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Zusammenfassung

Seit ihrer Einführung in den 1980er Jahren spielen lokal stationäre Prozesse eine wichtige
Rolle in der Zeitreihenanalyse. Als Verallgemeinerung stationärer Prozesse erlauben sie
es, dass Beobachtungen über die Beobachtungszeit hinweg ihre Verteilungseigenschaften
ändern. In vielen lokal stationären Zeitreihenmodellen wird diese zeitliche Änderung
charakterisiert durch Parameterkurven, deren Schätzung damit von zentralem Interesse
ist. In dieser Arbeit entwickeln wir Methoden und zeigen theoretische Resultate für
die Bandbreitenwahl bei nichtparametrischen Schätzern dieser Kurven. Wir konzen-
trieren uns hierbei auf lokale Maximum-Likelihood-Schätzer. Diese haben eine enge
Verbindung zu Martingaldifferenzensequenzen, die in vielen Beweisen nützlich ist.

Im ersten Teil definieren wir für linear lokal stationäre Prozesse einen globalen
Bandbreitenselektor, der durch die Kreuzvalidierungsmethode im nichtparametrischen
Regressionsmodell motiviert ist. Wir beweisen, dass der Selektor asymptotisch optimal
ist in dem Sinne, dass der Kullback-Leibler-Abstand des Modells mit diesem Selektor
zum wahren Modell für lange Beobachtungszeiträume gegen den minimal möglichen
Kullback-Leibler-Abstand konvergiert. In Simulationen überprüfen wir die Qualität
unseres Ansatzes in der Praxis. Die Beweise basieren auf Bias-Varianz-Zerlegungen der
Schätzer. Die formale Beschreibung dieser Zerlegungen ist wesentlich schwieriger im
Falle nichtlinearer lokal stationärer Zeitreihenmodelle.

Im zweiten Abschnitt dieser Arbeit entwickeln wir allgemeine Approximationstech-
niken, um lokal stationäre Prozesse durch stationäre Prozesse anzunähern, womit solche
Zerlegungen erhalten werden können. Im Zuge dessen führen wir so genannte Ableitungs-
prozesse ein und geben Bedingungen an, unter welchen Existenz und Eindeutigkeit
gegeben sind. Ein zentrales Ergebnis ist eine Taylor-Entwicklung von lokal stationären
Prozessen. Diese Resultate sind von unabhängigem Interesse für weitere Forschung in
diesem Gebiet. Wir unterstreichen dies, indem wir die erhaltenen Ergebnisse nutzen,
um neue Versionen einiger Standardtheoreme wie ein Gesetz der großen Zahlen und
einen zentralen Grenzwertsatz für lokal stationäre Prozesse unter minimalen Momen-
tannahmen zu beweisen.

Im letzten Teil dieser Arbeit definieren wir für eine große Klasse von lokal sta-
tionären Prozessen einen lokalen Bandbreitenselektor, der auf einem Kontrastmin-
imierungsansatz basiert, welcher zuerst auf nichtparametrische Regressionsmodelle ange-
wandt wurde. Wir zeigen, dass der Selektor bzgl. dem Euklidischen- und dem Kullback-
Leibler-Abstand minimax-optimal bis auf einen logarithmischen Faktor ist, der typisch
für lokale Modellauswahlprozeduren ist. Für die Beweise greifen wir auf die vorher en-
twickelten Approximationstechniken zurück. In einer Simulation untersuchen wir das
Verhalten der Auswahlprozedur in verschiedenen Zeitreihenmodellen.

Die Resultate dieser Arbeit zur Bandbreitenwahl können als Verallgemeinerung der
ursprünglichen Methoden im nichtparametrischen Regressionsmodell aufgefasst wer-
den, da dieses Modell stets als Spezialfall enthalten ist. Durch die verallgemeinerte
Formulierung liefert diese Arbeit daher einen Beitrag dazu, ein tieferes Verständnis
dieser Methoden zu gewinnen.





Abstract

Since their introduction in the 1980s, locally stationary time series play an important
role in time series analysis. As a generalization of stationary processes, they allow
the observations to change their distribution properties over observation time. In many
locally stationary time series models this change over time is characterized by parameter
curves, whose estimation is of essential interest. In this work we develop methods and
prove theoretical results for bandwidth selection for nonparametric estimators of these
curves. We focus on local maximum likelihood estimators. Their strong connection to
martingale difference sequences is fundamental in many of our proofs.

In the first part of this dissertation we define a global bandwidth selector for linear
locally stationary processes which is motivated by the cross validation method that was
first introduced in the nonparametric regression model. We prove that the selector is
asymptotically optimal in the sense that the Kullback Leibler distance of the model
connected with this selector to the true model converges to the minimal possible Kull-
back Leibler distance as the observation time increases to infinity. In simulations we
analyze the quality of the method. The proofs are based on bias-variance decomposi-
tions of the estimators. The formal discussion of these decompositions gets harder in
the case of nonlinear locally stationary time series models.

In the second part of this dissertation we develop general techniques to approximate
locally stationary processes by stationary processes. These techniques allow us to obtain
the decompositions mentioned above. We introduce so called derivative processes and
give conditions under which existence and uniqueness can be guaranteed. An important
result is a Taylor-like expansion of locally stationary processes. These findings are
of independent interest for further research. We emphasize this point by using the
approximation techniques to obtain new versions of standard theorems like a law of
large numbers and a central limit theorem for locally stationary processes under minimal
moment assumptions.

In the last part of this thesis we define a local bandwidth selector for a large class of
locally stationary processes which is based on a contrast minimization approach which
was first applied to nonparametric regression models. We show that our selector is
minimax optimal up to a logarithmic factor (which is typical for local model selection
procedures) with respect to the Euclidean distance and the Kullback-Leibler distance.
For the proofs we use the approximation techniques which were discussed before. In
a simulation we analyze the behavior of the selection routine for different time series
models.

The findings of this thesis regarding bandwidth selection routines can be interpreted
as a generalization of the original methods in the nonparametric regression model,
because this model is included as a special case. Due to the more general formulation
this thesis makes a contribution to understand these methods more deeply.
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Chapter 1

Introduction

Nonstationary processes. Stationary processes are characterized by the fact that
there distribution does not change over time. They play an important role in time series
analysis and lots of models and powerful methods for analyzing them were introduced
during the last decades. However, more recently models have become popular which
allow the observations to change their distribution properties smoothly over time. A
special focus lies on so-called locally stationary processes which behave like stationary
processes in small observation periods. The idea goes back to Priestley (1965) and
Priestley (1981) who proposed to generalize the spectral representation of stationary
processes by making it time-varying. Because of its structure, this formulation did
not allow for rigorous asymptotic considerations. In two papers (cf. Dahlhaus (1996)
and Dahlhaus (1997)) Dahlhaus improved the representation with an infill asymptotics
scheme, meaning that the time is rescaled from t = 1, ..., n to the interval [0, 1] by
considering the ’local time’ t

n
for t = 1, ..., n. He obtained the spectral representation

Xt,n = µ
( t
n

)
+

∫ π

−π
A◦t,n(λ) dξ(λ), t = 1, ..., n

where A◦t,n(λ) is the transfer function and ξ a stochastic process on [−π, π] and µ(·)
the mean function. Here it was assumed that A◦t,n(λ) can be approximated by some
function A( t

n
, λ) uniformly in t, λ. In this formulation, asymptotic results were obtained

by fixing a local time u ∈ [0, 1] and considering only observations Xt,n with | t
n
−u| � 1.

The representation of Xt,n in the time domain is given by

Xt,n = µ
( t
n

)
+

∞∑
k=−∞

at,n(k)εt−k, (1.0.1)

where at,n(k) are deterministic sequences and (εt)t∈Z is a sequence of i.i.d. errors. A
famous example is the time-varying autoregressive moving average (tvARMA) process
which is recursively defined via

r∑
k=0

αk
( t
n

)
·Xt−k,n =

s∑
j=0

βj
( t
n

)
εt−k (1.0.2)
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with parameter curves αk, βj : [0, 1] → R. Latest publications (see Dahlhaus and
Polonik (2009)) allow for even more general linear models. For a review, we refer
to Dahlhaus (2011). Besides the development of a theory for linear locally stationary
models, there were introduced a lot of nonlinear nonstationary processes by mimicking
the infill asymptotics approach and replacing constant parameters in stationary pro-
cesses by parameter curves evaluated at the rescaled time t

n
. Here, we mention the

tvAR process (cf. Dahlhaus and Giraitis (1998)), the tvARCH process (cf. Dahlhaus
and Subba Rao (2006), Fryzclewicz, Sapatinas and Subba Rao (2008)), random coef-
ficient models (cf. Subba Rao (2006)) or general recursively defined locally stationary
processes (cf. Zhou and Wu (2009), section 4). Note that the most of processes are
nonlinear and thus do not fit into the scheme (1.0.1).

More recently, Zhou and Wu (2009) and Karmakar and Wu (2016) among others
proposed a representation of locally stationary processes by Bernoulli shifts, namely
Xt,n = Jt,n(εt, εt−1, ...) with measurable functions Jt,n, by generalizing a similar ap-
proach for stationary processes introduced in Wu (2005). This approach covers both
linear and recursively defined processes. More abstract formulations based on approx-
imation properties were given by numerous authors, for instance Vogt (2012).

As mentioned above there is a large class of locally stationary processes whose evo-
lution over time is mainly described by parameter curves, for instance αk, βj in (1.0.2).
A central objective in inference of such processes is estimation of these curves. Besides
parametric approaches (cf. Dahlhaus (1997)), a large literature for nonparametric es-
timation via quasi Maximum Likelihood methods is available in special cases like the
tvAR process (cf. Dahlhaus and Giraitis (1998)), tvARCH process (cf. Dahlhaus and
Subba Rao (2006)) or linear processes in general (cf. Dahlhaus and Polonik (2009)).

Bandwidth selection in nonparametric estimation. As can be seen in
these publications, there is a strong connection to nonparametric estimation of i.i.d.
regression models (see the monograph Tsybakov (2009) for an introduction) which have
the form

Xt,n = µ
( t
n

)
+ εt, t = 1, ..., n. (1.0.3)

In (1.0.3), a standard approach to estimate µ from the observations Xt,n is the so-called
Nadaraya-Watson estimator

µ̂b(u) :=

∑n
t=1K

(
t/n−u
b

)
Xt,n∑n

t=1K
(
t/n−u
b

) , u ∈ [0, 1], (1.0.4)

where K : R → R is a probability density (the so-called kernel function) and b =
bn is the bandwidth which may depend on the number of observations n. Since
µ̂b(u) can be obtained through a quasi Maximum Likelihood approach by minimiz-
ing

∑n
t=1K

(
t/n−u
b

)(
Xt,n − µ

)2 in µ, this estimator can be seen as a special case of
quasi Maximum Likelihood estimators in (1.0.1) and it seems worthwhile to transfer
asymptotic results to the more general case.

The main issue which is connected to the form of the estimator (1.0.4) is to choose
the right window size b. If the true function µ(·) is twice continuously differentiable
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and K is symmetric around 0, it is possible to calculate the mean squared error (MSE)
and obtain a so called bias-variance decomposition

E|µ̂b(u)− µ(u)|2 = Var(µ̂b(u)) + |Eµb(u)− µ(u)|2 ≈ V0

nb
+B0

b4

4
(1.0.5)

with constants V0, B0. Minimization of this term in b leads to the (MSE optimal) band-
width choice b0 = ( V0

B0
)1/5n−1/5. Although b0 is a good starting point for further investi-

gation, it is not useful in practice since B0, V0 heavily depend on the unknown function
µ(·). During the last decades, many efforts have been made to find natural and ’good’
estimators of the MSE-optimal bandwidth b0. Popular methods are selectors based
on Cross validation (cf. Rice (1984)), plugin approaches (originally from Woodroofe
(1970)) and, more recently, contrast minimization approaches (cf. Lepski, Mammen
and Spokoiny (1997), Lepski and Spokoiny (1997) and, more general, in Goldenshluger
and Lepski (2011)) among others. All three methods mentioned are very general and
therefore have applications in many other fields of statistics.

Combining the two topics. In several special cases of locally stationary pro-
cesses (cf. Dahlhaus and Giraitis (1998) for tvAR, Dahlhaus and Polonik (2009) for
tvARMA and Dahlhaus and Subba Rao (2006), Fryzclewicz, Sapatinas and Subba Rao
(2008) for tvARCH processes), asymptotic properties and similar bias-variance decom-
positions as in (1.0.5) have been obtained for quasi Maximum Likelihood estimators
of the corresponding parameter curves. Especially for nonlinear processes the analysis
of these estimators is much harder than in i.i.d. regression (1.0.3) since an explicit
representation of the estimator may not be available. Theoretical properties and re-
sults regarding practical behavior of bandwidth selection for locally stationary processes
however are still unavailable unless in very special cases (cf. Arkoun (2010)).

In this thesis, we start at this point. Our goal is to shed light on the theoretical
behavior of bandwidth selectors for large classes of locally stationary processes. We will
focus on selectors based on cross validation and contrast minimization approaches. As
a byproduct, we will obtain consistency results with rates for quasi Maximum likelihood
estimators in these models. Since we allow the unknown parameter curves to map into
a d-dimensional parameter space with d ≥ 1, a natural question is how to measure
distances between two elements of this space. Here, we will use the Euclidean norm as
a standard measure in Rd as well as a weighted Euclidean norm which we will show to
be interpretable as the Kullback-Leibler divergence between two time series models.

1.1 Outline and Contribution
Outline. Let us briefly sketch the outline of the remainder of this thesis and adduce
the main contributions. In Chapter 2 we focus on global bandwidth selection for quasi
Maximum Likelihood estimation in linear locally stationary time series models. We
adopt a leave-one-out cross validation method from Rice (1984) for the i.i.d. regression
model (1.0.3). In our method, the interpretation of the term which is omitted in the
leave-one-out estimator will change: We do not omit the t-th observation but the t-
th projection error which may be generated by all past observations before time t.
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We prove that the obtained bandwidth selector is asymptotically optimal in the sense
that the Kullback Leibler divergence of the model connected with this selector to the
true model converges to its minimal possible value as the observation time increases
to infinity. We use simulations to analyse the behavior of the method in practice for
different time series models.

In Chapter 3 we develop general techniques to approximate recursively defined lo-
cally stationary processes by stationary processes. We introduce so called derivative
processes and give conditions under which existence and uniqueness can be guaranteed.
An important result is a Taylor-like expansion of locally stationary processes. The ap-
proximation techniques are then used to obtain new versions of standard theorems like
a law of large numbers and a central limit theorem for locally stationary processes un-
der minimal moment assumptions. Finally we apply the results to a obtain consistency
and asymptotic normality results for Maximum Likelihood estimators.

In Chapter 4 we define a local bandwidth selector for a large class of locally station-
ary processes which is based on the contrast minimization approach from Goldenshluger
and Lepski (2011). We show that this selector is minimax optimal up to a logarith-
mic factor (which is typical for local model selection procedures) with respect to the
Euclidean distance and the Kullback-Leibler distance. For the proofs we use the ap-
proximation techniques from Chapter 3. We apply the method to various time series
models. Finally, Chapter 5 summarizes the work and gives an outlook into possible
future work.

Contributions. The main contributions are:

• Definition of a global bandwidth selector via cross validation for linear locally
stationary processes and proof of its asymptotic optimality, see Chapter 2

• Definition of a local bandwidth selector via contrast minimization for a large class
of locally stationary processes and proof of its minimax optimality, see Chapter 4

• Creating the set up for a general approximation and maximum likelihood theory
for recursively defined locally stationary processes, see Chapter 3

The findings of this thesis regarding bandwidth selection routines can be interpreted as
a generalization of the original methods in the nonparametric regression model, because
this model is included as a special case. Due to the more general formulation this thesis
makes a contribution to understand these methods more deeply.

1.2 Notation and Preliminaries

Here we introduce some basic notation that will be used throughout this thesis.
With |x| we denote the absolute value of real vectors x ∈ Rd, applied component-

wise. For real numbers q > 0 we define |x|q :=
(∑d

i=1 |xi|q
)1/q to be the `q-norm.

Especially |x|∞ := maxi=1,...,d |xi| denotes the maximum norm. For another vector
y ∈ Rd, we use 〈x, y〉 :=

∑d
i=1 xiyi to denote the standard scalar product in Rd. We
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also apply | · |q to matrices x ∈ Rd×d which then means that the matrix is vectorized
before |x|q is evaluated. For instance, |x|2 = (

∑p
i,j=1 |xij|2)1/2 is the Frobenius norm.

For some fixed vector of nonnegative values w, we define the weighted `q-norm
|x|w,q :=

(∑d
i=1wi|xi|q

)1/q.
We use λmin(x), λmax(x), |x|spec and tr(x) to denote the minimal / maximal eigen-

value, spectral norm and the trace of a matrix x ∈ Rd×d, respectively. We write x � y
or x � y for matrices x, y ∈ Rd×d if x − y is positive semidefinite or positive definite,
respectively. We use the prime symbol x′ to denote the transpose of matrices.

As long as q ≥ 1, | · |w,q is a norm. For real numbers a, b we use the notation
a ∨ b := max{a, b} and a ∧ b := min{a, b} to denote their maximum and minimum.

For real-valued functions f : Rd → R, (x1, ..., xd) 7→ f(x1, ..., xd) we use ∂ki f or ∂kxif
to denote the k-th derivative with respect to the i-th component.

Bias-variance decompositions in nonparametric statistics as well as properties of the
corresponding bandwidth selectors are usually stated under the assumption that the
true curve is in some function class. In this thesis we will formulate results with the
class Σ(β, L) of Hoelder continuous functions with exponent β,

Σ(β, L) := {g : [0, 1]→ R | g is lβ − times differentiable and
∀x, y ∈ T : |g(lβ)(x)− g(lβ)(y)| ≤ L|x− y|β−lβ},

where lβ := max{k ∈ N0 : k < β}.

We will sometimes use Landau’s notation an = O(bn) and an = o(bn) to determine
how real sequences (an), (bn) asymptotically behave with respect to each other. The
definitions are as follows:

an = o(bn) ⇔ lim
n→∞

∣∣∣an
bn

∣∣∣ = 0,

an = O(bn) ⇔ lim sup
n→∞

∣∣∣an
bn

∣∣∣ <∞.
We say that an event holds a.s. (almost surely), if it is true with probability 1.

1.2.1 The functional dependence measure

For some real-valued random variable Z we define ‖Z‖q := (E|Z|q)1/q. Let Lq denote
the space of real-valued random variables Z with ‖Z‖q <∞.

During the last decades, several measures of dependence for stochastic processes
have been invented, for instance mixing properties or joint cumulants. In Chapters
3 and 4 we will make use of a new approach, the (uniform) functional dependence
measure which was introduced in Wu (2005) and Liu, Xiao and Wu (2013).

For a sequence of independent and identically distributed (i.i.d.) random variables
εt, t ∈ Z we define the shift process Ft := (εt, εt−1, ...). For t ≥ 0, let F∗(t−k)

t :=
(εt, ..., εt−k+1, ε

∗
t−k, εt−k−1, εt−k−2, ...), where ε∗t−k is a random variable which has the

same distribution as ε1 and is independent of all εt, t ∈ Z. For a process Yt = Ht(Ft) ∈
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Lq with deterministic Ht : RN → R we define Y ∗(t−k)
t := Ht(F∗(t−k)

t ) and the uniform
functional dependence measure

δYq (k) := sup
t∈Z
‖Yt − Y ∗(t−k)

t ‖q, (1.2.1)

as well as ∆Y
m,q :=

∑∞
k=m δ

Y
q (k). If Yt is stationary, (1.2.1) reduces to the functional

dependence measure
δYq (k) = ‖Yk − Y ∗0k ‖q.

Furthermore let us define the projection operator Pj· := E[·|Fj]− E[·|Fj−1]. It can be
shown (cf. Wu (2005), Theorem 1(i) and (ii)) that for q ≥ 1 it holds that

‖Pt−kYt‖q ≤ δYq (k).
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Chapter 2

Global bandwidth selection with cross
validation

In this chapter we discuss adaptive estimation of a multidimensional parameter curve
θ0 : [0, 1]→ Θ ⊂ Rd with cross validation in locally stationary processes. The technical
core of the chapter are several results for quadratic statistics needed in this context,
meaning that we also restrict ourselves to a quasi-Gaussian likelihood and to linear
processes. An advantage of the linear model is that we can formulate all smoothness
assumptions with respect to the (time-varying) spectral density of the process which
therefore can be easily verified for some standard processes like the tvARMA process.

In Section 2.1 we introduce the locally stationary time series model and formalize
the partition of these processes into parametric stationary processes and (unknown)
parameter curves. We propose estimators for these curves and define the cross valida-
tion procedure. Finally we introduce integrated / averaged squared error type distance
measures which are connected to the Kullback-Leibler divergence and will be used to
state our results.

In Section 2.2 we state the main result of this chapter, which is the asymptotic
optimality of the cross validation procedure with respect to the distance measures
defined before. We give an overview of the proof, which is similar to the methods used
in Härdle and Marron (1985) and Härdle, Hall and Marron (1988). The result is stated
under weak assumptions on the unknown parameter curves, that are Hoelder continuity
and bounded variation in each component.

In Section 2.3 we analyze the performance of the method in the case of tvARMA
processes in simulations. Some concluding remarks are drawn in Section 2.4. Some
lemmas and most of the proofs are deferred without further reference to Section 2.5.

2.1 Introduction

2.1.1 The Model

We start with the definition of the linear locally stationary time series model. Recall
that Σ(β, L) is the class of Hoelder continuous functions with exponent β.
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Assumption 2.1.1 (Locally stationary time series model). Suppose that the observa-
tions Xt,n, t = 1, ..., n have a moving average representation

Xt,n =
∞∑
j=0

at,n(j)εt−j, (2.1.1)

where at,n(j) are deterministic coefficients and (εt)t∈Z is a sequence of independent and
identically distributed random variables with E[εt] = 0, Eε2

t = 1 and existing moments
of all orders. We set κ4 := cum4(εt).

Furthermore, we assume that

sup
t,n
|at,n(j)| ≤ C

χ(j)
(2.1.2)

with

χ(j) := 1{|j|≤1} + |j| log1+κ |j| · 1{|j|>1}

for some κ > 0, and that there exist functions a(·, j) : [0, 1]→ R with

sup
j≥0

n∑
t=1

∣∣∣∣at,n(j)− a
( t
n
, j
)∣∣∣∣ ≤ C. (2.1.3)

We assume that the time dependence of a(·, j) : [0, 1] → R is solely via a finite di-
mensional parameter curve θ0(·) whose components are of bounded variation and lie
in Σ(β, L) for some L, β > 0, i.e. a(·, j) is of the form a(·, j) = aθ0(·)(j) with some
functions a ·(j).

It is well known that the function

fθ0(u)(λ) =
1

2π
|Aθ0(u)(λ)|2

with

Aθ0(u)(λ) :=
∞∑

j=−∞

aθ0(u)(j) exp(−iλj)

then is the time varying spectral density of the process.

Examples/Remark:
(i) As Dahlhaus and Polonik (2009) point out, the complicated construction with differ-
ent coefficients at,n(j) and a(t/n, j) is necessary to include important examples such as
tvAR - processes. The assumption is fulfilled by tvARMA(p, q) processes (cf. Dahlhaus
and Polonik (2009), Proposition 2.4), i.e. by the process

Xt,n +

p∑
j=1

αj
( t
n

)
Xt−j,n =

q∑
k=0

βk
( t
n

)
σ
(t− k

n

)
εt−k
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where θ(·) =
(
α1(·), . . . , αp(·), β1(·), . . . , βq(·), σ2(·)

)′ consists of the coefficient func-
tions.

(ii) Other important examples are e.g. models with shape- and transition curves
(cf. Dahlhaus and Polonik (2009), Proposition 2.4), a simple model being

Xt,n − 2 r cos
(
φ(
t

n
)
)
Xt−1,n + r2Xt−2,n = σ(

t

n
) εt (2.1.4)

with θ(·) =
(
φ(·), σ(·)

)′ and r ∈ (0, 1) which models a time varying frequency- and a
time varying amplitude-behavior of oscillations.

(iii) We conjecture that the assumption on the existence of all moments of εt can be
dropped - but the calculations would be very tedious without much additional insight.

2.1.2 The quasi maximum likelihood estimator

As an estimator of θ0(·) we consider local conditional Gaussian likelihood estimators
weighted by kernels, that is

θ̂b(u) := argminθ∈Θ Ln,b(u, θ), (2.1.5)

where

Ln,b(u, θ) :=
1

n

n∑
t=1

Kb

( t
n
− u
)
`t,n(θ) (2.1.6)

and
`t,n(θ) := − log pθ(Xt,n|Xt−1,n, ..., X1,n, X0,n = 0, X−1,n = 0, ...) (2.1.7)

is the infinite past likelihood with constant parameter θ ∈ Θ (localized in Ln,b(u, θ) by
the kernel K). K : R → R fulfills

∫
K = 1, and b ∈ (0,∞) is the bandwidth. We use

the common abbreviation Kb(x) := 1
b
K(x

b
).

Remark:
(i) For example for tvAR(p) processes one usually replaces Ln,b(u, θ) by 1

n

∑n
t=p+1Kb

(
t
n
−

u
)
`t,n(θ). The results of this chapter also hold with this likelihood.

(ii) Using instead the finite past conditional likelihood log pθ(Xt,n|Xt−1,n, ..., X1,n) cor-
responds to the exact likelihood which usually is much more difficult to calculate and
more difficult to investigate theoretically.

It is possible to derive an explicit form of `t,n(θ):

Proposition 2.1.2. Suppose that Assumption 2.1.1 holds, and |Aθ(λ)| ≥ δA > 0 uni-
formly in θ ∈ Θ, λ ∈ [−π, π] for some δA > 0. Define the Fourier coefficients

γθ(k) :=
1

2π

∫ π

−π
Aθ(−λ)−1eiλk dλ,
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and

dt,n(θ) :=
t−1∑
k=0

γθ(k)Xt−k,n. (2.1.8)

Then it holds that
`t,n(θ) = −1

2
log

(
γθ(0)2

2π

)
+

1

2

[
dt,n(θ)

]2

. (2.1.9)

2.1.3 Distance measures

In the following, let ∇ denote the derivative with respect to θ ∈ Θ. As global distance
measures we use the averaged and the integrated squared error (ASE/ISE) weighted
by the local Fisher information

I(θ) :=
1

4π

∫ π

−π
(∇ log fθ(λ))(∇ log fθ(λ))′ dλ. (2.1.10)

(cf. Dahlhaus (1996), Theorem 3.6). In addition the weight function w(·) = wn(·) :=
1[b/2,1−b/2](·) is needed to exclude boundary effects. Since the proof is the same for
other weights w(·) we allow in Assumption 2.2.1 for more general weights.

More precisely we set (with |x|2A := 〈x,Ax〉 for x ∈ Rd and a d× d -matrix A)

dA(θ̂b, θ0) :=
1

n

n∑
t=1

∣∣∣θ̂b( t
n

)
− θ0

( t
n

)∣∣∣2
I(θ0(t/n))

w

(
t

n

)
(2.1.11)

and

dI(θ̂b, θ0) :=

∫ 1

0

∣∣θ̂b(u)− θ0(u)
∣∣2
I(θ0(u))

w(u) du. (2.1.12)

It can be shown for w≡1 that 2dA and 2dI are an approximation of the Kullback-
Leibler divergence between models with parameter curves θ̂b(·) and θ0(·).

In Theorem 2.2.4 we will prove that dA(θ̂b, θ0) can be approximated uniformly in b by
a deterministic distance measure d∗∗M(b), which has a unique minimizer b0 = b0,n ∼ n−1/5.
b0 can be seen as the (deterministic) optimal bandwidth.

2.1.4 The cross validation approach

We now choose the bandwidth b by a generalized cross validation method. We define
a ’quasi-leave-one-out’ local likelihood

Ln,b,−s(u, θ) :=
1

n

n∑
t=1,t6=s

Kb

( t
n
− u
)
`t,n(θ) (2.1.13)

and a ’quasi-leave-one-out’ estimator of θ0 by

θ̂b,−s(u) := argminθ∈Θ Ln,b,−s(u, θ). (2.1.14)
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Here, ’leave-one-out’ does not mean that we ignore the s-th observation of the process
(Xt,n)t=1,...,n, but that we ignore the term which is contributed by the likelihood `t,n at
time step s. Because of that, we refer to the estimator as a quasi-leave-one-out method.

We then choose b̂ via minimizing the cross validation functional

CV (b) :=
1

n

n∑
s=1

`s,n

(
θ̂b,−s

( s
n

))
w
( s
n

)
. (2.1.15)

It is important to note that such a minimizer b̂ of CV (b) does not need to exist, because
continuity of CV (b) can not be shown. When b varies it is possible that the location
of the minimum of Ln,b,−s(u, θ) changes and therefore θ̂b,−s(u) makes a jump. Thus we
choose b̂ such that

CV (b̂)− inf
b∈Bn

CV (b) ≤ 1

n
, (2.1.16)

where Bn is a suitable subinterval of (0, 1) which covers all relevant values of b.

2.2 Main results
In this section we present our main results concerning the bandwidth b̂ chosen by cross
validation. We prove in Theorem 2.2.3 that b̂ is asymptotically optimal with respect
to dA, i.e.

lim
n→∞

dA(θ̂b̂, θ0)

infb∈Bn dA(θ̂b, θ0)
= 1 a.s.,

and in Theorem 2.2.5 that b̂ is consistent in the sense that b̂/b0 → 1 a.s., where b0 is the
deterministic optimal bandwidth defined in (2.2.7). In Assumption 2.2.1 we summarize
the smoothness conditions on the model class and in Assumption 2.2.2 the conditions
on the estimation procedure.

Assumption 2.2.1. Suppose that

(i) θ ∈ Θ is identifiable from Aθ (i.e., Aθ(λ) = Aθ′(λ) for all λ implies θ = θ′) and
θ0(u) lies in the interior of the compact parameter space Θ ⊂ Rd for all u ∈ [0, 1].

(ii) There exists some δA > 0 such that uniformly in θ ∈ Θ, λ ∈ [−π, π], |Aθ(λ)| ≥ δA.
Aθ(λ) is max{4, lβ+1}-times continuously differentiable in θ ∈ Θ. The derivatives
fulfill ∇kAθ(·) ∈ Σ(βA, LA) uniformly in θ ∈ Θ for some LA > 0, βA > 1.

(iii) The minimal eigenvalue of

I(θ) :=
1

4π

∫ π

−π
(∇ log fθ(λ))(∇ log fθ(λ))′ dλ

is bounded away from 0 uniformly in θ ∈ Θ.
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Assumption 2.2.2. Suppose that:

(i) The weight function w̃ : [0, 1] → R≥0 is bounded, has bounded variation and
compact support ⊂ [0, 1] with nonempty interior. Set w(·) := w̃(·)1[ b

2
,1− b

2
](·).

(ii) For n ∈ N let Bn = [b, b], where b ≥ c0n
δ−1 and b ≤ c1n

−δ for some constants
c0, c1, δ > 0.

(iii) K : R → R fulfills
∫
K(x) dx = 1 and is Lipschitz continuous with compact

support [−1
2
, 1

2
]. Furthermore, K is of order lβ, i.e.

∫
xkK(x) dx = 0 for k =

1, ..., lβ.

We now show that the cross validation bandwidth b̂ is asymptotically optimal.

Theorem 2.2.3 (Asymptotic optimality of cross validation). Under assumptions 2.1.1,
2.2.1 and 2.2.2 the bandwidth ĥ chosen by cross validation is asymptotically optimal in
the sense that

lim
n→∞

d(θ̂b̂, θ0)

infb∈Bn d(θ̂b, θ0)
= 1,

where d is dA or dI .

Under stronger smoothness assumptions on θ0(·) we will prove (in Theorem 2.2.5
below) that b̂ is asymptotically equivalent to the asymptotically optimal bandwidth b0

(ao-bandwidth for short) which we now define. We know from standard asymptotics
that (cf. the proof of Corollary 2.2.7)

θ̂b(u)− θ0(u) ≈ −∇2
θLn,b(u, θ̄(u))−1∇θLn,b(u, θ0(u)) ≈ −I(θ0(u))−1∇θLn,b(u, θ0(u))

which motivates the following approximations to dA(θ̂b, θ0) and dI(θ̂b, θ0):

d∗A(θ̂b, θ0) :=
1

n

n∑
t=1

∣∣∣∇θLn,b

( t
n
, θ0

( t
n

))∣∣∣2
I(θ0( t

n
))−1

w
( t
n

)
, (2.2.1)

d∗I(θ̂b, θ0) :=

∫ 1

0

∣∣∇θLn,b(u, θ0(u))
∣∣2
I(θ0(u))−1w(u) du. (2.2.2)

As a deterministic approximation of the above distances, we set

d∗M(θ̂b, θ0) := E[d∗I(θ̂b, θ0)].

If θ0 is twice continuously differentiable, Proposition 2.5.5 implies the usual bias-
variance decomposition for d∗M :

d∗M(θ̂b, θ0) =
V0

nb
+
b4

4
B0 + o((nb)−1) + o(b4), (2.2.3)
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uniformly in b ∈ Bn, where (d is the dimension of the parameter space, Θ ⊂ Rd)

V0 := µK

∫ 1

0

[
d+ κ4

∣∣∣ 1

4π

∫ π

−π
∇θ log fθ0(u)(λ) dλ

∣∣∣2
I(θ0(u))−1

]
w(u) du > 0, (2.2.4)

B0 := d2
K

∫ 1

0

∣∣∣ 1

4π

∫ π

−π
∂2
uf(u, λ) · ∇θ(fθ0(u)(λ)−1) dλ

∣∣∣2
I(θ0(u))−1

w(u) du ≥ 0,

(2.2.5)

where µK :=
∫
K(x)2 dx and dK :=

∫
x2K(x) dx, leading to the definition of the

asymptotically optimal bandwidth in the following theorem.

Theorem 2.2.4 (Approximation of distance measures). Let the assumptions of Theo-
rem 2.2.3 hold. Assume that θ0(·) is twice continuously differentiable, i.e. β ≥ 2, and
define

d∗∗M(b) :=
V0

nb
+
b4

4
B0 (2.2.6)

If the bias B0 is not degenerated, i.e. B0 > 0, then it holds

sup
b∈Bn

∣∣∣∣∣d(θ̂b, θ0)− d∗∗M(b)

d∗∗M(b)

∣∣∣∣∣→ 0 a.s.

where d is dA or dI .

Theorem 2.2.5 (consistency of the cross validation bandwidth). Let the assumptions
of Theorem 2.2.4 hold. Then the bandwidth b̂ chosen by cross validation fulfills

b̂

b0

→ 1 a.s.

where

b0 =

(
V0

B0

)1/5

n−1/5. (2.2.7)

is the unique minimizer of d∗∗M(b).

Proofs.
Here we present the structure of the proofs of Theorems 2.2.3, 2.2.4 and 2.2.5. The
technical details including the proofs of the lemmata are postponed to the appendix.
From now on, we assume that Assumptions 2.1.1, 2.2.1 and 2.2.2 hold. All conver-
gences stated here are with respect to n → ∞. The following Lemma shows that the
approximated distances d∗I , d∗A are close to d∗M .

Lemma 2.2.6. We have almost surely

sup
b∈Bn

∣∣∣∣∣d∗I(θ̂b, θ0)− d∗M(θ̂b, θ0)

d∗M(θ̂b, θ0)

∣∣∣∣∣→ 0, sup
b∈Bn

∣∣∣∣∣d∗A(θ̂b, θ0)− d∗M(θ̂b, θ0)

d∗M(θ̂b, θ0)

∣∣∣∣∣→ 0.
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As a consequence of Lemma 2.2.6 also the distances dI , dA are close to d∗M :

Corollary 2.2.7. We have almost surely

sup
b∈Bn

∣∣∣∣∣dI(θ̂b, θ0)− d∗M(θ̂b, θ0)

d∗M(θ̂b, θ0)

∣∣∣∣∣→ 0, sup
b∈Bn

∣∣∣∣∣dA(θ̂b, θ0)− d∗M(θ̂b, θ0)

d∗M(θ̂b, θ0)

∣∣∣∣∣→ 0.

To get a connection between the distance measure d∗M and the cross validation
functional CV (b), we define

dA(θ̂b, θ0) :=
1

n

n∑
t=1

∣∣∣θ̂b,−t( t
n

)
− θ0

(
t

n

) ∣∣∣2
I(θ0(t/n))

.

The next two lemmata show that dA is close both to d∗M and CV (b):

Lemma 2.2.8. We have almost surely

sup
b∈Bn

∣∣∣∣∣dA(θ̂b, θ0)− d∗M(θ̂b, θ0)

d∗M(θ̂b, θ0)

∣∣∣∣∣→ 0.

Lemma 2.2.9. We have almost surely

sup
b∈Bn

∣∣∣∣∣CV (b)− 1
n

∑n
t=1 `t,n

(
θ0

(
t
n

))
w(t/n)− dA(θ̂b, θ0)

d∗M(θ̂b, θ0)

∣∣∣∣∣→ 0. (2.2.8)

With the help of these results, we can now prove Theorems 2.2.3, 2.2.4, 2.2.5:

Proof of Theorem 2.2.3. An immediate consequence of Lemma 2.2.9 is (use x1+x2

y1+y2
≤

x1

y1
+ x2

y2
for positive numbers x1, x2, y1, y2 > 0)

sup
b,b′∈Bn

∣∣∣∣∣dA(θ̂b, θ0)− dA(θ̂b′ , θ0)− (CV (b)− CV (b′))

d∗M(θ̂b, θ0) + d∗M(θ̂b′ , θ0)

∣∣∣∣∣→ 0 a.s.

almost surely. Now, using Corollary 2.2.7 and Lemma 2.2.8 it is easy to see that

sup
b,b′∈Bn

∣∣∣∣∣dA(θ̂b, θ0)− dA(θ̂b′ , θ0)− (CV (b)− CV (b′))

dA(θ̂b, θ0) + dA(θ̂b, θ0)

∣∣∣∣∣→ 0 a.s.

Choosing b = b̂ and b′ such that

dA(θ̂b′ , θ0)− inf
b∈Bn

dA(θ̂b, θ0) ≤ 1

n

yields

0 ←
dA(θ̂b̂, θ0)− dA(θ̂b′ , θ0)− (CV (b̂)− CV (b′))

dA(θ̂b̂, θ0) + dA(θ̂b′ , θ0)

≥
dA(θ̂b̂, θ0)− infb∈Bn dA(θ̂b, θ0)− (infb∈Bn CV (b)− CV (b′))

dA(θ̂b̂, θ0) + infb∈Bn dA(θ̂b, θ0) + 1
n

+
2
n

dA(θ̂b̂, θ0) + dA(θ̂b′ , θ0)
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almost surely. Because of Corollary 2.2.7 and (2.2.3) we have supb∈Bn
1
n

dA(θb,θ0)
→ 0 a.s.

Thus,
dA(θ̂b̂, θ0)− infb∈Bn dA(θ̂b, θ0)

dA(θ̂b̂, θ0) + infb∈Bn dA(θ̂b, θ0)
→ 0 a.s.,

from which
dA(θ̂b̂, θ0)

infb∈Bn dA(θ̂b, θ0)
→ 1 a.s.

follows. The same can be done for dI .

Proof of Theorem 2.2.4. Because of B0 > 0 and (2.2.3), we have

sup
b∈Bn

∣∣∣∣∣d∗M(θ̂b, θ0)− d∗∗M(b)

d∗∗M(b)

∣∣∣∣∣→ 0 a.s. (2.2.9)

Application of Corollary 2.2.7 finishes the proof.

Proof of Theorem 2.2.5. As in the proof of Theorem 2.2.4, we show (2.2.9). This result
in combination with Lemma 2.2.8 and Lemma 2.2.9 gives almost surely

sup
b∈Bn

∣∣∣∣CV (b)− 1
n

∑n
t=1 `t,n(θ0(t/n))w(t/n)− d∗∗M(b)

d∗∗M(b)

∣∣∣∣→ 0.

Using the same methods as in the proof of Theorem 2.2.3, we have almost surely

d∗∗M(b̂)

d∗∗M(b0)
=

d∗∗M(b̂)

infb∈Bn d
∗∗
M(b)

→ 1

The structure of d∗∗M(b) implies b̂/b0 → 1 a.s.

2.3 Simulations and Examples

As mentioned below, our results hold for tvARMA-processes and the time varying
frequency model defined in (2.1.4). For these models it is also straightforward to check
Assumption 2.2.1 (for more details see Dahlhaus and Polonik (2009), Proposition 2.4).

For our simulations we use the following models with εt ∼ N(0, 1):

Xt,n = θ0

( t
n

)
Xt−1,n + εt, θ0(u) = 0.9 sin(2πu) (2.3.1)

Xt,n = εt − θ0

( t
n

)
εt−1, θ0(u) = 0.3 + 0.4 sin(2πu) (2.3.2)

and

Xt,n = 2 r cos
(
φ
( t
n

))
Xt−1,n − r2Xt−2,n + σ

( t
n

)
εt, θ0(u) = (φ(u), σ(u))′, (2.3.3)
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with φ(u) = π
2

+ π
4

sin(2πu), σ(u) = 1.0 + 0.7 sin(2πu) and r = 0.9.
We do not want to go into details on the specific forms on the estimators. We

just mention that for (2.3.1) (and for tvAR(p)-models Xt,n = θ1(t/n)Xt−1,n + ... +
θp(t/n)Xt−p,n+σ(t/n)εt in general) the estimator is a Yule-Walker type estimator of the
form θ̂b(u) = −Γ̂b(u)−1γ̂b(u) and σ̂b(u) = 1

n

∑n
t=p+1Kb

(
t
n
− u
)
· (Xt,n − θ̂b,1(u)Xt−1,n −

...− θ̂b,p(u)Xt−p,n)2 with covariances

Γ̂b(u) :=
1

n

n∑
t=p+1

Kb

(
t

n
− u
)
·Yt−1,nY

′
t−1,n, γ̂b(u) :=

1

n

n∑
t=p+1

Kb

(
t

n
− u
)
·Xt,nYt−1,n

where Yt−1,n := (Xt−1,n, ..., Xt−p,n)′. For (2.3.2) we have Aθ(λ) = 1 − θeiλ leading to
γθ(k) = 2πθk · 1{k≥0} and therefore to

`t,n(θ) = const +
1

2

(
t−1∑
k=0

θkXt−k,n

)2

which we have to minimize numerically. For the model (2.3.3) we obtain

φ̂b(u) = cos−1

(
γ̂b,1(u)− r2Γ̂b,12(u)

2rΓ̂b,11(u)

)

and σ̂b(u)2 = 1
n

∑n
t=p+1Kb

(
t
n
− u
)
· (Xt,n − 2r cos(φ̂h(u))Xt−1,n − r2Xt−2,n)2.

We performed a Monte Carlo study by generating in each case N = 1000 realizations
of time series with length n = 500.

We chose Bn = [0.01, 1] and calculated the cross-validation bandwidth b̂, the ao-
bandwidth b0 (’plugin bandwidth’) from Theorem 2.2.5 and the optimal bandwidth

b∗ = argminb∈Bn dA(θ̂b, θ0),

Note that b̂, b∗ depend on the current realization while b0 is deterministic and fixed
(and remember that b∗ and b0 depend on the unknown true curve θ0(·) and are not
available in practice).

Figure 2.1 shows on the right side histograms of the chosen bandwidths b̂ (’Cross-
validation’), b∗ (’Optimal’) for the three models (2.3.1), (2.3.2) and (2.3.3) respectively.
We also marked the bandwidth b0 via a grey vertical dashed line. The variability of
the optimal bandwidth b∗ reflects nicely the dependence on the specific data-set. b̂ has
a bigger variance than b∗ which is not unexpected since b̂ has to compensate the fact
that it does not use the unknown parameter curve θ0. We find it however remarkable
that b̂ is quite close to b∗.

In the plot on the left hand side of each figure we have visualized the values of
dA(θ̂b, θ0) for b ∈ {b̂, b0, b

∗} (’Crossvalidation’,’Plugin’,’Optimal’). This is perhaps the
more important plot since it shows how close the fitted model is to the true one. It
can be seen that the estimator based on h0 behaves nearly optimal. The distances pro-
duced by the estimator based on the cross validation procedure are of course greater
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in average, but they still look quite satisfying in our opinion. Even the models are not
directly comparable, we can see that in the case of the tvMA(1) process, the variance
of the bandwidth selector is much higher than in the case of the tvAR processes. We
conjecture that the main reason for this is the higher variance of the maximum likeli-
hood estimator in tvMA processes, which then leads to higher variances in bandwidth
selection.

2.4 Concluding remarks
In this chapter we have introduced a cross validation procedure for linear locally sta-
tionary processes which is applicable under weak conditions on the underlying process.
The idea of leave-one-out estimators based on omitting the t-th projection error is a
general concept which we believe is also applicable in generalizations of the model we
discussed. We conjecture that similar results can be shown for multivariate time series
as well as nonlinear locally stationary processes. The method works well in simulations,
but its quality is connected to the quality of the corresponding maximum likelihood
estimator.

An alternative would be a plugin estimator where the bandwidth is (iteratively)
estimated by the formula (2.2.7) based on estimates of B0 and V0 in (2.2.5) and (2.2.4)
respectively. Such estimators are generally regarded as less stable. Furthermore it is
much more difficult to estimate these terms in the present situation since the occurring
terms are difficult to calculate explicitly.

Based on the simulation results we conjecture that n−1/10 · (b̂− b0) is asymptotically
normal if θ0 is twice continuously differentiable, like Härdle, Hall and Marron (1988)
showed in the i.i.d. regression case. This raises the question if there are improved
cross validation methods like Hall, Marron and Park (1992) or Chiu (1991) presented
in the i.i.d. regression or the kernel regression case that attain better rates if further
smoothness assumptions on θ0 are supposed. However, most of these methods are not
applicable in our situation because the unknown parameter curve θ0 in our model is
strongly connected with the stochastic part of the observations Xt,n, which is not the
case in i.i.d. nonparametric regression.

2.5 Lemmas and Proofs
Recall that |x|2A = x′Ax for A ∈ Rd×d, x ∈ Rd and |x|A =

∑d
i,j,k=1Aijkxixjxk for

A ∈ Rd×d×d, x ∈ Rd. For θ ∈ Θ, we define a stationary approximation of Xt,n by

X̃t(θ) :=
∞∑
k=0

aθ(k)εt−k. (2.5.1)

Furthermore, for a function g : [0, 1]→ R we define the variation of g by

V (g) := sup
{ m∑
k=1

|g(xk)− g(xk−1)| : 0 ≤ x0 < ... < xm ≤ 1,m ∈ N
}
.
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Figure 2.1: Simulation results for the tvAR(1) (top row), the tvMA(1) (second row)
and the tvAR(2) (third row) models. Left: Boxplots of the distances dA(θ̂b, θ0) obtained
with the different procedures. Right: Histogram of bandwidths obtained with the cross
validation selector b̂ and the (unknown) optimal selector b∗, respectively. The vertical
dashed line is the ao-bandwidth b0.
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If g : [0, 1] → Rd is multivariate, we denote by V (g) the vector (V (gi))i=1,...,d of varia-
tions, applied component-wise.

2.5.1 Coefficient bounds

Here we prove that under Assumption 2.2.1, the coefficients a(·, k), γθ(k), aθ(k) (recall
Assumption 2.1.1 and Proposition 2.1.2 for their definition) are uniformly bounded in
θ by absolutely summable sequences and fulfill some further smoothness assumptions.
We will use these results in the following Lemmata without further reference.

Lemma 2.5.1. Let Assumption 2.2.1 hold. For q = 0, 1, 2, 3, 4 we have with a constant
C > 0 independent of k,

sup
θ∈Θ
|∇qγθ(k)|∞ ≤

C

χ(k)
. (2.5.2)

Moreover, we have

V (a(·, k)) ≤ C

χ(k)
, sup

u
|a(u, k)| ≤ C

χ(k)
. (2.5.3)

Proof. (2.5.2) and a similar result

sup
θ∈Θ
|∇qaθ(k)|∞ ≤

C

χ(k)
(2.5.4)

with some constant C > 0 independent of k are consequences of Assumption 2.2.1(ii)
(see Katznelson (2004), chapter I, section 4). Because of a(u, k) = aθ0(u)(k), the second
assertion in (2.5.3) follows from (2.5.4). By uniform continuity of θ0, it is easily seen
that θ0(u1), θ0(u2) lie in some open convex ball included in Θ if |u1 − u2| ≤ δ1, where
δ1 > 0. Use the mean value theorem to write

Aθ0(u1)(λ)− Aθ0(u2)(λ) = 〈∇Aθ̄(u1,u2)(λ), θ0(u1)− θ0(u2)〉.

with some θ(u1, u2) ∈ Θ. Note that the variation increases the finer the partition is.
We consider only partitions 0 = t0 < ... < tn = 1 with maxi=1,...,n |ti − ti−1| ≤ δ1. Then
we have
n∑
i=1

|a(ti, k)− a(ti−1, k)| =
1

2π

n∑
i=1

∣∣∣∣∫ (Aθ0(ti)(λ)− Aθ0(ti−1)(λ)
)
eiλk dλ

∣∣∣∣
≤ 1

2π

n∑
i=1

|θ0(ti)− θ0(ti−1)|1 ·
∣∣∣∣∫ π

−π
∇Aθ̄(ti−1,ti)(λ)eiλk dλ

∣∣∣∣
∞

≤ C · d
2πχ(k)

· |V (θ0(·))|∞.

This shows the first assertion in (2.5.3).
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2.5.2 Prediction of linear stationary processes

In the next proposition, we derive the best predictor of X̃t(θ) given the past as well
as the corresponding prediction error. The results are then used to prove Proposition
2.1.2.

Proposition 2.5.2 (Prediction of X̃t(θ) given the past). Assume that

sup
θ∈Θ
|aθ(k)|, sup

θ∈Θ
|γθ(k)| ≤ C

χ(k)

for some constant C independent of k. Moreover assume that Aθ(λ) ≥ δA > 0 uniformly
in θ ∈ Θ, λ ∈ [−π, π]. Then the stationary approximation X̃t(θ) of Xt,n fulfills for all
θ ∈ Θ:

∞∑
k=0

γθ(k)X̃t−k(θ) = εt.

Moreover, the linear prediction of X̃t(θ) given the past is

E[X̃t(θ)|{X̃s(θ) : s < t}] = − 1

γθ(0)

∞∑
k=1

γθ(k)X̃t−k(θ),

with prediction error

Var(X̃t(θ)|{X̃s(θ) : s < t}) =
1

γθ(0)2
.

The following formula holds:

− log

(
γθ(0)2

2π

)
=

1

2π

∫ π

−π
log fθ(λ) dλ.

Proof of Proposition 2.5.2: We have

∞∑
k=0

γθ(k)X̃t−k(θ) =
∞∑
d=0

(
d∑

k=0

γθ(k)aθ(d− k)

)
εt−d = εt, (2.5.5)

because for each d ≥ 0 it holds (using Parseval’s equality)

d∑
k=0

γθ(k)aθ(d− k) =
1

2π

∫ π

−π

1

Aθ(−λ)
· Aθ(−λ)eiλd dλ =

{
1, d = 0

0, else
.

(2.5.5) together with (2.5.1) implies that {X̃s(θ) : s < t} and {εs : s < t} generate the
same linear closed subspaces of the space of square-integrable random variables L2. In
the case of Gaussian εt, the linear prediction of X̃t(θ) given {X̃s(θ) : s < t} is

E[X̃t(θ)|{X̃s(θ) : s < t}] = − 1

γθ(0)

∞∑
k=1

γθ(k)X̃t−k(θ),
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the linear prediction error of X̃t(θ) given {X̃s(θ) : s < t} is

σ2
f := Var(X̃t(θ)|{X̃s(θ) : s < t}) = Var

(
εt

γθ(0)

)
=

1

γθ(0)2
.

By Kolmogorov’s formula (see Brockwell and Davis (1987), chapter 5.8 therein), we
have

− log
(
2πγθ(0)2

)
= log

(
σ2
f

2π

)
=

1

2π

∫ π

−π
log fθ(λ) dλ.

Proof of Proposition 2.1.2: Assume θ0(·) = θ with fixed θ ∈ Θ. If it holds that
at,n(k) = aθ(k), we have Xt,n = X̃t(θ) in this case. The negative log Gaussian condi-
tional likelihood of X̃t(θ) given the past has the form

`t,n(θ) =
1

2

(
X̃t(θ)− E[X̃t(θ)|{X̃s(θ) : s < t}]

)2

Var(X̃t(θ)|{X̃s(θ) : s < t})
+

1

2
log 2πVar(X̃t(θ)|{X̃s(θ) : s < t}).

Plugging in the results from Proposition 2.5.2, we obtain the claimed result.

2.5.3 The bias-variance decomposition of ∇Ln,b(u, θ0(u))

In this chapter, we prove a bias-variance decomposition for ∇Ln,b(u, θ0(u)).
For a function φ(u, λ) : [0, 1] × [−π, π] → C, let φ̂(u, k) := 1

2π

∫ π
−π φ(u, k)eiλk dλ

denote its Fourier coefficients with respect to λ. Define

φ̃(k) := max{ sup
u∈[0,1]

|φ̂(u, k)|, sup
u∈[0,1]

|φ̂(u,−k)|}.

Put r(u) = 1(0,1](u). We will use this function as a data taper, and X(r)
t,n := Xt,n · r( tn)

will denote the tapered version of Xt,n. Let c(u, k) denote the fourier coefficients of the
time-varying spectral density f(u, λ), i.e. c(u, k) =

∫ π
−π f(u, λ)eiλk dλ.

Lemma 2.5.3. Let Assumption 2.1.1 hold. Let φ1, φ2 : [0, 1]×[−π, π]→ C be functions
satisfying the following conditions:∑

k∈Z

V (φ̂i(·, k)) ≤ C1,
∑
k∈Z

φ̃i(k) ≤ C2, |k| · φ̃i(k) ≤ C3, |φi(u, λ)|∞ ≤ C4.

Here, the Ci (i = 1, 2, 3, 4) are constants not depending on k. Define

Ln(φ1, φ2) =
1

n

n∑
t=1

(
t−1∑
k1=0

φ̂1(t/n, k1)Xt−k1,n

)(
t−1∑
k2=0

φ̂2(t/n, k2)Xt−k2,n

)
.

Then, we have

ELn(φ1, φ2) =

∫ 1

0

∫ π

−π
f(v, λ)φ1(v, λ)φ2(v,−λ) dλ dv +R(1)

n .

with |R(1)
n | ≤ C

n
, where C does depend only on Ci (i = 1, 2, 3, 4), not on the specific

values of the functions φ1, φ2.
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Proof of Lemma 2.5.3: Throughout the proof, we use a generic constant C which does
only depend C1, C2, C3, C4 and not on the specific values of φi. Our proof uses similar
techniques as the proofs in the appendix of Dahlhaus and Polonik (2009). We can write

Ln(φ1, φ2) =
1

n

n∑
t=1

∑
k1,k2∈Z

φ̂1(t/n, k1)φ̂2(t/n, k2)X
(r)
t−k1,n

X
(r)
t−k2,n

.

Thus,

ELn(φ1, φ2) =
1

n

n∑
t=1

∑
k1,k2∈Z

φ̂1(t/n, k1)φ̂2(t/n, k2)Cov(X
(r)
t−k1,n

X
(r)
t−k2,n

). (2.5.6)

Under Assumption 2.1.1, the following inequalities were shown in Dahlhaus and Polonik
(2009) (Proposition 5.4):

n∑
t=1

∣∣∣∣∣Cov(X
(r)
t+k1,n

, X
(r)
t−k2,n

)− r
(
t

n

)2

· c
(
t

n
, k1 + k2

)∣∣∣∣∣ ≤ C

(
1 +

|k1|
χ(k1 + k2)

)
(2.5.7)∑

j∈Z

1

χ(j + k)χ(j)
≤ C

χ(k)
. (2.5.8)

V (c(·, k)) ≤ C

χ(k)
. (2.5.9)

where the constants C do not depend on n, k, k1, k2. We replace the covariances in
(2.5.6) by r(t/n)2c(t/n, k1 − k2) to get

1

n

n∑
t=1

r(t/n)2
∑

k1,k2∈Z

φ̂1(t/n, k1)φ̂2(t/n, k2)c(t/n, k1 − k2). (2.5.10)

with replacement error

C

n

∑
k1,k2∈Z

φ̃1(k1)φ̃2(k2)

(
1 +

|k1|
χ(k1 + k2)

)
≤ C

n

∑
k1∈Z

φ̃1(k1)
∑
k2∈Z

φ̃2(k2) +
CC3

n

∑
k2∈Z

φ̃2(k2)
∑
k1∈Z

1

χ(k1 + k2)
≤ C

n
.

Now we replace the sum over t in (2.5.10) by an integral. Because all terms dependent
on t/n have uniformly bounded variation, the replacement error is ≤ C/n again. In
total, we have shown that

ELn(φ1, φ2) =

∫ 1

0

∑
k1,k2∈Z

φ̂1(v, k1)φ̂2(v, k2)c(v, k1 − k2) dv +O(n−1)

=

∫ 1

0

∫ π

−π
φ1(v, λ)φ2(v,−λ)f(v, λ) dλ dv +O(n−1).
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Lemma 2.5.4. Let Assumption 2.1.1 hold. Let ψi : [−π, π] → C (i = 1, 2, 3, 4) be
functions with

|k| · |ψ̂i(k)| ≤ C1,
∑
k∈Z

|ψ̂i(k)| ≤ C2

and φ1, φ2 : [0, 1] → R functions with V (φi) ≤ C3, |φi|∞ ≤ C4 for some constants
C1, C2, C3, C4 > 0. Define

Ln(φ1, ψ1, ψ2) :=
1

n

n∑
t=1

φ1

(
t

n

)
·

(
t−1∑
k=0

ψ̂1(k)Xt−k,n

)
·

(
t−1∑
l=0

ψ̂2(l)Xt−l,n

)
, (2.5.11)

then we have

ELn(φ1, ψ1, ψ2) =

∫ 1

0

φ1(v)

∫ π

−π
f(v, λ) · ψ1(λ)ψ2(−λ) dλ dv +R(1)

n (2.5.12)

and

Cov(
√
nLn(φ1, ψ1, ψ2),

√
nLn(φ2, ψ3, ψ4))

= 2π

∫ 1

0

φ1(v)φ2(v) ·
∫ π

−π
f(v, λ)2 · ψ1(λ)ψ2(−λ)

[
ψ3(λ)ψ4(−λ) + ψ3(−λ)ψ4(λ)

]
dλ dv

+κ4

∫ 1

0

φ1(v)φ2(v)

(∫ π

−π
f(v, λ)ψ1(λ)ψ2(−λ) dλ

)
·
(∫ π

−π
f(v, λ)ψ3(λ)ψ4(−λ) dλ

)
dv

+R(2)
n , (2.5.13)

where |R(1)
n |, |R(2)

n | ≤ C
n
and the constant C depends only on C1, C2, C3, C4 and not on

the specific values of the functions φi, fi.

Proof of Lemma 2.5.4: Again, we use similar proof techniques as in Dahlhaus and
Polonik (2009), Lemma 5.6. Throughout the proof, we use a generic constant C which
does only depend C1, C2, C3, C4 and not on the specific values of fi, φi. Write

Ln(φ1, ψ1, ψ2) =
1

n

n∑
t=1

φ1

(
t

n

)
·
∑
k,l∈Z

ψ̂1(k)ψ̂2(l)X
(r)
t−k,nX

(r)
t−l,n

Discussion of the expectation: We have

ELn(φ1, ψ1, ψ2) =
1

n

∑
t,k,l

φ1

(
t

n

)
ψ̂1(k)ψ̂2(l)Cov(X

(r)
t−k,n, X

(r)
t−l,n). (2.5.14)

In (2.5.14) we replace Cov(X
(r)
t−k,n, X

(r)
t−l,n) by r( t

n
)2c( t

n
, k − l) to obtain

1

n

∑
t,k,l

φ1

(
t

n

)
r

(
t

n

)2

ψ̂1(k)ψ̂2(l)c

(
t

n
, k − l

)
(2.5.15)
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with replacement error (see 2.5.7)

C4

n

∑
k,l

|ψ̂1(k)| · |ψ̂2(l)|
(

1 +
|k|

χ(k − l)

)
≤ C4C1

n

∑
l

|ψ̂2(l)| ·
∑
k

1

χ(k − l)
+
C4

n

∑
k

|ψ̂1(k)|
∑
l

|ψ̂2(l)| ≤ C

n
.

All terms depending on t
n
in (2.5.15) have bounded variation, therefore we can replace

(2.5.15) by an integral with replacement error

C

n

(
‖φ1‖∞ + V (φ1)

)∑
k,l

|ψ̂1(k)||ψ̂2(l)| ≤ C

n

and obtain∫ 1

0

φ1(v)
∑
k,l

ψ̂1(k)ψ̂2(l)c(v, k − l) dv =

∫ 1

0

φ1(v)

∫ π

−π
f(v, λ) · ψ1(λ)ψ2(−λ) dλ dv.

Discussion of the variance: Recall φ̃(k) = max{|φ̂(k)|, |φ̂(−k)|} and define c̃(k) :=
supu∈[0,1] |c(u, k)|. Put

Ψ(s, t, k, l) := Ψ(s, t, k1, k2, l1, l2) := φ1

( s
n

)
φ2

(
t

n

)
· ψ̂1(k1)ψ̂2(k2)ψ̂3(l1)ψ̂4(l2),

Ψ̃(k, l) := C2
4 · ψ̃1(k1)ψ̃2(k2)ψ̃3(l1)ψ̃4(l2),

then we have:

Cov(
√
n∇iLn(φ1, ψ1, ψ2),

√
nLn(φ2, ψ3, ψ4))

=
1

n

∑
s,t,k1,k2,l1,l2

Ψ(s, t, k, l) · Cov(X
(r)
t−k1,n

X
(r)
t−k2,n

, X
(r)
s−l1,nX

(r)
s−l2,n). (2.5.16)

Now we use the formula for the fourth-order cumulant κ(X, Y, Z,W ) = E[XY ZW ] −
E[XY ]E[ZW ]− E[XZ]E[YW ]− E[XW ]E[Y Z] to write (2.5.16) as

1

n

∑
s,t,k1,k2,l1,l2

Ψ(s, t, k, l) ·
[

Cov(X
(r)
t−k1,n

, X
(r)
s−l1,n) · Cov(X

(r)
t−k2

, X
(r)
s−l2,n)

+Cov(X
(r)
t−k1,n

, X
(r)
s−l2,n) · Cov(X

(r)
t−k2,n

, X
(r)
s−l1,n)

+κ(X
(r)
t−k1,n

, X
(r)
t−k2,n

, X
(r)
s−l1,n, X

(r)
s−l2,n)

]
(2.5.17)

We look at the first summand. Define k3 := (t − s) − k1 + l1 = (t − k1) − (s − l1),
k4 := (t−s)−k2 + l2 = (t−k2)− (s− l2) = k3 +k1− l1−k2 + l2 and s = t−k1 + l1−k3,
then we can replace the first summand by

1

n

∑
k1,k2,l1,l2,k3,t=1

r

(
t

n

)4

·Ψ(t−(k1−l1+k3), t, k, l)·c
(
t

n
, k3

)
c

(
t

n
, k3 + k1 − l1 − k2 + l2

)
(2.5.18)
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with replacement error (using (2.5.7) and (2.5.8)), part one:
C

n

∑
k1,k2,l1,l2,k3

Ψ̃(k, l) · 1

χ(k3)

(
1 +

|k2|
χ(k3 + k1 + l1 + k2 + l2)

)
≤ C

n

∑
k1,k2,l1,l2

Ψ̃(k, l) ·
(

1 +
|k2|

χ(k1 + l1 + k2 + l2)

)
≤ C

n
.

and part two (replacing the second covariance) having the same form. Now we replace
Ψ(t− (k1 − l1 + k3), t, k, l) by Ψ(t, t, k, l) in (2.5.18) with replacement error

C

n

∑
k1,k2,l1,l2,k3

Ψ̃(k, l)c̃(k3)c̃(k3 + k1 − l1 − k2 + l2)

×
n∑
t=1

∣∣∣∣φ1

(
(t− (k1 + l1 − k3))

n

)
− φ1

(
t

n

)∣∣∣∣
≤ C

n

∑
k1,k2,l1,l2,k3

Ψ̃(k, l)
|k1|+ |l1|+ |k3|

χ(k3)χ(k3 + k1 − l1 − k2 + l2)
≤ C

n
.

Now change the sum over t in (2.5.18) to an integral. All terms that depend on t have
bounded variation, therefore the replacement error is again of order 1

n
. We obtain∫ 1

0

φ1(v)2 ·
∑

k1,k2,l1,l2,k3

ψ̂1(k1)ψ̂2(k2)ψ̂3(l1)ψ̂4(l2)c(v, k3)c(v, k3 + k1 − l1 − k2 + l2) dv

= 2π

∫ 1

0

φ1(v)2 ·
∫ π

−π
f(v, λ)2 · ψ1(λ)ψ2(−λ)ψ3(−λ)ψ4(λ) dλ dv.

The second term in (2.5.17) can be dealt with in the same way.
Cumulant term: Using the representation Xt,n =

∑
j∈Z at,n(t− j)εj, we get

1

n

∑
k1,k2,l1,l2,s,t

Ψ(s, t, k, l)κ(Xt−k1,n, Xt−k2,n, Xs−l1,n, Xs−l2,n)

=
κ4

n

∑
k1,k2,l1,l2,s,t

Ψ(s, t, k, l) · r
(
t− k1

n

)
r

(
t− k2

n

)
r

(
s− l1
n

)
r

(
s− l2
n

)
·∑

i∈Z

at−k1,n(t− k1 − i)at−k2,n(t− k2 − i)as−l1,n(s− l1 − i)as−l2,n(s− l2 − i)

(2.5.19)

Replacing h( t−k1

n
) by h( t

n
) gives the replacement error

C

n

∑
k1,k2,l1,l2

Ψ̃(k, l) ·
∑
t

∣∣∣∣r(t− k1

n

)
− r

(
t

n

)∣∣∣∣
·
∑
i

1

χ(t− k1 − i)χ(t− k2 − i)
∑
s

1

χ(s− l1 − i)χ(s− l2 − i)

≤ C

n

∑
k1,k2,l1,l2

Ψ̃(k, l) · |k1|
χ(k1 − k2)χ(l1 − l2)

≤ C

n
,
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All other replacements lead to similar bounds with k1, k2, l1, l2 in the nominator of the
next-to-last line. Now replace at−k1,n(t − k1 − i) in (2.5.19) by a( t−k1

n
, t − k1 − i) and

after that by a( t
n
, t− k1 − i). This leads to the replacement error (part 1)

C

n

∑
k1,k2,l1,l2

Ψ̃(k, l)
∑
t,i

∣∣∣∣at−k1,n(t− k1 − i)− a
(
t− k1

n
, t− k1 − i

)∣∣∣∣
· 1

χ(t− k2 − i)
∑
s

1

χ(s− l1 − i)χ(s− l2 − i)

≤ C

n

∑
k1,k2,l1,l2

Ψ̃(k, l) ·

(
sup
i

∑
t

∣∣∣∣at−k1,n(t− k1 − i)− a
(
t− k1

n
, t− k1 − i

)∣∣∣∣
)

·
∑
i

1

χ(t− k2 − i)
∑
s

1

χ(s− l1 − i)χ(s− l2 − i)

≤ C

n

∑
k1,k2,l1,l2

Ψ(k, l)
1

χ(l1 − l2)
≤ C

n
,

and with j := t− k1 − i and therefore i = t− k1 − j to the replacement error (part 2),

C

n

∑
k1,k2,l1,l2

Ψ̃(k, l)
∑
t,i

∣∣∣∣a(t− k1

n
, t− k1 − i

)
− a

(
t

n
, t− k1 − i

)∣∣∣∣
× 1

χ(t− k2 − i)
1

χ(l1 − l2)

≤ C

n

∑
k1,k2,l1,l2

Ψ̃(k, l)
∑
t,j

∣∣∣∣a(t− k1

n
, j

)
− a

(
t

n
, j

)∣∣∣∣ · 1

χ(k1 − k2 + j)

1

χ(l1 − l2)

≤ C

n

∑
k1,k2,l1,l2

Ψ̃(k, l)
∑
j

|k1|
χ(j)

1

χ(k1 − k2 + j)

1

χ(l1 − l2)

≤ C

n

∑
k1,k2,l1,l2

Ψ̃(k, l)
|k1|

χ(k1 − k2)χ(l1 − l2)
≤ C

n
.

Replacing the other terms in (2.5.19) lead to similar replacement errors. Therefore, we
have the new representation for the covariance (2.5.17)

κ4

n

∑
k1,k2,l1,l2,s,t

Ψ(s, t, k, l) · r
(
t

n

)2

r
( s
n

)2

·
∑
i

a

(
t

n
, t− k1 − i

)
a

(
t

n
, t− k2 − i

)
a
( s
n
, s− l1 − i

)
a
( s
n
, s− l2 − i

)
(2.5.20)

Now we replace a( s
n
, s− l1− i) by a( t

n
, s− l1− i). The replacement error can be written
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by (define d := s− t such that s = t+ d and j := i− t):

C

n

∑
k1,k2,l1,l2,s,t

Ψ(s, t, k, l)
∑
s,t,j

∣∣∣∣a(t+ d

n
, d− l1 − j

)
− a

(
t

n
, d− l1 − j

)∣∣∣∣
· 1

χ(k1 − j)χ(k2 − j)χ(d− l2 − j)

≤ C

n

∑
k1,k2,l1,l2,s,t

Ψ(s, t, k, l)
∑
d,j

|d|
χ(d− l1 − j)χ(d− l2 − j)χ(k1 − j)χ(k2 − j)

≤ C

n

∑
k1,k2,l1,l2,s,t

Ψ(s, t, k, l)
∑
d,j

|d− l1 − j|+ |j − k1|+ |k1|+ |l1|
χ(d− l1 − j)χ(d− l2 − j)χ(k1 − j)χ(k2 − j)

≤ C

n

∑
k1,k2,l1,l2,s,t

Ψ(s, t, k, l)

(
1 +

|k1|+ |l1|
χ(k1 − k2)χ(l1 − l2)

)
≤ C

n
.

Replacing r( s
n
) by r( t

n
) and Ψ(s, t, k, l) by Ψ(t, t, k, l) and so on gives similar replace-

ment errors (use the same substitutions). By first summing over s and then over i, we
obtain with c(u, k) =

∑
j∈Z a(u, j + k)a(u, j):

κ4

n

∑
k1,k2,l1,l2,s,t

Ψ(t, t, k, l) · r
(
t

n

)4

·
∑
i

a

(
t

n
, t− k1 − i

)
a

(
t

n
, t− k2 − i

)
a

(
t

n
, s− l1 − i

)
a

(
t

n
, s− l2 − i

)
=

κ4

n

∑
k1,k2,l1,l2,t

Ψ(t, t, k, l) · r
(
t

n

)4

· c
(
t

n
, l1 − l2

)
c

(
t

n
, k1 − k2

)

Replacing the sum by an integral (replacement error C
n
as before) gives:

κ4

∫ 1

0

φ1(v)φ2(v)
(∑
k1,k2

ψ̂1(k1)ψ̂2(k2)c(v, k1 − k2)
)
·
(∑
l1,l2

ψ̂3(l1)ψ̂4(l2)c(v, l1 − l2)
)
dv

= κ4

∫ 1

0

φ1(v)φ2(v)
(∫ π

−π
f(v, λ)ψ1(λ)ψ2(−λ) dλ

)
·
(∫ π

−π
f(v, λ)ψ3(λ)ψ3(−λ) dλ

)
dv.

We are now able to formulate the main result of this section:

Proposition 2.5.5 (The bias-variance decomposition of ∇Ln,b(u, θ0(u))). Let Assump-
tions 2.1.1, 2.2.1 and 2.2.2 hold. Then for each b ∈ Bn, there exists a decomposition

E |∇θLn,b(u, θ0(u))|2I(θ0(u))−1 = v(u, b) + |B(u, b)|2I(θ0(u))−1 , (2.5.21)
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where

v(u, h) =
µK
nb

[
d+ κ4

∣∣∣∣ 1

4π

∫ π

−π
∇θ log fθ0(u)(λ) dλ

∣∣∣∣2
I(θ0(u))−1

]
+ o((nb)−1) (2.5.22)

B(u, h) =
1

4π

1

b

∫ 1

0

K

(
v − u
b

)
·
∫ π

−π

(
f(v, λ)− f(u, λ)

)
· ∇θ(fθ0(u)(λ)−1) dλ dv

+O((nb)−1) (2.5.23)

uniformly in u ∈ [b/2, 1− b/2], b ∈ Bn with µK :=
∫
K(x)2 dx.

Furthermore it holds that

|B(u, b)|2I(θ0(u))−1 ≤ Cb2β + o((nb)−1)

uniformly in u ∈ [b/2, 1− b/2], b ∈ Bn. Moreover, if θ0 is twice continuously differen-
tiable (i.e. β ≥ 2), we have with dK :=

∫
x2K(x) dx:

|B(u, b)|2I(θ0(u))−1 =
b4

4
d2
K

∣∣∣∣ 1

4π

∫ π

−π
∂2
uf(u, λ) · ∇θ(fθ0(u)(λ)−1) dλ

∣∣∣∣2
I(θ0(u))−1

+o(b4) + o((nb)−1). (2.5.24)

uniformly in u ∈ [b, 1− b/2], b ∈ Bn.

Proof of Proposition 2.5.5: Obviously, we have a decomposition of the form (2.5.21)
with

B(u, b) := E[∇θLn,b(u, θ0(u))],

v(u, b) = E |∇θLn,b(u, θ0(u))− E[∇θLn,b(u, θ0(u))]|2I(θ0(u))−1 .

We use Lemma 2.5.4 component-wise with φ2(v) = φ1(v) = K
(
v−u
b

)
and

ψ3(λ) = ψ1(λ) = Aθ0(u)(λ)−1, ψ2(λ) = ∂θi
(
Aθ0(u)(λ)−1

)
, ψ4(λ) = ∂θj

(
Aθ0(u)(λ)−1

)
.

(2.5.25)
Note that V (φi) ≤ LK , where LK is the Lipschitz constant of the kernel function K,
and |φi|∞ ≤ |K|∞ := supu∈[0,1] |K(u)|. Furthermore, |k| · |ψ̂i(k)| and

∑
k∈Z |ψ̂i(k)| are

uniformly bounded in θ by Assumption 2.2.1. Note that
∫ 1

0
Kb(u − v) dv = 1 as long

as u ∈ [b/2, 1− b/2] since K has bounded support [−1
2
, 1

2
]. Thus, we obtain for the bias

term: B(u, b) = T1(u, b) + T2(u, b), where

T1(u, b) =
1

2

1

n

n∑
t=1

Kb

( t
n
− u
)
· ∇θ(− log(γθ0(u)(0)2))

= − 1

4π

∫ π

−π
fθ0(u)(λ) · ∇θ(fθ0(u)(λ)−1) dλ+O((nb)−1)
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uniformly in u ∈ [b/2, 1− b/2], b ∈ Bn, and

T2(u, b) = E

[
1

n

n∑
t=1

Kb

( t
n
− u
)
·

(
t−1∑
k=0

γθ(k)Xt−k,n

)
·

(
t−1∑
l=0

∇θγθ(k)Xt−k,n

)]
=

1

b
· E[Ln(φ1, ψ1, ψ2)]

=
1

4π

∫ 1

0

Kb(v − u)

∫ π

−π
f(v, λ) · ∇θ(fθ0(u)(λ)−1) dλ dv +O((nb)−1).

uniformly in u ∈ [b/2, 1 − b/2], b ∈ Bn. Therefore, B(u, b) has the form (2.5.23).
The estimation error for the bias term follows with the usual Taylor arguments from
nonparametric statistics: Since f(u, λ) = fθ0(u)(λ), we have that u 7→ f(u, λ) is lβ-times
differentiable. Here, we assume that β > 1, for the case 0 < β ≤ 1 the proof is easier.
By a Taylor expansion of f(v, λ), we obtain

T1(u, b) + T2(u, b)

=
1

4π

∫ 1

0

Kb(v − u) dv ·
∫ π

−π

lβ∑
k=1

∂kuf(u, λ) · (v − u)k · ∇θ(fθ0(u)(λ)−1) dλ

+
1

4π

∫ 1

0

Kb(v − u) ·
∫ π

−π

∫ 1

0

(
∂
lβ
u f(u+ s(v − u), λ)− ∂lβu f(u, λ)

)
· slβ−1

(lβ − 1)!
ds

×(v − u)lβ · ∇θ(fθ0(u)(λ)−1) dλ dv +O((nb)−1) (2.5.26)

The first term in (2.5.26) is zero since K is of order lβ, thus
∫ 1

0
Kb(v−u)(v−u)k dv = 0

for k = 1, ..., βl. By Faa di Bruno’s rule, we have

∂
lβ
u fθ0(u)(λ) =

∑
σ∈Π

∇|σ|θ fθ0(u)(λ)
[(
∂|D|u θ0(u)

)
D∈σ

]
,

where Π is the set of all partitions of the set {1, ..., lβ}, |σ| denotes the number of
elements of the partition σ and |D| denotes the number of elements of block D in
partition σ. Here, for A ∈ Rdp and vectors v1, ..., vp ∈ Rd, we define A

[
(vj)j=1,...,p

]
:=∑d

i1,...,ip=1Ai1,...,ipvi1 ·...·vip . We will not go into detail of this formula. Note that for σ =

{{1}, ..., {lβ}}, we obtain the summand ∇lβ
θ fθ0(u)(λ)

[
(∂uθ0(u))i=1,...,lβ

]
with the highest

derivative of θ 7→ fθ is obtained. By assumption, θ 7→ fθ(λ) is (lβ+1)-times continuously
differentiable. Since ∂lβ+1

θ fθ(λ) is continuous in both components and θ0 ∈ Σ(β, L), we
have |∇lβ

θ fθ0(u+s(v−u))(λ)
[
(∂uθ0(u+s(v−u)))i=1,...,lβ

]
−∇lβ

θ fθ0(u)(λ)
[
(∂uθ0(u))i=1,...,lβ

]
| ≤

C̃ · |v − u|β−lβ with some C̃ > 0. The other summands in ∂lβu fθ0(u)(λ) can be analyzed
in a similar way. Therefore, we obtain that the second term in (2.5.26) is bounded in
| · |2-norm by

C

4π(lβ − 1)!
·
∫ 1

0

Kb(v − u) ·
∫ π

−π
|v − u|β · |∇θ(fθ0(u)(λ)−1)|2 dλ ≤ C · bβ +O((nb)−1).
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with some C > 0. This leads to |B(u, b)|2I(θ0(u))−1 ≤ |B(u, b)|22|I(θ0(u))|spec ≤ Cb2β +

o((nb)−1). The special case for β = 2 is easily obtained from (2.5.26).
For the variance term we obtain

v(u, b) = E |∇θLn,b(u, θ0(u))− E[∇θLn,b(u, θ0(u))]|2I(θ0(u))−1

=
d∑

i,j=1

[
I(θ0(u))−1

]
ij
· Cov

(
∂θiLn,b(u, θ0(u)), ∂θjLn,b(u, θ0(u))

)
.

An application of Lemma 2.5.4 yields

Cov
(√

nb∂θiLn,b(u, θ0(u)),
√
nb∂θjLn,b(u, θ0(u))

)
=

1

b
Cov

(√
nLn(φ1, ψ1, ψ2),

√
nLn(φ2, ψ3, ψ4)

)
=

1

b
· 1

4π

∫ 1

0

K

(
v − u
b

)2

·
∫ π

−π

f(v, λ)2

fθ0(u)(λ)2
∂θi log fθ0(u)(λ) · ∂θj log fθ0(u)(λ) dλ dv

+
κ4

(4π)2
·
∫ 1

0

K

(
v − u
b

)2

·
(∫ π

−π
f(v, λ)∂θi(fθ0(u)(λ)−1) dλ

)
·
(∫ π

−π
f(v, λ)∂θj(fθ0(u)(λ)−1) dλ

)
dv +R(1)

n

where R(1)
n = O((nb)−1) uniformly in u ∈ [0, 1], b ∈ Bn. Because θ0 ∈ Σ(β, L), we can

replace f(v, λ) = fθ0(v)(λ) by fθ0(u)(λ) with replacement error R(2)
n = O(bβ) uniformly

in u ∈ [b/2, 1− b/2], b ∈ Bn (see the calculations regarding the bias above). Therefore,
we have using x′Ax = tr(Axx′) for matrices A and vectors x:

v(u, b) =
µK
nb
·

[
1

4π

∫ π

−π
(∇θ log fθ0(u)(λ))′ · I(θ0(u))−1 · (∇θ log fθ0(u)(λ)) dλ

+
κ4

(4π)2

∣∣∣∣∫ π

−π
f(u, λ)∇θ(fθ0(u)(λ)−1) dλ

∣∣∣∣2
I(θ0(u))−1

]
+

1

nb

(
R(1)
n +R(2)

n

)
=

µK
nb

[
d+ κ4

∣∣∣∣ 1

4π

∫ π

−π
∇θ log fθ0(u)(λ) dλ

∣∣∣∣2
I(θ0(u))−1

]
+

1

nb

(
R(1)
n +R(2)

n

)
.

Corollary 2.5.6 (MISE representation, integrated and summed Bias). Let Assump-
tions 2.1.1, 2.2.1 and 2.2.2 hold. Then we have uniformly in b ∈ Bn:

d∗M(θ̂b, θ0) = E[d∗I(θ̂b, θ0)] =
V0

nb
+B2(b) + o((nb)−1), (2.5.27)

E[d∗A(θ̂b, θ0)] =
V0

nb
+B2(b) + o((nb)−1). (2.5.28)
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where V0 is defined in (2.2.4) and the integrated bias is

B2(b) :=

∫ 1

0

|B(u, b)|2I(θ0(u))−1w(u) du.

Furthermore, with the discrete summed bias

B2
dis(b) :=

1

n

n∑
t=1

∣∣∣B( t
n
, b
)∣∣∣2

I(θ0(t/n))−1
w(t/n),

we have uniformly in b ∈ Bn,

B2(b)−B2
dis(b) = o((nb)−1). (2.5.29)

Furthermore it holds with a constant c0 > 0:

B2(b) ≥ c0

∫ 1

0

|B(u, b)|2w(u) du, B2
dis(b) ≥

c0

n

n∑
t=1

∣∣∣∣B( tn, b
)∣∣∣∣2w(t/n). (2.5.30)

Proof of Corollary 2.5.6: (2.5.27), (2.5.28) follow from Proposition 2.5.5, where we need
the bounded variation of θ0 and K to approximate the sums by integrals in (2.5.28)
and (2.5.29). The estimation (2.5.30) follows from the assumption that the smallest
eigenvalue of I(θ) is uniformly bounded from below by some 1

c0
, so that x′I(θ)−1x ≥

x′xc0.

2.5.4 Uniform convergence results and moment inequalities for
the local likelihood Ln,b(u, θ) and the maximum likelihood
estimator θ̂b(u)

In this section we show the uniform convergence of quadratic forms of the locally
stationary process Xt,n towards their expectations. We give convergence rates and
prove uniform consistency (w.r.t. u and b) of the maximum likelihood estimator θ̂b(u)
towards θ0(u).

Proposition 2.5.7 (Moment inequality). Let Assumption 2.1.1 hold. Let ψ1, ψ2 :
[−π, π]→ C be functions which fulfill for some constant C1 > 0:∑

k∈Z

|ψ̂i(k)| ≤ C1, i = 1, 2.

Let φ1 : [0, 1]→ R. Then it holds that (see (2.5.11) for the definition of Ln), p > 2:

‖Ln(φ1, ψ1, ψ2)− E[Ln(φ1, ψ1, ψ2)]‖p ≤
C̃

(1)
p C2

1

n
·

(
n∑
t=1

φ1

(
t

n

)2
)1/2

,

where C̃(1)
p is the constant from Lemma 2.5.12 which does not depend on the functions

ψ1, ψ2, φ1.
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Proof of Proposition 2.5.7: With the data taper r(x) = 1(0,1](x), we have

Ln(φ1, ψ1, ψ2) =
1

n

∞∑
k1,k2=0

ψ̂1(k1)ψ̂2(k2)
n∑
t=1

φ1

(
t

n

)
·X(r)

t−k1,n
X

(r)
t−k2,n

=
1

n

∞∑
k1,k2=0

ψ̂1(k1)ψ̂2(k2)
n∑
s=1

φ1

(
s+ min(k1, k2)

n

)
·X(r)

s,nX
(r)
s−|k2−k1|,n,

therefore we get from the triangle inequality and Lemma 2.5.12 below:

‖Ln(φ1, ψ1, ψ2)− E[Ln(φ1, ψ1, ψ2)]‖p

≤ 1

n

∞∑
k1,k2=0

|ψ̂1(k1)| · |ψ̂2(k2)|

·

∥∥∥∥∥∥
n−min(k,l)∑

s=1

φ1

(
s+ min(k1, k2)

n

)(
X(r)
s,nX

(r)
s−|k2−k1|,n − E[X(r)

s,nX
(r)
s−|k2−k1|,n]

)∥∥∥∥∥∥
p

≤ C̃
(1)
p

n

∞∑
k1,k2=0

|ψ̂1(k1)| · |ψ̂2(k2)|

×

(
n−min(k1,k2)∑

s=1

φ1

(
s+ min(k1, k2)

n

)2

r
( s
n

)2

r

(
s− |k1 − k2|

n

)2
)1/2

≤ C̃
(1)
p

n

( ∞∑
k1=0

|ψ̂1(k1)|
)
·
( ∞∑
k2=0

|ψ̂2(k2)|
)
·
( n∑
s=1

φ1

( s
n

)2 )1/2

≤ C̃
(1)
p C2

1

n

(
n∑
s=1

φ1

( s
n

)2
)1/2

.

Proposition 2.5.8 (Uniform convergence of likelihoods and its derivatives). Let As-
sumptions 2.1.1, 2.2.1 and 2.2.2 hold. For k = 0, 1, 2, 3, 4, we have for all 0 < α < 1

2
:

sup
b∈Bn

sup
u∈[0,1]

sup
θ∈Θ

(nb)
1
2
−α
∣∣∣∇k

θLn,b(u, θ)− E[∇k
θLn,b(u, θ)]

∣∣∣→ 0. (2.5.31)

Moreover, for u ∈ supp(w) and n large enough, we have

E[Ln,b(u, θ)] =
1

4π

∫ π

−π

{
log fθ(λ) +

f(u, λ)

fθ(λ)

}
dλ+O((nb)−1 + bβ),

E[∇θLn,b(u, θ)] =
1

4π

∫ π

−π

f(u, λ)− fθ(λ)

fθ(λ)
· ∇θ log fθ(λ) dλ+O((nb)−1 + bβ),

E[∇2
θLn,b(u, θ)] =

1

4π

∫ π

−π

f(u, λ)− fθ(λ)

fθ(λ)
· ∇2

θ log fθ(λ) dλ+ I(θ) +O((nb)−1 + bβ).
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Proof. In this proof, we will use C as a generic constant that may change from line
to line but is independent of θ, u, b, n. The term ∇k

θLn,b(u, θ) splits (up to determistic
terms) into summands of the form

Ln(φ1, ψ1, ψ2)

with φ(v) = φh,u(v) = 1
b
K
(
v−u
b

)
and, for example, ψ1 = ψ1,θ = ψ2 = ψ2,θ = 1

Aθ
for

Ln,b. We will show the stated convergence for Ln(φ1, ψ1, ψ2), then the assertion (2.5.31)
follows. We define

f(ξ) := Ln(φ1, ψ1, ψ2)− E[Ln(φ1, ψ1, ψ2)],

where ξ = (b, u, θ) ∈ Ξn := Bn× [0, 1]×Θ. For each r > 0, we can find a space Ξ′n with
#Ξ′n < cqn

q such that the compact space Ξn is approximated in the following way: for
each ξ = (b, u, θ) ∈ Ξn there is a ξ′ = (b′, u′, θ′) ∈ Ξ′n such that |ξ − ξ′|1 ≤ crn

−r. Then
we have for 0 < α < 1

2
,

P
(

sup
ξ∈Ξn

(nb)
1
2
−α|f(ξ)| > ε

)
≤ P

(
sup
ξ′∈Ξ′n

(nb)
1
2
−α|f(ξ′)| > ε

2

)
+ P

(
sup

ξ∈Ξn,ξ′∈Ξ′n,|ξ−ξ′|1≤crn−r
(nb)

1
2
−α|f(ξ)− f(ξ′)| > ε

2

)
=: In + IIn.

Our goal now is to bound In, IIn by absolutely summable sequences in n to apply
Borel-Cantelli’s lemma.

Because of Assumption 2.2.1 (see Lemma 2.5.1), the sums
∑∞

k=0 |ψ̂i(k)| ≤ C1,∑∞
k=0 |∇ψ̂i(k)| ≤ C1 (i = 1, 2) are uniformly bounded in θ. From Proposition 2.5.7

we obtain

‖f(ξ)‖p = ‖Ln(φ1, ψ1, ψ2)− ELn(φ1, ψ1, ψ2)‖p ≤
C ′′p
nb

(
n∑
t=1

K

( t
n
− u
b

)2
)1/2

≤ C(nb)−1/2.

We conclude that

sup
ξ∈Ξn

P
(

(nb)
1
2
−α|f(ξ)| > ε/2

)
≤ sup

ξ∈Ξn

(nb)
1
2
−α‖f(ξ)‖pp

(ε/2)p
≤
(
C

ε/2

)p
· sup
b∈Bn

[
(nb)−αp

]
≤ C · n−αδp,

and thus for p large enough,

In ≤ #Ξ′n · sup
ξ∈Ξn

P
(

(nb)
1
2
−α|f(ξ)| > ε/2

)
≤ C · nq−αδp

is bounded by an absolutely summable sequence in n.
Let us introduce some notation to simplify the proof for the second term IIn. Define
the Toeplitz matrix

Tn(ψ)jk :=

∫ π

−π
ψ(λ)eiλ(j−k) dλ,
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an set Gθ := Tn(ψ1), Hθ := Tn(ψ2). Put

Du,b =
1

b
diag

(
K
( t
n
− u
b

)
: t = 1, ..., n

)
.

Note that with X := (X1,n, ..., Xn,n)′ we have

Ln(φ1, ψ1, ψ2) = X ′G′θDu,bHθX.

Now we prove that such functions form a Lipschitz class with respect to Ξn = Bn ×
[0, 1]×Θ. The well-known inequalities |x′Ax| ≤ x′x·|A|spec and |AB|spec ≤ |A|spec|B|spec
give for ξ = (b, u, θ), ξ′ = (b′, u′, θ′) ∈ Ξn:

|X ′A′θDu,bBθX −X ′G′θ′Du′,b′Hθ′X|

≤ X ′X ·
[
|Gθ −Gθ′|2|Du,b|2|Hθ|spec + |Du,b −Du′,b′|spec|Gθ′|spec|Hθ|spec

+|Hθ −Hθ′|spec|Gθ′ |spec|Du′,b′ |spec
]

Now we give estimates for the terms appearing above. For Toeplitz matrices it holds
that |Tn(ψ)|spec ≤

∑
k∈Z |ψ̂(k)|. Uniformly in (b, u, θ) ∈ Ξn, we therefore have with

some constant C1 > 0,

|Du,b|spec ≤
K(0)

b
, |Gθ|spec, |Hθ|spec ≤ C1.

Furthermore, with some intermediate value θ̄ ∈ Θ and some constant C2 > 0,

|Gθ −Gθ′ |spec = |Tn(∇θψ1,θ̄ · (θ − θ′))|spec ≤ d · C2 · |θ − θ′|1,

the same holds for Hθ. Finally, note that

|Du,b −Du′,b′ |spec ≤ sup
v∈[0,1]

∣∣∣∣1bK
(
v − u
b

)
− 1

b′
K

(
v′ − u
b′

)∣∣∣∣ ≤ C

b3

(
|u− u′|+ |b− b′|

)
.

For the expectation ELn(φ1, ψ1, ψ2) of Ln(φ1, ψ1, ψ2), we can use the same bounds as
used above. We have shown that (keep in mind that b ≥ c0n

δ−1, see Assumption 2.2.2)

|f(ξ)− f(ξ′)| ≤ C(n) ·
(
X ′X + E[X ′X]

)
· |ξ − ξ′|1,

where the deterministic C(n) grows only polynomially fast in n. Choose r large enough
such that C(n)n−r = o(n−(1+γ)), then we have

IIn ≤ P
(
crC(n)n−r

(
X ′X + E[X ′X]

)
>
ε

2

)
≤ C

‖X ′X − E[X ′X]‖2
2

n2(1+γ)
+ P

(
Cn−(1+γ)E[X ′X] >

ε

2

)
≤ C

n1+2γ
+ P

(
Cn−(1+γ)E[X ′X] >

ε

2

)
.
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which is absolutely summable again (note that 1
n
X ′X = Ln(1, 1, 1), from that we

get the estimation ‖X ′X − E[X ′X]‖2
2 ≤ Cn from Proposition 2.5.7 and 1

n
E[X ′X] =∫ 1

0

∫ π
−π f(v, λ) dλ dv +O(n−1) from Lemma 2.5.4 ).
The second part of the assertion follows from Lemma 2.5.4 and the Hoelder conti-

nuity of θ0 which allows us to replace f(v, λ) by f(u, λ) with replacement error O(bβ)
uniformly in b, u, θ.

Lemma 2.5.9 (Uniform convergence of the leave-one-out likelihood). For k = 0, 1, 2, 3, 4
we have for all 0 < α < 1 almost surely

sup
s=1,...,n

sup
b∈Bn

sup
u∈[0,1]

sup
θ∈Θ

(nb)1−α
∣∣∣∇k

θLn,b,−s(u, θ)−∇k
θLn,b(u, θ)

∣∣∣→ 0.

Proof of Lemma 2.5.9: Because the structure of∇k
θLn,b(u, θ) is the same for k = 0, 1, 2, 3, 4,

we only look at the case k = 0. Here, for s = 1, ..., n we have

Ln,b(u, θ)− Ln,b,−s(u, θ) =
1

nb
K

( s
n
− u
b

)
`s,n(θ).

Since K is bounded, we have with φ1(k) = φ1,s(k) = 1{k≤s}
1

χ(s−k)
and using the results

from Proposition 2.5.1 and (2.5.8):

(nb) · |Ln,b(u, θ)− Ln,b,−s(u, θ)| ≤ C
(

1 +
s∑

k=1

X2
k,n

χ(s− k)

)
= C

(
1 + Ln(φ1,s, 1, 1)

)
.

As a consequence,

sup
s,b,u,θ

(nb)1−α|Ln,b(u, θ)−Ln,b,−s(u, θ)| ≤
C

nδα
+

C

nδα
sup

s=1,...,n
|Ln(φ1,s, 1, 1)−ELn(φ1,s, 1, 1)|

Application of Proposition 2.5.7 gives

‖Ln(φ1,s, 1, 1)− E[Ln(φ1,s, 1, 1)]‖p ≤ C ′′p

(
s∑

k=1

1

χ(s− k)2

)1/2

≤ C,

Thus for n large enough,

P( sup
s,b,u,θ

(nb)1−α|Ln,b(u, θ)− Ln,b,−s(u, θ)| > ε)

≤ n · sup
s=1,...,n

P
(
C

nδα
|Ln(φ1,s, 1, 1)− ELn(φ1,s, 1, 1)| > ε/2

)
≤ Cn1−δαp,

which is absolutely summable for p large enough and thus yields the result with Borel-
Cantelli’s lemma.
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Theorem 2.5.10 (Uniform strong consistency of the maximum likelihood estimator).
Let Assumptions 2.1.1, 2.2.1 and 2.2.2 hold. Define

L(u, θ) :=
1

4π

∫ π

−π

{
log fθ(λ) +

f(u, λ)

fθ(λ)

}
dλ.

Then it holds that

sup
b∈Bn

sup
u∈supp(w)

sup
θ∈Θ

∣∣∣Ln,b(u, θ)− L(u, θ)
∣∣∣→ 0 a.s.

and
sup
b∈Bn

sup
u∈supp(w)

∣∣∣θ̂b(u)− θ0(u)
∣∣∣→ 0 a.s. (2.5.32)

Proof. Use Proposition 2.5.8 for the uniform convergence of Ln,b. The identifiability
condition in Assumption 2.2.1 implies that L(u, θ) attains its local minimum at θ =
θ0(u) since

log
fθ(λ)

f(u, λ)
+
f(u, λ)

fθ(λ)
− 1 ≥

(
1− f(u, λ)

fθ(λ)

)
+
f(u, λ)

fθ(λ)
− 1 = 0

with equality if and only if θ = θ0(u) (here, we used the inequality log(x−1) ≥ 1− x).
Standard arguments provide the uniform convergence of θ̂b. For more details, we refer
to Chapter 3 and the proof of Theorem 3.3.2.

2.5.5 Bounds for moments of sums, quadratic and cubic forms
of covariates

The inequalities derived in this section are needed to prove the moment inequalities for
the local likelihoods and its derivatives in Section 2.5.4. The proofs of the following
two lemmata mimic ideas from Subba Rao (2010), Lemma 4.2 therein.

Lemma 2.5.11. Let Assumption 2.1.1 hold. Define ηt,k := Xt,nXt−k,n − E[Xt,nXt−k,n]
let Ft := σ(εs : s ≤ t) be the σ-algebra generated from εs, s ≤ t. For integers
t, j1, j2, j3, i1, i2 ≥ 0 and k, l,m ≥ 0, define

Mj1,k(t− j1) := E[ηt,k|Ft−j1 ]− E[ηt,k|Ft−j1−1],

Aj1,j2,i(t− j1 − i1) := E[Mj1,k(t− j1)Mj2,l(t− j1)|Ft−j1−i1 ]

−E[Mj1,k(t− j1)Mj2,l(t− j1)|Ft−j1−i1−1],

Bj1,j2,j3,i1,i2(t− j3 − i2) := E[Aj1,j2,i1(t− j3) ·Mj3,m(t− j3)| Ft−j3−i2 ]

−E[Aj1,j2,i1(t− j3) ·Mj3,m(t− j3)| Fs−j3−i2−1].

Define the absolutely summable sequence ψk(j) := 1
χ(j)

+ 1{j≥k}
1

χ(j−k)
. Fix some p > 2.

Then there exist constants C(i)
p > 0 (i = 1, 2, 3). dependent only on p, the moments of
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ε0 and the constant in (2.1.2) such that:

‖Mj1,k(t− j1)‖p ≤ C(1)
p · ψk(j1),

‖Aj1,j2,i1(t− j1 − i1)‖p ≤ C(2)
p · ψk(j1)ψl(j2) ·

(
ψk(j1 + i1) + ψl(j2 + i1)

)
,

‖Bj1,j2,j3,i1,i2(t− j3 − i2)‖p ≤ C(3)
p · ψk(j1)ψl(j2)ψm(j3) ·

(
ψk(j1 + i1) + ψl(j2 + i1)

)
·
(
ψk(j1 + i1 + i2) + ψl(j2 + i1 + i2) + ψm(j3 + i2)

)
.

Proof of Lemma 2.5.11: Let g(j) be a generic sequence (maybe dependent on t, n and
the indices j1, j2, j3, i1, i2) with the property |g(j)| ≤ C

χ(j)
uniformly in t, n and the

indices. Define a second generic sequence hk(j) := 1{j≥k}g(j − k). Furthermore, let
F>t denote a (generic) random variable with expectation 0 which is σ(εt+s : s > 0)-
measurable. Then we have

Xt,n = F>t−j1 +
∞∑
j=j1

g(j)εt−j, Xt−k,n = F>t−j1 +
∞∑
j=j1

hk(j)εt−j.

It follows

E[ηt,k|Ft−j1 ] =

(∑
j≥j1

g(j)εt−j

)(∑
j′≥j1

hk(j
′)εt−j′

)
− E[this term],

thus with the definition gk(j1, j) := g(j1)hk(j) + hk(j1)g(j), we have

Mj1,k(t− j1) = εt−j1
∑

j≥j1+1

gk(j1, j)εt−j + g(j1)hk(j1) · (ε2
t−j1 − 1). (2.5.33)

Recall the definition of ψk(j). Note that

|gk(j, j′)| = |g(j)hk(j
′) + hk(j)g(j′)| ≤ ψk(j)ψk(j

′).

Applying Rio (2009), Theorem 2.1 therein and the Hoelder inequality yields

‖Mj1,k(t− j1)‖p ≤ (2p− 1)1/2‖ε0‖2
2p ·

( ∑
j≥j1+1

gk(j1, j)
2

)1/2

+|g(j1)hk(j1)| · (‖ε0‖2
2p + 1)

≤ ψk(j1) · C2 ·
{
‖ε0‖2

2p ·
[
2C̃ · (2p− 1)1/2 + 1

]
+ 1
}

=: ψk(j1) · C(1)
p .

In the last line we used
(∑

j ψk(j)
2
)1/2

≤ 2
(∑

j
1

χ(j)2

)1/2

=: C̃. Using the formula
(2.5.33) with t+ j2 − j1 instead of t yields with j∗(j) := j − j1 + j2

Mj2,l(t− j1) = εt−j1
∑

j≥j1+1

gl(j2, j
∗)εt−j + g(j2)hl(j2) · (ε2

t−j1 − 1).
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Straightforward calculations reveal

Aj1,j2,i1(t− j1 − i1)

= εt−j1−i1
∑

j≥j1+i1+1

[
gk(j1, j)gl(j2, j2 + i1) + gk(j1, j1 + i1)gl(j2, j

∗)
]
εt−j

+E[ε3
0]
[
g(j1)hk(j1)gl(j2, j2 + i1) + g(j2)hk(j2)gk(j1, j1 + i1)

]
εt−j1−i

+(ε2
t−j1−i − 1)gk(j1, j1 + i1)gl(j2, j2 + i1). (2.5.34)

Using ∣∣∣gk(j1, j)gl(j2, j2 + i1) + gk(j1, j1 + i1)gl(j2, j
∗)
∣∣∣

≤ ψk(j1)ψl(j2)
[
ψk(j)ψl(j2 + i1) + ψk(j1 + i1)ψl(j

∗)
]
,

Rio (2009) (Theorem 2.1 therein), the Hoelder inequality, and x · (y− 1) ≤ 2(y− 1) ≤
y + (y − 2) ≤ y ⇔ xy ≤ x+ y for x, y ≤ 2 we obtain for the last term:

‖Aj1,j2,i1(t− j1 − i1)‖p ≤ ψk(j1)ψl(j2)
[
ψk(j1 + i1) + ψl(j2 + i1)

]
·C4 ·

{
‖ε0‖2

2p

{
(2p− 1)1/223/2C̃ + |Eε3

0|+ 1
}

+ 1
}

=: ψk(j1)ψl(j2)
[
ψk(j1 + i1) + ψl(j2 + i1)

]
· C(2)

p .

For the third inequality we will only look at the first term, the other terms can be
handled similar. First, we have from (2.5.34) with t− j3 + j1 + i1 instead of t:

Aj1,j2,i1(t− j3) = εt−j3
∑

j≥j3+1

gk(j1, j − j3 + j1 + i1)gl(j2, j2 + i1)εt−j + more terms,

thus for i2 ≥ 1, we have

E[Aj1,j2,i1(t− j3)Mj3(t− j3)|Ft−j3−i2 ]− E[Aj1,j2,i1(t− j3)Mj3(t− j3)]

=
∑

j,j′≥j3+i2

gk(j1, j − j3 + j1 + i1)gl(j2, j2 + i1)gm(j3, j
′)εt−jεt−j′ − E[this term]

+more terms,

and so

Bj1,j2,j3,i1,i2(t− j3 − i2)

= εt−j3−i2
∑

j≥j3+i2

[
gk(j1, j − j3 + j1 + i1)gl(j2, j2 + i1)gm(j3, j3 + i2)

+gk(j1, j1 + i1 + i2)gl(j2, j2 + i1)gm(j3, j)
]
εt−j + more terms,
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thus applying ‖ · ‖p and using

|gk(j1, j − j3 + j1 + i1)gl(j2, j2 + i1)gm(j3, j3 + i2)|
≤ ψk(j1)ψl(j2)ψm(j3)ψk(j − j3 + j1 + i1)ψl(j2 + i1)ψm(j3 + i2),

|gk(j1, j1 + i1 + i2)gl(j2, j2 + i1)gm(j3 + i2)|
≤ ψk(j1)ψl(j2)ψm(j3)ψk(j1 + i1 + i2)ψl(j2 + i1)ψm(j),

we get the bound as asserted.

Lemma 2.5.12. Let the definitions and assumptions of Lemma 2.5.11 hold. Let
bt,k, bs,t,k,l, bs,t,τ,k,l,m be deterministic constants (maybe dependent on n). Then we have
with constants C̃(i)

p only dependent on p and C(i)
p , i = 1, 2, 3, (see Lemma 2.5.11):∥∥∥∥∥

n∑
t=1

bt,k · ηt,k

∥∥∥∥∥
p

≤ C̃(1)
p ·

(
n∑
t=1

|bt,k|2
)1/2

,

∥∥∥∥∥
n∑

s,t=1

bs,t,k,l ·
(
ηs,kηt,l − E[ηs,kηt,l]

)∥∥∥∥∥
p

≤ C̃(2)
p ·

(
n∑

s,t=1

|bs,t,k,l|2
)1/2

,

∥∥∥∥∥
n∑

s,t,τ=1

bs,t,τ,k,l,m ·
(
ηs,kηt,lητ,m − E[ηs,kηt,lητ,m]

)∥∥∥∥∥
p

≤ C̃(3)
p ·

(
n∑

s,t,τ=1

|bs,t,τ,k,l,m|2
)1/2

.

Proof of Lemma 2.5.12: We start by showing the first inequality. From Lemma 2.5.11,
we have ‖Mj1,k(t− j1)‖p ≤ C

(1)
p ψk(j1) and therefore

ηt,k =
∞∑
j1=0

Mj1,k(t− j1) a.s. (2.5.35)

Note that (Mj1,k(t− j1))t are martingale differences w.r.t. (Ft−j1)t, so we can use Rio
(2009), Theorem 2.1 therein, to get∥∥∥∥∥

n∑
t=1

bt,kηt,k

∥∥∥∥∥
p

≤
∞∑
j1=0

∥∥∥∥∥
n∑
t=1

bt,kMj1,k(t− j1)

∥∥∥∥∥
p

≤ (p− 1)1/2

∞∑
j1=0

(
n∑
t=1

|bt,k|2 ‖Mj1,k(t− j1)‖2
p

)1/2

≤ (p− 1)1/2C(1)
p

∞∑
j1=0

ψk(j1)

(
n∑
t=1

|bt,k|2
)1/2

≤ C̃(1)
p

(
n∑
t=1

|bt,k|2
)1/2

,

where C̃(1)
p := 2(p− 1)1/2C

(1)
p C̃2, and C̃2 :=

∑
j∈Z

1
χ(j)

.
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To show the second inequality, we again use the representation (2.5.35) to get the
upper bound∥∥∥∥∥

n∑
s,t=1

bs,t,k,l

(
ηs,kηt,l − E[ηs,kηt,l]

)∥∥∥∥∥
p

=

∥∥∥∥∥
∞∑

j1,j2=0

n∑
s,t=1

bs,t,k,l

(
Mj1,k(s− j1)Mj2,l(t− j2)− E[Mj1,k(s− j1)Mj2,l(t− j2)]

)∥∥∥∥∥
p

≤ I + II + III1 + III2,

where

I =
∞∑

j1,j2=0

∥∥∥∥∥
n∑
s=1

∑
t<s−j1+j2

bs,t,k,lMj1,k(s− j1)M
(2)
j2,l

(t− j2)

∥∥∥∥∥
p

,

III1 =

∥∥∥∥∥
∞∑

j1,j2=0,j1≥j2

n∑
s=1,s≥j1−j2

bs,s−j1+j2,k,l

(
Mj1,k(s− j1)Mj2,l(s− j1)− E[Mj1,k(s− j1)Mj2,l(s− j1)]

)∥∥∥∥∥
p

,

and II has the same form as I with reversed roles for s, t. III1, III2 are obtained by
splitting the case s − j1 = t − j2 in the two subcases t ≤ s and t > s, thus III2 has a
similar form like III1. We first discuss I. Note that

A(j1,j2)
s := Mj1,k(s− j1) ·

∑
t<s−j1+j2

bs,t,k,lMj2,l(t− j2)

is a martingale difference sequence w.r.t. (Fs−j1)s. Using again Rio (2009), Theorem
2.1, the Cauchy Schwarz inequality, and the result from Lemma 2.5.11, we get

∥∥∥ n∑
s=1

A(j1,j2)
s

∥∥∥
p

≤ (p− 1)1/2
( n∑
s=1

‖A(j1,j2)
s ‖2

p

) 1
2

≤ (p− 1)1/2
( n∑
s=1

‖Mj1,k(s− j1)‖2
2p ·
∥∥∥ ∑
t<s−j1+j2

bs,t,k,lMj2,l(t− j2)
∥∥∥2

2p

)1/2

≤ (p− 1)1/2(2p− 1)1/2
( n∑
s=1

‖Mj1,k(s− j1)‖2
2p ·

∑
t<s−j1+j2

|bs,t,k,l|2 · ‖Mj2,l(t− j2)‖2
2p

)1/2

≤ (p− 1)1/2(2p− 1)1/2(C
(1)
2p )2

( n∑
s,t=1

|bs,t,k,l|2
)
· ψk(j1)ψl(j2).
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so that

I =
∞∑

j1,j2=0

∥∥∥ n∑
s=1

A(j1,j2)
s

∥∥∥
p
≤ Dp ·

( n∑
s,t=1

|bs,t,k,l|2
)
,

where Dp := 4C̃2
2(p − 1)1/2(2p − 1)1/2(C

(1)
2p )2. The argumentation for II is the same.

For III1, we use an upper bound for ‖Aj1,j2,i(s− j1− i)‖p from Lemma 2.5.11 to obtain

(
Mj1,k(s− j1)Mj2,l(s− j1)−E[Mj1,k(s− j1)Mj2,l(s− j1)]

)
=
∞∑
i=0

Aj1,j2,i(s− j1− i) a.s.

where (Aj1,j2,i(s− j1 − i))t are martingale differences w.r.t. (Fs−j1−i)s. So we get with
the same methods as before

III1 =
∥∥∥ ∞∑
j1,j2=0,j1−j2≥0

b∑
s=1,s≥j1−j2

bs,s−j1+j2,k,l

∞∑
i=0

Aj1,j2,i(s− j1 − i)
∥∥∥
p

≤
∞∑

j1,j2=0,j1−j2≥0

∞∑
i=0

∥∥∥ n∑
s=1,s≥j1−j2

bs,s−j1+j2,k,lAj1,j2,i(s− j1 − i)
∥∥∥
p

≤ (p− 1)1/2

∞∑
j1,j2=0,j1−j2≥0

∞∑
i=0

( n∑
s=1,s≥j1−j2

|bs,s−j1+j2,k,l|2‖Aj1,j2,i(s− j1 − i)‖2
p

)1/2

≤ (p− 1)1/2C(2)
p

∞∑
i,j1,j2=0,j1−j2≥0

ψk(j1)ψl(j2) ·

(
ψk(j1 + i) + ψl(j2 + i)

)
·
( n∑
s=1,s≥j1−j2

|bs,s−j1+j2,k,l|2
)1/2

≤ Ep sup
d=0,...,n−1

( n∑
s=d+1

|bs,s−d,k,l|2
)1/2

≤ Ep

( n−1∑
d=0

n∑
s=d+1

|bs,s−d,k,l|2
)1/2

≤ Ep

( n∑
s,t=1

|bs,t,k,l|2
)1/2

,

where Ep := 16(p − 1)1/2C
(2)
p C̃3

2 . The same argumentation can be done for III2. In
total, we proved the second inequality with C̃

(2)
p := Dp + Ep. The proof of the third

inequality follows the same lines, but further case distinctions are needed.

2.5.6 Proofs of the statements in Section 2.2

Here, we give the proofs of the Lemmas and Corollaries from Section 2.2. We start
with the proof of Lemma 2.2.9 which is maybe the most important part. For this
proof, we need a more detailed analysis of the behavior of `t,n(θ) and its derivatives
if the true parameter θ = θ0(t/n) is plugged in. This results are formulated in the
following lemma.
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Lemma 2.5.13 (Detailed analysis of `t,n(θ)). Suppose that Assumption 2.2.1 holds.
Then there exists a decomposition

∇`t,n(θ0(t/n)) = MDS(1)
t +R

(1)
t (2.5.36)

with a martingale difference sequence MDS(1)
t := εt∇dt,n(θ0(t/n)) − ∇γθ0(t/n)(0)at,n(0)

with respect to Ft := σ(εs : s ≤ t) (the σ-algebra generated from εs, s ≤ t), and some
random variable R(1)

t . Furthermore, there exists a constant C̃ > 0 independent of n
such that

n∑
t=1

|E∇`t,n(θ0(t/n))|1 ≤ C̃,
n∑
t=1

|∇2`t,n(θ0(t/n))− I(θ0(t/n))|1 ≤ C̃. (2.5.37)

Proof of Lemma 2.5.13: In this proof, C is a generic constant independent of n which
may change its value from line to line. Note that

∇`t,n(θ) = dt,n(θ) · ∇dt,n(θ)− ∇γθ(0)

γθ(0)
,

∇2`t,n(θ) =
(
∇dt,n(θ) · ∇dt,n(θ)′ +

∇γθ(0) · ∇γθ(0)′

γθ(0)2

)
+
(
dt,n(θ) · ∇2dt,n(θ)− ∇

2γθ(0)

γθ(0)

)
.

Note that by Proposition 2.5.2, we have εt =
∑∞

k=0 γθ0(u)(k)X̃t−k(θ0(u)). Using this
representation for u = t/n gives

dt,n(θ0(t/n)) = εt +Rt,

where Rt := −
∑∞

k=t γθ0(t/n)(k)Xt−k,n +
∑∞

k=0 γθ0(t/n)(k) ·
(
Xt−k,n − X̃t−k

(
θ0( t

n
)
))

. Fur-
thermore, since γθ(0) = aθ(0)−1, we have that

∇dt,n(θ) =
∇γθ(0)

γθ(0)
εt +∇γθ(0)

(
at,n(0)− aθ(0)

)
εt +R

(2)
t ,

where R(2)
t = ∇dt,n(θ) − ∇γθ(0)

γθ(0)
εt − ∇γθ(0)(at,n(0) − aθ(0)) ∈ Ft−1. This shows that

there is a decomposition of the form (2.5.36) into a martingale difference sequence
MDS(1)

t :=
(
ε2
t−1

)∇γθ0(t/n)(0)

γθ0(t/n)(0)
+εtR

(2)
t = εt∇dt,n(θ0(t/n))−∇γθ0(t/n)(0)at,n(0) and R(1)

t :=

∇γθ0(t/n)(0)(at,n(0) − a(t/n, 0))ε2
t + Rt · ∇dt,n(θ0(t/n)). Since Cov(Xt−k,n, Xt−l,n) ≤

C
χ(k−l) ,

|Cov(Xt−k,n − X̃t−k(θ0(t/n)), Xt−l,n)| ≤ C
∞∑
k1=0

∣∣at−k,n(k1)− a(t/n, k1)
∣∣ 1

χ(k + k1 − l)

and
∑n

t=1 |at−k,n(k1)− a
(
t−k
n
, k1)|+

∑n
t=1 |a

(
t−k
n
, k1

)
− a(t/n, k1)

∣∣ ≤ C(1 + |k|
χ(k1)

) by the

54



results of Lemma 2.5.1, we conclude that component-wise:
n∑
t=1

|E∇`t,n(θ0(t/n))|

≤ C
n∑
t=1

∞∑
k=t

∞∑
l=0

1

χ(k)χ(l)
Cov(Xt−k,n, Xt−l,n)

+C
n∑
t=1

∞∑
k,l=0

1

χ(k)χ(l)
Cov(Xt−k,n − X̃t−k

(
θ0(t/n)

)
, Xt−l,n)

+C ·
n∑
t=1

|at,n(0)− a(t/n, 0)|

≤ C ·
n∑
t=1

1

χ(t)

∞∑
k,l=0

1

χ(l)χ(k − l)
+ C

∞∑
k1,k,l=0

|k|
χ(k)χ(l)χ(k + k1 − l)χ(k1)

+ C ≤ C.

With exactly the same arguments we can show that
n∑
t=1

∣∣dt,n(θ0(t/n)) · ∇2dt,n(θ0(t/n))−
∇2γθ0(t/n)(0)

γθ0(t/n)(0)

∣∣ ≤ C.

In addition, similar calculations as above show that
n∑
t=1

|∇dt,n(θ0(t/n)) · ∇dt,n(θ0(t/n))′ −
∞∑

l,k=0

∇γθ0(t/n)(k)∇γθ0(t/n)(l)
′c(t/n, k − l)| ≤ C.

Since
∞∑

l,k=0

∇γθ0(t/n)(k)∇γθ0(t/n)(l)
′c(t/n, k − l)

=

∫ π

−π
∇(Aθ0(t/n)(−λ)−1) · ∇(Aθ0(t/n)(−λ)−1) · f(t/n, λ) dλ,

we obtain the second result in (2.5.37).

Proof of Lemma 2.2.9. In this proof we will use C as a generic constant which may
change its value from line to line but does not depend on b, n, u. To keep the notation
simple, let us use the abbreviations θ̂ := θ̂b,−t(u), θ0 := θ0(u) and L(·) := Ln,b,−t(u, ·).
The general idea of the proof is to use Taylor expansions in the nominator of (2.2.8)
to separate the expression into terms where we can use Proposition 2.5.8, Lemma
2.5.9, Theorem 2.5.10 and the continuity of I(·) to show that these terms are of lower
order than d∗M(θ̂b, θ0) and into terms where we have to calculate expectations and use
continuity arguments to show the same. First use a third-order Taylor expansion to
write

`t,n(θ̂)− `t,n(θ0) = ∇`t,n(θ0) · (θ̂ − θ0) + |θ̂ − θ0|2∇2`t,n(θ0) + |θ̂ − θ0|3∇3`t,n(θ̄1), (2.5.38)
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where θ̄1(u) ∈ Θ is some intermediate value with |θ̄1 − θ0|2 ≤ |θ̂ − θ0|2. Using (2.5.38),
we obtain the decomposition

CV (b)− 1

n

n∑
t=1

`t,n

(
θ0

( t
n

))
w(t/n)− dA(θ̂b, θ0)

=
1

n

n∑
t=1

∇`t,n(θ0(t/n)) · (θ̂b,−t(t/n)− θ0(t/n))w(t/n)

+
1

n

n∑
t=1

|θ̂b,−t(t/n)− θ0(t/n)|2∇2`t,n(θ0(t/n)−I(θ0(t/n))w(t/n)

+
1

n

n∑
t=1

|θ̂b,−t(t/n)− θ0(t/n)|3∇3`t,n(θ̄1(t/n))w(t/n). (2.5.39)

In view of Corollary 2.5.6, it is enough to show that each term of (2.5.39) is almost
surely of order o((nb)−1 + B2(b)) or o((nb)−1/2B(b)), respectively. We will discuss the
three terms in (2.5.39) separately.
Third term in (2.5.39): Note that θ0(u) is in the interior of Θ for all u ∈ supp(w).
Because of Theorem 2.5.10 it follows that supb∈Bn supu∈supp(w) |∇Ln,b(u, θ̂b(u))|2 = 0 for
n large enough. Using a second-order Taylor argument, we obtain

θ̂ − θ0 = −
(
∇2L(θ̄2)

)−1 · ∇L(θ0). (2.5.40)

with some intermediate value θ̄2 ∈ Θ which fulfills |θ̄2 − θ0| ≤ |θ̂ − θ0|. We know
from Proposition 2.5.8, Lemma 2.5.9, Theorem 2.5.10 and the continuity of I(·) that
∇2Ln,b,−t(u, θ̄2(u)) → I(θ0(u)) uniformly in b ∈ Bn, u ∈ supp(w). Together with
(2.5.40), for n large enough, the third term in (2.5.39) is bounded by

C

n

n∑
t=1

|∇3`t,n(θ̄1(t/n))|1 · |∇Ln,b,−t(t/n, θ0(t/n))|3w(t/n)

≤ C · sup
u∈supp(w)

sup
t=1,...,n

|∇Ln,b,−t(u, θ0(u))−B(u, b)|3 · 1

n

n∑
t=1

|∇3`t,n(θ̄1(t/n))|1

+
C

n

n∑
t=1

|∇3`t,n(θ̄1(t/n))|1 · |B(t/n, b)|3w(t/n). (2.5.41)

It is easily seen that

1

n

n∑
t=1

|∇3`t,n(θ̄1(t/n))|1 ≤ C

(
1 +

1

n

n∑
t=1

X2
t,n

)
is bounded a.s. (see the results of Proposition 2.5.7 and use a Borel-Cantelli argument),
thus the first term in (2.5.41) is of order O((nh)3/2−α) with arbitrary α > 0 (see
Proposition 2.5.8 and Lemma 2.5.9). Define Zt :=

∑t−1
k=0

X2
t−k
χ(k)

. Zt fulfils

|∇3`t,n(θ̄1(t/n))|1 ≤ C(1 + Zt),
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and we can estimate the second term in (2.5.41) by

C

n

n∑
t=1

(Zt − EZt) · |B(t/n, b)|3w(t/n) +
C

n

n∑
t=1

|B(t/n, b)|3w(t/n) (2.5.42)

The second term in (2.5.42) is of order o(B2(b)). Define the abbreviation gb(l/n) :=∑n
t=l

1
χ(t−l) |B(t/n, b)|3w(t/n), then the first term in (2.5.42) has the representation

1

n

n∑
t=1

(Zt − EZt) · |B(t/n, b)|3w(t/n) = Ln(gb, 1, 1)− E[Ln(gb, 1, 1)]

and it is easy to see that this is of order O(n−1/2B(b)), use the notation and the same
method for the proof as done for (2.5.48) below.
Second term in (2.5.39): The second term can be written as

1

n

n∑
t=1

|I(θ0(t/n))−1∇Ln,b,−t(t/n, θ0(t/n))|2∇2`t,n(θ0(t/n))−I(θ0(t/n)) +Rn (2.5.43)

where

|Rn| ≤
C

n

n∑
t=1

|∇2`t,n(θ0(t/n))− I(θ0(t/n))|1 · |∇Ln,b,−t(t/n, θ0(t/n))|2

·
∣∣[∇2Ln,b,−t(t/n, θ̄1(t/n))]−1 − I(θ0(t/n))−1

∣∣
2
.

Again, with Proposition 2.5.8, Lemma 2.5.9, Theorem 2.5.10 and the continuity of I(·)
we can show that this term is of order o((nb)−1 + B2(b)) with the same methods used
for the third term of (2.5.39).
First term in (2.5.39): Using a fourth-order taylor argument, we have

1

n

n∑
t=1

∇`t,n(θ0(t/n)) · (θ̂ − θ0)

= − 1

n

n∑
t=1

∇`t,n(θ0(t/n)) · ∇2L(θ0)−1 ·
[
∇L(θ0) + |θ̂ − θ0|2∇3L(θ0) + |θ̂ − θ0|3∇4L(θ̄3)

]
(2.5.44)

with some intermediate value θ̄3(u) ∈ Θ with |θ̄3 − θ0| ≤ |θ̂ − θ0|. The last term in
(2.5.44) can be bounded via

1

n

∣∣∣∣∣
n∑
t=1

∇`t,n(θ0(t/n)) · (∇2Ln,b,−t(t/n, θ0(t/n)))−1 · |θ̂b,−t(t/n)− θ0(t/n)|3∇4L(θ̄3(t/n))

∣∣∣∣∣
≤ 1

n

n∑
t=1

|∇`t,n(θ0(t/n))|1 · |θ̂b,−t(t/n)− θ0(t/n)|3 · |∇4Ln,b,−t(t/n, θ̄3(t/n))|2

·|(∇2Ln,b,−t(t/n, θ0(t/n)))−1|2.
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Again, this can be handled like the third term in (2.5.39).
The second term in (2.5.44) can be handled as follows: First replace ∇3L(θ0) by
E[∇3L(θ0)], then θ̂ − θ0 by I(θ0)−1∇L(θ0) and after that ∇2L(θ0)−1 by I(θ0)−1. The
replacement errors again can be handled like the third term in (2.5.39), only

1

n

n∑
t=1

∇`t,n(θ0(t/n))·I(θ0(t/n))−1·|I(θ0(t/n))−1∇Ln,b,−t(t/n, θ0(t/n))|2E[∇3Ln,b,−t(t/n,θ0(t/n))]

(2.5.45)
ist left. For the first term in (2.5.44) use the expansion

[∇2L(θ0)]−1 = [∇2L(θ0)]−1 ·
[
E[∇2L(θ0)]−∇2L(θ0)

]
· E[∇2L(θ0)]−1 + E[∇2L(θ0)]−1

and we get the two terms

1

n

n∑
t=1

∇`t,n(θ0(t/n)) · E[∇2Ln,b,−t(t/n, θ0(t/n))]−1 · ∇Ln,b,−t(t/n, θ0(t/n)) (2.5.46)

and

1

n

n∑
t=1

∇`t,n(θ0(t/n)) ·
[
E[∇2Ln,b,−t(t/n, θ0(t/n))]−∇2Ln,b,−t(t/n, θ0(t/n))

]
·E[∇2Ln,b,−t(t/n, θ0(t/n))]−1 · ∇Ln,b,−t(t/n, θ0(t/n)), (2.5.47)

where we replaced [∇2L(θ0)]−1 by E[∇2L(θ0)]−1 in the last term (replacement error
handled as before).

In the last step we have to show that (2.5.43), (2.5.45), (2.5.46) and (2.5.47) fulfil
supb∈Bn

∣∣∣ term
d∗M (θ̂b,θ0)

∣∣∣→ 0. We will do this in a little bit more abstract way. All terms we
have to discuss are finite sums (i.e., not more than C = C(d) terms, where d is the
dimension of the parameter space) of the form

1

n

n∑
t=1

w(t/n) · ft · x(1)
t · x

(2)
t · x

(3)
t , (2.5.48)

where ft is deterministic and bounded uniformly in t, n, b, and x(i)
t are random variables.

More precisely, we have with j1, j2, j3, j4 ∈ {1, ..., d}:

x
(1)
t = ∂j1`t,n(θ0(t/n)), x

(2)
t = ∂j2Ln,b,−t(t/n, θ0(t/n)), x

(3)
t = 1, (2.5.49)

x
(1)
t = 1, x

(2)
t = ∂j1Ln,b(t/n, θ0(t/n)), x

(3)
t = ∂j2Ln,b(t/n, θ0(t/n)), (2.5.50)

x
(1)
t = (∂j1∂j2`t,n(θ0(t/n))− I(θ0(t/n))j1,j2), x

(2)
t = ∂j3Ln,b,−t(t/n, θ0(t/n)),

x
(3)
t = ∂j4Ln,b,−t(t/n, θ0(t/n)), (2.5.51)

x
(1)
t = ∂j1`t,n(θ0(t/n)), x

(2)
t = ∂j2Ln,b,−t(t/n, θ0(t/n)),

x
(3)
t = ∂j3Ln,b,−t(t/n, θ0(t/n)), (2.5.52)

x
(1)
t = ∂j1`t,n(θ0(t/n)), x

(2)
t = ∂j2Ln,b,−t(t/n, θ0(t/n)),

x
(3)
t = ∂j3∂j4Ln,b,−t(t/n, θ0(t/n))− E[∂j3∂j4Ln,b,−t(t/n, θ0(t/n))].(2.5.53)
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Here, (2.5.50) does not appear in the calculations above but in the proof of Lemma
2.2.6. Since the structure is the same as the terms which appear above, we discuss it
here. Note that for this case, the deterministic term in (2.5.54) must not be discussed
since the exspecations were already subtracted before.

Our goal is to show that the sum (2.5.48) has order o(d∗M(θ̂b, θ0)) = o((nb)−1+B2(b))
uniformly in b ∈ Bn. This is done with the same technique used in the proof of
Proposition 2.5.8. First, we will show that each term of the form 2.5.48 fulfils ‖term‖p ≤
Cn−τp with some τ > 0 independent of p. In the second step we will show that the
random terms have a Hoelder continuity property with respect to b ∈ Bn. We use the
decomposition (where j, k ∈ {1, 2, 3}\{i} are the two indices which are not i):

x
(1)
t x

(2)
t x

(3)
t = (x

(1)
t − E[x

(1)
t ])(x

(2)
t − E[x

(2)
t ])(x

(3)
t − E[x

(3)
t ])

+
3∑
i=1

E[x
(i)
t ](x

(j)
t − E[x

(j)
t ])(x

(k)
t − E[x

(k)
t ])

+
3∑
i=1

E[x
(j)
t ]E[x

(k)
t ](x

(i)
t − E[x

(i)
t ])

+E[x
(1)
t ]E[x

(2)
t ]E[x

(3)
t ]. (2.5.54)

Deterministic term in (2.5.54): It is easy to see that E[x
(2)
t ],E[x

(3)
t ] are bounded

uniformly in t, b, n; moreover we have that
∑n

t=1 |E[x
(1)
t ]| is bounded in b, n since by

Lemma 2.5.13 (note again that we do not have to consider x(1)
t = 1). Thus,

1

n

n∑
t=1

w(t/n)ftE[x
(1)
t ]E[x

(2)
t ]E[x

(3)
t ] = O(n−1).

Terms with one random variable in (2.5.54): we observe that these terms have
the form

Fn :=
1

n

∞∑
k1,k2=0

n∑
t=1

gt(k1, k2) · r
(t− k1

n

)
r
(t− k2

n

)
· ηt−min(k1,k2),|k1−k2|,

where gt = gt(k1, k2) is deterministic (defined later), r(x) = 1(0,1](x) is a data taper
and ηt is defined in Lemma 2.5.11. Therefore, by Lemma 2.5.12,

‖Fn‖p ≤
C

n

∞∑
k1,k2=0

( n∑
t=1

gt(k1, k2)2
)1/2

.

If i = 1, then gt is of the form

gt = w(t/n)ftE[x
(j)
t ]E[x

(k)
t ]φ̂1(t/n, k1)φ̂2(t/n, k2) (2.5.55)

where at least one of the expectations has the form Bj(t/n, b) + O((nb)−1), and the
other expectation is bounded. Therefore, in this case we have with Lemma 2.5.12

‖Fn‖p ≤
C

n

( n∑
t=1

w(t/n)|B(t/n, b)|2
)1/2

+ C
b1/2

nb
≤ 1

n1/2
B(b) + C

b1/2

nb
. (2.5.56)
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If i 6= 1, then gt is of the form

gt =
n∑
s=1

w(s/n)fsE[x(1)
s ]E[x(j)

s ]
1

nb
K

(
t− s
nb

)
φ̂1(s/n, k1)φ̂2(s/n, k2),

where E[x
(j)
s ] is bounded. If we are not in the case (2.5.50), we conclude with Lemma

2.5.12, that

‖Fn‖p ≤
C

n(nb)

 n∑
t=1

(
n∑
s=1

|E[x(1)
s ]|

)2
1/2

≤ C√
n

1

nb
.

In the case (2.5.50), we use that x(1)
s = 1 and E[x

(j)
s ] = Bj(s/n, b), thus with the Cauchy

Schwarz inequality we have

‖Fn‖p ≤
C

n(nb)

 n∑
t=1

(
n∑
s=1

w(s/n)Bj(s/n, b)K

(
t− s
nb

))2
1/2

≤ C

n(nb)

( n∑
t=1

n∑
s=1

w(s/n)|B(s/n, b)|2
∣∣∣K(t− s

nb

)∣∣∣ · n∑
s=1

∣∣∣K(t− s
nb

)∣∣∣)1/2

≤ C

n1/2
B2(b).

Terms with two random variables in (2.5.54): These terms have the form

Fn :=
1

n

∞∑
k1,k2,l1,l2=0

n∑
s,t=1

gs,t(k1, k2, l1, l2) · r(t− k1

n
)r(

t− k2

n
)r(

s− l1
n

)r(
s− l2
n

) ·(
ηt−min(k1,k2),|k1−k2|ηs−min(l1,l2),|l1−l2|

)
,

therefore with Lemma 2.5.12,

‖Fn − EFn‖p ≤
C

n

∞∑
k1,k2,l1,l2=0

( n∑
s,t=1

gs,t(k1, k2, l1, l2)2
)1/2

.

If i = 1, we have

gs,t =
1

(nb)2

n∑
u=1

E[x(1)
u ]w(u/n)fu

∣∣∣K(t− u
nb

)
K
(s− u

nb

)∣∣∣
·|φ̂1(u/n, k1)| · |φ̂2(u/n, k2)| · |ψ̂1(u/n, l1)| · |ψ̂2(u/n, l2)|, (2.5.57)
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therefore with the Cauchy-Schwarz inequality

‖Fn − EFn‖p ≤
C

n(nb)2

( n∑
s,t=1

( n∑
u=1

∣∣∣K(t− u
nb

)
K
(s− u

nb

)∣∣∣)2)1/2

≤ C

n(nb)2

( n∑
s,t=1,|s−t|≤2nb

n∑
u=1

K2
(t− u
nb

)
·

n∑
u=1

K2
(s− u

nb

))1/2

≤ C
b1/2

nb
. (2.5.58)

In the case that i 6= 1, we have

gs,t =
1

nb
K

(
t− s
nb

)
w(t/n)E[x

(i)
t ]ft|φ̂1(t/n, k1)| · |φ̂2(t/n, k2)| · |ψ̂1(t/n, l1)| · |ψ̂2(t/n, l2)|,

thus

‖Fn − EFn‖p ≤
C

n(nb)

( n∑
s,t=1

K
(t− s
nb

)2)1/2

≤ Cb1/2

nb
.

The discussion of the expectation

EFn =
1

n

n∑
t=1

w(t/n)ftE[x
(i)
t ] · E

[
(x

(j)
t − Ex(j)

t ) · (x(k)
t − Ex(k)

t )
]
.

is left. Using Assumption 2.1.1 and Proposition 5.4 in Dahlhaus and Polonik (2009),
we have

n∑
s=1

|Cov(Xt−k1,nXt−k2,n, Xs−l1,nXs−l2,n)| ≤ C.

Choose φj(u, λ), ψj(u, λ) from Aθ0(u)(λ), ∂lAθ0(u)(λ), ∂k∂lAθ0(u)(λ) and choose gs1,s2 =
gs1,s2(t) bounded such that the first equality in the following derivation holds. Then we
have ∣∣∣E[(x(j)

t − Ex(j)
t ) · (x(k)

t − Ex(k)
t )
]∣∣∣∣∣

=
∣∣∣E[ n∑

s1,s2=1

gs1,s2

(( s1−1∑
k1=0

φ̂1(s1/n, k1)Xs1−k1,n

)( s1−1∑
k2=0

φ̂2(s1/n, k2)Xs1−k2,n

)
− E[...]

)
·
(( s2−1∑

l1=0

ψ̂1(s2/n, l1)Xs2−l1,n

)( s2−1∑
l2=0

ψ̂2(s2/n, l2)Xs2−l2,n

)
− E[...]

)]∣∣∣
≤ C

∞∑
k1,k2,l1,l2=0

|φ̃1(k1)φ̃2(k2)ψ̃1(l1)ψ̃2(l2)|

×
n∑

s1,s2=1

|gs1,s2| · |Cov(Xs1−k1,nXs1−k2,n, Xs2−l1,nXs2−l2,n)|

≤ C

n∑
s2=1

sup
s1

|gs1,s2|.
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Note that gs1,s2(t) is bounded. Thus,

|EFn| ≤
C

n

n∑
t=1

|Ex(i)
t | ·

n∑
s2=1

sup
s1

|gs1,s2(t)|. (2.5.59)

If i = 1, we have
∑n

t=1 |Ex
(i)
t | ≤ C, thus (2.5.59) is of order O(n−1).

If i 6= 1 and x(i)
t is no deterministic term, we have supt,h |Ex

(i)
t | = o(1) and gs1,s2(t) =

1{s2=t} · 1
nb
·K
(
s1−t
nb

)
, thus |EFn| is of order o((nb)−1).

If i 6= 1 and x(i)
t is deterministic, we are in the case (2.5.49). Here a more precise

analysis is needed. In fact, this expectation is the reason why we had to choose the
likelihoods and cross validation functionals as projection error-type terms. First note
that in this case the expectation can be bounded by (here k, l ∈ {1, ..., d} are arbitrary
indices):

|EFn| ≤
C

n(nb)

n∑
s,t=1,s 6=t

∣∣∣K(t− s
nb

)∣∣∣|Cov(∂k`t,n(θ0(t/n)), ∂l`s,n(θ0(t/n)))| (2.5.60)

By Lemma 2.5.13, we have a decomposition ∂k`t,n(θ0(t/n)) = MDS(1)
t +R

(1)
t . Simi-

larly to the result in Lemma 2.5.13, we have another decomposition

∂l`s,n(θ0(t/n)) = MDS(2)
s,t +R

(2)
s,t ,

where MDS(2)
s,t := εs∂lds,n(θ0(t/n))− ∂lγθ0(t/n)(0)as,n(0), and

R
(2)
s,t := ∂lγθ0(t/n)(0)(as,n(0)− a(t/n, 0))ε2

s −
∞∑
k=s

γθ0(t/n)(k)Xs−k,n · ∂lds,n(θ0(t/n))

+
∞∑
k=0

γθ0(t/n)(k)
(
Xs−k,n − X̃s−k(θ0(t/n))

)
· ∂lds,n(θ0(t/n)).

Thus, (2.5.60) can be bounded by

C

n(nb)

n∑
s,t=1

K
(t− s
nb

)[
|Cov(MDS(1)

t , R
(2)
s,t )|+ |Cov(R

(1)
t ,MDS(2)

s,t )|+ |Cov(R
(1)
t , R

(2)
s,t )|

]
.

(2.5.61)
We will only discuss the first summand, the other terms can be handled with the same
arguments. We replace εt by εt =

∑∞
k=0 γθ0(t/n)(k)X̃t−k(t/n) to avoid case distinctions.

According to the definition of R(2)
s,t , the first summand of (2.5.61) can be bounded by
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three terms T1, T2, T3, T4. For the first bound we obtain

|T1| ≤
C

n(nb)

n∑
s,t=1

∞∑
k1,k2,l2=0

∞∑
l1=s

|Cov(X̃t−k1(t/n)Xt−k2,n, Xs−l1,nXs−l2,n)|
χ(k1)χ(k2)χ(l1)χ(l2)

≤ C

n(nb)

n∑
s=1

1

χ(s)

∞∑
k1,k2,l2=0

1

χ(k1)χ(k2)χ(l2)

×
n∑
t=1

∞∑
l1=0

|Cov(X̃t−k1(t/n)Xt−k2,n, Xs−l1,nXs−l2,n)|

≤ C

n(nb)
,

because
∑n

t=1

∑∞
l1=0 |Cov(X̃t−k1(t/n)Xt−k2,n, Xs−l1,nXs−l2,n)| ≤ C uniformly in s, k1, k2, l2.

The second bound has the form

|T2| ≤
C

n(nb)

n∑
s,t=1

∞∑
k1,k2,l1,l2=0

|Cov(X̃t−k1(t/n)Xt−k2,n, (Xs−l1,n − X̃s−l1( s
n
))Xs−l2,n)|

χ(k1)χ(k2)χ(l1)χ(l2)

Using supk
∑n

s=1 |as,n(k)−a(s/n, k)| ≤ C (see Assumption 2.1.1) and V (a(·, k)) ≤ C
χ(k)

,
we get the bound |T2| ≤ C

n(nb)
. The third bound reads

|T3| ≤
C

n(nb)

n∑
s,t=1

∣∣∣K(t− s
nb

)∣∣∣ ∞∑
k1,k2,l1,l2=0

1

χ(k1)χ(k2)χ(l1)χ(l2)

·|Cov(X̃t−k1(t/n)Xt−k2,n, (X̃s−l1,n(
s

n
)− X̃s−l1,n(

t

n
))Xs−l2,n)|.

The Hoelder continuity of θ0 allows us to write |K( t−s
nb

)| supk
∣∣a( s

n
, k)− a( t

n
, k)
∣∣ ≤ Cbβ.

This gives |T3| ≤ C bβ

nb
. For the last term, note that

|T4| ≤
C

n(nb)

n∑
s,t=1

K
(t− s
nb

) ∞∑
k1,k2,l1,l2=0

1

χ(k1)χ(k2)χ(l1)χ(l2)

·|Cov(X̃t−k1(t/n)Xt−k2,n, (as,n(0)− a(t/n, 0))X̃s−l1(t/n)X̃s−l2(t/n))|.

Using the same arguments as for T2, T3 (namely,
∑n

s=1 |as,n(0) − a(s/n, 0)| ≤ C and
|K( t−s

nb
)| · |a(s/n, 0)− a(t/n, 0)| ≤ Cbβ) yield |T4| ≤ C

nb

(
n−1 + bβ).

Terms with three random variables in (2.5.54): Here, we have

Fn =
1

n

∞∑
k1,k2,l1,l2,m1,m2=0

n∑
s,t,τ=1

gs,t,τ (k1, k2, l1, l2,m1,m2)

·r
(t− k1

n

)
r
(t− k2

n

)
r
(s− l1

n

)
r
(s− l2

n

)
r
(τ −m1

n

)
r
(τ −m2

n

)
·ηt−min(k1,k2),|k1−k2|ηs−min(l1,l2),|l1−l2|ητ−min(m1,m2),|m1−m2|,
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and from Lemma 2.5.12 we obtain

‖Fn − EFn‖p ≤
Cp
n

(
n∑

s,t,τ=1

g2
s,t,τ

)1/2

.

In all cases, we have:

gs,t,τ = w(t/n)ft
1

(nb)2
K

(
t− s
nb

)
K

(
t− τ
nb

)
.

Thus,

1

n

(
n∑

s,t,τ=1

g2
s,t,τ

)1/2

≤ C

n(nb)2

(∑
s,t,τ

K

(
t− s
nb

)2

K

(
t− τ
nb

)2
)1/2

≤ C(n(nb)2)1/2

n(nb)2

≤ C

nb

1√
n
.

At last, we have to discuss the expectation EFn, i.e.

1

n

n∑
t=1

w(t/n)ftE[(x
(1)
t − Ex(1)

t )(x
(2)
t − Ex(2)

t )(x
(3)
t − Ex(3)

t )]. (2.5.62)

We will not go into details here, but let us mention that all terms are o((nb)−1).
Hoelder continuity property: Note that if x(i)

t depends on b, then it has the
form F (b) := ∇kLn,b,−t(t/n, θ0(t/n)) or F (b) := ∇kLn,b(t/n, θ0(t/n)). Similar as in the
proof of Proposition 2.5.8 it can be shown that F has a Hoelder continuity property,

|F (b)− F (b′)| ≤ |b− b′| · C(n) ·
[
X ′X + 1

]
,

where X := (X1,n, ..., Xn,n)′ and C(n) grows only polynomially fast in n, but may
change from line to line in the following. Because of (2.5.2) it can be shown that

sup
b∈Bn
|F (b)| ≤ C(n)

(
1 +X ′X

)
,

Looking at (2.5.48) as a function of b,

G(b) :=
1

n

n∑
t=1

w(t/n) · ft · x(1)
t · x

(2)
t · x

(3)
t ,

we obtain

|G(b)−G(b′)| ≤ |b− b′|C(n)
[
X ′X + 1

]2

·
n∑
t=1

|x(1)
t | ≤ |b− b′|C(n)

[
X ′X + 1

]3

.
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Proof of Corollary 2.2.7. θ0(u) is in the interior of Θ. Thus, for n large enough, by
uniform consistency (Theorem 2.5.10), θ̂b(u) lies in the interior of Θ, too. A standard
maximum likelihood expansion yields

θ̂b(u)− θ0(u) = −(∇2
θLn,b(u, θ̄(u)))−1 · ∇θLn,b(u, θ0(u)),

=
(
Id +Rb(u)

)
· vb(u),

where Id ∈ Rd×d is the identity matrix,

vb(u) := −I(θ0(u))−1 · ∇θLn,b(u, θ0(u)),

Rb(u) := (∇2
θLn,b(u, θ̄(u)))−1I(θ0(u))− Id

and |θ̄(u)−θ0(u)|2 ≤ |θ̂b(u)−θ0(u)|2 where θ̄(u) ∈ Θ is some intermediate value. Using
the elementary formula x′Ax ≤ |x|22|A|spec, we have∣∣∣|(Id +R(u))v(u)|2I(θ0(u)) − |v(u)|2I(θ0(u))

∣∣∣
≤ 2 · |〈v(u), I(θ0(u))Rb(u)vb(u)〉|+ |Rb(u)vb(u)|2I(θ0(u))

≤
(

2|I(θ0(u))Rb(u)|2 + |Rb(u)′I(θ0(u))Rb(u)|2
)
· |vb(u)|2. (2.5.63)

Because of Proposition 2.5.8 and (2.5.32) we have

sup
b∈Bn

sup
u∈supp(w)

∣∣∇2
θLn,b(u, θ̄(u))− I(θ0(u))

∣∣→ 0,

thus
sup
b∈Bn

sup
u∈supp(w)

|Rb(u)| → 0. (2.5.64)

According to Assumption 2.2.1, let c0 > 0 be the value which bounds all eigenvalues
from I(θ0(u)) from below. Using the representations

d∗I(θ̂b, θ0) =

∫ 1

0

|vb(u)|2I(θ0(u))w(u) du,

dI(θ̂b, θ0) =

∫ 1

0

|(Id +Rb(u)) · vb(u)|2I(θ0(u))w(u) du,

we conclude with (2.5.63), (2.5.64):

sup
b∈Bn

∣∣∣∣∣dI(θ̂b, θ0)− d∗I(θ̂b, θ0)

d∗I(θ̂b, θ0)

∣∣∣∣∣
≤ 1

c0

sup
b∈Bn

∫ 1

0

∣∣|(Id +Rb(u))vb(u)|2I(θ0(u)) − |vb(u)|2I(θ0(u))

∣∣ · w(u) du∫ 1

0
|vb(u)|2 · w(u) du

→ 0 (n→∞).

Using the shortcuts dI = dI(θ̂b, θ0) (similarly for d∗I , d∗M), we have

dI − d∗M
d∗M

=
dI − d∗I
d∗I

·
(
d∗I − d∗M
d∗M

+ 1

)
+
d∗I − d∗M
d∗M

,

hence, the assertion follows. The proof for dA is the same by using sums instead of
integrals.
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Proof of Lemma 2.2.8. We define

d
∗
A(θ̂b, θ0) :=

1

n

n∑
t=1

∥∥∥∇Ln,b,−t( t
n
, θ0

( t
n

))∥∥∥2

I(θ0(t/n))−1
.

We have to show that

sup
b∈Bn

∣∣∣∣∣d
∗
A(θ̂b, θ0)− d∗A(θ̂b, θ0)

d∗M(θ̂b, θ0)

∣∣∣∣∣→ 0, (2.5.65)

then it follows immediately from Lemma 2.2.6:

sup
b∈Bn

∣∣∣∣∣d
∗
A(θ̂b, θ0)− d∗M(θ̂b, θ0)

d∗M(θ̂b, θ0)

∣∣∣∣∣→ 0. (2.5.66)

Using the same techniques as in the proof of Corollary 2.2.7 and using Lemma 2.5.9, it
can be shown

sup
b∈Bn

∣∣∣∣∣dA(θ̂b, θ0)− d∗A(θ̂b, θ0)

d
∗
A(θ̂b, θ0)

∣∣∣∣∣→ 0, (2.5.67)

and we can conclude from (2.5.66), (2.5.67) like in the proof of Corollary 2.2.7 that

sup
b∈Bn

∣∣∣∣∣dA(θ̂b, θ0)− d∗M(θ̂b, θ0)

d∗M(θ̂b, θ0)

∣∣∣∣∣→ 0.

We now show (2.5.65). We have

∇Ln,b(t/n, θ0(t/n))−∇Ln,b,−t(t/n, θ0(t/n)) =
K(0)

nb
∇`t,n(θ0(t/n)),

thus using the Cauchy Schwarz inequality we obtain

|d∗A(θ̂b, θ0)− d∗A(θ̂b, θ0)| (2.5.68)

≤ 2K(0)

nb
· 1

n

n∑
t=1

|〈∇`t,n(θ0(t/n)), I(θ0(t/n))−1∇Ln,b(t/n, θ0(t/n))〉|

+
K(0)2

(nb)2
· 1

n

n∑
t=1

|∇`t,n(θ0(t/n))|2I(θ0(t/n))−1

≤ 2K(0)

nb
Z

1/2
t · d∗A(θ̂b, θ0)1/2 +

K(0)2

(nb)2
· Zt, (2.5.69)

where

Zt :=
1

n

n∑
t=1

|∇`t,n(θ0(t/n))|2I(θ0(t/n))−1 .
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Define xt := ∇`t,n(θ0(t/n)), At := I(θ0(t/n))−1. By writing

1

n

n∑
t=1

|xt|2At =
1

n

n∑
s,t=1

1{s=t}

(
〈xt − Ext, At(xs − Exs)〉 − E〈xt − Ext, At(xs − Exs)〉

)
+

2

n

n∑
t=1

〈xt − E[xt], AtE[xt]〉+
1

n

n∑
t=1

E|xt|2At

and using Lemma 2.5.12 and the Markov inequality, it is easy to show that the first
and second term converge to zero almost surely. A straightforward calculation shows
that the third (deterministic) term is bounded. In total, Zt is bounded almost surely.
(2.5.65) now follows from (2.5.69),

d∗A = d∗M ·
(

1 +
d∗A − d∗M
d∗M

)
and Lemma 2.2.6.

Proof of Lemma 2.2.6. We use the decomposition

|∇θLn,b(u, θ0(u))|2I(θ0(u))−1 − E|∇θLn,b(u, θ0(u))|2I(θ0(u))−1

=
(
|∇θLn,b(u, θ0(u))− E∇θLn,b(u, θ0(u))|2I(θ0(u))−1

−E|∇θLn,b(u, θ0(u))− E∇θLn,b(u, θ0(u))|2I(θ0(u))−1

)
+2
〈
∇θLn,b(u, θ0(u))− E∇θLn,b(u, θ0(u)), I(θ0(u))−1E∇θLn,b(u, θ0(u))

〉
.

(2.5.70)

This shows that the proof of the uniform convergence

sup
b∈Bn

∣∣∣d∗A(θ̂b, θ0)− E[d∗A(θ̂b, θ0)]

d∗M(θ̂b, θ0)

∣∣∣→ 0 (2.5.71)

is already covered by the proof of the almost sure convergence of (2.5.50) in the second
part of the proof of Lemma 2.2.9. Note that the form of the decomposition (2.5.70)
implies that there is no need to discuss any convergences of expectations in Lemma
2.2.9. Similar argumentations with integrals instead of sums lead to

sup
b∈Bn

∣∣∣d∗I(θ̂b, θ0)− d∗M(θ̂b, θ0)

d∗M(θ̂b, θ0)

∣∣∣→ 0. (2.5.72)

Because of Corollary 2.5.6, we have

sup
b∈Bn

∣∣∣d∗M(θ̂b, θ0)− E[d∗A(θ̂b, θ0)]

d∗M(θ̂b, θ0)

∣∣∣→ 0. (2.5.73)

The assertion follows from (2.5.71), (2.5.72) and (2.5.73).

67



68



Chapter 3

An approximation theory for
recursively defined locally stationary
processes

In this chapter we do a first step towards a general asymptotic theory for nonlinear
locally stationary processes. In the literature, most of the asymptotic results are ob-
tained if the explicit structure of the time series model is known, such as in the case
of tvAR models (cf. Dahlhaus and Giraitis (1998)), linear models (cf. Dahlhaus and
Polonik (2009)), the tvARCH case (cf. Dahlhaus and Subba Rao (2006)) and random
coefficient models (cf. Subba Rao (2006)). To prove their results, the authors of these
papers heavily use the structure of these models.

We consider a quite general Markov-structured non-stationary process Xt,n, t =
1, ..., n. With this model we cover many well-known locally stationary processes (es-
pecially the models mentioned above) which are obtained by replacing the constant
parameters by time-dependent parameter curves evaluated at t/n.

To formulate our results, we will use the functional dependence measure introduced
in Wu (2005). Some recent publications which are using this framework also allow for
locally stationary processes: Karmakar and Wu (2016) deal with strong approxima-
tions, Zhou and Wu (2009) discuss quantile regression and Liu, Xiao and Wu (2013)
obtain inequalities for tail probabilities (which they claim are also valid for nonstation-
ary models). Up to now, standard results as laws of large numbers and central limit
theorems for general nonstationary processes have not been proved yet. Furthermore,
most of the statements in those publications are given in a normalized way meaning
that the expectation of the underlying process is 0. A more comprehensive study of
the asymptotic behavior of the expectation of locally stationary processes is usually
missing.

In section 3.1, we show that Xt,n can be approximated by some stationary process
X̃t(u) as long as |t/n−u| � 1 and n−1 � 1. We prove that under reasonable conditions
Xt,n has a Taylor-like expansion into X̃t(u) and so-called derivative processes which
form the key quantities in the following derivations. Derivative processes were already
defined for specific models as in the case of tvAR (cf. Dahlhaus (2011)) and tvARCH (cf.
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Dahlhaus and Subba Rao (2006)). However, the existence of these processes and their
properties are completely unclear if an explicit representation of Xt,n is not available.

In section 3.2, we use derivative processes to prove expansions of expectations, co-
variance functions and the distribution function of Xt,n. Furthermore, we present laws
of large numbers and a central limit theorem which hold under minimal moment as-
sumptions on the process. The proofs are based on a partition of the sum over Xt,n into
sums over smaller ranges of t where Xt,n can be approximated by stationary processes
X̃t(u) by exploiting their smoothness properties. We then make use of the asymptotic
theory for sums of stationary sequences. It should be noted that the theorems we de-
rive in this section do not use the special Markovian structure of the process but only
expansion and dependence properties which are results from section 3.1. This means
that as long similar results as presented in section 3.1 can be obtained for a process,
all the theorems are applicable in principle.

In section 3.3, we apply the previous results to nonparametric maximum likelihood
estimation of parameter curves in locally stationary processes. The general framework
for this chapter was already given in Dahlhaus (2011). Some concluding remarks are
given in section 3.4. Some proofs are postponed to section 3.5.

3.1 Stationary approximations and derivative processes

For some fixed natural number p > 0, an i.i.d. sequence (εt)t∈Z of real-valued random
variables and a function G : R × Rp × [0, 1] → R, (ε, x, u) 7→ Gε(x, u), consider the
process Xt,n defined by the recursion

Xt,n = Gεt

(
Xt−1,n, ..., Xt−p,n,

t

n
∨ 0
)
, t ≤ n, (3.1.1)

where a∨b = max{a, b}. We assume that the process is observed at t = 1, ..., n meaning
that in the above model the time is rescaled to the unit interval due to t

n
∈ [0, 1]. At

a fixed time point u ∈ [0, 1], we define the stationary approximation as the stationary
process X̃t(u), t ∈ Z given by the recursion

X̃t(u) = Gεt

(
X̃t−1(u), ..., X̃t−p(u), u

)
, t ∈ Z. (3.1.2)

The notion of local stationarity now means that for each u ∈ (0, 1) and sufficiently
small δ > 0 the processes Xt,n and X̃t(u) are close to each other for t

n
∈ [u − δ, u + δ]

(see Proposition 3.1.5 below). It is obvious that this requires smoothness assumptions
on the function G specified below in Assumption 3.1.2. The stationary approximation
can fruitfully be used to derive mathematical results on the process Xt,n (cf. sections
3.2 and 3.3). More mathematical tools and a deeper understanding are provided by the
derivative processes ∂uX̃t(u), ∂2

uX̃t(u), etc. They reflect the slope and curvature of the
nonstationary process at time u - for example we have the Taylor expansion

Xt,n ≈ X̃t

( t
n

)
≈ X̃t(u0) +

( t
n
− u0

)
∂uX̃t(u0) +

1

2

( t
n
− u0

)2

∂2
uX̃t(u0)
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under suitable regularity assumptions. Usually the derivative processes are also sta-
tionary and even more ergodic making the a powerful tool for proofs. These properties
are proved for the general class of processes of the form (3.1.1) below in a series of
theorems. Furthermore, we establish that the uniform functional dependence measure
decays geometrically which is a key property for proving asymptotic results. Before we
start we give some examples for models which fulfill (3.1.1). These include in particu-
lar several classical parametric time series models where the constant parameters have
been replaced by time-dependent parameter curves.

Example 3.1.1. (i) the tvAR(p) process (cf. Dahlhaus and Giraitis (1998)): Given
parameter curves ai, σ : [0, 1]→ R (i = 1, ..., p),

Xt,n = a1

( t
n

)
Xt−1,n + ...+ ap

( t
n

)
Xt−p,n + σ

( t
n

)
εt.

(ii) the tvARCH(p) process (cf. Dahlhaus and Subba Rao (2006)): Given parameter
curves ai : [0, 1]→ R (i = 0, ..., p),

Xt,n =
(
a0

( t
n

)
+ a1

( t
n

)
X2
t−1,n + ...+ ap

( t
n

)
X2
t−p,n

)1/2
εt.

(iii) the tvTAR(1) process (cf. Zhou and Wu (2009)): Given parameter curves a1, a2 :
[0, 1]→ R, define

Xt,n = a1

( t
n

)
X+
t−1,n + a2

( t
n

)
X−t−1,n + εt,

where x+ := max{x, 0} and x− := max{−x, 0}.

(iv) the time-varying random coefficient model (cf. Subba Rao (2006)): With some
parameter functions ai(·), i = 0, ..., p,

Xt,n = a0(εt) + a1(εt)Xt−1,n + ...+ ap(εt)Xt−p,n.

Recall that for q > 0 we denote the weighted `q-norm by |x|w,q = (
∑p

i=1wi|xi|q)
1/q

and for real-valued random variables Z we use ‖Z‖q = (E|Z|q)1/q <∞. Recall the defi-
nition of the shift process Ft = (εt, εt−1, ...), the uniform functional dependence measure
δYq (k) and the projection operator Pj· = E[·|Fj] − E[·|Fj−1] from the preliminaries of
this thesis. The subsequent theorems contain results on the geometric decay of this
functional dependence measure which will be used in sections 3.2 and 3.3 to provide
asymptotic results like uniform laws of large numbers and central limit theorems.

We will use ∂1Gε(y, u), ∂2Gε(y, u) to denote the derivatives of Gε(y, u) with respect
to y, u, respectively.

We work with the following set of assumptions:

Assumption 3.1.2. There exists q > 0, χ = (χ1, ..., χp) ∈ Rp
≥0 with |χ|1 < 1 and

y0 ∈ Rp such that:
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(i) supu∈[0,1] ‖Gε0(y0, u)‖q <∞, and

sup
u∈[0,1]

sup
y 6=y′

‖Gε0(y, u)−Gε0(y′, u)‖q
|y − y′|χ,q′

≤ 1. (3.1.3)

(ii) (y, u) 7→ Gε(y, u) is continuous for all ε, ‖ supu∈[0,1] |Gε0(y0, u)| ‖q <∞, and∥∥∥ sup
u∈[0,1]

sup
y 6=y′

|Gε0(y, u)−Gε0(y′, u)|
|y − y′|χ,q′

∥∥∥
q
≤ 1. (3.1.4)

(iii) (y, u) 7→ Gε(y, u) is continuously differentiable for all ε,
‖ supu∈[0,1] |∂2Gε0(y0, u)| ‖q <∞, and

Ci :=
∥∥∥ sup
u∈[0,1]

sup
y 6=y′

|∂iGε0(y, u)− ∂iGε0(y′, u)|
|y − y′|1,q′

∥∥∥
q
<∞ (3.1.5)

(iv) For some 0 < α ≤ 1, it holds that

C := sup
u∈[0,1]

‖C(Ỹt(u))‖q <∞, where C(y) := sup
u6=u′

‖Gε0(y, u)−Gε0(y, u′)‖q
|u− u′|α

(3.1.6)

Discussion: Note that (i) - (iii) impose increasingly strong smoothness assump-
tions on the recursion function Gε(y, u). While (i) - (iii) are directly verifiable, (iv)
includes conditions on the stationary approximation X̃t(u). Note that the upcoming
theorems also state properties of X̃t(u). Their results can be used to verify this as-
sumption.

3.1.1 Existence and uniqueness of Xt,n and X̃t(u)

We now establish existence and uniqueness of Xt,n and X̃t(u) under mild contraction
conditions.

Proposition 3.1.3. (i) Existence of a stationary approximation: Suppose that As-
sumption 3.1.2(i) holds. Then for all u ∈ [0, 1], the recursion (3.1.2) has a unique
stationary and ergodic solution X̃t(u) = H(u,Ft) and we have

sup
u∈[0,1]

δX̃(u)
q (k) ≤ Cρk, sup

u∈[0,1]

‖X̃0(u)‖q <∞

with some C > 0 and 0 < ρ < 1.
(ii) Existence of the nonstationary process: Under the above conditions, there ex-
ists an a.s. unique solution of (3.1.1) with a representation Xt,n = Ht,n(Ft) and
supn∈N supt=1,...,n ‖Xt,n‖q <∞. Furthermore, it holds that

sup
n∈N

δX·,nq (k) ≤ Cρk

with some C > 0 and 0 < ρ < 1.
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The proof of (i) for fixed u ∈ [0, 1] is similar to the proof in Shao and Wu (2007),
Theorem 5.1. Since we state the results uniformly in u ∈ [0, 1], we will give the proof
in the appendix for completeness. Since the definition of Xt,n and X̃t(0) coincide for
t ≤ 0, existence and uniqueness of Xt,n follow from the existence and uniqueness of
X̃t(0). Therefore, (ii) is an immediate corollary of (i).

3.1.2 A uniform Lq-approximation

We now prove that Xt,n can be approximated by the stationary process X̃t(u) uniformly
in a Lq-sense. We will use the shortcuts

Yt−1,n := (Xt−1,n, ..., Xt−p,n)′, Ỹt−1(u) := (X̃t−1(u), ..., X̃t−p(u))′

to keep the notation of the recursion equations simple.

Lemma 3.1.4. Suppose that Assumption 3.1.2(i),(iv) hold. Then,

sup
u6=u′

‖X̃t(u)− X̃t(u
′)‖q

|u− u′|α
≤ C

(1− |χ|1)1/q′
. (3.1.7)

Furthermore, we have:

sup
t=1,...,n

‖Xt,n − X̃t(t/n)‖q ≤ Cpα
(

|χ|1
(1− |χ|1)2

)1/q′

· n−α. (3.1.8)

Note that the approximation error in (3.1.8) cannot be avoided - cf. Dahlhaus (2011),
(49), for the tvAR(1) case (with a different error due to different assumptions). The
following approximation result is now obtained as a corollary.

Proposition 3.1.5. Under the assumptions of Lemma 3.1.4, we have the following
strong approximation of Xt,n uniformly for all t = 1, ..., n:

‖Xt,n−X̃t(u)‖q ≤
C

(1− |χ|1)1/q′

∣∣∣u− t
n

∣∣∣α+Cpα
( |χ|1

(1− |χ|1)2

)1/q′

·n−α = O
(∣∣∣u− t

n

∣∣∣α+n−α
)
.

3.1.3 Existence of continuous modifications and derivative pro-
cesses

Proposition 3.1.3 gives the almost sure uniqueness of X̃t(u) for each u ∈ [0, 1], but not
continuity of u 7→ X̃t(u) since this involves uncountably many points u ∈ [0, 1]. In order
to guarantee the existence of a continuous or even differentiable modification X̂t(u) of
X̃t(u) we have to impose stronger conditions on the recursion function G in (3.1.1)
(X̂t(u) is a modification of X̃t(u) if for all u ∈ [0, 1], X̂t(u) = X̃t(u) a.s.). A natural
way would be to apply the Kolmogorov-Chentzov theorem, but this theorem contains a
tradeoff in its conditions between moment assumptions and smoothness of the process
which usually leads to either strong moment or smoothness assumptions which may not
be useful in practice. Furthermore it does not use the specific structure of the process
which is known and we could not give a bound for moments of supu∈[0,1] |X̂t(u)|. We
therefore use a different approach.
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Theorem 3.1.6 (Existence of a continuous modification). Suppose that Assumption
3.1.2(ii) holds. Then for each t ∈ Z, there exists a continuous modification (X̂t(u))u∈[0,1]

of (X̃t(u))u∈[0,1] from Proposition 3.1.3 with supu∈[0,1] |X̂t(u)| ∈ Lq.

Because most of the recursively defined stationary models have (component-wise)
Lipschitz continuous recursion functions G, condition (3.1.4) is fulfilled for these models
with an appropriate parameter space. The supremum taken over u ∈ [0, 1] in (3.1.4)
however seems to restrict the parameter space. If for example εt has a distribution
with mean 0 and variance 1, and Gε(x, u) = a(u)x+ b(u)x · ε with continuous functions
a(u), b(u), then (3.1.4) for q = 2 reads ‖ supu∈[0,1] |a(u) + b(u)εt|‖2 < 1. The following
result implies that this condition can be relaxed to supu∈[0,1] ‖a(u) + b(u)εt‖2 < 1 under
certain assumptions.

Proposition 3.1.7. In the situation of Theorem 3.1.6, instead of (3.1.4) assume that
x 7→ Gε(x, u) is differentiable for all ε, u and that for all u0 ∈ [0, 1],

lim sup
δ→0

∥∥ sup
|u−u0|≤δ

sup
x
|∂1Gε0(x, u)− ∂1Gε0(x, u0)|1

∥∥
q

= 0

and
sup
u∈[0,1]

∥∥∥ sup
y 6=y′

|Gε0(y, u)−Gε0(y′, u)|
|y − y′|χ,q′

∥∥∥
q
≤ 1.

Then the results of Theorem 3.1.6 are still valid.

In the following we will assume that (y, u) 7→ Gε(y, u) is differentiable in both
components. For the moment, assume that there exists a modification of the process
(X̃t(u))u∈[0,1] with differentiable paths (denote the modification by X̃t(u) again) and
denote the derivative by DuX̃t(u). Define DuỸt−1(u) := (DuX̃t−1(u), ..., DuX̃t−p(u))′.
Then the following recursion equation for DuX̃t(u), obtained by differentiating (3.1.2)
should hold:

DuX̃t(u) = 〈∂1Gεt(Ỹt−1(u), u), DuỸt−1(u)〉+ ∂2Gεt(Ỹt−1(u), u), (3.1.9)

The first part of the next theorem shows that given the existence of the process X̃t(u)
from Theorem 3.1.3, the recursion (3.1.9) has a solution DuX̃t(u); the second part
shows that X̃t(u) is differentiable with respect to u and that the derivative coincides
with DuX̃t(u).

Theorem 3.1.8. Suppose that Assumptions 3.1.2(ii),(iii) hold. Then the following
statements hold.

(i) Existence of the first derivative process: For all u ∈ [0, 1], the recursion (3.1.9)
has a unique stationary and ergodic solution DuX̃t(u) = H̃(u,Ft) and it holds
that

δDuX̃(u)
q (k) ≤ Cρk, sup

u∈[0,1]

‖DuX̃t(u)‖q <∞

with some C > 0, 0 < ρ < 1.
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(ii) Differentiability:

(a) There exists a continuously differentiable modification (X̂t(u))u∈[0,1] of the
process (X̃t(u))u∈[0,1] from Proposition 3.1.3 where ∂uX̂t(u) is a modification
of DuX̃t(u),

(b) supu∈[0,1] |∂uX̂t(u)| ∈ Lq.

As it can be seen in the proof, the statements of Theorem 3.1.8(i) can be obtained
under milder conditions. More precisely, one has to suppose that Assumption 3.1.2(i)
holds and that for all ε, the mapping (y, u) 7→ Gε(y, u) is differentiable with

sup
u∈[0,1]

‖C(Ỹt−1(u))‖q <∞, where C(y) := sup
u∈[0,1]

‖∂2Gε0(y, u)‖q, (3.1.10)

The results of Theorem 3.1.8 allow us to Taylor expand X̃t(t/n) around X̃t(u):

Corollary 3.1.9 (Taylor expansion of X̃t(t/n)). Suppose that Assumptions 3.1.2(ii),(iii)
hold. Then we have for all t, n and u ∈ [0, 1]:

X̃t

( t
n

)
= X̃t(u) +

( t
n
− u
)
· ∂uX̃t(u) +Rt,n a.s.,

where Rt,n =
(
t
n
−u
){
∂uX̃t(ūt,n)− ∂uX̃t(u)

}
and ūt,n is a random variable with |ūt,n−

u| ≤ | t
n
− u|. If | t

n
− u| = o(1), it holds that Rt,n = o(| t

n
− u|).

Under suitable conditions, similar results hold for higher order derivatives of X̂t(u).
For some models it is possible to obtain explicit expressions for the corresponding
derivative processes.

Example 3.1.10 (Explicit representations for derivative processes).

(i) The tvAR(p) process Xt,n =
∑p

j=1 aj
(
t
n

)
Xt−j,n + εt has the corresponding sta-

tionary approximation X̃t(u) =
∑p

j=1 aj(u)X̃t−j(u) + εt which has an explicit
representation X̃t(u) =

∑∞
j=0 ψj(u) · εt−j with differentiable ψj (j = 0, 1, 2, ...). It

is easy to see that ∂uX̃t(u) =
∑∞

j=0 ∂uψj(u) · εt−j is the a.s. uniquely determined
derivative process.

(ii) For tvARCH(p) processes, explicit expressions for the derivative processes were
obtained in Dahlhaus and Subba Rao (2006).

In the following we will write X̃t(u) even if we want to refer to the differentiable
modification to keep the notation simple. Since all our results only involve finitely (or
at most countably) many observations, this will not cause any problems.
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3.1.4 Higher order derivative processes

If X̃t(u) has a twice continuously differentiable modification and (y, u) 7→ Gε(y, u)
is twice continuously differentiable, then the following recursion equation for ∂2

uX̃t(u)
should hold:

∂2
uX̃t(u) = 〈∂1Gεt(Ỹt−1(u), u), ∂2

uỸt−1(u)〉+ 〈∂2
1Gεt(Ỹt−1(u), u)∂uỸt−1(u), ∂uỸt−1(u)〉

+2〈∂1∂2Gεt(Ỹt−1(u), u), ∂uỸt−1(u)〉+ ∂2
2Gεt(Ỹt−1(u), u). (3.1.11)

Using the same techniques as in Theorem 3.1.8, one can find similar conditions as in
Assumption 3.1.2 such that a second (or even higher) order derivative process ∂2

uX̃t(u)
exists. These results can be used in situations where a higher order Taylor expansion
is necessary, see Chapter 4 of this thesis.

In most of the practical situations one would expect that the processes X̃t(u),
∂uX̃t(u) and ∂2

uX̃t(u) allow for the same moments, i.e. if one of the processes is in
Lq then the other processes fulfill this, too. In (3.1.11) however there seems to occur an
imbalance because of the term 〈∂2

1Gεt(Ỹt−1(u), u)∂uỸt−1(u), ∂uỸt−1(u)〉 which seems to
have a q-th moment only in the case that ∂uX̃t(u) has a 2q-th moment. Following the
proof techniques of Theorem 3.1.8 this would lead to the fact that ∂2

uX̃t(u) only has a q-
th moment under conditions on Gε0 and its derivatives (similar to (3.1.5)) which involve
2q-th moments. It can be seen in special cases where an explicit representation of the
process is available (for example tvAR(p), Dahlhaus (2011) or tvARCH(p), Dahlhaus
and Subba Rao (2006)) that 2q-th moments are not necessary in general. We conjecture
that the reason for this lies in the behaviour of ∂2

1G which in these cases satisfies that
|〈∂2

1Gε(y, u), y〉|1 is still bounded uniformly in y, u.
The formalization of this is beyond the scope of this chapter. We will close this

section by presenting a result on the Hoelder continuity of the first derivative process
which already contains the higher moment assumption discussed above.

Lemma 3.1.11 (Hoelder property of the first derivative process). Suppose that As-
sumption 3.1.2(ii),(iii) hold. Additionally assume that for some 1 ≥ α2 > 0 and
i = 1, 2 it holds component-wise:

Di := sup
u
‖Di(Ỹt(u))‖q <∞, Di(y) := sup

u6=u′

‖∂iGε0(y, u)− ∂iGε0(y, u′)‖q
|u− u′|α2

(3.1.12)

Then

sup
u6=u′

‖∂uX̃t(u)− ∂uX̃t(u
′)‖q/2

|u− u′|α2
≤ C.

with some constant C > 0.

3.1.5 A simulation study

To quantify the quality of the approximations given in Lemma 3.1.4 and Corollary
3.1.9, we consider the tvARCH(1) model

Xt,n :=
(
a0 + a1

( t
n

)
X2
t−1,n

)1/2

εt
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with a0 := 0.2, a1(u) = 0.95u2 and ε0 ∼ N(0, 1). Note that if t/n tends to 1, the values
of Xt,n are more dependent to each other than for smaller values of t/n. We generated
realizations of Xt,n, X̃t(

t
n
) with n = 500 (see Figure 3.1(a),(b) for a realization of Xt,n

and Xt,n−X̃t(
t
n
)). In Figure 3.1(c) we have the plotted empirical 5%- and 95%-quantile

curves of the difference Xt,n − X̃t(
t
n
) for N = 1000 replications. It can be seen that

with stronger dependence, the quality of the approximation Xt,n ≈ X̃t(
t
n
) gets worse.

Secondly we consider the approximation quality of X̃t(t/n) by X̃t(u) and X̃t(u) +
( t
n
− u)∂uX̃t(u), respectively. Since these approximations are only working locally (for

|t/n − u| � 1), we compare them by dividing the whole time line t = 1, ..., n into
subsets (ui − b, ui + b], where b = 50 and ui = (2i − 1)b for i = 1, ..., 5. In Figure
3.1(d) empirical 5%- and 95%-quantile curves obtained from N = 1000 replications
for the differences X̃t(

t
n
) − X̃t(ui) and X̃t(

t
n
) − X̃t(ui) − ( t

n
− ui)∂uX̃t(ui) (where t ∈

(ui − b, ui + b]) are depicted, respectively. We emphasize that the improvement of
the (pointwise) approximation X̃t(

t
n
) by taking into account the derivative process is

remarkable. However, both approximations again get worse if the dependence of Xt,n

to earlier values increases.

3.2 Asymptotic properties of functionals of Xt,n

3.2.1 Mean expansions

To get results for a wide range of interesting functionals, we define the following class
Hr(α,M,C) of real-valued functions which have a Hoelder property where the Hoelder
constant may depend at most polynomially on the location.
Definition 3.2.1 (The classes Hr(β,M,C) and Lr(M,C)). We say that a function
g : Rr → R is in the class Hr(β,M,C) if M ≥ 0, 1 ≥ β > 0 and it holds that

sup
y 6=y′

|g(y)− g(y′)|
|y − y′|β1 · (1 + |y|M1 + |y′|M1 )

≤ C. (3.2.1)

If β = 1, we say that g ∈ Lr(M,C).
Let us abbreviate Zt,n := (Xt,n, ..., Xt−r+1,n) and Z̃t(u) := (X̃t(u), ..., X̃t−r+1(u)). An

immediate consequence of the existence of a continuously differentiable modification of
(X̃t(u))u∈[0,1] is an expansion of the corresponding mean Eg(Zt,n) and the corresponding
stationary version Eg(Z̃t(u)):
Proposition 3.2.2. Assume that g ∈ Lr(M,C). Suppose that Assumption 3.1.2(i),(iv)
are fulfilled for some 1 ≥ α > 0 and q = M+1. Then we have uniformly for t = 1, ..., n:

Eg(Zt,n) = Eg
(
Z̃t
( t
n

))
+O(n−α) = Eg(Z̃t(u)) +O

(
n−α +

∣∣ t
n
− u
∣∣α). (3.2.2)

If additionally Assumption 3.1.2(ii),(iii) are fulfilled and g is continuously differen-
tiable, then µ(g, ·) is continuously differentiable with derivative

∂uEg(Z̃t(u)) =
r∑
j=1

E[∂jg(X̃t(u), ..., X̃t−r+1(u)) · ∂uX̃t−j+1(u)]. (3.2.3)
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Figure 3.1: Top: (a) Realization of one Xt,n, t = 1, ..., n. (b) Difference Xt,n−X̃t(
t
n
) for

one realization. Bottom: (c) empirical 5%- and 95%-quantile curves of Xt,n− X̃t(
t
n
) for

N = 1000 replications. (d) Dashed and Solid: empirical 5%- and 95%-quantile curves
of X̃t(

t
n
)− X̃t(ui) and X̃t(

t
n
)− X̃t(ui)− ( t

n
− ui)∂uX̃t(ui) for t ∈ (ui − b, ui + b] (black

vertical lines) and N = 1000 replications, respectively. Here, b = 50 and ui = (2i− 1)b
(dotted vertical lines), i = 1, ..., 5.

The proof of (3.2.2) is immediate from the Hoelder-type property (3.2.1) of g and
the results from Lemma 3.1.4. The second statement (3.2.3) follows from the expansion

g(Z̃t(v)) = g(Z̃t(u)) + (v − u)∂ug(Z̃t(u)) +

∫ v

u

{
∂ug(Z̃t(s))− ∂ug(Z̃t(u))

}
ds

which holds almost surely since g is continuously differentiable and ‖ supu |∂ug(Z̃t(u))|‖1 <
∞.

The result of Proposition 3.2.2 enables us to get expansions of the mean, the covari-
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ance and the distribution function of Xt,n. Suppose in the following that Assumption
3.1.2(ii),(iii) holds for q = M + 1.

Corollary 3.2.3 (Mean expansion, M = 0). Choosing g : R→ R, g(y) = y yields

EXt,n = EX̃t(t/n) +O(n−1),

where µ(u) := EX̃0(u) is continuously differentiable with derivative ∂uµ(u) = E∂uX̃0(u).

Corollary 3.2.4 (Covariance expansion,M = 1). Define γ(u, r) := Cov(X̃t(u), X̃t−r(u)).
Choosing g : Rr+1 → R, g(y) = y1yr+1 and using the results from Corollary 3.2.3, we
obtain uniformly for t = 1, ..., n:

γt,n(r) := Cov(Xt,n, Xt−r,n) = γ(
t

n
, r) +O(n−1) (3.2.4)

and γ(u, r) is continuously differentiable with derivative

∂uγ(u, r) = Cov(∂uX̃0(u), X̃r(u)) + Cov(X̃0(u), ∂uX̃r(u)).

Similar expansions can be derived for higher-order cumulants. The expansion (3.2.4)
is only valid for fixed r ≥ 0. To give expansions of the Wigner-Ville spectrum (cf. Martin
und Flandrin (1985)), one has to analyze the expression more carefully:

Corollary 3.2.5 (Expansion of the Wigner-Ville spectrum, M = 1). The function
fn(u, λ) :=

∑
r∈ZCov(Xbun− r2 c,n, Xbun+ r

2
c,n)eiλr is called the Wigner-Ville spectrum of

the process Xt,n (here, bac := max{k ∈ Z : k ≤ a}). Define the time-varying spec-
tral density f(u, λ) :=

∑
r∈Z γ(u, r)eiλr (cf. Dahlhaus and Polonik (2009)). We have

uniformly in u ∈ [0, 1], λ ∈ [0, 2π):

fn(u, λ) = f(u, λ) +O(log(n)2n−1). (3.2.5)

Furthermore, u 7→ f(u, λ) is differentiable with derivative

∂uf(u, λ) =
∑
r∈Z

∂uγ(u, r)eiλr.

Proof of Corollary 3.2.5: Let us use the abbreviation tr(u) := bun − r
2
c. Note that

bun+ r
2
c = tr(u) + r. We have for r ≥ 0:

Cov(Xtr(u),n, Xtr(u)+r,n) =
∞∑
k=0

E
[
Ptr(u)−kXtr(u),nPtr(u)−kXtr(u)+r,n

]
.

Define δ(r) := max{supn∈N δ
X·,n
2 (r), supu δ

X(u)
2 (r)} ≤ C ′ρr with some C ′ > 0, 0 < ρ < 1.

By Lemma 3.1.4, we have with some constant C independent of r, n, t:∣∣E[Ptr(u)−kXtr(u)+r,nPtr(u)−k
(
Xtr(u),n − X̃tr(u)(u)

)]∣∣
≤

∥∥Ptr(u)−kXtr(u)+r,n

∥∥
2

∥∥Ptr(u)−k
(
Xtr(u),n − X̃tr(u)(u)

)∥∥
2

≤ δ(r + k) min{2δ(k), C
(
n−1 +

∣∣∣tr(u)

n
− u
∣∣∣)} ≤ δ(r + k) min{2δ(k), C

r + 2

2n
},
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and ∣∣E[Ptr(u)−k
(
Xtr(u)+r,n − X̃tr(u)+r(u)

)
Ptr(u)−kX̃tr(u)(u)

]∣∣
≤

∥∥Ptr(u)

(
Xtr(u)+r,n − X̃tr(u)+r(u)

)∥∥
2

∥∥Ptr(u)−kX̃tr(u)(u)
∥∥

2

≤ δ(k) min{2δ(r + k), C
(
n−1 +

∣∣∣tr(u) + r

n
− u
∣∣∣)} ≤ δ(k) min{2δ(r + k), C

r + 2

2n
}.

The bounds for r < 0 are similar. Since |eiλr| ≤ 1 and

∑
r≥0

(
ρr ∧ r

n

)
=

blog(n−1)/ log(ρ)c∑
r=0

r

n
+

∞∑
r=blog(n−1)/ log(ρ)c+1

ρr = O(log(n)2n−1 + n−1),

we obtain (3.2.5). Note that

|Cov(X̃0(u), ∂uX̃r(u))| ≤
∞∑
k=r

|E[Pr−kX̃0(u) · Pr−k∂uX̃r(u)]|

≤
∞∑
k=r

‖Pr−kX̃0(u)‖2‖Pr−k∂uX̃r(u)‖2

≤
∞∑
k=r

δ
X̃(u)
2 (r − k) · δ∂uX̃(u)

2 (k).

Similar arguments can be used to bound Cov(X̃r(u), ∂uX̃0(u)). By the results of Corol-
lary 3.2.4, Proposition 3.1.3 and Theorem 3.1.8(i), we have

∑
r∈Z supu |∂uγ(u, r)| <∞.

This enables us to swap differentiation and summation leading to differentiability of
u 7→ f(u, λ) with derivative

∂uf(u, λ) =
∑
r∈Z

∂uγ(u, r)eiλr.

As a last application of Proposition 3.2.2, we present an expansion of the distribution
function of Xt,n which may also be used to approximate quantiles of such nonstationary
processes.

Example 3.2.6 (Expansion of the distribution function, M = 0). Assume that ε has a
Lipschitz continuous distribution and continuously differentiable function Fε with Lip-
schitz constant Lε and derivative fε. Assume that (ε, y, u) 7→ Gε(y, u) is continuously
differentiable and that the derivative ∂εGε(y, u) ≥ δG > 0 is uniformly bounded from
below by some positive constant δG > 0. This assumption guarantees that the vari-
ance of the innovation in a step of the recursion cannot be arbitrarily small. By the
inverse function theorem we know that there exists a continuously differentiable inverse
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x 7→ H(x, y, u) of ε 7→ Gε(y, u).
Finally, assume that for all x ∈ R, the expressions

C(x) := sup
u∈[0,1]

sup
y 6=y′

|H(x, y, u)−H(x, y′, u)|
|y − y′|1

,

are finite. In this situation it holds that the distribution function of Xt,n,

FXt,n(x) = E
[
P(Gεt(Yt−1,n, t/n) ≤ x|Ft−1)

]
= E

[
Fε(H(x, Yt−1,n, t/n))

]
can be approximated by the distribution function FX̃t(u)(x) := P(X̃t(u) ≤ x) by

|FXt,n(x)− FX̃t(t/n)(x)| ≤ Lε‖H(x, Yt−1,n, t/n)−H(x, Ỹt−1(t/n), t/n)‖1

≤ LεC1(x)

p∑
j=1

‖Xt−j−1,n − X̃t−j−1(t/n)‖1 ≤
C

n
· Lε · C1(x)

with some constant C independent of x, t, n (cf. Lemma 3.1.4). Furthermore u 7→
FX̃t(u)(x) is differentiable with derivative

∂uFX̃t(u)(x) = E
[
fε(H(x, Ỹt−1(u), u))

×
(
〈∂2H(x, Ỹt−1(u), u), ∂uỸt−1(u)〉+ ∂3H(x, Ỹt−1(u), u)

)]
.

Another important application of the results from Section 3.1 is the expansion of
functionals ofXt,n in sums with a weighting kernelK : [−1

2
, 1

2
]→ R of bounded variation

satisfying
∫
K dx = 1. The results of the following Proposition can be used to obtain

bias expansions for nonparametric estimators (see Section 3.3). Define Kb(x) := 1
b
K(x

b
)

with some bandwidth b = bn → 0 satisfying nb→∞.

Proposition 3.2.7 (Bias expansion). Assume that g ∈ Hr(β,M,C). If Assumption
3.1.2(i),(iv) are fulfilled with q = M + 1 and some 1 ≥ α > 0, we have uniformly in
u ∈ [0, 1]:

1

n

n∑
t=1

Kb

( t
n
− u
)(
Eg(Zt,n)− Eg(Z̃t(t/n))

)
= O(n−αβ), (3.2.6)

and uniformly in u ∈ [ b
2
, 1− b

2
]:

1

n

n∑
t=1

Kb

( t
n
− u
)
Eg(Z̃t(t/n)− Eg(Z̃0(u)) = O(bαβ) +O

(
(nb)−1

)
, (3.2.7)

If additionally K is symmetric, g ∈ Lr(M,C) is continuously differentiable and As-
sumption 3.1.2(ii),(iii) holds with q = M + 1, then (3.2.6) and (3.2.7) are valid with
α = β = 1 and we have uniformly in u ∈ [ b

2
, 1− b

2
]

1

n

n∑
t=1

Kb

( t
n
− u
)
Eg(Z̃t(t/n))− Eg(Z̃0(u)) = o(b) +O

(
(nb)−1

)
, (3.2.8)
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The proof of (3.2.6) and (3.2.7) is immediate from Proposition 3.2.2 and the fact
that K has bounded variation and

∫
K dx = 1. To prove (3.2.8), note that

g(Z̃t(t/n)) = g(Z̃t(u)) +
( t
n
− u
)
· ∂ug(Z̃t(u)) +

∫ t/n

u

{
∂ug(Z̃t(s))− ∂ug(Z̃t(u))

}
ds.

Furthermore, as long as | t
n
− u| ≤ b, we have∣∣E∫ t/n

u

{
∂ug(Z̃t(s))− ∂ug(Z̃t(u))

}
ds
∣∣ ≤ b · sup

|u−s|≤b
‖∂ug(Z̃t(s))− ∂ug(Z̃t(u))‖1 = o(b)

since u 7→ ∂ug(Z̃t(u)) is continuous and ‖ supu |∂ug(Z̃t(u))|‖1 <∞. Finally, because K
has bounded variation and is symmetric,

1

n

n∑
t=1

Kb

( t
n
− u
)(
Eg(Z̃t(t/n))− Eg(Z̃t(u))

)
= E[∂ug(Z̃t(u))] · 1

n

n∑
t=1

Kb

( t
n
− u
)
·
( t
n
− u
)

+ o(b) = O(n−1) + o(b).

Remark 3.2.8. Note that in the situation of Proposition 3.2.7, derivative processes
were used to get o(b) instead of O(b) in (3.2.7). Even smaller rates can be obtained
by using the results of Lemma 3.1.11 and/or higher order derivative processes together
with higher order kernels.
If we assume that u 7→ X̃t(u) has a twice continuously differentiable modification and g
is twice continuously differentiable, we obtain a bias decomposition whose structure is
well-known from nonparametric statistics:

1

nb

n∑
t=1

K
(t/n− u

b

)
Eg(Zt,n)− Eg(Z̃t(u)) =

∫
x2K(x) dx · E[∂2

ug(Z̃t(u))] · b2

+o(b2) +O
(
(nb)−1

)
.

3.2.2 A weak local and global law of large numbers

The smoothness ofXt,n in the time direction can be used to obtain laws of large numbers
by only assuming the existence of the first moment of Xt,n. The key step of the proof
is to split the sum over Xt,n into sums over smaller ranges of t where Xt,n can be
approximated by stationary processes. We will also provide results for localized sums.
For this, we will assume that K : [−1

2
, 1

2
]→ R is a function of bounded variation with∫

K dx = 1.
Let us first cite a Lemma from Dahlhaus and Subba Rao (2006) (Lemma A.1 and

A.2) which can be easily generalized to convergence in L1:

Lemma 3.2.9. Assume that (Yt) is a stationary and ergodic process with E|Y1| < ∞.
Let b = bn → 0 such that nbn →∞. Then the following convergence holds in L1:

1

nb

n∑
t=1

K
(t/n− u

b

)
Yt → EY1.
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Proposition 3.2.10 (Weak law - global and local version). Suppose that Assumption
3.1.2(i),(iv) holds with some q ≥ 1 and 1 ≥ α > 0.

(i) If q ≥ 1, we have
1

n

n∑
t=1

Xt,n →
∫ 1

0

EX̃0(u) du

in L1 as n→∞. For each u ∈ [0, 1] it holds that

1

nb

n∑
t=1

K
(t/n− u

b

)
·Xt,n → EX̃0(u)

in L1 as n→∞, nb→∞ and b = bn → 0.

(ii) If q > 1, then

∥∥∥ sup
u∈[0,1]

∣∣ 1

nb

n∑
t=1

K
(t/n− u

b

)
·
(
Xt,n − EXt,n

)∣∣∥∥∥
q
≤ BKq

(q − 1)2
∆
X.,n
q,0 · n1/q−1b−1.

and thus by Markov’s inequality, for all x > 0:

P
(

sup
u∈[0,1]

∣∣ 1

nb

n∑
t=1

K
(t/n− u

b

)
·
(
Xt,n−EXt,n

)∣∣ > x
)
≤ 1

xq

( BKq

(q − 1)2
∆
X.,n
0,q

)q
·n1−qb−q.

If q > 2, then there exist constants C1, C2 not depending on n, b such that for all
x > 0:

P
(

sup
u∈[0,1]

∣∣ 1

nb

n∑
t=1

K
(t/n− u

b

)
·
(
Xt,n − EXt,n

)∣∣ > x
)

≤
2C1(BK∆

X.,n
0,q )qn1−qb−q

xq
+ 8G1−2/q

( C2n
1/2b

BK∆
X.,n
0,q

)
,

with positive constants C1, C2 not depending on n, b and Gq(y) :=
∑∞

j=1 e
−jqy2 a

Gaussian-like tail function.

Remark 3.2.11. (i) For q > 1 and b = o(n1− 1
q ), the results of Proposition 3.2.10(ii)

and Proposition 3.2.7 can be used to obtain uniform convergence of the mean
estimator µ̂b(u) := 1

nb

∑n
t=1 K

( t/n−u
b

)
Xt,n towards µ(u) := EX̃0(u) in the sense

that
sup

u∈[ b
2
,1− b

2
]

|µ̂b(u)− µ(u)| P→ 0.

(ii) The results of Proposition 3.2.10(i) remain true if Xt,n is replaced by g(Zt,n) with
some g ∈ Hr(β,M,C) and the assumptions are fulfilled for q ≥ M + β. The
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reason is that g(Z̃t(u)) is still stationary and, by Hoelder’s inequality applied to
the conjugated pair (M+β

β
, M+β

M
),

‖g(Zt,n)− g(Z̃t(u))‖1 ≤ C ·
( d∑
j=1

‖Xt−j,n − X̃t−j(u)‖M+β

)β
.

with some constant C > 0 independent of t, n, u. Thus the key steps of the proof of
Proposition 3.2.10(i) carry over to this situation. Similar generalizations are pos-
sible for Proposition 3.2.10(ii) since supn∈N δ

g(Z.,n)
q (k) ≤ C

(
supn∈N δ

X.,n
q(M+β)(k)

)β
with some constant C > 0 independent of k, n.

3.2.3 A Central limit theorem

We provide local and global central limit theorems which may be useful in particular
to find asymptotic distributions of (nonparametric) estimators of locally stationary
processes, see section 3.3. It should be noted that the results of Theorem 3.2.12 can
be generalized to functionals g(Xt,n) of Xt,n since the proofs do not use the specific
structure (3.1.1) of Xt,n.

Theorem 3.2.12 (Central limit theorem - global version). Suppose that Assumption
3.1.2(ii),(iv) holds with some q ≥ 2. Define Sn :=

∑n
t=1(Xt,n − EXt,n).

(i) If q ≥ 2, then we have the following invariance principle:

{Sbnuc/
√
n, 0 ≤ u ≤ 1} ⇒

{∫ u

0

σ(v) dB(v), 0 ≤ u ≤ 1
}
,

where B(v) is a standard-Brownian motion and the long-run variance σ2(v) is
given by

σ2(v) =
∥∥∥ ∞∑
i=0

P0X̃i(v)
∥∥∥2

2
=
∑
k∈Z

Cov(X̃0(v), X̃k(v)).

(ii) Strong approximation: If q > 2, then there exists a probability space (Ωc,Ac,Pc)
on which we can define random variables Xc

i with the partial sum process Scn :=∑n
i=1X

c
i and a Gaussian process Gc

i =
∑i

j=1 Y
c
j with Y c

j being independent Gaus-

sian random variables with mean 0 such that (Sci )i=1,...,n
d
= (Si)i=1,...,n and

max
1≤i≤n

|Sci −Gc
i | = op(n

1/q) in (Ωc,Ac,Pc).

Theorem 3.2.13 (Central limit theorem - local version). Assume that g ∈ Lr(M,C)
for some M ≥ 0. Suppose that Assumption 3.1.2(ii),(iv) hold with some 1 ≥ α > 0,
q = 2(M + 1). Then, provided that

√
nbn−α → 0, b→ 0 and nb→∞:

Wn,b :=
1√
nb

n∑
t=1

K
(t/n− u

b

)
·
(
g(Zt,n)− Eg(Zt,n)

)
d→ N(0, σ2(u))
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with σ2(u) :=
∥∥∑∞

l=0 P0g(Z̃l(u))
∥∥2

2
, and

(i) We have the following bias decomposition uniformly in u ∈ [ b
2
, 1− b

2
]:

1√
nb

n∑
t=1

K
(t/n− u

b

)
Eg(Zt,n)− Eg(Z̃0(u)) = O(

√
nb1+2α) +O

(
(nb)−1/2

)
.

(ii) If additionally, g is continuously differentiable and Assumption 3.1.2(iii) is fulfilled
with q = M + 1, then uniformly in u ∈ [ b

2
, 1− b

2
],

1√
nb

n∑
t=1

K
(t/n− u

b

)
Eg(Zt,n)− Eg(Z̃0(u)) = o(

√
nb3) +O

(
(nb)−1/2

)
.

3.3 Application to Maximum Likelihood estimation
Many recursively defined locally stationary processes Xt,n in (3.1.1) are obtained by
replacing the constant parameters θ ∈ Θ ⊂ Rd of a recursively defined stationary
model

Xt(θ) = G̃εt

(
Xt−1(θ), ..., Xt−p(θ), θ

)
, t = 1, ..., n

by time dependent parameter curves θ0 : [0, 1] → Θ evaluated at the rescaled time t
n
,

see Example 3.1.1. In this section, let us assume that Gε(y, u) := G̃ε(y, θ0(u)), so Xt,n

obeys the recursion

Xt,n = G̃εt

(
Xt−1,n, ..., Xt−p,n, θ0

( t
n

))
, t = 1, ..., n.

Note that there is a strong connection between the stationary approximation X̃t(u)
of Xt,n and the original stationary process due to X̃t(u) = Xt(θ0(u)). Our goal is to
obtain estimators for θ0(·) based on Xt,n, t = 1, ..., n with a quasi maximum likelihood
approach.

Suppose for the moment that ε 7→ Gε(y, θ) is continuously differentiable for all
ε, y, u and that the derivative ∂εG̃ε(y, θ) ≥ δG > 0 is bounded uniformly from below
with some constant δG > 0. This ensures that the new innovation εt has an impact
on the value of Xt,n which is not too small. Under these conditions, there exists a
continuously differentiable inverse x 7→ H(x, y, θ) of ε 7→ Gε(y, θ) (see also Example
3.2.6).
Suppose that ε0 has a continuous density fε. The negative conditional log likelihood of
Xt(θ) = x given (Xt−1(θ), ..., Xt−p(θ)) = y is then

`(x, y, θ) = − log fε(H(x, y, θ))− log ∂xH(x, y, θ). (3.3.1)

In the following derivations, we do not make use of the specific structure of `. This
means especially that we allow for model misspecifications due to a false density fε.
Many authors prefer the case of a Gaussian density fε(x) = (2π)−1/2 exp(−x2/2) be-
cause then a minimizer θ of ` can be interpreted as a minimum (quadratic) distance
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estimator (see Dahlhaus and Giraitis (1998) in the tvAR case, Dahlhaus and Subba
Rao (2006) in the tvARCH case).

Based on this we define `t,n(θ) := `(Xt,n, Yt−1,n, θ). Given a bandwidth b ∈ (0, 1)
and kernel function K : [−1

2
, 1

2
] → R with

∫
K(x) dx = 1, Kb(x) := 1

b
K(x

b
) we define

the local log conditional likelihood

Ln,b(u, θ) :=
1

n

n∑
t=p+1

Kb

( t
n
− u
)
· `t,n(θ).

For u ∈ [0, 1], the estimator of θ0(u) is defined via

θ̂b(u) := arg min
θ∈Θ

Ln,b(u, θ). (3.3.2)

We will now discuss conditions such that θ̂b(·) is consistent and asymptotically normal.
A convenient way to formulate these results is to make a structural assumption on
`: We suppose that ` is Hoelder continuous in its first two components with at most
polynomially increasing Hoelder constant. To make this more precise, we introduce the
following class of functions:

Definition 3.3.1 (The class H̃p(β,M,C)). We say that a function g : Rp+1 ×Θ→ R
is in the class H̃p(β,M,C) with C = (Cz, Cθ) and constants Cz, Cθ ≥ 0 and M ≥ 0,
1 ≥ β > 0 if for all z ∈ Rp+1, θ ∈ Θ it holds that g(·, θ) ∈ Hp+1(β,M,Cz) and
g(z, ·) ∈ Hd

(
1, 0, Cθ(1 + |z|M+β

1 )
)
.

It turns out in Theorem 3.3.2 that the (pointwise) consistency of θ̂b can be obtained
by posing conditions on the likelihood of the corresponding stationary process which is
defined via L(u, θ) := E[˜̀t(u, θ)] with ˜̀

t(u, θ) := `(X̃t(u), Ỹt−1(u), θ). Especially if ` is
taken to be of the form (3.3.1) with fε the standard Gaussian density, the properties of
L(u, θ) are usually well-known from the maximum likelihood theory of the stationary
process Xt(θ) and therefore are easy to verify (see also Example 3.3.5).

Theorem 3.3.2 (Pointwise and uniform consistency of θ̂b). Assume that ` ∈ H̃p(β,M,C)
for some M ≥ 0, 1 ≥ β > 0. Suppose that Assumption 3.1.2(i),(iv) holds with some
1 ≥ α > 0 and q = M + β.
Furthermore suppose that for all u ∈ [0, 1], θ0(u) ∈ int(Θ) is the unique minimizer of
L(u, θ) over θ ∈ Θ, where Θ ⊂ Rd is a compact set. Then:

(i) For all u ∈ (0, 1) with b→ 0 and bn→∞:

θ̂b(u)
P→ θ0(u).

(ii) If additionally q > M + β and b = o(n1−M+β
q ) and θ0(·) is continuous, we have

sup
u∈[ b

2
,1− b

2
]

|θ̂b(u)− θ0(u)| P→ 0.
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Remark 3.3.3. Note that in nearly all cases, the conditions of Assumption 3.1.2(iv)
assumed in Theorem 3.3.2 implicitly impose a Hoelder continuity condition on θ0(·).

Proof of Theorem 3.3.2. (i) For fixed u ∈ [0, 1] and θ ∈ Θ, note that `(·, ·, θ) ∈
Hp+1(β,M,Cz). Application of Proposition 3.2.10(i) (see also Remark 3.2.11(ii)) leads
to

Ln,b(u, θ) =
1

n

n∑
t=1

Kb

( t
n
− u
)
· `(Xt,n, Yt−1,n, θ)

P→ E`(X̃t(u), Ỹt−1(u), θ) = L(u, θ).

Define m := M + β, m′ := m ∧ 1. The function θ 7→ L(u, θ) is continuous since

|L(u, θ)− L(u, θ′)| ≤ ‖`(X̃t(u), Ỹt−1(u), θ)− `(X̃t(u), Ỹt−1(u), θ′)‖1

≤ Cθ · |θ − θ′|1 ·
(
1 +

( p∑
j=0

‖X̃t(u)‖m′m
) m
m′ )

.

It remains to show stochastic equicontinuity of Ln,h(u, θ): Define h : Rp+1 → R, h(z) =
Cθ(1 + |z|m1 ). Fix η > 0. We have

|Ln,b(u, θ)− Ln,b(u, θ′)| ≤ |θ − θ′|1 ·
1

n

n∑
t=1

∣∣∣Kb

( t
n
− u
)∣∣∣ · h(Xt,n, Yt−1,n).

Obviously, h ∈ Hp+1(m′, (m ∨ 1) − 1, C) with some constant C > 0. Application of
Proposition 3.2.10(i) to K/

∫
K dx and h (see also Remark 3.2.11(ii)) yields for all

u ∈ (0, 1):

1

n

n∑
t=1

∣∣∣Kb

( t
n
− u
)∣∣∣ · h(Xt,n, Yt−1,n)

P→
∫
|K| dx · Eh(X̃t(u), Ỹt−1(u)) =: c(u). (3.3.3)

Choosing δ = η
2c(u)

yields

P
(

sup
|θ−θ′|1≤δ

|Ln,b(u, θ)− Ln,b(u, θ′)| > η
)

≤ P
(∣∣∣ 1
n

n∑
t=1

∣∣∣Kb

( t
n
− u
)∣∣∣ · h(Xt,n, Yt−1,n)− c(u)

∣∣∣ > c(u)
)
→ 0 (n→∞).

This gives supθ∈Θ |Ln,b(u, θ)−L(u, θ)| P→ 0. By standard arguments (cf. Van der Vaart
(2009), Theorem 5.7), the proof is complete.
To prove (ii), we apply Proposition 3.2.10(ii) with q̃ = q

M+β
> 1 (see also Remark

3.2.11(ii)) to obtain for each θ ∈ Θ that

sup
u∈[0,1]

∣∣Ln,b(u, θ)− ELn,b(u, θ)
∣∣ = Op(n

M+β
q
−1b−1).
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By Proposition 3.2.7 we have supu∈[ b
2
,1− b

2
] |ELn,b(u, θ)−L(u, θ)| = O(bαβ) +O((nb)−1),

which yields

sup
u∈[ b

2
,1− b

2
]

∣∣Ln,b(u, θ)− L(u, θ)
∣∣ P→ 0.

Similarly we can strengthen (3.3.3) to

sup
u∈[ b

2
,1− b

2
]

∣∣∣ 1
n

n∑
t=1

∣∣∣Kb

( t
n
− u
)∣∣∣ · h(Xt,n, Yt−1,n)− c(u)

∣∣∣ P→ 0.

Now define c := infu c(u). Choosing δ = η
2c

yields

P
(

sup
u∈[ b

2
,1− b

2
]

sup
|θ−θ′|1≤δ

|Ln,b(u, θ)− Ln,b(u, θ′)| > η
)

≤ P
(

sup
u∈[ b

2
,1− b

2
]

∣∣∣ 1
n

n∑
t=1

∣∣∣Kb

( t
n
− u
)∣∣∣ · h(Xt,n, Yt−1,n)− c(u)

∣∣∣ > c
)
→ 0 (n→∞).

So we have seen that supu∈[ b
2
,1− b

2
] supθ∈Θ |Ln,b(u, θ)−L(u, θ)| P→ 0. Standard arguments

give the result (see also the appendix).

We now provide a central limit theorem for θ̂b including a bias decomposition. Let
∇ denote the derivative with respect to θ.

Theorem 3.3.4 (A central limit theorem for θ̂b). Additionally to Theorem 3.3.2, sup-
pose that

• ∇` ∈ H̃p(1,M
′, C ′) for some M ′ ≥ 0, ∇2` ∈ H̃p(β

′′,M ′′, C ′′) for some M ′′ ≥ 0,
1 ≥ β′′ > 0,

• Assumption 3.1.2(i),(iv) is fulfilled with q = max{2(M ′+ 1),M ′′+ β′′} and some
1 ≥ α′ > 0, Assumption 3.1.2(ii) is fulfilled with q = 2(M ′ + 1).

Assume that the model is correct in the weak sense that E[∇˜̀(u, θ0(u))|Ft−1] = 0, i.e.
∇˜̀

t(u, θ0(u)) is a martingale difference sequence with respect to (Ft). Then we have for
b→ 0, nb→∞ and nb1+2α′ = o(1):

√
nb(θ̂b(u)− θ0(u))

d→ N
(
0, V (u)−1I(u)V (u)−1

)
, (3.3.4)

where I(u) := E[∇˜̀
t(u, θ0(u))∇˜̀

t(u, θ0(u))′] and V (u) := ∇2L(u, θ0(u)) is assumed to
be positive definite.
If additionally ∇` is continuously differentiable, K is symmetric and Assumption 3.1.2
(iii) is fulfilled for q = M ′ + 1, the result (3.3.4) remains true if nb3 = O(1).
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Proof of Theorem 3.3.4: The conditions on∇2` imply that u 7→ ∇2L(u, θ) = E[∇2 ˜̀
t(u, θ)]

is continuous. Note that by Theorem 3.2.13, we have
√
nb∇Ln,b(u, θ0(u))

=
1√
nb

n∑
t=p+1

K
(t/n− u

b

)(
∇`(Xt,n, Yt−1,n, θ0(u))− E∇`(Xt,n, Yt−1,n, θ0(u))

)
d→ N(0, σ2(u)),

where σ2(u) =
∥∥∥∑∞l=0 P0∇˜̀

t(u, θ0(u))
∥∥∥2

2
= I(u) by the martingale difference property.

Furthermore Theorem 3.2.13 gives that

1√
nb

n∑
t=1

K
(t/n− u

b

)
E∇`(Xt,n, Yt−1,n, θ0(u))

=
1√
nb

n∑
t=1

K
(t/n− u

b

)(
E∇`(Xt,n, Yt−1,n, θ0(u))− E∇`(X̃t(u), Ỹt−1(u), θ0(u))

)
is O(

√
nb1+2α′) +O((nb)−1/2) or o(

√
nb3) +O((nb)−1/2) dependent on the assumptions.

Since ∇2` fulfills the same assumptions as ` in Theorem 3.3.2, we can mimic its proof
and obtain

sup
θ∈Θ
|∇2Ln,b(u, θ)−∇2L(u, θ)| P→ 0.

By continuity of θ 7→ ∇2L(u, θ), we obtain for each sequence θ̃n
P→ θ0(u) that

|∇2Ln,b(u, θ̃n)−∇2L(u, θ0(u))|

≤ |∇2Ln,b(u, θ̃n)−∇2L(u, θ̃n)|+ |∇2L(u, θ̃n)−∇2L(u, θ0(u))| P→ 0.

Standard arguments now give the result.

An important special case is the case of Gaussian conditional likelihoods combined
with autoregressive models. Specific examples for these are given in Example 3.1.1.

Example 3.3.5 (Autoregressive models). In this example we discuss the model G̃ε(y, θ) =
µ(y, θ) + σ(y, θ)ε, where µ, σ : Rp ×Θ→ R satisfy

sup
θ

sup
y 6=y′

|µ(y, θ)− µ(y′, θ)|
|y − y′|χ,1

+ sup
θ

sup
y 6=y′

|σ(y, θ)− σ(y′, θ)|
|y − y′|χ,1

‖ε0‖2 ≤ 1 (3.3.5)

with some χ ∈ Rp
≥0 with |χ|1 < 1. Assume that Eε0 = 0 and Eε2

0 = 1 and that
θ0(·) ∈ Σ(α,L), i.e. θ0 is Hoelder-continuous with exponent α. Then Assumption
3.1.2(ii) is fulfilled with q = 2.

If we choose fε to be the standard Gaussian density, we obtain from (3.3.1):

`(x, y, θ) =
1

2

(x− µ(y, θ)
)

σ(y, θ)

)2

− 1

2
log σ2(y, θ) + const. (3.3.6)
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Furthermore assume that

sup
y

sup
θ 6=θ′

|µ(y, θ)− µ(y, θ′)|
|θ − θ′|1 · (1 + |y|1)

<∞, sup
y

sup
θ 6=θ′

|σ(y, θ)− σ(y, θ′)|
|θ − θ′|1 · (1 + |y|1)

<∞. (3.3.7)

Let σ(·) ≥ δσ be uniformly bounded from below with some δσ > 0. Then ` ∈ H̃p(1, 1, C)
with some C > 0, and Assumption 3.1.2(i),(iv) is fulfilled with q = 2 and α from above.

Fix u ∈ [0, 1]. Suppose that

µ(Ỹt−1(u), θ) = µ(Ỹt−1(u), θ0(u)) and σ(Ỹt−1(u), θ) = σ(Ỹt−1(u), θ0(u)) a.s.

implies θ = θ0(u). Then θ 7→ L(u, θ) has a unique minimum in θ = θ0(u) since
log(x) ≤ x − 1 if and only if x = 1 and x2 ≥ 0 if and only if x = 0 and, omitting the
argument Ỹt−1(u),

2
(
L(u, θ)− L(u, θ0(u))

)
= E

(µ(θ)− µ(θ0(u))

σ(θ)

)2

+ E
[

log
σ(θ)2

σ(θ0(u))2
− 1 +

σ(θ0(u))2

σ(θ)2

]
≥ 0.

If additionally Θ is compact and θ0(u) ∈ int(Θ), the assumptions of Theorem 3.3.2 are
fulfilled and we obtain for θ̂b defined by (3.3.2):

θ̂b(u)
P→ θ0(u).

We now will show asymptotic normality of θ̂b. To keep the presentation simple, we
will assume σ(·, ·) ≡ 1, Eε4

0 < ∞ and replace Eε2
0 = 1 by Eε2

0 = σ2
0 > 0. Note that

Assumption (3.1.2)(ii) is fulfilled with q = 4. Then, omitting the arguments of µ, we
have

∇` = −(x− µ)∇µ, ∇2` = ∇µ · ∇µ′ − (x− µ)∇2µ.

Then E[∇`(X̃t(u), Ỹt−1(u), θ0(u))|Ft−1] = 0 and I(u) = E[∇` · ∇`′] = σ2
0E[∇µ · ∇µ′] =

σ2
0V (u) with V (u) := ∇2L(u, θ0(u)). If additionally

sup
θ

sup
y 6=y′

|∇µ(y, θ)−∇µ(y′, θ)|1
|y − y′|1

<∞, sup
y

sup
θ 6=θ′

|∇µ(y, θ)−∇µ(y, θ′)|1
|θ − θ′|1(1 + |y|1)

<∞

(3.3.8)
and similar assumptions are fulfilled for ∇2µ, then we have ∇`,∇2` ∈ H̃p(1, 1, C

′) with
some C ′ > 0. This shows that all conditions of the first part of Theorem 3.3.4 are
fulfilled and we obtain for b→ 0, nb→∞ and nb3 = o(1):

√
nb
(
θ̂b(u)− θ0(u)

) d→ N
(
0, σ2

0 · V (u)−1
)
. (3.3.9)

If additionally, µ,∇µ and θ0 are continuously differentiable and,

sup
θ

sup
y 6=y′

|∂iµ(y, θ)− ∂iµ(y′, θ)|1
|y − y′|1

<∞, (i = 1, 2), (3.3.10)

then ∇` is continuously differentiable and Assumption 3.1.2(iii) is fulfilled with q = 2.
So all conditions of the second part of Theorem 3.3.4 are fulfilled and we obtain (3.3.9)
even if nb3 = O(1).
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We close this section by using the results of Example 3.3.5 in a more specific exam-
ple of the tvExpAR(1) process which is a locally stationary version of the ExpAR(1)
process discussed in Jones (1978). Up to now, there is no asymptotic theory available
for the parameter estimator in this model; we show that our theory immediately pro-
vides consistency and asymptotic normality of the corresponding maximum likelihood
estimator.

Example 3.3.6 (Maximum likelihood estimation in the tvExpAR(1) process). Assume
that there exists θ0 : [0, 1] → Θ (where the image of θ0 is in the interior of Θ) with
Θ := {θ ∈ R : 0 ≤ θ ≤ ρ} and some fixed ρ > 0, 0 < |a0| < 1 such that

Xt,n = a0 exp
(
− θ0

( t
n

)
X2
t−1,n

)
Xt−1,n + εt, t = 1, ..., n.

Assume that Eε0 = 1, Eε2
0 = σ2

0 > 0 and Eε4
0 < ∞. It is easily seen that this

model fulfills the smoothness assumptions (3.3.5), (3.3.7), (3.3.8) and (3.3.10) with
µ(y, θ) := a0 exp(−θy2)y and σ(·, ·) ≡ 1. Let X̃t(u) denote the corresponding stationary
approximation of Xt,n. Identifiability of θ is obtained due to

E[(µ(X̃t(u), θ)− µ(X̃t(u), θ′))2] ≥ a2
0E[exp(−2ρX̃0(u)2)X̃0(u)6] · |θ − θ′|2,

since E[exp(−2ρX̃t(u)2)X̃t(u)6] = 0 would imply X̃t(u) = 0 a.s. which is a contradiction
to E[X̃t(u)2] ≥ σ2

0 which follows from the recursion of X̃t(u). Let θ̂b(u) defined by (3.3.2)
based on the likelihood (3.3.6). We obtain for b→ 0, bn→∞:

θ̂b(u)
P→ θ0(u),

and for nb3 = O(1):
√
nb
(
θ̂b(u)− θ0(u)

) d→ N(0, σ2
0V (u)−1),

where V (u) = a2
0E[exp(−2θ0(u)X̃0(u)2)X̃0(u)6].

3.4 Concluding Remarks
In this chapter, we made a first step to derive a general asymptotic theory for nonsta-
tionary processes Xt,n. We introduced derivative processes which have shown to be a
powerful tool to show mean expansions of functionals of Xt,n. We could see in Figure
3.1 that the pointwise approximation of Xt,n by the Taylor expansion of X̃t(t/n) around
some time point u ∈ [0, 1] with derivative processes has very low variance as long as
|t/n−u| � 1, n−1 � 1 and the dependence of the process is small. This also motivates
to use these expansions in other fields of statistics which are well-studied for stationary
processes.

We formulated laws of large numbers and central limit theorems for such processes
under minimal moment assumptions by using the smoothness of the approximating
stationary process. We applied the results to nonparametric maximum likelihood esti-
mation and formulated easy verifiable conditions which are applicable to a wide range
of well-known locally stationary processes.
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3.5 Lemmas and Proofs

3.5.1 Proofs of section 3.1

Here, we prove the results from section 3.1. The following lemma from Duflo (1997),
Lemma 6.2.10 therein will be used frequently to verify the geometric decay of the
difference of recursively defined processes:

Lemma 3.5.1. Assume that p > 0 is a positive natural number, χ ∈ Rp
≥0 with |χ|1 < 1

and that there are sequences of real-valued nonnegative numbers (zs)s>−p, (µs)s>0 which
fulfill for all s = 1, 2, ...:

zs ≤
p∑
i=1

χizs−i + µs. (3.5.1)

Then there exist constants λ0 ∈ (0, 1), Cλ > 0 only depending on χ, p such that for all
s = 1, 2, ...:

zs ≤ Cλ

(
λs0 · |(z0, ..., z−p+1)|1 +

s−1∑
i=0

λi0µs−i

)
.

Sometimes we will apply the lemma for s = 0, 1, 2, ... instead of s = 1, 2, 3, ... .
For the following proofs, recall that Yt−1,n := (Xt−1,n, ..., Xt−p,n) and Ỹt−1(u) =

(X̃t−1(u), ..., X̃t−p(u)). For y ∈ Rp, we will use the abbreviation Gε,u(y) := Gε(y, u).
Define the random map Rε,u(y) := (Gε,u(y), y1, ..., yp−1). Let Xn,u(y) be the first ele-
ment of the vector Hn,u(y) := Rε0,u ◦ Rε−1,u ◦ ... ◦ Rε−n,u(y), where n = 0, 1, 2, ... For
consistency of the following argumentations, define Xn,u(y) := y−n for n = −1, ...,−p.
Note that Hn,u(y)j = Xn−j+1,u(y) (in distribution) for j = 1, ..., p. Let Jn,u(y) be de-
fined similarly to Hn,u(y) but based on ε−1, ..., ε−n−1 instead of ε0, ..., ε−n. Note that
Xn,u(y) = Gε0,u(Jn−1,u(y)) and that Jn−1,u(y) = Hn−1,u(y) = (Xn−1,u(y), ..., Xn−p,u(y))′

holds in distribution.

Proof of Proposition 3.1.3. (i) Note that (|a|+ |b|)q′ ≤ |a|q′ + |b|q′ since 0 < q′ ≤ 1. By
(3.1.3), we obtain

‖Xn,u(y)−Xn,u(y
′)‖q′q

≤ ‖Gε0,u(Jn−1,u(y))−Gε0,u(Jn−1,u(y
′))‖q′q

≤ E
[
E
[
|Gε0,u(Jn−1,u(y))−Gε0,u(Jn−1,u(y

′))|q
∣∣F−1

]]q′/q
≤ E

[
|Jn−1,u(y)− Jn−1,u(y

′)|qχ,q′ ]
q′/q

≤ E
[( p∑

j=1

χj|Xn−j,u(y)−Xn−j,u(y
′)|q′
)q/q′]q′/q

=
∥∥ p∑
j=1

χj|Xn−j,u(y)−Xn−j,u(y
′)|q′
∥∥
q/q′

≤
p∑
j=1

χj
∥∥|Xn−j,u(y)−Xn−j,u(y

′)|q′
∥∥
q/q′

=

p∑
j=1

χj
∥∥Xn−j,u(y)−Xn−j,u(y

′)‖q′q .
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By Lemma 3.5.1, we have with some Cλ > 0, λ0 ∈ (0, 1) independent of u ∈ [0, 1] that
for all n ∈ N:

‖Xn,u(y)−Xn,u(y
′)‖q′q ≤ Cλλ

n+1
0 · |y − y′|q

′

1 . (3.5.2)

Applying (3.5.2) to y = y0 and y′ = Rε−n−1,u(y0), we obtain

∥∥∥ ∞∑
n=0

|Xn,u(y0)−Xn+1,u(y0)|
∥∥∥q′
q
≤

∞∑
n=0

‖Xn,u(y0)−Xn+1,u(y0)‖q′q

≤ Cλ

∞∑
n=0

λn+1
0 · ‖|y0 −Rε−n−1,u(y0)|1‖q

′

q <∞.

By the Markov inequality, this shows that (Xn,u(y0))n∈N is a Cauchy sequence a.s. and
thus has an almost sure limit X̃0(u) (say). Furthermore, we have

‖Xn,u(y0)‖q′q ≤ |y0|q
′

1 +
n−1∑
k=0

‖Xk+1,u(y0)−Xk,u(y0)‖q′q ≤ |y0|q
′

1 +
Cλλ0

1− λ0

‖|y0−Rε−n−1,u(y0)|1‖q
′

q .

By Fatou’s lemma,

sup
u∈[0,1]

‖X̃0(u)‖q′q ≤ sup
u∈[0,1]

lim inf
n→∞

‖Xn,u(y0)‖q′q <∞,

since supu∈[0,1] ‖Gε0(y0, u)‖q <∞ by assumption.
Since X̃0(u) is F0-measurable, we can write X̃0(u) = H(u,F0) for some measurable
function H. By (3.5.2), Xn,u(y) converges almost surely to the same limit X̃0(u) for
arbitrary y ∈ Rp. This shows a.s. uniqueness and we can express X̃t(u) = H(u,Ft).
Because X̃t(u) obeys (3.1.1), we have for X∗0t (u) = H(u,F∗0t ) by (3.1.3):

‖X̃t(u)− X̃∗0t (u)‖q′q ≤
p∑
j=1

χj‖X̃t−j(u)− X̃∗0t−j(u)‖q′q

By Lemma 3.5.1, we conclude ‖X̃t(u)− X̃∗0t (u)‖q′q ≤ 2pCλλ
t
0‖X̃0(u)‖q′q .

(ii) Because X0,n = X̃0(0) by means of (3.1.1), the existence and uniqueness state-
ment is obvious from Proposition 3.1.3. From (3.1.3) and the triangle inequality, we
obtain

‖Xt,n‖q
′

q ≤
p∑
j=1

χj‖Xt−j,n − y0j‖q
′

q +
∥∥Gε0

(
y0,

t

n

)∥∥q′
q

≤
p∑
j=1

χj‖Xt−j,n‖q
′

q + |y0|q
′

1 + sup
u∈[0,1]

‖Gε0(y0, u)‖q′q .

Since ‖Xs,n‖q
′
q = ‖X̃0(0)‖q′q for s ≤ 0, Lemma 3.5.1 implies ‖Xt,n‖q

′
q ≤ Cλpλ

t
0‖X̃0(0)‖q′q +

(1 − λ0)−1
(
|y0|q

′

1 + supu∈[0,1] ‖Gε0(y0, u)‖q′q
)
for all t = 1, ..., n, which provides that
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supn∈N supt=1,...,n ‖Xt,n‖q
′
q < ∞. Note that for arbitrary t ≥ 0, k ≥ 0, we have by

(3.1.3):

‖Xt,n −X∗(t−k)
t,n ‖q′q ≤

p∑
j=1

χjE|Xt−j,n −X∗(t−k)
t−j,n |q

′ ≤
p∑
j=1

χj‖Xt−j,n −X∗(t−k)
t−j,n ‖q

′

q .

Note that zs := ‖Xs+(t−k),n −X∗(t−k)
s+(t−k),n‖q

′
q = 0 for s < 0,

and z0 ≤ 2 supn∈N supt=1,...,n ‖Xt,n‖q
′
q . Lemma 3.5.1 implies ‖Xt,n − X∗(t−k)

t,n ‖q′q = zk ≤
2Cλλ

k
0 supn∈N supt=1,...,n ‖Xt,n‖q

′
q .

Proof of Lemma 3.1.4: The first inequality (3.1.7) is a consequence of

‖X̃t(u)− X̃t(u
′)‖q′q

≤ ‖Gεt(Ỹt−1(u), u)−Gεt(Ỹt−1(u), u′)‖q′q + ‖Gεt(Ỹt−1(u), u′)−Gεt(Ỹt−1(u′), u′)‖q′q

≤ ‖C(Ỹt−1(u))‖q′q |u− u′|αq
′
+

k∑
j=1

χj‖X̃t−j(u)− X̃t−j(u
′)‖q′q

≤ Cq′ |u− u′|αq′ + |χ|1 · ‖X̃t(u)− X̃t(u
′)‖q′q .

For the second inequality, note that we have for all s = 1, ..., n:∥∥∥Xs,n − X̃s

( s
n

)∥∥∥q′
q

=
∥∥∥Gεt

(
Ys−1,n,

s

n

)
−Gεt

(
Ỹs−1

( s
n

)
,
s

n

)∥∥∥q′
q

≤
p∑
i=1

χi ·
∥∥∥Xs−i,n − X̃s−i

( s
n

)∥∥∥q′
q

≤
p∑
i=1

χi ·
∥∥∥∥Xs−i,n − X̃s−i

(
s− i
n
∨ 0

)∥∥∥∥q′
q

+

p∑
i=1

χi ·
∥∥∥∥X̃s−i

(
s− i
n
∨ 0

)
− X̃s−i

( s
n

)∥∥∥∥q′
q

≤
p∑
i=1

χi ·
∥∥∥∥Xs−i,n − X̃s−i

(
s− i
n
∨ 0

)∥∥∥∥q′
q

+ Cq′pαq
′ |χ|1
1− |χ|1

· n−αq′ .

Define zs := ‖Xs,n − X̃s(
s
n
∨ 0)‖q′q . Note that zs = 0 for s ≤ 0 and define µ :=

Cq′pαq
′ |χ|1
1−|χ|1 · n

−αq′ . In this special case we can calculate the constants from Lemma
3.5.1 directly, since zs−i1−...−is = 0 for i1, ..., is ∈ {1, ..., p}:

zs ≤
p∑

i1=1

χi1zs−i1 +µ ≤
p∑

i1,i2=1

χi1χi2zs−i1−i2 +µ(1+ |χ|1) ≤ ... ≤ µ(1+ |χ|1 + ...+ |χ|s−1
1 ),

which yields zs ≤ µ
1−|χ|1 and thus

sup
s=1,...,n

∥∥∥Xs,n − X̃s

( s
n

)∥∥∥q′
q
≤ Cq′pαq

′ |χ|1
(1− |χ|1)2

n−αq
′
.
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Proof of Theorem 3.1.6. With out loss of generality, we prove the statement for t = 0.
Because of the continuity of G, the process (Xn,u(y0))u∈[0,1] is continuous and thus a
random element of the normed space (C[0, 1], | · |∞) where | · |∞ denotes the supremum
norm on [0, 1]. With condition (3.1.4) we obtain for two functions u 7→ y(u), y(u)′:

∥∥∥ sup
u∈[0,1]

|Xn,u(y)−Xn,u(y
′)|
∥∥∥q′
q
≤

p∑
j=1

χj ·
∥∥∥ sup
u∈[0,1]

|Xn−j,u(y)−Xn−j,u(y
′)|
∥∥∥q′
q
.

Lemma 3.5.1 implies∥∥ sup
u∈[0,1]

|Xn,u(y)−Xn,u(y
′)|
∥∥q′
q
≤ Cλλ

n+1
0 sup

u∈[0,1]

|y − y′|q
′

1 . (3.5.3)

Taking y(u) = y0, y′(u) = Rε−n−1,u(y0), we conclude∥∥∥ sup
u∈[0,1]

|Xn+1,u(y0)−Xn,u(y0)|
∥∥∥q′
q
≤ Cλλ

n+1
0

∥∥ sup
u∈[0,1]

|y0 −Rε0(y0, u)|1
∥∥q′
q
. (3.5.4)

This implies that the sequence (Xn,u(y0))u∈[0,1], n ∈ N of elements of C[0, 1] is a Cauchy
sequence in (C[0, 1], | · |∞) almost surely. Since this space is complete, there exists a
continuous limit X̂0 = (X̂0(u))u∈[0,1]. It was already shown in the proof of Proposition
3.1.3 that Xn,u(y0) → X̃0(u) a.s. for fixed u ∈ [0, 1]. This implies that X̂0 is a
continuous modification of (X̃0(u))u∈[0,1]. By (3.5.4), we have

∥∥∥ sup
u∈[0,1]

|Xn,u(y0)|
∥∥∥q′
q
≤

n−1∑
k=0

∥∥∥ sup
u∈[0,1]

|Xk,u(y0)−Xk+1,u(y0)|
∥∥∥q′
q

+ |y0|q
′

1

≤ Cλλ0

1− λ0

∥∥ sup
u∈[0,1]

|y0 −Rε0(y0, u)|1
∥∥q′
q

+ |y0|q
′

1 =: Dq′ .

Because for M ∈ N, M ∧ supu∈[0,1] | · | is a bounded and continuous functional, we
obtain

∥∥M ∧ supu∈[0,1] |X̂0(u)|
∥∥
q
≤ D and by the monotone convergence theorem,

supu∈[0,1] |X̂t(u)| ∈ Lq.

Proof of Proposition 3.1.7. For fixed u0 ∈ [0, 1], the fundamental theorem of calculus
gives

Gε0(y, u)−Gε0(y′, u)

=

∫ 1

0

〈∂1Gε0(y′ + s · (y − y′), u)− ∂1Gε0(y′ + s · (y − y′), u0), y − y′〉 ds

+
(
Gε0(y, u0)−Gε0(y′, u0)

)
.

The first term is bounded in absolute value by supx |∂1Gε0(x, u)−∂1Gε0(x, u0)|1·|y−y′|∞.
Since |χ|1 < 1, we can assume w.l.o.g. that χj > 0 for all j = 1, ..., p (if for instance
χ1 = 0, one can define χ′ := χ + (1 − |χ|1/2, 0, ..., 0) which still fulfills |χ′|1 < 1).
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Now choose β > 1 such that β|χ|1 < 1, and define χ′ := δχ. We have |y − y′|∞ ≤
1

min(χ′)
|y − y′|χ′,q′ . For δ > 0 small enough, we have∥∥∥ sup

|u−u0|≤δ
sup
x 6=y

|Gε0(y, u)−Gε0(y′, u)|
|y − y′|χ′,q′

∥∥∥q′
q

≤ 1

min(χ′)q′

∥∥∥ sup
|u−u0|≤δ

sup
x
|∂1Gε0(x, u)− ∂1Gε0(x, u0)|1

∥∥∥q′
q

+
1

βq′
sup

|u−u0|≤δ

∥∥∥ sup
x 6=y

|Gε0(y, u)−Gε0(y′, u)|
|y − y′|χ,q′

∥∥∥q′
q
< 1.

Partitioning of [0, 1] into (overlapping) closed intervals I1, ..., IK of at most length δ
and applying Theorem 3.1.6 on each of these intervals Ik, k = 1, ..., K provides the
existence of a continuous modification of (X̂

(k)
t (u))u∈Ik on each of these subintervals

with supu∈Ik |X̂
(k)
t (u)| ∈ Lq. For fixed k, k′ ∈ {1, ..., K} with Ik∩Ik′ 6= ∅ the continuous

processes (X̂
(k)
t (u))u∈Ik , (X̂

(k′)
t (u))u∈Ik′ are a.s. equal on Ik∩Ik′ which ensures continuity

of a process (X̂t(u))u∈[0,1] which is assembled from (X̂
(k)
t (u))u∈Ik , k = 1, ..., K.

Proof of Theorem 3.1.8: (i) Note that Assumption 3.1.2(ii),(iii) imply 3.1.2(i) and
(3.1.10). We will only use these conditions for the following proof. Since the pro-
cess X̃t(u) is already known to exist, we will define a new recursion function. For
y ∈ Rp, define the random map Ĝt(y, u) := 〈∂1Gεt(Ỹt−1(u), u), y〉 + ∂2Gεt(Ỹt−1(u), u)
and R̂t,u(y) := (Ĝt(y, u), y1, ..., yp−1), and let DXt,n,u(y) be the first element of R̂t,u ◦
R̂t−1,u ◦ ... ◦ R̂t−n,u(y) for n ∈ N. For y, y′ ∈ Rp, (3.1.3) and Fatou’s lemma imply

‖R̂t,u(y)− R̂t,u(y
′)‖q = ‖〈∂1Gεt(Ỹt−1(u), u), y − y′〉‖q

≤ lim inf
h→0

‖Gεt(Ỹt−1(u) + h(y − y′), u)−Gεt(Ỹt−1(u), u)‖q
h

≤ lim inf
h→0

‖Gεt(Ỹt−1(u) + h(y − y′), u)−Gεt(Ỹt−1(u), u)‖q
|h(y − y′)|χ,q′

· |y − y′|χ,q′

≤ |y − y′|χ,q′ . (3.5.5)

Similar to the proof of Proposition 3.1.3, we obtain Cλ > 0, λ0 ∈ (0, 1) with

‖DXt,n,u(y)−DXt,n,u(y
′)‖q′q ≤ Cλ · λn+1

0 |y − y′|q′ .

Applying this to y = y0 and y′ = R̂t−n−1,u(y0) we obtain∥∥∥ ∞∑
n=0

|DXt,n,u(y0)−DXt,n+1,u(y0)|
∥∥∥q′
q
≤ Cλ

∞∑
n=0

λn+1
0 · ‖|y0 − R̂t−n−1,u(y0)|1‖q

′

q

which is finite by (3.1.10) and (3.5.5). This implies that DX0,n,u(y0) converges a.s. to
some limit DX̃0(u), say. Because X̃k(u) ∈ Fk (k ∈ Z), it is obvious that DX̃0(u) is
F0-measurable and therefore has a representation DX̃0(u) = Ĥ(u,F0). The rest of the
proof is the same as in Proposition 3.1.3(i).
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(ii) Because of the continuous differentiability of G, the process (Xn,u(y0))u∈[0,1] is a
random element of (C1[0, 1], | · |C1), where ‖f‖C1 = |f |∞ + |f ′|∞ and | · |∞ denotes the
supremum norm on [0, 1]. Define q̃ := q/2 and q̃′ := min(q̃, 1). Because of Xn,u(y) =
Gε0,u(Jn−1,u(y)), we have for two differentiable functions u 7→ y1(u), y2(u) ∈ Rp:

∂uXn,u(y1) = 〈∂1Gε0(Jn−1,u(y1), u), ∂uJn−1,u(y1)〉+ ∂2Gε0(Jn−1,u(y1), u).

This shows (use similar techniques as in (3.5.5)):∥∥ sup
u∈[0,1]

|∂uXn,u(y1)|
∥∥q′
q

≤
p∑
j=1

χj
∥∥ sup

u
|∂uXn−j,u(y1)|

∥∥q′
q

+
∥∥ sup

u
|∂2Gε0,u(Jn−1,u(y1))|

∥∥q′
q

≤
p∑
j=1

χj
∥∥ sup

u
|∂uXn−j−1,u(y1)|

∥∥q′
q

+ C2

p∑
j=1

∥∥ sup
u
|Xn−j,u(y1)|

∥∥q′
q

+
∥∥ sup

u
|∂2Gε0(0, u)|

∥∥q′
q
.

The third term is finite by assumption, and in the proof of Theorem 3.1.6 it was shown
that ‖ supu |Xn,u(y1)|‖q′q ≤ D(y1)q

′ for all n ∈ N. Since |χ|1 < 1, Lemma 3.5.1 implies
for all n ∈ N:∥∥ sup

u∈[0,1]

|∂uXn,u(y1)|
∥∥q′
q

≤ Cλ
(
λn+1

0 |∂uy1|q
′

1 + (1− λ0)−1
(
C2pD(y1)q

′
+
∥∥ sup

u
|∂2Gε0(0, u)|

∥∥q′
q

)
=: E(y1)q

′
.

(3.5.6)

Using the triangle inequality, we obtain∥∥ sup
u∈[0,1]

∣∣∂uXn,u(y1)− ∂uXn,u(y2)
∣∣∥∥q̃′
q̃

≤
∥∥ sup
u∈[0,1]

∣∣〈∂1Gε0,u(Jn−1,u(y1), u)− ∂1Gε0,u(Jn−1,u(y2), u), ∂uJn−1,u(y1)〉
∣∣∥∥q̃′
q̃

+
∥∥ sup
u∈[0,1]

∣∣〈∂1Gε0,u(Jn−1,u(y2), u), ∂uJn−1,u(y1)− ∂uJn−1,u(y2)〉
∣∣∥∥q̃′
q̃

+
∥∥ sup
u∈[0,1]

∣∣∂2Gε0,u(Jn−1,u(y1), u)− ∂2Gε0,u(Jn−1,u(y2), u)
∣∣∥∥q̃′
q̃

=: A1 + A2 + A3.

Condition (3.1.5) and the result (3.5.3) from the proof of Theorem 3.1.6 (use C̃λ, λ̃0

for the result therein) implies

A3 ≤ C2 ·
∥∥ sup
u∈[0,1]

|Jn−1,u(y1)− Jn−1,u(y2)|1
∥∥q̃′
q̃

≤ C2 ·
( p∑
j=1

∥∥ sup
u∈[0,1]

|Xn−j−1,u(y1)−Xn−j−1,u(y2)|
∥∥q′
q

)q̃′/q′
≤ C2

(
C̃λpλ̃

n−p
0

)q̃′/q′
sup
u
|y1 − y2|q̃

′

1 .
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A similar technique as in (3.5.5) gives

A2 ≤
p∑
j=1

χj
∥∥ sup
u∈[0,1]

|∂uXn−j,u(y1)− ∂uXn−j,u(y2)|
∥∥q̃′
q̃
.

By Cauchy Schwarz’ inequality, we have

A1 ≤
p∑
j=1

∥∥∥ sup
u∈[0,1]

∣∣(∂1Gε0(Jn−1,u(y1), u)− ∂1Gε0(Jn−1,u(y2), u)
)
j

∣∣ · ∣∣∂uJn−1,u(y1)j
∣∣∥∥∥q̃′
q̃

≤ C1

p∑
j=1

∥∥∥ sup
u∈[0,1]

∣∣Jn−1,u(y1)− Jn−1,u(y2)
∣∣
1
·
∣∣∂uJn−1,u(y1)j

∣∣∥∥∥q̃′
q̃

≤ C1

p∑
j=1

( p∑
i=1

∥∥∥ sup
u∈[0,1]

∣∣Xn−i−1,u(y1)−Xn−i−1,u(y2)
∣∣∥∥∥q′
q

)q̃′/q′
×
∥∥∥ sup
u∈[0,1]

∣∣∂uXn−j−1,u(y1)
∣∣∥∥∥q̃′
q

≤ C1pE(y1)q̃
′(
C̃λpλ

n−p
0

)q̃′/q′
sup
u
|y1 − y2|q̃

′

1

Finally we have shown that exists a constant C(y1) > 0 such that∥∥∥ sup
u∈[0,1]

∣∣∂uXn,u(y2)− ∂uXn,u(y1)
∣∣∥∥∥q̃′
q̃

≤
p∑
j=1

χj

∥∥∥ sup
u∈[0,1]

∣∣∂uXn−j,u(y2)− ∂uXn−j,u(y1)
∣∣∥∥∥q̃′
q̃

+ C(y1)λ̃n0 sup
u
|y1 − y2|q̃

′

1 .

Lemma 3.5.1 implies that there exist constants Cλ > 0, λ0 ∈ (0, 1) such that for n ∈ N:∥∥∥ sup
u∈[0,1]

∣∣∂uXn,u(y
′)− ∂uXn,u(y)

∣∣∥∥∥q̃′
q̃

≤ Cλ
(
λn+1

0 sup
u
|∂uy1 − ∂uy2|q̃

′

1 + C(y1)
n∑
i=0

λi0λ̃
n−i
0

)
sup
u
|y1 − y2|q̃

′

1 .

Put y1(u) ≡ y0, y2(u) = Rε0(y0, u).
Using ‖ supu |∂uy1 − ∂uy2|1‖q̃ = ‖ supu |∂2Gε0(y0, u)|‖q < ∞ and ‖ supu |y1 − y2|1‖q̃ ≤
‖ supu |y0 −Rε0(y0, u)|1‖q̃ <∞ by assumption, we obtain that for all n ∈ N:∥∥ sup

u∈[0,1]

|∂uXn+1,u(y0)− ∂uXn,u(y0)|
∥∥q̃
q̃
≤ Ĉλ(y0)λ̂n0 (3.5.7)

with 0 < λ̂0 := max(λ0, λ̃0) < 1 and some constant Ĉλ(y0) > 0. Together with
the result (3.5.4), we obtain that the sequence (Xn,u(y0))u∈[0,1], n ∈ N of elements of
C1[0, 1] is a Cauchy sequence in (C1[0, 1], | · |C1) almost surely. Since this space is
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complete, there exists a continuously differentiable limit X̂0 = (X̂0(u))u∈[0,1]. Because
X̂0 is F0-measurable, there exists a measurable function {u 7→ Ĥ(u, ·)} on RN such that
u 7→ Ĥ(u, z) is continuously differentiable for all z ∈ RN. We may define ∂uX̂t(u) :=
Ĥ(u,Ft) for arbitrary t ∈ Z. The process Xt,n,u(y) defined similarly as Xn,u(y) but
with ε0, ..., ε−n replaced by εt, ..., εt−n has the same distributional properties as Xn,u(y)

and therefore Xt,n,u(y)→ Ĥ(u,Ft) a.s. and ∂uXt,n,u(y)→ ∂uĤ(u,Ft) a.s. Since

Xt,n,u(y) = Gεt(Xt−1,n−1,u(y), u)

and

∂uXt,n,u(y) = 〈∂1Gεt(Xt−1,n−1,u(y), u), ∂uXt−1,n−1,u(y)〉+ ∂2Gεt(Xt−1,n−1,u(y), u)

we obtain for n → ∞ that X̂t(u) fulfills (3.1.1) and ∂uX̂t(u) fulfills (3.1.9) a.s. for
all t ∈ Z. Since (3.1.1) and (3.1.9) only allow for a.s. unique solutions, we con-
clude that (X̂t(u))u∈[0,1] is a continuously differentiable modification of (X̃t(u))u∈[0,1]

and (∂uX̂t(u))u∈[0,1] is a continuous modification of (DX̃t(u))u∈[0,1].
The uniform convergence supu |∂uXn,u(y0)−∂uX̂0(u)| → 0 together with Fatou’s lemma
and (3.5.6) implies supu |∂uX̂0(u)| ∈ Lq.

Proof of Lemma 3.1.11. Define q̃ := q/2 and q̃′ := q̃/2. Because ∂uX̃t(u) obeys (3.1.9),
we have with the Cauchy Schwarz inequality:

‖∂uX̃t(u)− ∂uX̃t(u
′)‖q̃

′

q̃

≤
p∑
j=1

∥∥(∂1Gεt(Ỹt−1(u), u)− ∂1Gεt(Ỹt−1(u′), u′)
)
j

∥∥q̃′
q
· ‖∂uX̃t−j(u)‖q̃′q

+
∥∥〈∂1Gεt(Ỹt−1(u′), u′), ∂uX̃t−1(u)− ∂uX̃t−1(u′)〉

∥∥q̃′
q̃

+‖∂2Gεt(Ỹt−1(u), u)− ∂2Gεt(Ỹt−1(u′), u′)‖q̃
′

q̃ . (3.5.8)

(3.1.5) and (3.1.12) give

‖∂2Gεt(Ỹt−1(u), u)−∂2Gεt(Ỹt−1(u′), u′)‖q̃
′

q̃ ≤ C q̃′

2 p
q̃′/q′ ·‖X̃t(u)−X̃t(u

′)‖q̃′q +Dq̃′

2 |u−u′|α2q̃′ .

Similar results are obtained for the first term in (3.5.8). Note that ‖ supu |∂uX̃t(u)|‖q ≤
M with some M > 0 by Theorem 3.1.8. The conditions of Lemma 3.1.4 are fulfilled
for α = 1, alternatively it can be seen directly that

‖X̃t(u)− X̃t(u
′)‖q =

∥∥∥∫ 1

0

|∂uX̃t(u
′+ (u−u′)s) ds

∥∥∥
q
|u−u′| ≤

∥∥ sup
v
|∂uX̃t(v)|

∥∥
q
|u−u′|.

A similar technique as in (3.5.5) now implies

‖∂uX̃t(u)− ∂uX̃t(u
′)‖q̃′q ≤ |χ|1‖∂uX̃t(u)− ∂uX̃t(u

′)‖q̃′q
+pM q̃′

(
C q̃′

1 p
q̃′/q′ ·M |u− u′|q̃′ +Dq̃′

1 |u− u′|α2q̃′
)

+
(
C q̃′

2 p
q̃′/q′ ·M |u− u′|q̃′ +Dq̃′

2 |u− u′|α2q̃′
)
,

which gives the result since |χ|1 < 1.
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3.5.2 Proofs of section 3.2

Proof of Proposition 3.2.10. (i) For K ∈ N and k = 1, ..., 2K define intervals of indices
Ik,K,n := {t : t/n ∈ (k−1

2K
, k

2K
]} such that

⋃2K

K=1 Ik,K,n = {1, ..., n}. For fixed K ∈ N, we
have ∥∥∥ 1

n

n∑
t=1

Xt,n −
1

2K

2K∑
k=1

1

|Ik,K,n|
∑

t∈Ik,K,n

Xt,n

∥∥∥
1

≤
∥∥∥ 2K∑
k=1

( |Ik,K,n|
n

− 1

2K

)
· 1

|Ik,K,n|
∑

t∈Ik,K,n

Xt,n

∥∥∥
1

≤
2K∑
k=1

∣∣∣ |Ik,K,n|
n

− 1

2K

∣∣∣ · sup
t=1,...,n

‖Xt,n‖1 ≤
2K

n
· sup
t=1,...,n

‖Xt,n‖1

and ∥∥∥ 1

2K

2K∑
k=1

1

|Ik,K,n|
∑

t∈Ik,K,n

Xt,n −
1

2K

2K∑
k=1

1

|Ik,K,n|
∑

t∈Ik,K,n

X̃t

( k

2K

)∥∥∥
1

≤ sup
t=1,...,n

‖Xt,n − X̃t(t/n)‖1 + sup
|u−v|≤2−K

∥∥X̃t(u)− X̃t(v)‖1

Note that for fixed K, by the ergodic theorem for stationary sequences we have for
n→∞:

E(K,n) :=
1

2K

2K∑
k=1

1

|Ik,K,n|
∑

t∈Ik,K,n

X̃t

( k

2K

)
→ 1

2K

2K∑
k=1

EX̃0

( k

2K

)
=: E(K)

a.s. and in L1. By the continuity of [0, 1]→ R, u 7→ EX̃0(u), we have

E(K) :=
1

2K

2K∑
k=1

EX̃0

( k

2K

)
→
∫ 1

0

EX̃0(u) du =: E (K →∞).

Finally, ∥∥∥ 1

n

n∑
t=1

Xt,n − E
∥∥∥

1

≤ 2K

n
· sup
t=1,...,n

‖Xt,n‖1 + sup
t=1,...,n

‖Xt,n − X̃t(t/n)‖1 + sup
|u−v|≤2−K

‖X̃t(u)− X̃t(v)‖1

+‖E(K,n)− E(K)‖1 + |E(K)− E|.

Thus for all K ∈ N:

lim sup
n→∞

∥∥∥ 1

n

n∑
t=1

Xt,n − E
∥∥∥

1
≤ sup
|u−v|≤2−K

‖X̃t(u)− X̃t(v)‖1 + |E(K)− E|.
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The limit K →∞ gives the result.
For proving the local weak law of large numbers, first note that∥∥∥ 1

nb

n∑
t=1

K
(t/n− u

b

)
·
(
Xt,n − X̃t(u)

)∥∥∥
1

≤ |K|∞
(

sup
t=1,...,n

‖Xt,n − X̃t(t/n)‖1 + sup
|u−v|≤h/2

‖X̃t(u)− X̃t(v)‖1

)
→ 0.

This shows that it is enough to consider the convergence of the sum with the correspond-
ing stationary sequence. From Lemma 3.2.9, we have that 1

nb

∑n
t=1K

(
t/n−u
b

)
· X̃t(u)→

EX̃t(u) holds in L1, which finishes the proof.
(ii) Define Sn(u) :=

∑n
t=1 K

(
t/n−u
b

)(
Xt,n − EXt,n

)
and Sk,n :=

∑k
t=1 Xt,n. By partial

summation, we have

Sn(u) =
n−1∑
t=1

[
K
(t/n− u

b

)
−K

((t+ 1)/n− u
b

)]
· St,n +K

(1− u
b

)
Sn,n.

Since K is of bounded variation, we have
∑n−1

t=1

∣∣∣K( t/n−ub

)
−K

(
(t+1)/n−u

b

)∣∣∣ ≤ BK and
thus

|Sn(u)| ≤ BK · sup
t=1,...,n

|St,n|. (3.5.9)

First assume 1 < q ≤ 2. By using the decomposition Xt,n − EXt,n =
∑∞

l=0 Pt−lXt,n

and applying Doob’s maximal inequality, Burkholder’s inequality and the elementary
inequality (|a1|+ |a2|)q/2 ≤ |a1|q/2 + |a2|q/2, we obtain

‖ sup
t=1,...,n

|St,n|‖q ≤
∞∑
l=0

∥∥ sup
t=1,...,n

∣∣ t∑
s=1

Ps−lXs,n

∣∣∥∥
q

≤
∞∑
l=0

q

q − 1

∥∥ n∑
s=1

Ps−lXs,n

∥∥
q
≤

∞∑
l=0

q

(q − 1)2

(
E
( n∑
s=1

(Ps−lXs,n)2
)q/2)1/q

≤ q

(q − 1)2

∞∑
l=0

( n∑
s=1

‖Ps−lXs,n‖qq
)1/q

≤ q

(q − 1)2
· n1/q ·

∞∑
l=0

δX.,nq (l).

which shows that ∥∥∥ sup
u∈[0,1]

|(nb)−1Sn(u)|
∥∥∥
q
≤ BKq

(q − 1)2
∆
X.,n
0,q · n1/q−1b−1.

Note that in our case, ∆
X.,n
m,q = O(rm) with some 0 < r < 1. If q > 2, we use a Nagaev-

type inequality from Liu, Xiao and Wu (2013), Theorem 2(ii) which also holds in our
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situations as the authors point out in their section 4. Applying this theorem to St,n
and −St,n, we have for all x > 0:

P
(

sup
t=1,...,n

|St,n| > x
)
≤

2C1(∆
X.,n
0,q )qn

xq
+ 8G1−2/q

( C2x√
n∆

X.,n
0,q

)
with positive constants C1, C2 not depending on n. Using (3.5.9), we obtain

P
(

sup
u∈[0,1]

|(nb)−1Sn(u)| > x
)
≤ P

(
sup

t=1,...,n
|St,n| >

nbx

BK

)
≤

2C1(BK∆
X.,n
0,q )qn(nb)−q

xq
+ 8G1−2/q

( C2nb√
nBK∆

X.,n
0,q

)
.

Proof of Proposition 3.2.12. (i) Define Sn,L :=
∑L−1

l=0

∑n
t=1 Pt−lXt,n. Use the abbrevi-

ation l.i.m. for lim supL→∞ lim supn→∞. Because Pt−lXt,n − EXt,n → 0 a.s. and in L1

for l→∞, we have by Doob’s maximal inequality:

l.i.m.
∥∥∥ sup
u∈[0,1]

|Sbnuc/
√
n− Sbnuc,L/

√
n|
∥∥∥

2

≤ l.i.m.
∞∑
l=L

1√
n

∥∥∥ sup
T=1,...,n

∣∣∣ T∑
t=1

Pt−lXt,n

∣∣∣∥∥∥
2
≤ l.i.m.

∞∑
l=L

2√
n

∥∥∥ n∑
t=1

Pt−lXt,n

∥∥∥
2

≤ l.i.m.
∞∑
l=L

2√
n

( n∑
t=1

‖Pt−lXt,n‖2
2

)1/2

≤ l.i.m. 2
∞∑
l=L

δX2 (l) = 0.

Now define S̃n,L :=
∑L−1

l=0

∑n
t=1 Pt−lX̃t

(
t
n

)
. Note that

‖Pt−l(Xt,n − X̃t(t/n))‖2 ≤ min
{
δ
X̃(t/n)
2 (l) + δX2 (l), sup

t=1,...,n
‖Xt,n − X̃t(t/n)‖2

}
=: min{δ(l), cn}.

By similar arguments as the calculation above, we obtain

l.i.m.
∥∥∥ sup
u∈[0,1]

|Sbnuc,L/
√
n− S̃bnuc,L/

√
n|
∥∥∥

2

≤ l.i.m. 2
L−1∑
l=0

min{δ(l), cn} ≤ l.i.m.
( ∑

0≤l≤c−1/2
n

cn +
∑

l>c
−1/2
n

δ(l)
)

≤ l.i.m.
(
c1/2
n +

∑
l>c
−1/2
n

δ(l)
)

= 0.

Now fix L ∈ N. Define Ŝn,L :=
∑n

t=1

(∑L−1
l=0 PtX̃t+l

(
t+l
n

))
, where X̃t(u) := X̃t(1) for

u > 1. We have

|S̃T,L − ŜT,L| ≤
L−1∑
l=0

l∑
t=1

∣∣Pt−lX̃t

( t
n

)∣∣+
L−1∑
l=0

T∑
t=T−l+1

∣∣PtX̃t+l

(t+ l

n

)∣∣
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Define Mt,l := PtX̃t+l

(
t+l
n

) d
= P0X̃l

(
t+l
n

)
=: M( t+l

n
). We have

P
( 1√

n
sup

T=1,...,n
|Mt,l| ≥ ε

)
≤ n · sup

t=1,...,n
P(|Mt,l| ≥ ε

√
n) ≤ sup

t=1,...,n
E[|Mt,l|21{|Mt,l|≥ε

√
n}]

= sup
u∈[0,1]

E[M(u)2
1{|M(u)|≥ε

√
n}]

≤ E
[(

sup
u
|M(u)|

)2 · 1{supu |M(u)|≥ε
√
n}

]
→ 0,

which shows 1√
n

supu∈[0,1] |S̃bnuc,L − Ŝbnuc,L|
P→ 0.

We now investigate the weak convergence of Ŝbnuc,L/
√
n with a martingale central limit

theorem from Billingsley, Theorem 18.2. Note that
∑L−1

l=0 Mt,l/
√
n is a martingale

difference sequence with respect to Ft. By elementary operations it can be seen that
for each T = 1, ..., n and each ε > 0,

T∑
t=1

E
[( L−1∑

l=0

Mt,l/
√
n
)2

1{|
∑L−1
l=0 Mt,l|≥ε

√
n}

]
is bounded by finitely many (dependent on L) terms of the form

1

n

T∑
t=1

E[M2
t,l1{|Mt,l′ |≥ε

√
n}],

where l, l′ ∈ {0, ..., L− 1}. By using similar techniques as above, it can be shown that
this converges to 0.
It remains to investigate the behaviour of

T∑
t=1

E
[( L−1∑

l=0

Mt,l/
√
n
)2∣∣∣Ft−1

]
=

L−1∑
l,l′=0

1

n

T∑
t=1

E[Mt,lMt,l′|Ft−1]

for T = bsnc, s ∈ (0, 1]. Define Ik,K,T := {t : t
T
∈ (k−1

2K
, k

2K
]}, then we have for K ∈ N:

∥∥∥ 1

T

T∑
t=1

E[Mt,lMt,l′ |Ft−1]− 1

2K

2K∑
k=1

1

|Ik,K,T |
∑

t∈Ik,K,T

E[Mt,lMt,l′ |Ft−1]
∥∥∥

1

≤ 2K

T
· sup
t=1,...,n

sup
l=0,...,L−1

‖Mt,lMt,l′‖1,

which is bounded by 2K

T
supu ‖X̃0(u)‖2

2. Furthermore, since t
T
∈ Ik,K,T ⇒ | t+ln −

k
2K
s| ≤

2−K + L
n
, we obtain

∥∥∥ 1

2K

2K∑
k=1

1

|Ik,K,T |
∑

t∈Ik,K,n

(
E[Mt,lMt,l′|Ft−1]− E[Mt,l(

k

2K
s)Mt,l′(

k

2K
s)|Ft−1]

)∥∥∥
1

≤ 2
(

sup
|u−v|≤2−K

‖X̃0(u)− X̃0(v)‖2 + sup
|u−v|≤Ln−1

‖X̃0(u)− X̃0(v)‖2

)
· sup

u
‖X̃0(u)‖2.
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with Mt,l(u) := PtX̃t+l(u). Since E[Mt,l(u)Mt,l′(u)|Ft−1] is ergodic, we have

1

|Ik,K,T |

∑
t∈Ik,K,T

E[Mt,l(
k

2K
s)Mt,l′(

k

2K
s)|Ft−1]

P→ E[M0,l(
k

2K
s)M0,l′(

k

2K
s)].

In total, performing first n→∞ and afterwards K →∞, we obtain
L−1∑
l,l′=0

1

n

bnsc∑
t=1

E[Mt,lMt,l′|Ft−1] →
L−1∑
l,l′=0

s ·
∫ 1

0

E[M0,l(xs)M0,l′(xs)] dx

=

∫ s

0

∥∥∥ L−1∑
l=0

P0X̃l(y)
∥∥∥2

2
dy.

So we have seen that {Sbnuc/
√
n, 0 ≤ u ≤ 1} d→ {

∫ u
0

∥∥∥∑L−1
l=0 P0X̃l(v)

∥∥∥
2
dB(v), 0 ≤ u ≤

1}. By the dominated convergence theorem,
∫ u

0

∥∥∥∑L−1
l=0 P0X̃l(v)

∥∥∥2

2
dv →

∫ u
0
σ2(v) dv,

which completes the proof.
(ii) Since ∆m,q = O(rm) with some 0 < r < 1, this follows directly from Theorem 2.1
in Karmakar and Wu (2016).

Proof of Theorem 3.2.13: Define Mt(u) := g(Z̃t(u)). Note that∥∥∥Wn,b −
1√
nb

n∑
t=1

K
(t/n− u

b

)
·Mt(t/n)

∥∥∥
1
≤ |K|∞

√
nb sup

t=1,...,n
‖g(Zt,n)−Mt(t/n)‖1.

Since ‖g(Zt,n)−Mt(t/n)‖1 ≤ C ·supt=1,...,n

∑d
j=1 ‖Xt−j+1,n−X̃t−j+1(t/n)‖M+1 ≤ C ′n−α,

the term above is of order
√
nbn−α.

Since
∑∞

k=0 supu δ
M(u)
2 (k) < ∞, |K|∞ < ∞ and (Kb(t/n − u)Pt−lMt(t/n))t is a mar-

tingale difference sequence with respect to (Ft−l), we can use the same technique as in
the proof of Theorem 3.2.12 to show that

lim sup
L→∞

lim sup
n→∞

∥∥∥ 1√
nb

n∑
t=1

K
(t/n− u

b

)
·
[
(Mt(t/n)−EMt(t/n))−

L−1∑
l=0

Pt−lMt(t/n)
]∥∥∥

2
= 0.

Now fix L ∈ N. Since K is Lipschitz continuous and supt ‖Mt((t+ l)/n)−Mt(t/n)‖1 ≤
C ′n−1, it is enough to consider the weak convergence of

∑n
t=1 Wt(t/n), where we define

Wt(v) :=
∑L−1

l=0 K
(
t/n−u
b

)
PtMt+l(v)/

√
nb. Note thatWt(t/n) is a martingale difference

sequence w.r.t. Ft. It holds that
n∑
t=1

‖W 2
t (t/n)−W 2

t (u)‖1

≤
L−1∑
l,l′=0

1

nb

n∑
t=1

K
(t/n− u

b

)2

‖PtMt+l(t/n)PtMt+l′(t/n)− PtMt+l(u)PtMt+l′(u)‖1

≤ 2
L−1∑
l,l′=0

1

nb

n∑
t=1

K
(t/n− u

b

)2

‖M0(t/n)−M0(u)‖2 · sup
u
‖M0(u)‖2 = o(1).
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By Lemma 3.2.9,

n∑
t=1

E[W 2
t (u)|Ft−1] =

L−1∑
l,l′=0

1

nb

n∑
t=1

K
(t/n− u

b

)2

E[PtMt+l(u)PtMt+l′(u)|Ft−1]

P→
∫
K2(x) dx ·

∥∥∥ L−1∑
l=0

P0Ml(u)
∥∥∥2

2
.

Fix ε > 0. The sum
∑n

t=1 E[W 2
t (t/n)1{|Wt(t/n)|≥ε] is bounded by finitely many (depen-

dent on L) terms of the form

1

nb

n∑
t=1

K
(t/n− u

b

)2

E[(PtMt+l(t/n))2
1{|K|∞|PtMt+l′ (t/n)|≥ε

√
nb}]

≤ |K|2∞ sup
u∈[0,1]

E[(P0Ml(u))2
1{|P0Ml′ (u)|≥ε

√
nb/|K|∞}]

≤ |K|2∞E[(sup
u
|P0Ml(u)|)2

1{supu |P0Ml′ (u)|≥ε
√
nb/|K|∞}]

which converges to 0 since

‖ sup
u
|P0Ml(u)|‖2 ≤ 2‖ sup

u
|Ml(u)|‖2 ≤ C‖ sup

u
|X̃0(u)|‖M+α

2(M+α) <∞.

So we can apply Theorem 18.1. from Billingsley to obtain

n∑
t=1

Wt(t/n)
d→
∫
K2(x) dx ·

∥∥∥ L−1∑
l=0

P0Ml(u)
∥∥∥

2
N(0, 1)

and thus

1√
nb

n∑
t=1

K
(t/n− u

b

)
· (Mt(t/n)−EMt(t/n))

d→
∫
K2(x) dx ·

∥∥∥ ∞∑
l=0

P0Ml(u)
∥∥∥

2
N(0, 1).

It remains to analyse the bias term

1√
nb

n∑
t=1

K
(t/n− u

b

)
EMt(t/n).

The results (i) and (ii) are immediate from Proposition 3.2.7.

Proof of Theorem 3.3.2, uniform convergence of θ̂b: Since a sequence converges in prob-
ability to some random variable Z if each subsequence has a further subsequence that
converges almost surely towards Z, we may assume w.l.o.g. that

sup
u∈[ b

2
,1− b

2
]

sup
θ∈Θ
|Ln,b(u, θ)− L(u, θ)| → 0 a.s. (3.5.10)
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Since θ0 is continuous and θ0(u) ∈ int(Θ) for all u ∈ [0, 1], the whole curve θ0 has
a positive | · |1-distance cmin := infu∈[0,1] dist(θ0(u), ∂Θ) > 0 to the boundary ∂Θ of
Θ. Choose ε ∈ (0, cmin) arbitrarily. For each u ∈ Du = Du(n) := [ b

2
, 1 − b

2
], define

Θ(u, ε) := {θ ∈ Θ : |θ − θ0(u)|1 < ε}. Define

θ∗(u) :∈ argminθ∈Θ∩Θ(u,ε)c L(u, θ).

Here, θ∗(u) has not to be unique, but we choose one of the possible values. Because
Θ ∩ Θ(u, ε)c is compact, there has to exist at least one. Because θ0(u) is the unique
minimum of θ 7→ L(u, θ) over Θ, there exists δ(u) > 0 such that

L(u, θ∗(u))− L(u, θ0(u)) = δ(u).

It holds that δ := infu∈[0,1] δ(u) > 0. Otherwise, because of the compactness of [0, 1],
there would exist a sequence (un) ⊂ [0, 1] with un → u∗ ∈ [0, 1] and δ(un)→ 0. By the
continuity of L, θ0 and u 7→ infθ∈Θ∩Θ(u,ε)c L(u, θ) (use Berge’s Maximum theorem and
the fact that u 7→ Θ ∩Θ(u, ε)c is a continuous set function) this would imply

0← δ(un) = inf
θ∈Θ∩Θ(un,ε)c

L(un, θ)−L(un, θ0(un))→ inf
θ∈Θ∩Θ(u∗,ε)c

L(u∗, θ)−L(u∗, θ0(u∗)),

which is a contradiction to the fact that θ0(u∗) is the unique minimum of L(u∗, θ). By
(3.5.10) we may choose N ∈ N such that for all n ≥ N , supu∈Du supθ∈Θ |Ln,b(u, θ) −
L(u, θ)| < δ

2
. Now suppose that for some n ≥ N , supu∈Du |θ̂b(u) − θ0(u)|1 ≥ ε. Then

we have for some u ∈ Du that

Ln,b(u, θ̂b(u)) > L(u, θ̂b(u))− δ

2
≥ L(u, θ∗(u))− δ

2

= L(u, θ0(u)) + δ(u)− δ

2
≥ L(u, θ0(u)) +

δ

2
> Ln,b(u, θ0(u)),

which is a contradiction to the maximal property of θ̂b(u).
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Chapter 4

Local bandwidth selection with a
contrast minimization approach

In this chapter we discuss data adaptive local bandwidth selection for quasi maximum
likelihood estimators in a very general class of locally stationary time series models.
Our theory and assumptions cover recursively defined processes such as tvAR, tvARCH
and tvTAR as well as linear processes, for instance the tvARMA process. Let us men-
tion that some minimax results for bandwidth selectors in the very special case of tvAR
processes are available: Arkoun and Pergamenchtchikov (2014) consider minimax opti-
mal local bandwidth selection in the case of tvAR(1) processes under the assumption of
differentiability of the known true parameter curve. Furthermore, some online adaptive
estimation results were obtained by Arkoun (2010) and Giraud, Roueff and Sanchez-
Perez (2015).

In Section 4.1, we introduce the model and the quasi maximum likelihood approach.
To measure pointwise distances between elements of the finite-dimensional parameter
space, we consider the Euclidean norm and a weighted Euclidean norm which can be
interpreted as an approximation of the Kullback-Leibler divergence. For both distance
measures, the bandwidth selection procedure is done via contrast minimization which
is motivated by the general approach of Goldenshluger and Lepski (2011). We state
our main results, which are a minimax lower bound if the true curve is in a Hoelder
class, and the fact that our bandwidth selector achieves the minimax-optimal rate up
to a log factor which usually arises in local procedures.

In Section 4.2 we present the conditions under which the main results hold. We em-
phasize that nearly all assumptions are stated in terms of a stationary approximation
of the observed process, whose properties are usually well-known. Besides standard
assumptions from maximum likelihood theory we have to assume that the difference
between the quasi maximum likelihood estimator and the true value behaves like a
martingale difference sequence so that we can apply a Bernstein inequality for martin-
gale differences from Van de Geer (2000). Furthermore we impose that the limit of the
quasi likelihood attains its optimum at the true curve with some known rate so that
we obtain results for the rate of the quasi maximum likelihood estimator even if a Tay-
lor expansion is not possible. Dependence assumptions are stated with the functional
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dependence measure. In the second part of Section 4.2, we present some more specific
examples for which the stated assumptions are fulfilled.

In Section 4.3, we analyze the quality of the bandwidth selection procedure for some
time series models and compare the two different minimization approaches based on
the two different distance measures. Some concluding remarks are drawn in Section
4.4.

All proofs and some more general examples are postponed to the Appendix, Section
4.5. Some results therein may be of independent interest. For instance, we introduce a
step-by-step approximation theory for localized empirical processes of locally station-
ary processes and provide either a deterministic or random bias expansion under the
assumption of the existence of derivative processes which were introduced in Chapter 3.
Furthermore, we provide exponential inequalities based on martingale decompositions
and the decay of the functional dependence measure.

4.1 Introduction and Main Results
The Model. Let εt, t ∈ Z be a sequence of i.i.d. random variables and Ft :=
(εt, εt−1, ...) the shift process. We assume that we observe a Bernoulli shift process

Xt,n = Jt,n(Ft, θ0), t = 1, ..., n (4.1.1)

where Jt,n is a measurable function which may vary for each t = 1, ..., n and n ∈ N,
and θ0 : [0, 1] → Θ ⊂ Rd is an unknown parameter curve. We allow the process to
depend on n since we are working in the infill asymptotics framework, assuming that
Xt,n mainly depends on the rescaled time t

n
to obtain a meaningful asymptotic theory.

Our aim is to provide minimax-optimal estimators for θ0 based on observations Xt,n,
t = 1, ..., n. To do so, we impose structural assumptions on Xt,n by claiming that the
process is near to a stationary process X̃t(u) (u ∈ [0, 1]) as long as | t

n
− u| � 1 and

n−1 � 1 (this is made precise in Assumption 4.2.3). We ask

X̃t(u) = J(Ft, θ0(u)) (4.1.2)

to depend on θ0 and u solely through θ0(u), where J is some measurable function.
Furthermore, we assume that X̃t(u) obeys the recursion

X̃t(u) = Gεt(Ỹt−1(u), θ0(u)), t ∈ Z, (4.1.3)

where Ỹt−1(u) := (X̃s(u) : s ≤ t − 1) are the past values of the process, Gε(y, θ) a
measurable function, where ε ∈ R, y ∈ RN and θ ∈ Θ. It should be noted that we
only pose a structural Markovian assumption on the approximating stationary process
which allows us to include a wide range of invertible linear processes in our model which
would not obey (4.1.4), see the following Example 4.1.1:

Example 4.1.1. (i) Recursively defined locally stationary processes Xt,n which are
obtained by replacing the constant parameters in stationary processes by time-
dependent parameter curves θ0 evaluated at the rescaled time t

n
obey (4.1.1). More
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precisely, they obey

Xt,n = Gεt

(
Yt−1,n, θ0

( t
n
∨ 0
))
, t ≤ n (4.1.4)

where Yt−1,n := (Xt−1,n, ..., Xt−p,n) and Gε(y, θ) is some measurable function. ?
and Zhou and Wu (2009) discussed properties of such processes. Some special
cases are:

(a) the tvAR(p) process (cf. Dahlhaus and Giraitis (1998), Dahlhaus and Polonik
(2009), Dahlhaus (2011)): Given parameter curves ai, σ : [0, 1] → R (i =
1, ..., p),

Xt,n = a1

( t
n

)
Xt−1,n + ...+ ap

( t
n

)
Xt−p,n + σ

( t
n

)
εt.

(b) the tvARCH(p) process (cf. Dahlhaus and Subba Rao (2006)): Given param-
eter curves ai : [0, 1]→ R (i = 0, ..., p),

Xt,n =
(
a0

( t
n

)
+ a1

( t
n

)
X2
t−1,n + ...+ ap

( t
n

)
X2
t−p,n

)1/2
εt

(c) the tvTAR(1) process (cf. Zhou and Wu (2009)): Given parameter curves
a1, a2 : [0, 1]→ R,

Xt,n = a1

( t
n

)
X+
t−1,n + a2

( t
n

)
X−t−1,n + εt,

where x+ := max{x, 0} and x− := max{−x, 0}.

(ii) Linear locally stationary processes (cf. Dahlhaus and Polonik (2009)): For each
t = 1, ..., n, n ∈ N assume that there exist coefficients at,n(k) such that

Xt,n =
∞∑
k=0

at,n(k)εt−k. (4.1.5)

Well-known special cases are the tvAR(p) process (see (i)(a)) and the tvMA(p)
process: Given parameter curves ai : [0, 1]→ R (i = 1, ..., p),

Xt,n = εt + a1

( t
n

)
εt−1 + ...+ ap

( t
n

)
εt−p.

(iii) Nonparametric iid regression: Given θ0 : [0, 1]→ R, Xt,n = θ0

(
t
n

)
+ εt.

Quasi maximum likelihood approach. The estimation of θ0 is performed by
a nonparametric quasi maximum likelihood method. For this, we assume that some
weight function `(x, y, θ) is given (which naturally should mimic the negative log condi-
tional likelihood of Xt,n given Yt,n), where x ∈ R and y, θ as before. For the truncated
past vector Y c

t−1,n := (Xt−1,n, ..., X1,n, 0, 0, ...), we define

`t,n(θ) := `(Xt,n, Y
c
t−1,n, θ).
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Fix u ∈ [0, 1]. For some kernel function K : [−1
2
, 1

2
] → R with

∫
K dx = 1 and some

bandwidth b ∈ (0, 1], we introduce a local likelihood

Ln,b(u, θ) :=
1

Kn,b(u)

n∑
t=1

K
(t/n− u

b

)
· `t,n(θ),

where Kn,b(u) :=
∑n

t=1K( t/n−u
b

). An estimator of θ0(u) is given by

θ̂b(u) = argminθ∈Θ Ln,b(u, θ). (4.1.6)

Our theory holds for general weight functions `, but let us emphasize an important
special case. Suppose for the moment that ε 7→ Gε(y, θ) is continuously differentiable
for all ε, y and that the derivative ∂εGε(y, θ) ≥ δG > 0 is bounded uniformly from
below with some constant δG > 0. This ensures that the new innovation εt has an
impact on the value of X̃t(u) which is not too small. Under these conditions, there
exists a continuously differentiable inverse x 7→ H(x, y, θ) of ε 7→ G(ε, y, θ) := Gε(y, θ).
Suppose that ε0 has a continuous density fε. The negative conditional log likelihood of
X̃t(u) = x given Ỹt−1(u) = y then takes the form

`(x, y, θ) = − log fε(H(x, y, θ))− log ∂xH(x, y, θ). (4.1.7)

In the following derivations, we do not make use of the specific structure of `. This
means especially that we allow for model misspecifications due to a false density fε.
Many authors prefer the case of a Gaussian density fε(x) = (2π)−1/2 exp(−x2/2) be-
cause then a minimizer θ of ` can be interpreted as a minimum (quadratic) distance
estimator (see Dahlhaus and Giraitis (1998) in the tvAR case, Dahlhaus and Subba
Rao (2006) in the tvARCH case). See also Example 4.5.9.

Distance measures. In the following, let ∇ denote the derivative with respect
to θ ∈ Θ. Define ˜̀

t(u, θ) := `(X̃t(u), Ỹt−1(u), θ). In ? it was shown that θ̂b(u) is
consistent and asymptotically normal for processes Xt,n which obey (4.1.4) and fulfill
some regularity conditions. More precisely, it holds that

√
nb
(
θ̂b(u)− θ0(u)− biasn(b)

) d→ N
(
0,
∫
K2 dx · V (u)−1I(u)V (u)−1

)
,

where I(u) := E[∇˜̀
t(u, θ0(u)) · ∇˜̀

t(u, θ0(u))′] is the Fisher information matrix of the
stationary process, V (u) = E[∇2 ˜̀

t(u, θ0(u))] and biasn(b) ≈ E[θ̂b(u)− θ0(u)] some bias
term. It is immediate that there exists a typical bias-variance decomposition

E|θ̂b(u)− θ0(u)|22 ≈ biasn(b) +

∫
K2 dx · V (u)−1I(u)V (u)−1,

where | · |2 denotes the 2-norm in Rd. An important question is what bandwidth
b(u) = bn(u) leads to the optimal rate for the mean squared error and how one can
choose this bandwidth adaptively from the data. In this chapter we tackle the problem
of local adaptive bandwidth selection (i.e., for each u ∈ [0, 1] an estimator b̂(u) is
proposed) which as far as we know was not discussed theoretically in the literature.
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Besides the quadratic distance between the estimator θ̂b(u) and θ0(u), the Kullback-
Leibler divergence arises naturally as a distance measure in maximum likelihood the-
ory since θ0(u) is the minimizer of the Kullback-Leibler divergence between the model
(4.1.3) with parameter θ (instead of θ0(u)) and (4.1.3). It can be shown that under
regularity conditions, the Kullback-Leibler divergence between θ̂b(u) and θ0(u) is dom-
inated by |θ̂b(u) − θ0(u)|2V (u) (see Proposition 4.5.8). To discuss both distances, we
introduce a weighted squared distance measure at u ∈ [0, 1], i.e.

du,Ξ(θ1, θ0) := |θ1(u)− θ0(u)|2Ξ, (4.1.8)

where |x|2Ξ := 〈x,Ξx〉 for vectors x ∈ Rd and positive definite matrices Ξ ∈ Rd×d.
Let Id denote the identity matrix in Rd×d. Then Eθ0du,Id(θ̂b, θ0) corresponds to the
mean squared error of θ̂b(u) and Eθ0du,V (u)(θ̂b, θ0) corresponds to the Kullback-Leibler
divergence of θ̂b(u) w.r.t. θ0(u).

All distances du,Ξ(θ1, θ0) are equivalent since Ξ is positive definite. It is also clear
that the minimizers bopt,Ξ(u) of Eθ0du,Ξ(θ̂b, θ0) coincide if the dimension d of the pa-
rameter space Θ equals 1, but they differ in general for d > 1. In simulations (see
section 4.3) it turns out that there is a significant difference between the correspond-
ing optimizers which justifies to analyze two different model selection procedures. The
theoretic behavior of the two optimizers bopt,Id and bopt,V (u) can be explained as follows:
While bopt,Id leads to estimators θ̂bopt,Id which try to fit best to the unknown parameter
curve θ0, bopt,V (u) leads to curves θ̂bopt,V (u)

which ensure that the associated model Xt,n

is near to the true model and therefore leads to good prediction properties of θ̂bopt,V (u)
.

For d > 1, this difference can be seen in cases where components of θ0 have different
smoothness properties around some u ∈ [0, 1] and V (u) puts a lot of weight on one
specific component of θ0. Then θ̂bopt,V (u)(u)(u) will try to fit this component best, while
θ̂bopt,Id(u)(u) will try to fit all components of θ0 with equal quality. Note that in cases
where all components of θ0 have equal smoothness properties, they all force b to the
same optimal value and therefore weighting would not lead to different behavior of the
bandwidth selector. This is why we do not expect θ̂bopt,V (u)(u)(u) and θ̂bopt,Id(u)(u) to have
a large difference in these cases.

4.1.1 A fully adaptive model selection procedure

A fully adaptive model selection procecure. In the following we will need esti-
mators În,b(u) and V̂n,b(u) of the matrices I(u) and V (u). Their choice is discussed in
section 4.1.2. To select the bandwidth b, we propose a contrast minimization method.
The general idea of the contrast minimization approach was introduced by Goldensh-
luger and Lepski (2011). We start by defining a grid

Bn = {a−k : k ∈ N} ∩ [bn, 1], bn = cb(Ξ) · log(n)1+2αM

n
(4.1.9)

of admissible bandwidths, with some constants cb(Ξ), α,M (independent of n). Here, α
is a measure for the exponential decay of the density of ε0 (if for instance ε0 is Gaussian,
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one has α = 1
2
) and M can be interpreted as the minimum degree of a polynomial

in (x, y) which is needed to bound the absolute value of the likelihood `(x, y, θ) (for
Gaussian likelihoods, one often has M = 2, see Example 4.5.9). The precise definitions
can be found in Assumptions 4.2.3 and 4.2.2(v) while cb(Ξ) is given in Theorem 4.1.4.
In the following we will assume that Ξ is either the identity Id or V (u). Define the
theoretical penalization term

Pn,Ξ(u, b) := | log(b)| · Fn,b(u)−2 · tr
(
ΞV (u)−1I(u)V (u)−1

)
, (4.1.10)

where Fn,b(u) := Kn,b(u) ·
(∑n

t=1K( t/n−u
b

)2
)−1/2. We set P̂n,Ξ(u, b) to be the same

as Pn,Ξ(u, b) but with I(u), V (u) replaced by their (truncated) estimators Ĩn,b(u) :=

În,b(u)∧ Im and Ṽn,b(u) := V̂n,b(u)∨ V0, where V0, Im given in (4.2.2) and the operators
∧,∨ are generalized minimum or maximum, respectively, of two matrices defined in
Lemma 4.5.16. V0 can be interpreted as the smallest possible value of V (u), similarly
for Im. Furthermore, Ξ is estimated by Ξ̃n,b := Ṽn,b(u) in the case of Ξ = V (u) and
Ξ̃n,b := Id in the case of Ξ = Id. Define the penalization term

p̂enn,Ξ(u, b) := CP (Ξ)
{
P̂n,Ξ(u, b) + sup

b′∈Bn,b′≥b
P̂n,Ξ(u, b′)

}
. (4.1.11)

with CP (Id) := 256, CP (V (u)) := 288 + 192
√

2 ≤ 560 and

Yn,Ξ(u, b) := max
b′∈Bn,b′≤b

{
max{du,Ξ̃n,b

(
θ̂b, θ̂b′

)
, du,Ξ̃n,b′

(
θ̂b, θ̂b′

)
} − p̂enn,Ξ(u, b′)

}
+
, (4.1.12)

where {y}+ := max{y, 0} for real numbers y. The bandwidth b̂(u) is selected using the
rule

b̂Ξ(u) := arg min
b∈Bn
{Yn,Ξ(u, b) + p̂enn,Ξ(u, b)}.

The final estimator is given by θ̃(u) := θ̂b̂Ξ(u)(u). Note that either (4.1.10) or (4.1.12)
simplify in the cases Ξ = Id or Ξ = V (u).

Remark 4.1.2. (i) The additional minimization with Im in Ĩn,b(u) is only done to
simplify the proof and gives a natural (deterministic) upper bound for the penal-
ization term. Especially in practice it is possible to omit these terms.

(ii) In some cases, for instance if the recursion structure (4.1.3) is linear in εt, it
holds that I(u)V (u)−1 = cε · Id, where cε > 0 is some number possibly dependent
on characteristics of εt (see also Example 4.2.7). In these cases, the theoretical
penalization term (4.1.10) and its estimator can be simplified accordingly.

4.1.2 The choice of the estimators of I(u) and V (u)

Choice of În,b(u) and V̂n,b(u). A natural choice for an estimator of I(u) and V (u)
would be to replace the expectation by its empirical counterparts based on the observa-
tionsX1,n, ..., Xn,n, namely V ◦n,b(u) = ∇2Ln,b(u, θ̂b(u)) and I◦n,b(u) = 1

Kn,b(u)

∑n
t=1K

(
t/n−u
b

)
·
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∇`(Y c
t,n, θ̂b(u)) · `(Y c

t,n, θ̂b(u)). However, in simulations these estimators seem to have
a very high variance and thus are unstable. The reason can be explained best by
analyzing the estimators in the special case of linear regression

Xt,n = θ0

( t
n

)
+ εt (4.1.13)

with some one-dimensional function θ0 : [0, 1] → R. Using the Gaussian conditional
likelihood (4.1.7) with fε(x) = (2π)−1/2 exp(−x2/2) for estimation, we would obtain

V ◦n,b(u) = 1, I◦n,b(u) =
1

Kn,b(u)

n∑
t=1

K
(t/n− u

b

)
·
(
Xt,n − θ̂b(u)

)2 (4.1.14)

for estimating V (u) = 1 and I(u) = Eε2
0. This means that the estimator În,b(u) intro-

duced in (4.1.14) would try to estimate properties of the i.i.d. errors εt (which are the
same for all t = 1, ..., n and thus can be seen as ’global’ properties) with local estima-
tors. In more complicated models, V (u) and I(u) do not only depend on properties of
ε0 but also on functionals of θ0(u).
This motivates to separate estimation of the properties of ε0 and estimation of I(u), V (u).
Similar ideas were presented, for instance, in Lepski, Mammen and Spokoiny (1997)
in the linear regression case (4.1.13) by assuming that the variance of the estimators
ε0 is known. We conjecture that most of the properties of ε0 can be estimated from
X1,n, ..., Xn,n with parametric rates if the underlying time series model is known. Be-
sides the standard approach to use a pre-estimator for θ0(u) and afterwards using a
simple maximum likelihood approach for these unknown properties, some different pro-
cedures were introduced, cf. for instance Kreiss and Paparoditis (2015) in the setting
of linear locally stationary processes (Example 4.5.10). In the linear regression case
(4.1.13) a well-known procedure to estimate the variance of ε0 with parametric rates is
the first difference method 1

2n

∑n
t=1(Xt,n −Xt−1,n)2.

The idea of the estimators introduced in the following is that the ’global’ information
of εt is only contained in Xt,n which approximately fulfills Xt,n ≈ Gεt(Yt−1,n, θ0(t/n))
by the Markov Assumption (4.1.3). We now approximate Xt,n in V ◦n,b, I◦n,b by replacing
Xt,n ≈ Gεt(Yt−1,n, θ0(t/n)) by its conditional expectation given Yt−1,n which eliminates
εt from the estimator, but forces us to know some specific properties of ε0. In many
cases (see Examples 4.5.9 and 4.5.10) these properties correspond to the variance or
the fourth moment of ε0. To make this more precise, assume that the quantities

gV (y, θ) := E
[
∇2`

(
x, y, θ

)∣∣
x=Gε0 (y,θ)

]
,

gI(y, θ) := E
[
∇`
(
x, y, θ

)∣∣
x=Gε0 (y,θ)

· ∇`
(
x, y, θ

)′∣∣
x=Gε0 (y,θ)

]
,

are known. Define V̂n,b(u) := Vn,b(u, θ̂b(u)), where

Vn,b(u, θ) :=
1

Kn,b(u)

n∑
t=1

K
(t/n− u

b

)
gV
(
Y c
t−1,n, θ

)
,

and similarly În,b(u) and In,b(u, θ) with gI instead of gV .
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4.1.3 Main Results

Recall that Σ(β, L) is the class of Hoelder continuous functions. We first provide a
minimax lower bound for estimation of θ0(u).

Theorem 4.1.3 (Lower bound). Fix some β, L > 0. Suppose that Assumptions 4.2.3,
4.2.2, 4.2.5 and 4.2.6 hold. Then we have with some constant c(u) independent of n:

inf
θ̃∈σ(X1,n,...,Xn,n)

sup
θ0∈Σ(β,L)

Eθ0du,Ξ(θ̃, θ0) ≥ c(u) · n−
2β

2β+1 ,

where the infimum is taken over all possible estimators θ̃ based on Xt,n, t = 1, ..., n and
θ0 ∈ Σ(β, L) is meant component-wise where β, L are the same for all components.

The following theorems show that θ̂b̂(u)(u) is minimax optimal for both quadratic
and Kullback-Leibler distance up to a factor log(n) which is natural in local model
selection problems.

Theorem 4.1.4 (Upper bound). Suppose that Assumptions 4.2.3, 4.2.5 and 4.2.2 hold.
Define β′ := β ∨ 1. Then there exists a constant cb(Ξ) > 0 in (4.1.9) and a constant
C(Ξ, u) > 0 independent of n such that for all n ≥ 3:

sup
θ0∈Σ(β,L)

Eθ0du,Ξ(θ̂b̂Ξ(u)(u), θ0(u))

≤ inf
b∈Bn

{
N1(Ξ) sup

b∈Bn,b′≥b
Pn,Ξ(u, b)

+N2(Ξ)
∑

b′∈Bn,b′≤b

E|B̃n,b′(Ξ
1/2V −1∇`(·, θ0(u)), u)|22 +Wn,Ξ(b)

}
+C(Ξ, u) log(n) · (n−1 + n−2β′), (4.1.15)

where Wn,Ξ(b) contains asymptotically negligible terms, and N1(Id) = 5760, N2(Id) =
360, N1(V (u)) = 11664 + 7776

√
2 ≤ 22661, N2(V (u)) = 729 + 486

√
2 ≤ 1417.

If additionally Assumption 4.2.4 is fulfilled, it holds that Wn,Ξ(b) . log(n)n−1 +1
(
bβ >

c1) with some constant c1 > 0 and E|B̃n,b′(Ξ
1/2V −1∇`(·, θ0(u)), u)|22 . (b′)2β +n−1. The

choice b ∼ n−
1

2β+1 in (4.1.15) gives

sup
θ0∈Σ(β,L)

Eθ0du,Ξ(θ̂b̂Ξ(u)(u), θ0(u)) .
( log(n)

n

)− 2β
2β+1

.

4.2 Assumptions and Examples
Assumptions. Recall the notations from the preliminaries. Recall that ‖Z‖q :=
(E|Z|q)1/q for a real-valued random variable Z, the `q distance |x|q := (

∑p
i=1 |xi|q)1/q

and the weighted `q distance |x|w,q := (
∑∞

i=1 wi|xi|q)
1/q for vectors x ∈ Rp. Recall the

definition of the functional dependence measure δYq (k) for processes Y = (Yt)t∈Z and
the projection operator Pj· := E[·|Fj]− E[·|Fj−1], where Ft := (εt, εt−1, ...).
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Since our theory covers a wide range of time series models, we need some structural
assumptions on the chosen weight function ` to obtain exponential inequalities and
approximations for empirical means based on ` and its derivatives by using properties
of Xt,n. For this, we will impose a Lipschitz-type condition where we allow the Lipschitz
constant to depend on the location at most polynomially. The exact condition which
also gives a definition of M is stated in Assumption 4.2.2(v).

Definition 4.2.1 (The class L(M,χ,Cz, Cθ)). We say that a function g : RN×Θ→ Rp

is in the class L(M,χ,Cz, Cθ) if either g ≡ 0 (then use M = −∞), g(·, θ) is constant
(then use M = 0) or there exists M ≥ 1, vectors Cz, Cθ ∈ Rp

≥0 and a sequence χ ∈ RN
≥0

with
∑∞

j=1 χj <∞ such that for all i = 1, ..., p it holds that

sup
z 6=z′

|gi(z, θ)− gi(z′, θ)|
|z − z′|χ,1 · (1 + |z|M−1

χ,1 + |z′|M−1
χ,1 )

≤ Cz,i, sup
θ 6=θ′

|gi(z, θ)− gi(z, θ′)|
|θ − θ′|2(1 + |z|Mχ,1)

≤ Cθ,i.(4.2.1)

Since we are dealing with nonparametric maximum likelihood type estimators we
need to impose assumptions on the smoothness of the true curve θ0 and the size of
Θ which is done in Assumption 4.2.2(i). If ` coincides with the true negative log
conditional likelihood (4.1.7) with correctly specified density fε of ε0, it is well-known
that under regularity conditions, ∇˜̀

t(u, θ0(u)) is a martingale difference sequence and
V (u) = I(u) is positive definite. Since we allow for general ` it is possible to deal
with misspecifications: Especially in the case that ` is taken to be (4.1.7) but fε is
wrongly chosen as the standard Gaussian density it is easily possible to retain the
martingale difference property and the positive definiteness of V (u), see Example 4.5.9.
Since these properties of the estimation procedure are crucial for our proofs to apply
Bernstein inequalities, we ask for them in Assumption 4.2.2(iii),(iv), where we ask for
a slightly stronger assumption on GV (u, θ) := E[gV (Ỹ0(u), θ)] since we use a different
technique to estimate V (u) = GV (u, θ0(u)). Finally, we need a possibility to determine
the convergence rate of θ̂b(u) even in the case when it lies on the boundary of Θ.
To do so, we use a technique of Van de Geer (2000) which needs assumptions on
L(u, θ) := E˜̀

t(u, θ).

Assumption 4.2.2 (Likelihood assumptions). Assume that for some β, L0 > 0,

(i) Θ ⊂ Rd is compact, δΘ := infu∈[0,1] infθ∈∂Θ |θ0(u)− θ|2 > 0, and θ0 ∈ Σ(β, L0).

(ii) There exists CL(·) > 0 s. t. for u ∈ [0, 1], θ ∈ Θ: L(u, θ) − L(u, θ0(u)) ≥
1

CL(u)
|θ − θ0(u)|22.

(iii) ∇˜̀
t(u, θ0(u)) is a martingale difference sequence with respect to Ft in each com-

ponent.

(iv) infu∈[0,1] infθ∈Θ λmin(GV (u, θ)) > 0.

(v) Assume that g ∈ {`,∇`,∇2`, gI , gV } fulfills g ∈ L(M,χ,Cg,z, Cg,θ). We ask
ρ(t) :=

∑∞
j=t+1 χj to fulfill∑∞

j=1 jχj <∞,
∑∞

t=1 ρ(t) <∞, ρ(n) ≤ Cρ
n
.
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Note that all conditions in Assumption 4.2.2 only deal with the stationary process
X̃t(u) whose properties are usually well-known. In many models, ` depends only on
finitely many components of y or χ is a geometrically decaying sequence which imme-
diately fulfills the summability conditions in Assumption 4.2.2(v). The conditions on
gI , gV usually can be obtained from the conditions on ∇`,∇2` but in the case of gI they
may lead to a value of M which is larger than necessary. We now define

V0 := inf
u∈[0,1]

inf
θ∈Θ

λmin(GV (u, θ)) · Id, Im := sup
u∈[0,1]

sup
θ∈Θ

λmax(GI(u, θ)) · Id, (4.2.2)

where GI(u, θ) := E[gI(Ỹ0(u), θ)].
In the following assumption we present the conditions we need on the observed

process Xt,n. We specify how Xt,n has to be approximated by X̃t(u). Since the pa-
rameter curve θ0 plays an important role in the time evolution of Xt,n it is obvious
that the smoothness properties of θ0 (especially the Hoelder exponent β) appear here.
Furthermore, we pose conditions on the dependence structure and the moments of the
approximation process X̃t(u) to obtain exponential inequalities for empirical processes
based on X̃t(u). For this, let us define Nα(q)q := Γ(αq + 2) for q ≥ 1 and α ≥ 0 to
measure the exponential decay of the distribution of X̃t(u). The conditions are com-
pletely independent of the estimation procedure and thus can be checked separately
for the processes of interest. A wide range of linear processes and recursively defined
processes (see Example 4.5.9, 4.5.10) satisfy them.

Assumption 4.2.3 (Moment and dependence assumptions). Assume that there exists
some α ≥ 0 such that for all q ≥ 1:

sup
u∈[0,1]

‖X̃0(u)‖q <∞, sup
u∈[0,1]

δX̃(u)
q (k) ≤ δ(k) ·Nα(q), (4.2.3)

where δ(k) is a sequence and ξ(t) :=
∑t

j=1 χj · δ(t − j + 1) fulfills
∑∞

t=1 ξ(t) < ∞.
Suppose there exist CB,1, CB,2 > 0 independent of n such that

sup
t=1,...,n

‖Xt,n − X̃t(t/n)‖2M ≤ CB,1 · n−β
′
, ‖X̃t(u)− X̃t(v)‖2M ≤ CB,2 · |u− v|β

′
,

(4.2.4)
where β′ := β ∧ 1.

In opposite to standard nonparametric regression, in our model we have to subtract
a random (instead of a deterministic) bias term from θ̂b(u)− θ0(u) to obtain a quantity
where a Bernstein inequality is applicable. The random bias term involves the process
X̃t(t/n) for t = 1, ..., n which has to be replaced by X̃t(u). To do so, we have to
impose differentiability assumptions on u 7→ X̃t(u) which is done in Assumption 4.2.4.
While for linear models as in Example 4.1.1(ii) such differentiability is directly inherited
from the deterministic coefficients therein, the problem is more involved for recursively
defined models in Example 4.1.1(i). A general theory for them was introduced in ?.
Comparable conditions as in Assumption 4.2.4 were used in Dahlhaus and Subba Rao
(2006) and Subba Rao (2006) to discuss the bias.
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Assumption 4.2.4 (Bias assumptions). If β > 1, assume that X̃t(u) has an lβ-times
differentiable modification which fulfills C∂kX := supu ‖∂kuX̃t(u)‖2M <∞,∑∞

j=0 δ
∂kuX̃(u)
2M (j) <∞ for all k = 1, ..., lβ and

‖∂lβu X̃t(u)− ∂lβu X̃t(v)‖2M ≤ CB,2 · |u− v|β−lβ . (4.2.5)

Furthermore, for g ∈ {`,∇`,∇2`, gI , gV } assume that g(·, θ) is lβ-times partially dif-
ferentiable and ∂i1 ...∂ilβ g(·, θ) ∈ L(M − lβ, χ, Czψ(i1) · ... · ψ(ilβ), ·) with an absolutely
summable sequence (ψ(k))k∈N and some constant Cz, where the second condition in
(4.2.1) does not have to be fulfilled.

We pose some conditions on the kernel which are standard in nonparametric esti-
mation theory.

Assumption 4.2.5 (Kernel assumptions). Assume that K : [−1
2
, 1

2
]→ R is a function

of bounded variation with
∫
K dx = 1. Assume that K is a kernel of order lβ, i.e.∫

K(x)xj dx = 0 for j = 1, ..., lβ. Suppose that there exists K0 > 0 such that for all
b ∈ Bn:

Kn,b(u)

nb
≥ K0. (4.2.6)

Condition (4.2.6) in Assumption 4.2.5 is usually fulfilled if Bn does not contain
too small bandwidths. Since K has bounded variation BK , it holds that

∣∣Kn,b(u)

nb
−

1
b

∫ 1

0
K
(
v−u
b

)
dv
∣∣ ≤ BK

nb
. If we define K0 := 1

2
min

{
∫ 1

0 K(y) dy, ∫ 0
−1K(y) dy

}
> 0, we

have 1
b

∫ 1

0
K
(
v−u
b

)
dv ≥ 2K0, which leads to Kn,b(u)

nb
≥ K0 as long as b ≥ BK

K0
· 1
n
.

To show a minimax lower bound, we need some knowledge of the properties of the
conditional likelihood of Xt,n given Yt−1,n := (Xs,n : s ≤ n). Here, we assume that this
likelihood does only depend on θ0 through its values on the discrete grid t

n
, t = 1, ..., n.

This general formulation allows to cover both recursively defined time series and linear
models (see Example 4.1.1).

Assumption 4.2.6 (Structural assumptions on Xt,n). Suppose that the negative log
conditional likelihood of Xt,n = x given Yt−1,n = y is given by ˜̀(x, y, θ0

(
t−k
n

)
k≥0

), where
˜̀ : R× RN ×ΘN → R is some function which fulfills ˜̀(·, (θ)k≥0) = `(·, θ) for all θ ∈ Θ.
Suppose furthermore,

(i) (θk)k≥0 7→ ˜̀(x, y, (θk)k≥0) is partially continuously differentiable. There exist se-
quences (C∇,i(k))k≥0 with

∑∞
k=0 kC∇`,i(k) < ∞ (i = 1, 2) such that (x, y, θk) 7→

∇θj
˜̀(x, y, (θi)i≥0) is in L(M,χ,C∇`,1(j), C∇`,1(j)C∇`,2(k)) for all k, j ∈ N.

(ii) There exists z0 ∈ RN with |z0|∞ ≤ Cz0 and supθ∈Θ |∇θj`(z0, (θ)k≥0)|1 ≤ C∇`,1(j)
(j ≥ 1).

If the likelihood ` was chosen correctly, Assumption 4.2.6 does not impose any new
conditions in the case of recursively defined models (4.1.4). For general models, the
idea behind the preceding assumption is that Xt,n should obey a recursion of the form

Xt,n = G̃εt

(
Yt−1,n, θ0

(t− k
n
∨ 0
)
k≥0

)
, t ≤ n
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with some measurable G̃ satisfying G̃ε(·, (θ)j≥0) = Gε(·, θ) with G from (4.1.3) and ˜̀

is similarly constructed as in (4.1.7). For linear models (4.1.5), one often has at,n(k) =
Ak
(
θ0

(
t−j
n
∨ 0
)
j≥0

)
with measurable functions Ak : RN → R. For instance, this is the

case for tvARMA models (see Example 4.2.10).
Examples. In Chapter 3 of this thesis, conditions on a general Gε(y, θ) were

discussed such that the conditions of Assumption 4.2.3 are fulfilled. In the next two
examples we consider a more special case of a recursion function depending only on
finitely many past values and being linear in ε together with a Gaussian likelihood `
of the form (4.1.7). We therefore use the notation Yt−1,n = (Xt−1,n, ..., Xt−p,n) here.
We start with models which have a constant conditional variance Eε2

0 (which has to
be known or pre-estimated). It can easily be seen that the following examples cover
tvAR- and tvTAR models. They are an immediate consequence of the more general
Lemma 4.5.9 in the appendix, the proofs are therefore omitted. Depending on whether
the conditional variance is assumed to be time-varying or not, it is imposed by the use
of gV and gI to know / pre-estimate either Eε2

0 or Eε4
0.

Example 4.2.7 (Constant conditional variance). Assume that there exists m : Rp →
Rd such that

Xt,n =
〈
m(Yt−1,n), θ0(t/n)

〉
+ εt, t = 1, ..., n. (4.2.7)

Suppose that Eε0 = 0, σ2 := Eε2
0 is known, and

(a) supy 6=y′
|mi(y)−mi(y′)|
|y−y′|χi,1

≤ 1 with some χi ∈ Rp
≥0 (i = 1, ..., d),

(b) the Lebesgue density f|ε0| of |ε0| fulfills f|ε0|(x) ≤ Cf exp(−x1/α) for some α,Cf >
0,

(c) m1(Ỹ0(u)), ...,md(Ỹ0(u)) are linearly independent in L2.

Define Θ :=
{
θ ∈ Rd :

∑d
i=1

∑p
j=1 |θi|χi,j ≤ ρ

}
with some 0 < ρ < 1. Assume that

θ0 ∈ Σ(β, L). Then Assumptions 4.2.2, 4.2.3 and 4.2.6 are fulfilled for the Gaussian
likelihood (4.1.7) with M = 2 and Gε(y, θ) = 〈m(y), θ〉+ ε.
In that case, it holds that

gI(y, θ) = σ2m(y)m(y)′ = σ2gV (y, θ), I(u) = σ2Em(Ỹ0(u))m(Ỹ0(u))′ = σ2V (u).

Note that condition (c) is immediately clear in the tvAR case, since then we have
mi(y) = yi and thus

∑p
i=1 ξimi(X̃−i+1(u)) = 0 for some ξ1, ..., ξp ∈ R inductively implies

ξjE[ε2
0] = ξjEmj+1(X̃0(u))ε0 =

∑p
i=1 ξiE[mi(X̃−i+1(u))ε−j+1] = 0 for j = 1, ..., p.

Example 4.2.8 (Deterministic time-varying conditional variance). Assume that there
exists m : Rp → Rd−1, (θ̃0, σ0) : [0, 1]→ Rd−1 × [σmin, σmax] with σmax > σmin > 0 such
that

Xt,n =
〈
m(Yt−1,n), θ̃0(t/n)

〉
+ σ0(t/n)εt, t = 1, ..., n. (4.2.8)

Suppose that Eε0 = 0, Eε2
0 = 1, µ4 := Eε4

0 is known and that conditions (a),(b),(c) from
Example 4.2.7 hold accordingly. Define Θ :=

{
θ = (θ̃, σ) ∈ Rd :

∑d−1
i=1

∑p
j=1 |θi|χi,j ≤
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ρ
}
× [σmin, σmax] with some 0 < ρ < 1. Assume that θ0 = (θ̃0, σ0) ∈ Σ(β, L). Then

Assumptions 4.2.2, 4.2.3 and 4.2.6 are fulfilled for the Gaussian likelihood (4.1.7) with
M = 2 and Gε(y, θ) = 〈m(y), θ̃〉+ σε.
In that case, it holds that

gI(y, θ) =
1

σ2

(
m(y)m(y)′ 0

0 µ4−1

)
, gV (y, θ) =

1

σ2

(
m(y)m(y)′ 0

0 2

)
.

In both Examples 4.2.7 and 4.2.8, the conditions of Assumption 4.2.4 are fulfilled
under suitable conditions on the differentiability of m, see the results of ?.

In the case that the conditional variance is random, we have to assume that the
noise ε0 is a.s. bounded. We conjecture that this condition can be relaxed if β ≥ β0 > 0
with some known β0 > 0 since then one does not need exponential inequalities to bound
empirical processes of Xt,n. Furthermore, we have to guarantee that the conditional
variance is uniformly bounded from below. A prominent example for such models are
tvARCH processes.

Example 4.2.9 (Constant conditional variance). Assume that there exists m : Rp →
Rd
≥0 such that

Xt,n =
√〈

m(Yt−1,n), θ0(t/n)
〉
· εt, t = 1, ..., n. (4.2.9)

Suppose that Eε0 = 0, Eε2
0 = 1, µ4 := Eε4

0 is known, and

(a) supy 6=y′
|
√
mi(y)−

√
mi(y′)|

|y−y′|χi,1
≤ 1 with some χi ∈ Rp

≥0 (i = 1, ..., d). There exists
m0 > 0 such that m1(y) ≥ m0 for all y ∈ Rp.

(b) |ε0| ≤ Cε a.s., put α = 0.

(c) m1(Ỹ0(u)), ...,md(Ỹ0(u)) are linearly independent in L2(Ω,R).

Define Θ :=
{
θ ∈ Rd

≥0 :
∑d

i=1

∑p
j=1

√
θiχi,j ≤ ρmaxC

−1
ε , θi ≥ ρmin

}
with some 0 <

ρmax < 1, ρmin > 0. Assume that θ0 ∈ Σ(β, L). Then Assumptions 4.2.2, 4.2.3
and 4.2.6 are fulfilled for the Gaussian likelihood (4.1.7) with M = 3 and Gε(y, θ) =√
〈m(y), θ〉ε.

In that case, it holds that

gI(y, θ) =
µ4 − 1

4

m(y)m(y)′

〈m(y), θ〉2
=
µ4 − 1

2
gV (y, θ).

In spectral time series analysis, linear locally stationary processes play an important
role. Here, we discuss the conditions that have to be imposed on a model of the form
(4.1.5) introduced by Dahlhaus and Polonik (2009) such that the main assumptions in
our theorems are fulfilled. A very general formulation can be found in Lemma 4.5.10 in
the appendix. Here, we only consider the prominent example of the tvARMA process.
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Example 4.2.10 (tvARMA(r,s) processes). Assume that there are functions aj, bk, σ :
[0, 1]→ R (j = 0, ..., r, k = 0, ..., s) such that a0 ≡ b0 ≡ 1, aj(u) = aj(0), bk(u) = bk(0)
for u < 0 and

r∑
j=0

aj
( t
n

)
Xt−j,n =

s∑
k=0

bk
( t
n

)
σ
(t− k

n

)
εt−k, t = 1, ..., n

Define pθ(w) :=
∑r

j=0 ajw
j and qθ(w) :=

∑s
k=0 bkw

k, Θ̃ a convex closed subset of

{θ = (a1, ..., ar, b1, ..., bs, σ) ∈ Rr+s × [σmin, σmax] :

pθ(w) 6= 0, qθ(w) 6= 0 for 0 < |w| ≤ 1 + ρ},

and
Θ := {θ ∈ Θ̃ : the zeros of pθ and qθ differ by at least ρ2}.

with some ρ, ρ2 > 0 and σmax > σmin > 0. Assume that θ0 = (a1, ..., ar, b1, ..., bs, σ) ∈
Σ(β, L), Eε0 = 0, Eε2

0 = 1 and Eε4
0 is known. Assume that condition (b) from Example

4.2.7 holds.
Then Assumptions 4.2.2, 4.2.3, 4.2.4 and 4.2.6 are fulfilled with M = 2. In that case,
it holds that

gI(y, θ) =
1

σ2

(
µ(y,θ)µ(y,θ)′ 0

0 µ4−1

)
, gV (y, θ) =

1

σ2

(
µ(y,θ)µ(y,θ)′ 0

0 2

)
,

where

µ(y, θ) =
(( ∞∑

k=1

(B(θ)k)11yi+k
)
i=1,...,r

,
(
−
∞∑
k=1

k∑
l=1

(B(θ)l−1)11(B(θ)k−l)i1

s∑
j=0

ajyj+k
)
i=1,...,s

)′
,

B(θ) :=
(

(−bi)i=1,...,s−1 −bs
Ids−1 0

)
and a0 := 1.

Remark 4.2.11 (The choice of Θ̃ in Example 4.2.10). Note that a convex superset Θ̃
is only needed since we are working in a non-asymptotic framework. A suitable choice
of Θ̃ is given by

Θ̃ := {θ = (a1, ..., ar, b1, ..., bs, σ) ∈ Rr+s×[σmin, σmax] :
r∑
j=1

|aj| ≤ 1−ρ3,
s∑
j=1

|bj| ≤ 1−ρ4}

with ρ3 := 1 − (1 − ρ)−(r+1) > 0, ρ4 := 1 − (1 − ρ)−(s+1) > 0. The proof is an easy
consequence of the maximum principle from complex analysis: If

∑r
j=1 |aj| < 1+ρ3, we

have for w = (1 + ρ)eiλ with arbitrary λ ∈ [−π, π]:
∣∣∑r

j=1 ajw
j
∣∣ ≤∑r

j=1 |aj|(1 + ρ)j ≤∑r
j=1 |aj|(1+ρ)p ≤ (1−ρ3)(1+ρ)p < 1. This shows that

∑r
j=1 ajw

j does not attain 1 for
|w| ≤ 1 + ρ by the maximum principle, hence pθ(w) cannot have zeros for |w| ≤ 1 + ρ.
A similar argumentation leads to the same result for qθ.
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4.3 A simulation study

4.3.1 Differences between the minimizers of b 7→ du,Ξ(θ̂b, θ0)

Here we briefly discuss the differences between the bandwidth selectors b̂opt,Ξ(u) which
minimize b 7→ du,Ξ(θ̂b, θ0) for Ξ ∈ {Id, V (u)}. For this, we simulated the tvAR(1) model
Xt,n = a0

(
t
n

)
Xt−1,n + σ0

(
t
n

)
εt, where θ0 = (a0, σ0)′ are step functions (see Figure 4.3.1)

and εt ∼ N(0, 1) standard Gaussian distributed random variables. We chose Hn =
{1.5−k : k ∈ N0} ∩ [ 1

n
, 1] and the Epanechnikov kernel K(x) = 3

2
(1 − (2x)2)1[− 1

2
, 1
2

](x)

for estimation. We assume that the property Eε4
0 = 3 of the errors is known which

then leads to full knowledge of gV and gI . We chose n = 500 to be the length of the
observed time series and repeated the simulation N = 1000 times. At each time point
u ∈ { t

n
: t = 1, ..., n} we determined b̂opt,Ξ(u). The 5% and 95% quantile curves of the

corresponding estimators θ̂b̂opt,Ξ(u)(u) are plotted in Figure 4.3.1. Furthermore we have
visualized the chosen bandwidths for the two procedures and the ratio of I11(u)

I22(u)
, where

I(u) = V (u) = diag( 1
1−a0(u)2 ,

2
σ0(u)2 ) is a diagonal matrix.

It can be seen that the differences of the two estimators θ̂b̂opt,Ξ(u)(u) (Ξ ∈ {Id, V (u)})
are larger if the ratio I11(u)

I22(u)
is far away from 1. For u ≤ 0.5, the Kullback-Leibler-type

distance du,V (u)(θ̂b, θ0) puts a lot of weight to the second component σ0 and thus, the
estimator of σ0 associated with b̂opt,V (u)(u) leads to a more precise estimation of σ0

than the estimator associated with b̂opt,Id(u). The behavior is mirrored for the first
component a0. In the case u ∈ [0.5, 0.75] the ratio I11(u)

I22(u)
≈ 1 and thus the estimators

behave nearly the same. For u ≥ 0.75, the ratio is greater than 1 and thus the behavior
is mirrored to the case u ≤ 0.5. It should be noted that in this example, the difference
of the two bandwidth selectors is not very large as long as the ratio I11(u)

I22(u)
∈ [1

5
, 5].

Only for very large or very small values of this ratio or significant differences in the
smoothness properties of the two components of θ0 we observe significant differences in
the choice of b̂opt,Ξ(u) and θ̂b̂opt,Ξ(u)(u). In simulations, no method conquered the other
in view of stability in the situation that Bn contains very small bandwidths. For this
reason we will only consider Ξ = Id in the following simulations.

4.3.2 The estimation procedure

We discuss the quality of our procedure in four different models, the tvTAR(1), the
tvAR(1), tvMA(1) and the tvARCH(1) model. In all four models we generateN = 1000
replications of a time series of length n = 1000. Since the constant CP (Id) = 28 from
(4.1.11) which is used in the proof usually leads to too conservative estimators, one
has to find meaningful values of CP (Id) which usually depend on the chosen time series
model and the parameter space Θ. The same holds for the constant cb(Id) in (4.1.9).
In practise, one has to find good values for CP (Id) and cb(Id) with training data before
applying the algorithm to the test data set. A good starting point seems to be to define
cb(Id) ≈ 1 and CP (Id) ≈ 1. Here, we analyze the following models:
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Figure 4.1: Discussion of the two distance measures du,Ξ(θ̂b, θ0), Ξ ∈ {Id, V (u)}. Top:
Left/Right: Solid lines are true curves a0 (left) and σ0 (right). 5% and 95% quantile
curves the two components of the estimator θ̂b̂opt,Ξ(u)(u). Bottom: Left: Median of the
chosen bandwidths b̂opt,Ξ(u). Right: The ratio I11(u)

I22(u)
in logarithmic scale.

• tvTAR(1): Xt,n = a
(
t
n

)
X+
t−1,n + b

(
t
n

)
X−t−1,n + εt, θ = (a, b)

• tvAR(1): Xt,n = a
(
t
n

)
Xt−1,n + σ

(
t
n

)
εt, θ = (a, σ),

• tvMA(1): Xt,n = σ
(
t
n

)
εt + a

(
t
n

)
σ
(
t−1
n

)
εt−1, θ = (a, σ),

• tvARCH(1): Xt,n =
(
a
(
t
n

)
+ b
(
t
n

)
X2
t−1,n

)1/2
εt, θ = (a, b).
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In each case, we assume εt ∼ N(0, 1) with known second and fourth moment Eε2
0 = 1,

Eε4
0 = 3. In the grid, we used a = 1.5. The following constants CP (Id), cb(Id) were

chosen for the simulations:

model tvTAR tvAR tvMA tvARCH
CP (Id) 1.5 0.6 0.7 2.0
cb(Id) 2.0 1.0 2.0 2.0

The simulation results are given in Figures 4.2 and 4.3. The true curve of the first
(left) and second (right) component of the estimators of θ0 is plotted together with
the 5%- and 95% quantile curves of the estimator θ̂b̂Id(u)(u), the (unknown) optimal
local estimator θ̂b̂opt,Id(u)(u) and an (unknown) optimal global estimator θ̂b̂opt,Id(u) which
is chosen by minimizing the averaged squared error b 7→ 1

n

∑n
t=1 |θ̂b(t/n) − θ0(t/n)|22.

Furthermore, the pointwise median of the local bandwidth b̂opt,Id(u) chosen is shown.
It turns out that a good choice of cb(Id) is crucial to obtain a stable procedure. If Bn

contains too small elements, the bandwidth selector tends to choose them occasionally
which leads to ’artefacts’ in the estimator θ̂b̂Id(u)(u). The reason for this can be seen

in the proof of Theorem 4.1.4: Bandwidths b < cb(Id) log(n)2

n
do not longer guarantee

that rare events occur with negligible probability. The selection routine is relatively
insensitive to the choice of CP (Id). In Figures 4.2, 4.3 one can see that for the defined
step functions, our method b̂Id(u) outperforms the estimators associated to the global
optimal bandwidth selector b̂opt and works reasonably well compared with the local
optimal choice b̂Id,opt(u). In general, the quality of the bandwidth selector b̂Id(u) depends
on the quality of the corresponding quasi-maximum likelihood estimator. Especially
in ARCH(1) models, the parameter estimators obtained by the maximum likelihood
approach have a very high variance which compromises bandwidth selection.

4.4 Concluding remarks

In this chapter, we proposed a data adaptive bandwidth selection procedure for pa-
rameter curves in locally stationary processes. We proved that the bandwidth selector
is minimax optimal over Hoelder classes up to a log factor which is common in local
procedures. As seen in the simulations, the method is applicable to a wide range of
popular time series.
The quality of the selection routine depends strongly on the quality of the correspond-
ing quasi maximum likelihood estimator. Therefore, the method works better in tvAR
models than in tvARCH models (where the maximum likelihood estimators have a very
high variance).
We conjecture that a generalization to multivariate time series is straightforward. More-
over, it is not hard to allow for a partially known parameter curve, i.e. X̃t(u) =
Gεt(Ỹt−1(u), θ0(u), u) in (4.1.3) can depend on u not only through θ0. To guarantee the
same results in this case, a modification of the bias expansions Lemma 4.5.6 and 4.5.7
is necessary. To reduce technicality, we omitted the details in this paper. It should be
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Figure 4.2: 1st row: tvTAR(1) model, 2nd row: tvAR(1).

also possible to relax the differentiability assumption of the model in θ by convoluting
the likelihood with a twice differentiable function.

4.5 Lemmas and Proofs

4.5.1 Stationary approximation and exponential inequalities

In this section, we To shorten some expressions, let us introduce the following notations.
SinceM,χ are fixed in this chapter, we do not mark the dependency on this quantities.
Let CX :=

∑∞
k=0 δ(k) + supu∈[0,1] |EX̃0(u)| <∞. We then have

‖X̃t(u)‖q = ‖X̃t(u)− EX̃t(u)‖q + |EX̃t(u)| ≤ CXNα(q). (4.5.1)
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Figure 4.3: 1st row: tvMA(1), 2nd row: tvARCH(1).

Furthermore, set EX,1 := 1 + 2|χ|M−1
1 CM−1

X and EX,2 := CX |χ|1(1 + |χ|M−1
1 CM−1

X ) and
Θmax := supθ∈Θ |θ|2.

Lemma 4.5.1 (The stationary approximation). Let g ∈ L(M,χ,Cz, Cθ). Define

Sn,b(g(·, θ), u) :=
1

Kn,b(u)

n∑
t=1

K
(t/n− u

b

)
·
{
g(Y c

t,n, θ)− g(Ỹt(t/n)c, θ)
}
.

Suppose that Assumption 4.2.3 and 4.2.5 hold. Assume that
∑∞

j=1 jχj < ∞. Then
there exists a constant CS > 0 not depending on n, b such that:∥∥ sup

θ∈Θ
|Sn,b(g(·, θ), u)|

∥∥
2
≤ CS · n−β

′
.
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Proof of Lemma 4.5.1: First note that for all t = 1, ..., n it holds that:

‖Xt,n‖2M ≤ ‖Xt,n − X̃t(t/n)‖2M + ‖X̃t(t/n)‖2M ≤ CB,1n
−β′ + CXNα(2M)

≤ CB,1 + CXNα(2M).

Because g ∈ L(M,χ,C), we have component-wise by Hoelder’s inequality:∥∥ sup
θ∈Θ
|g(Y c

t,n, θ)− g(Ỹt(t/n)c, θ)|
∥∥

2

≤ Cz
∑t

j=1 χj
∥∥Xt−j+1,n − X̃t−j+1

(
t
n

)∥∥
2M

·
(

1 +
(∑t

j=1 χj‖Xt−j+1,n‖2M

)M−1

+
(∑t

j=1 χj
∥∥X̃t−j+1

(
t
n

)∥∥
2M

)M−1
)
.

(4.5.2)

By Assumption 4.2.3 it holds that ‖Xt−j+1,n − X̃t−j+1( t−j+1
n

)‖2M ≤ CB,1n
−β′ and thus

‖Xt−j+1‖2M ≤ CB,1 + CXNα(2M). Furthermore,∥∥Xt−j+1,n − X̃t−j+1

( t
n

)∥∥
2M

≤
∥∥Xt−j+1,n − X̃t−j+1

(t− j + 1

n

)∥∥
2M

+
∥∥X̃t−j+1

(t− j + 1

n

)
− X̃t−j+1

( t
n

)∥∥
2M

≤ CB,1n
−β′ + CB,2Nα(2M)

(j + 1

n

)β′ ≤ (CB,1 + CB,2Nα(2M))n−β
′ · (j + 1).

We conclude that (4.5.2) is bounded by

Cz

∞∑
j=1

(j + 1)χj · (CB,1 + CB,2Nα(2M))(1 + 2(|χ|1(CB,1 + CXNα(2M)))M−1)n−β
′
.

Lemma 4.5.2 (The crop approximation). Let g ∈ L(M,χ,Cz, Cθ). Define

Cn,b(g(·, θ), u) :=
1

Kn,b(u)

n∑
t=1

K
(t/n− u

b

)
·
{
g(Ỹt(t/n)c, θ)− g(Ỹt(t/n), θ)

}
.

Assume that ρ(t) :=
∑∞

j=t+1 χj < ∞ and
∑∞

t=1 ρ(t) < ∞, ρ(n) ≤ Cρ
n
. Suppose that

Assumption 4.2.3 and 4.2.5 holds. Then, for each u ∈ (0, 1] there exists a constant
CC(u) > 0 not depending on n, b such that∥∥ sup

θ∈Θ
|Cn,b(g(·, θ), u)|

∥∥
2
≤ CC(u)

n
.

Proof of Lemma 4.5.2: Because g ∈ L(M,χ,Cz, Cθ), we have component-wise for all
u ∈ [0, 1] by Hoelder’s inequality:∥∥ sup

θ∈Θ
|g(Ỹt(u)c, θ)− g(Ỹt(u), θ)|

∥∥
2

≤ Cz
∑∞

j=t+1 χj‖X̃t−j+1(u)‖2M ·
(
1 + 2

(∑∞
j=1 χj‖X̃t−j+1(u)‖2M

)M−1)
≤ Cz

(∑∞
j=t+1 χj

)
· CXNα(2M)

(
1 + 2(|χ|1CXNα(2M))M−1

)
=: ρ(t) ·DX .
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We conclude for u ∈ (0, 1]:∥∥ sup
θ∈Θ
|Cn,b(g, u, θ)|

∥∥
2
≤ DX

Kn,b(u)

n∑
t=1

∣∣∣K(t/n− u
b

)∣∣∣ρ(t). (4.5.3)

There are two cases: If b ≤ u, then the term in the sum over t is only different from 0
if t

n
≥ u − b

2
≥ u

2
which implies t ≥ u

2
· n. Then ρ(t) ≤ Cρ

t
≤ 2Cρ

u
· 1
n
and thus (4.5.3)

can be bounded by

DX

Kn,b(u)

n∑
t=1

∣∣∣K(t/n− u
b

)∣∣∣ · 2Cρ
u
· 1

n
≤ DXCρ ·

2

u
· 1

n
.

In the case b ≥ u, we have
∑n

t=1 |K
( t/n−u

b

)
|ρ(t) ≤ ‖K‖∞

∑∞
t=1 ρ(t) and, by Assumption

4.2.5, Kn,b(u) ≥ c0 · (nb) ≥ c0 · n · u2 , thus (4.5.3) is bounded by

DX ·
2

u
· |K|∞

c0

·
∞∑
t=1

ρ(t) · 1

n
.

Thus, the assertion holds with CC(u) := 2DX
u
·max{Cρ, |K|∞c0

∑∞
t=1 ρ(t)}.

Lemma 4.5.3 (Exponential moment). Assume that g : RN → Rdim fulfills g ∈
L(M,χ,Cz). Define τ2 := (αM)−1. Suppose that Assumption 4.2.3 and 4.2.5 hold.
Then it holds for arbitrary q ≥ 2 that:∥∥|g(Ỹt(u))|2

∥∥
q
≤ |Cz|2EX,2 ·Nα(qM)M + |g(0)|2,

E exp
(1

2

( |g(Ỹt(u))|2
|Cz|2EX,2 + |g(0)|2

)τ2) ≤ CE.

In the special case α = 0 it holds that |g(Ỹt(u))|2 ≤ |Cz|2EX,2 + |g(0)|2 a.s.

Proof of Lemma 4.5.3: Fix an index i. Then we have

‖gi(Ỹt(u))− gi(0)‖q ≤ Cz,i

∞∑
j=1

χj‖X̃t−j+1(u)‖qM ·
(
1 + |χ|M−1

1 ‖X̃t(u)‖M−1
qM

)
≤ Cz,i|χ|1CXNα(qM) ·

(
1 + |χ|M−1

1 CM−1
X Nα(qM)M−1

)
≤ Cz,iNα(qM)M · EX,2.

For the second part, define DX := |Cz|2EX,2 + |g(0)|2 and λ = (2Dτ2
X )−1. It holds that

E exp
(
λ|g(Ỹt(u))|τ22

)
=
∑∞

q=0

λq‖|g(Ỹt(u))|2‖
τ2q
τ2q

q!
. If τ2q ≥ 2, we have

‖|g(Ỹt(u))|2‖τ2qτ2q ≤ Dτ2q
X · Γ(αqτ2M + 2) = Dτ2q

X Γ(q + 2).

This shows
∑

τ2q≥2

λq‖|g(Ỹt(u))|2‖
τ2q
τ2q

q!
≤
∑∞

τ2q≥0(λDτ2
X )q · Γ(q+2)

Γ(q+1)
=
∑

τ2q≥2
q+1
2q
≤ 4.

In the case τ2q < 2, we have

‖|g(Ỹt(u))|2‖τ2qτ2q ≤ ‖|g(Ỹt(u))|2‖τ2q2 ≤ Dτ2q
X Γ(2αM + 2)τ2q/2 ≤ Dτ2q

X Γ(2αM + 2).

This shows
∑

τ2q<2

λq‖|g(Ỹt(u))|2‖
τ2q
τ2q

q!
≤ Γ(2αM+2)

∑∞
q=0

2−q

q!
= exp(2−1)Γ(2αM+2). The

result is obtained with CE := 4 + exp(2−1)Γ(2αM + 2).
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Lemma 4.5.4 (The empirical process approximation). Assume that g : RN → Rdim

fulfills g ∈ L(M,χ,Cz). Define τ = τ(α,M) := (1
2

+αM)−1. Suppose that Assumption
4.2.3 and 4.2.5 hold. Define

En,b(g, u) :=
1

Kn,b(u)

n∑
t=1

K
(t/n− u

b

)
·
{
g(Ỹt(t/n))− Eg(Ỹt(t/n))

}
,

Then there exists CE,1 > 0 and CE,2(Cz) := EX,1|Cz|2
∑∞

k=0 ξ(χ, k) > 0 such that for
all γ > 0:

‖|En,b(g, u)|2‖q ≤ (q − 1)1/2CE,2Fn,b(u)−1 ·Nα(qM)M ,

P(|En,b(g, u)|2 > γ) ≤ CE,1 exp
(
− (4e)−1(C−1

E,2 · Fn,b(u) · γ)τ
)
.

Proof of Lemma 4.5.4: By the Hoelder inequality, we have for all u ∈ [0, 1], θ ∈ Θ and
each component i = 1, ..., dim:∥∥gi(Ỹt(u))− gi(Ỹ ∗t (u))

∥∥
q

≤ Cz,i
∑t

j=1 χj‖X̃t−j+1(u)− X̃∗t−j+1(u)‖qM ·
(
1 + 2|χ|M−1

1 CM−1
X ·Nα(qM)M−1

)
≤ Cz,i

∑t
j=1 χjδ(t− j + 1) ·Nα(qM)MEX,1.

So we have shown that the dependence measure fulfills δg(Ỹ (u))
q (k) ≤ EX,1Cz,i · ξ(χ, k) ·

Nα(qM)M which is absolutely summable by Assumption 4.2.3. Note that for q ≥ 2 and
some random vector v ∈ Rd, we have

‖|v|2‖q = E
[(∑d

j=1 |vj|2
)q/2]1/q

=
∥∥∑d

j=1 |vj|2
∥∥1/2

q/2
≤
(∑d

j=1 ‖v2
j‖q/2

)1/2

≤
(∑d

j=1 ‖vj‖2
q

)1/2
= |‖v‖q|2.

By Theorem 2.1 from Rio (2009) for q > 2 (and for q = 2 directly by calculating the
variance of the following term), we have

‖|En,b(g, u)|2‖q ≤
∣∣∣∥∥∥ 1

Kn,b(u)

∣∣∣ n∑
t=1

K
(t/n− u

b

){
g(Ỹt(t/n))− Eg(Ỹt(t/n))

}∥∥∥
q

∣∣∣
2

≤
∞∑
k=0

1

Kn,b(u)

∣∣∣∥∥∥ n∑
t=1

K
(t/n− u

b

)
Pt−kg(Ỹt(t/n))

∥∥∥
q

∣∣∣
2

≤
∞∑
k=0

1

Kn,b(u)
(q − 1)1/2

∣∣∣( n∑
t=1

K
(t/n− u

b

)2

‖Pt−kg(Ỹt(t/n))‖2
q

)1/2∣∣∣
2

≤ (q − 1)1/2Fn,b(u)−1 · |Cz|2EX,1
∞∑
k=0

ξ(χ, k) ·Nα(qM)M .

Define D(u) := EX,1|Cz|2Fn,b(u)−1 ·
∑∞

k=0 α(χ, k). By Stirling’s formula, we have for all
x ≥ 1: √

2πxx−
1
2 e−x ≤ Γ(x) ≤ e1/12 ·

√
2πxx−

1
2 e−x.
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By Markov’s inequality, we have for ε > 0:

P(|En,b(g, u)|2 ≥ ε) ≤ e−λε
τE[eλ|En,b(g,u)|τ2 ] = e−λε

τ
∞∑
q=0

λq‖|En,b(g, u)|2‖τqτq
q!

.

In the case τq ≥ 2, we have

λq‖|En,b(g, u)|2‖τqτq
q!

≤ λq

Γ(q + 1)
(τq)

τq
2 D(u)τq · Γ(αMτq + 2).

Note that αMτ ≤ 1 and τ(αM + 1
2
) = 1, thus

q
τq
2

Γ(αMτq + 2)

Γ(q + 1)
≤ (q + 2)

τq
2 · (αMτq + 2)αMτq+ 3

2 e−(αMτq+2)e1/12

(q + 1)q+
1
2 e−(q+1)

= e1/12(q + 2) ·
(q + 2

q + 1

)q+ 1
2
e−1eq(1−αMτ)

≤ e1/12(q + 2)eq.

Define λ := (4e)−1D(u)−τ . Note that τ ≤ 2, thus τ τ/2 ≤ 2, this gives

∑
q≥2/τ

λq‖|En,b(g, u)|2‖τqτq
q!

≤ e1/12 ·
∑
q≥2/τ

(q + 2)(λ · 2eD(u)τ )q ≤ e1/12
∑
q≥2/τ

q + 2

2q
≤ 4e1/12.

In the case τq < 2, we have

λq‖|En,h(g, u)|2‖τqτq
q!

≤ λq‖|En,b(g, u)|2‖τq2

q!
≤ λq

q!
D(u)τq · Γ(2αM + 2)

τq
2

≤ (4e)−q

q!
· Γ(2αM + 2),

thus
∑

q<2/τ
λq‖|En,b(g,u)|2‖τqτq

q!
≤ exp((4e)−1)Γ(2αM + 2). So the result is obtained with

CE,1 := 4e1/2 + exp((4e)−1)Γ(2αM + 2) and CE,2(Cz) as given in the Lemma.

Lemma 4.5.5 (The uniform empirical process approximation). Assume that g : RN ×
Θ→ Rdim fulfills g ∈ L(M,χ,Cz, Cθ). Suppose that Assumption 4.2.3 holds. Recall the
definition of CE,2(Cz) from Lemma 4.5.4. Fix some γ > 0, and assume that

b ≥ b∗(Cz, γ) :=
log(n)1+2αM

n

( |K|∞CE,2(Cz)

c0γ
·
[
4e · (d+ 1)

] 1
2

+αM
)2

. (4.5.4)

Then there exists a constant Cemp = Cemp(γ) > 0 not depending on b, n such that

P
(

sup
θ∈Θ
|En,b(g, u)|2 > γ

)
≤ Cemp · n−1.
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Proof of Lemma 4.5.5: Choose cn := n−1. Let Θn be the smallest discretization of
Θ ⊂ Rd such that for each θ ∈ Θ there exists θ′ ∈ Θn with |θ − θ′|2 ≤ cn. Then
|Θn| ≤ (2 · diam(Θ) + c−1

1 )d · c−dn =: CΘc
−d
n , see Van de Geer (2000), Lemma 2.5. By

Markov’s inequality, we have∥∥ sup
θ∈Θ
|En,b(g(·, θ), u)|2

∥∥
1
≤ |K|∞|Cθ|2 ·

(
1 + |χ|M1 CM

X

)
· cn.

Thus

P
(

sup
θ∈Θ
|En,b(g(·, θ), u)|2 > γ

)
≤ P

(
sup

|θ−θ′|2≤cn
|En,b(g(·, θ), u)− En,b(g(·, θ′), u)|2 > γ

)
+|Θn| · sup

θ∈Θ
P(|En,b(g(·, θ), u)|2 > γ)

≤ |K|∞
γ
|Cθ|2 ·

(
1 + |χ|M1 CM

X

)
· cn + CΘCE,1c

−d
n · exp

(
− (4e)−1(C−1

E,2 · Fn,b(u) · γ)τ
)

= O(n−1),

where the last equality is due to the fact that Fn,b(u) ≥ c0
|K|∞ · (nb)

1/2 and b ≥ b∗.

4.5.2 Bias approximations

There are two possibilities where the bias approximation can take place. Usually it is
more convenient to have a deterministic bias expansion, meaning that the expansion is
done in the expectation. In this case a supremum over a parameter θ or the bandwidth
b can be evaluated easily. However, there is a point in our derivations where we also
need a stochastic bias expansion, meaning that the bias expansion is done when the
underlying quantity is still random. This point arises naturally because we want to use a
Bernstein inequality for martingale difference sequences to get a small penalization term
which coincides with the penalization term of nonparametric regression if we look at
this special case. The maximum likelihood expansion however gives a sum of stochastic
terms of the form ∇`(Y c

t,n, θ0(u)) which only becomes a martingale difference sequence
if we change Y c

t,n to Ỹt(u) which then forces us to use a stochastic bias expansion to
discuss this term. In the following, we will use the abbreviation l := lβ (recall the
definition of lβ from θ0 ∈ Σ(β, L)).

Lemma 4.5.6 (The deterministic bias approximation). Assume that g : RN → R is
l-times partially differentiable (with l ≥ 0 a natural number) and ∂i1 ...∂ilg ∈ L(M −
l, χ, C1(i1)·...·Cl(il)) for each component of ∂lg where C1, ..., Cl are absolutely summable
sequences. Furthermore assume that |∂ik ...∂ilg(0)| ≤ Ck(ik) · ... ·Cl(il) (k = 1, ..., l+ 1).
Define

Bn,b(g, u) :=
1

Kn,b(u)

n∑
t=1

K
(t/n− u

b

)
·
{
Eg(Ỹt(t/n))− Eg(u, Ỹt(u))

}
.
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Assume that Assumption 4.2.3 and 4.2.4 hold. Then there exist constants CB, CB,R > 0
such that for all u ∈ [ b

2
, 1− b

2
]:

|Bn,b(g, u)| ≤ CBb
β + CB,Rn

−1.

In the special case l = 0 the above holds for all u ∈ [0, 1].

Proof of Lemma 4.5.6: For this proof, define ‖Z‖0 := 1 and ‖Z‖q := 0 for q < 0.
This is needed to include the case of constant functions Z in our proof technique.
Define M̃ := M − l. We only consider the case l ≥ 1, the case l = 0 is easier.
Use the abbreviation f := ∂i2 ...∂ilg and Cf (i1) := C1(i1) · ... · Cl(il). Define D(k) :=
max{χk, Cf (k)} (which is still absolutely summable since D(k) ≤ χ(k) + Cf (k)). We
will now show that f : (R∞, | · |D,1)→ (R, | · |) is Frechet differentiable with derivative
f ′(y)h :=

∑∞
j=1 ∂jf(y) · hj. Now choose h ∈ R∞ with |h|D,1 < ε. Let ej ∈ R∞ be a

sequence of zeros where only at the j-th position is a 1. By the mean value theorem in
R, there exists s ∈ [0, 1] such that

|f(y + h)− f(y)− f ′(y)h| ≤
∞∑
j=1

∣∣f(y +

j∑
k=1

hkek
)
− f

(
y +

j−1∑
k=1

hkek
)
− ∂jf(y)hj

∣∣
=

∞∑
j=1

∣∣∂jf(y +

j−1∑
k=1

hkek + shj
)
− ∂jf(y)

∣∣ · |hj|
≤

∞∑
j=1

Cf (j)|h|χ,1 ·
(
1 + 2M̃ |y|M̃−1

χ,1 + |h|M̃−1
χ,1

)
· |hj|

≤ ε ·
(
1 + 2M̃ |y|M̃−1

χ,1 + |h|M̃−1
χ,1

)
.

This shows Frechet differentiability of f . This shows that s 7→ f(y + s · (y′ − y)) is
differentiable with derivative

∑∞
j=1 ∂jf(y + s · (y′ − y)) · (y′j − yj). By the fundamental

theorem of analysis,

|f(y′)− f(y)| ≤
∫ 1

0

∞∑
j=1

|∂jf(y + s · (y′ − y))− ∂jf(0)| · |y′j − yj| ds+ |y′ − y|Cf ,1

≤
{(
|y|χ,1 + |y′|χ,1

)
·
(
1 + 2M̃ |y|M̃−1

χ,1 + 2M̃ |y′|M̃−1
χ,1

)
+ 1
}
|y′ − y|Cf ,1

≤ C̃1(M̃)C2(i2) · ... · Cl(il)|y′ − y|C1,1

(
1 + |y|M̃χ,1 + |y′|M̃χ,1

)
with some constant C̃1(M̃) dependent on M̃ . This shows that

∂i2 ...∂ilg ∈ L(M̃ + 1, χ+ C1, C̃1(M̃)C2(i2) · ... · Cl(il)).

Inductively we obtain Frechet differentiability of all partial derivatives ∂ik+1
...∂ilg (k =

1, ..., l) and

∂ik+1
...∂ilg ∈ L

(
M̃ + k, χ(k), C̃(k) · Ck+1(ik+1) · ... · Cl(il)

)
.
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where χ(k) := χ+ C̃1 + ...+ C̃k and C̃(k) := C̃1(M̃) · ... · C̃k(M̃ + k − 1).
Taking q = M̃+l

M̃+k
, this shows that

‖∂ik+1
...∂ilg(Ỹt(u))‖q

≤ ‖∂ik+1
...∂ilg(Ỹt(u))− ∂ik+1

...∂ilg(0)‖q + |∂ik+1
...∂ilg(0)|

≤ Ck+1(ik+1) · ... · Cl(il)
(
C̃(k)

∥∥|Ỹt(u)|χ(k),1 ·
(
1 + |Ỹt(u)|M̃+k−1

χ(k),1

)∥∥
q

+ 1
)

≤ Ck+1(ik+1) · ... · Cl(il)(
C̃(k)

∥∥|Ỹt(u)|χ(k),1

∥∥
M̃+l
·
(

1 +
∥∥|Ỹt(u)|χ(k),1

∥∥M̃+k−1

M̃+l

)
+ 1
)

≤ Ck+1(ik+1) · ... · Cl(il) ·D(k)

with D(k) := C̃(k)|χ(k)|1C̃X(1 + |χ(k)|1C̃M̃+k−1
X ) + 1 and C̃X := CX ∨ 1. Similarly, with

D̃(k) := C̃(k)(1 + |χ(k)|1C̃M̃+k−1
X ), we have

‖∂ik+1
...∂ilg(Ỹt(u))− ∂ik+1

...∂ilg(Ỹt(u
′))‖q

≤ Ck+1(ik+1) · ... · Cl(il) · D̃(k) ·
∞∑
j=1

χj‖X̃t−j+1(u)− X̃t−j+1(u′)‖M̃+l. (4.5.5)

By Faa di Bruno’s rule, we have for k = 1, ..., l:

∂kug(Ỹt(u)) =
∑
π∈Πk

∞∑
i1,...,i|π|=1

∂i1 · · · ∂i|π|g(Ỹt(u)) ·
|π|∏
j=1

∂|πj |u X̃t−ij+1(u), (4.5.6)

where Πk is the set of all partitions of {1, ..., k} and |π| denotes the number of elements
of the partition and |πk| the number of elements in πk. For convenience, let us define
C∂X,max := max{C∂kX : k = 0, ..., l}, Cmax(i) := max{Ck(i) : k = 1, ..., l} and Cs,max :=∑∞

i=1Cmax(i). By Hoelder’s inequality,

‖∂kug(Ỹt(u))‖1 ≤
∑
π∈Πk

∞∑
i1,...,i|π|=1

∥∥∂i1 · · · ∂i|π|g(Ỹt(u))
∥∥

M̃+l
M̃+l−|π|

·
|π|∏
j=1

∥∥∂|πj |u X̃t−ij+1(u)
∥∥
M̃+l

≤
∑
π∈Πk

(
D(l−|π|)

∞∑
i1,...,i|π|=1

Cl−|π|+1(i1) · ... · Cl(i|π|)
)
·
|π|∏
j=1

∥∥∂|πj |u X̃0(u)
∥∥
M̃+l

< ∞.

Replacing Ỹt(t/n) by its differentiable modification, we have almost surely

g(Ỹt(t/n)) =
l∑

k=0

∂kug(Ỹt(u))

k!

( t
n
− u
)k

+

∫ t/n

u

(
s− u)l−1

(l − 1)!

{
∂lug(Ỹt(s))− ∂lug(Ỹt(u))

}
ds.

(4.5.7)
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Thus

|Bn,b(g, u)| ≤ 1

c0

l∑
k=1

|E∂kug(Ỹt(u))|
k!

∣∣∣ 1

nb

n∑
t=1

K
(t/n− u

b

)( t
n
− u
)k∣∣∣

+
bl

c0 · (l − 1)!
· |K|∞ sup

|s−u|≤b

∥∥∂lug(Ỹt(s))− ∂lug(Ỹt(u))
∥∥

1
.

SinceK has order l and bounded variation BK , we have for u ∈ [ b
2
, 1− b

2
] and k = 1, ..., l:

∣∣∣ 1

nb

n∑
t=1

K
(t/n− u

b

)( t
n
− u
)k − 1

b

∫ 1

0

K
(y − u

b

)
(y − u)k dy

∣∣∣ ≤ BK

nb
· bk = O(n−1),

since 1
b

∫ 1

0
K
(
y−u
b

)
(y − u)k = bk

∫ (1−u)/b

−u/b K(z)zk dz = bk
∫ 1/2

−1/2
K(z)zk dz = 0. By

Assumption 4.2.4, we have ‖∂kuX̃0(u)− ∂kuX̃0(u′)‖M̃+l ≤ C∂k+1X |u− u′| for all u, u′ and
k = 1, ..., l − 1. Using (4.5.6) and (4.5.5), we obtain:∥∥∂lug(Ỹt(s))− ∂lug(Ỹt(u))

∥∥
1

≤
∑
π∈Πl

∞∑
i1,...,i|π|=1

{∥∥∂i1 · · · ∂i|π|g(Ỹt(s))− ∂i1 · · · ∂i|π|g(Ỹt(u))
∥∥

M̃+l
M̃+l−|π|

×
|π|∏
j=1

∥∥∂|πj |u X̃t−ij+1(s)
∥∥
M̃+l

+
∥∥∂i1 · · · ∂i|π|g(Ỹt(u))

∥∥
M̃+l

M̃+l−|π|
·
|π|∑
j=1

∏
1≤j2<j

∥∥∂|πj2 |u X̃t−ij2+1(u)
∥∥
M̃+l

×
∥∥∂|πj |u X̃t−ij+1(s)− ∂|πj |u X̃t−ij+1(u)

∥∥
M̃+l
·
∏

|π|≥j2>j

∥∥∂|πj2 |u X̃t−ij2+1(s)
∥∥
M̃+l

}
≤

∑
π∈Πl

(
D̃(l−|π|)|χ(l−|π|)|1C |π|s,maxC

|π|
∂X,max · ‖X̃0(s)− X̃0(u)‖M̃+l

+D(l−|π|)C |π|s,max · |π| · C
|π|−1
∂X,max · sup

k=1,...,l

∥∥∂kuX̃0(s)− ∂kuX̃0(u)
∥∥
M̃+l

)
(4.5.8)

= O(bβ−l).

Lemma 4.5.7 (The non-deterministic bias expansion). Assume that the conditions of
Lemma 4.5.6 hold and that

∑∞
i=1 χiδ

∂kuX̃(u)
2M (t−i+1) and

∑∞
i=1Cmax(i)δ

∂kuX̃(u)
2M (t−i+1) are

absolutely summable in t for all k = 0, ..., l, where Cmax(i) := max{Ck(i) : k = 1, ..., l}.
Define

B̃n,b(g, u) :=
1

Kn,b(u)

n∑
t=1

K
(t/n− u

b

)
·
{
g(Ỹt(t/n))− g(Ỹt(u))

}
.
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Then there exist constants CB, CB,R > 0 such that for all u ∈ [ b
2
, 1− b

2
]:

‖B̃n,b(g, u)‖2 ≤ CB,2b
β + CB,R,2n

−1/2.

In the special case l = 0 the above holds for all u ∈ [0, 1].

Proof of Lemma 4.5.7: First consider the special case 1 ≥ β > 0. Then we have

‖B̃n,b(g, u)‖2 ≤
1

Kn,b(u)

n∑
t=1

∣∣∣K(t/n− u
b

)∣∣∣ · ∥∥g(Ỹt(t/n))− g(Ỹt(u))
∥∥

2
,

and since g ∈ L(M,χ,C), we have by Hoelder’s inequality for | t
n
− u| ≤ b:∥∥g(Ỹt(t/n))− g(Ỹt(u))

∥∥
2

≤ C ·
∞∑
j=1

χj · ‖X̃t−j+1(t/n)− X̃t−j+1(u)‖2M

·
(

1 +
( ∞∑
j=1

χj‖X̃t−j+1(t/n)‖2M

)M
+
( ∞∑
j=1

χj‖X̃t−j+1(u)‖2M

)M)
≤ C|χ|1 · CB,2bβ ·

(
1 + 2|χ|1CM

X

)
,

which finally shows ‖B̃n,b(g, u)‖2 ≤ bβ · |K|∞
c0
C|χ|1 · CB,2

(
1 + 2|χ|1CM

X

)
.

Now assume β > 1. It is already known from Lemma 4.5.6 that

|EB̃n,b(g, u)| ≤ CBb
β + CB,Rn

−1. (4.5.9)

From (4.5.7) in the proof therein, we obtain

‖B̃n,b(g, u)− EB̃n,b(g, u)‖2

≤ 1

Kn,b(u)

l∑
k=1

∞∑
j=0

∥∥∥ n∑
t=1

K
(t/n− u

b

)Pt−j∂kug(Ỹt(u))

k!

( t
n
− u
)k∥∥∥

2

+
1

Kn,b(u)

∞∑
j=0

∥∥∥ n∑
t=1

K
(t/n− u

b

)
×Pt−j

∫ t/n

u

(s− u)l−1

(l − 1)!
{∂lug(Ỹt(s))− ∂lug(Ỹt(u))

}
ds
∥∥∥

2
.

Furthermore it holds that

1

Kn,b(u)

∥∥∥ n∑
t=1

K
(t/n− u

b

)
Pt−j∂

k
ug(Ỹt(u))

( t
n
− u
)k∥∥∥

2

=
( n∑
t=1

K
(t/n− u

b

)2

‖Pt−j∂kug(Ỹt(u))‖2
2

∣∣ t
n
− u
∣∣2k)1/2

≤ bk · δ∂
k
ug(Ỹ (u))

2 (j) · Fn,b(u)−1.

134



Similarly,

1

Kn,b(u)

∥∥∥ n∑
t=1

K
(t/n− u

b

)
Pt−j

∫ t/n

u

(s− u)l−1

(l − 1)!
{∂lug(Ỹt(s))− ∂lug(Ỹt(u))

}
ds
∥∥∥

2

≤ 2
bl

l!
· δ∂

l
ug(Ỹt(u))

2 (j) · Fn,b(u)−1

Since Fn,b(u)−1bk ≤ |K|∞
c0
n−1/2bk−1/2 ≤ |K|∞

c0
n−1/2, we conclude

‖B̃n,b(g, u)−EB̃n,b(g, u)‖2 ≤ n−1/2· |K|∞
c0

( l∑
k=1

1

k!
·
∞∑
j=0

δ
∂kug(Ỹ (u))
2 (j)+

2

l!
·
∞∑
j=0

δ
∂lug(Ỹ (u))
2 (j)

)
,

which finally gives the result using (4.5.9) and ‖B̃n,b(g, u)‖2 ≤ ‖B̃n,b(g, u)−EB̃n,b(g, u)‖2+

|EB̃n,b(g, u)|. It remains to show that δ∂
k
ug(Ỹ (u))

2 (j) is absolutely summable for k =
1, ..., l. Using similar techniques as in (4.5.8) in the proof of Lemma 4.5.6, we obtain
for k = 1, ..., l and arbitrary u ∈ [0, 1]:

‖∂kug(Ỹt(u))− ∂kug(Ỹ ∗t (u))‖2

≤
∑
π∈Πk

(
D̃(l−|π|)C |π|s,maxC

|π|
∂X,max ·

t∑
j=1

χj‖X̃t−j+1(u)− X̃∗t−j+1(u)‖2(M̃+l)

+D(l−|π|)C |π|−1
s,max · |π| · C

|π|−1
∂X,max

× sup
k=1,...,l

t∑
i=1

Cmax(i) ·
∥∥∂kuX̃t−i+1(u)− ∂kuX̃∗t−i+1(u)

∥∥
2(M̃+l)

)
≤ C ·

( t∑
j=1

χj · δX̃(u)
2M (t− j + 1) + sup

k=1,...,l

t∑
i=1

Cmax(i) · δ∂
k
uX̃(u)

2M (t− i+ 1)
)
.

with some constant C > 0, which is absolutely summable in t by assumption.

4.5.3 A weighted Euclidean norm representation of the Kullback-
Leibler divergence

Here we show that the (misspecified) Kullback-Leibler divergence is approximately a
weighted Euclidean norm.

Proposition 4.5.8. Suppose that Assumption 4.2.3 and 4.2.2 hold. Let PX̃t(u)|Ỹt−1(u),θ(·)

be the conditional distribution of X̃t(u) given Ỹt−1(u) under the assumption that the
true curve is θ(·). Assume that `(X̃t(u), Ỹt(u), u, θ(u)) is the negative logarithm of the
corresponding density with respect to the Lebesgue measure. Then the Kullback-Leibler
divergence of PX̃t(u)|Ỹt−1(u)|θ1(·) w.r.t. PX̃t(u)|Ỹt−1(u)|θ0(·) is given by

KL(PX̃t(u)|Ỹt−1(u),θ0(·),PX̃t(u)|Ỹt−1(u),θ1(·))

= Eθ0 [˜̀t(u, θ1(u))]− Eθ0 [˜̀t(u, θ0(u))] =
1

2
|θ1(u)− θ0(u)|2V (u) +O(|θ1(u)− θ0(u)|32).
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Proof of Proposition 4.5.8: A Taylor expansion of L(u, θ) = E˜̀
t(u, θ) gives

L(u, θ1(u))− L(u, θ0(u)) = 〈∇L(u, θ0(u)), θ1(u)− θ0(u)〉+
1

2
|θ1(u)− θ0(u)|2∇2L(u,θ0(u))

+
1

2
|θ1(u)− θ0(u)|2∇2L(u,θ̄(u))−∇2L(u,θ0(u)).

Since ∇˜̀
t(u, θ0(u)) is a martingale difference sequence by Assumption 4.2.2(iii), we

have∇L(u, θ0(u)) = 0. Assumption 4.2.2(v) together with Lemma 4.5.15 gives ||θ1(u)−
θ0(u)|2∇2L(u,θ̄(u))−∇2L(u,θ0(u))

| ≤ |θ1(u)−θ0(u)|22·|∇2L(u, θ̄(u))−∇2L(u, θ0(u))|2 = O(|θ1(u)−
θ0(u)|32), leading to the result.

4.5.4 Proofs of the examples

In this section we present two lemmata (somehow, they are more general examples)
which help us to prove the statements in the examples.

Lemma 4.5.9 (Recursively defined time series). Suppose that Assumption 4.2.2(i) is
fulfilled. Assume that

Xt,n = µ(Yt−1,n, θ0(t/n)) + σ(Yt−1,n, θ0(t/n))εt, t = 1, ..., n

where Yt−1,n = (Xt−1,n, ..., Xt−p,n) contains only finitely many past values in this exam-
ple. Assume that µ, σ : Rp ×Θ→ R satisfy

sup
θ

sup
y 6=y′

|µ(y, θ)− µ(y′, θ)|
|y − y′|χ,1

+ sup
θ

sup
y 6=y′

|σ(y, θ)− σ(y′, θ)|
|y − y′|χ,1

‖ε0‖q ≤ 1 (4.5.10)

for all q ≥ 1 with some χ ∈ Rp
≥0 with |χ|1 < 1. Assume that σ(·) ≥ σ0 with some

constant σ0 > 0. Assume that ∇σ 6= 0, and

(a) Eε0 = 0 and Eε2
0 = 1. Either σ(·, θ) ≡ σ(θ) is constant and the Lebesgue density

f|ε0| of |ε0| fulfills f|ε0|(x) ≤ Cf exp(−x1/α) for some α,Cf > 0; or |ε0| ≤ Cε a.s.
(and set α = 0).

(b) supy supθ 6=θ′
|µ(y,θ)−µ(y,θ′)|
|θ−θ′|2·(1+|y|1)

<∞ and supy supθ 6=θ′
|σ(y,θ)−σ(y,θ′)|
|θ−θ′|2·(1+|y|1)

<∞.

(c) Omitting the arguments Ỹ0(u), there exists CL,µ(u) > 0 such that E
(µ(θ)−µ(θ0(u))

σ(θ)

)2 ≥
1

CL,µ(u)
|θ − θ0(u)|22.

(d) There exists CL,σ(u) > 0 such that either E
(

1
σ2(θ)
− 1

σ2(θ0(u))

)2 ≥ 1
CL,σ(u)

|θ− θ0(u)|22
or E

(
σ2(θ)−σ2(θ0(u))

)2 ≥ 1
CL,σ(u)

|θ−θ0(u)|22 and limδ→∞ δ
2P(supθ σ(θ)2 > δ) = 0.

(e) Define v(u, θ) := σ(θ)−1(∇µ(θ)′,∇σ(θ)′)′. It holds that infθ,u λmin(E[v(u, θ) ·
v(u, θ)′]) > 0.
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Then Assumptions 4.2.2(i)-(iv), 4.2.3 and 4.2.6 are fulfilled for the Gaussian likelihood
(4.1.7).
If σ(·) ≡ σ0 is constant and the conditions above still hold with appropriate changes
(in (c) omit the second condition, in (d) drop the condition on ΣI and use v(u, θ) :=
σ−1

0 ∇µ(θ)), and it holds that

(f) for i = 1, 2, supθ supy 6=y′
|∇iµ(y,θ)−∇iµ(y′,θ)|

|y−y′|1 <∞ and supy supθ 6=θ′
|∇iµ(y,θ)−∇iµ(y,θ′)|
|θ−θ′|2(1+|y|1)

<
∞,

then Assumptions 4.2.2, 4.2.3 and 4.2.6 are fulfilled for the Gaussian likelihood (4.1.7)
with M = 2.

Proof of Lemma 4.5.9: Case ∇σ 6= 0: (a) leads to either ‖ε0‖qq ≤ Cq
ε or to

‖ε0‖qq ≤ Cf

∫ ∞
0

xq exp(−x1/α) dx = Cf

∫ ∞
0

uαq+α−1e−u du

= CfαΓ(α(q + 1)) ≤
(
Cfα(αq + α− 1)dα−2e∨0

)
Γ(αq + 2) ≤ Cq

εNα(q)q.

with some Cε > 0 depending on α,Cf . By (b), we have

sup
θ∈Θ
‖Gε0(0, θ)‖q ≤

(
sup
θ
|µ(0, θ)|+ Cε sup

θ
|σ(0, θ)|

)
Nα(q).

Together with (4.5.10) and Proposition 3.1.3 in Chapter 3 (inspect the proof to get
a specific representation of δX̃(u)

q (k)) we obtain δ
X̃(u)
q (k) ≤ δ(k) · Nα(q) with some

δ(k) ≤ Cδλ
k where Cδ > 0, λ ∈ (0, 1). Since θ0 ∈ Σ(β, L), the conditions of Lemma

3.1.4 in Chapter 3 are fulfilled such that Assumption 4.2.3 holds.
In the following let z = (x, y). In this case, we have that the inverse of ε 7→ Gε(y, u, θ)

is given by x 7→ H(z, θ, u) = x−µ(y,θ)
σ(y,θ)

. Let us omit the arguments (y, θ, u) or (Ỹt(u), θ, u)

of µ(·), σ(·) in the following. Then (4.1.7) with standard Gaussian density f takes the
form `(z, θ) = 1

2

(
x−µ
σ

)2
+ log σ.

Since µ(θ), σ(θ) are Ft−1-measurable and Eε0 = 0, Eε2
0 = 1 by (a), we have

L(u, θ)− L(u, θ0(u)) = E
(µ(θ)− µ(θ0(u))

σ(θ)

)2

+ E
[σ2(θ0(u))

σ2(θ)
− log

σ2(θ0(u))

σ2(θ)
− 1
]

(4.5.11)
By a Taylor expansion of x 7→ x− log(x)− 1, we obtain that the second summand in
(4.5.11) is lower bounded by

1

4
E

(σ2(θ0(u))− σ2(θ))2

(σ2(θ0(u))− σ2(θ))2 + σ4(θ)
=

1

4
E

(
1

σ2(θ)
− 1

σ2(θ0(u))

)2(
1

σ2(θ)
− 1

σ2(θ0(u))

)2
+ 1

σ4(θ)

≥ 1

8σ4
0

· E
( 1

σ2(θ)
− 1

σ2(θ0(u))

)2

.

which then gives Assumption 4.2.2(ii) by conditions (c),(d). Alternatively, define Aδ :=
{supθ σ(θ)2 ≤ δ}. Then, for δ ≥ σ0, the second summand of (4.5.11) is lower bounded
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by

1

8δ2
E
(
σ2(θ0(u))− σ2(θ)

)2

+
1

4
E
[(
σ2(θ0(u))− σ2(θ)

)2 ·
( 1(
σ2(θ0(u))− σ2(θ)

)2
+ σ4(θ)

− 1

2δ2

)
1Acδ

]
.

The second summand is bounded by 1
16σ2

0
E[(σ2(θ0(u))−σ2(θ))4]1/2·P(Acδ)

1/2. If δ2P(Acδ)
1/2 =

δ2P(supθ σ(θ)2 > δ) → 0 for δ → ∞, we can find a δ = δm large enough such that the
second summand is bounded by the half of the first summand, so that the second sum-
mand of (4.5.11) is lower bounded by 1

16δ2
m
E(σ2(θ0(u))− σ2(θ))2.

Omitting the arguments (z, u, θ), we have

∇` = −
(x− µ

σ

)
· ∇µ
σ

+
∇σ
σ
·
[
1−

(x− µ
σ

)2
]
,

∇2` =
∇µ∇µ′

σ2
+
(x− µ

σ

)
·
[
2
∇µ∇σ′ +∇σ∇µ′

σ2
− ∇

2µ

σ

]
+
∇2σ

σ

[
1−

(x− µ
σ

)2
]

+
∇σ∇σ′

σ2

[
3
(x− µ

σ

)2 − 1
]
. (4.5.12)

Since X̃t(u)−µ(Ỹt−1(u),θ0(u))

σ(Ỹt−1(u),θ0(u))
= εt and Eεt = 0, Eε2

0 = 1 by condition (a), we obtain the

martingale difference sequence property of∇˜̀
t(u, θ0(u)) and thus Assumption 4.2.2(iii).

Define ΣV := ( 1 0
0 2 ). Then we have

gI(y, θ) = σ−2 ·
(
Eε2

0 · ∇µ∇µ′ + E[ε4
0 − 1] · ∇σ∇σ′ + Eε3

0 ·
(
∇µ∇σ′ +∇σ∇µ′

))
,

= σ−2tr
{

(ΣI ⊗ Id) ·
(∇µ
∇σ

)
·
(∇µ
∇σ

)′}
,

gV (y, θ) = σ−2 ·
(
∇µ∇µ′ + 2∇σ∇σ′

)
= σ−2tr

{
(ΣV ⊗ Id) ·

(∇µ
∇σ

)
·
(∇µ
∇σ

)′}
, (4.5.13)

where⊗ denotes the Kronecker product. Condition (e) now implies Assumption 4.2.2(iv).
If σ(·) ≡ σ0 is constant, Assumption 4.2.2(v) immediately follows from (f), δ(k) ≤ Cδλ

k

and the representations (4.5.12) and (4.5.13).

Proof of Example 4.2.9: In view of Example 4.5.9, note that σ(y, θ) = 〈θ,m(y)〉 ≥
ρminm0 > 0 uniformly in y, θ. Furthermore, we have

|σ(y, θ)2 − σ(y′, θ)2| ≤
d∑
i=1

θi|mi(y)−mi(y
′)|

≤
d∑
i=1

√
θi|y − y|χi,1 ·

(√
θimi(y) +

√
θimi(y′)

)
≤

d∑
i=1

√
θi|y − y|χi,1 ·

(
σ(y, θ) + σ(y′, θ)

)
,
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which shows that supθ supy 6=y′
|σ(y,θ)−σ(y′,θ)|
|y−y′|∑d

i=1

√
θiχi,1

≤ 1, and

|σ(y, θ)2 − σ(y, θ′)2| ≤
d∑
i=1

|θi − θ′i|√
θi +

√
θ′i

(
σ(y, θ) + σ(y, θ′)

)
·
√
mi(y),

which shows that

sup
θ

sup
y 6=y′

|σ(y, θ)− σ(y′, θ)|
|θ − θ′|1(1 + |y|1)

≤ 1

2
√
ρmin
|θ − θ′|1 max

i=1,...,d
mi(0)(1 + max

i=1,...,d
|χi|1).

By Example 4.5.9 in connection with (4.5.1) it is known that ‖X̃t(u)‖q ≤ CXNα(q) =
CX for all q ≥ 1. By Markov’s inequality, we conclude that for each φ > 0, we have
P(|X̃t(u)| > CX(1 + φ)) ≤ 1

(1+φ)q
→ 0 (q →∞) which shows that |X̃t(u)| ≤ CX a.s. for

each u ∈ [0, 1]. Thus it holds for all i = 1, ..., d that
√
m(Ỹ0(u)) ≤

√
m(0)+|Ỹ0(u)|χ,1 ≤√

m(0) + CX |χ|1 =: DX which shows that

E
( 1

σ(Ỹ0(u), θ)2
− 1

σ(Ỹ0(u), θ′)2

)2
= E

( 〈θ − θ′,m(Ỹ0(u))〉
〈θ,m(Ỹ0(u))〉 · 〈θ′,m(Ỹ0(u))〉

)2

≥ 1

Θ2
maxD

4
X

|θ − θ′|E[m(Ỹ0(u))m(Ỹ0(u))′].

In practise, CX may be obtained by solving the equation CX =
√
〈m(CX), θ〉Cε. Note

that |〈m(y), θ〉| ≤ 2
∑d

i=1 θi(
√
mi(y)−

√
mi(0))+2

∑d
i=1 θimi(0) ≤ 2

(∑d
i=1

√
θi|y|χi,1

)2
+

2|m(0)|1Θmax, which shows that |〈m(Ỹ0(u)), θ〉| ≤ 2(CXρmaxC
−1
ε )2 + 2|m(0)|1Θmax.

Since m1(Ỹ0(u)), ...,md(Ỹ0(u)) are linearly independent, we can now conclude that
λmin(E[m(Ỹ0(u))m(Ỹ0(u))′]) > 0 for all u ∈ [0, 1]. Continuity properties of m and u 7→
‖X̃0(u)‖2 (see Assumption 4.2.3) show that infu∈[0,1] λmin(E[m(Ỹ0(u))m(Ỹ0(u))′]) > 0.
We have

E
[∇σ(Ỹ0(u), θ)∇σ(Ỹ0(u), θ)′

σ(Ỹ0(u), θ)2

]
=

1

4
E
[m(Ỹ0(u))m(Ỹ0(u))′

〈θ,m(Ỹ0(u))〉2
]

� 1

4Θ2
maxD

4
X

E[m(Ỹ0(u))m(Ỹ0(u))′].

which is already known to have positive eigenvalues which are uniformly bounded away
from 0. Finally, note that (omitting the arguments (x, y, θ) and y of `,m, respectively):

` =
x2

2〈θ,m〉
+

1

2
log〈θ,m〉, ∇` = −x

2

2
· m

〈θ,m〉2
+

1

2

m

〈θ,m〉
, ∇2` = x2· mm

′

〈θ,m〉3
−1

2

mm′

〈θ,m〉2
.

Since |mi(y)|
〈θ,m(y)〉 ≤

1
ρmin

for all i = 1, ..., d and gI(y, θ) =
Eε40−1

4
mm′

〈θ,m〉2 , gV (y, θ) = 1
2
mm′

〈θ,m〉2 it is
easily seen that Assumption 4.2.2(v) is fulfilled with M = 3.

In the following we discuss a model introduced in Dahlhaus and Polonik (2009). We
provide conditions under which the theorems of this chapter are applicable.
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Lemma 4.5.10 (Linear time series models). Suppose that Assumption 4.2.2(i) is ful-
filled and there exists a superset Θ̃ ⊃ Θ which is convex. Assume that

Xt,n =
∞∑
k=0

at,n(k)εt−k (4.5.14)

with some coefficients at,n(k) and aθ(k) satisfying

sup
t=1,...,n

|at,n(k)− aθ0(t/n)(k)| ≤ CB(k)n−β
′
. (4.5.15)

with some absolutely summable sequence CB(k). For θ ∈ Θ̃, λ ∈ [−π, π], define
Aθ(λ) :=

∑∞
k=0 aθ(k)eiλk, the spectral density fθ(λ) := 1

2π
|Aθ(λ)|2 and real numbers

γθ(k) := 1
2π

∫ π
−π Aθ(λ)−1e−iλk dλ. Assume that

(a) Eε0 = 0, the Lebesgue density f|ε0| of |ε0| fulfills f|ε0|(x) ≤ Cf exp(−x1/α) for
some α,Cf > 0. If ∇γθ(0) 6= 0, assume that Eε2

0 = 1.

(b) |Aθ(λ)| ≥ δA > 0 uniformly in θ ∈ Θ̃, λ. Aθ(λ) is three times continuously
differentiable in θ ∈ Θ̃. There exist βA > 2, LA > 0 such that component-wise
∇iAθ(·) ∈ Σ(βA, LA) (i = 0, 1, 2, 3) uniformly in θ ∈ Θ̃.

(c) There exist a constant CL,A > 0 such that for θ, θ′ ∈ Θ,
∫ π
−π

∣∣Aθ′ (λ)−1

γθ′ (0)
− Aθ(λ)−1

γθ(0)

∣∣2 ·
fθ(λ) dλ+ (γθ′(0)2 − γθ(0)2)2 ≥ 1

CL,A
|θ − θ′|22.

(d) infθ∈Θ λmin(∇γθ(0)∇γθ(0)′) > 0 and

inf
θ∈Θ

λmin(γθ(0)2

∫ π

−π
∇
(Aθ(λ)−1

γθ(0)

)
∇
(Aθ(λ)−1

γθ(0)

)′ dλ) > 0.

Then Assumptions 4.2.3 and 4.2.2 are fulfilled for the Gaussian likelihood (4.1.7). If
additionally,

(e) Aθ(λ) is l + 1-times continuously differentiable in θ ∈ Θ̃ and fulfills component-
wise ∇iAθ(·) ∈ Σ(βA, LA) (i = 0, ..., l + 1),

then Assumption 4.2.4 is fulfilled.

Proof of Lemma 4.5.10: Condition (a) implies that ‖ε0‖q ≤ CεNα(q) (see the proof
of Example 4.5.9). The stationary process X̃t(u) satisfies (4.1.3) with Gε(y, u, θ) =

1
γθ(0)

(
ε−

∑∞
k=1 γθ(k)yk

)
. By (4.5.15) we have for all q ≥ 1:

‖Xt,n − X̃t(t/n)‖q ≤
∞∑
k=0

|at,n(k)− aθ0(t/n)(k)|‖εt−k‖q ≤ Cε

∞∑
k=0

CB(k) ·Nα(q).
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It holds that aθ(k) = 1
2π

∫ π
−π Aθ(λ)e−iλk dλ. By condition (b) and Katznelson (2004),

chapter I, section 4, we have thatR(k) := supθ |∇aθ(k)|2 = supθ
1

2π

∣∣ ∫ π
−π∇Aθ(λ)e−iλk dλ

∣∣
2

is absolutely summable in k and thus with the fundamental theorem of analysis:

‖X̃t(u)− X̃t(v)‖q

≤ 1

2π

∞∑
k=0

∣∣∣ ∫ 1

0

〈 ∫ π

−π
∇Aθ0(v)+s(θ0(u)−θ0(v))(λ)e−iλk dλ, θ0(u)− θ0(v)

〉
ds
∣∣∣ · ‖εt−k‖q

≤
∞∑
k=0

R(k) · |θ0(u)− θ0(v)|2 · CεNα(q). (4.5.16)

Furthermore we obtain that δX̃(u)
q (k) = |aθ0(u)(k)| · ‖ε0− ε∗0‖q ≤ δ(k)Nα(q) with δ(k) :=

2 supθ |aθ(k)| · Cε.
It was shown in ?, Proposition 2.2 that (4.1.7) with the standard Gaussian density takes
the form `(z, θ) = 1

2
H(z, θ)2 − 1

2
log(2πγθ(0)2) with H(z, θ) =

∑∞
k=0 γθ(k)zk. Since it

holds that X̃t(u) = 1
γθ(0)
·
(
εt −

∑∞
k=1 γθ(k)X̃t−k(u)

)
, we have

∇`(Ỹt(u), θ0(u))

= εt∇H(Ỹt(u), θ0(u))− ∇γθ(0)

γθ(0)

= εt ·
∞∑
k=1

{
∇γθ0(u)(k)−

∇γθ0(u)(0)

γθ0(u)(0)
· γθ0(u)(k)

}
X̃t−k(u) +

∇γθ0(u)(0)

γθ0(u)(0)
·
(
ε2
t − 1

)
,

which shows that ∇`(Ỹt(u), θ0(u)) is a martingale difference sequence since Eεt = 0 and
Eε2

t = 1 or ∇γθ(0) = 0, thus Assumption 4.2.2(iii) holds.
In the situation of Example 4.5.9, we have µ(y, θ) = − 1

γθ(0)

∑∞
k=1 γθ(k)yk and σ(y, θ) =

1
γθ(0)

, thus (omitting the argument Ỹt−1(u)):

E
[(µ(θ)− µ(θ0(u))

σ(θ)

)2]
= E

( ∞∑
k=0

(γθ(k)

γθ(0)
−
γθ0(u)(k)

γθ0(u)(0)

)
X̃t−k(u)

)2

=

∫ π

−π

∣∣∣Aθ(λ)−1

γθ(0)
−
Aθ0(u)(λ)−1

γθ0(u)(λ)

∣∣∣2 · fθ0(u)(λ) dλ,

and, using the fact that ∂εGε(y, θ) = 1
γθ(0)

≥ δG > 0, we have based on the results from
Example 4.5.9:

E
[ (σ2(θ0(u))− σ2(θ))2

(σ2(θ0(u))− σ2(θ))2 + σ4(θ)

]
≥ 1

8δ2
G

(
γθ0(u)(0)2 − γθ(0)2

)2
.

This shows that Assumption 4.2.2(ii) is fulfilled under condition (c). Based on results
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of Example 4.5.9, we have with dθ(λ) := Aθ(λ)−1

γθ(0)
:

E[σ(Ỹ0(u), θ)−2 · ∇µ(Ỹ0(u), θ)∇µ(Ỹ0(u), θ)′] = γθ(0)2

∫ π

−π
∇dθ(λ)∇dθ(−λ)′fθ0(u)(λ) dλ,

E[σ(Ỹ0(u), θ)−2 · ∇σ(Ỹ0(u), θ)∇σ(Ỹ0(u), θ)′] = γθ(0)−2∇γθ(0)∇γθ(0)′.

Together with the continuity of the occuring quantities and fθ0(u)(λ) ≥ δ2
A

2π
, γθ(0)−2 ≥

δ2
G, condition (d) shows that Assumption 4.2.2(iv) holds. Lastly, note that Assumption
4.2.2(v) is fulfilled withM = 2, χk := maxi=0,1,2 supθ∈Θ |∇iγθ(k)|. Results of Katznelson
(2004), chapter I, section 4 imply that there exist C, η > 0 such that for i = 0, 1, 2 and
all k ≥ 0 it holds that δ(k), supθ∈Θ |∇iγθ(k)| ≤ C

k2+η . This shows ρ(t) ≤
∑∞

j=t+1 χj ≤
C

t1+η/2

∑∞
j=1

1
j1+η/2 which is absolutely summable in t. Finally, we have |j| · |t− j+1| ≥ t

2

for j = 1, ..., t which leads to ξ(t) :=
∑t

j=1 χjδ(t − j + 1) ≤ C221+η/2

t1+η/2

∑∞
j=1

1
j1+η/2 which

is absolutely summable in t.
Under condition (e) we have that θ 7→ aθ(k) is l+1-times differentiable and thus for k =
1, ..., l: ∂kuX̃t(u) =

∑∞
k=0 ∂

k
uaθ0(u)(k)εt−k. This leads to ‖∂kuX̃t(u)‖2M ≤

∑∞
k=0 |∂kuaθ0(u)(k)|·

‖ε0‖2M which is finite since |∇kaθ(k)| (k = 1, ..., l) is (component-wise) absolutely
summable by condition (e). Furthermore, one can prove similar to (4.5.16) that (4.2.5)
is fulfilled. Lastly, note that Assumption 4.2.4 is fulfilled with ψ = χ.

Proof of Example 4.2.10: Denote by w1, ..., wr the zeros of pθ(w). Since |w−1
i | ≤ 1

1+ρ

uniformly for all θ ∈ Θ, it is easy to see that pθ(w) =
∏r

i=1(1 − w−1
i w) implies that

there exists Ca > 0 such that for all θ ∈ Θ, |ai| ≤ Ca. Ca can be chosen large enough
such that |bi| ≤ Ca holds, too. We conclude that Θ ⊂ [−Ca, Ca]r+s × [σmin, σmax] is
bounded. Since pθ(w), qθ(w) are continuous in θ,w, there exists ρ3 > 0 such that for
|w| ≤ 1 + ρ,

pθ(w) 6= 0, qθ(w) 6= 0 ⇔ |pθ(w)| ≥ ρ3, |qθ(w)| ≥ ρ3.

This shows that Θ is closed and thus compact. Proposition 2.4 in Dahlhaus and
Polonik (2009) shows that there exists a solution Xt,n of the form (4.1.5) with at,n(j) =(∏j−1

l=0 A
(
t−l
n

))
11
· σ
(
t−j
n

)
, where A(u) :=

(
(−ai(u))i=1,...,r−1 −ar(u)

Idr−1 0

)
and |at,n(j)| ≤ C(ρ′)j

with some constants C > 0, 1 > ρ′ > 0. We have

Aθ(λ) = σ·qθ(e
iλ)

pθ(eiλ)
, γθ(0) =

1

2πσ

∫ π

−π

pθ(e
iλ)

qθ(eiλ)
dλ =

1

2πiσ

∫
{eiλ:λ∈[−π,π]}

pθ(z)

qθ(z)

1

z
dz = σ−1,

by the residue theorem. Therefore it is obvious that Aθ(λ) is infinitely differentiable
on (θ, λ) ∈ Θ × [−π, π] with bounded derivatives. By definition of Θ we have that
pθ(e

iλ), qθ(e
iλ) 6= 0 for all θ, λ which by continuity implies that δmax ≥ |pθ(eiλ)|, |qθ(eiλ)| ≥

δmin with some δmax > δmin > 0 uniformly in θ, λ. We conclude that infθ,λ |Aθ(λ)| ≥
σmin

δmin
δmax

=: δA. Note that here,

(γθ′(0)2 − γθ(0)2)2 = ((σ′)−2 − σ−2)2 ≥ 4

σ6
max

· (σ′ − σ)2,
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and ∫ π

−π

∣∣Aθ′(λ)−1

γθ′(0)
− Aθ(λ)−1

γθ(0)

∣∣2 · fθ(λ) dλ =

∫ π

−π

∣∣pθ(eiλ)
qθ(eiλ)

− pθ′(e
iλ)

qθ′(eiλ)

∣∣2 · fθ(λ) dλ

≥ δ2
A

2πδ2
max

∫ π

−π

∣∣pθ(eiλ)qθ′(eiλ)− pθ′(eiλ)qθ(eiλ)∣∣2 dλ. (4.5.17)

We have (defining aj := a′j := 0 for j 6∈ {0, ..., r}, bj := b′j := 0 for j 6∈ {0, ..., s}):

pθ(e
iλ)qθ′(e

iλ)− pθ′(eiλ)qθ(eiλ) =
∑
j,k≥0

(ajb
′
k − a′jbk)eiλ(j+k) =

∑
d≥0

f̃(d)eiλd,

where f̃(d) :=
∑

j≥0(ajb
′
d−j − a′jbd−j) =

∑
k≥0 ad−k(b

′
k − bk) +

∑
j≥0 bd−j(aj − a′j). This

shows that (4.5.17) is lower bounded by

δ2
A

δ2
max

∑
d≥0

f̃(d)2 =
δ2
A

δ2
max

(
a− a′
b′ − b

)′
P (θ)

(
a− a′
b′ − b

)
,

where a := (a1, ..., ar)
′, b := (b1, ..., bs)

′ (a′, b′ are similarly defined), and P (θ) :=(
A(pθ, pθ) A(pθ, qθ)
A(qθ, pθ) A(qθ, qθ)

)
, where (A(ψ1, ψ2))jk := 1

2π

∫ π
−π ψ1(eiλ)ψ2(eiλ)eiλ(j−k) dλ. Note

that for some vector x̃ = (u, v) ∈ Rr+s, we have x̃′P (θ)x̃ = 1
2π

∫ π
−π

∣∣pθ(eiλ)∑r
j=1 uje

iλj +

qθ(e
iλ)
∑s

k=1 vke
iλk
∣∣2 dλ ≥ 0 with equality if and only if

pθ(e
iλ)

r∑
j=1

uje
iλj = qθ(e

iλ)
s∑

k=1

(−vk)eiλk.

Since pθ, qθ have no common zeros for θ ∈ Θ, this can not be achieved. Thus, P (θ)
is positive definite for all θ ∈ Θ and thus has only positive eigenvalues. Since P (θ) is
continuous in θ, the minimal eigenvalue λmin(P (θ)) = inf |x|2=1 x

′P (θ)x is continuous
in θ, too. By compactness of Θ, we conclude that infθ∈Θ λmin(P (θ)) ≥ λ0 with some
λ0 > 0, leading to the lower bound δ2

A

δ2
max

λ0

(
|a′ − a|22 + |b′ − b|22

)
for (4.5.17).

To show the conditions of Assumption 4.2.6, define B(θ) :=
(

(−bi)i=1,...,s−1 −bs
Ids−1 0

)
for all

θ = (a1, ..., ar, b1, ..., bs, σ) ∈ Θ. It is easily seen that

H(x, y, (θ(k))k≥0) =
1

σ(0)
·
(
x+

∞∑
k=1

yk ·
k∑

j=(k−p)∨0

( j−1∏
l=0

B(θ(l))
)

11
a

(0)
k−j

)
,

and ` := 1
2
H2 + log σ(0), where the empty product is defined as 1. We now use a similar

argumentation as in the proof of Proposition 2.4 in Dahlhaus and Polonik (2009). Since
det(λ · Ids − B(θ)) = λp

∑s
j=0 bjλ

−j), it follows that λ|·|max(B(θ)) ≤ 1
1+ρ

for all θ ∈ Θ,
where λ|·|max(B) := max{|λ| : λ eigenvalue of B}. By Householder (1964), page 46, there
exists a positive definite matrix M(θ) with B M(θ) ≤ λ

|·|
max(B) + ε for every ε > 0 and
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θ ∈ Θ. Here, A M := sup{ Ax̃ M : x̃ M = 1} and x̃ M := |M−1x̃|1. Since B = B(θ)
is continuous in θ ∈ Θ, we can find a finite partition Θ = Θ1 ∪ ... ∪ Θm̃ and matrices
Mk := M(θk) with θi ∈ Θi such that B(θ) Mi

≤ ρ̃ := (1 + ρ
2

)−1
< 1. There exists a

constant c0 such that |B|1 ≤ c0 B Mk
for all k since Mk is positive definite. It is now

easy to see that for each j > 0 we have( j−1∏
l=0

B(θ(l))
)

11
≤

∣∣∣ j−1∏
l=0

B(θ(l))
∣∣∣
1
≤

m̃∏
k=1

∣∣∣ ∏
θ(l)∈Θk,0≤l≤j−1

B(θ(l))
∣∣∣
1

≤ cm̃0

m̃∏
k=1

∏
θ(l)∈Θk,0≤l≤j−1

B(θ(l))
Mk

≤ cm̃0

m̃∏
k=1

ρ̃#{0≤l≤j−1:θ(l)∈Θk} ≤ cm̃0 · ρ̃j.

Let ∇θ(m) denote the derivative with respect to θ(m). Obviously, ` is differentiable with

∇θ(m)` = H∇θ(m)H − 1{m=0} · (0, ..., 0,
1

σ(0)
)′. (4.5.18)

Furthermore, ∂σ(m)H = − 1
σ(0)H1{m=0}, ∂a(m)

i
H = 1{m=0}

1
σ(0)

∑∞
k=i yk·

(∏k−i−1
l=0 B(θ(l))

)
11

and

∂
b
(m)
i
H =

1

σ(0)

∞∑
k=m+1

yk ·
k∑

j=(k−p)∨(m+1)

((m−1∏
l=0

B(θ(l))
)
· ∂

b
(m)
i
B(θ(m))

×
( j−1∏
l=m+1

B(θ(l))
))

11
a

(0)
k−j,

where ∂(m)
i B(θ(m)) =

(
(−1{ν=i})ν=1,...,s

0

)
. It is easy to see that ∇θ(0)H(z, θ) with z =

(x, y) lies in L(1, (ρ̃j)j≥1, Cz, Cθ) with some constant vectors Cz, Cθ. For m > 0, we
have ∣∣∂

b
(m)
i
H(z, (θk)k≥0)− ∂

b
(m)
i
H(z′, (θk)k≥0)

∣∣
≤ 1

σ(0)

∞∑
k=m+1

|yk − y′k| ·
k∑

j=(k−p)∨(m+1)

c2m̃
0 ρ̃j−1|a(0)

k−j|

≤ Cac
2m̃
0 p

σmin

∞∑
k=m+1

|yk − y′k| · ρ̃k−p−1.

Similarly, for m2 > 0,∣∣∂
b
(m)
i
H(z, (θk)k≥0)− ∂

b
(m)
i
H(z, (θk + (θ̃k − θk)1{k=m2})k≥0)

∣∣
≤ Cac

2m̃
0 p

σmin

s∑
ν=1

|b(m2)
ν − b̃(m2)

ν | ·
∞∑

k=m+1

|yk|ρ̃k−p−2.

More calculations of the same kind together with (4.5.18) imply that Assumption 4.2.6
is fulfilled.
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4.5.5 Proof of the lower bound

Let us define a class of functions L which is similar to L but does not ask for Lipschitz
continuity in θ.

Definition 4.5.11 (The class L(M,χ,Cz)). We say that a function g : RN → Rp is in
the class L(M,χ,Cz) if g̃ : RN ×Θ→ Rp, g̃(z, θ) := g(z) is in L(M,χ,Cz, 1).

Proof of Theorem 4.1.3: Fix some u ∈ (0, 1). Note that

inf
θ̂∈σ(X1,n,...,Xn,n)

sup
θ0∈Σ(β,L)

Eθ0|θ̂(u)− θ0(u)|2 ≥ inf
θ̂∈σ(Xt,n:t∈Z,t≤n)

sup
θ0∈Σ(β,L)

Eθ0|θ̂(u)− θ0(u)|2,

because the second infimum is taken over a larger set of estimators. We now use the
general reduction scheme from Tsybakov (2009), section 2.2. Let PỸ0(0)|θ0 : RN → R
denote the stationary distribution of Ỹ0(0) which is only dependent on θ0(0). Note that
the log density of Xt,n given the infinite past Yt−1,n is given by

log fXt,n|Yt−1,n,θ0(Xt,n, Yt−1,n) = −`
(
Yt,n, θ0

(t− j
n
∨ 0
)
j≥0

)
.

Let PYn,n|θ0 denote the distribution of Yn,n. Then we have PYn,n|θ0 � PỸ0(0)|θ0 with
density

dPYn,n|θ0
dPỸ0(0)|θ0

(Yn,n) =
n∏
t=1

exp
{
− `
(
Yt,n, θ0

(t− j
n
∨ 0
)
j≥0

)}
.

Define b = bn = γn−1/(2β+1) where γ is specified below. Choose n large enough such that
u ∈ [ b

2
, 1− b

2
]. Define θ1 : [0, 1]→ Θ, θ1(v) = θ0(v)+1LbβK

(
v−u
b

)
, where 1 = (1, ..., 1)′ ∈

Rd and K : R → R is infinitely often continuously differentiable (i.e. in C∞(R)) with
compact support [−1

2
, 1

2
], for instance K(v) = a exp(−1/(1−4v2))·1[− 1

2
, 1
2

](v) with a > 0
small enough. The function θ1 is well-defined for n large enough since K is uniformly
bounded by |K|∞.
Define ψn := n

−β
2β+1 . Note that

|θ0(u)− θ1(u)|2 =
√
dLbβ ·K(0) = 2Aψn

if we define A :=
√
dL

2
γβK(0). By construction, we have θ1(0) = θ0(0) + LbβK

(−u
b

)
=

θ0(0). This shows PỸ0(0)|θ0 = PỸ0(0)|θ1 . The Kullback-Leibler divergence between the
models with true curves θ0 or θ1, respectively, reads (let ek := (δjk)j≥0 where δjk = 1 if
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and only if j = k)

K(PYn,n|θ0 ,PYn,n|θ1)

= Eθ0
[

log
dPYn,n|θ0
dPỸ0(0)|θ0

(Yn,n)− log
dPYn,n|θ1
dPỸ0(0)|θ1

(Yn,n)
]

=
n∑
t=1

Eθ0
[
`
(
Yt,n, θ1

(t− j
n
∨ 0
)
j≥0

)
− `
(
Yt,n, θ0

(t− j
n
∨ 0
)
j≥0

)]
=

n∑
t=1

t−1∑
k=0

{
Eθ0
[〈
∇θk`

(
Yt,n, θ0

(t− j
n
∨ 0
)
j≥0

)
, θ1

(t− k
n

)
− θ0

(t− k
n

)〉]
+Eθ0

[ ∫ 1

0

〈
∇θk`

(
Yt,n, θ0

(t− j
n
∨ 0
)
j≥0

+
k−1∑
j=0

{
θ1

(t− j
n

)
− θ0

(t− j
n

)}
+s · ek

{
θ1

(t− k
n

)
− θ0

(t− k
n

)})
−∇θk`

(
Yt,n, θ0

(t− j
n
∨ 0
)
j≥0

)
,

θ1

(t− k
n

)
− θ0

(t− k
n

)〉]}
(4.5.19)

For the first expectation in (4.5.19), note that component-wise

∣∣∇θk`(Yt,n, θ0

(t− j
n
∨ 0
)
j≥0

)
−∇θk`(Yt,n, θ0

( t
n

)
j≥0

)∣∣
≤ C∇`,1(k)

∞∑
j=0

C∇`,2(j) ·
∣∣θ0

(t− j
n
∨ 0
)
− θ0

( t
n

)∣∣
2
·
(
1 + |Yt,n|Mχ,1

)
≤ C∇`,1(k)

(
1 + |Yt,n|Mχ,1

)
· |Lθ0|2 · n−β

′
∞∑
j=0

jC∇`,2(j).

Note furthermore that

‖|Yt,n|χ,1‖M ≤
∞∑
j=1

χj‖Xt−j+1,n‖M

≤
∞∑
j=1

χj‖Xt−j+1,n − X̃t−j+1

(t− j + 1

n

)
‖M +

∞∑
j=1

χj‖X̃t−j+1

(t− j + 1

n

)
‖M

≤
∞∑
j=1

χj ·
(
CB,1 + CXNα(M)

)
=: DX .

This shows that the first term in (4.5.19) can be replaced by

n∑
t=1

t−1∑
k=0

Eθ0
[〈
∇θk`

(
Yt,n, θ0

( t
n

)
j≥0

)
, θ1

(t− k
n

)
− θ0

(t− k
n

)〉]
(4.5.20)
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with a replacement error bounded by

n−β
′
bβnb · L|Lθ0|2 ·

∞∑
j=0

jC∇`,2(j) ·
∞∑
k=0

C∇`,1(k) · |K|∞
(
1 +DM

X

)
= o(1),

since n−β′bβnb = o(1). Note that

∣∣∇θk`(Yt,n, θ0

( t
n

)
j≥0

)∣∣
1
≤ d · C∇`,1(k)

(
1 + |Yt,n − y0|Mχ,1

)
+ C∇`,1(k).

Therefore we can replace (4.5.20) by

n∑
t=1

Eθ0
[ ∞∑
k=0

〈
∇θk`

(
Yt,n, θ0

( t
n

)
j≥0

)
, θ1

( t
n

)
− θ0

( t
n

)〉]
=

n∑
t=1

Eθ0
[〈
∇`
(
Yt,n, θ0

( t
n

))
, θ1

( t
n

)
− θ0

( t
n

)〉]
. (4.5.21)

with replacement error bounded by

Lbβ ·
n∑
t=1

∞∑
k=0

∣∣∣K((t− k)/n− u
b

)
−K

(t/n− u
b

)∣∣∣ · C∇`,1(k)

×
(

1 + d
(
1 + 2M(DM

X + |y0|Mχ,1)
))

≤ Lbβ ·BK

∞∑
k=0

k · C∇`,1(k) ·
(

1 + d
(
1 + 2M(DM

X + |y0|Mχ,1)
))

= O(bβ),

where BK is the variation of K. Finally, since ∇`
(
Ỹt
(
t
n

)
, θ0

(
t
n

))
is a martingale differ-

ence sequence, we can replace (4.5.21) by

n∑
t=1

Eθ0
[〈
∇`
(
Ỹt
( t
n

)
, θ0

( t
n

))
, θ1

( t
n

)
− θ0

( t
n

)〉]
= 0

with replacement error

Lbβ
n∑
t=1

∥∥∇`(Yt,n, θ0

( t
n

))
−∇`

(
Ỹt
( t
n

)
, θ0

( t
n

))∥∥
1
·
∣∣∣K(t/n− u

b

)∣∣∣ ≤ Lbβ|K|∞ · nb · Cn−β
′

= o(1).

with some constant C > 0 (the proof is similar to Lemma 4.5.1). The second expecta-
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tion in (4.5.19) is bounded by

d ·
n∑
t=1

t−1∑
k=0

C∇`,1(k) ·
(
1 + ‖|Yt,n|χ,1‖MM

)
×
∞∑
j=0

C∇`,2(j) ·
∣∣θ1

(t− j
n

)
− θ0

(t− j
n

)∣∣
2
·
∣∣θ1

(t− k
n

)
− θ0

(t− k
n

)∣∣
2

≤ dL2b2β ·
(
1 +DM

X

) n∑
t=1

t−1∑
k=0

C∇`,1(k)
∣∣K((t− k)/n− u

b

)∣∣
×
∞∑
j=0

C∇`,2(j) ·
∣∣K((t− j)/n− u

b

)∣∣
≤ dL2nb2β+1 ·

(
1 +DM

X

)
|K|2∞ ·

∞∑
k=0

C∇`,1(k) ·
∞∑
j=0

C∇`,2(j).

So for arbitrarily chosen α > 0, we can achieve K(PYn,n|θ0 ,PYn,n|θ1) ≤ α if we choose

γ :=
( α/2

dL2(1+DMX )|K|2∞
∑∞
k=0 C∇`,1(k)

∑∞
j=0 C∇`,2(j)

) 1
2β+1 and choose n large enough.

4.5.6 Maximum likelihood basic inequality

Since an explicit representation of the maximum likelihood estimator θ̂b(u) is usually
not available and the well-known representation θ̂b(u)− θ0(u) = −∇2Ln,h(u, θ̄n(u))−1 ·
∇Ln,b(u, θ0(u)) is only available if θ̂b(u) is a point in the interior of the parameter
space Θ, we first have to develop a ’basic inequality’ for the difference θ̂b(u) − θ0(u)
which is only based on the behavior of the likelihood Ln,b(u, θ) itself. To obtain rates,
Assumption 4.2.2 is crucial.

Lemma 4.5.12 (Basic inequality and maximum likelihood rate). Suppose that Assump-
tion 4.2.2, 4.2.5 and 4.2.3 hold. Fix some γ > 0. Assume that b ≥ b∗(M,χ,C`,

γ
8CL(u)

),
where b∗ is defined in Lemma 4.5.5. Then there exists a set Ân,b and a constant
Cmle = Cmle(γ) > 0 such that P(Ân,b) ≤ Cmle ·

(
n−2β′ + n−1

)
and

{
|θ̂b(u)− θ0(u)|22 > γ

}
⊂ Ân,b ∪

{
sup
θ∈Θ
|Bn,b(`(·, θ), u)| > γ

8CL(u)

}
(4.5.22)

Proof of Lemma 4.5.12: We follow the approach of Van de Geer (2000), page 248, be-
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fore Lemma 12.1. Because θ̂b(u) is a minimizer of θ 7→ Ln,b(u, θ), we have

0 ≥ Ln,b(u, θ̂b(u))− Ln,b(u, θ0(u))

=
{
Sn,b(`(·, θ̂b(u)), u)− Sn,b(`(·, θ0(u)), u)

}
+
{
Cn,b(`(·, θ̂b(u)), u)− Cn,b(`(·, θ0(u)), u)

}
+
{
En,b(`(·, θ̂b(u)), u)− En,b(`(·, θ0(u)), u)

}
+
{
Bn,b(`(·, θ̂b(u)), u)−Bn,b(`(·, θ0(u)), u)

}
+
{
L(u, θ̂b(u))− L(u, θ0(u))

}
.

Note that by Assumption 4.2.5, we have Fn,b(u) ≥ c0
|K|∞ (nb)1/2. By Assumption 4.2.2,

we have L(u, θ̂b(u))− L(u, θ0(u)) ≥ 1
CL(u)

|θ̂b(u)− θ0(u)|22. This shows (4.5.22) with

Ân,b =
{

sup
θ∈Θ
|Sn,b(`(·, θ), u)| > γ

8CL(u)

}
∪
{

sup
θ∈Θ
|Cn,b(`(·, θ), u)| > γ

8CL(u)

}
∪
{

sup
θ∈Θ
|En,b(`(·, θ), u)| > γ

8CL(u)

}
.

An application of Markov’s inequality to the first two sets and Lemma 4.5.1, 4.5.2 and
4.5.5 gives the result.

4.5.7 Proof of the upper bound

Proof of Theorem 4.1.4: Let γI(Ξ), γV (Ξ), γθ(Ξ) be the variables from Lemma 4.5.13.
Define γmle(Ξ, u) := δΘ

2
∧ λmin(V (u))

4|C∇2`,θ|2(1+|χ|M1 CMX Nα(M)M )
∧ γθ. Define Ω1,b(u) := {|θ̂b(u) −

θ0(u)|2 ≤ γmle(Ξ, u)}, Ω2,b(u) := {supθ∈Θ |∇2Ln,b(u, θ) −∇2L(u, θ)|2 ≤ λmin(V (u))
4

} and
recall the definition of Ωpen,Ξ,b(u) from Lemma 4.5.13. DefineAΞ(b) :=

⋂
b′∈Bn,b′≤b

(
Ω1,b′∩

Ω2,b′ ∩ Ωpen,Ξ,b′
)
. We now show that in both cases Ξ = Id and Ξ = V (u) an inequality

of the form

|θ̂b̂Ξ − θ0|22 ≤ C1(Ξ) max
b′∈Bn,b′≤b

{
|Ξ1/2V −1∇Ln,b′(θ0)|22 − 32Pn(b′)

}
+

+C2(Ξ)CP max
b′∈Bn,b′≥b

P̂n(b′) + C3(Ξ)1A(b)c (4.5.23)

with some (numerical) constants Ci(Ξ), i = 1, 2, 3 holds for all b ∈ Bn. In the following
we assume that AΞ(b) holds and that b′ ∈ Bn, b

′ ≤ b. To keep the notation simple, the
arguments Ξ and u ∈ [0, 1] are omitted in the following case distinction.
Case Ξ = Id: Note that the penalization term Pn(b) is not monotone. For b ∈ Bn it
holds that

|θ̂b̂ − θ0|22 ≤ 3
(
|θ̂b̂ − θ̂b∨b̂|

2
2 + |θ̂b∨b̂ − θ̂b|

2
2 + |θ̂b − θ0|22

)
.

Now we have

|θ̂b̂ − θ̂b∨b̂|
2
2 ≤

{
|θ̂b̂ − θ̂b∨b̂|

2
2 − p̂enn(b̂)

}
+

+ p̂enn(b̂)

≤ max
b′∈Bn

{
|θ̂b′ − θ̂b∨b′|22 − p̂enn(b′)

}
+

+ p̂enn(b̂) ≤ Y (b) + p̂enn(b̂).
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Using similar arguments we can prove that |θ̂b∨b̂ − θ̂b|22 ≤ Y (b̂) + p̂enn(b), thus (note
that b̂ minimizes b 7→ Y (b) + p̂enn(b)):

|θ̂b̂ − θ0|22 ≤ 6
(
Y (b) + p̂enn(b)

)
+ 3|θ̂b − θ0|22 (4.5.24)

Now, we upper bound Y (b). We have:

Y (b) ≤ max
b′∈Bn,b′≤b

{
|θ̂b − θ0|22 − max

b′′∈Bn,b′′≥b′
CP P̂n(b′′)

}
+

+ max
b′∈Bn,b′≤b

{
|θ̂b′ − θ0|22 − CP P̂n(b′)

}
+

≤
{
|θ̂b − θ0|22 − CP P̂n(b)

}
+

+ max
b′∈Bn,b′≤b

{
|θ̂b′ − θ0|22 − CP P̂n(b′)

}
+

≤ 2 max
b′∈Bn,b′≤b

{
|θ̂b′ − θ0|22 − CP P̂n(b′)

}
+
.

In the same way, we have

|θ̂b − θ0|22 ≤
{
|θ̂b − θ0|22 − CP P̂n(b)

}
+

+ CP P̂n(b).

We finally conclude that for all b ∈ Bn:

|θ̂b̂ − θ0|22 ≤ 15 ·
(

max
b′∈Bn,b′≤b

{
|θ̂b′ − θ0|22 − CP P̂n(b′)

}
+

+ max
b′∈Bn,b′≥b

CP P̂n(b′)
)
. (4.5.25)

We now discuss the first summand in (4.5.25). By Lemma 4.5.15, we have

|∇2L(θ)−∇2L(θ′)|2 ≤ |C∇2`,θ|2 · |θ − θ′|2 ·
(
1 + |χ|M1 CM

X

)
.

Since A(b′) ⊂ Ω1,b′(u) and thus |θ̂b′(u) − θ0(u)|2 ≤ δΘ
2
, θ̂b′(u) is in a ball around θ0(u)

which is completely contained in Θ. Thus, with some θ̄(u) ∈ Θ with |θ̄(u)− θ0(u)|2 ≤
|θ̂b′(u)− θ0(u)|2:

−∇Ln,b′(u, θ0(u)) = ∇2Ln,b′(u, θ̄(u)) · (θ̂b′(u)− θ0(u)). (4.5.26)

Recall that V (u) = ∇2L(u, θ0(u)). Because A(b′) ⊂ Ω1,b′(u) ∩ Ω2,b′(u) it holds that

|∇2Ln,b′(u, θ̄(u))− V (u)|2
≤ |∇2Ln,b′(u, θ̄(u))−∇2L(u, θ̄(u))|2 + |∇2L(u, θ̄(u))− V (u)|2

≤ λmin(V (u))

2
.

Lemma 4.5.17 implies that ∇2Ln,b′(u, θ̄(u)) is invertible and, by (4.5.26),

|θ̂b′(u)− θ0(u)|2 ≤ 2|V (u)−1∇Ln,b′(u, θ0(u))|2.

Define L̃n,b(u, θ) := 1
Kn,b(u)

∑n
t=1K

( t/n−u
b

)
˜̀
t(u, θ). We conclude that

max
b′∈Bn,b′≤b

{
|θ̂b′ − θ0|22 − CP P̂n(b′)

}
+

≤ max
b′∈Bn,b′≤b

{
4|V −1 · ∇Ln,b′(θ0)|22 −

CP
2
Pn(b′)

}
+
1A(b) + Θ2

max1A(b)c .
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By (4.5.25), we have shown that for all b ∈ Bn:

|θ̂b̂ − θ0|22 ≤ 15 max
b′∈Bn,b′≤b

{
4|V −1 · ∇Ln,b′(θ0)|22 −

CP
2
Pn(b′)

}
+
1A(b)

+15 max
b′∈Bn,b′≥b

CP P̂n(b′) + Θ2
max1A(b)c ,

so (4.5.23) is fulfilled with C1(Ξ) = 60, C2(Ξ) = 15CP (Ξ), where CP (Ξ) = 28.
Case Ξ = V (u): Note that Ṽn,b � 0 for all b ∈ Bn. Similar to (4.5.24) in the proof of
Theorem 4.1.4 and using Ṽn,b ∨ Ṽn,b′ � Ṽn,b, Ṽn,b′ , we obtain for all b ∈ Bn:

|θ̂b̂ − θ0|2Ṽn,b ≤ 6
(
Y (b) + p̂enn(b)

)
+ 3|θ̂b − θ0|2Ṽn,b . (4.5.27)

Step 1: Upper bound Y (b) and |θ̂b − θ0|2Ṽn,b in (4.5.27): Let A(b) be fulfilled. It holds
that

Y (b) ≤ max
b′∈Bn,b′≤b

{
|θ̂b − θ̂b′|2Ṽn,b −

1

2
p̂enn(b′)

}
+

+ max
b′∈Bn,b′≤b

{
|θ̂b − θ̂b′ |2Ṽn,b′ −

1

2
p̂enn(b′)

}
+
.

(4.5.28)
Since A(b) ⊂ Ωpen,Ξ,b′ , it holds that |θ̂b − θ̂b′ |2Ṽn,b ≤

3
2
|θ̂b − θ̂b′ |2V (see also Step 3). We

therefore have

Y (b) ≤ 2 max
b′∈Bn,b′≤b

{3

2
|θ̂b − θ̂b′|2V −

1

2
p̂enn(b′)

}
+

≤ 4 max
b′∈Bn,b′≤b

{3

2
|θ̂b′ − θ0|2V −

CP
2
P̂n(b′)

}
+
.

Together with 3|θ̂b − θ0|2Ṽn,b ≤ 3 ·
{

3
2
|θ̂b − θ0|2V − 1

2
P̂n(b)

}
+

+ 3
2
P̂n(b) and (4.5.27) we

conclude

|θ̂b̂ − θ0|2Ṽn,b ≤ 27 max
b′∈Bn,b′≤b

{3

2
|θ̂b′ − θ0|2V −

CP
2
P̂n(b′)

}
+

+
27

2
sup

b′∈Bn,b′≥b
CP P̂n(b′).

Step 2: Estimation of |θ̂b′ − θ0|2V for some b′ ∈ Bn, b
′ ≤ b: Let A(b) be fulfilled. Since

A(b) ⊂ Ω1,b′ we have θ̂b′−θ0 = −∇2Ln,b′(θ̄)
−1∇Ln,b′(θ0), where θ̄ ∈ Θ is an intermediate

value with |θ̄ − θ0|2 ≤ |θ̂b′ − θ0|2. We conclude

|θ̂b′ − θ0|2V = |V 1/2∇2Ln,b′(θ̄)
−1∇Ln,b′(θ0)|22

≤ |V 1/2∇2Ln,b′(θ̄)
−1/2|2spec · |∇2Ln,b′(θ̄)

−1/2∇Ln,b′(θ0)|22.

Since A(b) ⊂ Ω1,b′ ∩ Ω2,b′ it holds that |∇2Ln,b′(θ̄) − V |2 ≤ λmin(V )
2

. Lemma 4.5.17(ii)
yields |∇2Ln,b′(θ̄)

1/2 − V 1/2|2 ≤ 1√
2

λmin(V 1/2)
2

and thus by Lemma 4.5.17(i), we have
|∇2Ln,b′(θ̄)

−1/2∇Ln,b′(θ0)|2 ≤ (1 + 1√
2
)|V −1/2∇Ln,b′(θ0)|2 and |V 1/2∇2Ln,b′(θ̄)

−1/2|spec ≤
1 + 1√

2
and thus |θ̂b′ − θ0|2V ≤

(
1 + 1√

2

)4 · |V −1/2∇Ln,b′(θ0)|22.
Step 3: Get a bound for |θ̂b̂ − θ0|2V : For each b ∈ Bn, we have

|θ̂b̂ − θ0|2V = |θ̂b̂ − θ0|2V 1A(b) + |θ̂b̂ − θ0|2V 1A(b)c

≤ |θ̂b̂ − θ0|2V−Ṽn,b1A(b) + |θ̂b̂ − θ0|2Ṽn,b1A(b) + |V |specΘ2
max1A(b)c .
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Since A(b) ⊂ Ωpen,Ξ,b, we have V � λmin(V )Id×d and thus |θ̂b̂ − θ0|2V−Ṽn,b ≤ |θ̂b̂ − θ0|22 ·
|V − Ṽn,b|2 ≤ |θ̂b̂ − θ0|22

λmin(V )
2
≤ 1

2
|θ̂b̂ − θ0|2V . With the results of Step 1, Step 2, and

the fact that A(b) ⊂ {|P̂n(b′)− Pn(b′)| ≤ Pn(b′)
2
} this finally leads to

|θ̂b̂ − θ0|2V ≤ 2|θ̂b̂ − θ0|2Ṽn,b1A(b) + 2|V |specΘ2
max1A(b)c

≤ 54 max
b′∈Bn,b′≤b

{3

2

(
1 +

1√
2

)2|V −1/2∇Ln,b′(θ0)|22 −
CP
4
Pn(b′)

}
+

+27 sup
b′∈Bn,b′≥b

CP P̂n(b′) + 2|V |specΘ2
max1A(b)c

for all b ∈ Bn. Thus, (4.5.23) is fulfilled with C1(Ξ) = 54 · 3
2
(1 + 1√

2
)2 and C2(Ξ) =

27CP (Ξ), where CP (Ξ) = 32 · 4 · 3
2
(1 + 1√

2
)2 ≤ 498.

Bounds for (4.5.23): In the following we use a generic constant C in front of terms
which will be shown to be of (negligible) order log(n)(n−1 + n−2β′). For the definitions
of b∗, b

(2)
∗ and b(3)

∗ , see Lemma 4.5.5 and 4.5.14. Assume that

b ≥ b∗(C∇2`,z,
λmin(V )

16
) ∨ b∗(C`,z,

γmle(Ξ)2

8CL
) ∨ b∗(CI,z,

γI(Ξ)

8
) ∨ b∗(CV,z,

γV (Ξ)

8
)

∨ max
j=1,...,d

b(2)
∗ (e′j|Ξ1/2V −1|CI,z|V −1Ξ1/2|ej, (Ξ1/2V −1IV −1Ξ1/2)jj) ∨ b(3)

∗ (Ξ)

=: cb(Ξ) · log(n)1+2αM

n
, (4.5.29)

which gives a definition of cb(Ξ). Define L̃n,b(u, θ) := 1
Kn,b(u)

∑n
t=1 K( t/n−u

b
)˜̀
t(u, θ). It

holds that ∇Ln,b′(θ0) = Sn,b′(∇`(·, θ0)) +Cn,b′(∇`(·, θ0)) + B̃n,b′(∇`(·, θ0)) +∇L̃n,b′(θ0).
Note that Bn has at most log(n)

log(a)
elements. By Lemma 4.5.1, 4.5.2 and 4.5.14, we have

with (w1 + w2)2 ≤ 2(w2
1 + w2

2) and (w1 + w2 + w3)2 ≤ 3(w2
1 + w2

2 + w2
3):

E max
b′∈Bn,b′≤b

{
|Ξ1/2V −1∇Ln,b′(θ0)|22 − 32Pn(b′)

}
+

≤
∑

b′∈Bn,b′≤b

(
2E
{
|Ξ1/2V −1∇L̃n,b′(θ0)|22 − 16Pn(b′)

}
+

+ 6E|Sn,b′(∇`(·, θ0))|22

+6E|Cn,b′(∇`(·, θ0))|22 + 6E|B̃n,b′(∇`(·, θ0))|22
)

≤ C log(n)(n−1 + n−2β′) + 6
∑

b′∈Bn,b′≤b

E|B̃n,b′(∇`(·, θ0))|22.

Furthermore, the results of Lemma 4.5.13 (for Ωpen,Ξ,b), 4.5.12 (for Ω1,b) and 4.5.1, 4.5.2
and 4.5.5 (for Ω2,b) imply that

EC3(Ξ)1A(b)c ≤ C log(n)(n−1 + n−2β′) +Wn,1,Ξ(b)
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with

Wn,1,Ξ(b)

:= C3(Ξ) sup
b′∈Bn,b′≤b

{
1

(
sup
θ∈Θ
|Bn,b′(∇2`(·, θ), u)|2 >

λmin(V )

16

)
+1
(

sup
θ∈Θ
|Bn,b′(`(·, θ), u)| > γmle(Γ)2

8CL

)
+ 1

(
sup
θ∈Θ
|Bn,b′(gV (·, θ), u)|2 >

γV (Γ)

8

)
+1
(

sup
θ∈Θ
|Bn,b′(gI(·, θ), u)|2 >

γI(Γ)

8

)}
.

We now discuss the second term in (4.5.23). First, we have

sup
b′∈Bn,b′≥b

P̂n,Ξ(b′) ≤ 3

2
sup

b′∈Bn,b′≥b
Pn,Ξ(b′) + sup

b′∈Bn,b′≥b
P̂n,Ξ(b′) · 1Ωc

pen,Ξ,b′
. (4.5.30)

It holds that V̂n,b ∨ V0 � V0 and Im � În,b ∧ Im, thus Lemma 4.5.16(i) implies that
V −1

0 − (V̂n,b ∨ V0)−1 is positive semidefinite, thus tr(Ṽ −1
n,b Ĩn,bṼ

−1
n,b ) ≤ tr(V −1

0 ImV
−1

0 ) or
tr(Ĩn,bṼ −1

n,b ) ≤ tr(ImV −1
0 ), respectively. Application of Lemma 4.5.12 and Lemma 4.5.13

to Ωc
pen,Ξ,b′ ⊂ (Ωc

pen,Ξ,b′ ∩ Ω1,b′) ∪ Ωc
1,b′ leads to

E sup
b′∈Bn,b′≥b

P̂n,Ξ(b′) · 1Ωc
pen,Ξ,b′

≤ |K|2∞
c2

0

{
tr(V −1

0 ImV
−1

0 ) ∨ tr(ImV −1
0 )
}
· E sup

b′∈Bn,b′≥b

| log(b′)|
nb′

· 1Ωc
pen,Ξ,b′

≤ C
| log(b)|
nb

∑
b′∈Bn,b′≥b

(
n−1 + n−2β′

)
+

1

C2(Ξ)
Wn,2,Ξ(b),

where

Wn,2,Ξ(b)

:= C2(Ξ) sup
b′∈Bn,b′≥b

| log(b′)|
nb′

·
[
1

(
sup
θ∈Θ
|Bn,b′(gV (·, θ), u)|2 >

γV (Ξ)

8

)
+1
(

sup
θ∈Θ
|Bn,b′(gI(·, θ), u)|2 >

γI(Ξ)

8

)
+ 1

(
sup
θ∈Θ
|Bn,b′(`(·, θ), u)| > γmle(Ξ)2

8CL

)]
.

Recall that Bn has at most log(n)
log(a)

elements. b ∈ Bn implies b ≥ bn = cb
log(n)1+2αM

n
. This

finally gives

E sup
b′∈Bn,b′≥b

P̂n(b′) · 1Ωc
pen,Ξ,b′

≤ C log(n)(n−1 + n−2β′) +
1

C2(Ξ)
Wn,2,Ξ(b).

Now define Wn,Ξ(b) := Wn,1,Ξ(b) + Wn,2,Ξ(b), which gives the desired representation
(4.1.15).
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Discussion of Wn,Ξ(b): It is known from Lemma 4.5.6 that it holds (component-wise)
that supθ∈Θ |Bn,b′(g(·, θ), u)| ≤ CB · (b′)β + CB,Rn

−1 for g ∈ {`,∇2`, gI , gV }. With

sup
b′∈Bn,b′≤b

1

(
sup
θ∈Θ
|Bn,b′(g(·, θ), u)|2 > γ

)
≤ 1

(
bβ >

γ

2CB

)
+

2

γ
CB,Rn

−1,

we can bound Wn,1,Ξ ≤ C
{
1
(
bβ > c1

)
+ n−1

}
with some constant c1 > 0. Using

Markov’s inequality, we obtain

1

(
sup
θ∈Θ
|Bn,b′(g(·, θ), u)|2 > γ

)
≤
( γ

2CB

)− 1
β′ · b′ + 2

γ
CB,Rn

−1.

and thus can show that Wn,2,Ξ(b) ≤ C(supb′∈Bn,b′≥b
| log(b′)|

n
+n−1) ≤ C log(n)n−1 (where

C here is dependent on β if β < 1). The inequality E|B̃n,b′(Ξ
1/2V −1∇`(·, θ0(u)), u)|22 .

(b′)2β + n−1 follows directly from Lemma 4.5.7.

Lemma 4.5.13 (The penalization term approximation). To keep the notation simple,
we will omit the argument u ∈ [0, 1] in the following. Assume that Assumption 4.2.2,
4.2.5, 4.2.3 are fulfilled. Define

Ωpen,Ξ,b(u) :=
{
|P̂n,Ξ(b)− Pn,Ξ(b)| ≤ 1

2
Pn,Ξ(b)

}
∩ {|Ṽn,b − V |2 ≤

λmin(V )

2

}
,

where Pn,Ξ, P̂n,Ξ are from (4.1.10). Then there exists some set Ãn,Ξ,b and constants
γθ(Ξ), γI(Ξ), γV (Ξ), Cpen > 0 (which may differ for MSE / KL) such that for all

b ≥ b∗(CI,z, γI(Ξ)/8) ∨ b∗(CV,z, γV (Ξ)/8).

it holds that P(Ãn,Ξ,b) ≤ Cpen(n−1 + n−2β′) and

Ωpen,Ξ,b(u)c ∩ {|θ̂b − θ0|2 ≤ γθ(Ξ)}

⊂ Ãn,Ξ,b ∪
{

sup
θ∈Θ
|Bn,b(gV (·, θ), u)|2 >

γV (Ξ)

8

}
∪
{

sup
θ∈Θ
|Bn,b(gI(·, θ), u)|2 >

γI(Ξ)

8

}
.

Proof of Lemma 4.5.13: Define the set Rn,b := {|Ṽn,b − V |2 ≤ λmin(V )
2
}. It holds that

Ωc
pen,Ξ,b ⊂

{∣∣tr(Ξ̃n,bṼ
−1
n,b Ĩn,bṼ

−1
n,b

)
− tr

(
ΞV −1IV −1

)∣∣ > 1

2
tr
(
ΞV −1IV −1

)}
∪Rc

n,b.

Consider the case Ξ = Id: Assume that for all b′ ∈ Bn, b
′ ≥ b, we have |Ṽn,b − V |2 ≤

λmin(V )
2

. With Lemma 4.5.17 and the rules |tr(AB)| ≤ |A|2|B|2 and |AB|2 ≤ |A|spec|B|2,
we conclude∣∣tr(Ṽ −1

n,b Ĩn,bṼ
−1
n,b

)
− tr

(
V −1IV −1

)∣∣
≤ |Ṽ −1

n,b − V
−1|2|I|2|Ṽ −1

n,b |spec + |Ṽ −1
n,b |2|Ĩn,b − I|2|Ṽ

−1
n,b |spec + |V −1|spec|I|2|Ṽ −1

n,b − V
−1|2

≤
(
2|V −1|2|V −1|spec|Ṽn,b − V |2

)
· |I|2 · (2|V −1|spec)

+(2|V −1|2) · |Ĩn,b − I|2 · (2|V −1|spec) + |V −1|spec|I|2 · (2|V −1|2|V −1|spec|Ṽn,b − V |2)

≤ 4|V −1|2|V −1|spec · |Ĩn,b − I|2 + 6|I|2|V −1|2|V −1|2spec · |Ṽn,b − V |2.
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Now consider Ξ = V (u): The proof for Ωc
pen,Ξ,b ⊂

{∣∣tr(Ĩn,bṼ −1
n,b

)
− tr

(
IV −1

)∣∣ >
1
2
tr
(
IV −1

)}
is easier and therefore omitted. Here, we have

|tr(Ĩn,bṼ −1
n,b )− tr(IV −1)| ≤ |Ĩn,b − I|2|Ṽ −1

n,b |2 + |Ṽ −1
n,b − V

−1|2|I|2
≤ 2|V −1|2|Ĩn,b − I|2 + 2|V −1|2|V −1|spec|I|2|Ṽn,b − V |2.

We conclude in both cases that∣∣tr(Ξ̃n,bṼ
−1
n,b Ĩn,bṼ

−1
n,b

)
− tr

(
ΞV −1IV −1

)∣∣
≤ 6

(
|V −1|2|ΞV −1|spec · |Ĩn,b − I|2 + |I|2|V −1|2|ΞV −1|spec|Ṽn,b − V |2

)
.

Define γI(Ξ) := tr(V −1IV −1)
24|V −1|2|ΞV −1|spec , γV (Ξ) := λmin(V )

2
∧ tr(V −1IV −1)

24|V −1|2|ΞV −1|2spec|I|2
. By Assump-

tion 4.2.2, gV ∈ L(M,χ,CV,z, CV,θ), gI ∈ L(M,χ,CI,z, CI,θ). Define A := {|θ̂b − θ0| ≤
γθ(Ξ)}, where γθ(Ξ) :=

(γI(Ξ)/|CI,θ|2)∧(γV (Ξ)/|CV,θ|2)

2(1+|χ|M1 CMX Nα(M)M )
. By Lemma 4.5.15 it holds on A that

|GV (θ̂b)−GV (θ0)|2 ≤ γV
2

and similarly for GI . By Lemma 4.5.16(ii) and (V ∨V0)∧Vm =

V , (I ∨ I0) ∧ Im = I (see Assumption 4.2.2) we have |Ṽn,b − V |2 ≤ |V̂n,b − V |2,
|Ĩn,b − I|2 ≤ |În,b − I|2. We conclude

Ωc
pen,Ξ,b ∩ A ⊂

({
|Ĩn,b − I|2 > γI(Ξ)

}
∪
{
|Ṽn,b − V |2 > γV (Ξ)

}
∪Rc

n,b

)
∩ A

⊂
{
|În,b −GI(θ̂b)|2 >

γI(Ξ)

2

}
∪
{
|V̂n,b −GV (θ̂b)|2 >

γV (Ξ)

2

}
.

which gives the result in view of Lemmas 4.5.1, 4.5.2 and 4.5.5 and b ≥ b∗(CI,z, γI(Ξ)/8)∨
b∗(CV,z, γV (Ξ)/8).

4.5.8 A crucial inequality

In the following we will use a Bernstein inequality for martingale difference sequences
to obtain a inequality which guarantees that the penalization term has a sufficient rate.

Lemma 4.5.14 (A crucial inequality). Fix some u ∈ [0, 1]. Define the stationary
likelihood L̃n,b(u, θ) := 1

Kn,b(u)

∑n
t=1 K( t/n−u

b
)˜̀
t(u, θ). The argument u will be suppressed

in the following. Suppose that Assumptions 4.2.3, 4.2.2 and 4.2.5 hold. Define DP :=
16. Assume that for all b ∈ Bn it holds that

b ≥ b(2)
∗ := max

j=1,...,d
b(2)
∗ (e′j|Ξ1/2V −1|CI,z|V −1Ξ1/2|ej, (Ξ1/2V −1IV −1Ξ1/2)jj),

b ≥ b(3)
∗ := b(3)

∗ (Ξ) =
log(n)1+2αM

n

×
(42αM · 8|K|2∞

c2
0

· max
j=1,...,d

(e′j|Ξ1/2V −1|C∇`,z) · EX,2 + |e′jΞ1/2V −1∇`(0, u, θ0(u))|
(Ξ1/2V −1IV −1Ξ1/2)jj

)
,

where b(2)
∗ (Cz, γ) := log(n)1+2αM

n

( |K|2∞CE,2(Cz)

c20γ
· (8e) 1

2
+αM

)2. Then there exists some con-
stant Cbe > 0 independent of b, n such that for all n ≥ 3:∑

b∈Bn

E
(
|Ξ1/2V −1 · ∇L̃n,b(θ0)|22 −DP · Pn,Ξ(b)

)
+
≤ Cbe log(n)

n
.
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Proof of Lemma 4.5.14: Recall the definitions τ = (1
2

+ αM)−1 and τ2 = (αM)−1. De-
fine ˜̀

t(u, θ) := `(Ỹt(u), u, θ). Since ˜̀
t(u, θ0(u)) is stationary and a martingale difference

w.r.t. Ft by Assumption 4.2.2, we have

E|Ξ1/2V −1∇L̃n,b(θ0)|22 = E∇L̃n,b(θ0)V −1ΞV −1∇L̃n,b(θ0)′ = Fn,b(u)−2 · tr(ΞV −1IV −1).

which shows that Pn,Ξ(b) = | log(b)| ·
∑d

j=1 E
(
Ξ1/2V −1∇L̃n,b(θ0)

)2

j
. Define Pn,Ξ,j(b) :=

| log(b)| · E
(
Ξ1/2V −1∇L̃n,b(θ0)

)2

j
.

Step 1: Conditional variance truncation. Define Zt,j := e′jΞ
1/2V −1∇˜̀

t(θ0) and

R̂2
n,b,j :=

n∑
t=1

K
(t/n− u

b

)2

·E
[(

Ξ1/2V −1∇˜̀
t(θ0)

)2

j

∣∣Ft−1

]
=

n∑
t=1

K
(t/n− u

b

)2·E[Z2
t,j|Ft−1],

R2
n,b,j := ER̂2

n,b,j =
∑n

t=1 K
( t/n−u

b

)2
(Ξ1/2V −1IV −1Ξ1/2)jj, R̂2

n,b :=
∑d

j=1 R̂
2
n,b,j and

R2
n,b := ER̂2

n,b. We have

E
{
|Ξ1/2V −1 · ∇L̃n,b(θ0)|22 −DPPn,Ξ(b)

}
+

≤
d∑
j=1

E
{(

Ξ1/2V −1 · ∇L̃n,b(θ0)
)2

j
−DPPn,Ξ,j(b)

}
+

≤
d∑
j=1

E
{(

Ξ1/2V −1 · ∇L̃n,b(θ0)
)2

j
−DPPn,Ξ,j(b)

}
+
1{R̂2

n,b,j≤2R2
n,b,j}

+
d∑
j=1

E
{(

Ξ1/2V −1 · ∇L̃n,b(θ0)
)2

j
−DPPn,Ξ,j(b)

}
+
1{R̂2

n,b,j>2R2
n,b,j}

=:
d∑
j=1

(W1,j +W2,j).

Let ej denote the j-th unit vector of Rd. By the Cauchy-Schwarz inequality and Lemma
4.5.3, we have ‖Zt,j‖4 ≤ Cj with some Cj > 0 and thus

W2,j ≤
( |K|∞
c0

Cj
)2 · P(|R̂2

n,b,j −R2
n,b,j|2 > R2

n,b,j)
1/2.

Define the function gj(y) := e′jΞ
1/2V (u)−1gI(y, u, θ0(u))V (u)−1Ξ1/2ej. We have that

E[Z2
t,j|Ft−1] = gj(Ỹt−1(u)).

By Assumption 4.2.2, we have gj ∈ L(M,χ, e′j|Ξ1/2V −1|CI,z|V −1Ξ1/2|ej). Note that

c0nb ≤
∑n

t=1 K
( t/n−u

b

)
≤
(∑n

t=1K
(
t/n−u
b

)2)1/2 ·
(∑n

t=1 1{|t/n−u|≤b/2}
)1/2

≤
(∑n

t=1K
(
t/n−u
b

)2)1/2 · (nb)1/2,
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which implies c2
0 ≤

∑n
t=1K

(
t/n−u
b

)2. We can apply Lemma 4.5.4 (with K2 instead of
K), where the assumption b ≥ b

(2)
∗ leads to

P(|R̂2
n,b,j −R2

n,b,j| > R2
n,b,j)

= P
(∣∣∣( n∑

t=1

K
(t/n− u

b

)2
)−1

·
n∑
t=1

K
(t/n− u

b

)2 ·
{
E[gj(Ỹt(u))|Ft−1]− Egj(Ỹt(u))

}∣∣∣
> (Ξ1/2V −1IV −1Ξ1/2)jj

)
≤ CE,1(gj)n

−2.

This shows∑
b∈Bn

d∑
j=1

n ·W2,j ≤
( |K|∞
c0

)2 ·
d∑
j=1

C2
jCE,1(gj)

1/2 · log(a)−1 · log(n).

Step 2: High value truncation. Define hj(z) := e′jΞ
1/2V (u)−1∇`(z, u, θ0(u)). By

Assumption 4.2.2, we have hj ∈ L(M,χ, ej|Ξ1/2V (u)−1|C∇`,z). Set Mn = Mn,j :=
DX,j ·(4 log(n))1/τ2 , where DX,j := (e′j|Ξ1/2V −1|C∇`,z)·EX,2+|e′jΞ1/2V −1∇`(0, u, θ0(u))|.
Now, we use the fact that ∇˜̀

t(θ0) and thus Zt,j is a martingale difference sequence to
decompose (

V −1∇L̃n,b(θ0)
)
j

=: V
(≤Mn)
n,b,j + V

(>Mn)
n,b,j ,

where Z(≤Mn)
t,j := Zt,j1{|Zt,j |≤Mn} − E[Zt,j1{|Zt,j |≤Mn}|Ft−1], similarly Z(>Mn)

t,j and

V
(≤Mn)
n,b,j =

1

Kn,b(u)

n∑
t=1

K

(
t/n− u

b

)
· Z(≤Mn)

t,j ,

and V
(>Mn)
n,b,j similarly. According to this, write W1,j ≤ 2(W

(≤Mn)
1,j + W

(>Mn)
1,j ). Note

that E
(
V

(>Mn)
n,b,j

)2 ≤
( |K|∞

c0

)2 · ‖Z(>Mn)
t,j ‖2

2. By the projection property of the conditional
expectation, the Cauchy-Schwarz inequality and Lemma 4.5.3 we have

‖Z(>Mn)
t,j ‖2

2 ≤ ‖Zt,j1{|Zt,j |>Mn}‖2
2 ≤ ‖Zt,j‖2

4 · P(|Zt,j| > Mn)1/2 ≤ C2
j · CE(hj)

1/2 · n−1.

This shows∑
b∈Bn

d∑
j=1

n·W (>Mn)
1,j ≤

∑
b∈Bn

d∑
j=1

n·E
(
V

(>Mn)
n,b,j

)2 ≤
( |K|∞
c0

)2
d∑
j=1

C2
jCE(hj)

1/2·log(a)−1·log(n).

Step 3: Application of a Bernstein inequality for martingale differences. Note that

n ·W (≤Mn)
1,j = n · E

(
(V

(≤Mn)
n,b )2

j −DPPn,Ξ,j(b)
)

+
1{R̂2

n,b,j≤2R2
n,b,j}

=

∫ ∞
0

P
(
n
(
(V

(≤Mn)
n,b,j )2 −DPPn,Ξ,j(b)

)
≥ t, R̂2

n,b,j ≤ 2R2
n,b,j

)
dt

≤
∫ ∞

0

P
(∣∣V (≤Mn)

n,b,j

∣∣ ≥√DPPn,Ξ,j(b) +
t

n
, R̂2

n,b,j ≤ 2R2
n,b,j

)
dt.
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We now use a Bernstein-type inequality for martingales from Van de Geer (2000),
Lemma 8.9.: Note that K

(
t/n−u
b

)
Z

(≤Mn)
t,j is a martingale difference sequence w.r.t. Ft.

By the projection property of the conditional expectation, we have E[|Z(≤Mn)
t,j |2|Ft−1] ≤

E[Z2
t,j|Ft−1]. This shows that

n∑
t=1

K

(
t/n− u

b

)2

E
[
|Z(≤Mn)

t,j |2
∣∣Ft−1

]
≤ R̂2

n,b,j.

Define Kmax := 2|K|∞Mn. We conclude that
n∑
t=1

E
[∣∣∣K(t/n− u

b

)
Z

(≤Mn)
t,j

∣∣∣m∣∣∣Ft−1

]
≤ Km−2

max · R̂2
n,b,j.

A careful inspection of the proof of Van de Geer (2000), Lemma 8.9 shows that the
following modification holds for arbitrary a ≥ 0:

P
(
Kn,b(u) · V (≤Mn)

n,b,j ≥ a, R̂2
n,b,j ≤ 2R2

n,b,j

)
≤ P

( n∑
t=1

K
(t/n− u

b

)
Z

(≤Mn)
t,j ≥ a, R̂2

n,b,j ≤ 2R2
n,b,j

)
≤ exp

[
− a2

2(aKmax + 2R2
n,b,j)

]
.

Because −V (≤Mn)
n,b,j is a martingale, too, we can extend the bound to |V (≤Mn)

n,b,j | by intro-

ducing a factor 2 on the right hand side. With a(t) :=
(
DP | log(b)| R

2
n,b,j

Kn,b(u)
+

Kn,b(u)

n
t
)1/2,

γ := 4Kmax/
√
Kn,b(u), β := 8

R2
n,b,j(u)

Kn,b(u)
we conclude

P
(
Kn,b(u)1/2

∣∣(V (≤Mn)
n,b )j

∣∣ ≥ a,R2
n,b,j ≤ 2R2

n,b,j

)
≤ 2 exp

[
− a2

2
(

aKmax√
Kn,b(u)

+ 2
R2
n,b,j

Kn,b(u)

)] = exp
[
− a(t)2

2(a(t) · γ/4 + β/4)

]

≤ exp
[
−
(a(t)

γ
∧ a

2(t)

β

)]
≤

{
exp(−a2(t)/β), a(t) ≤ β/γ

exp(−a(t)/γ), a(t) ≥ β/γ.

Note that a−1(s) = n
Kn,b(u)

(
s2 −DP | log(b)| R

2
n,b,j

Kn,b(u)

)
. We conclude

n ·W (≤Mn)
1j ≤ 2

∫
{a(t)≤β/γ}

exp(−a(t)2/β) dt+ 2

∫
{a(t)≥β/γ}

exp(−a(t)/γ) dt. (4.5.31)

The first term on the right hand side of (4.5.31) is bounded by

2 exp
(
− DP | log(b)|

8

)∫ ∞
0

exp
(
− 1

8

Fn,b(u)2

n

1

(Ξ1/2V −1IV −1Ξ1/2)jj
t
)
dt

= exp
(
− DP | log(b)|

8

)
· 16

n

Fn,b(u)2
(Ξ1/2V −1IV −1Ξ1/2)jj

≤ exp
(
− DP | log(b)|

8

)
· 16(Ξ1/2V −1IV −1Ξ1/2)jj

( |K|∞
c0

)2

· 1

b

≤ b · 16(Ξ1/2V −1IV −1Ξ1/2)jj

( |K|∞
c0

)2

.
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In the second term of the right hand side of (4.5.31) we use the substitution u := a(t)
γ

to get

4γ2 n

Kn,b(u)

∫
{u≥β/γ2}

u · e−u du = 4γ2 n

Kn,b(u)
·
[
− (u+ 1)e−u

]∞
β/γ2

= 4γ2 n

Kn,b(u)

( β
γ2

+ 1
)
· e−β/γ2

.

Because b ≥ b
(3)
∗ , we have β/γ2 =

R2
n,b,j

2K2
max

=
(Ξ1/2V −1IV −1Ξ1/2)jj

8|K|2∞

∑n
t=1K((t/n−u)/b)2

M2
n

≥
(Ξ1/2V −1IV −1Ξ1/2)jjc

2
0

8|K|2∞
nb
M2
n
≥ log(n). Note that 4γ2

Kn,b(u)
≤ 44|K|2∞

c20
· M

2
n

(nb)2 . Since x 7→ (x+1)e−x

is non-decreasing, we conclude for n ≥ 3:

2

∫
{a(t)≥β/α}

exp(−a(t)/α) dt ≤ 1

nb
· 44|K|2∞

c2
0

M2
n

nb
(log(n) + 1)

≤ 1

nb
· 32(Ξ1/2V −1IV −1Ξ1/2)jj ·

log(n) + 1

log(n)
≤ 64

nb
(Ξ1/2V −1IV −1Ξ1/2)jj.

Finally,

∑
b∈Bn

d∑
j=1

n ·W (≤Mn)
1j ≤ 42

d∑
j=1

(Ξ1/2V −1IV −1Ξ1/2)jj

[( |K|∞
c0

)2 ·
∑
b∈Bn

b+
4

n

∑
b∈Bn

b−1
]

≤ 42tr(ΞV −1IV −1) · a

a− 1

[( |K|∞
c0

)2
+ 4
]
.

4.5.9 Elementary results

The proof of the following lemma is elementary and therefore omitted.

Lemma 4.5.15 (Standard approximation). Assume that g : RN × Θ → Rp is such
that each component gi ∈ L̃(M,χ,Ci) where Ci = (Ci,z, Ci,θ). Define G(u, θ) :=
E[g(Ỹt(u), θ)]. Then

|G(u, θ)−G(u, θ′)|2 ≤ |C·,θ|2 · |θ − θ′|2 · (1 + |χ|M1 CM
X Nα(M)M).

Lemma 4.5.16. Recall that we write A � B or A � B if A−B is positive semidefinite
or positive definite, respectively. Let V, V ′, V0 be symmetric d× d-matrices.

(i) Assume that V � V0 � 0. Then V � 0 and V −1
0 � V −1.

Let us define V ∨ V0 as follows: Since V − V0 is symmetric, there exists a spectral
decomposition V −V0 = SΛS−1 where Λ is a diagonal matrix containing the eigenvalues.
Define Λ̃ := max{Λ, 0} where the maximum is taken component-wise and V ∨ V0 :=
SΛ̃S−1 + V0. Furthermore define V ∧ V0 := −((−V ) ∨ (−V0)).
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(ii) It holds that V ∨ V0 � V0 and furthermore, |V ∨ V0 − V ′ ∨ V0|2 ≤ |V − V ′|2.
Proof of Lemma 4.5.16: (i) Since V − V0 is positive semidefinite, we have

λmin(V ) = inf
|x|2=1

x′V x ≥ inf
|x|2=1

x′(V − V0)x+ inf
|x|2=1

x′V0x ≥ λmin(V0)

which shows that V is positive definite. The positive semidefiniteness of V −V0 implies
that I − V −1/2V0V

−1/2 is positive semidefinite. Since V −1/2V0V
−1/2 is matrix similar

to V 1/2
0 V −1V

1/2
0 , also I − V 1/2

0 V −1V
1/2

0 is positive semidefinite and thus V −1
0 − V −1 is

positive semidefinite.
(ii) We have V ∨ V0 − V0 = SΛ̃S−1 which is obviously positive semidefinite, thus
V ∨V0 � V0. Furthermore, with the spectral decompositions V −V0 = SΛS−1, V ′−V0 =
S ′Λ′(S ′)−1 we have

|V ∨ V0 − V ′ ∨ V0|2 ≤ |SΛ̃S−1 − S ′Λ̃′(S ′)−1|2.

By Theorem 1.1. in Wihler (2009) applied to f(x) = max{x, 0} this is bounded by
|(V − V0)− (V ′ − V0)|2 = |V − V ′|2.
Lemma 4.5.17. Let A be a positive definite symmetric d × d-matrix, B a symmetric
d× d-matrix with |A−B|2 ≤ x · λmin(A)

2
for some 0 < x ≤ 1. Then, we have λmin(B) ≥

λmin(A)
2

and

(i) For all v ∈ Rd: |A−1 −B−1|2 ≤ 2x|A−1|2
λmin(A)

· |A−B|2 and |B−1v|2 ≤ (1 + x)|A−1v|2,
and |AB−1|spec ≤ 1 + x.

(ii) |A1/2 −B1/2|2 ≤ x
2

√
λmin(A)

2
.

Proof of Lemma 4.5.17: (i) We have A−1−B−1 = A−1(B−A)B−1, thus with the rules
|tr(CD)| ≤ |C|2|D|2 and |CD|2 ≤ |C|spec|D|2:

|A−1 −B−1|2 ≤ |A−1|2|B−1|spec|A−B|2. (4.5.32)

and

|B−1v|2 ≤ |A−1v|2 + |B−1(A−B)A−1v|2 ≤
(
1 + |B−1|spec|B −A|2

)
· |A−1v|2. (4.5.33)

Basic properties of the Rayleigh quotient and the fact |λmax(C)| = |C|spec ≤ |C|2 for
symmetric C give

λmin(B) = inf
|v|2=1

v′Bv ≥ inf
|v|2=1

v′(B − A)v + inf
|v|2=1

x′Ax ≥ −|λmax(B − A)|+ λmin(A)

≥ −|B − A|2 + λmin(A) ≥ λmin(A)

2
.

This shows |B−1|spec = λmax(B
−1) = 1

λmin(B)
≤ 2

λmin(A)
. Plugging this into (4.5.32)

and (4.5.33) prove the first two inequalities. For the third inequality note that B−1 =
A−1 + A−1(A−B)B−1 and thus |AB−1|spec ≤ 1 + |A−B|2|B−1|spec ≤ 1 + x.
(ii) Applying Theorem 1.1 of Wihler (2009) with f : [λmin(A)

2
,∞) → R, f(x) =

√
x

yields |A1/2 −B1/2|2 ≤ 1
2

√
2

λmin(A)
|A−B|2 ≤ x

2

√
λmin(A)

2
.
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Chapter 5

Conclusion

In this thesis, we have dealt with data adaptive bandwidth selectors for maximum
likelihood estimators in locally stationary processes. Before this work, the theoretical
behavior of such quantities was nearly untouched in the literature. Furthermore, no
general proposals for selection routines in this context were available. In Chapters 2
and 4 we invented two selectors for large classes of locally stationary processes and
proved their consistency: A global bandwidth selector inspired by cross validation and
a local bandwidth selector motivated by a contrast minimization approach. Our thesis
can also be seen as a contribution to bandwidth selection theory in nonparametric
statistics since the popular i.i.d. regression model is a special case of the processes
where we can apply our selectors. Due to the general formulation, our results also
give a hint how to define bandwidth selectors in multivariate locally stationary time
series models or more sophisticated situations. The simulation results of both methods
show that they behave stable if the model is correctly specified which suggests their
use in practice. An application of the cross validation bandwidth selector may be a
good starting point in applications since this estimator does not need further choices
of tuning constants.

An essential difficulty in the proofs was the discussion of the bias terms for recur-
sively defined locally stationary processes. To solve this problem, we developed a gen-
eral approximation theory for such processes in Chapter 3. Based on ideas in Dahlhaus
and Subba Rao (2006) and Dahlhaus (2011), we introduced so called stationary ap-
proximations and derivative processes. Besides the more general formulation, our main
contribution here was the invention of a theory of existence and uniqueness even when
no explicit representation of the process is available (as it was the case in earlier pub-
lications). Derivative processes allowed us to expand locally stationary processes into
stationary processes, making them a powerful tool for proofs. Using these expansions,
we proved some laws of large numbers and central limit theorems with bias expansions
under minimal moment conditions. We used these results to obtain an easily applicable
asymptotic theory for maximum likelihood estimators.

Our results offer several possibilities for further research. Regarding bandwidth se-
lection it may be useful to generalize the theoretical results to multivariate time series.
The bandwidth selectors defined in this thesis may depend on unknown properties like
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the variance or the fourth moment of the underlying i.i.d. error sequence - it seems
to be a very challenging problem to find ad-hoc estimators of these quantities which
achieve parametric rates. Regarding Chapter 3, let us note that we set up a bunch of
conditions for the existence of derivative processes and definitions of interesting func-
tionals which may be generalized. One of the most interesting problems is the question
if differentiability of the recursion function is necessary to guarantee the existence of a
derivative process. In case of a positive answer it would be possible to apply the theory
of derivative processes to an even larger class of processes, for instance the tvTAR pro-
cess. The idea of derivative processes and stationary approximations is not restricted
to discrete recursively defined time series models. Stochastic differential equations may
be a field where a similar theory could be invented.
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