [36, Chapter 1]. Thereby, the definition of the Lie
derivative of a function along a vector field is recalled [119, Chapter 6]. This is a
major tool for proving (positive) invariance of a set under a given vector field.

Definition A.13 (Lyapunov function). Let U ⊆ Rn be open and g ∈ C(U ,Rn) be
(locally) Lipschitz continuous. A Lyapunov function of the system x′(t) = g(x(t)) is
a function V ∈ C1(U , [0,∞)) with non-positive Lie derivative, that is to say,

V̇ (x) = ∇V (x) · g(x) ≤ 0 for all x ∈ U .

If the Lie derivative is strictly negative, that is to say,

V̇ (x) = ∇V (x) · g(x) < 0 for all x ∈ U

with g(x) 6= 0, then V is called a strict Lyapunov function.
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Theorem A.14 (Lyapunov stability). Let U ⊆ Rn be open and g ∈ C(U ,Rn) be
(locally) Lipschitz continuous. Let x̄ be an equilibrium of the system x′(t) = g(x(t)).
Moreover, let V ⊆ U be an open neighbourhood of x̄.

(i) If there exists a Lyapunov function V on V satisfying V (x̄) = 0 and V (x) > 0
for all x ∈ V with x 6= x̄, then x̄ is stable.

(ii) If there exists a strict Lyapunov function V on V satisfying V (x̄) = 0 and
V (x) > 0 for all x ∈ V with x 6= x̄, then x̄ is (locally) asymptotically stable.

Observe that if the statement of Theorem A.14 (ii) is satisfied globally (i.e. on
the complete domain U of the right-hand side g of the system), then x̄ is globally
asymptotically stable. Moreover, g is only required to be continuous. This justifies
the usage of Lyapunov stability for piecewise-smooth continuous dynamical systems.

Remark A.15. In Chapters 6, 7 and 8, the bar notation x̄ for designation of equilibria
is omitted. Instead, equilibria are labelled differently, or the time dependence is
dropped.

A.1.3 Numerical methods

As observed by Acary and Brogliato [1], dynamical systems consisting of piecewise-
smooth ODEs with Lipschitz continuous right-hand side can be solved numerically
with standard methods which apply to dynamical systems consisting of smooth ODEs
with Lipschitz continuous right-hand side [17, 38]. Due to non-differentiability of
the right-hand side, these methods have only order of convergence one. To maintain
the order, so-called event-driven schemes are used. The times at which the system
becomes non-smooth are accurately solved using, for instance, the Runge-Kutta
method [21, 35].
Within this thesis, the software package Mathematica, Version 9 by Wolfram

Research is used for solving piecewise-smooth continuous systems. This is done by
applying the function NDSolve, which uses methods based on an implicit assumption
that the right-hand side of the system of ODEs is Lipschitz continuous. In addition,
Mathematica allows event location and restarting of the numerical integration using
WhenEvent. For more details on implemented methods, see Mathematica’s online
documentation (http://reference.wolfram.com; last accessed: April 2016).
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A.2 Smoothing method

Consider the piecewise-smooth continuous dynamical system introduced in Ap-
pendix A.1, i.e.

x′(t) = f(x(t)) =

f1(x(t)) if x(t) ∈ S1

f2(x(t)) if x(t) ∈ S2

(A.1.1)

with f1(x) = f2(x) for x ∈ Σ. Furthermore, assume that

S1 = {x ∈ Rn | h(x) > 0}

Σ = {x ∈ Rn | h(x) = 0}

S2 = {x ∈ Rn | h(x) < 0}.

The non-smooth right-hand side f(x) can be approximated by a smoothed vec-
tor field [78]. For a smooth approximation of the sign-function, the arctangent
approximation may be used, i.e.

sign(x) ≈ 2
π

arctan(εx), ε� 1.

By using this approximation, the smoothed system of (A.1.1) reads

x′(t) = 1
2

(
f1 + f2 + 2

π
arctan(εh)(f1 − f2)

)
(A.2.1)

with f1,2 := f1,2(x(t)) and h := h(x(t)).

Example A.16 (Smoothed version of the basic model). Let h = h(xh, yh) = z =
xh − yh + n. Applying the smooth approximation (A.2.1) yields

x′h = f − 1
2

(
bh + ch + 2

π
arctan(εz)(bh − ch)

)
z − dxh

y′h = 1
2

(
bh + ch + 2

π
arctan(εz)(bh − ch)

)
z,

where the time dependence is skipped. Consequently, the approximated rates of
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transition are given by the function

1
2

(
bh + ch + 2

π
arctan(εz)(bh − ch)

)
.

To give an illustration, the approximation of the transition rates dependent on the
sign of z are shown in Figure A.2 for different values of ε. Smoothing of the basic
model requires the transition rates to be approximated by a continuous version.

Ε � 101

-0.2 0 0.2
zHtL

1

2

Transition rate
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zHtL
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Transition rate

Ε � 108

-0.2 0 0.2
zHtL

1

2

Transition rate

Figure A.2: Approximations of the transition rates for different values of ε. Black
dotted: Transition rates for z ≥ 0 and z < 0, respectively. Red:
Smooth approximation of transition rates. For details, see text.
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Example A.17 (Smoothed version of the myeloma model). Let h = h(xh, xm, yh, ym) =
z = xh + xm − yh − ym + n. Applying the smooth approximation (A.2.1) yields

x′h = f − 1
2

(
bh

xh
xh + xm

+ ch
yh

yh + ym
+ 2
π

arctan(εz)
(
bh

xh
xh + xm

− ch
yh

yh + ym

))
z − dxh

x′m = p1xm −
1
2

(
bm

xm
xh + xm

+ cm
ym

yh + ym
+ 2
π

arctan(εz)
(
bm

xm
xh + xm

− cm
ym

yh + ym

))
z

y′h = 1
2

(
bh

xh
xh + xm

+ ch
yh

yh + ym
+ 2
π

arctan(εz)
(
bh

xh
xh + xm

− ch
yh

yh + ym

))
z

y′m = p2ym + 1
2

(
bm

xm
xh + xm

+ cm
ym

yh + ym
+ 2
π

arctan(εz)
(
bm

xm
xh + xm

− cm
ym

yh + ym

))
z,

where the time dependence is skipped. Considering IgA-myeloma Patient 1, a
best-fit solution was found within the framework of the myeloma model, see Chapter
10. In Figure A.3, dotted functions represent solutions of the smoothed approxi-
mation using the identical set of parameters. The relative error of an approximate
solution sa(t) is defined by

sa(t)− s(t)
s(t) ,

where s(t) is the solution to be approximated. By this definition, the relative error
of the smoothed approximation in case of ε = 1012 is in the order of 10−7. Along
these lines, the smooth approximation of the piecewise-smooth continuous dynamical
system (A.1.1) yields a good approximation for large values of ε. Although it often
results in stiff differential equations which are numerically expensive to solve [78], it
allows applying the stability theory of equilibria for smooth vector fields [36].
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Figure A.3: Approximations (dotted) of a best-fit solution (solid) for IgA-myeloma
Patient 1 for different values of ε. The total number of healthy (blue)
and malignant (red) plasma cells (PCs) are visualised. For details, see
text.
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A.3 Principles of parameter estimation

A.3.1 Linear regression models

This chapter reviews basic results about linear regression. This is due to the fact
that methods for non-linear regression are mainly based on the linear findings. Basic
knowledge about probability theory is presumed [62]. For more details, see Seber
and Lee [105], Moser [87] or Yan and Su [132].

Definition A.18 (Multivariate normal distribution). Let µ ∈ Rn and Σ ∈ Rn×n be
a symmetric and positive definite matrix. The multivariate normal distribution is
defined by the probability density function

p(x) = 1
(2π)n/2|Σ|1/2 exp

(
−1

2(x− µ)TΣ−1(x− µ)
)
.

A random vector X is said to be normally distributed with mean µ and covariance
matrix Σ if it has probability density p(x). In that case, we write

X ∼ Nn(µ,Σ).

Definition A.19 (Chi-squared distribution). Let X1, . . . , Xn with Xi ∼ N (0, 1) be
independent. The chi-squared distribution with n degrees of freedom is defined as
the distribution of the random variable

Z =
n∑
i=1

X2
i

and denoted as Z ∼ χ2
n.

Definition A.20 (F-distribution). Let X1 ∼ χ2
n1 and X2 ∼ χ2

n2 be independent.
The F-distribution with n1 and n2 degrees of freedom is defined as the distribution
of the random variable

Z = X1/n1

X2/n2

and denoted as Z ∼ Fn1,n2 .
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Definition A.21 (Student’s t-distribution). Let X1 ∼ N (0, 1) and X2 ∼ χ2
n. The

Student’s t-distribution with n degrees of freedom is defined as the distribution of
the random variable

Z = X1√
X2/n

and denoted as Z ∼ tn.

Next, the definition of the linear regression model is stated.

Definition A.22 (Linear regression model). Let Y ∈ Rn be the vector of observations
or responses, X ∈ Rn×m the design matrix of explanatory or predictor variables,
β ∈ Rm the vector of parameters and ε ∈ Rn the vector of random variables
representing disturbances which perturb the responses. The linear regression model
reads

Y = Xβ + ε with ε ∼ Nn(0, σ2In). (A.3.1)

The following notation is used:

Y =



y1

y2

...

yn


, X =



x11 x12 . . . x1m

x11 x12 . . . x1m

... ... . . . ...

xn1 xn2 . . . xnm


β =



β1

β2

...

βm


, ε =



ε1

ε2

...

εn


.

At first, the variance σ2 is required to be known. Assuming that the linear model is
appropriate for the given data represented by Y , the goal of parameter estimation is
to find an estimate or a preferably good approximation β̂ of the true but unknown
parameter β.
The assumptions on ε imply that εi, i = 1, . . . , n, are mutually independent

and Y ∼ N (Xβ, σ2In), see [105, Theorem 2.1]. Thus, the joint probability density
function for Y , given β and σ2, reads

p(Y |β, σ2) = (2πσ2)−n
2 exp

(
−‖Y −Xβ‖2

2σ2

)
.
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Regarding this probability density function as a function of the parameters conditional
on the observed data yields the likelihood function L = L(β, σ2|Y ) [105], which
is maximised with respect to the parameter vector β when the residual sum of
squares

S(β) = ‖Y −Xβ‖2 =
n∑
i=1

yi − m∑
j=1

xijβj

 (A.3.2)

is minimised. Thus, the residual sum of squares is a suitable goodness-of-fit expression.

Proposition A.23 (Least squares estimate). Consider the linear regression model
(A.3.1). If the design matrix X has full rank, the optimisation problem

min
β∈Rm

S(β)

possesses a unique solution β̂, the least squares estimate, which is given by

β̂ =
(
XTX

)−1
XTY.

Proof. See [105, Section 3.1].

Due to the assumption on the distribution of the error ε, the least squares estimate
is also the maximum likelihood estimate for β, see [105, page 43].

Proposition A.24 (β̂ is unbiased). Consider the linear regression model (A.3.1).
Let β̂ be the least squares estimate for β. It holds true that

β̂ ∼ Nm
(
β, σ2

(
XTX

)−1
)
.

In particular, β̂ is an unbiased estimate for the parameter β.

Proof. The proof is stated in [105, Section 3.2].

If the variance σ2 cannot be assumed to be known, it needs to be estimated, too.

Proposition A.25 (An unbiased estimate for σ2). Consider the linear regression
model (A.3.1). Let β̂ be the least squares estimate for β. If the design matrix X has
full rank and n > m, it holds true that

s2 = S(β̂)
n−m

(A.3.3)
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is an unbiased estimate for σ2, which satisfies

s2 ∼ σ2

n−m
χ2
n−m.

Proof. See [105, Section 3.3].

Next, the uncertainty of the least squares estimate β̂ is addressed. Although β̂ gives
the value of β that fits the given data optimally, other values for β may also be
compatible with the observations.
For an individual parameter βj, j = 1, . . . ,m, the confidence interval of β̂j

contains the true parameter value of βj with a certain probability, for example 95%
(level of confidence). The multi-dimensional generalisation of a confidence interval
is the confidence region. A confidence region of β̂ contains the true parameter
value of β with a certain probability. In contrast to this concept, a confidence band
encloses the area that contains the true responses with a certain probability. It is
closely related to prediction bands, which enclose the area that one expects future
data points with a certain probability.

Theorem A.26 (Inference). Consider the linear regression model (A.3.1). Let β̂ be
the least squares estimate for β. The following inference statements hold:

(i) A 1− α confidence region for β is the ellipsoid

(
β − β̂

)T
XTX

(
β − β̂

)
≤ ms2Fm,n−m;α

where Fm,n−m;α is the upper α quantile for the F-distribution with m and n−m
degrees of freedom.

(ii) A 1−α confidence interval for the j-th parameter βj, j = 1, . . . ,m, is given by

β̂j ± se(β̂j)tn−m;α/2

where tn−m;α/2 is the upper α/2 quantile for Student’s t-distribution with n−m
degrees of freedom and the standard error of the estimate β̂j given by

se(β̂j) = s
√

(XTX)−1
jj

with the j-th diagonal element of the matrix (XTX)−1.
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(iii) A 1− α confidence interval for the expected response at x0 is given by

xT0 β̂ ± s
√
xT0 (XTX)−1x0tn−m;α/2.

(iv) A 1− α confidence band for the response function at any x is given by

xT β̂ ± s
√
xT (XTX)−1x

√
mFm,n−m;α.

Proof. See [105, Chapter 4].

Remark A.27. The matrix s2(XTX)−1 is also known as the covariance matrix of
the estimate β̂.

Criteria of model goodness are mostly based on standard goodness-of-fit measures,
on estimating the prediction error, on estimating the number of non-zero coefficients,
or on estimating some measure of distance between the model based on the estimate
and the true model [105].

Consider the residual sum of squares S(β) given by (A.3.2). Let Ŷ be the predicted
(or modelled) output of the linear model (A.3.1) given the data Y . The value of
β = β̂ has been determined such that S(β) is minimal, and Ŷ = Xβ̂. Then, the
residual sum of squares reads

S(β̂) = ‖Y − Ŷ ‖2 =
n∑
i=1

(
Yi − Ŷi

)2
.

Furthermore, let Ȳ = 1
n

∑n
i=1 Yi be the mean of the observed data. Then, consider

the two sums given by

n∑
i=1

(
Yi − Ȳ

)2
and

n∑
i=1

(
Ŷi − Ȳ

)2
,

where the first sum is denoted as the total sum of squares, and the latter is denoted
as the regression sum of squares. The following theorem holds true:
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Theorem A.28 (Coefficient of determination, adapted from Theorem 4.2 in [105]).

(i)

n∑
i=1

(
Yi − Ȳ

)2
=

n∑
i=1

(
Yi − Ŷi

)2
+

n∑
i=1

(
Ŷi − Ȳ

)2

(ii)

R2 :=
∑n
i=1

(
Ŷi − Ȳ

)2

∑n
i=1

(
Yi − Ȳ

)2 = 1− S(β̂)∑n
i=1

(
Yi − Ȳ

)2

The quantity R2 is known as the coefficient of determination. It relates the squared
residuals with respect to the linear regression to the squared residuals with respect
to the average value. The greater the value of R2, the closer is the predicted model
output to the observed data. If the curve fits the data perfectly, then it is S(β̂) = 0
and therefore R2 = 1. Otherwise, in general, R2 < 1.

The residual sum of squares S(β̂) and the estimated variance s2 (see (A.3.3)) are
suitable measures for the goodness of the fit if one aims to compare models with the
same number of variables [105].

A.3.2 Non-linear regression models

In linear regression, the relationship between the explanatory variables and the
observations was considered to be linear in the parameters. Most physical and
biological models involve responses to be non-linear functions of the parameters. As
in linear regression, non-linear estimation of parameters seeks to find those parameter
values that minimise the sum of squared residuals. Yet one usually cannot solve the
equation for the parameters analytically. For that reason various iterative numerical
procedures are applied.

Definition A.29 (Non-linear regression model). Let Yi, i = 1, . . . , n be the i-th
observation or response, xi ∈ Rk a vector of associated independent variables
for the i-th observation and θ ∈ Rm the vector of parameters. Furthermore, let
f = f(xi, θ) : Rk × Rm → R be the expectation function which is supposed to be
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non-linear in the parameters θ. The random variable εi represents the disturbance
which perturbs the i-th response. The non-linear regression model reads

Yi = f(xi, θ) + εi with εi ∼ N (0, σ2) (A.3.4)

or, in vector notation for n observations,

Y = η(θ) + ε with ε ∼ Nn(0, σ2In) (A.3.5)

where η(θ) = (f(x1, θ), . . . , f(xn, θ))T .

As in linear regression, the least squares estimate θ̂ of the parameter θ is of interest.
Geometrically, this means that the vector function η(θ) defines an m-dimensional
surface, called expectation surface, in the response space. The least squares estimate
corresponds to the point on the expectation surface, η̂ = η(θ̂), which is closest to Y .
Again, this implies that θ̂ minimises the residual sum of squares

S(θ) = ‖Y − η(θ)‖2.

Finding the best estimate θ̂ of the parameter θ in the non-linear regression model
(A.3.5) given the data typically involves the optimisation of a function, i.e. minimi-
sation of S(θ). Since this optimisation problem can rarely be solved analytically,
iterative numerical procedures have to be applied to find the optimal value of θ. In
general, the involved functions possess one or more local optima in addition to their
global optimum. This further complicates the optimisation procedure. Moreover,
reliable global optimisation methods are still subject of research and only available
for very restrictive classes of objective functions. Local optimisation methods can
be applied to find a local minimum. For a detailed survey on non-linear regression
methodology, see [6, 96, 106].

Remark A.30 (Embedding differential equation models in the regression framework).
Models describing biological or medical phenomena are formulated using differential
equations, for example

x′(t) = f(x(t), θ)
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where x(t) ∈ Rk is the state at time t, and θ ∈ Rm is the vector of parameters.
For piecewise-smooth systems, it is f : Rk × Rm → Rk piecewise-smooth in the
state-space x(t, θ). Let g : Rk → Rl, l ≤ k, be the function which associates the
internal states x(t, θ) with the observations y(t), that is to say,

y(t) = g(x(t, θ)) + ε,

where ε represents the normally distributed measurement noise. In particular, if all
internal states can be observed, it is g = id. Consequently

y(t) = x(t, θ) + ε

with y(t) ∈ Rk. In general, the relationship between x and t is non-linear in the
parameters θ. Moreover, x(t, θ) (and therefore g(x(t, θ))) cannot be expected to be
differentiable with respect to the parameters θ, see Remark A.9. Note that if l < k,
the model is said to be partially observed. Observations can be measurements taken
at discrete time points tj, j = 1, . . . , n. If n ≥ m, then the model parameters θ
can be (not necessarily uniquely - see Appendix A.4) determined on basis of the
observations [106].
In case of the parameter estimation problem in the framework of the myeloma

model (5.0.1), data describe the total number of both healthy and malignant PCs
and do not distinguish between cells out- or inside the niche. Hence, the observables
are sums of the internal states. In this view, since k = 4 and l = 2, the myeloma
model is partially observed.

Linear approximation

In this section, the linear approximation for the non-linear regression model given by
(A.3.4) or (A.3.5), respectively, is introduced. Let f ∈ C1(Rk × Rm,R).

The most basic numerical approach for finding the least squares estimate given
the data vector Y , the expectation function f(xi, θ) and a set of design vectors
xi, i = 1, . . . , n, is the Gauss-Newton method. It uses a linear approximation of the
function f to iteratively improve an initial guess θ0 for θ and keeps improving the
estimates until there is no further improvement. The function f(xi, θ) is expanded
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in a first order Taylor series about θ0 as follows:

f(xi, θ) = f(xi, θ0) + νi1(θ1 − θ0
1) + νi2(θ2 − θ0

2) + · · ·+ νim(θm − θ0
m)

with

νij = ∂f(xi, θ)
∂θj

∣∣∣∣∣
θ0

for j = 1, . . . ,m.

In vector notation, this reads

η(θ) = η(θ0) + V 0(θ − θ0)

where V 0 ∈ Rn×m is the Jacobian matrix of η evaluated at θ0 with elements {νij}.
Setting ε0 = Y − η(θ0) and δ = θ − θ0, this is equivalent to

ε(θ) = Y −
(
η(θ0) + V 0δ

)
= ε0 − V 0δ,

which is an approximation of the residuals. Observe that we derived a linear regression
model (A.3.1) given by

ε0 = V 0δ + ε(θ)

with the preliminary residuals ε0 as observation variable, the rows of V 0 as vectors
of associated independent variables, and the coefficients δ ∈ Rm. This linear model
approximates the non-linear regression model, allowing the use of methods in the
framework of linear regression.

Continuing the Gauss-Newton method, an increment is calculated based on the
geometry of the linear regression model in order to minimise the approximate
residual sum of squares ‖ε0 − V 0δ‖2. This yields an improved value θ1, for which
again, the approximated model is calculated. This iteration step is continued as
long as the correction of the previous estimate is negligible. Information about the
technical details can be found in [6, 12]. An overview of further common numerical
methods can be found in [13, 106].
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Remark A.31 (Linear approximation).

(i) The adequacy of the linear approximation is essential both for the quality of
the numerically determined estimate with respect to the non-linear model, and
the convergence properties of the numerical methods. Beside this, reasonably
chosen initial guesses may help the iterative procedure to find a solution more
quickly and surely. Since the Gauss-Newton method is a local optimisation
method, the algorithm tends to stop in a local minimum. Consequently, the
initial guess θ0 should be varied to assure the identification of the global
minimum.

(ii) If f is a piecewise-smooth function, then the partial derivatives νij do not exist
at non-differentiable points. However, most algorithms based on derivatives
(such as the Gauss-Newton method) still tend to perform well as long as the
discontinuities are isolated, few and do not occur in the neighbourhood of the
minimum [106].

(iii) The derivatives νij are also called sensitivities, which shall be discussed in
Appendix A.4.

The linear approximation is used to derive appropriate statistical inference about the
least squares estimate θ̂. For that, let V̂ denote the Jacobian matrix of η evaluated
at θ̂. The linear approximation is given by

η(θ) = η(θ̂) + V̂ (θ − θ̂).

Analogously to the results in Theorem A.26, an approximate 1− α confidence region
for a non-linear model is given by

(
θ − θ̂

)T
V̂ T V̂

(
θ − θ̂

)
≤ ms2Fm,n−m;α,

where the linear approximation V̂ takes the place of the design matrix X. Similarly,
approximate confidence bands may be constructed.

Remark A.32 (Goodness-of-fit measures for non-linear regression). In contrast to
linear regression models, the sums of the squared errors in non-linear regression
generally do not add up as stated in Theorem A.28. As a consequence, using R2 to
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evaluate the fit of non-linear models leads to incorrect conclusions [112]. Instead,
the unbiased estimate of the error variance given by

s2 = S(θ̂)
n−m

(A.3.3)

can be used, where n is the number of measurements and m is the number of
parameters. In particular, it can be used to compare the goodness of a fit of different
models given the same set of data. A smaller value of s2 indicates a better fit.

In the following, a numerical method is addressed which does not incorporate
derivatives. The so-called direct search methods do not approximate η(θ) in the
vicinity of θ0. Instead, they compare function values. These methods are generally
recommended for non-smooth functions [31].

The method of Nelder and Mead

The algorithm of Nelder and Mead [90] is the most common direct search method.
It is based on a simplex, which is a polytope of n+ 1 vertices in n dimensions. In
the following, the algorithm is delineated.

Let g be the function to minimise. At each iteration, n+1 points x1, . . . , xn+1 form
the corners of a regular polytope or simplex. For instance, for n = 2, the polytope
is a triangle. The points are ordered such that g(x1) ≤ g(x2) ≤ · · · ≤ g(xn+1). The
worst point xn+1 is replaced by a newly generated point. Let

c =
n∑
i=1

xi

be the centroid of the remaining points. A new trial point xt is generated by reflecting
the worst point through the centroid, i.e.

xt = c+ α(c− xn+1),

where α > 0 is a parameter of the algorithm. The following action to be taken
depends on xt:

• If g(x1) ≤ g(xt) ≤ g(xn), then replace xn+1 by xt.
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• If g(xt) < g(x1), the search direction is promising, thus one more reflection can
be carried out by

xe = c+ β(xt − c) with β > 1.

If g(xe) < g(xt), then xe replaces xn+1. Otherwise, xt replaces xn+1.

• If g(xt) > g(xn), i.e. xt is still the worst point, a smaller contraction step needs
to be taken. The new trial point is defined as

xc =

c+ γ(xn+1 − c) if xt ≥ xn+1

c+ γ(xt − c) if xt < xn+1

with 0 < γ < 1. If g(xc) < min{g(xn+1), g(xt)}, replace xn+1 by xc. Otherwise,
a further contraction is carried out.

As possible stopping rule, a maximal amount of iterations can be predetermined.
Another possibility is to stop the algorithm if the difference between the best function
values in the new and old polytope, or the distance between the new best point
and the old best point are less than prescribed tolerances, see Wolfram Research
Mathematica’s online documentation (http://reference.wolfram.com; last accessed:
April 2016). In contrast to derivative-based optimisation methods, the Nelder-Mead
algorithm is more robust, though its rate of convergence is lower [106].

Estimation with Mathematica

Non-linear regression analysis is performed using the software package Mathematica,
Version 9 by Wolfram Research. The numerically solved system is used to fit the
(transformed) data to the obtained system of equations.

Mathematica has a built-in function called NonlinearModelFit which returns a
FittedModel object representing the constructed non-linear model based on the
given data. The software also returns properties and diagnostics of the model which
rely on linear approximations. In case of the myeloma model (5.0.1), this is at the
expense of the routine’s execution time. Consequently, the residual sum of squares
is directly minimised using built-in functions for numerical non-linear optimisation.
The function NMinimize is able to cope with functions that are not differentiable.



262 A Mathematical methods

The algorithm of Nelder and Mead is used by specifying the method NelderMead.
To identify the global minimum, we choose different initial guesses for the values of
the parameters and run optimisation several times.
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A.4 Sensitivity and identifiability

A.4.1 Sensitivity analysis

Sensitivity analysis investigates how a perturbation of the value of an independent
variable (for example a parameter) influences a particular dependent variable (for
example an observation) [29]. Global sensitivity analysis considers model behaviour
over a wide range of parameter values, whereas local sensitivity analysis focuses on
investigation of model behaviour near a particular point in the parameter space.
Consider the following initial value problem

x′(t) = f(x(t, θ), θ), x(t0) = x0 (A.4.1)

with x(t, θ) ∈ Rk and parameters θ ∈ Rm. We assume that f : Rk × Rm → Rk is
sufficiently smooth. In case of piecewise-smooth continuous dynamical systems, the
right-hand side f is in general not smooth. However, it can be approximated by a
smoothed vector field [78]. For details, see Appendix A.2. In order to interpret the
initial value x0 as parameter, let θ̃ = (θ, x0)T ∈ Rm+k. In the following, the tilde is
skipped. Let x(t, θ) denote the solution of (A.4.1).
Changing the value of the j-th parameter, j = 1, . . . ,m, in the parameter vector

θ, from θj to θj + ∆(θj) yields the corresponding solution to become

x = x(t, θj + ∆(θj)), (A.4.2)

where for brevity, only θj is mentioned explicitly. Since x is a continuous function of
θj, (A.4.2) can be expanded into a Taylor series. For small ∆(θj), the Taylor series
can be truncated after the linear term, yielding

∆(x) = x(t, θj + ∆(θj))− x(t, θj) ≈
∂x(t, θj)
∂θj

∆(θj).

∆(x) is the variation of x due to the change of the input parameter θj given by ∆(θj).
Taking the limit ∆(θj)→ 0 results in

∂x(t, θj)
∂θj

,
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which is known as the (first order) local sensitivity of the dependent variable x with
respect to the input parameter θj.

In the following, established definitions in sensitivity analysis are summarised [25].

Definition A.33 (Nominal value). The nominal value of a parameter vector θ,
which is assigned by θ0, is that value of θ whose corresponding experimental and
analytical system responses are initially very close to each other, or, ideally, these
two values are identical. It also refers to the estimate of θ.

Definition A.34 (Parameter variation). If θ changes its nominal (or initial) value
θ0 to a new value θ0 + ∆(θ), then ∆(θ) is defined as parameter variation relative to
the nominal condition θ0. It is assumed that this change is static.

Definition A.35 (Primitive sensitivity function). Assume that ∆(θj) is the pa-
rameter variation of the j-th component of θ, i.e. θj. Suppose that xi, i.e. the i-th
component of the response of system (A.4.1), changes to xi + ∆(xi) as θj changes
to θj + ∆(θj). Then, the ratio ∆(xi)/∆(θj) is defined as the primitive sensitivity
function.

As shown above, if the parameter variation ∆(θj) is small, it is

lim
∆(θj)→0

∆(xi)
∆(θj)

= ∂xi
∂θj

,

which exists due to smoothness of f in (A.4.1) [39]. Then the following time-dependent
matrix can be constructed:

Definition A.36 (Sensitivity matrix and sensitivity function). The matrix

S(t) = ∂x

∂θ
(t, θ) =



∂x1
∂θ1

(t, θ) ∂x1
∂θ2

(t, θ) · · · ∂x1
∂θm+k

(t, θ)

∂x2
∂θ1

(t, θ) ∂x2
∂θ2

(t, θ) · · · ∂x2
∂θm+k

(t, θ)
... ... . . . ...

∂xk

∂θ1
(t, θ) ∂xk

∂θ2
(t, θ) · · · ∂xk

∂θm+k
(t, θ)


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is called sensitivity matrix with respect to the parameters θ. The element Sij(t) is
called sensitivity function of xi with respect to θj.

The sensitivity function

Sij(t) = ∂xi
∂θj

(t, θ)

describes how the state xi, i = 1, . . . , k, changes if the parameter θj, j = 1, . . . ,m, is
infinitesimally altered. In order to eliminate the physical dimension of the sensitivity
functions and to normalise the magnitudes of the input parameter θj and the variable
xi, the sensitivities are multiplied by a weighting factor, which yields relative or
normalised sensitivity functions.

Definition A.37 (Normalisation of the sensitivity). Consider the following types of
normalisation of the sensitivity function Sij(t):

(i) Normalisation relative to the numerator (species quantity): 1
xi(t,θ)Sij(t)

(ii) Dimensionless normalisation: θj

xi(t,θ)Sij(t)

The normalised sensitivity relative to the species quantity can be interpreted as
follows: An infinitesimal increase in θj near θ0

j leads to a 1
xi(t,θ)Sij(t)× 100 % increase

in xi(t, θ) at time t.

Remark A.38 (Large changes of the parameter). If the change ∆(θ) of the parameter
θ is not infinitesimal but large, the error x(t, θ0+∆(θ))−x(t, θ0) needs to be addressed
instead of using sensitivity functions. For that, it is sufficient for f in (A.4.1) to be
Lipschitz continuous.

Sensitivities can be calculated using numerical methods which are based on external
and internal numerical differentiation, for example using the variational differen-
tial equation or sensitivity equations, respectively [11, 12, 100]. Differentiation
of the sensitivity matrix with respect to the time t, and reversing the order of
differentiation, yields

d

dt

∂x

∂θ
(t, θ) = ∂

∂θ

(
d

dt
x(t, θ)

)
= ∂f

∂θ
(x(t, θ), θ).
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Using the chain rule for differentiation, it follows that the variational differential
equation,

d

dt

∂x

∂θ
(t, θ) = ∂f

∂x
(x(t, θ), θ)∂x

∂θ
(x(t, θ), θ) + ∂f

∂θ
(x(t, θ), θ). (A.4.3)

Since θ ∈ Rm+k includes them-dimensional vector of parameters and the k-dimensional
vector of initial conditions for the solution vector x(t, θ), the initial conditions for
system (A.4.3) at t = t0 are given by

∂x

∂θ
(t0, θ) =

(
0k×m 1k×k

)
,

where 0k×m denotes the k×m-dimensional zero matrix and 1k×k is the k × k-dimen-
sional identity matrix. The sensitivities in (A.4.3) are to be solved simultaneously
with the respective state equations (A.4.1).

Beside other applications, sensitivity can be used as a tool for model calibration,
i.e. determining numerical values for model parameters. This is a key issue in fitting
models to given data. Sensitivity can address model identifiability, i.e. the question
of whether or not parameter values for a model can be determined from a given set
of data.

A.4.2 Local structural identifiability

Identifiability analysis investigates if it is possible to assign unique values for the
unknown parameters for one model prediction. This is fundamental for parameter
estimation since the presence of non-identifiable parameters may result in bad
convergence of the numerical method for solving the optimisation problem leading
to wrong results.

According to Raue et al. [99], a parameter is said to be identifiable if the confidence
interval of its estimate is finite. A very large confidence interval may already indicate
non-unique identification of the corresponding parameter, particularly if the interval
includes zero. In the following, structural identifiability is considered, which is related
to model structure independent of data. In contrast, practical identifiability takes
into account the amount and quality of the data, being less well defined in literature
[97–99].
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Definition A.39 (Structural identifiability, adapted from Chapter 2 in [126]). Let
M(θ) represent a mathematical model with vector θ ∈ Rm of unknown parameters.

(i) A parameter θi, i = 1, . . . ,m, is globally structurally identifiable if for almost
any θ∗ ∈ Rm, it follows that M(θ) = M(θ∗) implies θi = θ∗i .

(ii) A parameter θi, i = 1, . . . ,m, is locally structurally identifiable if for almost
any θ∗ ∈ Rm, there exists a neighbourhood U(θ∗) such that M(θ) = M(θ∗)
implies θi = θ∗i for all θ ∈ U(θ∗).

(iii) A parameter θi, i = 1, . . . ,m, is structurally non-identifiable if for almost any
θ∗ ∈ Rm, there exists no neighbourhood U(θ∗) such thatM(θ) = M(θ∗) implies
θi = θ∗i for all θ ∈ U(θ∗).

For the subsequent analysis of local structural identifiability of parameters and its
relation to sensitivity functions, consider the system

x′(t) = f(x(t), θ), x(t0) = x0

y(t) = g(x(t), θ)

where x(t) ∈ Rk describes the state, θ ∈ Rm is the vector of parameters, and y(t) is
the model output. Furthermore, f : Rk × Rm → Rk, and g : Rk × Rm → Rl, l ≤ k.
The function g describes the observations in terms of the state variable and the
parameters. Again, the parameter vector may be extended to capture the initial
condition x0, i.e. θ̃ = (θ, x0)T ∈ Rm+k. In the following, the tilde is skipped. For
sake of simplicity, the derivation for one observation is provided, i.e. y(t) is a scalar.
Note that the results may be extended to multiple observations. The descriptions
follow Walter [125].
For an initial estimate θ̂ for θ, a large number of predictions at n > m+ k time

points can be computed, where y(ti) = y(i, θ̂), i = 1, . . . , n. If y(i, θ) = y(i, θ̂) for
θ 6= θ̂, then both outputs are indistinguishable, resulting in non-identifiability of θ̂.
Let the map G be defined by

G : θ 7→ y(i, θ), i = 1, . . . , n.

Identifying θ̂ from the set of predictions {y(i, θ) : i = 1, . . . , n} can be viewed as
looking for an inverse mapping G−1. The inverse function theorem implies that this
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exists (locally) if the matrix H defined by

H =



∂y
∂θ1

(1, θ) ∂y
∂θ2

(1, θ) · · · ∂y
∂θm+k

(1, θ)

∂y
∂θ1

(2, θ) ∂y
∂θ2

(2, θ) · · · ∂y
∂θm+k

(2, θ)
... ... . . . ...

∂y
∂θ1

(n, θ) ∂y
∂θ2

(n, θ) · · · ∂y
∂θm+k

(n, θ)


has a rank equal to the number of unknown parameters. Observe that H is a
sensitivity matrix with entries giving the sensitivities of the model output y(t, θ) to
infinitesimal perturbations of parameters at time points tj, 1, . . . , n. For identification
of insensible and therefore locally non-identifiable parameters, the columns of H
have to be examined. For insensible parameters the corresponding columns have
only (nearly) zero entries. If some components of θ are a priori known, it implies
that corresponding columns of H are zero, and they have to be discarded [52, 125].
Investigation of parameter sensitivity allows drawing conclusions on local structural
identifiability. Along these lines, a parameter is likely to be identifiable if the system
output is highly sensitive to small perturbations of this parameter. Otherwise, locally
insensible parameters are likely to be non-identifiable. Moreover, narrow confidence
intervals for the estimates of the parameters under consideration may imply their
identifiability. If the use of different methods for parameter estimation and different
values for initial guesses lead to the same estimates, this indicates that the parameter
of interest is identifiable.
Available data should not be disregarded since structural identifiability does not

necessarily imply practical identifiability [97]. An insufficient amount and quality of
data or of the chosen time points can lead to large confidence intervals.



B Contributions

Table B.1: Contributions to the scientific work depicted in this thesis.

Subject Item Contribution

Modelling Discussion and development of
model formulation and interpreta-
tion of results

PD Dr. Dr. Dirk Hose (2)
Prof. Dr. Anna Marciniak-Czochra (1)
Dr. Anja Seckinger (2)

Statistical analysis and interpreta-
tion of doubling times (Section 9.1)

PD Dr. Dr. Dirk Hose (2)
Dr. Anja Seckinger (2)

Mathematical
analysis

Discussion of relevant issues Prof. Dr. Anna Marciniak-Czochra (1)

Sampling and
plasma cell
purification

Scientific, administrative and or-
ganisational responsibility

PD Dr. Dr. Dirk Hose (2)

Performing bone marrow aspira-
tion

Responsible physician

Performing purification Technicians (2)

Data analysis and interpretation PD Dr. Dr. Dirk Hose (2)
Dr. Anja Seckinger (2)

Clinical data Scientific responsibility PD Dr. Dr. Dirk Hose (2)
Dr. Anja Seckinger (2)

Data collection PD Dr. Dr. Dirk Hose (2)
Dr. Anja Seckinger (2)
Sybille Seyfried (2)

Data analysis and interpretation PD Dr. Dr. Dirk Hose (2)
Dr. Anja Seckinger (2)

269



270 B Contributions

Legend:

(1) Applied Analysis and Modelling in Biosciences (Head: Prof. Dr. Anna Marciniak-
Czochra), Institute of Applied Mathematics, Interdisciplinary Center for Scien-
tific Computing (IWR) and BIOQUANT Center, Im Neuenheimer Feld 205,
D-69120 Heidelberg, Germany.

(2) Multiple Myeloma Research Laboratory (Head: PD Dr. Dr. Dirk Hose), Medical
Clinic V, University Clinic Heidelberg, Im Neuenheimer Feld 410, D-69120
Heidelberg, Germany.


	Abstract
	Zusammenfassung
	Acknowledgements
	1 Introduction
	1.1 Healthy plasma cell biology and function
	1.1.1 Healthy plasma cell function
	1.1.2 Healthy plasma cell development
	1.1.3 Surrogates and measurements

	1.2 Malignant plasma cell biology and pathogenesis
	1.2.1 Plasma cell dyscrasias
	1.2.2 Pathogenesis of myeloma
	1.2.3 Surrogates and measurements

	1.3 Previous modelling approaches in multiple myeloma
	1.3.1 Models of population dynamics of malignant plasma cells
	1.3.2 Further models

	1.4 Aims of the thesis
	1.5 Outline of the thesis

	I Mathematical models of healthy and malignant plasma cell dynamics
	2 Simple model of exponential growth
	3 Basic model of healthy plasma cell dynamics
	4 Extended model of healthy plasma cell dynamics
	5 Model of healthy and malignant plasma cell dynamics

	II Analysis of mathematical models of healthy and malignant plasma cell dynamics
	6 Analysis of the basic model
	6.1 Existence and uniqueness of solutions
	6.2 Stability of the healthy equilibrium
	6.3 Invariant sets
	6.3.1 Two invariant sets of no sign switch of z
	6.3.2 Two invariant sets of monotonicity of z

	6.4 Qualitative simulations

	7 Analysis of the myeloma model
	7.1 Domain of definition and non-negativity of solutions
	7.2 Existence and uniqueness of solutions
	7.3 Equilibria
	7.4 Partial equilibria
	7.5 Qualitative simulations

	8 Analysis of the extended model
	8.1 Non-isolated equilibria
	8.2 Qualitative simulations


	III Quantitative application of mathematical models of healthy and malignant plasma cell dynamics using clinical data
	9 Data analysis
	9.1 Doubling time of malignant plasma cells
	9.2 Data transformation
	9.2.1 Average number of healthy plasma cells
	9.2.2 Surrogates for the number of plasma cells


	10 Parameter estimation approach
	10.1 Calibration of the healthy equilibrium
	10.2 Vaccination-induced dynamics as plausibility check
	10.3 Selection of patient data sets
	10.4 Average healthy equilibrium
	10.4.1 Results and discussion
	10.4.2 Sensitivity of solutions to changes in the transition rates

	10.5 Individual healthy equilibrium

	11 Evaluation of parameter estimation
	11.1 Statistical evaluation
	11.2 Characterisation of malignant growth
	11.2.1 Growth patterns
	11.2.2 Dynamic doubling time
	11.2.3 Niche-dependence

	11.3 Initial number of malignant plasma cells
	11.3.1 Equiprobable weighting
	11.3.2 Age-related weighting
	11.3.3 Analysis of groups


	12 Integrating discussion and conclusions
	12.1 Discussion of aims
	12.2 Discussion of assumptions and resulting limitations
	12.3 Further directions
	12.4 Conclusions

	13 Summary
	Bibliography
	List of symbols
	List of figures
	List of tables
	List of publications

	Appendices
	A Mathematical methods
	A.1 Piecewise-smooth continuous dynamical systems
	A.1.1 Basic definitions
	A.1.2 Stability of equilibria
	A.1.3 Numerical methods

	A.2 Smoothing method
	A.3 Principles of parameter estimation
	A.3.1 Linear regression models
	A.3.2 Non-linear regression models

	A.4 Sensitivity and identifiability
	A.4.1 Sensitivity analysis
	A.4.2 Local structural identifiability


	B Contributions


