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Zusammenfassung

Seit ihrer Einfiihrung in den 1980er Jahren spielen lokal stationére Prozesse eine wichtige
Rolle in der Zeitreihenanalyse. Als Verallgemeinerung stationérer Prozesse erlauben sie
es, dass Beobachtungen iiber die Beobachtungszeit hinweg ihre Verteilungseigenschaften
dndern. In vielen lokal stationiren Zeitreihenmodellen wird diese zeitliche Anderung
charakterisiert durch Parameterkurven, deren Schétzung damit von zentralem Interesse
ist. In dieser Arbeit entwickeln wir Methoden und zeigen theoretische Resultate fiir
die Bandbreitenwahl bei nichtparametrischen Schéitzern dieser Kurven. Wir konzen-
trieren uns hierbei auf lokale Maximum-Likelihood-Schétzer. Diese haben eine enge
Verbindung zu Martingaldifferenzensequenzen, die in vielen Beweisen niitzlich ist.

Im ersten Teil definieren wir fiir linear lokal stationdre Prozesse einen globalen
Bandbreitenselektor, der durch die Kreuzvalidierungsmethode im nichtparametrischen
Regressionsmodell motiviert ist. Wir beweisen, dass der Selektor asymptotisch optimal
ist in dem Sinne, dass der Kullback-Leibler-Abstand des Modells mit diesem Selektor
zum wahren Modell fiir lange Beobachtungszeitrdume gegen den minimal moglichen
Kullback-Leibler-Abstand konvergiert. In Simulationen iiberpriifen wir die Qualitét
unseres Ansatzes in der Praxis. Die Beweise basieren auf Bias-Varianz-Zerlegungen der
Schétzer. Die formale Beschreibung dieser Zerlegungen ist wesentlich schwieriger im
Falle nichtlinearer lokal stationdrer Zeitreihenmodelle.

Im zweiten Abschnitt dieser Arbeit entwickeln wir allgemeine Approximationstech-
niken, um lokal stationédre Prozesse durch stationére Prozesse anzundhern, womit solche
Zerlegungen erhalten werden konnen. Im Zuge dessen fiihren wir so genannte Ableitungs-
prozesse ein und geben Bedingungen an, unter welchen Existenz und Eindeutigkeit
gegeben sind. Ein zentrales Ergebnis ist eine Taylor-Entwicklung von lokal stationéren
Prozessen. Diese Resultate sind von unabhéngigem Interesse fiir weitere Forschung in
diesem Gebiet. Wir unterstreichen dies, indem wir die erhaltenen Ergebnisse nutzen,
um neue Versionen einiger Standardtheoreme wie ein Gesetz der grofsen Zahlen und
einen zentralen Grenzwertsatz fiir lokal stationére Prozesse unter minimalen Momen-
tannahmen zu beweisen.

Im letzten Teil dieser Arbeit definieren wir fiir eine grofse Klasse von lokal sta-
tiondren Prozessen einen lokalen Bandbreitenselektor, der auf einem Kontrastmin-
imierungsansatz basiert, welcher zuerst auf nichtparametrische Regressionsmodelle ange-
wandt wurde. Wir zeigen, dass der Selektor bzgl. dem Euklidischen- und dem Kullback-
Leibler-Abstand minimax-optimal bis auf einen logarithmischen Faktor ist, der typisch
fiir lokale Modellauswahlprozeduren ist. Fiir die Beweise greifen wir auf die vorher en-
twickelten Approximationstechniken zuriick. In einer Simulation untersuchen wir das
Verhalten der Auswahlprozedur in verschiedenen Zeitreihenmodellen.

Die Resultate dieser Arbeit zur Bandbreitenwahl konnen als Verallgemeinerung der
urspriinglichen Methoden im nichtparametrischen Regressionsmodell aufgefasst wer-
den, da dieses Modell stets als Spezialfall enthalten ist. Durch die verallgemeinerte
Formulierung liefert diese Arbeit daher einen Beitrag dazu, ein tieferes Verstdndnis
dieser Methoden zu gewinnen.






Abstract

Since their introduction in the 1980s, locally stationary time series play an important
role in time series analysis. As a generalization of stationary processes, they allow
the observations to change their distribution properties over observation time. In many
locally stationary time series models this change over time is characterized by parameter
curves, whose estimation is of essential interest. In this work we develop methods and
prove theoretical results for bandwidth selection for nonparametric estimators of these
curves. We focus on local maximum likelihood estimators. Their strong connection to
martingale difference sequences is fundamental in many of our proofs.

In the first part of this dissertation we define a global bandwidth selector for linear
locally stationary processes which is motivated by the cross validation method that was
first introduced in the nonparametric regression model. We prove that the selector is
asymptotically optimal in the sense that the Kullback Leibler distance of the model
connected with this selector to the true model converges to the minimal possible Kull-
back Leibler distance as the observation time increases to infinity. In simulations we
analyze the quality of the method. The proofs are based on bias-variance decomposi-
tions of the estimators. The formal discussion of these decompositions gets harder in
the case of nonlinear locally stationary time series models.

In the second part of this dissertation we develop general techniques to approximate
locally stationary processes by stationary processes. These techniques allow us to obtain
the decompositions mentioned above. We introduce so called derivative processes and
give conditions under which existence and uniqueness can be guaranteed. An important
result is a Taylor-like expansion of locally stationary processes. These findings are
of independent interest for further research. We emphasize this point by using the
approximation techniques to obtain new versions of standard theorems like a law of
large numbers and a central limit theorem for locally stationary processes under minimal
moment assumptions.

In the last part of this thesis we define a local bandwidth selector for a large class of
locally stationary processes which is based on a contrast minimization approach which
was first applied to nonparametric regression models. We show that our selector is
minimax optimal up to a logarithmic factor (which is typical for local model selection
procedures) with respect to the Euclidean distance and the Kullback-Leibler distance.
For the proofs we use the approximation techniques which were discussed before. In
a simulation we analyze the behavior of the selection routine for different time series
models.

The findings of this thesis regarding bandwidth selection routines can be interpreted
as a generalization of the original methods in the nonparametric regression model,
because this model is included as a special case. Due to the more general formulation
this thesis makes a contribution to understand these methods more deeply.
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Chapter 1

Introduction

Nonstationary processes. Stationary processes are characterized by the fact that
there distribution does not change over time. They play an important role in time series
analysis and lots of models and powerful methods for analyzing them were introduced
during the last decades. However, more recently models have become popular which
allow the observations to change their distribution properties smoothly over time. A
special focus lies on so-called locally stationary processes which behave like stationary
processes in small observation periods. The idea goes back to |Priestley (1965) and
Priestley (1981)| who proposed to generalize the spectral representation of stationary
processes by making it time-varying. Because of its structure, this formulation did
not allow for rigorous asymptotic considerations. In two papers (cf. Dahlhaus (1996)
and Dahlhaus (1997)|) Dahlhaus improved the representation with an infill asymptotics
scheme, meaning that the time is rescaled from ¢ = 1,...,n to the interval [0,1] by
considering the 'local time’ % for t =1, ...,n. He obtained the spectral representation

Xin zu(%) +/ A7 (A dEN), t=1,..,n
where A7, ()) is the transfer function and & a stochastic process on [—m, 7] and p(-)
the mean function. Here it was assumed that A7 (\) can be approximated by some
function A(%, A) uniformly in ¢, A. In this formulation, asymptotic results were obtained
by fixing a local time u € [0, 1] and considering only observations X, with |t —u| < 1.
The representation of X, ,, in the time domain is given by

o0

Xon=p(5)+ Y walk)ecs (1.0.1)

k=—00

where a;,, (k) are deterministic sequences and (e;)ez is a sequence of i.i.d. errors. A
famous example is the time-varying autoregressive moving average (tvARMA) process
which is recursively defined via

Zak(%) Xy jn = Zﬁj(%)gtk (1.0.2)
k=0 Jj=0
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with parameter curves ay,; : [0,1] — R. Latest publications (see Dahlhaus and
Polonik (2009)) allow for even more general linear models. For a review, we refer
to Dahlhaus (2011). Besides the development of a theory for linear locally stationary
models, there were introduced a lot of nonlinear nonstationary processes by mimicking
the infill asymptotics approach and replacing constant parameters in stationary pro-

cesses by parameter curves evaluated at the rescaled time L. Here, we mention the

tvAR process (cf. Dahlhaus and Giraitis (1998))), the tvARCH process (cf. Dahlhaus
and Subba Rao (2006 )|, [Fryzclewicz, Sapatinas and Subba Rao (2008)), random coef-
ficient models (cf. [Subba Rao (2006)) or general recursively defined locally stationary
processes (cf. Zhou and Wu (2009), section 4). Note that the most of processes are
nonlinear and thus do not fit into the scheme .

More recently, Zhou and Wu (2009) and Karmakar and Wu (2016)| among others
proposed a representation of locally stationary processes by Bernoulli shifts, namely
Xin = Jin(et, €121, ...) with measurable functions .J;,, by generalizing a similar ap-
proach for stationary processes introduced in Wu (2005). This approach covers both
linear and recursively defined processes. More abstract formulations based on approx-
imation properties were given by numerous authors, for instance [Vogt (2012),

As mentioned above there is a large class of locally stationary processes whose evo-
lution over time is mainly described by parameter curves, for instance ay, 3; in .
A central objective in inference of such processes is estimation of these curves. Besides
parametric approaches (cf. Dahlhaus (1997)), a large literature for nonparametric es-
timation via quasi Maximum Likelihood methods is available in special cases like the
tvAR process (cf. |[Dahlhaus and Giraitis (1998))), tvARCH process (cf. Dahlhaus and
Subba Rao (2006)) or linear processes in general (cf. Dahlhaus and Polonik (2009))).

Bandwidth selection in nonparametric estimation. As can be seen in
these publications, there is a strong connection to nonparametric estimation of i.i.d.
regression models (see the monograph Tsybakov (2009) for an introduction) which have

the form ;

Xt,n = M(E

In (1.0.3), a standard approach to estimate p from the observations X, is the so-called
Nadaraya-Watson estimator

)4e, t=1,..,n (1.0.3)

S K () X
B n t/n—u
S K (45)

where K : R — R is a probability density (the so-called kernel function) and b =
b, is the bandwidth which may depend on the number of observations n. Since
fip(u) can be obtained through a quasi Maximum Likelihood approach by minimiz-

fp(w) - u € [0, 1], (1.0.4)

ing >0, K(t/TZ_“ (Xm — ,u)2 in p, this estimator can be seen as a special case of

quasi Maximum Likelihood estimators in ([1.0.1)) and it seems worthwhile to transfer
asymptotic results to the more general case.
The main issue which is connected to the form of the estimator ([1.0.4)) is to choose

the right window size b. If the true function pu(-) is twice continuously differentiable
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and K is symmetric around 0, it is possible to calculate the mean squared error (MSE)
and obtain a so called bias-variance decomposition

Blinw) — u()l? = Var(in(u)) + [Bp(u) = )P = 2+ By

with constants Vj, By. Minimization of this term in b leads to the (MSE optimal) band-
width choice by = (g—%)l/ 5p~1/5 Although by is a good starting point for further investi-
gation, it is not useful in practice since By, Vj heavily depend on the unknown function
1(+). During the last decades, many efforts have been made to find natural and ’good’
estimators of the MSE-optimal bandwidth by. Popular methods are selectors based
on Cross validation (cf. Rice (1984)), plugin approaches (originally from |Woodroofe
(1970)) and, more recently, contrast minimization approaches (cf. |Lepski, Mammen
and Spokoiny (1997), Lepski and Spokoiny (1997) and, more general, in |Goldenshluger
and Lepski (2011)) among others. All three methods mentioned are very general and
therefore have applications in many other fields of statistics.

Combining the two topics. In several special cases of locally stationary pro-
cesses (cf. Dahlhaus and Giraitis (1998) for tvAR, Dahlhaus and Polonik (2009)| for
tvARMA and |Dahlhaus and Subba Rao (2006), Fryzclewicz, Sapatinas and Subba Rao
(2008) for tvARCH processes), asymptotic properties and similar bias-variance decom-
positions as in have been obtained for quasi Maximum Likelihood estimators
of the corresponding parameter curves. Especially for nonlinear processes the analysis
of these estimators is much harder than in i.i.d. regression since an explicit
representation of the estimator may not be available. Theoretical properties and re-
sults regarding practical behavior of bandwidth selection for locally stationary processes
however are still unavailable unless in very special cases (cf. Arkoun (2010)).

In this thesis, we start at this point. Our goal is to shed light on the theoretical
behavior of bandwidth selectors for large classes of locally stationary processes. We will
focus on selectors based on cross validation and contrast minimization approaches. As
a byproduct, we will obtain consistency results with rates for quasi Maximum likelihood
estimators in these models. Since we allow the unknown parameter curves to map into
a d-dimensional parameter space with d > 1, a natural question is how to measure
distances between two elements of this space. Here, we will use the Euclidean norm as
a standard measure in R? as well as a weighted Euclidean norm which we will show to
be interpretable as the Kullback-Leibler divergence between two time series models.

(1.0.5)

1.1 Outline and Contribution

Outline. Let us briefly sketch the outline of the remainder of this thesis and adduce
the main contributions. In Chapter [2] we focus on global bandwidth selection for quasi
Maximum Likelihood estimation in linear locally stationary time series models. We
adopt a leave-one-out cross validation method from Rice (1984)| for the i.i.d. regression
model . In our method, the interpretation of the term which is omitted in the
leave-one-out estimator will change: We do not omit the ¢-th observation but the ¢-
th projection error which may be generated by all past observations before time t.
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We prove that the obtained bandwidth selector is asymptotically optimal in the sense
that the Kullback Leibler divergence of the model connected with this selector to the
true model converges to its minimal possible value as the observation time increases
to infinity. We use simulations to analyse the behavior of the method in practice for
different time series models.

In Chapter 3| we develop general techniques to approximate recursively defined lo-
cally stationary processes by stationary processes. We introduce so called derivative
processes and give conditions under which existence and uniqueness can be guaranteed.
An important result is a Taylor-like expansion of locally stationary processes. The ap-
proximation techniques are then used to obtain new versions of standard theorems like
a law of large numbers and a central limit theorem for locally stationary processes un-
der minimal moment assumptions. Finally we apply the results to a obtain consistency
and asymptotic normality results for Maximum Likelihood estimators.

In Chapter [4| we define a local bandwidth selector for a large class of locally station-
ary processes which is based on the contrast minimization approach from Goldenshluger
and Lepski (2011). We show that this selector is minimax optimal up to a logarith-
mic factor (which is typical for local model selection procedures) with respect to the
Euclidean distance and the Kullback-Leibler distance. For the proofs we use the ap-
proximation techniques from Chapter [3] We apply the method to various time series
models. Finally, Chapter [5] summarizes the work and gives an outlook into possible
future work.

Contributions. The main contributions are:

e Definition of a global bandwidth selector via cross validation for linear locally
stationary processes and proof of its asymptotic optimality, see Chapter

e Definition of a local bandwidth selector via contrast minimization for a large class
of locally stationary processes and proof of its minimax optimality, see Chapter

e Creating the set up for a general approximation and maximum likelihood theory
for recursively defined locally stationary processes, see Chapter

The findings of this thesis regarding bandwidth selection routines can be interpreted as
a generalization of the original methods in the nonparametric regression model, because
this model is included as a special case. Due to the more general formulation this thesis
makes a contribution to understand these methods more deeply.

1.2 Notation and Preliminaries

Here we introduce some basic notation that will be used throughout this thesis.
With |z| we denote the absolute value of real vectors € R¢, applied component-

wise. For real numbers ¢ > 0 we define |z|, := (2?21 |xi|q)1/q to be the ¢?-norm.
Especially |z|o := max;— _q|z;| denotes the maximum norm. For another vector
y € R4, we use (r,y) = Zle z;y; to denote the standard scalar product in R?. We

16



also apply | - |, to matrices z € R¥? which then means that the matrix is vectorized
before |z|, is evaluated. For instance, |zls = (357, |z4[*)'/? is the Frobenius norm.

For some fixed vector of nonnegative values w, we define the weighted ¢?-norm

— d 1/q
| wq == (Zi:1 wi|$i|q) .

We use Ain(2), Amaz (), |Z|spec and tr(x) to denote the minimal / maximal eigen-
value, spectral norm and the trace of a matrix € R%*?, respectively. We write z > y
or x > y for matrices z,y € R¥™? if x — y is positive semidefinite or positive definite,
respectively. We use the prime symbol 2’ to denote the transpose of matrices.

As long as ¢ > 1, | - |p4 is @ norm. For real numbers a,b we use the notation
a Vb :=max{a,b} and a A b := min{a, b} to denote their maximum and minimum.

For real-valued functions f : R? — R, (21, ...,24) — f(21, ..., 24) we use 0F f or OF f
to denote the k-th derivative with respect to the i-th component.

Bias-variance decompositions in nonparametric statistics as well as properties of the
corresponding bandwidth selectors are usually stated under the assumption that the
true curve is in some function class. In this thesis we will formulate results with the
class ¥(, L) of Hoelder continuous functions with exponent [,

Y(B,L):={g:[0,1]] =R | gisls— times differentiable and
Va,y € T« g (x) — g"9(y)] < Ll — y[7~"},

where [3 := max{k € Ny : k < 8}.

We will sometimes use Landau’s notation a, = O(b,) and a,, = o(b,,) to determine
how real sequences (ay,), (b,) asymptotically behave with respect to each other. The
definitions are as follows:

a, =o(b,) < lim Inl 0,
n—00 bn

a, = O0(b,) < limsup Il < .
n—oo n

We say that an event holds a.s. (almost surely), if it is true with probability 1.

1.2.1 The functional dependence measure

For some real-valued random variable Z we define ||Z]|, := (E|Z|9)Y4. Let L? denote
the space of real-valued random variables Z with ||Z]|, < oc.

During the last decades, several measures of dependence for stochastic processes
have been invented, for instance mixing properties or joint cumulants. In Chapters
and [] we will make use of a new approach, the (uniform) functional dependence
measure which was introduced in |Wu (2005) and Liu, Xiao and Wu (2013).

For a sequence of independent and identically distributed (i.i.d.) random variables
e, t € Z we define the shift process F; = (&,&1-1,...). For t > 0, let Ft*(tfk) =
(Ety ooy Et—kt1s €y poy Et—k—15 Et—k—2, -..), Where €;_, is a random variable which has the
same distribution as €; and is independent of all &;, ¢t € Z. For a process Y; = H,(F;) €
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L7 with deterministic H; : RY — R we define Y;*(t_k) = Ht(ﬂ*(t_k)) and the uniform
functional dependence measure

oy (k) 1= sup [V, = ¥Vl (1.2.1)
S

as well as AY =372 6r(k). If Y; is stationary, (1.2.1) reduces to the functional
dependence measure

0g (k) = [ = Yl
|F;] — E[-|Fj-1]. It can be

Furthermore let us define the projection operator P;- := E[-
> 1 it holds that

shown (cf. [Wu (2005), Theorem 1(i) and (ii)) that for ¢

|PsYill, < 63 (h).

18



Chapter 2

Global bandwidth selection with cross
validation

In this chapter we discuss adaptive estimation of a multidimensional parameter curve
0y : [0,1] = © C R? with cross validation in locally stationary processes. The technical
core of the chapter are several results for quadratic statistics needed in this context,
meaning that we also restrict ourselves to a quasi-Gaussian likelihood and to linear
processes. An advantage of the linear model is that we can formulate all smoothness
assumptions with respect to the (time-varying) spectral density of the process which
therefore can be easily verified for some standard processes like the tvARMA process.

In Section we introduce the locally stationary time series model and formalize
the partition of these processes into parametric stationary processes and (unknown)
parameter curves. We propose estimators for these curves and define the cross valida-
tion procedure. Finally we introduce integrated / averaged squared error type distance
measures which are connected to the Kullback-Leibler divergence and will be used to
state our results.

In Section we state the main result of this chapter, which is the asymptotic
optimality of the cross validation procedure with respect to the distance measures
defined before. We give an overview of the proof, which is similar to the methods used
in [Hardle and Marron (1985)| and Héardle, Hall and Marron (1988). The result is stated
under weak assumptions on the unknown parameter curves, that are Hoelder continuity
and bounded variation in each component.

In Section we analyze the performance of the method in the case of tvARMA
processes in simulations. Some concluding remarks are drawn in Section Some
lemmas and most of the proofs are deferred without further reference to Section [2.5

2.1 Introduction

2.1.1 The Model

We start with the definition of the linear locally stationary time series model. Recall
that ¥(3, L) is the class of Hoelder continuous functions with exponent (.
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Assumption 2.1.1 (Locally stationary time series model). Suppose that the observa-
tions X;p, t =1,...,n have a moving average representation

oo

Xin =Y arn(i)es, (2.1.1)

Jj=0

where a;,(j) are deterministic coefficients and (¢;)ez is a sequence of independent and
identically distributed random variables with Ele;] = 0, Ee? = 1 and existing moments
of all orders. We set ky := cumy(ey).

Furthermore, we assume that

sup |an(J)] < 2.1.2
with
X(7) = Lgj<ny + 15l log ™ 5] - Ly
for some k > 0, and that there exist functions a(-,j) : [0,1] — R with
: t .
sup atn(g) — a(—,j>‘ <C. (2.1.3)
320 324 n

We assume that the time dependence of a(-,j) : [0,1] — R is solely via a finite di-
mensional parameter curve 0y(-) whose components are of bounded variation and lie
in X(B,L) for some L, > 0, i.e. a(-,j) is of the form a(-,7) = agy.)(j) with some
functions a.(j).

It is well known that the function

1

Joowy(N) = %IA%(U)(A)IQ

with

o0

Agoy(N) =D agy(u)(4) exp(—iAj)

j=—o00
then is the time varying spectral density of the process.

Examples/Remark:
(i) As Dahlhaus and Polonik (2009)| point out, the complicated construction with differ-
ent coefficients a;,(j) and a(t/n, j) is necessary to include important examples such as
tvAR - processes. The assumption is fulfilled by tvARMA (p, q) processes (cf. Dahlhaus
and Polonik (2009), Proposition 2.4), i.e. by the process

t—k

n

)5t7k

p t q t
Xt,n + Z O[J (E)Xt*jyn = Zﬁk(ﬁ)a(
7=1 k=0
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where 6(-) = (o1 (-),...,ap(-), B1(:), ... ,ﬁq('),0'2<')), consists of the coefficient func-

tions.

(ii) Other important examples are e.g. models with shape- and transition curves
(cf. Dahlhaus and Polonik (2009), Proposition 2.4), a simple model being

t
Xt,n — 27 cos (QS(E))Xt—l,n + TQXt—Zn = U( )5t (214)

t
n
with 6(-) = (¢(-), 0(-)), and r € (0,1) which models a time varying frequency- and a
time varying amplitude-behavior of oscillations.

(iii) We conjecture that the assumption on the existence of all moments of ; can be
dropped - but the calculations would be very tedious without much additional insight.

2.1.2 The quasi maximum likelihood estimator

As an estimator of y(-) we consider local conditional Gaussian likelihood estimators
weighted by kernels, that is

A

0y(u) := argming.g Ly, p(u, 0), (2.1.5)

where

Los(u,0) ZKb(— - u)gm(e) (2.1.6)

and
Etvn(ﬁ) = — Ingg(Xt7n|Xt_17n, '”7X1,n7 XOJ’L = O, X—l,n = 0, ) (217)

is the infinite past likelihood with constant parameter § € © (localized in L, ,(u, ) by

the kernel K). K : R — R fulfills [ K =1, and b € (0,00) is the bandwidth. We use
the common abbreviation Ky(z) := $K(%).

Remark:
(i) For example for tvAR(p) processes one usually replaces L, ;(u, 6) by = Diepi1 1K (L—
u)l;,(6). The results of this chapter also hold with this likelihood.

(i) Using instead the finite past conditional likelihood log pg(X¢n|Xi—1.n, ..., X1,,) cor-
responds to the exact likelihood which usually is much more difficult to calculate and
more difficult to investigate theoretically.

It is possible to derive an explicit form of ¢; ,(0):

Proposition 2.1.2. Suppose that Assumption holds, and |Ag(N)| > 04 > 0 uni-
formly in 6 € ©, X\ € [—m, 7| for some 64 > 0. Define the Fourier coefficients

1 i .
k) =5 [ A2 i

2 ),
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and

t—1
din(0) = 7o(k)Xi— . (2.1.8)
k=0
Then it holds that . (0)? . )

2.1.3 Distance measures

In the following, let V denote the derivative with respect to 6 € ©. As global distance
measures we use the averaged and the integrated squared error (ASE/ISE) weighted
by the local Fisher information

1 ™
1(0) := E/ (Vlog fo(N))(Viog fo(N))" dA. (2.1.10)
(cf. [Dahlhaus (1996), Theorem 3.6). In addition the weight function w(-) = w,(-) =
1[[;/271_[)/2}(‘) is needed to exclude boundary effects. Since the proof is the same for
other weights w(-) we allow in Assumption for more general weights.

More precisely we set (with ||} := (z, Az) for x € R? and a d x d -matrix A)

i - L) -0(2)
t=1

2

t
w (—) (2.1.11)
1(6o(t/n)  \ 72

and )
dy (6, 00) = / () — Bolw) 2 () (2.1.12)
0

It can be shown for w=1 that 2d4 and 2d; are an approximation of the Kullback-
Leibler divergence between models with parameter curves 6,(-) and ().

In Theoremwe will prove that d A(éb, 6p) can be approximated uniformly in b by
a deterministic distance measure d4(b), which has a unique minimizer by = by, ~ n~/°.
by can be seen as the (deterministic) optimal bandwidth.

2.1.4 The cross validation approach

We now choose the bandwidth b by a generalized cross validation method. We define
a 'quasi-leave-one-out’ local likelihood

Loy—s(u,0) Z Kb<— —u)étn(ﬁ) (2.1.13)

t 1,t#s

and a 'quasi-leave-one-out’ estimator of 6, by

Oy —s(u) := argming.g Ly p (1, 6). (2.1.14)
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Here, ’leave-one-out’ does not mean that we ignore the s-th observation of the process

(Xtn)t=1..n, but that we ignore the term which is contributed by the likelihood ¢;,, at

time step s. Because of that, we refer to the estimator as a quasi-leave-one-out method.
We then choose b via minimizing the cross validation functional

CV(b) = %i“ (éb,,s (%)) w (%) . (2.1.15)

It is important to note that such a minimizer b of C'V (b) does not need to exist, because
continuity of C'V'(b) can not be shown. When b varies it is possible that the location
of the minimum of L,,;, _s(u,#) changes and therefore éb,,s(u) makes a jump. Thus we
choose b such that

~

CV(b) — inf CV(b) <

beB,

S|

(2.1.16)

where B,, is a suitable subinterval of (0,1) which covers all relevant values of b.

2.2  Main results

In this section we present our main results concerning the bandwidth b chosen by cross
validation. We prove in Theorem that b is asymptotically optimal with respect
to dy, i.e. A

d (0, bo)

m A
n=o0 infyep, da(6s,00)

=1 a.s.,

and in Theorem m that b is consistent in the sense that l;/ by — 1 a.s., where by is the
deterministic optimal bandwidth defined in . In Assumption we suminarize
the smoothness conditions on the model class and in Assumption the conditions
on the estimation procedure.

Assumption 2.2.1. Suppose that

(i) 0 € © is identifiable from Ag (i.e., Ag(A) = Ag/(X) for all X implies § = 0') and
Oo(u) lies in the interior of the compact parameter space © C R? for allu € [0, 1].

(ii) There exists some §4 > 0 such that uniformly in 0 € ©, X € [—m, 7], |Ag(N\)| > da.
Ag(N) is max{4,lz+1}-times continuously differentiable in 0 € ©. The derivatives
fulfill VEAg(+) € X(Ba, La) uniformly in 0 € © for some Ly > 0,84 > 1.

(iii) The minimal eigenvalue of

1= [ " (Vlog fo(0)(V log fo(\))' dA

dm J_,

1s bounded away from 0 uniformly in 6 € ©.
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Assumption 2.2.2. Suppose that:

(i) The weight function w : [0,1] — Rsq is bounded, has bounded variation and
compact support C [0, 1] with nonempty interior. Set w(-) := fd)(~)]1[%71_%](~).

(ii) For n € N let B, = [b,b], where b > con®' and b < e;n™ for some constants
Cop, C1, 0> 0.

(i) K : R — R fulfills [ K(z) dv = 1 and is Lipschitz continuous with compact
support [—%, %] Furthermore, K is of order lg, i.e. kaK(x) de = 0 for k =
1., 15

We now show that the cross validation bandwidth b is asymptotically optimal.

Theorem 2.2.3 (Asymptotic optimality of cross validation). Under assumptzonsm
|2 2. 1| and|2 2. 21 the bandwidth h chosen by cross validation is asymptotically optimal in
the sense that

d(éév 00) _

oo infye g d(6y, 0o)

)

where d is d4 or dj.

Under stronger smoothness assumptions on 6y(-) we will prove (in Theorem [2.2.5]
below) that b is asymptotically equivalent to the asymptotically optimal bandwidth b,
(ao-bandwidth for short) which we now define. We know from standard asymptotics
that (cf. the proof of Corollary

~

Op(u) — Oo(u) ~ =V Lnp(u, 0(w)) ™t VoLyp(u,0(uw)) =~ —1(0(w)) ™" VoLnp(u, Oo(u))

which motivates the following approximations to d(6y,6) and d;(6y, 6):

. 1 — t |2 t
A0, 00) 1= n Z ‘VGL”’I’<E’ & (ﬁ)) ’I(QU(t))1w<ﬁ>’ (22.1)
m@@;:/ﬂwnﬂwoym)wmmm. (2.2.2)

As a deterministic approximation of the above distances, we set
dyy (O, 00) := E[d}(0p,60p)].

If 6y is twice continuously differentiable, Proposition [2.5.5] implies the usual bias-
variance decomposition for dj;:

- Vo b
dw@@—%+4&+ﬂw D+ o(bY), (2.2.3)
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uniformly in b € B,,, where (d is the dimension of the parameter space, © C RY)

Vo = #K/l [d+n4)—/ Vo 10g foo(u) (A d)\‘ } (u) du >0, (2.2.4)

1(60(

= 2 2 >
By = & / ‘Am/ 02 (u, A) - Vo fawy(A) dx‘m w(w) du >0,
(2.2.5)

where pug = [K(2)? dz and dx := [2?K(z) dz, leading to the definition of the
asymptotically optimal bandwidth in the following theorem.

Theorem 2.2.4 (Approximation of distance measures). Let the assumptions of Theo-
rem hold. Assume that 0y(+) is twice continuously differentiable, i.e. 5 > 2, and
define

V bt
If the bias By is not degenerated, i.e. By > O, then it holds

d(0y, 00) — di; (D)

— 0 a.s.
dyr(b)

sup
beBn

where d is d4 or dj.

Theorem 2.2.5 (consistency of the cross validation bandwidth). Let the assumptions
of Theoremm hold. Then the bandwidth b chosen by cross validation fulfills

where s
by = (%) n~s. (2.2.7)

is the unique minimizer of d;(b).

Proofs.
Here we present the structure of the proofs of Theorems [2.2.3] 2.2.4] and [2.2.5] The
technical details including the proofs of the lemmata are postponed to the appendix.
From now on, we assume that Assumptions [2.1.1] 2.2.1] and 2.2.2] hold. All conver-
gences stated here are with respect to n — co. The following Lemma shows that the
approximated distances dj, d7 are close to dj,.

Lemma 2.2.6. We have almost surely

sup d?(ébv 00) — d?\i(éh 90)

di}(ébv 60) — d}‘w(ébv 00) s
beBy dz, (0, 600)

d}(\/l(élh 80)

— 0, sup
beBy,
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As a consequence of Lemma also the distances dj, d4 are close to dj;:

Corollary 2.2.7. We have almost surely

sup dr(0y, 00) — d%; (0, 60)

da(0y, 00) — %y (s, 60) .
beBy 3,0y, 00)

d}(\/l(élh 00)

To get a connection between the distance measure dj, and the cross validation

functional C'V (b), we define

— 0, sup
beBy,

— A IRt t t |2
d4(6y,00) = — ’0_——9—‘ .
A(0b, %) n; b t(n) 0 (n> I(00(t/n))
The next two lemmata show that d, is close both to d%, and C'V (b):
Lemma 2.2.8. We have almost surely
da(By,00) — diy (0, 0,)
d}; (05, 00)
Lemma 2.2.9. We have almost surely

aup | V) = 5 T bon (B0 (7)) wlt/m) = da(6h 60
be B, (0, 0o)

sup — 0.

beBy,

— 0. (2.2.8)

With the help of these results, we can now prove Theorems [2.2.3] [2.2.4], [2.2.5}

Proof of Theorem[2.2.3. An immediate consequence of Lemma is (use Ztrz <

yi+y2 —
g—i + z—j for positive numbers x1, zo, y1,y2 > 0)
s da(6y,00) — da(By,6o) — (CV(b) — CV (V)

~ ~ —0 a.s.
b,b'eBn d*M(gln 00) -+ d*M<9b’7 90)

almost surely. Now, using Corollary [2.2.7] and Lemma [2.2.8] it is easy to see that

—0 a.s.

s da(By,00) — da(By,00) — (CV(b) — CV (1))
bb €By da(By,00) + da(6y,60)

Choosing b = b and ¥ such that

S|

da(Oy,00) — inf da(y,600) <
bEBn

yields
da(0;,00) — da(By,00) — (CV(b) — CV (V)
da(0;,600) + da(By, 6)
da(6;,00) — infrep, da(fy, 6p) — (infpep, CV(b) — CV (V)
da(0;,00) + infyep, da(0y, 00) +

0 <«

>

2
+ = o =
da(0;,00) + da(Oy,6)
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1
almost surely. Because of Corollary [2.2.7|and ([2.2.3) we have sup,cp_ Tt 0 as.
Thus, ’

~

da(6;,00) — infyep, da(By,60)
da(0;,60) + infrep, da(Oy, 0o)

—0 a.s.,

from which .
da (05, 6)
infyep, da(, 0)

follows. The same can be done for d;. O

Proof of Theorem[2.2.]]. Because of By > 0 and (12.2.3), we have

—1 a.s.

su —0 a.s. 2.2.9
A 0 229
Application of Corollary finishes the proof. O

Proof of Theorem[2.2.5. As in the proof of Theorem [2.2.4] we show ([2.2.9)). This result
in combination with Lemma [2.2.8 and Lemma [2.2.9] gives almost surely

CV(b) — 5 21 len(Bo(t/n) Jw(t/n) — dij ()
dy; (b)

Using the same methods as in the proof of Theorem [2.2.3] we have almost surely

sup ’ — 0.

beBy

d(b)  dyi(b)

= - — 1
dﬁ(bg) mfbeBn dm(b)

The structure of d%%(b) implies b/by — 1 a.s. O

2.3 Simulations and Examples

As mentioned below, our results hold for tvARMA-processes and the time varying

frequency model defined in . For these models it is also straightforward to check

Assumption (for more details see Dahlhaus and Polonik (2009), Proposition 2.4).
For our simulations we use the following models with ¢, ~ N (0, 1):

t
Xy = 00(—>Xt_1,n ten, B(u) = 0.9 sin(2mu) (2.3.1)
n
t
Xy = et — 90<_>gt_1, Oo(u) = 0.3 + 0.4 sin(27uw) (2.3.2)
n

and

X, = 27 cos (¢(%))Xtm . a(%)et, bo(u) = (6(u), o(u)), (2.3.3)
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with ¢(u) = § + §sin(27u), o(u) = 1.0 + 0.7sin(27u) and r = 0.9.

We do not want to go into details on the specific forms on the estimators. We
just mention that for (and for tvAR(p)-models X;,, = 01(t/n)Xi—1, + ... +
0,(t/n)X;_pn+o(t/n)e; in general) the estimator is a Yule-Walker type estimator of the

~

form Oy(u) = —y(u) 4 (u) and 6,(u) = %ZLPH Ky (£ —u) - (X — 01 (W) Xy_1.0 —

oo = O p(u) Xy_pn)? With covariances

n n

) 1 t . 1 t
Ly(u) =~ > K (5 - u) YY1, W) == Y K, (— - U> XinYi-1n

n n
t=p+1 t=p+1

where Y1, == (X1, ., Xs—pn). For (2.3.2) we have Ap(\) = 1 — e leading to
Yo(k) = 270" - 130y and therefore to

t—1 2
1
i n(0) = const + 3 (Z Gkthm)
k=0
which we have to minimize numerically. For the model (2.3.3) we obtain
) (%,1(“) - Tsz,u(u))

dp(u) = cos™* ~
27‘1—‘{)711(u)

and 63(u)? = %E?:pﬂ Ky (£ —u) - (Xyy —2r cos(dn (1) Xi_1n — r2X1_on)%.
We performed a Monte Carlo study by generating in each case N = 1000 realizations
of time series with length n = 500.

We chose B,, = [0.01,1] and calculated the cross-validation bandwidth b, the ao-

bandwidth by ("plugin bandwidth’) from Theorem and the optimal bandwidth
b* = argming dA(éb, o),

Note that l;, b* depend on the current realization while by is deterministic and fixed
(and remember that b* and by depend on the unknown true curve 6y(-) and are not

available in practice).

Figure shows on the right side histograms of the chosen bandwidths b (’Cross-
validation’), b* ("Optimal’) for the three models (2.3.1)), and respectively.
We also marked the bandwidth by via a grey vertical dashed line. The variability of
the optimal bandwidth b* reflects nicely the dependence on the specific data-set. b has
a bigger variance than b* which is not unexpected since b has to compensate the fact
that it does not use the unknown parameter curve 6. We find it however remarkable
that b is quite close to b*.

In the plot on the left hand side of each figure we have visualized the values of
dA(éb, 0p) for b € {l;, bo, b*} ("Crossvalidation’,’Plugin’,’Optimal’). This is perhaps the
more important plot since it shows how close the fitted model is to the true one. It
can be seen that the estimator based on hy behaves nearly optimal. The distances pro-
duced by the estimator based on the cross validation procedure are of course greater
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in average, but they still look quite satisfying in our opinion. Even the models are not
directly comparable, we can see that in the case of the tvMA(1) process, the variance
of the bandwidth selector is much higher than in the case of the tvAR processes. We
conjecture that the main reason for this is the higher variance of the maximum likeli-
hood estimator in tvMA processes, which then leads to higher variances in bandwidth
selection.

2.4 Concluding remarks

In this chapter we have introduced a cross validation procedure for linear locally sta-
tionary processes which is applicable under weak conditions on the underlying process.
The idea of leave-one-out estimators based on omitting the t-th projection error is a
general concept which we believe is also applicable in generalizations of the model we
discussed. We conjecture that similar results can be shown for multivariate time series
as well as nonlinear locally stationary processes. The method works well in simulations,
but its quality is connected to the quality of the corresponding maximum likelihood
estimator.

An alternative would be a plugin estimator where the bandwidth is (iteratively)
estimated by the formula based on estimates of By and V; in and
respectively. Such estimators are generally regarded as less stable. Furthermore it is
much more difficult to estimate these terms in the present situation since the occurring
terms are difficult to calculate explicitly.

Based on the simulation results we conjecture that n~1/10. (b—by) is asymptotically
normal if 6 is twice continuously differentiable, like Hardle, Hall and Marron (1988)
showed in the i.i.d. regression case. This raises the question if there are improved
cross validation methods like Hall, Marron and Park (1992) or |Chiu (1991)| presented
in the i.i.d. regression or the kernel regression case that attain better rates if further
smoothness assumptions on #y are supposed. However, most of these methods are not
applicable in our situation because the unknown parameter curve fy in our model is
strongly connected with the stochastic part of the observations X ,, which is not the
case in i.i.d. nonparametric regression.

2.5 Lemmas and Proofs

Recall that |z} = 2’Az for A € R4z € R? and |z|4 = Zf’j,k:l Aijpxixjzy for

A€ R ¢ RY For § € ©, we define a stationary approximation of X, by

Xi(0) = ap(k)es— (2.5.1)

k=0

Furthermore, for a function ¢ : [0, 1] — R we define the variation of g by
V(g) :=sup { Z lg(zx) —g(zp—1)| :0< 29 < ... <2 <1ym € N}.
k=1
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Figure 2.1: Simulation results for the tvAR(1) (top row), the tvMA(1) (second row)
and the tvAR(2) (third row) models. Left: Boxplots of the distances d4 (6, 6y) obtained
with the different procedures. Right: Histogram of bandwidths obtained with the cross
validation selector b and the (unknown) optimal selector b*, respectively. The vertical
dashed line is the ao-bandwidth bg.
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.....

tions, applied component-wise.

2.5.1 Coefficient bounds

Here we prove that under Assumption [2.2.1] the coefficients a(-, k), v9(k), ag(k) (recall
Assumption and Proposition for their definition) are uniformly bounded in
0 by absolutely summable sequences and fulfill some further smoothness assumptions.
We will use these results in the following Lemmata without further reference.

Lemma 2.5.1. Let Assumption[2.2.1 hold. For ¢ =0,1,2,3,4 we have with a constant
C > 0 independent of k,

sup Vi (k)]s < ——. 2.5.2
Moreover, we have
C C
Via(-, k) < —, sup |a(u, k)| < ——. 2.5.3
(@) < 5 swlaluk)] € o (253)
Proof. (2.5.2) and a similar result
sup |Viag (k)| < . (2.5.4)
9cO x(k)

with some constant C' > 0 independent of k are consequences of Assumption [2.2.1{(ii)
(see Katznelson (2004), chapter I, section 4). Because of a(u, k) = agy)(k), the second
assertion in follows from . By uniform continuity of 6y, it is easily seen
that y(uy),00(usz) lie in some open convex ball included in © if |u; — uy| < d1, where
01 > 0. Use the mean value theorem to write

Ago(m)()‘) - A90(U2)<)‘) = <VA0_(u1,u2)(>‘)7 90(u1> - 00(u2)>

with some 0(uy,uy) € ©. Note that the variation increases the finer the partition is.
We consider only partitions 0 =ty < ... < t, = 1 with max;—;__, |[t; — t;—1] < ;. Then

.....

we have
Z ’a(t’h k) - a(tifly k>| = % / (Ago(tl)<)\) — Ago(ti_1)()\>)el)\k d)\‘
=1 i=1
] — n '
S o ; |00(ti) — Oo(ti-1)]1 - ‘ 3 VAg, nN)e d)\‘oo
C-d
< - 0o())] oo
< sy V@O
This shows the first assertion in ([2.5.3]). 0
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2.5.2 Prediction of linear stationary processes

In the next proposition, we derive the best predictor of Xt(e) given the past as well
as the corresponding prediction error. The results are then used to prove Proposition
2.1.2

Proposition 2.5.2 (Prediction of X,(6) given the past). Assume that

C
sup |ag(k)|, su k)l < ——
Geg‘ ol )‘ 068w€( )‘ X(k)

for some constant C independent of k. Moreover assume that Ag(\) > 64 > 0 uniformly
in @ € O,\ € |—mmn|. Then the stationary approzimation X(0) of Xy, fulfills for all
0eco: .

> (k) X1 (0) = &

k=0

Moreover, the linear prediction of Xt(e) given the past is

E[X,(0){X,(0) : s < t}] =

with prediction error

Var(X,(0)[{X(0) : s < t}) =

The following formula holds:

2 T
—log (%) = %/_ﬂ log fao(A) d\

Proof of Proposition[2.5.9: We have

iW(k)Xt— (Z Yo(k)ag(d — k)) Et—d = €t (2.5.5)

d=0 =

because for each d > 0 it holds (using Parseval’s equality)

: " J—
DUTUERIIN oy g VY dA:{(l), =0

— else

(2.5.5) together with (2.5.1)) implies that {X,(f) : s < t} and {e, : s < t} generate the

same linear closed subspaces of the space of square-integrable random variables L? In
the case of Gaussian ¢, the linear prediction of X,;(6) given {X(0) : s <t} is

o0

E[X,(0){X,(0) : s <t}] = — Yo (k) X1 (6),

0(0) 1=
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the linear prediction error of X;(6) given {X,(0) : s < t} is

N ~ 1
0% = Var(X;(0){X,(0) : s < t :Var( o ): .
By Kolmogorov’s formula (see Brockwell and Davis (1987), chapter 5.8 therein), we

have ) W
—log (2775(0)?) = log (ﬁ) _ i/ log f5(A) dA.

27 2 J_.
O

Proof of Proposition[2.1.9: Assume 6y(-) = 6 with fixed § € ©. If it holds that
ain(k) = ag(k), we have X;, = X;(f) in this case. The negative log Gaussian condi-
tional likelihood of X;(#) given the past has the form

_1(X(0) —E[X(O){X,(0) : s <}])” 1

len(0) = 5 Var (% (0)[(X.(0) - s < 1)) + 5 log 2mVar (X, (0)|{X,(6) : s < t}).

Plugging in the results from Proposition [2.5.2] we obtain the claimed result. [

2.5.3 The bias-variance decomposition of VL, ,(u,8y(u))

In this chapter, we prove a bias-variance decomposition for VL, ,(u, 6y(u)).
For a function ¢(u,A) : [0,1] X [-m,7] — C, let ¢(u, k) := 5= |7 d(u, k)e dA

2
denote its Fourier coefficients with respect to A. Define

o(k) = max{ sup |$(u, k)|, sup_|¢(u,—k)|}.

u€el0,1] uel0,1]

Put r(u) = L¢,1)(u). We will use this function as a data taper, and X" = Xip-r()

t,n
will denote the tapered version of X ,,. Let c(u, k) denote the fourier coefficients of the

time-varying spectral density f(u, A), i.e. c(u,k) = ["_f(u, A)e™ dA.
Lemma 2.5.3. Let Assumption|2.1.1 hold. Let ¢1,¢o : [0,1] x [—m, 7] = C be functions

satisfying the following conditions:

ZV(QA%(?@) < (h, Z&z(k) < Cy, k|- gi(k) < Cs,  [bi(u, N)|oo < Ch.

keZ kEZ

Here, the C; (i =1,2,3,4) are constants not depending on k. Define

Ly(¢1,02) = %Z <Z o1 (t/n, kl)Xt—kl,n> (Z Go(t /1, k?)Xt—kzg,n> -

t=1 k1=0 ko=0

Then, we have

1 s
]ELn(gbl,gbg):/O / f (v, \)pi(v, Na(v, =) d\ dv + RV,

with \Rg)| < %, where C' does depend only on C; (i = 1,2,3,4), not on the specific
values of the functions ¢1, ¢s.
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Proof of Lemma[2.5.3: Throughout the proof, we use a generic constant C' which does
only depend C1, Cs, C5, Cy and not on the specific values of ¢;. Our proof uses similar
techniques as the proofs in the appendix of Dahlhaus and Polonik (2009). We can write

¢17¢2 Z Z le t/n kl Qﬁg(t/?’L k) t k1 nXt(rkgn

t 1 k1 ko€Z

Thus,

Lo(¢1, ¢2) = Z ST bi(t/n, ki)da(t/n, ka)Cov(XT, L X ). (2.5.6)

t=1 ki,ko€Z

Under Assumption [2.1.1] the following inequalities were shown in[Dahlhaus and Polonik
(2009) (Proposition 5.4):

n 2
. ) / t | |
3 oo = (1) (o) < € il

- (2.5.7)

1 C
2 GTD S @ (2:5:)
C

Vie(-, k) < (2.5.9)

X (k)
where the constants C' do not depend on n, k, k1, ks. We replace the covariances in

(2.5.6) by r(t/n)%c(t/n, ki — ks) to get
%Zr(t/n)Q SO biltfn k) baltfn, Ko )elt/m, b — o). (2.5.10)

k1,k2€Z

with replacement error

S A
© S Bk (Hm)

k1,k2€Z
1 C
(k1) (ko) + —= (k) < =,
kz:ﬁbl 1Z¢2 2+ Z¢2 22 Oatia) = n
1EZL ko€Z ko€Z k1€EZ

Now we replace the sum over ¢ in (2.5.10|) by an integral. Because all terms dependent
on t/n have uniformly bounded variation, the replacement error is < C'/n again. In
total, we have shown that

1
ELn(¢1,¢2) = / D 1o, k) a(v, ka)e(v, by — ko) dv 4+ O(n)
0

k1,ko€Z

= /0 _ﬂ é1(v, N (v, =) f(v, A) dA dv + O(n™1).
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Lemma 2.5.4. Let Assumption hold. Let ¢; : [-m,7] — C (i = 1,2,3,4) be
functions with

Bl [i(k)] < Cr > [k < G

kEZ

and ¢1, 02 : [0,1] — R functions with V(¢;) < Cs, |¢ilec < Cy for some constants
Cl, 02,03, C4 > 0. Deﬁne

L (@1, 91,2) := Z¢51 (—) : (i @Zl(@Xt—k,n) : (z_:qﬁQ(l)Xt—l,n> , (2.5.11)

then we have

ELyn(¢1,%1,2) =/O b1(v) /_7r F0,A) -1 (N (=A) d\ dv+ RY (2.5.12)
and

COU( nLn(gbl?z/}th)v\/ﬁLn(¢27¢37w4))
= 2 [ ou@ae) [ FEN NN [N A) + (A )] o

b [ 5u0)oale) ([ s ) ([ e xmmecy ) @
+R®),

(2.5.13)

where |R,(11)|, ]R,(f)| < % and the constant C' depends only on Cy, Cy, Cs,Cy and not on
the specific values of the functions ¢;, f;.

Proof of Lemma[2.5.]: Again, we use similar proof techniques as in [Dahlhaus and
Polonik (2009), Lemma 5.6. Throughout the proof, we use a generic constant C' which
does only depend C, (s, C3, Cy and not on the specific values of f;, ¢;. Write

L(é1,91,¢2) = Z¢1 <—> >tk ()X, X0

k,leZ

Discussion of the expectation: We have

L (¢1, 1, 102) = Z@ (—) Do (1) Cov(X, 0 X)) (2.5.14)

tkl

In (2.5.14) we replace Cov(Xt(T)kn,Xt(i)lm) by r(£)%c(L, k — 1) to obtain

%Z b1 (%) r (%)2 U1 (k)ha(1)e (% k— 1) (2.5.15)

tk,l
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with replacement error (see [2.5.7))

Z|¢1 [ |( X(,Lkll))

< ijl SO D g I ] <

All terms depending on * in m ) have bounded variation, therefore we can replace
m by an integral Wlth replacement error

(Il + Vi) DI R0 <

¢
n

and obtain
| o)X intidatetosk =1y do= [ [ F0.0) - 1 0)i(-3) a .

Discussion of the variance: Recall ¢(k) = max{|p(k)|, |¢(—k)|} and define &(k) :=
SUPye0,1] |C(u7 k)| Put

\11(87757 k7l) = \11(57t7 kl? k2711712) = 9251 (%) ¢2 (%) '1[}1(k1)¢2(k2)1[)3(l1)1;4(l2)7
i’(l@l) = Ci- 1/31(7471)1/;2“?2)1;3@1)@24(12)a

then we have:

Cov(v/nViLn(¢1,%1,%2), VNLy(da, Y3, 4))

1 I8
-~ 3 st kD) Cov(XT, X, XY

s,t,k1,k2,l1,l2

Now we use the formula for the fourth-order cumulant «(X,Y, Z, W) = E[ XY ZW] —
E[XY]E[ZW] — E[XZ]E[YW] — E[XW]E[Y Z] to write (2.5.16) as

1

n

x™

s—li,n“rs— lzn)

(2.5.16)

Z U(s,t, k1) - [ Cov(X," k1n7Xs L. BE COV(XIET)kQ,Xg?l2’n)

s,t,k1,k2,l1,l2

+COV( t )kl n’ Xs( la, n) COV(Xt(Tk‘Q n7Xs(i)l1,n)
(X, XX XS@ZM)] (2.5.17)

We look at the first summand. Define k3 := (t —s) — k1 + 1, = (t — k1) — (s — l),
k’4 = (t—S)—k2+l2 = (t—kg)—(s—lg) = k3+k’1—l1—k‘2—|—l2 and s = t—k’l—i-ll—k‘g,
then we can replace the first summand by

1 : t t
— E T (i) '\If(t—(kfl—ll—l—k?;;),t,k’,l)'c (—,k’g) C (—,k3+k1 —ll —]CQ—I—ZQ)
n n n n
k1,k2,l1,l2,k3,t=1
(2.5.18)
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with replacement error (using ([2.5.7) and ( - part one:

1 | Ko )
k,1 1+
( ) x(ks3) ( X(ks 4+ ki + 1L+ ko + 1o)

Z ( k| )<g
2 X<k1+ll+k2+l2) _n'

and part two (replacmg the second covariance) having the same form. Now we replace
U(t— (k1 — 1y + ks3),t, k1) by U(t,t, k1) in (2.5.18) with replacement error

C STk Dhs)alhs + b — by — b+ 1)

" k1,k2,l1,l2,ks
1(<t—(k}1+ll—k’3))) 1(t)‘
n n

ST Wk AESIAESIA _
ki1,k2,l1,l2,k3 X(k3>X(k3 + kl — ll — k2 + lz)

Now change the sum over ¢ in (2.5.18)) to an integral. All terms that depend on t have
bounded variation, therefore the replacement error is again of order % We obtain

SIQ SIQ

C
< —.
n

=1Q

/ ¢1(v)” - 1 (k) a (Ko )b (1 )a (L) (v, ks )e(v, ks + ky — 1y — kg + 1) do

k1, k2 l1,l2,k3

— o / 0107+ [ F N (NN (N) A

The second term in (2.5.17)) can be dealt with in the same way.
Cumulant term: Using the representation X;, = > iz arn(t — j)e;, we get

1
- Z \Ij<57t7 ka Z)E(thkl,nathkz,naXsfll,naXsflg,n)

n
k1,k2,l1,l2,8,t

:% S Wk ( kl)r(t;b)r(s;ll>r(8;l2>.

k1,ko,l1,l2,s8,t
Z atfkl,n<t - kl - i)atsz,n(t - k2 - Z'>a/sfl1,n(5 - ll - i)asflg,n(s - 12 - Z)
1€EZ
(2.5.19)

“) by h(L) gives the replacement error
~ t—k t
© > (k1) r( 1)—r<—)‘
n n n
k1,k2,l1,l2 t
1
';X@—/ﬁ—z)x(t—z@—i) zs:x(s—ll—i)x(s—lg—i)

1
¢ J LA C
" kl,;zl,zz X(k1 = ka)x(lh —1la) — n

Replacing h(
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All other replacements lead to similar bounds with ki, ks, 1, 5 in the nominator of the
next-to-last line. Now replace a;_j, »(t — ki — ) in (2.5.19) by a(=E,t — ky — i) and
after that by a(%,¢ — ki — ). This leads to the replacement error (part 1)

% > kDY

k1,k2,l1,l2 i
1

1
X(t—kg—i)gx(s—ll—i)x(s—lg—i)

t—k
atkl,n<t_k1_i)_a( l,t—kl—i)‘
n

C ~ _ t—k .
< 5 Z U(k,1) (supz Aty (1 kl—z)—a< n17t_kl_Z>D
1k,
z > :
t—kg—z X(s =1 —i)x(s —1ly — 1)
C 1 C
< = —<—
- n kz 1—[2) 7’L

and with j :=t — k; — i and therefore i =t — k; — j to the replacement error (part 2),

C - t—k , t .
- > \Il(k,l)Za( nl,t—kl—z>—a(ﬁ,t—k1—z)‘

k1,k2,l1,l2 tyi
1 1

Xt —Fs— i) x(h — )

¢ W t— kl . t . 1 1
s () (1) s
" kh;,ll,h ; n n X(k1 — k2 +7) x(l — o)
¢ 7 |1 | 1 1
s - (k1) : ,
n kl,;,ll,lg ; X(7) x(k1 — k2 +J) x(I1 — 12)
< ¢ (k1) [ e
" kil o X(kr = k2)x(lh —1la) — n

Replacing the other terms in (2.5.19)) lead to similar replacement errors. Therefore, we
have the new representation for the covariance (2.5.17))

SOy ke (2) (2

k1,k2,l1,l2,8,

.Za(%7t_k1—z’)a(%,t—b—i)a(%,s—ll—i)a<%,s—lg—i)

(2.5.20)
Now we replace a(£,s—1; —i) by a(%,s—1; —i). The replacement error can be written

38



by (define d := s —t such that s =t +d and j :=1i —t):

C t+d t
— W(s, t, k,l —d—1; — —d—11—7
n Z (3a7 >)Za( n 1 j) (na 1 ])‘

k1,ka,l1,l2,s,t s,t,9
1
x(k1 = 7)x(ka — 7)x(d — ls — 7)
C |d|
< — U(s, t, k,l : . : .
Tong, ZW ( )% (d =l = j)x(d =l = j)x(kr = )x(k2 = )
C |d— 11 —j|+ |7 — k| + [ka| + |11
< — W(s,t, k,l . . .
n, Z st ( )dz X(d =l —j)x(d — Iy — j)x(kr — j)x(k2 — j)
C' |k‘1| + |11 C
< = W(s,t,k, l < —.
N, klZZ " (5ot ( Xl = 1) n
1, 2,5,

Replacing 7(£) by r(£) and W(s,t,k,1) by W(t,t, k,1) and so on gives similar replace-
ment errors (use the same substitutions). By first summing over s and then over i, we

obtain with c(u, k) = .5 a(u, j + k)a(u, j):

4
K4 t
— E vt t, k1) -r|—
n (777)r(n>

k1,k2,l1,l2,8,t

t t t t
. E a(—,t—kl—i)a(—,t—l@—i)a(—,s—ll—i>a<—,s—l2—i>
- n n n n
4
Ky t t t
= — \If(t,t,k’,l) T (—) - C (—,ll —lg) C (—,/{31 —k‘z)
nkhk;l;,lmt n " "

Replacing the sum by an integral (replacement error % as before) gives:

/€4/ ¢1(v)p2(v Z i (k) (Ra)e(v, by — ko) > : <Z7ﬂ3(ll)?ﬁ4(l2)c(%ll —12)) dv

l1,l2

= w [ o) / FE RN ) - ([ Xm0 B) do
[

We are now able to formulate the main result of this section:

Proposition 2.5.5 (The bias-variance decomposition of VL, ,(u, 0y(u))). Let Assump-
tions|2.1.1,[2.2.1| and |2.2.2 hold. Then for each b € B, there exists a decomposition

E [V Lo (1, 00(w)) 7 gy a1 = ©(14:0) + [B(1t, B) 7901 (2.5.21)
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where

2

KK 1 " -1
o h) = P | / Velosfu () B o)) (252)
B = oy [ H (550 [ (0 = Fn)  Fataw ) )
+O((nb)™) (2.5.23)

uniformly in u € [b/2,1 —

b/2], b € B, with pk := [ K(z)?

dr.

Furthermore it holds that

|B(u, b)ﬁ(@g(u))_l < Cv* + o((nb) ™)

uniformly in u € [b/2,1 —b/2], b € B,,. Moreover, if 6y is twice continuously differen-
tiable (i.e. 8 >2), we have with dg = [ 2*K () dx:

2

bt 1 (7 B
B = g |ge [ 7N VallawN) ™) d

Ho(b*) + o((nb) ™).

1(80 ()~
(2.5.24)

uniformly in uw € [b,1 — /2], b € B,.

Proof of Proposition[2.5.5: Obviously, we have a decomposition of the form (2.5.21))
with

B(u,b) = E[VgLyp(u,b(u))l,
v(u,b) = E|VLny(u,00(w)) = E[VoLnp(u, 00 ())]]7 (w1
We use Lemma component-wise with ¢»(v) = ¢1(v) = K (*3*) and
U3(A) = ¥1(A) = Agyy ()71 ¥2(A) = b, (A (V) 71), () = 0, (Agoy (V) 7).

(2.5.25)
Note that V(¢;) < Lk, where Ly is the Lipschitz constant of the kernel function K,
and |¢i]eo < [K]oo 1= Sup,e)oqy [ K (u)|. Furthermore, |k[ - [1;(k)| and ), [¥hi(k)| are
uniformly bounded in 6 by Assumption @ Note that |, ! Ky(u —v) dv =1 as long
asu € [b/2,1—b/2] since K has bounded support [— Thus, we obtain for the bias
term: B(u,b) = Ty (u,b) + T5(u, b), where

272]

Ti(u,b) Zm(——u) V(= 10830 (0)*))

/ fovt

) Vo foowy(N) ) dA+ O((nd) ™)
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uniformly in u € [b/2,1 —0/2], b € B,,, and

%i Kb<% - u) : (i ’Va(k)th,n> : (i Vwe(k)th,nﬂ

=0

Ty(u,b) =

% La(1, 91, 2)]

- /Kbv—’u/ F0, ) - Vo fopy (X)) dA dv +O((nb) ™).

uniformly in v € [b/2,1 —b/2], b € B,. Therefore, B(u,b) has the form (2.5.23).
The estimation error for the bias term follows with the usual Taylor arguments from
nonparametric statistics: Since f(u,A) = fg,u)(A), we have that u — f(u, A) is [g-times
differentiable. Here, we assume that 5 > 1, for the case 0 < 8 < 1 the proof is easier.
By a Taylor expansion of f(v,\), we obtain

(u,b) + To(u,b)

lg
/ Ky(v —u) dv - / D05, - (v =) Vo fap(N) ) dA
T k=1
Is—1

/Kbv—u /_W/ (9 flu+ s(v—u), )—&ff(u,)\))-mds
X (v —u)" - Vo(fagy(N) ") dX dv + O((nb)™") (2.5.26)

The first term in (2.5.26) is zero since K is of order g, thus fol Ky(v—u)(v—u)*dv =0
for k =1, ..., 6;. By Faa di Bruno’s rule, we have

&lf f@o(u)<A> = Z Vc|9g|f¢90(u) ()‘) [(aLDlg()(u))Dea] ’

o€ell

where II is the set of all partitions of the set {1,...,15}, |o| denotes the number of
elements of the partition o and |D| denotes the number of elements of block D in
partition o. Here, for A € R and vectors vy, ...,v, € R% we define A[(v])] 1. ] =

Zi i=1 Aiy iy Vi -0, We will not go into detail of this formula. Note that for o =

{{1},....{lg}}, we obtain the summand Véﬁfgo(u)()\) [(0ub0(w))i=1,..1,] with the highest

derivative of @ — fy is obtained. By assumption, 6 — fp(\) is (I3+1)-times continuously

differentiable. Since 8(lf i fa(A) is continuous in both components and 6, € ¥(3, L), we
! !

h~ave |v0ﬁ f@o(qus('ufu))()\) [(8}9001,—‘—8(’0 - u)))i:l ..... l[;:| - vgﬁfag(u)()\) [(aUQO(u))zzl ..... l,g:| | S

C - |v —u|?~% with some C' > 0. The other summands in o Joou)(A) can be analyzed

in a similar way. Therefore, we obtain that the second term in ([2.5.26f) is bounded in

| + |2-norm by

lﬁ—l / ol —u)- / [ = ul - [V fanuy V) H)lo dA < C 57 + O((nb) ™).
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with some C' > 0. This leads to [B(u, b)[ w1 < B, 0)[31(00(u))]spec < CV** +
o((nb)~1). The special case for 8 = 2 is easily obtained from (£2.5.26]).
For the variance term we obtain

v(u,b) = E[VgLn,b(u,Go(u))—]E[Vngb(u,GO(U))]ﬁ(eo(u)),l

-y [I(@O(u))—l} - Cov (D, Ly (11, 00(1)), Dp, Loy (11, 0o (1)) -

7
ij=1 !

An application of Lemma yields
Cov (\/%agi Loy (t, 0(w)), Vb3, L (1, Ho(u)))

— %COV (\/ﬁLn(¢1, wl, wQ), \/ﬁLn(¢2> ¢37 7vb4))

L Y L el W P (CPY s
pan )y & ' ’ 1 A) - g, 1 A) dA d
b 4m Jo ( b > -7 f90(u)(/\)2801 ©8 fgo(u)( ) 891 0g feo(u)( ) v

+(4HT4)2 : /01 K (%)2 : (/: F(0, N0, (foowy(N) ™) d)\>

- ( [ 5208 a0 dA) do + RO

where R\ = O((nb)™!) uniformly in u € [0,1], b € B,. Because 6, € %(3, L), we can
replace f(v,A) = foow)(A) by foou)(A) with replacement error RY = O(b”) uniformly
inu e [b/2,1—0b/2], b € B, (see the calculations regarding the bias above). Therefore,
we have using 2/ Ax = tr(Azz’) for matrices A and vectors z:

T 1 [" -
) = L (9o fo () - G0(0) ™ (Vo108 () 0
T 2
K . L (pw , pe
s | [ Ha Vil + = (RO + R
(47T)2 - O( ) I(Qo(u)),l nb ( )
[k 1 (7 2 1
_ b ) 1 (p) . p®
e / V1o foy () A 1(90<u))1] +—(RY + RP).

]

Corollary 2.5.6 (MISE representation, integrated and summed Bias). Let Assump-
tions|2.1.1),[2.2.1| and |2.2.2 hold. Then we have uniformly in b € B,,:

B30y, 00) = Ed; (B 00)] = 0+ B(0) + ol (nb) ), (2.5.27)
E[d"(0,,00)] = % + B*(b) + o((nb) ™). (2.5.28)



where Vy is defined in and the integrated bias is

1
B0 = [ 1B do

Furthermore, with the discrete summed bias

1 — t 2
B2 (b) = — ’B<— b)( ¢
dzs( ) n tzz; n’ I(Gg(t/n))_lw( /n>7

we have uniformly in b € B,

Furthermore it holds with a constant cy > 0:

n

B%(b) — B3,,(b) = o((nb)™1). (2.5.29)
1

t
B(b) > CO/ |B(u,b)Pw(u) du,  Bh(b) =2y |B (—,b)

B n n
Proof of Corollary[2.5.0: (2.5.27)), (2.5.28) follow from Proposition [2.5.5, where we need
the bounded variation of 6y and K to approximate the sums by integrals in ([2.5.28|)
and (2.5.29). The estimation ([2.5.30) follows from the assumption that the smallest
eigenvalue of I(#) is uniformly bounded from below by some %, so that 2'I(0) 'z >
7' xcy. O]

2

w(t/n). (2.5.30)

2.5.4 Uniform convergence results and moment inequalities for
the local likelihood L, ;(u,f) and the maximum likelihood
estimator 6(u)

In this section we show the uniform convergence of quadratic forms of the locally

stationary process X;, towards their expectations. We give convergence rates and

prove uniform consistency (w.r.t. u and b) of the maximum likelihood estimator 6, (u)
towards Oy (u).

Proposition 2.5.7 (Moment inequality). Let Assumption hold. Let 11,1y :
[—7, 7] = C be functions which fulfill for some constant Cy > 0:

S k) <0, i=1.2

keZ

Let ¢y : [0,1] — R. Then it holds that (see (2.5.11) for the definition of L), p > 2:

n n

oWz (& 2\
|‘Ln(¢17¢1;w2) - E[Ln(¢17¢17¢2)]||p S . : ) (Z ¢1 (_> ) )
t=1

where C’él) is the constant from Lemma which does not depend on the functions
U1, 2, 1.
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Proof of Proposition[2.5.7: With the data taper 7(x) = 1 )(x), we have

La(61,1,4n) = % Z (k1) (ko) qun (—) XX

s+ min(kq, k )
= - Z Wy (ke )ha (o) Z¢1( Lol 2))'Xs(nX( )|k2 kil in?

n
kl ko=0

therefore we get from the triangle inequality and Lemma [2.5.12] below:
||L (41517@/11,1@2) - [ (¢17¢17¢2)”|p

< - Z [ (k)| - [ (k)|
kl ko=
o 5+min(k:1 ]{Zg) (r) (r)
’ Z ¢1 ( n : ) <X5(jﬂnXsflk2*k1|,n - E[X‘S(T%Xsﬂkgfkl\,n])
s=1
O(l ) . ?
< (b1 (k)| - [ (o)
k1,k2=0
n—min(k1,k2) . 2 9\ 1/2
X( ; 5 (s—l—mn:l(kl,l@)) r<§>27"<8_|k;_k2|> )
C,(l) © o n /
< () (S tn)) (e ()
k1=0 ka=0 s=1
W2 [ a2\
- pn 1 (;¢1 (ﬁ) ) '

O

Proposition 2.5.8 (Uniform convergence of likelihoods and its derivatives). Let As-
sumptions 2.1.1}, |2.2.1) and |22Q hold. For k =0,1,2,3,4, we have for all 0 < a < %:

sup sup sup ( ‘Va (1, 0) —E[VEL, 4 (u, 0)]‘ — 0. (2.5.31)

be By, u€l0,1] €6

Moreover, for u € supp(w) and n large enough, we have

E[Lnp(u,0)] = —/ 1 710 f;( )>} d\ + O((nb) ™' 4+ v9),
BVoLs(w 8] = 3 [ TSP G0 ) vt ot 09,
E[V5Lns(u,0)] = i/_ﬂ f(%j”z(;)fe(k) - Vi log fo(A) dX+ I(0) + O((nb) ™" + 7).
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Proof. In this proof, we will use C' as a generic constant that may change from line
to line but is independent of 6, u,b,n. The term V§L, ,(u, ) splits (up to determistic
terms) into summands of the form

Ln(gbly 101, ¢2)

with ¢(v) = ¢pu(v) = %K (%) and, for example, 1 = Y19 = Py = g = for
L, . We will show the stated convergence for L,,(¢1, 11, 12), then the assertion (2.5.31])
follows. We define

f(g) = Ln(¢1’ ¢17 ¢2) - E[Ln(gbla Tbl; 1/)2)]7

where £ = (b,u,0) € 2, := B,, x[0,1] x ©. For each r > 0, we can find a space =], with
#Z < ¢,n? such that the compact space =, is approximated in the following way: for
each £ = (b,u,0) € =, thereis a ' = (V/,u/,0') € =], such that |{ — &'|; < c¢,n™". Then
we have for 0 < a < %,

B( sup (nb)¥ £ ()| > <)

£eEn
< P(;gg(nb)éa\f(&’)!>§)+ﬂ”<§€: L )@ - € > 5)

= I, +1I,.

Our goal now is to bound I,, I, by absolutely summable sequences in n to apply
Borel-Cantelli’s lemma.

Because of Assumption m (see Lemma [2.5.1), the sums S° [ (k)| < O,
Y oreo IVUi(k)| < Cy (i = 1,2) are uniformly bounded in 6. From Proposition
we obtain

o n t 2\ 1/2
17O = NLa(r,v0,2) ~ ELo(n, v, ), < 2 (ZK ( . u) )

< C(nb)~"2
We conclude that

()2~ fOl5 _ [ C
sup B((nb)71(€)) > 2/2) < sup g(%) - sup [(nb) 7]

€CE, €CE, g/2)p beBy,
< C- n_aap,

A

and thus for p large enough,
I, < #3, - sup P((nd)5 [ f(§)] > £/2) < C -t
§EER

is bounded by an absolutely summable sequence in n.
Let us introduce some notation to simplify the proof for the second term I1,,. Define
the Toeplitz matrix

1@ = [ B0 an
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an set G := T, (v1), Hp := T,,(12). Put

R (= )

Note that with X := (X, ..., X,,.,)" we have

Ly (¢1,101,192) = X'GyD, yHy X

Now we prove that such functions form a Lipschitz class with respect to =, = B, X
0, 1] x ©. The well-known inequalities |2’ Az| < 'z |Alspec and [AB|spec < |A|spec| Blspec
give for £ = (b,u,0), & =V, u,0) € =,:

X" Ay Dy BoX — X'Gly Doy Hy X |
S X,X : |G9 - G9’|2|Du,b|2|H9|spec + |Du,b - Du’7b’|spec|G9’|spec|H9|spec

—HHO - HH/‘spec’GH”spechu’,b’ ’spec:|

Now we give estimates for the terms appearing above. For Toeplitz matrices it holds
that |T,(¢)]spec < Dopeg [(k)]. Uniformly in (b,u,0) € Z,, we therefore have with
some constant C7 > 0,

0
|Du,b|spec S %7 |G0|Sp667 |H0|spec S Cl-

Furthermore, with some intermediate value 0 € © and some constant Cy > 0,
|G0 - G0’|Spec = |Tn(v9¢1,§' (6 - 9/))|8pec <d-Cy- |0 - ‘9,|1a

the same holds for Hy. Finally, note that

1 v—u 1 v —u C
- - < = o _vl).
bK( - ) b/K( - >‘_QB(\U '] + b b|)

For the expectation EL,, (1,11, 9) of L,(¢1,11,12), we can use the same bounds as
used above. We have shown that (keep in mind that b > con®~!, see Assumption [2.2.2)

|Du,b - Du’,b’|spec S sup
vE(0,1]

() = /() < C) - (X'X + EX'X]) - | €/,

where the deterministic C'(n) grows only polynomially fast in n. Choose r large enough
such that C(n)n™" = o(n~(*7), then we have

—r !/ !/ E
11, < P(eCn~ (XX +EX'X]) > )
XX — BIXX])3

—(147) ! E)
< ) +P (C’n EX'X] > 5
< % Lp (Cn O ELX] > 2).
= 142y a4~y
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which is absolutely summable again (note that +X'X = L,(1,1,1), from that we
get the estimation | X'X — E[X'X]|2 < Cn from Proposition [2.5.7] " and 1E[X'X] =
fof f(v,A) dX dv + O(n™!) from Lemma [2.5.4]).
The second part of the assertion follows from Lemma and the Hoelder conti-
nuity of 6y which allows us to replace f(v,\) by f(u,\) with replacement error O(b?)
uniformly in b, u, 6. ]

Lemma 2.5.9 (Uniform convergence of the leave-one-out likelihood). Fork = 0,1,2, 3,4
we have for all 0 < a < 1 almost surely

l—«a

sup sup sup sup (nb)
s=1,...,n b€ By, uel0,1] €O

Vs Lng-o(1,0) = Vi Lua(u0)] = 0

Proof of Lemma[2.5.9: Because the structure of V&L, ;(u, ) is the same for k = 0, 1,2, 3, 4,
we only look at the case k = 0. Here, for s = 1,...,n we have

1 2 —u
Lyp(u,0) — Lyp_s(u,0) = %K (” 2 ) lsn(0).

Since K is bounded, we have with ¢;(k) = ¢15(k) = ﬂ{kﬁs}m and using the results
from Proposition [2.5.1] and ([2.5.8]):

2

s Xi
. — < — ] = .
(D) - | Ly (11, 8) — Ly (u, 0)] < c<1 n ;:1: o k)) 0(1 4 Lo(és 1, 1))
AS a consequence,

c
sup (nb)' | Ly p(u,0) = Ly, —s(u, 0)] < 5o T e Slllp [ Ln(1,6,1,1) —ELy (16,1, 1)

S7b7u79 S=1,..., n

Application of Proposition gives

1/2
1
_ < " - <
Lo (1,61, 1) = B[Ly(¢1,5, 1, D]ll, < Cp <k:1 oo W) =G,

Thus for n large enough,

P(sup (nb)'~*|Lnp(u,0) — Loy —s(u, )] > €)
s,b,u,0

AN
S
w
o
g
=

(n_c(s;l-[/n(qbl,s; 17 1) — ELn(¢1,s; ]_, 1)| > 5/2)

S Cnl—éap)

which is absolutely summable for p large enough and thus yields the result with Borel-
Cantelli’s lemma. O

47



Theorem 2.5.10 (Uniform strong consistency of the maximum likelihood estimator).
Let Assumptions|[2.1.1], [2.2.1) and[2.2.2 hold. Define

L(u,0) = %/_:{logfg()\wrf]g;’)\/;)} dA.

Then it holds that

sup sup sup |L,(u,0) — L(u,@)‘ —0 a.s.

beBn uesupp(w) 0€©

and
sup  sup ‘Hb(u) — Qo(u)‘ —0 a.s. (2.5.32)
)

b€ Bp, uesupp(w

Proof. Use Proposition for the uniform convergence of L, ;. The identifiability
condition in Assumption implies that L(u,#) attains its local minimum at 6 =
0o(u) since

Jod) SN g (1—

fn) R —1=0

on () S0

Jo(A) fo(N)

with equality if and only if 6§ = 6y(u) (here, we used the inequality log(z~") > 1 — ).
Standard arguments provide the uniform convergence of 6,. For more details, we refer
to Chapter [3| and the proof of Theorem [3.3.2] ]

2.5.5 Bounds for moments of sums, quadratic and cubic forms
of covariates

The inequalities derived in this section are needed to prove the moment inequalities for
the local likelihoods and its derivatives in Section [2.5.4 The proofs of the following
two lemmata mimic ideas from Subba Rao (2010), Lemma 4.2 therein.

Lemma 2.5.11. Let Assumption hold. Define nyy = Xt nXt—pn — E[Xt 0 Xi—kon)
let Fy := o(es : s < t) be the o-algebra generated from es, s < t. For integers
taj17j27j37i17i2 Z 0 and kalam 2 0} deﬁne

Mkt = 51) = ElnerlFij] = Elnerl Fiejial,
Ajy it = g1 — 1) = E[Mj (¢ — j1) My, a(t — j1)|Fe—ji—i]
—E[M;, x(t = j1) My a(t = j)|F—j—in—1],
Bjyjasjsinin(t = Jz —12) = E[Aj, joi (t = J3) - Mjgm(t — J3)| Fimjs—is]

—E[Aj, joir (t = J3) - My m(t — J3)| Fs—js—in1]-

Define the absolutely summable sequence Yy (j) 1= ﬁ + ﬂ{jZk}ﬁ- Fiz some p > 2.

Then there exist constants Cﬁ) >0 (1=1,2,3). dependent only on p, the moments of
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g9 and the constant in such that:
[ M,k (t = 5l CV (1),
[Ajiir(t =i =in)lly < O (i) - (i + ) + o + 1)),
|‘Bj1»j2:j37'517i2 (t—Jjs— Z-2)Hp < 0153) k(1) (J2)m (Js) - <wk(]1 +i1) + UG + Zl))

'(wk(jl + iy +d2) + Yi(Jo + i1 + 1) + U (s + Zz))

IA

A

Proof of Lemma[2.5.11): Let g(j) be a generic sequence (maybe dependent on ¢,n and
the indices 71, jo, js, i1, 42) with the property |g(j)| < % uniformly in ¢,n and the
indices. Define a second generic sequence hy(j) := 1>k 9(j — k). Furthermore, let
F-+ denote a (generic) random variable with expectation 0 which is o(eis @ s > 0)-

measurable. Then we have

—«7:>tgl+z J)ei—, thn_F>t]1+th J)Et—j.

J=i i=n
It follows
Ene il Feji] = (Z e j> (Z hy(5)er- ]> — Elthis term],
J>J1 ">71

thus with the definition gx(j1,7) := g(j1)he(j) + he(71)g(j), we have

Myt —G) =c—j > gl Des + 9Gi0m(i) - (67, — 1). (2.5.33)

Jj=zj+1

Recall the definition of (7). Note that
1917, ) = 19() (") + hi(5)9 ()] < Vu(5)n(5").-

Applying Rio (2009), Theorem 2.1 therein and the Hoelder inequality yields

1/2
1Mkt = Gl < (20— 1) [leo]l3, - (Z gk(jhj)Q)

Jj=j1+1
+g9()he(in)] - (leoll3, + 1)
< o) - O {lleolly, - [26 - @p = DY+ 1]+ 1} =) - €.

1/2 1/2 .
In the last line we used (ZJ ¢k(j)2> <2 (ZJ ﬁ) =: C. Using the formula

j
(2.5.33) with t + jo — j; instead of ¢ yields with j*(j) := j — j1 + Jo

Myt =j1) =cjy Y 9ilja, 5)er—j + 9U2)ulja) - (€75, — 1).

i1+l
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Straightforward calculations reveal

Aj17j27i1 (t ) Z.l)
Et—ji—ir Z [gk(j17j)gl(j27j2 +i1) + g(J1, 51 + il)gl(j%j*)}gt—j
Jj>ji+ii+1

+E[eg] [g(jl)hkz(jl)gl (J2, g2 + 1) + g(j2) e (j2) gx (J1, J1 + il)} Et—ji—i

+(5§—j1—i — 1) gr(j1, 1 + 1) 91(J2, 2 +i1). (2.5.34)

Using
‘gk(jlyj)gl(j%jz + 1) + g (J1, J1 + il)Ql(jQyj*)‘
< (GG [r0)na + i) + i + 1)),

Rio (2009)| (Theorem 2.1 therein), the Hoelder inequality, and x - (y — 1) < 2(y —1) <

y+(y—2) <y zy <z+y for z,y < 2 we obtain for the last term:

[ Ao &= g1 —i)ll, < Yu(G)i(2) |[Uu(dr + i1) + (2 + in)
C* . {||go||§p{(2p —1)V2932¢C 4 |BED| + 1} + 1}

. O

p

= r(j1)ti(J2) :1/1k(j1 +i1) + (2 + i)

For the third inequality we will only look at the first term, the other terms can be
handled similar. First, we have from ([2.5.34]) with ¢ — j3 + j; + 41 instead of t:

Ay jain (= J3) = €1—js Z 9x(J1,J — Js + J1 + 11)Gi(J2, j2 + 91)&—; + more terms,
Jj2j3+1

thus for i > 1, we have

E[Ajl,jmil (t - j3)Mj3 (t - j3)|‘E—j3—i2] - E[Ajhj%il (t - j3>Mj3 (t - ]3>]
Z 9k(J1:3 = Js + g1 + 1) @i(d2, J2 + 01)gm (J3, 7)€ i€~y — E[this term]
J»J' 2js+iz

+more terms,

and so

Bj17j27j37i1,i2 (t —Js— Z‘2)
Et—js—is Z |:gk(j1aj — Ja +J1 +11)gi1(J2, J2 + i1) g (J3, J3 + i2)
Jj=js+iz
+9k(J1, 1 + i1 +i2)gi(J2, J2 + 1) gm(J3, J) | €45 + more terms,
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thus applying || - ||, and using

1961 J = Js + g1 + 1) 92, J2 + 11) gm (s, J3 + i2))|

< e(J) Vi (G2)Vm (J3) V(G — Js + J1 + i)Yz + 1)V (J3 + i2),
|96 (i, g1 + i1+ 12)91(J2, 2 + 1) gm (3 + 42)]|

< k() i(J2)Vm (53) k(1 + i1+ d2)ti(J2 + 1) Ym(4),

we get the bound as asserted.
O

Lemma 2.5.12. Let the definitions and assumptions of Lemma [2.5.11 hold. Let
be ey bst kel bStTklm be deterministic constants (maybe dependent on n). Then we have

with constants C only dependent on p and Cp ,1=1,2,3, (see Lemma|2.5.11):

n

n 1/2
Z be g * Mk é;()l) : (Z |bt,k|2) )
t=1

t=1

n n 1/2
Z bs k1 - <773,k77t,l - E[%,kﬁt,l]) C;(;Q) : (Z ‘bs,t,k,l|2> )
st=1 sit=1
n 1/2
(3. ( Z |bs,t,T,k’,l,m|2> .

s,t,7=1

IN

IN

IN

Z bs,t,’r,k,l,m : (ns,knt,lnr,m - E[T/s,knt,lnﬂm])

s,t,7=1

p

Proof of Lemmal[2.5.12: We start by showing the first inequality. From Lemma [2.5.11
we have || M;, (¢ jl)Hp <l wk(jl) and therefore

Mk = Z M;, x(t—71) a.s. (2.5.35)
Jj1=0

Note that (M, x(t — j1)): are martingale differences w.r.t. (F;_;,):, so we can use Rio
(2009), Theorem 2.1 therein, to get

< 3D b My k(t = )
j1=0 || t=1 D
1/2
< - 1/2z(z|m| 0,00 >||§>
71=0

00 n 1/2 n 1/2
< (p—=DY2CM> () (Z\bmﬁ) <CW (Zlbt,ﬁ) ,

41=0 t=1 t=1

where Cf" == 2(p — 1)/2C3"Cy, and Cy := 3, -
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To show the second inequality, we again use the representation (2.5.35|) to get the
upper bound

Z byt k1 (Us,kﬁt,z - E[Us,kﬂtﬂ)

s,t=1

P

= Z Z bstkl( k(8 = 31) M, (t — ja) — E[Mj, k(s — 51) M, 1 (t — jz)])

J1,72=0s,t=1

p

< I+ 1T+ 11L+ 1115,

where
_ . (2) 4
I = E E g bs ki My k(s — 1) M5t — J2)||
J1,J2=0 || s=1 t<s—j1+j2 »
o0 n
II[l = g g bs,sfj1+j2,k,l
J1,J2=0,j1272 s=1,s>j1—J2

(M5 = 1) Misals = 1) = EIM;, 15 = j2)Myaa(s = o))

Y

p

and I has the same form as I with reversed roles for s,t. I11;, 111, are obtained by
splitting the case s — j; =t — j» in the two subcases t < s and t > s, thus /1], has a
similar form like I71;. We first discuss I. Note that

AU = M, (s — 1) - Z bs k1M 1(t — Jo)

t<s—j1+j2

is a martingale difference sequence w.r.t. (Fs_j,)s. Using again [Rio (2009), Theorem
2.1, the Cauchy Schwarz inequality, and the result from Lemma we get

H ZA(J'lJz)
s=1 ) p
< <p—1)1/2(Z||A§ﬁ’j2>||§)5

INIERNYZ
< 1/2(ZH || Y bewiMpatt =) )
t<s—j1+jz 2
» 1/2
< (-1 1/2(ZHMM e D bl 1Mt = ) 3,)
t<s—j1+7j2
< (o= 1720~ DA D Iadl?) - uliwilio)

s,t=1

52



so that

n
i 2
H E AJl]Q < D < E |bs,t,k,l| )7
J1,J2=0  s=1 s,t=1

where D, := 4C3(p — 1)"/?(2p — 1)1/2(6’2(119))2. The argumentation for /7 is the same.
For IUI, we use an upper bound for ||A;, j, (s —j1 — )|, from Lemma [2.5.11| to obtain

<Mj1,k(3—j1)Mj2,l(8—Jl)—E[Mjl,k(s—jl)MjQ, ) ZAJh]zZ J1—1) a.s.

where (A, j,i(s — j1 — 1)), are martingale differences w.r.t. (F,_;,_;)s. So we get with
the same methods as before

b

mno= |y Y besgbiakd D Ajgals = 1 =)
=0

J1,j2=0,71—j2>0 s=1,5>j1—ja P
o0 o0 n
< > > H > besjitppkiAjei(s — 1 — i)
J1,J2=0,j1—j2>0 i=0  s=1,5>j1—jo P
SECES D DI S1 (D DI Oyl K Rl
J1,J2=0,j1—7j2>0 i=0  s=1,5>j1—j2
o0
< (-1 > (G)hi) -
i7j17j2:07j17j220
o o a o\ 1/2
<¢k(ﬁ +1) + (2 +2)> : ( > Ibesiitink )
s=1,5>j1—jo
n—1 n 1/
S p sup ( Z |bss dkll > < Ep(z Z |bs,s—d,k,l|2>
d=0,..n—1 % 11 d=0 s=d+1
1/
< Ep( Z ’bs,t,k,l|2>
s,t=1

where B, := 16(p — 1)Y/2C5’C3. The same argumentation can be done for ITT,. In

total, we proved the second inequality with 6’152) := D, + E,. The proof of the third
inequality follows the same lines, but further case distinctions are needed. [

2.5.6 Proofs of the statements in Section [2.2]

Here, we give the proofs of the Lemmas and Corollaries from Section 2.2 We start
with the proof of Lemma which is maybe the most important part. For this
proof, we need a more detailed analysis of the behavior of ¢;,(0) and its derivatives
if the true parameter 0 = 6y(t/n) is plugged in. This results are formulated in the
following lemma.
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Lemma 2.5.13 (Detailed analysis of ¢;,,(0)). Suppose that Assumption holds.
Then there exists a decomposition

Vlin(0o(t/n)) = MDS" + R}V (2.5.36)

with a martingale difference sequence MDS" := €V n(00(t/1)) — Vgo(t/n)(0)ae»(0)
with respect to Fy := o(es = s < t) (the o-algebra generated from e, s <t), and some

random variable Rﬁl). Furthermore, there exists a constant C > 0 independent of n
such that

Y EVLLOu(t/n) < C. D [Vial0o(t/n) = I(Bo(t/n) < C. (2.5.37)

t=1

Proof of Lemma |2.5.15: In this proof, C' is a generic constant independent of n which
may change its value from line to line. Note that

_ , ~ V%(0)
Vial0) = donl) Vi(6) — T,
Vn(0) = (Vdiu(0) - Vdia(6) + V%(g)e(gf(o) ) + (din(0) - V2dyn(0) — VWZ(OO()O )

Note that by Proposition [2.5.2) we have g, = 35 Yoo (u) (k) Xi—x(0o(u)). Using this

representation for u = t/n gives

din(Oo(t/n)) = et + Ry,

where Ry := — 372 Yoo (t/n) (F) Xt—kn + D50 Voo (/) (k) - (thk,n - thk(QO(ﬁ))) Fur-
thermore, since v4(0) = ay(0)~!, we have that

V(0
Vs (0) = ”V?é))et + V76(0) (ar,n(0) — ag(0))e; + Ri”,
where R\ = Vd; . (0) — VWZ?(()()))Et — V7(0)(an(0) — ag(0)) € Fi—y. This shows that

there is a decomposition of the form (2.5.36)) into a martingale difference sequence
v n
MDSV = (53—1)%% RY = &:Vdy(00(t/1)) Va0 (1) (0)ar, (0) and Ry :=

Vggo(t/n)(O)(at,n(O) — a(t/n,0))e? + Ry - Vdy,(00(t/n)). Since Cov(X; g, Xi1n)

x(k=1)’

N

1

|Cov(Xi—tn — Xict(Oo(t/n)), Xici)| < C > Jar—pn(kr) — a(t/n, k1)|m

k1=0
and Y07 Jag g (k1) —a(5E k) [+ 200 |a(5E, k) —alt/n, k)| < O+ 4 ‘k‘ ;) by the

o4

).



results of Lemma [2.5.1] we conclude that component-wise:

n

> BV (600(t/n))|

t=1
n o0 oo 1
< c —Cov(Xpm Xt
2.2 2 Sy o Xk Xit)

[o¢] 1 -
+C Z WCOV(Xt—k,n — Xk (HO(t/n)) ) Xt—lvn)

‘ 1 & 1 = |k|
< x(t) 2 x(Ox(k—=1) oy X(R)x(D)x(k + ky — D)x(ky)

t=1 k,1=0 k1,k,1=0

With exactly the same arguments we can show that

n

Z | (B0 (t/n)) - V2dyn(0o(t/1)) — M‘

<C.
— Yoo(t/n) (0)

In addition, similar calculations as above show that

Z (Vd;n(00(t/n)) - Vi n(0o(t/n)) — Z VY0 (t/m) (B) VYoo t/m) (1) c(t/n, k = 1)] < C.

1,k=0

Since

Z VYoo (t/n) (k) Voo (t/m) (1) c(t/n, k = 1)

1,k=0

= /7r Y (Agyt/m) (= AN)71) - V(Agyeymy (=A) 1) - f(E/n, X) d,

we obtain the second result in ([2.5.37)).

Proof of Lemma[2.2.9. In this proof we will use C' as a generic constant which may
change its value from line to line but does not depend on b, n,u. To keep the notation
simple, let us use the abbreviations 6 := 0, _(u), 6y := Og(u) and L(-) := Ly _(u, -).
The general idea of the proof is to use Taylor expansions in the nominator of
to separate the expression into terms where we can use Proposition Lemma
2.5.9, Theorem and the continuity of /(-) to show that these terms are of lower
order than d},(6y,60y) and into terms where we have to calculate expectations and use
continuity arguments to show the same. First use a third-order Taylor expansion to
write

lin(0) = un(00) = Viin(00) - (B = 00) + 10 — bol22y, . 0y + 10 — O[Sy, 5y, (2:5.38)
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where 0;(u) € © is some intermediate value with |6, — 0|s < |6 — 6o|,. Using (2.5.38),
we obtain the decomposition

V)~ = 3t (00(L) Yutefm) — (s, 00
S L B0(t/m) - Boalt/m) — ot/ )
257 i lt/m) — B0t/ ) o s 0 /)

R,
+— > " 10—i(t/n) = 0ot /) %1, . 5 ¢y (/7). (2.5.39)
t=1

In view of Corollary , it is enough to show that each term of is almost
surely of order o((nb)~! + B2(b)) or o((nb)~*/2B(b)), respectively. We will discuss the
three terms in separately.

Third term in (2.5.39)): Note that 6(u) is in the interior of © for all u € supp(w).
Because of Theorem [2.5.10|it follows that supyep, SUPyesupp(w) |V Lnb(; 0y(1))|2 = 0 for
n large enough. Using a second-order Taylor argument, we obtain

1

0 — 0y =—(V2L(6)) " - VL(6). (2.5.40)

with some intermediate value 6, € © which fulfills |6y — 6| < |0 — 6y]. We know

from Proposition [2.5.8) Lemma [2.5.9, Theorem [2.5.10 and the continuity of I(-) that
V2L —i(u,05(uw)) — I(fp(w)) uniformly in b € B,, u € supp(w). Together with
(2.5.40)), for n large enough, the third term in (2.5.39) is bounded by

% D IV a(@r(t/n) - |V Lug—o(t/n, 60(t /) Pt /n)

1 « _
< C- sup sup |VLn,b,_t(u,90(u))—B(u,b)|3-EZ|V3€t,n(91(t/n))|1
t=1

u€supp(w) t=1,...,n
C & _
+= > V3 n(02(t/))]1 - |B(t/n,b)Pw(t/n). (2.5.41)
t=1

It is easily seen that

1 & _ 1 &
- D [V (0i(t/n)) < C (1 + = Z&%)
t=1 t=1

is bounded a.s. (see the results of Proposition and use a Borel-Cantelli argument),
thus the first term in (2.5.41) is of order O((nh)3?~®) with arbitrary a > 0 (see

2
Proposition [2.5.8 and Lemma [2.5.9)). Define Z; := 2,;10 % Z,; fulfils

V3 (01(t/n)) s < C(1+ Zy),
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and we can estimate the second term in (2.5.41)) by
- Z —EZ,) - |B(t/n,b)Pw(t/n) + Z |B(t/n,b)|>w(t/n) (2.5.42)

The second term in (2.5.42)) is of order o(B?(b)). Define the abbreviation g,(l/n) :=
Yo ﬁ\B(t/n, b)[3w(t/n), then the first term in (2.5.42)) has the representation

—Z —EZ;) - |B(t/n,b)Pw(t/n) = Lu(gs, 1,1) = E[Ln(gs, 1, 1)]

and it is easy to see that this is of order O(n~'/2B(b)), use the notation and the same
method for the proof as done for (2.5.48|) below.
Second term in (2.5.39): The second term can be written as

1O _
- Z [1(60(t/n)) ™"V Lo (8 /1, 00 (t /1)) R, . (00t /m)) - 100 2 /my) + P (2.5.43)

where
[Ra| < %Z V2l (80(t /1)) = L(0o(t/n)) | - IV L —o(t/1, 60(t/n))|*

V2 Lot/ B ()] — 160t /),

Again, with Proposition [2.5.8 Lemma [2.5.9] Theorem and the continuity of I(-)
we can show that this term is of order o((nb)~! + B?(b)) with the same methods used
for the third term of .

First term in (2.5.39)): Using a fourth-order taylor argument, we have

> Vhiabult/n)) - (6 60

1 & - R R
= — > Vlia(6o(t/n)) - V2L(6p) " - [VL(HO) + 10 = 60l %5 1.,) + 10 — bol15,)
=1
(2.5.44)

with some intermediate value f3(u) € © with |65 — 6y| < |§ — 6p|. The last term in
(2.5.44)) can be bounded via

% D Vlia(Bo(t/n) - (V2L —o(t/n, 8o(t/n))) ™" 1Bp—e(t/0) = O0(t/1) Y1154/

IN

%Z [V i (Bo(t/m)|1 - 1o (t/1) = Bo(t/n)|* - |V Ly, —o(t/n, Bs(t/m)) 2
(VL —e(t/n, 00t /7))) 2.
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Again, this can be handled like the third term in (2.5.39).

The second term in can be handled as follows: First replace V3L(f,) by
E[V3L(0,)], then 6 — 6y by 1(0,) "V L(6y) and after that V2L(0,)~* by I(6,)~*. The
replacement errors again can be handled like the third term in (2.5.39), only

% > Vi (B0t /n)-1(8o(t/n)) ™ 11(B0(t /1) ™V Ly i (/1 80 (/7)) [Ewor,., e/ 00/

(2.5.45)
ist left. For the first term in (2.5.44)) use the expansion

[V2L(6p)] " = [V2L(6p)] " [E[VQL(GO)] — V2L(6p)| - E[V2L(6y)] ' + E[VL(6p)] "

and we get the two terms
1 n
- > Vlw(00(t/n)) - B[V Ly —o(t/n, 00(t/n)] "+ V Ly —o(t/n,00(t/n))  (2.5.46)
t=1
and

% N Vi (0o(t/n)) - [EIV2Long ot/ 00(t/0))] = VLo —o(t /1, 0ot /n))]

E[V2 Loy _i(t/n,00(t/n))] "1 - V Ly _i(t/n, 00(t/n)), (2.5.47)

where we replaced [V2L(6p)]™! by E[VZL(6p)]~! in the last term (replacement error
handled as before).
In the last step we have to show that (2.5.43)), (2.5.45)), (2.5.46) and (2.5.47)) fulfil

term
SUPeBn | 32 (8,.00)

have to discuss are finite sums (i.e., not more than C' = C(d) terms, where d is the
dimension of the parameter space) of the form

— 0. We will do this in a little bit more abstract way. All terms we

1 n
- g w(t/n) - fi- xil) -x,?) -xﬁg), (2.5.48)
t=1

where f; is deterministic and bounded uniformly in ¢, n, b, and xﬁi) are random variables.
More precisely, we have with ji, j2, j3, ja € {1, ..., d}:
7 = Oplialbo(t/n), @? = 0pLupalt/n bo(t/n), «” =1, (25.49)
2V = 1 2P =8, Lay(t/n, 00(t/n)), 2 = 8, Lau(t/n, 00(t/n)),  (2.5.50)
7 = (93 0nbua(Bo(t/n) = 1O0(t/n))jr ). ) = Oy Lg—o(t/n. 6ot /m).

2 = 0, Ly —i(t/n,00(t/n)), (2.5.51)
e = 0,,0,00(t/n), 1 = 05, Ly i(t/n,00(t/n)),
2\ = 8, Ly _i(t/n, 00(t/n)), (2.5.52)

o) = 050n(00(t/n)), w2 = 0Ly i/, 60(t/n)),
2 = 03,0, Loy —o(t/n, 00(t/n)) — E[0;,0}, Ly, —1(t/n, O(t/n))]. (2.5.53)
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Here, does not appear in the calculations above but in the proof of Lemma
[2.2.6] Since the structure is the same as the terms which appear above, we discuss it
here. Note that for this case, the deterministic term in must not be discussed
since the exspecations were already subtracted before.

Our goal is to show that the sum has order o(d%, (6, 60)) = o((nb) '+ B2(b))
uniformly in b € B,. This is done with the same technique used in the proof of
Proposition[2.5.8] First, we will show that each term of the form[2.5.48)fulfils ||term/||, <
Cn~ " with some 7 > 0 independent of p. In the second step we will show that the
random terms have a Hoelder continuity property with respect to b € B,,. We use the
decomposition (where j, k € {1,2,3}\{¢} are the two indices which are not i):

1 2 3 1 1 2 2 3 3
eMaP2® = @M - B (@ - Ble?) (@ - B[]

+ iﬂz[x%@” — Efz)) (21" — Elz"])

3
+ Bl 1E[”) (" — E[2{"))
=1

—l—EExgl)]E[x?)]E[a:i?))]. (2.5.54)

Deterministic term in (2.5.54)): It is easy to see that E[a:,gz)],E[x,gg)] are bounded
uniformly in ¢,b,n; moreover we have that y |E[[B£1)]| is bounded in b,n since by
Lemma [2.5.13| (note again that we do not have to consider a:,gl) = 1). Thus,

S wlt/n) FEL LR = O,

Terms with one random variable in (2.5.54]): we observe that these terms have
the form

1 = < t—Fki\ (t— ke
Fn = - k ,k’ : ( ) < ) " ft—min —ka|»
" Z th( 1, k)T n r o Ug (k1,k2), k1 —ka]

k1,ko=0 t=1

where g; = g4(k1, ko) is deterministic (defined later), r(z) = 11 (z) is a data taper
and 7, is defined in Lemma [2.5.11] Therefore, by Lemma [2.5.12]

||Fn||p S % Z (th(k,’LkZ)Q)l/Z.

k1,k2=0 t=1

If + =1, then g; is of the form
g0 = w(t/n) fElwi1E[2}" 161 (tn, k)b (tn, K) (2.5.55)

where at least one of the expectations has the form B;(t/n,b) + O((nb)~!), and the
other expectation is bounded. Therefore, in this case we have with Lemma [2.5.12]

C /& S\ 1/2 pL/2 1 pl/2
— — < — —. 9.
1Eully < = (D wlt/mIB/n b))~ + 0= < —5B(bl) +C=—.  (2550)

t=1

29



If i # 1, then g, is of the form

= 3wt/ B () s/ k) als ),

s=1

where ]E[xgj )] is bounded. If we are not in the case (2.5.50]), we conclude with Lemma

2:5.12) that

1/2

u ’ C 1
| F2 IIp_ Z(SZHE ) S\/ﬁnb

In the case (2.5.50), we use that z{" = 1 and E[xgj)] = Bj(s/n,b), thus with the Cauchy
Schwarz inequality we have

A

17, < Z(ffws/n (s/m DK (t‘s))2

(giw s/n)|B(s/n,b)|*| K )‘ Z‘ (t—s>‘>1/2

B ().

<

<

Terms with two random variables in ([2.5.54]): These terms have the form

o

1 - t—kl t—]{?Q S—ll S—lg
E, = - i (ko Ko, 1y, o) - :
Z Zg,t< 1k, 1y, L) - r( o ) ( )7 ( )7 ( )

n n n
k1,k2,l1,l2=0 s,t=1

<77t—min(k1,k2),|k1—k2|778—min(ll,l2),|ll—l2|) )
therefore with Lemma [2.5.12]

C 00 n 1/2
1 =ERl, <= > (X gealbas ko, 1))

k1,k2,l1,l2=0 s,t=1

If i =1, we have

Dlw(u/n) fu| K

(x50l
Al ol ol i 2557

60



therefore with the Cauchy-Schwarz inequality

|F, —EE,|, < %(2 (; ‘K<t;bu>K(S;bu> D2>1/z

< (X 2w LetE)”
s,t=1,|s—t|<2nb u=1 u=1
bl/2
< o (2.5.58)

In the case that i # 1, we have

G = K (t;bs) w(t/mE[r L1 (t/n, k)| 10a(t/n, ko) [ (t/n, )| [a(t /. 12)]

thus

n

_ 1/2
(R =

s,t=1

HFn - EFan <

The discussion of the expectation

1 & i j j
EF, = - Zw(t/n)ftE[xg )] -E[(xl(t]) — Exgj)) . (:cﬁk) — El‘gk)) .
t=1

is left. Using Assumption and Proposition 5.4 in Dahlhaus and Polonik (2009),
we have

n
Z ‘COV<thk1,nXt7k2,na Xsfh,nXsflg,n)’ S C
s=1

Choose ¢;(u, A), ¥;(u, A) from Agyy(X), O1Agew) (), Ok01Agyw)(A) and choose gg, 5, =
Gs,.s,(t) bounded such that the first equality in the following derivation holds. Then we
have

E|@ - Eaf) - (o — Ea?)] '

= ‘E |: i Gs1,s2 << Slz_l qgl(Sl/n, k1>Xsl—k1,n> ( Slz_l qgg(sl/n, kQ)XSl_k27n> — E[])
s1,82=1 k1=0 ko=0
.((822_11/31(32/7@, 1) Xes i) (i G2/, 1) Xo,1,0) — B[] ]|
11=0 1o=0
< C i |61 (K)o (K )y (1) (o)
k1,ko,l1,lo=0

n
X Z |981752| ’ |COV(X81—1€1,71X51—/€2,7L7XS2—Z1,71X52—12771)|

s1,52=1

n
< O3 suplgaal.

s
so=1 1

61



Note that g5, s,(t) is bounded. Thus,

C n i n
EF) < — Y B Y sup|gs.s(0)] (2.5.59)

t=1 so=1

If i =1, we have >, , IEz{"| < C, thus (2.5.59) is of order O(n~1).
If i # 1 and 2" is no deterministic term, we have sup; , |Em§z)| =o(1) and gs, s, (t) =

Liss—ty - o - K (25), thus |[EF,| is of order o((nb)™").

If i #1 and mii) is deterministic, we are in the case . Here a more precise
analysis is needed. In fact, this expectation is the reason why we had to choose the
likelihoods and cross validation functionals as projection error-type terms. First note
that in this case the expectation can be bounded by (here k,l € {1, ..., d} are arbitrary
indices):

\EFMS% 3 ‘K<t;—bs>‘]Cov(@kétm(ﬁo(t/n)),81657n(90(t/n)))| (2.5.60)
s,t=1,55t

By Lemma [2.5.13, we have a decomposition Ol ,,(6o(t/n)) = MDS" + RV, Simi-
larly to the result in Lemma [2.5.13, we have another decomposition

Olsn(0(t/n)) = MDST) + R,
where MDS' := &,8yd; ,,(8o(t/1)) — i Yao(1/m) (0) 5. (0), and
th) = OVo(t/n)(0)(asn(0) — a(t/n, 0))e2 — 2790(t/n)(k)Xs—k,n + Oyds 5 (0o(t/m))
k=s

3 Votam) (B) (Xomon — Xeor(B0(t/n))) - Aud (B0 (t/n)).

Thus, (2.5.60)) can be bounded by

C < t—
>~ k(=2 | ICov(MDS(, RE)| + | Cov(R(Y, MDSE)| + [Cov(RY, B

n(nb) &=
(2.5.61)
We will only discuss the first summand, the other terms can be handled with the same
arguments. We replace &, by &, = Y1 Yoot /n)(k:)f(t_k(t/ n) to avoid case distinctions.
According to the definition of th) , the first summand of (2.5.61)) can be bounded by
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three terms 17,15, T5,T,. For the first bound we obtain

|T1| < t/n)Xt ko n7Xs—l1,nXs—l27n)|
st 1y ko do=0 li—s k1)x(k2)x (1) x(l2)
C - 1 > 1
<
= n(nb) ; x(s) kh,;h:o x (k1) x(k2)x(l2)
X Z Z |COV(X1‘/*1€1 (t/n)thkz,ny Xsfll,nXsfl%n)‘
t=1 1;=0
< C
~ n(nb)’

because Y i, ZZO:O |Cov(X,_, (/1) Xt —kymy Xs—tynXs—1on)| < C uniformly in s, ky, ko, lo.
The second bound has the form
‘COV<Xt7k1 (t/n)thkz,m (Xsfh,n - Xsfh(%))Xsflz,n)‘
Tl < b Z 2. k) x (ko) x (1) x (1
n(n st 1 ket Koo dy a0 X (k) x (k2)x(l)x(l2)

Using supy, > v, |asn(k) —a(s/n, k)| < C (see Assumption 2.1.1)) and V(a(-, k)) < -5~
we get the bound [T3] < — C . The third bound reads

C < -5\ %
T3] < m;‘fdtﬁﬂ 2. X(kl)X(kJX(ll)X(&)

k1,k2,l1,12=0

»

"COV<Xt*k1 (t/n)Xt*kmm (Xsfll,n(ﬁ) - Xsfll,n(

The Hoelder continuity of 6y allows us to write |K(2)[sup, |a(£, k) — a(L, k)| < CV°.
This gives |T3] < CZ—Z. For the last term, note that

C < t—s = 1
Ty < n(nb) g:IK(W) 2 X (k) x (R2)x () x(12)

k1,k2,l1,l2=0

| Cov (XKoo (8/1) Xe-kon (a5, (0) = alt/n, 0)) Xy, (t/m) Xy (t/0))]-

Using the same arguments as for Ty, T3 (namely, > |as,(0) — a(s/n,0)] < C and
|K(=2)] - |a(s/n,0) — a(t/n,0)] < CVP) yield |Ty| < %(n‘l +b°).
Terms with three random variables in ([2.5.54)): Here, we have

1

Fn - n Z Z gs,t,T(k1,k2,l1,l27m1,m2)

k1,k2,l1,l2,m1,m2=0 s,t,7=1
T(t —_ kl)’]“(t - kQ)T‘(S - ll)r<3 - l2)r<7— - ml)r<7' — m2)

n n n n n n
'nt—min(/ﬂ,kg),‘lﬁ—k:g|ns—min(ll,lg),‘h—l2|n7'—min(m1,m2),|m1 —m2| y
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and from Lemma [2.5.12] we obtain

" 1/2
C
| Fn — EFy, < 7}9 < Z gg,t,r) :

s,t,7=1

In all cases, we have:

trar =t (nz)2K (t;bs) " (t ;bT> '

Thus,
s 2 C t—\2 1=\ Cn(nb)?)12
— 2 < — K — K — < — =
n (Sg;gs’t’7> ~  n(nb)? (; ( nb ) ( nb ) ) ~—  n(nb)?
< C 1
— nbyn

At last, we have to discuss the expectation EF},, i.e.
- Z (t/n) LE[(z" — EzM) (2 — Ba'®) (2 — E2{)]. (2.5.62)

We will not go into details here, but let us mention that all terms are o((nb)™?).

Hoelder continuity property: Note that if chi) depends on b, then it has the
form F(b) := VL, _4(t/n,00(t/n)) or F(b) := VL, ,(t/n,0(t/n)). Similar as in the
proof of Proposition [2.5.8|it can be shown that F' has a Hoelder continuity property,

[F(b) = FO)| < b= b]-Cn) - | X'X +1],

where X = (Xi,,...,X,,) and C(n) grows only polynomially fast in n, but may
change from line to line in the following. Because of (2.5.2)) it can be shown that

sup |[F(0)] < C(n)(1+ X'X),

beB,

Looking at (2.5.48)) as a function of b,

n

1
) ==Y wit/n) - fi-al 2l o,

t=1

we obtain

G) ~ G| < VIO [x'X +1] §]x|sw—wmmpzﬁ45
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Proof of Corollary[2.2.7}. 0y(u) is in the interior of ©. Thus, for n large enough, by
uniform consistency (Theorem [2.5.10)), 6,(u) lies in the interior of ©, too. A standard
maximum likelihood expansion yields
On(w) = Op(u) = —(ViLnp(u, 0(w)) ™" VoL y(u, 0(u)),
= (la+ Ry(w)) - vp(uw),

where I; € R is the identity matrix,

vp(u) = —1(0o(u))™" - VoLnp(u, 0o(u)),

Ry(u) = (VgLnp(u,0(w))) " I(o(w)) — Iy

and |0(u) — 0(u)]s < |0(u) — 0y(u)] where O(u) € © is some intermediate value. Using
the elementary formula 2’ Az < |z|3| A|spee, We have

[1(Za + R@)0(0) By — 1000 By
2+ |{v(u), 1(Bo(w) Ra()o(w)| + [ Ro(u)on(w)[F g,
< (2@ Rz + R () Ro(w)l2) - ()2 (2.5.63)
Because of Proposition [2.5.8 and ([2.5.32]) we have

sup  sup ‘VgLn,b(u, O(u)) — I(@o(u))} — 0,

b€ By, uesupp(w)

IN

A

thus
sup  sup |Ry(u)| — 0. (2.5.64)

be By, uesupp(w)

According to Assumption let ¢y > 0 be the value which bounds all eigenvalues
from 1(6p(u)) from below. Using the representations

1
@@ﬁozgémmmwwmmw,

1
a6y, 6) = /KQ+MWW%WMWWMWmA
0
we conclude with (2.5.63)), (2.5.64):
d[(éln 90) - d?(éba 90)

sup -
i g 4 (Bn, 60)
1
1 Iy + Ry(w)vp(w))3 g cny — 106(@) 3 | - w(w) du
< Lo Jo [1(La + Ry(w)) b(1 )3 6oy = [06(W)]F g | - w (1) L0 (no oo)
coich, T ) - w(a) du

Using the shortcuts d; = d;(6y,6) (similarly for di, dz,), we have

dj—*d}*wzdl—*dj_ d?—*al*M_i_1 +d7—*d}k\4’
diy d; di, di,

hence, the assertion follows. The proof for d4 is the same by using sums instead of

integrals. ]

65



Proof of Lemma[2.2.8. We define

t 2
T (61.60) [F20sce (G0 (5))
AN 70 Z Vi -t 1(B0(t/m) !

We have to show that

dy(0b, 00) — (05, 0
sup 405, 60) — d5(6, 60) -0, (2.5.65)
beB, d3 (6, 00)
then it follows immediately from Lemma [2.2.6
dy(6y,00) — A3 (0, 6
sup 400, 00) — diy (0, 60) |, (2.5.66)
beBn, d}k\/l(eb, 90)

Using the same techniques as in the proof of Corollary and using Lemma [2.5.9] it
can be shown

da(0y,00) — d4(0s, 00)
d;(ebv 00)
and we can conclude from (2.5.66)), (2.5.67)) like in the proof of Corollary that

0, (2.5.67)

sup
be By,

d (B, 80) — iy (B, 6o)

~ — 0.
(05, 60)

sup
beBn

We now show ([2.5.65)). We have

VL,p(t/n,00(t/n)) — V Ly _(t/n,0h(t/n)) = %Vﬁtm(@o(t/n)),

thus using the Cauchy Schwarz inequality we obtain

|d*A(éb790) — d4(0, 60)] (2.5.68)

< 20 1ermeo (1)), I(6o(t/m))~'V Lo ¢/, Oo(t/m)))

+I((n(£)) Z [Vl ( Ho(t/n))b o(t/n))~

2K (0)

- nb

Ztl/2 . di;(éb? 6)0)1/2 + — . Zt; (2569)

where

1 n
7 = - Z |V€t,n(90(t/n))\fr(eo(t/n))*l'

t=1
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Define z; := V{;,(0o(t/n)), Ay := 1(6o(t/n))~". By writing

1 ¢ 1 ¢
n Z ‘that I Z Lis=ty ((xt — Eay, Ay(z; — Bay)) — E(zy — Eay, Ay(zs — E-”Es)))
t=1

s,t=1

+= Z Elz,), AE| Z Elx[3,

and using Lemma [2.5.12] and the Markov inequality, it is easy to show that the first
and second term converge to zero almost surely. A straightforward calculation shows
that the third (deterministic) term is bounded. In total, Z; is bounded almost surely.

(2.5.65) now follows from (12.5.69)),
dy — dj
di = d}, - (1 4 %)
dyr
and Lemma [2.2.6} O
Proof of Lemma[2.2.6. We use the decomposition
WGLn,b(Uyeo(U))h (6o (w))~ — E[VoLy,p(u, Oo(u ))|?(90(u))*1
= (I Lunslu 00(w)) = EVo Lo (u, (1)) 91

—E| Vg Lyt 00(w)) — BV L (u, 00(0)) 3 g, )1 )
+2 <V9Ln7b(u, Oo(u)) — EVgLy,p(u, 0p(u)), I(Ho(u))_lEVQLn,b(u, Ho(u))> )

(2.5.70)
This shows that the proof of the uniform convergence
& (0, 00) — E[d% (5,6
sup‘ 46, %0) — Eld} (6, 0)]‘ 0 (2.5.71)
beBy, ds (0, 00)

is already covered by the proof of the almost sure convergence of in the second
part of the proof of Lemma . Note that the form of the decomposition
implies that there is no need to discuss any convergences of expectations in Lemma
[2.2.9] Similar argumentations with integrals instead of sums lead to

d;(0y, 00) — diy (By, 00)
d?\/l(eh 90)

‘ 0. (2.5.72)

beBn,

Because of Corollary [2.5.6, we have

i (Oy, 00) — E[d (6,0
sup ‘ b (0, %) - (440 0)]‘ — 0. (2.5.73)
bEB, ds (0, 00)
The assertion follows from (2.5.71)), (2.5.72) and (2.5.73)). O
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Chapter 3

An approximation theory for
recursively defined locally stationary
processes

In this chapter we do a first step towards a general asymptotic theory for nonlinear
locally stationary processes. In the literature, most of the asymptotic results are ob-
tained if the explicit structure of the time series model is known, such as in the case
of tvAR models (cf. Dahlhaus and Giraitis (1998)), linear models (cf. |Dahlhaus and
Polonik (2009))), the tvARCH case (cf. Dahlhaus and Subba Rao (2006)) and random
coefficient models (cf. |Subba Rao (2006)). To prove their results, the authors of these
papers heavily use the structure of these models.

We consider a quite general Markov-structured non-stationary process X;,, t =
1,...,n. With this model we cover many well-known locally stationary processes (es-
pecially the models mentioned above) which are obtained by replacing the constant
parameters by time-dependent parameter curves evaluated at t/n.

To formulate our results, we will use the functional dependence measure introduced
in Wu (2005). Some recent publications which are using this framework also allow for
locally stationary processes: [Karmakar and Wu (2016) deal with strong approxima-
tions, Zhou and Wu (2009)| discuss quantile regression and |Liu, Xiao and Wu (2013)
obtain inequalities for tail probabilities (which they claim are also valid for nonstation-
ary models). Up to now, standard results as laws of large numbers and central limit
theorems for general nonstationary processes have not been proved yet. Furthermore,
most of the statements in those publications are given in a normalized way meaning
that the expectation of the underlying process is 0. A more comprehensive study of
the asymptotic behavior of the expectation of locally stationary processes is usually
missing.

_ In section 3.1, we show that X;, can be approximated by some stationary process
Xi(u) as long as |t/n—u| < 1 and n™! < 1. We prove that under reasonable conditions
X:n has a Taylor-like expansion into X,(u) and so-called derivative processes which
form the key quantities in the following derivations. Derivative processes were already
defined for specific models as in the case of tvAR (cf. Dahlhaus (2011))) and tvARCH (cf.
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Dahlhaus and Subba Rao (2006)). However, the existence of these processes and their
properties are completely unclear if an explicit representation of X, is not available.

In section [3.2] we use derivative processes to prove expansions of expectations, co-
variance functions and the distribution function of X, ,,. Furthermore, we present laws
of large numbers and a central limit theorem which hold under minimal moment as-
sumptions on the process. The proofs are based on a partition of the sum over X, into
sums over smaller ranges of ¢ where X, ,, can be approximated by stationary processes
)E't(u) by exploiting their smoothness properties. We then make use of the asymptotic
theory for sums of stationary sequences. It should be noted that the theorems we de-
rive in this section do not use the special Markovian structure of the process but only
expansion and dependence properties which are results from section [3.1] This means
that as long similar results as presented in section can be obtained for a process,
all the theorems are applicable in principle.

In section [3.3] we apply the previous results to nonparametric maximum likelihood
estimation of parameter curves in locally stationary processes. The general framework
for this chapter was already given in [Dahlhaus (2011), Some concluding remarks are
given in section [3.4] Some proofs are postponed to section

3.1 Stationary approximations and derivative processes

For some fixed natural number p > 0, an i.i.d. sequence (&;)cz of real-valued random
variables and a function G : R x R? x [0,1] — R, (g,x,u) — G.(z,u), consider the
process X;, defined by the recursion

)

t
Xin = Gey(Xiz10s s Xi—pins - vO0), t<n, (3.1.1)

where aVb = max{a, b}. We assume that the process is observed at ¢t = 1, ..., n meaning
that in the above model the time is rescaled to the unit interval due to £ € [0,1]. At
a fixed time point u € [0, 1], we define the stationary approximation as the stationary

process X;(u), t € Z given by the recursion
X, (u) =G., (X't,l(u), ...,X’t,p(u),u), teZ. (3.1.2)

The notion of local stationarity now means that for each v € (0,1) and sufficiently
small § > 0 the processes X;,, and X,(u) are close to each other for Lelu—0,u+0
(see Proposition below). It is obvious that this requires smoothness assumptions
on the function G specified below in Assumption [3.1.2] The stationary approximation
can fruitfully be used to derive mathematical results on the process X, (cf. sections
and [3.3)). More mathematical tools and a deeper understanding are provided by the
derivative processes 0, X;(u), 92X;(u), etc. They reflect the slope and curvature of the

nonstationary process at time u - for example we have the Taylor expansion

t

Xin & Xt(n

) ~ X’t(uo) + <% — uo) 8u)~(t(u0) + %(% — u0>285)2}(u0)
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under suitable regularity assumptions. Usually the derivative processes are also sta-
tionary and even more ergodic making the a powerful tool for proofs. These properties
are proved for the general class of processes of the form below in a series of
theorems. Furthermore, we establish that the uniform functional dependence measure
decays geometrically which is a key property for proving asymptotic results. Before we
start we give some examples for models which fulfill . These include in particu-
lar several classical parametric time series models where the constant parameters have
been replaced by time-dependent parameter curves.

Example 3.1.1. (i) the tvAR(p) process (cf. |Dahlhaus and Giraitis (1998)): Given
parameter curves a;,o : [0,1] = R (i=1,....,p),

t t t
Xt,n = a (E)Xtil’n “+ ...+ ap(ﬁ)Xt,pm + U(ﬁ)gt.
(ii) the tvARCH(p) process (cf. |\Dahlhaus and Subba Rao (20006)): Given parameter
curves a; : [0,1] = R (i=0,...,p),

t t t
Xow = (a0(2) + a1 (D)X + o+ ap(5)XE,,) e

(7i) the tvTAR(1) process (cf.|Zhou and Wu (2009)): Given parameter curves ay,as :
0,1] — R, define

ot ty oo
n o - t—1,n - —1,n )

where x := max{z,0} and = := max{—=z,0}.

(iv) the time-varying random coefficient model (cf. |Subba Rao (2006)): With some
parameter functions a;(+), i =0,...,p,

Xin = ao(er) +ar(e) Xecin + oo+ ap(er) Xi—p -

Recall that for ¢ > 0 we denote the weighted ¢%-norm by |z|,, = O 7, wi]xi\q)l/q
and for real-valued random variables Z we use ||Z||, = (E|Z|?)"/? < co. Recall the defi-
nition of the shift process F; = (4,41, ...), the uniform functional dependence measure
0y (k) and the projection operator Pj- = E[-|F;] — E[-|F;_1] from the preliminaries of
this thesis. The subsequent theorems contain results on the geometric decay of this
functional dependence measure which will be used in sections and to provide
asymptotic results like uniform laws of large numbers and central limit theorems.

We will use 01G.(y,u), 02Gc(y, u) to denote the derivatives of G.(y,u) with respect
to y, u, respectively.

We work with the following set of assumptions:

Assumption 3.1.2. There exists ¢ > 0, x = (X1, Xp) € Ry with |x|1 < 1 and
Yo € R? such that:
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(i) sup,epo1) |Geo (Yo, w)|lq < 00, and

GE ) - GEO /7
sup sup |Gy (y, u) (Y, u)

/ b (3.1.3)
u€[0,1] y#£y’ 1y — Vo

(ii) (y,u) = Ge(y,u) is continuous for all &, || sup,e(o 1) |Geo (Yo, w)| || < 00, and

G -G !
wp sup [Gea0:1) — Gy (4,1
u€[0,1] y#£y’ |y -y |x,q’

<1. (3.1.4)

q

(117) (y,u) — Ge(y,u) is continuously differentiable for all €,
I suPyepo 102Gz, (Yo, w)] [lg < 00, and

&G ; - azG /7
sup sup | €0 (?J u) : €0 (y U)|
u€el0,1] y#£y’ |y ) |1,q’

Ci =

< 00 (3.1.5)

q

(iv) For some 0 < a <1, it holds that

Ci= sup [CEHW)] <00, where  Cy) = sup 10201 = Canly: )]l

u€0,1] uFtu! lu — /|

(3.1.6)

Discussion: Note that (i) - (iii) impose increasingly strong smoothness assump-
tions on the recursion function G.(y,w). While (i) - (iii) are directly verifiable, (iv)
includes conditions on the stationary approximation )N(t(u) Note that the upcoming
theorems also state properties of X,(u). Their results can be used to verify this as-

sumption.

3.1.1 Existence and uniqueness of X;, and Xt(u)

We now establish existence and uniqueness of X;,, and X;(u) under mild contraction
conditions.

Proposition 3.1.3. (i) Existence of a stationary approximation: Suppose that As-

sumption [3.1.9(i) holds. Then for all w € [0,1], the recursion has a unique
stationary and ergodic solution X(u) = H(u, F;) and we have

sup 55((“)(@ < CpF, sup ||X0<U)Hq <00
u€l0,1] u€0,1]

with some C' >0 and 0 < p < 1.

(i) Existence of the nonstationary process: Under the above conditions, there ex-
ists an a.s. unique solution of with a representation X, = Hy,(F) and
SUD, e SUPs—y ., | Xenllq < 00. Furthermore, it holds that

sup X (k) < O
neN

with some C' >0 and 0 < p < 1.
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The proof of (i) for fixed u € [0, 1] is similar to the proof in [Shao and Wu (2007),
Theorem 5.1. Since we state the results uniformly in u € [0, 1], we will give the proof
in the appendix for completeness. Since the definition of X;, and Xt(O) coincide for
t < 0, existence and uniqueness of X;, follow from the existence and uniqueness of
X,(0). Therefore, (ii) is an immediate corollary of (i).

3.1.2 A uniform Li-approximation

We now prove that X, ,, can be approximated by the stationary process Xt(u) uniformly
in a Li-sense. We will use the shortcuts

}/t—l,n = (Xt—l,na ceey Xt—p,n)la Y/t—l(u) = (Xt—1<u>7 ceey Xt—p(u))/
to keep the notation of the recursion equations simple.
Lemma 3.1.4. Suppose that Assumption[3.1.9(i),(iv) hold. Then,
X () = Xe(u)lly _ ¢

: 3.1.7
B T DG L7
Furthermore, we have:
sup || Xy — Xo(t/n)]l, < Cp® L v -nT (3.1.8)
=l - (1= [xh)?

Note that the approximation error in (3.1.8)) cannot be avoided - cf. Dahlhaus (2011),
(49), for the tvAR(1) case (with a different error due to different assumptions). The
following approximation result is now obtained as a corollary.

Proposition 3.1.5. Under the assumptions of Lemma |3.1.4, we have the following
strong approximation of X, uniformly for allt =1, ..., n:

Coele-aT i () o <o

Xen=XeW)lg € —77
| X, t(u)llq (1 — [ (1 —Ixl1)? "

+n_o‘).

3.1.3 Existence of continuous modifications and derivative pro-
cesses

Proposition gives the almost sure uniqueness of X;(u) for each u € [0, 1], but not
continuity of u — X;(u) since this involves uncountably many points u € [0, 1]. In order
to guarantee the existence of a continuous or even differentiable modification X, (u) of
Xt(u) we have to impose stronger conditions on the recursion function G in (3.1.1])
(X;(u) is a modification of X,(u) if for all u € [0,1], X;(u) = X,;(u) a.s.). A natural
way would be to apply the Kolmogorov-Chentzov theorem, but this theorem contains a
tradeoff in its conditions between moment assumptions and smoothness of the process
which usually leads to either strong moment or smoothness assumptions which may not
be useful in practice. Furthermore it does not use the specific structure of the process
which is known and we could not give a bound for moments of sup,¢ 1 | X, (u)]. We
therefore use a different approach.
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Theorem 3.1.6 (Existence of a continuous modification). Suppose that Assumption
8.1.9(ii) holds. Then for eacht € Z, there exists a continuous modification (X¢(u))ueo,1]

of (Xi(u))uefo,y) from Proposition|3.1.5 with sup,ep 1 |1 X, (u)| € L.

Because most of the recursively defined stationary models have (component-wise)
Lipschitz continuous recursion functions G, condition (3.1.4)) is fulfilled for these models
with an appropriate parameter space. The supremum taken over u € [0, 1] in (3.1.4))
however seems to restrict the parameter space. If for example ¢, has a distribution
with mean 0 and variance 1, and G.(z,u) = a(u)x + b(u)x - € with continuous functions
a(u), b(u), then for ¢ = 2 reads || sup,ep 1) [a(u) + b(u)e|[]2 < 1. The following
result implies that this condition can be relaxed to sup,¢po 1) [la(u) +b(u)es[l2 < 1 under
certain assumptions.

Proposition 3.1.7. In the situation of Theorem instead of assume that
x> G.(z,u) is differentiable for all e,u and that for all ug € [0, 1],

limsup || sup sup |01Ge, (2, u) — 01Geq (2, u0)l1 |, = 0

6—0 |lu—up|<é =
and G G (o
sup sup ‘ Eo(yau) _, Eo(y 7u)| S 1.
ucl0,1] 1 y#y Yy — |y q

Then the results of Theorem are still valid.

In the following we will assume that (y,u) — G(y,u) is differentiable in both
components. For the moment, assume that there exists a modification of the process
(X;(u))ugo.n] with differentiable paths (denote the modification by X;(u) again) and
denote the derivative by Duf(t(u). Define Dufft_l(u) = (Duf(t_l(u), o DX ().
Then the following recursion equation for D, X,(u), obtained by differentiating

should hold:
D, Xy (u) = (01Ge, (Vo1 (1), u), DuYi—1 (1)) 4+ 0oGe, (Yio1 (), w), (3.1.9)

The first part of the next theorem shows that given the existence of the process X, (u)
from Theorem m, the recursion (3.1.9) has a solution D, X;(u); the second part
shows that X;(u) is differentiable with respect to u and that the derivative coincides

Theorem 3.1.8. Suppose that Assumptions [3.1.9(ii),(iii) hold. Then the following
statements hold.

(i) Existence of the first derivative process: For all u € [0,1], the recursion
has a unique stationary and ergodic solution D, X;(u) = H(u,F;) and it holds
that i )

Syt < O sup DKl < o0

with some C' >0, 0 < p < 1.
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(i1) Differentiability:

(a) There exists a continuously differentiable modification (Xt(u))ue[o,l] of the
process (Xy(u))uepo,1] from Proposition where 8, X;(u) is a modification
of D, X (u),

(b) SUPyel0,1] ’auXtW)’ € L1

As it can be seen in the proof, the statements of Theorem M(l) can be obtained
under milder conditions. More precisely, one has to suppose that Assumption [3.1.2(1)
holds and that for all ¢, the mapping (y,u) — G.(y,u) is differentiable with

sup [|C(Yioi(u))lly < 00, where  C(y) := sup [|0:Ge, (y, 1)l (3.1.10)

u€[0,1] u€[0,1]
The results of Theorem allow us to Taylor expand X,(¢/n) around X, (u):

Corollary 3.1.9 (Taylor expansion of X,(t/n)). Suppose that Assumptions (2'2'), (ii1)
hold. Then we have for all t,n and u € [0,1]:

=K+ () 0% + B s,

where Ry, = (% — u) {&LXt(ﬂt,n) — &Jh(u)} and Uy, is a random variable with |ty , —
ul < |2 —wul. If | —u| = o(1), it holds that Ry, = o(|£ — ul).

Under suitable conditions, similar results hold for higher order derivatives of X (u).
For some models it is possible to obtain explicit expressions for the corresponding
derivative processes.

Example 3.1.10 (Explicit representations for derivative processes).

(i) The tvAR(p) process Xi, = ?:1 a; (%)Xt_j,n + ¢; has the corresponding sta-
tionary approzimation Xi(u) = > a;j(u)X,_j(u) + & which has an explicit
representation X(u) = Y77 1;(u) - e; with differentiable ¢; (7 =0,1,2,...). It
is easy to see that 9,X,(u) = > i Outhj(u) - &r—j is the a.s. uniquely determined
derivative process.

(i) For tvARCH(p) processes, explicit expressions for the derivative processes were
obtained in|Dahlhaus and Subba Rao (20006).

In the following we will write X,(u) even if we want to refer to the differentiable

modification to keep the notation simple. Since all our results only involve finitely (or
at most countably) many observations, this will not cause any problems.
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3.1.4 Higher order derivative processes

If X,(u) has a twice continuously differentiable modification and (y,u) Ge(y,u)
is twice continuously differentiable, then the following recursion equation for 92X, (u)
should hold:

0o Xi(u) = (G, (Vi (u), ), 02V, 1 (u)) + (07 Ge, (YVioa (w), )Y (u), 8, Y, 1 (w))
+2(010,G, (Vi1 (), 1), 0,Yi—1 (w)) + 92G., (Vi1 (u), u). (3.1.11)

Using the same techniques as in Theorem [3.1.8, one can find similar conditions as in
Assumption such that a second (or even higher) order derivative process 02X, (u)
exists. These results can be used in situations where a higher order Taylor expansion
is necessary, see Chapter [4] of this thesis.

In most of the practical situations one would expect that the processes Xt(u),
9. X;(u) and 92X, (u) allow for the same moments, i.e. if one of the processes is in
L7 then the other processes fulfill this, too. In however there seems to occur an
imbalance because of the term (92G.,(Y;_1(u), u)0,Y;_1(u), d,Y;_1(u)) which seems to
have a g-th moment only in the case that 9, X,(u) has a 2¢-th moment. Following the
proof techniques of Theorem this would lead to the fact that 05Xt(u) only has a ¢-
th moment under conditions on G, and its derivatives (similar to (3.1.5))) which involve
2¢-th moments. It can be seen in special cases where an explicit representation of the
process is available (for example tvAR(p), Dahlhaus (2011) or tvARCH(p), Dahlhaus
and Subba Rao (2006)) that 2¢-th moments are not necessary in general. We conjecture
that the reason for this lies in the behaviour of 9?G which in these cases satisfies that
(092G (y,u),y)|; is still bounded uniformly in y, u.

The formalization of this is beyond the scope of this chapter. We will close this
section by presenting a result on the Hoelder continuity of the first derivative process
which already contains the higher moment assumption discussed above.

Lemma 3.1.11 (Hoelder property of the first derivative process). Suppose that As-
sumption [3.1.9(ii), (iti) hold. Additionally assume that for some 1 > as > 0 and

1 = 1,2 1t holds component-wise:

||aiGEo (yv u) — aiGEo (yv u,) ||q

D; := sup || Dy(Y;(u))||l, < 00, Ds(y) := sup T (3.1.12)
u utu |u— |
Then ~ ~
_ /
o 1050 = 0K _
utu |u — /|2

with some constant C' > 0.

3.1.5 A simulation study

To quantify the quality of the approximations given in Lemma and Corollary
3.1.9) we consider the tvARCH(1) model

ty oo 1/2
Xt,n = <a0 + aq (E)Xtil’n) Et
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with ag := 0.2, a;(u) = 0.95u* and gy ~ N(0,1). Note that if ¢/n tends to 1, the values
of X;, are more dependent to each other than for smaller values of t/n. We generated
realizations of X, Xt(%) with n = 500 (see Figure (a),(b) for a realization of X,
and X, —Xt(%)) In Figure (c) we have the plotted empirical 5%- and 95%-quantile
curves of the difference X3, — Xt(%) for N = 1000 replications. It can be seen that
with stronger dependence, the quality of the approximation X;,, ~ Xt(%) gets worse.
Secondly we consider the approximation quality of X;(t/n) by X,(u) and X,(u) +
(£ - )0, X, (u), respectively. Since these approximations are only working locally (for
|t/n — u| < 1), we compare them by dividing the whole time line t = 1,...,n into
subsets (u; — b, u; + b], where b = 50 and w; = (2i — 1)b for i« = 1,...,5. In Figure
3.1(d) empirical 5%- and 95%-quantile curves obtained from N = 1000 replications
for the differences X;(%) — X,(u;) and X;(£) — Xy(u;) — (£ — w;)0,X;(u;) (where t €
(u; — b,u; + b)) are depicted, respectively. We emphasize that the improvement of
the (pointwise) approximation Xt(%) by taking into account the derivative process is
remarkable. However, both approximations again get worse if the dependence of X,
to earlier values increases.

3.2 Asymptotic properties of functionals of X;,

3.2.1 Mean expansions

To get results for a wide range of interesting functionals, we define the following class
H,.(a, M, C) of real-valued functions which have a Hoelder property where the Hoelder
constant may depend at most polynomially on the location.

Definition 3.2.1 (The classes H,. (5, M,C) and L,(M,C)). We say that a function
g:R" = R is in the class H, (B, M,C) if M >0, 1> > 0 and it holds that

l9(y) — 9(¥)]
Sup 18 M 1M
vy [y =yl (L+ [yl + [y )
If B =1, we say that g € L,.(M,C).

Let us abbreviate Z; , := (X¢, .., Xi—rt1,,) and Zt(u) = (Xt(u), ey Xt_r+1(u)). An
immediate consequence of the existence of a continuously differentiable modification of
(X¢(w))uep,] is an expansion of the corresponding mean Eg(Z;,,) and the corresponding
stationary version Eg(Z;(u)):

Proposition 3.2.2. Assume that g € L,.(M,C). Suppose that Assumption[3.1.3(i), (iv)
are fulfilled for some1 > a > 0 and ¢ = M+1. Then we have uniformly fort =1,...,n:
5 (1 —a 7 —o t «
Eg(Z,) = Eg(Zt(ﬁ)) +0(n™*) =Eg(Zy(u)) + O(n™* + |E —ul”). (3.2.2)
If additionally Assumption [3.1.9(ii), (ii1) are fulfilled and g is continuously differen-
tiable, then p(g,-) is continuously differentiable with derivative

(3.2.1)

0uEg(Zy(u)) = ZE[ajg(Xt(U), o X1 (1) - 0uX ey (w). (3.2.3)
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Figure 3.1: Top: (a) Realization of one X, t = 1,...,n. (b) Difference X, —Xt(%) for
one realization. Bottom: (c) empirical 5%- and 95%-quantile curves of X,,, — X,(%) for
N = 1000 replications. (d) Dashed and Solid: empirical 5%- and 95%-quantile curves
of Xt(%) — X (u;) and Xt(%) — Xy (u;) — (£ - ;)9 X, (u;) for t € (u; — b, u; + b] (black
vertical lines) and N = 1000 replications, respectively. Here, b = 50 and u; = (2 — 1)b
(dotted vertical lines), i = 1, ..., 5.

The proof of (3.2.2)) is immediate from the Hoelder-type property (3.2.1)) of g and
the results from Lemma [3.1.4] The second statement (3.2.3) follows from the expansion

9(Z,(v)) = g(Zi(w)) + (v — w)dug(Zi(u / {0.9( (Zy(5)) — Bug(Zi(u )} ds

which holds almost surely since g is continuously differentiable and || sup,, |9,9(Z(u))||l; <
0.
The result of Proposition [3.2.2] enables us to get expansions of the mean, the covari-
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ance and the distribution function of X, ,. Suppose in the following that Assumption
3.1.2((ii),(iii) holds for ¢ = M + 1.

Corollary 3.2.3 (Mean expansion, M = 0). Choosing g : R — R, g(y) = y yields
EX;, = EX,(t/n) + O(n™"),
where pu(u) == EXo(u) is continuously differentiable with derivative O, pu(u) = Ed,Xo(u).

Corollary 3.2.4 (Covariance expansion, M = 1). Define v(u,r) := Cov(Xy(u), X;_(u)).
Choosing g : R — R, g(y) = y1yr+1 and using the results from Corollary we
obtain uniformly fort=1,...,n

t
’yt,n(/r) = COU(Xt,na Xt—r,n) - 7(5; T) + O(n_l) (324)

and y(u,r) is continuously differentiable with derivative
duy(u,r) = Cov(0,Xo(u), X, (1)) + Cov(Xo(u), 0, X, (u)).

Similar expansions can be derived for higher-order cumulants. The expansion (3.2.4])
is only valid for fixed r > 0. To give expansions of the Wigner-Ville spectrum (cf. [Martin
und Flandrin (1985))), one has to analyze the expression more carefully:

Corollary 3.2.5 (Expansion of the Wigner-Ville spectrum, M = 1). The function
fo(u,X) =3 Cov(XLun_%Jﬁn,Xtunﬁj,n)ei’\” is called the Wigner-Ville spectrum of
the process Xi, (here, |a| := max{k € Z : k < a}). Define the time-varying spec-
tral density f(u,\) :== >, c,v(u, 7)™ (cf. |Dahlhaus and Polonik (2009)). We have
uniformly in u € [0,1], A € [0, 27):

fu(u, A) = f(u,\) + O(log(n)*n™1). (3.2.5)

Furthermore, u— f(u, \) is differentiable with derivative

Ouf(u, ) = Z@u’yur“’”

rez

Proof of Corollary[3.2.9: Let us use the abbreviation t.(u) := |un — £|. Note that
lun + 5] = t,(u) + r. We have for r > 0:

COV(XtT (u),n> Xtr(u +rn Z E Ptr kXtr(u),nPtT(u)katT(u)+r,nj| .

Define §(r) := max{sup,,cy 5" (r), sup, 55((“) (r)} < C'p" with some C" > 0,0 < p < 1.
By Lemma [3.1.4] we have with some constant C' independent of r,n, ¢:

“E[F)t,« kXtr )+, nPtr (Xtr(u),n - Xtr(u) (U))] ‘

§|mmmﬁmwﬂﬂﬂmewm—&mwmb
< §(r + k) min{20(k), c(nfl n # . u’)} < 5(r + k) min{20(k), CT;Q},

79



and
B[P ) (Xt trin = Kty (1)) Py -5 Xt ()]
| Py (Xt = Xty (W) ||| Prr o5 Xo ) ()]

< O(k) min{20(r + k), C’(n_l + % . uD } < 6(k) min{26(r + k), C

IN

r—+ 2
2n

).

The bounds for r < 0 are similar. Since || < 1 and

, [log(n ")/ log(p)] , 00
r — ) = _ LA 2. —1 —1
> " (p n) > ~+ > p" = O(log(n)n™" +n7"),
r>0 r=0 r=|log(n=1)/log(p)]+1

we obtain (3.2.5). Note that

|Cov(Xo(u), 0 X, (w)| < D [E[P_iXo(w) - Poy0u X, ()]

IN

Z HPT_kXo(U)HQ”Pr—kauXT(u)HQ
k=r

< N5 — k) -5 (k).
k=r

Similar arguments can be used to bound Cov(X,(u), 3, Xo(u)). By the results of Corol-
lary [3.2.4}, Proposition and Theorem [3.1.8(i), we have ) __, sup, |0, (u,r)| < oo.
This enables us to swap differentiation and summation leading to differentiability of
u > f(u, A) with derivative

Ouf(u, ) = Z Oy (u, m)e™ .

rE€Z

]

As a last application of Proposition[3.2.2] we present an expansion of the distribution
function of X ,, which may also be used to approximate quantiles of such nonstationary
processes.

Example 3.2.6 (Expansion of the distribution function, M = 0). Assume that € has a
Lipschitz continuous distribution and continuously differentiable function F. with Lip-
schitz constant L. and derivative f.. Assume that (¢,y,u) — G:(y,u) is continuously
differentiable and that the derivative 0.G.(y,u) > dg > 0 is uniformly bounded from
below by some positive constant 6 > 0. This assumption guarantees that the vari-
ance of the innovation in a step of the recursion cannot be arbitrarily small. By the
inverse function theorem we know that there exists a continuously differentiable inverse
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x— H(z,y,u) of e = Ge(y, u).
Finally, assume that for all x € R, the expressions
H - H !
Clz) = sup sup |H (2,y,u) , (z,y, )|
u€l0,1] y#y’ ’y - Y |1

Y

are finite. In this situation it holds that the distribution function of X ,,
Fx, . (x) = E[]P’(Gat(Y;,Ln,t/n) < .:E\]-"t,l)} = E[FE(H(x, Y},Ln,t/n))}
can be approzimated by the distribution function Fy, (z) == P(Xy(u) < z) by
|Fxon(®) = Fgym (@) < Ll H (2, Yioin, t/n) — H(z, Yioa(t/n),t/n) 1

p
~ C
< LC@) Y X — Kegat/m) £ - L+ Ci(a)

j=1
with some constant C' independent of x,t,n (c¢f. Lemma m Furthermore u +—
Fs ) (x) is differentiable with derivative
OuFx,(@) = E[[(H (@, Yis(u),u))

% ((0oH (2, Vi1 (1), 1), 0,Ys1 (w) + 05 H (2, Yy (), u))} .

Another important application of the results from Section 1] is the expansion of
functionals of X; ,, in sums with a weighting kernel K : [—3, 1] — R of bounded variation
satisfying f K dx = 1. The results of the following Proposition can be used to obtain
bias expansions for nonparametric estimators (see Section. Define Kj(z) := ; K (%)
with some bandwidth b = b,, — 0 satisfying nb — oo.

Proposition 3.2.7 (Bias expansion). Assume that g € H,(8, M,C). If Assumption
[3.1.9(i), (iv) are fulfilled with ¢ = M + 1 and some 1 > a > 0, we have uniformly in
u € [0,1]:

1 Z KoL ) (80(Z,) — Bal Zi1/m) = O(n~?), (326)
and uniformly inu € 2,1 — 2]
! Z KL W)Eg(Zut/m) — Ba(Zo(w) = O+ O((h)).  (:27)

If additionally K is symmetric, g € L.(M,C) is continuously differentiable and As-

sumption [3.1.4(ii), (iti) holds with ¢ = M + 1, then and are valid with

o= =1 and we have uniformly in u € [2,1 — 2]

ST Ko w)Eg(Zu(t/m) ~ Bg(Zo(w)) = ofb) + O((nb) ™), (3:28)
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The proof of (3.2.6) and (3.2.7)) is immediate from Proposition [3.2.2| and the fact
that K has bounded variation and f K dx = 1. To prove (3.2.§]), note that

o(Zu(t/m)) = g Zu(w)) + (- —w) - Dug(Zulu / {0.9(Z4(s)) — 0u9(Zu(w))} ds.

Furthermore, as long as |t — u| < b, we have

t/n 5 - ~
|]E/ {0,9(Zi(5)) — 0ug(Zy(u))} ds| < b- | Sullinaug(Zt(S)) — 0ug(Zi(w))|l1 = o(b)
since u — (9ug(2t(u)) is continuous and || sup, \aug(Zt(u))\ |1 < oo. Finally, because K
has bounded variation and is symmetric,

1 & t - -
o Z Kb(ﬁ - U) (Eg(Zt(t/n)) - EQ(Zt(U)))
t=1
t
= E[0.9(Z(u Ky ( ~ - b) = O(n™") + o(b).
[0ug(Z4( Z b (= —u) +o(b) = O(n™") +o(b)
Remark 3.2.8. Note that in the situation of Proposition deriative processes
were used to get o(b) instead of O(b) in (3.2.7). Even smaller rates can be obtained
by using the results of Lemma|(3.1.11 and/or higher order derivative processes together
with higher order kernels.
If we assume that u — X;(u) has a twice continuously differentiable modification and g
1s twice continuously differentiable, we obtain a bias decomposition whose structure is
well-known from nonparametric statistics:

3K (L etz ~Batz) — [ #K() i)

+o(b*) + O((nb) ™).

3.2.2 A weak local and global law of large numbers

The smoothness of X, ,, in the time direction can be used to obtain laws of large numbers
by only assuming the existence of the first moment of X, ,. The key step of the proof
is to split the sum over X;, into sums over smaller ranges of ¢ where X,, can be
approximated by stationary processes. We will also provide results for localized sums.
For this, we will assume that K : — R is a function of bounded variation with
f K dxr=1.

Let us first cite a Lemma from Dahlhaus and Subba Rao (2006) (Lemma A.1 and
A.2) which can be easily generalized to convergence in L':

[ 272]

Lemma 3.2.9. Assume that (Y;) is a stationary and ergodic process with E|Y;| < oo.
Let b= b, — 0 such that nb, — co. Then the following convergence holds in L':

1< t/n—u
- K( )Y EY;.
nb; b e N
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Proposition 3.2.10 (Weak law - global and local version). Suppose that Assumption
[3.1.9(3), (iv) holds with some ¢ > 1 and 1 > o > 0.

(i) If ¢ > 1, we have
1« tos
=3 X — / EXo(u) du
g 0

in L' as n — oo. For each u € [0,1] it holds that

nbz (t/”’ )+ X = EXo(u)

in L' as n — oo, nb — oo and b = b,, — 0.

(it) If ¢ > 1, then

t/n — Brq X 1jg-1,-1
usel[tl)l] nbz ( > (th EX:, |H _1)2Aq70 .pl/e-lp—1
and thus by Markov’s inequality, for all x > 0:
1 t/n—u 1 Brq x.\? 1-4,—q
IP’( Sl[tpl] |% ZK( 2 )‘(Xt,n_EXtm)l > ZL‘) < E<on’q ) n 971,

If ¢ > 2, then there exist constants C1, Cy not depending on n,b such that for all
x> 0:

x4

0o — 74,2

with positive constants Cy, Cy not depending on n,b and G,(y) == ijl e 7Y a

Gaussian-like tail function.

Remark 3.2.11. (i) Forq > 1 andb = o(n' ) the results of Proposition M(H)
and Proposition can be used to obtain uniform convergence of the mean
estimator fip(u) = % S K(WT_U)X,:,” towards p(u) := EXo(u) in the sense
that

sup  |fp(u) — p(u)| = 0.
ue[g,lfg}

(i1) The results of Proposition|3.2.10|(i) remain true if X, is replaced by g(Z,,) with
some g € H,.(8,M,C) and the assumptions are fulfilled for ¢ > M + (. The
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reason 1s that g(Zt(u ) is still stationary and, by Hoelder’s inequality applied to
the conjugated pair

l9(Zun) ~ o Ziw)]s < O (Zuxm X w)les)

with some constant C' > 0 independent of t,n,w. Thus the key steps of the proof of
Proposition[3.2.10(i) carry over to this situation. Similar generalizations are pos-
sible for Proposition |3.2.10|(ii) since sup,,cy 53(2"")(/’6) < C(suppend, M+B)(k))5
with some constant C"> 0 wndependent of k,n.

3.2.3 A Central limit theorem

We provide local and global central limit theorems which may be useful in particular
to find asymptotic distributions of (nonparametric) estimators of locally stationary
processes, see section It should be noted that the results of Theorem [3.2.12] can
be generalized to functionals ¢g(X;,) of X;, since the proofs do not use the specific

structure of Xy p.

Theorem 3.2.12 (Central limit theorem - global version). Suppose that Assumption
[3.1.9(ii), (iv) holds with some q > 2. Define S, := Y1 (X — EXy ).

(i) If ¢ > 2, then we have the following invariance principle:

{Spnat /v, 0 <u <1} = {/Oua(v) dB(v),0 < u < 1},

where B(v) is a standard-Brownian motion and the long-run variance o*(v) is
given by
> . 2
2(v) = H ZPOXl(v)
=0

(i1) Strong approximation: If ¢ > 2, then there exists a probability space (., A, P.)
on which we can define random variables Xy with the partial sum process Sy, =
Sov . X¢ and a Gaussian process G§ = 22—1 Y with Y being independent Gaus-

= Z Cov(Xo(v), X (v)).
kEZ

sian random variables with mean 0 such that (S¢)i= i (Si)i=1...n and

,,,,,,,,,,

max |S¢ — G¢| = 0,(n"/?) in  (Qe, A, P,).

1<i<n

Theorem 3.2.13 (Central limit theorem - local version). Assume that g € L,.(M,C')
for some M > 0. Suppose that Assumptzon [3.1.9(), (iv) hold with some 1 > a > 0,
q=2(M +1). Then, provided that vVnbn=* — 0, b — 0 and nb — oco:

Wiy = \/% g K(t/ ”b‘ “) . (g(zt,n> —~ Eg(zt,n)) 4 N(0,0%(u))
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with o®(u) := || Y12, Pyg(Zi(u ||2, nd
(i) We hcwe the following bias decomposition uniformly in u € [2,1 — 2]:

Vb 4 ZK(t/n )Eg(zt,n) — Eg(Zo(u)) = O(Vnb+20) + O((nb)~/2).

(i) If additionally, g is continuously differentiable and Assumption[3.1.9(iii) is fulfilled

with ¢ = M + 1, then uniformly in u € [g, 1— g],

- ZK(” ") Bg(Z,) ~ Bg(Zo(u)) = o Vo) + O((n)™2).

3.3 Application to Maximum Likelihood estimation

Many recursively defined locally stationary processes X, in are obtained by
replacing the constant parameters # € © C R? of a recursively defined stationary
model .

Xi(0) = Ge, (Xe-1(0), ..., Xo(0),0), t=1,..,n

by time dependent parameter curves 6y : [0, 1] — O evaluated at the rescaled time %,

see Example [3.1.1] In this section, let us assume that G.(y,u) := G (y, 6p(u)), s0 Xin
obeys the recursion

t

= égt (thl,n, '--,thp,ny 90(5)), t= 1, o, n.

Note that there is a strong connection between the stationary approximation Xt(u)
of X;, and the original stationary process due to X;(u) = X;(6p(u)). Our goal is to
obtain estimators for 6y(-) based on X;,, t = 1,...,n with a quasi maximum likelihood
approach.

Suppose for the moment that ¢ — G.(y,0) is continuously differentiable for all
e,y,u and that the derivative 85(?5(3/, 0) > dg > 0 is bounded uniformly from below
with some constant dg > 0. This ensures that the new innovation ¢; has an impact
on the value of X;, which is not too small. Under these conditions, there exists a
continuously differentiable inverse z — H(x,y,0) of € — G.(y,0) (see also Example
3.2.0).

Suppose that £ has a continuous density f.. The negative conditional log likelihood of
Xi(0) =z given (X;_1(0), ..., X¢—,(0)) = y is then

Uz,y,0) = —log f-(H(x,y,0)) — log 0. H(z,y,0). (3.3.1)

In the following derivations, we do not make use of the specific structure of . This
means especially that we allow for model misspecifications due to a false density f..
Many authors prefer the case of a Gaussian density f.(z) = (27) Y2 exp(—2%/2) be-
cause then a minimizer € of ¢ can be interpreted as a minimum (quadratic) distance
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estimator (see Dahlhaus and Giraitis (1998)|in the tvAR case, Dahlhaus and Subba
Rao (2006) in the tvARCH case).

Based on this we define etn(e) = (Xt n,Yi—10,0). Given a bandwidth b € (0,1)
and kernel function K : [-1, 3] — R with [ K(z) dz =1, Ky(z) := $ K (%) we define
the local log conditional likelihood

Loy(u, 0) Z Kb<——u> lin(6).

t p+1

For u € [0, 1], the estimator of fy(u) is defined via

~

Op(u) := arg géiél L, (u,0). (3.3.2)

We will now discuss conditions such that éb() is consistent and asymptotically normal.
A convenient way to formulate these results is to make a structural assumption on
¢: We suppose that ¢ is Hoelder continuous in its first two components with at most
polynomially increasing Hoelder constant. To make this more precise, we introduce the
following class of functions:

Definition 3.3.1 (The class H,(8,M,C)). We say that a function g : RP*' x © — R
is in the class Hy(B, M,C) with C = (C,,Cy) and constants C,,Cy > 0 and M > 0,
1 >8>0 if for all z € RO € O it holds that g(-,0) € Hp1(8, M,C,) and
g(’Z? ) € Hd(1707 C@(l + |Z’11w+6))

It turns out in Theorem that the (pointwise) consistency of 0, can be obtained
by posing conditions on the likelihood of the corresponding stationary process which is
defined via L(u,0) := E[l,(u,0)] with €,(u,0) := £(X,(u),Y;_1(u),0). Especially if ¢ is
taken to be of the form with f. the standard Gaussian density, the properties of
L(u,0) are usually well-known from the maximum likelihood theory of the stationary
process X;(#) and therefore are easy to verify (see also Example [3.3.5)).

Theorem 3.3.2 (Pointwise and uniform consistency of 6,). Assume that { € H,(8, M, C)
for some M >0, 1> 8 > 0. Suppose that Assumption (z),(w) holds with some
1>a>0andqg= M+ .

Furthermore suppose that for all u € [0,1], Oo(u) € int(©) is the unique minimizer of
L(u,0) over § € ©, where © C R? is a compact set. Then:

(i) For allu € (0,1) with b — 0 and bn — oo:

Op(u) = Go(u).

_M+8

(i) If additionally ¢ > M + B and b= o(n'~ "« ) and 0y(-) is continuous, we have

sup  |0p(u) — Op(u)] 5 0.

ue[%,l—%]
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Remark 3.3.3. Note that in nearly all cases, the conditions of Assumption [3.1.9(iv)
assumed in Theorem [3.5.9 implicitly impose a Hoelder continuity condition on 6y(-).

Proof of Theorem[3.3.3. (i) For fixed v € [0,1] and § € O, note that ¢(-,-,0) €

Hp1 (B, M, C,). Apphcatlon of Proposition [3.2.10[(i) (see also Remark [3.2.11{(ii)) leads
to

Ly(u, 0) Z Kb<— - u> (KXo, Yie1m, 0) 5 BOX, (w), Yoy (u), 0) = L(u, 6).

Define m := M + 3, m’ := m A 1. The function 6 — L(u, ) is continuous since

[L(u,0) = L(u,8)] < [[6(Xe(u), Yir (u),0) = U(Xi(u), Yiea(u), )1

< -0l (1 (S I%I) )

Jj=0

It remains to show stochastic equicontinuity of L, ,(u, 6): Define h : RP™ — R, h(z) =
Co(1+ |2|7"). Fix n > 0. We have

L (1,6) = Lug(w,6)] < [0=6]1-~ \Kb(——u)]w(Xt,n,n,l,n).

Obviously, h € H,1(m/,(m Vv 1) — 1,C) with some constant C' > 0. Application of
Proposition [3.2.10(i) to K/ [ K dz and h (see also Remark [3.2.11(ii)) yields for all
€ (0,1):

%Z‘KbG‘“)’ (X, Yiin) = / K| dz - Eh(Xy(u), Yiea(u) =: c(u). (3.3.3)

Choosing 0 = ylelds

IP’( sup | Lnp(u,0) — Lyp(u,0)] > 7))
10—/, <6

P(‘% i )Kb(% - u)’ “h(Xin,Yicin) — c(u)’ > c(u)> —0 (n— o00).

This gives supgeg |Lnp(u, 0) — L(u, 0)| % 0. By standard arguments (cf. [Van der Vaart
(2009), Theorem 5.7), the proof is complete.
To prove (ii), we apply Proposition [3.2.10(ii) with ¢ = MLW > 1 (see also Remark
3.2.11{(ii)) to obtain for each # € © that

M+B —1,-1

sup!LnbuH) ELnquI— (n=« —b).
u€(0,1]
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By Proposition 3.2.7| we have sup,¢(s ;) [EL, 4(u,0) — L(u,0)| = O(b*°) + O((nb)1),
which yields

sup | Lyp(u,0) — L(u, )| 5 o.

ue[g,lf%
Similarly we can strengthen (3.3.3)) to
1 t
= ‘Kb<— . u) ‘ (X Yiern) — c(u)‘ L)
n

n
t=1

sup
ue[g,l—g]

Now define ¢ := inf, c(u). Choosing § = 7 yields

P sup  sup [Los(u,0) = Lop(u,0)] > 1)
u€[2,1-5]10-0"1<5

n

1 Z ’Kb<% — u)’ ch(Xin, Yicin) — c(u)’ > c) —0 (n— o0).

< IP( sup
n
t=1

ue[%,l—g]

So we have seen that sup,¢(» ;s SupPgee | Ly p(u, 0) — L(u,0)] % 0. Standard arguments
give the result (see also the appendix). O

We now provide a central limit theorem for 6, including a bias decomposition. Let
V denote the derivative with respect to 6.

Theorem 3.3.4 (A central limit theorem for éb) Additionally to Theorem m sup-
pose that

o VI € H,(1, M, C") for some M’ >0, V2 € H,(B", M",C") for some M" > 0,
1>p">0,

o Assumption[3.1.9(i),(w) is fulfilled with ¢ = max{2(M’' +1), M" + 3"} and some
1> a >0, Assumption[3.1.9(i1) is fulfilled with ¢ = 2(M' + 1).

Assume that the model is correct in the weak sense that E[V(u,0(u))|Fieq] = 0, i.e.
Vil (u, 0p(u)) is a martingale difference sequence with respect to (F;). Then we have for
b— 0, nb— oo and nb* > = o(1):

Vnb(By(u) — Oo(w)) % N(0,V(u) " I(u)V (u)"), (3.3.4)
where I(u) == E[V(u, 0(w))VE(u,0(w))] and V(u) := V2L(u,0(u)) is assumed to
be positive definite.

If additionally VI is continuously differentiable, K is symmetric and Assumption
(111) is fulfilled for g = M’ + 1, the result remains true if nb> = O(1).
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Proof of Theorem [3.3.4: The conditions on V2¢ imply that u +— V>L(u, §) = E[V?(,(u, 6)]
is continuous. Note that by Theorem [3.2.13], we have

\/_VLnb(u Oo(u))
. ¢_ Z 1 () (VX Vi B0(0) — BV, Vi B())

4 N(0,0 (u)),

- 2

where 02 (u) = H 220 PyVi(u, 90<u))H = I(u) by the martingale difference property.
2
Furthermore Theorem (3.2.13| gives that

¢_ Z K(t/ LBV X, Vit f0(w)

_ \/ﬁ Z K(t/ ”b_ “) (EVU( Xy, Vi1, O0(1) — EVE(X (1), Yoy (u), Oo(w)))

is O(Vnb*+2") + O((nb) =) or o(v/nb3) + O((nb)~/?) dependent on the assumptions.
Since V2¢ fulfills the same assumptions as ¢ in Theorem [3.3.2, we can mimic its proof
and obtain

sup |V L,y (u, 0) — V> L(u, 0)| 5 0.

60
By continuity of § — V2L(u, #), we obtain for each sequence 6, i 0o(u) that
V2 Ly (1, 0,,) — V2L(u, 8o (u))|
< |V2Loy(u,6,) — V2L(u, 6,)] + |[V?L(u, 6,) — V2L(u, 6 (u))| - 0.
Standard arguments now give the result. [

An important special case is the case of Gaussian conditional likelihoods combined
with autoregressive models. Specific examples for these are given in Example |3.1.1]

Example 3.3.5 (Autoregressive models). In this ezample we discuss the model G.(y, ) =
w(y,0) +o(y,0)e, where p,o : RP x © — R satisfy

0) — u(y. 0 0
Sup sup 1y, 0) — n(y',0)) | supsup lo(y,0) —o(y',0)

0 y#y |?/_y/‘x,1 0 y#y |y — y|x

||| oll2 <1 (3.3.5)

with some x € Ry with |x|1 < 1. Assume that Eeq = 0 and Eef = 1 and that
Oo(-) € X(a, L), i.e. 6y is Hoelder-continuous with exponent «. Then Assumption

[3.1.9(7i) is fulfilled with q = 2.
If we choose f. to be the standard Gaussian density, we obtain from :

1(:,; — 1(y,0))\2

1 2
U(z,y,0) = 5 (.0) > ~3 log o“(y, 0) + const. (3.3.6)
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Furthermore assume that

0) — pu(y, o' 0) — oy, o
supsup 1(y, 0) — p(y, o)) <o supsup lo(y.8) —aly.0) _ (337)

y oz |0 =01 - (1+|y|1) y o200 [0 =01 (14 [yl1)

Let () > 0, be uniformly bounded from below with some 8, > 0. Then £ € H,(1,1,0)
with some C > 0, and Assumption[3.1.9(i), (iv) is fulfilled with ¢ = 2 and o from above.
Fiz u € [0,1]. Suppose that

p(Yior(u),0) = p(Yea (), bo(w))  and  o(Yior(u),0) = o(Yii(u), bo(u))  a.s.

implies 0 = 0y(u). Then 0 — L(u,0) has a unique minimum in 6 = 6Oy(u) since
log(z) <2 —1if and only if v = 1 and 2?2 > 0 if and only if x = 0 and, omitting the
argument Y;_1(u),

2(L(u, 0) — L(u, 6p(w))) = E( Ué;w 2))2 —1+4 %] >

)
If additionally © is compact and 0y(u) € int(O), the assumptions of Theorem are
fulfilled and we obtain for 6, defined by :

2
s ) —i—E[log

Oy(1) 2 Oo(u).

We now will show asymptotic normality of 0,. To keep the presentation simple, we
will assume o(-,-) = 1, Eeg < oo and replace Ee} = 1 by Ee2 = o2 > 0. Note that
Assumption (zz) is fulfilled with ¢ = 4. Then, omitting the arguments of u, we
have

Vi=—(x—pn)Vyu, V=V -V — (z— p)Vp.
Then B[V (X, (u), Vi1 (1), 00(w)|Fie1] = 0 and I(u) = E[VL- V] = a3E[Vp - V'] =
o2V (u) with V(u) := V2L(u,0y(u)). If additionally
Viuly, 0) = Vily', 0)h Vi, 0) = Vily, 0')h

sup sup < 00, sup sup
0 y#y ly — 9|1 y oze |0 —0'[1(1+ |y[r)

] (3.3.8)
and similar assumptions are fulfilled for V*p, then we have V€, V0 € H,(1,1,C") with
some C" > 0. This shows that all conditions of the first part of Theorem are
fulfilled and we obtain for b — 0, nb — oo and nb® = o(1):

Vb (6,(u) — bo(u)) 5 N (0,02 - V(u)™). (3.3.9)
If additionally, 1,V and 6y are continuously differentiable and,
(3 70 — U ,79
sup sup 1248 9) 0/#(3/ i _
0 y#y' ly —y'l1

then V1 is continuously differentiable and Assumption (n'z) is fulfilled with q = 2.

So all conditions of the second part of Theorem are fulfilled and we obtain
even if nb®> = O(1).

00, (i=1,2), (3.3.10)
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We close this section by using the results of Example [3.3.5in a more specific exam-
ple of the tvExpAR(1) process which is a locally stationary version of the ExpAR(1)
process discussed in [Jones (1978), Up to now, there is no asymptotic theory available
for the parameter estimator in this model; we show that our theory immediately pro-
vides consistency and asymptotic normality of the corresponding maximum likelihood
estimator.

Example 3.3.6 (Maximum likelihood estimation in the tvExpAR(1) process). Assume
that there exists 0y : [0,1] — © (where the image of Oy is in the interior of ©) with
©:={0cR:0<0<p} and some fized p > 0, 0 < |ag| < 1 such that

t
Xin = aoexp ( — GO(E)XE—Ln)Xt—Ln +e, t=1,..,n.

Assume that Eeq = 1, Bei = 02 > 0 and Eej < oco. It is easily seen that this
model fulfills the smoothness assumptions (3.3.9), (3.3.7), (3.5.8) and with
w(y,0) := agexp(—0y*)y and o(-,-) = 1. Let X;(u) denote the corresponding stationary
approximation of Xy,,. Identifiability of 0 is obtained due to

E[(1(Xo(w), 0) — p(Xi(u),8))%] = aiElexp(—2pXo(u)?) Xo(u)’] - |0 — 6",

since E[exp(—QpXt(u)z)Xt(u)6] = 0 would imply Xt(u)Nz 0 a.s. which is a contradiction
to E[X;(u)?] > o2 which follows from the recursion of X;(u). Let 0y(u) defined by
based on the likelihood . We obtain for b — 0, bn — oo:

A~

Oy (1) = Go(u),
and for nb® = O(1):

Vb (By(u) — 0p(u)) 5 N(0, 02V (u)™Y),
where V (u) = a2E[exp(—260(u) Xo(u)?) Xo(u)].

3.4 Concluding Remarks

In this chapter, we made a first step to derive a general asymptotic theory for nonsta-
tionary processes X;,. We introduced derivative processes which have shown to be a
powerful tool to show mean expansions of functionals of X;,. We could see in Figure
that the pointwise approximation of X}, by the Taylor expansion of Xt(t /n) around
some time point u € [0, 1] with derivative processes has very low variance as long as
lt/n—u| < 1, n~! < 1 and the dependence of the process is small. This also motivates
to use these expansions in other fields of statistics which are well-studied for stationary
processes.

We formulated laws of large numbers and central limit theorems for such processes
under minimal moment assumptions by using the smoothness of the approximating
stationary process. We applied the results to nonparametric maximum likelihood esti-
mation and formulated easy verifiable conditions which are applicable to a wide range
of well-known locally stationary processes.
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3.5 Lemmas and Proofs

3.5.1 Proofs of section [3.1]

Here, we prove the results from section The following lemma from |Duflo (1997),
Lemma 6.2.10 therein will be used frequently to verify the geometric decay of the
difference of recursively defined processes:

Lemma 3.5.1. Assume that p > 0 is a positive natural number, x € RE  with |x|; <1

and that there are sequences of real-valued nonnegative numbers (2s)ss—p, (ths)s>0 which

fulfill for all s =1,2,...:

P
%0 <) XiZami + [l (3.5.1)
i=1
Then there exist constants Ao € (0,1), C\ > 0 only depending on x,p such that for all
s=1,2,...:

s—1
zs < C) (AS (205 ey Z—pg1) |1 + Z)\éﬂs—i).
i=0

Sometimes we will apply the lemma for s = 0,1, 2, ... instead of s =1,2,3, ... .

For the following proofs, recall that Yy, = (Xi—1p,..., X4—pn) and th_l(u) =
(Xi_1(u), ..., X;_p(u)). For y € RP, we will use the abbreviation G.,(y) := Ge(y,u).
Define the random map R.,(y) := (G-u(Y),y1, .., Yp—1). Let X, (y) be the first ele-
ment of the vector H,,(y) := Reyu 0 Re yuo...0 R._, .(y), where n = 0,1,2,... For
consistency of the following argumentations, define X, ,(y) := y_,, for n = —1,..., —p.
Note that H,,,(y); = Xn—j11..(y) (in distribution) for j = 1,....,p. Let J,,(y) be de-
fined similarly to H, ,(y) but based on e_y,...,e_,_; instead of ey, ...,e_,. Note that
Xonu(y) = Gegu(Jn-14(y)) and that Jy,1,(y) = Hp1.u(y) = (Xn-1u(Y); s Xnpu(y))'
holds in distribution.

Proof of Proposition[3.1.3. (i) Note that (|a| + |b])? < |a|? 4 |b|? since 0 < ¢ < 1. By

(3.1.3), we obtain
| X (y) — Xn,U(y/)Hg/

< HGao,u(Jn—l,u(y)) - GSO,U(Jn—l,u(y/))”g,
< E[E[GayulFn 1) = CepulJn 1)) || F ] ]
S E[‘Jn—l,u(y> - Jn—l,u(y,) ig’]q//q
p Na/d7d /g
S E [( Z Xj|Xn—j7u(y) - Xn—j,u(y,”q > }
=1
P ! /
= 1D Xl Xnsu®) = Xacgua W7,
j=1
P , p /
< D XlllXnsu®) = X u@)I ] = X3 Xnsin () = Xosu )5 -
j=1 J=1
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By Lemma we have with some C > 0, \g € (0,1) independent of u € [0, 1] that
for all n € N:
| Xonu(y) — Xn,u(y/)Hg < CA)‘S-H ly = y,‘({ . (3.5.2)

Applying (3.5.2) toy =yo and ' = R._, , .(%), we obtain

ql

H Z ’Xn,u(yO) - Xn+1,u<y0)| q
n=0

< D I Xna(o) = Xnsra(wo)l§
n=0

o0

Ca D AT lyo = Revu(yo) 113 < oo

n=0

IN

By the Markov inequality, this shows that (X, .(y0))nen is a Cauchy sequence a.s. and
thus has an almost sure limit Xy(u) (say). Furthermore, we have

n—1

/ / / / CA)\O /

1 X ()IZ < 1ol +> 1 Xk 10 (0) = X (W0 1€ < Iyl T )\0H\yo—Rs_n_l,u(yo)|1HZ-
k=0

By Fatou’s lemma,

sup ||X0(u)|]g/ < sup liminf||Xn7u(y0)Hg/ < o0,
u€l0,1] u€l0,1] ™70

since sup,eo1) [|G= (Y0, u)|l; < 0o by assumption.

Since Xy(u) is Fy-measurable, we can write Xo(u) = H(u,Fy) for some measurable
function H. By , X,.u(y) converges almost surely to the same limit Xo(u) for
arbitrary y € RP. This shows a.s. uniqueness and we can express X;(u) = H(u, F;).
Because X,(u) obeys , we have for X;%(u) = H(u, F;°) by

P
1Xe(w) = X:0)lg <> xillXemj(w) = X2 (w)llg
j=1

By Lemma , we conclude || X, (u) — Xt*o(u)Hg/ < 2pC’,\)\6||)~(0(u)||g/.

(i) Because Xo, = Xo(0) by means of (3.1.1)), the existence and uniqueness state-
ment is obvious from Proposition [3.1.3] From (3.1.3) and the triangle inequality, we
obtain

t\qd

)

p
1Xenll? <3 X1 X s — wosll€ + [|Gea (30,

j=1

n’lla

p
< D O xlIXegalld + lwolt + Sl[l(ﬁ]HGso(yo,u)HZ-
j=1 uel0,

Since || X, [|¢ = || Xo(0)]|¢' for s < 0, Lemma 3.5.1|implies || X, [|7 < CapAb||Xo(0)[|2 +
(1 — )\0)_1(|y0|‘{ + SUD,e(0,1] |Geo (o, u)||7) for all ¢ = 1,..,n, which provides that
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SUP, ey SUPy—1._p | Xenlld < co. Note that for arbitrary ¢ > 0, k > 0, we have by
B1.3):

V4 V4
*(t—k) g *(t—k) g *(t—k) g
X — X020 < NGEIX g — X701 < Xl X — XN
j=1

j=1

Note that 2z, := || Xoj—)n — X;(:(;f)k) | g/ =0 for s <0,
and zg < 2Sup,cy SUP,—y._, | Xenll?. Lemma [3.5.1 implies || X;, — ngf*k)Hg' =z, <

200G SUPyery SUPy 1o [ X4 - O
Proof of Lemma[3.1.4: The first inequality (3.1.7)) is a consequence of
1 Xe(u) = Xi(u)]If

< Ge (Yiea (), w) = Gey (YVima (w), ) [+ |Gy (Yema (u), ) = Gy (Y (), ) 1
k
< NCEma()F Ju =17 4+ Y X1 Xy () = Xy ()17

J=1

< OTfu— o'+ x| - 1 Xe(w) = Xo(@)]|{ -

For the second inequality, note that we have for all s =1, ...,n:

5 s q/ 5 q/
b 5 ) = (5 2) - 5 (2.
n q n n n q
p B S q/
S Xi - Xsfi,n - Xsfi (_>
z - s—i 7 & . s—1 . s
< 7 Xs—in - Xs—i V0 ) Xs—z VO ) — Xs—z <_)
< Lo (o) v [ (0 =5
P ~ s—1 ¢ ’ ’ ‘X’l /
i=1 n q 1—Ixh
Define z; == || X, — Xs(% V 0)[|4. Note that z, = 0 for s < 0 and define p :=

/ / . .
p™e % -n~* . In this special case we can calculate the constants from Lemma

directly, since zs_;, ;. = 0 for iy,...,i5 € {1,...,p}:

P P
zs < ZXst—il RS Z X X Zs—in—i (LX) < oo < (T I+ XI5,
11=1 i1,i2=1

which yields z, < 1—_% and thus

q
sup
s=1,....n

g ’ ’ ’X|1 o
S Cq p@q S AL — agq
a (1= [x))?

Xs,n - Xs (£>
n
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Proof of Theorem[3.1.6. With out loss of generality, we prove the statement for ¢ = 0.
Because of the continuity of G, the process (Xy,.(40))ucp,1] is continuous and thus a
random element of the normed space (C[0,1], |+ |s) where | - | denotes the supremum
norm on [0, 1]. With condition (3.1.4)) we obtain for two functions u — y(u), y(u)"

/ !

q

sup |Xn,U(y) - Xn,u(y/>|

u€(0,1] q — u€l0,1]
Lemma [3.5.1] implies
[ s [ Xnw(y) = Xaul@)l]; < OXH s ly =7 (3.5.3)
u€el0 ue|0,

Taking y(u) = yo, ¥'(u) = Re_,_, u(t), we conclude

sup | Xn+1.0(Yo) — Xonu(vo)
u€(0,1]

Z < C’AA”HH sup lyo — Reo (Yo, w)|1 H (3.5.4)

This implies that the sequence (X, 4(40))ucjo,1), 7 € N of elements of C[0, 1] is a Cauchy
sequence in (C[0,1],] - |») almost surely. Since this space is complete, there exists a
continuous limit X, = ()A(O(u))ue[o’u. It was already shown in the proof of Proposition
3.1.3 that X,.(y0) — Xo(u) as. for fixed u E (0,1]. This implies that X, is a

continuous modification of (Xo(u))uep1- By (3 , we have

q q ’
sup |Xn,u(y0 < Z sup IXk u(yO) Xk—i—l,u(yO) + |?Jo|(f
u€l0,1] q r—o  wEl0,1] q
Ch\o /
< I sup w0 — Reo (o, )1 ||7 + lyol{ =: D
1- /\0 u€(0 7
Because for M € N, M A sup,epq| - | is a bounded and continuous functional, we

obtain ||M A SUDye(0,1] |X0(u)|||q < D and by the monotone convergence theorem,
SUDye(o,1) | Xe(u)| € L7 O

Proof of Proposition[3.1.7. For fixed uy € [0, 1], the fundamental theorem of calculus
gives

GEO (ya u) - G€0 (y/a U)
1
- / (OGe (Y +s- (=) u) = hGe (¥ +5- (y—¥),u0)y —y') ds
0
+(G60 (317 UO) - GEO (yla u(]))

The first term is bounded in absolute value by sup,, |01 Ge, (2, u) =01 G, (2, u0) |1+ Y=Y | 0o-
Since |x|; < 1, we can assume w.l.o.g. that x; > 0 for all j = 1, ..., p (if for instance
x1 = 0, one can define ' := x + (1 — |x]1/2,0,...,0) which still fulfills |x'|; < 1).
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Now choose 5 > 1 such that §|x|; < 1, and define x’ := dx. We have |y — ¢/|w <
——ly —y/|,».y- For § > 0 small enough, we have

min(x’)
G — G (v 7
wp sup G021~ G, 0)
lu—uo| <5 2y |y -y |x’,q’ q
1 a

sup sup |01Ge,(x,u) — 01G, (T, u0)|s

min(x)? I, _yp|<s = q
sup ‘GEO (y7 u) — GEO (ylv u)‘

xy Y — Yo

1 q
+— sup

/
5(1 |lu—ug|<é

q

Partitioning of [0, 1] into (overlapping) closed intervals Iy, ..., [ of at most length &
and applying Theorem [3.1.6] on each of these intervals I, k = 1,..., K provides the
existence of a continuous modification of (Xt(k) (u))uer, on each of these subintervals

with sup,cr, ])A(t(k) (u)| € L9. For fixed k, k' € {1,..., K} with I; N I}; # () the continuous
processes (X,fk)(u))ue I (X't(k,)(u))ue 1, are a.s. equal on I;NI;, which ensures continuity
of a process (Xt(u)>u6[0,1] which is assembled from (Xt(k)(u))ue]k, k=1,.. K. O
Proof of Theorem[3.1.8: (i) Note that Assumption [3.1.2(ii),(iii) imply [3.1.2(i) and
(3.1.10). We will only use these conditions for the following proof. Since the pro-
cess X;(u) is already known to exist, we will define a new recursion function. For
y € RP, define the random map G(y,u) := (01Ge,(Yi-1(u), ), y) + 0aGe, (Vi1 (u), u)
and Ry (y) == (Gi(y,u), 41, -, Yp-1), and let DX, .(y) be the first element of Ry, o
-Rt—l,u 0..0 }?it_mu(y) for n € N. For y,3" € R?, (3.1.3) and Fatou’s lemma imply

1Reuy) — Rt:u(y’)llq = [(01Ge, (Vi (w), ),y = ¢
G (Yia(u) + by = y'), u) = Ge, (Vi (u), u) g

< liminf
h—0 h
GE ?_ h/ — 9 - GE ?— )
¢ it 10 1)) ~ ColFis) 0l
h—0 h(y —¥) |y
< Ny =Yl (3.5.5)

Similar to the proof of Proposition we obtain C > 0, \g € (0,1) with

IDXt,0(y) = DXena(@)§ < Cx- A5y = /17

Applying this to y = yo and ¢ = Rt_n_m(yo) we obtain

0 q o0 R )
| 32 10X w0) = DXesn )l < O DN o = R )
n=0

n=0

which is finite by (3.1.10)) and (3.5.5)). This implies that D Xg,.(y0) converges a.s. to
some limit DXy(u), say. Because Xi(u) € Fi (k € Z), it is obvious that DXy(u) is

Fo-measurable and therefore has a representation DXo(u) = H(u, Fy). The rest of the
proof is the same as in Proposition |3.1.3(i).
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(ii) Because of the continuous differentiability of G, the process (X, u(%0))ucjo,1 is a
random element of (C[0,1], |- |c1), where || f|lct = | floo + |/'|co and |+ |o denotes the
supremum norm on [0, 1]. Define ¢ := ¢/2 and ¢ := min(q, 1). Because of X, ,(y) =
Geou(Jn-1u(y)), we have for two differentiable functions u — ;1 (u), y2(u) € RP:

aan,u<y1) = <81G50<Jn71,u(y1)7 U), aujnfl,u(yl» + 82G50(Jn71,u(y1)7 'LL)

This shows (use similar techniques as in (3.5.5])):

H Sup |aan,u(y1)| ||Z,

!

S ZX]HSUPW Xn —J,u yl |Hf1 +Hsup‘a2 aou(Jn lu(yl))‘ I
j=1

< Z)@Hsupla Xonj1u(t |Hq —l—C’QZHsup]Xn —iulyn ]Hq +Hsup\82 (0, u ]Hq
Jj=1 j=1

The third term is finite by assumption, and in the proof of Theorem |3.1.6|it was shown
that || sup, |Xn7u(y1)||\g/ < D(y,)? for all n € N. Since |y|; < 1, Lemma implies
for all n € N:

H sup ‘aan,u(yl) | HZ/
u€[0,1]

< O] + (1= 20) " (CopD ()7 + | sup [0:Gey (0, w)[[|7) = ()
(3.5.6)

Using the triangle inequality, we obtain

| sup [0 Xou(y1) = 0uXna()| |2
u€(0,1]
| sup (0 Geyu(Jumra (). 1) = G (nra(2) 1), BT ()| |2

u€[0,1]

+|| sup } 81 eou(Jn lu(y2> ),3an71,u(y1)—aan71,u(y2)>H|Z:/

u€(0,1]

+|| Sl[lp]}az coau(In—1,u(Y1), 1) = DGy u(Tn-1u(y2), H| = A + Ay + As.
uel0,1

Condition (3.1.5) and the result (3.5.3) from the proof of Theorem (use Ch, Ao

for the result therein) implies

A3 é H sup ’Jn 1u(yl) J”_l,u(yg)hHZ:/
u€(0,1]
s
= <ZH s [ Xn—j—1u(¥1) = Xnojru(y2) q>
ue

< C’Q(C’,\p/\g p)q/q sup |y —?/2|1-
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A similar technique as in (3.5.5)) gives

A, < ZXJH up |0, X (1) — auxn_j,u(y2)|||gj’,

u€(0,1

By Cauchy Schwarz’ inequality, we have

p q
A < Z Sl[lopl] ‘(81G50(Jn—1,u(y1)7 ) 0,G. ( n— 1u(y2) j‘ : |au<]n—1,u(y1)j‘ i
j=1 uecl0,
P ~/
< Clz sup ’Jn 1,u yl) Tn—1u y2 | ‘5 I 1u(y1) } '
= u€(0,1] q
4 a\ad/d
< Clz (Z sup ‘Xn im1u(y1) — anifl,u<y2)‘ )
=1 =1 u€(0,1] g
X sup |8an_j_17u(y1)| !
u€[0,1] q

< CEm)T (CapAy ™)™ sup |y — yl!

Finally we have shown that exists a constant C'(y;) > 0 such that

~

q
sup |8an,u(y2) - aan,u(yl)‘ B
u€[0 1] q
q ~ =
ZXJ Sl[lp] ’a X ju<y2) 8anfj,u(yl) i + C<y1))\g sup ‘yl - yQ‘g :
uel(0,1 U

7j=1

Lemma implies that there exist constants C > 0, A\¢ € (0, 1) such that for n € N:

=~/

q

sup ‘8 Xouly') — &LXn,u(y)‘

u€(0,1]

q

< CA(N T sup|duys — dusel? + Cnn ZA’A” ) suplys = g
v =0

Put y1(u) = yo, y2(u) = R, (Yo, u).
Using [[sup,, [0uyr — Ouyzlills = || sup,, [0:Ge, (yo, w)llly < 00 and |[sup, [y1 — y2)illg <
|| sup,, |yo — R (Yo, u) |1l < oo by assumption, we obtain that for all n € N:

H SUP |0 Xnt1 U(yO) aan,u(yO)H‘g < OA(yO)S‘g (3-5-7)

uel0,1

with 0 < \g = max()\o,j\o) < 1 and some constant CA’,\(yo) > 0. Together with
the result (3.5.4)), we obtain that the sequence (X, .(0))ucpo], 7 € N of elements of
C'0,1] is a Cauchy sequence in (C*[0,1],| - |c1) almost surely. Since this space is
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complete, there exists a continuously differentiable limit X, = <X0<U)>u€[0,1]' Because

X is Fo-measurable, there exists a measurable function {u H(u,-)} on RY such that
u H(u, z) is continuously differentiable for all z € RY. We may define 9, X;(u) :=

H(u, F;) for arbitrary ¢t € Z. The process X;,.(y) defined similarly as X,,,(y) but
with e, ..., e_, replaced by &, ..., £, has the same distributional properties as X, ,(v)
and therefore X} ,, . (y) — ﬁ(u, Fi) as. and 0, X ,u(y) — 8u]:I(u,]:t) a.s. Since

Xt,n,u(y) - Gat (Xt—l,n—l,u(y)v u)

and
auXt,n,u( ) <81G£t(Xt 1,n— 1u( ) ) 6 Xt 1,n— 1u( )>+82G£t(Xt—1,n—l,u(y)7u)

we obtain for n — oo that X,(u) fulfills (3.1.1) and 8,X,(u) fulfills (3.1.9) a.s. for

all t € Z. Since (3.1.1) and (3.1.9) only allow for a.s. unique solutions, we con-
clude that (X(u))ucoq) is a continuously differentiable modification of (X;(u))ucpo,1]

and (&L)A(t(u))ue[o,l] is a continuous modification of (Df(t(u))ue[g’l].
The uniform convergence sup, 10X n.u(y0) — 0, Xo(u)| = 0 together with Fatou’s lemma
and (3.5.6) implies sup, |9, Xo(u)| € L4 O

Proof of Lemma [3.1.11. Define § := ¢/2 and ¢’ := G/2. Because 9, X, (u) obeys (3 ,

we have with the Cauchy Schwarz inequality:

10, X (w) — 0. X)) ||}

IN

S 101G (5201 ) = 04 G (s ) ), [ 0o )

(G, (Vi (W), ), 0K 1 (w) = 0K 1 ()|

H|02Ge, (Vi (1), 1) — 0aGe, (Yia (), )€ (3.5.8)
and (3.1.12)) give
102G, (Vi (1), 1) = 0aGe, (Vi (), ) |E < CF /(| Xy () — X () |+ D Ju—u'|*27

Similar results are obtained for the first term in (3.5.8)). Note that || sup,, |9,X;(u)|||, <
M with some M > 0 by Theorem [3.1.§f The conditions of Lemma [3.1.4] are fulfilled

for a = 1, alternatively it can be seen directly that

1
I%at0) = Sl = | [ 10Kl + (0= w)s) s Ju= ) < | sup 0ot fu - ',
0 v

A similar technique as in (3.5.5) now implies
10, X1 (w) = 0. X ()T < [xhl|0uXi(u) — 8 Xo(u)||1T
+pM7 (C’{i/pq//q, Mlu—u|7 + D‘lil|u — u’|a2‘i/)
+(Cg/pq//q, Mlu—|7 + DI |u — u'|a2‘j/),

which gives the result since |y|; < 1. O
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3.5.2 Proofs of section 3.2

Proof of Proposition[3.2.10. (i) For K € N and k = 1, ..., 2K define intervals of indices
Inn = {t:t/n € (524, F%]} such that U%;l Iikn = {1,...,n}. For fixed K € N, we
have

1 1 2
HE;XWL_Q_K;Hk— Z Xin

tely,

1

IA
™
—_

=
S |x

El
|
=l
N—

-
™
IS

3

IA
=
S &
3
|
2| -
.
o]
=
.
IA
|
wn
5
=
z

and

2K 2K
1 1 1 1 -/ k
HQK Z Xin — 9K Z |1, Z Xt(gK)
k=1 T tel ko k=1 K,

< sup 1Xe = Xa(t/m)lh + sup || X (u) — Xe(0)]s

----- lu—v|<2—

Note that for fixed K, by the ergodic theorem for stationary sequences we have for
n — oo:

2K
IS o DR (YRS e BT

tely,

a.s. and in L'. By the continuity of [0,1] — R, u — EXy(u), we have

2K 1
| ok .
E(K) = 5 > EX0<2—K> = /0 EXo(u) du=: E (K — o0).
k=1
Finally,
1 n
=Y %in-E
n t=1

2K ~ ~
< s ([ Xeafit sup IXew = Xa(t/m)l +  sup [ Xe(w) = X))l

---------- lu—v|<2—K

+||E(K,n)— E(K )|!1+|E( ) — El

Thus for all K € N:

< sup [[Xi(u) = Xo(o)lh + | B(K) - BI.

1 lu—v|<2-K

hmsupH—Zth —F

n—oo
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The limit K — oo gives the result.
For proving the local weak law of large numbers, first note that

H% i K<t/nb_ u) (X — Xi(u))

< Kl ( swp [ X = Kilt/m)li+ sup |Kiw) = Xu(w)]1) =0

..... |lu—v|<h/2

This shows that it is enough to consider the convergence of the sum with the correspond-

ing stationary sequence. From Lemma [3.2.9, we have that = > | K <t/n ”) Xy (u) —
EX,(u) holds in L', which finishes the proof.
(ii) Define S,(u) == >} | K (t/" ”) (Xt — EXy,) and Sy = S Xy, By partial

summation, we have

[ <t/n—u) _K<%>] ~St,n+K<1 _U)Sn,n'

n—1

t=1

Since K is of bounded variation, we have Z;:ll
thus

b

<—t/"7“) — K(—(t“)/"*“)‘ < Bk and
|Sn(u)| < B - sup [Sy,l. (3.5.9)
First assume 1 < ¢ < 2. By using the decomposition X, — EX;, = Z?io P X n

and applying Doob’s maximal inequality, Burkholder’s inequality and the elementary
inequality (|ai| + |az|)¥? < |a1|?? + |ay|??, we obtain

| sup [Suallly < ZH su \ZPS Kl

VAN
LR
=)
|‘Q
—
M
3
|
>
=
[
Mg
=
(IS
=
=
=
/N
(]
=~
>
N
N—
2
—

=0 s=1 =0 s=1
< <Z”Ps len” >
< nt/a. Z 55(,71 (1)
(g =
which shows that
sup |(nb)~1S,(u |H é(q" iyl
u€(0,1]

n

Note that in our case, AnXIq = O(r™) with some 0 < r < 1. If ¢ > 2, we use a Nagaev-
type inequality from [Liu, Xiao and Wu (2013), Theorem 2(ii) which also holds in our
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situations as the authors point out in their section 4. Applying this theorem to S,
and —S;,, we have for all z > 0:

2C1(Ay;" )™

x4

CQ.T >
Vg,

with positive constants C, Cy not depending on n. Using (3.5.9)), we obtain

IP’( sup | S| > :)3) < +8G1,g/q<

b
IP’( sup |(nb) 'S, (u)] >x) < IP( sup |St.n| > ﬂ)
uel0,1] t=1,.., Bk
QCl(BKAoy,‘I’")qn(nb)_q Conb
= 8G1*2/Q< X )
x4 \/EBKAO’('I’TL
O]
Proof of Proposition[3.2.13. (i) Define S, 1 := lL:_Ol Yy P Xt . Use the abbrevi-

ation Lim. for limsup,_, . limsup,_,... Because P,_;X;,, — EX;, — 0 a.s. and in L'
for [ — 0o, we have by Doob’s maximal inequality:

sup |Spnuy/vVn — SL”ULL/\/M’L

u€(0,1]

Lim.

[\
-
1M
L
¢
T+
T’:U
3

2

e 2 v
77777 <lLim ; WH ; PriXo,

< hmZ (ZHPt ZXMH> <1.i.m.2z(5§(z):
=L

Now define Sn,L = l:_() Yoy Pt_lXt(;). Note that
1Pt = Kilt/m)ll < min {87 (0) +650). sup (1 X, — Kilt/m)]l2 |

=: min{d(l),c,}.

By similar arguments as the calculation above, we obtain

e St/ V1 — SmuJ,L/\/ﬁ!’ )

uG[

< lim. 2 Zmin{5(l}, cn} < l.i.m.( Z Cn + Z 5([))
1=0 ~1/2
< lim. < 2 4 Z o l)) =

oglgc;W I>cp,
l>cnl/2

lim.

Now fix L € N. Define S, 1, := S, < i BXtJrl(t—:;l)), where X;(u) := X,(1) for
u > 1. We have

|STL_STL|<ZZ’-Pt lXt “f‘z Z |P15Xt+lt+l)’

=0 t=1 =0 t=T-1+1
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Define My, := PX;(20) £ Py X (E) =2 M(1). We have

P(— sup |Mt,l|2<€) S n - Sup P(’Mtl‘>€\/_>< Sup [’Mt,l‘zﬂ{\M“\Ze\/ﬁ}]
T=1

= sup E[M(U) L0t (w)|>evm))
u€(0,1]

2
< E[(sup |M@)])" - Loy, prwizevm] = 0

. 5 A P
which shows \/iﬁ SUPye(0,1] |S|nu),L = Spna,] = 0.
We now investigate the weak convergence of S|,,,r./v/n with a martingale central limit

theorem from Billingsley, Theorem 18.2. Note that Zf;ol M;,/+/n is a martingale
difference sequence with respect to JF;. By elementary operations it can be seen that
for each T'=1,...,n and each ¢ > 0,

T L—-1 9
Z E [( Z Mtl/ﬁ) Ly S LM, [ >ev/m}
t=1 =0

is bounded by finitely many (dependent on L) terms of the form

1 T
> EIMAL s, meym)s

n
t=1

where [,I" € {0, ..., L — 1}. By using similar techniques as above, it can be shown that
this converges to 0.
It remains to investigate the behaviour of

ZE[(ZMHN_) ]E 1] = %ZE[Mth”]-}_l]

L/=0 " t=1

h
,_.

for T = |sn], s € (0,1]. Define I, g7 := {t : = € (52, 5]}, then we have for K € N:

T
1 1 2K
|7 > ElMde 1 Fid] - o olF]
t=1 k=1 I RET tely kT !
2K
< posup o osup[[MygMilh,
t=1,..,n1=0,...,L—1
S 2K % 2 ; t t+l k
which is bounded by % sup, || Xo(u)||5. Furthermore, since 7 € I xr = [ — 5%5| <

27K 4 %, we obtain

2K
1 1 k k
=S ——— S (EIMy M| Fi] = E[Myy () Mo Ff)H
|57 — |lxr| (BIMuaMis | Fica] = B[Mua ) Mor () ) |

< 2( s [ Xo(w) = Ko@)+ sup [ Xo(w) = Xo(v)llz) - sup [ Xo(w)e.

lu—v|<2—K |lu—v|<Ln—1
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with My (u) := P, X, (u). Since E[M,(u) M, (u)|F,_1] is ergodic, we have

k
)

E{M,;;(=—=s)M,, E[My,(—s) M, 1
Lo te? . E| tl(2K3) tl( $)|Fi1] = EJ Ol(QKS) o
k,K,T

In total, performing first n — oo and afterwards K — oo, we obtain
LnSJ

Z ZE My My p|Fia] — Z / [ Mo, (xs) Moy (zs)] dx

Li'= L=
L—1 _ 9
> Rily)| av.
=0

N /0
L—1 o
L P X H dB(v),0 < u <

So we have seen that {S|,,/v/n,0 <u <1} 4 {f

1}. By the dominated convergence theorem, [ 11::—01 POXZ('U)H dv — [ o*(v) do,

which completes the proof.
(ii) Since A,,, = O(r™) with some 0 < r < 1, this follows directly from Theorem 2.1
in |[Karmakar and Wu (2016). O

Proof of Theorem[3.2.13: Define M,(u) := g(Z,(u)). Note that

)bezcm)mwmwmﬁmMMAww.

.....

.....

the term above is of order \/_ bn "‘.

Since Y .°,sup, 5M(u)(k:) < 00, | K| < 00 and (Kp(t/n —u)P_yMy(t/n)); is a mar-
tingale difference sequence with respect to (F;_;), we can use the same technique as in
the proof of Theorem to show that

t/n—u

lim sup lim sup H\/% i K ) [(Mt(t/n)—EMt(t/n))—g PoM(e/m)]|| =0

L—o0 n— 00

Now fix L € N. Since K is Lipschitz continuous and sup, [|M;((t+1)/n) — My(t/n)||1 <
C'n™1, it is enough to consider the weak convergence of Y " | W;(t/n), where we define

W, (v) =) K(t/i_u>PtMt+l(v)/\/ nb. Note that W;(t/n) is a martingale difference
sequence w.r.t. F;. It holds that

ZHW t/n) — Wi (u)lh

n

1 t/n—u\?
: HZ/:O nb Z K( / ) [P My (t/n) P My (t/n) — PeMygi(u) PeM g (u) ||y

n

’ Z nlb ZK<t/n >2||Mo(t/n> = Mo(w)l|> - sup | Mo(w)]}> = o(1).

1,I'=0

IN

104



By Lemma [3.2.9]

ZE DEEED D Y (= >E[PtMt+z(U)ReMt+z'(UW'"H]

1,I'=0 t=1
/ K2(z) dz - ‘ZPOMZ

Fix ¢ > 0. The sum Y, E[W2(t/n)Lgw,(t/n) e is bounded by finitely many (depen-
dent on L) terms of the form

1=

t/n —
nbz ( ) E[(PtMH—l(t/n))2IL{|K|OO|PtMt+l/(t/n)|ZeM}]

< |K|Zo sup E[(POMZ(U))2l{|p0M,,(u)\zem/|K\m}]

u€[0,1]

< |K[ZE[(sup |P0Ml(u)|)2]l{supu |P0Ml/(u)|zs\/%/u<|oo}]
which converges to 0 since

Isup [PoMi(u)lll2 < 2] sup [Mi(u)]]l2 < O sup [Xo(w)[lI3( 0 <

So we can apply Theorem 18.1. from Billingsley to obtain

th(t/n) 4 /K2(x) dz - | §P0Ml(u)H2N(O,1)

and thus

ﬁgff(t/ ) B/ b [ R a | iPOqu)H;v(o, .

It remains to analyse the bias term

= ZK(t/” >IEMt(t/n).

The results (i) and (ii) are immediate from Proposition [3.2.7] O

Proof of Theorem uniform convergence of 6,: Sincea sequence converges in prob-
ability to some random variable Z if each subsequence has a further subsequence that
converges almost surely towards Z, we may assume w.l.o.g. that

sup sup|Lnp(u,0) — L(u,0)] = 0 a.s. (3.5.10)
wel},1-b] 60
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Since 6y is continuous and 6y(u) € int(©) for all u € [0, 1], the whole curve 6y has
a positive | - [;-distance ¢, = inf,ejo,1) dist(fo(u), 90) > 0 to the boundary 0© of
©. Choose ¢ € (0, cpyy) arbitrarily. For each u € D, = Dy(n) := [2,1 — 2], define
O(u,e) :=={0 € © : |6 — O(u)|1 < e}. Define

0" (u) :€ argmingegngu,e)e L(u, 0).

Here, 6*(u) has not to be unique, but we choose one of the possible values. Because
© N O(u,e)° is compact, there has to exist at least one. Because 0y(u) is the unique
minimum of § — L(u, ) over O, there exists d(u) > 0 such that

L(u,0%(u)) — L(u, 0p(u)) = 0(u).

It holds that 6 := inf,cp10(u) > 0. Otherwise, because of the compactness of [0, 1],
there would exist a sequence (u,,) C [0,1] with u,, — u* € [0,1] and d(u,) — 0. By the
continuity of L, 6y and v — infgconeu,e)e L(u, 0) (use Berge’s Maximum theorem and
the fact that u +— © N O(u,e)® is a continuous set function) this would imply

= inf  L(up,0)— L(up, 0 inf  L(u*,0) — L(u", Op(u*
0 4= 9(un) 9EONB(unc)° (tn, 0) = L{ttn, fo(tn)) ™ peondlur o) (w",6) = L™, Bo(w”)),
which is a contradiction to the fact that 6y(u*) is the unique minimum of L(u*, ). By
(3.5.10) we may choose N € N such that for all n > N, sup,cp Supgce |Lns(u,0) —
L(u,0)| < 3. Now suppose that for some n > N, sup,cp, 10, (1) — 0o(u)]; > e. Then
we have for some v € D,, that

) ) 8

Loy(u,04(w) > L(u, fy(u)) - ZL(U,Q*(U))_g

2
J J
= L(U, 00(”)) + (5('&) - 5 > L(UJOO(U)) + § > Ln,b(uveo(u>>7
which is a contradiction to the maximal property of 6,(u). O
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Chapter 4

Local bandwidth selection with a
contrast minimization approach

In this chapter we discuss data adaptive local bandwidth selection for quasi maximum
likelihood estimators in a very general class of locally stationary time series models.
Our theory and assumptions cover recursively defined processes such as tvAR, tvARCH
and tvTAR as well as linear processes, for instance the tvARMA process. Let us men-
tion that some minimax results for bandwidth selectors in the very special case of tvAR
processes are available: |Arkoun and Pergamenchtchikov (2014) consider minimax opti-
mal local bandwidth selection in the case of tvAR(1) processes under the assumption of
differentiability of the known true parameter curve. Furthermore, some online adaptive
estimation results were obtained by Arkoun (2010)| and |Giraud, Roueff and Sanchez-
Perez (2015).

In Section 4.1}, we introduce the model and the quasi maximum likelihood approach.
To measure pointwise distances between elements of the finite-dimensional parameter
space, we consider the Euclidean norm and a weighted Euclidean norm which can be
interpreted as an approximation of the Kullback-Leibler divergence. For both distance
measures, the bandwidth selection procedure is done via contrast minimization which
is motivated by the general approach of |Goldenshluger and Lepski (2011). We state
our main results, which are a minimax lower bound if the true curve is in a Hoelder
class, and the fact that our bandwidth selector achieves the minimax-optimal rate up
to a log factor which usually arises in local procedures.

In Section |4.2| we present the conditions under which the main results hold. We em-
phasize that nearly all assumptions are stated in terms of a stationary approximation
of the observed process, whose properties are usually well-known. Besides standard
assumptions from maximum likelihood theory we have to assume that the difference
between the quasi maximum likelihood estimator and the true value behaves like a
martingale difference sequence so that we can apply a Bernstein inequality for martin-
gale differences from Van de Geer (2000), Furthermore we impose that the limit of the
quasi likelihood attains its optimum at the true curve with some known rate so that
we obtain results for the rate of the quasi maximum likelihood estimator even if a Tay-
lor expansion is not possible. Dependence assumptions are stated with the functional
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dependence measure. In the second part of Section [4.2] we present some more specific
examples for which the stated assumptions are fulfilled.

In Section [£.3] we analyze the quality of the bandwidth selection procedure for some
time series models and compare the two different minimization approaches based on
the two different distance measures. Some concluding remarks are drawn in Section
44

All proofs and some more general examples are postponed to the Appendix, Section
[4.5] Some results therein may be of independent interest. For instance, we introduce a
step-by-step approximation theory for localized empirical processes of locally station-
ary processes and provide either a deterministic or random bias expansion under the
assumption of the existence of derivative processes which were introduced in Chapter
Furthermore, we provide exponential inequalities based on martingale decompositions
and the decay of the functional dependence measure.

4.1 Introduction and Main Results

The Model. Let ¢;,,t € Z be a sequence of i.i.d. random variables and F; :=
(€¢,€¢-1, ...) the shift process. We assume that we observe a Bernoulli shift process

Xt’n = Jtvn(]:t,(%), t = 17 N (4]_].)

where J;,, is a measurable function which may vary for each ¢ = 1,...,n and n € N,
and 6y : [0,1] = © C R? is an unknown parameter curve. We allow the process to
depend on n since we are working in the infill asymptotics framework, assuming that
X mainly depends on the rescaled time % to obtain a meaningful asymptotic theory.
Our aim is to provide minimax-optimal estimators for ¢, based on observations X,
t=1,...,n. To do so, we impose structural assumptions on X;, by claiming that the
process is near to a stationary process X;(u) (u € [0,1]) as long as |t —u] < 1 and

n~! < 1 (this is made precise in Assumption [4.2.3). We ask
Xi(u) = J(Fr, 00(w)) (4.1.2)

to depend on ¢y and u solely through 6y(u), where J is some measurable function.
Furthermore, we assume that X;(u) obeys the recursion

Xt(u) = GEt(ﬁ—l(“)? 00(“))? t ez, (413>

where Y;_1(u) := (X,(u) : s < t — 1) are the past values of the process, G.(y,6) a
measurable function, where ¢ € R, y € RY and § € ©. It should be noted that we
only pose a structural Markovian assumption on the approximating stationary process
which allows us to include a wide range of invertible linear processes in our model which

would not obey (4.1.4]), see the following Example 4.1.1}

Example 4.1.1. (i) Recursively defined locally stationary processes Xy, which are
obtained by replacing the constant parameters in stationary processes by time-
dependent parameter curves 6y evaluated at the rescaled time % obey . More
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precisely, they obey

t
Xin=Ge,(Yic10,00(=V0)), t<n (4.1.4)

n
where Yi_1, = (Xi—1n, ooy Xe—pn) and G:(y,0) is some measurable function. ?
and |Zhou and Wu (2009) discussed properties of such processes. Some special

cases are:

(a) the tvAR(p) process (cf. Dahlhaus and Guraitis (1998 ), Dahlhaus and Polonik
(2009), \Dahlhaus (2011)): Given parameter curves a;, o : [0,1] — R (i =
1,...p), . , ,

Xt,n = al(ﬁ)Xt*Ln + ...+ ap(ﬁ)thp,n -+ U(ﬁ)gt.

(b) the tvARCH(p) process (cf.|Dahlhaus and Subba Rao (2006)): Given param-

eter curves a; : [0,1] = R (i =0,...,p),

t t
Xin = (GO(E) + al(ﬁ>Xt2—1,n + o ap )Xt{p,n)lﬂgt

t
n
(c) the twTAR(1) process (cf. |Zhou and Wu (2009)): Given parameter curves
ai,as : [O, 1] — R,

b ty oo
noT - t—1,n - —1,n )
th al(n)X 1 —|—a2(n)Xt 1 + &

where ;= max{z,0} and = := max{—z,0}.

(i1) Linear locally stationary processes (cf.|Dahlhaus and Polonik (2009)): For each
t=1,...,n, n €N assume that there exist coefficients a (k) such that

Xop = 3 an(B)er s (4.1.5)
k=0

Well-known special cases are the tvAR(p) process (see (i)(a)) and the tvMA(p)
process: Given parameter curves a; : [0,1] = R (i =1,...,p),

t t
Xt,n =&+ a/l(—)et—l + ...+ (lp(—)ft_p.
n n
(iti) Nonparametric iid regression: Given 6y : [0,1] = R, Xy, = 0(L) + 2.
Quasi maximum likelihood approach. The estimation of 6, is performed by
a nonparametric quasi maximum likelihood method. For this, we assume that some
weight function ¢(z,y, #) is given (which naturally should mimic the negative log condi-

tional likelihood of X}, given Y;,,), where x € R and y, 6 as before. For the truncated
past vector Y2, 1= (Xi 1,0, X1, 0,0, ...), we define

Kt’n(é’) = Z(Xt,n, }/t(il,n7 6)
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Fix u € [0,1]. For some kernel function K : [—3, 3] — R with [ K dz = 1 and some

bandwidth b € (0, 1], we introduce a local likelihood

n

Los(u,0) = Kni =3 K<t/nb— 5 yn(6),

t=1

where K, p(u) ==, K(t/i)—“). An estimator of 6y(u) is given by

~

0p(u) = argming.g Ly p(u, 0). (4.1.6)

Our theory holds for general weight functions ¢, but let us emphasize an important
special case. Suppose for the moment that € — G.(y,0) is continuously differentiable
for all €,y and that the derivative 0.G.(y,0) > dc > 0 is bounded uniformly from
below with some constant d; > 0. This ensures that the new innovation &; has an
impact on the value of X,(u) which is not too small. Under these conditions, there
exists a continuously differentiable inverse x +— H(z,y,60) of ¢ — G(e,y,0) := G-(y,0).
Suppose that g9 has a continuous density f.. The negative conditional log likelihood of
X, (u) = z given Y;_1(u) = y then takes the form

U(x,y,0) = —log f.(H(x,y,0)) — log 0. H(x,y,0). (4.1.7)

In the following derivations, we do not make use of the specific structure of ¢. This
means especially that we allow for model misspecifications due to a false density f..
Many authors prefer the case of a Gaussian density f.(z) = (27)~Y/2 exp(—1%/2) be-
cause then a minimizer € of ¢ can be interpreted as a minimum (quadratic) distance
estimator (see Dahlhaus and Giraitis (1998) in the tvAR case, Dahlhaus and Subbal
Rao (2006)|in the tvARCH case). See also Example [4.5.9]

Distance measures. In the following, let V denote the derivative with respect
to § € O. Define {,(u,0) = {(X;(u),Y;—1(u),0). In ? it was shown that 0,(u) is
consistent and asymptotically normal for processes X, which obey and fulfill
some regularity conditions. More precisely, it holds that

~

Vb (6y(u) — bo(u) — bias, (b)) % N(0, [ K* dz - V(u) " I(u)V (u)™),

where I(u) := E[V{(u,0(u)) - VNEt(u, fo(u))'] is the Fisher information matrix of the
stationary process, V(u) = E[V?{;(u, 0y(u))] and bias,(b) =~ E[#,(u) — 6p(u)] some bias
term. It is immediate that there exists a typical bias-variance decomposition

E|f,(u) — 0(u)|? ~ bias, (b) +/K2 dao - V(u) " (u)V (u) ™,

where | - |, denotes the 2-norm in R? An important question is what bandwidth
b(u) = b,(u) leads to the optimal rate for the mean squared error and how one can
choose this bandwidth adaptively from the data. In this chapter we tackle the problem
of local adaptive bandwidth selection (i.e., for each u € [0,1] an estimator b(u) is
proposed) which as far as we know was not discussed theoretically in the literature.

110



Besides the quadratic distance between the estimator 6,(u) and (), the Kullback-
Leibler divergence arises naturally as a distance measure in maximum likelihood the-
ory since y(u) is the minimizer of the Kullback-Leibler divergence between the model
(4.1.3) with parameter 6 (instead of fy(u)) and (£.1.3). It can be shown that under
regularity condltlons the Kullback-Leibler dlvergence between 0,(u) and 0y(u) is dom-
inated by |0,(u) — Oo(u w)[{ . (see Proposition (4.5.8). To discuss both distances, we
introduce a weighted squared distance measure at u € [0, 1], i.e

duz(01,00) = 101(u) — O (u)|Z, (4.1.8)

where |z|2 = (x,Zx) for vectors x € R? and positive definite matrices = € R?*?,
Let Id denote the identity matrix in R%*¢. Then Egydy1a(0p, 8p) corresponds to the
mean squared error of 0,(u) and Eg,dy v (wu)(6s, 6) corresponds to the Kullback-Leibler

divergence of 0,(u) w.r.t. fo(u).

All distances d, =(61,6p) are equivalent since = is positive definite. It is also clear
that the minimizers b, =(u) of Egodug(éb,@()) coincide if the dimension d of the pa-
rameter space © equals 1, but they differ in general for d > 1. In simulations (see
section [4.3)) it turns out that there is a significant difference between the correspond-
ing optimizers which justifies to analyze two different model selection procedures. The
theoretic behavior of the two optimizers byp;1a and by, v (u) can be explained as follows:

While byt 14 leads to estimators éb Le.1a Which try to fit best to the unknown parameter
curve 0y, bopr,v(u) leads to curves Hb V() which ensure that the associated model X;,,

is near to the true model and therefore leads to good prediction properties of Hbopz,wu)‘
For d > 1, this difference can be seen in cases where components of 6y have different
smoothness properties around some u € [0,1] and V(u) puts a lot of weight on one
specific component of #,. Then ébopt,v () (u) will try to fit this component best, while

Gbopt a(w (u) will try to fit all components of 6, with equal quality. Note that in cases
where all components of 6, have equal smoothness properties, they all force b to the
same optimal value and therefore weighting would not lead to different behavior of the
bandwidth selector. This is why we do not expect 9bopt,v (w(w) (1) and 0, (w)(u) to have
a large difference in these cases.

opt, Id

u) (U

4.1.1 A fully adaptive model selection procedure

A fully adaptive model selection procecure. In the following we will need esti-
mators I, »(u) and Vj, () of the matrices I(u) and V(). Their choice is discussed in
section [4.1.2] To select the bandwidth b, we propose a contrast minimization method.
The general idea of the contrast minimization approach was introduced by |Goldensh-
luger and Lepski (2011)l We start by defining a grid

(n) 1+2aM

B,={a":keN}n[b,1], b,=c(Z): (4.1.9)

n

of admissible bandwidths, with some constants ¢,(Z), o, M (independent of n). Here, «
is a measure for the exponential decay of the density of gy (if for instance ¢y is Gaussian,
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one has a = %) and M can be interpreted as the minimum degree of a polynomial
in (x,y) which is needed to bound the absolute value of the likelihood ¢(z,y,8) (for
Gaussian likelihoods, one often has M = 2, see Example . The precise definitions
can be found in Assumptions [4.2.3 and [£.2.2)(v) while ¢,(Z) is given in Theorem [4.1.4]
In the following we will assume that = is either the identity Id or V' (u). Define the

theoretical penalization term

P, =(u,b) = [log(b)| - B p(u)™? - tr(EV (w) " (w)V(u) ™), (4.1.10)
where F,p(u) == Kp(u) - (31, K (t/" “)? )71/2. We set P,=(u,b) to be the same
as P,=(u,b) but w1th I(u ) V(u) replaced by their (truncated) estimators I,,s(u) =
Ins(u )/\I and V,, (u) := V,5(u) V Vo, where Vp, I, given in (4.2.2) and the operators

A, \/ are generalized minimum or maximum, respectively, of two matrices defined in
Lemma [4.5.16] V; can be interpreted as the smallest possible value of V'(u), similarly
for I,,. Furthermore, Z is estimated by =, , := V,,(u) in the case of = = V(u) and
émb = Id in the case of = = Id. Define the penalization term

pen,, =(u,b) := {P (u,b) + sup IADmE(U,b/)}. (4.1.11)

b'eBn,b’>b
with Cp(Id) == 256, Cp(V (1)) := 288 4 192v/2 < 560 and

Yoz(u,0) = max {max{d,z  (6,00) d,z (05 00)} —Deh,=(u,0)},, (4.1.12)

b’ €Bp, b/ <b P TUE

where {y}, := max{y, 0} for real numbers 5. The bandwidth b(u) is selected using the
rule

bz (u) = arg gnin{Ymg(u, b) + pen,, =(u, b)}.

The final estimator is given by 6(u) :

= 6;_(,)(u). Note that either (4.1.10) or (4.1.12
simplify in the cases = =1d or Z = V(u).

Remark 4.1.2. (i) The additional minimization with I, in I, ,(u) is only done to
simplify the proof and gives a natural (deterministic) upper bound for the penal-
1zation term. Especially in practice it is possible to omit these terms.

(i) In some cases, for instance if the recursion structure s linear in &, it
holds that I(u)V (u)™ = c. - Id, where c. > 0 is some number possibly dependent
on characteristics of e, (see also Example . In these cases, the theoretical
penalization term and its estimator can be simplified accordingly.

4.1.2 The choice of the estimators of I(u) and V(u)

Choice of I,,;(u) and V,,(u). A natural choice for an estimator of I(u) and V (u)
would be to replace the expectation by its empirical counterparts based on the observa-
tions X1, .., X, namely Vo (u) = V2L (u, By(w) and I (u) = 5= S0, K (574)-
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VILUYS,, Oy (1)) - £(YE s 0,(u)). However, in simulations these estimators seem to have
a very high variance and thus are unstable. The reason can be explained best by
analyzing the estimators in the special case of linear regression

Xin = 90(%) + & (4.1.13)

)

with some one-dimensional function 6, : [0,1] — R. Using the Gaussian conditional
likelihood (4.1.7) with f.(x) = (27)~Y/2 exp(—2?/2) for estimation, we would obtain

we(u) =1, I p(u) = m Z K<t/nb_ u> (X — éb(u))Q (4.1.14)

for estimating V' (u) = 1 and I(u) = Ee2. This means that the estimator I, ,(u) intro-
duced in (4.1.14)) would try to estimate properties of the i.i.d. errors ¢, (which are the
same for all ¢ = 1,...,n and thus can be seen as ’global’ properties) with local estima-
tors. In more complicated models, V' (u) and I(u) do not only depend on properties of
g0 but also on functionals of fy(u).

This motivates to separate estimation of the properties of £y and estimation of (u), V' (u).
Similar ideas were presented, for instance, in [Lepski, Mammen and Spokoiny (1997)
in the linear regression case by assuming that the variance of the estimators
go is known. We conjecture that most of the properties of ¢y can be estimated from
Xin, ...y Xnn With parametric rates if the underlying time series model is known. Be-
sides the standard approach to use a pre-estimator for 6y(u) and afterwards using a
simple maximum likelihood approach for these unknown properties, some different pro-
cedures were introduced, cf. for instance Kreiss and Paparoditis (2015) in the setting
of linear locally stationary processes (Example . In the linear regression case
(4.1.13)) a well-known procedure to estimate the variance of g3 with parametric rates is
the first difference method 5= >0 | (Xpn — Xi1,)%

The idea of the estimators introduced in the following is that the ’global’ information
of &; is only contained in X;, which approximately fulfills X;, ~ G.,(Yi—1,00(t/n))
by the Markov Assumption . We now approximate X;, in V>, I}, by replacing
Xin =~ G,(Yic1m,00(t/n)) by its conditional expectation given Y; 4, which eliminates
g, from the estimator, but forces us to know some specific properties of 7. In many
cases (see Examples and these properties correspond to the variance or

the fourth moment of £5. To make this more precise, assume that the quantities
9V<yv 9) = E [ng(x’ y’ 9) ’I:GEO (y79)i| ’
g[<y70) = E[vg(xay7e) ‘$:G50(y:0) ’ vg(x7y’9)/}x:G50(y,9)] )

are known. Define V,, ,(u) := V,, (u, éb(u)), where

n

Z K t/n — u (Y;C—l,n’ 0)7
t=1

an(u Q
nb

and similarly fnb(u) and I, ,(u,0) with g; instead of gy .
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4.1.3 Main Results

Recall that (5, L) is the class of Hoelder continuous functions. We first provide a
minimax lower bound for estimation of 6y (u).

Theorem 4.1.3 (Lower bound). Fiz some 3,L > 0. Suppose that Assumptions
14.2.9,14.2.5 and |4.2.6| hold. Then we have with some constant c(u) independent of n:

~ 243
) inf sup Eg,dy=z(0,6p) > c(u) - n~ 2+,
0co(X1,n,,Xn,n) BoeX(B,L)

where the infimum is taken over all possible estimators 0 based on Xin, t=1,...,n and
0o € X(B, L) is meant component-wise where 3, L are the same for all components.

The following theorems show that éé(u) (u) is minimax optimal for both quadratic
and Kullback-Leibler distance up to a factor log(n) which is natural in local model
selection problems.

Theorem 4.1.4 (Upper bound). Suppose that Assumptions|4.2.5, 4.2.5 and|4.2.2 hold.
Define B' := BV 1. Then there exists a constant cy(Z) > 0 in (4.1.9) and a constant
C(Z,u) > 0 independent of n such that for all n > 3:

Sup Eeodu,E(éEE(u)W)an(U))

6062(/87[/)
< inf {N =) sup  Pz(u,b
T bEBy 1 >b€Bn,Ib)’2b =)
FNE) DD ElBuy BV fow)), w)lE + Woz(b) }
b €Bn,b'<b
+C(Z,u)log(n) - (n~t +n=2), (4.1.15)

where W, =(b) contains asymptotically negligible terms, and Ni(Id) = 5760, Ny(Id) =
360, Ny (V(u)) = 11664 + 77761/2 < 22661, Ny(V (u)) = 729 + 4861/2 < 1417.

If additionally Assumption is fulfilled, it holds that W, =(b) < log(n)n™'+1(b* >
¢1) with some constant ¢; > 0 and B| B,y (EY2V V(- 0p(w)), u) 3 < ()2 +n~'. The
choice b ~ n~ B in gives

28

10g(”))‘2ﬂ+1.

n

s Eayduz(fy ) (1), 00(w)) 5 (

0062(5711) N

4.2 Assumptions and Examples

Assumptions.  Recall the notations from the preliminaries. Recall that ||Z], :=
(E|Z|7)Y/4 for a real-valued random variable Z, the (7 distance |z|, := (3_F_, |24]?)"/4
and the weighted (7 distance |z, := (O oy wi\xilq)l/q for vectors x € RP. Recall the
definition of the functional dependence measure 8, (k) for processes ¥ = (¥})sez and
the projection operator P;- := E[-|F;] — E[-|F;_1], where F; := (&1, €41, ...).
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Since our theory covers a wide range of time series models, we need some structural
assumptions on the chosen weight function ¢ to obtain exponential inequalities and
approximations for empirical means based on ¢ and its derivatives by using properties
of X, . For this, we will impose a Lipschitz-type condition where we allow the Lipschitz
constant to depend on the location at most polynomially. The exact condition which
also gives a definition of M is stated in Assumption [£.2.2)(v).

Definition 4.2.1 (The class L(M, x, C., Cy)). We say that a function g : RN x © — RP
is in the class L(M, x,C.,,Cy) if either g =0 (then use M = —o0), g(-,0) is constant
(then use M = 0) or there exists M > 1, vectors C,,Cy € RE, and a sequence x € RI;O
with Z;’;l X; < 00 such that for all i =1,...,p it holds that

|gi<z>9> _gi<2/7‘9)| |gi(z79) _gi(270/>|

sup i < C,,, sup < Cypfd.2.1)

et |2 — 21 - (L4 20T+ 12130 — o0 [0 — 0']2(1 + |2]31)

Since we are dealing with nonparametric maximum likelihood type estimators we
need to impose assumptions on the smoothness of the true curve #p and the size of
© which is done in Assumption [1.2.2(i). If ¢ coincides with the true negative log
conditional likelihood with correctly specified density f. of ¢¢, it is well-known
that under regularity conditions, VZ;(u,fy(u)) is a martingale difference sequence and
V(u) = I(u) is positive definite. Since we allow for general ¢ it is possible to deal
with misspecifications: Especially in the case that ¢ is taken to be but f. is
wrongly chosen as the standard Gaussian density it is easily possible to retain the
martingale difference property and the positive definiteness of V' (u), see Example m
Since these properties of the estimation procedure are crucial for our proofs to apply
Bernstein inequalities, we ask for them in Assumption [4.2.2(iii),(iv), where we ask for
a slightly stronger assumption on Gy (u,8) = E[gy (Yy(u),6)] since we use a different
technique to estimate V' (u) = Gy (u,0y(u)). Finally, we need a possibility to determine
the convergence rate of éb(u) even in the case when it lies on the boundary of ©.
To do so, we use a technique of Van de Geer (2000) which needs assumptions on

L(u,0) :=Ely(u,6).
Assumption 4.2.2 (Likelihood assumptions). Assume that for some 3, Ly > 0,
(i) © C R? is compact, dg := inf,cp01) infyege [0o(w) — 02 > 0, and 6y € X(8, Ly).

(1) There exists Cr(-) > 0 s. t. foru € [0,1], 8 € ©: L(u,0) — L(u,6p(u)) >
@ l? — ()3
Cr(u) 0 2

(iii) Vly(u,00(w)) is a martingale difference sequence with respect to Fy in each com-
ponent.

(iv) infue[o,l] infygco )\min(GV(ua 9)) > 0.

(v) Assume that g € {(,N{, V%, g1, 9v} fulfills g € L(M,x,C,.,Chp). We ask
p(t) =372, 1 X to fulfill

0 - 00 C
ZJ':l IX5 < 09, > i P(t) < o0, p(n) < ==
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Note that all conditions in Assumption [£.2.2] only deal with the stationary process
X,(u) whose properties are usually well-known. In many models, ¢ depends only on
finitely many components of y or y is a geometrically decaying sequence which imme-
diately fulfills the summability conditions in Assumption M(v) The conditions on
g1, gv usually can be obtained from the conditions on V¢, V¢ but in the case of ¢; they
may lead to a value of M which is larger than necessary. We now define

Vo := inf inf A\pin(Gy(u,6)) - 1d, I, »= sup sup A\paa(Gr(u,6))-1d, (4.2.2)

u€(0,1] 6€© u€l0,1] €O

where G (u, 8) == E[g;(Yo(u), ).

In the following assumption we present the conditions we need on the observed
process X;,. We specify how X;, has to be approximated by X,(u). Since the pa-
rameter curve ¢y plays an important role in the time evolution of X, it is obvious
that the smoothness properties of 6, (especially the Hoelder exponent [3) appear here.
Furthermore, we pose conditions on the dependence structure and the moments of the
approximation process Xt(u) to obtain exponential inequalities for empirical processes
based on X,(u). For this, let us define N,(q)? := I'(ag + 2) for ¢ > 1 and a > 0 to
measure the exponential decay of the distribution of X;(u). The conditions are com-
pletely independent of the estimation procedure and thus can be checked separately
for the processes of interest. A wide range of linear processes and recursively defined

processes (see Example 4.5.9} 4.5.10)) satisfy them.

Assumption 4.2.3 (Moment and dependence assumptions). Assume that there exists
some a > 0 such that for all ¢ > 1:

sup || Xo(u)lly < oo, sup 6, (k) < 6(k) - Na(q), (4.2.3)

u€[0,1] u€[0,1]

where §(k) is a sequence and £(t) = Z;zl Xj -0t —j+ 1) fulfills .2 &(t) < oo.
Suppose there exist Cp1,Cpo > 0 independent of n such that

sup || X, — Xt<t/n)H2M < Cga 'VFBI, HXt(U) - Xt(v)HQM <Cga-|u— U|'B,a

t=1,....n
(4.2.4)
where B .= A 1.

In opposite to standard nonparametric regression, in our model we have to subtract
a random (instead of a deterministic) bias term from 6, (u) — 6(u) to obtain a quantity
where a Bernstein inequality is applicable. The random bias term involves the process
X,(t/n) for t = 1,...,n which has to be replaced by X,(u). To do so, we have to
impose differentiability assumptions on u — Xt(u) which is done in Assumption m
While for linear models as in Example (ii) such differentiability is directly inherited
from the deterministic coefficients therein, the problem is more involved for recursively
defined models in Example M(l) A general theory for them was introduced in 7.
Comparable conditions as in Assumption [£.2.4] were used in [Dahlhaus and Subba Rao
(2006)| and |Subba Rao (2006)| to discuss the bias.
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Assumption 4.2.4 (Bias assumptions). If 8 > 1, assume that X,(u) has an lg-times
differentiable modification which fulfills Carx = sup, ||0% X, (u)||2n < o0,

> im0 55}\124)2(“)(j) < oo forallk=1,..,1l5 and
10 Xo(u) — 0 Xo(v)||laas < Cpa - |u — v|*~. (4.2.5)

Furthermore, for g € {{,V{,V?(,gr,9v} assume that g(-,0) is lg-times partially dif-
ferentiable and 311-.-31'1[39(',‘9) € LIM — g, x,Co4(ir) - ... - (iy,),-) with an absolutely
summable sequence (V(k))ren and some constant C,, where the second condition in

does not have to be fulfilled.

We pose some conditions on the kernel which are standard in nonparametric esti-
mation theory.

Assumption 4.2.5 (Kernel assumptions). Assume that K : [, 1] — R is a function

of bounded variation with [ K dv = 1. Assume that K is a /ieﬁnel of order lg, i.e.
[ K(z)2? de =0 for j = 1,....15. Suppose that there exists Ko > 0 such that for all
be By:
Kn,b(u)
nb

Condition (4.2.6) in Assumption is usually fulfilled if B,, does not contain
too small bandwidths. Since K has bounded variation B, it holds that !K"n—l;)(“) —
LK (25) do| < Bl If we define Ko == tmin{ [ K(y) dy, [°, K(y) dy} > 0, we

have %fol K (”_“) dv > 2K, which leads to Knp) Ky as long as b > ?{—’; L

> K, (4.2.6)

b nb n
To show a minimax lower bound, we need some knowledge of the properties of the

conditional likelihood of X}, given Y, 1, := (Xs, : s < n). Here, we assume that this
likelihood does only depend on 6, through its values on the discrete grid %, t=1,...,n.
This general formulation allows to cover both recursively defined time series and linear

models (see Example |4.1.1]).

Assumption 4.2.6 (Structural assumptions on X;,). Suppose that the negative log

conditional likelihood of X, = x giwen Y;_1, =y is given by g(m, Y, 90(%)]00), where

(R x RY x ON = R is some function which fulfills ((-, (0)x0) = £(-,0) for all 6 € ©.
Suppose furthermore,

(i) (Ox)ks0 — L(x,y, (Bx)kso) is partially continuously differentiable. There exist se-
quences (Cv;(k))ks0 with Y po o kCyvei(k) < oo (i = 1,2) such that (x,y,6k) —

Vo, l(z,y, (0;)iz0) is in L(M, x,Cve1(j), Cve1(j)Cviz2(k)) for all k,j € N.
(ii) There exists zg € RN with 20| < C,, and supyee Vo, l(20, (0)r=0)]1 < Cvei(J)
(G=>1)
If the likelihood ¢ was chosen correctly, Assumption does not impose any new
conditions in the case of recursively defined models (4.1.4). For general models, the
idea behind the preceding assumption is that X, should obey a recursion of the form

t—k

Xt,n = Gst (Y;g,l’n, 90( V 0) t S n

k20)"
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with some measurable G satistying G.(-, (0);50) = G.(-,0) with G from and ¢
is similarly constructed as in (4.1.7). For linear models (4.1.5), one often has a;, (k) =
Ay (90(%3' Vv 0)j>0) with measurable functions Aj : RY — R. For instance, this is the
case for tvARMA models (see Example [£.2.10).

Examples. In Chapter |3| of this thesis, conditions on a general G.(y,#) were
discussed such that the conditions of Assumption [4.2.3] are fulfilled. In the next two
examples we consider a more special case of a recursion function depending only on
finitely many past values and being linear in € together with a Gaussian likelihood ¢
of the form . We therefore use the notation Y;_1, = (X;—1,,..., Xt—pn) here.
We start with models which have a constant conditional variance Eej (which has to
be known or pre-estimated). It can easily be seen that the following examples cover
tvAR- and tvTAR models. They are an immediate consequence of the more general
Lemma [£.5.9]in the appendix, the proofs are therefore omitted. Depending on whether
the conditional variance is assumed to be time-varying or not, it is imposed by the use
of gy and g; to know / pre-estimate either Ee? or Eej.

Example 4.2.7 (Constant conditional variance). Assume that there exists m : RP —
R? such that
Xin = (m(Yic10),00(t/n)) + e, t=1,..n (4.2.7)

Suppose that Eeg = 0, 0 := Ee? is known, and

(a) sup,., %W < 1 with some x; € R, (i=1,...,d),
(b) the Lebesgue density fie,| of |eo fulfills fieo)(x) < Cyexp(—z'/*) for some a, Cy >
0,

(¢) mi(Yo(w)), ..., ma(Yo(u)) are linearly independent in L.

Define © := {6 € R : Zle 27:1 10;1xi; < p} with some 0 < p < 1. Assume that
0o € (B, L). Then Assumptions|4.2.2, |4.2.5 and |4.2.6 are fulfilled for the Gaussian

likelihood with M =2 and G.(y,0) = (m(y),0) + €.
In that case, it holds that

91(y,0) = o*m(y)m(y) = o9y (y.0),  I(u) = F*Em(Yo(u))m(Yo(u)) = oV (u).

Note that condition (c) is immediately clear in the tvAR case, since then we have
mi(y) = y; and thus 377 §m(X_i41(u)) = 0 for some &, ..., §, € R inductively implies
&Eleg] = §Emy 1 (Xo(u))eo = 327, SE[mi(X i1 (u))e—jia] =0 for j =1, p.

Example 4.2.8 (Deterministic time-varying conditional variance). Assume that there
exists m : RP — R*1, (6y, 00) : [0, 1] = R¥™ X [Oomins Omaz] With Opmag > Omin > 0 such
that .

Xin = (m(Yic1,),00(t/n)) + oo(t/n)ey, t=1,..,n. (4.2.8)

Suppose that Eeg = 0, Eeg = 1, juy := Eeyj is known and that conditions (a),(b),(c) from
Ezample |4.2.7 hold accordingly. Define © := {0 = (6,0) € R* : Zf:_ll T il <
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p} X [Omin, Omaz] With some 0 < p < 1. Assume that 6y = (50,0'0) € X(B,L). Then
Assumptions|4.2.2, |4.2.9 and |4.2.0 are fulfilled for the Gaussian likelihood with
M =2 and G.(y,0) = (m(y),0) + oe.

In that case, it holds that

1 m(y)m(y)’ 1 mlw)m(y)
gf(y,e):;< ®)m() MOJ)’ gv(y.0) = — (M0’ ).

In both Examples [£.2.7 and [£.2.8] the conditions of Assumption are fulfilled
under suitable conditions on the differentiability of m, see the results of ?.

In the case that the conditional variance is random, we have to assume that the
noise €q is a.s. bounded. We conjecture that this condition can be relaxed if 8 > 8y > 0
with some known 3y > 0 since then one does not need exponential inequalities to bound
empirical processes of X;,. Furthermore, we have to guarantee that the conditional

variance is uniformly bounded from below. A prominent example for such models are
tvARCH processes.

Example 4.2.9 (Constant conditional variance). Assume that there exists m : RP —
R%, such that

_ \/<m(Yt_17n),60(t/n)> e, t=1,..n. (4.2.9)

Suppose that Eeg = 0, Eed = 1, uy := Ee} is known, and

[v/mi(y)—+/mi(y')] <

(a) sup,., I < 1 with some x; € R, (i = 1,...,d). There exists
mo > 0 such that my(y) > mq for all y € RP.

(b) leo| < C: a.s., put a = 0.

(¢) mi(Yo(w)), ..., mq(Yo(u)) are linearly independent in L?(Q,R).

Define © := {0 € R : Zle ;’:1 VOiXi; < PmazCot0; = pmin} with some 0 <

Pmaz < 1, pmin > 0. Assume that 6y € X(B,L). Then Assumptions

and are fulfilled for the Gaussian likelihood with M = 3 and G.(y,0) =
(m(y), O)e.

In that case, it holds that

!/ ,U4 _ 1

2~ 9

il ) =" 0v(0,0).

4 (m(y),

In spectral time series analysis, linear locally stationary processes play an important
role Here we discuss the conditions that have to be imposed on a model of the form
introduced by |[Dahlhaus and Polonik (2009) such that the main assumptions in
our theorems are fulfilled. A very general formulation can be found in Lemma [£.5.10]in
the appendix. Here, we only consider the prominent example of the tvARMA process.
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Example 4.2.10 (tvARMA(r,s) processes). Assume that there are functions a;, by, o
0,1] = R (j=0,...,7, k=0,...,5) such that ag = by = 1, aj(u) = a;(0), by(u) = bg(0)
foru <0 and

Z Xt —jn Zbk k)Et_k, tzl,...,n

=0
Define pg(w) := 3 75_qajw’ and go(w) := 375 _ byw®, © a convex closed subset of

{0 = (a1, ..., ar,b1, ... b5, 0) € R X [0pnin, Ormaz)

po(w) # 0, gp(w) # 0 for 0 < |w| <1+ p},

and
O := {0 € O : the zeros of py and qy differ by at least py}.

with some p,ps > 0 and Opar > Omin > 0. Assume that 6y = (aq,...,a,, by, ...,bs,0) €
Y(B,L), Eeg = 0, Ee2 = 1 and Ee} is known. Assume that condition (b) from Ezample
holds.
Then Assumptions [4.2.3, [4.2.3, [4.2.4) and [{.2.4 are fulfilled with M = 2. In that case,
it holds that

1 , 1 ,
91(y,0) = §<u<y,e>u<yﬂ) L 1>7 gv(y,0) = ;(u(yﬁ)g(yﬂ) 0),

[e=]

where

=1,..., =1,...,

T
I
T
I
i
L
<
i
o

Remark 4.2.11 (The choice of O in Example 4.2.10). Note that a convex superset 0
is only needed since we are working in a non-asymptotic framework. A suitable choice
of © is given by

O :={0=(ay,...,an, b1, ....bs,0) € R™*X[0pnin, Omaz] Z la;| < 1—p3,z b;] < 1—p4}

j=1 j=1

with p3 == 1 — (1 —p)~ ) > 0,py := 1 — (1 — p)~C*Y) > 0. The proof is an easy
consequence of the maximum principle from complex analysis: If Z;:1 la;| < 1+ ps3, we
have for w = (14 p)e™ with arbitrary X € [—m,7]: | Y0_ ajw’| <370 fa;|(1+ p) <
> lal(T4p)? < (1=p3)(14-p)? < 1. This shows that Y 7'_, ajw’ does not attain 1 for
lw| < 14 p by the mazimum principle, hence pg(w) cannot have zeros for [w| < 1+ p.
A similar argumentation leads to the same result for qy.
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4.3 A simulation study

4.3.1 Differences between the minimizers of b — d,=(6), 6)
)

Here we briefly discuss the differences between the bandwidth selectors ZA)Opt, (u) which
minimize b — d,, = (0y,0,) for Z € {Id, V(u)}. For this, we simulated the tvAR(1) model
Xin = ao( )Xt 1n+ 00( )67:, where 0y = (ag, 09)" are step functions (see Figure D
and ¢, ~ N(0,1) standard Gaussian distributed random variables. We chose H,, =
{1.57% : k € No} N [£,1] and the Epanechnikov kernel K(z) = 2(1 — (2;1:)2)11[_%7%](3:)
for estimation. We assume that the property Eej = 3 of the errors is known which
then leads to full knowledge of gy and g;. We chose n = 500 to be the length of the
observed time series and repeated the simulation N = 1000 times. At each time point
ue{t:t=1,.,n} we determined lA)OptE(u). The 5% and 95% quantile curves of the

corresponding estimators éb z(u )( u) are plotted in Figure 4.3.1] Furthermore we have

visualized the chosen bandw1dths for the two procedures and the ratio of I“ ) where

I(w) = V() = diag(r——, —2)
It can be seen that the differences of the two estimators él?opt _w() (Ee{ld,V(u)})

hia(u) -
Iz2(u)

distance du,v(u)(Qb, ) puts a lot of weight to the second component oy and thus, the

is a diagonal matrix.

are larger if the ratio is far away from 1. For v < 0.5, the Kullback-Leibler-type

estimator of oy associated with Bopt,v(u)(u) leads to a more precise estimation of g

than the estimator associated with IA)Othd(u). The behavior is mirrored for the first
component ag. In the case v € [0.5,0.75] the ratio g;—EZ; ~ 1 and thus the estimators
behave nearly the same. For v > 0.75, the ratio is greater than 1 and thus the behavior
is mirrored to the case u < 0.5. It should be noted that in this example, the difference
of the two bandwidth selectors is not very large as long as the ratio g;gzg € [é,E)].
Only for very large or very small values of this ratio or significant differences in the
smoothness properties of the two components of 6, we observe significant differences in
the choice of bop =(u) and ééom,s(u) (u). In simulations, no method conquered the other
in view of stability in the situation that B, contains very small bandwidths. For this

reason we will only consider = = Id in the following simulations.

4.3.2 The estimation procedure

We discuss the quality of our procedure in four different models, the tvTAR(1), the
tvAR(1), tvMA(1) and the tvARCH(1) model. In all four models we generate N = 1000
replications of a time series of length n = 1000. Since the constant Cp(Id) = 2° from
(4.1.11)) which is used in the proof usually leads to too conservative estimators, one
has to find meaningful values of Cp(Id) which usually depend on the chosen time series
model and the parameter space ©. The same holds for the constant ¢,(Id) in ([4.1.9).
In practise, one has to find good values for C'p(Id) and ¢,(Id) with training data before
applying the algorithm to the test data set. A good starting point seems to be to define
c(Id) = 1 and Cp(Id) ~ 1. Here, we analyze the following models:
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Figure 4.1:
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In each case, we assume &; ~ N(0,1) with known second and fourth moment Ee2 = 1,
Eej = 3. In the grid, we used a = 1.5. The following constants Cp(Id), c(Id) were
chosen for the simulations:

model | tvTAR | tvAR | tvMA | tvARCH
Cp(Id) | 15 | 06 | 07 2.0
cp(1d) 2.0 1.0 2.0 2.0

The simulation results are given in Figures and [4.3] The true curve of the first
(left) and second (right) component of the estimators of 6 is plotted together with
the 5%- and 95% quantile curves of the estimator 6; (), the (unknown) optimal

local estimator 6;
opt,Id (u

is chosen by minimizing the averaged squared error b — 1 31", 10, (t/n) — 0y(t/n)|2.

y(u) and an (unknown) optimal global estimator él?opt ., (u) which

Furthermore, the pointwise median of the local bandwidth lA)Othd(u) chosen is shown.
It turns out that a good choice of ¢,(Id) is crucial to obtain a stable procedure. If B,
contains too small elements, the bandwidth selector tends to choose them occasionally
which leads to ’artefacts’ in the estimator éém(u) (u). The reason for this can be seen

in the proof of Theorem |4.1.4f Bandwidths b < cb(Id)% do not longer guarantee
that rare events occur with negligible probability. The selection routine is relatively
insensitive to the choice of Cp(Id). In Figures [4.2] one can see that for the defined
step functions, our method l;Id(u) outperforms the estimators associated to the global
optimal bandwidth selector Bopt and works reasonably well compared with the local
optimal choice ZA)Id,Opt(u). In general, the quality of the bandwidth selector by (u) depends
on the quality of the corresponding quasi-maximum likelihood estimator. Especially
in ARCH(1) models, the parameter estimators obtained by the maximum likelihood
approach have a very high variance which compromises bandwidth selection.

4.4 Concluding remarks

In this chapter, we proposed a data adaptive bandwidth selection procedure for pa-
rameter curves in locally stationary processes. We proved that the bandwidth selector
is minimax optimal over Hoelder classes up to a log factor which is common in local
procedures. As seen in the simulations, the method is applicable to a wide range of
popular time series.

The quality of the selection routine depends strongly on the quality of the correspond-
ing quasi maximum likelihood estimator. Therefore, the method works better in tvAR
models than in tvARCH models (where the maximum likelihood estimators have a very
high variance).

We conjecture that a generalization to multivariate time series is straightforward. More-
over, it is not hard to allow for a partially known parameter curve, i.e. Xt(u) =
Gst(fft,l(u), Oo(u),u) in can depend on u not only through 6y. To guarantee the
same results in this case, a modification of the bias expansions Lemma [4.5.6] and [4.5.7]
is necessary. To reduce technicality, we omitted the details in this paper. It should be
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Figure 4.2: 1st row: tvTAR(1) model, 2nd row: tvAR(1).

also possible to relax the differentiability assumption of the model in # by convoluting
the likelihood with a twice differentiable function.

4.5 Lemmas and Proofs

4.5.1 Stationary approximation and exponential inequalities

In this section, we To shorten some expressions, let us introduce the following notations.
Since M, x are fixed in this chapter, we do not mark the dependency on this quantities.
Let Cx 1= ;2 0(k) + sup,e(o 1 EXo(u)| < oo. We then have

IXe(w)lly = [1Xe(w) = EXo(u)ll + EX(u)] < CxNa(a). (4.5.1)
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Figure 4.3: 1st row: tvMA(1), 2nd row: tvARCH(1).

Furthermore, set Ex := 1+ 2|x|M'C¥ 1 and Ex := Cx|x|i (1 + [x|}'C¥ ) and
@max ‘= SUPyeco |9|2

Lemma 4.5.1 (The stationary approximation). Let g € L(M, x,C,,Cy). Define

Sualate0).) = g SR (TETE) (gl ) - ot/ 0))

Suppose that Assumption |4.2.5 and |4.2.5 hold. Assume that 37, jx; < co. Then
there exists a constant C's > 0 not depending on n,b such that:

[ sup|Sns(g(- ), w)l||, < Cs - n 7.
0co
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Proof of Lemma[{.5.1: First note that for all ¢ = 1,...,n it holds that:

1 Xenllonr < (1 Xem — Xe(t/n)llaas + | X0 (t/n)[Jar < Cpan™ + Cx No(2M)
< OBJ + CxNa(QM).
Because g € L(M, x, (), we have component-wise by Hoelder’s inequality:
Hsuplg Y5, 0) — g(Yo(t/n)", 0|,
< C. ijl XjHthan X ]+1( )HZM

: M—1 M—l
'(1+ (Zj:l Xj”Xt—j-&-l,nH?M) + (Z 1XJHX'5 J+1 )H2M )
(4.5.2)

By Assumption [4.2.3| it holds that || X, j41, — X;_j41 (=2
| Xe—jr1llomr < Cp1+ CxNo(2M). Furthermore,

+1)||2M < C’B,NT’BI and thus

HXt J+1”_Xt J+1( ||2M

~ t Jj+1 ~ t—7+1

< [ Xigrin = Xeg (——) HQM s (L) = Rega (D) o
+ 1.8 ro

< O™+ CoaNa(2M) (202)7 < (i + CpaNa(@M)n ™ - (4 1),

We conclude that (4.5.2)) is bounded by

C. Z (G +1)x; - (Cp14 CpaNa(2M)) (1 +2(]x|1(Cr1 + Cx Ny (2M))M 107

Lemma 4.5.2 (The crop approximation). Let g € L(M, x,C,,Cy). Define

Cuntgl0) ) = e s SR () {alTite/m,0) — Vite/n). 00}

Assume that p(t) == > 72, 1 x; < oo and Y 2, p(t) < oo, p(n) < % Suppose that
Assumption |4.2.5 and |4.2.5 holds. Then, for each u € (0,1] there exists a constant
Cc(u) > 0 not depending on n,b such that

< CC(U).

ll, <

On '797
[ sup ICus(o(,0). p

Proof of Lemma[{.5.5: Because g € L(M,x,C,,Cy), we have component-wise for all
u € [0, 1] by Hoelder’s inequality:

||sup|g(1~/t(u)c,9) — g(Yi(u |H2
9o

C; Z;'it—‘rl Xj||Xt—j+1(“)||2M ) (1 + 2( Zjoo 1 XjHXt j+1 ||2M) )
Co (52001 X5) - CxNa(2M) (1 + 2(]xh Cx Na(2M) M) =: p(t) - Dx

[VANVAN
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We conclude for u € (0, 1]:

Jsup Costa ], < s Z (22 oo (453

There are two cases: If b < u, then the term in the sum over ¢ is only different from 0
if £ >u—2>%which implies ¢t > %-n. Then p(t) < % < % - and thus 1D
can be bounded by

t/n—u\| 2C, 1 2
. o< 2.
K( b )‘ U n_DCp U

S

In the case b > u, we have > ", ]K(t/rz_“) 1p(t) < || K||oo D _pey p(t) and, by Assumption

4.2.5) Ky p(u) > co- (nb) > co-n -5, thus (4.5.3) is bounded by

2 |Kl|le = 1
Dy . 2. 12 ¢
v o tzlp( )
Thus, the assertion holds with Co(u) == 22X - max{C,, li(‘)‘” Yo p®)}. O

Lemma 4.5.3 (Exponential moment). Assume that g : RY — RY™ fulfills g €
L(M,x,C,). Define 15 := (aM)™'. Suppose that Assumption |4.2.5 and |4.2.5 hold.
Then it holds for arbitrary q > 2 that:

[lgViu)la]l, < [C:hExa2 - Na(gM)™ +1g(0)]s,

1 19(Y(w))]a ™
Eep <2(|C laEx 2+ [9(0 )|2> >

In the special case o = 0 it holds that |g(Yi(u))]y < |C.|2Ex.2 + [g(0)]2 a.s.
Proof of Lemma[{.5.3: Fix an index i. Then we have

Cg.

lg:(Ye(w) = g:O)lly < Coa Y X Xegmr(@llaar - (1+ X HIXe ()37 )

j=1
CoilXhiCxNa(gM) - (1+ [x[1" O™ Na(gM)" )
Oz,iNa(qM)M : EX,Z-

For the second part, define Dy := |C.|2Ex 2 + [g(0)]2 and A = (2D%)~". Tt holds that
Eexp (Ag(Y(w))[3) = Yo Mlloe)lzlizz 1 T2q > 2, we have

q!

<
<

llg(Ye(w) 2|72 < DR T(aqraM +2) = DFT(q + 2).

729 —

i o4
This shows L)L H < ngq>0()\DT2) nad = ngq>2 q2_ <4

T2q>2 q! [(q+1)
In the case ¢ < 2, we have

g (Va()l2l72g < Mg (Va(u)ll7* < DFT(2aM +2)™92 < DFT(2aM + 2).

T29 —

This shows Y, w <TQ2aM+2)>" =, Qq;!q = exp(271)I'(2aM +2). The

result is obtained with C := 4 + exp(27!)['(2aM + 2). O
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Lemma 4.5.4 (The empirical process approximation). Assume that g : RY — R4m™
fulfills g € L(M, x,C.). Define T =1(a, M) := (5 4+ aM)™. Suppose that Assumption
[4.2.5 and|4.2.5 hold. Define

Bualo.) = gy S K () Hotite/m) Bty

Then there exists Cgq > 0 and Cps(C.) := Ex1|C.la Y peo&(x, k) > 0 such that for
all v > 0:

IEws(g:w)lally < (g =12 CpaFup(u)™" - Na(gM)M
P(|Ens(g: )l > ) < Craexp(— (4e) " (Cph - Fup(u) 7)),

Proof of Lemma[{.5.4: By the Hoelder inequality, we have for all u € [0,1], § € © and

each component : = 1, ..., dim:

19:(Yi(w) = g:(Y;" ()],

Cui > imy X1 X g () = X5y (w)[lgnr - (14 2[x[7 1 CY - Na(gM)M )

Ci Y5y Xi0(t — j+1) - Na(qM)MEx 1.

IN A

So we have shown that the dependence measure fulfills 53(?(“))(16) < Ex1C.i-&(x, k) -
N, (gM)M which is absolutely summable by Assumption 4.2.3] Note that for ¢ > 2 and
some random vector v € RY, we have

loblle = BI(SE o)) = (1S5 TPl < (S [03lla2)
< (L o) = vl

By Theorem 2.1 from Rio (2009)| for ¢ > 2 (and for ¢ = 2 directly by calculating the
variance of the following term), we have

| Enp(g, w2y < H‘Knb ‘Z (t/n >{9 Y} (t/n)) —Eg(?t(t/n))}Hq‘Q

< > || R (L ettt

ql2

< S gm0l ”b‘“)QHPtkg<z<t/n>>u2)”2]2
< (g—DY2F )7 - |C. ’2EX125 X, k) - No(gM)™.

k=0

Define D(u) := Ex1|CylaFnp(u) > 07, alx, k). By Stirling’s formula, we have for all
x> 1:
Vora® 2e~® <TI'(z) < e/12 . \fopptiem
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By Markov’s inequality, we have for ¢ > 0:

e SN[ B (g, )|
Y 11 Enp(g )|2||q'

P(|Enp(g,u)|s > €) < e M E[MNErblowlz] = :
q'

q=0
In the case 7q > 2, we have

M| Buslg, w)lzg

g S Tap 70T P TaMrg+2)

Note that M7 < 1 and 7(aM + 3) = 1, thus
= D(aM7q +2) < (g+2)F. (aMTq+ 2)"MTq+1%e_(°‘MTq+2)el/12
I'(¢+1) (q + 1)9+2e—(a+1)

1
g+ 2) - (1) et

q

< V(g +2)el.

Define \ := (4e)™'D(u)~". Note that 7 < 2, thus 77/2 < 2, this gives

N[ B p(g, u)]o]|78 2
S MM Elg DR e $ (g 2y n - 2ep@uyy < o2 3D LE2 < g

|
a>2/T ¢ a>2/7 a>2/T

In the case 7q < 2, we have

A En , U :q A4 En o1 A Tq
1| En (g, w278 < [ Enp(g; w22 < X D)™ - T(2aM +2)%
q! q! q!
4 —q
< (6)' T(2aM +2),
q:

thus >0 /. Al Enslgwlelirs < exp((4e)1)I'(2aM + 2). So the result is obtained with

q!

Cpy = 4e? + exp((4e) T (2aM + 2) and Cgo(C.) as given in the Lemma. O

Lemma 4.5.5 (The uniform empirical process approximation). Assume that g : RY x
© — R¥™ fulfills g € L(M,x, C.,Cy). Suppose that Assumption holds. Recall the
definition of Cg2(C,) from Lemma|4.5.4. Fix some v > 0, and assume that

1+2aM

b> b.(Coy) = log(”fl ([K1xCralC:)

CoY

1 2
e - (d+1)] 5*‘””) . (4.5.4)
Then there ezists a constant Cepp = Cemp(y) > 0 not depending on b,n such that

P<Sup |En,b<g> U/)|2 > 7) S Cemp : nil-
/e
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Proof of Lemma[[.5.5: Choose ¢, := n~'. Let ©, be the smallest discretization of
© C R? such that for each § € © there exists § € ©,, with |§ — 0’|, < ¢,. Then
10, < (2-diam(0) + ¢;1)? - ¢;% =: Coc, 9, see Van de Geer (2000), Lemma 2.5. By
Markov’s inequality, we have

Jsup B9 0 0], < 1K LaelCola - (14 ) -
S
Thus

P((sup Enp(g(-,0) w)lz > 7)
0cO

< P swp |Enplg(0).1) = Eup(gl0),u)l > 7)
[0—0"|2<cn
+’@n| : SupP(’En,b(g('ae)au)b > P)/)
0O
Klo ~ o ]
< %wz (L Y OY) e+ CoCracn® - oxp (— (4e)(CRl - Fun(w) -7)7)
= O(n’l),

where the last equality is due to the fact that F), ,(u) > | I§|Ooo - (nb)Y2 and b > b,. 0O

4.5.2 Bias approximations

There are two possibilities where the bias approximation can take place. Usually it is
more convenient to have a deterministic bias expansion, meaning that the expansion is
done in the expectation. In this case a supremum over a parameter # or the bandwidth
b can be evaluated easily. However, there is a point in our derivations where we also
need a stochastic bias expansion, meaning that the bias expansion is done when the
underlying quantity is still random. This point arises naturally because we want to use a
Bernstein inequality for martingale difference sequences to get a small penalization term
which coincides with the penalization term of nonparametric regression if we look at
this special case. The maximum likelihood expansion however gives a sum of stochastic
terms of the form V(Y,, 6o(u)) which only becomes a martingale difference sequence
if we change Y}5, to Y;(u) which then forces us to use a stochastic bias expansion to
discuss this term. In the following, we will use the abbreviation [ := Iz (recall the
definition of I3 from 6, € X(5, L)).

Lemma 4.5.6 (The deterministic bias approximation). Assume that g : RY — R is
[-times partially differentiable (with | > 0 a natural number) and 0;,...0;,9 € L(M —
l,x,C1(i1)-...-Cy(3y)) for each component of 8'g where C4, ..., Cy are absolutely summable
sequences. Furthermore assume that |0;, ...0;,9(0)| < Cy(ix) - ...-Ci(4;) (k=1,...,1+1).
Define

n

Buslgv) = s S0 K () - {Bg(File/n) B, Vi),

’ t=1
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Assume that Assumption[].2.5 and[4.2.4) hold. Then there exist constants Cg,Cpr > 0

such that for allu € [2,1 — 2]:

|Bn»b<gv u)| < CBbB + C’B,Rn_l.
In the special case | = 0 the above holds for all u € [0, 1].

Proof of Lemma[{.5.6: For this proof, define ||Z]|o := 1 and ||Z|, := 0 for ¢ < 0.
This is needed to include the case of constant functions Z in our proof technique.
Define M := M — 1. We only consider the case [ > 1, the case [ = 0 is easier.
Use the abbreviation f := 0,,...0;,9 and Cf(i1) := C1(i1) - ... - Ci(3;). Define D(k) :=
max{x, Cr(k)} (which is still absolutely summable since D(k) < x(k) + C¢(k)). We
will now show that f: (R*,|-|p1) = (R,|-|) is Frechet differentiable with derivative
f)h =322, 0;f(y) - hj. Now choose h € R* with |h|p; < e. Let ¢; € R® be a
sequence of zeros where only at the j-th position is a 1. By the mean value theorem in
R, there exists s € [0, 1] such that

|fly+h)—fly) = fyh| < Z |f(y + thek) - f(y + ihkek) - 3jf(y)hj’
= D10l Y e+ sh) — 0,00 -

< > Cr)Ihlya - (U+ 2yl + R - (Bl
j=1
< e (T2l 4 R,
This shows Frechet differentiability of f. This shows that s — f(y +s- (¥ —y)) is

differentiable with derivative 37, 0;f(y +s- (¥ —y)) - (¥; — y;). By the fundamental
theorem of analysis,

1) =101 < [ S0+ s+ =) = 100 - = 5] ds+ 1 = vl

IN

{(her + ) - (027l 4+ 27 )y 1Y) + 1y = yley
< GuM)Caliz) o Culin)ly’ = ylew (1 -+ e + 15/ 11)

with some constant Cy (M) dependent on M. This shows that
Dy 05,9 € LIM + 1, x + C1, C1(M)Cy(is) - ... - Cy(iy)).

Inductively we obtain Frechet differentiability of all partial derivatives 0, ,,...0;g (k =
1,...,1) and

@ &lg € £(M + k,X(k)7é(k) . Ck+1<ik+1) et CI(ZZ))

k+1°
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where ) =X+ Ci4 ..+ Crand C® .= Cy (M) - ... - Cr(M + k —1).

Taking q = %—H, this shows that

104,410 g (Ye(w)) g

< Hallc+1 Zzg< (u)) alk+1 "ailg(O)Hq—i_‘aik+1"'ailg(o)|
< Clrliin) - e O (OO ITow)os - (14 W) 51, +1)
< Ck+1(Zk+1) .- Cyir)
(CONTew il - (L NT Lol ™) +1)
< Crsr(igg) - .. - Ciliy) - D®

with D) .= C'(k)|x(k)|1c~')~((1 + |X(k)|1c~’¥+k_1) + 1 and Cx := Cx V 1. Similarly, with
DR .= C®(1 4 |x®|,C¥E) we have

104,109 (Ye(w)) = Dy -0 g (Vo)) g

< Cralinn) - Gilin) - DV Y "1 X (w) = Xogn ()| (45.5)

By Faa di Bruno’s rule, we have for k =1, ...,

||

Og(Yi(w) =) Z 0iy -+ i, 9(Yi(u) Ha' Xy i (u (4.5.6)

mellg i1,..., Z\-/r| 1

where Il is the set of all partitions of {1, ..., k} and || denotes the number of elements
of the partition and |mj| the number of elements in 7. For convenience, let us define
Coxmaz = max{Caoryx : k =0,....1}, Crar(?) := max{Cx (i) : k = 1,...,1} and Cs ez =
Y1 Cinaz(i). By Hoelder’s inequality,

00 ||

AT SN SR (ERTNTC o) [N | | 27CI5 CReTCh] e

MA+1l—|m|

||
< Z ( i) Z Cijr+1(i1) Z|7r|> HH8| 71 Xo(u )“MH

< 00.

Replacing ﬁ(t /n) by its differentiable modification, we have almost surely

~ : Ea(Y U k t/n s —
otFiafm) = 30 BN Lyt [T ot — ot} s
. (4.5.7)
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Thus

Buo(g,u)| < %;%}‘W‘%ZKC/nb—uﬂ% _u)k‘

bt z
toraomn ke s 100(is)) — oy,

Since K has order [ and bounded variation B, we have for u € [g, 1—%] andk=1,.. [
1< t/n—uy\ , t ko1t ry—u Bk _
—E:K( )—— ——/K( ) - ’“d‘<—-b’“:0 b,

‘nb - A A A AR s (™)

since —fo 1 ) — = bkf(i/:/b 2 dy = bkflﬁrf((z)zk dz = 0. By
4.2

Assumption 4.2.4] we have ||85X0( ) — dfon(u Wiz < Corsrx|u— | for all u,u' and
k=1,..,0l—1. Using (4.5.6) and (4.5.5), we obtain:

19,9 (Yi(s)) = Ahg(Vatw))],

< > Z {Han--- i 9(Yi()) = By -+~ 5 g(Yi(w)]| sz

- M+1—|x|
welly iq,..., Y| = 1

||

< T 05 X041 () || 1

j=1
||
+Hai1"'al|w\9(yt ” AL Z H Hal‘ﬂjQ‘Xt—ijﬁl(u)||M+l
AR EP
<0 Kiiyaa(s) = O K @y T 107 Ry
[|>52>]
< 3 (DU L Ol 1 K (5) = Kol

mell;

s,max

FDDOL ] Ol = s[04 K(5) — DKo ) (@58)

77777

= O,
O

Lemma 4.5.7 (The non-deterministic bias expansion). Assume that the conditions of

Lemmal4.5.6/hold and that )"~ | X0, 5% X(“) (t—i+1) and > 2, C’max(i)égﬁx(u) (t—i+1) are
absolutely summable in t for all k = O s Uy where Crgp (1) := max{Cy(i) : k =1,...,1}.
Define

By y(g,u)

(t/n ) A{g(Ya(t/n)) — g(Vy(u))}.
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Then there exist constants Cig, Cp g > 0 such that for allu € [5,1 — 2]
|Bns(g.u)ll2 < Cpab’ + Cppon™ /2.

In the special case | = 0 the above holds for all u € [0, 1].

Proof of Lemma[{.5.7: First consider the special case 1 > > 0. Then we have

(t/n )’ lg(Yi(t/n)) = g(Yi(w))]],,

Hén,b(g7 HQ >~ K

and since g € L(M, x, C), we have by Hoelder’s inequality for [+ — u| < b:

lg(¥a(t/n) W),

< C. ij . Hf(t,jﬂ(t/n) - thj+1(u)H2M

=1
(1 + (ZXJ |Xt j+1(t/n) |2M) <ZX; |Xt i (u |2M>M)
< Clxli- 037256 (14 2[x[i CY),

which finally shows || B, (g, u)]l> < 0% - El=Cx|; - Cpo (1 + 2/x[,CY).
Now assume [ > 1. It is already known from Lemma [4.5.6] that

[EB,(g,u)| < Cpb’ + Cppn™". (4.5.9)

From in the proof therein, we obtain

IIBnb(g,U) EB, ( u)ll2

l (= )aju§n<»%_ﬂf

kzl 7=0

*m;_;”;ff(t/nb_“)

t/n S_ul 1 5 N
<y [ okl - oLaVi)) s

Furthermore it holds that

K (t/” “)pe ja’“g(fé(U))(%—U)k ,
- (% (t/n ) IRt — o) " < G) B
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Similarly,

Since Frp(u) 10" < ‘Ii&n_lﬂbk_l/z < Vi&n—ua we conclude
3 B |K’oo aﬁ Viu 2 e 65
B ) =EB.ata )l 2L (57 4 S22 32 ),
=0

which finally gives the result using (4.5.9) and || B4 (g, ©)||2 < || Bns(g, u)—EB, (g, u)||2+
IEB,.4(g,u)|. Tt remains to show that & “g(y(u))(j) is absolutely summable for & =

1,...,I. Using similar techniques as in (4.5.8) in the proof of Lemma {4.5.6, we obtain
for k =1,...,1 and arbitrary u € [0, 1]:

1059 (Ye(w)) — 059 (Yy" ()2

< ) (D(HW‘ Ol e Ot ZXJHXt 1) = X7 (W)t

melly

+D (=I7]) cylml-1 N | \ﬂl 1

s,mazx oX,max

X sup ZC’"” ) - (| 0E X1 (u) — aﬁX:le(“)Hz(MH))

. 0% X (u .
< C'(ZXJ 2M)(t_.7+1)—|— sup E Crnax (1) (5QX4X( )(t—z+1)>.
""" =1

with some constant C' > 0, which is absolutely summable in ¢ by assumption. ]

4.5.3 A weighted Euclidean norm representation of the Kullback-
Leibler divergence

Here we show that the (misspecified) Kullback-Leibler divergence is approximately a
weighted Euclidean norm.

Proposition 4.5.8. Suppose that Assumpti0n|4.2.51 and|4.2. 3 hold. Let Pg, 9, | (u).00)

be the conditional distribution of ):(t(u) given Y;_1(u) under the assumption that the
true curve is 0(-). Assume that ((X;(u), Yi(u),u,0(u)) is the negative logarithm of the
corresponding density with respect to the Lebesque measure. Then the Kullback-Leibler
divergence of P, (v v wor() Wb Py v wjoor) 1S given by

KLP g, ()19, (w).0() P o) e ().00())
i i 1
= Ego[li(u, 01(u))] — Egy[le(u, O (u))] = 5!91@) — 0o(w)[F () + O(|61 (1) — Oo(u)]3).
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Proof of Proposition[£.5.8: A Taylor expansion of L(u,8) = El,(u, ) gives

1
L(u, 01(u)) = L(u, bo(u)) = (VL(u,b(w)),01(u) = Oo(w)) + S|01(u) — 00 (1) %2 w0 ()
|
+5161(w) = 00() %21 0500) - 72 L (w0

Since V/;(u,f(u)) is a martingale difference sequence by Assumption M(iii), we
have VL(u, 0p(u)) = 0. Assumption[d.2.2(v) together with Lemmal[d.5.15|gives |6 (u)—

00 (1) on gy sty | < 163(0)—Go () B 9L (1, 80)) V2L (1t By ()] = O(161 (w)—
Oo(u)]3), leading to the result O

4.5.4 Proofs of the examples

In this section we present two lemmata (somehow, they are more general examples)
which help us to prove the statements in the examples.

Lemma 4.5.9 (Recursively defined time series). Suppose that Assumption [4.2.9(i) is
fulfilled. Assume that

Xin = pu(Yic10,00(t/n) + 0(Yic1,,00(t/n))er, t=1,...n

where Y15 = (Xi—10, s Xit—pn) contains only finitely many past values in this exam-
ple. Assume that p,o : RP x © — R satisfy

l1(y, 0) — w(y', 0)| lo(y,0) —o(y',0)

sup sup ; =+ sup sup
0 y#y v —Ylxa 0 y#y v =Y lxa

oy <1 (45.10)

for all ¢ > 1 with some x € R%, with |x|1 < 1. Assume that o(-) > oo with some
constant oy > 0. Assume that Vo # 0, and

a) Eeg = 0 and Ee2 = 1. Either o(-,0) = o(0) is constant and the Lebesque density
0
fieol Of |0 fulfills fieo|(z) < Crexp(—2%) for some a, C; > 0; or |eg| < C. a.s.
leol leo] f !
(and set o =0).

|1(y,0) = p1(y,0")| |o(y,0) =0 (y,0")]
(b) Sup,, SUpg_,g: 10=0"2-(1+ 1y < 00 and Sup,, SuUpy_,g: 10=0"2-(1+]yh) < Q.

(c) Omittmg the arguments Yy(u), there exists Cr, ,(u) > 0 such that]E(M)2 >
ol — Gol)

: : 2
(d) There ezists Cp, ,(u) > 0 such that either ]E(0'21(9) - Jz(Gi(u))) > CL o) \9 Oo(u)|3
O’I“E(O'Q(Q)—O'2<90(u))> > CL |9 Oo(u)|3 and lims_,., 6°P(supy o(0)? > §) = 0.

(e) Define v(u,0) := 0(6)_1(Vu(6)’, Va(0)). It holds that infg, A\pin(Elv(u, ) -
v(u,0)]) > 0.
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Then Assumptions[4.2.9(i)-(iv), [§.2.5 and[{.2.6 are fulfilled for the Gaussian likelihood
|
If o(-) = 0g is constant and the conditions above still hold with appropriate changes
(in (c¢) omit the second condition, in (d) drop the condition on ¥y and use v(u,0) :=
0, 'Vu(0)), and it holds that
(f) fori=1,2, sup,sup,, Vp (y’g):j‘zl“ WOl « o6 and SUp,, SUPger ‘Vl“;(f’é?fiig (ﬁl”)‘gl)' <
m)

then Assumptions|4.2.2,14.2.5 and|4.2.6 are fulfilled for the Gaussian likelihood
with M = 2.

Proof of Lemma[4.5.9 Case Vo # 0: (a) leads to either ||go]|2 < CZ or to

[eoll? < Cf/ 29 exp(—z'/%) dm:Cf/ uldtaTleu gy
0 0

= Cral(a(g+1)) < (Cralag+a—1)1") g +2) < CIN,(g)"
with some C, > 0 depending on a, Cy. By (b), we have

sup 1Ge (0, 0)lq < (st;p |1(0,0)| + Ce Sup |(0,0)[) Na(q)-
€

Together with and Proposition in Chapter |3 (inspect the proof to get
a specific representation of & (k) we obtain &, (k) < (k) - Na(q) with some
§(k) < Cs\* where Cs > 0, € (0,1). Since 6y € (8, L), the conditions of Lemma
in Chapter [3] are fulfilled such that Assumption holds.

In the following let z = (z,y). In this case, we have that the inverse of € — G.(y, u, 0)
is given by © — H(z,0,u) = z;éﬁ’)@). Let us omit the arguments (y, 0, u) or (Yy(u), 6, u)
of u(-), o(+) in the following. Then with standard Gaussian density f takes the
form ¢(z,60) = %(%)2 +logo.

Since p(6),0(0) are F;_j-measurable and Eey = 0, Ee2 = 1 by (a), we have

L(u,0) — L(u, (u)) = JE(’”L (6) ;%90(“)))2 +E [—UZS‘E%)) ~log —022'2(()21;)) - 1]
(4.5.11)

By a Taylor expansion of z +— x — log(z) — 1, we obtain that the second summand in
(4.5.11)) is lower bounded by

1 1 2
Lo @) -2 1. (e — swa)
2 _ g2 2 4 2

2 8od 'E<a21(9) - UZ(Qi(u))>2'

which then gives Assumption [4.2.2[(ii) by conditions (c),(d). Alternatively, define A; :=
{supy o(0)? < &}. Then, for § > 0y, the second summand of (4.5.11)) is lower bounded
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B Ow) — (0))’

1 2 2 2 1 1
i R (e R A

The second summand is bounded by

ooz Bl(0? (B0 (u)—0?(0))1]"/2 P(Af) /2. 1f 6°P(A5) /2 =
§2P(supy o(0)* > 0) — 0 for 6 — oo, we can find a § = d,, large enough such that the
second summand is bounded by the half of the first summand, so that the second sum-
mand of (4.5.11)) is lower bounded by ﬁE(aQ(ﬁo(u)) —a%(0))%

Omitting the arguments (z,u, ), we have

TRV T R N
ve = | o ) o * o [1 ( o )]’
l _ ! ! 2
v — iju+(x M)'[QV,MVO' 4—2V0Vu _Vu]
o o o o
Vio xr— 21 VoVo [,z — 2
1= (B + 5 R -] s

Xe(w)—p(Ye—1(u),00(w))

o (Vo1 (u) B0 (u) i
martingale difference sequence property of V/;(u, 6y(u)) and thus Assumption M(iii).
Define Xy := ($9). Then we have

Since = & and Eg; = 0, Ee2 = 1 by condition (a), we obtain the

91(y,0) = o2 (Eej-VuVy' +Eleg — 1] - VoVo' + Eej - (VuVo' + VaVi')),
= ztl"{ (Srels) - (35) - (3)'}
gv(y,0) = 2 (VuVi +2VoVe') = o 2 {(Sy @ Ip) - (34) - (34)'}, (4.5.13)

where ® denotes the Kronecker product. Condition (e) now implies Assumption 4.2.2(iv).
If o(-) = 0y is constant, Assumption 4.2.2(v) immediately follows from (f), 6(k) < CsA\F

and the representations (4.5.12)) and (4.5.13)). [

Proof of Example[{.2.9: In view of Example [4.5.9) note that o(y,0) = (0, m(y)) >

Pminmo > 0 uniformly in y, #. Furthermore, we have

o (y,0) —a(y/,0)*| < ZQImz mi(y')]

< Z VOily =yl - (VOmily) + Vomi(y))
< Z\/_Ly Yhat - (0(y,0) +0(y'.9)).
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which shows that sup, sup,..,, W <1, and
> 0;x4,1

0(5,0) ~ o(5,8)? Z —O(5(5,0) + 00, ) - V(D).

=1 l \/_z

which shows that

— o 1
sup sup lo(y,6) = oy’ 0)] < |0 — 6 |1 max ml(())(l—l— max Ixi]1)-

0 yAy' 10— 0'[L(1+|yli) — 2/ Pmin =l d N0 =,

By Example in connection with (4.5.1)) it is known that || X,(u)|l, < CxNa(q) =
Cx for all ¢ > 1. By Markov s inequality, we conclude that for each ¢ > 0, we have

P(| X, (u)] > Cx (14 ¢)) < 1+¢) — 0 (¢ — 00) which shows that | X;(u)| < Cx a.s. for

cach u € [0, 1]. Thus it holds for all i = 1, ..., d that y/m(Ys(u)) < /m(0)+|Yo(u)|y.1 <

vm(0) + Cx|x|1 =: Dx which shows that

E( 1 _ 1 2)2 _ E( <0_0,7m(%(u))> )2

(0, m(Yo(w)) - (6, m(Yo(u)))
1 /
z gzt = Vlspssmeio

max

In practise, C'x may be obtained by solving the equation Cx = /(m(Cx),0)C.. Note
that |(m(y), 0)| < 2350, 6:(v/mi(y)—y/mi(0))+2 L, 0mi(0) < 2( X0, VBilyl 1)+
2/m(0)]1Omaz, which shows that [(m(Yo(u)),0)] < 2(Cx prmacC)? + 2/m(0)]1Oma-

Since ml(Yg( ), ..., mg(Yo(u)) are linearly independent, we can now conclude that
Amin (E[m (Yo (u))m (YO( ))']) > 0 for all w € [0,1]. Continuity properties of m and u —
| Xo(u)2 (see Assumption [1.2.3) show that inf,ep 1 Amin (E[m(Yo(u))m(Yo(u))]) > 0.
We have

Vool 0¥ (o), 0y L om(Fa(w))m(Fotw)
7(You),0)? )y
= for_pr Em o))

max

which is already known to have positive eigenvalues which are uniformly bounded away
from 0. Finally, note that (omitting the arguments (z,y, #) and y of £,m, respectively):

/

2 2 1 mm 1 mm/

T 1 T m

(= —log (6 (=—— = 2 = 2* —= :
2(9,m)+2 ogll.m), V= 5wy Y T e 2(0.m)

Since % < ——foralli=1,..,d and g;(y,0) = EEZ ! <;”n’"f>2, gv(y,0) = ;<g"”m>2 it is

easily seen that Assumptlon (v) is fulfilled with M = 3. O

In the following we discuss a model introduced in Dahlhaus and Polonik (2009). We
provide conditions under which the theorems of this chapter are applicable.
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Lemma 4.5.10 (Linear time series models). Suppose that Assumption[{.2.9(i) is ful-
filled and there exists a superset © D O which is convexr. Assume that

=3 ana(k)er (4.5.14)
k=0
with some coefficients a; (k) and ag(k) satisfying
tiup |aen (k) — agye/ny (k)] < Cp(k)yn™". (4.5.15)
with some absolutely summable sequence C(k). For § € ©, A € [—m, x|, define
Ag(N) = Y2 ag(k)e, the spectral density fo(N) == 5=|Ag(N)|* and real numbers

Yo(k) := 5= [T Ag(N\)Tre™* dX. Assume that

(a) Eey = 0, the Lebesgue density fi.,| of |eo| fulfills fieo)(x) < Cf exp(—z'/®) for
some a, Oy > 0. If V5(0) # 0, assume that Ee2 = 1.

(b) [Ag(N)| = 04 > 0 uniformly in 6 € O,)\. Ag()\) is three times continuously
differentiable in 0 € ©. There exist fa > 2,La > 0 such that component-wise
ViAg(-) € X(Ba, La) (i =0,1,2,3) uniformly in 6 € ©.

Apg N Ag(N) T2

(¢) There exist a constant Cp, 4 > 0 such that for 6,6’ € ©, [" |

Vg (0) 76(0)
fo(A) dA+ (70(0)* = %(0)*)* = 710 — 0'[3.
(d) infpee Amin(V79(0)V5(0)) > 0 and
. 9 4 Ag()\)_l Ag()\)_l ’
o2 Amin(1000) /Wv( () Y o) >0

Then Assumptions [{.2.5 and [§.2.9 are fulfilled for the Gaussian likelihood (4.1.7). If
additionally,

(e) Ag(N\) is | + 1-times continuously differentiable in 0 € © and fulfills component-
wise V'Ag(+) € 2(Ba, La) (i=0,...,1+1),

then Assumption [{.2.]) is fulfilled.
Proof of Lem : Condition (a) implies that ||eol|, § C N (q) (see the proof

of Example ) The stationary process Xt( ) satisfies with G.(y,u,0) =
— > 179( )yk). By (4.5.15) we have for all ¢ > 1:

79(0 (

1Xen = Xet/n)llg < D lagn(k) = agogopm(K)lllee—sllq < Ce ZCB Na(q)-

k=0 k=0
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It holds that ag(k) = 5= [ Ag(A)e”™* dA. By condition (b) and Katznelson (2004),
chapter I, section 4, we have that R(k) := supy |Vag(k)|2 = supy o=| |7 VAg(A)e ™ d)\}2
is absolutely summable in k& and thus with the fundamental theorem of analysis:

Hf(t(u) - Xt(”)”q
1 o0 1 s »
72’/ </ V Agy w4500 (w60 () (N e~ dX, B () — bo(v)) ds‘ el

< ZR 0o () — Oo(v)]5 - C-Nal(q). (4.5.16)

Furthermore we obtain that dg
2supy |ag(k)| - C-.

It was shown in ?, Proposition 2.2 that (4.1.7]) with the standard Gaussian density takes
the form ((z,0) = $H(z,0)* — 3 log(2m(0)?) with H(z,0) = Y72, 7e(k)zk. Since it
holds that X;(u) = %%(0) (e = o pey v0(k) Xk (u)), we have

X0 (k) = [agyuy (F)] - lleo — 5lly < 5(k)Na(q) with 5(k) :=

VI(Y(w), Oo(u))

= ¢ Y, (), 0o (1)) — V6(0)
_ ZOO Vo0 (0) ¢y VY04 (u)(0) 2
- < {vfyeo k) Vool )(0) VGO(U)(k)}thk( )+ 790(u)(0> ( t 1)7

which shows that V£(Y;(u), 6p(u)) is a martingale difference sequence since Ee; = 0 and
Ee? =1 or V4(0) = 0, thus Assumption [4.2.2[(iii) holds
In the situation of Example [4.5.9, we have u(y, 0) = _W S e vo(k)yx and o(y,0) =

70;(0)’ thus (omitting the argument Y;_;(u)):

and, using the fact that 0.G.(y,0) =
Example 4.5.9;

(0°(6o(u)) — o*(0))? 1 2 o2
E| o)) — o200 1 0@ = 5o (e (0 = 20"

%%(0) > 0g > 0, we have based on the results from

This shows that Assumption [4.2.2{ii) is fulfilled under condition (c). Based on results
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of Example [4.5.9] we have with dg(\) := %:

Elo(Vo(u), 6) 2 - Va(¥o(u), 0)Vu(To(u).0)] = 79(0)? / " Vo (\)Vda(—N) faniy () A
Elo(Yo(u),0) 2 - Vo (Ya(u). ) Vo (To(u).6)] = (0) 2V 5(0)T6(0)"

Together with the continuity of the occuring quantities and fg, () (A) > 32 , Y0(0)72 >
62, condition (d) shows that Assumption [4.2.2(iv) holds. Lastly, note that Assumption
4.2.2(v) is fulfilled with M = 2, x; := max;—g 1.2 SUpgeg | V70(k)|. Results of [Katznelson
(2004), chapter I, section 4 imply that there exist C 1 > 0 such that for = 0,1,2 and
all k > 0 it holds that §(k), supgee |Viv0(k)| < 5. This shows p(t) < DXy <

T > W which is absolutely summable in ¢. Finally, we have |j]-[t—j+1] > £
for j = 1,...,t which leads to &(t) == Y x;0(t — j +1) < S22 5 ~rz which
is absolutely summable in .

Under condition (e) we have that 6 — ag(k) is [+1-times differentiable and thus for k =
Lol 05Xy (u) = Y e 0% agyw) (k)er—g. Thisleads to |08 X (u)||lanr < D e |0 agyw (k)|
|€oll2as Wwhich is finite since |VFag(k)| (k = 1,...,1) is (component Wise) absolutely
summable by condition (e). Furthermore, one can prove similar to (4.5.16)) that -
is fulfilled. Lastly, note that Assumption [4.2.4] is fulfilled with ¢ = X

Proof of Ezample[[.2.10; Denote by w, ..., w, the zeros of pg(w). Since |w; | < 1-}—/}
uniformly for all § € ©, it is easy to see that pp(w) = [[,_,(1 — w; 'w) implies that
there exists C, > 0 such that for all § € O, |a;| < C,. C, can be chosen large enough
such that |b;] < C, holds, too. We conclude that © C [—C,, C,]"® X [Oumin, Omaz] 18
bounded. Since py(w), gg(w) are continuous in 6w, there exists ps > 0 such that for
jwl < 1+ p,

po(w) # 0,q9(w) #0 & |pg(w)| = ps, |go(w)] = ps.

This shows that © is closed and thus compact. Proposition 2.4 in [Dahlhaus and
Polonik (2009) shows that there exists a solution X, of the form (4.1.5) with a,,(j) =

(TEZ0 A(5H),, - o (52, where Au) = (T8O =40 ) and Jag ()] < C()?
with some constants C' > 0, 1 > p’ > 0. We have

Ao(N :J_qg(eié)’ 0) — 1 (" pe(e™) T pe(z)ldz:(r—1’
o) w0 =5 [ /{

210 ™ qe(ei)\) 2mio e NE[—m,m]} qe(z) z

by the residue theorem. Therefore it is obvious that Ag(\) is infinitely differentiable
n (6,\) € © x [—n,n] with bounded derivatives. By definition of © we have that

po(e™), go(e™) # 0 for all §, \ which by continuity implies that d,,40 > |po(€™)], |go(e*)] >

Omin With some 040 > Opin > 0 uniformly in 6, \. We conclude that infy y [Ap(N\)| >

O’mm% =:04. Note that here,

(9:(0)* = 76(0)*)* = ((0')* —07%)* >
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and

/7r |Ag/()\)71 B Ag()\)il

o (0) (0] |2.f9(>\) d\ /_ ‘po ) pef(e} )‘2~f9()\) D

T q@ ) qe’(GZ/\)
2 [T A |
5 / [po(e™) a0 (e™) — por(e™)go(e™)]” dA. (4.5.17)

We have (defining a; := a}; := 0 for j ¢ {0,...,r}, b; := b, := 0 for j £ {0,..., s}):

pe(eiA)QG'<€M) —pgr(eM)q(;(ei)‘) _ Z (ajb/ —d b eAI+E) Zf z)\d

7,k>0 d>0

where f(d) =Y S0l — alba—j) = 3 40 @a—k (bl — b) + 3250 ba—j(a; — aj). This
shows that (4.5.17) is lower bounded by

o= gt (55) o (55).

mam d>0 max

where a := (ai,....,a,)',b := (b,...,bs) (¢/,b' are similarly defined), and P(f) :=

A A T . —_— .
(Glted A0 00) here (Alwn v = 22 17, ez»%@zx)m-m

that for some vector & = (u,v) € R™*, we have #'P(0)z = 5~ [~ ‘pe ) S e

7=1
qo(e™) >0, vke“‘k!z d)\ > 0 with equality if and only if

z)\ Zuj iXj _q z)\) Z( v ) i)\k‘

k=1

Since py, gp have no common zeros for § € O, this can not be achieved. Thus, P(6)
is positive definite for all # € © and thus has only positive eigenvalues. Since P(f) is
continuous in @, the minimal eigenvalue A, (P(0)) = inf|,,— 2'P(#)z is continuous
in 6, too. By compactness of O, we conclude that infgeg Anin(P(0)) > A with some
(la" — al3 + b —b]3) for (4.5.17).

<(—bi)lii:sli.i.,s—1 _Obs> fOI' all

To show the conditions of Assumptlon 4.2.6, define B(0) :
0= (ay,...,an,by,....,bs,0) € O. It is easily seen that

00 k j—1
e 0= gy (v 2 32 (T120), %)

j=(k—p)V0  1=0

and ¢ := %H 2 +1log 0(©, where the empty product is defined as 1. We now use a similar
argumentation as in the proof of Proposition 2.4 in Dahlhaus and Polonik (2009). Since

det(A - Id, — B(0)) = N 32°_;b;A7), it follows that A'r}lax(B(H)) < #p for all 0 € ©,
where )\uax(B) := max{|\| : A eigenvalue of B}. By|Householder (1964), page 46, there
exists a positive definite matrix M (0) with |B] ;) < /\um(B) + ¢ for every € > 0 and
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6 € ©. Here, |A|,, := sup{|AZ|,, : |Z],, = 1} and |Z],, := |[M*Z|;. Since B = B(9)
is continuous in 6 € O, we can find a finite partition © = ©; U ... U ©5 and matrices
My := M(6) with 0; € ©; such that |B(0)],, < p:= (1 + g)fl < 1. There exists a
constant c¢q such that |B|; < ¢o| B| w, for all k since M is positive definite. It is now
easy to see that for each j > 0 we have

i—1 i—1
(i), < [ffror
=0 =0

cafll T o], sa e

00 €0,0<I<j—1 k=1

A
—=

‘ I BeY

k=1 9e€o,0<i<j—1

1

Let V) denote the derivative with respect to ™). Obviously, ¢ is differentiable with

1

Vool = HV gy H — ﬂ{mzo} . (07 ..., 0, m)/ (4.5.18)

Furthermore, 0, m)H = —ﬁH]l{mzo}, Q.mH = ]l{mzo}ﬁ P yk~< f:_g_l B(Q(l))>
and

11

H

m—

oot = g S 3 ((TT507) 0p0m0)

7j—1
(T 50m)) a2,

l=m+1

where a§m>B(e<m>) = ((’1{”:’%)”21’“"3>. It is easy to see that Vo H(z,0) with z =

(z,y) lies in L(1,(p’)j>1,Cs, Cy) with some constant vectors C,,Cy. For m > 0, we
have

|3 (m)H , (0k)k>0) — 3b§m>H(Z,, (91@)1@0)’

00 k
1 / 2/ ~j—1| . (0)
< (0 Z |yk—yk|' Z € P |ak7j|
k=m+1 j=(k—p)V(m+1)

"p
< & -
= e Z Yr — Ykl - P

k=m+1

Similarly, for ms > 0,

‘8 <m)H . (Ok)k>0) — O (m)H(Z, Ok + (O — ek)]l{k:mg})kZO)}

[e.9]

< CCOPZIW—NJ” > lulpt

o
mn k=m~+1

More calculations of the same kind together with (4.5.18)) imply that Assumption [4.2.6]
is fulfilled. O
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4.5.5 Proof of the lower bound

Let us define a class of functions £ which is similar to £ but does not ask for Lipschitz
continuity in 6.

Definition 4.5.11 (The class £(M, x,C.)). We say that a function g : RN — RP is in
the class L(M,x,C.) if §: RN x © — RP, §(z,0) := g(z) is in L(M,x,C.,1).

Proof of Theorem[{.1.3: Fix some u € (0,1). Note that

s Bl - P> mf swp Egl(w) - )
0co(X1,n,..,Xnn) 00€X(B,L) 0o (Xt nt€Z,t<n) peX(B,L)

because the second infimum is taken over a larger set of estimators. We now use the
general reduction scheme from Tsybakov (2009), section 2.2. Let Py g, @ RY — R
denote the stationary distribution of Y(0) which is only dependent on y(0). Note that
the log density of X, ,, given the infinite past Y;_;, is given by

P
1og th,nm_l,n,eo (Xt,m Yt—Ln) = —K(Yum 90( J

% O)jzo).

Let Py, 19, denote the distribution of Y,,. Then we have Py, o, < Py gy, With
density

dIP)Yn,n |90

. _ t=J
d]P)f/o(o)leo(Yn’n) N tl_[lexp{ £(Yim, o n \/0)]20)}‘

Define b = b, = yn~ Y2+ where ~ is specified below. Choose n large enough such that

u e [g, 1—%]. Define 0; : [0,1] — ©,0;(v) = 90(v)+]lLb5K(”;“), where 1 = (1,...,1)" €

R? and K : R — R is infinitely often continuously differentiable (i.e. in C°°(R)) with
compact support [—3, 1], for instance K (v) = aexp(—l/(l—41}2))-1[_%7%](71) witha > 0
small enough. The function 6; is well-defined for n large enough since K is uniformly
bounded by |K|w.

—5
Define 1, :== n?s+1. Note that

16o(u) — 6 ()|, = VALY - K(0) = 2A4,

if we define A := Vd£~?K(0). By construction, we have 6;(0) = 6(0) + LV’ K (34) =
00(0). This shows Py, )6, = Py;0)p,- The Kullback-Leibler divergence between the
models with true curves 6, or 0y, respectively, reads (let e;, := (0,1);>0 where §;;, = 1 if
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and only if j = k)

K(Pyn,n|007 ]Pyn n‘gl)

dP dP
= By, | log 2 (Y,,,) — log <2

defo (0)|61

(Vo)
d]P)Y() (0)|90

- ZEeo[ }/t’ruel
n t—1

=222Hm4v@swﬁa V0)0) 0 () — (s

t=1 k=0

+Eq, [/1 Vol Vi 0020 0) L+ S {0 ( ) ()

j=0
k t—k

) (e

| o
—V0) ) = {(Yims o (— V0)

+5 - ek{ﬁl(

D)~ Vol Vi oL v0) L),

o (" —a ()

n n
(4.5.19)

For the first expectation in (4.5.19)), note that component-wise

J

t— t
|V9k€ theo( n N 0)' ) - VGk“g(Yt,mgO(_) '20)}

< Cyea(k ZCVZQ |90 \/0)—90( )|2 (1 +!Yt,n!iﬂ)

< Cvra(k)(1+ [Yenldh) - [ Lagl2 -~ Z]sz

Note furthermore that

o
IYenbeallar <D XX jsrmllm

J=1

> Xl Xijiin — X ( Mar + > X611 X (

Jj=1 J=1

< ZX]' : (CB,l + CXNa(M)) =: Dx.

Jj=1

t—j+1 t—j+1

IN

lar

This shows that the first term in (4.5.19)) can be replaced by

n t—

k

—) — (=

k

B (T, i B0(4) ) 1

t=1 k=0

)| (4.5.20)
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with a replacement error bounded by

n Vb LILgla- Y jCvea(j) ch“ Koo (1 + DY) = 0(1),

=0
since n=?'b%nb = o(1). Note that
t
|V9k£(y;f,n7 eo(ﬁ)jzo) |1 <d-Cyyi(k) (1 + Y, — yo\i\(/{l) + Cyyq (k).

Therefore we can replace (4.5.20f) by

ZE%[Z% Vi 00(5) )01 () = 00())]
~ Y, (T 60(2)).00() — 60(-))]. (45.21)

t=1

with replacement error bounded by

Ly ii ’K(%) . K(t/nb_ u)( - Oy (k)

t=1 k=0

X (1 +d(1+2Y(DY + Iyolﬁ‘fl))>

< LBk k- Cypa(k)- (1 +d(1+ 2" (DY + |y Qﬁ))) = 0b°),

where By is the variation of K. Finally, since V£(Y;(%),6y(%)) is a martingale differ-
ence sequence, we can replace (4.5.21f) by

).00(:)), 1) — 6o(-))] =0

3IPF

ZE% (Ve

with replacement error

LV |K|s -nb - Cn™"

)t ()l K

IN

()

t
n

n " ~
Lb? VY, 00(— vy,
> [94(Vin (1) - SO
= o(1).
with some constant C' > 0 (the proof is similar to Lemma . The second expecta-
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tion in (4.5.19)) is bounded by

n t—1
Cyea(k) - (L+ (1Yol ll37)
=1 k=0
, t— t—j t—k t—k
xzcvm(y)-wl( ) = ()], 10 () = (),
n t—1 k)/n—u
< a2 (14 DY) 303 Cop ()i (LB =)
=1 k=0 b
X ch,z(J) : ‘K(%)‘
=0

< dLPnb? - (14 DY)IKZ Y Cona(k) Y Corald)
j=0

So for arbitrarily chosen a > 0, we can achieve K(Py, 9, Py, ,.j0.) < « if we choose
. /2
= (dL2(1+DM)\K\2 Yoo Ove,1 (k) 3252 Cve,2(d)

1
)25“ and choose n large enough.

]

4.5.6 Maximum likelihood basic inequality

Since an explicit representation of the maximum likelihood estimator 6,(u) is usually
not available and the well-known representation 0y (u) — 0o () = —V2 Ly, 4 (u, O, (1))~
V L,5(u,00(u)) is only available if 6,(u) is a point in the interior of the parameter
space O, we first have to develop a ’basic inequality’ for the difference 9b(u) — Oo(u)
which is only based on the behavior of the likelihood L, ;(u, 6) itself. To obtain rates,
Assumption [.2.2] is crucial.

Lemma 4.5.12 (Basic inequality and maximum likelihood rate). Suppose that Assump-
tion |42% |425] and|4.2.51 hold. Fix some~y > 0. Assume that b > b, (M, x, Cy, m),

where b, is defined in Lemma |4.5.5. Then there exists a set An,b and a constant
Crnte = Crie(y) > 0 such that P(A,p) < Cre - (n_%ﬂ +n7t) and

{160(w) = bo(w)[3 > 7} C AppU {sup |Bra(€(-,0),) > 8CZ(U)} (4.5.22)

Proof of Lemma[{.5.13: We follow the approach of [Van de Geer (2000), page 248, be-
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fore Lemma 12.1. Because 6,(u) is a minimizer of § — Ly, (u, #), we have

0 > Lyy(u,0(u) — Lny(u, 6o(u))
= {Sus(€(-, (), u) — Spp(£(-, bo(w)),u) }
H{Crp (00, (1)), 1) = Crp(€(-, Op(w)), 1) }
+{Enp(L(-, 05(u), u) = Enp(€(-,60(u)), u) }
+{Bup(L(-, 05(w)), 1) = Bop(£(-, 6p(w)), u) }

P

Note that by Assumption [4.2.5, we have I, ;(u) > & (nb)'/2. By Assumption |4.2.2
we have L(u, 0y(u)) — L(u, Oy(u)) > CL(U |0b( ) — 0o(u)|3. This shows (4.5.22) with

Auy = {50p18.u(00,0), 0] > gTes} U {sup ICunlt(0) )] > g2los)

oco 8C 0co 8CL(u)
8
U3 sup |E,p(L(-,0),u)| > )
{ eegl b(0(,0) )I SCL(U>}
An application of Markov’s inequality to the first two sets and Lemma and
4.5.5| gives the result. [

4.5.7 Proof of the upper bound

Proof of Theorem[{.1.7): Let v/(Z),vv(Z),7(Z) be the variables from Lemma [4.5.13

Define ymie(E,u) := =2 A 4\Cv2e,9\2(1+|x(|{”(02‘5)’Na(M)M) A 7g. Define Oy 4(u) := {|0p(u) —

90(“)|2 < Plee(EﬂL)}’ QQ,b(u) = {Sup9€€) |V2Ln b(uae) - VZL(U79)|2 < M} and
recall the definition of €2, = 5 (u) from Lemmal4.5.13, Define A=() := Nyep, y<s (¥
Qo N Qpenzy ). We now show that in both cases = = Id and Z = V(u) an inequality
of the form

05, — b2 < CL(E) =12V L (00)]3 — 32P.(0)}

s L2
+C2( )Cp b’e%lal})( P ( /) + C3(E>1A(b)c (4523)

with some (numerical) constants C;(Z), ¢ = 1,2, 3 holds for all b € B,,. In the following

we assume that Az(b) holds and that b" € B,,,0’ <b. To keep the notation simple, the

arguments = and u € [0, 1] are omitted in the following case distinction.

Case = = Id: Note that the penalization term P,(b) is not monotone. For b € B, it

holds that

65— 6013 < 3(185 — O3 + 105 — Ool3 + 16, — B0f3)

Now we have

IN

{16, — 6,15 — pen,,(b) }, + pen,,(b)
< max {16y — Bpyy|3 — Den, (v)}, + pen,(b) < Y (b) + pen,, ().

|913 - 9bv1§|§
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Using similar arguments we can prove that ’ébvé — 0,2 < Y(b) + pen, (b), thus (note
that b minimizes b — Y (b) 4 pem,, (b)):

10— Bol3 < 6(Y(b) +ﬁe71n(b)) + 30, — 0ol3 (4.5.24)
Now, we upper bound Y (b). We have:

Y(b) < max {|éb—00|§— max Cppn(b”)}+

b €By b/ <b b E€By b >
oo p12 _ D (1)
+b,€r§32§§b{\6b/ Oofz = CpLu(b )}+
. , X R ) ,
< {16y — bol3 = CpP, (D)}, + yJnax {160 — 6ol5 — CpP(b)}

< 2 max {|éb/—90\§—0p15n(b’)}

Y€ By b <b +
In the same way, we have
10 — 6013 < {106 — 6]3 — CpPu(D)}, + CrpPu(b).
We finally conclude that for all b € B,,:
16, — 0013 < 15- ( max_{|6y — 63 — CpPu(V)}, + max CpPy(V)). (4.5.25)

b€ B b/ <b b E€Bp,b >b
We now discuss the first summand in (4.5.25). By Lemma [4.5.15, we have
[V2L(0) = V2L(O)]2 < [Cozplz - 10 — 0"z - (1+ [x [T CX).

Since A(V) C Q. (u) and thus |0y (1) — Op(u)]s < %@,_éb/(u) is in a ball around 6(u)
which is completely contained in ©. Thus, with some 6(u) € © with [0(u) — 0y(u)|s <
|0y (1) — O (w)]a:

— VL (u, 00(w)) = V2L (1, 0(w)) - (O () — Og(w)). (4.5.26)
Recall that V(u) = V2L(u, 6y(u)). Because A(V') C Qyp(u) N Qo (u) it holds that
V2 L (,B0) = V(e )
< V2 Loy (u, 0(u) = VEL(u, 0(u))]2 + [V*L(u, 0(w)) = V(u)l
= V)

2
Lemma [4.5.17| implies that V2L, 4 (u, (u)) is invertible and, by (4.5.26)),
10 (1) — Oo(u)]2 < 2|V (1) "'V Ly (u, Op(w)) 2.
Define L, ;(u,0) == m S K(WT_“)[Z(U, ). We conclude that

) 2 D (1)
b/e%liisgb{wb/ = bolz = CpPa(t)
_ Cp
< max {4|V7'-VL,y(0)]5 - TPn(b/>}+]lA(b) + 02 n L)

b'eBy,b'<b
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By (4.5.25)), we have shown that for all b € B,;:

Crp

1

16; — 6003 < 15b/€rgal))§<b{4lv VL (o)l = 5 Pa®) } Lay
+15 max CPP (b)+@371ax1A(b)ca

b'eBn,b'>

so (4.5.23)) is fulfilled with C}(Z) = 60, C5(Z) = 15Cp(E), where C’piE) = 28,

Case = = V(u): Note that f/n,gl =0 fo; all~b € B,,. Similar to (4.5.24]) in the proof of
i

Theorem [4.1.4] and using f/n,b V Vo = Vs, Vo, we obtain for all b € B,

6, — 6of2,, < 6(Y (6) +Ben, (b)) + 306, — 6of2, . (45.27)

Step 1: Upper bound Y (b) and |6, — 0ol% L in ((4.9.27): Let A(b) be fulfilled. It holds
that |

A 1 A
< 2 — 2 / 12
Y (b) veBab <b {wb b |Vn 2pen () } * veBb <b {wb & |Vn,

1__
- §Pen (b,)}
o - (4.5.28)
Since A(b) C Qpenzy, it holds that [0, — Oy[2 < 310, — Oy [} (see also Step 3). We
therefore have 7

3. .
< 210, — 02 — =
Y (b) 2 bbb <b { 2 100 = bl pen )}

3 .
< 4 10, — 6y]?
- blerggzggb { 2 ‘eb 90"/

Together with 3|0, — 90|%~/n’b <3 {%|éb — b3 — %P (b)}Jr + %ﬁ (b) and (4.5.27) we
conclude

. 3 A Cp » 27
0.2 < 210, — 0.2 — ZF / 20
|9b 90|Vn,b - 27 blergjzgﬁb { 2 ‘Gb 90|V 2 Pn(b )} + 2 b’E%Ly];I;’>b CPP (b )

Step 2: Estimation of |0b/ — 0o|3 for some b € B,V < b: Let A(b) be fulfilled. Since
A(b) C Q4 we have Oy — 0y = —V2 Lnyb/(é’) WL,y (0), where 6 € © is an intermediate
value with |0 — 6p|a < |0y — 6p|o. We conclude

0y — 002 = |VV2V2L,4(0) "V Ly (60)|2
< VYE2L,y(0) 22 - V2L (0) "2V Ly (60) |5

spec

Since A(b) C QN Qay it holds that [V2L, 4 (0) — V], < 2m20) - Lemma |4.5.17(ii)

yields |V2L, ,(0)Y2 — V12|, < \%% and thus by Lemma 4.5.17((i), we have

V2L (0) 72V Ly (B) 2 < (1+ J5) VT2V L (o) and [VV2V2 Ly ()72 gpee <
N 4 .

1+ \/LQ and thus |9b’ — 90|%/ < (1 + \/Li) . |V 1/2VLn7b/(90)|g.

Step 3: Get a bound for |éb — 6y|3,: For each b € B, we have

10, — 0oz = 105 — B0l Lagsy + 16 — G0l Lagy)
< 05— 6oly_y, , Law) + 165 — 0ol Lae) + 1V]specOmar Lagye-
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Since A(b) C Qpen.zp, We have V = i (V) Igxq and thus |6; — boly_y < 16, — 602 -
IV = Vila < \(9 — 0ol 2’\””" Amin(V) < 2[@; — 60ol3. With the results of Step 1, Step 2, and
the fact that A(b) C {\Pn(b’) P,(0)| < @} this finally leads to

105 =60l < 2105 — B0l Lae) + 21V |specOrae Lawye

3 L N2 12 > Cp
< 54, max_ {S(1 7) VANV Ly (80)15 = = Pa(¥) }
+27 sup CPP (b/)+2’V’Spec maxﬂA(b)c
Y EBn,b'>b

for all b € B,. Thus, (4.5.23) is fulfilled with C;(Z) = 54 - 3(1 + \%)2 and Cy(=2) =
27Cp(2), where Cp(Z) = 32-4- §(1 + 75)* < 498.
Bounds for (4.5.23)): In the following we use a generic constant C' in front of terms

which will be shown to be of (negligible) order log(n)(n~' +n~2%"). For the definitions
of b, v and bf’), see Lemma |4.5.5| and |4.5.14|. Assume that

)\m'm(v> mele( ) 7[( ) fYV(E>
> - 7
b - b*(cv%z, 16 )\/b (CEZ7 SCL )Vb (C[za ] )\/b*(c\/,za S )
v max b (e} |22V Cp L [VTIE 2 ey, (EVPVTIIVTIEY?) ) vibP) (2)
1 1+2aM
Lo (m). o) T (4.5.29)

n

which gives a definition of ¢,(Z). Define Ly (u, ) := m S K(t/T“)lZ(u, 6). Tt
holds that VLn b/(Go) Sn b/(V@( 90)) + Cn b/(Vﬁ( 90) + Bn b/(Vﬁ(-, 90)) + Vf/n,b’ ((90)
Note that B, has at most log(n) elements. By Lemma [4.5.1] 4.5.2| and [4.5.14], we have

log(a)
with (w; + wy)? < 2(w} + w?) and (w; + wq + w3)? < 3(wi + w3 + w?):

E max {|EY2V7'VL,y(00)5 — 32P.(V)}

b'eB,,b'<b

< Y (2B{EVAVIVLL (00 — 16P.()} , + GBI,y (VEC, 60))

b E€Bp b/ <b
GE| o (VL(-, 00)) 3 -+ 6| By (VE(-,60))13)
< Clog(n)(n™ +n")+6 > E|B.y(VL(-00))l5.

b’ €Bn,b'<b

Furthermore, the results of Lemma [4.5.13] (for Qpenz), [4.5.12] (for ) and [£.5.1] [1.5.2)
and (for Qy) imply that

EC3(2)Lapye < Clog(n)(n™ +n72") + W, 1 =(b)
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with
Whaz(D)
= C3(2) sup { <SUP’BM)/<V 0,0 )’u)|2>)‘mi”(v>>

b€ B b/ <b 9co 16

Plee(F)
+1( sup | By (£(-,0),u)| >
(sup 1B (6 0),w)] > 25

) + 1<SUP|Bnb'(9V( o), u)l2 > WTG)>

+IL(§1€1(13 | By (91(+,0),u)]2 > Wér)> }

We now discuss the second term in (4.5.23]). First, we have

sup  P=(b) < g sup  Po=(')+ sup Po=(b)- 1o (4.5.30)

b E€Bp, b >b b E€Bn,b'>b Y EB b'>b pen,S

A

It holds that V,, vV Vy = Vg and I, = I,y A I, thus Lemma [4.5.16{1) implies that
Vol — (Vuy V Vo)1 is positive semidefinite, thus tr(Vn_’blln’an_bl) < tr(Vo 'L, Vg h) or

(INn bf/_l) < tr(I,,Vy ), respectively. Application of Lemma [4.5.12/and Lemma4.5.13
to QZGTL EY - <Qpen =Y N Ql,b’) U Qi,b’ leads to

E sup PR,E(b/)'HQc

= p!
b E€Bn, b/ >b pen.=b

K 2 1 Y
< | 2 (Vi L Ve ) V(L Vg ) - E sup | Ogé/ g, _
0 VEBb>b T pen.E,

[ log(b)] —1 —2p' 1
C oy Z (n'+n) + ) W2z(b),

b’eBy,b'>b

IN

where
Wn,Q,E (b)

= Cy(Z) sup s . [H<Sup‘Bn,b’(9V<'>9)’u>’2 > VV—(E))

peBuby>b N 8

—HL(zlelg|Bn,b/(91(-,9),u)|2 > Wé )> + ]1(31618|Bnb/( (-,0),u)] > %éeT(f)Qﬂ

log( )1+2aM

Recall that B, has at most & elements b € B, implies b > b,

Tos (a . This
finally gives

n

E sup P,(t))-1ge

= b/
b EBn, b >b pen.E,b

< Clog(n)(n~' +n~>") +

Now define W, =(b) := W,,1=(b) + W,2=(b), which gives the desired representation
@E115).
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Discussion of W, =(b): It is known from Lemma that it holds (component-wise)
that supyeg |Bny (9(,0),u)| < Cp - (V)P + Cprn~" for g € {¢,V?(, g1, gv}. With
f)/

2
sup  1(sup|Buy(g(-0),u)ls > 7) ST > 22) + =Can ™,
b EB, W <b 0cO B 7

we can bound W, 1=z < C’{Il(bﬂ > 01) + n‘l} with some constant ¢; > 0. Using
Markov’s inequality, we obtain

v -5 / 2 -1
1( sup|B,y(g(-,0),u)|s > < (=) #-b+—-Cggrn
(502 1B (9, 6) )l > ) < (5 ~Cnn
and thus can show that W), »=(b) < C(supycp, b “Og(b/)‘ +n 1) < Clog(n)n~ (where
C here is dependent on f if § < 1). The inequality E|Bn y (ZV2V IV O (), u) 2 <

(0")%% +n~! follows directly from Lemma [4.5.7] 0

Lemma 4.5.13 (The penalization term approximation). To keep the notation simple,
we will omit the argument u € [0,1] in the following. Assume that Assumption

[4.2.3, [4.2-3 are fulfilled. Define

1 - )\mzn V
Qpen-b — {|P n,E(b)| S §Pn,5(b>} m{H/n,b_‘/b S ( )

}

where PmE,PmE are from (4.1.10}). Then there exists some set AWE,b and constants
Y%(Z), 71(Z2), W(Z), Cpen > 0 (which may differ for MSE / KL) such that for all

b 2 b*(CI,z7 7[(5)/8) \ b*<CV,z7 VV(E)/g)
it holds that P(A,z4) < Cpen(n™" +n~2"") and
Qpenzp(u)® N {05 — bol2 < 76(2)}

C An,a,b U { sup | B (gv (-, 0),u)|2 >
9co

} u{ sup |Bnp(g1(,0),u)|2 > @}

Proof of Lemma[{.5.13: Define the set R, := {|‘7nb -V < Am+(v)} It holds that

Q0 zy C {tr(EnsV ) Tap Vi) — tr(EV IV > %tr(EV‘lﬂ/_l)} UR:,

pen,=

Consider the case = = Id: Assume that for all ¥’ € B,,b > b, we have |‘~/nb -V <
)‘"”'#(V). With Lemmal4.5.17/and the rules |tr(AB)| < |Alz|Blz and |AB|2 < |A|spec| B2,

we conclude

|tr (V) Tnp V) — tr(VHIVTY)|

< Vi = V7o + Vol = iV e 1V e 172 = V7
< @AV LIV apeel Vo = VIz) - [l - 21V spec)

(2|V_1| ) |]~nb_l|2 (2|V_1|Sp60)+ |V_1|5p60|1|2 ’ (2|V_1|2|V_1|spec|‘7n,b—V|2)
< AV TV e - b — o + 61112V oV e - Vi — Ve
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Now consider = = V(u): The proof for Qf -, C {‘tr( nbV y) — te(IVh)| >
str(IV=1)} is easier and therefore omitted. Here, we have
(tr(Lnp V) = eIV < Ly = Tl Vgl o + Vi = VT
< 2V ol Ly = Il + 2V 2V opeel Tl Vip = Vo
We conclude in both cases that
|tr(Zns Vg Lo Vg ) — tr(EV IV
< 6V RIZV T apee + g = Tl 1|2l V22V el Vi = V2).

=\ ._ _ trv-tiv-h . Amin(V) tr(v-1rv-1)
Define 1(2) := sp=mpvem,o wE) = 25 A e

tion [1.2.2, gy € L(M,x,Cv.s, Cvp), g1 € L(M, X, Cr., Crg). Define A := {|0, — o <

v(Z)}, where v (Z2) = (71(2215;“’]5)0]&]\[Y;Ag‘;”ﬂ. By Lemma |4.5.15| it holds on A that

Gy (0,)— Gy (6p)]2 < %~ and similarly for G;. By Lemma 4.5;16(11) and (V\/}/())/\Vm =
V, IV Iy) NI, = I (see Assumption ) we have |V, — Vi]z < |[Vop — Vo,
| — I]2 < |fn7b — I|3. We conclude

QCozyNA C ({Hap =12 >7E)}U{|Vip =V >w(E)FUR:,)NA
C Ay — Gr(by)

which gives the result in view of Lemmas4.5.1} 4.5.2land[4.5.5(and b > b.(Ct ., 71(E)/8)V
b+(Cv.z, v (2)/8). 0

By Assump-

An,b — Gv(éb)b > WV;:) }

4.5.8 A crucial inequality

In the following we will use a Bernstein inequality for martingale difference sequences
to obtain a inequality which guarantees that the penalization term has a sufficient rate.

Lemma 4.5.14 (A crucial inequality). Fiz some u € [0,1]. Define the stationary
likelihood Ly, p(u,0) := m > K(t/rﬁju)ﬁt(u, 0). The argument u will be suppressed
in the following. Suppose that Assumptions|[].2.5, [4.2.2 and[/.2.5 hold. Define Dp :=
16. Assume that for all b € B,, it holds that

bz = max WG [EVV OV I ey, (B IE)

log( >1+2aM

b > b =¥ (Z) =

<420‘M -8|K |2, (ef|22V 1 Cvyz) - Exa + [€jZ2V V0, 4, 90(“))|>
(2O oo
4 Lo (EV2V-UVAEY?), ’

where b(C.,7) = bg(n):MM (lKl (j’ff( 2. (8e)z +QM)2. Then there exists some con-

stant Cye > 0 independent of b,n such that for all n > 3:

< Cbe log(n) '

+ n

3 E(|51/2V—1 V' Lny(00))2 — Dp - Pnﬁg(b))

beB,
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Proof of Lemma [[-5.1] Recall the definitions 7 = (3 + M)~ and 7 = (aM)~'. De-
fine 0;(u,0) := (Yy(u), u,0). Since £(u,0y(u)) is stationary and a martingale difference
w.r.t. F; by Assumption £.2.2] we have

E\Elﬂ‘/*lV[:n,b(@o)\% _ ]Evzmb(eo)v 1—~V 1anb(90) — nb(u)72 .tr(EV*ll‘/*l).

which shows that P, =(b) = |log(b)] - Z;l:l E(Elﬂ\/’lVL (90)) Define P, = ,(b) :=
[log(b)] - E(EY/2V 1V Ly p(60)) -

Step 1: Conditional variance truncation. Define Z, ; :=e EI/ZV 1V€t(90) and
t/n—u _ t n —
Ry 3 R (1) @ ] = (R
Rgzb] = ER?LI)] = Zt 1 ( - ) (HI/QV IIV 1H1/2)JJ7 A721 Z] 1 nb] and

R, = ]ER . We have

E{|Z2V " VL, u(00)l5 — DpPaz(b)},

IN

d
S E{(E/V - VEn(00)), — DpPuz;(0)},

=1

IN

d
ZE{(EI/2V—1 . Vf/n,b(eo))i — Dan,E,j(b)}+l{R2 <2R2, .}

,b,7—

j=1
d
+> E{(=v . vznﬁb(eo))j = DpPuzi0}, Lige, some,
j=1
d
=. Z(Wl’j + ng').
j=1

Let e; denote the j-th unit vector of R?. By the Cauchy-Schwarz inequality and Lemma
4.5.3, we have ||Z; ||+ < C; with some C; > 0 and thus

Koo

WQ»J < ( ) (’Rn b R?Lb]|2 > Rn bj)l/Q'
Define the function g,(y) := EI/2V( ) "tar(y, u, 0p(w))V (u)'=2¢;. We have that

E[Z} ;| Fia] = g; (Y1 ().
By Assumption [4.2.2, we have g; € L(M, x, ¢j|Z/?VC; .|V 1EY2|e;). Note that

1/2

conb < ST K (L) < (0 K () (0 Lnmuizny)
(0 K(5)°)7 - ()2,
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which implies ¢ < Y7, ( ) We can apply Lemma [4.5.4] (with K? instead of
K), where the assumption b > b* leads to

(’Rnbj nb]‘>Rnbj)
(| (ZK(” ) KT Bl (i) Pl ~ B (i)

(—\1/2‘/ 1]’V 1’*1/2) )<CE1(93)

This shows

Z Zn - Wa; < |K|°° 202 2. log(a)~" - log(n).

beB, j=1

Step 2: High value truncation. Define h;(z) := e;-El/QV(u)*1V€(z,u,@o(u)). By
Assumption 4.2.2) we have h; € L(M,x,e;|ZY2V (u)7YCyrs). Set M, = M, =
Dy ;-(4log(n))'/™, where Dy ; := (e;-|51/2V*1|C'w,Z)-EX72+|6951/2V*1V€(0,u, Oo(w))|-
Now, we use the fact that Vgt(ﬁg) and thus 7, ; is a martingale difference sequence to

decompose .
(VTIVLay(00)), = Vios "+ Vg™,

n,b,j

where Z5'") = Z, 11z, 1<an,) - E[Zt,jﬂﬂZtJKMn}U:t—l]u similarly Z;7"" and

n

1 t/n—u <M,
V(SMn) — K . Z(_ n)
n,b,j Kn,b(“) Z b t,j ’

t=1

and V7 (>1r) smnlarly According to this, write W3 ; < 2(W<<M” Wl(?M")) Note

that ]E(V(>M" ) (lK‘“’) 1 Z, jM" |2. By the projection property of the conditional
expectation, the Cauchy—Schwarz inequality and Lemma we have

1Z5" N3 < 1 Zeslyzeisanall < 12115 - P(1Zog| > M,)Y? < C2 - Cr(hy)? - n7t,

This shows

K =)
Z ZnW>M” < Z ZnE H?JW" < ( ‘ | 202 )% 1og(a) " log(n).
beB, j=1 bEB, j=1

Step 3: Application of a Bernstein inequality for martingale differences. Note that

<2R?

L.j ’I’Lbj— nb]}

W = B Do)

= | R (nVEY = DePuz ) 2 R < 2R2)

IA

/ P<|vn§§”" | > \/DPPH,EJ(b) +o R, < ZRMJ) dt.
0
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We now use a Bernstein-type inequality for martingales from Van de Geer (2000),

Lemma 8.9.: Note that K (t/ "7“)ZSM”) is a martingale difference sequence w.r.t. F;.

By the projection property of the conditional expectation, we have ]E[\Zt<M” 12| F1] <
E[Z};|F-1]. This shows that

n t _ .
S () Bl ) < A,
t=1

Define Kop := 2|K|wM,,. We conclude that

sl ()

A careful inspection of the proof of Van de Geer (2000), Lemma 8.9 shows that the
following modification holds for arbitrary a > 0:

]P(K p(u) - VEM) > R2 <2Rnb]>

‘E 1i| <Km g Rnbg

max

n,b,j
< p(zK(t/"—“)z<<Mn> > a0 iy, <28, <exp -]
mhg = “linbg ) = P 2(aKmax+2Rnb]) '
Because —Vn(@ ; " is a martingale, too, we can extend the bound to | b ”)| by intro-

ducing a factor 2 on the right hand 81de. With a(t) := (Dp| log(b )|K" ”i) + K ( ) )1/2,
v = 4K mae [/ Knp(u), B = B “ we conclude

P(Kn,b(u)m}(v § | >a,R2,  <2R%,.)
a? a(t)?
< 2exp i =exp| — )
[ 2(\;?”” nnb( ))} [ 2(a(t) 7/4—}—6/4)]

< exP[_(a(t) ())}g exp(—a®*(t)/B), a(t) < B/v

v B exp(=a(t)/v), a(t) = B/.
R?
Note that a™!(s) = e )(s — Dp|log(b)| "(i ). We conclude
n-WEM <2 / exp(—a(t)?/8) dt + 2 / exp(—a(t)/y) dt. (4.5.31)
{a(t)<B/7} {a(®)=8/7}
The first term on the right hand side of (4.5.31)) is bounded by
Dp|log(b)| > 1 Fp(u)? 1
2 exp < T > /0 P ( T8 n (ERVIIVIER), t> at
Dp| log(b)|> n =1/271,-1 71/ -1=1
= — -1 = TV-1EY2)
eXp ( 8 6Fn,b(u)2< 14 14 )]J
Dp|log(b Kloo\2 1
< exp ( _ Dp|log( )|) '16(51/2‘/_1[‘/_151/2)]-]-0 |oo> 1
8 Co b
K|.\2
< b 16(51/2V—1JV—151/2)jj(‘ ‘°°) .
Co
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In the second term of the right hand side of (4.5.31]) we use the substitution u := %
to get

9y M n 00

u-e du = 42 -[— u—l—le‘“}
Koy (0) /{@W} T Rl LT

— 472 n <£ + 1) . e*ﬁ/’}’z_

4ry

Ko p(u) \y?
2 = - —1l= .. n n—u
Because b > b¥, we have B/v = ;;éb’j - 2 glé(v‘z = Zt:lK(](\Z/g O >

=1/ —1z1/2
(EV2y - 18[‘[‘/('|21 g1/2),;c2 nb > log( ) Note that < 44|[g|go ' M2 Since 7 s (x_|_1)6*

( JSTE
is non-decreasing, we  conclude for n >3

1 44 K2, M2
2 exp(—a(t)/a) dt < — - ——=>=—"(log(n) + 1
[ epla(t0) dt < e o) 1)

log(n) + 1 < 64

< ib 3PV VIRV (E2y -ty -iEl?)
n

- log(n) — nb
Finally,
- (]
3 Z WEM < 23 Yy iEY M[ )N bt - Z b!|
beB, j=1 j=1 beB, beB
< LaEvv. 2 [' |°°2 4]
r ) a—1 ( Co ) *

4.5.9 Elementary results

The proof of the following lemma is elementary and therefore omitted.

Lemma 4.5.15 (Standard approximation). Assume that g : RY x © — RP is such
that each component g; € L(M,x,C;) where C; = (C;.,Cip). Define G(u,0) =
Elg(Yi(u),0)]. Then

|G (u,0) = G(u, )] < [Cglz [0 = '] - (1 + [ OX Na(M)™M).

Lemma 4.5.16. Recall that we write A = B or A = B if A— B is positive semidefinite
or positive definite, respectively. Let V, V' Vy be symmetric d X d-matrices.

(i) Assume that V = Vo= 0. Then V = 0 and Vi ' = VL.

Let us define V'V Vi as follows: Since V. — Vi is symmetric, there exists a spectral
decomposition V —Vy = SAS™! where A is a diagonal matriz containing the eigenvalues.
Define A := max{A,0} where the mazimum is taken component-wise and V V Vj :=
SAS™ 4+ V. Furthermore define VAV := —((=V) V (=Vj)).
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(i1) It holds that V'V Vi = Vi and furthermore, |V V Vo — V'V Vila < |V — V/|s.
Proof of Lemma[{.5.16: (i) Since V' — Vj is positive semidefinite, we have
Amin (V) = |1‘nf 2V > 1‘nf 2V —Vy)x + mf 2'Vox > Anin(Vo)
=1
which shows that V' is positive definite. The positive semldeﬁmteness of V =V} implies
that I — V121,V ~1/2 is positive semidefinite. Since V21,V ~1/2 is matrix similar
to V;/2V-1V,/2 also I — V3 /?V-1V,/* is positive semidefinite and thus V5 ' — V1 is
positive semidefinite. .
(i) We have V vV Vj — V, = SAS™! which is obviously positive semideﬁnite thus
VvV, = VO Furthermore, with the spectral decompositions V -V, = SAS™, V' -V, =
S'A'(S") ™! we have

VV Vo=V VVyly < [SAS™H — S'A(S) 7Y,
By Theorem 1.1. in [Wihler (2009) applied to f(x) = max{x,0} this is bounded by
(V= Vo) = (V' = Vo)la = [V = V']. 0

Lemma 4.5.17. Let A be a positive definite symmetric d X d-matriz, B a symmetric

d x d-matriz with |A— Bl < z - M for some 0 < x < 1. Then, we have A\, (B) >

2

(i) For allv € R |A™ — BT, < % |A — Bly and |B7 1|y < (14 2)|A7 0o,
and |[AB™gpee < 1+ .

and

- 1/2 1/2 z [ Amin(A)

Proof of Lemma[f.5.17 (i) We have A~ — B~! = A71(B— A) B, thus with the rules
[tr(CD)| < [Cla| D]y and [CDly < [Cspec| Dl:

A7 — By < |A 72| B spee] A — Bla. (4.5.32)
and
|B~'v|y < [A7 ]+ [B7HA = B)A |y < (14| B spee| B — Al2) - |[A7 0. (4.5.33)

Basic properties of the Rayleigh quotient and the fact |A,0.(C)| = |Clspec < |C|2 for
symmetric C' give

)\min(B) - | l\nflv Bu = | l\nflv (B A)U + | l‘nfl,’l;'/Ax > _’)‘maw(B A)’ + )‘mm<A)
V|2 V|2 V|2
> B — Ay + Ain(A) > %
This shows | B spee = Amaz(B™!) = Amﬂll(B) < Amii( ol Plugging this into (4.5.32

and (4.5.33) prove the first two inequalities. For the third inequality note that B~ =
A7+ A"Y(A— B)B~! and thus |[AB™|spee <1+ |A — Blo|B Y spee <1+ 2.
(ii) Applying Theorem 1.1 of [Wihler (2009) with f : [M,oo) — R, f(z) = V&

yields [AY2 — BY2|y < § [s20s A — By < § /2=,

160

O



Chapter 5

Conclusion

In this thesis, we have dealt with data adaptive bandwidth selectors for maximum
likelihood estimators in locally stationary processes. Before this work, the theoretical
behavior of such quantities was nearly untouched in the literature. Furthermore, no
general proposals for selection routines in this context were available. In Chapters
and [4] we invented two selectors for large classes of locally stationary processes and
proved their consistency: A global bandwidth selector inspired by cross validation and
a local bandwidth selector motivated by a contrast minimization approach. Our thesis
can also be seen as a contribution to bandwidth selection theory in nonparametric
statistics since the popular i.i.d. regression model is a special case of the processes
where we can apply our selectors. Due to the general formulation, our results also
give a hint how to define bandwidth selectors in multivariate locally stationary time
series models or more sophisticated situations. The simulation results of both methods
show that they behave stable if the model is correctly specified which suggests their
use in practice. An application of the cross validation bandwidth selector may be a
good starting point in applications since this estimator does not need further choices
of tuning constants.

An essential difficulty in the proofs was the discussion of the bias terms for recur-
sively defined locally stationary processes. To solve this problem, we developed a gen-
eral approximation theory for such processes in Chapter [3] Based on ideas in [Dahlhaus
and Subba Rao (2006) and |Dahlhaus (2011), we introduced so called stationary ap-
proximations and derivative processes. Besides the more general formulation, our main
contribution here was the invention of a theory of existence and uniqueness even when
no explicit representation of the process is available (as it was the case in earlier pub-
lications). Derivative processes allowed us to expand locally stationary processes into
stationary processes, making them a powerful tool for proofs. Using these expansions,
we proved some laws of large numbers and central limit theorems with bias expansions
under minimal moment conditions. We used these results to obtain an easily applicable
asymptotic theory for maximum likelihood estimators.

Our results offer several possibilities for further research. Regarding bandwidth se-
lection it may be useful to generalize the theoretical results to multivariate time series.
The bandwidth selectors defined in this thesis may depend on unknown properties like
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the variance or the fourth moment of the underlying i.i.d. error sequence - it seems
to be a very challenging problem to find ad-hoc estimators of these quantities which
achieve parametric rates. Regarding Chapter [3], let us note that we set up a bunch of
conditions for the existence of derivative processes and definitions of interesting func-
tionals which may be generalized. One of the most interesting problems is the question
if differentiability of the recursion function is necessary to guarantee the existence of a
derivative process. In case of a positive answer it would be possible to apply the theory
of derivative processes to an even larger class of processes, for instance the tvTAR pro-
cess. The idea of derivative processes and stationary approximations is not restricted
to discrete recursively defined time series models. Stochastic differential equations may
be a field where a similar theory could be invented.
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